i S

- —

e

k
]
&
% i
5
v _ =]
- + B o
| [L) o w q
. ¢ F 3 ' : . Voo £ .
LY Wi L f 2 - o PR § .-
i L Ll i =
£ ; .
X = [3 5 4
I
4 '
¥ = i 1 .) ? = -

.\.

|
|
\

Pr

- i]
.
i
e
T
-

| LARRYJOELGOLDSTEIN

J
L B =
o

o o 7

.
A #
-

.Ul K. Liaay

TRS-80 MODEL III

Executive Editor: David T. Culverwell

Production Editor: Michael J. Rogers

Art Director: Don Sellers,

Hlustrator: Nancy Obloy

Typesetting by: Bi-Comp, Incorporated, York, PA

Typefaces: Zapf (display) and Optima (text)

Printed by: R. R. Donnelley & Sons Company, Harrisonburg, VA
Text designer: Michael J. Rogers

Cover design: Don Sellers

THE TRS-80 MODEL III
PROGRAMMING and APPLICATIONS

Larry Joel Goldstein

University of Maryland
College Park, Maryland

Robert J. Brady Company
A Prentice-Hall Publishing and Communications Company
Bowie, Maryland 20715

The TRS-80 Model I11: Programming and Applications

Copyright © 1982 by Robert J. Brady Company.

All rights reserved. No part of this publication may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or by any information storage and retrieval sys-
tem, without permission in writing from the publisher. For information,
address Robert J. Brady Company, Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Goldstein, Larry Joel.
The TRS-80 model lii.

Includes index.

1. TRS-80 (Computer) l. Title.
QA76.8.T18G64 001.64 81-21588
ISBN 0-89303-050-3 AACR2

Prentice-Hall international, Inc., London
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand

Printed in the United States of America

82 83 84 85 86 87 88 89 90 91 92 0 9 8 7 6 5 4 3 2 1

CONTENTS

Preface

I. A First Look At Computers 1
1.1 Introduction 1
1.2 What is a Computer? 3
1.3 Meet Your TRS-80 5

ll. Getting Started in BASIC 11
2.1 Computer Language and Programs 11
2.2 Elementary Basic Programs 14
2.3 Giving Names to Numbers and Words 24
2.4 Doing Repetitive Operations 32
2.5 Some System Commands 42
2.6 Letting Your Computer Make Decisions 47
2.7 Some Programming Tips 59
2.8 Appendix—Operation of the Cassette Recorder 63

I1l. More about BASIC 67
3.1 Working With Tabular Data 67
3.2 Inputting Data 75
3.3 Telling Time With Your Computer 83
3.4 Advanced Printing 90
3.5 Gambling With Your Computer (Elementary Level) 99
3.6 Subroutines 106

IV. Easing the Frustrations of Programming 113
4.1 Using the Line Editor 113
4.2 Flow Charting 121
4.3 Errors and Debugging 124
4.4 Appendix—Model Il Error Messages 128

V. Your Computer as a File Cabinet 131
5.1 What Are Data Files? 131
5.2 Data Files For Cassette Users 133
5.3 Using a Model Ill Disk File 136
5.4 An Introduction to Disk BASIC 144
5.5 Data Files for Disk Users 149

V1. An Introduction to Computer Graphics 159
6.1 Elementary Graphics Principles 159

6.2 Drawing Bar Charts Via Computer 170
6.3 Graphing Functions Via Computer 177
6.4 Computer Art (For Primitives) 184

VII. Word Processing 187
7.1 What is Word Processing? 187
7.2 Manipulating Strings 188
7.3 Printer Controls and Form Letters 198
7.4 Control Characters 204

7.5 Using Your Computer as a Word Processor 207

7.6 A Do-lt-Yourself Word Processor 209

VIII. Computer Games 213
8.1 Blind Target Shoot 213
8.2 Tic Tac Toe 218

IX. Programming for Scientists 225
9.1 Single and Double Precision Numbers 225
9.2 Variable Types 232
9.3 Mathematical Functions in BASIC 235
9.4 Defining Your Own Functions (Disk Users Only)

X. Computer-Generated Experiments 245
10.1 Simulation 245
10.2 Simulation of a Dry Cleaner 247

XI. Some Other Applications of Your Computer 257
11.1 Computer Communications 257
11.2 Information Storage and Retrieval 260
11.3 Advanced Graphics 260
11.4 Connections to the Outside World 261

XIl. Where To Go From Here 263
12.1 Assembly Language Programming 263
12.2 Other Languages and Operating Systems 265

Answers to Selected Exercises 267
Index 299

241

PREFACE

This book is designed to teach the computer novice how to use one of the
most popular personal computers, the TRS-80 Model I11. The development of
the personal computer is one of the most exciting breakthroughs of our time.
Indeed, the small, inexpensive, personal computer promises to bring the
computer revolution to tens of millions of people and promises to alter the
way we think, learn, work, and play. This book is an introduction to this rev-
olution. Accordingly, it has two purposes: first, it instructs the reader in the
operation of the Model Il; and, second, it illustrates some of the many ways
to use the TRS-80.

I have attempted to guide the reader from the moment he or she turns on
the TRS-80 for the first time and discuss the rudiments of BASIC program-
ming. Since the book is designed as a tutorial, it includes an exercise set in
each section, with answers at the end of the book. Furthermore, this book
may be used for self-study. In the text are questions labeled “Test Your
Understanding.”” These questions test concepts as they are introduced and a
built-in study guide. The answers to these questions are to be found at the
end of the exercises for the section.

Because of my conviction that, in addition to BASIC programming, the be-
ginner should also gain an overview of real-life applications, | have included
many applied discussions, e.g., a brief look at word processing. These ap-
plications are designed to stimulate the reader’s interest and can be used as
preludes to further study.

Most enthusiastic personal computer users quickly upgrade their comput-
ers to include various optional equipment. Accordingly, | have included an
introduction to Disk BASIC, and brief discussions of printers and com-
munications interfaces. The book closes with possible topics for further
study.

Any book owes its existence to the dedicated labors and inspirations of
many people. In my case, | have been inspired by my wife, Sandy and my
children, Melissa and Jonathan, who have enthusiastically joined me in ap-
plying our TRS-80 to a variety of tasks. Further inspiration has been supplied
by my father, Martin Goldstein, who has come out of retirement to join the
computer revolution and to assist me in researching and editing this book.
My thanks to Michael Rogers, Production Editor, for the professional manner
in which he managed the editing and production of this book. Finally, | would
like to thank my friends Harry Gaines, President of the Brady Company, and
David Culverwell, Editor-in-Chief of the Brady Company, for their continued
support over the years. Their friendship has enhanced my excitement and
pleasure in writing this book.

Dr. Larry Joel Goldstein
Silver Spring, Maryland
September 19, 1981

to
my father, Martin Goldstein,
always a father,
recently a collaborator

‘ A First Look At Computers

1.1 INTRODUCTION

The computer age is barely thirty years old but it has already had a profound
effect on all our lives. Indeed, computers are now commonplace in the
office, the factory, and even the supermarket. In the last three or four years,
the computer has even invaded the home, as people have purchased mil-
lions of computer games and hundreds of thousands of personal computers.
Computers are in such common use today that it is hard to imagine a single
day in which a computer will not somehow affect us.

In spite of the explosion of computer use in our society, most people know
very little about them. People view a computer as an “‘electronic brain,”” and
have no idea how a computer works, how it may be used, and the extent to
which it may simplify various everyday tasks. This does not reflect a lack of
interest. Most people recognize that computers are here to stay and are
interested in finding out how to use them. If you are so inclined, then this is
the book for you!

I'have designed this book as an introduction to personal computing for the
novice. You may be a student, teacher, homemaker, business person, or just
a curious individual. | assume that you have had little or no previous
exposure to computers and are interested in learning the fundamentals. | will
guide you as you turn on your computer for the first time. (There is really
nothing to it!) From there, 1 will lead you through the fundamentals of
computer programming in the BASIC language. Throughout, we will provide
exercises for you to test your understanding of the concepts presented. The
approach will stress the various ways in which you can apply your computer.
The exercises will suggest programs you can write. Many of the programs
will be designed to give you insight into the workings of computers in

2 A FIRST LOOK AT COMPUTERS

business and industry. | will suggest a number of applications of the com-
puter within your home. For good measure, we will build a few computer
games!

What is Personal Computing?

In the early days of computing (the 1940s and 1950s), the typical computer
was a huge mass of electronic components which occupied several entire
rooms. In those days, it was often necessary to reinforce the floor of a
computer room and install special air conditioning in order for the computer
to function properly. Moreover, an early computer was likely to cost several
million dollars. Over the years, the cost of computers has decreased dramati-
cally and, thanks to micro-miniaturization, their size has shrunk quicker than
their price.

A few years ago, the first “personal’” computers were introduced to the
marketplace. These computers were reasonably inexpensive and were de-
signed to allow the average person to learn about the computer and to use it
to solve everday problems. These personal computers proved to be incredi-
bly popular and several hundred thousand of them were sold in only three
years.

The personal computer is not a toy. It is a genuine computer which has
most of the features of its big brothers, the so-called “‘main-frame’” com-
puters, which still cost several million dollars. A personal computer can be
equipped with enough capacity to handle the accounting and inventory
control tasks of most small businesses. It can perform computations for
engineers and scientists. It can even be used to keep track of home finance
and personal clerical chores. It would be quite impossible to give anything
like a comprehensive list of the applications of personal computers. How-
ever, the following list can suggest the range of possibilities:

For the business person:
Accounting
Record-keeping
Clerical chores
Inventory
Cash management
Payroll
Graph and chart preparation

For the home:
Record-keeping
Budget management

WHAT IS A COMPUTER? 3

Investment analysis
Correspondence
Energy conservation
Home security

For the professional:
Billing
Analysis of data
Report generation
Correspondence

For recreation:
Computer games
Computer graphics
Computer art

As you can see, the list is quite comprehensive. However, your interests may
not be included in any of the categories on the list. Do not worry about that.
There is plenty of room for those of you who are just plain curious about
computers and wish to pursue them as a hobby.

The TRS-80 Model IIT*

This book will introduce you to personal computing on the TRS-80 Model 111
computer. This is an excellent machine with remarkable capabilities for its
very modest price. Radio Shack has been one of the genuine pioneers in the
personal computer movement and its Model Ill is a “second generation”
personal computer, enjoying many more advanced features than its earlier
sisters, the Model |, Levels | and II. Before we begin to discuss the features of
the Model Ill, however, let us begin by discussing the features which are
common to all computers.

1.2 WHAT IS A COMPUTER?

At the heart of every computer is a central processing unit (or CPU) which
executes the commands you specify. This unit carries out arithmetic, makes
logical decisions, and so forth. In essence, the CPU is the “‘brain”’ of the
computer. The memory of a computer allows it to “‘remember”’ numbers,
words, paragraphs, as well as the list of commands you wish the computer to
perform. The input unit allows you to send information to the computer; the

*TRS-80 is a registered trademark of the Tandy Corporation.

4 A FIRST LOOK AT COMPUTERS

output unit allows the computer to send information to you. The relationship
of these four basic components of a computer are shown in Figure 1-1.

In a TRS-80 computer, the CPU is contained in a tiny circuitry chip, called
a Z80 microprocessor. As a computer novice, it will not be necessary for you
to know anything at all about the electronics of the CPU. For now, view the
CPU as a magic device somewhere inside the case of your computer and do
not give it another thought!

The input device of the TRS-80 is the computer keyboard. We will discuss
the special features of the keyboard in Section Three. For now it suffices to
think of the keyboard as a typewriter. By typing symbols on the keyboard,
you are inputting them to the computer.

The TRS-80 has a number of output devices available. The most basic is
the TV screen’” or video display. In addition, you may use a printer to
provide output on paper. In computer jargon, such output is called hard
copy.

There are four types of memory in a TRS-80: ROM, RAM, cassette, and
disk. Fach of these types of memory has its own advantages and disadvan-
tages, so we attempt to make the memory as versatile as possible by combin-
ing the good features of each type.

ROM stands for “‘read only memory.” This type of memory can be read by
the computer (that is, the CPU), but you cannot record anything in it. The
ROM is reserved for the computer language which the CPU utilizes. More

INPUT
keyboard
Y
MEMORY | CENTRAL OUTPUT
ROM Cassette PROCESSING . Sc'reen
RAM Diskette [UNIT Printer

Figure 1-1.

MEET YOUR TRS-80 5

about this language later. For now just remember that the ROM contains the
information necessary for the computer to understand your commands. This
information is pre-recorded in the factory and is permanently situated in the
ROM. You will never need to concern yourself further with the ROM.

RAM stands for “random access memory.” This is the memory into which
you can write. If you type characters on the keyboard, then they are stored in
RAM. Similarly, results of calculations are kept in RAM awaiting output to
you. There is an extremely important feature of RAM which you should
remember.

Important: If the computer is turned off, then RAM is erased.

Thus, RAM may not be used to store data in permanent form. Nevertheless, it
is used as the computer’s main working storage because of its great speed. It
takes only about a millionth of a second to store or retrieve a piece of data
from RAM.

To make permanent copies of programs and data, we may use either the
cassette recorder or the disk file. The cassette recorder is just a tape recorder
which allows the recording of information in a form intelligible to the
computer. The recording medium is the same sort of cassette you use for
musical recordings, but of a much higher quality.

A disk file records information on flexible disks which resemble phono-
graph records. The disks are often called ““floppy disks,”” and can store
several hundred thousand characters each! (A double-spaced typed page
contains about 3,000 characters.) A disk file can provide access to informa-
tion in much less time, on the average, than a cassette recorder. On the other
hand, disk files are more costly than cassette recorders.

The TRS-80 Model Il comes in both disk and non-disk models. Since this
book is meant for novices, we will begin by assuming that you have the non-
disk version. It will not make much difference which version you own until
we discuss file maintenance (in Chapter 4).

1.3 MEET YOUR TRS-80

The best way to quickly master the operation of your computer is to read this
book while sitting down in front of it and verifying the various statements as
they come up. So why don’t you have a seat in front of your TRS-80. If your
computer is not conveniently available, you may refer to Figures 1-2 and
1-3.

6 A FIRST LOOK AT COMPUTERS

Figure 1-2. The TRS-80 Model Iil.

Let us begin by examining the keyboard. Note that it is similar to a
typewriter keyboard, with a few significant differences. Many typewriters use
the same key for the number 1 and a lower case letter l. However, for the
computer, spellings must not allow for any ambiguity, so there are distinct
keys for these two symbols. Similarly, it is very easy to confuse the capital
letter O (‘oh’) and the number O (zero). For this reason, a computer specialist
usually writes zero with a slash through it: 8. To prevent possible confusion,
you should also adopt this convention.

Note that the keyboard has a number of specialized keys which are not on
a standard typewriter keyboard. We will discuss these keys one at a time, but
first let's turn the computer on. Look under the keyboard. On the right side
you will find the Power-On. Push it. The computer should respond with the
question:*

*The following discussion applies to the Model IlI, Levels | and [1. If your computer is the disk
version, then the power-on will be followed by the displayed message “Insert Diskette.”” [n

MEET YOUR TRS-80 7

Figure 1-3. The Model Il keyboard.

CASS?
Respond by hitting the ENTER key. Next, the computer will ask:
MEMORY SIZE?

Hit the ENTER key again. (Later on we will discuss the significance of these
questions.) The computer should now respond with the message:

RADIO SHACK MODEL il BASIC
(C) '80 TANDY

REAY

Your computer is now awaiting your instructions! Strike a few keys just to get
the feel of the keyboard. Note that as you type, the corresponding characters

learning to operate your computer, we recommend that you ignore the disk drives for the time
being. To do so, as you turn on your computer, depress the Break key. This procedure causes
the computer to ignore the presence of the disk files. From here on the computer will function
as described above. For start-up dialog to use the disk drives and disk BASIC, see Chapter
Four.

8 A FIRST LOOK AT COMPUTERS

will appear on the screen. Note, also, how the small white box travels along
the typing line. This box is called the cursor. The cursor always sits at the
location where the next typed character will appear. Note also that the
symbol > always sits out in the left hand margin. This symbol is called a
prompt and indicates the current line being typed.

As you type, you should notice the similarities between the Model IlI
keyboard and that of a typewriter. However, you should also note the
differences. At the end of a typewriter line you return the carriage, either
manually or, on an electric typewriter, with a carriage return key. Of course,
your screen has no carriage to return. The ENTER key serves the same
function. If you depress the ENTER key, the cursor will then return to the next
line and position itself at the extreme left side of the screen. The ENTER key
has another function. It signals the computer to accept the line just typed.
Until you hit the ENTER key, the computer does not even know that the
current line exists!

Keep typing until you are at the bottom of the screen. If you hit ENTER, the
entire contents of the screen will move up by one line and the line at the top
of the screen will disappear. This property of the screen is called scrolling.

By this time, your screen should look pretty cluttered. To clear it, push the
CLEAR key on the right side of the keyboard. All characters on the screen are
erased and only the cursor remains. The cursor is positioned in the upper left
corner of the screen. See Figure 1-4.

- B

N J

Figure 1-4. Screen after CLEAR.

MEET YOUR TRS-80 9

There are several other very interesting features of the Model 11l keyboard.
Note that each of the digits 0—-9 appear twice: once in the usual place at the
top of the keyboard and a second time at the right hand side. The numeric
keys on the right side are arranged like the keys of a calculator and are
designed to facilitate typing numerical data. It makes no difference which of
the sets of numerical keys you use. In fact, you may alternate them in any
manner, entering a 1 from the top set, then a 5 from the right set, and so
forth. The right set of keys is called the numeric keypad. Note that the
numeric keypad contains an ENTER key. This key has the same function as
the other ENTER key and is provided for convenience.

There are two SHIFT keys. They work exactly like the shift keys on a
typewriter and allow the typing of capital letters (and the top characters on
keys with two symbols). For example, the key in the top right corner of the
keyboard has ! on top and a 1 on the bottom. To type ! strike the 1/1 key
while holding down the SHIFT key.

In most computer work it is convenient to type using only capital letters.
For one thing, capitals are larger and easier to read on the screen. For
another, most of the commands and statements in the BASIC language
require all capital letters. You may disable the lower case letters by typing a
SHIFT and 0 simultaneously. In this mode the letter keys are automatically
typed as capitals. Note, however, that the non-letter keys (such as 1 and 1)
still have two meanings. To type the upper symbol, you still must use the shift
key. To return from the all-capitals mode, once again hit SHIFT and 0
simultaneously.

Test Your Understanding 1.1*
(@) Type your name and address on the screen. Number the lines. (e.g. 10
NAME, 20 STREET, etc.)
(b) Erase the screen.

(c) Repeat (a) only using all capital letters.

Unless you are a superb typist (most of us are at the other extreme!), you
will eventually make typing errors. So let’s discover how to correct them.
Type a few characters, but do not hit the ENTER key. Now hit the backspace
key. (This is the key with the arrow pointing to the left.) Note that this key

*Answers to the TEST YOUR UNDERSTANDING questions follow the exercise set of the
current section.

10 A FIRST LOOK AT COMPUTERS

causes the cursor to backspace, one space at a time, erasing the characters it
passes over. This is another difference between a typewriter and a computer
keyboard. Note, however, that you may use the backspace to correct lines
only if they have not been sent to the computer via the ENTER key.

If things look hopeless and you wish to start over, just push the RESET
button at the upper right side of the keyboard. This will return the computer
to the state it was in just after being turned on. Both RAM and the screen will
be erased.

There are other ways to correct typing errors, but for now let us be content
with the methods discussed above.

The Model Il keyboard has a number of other keys but let’s start using the
computer and wait until later to discuss them.

EXERCISES

Type the following expressions on the screen. After each numbered exercise,
clear the screen.

1. 10 Hello. I'm your new owner. 8. 10 CENTRAL PROCESSING UNIT
2. 10 ARITHMETIC 20 RANDOM ACCESS MEMORY
3. 10 PRINT 3+7 30 READ ONLY MEMORY

4. 20 LET A=3-5 9. 10 LET X=10

5. 10 5% of 68 20 LET Y=50.35

6. 10 38>-5 10. 200 Y=X*2-5

7. 10 Addition 300 PRINT Y, “Y”

20 Subtraction
30 Multiplication
40 Division

Answers to Test Your Understanding 1.1

(a) Type your name, following each line with ENTER.
(b) Hit CLEAR.
(¢) Hit SHIFT and 0 simultaneously. Now repeat (a).

STep <1

|Getﬁng Started in BASIC

2.1 COMPUTER LANGUAGES AND PROGRAMS

In the last chapter, we learned to manipulate the keyboard and display
screen of the TRS-80. Let us now take up the problem of communicating
instructions to the computer.

Just as humans use languages to communicate with one another, com-
puters use languages to communicate with other electronic devices (such as
printers), human operators, and other computers. There are hundreds of
computer languages in use today. However, the most common one for
microcomputers is called BASIC. This is the language used by your TRS-80.
BASIC is versatile and yet very easy to learn. It was developed at Dartmouth
College by John Kemeny and Thomas Kurtz, especially for novices at com-
puting. For the next few chapters, we will concentrate on learning the basics
of BASIC.

Assume that you have turned on your computer and that its readiness to
accept further instructions is signified by the presence of the display:

READY
>
From this point on, a typical session with your computer might go like this:

1. Type in a series of instructions in BASIC. Such a series of instructions is
called a program.

2. Locate and correct any errors in the program.

11

12 GETTING STARTED IN BASIC

3. Tell the computer to carry out the series of instructions in the program.
This step is called running the program.

4. Obtain the output requested by the program.

5. Either: (a) Run the program again; or (b) repeat steps 1—4 for a new
program; or (¢) terminate the programming session.

To better understand what is involved in these five steps, let us consider a
particular example. Suppose that you want the computer to add 5 and 7.
First, you would type the following instructions:

10 PRINT 5+7
20 END

This sequence of two instructions constitutes a program to calculate 5 + 7.
Note that as you type the program, the computer merely records your
instructions, but does not carry them out. As you are typing a program, the
computer provides opportunity to change, delete, and correct instruction
lines. (More about how to do this later.) Once you are content with your
program, you tell the computer to run it (that is, to execute the instructions)
by typing the command*:

RUN
The computer will execute the program and display the desired answer:

iz

If you wish the computer to run the program a second time, type RUN
again.

Running a program does not erase it from RAM. Thus, if you wish to add
instructions to the program or modify the program, you may continue typing
just as if the RUN command had not intervened. For example, if you wish to
include in your program the problem of calculating 5 — 7, we type the
additional line:

15 PRINT 5—7

*Do not forget to follow the command with ENTER. Recall that the computer will not
recognize lines unless they have been sent to it by hitting the ENTER key.

COMPUTER LANGUAGES AND PROGRAMS 13

The program now consists of the three lines:

10 PRINT 5+7
15 PRINT 5—-7
20 END

Note how the computer puts line 15 in proper sequence. If we now type
RUN again, the computer will display the two answers:

12
-2

In the event that you now wish to go on to another program, type the
command:

NEW

This erases the previous program from RAM and prepares the computer to
accept a new program. You should always remember the foilowing impor-
tant fact:

RAM can contain only one program at a time.

Test Your Understanding 1.1

(@) Write and type in a BASIC program to calculate 12.1 + 98 + 5.32
b) Run the program of (a). -

)

(b)

(c) Erase the program of (a) from RAM.

d) Write a program to calculate 48.75 — 1.674.
)

(
(e) Type in and run the program of (d).

The TRS-80 operates in several distinct modes. In the immediate mode, it
accepts typed program lines and commands (like RUN and NEW), used to
manipulate programs. In the immediate mode, commands are executed as
soon as they are given. In the execute mode, the computer executes a
program. In execute mode, the screen is under control of the program.
Finally, there is the edit mode. This is a special mode used to correct
program lines. In this mode, the keyboard and screen work according to
special rules which we will discuss in Chapter Four.

14 GETTING STARTED IN BASIC

When you first turn the computer on, it is automatically in immediate
mode. The immediate mode is indicated by the presence of the READY
message on the screen. The RUN command puts it into execute mode. After
the program has been run, the computer redisplays the READY message,
indicating that it is back in immediate mode.

Answers to Test Your Understanding 1.1

(@) 10 PRINT 12.14+98+5.32
20 END

(b) Type RUN
(c) Type NEW

(d) 10 PRINT 48.75—-1.674
20 END

(e) Type in program followed by RUN

2.2 ELEMENTARY BASIC PROGRAMS

In learning to use a language, you must first master the alphabet in which the
language is written. Next, you must learn the vocabulary of the language.
Finally, you must study the way in which words are put together into
sentences. In learning the BASIC language, we will follow the progression
just described. In the previous chapter, we learned about the characters of
the Model 11l keyboard. These characters are the alphabet of BASIC. Next, let
us learn some elementary vocabulary. The simplest ““‘words” are the so-
called constants.

BASIC Constanis

BASIC allows us to manipulate numbers and text. Of course, the rules for
manipulating numerical data differ from those for handling text, so in BASIC
we distinguish between these two types of data as follows: A numeric
constant is a number. A string constant is a sequence of keyboard charac-
ters, which may include letters, numbers, or any other keyboard symbols.
Thus, for example, the following are examples of numeric constants:

5, —2, 3.145, 23456, 456.78345676543987, 27134566543

ELEMENTARY BASIC PROGRAMS 15

The following are examples of string constants:
“John"’, "’Accounts Receivable”, “$234.45 Due”, ““Dec. 4, 1981"

Note that string constants are always enclosed in quotation marks. In order to
avoid ambiguity, quotation marks may not appear as part of a string con-
stant. (In practice, an apostrophe " will usually serve as an adequate substi-
tute.) Note that although numbers may appear in a string constant, you
cannot use such riumbers in arithmetic operations. Only numeric constants
may be used for aritimetic purposes.

For certain applications, you may wish to specify your numeric constants
in exponential format. This will be especially helpful in the case of very large
and very small numbers. For example, consider the number
15,300,000,000. It is very inconvenient to type all the zeros. It can be
written in handy shorthand as 1.53E10. The 1.53 indicates the first three
digits of the number. The E10 means that you move the decimal point in the
1.53 to the right 10 places. Similarly, the number —237,000 may be written
in exponential format as —2.37E5. The exponential format may also be used
for very small numbers. For example, the number .00000000054 may be
written in exponeritial format as 5.4E—10. The —10 indicates that the deci-
mal point in 5.4 is to be moved 10 places to the left.

Test Your Understanding 2.1

(@) Write these numbers in exponential format: .00048 , —1374.5

(b) Write these numbers in decimal format: —9.7E3, 9.7E—3, —9.7E—3
We will have more to say about constants later. For example, we wiii
describe the number of digits of accuracy you can get, how to round off
numbers, and so forth. Now, however, you know more than enough to get

started. So instead of concentrating on the fine points now, let’s first learn
enough to make our computer do something.

BASIC Programs

Let us reconsider the BASIC program of the preceding section, namely:

ﬂ10 PRINT 5+7
20 END
end of program

16 GETTING STARTED IN BASIC

This program illustrates two very important features common to all BASIC
programs:

I. The instructions of a program must be numbered. Each line must start
with a line number. The computer executes instructions in order of
increasing line number.

Il. The END instruction identifies the end of the program. On encounter-
ing this instruction, the computer stops execution of the program and
displays READY and the prompt.

Note that line numbers need not be consecutive. For example, it is
perfectly acceptable to have a program whose line numbers are 10,23,47,
55,100. Note also that it is not necessary to type instructions in their
numerical order. You could type line 20 and then go back and type line 10.
The computer will sort out the lines and rearrange them according to increas-
ing number. This feature is especially helpful in case you accidentally omit a
line while typing your program.

Here is yet another important fact about line numbering. If you type two
lines having the same line number, the computer erases the first version and
remembers the second version. This feature is especially useful for correcting
errors: If a line has an error, just retype it!

Your TRS-80 will perform all the standard functions found on a calculator.
Since most people are familiar with the operation of a calculator, let us start
by writing programs to solve various arithmetic problems.

Arithmetic operations are written in customary fashion, with a few accom-
modations to the limited number of characters on the keyboard. Addition
and subtraction are written for the computer in the usual way:

5+ 4,9 — 8.

However, multiplication is indicated using the symbol *, which shares the
.1 key. Thus, for example, the product of 5 and 3 is denoted as:

5*3

Similarly, division is denoted using /. Thus, for example, 8.2 divided by 15 is
typed:

8.2/15

Example 1. Write a BASIC program to calculate the sum of 54.75, 78.83 and
548.

ELEMENTARY BASIC PROGRAMS 17

Solution. The sum is indicated by typing:
54.75 + 78.83 + 548

The BASIC instruction for printing data on the screen is PRINT. So we write
our program as follows:

10 PRINT 54.75+78.83+548
20 END

BASIC carries out arithmetic operations in a special order. It scans an
expression and first carries out all multiplications and divisions in left-to-right
order. It then returns to the left side of the expression and performs addition
and subtraction, also in left-to-right order. If parentheses occur, these are
evaluated first, following the same rules. If parentheses occur within paren-
theses, then the innermost parentheses are evaluated first.

Example 2. What are the numerical values which BASIC will calculate from
these expressions? ’

(@ (5 + 7)/2 (€) 5+ 7*3/2

(b)y 5+ 772 (d) (5 + 7*3)/2
Solution. (a) The computer first applies its rules for the order of calculation

to determine the value of the parenthesis, namely 12. Then it divides by 2 to
obtain 6.

(b) The computer scans the expression from left to right performing all
multiplications and divisions in the order encountered. So it does the divi-
sion 7/2 to obtain 3.5. It then rescans the line and performs all additions and
subtractions in order. This gives:

54+ 3.5 = 8.5.

(c) The computer first performs all multiplication and division in order:
5+ 10.5

Now it performs addition and subtraction to obtain 15.5.

(d) The computer calculates the value of all parentheses first. In this case, it

computes 5 + 7*3 = 26. (Note that it does the multiplication first!) Next it
rescans the line, which now looks like

26/2

It performs the division to obtain 13.

18 GETTING STARTED IN BASIC

Test Your Understanding 2.2
Calculate 5 + 3/2 + 2 and (5 + 3)/(2 + 2).

Example 3. Write a BASIC program to calculate the quantity:

92 X 18 + 34 x 11 — 125 x 8
27.8

Solution. Here is the program:

10 PRINT (22*18+34*11—12.5%8)/27.8
20 END

Note that we used parentheses in line 10. They tell the computer that the
entire quantity in parentheses is to be divided by 27.8. If we had omitted the
parentheses, the computer would divide —12.5*8 by 27.8 and add 22*18
and 34*11 to the result.

Test Your Understanding 2.3

Write BASIC programs to calculate: ,
QHM§3+S¢8+7§%W§9+4§3+8§7»$%7
(b) 27.8% of (112 + 38 + 42) ~
(c) The average of the numbers 88, 78, 84, 49, 63

Printing Words

So far, we have used the PRINT instruction only to display the answers to

numerical problems. However, this instruction is very versatile. It also

allows us to display string constants. For example, consider this instruction:
10 PRINT “PATIENT HISTORY”

During program execution, this statement will create the following display:

PATIENT HISTORY

In order to display several string constants on the same line, separate them

ELEMENTARY BASIC PROGRAMS 19
by commas in a single PRINT statement. For example, consider the instruc-
tion:

10 PRINT ““AGE”, “‘SEX”, “BIRTHPLACE", “ADDRESS”’
It will cause four words to be printed as follows:
AGE SEX BIRTHPLACE ADDRESS

Both numeric constants and string constants may appear in a single PRINT
statement, such as:

100 PRINT “AGE"”, 65.43, “NO. DEPENDENTS"”

Here is how the computer determines the spacing on a line. Each line is
divided into print zones, each of which consists of 16 spaces. By placing a
comma in a PRINT statement, you are telling the computer to start the next
string of text at the beginning of the next print zone. Thus, for example, the
four words above begin in columns 0,16,32,48, respectively. Note that
columns are numbered beginning with 0. (See Figure. 2-1.)

Test Your Understanding 2.4

Write a program to print the following display.

NAME
LAST FIRST MIDDLE GRADE
SMITH JOHN DAVID 87

Example 4. Suppose that a distributor of plumbing supplies sells 50 sinks
and 5 hot water boilers. The sinks cost $39.70 each and are subject to a 30%
discount. The hot water boilers cost $147.90 each and are also subject to a
30% discount. Prepare a bill for the shipment.

COLUMN
0... 1516... 3132... 47 48 . . . 63
Print Zone 1 Print Zone 2 Print Zone 3 Print Zone 4

Figure 2-1. Print zones.

20 GETTING STARTED IN BASIC

Solution. Let us insert four headings on our bill: item, Quantity, Price, and
Cost. We then print two lines, corresponding to the two types of items
shipped. Finally, we calculate the total due.

10 PRINT “ITEM”,“QTY",“PRICE” "(;osr'

20PRINT | 71—/ / V

30 PRINT “SINK”,50,39.70,50*(39.70—.3%39.70)

40 PRINT “BOILER”,5,147.90,5%(147.90—.3*147.90)

50 PRINT

60 PRINT “TOTAL DUE”,,,50%(39.70—.3%39.70)+
5%(147.90—.3*147.90)

Note the PRINT statements in lines 20 and 50. They specify that a blank line
is to be printed. Also, note the series of three commas in line 60. The
additional two commas move the next printing over to the beginning of the
fourth print zone, which would bring the total cost directly under the column
labelled “COST”. If we now type RUN (followed by ENTER), the screen will
look like this:

10 PRINT “ITEM”,“QTY”,”PRICE"”,"COST"”

20 PRINT "

30 PRINT “SINK”,*50”,39.70"”",50%(39.70 — 3*39 70)

40 PRINT “BOILER”,“5",147.90",5%(147.90—.3*147.90)

50 PRINT

60 PRINT “TOTAL DUE”,,,50%(39.70—.3*39.70) +
5%(147.90-.3*147.90)

RUN

ITEM QTY PRICE COST
SINK 50 39.70 1389.50
BOILER 5 147.90 517.65
TOTAL DUE 1907.15

You may think that the above invoice is somewhat sloppy because the
columns of figures are not properly aligned. Patience! We will learn to align
the columns after we have learned a bit more programming.

ELEMENTARY BASIC PROGRAMS 21

Test Your Understanding 2.5

Write a computer program which creates the following display.
BUDGET-APRIL

FOOD 387.50
RENT 475.00
CAR 123.71
GAS 100.00
UTILITIES 146.00
ENTERTAINMENT 100.00
TOTAL (Calculate total)
Exponentiation

Suppose that A is a number and N is a positive integer (that is, N is one of the
numbers 1,2,3,4, . . .). Then A raised to the Nth power is the product of A
with itself N times. This quantity is usually denoted AN, and the process of
calculating it is called exponentiation. Thus, for example:

23 = 2%2*%) = B, 57 = SHGHGAGHGHLES = 78105
It is possible to calculate AN by repeated multiplication. However, if N is
large, this can be tedious to type. BASIC provides a shortcut. Exponentiation
is denoted by the symbol [, which is produced by hitting the key with the
upward-pointing arrow. For example, 2* is denoted 2[3. The operation of
exponentiation takes precedence over multiplication and division, as is
illustrated by the following example.
Example 5. Determine the value which BASIC assigns to this expression:

20%3 — 5*2[3
Solution. The exponentiation is performed first to yield:

20*3 — 5*8 = 60 — 40

= 20.

Test Your Understanding 2.6

Evaluate the following first manually and then by a Model 11l program.
(@) 24 x 33
(b) 22 x 33 — 12432 x 2

22

GETTING STARTED IN BASIC

EXERCISES (answers on 267)

Write BASIC programs to calculate the following quantities:

1.

2
3.
4

57 + 23 + 48

. 57.83 x (48.27 — 12.54)

127.86/38

. 365/.005 + 1.02°

Make a table of the first, second, third, and fourth powers of the
numbers 2, 3, 4, 5, and 6. Put all first powers in a column, all second
powers in another column, and so forth.

Mrs. Anita Smith visited the doctor in connection with a broken leg.
Her bill consists of 45 dollars for removal of the cast, 35 dollars for
therapy, and 5 dollars for drugs. Her major medical policy will pay
80% directly to the doctor. Use the computer to prepare an invoice
for Mrs. Smith.

A school board election is held to elect a representative for a district
consisting of Wards 1, 2, 3 and 4. There are three candidates, Mr.
Thacker, Ms. Hoving, and Mrs. Weatherby. The tallies by candidate
and ward are as follows.

Ward 1 Ward 2 Ward 3 Ward 4

Thacker 698 732 129 487
Hoving 148 928 246 201
Weatherby 379 1087 148 641

Write a BASIC computer program to calculate the total number of votes
achieved by each candidate as well as the total number of votes cast.

Describe the output from each of these programs.

te a‘\’b‘—v({,

8.) 10 PRINT 8*2—3*(2[4—10)

20 END

9) PRINT “SILVER”,“GOLD","COPPER","PLATINUM"

20 PRINT 327,448,1052,2
30 END

BIOUNI D mEaaT

ELEMENTARY BASIC PROGRAMS

T0v) 10 PRINT, ““GROCERIES”,""MEATS"","”DRUGS"’
20 PRINT “MON","1,245","2,348","'2,531"
30 PRINT “TUE",”” 248","'3,459","2,148"
40 END

Convert the following numbers to exponential format.

11. 23,000,000

12. 175.25
13. —200,000,000
14. .00014

15. —.000000000275
16. 53,420,000,000,000,000
Convert the following numbers in exponential format to standard format.
17. 1.59E5
18. —20.3456E6
19. —7.456E—12
20. 2.39456E—18

Answers to Test Your Understanding

2.1: (a) 4.8E—4, —1.3745E3
(b) —9700, .0097, —.0097
2.2: 8.5, 2

2.3: (a) 10 PRINT ((4*3+5*8+7*9)/(7*9+4*3+8*7))*48.7
20 END

(b) 10 PRINT .278%(112+38+42)
20 END

(c) 10 PRINT (88+79+84+49+63)/5
20 END

2.4: 10 PRINT, “NAME"”
20 PRINT
30 PRINT “LAST”,”MIDDLE"”,”FIRST",”GRADE"
40 PRINT
50 PRINT “SMITH",“JOHN","”DAVID"”,87
60 END

23

24 GETTING STARTED IN BASIC

2.5: 10 PRINT, “BUDGET-APRIL"
20 PRINT “FOOD",387.50
30 PRINT “CAR",475.00
40 PRINT ““GAS”,123.71
50 PRINT “UTILITIES”,146.00
60 PRINT “ENTERTAINMENT",100.00
70 PRINT , “__""
80 PRINT “TOTAL"”, 387.50+475.00+123.71+146.00+100.00
90 END

2.6: (a) 432
(b) 76

2.3 GIVING NAMES TO NUMBERS AND WORDS

In the examples and exercises of the preceding section, you probably no-
ticed that you were wasting considerable time by retyping certain numbers
over and over. Not only does this retyping waste time, it also is a likely
source for errors. Fortunately, such retyping is unnecessary if we make use of
variables.

A variable is a letter which represents a number. Any letter of the alphabet
may be used as a variable. (There are other possible names for variables. See
below.) Possible variables are A, B, C, X, Y, Z. At any given moment, a
variable has a particular value. For example, the variable A might have the
value 5 while B might have the value —2.137845. One method for changing
the value of a variable is through use of the LET statement. The statement

10 LET A=7

sets the value of A equal to 7. Any previous value of A is erased. The LET
command may be used to set the values of a number of variables simultane-
ously. For instance, the instruction

100 LET C=18: D=23: E=2.718
assigns C the value 18, D the value 23, and E the value 2.718.

Once the value of a variable has been set, the variable may be used
throughout the program. The computer will insert the appropriate value
wherever the value occurs. For instance, if A has the value 7 then the
expression

A+5

GIVING NAMES TO NUMBERS AND WORDS 25

is evaluated as 7 + 5 or 12. The expression
3*A—10

is evaluated 3*7 — 10 = 11. The expression 2*A[2 is evaluated
2*7[2=2%49=98

Test Your Understanding 3.1
Li

Suppose that A has the value 4 and B has the value 3. What is the value of the
expression A[2/2*B[2?

Variables ﬁay also be used in PRINT statements. For example, the state-
ment

10 PRINT A

will cause the computer to print the current value of A (in the first print zone,
of course!). The statement

20 PRINT A,B,C

will result in printing the current values of A, B, and C in print zones 1, 2,
and 3, réespectively.

Test Your Understanding 3.2

Suppose that A has the value 5. What will be the result of the instruction:
10 PRINT A,A[2,2*A[2

Example 1. Consider the three numbers 5.71, 3.23, and 4.05. Calculate
their sum, their product, and the sum of their squares. (That is, the sum of
their second powers; such a sum is often used in statistics.)

Solution. Introduce variables A, B, and C and set them equal, respectively,
to the three numbers. Then compute the desired quantities.

10 LET A=5.71: B=3.23: C=4.05

20 PRINT “THE SUM IS”, A+B+C

30 PRINT “THE PRODUCT IS”, A*B*C

40 PRINT “THE SUM OF SQUARES 1S, A[2+B[2+C[2
50 END

26 GETTING STARTED IN BASIC

Test Your Understanding 3.3 | coy e

£ B ¢ v E £
Consider the numbers 101, 102, 103, 104, 105, 106. Write a program
which calculates the product of the first 2, the first 3, the first 4, the first 5,

and all 6.

The following mental imagery is often helpful in understanding how BASIC
handles variables. When BASIC first encounters a variable, say A, it sets up a
box (actually a memory location) which it labels “A”. (See Figure 2-2.) In
this-box it stores the current value of A. When you request a change in the
value of A, the computer throws out the current contents of the box and
inserts the new value. If you do not specify a value for a variable, BASIC will
assign it the value 0.

Note that the value of a variable need not remain the same throughout a
program. At any point in the program, you may change the value of a
variable (with a LET statement, for example). If a program is called on to
evaluate an expression involving a variable, it will always use the current
value of the variable, ignoring any previous values the variable may have
had at earlier points in the program.

Test Your Understanding 3.4

Suppose that a loan for 5,000 dollars has an interest rate of 1.5% on the
unpaid balance at the end of each month. Write a program to calculate the
interest at the end of the first month. Suppose that at the end of the first
month, you make a payment of 150.00 dollars (after the interest is added).
Include in your program the balance after the payment.

LET d

5.781

A

Figure 2-2. The variable A.

GIVING NAMES TO NUMBERS AND WORDS 27

Example 2. What will be the output of the following computer program?

10 LET A=10: B=20

20 LET A=5

30 PRINT A+B+C, A*B*C
40 END

Solution. Note that no value for C is specified, so C = 0. Also note that the
value of A is initially set to 10. However, in line 20, this value is changed to
5. So in line 30, A, B, and C have the respective values 5, 20, and 0.
Therefore, the output will be:

25 0
To the computer, the statement
LET A=

means that the current value of A is to be replaced with whatever appears to
the right of the equal sign. Thus, for example, if we write

LET A=A+1

then we are asking the computer to replace the current value of A with A +
1. So if the current value of A is 4, the value of A after performing the
instruction is 4 + 1, or 5.

Test Your Understanding 3.5

What is the output of the following program?

10 LET A=5.3
20 LET A=A+1
30 LET A=2*A
40 LET A=A+B
50 PRINT A

60 END

Legal Variable Names

As we mentioned above, you may use any letter of the alphabet as a variable
name. In addition, you may use a letter followed by a single digit, such as A2

28 GETTING STARTED IN BASIC

or W7. Furthermore, BASIC recognizes any pair of letters, such as AA or ZR,
as a legal variable name, with the following exceptions:

IF, ON, OR, TO

These letter combinations are reserved by BASIC and cannot be used as
variable names. Note that the variables A, AA, and A1 are all different as far
as the computer is concerned. Note also that a variable name must always
start with a letter. In particular, 1A is not a legal variable name.

So far, all of our variables assume only numerical values. However, BASIC
also allows variables to assume string constants as values. The variables for
doing this are called string variables and are denoted by a variable name
followed by a “$”. Thus, A$, B1$, and ZZ$ are all valid names of string
variables. To assign a value to a string variable we use the LET statement,
with the desired value inserted in quotation marks after the equal sign. Thus,
to set A$ equal to the string ““Balance Sheet”’, we use the statement

LET A$="BALANCE SHEET"”

We may print the value of a string variable just as we print the value of a
numeric variable. For example, if A$ has the value just assigned, the state-
ment

PRINT A$
will result in the following screen output:
BALANCE SHEET

Example 3. What will be the output of the following program?

10 LET A$=“MONTHLY RECEIPTS”":B$="MONTHLY EXPENSES"
20 LET A=20373.10: B=17584.31

30 PRINT A$,B$

40 PRINT A, B

50 END
Solution.
MONTHLY RECEIPTS MONTHLY EXPENSES
20373.10 17584. 31

Note that we have used the variables A and A$ (as well as B and B$) in the
same program. The variables A and A$ are considered different by the

GIVING NAMES TO NUMBERS AND WORDS 29

computer. Note also the presence of the second comma in line 40. This is
due to the fact that the value of A$, namely MONTHLY RECEIPTS requires
16 spaces. Therefore, to leave a space between the two headings, we moved
B$ over into the next print zone. Therefore, to correctly align the values of A
and B under the appropriate headings, we must print a blank space in print
zone 2 after we print the value of A. This is accomplished by the second
comma. One further comment about spacing. Note that the numbers do not
exactly align with the headings, but rather are offset by one space. This is
because BASIC allows room for a sign (+ or —) in front of a number. In the
case of positive numbers, the sign is suppressed, but the space remains.

Remarks In Programs

It is very convenient to annotate programs with remarks. For one thing,
remarks make programs easier to read. For another, remarks assist in finding
errors and making modifications in a program. To insert a remark in a
program, we may use the REM statement. For example, consider the line:

520 REM X DENOTES THE COST BASIS

Since the line starts with REM, it will be ignored during program execution.
Instead of REM, we may use an apostrophe as in the following example:

1040’ Y IS THE TOTAL COST

Multiple Statemenis On A Single Line

It is possible to put several BASIC statements on a single line. Just separate
them by a colon. For example, instead of the two statements:

10 LET A=5.784: B=3.571
20 PRINT A[2+B[2

we may use the single statement:
10 LET A=5.784: B=3.571: PRINT A[2+B|[2

To insert a remark on the same line as a program statement, use a colon
followed by an apostrophe (or REM), as in this example:

10 LET A=PI*R[2 : * A IS THE AREA,R IS THE RADIUS

30 GETTING STARTED IN BASIC

In what follows, we will sprinkle comments liberally throughout our pro-
grams so that they will be easier to understand.

Test Your Understanding 3.6

What is the result of the following program line?

10 LET A=7:B$="COST”:C$="TOTAL":PRINT C$,B$*'=",A

EXERCISES (answers on 268)

O . . .
In Exercises 1-6, determine the output of the given program.

1) 10 LET A=5:B=5
L~ 20 PRINT A+B
30 END 1O

2) 10 LET AA=5
20 PRINT AA*B
30 END O

c) 10 LET A1=5

20 PRINT AT[2+5*A1
30 END

(4 10 LET A=2: B=7: C=9
20 PRINT A+B, A=C, A*C
30 END

(5) 10 LET A$="JOHN JONES"
20 LET B$="AGE": C=38
30 PRINT A$, B$, C

40 END

/ 10 LET X=11, Y=19
20 PRINT 2*X
30 PRINT 3*Y
40 END

What is wrong with the following BASIC statements?

o+

i Do ownnes CDIOST AN il
<7) 10 LET A=//YOUTH// FlsuM s el QU v
(8Y 10 LET AA=—12 vottr
9 10 LET A$=57 —

(%)
11.
12.
13.

14.

GIVING NAMES TO NUMBERS AND WORDS 31

LET ZZ$=Address
250 LET AAA=-9
10000 LET 1A=-—2.34567

Consider the numbers 2.3758, 4.58321, and 58.11. Write a program
which computes their sum, product, and the sum of their squares.

A company has three divisions: Office Supplies, Computers, and
Newsletters. The revenues of these three divisions for the preceding
quarter were, respectively, $346,712, $459,321, and $376,872. The
expenses for the quarter were $176,894, $584,837, and, $402,195,
respectively. Write a program which displays this data on the screen
with appropriate explanatory headings. Your program should also
compute and display the net profit (loss) from each division and the
net profit (loss) for the company as a whole.

Answers To Test Your Understanding

3.1:
3.2:

3.3:

3.4:

3.5:
3.6:

72
It prints the display:
5 25 50

10 LET A=101:B=102:C=103:D=104:E=105:F=106
20 PRINT A*B

30 PRINT A*B*C

40 PRINT A*B*C*D

50 PRINT A*B*C*D*E

60 PRINT A*B*C*D*E*F

70 END

10 LET B=5000:1=.015:P=150.00
20 IN=I*B

30 PRINT “INTEREST EQUALS”, IN
40 B=B+IN

50 PRINT “BALANCE WITH INTEREST EQUALS”, B
60 B=B-P

70 PRINT “BALANCE AFTER PAYMENT EQUALS”, B
80 END

12.6

It creates the display:
TOTAL COST = 7

32 GETTING STARTED iN BASIC

2.4 DOING REPETITIVE OPERATIONS

Suppose that we wish to solve 50 similar multiplication problems. It is
certainly possible to type in the 50 problems one at a time and let the
computer solve them. However, this is a very clumsy way to proceed.
Indeed, suppose that instead of 50 problems there were 500, or even 5000.
Typing the problems one at a time would not be practical. If, however, we
can describe to the computer the entire class of problems we want solved,
then we can instruct the computer to solve them using only a few BASIC
statements. Let us consider a concrete problem. Suppose that we wish to
calculate the quantities

12,22,32, . . . 104

That is, we wish to calculate a table of squares of integers from 1 to 10. This
calculation can be described to the computer as calculating J[2, where the
variable | is allowed to assume, one at a time, each of the values 1,2,3,

. ,10. Here is a sequence of BASIC statements which accomplishes the
calculations:

This is the
last value of J

This is the
(first value of }}

10 FOR J=1 TO 10 } lines 10-20-30 repeated

20 PRINT J[2 10 times
30 NEXT J
40 END

The sequence of statements 10,20,30 is called a loop. When the computer
encounters the FOR statement, it sets J equal to 1 and continues execution of
the statements. Statement 20 calls for printing J[2. Since J is equal to 1, we
have J[2 = 1[2 = 1. So the computer prints a 1. Next comes statement 30,
which calls for the next J. This instructs the computer to return to the FOR
statement in 10, increase J to 2 and to repeat instructions 20 and 30. This
time, J[2 = 2[2 = 4. So line 20 prints a 4. Line 30 says to go back to line 10
and increase J to 3 and so forth. Lines 10, 20 and 30 are repeated 10 times!
After the computer executes line 10,20,30 with] = 10, it will leave the loop
and execute line 40.

DOING REPETITIVE OPERATIONS 33

Type in the above program and give the RUN command. The output will
look like this:

1

4

9
16
25
36
49
64
81
100
READY

Test Your Understanding 4.1

(@) Devise a loop which allows J to assume the values 3 to 77.

(b) Write a program which calculates J2 for] = 3 to 77

Let’s modify the above program to include on each line of output not only
J12, but also the value of . And to make the table easier to read, let's add two
column headings. The new program reads:

10 PRINT IIIIIIII][ZII
20 FOR J=1TO 10
30 PRINT J,J[2

40 NEXT }

50 END

The output now looks like this:

J[2
1
4
9
16
25
36
49

NV R WN =

34 GETTING STARTED IN BASIC

8 64
9 81
10 100
READY

>

Test Your Understanding 4.2
What would happen if we change the number of line 10 to 25¢

Let us now illustrate some of the many uses of loops by means of a series of
examples.

Example 1. Write a BASIC program to calculate 1 +2 + 3 + . . . + 100.
Solution. Let us use a variable S (for sum) to contain the sum. Let us start S at

0 and use a loop to successively add to S the numbers 1, 2,3, . . . , 100.
Here is the program.

10 LET $=0 : ,

20 FOR J=1 TO 100 Thf;g;:f;;"fgg"s
30 LET $=5+} o

40 NEXT |

50 PRINT S

60 END

When we enter the loop the first time, S = 0 and J = 1. Line 30 then replaces
SbyS +J, or0 + 1. Line 40 sends us back to line 20, where the value of | is
now set equal to 2. In line 30, S (which is now 0 + 1) is replaced by S + J, or
0 + 1 + 2. Line 40 now sends us back to line 20, where J is now set equal to
3. Then line 30 sets S equal to 0 + 1 + 2 + 3. Finally, on the 100th time
through the loop, S is replaced by 0 + 1 + 2 + . . . + 100, the desired sum.
If we run the program, we derive the output

5050

READY
>

Test Your Understanding 4.3

Write a BASIC program to calculate 101 + 102 + . . . + 110.

DOING REPETITIVE OPERATIONS 35

Test Your Understanding 4.4

Write a BASIC program to calculate and display the numbers 2, 2[2, 2[3,
., 2[20.

Example 2. Write a program to calculate the sum
ITX2+2X3+3x4+ ... 449 x50

Solution. We will let the sum be contained in the variable S, as in the
preceding example. The quantities to be summed are just the numbers
JU+N)for)=1,2,3,. . .,49. So here is our program:

10 LET S=0

20 FOR J=1 TO 49
30 LET S=S+J*(J+1)
40 NEXT)

50 PRINT S

60 END

Example 3. Suppose that you borrow 7000 dollars to buy a car. You finance
the balance for 36 months at an interest rate of 1% per month. Your monthly
payments are 232.50 dollars. Write a program which computes the amount
of interest each month, the amount of the loan which is repaid and the
balance owed.

Solution. lLet B denote the balance owed. Then initially we have B =
7000.00 dollars. At the end of each month let us compute the interest | owed
for that month, namely .01*B. For example, at the end of the first month, the
interest owed is .01*7000.00 = $70.00. Let P = 232.50 denote the monthly
payment, and let R denote the amount repaid out of the current payment.
Then R = P — I. For example, at the end of the first month, the amount of the
loan repaid is 232.50 — 70.00 = 162.50. The balance owed may then be
calculated as B — R. At the end of the first month, the balance owed is
7000.00 — 162.50 = 6837.50. Here is a program which performs these
calculations:

10 PRINT “MONTH"” ,“INTEREST”,“PAYMENT” ,“BALANCE"
20 LET B=7000

25 LET P=232.50

30 FOR J=1TO 36: ’J IS THE MONTH NUMBER

40 LET I=.01*B: 'CALCULATE INTEREST FOR MONTH

50 LET R=P—1: "CALCULATE REPAYMENT

36 GETTING STARTED IN BASIC

60 LET B=B—R: ’CALCULATE NEW BALANCE
70 PRINT J,1,R,B

80 NEXT J

90 END

You should attempt to run this program. You will notice that it runs, but it is
pretty useless because the screen will not contain all of the output, so that
most of it goes flying by before you can read it. One method for remedying
this situation is to press SHIFT and @ simultaneously as the output is
scrolling by on the screen. This will freeze the contents of the screen and
pause execution of the program. To unfreeze the screen press the same pair
of keys again. The output will begin to scroll again. To use this technique
requires some manual dexterity. Moreover, it is not possible to guarantee
where the scrolling will stop.

Test Your Understanding 4.5

RUN the program of Example 3 and practice freezing the output on the
screen. It may take several runs before you are comfortable with the pro-
cedure.

Let us now describe another method of adapting the output to our screen
size by printing only 12 months of data at one time. This amount of data will
fit, since the screen contains 16 lines. We will use a second loop to keep
track of 12 month periods. The variable for the new loop will be K and K will
go from O to 2. The month variable will be J as before, but now J will go only
from 1 to 12. The month number will now be 12*K + J (the number of years
plus the number of months). Here is the revised program.

10 LET B=7000

15 LET P=232.50

20 FOR K=0 TO 2

30 PRINT “MONTH”,“INTEREST”,PAYMENT”,“BALANCE"
40 FOR J=1 TO 12

50 LET I=.01*B

60 LET R=P—I: ’ONE 12 MONTH PERIOD
70 LET B=B—R

80 PRINT 12*K+J,L,R,B

90 NEXT }

100 STOP: "HALTS EXECUTION

110 CLS: 'CLEARS SCREEN

120 NEXT K: 'GOES TO NEXT 12 MONTHS
130 END

DOING REPETITIVE OPERATIONS 37

This program utilizes several new statements. In line 100, we used the
statement STOP. This causes the computer to stop execution of the program.
However, the computer remembers where it stops and all values of variables
are preserved. The STOP statement also leaves unchanged the contents of
the screen. You can take as long as you wish to examine the data on the
screen, make a copy of it, etc. When you are ready for the program to
continue, type: CONT. The computer will resume where it left off. The first
instruction it then encounters is in line 110. CLS clears the screen. So after
being told to continue, the computer clears the screen and goes on to the
next value of K—that is, the next 12 months of data. Here is a copy of the
output. The underlined statements are those you type.

READY

>

RUN

MONTH INTEREST PAYMENT BALANCE
1 70 162.5 6837.5
2 68.375 164.125 6673.38
3 66.7338 165.766 6673.38
4 65.0761 167.424 6340.19
5 63.4019 169.098 6171.09
6 61.7109 170.789 6000.3
7 60.003 172.497 5827.8
8 58.278 174.222 5653.58
9 56.5358 175.964 5477.61
10 54.7761 177.724 5299.89
11 52.9989 179.501 5120.39
12 51.2039 181.296 4939.09
Break in 160

>

CONT

MONTH INTEREST PAYMENT BALANCE
13 49.3909 183.109 4755.98
14 47.5598 184.94 4571.05
15 45.7105 186.79 4384.26
16 43.8426 188.657 4195.6

17 41.956 190.544 4005.05

38 GETTING STARTED IN BASIC

18 40.0505 192.449 3812.6
19 38.126 194.374 3618.23
20 36.1823 196.318 3421.91
21 34.2191 198.281 3223.63
22 32.2363 200.264 3023.37
23 30.2337 202.266 2821.1
24 28.211 204.289 2616.81
Break in 100

>

CONT

MONTH INTEREST PAYMENT BALANCE

25 26.1681 206.332 2410.48
26 24.1048 208.395 2202.09
27 22.0209 210.479 1991.61
28 19.9161 212.584 1779.02
29 17.7902 214.71 1564.31
30 15.6431 216.857 1347.46
31 13.4746 219.025 1128.43
32 11.2843 221.216 907.216
33 9.07216 223.428 683.788
34 6.83788 225.662 458.126
35 4.58126 227.919 230.207
36 2.30207 230.198 8.92639E—-03
READY

>

Note that the data in the output is carried out to six significant figures, even
though the problem deals with dollars and cents. We will take up the
problem of rounding numbers off a little later. Note also the balance listed at
the end of month 36. The —03 indicates that the decimal point is to be
moved three places to the left. So the number listed is just .00892639, or
about .89 cents!

Using Loops to Create Delays

By using a loop, we can create a delay inside the computer. For example,
consider the following sequence of instructions:

10 FOR J=1 TO 3000
20 NEXT)

DOING REPETITIVE OPERATIONS 39

This loop does not do anything! However, the computer repeats instructions
10 and 20 three thousand times! This may seem like a lot of work. But not for
a computer. To obtain a feel for the speed at which the computer works, you
should time this sequence of instructions. Such a loop may be used as a
delay. For example, when you wish to keep some data on the screen without
stopping the program, just build in a delay. For example, here is a program
which prints two screens of text. A delay is imposed to give a person time to
read the first screen.

10 PRINT “THIS IS A GRAPHICS PROGRAM TO DISPLAY SALES”
20 PRINT “FOR THE YEAR TO DATE”

30 FOR J=1 TO 5000
40 NEXT J:

50 CLS

60 PRINT “YOU MUST SUPPLY THE FOLLOWING PARAMETERS:"”
70 PRINT ““PRODUCT, TERRITORY, SALESPERSON"’

80 END

Delay Loop

Example 4. Use a loop to produce a blinking display for a security system.

Solution. Suppose that your security system is tied in with your computer
and the system detects that an intruder is in your warehouse. Let us print out
the message:

SECURITY SYSTEM DETECTS INTRUDER- ZONE 2

For attention, let us blink this message on and off by alternately printing the
message and clearing the screen. .

~10 FOR J=1 TO 2000
;_ 20 PRINT “SECURITY SYSTEM DETECTS INTRUDER—ZONE 2"
1730 FOR K=1TO 50
40 NEXT K
50 CLS
_ 60 NEXT }
70 END

The loop in 30-40 is a delay loop to keep the message on the screen a
moment. Line 50 turns the message off, but line 10 turns it back on. The
message will blink 2000 times.

40 GETTING STARTED IN BASIC

Test Your Understanding 4.6

Write a program which blinks your name on the screen 500 times leaving the
name on the screen for a loop of length 50 each time.

In all of our examples of loops, the loop variable increased by 1 with each
repetition of the loop. However, it is possible to have the loop variable
change by any amount. For example, the instructions

10 FOR j=1 TO 5000 STEP 2

1000 NEXT J

define a loop in which J jumps by 2 for each repetition, so J will assume the
values

1,3,5,7,9, ... ,4999
Similarly, use of STEP .5 in the above loop will cause] to advance by .5 and
therefore assume the values

1,1.5,2,2.5,3,3.5,4,4.5, . . . ,5000

It is even possible to have a negative step. In this case, the loop variable will
run backwards. For example, the instructions

10 FOR J=100 TO 1 STEP —1

100 NEXT }

will “count down’’ from] = 100 to] = 1 one unit at a time. We will give
some applications of such instructions in the Exercises.

Test Your Understanding 4.7

Write instructions to allow J to assume the following sequences of values:
(@) 95,96.7,98.4, . . . ,112
(b) 200,199.5,199, . . . ,100

DOING REPETITIVE OPERATIONS 41

EXERCISES (answers on 269)

Write BASIC programs to compute the following quantities:

1.

2.

3.

4.

124+ 224324+ | 4 252
T+ (172) + (1722 + . . .+ (1/2)10
B+ 22433+, . +10

T+ (172) + (1/3) + . . . + (1/100)

. Write a program to compute J2, J3, J*for) =1, . . . , 12. The format of

your output should be as follows:

J[2 J[3 J[4

W N =

12

. Suppose that you have a car loan whose current balance is 4,000.00

dollars. The monthly payment is 125.33 dollars and the interest is 1%
per month on the unpaid balance. Make a table of the interest pay-
ments and balances for the next 12 months.

- Suppose you deposit 1,000 dollars on January 1 of each year into a

savings account paying 10% interest. Suppose that the interest is
computed on January 1 of each year, based on the balance for the
preceding year. Calculate the balances in the account for each of the
next 15 years.

A stock market analyst predicts that Tyro Computers, Inc. will achieve
a 20% growth in sales in each of the next three years, but profits will
grow at a 30% annual rate. Last year’s sales were 35 million dollars and
last year’s profits were 5.54 million dollars. Project the sales and profits
for the next three years, based on the analyst’s prediction.

42 GETTING STARTED IN BASIC

Answers to Test Your Understanding

4.1: (@) 10 FOR}=3TO 77

100 NEXT J
(b) 10 FOR J=3 TO 77
20 PRINT J[2
30 NEXT J
40 END

4.2: The heading

J J[2

would be printed before each entry of the table.

4.3: 10 S=0
20 FOR J=101 TO 110
30 S=S+]
40 NEXT J
50 PRINT S
60 END

4.4: 10 FOR)=1TO 20
20 PRINT 2{J
30 NEXT]
40 END

4.6: 10 FOR J=1 TO 500
20 PRINT ““<YOUR NAME>"
30 FOR K=1TO 50
40 NEXT K
50 CLS
60 NEXT J
70 END

4.7: (a) 10 FOR J=95 TO 112 STEP 1.7
(b) 20 FOR J=200 TO 100 STEP —.5

2.5 SOME SYSTEM COMMANDS

Thus far, most of our attention has been focused on learning statements to
insert inside programs. Let us now learn a few of the commands available for

SOME SYSTEM COMMANDS 43

manipulating programs and the computer. The NEW command, previously
discussed, is in this category. Remember the following facts about system
commands:

1. System commands are typed without a line number.
2. You must hit ENTER after typing a system command.

3. A system command may be given whenever the computer is in the
immediate mode. When the computer first enters the immediate mode,
it displays the READY message. The computer remains in the immedi-
ate mode until a RUN command is given (in which case the computer
enters the execute mode) or an EDIT command is given (in which case
the computer enters the edit mode).

4. The computer executes system commands as soon as they are re-
ceived.

Listing a Program

To obtain a list of all statements of the current program in RAM, you may
type the command:

LIST
For example, suppose that RAM contains the following program

10 PRINT 5+7,5-7
20 PRINT 5*7,5/7
30 END

(This program may or may not be currently displayed on the screen.) If you
type LIST, then the above three instruction lines will be displayed, followed
by the READY message.

In developing a program, you will undoubtedly find it necessary to input
lines in non-consecutive order and to correct lines already input. If so, then
the screen will not usually indicate the current version of the program.
Typing LIST every so often will assist in keeping track of what has been
changed. LISTing is particularly helpful in checking a program or in deter-
mining why a program will not run.

Note that the Model Ill screen contains 16 lines so you can display only
16 program statements at one time. To LIST only those statements with line

44 GETTING STARTED IN BASIC

numbers from 1 to 16, we use the command:
LIST 116

In a similar fashion, we may list any collection of consecutive program lines.
There are several other variations on the LIST command. To list the

program lines from the beginning of the program to line 75, use the
command:

LIST-75

Similarly, to list the program lines from 100 to the end of the program, use
the command:

LIST 100—

To list line 100, use the command:

LIST 100

Test Your Understanding 5.1

Write a command to:
(a) List line 200
(b) List lines 300-330
(c) List lines 300 to the end

Test out these commands with a program.

Deleting Program Lines
When typing a program or when revising an existing program, it is often
necessary to delete lines which are already part of the program. One simple
way is to type the line number followed by ENTER. For example,

275

(followed by ENTER) will delete line 275. The DELETE command may also
by used for the same purpose. For example, we may delete line 275, using

SOME SYSTEM COMMANDS 45

the command:
DELETE 275

The DELETE command has a number of variations which make it quite
flexible. For example, to delete lines 200 to 500 inclusive, use the
command:

DELETE 200-500

To delete all lines from the beginning of the program to 350, inclusive, use
the command:

DELETE —350

Note, however, the DELETE command must always include a last line
number to be deleted. This is to prevent ugly mishaps in which you mistak-
enly erase most of a program. If you wish to delete all lines from 100 to the
end of the program, you must specify a deletion from 100 to the last line
number. If you do not remember the last line number, LIST the program first,
determine the final line number and then carry out the appropriate DELETE.

Test Your Understanding 5.2

What is wrong with the following commands?
(a) DELETE 450—
(b) LIST 450-
(c) DELETE 300—-200

Saving a Program

Once you have typed a program into RAM, you may save a copy on either
cassette or diskette. At any future time, you may read the cassette or diskette
copy back into RAM. At that point, you may re-execute the program, modify
it, or add to it. Let us describe the process of saving a program on cassette.
First connect the cassette recorder and insert a cassette, as described in the
Appendix to this chapter. Suppose that we have the following program in
RAM:

10 PRINT 5+7
20 END

46 GETTING STARTED IN BASIC

To save a copy of this program on the cassette, push the PLAY and RECORD
buttons of the cassette recorder simultaneously. Next, type the command:

CSAVE “X”

The letter X is the name we have arbitrarily assigned to this program. (A
program name consists of a single letter.) A copy of the program will then be
written onto the cassette. (Note that the program will still be in RAM.) To
read the program back into RAM, position the cassette to the beginning of
the tape. Push the PLAY button on the cassette recorder and type the
command:

CLOAD “X”

You should try the above sequence of commands using the given program.
After recording the program onto the cassette, erase the program from RAM
(by typing NEW). Then read the program from the cassette. When the read
operation is complete, the word READY will be displayed. Just to check that
the program has been read, you should now LIST it.

Test Your Understanding 5.3

Save the following program on cassette:

10 PRINT 5+7
20 PRINT 5—7
30 END

Cassettes are sometimes finicky and may result in data transmission errors
to the computer. In loading a program, you may guard against such errors by
using a ? after the word CLOAD. This variation instructs the computer to
compare the program on tape with the one in RAM. Any inconsistencies are
reported on the display. In case of inconsistency, the CLOAD operation
should be repeated.

We will postpone until Chapter 4 any discussion of saving programs on
diskette.

EXERCISES

Exercises 1—7 refer to the following program.

10 LET A=19.1,B=17.5
20 PRINT A+B,A*B
30 END

LETTING YOUR COMPUTER MAKE DECISIONS 47

1. Type the above program into RAM and RUN it.
Erase the screen without erasing RAM. LIST the program.
Save the program and erase RAM.

Recall the program and LIST it. RUN the program again.

Add the following line to the program:
25 PRINT Al2+BJ[2

(Do not retype the entire program!) LIST the new program. RUN the new
program.

6. Save the new program without destroying the old one.

7. Recall the new program. Delete line 20 and RUN the resulting pro-
gram.

Answers to Test Your Understanding

5.1: (a) LIST 200
(b) LIST 300—330
{c) LIST 300—
5.2: (a) The line number of the last line to be deleted must be specified.

b) Nothing wrong.

(b)
(c) The lower line number must come first.

2.6 LETTING YOUR COMPUTER MAKE DECISIONS

One of the principal features which makes computers useful as problem-
solving tools is their ability to make decisions. The vehicle which BASIC uses
to make decisions is the IF . . . THEN . . . ELSE statement. The IF part of
such a statement allows us to ask a question. If the answer is YES, then the
computer carries out the THEN part of the statement. If the answer is NO,
then the computer carries out the ELSE portion of the statement. For exam-
ple, consider the statement:

500 IF J=0 THEN PRINT “CALCULATION DONE" ELSE 250

First the computer determines if] is equal to zero. If so, it prints “CALCULA-

48 GETTING STARTED IN BASIC

TION DONE’" and proceeds with the next instruction after line 500. How-
ever, if J is not zero, then the computer goes to line 250 and continues
program execution from that instruction.

Another possibility is for both THEN and ELSE to be followed by instruc-
tions, as in the following example:

600 IF A+B>=100 THEN PRINT A+B ELSE PRINT A

In executing this instruction,the computer will determine whether A + B is
greater than or equal to 100. If so then it will print the value of A + B; if not,
it will print the value of A. In both cases, execution continues with the next
instruction after line 600.

After IF, you may insert any expression which the computer may test for
truth or falsity. Here are some examples:

=0

J>5 (J is greater than 52

J<12.9 (J is less than 12.9)

J>=0 (J is greater than or equal to 0)

J<=-1 () is less than or equal to —1)

J><0 (J is not equal to 0)

A+B<>C (A+B is not equal to C)
A[2+B[2<=C[2 (A?+B? is less than or equal to C?)

There is a shortened version of the IF. . . THEN . . . ELSE statement which
has the form:

IF <expression> THEN <statement or line number>

In this shortened form, the computer determines if the <expression> is true.
If so, it proceeds to THEN (it either executes the statement or goes to the
indicated line number). If the <expression> is not true, then the computer
proceeds to the next line. For example, consider the statements:

10 IF A=50 THEN END
20 LET A=A+1

If A equals 50 then the computer proceeds to the END of the program. If A is
not equal to 50, then the computer proceeds to the next statement, namely
line 20.

LETTING YOUR COMPUTER MAKE DECISIONS 49

Test Your Understanding 6.1

Write instructions which do the following:

(a) If Ais less than B, then print the value of A plus B; if not then go to the
end.

(b) If A2 + B is at least 5000 then go to line 300; if not go to line 500.

(c) If) is larger than the sum of | and K then set] equal to the sum of | and
K; otherwise, let | equal K.

ThelF. . .THEN and IF. . . THEN . . . ELSE statements may be used to
interrupt the normal sequence of execution of program lines, contingent
upon the truth or falsity of some condition. In many applications, however,
we will want to perform instructions out of the normal sequence, indepen-
dent of any conditions. For such applications, we may use the GOTO
instruction. (There is no typographical error! There is no space between GO
and TO.) This instruction has the form:

GOTO <LINE NUMBER>
For example, the instruction
1000 GOTO 300
will send the computer back to line 300 for its next instruction.

The next examples illustrate some of the uses of the IF. . . THEN, IF. . .
THEN . . . ELSE, and GOTO statements.

Example 1. A lumber supply house has a policy that credit orders may be no
more than 1,000 dollars, including a 10% processing fee and 5% sales tax. A
customer orders 150 2x4 studs at $1.99 each, 30 sheets of plywood at
$14.00 each, 300 pounds of nails at $1.14 per pound, 2 double hung
insulated windows at-$187.95 each. Write a program which prepares an
invoice and decides whether the order is over the credit limit.

Solution. Let's use the variables A1, A2, A3, A4 to denote, respectively, the
numbers of studs, sheets of plywood, pounds of nails, and windows. Let’s use
the variables B1, B2, B3, B4 to denote the unit costs of these four items. The
cost of the order is then computed as:

AT*B1+A2*B2+A3*B3+A4*B4.

We add 10% of this amount to cover processing and form the sum to obtain
the total order. Next, we compute 5% of the last amount as tax and add it to

50 GETTING STARTED IN BASIC

obtain the total amount due. Finally, we determine if the total amount due is
more than 1,000 dollars. If it is, we print out the message: ORDER EXCEEDS
$1,000. CREDIT SALE NOT PERMITTED. Here is our program.

10 LET A1=150:A2=30:A3=300:A4=2

20 LET B1=1.99:B2=14:B3=1.14:B4=189.75
30 LET T=A1*B1+A2*B2+A3*B3+A4*B4

40 PRINT “TOTAL ORDER”,T

50 LET P=.1*T

60 PRINT ““PROCESSING FEE”,P

70 LET TX=.05*(P+T)

80 PRINT ““SALES TAX"”,TX

90 DU=T+P+TX

100 PRINT “AMOUNT DUE"”,DU

110 IF DU>1000 THEN 200 ELSE 300

200 PRINT “ORDER EXCEEDS $1,000”

210 PRINT “CREDIT SALE NOT PERMITTED""
220 GOTO 400

300 PRINT “CREDIT SALE OK”

400 END

Note the decision in line 110. If the amount due exceeds 1,000 dollars then
the computer goes to line 200 where it prints out a message denying credit.
In line 220, the computer is sent to line 400 which is the END of the
program. On the other hand, if the amount due is less than 1,000 dollars, the
computer is sent to line 300, in which case credit is approved.

Test Your Understanding 6.2
Suppose that a credit card charges 1.5% per month on any unpaid balance
up to 500 dollars and 1% per month on any excess over 500 dollars.

(@) Write a program which computes the service charge and the new
balance.

(b) Test your program on the unpaid balances 1300 dollars and 275
dollars.

Test Your Understanding 6.3

Consider the following sequence of instructions.

LETTING YOUR COMPUTER MAKE DECISIONS 51

100 IF A>=5 THEN 200
110 IF A>=4 THEN 300
120 IF A>=3 THEN 400
130 IF A>=2 THEN 500

Suppose that the current value of A is 3. List the sequence of line numbers
which will be executed.

Example 2. A family can afford up to 500 square feet of carpet for their
dining room. They wish to patch the carpet into a circular shape. The radius
of the carpet is to be an integer. What is the radius of the largest carpet they
can afford? (The area of a circle of radius R is Pl times R2, where Pl is the
number given approximately by 3.14159.)

Solution. |et us compute the area of the circle of radius 1, 2, 3, 4, . . . and
determine which of the areas are less than 500.

10 LET P1=3.14159

20 LET R=1: ‘R IS THE RADIUS OF THE CIRCLE

30 LET A=PI*R[2: ‘A IS THE AREA OF THE CIRCLE

40 IF A>=500 THEN 100: ‘IF AREA IS AT LEAST 500, END
50 PRINT R: “IF AREA IS LESS THAN 500, PRINT R

60 LET R=R+1: ‘GO TO NEXT RADIUS

70 GOTO 30

100 END

Note that line 40 contains an IF . . . THEN statement. If A, as computed in
line 30, is 500 or more, then the computer goes to line 100, the END; if Ais
less than 500, the computer proceeds to the next line, namely 50. It then
prints out the current radius, increases the radius by 1 and goes back to line
30 to repeat the entire procedure. Note that lines 30-40-50-60-70 are re-
peated until the area becomes at least 500. In effect, this sequence of 5
instructions forms a loop. However, we did not use a FOR . . . NEXT
instruction because we did not know in advance how many times we wanted
to execute the loop. We let the computer decide the stopping point via the IF
. . . THEN instruction.

Example 3. A school board race involves two candidates. The returns from
the four wards of the town are as follows:
Ward 1 Ward 2 Ward 3 Ward 4

Mr. Thompson 487 229 1540 1211
Ms. Wilson 1870 438 110 597

52 GETTING STARTED IN BASIC

Calculate the total number of votes achieved by each candidate, the percent-
age achieved by each candidate, and decide who won the election.

Solution. Let A1, A2, A3, A4 be the totals of Mr. Thompson in the four
wards; let BT — B4 denote the corresponding numbers for Ms. Wilson. Let
TA, TB denote the total votes, respectively for Mr. Thompson, and Ms.
Wilson. Here is our program:

10 LET A1=487:A2=229:A3=1540:A4=1211

20 LET B1=1870:B2=438:B3=110:B4=597

30 LET TA=A1+A2+A3+A4: ‘TOTAL FOR THOMPSON

40 LET TB=B1+B2+B3+B4: ‘TOTAL FOR WILSON

50 LET T=TA+TB: ‘TOTAL VOTES CAST

60 LET PA=100*TA/T: ‘PERCENTAGE FOR THOMPSON

65 REM TA/T IS THE FRACTION OF VOTES FOR
THOMPSON-MULTIPLY

66 REM BY 100 TO CONVERT TO A PERCENTAGE

70 LET PB=100*TB/T: ‘PERCENTAGE FOR WILSON

110 LET A$=“THOMPSON"’

120 LET B$="WILSON"

130 REM 140-170 PRINT THE PERCENTAGES OF THE CANDIDATES

140 PRINT “CANDIDATE”,“VOTES”,“PERCENTAGE"”

150 PRINT A$,TA,PA

160 PRINT B$,7B,PB

170 REM 180—400 DECIDE THE WINNER

180 IF TA>TB THEN 300

190 IF TA<TB THEN 400

200 PRINT A$,“AND"”,B$,ARE TIED!"

210 GOTO 1000

300 PRINT A$,“WINS”

310 GOTO 1000

400 PRINT B$,“WINS”

1000 END

Note the logic used for deciding who won. In 180 we compare the votes TA
and TB. If TA is the larger, then A (that is, Thompson) is the winner. We then
go to 300, print the result and END. On the other hand, if TA > TB is false,
then either B wins or the two are tied. According to the program, if TA > TB
is false, we go to 190, where we determine if TA < TB. If this is true, then B is
the winner, we go to 400, print the result and END. On the other hand, if TA
< TB is false, then the only possibility left is that TA = TB. And according to
the program, in this case, we go to 200, where we print the proper result,
and then END.

LETTING YOUR COMPUTER MAKE DECISIONS 53

Infinite Loops and the Break Key

As we have seen above, it is very convenient to be able to execute a loop
without knowing in advance how many times the loop will be executed.
However, with this convenience comes a danger. It is perfectly possible to
create a loop which will be repeated an infinite number of times! For
example, consider the following program:

10 LET j=1
20 PRINT }
30 LET =) +1
40 GOTO 20
50 END

The variable] starts off at 1. We print it and then increase) by 1 (to 2), print
it, increase] by 1 (to 3), printit, and so forth. This program will go on forever!
Such programs should clearly be avoided. However, even an experienced
programmer occasionally creates an infinite loop. When this happens, there
is no need to panic. There is a way of stopping the computer. Just press the
BREAK key. This key will interrupt the program currently in progress and will
return the computer to the command level, at which point it is ready to
accept a system command from the keyboard.

Test Your Understanding 6.4

Type the above program, RUN it and stop it using the BREAK key. After
stopping it, RUN the program again.

The INPUT Statement

It is very convenient to have the computer request information from you
while the program is actually running. This can be accomplished via the
INPUT statement. To see how, consider the statement:

570 INPUT A

When the computer encounters this statement in the course of executing the
program, it types out a ¢ and waits for you to respond by typing the desired
value of A (followed by ENTER). The computer then sets A equal to the value
you specified and continues execution of the program.

54 GETTING STARTED IN BASIC

You may use an INPUT statement to specify the values of several different
variables at one time. And these variables may be numeric or string varia-
bles. For example, suppose that the computer encounters the statement:

50 INPUT A,B,C$

It will type:
?
You then type in the desired values for A, B, and C$, in the same order as in
the program, separated by commas. For example, suppose that you type
10.5, 11.42, BEARINGS
followed by an ENTER. The computer will then set
A = 10.5, B = 11.42, A$ = “"BEARINGS”

If you respond to the above question mark by typing only a single number,
10.5, for example, the computer will respond with

7

to indicate that it is expecting more data. If you attempt to specify a string
value for a numeric variable, the computer will respond with the message

?REDO
?

and will wait for you to repeat the INPUT operation.
It is helpful to include a prompting message which describes the input the
computer is expecting. To do so, just put the message in quotation marks

after the word INPUT and place a semicolon after the message and before
the list of variables to be input. For example, consider the statement

175 INPUT “ENTER COMPANY, AMOUNT”; A%, B
When the computer encounters it, the dialog will be as follows:

ENTER COMPANY, AMOUNT? AJAX OFFICE SUPPLIES, 2579.48

The underlined portion indicates your response to the prompt. The computer
will now assign the values:

A$ = "AJAX OFFICE SUPPLIES”, B = 2579.48

n. Dia.r

4. 1800

LETTING YOUR COMPUTER MAKE DECISIONS 55

Test Your Understanding 6.5

Write a program which allows you to set variables A and B to any desired
values via an INPUT statement. Use the program to set A equal to 12 and B
equal to 17.

The next two examples illustrate the use of the INPUT statement and
provide further practice in using the IF . . . THEN statement.

Example 4. Suppose that you are a teacher compiling semester grades.
Suppose that there are 4 grades for each student and that each grade is on the
traditional O to 100 scale. Write a program which accepts the grades as
input, computes the semester average and assigns grades according to the
following scale:

90-100 A
80-89.9 B
70-79.9 C
60-69.9 D
<60 F

Solution. We will use an INPUT statement to enter the grades into the
computer. Our program will allow you to compute the grades of students
one after the other via a loop. You may terminate the loop by entering a
negative grade. Here is our program.

10 PRINT “ENTER STUDENT’S 4 GRADES.”

20 PRINT ““SEPARATE GRADES BY COMMAS.”

30 PRINT “FOLLOW LAST GRADE WITH ENTER.”
40 PRINT “TO END PROGRAM, ENTER NEGATIVE GRADE.”
50 INPUT A1,A2,A3,A4

60 IF A1<0 THEN END

70 IF A2<0 THEN END

80 IF A3<0 THEN END

90 IF A4<0 THEN END

100 LET A=(A1+A2+A3+A4)/4

110 PRINT “SEMESTER AVERAGE"”, A

120 IF A>=90 THEN PRINT “SEMESTER GRADE = A” ELSE 130
125 GOTO 200
130 IF A>=80 THEN PRINT “SEMESTER GRADE = B” ELSE 140

135 GOTO 200
140 IF A>=70 THEN PRINT “SEMESTER GRADE = C” ELSE 150
145 GOTO 200

56 GETTING STARTED IN BASIC

150 IF A>=60 THEN PRINT “SEMESTER GRADE = D’ ELSE 160
155 GOTO 200

160 PRINT “SEMESTER GRADE =F"

200 END

Note the logic for printing out the semester grades. We first compute the
semester average A. In 120 we ask if A is greater than or equal to 90. If so, we
assign the grade A, and go on to the next line, namely 125, which sends us to
line 200, END. In case A is less than 90, line 120 sends us to line 130. In line
130, we ask if A is greater than or equal to 80. If so, then we assign the grade
B. (The point is that the only way we can get to line 130 is for A to be less
than 90. So if A is greater than or equal to 80, we know that A lies in the B
range.) If not, we go to line 140, and so forth. This logic may seem a trifle
confusing at first, but after repeated use, it will seem quite natural.

Example 5. Write a program to maintain your checkbook. The program
should allow you to record an initial balance, enter deposits, and enter
checks. It should also warn you of overdrafts.

Solution. let the variable B always contain the current balance in the
checkbook. The program will ask for the type of transaction you wish to
record. A “D”" will mean that you wish to record a deposit; a “C"’ will mean
that you wish to record a check; a Q" will mean that you are done entering
transactions and wish to terminate the program. After entering each transac-
tion, the computer will figure your new balance, report it to you, will check
for an overdraft, and report any overdraft to you. In case of an overdraft, the
program will allow you to cancel the preceding check!

10 INPUT “WHAT IS YOUR STARTING BALANCE”; B

20 INPUT “WHAT TRANSACTION TYPE (D,C,OR Q)”"; A$
30 IF A$="Q” THEN END

40 IF A$="D"” THEN 100 ELSE 200

100 INPUT “DEPOSIT AMOUNT”; D

110 LET B=B-+D: ‘ADD DEPOSIT TO BALANCE

120 PRINT “YOUR NEW BALANCE IS”, B

130 GOTO 20

200 INPUT “CHECK AMOUNT”; C

210 LET B=B-C: ‘DEDUCT CHECK AMOUNT

220 IF B<0 THEN 300: ‘TEST FOR OVERDRAFT

230 PRINT “YOUR NEW BALANCE IS, B

240 GOTO 20

300 PRINT “LAST CHECK CAUSES OVERDRAFT”

310 INPUT “DO YOU WISH TO CANCEL CHECK(Y/N)"”’; E$

LETTING YOUR COMPUTER MAKE DECISIONS 57

320 IF E$="Y"” THEN 400

330 PRINT “YOUR NEW BALANCE 1S, B
340 GOTO 20

400 LET B=B+C: ‘CANCEL LAST CHECK
410 GOTO 20

1000 END

You should carefully scan this program to make sure you understand how
each of the INPUT and IF . . . THEN statements are used. In addition, you
should use this program to obtain a feel for the dialog between you and the
computer when INPUT statements are used.

Example 6. Write a BASIC program which tests proficiency in addition of
two digit numbers. Let the user suggest the problems and let the program
keep score of the number correct out of 10.

Solution. Let us request the user of the program to suggest pairs of numbers
via an INPUT statement. The sum will also be requested via an INPUT
statement. An IF . . . THEN will be used to judge the correctness. The
variable R will keep track of the number correct. We will use a loop to repeat
the process 10 times.

10 FOR J=1 TO 10: ‘LOOP TO GIVE 10 PROBLEMS

20 INPUT “TYPE TWO 2-DIGIT NUMBERS"’; A,B

30 INPUT “WHAT IS THEIR SUM”; C

40 IF A+B=C THEN 200

50 PRINT “SORRY. THE CORRECT ANSWER IS”,A+B

60 GO TO 500: ‘GO TO THE NEXT PROBLEM

200 PRINT “YOUR ANSWER IS CORRECT! CONGRATULATIONS"

210 LET R=R+1: ‘INCREASE SCORE BY 1
220 GO TO 500: ‘GO TO THE NEXT PROBLEM
500 NEXT J

600 PRINT “YOUR SCORE 1S”,R,CORRECT OUT OF 10”
700 PRINT “TO TRY AGAIN, TYPE RUN”
800 END

EXERCISES (answers on 271)
1. Write a computer program to calculate all perfect squares which are

less than 45,000. (The perfect squares are the numbers 1, 4, 9, 16,
25, 36,49, . . .)

58

10.

GETTING STARTED IN BASIC

. Write a computer program to determine all of the circles of integer

radius and area less than or equal to 5,000. (The area of a circle of
radius R is PI*R[2, where Pl = 3.14159 approximately.)

Write a computer program to determine the sizes of all those boxes
which are perfect cubes, have integer dimensions, and have a volume
less than 175,000. (That is, find all integers X for which X3 is less than
175,000.)

Modify the arithmetic testing program of Example 4 so that the opera-
tion tested is multiplication instead of addition.

Modify the arithmetic testing program of Example 4 so that it allows
you to choose, at the beginning of each group of ten problems, from
among the possible operations: addition, subtraction, or multipli-
cation.

Write a program which accepts three numbers via an INPUT state-
ment and determines the largest of the three.

Write a program which accepts three numbers via an INPUT state-
ment and determines the smallest of the three.

. Write a program which accepts a set of numbers via INPUT state-

ments and determines the largest among them.

Write a program which accepts a set of numbers via INPUT state-
ments and determines the smallest among them.

The following data were collected by a sociologist. Six cities experi-
enced the following numbers of burglaries in 1980 and 1981:

City Burglaries 1980 Burglaries 1981

A 5,782 6,548
B 4,811 6,129
C 3,865 4,270
D 7,950 8,137
E 4,781 4,248
F 6,598 7,048

For each city, calculate the increase (decrease) in the number of
burglaries. Determine which had an increase of more than 500 bur-
glaries.

SOME PROGRAMMING TIPS 59

11. Write a program which does the arithmetic of a cash register. That is,
let it accept purchases via INPUT statements, then total the pur-
chases, figure out the sales tax (assume 5%), and compute the total
purchase. Let it ask for the amount of payment given and then let it
compute the change due.

12. Write a program which analyzes cash flow. That is, let the program
ask for cash on hand as well as accounts expected to be received in
the next month. Let the program compute the total anticipated cash
for the month. Let the program ask for the bills due in the next month
and let it compute the total accounts payable during the month. By
comparing the amounts to be received and to be paid out, let the
program compute the net cash flow for the month and report either a
surplus or a deficit.

Answers to Test Your Understanding

6.1: (a) IF A<B THEN PRINT A+B ELSE END
(b) IF A[2+B>=5000 THEN 300 ELSE 500
(c) IFJ>I+K THEN j=1+K ELSE J=K

6.2: 10 INPUT “UNPAID BALANCE";B
20 IF B>500 THEN 100 ELSE 200
100 LET C=B—-500
110 IN=.015*500+.01*C
120 GOTO 300
200 IN=.015*B
300 PRINT “INTEREST EQUALS"";IN
310 PRINT ““NEW BALANCE EQUALS”;B+IN
320 END

6.3: 100—110--120—400

6.5: 10 INPUT “THE VALUES OF A AND B ARE";A,B
20 END

2.7 SOME PROGRAMMING TIPS

Now that we have learned the most elementary BASIC commands and
statements, let us discuss a few topics which will make programming easier.

60

GETTING STARTED IN BASIC

Four Shortcuts

Here are four shortcuts which will save time in typing programs.

1.

It is not necessary to include the word LET in a LET statement! The
statement:

10 A=5
means the same thing to the computer as:

10 LET A=5

. A question mark may be used in place of the word PRINT. Therefore,

the statement:

10 2 A, A$
means the same thing as the statement:

10 PRINT A A$

Test Your Understanding 7.1

What is the output of the following program?

10 A=3:B=7
20 A=2"B+3%A
30 2 A,B[2

40 END

3. A period may be used to refer to the current program line—that is, the

line most recently sent to the computer via ENTER. For example, the
command

LIST
will display the current line. The command
DELETE

will delete the current line.

. The computer can generate program line numbers for you via the

AUTO command. You may give this command at any stage of program

SOME PROGRAMMING TIPS 61

entry. The computer will begin generating line numbers as you need
them. For example, if you give the command:

AUTO
the computer will generate the sequence of line numbers 10, 20, 30,
40, You may designate the starting line. For example, the
command:
AUTO 105

will generate the sequence of line numbers 105, 115, 125, 135,
. You may even specify the difference between consecutive line
numbers' For example, the command 5

RN

AUTO 5‘0, 20‘3‘"’”'

will generate the sequence of line numbers 50, 70, 90, 110,
The AUTO feature may be turned off by hitting the BREAK key.

Using a Printer

In writing programs and analyzing their output, it is often easier to rely on
written output rather than output on the screen. In computer terminology,
written output is called hard copy and may be provided on any of a wide
variety of printers. Your TRS-80 Model lll may be attached to a large number
of such printers, ranging from a dot-matrix thermal printer costing only a few
hundred dollars to a daisy wheel printer costing several thousand dollars. As
you begin to make serious use of your computer, you will find it difficult to
do without hard copy. Indeed, writing programs is much easier if you can
consult a hard copy listing of your program at various stages of program
development. (One reason is that in printed output you are not confined to
looking at your program in 16 line ““snapshots.”’) Also, you will want to use
the printer to produce output of programs, ranging from tables of numerical
data to address lists and text files produced via a word processing program.

You may produce hard copy on your printer by using the BASIC statement
LPRINT. For example, the statement

10 LPRINT A,A$

will print the current values of A and A$ on the printer, in print fields 1 and 2.
(As is the case with the screen, BASIC divides the printer line into print fields

62 GETTING STARTED IN BASIC

which are 16 columns wide.) Moreover, the statement
20 LPRINT “CUSTOMER”,“CREDIT LIMIT”,“MOST RECENT PCHS"”
will result in printing three headings in the first three print fields, namely:
CUSTOMER CREDIT LIMIT MOST RECENT PCHS

So printing on the printer proceeds very much like printing on the screen. Itis
important to realize, however, that in order to print on both the screen and
the printer, it is necessary to use both statements PRINT and LPRINT. For
example, to print the values of A and A$ on both the screen and the printer,
we must give two instructions, as follows:

10 PRINT A A$
20 LPRINT A,A$

Some Things to Check

Writing programs in BASIC is not all that difficult. However, it requires a
certain amount of care and meticulous attention to detail. Each person must
develop an individual programming style. However, here are a few tips
which may help the novice programmer over some of the rough spots of
writing those first few programs.

1. Carefully think your program through. Break up the computation into
steps and outline the programming which is necessary for each of the
steps.

2. Work through your program by hand, pretending that you are the
computer. In doing so, do not rush. Go through your program one step
at a time and check that it does what you want it to do.

3. Have you initialized all the variables with the values you want? Re-
member that if you do not specify the value of a variable, BASIC will
automatically assign it the value 0. This may not be the value you
intend!

4. Are all your loops complete? That is, have you included a NEXT
corresponding to each FOR? This is an easy mistake to make but it is
also easy to catch. If BASIC does not find a NEXT corresponding to a
FOR, when it attempts to run the program it will report the mistake and
the line number in which it occurs. This is just one of a series of checks

APPENDIX—OPERATION OF THE CASSETTE RECORDER 63

which BASIC makes for consistency and completeness. Later we will
discuss the various other error messages which BASIC can provide.

5. Check that your IF . . . THEN statements do not create any infinite <.+
loops. This may be a subtle error to spot, but it is usually vulnerableto .

checking the program line by line and carrying it out as if you were the
computer.

In the following chapters, we will present some further ideas on debugging
your programs and on programming technique. For now, however, let's
move on with learning to make our computer do interesting things!

o b

Answer to Test Your Understanding

7.1: 23 49

2.8 APPENDIX—OPERATION OF THE CASSETTE
RECORDER

In this Appendix, we discuss the operation of the Radio-Shack CTR 80A
Computer Cassette Recorder.

Connection
There are two cables to connect. Before attempting connection, make sure
your computer is unplugged.
I. Connect the cable with three plugs as follows:
A. The end with the single plug is connected to the ‘Tape’ connector on
the back of the Model I1.
B. Connect the three plugs to the cassette recorder:

i. The black plug into the EAR jack.
ii. The large gray plug into the AUX jack.
iii. The small gray plug into the smaller MIC jack.

Il. Connect the other cable to the connection marked 120V on the side of
the cassette recorder. Plug the other end into a standard AC current
outlet.

ll. Plug the computer into the AC current outlet.

64 GETTING STARTED IN BASIC

Loading a Tape

I. Use a cassette tape designed for computer use. (Standard audio tape
cassettes are not of high enough quality.)

Il. Start with a blank tape. The computer cannot record information
directly over previously-recorded data. To erase a tape, you may use a
bulk eraser. (Your Radio Shack store sells one.)

Ill. Press the STOP key, then the EJECT key. The cassette compartment
will come open. Place the cassette in the compartment with the tape
toward you. Note that tapes have two sides. The side to be played or
recorded should be placed up. Rewind the tape using the REWIND
button. Then press STOP. To remove the tape, press STOP; then
EJECT.

Saving Programs

I. Insert tape as described above.

Il. Press RECORD and PLAY together. Both keys should remain in the
down position.

IIl. Give a command of the form CSAVE “X”, where X is the name we
have assigned to the program.

IV. When the operation is complete, the computer will display the
message:

READY
>

Now press the STOP button of the cassette recorder.

Note that you may keep several programs on a single tape cassette. To do
so, however, you must keep track of the position of each program using the
tape counter just above the tape door. To add to a partially recorded tape,
position the tape counter one unit beyond the end of the last recorded item.

Reading Programs

I. Set the volume level. In reading programs from a tape cassette, it is
important to set the volume at an appropriate level. The volume setting
is found on the left side of the cassette recorder. For reading tapes you

APPENDIX—OPERATION OF THE CASSETTE RECORDER 65

have generated, set the volume in the range 5-7. For cassettes pur-
chased from Radio Shack, set the volume in the range 4-6. For cassettes
purchased elsewhere, you will probably need to experiment for the
correct volume setting.

Il. Position the tape to just before the start of the program or data file. Use
the tape counter for positioning. Note that if you wish to load a
program, you may rewind the tape using the REWIND button and give
a command of the form:

CLOAD “X"”

The computer will search the tape for a program saved under the name X.
In case there are two such programs on the tape, the computer will read
the first one encountered.

lll. Press the PLAY button.
IV. Give the CLOAD command.

V. In the case of a CLOAD command, the computer will indicate the end
of the operation with

READY
>

To interrupt a tape reading or writing operation, hold down the BREAK key
until the computer responds with:

READY
>

This procedure is needed, for example, if you accidentally put the wrong

tape in the cassette recorder. If the program you want is not on the tape, the
computer will search the tape and wait indefinitely!

Start-up Dialog

Recall our discussion in Section 1.3 of the start-up procedure for the Model
Ill. The computer displays the prompt

CASS?

The computer is asking for the speed of operation of the cassette recorder.

66 GETTING STARTED IN BASIC

There are two possible speeds, high (H) and low (L). High speed corresponds
to a data transfer rate of 190 characters per second and is automatically
selected if you hit ENTER in response to Cass?. However, a tape must read at
the speed at which it was recorded. And you may have some tapes which
were recorded at low speed (about 63 characters per second). This might be
the case, for example, with programs you purchase. For such cassettes,
answer Cass? with

L

(followed by ENTER). It will probably be most convenient if you record any
new tapes at high speed since the reading process will then proceed much
more quickly.

3

{ More About BASIC

In this chapter, we will continue our introduction to programming in BASIC.
As in the previous chapter, we will organize our discussion by application.
Moreover; we will introduce additional system commands as appropriate
applications arise.

3.1 WORKING WITH TABULAR DATA

in the preceding chapter, we introduced the notion of a variable and used
variable names like:

AA, B1, CZ, WO

Unfortunately, the supply of variables available to us is not sufficient for
many programs. Indeed, as we shall see in this chapter, there are relatively
innocent programs which require hundreds or even thousands of variables.
To meet the needs of such programs, BASIC allows the use of so-called
subscripted variables. Such variables are suggested by the habit of mathema-
ticians who create mathematical variables by using numbered subscripts. For
instance, here is a list of 1,000 variables as might appear in a mathematical
work:

A'l/ AZ/ AB/ o /AN)OO

The numbers used to distinguish the variables are called subscripts. Corre-
spondingly, the BASIC language allows definition of variables distinguished
by subscripts. However, since the computer has difficulty placing the num-
bers in the traditional position, they are placed in parentheses on the same
line as the letter. For example, the above list of 1000 different variables
would be written in BASIC as

A(1),A(2),A(3), . . . ,A(1000)

67

68 MORE ABOUT BASIC

Please note that the variable A(1) is not the same as the variable AT. You may
use both of them in the same program and BASIC will interpret them
differently.

A subscripted variable is really a group of variables with a common letter
identification and distinguished by different integer ‘‘subscripts.” For in-
stance, the above group of variables would constitute the subscripted vari-
able A(). It is often useful to view a subscripted variable as a table or array.
For example, the subscripted variable A() considered above can be consid-
ered as providing the following table of information:

All))

A(1000)

That is, the subscripted variable defines a table consisting of 1,000 rows.
Row number J contains a single entry, namely, the value of the variable A()).
The first row contains the value of A(1), the second the value of A(2), and so
forth. Since a subscripted variable can be thought of as a table (or array),
subscripted variables are often called arrays.

The array just considered was a table consisting of 1,000 rows and a single
column. The TRS-80 allows you to consider more general arrays. For exam-
ple, consider the following financial table which records the monthly in-
come for January, February, and March from each of a chain of four dry
cleaning stores:

Store #1 Store #2 Store #3 Store #4
Jan. 1258.38 2437.46 4831.90 987.12

Feb. 1107.83 2045.68 3671.86 1129.47
March 1298.00 2136.88 4016.73 1206.34

This table has three rows and four columns. It's entries may be stored in the
computer as a set of 12 of variables:

A(1,1) A(1,2) A(1,3) A(,4)
AR2,1) AR2,2) A2,3) A(2,4)
AG, 1) AB,2) AG,3) AG4)

This array of variables is very similar to a subscripted variable, except that

WORKING WITH TABULAR DATA 69

there are now two subscripts. The first subscript indicates the row number
and the second subscript indicates the column number. For example, the
variable A(3,2) is in the third row, second column. A collection of variables
such as that given above is called a two-dimensional array or a doubly-
subscripted variable. Each setting of the variables of such an array defines a
tabular array. For example, if we assign the values

A(1,1) = 1258.38, A(1,2) = 2437.46,
A(1,3) = 4831.90, and so forth,
then we will have the table of earnings from the dry cleaning chain.

So far, we have only considered numeric arrays—that is, arrays whose
variables can assume only numerical values. However, it is possible to have
arrays whose variables assume string values. (Recall that a string is a se-
quence of characters: letter, numeral, punctuation mark, or other printable
keyboard symbol.) For example, here is an array which can contain string
data:

$(1)
$(2)
$(3)
$(4)

Here each of the variables of the array is a string variable, indicated by the
presence of the $. If we assign the values

A$(1) = “SLOW", A$(2) = “FAST”, A$(3) = “FAST”, A4(4) = “STOP"

> o > >

then the array is just the table of words:
SLOW
FAST
FAST
STOP
Similarly, the employee record table

Social -Security Number Age Sex Marital Status

178654775 38 M S
345861023 29 F M
789257958 34 F D
375486595 42 M M
457696064 21 F S

70 MORE ABOUT BASIC

may be stored in an array of the form B$(1,)), where | assumes any one of the
values 1,2,3,4,5 (I is the row) and J assumes any one of the values 1,2,3,4
() = the column). For example, B$(1,1) has the value 178654775, B$(1,2)
has the value 38", B$(1,3) has the value “M"’, and so forth.

The Model Il even allows arrays which have three, four, or even more
subscripts. For example, consider the dry cleaning chain array introduced
above. Suppose that we had one such array for each of ten consecutive
years. This collection of data could be stored in a three-dimensional array of
the form C(1,J,K), where K represents the year. (K could assume the values 1,
2,3,. . . ,10.) The only constraint on the size of an array or the number of
subscripts it contains is the amount of memory available. (More about that
below.)

You must inform the computer of the sizes of the arrays you plan to use in a
program. This allows the computer to allocate memory space to house all of
the values. To specify the size of an array, use a dimension (DIM) statement.
For example, to define the size of the subscripted variable A()), J =1,. . .,
1000, we insert the statement

10 DIM A(1000)

in the program. This statement informs the computer to expect variables
A0), A(1), . . ., A(1000) in the program and therefore it should set aside
memory space for 1001 variables. Note that TRS-80 BASIC begins all sub-
scripts at 0. If you wish to use A(0), fine. If not, ignore it.

You need not use all the variables defined by a DiM statement. For
example, in the case of the DIM statement above, you might actually use
only the variables A(1), . . . , A(900). Do not worry about it! Just make sure
that you have defined enough variables. Otherwise you could be in trouble.
For example, in the case of the subscripted variable above, your program
might make use of the variable A(1001). This will create an error condition.
Suppose that this variable first is used in line 570. When you attempt to run
the program, the computer will report:

UNDEFINED SUBSCRIPT IN LINE 570

Moreover, execution of the program will be halted. To fix the error, merely
redo the DIM statement to accommodate the undefined subscript.

To define the size of a two-dimensional array, use a DIM statement of the
form:)

10 DIM A(5,4)

WORKING WITH TABULAR DATA 71

This statement defines an array A(l,)), where | can assume the values 0, 1, 2,
3,4, 5 and | can assume the values 0, 1, 2, 3, 4. Arrays with three or more
subscripts are defined similarly.

Test Your Understanding 1.1

Here is an array.

12 645.80 7

148 489.75 b

589 12.89
487 14.50 Do aly 7

i (A

(a) Define an appropriate subscripted variable to store this data.
(b) Define an appropriate DIM statement.

It is possible to dimension several arrays with one DIM statement. For
example, the dimension statement

10 DIM A(1000), B$(5), A(5,4)

defines the array A(0), . . . , A(1000), the string array B$(0), . . . , B$(5),
and the two-dimensional array A(l,)), 1 =0, . . . ,5,]=0,.. ., 4.

We now know how to set aside memory space for the variables of an
array. We now must take up the problem of assigning values to these
variables. Of course, we could use individual LET statements. However,
with 1,000 variables in an array, this could lead to an unmanageable number
of statements. There are more convenient methods making use of loops. The
next two examples illustrate two of these methods.

Example 1. Define an array A()),] = 1, 2, . . ., 1000 and assign the
following values to the variables of the array:

A(l) =2, A2) =4, A3) =6, A4) =8,

Solution. We wish to assign each variable a value equal to twice its sub-
script. That is, we wish to assign A()) the value 2*). To do this we use a loop:

10 DIM A(1000) T‘>! R S G W S T
20 FOR J=1 TO 1000

30 A())=2%)

40 NEXT)

50 END

- o

WS 2o o0 g R

72 MORE ABOUT BASIC

A0)

[\ 4

M Note that the program ignores the variable A(0). Like any variable which has
Ja not been assigned a value, it has the value 0.

Test Your Understanding 1.2

Write a program which assigns the variables A(0), . . . , A(30) the values
SA0) =0, Al) =1, AQ2) =4, A38) =9,

When the computer is first turned on or is reset, all variables (including
those in arrays) are cleared. That is, all numeric variables are set equal to 0
and all string variables are set equal to the null string (the string with no
characters in it). If you wish to return all variables to this state during the
execution of a program, use the command CLEAR. For example, when the
computer encounters the command

570 CLEAR

it will reset all the variables. (Recall from Chapter 1 that this command also
clears the screen.) The CLEAR command can be convenient if, for example,
you wish to use the same array to store two different sets of information at
two different stages of the program. After the first use of the array you then
could prepare for the second use by executing a CLEAR.

The CLEAR command has another important function. Namely, it allo-
cates space for string storage. Ordinarily, the TRS-80 sets aside only enough
memory space to store 50 characters of strings. If you wish to exceed this
amount, you must specify the amount of string storage you will need. For
example, to set aside 500 characters of string storage, you should execute
the command:

10 CLEAR 500

This command resets all the variables and sets aside 500 characters of string
storage. The next example illustrates how to estimate the amount of string
storage you need.

Example 2. Define an array corresponding to the employee record table
above. Input the values given and print the table on the screen.

Solution. Our program will print the headings of the columns and then ask
for the table entries, one row at a time. We will store the entries in the array
B$(l,)), where | is one of 1, 2, 3, 4, 5 and J is one of 1, 2, 3, 4. So we

WORKING WITH TABULAR DATA 73

dimension the array as B$(5,4). Our array contains 5 X 4 or 20 entries. The
length of the longest string is 9 characters. Therefore, we might need as
much as 20 X 9, or 180 characters of string space. This is more than the
computer automatically reserves. (This is a crude estimate. We will probably
need less but it is better to be on the safe side.) Let us reserve 180 characters
of string space via a CLEAR 180 instruction.

1 CLEAR 180

5 DIM B$(5,4)

10 PRINT “SOC. SEC. #”, “AGE”, “‘SEX”,MARITAL STATUS"”
20 FORI=1TO 5

30 INPUT “SS #,AGE,SEX,MAR.ST.”;B$(1,1),B$(1,2),B$(1,3),B$(1,4)
40 PRINT B$(1,1),B$(1,2),B$(1,3),B$(1,4)

50 NEXT I

60 END

In allocating string space, you should calculate the total string space
needed by all string variables of your program and execute a single CLEAR
command to reserve the total required space.

Note that it is not necessary to reserve space for numeric arrays. The
computer takes care of this chore automatically.

Test Your Understanding 1.3

Suppose that your program will use a 9 x 2 array A$(l,)), a 9 x 1 array
B$(l,)), and a 9 x 5 array C(l,)). Suppose that the strings involved are at most
10 characters in length.

(a) Write an appropriate DIM statement(s).

(b) Reserve adequate string space.

If you plan to dimension an array, you should always insert the DIM
statement before the variable first appears in your program. Otherwise, the
first time BASIC comes across the array, it will assume that the subscripts go
from 0 to 10. If it subsequently comes across a DIM statement, it will think
you are changing the size of the array in the midst of the program, something
which is not allowed. If you try to change the size of an array in the middle of
a program, you will get an error:

REDIMENSIONED ARRAY

74

MORE ABOUT BASIC

EXERCISES (answers on 274)

For each of the following tables, define an appropriate array and determine
the appropriate DIM statement.

1.

5

2
1.7
4.9
11

. 1.1 2.0 35

1.7 2.4 6.2

. JOHN

MARY
SIDNEY

1 2 3

. RENT 575.00

UTILITIES 249.78
CLOTHES 174.98
CAR 348.70

Display the following array on the screen:

RECEIPTS

Store #1 Store #2 Store #3

1/1-1/10 57,385.48 89,485.45 38,456.90
1/11-1/20 39,485.98 76,485.49 40,387.86
1/21-1/31 45,467.21 71,494.25 37,983.38

Write a program that displays the array of exercise 6 along with totals
of the receipts from each store.

Expand the program of exercise 7 so that it calculates and displays the
totals of ten day periods. (Your screen will not be wide enough to
display the ten day totals in a fifth column, so display them in a
separate array.)

Devise a program which keeps track of the inventory of an appliance
store chain. Store the current inventory in an array of the form

INPUTTING DATA 75

Store #1 Store #2 Store #3 Store #4
Refrig.
Stove

Vacuum
Air Cond.
Disposal

Your program should:
1) input the inventory corresponding to the beginning of the day,

2) continually ask for the next transaction—that is, the store number
and the number of appliances of each item sold,

3) in response to each transaction, update the inventory array and
redisplay it on the screen.

Answers to Test Your Understanding

1.1: @ AL, 1=1,2,3,4; J=1,2 (b) DIM A4,2)

1.2: 10 DIM A(30)
20 FOR J=0O TO 30
30 A()=J[2
40 NEXT |
50 END

1.3: (a) DIM A$(9,2),B$(9,1),C(9,5)

(b) (9 Xx2+9x1)x 10 = 270.
Numeric arrays do not count so to reserve string space, we use CLEAR 270.

3.2 INPUTTING DATA

In the preceding section, we introduced arrays and discussed several
methods for assigning values to the variables of an array. The most flexible
method was via the INPUT statement. However, this can be a tedious
method for large arrays. Fortunately, BASIC allows us an alternate method
for inputting data.

A given program may need many different numbers and strings. You may
store the needed data in one or more DATA statements. A typical data

76 MORE ABOUT BASIC

statement has the form:
10 DATA 3.457, 2.588, 11234, “WINGSPAN"

Note that this data statement consists of four data items, three numeric and
one string. The data items are separated by commas. You may include as
many data items in a single DATA statement as the line allows. Moreover,
you may include any number of DATA statements in a program and they may
be placed anywhere in the program, although a common placement is at the
end of the program (just before the END statement). Note that we enclosed
the string constant “WINGSPAN’’ in quotation marks. Actually this is not
necessary. A string constant in a DATA statement does not need quotes as
long as it does not contain a comma, a colon, or start with a blank.

The DATA staternents may be used to assign values to variables and, in
particular, to variables in arrays. Here’s how. In conjunction with the DATA
statements, you use one or more READ statements. For example, suppose
that the above DATA statement appeared in a program. Further,suppose that
you wish to assign the values:

= 3.457, B = 2.588, C = 11234, Z$ = "WINGSPAN"
This can be accomplished via the READ statement:
100 READ A,B,(,Z$

More precisely, here is how the READ statement works. On encountering a
READ statement, the computer will look for a DATA statement. It will then
assign values to the variables in the READ statement by taking the values, in
order, from the DATA statement. If there is insufficient data in the first DATA
statement, the computer will continue to assign values using the data in the
next DATA statement. If necessary, the computer will proceed to the third
DATA statement, and so forth.

Test Your Understanding 2.1

Assign the following values: A(1) = 5.1, A(2) = 4.7, A(3) = 5.8, A4) = 3.2,
A(B) = 7.9, A(6) = 6.9.

The computer maintains an internal pointer which points to the next DATA
item to be used. If the computer encounters a second READ statement, it will
start reading where it left off. For example, suppose that, instead of the above

INPUTTING DATA 77

READ statement, we use the two read statements:

100 READ A,B
200 READ C,Z$

Upon encountering the first statement, the computer will look for the loca-
tion of the pointer. Initially, it will point to the first item in the first DATA
statement. So the computer will assign the values A = 3.457, B = 2.588.
Moreover, the position of the pointer will be advanced to the third item in the
DATA statement. Upon encountering the next READ statement, the com-
puter will assign values beginning with the one designated by the pointer,
namely: C = 11234, Z$ = “WINGSPAN"'.

Test Your Understanding 2.2

What values are assigned to A and B$ by the following program.
10 DATA 10,30,“ENGINE”, “TACH”
20 READ A,B
30 READ C$,B$ e
40 END h

The following example illustrates the use of DATA statements in assigning
values to an array.

Example 1. Suppose that the monthly electricity costs of a certain family are
as follows: ;

Jan. $89.74 Feb. $95.84 March $79.42 . .

Apr. 7893 May 72.11 june 115.94
july 15892 Aug. 16438 Sep. 105.98
Oct. 90.44 Nov. 89.15 Dec. 93.97

Write a program which calculates the average monthly cost of electricity.

Solution. Let us unceremoniously dump all of the numbers given into DATA
statements at the end of the program. Arbitrarily, let's start the DATA state-
ments at line 1000, with END at 2000. This allows us plenty of room. To
calculate the average, we must add up the numbers and divide by 12. To do
this, let us first create an array A(J),) =1, 2,. . . , 12 and set A() equal to
the cost of electricity in the Jth month. We do this via a loop and the READ

78 MORE ABOUT BASIC

statement. We then use a loop to add all the A(). Finally, we divide by 12
and PRINT the answer. Here is the program.

10 DIM A(12)
- 15 REM LINES 20—40 ASSIGN VALUES TO A())
20 FOR J=1 TO 12
- 30 READ A())
40 NEXT J
50 FOR j=1 TO 12
co -t 60 C=CHA(): ‘C ACCUMULATES THE SUM OF THE A())
70 NEXT J
e R 80 C=C/12: ‘DIVIDE SUM BY 12
90 PRINT “THE AVERAGE COST OF ELECTRICITY 15”,C
, 1000 DATA 89.74, 95.84, 79.42, 78.93, 72.11, 115.94
¢ 1010 DATA 158.92, 164.38, 105.98, 90.44, 89.15, 93.97
2000 END

The following program could be of assistance in preparing the payroll of a
small business.

Example 2. A small business has five employees. Here are their names and
hourly wages.

Name Hourly Wage
Joe Polanski 7.75
Susan Greer 8.50
Allan Cole 8.50
Betsy Palm 6.00
Herman Axler 6.00

Write a program which accepts as input hours worked for the current week
and calculates the current gross pay and the amount of Social Security tax to
be withheld from their pay. (Assume that the Social Security tax amounts to
6.65% of gross pay.)

Solution. Let us keep the hourly wage rates and names in two arrays, called
A()) and B$()), respectively, where] = 1,2,3,4,5. Note that we cannot use a
single two-dimensional array for this data since the names are string data and
the hourly wage rates are numerical. (Recall that BASIC does not allow us to
mix the two kinds of data in an array.) The first part of the program will be to
assign the values to the variables in the two arrays. Next, the program will,

INPUTTING DATA 79

one by one, print out the names of the employees and ask for the number of
hours worked during the current week. This data will be stored in the array
C,) = 1,2,3,4,5. The program will then compute the gross wages as
A(*C()) (that is, <wage rate> times <number of hours worked>). This
piece of data will be stored in the array D()),) = 1,2,3,4,5. Next, the
program will compute the amount of Social Security tax to be withheld as
.0665*D(J). This piece of data will be stored in the array E()),] = 1,2,3,4,5.
Finally, all the computed data will be printed on the screen. Here is the
program:

5 CLEAR 100
10 DIM A(5),B$(5),C(5),D(5),E(5)

20 FOR J=1TO 5

30 READ B$(}),A()

40 NEXT)

50 FOR J=1TO 5

60 PRINT “TYPE CURRENT HOURS OF”, B$(J)

70 INPUT C())

80 D(H=A(*C())

90 E(J)=.0665*D())

100 NEXT }

110 PRINT “EMPLOYEE”,GROSS WAGES”,“SOC.SEC.TAX"’
120 FOR J=1TO 5

130 PRINT B$()),D()),E())

140 NEXT J

200 DATA JOE POLANSKI, 7.75, SUAN GREER, 8.50

210 DATA ALLAN COLE, 8.50, BETSY PALM, 6.00

220 DATA HERMAN AXLER, 6.00

1000 END

In certain applications, you may wish to read the same DATA statements
more than once. To do this you must reset the pointer via the RESTORE
statement. For example, consider the following program.

10 DATA 2.3, 5.7, 4.5, 7.3 LT es
20 READ A,B e o= T
30 RESTORE

40 READ C,D

50 END

Line 20 sets A equal to 2.3 and B equal to 5.7. The RESTORE statement of
line 30 moves the pointer back to the first item of data, namely 2.3. The
READ statement of line 40 then sets C equal to 2.3 and D equal to 5.7. Note

80

that without the RESTORE in line 30, the READ statement in line 40 would

MORE ABOUT BASIC

set C equal to 4.5 and D equal to 7.3.

There are two common errors in using READ and DATA statements. First,
you may instruct the program to READ more data than is present in the DATA
statements. For example consider the following program.

10 DATA 1,2,3,4
20 FOR }=1TO 5
30 READ A())

40 NEXT }

50 END

It attempts to read 5 pieces of data, but the DATA statement only has 4. In

this case, you will receive an error message:

OUT OF DATA IN LINE 30

A second common error is an attempt to assign a string value to a numeric
variable or vice-versa. Such an attempt will lead to a TYPE MISMATCH
error.

EXERCISES (answers on 276)

Each of the following programs assigns values to the variables of an array.

Determine which values are assigned.

1.

10 DIM A(10)

20 FOR J=1TO 10

30 READ A()

40 NEXT J

50 DATA 2,4,6,8,10,12,14,16,18,20
100 END

10 DIM A(3),B(3)

20 FOR J=0TO 3

30 READ A(), B())

40 NEXT)

50 DATA 1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9
60 END

10 DIM A(3),B%$(3)
20 FORJ=0TO 3
30 READ A()

40 NEXT J

50 FORJ=0TO 3

INPUTTING DATA 81

60 READ B$())

70 NEXT J

80 DATA 1,2,3,4,A,B,C,D
90 END

4. 10 DIM A@3), B(3)
20 READ A(0),B(0)
30 READ A(1),B(1)
40 RESTORE
50 READ A(2),B(2)

60 READ A(3),B(3)
80 DATA 1,2,3,4,5,6,7,8
90 END

5. 10 DIM A(3,4)
20 FOR 1=1TO 3
30 FOR J=1TO 4

40 READ A(l,))

50 NEXT |

60 NEXT |

70 DATA 1,2,3,4,5,6,7,8,9,10,11,12
80 END

6. 10 DIM A(3,4)
20 FOR J=1TO 4
JO0FORI=1TO 3
40 READ A(,))
50 NEXT |
60 NEXT |J
70 DATA 1,2,3,4,5,6,7,8,9,10,11,12
80 END

Each of the following programs contains an error. Find it.

7. 10 DIM A(5)
20FORJ=1TO 5
30 READ A()

40 NEXT J
50 DATA 1,2,3,4
60 END

8. 10 DIM A(5)
20 FOR J=1TO 5
30 READ A())
40 NEXT)
50 DATA 1,A,2,B
60 END

82

MORE ABOUT BASIC

9. Here is a table of Federal Income Tax Withholding for weekly wages
for an individual claiming one exemption. Assume that each of the
employees in the business discussed in the text claims a single ex-
emption. Modify the program given so that it correctly computed
Federal Withholding and the net amount of wages. (That is, after
Federal Withholding and Social Security are deducted.)

Wages at Least But Less Than Tax Withheld

200 210 29.10
210 220 31.20
220 230 33.80
230 240 36.40
240 250 39.00
250 260 41.60
260 270 44.20
270 280 46.80
280 290 49.40
290 300 52.10
300 310 55.10
310 320 58.10
320 330 61.10
330 340 64.10
340 350 67.10

10. Here is a set of 24 hourly temperature reports as compiled by the
National Weather Service. Write a program to compute the average
temperature for the last 24 hours. Let your program respond to a query
concerning the temperature at a particular hour. (For example, what
was the temperature at 2:00 PM?)

AM PM

12:00 10 38
1:00 10 39
2:00 9 40
3:00 9 40
4:00 8 42
5:00 11 38
6:00 15 33
7:00 18 27
8:00 20 22
9:00 25 18
10:00 31 15

11:00 35 12

TELLING TIME WITH YOUR COMPUTER 83

Answers to Test Your Understanding
2.1: 10 DATA 5.1,4.7,5.8,3.2,7.9,6.9
20FORJ=1TO 6
30 READ A())
40 NEXT)

50 END

2.2: A=10, B$="TACH"

3.3 TELLING TIME WITH YOUR COMPUTER

Your TRS-80 Model lll has a built-in clock (a real-time clock in computer
jargon) which can allow you to let your programs take into account the time
of day (in hours, minutes, and seconds) and the date (day, month, and year).
You can use this feature for many purposes, such as keeping a computer-
generated personal calendar (see Example 1 below) or timing a segment of a
program (see Example 2 below). Note that the real-time clock is not present
in the TRS-80 Model 1.

Reading the Real-Time Clock
The TRS-80 real-time clock keeps track of six pieces of information, in the
following order:

Month (01-12)

Day (00-31)

Year (00-99)

Hours (00-23)

Minutes (00-59)

Seconds (00-59).

The time is displayed in the following format:

02/15/81 14:38:27

84 MORE ABOUT BASIC

The above display corresponds to February 15,1981, at 27 seconds after
2:38 P.M. Note that the hours are counted using a 24 hour clock, with 0
hours corresponding to midnight. So hours 0-11 correspond to A.M. and
hours 12-23 correspond to P.M.

The clock is programmed to account for the number of days in a month
(28, 30, or 31). However, it does not recognize leap years.

In BASIC, the time is identified as TIMES$. For example, to display the
current time on the screen, use the command:

10 PRINT TIME$

In order to make use of the six individual pieces of data in the clock, it is
most convenient to first learn something about its internal workings. The six
pieces of data are stored in six consecutive memory locations, namely:

Memory Location

Month 16924
Day 16923
Year 16922
Hours 16921
Minutes 16920
Seconds 16919

You may read the contents of any memory location using the command
PEEK. For example, to read the character currently stored in memory loca-
tion 12047, we would use the command:

10 A=PEEK(12047)

The variable A is then set equal to a decimal number which corresponds to
the character stored in memory location 12047. For example, the decimal
code corresponding to E is 69 and the code corresponding to g is 103. In the
case of the memory locations reserved for the clock, the decimal code
returned by the PEEK command is the value of the corresponding piece of
clock data. For example, a value of 09 for PEEK(16924) corresponds to the
month of September.

TELLING TIME WITH YOUR COMPUTER 85

Test Your Understanding 3.1

(a) Display the current value of the clock.

(b) Display only the minutes and seconds.

Setting the Clock

The real-time clock automatically starts when the computer is initialized.
However, it is started at the value:

00/00/00 00.00.00

If you only wish to keep track of elapsed time, this may be sufficient.
However, to fully utilize the clock it is necessary to set it with the correct
data. This may be accomplished by using the command POKE, which allows
you to set a location of memory to a given value. For example, the command

10 POKE 16924, 12

sets memory location 16924 (the month) to the value 12 (December). The
value inserted into a memory location must be an integer between 0 and
255, inclusive.

Test Your Understanding 3.2
Write an instruction which sets the hours of the clock to 2 PM.

To set all the data of the clock, it is convenient to use a program like the
following:

10 A=16924
20 DIM C(5)

30 INPUT “MO,DY,YR,HR,MN,SE";C(0),C(1),C(2),C(3),C(4),C(5)
40 FOR J=0 TO 5

50 POKE A—}, C(J)

60 NEXT |

70 END

You may wish to type in this program and store it on disk or cassette, so that
it may be easily called up whenever you wish to set the time.

86 MORE ABOUT BASIC

Test Your Understanding 3.3

Set the clock with today’s date and time. Check yourself by printing out the
value of the clock.

Test Your Understanding 3.4

Write a program which continually displays the correct time on the screen.

Important: The clock is reset under the following circumstances:
Whenever the computer is turned off, or reset; whenever cassette or
disk operations take place. If any of these operations are performed and
you subsequently wish to use the clock, it will be necessary to reenter
the correct time and date.

Example 1. Use the real-time clock to build a computerized appointment
calendar.

Solution. Let us enter appointments in DATA statements, with one DATA
statemnent for each appointment. Let the DATA statements be arranged in the
following format:

(minuiey (appointment

10 DATA 10,23,11,30,DENIST

The appointments will be numbered by a variable J. For appointment }, we
will store the five pieces of data in the variables A()), B(), C(), D{), E$(),
respectively. Let us allow for 300 appointments. So we dimension each of
the variables for an array of size 301. (We will not use) = 0.) Moreover, we
will CLEAR 20 characters of string space for each appointment. The program
will do the following:

1. Read the various appointments in the DATA statements. It will stop
reading when there is no more data to read.

2. Ask for the current date and time data.

3. Determine today’s appointments.

S 1BduUv MNe EGv7

TELLING TIME WITH YOUR COMPUTER 87

Here is the program:

5 CLEAR 6000

10 DIM A(300),B(300),C(300),D(300),E$(300)

15 ON ERROR GOTO 100: ‘IF OUT OF DATA GO TO 100
20 REM 30-60 READ THE DATA STATEMENTS IN 10000-13000
30 J=I

40 READ A(),B(),C()),D(),E$())

50 J=J+1: ‘FINAL VALUE OF J=#APPOINTMENTS+1

60 GOTO 40

100 RESUME 110: ‘END ERROR CONDITION AND GO TO 110
105 REM 110—160 ASK FOR CURRENT TIME AND DATE

110 A=16924

120 DIM F(5)

130 INPUT “MO,DY,YR,HR,MN,SE"";F(0),F(1),F(2),F(3),F(4),F(5)
140 FOR K=0TO 5

150 POKE A—K, F(K)

160 NEXT K

200 PRINT “REQUEST SCHEDULE FOR MONTH, DAY”

210 PRINT “FOR TODAY, ENTER 0,0”

220 PRINT “FOR TOMORROW ENTER —1,—1"

230 INPUT X,Y: ‘X=MONTH, Y=DAY

240 IF X>0 THEN 300

245 REM IF TODAY OR TOMORROW, FIND DATE AND DAY
250 X=PEEK(16924)—X,Y=PEEK(16923)—-Y

300 FOR K=1 TO J-1

310 IF A(K)=X THEN 400: ‘IS APPT. FOR RIGHT MONTH?
320 GOTO 510: ‘IF NOT GO TO NEXT APPT.

400 IF B(J)=Y THEN 500: ‘IS APPT. FOR RIGHT DAY?

410 GOTO 510: IF NOT GO TO NEXT APPT.

500 PRINT A(K),B(K),C(K),D(K),E$(K)

510 NEXT K

10000 DATA.

10001 DATA

10002 DATA

10299 DATA
11000 END

To use the above program, just type appointments in to the data lines as you
make them. You can store the current list of appointments along with the

88 MORE ABOUT BASIC

program. As new appointments are made, you can recall the program and
add corresponding data lines. As appointments become obsolete, they may
be removed from the list using the DELETE command.

A few comments are in order concerning the ON ERROR GOTO and
RESUME statements. At any given moment, you have no way of knowing
how many appointments are in the calendar. Therefore, you have no way of
knowing in advance how many of the data lines in 10000-10299 you must
read. Of course, if you attempt to read past the last data line, you will get an
OUT OF DATA error. The ON ERROR GOTO statement allows you to
handle this error when it occurs, without terminating program execution.
Indeed, in the above program, we have instructed the computer to respond
to an error (namely the OUT OF DATA ERROR we expect) by going to line
110. In this line, we tell the computer to RESUME- that is, to continue
execution of the program with the next line after 110, just as if the error never
occurred. This procedure allows us to read data until there is no more.

Example 2. In Example 4 of Section 2.6, we developed a program to test
proficiency in the addition of two-digit numbers. Redesign this program to
allow 15 seconds to answer the question.

Solution. Let us use the real-time clock. After a particular problem has been
given, we will start the second portion of the clock at 0 and perform a loop
which continually tests the second portion of the clock for the value 15.
When this value is encountered, the program will print out “TIME'S UP.
WHAT IS YOUR ANSWER?"" Here is the program. Lines 50-60 contain the
loop.

10 FOR J=1 TO 10: ‘LOOP TO GIVE 10 PROBLEMS

20 INPUT “TYPE TWO 2-DIGIT NUMBERS”’; A,B

30 PRINT “WHAT IS THEIR SUM?2”’

40 POKE 16919,0: ‘SET SECONDS TO 0

50 IF PEEK(16919)=15 THEN GOTO 100: ‘COUNT 15 SECONDS
60 GOTO 50

100 INPUT “TIMFE’S UP! WHAT IS YOUR ANSWER"’;C

120 IF A+B=C THEN 200 "

130 PRINT “SORRY. THE CORRECT ANSWER IS”,A+B

140 GO TO 500: ‘GO TO THE NEXT PROBLEM

200 PRINT “YOUR ANSWER IS CORRECT! CONGRATULATIONS"’
210 LET R=R+1: ‘INCREASE SCORE BY 1

220 GO TO 500: ‘GO TO THE NEXT PROBLEM

500 NEXT J

600 PRINT “YOUR SCORE IS”,R,“CORRECT OUT OF 10"

700 PRINT “TO TRY AGAIN, TYPE RUN”

800 END

TELLING TIME WITH YOUR COMPUTER 89

Test Your Understanding 3.5

Modify the above program so that it allows you to take as much time as you
like to solve a problem, but keeps track of elapsed time (in seconds) and
prints out the number of seconds used.

EXERCISES (answers on 277)

1.
2.
3.

Set the clock with today’s date and the current time.
Print out the current time on the screen.

Write a program which prints out the date and time at one second
intervals.

Write a program which prints out the date and time at one minute
intervals.

Set up the appointment program of Example 1 and use it to enter a
week’s worth of appointments.

Modify the appointment program of Example 1 so that it prints out the
appointments on a per hour basis.

Modify the addition tester program so that it allows a choice of four
levels of speed: Easy (2 minutes), Moderate (30 seconds), Hard (15
seconds), and Whiz Kid (8 seconds).

Write a program which can be run for an entire day and at the start of
each hour prints out the appointments for that hour. (Such a program
would be useful in a doctor’s or dentist’s office.)

Answers to Test Your Understanding

3.1:

3.2:
3.4

(a) 10 PRINT TIME$
20 END
RUN

(b) 10 PRINT PEEK(16920), “MINUTES”
20 PRINT PEEK(16919), “SECONDS
30 END

10 POKE(16921), 14

10 PRINT TIME$
20 CLS

30 GOTO 10
40 END

90 MORE ABOUT BASIC

Note: This program is an infinite loop and will need to be terminated via
the BREAK key.

3.5: Delete lines 50-60. Add lines:
40 POKE 16920,0: ‘Set minutes to 0
100 INPUT “WHAT IS YOUR ANSWER";C
110 X=PEEK(16920):Y=PEEK(16919)
115 PRINT “YOU TOOK", 60*X+Y, “SECONDS"

3.4 ADVANCED PRINTING

In this section, we will discuss the various ways in which you can format
output on the screen and on the printer. Model Il BASIC is quite flexible in
the form in which you can cast output. You have control over the size of the
letters on the screen, placement of output on the line, degree of accuracy to
which calculations are displayed, and so forth. Let us begin by reviewing
what we have already learned about printing.

The Model lll screen is 64 characters across (at least in terms of characters
of normal size. See below.) This gives 64 print positions in each line. These
are divided into four print zones of 16 characters each. To start printing at the
beginning of the next print zone, insert a comma between the items to be
printed. To avoid any space between items, separate them in the PRINT
statement by a semicolon. For example, the following program

10 A=5
20 PRINT “THE VALUE OF A IS EQUAL TO;A
30 END

will result in the following screen display:
THE VALUE OF A IS EQUAL TO 5

Note that the second print item (namely the value of A, which is 5) is not at
the beginning of the next print zone. Instead, there is a single blank space
separating the first print item from the 5. Actually, the semicolon tells the
computer to begin printing in the next space. The blank arises because
BASIC ordinarily prints all positive numbers with a blank in front (in place of
a +). So the blank space in front of the 5 actually belongs to the 5. To print
the same program with 5 replaced by -5, we would modify the above
program as follows:

10 A=-5
20 PRINT “THE VALUE OF A IS EQUAL TO ;A
30 END

ADVANCED PRINTING 91

Note that the string in quotation marks includes a blank at the end. BASIC
will print this blank and will begin the —5 in the first print position after the
string. However, for negative numbers, BASIC does not insert an initial
blank, so the screen would look like this:

THE VALUE OF A IS EQUAL TO -5

Test Your Understanding 4.1

Write a program which allows you to input two numbers. The program
should then display them as an addition problem in the form: 5+7=12.

Horizontal Tabbing

You may begin a print item in any print position. To do this, use the TAB
command. The print positions are numbered from 1 to 64, going from left to
right. The statement TAB(7) means to move to print position 7. TAB is always
used in conjunction with a PRINT statement. For example, the print
statement

50 PRINT TAB(7) A

will print the value of the variable A, beginning in print position 7. It is
possible to use more than one TAB per PRINT statement. For example, the
statement

100 PRINT TAB(5) A; TAB(15) B

will print the value of A beginning in print position 5 and the value of B
beginning in print position 15. Note the semicolon between the two TAB
instructions.

In typing a PRINT statement, you may run out of room on the line. To get
around this problem, end the PRINT statement with a semicolon and con-
tinue the list of print items in another PRINT statement on the next line. For
example, consider the pair of statements:

100 PRINT “INVENTORY OF MEN’S SHOES";
110 PRINT, “INVENTORY OF LADIES SHOES”

The first line has a single print item. The semicolon indicates continued
printing on the same line. The comma which begins the second PRINT

92 MORE ABOUT BASIC

statement moves printing to the beginning of the next print zone, where the
string in line 110 is printed. Here is what the output looks like:

INVENTORY OF MEN’S SHOES INVENTORY OF LADIES SHOES

Test Your Understanding 4.2

Write an instruction which prints the value of A in column 25 and the value
of B seven columns further to the right.

Formatting Numbers

Model Il BASIC has rather extensive provisions for formatting numerical
output. Here are some of the things you may specify with regard to printing a
number:

> Number of digits of accuracy

> Alignment of columns (one’s column, ten’s column, hundred’s column,
etc.)

> Display and positioning of initial dollar sign

> Display of comma in large numbers (as in 1,000,000)

> Display and positioning of + and — signs

All of these formatting options may be requested with the PRINT USING
statement. Roughly speaking, you describe to the computer what you wish
your number to look like by specifying a “’prototype.”” For example, suppose
you wish to print the value of the variable A with 4 digits to the left of the
decimal point and two digits to the right. This could be done via the
instruction:

10 PRINT USING ####.##; A

Here, each # stands for a digit and the period stands for the decimal point. If,
for example, A was equal to 5432.381, this instruction would round the
value of A to the specified two decimal places and would print the value of A
as:

5432.38

On the other hand, if the value of A was 932.547, then the computer would
print the value as:

932.55

ADVANCED PRINTING 93

In this case, the value is printed with a leading blank space, since the format
specified four digits to the right of the decimal point. This sort of printing is
especially useful in aligning columns of figures like:

367.1
1567.2
29573.3
2.4

The above list of numbers could be printed using the following program:

10 DATA 367.1, 1567.2, 29573.3, 2.4
20 FOR J=1TO 4

30 READ A())

40 PRINT USING #####.#;A())

50 NEXT]

60 END

Test Your Understanding 4.3

Write an instruction which prints the number 456.75387 rounded to two
decimal places.

You may use a single PRINT USING statement to print several numbers on
the same line. For example, the statement

10 PRINT USING ##.##; A,B,C

will print the values of A, B, and C on the same line, all in the format
##.##. Only one space will be allowed between each of the numbers.
Additional spaces may be added by using extra #s, If you wish to print
numbers on one line in two different formats, then you must use two different
PRINT USING statements, with the first ending in a ; to indicate a continua-
tion on the same line.

If you try to display a number larger than the prototype, the number will be
displayed preceded by %. For example, consider the statement:

10 PRINT USING ### ; A

If the value of A is 5000, then the display will look like:
%5000

94 MORE ABOUT BASIC

Test Your Understanding 4.4

Write a program to calculate and display the numbers 2},) = 1,2,3,. . .,
15. The columns of the numbers should be properly aligned on the right.

You may have the computer insert a dollar sign on a displayed number.
The following two statements illustrate the procedure:

10 PRINT USING $####.##; A
20 PRINT USING $$####.##;A

Suppose that the value of A is 34.78. Then the results of lines 10 and 20 will
then be the display:

$ 34.78
$34.78

Note the difference between the displays produced by line 10 and 20. The
single $ produces a dollar sign in the fifth position to the left of the decimal
point. That is, just to the left of the four digits specified in the prototype
. ##. However, the $$ in line 20 indicates a “floating dollar sign.”’
The dollar sign is printed in the first position to the left of the number without
leaving any space.

Example 1. Here is a list of checks written by a certain family during the
month of March.

$15.32, $387.00, $57.98, $3.47, $15.88

Print the list of checks on the screen with the columns properly aligned and
the total displayed below the list of check amounts, in the form of an
addition problem.

Solution. We first read the check amounts into an array A(),) = 1, 2, 3, 4,
5. While we read the amounts, we accumulate the total in the variable B.
We use a second loop to print the display in the desired format.

10 DATA 15.32, 387.00, 57.98, 3.47, 15.88
20 FOR J=1TO 5
30 READ A())

40 B=B-+A())

50 PRINT USING $###.##; A())
60 NEXT)

70 PRINT “ "

80 PRINT USING $###.##; B
90 END

ADVANCED PRINTING 95

Here is what the output will look like:

$ 15.32
$387.00
$ 57.98
$ 347
$ 15.88

$479.65

Note that line 70 is used to print the line under the column of figures.

The PRINT USING statement has several other variations. To print
commas in large numbers, insert a comma anywhere to the left of the
decimal point. For example, consider the,statement:

10 PRINT USING ###,###; A

If the value of A is 123456, it will be displayed as:
123,456

The PRINT USING statement may also be used to position + and — signs
in connection with displayed numbers. A + sign at the beginning or the end
of a prototype will cause the appropriate sign to be printed in the position
indicated. For example, consider the statement:

10 PRINT USING +####.###; A
Suppose that the value of A is —458.73. It will be displayed as:

4 spflces ’ 3 spaces+

RS SUNRER S

— 458.730

Similarly, consider the statement:
10 PRINT USING +###.##; A

Suppose that A has the value .05873. Then A will be displayed as
3 spaces 2 spaces

[paces

P S
+ .06

96 MORE ABOUT BASIC

Important Note. In the section, we have only mentioned output on the
screen. However, all of the features mentioned may be used on a printer, if
you have one. The appropriate instructions are LPRINT and LPRINT USING.
Note, however, that the wider line of the printer allows display of more data
than on the screen. In particular, there are more 16-character print fields (just
how many depends on which printer you own), and you may TAB to a higher
numbered column than on the screen.

Oversized Characters

The Model lll has two character sizes: 64 characters per line and 32 charac-
ters per line. When the computer is first turned on, the display is initialized
for 64 characters per line. To switch to 32 characters per line, type simulta-
neously SHIFT and 3] From then on, the display will operate with 32
characters per line. The characters used are twice as wide as the usual
characters, but of the same height.

To return to 64 characters per line, hit the CLEAR key while the computer
is in the immediate mode (READY message displayed).

Note that it is not possible to simultaneously display characters of both
sizes.

Some Other Variants of PRINT USING (Optional)
Here are several other things you can do with the PRINT USING statement.
They are especially useful to accountants and those who are especially

concerned with preparation of financial documents.

If you precede the prototype with **, it will cause all unused digit positions
in a number to be filled with asterisks. For example, consider the statement:

10 PRINT USING **####.#;A

If A has the value 34.86, the value will be displayed as:

**34.9

Note that two asterisks are displayed since four digits to the left of the
decimal point are specified in the prototype, but the value of A uses only
two. The remaining two are filled with asterisks.

ADVANCED PRINTING 97

You may combine the action of ** and $. You should experiment with this
combination. It is especially useful for printing dollar amounts of the form:

$*******387.98

Such a format is especially useful in printing amounts on checks so as to
prevent modification.

By using a — sign immediately after a prototype, you will print the
appropriate number with a trailing minus sign if it is negative and with no
sign if it is positive. Thus, for example, the statement

10 PRINT USING #### . ##—; A

and A equal to —57.88 will result in the display:
57.88—

On the other hand, if A is equal to 57.88, the display will be:
57.88

This format for numbers is often used in preparing accounting reports.

EXERCISES (answers on 278)

Write programs which generate the following displays. The lines of dots are
not meant to be displayed, but are furnished for you to judge spacing.

2. THE VALUE OF X IS 5.378

3. DATE QTY @ COST DISCOUNT NET COST

4. 6.753
15.111
111.850
6.7C2

Calculate
Sum

98 MORE ABOUT BASIC

5. $ 12.82
$117.58
$ 5.87
$.99
$.99
Calculate
Sum

6. Date 3/18/81

Pay to the Order of Wildcatters, Inc.
The sum of Rrkkxrk* 489 385.00
7. 5,787
387
127,486
38,531
Calculate
Sum
8. $385.41
—$17.85
Calculate

Difference

9. Write a program which rounds a number to the nearest integer. For
example, if the input is 11.7, the output is 12. If the input is 158.2, the
output is 158. Your program should accept the number to be rounded

via an INPUT statement.

10. Write a program which allows your computer to function as a cash
register. Let the program accept purchase amounts via INPUT state-
ments. Let the user tell the program when the list of INPUTs is
complete. The program should then print out the purchase amounts,
with dollar signs and columns aligned, compute the total purchase,
add 5% sales tax, compute the total amount due, ask for the amount

paid, and compute the change due.

11. Prepare the display of Exercise 6 using 32 characters per line.

Answers to Test Your Understanding

4.1: 10 INPUT A,B
20 PRINT A;"'+";B;"'=";A+B
30 END

GAMBLING WITH YOUR COMPUTER (ELEMENTARY LEVEL) 99

4.2: 10 PRINT TAB(25) A;TAB(32) B
4.3: 10 PRINT USING ###.##; 456.7387

4.4: 10 FORJ=1TO 15
20 PRINT USING ######; 2]
30 NEXT J
40 END

3.5 GAMBLING WITH YOUR COMPUTER
(ELEMENTARY LEVEL)

One of the most interesting features of your computer is its ability to generate
events whose outcomes are ‘“random.”” For example, you may instruct the
computer to “throw a pair of dice’” and produce a random pair of integers
between 1 and 6. You may instruct the computer to “‘pick a card at random
from a deck of 52 cards.” You may program the computer to choose a two
digit number "‘at random.”” And so forth. The source of all such random
choices is the random number generator which is a part of BASIC. Let us
begin by explaining what the random number generator is and how to access
it. Then we will give a number of interesiing applications involving com-
puter-assisted instruction and games of chance.

You may generate random numbers using the BASIC function RND(X),
where X is one of the numbers 0, 1, 2, 3,4, (Later, we'll explain what
the various choices of X mean.) To explain how this function works, let us
consider the following program:

10 FOR J=1 TO 500
20 PRINT RND(0)
30 NEXT)

40 END

This program consists of a loop which prints the value of RND(0) 500 times.
RND(0) is a number between 0.000000 (inclusive) and 1.000000 (exclu-
sive). Each time RND(0) is called (that is, in line 20), the computer makes a
“random” choice from among the numbers in the indicated range. This is
the number that is printed.

To obtain a better idea of what we are talking about, you should generate
some random numbers using a program like the one above. Unless you have
a printer, 500 numbers will be too many for you to look at in one viewing. So
you should print four random numbers on one line (one per print zone) and

100 MORE ABOUT BASIC

limit yourself to 16 displayed lines at one time. Here is a partial printout of
such a program.

245121 .305003 311866 515163
.984546 901159 727313 6.83401E-03
896609 660212 .554489 .818675
583931 448163 86774 0331043
137119 226544 215274 876763

What makes these numbers “‘random’ is that the procedure the computer
uses to select them is “‘unbiased,”” with all numbers having an equal likeli-
hood of selection. Moreover, if you generate a large collection of random
numbers, then numbers between 0 and .1 will comprise approximately 10%
of those chosen, those between .5 and 1.0 will comprise 50% of those
chosen, and so forth. In some sense, the random number generator provides
a uniform sample of the numbers between 0 and 1. (Actually the numbers are
only “pseudo-random numbers,”” but you need not concern yourself with
this distinction.)

Test Your Understanding 5.1

Assume that RND(0) is used to generate 1,000 numbers. Approximately how
many of these numbers do you expect would lie between .6 and .9?

The function RND(0) generates random numbers lying in the between 0 to
1. However, in many applications, we will require randomly chosen inte-
gers lying in a certain range. Model [Il BASIC has a built-in capability for
producing such integers. For example, suppose that we wish to generate
random integers chosen from among 1, 2, 3, 4, 5, 6. We could use the
function RND(6). Similarly, to generate random integers lying between 1 and
100 inclusive, we use the function RND(100). The next example shows how
to generate a game of chance using your computer.

Test Your Understanding 5.2

Generate random numbers from O to 1. (This is the computer analogue of
flipping a coin: 0 = heads, 1 = tails.) Run this program to generate 50 coin
tosses. How many heads and how many tails occur?

Example 1. Write a program which turns the computer into a pair of dice.
Your program should report the number rolled on each as well as the total.

GAMBLING WITH YOUR COMPUTER (ELEMENTARY LEVEL) 101

Solution. We will hold the value of die #1 in the variable X and the value of
die #2 in variable Y. The program will compute values for X and Y, print out
the values and the total X + .

5 RANDOM

10 CLS

20 LET X=RND(6)

30 LET Y=RND(6)

40 PRINT ““LADIES AND GENTLEMEN, BETS PLEASE!”
50 INPUT “ARE ALL BETS DOWN(Y/N)”’; A$

60 IF A$=""Y”” THEN 100 ELSE 40

100 PRINT “THE ROLL IS”,X,Y

110 “PRINT “THE WINNING TOTAL IS 77 ; X+Y
120 INPUT ““PLAY AGAIN(Y/N)”’; B$

130 IF BS="Y” THEN 10 ELSE 200

200 PRINT “THE CASINO IS CLOSING. SORRY”
210 END

Note the use of computer-generated conversation on the screen. Note also,
how the program uses lines 120-130 to allow the player to control how
many times the game will be played. Finally, note the use of the command
RANDOM in line 5. This requires some explanation.

The random number generator is controlled by a so-called ““seed number’’
which determines which sequence of random numbers will be generated.
When the random number generator is first accessed by a program, a
standard seed number is used. This has the implication that the computer
will always generate the same string of random numbers. Thus, for example,
every dice game would begin in the same way! To prevent this, we use the
command RANDOM to choose a random seed number. This, in effect, starts
the random number generator at a random place, so that the output is
completely unpredictable. You need use the command RANDOM only once
in any given program.

You may enhance the realism of a gambling program by letting the
computer keep track of bets, as in the following example.

Test Your Understanding 5.3

Write a program which flips a ““biased” coin. Let it report ’heads’’ one-third
of the time and tails two-thirds of the time.

102 MORE ABOUT BASIC

Example 2. Write a program which turns the computer into a roulette wheel.
Let the computer keep track of bets and winnings for up to five players. For
simplicity, assume that the only bets are on single numbers. (In the next
section, we will let you remove this restriction!)

Solution. A roulette wheel has 34 positions: 1-32, 0 and 00. In our pro-
gram, we will represent these as the numbers 1-34, with 33 corresponding
to 0 and 34 corresponding to 00. A spin of the wheel will consist of choosing
a random integer between 1 and 34. The program will start by asking the
number of players. For a typical spin of the wheel, the program will ask for
bets by each player. A bet will consist of a number (1-32, 0, 00) and an
amount bet. The wheel will then spin. The program will determine the
winners and losers. A payoff for a win is 32 times the amount bet. Each
player has an account, stored in an array A(),] = 1, 2, 3, 4. At the end of
each spin, the accounts are adjusted and displayed. just as in Example 1, the
program asks if another play is desired. Here is the program.

2 CLEAR 200

5 RANDOM

10 INPUT “NUMBER OF PLAYERS"’;N

20 DIM A(5),B(5),C(5): ““AT MOST 5 PLAYERS ALLOWED
25 LINES 30-60 ALLOW PLAYERS TO PURCHASE CHIPS
30 FOR j=1 TO N: ‘ FOR EACH OF THE PLAYERS

40 PRINT ““PLAYER ”; }

50 INPUT “HOW MANY CHIPS”; A())

60 NEXT |

100 PRINT “LADIES AND GENTLEMEN! PLACE YOUR BETS PLEASE!”
110 FOR J=1 TO N : ‘ FOR EACH OF THE PLAYERS
120 PRINT “PLAYER ”’; }

130 INPUT “NUMBER,AMOUNT”; B(}),C()):“INPUT BET
140 IF B(J)=0 THEN 160

150 IF B(J)=00 THEN 170

155 GOTO 180

160 B(J)=33

165 GOTO 180

170 B())=34

180 NEXT }

200 X=RND(34): ‘SPIN THE WHEEL

210 LINES 210--300 DISPLAY THE WINNING NUMBER
220 PRINT “THE WINNER IS NUMBER"’; X

230 IF X<=32 THEN 260

240 IF X=33 THEN 280

250 IF X=34 THEN 300

GAMBLING WITH YOUR COMPUTER (ELEMENTARY LEVEL) 103

260 PRINT X

270 GO TO 310

280 PRINT 0

290 GO TO 310

300 PRINT 00

300 LINES 310-590: ‘DETERMINE WINNINGS AND LOSSES
310 FOR J=1 TO N : ‘FOR EACH PLAYER

320 IF X=B(J) THEN 400 ELSE 330

330 A()=A()—C(J)): ‘PLAYER J LOSES. DEDUCT BET

340 PRINT “PLAYER “;}J;*LOSES”

360 GO TO 420

400 A(H=A()+32*C(J)): ‘PLAYER J WINS. ADD WINNINGS
410 PRINT ““PLAYER “;};WINS “; 32*C(}); “DOLLARS”’

420 NEXT)

430 PRINT ““PLAYER BANKROLLS"”

440 PRINT

450 PRINT ““PLAYER”, “CHIPS”

460 FOR J=1 TO N

470 PRINT },A()

480 NEXT)

500 INPUT “DO YOU WTSH TO PLAY ANOTHER ROLL(Y/N)”;R$
510 CLS

520 IF R$=“Y"” THEN 100

530 PRINT “THE CASINO IS CLOSED. SORRY!”

600 END

You should try a few spins of the wheel. The program is fun as well as
instructive. Note that the program allows you to bet more chips than you
have. We will leave it to the exercises to add in a test that there are enough
chips to cover the bet. Alternatively, you could build lines of credit into the
game!

You may treat the output of the random number generator as you would
any other number. In particular, you may perform arithmetic operations on
the random numbers generated. For example, 5*RND(0) multiplies the out-
put of the random number generator by 5 and RND(0) + 2 adds 2 to the
output of the random number generator. Such arithmetic operations are
useful in producing random numbers from intervals other than 0 to 1. For
example, suppose that you wish to select numbers randomly from the
interval 0 to 5. Such numbers may be generated as 5¥RND(0). Indeed, since
RND(0) lies between 0 and 1, 5 times RND(0) lies between 0 and 5.
Similarly, to generate random numbers between 2 and 3, we may use
RND() + 2.

104 MORE ABOUT BASIC

Example 3. Write a program which generates 10 random numbers lying in
the interval from 5 to 8.

Solution. Let us build up the desired function in two steps. We start from the
function RND(0), which generates numbers from 0 to 1. First, we adjust for
the length of the desired interval. From 5 to 8 is 3 units, so we multiply
RND(0) by 3. The function 3*RND(0) generates numbers from 0 to 3. Now
we adjust for the starting point of the desired interval, namely 5. By adding 5
to 3*RND(0), we obtain numbers lying between 0 + 5 and 3 + 5, that is
between 5 and 8. Thus, 3*RND(0) + 5 generates random numbers between
5 and 8. Here is the program required.

10 FOR J=I1TO 10

20 PRINT 3*RND(0)+5
30 NEXT)

40 END

Example 4. Write a function to generate random integers from among 5, 6,
7,8, ... ,12

Solution. There are 8 consecutive integers possible. So let us start with the
function RND(8), which generates the 8 consecutive integers 1, 2, . . . , 8.
To adjust the starting integer 1 to the desired starting integer 5, we must add
4. So the desired function is RND(8) + 5.

EXERCISES (answers on 280)

Write BASIC functions which generate random numbers of the following
sorts.
1. Numbers from 0 to 100
Numbers from 100 to 101
Integers from 1 to 50
Integers from 4 to 80
Even integers from 2 to 50
Numbers from 50 to 100
Integers divisible by 3 from 3 to 27

Integers from among 4,7,10,13,16,19,22

9.

10.

11.

12.

13.

14.

GAMBLING WITH YOUR COMPUTER (ELEMENTARY LEVEL) 105

Modify the dice program so that it keeps track of payoffs and bank-
rolls, as in the roulette program of Example 2. Here are the payoffs on
a bet of $1 for the various bets:
outcome payoff

35
17
11

8

6.20

5

6.20

8
10 11
11 17
12 35

Modify the roulette program of Example 2 to check that a player has
enough chips to cover the bet.

O oo NO U Wi

Modify the roulette program of Example 2 to allow for a 100 dollar
line of credit for each player.

Construct a program which tests one digit arithmetic facts, with the
problems randomly chosen by the computer.

Construct a program which tests multiplication facts, with the prob-
lems randomly chosen by the computer. Use the real-time clock to
allow three levels of difficulty corresponding to 10, 5, and 3 second
response times.

Make up a list of 10 names. Write a program which will pick four of
the names at random. (This is a way of impartially assigning a nasty
task!)

Answers to Test Your Understanding

5.1:
5.2:

5.3:

30%
10 PRINT RND(2)—1
20 END

10 LET X=RND(3)
20 IF X=1 THEN PRINT “HEADS’" ELSE PRINT ““TAILS"”
30 END

106 MORE ABOUT BASIC

3.6 SUBROUTINES

In writing programs, it is often necessary to use the same sequence of
instructions more than once. It may not be convenient (or even feasible) to
retype the set of instructions each time it is needed. Fortunately, BASIC offers
a convenient alternative, namely the subroutine.

A subroutine is a program which is incorporated within another, larger
program. The subroutine may be used any number of times by the larger
program. Often, the lines corresponding to a subroutine are isolated toward
the end of the larger program. This arrangement is illustrated in Figure 3-1.
The arrows to the subroutine indicate the points in the larger program at
which the subroutine is used. The arrows pointing away from the subroutine
indicate that, after completion of the subroutine, execution of the main
program resumes at the point at which it was interrupted.

Subroutines are handled with the pair of instructions GOSUB and RE-
TURN. The statement

100 GOSUB 1000

sends the computer to the subroutine which begins at line 1000. The com-

————— - —

Main Program

Subroutine

Figure 3-1. A subroutine.

SUBROUTINES 107

puter starts at line 1000 and carries out statements in order. When a RETURN
statement is reached, the computer goes back to the main program, starting
at the first line after 100.

The next example illustrates the use of subroutines.

Example 1. Modify the roulette program of Example 5.2, so that it allows
bets on EVEN and ODD. A one dollar bet on either of these pays one dollar
in winnings.

Solution. Our program will now allow three different bets—on a number and
on EVEN or ODD. Let us design subroutines, corresponding to each of these
bets, which determine whether player) wins or loses. For each subroutine,
let X be the number (1—34) which results from spinning the wheel. In the
preceding program, a bet by player | was described by two numbers: B()) =
the number bet and C(J) = the amount bet. Now let us add a third number to
describe a bet. Let D(J) = 1 if | bets on a number, 2 if] bets on EVEN, and 3 if
J bets on ODD. In case D()) is 2 or 3, we will again let C()) equal the amount
bet, but B(J) will be 0. The subroutine for determining the winners of bets on
numbers can be obtained by making small modifications to the correspond-
ing portion of our previous program, as follows:

1000 IF B(J))=X THEN 1100 ELSE 1010

1010 PRINT “PLAYER”;}:LOSES”

1020 A(P=A(—-CD)

1030 RETURN

1100 PRINT ““PLAYER”;};*WINS"’; 32*C());*DOLLARS”
1110 A=A +32*()

1120 RETURN

Here is the subroutine corresponding to the bet EVEN.

2000 FOR K=0TO 16

2010 IF X=2*K THEN 2100 ELSE 2020

2020 NEXT K

2030 PRINT “PLAYER”;};*LOSES”

2040 AD=A(—-CH

2050 RETURN

2100 PRINT “PLAYER”;J;*WINS”’;C());“DOLLARS”
2110 A()=A(+CQ))

2120 RETURN

108 MORE ABOUT BASIC

Finally, here is the subroutine corresponding to the bet ODD.

3000 FOR K=0 TO 16

3010 IF X<>2*K THEN 3100 ELSE 3020

3020 NEXT K

3030 PRINT ““PLAYER"’;};“LOSES”

3040 A(D=A()—C(H)

3050 RETURN

3100 PRINT “PLAYER”;};WINS”;C(});DOLLARS"”
3110 A)=A()+C(H)

3120 RETURN

Now we are ready to assemble the subroutines together with the main
portion of the program, which is almost the same as before. The only
essential alteration is that we must now determine, for each player, which
bet was placed.

2 CLEAR 200

5 RANDOM

10 INPUT “NUMBER OF PLAYERS”;N

20 DIM A(5),B(5)C(5): ‘AT MOST 5 PLAYERS ALLOWED
25 LINES 30-60 ALLOW PLAYERS TO PURCHASE CHIPS
30 FOR J=1 TO N: ‘FOR EACH OF THE PLAYERS

40 PRINT “PLAYER"; }

50 INPUT “HOW MANY CHIPS’; A())

60 NEXT)

100 PRINT “LADIES AND GENTLEMEN! PLACE YOUR BETS PLEASE!”
110 FOR J=1 TO N: ‘FOR EACH OF THE PLAYERS

120 PRINT “PLAYER"; }

121 PRINT “BET TYPE:1=NUMBER BET, 2=EVEN, 3=0DD"”
122 INPUT “BET TYPE (1,2,0R 3)"; D())

123 IF D(J)=1 THEN 130 ELSE 124

124 INPUT “AMOUNT"; C())

125 GOTO 180

130 INPUT “NUMBER,AMOUNT”’; B()),C(J): ‘INPUT BET
140 IF B(J)=0 THEN 160

150 IF B(})=00 THEN 170

155 GOTO 180

160 B(})=33

165 GOTO 180

170 B(J)=34

180 NEXT J

200 X=RND(34): ‘SPIN THE WHEEL

210 LINES 210-300 DISPLAY THE WINNING NUMBER
220 PRINT “THE WINNER IS NUMBER"’;

SUBROUTINES 109

230 IF X<=32 THEN 260
240 IF X=33 THEN 280

250 IF X=34 THEN 300

260 PRINT X

270 GOTO 310

280 PRINT 0

290 GOTO 310

300 PRINT 00

305 LINES 310-330: ‘DETERMINE WINNINGS AND LOSSES
310 FOR j=1 TO N: ‘FOR EACH PLAYER

320 IF D(J))=1 THEN GOSUB 1000

330 IF D(J)=2 THEN GOSUB 2000

335 IF D(J)=3 THEN GOSUB 3000

340 NEXT }

430 PRINT “PLAYER BANKROLLS”

440 PRINT

450 PRINT “PLAYER”, “CHIPS”

460 FOR j=1 TO N

470 PRINT J,A())

480 NEXT J

500 INPUT “DO YOU WISH TO PLAY ANOTHER ROLL(Y/N)";R$
510 CLS

520 IF R$=“Y" THEN 100

530 PRINT ““THE CASINO IS CLOSED. SORRY!”’
600 END

1000 IF B(J))=X THEN 1100 ELSE 1010

1010 PRINT “PLAYER”;};“LOSES"’

1020 A())=A()—C())

1030 RETURN

1100 PRINT “PLAYER”;J;“WINS’’; 32*C(});“DOLLARS”
1110 A()=A()+32*())

1120 RETURN

2000 FOR K=0 TO 16

2010 IF X=2*K THEN 2100 ELSE 2020

2020 NEXT K

2030 PRINT “PLAYER”;};*/LOSES”’

2040 A()=A()—CO)

2050 RETURN

2100 PRINT ““PLAYER"’;};*WINS”’;C(});*DOLLARS"’
2110 A())=A()+C())

2120 RETURN

3000 FOR K=0 TO 16

3010 IF X<>2*K THEN 2100 ELSE 2020

3020 NEXT K

110 MORE ABOUT BASIC

3030 PRINT ““PLAYER"’;};"‘LOSES”
3040 A()=A()—C()
3050 RETURN

3100 PRINT “PLAYER”;};WINS”;C(});DOLLARS”

3110 A()=A()+C())
3120 RETURN

Note how the subroutines helped to organize our programming. Each
subroutine is easy to write since it is a small task and you have less to think
about than when considering the entire program. If is always advisable to
break a long program into a number of subroutines. Not only is it easier to
write in terms of subroutines, but it is much easier to check the program and
locate errors since the subroutines may be tested individually.

Test Your Understanding 6.1

Consider the following program.

10 GOSUB 500
20 A=5

500 B=7

510 GOSUB 600
600 C=9

700 RETURN
800 END

What is the line executed after line 700?

Example 2. Here are the production figures for the six assembly lines of a
certain factory for January 1980 and January 1981. Calculate the percentage
increase (decrease) for each assembly line and determine the assembly line

with the largest percentage increase:

Assembly Line January 1980 January 1981

1 235,485
2 298,478
3 328,946
4 315,495
5 198,487
6 204,586

Solution. Let us plan this program in terms of subroutines. Let us store the
January 1980 data in the array A()) and the January 1981 data in the array

239,671
301,485
322,356
318,458
207,109
221,853

SUBROUTINES 111

BU),)=1,2,3,4,5,6. Ourfirst step will be to read the data into the arrays
from DATA statements. The second step will be to calculate the percentage
increase (decrease) for each assembly line. This will be done by using a
subroutine which we will put beginning at line 1000. We will store the
percentage increases in the array C(J),) = 1, 2, 3, 4, 5, 6. Finally, we will
determine which of the numbers C()) is the largest. Let this calculation be
carried out in a subroutine beginning in line 2000. We will let K be the
number of the assembly line with largest percentage increase. Then we can
write our program as follows:

10 DIM A(6),B(6),C(6)

20 DATA 235485, 239671, 298478, 301485

30 DATA 328946, 322356, 315495, 318458

40 DATA 198487, 207109, 204586, 221853

50 FOR J=1TO 6: ‘READ ARRAYS

60 READ A()), B())

70 NEXT J

80 FOR J=1TO 6: ‘COMPUTE PERCENT INCREASES
90 GOSUB 1000

100 NEXT)

200 PRINT “ASSEMBLY LINE”,PERCENT INCREASE”’
210 FOR J=1 TO 6: ‘DISPLAY PERCENT INCREASES
220 PRINT J, C())

230 NEXT)

300 GOSUB 2000: ‘DETERMINE LARGEST PERCENT INCREASE
310 PRINT “ASSEMBLY LINE” K,”“IS THE WINNER"”
400 END

The above program is not complete. It is still necessary to complete the
subroutines in lines 1000 and 2000. The point we wish to make, however, is
that the use of subroutines allowed us to organize the program and to plan it
so that programming may be done in small steps. It is now possible to write
the subroutines without worrying about the program in its entirety. In order
for you to obtain some practice, we will leave construction of the two
subroutines for the exercises. (If you are impatient, you may look at the
answers!)

Here is a useful variation of the GOSUB statement. Suppose that you wish
to use the subroutine beginning at line 100 if the value of | is 1, the
subroutine beginning at line 500 if the value of J is 2, and the subroutine
beginning at line 1000 if the value of J is 3. This complex set of decisions can
be requested by a simple statement of the form:

10 ON J GOSUB 100,500,1000

112 MORE ABOUT BASIC

If the value of J is 1, then the program goes to line 100; if the value of J is 2,
then the program goes to line 500; if the value of } is 3, then the program goes
to line 1000. If] is not an integer, then any fractional part will be ignored. For
example, if the value of J is 5.5, then the value 5 will be used. After dropping
the fractional part, the value must be between 0 and 255 or an error will
occur. If the value of] does not correspond to a given subroutine (for
example, if] is 0 or more than 3 in the above example), then the instruction
will be ignored. Instead of J, we could use any valid expression, such as J[2
+ 3 or 3% — 2. The expression will be evaluated and all of the above rules

apply.

EXERCISES (answers on 281)

1. Write a subroutine which computes the value of 5*J[2 — 3%). Incorpo-
rate it in a program to evaluate the given expression at) = .1, .2, .3, .4,
.5.

2. Write the subroutine of Example 2 which computes the percentage
rates of change for each assembly line. You may use the formula:

<% rate of change>
=100 x (<Jan.1981 Prod.>—<Jan.1980 Prod.>)/<Jan.1980 Prod.>

3. Write the subroutine of Example 2 which determines the largest per-
centage increase. Hint: Let the variable M hold the largest number
among C(1), . . ., C(6). Initially set M to C(1). Successively compare
M (that is C(1)) to CQ2), C(3), . . . , C(6)). After each comparison,
replace M by the larger of M and what it is compared to. At the end of 5
comparisons, M will contain the largest among C(1), C(2), . . . , C(6).
You may then determine which assembly line that value of M belongs
to. That is, is the final value of M equal to C(1), C(2), C(3), C(4), C(5), or
C(6)? For example, if M equals C(5), then assembly line 5 has the
largest percentage increase.

4. Run the program of Example 2 with the subroutines in place.

5. Modify the roulette program of Example 1 to allow the following bets:
first 12 (1=12), second 12 (13-24), and third 12 (25-36). A winning
one dollar bet of this type pays two dollars. In adding these bets, you
may find the ON . . . GOSUB instruction convenient.

Answer to Test Your Understanding

6.1: 600

4

Easing the Frustrations of

' Programming

As you have probably discovered by now, programming can be a tricky and
frustrating business. First, you must figure out the instructions to give the
computer. Next, you must type the instructions into RAM. Finally, you must
run the program and, usually on the first run, figure out why your program
will not work. This process can be tedious and frustrating, especially in
dealing with long or complex programs. Fortunately, however, your com-
puter has a number of features which are designed to ease some of the
burdens of programming and help you in tracking down errors and correct-
ing them. In this chapter, we will describe these features. In addition, we will
present some further tips which should help you develop your programs
more quickly and with fewer errors.

4.1 USING THE LINE EDITOR

Suppose that you discover a program line with an error in it. How can you
correct it? Up to this point, the only way was to retype the line. However,
there is a much better way. The Model Ill has a powerful line editor which
allows you to add, delete, or change text in existing program lines. This
section is designed to make you proficient in the use of the editor.

Entering Edit Mode. The line editor may be used to make changes only to
the program currently in RAM. Moreover, as its name indicates, the line
editor, allows you to make changes on any specified line, where a line is
designated by its line number. To initiate the line editor type EDIT followed
by the line number to be corrected and ENTER. For example, to correct line

113

i14 EASING THE FRUSTRATIONS OF PROGRAMMING

50, you would type:
EDIT 50

followed by ENTER. Note that this command is a system command and
therefore does not use a line number. The computer will respond to this
command by displaying the line number followed by a space and the cursor:

50 @

The computer is now in edit mode. While in this special mode, many of the
“keys take on special roles and the video display operation is slightly altered.
During the current session with the editor, you may make changes only in
line 50. To edit some other line, you must first exit from the edit mode and
re-enter it using the other line number.

Operation of the Ediior

The editor can perform three sorts of operations:

A. Editing Operations. These operations add, delete, or change char-
acters.

B. Cursor Positioning. The position of the cursor indicates the character
position at which an editing operation is to be performed.

C. Control Operations. These operations can be used to record or cancel
changes already made.

A Typical Session With the Editor. Suppose that the current version of line
100 reads as follows:

100 PRIMT X

The word PRIMT must be corrected to read PRINT. To make the correction,
we first call the editor by typing:

EDIT 100
The computer displays:

100 B

USING THE LINE EDITOR 115

The next step is to position the cursor on the M. We can do this by typing
1SM

The letter S indicates that the editor should Search; the 1 and M indicate that
the search should be for the first occurrence of the letter M. Note that the
command itself will not be displayed. Rather, the cursor will move over to
the first occurrence of the letter M and the display will look like this:

100 PRIE
We are now prepared to make the correction. We wish to change 1 letter,
beginning at the cursor position. The command for this is 1C. We wish to
change the letter to N. So we type the command:

1CN

Again, the command does not show on the display. Instead, the display is
altered to:

100 PRINE

To terminate the edit mode, type ENTER. The entire line (with the change)
will now be displayed:

100 PRINT X
Moreover, the changed line has been inserted into the program. As you can
see, the editor is quite easy to use. With a little practice, you will become
quite adept at using it to fashion program lines to your specifications.
Cursor Positioning Instructions
SPACEBAR. This key moves the cursor one character to the right and un-
covers any character which was under the cursor. For example, consider the
line 100 from above. Suppose that the display reads:

100 B
Hitting the SPACEBAR will result in the display:

100 PE

116 EASING THE FRUSTRATIONS OF PROGRAMMING

To move the cursor 2 spaces to the right, we may hit the keys:
2 SPACEBAR

In the above example, this will result in the display:
100 PRIN

The backspace key moves the cursor to the left. For example, let’s
continue with the last display. Hitting the backspace key will result in the
following display:

100 PRA

The letter | is no longer displayed. Note, however, that this letter has not
been erased. In the edit mode the backspace key does not erase. We may
backspace any number of spaces. For example, to backspace 2 spaces, we

type:
2

The last display will be altered as follows:
100 @

nSc. This instruction moves the cursor to the nth occurrence of the charac-
ter c. Searching begins from the current cursor position and goes to the end
of the line. If you do not specify a value for n, then the first occurrence is
assumed. Thus, for example, 25, searches for the second occurrence of a
comma, whereas Sa searches for the first occurrence of a. Suppose, for
example, that we are editing line 200 which reads:

200 IF X>5.5 THEN 450 ELSE END
The initial display will read:
200 @
The command S5 will change the display to:

200 IF X>H

USING THE LINE EDITOR 117

The further command 2S5 will change the display to:
200 IF X>5.5 THEN 48

The further command SX will change the display to:
200 IF X>5.5 THEN 450 ELSE ENDE

(There were no characters X to the right of the cursor.)

Editing Commands

Here are the commands which may be used to insert, delete, and change
text. All these commands refer to text positioned beginning at the current
cursor position.

Delete (nD). This command deletes the n characters beginning with the
current cursor position. For example, consider the line 200 from our discus-
sion above. Suppose that the cursor has been positioned so that the display
reads:

200 IF X>5.5 B
The command 3D will change the display to read:
200 IF X>5.5 !THE'E

Note that the three letters THE are enclosed between exclamation points.
This indicates that these three letters are to be deleted. It is mildly confusing
to see the deleted letters still on the screen. However, seeing them allows
you to approve of the change before committing yourself to it. (For changing
your mind, see below.)

Change (nC). This command changes n characters beginning with the
current character position. For example, let’s go back to the original version
of line 200. Suppose that we moved the cursor to create the display:

200 IF X>H

Suppose we wish to change the next three characters (5.5) to read 100. We
first type the command 3C to indicate that we wish to change the next three

118 EASING THE FRUSTRATIONS OF PROGRAMMING

characters. Then we type the desired characters (100). The new display will
read:

200 IF X>1008

Insert (I). This command allows you to insert characters beginning at the
current cursor position. For example, consider the display we have just
created. Suppose that we wish to change the number 100 to 100500. That is,
we wish to add the characters 500 beginning at the current cursor position.
Type the command I and then type the characters to be inserted. The display
will read as follows:

200 IF X>1005008

At this point, you have two choices. First, you may terminate the edit mode
by typing ENTER. Second, you may end the I command by typing SHIFT and
simultaneously. Using the latter command sequence you will remain in
edit mode, with the cursor positioned as in the current display.

Extend Line (E). It is often necessary to add characters at the end of a line.
This might occur, for example, if you wish to add : followed by another
instruction (whose omission you discovered in trying to run your program).
For example, suppose you wish to add to the most current version of line 200
the characters : PRINT M , S . Type the command E. The cursor will
automatically move to the end of the line and the display will read:

100 IF X>100500 THEN 450 ELSE ENDH&

We now type the characters to be appended to the line. Here is the new
display:

100 IF X>100500 THEN 450 ELSE END: PRINT M, SH

We may now either terminate the edit mode (by typing ENTER) or remain in
the edit mode by typing SHIFT “ In the latter case, we could perform
further editing on the current line.

Hack (H). This command enables you to hack off the portion of the line
beginning at the current cursor position. For example, consider the most
recent version of line 200. Suppose we now wish to delete all material
beginning with the word THEN. Position the cursor at the T and type the

JAB8uU K. Drauy

USING THE LINE EDITOR 119

command H. The display will not change, but the computer will delete the
characters:

THEN 450 ELSE 800: PRINT M, S

You may now insert any characters after the portion of the line remaining.
For example, if we now type THEN 100: READ A,B, the display will read:

200 IF X>100500 THEN 100: READ A,B#

You may exit from the Hack command by typing either ENTER (in which
case you will exit from the edit mode) or SHIFT (in which case you will
remain in the edit mode and can perform further editing on the current line.)

Kill (nKc). This command is similar to the delete command. It instructs the
computer to delete all characters from the current cursor position to the nth
occurrence of the character c. For example, consider the latest version of
line 200. Suppose that the display currently reads:

200 IF X>H
Suppose that we wish to delete the number 100500. Since there are 4 zeros
between the current cursor position and the end of the text to be deleted, we
use the command 4KO0. This display will now read:

200 IF X>!100500'H

Note that the deleted characters are enclosed in exclamation marks. If we
now terminate the editing session by typing ENTER, line 200 will read:

200 IF X> THEN 100: READ A,B

Instead, however, let us add the number 750 at the current cursor position
via the I command. The display will now read:

200 IF X>7508
Moreover, line 200 actually reads:
200 IF X>750 THEN 100: READ A,B
Edit Control Commands. These line editor commands do not do editing

functions, but rather perform useful management functions while in edit
mode.

120 EASING THE FRUSTRATIONS OF PROGRAMMING

ENTER. This command terminates the edit mode. All changes in the
current line are recorded in the current program.

Cancel and Start Again (A). This command cancels all changes since the
start of the editing session and positions the cursor as at the start of the
session. Note that this may not be given while you are in the middle of an
editing operation such as I, H or X. You must terminate any such operations
using SHIFT before giving the command A.

Exit (E). End editing and save all changes made. This command may not be
given in the middle of an editing operation. (See comment under com-
mand A.)

Quit (Q). End editing and cancel all changes since the start of the editing
session.

List Line (L). List the line being edited. This command may be used in the
edit mode when you are not in the middle of an editing operation. (See
comment under command A.) It displays the current version of the line being
edited and positions the cursor as at the beginning of an editing session.

EXERCISES

What is an editing instruction(s) to do to the following?

1. Move the cursor to the 4th letter q.

Delete the 4th letter q to the right of the cursor.

Insert the characters 538 at the current cursor position.

Delete the portion of the line to the right of the cursor position.
Move the cursor to the left 8 spaces.

Move the cursor to the right 3 spaces.

List the current version of the line.

Change the 4th O to a 1.

9. Delete the 8th letter a.

© N O v W

10. Cancel all changes and exit edit mode.

Use the line editor to make the indicated changes in the following program
line. The exercises are to be done consecutively.

FLOW CHARTING 121

300 FOR M=11TO 99, SETP .5 : X=M[2-5
11. Delete the , .
12. Correct the misspelling of the word STEP.
13. Change M[2 — 5 to M[3 — 2.
14. Change .5 to —1.5
15. Add the following characters to the end of the line. : Y = M + 1

4.2 FLOW CHARTING

In the last two chapters, our programs, for the most part, were fairly elemen-
tary, although by the end of Chapter 3 we saw them becoming more
involved. However, there are many programs which are much more lengthy
and complex. You might be wondering how it is possible to plan and execute
such programs. Well, the key idea is to reduce large programs to a sequence
of smaller programs which can be written and tested separately.

The old saying ““A picture is worth a thousand words."” is equally applica-
ble to programming. In designing a program, especially a long program, it is
helpful to draw a picture which depicts the instructions of the program and
their interrelationships. Such a picture is called a flowchart.

A flowchart is a series of boxes connected by arrows. Within each box is a
series of one or more computer instructions. The arrows indicate the logical
flow of the instructions. For example, consider the following flowchart,
which depicts a program for calculating the sum 1 + 2 + 3 + . . . + 100.
The arrows indicate the sequence of operations. Note that the third box
contains the notation) = 1, 2, . . . , 100. This notation indicates a loop on
the variable). That is, the operation in the box is to be repeated 100 times for
J=1,2,. .., 100. Note how easy it is to proceed from the above
flowchart to the corresponding BASIC program:

10 LET S=0 (box 2)
20 FOR J=1TO 100
30 LET S=S+)} (box 3)
40 NEXT)

50 PRINT S (box 4)
60 END (box 5)

There are many flowcharting conventions regarding, for example, the
shapes of boxes representing particular operations. However, we will adopt

122 EASING THE FRUSTRATIONS OF PROGRAMMING

a very simple rule that all boxes are rectangular, except for decision boxes,
which are diamond-shaped. The following flowchart depicts a program
which decides whether a credit limit has been exceeded.

Note that the diamond-shaped block contains the decision “lIs D > L'"?
Corresponding to the two possible answers to the question, there are two
arrows leading from the decision box. Note also how we used the various
boxes to help assign letters to the program variables. Once the flowchart is
written, it is easy to transform it into the following program:

10 INPUT C

20 INPUT#-1D,L

30 LET D=D+C

Print S

i
<>

Figure 4-1.

40 IF D>L THEN 100 ELSE 200
100 PRINT “CREDIT DENIED”

110 LET D=D-C
120 GOTO 300

200 PRINT “CREDIT OK”

300 END

Start

Input current purchase C

Let Debt(D) = Debt + C

No

Print
“Credit Denied”’

LetD=D-C

FLOW CHARTING

Print
“Credit
OK"

A

Stop

Figure 4-2.

123

124 EASING THE FRUSTRATIONS OF PROGRAMMING

(Line 20 reads the values of L and C from a cassette file. More about that in
Chapter 5.)

You will find flowcharting helpful in thinking out the necessary steps of a
program. As you do more of it, you will develop your own style and
conventions. That's fine. | support all personalized touches, provided they
are comfortable and helpful to you.

EXERCISES (answers on 283)

Draw a flowchart to plan computer programs to do the following.

1. Calculate the sum 12 + 22 + . . . + 1002, print the result, and
determine whether the result is larger than, smaller than, or equal to
4873,

2. Calculate the time elapsed since the computer was turned on.
3. The roulette program of Section 3.6.

4. The payroll program in Example 2 of Section 3.2.

4.3 ERRORS AND DEBUGGING

An error is sometimes called a “"bug” in computer jargon, and the process of
finding the errors in a program is called debugging. This can sometimes be a
ticklish task. Witness the fact that even manufacturers of commercial soft-
ware must regularly repair bugs they discover in their programs. Your Model
Il is equipped with a number of features to assist in detecting bugs.

The Trace

Often your first try at running a program results in failure, but gives no
indication as to why the program is not running correctly. For example, your
program might just run indefinitely, without giving you a clue as to what it is
actually doing. How can you analyze such mishaps? One method is to use
the trace feature. To illustrate the use of the trace, consider the following
program designed to calculate the sum 1 + 2 + . . . + 100.

10 LET S=0
20 LET J=0
30 LET S=S+)

ERRORS AND DEBUGGING 125

40 IF J=100 THEN 100 ELSE 200
100 LET j=]+1

110 GOTO 20

200 PRINT S

300 END

This program has two errors in it. (Can you spot them right off?) However, all
you know initially is that the program is not functioning normally. The
program runs, but prints out the answer 0, which we recognize as nonsense.
How can we locate the errors? Let’'s turn on the trace function by typing
TRON (TRace ON). The computer will respond by typing READY. Now type
RUN. The computer will run our program and print out the line numbers of
all executed instructions. Here is what our display looks like:

TRON
READY

RUN
<10> <20> <30> <40> <200> 0
<300>

The numbers in brackets indicate the line numbers executed. That is, the
computer executes, in order, lines 10, 20, 30, 40, 200, and 300. The 0 not
in brackets is the output of the program resulting from execution of line 200.
The list of line numbers is not what we were expecting. Our program was
designed (or so we thought) to execute line 100 after line 40. There is no
looping going on. But how did we get to line 200 after line 40? This suggests
that we examine line 40. Lo and behold! There is an error. The line numbers
100 and 200 appearing in line 40 have been interchanged (an easy enough
mistake to make). Let’s correct this error by retyping the line.

40 IF J=100 THEN 200 ELSE 100
In triumph, we run our program again. Here is the output:

<10> <20> <30> <40> <100> <110> <20> <30>
<40> <100> <110> <20> <30> <40> <100> <110>
<20> <30> <40> <100>

BREAK IN 110

Actually, the above output goes whizzing by us as the computer races madly
on executing the instructions. After about 30 seconds, we sense that some-

126 EASING THE FRUSTRATIONS OF PROGRAMMING

thing is indeed wrong since it is unlikely that our program could take that
long. So we stop execution by means of the Break key. The last line indicates
that we interrupted the computer while it was executing line 110. Actually
your screen will be filled with output resembling the above. You notice that
the computer is in a loop. Each time it reaches line 110, it goes back to line
20. Why doesn’t the loop ever end? In order for the loop to terminate,] must
equal 100. Well, can] ever equal 1002 Of course not! Every time the
computer executes line 20, the value of | is reset to 0. Thus, J is never equal
to 100 and line 40 always sends us back to line 20. We clearly do not want to
always reset J to 0. After increasing J by 1 (line 100), we wish to add the new }
to S. That is, we want to go to 30, not 20. So we correct line 110 to read:

110 GOTO 30

Now we RUN our program yet another time. There will be a rush of line
numbers on the screen followed by the output 5050, which appears to be
correct. Our program is now running properly. We now turn off the trace by
typing TROFF (TRace OFF). Finally, we run our program once more for good
measure. The above sequence of operations is summarized in the following
display:

<40> <200> 5050
<300>
READY

TROFF
READY

RUN
5050
READY

Error Messages

In the example above, the program actually ran. A more likely occurrence is
that execution is prematurely terminated by the computer due to one of the
many errors it is trained to recognize. In this case, the computer will print an
error message indicating the error type and the line number in which it
occurred. You should immediately LIST the indicated line and attempt to
determine the source of the error. For example, suppose that the error reads:

SYNTAX ERROR IN LINE 530

ERRORS AND DEBUGGING 127

To analyze the error, you type
LIST 530

resulting in the display:
530 LET Y=(X+2(X[2—-2)

We note that there is an open parenthesis (without a corresponding close
parenthesis). This is enough to trigger an error. So we modify line 530 to
read:

530 LET Y=X+2(X[2—-2)

We RUN the program again and find that there is still a syntax error in line
530! This is the frustrating part, since not all errors are easy to spot. How-
ever, if you look closely at the expression on the right, you will note that we
have omitted the * to indicate the product of 2 and (X[2—2). This is an
extremely common mistake, especially for those facile in algebra. (In algebra
the product is usually indicated without any operation sign.) We correct line
530 again. (You may either retype the line or use the line editor.)

530 LET Y=X+2¥(X[2—2)
Now we find that there is no longer a syntax error in line 530!

The appendix to this chapter contains a list of the Model 1ll error messages.

EXERCISES (answers on 285)

1. Use the Model Il error messages to debug the following program to
calculate (12 4+ 22 + . . . + 50913 + 23 + . . . + 20%).

10 LET S="0"

20 FOR J=1 TO 100
30 S=5+]J(2

40 NEXT K

50 LET T=0

60 FOR J=1 TO 30
70 LET T=T+J[3

80 NXT T

90 NEXT T

100 LET A=ST

110 PRINT THE ANSWER IS, A
120 END

128 EASING THE FRUSTRATIONS OF PROGRAMMING

2. Use the trace function to debug the following program to determine the
smallest integer N for which N2 is larger than 175263.

10 LET N=0

20 IF N[2>175263 THEN 100

30 PRINT “THE FIRST N EQUALS"”
100 N=N+1

110 GOTO 10

200 END

4.4 APPENDIX—MODEL III ERROR MESSAGES

Each error recognized by the Model lIl has a numerical code and a two letter
abbreviation. Let us briefly describe each of the errors and some possible
conditions which can cause them. After the name of each error, we list, in
parentheses, the numerical code and abbreviation.

Syntax Error (2; SN)

Unrecognizable instruction (misspelled?), mismatched parentheses, incor-
rect punctuation, illegal character, illegal variable name.
Undefined Line (7, UL)

The program uses a line number which does not correspond to an instruc-
tion. This can easily occur as a result of deleting lines which are mentioned
elsewhere. It can also occur when testing a portion of a program which refers
to a line not yet written.

Overflow (5;0V)

Number too large for the computer.

Division by Zero (11, /0)

Attempt to divide by 0. This may be hard to spot. The computer will round
to 0 any number smaller than the minimum allowed. Use of such a number
in subsequent calculations could result in division by 0.

APPENDIX—MODEL 1l ERROR MESSAGES 129

lllegal Function Call (5;FC)

Attempt to evaluate a function outside of its mathematically defined range.
For example, ‘the square root function is defined only for non-negative
arguments, the logarithm function only for positive arguments and the arc-

tangent only for arguments between —1 and 1. Any attempt to evaluate a
function at a value outside these respective ranges will result in an FC error.

Missing Operand (21; MO)

Attempt to execute an instruction missing required data.

Subscript Out of Range (9; BS)

Attempt to use an array element with one or more subscripts outside the
range allowed by the appropriate DIM statement.
String Too Long (15; LS)

Attempt to specify a string containing more than 255 characters.

Out of Memory (6;0M)

Your program will not fit in memory. Could result from large arrays or too
many programs, steps or a combination.
Out of String Space (14;0S)

Attempt to use more string space than was allocated by CLEAR. (If no
CLEAR instruction is used, string space is limited to 50 characters.)
String Formula Too Complex (16,ST)

Due to the internal processing of your formula, your string formula re-
sulted in too complex or too long a string expression. This error can be

rectified by breaking the string expression into a series of simpler expres-
sions.

130 EASING THE FRUSTRATIONS OF PROGRAMMING

Type Mismatch (13; TM)

Attempt to assign a string constant as the value of a numeric variable or a
numeric constant to a string variable.

Redimensioned Array (9;DD)

Attempt to DIMension an array which has already been dimensioned.
Note that once you refer to an array within a program, even if you do not
specify the dimensions, the computer will regard it as dimensioned at 10.

NEXT without FOR (1;NF)

A NEXT statement which does not correspond to a FOR statement.

RETURN without GOSUB (3;RG)

A RETURN statement encountered while not in a subroutine.

Out of Data (4,0D)

Attempt to read data which is not there. This can occur in reading data
from DATA statements, cassettes, or diskettes.

Bad File Data (22;FD)

File data from a cassette or disk does not match the program. (For exam-
ple, a string constant is read when a numerical constant is expected.)

Disk BASIC Only (L3,23)

Attempt to use a disk BASIC command when running Model 1ll BASIC.

Can’t Continue (17,CN)

Attempt to give a CONT command after the program has ENDed or before
the program has been RUN (such as after an EDIT session).

5

Your Computer as a File
(Cabinet

In the preceding chapters, we learned the fundamentals of programming the
Model lif. However we avoided any substantive discussion of the two
devices available for mass storage: the cassette and the disk file. In this
chapter, we will discuss the operation of these two devices and their applica-
tion to writing and reading program and data files. In Section 5.1, we will
discuss the difference between program files and data files. Section 5.2 is
devoted to cassette operations. Sections 5.3, 5.4, and 5.5 provide an intro-
duction to disk operations.

5.1 WHAT ARE DATA FILES?

Computer programs used in business and industry usually refer to files of
information which are stored within the computer. For example, a personnel
department would keep a file of personal data on each employee containing
name, age, address, social security number, date employed, position, sal-
ary, and so forth. A warehouse would maintain an inventory. For each
product, the following information might be maintained: name of product,
supplier, current inventory, units sold in the last reporting period, date of last
shipment, size of last shipment, and units sold in last 12 months. Files of the
sort just described are called data files. In actual applications, they could
contain hundreds, thousands, or even hundreds of thousands of entries.

Data files are usually stored in one of the mass storage devices available:
in the case of the Model llI, either cassette or diskette. Such files are to be
distinguished from program files, which result from saving programs. Pro-
gram files and data files exist side by side in mass storage.

131

132 YOUR COMPUTER AS A FILE CABINET

To obtain a better idea of how a file is organized within mass storage, let’s
consider the following example. Suppose that a teacher stores his grades in a
data file. For each student in his class, there are four exam grades. Then a
typical entry in the data file would contain the following data items:

student name, exam grade #1, exam grade #2,

exam grade #3, exam grade #4

In a data file, the data items are organized in sequence. So, for example, the
beginning of the above data file might look like this:

“John Smith”’, 98, 87, 93, 76, “Mary Young”,
99, 78, 87, 91, ““Sally Ronson”, 48, 63, 72,
80, . . .

That is, the data file consists of a sequence of either string constants (the
names) or numeric constants (the grades), with the various data items ar-
ranged in a particular pattern (name followed by four grades). The particular
arrangement is designed so that the file may be read and understood. For
instance, in the above example, if we read the data items, we know in
advance that the data items are in groups of five with the first one a name and
the next four the corresponding grades. In order to be able to know where
one data item ends and another begins, consecutive data items must be
separated by characters called delimiters. Our files recognize as delimiters
spaces, commas, form feed, and ENTER. (More about inserting delimiters
later in this chapter.)

Your Model Il has facilities for reading data from a data file during
program execution, so that the information in the data file may be utilized
within the program. For example, a personnel department might have a
program which (1) enters changes in the personnel data file and (2) displays
requested information about a given employee. To perform task (1), the
program would read the personnel data file, alter the relevant items and
rewrite the file into mass storage. To perform task (2), the program would
read the data file, search for the requested information and display it on the
screen or printer. In effect, your computer is serving as a convenient file
cabinet for the storage of data. Moreover, the programming capability of the
computer allows you to easily “‘shuffle through’’ the data for a specific piece
of information.

In this chapter, we will discuss the mechanics of setting up, writing, and
reading data files. We will also take this opportunity to introduce the opera-
tion and use of disk files and the features of Disk BASIC.

DATA FILES—FOR CASSETTE USERS 133

5.2 DATA FILES—FOR CASSETTE USERS

Let us now describe the process of creating a data file on a cassette. For
general information on operation of the cassette recorder, you should refer
back to the Appendix to Chapter 2.

To send output to the cassette recorder, we use the instruction PRINT #-1.
This instruction is very similar to the PRINT and LPRINT instructions, which
send output to the display and printer, respectively. For example, suppose
that you wish to output the string constants ““Employee’”’, “/Soc. Sec. Num-
ber”, and “"Hourly Rate”. This could be done via the instruction:

10 PRINT #-1 “EMPLOYEE”,"“SOC. SEC. NUMBER",“HOURLY RATE"

Similarly, to output the values of the variables A1, A2, and B$ to the cassette,
we use the instruction:

20 PRINT #-1 A1, A2, B$

The PRINT #-1 instruction automatically inserts the necessary delimiter
between the data items. For cassette data files, you do not need to worry at
all about delimiters.

Example 1. Create a data file which consists of names, addresses, and
telephone numbers drawn from your personal telephone directory. Assume
that you will type the addresses into the computer and will tell the computer
when the last address has been typed.

Solution. We use INPUT statements to enter the various data. Let A$ denote
the name of the current person, B$ the street address, C$ the city , D$ the
state, E$ the zip code, and F$ the telephone number. For each entry, there is
an INPUT statement corresponding to each of these variables. The program
then writes the data to the cassette. Here is the program:

5 CLEAR 5000

10 INPUT “NAME"”; A$

20 INPUT “STREET ADDRESS”; B$
30 INPUT “CITY”; C$

40 INPUT ““STATE”; D$

50 INPUT “ZIP CODE"”; E$

60 INPUT “TELEPHONE"; F$

70 PRINT #-1 A$, B$, C$, D$, ES$, F$
80 INPUT “ANOTHER ENTRY (Y/N)”; G$
90 IF G$="Y"” THEN 10 ELSE END
100 END

134 YOUR COMPUTER AS A FILE CABINET

You should set up such a computerized telephone directory of your own. It
is instructive and it will be useful when coupled with the search program
given below, which will allow you to look up addresses and phone numbers
using your computer and the data file you have created.

Test Your Understanding 2.1

Use the above program to enter the following address into the file.

john Jones

1 South Main St., Apt. 308
Phila. Pa. 19107

527-1211

In setting up a data file, you should always note the reading of the tape
counter at the beginning of the file. This is to allow you to subsequently find
the file to read it. You should set up the cassette recorder according to the
instructions already given. To write on the cassette, you press both the PLAY
and RECORD buttons on the recorder. Whenever the computer encounters a
PRINT #—1 instruction, it will turn on the motor of the recorder and write the
desired data on the tape. When the motor is running, the red light on the top
of the recorder will be on.

Note that you need not create a data file in a single operation. For
example, suppose that you wish to add entries to the address file created
above. Just position the tape to a counter number which is one digit more
than the counter reading at the end of the previous write operation. Then run
the program in Example 1 to add as many entries to the file as you wish.

Test Your Understanding 2.2

Add to the telephone file you began in Test Your Understanding 2.1 the
following entry:

Mary Lell

2510 9th St.
Phila. Pa. 19138
937-4836

Let us now describe the process of reading data files. To do so, we use the
instruction INPUT #—1. It is important to realize that data items may be read
from cassette files only in the order in which they were written into the file.
Therefore, in order to read a file, it is necessary to know the contents of the

DATA FILES—FOR CASSETTE USERS 135

file and the format in which the file was written. Moreover, in order to
retrieve a given piece of data, it may be necessary to read much (or even all)
of the file. For example, consider the telephone directory file created in
Example 1 above. To read the first entry in the file, we first position the tape
to the beginning of the file, push the play button, and then execute the
instruction:

10 INPUT #-1 A$, B$, C$, DS, E$, F$

Note that in order to read the 10th entry in the file, it is necessary to read the
first 9 entries, even if you merely discard them after they are read.

Example 2. Write a program which searches for a particular entry of the
telephone directory file created in Example 1.

Solution. We will INPUT the name corresponding to the desired entry. The
program will then read the file entries until a match of names occurs. Here is
the program:

10 INPUT “NAME TO SEARCH FOR”; Z$
20 INPUT #-1 A$,B$,C$,D$,E$,F$

30 IF A$=Z$ THEN 100 ELSE 40

40 GOTO 20

100 CLS

110 PRINT A$

120 PRINT B$

130 PRINT C$,D$,E$

140 PRINT F$

150 END

This program will read each entry on the tape until it encounters a match
in names. The test for matching names occurs in line 30. Note that we may
compare two string constants and ask if they are equal, just as if they were
numbers.

Test Your Understanding 2.3

Use the above program to locate the number of Mary Bell in the telephone
file created in Test Your Understanding 2.1 and 2.2.

There is a potential difficulty with the above program. If the end of the file
is reached without a match, the program will attempt to read a nonexistent

136

YOUR COMPUTER AS A FILE CABINET

file entry and thereby create an error. For this reason, it is a good idea to let
the last entry of a file be a string constant like “END’" and have the program
test for the end of the file. We will leave to the exercises the necessary
modifications of the programs of examples 1 and 2.

Note the following important facts.

1.

The program which reads a file need not be the same as the program
which created the file. For example, the file created in Test Your
Understanding 2.1 and 2.2 is read in Test Your Understanding 2.3 by
the program of Example 3 which is not the program which created the
file.

Reading a file does not destroy it. A file may be read any nunber of
times without erasing it. (Of course, for each reading, you must posi-
tion the cassette tape properly.)

EXERCISES (answers on 285)

1.

Write a program which creates a cassette data file containing the
numbers 5.7, —11.4, 123, 485, and 49.

. Write a program which reads the data file created in Exercise 1 and

displays the data items on the screen.

. Write a program which adds to the data file of Exercise 1 the data items

5,78,4.79, and —1.27.

. Write a program which reads the expanded file of Exercise 3 and

displays all the data items on the screen.

. Write a program which records the contents of checkbook stubs in a

data file. The data items of the file should be as follows:
check #, date, payee, amount, and explanation.

Use this program to create a data file corresponding to your previous
month’s checks.

Write a program which reads the data file of Exercise 5 and totals the
amounts of all the checks listed in the file.

Modify the programs of Examples 1 and 2 so that the computer will
know when the end of the data file has been reached.

5.3 USING A MODEL III DISK FILE

So far, we have ignored the use of any disk files which you may have
installed on your Model Il1. In this section, we provide an introduction to the

USING A MODEL 1l DISK FILE 137

use of disk files and their associated language Disk BASIC, which is an
extension of Model 1l BASIC.

On Disks and Disk Files

The Model Ill has provision for installing one or two (internal) disk files in the
same cabinet as the computer. When installed, they are situated to the right
of the video display. In addition, the Model Ill is capable of utilizing one or
two additional (external) drives, which are outside the main computer cabi-
net. In this section, we cannot hope to completely discuss all topics relevant
to the operation and use of the disk drives. For this purpose, we refer you to
the TRS-80 Model 11l Disk System Owner’s Manual. However, we will
present sufficient information for you to start using your disk system in
connection with BASIC programs.

The bottom internal drive is numbered 0, the top internal drive 1, and the
two external drives 2 and 3. To store information, the disk drives utilize 5 1/4-
inch floppy diskettes. Each diskette can accommodate approximately
179,000 characters (about 50 double-spaced typed pages).

Figure 5-1 illustrates the essential parts of a diskette. The jacket is designed
to protect the diskette. The interior of the jacket contains a lubricant which
helps the diskette to rotate freely within the jacket. The diskette is sealed
inside the jacket. You should never attempt to open the protective jacket.

The disk file reads and writes on the diskette through the read-write
window. Never, under any circumstances, touch the surface of the diskette.
Diskettes are very fragile. Even a small piece of dust or oil from a fingerprint
could damage the diskette and render all the information on it totally useless.

The write protect notch allows you to prohibit changes to information on
the diskette. (When this notch is uncovered, the computer may read the
diskette, but will not write or change any information on the disk. To prevent
writing on a diskette, you must cover the write protect notch with one of the
metallic labels provided with the diskettes.

To insert a diskette in a disk drive, open the door of the drive. Turn the
diskette so that the label side is facing up and the read-write notch is away
from you. Push the diskette into the drive until you hear a click. Close the
drive door.

Diskettes are extremely fragile. Here are some tips in using them.

1. Always keep a diskette in its paper envelope when not in use.

138 YOUR COMPUTER AS A FILE CABINET

f)
Labels —] \ ;
Read-write window]
> |
L
) ®
—)-«— Write protect notch
{ J

Figure 5-1. A diskette.

2. Store diskettes in a vertical position just like you would a phonograph
record.

3. Never touch the surface of a diskette. Never try to wipe the surface of a
diskette with a rag, handkerchief, or other item.

4. Keep diskettes away from extreme heat, such as that produced by
radiators, direct sun, and other sources.

5. Never bend a diskette.

6. When writing on a diskette label, use only a felt-tipped pen. Under no
circumstances should you use any sort of instrument with a sharp
point.

USING A MODEL Il DISK FILE 139

7. Never insert a diskette into a disk drive until the computer has been
turned on. Always remove diskettes from a disk drive before turning the
computer off. Turning the computer on or off with a diskette in a drive
may damage the diskette.

8 Keep diskettes away from magnetic fields, such as those generated by
electrical motors, radios, televisions, tape recorders, and other
sources. A strong magnetic field may erase data on a diskette.

The above list of precautions may seem overwhelming to a beginner, but
once you set up a suitable set of procedures for handling and storing
diskettes, you will find that they are a reliable, long-lasting storage medium.

Initialization

The version of BASIC contained in ROM is not sufficiently powerful to
control the flow of information to and from the disk drives. For this purpose,
we need a program called an operating system. Such a program acts as a
manager for all the activities which go on in the computer, coordinates the
flow of information between the keyboard, video display, RAM, ROM, disk
files, and any other peripheral devices which you may have added to your
computer system. Radio Shack provides you with an operating system called
TRSDOS (TRS Disk Operating System—pronounced Triss-Doss). This pro-
gram is contained on a system diskette which is provided when you pur-
chase your disk files.

In order to make use of your disk files, it is necessary to read TRSDOS into
the computer. (After all, TRSDOS is going to manage the entire show!) To do
so, follow this procedure:

1. Turn the computer on. Wait until all disk drive motors stop. (When a
disk drive motor is running, the red light on the door of the disk drive
will be on.)

2. Insert a system diskette into drive 0.

3. Press the RESET button. (The orange button on the right side of the
keyboard.)

4. Disk drive 0 will turn on and you will hear the whirring action of the
disk drive. The screen will display the TRSDOS version number, the
date of creation, the amount of RAM and the number of drives in the
system.

5. TRSDOS will ask for the date. Input it in the form 12/03/81 (for Dec. 3,
1981) and hit ENTER.

140 YOUR COMPUTER AS A FILE CABINET

6. TRSDOS will now ask for the time. Input it in the format 17:04:45 (for
5:04 and 45 seconds P.M.) and hit ENTER.

7. TRSDOS will now display:
TRSDOS Ready

8. You may request to program in BASIC by typing:
BASIC

followed by ENTER. The computer will then ask the following ques-
tions:

How many files?
Memory Size?

Type ENTER in answer to each. The computer will then respond by display-
ing:

READY
>

You are now ready to type in a program, exactly as we learned in Chapters 1
and 2.

Test Your Understanding 3.1

(a) Initialize your disk operating system.
(b) Type in and run the following program.

10 PRINT 1+3+5+7
20 END

Using Your Disk System for the First Time

Good programming practice dictates that you keep duplicate copies of all
your diskettes. This will prevent the loss of your programs and data due to
such accidents as a power blackout, coffee spilled on a diskette, leaving
diskettes in place while turning computer power off, and so forth. You
should even make a copy of the system diskette. In fact, it is a good idea to
make a copy of the TRSDOS diskette the first time you use it. Subsequently,
you should only use the copy. The original TRSDOS diskette should be
stored in a safe place so that yet another copy can be made if the first copy is
damaged. Here is the procedure for making a BACKUP copy of a disk.

1.

USING A MODEL HlI DISK FILE 141

Follow the initialization procedure outlined above, except do not
request BASIC. When you see the display

TRSDOS Ready
type
BACKUP

followed by ENTER.

. TRSDOS will ask:

SOURCE drive number?

Type:
0

followed by ENTER. (0 is the number of the drive containing the disk to
be copied.)

The next TRSDOS question will be:
DESTINATION drive number?

If you have two disk drives, type:
1

followed by ENTER. If you have only one disk drive, type:
0

followed by ENTER.
Finally, TRSDOS will ask:

SOURCE Disk Master Password?
Type:
PASSWORD

followed by ENTER.

142 YOUR COMPUTER AS A FILE CABINET

5. If you have more than one disk drive, TRSDOS will prompt you to
insert a blank diskette into drive 1. The contents of the diskette in drive
0 will be copied verbatim onto the disk in drive 1.

If you have only one disk drive, TRSDOS will prompt you to take the
system diskette out of drive 0 and replace it with a blank diskette. it will
be necessary to swap the two diskettes several times to complete the
BACKUP operation.

6. After the copy operation is complete, TRSDOS will display:
Insert SYSTEM Diskette <ENTER>

insert the freshly copied system diskette and press ENTER.

Test Your Understanding 3.2

Make a copy of the TRSDOS system diskette supplied with your disk operat-
ing system.

A Word to the Wise

The BACKUP procedure just described may be used to copy the contents of
any diskette onto any other. Because of the fragile nature of diskettes, it is
strongly urged that you maintain duplicate copies of all your diskettes. A
good procedure is to update your copies at the end of each session with the
computer. This may seem like a tremendous bother, but it will avert untold
grief if, by some mishap, a diskette with critical programs or data is erased or
damaged.

File Specification

A diskette will generally contain many different files. Some files may be
BASIC programs while others may be data files. Each file is identified by a file
name. Moreover, a file may have a password to prevent unauthorized
disclosure. Finally, you may refer to a file on a particular disk drive. A
complete description of a file takes the form:

filename/ext.password:d

Here ‘filename’ can contain at most 8 letters or numbers, and must begin

USING A MODEL Il DISK FILE 143

with a letter; ‘ext’ is an optional extension consisting of at most 3 letters or
numbers; ‘password’ is the password of the file and consists of at most 8
letters or numbers and also must begin with a letter; d is the number of the
disk drive on which the file is located. All items are optional except for the
file name. Here are some examples of file specifications.

PAYROLL/81.INFLATE:1

refers to a file whose name is PAYROLL/81. The password is INFLATE and
the file is on drive 1.

INVENT/NY
refers to a file whose name is INVENT/NY.

Test Your Understanding 3.3

What is wrong with the following file specification?
9AARDVARK/8007 .4WHITEGHOST;5

A password is assigned when a file is created (see below). If a file is given a
password, then the password must be used whenever you desire access to
the file. If a drive number is used in specifying a file, then the computer will
look for the file only on the drive indicated. If no drive is specified, then the
computer looks for the file on all the drives, in numerical order, beginning
with drive 0.

EXERCISES (answers on 287)
1. Write a file specification for a program named “OTTO"" with password
“SKUNK'" on drive 0.

2. Write a file specification for a program named ““SHIRLEY.BAS" on
drive 1.

Which of the following are valid program names in Disk BASIC?
3. PROTOTYPE

4. 12345678

5. TASDFGHG

6. A1234567

7. ADD.CIA

8. FIX/045

144 YOUR COMPUTER AS A FILE CABINET

9. ACCOUNT/000.PAYROLL
10. ORDERS/1812.1COMP
11. A/T.ACCESSIBILITY

12. EXAMPLE/TXT.OPEN

Answer to Test Your Understanding

3.3: 9AARDVARK has 9 characters (only 8 are allowed) and begins with a
number. The extension 8007 has four digits (only 3 are allowed).
AWHITEGHOST begins with a number and exceeds the 8 characters
allowed. Finally the drive should be indicated :5 rather than ;5.

5.4 AN INTRODUCTION TO DISK BASIC

TRSDOS uses the version of BASIC stored in the Model Il ROM. However,
TRSDOS also provides a number of additional features which make BASIC
more flexible and easy to use. It is beyond the scope of this book to cover all
of these extra features. For a complete description, we refer you to the TRS-
80 Model 11l Disk System Owner’s Manual. However, here are a few of the
features available in Model Iil Disk BASIC.

Saving and Loading Programs

To save a program, use the SAVE command. For example, to save a program
named BUDGET, we use the command

SAVE “BUDGET"”

The resulting file does not require a password to read it. Since no drive is
specified, the file will be SAVEed on drive 0. Here is another example. To
save a program named ROULETTE/O11 on drive T with password SECRET,
we use the command:

SAVE “ROULETTE/011.SECRET:1"”

Suppose that, at some later time, the disk containing this program is moved
to drive 0. Then the program may be loaded into RAM via the command:

LOAD “ROULETTE/011.SECRET:0"

AN INTRODUCTION TO DISK BASIC 145

Note that specification of the drive is optional if there is only one program
with the given specifications on any of the disk drives. However, since the
file was created with a password, the password becomes an essential part of
the file specification.

Test Your Understanding 4.1

(a) Save the program

10 PRINT 5+7
20 END

under the name A.BUTTER.
(b) Attempt to load the program without giving the password.
(c) Load the program from diskette.

TRSDOS is the traffic manager of your computer system. In order to
manage certain “traffic’’ or ""housekeeping’’ operations, it is necessary to
talk directly to TRSDOS, rather than go through BASIC. When talking to
TRSDOS, we say that we are at the system level. For example, we are at the
system level when TRSDOS displays the TRSDOS Ready prompt. At that
time, you may give any one of a number of TRSDOS commands, such as the
BACKUP command used to make a copy of the contents of a diskette.

Directory
Another TRSDOS command is DIR which allows you to ask for the directory
listing the names of all files on a given disk. For example, to display the
directory of disk 0, just type:

DIR :0

followed by ENTER.

Erasing Files

You may erase files from a diskette. For example, to erase the file ROULETE/
011, type:

KILL “ROULETTE/O11.SECRET”

146 YOUR COMPUTER AS A FILE CABINET

Note that if a file was created with a password, then the password must be
used to erase the file.

Renaming A File

You may rename a file by using the RENAME command. For example, to
change the name of ROULETTE/O11.SECRET to ROULETTE/O11, we use the
command:

RENAME ROULETTE/011.SECRET TO ROULETTE/011

Note that in this example, the protection afforded by the password (SECRET)
will be removed by the change of name. Similarly, we may use the RENAME
command to add a password to protect a file. The disk drives are searched in
increasing numerical order for the file to be changed. The first file with the
designated name will have its name changed. However, if you use a drive
number in the file specification, then the RENAME operation applies only to
the indicated drive.

Return to TRSDGUS
If you are in BASIC and wish to return to the system level, type:

CMD IISH

followed by ENTER. You may then execute TRSDOS commands. You may
return to BASIC from TRSDOS by typing:

BASIC
Note, however, that if you leave BASIC to go to TRSDOS, then any program
currently in RAM will be lost. If you wish to retain that program, do a SAVE
before leaving BASIC. Another method is to reenter BASIC by typing:

BASIC*

Merging Programs

Disk BASIC has the ability to merge the program currently in RAM with any
other program on a diskette. This is especially useful in inserting standard
subroutines into a program and is accomplished via the MERGE command.

AN INTRODUCTION TO DISK BASIC 147

For example, to merge the current program with the program INTEGRAL/
001, we use the command:

MERGE INTEGRAL/001

For instance, suppose that the program currently in RAM contained lines 10,
20, 30, and 100, and INTEGRAL/001 contained lines 40, 50, 60, 70, 80, 90,
and 100. The merged program would contain the lines 10, 20, 30, 40, 50,
60, 70, 80, 90, and 100. The line 100 would be taken from INTEGRAL/Q01.
(The lines from the program on disk will replace those of the current program
in case of duplicate line numbers.) In order to use the merge feature, the
program from diskette must have been SAVEd in a particular format called
ASCll-format. In the case of the above example, the command which SAVEd
INTEGRAL/00T must have been of the form:

SAVE “INTEGRAL/001”, A

The comma and A at the end of the command indicate the desired format. In
case INTEGRAL/O01 was not SAVEd using such a command, it is first
necessary to LOAD “INTEGRAL/0O01" and resave it using the above com-
mand. (Watch out! If you type in a program, say OX, to merge with INTE-
GRAL/001, remember to save it before giving the MERGE command. Other-
wise you will lose OX.)

Test Your Understanding 4.2
(@) Save the following program in ASCIl format.

10 PRINT 5+7
100 END

under the name GHOST.
(b) Type in the program:

30 PRINT 7+9
40 PRINT 7-9

(c) MERGE the programs of (a) and (b).

Non-System Diskettes

Drive 0 must always contain a system disk when operating under TRSDOS.
However, the copy of the TRSDOS programs occupy a significant portion of

148 YOUR COMPUTER AS A FILE CABINET

the space on the disk. If you have only a single disk drive, there is nothing
you can do about this loss of disk space. Every disk you use must contain a
copy of TRSDOS (produced by the BACKUP procedure). However, the
diskettes in disk drives 1, 2, and 3 need not contain the TRSDOS program
and therefore can contain more programs and data than the diskette in
drive 0.

All diskettes must be formatted. That is, they must have electronic bound-
aries written onto them which show where information is to be recorded.
When you create a system disk via a BACKUP procedure, the formatting is
done automatically. However, if you wish to use non-system disks in drives
1, 2, and 3, you must specifically format the disks you are going to use. Here
is the procedure:

1. Obtain the TRSDOS Ready display (either by initializing the computer
or by giving the CMD “S”” command from BASIC).

2. Put the disk to be formatted in drive 1.

3. Give the command
FORMAT

followed by ENTER.
4, TRSDOS will ask:

Which Drive is to be Used?

type a 1 followed by ENTER. TRSDOS will then format the disk. It will tell
you when the operation is complete. At that time, remove the disk from
drive 1. This disk may now be used in any drive except drive 0. Since it
does not contain a copy of TRSDOS, all of its space is available for
programs and data.

Note that the FORMAT command erases the disk to be formatted. If the
disk contains any data, TRSDOS will warn you of this and give you a chance
to cancel the command.

EXERCISES (answers on 288)

1. (a) Write a program which computes 12 + 22 + . . . + 50°

(b) SAVE the program under the name SQUARES. Use the SAVE, A
command.

DATA FILES—FOR DISK USERS 149

2. (a) Write a program which computes 13 + 23 + . . . 4+ 303. Write it in
such a way that the line numbers do not overlap with those of the
program in 1(a).

(b) MERGE the program of 1(a) with the program of 2(a).
(c) LIST the MERGEd program.

d) RUN the MERGEd program.

e) SAVE the MERGEd program under the COMBINED.
Recover the program of 2(a) without retyping it.

Erase the program SQUARES of 1(a).

(
(

Make a copy of the diskette you are using.

o kW

Create a non-system disk.

Answers to Test Your Understanding

4.2: (a) Type in the program and then give the command: SAVE
“GHOST” A
(b) Type NEW followed by the given program.
(¢) Type MERGE “GHOST”

5.5 DATA FILES FOR DISK USERS

In this section, we discuss the procedures for reading and writing data files
on diskettes. In order to allow for easy comparison, we will work out the
same examples as we did for cassette data files.

In order to either read or write a data file on diskette, it is necessary to
OPEN the file. When opening a file, you give it a reference number by which
you will refer to it in the program. For example, to write a file with name
INVOICE/034, we would use an instruction of the form

100 OPEN “O”,1,INVOICE/034”

The “O” indicates that the file is to be opened for output (to the file: that is,
for writing the file). The number 1 is the identification number assigned to
the file. Note that this instruction does not actually write any data into the
file. It merely prepares the file for output. Suppose now that we wish to enter

150 YOUR COMPUTER AS A FILE CABINET

the following data into the file:
DJ SALES $358.79 4/5/81

We would use the following instruction:
200 PRINT #1, “DJ SALES”’; ““,”’; “$358.79""; **,”; ‘‘4/5/81""

The #1 portion of the instruction refers to the identification number given to
the file, namely 1. We could print further data items to the file using similar
instructions, and in this way build up the desired data file. Note that a data
file can consist of any keyboard characters, including, for example, ENTER,
space, SHIFT, and so forth.

The commas and semicolons in the above instruction take some explana-
tion. The PRINT #1 statement works like any other print statement. The
semicolons indicate that no spaces are to be left between consecutive items
in the print statement. The commas are placed in quotation marks so that
they are actually written as part of the file. They enable us to tell where one
data item ends and the next begins. (As we mentioned in section 1, the
commas serve as delimiters.) In the disk file, the above data items are stored
as follows:

D) SALES,$358.79,4/5/81

It is necessary to go through the tortuous typing to insert the commas only to
separate strings from one another. For numerical data, a space between data
items suffices as a delimiter.

When you are finished writing a file, you must close it with a CLOSE
instruction. For example, to close the file we have just been considering, we
use the instruction:

300 CLOSE 1

Example 1. Create a data file which consists of names, addresses, and
telephone numbers drawn from your personal telephone directory. Assume
that you will type the addresses into the computer and will tell the computer
when the last address has been typed.

Solution. We use INPUT statements to enter the various data. Let A$ denote
the name of the current person, B$ the street address, C$ the city, D$ the
state, E$ the zip code, and F$ the telephone number. For each entry, there is
an INPUT statement corresponding to each of these variables. The program

DATA FILES—FOR DISK USERS 151

then writes the data to the diskette. Here is the program:

5 OPEN “O"”,1,“TELEPHON"

10 INPUT “NAME"”’; A$

20 INPUT “STREET ADDRESS”’; B$

30 INPUT “CITY”; C$

40 INPUT ““STATE”; D$

50 INPUT “ZIP CODE”; E$

60 INPUT “TELEPHONE"; F$

70 PRINT #1, A$; “,”; BS; **,”"; C$; “,"; E$; “,”; F$
80 INPUT “ANOTHER ENTRY (Y/N); G$

90 IF G$="Y"" THEN 10 ELSE 100

100 PRINT #1, uENDH; II’II; u’u; u’n; u’n; u’r/;
110 CLOSE 1

120 END

You should set up such a computerized telephone directory of your own. It
is very instructive. Moreover, when coupled with the search program given
below, it will allow you to look up addresses and phone numbers using your
computer.

Test Your Understanding 5.1

Use the above program to enter the following address into the file.

John Jones

1 South Main St., Apt. 308
Phila. Pa. 19107

527-1211

Test Your Understanding 5.2

Add to the telephone file begun in Test Your Understanding 5.1 the following
entry.

Mary Bell

2510 9th St.
Phila. Pa. 19138
937-4896

Let us now discuss the procedure for reading data files from a diskette. As
is the case with writing files, it is first necessary to open the file. For example,
consider the telephone file from example 1. To open it for input, we could

152 YOUR COMPUTER AS A FILE CABINET

use the instruction:
300 OPEN ““1”,2,TELEPHON"’

The ““I”” stands for “Input”’ (to the program). The number 2 identifies the file
in the program. Once the file is open, it may read via an instruction of the
form:

400 INPUT #1, A$,B$,C$,D$,ES,F$

Note that this instruction will read one of the telephone-address entries from
the file. In order to read a file, it is necessary to know the precise format of
the data in the file. For example, the form of the above INPUT statement was
dictated by the fact that each telephone-address entry was entered into the
file as 6 consecutive string constants, separated by commas. The input
statement works like any other input statement: Faced with a list of items
separated by commas, it assigns values to the indicated variables, in the
order in which the data items are presented. Note here that the commas in
the data file are essential. In order for an INPUT statement to assign values to
several variables at once, the values must be separated by commas!

Example 2. Write a program which searches for a particular entry of the
telephone directory file created in example 1.

Solution. We will INPUT the name corresponding to the desired entry. The
program will then read the file entries until a match of names occurs. Here is
the program:

5 OPEN “I”,2,“TELEPHON"’
10 INPUT “NAME TO SEARCH FOR”’; Z$
20 INPUT #2, A$,B$,C$,D$,E$,F$

30 IF A$=Z$ THEN 100 ELSE 40

40 IF A$="END” THEN 200

50 GOTO 20

100 CLS

110 PRINT A$

120 PRINT B$

130 PRINT C$,D$,E$

140 PRINT F$

150 GOTO 1000

200 CLS

210 PRINT “THE NAME IS NOT ON FILE”
1000 CLOSE 2

1010 END

DATA FILES—FOR DISK USERS 153

Test Your Understanding 5.3

Use the above program to locate the number of Mary Bell in the telephone
file created in Test Your Understanding 5.1 and 5.2.

Here is an important fact about writing data files: writing a file destroys
any previous contents of the file. (In contrast, however, you may read a file
any number of times without destroying its contents.) For example, consider
the file “TELEPHON"' created in example 1 above. Suppose we write a
program which opens the file for output and writes what we suppose are
additional entries in our telephone directory. After this write operation, the
file "TELEPHON"" will contain only the added entries. All of the original
entries will have been lost! How, then, may we add items to a file which
already exists? Easy. We temporarily stash the current contents of the file into
some other file and create the entire file from scratch! The next example
illustrates this procedure.

Example 3. Write a program which adds entries to the file TELEPHON. The
additions should be typed via INPUT statements. The program may assume
that the file is on the disk in drive 0.

Selution. To add items to the file, we first OPEN the file for input. We read
the file into the temporary file with the name ““T"". Then we CLOSE both files
TELEPHON and T. Next, we OPEN both files, TELEPHON for output and T
for input. We read the contents of T and write them back into TELEPHON.
We next close T. Finally, we ask for the new entry via an INPUT statement
and write the new entry into TELEPHON. Here is the program.

10 OPEN “1”,1,“TELEPHON"’

20 OPEN “O",2,T"

30 INPUT #1, A$,B$,C$,D$,E$,F$: "INPUT ENTRY

40 PRINT #2’ A$;“,",‘B$;“,N; C$;II,II;D$;N,II;E$;44,II;F$

45 REM 40 WRITES ENTRY IN “T”

50 IF A$="END" THEN 100 ELSE 60: "END OF FILE?

60 GOTO 30

100 CLOSE 1,2 : 7 CLOSE FILES “TELEPHON"” AND ““T”

110 OPEN “O”,1,“TELEPHON" : "OPEN “TELEPHON"” TO OUTPUT
120 OPEN “17,2,“T”: 'OPEN “T"” TO INPUT

130 INPUT #2, A$,B$,C$,D$,E$,F$: INPUT ENTRY FROM “T”
140 PRINT #1, A$;”,”;B$;,”; C$;,”";D$;",”;E$;"," ;F$

145 REM 140 WRITES ENTRY TO ““TELE.”

150 IF A$=‘END” THEN 200 ELSE 160: 'END OF FILE?

160 GOTO 130: ‘GO TO NEXT ENTRY

200 CLOSE 2: 'CLOSE “T1”

154 YOUR COMPUTER AS A FILE CABINET

210 PRINT “TYPE ENTRY:NAME,STREET ADDRESS,CITY, STATE,”
220 PRINT “ZIP CODE, TELEPHONE NO.”

230 INPUT A$,B$,C$,D$,ES$,F$

240 PRINT #1,A$;“,";B$;“,";C$;“,H;D$;“,";E$;“,";F$;“,"

250 INPUT “ANOTHER ENTRY (Y/N)"": Z$

260 IF Z$="Y” THEN 300 ELSE 500

300 CLS

310 GOTO 210

500 CLOSE 1

510 END

It may seem that we are doing unnecessary work in writing and then reading
the file “T". If “TELEPHON" is a short file, then we could temporarily store
all of its data in RAM as values of appropriate arrays A$()), B$(), etc.
However, we have no way of knowing in advance how much memory this
will require. This procedure might actually require more RAM than exists in
the computer. Therefore, we have taken a more conservative approach via
the file “T"". Note that at any given moment, only a single address-telephone
entry is in RAM. Thus the possible shortage of RAM is avoided.

In the above programs, we have indicated the end of a data file by writing
“END"" as the last data item. This allows us to read to the end of the file and
no further, thereby avoiding an error. Another method of handling the end of
file problem is to read the data items until an error actually does occur. We
prepare for the expected error by placing an ON ERROR GOTO statement
before the point at which the error will occur. The statement should send the
computer to a line containing a RESUME statement which in turn sends the
computer back to the next line after that in which the error occurred.

Recall that when Disk BASIC is initialized, it asks for the number of files.
Until now, we have responded to this question by typing ENTER. This
response allows for 3 data files to be open simultaneously. In order to have
more open files, it is necessary to respond to this question with the number of
open files you will need during the current session.

In the next example, | present a genuinely useful program for parents who
wish to teach organizational skills to their children. Most children love to
play with the computer. Here is a program which acts as an assignment book
and monitors progress on homework. This program was designed for my son,
a 9 year-old computer enthusiast.

Example 4. Write a program which sets up a data file for homework
assignments. The child should enter the assignments, by subject, on return-

DATA FILES-FOR DISK USERS 155

ing from school. As assignments are completed, the child may check them
off. The program should inform the child whether his homework is complete.

Solution. Our program will first ask if the assignment has been recorded
previously. If so, it will be in a file. If not, the program will prompt the child
to type in the assignments by subject, with prompts like:

What is your math assignment?

The only rule is that assignments cannot have commas in their statement.
The child types in the assignment followed by ENTER and the computer
responds with the next subject. If there is no assignment, type ENTER. (You
may customize the program by entering your own subjects.) After all assign-
ments are entered, the computer asks the child if he wishes the assignments
displayed. If the answer is yes, then the computer produces a list of all
subjects with their corresponding assignments, in the form:

SUBJECT ASSIGNMENT
MATH P45 1-20
READING CHAP 3
SPELLING P80 SENTENCES

Now the computer gives the child a chance to check off a completed
assignment. The computer does not allow for any forgetfulness. It asks for the
subject, then displays the assignment and asks if, in fact, that assignment has
been completed. If so, the next time the list of assignments is displayed an X
will appear beside completed assignments. Finally, the computer scans the
list of assignments and decides whether all are complete. If so, it prints
“HOMEWORK DONE"’; if not, it prints “HOMEWORK NOT DONE." Here
is the program.

10 CLEAR 10000

20 DIM B$(20),C$(20),D$(20)

30 CLS

40 PRINT “HAVE YOU ENTERED THIS ASSIGNMENT BEFORE?”
50 INPUT A$

60 IF A$="Y"” THEN 70 ELSE 140

70 OPEN “1”7,1,SCHED"”

80 PRINT “SUBJECT”;TAB(20) “ASSIGNMENT"”

90 FOR J=1TO 6

100 INPUT #1, B$()),C$(),D$()

156 YOUR COMPUTER AS A FILE CABINET

120 NEXT)

130 CLOSE;GOTO 380

140 CLS

150 DATA “MATH”, ““SPELLING”, “LANGUAGE"”, ‘‘SOCIAL STUDIES"”,
“READING”

160 DATA ““SCIENCE”, ““CURRENT EVENTS"”

170 FOR J=1TO 6

180 READ B$())

190 PRINT “DO YOU HAVE ANY ;B$());” HOMEWORK TONIGHT?”

200 INPUT A$

210 IF A$="Y” THEN 220 ELSE 250

220 PRINT “WHAT IS THE ";B$(}));'* ASSIGNMENT?”

230 INPUT C$())

240 GOTO 260

260 NEXT)

270 PRINT “DO YOU WISH TO SEE YOUR ASSIGNMENTS?”

280 INPUT A$

290 IF A$="Y"” THEN 300 ELSE GOTO 370

300 CLS

310 PRINT “SUBJECT”’;TAB(20) “ASSIGNMENT"”

320 PRINT

330 FOR J=1TO 6

340 PRINT B$()); TAB(20) C$())

350 NEXT)

360 GOTO 380

380 PRINT “DO YOU WANT TO CHECK OFF AN ASSIGNMENT?”

390 INPUT A$

400 IF A$="Y"” THEN 410 ELSE 520

410 INPUT “SUBJECT”;B$

420 FOR J=1TO 6

430 IF B$(J) THEN PRINT B$()) ELSE NEXT)

440 PRINT ““IS THIS ASSIGNMENT DONE?”

450 PRINT C$())

460 INPUT A$

470 IF A$="Y"” THEN D$()="X"

480 CLS

490 FOR J=1TO 6

500 PRINT B$()),C$());TAB(60) D$(})

510 NEXT }

520 FOR J=1TO 6

530 IF D$())<>“X" AND C$(J)<>*"" THEN E$="W"

540 NEXT)

DATA FILES-FOR DISK USERS 157

550 IF E$=“W’"” THEN PRINT “HOMEWORK IS NOT DONFE" ELSE
PRINT “HOMEWORK DONE"

560 INPUT “DO YOU WISH TO CHECK OFF ANOTHER
ASSIGNMENT";A$

570 IF A$="Y” THEN GOTO 380 ELSE 580

580 OPEN “O*,1,“SCHED"”’

590 FOR J=1TO 6

600 PRINT #1,B$());,”;C$();*,”;D$();,”

610 NEXT J

620 CLOSE

700 END

The files we have been discussing are called sequential files. These files
must be read in the exact order in which they were written. Disk BASIC also
allows random access files. Such files allow you to read a given piece of data
without reading all the data written ahead of it. A discussion of random
access files is beyond the scope of this book. The interested reader may refer
to the TRS-80 Model 11l Disk System Owner’s Manual.

EXERCISES (answers on 288)

1. Write a (pr'ogram which creates a diskette data file containing the
numbers 5.7, —11.4, 123, 485, 49.

2. Write a program which reads the data file ueated in Exercise 1 and
displays the data items on the screen.

3. Write a program which adds to the data file of Exercise 1 the data
items 5, 78, 4.79, and —1.27.

4. Write a program which reads the expanded file of Exercise 3 and
displays all the data items on the screen.

5. Write a program which records the contents of checkbook stubs in a
data file. The data items of the file should be as follows: check #,
date, payee, amount, explanation. Use this program to create a data
file corresponding to your previous month’s checks.

6. Write a program which reads the data file of Exercise 5 and totals the
amounts of all the checks listed in the file.

7. Write a program which keeps track of inventory in a retail store. The
inventory should be described by a data file whose entries contain the

158

10.

YOUR COMPUTER AS A FILE CABINET

following information: item, current price, and units in stock. The
program should allow three different operations: display the data file
entry corresponding to a given item, record receipt of a shipment of a
given item, and record the sale of a certain number of units of a given
item.

Write a program which creates a recipe file to contain your favorite
recipes.

(For Teachers) Write a program which maintains a student file con-
taining your class roll, attendance, and grades.

Write a program which maintains a file of your credit card numbers
and the party to notify in case of loss or theft.

6

An Introduction to Computer

! Graphics

In many applications, it is helpful to present data in pictorial form. Indeed,
by displaying numerical information in graphical form, it is often possible to
develop insights and to draw conclusions which are not immediately evident
from the original data. In this chapter, we will discuss procedures for using
your Model lil to create various kinds of pictorial displays on the screen.
Such procedures belong to the field of computer graphics and this chapter
provides an introduction to that field.

6.1 ELEMENTARY GRAPHICS PRINCIPLES

Let us begin by discussing the geometry of the video display. As we have
already noted, the video display of the Model Ill is capable of displaying 16
rows of 64 characters each. This gives us 16 X 64 = 1024 possible character
positions. These various character positions divide the screen into small
rectangles, with one rectangle corresponding to each character position. For
graphics purposes, each of these rectangles is divided into six smaller rectan-
gles, as shown in Figure 6-1. Thus, for graphics purposes, the screen is
represented as a grid of rectangles, 128 rectangles across and 48 rectangles
high. See Figure 6-2. Each rectangle is an independent spot of light which
may be turned on or off. The basic idea of computer graphics is to develop
programs which turn on appropriate rectangles to make bar charts, graphs,
pie charts, designs, and so forth.

The rectangles into which we have divided the screen are arranged in rows
and columns. We number the rows from 0 to 47, with row 0 being at the top

159

160 AN INTRODUCTION TO COMPUTER GRAPHICS

Figure 6-1.

of the screen and row 47 at the bottom. The columns are numbered from 0O to
127, with column 0 being at the extreme left and column 127 at the extreme
right. Each rectangle on the screen is identified by a pair of numbers,
indicating the row and column. For example the pair of numbers (16,12)
represents the sixteenth column and twelfth row. (Note the order: the
column number comes first!) This rectangle is indicated in Figure 6-2.

You may turn on the rectangle at position (x,y) by using the BASIC
instruction:

SET (x,y)
To turn off the rectangle at position (x,y), you may use the instruction:
RESET (x,y)

Most graphics programs consist of appropriate sequences of these two in-
structions. The next examples illustrate procedures for drawing various
straight lines.

Test Your Understanding 1.1

Write a program to turn on the graphics block at the 8th row, 35th column.

Example 1. Write a program which draws a horizontal line across row 10 of
the screen.

Solution. The horizontal line across row 10 consists of the rectangles (0,10),
(1,10, (2,10), . . ., (127,10). Our program should turn on all these rectan-
gles. Moreover, just in case the screen contains some extraneous characters,

ELEMENTARY GRAPHICS PRINCIPLES 161

461023

13 {319
221511
21
24
25575

2|
I
20639

29|
30
851|703

2|
33
§ R4

B

36
| BICEY
o

m

o]

191
10 [255

n
t2

20
21

o]~]alo

5115253
o
H

9
9
5}
5)

471
H
H

4
H
o}

31]32|33[34]35{36¢37}38139]40{¢ 1]42]4 3]
7
Y
7
u

[N
[
[N
R
i
Fd
£
)]
O]
g
o)
)
&
5
N33
S5 : : &
== ! , B (o]
[T — — 1
o - - - o
255 - m b
25 3
s . 2
T - S
I M -
ol on 0O
O-ER 3
W 2= . e 0
b G S— e
gl o « k4
[o] - ped
o) = . ©
s =
N o
e El
= 5]
s 3 : . 2]
0= : ; N L
o - «
=1 : * =
o0 N ~ — o
ol =5 : : 1]
s
<=3 12
s hd
e
~=] Y- : N
- - . - B -
O3 ©
RN ENE EBEIEEIE BEBREHNBEHEBHEBRBEBEBERREEBEE
< e o =3 o o @ o 4 @ o o
'y o < = ~ < o © @
© ~ o < 2l 0] 2 ~] @

Figure 6-2.

162 AN INTRODUCTION TO COMPUTER GRAPHICS

let us begin by clearing the screen using the CLS instruction. Here is the
program.

10 CLS

20 FOR J=0 TO 127
30 SET (J,10)

40 NEXT J

50 END

Example 2. Write a program which draws a vertical line in column 25 from
row 5 to row 40. The program should blink the line 50 times.

Solution. The rectangles on the desired line are (25,5), (25,6), . . .,
(25,40). The blinking effect may be achieved by turning these rectangles on
and off. Here is our program.

10 CLS

20 FOR K=1 TO 50:’K CONTROLS BLINKING
30 FOR J=5 TO 40

40 SET (25,))

50 NEXT J

60 CLS

70 NEXT K

80 END

Test Your Understanding 1.2
Write a program to draw a vertical line from row 2 to row 20 in column 8.

Let us now learn to add words on the screen with our graphics. Each
keyboard character occupies a 2 x 3 grid of graphics rectangles. For this
reason, we adopt a separate method for describing the position of characters
on the screen. As far as characters are concerned, there are only 16 rows and
64 columns on the screen. This yields a total of 16 X 64 = 1024 possible
screen positions for characters. These positions are numbered consecutively
from 0 to 1023. The first row corresponds to position numbers 0 to 63, the
second row to positions 64 to 127, and so forth. To print a string constant at a
particular character position, we use the PRINT @ instruction. For example,
to print the word “‘Profit”” beginning at character position 135, we use the

ELEMENTARY GRAPHICS PRINCIPLES 163

instruction:
10 PRINT @135, “PROFIT”

To print characters and graphics together, we utilize a mix of SET and PRINT
@ statements.

It can be confusing to plan a display containing both characters and
graphics because of the two different position numbering systems. To mini-
mize confusion, you should use a video display work sheet, as shown in
Figure 6-3. Note that the horizontal and vertical edges contain two different
numbering systems. The inner numbers correspond to the numbering system
for graphics blocks. The outer numbers on the left side of the sheet corre-
spond to the character position number for the first character in a row. Pads
of video display work sheets are available from Radio Shack.

Test Your Understanding 1.3

Write an instruction which places a character “A” directly under the graphics
block (80,10).

Example 3. Draw a pair of x and y axes as shown in Figure 6-4. Label the
vertical axis with the word “Profit’” and the horizontal axis with the word
“"Month’’.

Solution. Our program must draw two lines and print two words. The only
real problem is to determine the positioning. The word “Profit’” has six
letters. So let us start the vertical line in the position corresponding to the
sixth character column, which corresponds to the 12th graphics block
column. We will run the vertical line from the top of the screen (graphics row
0) to within two character rows from the bottom. (On the next-to-last row, we
will place the word “‘month”’. We will not print in the last row, since this will
cause some of what is printed above to scroll off the screen!) Therefore, our
vertical line will occupy graphics blocks (12,0), (12,1), . . ., (12,41).
(Remember that a character row is three graphics blocks tall. So the last
character row corresponds to graphics rows 45, 46, and 47.) The word
“Profit”” will be printed at position 0. The horizontal line will extend from
graphics column 12 across the entire screen and so will occupy graphics
blocks (12,41), (13,41), . . . , (127,41). The word “Month” has 5 letters
and so should be printed at position 954. (Note that we have not gone to the
end of the line with the Word ““Month”". This is to prevent the display from

AN INTRODUCTION TO COMPUTER GRAPHICS

164

-d107) Apuej 3y} jo uoissiuniad yim pajuniday JP3yYsIoM Aejdsip 03pIA v "g-9 2n314

12[13T1a[15]16[17[38[15]20]

a
Of
: o
: 1163
64/ 4 ~
| 2
: « §127
128] 1 :
. 3
: 11191
19210 ;
" :
- 0 | 255
256|113 :
1 5
- 3 {319
3208 :
7] B
- 6 | 383
384} .
20 .
- o447
448|22] -
23 i
> 221511
512425 2
a 24
D 275|575
576 |25; "
29! 5
- 201639
64031 "
32 0
: 311703
1704 |3« 5
35| -
= 24§767
768{37 .
38| 5
- 371831
832{«0 -
- a9
- 40835
89643 8
= <2
= 431959
96046/ <
47 T
46/1023
a7

B0

ELEMENTARY GRAPHICS PRINCIPLES 165

Profit

Month
Figure 6-4.

automatically scrolling.) In Figure 6-5, we have filled in a display worksheet
corresponding to the above graph. Here is our program to generate tha
display. ‘

10 CLS
20 PRINT @0, “Profit”’
30 PRINT @954, “Month”’
40 FOR }J=0 TO 41

50 SET (12,})

60 NEXT |

70 FOR J=12 TO 127
80 SET (J,41)

90 NEXT }

100 GOTO 110

110 GOTO 100

200 END

Note the infinite loop in lines 100-110. This loop will keep the display on
the screen indefinitely while the computer spins its wheels. To stop the
program, press the BREAK key. To see the reason for the infinite loop, try
running the program after deleting lines 100 and 110. Note how the READY
interferes with the graphics. The infinite loop prevents the READY message
from appearing on the screen.

Another important point to observe: When intermingling SET and PRINT
@ statements, you should always put the PRINT @ statements first and these
should print from the top of the screen down and from left to right ih each
line. If you do not observe this rule, then your computer may do some funny
things due to the operation of various automatic features of the video display.

166 AN INTRODUCTION TO COMPUTER GRAPHICS

i)
- w0 » ~ - wn o © ~ - ") -] o
2 & 5 3 & oS 3 2 2 3 3 & e
ol-lelale]=lelels ANBERAHHARERABAHEBHEBEREBHBEEBHEEE
; ; . A B - I R e =]
C N [
N 2
et
b —_—
L1l
5
)
I : N
bl
o
<,
ki :
h:d —
| o0 N ' ! M v~ o
5o . ; : .
s : ==
2:: - " » P Cr)
Sred : ! - . £
—Ten ’ CamE
Hss i
Sres s : : EXmba
R
2 Bl
K ¢ 1 crmbsd
= t CrmY
5 mb]
be - - - ==
B =
i) B
o ! 3
3 - ! : o
- Gl
Bl g
: :%
2 : &
B 2
N - o
g o~
('{1' N N N
g o
] VT
& 5
Bl cxmty
= Crm e
S tom b
< / 5N
@ . ; . PR (M)
& H £
o . N H ~
G - 3
) o
= . K
& 12|
g]
5 9
= - T [on]
.;: PR, o
;:- N ~
O] o
) o v
< - <
o) . - ©
e O- o~
= @ T -
°f-1~ HEIE eiel=telelelalninlaia]elclgialeloTaTRlaRl8lo 8T ATC S 1vTo]y
[5) & (=) < @] o [} o [o ©
2 slels s |52 |&lelg |8

Figure 6-5. Display layout for chart in Figure 6-4.

ELEMENTARY GRAPHICS PRINCIPLES 167

168 AN INTRODUCTION TO COMPUTER GRAPHICS

You may illuminate any of the graphics squares using the SET instruction.
However, to speed up the process of creating graphics, the Model Il is
equipped with a number of graphics characters. These characters are the
same size as the regular keyboard characters and therefore occupy a 3 X 2
set of graphics blocks. The graphics characters are identified by the numbers
128-191. Figure 6-6 shows the graphics characters and their identifying
numbers.

You position graphics characters on the screen just as you would ordinary
keyboard characters, using the position numbers 0-1023 as above. For
example, to display graphics character 170 in screen position 540, we use
the instruction:

10 PRINT @540, CHR$(170)
You may display all the graphics characters on the screen using the program:

10 FOR j=128 TO 191

20 PRINT @4*(J-128), CHR$())
30 NEXT }

40 END

Since J—128 runs from 0 to 63, 4*(J—128) runs through the numbers 0, 4, 8,
12,16, . . . , 252. Thus, the above program displays the various graphics
characters in every fourth character position.

EXERCISES (answers on 290)

Draw the following straight lines.
1. A horizontal line completely across the screen in row 38.
2. A vertical line completely up and down the screen in column 17.

3. A pair of straight lines which divide the screen into four equal
squares.

4. Horizontal and vertical lines which convert the screen into a tic-tac-
toe board.

5. A vertical line of double thickness from rows 0 to 24 in column 30.

6. A diagonal line consisting of the graphics blocks (0,0), (1,1), (2,2),
., (48,48).

7. A horizontal line with “tick marks’’ as follows:

ELEMENTARY GRAPHICS PRINCIPLES

169

(Hint: Look for a graphics character out of which to form the “tick

marks’’.)

A vertical line with “‘tick marks”’ as follows:

. Display your name in a box formed from asterisks:

FREEEEERENRKERRKNHR

* Your Name *
KX X KKK KKK KK KR KK NN

10. Display a number axis as follows:
1 | | | | | | | | | |
1 I | | L I I I | | I
0 10 20 30 40 50 60 70 80 90 100
11. Write a program which displays a graphics character which you
specify in an INPUT statement.
12. Create a display of the following form:
Cost
Price

Index

170 AN INTRODUCTION TO COMPUTER GRAPHICS

Answers to Test Your Understanding

1.1: 10 CLS
20 SET(35,8)
30 END

1.2: 10 CLS
20 FOR J=2to 20
30 SET (8,))
40 NEXT |
50 END

1.3: 10 PRINT @359, “A”

6.2 DRAWING BAR CHARTS VIA COMPUTER

Consider the chart of Figure 6-7. It illustrates the monthly profits of a certain
business. Each month’s profits are represented by a vertical bar. The height
of the bar is determined by the amount of profit for the month. Such a chart is
called a bar chart. It is common to construct bar charts in business reports in
order to illustrate trends in various statistics. In this section, we will show
how to use the Model Ill to construct bar charts from given data.

In the preceding section, we showed you how to construct the horizontal
and vertical axes of a bar chart. Let us now construct the bars. In order to be
specific, let's draw the bar chart given in Figure 6-7. In the following
analysis, we will proceed manually for most of the computations. In the
exercises, we will enhance our program by letting the computer do most of
the calculations.

The bar chart of Figure 6-7 has 12 bars corresponding to the 12 months of
the year. Let's make each bar two graphics blocks thick. The screen is 128
graphics blocks wide. Let's reserve the first 16 columns on the left for the
word ““Profit”’, the vertical axis, and the tick marks. Leave 16 columns on the
right as a border. This leaves 96 columns for the bars. (Note that 96 is a
multiple of 12. This is good planning!) So each bar should be centered in a
field of 8 graphics blocks. After a moment’s calculation, we see that the first
bar should be in columns 19—20. However, in order to fit a letter under the
bar, we must move the bar over one graphics block. (The first character
space is columns 01, the second 2-3, and so forth. Unfortunately 19-20
overlap two character spaces.) Therefore, let's put the first bar in columns
18-19, the second in columns 26-27, the third in columns 34-35, and so
forth.

DRAWING BAR CHARTS VIA COMPUTER 171

el 8|5 |:zlelei8|s|a|s]sg]6t
& 5 < & %) © ~ ~ @ © @ =
Telzlelelalelelelclnlz] sl R S R R R Rl Rl A2 8513 0] sl5]a s 5[]
n !
NNOOOO
<t e N -
b r
h 2> U 1
- %Dq) 0o 0 ;
2<A0Z0 .
i

il
1jaza3jasfasisciariasis

i\

39404
‘s

: - =17
& T+ |

i

3213303,
3

1

5
24]25026{27]28]29{30{31

[) -
HE NN RN SRR BEE BB B BB PRERBRREaaE
° 3 5] @ 8 Q 3 g o []
- - ~ d o < n w [}

Figure 6-7.

172 AN INTRODUCTION TO COMPUTER GRAPHICS

Test Your Understanding 2.1

Suppose that the bar chart above contained only 8 bars and that the axes are
to be positioned as above. In what columns would the first bar appear?

Now for the vertical spacing. Let’s place the horizontal axis in row 41.
This leaves us some space for tick marks and month indicators. The bars will
go immediately above the line, beginning in row 40. The chart in Figure 6-7
indicates profits from $100,000 to $1,000,000 on the scale of the vertical
axis. There are 10 tick marks on the vertical axis, so let us divide the 40 tick
marks by 10 and derive that one tick mark corresponds to 4 vertical graphics
blocks. The tick marks will be placed in rows 36 (=$100,000), 32
(=$200,000), . . . , 0 (=$1,000,000). Our display design is indicated in
the video display worksheet in Figure 6-8.

Let's now design a program to create the display. Our program will consist
of three parts: draw the axes, display the text, and draw the bars. Let's first
concentrate on drawing the bars.

To indicate a profit of J hundred thousand dollars, we draw a bar which is
from row 40 to row 40 — 4*). For example, a profit of $200,000 corresponds
to] = 2 and to a bar from row 40 to row 40 — 4*2 = 32. Thus, for example,
here is a program which draws the bar corresponding to January, which
recorded a profit of $350,000.

100 LET P=350000

110 LET }=350000/1000000

120 FOR K=40 TO 40-4*] STEP —1
130 SET (18,K)

140 SET (19,K)

150 NEXT K

Note that if we were to use other values of P then } and K in the above
computation may not turn out to be integers. This is perfectly all right.
Indeed, if K is not an integer, then the instruction SET(18,K) will round K
down to the largest integer less than or equal to K. Thus, for example, if K =
9.75, then the instruction SET(18,K) will illuminate the graphics block
(18,9).

Let us store the monthly profits in a DATA statement. The first part of the
program will read the monthly profits into an array AKK) (K =1, 2, . . .,
12). Next, the program will draw the bar for each month, using a program
like the one above. The only new point is that the bars for monthM (M =1,
2, . . ., 12) are located in columns 18 + (M—1)*8 and 19 + (M~—1)*8.

173

DRAWING BAR CHARTS VIA COMPUTER

udisap Aejdsip oapIA 'g-9 ainSiy

FekelReficlodezlezizhescpek ez ozleiaila

]

ac
ST

A sc
492 {*c el vo.]

{4 ot

. N [
: clovg

0€]

kad i o]

- o
6€9)at] . e ez|9rs
i)

T

1 N . o,

£14 p—qg
sis @ . Is¢|z1s

v

124 1

15|z N ! -
i . 2:18b |

1z —

i

wy ' { . . ; : o]
[b i . b IR . ; ¢ [vee

| i . o0

164 [4]) - B (RN
14 ; j 81
B
s - B T -
L3 4 . .
= - . v
o
:
el ! |
|4
QM i B i o

o]e[s] Bug
oel ol gag

v
NEEIAEIEIRI R

174 AN INTRODUCTION TO COMPUTER GRAPHICS

Indeed, this positioning is correct for M = 1 (columns 19 and 20) and as M is
increased by 1, the columns increase by 8. Thus, the initial part of our
program, up to and including drawing the bars is as follows:

10 DIM A(12)

20 DATA 350000, 250000, 100000, 130000, 400000, 500000
30 DATA 450000, 425000, 300000, 400000, 300000, 200000
40 FORM=1TO 12

50 READ A(M)

60 NEXT M

1000 FOR M=1 TO 12

1010 LET J=A(M)/100000

1020 FOR K=40 TO 40—4*) STEP —1

1030 SET (19+(M—1)*8,K): 'BARS

1040 SET (20+(M—1)*8,K)

1050 NEXT K

1060 NEXT M

Recall that we reserved the first 16 columns for the word “’Profit”, the
vertical axis and the tick marks. Let's put the word “‘Profit”” at position 0, the
vertical axis in column 14 and the tick marks at graphics blocks (13,0),
(13,4),(13,8), . . . ,(13,36). The horizontal axis will consist of the graphics
blocks (14,40), (15,40), . . . , (111,40). Finally, we will put fetters under
the bars. Referring to Figure 6-8, we see that the letters of the months go in
character display positions 906, 910, 914, . . . , 950. Here is a program

which creates this part of the display.

100 DIM B$(12)

110 DATA J,E,M,AM,},),A,S,0
120 DATA N,D

130 FOR =1 TO 12

140 READ B$(J)

150 NEXT }

160 FOR J=1 TO 12

170 PRINT @ 902+4%), B$(J)’ MONTH LABELS
180 NEXT J

190 PRINT @O0, “Profit’”

200 FOR J=0 TO 40

210 SET (14,))'VERTICAL AXIS
220 NEXT J

230 FOR J=0 TO 36 STEP 4
240 SET (13,)) : ' TICK MARKS
250 NEXT)

DRAWING BAR CHARTS VIA COMPUTER 175

260 FOR J=14 TO 111
270 SET (J,40): ' HORIZONTAL AXIS
280 NEXT)

We may now put together all the parts of the program together with an initial
clearing of the screen and a loop to keep the display on the screen. We
obtain our final result:

5 CLS
10 DIM A(12)

20 DATA 350000, 250000, 100000, 130000, 400000, 500000
30 DATA 450000, 425000, 300000, 400000, 300000, 200000
40 FOR M=1TO 12

50 READ A(M)

60 NEXT M

100 DIM B$(12)

110 DATA J,E,M,A,M,}J,A,S,0

120 DATA N,D

130 FOR J=1 TO 12

140 READ B$())

150 NEXT |

160 FOR J=1 TO 12

170 PRINT @ 902+4*}, B$(J):’ MONTH LABELS
180 NEXT |

190 PRINT @0, “‘Profit”

200 FOR J=0 TO 40

210 SET (14,)):’VERTICAL AXIS

220 NEXT }

230 FOR J=0 TO 36 STEP 4

240 SET (13,)): ’ TICK MARKS

250 NEXT }

260 FOR J=14 TO 111

270 SET (J,40): / HORIZONTAL AXIS

280 NEXT }

1000 FOR M=1 TO 12

1010 LET J=A(M)/100000

1020 FOR K=40 TO 40—4*] STEP —1

1030 SET (19+(M—1)*8,K): * BARS

1040 SET (20-+(M—1)*8,K)

1050 NEXT K

1060 NEXT M

1100 GOTO 1110

1110 GOTO 1100

1200 END

176 AN INTRODUCTION TO COMPUTER GRAPHICS

It is possible to refine the above graphing procedure so that the computer
does more of the work. We will guide you through some of the refinements
in the exercises.

EXERCISES (answers on 292)

Exercises 1—6 refer to the bar chart program developed in the above exam-
ple.

1. Type and RUN the bar chart program of the example.

2. Modify your program so that, instead of DATA statements, the program
asks for the monthly profits via an INPUT statement.

3. Use the program of Exercise 2 to make a bar chart for the following set

of data:
Jan. $175,238 Jul. $312,964
Feb. $ 35,275 Aug. $345,782
Mar. $240,367 Sep. $126,763
Apr. $675,980 Oct. $324,509
May $390,612 Nov. $561,420
Jjun. $609,876 Dec. $798,154

4. Modify the program of Exercise 2 to include the label “Mil. $” on the
left of vertical axis under the word ““Profit.”” Moreover add calibrations
,.2,.3, .4, . . ., 1.0 by the tick marks on the vertical axis.

5. Modify the program of Exercise 2 so that it asks for the labels to be
placed on the vertical axis. This is a first step in developing a program
to draw bar charts for any set of data. You should limit your labels to 2
lines of 6 characters or less, so that you may use the same position for
the axes. Modify the program so that it asks you for the number to be
placed beside the first vertical tick mark and the interval between
consecutive tick mark labels. For example, you might wish to label the
tick marks .3, .7, 1.1, . . ., 3.0. In this case, you would INPUT the
numbers .3 as the first tick mark label and .4 as the interval between
consecutive labels. Your program should generate the desired tick
mark labels. Moreover, your program should ask for the ““scale factor.”
This is the number corresponding to $100,000 in Example 1 and is the
amount represented by the length of each interval on the vertical axis.
To put it another way, the scale factor is the number you must divide
each data item by to get the height of the appropriate bar in terms of
intervals (tick marks) on the vertical axis.

GRAPHING FUNCTIONS VIA COMPUTER 177

6. Enhance the program of Exercise 5 so that it asks for the labels on the
horizontal axis (the month labels in Example 1). Your program should
allow for a variable number of bars, up to the 12 bars in Example 1.
(Just omit the bars and labels on the right if you have fewer than 12
pieces of data.)

7. Use the program of Exercise 6 to produce a bar chart corresponding to
the following data.

Income Percentage of Population
Under $10,000 15.8
10,000-20,000 25.7
20,000-30,000 27.4
30,000-40,000 11.1
Over 40,000 20.0

Answers to Test Your Understanding

2.1: Columns 20 and 21.

6.3 GRAPHING FUNCTIONS VIA COMPUTER

In the previous section, we demonstrated the use of the Model 11l to prepare
bar charts. However, bar charts are not the only type of graph used in making
business decisions. Another very important type of graph is a broken-line
graph formed by connecting given data points. An example of such a graph is
given in Figure 6-9.

In this section, we will learn to use the Model 1ll to produce such graphs.
Let us begin with the problem of drawing a straight line connecting two

graphics blocks. For example, let us consider the graphics blocks (30,40)
and (50,35) (See Figure 6-10). The line between them will extend over

columns 30, 31, 32, . . . , 50, and will thus consist of graphics blocks of
the form:
(30,40,), (31,9, (32,9, . . ., (49,9, (50,35)

We must figure out how to fill in the question marks. In going from column
30 to column 50 (a distance of 20 columns), our line falls from row 40 to row
35 (a distance of 5 rows). Since it does so at a uniform rate, the line must fall

178 AN INTRODUCTION TO COMPUTER GRAPHICS

I —
T

Closing
Price

of -+
Stock
XYZ <+

Figure 6-9.

5/20ths of a row for each column we move over. So in column 31, the line is
at height 40 — 5/20, and the graphics block in column 31 is

(31, 40 — 5/20).

Similarly, to get to column 32, we must move over 2 columns from 30 and
hence must fall 2 X (5/20) rows. Therefore, the graphics block in column 32
is

(32, 40 — 2 x (5/20))
Generally, the graphics block in column J is at
(32+],40)*(5/20))

Note that some of these graphics blocks contain fractions. Of course, we can
not locate such blocks exactly because of the limited resolution of the
screen. However, the SET command willilluminate the nearest block. The set
of blocks so illuminated will give an approximation to the desired line. Here
is a program to draw the approximation.

10 FOR J=0 TO 20

20 SET (32+},40—}*(5/20))
30 NEXT }

40 END

GRAPHING FUNCTIONS VIA COMPUTER 179

6 383
26/639
#1703
32
33
34{767
31
431959

<e]
-
<s|1023

g

221511

23|
24
2s]575

1
s
21
26,
7
a1
a2

*
“halate

58

sl
B
|35
5

" [w]s
6]
39

31[32133134(35(36[37|38[38]40]4 1]a2]43[44d]a.

5126]27128(29]

‘,;

8 | sjrojn1[1zl13j1a)ishel17[18l19}2042 112 2[232

[18]19]20{21]22]23]24]2:

|

AT

1]

ol 2|3]l[515 7

ol

on

|
t

|

o {afalalslE

}
1

L

18|

7

2

76

2

29

20
6403
3z

33

35|

36
768|37
1]

39!
B

2
89641
a7

32046
448|277/
51225
576z
704 34
960{46

(30,40) and (50.35).

ine joining

Figure 6-10. The |

180 AN INTRODUCTION TO COMPUTER GRAPHICS

Example 1. Write a program which draws a line connecting graphics blocks
(0,40) and (40,20).

Solution. In moving from column 0 to column 40 (40 columns), we must go
from row 40 to row 20 (20 rows). So for every column, you must increase by
20/40ths of a row. Using the same reasoning as above, we write the follow-
ing program:

10 FOR J=0 to 40

20 SET (0-+), 40+J*(20/40))
30 NEXT }

40 END

Example 2. Write a program to draw a line between graphics blocks (X1,Y1)
and (X2,Y2).

Solution. We follow exactly the same reasoning as in the two cases consid-
ered above. We must move horizontally X2—X1 graphics blocks. Vertically,
we must move Y2-Y1 graphics blocks. Thus, for each column we move
over, we must move vertically by

(Y2-YT1)(X2—-XT1)
blocks. Thus, in moving over] columns, we must be at row
Y1 + J%Y2 — YD/(X2 — XT)

(This reasoning may seem a bit complicated. But to convince yourself, just
go through it step-by-step in the two special cases worked out above.) Thus,
we arrive at the following program.

10 FOR J=0 TO X2-X1

20 SET (X1+), Y1+J*(Y2—-Y1)/(X2-X1))
30 NEXT)

40 END

In many applications, it is necessary to produce a graph from experimen-
tally observed data. For example, consider the following set of data

Year Sales($100,000)
1975 2.55
1976 3.00
1977 2.00
1978 2.50
1979 3.80

1980 4.05

GRAPHING FUNCTIONS VIA COMPUTER 181

Let us draw a line graph as shown in Figure 6-11.

The procedure is just a combination of all the techniques we have already
learned:
i) Draw axes and tick marks.
ii) Label the axes.

iii) Draw the line segments.

To draw the axes, we will use the same positioning and hence the same
instruction as we used for the bar chart programs of the preceding section.
We must have five tick marks on the horizontal axis, so let's use every
second tick mark in our bar chart program. As for the scale on the vertical
axis, we must go from 0 to 5.00. Let us use the same 10 tick marks as we

4.0 4

3.0

2.5 -

2.0 -+

1.5 <4

1.0 4

1975 1976 1977 1978 1979 1980

Figure 6-11.

182 AN INTRODUCTION TO COMPUTER GRAPHICS

used in the bar chart program and label them .5, 1.0, 1.5, . . . , 5.0. Based
on this analysis, here is a program which accomplishes i) and ii):

100 DIM B$(12), C(10)

110 DATA “1975”, “1976”, “1977", “1978", “1979”, “1980”
120 DATA 4.5,4.0,3.5,3.0,2.5,2.0,1.5,1.0,0.5
130 FOR J=1 TO 12

140 READ B$())

150 NEXT |}

160 FOR J=1TO 9

170 READ C(J)

175 K=4*]*64—1

180 PRINT @K, C(J): '"VERT LABELS

190 NEXT }

200 FOR J=1TO 12

205 K=900+4*)

210 PRINT @K, B$(J): 'YEAR LABELS

220 NEXT }

230 PRINT @0, ““Sales”

240 FOR J=0 TO 40

250 SET (14,)):'VERTICAL AXIS

260 NEXT J

270 FOR J=0 TO 36 STEP 4

280 SET (13,)): ’ VERTICAL TICK MARKS
290 NEXT }

300 FOR j=14 TO 111

310 SET (J,40): ' HORIZONTAL AXIS

320 NEXT }

330 FOR J=1TO 5

340 SET (18+()—1)*16,39):"HORIZ. TICK MARKS
350 NEXT)

We have already learned to draw a line connecting two graphics blocks. Our
only problem now is to determine how the given data translates into graphics
block numbers. The column for the Jth piece of data equals 18 + (J—1)*16.
(The first piece of data corresponds to column 18 and consecutive columns
are 16 apart.) On the vertical, 5.0 corresponds to graphics row 0 and 0.0
corresponds to graphics row 40. Therefore, each unit of data corresponds to
8 graphics rows and thus if A()) represents the sales for year J, then the row for
the J th data item is

40 — A()/8

DSy

3ilWU P

GRAPHING FUNCTIONS VIA COMPUTER

So here is the remainder of our program.

500 DIM A(10),X(10),Y(10)

510 DATA 2.55, 3.00, 2.00, 2.50, 3.80, 4.05

520 FOR J=1TO 6

525 REM COMPUTE GRAPHICS BLOCK X(}),Y())
530 READ A())

540 LET X(J))=18+(J—1)*16, Y(J)=40—A(})/8

550 NEXT }

600 FOR J=1 TO 5

605 REM DRAW LINE BETW (X(J),Y(J))) AND (X(J+1),Y(J+1))
610 LET X1=X(J), YI=Y()), X2=X(J+1), Y2=Y(+1)
630 GOSUB 1000

640 NEXT)

700 GOTO 710

710 GOTO 720

800 END

1000 FOR J=0 TO X2—X1

1010 SET (X1+], YT+J*(Y2—Y1)/(X2—X1))

1020 NEXT)

1030 RETURN

EXERCISES (answers on 293)

1. Type and RUN the program developed in the text.

183

2. Modify the program so that the sales data is requested in INPUT

statements.

3. Use the modified program to prepare a line graph of the following data

for a certain town.

Year Births
1970 358
1971 330
1972 315
1973 302
1974 290
1975 282
1976 270
1977 285
1978 272
1979 300

1980 310

184 AN INTRODUCTION TO COMPUTER GRAPHICS

4. Write a program to create the following figure:

5. Write a program to create the following figure:

6. Write a program to create the following figure:

6.4 COMPUTER ART (FOR PRIMITIVES)

The computer may be used for creation of interesting pieces of graphics art.
In this book, we will not dwell long on this application, but it is interesting
and certainly deserves a mention.

We will discuss two forms of computer art. The first arises when we allow
the computer free “artistic license”” to create random patterns on the screen.
Let us create a program which runs down the rows of graphics blocks and
randomly illuminates some of them. We will control the number of blocks to
be illuminated by a “‘density factor’” which we input. This factor will be a
number between 0 and 1 and will be denoted by the variable A (for density).
Our program will consider each graphics block separately. It will use the

COMPUTER ART (FOR PRIMITIVES) 185

output of RND(0) to make the decision on whether to illuminate the block or
not. Namely, if RND(0) is less than A, the block will be illuminated; if
RND(0) is at least A then the block will not be illuminated. Here is our
program.

5 INPUT “DENSITY FACTOR"”; A

6 CLS

7 RANDOM

10 FOR R=0TO 47 : ' R=ROW NUMBER
20 FOR C=0TO 127:* C=COLUMN NUMBER
30 IF RND(0)<A THEN 40 ELSE 100

40 SET (C,R)

100 NEXT C

110 NEXT R

200 GOTO 210

210 GOTO 200

300 END

You should run this program for assorted values of A. Some suggested values
are A= .1,.5,and .7, respectively. Note that because of the unpredictability
of the random number generator, the same value of A will usually yield
quite different pictures on successive runs.

A second method of generating art using the computer is to use a graphics
pad to effectively “‘trace’” a picture. For example, suppose that your picture
is a photograph. Place a video display worksheet over the picture. Fill in all
graphics blocks which touch the subject of the photograph. In this way, you
will create an impression of the subject which you may then display on the
screen.

To close our very brief discussion, we should mention some related
equipment which has recently come within the range of the computer
hobbyist. In our above description of tracing, we suggested a rather laborious
procedure. However, there are special devices called digitizing pads which
enable you to trace a shape with an electronic “‘pen” and have the same
shape transferred to the screen. In addition, there are the so-called light pens
which enable you to touch a point on the screen and have the computer read
the location of the point. This sort of device can be useful in creating
computer art as well as in playing computer games.

186 AN INTRODUCTION TO COMPUTER GRAPHICS

EXERCISES (answers on 294)

1. Run the above program three times for the value A = .4.

2. Run the above program for the values A = .1, .2, .3,. . . , 1.0. Can
you predict the display for A = 1.0 in advance?

3. Create a computer impression of a member of your family using a large
photograph. (5" x 7 or larger will work best.)

7

(Word Processing

7.1 WHAT IS WORD PROCESSING?

Microcomputers are currently in the process of causing a revolution in the
office. As microcomputers have become cheaper and easier to use, they
have found their way into every nook and cranny of business. But nowhere
does the revolutionary impact of microcomputers promise to be greater than
in the area of word processing. In brief, a word processor is a device which is
obtained by marrying the traditional typewriter with the capabilities of the
computer for storing, editing, retrieving, displaying, and printing informa-
tion. It is no exaggeration to say that the traditional typewriter is now as
obsolete as a Model T and over the next decade or so will be completely
replaced by increasingly sophisticated word processors.

The fundamental concept of a word processor is to use the microcomputer
as a typewriter. However, instead of using paper to record the words, we use
the computer memory. Initially, the words are stored in RAM. When you
wish to make a permanent record of them, you store them on disk as a data
file. As you type, the text can be viewed on the video display. This much is
not revolutionary. The true power of a word processor does not come into
play until you need to edit the data in a document. Using the power of the
computer, you can perform the following tasks quickly and with little effort:
move to any point in the document; add words, phrases, sentences, or even
paragraphs; delete portions of the text; move a block of text from one part of
the document to another; insert “boiler-plate’” information from another data
file (for example, you could add a name and address from a mailing list);
selectively change all occurrences of one word (say, ‘/John”’) to another (say,
“Jim’’); print the contents of a file according to a requested format.

All of the above operations are possible since the computer is able to
manipulate strings in addition to numbers. Actually, your Model Il is

187

188 WORD PROCESSING

equipped with a wide variety of commands to manipulate string data In fact,
you may turn your Model Il into quite a respectable word processor.

In this chapter, we will discuss the Model Il BASIC instructions for string
manipulation. Moreover, we will discuss formatting output on a printer.
Next, we will discuss the features available in commercially available word
processing packages which you can purchase for your Model lll. Finally, to
give you a taste of word processing proper, we will build a rudimentary word
processor which you can use to prepare letters, term papers, memos, and
other material.

7.2 MANIPULATING STRINGS

ASCH Character Codes

Each keyboard character is assigned a number between 1 and 255. The code
number thus assigned is called the ASCII code of the character. For example,
the letter /A"’ corresponds to the number 65 whereas the number 97 corre-
sponds to the letter ““a’”’. Also included in this correspondence are the
punctuation marks and other keyboard characters. For example, 28 corre-
sponds to the symbol “/(""and 62 to the symbol *“>"’. Even the various control
keys have corresponding numbers. For example, the space bar corresponds
to the number 20, the Break key to the number 1, and the ENTER key to
number 13. There also are corresponding numbers to various combinations
of keys. For example, the combination of the SHIFT, . and Z keys is
assigned the number 26. This combination of keys is a control code which
moves the cursor down one line. Table 1 lists all of the printable characters

Table 1. ASCII Character Codes for Printable Characters.
ASCIl Code Character ASCII Code Character

32 blank

33 ! 69 E
34 " 70 F
35 # 71 G
36 $ 72 H
37 % 73 |
38 & 74 J
39 ! 75 K
40 (76 L
41) 77 M
42 * 78 N

MANIPULATING STRINGS 189

Table 1. ASClI Character Codes for Printable Characters. (Continued)
ASCIl Code Character ASCIlI Code Character

43 + 79 O
44 , 80 P
45 - 81 Q
46 . 82 R
47 / 83 S
48 0 84 T
49 1 85 U
50 2 86 %
51 3 87 W
52 4 88 X
53 5 89 Y
54 6 90 Z
55 7 91* [

56 8 92* \

57 9 93*]

58 : 94 »

59 ; 95% —
60 < 96* '

61 = 97 a
62 > 98 b
63 ? 99 c
63 @ 100 d
64 A 101 e
65 B 102 f

66 C 103 g
67 D 104 h
68 E 105 i

106 j 117 u
107 k 118 v
108 | 119 w
109 m 120 X
110 n 121 y
111 0 122 z
112 p 123* {

113 q 124* |

114 r 125% }

115 5 126* ~
116 t 127* *

* These characters cannot be typed directly on the Model I keyboard, but can be printed on a printer
having a full set of ASCII characters.

190 WORD PROCESSING

and their corresponding ASCII codes. We will discuss the various control
codes in Section 4.

The computer uses ASCII codes to refer to letters and control operations.
Indeed, any file, whether program or data, may be reduced to a sequence of
ASCII codes. For example, consider the following address.

JOHN JONES
2 S. BROADWAY

As a sequence of ASCII codes, it would be stored:

74,111,104,110,32,74,111,110,101,115,13

50,32,83,46,32,66,114,111,,97,100,119,97,121,13
Note that the spaces are included (numbers 32) as are the carriage returns
(ENTER) at the end of each line (number 13). ASCII codes allow us to
describe any piece of text generated by the keyboard, including all format-
ting instructions (like spaces, carriage returns, upper and lower case, and so
forth). Moreover, once a piece of text has been reduced to a sequence of
ASCIl codes, it may be faithfully reproduced on the screen or on a printer.
This is the fundamental principle underlying the design of word processors.

Test Your Understanding 2.1

Write a sequence of ASCII codes which will reproduce this ad:

FOR SALE: Beagle puppies. Pedigreed.
8 weeks. $125.

You may refer to characters by their ASCIl codes by using CHR$. For
example, CHR$(74) is the character corresponding to ASCII code 74 (upper
case J); CHR$(32) is the character corresponding to ASCII code 32 (space).
The PRINT and LPRINT instructions may be used in connection with CHRS$.
For example, the instruction

10 PRINT CHR$(74)

will display an upper case J in the first position of the first print field.

Test Your Understanding 2.2

Write a program which will print the ad of TYU 7.1 from its ASCII codes.

MANIPULATING STRINGS 191

To obtain the ASCII code of a character, use the instruction ASC. For
example, the instruction

20 PRINT ASC(“‘B”)

will print the ASCII code of the character /B, namely 66. In place of “B”,
you may use any string. The computer will return the ASCIl code of the first
character of the string. For example, the instruction

30 PRINT ASC(A$)

will print the ASCII code of the first character of the string A$.

Test Your Understanding 2.3

Determine the ASCII codes of the characters $, g, X, + without looking at the
chart.

You may compute the length of a string using the LEN instruction. For
example, LEN(“BOUGHT") is equal to 6 since the string “BOUGHT"" has 6
letters. Similarly, if A$ is equal to the string ““Family Income”, then LEN(A$)
is equal to 13. (The space between the words counts!) Here is an application
of the LEN instruction.

Example 1. Write a program which inputs the string A$ and then centers it
on a line of the display.

Solution. A line is 64 characters long, with the spaces numbered from 0 to
63. The string A$ takes up LEN(A$) of these spaces, so there are 64—-LEN(A$)
spaces to be distributed on either side of A$. That is, the line should begin
with (64-LEN(A$))/2 spaces. But since the first space is numbered 0, we
should tab to column (64-LEN(A$))/2 — 1. Here is our program.

10 INPUT A$
20 CLS

30 PRINT TAB((64-LEN(A$))/2—1) A$
40 END

Test Your Understanding 2.4

Use the program of Example 1 to center the string *“THE TRS-80 MODEL I11"".

192 WORD PROCESSING

More About Strings

A string may consist of as many as 255 characters. Of course, you cannot
type more than 64 characters on a line. However, you may type strings that
long by continuing to type without hitting the ENTER key. When a line is
filled, the computer will automatically place the next letter at the beginning
of the next line. However, if you do not hit the ENTER key at the end of the
line, then the next line will be a continuation of the first. It is necessary to
have long strings if you wish to be able to print hard copy. Most line printers
have at least 80 characters per line and some accommodate 132 character
lines.

There are a number of operations which may be performed on strings.
First, strings may be “added” (or, in computer jargon, “concatenated”’).
Suppose that we have strings A$ and B$, with A$ = “word”’ and B$ =
“processor’’. Then the sum of A$ and B$, denoted A$ + B$ is the string
obtained by adjoining A$ and B$, namely:

““wordprocessor’’

Note that no space is left between the two strings. To include a space,
suppose that C$ = " ", That is, C$ is the string which consists of a single
space. Then A$ + C$ + B$ is the string:

““‘word processor”’

Test Your Understanding 2.5
If A$ = “4" and B$ = 7", what is A$ + B$?

The computer handles relations among strings in much the same way that
it handles relations among numbers. For example, we say that two strings A$
and B$ are equal, denoted A$ = B$, provided that they consist of exactly the
same characters, in the same order. Otherwise the strings are unequal,
denoted A$ <> B$ or A$ >< B$. The notation A$ < B$ means that A$
precedes B$ in alphabetical order. (This is fine for strings consisting only of
letters. For numbers or other characters, the ASCII codes of the characters are
used to determine precedence.) Similarly, A$ > B$ means that A$ succeeds
B$ in alphabetical order. Thus, for example, the following are true relations
among strings:

//bear// < //goat//

/1gir|// > //boy//

MANIPULATING STRINGS 193

The notation A$ >= B$ means that either A$ > B$ or A$ = B$—that is,
that A$ either succeeds B$ in alphabetical order or A$ and B$ are the same.
The notation A$ <= B$ has an aﬁnalog(‘)us meaning.

(Vo soni bl

Example 2. Write a program which alphabetizes the following list of words: = 2o ¢
egg, celery, ball, bag, glove, coat, pants, suit, clover, weed, grass, cow, and
chicken.

Solution. We set up a string array A$(J) which contains these 13 words. We
set B$ equal to the first word. We successively compare B$ with each of the
words in the array. If any compared word precedes B$, we replace B$ with
that word. At the end of the comparisons, B$ contains the first word in
alphabetical order. We place this as the first item in the array C$(J)). We now
repeat the process with the first word eliminated. This gives us the second
word in alphabetical order, and so forth. Here is our program.

5 CLEAR 100

10 DIM A$(13),D$(13),C$(13)

20 DATA EGG,CELERY,BALL,BAG,GLOVE,COAT
30 DATA PANTS,SUIT,CLOVER,WEED,GRASS
40 DATA COW,CHICKEN

50 FOR)=1TO 13

60 READ A$()):" SET UP ARRAY A$

70 NEXT)

80 FOR K=1 TO 13:'FIND KTH WORD IN ORDER
85 REM 90—-200 CREATE AN ARRAY D$ CONSISTING OF THE
87 REM WORDS YET TO BE ALPHABETIZED

90 L=1

100 FOR J]=1 TO 13

110 E=0

120 FOR M=1TO 13

130 IF A$())=C$(M) THEN E=1

140 NEXT M

150 IF E=0 THEN 160 ELSE 200

160 D$(L)=AS$())

170 L=L+1

200 NEXT }

210 B$=D$%(1)

220 FOR L=1 TO 13-K+1

230 IF D$(1)<B$ THEN 250 ELSE 300

250 B$=D$(L)

300 NEXT L

400 C$(K)=B$

194 WORD PROCESSING

410 NEXT K

500 FOR K=1TO 13
510 PRINT C$(K)
520 NEXT K

600 END

This program can clearly be modified to a program for alphabetizing any
collection of strings. We will leave the details to the exercises.

It is possible to dissect strings using the three instructions LEFT$, RIGHTS$,
and MID$. These instructions allow you to construct a string consisting of a
specified number of characters taken from the left, right, or middle of a
designated string. For example, consider the instruction:

10 LET A$=LEFT$(“LOVE",2)

The string A$ consists of the 2 leftmost characters of the string “LOVE". That
is, A$ = “LO”. Similarly, the instructions

20 LET B$="“tennis” -
30 LET C$=RIGHT$(B$,3)

set C$ equal to the string consisting of the three rightmost letters of the string
B$, namely C$ = “nis”’. Similarly, if A$ = “"Republican”, then the instruc-
tion T

40 LET D$=MID%$(A$,5,3)

sets D$ equal to the string which consists of 3 characters starting with the
fifth character of A$. That is, D$ = “‘bli”’. These last three instructions are
absolutely indispensable in the design of word processors. The next example
shows how they may be used to ‘“form lines’’, one part of a word processing
program.

Test Your Understanding 2.6

Determine the string constant
RIGHTS(LEFTS. ",4),3).

[=0
Example 3. Suppose that A$ is a string consisting of a sequence of words.
You may recognize a word by the space following it. Divide A$ into lines
consisting of at most 80 characters. Make each line contain as close to 80
characters as possible. Do not break any words at the end of a line.

MANIPULATING STRINGS 195

Solution. A program such as this one is used by a word processor to prepare
lines for a printer with an 80 character wide carriage. Our program will first
determine the length of the string. Then it will peel off the first 80 characters
of the string as a new string B$. The program will then check whether the
next character is a space. (This would indicate that B$ ends at the end of a
word.) If so, then the line will consist of B$ itself. If not, the program will
“count backwards”” from the end of B$, throwing away characters until it
finds a space, indicating the end of a word. The space will become the last
character of the line. The finished line will be stored in the string C$(1). Any
characters thrown away will be added to A$. The entire procedure will be
repeated again, starting from A$, until all the characters of A$ are formed
into lines. Here is the program:

5 CLEAR 1000

10 INPUT A$ " INPUT CHARACTER STRING

20 LET L=LEN(A$%)

30 LET N=INT(L/80)+1: ” N=# LINES

40 FOR J=1 TO N : ’ J=CURRENT LINE #

50 LET B$=LEFT$(A$,80)

60 LET A$=RIGHT$(A$,L-80) : * A$ IS NOW WHAT'S LEFT
70 LET L=LEN(AS) : 'L=LENGTH OF NEW A$

80 IF LEFT$(A$,1)=‘* " THEN 100 ELSE 200

100 LET C$(J)=B$: * C$())=JTH FINISHED LINE

110 LET A$=RIGHT$(A$,L-1): 'DELETE LEFT HAND SPACE
120 GO TO 1000

190 REM 200-430 LOOK FOR WORD AT END OF B$
200 LET K=80: 'START FROM RIGHT OF B$

210 IF RIGHT$(B$,1)=" " THEN 300 ELSE 400

300 LET C$())=B$

310 IF J=N THEN 1000

400 LET A$=RIGHT$(B$,1)+A$

410 LET B$=LEFT$(B$,K—1)

420 K=K-1

430 GOTO 210

1000 NEXT }

1100 FOR J=1 TO N

1200 PRINT C$())

1300 NEXT)

1400 END

In manipulating strings, it is important to recognize the difference between
numerical data and string data. The number 14 is denoted by 14; the string
consisting of the two characters 14 is denoted ‘“14"’. The first is a numerical
constant and the second a string constant. We can perform arithmetic using

196 WORD PROCESSING

the numerical constants. However, we cannot perform any of the character
manipulation afforded by the instructions RIGHT$, MID$, and LEFT$. Such
manipulation may only be performed on strings. So how may we perform
character manipulation on numerical constants? BASIC provides a simple
method. We first convert the numerical constants to string constants via
STR$. For example, the number 14 may be converted into the string /14" via
the instruction:

10 LET A$=STR$(14)

As a result of this instruction, A$ has the value *“ 14”. Note the blank in front
of the 14. This occurs because BASIC automatically leaves space for the sign
of a number. If the number is positive, then the sign prints as a space. If the
number is negative, then the sign prints as —. As another example, suppose
that the variable B has the value 1.457. Then STR$(B) is equal to the string
“1.457".

To convert strings consisting of numbers into numerical constants, use
VAL. For example, consider this instruction:

20 LET B=VAL(““3.78")

It sets B equal to 3.78. You may even use VAL for strings consisting of a
number followed by other characters. VAL will pick off the initial number
portion and throw away the part of the string which begins with the first non-
numerical character. For example, VAL(12.5 inches) is equal to 12.5.

Test Your Understanding 2.7

Suppose that A$ = 5 percent’”, B$ = 758.45 dollars”. Write a program
which starts from A$ and B$ and computes 5% of $758.45.

EXERCISES (answers on 294)

1. Use the program of Example 2 to alphabetize the following sequence of
words: justify, center, proof, character, capitalize, search, replace,
indent, store, and password.

2. Use the program of Example 3 to form the following string into lines:

Word processing will revolutionize the office. Already, millions of word
processing systems are in use. By the end of the decade, the typewriter will

MANIPULATING STRINGS 197

be totally obsolete. Word processing systems will increase in sophistica-
tion.

3. Modify the program of Example 3 so that the lines will be 64 characters
long. (This will correspond to the standard length of lines on the video
display.)

4. Modify the program of Example 3 so that the program requests the
desired line length and forms lines of that length.

5. Write a program which rewrites the addition problem 15 + 48 + 97 =
160 in the form

15
48
97

160

6. Write a program which inputs the string constants “$6718.49"" and
“$4801.96" and calculates the sum of the given dollar amounts.

Answers To Test Your Understanding

2.1:
70,79,82,32,83,64,76,68,58,32,65,100,96,102,107,100,32,112,117,
112,112,104,100,115,46,32,13,56,32,119,100,100,106,115,46,32,36,4
8,49,53,46,13

2.2: 10 DATA 70,79, (insert data from 7.1)
11 DATA
12 DATA
20 FOR |=1 TO 42
30 READ A())
40 PRINT CHRS$(A()
50 NEXT |
60 END

2.3: 10 DATA $,g,X,+
20 FOR J=1TO 4
30 READ A$()
40 B())=ASC(A$()
50 PRINT A$()), B())
60 NEXT)
70 END

2.4: Type RUN followed by the given string.

198 WORD PROCESSING

2.5. 47
2.6: “omp”’
2.7: 10 A$="5 percent’”:B$="758.45 dollars”

20 A=VAL(A$):B=VAL(B$)
30 PRINT A%, “OF"”, B$, "I1S”
40 PRINT A*B

50 END

7.3 PRINTER CONTROLS AND FOBRM LETTERS

Up to this point, we have mostly ignored the use of the printer. We have
discussed the LPRINT and LLIST statements, but we have not discussed the
fine points of printer use, such as controlling page format. However, for
word processing applications, it is absolutely essential to the final appear-
ance of your documents that you be able to control margins, number of lines
per page, and so forth. In this section, we will discuss such printer controls
and their use in producing form letters from a mailing list. Since most such
applications utilize disk files, we will assume throughout this section that
you are using disk BASIC.

Printer Operation

To use the printer, you must connect it properly to your computer. The
simplest printers to connect are the ones sold by Radio Shack since the
electronics necessary for the computer and printer to communicate with one
another are already worked out. If you decide to buy a non-Radio Shack
printer, make sure that your seller will assist you in interfacing the two pieces
of equipment. (This can be a tricky job.) We will assume that your printer has
been connected and is operational.

The printer accepts a stream of ASCII character codes. Some of these
correspond to letters and symbols to be printed and some correspond to
control characters which make the printer perform various non-print func-
tions (such as carriage return, line feed, space to the top of the next page,
and so forth). To the printer, a line consists of a sequence of printable
characters followed by an ENTER. The ENTER actually tells the printer two
things. First, it causes a carriage return; second, it causes the paper to
advance one line (a so-called line feed).

Note that the printer will not respond to the graphics symbols of Model IlI
BASIC. (For a discussion of graphics symbols, see the next chapter.) Certain
printers allow the printing of graphics symbols, but the symbols are not likely

PRINTER CONTROLS AND FORM LETTERS 199

to correspond to those of Model Ill BASIC. (For further information, see your
printer manual.)

Setting Line Length

Printers have varied line lengths. In any case, paper comes in various widths
so it is necessary to set the line length for your particular application. This is
done via the PEEK instruction. Line lengths are specified in terms of the
number of characters per line. For technical reasons, the computer requires
not the actual number of characters, but 2 less. So for 64 characters per line,
you would specify the number 62; for 132 characters per line, you would
specify 130; and so forth. This quantity is stored in memory location 16427.
So to set the line length to 132 characters, use the instruction:

POKE 16427, 130

This instruction may be given when you first turn on the computer or within a
BASIC program. In the latter case, you would not use a line humber and the
line length would be set for the entire programming session. The effect of
POKEing a line length into memory is to limit the number of characters
which are allowed in a string variable. If you do not specify a line length,
then the computer will automatically assume the default value of 255 char-
acters per line.

Note that the line length is specified in number of characters and not in
terms of inches. Some printers allow for either 10 or 12 characters per inch
(10 or 12 pitch). In planning your line length, it is necessary to take into
account both the pitch and the paper width.

Setting Page Length

The number of lines per page is also set via the POKE instruction. Memory
location 16424 is used to control the number of lines per page. Actually, this
location contains the number of lines plus 1. Most printers print 6 lines to the
inch, so standard 11-inch long paper would accommodate 66 lines. This is
the default (initial) value used by the computer. To change this value to 50
lines per page, for example, we would use the instruction:

POKE 16424, 51

This instruction may be given at the start of a programming session (without a
line number) or within a BASIC program.

200 WORD PROCESSING

Top of Form

The computer keeps count of the number of lines on the page being currently
sent to the printer. After the last line on the page, the computer sends the
control character for a form feed. This causes the printer to space vertically to
the beginning of the next page (as defined by the number of lines you
specified). At the beginning of a program session, this line count is set equal
to 1, corresponding to setting the paper to the beginning of a page. You may
adjust the line count by POKEing the desired line number into memory
location 16425.

To advance to the top of the next page, give a BASIC instruction of the
form:

10 LPRINT CHR$(12)

The character CHR$(12) is the ASCII code for “Form Feed”’. This command
will cause the paper to advance by the number of lines remaining in the

page.

To enter a form feed from the keyboard, strike the following keys simulta-
neously: SHIFT L. This sequence of keystrokes allows you to enter a form
feed into a document you are preparing.

Margins

The line length and number of lines per page parameters do not take into
account margins. Top and bottom margins are controlled by printing blank
lines. The left margin is controlled by the position of the paper in the printer.
The right margin is controlled by the line length.

Test Your Understanding 3.1

Suppose you are using 10 pitch type (10 characters to the inch) and are using
vertical spacing of 3 lines to the inch. Write instructions which will set up
your printer so as to leave one inch margins on both sides of standard
8 1/2" X 11" paper.

PRINTER CONTROLS AND FORM LETTERS 201

FORM LETTERS

You may use the string manipulating capability of your computer to prepare
form letters that look like genuine correspondence. Let us illustrate the
technique by preparing the following form letter to go to a mailing list of 100
customers.

April 1, 1981
Dear

All of us at Neighborhood building Supplies, Inc. have appreciated
your patronage in the past. We are writing to let you know that we will
move our store to 110 S. Main St., effective July 1. You will find the new
store larger and more convenient than the old. In addition, we will now
stock a more extensive line of energy-efficient doors and windows. We
look forward to you continued patronage. Please let us know if we may
be of assistance in your building plans.

Cordially yours,

Samuel Gordon,
President
Neighborhood Building Supplies, Inc.

Suppose that this letter is to go out to a mailing list of 100 customers.
Suppose, further, that the mailing list is maintained in a data file on disk. Let
us suppose that each address is stored as 4 strings, corresponding to the
name of the individual, company name, street address, and city-state-
zipcode. Finally, suppose that the name of the file is CUSTOMER. Let us
write a program to produce the desired stack of 100 letters.

Our program will consist of two parts. The first will allow us to type in the
body of the letter. The various lines of the letter will be typed exactly as if we
were typing on a typewriter. The computer will use a string array A$()) to
store the body of the letter, with A$(1) holding the first line, A%$(2) the
second, and so forth. We will indicate to the computer that the body of the
text is complete by typing SHIFT, and A simultaneously, followed by
ENTER. This combination of keys generates a control character, namely
ASCIl code 2, but will not appear on the screen. The program will test each
string input for this control character.

202 WORD PROCESSING

As soon as the control character is recognized, the program goes into its
second phase, namely the actual generation of the letters. The program
opens the address file for output. One by one it reads the address entries.
After reading a given entry, it prints the date at the top of the letter, followed
by the address. Next, the program determines the last name of the addressee
from the first line of the address and inserts it after the “‘Dear”’. Finally, the
body of the letter is printed. Here is the program which accomplishes all of
this.

10 DIM A$(100)

20 CLEAR 10000

30 PRINT “AFTER EACH ? TYPE ONE LINE OF THE LETTER,”

40 PRINT “FOLLOWED BY ENTER”

45 PRINT “ TO END LETTER, GENERATE CHR$(2)”

50 J=1: ’ } IS THE NUMBER OF LINES

60 INPUT A$())

70 IF A$(J)="CHR$(2)”” THEN 100 ELSE 80

80 J=]+1: ’ NEXT LINE

90 GOTO 60

100 OPEN “1”,1,“CUSTOMER”

110 FOR N=1 TO 100: N=CUSTOMER #

120 READ B$(1), B$(2), B$(3), B$(4)

130 LPRINT A$(1): ’ PRINT DATE

140 LPRINT: ’ PRINT BLANK LINE

145 REM 150-180 PRINT ADDRESS

150 LPRINT B$(1)

160 LPRINT B$(2)

170 LPRINT B$(3)

180 LPRINT B$(4)

190 REM FIND LAST NAME OF ADDRESSEE

200 LET L=LEN(B$(1))

210 FOR K=0 TO L-1

220 LET C$=MID$(B$(1),1,L-K)

230 IF C$=" " THEN 300 ELSE 240: TEST FOR SPACE BETWEEN
WORDS

240 NEXT K

300 LET D$=RIGHT$(B$(1),K): D$=LAST NAME

310 LPRINT “Dear Mr. ”’; D$; “,”

320 FOR M=2 TO J PRINT BODY OF LETTER

330 LPRINT A$(M)

340 NEXT M

350 NEXT N : * GO TO NEXT CUSTOMER

360 CLOSE:’ CLOSE CUSTOMER FILE

400 END

PRINTER CONTROLS AND FORM LETTERS 203

Note that for the above program to work properly, you should type the date
in as the first line of the letter. However, you should not type in the line
which begins “Dear”. The program generates this line for you. Note also that
this program always addresses the customer as “Mr.”. This will insult a
certain number of your customers. Suppose that your customer entries in the
address list are labelled with “Mr.””, “Mrs.” or "“Ms."’ preceding the name.
Can you modify the above program to insert the correct title in the salutation
of the letter?

The above program was used in the context of a specific letter. However,
please note that the program is perfectly general and may be used to generate
any set of form letters from an address list. In the exercises, we will suggest
some modifications which you can use to generate invoices or other corre-
spondence with variable text in the body of the letter.

EXERCISES

1. Add to the form letter of the text a second page. At the top of the page
should be the date and the page number. The title should be “OPEN-
ING SPECIAL". The text should consist of the following message:

This letter is being sent only to our most
valued customers! Bring this coupon with
you for a 10% discount on any order placed
in the month of JULY, 1981.

2. Change the form letter of the text so that in the third and fourth
sentences, the name of the addressee is used. (for example, ‘“Ms.
Thomas, you will find ..."")

3. Write a program which prints invoices. Assume that the invoices are
stored in a file called “INVOICE”, where a particular invoice contains
for each item shipped: quantity, price, item description (limited to 15
characters), and total cost. Assume that the invoice entry starts with a 4
string entry giving the customer name, address, and date. The file entry
for a given invoice ends with the control character CHR$(2). You may
assume that the first entry in the file is the number of invoices con-
tained in the file. Your program should print out invoices correspond-
ing to all entries in the file.

4. Suppose that the file INVOICE of Exercise 3 contains only a customer
identification number rather than a customer name and address. Sup-
pose that the list of customer addresses contains customer identifica-

204 WORD PROCESSING

tion numbers. Modify the program of Exercise 3 so that it locates the
customer name and address automatically.

5. Suppose that a change in local ordinances now allows you not to
charge local sales tax to any customer who lives outside the city limits.
Suppose that city consists of ZIP CODE 91723. Modify the program of
the text so that it checks the ZIP CODE of the customer. For customers
not in ZIP CODE 91723, insert the following paragraph in the letter:

Good news! You will no longer be charged
local sales tax, in accordance with the
change in local ordinances. This will

yield even further savings from our

already low prices.

Answer To Test Your Understanding

3.1: POKE 16427,63
POKE 16424,34
Position paper so that 1”of paper is to the left of column 1 on the
printer.

7.4 CONTROL CHARACTERS

In performing word processing, it is necessary to use all the components of
your computer system. The keyboard is used to type in documents; the
memory (usually diskettes) is used to store copies of documents; and the
video display allows you to inspect the current version of a document. In this
section, we will discuss the control characters, which allow you to control
the display.

General Information

The control characters correspond to ASCII codes 1 through 31. Codes 1-26
may be entered via the keyboard by hitting simultaneously SHIFT, , and
one of the letters A-Z. Not all of the codes 1-31 are recognized by the Model
lll, however. We will describe the most significant control codes below.

The control characters may be used in BASIC programs by means of the
PRINT CHR$ instruction. For example, ASCIl code 24 moves the cursor one

CONTROL CHARACTERS 205

space backward without erasing. To execute this cursor motion from a BASIC
program, use the instruction:

10 PRINT CHR$(24)

Since a control character does not correspond to a printable character, the
above instruction will move the cursor but will not cause any other change in
the display.

Control characters are also recognized by the printer. For example the
control character with ASCIl code 10 is a line feed, which causes the paper
to advance one line. To send a control character to the printer use the
LPRINT CHR$ instruction. For example, the following instruction will cause
the printer to advance the paper one line:

20 LPRINT CHR$(10)

Note that the same control character can mean one thing to the display
and another to the printer. For example, consider the control character
CHR$(10). This character causes the video display to advance the cursor to
the start of the next line and erase that line.

Cursor Motion Controls

In a word processing system, the cursor indicates your current position in a
document. Therefore, in order to move from place to place within a docu-
ment, it is important to be able to move the cursor at will. There are four
fundamental cursor motions: left, right, up, and down. Here are the corre-
sponding ASCII codes and the method of ordering the indicated motions
from the keyboard:

cursor motion keyboard ASCII code

left (no erase) SHIFT [D or 24
SHIFT []] X

right SHIFT [{] Y 25

down SHIFT [1] Z 26

up SHIFT 27

We can determine the column in which the cursor is currently located by
using the BASIC function POS(0). For example, if the cursor is currently

206 WORD PROCESSING

located in column 37, then POS(0) is equal to 37. Unfortunately, Model Il
BASIC does not have a function giving the row in which the cursor is
currently located. If you wish to utilize this quantity in a program, then it will
be necessary for you to keep track of the vertical position of the cursor.

Test Your Understanding 4.1

(a) Using the keyboard, move the cursor two spaces to the right and two
spaces down.

(b) Write BASIC instructions to perform the operations of (a) from a program.

Other Control Characters

Here are some other controls on the cursor. In some applications (especially
some computer games), you may wish to turn the cursor off. This may be
done via control character 15. To turn the cursor back on, use control
character 14. To move the cursor to the upper left corner (“home” the
cursor), use control code 28.

The ENTER key generates control character 13. Note that the ENTER key
moves the cursor to the start of the next line and erases that line. However,
when used as a printer control character, ASCIl code 13 will generate a
carriage return without a line feed. That is, code 13 will cause the printer to
move to the beginning of the line. However, the paper will not advance.

The BREAK key corresponds to code 1. The CLEAR key corresponds to
code 31.

The Model Il recognizes several other control characters, but they are not
very important for beginners. For a complete list of control characters and
their keyboard equivalents, consult Appendix C of TRS-80 Model Il Opera-
tion and BASIC Language Reference Manual.

EXERCISES (answers on 295)

1. Practice moving the cursor to various positions on the screen.

2. Write a program to move the cursor to the bottom of the column in
which it currently resides.

USING YOUR COMPUTER AS A WORD PROCESSOR 207

3. Write a program which moves the cursor to the left of the screen in the
row in which it now resides.

Answer To Test Your Understanding

4.1 (@) Hit SHIFT[J] Y two times and SHIFT [{] Z two times.

(b) 10 PRINT CHR$(25)
20 PRINT CHR$(25)
30 PRINT CHR$(26)
40 PRINT CHR$(26)
50 END

7.5 USING YOUR COMPUTER AS A WORD
PROCESSOR

So far in this chapter, we have attempted to introduce you to the various text
manipulation features of the TRS-80 Model Ill. We have mentioned “‘word
processing” quite often and have attempted to give a smattering of word
processing you can accomplish using homegrown programs. However, your
computer is capable of quite a bit more. More, in fact, than we can possibly
describe in this introductory book and more than a novice programmer can
expect to accomplish on his or her own. Although we cannot go into great
detail, we will close this chapter with a description of some of the word
processing you can expect your computer to accomplish using commercially
available software.

Let's begin by describing some of the typical features of a word processing
system you can run on your Model lll. A word processing system is a
computer program for creating, storing, and editing text.

At its most basic level, you use a word processing system like you would a
typewriter. Suppose, for example, that you wish to prepare a proposal. You
would turn on the computer, and run the word processing program. The
program first asks for the type of work you would like to perform. Possibilities
include: type in a new document, edit an old document, save a document on
diskette, or print a document. We would select the first option. We next
describe various format parameters to the word processor: line width, num-
ber of characters per inch, number of lines per page, spacing between lines,
and so forth.

208 WORD PROCESSING

Now we type the proposal exactly as we would on a typewriter. With
several huge exceptions, however! First of all, we do not worry about
carriage returns. The word processor takes care of the task of forming lines. It
accepts the text we type, decides how much can go on a line, forms the line,
and displays it. Any leftover text is automatically saved for the next line. The
only function of the carriage return is to indicate a place where you definitely
want a new line, such as at the end of a paragraph.

A second advantage of a word processor occurs in correcting errors. To
correct an error, we move the cursor to the site of the mistake, give a
command to erase the erroneous letter(s) or word(s), and type the
replacement(s). Of course, such action will generally destroy the structure of
the lines. (Some lines may now be too long and others too short.) However,
by using a simple command, it is possible to “‘reform”’ the lines according to
the requested format.

Typically, a word processor has commands which enable you to scroll
through the text of a document, looking for a particular paragraph. Some
word processors even allow you to mark certain points so that you may turn
to them without a visual search.

When the proposal is finally typed to your satisfaction, you give an
instruction which saves a copy of it on diskette. At a future time, you may
recall the document and add to it at any point (even within the bodies of
paragraphs!). Typically, word processors allow certain ““block operations”
which allow you to “mark’” a block and then either delete it, copy it, or
move it to another part of the document. You may also insert other docu-
ments into the current document. This is convenient, for example, in adding
boiler plate, such as resumes, to your proposal. You may even use the block
operations to alter boiler plate to fit the special needs of the current proposal.

You may construct your proposal in as many sessions as you wish. When
your diskette finally contains the proposal as you want it, you finally give the
instruction to print. Your printer will now produce a finished, error-free copy
of the proposal.

As if the above were not enough of an improvement over the conventional
typewriter, the typical word processor or can do even more. The features
available depend, of course, on the word processor selected. However, here
are some of the goodies to look for:

Global Search and Replace. Suppose that you wish to resubmit your
proposal to another company, Acme Energetics. In your original proposal,

A DO-IT-YOURSELF WORD PROCESSOR 209

you included numerous references to the original company, Jet Energetics.
A global search and replace feature allows you to instruct the computer to
replace every occurrence of a particular phrase with another phrase. For
example, we could replace every occurrence of “Acme Energetics’’ with
“Jet Energetics”. Global search and replace can be even more sophisti-
cated. In some systems, the word processor can be instructed to ask you
whether or not to make each individual change. Another variation is to
instruct the word processor to match any capitalization in the phrases
replaced.

Centering. After typing a line you may center it using a simple command.
Boldface. You may print certain words in darker type.
Underscore. You may indicate underscoring portions of the text.

Subscripts and Superscripts. You may indicate printing of subscripts (as in
ay) and superscripts (as in a2). This is extremely useful for scientific typing.

Justification. You may instruct the word processor to “justify’’ the right
hand margins of your text, so that the text always ends exactly at the end of
a line. (This is possible only if you have a printer which is capable of
spacing in increments smaller than the width of a single letter.)

Spelling Correction. There now exist a number of spelling correction
programs which compare words of your document against a dictionary
(sizes range from 20,000 to 70,000 words). If the program does not find a
match, it asks you if the word is spelled correctly and gives you an
opportunity to add the word to the dictionary. In this way the output of a
word processor can be proofread by computer.

The most natural and least expensive word processor for the owner of a
Model Il is the SCRIPSIT* program available from Radio Shack. It is not as
powerful as some of the others available, but it is quite adequate for all but
the most heavyduty document preparation. You should consider adding
word processing capability to your computer at the earliest possible date.

7.6 A DO-IT-YOURSELF WORD PROCESSOR

It is really quite impractical for you to build your own word processor. For
one thing, such a program is quite long and complicated. Moreover, if you
write in BASIC, the operation of the program will tend of be rather slow. An

* Registered trademark of the Tandy Corporation.

210 WORD PROCESSING

efficient word processor will almost always be written in machine language.
Nevertheless, in order to acquaint you with a few of the virtues of word
processing, let’s ignore what | just said and build a word processor anyway!

Our word processor will be line oriented. That is, you will type in each
line just as if you are typing it on a typewriter. At the end of each line, you
will give a carriage return by typing ENTER. The Jth line will be stored in the
string variable A$()). Let's assume you have a 16K version of the Model Ill.
This will allow us to store and edit a document of about 5 double-spaced,
typed pages. Our word processor will have 5 modes. In the first mode, we
input the text of our document. This operation will proceed exactly as if you
were typing on a typewriter. At the beginning of each line, the word proces-
sor will display a ?. You type your line after the question mark. Terminate the
line with ENTER. In order to indicate that you do not wish to type any more
lines, type SHIFT [{] B (CHR$(2)). This generates a control character that is
not otherwise used by the Model 1I.

A second mode allows us to save our document. For purposes of this word
processor, let's assume that you have a disk file. The program then saves
your document as a data file under a file name requested by the program.
The first item in a document file will always by the number of lines in the
document. This quantity will be denoted by the variable L. Next come the
lines of the document: A$(1), A$(2), . . . , AS(L) .

A third mode allows you to produce a draft version of the document. In
this mode, the document is printed with each line preceded by its line
number. The line numbers allow you to easily identify lines having errors.
Note that in order to print a document, you must save it on the disk first.

A fourth mode allows editing of the document. To correct errors, you
identify the line by number and retype the line. To end the edit session type
SHIFT B (CHR$(2)). This will bring you back to the beginning of the
program, but you will still be working on the same document. After ending
an edit session, your customary next action should be to save the document.

The fifth and final mode allows printing of a final draft of a document.
When the word processor is run, you will see the following prompt:

WORD PROCESSING PROGRAM

CHOOSE ONE OF THE FOLLOWING MODES
INPUT TEXT()
PRINT DRAFT (PD)
PRINT FINAL DRAFT (PF)

A DO-IT-YOURSELF WORD PROCESSOR 211

SAVE FILE (S)
EDIT (E)

QUIT (Q)

In response, you type one of I, PD, PF, S, E or Q, followed by ENTER. If
you choose |, the screen will be cleared and you may begin typing your
document. For the other modes, there are prompts to tell you what to do.
Here is a listing of the program.

5 DIM A$(150)
10 PRINT “WORD PROCESSING PROGRAM”’
20 PRINT “CHOOSE ONE OF THE FOLLOWING MODES”
30 PRINT , “INPUT TEXT(1)"”

40 PRINT, “PRINT DRAFT(PD)"’

50 PRINT , “PRINT FINAL DRAFT(PF)"’

60 PRINT , “SAVE FILE(S)"”

70 PRINT , “EDIT(E)"’

80 PRINT , “QUIT(Q)”

90 INPUT X$

100 IF X$="1" THEN 1000

110 IF X$="PD” THEN 2000

120 IF X$="PF”" THEN 3000

130 IF X$="S" THEN 4000

140 IF X$="F"" THEN 5000

150 IF X$="Q"” THEN 6000

160 GOTO 90: 'IF X$ DOES NOT MATCH ANY OF THE PROMPTS
1000 L=1

1010 INPUT A$(L)

1020 IF A$(L)=CHR$(2) THEN 10

1030 L=L+1

1040 IF L>150 PRINT “DOCUMENT TOO LARGE” ELSE 1010
1050 GOTO 10

2000 INPUT “DOCUMENT NAME”;Y$

2010 OPEN “1”,1,Y$

2020 INPUT #1, L

2030 FOR K=1TO L

2040 INPUT #1,A$(K)

2050 LPRINT K;*>"";A$(K)

2060 NEXT K

2070 CLOSE 1

2090 GOTO 10

3000 INPUT “DOCUMENT NAME";Y$

3010 OPEN “I”,1,Y$

3020 INPUT #1, L

3030 FOR K=1 TO L

212 WORD PROCESSING

3040 INPUT #1,A$(K)

3050 LPRINT A$(K)

3060 NEXT K

3070 CLOSE 1

3090 GOTO 10

4000 INPUT “DOCUMENT NAME”;Y$

4010 OPEN “O”,1,Y$

4020 PRINT #1, L

4030 FORK=1TO L

4040 PRINT #1, A$(K)

4050 NEXT K

4060 CLOSE 1

4070 GOTO 10

5000 INPUT “DOCUMENT NAME"; Y$

5010 OPEN “1",1,Y$

5020 INPUT #1, L

5030 FOR K=1TO L

5040 INPUT #1, A$(K)

5050 NEXT K

5060 INPUT “NUMBER OF LINE TO EDIT";Z
5070 CLS

5080 PRINT A$(Z)

5090 INPUT “TYPE CORRECTED LINE";A$(Z)
5100 IF A$(Z) <> CHR$(2) THEN 5070 ELSE 5060
5110 GOTO 10

6000 END

You should attempt to use this program to type a few letters. You will find
it a big improvement over a conventional typewriter. Moreover, it will
probably whet your appetite for the more advanced word processing features
we have described in the preceding section.

EXERCISES

1. Maodify the word processor to allow input of line width. (You will not
be able to display lines longer than 64 characters on a single line.
However, string variables may contain up to 255 characters.)

2. Modify the word processor so that you may extend a line. This modifi-
cation should allow your corrected line to spill over into the next line of
text. The program should then correct all of the subsequent lines to
reflect the addition.

3. Modify the word processor to allow deletions from lines. Subsequent
lines should be modified to reflect the deletion.

‘ Computer Games

In the last few years computer games have captured the imaginations of
millions of people. In this chapter, we will build several computer games
which utilize both the random number generator and the graphics capabili-
ties of the Model 1.

8.1 BLIND TARGET SHOOT

The object of this game is shoot down a target on the screen by moving your
cursor to hit the target. The catch is that you only have a two second look at
your target! The program begins by asking if your are ready. If so, you type
READY. The computer then randomly chooses a spot to place the target. It
lights up the spot for two seconds. The cursor is then moved to the upper left
position of the screen (the so-called “home’’ position). You must then move
the cursor to the target, based on your brief glimpse of it. You have 10
seconds to hit the target. (See Figure 8-1.)

Your score is based on your distance from the target, as measured in terms
of moves it would take to get to the target from your final position. Here is the
list of possible scores:

Distance From Target Score
0 100

1 or?2 90
3to5 70

6to 10 50

11to 15 30

16 to 20 10

over 20 0

213

214 COMPUTER GAMES

(i —

cursor- L target

. %

Figure 8-1. Blind target shoot.

You move the cursor using the keys S, D, E, and X. The cursor moves the way
these keys are arranged on the keyboard, namely:

S = move one unit to the left
D = move one to the right

E = move one unit up

X = one unit down

To input the above letters while the program is run, we need to use the
INKEY$ instruction. This instruction reads the keyboard and returns the last
key depressed on the keyboard. That is, if the last key depressed was an A
then INKEY$ will equal the string constant A",

Test Your Understanding 1.1

Assume that the program inputs the letter S via the INKEY$ instruction. What
should be the computer’s next instruction?

Here is a sample session with the game. The underlined lines are those
you type.

Ne Drosy

3tsuv

BLIND TARGET SHOOT 215

RUN

BLIND TARGET SHOOT
TO BEGIN GAME, TYPE “READY”
READY

Screen Clears. Target is displayed. See Figure 8-2.

The screen is cleared. The cursor is moved to the home position. See
Figure 8-3A. The cursor is then moved to the remembered position of the
target. See Figure 8-3B. Time runs out. See Figure 8-3C.

The score is calculated. See Figure 8-4.

e N

Figure 8-2.

ra rn
[-

Figure 8-3A. Figure 8-3B. Figure 8-3C.

216 COMPUTER GAMES

e B

YOUR DISTANCE FROM THE TARGET IS 12

N /

Figure 8-4.

Here is a listing of our program.

10 PRINT “BLIND TARGET SHOOT”

20 PRINT “TO BEGIN GAME, TYPE “READY”

30 INPUT A$:

40 IF A$=“READY” THEN 90 ELSE 10

90 CLS

100 POKE 16919,0:"SET CLOCK SECONDS TO 0

110 PRINT CHR$(15):"MOMENTARILY TURN CURSOR OFF
120 X(0)=RND(128)—1:"CHOOSE RANDOM COLUMN
130 Y(0)=RND(64)—1:"CHOOSE RANDOM ROW

140 SET(X(0),Y(0))

150 IF PEEK(16919)=2 THEN 200 ELSE 160

160 GOTO 150 : WAIT 2 SECONDS

200 RESET (X(0),Y(0)):"TURN OFF TARGET

210 PRINT CHR$(14): 'TURN CURSOR BACK ON

220 PRINT CHR$(28):"HOME CURSOR

300 POKE 16919,0:'SET CLOCK SECONDS TO 0

310 X=0,Y=0: (X,Y) ARE COORDINATES OF CURSOR
400 A$=INKEY$:'READ KEYBOARD

500 IF A$="F"’ THEN 510 ELSE 600:"CURSOR UP

510 IF Y>0 THEN 520 ELSE 1000

520 PRINT CHR$(27)

BLIND TARGET SHOOT 217

530 Y=Y-1

540 GOTO 1000

600 IF A$="X" THEN 610 ELSE 700:"CURSOR DOWN
610 IF Y<15 THEN 620 ELSE 1000

620 PRINT CHR$(26)

630 Y=Y+1

640 GOTO 1000

700 IF A$="D’"” THEN 710 ELSE 800:"CURSOR RIGHT
710 IF X<<127 THEN 720 ELSE 1000

720 PRINT CHR$(25)

730 X=X+1

740 GOTO 1000

800 IF A$="S"”” THEN 810 ELSE 1000:"CURSOR LEFT
810 IF X>0 THEN 820 ELSE 1000

820 PRINT CHR$(24)

830 X=X-1

840 GOTO 1000

1000 IF PEEK(16919)=10 THEN 1100 ELSE 400

1100 T=ABS(X—X(0))+ABS(Y—Y(0)):"T=DIST. TO TARGET
1105 CLS

1110 PRINT “YOUR DISTANCE FROM THE TARGET IS”,T
1120 IF T=0 THEN PRINT “CONGRATULATIONS!”
1130 IF T=0 THEN PRINT “YOU HIT THE TARGET.”
1140 SC=100

1150 IF D>0 THEN SC=SC—-10

1160 IF D>2 THEN SC=SC-20

1170 IF D>5 THEN SC=SC-20

1180 IF D>10 THEN SC=SC-20

1190 IF D>15 THEN SC=SC-20

1200 IF D>20 THEN SC=SC-10

1300 PRINT “YOUR SCORE 1S, SC

1400 INPUT “DO YOU WISH TO PLAY AGAIN(Y/N)”;B$
1410 IF B$=''Y”” THEN 20 ELSE 1500

1500 END

EXERCISES
1. Experiment with the above program by making the time of target
viewing shorter or longer than one second.

2. Experiment with the above program by making the time for target
location shorter or longer than ten seconds.

218 COMPUTER GAMES

3. Modify the program to keep a running total score for a sequence of ten
games.

4. Modify the program to allow for two players, keeping a running total
score for a sequence of ten games. At the end of ten games, the
computer should announce the total scores and declare the winner.

Answer to Test Your Understanding 1.1

See line 800 of the listing.

8.2 TIC-TAC-TOE

In this section, we present a program for the traditional game of tic-tac-toe.
We will not attempt to let the computer execute a strategy. Rather, we will
let it be fairly stupid and choose it's moves randomly. Moreover, we use the
random number generator to “flip” for the first move. Throughout the
program, you will be /O’ and the computer will be “X"". Here is a sample
game.

// \\
LOAD “TICTAC"”
READY

RUN

_ /

Figure 8-5.

TIC-TAC-TOE

@ TAC TOE

AS FOLLOWS:
1 2 3
4 5 6
7 8 9

THE COMPUTER WILL TOSS FOR FIRST.
YOU GO FIRST.
WHEN READY TO BEGIN TYPE ‘R’

B_\

YOU WILL BE O;THE COMPUTER WILL BE X
THE POSITIONS OF THE BOARD ARE NUMBERED

N

_/

Figure 8-6.

Test Your Understanding 2.1

How can the computer toss to see who goes first?

The computer now draws a TIC-TAC-TOE board. See Figure 8-7.

-

N

TYPE YOUR MOVE(1-9)

_ 25

_/

Figure 8-7.

219

220 COMPUTER GAMES

~ p
O

\ TYPE YOUR MOVE(1-9)
? -/

Figure 8-8.

The computer now displays your move and makes a move of its own. See
Figure 8-8. The computer will now make its move and so on until someone
wins or a tie game results.

The program below makes use of much of what we have learned. First of
all, we used the graphics command SET to draw the TIC-TAC-TOE board,
beginning in line 2000. We have structured the program so that it consists of
a series of subroutines. Lines 2000-2999 contain the instructions to draw the
board and to display the current status of the game. Lines 3000—3999
contain a subroutine which inputs your move. Lines 4000—4999 contain a
subroutine which allows the computer to decide its move. Lines 5000—5999
process the current move and decide if the game is over.

Here are the variables used in the program.

Z = 0 if it's your move and =1 if it's the computer’s

A$()(U=1,2,. . . ,9) contain either O, X, or the empty string, indicating
the current status of position |

S = the position of the current move

M = the number of moves played (including the current one)

TIC-TAC-TOE 221

We used a video display worksheet to lay out the board and to determine the
coordinates for the lines and the X's and O’s.

Here is a listing of our program.

10 DIM A$(9)

20 DIM B$(3,3,3)

30 CLS

40 PRINT “TIC TAC TOFE”

50 PRINT “YOU WILL BE O; THE COMPUTER WILL BE X"
60 PRINT “THE POSITIONS ON THE BOARD ARE NUMBERED”’
70 PRINT “AS FOLLOWS”

80 PRINT 1,2,3

90 PRINT 4,5,6

100 PRINT 7,8,9

110 PRINT “THE COMPUTER WILL TOSS FOR FIRST”
120 IF RND(0)>.5 THEN 130 ELSE 160

130 PRINT “YOU GO FIRST”

140 LET Z=0

150 GOTO 180

160 PRINT “I'LL GO FIRST”

170 LET Z=1

180 PRINT “WHEN READY TO BEGIN TYPE ‘R’ "/

190 INPUT C$

200 IF C$="R” THEN 210 ELSE 180

210 GOSUB 2000

300 FOR M=1 TO 9: '"M=MOVE #

310 IF Z=0 THEN GOSUB 3000

320 IF Z=1 THEN GOSUB 4000

330 Z=1-Z: Z=1 MEANS NEXT MOVE IS COMPUTER
340 REM DECIDE IF GAME IS ENDED

350 IF W=1 THEN 400 ELSE NEXT M

360 PRINT “THE GAME IS TIED”

400 END

2000 REM DRAW TIC TAC TOE BOARD

2010 CLS

2020 FOR J=1 TO 2

2030 FOR K=0 TO 127

2040 SET (K,16%})

2050 NEXT K

2060 NEXT }

2070 FOR J=1 TO 2

2080 FOR K=0 TO 47

222 COMPUTER GAMES

2090 SET (40%),K)

2100 NEXT K

21170 NEXT J

2115 REM DISPLAY CURRENT GAME STATUS
2120 PRINT @138,A%(1)

2121 PRINT @159,A%$(2)

2122 PRINT @180,A%$(3)

2123 PRINT @458,A%(4)

2124 PRINT @480,A%(5)

2125 PRINT @500,A%(6)

2126 PRINT @842,A%(7)

2127 PRINT @864,A%(8)

2128 PRINT @884,A%(9)

2130 RETURN

3000 PRINT @960, TYPE YOUR MOVE (1-9)”
3010 INPUT S

3020 A$(S)="0O"

3030 GOSUB 2000

3040 GOSUB 5000

3050 RETURN

4000 LET S=RND(9)

4010 IF A$(S)=""" THEN 4060 ELSE 4000
4060 A$(S)="X"

4070 GOSUB 2000

4080 GOSUB 5000

4090 RETURN

5000 IF Z=0 THEN C$="O" ELSE C$="X"
5010 IF A$(1)=A$(2) THEN 5011 ELSE 5020
5011 IF A$(1)=A%(3) THEN 5900

5020 IF A$(1)=A%(4) THEN 5021 ELSE 5030
5021 IF A$(1)=A%(7) THEN 5900 .
5030 IF A$(1)=A$(5) THEN 5031 ELSE 5040
5031 IF A$(1)=A$(9) THEN 5900

5040 IF A$(2)=A$%$(5) THEN 5041 ELSE 5050
5041 IF A$(2)=A%(8) THEN 5900

5050 IF A$(3)=A%(6) THEN 5051 ELSE 5060
5051 IF A$(3)=A%$(9) THEN 5900

5060 IF A$(4)=A$(5) THEN 5061 ELSE 5070
5061 IF A$(4)=A%(6) THEN 5900

5070 IF A$(7)=A%(8) THEN 5071 ELSE 5080
5071 IF A$(7)=A%(9) THEN 5900

5080 IF A$(3)=A%(5) THEN 5081 ELSE 5990

TIC-TAC-TOE 223

5081 IF A$(3)=A$%$(7) THEN 5900
5900 PRINT C$, “WINS THIS ROUND”:W=1
5990 RETURN

EXERCISES
1. Modify the above program so that you and the computer may play a

series of ten games. The computer should decide the champion of the
series.

2. Modify the above program to play 4 x 4 Tic-Tac-Toe.

Answer to Test Your Understanding 2.1

See lines 120-170 of the listing.

'Programming For Scientists

In this chapter, we will discuss some aspects of Model Il programming of
interest to scientists, engineers, and mathematicians. In particular, we will
introduce the library of mathematical functions which can be used in Model
Il BASIC.

9.1 SINGLE AND DOUBLE PRECISION NUMBERS

Up to this point, we have used the computer to perform arithmetic without
giving much thought to the level of accuracy of the numbers involved.
However, when doing scientific programming, it is absolutely essential to
know the number of decimal places of accuracy of the computations. So let's
begin this chapter by discussing the form in which BASIC stores and utilizes
numbers.

Actually, BASIC recognizes three different types of numeric constants:
integer, single precision, and double precision.

An integer numeric constant is an ordinary integer (positive or negative) in
the range —32768 to +32767. Here are some examples of integer numeric
constants:

7, 58,3712, =15, —598

Integer numeric constants may be stored very efficiently in RAM. Moreover,
arithmetic with integer numeric constants takes the least time. Therefore, in
order to realize these efficiencies, the Model Il recognizes integer numeric
constants and handles them in a special way.

225

226 PROGRAMMING FOR SCIENTISTS

A single-precision constant is a number having seven or fewer digits. Some
examples of single precision constants are:

5.135, —63.5785, 1234567, —1.467654E12
Vo

Note that a single-precision constant may be expressed in “scientific’” or
“floating point”’ notation, as in the final example. In such an expression,
however, you are limited to seven or fewer digits. In Model Il BASIC, single-
precision constants must lie within the ranges: Between —1 X 10% and —1
x 10738 Between 1 X 10738 and 1 x 10%. This is a limitation that is seldom
much of a limitation in practice. After all, T X 10738 equals

.00000000000000000000000000000000000001

(37 zeros followed by a 1), which is about as small a number as you are ever
likely to encounter! Similarly, 1 X 10% equals

100,000,000,000,000,000,000,000,000,000,000,000,000
(a 1 followed by 38 zeros), which is large enough for most practical calcula-
tions.

A double-precision numeric constant is a number containing more than 7
digits. Here are some examples of double-precision numbers:

2.0000000000, 3578930497594, —3946.635475495

Scientific notation may also be used to represent double-precision numbers:
use the letter D to precede the exponent. For example, the number

2.7575757575D-4

equals the double-precision constant:
.00027575757575

The number
1.3145926535D15

equals the double-precision constant:
1,314,159,265,350,000

A double-precision constant may have up to 17 digits. Double-precision
constants are subject to the same range limitations as single-precision con-
stants.

Single-precision constants occupy more RAM than do integer constants.
Moreover, arithmetic with single-precision constants proceeds more slowly
than integer arithmetic. Similarly, double-precision constants occupy even

SINGLE AND DOUBLE PRECISION NUMBERS 227

more memory and arithmetic proceeds even more slowly than with single-
precision constants. The Model HlI is programmed to recognize each of the
three types of numerical constants and to use only as much arithmetic power
as necessary,

Here are the rules for determining the type of a numerical constant:
1. Any integer in the range —32768 and 32767 is an integer constant.

2. Any number having seven or fewer digits and is not an integer constant
is a single-precision constant. Any number in scientific notation using
an E before the exponent is assumed to be a single-precision constant.
If a number has more than 7 digits in scientific notation but uses an E, it
will be truncated after the seventh digit. For example, the number

1.23456789E15
will be interpreted as the single-precision constant
1.234567E15

3. A number having more than seven digits will be interpreted as a
double-precision constant. If more than 17 digits are specified, then the
number will be truncated after the 17th digit and written in scientific
notation. For example, the number

123456789123456789
will be interpreted as the double-precision constant
1.2345678912345678D18

The type of numeric constant may be specified by means of a type
declaration tag. For instance, a numeric constant followed by % will be
interpreted as an integer constant. Any fractional part of the number will be
truncated. For example, the constant

25.87%
will be interpreted as the constant:
25

(If the constant is too large to be an integer constant, an OVERFLOW error
will occur.) A numeric constant followed by ! will be interpreted as single-
precision and truncated accordingly. For example, the constant

1.23456789!
will be interpreted as:
1.234567

228 PROGRAMMING FOR SCIENTISTS

The constant
123456789!

will be truncated to seven significant digits and written in scientific notation:
1.234567E9

A # serves as a type declaration tag to indicate a double-precision constant.
For example, the constant

1.2#
will be interpreted as the 17-digit double-precision constant
1.2000000000000000

In scientific notation, the letters E and D serve as type declaration tags.

Test Your Understanding 1.1

Write out the decimal form of the following numbers:
(@ —7.5%
(b) 4.58923450183649E12
(c) 270D-2
(d) 12.55#
(e) —1.62!

A type declaration tag supersedes the rules 1-4. in determining the type of
a numeric constant.

Let's now discuss the way BASIC performs arithmetic with the various
constant types. The variable type of the result of an arithmetic operation is
determined from the variable types of the data entering into the operation.
For example, the sum of two integer constants will be an integer constant,
provided that the answer is within the range of an integer constant. If not, the
sum will be a single-precision constant. Arithmetic operations among single-
precision constants will always yield single-precision constants. Arithmetic
constants among double-precision constants will yield a double-precision
result. Here are some examples of arithmetic:

5% + 7%

The computer will add the two integer constants 5 and 7 to obtain the integer
constant 12.

SINGLE AND DOUBLE PRECISION NUMBERS 229

4.211 + 5.2!

The computer will add the two single-precision constants 4.21 and 5.2 to
obtain the single-precision result 9.41.

3/2

Here the two constants 3 and 2 are of the integer type. However, since the
result, 1.5, is not an integer, it is assumed to be of single-precision type.
Similarly, the result of

1/3

is the single-precision constant .3333333. Similarly, the result of the double-
precision calculation

1#/3#
is the double-precision constant .33333333333333333.

Test Your Understanding 1.2

What result will the computer obtain for the following problems?
) 2/5 + 1/3

) (2/5)% + (1/3)%

) (2/5)# + (1/3)#

) (2/5)0 + (1/3)!

It is important to realize that if a number does not have an exact decimal
representation (such as 1/3 = .333 . . .) or if the number has a decimal
representation which has too many digits for the constant type being used,
then the computer will be working with an approximation to the number
rather than the number itself. The built-in errors caused by the approxima-
tions of the computer are called round-off errors. For example, consider the
problem of calculating:

13+ 1/3 +1/3

As we have seen above, 1/3 is stored as the single-precision constant
.3333333. The computer will form the sum as

.3333333 + .3333333 + .3333333 = .9999999,
So the sum has a round-off error of .0000001.

Note that BASIC makes up for these round-off errors by displaying only six
digits for single-precision constants. These digits are obtained by rounding

230 PROGRAMMING FOR SCIENTISTS

off the seven digits contained in the computer. In the case of the problem just
considered, the computer will take the answer .9999999, round it off to six
places to give 1.000000, which is the value which will be displayed. By
calculating with seven digits and displaying only six, the computer guaran-
tees that any single arithmetic operation will be accurate to six digits. This
does not mean that you will never see round-off errors. Rather, you will not
see them if their effect is confined to the seventh digit. If the effect of round-
off error spills over into the sixth digit or beyond (as might be the case if many
operations are performed, with each contributing its own round-off error),
then the displayed answer will contain some round-off error. (See the exer-
cises.)

Just as single-precision constants are rounded off to six digits for display
purposes, double-precision constants are rounded off to 16 digits. For a
single arithmetic operation, the computer’s design guarantees that a double-
precision answer will be accurate to 16 digits. Of course, if you perform
many such operations, it is possible that cumulative round-off error will
make the 16th or earlier digits inaccurate.

Test Your Understanding 1.3

What answer will be displayed for each of the problems (a) through (d) of
Test Your Understanding 1.2?

EXERCISES (answers on 295)
For each of the constants below, determine the number stored by the
computer.
1. 3
2. 2.37
3. 5.78E5
4. 2#
5. 3!
6. —4.1!
7. —4.1%
8. 3500.6847586958658!

9. 2.176D2

SINGLE AND DOUBLE PRECISION NUMBERS 231

10. —5.94E12

11. 3.5869504003837265374
12. —234542383746.21

13. —2.367D20

14. 457000000000000000!

For each of the arithmetic problems below, determine the number as stored
by the computer.

15. 1 + 45

16. 2/4

17. 3#/5#

18. 3!/5!1 + 1

19. 2#/3#

20. 2#/13# + .53#
21. 2/3

22. 2/3 + .53

23. .5E4 — .37E2

24. 1.75D3 — 1.0D-5

25. For each of the exercises 15-24, determine how the computer will
display the result.

26. Calculate 1/3 + 1/3 + 1/3 + . . . + 1/3 (10 1/3’s) using single-
precision constants. What answer is displayed? Is this answer accu-
rate to 6 digits? If not, explain why not.

27. Answer the same question as 26, but use double-precision constants
and 17 digits. -

Answers to Test Your Understanding 1.1-1.3

1.1: (@ —7

(b) 4,589,234,000,000
(c) 2.7000000000000000
(d) 12.550000000000000
(e) —1.620000

232 PROGRAMMING FOR SCIENTISTS

1.2: (a) .7333333
(b) O
(c) .73333333333333333
(d) .7333333

1.3: (a) .733333
(b) O
() .7333333333333333
(d) 733333

9.2 VARIABLE TYPES

In the previous section, we introduced the various types of numerical con-
stants: integer, single-precision, and double-precision. There is a parallel set
of types for variables.

A variable of integer type takes on values which are constants of integer
type. A variable of integer type is indicated by the symbol % after the
variable name. Thus, for example, here are some variables of integer type:

A%, BB%, A1%

In setting the value of a variable of integer type, the computer will truncate
any fractional parts to obtain an integer. For example, the instruction

10 LET A%=2.54

will set the value of A equal to the integer constant 2. Variables of integer
type are useful when keeping track of integer quantities, such as line num-
bers in a program.

A variable of single-precision type is one whose value is a single-precision
constant. A variable of single-precision type is indicated by the symbol ! after
the variable name. Here are some examples of single-precision variables:

Kl, W71, ZX!

In setting the value of a single-precision variable, all digits beyond the
seventh are truncated. Thus, for example, the instruction

20 LET A!=1.23456789
will set A! equal to 1.234567.

VARIABLE TYPES 233

If a variable is used without a type designator, then the computer will
assume that it is a single-precision variable. Thus, all of the variables we
have used until now have been single-precision variables. These are, by far,
the most commonly used variables.

A double-precision variable is a variable whose value is a double-preci-
sion constant. Such variables are useful in computations where great numeri-
cal accuracy is required. A double-precision variable is indicated by the tag
after the variable name. Here are some examples of double-precision
variables:

B#, Cl#, E#

In setting values of double-precision variables, all digits after the seventeenth
are truncated.

Note that the variables A%, A!l, A#, and A$ are four distinct variables. You
could, if you wish, use all of them in a single program.

Test Your Understanding 2.1

What values are assigned to each of these variables?

(@) A# = 1#
(b) C% = 5.22%
(c) BB! = 1387.5699

Using type declaration tags %, !, and # is a bit of a nuisance since they
must be included whenever the variable is used. There is a way around this
tedium, however. The instructions DEFINT, DEFSNG, and DEFDBL may be
used to define the types of variables for an entire program, so that type
declaration tags need not be used. For example, consider the instruction:

100 DEFINT A

It specifies that every variable which begins with the letter A (such as A, AB,
A1) should be considered as a variable of integer type. Here are two varia-
tions of this instruction:

200 DEFINT A,B,C
300 DEFINT A-G

234 PROGRAMMING FOR SCIENTISTS

Line 200 defines any variables beginning with A,B, or C to be of integer type.
Line 300 defines any variables beginning with any of the letters A through G
to be of integer type. The DEFINT instruction is usually used at the beginning
of a program so that the resulting definition is in effect throughout the
program.

The instruction DEFSNG works exactly like DEFINT and is used to define
certain variables to be single-precision. The instructions DEFDBL and DEF-
STR also work the same way for double-precision and string variables,
respectively.

Note that type declaration tags override the DEF instructions. Thus, for
example, suppose that the variable A was defined to be single-precision via a
DEFSNG instruction at the beginning of the program. It would be legal to use
A# as a double-precision variable, since the type declaration tag # would
override the single-precision definition.

WARNING. Here is a mistake that is easy to make. Consider the following
program:

10 LET A#=1.7
20 PRINT A#
30 END

This program seems harmless enough. We set the double-precision variable
A# to the value 1.7 and then display the result. You probably expect to see
the display:

1.700000000000000
If you actually try it, the display will read:
1.700000047683716

What went wrong? Well, it has to do with the way the internal logic of the
computer works and the way in which numbers are represented in binary
notation. Without going into details, let us merely observe that the computer
interprets 1.7 as a single-precision constant. When this single-precision
constant is converted into a double-precision constant (an operation which
makes use of the binary representation of 1.7), the result coincides in its first
16 digits with the number given above. Does this mean that we must worry
about such craziness? Of course not! What we really should have done in the
first place is to write 1.7# instead of 1.7. Then the display will be exactly as
we expected it to be.

MATHEMATICAL FUNCTIONS IN BASIC 235

EXERCISES (answers on 296)

Caiculate the following quantities in single-precision arithmetic:
1. (5.87 + 3.85 — 12.07)/11.98
2. (15.1 + 11.9)[4/12.88
3. (32485 + 9826)/(321.5 — 87.6[2)
4.—-6. Rework exercises 1.—3. using double-precision arithmetic.

7. Write a program to determine the largest integer less than or equal to X,
where the value of X is supplied in an INPUT statement.

Determine the value assigned to the variable in each of the following
exercises.

8. A% = =5
9. A% = 4.8
10. A% = —11.2
1. Al = 1.78

12, A# = 1.78#

13. Al = 32.653426278374645237
14. Al = 4.25234544321E21
15. Al = —1.23456789E-32

16. A# = 3.283646493029273646434
17. A# = =5.744#

Answers to Test Your Understanding 2.1

(a) 1.0000000000000000
(b) 5
(c) 1387.569

9.3 MATHEMATICAL FUNCTIONS IN BASIC

In performing scientific computations, it is often necessary to make use of a
wide variety of mathematical functions, including the natural logarithm, the
exponential, and the trigonometric functions. The Model Il has a wide range

236 PROGRAMMING FOR SCIENTISTS

of such functions ““built-in.”” In this section, we will describe these functions
and their use.

All mathematical functions in BASIC work in a similar fashion. Each
function is identified by a sequence of letters (SIN for sine, LOG for natural
logarithm, and so forth). To evaluate a function at a number X, we write X in
parentheses after the function name. For example, the natural logarithm of X
is written LOG(X). The program will use the current value of the variable X
and will evaluate the natural logarithm of that value. For example, if X is
currently 2, then the computer will calculate LOG(2).

Instead of the variable X, we may use any variable of any type: integer,
single-precision, or double-precision. Or we may use a numerical constant
of any type, for example, SIN(.435678889658595) asks for the sine of a
double-precision numerical constant. Note, however, that with only a few
exceptions (see below), all BASIC functions return a single-precision result,
accurate to six digits. Thus, for example, the above value of the sine function
will be computed as:

SIN(.435678889658595) = .422026

BASIC allows you to evaluate a function at any expression. For example,
consider the expression X[2 + Y[2 — 3*X. Itis perfectly acceptable to call for
calculations such as:

SIN(X[2 + Y[2 — 3*X)

The computer will first evaluate the expression X[2 + Y[2 — 3*X using the
current values of the variables X and Y. For example, if X = 1 and Y = 4,
then X[2 + Y[2 — 3*X = 12 + 42 — 3*1 = 13. The above sine function will
be evaluated as SIN(13) = .420167.

Trigonometric Functions
Model It has the following trigonometric functions available.

SIN(X) = THE SINE OF THE ANGLE X
COS(X) = THE COSINE OF THE ANGLE X
TAN(X) = THE TANGENT OF THE ANGLE X

Here the angle X is expressed in terms of radian measure. In this measure-
ment system, 360 degrees equals two radians. Or one degree equals
.017453 radians and one radian equals 57.29578 degrees. So if you want to

MATHEMATICAL FUNCTIONS IN BASIC 237

calculate trigonometric functions with the angle X expressed in degrees, use
these functions:

SIN(57.29578*X)
COS(57.29578*X)
TAN(57.29578*X)

The three other trigonometric functions, namely SEC(X), CSC(X), and
COT(X), may be computed from the formulas:

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = SIN(X)/COS(X)

Here, as above, the angle X is in radians. To compute these trigonometric
functions with the angle in degrees, replace X by

57.29578*X

Model 11l BASIC includes only one of the inverse trigonometric functions,
namely the arctangent, denoted ANT(X). This function returns the angle
whose tangent is X. The angle returned is expressed in radians. To compute
the arctangent with the angle expressed in degrees, use the function

57.29578*ATN(X)

Test Your Understanding 3.1

Write a program which calculates sin 45°, cos 45°, and tan 45°,

Logarithmic and Exponential Functions
BASIC allows you to compute eX via the exponential function
EXP(X)
Furthermore, you may compute the natural logarithm of X via the function

LOG(X)

238 PROGRAMMING FOR SCIENTISTS

You may calculate logarithms to base b using the formula:
LOG,(X)=LOG(X)/LOG(b)

Example 1. Prepare a table of values of the natural logarithm function for
values X = .01, .02, .03, . . . , 100.00. Output the table on the printer.

Solution. Here is the desired program. Note that we have prepared our table
in two columns, with a heading over each column.

10 LPRINT “X”, “LOG(X)"”

20 J=.01

30 LPRINT }, LOG())

40 IF }=100.00 THEN END ELSE 50
50 j =j+.01

60 GOTO 30

100 END

Test Your Understanding 3.2

Write a program which evaluates the function f(x) = sin x/(log x + €% for x =
45 and x = .7.

Example 2. Carbon dating is a technique for calculating the age of ancient
artifacts by measuring the amount of radioactive carbon-14 remaining in the
artifact, as compared with the amount present if the artifact were manufac-
tured today. If r denotes the proportion of carbon-14 remaining, then the age
A of the object is calculated from the formula:

= —(1/.00012)*LOG(r)
Suppose that a papyrus scroll contains 47% of the carbon-14 of a piece of
papyrus just manufactured. Calculate the age of the scroll.

Solution. Here r = .47 so we use the above fomula:

10 LET R=.47

20 LET A=—(1/.00012)*LOG(R)

30 PRINT “THE AGE OF THE PAPYRUS IS”, A, “YEARS"”
40 END

Powers

Model 11l BASIC has a square-root function, denoted SQR(X). As with all the
functions considered so far, this function will accept an input of any type and

MATHEMATICAL FUNCTIONS IN BASIC 239

will output a single-precision constant. For example, the instruction
10 LET Y=SQR(2.00000000000000000)

will set Y equal to 1.414214, only six digits of which can be displayed.

Actually, the exponentiation procedure which we learned in Chapter 2
will work equally well for fractional and decimal exponents and therefore
provides an alternative method for extracting square roots. Here is how to
use it. Taking the square root of a number corresponds to raising the number
to the 1/2 power. So we may calculate the square root of X as

X[(1/2)

Note that the square-root function SQR(X) operates with greater speed and
-hence is preferable. The alternate method is more flexible, however. For
instance, we may extract the cube root of X as

X[(1/3)
or we may raise X to the 5.389 power as follows:

X[5.389

Greatest Integer, Absolute Value, and Related Functions

Here are several functions which are extremely helpful. The greatest integer
less than or equal to X is denoted INT(X). For example, the largest integer
less than or equal to 5.46789 is 5, so

INT(5.46789) = 5
Similarly, the largest integer less than or equal to —3.4 is —4 (on the number
line, —4 is the first integer to the left of —3.4). Therefore,

INT(—=3.4) = —4

Note that the INT function throws away the decimal part of a positive
number, although this description does not apply to negative numbers. To
throw away the decimal part of a number, we use the function FIX(X). For
example,

FIX(5.46789) = 5,
FIX(—3.4) = -3

The absolute value of X is denoted ABS(X). Recall that the absolute value
of X is X itself if X is positive or 0 and equals —X if X is negative. Thus,

240 PROGRAMMING FOR SCIENTISTS

ABS(9.23) = 9.23,

ABS(0) = 0,

ABS(—4.1) = 4.1

Just as the absolute value of X “removes the sign” of X, the function

SGN(X) throws away the number and leaves only the sign. Thus, for
example,

SGN(3.4) = +1,
SGN(—5.62) = —1

Conversion Functions

Model 11l BASIC includes functions for conversion of a number from one type
to another. For example, to convert X to integer type, use the function
CINT(X). This function will truncate the decimal part of X. Note that the
resulting constant must be in the integer range —32768 to 32767. Otherwise
an error will be produced.

To convert X to single-precision, use the function CSNG(X). If X is of
integer type, then CSNG(X) will cause the appropriate number of zeroes to
be appended to the right of the decimal point to convert X to a single-
precision number. If X is double-precision, then X will be rounded to seven
digits.

To convert X to double-precision, use the function CDBL(X). This function
appends the appropriate number of zeros to X to convert it into a double-
precision number.

EXERCISES (answers on 297)

Calculate the following quantities:

. elod

; 6—2‘376

. log .0000975

1
2
3. log 58
4
5. sin 3.7

DEFINING YOUR OWN FUNCTIONS (DISK USERS ONLY) 241

cos 45

arctan 1

tan .682

arctan 2 (express in degrees)
logip 18.9

1T. Make a table of values of the exponential function e* for x = —5.0,
-4.9,...,0,.1,. . .,5.0.

12. Evaluate the function

S v ® N o

3x"log(5x) + e'~!8tan x

forx = 1.7, 3.1, 5.9, 7.8, 8.4 and 10.1.
13. Write a BASIC program to graph the function y = sin x for x from 0 to
6.28. Use an interval of .05 on the x-axis.

14. Write.a BASIC program to graph the function y = ABS(x).

15. Write a program to calculate the fractional part of x. (The fractional
part of x is the portion of x which lies to the right of the decimal point.)

Answers to Test Your Understanding

3.1: 10 LET A=57.2958
20 PRINT SIN(45*A), COS(45*A) , TAN(45*A)
30 END

3.2: 10 DATA .45,.7
20 FOR J=1TO 2
30 READ A()
40 PRINT SIN(AD/(LOGAY) +EXPA())
50 NEXT)
60 END

9.4 DEFINING YOUR OWN FUNCTIONS (DISK USERS
ONLY)

In mathematics, functions are usually defined by specifying one or more
formulas. For instance, here are formulas which define three functions f(x),

242 PROGRAMMING FOR SCIENTISTS

g(x) and h(x):
fix) = (x2 — 1)1
gx) = 3x> — 5x — 15
hix) = 1/(x — 1)

Note that each function is named by a letter, namely f, g, and h, respec-
tively. Disk BASIC allows you to define functions like these and to use them
by name throughout your program. To define a function, you use the DEF FN
instruction. This instruction is used before the first use of the function in the
program. For example, to define the function f(x) above, we could use the
instruction:

10 DEF FNFX)=(X[2-1)[(1/2)
To define the function g(x) above, we use the instruction:
20 DEF FNG(X)=3*X[2—-5*X~-15

Note that in each case, we use a letter (F or G) to identify the function.
Suppose that we wish to calculate the value of the function F for X = 12.5.
Once the function has been defined, this calculation may be described to the
computer as FNF(12.5). Such calculations may be used throughout the
program and save the effort of retyping the formula for the function in each
instance.

You may use function names from A to Z. Moreover, in defining a
function, you may use other functions. For example, if FNF(X) and FNG(X)
are as defined above, then we may define their product by the instruction:

30 DEF FNC(X)=FNF(X)*FNG(X)

All of the functions above were functions of a single variable. However,
BASIC allows functions of several variables as well. They are defined using
the same procedure as above. For example, to define the function A(X,Y,Z,)
= X2 + Y? + 72, the instruction:

40 DEF FNA(X,Y,Z)=X[2+Y[2+Z][2

You may even allow one of the variables to be a string variable. For
example, consider the following function:

50 DEF FNB(A$)=LEN(A$)

DEFINING YOUR OWN FUNCTIONS (DISK USERS ONLY) 243

This function computes the length of the string A$.

Finally, functions may produce a string as a function value. The name for
such a function must end in $. For example, consider the following function:

60 DEF FND$(A$,))=LEFT(A$,))

This function of the two variables A$ and J will compute the string consisting
of the] leftmost characters of the string A$. For example, suppose that A$ =
““computer” and) = 3. Then

FND$(A$,))="com”

EXERCISES (answers on 298)

Write instructions to define the following functions:

1.
. 1/x — 3x

. 5em

x? — 5x

2
3
4. x log(x/2)
5.
6
7
8

tan x/x

. COs{2x) + 1
. The string consisting of the right 2 characters of C$.

. The string consisting of the 4 middle characters of A$ beginning with

the Jth character.

The middle letter of the string B$. (Assume that B$ has an odd number
of characters.)

. Write a program which tabulates the value of the function in exercise

3forx=0,.1,.2,.3,.4,. .. ,10.0.

10

COMPUTER-GENERATED
(EXPERIMENTS

10.1 SIMULATION

Simulation is a powerful analysis tool by means of which you can use your
computer to perform experiments to solve a wide variety of problems which
might be too difficult to solve otherwise.

To describe what simulation is, let us proceed from a concrete example.
Suppose that you own a dry cleaning store. At the moment, you have only
one sales person behind the counter, but you are considering adding a
second. Your question is: Should you hire the extra person? Being an
analytical person, you have collected the following data. Traffic through
your store varies by the hour. However, you have kept a log for the past
month and are able to estimate the average number of potential customers
arriving in the shop, according to the following table:

7-8 A.M. 30
8-9 15
9-10 6
10-11 3
11-12 8
12—-1 P.M. 25
1-2 9
2-3 38
3-4 12
4-5 12
5-6 35
67 22

245

246 COMPUTER-GENERATED EXPERIMENTS

You have observed that you are currently paying a penalty for not having a
second salesperson: If there is too long a wait, then a customer will go
somewhere else to have their clothes cleaned! In your observations, you
have noted that, on the average, of people entering the shop, a certain
percentage will leave, depending on the size of the line. The likelihood that
a person leaves depends on whether it is a drop-off or a pick-up. Those
picking up clothes are more likely to wait in line. Here are the results of your
observations:

line size % leaving (drop-off) % leaving (pick-up)

0 0 0
1-3 15 5
4-6 25 15
7-10 60 35

11-15 80 50

The average time to wait on a person is four minutes and the size of the
average cleaning bill is $5.75. The cost of hiring the new salesperson is 200
dollars per week. Assuming that the salespersons work continuously while
the shop is open, what action should you take?

This problem is fairly typical of the problems which arise in business. It is
characterized by data accumulated from observations and unpredictable
events. (When will a given customer arrive? Will he encounter a long line?
Will he be the impatient sort who walks out?) Nevertheless, you must make a
decision based on the data you have. How should you proceed?

One technique is to let your computer ““imitate’”” your shop. That is, let the
computer play a game which consists of generating customers at random
times. These customers enter the “’shop’’ and, on the basis of the current
line, decide whether or not to stay. The computer will keep track of the line,
the number of customers who leave, the revenue generated, and the revenue
lost. The computer will keep up the simulated traffic for an entire “"day’” and
present you with the results of the daily activity. But, you might argue, the
computer data might not be valid. Suppose that it generates a “‘non-typical”
day. Might not its data be biased? This could, indeed, happen. In order to
avoid this pitfall, we run the program for many simulated days and average
the results. The process we have just described is called simulation.

In the remainder of this chapter, we will provide a glimpse of the power of
simulation and provide you with enough of an idea to build simple simula-
tions of your own.

3iouy

SIMULATION OF A DRY CLEANER 247

First, however, let us handle some of the mathematical ideas we will need
in the next section. The required notions center around the following ques-
tion: How do we make the computer imitate an unpredictable event? Con-
sider, for example, the irate customer who arrives to drop off cleaning and
encounters a line of four people ahead of him. According to the above table,
the customer will leave 25% of the time and remain in line 75% of the time.
How do you let the computer make the decision for the customer?

Easy! Just use the random number generator. Recall that RND(0) generates
a random nurmber between O (included) and 1(excluded). Suppose we ask
how often RND(0) is larger than .25. If, indeed, the numbers produced by
the random number generator show no biases, approximately 75% of the
numbers produced will lie in the given interval since this interval occupies
75% of the length of the interval from O to 1. Thus, we let our customer
decide as follows: If RND(0) > .25 then the customer joins the line; other-
wise, the customer walks out in a huff. We will employ this simple idea
several times in designing our simulation.

10.2 SIMULATION OF A DRY CLEANER

Let us build a simulation to solve the problem stated in the preceding
section. We must decide on techniques for imitating each of the important
aspects of the problem.

Since the problem calls for analysis of actions as time passes, we must,
somehow measure the passage of (simulated) time. To do this, we will use
the variables TH (time-hours) and TM (time-minutes) to keep track of the
current time. In order to avoid a problem with AM and PM, let’s use the
military time system, in which the PM hours are denoted 13 through 24.
Thus, for example, 1:15 PM is denoted 13:15. As our unit of simulated time,
let's use four minutes, the time it takes to serve one customer. Then our
program will look at time in four minute segments. During each 4 minute
segment, it will take certain actions and then advance to the next time
segment by adjusting TH and TM. Let us do the time advance in a subroutine
at line 1000. Here is the subroutine:

1000 REM TIME ADVANCE

1010 LET TM=TM+4

1020 IF TM >=60 THEN 1030 ELSE 1100
1030 TM=TM-60: TH=TH+1

1100 RETURN

248 COMPUTER-GENERATED EXPERIMENTS

Let us store the statistical data on customer arrivals in the array A(J) | = 7,8,
. . ., 18). That is A(7) will equal the number of customers arriving between
7 and 8 AM, A(8) the number arriving between 8 and 9 AM, . . ., A(18),
then number arriving between 6 and 7 PM. The first action of the program is
to set up this array:

10 DIM A(18)

20 DATA 30,15,6,3,8,25,9,8,12,12,35,22
30 FOR }J=7TO 18

40 READ A())

50 NEXT }

The next step will be to read in the customer “impatience data.” Let B(K) be
the percentage of drop-off customers who leave when the line is K people
long. Let C(K) be the corresponding statistic for pick-up customers. Here is
the portion of the program which sets up these arrays.

100 DIM B(20), C(20)

110 DATA 0,0,.15 ,.05,.25,.15,.60,.35,.80,.50
115 READ B(0),C(0)

120 READ B(1),C(1)

130 B(2)=B(1): B(3)=B(1)

140 C(2)=C(1): C(3)=C(1)

150 READ B(4), C(4)

160 B(5)=B(4): B(6)=B(4)

170 C(5)=C(4): C(6)=C(4)

180 READ B(7), C(7)

190 B(8)=B(7): B(9)=B(7): B(10)=B(7)
200 C(8)=C(7): C(9)=C(7): C(10)=C(7)
210 READ B(11), C(11)

220 FOR J=12 TO 15

230 B())=B(11): C(H=C(1)

240 NEXT J

The next step in our program is to set the clock at the beginning of a day.
Moreover, the length of the waiting line, indicated by the variable L, is set
equal to 0, the total of lost cash, indicated by the variable LC, and the total
sales for the day, indicated by the variable CF (cash flow) are both set equal
to 0.

300 TH=7: TM=0
310 L=0

320 LC=0

330 CF=0

SIMULATION OF A DRY CLEANER 249

At the beginning of each hour, the program will schedule the arrival of the
customers. Namely for the Jth hour, it will schedule the arrival of A()
customers. Each customer will be given a time of arrival, in minutes past the
hour. The computer will choose this arrival time using the random number
generator. In the absence of any other information, let's assume that the
customers spread themselves out in a random, but uniform manner, over the
hour. The way we will handle things inside the computer is as follows. At the
beginning of each simulated hour, we set up an array D(T) with 15 entries,
one for every four minute period in the hour. This array will indicate how
many customers arrive in each four minute interval. For example, if D(10) =
4, then four customers will arrive between 36 and 40 minutes past the hour
(that is, in the tenth four minute interval in the hour). The program will
randomly place each of the A()) customers in four minute intervals using the
random number generator. Our program will test the time for the beginning
of an hour. If so, it will go to a subroutine at 1200 which schedules the arrival
of the customers for the hour.

11 DIM D(15)
410 IF TM=0 THEN GOSUB 1200

1200 FOR S=1TO 15
1210 D(S)=0

1220 NEXT S

1230 FOR I=1 TO A(TH)
1240 X=RND(15)

1250 D(X)=D(X)+1
1260 NEXT I

1270 RETURN

The program now progresses through the simulated hour in four minute
segments. For the Tth four minute segment, it causes D(T) customers to arrive
at the shop. Let’s assume that of these customers, half are drop-off and half
are pick-up. The computer lets these customers each look at the line and
decide whether to leave or stay. If a customer decides to stay, then he is
added to the line. If the customer decides to go, the computer makes a note
of the $5.75 cash flow lost. The lost cash flow will be stored in the variable
LC. After the customers are either in line or have left, the salesperson services
a customer (remember, one customer is serviced every 4 minutes) and $5.75
is added to the cash flow, which is tallied in the variable CF. Finally, the time
is updated and the entire procedure is repeated for the next four minute
segment. Let’s be rather hard-hearted. If there are any customers left in line at
closing time, we do not wait on them and add their business to that lost. This
rather odd way of doing business is appropriate since we are analyzing the
need for more personnel and any overtime should be considered in that

250 COMPUTER-GENERATED EXPERIMENTS

analysis. Here is the portion of the program which accomplishes these tasks
of the simulation.

420 T=TM/4+1:T=# OF 4 MIN. SEGMENT

430 FOR J=1 TO D(T)

440 LET C=RND(2):"1=DROP-OFF, 2=PICK-UP
450 IF C=1 THEN 500 ELSE 600

490 REM 500-560 DOES DROP-OFF CUST. STAY?
500 IF RND(0) > B(L) THEN 550 ELSE 510

510 LC=LC+5.75: "CUSTOMER LEAVES

520 GOTO 690

550 L=L+1:CUSTOMER JOINS LINE

560 GOTO 690

590 REM 600-660 DOES PICK-UP CUST. STAY?
600 IF RND(0) > C(L) THEN 640 ELSE 610

610 LC=LC+5.75:"CUSTOMER LEAVES

620 GOTO 690

640 L=L+1:"CUSTOMER JOINS LINE

690 NEXT }

700 IF L=0 THEN 710 ELSE 701:’"THERE WERE NO CUSTOMERS
701 L=L—1WAIT ON CUSTOMER

705 CF=CF+5.75 : "TAKE CUSTOMER’S MONEY
710 GOSUB 1000 : "'UPDATE TIME

720 IF TH=19 THEN 1500 ELSE 800

730 REM TH=19 IS THE END OF THE DAY

800 GOTO 400:"GO TO NEXT 4 MINUTE SEGMENT
1500 PRINT “END OF DAY STATISTICS”

1510 PRINT ““BUSINESS LOST”, LC+L*5.75

1520 PRINT “CASH FLOW”, CF

1530 PRINT “LINE AT CLOSING"”, L

200 END

Our program simulates the activities of a single day. In order to average the
statistics over a number of days let’s set up a loop which repeats the above
program for a certain number of days. Let's make an arbitrary choice of ten
days repetition. Let the variable D denote the day number. Let the variable
TL denote the total amount of business lost and let TF denote the total cash
flow. These two variables will be updated at the end of each day. Let us
denote the day number by E then our change of day will be controlled by a
loop in lines 290 and 1700:

290 FOR E=1to 10
1700 NEXT E

SIMULATION OF A DRY CLEANER 251

As statistics, let us compute the average of the revenue lost (LC), cash flow
(CF), and the line length at closing (L). We keep the totals of these three
variables for all the days up to the present in the variables L1, C1, and CL,
respectively. We modify lines 1500-1530 as follows:

1500 LET L1=LC+L1+L*5.75
1510 LET C1=CF+C1
1520 LET CL=L+CL

Lines 1800-1850 compute the averages of L1, C1, and CL and display the
results.

1800 LET L1=L1/10

1810 LET C1=C1/10

1820 LET CL=CL/10

1830 PRINT “AVERAGE CASH LOST PER DAY”, L1
1840 PRINT ‘“ AVERAGE CASH FLOW PER DAY”, C1
1850 PRINT “AVERAGE LINE LENGTH AT CLOSING”,L

Finally, let us make sure that the random number generator is started at a
random point by inserting a RANDOM instruction at the beginning of the
program.

5 RANDOM

This completes the construction of our program. We have carried out the
construction of the program in detail so you could see how a reasonable
lengthy program is developed. However, our program is in a rather poor
form to read, so let’s recopy it in order.

5 RANDOM

10 DIM A(18)

11 DIM D(15)

20 DATA 30,15,6,3,8,25,9,8,12,12,35,22
30 FOR J=7 TO 18

40 READ A())

50 NEXT J

100 DIM B(20), C(20)

110 DATA 0,0,.15,.05,.25,.15,.60,.35,.80,.50
115 READ B(0), C(0)

120 READ B(1),C(1)

130 B(2)=B(1): B(3)=B(1)

252 COMPUTER-GENERATED EXPERIMENTS

140 C(2)=C(1): C(3)=C(1)

150 READ B(4), C(4)

160 B(5)=B(4): B(6)=B(4)

170 C(5)=C(4): C(6)=C(4)

180 READ B(7), C(7)

190 B(8)=B(7): B(9)=B(7): B(10)=B(7)

200 C(8)=C(7): C(9)=C(7): C(10)=C(7)

210 READ B(11), C(11)

220 FOR J=12TO 15

230 B())=B(11): C()=C(11)

240 NEXT J

290 FOR E=1TO 10

300 TH=7: TM=0

310 L=0

320 LC=0

330 CF=0

410 IF TM=0 THEN GOSUB 1200

420 T=TM/4+1

430 FOR J=1 TO D(T)

440 LET C=RND(2):"1=DROP-OFF, 2=PICK-UP
450 IF C=1 THEN 500 ELSE 600

490 REM 500-560 DOES DROP-OFF CUST. STAY?
500 IF RND(0) > B(L) THEN 550 ELSE 510

510 LC=LC+5.75: "CUSTOMER LEAVES

520 GOTO 690

550 L=L+1CUSTOMER JOINS LINE

560 GOTO 690

590 REM 600-660 DOES PICK-UP CUST. STAY?
600 IF RND(0) > C(L) THEN 640 ELSE 610

610 LC=LC+5.75:"CUSTOMER LEAVES

620 GOTO 690

640 L=L+1:"CUSTOMER JOINS LINE

690 NEXT J

700 IF L=0 THEN 710 ELSE 701:"THERE WERE NO CUSTOMERS
701 L=L—1WAIT ON CUSTOMER

705 CF=CF+5.75 : 'TAKE CUSTOMER’S MONEY
710 GOSUB 1000 : "UPDATE TIME

720 IF TH=19 THEN 1500 ELSE 800

730 REM TH=19 IS THE END OF THE DAY
800 GOTO 400:"GO TO NEXT 4 MINUTE SEGMENT
1000 REM TIME ADVANCE

1010 LET TM=TM+4

1020 IF TM = 60 THEN 1030 ELSE 1100

SIMULATION OF A DRY CLEANER 253

1030 TM=TM-60: TH=TH+1

1100 RETURN

1200 FOR S=1 TO 15

1210 D(S)=0

1220 NEXT S

1230 FOR 1=1 TO A(TH)

1240 X=RND(15)

1250 D(X)=D(X)+1

1260 NEXT I

1270 RETURN

1500 LET L1=LC+L1+L*5.75

1510 LET C1=CF+C1

1520 LET CL=L+CL

1700 NEXT E

1800 LET L1=L1/10

1810 LET C1=C1/10

1820 LET CL=CL/10

1830 PRINT “AVERAGE CASH LOST PER DAY”, L1
1840 PRINT ““AVERAGE CASH FLOW PER DAY”, C1
1850 PRINT “AVERAGE LINE LENGTH AT CLOSING”, L
2000 END

In order to see what is happening at our hypothetical dry cleaning establish-
ment, we run our program. Below are the results of five program runs.

RUN #1

AVERAGE CASH LOST PER DAY 258.75
AVERAGE CASH FLOW PER DAY 805.00
AVERAGE LINE AT CLOSING 9
RUN #2

AVERAGE CASH LOST PER DAY 270.25
AVERAGE CASH FLOW PER DAY 793.50
AVERAGE LINE AT CLOSING 3
RUN #3

AVERAGE CASH LOST PER DAY 264.50

AVERAGE CASH FLOW PER DAY 799.25
AVERAGE LINE AT CLOSING 4

254 COMPUTER-GENERATED EXPERIMENTS

RUN #4

AVERAGE CASH LOST PER DAY 270.83
AVERAGE CASH FLOW PER DAY 792.93
AVERAGE LINE AT CLOSING 6
RUN #5

AVERAGE CASH LOST PER DAY 287.50
AVERAGE CASH FLOW PER DAY 776.25
AVERAGE LINE AT CLOSING 4

We note several interesting facts about the output. First of all note that the
runs are not all identical. This is because the RANDOM instruction creates
new random customer arrival patterns for each run. Second, note the small
percentage error in the data from the various runs. We seem to have discov-
ered a statistical pattern which persists from run to run.

Finally, and most significantly, note that we are losing several hundred
dollars per day in business because of our inability to service customers. At
200 dollars per week, the additional salesperson is a bargain! Even a single
day’s lost sales is enough to pay the salary. It appears as if we should add the
extra salesperson. Actually, a bit more caution is advisable. We were dealing
with cash flow rather than profit. In order to make a final decision, we must
compute the profit generated by the additional sales. For example, if our
profit margin on plant costs (exclusive of sales) is 40% then the profit
generated by the extra sales will clearly amount to more than $200 per week
and the extra salesperson should be hired.

The above example is fairly typical of the way in which simulation may be
applied to analyze even fairly complicated situations in a small business. We
will present some further refinements in the exercise set.

EXERCISES

1. Run the above program for ten consecutive runs and record the data.
Does your data come close to the data presented above? (Remember:
Due to the RANDOM instruction, you cannot expect to duplicate the
given results exactly. Only within statistical error.)

2. Suppose that customers become more impatient and the likelihood of
leaving is doubled in each case. Redo the experiment to determine the
lost cash flow in this case.

SIMULATION OF A DRY CLEANER 255

3. Suppose that customers become more patient and the likelihood of
leaving is cut in half in each case. Redo the experiment to determine
the lost cash flow in this case.

4. Consider the original set of experimental data. However, now assume
that the second salesperson has been hired. Redo the experiment to
determine the average lost cash flow and the average line at closing.

5. Modify the program given so that you may calculate the average
waiting time for each customer.

11

Some Other Applications of

‘Your Computer

In this chapter, we will discuss several additional applications of your
computer. We shall content ourselves with an overview of these applications
since a complete discussion would carry us well beyond the scope of this
book. However, these applications are extremely important and you should
be aware of them.

11.1 COMPUTER COMMUNICATIONS

At some point, you will want to connect your computer to external devices
(called peripheral devices). There are many such devices available and more
are being introduced at a frightening pace. At the moment, such devices
include graphics screens, light pens, plotters, voice synthesizers, music
synthesizers, and temperature probes, to mention only some of the possibili-
ties. Moreover, you will want the capability of connecting your computer to
other computers, so that you may interchange programs and data with other
users.

In this section, we present some of the fundamentals of computer com-
munications. Our purpose is not to make you an expert, but rather to
introduce you to the ideas and the vocabulary so that you may read and
understand the articles in the various computer journals.

In most cases, it is not possible to connect two electronic devices directly
to one another. Rather, it is necessary to have an intermediate device which
translates the electronic signals of one into a form intelligible to the other.
Such an intermediate device is called an interface; the task of electronically

257

258 SOME OTHER APPLICATIONS OF YOUR COMPUTER

mating the devices is called interfacing. For microcomputer interfacing,
there is a standard interface device called an RS232-C interface. This device
allows two devices to communicate with one another via a 25 wire cable,
with each of the wires carrying a signal having a standardized meaning. You
may purchase an RS232-C interface for your Model Il computer at your local
Radio Shack Computer Center. Using this interface, you can connect your
Model IIl to a wide variety of peripheral equipment, sold by Radio Shack and
by outside vendors as well.

Before we go any further, a word of caution: Many devices are advertised
as having a built-in R$232-C interface or as being “RS232-C compatible.” It
may require some hard work to make them operate with your computer!
There are several reasons for this: Although all RS232-C interfaces utilize a
25 wire cable, not all the wires are necessarily used. Therefore, your com-
puter (or rather your programs) may require a signal which is not being sent
or is not sending a signal required at the other end. A further problem lies in
the confusion of connecting data sets to data terminals. There are two
conventions for wiring RS232-C interfaces—one for data terminals and one
for data sets. (Never mind what these are.) In order to connect two devices
via an RS-32-C interface, one must be a data terminal and one must be a
data set. If both are of the same variety (say both computers), then it will be
necessary to connect the interfaces on the devices by means of a special
cable. The moral of all this is: when purchasing peripheral devices to
connect to your computer, proceed with caution. Be sure your supplier is
willing to help you or at least to exchange the device if you cannot make it
work.

Our purpose in this section is to introduce you to some of the ideas and the
vocabulary of computer communications. To begin with, let's discuss in
somewhat greater detail the form in which the computer stores data.

A binary number is a string of 0’s and 1’s. Here is a typical example of a
binary number:

101110110111010100000011111

A binary digit (that is, a 0 or a 1) is called a bit. A string of 8 consecutive
bits is called a byte. Here are examples of two bytes:

10011001 11100011

Within the computer, all data and instructions are written in terms of
binary numbers, with each byte corresponding to a character. (Except for
rather specialized applications, you do not need to concern yourself with the
precise manner in which characters are translated into binary.) Because the
basic unit of data within your machine consists of 8 bits, it is called an 8 bit

COMPUTER COMMUNICATIONS 259

computer. Larger computers (often-called main frames) operate with 32 or
64 bits at a time. The added efficiency thus achieved accounts, in part, for
their increased speed.

There are two fundamental types of computer communications: parallel
and serial. In parallel communications, a byte is transmitted all 8 bits at a
time. This is achieved by sending the byte over 8 wires. A signal on the wire
corresponds to a 1 and the absence of a signal corresponds to a 0. The Radio
Shack printers utilize parallel communications. In serial communications,
the various bits are transmitted in sequence over a single wire. Many printers
utilize serial communications. In addition, serial communications are used
to transmit computer data to another computer via telephone lines. The
interfaces required by parallel and serial communications are quite different.
Your Model IIl is equipped with a parallel interface into which you may plug
your printer. However, if you wish to use serial communications, it will be
necessary to add the RS232-C interface.

In establishing a computer communications link, there are a number of
different variables which must be considered. First, there is the speed of the
communications. The standard measure of communications speed is the
baud rate. Old fashioned teletypes communicate at 110 baud (about 12
characters per second). Data transmission rates from your computer to a
printer range from 300 to 1200 baud. High speed data transmission rates
range up to 9600 baud. You may set the baud rate of your R$232-C interface
via a computer command.

All communications links are subject to noise caused, primarily, by static
on the lines. It is essential that computer data communications be accurate.
Imagine the havoc that could be created by the erroneous transmission of a
few digits of a financial report! In order to guard against errors, many data
transmission links utilize an extra bit which is tacked on to each byte. This
extra bit is called a parity bit. It is agreed in advance whether this bit will
always be set to O (even parity) or 1 (odd parity). The receiving device checks
the parity bit to determine its correctness. If an error is detected, then a
retransmission is usually requested. All this happens quite automatically.
However, you must adjust your transmissions to match the parity expected.
This can be done via computer command to the RS232-C interface.

Finally, it is sometimes necessary to have a communications protocol. In
some situations, it is useful to transmit the data at a speed higher than the
receiver can accept. To do this, your computer sends the data in “bursts.”’
Your computer can utilize the waiting time between bursts to perform other
chores. At the receiving end, each burst is temporarily stored in a memory

260 SOME OTHER APPLICATIONS OF YOUR COMPUTER

called a buffer. This memory holds the burst of data until the receiver has a
chance to look at it. In this scheme of data transmission, it is necessary to
have a pair of signals that the sender and receiver exchange. Namely, the
sender must tell the receiver that more data is on the way and the receiver
must tell the sender that it may send more data. Such an exchange of signals
is called a communications protocol. There are a number of different proto-
cols in common use. Just what they are is not important. However, it is
crucial that the sender and receiver use the same protocol. You may select
among the most common protocols via a computer command. Note that it is
necessary to use a communications protocol only in situations in which the
data transmission rate is too fast for the receiver. Typically, it is not necessary
to use a communications protocol with a printer at 300 baud or less.
However, to get the top printing speed out of a daisy wheel printer, it is
necessary to go to 1200 baud.

Further information on the operation of the RS232-C interface may be
found in your Model Il reference manual.

11.2 INFORMATION STORAGE AND RETRIEVAL

In this book, we have presented the rudiments of file construction and
maintenance. What we have said will carry you through if your requirements
are reasonably modest. However, if your files become very large or if you
wish the ability to sort through them and compile complex management
reports, then you will need more elaborate programs than anything we have
discussed.

There are a large number of data retrieval systems which you can consider
for your particular purposes. In fact, there are appearing now specialized
programs which are structured for the needs of a particular profession (law-
yer, doctor, architect). If your accounting and information management
needs go beyond what we have discussed (or if you do not want to bother
writing your own programs), you should investigate the various packages
which are commercially available.

11.3 ADVANCED GRAPHICS

Computer graphics has become an incredibly sophisticated field in only a
few years. Your Model Il can be used to obtain an introduction to computer
graphics principles. However, you can go only so far. If you wish to go

CONNECTIONS TO THE OUTSIDE WORLD 261

further, you might want to consider adding the Radio Shack Color Computer
to your personal computer center. This computer attaches to your own color
television. Using it, you can create color displays of a much higher degree
of resolution than is present on your Model lil. Moreover, the Color Com-
puter has a graphics language by means of which you can draw even
reasonably complex graphics displays with little effort. For example, there
are one line commands to draw lines and circles, to set colors, paint regions
of the screen, and so forth.

Many printers have a graphics mode whereby you can produce hard
copies of screen graphics. This is usually accomplished via “dot printing”’
with a high resolution of dots. To obtain even finer hard copy graphics, there
are available a number of plotters which (at their most sophisticated) can
faithfully produce blueprints, weather maps, etc.

The microcomputer user can even add a graphics tablet. This is a device
which allows you to input a picture to the computer by essentially tracing the
picture on a special board using an electronic ““pencil.” The picture is
transformed into a series of dots and transmitted to the computer via a
communications interface.

To survey the latest in computer devices, you should attend one of the
many computer shows which are taking place with increasing regularity all
over the country. Also, a good written source is BYTE magazine, available at
many computer stores.

11.4 CONNECTIONS TO THE OUTSIDE WORLD

You may connect your Model IlI to the outside world! In order to do so you
must have an RS232-C interface and a special communications device called
a modem.

A modem converts the electronic signals of your computer into signals
which may be transmitted via telephone lines. A modem is connected to
your computer via the RS$232-C interface. To set up a telephone connection
with another computer, your first dial the number of the outside computer.
Once a connection has been made, you rest the telephone receiver in the
cradle of the modem. (Your R$232-C should be turned on and waiting.) You
have now established a communications link between you and the outside
world. -

262 SOME OTHER APPLICATIONS OF YOUR COMPUTER

You may use this communications link in many ways. First, you may
communicate with other microcomputer users. You can play games, ex-
change data, program ideas, and so forth. You may even use the computer as
an “electronic mail service.” In fact, this application of computer communi-
cations promises to revolutionize the office in the next decade. Instead of
sending paper memos and printed reports, you will send such data via
computer communications. If the information is to be held confidential, then
access will be regulated either by password or encoding. Just think! No more
delayed mail delivery, lost letters, or other problems. As a microcomputer
user, you can be one of the first to use such a system.

You may use computer communications to connect your operations to a
time sharing system to which you have access. This will give you access to
the greater capabilities of a larger machine as well as the program library of
the time sharing system.

Finally, there are a number of computer information networks being
developed which you can plug your system into. Such networks provide the
latest stock market quotations, news, and other data. In addition, they
provide a library of programs on which you may call. Such information
services are in their infancy and are sure to grow in number and sophistica-
tion over the next few years. Radio Shack is currently part of one such
service. For details, inquire at your local Computer Center.

12
‘Where To Go From Here

In this book, we have attempted to provide you with a working knowledge of
the Radio Shack Model Il computer and its associated BASIC language. Of
course, we have only scratched the surface of the field of computer science
and the applications in which your computer can be used. In this final
chapter, let’s say a few words about some of the subjects we will not have a
chance to discuss in depth and point out some directions for further study.

12.1 ASSEMBLY LANGUAGE PROGRAMMING

All of our programming has been carried out in the language BASIC. How-
ever, there is a much more primitive language which underlies your Model
I, namely Z80 machine language. Actually, BASIC is itself a program which
is written in machine language. Indeed, many complex commercial pro-
grams are written directly in machine laguage.

Machine language consists of the instructions which the Z80 chip can
execute. These instructions tend to be much more primitive than the instruc-
tions of a higher level language such as BASIC. In a certain sense, this is
unfortunate since you are forced to look at a program in very fine steps.
However, the resulting programs will generally be much more efficient and
will run much more quickly than programs written in BASIC. In addition, you
will better understand what is going on inside the Z80 chip in response to
your instructions.

After you have become proficient in BASIC, your next step can be a study
of machine language. In order to help you get started, let’s spend a short time
discussing how machine language works. As we have previously said, the
internal workings of the computer are all carried out in binary. This includes

263

264 WHERE TO GO FROM HERE

machine language commands. However, it is extremely difficult to write a
program which is nothing but a long string of 0’s and 1’s. To ease this
tremendous burden, you write machine language commands in terms of
mnemonics, which are similar to instruction designations used in BASIC.
The program, written in terms of mnemonics is called the source code.

The next step in preparing a machine language program is to translate the
mnemonics into binary. This is done using a program called an assembler.
The resulting program is called the object code or machine code. You may
list the object code but it is extremely difficult to read since it consists of a
seemingly endless string of Os and Ts. To ease this burden, computer scien-
tists use a notational system consisting of 16 symbols, namely 0-9 and A-F.
This system is called the hexadecimal system and may be used to list the
object code of a program. Moreover, all memory addresses are specified in
terms of hexadecimal notation. Because of its direct relationship to binary,
hexadecimal notation is directly intelligible to the computer.

In the process of running the assembler, you must decide where in mem-
ory your program is to be stored. This is a complication that you do not worry
about in BASIC programming. BASIC finds memory space and keeps track of
where the various parts of the program are located. However, in machine
language programming, all that internal bookkeeping is your responsibility.

Once your program is assembled, you are ready to load and run it.

You might wonder if machine language programming is really worth the
effort described above. Probably not in the case of a program you plan to use
once or twice. However, if you are planning a program which you will be
using often, perhaps as a subroutine in many different BASIC programs, then
it will probably be worth the invested time to write the program in machine
language. First of all, your program will run much faster. Second, you will be
able to make the screen, keyboard, and printer perform actions which may
be clumsy or downright impossible to specify in BASIC.

Here are two excellent references on machine language programming for
the TRS-80:

How to Program the Z80 by Rodnay Zaks, SYBEX Inc., 1980; Radio Shack
Catalog No0.62-2066

TRS-80 Assembly Language by Hubert S. Howe, Jr., Prentice-Hall, Inc.,
1981

OTHER LANGUAGES AND OPERATING SYSTEMS 265

12.2 OTHER LANGUAGES AND OPERATING
SYSTEMS

BASIC is only one of several hundred different computer languages. And it is
only one of the possible languages which is available to run on your Model
Il Mastering one or more of these other languages is another possible area
for further study.

As microcomputers have become more common, many of the languages
designed to run on large computer systems have been configured for micro-
computers. Any list of available languages will probably be incomplete by
the time this book goes to press. Nevertheless, let's mention some of the
most common languages which either are available or will soon be available
for the Model 111.

The old standard of computing languages is FORTRAN. This is a powerful
language especially useful in scientific and engineering applications.

FORTRAN is a compiler, whereas Model 11l BASIC is an interpreter. This is
an important distinction. With an interpreter, you type in the program
directly as it will be executed. In order to execute a particular instruction,
the computer refers to a machine language subroutine to “interpret’”’ the
intent. With a compiler, you type in the program in much the same manner
as with an interpreter. However, you must compile the program prior to
running it. That is, you must run a special routine which translates the
various typed instructions into machine language. It is the machine language
version of the program which you actually run. A compiled program is much
more efficient than a program written with an interpreter. Depending on the
program, the compiled program will run from 5 to 50 times faster!

You may supplement your BASIC interpreter with a BASIC compiler. This
will allow you to program in a language you already know (you must still
learn the intricacies of the compiler version) and yet achieve the efficiencies
of compiled programs.

COBOL and PASCAL are two very popular languages. COBOL is probably
the most commonly used language for business programs. It is designed to
allow ease in preparing management and financial reports. PASCAL is an
extremely powerful language which may be used for general programming.
It allows you to write complex programs in very few commands.

266 WHERE TO GO FROM HERE

In purchasing languages for your computer, it is important to recognize
that the particular version you purchase must be compatible with your
operating system. The Radio Shack disk operating system is TRSDOS. In
order to make use of other languages or other programs, you may wish to add
another operating system. The most likely candidate is CP/M, the most
common microcomputer operating system.

‘ Answers to Selected Exercises

CHAPTER 2
Section 2.2 (pages 22 and 23)

1. 10 PRINT 57423448
20 END

2. TO PRINT 57.83*%(48.27—12.54)
20 END

3. 10 PRINT 127.86/38
20 END

4. 10 PRINT 365/.005+1.02{5
20 END

5. 10 PRINT 2[1,
20 PRINT 3[

1 4
1
30 PRINT 411
1
1

I3

! A

2[2,2[3,2]
312,3[3,3[4
A412,4(3,4[4
40 PRINT 5[1,5[2,5[3,5[4
50 PRINT 6[1,6[2,6[3,6[4

60 END

6. 10 PRINT “CAST REMOVAL",45
20 PRINT “THERAPY”, 35
30 PRINT “DRUGS”,5
40 PRINT
50 PRINT “TOTAL"”,45+35+5
60 PRINT “MA] MED”, .8%(45+35+5)
70 PRINT “BALANCE", .2*(45+35+5)
80 END

’

7 7

267

268

ANSWERS TO SELECTED EXERCISES

10 PRINT “THACKER"', 698+732+129+487

20 PRINT “HOVING”, 148+928+246+201

30 PRINT “WEATHERBY"’,379+1087+148+641

40 PRINT “TOTAL VOTES”,698+732+129+487+148+928
+246+201+379+1087+148+641

50 END

Note that line 40 extends over two lines of the screen. To type such a line just
keep typing and do not hit a carriage return until you are done with the line.
The maximum line length is 255 characters.

8.
9.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

-2

SILVER GOLD COPPER PLATINUM
327 448 1052 2

GROCERIES MEAT DRUGS
MON 1,245 2,348 2,531
TUE 248 3,459 2,148

2.3E7

1.7525E2

—2E8

1.4E-4

—2.75E-10

5.342E76

159,000

—20,345,600
-.000000000007456
.00000000000000000239456

Section 2.3 (pages 30 and 31)

Ui AW N

. 10

0

50

9 -7 18

JOHN JONES AGE 38

10.
11.
12.
13.

14.

ANSWERS TO SELECTED EXERCISES 269

22
57

. A can only assume numeric constants as values.

. Nothing

A$ can only assume string contants as values.
No line number. String constant not in quotes.
Only two letters allowed in variable name.
Variable name must begin with a letter.

10 LET A=2.3758:B=4.58321:C=58.11
20 PRINT A+B+C

30 PRINT A*B*C

40 PRINT A[2+B[2+C|[2

50 END

10 LET A$="Office Supplies”:B$=""Computers’’:C$="Newsletters’’
20 LET RA=346712:RB=459321:RC=376872

30 LET EA=176894:EB=584837:EC=402195

40 PRINT ,A%,B$,C$

50 PRINT “REVENUE",RA,RB,RC

60 PRINT ““EXPENSES”,EA,EB,EC

70 LET PA=RA—EA:PB=RB—EB:PC=RC—EC

80 PRINT “PROFIT”,PA,PB,PC

90 PRINT

100 PRINT “TOTAL PROFIT EQUALS"",PA+PB+PB

Section 2.4 (page 41)

1.

10 LET S=0

20 FOR J=1 TO 25
30 LET S=S+]J[2
40 NEXT) '
50 PRINT S

60 END

10 LET =0
20 FOR J=0 TO 10
30 LET S=S+(1/2)[)
40 NEXT |

50 PRINT S

60 END

270 ANSWERS TO SELECTED EXERCISES

3. 10 LET S=0
20 FOR J=1TO 10
30 LET S=S+J(3
40 NEXT J
50 PRINT S
60 END

4. 10 LET $=0
20 FOR J=1 TO 100
30 LET S=S5+1/)
40 NEXT J
50 PRINT S
60 END

5. 10 PRINT), “J12","“)13" 14"
20 FOR J=1TO 12
30 PRINT J,J[2,)[3)14
40 NEXT J
50 END

6. 10 PRINT “MONTH",“INTEREST",“BALANCE"
20 B=4000,P=125.33
30 FOR J=1TO 12
40 LET 1=.01B:I=THE INTEREST FOR MONTH
50 LET R=P—1’"R=REDUCTION IN BALANCE FOR MONTH
60 LET B=B—R: NEW BALANCE
70 PRINT J,1,B
80 NEXT J
90 END

7. 10 PRINT “END OF YEAR", “BALANCE"
20 B=1000
30 FOR J=1TO 15 ,
40 B=B+1000+.10*B :"ADD DEPOSIT AND INTEREST
50 PRINT J,B
60 NEXT J
70 END

8. 10 LET S=3.5E7: P=5.54E6
20 PRINT “END OF YEAR”, “SALES", ""PROFITS”
30 FORJ=1TO 3
40 LET S=1.2*%S: P=1.3*P
50 PRINT J,S,P
60 NEXT }
70 END

ANSWERS TO SELECTED EXERCISES

Section 2.6 (pages 57 and 58)

1. 10 J=1
20 IF J[2>45000 THEN 100 ELSE 30
30 PRINT J,J[2
40 J=]+I
50 GOTO 20
100 END

2. 10 PI=3.14159
20 R=1
30 IF PI*R[2<=5000 THEN 40 ELSE 100
40 PRINT R,PI*R[2
50 R=R+1
60 GOTO 30
100 END

3. 10 PRINT “SIDE OF CUBE",”"VOLUME"
20 S=1
30 V=5[3
40 IF V3<175000 THEN 50 ELSE 100
50 PRINT S,V
60 S=S5-+1
70 GOTO 30
100 END

4. T0 FOR J=1TO 10 : 'LOOP TO GIVE 10 PROBLEMS
20 INPUT “TYPE TWO 2-DIGIT NUMBER"’; A,B
30 INPUT “WHAT IS THEIR PRODUCT";C.
40 IF A*B=C THEN 200
50 PRINT “SORRY. THE CORRECT ANSWER IS”",A*B
60 GO TO 500 : ‘GO TO THE NEXT PROBLEM

271

200 PRINT “YOUR ANSWER IS CORRECT! CONGRATULATIONS"

210 LET R=R+1 : 'INCREASE SCORE BY 1

220 GO TO 500 : "GO TO THE NEXT PROBLEM

500 NEXT |

600 PRINT "YOUR SCORE IS”,R,”CORRECT OUT OF 10"
700 PRINT “TO TRY AGAIN, TYPE RUN"

800 END

5. T0 FOR J=1TO 10 : 'LOOP TO GIVE 10 PROBLEMS
15 PRINT “CHOOSE OPERATION TO BE TESTED:"”
16 PRINT “ADDITION (A), SUBTRACTION (S),
OR MULTIPLICATION (M)”’
17 INPUT A%

272

10.

ANSWERS TO SELECTED EXERCISES

20 INPUT “TYPE TWO 2-DIGIT NUMBERS"; A,B

21 IF A$="A" THEN 30

22 IF A$="S" THEN 130

23 IF A$="M" THEN 230

30 INPUT “WHAT IS THEIR SUM"’;C

40 IF A+B=THEN 400

50 PRINT “SORRY. THE CORRECT ANSWER IS”,A+B
60 GO TO 500 : ‘GO TO NEXT PROBLEM

130 INPUT “WHAT IS THEIR DIFFERENCE";C

140 IF A—B=C THEN 400

150 PRINT ““SORRY. THE CORRECT ANSWER IS”,A—B
160 GO TO 500 : "GO TO THE NEXT PROBLEM

230 INPUT ““WHAT IS THEIR PRODUCT";C

240 IF A*B=C THEN 400

250 PRINT “SORRY. THE CORRECT ANSWER 1S, A+B
260 GO TO 500 : ‘GO TO THE NEXT PROBLEM

400 PRINT ““YOUR ANSWER IS CORRECT! CONGRATULATIONS”
410 LET R=R+1 : "INCREASE SCORE BY 1

420 GO TO 500 : ‘GO TO THE NEXT PROBLEM

500 NEXT J

600 PRINT “YOUR SCORE 15”,R,“CORRECT OUT OF 10"
700 PRINT ““TO TRY AGAIN, TYPE RUN"

800 END

See 8.

. See 9.

10 INPUT “NUMBER OF NUMBERS";N

20 FOR J=1 TO N

30 INPUT A

40 IF J=1 THEN B=A

50 IF A>B THEN B=A

60 NEXT J

70 PRINT “THE LARGEST NUMBER INPUT I5”,B
80 END

. Replace line 50 in 8. by:

50 IF A<B THEN B=A

10 A0=5782:A1=6548:B0=4811:B1=6129:C0=3865:C1=4270
20 D0=7950:D1=8137:E0=4781:E1=4248:F0=6598:F1=7048
30 FOR J=1TO 6

40 IF J=1 THEN A=0:B=AT1

50 IF J=2 THEN A=B0:B=B1

11.

12.

ANSWERS TO SELECTED EXERCISES 273

60 IF J=3 THEN A=C0:B=CI1

70 IF J=4 THEN A=D0:B=D1

80 IF J=5 THEN A=E0:B=E1

90 IF J=6 THEN A=F0:B=F1

100 I=B—A

110 IF 1>0 THEN PRINT “CITY”,J,”"HAD AN INCREASE OF", |
120 GOTO 200

130 IF I<O THEN PRINT “CITY”,J,””HAD A DECREASE OF”’,A—B
140 GOTO 300

200 IF 1>500 THEN PRINT “CITY",},””MORE THAN 500 INCREASE"’
300 NEXT)

400 END

10 PRINT “THIS PROGRAM SIMULATES A CASH REGISTER"”

20 PRINT “AT THE QUESTION MARKS, TYPE IN THE PURCHASE"’
30 PRINT “AM'TS. TYPE —1 INDICATE THE END OF THE ORDER”
40 INPUT “TYPE ‘Y’ IF READY TO BEGIN"’; A$

50 IF A$="Y" THEN 60 ELSE 10

60 CLS

70 INPUT “ITEM"”; A

80 IF A=—1 THEN 200 ELSE 90

90 T=T+A: T IS RUNNING TOTAL

100 GOTO 70

200 PRINT “THE TOTAL IS”, T

210 S=.05*T:'S=SALES TAX

220 PRINT ““SALES TAX", S

230 PRINT “TOTAL DUE"”, S+T

240 INPUT ““PAYMENT GIVEN";P

250 PRINT “CHANGE DUE", P—(S+T)

300 END

INPUT ““CASH ON HAND"’; C1

20 PRINT “INPUT ACCOUNTS EXPECTED TO BE RECEIVED IN NEXT

MONTH."

30 PRINT “TO INDICATE END OF ACCOUNTS TYPE —1."

40 INPUT “ACCOUNT RECEIVABLE";A

50 IF A=—1 THEN 100

60 C2=C2+A:"C2=RUNNING OF ACCOUNTS RECEIVABLE

70 GOTO 40 |

100 PRINT “INPUT ACCOUNTS EXPECTED TO BE PAID IN NEXT
MONTH."

110 PRINT “TO INDICATE END OF ACCOUNTS TYPE —1."

120 INPUT “ACCOUNT PAYABLE";A

130 IF A=~1 THEN 200

274 ANSWERS TO SELECTED EXERCISES

140 C3=C3+A:C3=RUNNING TOTAL OF ACCOUNTS PAYABLE
150 GOTO 120

200 PRINT ““CASH ON HAND",C1

220 PRINT “ACCOUNTS RECEIVABLE",C2

230 PRINT “ACCOUNTS PAYABLE",C3

240 PRINT “NET CASH FLOW",C1+C2-C3

300 END

CHAPTER 3
Section 3.1 (pages 74 and 75)

1. DIM A(5)

2. DIM A(2,3)

3. DIM A$(3)

4. DIM A(3)

5. DIM A$(4),B(4)
6

. 10 DIM A$(3),B(3,3),C$(3)
20 PRINT ,,”’RECEIPTS”
30 C$(1)=""STORE #1”,C$(2)="STORE #2",C$(3)="STORE #3"
40 A$()="1/1—-1/10",A$(2)=""1/11=1/20",A$(3)="1/21-1/31"
50 B(1,1)=57385.48,B(1,2)=89485.45,B(1,3)=38,456.90
60 B(2,1)=39485.98,B(2,2)=76485.49,B(2,3)=40387.86
70 B(3,1)=45467.21,B(3,2)=71494.25,B(3,3)=37983.38
100 PRINT ,C$(1),C$(2),C$(3)
200 FOR J=1TO 3
220 PRINT A$(),B(,1),B(,2),B(,3)
230 NEXT |
300 END

7. Add the instructions:
5 DIM D(3)
240 FOR J=1 TO 3
250 D()=B(1,))+B(2,)+B(3,))
260 NEXT J
270 PRINT “TOTALS”,D(1),D(2),D(3)

8. Move the END to 400 and add the following instructions.
6 DIM E(3)
300 FOR J=1TO 3

ANSWERS TO SELECTED EXERCISES

310 E()=B(,1)+B(,2)+B(,3)

320 NEXT J

330 PRINT

340 PRINT “PERIOD"”, “TOTAL SALES"”
350 FOR J=1TO 3

360 PRINT A$() , E()

370 NEXT)

400 END

. 10 DIM A%(4), B$(5), C(5,4)

20 A$(1)="STORE #1"”,A$(2)="STORE #2", A$(3)="STORE #3"
21 A$(4)=""STORE #4""

30 B$(1)="REFRIG."”,B$(2)="STOVE"”,B$(3)=""AIR COND."
40 B$(4)="VACUUM", B$(5)=""DISPOSAL"’

50 PRINT “INPUT THE CURRENT INVENTORY"”
60 FOR J=1TO 4

70 PRINT A$())

80 PRINT

90 FORI=1TO 5

100 PRINT B$(I)

110 INPUT C(1,))

120 NEXT |

130 NEXT)

200 REM REST OF PROGRAM IS FOR INVENTORY UPDATE
210 PRINT “CHOOSE ONE OF THE FOLLOWING"
220 PRINT “RECORD SHIPMENTS(R)

230 PRINT “DISPLAY CURRENT INVENTORY(D)"”
240 INPUT “TYPE R OR D”;D$%

250 IF D$="R"” THEN 300

260 IF D$="D" THEN 600 ELSE CLS:GOTO 200
300 CLS

310 PRINT “RECORD SHIPMENT"’

320 INPUT “TYPE STORE#(1—4)";)

330 PRINT “ITEM SHIPPED”

340 PRINT “REFRIG=1,STOVE=2,AIR

COND. =3,VACUUM =4,DISPOSAL =5"

350 INPUT |

360 INPUT “NUMBER SHIPPED"’;S

370 B(,)=B())—S

380 GOTO 200

600 CLS

610 PRINT A$(1),A$(2),A%$(3),A%(4)

620 FOR I=1TO 5

275

276 ANSWERS TO SELECTED EXERCISES

630 FOR J=1TO 4
640 PRINT B(l,J);
650 NEXT |

660 NEXT |

670 GOTO 200
1000 END

Note that this program is really an infinite loop. For this type of program this
is a good idea. You do not want to accidentally end the program thereby
erasing the current inventory figures! End this program using the BREAK key.

Section 3.2 (pages 80 and 81)

1. A1) = 2, A(2)

3. A0) = 1, A1) = 2, A(2) = 3, A@3) = 4, B(0) = “A”, B(1) = “B”,
B(z) e IIC/// B(B) — IID//

4. Al0) =1, B(0) =2, A(1) =3, B(1) =4, A2) =1, B(2) = 2, A(3) =
3,B(3)=4

5. A1) =1, A(1,2) = 2, A(1,3) = 3, A(1,4) = 4, A2,1) = 5, A(2,-)
=6, A(2,3) =7, A2,4) =8, A(3,1) =9, A3,2) = 10, A(3,3) =
A(3,4) = 12

6. A(1,1) =1, A2,1) = 2, A3,T) = 3, (2) =4, A2,2) =5, AG3,2)
=6, A(1,3) =7, A2,3) = 8, A(3,3) =9, A(1,4) = 10 A(2 4) =11,
A(3,4) = 12

7. Out of Data in Line 30

8. Type Mismatch in Line 30 (Attempt to set numeric variable equal to
string)

9. Set F(J) equal to the Federal withholding for employee J, N(J) = the net
pay; and add the following lines:
280 PRINT “EMPLOYEE"”, “WITHHOLDING”,”"NET PAY"
290 FOR J=1TO 5

300 IF D(J)<=200 THEN F()=0

310 IF D(J)<=210 THEN F(J)=29.10
320 IF D())<=220 THEN F(J))=31.20
330 IF D(J)<=230 THEN F(J)=33.80

340 IF D()<
350 IF D)<=
360 IF D()<=
370 IF D()<=
380 IF D()<=
390 IF D)<=
400 IF D)<=
410 IF D)<=
)
430 IF D()<=
440 IF D()<=
450 IF D(h)<=

)

J

J

J
420 IF D)<=

J

J

=240 THEN F

F(
250 THEN F(J
260 THEN F(
270 THEN F(
280 THEN F(
290 THEN F(
300 THEN F(J
310 THEN F(
320 THEN F(
330 THEN K(
340 THEN F(
350 THEN F(

)=
)=
)=
)=
)=
)=
)=
)
J)
J)
J)
)

500 N()=D()—-E()—F0)

600 PRINT B$(),F

700 NEXT |
10. 5 DIM A(25)

10 DATA 10,10,9,9,8,11,15,18,20,25,31,35,38,39,40,40,42,38

N()

20 DATA 33,27,22,18,15,12

30 FOR J=0TO
40 READ A()
50 S=5+A()

60 NEXT J

70 PRINT “AVERAGE 24 HOUR TEMP.”, 5/24
100 PRINT “TO FIND THE TEMPERATURE AT ANY PARTICULAR

HOUR”

110 PRINT “TYPE THE HOUR IN 24-HOUR NOTATION:

0-12=AM"

23

120 PRINT “13-24=PM"

130 PRINT “TO END THE PROGRAM, TYPE 25"

il

ANSWERS TO SELECTED EXERCISES

36.40
39.00
41.60
44.20
46.80
49.40
52.10
55.10
58.10
61.10
64.10
67.10

140 INPUT “DESIRED HOUR™;A

150 IF A=25TH

EN 200

277

160 PRINT “THE QUERIED TEMPERATURE WAS",A()),"DEGREES”’

170 GOTO 100
200 END

Section 3.3 (page 89)

2. 5CLS
10 PRINT TIME$
20 END

278

3.

ANSWERS TO SELECTED EXERCISES

5 CLS

10 PRINT TIME$

20 LET Y=PEEK(16919)

30 IF Y=PEEK(16919)+1 THEN 10 ELSE 40
40 GOTO 30

50 END

Same as 3. except replace 16919 everywhere by 16920

6. Add the following program lines. Hours will be measured on a 24-hour

clock.

305 FOR H=1 TO 24

400 IF B()=Y THEN 450:'I1S APPT. FOR RIGHT DAY?
450 IF C(J)=H THEN 500:'IS APPT. FOR HOUR H?
600 NEXT H

Add the following program lines.

1 PRINT “CHOOSE LEVEL OF DIFFICULTY”

2 PRINT “EASY(E), MODERATE(M),HARD(H), WHIZ KID(W)"”
3 INPUT A%

4 IF A$="FE" THEN X=120

51F A$="M" THEN X=30

6 IF A$="H"" THEN X=15

7 IF AS=""W" THEN X=38

40 POKE 16920,0

41 POKE 16919,0

50 IF PEEK(16919)+60*PEEK(16920)=X THEN GOTO 100

. Modify program of exercise 6. as follows. Delete lines 200-250 and

replace them by the following:
200 X=F(1):Y=F0):H=F(3)
600 IF PEEK(16922)=H+1 THEN 700 ELSE 610
610 GOTO 600
700 CLS
710 GOTO 300

Section 3.4 (pages 97 and 98)

1.

10 PRINT “THE VALUE OF X IS”,5.378
20 END

10 PRINT “THE VALUE OF X IS”";TAB(22) 5.378
20 END

RO R. brauv-

ANSWERS TO SELECTED EXERCISES

. 10 PRINT “DATE";TAB(6) “QTY";TAB(12) “@";TAB(17) “COST"’;

20 PRINT TAB(25) “DISCOUNT";TAB(37) "NET COST”
30 END

. 10 X=6.753:Y=15.111:Z=111.850:W=6.702

20 PRINT USING ### . ### X

30 PRINT USING ###.### Y

40 PRINT USING ### . ### Z

50 PRINT USING ### . ### W

60 PRINT “ "

70 PRINT USING ### . ### X+Y+Z+W
80 END

5. 10 X=12.82:Y=117.58:2=5.87:W=.99

20 PRINT USING $###.## X

30 PRINT USING $### . ## Y

40 PRINT USING $###.## Z

50 PRINT USING $###.## W

60 PRINT USING $###.## W

70 PRINT "

80 PRINT USING $###.## X+Y+Z+W+W
90 END

. 10 PRINT TAB(46) “DATE"";TAB(53) "“3/18/81"

20 PRINT

30 PRINT ““PAY TO THE ORDER OF";

40 PRINT TAB(27) “WILDCATTERS, INC.”

50 PRINT

60 PRINT “THE SUM OF"";TAB(41) ‘“**x**xx4x¢89 385.00"

. 10 X=5787:Y=387:2=127486:W=38531

20 PRINT USING ###,###, X

30 PRINT USING ###, ###, Y

40 PRINT USING ### ###, Z

50 PRINT ### ###, W

60 PRINT o

70 PRINT USING ###, ### X+Y+Z+W
80 END

. 10 X=385.41:Y=17.85

20 PRINT USING $$### . ##,X

30 PRINT “=";

40 PRINT USING $$###. ##,Y
50PRINT " "

60 PRINT USING $$###. ##,X—Y
70 END

280

9.

10.

11.

ANSWERS TO SELECTED EXERCISES

10 INPUT “NUMBER TO BE ROUNDED"";X
20 PRINT USING ######,X
30 END

Modify the program of Exercise 11 of Section 2.6 by substituting PRINT
USING $####.## statements.

Put the computer into 32 character per line mode by typing SHIFT and
, Then RUN the program of exercise 6.

Section 3.5 (pages 104 and 105)

—

X N o v oA W

—

11.

12.

. TO0*RND(0)

100+RND(0)
RND(50)
3+RND(77)
2*RND(25)
50+ 50*RND(0)
3*RND(9)
T+3*RND(7)

Add the following instructions:

132 IF C())>A() THEN 135 ELSE 140

135 PRINT “BET INVALID:NOT ENOUGH CHIPS PURCHASED’’
137 C())=0

139 GOTO 120

Change line 132 in exercise 10 to read:
132 IF C(J)>A()+ 100 THEN 135 ELSE 140

10 PRINT “CHOOSE OPERATION TO BE TESTED”
20 PRINT “ADDITION(A),SUBTRACTION(S), MULTIPLICATION(M)"
30 INPUT A$

40 A=RND(10)—1:B=RND(10)—1

50 IF A$="A" THEN 100

60 IF A$="B" THEN 200

70 IF A$=""C"" THEN 300

100 CLS

110 PRINT “WHAT IS “;A;”"+";B;"?"

120 INPUT C

130 D=A+B

13.

ANSWERS TO SELECTED EXERCISES

140 GOTO 400

200 CLS

210 PRINT “WHAT IS ;A;""—=";B;"¢"

220 INPUT C

230 D=A-B

240 GOTO 400

300 CLS

310 PRINT “WHAT IS ";A;“X"";B; "2

320 INPUT C

330 D=A*B

340 GOTO 400

400 IF C=D THEN 410 ELSE 420

410 PRINT “YOUR ANSWER IS CORRECT”
415 GOTO 430

420 PRINT “INCORRECT.THE CORRECT ANSWER 15", D
430 INPUT “ANOTHER PROBLEM(Y/N)"";B$%
440 IF A$=""Y" THEN 10

450 END

281

Combine the ideas of Exercise 7 of Section 3.3 with those of Exercise 12

above.

1000-1010.
2 CLEAR 200
5 DIM A$(10)
10 FOR J=1 TO 10
20 READ A%()
30 NEXT J
40 FOR J=1TO 4
50 PRINT A$(RND(10))
60 NEXT |
70 END

Section 3.6 (page 112)

1.

2.

10 FOR J=.1 TO .5 STEP .1

20 GOSUB 100
30 PRINT X
40 END

100 X=5%[2=3%)
110 RETURN

1000 C())=100*B(J)—A/A()

. Put your names in a series of DATA statements located in lines

282 ANSWERS TO SELECTED EXERCISES

3.

2000 M=C(T1)

2010 FOR J=2TO 6

2020 IF M<C(J) THEN M=C())

2030 NEXT)

2040 K=1

2050 IF M=C(K) THEN 2100 ELSE 2060
2060 K=K+1

2070 GOTO 2050

2100 RETURN

. Let D()) = 4 mean that } bets on 1st 12, D(J) = 5 that] bets on 2nd 12, D())

= 6 that J bets on 3rd 12. In all such bets B(J) will be 0. Corresponding to
the new values of D(J), there will be three new subroutines, starting in
lines 4000, 5000, and 6000, respectively. Modify lines 121 to 125 as
follows:

121 PRINT “BET TYPE:1T=NUMBER BET,2=EVEN,3=0DD,4=1st

]2’/

122 PRINT “5=2nd 12, 6=3rd 12"

123 INPUT “BET TYPE(1-6)"";D(J))

124 IF D{)>1 THEN 125 ELSE 130

125 INPUT “AMOUNT";C{())

126 GOTO 180
Replace lines 320-330 by:

320 ON D(J)) GOSUB 1000,2000,3000,4000,5000,6000
Finally, here are the three new subroutines.

4000 FOR K=1TO 12

4070 IF X=K THEN 4100 ELSE 4020

4020 PRINT ““PLAYER";"];""LOSES"’

4030 A()=A(C)

4050 RETURN

4100 PRINT ““PLAYER";J;“WINS'";2*C(}); " DOLLARS"”

4110 A(Q)=A0)+2*C()

4120 RETURN
The subroutines in 5000 and 6000 are identical, except for the lines:

5000 FOR K=13 TO 24

6000 FOR K=25 TO 36

CHAPTER 4
Section 4.1 (pages 120 and 121)

1.
2.
3.

45q
4Sq, 1D
1538

9.
10.
11.
12.
13.
14.
15.

Section 4.2 (page 124)

1.

© N Uk

H

Hit Backspace 8 times

Hit 3 followed by Spacebar.

L

450, 1C1
85a, 1D

Q

1S, 1D
1SE 3C TEP

152 1C3 1S5 1C2
Backspace to . in .5 then 2D | —1.5 SHIFT and m

E:Y=M+1

S=S+J[2

Ye

“S>487(3"

PRINT

END

v 4=1,2,...,100

No

ANSWERS TO SELECTED EXERCISES

READ
HOURS (H)

'

READ
MINUTES (M)

!

PRINT
~“§<L=487[3"

READ
SECONDS (S)

!

PRINT: “THE
COMPUTER
HAS BEEN ON
H HOURS,
M MINUTES,
S SECONDS

283

284

ANSWERS TO SELECTED EXERCISES

INPUT #
PLAYERS N

v J

=1,2,...,N

PLAYER J
PURCHASES
CHIPS

3 J=1,2....N

Y PLAYER J

INPUT
BET TYPE
(ODD, EVEN,
NUMBER)

BETS

¥

INPUT AMOUNT

OF
BET

Y

CONVERT
070 33
00 to 34

Y

Y

SPIN
WHEEL

DETERMINE
WINNING
NUMBER

¥

DETERMINE IF
PLAYER J
WINS

CONVERT
33TO 0
34 TO G0

Y

Y

DETERMINE
AMOUNT

WON OR LOST

DISPLAY
WINNING
NUMBER

1

ADD OR
SUBTRACT
FROM PLAYER J

BANKROLL

L

PRINT PLAYER
BANKROLLS

ANSWERS TO SELECTED EXERCISES

READ
EMPLOYEE
NAMES AND

WAGE RATES

‘ J=1,2,3,45

INPUT HOURS
OF EMPLOYEE J

}I=1.2345

COMPUTE
GROSS WAGES,
SOC. SECURITY
OF EMPLOYEE J

}=1,2345

PRINT:
EMPLOYEE J's
NAME
GROSS WAGES
SOC. SECURITY

!

Section 4.3 (pages 127 and 128)

1. Here are the errors:
TYPE MISMATCH in line 10: 0" should be 0
line 30: J(2 should be }[2
line 80: NXT T should be NEXT T
line 90: should be deleted
line 100: ST should be $*T
line 110: “THE ANSWER [S”

2. line 30 should read: PRINT “THE FIRST N EQUALS”,N
Need line 40: GOTO 200

CHAPTER 5
Section 5.2 (page 136)

1. 10 DATA5.7,—11.4,123,485,49
20 FOR J=1TO 5

285

286 ANSWERS TO SELECTED EXERCISES

30 READ A

40 PRINT #—-1 A
50 NEXT)

60 END

2. TOFORJ=1TO 5
20 INPUT #-1T A
30 PRINT A
40 NEXT J
50 END

3. Position cassette to end of data file and execute the following program.
10 DATA 5,78,4.79,—1.27
20 FOR J=1TO 4
30 READ A
40 PRINT #-1 A
50 NEXT |
60 END

4. Position the cassette to the beginning of the file and execute the following
program.
10 FOR J=1to 9
20 INPUT #-1 A
30 PRINT A
40 NEXT |
50 END

5. Let the program accommodate 500 checks. Let A denote the check
numbers, B$ the date, C$ the payee, D the amount, and E$ any explana-
tion.

10 CLEAR 1000

20 PRINT “TYPE DATA FOR CHECK"”
30 INPUT “CHECK #'";A

40 INPUT “DATE XX/XX/XX'";B$

50 INPUT “PAYEE"”;C$

60 INPUT “AMOUNT"; D

70 INPUT “EXPLANATION";E$

80 PRINT #-1 A,B%,C$,D,E$

90 PRINT “ANOTHER CHECK2(Y/N)”
100 INPUT F$

110 IF F$="Y" THEN 120 ELSE 200
120 CLS

130 GOTO 20

200 PRINT #—-1 —1000

210 END

6.

7.

ANSWERS TO SELECTED EXERCISES 287

Position cassette to beginning of file.
10 INPUT #-1 A
20 IF A=—=1000 THEN 200 ELSEF 30
30 INPUT B$%,C$,D,E$
40 S=S+D
50 GOTO 10
200 “TOTAL OF ALL CHECKS IS, S
300 END

Make the last item in the data file the word “END’’. When reading the
data file, you may then look for the occurrence of this item to signify the
end of the file. For Example 1, add the lines:

90 IF G$="Y" THEN 10 ELSE 100

100 PRINT #—1 “END”’

110 END
For example 2, add the lines:

20 INPUT #-1 A$

30 IF A$="END’" THEN 150 ELSE 35

35 INPUT #-1 B%,C$,D$,E$,F$

Section 5.3 (pages 143 and 144)

—

—
|\ J—

S0 X NS v s W

. OTTO.SKUNK:0

SHIRLEY/BAS:1

Too long

Does not begin with a letter
Does not begin with a letter
valid

valid

valid

valid

extension too long, password must begin with a letter

. password too long

valid

288 ANSWERS TO SELECTED EXERCISES

Section 5.4 (pages 148 and 149)

1. (@) 10 5=0
20 FOR J=1 TO 50
30 S=S+][2
40 NEXT |
50 PRINT S
60 END
(b) Type MERGE “SQUARES”

2. (@) 100 5=0
110 FOR J=1 TO 30
120 S+S+J[3
130 NEXT]
140 PRINT S
150 END
(b) Type MERGE “SQUARES"’
() Type LIST
(d) DELETE 60 (This is the END of SQUARES.) Type RUN.
(e) Type SAVE “COMBINED",A (The A is optional.)

3. Type LOAD “COMBINED"
4. Type KILL“SQUARES”

5 Insert diskette into drive O (assuming you have two drives) and type
BACKUP. (If you are in BASIC, you must return to the system level first by
typing CMD "’5".)

6. Type FORMAT and follow instructions given.

Section 5.5 (pages 157 and 158)

1. 10 DATA 5.7,—11.4,123,485,49
20 OPEN “O”,1,""NUMBERS”’
30 FORJ=1TO 5
40 READ A
50 PRINT #1,A
60 NEXT
70 CLOSE 1
80 END

2. 10 OPEN “I",1,”NUMBERS"

20 FOR J=1TO 5

ANSWERS TO SELECTED EXERCISES

30 INPUT #1,A
40 PRINT A

50 NEXT]

60 CLOSE 1

70 END

. 10 OPEN “1”,1,”"NUMBERS”
20 OPEN “0O”,2,"TEMP"”

30 FOR J=1TO 5

40 INPUT #1,A

50 PRINT #2,A

60 NEXT J

70 DATA 5,78,4.79,—1.27
80 FOR J=1TO 4

90 READ A

100 PRINT #2,A

110 NEXT)

120 CLOSE

130 OPEN “O”,1,”NUMBERS”
140 OPEN “1,2,""TEMP"
150 FOR J=1TO 9

160 INPUT #2, A

170 PRINT #1, A

180 NEXT)

190 CLOSE

200 END

. Use same program as 2. except change 5 to 9.

. 5 ON ERROR GOTO 500

10 CLEAR 500

20 PRINT “TYPE CHECK DATA ITEMS REQUESTED.”
30 PRINT “FOLLOW EACH ITEM BY A CARRIAGE RETURN."”
40 OPEN 0”1, "CHECKS”

50 INPUT “CHECKS #'";A

60 INPUT “DATE";B$

70 INPUT ““PAYEE";C$

80 INPUT “"AMOUNT(NO $)”;D

90 INPUT “EXPLANATION";E$

100 PRINT #1,A,B%$,C$,D,B$%

110 INPUT “ANOTHER CHECK(Y/N)"";F$

120 CLS

130 IF F$="Y"" THEN 20

289

290 ANSWERS TO SELECTED EXERCISES

140 CLOSE
150 GOTO 1000
500 RESUME 80
1000 END

6. 10 OPEN “1",1,""CHECKS"”
20 ON ERROR GOTO 500
30 INPUT #1, A,B$,C$,D,B$
40 S=S5+D
50 GOTO 30
100 CLOSE
110 PRINT “TOTAL OF CHECKS 1S”,S
120 GOTO 1000
500 RESUME 100
1000 END

CHAPTER 6
Section 6.1 (pages 168 and 169)

1. TOFOR J=0TO 127
20 SET(,18)
30 NEXT J
40 END

2. 10 FOR J=0 TO 47
20 SET(17,))
30 NEXT J
40 END

3. 10 FOR J=0 TO 127
20 SET(,23)
30 NEXT |
40 FOR J= 0 TO 47
50 SET(64,))
60 NEXT
70 END

4. 10 CLS
20FOR j=1TO 2
30 FOR K=0 TO 127
40 SET(K,16%))
50 NEXT K
60 NEXT J

ANSWERS TO SELECTED EXERCISES 291

70 FOR J=1TO 2
80 FOR K=0TO 47
90 SET(40%,K)

100 NEXT K

110 NEXT)

120 END

. T0 FOR J=0TO 24
20 SET(30,))

30 SET(31,)

40 NEXT)

50 END

. 10 FOR J=0TO 47
20 SET(Q,))

30 NEXT J

40 END

. 10 FOR)=0TO 127
20 SET(},32)

30 NEXT |

40 FOR K=0TO 3
50 SET(24+K*25,31)
60 SET(24+K*25,33)
70 NEXT K

80 END

. 10 FOR J=0TO 47
20 SET(60,))

30 NEXT J

40 FOR J=0TO 4
50 SET(59,7+8%))
60 NEXT)

70 END

. Suppose that the name to be displayed is “JOHN JONES".
10 PRINT @475,”JOHN JONES”
20 FOR }=409 to 422

30 PRINT @j, “*

40 NEXT |

50 FOR J=537 to 550

60 PRINT @]j, "'*"

65 NEXT |

70 PRINT @473,*"

80 PRINT @486,"'*"”

90 END

292 ANSWERS TO SELECTED EXERCISES

10. 10 FOR J=0TO 127
20 SET(,32)
30 FOR J=0TO 10
40 SET (10%,31)
50 SET (10%*},33)
60 PRINT @772+5%),10%
70 NEXT)
80 END

11. 10 INPUT ““ASCIl GRAPHICS CODE",A
20 PRINT CHRS$(A)
30 END

12. 10 PRINT @0, “COST”
20 PRINT @64, PRICE"
30 PRINT @128, INDEX"”
100 DIM B$(12)
110 DATA)77, “F/ UMY AA My A ST O
120 DATA “N",”D"
130 FOR J=1TO 12
140 READ B$()
150 NEXT J
160 FOR J=1TO 12
170 PRINT @ 902-+4*), B$():"MONTH LABELS
180 NEXT J
190 PRINT @0, “PROFIT”
200 FOR J=0TO 40
210 SET(14,)):"VERTICAL AXIS
220 NEXT)
230 FOR J=0 TO 36 STEP 4
240 SET(13,)) : ' TICK MARKS
250 NEXT }
260 FOR J=14 TO 111
270 SET (J,40): * HORIZONTAL AXIS
280 NEXT J
300 PRINT @960, “MONTH"”

Section 6.2 (pages 176 and 177)

2. Delete lines 20-30. Change line 50 to read: INPUT A(M)

3. Type in numbers A(M) as prompted. (Remember: No commas or dollar
signs.)

4.

ANSWERS TO SELECTED EXERCISES 293

Mil. $ should be printed at position 64. There is no room for vertical
labels 1.0 and .9. Print .8, .7, . . . , .1, respectively, at positions 128,
256, 320, 364, 512, 576, 640, 768. The alignment is not perfect, but is
as close as we can come given the resolution of the screen.

Section 6.3 (pages 183 and 184)

4.

10 FOR J=10TO 117
20 SET(,3)

30 SET(,44)

40 NEXT J

50 FOR)=3 TO 44
60 SET(10,))

70 SET(117,))

80 NEXT J

300 GOTO 310
310 GOTO 300
400 END

. Add to the program of Exercise 4 the instruction:

65 SET(63,))

10 FOR J=5 TO 125
20 SET(,3)

30 NEXT)

40 FOR J=30TO 75
50 SET (J,28)

60 NEXT J

70 FOR J= 40 TO 125
80 SET(J,15)

90 NEXT J

100 FOR J=65 TO 125
110 SET(J,22)

120 NEXT)

130 K=3 TO 44

140 SET(5,K)

150 NEXT K

160 FOR K=15 TO 28
170 SET(40,K)

180 NEXT K

190 FOR K= 22 TO 28
200 SET(65,K)

210 NEXT K

294 ANSWERS TO SELECTED EXERCISES

220 FOR K=3 TO 15
230 SET(125,K)

240 NEXT K

250 FOR K=22 TO 44
260 SET(125,K)

270 NEXT K

280 END

Section 6.4 (page 186)

2. The entire screen will be white.

CHAPTER 7
Section 7.2 (pages 196 and 197)

3. Change 80 to 64 in lines 30, 50 and 60.

4. Add the following line:
2 INPUT “DESIRED LINE LENGTH";Z
Change 80 to Z in lines 30, 50, 60.

5. 10 A$="15+48+97=160"
20 B$(1)=LEFT$(A$,2)
30 B$(2)=MID%(A$,4,2)
40 B$(3)=MID$(A$,7,2)
50 B$(4)=RIGHT(A$,3)
60 FOR =1 TO 4
70 B())=VAL(B$()))
80 NEXT |
90 FOR J=1TO 3
100 PRINT USING ###, B()
110 NEXT |
120 PRINT “/____"
130 PRINT USING ###, B4)
140 END

6. 10 A$="'$6718.49": B$="$4801.96"
20 A1$=RIGHT(A$,7):B1$=RIGHT(B$,7)
30 A2=VAL(AT$): B2=VAL(B1$)

40 PRINT USING $#### ##, A2

50 PRINT USING $#### . ##, B2

60 PRINT “___"

70 PRINT USING $#### . ##,A2+B2
80 END

Section 7.4 (page 206)

2.

10 FOR J=1TO 15
20 PRINT CHR$%(26)
30 NEXT J

40 END

10 FOR J=1 TO POS(0)
20 PRINT CHR$(24)

30 NEXT |

40 END

CHAPTER 9

Section 9.1

—

S W @ N U oA W

. 3.000000

2.370000

578,000.0
2.00000000000000000
3.000000

—4.100000

-4

3500.685
217.60000000000000
—5,940,000,000,000

. +3.586950

—2.34542E10

. —236,700,000,000,000,000,000
. 457000000000000000
. 46.00000
. .5000000
. .60000000000000000
. 1.600000
19.

.66666666666666667

ANSWERS TO SELECTED EXERCISES

295

296 ANSWERS TO SELECTED EXERCISES

20. 1.1966666666666667
21. 6666667
22. 1.196667
23. 4963.00
24. 1749,9999900000000

25. 46, .5, .6#, 1.6#, .6666666666666667, 1.196666666666667,
666667, 1.19667, 4963, 1749.99999#

26. 3.33333, accurate to 6 digits.
27. 3.3333333333333330, round-off error occurs in the 17th place.

Section 9.2 (page 235)
1. 10 PRINT (5.87+3.85—~12.07)/11.98
20 END

2. 10 PRINT (15.1+11.9[4)/12.88
20 END

3. 10 PRINT (32485+9826)/(321.5-87.6(2)
20 END
4. —6. Place # after all constants in the above programs.

7. 10 INPUT X%
20 1F X% <0 THEN X% =X% —1
30 PRINT X%
40 END

8. =5

9. 4

10. —11

11. 1.780000

12. 1.7800000000000000
13. 32.65342

14. 4.252345E21

15. —=1.234567E--32

16. 3.2836464930292736
17. —5.7400000000000000

ANSWERS TO SELECTED EXERCISES

Section 9.3 (pages 240 and 241)

1.

10.

11.

12.

13.

10 PRINT EXP(1.54)
20 END

10 PRINT EXP(—2.376)
20 END

. 10 PRINT LOG(58)

20 END

. 10 PRINT LOG(9.75E-5)

20 END

. 10 PRINT SIN(3.7)

20 END

10 PRINT COS(57.29578*45)
20 END

10 PRINT ATN(1)
20 END

10 PRINT TAN(.682)
20 END

10 PRINT 57.2958*ATN(2)
20 END

10 PRINT LOG(18.9)/LOG(10)
20 END

10 FOR X==5.0 TO 5.0 STEP .1
20 PRINT X, EXP(X)

30 NEXT X

40 END

10 DATA 1.7, 3.1, 5.9, 7.8, 8.4, 10.1

20FORJ=1TO 6

30 READ X

40 PRINT X, 3*X[(1/4)*LOG(5*X)+EXP(—1.8*X)*TAN(X)

10 CLS

20 FOR J=0TO 127
30 SET (J,23)

40 NEXT J

50 FOR J=0TO 46
60 SET (1,))

70 NEXT)

297

298 ANSWERS TO SELECTED EXERCISES

80 FOR J=1T0 127
90 SET(J, —23*SIN(.05*(—1))+23)
100 NEXT J
110 GOTO 120
120 GOTO 110
130 END
14. 10 CLS
20 FOR J=0TO 127
30 SET (J,23)
40 NEXT J
50 FOR J=0 TO 46
60 SET(63,))
70 NEXT J
80 FOR J=0TO 127
90 SET(,23*ABS((J—63)/5)—23): VERT SCALE-1BLK=5 UNITS
100 NEXT J
110 GOTO 120
120 GOTO 110
130 END

15. 10 INPUT X
20 PRINT “THE FRACTIONAL PART OF",X,“IS”, X—INT(X)
30 END

Section 9.4 (page 243)

10 DEF FNA(X)=X[2—-5*X
10 DEF FNA(X)=1/X—3*X
10 DEF FNA(X)=5*EXP(-2*X)
10 DEF FNA(X)=X*LOG(X/2)
10 DEF FNA(X)=TAN(X)/X
10 DEF FNA(X)=COS(2*X)+1

10 DEF FNA$(C$)=RIGHT$(CS,2)
10 DEF FNAS$(AS$,)=MID$(A$,),4)
10 DEF FNA$(B$)=MID$(B$,INT(LEN(B$)/2)+1,1)

10 DEF FNA(X)=5*EXP(—2*X)
20 FOR X=0 TO 10 STEP .1
30 PRINT X, FNA(X)

40 NEXT)

50 END

—

Index

ABS function, 239240
Absolute value function of BASIC,
239-240
AM hours, 247
ANT(x), 237
Apostrophe, 29
Appointments, determining of, 86—88
Arctangent, see ANT(X)
Arithmetic operation, 16—18
see also Mathematical functions,
Numeric constants, Precision
numbers
Array, 68, 75
assigning values to, 77, 78
numeric, 69
redimensioned, 130
sizes of, 70
two-dimensional, 69
of variables, 68—69, 71
ASCII character codes, 188,
188t—-189t, 189n, 190191, 192,
198, 204, 205, 206
Assembler, 264
AUTO command, 6061
Axis, axes, drawing of, 181
see also Vertical axis

BACKUP operation, 142, 145, 148
Backspace key, 9

Bad file data (22;FD), 130

Balance sheet, 28

Bar charts, 177
drawing of, 170, 171f, 172,
174-177
BASIC, 11, 139, 140
BASIC commands, 146
BASIC constants, 14~15
BASIC function, 205, 206
BASIC language, 9, 14, 263
see also Language programming
BASIC program, programming, 67, 199
advanced printing, 90
decision making, 47-59
elementary, 14-24
features of, 11-14, 15-16
gambling, 99-105
giving names to numbers and words,
2432
inputting data, 75—-83
operation of cassette recorder,
63-66
remarks, 29-30
repetitive operations, 32—42
same system command, 42—-47
simplification of, 59—-63
subroutines, 106—112
telling time, 83-90
working with tabular data, 67-75
BASIC statement, 32
Binary, translation of mnemonics to,
264
Binary digit, see Bit
Binary number, 258

299

300 INDEX

Bit, 258, 259
consecutive, see Byte
Blank space, 90, 91, 93
Blind target shoot game, 213, 214f,
214-215, 2151, 216f, 216-218
Block operations, 208
Boldface, 209
BREAK key, 7n, 53, 65, 126, 165
Broken-line graph, 177, 178f, 178,
1791, 180-181, 181f, 182184
Buffer, 260
Bug, 124
detecting of, see Debugging
Business, use of computer for, 2,
78-79
Business costs, see TL
Byte, 258, 259

1C, 115
Cables, cassette recorder, connection
of, 63
CALCULATION DONE, 47--48
Cancel and start again command, 120
Can’t continue (17; CN), 130
Cash, lost, see LC
Cash flow, see CF, TF
CASS?, 65, 66
Cassette, 4, 45, 46, 85, 130, 131
data files for, 133136
Cassette recorder, 5, 45, 46
operation, 63-66
speed of, see CASS?
Cassette tape, loading of, 64
CDBL function, 240
Centering of line, 209
Central processing unit (CPU), 3, 4
CF, 248, 249, 251
Change command, 117-118
Character(s), oversized, 96
Character codes, see ASClI character
codes
Character manipulation, 196
Character positions, 159
Children, use of data file and,
154157
CINY function, 240
CLEAR command, 72-73, 86
CLEAR key, 8
CLOAD operation, 46, 65

Clock, see Real-time clock
CLOSE instructions, 150
CLS, 10, 37,175
CMD”S" command, 146, 148
TCN, 115
COBOL, 265
Colon, 29
Column numbers, 69
Comma, 19, 91, 132, 147, 150
Command(s), editing of, 117—-119
Communication(s), 257—258
advanced graphics, 260-261
connection to outside, 261262
information storage and retrieval,
260
language of, 258-259
protocol, 259-260
types of, 259
Communications link, 259, 261-262
Compiler, 265
Computer
cost of, 2
features of, 3—5
Computer age, 1
Computer communication, see Com-
munication
Computer games, 213
blind target shoot, 213, 214f,
214-215, 215f, 216f, 216-218
tic-tac-toe, 218, 218f, 219f, 219,
220f, 220-223
Computer keyboard, see Keyboard
Computer languages, 11
see also BASIC language
Computer use, 1
Computing, personal, see Personal
computer
“"Concatenated,” 192
Constants, 14
see also BASIC constants
CONT. statement, 37, 130
Continue statement, see CONT.
statement
Control character(s), 201-202,
204-205, 206207, 210
cursor motion controls, 205—206
Conversion function of BASIC,
240-241
COS function, 236, 237
Cosine, see COS function

COT(X) function, 237

CP/M, 266

CPU see Central processing unit

CSAVE “X,” 46

CSC(X) function, 237

CSNG function, 240

Current value, 26

Cursor, 8, 10, 213, 215

Cursor motion, control, 205-206

Cursor positioning, 114, 115
instructions, 115—117

Customer impatience data, reading,

248

D, 250
Data
inputting, 75-80
mixing, 78
tabular, see Tabular data
Data file(s), 131
features of, 131132
use
for cassette, 133-136
on diskettes, 149-158
Data items, 76
Data retrieval systems, 260
DATA statement, 75-76, 79, 80, 86,
172
use of, 76, 77
Data transmission rates, 259
Day number, see D
Debugging, 124-128
Decision making, computer, 47—49
DEF FN instruction, 242, 243
DEFDBL instruction, 233, 234
DEFINY instruction, 233, 234
DEFSNG instruction, 233, 234
DEFSTR instruction, 234
Delay loop, 39
Delays, creating of, 38—39
Delete, 117
DELETE COMMAND, 44—45, 60, 88
Dialog, start-up, 65
Digit, binary, see Bit
DIM statement, 70-71, 73
Dimensional statement, see DIM
statement
DIR command, 145

INDEX 301

Directory, see DIR command, Tele-
phone directory
Disk, 4, 85, 130
Disk BASIC, 132
Model IlI, features, 144—149
Disk BASIC only (L3;23), 130
Disk drives, 137
Disk file, 5, 131
use of, 136—144
Diskette, 45, 46, 137, 208
care of, 137, 138-139
file specification, 142
non-system, 147—-148
parts of, 137, 138f
system, 139
use of, 204
with data files, 149158
Division, 16, 17
Division by zero (LL;/0), 128
Document
draft version of, 210
editing of, 210
final draft printing, 210-212
Dot printing, 261
Double precision numeric constant,
226, 227, 228, 229
variable of, 233
Doubly-subscripted variable, 69
Draft version, production of, 210

EDIT command, 43
Edit control command, 119
Edit mode, 13
entering, 113-114
EDIT session, 130
Editing
commands, 117-119
of documents, 210
Editor, operation of, 114, 115
EJECT key, 64
Electronic devices, connecting of, 257
Electronic pen, 185
Electronic pencil, 261
ELSE statement, 47, 48, 49
END instruction, 12, 13, 15, 16, 17,
48, 52,76, 77, 118, 130
ENTER command, 20, 43, 44, 53, 60,
66, 113, 114, 115, 118, 120,
132, 139, 140, 141, 145, 146,

302 INDEX

148, 150, 154, 155, 198, 201,
210, 211
ENTER key, 7, 8, 9, 10, 188, 192
EVEN bet, 107
Erasing files, 145—-146
Error(s)
correcting of, 10, 11, 70, 210
see also Line editor
finding of, see Debugging
OVERFLOW, 227
round-off, 229-230
TYPE MISMATCH, 80
see also Bug
Error messages, 126, 128-130
Executive mode, 13
Exit (E), command, 120
EXP, 237
Experiments, computer generated,
simulation, 245-247
Exponential format, 15
Exponential function, 235, 237-238
Exponentiation, 21
Extend line (E) command, 118
External devices, see Peripheral
devices

File(s)
bad data, 130
erasing of, 145—146
opening of, 149-150
program, see Program files
random access, 157
renaming of, 146
sequential, 157
see also Data files

File specification, 142-143

FIX function, 239

Floppy disks, 5

Flow charting, 121, 122f, 122, 123f,

124

FNF function, 242

FNG function, 242

FOR statement, 32, 51, 130

Form feed, 132, 200

Form letters, production of, 201-204

FORMAT command, 148

FORTRAN, 265

Function call, illegal, 129

Gambling, use of computer for,
99-105, 107-110
Games, see Computer games
Global search and replace features,
208-209
GOSUB statement, 106
return without, 130
varjations, 111-112
GOTO instruction, 49, 126
Graphic symbols, printing of, 198-199
Graphics, 159
advanced, 260-261
bar chart drawing and, 170, 171f,
172, 174177
characters, 167f, 168
functions, 177, 178f, 178, 1791,
180—181, 181f, 182-184
language, 261
principles, 159, 160f, 160, 161f,
162—163, 164f, 167f, 165-170
Graphics art, creating of, 184-186
Graphics block, 177, 184-185
connecting, 182
fractions, 178
Graphics tablet, 261
Greatest integer function, of BASIC,
239-240

Hack(H) command, 118-119

Hard copy, 4, 61-62

Hexadecimal system, 264

Home, personal computer for, 2-3
Home position, of screen, 213, 215
Horizontal 'fabbing, 91

IF statement, 47, 48, 49, 51, 55, 57,
63, 118, 119

lllegal function call (S;FC), 129

Immediate mode, 13, 14, 43

Impatience data, customer, 248

Infinite loop, 165

Information, storage and retrieval, 260

Information networks, 262

INKEY$ instruction, 214

INPUT statement, 53—=54, 75, 133,
134, 135, 150, 152, 153, 169

use of, 54-57
Input unit, 3

Inputting data, 75-80

Insert (I) command, 118

“Insert diskette,” 6n

Instructions, retyping, see Subroutines

INT function, 239

Integer(s), 100

Integer numeric constant, 225, 228
variables, 232

Interface, 257, 259, 260, 261
wiring of, 258

Interfacing, 258

Internal drive, 137

Interpreter, 265

Intruder, detection of, 39—40

Justification, of right hand margin, 209

Keyboard, 4
features of, 6, 7, 7n, 8, 8f, 9, 10
use of, 204
Keyboard character, 162—163
Keypad, numeric, 9
KILL command, 119, 145

Language, 14
BASIC, 14

Language programs, programming,

263-264
types, 265266

LC, 248, 249, 251

LEFT$ instruction, 194, 196, 243

LEN instruction, 191, 242

LET statement, 24, 26, 28, 29, 60, 71,
127, 239

Letters, see Form letters

Line, undefined, 128

Line drawing, 160, 162, 163, 177,
1791, 182

Line editor, use of, 113—121

Line editor commands, 119

Line feed, 206

Line length, setting of, 199

Line numbers, numbering, 16, 125,
128

LIST command, 43—44, 60, 126, 127

List line (L) command, 120

LLIST instruction, 198

INDEX 303

Loading of program, 144—145
LOG function, 236, 237, 238
Logarithmic function of BASIC,
237-238
see also LOG function
Loopl(s), 32, 34, 40, 51, 78, 175
infinite, 53, 165
use of, 71-72
to create delays, 38—39
Loop variables, 40
Looping, 125
LPRINT, 125
LPRINT,CHRS instruction, 203, 205
LPRINT USING, 96

Machine code, see Object code
Machine language programming, see
Language programming
Margins, control, 200
Mathematical functions of BASIC,
235-236

conversion, 240—241

defining of, 241-243

greatest integer, absolute value,

239-240
logarithmic and exponential,
237-238, 239

square root, 238-239

trigonometric, 236-237
Memory, 3

size, 7

types of, 4

use of, 204

see also Diskette
MERGE command, 146, 147
M programs, 146—147
Microcomputer, 187, 261

use of, 187
MID$ instruction, 194, 196
Missing operand (21;MQ), 127
Mnemonics, 264

translation into binary, 264
Model I, 3
Model lll, see TRS-80 Model I}
Modem, usé of, 261
Modes of TRS-80, 13—14
Multiple statements, 29
Multiplication, 16, 17, 21, 32

304 INDEX

Negative step, 40
NEW command, 13
NEXT instruction, 51, 130
NEXT without FOR(1; NF), 130
Non-system diskettes, 147—-148
Number(s)
binary, 258
formatting of, 92—-96
see also Precision numbers
Numeric array, 69
Numeric constant, 14, 15
types, 225
arithmetic operation and, 228-230
determination of, 227
double-precision, 226, 227, 228,
229
integer, 225, 228
single-precision, 226, 227, 228,
230, 234
specification of, 227-228
variables, 232-233
Numeric keyboard, 9
Numeric variable, assigning string
value to, 80
Numerical data, 195-196

Object code, 264
ODD bet, 107, 108
ON ERROR GOTO statement, 88, 154
Operand, missing, 129
Operating system, 139
Operation(s)
control, 114
editing, 114
Out of data (4;0D), 130
Out of memory (21;M0), 129
Output, 33
adaptation to screen, 36
datain, 38
format, 90
written, see Hard copy
Output devices, 4
Output unit, 4
Overflow (5;0V), 28
OVERFLOW error, 227

Page format, 198
Page length, setting of, 199

Parallel communications, 259
Parenthesis, 17, 18
PASCAL, 265
Password, 142, 143
Payroll, preparing of, 78—79
PEEK instruction, 199
Peripheral devices, 257
Personal computer, 2

uses, 2—3
PLAY button, 134
PM hours, 247
POKE command, 85, 199
POKEing, 199, 200
POS (0), 205, 206

Precision numbers, single and double

225-232

PRINT CHR$ instruction, 204, 205
PRINT instruction, 12, 13, 15, 17, 18,
60, 78, 90, 91-92, 118, 133,

150, 165, 190
use of, 18-21
variables in, 25
see also LPRINT
Print item, 90, 91

PRINT USING statement, 92, 93, 94,

95, 96
variants of, 96—97
Print zones, 19, 19f, 90
Printer
controls, 198

advancing to top of page, 200

form letter production and,
201-204
margin control, 200
setting line length, 199
Formatting output on, 90
operation, 198
use, 61-62
Printing, advanced, 90-99

Professionals, personal computer for, 3

Profits, see Bar chart
Program, 11
changing of, 13
listing, 43—44
merging of, 146—-147
reading, 64—65
running, 12-13

saving and loading, 45-46, 64,

144-145
typing of, 12

Program files, 131

Program lines, deleting of, 4445

Programming style, development of,
62-63

Question mark, 60
Quit (Q) command, 120
Quotation marks, 15, 91, 150

RAM, 4, 5, 13, 43, 45, 46, 113, 139,
144, 187, 225
erasing of, 5, 10, 12
uses of, 5
Random access files, 157
Random access memory, see RAM
RANDOM instruction, inserting of,
251-253, 254
Random number generator, see RNO
(0)
Read only memory, see ROM
READ statement, 76, 77—78, 79, 80,
119
Read write window, 137
Reading programs, 64—65
READY messages, 11, 14, 16, 43, 64,
125, 140, 141, 165, 213
Real-time clock, 83, 84
reading of, 8384
setting of, 85—-88
RECORD button, 134
Recreation, personal computer for, 3
Rectangles, computer graphics and,
159, 160f, 160, 161f
Redimensioned array (9;DD), 130
REM statement, 29
Remarks, in program, 29-30
REMX, 29
RENAME command, 146
Renaming of file, 146
Repetitive operation, procedure for,
32-42
RESET button, 10
RESTORE statement, 79, 80
RESUME statement, 106, 107, 130
RETURN without GOSUB (3;RG), 130
Retyping, 24
REWIND button, 64, 65
RIGHTS$ instruction, 194, 196

INDEX 305

RND(0), 99100, 101, 103, 104, 185,
247

RND(X), 99

ROM, 4-5, 139

Round-off errors, 229-230

Row number, 69

RUN command, 12, 13, 14, 20, 33,
43, 126, 127, 130

Running the program, 12—13

SAVE command, 144, 146, 147
Saving of program, 45-46, 64,
144—145
Scientist, computer for
mathematical functions and, see
Mathematical functions
precision numbers, single and
double, 225-232
variable types and, 232-235
Screen, 8, 20, 36, 43
adaptation of output to, 36
clearing, 10, 175
see also CLS
formatting output on, 90
home position, 213, 215
SCRIPSIT program, 209
Scrolling, 8, 36
SEC(X) function, 237
Security system, intruder detection by,
39-40
Semicolon, use of, 90, 91
Sequential files, 157
SET instruction, 165, 168, 172
SHIFT command, 36, 96, 120, 150,
200, 201, 210
SHIFT key, 9
Simulation, 245-247
of dry cleaners, 247-255
SIN, 236
Sine function, see SIN
Single-position numeric constant, 226,
227
Single-precision constants, 228, 230,
234
variable of, 232-233
Solution, 17
Space(s), 132
SPACE BAR, use of, 115-116
Spelling correction programs, 209

306 INDEX

SQR(X), function, 238-239
Square root function, see SQR(X)
Start-up dialog, 65
Statements
BASIC, 32
multiple, 29
STOP key, 64
STOP statement, 37
STRS, 196
String(s), 69
dissection, 194
String constant, 14-15, 17, 26
determination, 194—195
String data, 69, 195~196
String formula too complex (16;ST),
129
String manipulation, 187, 192-198
ASCII character codes, 188,
188t-189t, 189n, 190-191,
192
String space, 73, 86
String too long (14;0S), 129
String value, assigning to numeric
variable, 80
String variables, 28, 29
Subroutines, 106—112, 130
assembly of, 108110
Subscript(s), 70
printing, 209
Subscript out of range, (9;BS), 129
Subscripted variables, 67, 69, 70
doubly, 69
Superscripts, printing of, 209
Syntax error (2;SN), 128
System commands, same, 4247
System diskette, 139, 142
System level, 145

TAB command, 91

Tabbing, horizontal, 91

Tabular data, working with, 67-75

TAN function, 237

Tangent, see TAN function

Tape reading, interruption of, 65

TELEPHON file, adding to, 153-154

Telephone directory, computerized,
134, 151, 152

TH, 247

THEN statement, 47, 48, 59, 51, 55,
57, 63, 118, 119
Tic-Tac-Toe program, 218, 218f, 219f,
219, 220f, 220-223
Tick marks, 174, 181
Time, simulated, 247-250
Time-hours, see TH
Time-minutes, see TM
Time-telling, see Real-time clock
TL, 250
™, 247
Trace, use of, 124125
TRace OFF, see TROFF
TRace ON, see TRON
Tracing, 185
Trigonometric functions, 235, 236—237
TROFF, 126
TRON, 125
TRS-80 Model I, 3, 3n, 68
features of, 4, 5, 6f, 7f, 7—8, 8f,
9-10
functions of, 16—18
modes, 13—14
types, 5
TRSDOS, 139-140, 141, 145, 147,
148, 266
return to, 146
TRSDOS ready, 145
TV screen, see Video display
Two-dimensional array, 69
Type declaration tag, 227, 228, 233
Type mismatch (13;TM), 130
TYPE MISMATCH error, 80
Typewriter, 207
microcomputer as, 187
Typing program, shortcuts, 60

Undefined line (7;UL), 128
Underscoring, 209

VAL, 196

Value(s), 69
assigning to array, 77, 78
printing of, 93

Variable(s), 24, 25, 26, 34, 36, 67, 71
array of, 68—69
defined by DIM statement, 70
doubly-subscripted, 69

loop, 40

string, 28, 69

subscripted, 67, 69, 70

value of, 24, 26
Variable names, 67

legal, 2729
Vertical axis, 174, 181
Video display, 4, 159
Video display design, 173f
Video display work sheet, 163, 164f,

165, 166f

WINGSPAN, 76, 77
Word processor, 187
building of, 209-212

INDEX

computer as, 207—-208
control characters, 204—207
printer controls and form letter
production, 198-204
string manipulation, see String
manipulation
use of, 187—-188
Words, adding of, 162
Write protect notch, 137
Writing operation, interruption, 65

Z80 machine language, 263
Z80 microprocessor, 4
Zero, division by, 128

307

e |
— i
TR Y
%
i L
W,
o
.
i
|
g, Sl |
e

& ,ﬂ

)|/ /7 TRS-80 MODEL I1I: ae

{ ~ PROGRAMMING AND APPL]LATI()Nb , __ : 2

| ~ 2 | & |
L)

e Larry Joel Goldhtem. Ph.D.

A =
,3/,.;/_ f Now Iﬁn the first time ever, a text specific dllv designed for novices and : |
&t | experienced users of the TRS-80 Model 111 micro-computer. Here is the ot

book that gives readers a thorough vet refreshingly informal introduction

to programming in BASIC computer language. This book contains all the
information vou need to know about the TRS-80 Model 11, from lurnulg it
on to programming it and why!

In this_-‘lumk vou will find: - g
A ® a clear, c n'iu ise outline of what a computer is and how it works
| ® a Ihumu;.,h introduction to BASIC language with helpful tips on mmnf_,
| the frustrations of programming |
% ® immediate applications to business, graphics, games, and word pro- |
& cessing ;, g
® comprehensive tables, charts, appendices, and much more. T
o 1

*

(JUNTE NTS

A
'--:BA IC @ Easingthe Frustrations of Programming @ Your Computer AS
a File Cabinet ® An Introduction to Computer Gr aphics © Wurd Pro-
cesmng ® Computer Games @ Programming for Sci entists @ ((‘JI'IH
puter-Generated Experiments ® Some Other Applications of Yuur o
'Cbmputer ® Where To Go From Here @ -Index 5

'y

irst Look at Lumputt‘rh ® (etting Started in B:\‘sl[® \lore About”

e

z | Lan‘y Joel Goldstein is a Professor of Mathematics at the Unweraltv of

pSv 3 Mawland College Park, Marvland. Involved in the design and dpphmtmn A
e _of cumputem since 1958, Goldstein is known for his clear, straightforward =
=N '_ _;;.-.? ~writing style, which makes learning technical subjects casy. fun, and ing -)

e 3 fﬂrmaitwe fwmnuwnds of his maﬂers. S pAY &““"T i R

L
:" A
" - "I

-

N H

3@914185

