TRS-80 Model I
Disk
Interfacing
Guide

William Barden, Jr

CONTENTS

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Disk Basics 1

W D FD1771B-01....... 11
Expansion Interface..... 25
Disk Programming...... 33

Appendix_A FD1771B-01 Commands
| forthe TRS-80 46
Appendlx B Disk Format for the

for the TRS-80 48
Appendlx C DISK I/O Program...... 49

Shugart SA400 6

R g S

Chapter 1

Disk Basics

This text describes the operation of the Shugart SA400 Mini-floppy
disk drive in the Radio Shack TRS-80 Model I Microcomputer system. It
is divided into five chapters. The first chapter, Disk Basics, describes
the general operation of minifloppy disks. Chapter 2, Shugart SA400
operation, describes the operation of the disk drive itself in terms of
interface signals and functions. The next chapter is concerned with
operation of the Western Digital FD1771B-01 Floppy Disk
Formatter/Controller chip used in the TRS-80 Model | Expansion
Interface. Chapter 4 shows how the expansion interface decodes disk
addressing and commands. The last chapter shows how Radio Shack
software communicates to the disk and how one may do machine
language (assembly language) and limited Basic-level programming of
disk systems. Appendices provide related material, such as controller
commands and disk format.

A floppy disk system is made up of a disk drive or drives,
a controller, and the microcomputer. In our case, the microcomputer is
the Radio Shack TRS-80 Model |, the controller is the Western Digital
FD1771B-01, and the disk drive is the Shugart SA400. A block diagram
of the TRS-80 disk system is shown in Figure 1. As with other unitsin the
TRS-80 system, the CPU communicates over 16 address lines, Al5
through AO, eight data lines, D7 through D0, and a set of control lines
that specify whether reading or writing and other functions are being
performed. The controller for the disk(s) interprets commands sent to it
over the data lines and translates these commands into disk-type
commands that the Shugart SA400 can recognize. The single chip
controller is a 40-pin chip that is effectively a microcomputer initself, and
replaces a hundred chips or so for a TTL (Transistor- Transistor Logic)
design. Commands are sent to the disk drive by the controller chip to
perform functions for head positioning and reading and writing, and the
“status” of the drive is returned to the controller chip. We will be talking
about the operation of each of these component parts in future chapters,
but for the time, being, let us concern ourselves with how the data is
stored on the “diskette” and some of the physlcal attributes of the
diskette and disk drive. . B B A R R

Figure 1. Block Diagram of the TRS-80 Disk System

_! R
as-ao| I
, N COMMANDS
.b-;fbo‘ wb 'seRiAL
TRS-B0 —~—| FDITTIB-ol [JPATA_ | SHUGART SA40
]
cpY 8 l; STATUS
counﬁol.l

[
|
| expAnsion_1F __ |

When the disk drive is mentioned in this text, we will refer to the “disk”
or “drive” or “disk drive”. When the recording media is mentioned, the
term “diskette” will be used. The diskette used in the Shugart SA400 is
basically a 5% inch diameter flexible or “floppy diskette made up of
plastic, coated with a'magnetic oxide similar to that used for recording
tapes. The diskette fits in a square holder for protection and ease of
storage. The square holder fits inside the SA400, which is really only a
device which spins the diskette and moves a recording head along a
radius while the diskette is spinning, along with associated electronics to
read and write data. The recording head reads flux changes or produces
flux changes for writing, similar to a tape recording head. Other disk
electronics control head positioning, protection of the diskette from
writes, and other functions.

The diskette spins at 300 revolutions per minute. As the diskette
revolves, the head can be moved along a radius towards the center or
back again in small increments. Each discrete position over the diskette
defines a “track”, as shown in Figure 2. There are 35 tracks for a Shugart
SA400, and therefore 35 valid positions along the radius. When the head
is positioned along the radius over a track it can read the data along the
concentric circle defined by the track. This circle is divided into ten
“sectors”, each occupying one-tenth of the circumference of the track.
The circumference of the innermost circles or tracks are obviously less
than the outermost tracks, but the content of the tracks is the same,
although the data is packed a little more tightly into the innermost

. tracks. This may cause possible “data separation” problems when 40
. track formatting is attempted.

e e

Figure 2. The Organization of the Diskette

OUTERMOST TRACK (0)

INNERMOST TRACK (35)
TRACK IS,SECTOR 7

ONE SECTOR

2048 BITS oF
DATA
(256 BYTES)

Once positioned over a track, sector 0 can be sensed by a small sector
index hole in the diskette which causes a signal to be generated by the
diskette when the index hole passes five times per second.

Each sector on the diskette holds 256 data bytes. The entire track can
hold 256 times 20 bytes, or 2560 bytes of data. As there are 35 tracks, the
entire diskette can hold 89,600 bytes of data. This data is recorded in
serial fashion along the track, so that one track holds 2560 times 8 bits of
data, or 20,480 bits along the circumference. Data recorded along every
track then, can be viewed as a long string of data bits, starting from
sector 0 of the track and ending at data bit 20479, the last data bit of
sector 9. In addition to the data stored in a sector “record” however,
there are other bit patterns that are not user data. This data identifies the
sector address, defines a “gap”, stores a checksum of user data, and
contains other relevant data pertaining to reading and writing the sector.
This data must be put on the diskette by a special “formatting” process
prior to user data being stored on the diskette. One can look at the
formatting process as supplying a skeletal set of records with proper
sector gaps and identification data, and large unused areas awaiting user
data. The formatting process and actual track format is described later
in this text. ' : :

If data is to be read or written to a sector, the head is first positioned
over the proper track, 0 through 34. Information about where programs
or data are to be found on the diskette must be maintained by the system
user in a software “directory” that contains a file name and track and
sector address, along with other particulars. Track positioningis called a

“seek” operation, and takes about 25 milliseconds (1/40th of a
second) to go from track to track, alittle under a second to go from track

0 to track 34 (worst case), and about 450 milliseconds for the average
seek that must traverse about one-half the number of sectors.

Once the head is positioned over the proper track, the desired sector
can be read. Prior to sector read (or write) the program passes a sector
address (0 through 9) to the disk controller, just as it had previously
passed a track address before the seek. The disk controller senses when
the proper sector spins under the head by detecting the index hole and
identification data from the diskette. If the sector has just passed the
head when the sector read or write command is given, then the time
required to read or write the sector is about one revolution time plus
one-tenth of a revolution time for read or write. As the diskette is
spinning at 5 revolutions per second, this worst case “sector latency” will
be about 220 milliseconds. The average access for reading or writing to a
sector is about one-half revolution or one-tenth of a second. Once
positioned over the proper sector, data is transferred at 2560 bytes per
revolution, or about 12,800 bytes per second for user data. (The actual
data transfer rate is closer to 15,625 bytes per second because both user
data and identification data is being read.)

The “average access” for records dispersed all over the diskette
would be the average seek time plus average sector time plus data time,
or about 450 milliseconds plus 100 milliseconds plus 20 milliseconds
equals 570 milliseconds per 256 byte sector, or roughly one-half second.
The average access for data accessed “sequentially” in adjoining sectors
and tracks would be about 100 milliseconds (basically average sector
access time) for processing of 256 byte records. Quite a change from 500
baud (50 characters per second) cassette tape!

Another factor to consider in computing access times is motor turn-
on time. When an Input/Output (I/O) operation is performed the disk
drive motor must first be turned on and brought up to speed. This takes
less than a second. If a series of I/O operations are to be performed, the
motor is kept on by continuously “selecting” the drive, so that the one
second turn-on time occurs only at the beginning of the set of
operations. If the operations occur greater than about three seconds
apart, however, the motor must be turned on for each set of operations.

Data is normally read and written one sector at a time, although it is
possible to read one to ten sectors worth with one command. Checks
are provided for valid data, positioning errors, and other “disk status” as
in any complicated I/O device.

Each diskette square holder has a small notch cutout that can be
covered over with a label or tape. When this is done the diskette is

“write-protected” and data can be read from, but not written to, the
diskette.

The TRS-80 permits up to four drives to be connected to the
expansion interface box with one cable. These are numbered as “0”, “1”,
“2", and “3”. Drive 0 always contains a diskette with the TRS Disk
Operating System (or TRSDOS) and utility program on the first 34K
bytes or so of the diskette. The “default” drive is disk drive number 0 for
commands that do not specify a drive number, and the “bootstrap”
program is also contained in sector 0, track 0 of the diskette in drive 0.

Now that we have seen in general how disk storage functions, we will

* continue by discussing the Shugart SA400 in the next chapter, followed

by the controller chip, addressing, and disk programming.

Chapter 2
Shugart SA400

This chapter will describe the Shugart SA400 disk drive as used in the
Radio Shack TRS-80. The SA400 drive is essentially unmodified
internally by Radio Shack, the exception being minor addressing
modifications and a terminator that is connected to a dip socket on the
disk electronics board. This terminator is installed only in drive
number 1, hence the difference in the two types of drives supplied. The
SA400 requires power supplies of +12 volts and +5 volts DC. These are
installed on the rear of the cabinet for the drives (the cabinet or cover is
another optional item). Initially, Radio Shack had a problem with heat
dissipation for the drive power supplies, but this has been alleviated in
later drives. Cabling is also supplied by Radio Shack and is discussed
later in this text. The cable is a simple ribbon cable.

Another point that should be mentioned here is that the Shugart
SA400 has become something of a de facto standard for minifloppy disk
drives. Several other manufacturers make drives that are presumably
plug-to-plug compatible with the SA400 and could be used in place of the
SA400.

Physical Data

The SA400 is very compact, so much so that many microcomputer
manufacturers have installed the entire drive in existing cabinetry to
provide a disk system. The drive measures 5% inches high by 3Y; inches
wide by 8 inches deep (plus power supply). Weight is about three
pounds. There are two basic assemblies in the SA400, the drive
mechanism itself, and a printed circuit board associated with head
electronics and interfacing. The drive mechanism uses a DC drive motor
with a servo speed control and integral tachometer. The motor rotates a
spindle through a belt drive system. The drive has a mechanical interlock
on a door latch to insure that the diskette is properly inserted.

The read/write head is ceramic and is mounted on a carrier
assembly. The head assembly is positioned through the use of a spiral
cam. The cam is driven by a stepping motor that positions the cam and
head by rotating the cam in discrete increments (if you are like me, you
are falling asleep by now - pull off the disk cover, and you willimmediately

see th - mechanism which steps the head assembly from track to
track. | ’s better than a long description, although I don’t want to offend
any mechanical engineers out there).

Printed Circuit Board Electronics

The printed circuit board assembly contains electronics to perform
the following functions:
1. Detect the sector index mark in the diskette.
. 2. Position the head to the proper diskette track.
3. Load the head (press the diskette against the read/write head in
preparation for. reading and writing.
4. Generate signals in the head to write data or read flux changes
from the diskette, including merging data and clock signals.
5. Detect the write protect condition.
6. Detect when the drive is selected.

The functions above are uncomplicated, with the exception of the
read and write data function. Data written to the diskette is merged with
a clock signal. When the combined data/clock signal is read from the
diskette the clock and data must be separated by special circuitry. In this
case the circuitry is contained in the Western Digital FD1771B-01 chip,
along with circuitry to create the merged clock/data. The effect of
merging the data and clock is to produce a pulse train that is frequency
modulated. Whenever a one bit is generated, two pulses result during a
clock cycle, while only one pulse is generated for a zero bit. A typical
string of data read from a diskette is shown in Figure 1. The recording
method is shown for information only, as one should never have to deal

with data at this raw level, unless possibly troubleshooting an inoperative
disk drive.

Figure 1. Data Recording

7

21T U U U U U

seaed | [U U U
e i —

=)) 1 o 1

Control Signals . o
The standard Shugart SA400 interface signals are shown in Table 1.
These are the signals that are present on the disk drive printed circuit
board connector that attaches to the TRS-80 cabling. We will discuss

these signals in general initially, without regard to the TRS-80, and -

8

describe in chapter three how they relate to the FD1771B-01 controller
chip (or vice versa).

Table 1. SA400 Interface Signals

Controller to Disk Disk to Controller
Select 0 Index
Select 1 Track 0
Select 2 Write Protect
Select 3 Read Data
Drive Motor Enable
Direction
Step
Write Data
Write Enable

Assume the disk is off. When power is supplied and the signal Drive
Motor Enable goes low, the drive motor “comes up” to a speed of 300
revolutions per minute and stabilizes at this speed in less than one
second. When this signal goes high, the drive motor stops in less than a
second. In the TRS-80, the motor is normally off and is only turned on for
reading and writing.

The Direction and Step signals are outputs to the disk that control the
stepping of the drive head. If Direction is low and a Step pulse is issued,
the head will step over towards the center of the disk by one track. If
Direction is high and a Step pulse is issued, the head will step one track
away from the center of the diskette. Obviously, to step from the
outermost track (0) to the innermost track (34) requires 34 step pulses.
Each Step pulse goes from high to low for a duration of 200 nanoseconds
(200 billionths of a second) to 2 milliseconds (2 thousandths of a second).

The Index signal is an output from the disk drive which appears as a
pulse every 200 milliseconds at the beginning of a track. It is generated by
the appearance and detection of the index hole in each diskette five
times per second. .

Signal Track 0 is another output from the disk indicating that the head
is positioned over the outermost track, track 0. This causes signal
“Track 0” to go low. .

- Signal Write Protect is low whenever an opaque label is put over the
diskette write-protect notch. This signal informs the controller that
writing data to the disk is not possible. o o

" Signals Select 0 through Select 3 are used to select one of four drives.
The drive number within the SA400 is determined by a dip shunt. In the

TRS-80, however, selection is determined by position along the cable,
and if Select 0 is low, drive 1 is selected, if Select 1 is low drive 2 is
selected, and so forth.

Reading and Writing

»

The normal sequence before reading or writing data is to turn on the
drive motor and to then position the head by stepping until the head is
positioned over the desired track. Now data can be read or written after
the motor reaches full speed (one second) and the desired sector
appears under the head. The controller chip issues the proper number of
Step commands in the proper Direction to postion the head and may
also control Drive Motor Enable, although this is not done in the TRS-80
(addressing the disk turns on the motor for a period of time).

When a write is to be performed, the Write Enable line must first go
low to signal the drive that a write will be taking place. The current in the
head is turned on by the Write Enable signal in preparation for the write.
Writes cannot be performed unless Write Enable is low.

Data to be written is sent to the disk via the Write Data line. Each high
to low transition on this line causes a magnetic flux change in the
read/write head. The recording technique used is the previously
described frequency-modulation type (double frequency) in which data
and clock form a combined Write Data signal.

Data being read is sent from the disk by means of the Read Data line. A
data pulse is sent for each flux transition on the diskette.

Both read and write data appears as a series of serial .pulses. The

controller performs a serial to parallel conversion in data read from the
disk and a parallel to serial conversion for data written to the disk.

In essence then, there are really not many things that the disk can do.
It can only step one track at a time in one direction, write a data pulse,
read a data pulse, and report back on the status of the index mark, track
0 position, and write protect. All of the other functions such as readinga
sector, formatting, writing a sector, stepping more than one sector to a
given track, and finding a given sector must all be implemented .in
external (to the disk) logic. In the next chapter we will see how the floppy
disk controller implements these functions and others. _ L

The following table recaps disk signals, lists their pin numbers for the
SA400 connector and the TRS-80 cabling, and cross references the
Shugart name with TRS-80 terminology. '

10

Shugart Pin #, Signal Name

OO~ WN —

Table 2. SA400/TRS-80 Signals

spare
spare
spare
spare
spare
spare
ground
Index
ground

. Select 0

ground

Select 1
ground
Select 2
ground

Drive Motor Enable
ground
Direction
ground

Step

ground

Write Data
ground

Write Enable
ground
Track 0
ground

Write Protect
ground

Read Data
spare

Select 3 (jumper)
spare

spare

TRS-80 Cable Pin #, Signal Name

OO0~ U WN -

ground
not used
ground
not used
ground
not used
ground
Index Pulse
ground
DS1
ground

DS2

ground

DS3

ground

Motor On
ground
Direction Select
ground

Step

ground

Write Data
ground

Write Gate
ground

Track Zero e
ground ,
Write Protect
ground

Read Data
ground

Ds4

ground

not used

sl

11

Chapter 3

Western Digital FD1771B-01

The Western Digital FD1771B-01 is a40 pin floppy disk controller chip
which enables the TRS-80 to issue simple commands for head
positioning and reading and writing of data. The controller chip then
performs the complicated timing functions for implementation of these
commands. The commands that may be issued to the FD1771B-01 are:
. Restore. Move the head to track zero.

. Seek. Find the currently specified track.
. Step. Step the head in the last direction.
. Step In. Step the head one track in.

. Step Out. Step the head one track out.

. Read. Read one byte of user data.

. Write. Write one byte of user data.

. Read Address. Read identification field.

. Read Track. Read entire track.

10. Write Track. Write entire track.

11. Force Interrupt. Terminate operation.

O 00~ G WK -

Data to be written to the disk is transferred from the TRS-80 to the
FD1771B-01 in parallel, 8 bits at a time. Data to be read from the disk is
assembled from bit serial data from the disk into 8 bit bytes and then sent
to the TRS-80 in parallel. In addition to serial/parallel conversion for
data, the FD1771B-01 also recieves parallel data related to head
positioning for the disk. All parallel data, whether commands or user
data, is sent to the FD1771B-01 over the eight-bit data bus from the TRS-
80 CPU, D7 through D0. Every time a byte of data is sent over the data
bus, the disk controller must first be addressed by performing a “load
instruction” for a read from the controller, or a “store instruction” for a
write to the controller. Addressing and transfer of data to the disk
controller will be explained in more detail in the following two chapters.

The FD1771B-01 contains several registers for positioning and disk
data. They are shown in Figure 1.

| 1

12
Figure 1. The FD1771B-01 -
MTA—#.‘#r——_“__T_‘“_———’—__-—I
wnes 8 . 4
Cro cpu) | BUFFERS f
' = 1 I 1
R)R] O[T [Re]
I
|

TA | b, L#————,L
WRITE ¢ R . @M—A READ
DATA 1 Res | F l DATA

CTo bisc) (FROM

l DISCY

l cPu Disc

INTER- INTER ~ I s
chy 4—,1 o FACE FACE + Contrai

CoNTROL I CON-~ CoN - l Signals
SIGNALS TROL TRoL. (o
(To CPU) ' ! Discy

| Wb £DITTIB-0| |

o —— — —_——— — —— e L 2

Tracks on the SA400 are numbered from 0 (outermost) to 34
(innermost). The track register is an 8-bit register which holds the
current track number. Every time the disk head is stepped, the track
register is automatically incremented or decremented to reflect the
current track position. The track register may be read or loaded by a
“load” or a “store” instruction in the Z 80.

The sector register is an 8-bit register which holds the current sector
number. As the ten sectors rotate under the head. the sector register is
adjusted to hold the current sector number. The sector register may be
read or loaded by a “load” or a “store” instruction in the Z-80.

The command register is an 8-bit register which holds one of the
eleven possible commands that may be issued to the FD1771B-01. The
status register is an 8-bit register which holds status information from the
disk. The status in the register varies with the command, but represents
such typical conditions as “track 0”, “disk busy” and “disk protected”.

An 8-bit data register holds data that is read from the disk or is to be
written to the disk. This register interfaces to another data register,
which converts the parallel TRS-80 data into serial form.

Other logic in the FD1771B-01 is concerned with separating the data
from the clock signal (data separator), aritlunetic within the disk
controller (arithmetic and logical unit), and control logic.

Clock Signal

The clock signal for the FD1771B-01 is a 1.0 mhz square wave input to

the disk controller. The clock is used to control internal device timing

and is also used to generate clock and data pulses sent to the disk for
writes.

13

Power Supply Signals
The FD1771B-01 requires +12 VDC, +5 VDC and -5 VDC.

FD1771B-01 to Disk Signals

The signals described under the SA400 are shown below, referenced
to their FD1771B-01 signals. The FD1771B-01 signals perform the same
functions as previously discussed. There is no chicken/egg debate here
as the disk signals were defined before the controller; the controller is
designed to easily implement the necessary logic for the disk. Pin
numbers for both the SA400 and FD1771B-01 are provided in the table.
Figure 2 shows a “pin-out” of the controller chip with all 40 pins of the
controller chip and their corresponding signals.

FD1771B-01 Signal (pin) SA400 Signal (pin)
HLT (32) ::L
RDY/HLT (23) from expansion interface
STEP (15) ~—> STEP PULSE (20)
DIRC(16) —_— DIRECTION SEL (18)
WE (30) —>» WRITE GATE (24)
WD (31) —3>» WRITE DATA (22)
FDDATA (27) <€— READ DATA (30)
WPRT (36) <— WRITE PROTECT (28)
IP (35) < INDEX PULSE (8)
TROO (34) <— TRACK ZERO (26)

A set of other signals for the FD1771B-01 are not used in the
TRS-80 implementation. Examples of these are the factory test
input (pin 22) and signals connected with an external data
separator (pin 25).

FD1771B-01 Signal (pin) Description
HLD (28) Head Load
3FM (18) Three phase motor select
TEST (22) Test input
XTDS (25) External data separator

14

FD1771B-01 Signal (pin)

Description

FDCLOCK (26) Floppy disc clock
—_— (external separator)
WE (33) Write fault

DINT (37) Disc initialization

Figure 2. FD1771B-01 Pin-Out

32 READY
[- PALT |} %:—H LT FRem EXPANSION |F
DALG 13 16 DIRC —DIRE
ALS iz USSTEP gTFE{P(;Lt:ESEL
vo b1-DO SF:"' Il E‘\;L"‘E————p-wnn-r GATE
oF cPU 10 2LWD o WRITE DATA To /FRoM
—DAcx 9 G EDDATA ___ pean paTA Disc
DAC B

—DPh L WD INDEX, PULSE
T S
FRoMm <PV { RE ED 1771B-01 PEYATES TRACK ZERO
CoNTRoOL T G ——— ——ﬂ-———_....

3-‘-‘7”_3’1‘33'__.\»& ITE PRoTECT

SIGNALS Al [18 3Fm
éo % 22 ST
TO <PU Dg 25 XID3 > NoT USED IN
138 FdOocKk TRS-80 DESIGN
TO SYSRES s
37 DINT
/
40 41avdC h
DRR 38 2| _+SVDC
NoTuseD | 1643 29 | lL_~Swvbde - POWER #cLock
N TRS-80 PH3 17 20 GND
DESIGN CS 3] 24 CLK J

TRS-80 to FD1771B-01 Signals

Both commands and data are passed between the TRS-80 and
FD1771B-01 by DAL7 through DALQ’ (most significant to least
significant). This is a bidirectional bus that feeds the data, sector, track,
command, gnd status registers depending upon the command sent out
by the TRS-80. The DAL7’ through DALO’ lines are connected (or gated)
to the data bus to the TRS-80, D7 through DO, respectively.

—

15

Input signals RE"and WE’ (pins 4 and 2) are read and write signals from
the TRS-80. Each read and write operation to the FD1771B-01 transfers
one byte of data, command, or status between the FD1771B-01 and Z-80
or CPU. A0 and Al (pins 5 and 6) interface directly to AQ and Al of the
TRS-80 and control which type of data transfer is to be made. If aread or
write is performed to the FD1771B-01, the following actions take place,
dependent upon the state of A0 and Al. These transfers will be
described in more detail later in this text.

Al A0

Read Action Write Action
0 0 Read staus Write command
0 1 Read track Write track
1 0 Read sector Write sector
1 1 Read data Write data

Signal INTRQ (Interrupt Request) would normally be used to
generate an interrupt in many computers, but in the Radio Shack
implementation is used to signal a ready status to the TRS-80 by being
tied to bus line D6. Signal INTRQ goes high at the end of any operation
performed by the FD1771B-01 and is reset when a new command to the
FD1771B-01 is issued.

Signal MR’ is “Master Reset” and is used to initialize the FD1771B-01
to an initial condition.

Another set of signals commonly used for interfacing are not
connected or deactivated in this configuration. They are shown below:

Signal (pin) Description

DRQ (38) No connection. Data request.
TG43 (29) Track greater than 43, no connection
PH3 (17) Phase 3, no connection
CS’ (3) Chip Select. Ground.

Commands

Eleven commands may be sent to the FD1771B-01 by the TRS-80.
They were previously listed. The first group of commands are related to
motor positioning. They are Restore, Seek, Step-In, and Step-Out. All
are sent to the FD1771B-01 by a write A0=0, A1=0 output. In the TRS-80,
this would be accomplished by loading a CPU register with a byte
defining the command value and performing a “store” instruction to
address 37ECH. The 37ECH location is actually the disk address, and

16

the least significant two bits of the “C” are 00, which specifies the
command register. Signal WE is active because a “store” instruction is
being executed, and the write causes the command byte to be

transferred from the CPU register to the command register in the
FD1771B-01.

Restore is issued by outputting a data byte of:

7 O
OlOIOIO{H{V] R

The Restore moves the disk head to a position over track 0. There are
three fields in the Restore command. The first field, H, may be a1 ora 0
in the TRS-80 system as it causes no action (the head is loaded at motor
on). In other implementations it unloads or loads the head before a
command. The second field is a verify field and may beaO ora 1. It is
used to verify that the track address read from the diskette is the same as
the current track register contents. The third field (two bits) is used to
vary the stepping rate of the head. The proper rate for TRS-80 operation
with the SA400 is the stepping rate defined by binary 11. For discussion
purposes, we will assume that the normal coding of these fields in the
TRS-80 will be binary 0011. These three fields are also used in the other
four commands in this group (Seek, Step, Step-In, and Step-Out) and we
will assume a binary 0011 configuration here also.

The Seek command must be preceded by an cutput to the data
register to load the data register with the desired track number. (The
output would be performed by a “store” to location 37EFH to store a
track number in a CPU register.) When a Seek command is issued after
the track number has been stored in the data register, the FD1771B-01
will automatically position the head over the proper track by comparing
the contents of the data register with the current track register and

issuing an appropriate series of Step Pulses in the proper Direction. The
Seek command format follows:

7 O
olo[o[1]oJof1]1

17

The Step command causes one step of the head to occur. The
direction of the step, in or out, is the same as the previous Step
command. The Step command does have an active field, U. The U field
determines whether the track register is updated after the step. If U=1,
the track register is incremented or decremented by one, dependent
upon the direction of the step. If U=0, no adjustment is made. The Step

format is:

7 O
Olol 1{UlOiOI 111

The Step-In and Step-Out commands are similar to the Step, except
that the direction is explicit. The U field operates as in the Step.

7 O
Step In OE 1 §O§U OEO? 111

sen 0w [OQ] L1 1TUOIO[11 1

To reiterate the commands in the first group then, Restore finds track
0, Seek finds a specified track, Step, Step-In and Step-Out move one
track. The Step commands have a field specifying \A{hefther tbe track
register should be updated automatically. Generally this field yvxll be set.
The verify field may be optionally used on all commands to verify tha_t the
track # read from diskette matches that in the controller track register.

The second group of the eleven commands in the FD1771B-01 are
related to reading and writing data. There are two of these - Read
Command and Write Command.

User data is generally transferred a sector’s wortb at a time, or 256
bytes. In general, data may be transferred under register /O or Dn’gct
Memory Access (DMA) I/O. The latter operation allows an I/O dev!ce
controller to transfer data between memory and Ithe I/O dgvnce
independentally of the CPU, and requires some fai.rly involved loglf: to
sequence data transfer while “locking” out (suspending) CPU operation.
DMA has the advantage of permitting the CPU to execute program
instructions while the I/O transfers are taking place. The method usedin

MG

18

the TRS-80 is register I/O. This implementation works, but at the cost of
CPU overhead. The CPU is continually “I/O bound” waitingin a “status
loop” to transfer the next byte of data when the controller saysitis ready
(in this case the controller is the FD1771B-01). To “keep up with” the
disk, the controller must be able to transfer one sector’s worth in about
one-tenth revolution, or 20 milliseconds, which is equivalent to
transferring a byte every 78 microseconds. As normal instruction times
are about 8 microseconds in the TRS-80, the Z-80 CPU canindeed keep

up with data flowing from or to the disk. We will see the exact instruction
sequence later in this book.

Prior to the read or write, the TRS-80 program must load the sector -
register with the sector number to be read or written. Also, of course,
the head must be positioned over the proper track by a Restore, Seek, or
series of Step commands. The sector register is loaded by a “store”
instruction with an address of 37EEH (A1=1, A0=0) which stores a sector
number from a CPU register into the FD1771B-01 sector register. The
format of the Read and Write commands are shown below. As in the
case of the positioning commands in the first group, the command is
written to the FD1771B-01 command register by execution of a “store”
instruction with an address of 37ECH (A1=0, A0=0).

7 O
1[OIOIMIBIEJOJO] re-
1[O[1[MIBIEJATAG e

There are three fields in the Read command and four fields in the
Write command. The M field in both is used to enable the read or write of
multiple sectors or records. If M=0 a single record will be transferred. If
M=1, more than one sector will be transferred. The usual case for the
TRS-80 is to transfer only one sector, however, two to ten sectors could
also be transferred by setting this bit. The B field of the Read or Write is
always settoalto signify IBM-compatible disk format, which is simply a
de facto standard established by IBM. Field E controls a 10 millisecond
delay which enables the head to engage before the read or write. As the
head is always engaged before the read or write from motor turn-on
time (the HLD field is not used), the E field could be a one or zero. We'll
use the 10 millisecond delay only because Radio Shack uses it.

The A1/A0 fields of the Write command control writing of the data

19

address mark on the diskette. The standard IBM format for this is a
hexadecimal FB, which is specified by a field of binary 00.

Data is written or read to the diskette by continuously I:nopitoring
(reading) the status from the FD1771B-01. One of the st'atus bits |s.DRQ,
or Data Request, which signifies either that the data register cont.ams the
next byte of read data or has been ‘emptied” of the lgst byte of write data.
Examples of programming for reads and writes will be shown later.

There are three commands in the next group, rel‘c_xted to disk
formatting. They are: Read Address, Read Track, and Wntg Track. As
we mentioned previously, disk formatting initializes the diskette to a
standardized (IBM) format with identification data for track and sector
number, gaps between sectors, CRC (checksum) characters, and other
data. Writing new data to the diskette is done in the 256-byte area
reserved for user data. The complete format of the TRS-80 diskette is
given in Appendix B.

Read Address is a command that reads six identification bytes fr'om
the diskette from the next encountered identification field. Each time
one of the bytes is read the DRQ (Data Request) bit is set in the staaus, 53
that the TRS-80 program can read it from the FD1771B-01 by a “load
37EFH instruction. The six bytes read are as follows:

1. Track address, 0 through 34

2. Zeros

3. Sector address, 0 through 9

4. Sector length

5. CRC character 1

6. CRC character 2 ‘

These six bytes correspond to the bytes given in the appendix for

track format. The Read Address command could be performed at any
time, and not just during a formatting operation. The command for a
Read Address is shown below:

7 O
1[1]oJoJol1]olo

The Read Track command reads an entire track of the current
diskette. Not only user data, but identification data is read as well. 1.\5 in
the case of Reading user data, the Data Request bit is used to indicate
when the next byte of data is ready to be transferred from the
FD1771B01 data register to the Z-80 CPU. Gaps on the diskette are also
read and transferred. The Read Track command has one field, the S’
field. If S’=0, the accumulation of bytes is synchronized to each address

20

mark encountered, so that the controller does not “get lost” in reading
the track full of data. If S=1, no synchronization is done. The Read Track
will primarily be done during the formatting process to verify formatting
data, although it could be done at any time. The format of the Read

7 0
111 JO[O[T[OT]

Write Track is used to format the diskette accoring to the format
shown in Appendix B. Data in the given format is presented to the
FD1771B-01 one byte at a time by the program. The Data Request bit is
continually checked to see when the controller chip is ready for the next
data byte. Address marks are written to the diskette by the controller
chip upon detection of certain data patterns sent by the CPU. A CRC
(cyclic redundancy check type of checksum) is written to the disk in the
same fashion. The codes for these actions are:

Data Pattern Description Clock Mark

F7H Write CRC FFH
FBH Data Address Mark C7H
FCH Index Address Mark D7H (not used)
FEH ID Address Mark C7H

Obviously, no user data is written to the diskette during the Write
Track operation. The user area is filled with E5H or some other
nonconflicting pattern (the bytes above would generate a CRC or
address action). The format of the Write Track is:

7

O
[1]1]1]1]O]1]OlO

There is one command in the last group of eleven commands. The
Force Interrupt command is used to terminate the current command
and to generate an “interrupt” in many systems. In the TRS-80 a Force
Interrupt command also causes an interrupt (if interrupts are

21

“enabled”). Termination of the current command and aninterrupt occur
when one of four conditions occur as specified in a four-bit field in the
Force Interrupt command.

7 O
111 O[T [LIL]TT

The four-bit field is defined by b, Iz, I, lo. Each specifies a
different condition for the termination, as follows:

lo=1, terminate on not ready to ready transition.
li=1, terminate on ready to not ready transistion.
[2=1, terminate on next index pulse.
I3=1, immediate terminate/interrupt.

If none of the above conditions is specified, there is no interrupt but
the command is terminated (lo=li=l=I3=0). Why have so many
conditions? Why not? It is even possible that all might be useful. For
practical purposes however, probably only a Force Interrupt with no
interrupt (binary 11010000) would be used, and that only to terminate a
read or write of multiple sectors after the desired number of sectors. The
FD1771B-01 is designed to cover many contingencies, but only a portion
of all possible commands or conditions will be used in the typical
microcomputer installation.

Registers

We have seen how the FD1771B-01 registers are used in the course of
positioning and transfer of data. A recap of their use follows:

Command Register Used to hold command to be acted upon.
Command is written into the register from
a CPU register.
Track Register May be automatically updated with each
Step. May be read by CPU.
Sector Register Setup with sector number prior to a read

or write. May be read by CPU.
Data Register Used to hold data passing between the CPU
: and disk during reads and writes. Used
, continuously as data is transferred one
byte at a time.

22

The controller register not described above is the Status Register. The
Status Register hold various status conditions during different
operations. For a positioning command (Restore, Seek, Step, Step-In,
Step-Out), the Status Register holds status as follows:

76543210
[T T 11
LBusy

e Index

Track 0

CRC Error

Seek Error

Head Engaged

Write Protect

Not Ready

Not ready (bit 7) is always false (ready) when the disk is being
addressed. Write protect (bit 6) indicates that the diskette write protect
notch is covered. Head engaged (bit 5) is always true when a disk
operation is being performed. Seek error and CRC error are active if
verification was used. But 4 is set on track not found. Track 0 (bit 2) is set
when the head is over track 0. Index (bit 1) is true when the index mark is
detected from the disk. Busy (bit 0) is set when a commandisin process
and reset when the command is completed. What status bits would
normally be used in the TRS-80 for positioning commands? Certainly the

23

busy bit. The busy bit would be checked prior to issuing any new
command to see if the controller was engaged in a previous activity. Any
new action would be delayed until the busy bit was reset. Track 0 might
also be checked after issuing a Restore operation, to see that the Restore
was successfully completed.

During a Read or Write command, the status register holds status as
follows:

76543210

LBUSY

DRQ

LOST DATA

CRC ERROR

RECORD NOT FOUND

RECORD TYPE (RD) OR
WRITE FAULT

RECORD TYPE (RD) OR
WRITE PROTECT

NOT READY

For a Read or Write, the CRC refers to either identification data or to
user data (status bit 3). This bit will be set to indicate invalid data. Lost
data (bit 2) means that the CPU did not respond fast enough to keep up
with the data being transferred between the CPU and disk. If this
condition is true, the bit is set. This should never occur except in
catastrophic cases. Record not found indicates that the desired track or
sector or both was not found. This bit (4), would be set if this error

24

condition occurred (for example, loading an invalid sector number prior
to the read). Data Request, DRQ bit 1, indicates that the buffer is empty
on a write or full on a read. Busy (bit 0) is set during the time the Read or
Wirite is active. Not Ready (bit 7) is always false (ready) when the disk is
being addressed. On a Write, bit 6 is set for a write protect condition,
while bit 5 indicates a write fault. On a Read these bits should be a 01 to
indicate a 256 byte length. The chief bits used for status would be busy
and DRQ. Busy would be tested by the program to insure that a previous
operation was over. DRQ would continually be checked for the next
data byte to be transferred. The other bits would be used to indicate fault
conditions.

Status is also available during the formatting type commands of Read
Address, Read Track, and Write Track. The status bits would have the
same meaning as in the other commands. Status during one of these
three commands is as follows:

Status Bit Read Address Read Track Write Track

7 not ready not ready not ready

6 0 0 write protect
50 0 write fault

4 ID not found 0 0

3 CRC error 0 0

2 lost address lost data lost data

1 DRQ DRQ DRQ

0 busy busy busy

This chapter has discussed the operation of. the Western Digital
FD1771B-01, primarily in terms of what internal operations are
performed, and how it interfaces to the Shugart SA400 disk drive. The
next chapter will show how the TRS-80 communicates to the
FD1771B01 to enable the program to perform positioning operations
and reads and writes. The last chapter will show the sequence of

operations to perform in a program to accomplish_useful work with the
disk.

25

Chapter 4

Expansion Interface

A schematic of the expansion interface as it pertains to the disk is
shown in Figure 1. There are several sections to be considered in this
implementation. They are:

1. Disk selection

2. Motor on circuitry

3. Addressing

4. FD1771B-01 functions
5. Interrupt circuitry

Disk Addressing

There are two general addresses associated with the disk(s). The
address used to select the drive is 37EXH, where X represents 1 through
8. The 37EOH “device select” signal is decoded by two chips in the
expansion interface, Z32, a dual 2-line to four-line decoder (74LS155)
and Z43, a dual 2-line to four-line decoder (74L.S139). These chips are
also used to generate a “controller select” signal from address 37EXH,
where X represents C, D, E, or F.

Let’s take a look at how these two select signals are generated. The
outputs from Z43 are in two groups 1Y0, 1Y1, 1Y2 and 1Y3 and 2YO,
2Y1, 2Y2 and 2Y3. Each group is controlled by an enable signal G1 or
G2. These enables must be low for any of the outputs to be active. If the
-enable is active then one of the outputs is active dependent upon the
configuration of the select bits A1/B1 or A2/B2. The select bits define
binary values 00, 01, 10, or 11 selecting YO0, Y1, Y2 or Y3, in that order;
the most significant bit is select bit B and the least significant is select bit
A. With G1 low and select bits B1=0 and Al=1, for example, output 1Y1
would be active, or low. Note that outputs 1Y1, 1¥Y2 and 1Y3 are not
used in disk addressing. 1Y1 is not connected, and the other two are
used to denote input of a 32K or 48K address, respectively.

Output 1Y0 is fed back to the enable of the second decoder on the
chip, G2. Now 1Y0 is active, or low, when RAS* is low and A15 and A14
are both zeros. RAS* comes from the CPU and is low when a memory
request is made. The disk controller chip is “memory mapped” and
addressed as a memory location, so RAS* will be low when we are
addressing the controller chip or selecting a disk. Now with G2 low, the

26

outputs at 2Y0, 2Y1, 2Y2 and 2Y3 reflect the configuration of inputs B2
and A2.2Y1, 2Y2 and 2Y3 are not used. 2Y0 will be active when A2 and
B2 are both low. Since B2 is directly connected to All, All must be a
zero for 2Y0. A2 is low when address lines A5, A6, A7, A8, A9, A10,A12
and Al3 are true, causing the output of NAND gate Z42 to go low.
Output 2Y0 will be active (low) therefore, when the following conditions

ADDRESS BITS

1514 131211109 8 7 6 5 4 3 2 1 O
Oojoj1j1jo1jrjrprjry1lxixIxixix

'RAS*=0 X=DON'T CARE

Output 2Y0 feeds chip Z32 enabling G1 and G2. This chip acts much
the same as Z43, except that there are two additional enables, C1 and
C2. When Cl s high, then outputs 1Y0, 1Y1, 1Y2 and 1Y3 are enabled.
When C2 is low, then outputs 2Y0, 2Y1, 2Y2 and 2Y3 are enabled. A
common two select bits A and B determine which of the four outputs will
be active. Now C1 and C2 are connected to two CPU signals RD* and
WR*, respectively. These signals are active (low) when a read or write
are being performed. The read and write are mutually exclusive, of
course, and are used for addressing memory and I/O devices. When a
read is being performed, signal RD* will be low and input C1 will be high
(223 inverts the RD* signal) and one of four outputs 1Y0, 1Y1, 1Y2 or
1Y3 will be active or low. When a write is being done, C2 will be low and
one of the outputs 2Y0, 2Y1, 2Y2 or 2Y3 will be active or low. Now B and
A, the two select signals, are directly connected to address lines A3 and
A2. Bearing this in mind, the following table shows how the eight outputs
of Z32 decode:

Address Read . Write Pin Signal
37E0 Y N 1Y0 37E0 Read
37E4 Y N 1Y1 no connection
37E8 Y N 1Y2 37E8 Read (printer)
37EC Y N 1Y3 37EC Read
37E0 N Y 2Y0 37E0 Write
37E4 N Y 2Y1 CSW Cassette latch
37E8 N Y 2Y2 37E8 Write (printer)
37EC N Y 2Y3 37EC Write ’

27

The table indicates the general address for activating each of
the eight signals. In fact, since Al and A0 are not used in generating the
address select signals, each of the eight addresses above actually
represents a block of four addresses. Address 37EC, for example,
represents addresses 37EC, 37ED, 37EE and 37EFH. The manner in
which these address selects are used will be discussed below.

Disk Selection

Four signals are shown on Figure 1, and represent the disk select
signals for disk drives 1, 2, 3 and 4. Only one of these signals should be
active at any time. These signals are output from a four bit latch, Z36
(74LS175). The address of this latch is 37EO0H. When a write is done to
address 37EOH, the four low-order bits on the data bus, D3 through DO,
are clocked into the four bits of Z36 by the 37E0 write signal. Loading a
register with 1, 2, 4 or 8, and performing a “store” to location 37E0H
then, selects disk drive 1, 2, 3 or 4, respectively.

Motor On Circuitry

Whenever a disk drive is selected, the 37E0H signal also goes to chip
229. 729 is a “one-shot” which provides a short pulse for a
predetermined period of time, in this case approximately 3 seconds. The
pulse from Z29 is used to enable signal Motor On, which turns on the
disk drive motor in preparation for disk activity. After three seconds or
so, the motor will automatically turn off if no further 37E0 write is
performed. Another related action performed by the 37EQ write is
generation of a “ready” signal to the FD1771B-01. Inputs HLT and RDY
are used by the FD1771B-01 to determine whether the head is loaded
and the disk drive is ready for activity. In the TRS-80 implementation,
these inputs are true only when one of the drives has been selected. If
one drive has been selected, then one of the four latches in Z36 is set,and
the corresponding “not Q” output is a zero, making the common
HLT/RDY signal a high. This signal goes low when Z36 is cleared by 229
at the end of the delay.

FD1771B-01 Functions
The address of the FD1771B-01 is 37ECH, as explained above.
Whenever a read or write is performed to memory address 37EC, data
flows between the CPU and the FD1771B-01. The register within the
FD1771B-01 that is being addressed is determined by address bits 1 and
0. o

Fl

D{SCBLOGIC T

9
o

®

R

»
~N
[

Figure 1 TRS-80

B

5
g

T 5 23
,.II....IW!a
._
m WM W.
|
L o] e -
46 o wi5m
Bz
_nvz.m
I8cvrp
1
Sdhwwy
>Arsvry
LR e

T e GRS SRR

7

E

FRoM IC (NOT sHlewN)

&3 A.F m.a

DISC LOGIC

S
Al

2
nL
USSR

13

sl

FLoPPY DISC
caNTROLLER
FOIT7iB~0!

— Ds4n
o _ 13 ° DS3w —3z _
(BN 4p 1S j\o Lo X 2 [} " — 4
oo np EOSFEROD
1D Q Lz 247\ 8 —————33 |
3 IQ 2 : 1017438 — 15
14 :
— |
@) F 236 i |_m _
— SIS g
G 31€0 — 17 _
0 WRTE - 3 - a
E35 |74Ls20 5
Q C s |
B 3 — e |
Q P |) nenees : |
oToR
m 2004 <+ 7438 © A= _
& IR ——
129 c48 e\l step 1 7 _
22 MLsi22 33 i m.»%w = = 20
T i A (72 6 Cav Iul.\\ .
- e |
2 T [Culfifpe emcan .|
wu - . —_— 2y
- gy H.
i v ~ H@u WRIT® GATE® m 24 —
\
; P R g—— g— . B e e s
| I
w23 | _
pUJ\ 32 1— —
5 STEP pPULSE s) _ 4 _
m prexcl-® 2iREETION a| T pe—ueoE DATAS a1
G) wo | 30 WRITE CATE . ~e 27
O wp |31 WRITE DATA llm..l
-l mop |28 Nk TaLsod _ _
O b DATA FE .cA: READ DATAW . a0
D SRoEL2e x23 WRITE PRoTECTH [" _
— i L3s INDEX, POLSR] e
(@) Y TRAck zERo# A _
< +5V Ri4 Ra2 ®23 Ra4 e 2
Q.u - IS0 150 150 150 NeC l.T..l& _
Rao ~C
22 10K —t— 2 _
e +8V . + <+ L |||||_.Il 6
i 2P STePS AND DIRECTWON I—
o TesT FACTORY TesTING - -
= 13553 EXT DATA SEPARMTWN PooRY
FD Crocx X
.@ - INTERNAL. DATA Cleek,
F [WRITE EAULT
DINT DisSKK INITIALITATION
Z34 :
) ¢\ FLOPPY DiScC
2] CONTROLLER
EFDITTYB-ot

ST

4 3 | 2 1
250G1-4
+IRVA i
D D
2/ 2
+euue 2
prc
+ PULLUP |
c e ¢
+ERAD EuABLE
wsdol
J - READ DATA f—
UOTES! LULESS OTMERWISE SRECIEIED,
1 ALL CAPRCITORS ARE i mcRO-
FARADS, S0V, +80, 5 207+
+were eao WRITE PROT. 2. AL DICCES ARG 1n4IdB-
XSaot s b%ﬁpﬂ.ﬂﬂ”ﬂﬁdb_ﬂv ARG W MicRD-
Sofes
+ P BUABLE: - WRITE PROTRCT 4. ﬂﬂﬂ...;aunw AR
- e
121 L fpiraas sse i o,
£, 00 IUDICATES SUUMT SELECTA
B S il Taee | g
G RIMDICATRS 31,7 HDICATES 37,
A ’ J
o J o P MDICATE S 33, TR INDICATES 4
. . 3 %Y ¥ [7] COMPOMENT NOT WSTALLED.
- woex/esey \7 =
aw 8 P 4 OF 15 GROUMD.
SR KR B @b valok max sa S0k,
POSITION [UNUSED
SEOR| RPL &
oA | weT l—
\S5R | RES
: Hizva Iy wex REF DEOIGUATION |REF DEsauATION
iretiviit u 2!
= C20,2%,24
cain
e [ros es PR FRSRET E T s
ace | SE @[3] = | 954558 | Be 14— &7
T NN S TR T ; are
A T [2N T T TS ey
7407 _ficao) V47 |~ | tase < Jac 3 A
RLEC NN KT 4|5 = [Seaz a 3 "
[Cie wion] SHUGRRT ASSOCIATES
} 1438 | 2F) — |zavzzzz | 2Kk ﬁﬂ. WL SCHEMAT IC. DIAGRAN
Sana_ [840] ora] 1A — Jravzeon | = = [53a5] ADITCETTE . Il
EYIEN T % I Y I I N Y fioefomes s T
Sz e 8 T~ Trasras | <8 EN e ——
Xst00 | ey [| — [alal= -
4 3 H 2 | 1
4 ! 3 ' 2 ! 1
o t6v. 1BOGI-4
yrtErte
v W‘ w™ie
e X,
) TR L2 T L TR on D
» R/)
W woacs
~Neror ou e
+PuLL uP 2
oo ®Ao 2
-wRITe DATA 22 xsase -
ERASE
[c
SWRITE GATE 24 4
+ Wi peoy G- miw et
g | A
~DRWE siecT | W2 tl oo ls xnaOS
T ~aeviTY Lno
- DRwve- seieey 1 IXRlLluw.en| 2 ATVITY LD
) —+ e
i i
-~ DRIVE SELECT 8 AL 3 R, 1 Lg- - HEAD LonD
o
¢ READ wuABLE
¥5400
+ OUTPUT BUABLE
- Lok
~STGP v
B DIRGCTION 18 B
._l,:Qr 40
- PULL UP |
X3400 ﬁk.ﬂlan
— . I
nacos
+8v
[y) _ILG:v $h
=P u ISED> 26 _vance zemo
A ~Taack g sw sk O = A
+TReck g cw U
4 Ty
0 FOUIRANCE Laat 153 2 12 T SO EMATIC D Ady KA A
. Fw_ EEE N A
Emy] Nchars 7o ST
asv o
oy T Tew 3
X540l _ o D[~ [5c| 2m0i-4 |
r 3 } 2 1

32

These two address bits control the operation, as described under
“TRS-80 to FD1771B-01 Signals” in the previous chapter. To read status
from the FD1771B-01, for example, a read to address 37EC would be
performed. A write to the sector register would be accomplished by :
write to address 37EEH (Al=1, A0=0). The read and write signals to the
FD1771B-01 are signals 37EC read and 37EC write from the decode:
chip, which of course, are true for reads and writes in addresses 37EC
through 37EFH.

Data is sent between the FD1771B-01 and CPU along the data bus, D7
through DO. Signal 37EC read is used to gate data from the controller to
the CPU by enabling devices Z33 and Z38; signal 37EC write is used to
gate data from the CPU to controller by enabling chips Z33 and Z37.

Interrupt Circuitry

At the completion of any FD1771B-01 operation, the controller
generates an interrupt signal called INTRQ. In the TRS-80, this signal is
gated onto the data bus by signal 37E0 read, along with the real time
clock signal (INTRQ goes to D7 while RTC goes to D6). INTRQ also is
routed to Z35 as one of two inputs that eventually set Z28 to generate an
interrupt signal to the CPU. Since INTRQ is not only set to signal the end
of a normal disk operation, but is also set to denote an unsuccessful disk
operation, INTRQ could cause an interrupt in the CPU for abnormal
conditions, providing that the interrupts were enabled (El instruction
executed). At this time of writing, not enough is known about the
internal workings of TRSDOS to report on how disk interrupts are
handled, if at all. Disk operations do not require interrupts, as we shall
see in the next chapter, and for the time being we shall leave this
question unresolved.

33

Chapter 5

Disk Programming

The rudimentary set of commands that can be used on the disk(s) in
the TRS-80 are the commands described in chapter 3. No other basic
disk operations are possible. At this level, then, the user can only
perform a restore, seek, step head, read sector, write sector, read
address, read track, write track and force interrupt. Normally the read
address, read track, and write track are used only for formatting the
diskette, so the general purpose commands are only restore, seek step
head, read sector, write sector, and an infrequent force interrupt (which
resets the controller).

Just as Z-80 instructions may be combined to implement Level [or
Level Il Basic, rudimentary disk commands may be combined to
implement a sophisticated disk operating system or disk file manager.
Sequential or random access methods may be implemented, files may be
defined in various types of directories, sorts and merges may be
performed on records, and disk accesses may be optimized for access
speed. It is beyond the scope of this text to describe the procedures for
implementing a disk operating system or file manager, just as a text on Z-
80 programming would not show the implementation of a Basic
interpreter. What will be show however, are methods for performing
individual operations such as restores and reads which may then be
combined into user programs as building blocks for more advanced
operations.

Is it possible to perform disk operations using Basic? The answer is
that the head positioning operations such as restore, steps and seeks
may indeed by implemented using Basic, but that reads and writes may
not. Reading and writing sectors (and tracks) are implemented in the
TRS-80 under programmed /O operations. Each individual byte of data
transferred between the CPU and disk is handled ina CPU register. The
program must continually test the disk status to see whether the disk is
ready for the next data byte or whether the disk has the next data byte
available. Since bytes become available at the rate of one every 64
microseconds or so, the program must be fast enough to keep pace with
this data rate. Fast loops within »~ Basic program might require 3
milliseconds, which is many times slower than the speed required to
keep pace with reads and writes. Read or write operations then must be
performed under assembly language software routines.. o ‘

34

Head Positioning

To become familiar with the sequence of operations for disk functions,
let’s look at some Basic head positioning routines. These routines may

be converted to assembly language routines quite simply, or left as Basic
routines.

First of all we will do a simple write to address 37EQH. This opeation
should select a drive and turn on the disk drive motor for about three
seconds.

POKE 14304,0 37EOH address

The above command stores a zero value in the four bits of 236, selecting
no drive, and simultaneously turns the motor of the dirve on for about
three seconds. A value other than zero could be used to select the drive;
al,2,4 or 8 would select drive 0, 1,2 or 3 respectively. The only effect of
the select would be to bring down the select line for the appropriate
drive.

Now put a protected diskette in the drive. The following routine will
select drive 1 and then read the status from the drive. As long as the drive
is selected (the select bits are cleared when Z29 and the motor goes off),
we will get back status from drive 1. The status should tell us that the
diskette is protected (see chapter 3), and should also tell us if sector 0
has just passed the index pulse detector. Since sector zero comes
around every 200 milliseconds or so, we’ll not see the sector zero status
every time due to the timing of the Basic loop and the short “window” for
sector 0. When the drive is “deselected” after three seconds, a status of
128 will be printed, indicating a “not ready” condition. Status during the
selected time will be 68 or 64, indicating write protect and possibly that
the head is over track zero.

100 POKE 14304,1 select

200 A=PEEK(14316) get status

250 IF (A AND 2)=2 PRINT“SECTOR 0)” test sector 0
‘300 PRINT A print

400 GOTO 200 loop on status

Now take off the protect label or put an unprotected diskette in the
drive and repeat the above program. Status during the select time
should indicate disk not protected (0 or 4).

Now we will try a more advanced operation. The following program
selects the drive, does a restore to move the head to track 0, reads back
the track register and prints the value (should be zero), stepsin the head
one track, reads the track register and prints it (should be 1), and loops

35

back to the track register read. The command in 200 does a restore at a
slow stepping rate and the command in 600 does a step-in with automatic
update and slow stepping rate. The status check at 300 and 400 tests to
see whether the disk is busy or whether it is done performing the restore.
This busy check will be found on virtually every command. Value 14317
addresses the track register in the PEEK (a read).

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 A=PEEK(14316) get status
" 400 IF (A AND 1)< >0 GOTO 300 test busy
500 A=PEEK(14317) get track register
550 PRINT A print
570 FOR 1=0 TO 300:NEXT wait for display
600 POKE 14316,83 step-in
700 A=PEEK(14317) get track register
800 PRINT A print
900 - GOTO 700 loop

In the above program the FD1771B-01 automatically incremented the
track register when the step-in was performed. Unless the update bit 'is
specified, that update will not be done. The following program steps in
from track O after a restore and prints the track register each time. A
delay is put in at 760 for display purposes.

100 POKE 14304,1 select

200 POKE 14316,3 restore command
300 A=PEEK(14316) get status

400 IF (A AND 1)< >0 GOTO 300 test busy

500 A=PEEK(14317) get track register
550 PRINT A print

570 FOR IO TO 300:NEXT delay for display
600 POKE 14304,1 select

610 POKE 14316,83 step-in

700 A=PEEK(14316) get status

750 IF (A AND 1)< >0 GOTO 700 test busy

760 FOR I=0 TO 300:NEXT delay for display
770 A=PEEK(14317) get track register
800 PRINT A print .
900 IFA < 35 GOTO 600 keep on steppin

To observe what happens when the update bit is not set in the step-in
:ommand, substitute a 67 for the 83 in 610. Don't let this continue too
ong, however, as some types of drives have been known to step off t'he
'nd of the earth (or at least the step mechanism); a few steps are fine
iowever, and will illustrate the update of the track.

36

The stepping rate used for the SA400 is 40 milliseconds, specified by a
binary 11 in the step rate field in the positioning commands. This is the
rate that should be used normally. For illustration of this field’s use
however, the following program may be used to step in at a faster rate.
Use 80 for a fast rate and 83 for a slow rate in line 610.

37

One question the reader may be asking - why select each time a stepis
done? Don't forget that the motor stays on only for about three seconds.
If the entire disk operation takes longer than that, the drive is
automatically deselected. It is a good idea therefore, to select before
each new disk operation (command) to keep the disk in a ready

condition. This applies not only to Basic code, but to assembly language
code as well.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 A=PEEK(14316) get status
400 IF (A AND 1){ >0 GOTO 300 test busy
+600 POKE 14304,1 select
610 POKE 14316,80 step-in
700 B=PEEK(14316) get status
770 A=PEEK(14317) get track
800 PRINT A print
900 IFB ¢ 35 GOTO 600 loop

The above programs have used a step in command. Let’s use the step

out command and clean up some of the code. The following program
uses subroutine 1000 as a busy check. A return is made only when the
previous command is done. Subroutine 2000 performs an operation
determined by V, waits for done, and then prints the track register. The

We have seen the step in and step out command used. Now let us use
‘he step from last direction. As you will recall, this command will cause
he FD1771B-01 to step in the same direction as the previous command.

program steps into track 35 and then steps out to track 0.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 GOSUB 1000 test done
400 V=83 step-in
500 GOSUB 2000 output and test
600 IF A ¢ 35GOTO 500 step in till end
700 V=115 step-out
800 GOSUB 2000 output and test
900 IF A{ D0 GOTO 800 step out till end
. 950 END done
1000 A=PEEK(14316) get status
1100 IF (A AND 1) <>0 GOTO 1000 go if busy
1200 RETURN return
2000 POKE 14304,1 select
2050 POKE 14316,V output command
2100 GOSUB 1000 test done .
2200 A=PEEK(14317) get track register
2300 PRINT A print
2400 RETURN return

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 GOSUB 1000 test done
400 POKE 14316,83 step-in
500 GOSUB 1000 test done
600 FORI=1TO 34 setup loop
650 POKE 14304,1 select
700 POKE 1431651 step from last dir.
800 GOSUB 1000 test done
850 A=PEEK(14317) get track
860 PRINT A print
900 NEXT loop
950 END done
1000 A=PEEK(14316) get status
1100 IF (A AND 1)¢ >0 GOTO 1000 test done
1200 RETURN return

The only other positioning command we have not used is seek. The
following program seeks from any input value. Obviously valid values are
0 through 34 for the track. The seek assumes that the data register of the
FD1771B-01 has been loaded with the value representing the desired
track. This is done at 500. When the seek command is executed at 700
the FD1771B-01 automatically steps in or out to position the head over
the desired track. The track register must of course, have the correct
current track number for a proper seek.

100 POKE 14304,1 select
200 POKE 14316,3 restore
300 GOSUB 2000 test done
350 INPUTV

input track #
400 POKE 14304,1 select

500 POKE 14319,V output track #

38

600 GOSUB 2000 test done

700 POKE 14316,19 seek command

800 GOSUB 2000 test done

900 A=PEEK(14317) get track
1000 PRINT A print

1050 A=PEEK(14316) get status
1060 PRINT A print

1100 GOTO 350 A loop on input
2000 A=PEEK(14316) get status
2100 IF (A AND 1) >0 GOTO 2000 test done
2200 RETURN return if done

- The above routines illustrate the use of the positioning commands.
Assembly language implementation would follow the above approaches
(we shall see assembly language routines later in this chapter). The
important thing in the use of the positioning commands is to know where
you are. The reference point is track zero to which the head may always
be positioned. Although the FD1771B-01 should not fail to update the
track register properly, that gaelic law applies.

Reading/Writing
To illustrate reading and writing of sectors, we will use code from a
popular microcomputer. The code is unsophisticated and can be
accessed using a symbolic disassembler such as Small Systems
Software’s RSM-1S.

One of the first things that Level Il Basic does is to test whether a disk
is present. If a disk is present, then Level Il assumes that a program is
present on sector 0, track 0, and reads that program in. The program, of
course, is a portion of TRSDOS. The process of reading in the program
is called “bootstrapping” or “booting in”, and is a way for the system to
pull itself up by it’s own bootstraps after power up or RESET. If a disk is
not present, of course, or if BREAK is pressed on power up, Level Il goes
instead to Level Il Basic, bypassing the disk.

If we examine the first three instructions in Level Il Basic we find:

0000 F3 DI disable interrupts
0001 AF XOR A Oto A
0002 C37406 JP 0674 jump to loc 0674H

This sequence is always entered on power up, as a power up causes
execution to start at location 0. The first instruction disables all external
interrupts except for the non-maskable interrupt. The A register is
loaded with 0 and a jump is then made to loaction 0674H.

At location 0674H we find the “disk boot” routine shown below in

figure 1. The disk boot starts at 0696H after other initialization. The disk
boot performs the following functions:

39
1. Read disk status (0696H)

2. Test for status bits from disk (069AH)

3. If no status for disk, go to location 0075H (069CH)

4. Else: Select drive 1 by outputting 1 to select latch address 37E1H
(06A1H).

5. Send restore command (3) to disk command register (address
37EC - 06AAH).

6. Delay 65536 counts (0060 is a subroutine to delay by countin BC
register pair). This is done to let the motor come up to speed and for
head movement.

7. Test busy bit for status (06B2H).

8. Loop to 7 if busy.

9. Else: Send 0 to sector register by outputting to location 37EEH.
This prepares the disk to read sector 0 of track 0.

10. Send 8CH read command by outputting 8C to location 37EC
(06BFH). Read sector 0, track 0, byte 0.

11. Test bit 1 of the status register (DRQ). If DRQ is not zero, the
next byte of data is not present in the FD1771B-01 data register and step
11 is again executed. Else: Data is present and the datais read into the A
register (06C4H) and transferred to the 4200H area (06C5H).

12. The BC pointer is bumped by one (06C4H) to point to the next
destination in the 4200 area (06C6H).

13. If C=0, steps 11 through 13 are repeated to transfer 256 bytes of
data from sector 0 to 4200H through 42FFH.

14. A jump is made to TRSDOS start at 4200H (actually a TRSDOS
loader).

Note that in the above routine all I/O is done on a “programmed [/O”
basis. Reading a byte of data is done by checkding the DRQ bit to see if a
new byte of data has been assembled from the serial bit stream. If so, a
byte is read into A and then transferred to the 4200H area (200H bytes
above the start of RAM. The read resets the DRQ bit and the process is
repeated 256 times to read the sector of data.

This simple bootstrap is a common brute force approach to initializing
a system. No checks are made on the validity of the data in this routine,
but chances are good the operation will go off without a hitch. If not,
another power up will repeat the entire process.

If a RESET is performed, the same test for disk present is made at
location 66H and a jump made to location 0000H if the disk is there,
where a transfer to the bootstrap_routine is made.

0066 31 00 06 LD SP,0600 reset

0069 3A EC 37 LD A,(37EC) get status

006C 3C INC A ‘
006D FE 02 CP 02 test for disk status
006F D2 00 00 JP NC,0000 go if disk is there

40

The read command in the above code is an 8CH. As previously
described, the read fields should be set for a single sector (bit 4=0, IBM
format (bit 3=1), and enable head load and 10 millisecond delay (bit 2=1).
This command code should always be used, with the exception of
reading multiple sectors. Note also in the above code that it does take
time for the motor to get up to speed (less than a second) and that this

should be a time-out in the program. Continuing disk operations should
always perform a select to keep the motor on.

0696
0699
069A
069c¢
069F
06A1
06A4
06A7
06AA
06AC
06AF
0682
0684
GéB6
067
G6BA
068D
06BF
06cC0
g6ce
06C4
06C5
06c6
06C7
06c9

Figure 1. Disk Bootstrap Routine

3AEC37 LD A,(37ECH) ;GET DISK STATUS

3¢C INC A

FEO2 cP 02

DA7500 JP c,0075H ;GO IF NO DISK

3E01 LD A,01 ;FOR DRIVE 1

32E137 LD (37E1H) ,A ;SELECT DRIVE 1
21EC37 LD HL,37ECH ;1771 ADDRESS CHMDS
11EF37 LD DE,37EFH ;DATA REG ADDRESS
3603 LD (HL) ,03 ;RESTORE COMMAND
010000 LD BC,0 ;DELAY 64K COUNTS
€D6000 CALL 0060H

CB46 LOOP1 BIT 0, CHL) ;TEST BUSY

20FC JR NZ,LOOP1 ;GO IF STILL BUSY

AF XOR A ;ZERO TO A

32EE37 LD (37EEH) ,A ;0 TO SECTOR REG
010042 LD BC,4200H

3E8C LD A,8CH ;READ COMMAND

77 LD (HL) ,A ;READ SECTOR O

CB4E LOOP2 BIT 1, (HL) ;TEST DRQ

28FC JR Z,L00P2 ;GO IF DATA NOT AVAIL.
1A LD A, (DE) ;GET NEXT BYTE

02 LD (8C) A ;TRANSFER DATA

0c INC c ;BUMP BUFFER POINTER
20F7 JR NZ,LOOP2 ;GO IF NOT 256 BYTES
30042 JP 4200H ;TRANSFER TO DOS LOADER

Figure 2 shows the busy loop of another read. This read tests the
DRQ as the previous one, but prior to the test of DRQ also tests the busy
bit. The busy bit will be reset when the read operation is completed. For
a single sector this will be after 256 bytes, while for multiple sectors this
will be at the end of the track. If the busy bit is set, the next byte of datais
obtained and stored away. If the busy bit is not set, a final status check is

41

made and the value of 5C is used to test for type, not found, CRC or lost
data status. Any of these bits means that an error condition exists and
the read was terminated improperly. In this case a force interrupt is used
to reset the controller before either return is made. The type bit means
that a data address mark other than FB or F9 was encountered, not
found indicates track and sector were not found, CRC indicates invalid

data, and lost data means that the CPU did not respond to the next byte
of data.

Figure 2. Generalized Disk Read
" (At start, (HL)=37ECH and (BC)=buffer pointer)

f2c6 11eF37 LD DE,37EFH ;DATA REGISTER ADDRESS
52¢9 ¢5 PUSH BC JWASTE TIME

52CA C1 POP BC J<+<AND SOME MORE

£2cB 1808 JR 52D8H ;START READ

52CD OF BSYTS RRCA ;BUSY BIT TO ¢

52CE 300A JR NC,52DAH ;GO IF NOT BUSY

>2b0 7E LOOP LD A, (HL) JGET STATUS

5201 CB4F BIT 1,A ;TEST DRQ

52D3 28F8 JR Z,BSYTS ;GO IF NO DATA

5205 1A LD A, (DE) ;GET ONE BYTE

£206 02 LD (BC) ,A ;STORE IN BUFFER

7207 03 INC BC ;BUMP BUFFER POINTER
5208 18F6 JR LooP ;LOOP FOR NEXT BYTE
S2DA 7E LD A, C(HL) ;GET STATUS

E2DB E65C AND 5CH ;TEST TYPE,NFND,CRC,LOST
520D C8 RET z ;G0 IF NO ERRORS

52DE 36D0 LD (HL) ,0DOH ;FORCE INT (RESET)
52€E0 €9 RET ;RETURN

At this point it may be wise to talk about some of the idiosyncracies of
the TRS-80 disk implementation. Although nothing is mentioned in the
FD1771B-01 documentation, code in the Radio Shack system uses “time
wasting instructions” after certain disk [/O commands. Evidentally some
settling time is required after execution of FD1771B-01 commands. This
is a type of thing usually found out after debugging, and may reflect specs
not stated in FD1771B-01 documentation, system design problems, or
code put in “just to play it safe”. A sequence such as:

PUSH AF
POP AF
PUSH AF
POP AF

is typically used after a seek command. These instructions are
essentially no operations and prevent another command from directly
following an initial disk command. Additional time wasters may be

42

required after steps, or read or write commands. Another problem
associated with the TRS-80 system is that some of the code associated
with the disk is presumably deliberately vague. Therefore, do not be too
surprised to find confusing routines or structure while disassembling or
investigating parts of TRSDOS.

The operations for disk sector writes is handled much the same way as
a read, except that the data register is now loaded with a data byte, and
then the DRQ is checked to determine if the controller is ready for the
next data byte. In the routine in figure 3, the busy bit is check as
previously; it signifies the end of the write. After the write has been
completed, the same status bits are checked. Bit 6 in the write case
signifies write protect instead of record type as in the case of read.

Figure 3. Generalized Disk Write
(BC contains buffer pointer)

43

Formatting

Formatting a diskette can be performed by one of two methods. The
TRS-80 software contains a disk formatting program that automatically
formats a diskette to “standard” format as defined in Appendix B.
User-formatted diskettes, on the other hand, do not contain any
directories or applications programs and cannot be used by TRSDOS. A ~
user-formatted disk, of course, can be used for any user file management
software which operates independently of TRSDOS.

[f the user wishes to format a diskette, he may do so by constructinga
track’s worth of data arranged in the proper format and then executing a
write track command. The implementation of the write track will be
almost identical to a write sector sequence, except that an entire track is
written.

If the user wishes to read a track, the read track command can be

implemented in the same fashion as read sector. In this case however,
the entire track will have to be read into a large buffer before the busy bit
is reset. All data on the track including gaps, data marks, and datais read

(HL contains status, command address 37EC)

FE61 7E SLOOP LD A, (HL) 7GET STATUS in, so this is a convenient way (though laborious) of investigating data on
FE62 OF RRCA ;BUSY BIT TO C any diskette track. A program to read any given track is shown below in
iggz gg:;FE i‘; E}?il;og:SH 'iﬁl‘?; ?:l(‘)‘:;AND figure 4 (track number in location 5043).
, ; ..
FE68 11EF37 LD DE,37EFH +DATA REG ADDRESS The reagl address command ope_ratess:mllarlytoareadsectorexcept-
FE6B CS PUSH BC <WASTE TIME that the six data bytes of an ID field are read from a track. The read
FE6C C1 POP BC ;"_ AND SOME MORE addres.s would primarily be used for verification of a formatting -
FE6D C5 PUSH BC ;.-<MORE YET operation. ‘
FE6E C1 PoOP BC ;<+-DONE WASTIN' TIME - P
FE6F C376FE JP DRQCK ;BYPASS BUSY CHECK Figure 4. Read Track Program
FE72 OF BSYCK RRCA sBUSY TO C
FE73 D282FE JP NC,DONE ;GO IF NOT BUSY et o N D ADLE INTERRUPTS
igg Zg“ DRQCK lél;T ';r;”U {ﬁgTSEQ;US 5003 32E137 LD G7ETH) , A SSELECT DRIVE 1
, ’ 5006 210000 LD HL,0 ;DELAY COUNT
FE79 CA72FE JP Z,BSYCK ;G0 IF NEW DATA NOT RE(5009 2D LOOP1 DEC L ‘
FE7C 0A .LD A, (B0 JGET NEXT DATA BYTE 500A €20950 JP NZ,LOOP1
FE7D 12 ()] (DE) A ;OUTPUT TO DATA REG 500D 25 LOOP2 DEC H !
FE7E 03 INC BC ;BUMP BUFFER POINTER SO0E €20D50 JP NZ,LOOP2
FE7F C376FE JP DRQCK ;CONTINUE 5011 32E137 LD (37ET1H) ,A ;SELECT AGAIN
FE82 7E DONE LD A, (HL) ;GET STATUS 5014 3A4350 LD A, (TRACK) ;LOAD TRACK #
FE83 E65C AND SCH ;TEST W PRO, N FND, CRC 5017 32EF37 LD (37EFH) ,A ;OUTPUT TO DATA REG
FE85 €8 RET z ; LOST 501A 21EC37 LD HL,37ECH ;STATUS, CMD ADDRESS
FE86 3600 LD (HL) ,000H ;QUTPUT FORCE INT (RESE . 501D 3618 LD (HL) ,1BH -SEEK COMMAND
. 1 4
FE88 C9 RET sRETURN 4 SO1F FS PUSH AF FWASTE TIME
, 5020 F1 POP AF ;NOTE: DRIVE SELECT
5021 F5 PUSH AF sPOSITIONS TRACK TO
5022 F1 POP AF ;0, RESETS TRACK REG

44

5023 7E LD A, (HL) ;GET STATUS

5024 OF RRCA ;BUST TO C

5025 DA2350 JP €,5023H ;LOOP IF BUSY

5028 010060 LD BC,6000H ;BUFFER AREA

502B 36E4 LD (HL) ,0E4H ;READ TRACK COMMAND

502D €5 PUSH BC ;WASTE TIME

502 C1 POP BC ;«+«AND SOME

S502F €5 PUSH BC ;«««MORE YET

5030 ¢1 POP BC ;-+«DONE WASTIN' TIME

5031 7t LOOP3 LD A, (HL) ;GET STATUS

5032 OF RRCA ;BUSY TO C

5033 D20342 JP NC,4203H JRETURN TO MONITOR

5036 CB47 BIT 0,A ; ON DONE

5038 CA3150 JP Z,LO00P3 ;LOOP IF NOT DATA

5038 3AEF37 LD A,(37EFH) ;READ DATA

S503E 02 LD (BC) ,A ;STORE IN BUFFER

S03F 03 INC BC ;BUMP BUFFER POINTER

5040 C33150 : JP LOOP3 ;RTN FOR NEXT BYTE

5043 00 TRACK DEFB O ;TRACK #
Conclusion

While the above examples do not constitute a complete description of
every disk operation, it is hoped that they will provide the reader with the
basic knowledge to write his own assembly language software routines
for the disk if he desires. By bypassing TRSDOS it is possible to optimize
disk storage space and access times, and to create whatever file
management or disk operating system softweare the user requires,
subject to his time and patience.

LR L R Y L L L R -y A,

SEssssssmmanae

TYPE

—t

[

I
I
i

I

I
I\

COMMAND

Restore
Seek
Step

Step In

Step Out

Read

Write

Read Address
Read Track

Write Track

Force Inter-
rupt

Appendix A
FD1771B-01 Commands for TRS-80

BINARY

00000V11
00010V11
0010U0V11

010U0V11

01100V11

100M1100
101M1100
11000100
1110010S

11110100
11010000

03
13
33

53

73

8C
AC
C4
E4

F4
Do

| HEX*

FLAGS

track register

track register

track register
1 multiple

1 multiple

synchronize

V: 0 no verify, 1 verify
V: 0 no verify, 1 verify
V: 0 no verify, 1 verify
U: 0 no update, 1 update

V: 0 no verify, 1 verify
U: 0 no update, 1 update

V: 0 no verify, 1 verify
U: 0 no update, 1 update

M: 0 single sector,

M: 0 single sector,

S: 0 synchronize to
address mark, 1 no

* Usual value used.

45

L L Y YY) NGNS AN NSNS NSRS SS NN RASARRANE R

deassssuncus

L e N I I I I I I ™

46
47
Appendix B
Disc Format for TRS-80 3 ¢
WRITING READING
Pattern Description # Pattern Description
Precedes E
FirSt S-e'c-t.o-r. -.]Ibgl.-E-F.-F.i!l-e-'...‘.-.-.--------.---:.-1I8I.F..E.--.F.-il-'g-r-..-------.-----l
.Ill..l“'l'..'l)l------lulllll.'-l.llIIIIIIIIIIII--------..-ll--.--.llIl-I.l-lIl:: IsassS FE lD address mark : ID address mark
H Status : 1 xx Track # (0-9) i 1 xx Track#
: : 1 00 i 100
' H 1 xx2? Sector # (0-9) T 1 xx?2 Sector #
: : First 1 01 1101
: : Sector 1 F7' Generates 2 CRCbytes : 2 xx CRC chars (ID)
:----- Il R R R R R R R R R R A L) sSesssseEEsaness .llIIl.lI'l.ll.l.Il'l. 12 FF Fi“el’ : 12 FF Filler
i 1 Read Write Read Read Write 6 00 Filler ! 600 Filler
Bit Type - Address Track Track 1 FB Data address mark + 1 FB Data addr. mark
I e T T TR R R T P PR R PR R R SRR L LA LL LDl L bbb 256 E5 For user data area 5256 E5 Dummy user area
1 F7! Generates 2 CRC bytes = 2 xx CRC chars (data)
7 Not Not Not Not Not Not ‘ 12 FF Filler * 12 FF Filler
Ready Ready Ready Ready Ready Ready .P-I;--!-ll----- ---ﬁ-.-ppnﬁlugfnn-------------------.}-----------l-“-e-r------.---------l
] . : ysica H
6 Write | Record Write 0 0 Write . Sectors Repeat sector data 8 more times i 8 more sectors read
prOteCt type proreCt a(:)teCt izI...-.-I.-I-- ..----.-.----....---.--.--.-.---.--;I-I---..I-.----.-..------.-..-.l
5 Head Record Write 0 0 rite E
- | engagd | type fault 0 0 fault } ii : i 55
4 Seek Record not Record not ID not 0 0 1 00 5 100
error found found found 1 xx? s 1 xx? s b
' CRC 0 0 Last 1 01 Same as above 1 101 ame as above
3 CRC CRC CRC Sector 1 Fn T 2 xx
error error error error 12 FF :+ 12 FF .
2 Track 0 | Lost data Lost data Lost data Lost data | Lost data 6 00 E 6 00
1 Index DRQ DRQ DRQ DRQ DRQ 1 FB r 1FB
B Busy Busy Busy 256 E5 1256 E5
0 Busy Busy usy 1 F7 s 2 xx
sussssssssanssseschesENSRNENERRERNSER LI.I-IIIIIIIIIIIICIIIIII.IIb 1065 FF Write until not busy :1065 FF Read ‘til not busy
NOTES:
! F7 character generates two CRC check characters in hardware.

2 Physical sector numbers on diskette go in this order: 0,5,1,6,2,7,3,8,4,9 (i.e.
third sector of track is 1)

3 Above defines one track.

4 Above defines track without files. Data files are rewritten for 256 data bytes per
sector.

5 Approximate number of bytes before controller terminates operation.

48

Appendix C

DISKIO
Description
DISKIO is an assembly language program that is used to read and
write data from one to four disks in a TRS-80 program. A software
routine such as this is commonly called a “driver” and DISKIO is
essentially a “disk I/O driver”. The user may call DISKIO from another
assembly language program, or from a Basic program using the USR
function. DISKIO is oriented towards reads and writes of single sectors
or tracks, but also provides the capability of head positioning, status
check, or address read. DISKIO is entirely relocatable. That is, the
machine language code from “DISKIO” to “end” may be moved bodily
anywhere in memory without reassembly or modification of instruction
address fields. Alternatively, of course, the routine may be reassembled
at any convenient origin.
Calling Sequence
DISKIO is called by loading the index register [X with the address of a

parameter block and by performing a CALL to DISKIO. Returnis made
to the location immediately following the CALL.

(IX) = parameter block pointer

CALL DISKIO

(return)

The paramter block consists of eight bytes, specifying eight parameters
for the DISKIO routine. :

The first byte contains a function code of 0 through 6. Functions are:

Read status

Position head over given track

Read sector specified into buffer

Write sector specified from buffer

Read address (ID) data from given track

Read entire specified track

Write entire specified track

Byte 1 contains a sector number from 0 to 9 for functions 2 and 3 (read
and write sector).

Byte 2 contains a track number from 0 through 34 for all functions
except the read status function.

Bytes 3 and 4 contain a 16 bit address for functions 2 through 6. This
address is the address of the data source for writing to the disk, or the
data destination for reading from the disk. Note that the Z-80 uses the

AN ,H WN - O

49

low-order 8 bits in the first byte and the high-order 8 bits in the next byte.
The assembler takes care of this automatically, and this information is
meant for those users who may be “patching” machine code.

Byte 5 is not set up by the user, but does contain a “type of completion”
after DISKIO has returned to the calling code. Upon return, a01H value
specifies that the function was performed without error. An FEH value
((-2) specifies that one of the calling paramaters was invalid - sector #,
track #, function # or drive #. An FFH(-1) specifies that an error occurred
during the disk operation. The status code (byte 6) may be checked to
determine the type of error in this case. An FDH (-3) specifies that a
position error occurred. The position error may have been prior to the
main function, as in the case of functions 2 through 6, or a result of the
position head function itself. In either case, the status byte (6) will show
the nature of the error.

Byte 6 is not set up by the user and contains the status after the I/O
operation has been performed. Status will be present after a successful
I/O operation or in the case of an FFH or FDH type completion. Status s
as follows:

Bit Description

None

Write protect (functions 1, 3, 6)

Write fault (functions 3, '6)

Seek error (1), ID not found (4),
record not found (2, 3)

CRC (checksum) error (functions 1 - 4)
Track 0 (function 1), lost data (others)
Index mark (function 1)

None

0T

O = N W

Status for an FDH type of completion will be identical to that returned
for function 1.

Byte 7 has two fields. Bit 7 is a user-specified “wait” bit. If the W bit is a
one, DISKIO will wait approximately 1 second for the disk motor to
come up to speed before performing the disk operation. If the W bit is a
zero, the operation will be performed immediately without a wait. The W
bit must be set for the first disk operation. It need not be set for
subsequent operations provided that these operations occur less than
two seconds apart. The reason for this constraint is that each disk select
(address) sets the motor on signal for about three seconds. After this
three second period the motor turns off again, unless there has been a
new select in the three second period. Use the wait option for initial disk

50

operations and for those operations that do not occur within two
seconds of the last disk I/O.

The second field in byte 7 is the drive number (0 through 3). Drive 0
corresponds to Radio Shack drive # 1, and so forth.

Functions

Function 0, read status, reads back the current status from the specified
disk. Drive number must be specified.

Function 1, position head, positions the disk head over the specified
track (seek or restore). Track number and drive number must be
specified. Initially a position head to track 0 (restore) should be done
before other disk 1/O operations. A restore effectively resets the internal
track register in the controller and can be done at any time to ensure the
controller “knows where it is”.

Function 2, read sector, positions the head to the indicated track
number and then reads in one 256 byte sector into the specified buffer
area. Sector number, track number, buffer address and drive number
must be specified.

Function 3, write sector, operates similarly to read sector, except the
data is transferred from the buffer are to the specified track and sector.
Sector number, track number, buffer address and drive number must be
specified.

Function 4, read address ID, reads the six identification bytes from the
first available sector of the given track into the specified buffer area. The
format is track number, zeros, sector number, 01H, and two bytes of
CRC (checksum) data. Sector number is not specified. Track number,
buffer address and drive number must be specified.

Function 5, read track, reads in the entire specified track into the buffer
area. Approximately 3106 bytes must be made available as the buffer
area. Gaps, ID data, address marks, data marks, and user data is read.
Track number, buffer address and drive number must be specified.
Function 6, write track, writes an entire track from the specified buffer
area. The track data must be properly formatted because of hardware
limitations in the controller. This operation is a “formatting” operation
for initialization of the disk. Track number, buffer address and drive
number must be specified.

51
Examples
Position Head to Track 0

LD IX,PARAM ;parameter block address

CALL DISKIO :call disk /O
return ;(other code)
PARAM DB 1 ;position function
DB 0 ;sector # not required
DB 0 ;track 0
DB 0 ;buffer address not required
DW 1
DB 0 ;zero TYC for return*
DB 0 ;zero status for return*
DB 80H ;wait, drive 0 '

Read Sector 8, Track 13 (decimal)
LD IX,PARAM :parameter block address

CALL DISKIO ;call disk I/O
return ;(other code)

PARAM DB 2 ;read sector function
DB 8 ;sector 8
DB ODH ;track 13
DW BUFFER ;buffer address
DB 0 ;zero TYC for return*
BD 0 ;zero status for return*
DB 81H ;wait, drive 1

* Not required
Notes:

1. Common furictions used are position, read sector, and write sector.
2. Additional information on disk operations appears earlier in this book.

3. All registers are saved for return.

4. Should you experience trouble with DISKIO, the problem may be
incorrect code. If all code in DISKIO is correct, the checksum obtained
by adding the contents of byte 0 through 139H in the program should be
6CH. If the checksum is not 6CH, code has been incorrectly entered
manually or an error has been made in the source code for assembly.
(The checksum.is obtained by zeroing an 8 bit total, and then adding
byte 0, byte 1....through byte 139H. The resulting 8 bit value is the check
sum, and should be 6CH.) - -

52

5009

[2:1:1)
2100
978C
OFAC
85c4
95E4
@DF4
0000
0818
00iC
007C
891C
0004
0044
5009
5001

5802,

5893
5884
5805
5008
5668
500E
5819
5012
5815
5817
5019
581C
S81E
5820
5823
5825
5026
5027
5029
502A
502C
582F
5033
5835
5838
5839
5838
503C
583E
5041
5843
5845
5848
5848
584D
584F

- 5851

5054
5056
5858
S85A
565D
505P
5061
5063
5066
5868

FS

c5

DS

ES

AP
DD7705
DD7786
DD7E90Q
E6F8
2073
DD7E@@
FE@7
286C
DD7EB7
E67C
20865
DD7ER7
E603
3C

47
3E890
27
10FD
32837
DDCBO77E
2809
2100890

20F9
DD7ER0
910080
1E0®
FE@®
2836
819081
1E18
FEO1
282D
918Co7
1E1C
PEO2
2824
9LACOF
1E7C
FEO3

00109
égllie
80120
g813e
88140
00159
08160
00170
pol8¢@
80190
00200
002190
60220
90238
00240
80259
00260
982790
00280
90290
00300
08319
00320
88330
00340
00358
80360
00370
00380
90399
éa400
00419
804290
00439
80440
00450
00460
80470
00480
90490
80500
80519
20529
9905390
8054¢
00550
00560
80570
00580
08590
00600
ee6le
09620
80630
00640
00650
90668
80670
#0680
00690

‘98708

00719
00720
88730
00740
88750
88760
08770
29780
00798

ORG

50000

;ittiii*.ifii.tttititttt.*t'i*t't't'.tﬁti

DISK10-90-91

*
»
*

’*tQt.ﬁit.ﬂt’"Q'tt"!'ttt.t*tt..ﬁit.ﬁ't'

CODE®
CODE1
CODE2
CODE3
CODE4
CODES
CODE6
STATO
STAT1
STAT2
STAT3
STAT4
STATS
STAT6
DISKIO

DISKOA

DISKes

DISK81

DISK@2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
PUSH
PUSH
PUSH
PUSH
XOR
LD
LD
LD
AND
JR
LD
cp
JR
LD
AND
JR
LD
AND
INC
LD
LD
RLCA
DJINZ
LD
BIT
JR
LD
DEC
JR
DEC
JR
LD
BIT
JR
LD
LD
LD
cp
JR
LD

LD
cp
JR
LD
LD
cp
JR
LD
LD
(o 4

0000eH
81004
978CH
OFACH
95C4H
@5E4H
ODF4H

@

18H

1CH

7CH

1CH

04H

444

AF

8C

DE

HL

A
(IX+5),A
(IX+6),A
A, (IX)
@F8H
NZ,INVAL2
A, (IX)

7

z,INVAL2
A, (IX+7)
7CH
NZ,INVAL2
A, (IX+7)
3

A

B,A
A,80H

DISKOA
(37E@H) ,A
7, (IX+7)
2,DISKB1
HL,0000

H
NZ,DISK@S
L

NZ,DISK@B
A, (37ECH)
8,A
NZ,DISKA1
A, (IX)

- BC,CODE®

E,STATS
]

2,DISK03
BC,CODE1

E,STAT1
1

2,DISKE3
BC,CODE2
E,STAT2
2

Z,DISKe3
BC,CODE3
E,STAT3
3

;SAVE REGS

;ZERO A

$2ERO TYC
;ZERO STATUS
;GET FUNCTION

;GO IF INVALID FUNCTIC

;GO IF FUNCTION 7

;GET DRIVE
;GO IF GT 3

;CONVERT TO POSITION
$SELECT
JTEST W

;GO IF NO WAIT

;DELAY 64K COUNTS
jGET STATUS

;TEST BUSY

GO IF BUSY

JGET FUNCTION 0-6
{LOAD SEQ COMMAND
iSTATUS CHECK BITS

506A 2818
586C 81C4@5
586F 1EIC
5871 FE4
5873 2812
5075 lE4@5
5078 1E04
587A FE@S
587C 2809
507E 01F4@D
5881 1E44
5083 1802
5085 1834
5887 CB4Q
5089 2847
5088 DD7ED2
S@8E EGED
5098 280F
5092 DD7ED2
5895 FE20
5097 2808
5099 FE21
5098 2804
509D FE22
589F 201A
5@Al DD7E@2
50A4 B7
58A5 2004
50A7 3E03
58A9 1807
S8AB 32EF37
58AE CS
S@AF Cl
5080 3E17
5882 32EF37
5885 CS5
5086 Cl
5887 C5
5088 Cl
5089 1882
5088 1879
508D 3AEC37
50Co CB47
50C2 20F9
58C4 DD7786
50C7 E698
58C9 2807
S8CB 3EFD
50CD DD7785
56Dg 185F

56D2 CB48
56D4 2817 .
56D6 DD7EQ1
50D9 E6F8

©50D8 DD7E@1

S5ODE "2808
S0EQ FE@8
S8E2 2804
S@E4 FES9
SOE6 204E
S8E8 32EE37
50E8 C5
SPEC Cl1
S0ED CBS@
SOEF DS
SOF9 282E
S58F2 79
50F3 DDSE@3
50F6 DDS5684
S8F9 21EC37

(3 2-1']]
00819
00829
0083¢
00840
9085¢
09869
80870
00889
00899
0099090
28919
20920
20930
2094¢
00959
80960
20979
20980
80999
01000
01618
21029
21a3e
01040
01359
810690
81070
01289
2109@
8l1ge
21119
81120
911398
pll4e
81150
811680
01174
81189
81190
01200
81219
01229
8123¢
91249
81259
01260
01270
01289
21299

81300
91319
01320
91330
81340
81359
91360
81370
81380
013990
8l4a69
gl410
814290
81430
8l440
014590
81460
81479
91489
91490

INVAL2
DISK@3

DISK@4

DISK®@5

DISK@6

INVALL
DISKe7

i

DISKe8

DISK@89

DISK1@

DISK12

PUSH
POP
LD
LD
PUSH
POP
PUSH
POP
JR
JR
LD
B8IT
JR
LD
AND
JR
LD
LD
JR

BIT
JR
LD

. AND

LD
JR
cp
JR
cp
JR
LD
PUSH
POP
BIT
PUSH
JR
LD
LD
LD
LD

Z2,DISKe3
8C,CODE4
E,STAT4
4
Z2,DISKe3
B8C,CODES
E,STATS
5
Z,DISK83
BC,CODE6
E,STAT6
DISK@3
INVALL
é,8
Z,DISKes8
A, (I1X+2)
9E@H
Z2,DISK0A4
A, (IX+2)
32
Z,DISK@4
33
2,DISK04

NZ,INVAL1
A, (IX+2)
A
NZ,DISK@5
A,3
DISK@6
(37EFH) , A
8C

BC

A,17H
(37E€H) ,A
BC ¢

8C

BC

8C
DISK@7
INVAL

A, (37ECH)
8,A
NZ,DISK@7
(IX+6),A
981
2,DISK98
A,9FDH
(IX+5),A
DISK27

1,8
Z,DISK10
A, (IX+1)
gF8H
A, (IX+1)
Z2,DISK@9

8
Z,DISKP9
9

NZ,INVAL
(37EEH) ,A
BC

BC

2,8

DE
Z,DISK29
A,C

E, (IX+3)
D, (IX+4)
HL,37ECH

53

;GET TRACK BIT
;GO IF ZERO
iGET TRACK #

;GO IF 0-31

;GO IP 32
GO IF 33

;GO IF GT 34
;TRACK #

;GO IF NOT RESTORE
;RESTORE COMMAND

;OUTPUT TRK §
;WASTE TIME

;SEEK COMMAND
iOUTPUT RESTORE OR SEEK
;WASTE TIME

iGET STATUS

;s TEST BUSY
:GO IF BuUSY
iSTORE STATUS
$TEST STATUS
3GO IP OK

$SET POSITION ERROR
1 TERMINATE

'3GET SECTOR 513

-3GO IF @
;GET SECTOR

;GO IF '9-7
;GO IF 8°

;GO IF GT9
;OUTPUT. TO SECTOR REG

iGET READ/WR BIT
:SAVE STATUS CHK BITS
;GO IF.NO I/0

;GET COMMAND .
;BUFFER ADDRESS LS
MS . .
;STATUS REG ADDRS

54

S@Frc 77
SO0FD CBS58
S@FF C5
5168 Cl1
5181 C5
5182 C1
5163 O1EF37
5186 286C
5108 7E
5109 @OF
5106A 3014
510C @F
510D 30F9
510F 1A
5119 @2
5111 13
5112 18FP4
5114 7€
5115 oF
5116 3008
5118 @F
S119 39F9
S511B @A
511¢C 12
511D 13
511E 18F4
5128 3AEC37
5123 DD7706
5126 C1
5127 Al
5128 3E01
512A 2802
512C 3EFF
S12E DD77@S
5131 El
5132 p1
5133 C1
5134 F1l
5135 C9
5136 3EFE
5138 18F4
8009

900868 TOTAL

CODE® 0000
CODEl 9169
CODE2 078C
CODE3 #@FAC
CODE4 85C4
CODE5 @5E4
CODE6 @DF4
DISK®1l S@3E
DISK#2 5845
DISKe3 5087
DISK#4 506A1
DISK@85 S59AB
DISK#6 5082
DISK@7 588D
DISK@8 58D2
DISK@9 SQES
DISKOA 5029
DISK9B 5@38
DISK1@ S@ED
DISK12 S50F¢
DISK15 51@8
DISK18 5114
DISK29 5120
DISK2S5 S512E
DISK27 5131

81500
8151¢
91520
81538
81540
01558
81560
2157¢
0158¢
81590
0160¢
816190
81620
01630
0164¢
216590
01669
91670
01680
81690
91700
61710
817298
01738
81740
81759
81768
01779
91780
91799
[2%:-1-1']
g181¢
01829
21830
01840
#185¢@
918690
01874
0188¢
¢189¢@
81940
81919
ERRORS

98160
0017¢
09180
89190
002089
802190
00229
090610
008649
80939
210850
gllee
81149
81219
81309
01409
905190
98570
61430
91459
41580
91678
81760
91830
91840

DISK1S5

DISK18

DISK29

DISK25
DISK27

INVAL

00650
00690
00730
00779
00819
20859
bes9e
00550

00680
80970
81070
81098
81190
00940
61356
00529
00589
a131¢

81620
91578
81459
61819
01290

LD
BIT
PUSH
POP
PUSH
POP

#0639

00720
81908

812380
91269
913790

00600

01660
2171@
01608
81900

(HL) ,A
3,8

BC

BC

BC

BC
BC,37EFH
Z,DISK18
A, (HL)

NC,DISK20

NC,DISK1S
A, (DE)
(BC) ,A

DE

DISKI1S
A, (HL)

NC,DISK20

NC,DISK18
A, (BC)
(DE) ,A
DE
DISK18

A, (37ECH)
(IX+6) ,A
BC

c

A,l
2,DISK25
A,8FFH
(IX+5),A
HL

DE

BC

AF

A,O0FEH
DISK25S

;OUTPUT COMMAND
;s TEST RD/WR

iWASTE TIME

;DATA REG ADDRS
;GO IF READ
;GET STATUS
;BUSY TO C

;GO IF DONE
iDRQ TO C

;GO IF NOT RDY
;GET BYTE
;OUTPUT TO DISK

;CONTINUE

;GET STATUS
;BUSY TO C

;GO IF DONE
iDRQ TO C

;GO IF NOT RDY
;GET BYTE
;STORE

; CONTINUE
;GET STATUS
;SAVE

;RESTORE STATUS CHK B

TEST
;GO IF OK

;SET ERROR TYC

JRESTORE REGS

00760 00800 00840 00880 90910

016208

81750
81690

Al s

DISKIO 50409

INVAL
INVALL
INVAL2
STAT@
STAT1
STAT2
STAT3
STAT4
STATS
STAT6

5136
5088
5285
eee9o
2018
g9e1c
087C
#o1cC
0004
0844

00300
01890
21200
809290
090230
00240
80259
20260
002790
00289
202990

01200 91390

00920 01049

00390 00420 20450
00660

20700

20740

28789

90820

20860

20909

55

