TRS5-80 INFORMATION SERIES - VOLUME V l e_

> - ’

DISK , o,

Michael J. Wagner
YV VAL I B B NE N

TRS-80 INFORMATION SERIES - VOLUME V

A NMNTLYNT AL YR

MACHINE IANGUAGL

DISK 1/0
& OTHER MYSTERIES

David Moore — Editor

D. J. Smith — Cover Design and Graphics

First Edition

Second Printing
June, 1983

Printed in the United States of America
Copyright ©1982 by Michael J. Wagner

ISBN 0 936200 06 5

All rights reserved. No Part of this book may be reproduced by any
means without the express written permission of the publisher.
Example programs are for personal use only. Every reasonable effort
has been made to ensure accuracy througheut this book, but neither
the author or publisher can assume responsibility for any errors or
omissions. No liability is assumed for any direct, or indirect,
damages resulting from the use of information contained herein.

Published by
IJG Inc
1953 West
11th Street
Upland,CA
91786 (7114
946 -5805

e_

- 4

Radio Shack, TRSDOS and TRS-80 are registered trademarks of the Tandy Corporation.
LDOS is a registered trademark of Logical Systems, Inc. NEWDOS is a registered
trademark of Apparat, Inc., and VTOS is a registered trademark of Virtual Technology,

Inc.

| B

Y

1c INJ
This N

pa
U

ne

Any software or hardware information is used at your own risk. Neither the
PUBLISHER nor the AUTHOR assumes any responsibility or liability for loss or
damages caused or alleged to be caused, directly or indirectly, by applying any
information or alteration to software or hardware described in this book, including
but not limited to: any interruption of service, loss of business, anticipatory profits
or consequential damages resulting from the use or operation of such hardware or
software information or alterations. Also, no patent liability is assumed with respect

+1 128 1
to the use of the information contained herein. While every precaution has been

taken in the preparation of this book, the PUBLISHER and the AUTHOR assume
no responsibility for errors or omissions. The reader is the sole judge of his or her
skill and ability to use the information or alterations contained in this book.

Editor’s Note

About the Author

Michael Wagner is currently on staff at Softronics. He has 10 years of experience in
Radio electronics, and is into Amateur Radio (his call signis N6FYX). Mike has had
what he calls “more than enough” experience on main frame computer systems, and
has been suffering from an acute case of ‘microcodius bitcrunchius’ for the last 4
years. Most of his time is spent writing software for TRS-80 computers. His main
form of relaxation is, as he states it, “simply goofing off.” He is also a semi-
professional rock guitarist-at-large, and enjoys heavy conversation in religion,

politics, mathmatics, cosmology and anything controversial.

I'd like to say a word of thanks to:
‘Biffy’ of Western Digital, Inc., for the latest editions of the data and applications
sheets for the FD1771-01 and the FD179X;
Nancy DeDiemar of Helen’s Place, for teaching me the value of patience and being
patient with me;
Eric Jorgensen of Clymer Publications, for managing to correct those ‘little’
mistakes I didn’t know I'd made;
Cindy Hall, for her enthusiastic support and having the best lungs in the business;
... and I'd like to express a special kind of thanks for the faith shown by all of you who
buy our books before they're released

David E. Moore — Editor
September, 1982

Machine-language Disk YO 3

Table of Contents

PrefaCe & . oottt e e e e 8

Chapter 1:

What is @ Mini-Floppy? .. cvvie it 9
Tracks and SECLOTS .. oo iit it ittt ittt aaaeeeannes 11
A Technical Explanation of the Controllerooove 12
Addresses Used in Controlling the FDCt 13
The Command/Status Register i 15
TRS-80 Model 1 Disk Formatot 16
Model I1I Supplement to Chapter 1:
Model III Disk Controlling Systemot 21
Model III Non-maskable Interrupts ..., 23
Model III Double-Density Disk Formatot 24
Chapter 2:
Selecting @ DIiVevvuuiiiiit i 27
Reading a Selected Drive’s Status, 28
Hello, Is Anyone Home?ot 29
Model III Supplement to Chapter 2:
Selecting Model IIL Drivesooiuineiiiiiiiiiaiiea .. 32
Checking the Status of Model IIl Drivesooiieiinnnnn.. 33
Chapter 3:
Head Positioningcvviieteiini it 35
The RESTORE Commandciiuiiniiiiiiiiiiiiiinnnenens 38
The STEP-IN Commandouniniininienineniitinennnenennns 40
The STEP-OUT Commandcotniiiniiiiiiiintinninrneannensas 42
The STEP Commandcouiiininiiiiniiinininiiiinenennns 44

4 Contents

The SEEK Commandc it 47
The FORCE INTERRUPT Commandc.civiiiinnen..n. 49
Model III Supplement to Chapter 3:
Model III Head Positioningttt ininennenenn. 50
Chapter 4:
Disk Data Input/Output Commandsc..iiiiiieneenn.n. 51
Programmed I/O i e 51
The READ ADDRESS Commandiiiiiiiiiiinnennnns 54
The READ TRACK Command iiiniiiininnenan.n. 55
The WRITE TRACK or FORMAT Commandccoouien.. 57
The READ SECTOR Command 58
The WRITE SECTOR Commandcciiiiiiiniinnnn. 60
Model IIT Supplement to Chapter 4:
The NMI — Post I/O Processingcociiiiiniiiniiiiennaenn. 62
The Model III READ ADDRESS Command 63
The Model III READ TRACK Commandcovuvn... 64
The Model III WRITE TRACK Command 64
The Model III READ SECTOR Command 64
The Model IIIl WRITE SECTOR Command 64
Chapter 5:
DISKIO — Full Sector /O Routinec0iiiiiininnaen.. 65
The Drive Control Table i, 71
The /O RE-TRIES Value i 72
Explanation of I/O Errorso 72
Single-Byte I/O versus Sector /O 73
Model III Supplement to Chapter 5:
The DO T .ot e e e et e e e e 77
Using the Disk Drive in a Program 77
Model III Disk Driver Routineot iniitnintnenenenennnnn 78
Chapter 6:
Using TRSDOS/NEWDOS/LDOS Disk Routines 83
TRSDOS/NEWDOS/VTOS Disk Fileso ... 83
Opening a New or Existing File oo i, 85
Opening an Existing File 86
Performing Direct Record /O i i, 87
Performing Single-Byte /O, 88
Closing Files ..ottt i e e e e e e e e e 89
Killing Filesoiii i s e et i e e i 90

Machine-language Disk /O 5

File Handling and Error Processingcoiiunnuioo ... 90

Past EOF MesSsagesoouunii e 93

Other DOS Functionso i 94

Other DOS Triviao e 95
Model III Supplement to Chapter 6:

Single-Density Disk Formato oo 98
Chapter 7:

TRS-80 Model IInterruptsoouuureen . 101

TY £2

Model III Supplement to Chapter 7:
The Model III Interrupt System
Handling Model III Interrupts
RS-232 Interruptsot 108

Port-Mapped Devices and Interruptsoovouneonnnn. .. 108
Real-time Clock Interruptsooo oo, 108
The 1500 Baud Cassette Interruptsoovoomnnnnnen . 109
Chapter 8:
Handy Routines, Drivers and Programs 111
TRSDOS Error Displayercooooiuuii 111
Disk Formatter Program 0. 0o 113
PASSFIND, Password Finder| 118
LOADER BAS — Load Format Displayeroooo. 121
ASCIIZAP — ASCII Sector Modifierouvveoe 126
Chapter 9:
Miscellaneous Junk 135
FDC Quick-Reference Chart of Commands 135
Stepping Speeds of Popular Drives oo ... 136
Small Disk Operating System (S/OS)coo i 137
Technical Information Section i, 137
Disk I/O Primitives 138
S/OS File /O Vector Calls ..., 140
S/0S Special Function Calls i, 141
The S/OS User Interfaceoueumruriiinnnnnnii. 142
Drive Control Tables 143
The S/OS File Control Block, 144
Appendix I:
The Best Term Program in This Book 175
Running TERM 175
Explanation of the Menu Functions 176

6 Contents

Appendix II:
Western Digital Data and Applications 196

GlOSSALY . . oottt et e e 263

Machine-language Disk /O 7

Preface

After getting severely “bitten” by the personal-computer bug a few years ago,
and looking at my disk drives for many hours, I finally got the urge to find out how
to control them. I love system stuff, — controlling and such. I had this
preoccupation to write a disk operating system (to be released as EZ/DOS in the
coming months) for the Model I and III. I thought it would be a good experience,
but I didn’t know what I was up against. Not that disk 1/0 is extremely difficult,
— it was just hard to find any complete documentation on the subject. I had found
a few articles that were somewhat helpful, but they lacked complete coverage of
the disk I/O subject. After spending many weeks and late nights deciphering
disk-controller chip specification sheets and consuming several six packs of root
beer, I knew how to completely control the TRS-80 Model I disk system.

This book is the result of my “discoveries” on the subjects of disk I/O and
utilizing the Model I's interrupt system. The purpose of this book is to inform
anyone familiar with Z-80 assembly-language programming how to control the
TRS-80 Model I and III disk drive interrupt systems. Driver routines for every
function described, with abundant examples, are included in this book. It also
covers utilization of TRSDOS assembly-language file /O calls and techniques.

This book was composed and edited using a TRS-80 Model I with 48K of RAM,
an LNW 5/8 doubler, an RS-232, two Tandon 40-track drives, an Epson MX-80
printer, a Spinterm printer, Electric Pencil word-processing software, and lots of
root beer and late-night radio talk-shows.

I would like to give special thanks to the following people who have helped make
this book a reality: Jewell and Joe, Harv Pennington, Western Digital Corp.,
Tandy Corp., and all the nice folks at IJG.

Mike Wagner
April, 1982

8 Preface

What is a Mini-Floppy?

y |

What is a Mini-Floppy?

The mini-floppy diskette system used by the TRS-80 Model I and many other
microcomputers is a miniaturized version of the 8-inch floppy disk systems used in
many microcomputer and minicomputer installations. The diskette itself is a flat,
round piece of plastic that is coated with a magnetically sensitive oxide material.
It looks similar to a 45 RPM record, but there aren’t any grooves on it. The diskette
has a 1 1/8-inch centering hole in its middle and an off-center index hole used by
the drive for timing the revolutions. The disk is provided with a protective jacket
to prevent finger prints or foreign matter from contaminating the diskette’s
surface. Users are warned (usually on the disk jacket) not to touch the exposed
areas of the disk and not to write on the jacket with anything harder than a felt-tip
pen. Also, the disks are heat sensitive, so leaving a disk inside an automobile will
usually cause destruction of the jacket within an hour.

For microprocessor based systems, the 5 1/4-inch mini-floppy comfortably fills
the gap between the serial-analog tape units (which are generally too slow for most
peoples’ patience and somewhat unreliable during high-volume data transfers),
the higher cost of 8-inch floppy disk systems, and hard disk systems. Also, they are
much faster than paper tape or punch-card systems.

Data is stored on the diskettes by making some parts of the disk more
magnetically positive and other parts more magnetically negative. In
IBM-compatible 3370 single-density installations (such as the Model I), the data
is stored on the disk as one pulse in a given time as logical 0, and two pulses as
logical 1. The writing, reading and converting of these pulses into full 8-bit bytes
(characters) is the job of the Floppy Disk Controller in your expansion interface,
which I shall refer to from now on as simply ‘the controller’.

The disk drives themselves are not too sophisticated, although they perform
some timing functions. The drives basically contain three elements. The first is a
motor system that rotates the diskettes inside their protective jackets at a rate of
300 RPM (or 5 rotations per second). Second, the drives contain a read/write head

that is used to read and write data to and from the diskettes. This read/write head

Machine-language Disk /O 9

What is a Mini-Floppy?

Figure 1.1

is similar to the record/playback head of a cassette tape recorder, but it is much
more delicate and sensitive. The read/write head is positioned over various Tracks
of data on the diskettes, as shown in Fig. 1.1. The number of tracks a disk drive can
handle varies with the manufacturer, but the currently available track-handling
capacities for 5 1/4-inch drives are 35, 40, 77 and 80 tracks, single- or double-sided.

Most drives can handle double-density operation if used with a double-density
controller.

Diskette Data Tracks

SECTOR NUMBERS
(NOT SHOWN ON DISK)

\

,///.
5

=

W f
I
6

-
/(/
-

|

\

»//////////////}/Z///
- X

TRACK 0
S=———— 2
=
S—— TRACK 35
A A (SECTOR 2)

DIRECTION OF ROTATION ————

sk NOTE: DISKS MAY CONTAIN
UP TO 80 TRACKS.

The third element of the drive is the electronics that can send signals back to the
floppy disk controller and tell it that the diskette currently in place cannot be

written to because of a special ‘write-protect tab’ that is placed on the
‘write-protect slot’.

10 Chapter 1

Tracks and Sectors

Figure 1.2 Diskette Envelope

WRITE PROTECT NOTCH

INDEXTIMING HOLE

—
N

NRECORDING SURFACE

The drive can also tell the controller that the ‘index hole detector’ has detected
the hole in the diskette known as the ‘Index Hole’. This means the first byte of data
on the track that the read/write head is currently placed over is just about to pass
by the read/write head. The drive also has a ‘select indicator light’ (usually a red
light-emitting diode) on the front to let you know when a drive is being accessed.

Tracks and Sectors

As you probably know, the term ‘byte’ means 8 particular ‘bits’ (or binary
digits). The term ‘sector’ is the name given a particular group of bytes on a track.

A ‘track’ represents a group of sectors. All the sectors on a given track are
generally referred to as ‘the track’, although other disk data that is used by the
controller, but not normally accessed during sector I/O operations, is also stored
on ‘the track.’

Machine-language Disk /O 11

A Technical Explanation of the FDC

Figure 1.3

Diskette Tracks and Sectors

TRACK/SECTOR LD.
TRACK 0, SECTOR 1

TRACK 0, SECTOR 1
256 BYTES

Data is written and read a full sector at a time. After positioning the head over
a desired track, the controller is commanded to read or write a sector. For every
byte transferred, the controller turns on a bit in its Status Register that is called
a ‘data request’ flag, or DRQ. When the DRQ goes on, the controller either desires
the next byte to write during write operations or reads the next byte during read
operations. The bytes are read or written to another address known as the ‘data
register.’

FD1771 is capable of many other sector lengths.
A Technical Explanation of the FDC

The device housed inside the expansion interface which controls the disk drives
(driven by your software) is the Western Digital FD1771B plastic or ceramic
encased floppy disk controller IC chip.

The standard sector length for the TRS-80 M

In the TRS-80, the floppy disk controller is linked to the main processor (which
is 2 Z-80) via the Z-80 memory address lines and data input/output lines. Since the
floppy disk controller does not use the Z-80 port feature, it is considered to be
Memory Mapped. This memory mapping technique is actually an advantage when
you consider the TRS-80’s slow (1.77 MHz) clock speed. This is because there are
more Z-80 ‘opcodes’ for memory addressing than there are for port addressing,
such as BIT 0,(HL).

12 Chapter 1

Figure 1.4

Figure 1.5

Addresses for Controlling the FDC

The channels that the Z-80 uses to communicate with the floppy disk controller
‘registers’ are addressed as memory lecations just as the video and keyboard are.
Addressing floppy disk controller registers is just like addressing any other

a2

memory location. For example:

LD A,(37ECH) ;READ THE CONTROLLER’S STATUS

The links between the Z-80 and the controller are made through eight ‘data
access lines’ and the associated device control signals. The data access lines are
used in transferring track and sector data, drive/diskette status, controller status
and commands into and out of the FD1771 controller.

Addresses for Controlling the FDC

There are five dedicated memory locations for controlling the floppy disk
controller. A memory WRITE means to write a byte to a memory address. A
memory READ means to read a byte from the memoy address. Below is an
example of reading the controller’s status.

LD A,(37ECH) ;READ CONTROLLER’S STATUS

The following will read the ‘track’ register:

LD A,37EDH) ;READ TRACK REGISTER VALUE

Writing a byte address (37EC) issues a command byte to the Command Register.
The following will write a DO to the controller, causing it to reset, and then read
the controller’s status.

Controller Status Read Routine
LD HL,37ECH ;HL-> COMMAND/STATUS REG
LD A,0DOH ;A= RESET COMMAND
LD (HL) ,A ; ISSUE VIA INDIRECT ADDRESSING
LD C, (HL) ;s READ STATUS INTO REG C
The following addresses are linked to the various registers of the controller:
Controller Register Addresses
Address OP-type Bits Contain
37EQ 33€1 WRITE TO DESIRED DRIVE SELECT CODE
37EC WRITE TO DESIRED CONTROLLER COMMAND
37EC READ FROM CONTROLLER'S STATUS
37ED WRITE/READ CURRENT TRACK
37EE WRITE/READ LAST/DESIRED SECTOR
37EF WRITE/READ DATA BYTE TRANSFER, OR DESIRED TRACK

Machine-language Disk 1I/O

13

Addresses for Controlling the FDC

37EOQ is the memory address that controls the selecting of the desired drive.
Selection of a desired drive must be done before any operation can take place on
it, whether that be positioning the read/write head, formatting a track, or reading
and writing sectors. Reading this address will not give you the select code that you
issued to it. Full details on selecting drives are given in the next chapter.

37EC is the memory address that links to the controller’s Command/Status
Register. When a Z-80 WRITE operation is made to this address, the byte written
is loaded into the controller’s Command Register, and the controller acts
according to the command issued (if no operation is currently being performed).
Otherwise, the command byte will be ignored unless it is a special FORCE

INTERRUPT command which terminates the current operation.

Here is an example of issuing a controller command.

LD A,0COH ;CONTROLLER CMD BYTE
LD (37ECH),A ;ISSUE COMMAND

By executing a Z-80 read from the 37EC memory address, the status of the
current or last operation is returned from the controller’s 8-bit Status Register.
Each bit of the returned status indicates a status of something relating to the
current function. Not all bits have the same meaning when reading the status of
different disk functions.

Although the Command Register and the Status Register share this command
memory address, they are independent controller registers. They share this
common address for convenience. READS from the Command Register and
WRITES to the Status Register are impossible. More on the Command and Status
Registers will be presented later.

37ED is the memory address that links to the Track Register. This 8-bit Track
Register holds the track number of the current position of the read/write head.
Depending on some options, this register may be incremented (a fancy word for
saying add one) each time the head is stepped in and is decremented (a fancy way
of saying subtract one) when the head is stepped out. The Track Register may be
written to and read from by accessing 37ED.

An example of reading the Track Register is presented below.
LD A,(37EDH) ;READ TRACK REGISTER

37EE is the memory address that links to the Sector Register. The 8-bit Sector
Register holds the address of the desired sector to be read or written. The Sector
Register may be written to and read from by accessing 37EE.

Here is an example of writing to the Sector Register.

Figure 1.6 Sector Register Write Routine

LD A,6 ; AMOUNT TO LOAD SECTOR
; REGISTER WITH
LD (37EEH) ,A : LOAD SECTOR REG

14 Chapter 1

The Command/Status Register

37EF is the memory address that links to the Data Register. This 8-bit Data
Register is loaded with the byte to be written to disk (when called for by testing the
Data Request bit in the Status Register) during a write operation. When doing a
read operation, the Data Register contains the byte to be read by your software
when the Data Ready bit is set in the Status Register.

Here is an example of reading the Data Register.
LD A,(37EFH);;READ DATA REGISTER
The Command/Status Register.

previously mentioned, reads are impossible from the Command Register, and
writes are impossible to the Status Register. But of course you may read the Status
Register and write to the Command Register.

The Command and Status Registers are two independent FD1771B registers. As

The 8-bit Status Register holds the status information of the current disk
operation. As previously mentioned, this register can be read but cannot be written

to.
Here are the Status Register bits during and after the various types of
operations:
Figure 1.7 Status Register Bits
STATUS BIT DURING TYPE I COMMANDS
(Any Head Movement)
6 5 4 3 2 1 0
| l. Busy - operation in progress,
Index hole in sync with sensor.
Head is at track zero.
i CRC error during track verify.
Desired track was not verified.
Head is loaded and engaged.
Disk in drive is write protected.
Not Ready - drive motors off.
DURING TYPE 2 COMMANDS
(Read Sector, Write Sector)
6 5 4 3 2 0
t 1 ¢ 1 1 b Busy - operation in progress,
I L___. Data request.
Lost data.
i CRC error,
Record not found.
Rec type on read,write fault on write,
Rec type on read,write prot on write,
Not Ready - drive motors off. Listing Continued . . .

Machine-language Disk I/O

15

TRS-80 Model I Disk Format

.. .Continued Listing

Figure 1.8

16 Chapter 1

, DURING TYPE 3 COMMANDS
(Write Track (Format), Read Track, Read Address)

7 6 5 4 3 2 1 9
| | |] & Busy - operation in progress,
I ke Data request.

Lost data.
<Unused>
<Unused>

i Write fault on write., unused on read.
Write prot on write. unused on read.
Not Ready - drive motors off.

TRS-80 Model I Disk Format

A particular operation known as WRITE TRACK, or FORMATTING, must be
done to a track before sectors can be written and read by the floppy disk controller.
Certain bytes are written to the diskette during this procedure and must be there
when the diskette is accessed by the controller. The initialization of sectors and

: ; L ZSNPE ST NP S DU NN A SR
their address identification bytes is done during this process.

Figure 1.4 shows Western Digital’s recommended track format. Some people
run into problems with this disk format on a 5 1/4-inch floppy, because there just
isn’t enough room on the disk to put in all the overhead bytes plus the data. Most
people don’t know that the format recommended in the FD1771’s data sheet is
IBM format for 8-inch drives! All those overhead bytes are not needed, and can’t
fit on a 5 1/4-inch disk track.

These bytes are written pnce at the start of every track:

Western Digital Track Format

Number Hex Value of

of Bytes Byte Written

40 @@ or FF

6 pa

1 FC (index mark - track data starts here

- unused by the floppy disk controller,
but is useful when reading full tracks)

26 or FF

=
[

Figure 1.9

TRS-80 Model I Disk Format

This group of bytes is written once per sector:

Western Digital Sector Format

=

U I S

11

256

27

0o

FE (ID address mark - next 6 bytes are the
sector address.

Track number (@0~FF)
Side number (0 or 1 - use @ for TRS-80 stuff)
Sector number (0-EF, usually 0 to 9)

Sector length (should be 91 for 256 byte
sectors)

F7 (this byte issued causes two CRC bytes of
the 6 address byte to be written).

@8 or FF

00

FB (data address mark - data comes now)
Sector data (IBM uses E5, so does TRSDOS)

F7 (cause two CRC's of the data to be
written)

983 or FF

After the 10 sector-groups are written, write FF’s until the floppy disk controller

goes to ‘not busy status.’

Machine-language Disk I/O

17

TRS-80 Model I Disk Format

Figure 1.10

Figure 1.11

18 Chapter 1

The Sector Length byte is used by the floppy disk controller in computing how
many bytes are in the sector when doing sector I/0. The floppy disk controller can
perform two modes of computation of sector length. The first is called IBM format.
If the IBM Format Bit is set in the sector read or write Command Byte issued to

the floppy disk controller, the controller calculates the sector length to be as
follows:

Sector Length Calculation

SECTOR LENGTH BYTE Length of Sector
in Sector Address in Bytes,

00 128

1 256

02 512

p3 19024

If the IBM format bit is not set in the read/write command, here’s how the
floppy disk controller computes sector length:

SECTOR LENGTH = (sector length byte * 16)
If the sector length byte is zero, it is considered to be 256.

Here is a graphic description of how non-IBM formats are computed:

Non-IBM Format Computation

Sector Len Number of Bytes
Byte (Hex) in Sector (Decimal)
21 16

02 32

U3 48

g4 64

B5 80

FE 4064

FF 4080

0o 4096

TRS-80 Model I Disk Format

This non-IBM format type calculation will give you sector lengths up to 4096
(256*16). The smaller the sector lengths, the more overhead it takes, and you lose
data space. 256-byte sectors are pretty-much optimum for our use. TRSDOS uses
standard IBM-compatible, 256-byte sectors, so the Sector Length byte is 1 when
formatting, and the IBM format bit is set in the read/write sector command bytes
when doing sector 1/O.

The Sector Data bytes are the initial data that the sector contains. Have you
ever looked at the sectors of a freshly formatted disk with some disk utility? That
is what these bytes are. Any bytes except FO - FF may be written as the initial
sector data (TRSDOS uses E5). You may not use FO - FF because when

formatting (Write Track), the floppy disk controller uses these as control bytes.
When doing sector writes, you may write anything you wish to the sector.

In Figure 1.4 did you notice all those overhead bytes? These bytes are used as
‘padding.” Some of those bytes are not required, and do not have to be used. For
example, you don’t have to use those 40 bytes preceding the FC index mark, or the
26 bytes preceding the first sector, etc. Most of these bytes are unnecessary on 5
1/4-inch disks, and if written, you would not be able to fit 10 sectors on a track.

AT LT A AAanl 3a nat 1
Also, the Index Mark is not used by the controller.

Here are the formatting bytes I use for TRSDOS compatible sectors, and I've
never had a problem using the following format.

These bytes are written once at the start of every track.

Figure 1.12 TRSDOS Track Format Bytes

Number Hex Value of
of Bytes Byte Written
1 FC (index mark-track data starts here-unused

by the floppy disk controller, but is
useful when dumping full tracks.

26 @9 or FF

These Bytes are Written Once Per Sector.

Figure 1.13 TRSDOS Sector Format Bytes
Filler
6 00
The Sector ADDRESS MARK

1 FE (SECTOR ID address mark - next 6 bytes are
the sector address. Listing Continued . . .

Machine-language Disk /0 19

TRS-80 Model I Disk Format

. .Continued Listing

20 Chapter 1

The Sector ID

Track Number (@-FF)

Side Number (@ or 1 - Floppy disk controller
ignores this byte)

Sector Number (0-FF)

SECTOR LENGTH (See text),

F7 (This byte issued causes two CRC bytes of
the 6 address byte to be written.)

(-

-

The Sector DATA ADDRESS Mark

1 ™

FB (Data Address Mark - Data Comes Now)

=

User Data

(See Text) DATA BYTES (IBM Uses E5, So Does TRSDOS)

1 F7 (Cause Two CRC Bytes to be written
after the data).

More Filler

27 9@ Filler

AT L FLE A\ Y

The only required ‘padding’ bytes the controller needs in order to do sector
access is 17 bytes between the sector ID and the sector data. The first 11 bytes are
FF, and the last 6 bytes are 00. Also, one byte of 00 must precede every sector ID
address mark.

There is a disk formatting program for your use in Chapter 8.

Figure 1.14

Model III Disk Controlling System

Model IIT Supplement to Chapter 1

MO AT TYIT Mol Mot 110 - Q 4 e
AVAUUCL LRl IJIdDK CUILILVIULILILE DYDdLTIl

The Model IIT uses a Western Digital FD1793 for floppy disk controlling. The
FD1793 floppy controller is virtually identical to the FD1771 except that it has
double-density capability. Also, as matter of interest to hardware buffs, the
FD1793 has a true bus instead of the inverted bus which the FD1771 uses. Other
minor differences exist which will be explained as they come up.

The Model III does not use memory-mapped addresses for controlling the disk.
Instead it uses Z-80 ports. The Model I11 has a number of other hardware features
that the Model I does not have. These hardware features aid in controlling the
disk, handling real-time clock interrupts and device interrupts from the RS-232
and 1500 baud cassette. Disk I/0O is handled in a slightly different manner from the
Model 1.

The following is a list of the ports used in controlling the Model III disk.

Model III Disk Control Ports

Port (hex) Data Flow Use

FoO Read Read the FDC status.

FO Write Issue an FDC command.

Fl Read/Write FDC track register.

F2 Read/Write FDC Sector register.

F3 Read/Write FDC Data register.

F4 Write Select drive and options.

E4 Write Select non-maskable interrupt
options.

E4 Read Read non-maskable interrupt
status.

Ports FO through F3 correspond to the memory addresses 37EC through
37EF on the Model I. These are used to ‘talk’ directly to the controller.

The following is an example of reading the controller’s status.

IN A, (OF0OH) ;Read FDC status
LD (0BF@OGH) ,A ;Store in RAM

Machine-language Disk 1I/O

21

Model III Disk Controlling System

Figure 1.15

22 Chapter 1

Port F4 is used in selecting the desired drive similar to the memory address
37EO0 on the Model I. This port is also used in selecting other disk related features,
as shown in the following list (all bits are assumed to be in the 1 state).

Port F4 Bit Summary

Port F4 Bit Summary.
Bit Use

Select Double-density.
L]

Generate Data Waits

Set Write Precomp.

Select Side 1. (Not Used).

Select Drive 3, (Same as Model I)
Select Drive 2, (Same as Model I)
Select Drive 1. (Same as Model I)
Select Drive @. (Same as Model I)

QEENDWAEOIONN

Or, you may address the port using register ‘C’.

LD C,0F0H ;Load cmd/stat port number
IN E,C ;Read FDC status to E

LD D,8D@H iReset FDC command

ouT (C),D i Issue reset command

Bit 7 is used in selecting the desired density of operation. Outputting a byte that
has this bit set will cause double-density mode to be invoked, until a byte that has
this bit reset is written, which causes single-density to be invoked.

Bit 6 is used to enable Z-80 waits during data I/O. This is used during sector and
track I/O to prevent ‘lost data’ errors. This will be fully explained in a later
chapter.

Bit 5 causes 200-microsecond write pre-compensation to occur during data
writes. This should be set when writing to tracks 22 and above if you're in the
double-density mode.

Bit 4 is potentially useful for selecting the second side of a drive. Radio Shack
drives do not support dual sided operation.

Bits 3 through 0 are used in the same manner as the Model I to select the desired
drive. Every time a drive is selected, the byte used for selecting must also contain
the desired bit pattern to invoke the above options. This takes a little more
programming than the Model I, but it is much more versatile.

The following is an example of selecting drive 0 with double-density set.

LD A,81H ;Drive 0 code, and DDEN
OUT (@F4H) ,A ;Select drive

Model III Non-maskable Interrupts

Model III Non-maskable Interrupts
The Model III allows disk routines to utilize the Z-80 non-maskable interrupt

(NMI) facility for disk I/0 operations. This, coupled with the Z-80 Wait State
function (described in the next chapter’s supplement) makes it easy to use
double-density without ‘tricky’ I/O loops. In my opinion, the Model III is an

excellent machine when it comes to disk I/0.

The disk I/O non-maskable interrupt (NMI) feature allows two options to be
independently selected. First, NMI occurs when an FDC interrupt request occurs,
or in other words, when an FDC function is finished. And secondly, NMI occurs
when the disk drive motors shut off or ‘time-out’. These NMI features allow the
elimination of testing for these conditions during disk I/O. This, combined with
the Z-80 Wait State feature, allows smooth operation of double-density, without
lost data errors due to slow processor speed. You might ask, “Why didn’t Tandy
simply increase the processor clock speed?” Tandy wanted to keep Model I
compatibility with games and real-time software that was programmed to operate
at the slow processor speed — although they are slightly different (1.77 vs. 2.0
MHz).

The non-maskable interrupt vector is located at 4049 - 404 B. You must have
a jump to your interrupt routine at this vector when using the NMI feature.

Below are the ports used in selecting non-maskable interrupt disk functions.

Figure 1.16 NMI Select Ports

Port E4 - Write -~ Select Options.

Bit Purpose

7 1=Cause NMI on FDC Interrupt (Function Done).
6 i=Cause NMI on Drive TIME-OUT.

5-0 Unused.

To select the desired options, you could load the ‘A’ register with the desired
options set, and perform an OUT (0E4H),A.

Machine-language Disk I/O 23

Model III Double-density Disk Format

Figure 1.17

Figure 1.18

NMI Status Read Routine

Port E4 - Read - Get NMI Status, Determine What Caused NMI,

@=FDC Interrupt Caused NMI.
@=Drives Timed-out.
g=Reset Button Pushed.

-0 Unused,

= U~

Don’t get excited about using bit 5 to detect the reset button. The ROM routine
intercepts this before jumping to the NMI vector at 4049. The ROM routine
jumps to its boot-strap loader if this condition occurs. Sorry about that!

Model III Double-density Disk Format

The Model III’s single-density format is exactly the same as the Model I's
single-density format. The formatting procedure is the same for single- or
double-density, but the actual format is not. The sectors and overhead bytes are
arranged the same, but the overhead bytes differ in value and quantity.

This format must be followed carefully for a correct format to be accomplished.
Any deviation may lead to the last sector being chopped off, or sectors that can’t
be accessed — so follow it carefully. Before issuing a format command, you must
set up the buffer exactly as the track is to be written.

Overhead Byte Format

Number

of Bytes Hex Value Purpose

T

24 AE s Pre-track Filler
12 0o Pre~-track Filler
3 F5 Pre-track Filler

This block is written once per sector. Since we are going to use the 18-sector
scheme, this block will be written 18 times, with slight alterations to the Sector ID

Block, i.e., sector name and track number. The blocks are written one right after
the other.

24 Chapter 1

Model III Double-density Disk Format

Figure 1.19 Sector ID Block

1 FE Sector ID Address Mark.

1 XX Track Number. This MUST be
Correct!

1 0o Side Number. Use 00.

1 XX Sector Number. This Value Will

be the Sector Name, E.I. 05 =
SECTOR 5. See Text for Details

1 01 Sector Length Computation
Value., See Text.

1 F7 Generate CRC Parity Bytes.

22 4E Pre-sector Data Sector Filler.

12 00 Filler.

3 F5 Filler.

1 FB Sector Data Mark. See Text.

256 E5 Initial Sector Data.

1 E7 Generate Sector Data CRC.

24 4E Post Sector Filler.

12 00 Filler,

3 F5 Filler,

After all 18 sectors are written, approximately 500 bytes of 4E will have to be
written, so format your buffer with about 600 bytes of FF just to be safe.

The ‘Sector Name Byte’ is the byte actually used in naming that sector. Model
III TRSDOS uses sector names from 1 to 18. Other DOS’s use 0 to 17. You could
name the sectors in sequential order (such as 0, 1, 2, 3, etc.), but to speed-up sector
accessing when doing sequential sector reads, the sector names should be
staggered.] recommend staggering the sector names this way: 0, 6, 12, 1, 7, 13, 2,
8,14, 3,9, 15, 4, 10, 16, 5, 11, 17. This interlace technique allows more time for the
DOS and/or programs to perform calculations before the next sector is accessed. In
most cases, all 10 sectors can be accessed in 3 revolutions of the disk. It might
otherwise take 20 revolutions because the programs were not quick enough to
‘catch’ the next sector as it was coming around.

Machine-language Disk /O 25

Model III Double-density Disk Format

The ‘Sector Length Computation’ byte is used by the controller to determine
how many bytes of data are in the sector. Using the IBM (normal TRSDOS)
format, sector lengths of 128, 256, 512 and 1024 bytes can be achieved by using 0,
1, 2 and 3, respectively, for the Sector Length Computation value. There is no way
to squeeze eighteen 512-byte sectors on a double-density track. In addition, if you
decide that you want to use a different sector length, you must adjust the quantity
of initial sector data bytes to the length of the sector. You will also have to do some
experimenting to see how many sectors of such-and-such length you can fit on a
track.

26 Chapter 1

Selecting a Drive

9
/|
el

Selecting a Drive

In order to perform any disk I/O operations, the drives must first be ‘selected.’
Selecting a drive involves writing a byte (containing the proper bit turned on) to
memory address 37E0. This memory address is linked to the disk drive select
circuitry. After the proper drive select code byte is written to 37EQ, the drive
select circuitry inside the expansion interface fires up the disk drive motors and
selects the proper drive. The drive that’s selected is determined by the bits set in
the drive select code byte that was written to 37EQ. Figure 2.1 displays the
bit-to-drive relationship in selecting a drive. Since TRSDOS calls the drives: 0, 1,
2, and 3, and you are most likely used to calling them by those names, I will also
refer to the drives that way.

Figure 2.1 Drive Select Bits

kkkkkkkkkkkkkkkkkx* DRIVE SELECT BITS **x**kkkkkkkkhkkkhkkkk

[\
—
=

T

Selects Drive 0
Selects Drive 1
Selects Drive 2
Selects Drive 3-

psee— (S,

peeeesse— ()}

Bits 4-~7 Unused

Machine-language Disk I/O 27

Reading the Selected Drive’s Status

For example, if you wrote a 02 to 37EQ, this would fire all the drive motors,
select the second drive in the system and reset the not ready bit in the Status
Register. Software may test the ‘not ready’ bit to see if the drives are still rotating.
In TRS-80 Model I system, the ‘not ready’ bit does not really mean that a drive is
in or out of the system. In many systems the ‘not ready’ bit is used to test whether
a selected drive is on the system. Don’t ask me why the designers at Tandy didn’t
design the Model I to act this way. Anyway, when all the drives stop rotating, the
‘not ready’ bit will be set high again.

Every time a drive is selected, the motors of all the drives in the system are fired
up, and the desired drive is selected. But keep in mind, this condition will only last
for about 2.5 to 3 seconds. In order to keep the desired drive selected, and the
motors running, when doing large amounts of data I/O or head-positioning
functions that would last for more than 2.5 seconds, you must re-select the drive
about every 2.5 seconds. Also, keep in mind that you may re-select a drive as often
as you wish without any harmful effects to the function the controller is currently
performing. You can verify that a drive has been selected by simply looking at the
drive’s select-indicator-light on the front of the selected drive’s case. This is
usually a red light-emitting diode (LED). The way your software can check to see
if a drive is on the system will be discussed later in this chapter.

If a given drive is already selected, and you want to select another one, you don’t
have to wait until the drive motors stop. Just write a byte to 37EO with the proper
bit set (as shown in Fig. 2.1) for the drive you want to select. You will see the
select-indicator light go out on the first one, and the new drive’s select-indicator
light will come on.

You could select more than one drive at a time by writing a byte to 37EO that
contains the select bits for all drives to be selected, but this is useless because none

of the disk functions will work properly. This should never be done.

Reading the Selected Drive’s Status

You may get the selected drive’s status by performing a read from the memory
address 37EC, which is linked to the Status Register. Below are all the possible
conditions of the Status bits during or after a Type I command (which is any head
movement) or before any diskette I/O command is executed.

Figure 2.2 Status Bits During Type I Command

7 6 5 4 2 1 0
L. Busy - operation in progress
Index hole is over sensor
Head is at track 0.
CRC error during track verify.
Track not verified.
L Head loaded - see text
Write protected diskette,

Not Ready - drive motors off,

28 Chapter 2

Hello, is Anybody Home?

Bit 0 — The busy bit (0) means there is an operation in progress. For
example, if you selected a desired drive and issued a RESTORE
command (which restores the selected drive’s head to track zero), you
would not want to issue another command, such as the SEEK
command (which positions the selected drive’s head over a desired
track) until the restore was completed. Your software should test the
busy bit continuously until it goes to 0. Then you may issue the next
command.

Bit 1 — When this bit is set, the index hole punched in the diskette is
letting light pass through to the index sensor. This bit is useful in
software for determining whether or not a selected drive is connected
to the system.

Bit 2 — This bit is set when the read/write head is positioned over
track zero.

Bit 3 — This bit is set if a CRC error was encountered when the
controller read a sector ID in order to verify the track position.

Bit 4 — This bit is set if the track verification produced a verify bad
condition. In other words, the head didn’t end up on the desired track,
or if it really did end up on the right physical track but the track byte
in the sector ID was not correct, this too would cause a bad verify
condition.

Bit 5 — This bit is set when the head is loaded. This means the head
is pushed closer to the diskette than normal so the drive can read or
write some data. In this system, this particular bit is ignored because
the currently selected drive’s read/write head is always loaded
immediately.

Bit 6 — This bit is set if the diskette in the selected drive has a
write-protect tab on it. When a diskette has a write-protect on it, it
cannot be written to.

Bit 7 — This is the ‘not ready’ bit. This bit set means that all the
drive motors are not rotating.

Hello, is Anybody Home?

Sometimes the need arises to determine whether or not a drive is hooked up to
the system, or if a diskette is in the selected drive. This can be accomplished by
testing the selected drive’s index hole in a timed loop. If, in a given amount of time,
the index bit never came on, we know that the drive is not there. If, within a given
amount of time the index bit is always on, we know that the drive is there, but there
is no disk in it. But if we test the index bit for a given amount of time and it toggles,
we know that the drive is on the system, a diskette is placed inside of it, the drive
door is shut and we may access the disk (assuming it is formatted properly).

In order to determine how long to test the index bit with our software, we must
know how often the index hole passes the index hole detector.

Even I can figure out that if the diskette is rotating at the rate of 300 RPM

Machine-language Disk I/O

29

Hello, is Anybody Home?

(revolutions per minute), we can determine how many times the index hole aligns
with the index hole detector by dividing 300 RPM by 60 seconds. What did you
get? My calculator tells me that the index hole comes around 5 times per second.
Did you understand the equation? Good. Let’s continue.

Below is an assembly listing of aroutine that returns with the carry flag set if the
currently selected drive is not on the system or a diskette is not in it. The carry flag
is reset if the drive is connected to the system, and a disk is properly mounted in
it.

Figure 2.3 Carry Flag Set Routine

Khkhkhkkkkkkhhhhhkhkhhhkhhhhhkhhhhhhhhkkhk bk kdhhhhhhkhkkhhhkrk
*k CHECK ‘ON-LINE' STATUS OF A DRIVE *%
AR AR AR R R R R R R R R T L T T T T R R B R R R R R R U Aue ey

LD A,0DOH ;Controller Reset Cmd

LD (37ECH) ,A ;Clear Existing Status.,
LD A,2 ;Select Code for Drive 1
LD (37E0H) ,A ;Select Drive

LD BC,2000H ;Number of Times to Test

: Index Hole -~ Aprx. 1/4 Sec.

* % This Series of Loops/Calls Checks for the Index *%k

*k Flag Status to Change.. it

L1 CALL TEST :Test Index Bit

JR NZ,L1 ;Loop if Index Bit Set.
L2 CALL TEST ;Test Index Bit

JR Z,L2 sLoop if Index Bit is Reset
L3 CALL TEST ;Test Index Bit

JR NZ,L3 ;Loop if Index Bit Set

XOR A ;Reset Carry Flag - Drive is

On-line, a Disk is in it
_ and the Door is Shut.
RET sReturn From Test

~e w»

**

* % Subroutines L1~L3 Call This TEST Routine, This *%*
** Routine Checks BC for Zero. If BC = 0 Then That Meanhs **
*%k Mih~

Tnat One of the L1-L3 Calls Kept Looping and Exausted **
** BC, and an Error Return is Generated. Otherwise the **

** Index Bit is Tested and the Routine Returns to L1-L3, **
**

Listing Continued . . .

30 Chapter 2

.. .Continued Listing

TEST

Tl

DEC
LD
OR
JR

SCF
POR

RET
LD

™™
BIT

RET

BC
A,C

NZ, Tl

A, (37ECH)

[
-
B~

4_-------llllllllIlllllllllll.llllllllllll

Hello, is Anybody Hom,

iDec Test Counter

iGet LSB of Counter
iTest if BC=g

iGo if Counter Not Zero
;Set Error Flag

:{ Drive is Not Ready
+Kill Internal Call from
i L1, L2, or L3

sReturn to Original Caller
:iGet Controller Status
:Test Index Bit

iReturn to L1, L2 or L3

Machine-language Disk 1/0 ,+:31

Selecting Model III Drives

Model IIT Supplement to Chapter 2
Selecting Model III Drives

Port F4 is used in selecting the desired drive similar to the memory address
37EO0 on the Model I. This port is also used in selecting other disk related features
(see the following list). All bits are assumed in the 1 state.

Figure 2.4 Port F4 Bit Summary

Port F4 Bit Summary.
Bit Use

Select Double-density.

Generate Data Waits.

Set Write Precomp.

Select Side 1. (Special Hardware)
Select Drive 3. (Same as Model I)

Select Drive 2. (Same as Model I)

Select Drive 1. (Same as Model I)

Select Drive @. (Same as Model I)

QN WRE OO

Bit 7 is used in selecting the desired density of operation. Writing a byte to Port |
F4 that has bit 7 set will cause the double-density mode to be invoked until a byte
that has this bit reset is written — which causes single-density to be invoked.

Bit 6 is used to enable Z-80 waits during data I/O. This can be used during sector
I/O or track 1I/O (formatting) to prevent lost data errors. This eliminates time
wasted checking for data requests and busy during data I/0, thus eliminating lost
data errors.

When the ‘wait bit’ is set while selecting a drive, the Z-80 will go into a memory
wait state when trying to fetch the next instruction from memory (the next M1
cycle). This condition will be terminated when one of the following conditions
occurs:

1. If an FDC interrupt request is generated after a function is finished.

2. If an FDC data request occurs.
3. If the reset button is pressed.

4. If the Z-80 is in the wait state for more than 1024 microseconds
(1.024 milliseconds). This last termination is provided so that no
chance of memory loss occurs due to insufficient memory refresh. How
all this applies to disk I/O will be explained in the Chapter 4
supplement.

Bit 5 causes 200-microsecond write pre-compensation to occur during data
writes. This should be set when writing to track 22 and above when in
double-density mode.

32 Chapter 2

Checking The On-Line Status

Bit 4 is potentially useful for selecting the second side of a drive; however, Tandy
does not support dual-sided drive operation as of this writing.

Bits 3 through 0 are used in the same manner as the Model I. These are used to
select the desired drive. Every time a drive is selected, the byte used for selecting
must also contain the desired bits se} to invoke the above options. This takes a
little more programming than the Model I, but it is much more versatile.

The following is an example of selecting drive 0, with double-density set.

LD A,81H ;Drive 0 code, and DDEN
OUT (9Fr4H) ,A ;Select drive

Checking The On-Line Status

To check whether the drive is on-line with a disk inserted in it, you may use the
following program.

Figure 2.5 On-Line Drive Status Routine

hkkkkhkhkhkhhkkhhhhkhhhkhkhkkhhhkkhkkkhkhkhhhhhdhdhhhkhkrkhhhhkhhdk

i1 CHECK ON-LINE DRIVE STATUS (L)
kkkkhkkhkhkkhhhkhhhkkkhhhhhhhhhhhhhhhhhhhkhhhdhhhhhhhhhkhddkhd

LD A,0D@H : FDC Reset Command

ouT (9F0H) ,A ;Reset FDC. Puts FDC in Mode 1.

LD A,l ;Select Code for Drive §

ouT (9F4H) ,A ;Select Drive @

LD BC,2400H ;:# of Times to Check
Ll CALL TEST ;Get Drive Status

JR NZ,Ll ;Loop if Index Hole Detected.
L2 CALL TEST ;Get Drive Status

JR Z2,L2 ;Loop if Index Hole Not Detected
L3 CALL TEST ;Get Drive Status

JR NZ,L3 ;Loop if Index Hole is Detected.

XOR A s1No Error

RET s Return

**
** Subroutines L1, L2 and L3 Call This Routine to Get the #*%*

**% Index Hole

Detection Status. N2

Returned Means the **

** Index Hole is Being Detected. Otherwise 2z is Set. t,jEJ
**

TEST DEC BC ;:Decrement 'Status Test' counter.
LD A,C ;Get LSB of Counter,.
OR B :1Is BC Zero?
JR NZ, TEST1 ;No. Get Status and Return.
POP BC :Clear Call from L1, L2 or L3.
SCF ;Carry Set Means Drive Not Ready
RET sReturn to caller

Listing Continued . . .

Machine-language Disk I/O

33

Checking the On-Line Status

... Continued Listing . _
TEST1 IN A, (OFOQH) :+Get FDC Status,
BIT 1,A ;Test Index Hole Sense.

RET sReturn to L1, L2 or L3.

34 Chaptelf‘ 2

Type I Commands-Head positioning .

/

This chapter deals with the drive’s read/write head positioning commands that
are issued to the controller’s Command Register via 37EC. Head movement
operations position the selected drive’s read/write head over the various tracks of
data.

These head positioning commands are referred to as Type I commands, and
include the RESTORE, SEEK, STEP, STEP-IN, STEP-OUT and FORCE
INTERRUPT commands. All of these Type I commands, except the FORCE
INTERRUPT command (which resets the FDC), contain a parameter called the
STEPPING RATE field, which is represented by r1 and r0 in the command format
diagrams as bits 1 and 0. This field determines how many milliseconds the
controller should delay after each head movement before resetting the Busy flag in
the Status Register, or issuing another step pulse (depending on the operation).
This delay allows the currently selected drive’s read/write head to stabilize over
each track before performing data transfers or issuing another head movement
pulse. After performing an operation that steps the read/write head just once, the
Busy flag in the Status Register does not get reset until the specified delay is

finished.

Figure 3.1 depicts the 4 possible stepping delay values. These two bits are set
accordingly in the Type I command byte that is issued to the Command Register
via 37TEC.

Figure 3.1 Stepping Delay Values
Bit 1 Bit 0@ Stepping Delay Between STEPs in Milliseconds

] /] 6

g 1 12

1l /] 20

1l 1 40 (Normal TRSDOS rate)

Machine-language Disk /O 35

Head positioning

The read/write head-stepping mechanism in the older Radio Shack disk drives
made by Shugart (SA-400), can only handle the slow 40- millisecond rate, but other

A e o= L1 I 1
drives, such as the MPI, Vista, Tandon, or the newer Radio Shack disk (Tandon

design) drives, can handle the much faster 6-millisecond rate (see the ‘stepping
rates’ chart in the back of the book).

All of the Type I commands use bit 3 as the Head Load flag in the command byte
that’s issued to the controller via 87EC. It will be represented as the ‘H’ field in
each of the Type I command format diagrams. In other systems, the Head Load bit
is set if the read/write head is to be LOADED (moved closer to the diskette in
preparation to read or write data to the diskette) at the beginning of the command.
The Head Load bit is reset in the command bytes if the head is not to be loaded at
the beginning of this command.

The Head Load bit can usually be ignored in the normal Model I system because
the selected drive’s head is always loaded right after being selected, and on some
drives (like the Tandons) the head is loaded when the drive door is shut. You mlght
as" ““”1" is this Head Load function in the controller in the first place ?” One
reason is that when doing head movement, it is not necessary to load the head until
a data transfer is to take place. It takes approximately 10 milliseconds for the
drive’s read/write head to stabilize after loading it. Anyway, you can ignore this bit
in this system because the read/write head is always loaded in the selected drive.
The Head Load feature was built into the controller primarily for the use with
8-inch drives, because in 8-inch drive systems the dlskettes are constantly
rotating. This could cause undue wear on the drive’s read/write head if it were
always loaded.

All the Type I commands, except the FORCE INTERRUPT command, use bit
2 of the command issued to the controller as the Verify flag. This is denoted as V’
in the command format diagrams. If this bit is set in the command byte, the
controller will verify this particular Type I command. In other words, it will verify
that the head is over the track contained in the Track Register.

When a verify is to take place, the first encountered sector ID is read from the
diskette. The track byte from the sector ID is compared to the value in the Track
Register. If there is amatch and no CRC error occurred when reading the sector ID,
the verify is OK and the operation is completed with no error bits set in the Status
Register. If the track in the sector ID that was read from the diskette does not
match the value in the Track Register, and the CRC of the ID was valid, an
interrupt is generated, the Seek Error bit is set, and the Busy bit is reset in the
Status Register. If the track in the sector ID that was read for the diskette does
match the value in the Track Register, but the CRC of the ID was bad, the ‘CRC
Error’ bit in the Status Register is set, and the next encountered sector ID is read
for verification. If an ID field with a valid CRC cannot be found within 2 diskette
revolutions (400 milliseconds), the controller terminates the operation, generates
an interrupt, and sets the CRC Error bit in the Status Regsiter.

36 Chapter 3 .

Head positioning

Figure 3.2

Flow Diagram of a Verify

SET
CRC ERROR BIT 3

IN STATUS
REGISTER

HAVE THREE
INDEX HOLES
PASSED?

HAS THE
NEXT SECTOR ID
BEEN READ?

DID CRC

ERROR OCCUR
WHEN SECTOR ID
WAS READ?

RESET
CRC ERRORBIT 3
IN STATUS
REGISTER

RESET BUSY.
SET INTRQ.

DONE

*F

SET

SEEK ERRORBIT 4

IN STATUS

HEGISTEH

J

Machine-language Disk I/O 37

The STEP-IN Command

Figure 3.6

40 Chapter 3

The STEP-IN Command
When the controller re(:elves the STEP-IN command, it steps the selected drive

avamnla f+ha haad graa

once IIl Eﬂe ultebuUIl Ul uw xugucuu uumbcx cd u.abk Fur €Xampie, ii i n1cat was
positioned over track 17 and you issued the STEP-IN command, the controller

would position the read/write head one track higher, making the read/write head’s
new position track 18.

After a delay determined by the stepping rate field is done, a verification takes
place if the ‘V’ flag was set in the command byte. An interrupt is generated at the
end of this command.

Below is the format for the STEP-IN command.

STEP-IN Format
Bit: 7 6 5 4 3 2 1)]
1 g U H \' rl rd

Bits 7 - 5 tell the controller this is the STEP-IN command.

Bit 4 is the Update Track Register flag.
Bit 3 is the Head Load flag.

Bit 2 is the Verify flag.

Bits 1 & 0 are the Stepping Rate field.

For example, issuing the STEP-IN command with the format of 01010111
binary, or 53 would be interpreted by the controller as follows:

1. This is the STEP-IN command.

2. Do not load read/write head at the start of the RESTORE
operation.

3. Do not verify the restore with a sector ID from the new track
position.

4. Update the Track Register by adding one to the current value.

5. Step head in one track toward the highest number track and delay
40-microseconds before resetting Busy and terminating operation.

Figure 3.7

The STEP-IN Command

STEP-IN Flow Diagram

‘ ENTER)

RESET
ERROR FLAG IN
STATUS REGISTER

1

HEAD-LOAD BIT
SPECIFIED?

LOAD HEAD UNLOAD HEAD

]
F

SET DIRECTION
SET DIRECTION FOR "STEP-IN"

FOR “STEP-OUT"

1S
“UPDATE TRACK
REGISTER" FLAG

ISSUESTEPPULSE ADD t TO
TO DRIVE TRACK REGISTER
DELAY

ACCORDING TO
“STEP RATE" BITS

IS SEE VERIFY
VERIFY BIT PROCEDURE ON
SET? PAGE 37

RESET BUSY.
SET INTRQ,
DONE

Machine-language Disk I/0 41

The STEP-OUT Command

Figure 3.8

Figure 3.9

Drive 0 STEP-IN Routine

***w**wx
*% Example of Stepping in Drive 0's Head 18 Times, *#*
**
s
START LD A,l ;Drive Zero Select Code
LD (37E0H) ,A :Select Drive 0
LD B,10 7% of Times to Step-in
CALL BUSY iCheck if Controller Busy
Ll LD A,53H iStep-in, Update Track Reg.
i No Verify, 40 Ms Delay
LD (37ECH) ,A : Issue Command
PUSH HL iLet Controller Set Up
POP HL
PUSH HL
POP HL
CALL BUSY +Call Until Step-in is Done
DJINZ Ll ;Do Ten Times
RET iReturn to Caller
BUSY LD A, (37ECH) iGet Controller Status
RRCA ;Shift Busy into Carry Flag
RET NC iRet If Not Busy
JR BUSY ;Loop Till Not Busy

The STEP-OUT command

The STEP-OUT is almost identical to the STEP-IN command except that the
read/write head of the selected drive is'moved out one track toward track 0.

Below is the format for the STEP-OUT command.

STEP-OUT Format

Bit

-~
= O
=
e
mw
N
o
[}
AR
)

For example, issuing the STEP-OUT command with the format of 01110000
binary, or 70 would be interpreted by the controller as follows:

1. This is the STEP-OUT command.

2. Do not load read/write head at the start of the RESTORE
. operation.

42 Chapter 3

Figure 3.10

The STEP-OUT.Command

STEP-OUT Flow Diagram

SET DIRECTION
FOR “STEP-IN"

RESET
ERROR FLAG IN
STATUS REGISTER

Y

HEAD-LOAD BIT
SPECIFIED?

AD UNLOAD HEAD

i

SET DIRECTION
FOR “STEP-OUT"

IS
“UPDATE TRACK
REGISTER" FLAG

ON? g

T
ISSUE STEP PULSE ADD 1 TO
TO DRIVE TRACK REGISTER
Y]
DELAY
ACCORDING TO.
“STEP RATE" BITS

IS Y SEE VERIFY

VERIFY BIT PROCEDURE ON
SET? PAGE 37

RESET BUSY, -
SET INTRQ,
DONE

Machine-language Disk I/0 43

The STEP Command

Figure 3.11

44 Chapter 3

3. Do not vérify the RESTORE with a sector ID from the new track
position.

4. Update the Track Register by adding one to the current value.

5. Step head out toward track 0 and delay 6-milliseconds before
resetting the Busy flag and terminating operation.

Drive 1 STEP-OUT Routine

**

** Demo of Stepping Drive One's Head OQut 13 Times. **
**

LD A,2 :Drive 1 Select Code
LD (37E@H) ,A ;Select Drive 1
LD B,13 ;% of Times to Step-out
CALL BUSY iCheck if Controller Busy
Ll LD A,73H ;Step—-out, Update Track Reg.
; No Verify, 40 Ms Delay
LD (37ECH) ,A ;Issue Command
PUSH HL :Let Controller Set Up
POP HL '
PUSH HL
POP HL
CALL BUSY ;Call Until Step~in is Done
"DINZ Ll +Do Ten Times
RET iReturn to Caller
BUSY LD A, (37ECH) ;Get Controller Status
RRCA) ;Shift Busy into Carry Flag
RET NC - iRet if Not Busy
JR BUSY - :Loop Till Not Busy

The STEP Command

The STEP operation is similar to the STEP-IN or STEP-OUT command, but
it causes the controller to STEP the selected drive’s read/write head one track in
the last direction stepped, whether it was in or out. For example, if the head is
positioned over track 19 and you issue a STEP-IN command, the controller will
position the head over track 20. Now if you issue a STEP command, the controller
will move the head one step in the last direction stepped, so it will now be
positioned over track 21.

Figure 3.12

The STEP Command

STEP Flow Diagram

ENTER

Y

RESET
ERROR FLAG IN
STATUS REGISTEP #

HEAD-LOAD BIT
SPECIFIED?

REGISTER" FLAG
ON?

LOAQ HEAD UNLOAD HEAD
—— 1
SET DIRECTION
FOR "STEP-OUT"?
“UPDATE TRACK ADD 1 TO

TRACK REGISTER

WAS LAST
HEAD MOVEMENT
STEP IN?

SET SET
STEP DIRECTION STEP DIRECTION
TOIN° TO‘OUT
ISSUE STEP PULSE
TO DRIVE
DELAY
ACCORDING TO
“STEP RATE" BITS
IS SEE VERIFY
VERIFY BIT PROCEDURE ON
SET? PAGE 37:
N]
e

RESET BUSY,
SET INTRQ.
DONE

Machine-language Disk /O 45

The STEP Command

Figure 3.13

Figure 3.14

Below is the format for the STEP command.

STEP Format
Bit 7
' 0

For example, issuing the STEP command with the format of 00100000 binary,
or 20 would be interpreted by the controller as follows:

1. This is the STEP. command.

2. Do not load read/wnte head at the start of the RESTORE
operation.

position.

4. Update the Track Register by adding or subracting the appropriate

value to the current value in the Track Register.

5. Delay 6-milliseconds before resetting the Busy flag and terminating

operation.

Drive 2 STEP Routine

khkkhhkkhhhkkhhhhkhhhkhkhkhhkhkhhkhhkkhhhkkhkhkhkhhhkhkhhhhhkhkkhkdhhhhkhkhkkhik

Here is an Example of Performing a STEP

Operation 3 .Times on Drive 2.
*************************%**********************************

* %
* %k .

START

Ll

BUSY

LD
LD
LD
CALL
LD

LD
PUSH
POP
PUSH
POP
CALL
DINZ
RET
LD
RRCA
RET
JR

A'4
(37E6H) ,A
B'3

BUSY
A,20H

(37ECH) ,A
HL

HL

HL

HL

BUSY

L1

A, (37ECH)

NC
BUSY

;Drive 2 Select Code
;sSelect Drive 2

;# of Times to Step

:Check if Controller Busy
;STEP, No Track Reg Update
; No Verify, 6 Ms Delay

s Issue Command

;:Let Controller Set Up

:Call Until Step is Done
;Do Ten Times

iReturn to Caller

:Get Controller Status
:Shift Busy into Carry Flag
sRet if Not Busy

;Loop Till Not Busy

%*
*

46 Chapter 3

Figure 3.16

Figure 3.17

The SEEK Command

The SEEK Command

This is the most powerful head positioning command the controller has. What
EﬂlS commana (loes IS pOSlElOIl Eﬂe Teaﬂl Wwr u;e neaa OI Ene curr enuy selecwa al'lve
to the track contained in the Data Register. Before issuing the SEEK command,
the Track Register must contain the gelected drive’s current track position. Then
write to the Data Register (via 37EF) the track you want to position the head over.
Now issue the SEEK command. The controller will step the read/write head in the
proper direction until the contents of the Track Register are equal to the desired

track you wrote to the Data Register. Updating is automatically done to the Track

' 'neglscer and you have no control over this. Verification i is done if the ‘V’ flag is set.
"An interrupt is generated at the completion of this command.

Below is the format of the SEEK command.

SEEK Format
Bits 7 6 5 4 3 2 1 a
' "] /. . H v rl rg

Bits 7-4 tell the controller this is the SEEK command.
Bit 3 is the Head Load flag (unused).

Bit 2 is the Verify flag.

- Bits 1 and 0 are the steppmg rate field.

For example, issuing the SEEK command with the format of 00010111 binary,
or 13 would be interpreted by the controller as follows:

1. This is the SEEK command.

2. Do not load read/wnte head at the start of the RESTORE
operation.

3. Verify the STEP with a sector ID from the new track position.
4. Delay 40-milliseconds between each stepping pulse before resetting

yhan A QR in
the busy flag or terminating operation when done SEEKing.

: Drive 0 SEEK Routine

khhkhkhkkhhhkhkhhkhkhhhkkkkkkhhhhhkhkkhkhhkhkkkkkkhhkkkkkkhkhkhkhkkkk

* ok Example of Using the SEEK Command on Drive g. A **
*% Restore is Executed First So We Know What Track *%
*% the Head is Over Before Issuing the SEEK Command. **

okkkkkkkkkkhhkkkkhkhhkhkkhkkkhkkhkkhhhhhkhhkkhhkhkhkhhhhkhkhkhkkhkkhhkkhkk®

Listing Continued . . .

Machine-language Disk I/O0 47

The SEEK Command

Figure 3.15

48 Chapter 3

SEEK Flow Diagram

‘ ENTER ’
\

RESET
STATUS REGISTER
ERROR FLAGS

N

HEAD-LOAD BIT
SPECIFIED?

LOAD HEAD

UNLOAD HEAD

—1 -]
DOES
Track REGISTERNY o DONE,
L RESET BUSY,
EQUAL DATA i
REGISTER? RQ
|
-

1S
DATA REGISTER

THAN TRACK
REGISTER?

SET DIRECTION
FOR “STEP-OUT",
SUBTRACT 1 FROM
TRACK REGISTER

SET DIRECTION
FOR "STEP-IN",
ADD 1 TO
TRACK REGISTER

'S HEA
AT TRACK 0
AND DIRECTION

a

EQUALS
STEP-OUT"

ISSUE
STEP
PULSE

DELAY
ACCORDING TO
"STEP-RATE" BIT

IN CMD REGISTER

e

4

The FORCE INTERRUPT Command

.. Continued Listing

START LD A,l ;Drive @ Select Code
LD . (37E0H) ,A ;Select Drive @
CALL BUSY ;Make Sure Controller is

; Not Busy

LD A,3 sRestore at 40 Ms Rate
LD (37ECH) ,A ;Issue Command
PUSH HL * ;Let Controller Respond to
POP HL ¢ Restore Command
PUSH HL

i POP HL
CALL BUSY sWait Till Done
X0OR A ;Clr A

¥—e=>>> LD (37EDH) ,A ;Ld Track Reg With Current Tk
LD A,13H s SEEK Command
LD (37ECH) ,A ;Issue Command
PUSH HL . sWait for controller
POp HL
PUSH HL
POP HL
(&7 N - BUSY iWait Till Done

£ RET iReturn to Caller

BUSY LD A, (37ECH) ;Get Controller Stat
RRCA :Put Bit @ into C Flag
RET NC tRet if Not Busy
JR BUSY :Loop Till Not Busy

3

The RESTORE function will automatically update the Track Register to 0, but
Idid it too, toillustrate how the Track Register must be loaded with the read /write
head’s current track position before issuing the SEEK command.

The FORCE INTERRUPT Command

This command is used to terminate the current operation being executed by the
controller. It is good practice to do this before and after any disk READ or WRITE
is performed, in order to reset the controller.

After issuing the FORCE INTERRUPT command to the controller via the
Command Register at 37EC, the current function will be terminated, and Busy
will be reset.

Figure 3.18 Forced Termination Routine

hkkkhkhkhhkkhhkkhhkhhkhhhkhkhhkhkhhhkhhkhkhkhkhdhhkhhkhrhkhhrhhhhhhhkhhhkhhdhk

*% Example of a Forced Termination, *%
khhkhkkkhhkhhdkhkhhkhhkhkhhkhkhhkhhhkhhhkhhkhkhkhhhkhhkhhkhkkhkkhhhkhkhkkhkhkhrhkhk

START LD A,0DgH sForce Interrupt Command
LD (37ECH) ,A ; Issue Force Int Command
RET :Ret

Machine-language Disk I/O 49

Model III Head Positioning

Model ITT Supplement to Chapter 3

Model IIT Head Positioning

Head positioning on the Model 1II is handled the same way as the Model I,
except the addresses used are ports and not memory locations. Also, Unless you
want to branch to a NMI routine after an FDC function is done, you must turn off
the NMI options.

Below is an example of a RESTORE operation on a Model III.

Figure 3.19 Model III Restore Routine

khkhkhkhkkkkhhkhkhkhhhhhkhkhhkhkhkhkdhhhhhkhkhkhhhkhkhhhhhrhhhkkhkixhkrthhhkikkixk
*% Restore a Drive’s Head to Track @ *%
khkkkkkkhkkhkkkkkhkkkkkhkkkhkhkkkkkkhkkkhkkhkhkhhkkkkkkkkkhhkhkkhkkkkkkkkkkkk

START CALL BUSY sMake Sure Controller is Not Busy
XOR A ; A=0 _
outT (0E4H) ,A s Turn Off NMI Options
LD A,l ;Drive @ Select Code
ouT (0F4H) ,A ;1Select Drive § :
LD A,D ;Restore Cmd @ 6 Ms Step Rate
ouT = (@F@H) ,A ;s Issue Restore
CALL DELAY ;Wait for Controller to React
; Before Testing
BUSY IN A, (BFQH) :Get FDC Status.,
RRCA ;Shift Busy into Carry.
RET NC ;Return if Not Busy
JR BUSY ; Else Loop.
DELAY EX (SP) ,HL ;Waste Time
EX (SP) ,HL
EX (SP) ,HL
EX (SP) ,HL
RET sReturn

50 Chapter 3

Programmed 1/0O

Disk Data Input/Output Commands

This chapter deals with the controller commands used in reading and writing
data to the diskette. Data I/O techniques will be discussed in Chapter 5, where I
guide you through the sector I/0 driver called ‘DISKIO/ASM.’

Programmed I/0

In some computer systems, including the Model II, data input and output
(called I/O) is done by DIRECT MEMORY ACCESS (DMA). This means that the
software tells the controller what operation is to be done, how many bytes are to be
transferred, and where in memory the data is to be written to or read from (called
a ‘buffer’). But the Direct Memory Access Controller actually performs the
operation and reads/writes directly to/from memory the bytes involved without
the Z-80’s help. No software is required to get or put a byte each time one is needed.

The two main advantages of Direct Memory Access are the extremely fast
transfer potential and the simplicity of the software required to run it.

- The TRS-80 Model I does its disk I/O by a method called ‘Programmed I1/0
The name is such because the ‘program’ (or software) handles the transfer of each
individual byte into, or out of the data I/O buffer.

When an operation is to be done, the software tells the controller what operation
is to take place. When a byte is to be read or written, the controller sets a ‘DATA
REQUEST (DRQ)’ flag or bit in its Status Register. The software must test this
flag at regular intervals, in some form of loop, in order to know when a byte is to be
- read or written. The Busy bit must also be tested to determine when the operation
is completed.

Inread operations, when the DRQ flag is set, the Data Register contains the byte
Just read from the disk. The software reads this byte from the Data Register.

In a write operation, the software supplies the Data Register with the next byte
to be written to the disk.

Machine-language Disk I/O 51

Figure 4.1 Busy Test Routine
**
** Here is an Assembly Source of a Typical Busy Test Loop **
**
LOOP LD A, (37ECH) ;Get Status from otatus Reg.
RRCA :Shift Busy into Carry
RET NC iReturn if Not Busy
JR LOOP :Try Until Not Busy
It could also be done this way.
START LD HL,37ECH ;Cmd/Stat Register Location
LOOP BIT 1, (HL) ;Test Busy Bit
JR NZ, LOOP iLoop if Busy
RET :Ret
Or you might want to read the status into ‘A’ to test other status conditions.
Figure 4.2 Status Testin A Register

If the software fails to keep up with the Data Request Bit, the Lost Data bit is
set in the Status Register, and the operation is terminated. 2z
e RS- e SR i

In order to determine whether a command may be given to the controller, or to
ell whether a current command is finished, you must check the Busy flag in the

atiie Pactcban
Status Register.

START LD HL,37ECH ;Cmd/Stat Register
LOOP LD A, (HL) ;Get Status
BIT 1,A :Test Busy
JR Nz, LOOP #Go if Busy
BIT 7,A ;Check for Not Ready - Drive
i Motors Off
RET NZ iRet if Motors Off
JR LOOP iGet Status Again

52 Chapter 4

Figure 4.3

Figure 4.4

Programmed I/O

Yes, know I should have just tested the Not Ready bit without testing the Busy
bit, but I just wanted to point out that you may address the controller’s register
addresses in any legal Z-80 way.

What the last routine did was:

Status Test Loop

START Load HL With the Controller's Status Register.
LOOP Read the Status into the A Register.

Jump to LOOP if Controller was Busy.
Jump to LOOP if Drive Motors are Still On.

1
2
3
4
5. Return.,

As described in Chapter 2, you must convert a logical drive number into its select
code. In other words, the select codes for drives 0, 1, 2 and 3 are 1, 2, 4 and 8
respectively.

Here is a routine that will take the logical drive number in the B Register (0 to
3) and convert it to its Drive Select Code that will be written to the drive select
latch at STEO.

Drive Select Code Routine

khkhkhkhhhkhhkhkhhkhkhkkhkkhhkkhkkhhkhhhhhhhhhhhkhhhhhhhhhhkhhkhkhhhhkhkk

* % Routine to Convert a Drive to its Select Code. kS
dkddkkdkdddhddbdddddbdddddhhddbdbdddbdbbdbddbddbddbbddbdddddbdbdddbddddbdd

AR A RNERTRRRRETRREW

START EQU =~ § ;B = Drive 6,1,2 or 3
INC B ;Make B = 1,2,3 or 4
LD A,80H :This Byte Gets Shifted
LOOP RLCA ;Shift A Left 1 (See Z-80 Man)
. DINZ. .LOOP +Do Until B = 0
RET +Return with Converted Value in

; the A Register.

Do you remember (in Chapter 2) when we discussed how each bit in the drive

select latch is related to each drive? If you are unsure, re-read that section.

(22

Machine-language Disk /O 53

The Read Address Command

The Read Address Command

When a diskette is formatted, each sector on any given track has a 6-byte header
called the Sector Address or Sector ID. This is used by the controller to determine
over what sector the head of the selected drive is about to be positioned. These
sector address bytes contain the track number, sector name, byte length of sector,
and a CRC of all these. You may read these bytes by issuing a READ ADDRESS
command to the controller. ‘

When the controller receives a READ ADDRESS command the Busy bit in the

Status Register is set, and the next encountered Sector Address is read from the

disk. The Data Request bit is set in the Status Register for each byte to be read (a
total of six).

This is the order of the da_ta"bytes that are read by your software:

Figure 4.5 Status Register Data Bytes

Byte Purpose

Track number - This is the track the sector is on.

Side number (usually 1 in TRSDOS) - can be ignored. °

Sector name 00-FF.

Sector length - used by the controller in determining how many bytes
long the sector is.

Two CRC bytes - Used in checking parity.

GU W O DO =

You may wish to read the next encountered address to determine what track the |
head is over on a particular drive.

The READ ADDRESS command is CO.
An example of a READ ADDRESS operation for drive 0 is given below.

Figure 4.6 Drive Select Routine

khkkkkkkkhkkkkkkkkkkhkhkkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk

*% Select Drive & Init Data Buffer That *%
e Address is to Be placed in L
khkhkhkkhkhkkhkhkhkkkhkhkhkkkkkkkhkkkkkkkkkkkkkhkhkkhkhkhhkkkkkkkk
START LD A,l ;For Drive #
LD (37E0H) ,A ;Select
LD BC,BUFFER ;6 Byte Buffer to Store Bytes
i ; That are Read from Disk
CALL BUSY :Make Sure Controller is Not
; Busy

Listing Continued . . .

54 Chapter 4

. Continued Listing

The READ TRACK Command

hkhhhhhhhhkhkkkhkhkkhhkkkhkkkdhhhhhhkhhhhkhhhkkhkhkhhkkhkkhkkhkhkhhkkk

*% Issue Read Address Command & Wait %
** for Controller to Respond _ *%
'***

*

LD A,09C0H - sRead Address Command

LD : (37ECH) ,A*r> ; Issue Command to Controller
PUSH HL h sWait for Controller
"POP HL o
PUSH HL ’1:7
. POP HL <
khkkhkhhkhkhkhhkhhhkhhkhkhhkhhkhhhkhhhhhhkhhkhkhkhhhkhhhhhkhhrhhdkhhkkkk
kJ Data Request Loop. Check for Byte to Get L
i and if Operation is Done LA

**

LOOP LD A, (37ECH) g, ;1Get Stat
- BIT . 1,A 7L ;Check Data Request
JR NZ,GET ¥ %7 ;G0 if Byte Ready
RRCA 4 ;Put Busy in Carry Flag
RET NC 45" ;Ret if Not Busy, Read Done
JR LOOP it ;Loop Back

hkkkkkhhdhhhkhkhhhhkhhkhhhhhkhhhkhhhhhhkhhhhkhhkhhhkhhhkhkhkhdkkkk

* & Address Data Byte Transfer it
**

GET LD A, (37EFH) % ;Get Byte from Data Reg

LD (BC) ,A bs ;Store in Buffer

INC BC b ;Bump Buffer Pointer

JR LOOP 2. :Go Test Again
**
ko Busy Test Loop i
Khkkdhhhkkhhhhkkhhhkhkhhhhkkhkhkhhkdhhhhkdbdhdhhdkhdhhdhbddddtdddti st
BUSY LD A,(37ECH) 13 ;Get Stat

RRCA “ ;Shift Busy into Carry

RET NC Vv -zl ;Ret if Not Busy

JR BUSY i ;Loop Till Not Busy
The READ TRACK Command

This command allows you to read an entire track of data, not just the user dat

A0 LAl 4Aie SV BRI VARVAL Y Vivid Vi UQAVQY L1V JUDV ULLU UDTI uaua,

but every byte on it. It w111 dump all the overhead bytes used by the controller, plus
the user data we call Sectors. Here is a situation in which this function could be
useful: You just got VTOS 3.0, and you soon discover that sector 4 on track 0 just

Machine-language Disk I/O0 55

The READ TRACK Command

can’t be read. Well, I've heard some people say that this sector was left
unformatted. “Nonsense,” I exclaim! When the diskette was formatted, Mr. Cook
simply named this sector something other than a normal 0-9 sector name (when
formatting you may name your sectors anything you want from 00-FF). I think it
was 7C or something like that. Regardless, all you have to do is read the entire
track and look to.see what that rascl was named. Also, I think M.S. Adventure
does this to all of the sectors of their adventures so you can’t copy the diskette with
your operating system, nor can you ‘superzappers’ go looking through it. As a
matter of fact, the track names on M.S. Adventures are different from normal too.
That screws up the read/write head seeking if you verify your seeks. It’s simple —
just read the track, and you’ll be able to see every single byte on it.

The READ TRACK command is E4.

Below is an example of a READ TRACK operation.

khkkkkkhhkkhhhkkhkhkhhkkhkkkkhhkkkkhhhkkkkkhkkhkkkkhkkhkkkkkkkkkkkkk

* %
* %

START

LOOP

9]
e}
3

BUSY

LD

™ ™
Ly

LD

~ew

Select Drive,

Init Buffer to Put Track Data. *%

Test for Busy and Issue Command *%
khkkhkkkhkhkhkkhkkkkkkhkkhkkhhhkkhkkkkkhkkhkkkhkhkkhkkhhkhkhkhkkkkkkkkk

A,l
2" oatrry n
\Q/7Ly¥n)} ,Hn

BC,BUFFER

BUSY
A,BE4H
(37ECH) ,A
HL

HL

HL

HL

A, (37ECH)
1,a
NZ,GET

NC

LOOP

A, {37EFH)
(BC) ,A
BC

LOOP

A, (37ECH)

NC
BUSY

13
2

For Drive 0

Select It

Start of Buffer to Put Track
Bytes That are Read

Make Sure Controller Not Busy
Read Address Command

Issue Command

Wait for Controller

.
’
H
.
r
.
’
.
’
.
1
.
r
.
’

;Get Stat
;Check Data Request

1> WgGo if Byte Ready

4

{5

VA;,‘ A Py ;:,

V52f)
2

;s Put Busy in Carry Flag
;Ret if Not Busy, Read Done
;Loop Back

;Get Byte from Data Reg
;Store in Buffer

;Bump Buffer Pointer
1Go Test Again

1Get Stat

;Shift Busy into Carry
sRet if Not Busy

:Loop Till Not Busy

56 Chapter 4

i

~ Figure 4.8

The WRITE TRACK or FORMAT Command

The WRITE TRACK or FORMAT Command

Formatting is just the opposite of reading a track. This is the command used in

preparing a diskette for use. In this operation the creation and naming of sectors
and tracks takes place.

The controller starts writing the format data as soon as the next Index Pulse is
encountered. It keeps on writing until the Index Pulse is encountered again. See
Chapter 1 for how your data must be set up for a track write.

It’s possible you may never want to use the format operation, because under
most conditions the TRSDOS, VT'0S and NEWDOS formatters will work just
fine, unless you want to name the sectors or tracks somthing non-standard or use
a different sector length to link 128-byte sectors. There is a formatter program in
the back of the book you may study and customize.

The WRITE TRACK command is: F4

WRITE TRACK Routine
khkkhkkkkkhkhkkkkhhhkkhhhkkhkhhhkhkkhkhkhkhkhkkhkkkhkkhhkxhhkkhkhhhkhkhhkkhhkis

*% Select Drive and Init Data Buffer Pointer Start *%
khhkkkkhkhkkhkkhhkhkkhkhkhkkkhkhkkhhkhkkhhhhkhkkhhhkkhkhkhhkkhkkkhkhhkhkkhhkkkkkkkx

LD A,l ;For Drive
LD (37E0H) ,A ;Select
LD HL,37ECH ;:Cmd/Stat Register
LD BC,BUFFER sStart of Buffer That Contains
; All the Necessary Bytes
CALL BUSY ;Make Sure Controller is Not
; Busy
**
Tk Issue Cmd and Get First Byte to Write k%
khkkkkkkkkkhkhkkkhhkhkhhkkhkkkhkkkhhhkhkkhkkhkhkkkkkhkhkhkkkkhkkkhkkkkhkkkkkk
LD A,0F4H ;Write Track/Format Cmd
LD (37ECH) ,A ¢ Issue Command

; The PUSH/POP Wait is

; Unnecessary When Formatting
LD A, (BC) ;Get Next Byte to Write
INC BC ;Bump Buffer Pointer

khkkdhkhhkhhkhhkhhkhkhkhhkkhhhkkhkhhkkkhkkhkhkhhkkkkhkkhkhkkkkkkk

k% Data Request Test Loop *k
**

LOOP BIT 1, (HL) ;Check Data Request
JR NZ,PUT ;Go if Byte Ready
BIT @, (HL) sCheck if Write is Done
RET NC ;Ret if Not Busy, Read Done
JR LOOP :Loop Back

Machine-language Disk I/0

67

READ SECTOR Command

... Continued Listing

Figure 4.9

58 Chapter 4

hkkkkhkkhkhkhhkkhhkhkhhhkhkkhhhkkhhhkhkhkhhhkhhkhkhkkhkhkhhkkhhhkkdkkk

k% Transfer Data Byte to Data Register (]
khkkkhhkkhhkhhkhhkhhkhkkhhkkhkhkkhhkkkhkkhhkhhkhkkhkhkkdhhhhhkhkkhkhkkhkdkk

PUT LD (37EFH) ,A ;Write Byte
INC BC :Bump Buffer Pointer
LD A, (BC) * :Get Next Byte to Write
JR LOOP :Go Test Again

ARKkRIKRKKKkhKkh kA khkhkkkhhkhhhhkhkhkhkhhrkkhkhkhhhhhhhhkhkhkhhkdkhkhkdd

ke Busy Test Loop : ik
kkkkkkhkhhkkrkhkhkkhkhkhhkkhkhkhhkhhhhhhhhhkhhhhhhkhkhhhhhhkhhkhkhkhhkkdhdk

BUSY BIT @, (HL) :Busy?
RET Z ;Ret if Not Busy
JR BUSY ;Loop Till Not Busy

Read Sector command

This is the command issued before reading a sector. If the sector is not found
within two revolutions of the diskette, the Sector Noi Found bit is set, and the
operation is terminated.

This is the format for the READ SECTOR command.

READ SECTOR Format

Bit 7 6 5 4 3 2 1l g
1 /]] g B E 0 0
I l—___ L.oad Head at Start.
! IBM Format.

As in all TRS-80 Model I disk operations, the ‘Load Head At Start’ bit can be
ignored because the head is loaded when a drive is selected.

The ‘IBM Format’ bit will be discussed in the section on formatting. This bit is
normally set during this operation.

Figure 4.10

READ SECTOR Command

The usual byte issued is 88.

Before issuing the READ SECTOR command, the Track Register must contain
the current track that the selected drive is positioned over. If it does not, the Sector
Not Found bit will be set when the operation terminates.

If you don’t know what track thé head is over, you can perform a READ
ADDRESS and get the track from that. Then load it into the Track Register.

READ SECTOR Routine

**
ko Example of Reading a Sector, Ft
**
START LD A,l . iFor Drive @
LD (37E0H) ,A ;1Select
LD BC,BUFFER 1256 Byte Buffer to Store
: Data That is Read from Disk
CALL BUSY sMake Sure Controller is Not
; Busy
LD A,88H ;Read Address Command
LD (37ECH) ,A ;s Issue Command
PUSH HL ;Wait for Controller
POP HL
PUSH HL
POP HL

**

k% Data Request Test Loop i
**

LOOP LD A, (37ECH) 3% ;Get Stat
BIT 1,A iz ;Check Data Request
JR NZ,GET 4#+-»1Z ;Go if Byte Ready
RRCA Y ~ ;Put Busy in Carry Flag
RET NC {5 -~ 1 ;Ret if Not Busy, Read Done
JR LOOP 2 ;Loop Back

**

*k Data Transfer Routine *k
**

. GET LD A, (37EFH) 1% :Get Byte from Data Reg
LD (BC) ,A ¥ ;iStore in Buffer
INC BC & ;Bump Buffer Pointer
JR LOOP 12 1Go Test Again

**

k% ' Busy Test Loop it
**

BUSY LD A, (37ECH) 13 ;1Get Stat
RRCA : - ;Shift Busy into Carry
RET NC 4571 ;Ret if Not Busy
JR BUSY , 17 iLoop Till Not Busy _

Machine-language Disk I/0

59

WRITE SECTOR Command

60 Chapter 4

Write Sector Command

This is the command issued before writing a sector. If the sector is not found

- within two revolutions of the diskette, the Sector Not Found bit is set, and the

operation is terminated.

As with the sector read, before issuing the WRITE SECTOR command, the
track register mmust contain the current track that the selected drive is positioned
over. If it does not, the Sector Not Found bit will be set when the operation
terminates,

As previously stated, if you do not know what track the head is over, you can
perform a READ ADDRESS and get the track from that. Then load it into the
Track Register. This is the format for the WRITE SECTOR command.

Bit 7 6 5 4 3 2 1]
1 0 1 B E Al A2
i l.__ Load ﬁead at Start.
IBM Format,

As in all TRS-80 Model I disk operations, the Load Head At Start bit can be
ignored because the head is loaded when a drive gets selected.

The IBM Format bit will be discussed in the section on formatting. This bit is
normally set during this operation. The A1 and A2 bits are for record type. When
writing a sector, sometimes it is desirable to give it some sort of attribute that the
software could test to determine if the sector is ‘special.’ This is done on the DOS’s
directories to let DOS know these sectors are special-purpose sectors. Your
controller does not care what you use your special sectors for. Technically, the
attribute is called Record Type. The way these bits (0 and 1) are set in the
command byte (when you issue the Write Sector command) will be duplicated in
bits 5 and 6 of the Status Register after you read the sector. All your software has
to do is test these bits for whatever condition you want. Pretty slick, huh?
TRSDOS, NEWDOS and VTOS all use bit 5 (A2) for their Read Protect status.

Figure 4.12

WRITE SECTOR Command

WRITE SECTOR Routine
kkhkhhhkhhhhkhhhhhhkhkhhkhhhhhhkhhhhhhkhhkkkkkhhkkhhhhhkkhhkkkdhk

*% Write a Sector Routine *%
***************************#********************************

START LD Al ‘ ;For Drive 0

LD (37E0H) ,A ;Select

LD BC,BUFFER 1256 Byte Buffer That has
i Data to be Written

CALL BUSY ;Make Sure Controller is Not
; Busy

LD A,0A8H iWrite Sector Command

LD (37ECH) ,A : Issue Command

PUSH HL iWait for Controller to Set Up

POP HL

PUSH HL

POP HL

**

*x Data Request/Busy Test Loop bk
hhkkhhhkkhkk ko hk ke ok kkkhkkhkkhkkh kA kA kkkkkkhkkkhkhdkkdkk

LOOP LD A, (37ECH) ;Get Stat
BIT 1l,A :Check Data Request
JR Nz, PUT iGo if Controller Wants a

i Byte :
RRCA) ;Put Busy in Carry Flag
RET NC ;Ret if Not Busy, Read Done
JR LOQP ;Loocp Back

**

*% Data Transfer Routine * %
**

GET LD A, (BC) iGet Byte from Buffer
LD - (37EFH) ,A sTransfer to Controller
INC BC ;Bump Buffer Pointer
JR LOOP ¢Go Test Again

**

*k Busy Test Loop **
**

BUSY LD A, (37ECH) ;Get Stat
RRCA #Shift Busy into Carry
RET NC . #Ret if Not Busy
JR BUSY :Loop Till Not Busy

Machine-language Disk I/0

61

Model III Supplement To Chapter 4

Figure 4.13

Figure 4.14

62 Chapter 4

Model III Supplement To Chapter 4
The FDC data I/O commands are the same for the Model III, except that ports

are used (remember?), and the NMI and wait state options are used. QInu]n-ﬂnnmtv

T USUMA \ATVALITIIIITL ¢ J9 QRAIR VILIT 2V 4ATVAL GRIA VYRV DVQRVY VU VAV L0 ST iaSa

disk I/O on the Model III doesn’t require waits, but it doesn’t hurt. . .. This means
you could have a disk I/O routing that handles single- and double-density. The
program in the supplement to Chapter 5 has just this sort of routine.

The NMI Post I/0 Processing Routine

Since we are going to use the NMI option, we need. a routine to use for a
demonstration. The NMI vector at 4049 must contain a jump to this routine

ARAVZAS VA QR VAV ade 4 22T ANdAVaL VELVVWWL QU RBRWEYS AALAMOV VViaviRaas & jwaaz VAV Vaiawl AViwevadaw

before the examples in this chapter can be used. Also, turn off the NMI when doing
head movement; it’s unnecessary. Turn on the NMI option just before doing I/0.

Store the jump instruction at 4049-404B.

Vector Jump Routine

XOR A A =0

ouT (BE4H) ,A ;Turn NMI Off

LD A,0C3H :JP Opcode

LD (4649H) ,A ;Store Jump

LD HL,NMIRTN +NMI Routine Address

LD (404AH) ,HL ;Store NMI Routine Address

Below is the NMI routine.

NMI Routine

NMIRTN EQU S
POP HL ;Kill Ret Adr (See Text)
IN A, (OFOH) ;Get FDC Status
LD E,A ;E = FDC Status
IN A, (0E4H) ;Get NMI Status
PUSH AF ;Save on Stack
XOR A ;A =0
ouT (PE4H) ,A ;NMI Options Off
POP AF ;Get NMI Status
AND 64 ;Drives Time Out? Bit 6
RET ;Ret with NZ = No Time Out

12 = Time Out Occured

+E Register = FDC Status

Figure 4.15

The Model III Read Address Command

Notice the POP HL at the beginning? When a non-maskable interrupt occurs,
it’s just like forcing a CALL to location 66. So, naturally, the RET address of the
/0 loop is still on the stack. The instruction at 66 jumps to another ROM routine
which checks for the reset button being pressed. If the reset button is not pressed

B = o0

it jumps to 4049, where our NMI routine vector is located. We don’t want to

- return to the I/O loop that was interrupted. We want to return to the routine caller,

so we simply pop off the loop return address. This makes the caller’s return
address our return address.

The Model II1 Read Address Command

The read command is identical to the Model' I read command; however, we
handle the 1/0 differently.

Below is an example READ ADDRESS routine. Call with C = select code for
drive, i.e. 1, 2, 4 or 8 for drives 0, 1, 2 and 3 respectively. This routine assumes the

desired drive is already selected.

READ ADDRESS Routine
START LD A,0C0H ;A = NMI Options
OuT (BE4H) ,A ;NMI Options On
LD A,C 1Get Drive Select Code
OR 128+64 ;Add Double-dens Select and
LD D,A ; Z2-80 Wait Select
LD HL,BUFFER sHL~-> Buffer to Receive Data
: ; Sector ID
LD C,0F3H ;C-> Data Register
LD E,2 ;Data Request Mask
XOR A ;A =0
ouT (0EQH) ,A ;Disable Normal Interrupts
DI
LD A,0C0H ;Read Address Command
ouT (0F0H) ,A s Issue Command
CALL @ DELAY ;Delay a Few Microseconds
INIT IN A, (OF0H) ;1Get FDC Status
AND E ;Data Ready?
JR Z,INIT ;No - Loop
INI ;Move Data to Buffer
LOOP LD A,D 1Select Drive, Dden and Wait
ouT (9F4H) ,A ;7 See Text
INI ;Move Data to Buffer
JR LOOP sLoop Till NMI Interrupts
DELAY EX (SP) ,HL iWait for FDC to Respond
EX (SP) ,HL
EX (SP) ,HL
EX (SP) ,HL
RET

Machine-language Disk I/O 63

The Model III Read Track Command

When the drive is selected at LOOP, with the wait-state option selected, the
7-80 freezes at that point until data is ready. The reason we used the INIT loop is
that if no data were found (no disk in the drive) the Z-80 wait at LOOP would

re-start after 1.024 milliseconds and erroneous data would be transferred from the
FDC.

The Model III Read Track Command

The READ ADDRESS routine in the previous section can be used with the
READ TRACK command; just change the command byte from a 0CO to a 0EO.
It will work just fine.

The Model III Write Track (Format) Command

The READ ADDRESS routine can also be used for the WRITE TRACK
function. Just change the command byte to an OF0, and change the INI opcodes
to OUTI opcodes. The buffer that HL points to must have the entire track format
laid out.

The Model III Read Sector Command

The READ ADDRESS routine can be used for the READ SECTOR function if
the head is on the desired track, and the track and sector registers contain the
desired sector. Use 80 as the command byte.

The Model III Write Sector Command

The READ ADDRESS routine can be used for the WRITE SECTOR function
if the head is on the desired track, and the track and sector registers contain the

desired sector. Use OAQ as the command byte for normal sectors, and OA1 for
READ PROTECT sectors. Also, substitute the INI opcodes for OUTI opcodes.

64 Chapter 4

-Figure 5.1

DISKIO - Full Sector I/O Routine

DISKIO - Full Sector I/O Routine
This chapter contains a full sector (IBM format) I/O driver, an

) » PR =11 N o ar e hang 11 for anyu maacann 'L"n 1
1 1T

[« R
pmte
ot
e
]

ee to use
in any programs that you use or d1str1bute

It will handle head positioning with full error-checking. The error codes
returned are TRSDOS-compatible error codes, except for error 39, which means

‘Drive Not Ready.” You can key this into your editor/assembler for use in your/\>
e

programs. By carefully studying each aspect of the driver, you'll gain a mor
complete understandlng of the operations involved.

Mha writa a canfar antru ie at lina NNR2AN at +hn WRITR lahel The ﬂrrite a

A LIV VYLIUVVU QA OUVULVLVVUL viluvly 10 Qv il le VUUUU QU VLIV 7Y AVi & A4 AQAA/UAe & 12U VY <«

protected sector routine starts at line 00610 at the PROT label. Read a sector
starts at line 00670 and has the label of READ.

These routines preserve all registers, so you won’t have to save them yourself.
The register format before calling is as follows:

Full Sector I/0O Driver Routine

ENTRY: ‘
. L = Drive number 0-3.
E = Sector.
D = Track.
BC = The 256-byte I/0 buffer that data will
be written to or read from
EXIT:

All registers the same, except that 'A'
contains the error code. Zero flag = no error.

Listing Continued . . .

Machine-language Disk I/0

65

DISKIO - Full Sector I/0 Routine

. Continued Listing

#0268 DCT EQU $;DRIVE CONTROL TABLES
00265 , SEE TEXT AFTER DRIVER
00270 _

00280 DEFB. @ °DRIVE NUMBER @

00290 DEFB 1 : SELECT CODE

00300 DEFB 9 ;DRIVE STATUS, BIT REC
00319 DEFB 3 1 ;DRIVE STEP RATE:
00320 DEFB 9 ,CURRENT TRACK

90330

00340 DEFB 1 'DRIVE # 1

90350 '~ DEFB 2 ; SELECT CODE

0360 DEFB - @ ;DRIVE STATUS

00370 DEFB 3 :DRIVE STEP RATE

00380 DEFB) : CURRENT TRACK

00390 _ : .

00409 DEFB 2 ;DRIVE # 2

0419 DEFB 4 ; SELECT . CODE

0420 DEFB /] ;:DRIVE STATUS

00430 DEFB 3 ;:HEAD STEP RATE

0440 DEFB 9 ; CURRENT TRACK

00450 ;

90460 . DEFB 3 ;DRIVE # 3 ..

00470 DEFB 8 ; SELECT CODE

00480 DEFB 0 ;DRIVE STATUS

90490 DEFB 3 ;HEAD STEP RATE

0500 DEFB 0 ; CURRENT TRACK

00510 : ;

§@520 BUFF DEFW g ;I/0 BUFFER

@Pp530 TSQ DEFW 0 ;TRK & SECTOR

PP540 TRIES NOP ; COUNTER FOR COUNTING
90550 . ;4 OF TIMES TO TRY I/0
00560 ‘ ;AFTER ERROR OCCURS D)
8578 SAVER DEFW] ;USED TO STOR HL TEMP —
PP580 ;:BY REGS SAVE ROUTINE
909598 TRYS EQU 3 :# OF TIMES TO TRY I/0
90600 ;UNTIL ROUTINE GIVES UP

%%* FUNCTION ENTRIES **%

*** WRITE A PROTECTED (DIR TYPE) SECTOR **

#0610 PROT LD A,0A9H ; FDC COMMAND
00620 JR WR1 CONTINUE

% WRITE A NORMAL SECTOR **#

p9630 WRITE LD A,0A8H i FDC COMMAND

00640 WR1 PUSH @ HL +SAVE DRIVE (L)
00650 LD HL,9012H ;OPCODES: LD A, (BC)
PB655 ;& LD (DE),A

00660 JR TASK

*** READ A SECTOR **% . _
Listing Continued . .

66 Chapter 5

... Continued Listing

@670 READ
00680
90690
ge790
60710

TASK

Py, Welo ¥rl

0830
- 00840
0850
p0860

80879

o880
00890
00900
909190
8920
00930
009490

29959

224

poo6o
o970
00980
PPo90
p1000
01010 Q31

Z2YX

01060 TASK1

01079
01080
01090
#1100 NRER

GETDCT

EQU $ -
LD A,88H
PUSH HL

LD HL,021AH

%% DOMINANT CONTROLLER’

LD (XFER) ,HL
LD (BUFF) ,BC
LD (TSQ) ,DE
LD (ISSUE+1) ,A
POP ‘HL :
CALL FPUSHX

LD A, TRYS

LD (TRIES) ,A
LD A,0DPH

LD (37ECH) ,A
CALL GETDCT
JR Q31

%%k PUT

EQU $

PUSH BC

PUSH HL

LD B, L

LD HL,DCT
INC B

DEC B

JR NZ,ZYX
PUSH HL

POP Iy

POP HL

POP BC

RET

LD DE,5

ADD HL,DE
DEC B

JR 224

CALL TASK1

LD (HL) ,8DgH
LD A, B

OR A

RET

DISKIO - Full Sector I/0 Routine

+READ CMD

: SAVE DRIVE/OP
;OPCODES: LD A, (DE)
;& LD (BC),A

* %%

;XFER Z-80 OPCODES
;SAVE I/0 BUFF POINTER
s SAVE TRACK, SECTOR #'S
; STORE FDC COMMAND
;GET DRIVE NUMBER

i SAVE ALL REGISTERS
;GET # ERR TRIES

s STORE IN COUNTER

; FORCE INTERRUPT CMD

i RESET FDC

sGET CONTROL TABLE PTR
; CONT

DRIVE CONTROL TABLE POINTER IN 'IY' #*#%%*

i SAVE REGISTERS
sBC & HL

;GET DRIVE # :
+GET DRIVE TABLE START
;IS B ZERO YET?

;SET Z IF SO

+NO, NOT DONE

;XFER DCT PTR TO REG 1Y
;GET DCT

i RESTORE REGS HL

ADD FOR NEXT TABLE
UMP TO NEXT DCT

EC DRIVB NUMBER COUNT
ONTINUE

.
H
i
-
i
*
i
L
H
*
H
o
i
.
i
.
i

U Quw

O WRITE OR READ
s RESET FDC

;GET ERROR CODE
;SET Z OR NZ FLAG

;RETURN TO CALLER

*** ACTUAL I/O HANDLER *#*%*

LD HL,37ECH
CALL SELECT
BIT 6,(1IY+2)
JR Z,TH3

LD E,27H

DC COMMAND/STATUS REG
E

LECT DRIVE

iF
iS
;IS DRIVE DISABLED?
sNO, CONTINUE

;NOT READY ERROR CODE

Machine-language Disk I/O

Listing Continued . . .

67

DISKIO - Full Sector I/0 Routine

. Continued Listing

091110 DEFB

91120 WPD LD E,15
01130 : RET

01140 TH3 BIT 0,(1IY+2)
1159 ' JR - NZz,THS5
01160 LD A,60H
01170 OR (IY+3)
01180 LD - B,88
91198 FGN CALL SELECT
01200 LD - (HL) ,A
1219 CALL WAIT -
01220 BIT 2, (HL)
1230 JR ' - NZ,II5
01240 DJINZ FGN

01250 JR NRER
#1252 '
p1260 II5 SET 0,(IY+2)
61270 ' LD (IY+4) ,0
$1280 THS LD A, (ISSUE+l)
01290 Cp 88H

1300 JR Z,TH6
01319 BIT 6, (HL)
91311 :
01320 JR NZ ,WPD
613306 BIT 4,(IY+2)
1340 JR NZ ,WPD
01350

p1360 TH6 LD DE, (TSQ)
01370 LD (37EEH) ,DE
1380 LD (HL) ,06D@H
01390 LD A, (IY+4)
01400 LD (37EDH) ,A
81410 CALL SELECT
014290 LD A,l10H
01430 OR (IY+3)
01440 LD (HL) ,A
91450 CALL DELAY
pla60 JPZ CALL SELECT
01470 BIT @, (HL)
01480 JR NZ,JP%Z
21498 vBX - LD A,\37EDH)
91500 LD (IY+4) ,A
91518 REDO EQU $

01520 LD (HL) ,9D@H
01530 LD BC, (BUFF)
#1549 REOl LD DE,37EFH
91550 CALL SELECT
215682 DI :
91570 ISSUE LD (HL) ,0
01580 CALL DELAY
91596 IOLOO LD A, (BC)

68 Chapter 5

1 .upﬁtc‘

F1E»

; PROT REG 'E'.

FWRLTE PROTECT ERROR

;RETURN -

: |
; IS DRIVE INITIALIZED?
;YES, SKIP INIT PROCESS
; "STEP OUT': COMMAND
;OR WITH STEP RATE
;MAX TRACKS POSSIBLE
; SELECT DRIVE
; ISSUE STEP ‘OUT CMD
;WAIT FOR,DONE -
;DRIVE AT TRACK 0 YET?.
;YES. INIT DONE.

; ELSE CONT .STEP OUT
; ERROR IF DIDN'T REACH
; TRACK @ AFTER 80 STEPS

’
¢SET INIT BIT IN DCT
; MAKE CURRENT TRACK=0

14

iGET TYPE, READ/WRITE.
;IS IT READ SECTOR?

;GO IF READ ‘
;DRIVE WRITE PROTECTED?
;sWITH TAB OVER SLOT?
:YES, GO TO ERROR
;DRIVE LOGICALLY PROT?
;YES, GO TO ERROR

r

;s D=TRACK, E=SECTOR
; STORE IN FDC REGS
s RESET FDC

s CURRENT TRACK FROM DCT
;s FDC TRACK REGISTER
; SELECT DRIVE

sSEEK CMD

sADD STEP RATE BITS
; ISSUE SEEK COMMAND
: DELAY

; SELECT DRIVE

:SEEK DONE?

;NO, LOOP

AWM ATIDDITAIM MDA
VLl WUNRRNLDINL LW

; STORE IN DRIVE'

°
’

DCT

s+ RESET FDC

iGET BUFFER POINTER-
:DATA REGISTER

s SELECT DRIVE

«2+NTOADT I TAMDDDITDMCO
WAL WWEAILL LINL LNV L LW

i ISSUE COMMAND PUT HERE
:DELAY BEFORE TESTING
;GET BUFFR CHR (WRITES)

Listing Continued . . .

. Continued Listing

61600 JR
91610 XFR EQU
g1620 XFER LD
01630 NOP
01635
61640 INC
01650 7))
gl1660 DIO2 BIT
01670 JR
01680 BIT
01690 JR
61700 BIT
01710 JR
01720 BIT
01730 JR
@17486 ENDP LD
01750 EI
01760 LD
$1776 RNAL RLCA
017 80 JP
01790 RLCA
01795
01800 JR
- 91810 RLCA
01815
91820 JR
91830 LD
01840 LD
01850 AND
91860 RET
31879 RNALY LD
01880 DEC
01890 LD
81900 JR
91910 RES
;TO CAUSE RE-SEEK
01920 JP
- 01938 ERROR LD
01940 CP
61950 LD
01969 JR
61978 LD
91980 DEFB

#1990 ERR2 LD

02000 RRCA
02010 RRCA
02020 RRCA
02030 RET
02040 INC
62050 RRCA
2060 RET
02070 INC
02080 RRCA
02090 RET

DIO2
$

(DE) ,A

BC
A, (BC)
1, (HL)
NZ ,XFR
 {HL)
7 , ENDP
1,(HL)
NZ,XFR
7, (HL)
%,DI02
A, (HL)

B,A

C,NRER

C, ERROR

C,ERkOR[:

A,B
E,0
1CH
Z

HL, TRIES
(HL)
%, ERROR

4 wer 2 N\

0,{1Y¥+2)
TASK1

A, (ISSUE+1)
88H
A,B
NZ , ERR2
B, 3

1
E,11

A BO oo

DISKIO - Full Sector I/O Routine

: TEST FOR DATA REQUEST

sWRITE CHAR

;NOP ON WRITES,

;LD (BC) ,A ON READS
jBUMP BUFFER POINTER
7GET NEXT BUFFER CHR
;DATA REQUEST?

:YES, GET/PUT BYTE

; FULL SECTOR XFERED?
;YES, GO END PROCESS
;DATA REQUEST?

; YES, TRANSFER BYTE
;DRIVE NOT READY?

;s NO, LOOP

:GET FDC STATUS

; ENABLE INTERRUPTS

s SAVE ERROR CODE
;DRIVE NOT READY?
+YES, GO TO ERROR
sWRITE PROT (WRITE),

; SEC PROT FLAG? (READ)
;YES, DON'T RETRY I/0
; HARDWARE FAULT (WRITE)
s SECTOR IS PROT? (READ)
;YES, DON'T RETRY I/O
;GET FDC STATUS AGAIN,
;CLEAR ERROR REGISTER
: ANY ERRORS?

iNO, RETURN

;GET TRIES COUNTER

;DEC VALUE

;GET ERROR CODE

;GO IF 'TRIES' EXAUSTED

- el
sRESET INIT BIT IN DCT £1915

; TRY AGAIN, RESEEK

;GET FUNCTION CMD
;WAS IT READ?
;GET ERROR STATUS
;GO IF WRITE

: READ ERROR CODE START

Ad A VAN AN

“DROT E (LD BC,XX) 2
;WRITE ERROR START
; INIT ERROR SHIFT

;RET IF LOST DATA
;BUMP ERROR REG

. DADTMW EBDDNR

s £3dNde A dddVd VI EN

,YES, RETURN

;BUMP ERROR REG

7 SECTOR NOT FOUND?
;YES, RETURN

Machine-language Disk 1I/0

Listing Continued . . .

69

DISKIO - Full Sector I/0 Routine

. Continued Listing

02100 INC B ;1 BUMP 'ERROR REG

82119 RRCA sWRITE FAULT (WRITE), 02115
i PROTECT SECTOR? (READ) " »

02120 RET C ;s YES, RETURN .

22138 INC E ' ;WRITE PROTECT DISK 02133
sOR PROTECTED SECTOR 02140 BET + RETURN -
WITH ERROR :)

*%% SELECT CURRENT DRIVE **%

02156 SELECT PUSH AF ;SAVE REG A

92160 LD A, (HL) . ;GET FDC STATUS
92170 PUSH AF ; SAVE STATUS FIRST
92189 LD A, (IY+1) ;GET DRIVE SELECT CODE
02198 LD (37E0H) ,A ;s SELECT DRIVE
02200 POP AF - ;GET OLD FDC STATUS
82210 RLCA ' » ;DRIVE ROTATING ALREADY?
92220 JR C,JKQ ;GO IF NOT
92230 JJJ POP AF ;RESTORE A
02240 RET ; RETURN
82250 JKQ PUSH BC : (i\y;SAVE BC
02260 LD BC, 8C60H ;1 SEC DELAY VALUE
92270 BIT 5, (IY+2) ;WAIT FULL SECOND?
02280 JR NZ ,XP1I ; YES
92290 LD B,46H _ ;ELSE WAIT 1/2 SECOND
923008 XPI CALL 60H ; DELAY
92310 POP BC ; RESTORE BC
92320 POP AF ;AND AF
92330 JR SELECT ;RESELECT & RETURN

*** DELAY AFTER ISSUING FDC COMMAND **

*kk TO ALLOW FDC TO RESPOND ok
92340 DELAY EX (SP) ,IX ; DELAY
82358 ' EX (SP) ,IX ;ABOUT 38§ MICRO SECONDS
92360 RET , ; RETURN

¥%* LOOPS UNTIL FDC IS 'NOT BUSY' **%

02370 WAIT CALL = DELAY :DELAY FOR FDC
02380 WA2 BIT 0,(HL) :+ IS FDC BUSY?
02399 RET Z ' i NO, RETURN

02400 JR WA2. ;LOOP TIL NOT BUSY
02410 ;

**%* SAVES ALL REGISTERS ON STACK **%*

92420 FPUSHX LD (SAVER) , HL ; STORE TEMPORARILY

02430 EX (SP) ,HL :GET RETURN ADDRESS

02440 LD (FPVEC+1) ,HL ;STORE RET ADR

02450 PUSH DE : SAVE DE

02460 PUSH BC :BC

02470 PUSH 1Y ;1Y

02480 PUSH IX :IX

92499 EXX ;s EXCHANGE REGS Listing Continued . . .

. 70 Chapter b

.. . Continued Listing

DISKIO- Full Sector I/0 Routine

02500 PUSH HL - ;HL'
62510 PUSH DE ;:DE'
92520 PUSH BC :BC'
02530 EXX ' o ;s EXCHANGE BACK
02540 LD HL,FPOP +RETURN ADR FROM ROUTINE
02550 PUSH HL) s SAVE 'ON STACK '
ﬂ256ﬁ LD HL, (SAVER s RESTORE HL'S VALUE
#2578 FPVEC JP /] s RETURN
% HANDLES DE~STACKING REGISTERS **%
92580 FPOP EXX ;SWITCH REGISTER SET
02599 POP BC ;s RESTORE BC!
62600 POP . DE ;DE! :
02610 POP HL JHL'
P2620 EXX ' sSWITCH REGISTER SET
02630 POP - IX s RESTORE IX
02640 IY s IY
02650 ggg) BC :BC
02660 POP DE :DE
026780 POP HL s HL
02680 RET s RETURN
The Drive Control Table

Each of the four drives has its own 5-byte ‘drive control table,” or DCT for short.
The DCT contains information used by the controller in deciding certain
conditions.

DCT — Byte 0

This byte contains the drive number .(0-3) for the drive to which the
DCT belongs. The DISKIO routine doesn’t need this byte, but it’s
handy if you need to write a disk utility and you wish to know which
drive the DCT pointed to by the IY Register is using. You can use the
GETDCT routine independently of the DISKIO driver in order to get
a DCT for your own purposes.

DCT — Byte 1

e hoda
This byte

is the ‘binary select code’ used in selecting the drive. This

value will be 1, 2, 4 or 8 for drives 0, 1, 2 or 3 respectively. You can
‘fake out’ the DISKIO routine by putting a different select code in this
byte so that it really accesses another drive instead.

Machine-language Disk I/0

71

The I/0 RE-TRIES Value

DCT — Byte 2 _
This byte contains a bit record of certaln dnve status 1nformat10n

Rit 7 means the drive has been ‘initialized.’ Initialization simply means

Cas 223184

that a Head Restore to drive 0 was done,in order to maintain ‘the
correct track position value.

Bit 6 means the drive is ‘loglcally write-protected. This is an optlon
that you may set. If this bit is set, DISKIO will reject any writes to the
drive just as though the disk in the drive had a write protect tab on it.

Bit 5 is unused. |
Bit 4, if set, means the driver is ‘logically’ turned off. You may set this
option. If this bit is set, DISKIO will perform no sector reads or writes.

Bit 3, when set, means DISKIO will delay 1 second after a ‘dry’ select.
If this bit is off, a 1/2 second delay is done.

Bifs 2, 1 and 0 are unused.

The I/0 RE-TRIES Value
The “TRYS’ value that is set to EQU 3 is the maximum number of 1/0 re-tries
that DISKIO will perform after an error is encountered. DISKIO restores the drive

head before each re-try. For Write Protect, Protected Sector or erte Fault
errors, no re-trying is attempted.

Explanations of I/0 Errors.

I’'m sure you’ve seen all the disk-related errors, but I’ll explain what the errors
really mean, as well as their usual causes.

CRC means ‘Cyclic Redundancy Check, parity,” or ‘Checksum.’ Translated into
plain English, this means that when the controller writes a sector, it does a
mathmatical calculation, using all the bytes written and comes up with a two-byte
number. The controller stores these two values right after the sector. Every time
the sector is read, it recalculates the CRC numbers and compares them with the
ones written on the disk. If there is a match, the controller considers the read
successful and doesn’t set the CRC error bit in the Status Register. If the values
don’t match, the controller considers the read unsuccessful and sets the CRC error
bit. Usually a CRC error is caused by getting the disk close to a magnetic field,
which changes some of the bits on the sector. Also, using disks that were formatted
or written to on one drive might cause parity errors when used on another drive
whose head is not aligned just right, thus causing a bad read of the magnetic pulses
by the misaligned drive.

LOST DATA is the result of software not keeping up with Data Request on I/O

operations. On reads, if the software does not read the current byte in the Data
Denquf-er before the next hvfn is rnaﬂv to be r\uf intothe Data 'Rpo‘mfm- thelost data

bit is set in the Status Reglster Durmg Wnte operations, Lost Data means the
software did not furnish a byte fast enough when the DRQ bit was set. The
controller writes a byte of 0 in place of the byte that the software was supposed to
furnish.

72 Chapter 5

Figure 5.2

Single-byte I/0 Versus Sector I/0O

The SECTOR NOT FOUND bit is set when the desired sector was not found, or
the track byte in the sector ID did not match the value in the Track Register. This
bit will be set after two revolutions of the disk if the desired sector wasn’t found.

The WRITE F AULT bit is set when there is a problem between the drive and
the controller. " : ’

Single-byte I/0 versus Sector I/0

Sector I/0 is, of course, reading and writing data a sector at a time. Single-byte
1/0 is a method that allows other routines to read or write a byte at a time without
worrying about handling the actual sector I/O. A byte I/O routine would be called
inthe same manner as the ROM keyboard scan routine (which inputs a byte) or the
display and printer routines (which output a byte). The way a byte I/0 routine
would work is that the routiné would maintain a Current Byte in Sector (CBS)

<gginter, which is incremented every time the routine is accessed. On read
erations, the routine would read the next sector (whatever that happens to be),
reset its CBS pointer, read the current byte, increment the CBS, and return the
byte to the caller. This will continue until the CBS is greater than the sector length.
Then the sequence starts again.

Here is a DOS Boot-loader routine that loads in a machine-language file starting
at track 0, sector 5 (usual SYS0/SYS), using byte I/O. In the sector read routine,
register ‘E’ contains the sector, and ‘D’ contains the track of the sector to read. The
loader codes used in the loading routine are standard TRSDOS object file loader
codes. These codes are interpreted as shown below.

01 NN LL MM, Load at the address MMLL, the next NN bytes
(minus two for MM and LL).

02 02 LL MM, Transfer control to MMLL. This is called the transfer
address, usually used for the end of file marker (EOF).

05 NN, Skip the following NN bytes. These are header bytes that
don’t get loaded (REM function).

DOS Boot-loader Routine

* % Boot loader routine * %k

08140 CALL 1C9H sROM clear screen routine

0al150 LD SP,42FFH :Init stack to this location

28160 LD DE,@005H iSector = 5, track = @,
istarting sector of SYsS@/sys

00170 J1 LD L,0 iZero byte counter

00189 EXX iSave regs for sector reader

Listing Continued . . .

Machine-language Disk I/0

73

Single-byte 1/0 Versus Sector I/0
Continued Listing
P L T L S A R A R R L S TR T T2 L L L L

Start of Byte Accesssing *%

* %

00190
00200
p0210
00220
00230
00240
90250
00270
00280
p0290 R1
00300

00310
320

09330
90350 XFER

00360

06370
90371
00372
80374
86375
90380 XFRI1
P390
po400
p0410
00420

99430 IGNORE

0440
pO45D
00460

CALL BYTE
DEC A

JR NZ,XFER
CALL BYTE
SUB 2

LD B,A
CALL BYTE
LD L,A
CALL BYTE
LD H,A
CALL BYTE
LD (HL),A
INC HL
DJINZ R1.
JR RUN

DEC A

JR NZ,IGNORE

CALL BYTE
Cp 2

JR Z,XFR1
LD HL,M2
JP PRINT
CALL BYTE
LD L,A
CALL BYTE
LD H,A

JP (HL)
CALL BYTE

LD B,A
LD HL,0
JR Rl

s Read next byte from file,

;Is it a LOAD code?

;Go if ot

;Get number of byte to load+2
;Get true amt of bytes to load
:Put in byte counter.

;Get LSB of load address.

sPut in L

:Get MSB of load address
;HL, now contains load address

;Get SYS@/SYS data byte

;Transfer to memory
;Bump to next load location

-.3Do until B = 0§

;Go get next loader code

:Is code the transfer address
;jcode? (if byte = 2 when read)
:Go if not. Must be an ignore
:Data code

:Get next transfer code. (2)

3Is it a 27

;Go if it was

;1Get no system msg

;Display error

;Get LSB, of transfer address
sPut in L

;iGet MSB of transfer address
;HL now .contains transfer adr
;Jump to SYSO

;:Get # of bytes to read and
;Ignore

;Put in byte counter
;Position over ROM

;Load ignore byte over ROM
;Which does nothing

**

Routine to Fetch Next Byte *%
**

*%

¢0470 BYTE
00480
00490
pas500
00510
pO520
9530
006540
00550 GETS
06560
pBa570
00580

74 Chapter 5

EXX .

LD A,L

OR A

CALL Z,GETS
LD A, (HL)
INC HL

EXX

RET

CALL SECTOR
LD HL,4100H
INC E

LD A,E

:Get REGS

;1Get byte count

:Set z flag if L=0

:Get next sector is L=0
:Get next byte

;Bump buffer pointer
;Save regs for next time
;Return

;Get next sector

;Load with input buffer
;Bump sector

;1Get next sector name

Listing Continued . . .

.. . Continued Listing

00590 CP 1p
00600 RET C
69610 LD E,8
00620 INC D
09630 RET

N

Single-byte I/0 Versus Sector /0

:Time to bump track?
iRet if not

iReset to sector ¢
;iBump to next track
;Retyrn

- Load Next Sector *k

* %

00660
00670
00680
00690
o700
0710
00720
o730
00740
00750
00760
00770
00780
0790
00800
0p8lo
00820
00830
00840
o850
00860
pP88e
00890
00900
0910
90929
00939

C

LOOP

GET

DONE

PUSH HL

PUSH BC
LD HL,37ECH

LD (HL) ,@D@H

LD A,1 i
LD (37E@H) ,A

LD (37EEH) ,DE

CALL WAIT
LD (HL),13H
CALL BUSY
LD BC,4100H
LD (HL),88H
CALL WAIT
BIT 1, (HL)
JR NZ,GET

-BIT 0, (HL)

JR Z.DONE
JR LOOP

LD A, (37EFH)
LD (BC),A
INC BC '
JR LOOP

LD A, (HL)
POP BC

POP HL

AND 1CH

RET Z

LD HL,DISKE

;Save register

iController command/status reg
iReset controller
7Select code for drive @

7Re~select the drive

;Load controller with sector &
iLet controller react

iWait for seek to finish
;Load with input buffer
iIssue the sector read command
:Let controller react

iByte in data reg?

:Go if byte ready

iRead done? (not busy)

1Gc if read done

:Loop back

iRead byte for data register
iStore in input buffer

;Bulmp buffer pointer

sLoop back

:Get controller status
iRestore registers

iStrip out errors
iRet if no error
iGet DISK ERROR message

Message Printer *%

% %

khhhkkkdhhhhkhhhhdkdsk

06940 PRINT
00950
08960
00970
00980
00990
01000
01002
0igio
Plo20
01030

01040

STOP

v llve)
= C

LD A, (HL)
INC HL

OR A

JR Z,STOP
CALL 33H
JR PRINT
CALL 49H
JP ODH
CALL WAIT
BIT @, (HL)
RET Z

JR Bl

;iGet message byte

;Bump message pointer

iSet Z if A =9

iGo if end of message
:Display byte

s Loop

iWait for a keyboard input

iJump to BASIC bootstrap loader

:Let controller react
iIs controller busy?
iRet if not busy.

: Loop

track

Machine-language Disk 1/0

Listing Continued . . .

76

Single-byte I/O Versus Sector I/0O

. Continued Listing
khkkhhhhhhhhkhhkhhkhhhhhhhhkhhkhhkhdkhhhkkhhhhkhhhkhhhhkhhhhdhddkhkhdkhkkk

i Controller Delay Routine Lt

61856 WAIT PUSH HL ;:Lets controller react
01060 POP HL
01070 PUSH HL

- s
01089 POP HL '
01690 RET
hhkhkkkhhkhkhkhhkhhhhhhhhhkkhhhhhkhkkhkhkkhhhkhkhhkhhkhkhhhkhkhkhkhkhkk
K Disk Error Message Text .
R A ey S eI ™™

01100 DISKE DEFM 'DISK ERROR' ;Disk error message
91110 NOP :Print delimiter

Notice in the GET'S subroutine that every time ‘E’ (the sector counter) reached
10, it was reset to zero, and ‘D’ (the track counter) was bumped up one.

This routine assumes the machine-language program being looked for starts at
track 0, sector 5. Also, all of the program’s sectors must be consecutive.

This routine is very similar to how the DOS’s system file overlay (SYS1, SYS2
etc . . .) loader works, except that the overlay loader checks the directory to see
where on the disk an overlay starts.

76 Chapter 5

Model III. Supplement to Chapter 5

Model ITI Supplement To Chapter 5 |
This supplément contains a Model III disk driver which handles sector reads

armd ezt 1 3 3
and writes. It can read and write single or double density, but does not

automatically recognize density. Selecting density is done by changing a bit in the
Drive Control Table (DCT).

The DCT .

The DCT is located on line 00630. There is a DCT for each drive. The DCT
contains information needed fdr' gfficient disk I/__O. '

Below is a list of the DCT bytes and their use..

G’igure 5.3 - DCT Bytes

BYTE USE
8 - ’1‘“ Dtive current density, l=Double
6—-4 Unused ' '

_ . 3-p Drive select code, i.e 0881 = drive &,
9019 = drive 1, etc.

1 = Drives current track.
2 Drive status

7 @=Drive needs head restore.
6-0 Undefined. You may use these.,

Byte 0 is simply the drive’s select code with the density bit in bit 7. This makes
sense, since bit 7 is the bit used in selecting density via port F4.

Byte 1 is the drive’s current track. This allows the Track Register to be loaded
with the correct value before SEEKing is performed.

Byte 2 is a status byte. The only bit currently used is bit 7. If this bit is off, the
drive needs to be INITIALIZED. Initializing a drive consists of restoring the head
to track 0 and updating byte 1 of the DCT to 0, then setting bit 7 of DCT byte 2.
This allows the disk I/O routine to then know exactly where the head is. This is
usually done only once, before the first I/O is attempted for a given drive. Certain
disk errors cause the initialization to be done again.

Using The Disk Drive in a Program

To incorporate this disk driver into a program, simply type it into a TRS-80
compatible editor/assembler (such as Radio Shack, Apparat, Assem/80, or
EDAS). '

Machine-language Disk I/O 77

AVAUUYTI 144 AJISR LITLIVEr Ixoutine

Below is the register format for routine entry.

Figure 5.4 Register Entry Format

s

C = Drive number

D = Track number

E = Sector number

HL => Buffer for data I/0.
READ SECTOR CALL READ, line 00680
WRITE SECTOR CALL WRITE,line 06730
WRITE PROTECTED SECTOR CALL PROT, line 00780

.

Model ITI Disk Driver Routine

Figure 5.5 Model IIl Disk Driver Routine

00040 ; DISKIO, DISK ROUTINES FOR MODEL III
6BO60 ;

000876 CMD EQU OF@H

09080 TRK EQU OF1H

090898 SEC EQU OF2H

09100 DATA EQU OF3H

00110 SEL EQU OF4H

09120 INT EQU OEGH

00130 NMI EQU OE4H

99146 TRIES EQU 5

09150 ;

00160 TAS DW 0 ; STORAG

00170 BUFF DW 0 BUFFER STO

00180 TRIC ~ NOP i# 1/0 ATTEMPTS COUNTER
00190 ;

00200 SELECT IN A,(CMD) ;GET STAT

60210 ~ PUSH AF 7SAV STAT

88220 LD A, (IX) ;GET CURRENT SEL COD
00230 ouT (SEL) ,A ; SEL

00240 " POP AF GET STAT

60250 RLCA ;DRIVES SEL?

00260 RET NC ;Y

08270 LD BC, 2000H i DELAY

09280 S1 DEC BC DEC COUNT

00290 LD A,B

68300 OR C

00310 JR Nz, S1 NOT DONE

00320 JR SELECT RESEL, RET

Listing Continued . . .

”

78 Chapter 5

... Continued Listing

00330
p0340
p@350

e R Wl 7 |

bd360
90370
09380
00390
00400
00410
00420
00430
Po440

’
DELAY

i
WAILT
WHO

00450

00460
00470
00480
00490
6O500
00510
68520
60530
00540
00550
00560
60570
00580
00590

e X Wl r 7

00600
00610
00620
o630
00640
o650
00660
00670
P06 80
00690
po700
00710
00720
00730
00740

W L W]

00790
00800
po8lo
0820

M0 Al

00870

’
DCT

;Ui -e
o]

I
WRITE

’
PROT

=] N %o e

ASK

EX (SP) ,HL
EX (SP) ,HL
EX (sP) ,HL
EX (SP) ,HL
RET
b
CALL DELAY
CALL SELECT
IN A, (CMD)
RRCA . o
RET NC
~JR WHO
IN A, (CMD)
RRCA 2
JR C,BUSY
L
LD aA,C
RLCA
RLCA
‘LD E,A
LD D,9
LD HL,DCT
ADD HL,DE
PUSH HL
POP- IX
RET
DM 1+128,d#,0,3
DM 2+128,0,0,3
DM 4+128,90,0,3
- DM 8+128,0,0,3
CALL TASK
DB 3
DB 80 H
DB OA2H
CALL TASK
DB 11
DB OAOH
DB GA3H
CALL TASK
DB 11
DB @AlH
DB @A3H
START I/0 PROC
EQU $
LD (BUFF) , HL
LD (TAS) ,DE

Model III Disk Driver: Routine

; DELAY

: SELECT DRV
;GET STAT
sBUSY?

iN

; LOOP

;s STAT
s BUSY?

XX MG
& N
H

w}

}

4

Y

)
el

“e we W

:DCT
s HL=DRV DCT
sSAV TO IX

S
ST
EAD CMD

=G
owr

2
[

;:JP SET-UP

; LOST DATA, WRITE
:WRITE CMD

;OUTI

;JP SET-UP
; LOST DATA WRITE
;WRITE PROT CMD

;OUTI

s SAV BUFF ADR
sSTO TK & SEC
Listing Continued . . .

Machine-language Disk 1/0

79

ATANIIA A AL EsATS ASXAVEL AVUULLIIY

. Continued Listing

00880
Po890
00900
00910
00920
00930
00940
P0950
08960
00970
00980
90990
01000
01010
01920
01939
01040
91050
p1060
01070
01080
010690
01100
91110
1120
1130
01140
91150
01160
01179
01189
01196
01200
91210
01220
01230
81249
01250
01260
01270

TS1

NRT

X9 Ao

STP

01410
01420

80 Chapter 5

LD A, TRIES
LD (TRIC) ,A
XOR A

OUT (NMI) ,A
ouT (INT) ,A
DI
" EX (SP) , HL
LD A, (HL)
LD (ERR+1) ,A
INC HL

LD A, (HL)
LD (I0+1) ,A
INC HL

LD A, (HL)
LD (OPCODE+1) ,A
LD (OPCOD2+1) ,A
PUSH DE

PUSH BC

PUSH IX

CALL GETDCT
CALL TASK2
LD A,@DOH
OUT (CMD) ,A
LD A,E

OR A

JR Z ,NRT
AND 7

JR Z , NRT
CP 6

JR NC, NRT
LD HL, TRIC
DEC (HL)

JR Nz, TS1
LD A,E

OR A

POP IX

POP BC

POP DE

POP HL

RET

CALL SELECT
BIT 7, (IX+2)
JR NZ, 1P
LD A,9DPOH
OUT (CMD) ,A
LD B, 80
CALL SELECT
IN A, (CMD)
BIT 2,A

JR NZ,STQ
LD A,60H
OR (IX+3)
oUT (CMD) ,A

s #
iS
:C
N

T

H
P
P8
:G
iS
;B
;G
;S
:B
;G
;S
;S

:D

I/0 TRIES
TO IN COUNTER
LR

MI OFF
NT OFF

AVd Wi &

NT OFF
USH HL
L->I/0 CODES |
ET FUNC 1ST ERR CODE
TO S

MP
ET
TO
MP PT

ET INI, OUTI CODE
OPCODE

TO
TO OPCODE-

PTR
I/0 CMD

O FUNC

:RESET

P
iG
;E
N
;R
;G
HYs
iN
;T
:D

s TRI

iG
;S
iR

¢S
;D
1Y
iR

L]
14

DC

ET ERR
RR?

r RET
E~TRY ERR?
O IF ERR 8

COUNTER
TRIES
AGAIN
ERR COD
NZ

REGS

RY
EC

ET
ET
ES

ELECT DRIVE
RV INIT?

ESET
FDC

i MAX TRKS

:S
iG

EL DRV
ET STAT

sTRK @7

H'4

¢ STEP CMD
:STEP RATE

i ISSUE STEP

Listing Continued . . .

... Continued Listing

01430
01440
01450
01460
61470 STQ
01480
01490 IP
01500
61510
01520
01530
01540
61558
01560
01570 .
61580
01590
01600
61610
01620 ;
01630

- 01640
01650
61660
01670
01680
091690
01700
01710
01720
01730
01740
81750
01760
01776 SAI
01780
01790
01800
01810
91820
91830
61840
91850 IO
01860
01870
01880 LOOP
01890
01960

91910 OPCODE

01920
61930 AbGO

#1940 OPCOD2

91950
02000
02070 HERE

~e

CALL
DJINZ
LD
RET
LD
SET
LD
ouT
LD
LD
ouT
LD
ouT
LD
OR
ouT

CALL

IN
LD
LD
OUT
LD
LD
LD
LD
LD
oUT
LD
cp
LD
SET
JR
OR
PUSH
LD
LD
LD
LD
DI
XOR
OUT
LD
OUT
CALL
IN
AND
JR
INI
POP
OUT
INI
JR

EQU

WAIT
STP

E,8

(IX+1) .0
7,(IX+2)
A, (IX+1)
(TRK) ,A
HL, (TAS)

"A,L

(SEC) ,A
A,H
(DATA) ,A
A,10H
(IX+3)
(CMD) ,A
WAIT
A, (TRK)
(IX+1) ,A

A,0DOH

(CMD) ,A
HL, HERE
(404AH) , HL
A,0C3H
(4049H) ,A
A,0C0H
(NMI) ,A

C,DATA

£ o mmem -

{iNT) ,A
A,80H
(CMD) ,A
DELAY
A, (CMD)
E

' %,LOOP

AF

{(gF4H) ,A
AGD
$

Model III Disk Driver Routine

;WAIT FOR STEP
; TEST FOR TRK @
;DEV NOT READY

: STO CURR TRK
; INIT DONE

+;GET DRV CUR TRK
+STO IN FDC
sGET TK & SEC
sGET SEC
;s FDC=SEC
;GET TRK
s STO DESIRED TRK
:SEEK CMD
;ADD STEP RATE
; ISSUE SEEK
;LOOP TILL DONE
sGET CUR TRK
; STO

s RESET

;s FDC

s NMI RTN

;s STO VEC

;JP OP

;7 STO JP

s NMI REQ

;s SEL, NMI

;GET SEL COD
sWAITS

;GET TRK

;s PRECOMP NEEDED?
i N

s ADD PRECOMP
; SAV

;DRQ MASK
sBYTE COUNT
sDATA REG
:GET I/0 BUFF
;KILL INT

o mmm e

:GET CMD

; ISSUE CMD
;:DELAY A SEC
+GET STAT
:DRQ?

s N

:GET/PUT BYTE
sGET SEL COD
: SEL, WAIT

s MOV DATA

;s LOOP

Listing Continued . . .

Machine-language Disk I/0

81

AVAUMGL AAL-AZIDA LJLIVELD DVUULINEe

. Continued Listing

02080
02090
02100
02110
02120
02130
02149
92150
02160
92170
02180
02199
02200
p2210

ADDOD
Valday

02230

02240

02250
02260
02270
02280
02290
02300

22314

& bt A W

02320
02330

02349

92350
02360
92379
02389
02390
p2400
02410
02420

o
s
=

POP
IN
PUSH
IN
PUSH
XOR
ouT
POP
AND
JR
LD
RES
POP
RET
POP
LD
OR
RET
LD
RRCA
RRCA
RRCA
RET

INC

RRCA
RET
INC
RRCA
RET
INC
RRCA

RET
INC

RET

HL

A, (CMD)
AF

A, (NMI)
AF

A

(NMI) ,A,
AF

64
NZ,HR1
E,8

7, (IX+2)

N e

MmO B =HO

;KILL LOOP RET
;GET DISK STAT

i SAV STAT

iGET NMI STAT.
i SAVE NMI STAT
:A=0

:NMI OFF

;GET NMI STAT .
;DRIVE TIME OUT7
iN

4

;DEV NOT AVAIL

; INIT OFF . ..
:GET DISK STAT

=
]
=

g

i
> -

STAT

ERR?

< 2Z |6
O

ET ERR START
HIFT PAST BUSY
DRQ

OST DATA?

WO WME N WNE e WS e Wy N

<P e

nET™ nnn Pa Vot N

RR COD
ARITY ERR?

=
R

MP ERR CoD
EC NOT FOUND?

<KnNnWow

MP ERR COD
ROT SEC/WRITE FAULT?

=

LANAN NSy LA

P T B
ROT SEC/WRITE PROT

NS NWE Ne WS MO W e WO " N Wy

MW

82 Chapter 5

TRSDOS/NEWDOS/VTOS Disk Files

Using
TRSDOS/NEWDOS/VTOS 1I/0
Routines

In this chaptér we will be dealing with using the DOS’s file I/O routines and
other DOS trivia. Some programs in the back of the book use DOS file I1/0.

TRSDOS/NEWDOS/VTOS Disk Files

Why a disk operating system? The DOS performs many useful functions. The
main function is handling a certain logical contrivance we commonly call “files.’
The DOS handles allocation and de-allocation of disk space for the files. Without
the DOS, we would have to take care of this big housekeeping chore ourselves.
Maybe after mastering control of the disk, you might attempt to write your own
DOS!

There are two methods of accessing disk files; direct record accessing (also
referred to as random access) and sequential byte accessing.

Disk BASIC allows you to access files with random file accessing. Any record in
the file may be read or written at any time. The DOS will allow logical record
lengths (LRL) to be different from the actual physical sector length. This may be
from 1 to 256 bytes per record.

The DOS will handle ‘spanning’ sectorsif a particular record is spanned over two
sectors. For example, if your LRL was 200 bytes long, the first record would fit on
the first sector of the file. The first 55 bytes of the second record would fill up the
rest of the first sector, and the remaining bytes of the second record would fill up
the first 145 bytes of the second sector, and so on.

Machine-language Disk /O 83

" TRSDOS/NEWDOS/VTOS Disk Files

Figure 6.1 Record Spanning Two Sectors

RELATIVE SECTOR 0 RELATIVE SECTOR 1 RELATIVE SECTOR 2
: -
- >|< »I
LOGICALRECORD 0 LOGICAL RECORD 1 LOGICAL RECORD 2

Byte I/O may also be performed, just like reading or writing a byte from a device.

When speaking in computer terms, do you know what a device is? Your printer,
video and keyboard are all devices. Mechanical card puncher/readers and paper
tape punch/readers are devices. A good definition for a computer device is any
mechanical or logical contrivance capable of supplying and/or
receiving/processing data.

When writing to a DOS file in the byte I/O mode, it is appropriate to think of the
file asa logical device that is storing all those bytes in one giant buffer, to be read

hack od at al
back in or processed at a later time.

A legal TRSDOS/NEWDOS/LDOS file specification (filespec) must include
the primary filename, which may be up to 8 characters long. The first character
must be a letter from A to Z, although the rest of the characters of the primary
filename may be alphanumeric (letters or numbers).

An optional extension may be included to denote the filetype or whatever. This
may be up to 3 characters in length, but like the primary filename, the first

character must be a letter from A to Z.

An optional 8-character password may be included to prevent unauthorized
persons from accessing the file. The character rule is the same as the primary
filespec. The first character must be a letter, and the rest of the characters of the
password may be alphanumeric.

An optional 2-character drive specifier can be included to specify which drive to
use. The first character must be a colon. This denotes the drivespec. The second
character is the actual drive number. It must be from 0 to 3. If no drivespec is
specified, the DOS will scan all drives for the file and open the first file that
matches the filespec. Depending on the call used, the DOS may create the file on
the first available drive, or return with a ‘file not found error.’

Before calling the open file routine, or before calling any DOS file-handling
routine, Register ‘DE’ must point to the first byte of a 32-byte RAM buffer which
contains the filespec. This is called the FILE CONTROL BLOCK (FCB). It is
common to hear this referred to as the DEVICE CONTROL -BLOCK (DCB).

The filespec must be positioned in the FCB so that all the unused bytes are on
the right side of the filespec, or in other words, left set in the buffer. When the file
is open, DOS keeps all the file’s housekeeping information in this FCB buffer.

Below is a visual description of how the filespec should be set in the FCB prior

84 Chapter 6

Opening a New or Existing File

to calling the DOS open routines. Each dot represents one byte. The dollar sign ($)
represents the terminator of 03H or ODH that must follow after the last filespec
byte. The ‘DE’ Register must point to the first byte of the FCB before calling any
of the file control routines.

-

Figure 6.2 Filespec in the FCB

8 16 24 3 2
'.Q....I...'lI.I.......I.......I
FILENAME/EXT.PASSWORD : @ S§

Opening a New or Existing File

In order to open a new or existing disk file, you must point Register ‘DE’ to the
32-byte RAM buffer that holds the filespec, and is delimited by a byte, 03 or 0D,
right after the last filespec character.

The logical record length, from 0 to 255 (0 being full 256-byte sector record)
must be put in the ‘B’ Register. If you are just going to access the file in the byte
I/O mode, this value has no significance whatsoever.

‘HL’ must be pointed to the 256-byte 1/O buffer, which is used by DOS to
transfer data to and from the sectors of the file. This value is stored in the FCB
during ‘open’ and does not need to be supplied again.

After setting up the FCB and the registers, execute a call to location 4420.

i On return, ‘BC’, ‘HL’ and ‘DE’ are intact. The zero flag will be set if no error
occurred; otherwise, Register ‘A’ will contain the error code. If a new file was
created, the cdrry flag will be set. Error processing will be discussed later.

If a drive was specified, DOS will look for the file on that drive. If the file is not

there, DOS will create its entry in the disk’s directory, and return

AV ATy 422 VATV 400 Vaiva j il ViaT WRaSA O MIATUUVA Yy Riia 4

If a drive was not specified, DOS will scan all the drives starting at drive zero,
and search for the first occurrence of the filespec. If DOS finds the file, it will open
it and return; otherwise, DOS will create the file on the first drive that contains free
directory space and return.

In the FCB, DOS maintains a 3-byte value called the ‘EOF’ (end of file) byte.:
The first 2 bytes contain the number of the last sector, and the 3rd byte contains
the relative byte position of the last byte in the file.

Every time a byte or record is written, the EOF byte value is changed to equal
that record/byte. This is most undesirable when maintaining direct access record
files. For example, if you had 10 records, and you wrote to record 2, the EOF would
be set back to record 2, and the last 8 would be de-allocated! This circumstance is
desirable when writing byte output sequential files because you would want any
space that wasn’t just written to freed.

The way to prevent the EOF value from being reset when records or bytes are
written is to turn on bit 6 of byte 2 of the FCB right after you open the file.

Machine-language Disk I/O 85

Opening an Existing File

Figure 6.3

Figure 6.4

Below is an example of a call to open a new or existing fiie, setting the ‘Don’t
Reset EOF’ bit, LRL = 128.

I
New or Existing File Call Routine] /1/ I 7'@

**

*k OPEN a New or Existing File. A
kkkkhkkkhkhkkhkkkkhhkkhkkkhkhkkkkhkhkhkkhkhkkkkkkkkkkkkhkkkkkkhkkhkkkkkkk

START LD DE,FCB :32 BUFF THAT HOLDS FILESPEC
LD HL,BUFFER ‘FILES' I/0 BUFFER
LD B,128 ;128 BYTE LRL
CALL 4420H ;OPEN OR CREATE FILE-
JR NZ , ERROR +GO IF ERROR
INC DE ;POSITION TO 2ND BYTE OF FCB
LD A, (DE) #GET BYTE
SET 6,A ;SET "DONT RESET EOF" BIT
LD (DE) ,A # REPLACE
RET sRET

ERROR (The error processing would be executed here).

Opening an Existing File

This call enables you to open an existing file, but DOS will not create it if the file
was not found. This call would be the call to make if, for example, you wanted to
read in a text file in the byte mode, and you didn’t want DOS to create the file if
it did not find it. You wouldn’t want to create an unwanted directory entry just
because the desired file was not in the system. The register set up is exactly like the

open/create call. To open an existing file, call 4424.

Belowis an example of a open call, not setting the ‘don’t reset EOF’ bit. LRL =
full 256-byte Tecord.

File Call Routine OPENME

dokhkkkhhkhhkhkhkkkkkhkhkhhhkkhkhkhkkkkkkkkkkkkkkkkkkkkhhhhkhkikkkkkikk

L OPEN an Existing File Only L
KEKEKEAKERERTRARARARA KRR AR ATk AAhkhhkkhkkdhkhhkhhkhhkhhkhkhhkhhkkikhkhkk

START ID DE,FCB 732 BUFF THAT HOLDS FILESPEC
LD HL,BUFFER ;FILES' I/0 BUFFER
LD B,0 ;256 BYTE RECORD.
CALL 4424H sOPEN FILE.
RET Z GO IF NO ERROR

ERROR (Exror processing is done now).

86 Chapter 6

Performing-Direct Record I/0

Performing Direct Record 1/0
After you open a file, DOS keeps a value called the Next Record To Access

(NRA) in the file’s 32-byte FCB. When the file is first opened, NRA is set to 0,

meaning the next record is record 0. Every time a read or write is. done, the NRA
is incremented by one record.

When accessing a direct record, it is n-ecessary to position the NRA to the record
you desire to read using the ‘Position to Record’ call. After this has been done, you
may call the read or write routines.

To position to a desired record, the ‘DE’ Register must point to the FCB of the
open file that is to be accessed, and ‘BC’ contains the record number to position
over. Now call 4442, If an error occurred, its code will be in the ‘A’ Register. The

zero flag will be set if no error occurred.

Figure 6.5 Positioning to a Record ?OSN @
kkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkkkkrkkrkERRERAERRAEA ARk kkhkkk
Lk POSITION to a Logical Record *k
LR e T T T T T T T B T T T T T 8 2 s SR vt g e e
LD DE,FCB 732 BYTE FILE CONTROL BLOCK
LD BC,10 7 POSITION NRA TO RECORD 10
CALL 4442H -7CALL POSITION ROUTINE.
RET Z ;RET IF NO ERROR

Error processing goes here,

If you call aread or write routine, and your LRL = 256 (B = 0 at open time), then
the file’s 256-byte I/0 buffer is read or written. “HL’ is pointed to the buffer at open
time, and it is stored in the FCB.

If you call a read or write routine, and your LRL is not 256, ‘HL’ must point to
another buffer called ‘Userec.’ Userec must be the same length as the file’s LRL.
This buffer is different from the 256-byte I/O buffer defined by ‘HL’ at open time.
DOS will read and write the logical record to and from the Userec buffer.

To read a record, call 4436. To write a record, call 4439.

Figure 6.6 Reading a LRL Record ?E/q p @7

khkkkkkdkkkhkhhkkhhkhhhkhhhhkhkdhhkkhkkhkkkkkhhkhkhkihkhhkhdkikikhkikkikk

*% Example of Reading a LRI~=256 Record *%
**

m T mT ity
*ILE CONTROL BLOCK

o)

D DE_FCR

L Ly AN
LD BC, 20
CALL 4442H #POSITION TO RECORD 20

-4
e

Listing Continued . . .

Machine-language Disk I/O_87

Performing Single-byte I/O

. Continued Listing

JR NZ , ERROR GO IF ERROR

CALL - 4436H ;READ SECTOR INTO I/O BUFFER
JR Nz, ERROR ;GO IF ERROR

RET iRET

ERROR (Error processing goes here.) o

Figure 6.7 Writing a Record Using Userec U(//?] TE @

khkkkhkkkkkkkkkhkhhkhkhkkkrkkkhrhhihkhkhhkhkhhkhkkhkhhkhkhhhkkkkkhkhkkk

** Example of writing a record whose LRL=13@. USEREC must *%k

*k contain data to be written. L
**

LD DE,FCB ;FILE CONTROL BLOCK

LD BC,12 ;RECORD 12

CALL 44421 ;POSITION TO RECORD 12
JR NZ , ERROR ;GO IF ERROR

LD HL,, USEREC ;DATA BUFFER

CALL 4436H ;READ RECORD IN TO USEREC
JR NZ,ERROR ;GO _IF ERROR

nol ,I\.I.l.l.

ERROR (Error processing goes here.)

If you want to write a record and have DOS verify-read it, call 443C. This
increases the time of the operation by about 100 percent, but it may save important

S e e v R e

uabd 1011 Ub'l..llg IUbb V t /<

To ‘rewind,’ or position the current byte/record counters back to the beginning
of the file, call 443F. This does not affect the EOF value unless bit 6 of the 2nd
byte of the FCB is off. feu(/@

To ‘backspace’ one record, call 4445. This has no effect on the EOF unless bit
6 of the 2nd byte of the FCB is off. BKS P@

To position the current record/byte counters to the EOF, call 4448. This is
useful in adding to the end of a sequential file. ?E@F @ '

Performing Single-byte I/0

Remember when we discussed single-byte I/0? DOS gives you the capability of
reading or writing single bytes. When files are first opened, the Current Byte
Position is set to zero. This is not the EOF value.

Every time a byte is read or written, this value is incremented by one. This is so
an can lznnn i-roclr of the next hvf-n to rnnr] or nn-:i-n nvfn T/n qhnn]ﬂ hn]nrnno"v

I UL VAU LIV

thought of as readmg or writing a byte to a logical dewce, such as the keyboard or
the printer. Files accessed by byte I/O are referred to as sequential f11es because
the file is logically thought of as one long sequence of bytes.

88 Chapter 6

Figure 6.8

Closing Files

Byte I/0 is very useful. For eialhple, that’s how Disk BASIC saves and loads its

programs, and how the machine-language loader in DOS accesses the bytes of the
file. Using hvfn T/ﬂ one could nnqllv write a driver that would route the bvtes going

S aiin Ve Af NSy Vadl U eate URaa LAVV TR Rl aVUa VALKV WY VIsala AWMUV VaAU V) VUR pvaiin

to the prmter toa d1sk file! Or, you could write a keyboard driver that would get all
of the bytes from a file instead of .the.keyboard.

When calling the byte read/write routines, ‘DE’ must point to a FCB of an open
file, and if a write is done, Register ‘A’ must contain the byte to write. On return,

‘A’ = byte written or read. 6 57'@ Pyr€

The call to read a file byte is 13, and the call to write a file byte is 1B. Yeah, I
know these are ROM addresses but they jump to a DOS vector. Below is an
example of a routine that would dump the contents of all memory from 5300 to

6300 to a currenly open disk file.

Dumping Memory to an Open File
kkdkdkkdokkkkhkkhhhddddhdhdddoddehdoderdkdddddodkdodddddoddoddddoddddodd ok
*k Dump Memory Using Byte Output *k

kkkkhhkkhddddkdhdkdkkiddkdkdkhdkdkikdkddohiodkdkddkkhkikddkkdikrkikkikikk

START LD HL,5300H #STARTING ADDRESS

LD DE,FCB ;sOPEN FILES' FCB
Ll LD A, (HL) /GET BYTE TO WRITE

CALL 188 JWRITE TO FILE.

JR NZ, ERROR " GO IF ERROR

INC HL ' sBUMP MEMORY POINTER

PUSH HL ;SAVE MEM POINTER

PUSH DE +SAVE FCB POINTER

LD DE,6301H ;GET LIMITY1

OR A ;CLEAR CARRY FLAG

SBC HL,DE ;COMPARE

15012 DE 7RESTORE FCD

POP HL, sRESTORE MEM PTR

RET Z +RET IF DONE

JR Ll ;LOCOP BACK

es Clos te

If record-writes past the file’s current EOF are performed, or the EOF is
different from when you opened the file, it must be closed to store the necessary
data used by DOS in the directory. It is good practice to close a file if any writes
have been done, just in case. Closing is never needed if the file was only read from.

To close the file, load ‘DE’ with the open file’s DCB and call 4428. After the
close, DOS puts the filename and extension (if any) back in the FCB buffer. DOS

AVR2T, LI TEVE VALY SSAVALGALLY [RASle VAVVIIDAVIL \Ad QRAd) J NGV 111 V1LV L UdJ RuiLv

does not put the password back in. ‘A’ contains any error. The zero flag is set if
there was no error. The close routine will de-allocate any grans past the gran that '
contains the EOF sector. '

Machine-language Disk I/O 89

File Handling - Error Processing

. Continued Listing

16/1¢ ILLEGAL LOGICAL FILE NUMBER o SN o
The FCB contains bad data. 'DE' probably wasn't pointed
to the correct FCB.

/11 DIRECTORY READ ERROR

An error occurred when a directory sector was read,

18/12 DIRECTORY WRITE ERROR
An error occurred when DOS tried to wr1te a dir sector.

19/13 ILLEGAL FILESPEC _
The filespec contained illegal characters, was too
long, etc,

20/14 GAT READ ERROR
An error occurred when DOS read the granule -
allocation table,

21/15 GAT WRITE ERROR
An error occurred when DOS tr1ed to wr:Lte to the
granule allocation table, '

6 HIT READ ERROR

An error occurred when DOS read the hash index table.

23/17 HIT WRITE ERROR
An error occurred when DOS wrote to the hash index

table,

24/18 FILE NOT IN DIRECTORY
'The file that you tried to open without creating was
not found.

25/19 FILE ACESSS DENIED
You tried to access a file beyond the access code
assign to the access password,

26/1A DIRECTORY SPACE FULL
No more roam is left in the directory to create
another file

27/1B DISK SPACE FULL
There is no available disk space on the disk.

28/1C EOF ENCOUNTERED. We)
_ The byte/record just accessed was end of file
byte/record
29/1D PAST END OF FILE
aAn attempt to access past the EOF byte/record.

30/1E FULL DIRECTORY
This error would occur if a record write was done,
and the file entry in the directory needed to be
extended, but no directory space was left, . Listing Continued . .

92 Chapter 6

———]

Past EOF Error Messa_ges

.. Continued Listing

Figure 6.12

31/1F PROGRAM NOT FOUND -
The desired OMD program was not found,

32/20 ILLEGAL DRIVE NUMBER ‘
The drive number in the filespec was bad.
s

33/21 DEVICE SPACE FULL - (used in VIOS only)
No more room in the device area left,

34/22 LOAD FILE FORMAT ERROR
An attempt was made to execute

]

g

1
o)

35/23 BAD RAM MEMORY
DOS detected a bad ram location,

36/24 TRIED TO LOAD ROM
An attempt was made to load ROM with object code. I
don't know WHY this error exists because you cant hurt
ROM by trying to load over it anyhow.

37/25 ACCESS TO PROTECTED FILE DENIED
The update password was not supplied, and the access
password's access level = no access,

38/26 FILE NOT OPEN
The FCB was not an open FCB.

Past EOF Error Messages Ef?ﬁ@ﬁ@

When an error occurs while writing a record past EOF/ or if EOF is greater than
it was before the file was opened, it is a good idea to i ediately close the file.

If you’ve been using one of the DOSes, I'm sure you’Je seen the error messages.
If you want to display a DOS error message, then call 4409. This is the vector for
the DOS error message display routine. This overlay will display the error code in
Register ‘A’. If you want a return from the error displayer, bit 7 of Register ‘A’ must
be set. If it’s not, the routine will exit by a jump to 402D, which is the DOS READY
vector. If you want the short error messages, bi{’6 of the ‘A’ Register must be 1;
otherwise, extra diagnostics will be displayed ag’shown. Page 6-12 of the TRSDOS
manual is in error when it states that by @R’ing the error code with 80, the

o PO I S I | 3. . -
UiaglIUSLICS W1l De displayed. /E X : ﬁ

Error Display Bits

=5 contain error code,

» s
no diagnostics.

return desired,

o

Machine-language Disk I/O 93

Other DOS Functions

Figure 6.13

Figure 6.14

94 Chapter 6

Here is an example of a short error message:

LOST DAT

‘Here is an example of an erro; message with diagnostics:

. Error Message

**% ERRCOD=03, LOST DATA DURING READ **
- <FILE=STOCK/DAT>
REFERENCED AT X'8233'

TRSDOS, NEWDOS 2.1 and VTOS all have this diagnostic display format.
NEWDOS/80 does not have diagnostics. The diagnostics are not very useful, and
my guess is that Randy Cook (original author of TRSDOS) probably used them for
debugging TRSDOS and its utilities. Below is an example of a routine that calls the
error routine, but does not use the diagnostics, and expects the error routine to
return control when done.

Error Call Routine

kkkkhkhkkkkkkkkkhkkhkkkkkkkhkhkkkkkkkhikkkkhhkikkhkkkkihkkkkkkkhkkkk
*% Routine Using the DOS Error Displayer *k

e ol ale oo ale ok s ke ale ale ok e ake ole alle oo ale ol ale ade s ads alls albe abe alo abe o als ohe ke ale ae alks ale ale ale oo als oo alle alle ols oo alke ale alle alle alle alke alde alls e ol alke alls alke offe olle ol

nn

START CALL 4436H sREAD A RHECORD
RET Z sRET IF OK
OR COH :SET RET BIT, AND NO DIAGNOS
CALL 4409H sDISPLAY ERROR
RET ;RET
Other DOS Functions

Since most of these are not listed in your TRSDOS manual, I have included a list
of other useful DOS calls and jumps. These are all applicable to VTOS and
NEWDOS/80; however, NEWDOS/80 and VTOS systems have other calls that
are ngc ’ITi_sted hgﬁep because they are not compatible with TRSDOS.

@
402D or 4400 are the normal program exits to the DOS READY
mode.

Other DOS Trivia

ABoRTE -
4030, is the abnormal program éxitto DOS READY. If DEBUG is active, it

will be invoked.
CLND A

A A KA AR ad

4405 will cause the DOS command 1nterpreter to execute the command,
delimited with a byte of 0D, pointed to by the ‘HL’ Register pair. After the
command or program is executed, DOS READY will be invoked via 402D.
One way to make this return to your program would be to load 402E with the
address to which you wanted DOS to jump after executing the command, but
you must fix this after it has returned.

ERRoRE

4409 is the vector of the previously discussed DOS error display routine.
DEEUG@

440D will jump to the DEBUG momtor ThlS may also be done by executing
an RST 28 call. The BREAK invocation will not be enabled. A return to the
program is done by executing a G ‘ENTER’ in DEBUG.

FsPECH . S
441C will extract a fllespec fxuux a Dtu.us of text pulubb‘u to Uy the ‘HL
——

‘Registers, put them in the buffer pointed to by the ‘DE’ Registers and puta

- 03 as a terminator after the last byte transferred. Z will be set if ‘HL’ is left
pointing to the terminator (if the terminator was 08 or 0D). Otherwise, ‘HL’
will be left pointing to the byte after the terminator. (Cﬁ'wmmcﬁ\.)

PsPLY €
4467 will output aline of text pointed to by ‘HL’ to the video and return. The

text is terminated with either a 0D (which is displayed) or 03 (which is not
displayed). :
PRINTE@
446 A will-output a line of text pointed to by ‘HL’ to the printer and return.
The text is termindted with either aOD (which is printed) or 03 (which is not
printed).

GTTINES

in S e CITT N 4hgy d3an o toe 4l A QOTT
44861 will putinthe8 by’t buffer (pu nted to by ‘HL') the time in the ASCII

displayable format of 00:00:00. No terminator is written.

GTDATE @
4470 will put in the 8- byte buffer (pointed to by ‘HL’) the date in the ASCIT
dlsplayable format of OO/OO/OO No terminator is written.

FeXTe

4473 will insert in the filespec (pointed to by ‘DE’) the 3- byte file extension
pointed to by ‘HL’ (if the filespec does not already contain an extension).

The extension pointed to by ‘HL’ must be 3 characters long.
Other DOS Trivia

Have you ever mucked around on a VTOS or TRSDOS system disk with superzap,
and you couldn’t find the boot messages? The boot messages are in System 0, and
are in negated form. This means all the characters were negated using the Z-80 NEG
operation. The ASCIIZAP program in the back of this book will let you display and
modify these. “What’s this,” you say? “Who says You can’t open system files?”’ Read

on.

Machine-language Disk I/O 95

~ Other DOS Trivia

96

Figure 6.15

Figure 6.16

Chapter 6

Tired of those annoying passwords? Here are passwords (I call them override
passwords) for the DOSes. These will let you access, kill, modify or whatever to any
file, even system files, at any time. An override password that will work on VTOS
4.0 is B8D. An override password that will work with LDOS (which is VTOS with
modifications) is KHE3. An override password that will work with TRSDOS or
NEWDOS 2.1is NV36. NEWD0S/80 does not have an override password, but who
cares? It has a system command that lets you disable password checking.

How would you like to disable password checking in VT'OS, LDOS or TRSDOS ‘
altogether? Well, first VT'OS. Write a patch file that’s worded as follows, and
execute:

PATCH SYS2/SYS.B8D

The zaps here will not disable MASTER password checking when full disk
backups are performed. This patch is for VTOS 4.0 only.

VTOS Password Disable Routine

.PATCH TO DISABLE VTOS PASSWORD CHECKING
.18 IS THE HEX NUMBER FOR %-80 CODE ‘JR.'
.THIS REPLACES ‘JR 2!

X'4F1C'=18

«END OF PATCH

To disable LDOS password checking, write this PATCH file, and execute:

LDOS Password Disable Routine

.PATCH TO DISABLE LDOS PW CHECKING.
X'4F12'=18

To disable TRSDOS password checkmg, run this Disk BASIC program. This
patch will only work with TRSDOS versions 2.2 and 2.3.

Other DOS Trivia

19 OPEN"R",1, "SYSZ/SYS NV36": FIELDl 255ASA$
20 GET1,2: B$=A$

30 MID$(B$ 100,1)=CHRS (24)

40 LSETA$—B$ PUT1,2

50 END

Now you’ll never have to mess with those nasty passwords again. I bet it feels
better already.

Machine-language Disk /O 97

Model III Supplement to Chapter 6

Figure 6.18.

Figure 6.19

98 Chapter 6

Model III Supplement to Chapter 6
Single-Density Disk Format

This format must be carefully followed in order for a correct format to be
accomplished. Any deviation may lead to the last sector getting chopped off or
unaccessible sectors, so follow it carefully. Before issuing a format command, you
must set up the buffer exactly as the track is to be written.

Buffer Format
Number of bytes Hex value Purpose

36 a0 Pre track filler

This block is written once per sector. Since we are going to use the 10-sector
TRSDOS scheme, this block will be written 10 times. The blocks are written one
right after the other.

Sector Blocks

1l FE Sector ID address mark,

1 XX Track number. This MUST be correctl

1 00 Side number. Use 00.

1 XX Sector number. This value will be the
sector name - i.e., @5 = SECICOR 5.

1 g1 Sector length computation value. See
text.

1l F7 Generate CRC parity bytes.

17 (1] Pre sector data filler.

1 FB Sector data mark. See text.

256 ES5 Initial sector data.

1 F7 Generate sector data CRC.

& 414 Post sector filler,

After all 10 sectors are written, approximately 200 bytes of FF will have to be
written, so format your buffer with about 300 bytes of FF, just to be safe.

The sector-name byte is the byte actually used in naming that sector. TRSDOS
uses sector names from 0 to 9. You could name the sectors in sequential order 0, 1,

Single-Density Disk Format

2,3,4,5,6,7, 8,9, but to speed-up sector accessing when doing séquential sector
reads, the sector names are interlaced. TRSDOS uses 0, 5, 1, 6, 2, 7, 3,8,4,9. This

i 1 1 [P Y PR I S
interlace technique allows more time for the DOS and/or programs to perform

calculations before the next sector is accessed. In most cases all 10 sectors can be
accessed within 2 revolutions of the disk (where it might otherwise take 3 or 4)
because the programs weren’t quick enough to ‘catch’ the next sector as it was
coming around.

The ‘sector length computation’ byte is used by the controller to determine how
many bytes the sector data is. Using the IBM (normal TRSDOS) format, sector
lengths of 128, 256, 512 and 1024 byte sectors can be achieved by using 0, 1, 2 and
3 respectively for the sector length computation values. There is no way to squeeze
ten, 512-byte sectors on a single-density track, so get that out of your mind. Also,
if you decide that you may want to.use a different s \ctor length, you must adjust
the quantity of initial sector data bytes to the length of the sector. You will also
have to do some experimenting to see how many sectors of such-and-such length
you can fit on a track.

Machine-language Disk /O 99

nntpq

GIEEGEEE W W W

TRS-80 Model I Interrupts

TRS-80 Model I Interrupts

What is an interrupt? When you’re comfortably sitting in the den, smoking your
pipe and watching TV, suddenly there’s a knock at the front door, or the phone
rings. That’s an interrupt. Or your wife hollers. Thats a real interrupt! (From this
point on, wives will be referred to as non-maskable mterrupts) But Senously, the
Model I uses a Z-80 as its processor, right? If you'’re a machine-language
programmer, I’'m sure you know that by now. The Z-80 has a facility that allows
program operation to be interrupted. Pushing the current contents of the Program
Counter (PC Reg), the interrupt causes the Z-80 to start executing at a different
address until the interrupt is done, or in other words, when a return is executed. It
is more or less a ‘Forced Call’ to an address which we will discuss later.

What could you use an interrupt for? Well, you could have a routine that
updates a time clock, provided the interrupts were generated at a constant rate
(like the one in the expansion interface). You could also have an interrupt routine
that checks for a group of keys to be pushed (like JKL) to perform some fuction,
like a print-the-screen routine.

The Z-80 has 2 types of program interruption. One type has three modes. The
first kind of interrupts is called the maskable interrupts. Maskable means the
interrupts may be enabled and disabled at will by the software by executing DI and
EI (disable interrupt and enable interrupt mnemonics, respectivly).

Only one mode of the maskable interrupts may be active at any one time. I'm
going to explain how interrupt modes 0, 1 and 2 work. I am assuming that
interrupts are enabled, and an interrupt is being generated by an external device.

Mode 0 interrupts allow an external device to place a byte on the Z-80 data bus.
This bvte is nann"v a RST t0 one of tha ragtart locatinng

A ALIND AV R AVRS A VU ViIIV Vi ViiV AVDUVGL V AVVIAVAVLID.

Mode 1 interrupts cause the Z-80 to perform a RST to location 38. This is the
mode used by the Model I. This will be explained in detail a little further on.

Machihe-language Disk I/0 101

"TRS-80 Model I Interrupts

Figure 7.1

102 Chapter 7

Mode 2 interrupts cause the Z-80 to call a location derived by the lower 8 bits
supplied by the device and the upper 8 bits currently in the I Register.

The second type of interrupt is of the non-maskable type. This means that if the
NMI pin on the Z-80 ever goes to a low voltage level, the Z-80 will force a call to 66.
On the TRS-80 Model I, this is cdnnected to the reset button in the back.

The Z-80 has an input called the Interrupt Request (IR) Every time the Z-80
finishes its current machine cycle (same as one heartbeat to us humans), it
logically ANDs the input of the IR with the interrupt enable flip-flop to determine
if an interrupt should be serviced. You don’t worry about this IR input. This is
taken care of by the IR clock inside the expansion interface. This clock generates
an IR request once every 25 ms, or 40 times a second.

If the IR is active and the interrupt enable flip- ﬂop is on, the Z-80 executes a
RST 38, which is the one- byte equivalent of a CALL 38. In this system, this
address is a ROM address, s0 in order to control where the interrupt routine i is, 38
contains a JP 4012, which is a RAM address. This address is the 3-byte vector in
which you would place your interrupt routine dlrectlve, like JP 5200 if that’s
where your routine is.

The unwrrupb enable fli p-nop may be swu:cnea onor off at any time Dy executlng
the Z-80 opcodes EI and DI; these enable and disable the interrupts, respectively.
When this flip-flop is off, the Z-80 will ignore the IR input.

Interrupt Redirection Routine

hhkkhkhhhhkhkkhkhhhhkkhkhhhkhkhhhhkhkkhkhkhkhkhkhhkhkhkkkhhhdhdkkhkhkhkikhdkkdhk

*k Example of Redirecting the RST 38 Interrupt Vector *%
**

LDF A,B8C3H ;The JP Instruction
LD (4612H) ,A :Store JP Opcode
LD HL,5022H ;s Interrupt Routine Address
LD (4013H) ,HL ;Store Jump Address
(/7\kvb; OJU«\ " (»i""“/}‘-e et ‘L: v (: Sy FEou L WL ‘\ \,l' u‘TtY\ ?\\ >

There are two memory-mapped addresses associated with reading the interrupt

. status. This must be done in the interrupt service routine to reset the clock in the

expansion interface and reset the FDC interrupt request. The addresses are shown

below.

By a coincidence, 37EQ is also the disk select latch, but only when writing to
that location. When reading, it gives the interrupt status. The graph below shows
what the bits are used for.

TRS-80 Model I Interrupts

Figure 7.2 Interrupt Read Addresses .

7 6 5 4 3 2 1 @

L LN 5 inte-rrﬁpt '-was .from‘_t_he "FDC.

--------- If interrupt was generated from the clock.

Bit 7 means the 'interrupiv: was made by the clock.

You should read'_the FDC s_taf/ cmd. 37EC ‘R'eg'istév_r on every interrupt to
reset it. L : o o . :

in your interrupt routines, you should preserve all registers you will be using in
your interrupt routine. Interrupts are automatically disabled after you read
37E0, and must be re-enabled after the routine, if you want the interrupts
enabled. Below is a typical interrupt routine. :

Figure 7.3 Interrupt Routine

khkhkhhkhkhkhkhkhhkhkhhkhhhhkhhhkhkhkhhkhhkhkhkhkxhhkkhhkhkkkkkkkhkhhhhkkkkkkhkk

*% Interrupt Routine i
kkhkkhhkhhkhhkhkhhkhhkkhhkhkhhhkhhkhhkhhhhkhhkdkhhkhhhkhkhhkkhkhkkhkkkkhhkkhkhx

PUSH AF :Save AF,

LD A, (37ECH) ;Clear FCD

LD A, (37E0H) ;Get Int Status

BIT 6,A o ;FDC Making Int?

JR NZ,RETINT 1Go If So ‘

BIT 7.4 ;Was It valid?

JR Z,RETINT ;Go If Not

LD A, (3840H) ;Get KB Byte

BIT 7,A . j;Break Hit?

JR Z ; RETINT 1Go If Not

JP 440DH :+JP To DEBUG
RETINT LD A, (37EQH) ;:Reset Latch

POP AF sRestore AF S

EI ' " sEnable Int

RET , ;s Return

This is an example of a routine that would jump to debug if
hit.

So, what do you do if you want to link an interrupt routine with the ones already
running in the DOSes? Below is a routine that would do just that.

he break key were

Machine-language Disk I/0 103

TRS-80 Model I Interrupts

Figure 7.4

Interrupt Routine

**************************;**'********************************

LEJ INTERRUPT ROUTINE : —
Kkhkkhkhkhhhhhhhhhhhhkhhkhhkkhkhhkhhkhhkkhdhhkhhhhhkkkkhkkkhkhhhkk

DI ;KILL INT
LD HL,DOSA ;GET CURRENT INT ADR
LD (DOS+1) ,HL ; STORE FOR JP
LD HL, NEWINT ;GET NEW ROUTINE
LD (4813H) , HL ;STORE NEW ADR
EI ; ENABLE INT
RET ’ |
NEWINT PUSH AF i SAVE AF
LD A, (37ECH) ' jCLEAR FCD
LD A, (37E0H) ;GET INT STATUS
BIT 6,A ;FDC MAKING INT?
JR NZ, RETINT ;GO IF SO
BIT 7,A JWAS IT VALID?
JR Z, RETINT ;GO IF NOT

<YOUR ROUTINE(S) GOES HERE>

o POP AF +RESTORE
DOS JP 0 iGO TO DOS's
RETINT LD A, (37E0H) :RESET INT LATCH
EI ¢ ENABLE
RET

The DOS address must be right after the instructions that test 37EQ in
the DOS’s interrupt service routine. You can find DOS interrupt routine through
tracking it down by looking at the 4012 vector and seeing where it jumps.

You must disassemble routines using RSM, or some other disassembler, to

: 1. 4= +
determine where to jump to.

But what about those NON-maskable interrupts? The non-maskable interrupts
are used in the Model I to reset BASIC or DOS, whichever is appropriate. This is
invoked by pressing the reset button on the back of the TRS-80. The
non-maskable interrupt cannot be masked out or disabled. This feature is of no
use to the TRS-80 user other than resetting his computer. When the Z-80 gets an
NMI reset, it does a CALL 66H instruction, which in this system resets BASIC
(or DOS if the expansion interface is connected). The NMI and normal, maskable
interrupts have nothing to do with each other.

In the back of this book are some useful interrupt routines.

104 Chapter 7

Figure 7.5

R
Model III Supplement to Chapter 7

Model IIT Supplement To Chapter 7
The Model III Interrupt System

The Model III has a more expanded maskable interrupt handling system than |
the Model I. Maskable interrupts can be generated by the cassette, RS-232, and

the real-time clock. Before we go on, below is the list of port assignments for the
Model I1I.

Model III Port Assignments

kkkkkk TNTERRUPT PORTS *%**%#%*
E0 - WRITE - ENABLES VARiIOUS DEVICE INTERRUPTS.,

UNUSED

ENABLES RS-232 INT ON PARITY/FRAME/OVERRUN ERRORS
ENABLES RS-232 DATA RECIEVED INT

ENABLES RS-232 XMIT BUFFER EMPTY

ENABLE BUS 1I/0 INT (EXT HARD DISK, ETC.)

ENABLES REAL-TIME CLOCK INT

ENABLE 15606 BAUD CASSETTE FALLING EDGE INT

ENABLE 1500 BAUD RISING EDGE INT

QN WSOV
e e

E@ - READ - READ INTERRUPT STATUS

UNUSED

' RS-232 PARITY, FRAME, OR OVERRUN ERRORS
RS-232 DATA RECEIVED

RS-232 XMIT BUFFER IS EMPTY

BUS INTERRUPT (EXT HARD DISK, ETC)
REAL-TIME CLOCK

1560 BAUD CASSETTE FALLING EDGE

1500 BAUD RISING EDGE INT

[N WROIN
S nem
nmuwnnuwan

[}
a
I
w
(]
&
!

RESET REAL-TIME CLOCK

THIS PORT IS SIMPLY READ BY THE INTERRUPT ROUTINE
TO RESET THE TIME CLOCK.

E4 - WRITE - SELECT NON-MASKABLE INTERUPT DEVICES

7 1l = ENABLE FDC 'INTRQ' TO NMI
6 1l = ENABLE DRIVE 'TIME-OUT' TO NMI
5-0 UNUSED

E4 ~ READ - READ NON MASKABLE INTERRUPT STATUS

7 # = FDC 'INTRQ' OCCURED.
6 0 = DISK 'TIME OUT' OCCURED,
5 @ = RESET BUTTON PRESSED o .
Listing Continued . . .

Machine-language Disk I/O 105

‘'he Model 111 Interrupt System

. Continued Listing

F@
Fo
Fl

n9
4 &

F3

READ/WRIT -

NOAN™ /T

READ/WRIT =

F4 - WRIT = DISK

&HHH

AT ™/vm

SELECT
SELECT
SELECT

DN WR UV

hkhkkkkk

READ/WRIT -

Dﬂuﬁb.l. .

READ - FDC STATUS REGISTER
WRIT - FDC COMMAND REGISTER

FDC TRACK REGISTER’

FDC SECTOR REGISTER
FDC DAﬂA REGISTER

DRIVE SELECT PORT

DOUBLE-DENSITY, @=SINGLE
GENERATE WAITS
WRITE PRECOMP
SIDE @, 1

= SIDE 1 (NOT STANDARD)
DRIVE 2
DRIVE 1

‘DRIVE @

RS_23 2 PORTS *******:*_*

E8 - READ - MODEM STATUS REGISTER

UNUSED

@l—‘k;)-htﬂ_.b\~.l
~N

E8
E9
E9
EA

WRITE
READ
WRITE
READ

PARITY
- .UNUSED

DWEUaN

CLEAR TO DEINU,

‘PIN 5
PIN 6

OF DB-25

' CARRIER DETECT, PIN 8
RING DETECT, PIN 22

MASTER RESET
BAUD RATE SENSE sSw
SELECT BAUD RATE
-UART STATUS

WI CHE

_ - DATA RECEIVED
XMIT HOLDING EMPTY
OVERRUN ERROR
FRAMING ERROR

ERROR

EA - WRITE -~ UART COMMAND REGISTER

UNUSED

-6
-3 URUSED

SHMDMDUOTN

@ = DISABLE XMIT DATA
DATA TERMINAL READY
REQUEST TO SEND

%kkk% LINE PRINTER PORT *#%#%

F8 - READ - PRINTER STATUS

7 .. BUSY.

106 Chaptei' 7 -

%*%%%% DISK CONTROLLER PORTS *###kk*

UART CONTROL REGISTER LOAD STATUS. l—ON
RECEIVER INPUT, PIN 20 :

Listing Continued

_ Continued Listing

Figure 7.6

6 OUT OF PAPER
5 ON LINE

4 FAULT
3-0 UNUSED

F8 - WRITE - WRITE BYTE TO BE PRINTED
*kkkkk** CASSETTE, AND VIDEQ PORTS ****kk*

EC - WRITE - CASSETTE AND VIDEO CONTROL

1
(=)

UNUSED _

1. ENABLES VIDEO WAITS

1 ENABLES EXTERNAL I/0 BUS

1 ENABLES ALTERNATE VIDEO CHARACTER SET
1 ENABLES 32 CHAR MODE

1 TURNS CASSETTE MOTOR ON

UNUSED '

DD W U~

)
Lov
|
:1
v}
|
=]
3}
!
e}
;l
5]
2]
i]
=
!

=

7-2 UNUSED
1-9 CONTROL CASSETTE OUTPUT LEVEL

Handling Model II1 Interfupts- ‘

The maskable interrupt vector is the same for the Model I and Model III. The
vector is located at 4012 - 4014. When a maskable interrupt occurs, the Z-80
forces a CALL to location 38. Since this is a ROM address, the ROM then jumps

to RAM location 4012. This allows a programmable interrupt handling routine to
reside anywhere in memory.

Once your interrupt routine is in control, you can read the INT status from port
EO, determine the cause of the INT, and branch to the appropriate subroutine.
Keep in mind that if the interrupt was caused by the REAL-TIME CLOCK, you
must read port EC to reset it. Otherwise, an immediate interrupt will occur once
interrupts are enabled again before returning to the interrupted program, thereby

causing a system ‘HANG’.
To select the desired interrupt options, store the proper bits in port EO.

Interrupt Bits in Port EO

LD A,4 ;s Enable Real-Time Clock
ouT (0EGH) ,A
RET

Machine-language Disk I/0

107

RS-232.Interxrupts:

RS-232 Interrupts
If you’re familiar with the RS-232, you might want to use the RS-232 interrupt
options. There are three different options for the RS-232. These are:

1. INT when PARITY, FRAMIN G, or OVERRUN error occurs.
2. INT when a character has been recieved.

3.IN T when the RS-232 transmitter ‘holding tank’ is empty.

Port Mapped External ‘Devices and Interrupts

The Model IIT has hardware installed that permits Z-80 access to external devices
via ports 00 through 7F. Tandy reserves ports 80 through FF, and they should not
be used for your devices if you want to maintain Tandy compatibility, since Tandy
may make available devices that use these addresses. For more information on the
hardware aspect, order the Radio Shack Model Il service manual, catalog numbers
26-1061/1062/1063.

Once the hardware is connected to the applicable ports, the port

~ enabled or disabled by switching bit 4 in port EC.

There is also an external maskable interrupt tie-in capability, which allows
external devices to generate a maskable interrupt, if desired, by using this feature.
The external interrupt line may be enabled or disabled by switching bit 3 in port
EOQ. Note that even if external interrupts are disabled, you can still read the
interrupt status line (bit 4, port EO).

Real Time Clock Interrupts

The Model IIT's real-time clock provides a 25 or 30 Hz signal (for 50 and 60 Hertz
AC current respectively) to the maskable interrupt circuits for time clock
generation. If interrupts are enabled, and the REAL-TIME CLOCK (RTC) option
is setin port EQ, then a call to 38 is executed. Since thisisa ROM address, a jump to
RAM address 4012 is performed. This should contain a jump instruction to the
software interrupt handier. The interrupt handler can check whether this was an
RTC interrupt by testing bit 2 in Port EO. If this was, in fact, an RT'C interrupt, you
would then reset the real-time clock by reading Port EC. If this is not done, the RTC
line will stay on, and when the routine enables the interrupts again, the routine itself
will be interrupted. This will either cause a ‘hang’ in the system or eventual
clobbering of the RAM stack, probably within milliseconds.

The Model III already has interrupt handler and real-time clock update/display
routines built right in! The interrupt vector routine is located at 3018 (this jumps
to 35C2, where the actual routine is). It branches to different RAM and ROM
addresses, depending on what device interrupted it. Below is the table used by
Model III interrupt handler.

108 Chapter 7

EE—
The 1500-Baud Cassette: Interrupts

Figure 7.7 Model III Interrupt Handler

Port EO v ,

Bit i

¥ RISING EDGE 1560 cassette -> 3365H ROM

1l FALLING EDGE 1500 cassette -> 3369H ROM

2 REAL-TIME CLOCK -> 4046H RAM
LTh 1 Tn 1aewanmn T Tao oo o 5 emom oo oo

Wialch usually jumps to 3529H.
This routine flashes the cursor.
It displays the clock in 00:00:00
format if bit @ at 4210H is set.

3 EXTERNAL INTERRUPT - -> 403DH RAM
4 RS-232 XMIT BUFFER IS EMPTY -> 4206H RAM
5 RS-232 DATA RECEIVED -> 4209H RAM
6 RS-232 RECEIVE ERROR -2 4040H RAM
7 CURRENTLY UNUSED -2 4043H RAM

The 1500-B5ud Cassette Interrupts

You probably won’t find these too useful, unless you’re into cassette operations.
When these options are enabled, an interrupt will be generated when the cassette
input voltage goes low and/or high (depending on options). You must use your own
interrupt vector routine if you desire to use these, because the ROM interrupt vector
routine jumps directly to ROM subroutines shat control the cassette.

Machine-language Disk I/O 109

notes

Figure 8.1

Handy Routines, Drivers and Programs

Handy Routines, Drivers and Programs

Below are some useful routines and programs I have written. Just key them into
EDTASM or BASIC, whichever applies, and use them.

TRANNG Ter
WA LUl X

A AV

As previously mentioned in Chapter 6, you may use the TRSDOS error

displayer. But if, for some unpredictable reason, you do not want to use
TRSDOS’s, perhaps because you’re writing a new super-dooper disk-zap or
something, and you want it to be independent of the DOS, I have included this
not-too-sophisticated error displayer. It doesn’t do those fancy diagnostics that
TRSDOS has. This routine is made to be inherent in a program, and is not used as
a DOS overlay.

TRSDOS Error Displayer

00100

TRSDOS COMPATIBLE ERROR

MSG DISPLAYER

’
90110 ; LD A With Error Code - CALL "ERRMSG"
9911l ; Uses Regs HL, B, DE (in Call to 33H)
00120 ;
90149 ERRMSG EQU $;s ROUTINE START
00179 Ccp 43 ;OVER MAX ERROR CODE?
¥6180 JR C,WW ;GO IF NOT OVER
90190 LD A,43 s LOAD WITH UNDEFINED MSG
00200 WW LD B,A ;s PUT ERROR IN B
g021 INC B ;BUMP SO #=1 ETC.
00220 LD HL, ERRORS sGET ERROR MSG TABLE
90230 L1 CALL BYTE s SEARCH FOR NEXT MSG
00240 DJINZ Ll s DO UNTIL ERROR REACHED
00250 CALL 4467H ; CALL DOS LINE DISPLAY

Listing Continued . . .

Machine-language Disk I/0

111

AAVIIAS NSO LILLUL LIIDPIAYCT

. .. Continued Listing

60260 LD A,13 ; CARRIAGE RETURN BYTE
00270 JP 33H ;PRINT IT, AND RETURN
00320 BYTE LD A, (HL) iGET BYTE
00339 INC HL ; BUMP
00340 CP 3 ; DEL?
88358 RET Z - ;RET IF SO
00360 JR BYTE , ; TRY AGAIN
00370 ERRORS EQU . $ |

00380 DEFB 3

00390 DEFM "NO ERROR'

00400 DEFB 3

00410 DEFM '"PARITY ERROR DURING ID READ'
00420 DEFB 3

00430 DEFM 'SEEK ERROR <READ)>'

68448 DEFB 3 |

00450 DEFM 'LOST DATA <READ>'

60460 DEFB 3 :

00470 DEFM "PARITY ERROR <READ)>'
00480 DEFB 3

00490 DEFM "SECTOR NOT FOUND <READ>'
60500 DEFB 3

00510 DEFM "PROTECTED SECTOR'

60520 DEFB 3

00530 DEFM ' PROTECTED SECTOR'

00540 DEFB 3 |

00550 DEFM 'DEVICE NOT AVAILABLE'
06560 DEFB 3

00570 DEFM "PARITY ERROR DURING ID WRITE'
00580 DEFB 3 -

00590 DEFM 'SEEK ERROR <WRITE>'

00600 DEFB 3

00610 DEFM 'LOST DATA <WRITE>'

00620 DEFB 3

06630 DEFM "PARITY ERROR <WRITE>'
60640 DEFB 3

00658 DEFM 'SECTOR NOT FOUND <WRITE)'
00660 DEFB 3

00670 DEFM 'DISK DRIVE FAULT <WRITE>'
006 80 DEFB 3

606690 DEFM '"WRITE PROTECTED DISK'
60700 DEFB 3

00716 DEFM '"BAD FILE NUMBER'

00720 DEFB 3

60730 DEFM '"DIRECTORY ERROR <READ>'
0607 40 DEFB 3

00750 DEFM "DIRECTORY ERROR <WRITE)'
60760 DEFB 3

00770 DEFM ' ILLEGAL FILESPEC'

007 89 DEFB 3

00799 DEFM 'GAT READ ERROR'

00800 DEFB 3

06810 DEFM '"GET WRITE ERROR'

60820 DEFB 3

60830 DEFM "HIT READ ERROR'

08840 DEFB 3

#8850 DEFM '"HIT WRITE ERROR' Listing Continued . . .

112 Chapter 8

... Continued Listing
00860 ' DEFB
0e870 DEFM
p0880 DEFB
00890 DEFM
60900 DEFB
80919 DEFM
00920 DEFB
99930 DEFM
00940 DEFB
#9950 DEFM
g0960 DEFB
009740 DEFM
60980 DEFB
80990 DEFM
01000 DEFB
91010 DEFM
01020 DEFB
91030 DEFM
01040 DEFB
01950 DEFM
01060 DEFB
01076 DEFM
91080 DEFB
81090 DEFM
01100 DEFB
91110 DEFM
81120 DEFB
91130 DEFM
61140 DEFB
81150 DEFM
gl160 ‘DEFB
81170 DEFM
91180 DEFB
91190 DEFM
01200 DEFB
91219 DEFM
81220 DEFB
61239 DEFM
91240 DEFB
81250 DEFM
01260 DEFB
61270 ;

01280 ;

Disk Formatter Program

3 .
'FILE NOT FOUND'

w

'FILE ACCESS DENIED'

w

"DIR SPACE FULL'
3 '
'DISK SPACE FULL'
3

'END OF FILE'

?PAST END OF FILE'

?CANT EXTEND FILE'
?PROGRAM NOT FOUND'
?ILLEGAL DRIVE NUMBER'
?DEVICE SPACE FULL'
?NOT'AN OBJECT FILE'

?BAD MEMORY'

?TRIED TO LOAD ROM'
?ACCESS TO PROTECTED FILE DENIED?
?FILE NOT OPEN'

?DRIVE NOT READY'

?SYSTEM PROGRAM NOT FOUND'
?PARAMETER ERROR'

?OUT OF MEMORY'

EUNDEFINED ERROR CODE'

END OF ERROR MESSAGE TABLE

Disk Formatter Program

Below is a program that will format a disk. Each track contains 10 standard
256-byte, IBM-compatible sectors named 0 to 9. The sector names are in the
SECIND table and may be changed to your whims. Remember, the DISKIO driver
in Chapter 5 will read or write any sector name and any IBM-compatible sector.

Machine-language Disk I/0

113

4idn runaawelr-rrograin

The number of tracks is defined in the NUMTK DEFB, and this may be
changed. Why not modify this program to ask the number of tracks and all of the

parameters?

The drive is determined by the DRIVE DEFB, and thls must be in the SELECT

format (i Jd.e., 1, 2, 4, or 8 for drives U, J., 4, or O)

This formatter does not 1n1t1a11ze ‘a TRSDOS compatlble dlrectory or BOOT

Figure 8.2

00100
00120

28139

00135
00140
P0150

00160
00170
0180
003190

a0200

00210
00220
pB230
09240
p0250
00260
08270
00280
002949
00300
00310
w320
90330
PO340
08359
00360
po370
P0380
P399
00400
00410
00420
P0430

00440
00450
00460
o470
00480
00490
Pe500

114 Chapter 8

.
r
.
’

NUMTK
TRACK
DRIVE

SECIND

MESS

START

L@

Lo 2

Ll

Disk Format Routine

DISK FORMATTER

ORG
DEFB
NOP

DEFB

DEFB
DEFB
DEFB
DEFB

DEFB

DEFB

DEFB

DEFB
DEFB
DEFB
DEFM
DEFB
EQU
LD
CALL
CALL
CALL
LD
LD
LD
INC
DJINZ
LD
LD
LD
INC
DJINZ
LD

LD
INC
LD
LD
INC
DJINZ
LD

-
-

(]
]

> O
=N

BilnkH ~ObhooWNIMDOHUISR =

(HL) ,0E5H
HL

L0

HL, SEC1
B,11

(HL) ,8FFH
HL

LO2
HL,DATA

(HL) ,0FCH
HL

B,lg

(HL) ,0FFH
HL

Ll

B,6

"HIT ANY KEY TO

sFormat 40 tracks
;Current track counter
;:Drive select byte for
;s drive zero :
;Sector names

BEGIN FORMATTING'

;Start of program

sStart of mes sage

;Display line
;Wait for key hit

.. 3Restore drive's head.

iGet SECTOR data buffer
;Load counter 256 bytes
;Write sector bytes
;Bump ptr

;Do 256 times,

:Get pre-sector header

- e e N e armlvT L

,# bytes to FF

:FF bytes

;Bump ptr

sDo 11 times,

;Get start of format

; data

;Write index mark

;Bump ptr

;# of track header bytes

;Init to FF

;Bump ptr

:Do 10 times.

:+1# of zeroes to init
Listing Continued . . .

L_i_sting' Continued . . .

98518 L1l
00520
90530

00540

00550 L2
00560
00570
08580
00590
00600
00610 L3

AAE IR

WM

00630
00640
00650

~g

68660
00670

‘LD (HL),®

INC HL

DJNZ L1l

LD B, 4

LD (HL) ,8FFH
INC HL

DJINZ L2

EX DE, HL

LD A,10

LD HL, SECTOR
LD BC,287
'LDIR

DEC A

JR NZ,L3

LD B, 0

EX DE, HL

Disk Formatter Program ,

iZero bytes

;Bump ptr

;Do 6 times

;# of header bytes,
;Init to FF

;Bump ptr

;Do 4 times

:Get data start in DE

;% sectors to set-up
;Get sector ID overhead

" ;% bytes to transfer

;Move into buffer

;Dec # sectors counter
;GO move another sector
; if counter not 9

7256 trailing track

¢+ bytes,

;1Get end in HL

These bytes are the tra111ng bytes after the last sector, They are.
written until the FDC is done.

00680 L5
00690
08700
00710
68720

08730 MTK
. 00740

0750
0g760

0a770
00780
o790
PO8OO L4
p8810

p0820
00830
00840
00850
po86od
00870
00880

p0890
08904
00910
00920
60930
00940
00958

e ™o %o

LD (HL) ,0FFH
INC HL

INZ L5

JR CTRL

LD HL,DATA
LD DE, 21
ADD HL, DE

LD DE,7
ADD HL,DE

LD DE, SECIND
“LD - B,10

LD A, (TRACK)
LD (HL) ,A
INC HL

INC HL

LD A, (DE)

LD (HL) ,A
INC DE

PUSH DE

LD DE, 285
ADD 'HL,DE
POP DE

DJNZ L4

RET

CONTROLLER

;Init to FF
;Bump ptr

iDo 256 times
:Go start format

;Get start of data

; buffer

;# of track overhead
;i bytes,

;Pass up track header
;Amt to bump to posn
track

iton over track

- was WV b AW

e Pns

Get sector names buff
of sectors to name

Get current track #

Put track in sector
ID,

;Position over sector

o
e

N We N N9 W W N

°Put 1n sector ID
;Bump to next sec name
;Save name pointer
iAmt to posn over next
; sector ID

;Position

:Get names again

;Loop 10 sec¢ not done
sRet to CTRL

Machine-language Disk /O 115

Di1sk Formatter Program

. .. Continued Listing
90960 CTRL EQU
#0970 EQQ CALL
89980 CALL
00990 LD
91000 INC
91010 LD
81015 LD
91617 LD
P1020 SUB
01030 JR
91040 CALL
41050 JR
91060 EXQ CALL
91670 XOR

¢ 01080 EI

: 91090 RET
011009 ;
91110 EXEC EQU
91120 LD
01130 LD
0l146 CALL
#1150 LD
glle60 INC
81170 DI
#1180 LD
91190 CALL
01200 ;
01210 LOOP EQU
01220 BIT
91230 JR
912490 LOOP1 BIT
01250 RET
01260 JR
91270 PUT LD
81280 INC
81290 LD
61300 JR
Start of sector data
91320 SECTOR NOP
#1330 NOP
61340 NOP
81350 NOP
#1360 NOP
91370 NOP
#1380 DEFB
01390 NOP
01400 DEFB
91410 NOP
#1420 DEFB

116 Chapter 8

$
MTK

EXEC
A, (TRACK)

A

(TRACK) /A
C,A

A, (NUMTK)
C

Z,EXQ
STEPIN
EQQ

RESTOR
A ’

$

DE, DATA
HL, 37ECH
SELECT
A, (DE)
DE

(HL) ,0F4H
WAIT

$
1, (HL)

Nz, PUT
0, (HL)
Z

LOOP
(37EFH) ,A
DE

A, (DE)
LOOP1

set-up

:Init sector names and
i track in sectors ID's
1Go format current trk.
:Get current track,
sAdd 1

:Store in counter

sPut in C ‘

:Get max number of TKS
iMax yet?

7Go if max reached
:Step head in once.
;Start process for next
; track

sRestore head

iClear for no error ret
;s to DOS

:+Enable interrupts

sRet to DOS

:Get track set~up

iFDC cmd/stat address
iSelect drive

:Get first data byte
;Bump data ptr
;Disable interrupts
¢:Issue write track cmd
iWait for FDC to act

:Does FDC request a

; byte?

:Go if so

;Format done?

:Ret if so

;Loop if not
:Transfer byte to FDC
;Bump data ptr

iGet next data byte
iContinue

i ID address mark

iSpot for track

;Side number

iSpot for sector

¢+ IBM sector compute byte

Listing Continued . . .

. Continued Listing
p1430 DEFB
1448 SEC1 DEFS
6id50 - NOP
01460 NOP
81470 NOP
01480 NOP
81490 NOP
01509 NOP
81510 DEFB
91520 USER DEFS
615386 - DEFB
01540 RESTOR CALL
91550 LD
91560 . LD .
81570 CALL
01580 LD
81590 LD .
01600 CALL
81619 RES1 LD
81620 RRCA
01630 RET -
01640 CALL
91650 JR
01660 SELECT LD
81678 PUSH
81680 - LD
21690 LD
01700 POP
81710 RLCA
01720 RET
81730 PUSH
81740 LD
91750 CALL
01760 . POP
91770 RET
01780 ;

01790 STEPIN CALL
21800 LD
01810 LD
01830 LD
91840

01850 LD
81860 CALL
818786 BUSY LD
91880 RRCA
21894 RET
01900 JR
#1916 wAIlT PUSH
01920 POP

@F7H

11

0FBH

256

OF7H
SELECT
A,0DOH
(37ECH) ,A
WAIT -
(37ECH) ,A
WAIT

A, (37ECH)

NC

‘SELECT

RES1

A, (37ECH)
AF

A, (DRIVE)

(37E0H) ,A
AF

NC

BC
BC,PA000H

. 60H

BC

SELECT

A OTnAry
Dgwoun

(37ECH) ,A
A,43H

(37ECH) ,A
WAIT
A, (37ECH)

NC

BUSY
HL
HL

Disk Formatter Program

; for 256 byte sector
;Gen CRC for address
byte

sFor filler

e

;Data address mark
;For E5 user data
1Gen CRC for data
1Select drive
sReset FDC cmd
;iReset FDC

;Give FDC a chance
iRestor cmd, 40 ms.
s Issue restore cmd
iLet FDC respond
1Get status

:Shift busy into C
s;Ret if restor done
;Select drive

; Loop

1Get status

7 Save

1Get select code
iSelect drive

+Get o0ld status

;Shift not ready bit

; into C flag

iRet if drives were

;i already rotating
iSave reg

iDelay for 1 sec to let
¢ drive motors come up
to speed.

;Call ROM BC delay

; routine

iRestore BC

sReturn

e

;Select drive

iReset FDC cmd.

sReset PDC

;Step-in cmd, no upd

; nho verf, 4ﬂ ms rate,
¢ Issue step-ln cmd
;1Get FDC act

1Get status

,Shlft busy into carry
iRet if not busy

:Loop until not busy
iWaste a few microsecs
i to let FDC react to

Listing Continued . . .

Machine-language Disk 1I/0

117

PASSFIND, Password Finder

Figure 8.3

118 Chapter 8

.. Continued Listing

#1930 PUSH
01940 POP
#1950 RET

#1978 DATA

91980

EOU
N

END

HL
HL

<N

’START

; cmd

End of program

track data assembled
here

Ne ™o W

PASSFIND, Password Finder

Below is a small program that will take a password encode and dislay passwords
that will work for that encode. Encodes must be entered in MSB, LSB order. For
example, if the encode looks like 9642 in the file’s directory spot, that is really the
LSB, MSB form of 4296, and it must be entered 4296 in this program:;

The routine tests about 1300 passwords per second and usually takes about 1
minute before a match will be found. After the match is printed, the routine will
continue printing out all possible matches until you hit the reset button. Thisis the
program I used to decode the VT'OS and TRSDOS override passwords.

Password Display Routine

PASSFIND -~ CALCULATES THE PASSWORD OF A FILE.

00100
00120
00139
00140
00150
PBl60
00170

00180

00190

P0200
00210
00220
00239
0240

annco
UWw4Ooypw

00270
00280
00290
00300
9319
0320
08330

00340

00360

808370

.
’
.
’

ENCODE
INITM

ORG

DEFW
DEFM .
DEFB
DEFB
DEFS
DEFS

DEFB
LD
CALL
LD
CALL
LD
LD
CALL
JP
LD
OR
JR
CALL
JR

LD
LD

5200H
0

,Encode storage

' PASSWORD FINDER PROGRAM'

19
13

C,MAIN

(ENCODE) ,DE

HL, PBUFF

:Line input buffer
;Password assembly

; Print buffer

;Print terminator

:Get program: announce
;Display

;Get prompt char
;Display

;Get input buffer

+Max # of chars to input
:Go line input

;Go if break hit

:Get # chars input

:Set flags

1Go back if enter only hit
;Convert input to hex
iGo if any chars were

: not hex digits

iStore encode

:Get PW assembly buffer

Listing Continued . . .

PASSFIND, Password Finder

. .. Continued Listing

00380 LD (HL) , 'A! ;Init with first PW

00390 LD B,7 ;# of chars left

0400 INC HL ;Bump assembly ptr

00410 11 LD (HL) , 'B? sPut in spaces

00420 INC HL ' ;Bump ptr

80430 "~ -DJNZ Il ;Do 7 times

00440 JP EXEC s :Go start compares

@0450 CONV' EQU $

00460 CP 'g! ;Is it num?

00470 JR C,Cl 7Go if under '@’

. 00480 cp - G : "~ -+ 3;Over hex?

P0490 JR NC;C1 1Go if over

00500 Cp gL 190-9?

00510 JR c,C2 .. 31Go if so

00520 Ccp 'A! ;A-F?

#0530 : JR .- . NC,C3 , . 1Go if so _

085406 Cl SCF : . 1Set error flag .

00550 RET _ , ;Ret

08586 C2 SUB "~ 3PH iAdjust 'dec' to real

00590 'OR A :Kill C flag

00600 . RET . :Ret

90610 C3 SUB . 37H #Adjust hex digit

00620 ~ OR A - ;Kill C flag

90630 RET ' L iRet

PP640 HEXIN EQU -~ § ;Put hex input in DE

00650 LD A, (HL) iGet next byte

00660 INC HL ;Bump input ptr

0670 ce 13 ;Terminate? '

00680 RET Z :Ret if end of input

00690 CALL CONV ;Convert byte to real

6o700 RET C sRet if invalid chars

00710 PUSH HL ¢Save input ptr

80720 EX . DE,HL iGet current accum in HL

00730 ‘ADD HL,HL sMult accum by 16

08749 ADD HL,HL sShift HL left 4 times

807590 ADD HL, HL ‘

00760 ADD HL, HL

Pe770 LD i D,0 ;Zero

00780 LD E,A iGet last digit

087906 ADD HL,DE ;Add to accum

00800 EX DE, HL ' ;Put in DE

00810 POP HL iGet input ptr

00820 JR HEXIN :Process next byte

00830 ; '

vo84n ; EXECUTES PW CALC

po8se ;

P0860 EXEC EQU- $

pe870 CALL HASH ;iCompute encode from
' i current PW in buffer

09880 LD DE, (ENCODE) ;&2t encode to compare

; against

00890) RST 18H ;Compare using ROM

' : ¢ compare DE to HL sub,

P09060 CALL Z ,MATCH :1Go display if match

00910 CALL UPDATE :Go bump current PW

00920 : JP C,GOGO + 3Go if end of test

Listing Continued . . .

Machine-language Disk I/O 119

PASSFIND, Password Finder

It is impossible to

;7 run the program this
; long - see text

;Try next PW

DE -> TEXT , B = # OF BYTES

; 8 CHARS

;Point to end of PW buff
;Init HL

iGet byte

:Save PW ptr

;Get char in D

iGet cur H in E

sPut L in A

;Keep low 3 bits

sPut in hi 3 bits

sX0OR with L

sPut in L

1Zero H

sShift HL left 4 times

s Xor A with H s
iXor A with D chaw o
;Put in D resadt highlnts
;Put L in A

;Shift HL left once
:Xor A with H

;1 Xor with E

;Put in E vt (Pubole
sPut encode in HL

;Get ptr

sDec ptr

;DO 8 times
sRet with encode in HL

;Number of char in PW
;1Get PW buff

iClear

:Flag=0 on first char
sBecause char must be
iA-Z as defined by DOS
1Get next char
sAdvance one -

iRet if done - else must
;bump next byte also
iBump ptr

;Do max of 8 times

. . . Continued Listing

pO939 JR EXEC
00935 ;

00940 ;CREATES A TWO BYTE HASH CODE IN HL
28970 ;

00980 ; !
00990 ; ON ENTRY :

01000 ;

01610 HASH LD B,8
91020 LD DE, PBUFF+7
01030 LD HL,9FFFFH
91049 HC1 LD A, (DE)
81050 PUSH DE

01060 LD D,A
01079 LD E,H
01080 LD A,L
81890 AND 7

01100 RRCA

01110 RRCA

91129 RRCA

01139 XOR L

01140 LD L,A
81159 LD H,0
91160 ADD HL, HL
91179 ADD HL, HL
01180 ADD HL,HL
81190 ADD HL, HL
01200 XOR H

81210 XOR D

01220 LD D,A
91230 LD AL
012406 ADD HL, HL
01250 X0OR H .
01260 XOR E

81279 LD E,A ‘
01280 EX DE,HL
01290 POP DE

81300 DEC DE

81310 DJINZ HC1
01320 RET

81339 UPDATE EQU S

81340 LD B,8
#1350 LD HL, PBUFF
01360 XOR A

91370 LD (FLAG) ,A
91380 UP LD A, (HL)
91390 CALL BUMP
91409 RET NC

014190 INC HL

01420 DJNZ Ug .
91430 SCF

120 Chapter 8

1 Test done
Listing Continued . . .

Figure 8.4

... Continued Listing

01449
01450
0l460
01470
01480
01490
01500
1510
01520
91530
01540
1550
01570
01589
91590
01600
01610
01629
01630
01640
01659
p1660
01670
01680
01690
01700
91710
01720
01730
01740

BUMP

Ul

U2

U8
U8o

U3

FLAG
GOGO

RET
CP
JR
CpP
JR
1094
JR
INC
LD
RET
LD
LD
RET
LD
OR
JR
INC
LD
LD
JR
LD
LD
SCF
RET
LD
LD
OR
RET
NOP
JP

Prints Out Match

01750 MATCH LD

01760
01770
01780
1790

CALL
LD
JP
END

LOADER/BAS - Object File Load Format Displayer

I9l
zZ,U0l1
lzl
Z,02
] L

s
Z2,03

A

(HL) ,A

A,'A’
(HL) ,A

A, (FLAG)
A

NZ,U8

A

(FLAG) ,A
A,'Al
o)

A, '0!
(HL) ,A

A,'0"
(HL) ,A
A

402DH

HL, PBUFF
4467H
Allll
334

XFER

iRet

;Time to carry over?
:Go if so

:Make number yet?
:1Go if so

;Is it a space?
1Go if so

;Bump char

;Put in PW buffer
iRet

A ascii

;Put in PW buff
sRet

;1 Is this first char?
iSet flag

1Go if not

;Make A=1

;Put in flag

:Make char A

;Cont

s;Load with # ascii
:Store char

iSet overflow flag
;Ret

;Load @ ascii
;Store char

:Set flags

iRet

:Flag byte

;sJump to DOS

:Get PW to print
;Display

;Get comma ascii
;Display and ret
;Start of program

LOADER/BAS — Object File Load Format Displayer

This is a DISK BASIC program that will display the load format of a
machine-language file. It will run under any of the DISK BASICs for the Model L.
I'have not tested it, but it will probably run under the Model III also.

When you first run the program, the prompt will come like this:

Program Prompt

FILE LOAD FORMAT DISPLAYER V2,1

FILESPEC >

Machine-language Disk I/0

121

LOADER/BAS - Object File Load Format Displayer

Answer the prompt with the name of the object file whose load format you wish to
display. Try entering SYS1/SYS. Now the disks will fire, lightning will strike, and the
display will end up looking like Figure 8.5 below. (This is NEWDOS 80 SYS1/SYS.
Yours may be different.)

Figure 8.5 SYS1/SYS Display

FILE LOAD FORMAT DISPLAYER V2,1 - CURRENT FILE : SYSsl/sys

254 BYTES LOADED A 4D@@ / 19712 - SECTOR + BYTE 04
254 BYTES LOADED A 4DFE / 19966 - SECTOR 1 + BYTE 06
254 BYTES LOADED A 4EFC / 20228 - SECTOR 2 + BYTE 08
254 BYTES LOADED A 4FFA / 20474 - SECTOR 3 , BYTE 0A
254 BYTES LOADED A 50F8 / - SECTOR 4 , BYTE 6C

20728

HIT <ENTER> TO CONTINUE

The SECTOR, BYTE number is the relative sector and byte in which the first byte
of this object block (not the loader codes) is stored upon the disk. This is useful for
tracking down bytes to modify after disassembling the program. ,

After hitting enter, the screen will clear and come up looking like the figure below.

FILE LOAD FORMAT DISPLAYER V2,1 - CURRENT FILE : SYS1/sYs

TRANSFER ADDRESS = 4D@g / 19712
TOTAL NUMBER OF BYTES LOADED = @4EQ / 1248

HIT <ENTER> TO CONTINUE

This displays the DOS transfer address and the number of object bytes that are
loaded. This does not include any header bytes. If you encounter any HEADER
bytes, the header block will be described as follows,

8 HEADER BYTES

When keying-in this program, it is unnecessary to put in a line feed after every
colon. I did this for readability’s sake.

If you just hit enter when the FILESPEC prompt is displayed, it will jump to DOS
READY via CMD “S”. Also, if you press the up arrow key while LOADER is

printing out, the current print out will be terminated, and come back up with the
FILESPEC prompt.

122 Chapter 8

Figure 8.5

LOADER/BAS - -Object File Load Format Displayer

LOADER/BAS Routine

10
20
30
35

40

50

60

70

80

90

100
119

[
N
[~

' ‘ LOADER - VERSION 2.1
' DISPLAYS LOAD FORMAT FOR AN OBJECT FILE

CLS

CLEAR2000:

US="##4":

OS="####4": ‘

PRINT@O,"FILE LOAD FORMAT DISPLAYER V2.1"

PRINT@128,CHRS(31);: °
LINEINPUT"FILESPEC >";FS$:
IFF$=""THENCMD"S

ONERRORGOTO78 :
OPEN"1",1,FS:
CLOSE:
OPEN"R",1,FS:
FIELD1,255A8A$:
GOTO88 :

CMD"E":
FORQ=1TO0500:
NEXT:
RESUMES

PRINT@32,"- CURRENT FILE : "F$;:

PRINT@128,"":

ONERRORGOTOB: ,

X=PEEK (VARPTR (A$) +1) + (PEEK (VARPTR (A$) +2) *256) :
Y=X

GET1,1:

S=2:
PRINT@128,.,CHRS (31);
' GET FIRST SECTOR

IFPEEK (&H3840) ANDSTHENCLOSE:
PRINT@34,"ABORT DURING : "FSCHRS(30);:
RUN4G

ELSEGOSUB4000 :

GOSUB 200:

IF A<>1 THEN 1580

] .
GOSUB 200:

C=A:
IF C=0 THEN C=256

ELSE IF C<3 THEN C=260-C
... Continued Listing

Machine-language Disk 1/0

123

LOADER/BAS - Object File Load Format Displayer

124 Chapter 8

. .. Continued Listing

130

140

150
l6@

179

180

C=C=-2:
CB=CB+C:
GOSUB 200:
AD=A:
GOSUB 200:
A=A*256 :
AD=AD+A

PRINTUSINGUS;C;:

PRINT" BYTES LOADED AT Mo

GOSUB 220:

PRINT" /";:

PRINTAD" - SECTOR"S-2", BYTE ";:
A=B:

GOSUB250:

PRINT:

GOSUB280 :

GOT0119

IF A<>2 THEN 180 ' GO IF NOT XFER ADDRESS

GOSUB29@:
GOSUB2£8%:;
AD=A:
GOSUB2g#@:
A=A*256:
AD=AD+A

CLOSE:
GOSUB4006 :

PRINT"TRANSFER ADDRESS = P
GOSUR 220

PRINT" /";:
PRINTAD:

PRINT"TOTAL NUMBER OF BYTES LOADED = ";:

AD=CB:

GOSUB220:

PRINT" /";:

PRINTCB:

PRINT:

GOSUB4#06 :

PRINT@34,"LAST FILE : "PSCHRS (39) ;:
RUN40

GOSUB2# 0

.C=A:

190

\

200

IFC=0¢ THEN C=254

PRINTUSINGUS$;C; s
PRINT" HEADER BYTES":

GOSUB288:
GOTO110

A=PEEK (X+B) :
B=B+l: .

Listing Continued . .

LOADER/BAS - Object File Load Format Displayer

... Continued Listing

IFB=256 THEN210
ELSERETURN

N
= -
=

B=0:

GET1,S:

S=S+1:

RETURN s

220 'PRINTS AD IN HEX
221 IFAD>32767THENAD=AD-65536

230 L=ADAND255:
M=INT((AD/256) AND255)

240 A=M:
GOSUB250:
A=L:

GOSUB 258:
RETURN

250 Z=(A/16) AND15:
GOSUB268: :
Z=AAND15:;
GOSUB 260:
RETURN

260 IFZ>9 THEN270
ELSEPRINTCHRS (Z+48) ;¢
RETURN

270 PRINTCHRS (Z2+55);:
RETURN

280 IF B+C>255 THEN290
ELSE B=B+C:
RETURN

290 B=B+(C:
B=B-256:
GET1,S:
S=8+1:
RETURN

4000 IFPEEK(&H4020)>&H40ANDPEEK (&H4021) >&H3ETHEN40GB6
ELSERETURN

4006 PRINT:PRINT"HIT <ENTER> TO CONTINUE";
4030 A$=INKEYS:

IFA$=CHRS (13) THEN40 40

ELSE4030

4040 PRINT@128,CHRS$(31);:
RETURN

Machine-language Disk /0 125

ASCIIZAP - Modify File’s Sector in ASCII

Figure 8.6

00100
08110
pBl20

M1 D x

YoiLoyY
#0135
00149
00150
00160
o170
o180
40190

X A e

0o200
00210
00220
00230

Y

126 Chapter

ASCIIZAP — Modify File’s Sector in ASCII

This machine- language program will display a file’s sectors in hex and ASCII
format, and allow modification of the file in the ASCII mode. There is definitely
room for more functions in this program Try your hand at sprucing it up a bit.

After running the program, answer the filespec prompt. It will come up and ask
what sector to display. After answenng that, it will read the sector, and display it
in hex and ASCII. Now you are in the COMMAND MODE. This is denoted by the
asterisk in the upper-left corner of the screen.

€. €,

Using the “;” and the “-” keys, you may scroll sectors of the file; *;” is forward,
and “-” is backward. '

When you wish to modify a sector type in Mnn while in the command mode (nn
is the 2 hex digits of the position you want to start modifying). For example, M42
would start the cursor blinking in byte position 42. The cursor will blink over the
character you wish to modify. While in the modify mode, the only four characters
that will not be actually written are: left arrow, right arrow, break, and enter. Left
and right arrow move the cursor left and nght The break key w111 terminate the
modifications, re-read the sector, and put you back in the command mode. Enter
will clear the screen and ask you if the modified sector should be written yet. If you
answer yes, it will write the modified sector and re-display the sector, putting you
back in the command mode. If you answer no, it will just re-display the buffer, w1th
all modifications, and put you back into the command mode.

If you hit break while in the command mode, the relative sector prompt will
come up again. If you hit break at this point, the filespec prompt will come up. If
you hit break now, the program will jump back to DOS READY via 402D.

While in the command mode, if N is pressed, the contents of the buffer will be
NEGATED using the Z-80 NEG operation. This is useful for detecting negated
program header messages like VEE-TOS or TRISS-DOS system number zero. It
is also useful for hiding you own scrambled messages. The negate function may be
substituted for your own brand of scrambling. :

ASCIIZAP Routine
; ASCIIZAP - MODIFIES A FILE IN HEX/ASCII
’
H
ORG 5200H
’
BUFFER EQU $; I/0 BUFFER
CALL 1C9H ;CLS
LD HL, (400DH) ;GET BREAK
LD (BTEST) , HL ; STORE IT
\ LD HL,BREAKT ;NEW ROUTINE
LD (406DH) , HL ; STORE
LD HL, INITM ;GET INIT MESSAGE
CALL 4467H ; DISPLAY
JP ASK ;GO TO ROUTINE
INITM DEFM ~ 'ASCIIZAP VERSION 1.3 - FILE MODIFY PROGRAM'

Listing Continued .

. Continued Listing

00240
90250

o & =

003440

0350
#0360
008370
go380
00390
pP400

pP4l10

0420
00430
p0440
- 00450
po460
pp4740
p0480
0490
po500
p0510
00520
00530
00540
08550
PB560
pp570
#0580
#0590
p0600
00610
00620
00630
0649
pP650
o660
00670
P06 80
00690
00700
00719
00720
00730
p0O740

£2 ruom =

_ ASKM

- MES1

DCB
INBUFF
SEC
POSN

DISKER
BREAKT
BTEST
BOUT

DISKAB
MAIN

ASK .

JXP

ASKS
Jl

JlX

DEFB
DEFM

DEFB -
DEFB -

ORG
DEFM
DEFB
DEFM
DEFB
EQU
DEFS
DEFW
NOP
EQU
OR
JP
CP
RET
DEFB
DEFW
LD
LD
JP

CALL

EQU
LD
CALL
LD
CALL
LD
LD

CALL -

JP
LD
OR
JR
EX
LD
LD
CALL
JR
CALL
JR
INC
LD
SET
LD
JR
EQU
CALL
LD
CALL
LD
LD

D= W

10

10
13

5300H.
'FILESPEC?
3 o

100U
whe &

&7 A2

F
0

$

- P8OH

4409H

1 .
8C3H

6.

HL, (BTEST)

(4006DH) ,HL

40 2DH

-+ DISKER
8§

SP,41FCH
1C9H
HL,ASKM
4467H
HL,DCB

40H

C,BOUT
A,B .
A
Z,ASK
B’ﬂ
HL,BUFFER
4424H
Z,JXP
DISKER
ASK

DE

A, (DE)
6,A
(DE) ,A
J1lX

HL,MES1
4467H

HL, INBUFF
B,3

.. #F
gl
:C

ASCIIZAP - Modify File’s Sector in ASCII

'(C/P) 1981 ‘BY WAGSOFT - ALL RIGHTS RESERVED'

s PROGRAM START

'RELATIVE SECTOR? '

ro D
Al

T
NPUT BUFFER
URRENT SECTOR

;EDIT BYTE

:JP OPCODE
;OVERLAY ADR

:GET LOADER
i RESTOR

iJP TO DOS
s DISPLAY

:FIX STACK

-+ CLS

+GET MESSAGE
;DISPLAY
;FILE DCB

s MAX INPUT
;LINE INPUT

+ ABORT

sGET AMT

+SET 2

7GO IF ENTER HIT
sPUT IN DE

s LRL=256

: I/0 BUFFER
sOPEN FILE
;GO IF OK

s HANDLE ERROR
s TRY AGAIN
sBUMP TO BYTE 2
sGET IT

sSET IT

;DO IT

; CONT

:CLS

;s SECTOR
;s DIS

s INPUT

s MAX IN

Listing Continued . . .

Machine-language Disk I/0

127

ASCIIZAP - Modify File’s Sector in ASCIT _

. Continued Listing

00790 CALL 40H ;LINEIN

00800 JP C,MAIN ;GO IF FIN
60810 CALL GETINP ;GET NUMBER
00820 PUSH DE ;PASS TO BC
20830 poP BC ;GET REC

00840 LD (SEC) ,BC i SAVE

20859 LD BC, (SEC) JGET CURRENT
20860 LD DE,DCB : DE=DCB

60870 CALL 4442H iPOSN TO REC
00880 JR Z,J2 iGO IF OK

00890 CALL ERROR iGOTO ERROR
00900 JR J1 iASK NEXT SEC
00910 CALL 4436H : READ

00920 JR 4,3X ;GO IF OK

00930 Cp 6 i PROT SEC?
00940 JR Z,JX :OK

88950 CALL ERROR :DIS

00960 JR Jl i DISPLAY BUFFER
08970 EQU $

00980 CALL 1C9H ;CLS

00990 CALL PAGE i DISPLAY

01000 XOR A : CLR

01010 LD (POSN) ;A s STORE POSN
81020 Jp KEYIN {GO TEST

010625 ;

01836 ; ROUTINE : HEXBYT

01040 ; PUT ASCII DISPLAY IN HEX OF 'A' AT (HL)
01050 ; REGS ALTERED : HL = LAST PUT ASCII+l
01060 ; SUPPORT : NONE

010670 ;

01080 H EQU $

01090 PUSH AF ;SAVE BYTE
01100 RLCA ;SHIFT MSN TO LSN
01110 RLCA

61120 RLCA

91130 RLCA

01140 CALL PUTNIB i CONVERT NIBBLE
91150 POP AF ;RESTORE BYTE
01160 PUSH AF iRE-~SAVE

01176 CALL PUTNIB i CONVERT NIBBLE
91180 POP AF ;RESTORE BYTE
91190 RET i RETURN

01200 EQU $

01210 AND OFH ;STRIP NIBBLE
01220 Cp 19 ;OVER DECIMAL?
01239 JR NC, PNAAl GO IF SO

01240 ADD A,30H ;ADD TO ASCII DISPLAY
61250 LD (HL) ,A ;STORE BYTE
01260 INC HL ;BUMP PTR

01270 RET ; RETURN

61286 P ADD A,55 ¢FOR HEX AJUST
01290 JR PNAA2 ;PUT & RET
01295

01308 ; ROUTINE : NEXTC

01310 ; GET NEXT NON-SPACE CHAR FROM (HL) STREAM

- Listing Continued . . .

128 Chapter 8

ASCIIZAP - Modify File’s Sector in ASCII

EXIT HL IS POSN OVER CHAR. C SET IF CHAR WAS CR

A, (HL)
HL

NZ , NEXTC
NEXTC

13

%, NEXTC2

A

1GET CURRENT CHAR
sBUMP TO NEXT CHAR
1 SPACE?

;GO IF NOT

;GO IF SPACE
:C/R?

;GO IF C/R

sRESET CARRY

¢+ RETURN

s SET CARRY

s RETURN

TAKES NEXT DECIMAL INPUT AT (HL) AND PUTS IT IN
DE. C SET IS' NUMBER WAS BIGGER THAN 65530

ALL REGS USE.

... Continued Listing
01320 ;

81330 ;

91346 NEXTC LD
91350 INC
Bl360 Cp
91379 JR
91380 _ JR
91390 NEXTC1 CP
01400 “JR
#1410 OR
21429 RET
#1430 NEXTC2 SCF
01440 RET
81445 ;

81450 ;

01460 ;

01470 ;

01480 ;

01490 GETINP EQU
815060 LD
#1516 GETINl1 CALL
91529 Cp
91539 RET
81540 Ccp
81550 JR
91560 cp
81570 RET
81580 PUSH
#1590 LD
01600 EX
91619 RST
91629 JR
81639 EX
81649 EX
#1650 PUSH
01660 POP
91670 ADD
01680 ADD
91690 ADD
81700 ADD
P1719 SUB
81720 LD
81730 LD
01749 ADD
81750 EX
01769 POP
81770 JR
81780 GETBIG POP
81798 EX
plsog SCF
01819 ' RET
#1820 GETEND OR
01830 RET
81840 ; '
91850 ;

DISPLAY BUFFER TO SCREEN

$

DE, 0
NEXTC
13

7

ll
C,GETEND
| BP]
NC

HL
HL,1998H
AF,AF'
18H
C,GETBIG
AF,AF'
DE, HL
HL

DE

HL, HL
HL, HL
HL, DE
HL, HL
30H
E,A
D,0
HL,DE
DE, HL
HL
GETIN1
HL
AF,AF'

A

HL=CHAR AFTER LAST NUMBER

1 ZERO

sGET NEXT CHAR
:C/R?

sRETURN IF ECL
;UNDER 0?

sRETURN IF END OF NUMBER
;OVER 9?

sRETURN IF OVER 9
$SAVE LINE PTR
;GET # TO TEST

;s SAVE CHAR

;s COMPARE

s RESTORE #
sSWITCH FOR ADD

: PASS TO DE

sGET CUR #

s TIMES BY 10

sADJUST TO NUMBER
;PUT IN DE

;s CLEAR

sADD TO ACCUM
sPUT IN DE

i RESTORE PTR
;LOOP BACK

s RESTORE PTR
+GET THIS CHAR
: TOO BIG ERROR
;s RETURN

; CLEAR CARRY

s RETURN

Listing Continued . . .

Machine-language Disk I/O

12¢

ASCIIZAP - Modify File’s Sector in ASCII

. Continued LLstmg

l186ﬂ
01870
1880

7]
1899

01909
01910
01920
91930
01940
01950
019640

1070
ﬁ.l.? 1o

01980
01990
02000
02010
02020
026830
02040

02650

02060
2079
02080
02090
02100
02110
02129

2 M N

e Yo e]

02260
02270
02280
02290
02300
02310
02320
p2330
p2340
02350
02360

a2 0
V&2 iy

02380
02390
02400

130 Chapter 8

PAGE

J3

LEW

LINE
LWl

ERROR

MESSO

LINEA
J5

Jé

EQUJ

LD

T
iy

LD
PUSH

PUSH
CALL

POP

CALL. -

LD
POP
DJINZ

LD
XOR

CALL =

ADD

LD
ADD

RET
LD
LD
CALL
INC
LD
INC
CALL
INC
DJINZ

"RET

PUSH
CALL
POP

CALL

CALL
LD
LD
CALL
CALL
RET
DEFM
DEFB
LD
LD
INC
Cp
JR
CP
JR
LD
INC

DJINZ -

- J3

HL,3C04H
B,16 -

A

HEXBYT
A,10H
DE,62
HL,DE

- LEW

B'8
A, (DE)
HEXBYT
DE
A, (DE)
DE
HEXBYT
HL

LWl

AF

1C9H

AF

DISKER
HL,MESSO
4467H

B'g

HL, INBUFF
40H

1C9H

'HIT <ENTER> TO

3

B,16
A, (DE)
DE

32
C,J4
192
NC,J4
(HL) ,A
HL

-:START OF DISPLAY

- rres

-.#1/0 BUF

;LINE TO DISPLAY

iSAVE COUNT

; SAVE BUFFER
; LINE HEX

s RESTOR
;LINE ASCII
;AMT TO ADD
;PUT TO LINE
;GET COUNT

- sLOOP 16 TIMES
-§FOR BYTE ADR

+DO 16 TIMES
:CLR
;1 DISPLAY

- . ;BUMP TO NEXT LINE

;BUMP ONE LINE
/ADD ONE: LINE

-1 LOOP
‘¢ RETURN’

;8 PAIRS
+GET BYTE

¢ DISPAL
;BUMP
:GET NEXT
+BUMP BUFF
¢ DISPLAY
:BUMP

:DO 8 TIMES
: RET

' ;SAVE

;CLS
;GET ERROR
;DIS

-$GET Q

;:DIS

s NO INPUT
-BUFFER

; INPUT & RET
s CLS

sRET
CONTINUE'

; #BYTES
¢GET BYTE
:BUMP

i UNDER?

GO IF UNDIS

; TO HFG
;s UNDIS
sDISPLAY
s BUMP :
_ Listing Continued . . .

... Continued Listing

02410
62420
02430 J4
02440
02450 ; < ;-

"7 A .
02460 KEYIN -

024780
02480
02490
02500
02510
02520
02530
02549
02550
02560
02570
02580
02590
92600 :
02610 NEGATE
02620

92630 N1
02640

02650

02660

p2709 FOR
#2720 F1X
02746 BACK

[)
N
~J
o
=
z “e we we

DJINZ J5
RET
LD A,
JR Jé
EQU $
- CAL 49H
cp. !
JR Z,FOR
CP | P]
. JR Z ,BACK
.- CP 1
- JP 2,J1
. CP Mt
.. JR Z,MOD
. CP 'R' ‘
JP Z ,REREAD
cp 'N!
-JP ‘Z NEGATE
JR KEYIN
LD HL,BUFFER
LD B,0
LD A, (HL)
NEG '
LD (HL) ,A
INC 'HL
DJINZ N1
CALL PAGE
JR KEYIN
LD HL, (SEC)
INC HL
LD (SEC) ,HL
JP REREAD
LD HL, (SEC)
DEC HL
- JR FiX

MODIFY HANDLER

‘EQU $

LD - (3C00H) ,A
CALL 49H

LD (3C40H) ,A
CALL CONV

JP C,BADM
RLCA

RLCA

RLCA

RLCA

AND PFOH

" PUSH AF

CALL 4SH

LD (3C80H) ,A
CALL CONV

JP C,BADM

ASCIIZAP - Modify File’s Sector in ASCII

;DO 16 TIMES
s RET _
1 UNDIS
s CONT

;GET KEY

;s FOR?

:1GO IF SO

s BACK

+GO IF BACK

‘¢$BREAK?

¢ASK NEXT SEC
$ MODIFY?

+GO IF SO

¢ REREAD?

i NEGATE?

; LOOP

:GET BUF
256 TIMES?
;GET BYTE

{GET SEC
¢+ADD ONE

¢ STORE

i READ NEXT
$GET SEC

i DISPLAY
iGET CHAR

PP

+PUT IN HI NIB
71 SAVE

;GET NEXT

:DIS

;s CONVERT

:GO IF ERROR

Listing Continued . . .

Machine-language Disk I/O

131

ASCIIZAP - Modify File’s Sector in ASCII

132 Chapter 8

... Continued Listing

02960
02970
02980

02990

P S

03420
03430
p3440
03450
03460
03470

93480

03490

03500

BS

F9

FS

FF

MES90

WRITE

F70

Fvv

SD3

LD
POP
OR
LD
CALL
CALL
CALL
CP
Jp
CP
JR
cp
JR
cP
JR'
LD
LD
INC
LD
CALL
JR

CALL

LD
DEC
LD
JR
CALL
LD
INC
JR
LD
LD
RET
DEFM
DEFB
CALL
LD
CALL
CALL
LD
cp
JP
CP
JP
CpP
JR
Cp
JR

OR
JR
LD
RES
LD
LD

AF

B
(POSN) ,A:

0oTD
N i\

-POSNX

INKEY
1.
% , REREAD

+BS
F

S

= N O N

[4
13
Z,WRITE
(DE) ,A

A, (POSN)
A

(POSN) ,A
PAGE

MOD1

FF

- A, (POSN)

A
(POSN) ,A
MOD1

FF

A, (POSN)
A

F9

A, (CUR)

(HL) ,A

'"WRITE MODIFIED
13

1C9n
HL,MES90
4467H
49H
DE,DCB

1

Z ,ASKS
INI

Z,NO

IYI
Z,FVV
IPI

NZ ,F70
A, (DE)

.]_.

SD3

A, (DE)
g,A

(DE) ,A
HL,BUFFER

;sGET #

{GET FIRST

:ADD BITS

:STORE POSN

;CLR LEFT

;s POSN HL & DE
;GET INPUT FLASH
s BREAK:

+GO IF ABORT MOD
s BACK

; FOR

;WRITE

e o

;WRITE
iWRITE BYTE
¢{GET POSN

;INC IT

;s DISPLAY
: CONT

+BACK
; CONT

: FORWARD

SECTOR? (Y/N/P)'’

:+I/0 FCB

s PROT?

s NO

:GET

sWRITE PROT

4 CONT

;GET FCB BYTE
¢ PROT OFF
iXFR TO FCB

Listing Continued . . .

. . . Continued Listing

83510

‘93520

93530

P R N el e]

KEYLO

)3 BADM

CONV

Cl
GOODC
BADC
POSNX

Pl

P2
P3

P4

LD
CALL
CALL
CALL
JP
CALL
JP
EQU
CALL
JP
LD
LD
LD

r ™

LD
ADD
DJINZ
RET
Cp
RET
Cp
JR
Cp
JR
Cp
JR
SUB

RET
SUB
JR
SCF
RET
EQU
LD
PUSH
LD
LD
SUB
JR
ADD
JR
AND
JR
INC
DEC
JR
POP

‘PUSH

LD
LD

[3K oY

LD
ADD
EX

POP
RET

BC, (SEC)
1C9H
4442H
443CH

7 ,JX1
ERROR
ASKS

$

CLR

JX1
HL,3C@0H
DE, 64
B,16
(HL) ,32
HL,DE

* Bl

ll

- IGI
'NC,BADC

l:l
C,G00DC
IAI
C,BADC
55

A

48
Cl

$
A, (POSN)
AF

HL,3COPH+48

DE,64
16
C,P2
HL,DE
Pl
PFH
Z,P4
HL

A

P3

AF

HL

HL, BUFFER

E,A
D,0
HL,DE
DE, HL
HL

ASCIIZAP - Modify File’s Sector in ASCII

:WRITE & VERITY
;s CONT

;CLR LEFT
sGET SEC
;GET SCREEN
;# TO CLR
;# TO CLR

; CLR

;BUMP NEXT
;DO 16 TIMES
s RET

s NON NUM?
;RET BAD

s NOPE

+GO IF PAST
s NUM?
;GO 1IF
s BAD?
1GO IF SO

s MAKE REAL
sKILL C .

sRET

s MAKE REAL

: CONT

¢ ERR

:RET

; POSITION HL,DE
;GET POSN

;s SAVE POSN

sGET POSN START
sAMT TO ADD

sON THIS LINE?
;GO IF YES?

s NEXT LINE

;s TRY AGAIN

sGET LINE POSN
;GO IF OK

;BUMP

; SUB1

;RETRY

:GET POSN

s SAVE POSN

sGET IO START
:FOR OFFSET

; CLR

:GET BUFFER POSN
sPUT IN DE

sGET SCREEN
sRET

%
O

Listing Continued . . .

Machine-language Disk /O 133

ASCIIZAP - Modify File’s Sector in ASCII

04070
4080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180

... Continued Listing

04060 INKEY

IKK

F2

Fl

COUNT
CUR
NO

© EQU

LD
LD
PUSH
CALL
OR
POP
RET
LD
INC
LD
Cp
JR
LD
cp
JR
LD
LD
XOR
LD
JR
LD
LD
JR-
NOP
NOP
CALL
CALL
JP
END

$ o
A, (HL
(CUR) ,A
DE

2BH

A

DE s
NZ

A, (COUNT)
A
(COUNT) ,A
100

NZ, IKK

A, (HL)
143

Z,Fl

(CUR) ,A
(HL) ,143
A A

IKK
A, (CUR)
(HL) ,A
F2

1C9H
PAGE
KEYIN
5200H

(COUNT) ,A

" FLASHING INPUT

;GET CHAR
; STORE

; SAVE

;GET INPUT
;SET F

; RESTOR

; IF OK
;GEY COUNT

s UPDATE

;i FLASH?

: LOOP

;GET SCREEN
: CUR? ’
;GO IF SO

¢ STORE CHAR

: CUR

s RESET

:GET CHAR
¢+ DISPLAY
: CONT

134 Chapter 8

" Miscellaneous Junk

Miscellaneous Junk

Below is a quick-refei'ence chart of the Western Digital FD1771 Floppy Disk
Controller commands and status bits.

Figure 9.1 FDI1771 Commands and Status Bits

Command Command Bits
Type Name 765432180
1 Restore P 900 HVTILTCT
1 Seek P 01 HVTIT
1 Step 91 UHVTIT
1 Step~in 109 UHVTILT
1 Step-out @11 UHVTILT
2 Read Sector 1060 0BEGOGSO
2 Write Sector l1010BE¢LtTt
3 Read Address 110060E0G0
3 Read Track 1110090100480
3 Write Track/Format 11110100
4 Force Interrupt/Reset 11010000
STATUS BIT DURING TYPE 1 COMMANDS,
Drive Select, Any Head Movement.
7 6 5 4 3 2 1 0
I 1— Busy - operation in progress.
Index hole sync with sensor.
Head is at track zero,
. CRC error during track verify.
! Desired track was not verified.,
Head is loaded and engaged.
- Disk in drive is write protected.
Not Ready - drive motors off,

Listing Continued . . .

Machine-language Disk I/O 135

Stepping Speeds of Popular Drives

. - -Continued Listing DURING TYPE 2 COMMANDS.

Read Sector(s) / Write Sector(s)
7 6 5 4 3 2 1 ¢

: I I--,,,Bus_y - operation in progress,
' : Data request. :
Lost data.

CRC error.
Record not found,

Rec type on read,write prot on write,
Not ready - drive motors off. :

DURING TYPE 3 COMMANDS. |
Write Track (Format), Read Track, Read Address.

7 6 5 4 3 2 1 ¢

I 1T 1 1 1 . .

I I I~ Busy - operation in progress.

: Data request.,
Lost data,
<Unused>
<Unused>
Write fault on write unused on read.
Write prot on write unused on read.

Not Ready - drive motors off.

Stepping Speeds of Popular Drives

Below is a list of the stepping speeds for most drives available for the TRS-80
Model 1.

Figure 9.2 Drive Stepping Speeds

Brand Max Stepping Speed.
Tandon (all track capacities) 6 ms,
MPI 40 track 6 ms,
Vista 40 track 12 ms,
Matchless 40 track 12 ms,
Micropolis 5/77 track 40 ms.
Shugart SA400 40 ms,
Tandy (older shugart SA400) 40 ms.

136 Chapter 9

Small Disk Operating System (S/0S)

Small Disk Operating System (S/0S)

This chapter contains the small, but potentially powerful, disk operating system
called ‘S/OS’ (which means Small Operating System). The S/OS system utilizes just
about every disk and interrupt function described in this book. S/OS does not
‘manage disk space, nor does it use or agknowledge a d1rectory But with a little
programming on your end, this is quite possible. The main purpose of S/0S is to give
you an idea on how a system is put together. S/OS may be used in special
applications where all disk space is to be utilized. With S/OS you may access sectors
on the disk in one of two ways: direct, i.e., you tell it in what drive, track and sector
you want to access, or by the Relatlve Sector number from a given point (track and
sector) on the disk. :

Relative file offsets may be defined so that disk partitioning be logical to any
programs you might use with S/OS. S/0S allows logical record lengths of 1 to 256
bytes per record. S/OS will automatically span sectors to fulfill a record access
(when a record is spanned over two sectors). Also byte I/0 routines via the ROM
calls, 13 and 1B, are supported. ‘File’ access is done with File Control Blocks (FCB)
just like aregular disk operating system. The FCB’sin S/OS are 11 bytes long, anda

technical description is discussed later.

S/08 is designed in such a way that various non-standard disk drivers may be
assigned to one or more drives. This technical information is also explained later.

S/08 allows programs to enqueue an interrupt routine that can be executed by the
interrupt processor every 925 milliseconds. There are 10 ‘slots’ that may be defined
or released by using various calls. These calls will be explained in the technical

section.

S/0S was written using the ASSEM/80 editor/assembler, and is compatible with
EDAS, and ALDS. All lines using DM for DEFM, and DB for DEFB may have to be
modified in order to be assembled correctly by your assembler. Check your
editor/assembler reference manual. : :

Technical Information Section

S/0S Call Vectors

1. The S/OS Main Module.

2. The S/0S Usér Interface (this accepts keyboard input). All the disk I/O, FCB1/O,
interrupt and special routines are contained in the S/OS main module. A number of
routine entry vectors are used so that if you make changes to the S/OS main module,
program compatibility will still exist.

r= ToT T it it

S/0S does not use files like TRSDOS, but, as previously stated, S/ OS has a way
of doing a sort-of file I/0. File I/O in S/OS is simply done by using a FCB that

Machine-language Disk I/O 137

Disk I/0 Primitives

‘points’ to the file’s first sector number (track and sector), then ‘record’ access is
done by relative record number. The logical record length may be 1 to 256 bytes
long. S/0S will span sectors to move a record, which allows maximum use of your
disk space.
. s
Here are the S/OS operation call vectors. Their respective vector addresses are in
hex. ‘

Disk I/0 Primitives

Disk I/O primitives allow you to directly read and write to specified disk sectors.
When calling these routines (disk I/O primitives) Register ‘C’ always contains the

relative Drive Number in binary (NOT ASCII!). Register pair ‘HL' always points to
the I/0 Buffer (if required). Register ‘D’ contains the Track number, and ‘E’
contains the Sector number. Upon exit, Register ‘A’ always contains an error code. If
the NZ flag is set, then ‘A’ contains an error code, otherwise no error occured. This
error return scheme is used by all routines that use Disk I/O in any way. All registers
are intact upon return unless stated otherwise.

4600 Seek a drive's head to a desired track.

Entry: C = drive number
D = track number

Exit: A error code if NZ set

4603 Select a desired drive
Entry: C = drive number
Exit: The A register is altered.
No error can occured with this call.
4606 Ver;fy that a drive is on-line, contains
a diskette and the door is closed,
Entry: C = drive number

Exit: A

error code if NZ

4609 Read a disk sector

Entry: C = drive number
D = track number Listing Continued . . .

138 Chapter 9

... Continued Listing

460C

4612

4615

4618

461B

Disk 1/0 Primitives

E = sector number ,
HL -> 256 byte I/0 buffer to put data

Exit: A = error code if NZ set
¥ .
Read a disk ID address field,
This routine is defined but is not implemented.

Entry: C = drive number
HL -> I/0 buffer

Exit: A = error code if NZ set

Write a disk sector .

Entry: C = drive number
D = track number
E = sector number

HL -> 256 byte I/0 buffer that contains data

if N7 cat
o A anNa [A3

Write a read-protected disk sector

Entry: C = drive number
: D = track number
E = sector number
HL -> 256 byte I/0 buffer that contains data

Exit: A = error code if NZ set
Format a track of data
This function is defined but not implemented
Entry: C = drive number
D = track number
HL -> 256 byte I/0 buffer that contains data
Exit: A = error code if NZ set

Initialized a desired drive
This seeks the head to track # and syncs the DCT

Entry: C drive number

Exit: A lerror code if N2Z set

Machine-language Disk /O 139

o7 US rue 1y U-vector-Calls -

S/0S File I/0O Vector Calls

These calls are used to initiate, access and close a S/0S file.

461E Open a file control block (FCB) .
This creates a FCB that is used for doing file I/0.

Entry: C = drive number
B = 1logical record length
DE -> 11 byte FCB
HL -> 256 byte sector I/0 buffer

Exit: A = error code if NZ set

4621 Close a file control block (FCB).

This closes a file FCB. A close consists of writing
any data in the buffer that has not been written to
disk, such as when doing byte I/0. When doing byte
I/0 and record I/0 with LRL < 256, bytes are Buffered
80 that the buffer isn't written until it's full,

@ POSN call is done or a CLOSE is done.

Entry: DE -> FCB

Exit: A = error code if NZ set
4624 Define the starting sector of a FCB

initialized at track B, sector @. This Define call

P Yy

allows you to define the starting sector anywhere on
the disk,

entry: DE -> FCB
H = starting track
L = startiing sector

£s

4627 Position the

b

'CB for a record read.
CB
ogical record to access .
g * Listing Continued . . .

DE F
BC = [

140 Chapter 9

S/0S Special:Functien €alls

. . Continued Listing

4633

462A Read the next record

This reads the next
s

After the record i
record.

entry: DE -> FCB‘
HL -> Record buffer address. Not used if
LRL = 256. Record buffer is NOT the
256 byte sector buffer,

exit: A = error code if NZ set
- 462D Write the next record

This reads the next record currently in the FCB.
After the record is written, the FCB points to
the next record. :

entry: DE -> FCB . :
HL => .Record buffer address. Not used if
LRL = 256. Record buffer is NOT the
256 byte sector buffer,
exit: A = error code if NZ set
4630 Load an object file

This loads a machine-langauge program into memory.
The sectors, obviously, must be in sequencial order.

entry: DE -> FCB
exit: HL -> transfer address (program start

address) ,
A = error code if NZ set

S/0S Special Function Calls

Display an error code A

This will display the error code number in 'A' to the
video in this manner:

SYSTEM ERROR: 10

The number is in decimal. Listing Continued . . .

Machine-language Disk I/0

141

The S/0OS User Interface

. . . Continued Listing

entry: A = error code
exit: All registers altered (not primes),

4636 Display a line of text to the video,
4639 Send a line of text to the line printer.
463C Output a line to a device, ’ :

The text must be terminated by a '0D' which is
transmitted or an #3 which is not transmitted.
entry: HL -> text to display or print.

DE -> DCB (463C call only). :
exit: All registered altered (not primes),

See Microsoft BASIC decoded & other mysteties, published by 1JG, Inc.,
for more information about the BASIC ROM device routine..

.
1
interrup

464B Enqueue an

These calls allow you to enqueu/dequeue routine(s) to
be serviced every 25 milliseconds (40 times/second)

entry: A = slot to enqueue g-9
HL =-> routine address
464E Dequeue an interrupt routine

entry: A = slot to dequeue #-9

The S/0OS User Interface

The S/08 User Interface simply provides a way for you to enter three numbers,
which are used as a drive, track and sector address where a machine-langauge ‘file’ is
to be loaded. This allows invocation of any of your programs.

When S/08 is booted up, it will announce itself and prompt you for an input like so:

S/08
?

Enter the drive, track and sectof as shown below:

S/08
?0,5,0

The preceding would be interpreted as drive 0, track 5, sector0. S/OS will attempt
to load from this disk address. If it can’t, an error will be displayed.

142 Chapter 9

......,Drive Control Tables

Byte
P The drive number in binafy -‘
1 The drive's select code
2 drive status:
Bit.
7 Undef ined.
6 Undefined. ‘ : v :
5 Dry select delay (1 =.5 sec vs, 1.0 sec).
4 Undefined.
3 Undef ined.
2 Undefined.
1 Undef ined. _
0 Drive has been initialized.
3 Default directory track. Not currently used.
4 The drive's current track number
5 Drive's track capacity.
6 The head step-rate bits. 4, 1, 2 or 3.

Drive Control Tables

Each drive has its own drive control table. This table contains information on each
drive, such as its track capacity, its select code and other vital information.

Machine-language Disk /O 143

ALUT T/ UD I vouauivi DIUCK

The S/0S File Control Block

Here is a description of what the bytes in the file control block are used for:

Bytes 7, 8 and 9 make up a “relative byte address” in a file.
s
Byte
[} FCB Control Byte. 80H = file is open
1 Status Byte
7 Unused
6 Unused
5 Unused
4 Unused
3 Unused
2 Unused .
1l A 1 means buff contains data to be written
@ A 1 means buff contain 'next' sector
2 LSB of 256-byte sector buffer address
3 MSB of 256-byte sector buffer address
4 Starting sector number of file
5 Starting track number of file
6 Drive number
7 Byte Offset within 'next' sector
8 LSB of 'next' sector
9 MSB of ‘next' sector
10 Logical record length

144 Chapter 9

Small Operating System

*

*

-
x

00001
00002
00003
00004

- 08005

00006
0eoo7

g Rk

;**

k%
’

o k%
’

o k%
r

*

S/0S - SMALL/OPERATING SYSTEM

VERSION 1.0 - MODEL I

CREATED:
UPDATED:

(C) 1982

87/28/82
08/06/82

by Michael Wagner

*

*

*

khkhkhkkkkhkkkhkhkhkhkhkhhhkhhkkhhkhkhkhhkhkkhhkhkkhkkkkkhkhkhkhhkhkkkkkk

poBo
37EF
37EC
37ED
37EE
37E0
37ED
4500

402D
402D

40390
4033

4p0C

ADXOA
VU

400D
400E
400F

4010
4011
4012

4600

4600
4603
4606
4609

460C
A60F

VA a

4612
4615

7850

C33B4F

C33B4F
C3C94cC

~no
w7

0o
0o
C9

0o
0o

C30049.

C3404A
C3444A
C3484A
C34C4A

C3504A
C3544A

Wl T ZaA

C3584A
C35C4A

popos
00009
00010
00011
0012

00017
0epls
00019
0eB20

e ¥ ¥ Bo |

VYU LL

peB22

0023
po024
P00B25
p0B26
00027

KAXDQ
Uwuw4so

poB29
00030
poe31

0Ep32
0Po33
peO34

OaR2E
VOvII

pPB36
peB37
peB38
00039
00040
pev4l
00042

AR 18

i
gaeeee
DATA

CMD :
TRACK

SEC
SEL
INTRST
BUFF

’

’
@JPDOS

@ABORT
@BYTIO

;l

-
I

-
14

’
@SEEK
@SELEC
@VALID
@RSEC

@RADR
@RCYL

SN e

@WSEC
@WSECP

Label equates

DW

EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG
JP

JP
JP

ORG
RET
NOP
NOP
RET

NOP
NOP
JP

ORG

JPp
JP
JP
JP
JP
JP
JP
JP

EOP

40 2DH
JPDOS

JPDOS
BYTEIO

400CH

INTER
4600H

SEEK
SELECT
VALID
RSEC
RADR

ROVT,

SV & Ad

WSEC
WSECP

; VECTORS

i ENTRY DIRECT

7 ENTRY

: ABNORMAL ENTRY
;DO BYTE I/0

: INTERUPT VEC

;BREAK VEC, RST28

s DEBUG TRAP,
sRST30

; INTER VEC, RST38
; VECTOR AREA

; SEEK TRK
; SELECT DRV

; VALIDATE DRV
;READ SEC

; READ ADDRESS

sDRAN TRK

§ NG AL L EVAN

;WRITE SEC
;WRITE SEC READ
; PROT

Listing Continued . . .

Machine-language Disk I/O0 145

Small uperating sSystem

. Continued Listing

4618 C3604A 00046 @FORMT JP FORMAT ; FORMAT TRK
461B C3644A 90047 QINITD JP INITD ; INIT DRV
goo4s8 ;
461E C3194C 00049 @QOPEN JP OPEN ; CREATE FCB
4621 C3544C 00050 QCLOSE JP CLOSE ; CLOSE FCB
4624 C36C4AC @0051 @DEFIN JP DEFIN ;DEFINE STARTING
' s | : SEC
4627 C39B4C 0@P52 @POSN JP POSN ; POSN FCB TO
’ ; BYTE/SEC
462A C3734D @@P953 @READ JP READ ; READ NEXT RECORL
462D C3974D 00054 @WRITE JP WRITE ;WRITE NEXT REC
4630 C3534E 00955 @LOAD JP LOAD ;:LOAD FILE
00056 ; . ’ _
4633 C3FD4E 00057 @QERROR JP ERRORD ; ERROR DISP
4636 C3B94D 00058 @LINE JP LINE ;: DISPLAY LINE
4639 C3B44D 00@59 @PRINT Ak JP PRINT ; PRINT LINE
463C C3BC4D 00068 @DEV JP DEV ;DEVICE LINE
. ' ;s OUTPUT
463F C30E4E 00061 @CI2 Jp ~ CI2 : ;DEC CONV
4642 C3084E 00062 RCI3 Jp CI3
4645 C3024E 00063 QCI4 JP ~ CI4
4648 C3FC4D 00064 @CIS5 Jp Ci5
464B C3E64E @0@65 QENQUE JP ENQUE
464E C3F84E 00066 QDEQUE JP DEQUE
00067 ; _
4700 00068 ORG 4700H ; PAGE 47 VARS
: 00069 ; . " -
4700 09 PB@706 TICKS NOP s REALTIME CLK
4701 00 09071 SECS NOP
4702 060 90072 MINS NOP
4703 00 90073 HOURS NOP
00074 ; .
4704 00 09075 YEAR NOP ' ; DATE
4705 00 09076 DAY NOP
4706 00 P0077 MONTH NOP
00078 ;
4707 0052 99079 USER DW 5200H ;USR MEM STA
4709 FFFF PPP89 HIMEM DW @FFFFH ‘ ;MEM PROT PTR
470B 0000 00081 DW 0 ;:RESV
470D 6E49 @P082 INTQUE DW RETINT ; INTERUPT QUEUES
470F 6E49 20083 DW RETINT ‘
4711 6E49 0084 DW RETINT
4713 6E49 09085 DW RETINT
4715 6E49 00086 DW RETINT
4717 6E49 00087 DW RETINT
4719 6E49 90088 DW RETINT
471B 6E49 90089 DW RETINT
471D 6E49 00090 DW RETINT
471F 6E49 90091 DW RETINT
4721 00092 INTEND EQU $
G0093 ;
0094 ; VARIABLE TABLE
gR0O95 ;
4800 09096 ORG 4800H

Listing Continued . . .

146 Chapter 9

S Continued Listing

4A00
4A00

4A00
4702
4A04
4A06
4A08

4AQA

4A0C
AADE

4A10

4A1A
4Al1C

4726
4A28

4A32
4A34

4A3E

4740
4A42
4744
4A46
4748
4A4A
4A4C
4A4E
4A50
4A52
4A54
4A56
4A58
4A5A
4A5C
4A5E
4760
4A62
4A64
4A66

104A
1C4A
284A
344A
0000

0000

0000
0000

CF4A
CF4A
CF4A

CF4A

3E91
1825
3EB2
1821
3EB3
181D
3E04
1819
3E@B5
1815
3E06
1811
3E07
184D
3E08
1809
3EB9
18@5
3EQA
C31F49

80196
pe197
0198
00199
00200
00201

00202
00203
P0204
pB8265
PB206
00207

00208

00209
06219
00211
06212

pB213
p0214

00215
pg216

00217
00218

P0219
0220
pB221
00222
08223
00224
00225
00226
00227
00228
0229
00230

P

00242

Small Operating System

[
; DRIVE CONTROL TABLES
ORG 4AQ0H
r
DCTM EQU, 4AH ; MUST=MSB OF
; TABLE STA
14
DCT DW DCT@ ;:DCT PTRS
DW DCT1
DW - DCT2
DW DCT3
DW] :RESV FOR HIMEM
:DCTS
.DW 0 ;HARD DRIVES,
-+ ETC,
DW /] .
DW 0
DCT@ DM ,1,0,17,9,39,3,10,24H,8
00 61 60 11 90 27 93 OA 24 98
DW " DSKDVR
DCT1 DM 1,2,0,17,9,39,3,10,24H,8
91 92 00 11 00 27 93 OGA 24 08
. DW DSKDVR ‘
DCT2 DM 2,4,0,17,0,39,3,10,24H,8
02 04 00 11 00 27 03 @A 24 08 g
DW DSKDVR
DCT3 DM 4,8,0,17,06,39,3,10,24H,8
04 08 00 11 00 27 93 QA 24 08
DW DSKDVR
’
: DISK I/0 ENTRY
1
SEEK LD Al : SEEK
JR DSKHAN
SELECT LD A,2 ; SELECT
JR DSKHAN
VALID LD A,3 : VALIDATE
JR DSKHAN
RSEC LD A,4 :READ SEC
JR DSKHAN '
RADR LD A,5 ;:READ ADR
JR DSKHAN
RCYL LD A,6 ;READ CYL
JR DSKHAN (
WSEC LD A,7 - ;WRITE SEC
JR DSKHAN
WSECP LD a,8 ;WRITE SEC PROT
JR DSKHAN
FORMAT LD A, : FORMAT
JR DSKHAN
INITD LD A,10 : INIT DRV
JP DSKINT

Listing Continued . . .

Machine-language Disk I/O0 147

Smail vperatng System

. Continued Listing
491F 1845

4921
4921 C5
4922 D5
4923 E5
4924 214648
4927 35 .
4928 201F
492A 3619
492C 210147
492F 34
4930 7E
4931 FE3C
4933 2014
4935 3600
4937 23
4938 34
4939 7E
493A FE3C
493C 200B
493E 3600
4949 23
4941 34
4942 7E
4943 FE18
4945 2002
4947 3600
4949 210047
494C 34
494D 210D47
4950 7D
4951 FE21
4953 280F
4955 5E
4956 2C
4957 56
4958 2C
4959 E5
495A 216049
495D E5
495E D5

495F C9
4960 El
4961 18ED
4963 El
4964 D1
4965 C1
4966 3AEC37
4969 3AE@37
496C F1
496D FB
496E C9

148 Chapter 9

99143 DSKINT JR
80144 ;
#0145 INTDO EQU

00146 PUSH
00147 PUSH
00148 PUSH
09149 LD *
00150 DEC
PP151 JR
P0152 LD
09153 LD
09154 INC
#0155 LD
#0156 CP
90157 JR
00158 LD
60159 INC
90160 INC
90161 LD
00162 CP
00163 JR
90164 LD
90165 INC
00166 INC
00167 LD
00168 CP
09169 JR
90170 LD
09171 INT@4 LD
00172 INC
00173 LD
00174 INT@5 LD
00175 CP
00176 JR
008177 LD
00178 INC
00179 LD
00180 INC
00181 PUSH
00182 LD
09183 PUSH
00184 PUSH
60185 RET
00186 INTG7 POP
00187 JR
00188 INT@6 POP
00189 POP
68190 POP
00191 INTDUN LD
00192 LD
90193 POP
00194 EI

90195 RETINT RET

INTDUN

$

BC

DE

HL
HL,CLK25
(HL)
NZ,INT@4
(HL) , 25
HL, SECS
(HL)

A, (HL)
60
NZ,INT@4
(HL) ,0
HL

(HL)

A, (HL)

60
NZ,INT@4
(HL) ,0

HL

(HL)

A, (HL)

24
NZ,INTO4
(HL) ,0
HL,TICKS
(HL)

HL, INTQUE
A, L
INTEND&255
Z,INTO6
Er (HL) '

L

D, (HL)
L

HL
HL, INTO7
HL

DE

HL

INT@5

HL

DE

BC

A, (37ECH)
A, (INTRST)
AF

;GET 40MS COUNT
;BUMP SEC?
iN |
;RESTOR REF
iGET SECS
;BMP SECS
;GET VAL
;BMP MINS?
;N

;CLR SECS

; HL->MINS
;BMP MINS
iGET MINS
:BMP HOURS?
N

;RESET MINS
7 HL->HOURS

W DAY
CKS COUNTER
P MOD 256

'-B’Z

NEW
I
BM
INT QUEUES
GET L

QUEUES DONE?
Y

GET ADR OF
e NITR
o
MSB

NE NS WO N W WO e %o N W W

;SAV NEXT QUE PTR
¢ RET ADR

¢ PUSH

: PUSH QUE ADR FOR
iJMP

;JMP TO QUE

;GET NEXT QUE PTR
: CONT

 RESTO REGS

:CLR FDC
s RESET CLK

;s ENABLE INT
s+ RET

Listing Continued . . .

.. . Continued Listing

4800
484ﬂ 83
PA
00
Booo

4841
4842
4843

4845 00

4846 19
0000
0000
0000
0000
0000
0000
00

03
0000

4847
4849
484B
484D
484F
4851
4853
4854
4855

4857

4863 0000

4865 00

;BITA= CHECK

4900

Ao
TIUVW

4900
4901
4904
4905
4907
4908

AQA N

e R - ¥ %

490D
490E
4910
4912 2094
4914
4916 2009
4918
4919 E3

491A 224348
491D E3
F5

491E

080897
00098
PeB99

00100
00101
0olo2

00103
00104

00105
Po106
pa107
00108
001089
00110
00111
09112
pB113

p0114

00118
0119

09120

09121
00122

e % B B B

89123
00124
0125
00126
00127
@128
00129
008139

71121
gUJ.JJ.

pP132
009133
00134
00135
00136
PB137
00138

28139

00140
0141
009142

Small Operating System

r
INPBUF DS 64 : DOSINP BUFF
DRIVES DB 3 ;4% DRIVES IN
; SYSTEM
RETRY DB 10 :# I/0 RETRIES
RTCNT NOP , ; RE-TRY COUNTER
DSKRET DW 0 :DSK DVR ERR RET
; ADR
DSKRS NOP :I/0 IN PROGRESS
' ; FLAG
CLK25 DB 25 ; INT CLK SECONDS
s+REF
Wl DW 0 ;WORK REGS, TEMP
W2 DW g
W3 DW)
W4 DW /]
IOBUF DW) ;I/0 BUFF PTR
TKSEC DW] ;CYL & SEC
SPEED NOP ; SPEED MOD MULT
HIDRV DB 3 s HIGHEST DRIVE #
LINPAR DW 1) ;PTR TO RUN
; PARAMS
FCB DM 9,0,0,0,0,0,0,0,0,0,0,0
00 00 00 00 00 00 00 90 00 00 00 @0
LINPTR DW /) : PARAM PTR FOR
_ : EXEC
STAT1 NOP : SYSSTAT
;AUTO IF 0
['s
5 INTERRUPT ROUTINE
’
ORG 4900H
7
INTER EQU $
PUSH AF :SAVE AF
LD A, (INTRST) ;GET INT LATCH
RLA ;VALID INT?
JR NC,DSKINT ;N
RLA ;DISK INT?
JR C,DSKINT ;Y
[
LD A, (DSKRS) :I/0 IN PROG?
OR A :?
JR Z, INTDO ;N
BIT 7, (HL) -3 ;DRIVE TIME OUT?
JR NZ,INT@1 ;Y
BIT @, (HL) ;I/0 DUN?
JR NZ, INTDO s N
INTO1 POP AF ;RESTO AF
EX {SP) ,HL :GET RET ADR
LD HL, (DSKRET) ;GET ERROR RET
EX (SP) ,HL ; PUSH
PUSH AF ; SAVE AF

Listing Continued . . .

Machine-language Disk I/0 149

Small Operating System

... Continued Listing

42769

4A69 CDAG4A
4A6C F5
4A6D CD7A4A
4A790 F1
4A71 E5
4A72 FD6E@A
4A75 FD660B
4A78 E3

4A79 C9

4A7A

4A7A E5
4A7B CB@1
4A7D 69
4A7E 264A

4A80 7E

4A81 23
4A82 66
4A83 6F
4A84 E5
4A85 FDEl
4A87 El1
4A88 C9

4A89 E3
4ABA 229E4A

4A98 DDE1l
4A9A CDA@G4A

4A9D C30000

150 Chapter 9

00243
00244
PB245
00246
0247
00248
00249
00250
08251
00252

pB253
08254
00255
00256
008257
00258
PB259
00260
00261

00262

00263
00264
00265
00266
00267
pe268
P0269
00270
00271
00272
0B273

00274

p0B275
00276
002717

0278
PB279
00280
08281
pp282
00283
00284
0285

i

v0287

286 .

i
DSKHAN

HJ ~e ~e ~s

REP

EX2

EQU
CALL
PUSH
CALL
POP
PUSH
LD
LD
EX

RET

s
SAVREG
GETDCT
AF

HL

L, (IY+10)
H, (IY+1l)
(Sp) ,HL

GET DRIVE DCT IN IY

'EQU

PUSH
RLC
LD
LD

LD

INC
LD
LD
PUSH
POP
POP
RET

$
HL
C
LAY

H,DCTM
A, (HL)

HL

H, (HL)
L,A
HL

IY
HL

SAVE REGS ON STACK

EQU
EX

LD
POP
LD

RLCA
JR
LD
OR
JR
PUSH
POP
CALL

JP

EQU

$
(SP) ,HL

(JRET+1) ,HL

SAVREG

#SAVE REGS ON STK
iSAVE ENTRY CODE
iGET DRIVE DCT

¢ ENTRY CODE

:SAVE HL (BUFF)
iGET DRIVER ADR

¢ MSB

i SAVE DVR ADR,
;GET

T
HE+ 3 ¥

iJMP TO DVR

¢ SAVE HL
+DOUBLE C

iXFR TO L
HL->DCT PTR FOR
; DRV

GET LSB OF DCT
; ADR

;BMP PTR

iGET MSB OF DCT
7 HL->DCT

v [« mamn ri7
;PASo iU 11X

;RESTO HL

iSAVE REGS, CHK

D
s+ FCB

;SAVE HL, GET RET
sADR

s STOR RET

s RESTOR HL
+GET FCB CTRL
sBYTE

;FCB OPEN?
;YES, CK

s NOT OPEN ERR
s SET NZ

s RET

s MAKE IX=FCB

+PUSH REGS ON
+ STACK

Listing Continued.. . .

Small Operating System

.. . Continued Listing .
4AAQ 224748 00288 LD (Wl) ,HL ;s SAVE HL

4AA3 E3 90289 EX - (SP) ,HL ;PUSH HL, GET RET
4AA4 22BD4A 00299 LD (SRVEC+1) ,H ;STO RET ADR
4AA7 D5 60291 -PUSH = DE : ; SAVE ALL REGS
4AA8 C5 . 96292 : PUSH BC
4AA9 FDES 00293 PUSH Iy
'4AAB DDE5 00294 PUSH® 11X
4AAD D9 : 98295 EXX ; PRIMES
4AAE E5 P0296 PUSH HL
4AAF D5 008297 _ PUSH DE
4AB@ C5 090298 " PUSH BC
4AB1 D9 . 68299 EXX : RE-SWITCH
4AB2 08 00300 EX AF,AF' $SWI
4AB3 F5 00391 PUSH AF : SAVE AF
4AB4 08 00302 EX ~ AF,AF!
4AB5 21BF4A 00303 LD HL,REGRES ;RESTO RET ADR
AAB8 ES5 90304 'PUSH HL . ;PUSH FOR RET
4AB9 2A4748 00305 LD HL, (W1) _ : RESTO HL
4ABC C30000 00306 SRVEC JP 0 ;RET TO CALLER
. . wuvsvi/ ;
4ABF ‘ @308 REGRES EQU $;: RESTOR PUSHED
: v s REGS
4ABF 08 . 90309 EX AF,AF! ;GET PRIM
4ACO F1 00310 POP AF :REST
4AC1l 98 © p@311 EX AF,AF'
4AC2 D9 00312 EXX : PRIMES
4AC3 C1 99313 POP BC
4AC4 D1 88314 POP DE
4AC5 E1 90315 POP HL
4AC6 D9 - 90316 EXX
4AC7 DDE1l 08317 POP IX
4AC9 FDEl 99318 POP 1Y
4ACB Cl 9319 . POP BC
4ACC D1 983280 POP DE
4ACD El1 99321 POP HL
AACE C9 98322 RET :RET TO ORG
; CALLER
99323 ;
00324 ; SINGLE DENSITY DISK DRIVER
66325 ; ' o
4ACF 0326 DSKDVR EQU $
4ACF 224F48 009327 LD (IOBUF) ,HL :STO IO BUF
4AD2 ED535148 00328 LD (TKSEC) ,DE ;STO TK & SEC
AAD6 21EC37 08329 LD HL,CMD ;HL->FDC CMD/STAT
4AD9 3D 003340 DEC A : SEEK?
4ADA 2843 99331 JR %, SEEK1 ;Y
4ADC 3D 0332 DEC A « 3;SELECT?
4ADD 2862 @9333 JR %,SEL1 ‘
4ADF 3D 90334 DEC A ; VALIDATE
.4AE@ CAF94A 90335 JP %,VALID1
4AE3 3D 00336 DEC A ; READ SEC?
4AE4 CA864R 98337 Jp % , READ1 ;Y
4AE7 3D 90338 DEC A :READ ADR
4AE8 C8 @0339 RET yA

Listing Continued . . .

Machine-language Disk I/O0 151

rramsusaL VI QULILE DY SLEL

... Continued Listing

4AE9 3D
4AEA C8
4AEB 3D
4AEC CA8D4B
4AEF 3D
4AF0 CA944B
4AF3 3D
4AF4 C8
4AF5 3D
4AF6 286B
4AF8 C9

4AF9

4AF9 36D@
4AFB CD414B
4AFE 010029
4B01 CD124B
4B04 20FB

4B06 CD124B
4B09 28FB
4BOB CD124B
4BOE 20FB
4Bl9 AF
4Bl11 C9
4B12 78
4B13 B1
4Bl4 2804
4Bl16 @B
4B17 CB4E

4B19 C9
4B1A F1
4B1B 3El5
4B1D B7
4BlE C9

4Bl1F

4Bl1F D5
4B20 CD634B
4B23 D1
4B24 CD414B
4B27 ED53EE37
4B2B 7A
4B2C FDBE@4
4B2F C8
4B30 3El¢
4B32 FDB606
4B35 77
4B36 CD5E4B
4B39 CD414B
4B3C CB46

162 Chapter 9

00340
PB341
00342
00343
00344
08345
00346
pB347
po348
P0349
00350
@351
p0352
@353
PB354
pe355
0356
00357
00358
00359

pe360
P0361
00362
P0363
00364
PB365
0366
0367
Po368
Pe369
PO370

PB371
PB372
PB373
00374
BB375
8376
0B377
PB378
00379
o380
po381
p@382
pB383
PP384
Pa385
00386
00387
po388
0389
00390
p0391

< ~o we wg

ALID]1

VD2
VD3

VTDE

14
SEEK1

WAIT
Woo

DEC
RET
DEC
JP
DEC -
JP
DEC’
RET
DEC
JR
RET

N:DEJPE@D#N

Bong

r INIT1

VALIDATE DRIVE

EQU

LD
- CALL

LD

CALL
JR

CALL
JR
CALL
JR
XOR
RET
LD
OR
JR
DEC
BIT

RET

POP
LD

OR
RET

EQU
PUSH
CALL

POP
CALL

LD
LD
Ccp
RET
LD
OR
LD

CALL

CALL
BIT

-

(HL) ,0DPH
SEL1
BC,2000H
VDT

I
NZ rVUL

VDT
Z ,VD2

VDT

NZ,VD3

>

DE
INIT1
DE

SEL1

(SEC) ,DE
A,D
(IY+4)

Z

A,10H
(1Y+6)
(HL) ,A

T ATy

DELAY
SEL1
#,(HL)

;READ TRK
iWRITE SEC?
iWRITE PROT
: FORMAT?

;INIT DRV?
2 Y

: FCD=MODE 1

i SELECT DRV

¢ TEST LENGTH

;s TEST

;LOOP IF INDEX
+HOLE

;s TEST

;LOOP IN NOT INX
; TEST

;LOOP IF INX HOLE
+NO ERR

iGET COUNT

¢ ERROR?

1 YES

¢ DEC COUNT

iRET WITH INDEX
s STAT

KILL INT CALL
7 ERR
;SET FLAGS

¢SAVE TRK & SEC
:INIT DRV

{GET TRK & SEC
s SELECT

:STO TRK & SEC
¢GET TRK
;ALREADY HERE?
;Y

r

i SEEK W/VERF
7ADD STEP BITS
+ ISSUE CMD
:DELAY FOR FDC
i SEL DRIVE

s DONE?

Listing Continued . . .

. Continued Listing

4B3E
4B40
4B41
4B42
4B43
4B46
4B49
4B4A
4B4B
4B4C
4B4D
4B50
4B54
4B56
4B58
4B5B
4B5C

4B5E

4B5F
4B60
4B61
4B62

4B63
4B67
4B68
4B6C
4B70
4B72
4B75
4B77
4B79
4B7A
4B7C
4B7F
4B80P
4B83
4B85

4B86
4B89
4B8D
4B90
4B94
4B97

4B9B
PARS

A on o

20F9

C9

7E

F5
FD7EG1
32E037
Fl

07

Do

C5
pl608C
FDCBO26E
2002
P646
CD6009
Cl
18E3

E3
E3
E3

E3
C9

FDCB@ 246
Cco

FDCB@ 2C6
FD360400
0660
CD414B
36D0
CB56

Co

3E60
FDB606
77
CD364B
10ED

C9

CD9B4B
88031A02
CD9B4B
A80B1200
CD9B4B
A90B1209

E3

32CF4B
23
7E

32094C

#0392
09393

20394 ¢

00395
P0396
pB397
90398
00399
po400
0401
00402
00403
00404
00405
00406
00407
PP408
00409
Po4l10

p0411
00412
00413
p0414

0415 ;

po4le
00417
00418
pP419
00420
po421
00422
00423
po424
pB425
00426
pp4a27
00428
00429
20430

po431 ;

pg4a32
P9433
po434
0435
00436
00437

0438 ;

0439

00440
0441
po442
P0443
00444

S0l

DELAY

INIT1

100

READ1
WRITEl

PROT1

TASK

JR
RET
LD

e

PUSH

- LD

POP
RLCA
RET
PUSH
.D
BIT
JR
LD
CALL
POP
JR

EX

EX
EX
EX
RET

BIT
RET
SET
LD
LD
CALL
LD
BIT
RET
LD
OR
LD
CALL
DJINZ
RET

CALL
DB
CALL
DB
CALL
DB

EX

LD
LD
INC
LD
LD

(SEL) ,A
AF

NC

BC
BC, 8C60H
5,(IY+2)
B, 46H
60H

BC

SEL1

0,(1Y+2)
NZ
0,(1Y+2)

- (IY+4) ,0

B, 96

SEL1

(HL) ,@D0OH
2, (HL)

NZ

A,60H
(IY+6)
(HL) ,A
WAIT

160

TASK

88H,3,1AH,2

TASK

PA8H,11,18,0

TASK

PA9H,11,18,0

(SP) ,HL

A, (HL)

(ISSUE+1) ,A

HL
A, (HL)

(ERROR+1) ,A

Small Operating System

2
S

nrn

iGET S
SAVE STAT

GET DRV SELCOD
SELECT

GET PREV STAT
WERE DRVS ON?
:Y

¢ WO Ne “e ™e N wo we

;1/2 SEC DELAY
¢ROM DELAY RTN
;RES BC

iRESEL & RET

;DRV INIT?
;X N

s MAKE INIT
sRESET TRK #

s MAX TRK CNT

;s SELECT DRIV
sTYPE 1 MODE
;CYL 02

+DONE

;STEP OUT CMD
;ADD STEP RATE
$STEP OUT
sWAIT TIL DONE
; CONT

+DO FUNC
+CMD, STA ERRCOD

s SAVE CMDREG, GET
sGET FDC CMDS
; STO '
;BMP PTR
sGET STA ERRCOD
: STO

Listing Continued . . .

Machine-language Disk I/O 153

Small Operating System

... Continued Listing

4BAS5
4BA6
4BA7
4BAS8
4BA9
4BAA
4BAD
4 BAE

4BBl1
4BB4
4BB7
4BB8
4BB9

4BBA
4BBD
4BCl
4BC4

4BC6 E

4BCA
4BCD

4BCE

4BD@
4BD3
4BD4
4BD6
4BD7
4BD8
4BD9
4BDA
4BDC
4BDE
4BE@
4BE2

4BE4 2

4BE6
4BES8
4BEA
4BEA

4BEB
4BEC
4BED
4BEF
4BF0
4BF1
4BF3

4BF4
4BF6
4BF7
4BF9
4BFB

23
7E
23
66
6F
22D64B
El
3A4148

324248
CDBA4B
7B
B7
C9

21EC37
ED5B5148
CD1F4B
36D0

1E15
D8

3815
a7

3812
78
1Ed9
E61C
C8

164 Chapter 9

00445
00446
00447

ﬂﬂAAg

= R F X

00449
00450
00451
00452

00453
0454

BB455

00456
00457
po4a58
0459
o460
o461
P0462

2463

00464
00465
PB466
00467
0468
00469
o470

00471

00472
p0473
00474
00475
00476
poB477
00478

00479

00480
o481
p0482
00483
00484
0485
P0486

pB487

po488
p0489
00490
o491

P0492
00493

00494

0495
00496

’

ISSUE
LooP

XFER

DIO

IODUN

-e

REDO |

-INC

LD
INC
LD
LD
LD
POP
LD

LD
CALL
LD
OR
RET

LD
LD
CALL
LD
LD
LD
DI
LD
CALL
LD
JR
NOP
NOP
INC
LD
BIT
JR
BIT
JR
BIT
JR
BIT
JR
EQU
LD
EI
LD
RLCA
LD
RET
RLCA
JR
RLCA

JR
LD
LD
AND

RET

HL
A, (HL)
HL

H, (HL)

L,A
(XFER) , HL
HL

A, (RETRY)

(RTCNT) ,A

 REDO
. AE
A

‘HL,CMD

DE, (TKSEC)
SEEK1

(HL) ,8D@OH
BC, (IOBUF)
DE,DATA

(HL) ,0
DELAY
A, (BC)
DIO

" BC

A, (BC)
1, (HL)
NZ ,XFER
@, (HL)
Z , IODUN
1, (HL)

'NZ,XFER

7, (HL)
Z,DIO
$

‘A, (HL)

- ;BMP PTR |
;GET XFER OPS

iMSB" XFR OPS
iHL=XFER OPS
:STO XFER OPS
#HL=37ECH, CMD
iGET # I/0
iRETRIES

;STO IN CNT
:DO 1/0"

;GET ERRCOD
:SET FLAG

iRE-INIT CMD REG
;GET TK & SEC
i SEEK IF NOT
;RESET FDC
iGET I/0 BUFF
i DATA REG
;KILL INT

i ISSUE CMD -
iDELAY FOR FDC
iGET BUF CHR

; CONT

#XFER OPS HERE

:BMP BUFF
;GET NEXT BUF CHR
: DRQ?

: DUN?
s DRQ?

; TIME ouT?
iN

iGET FDC STAT
 ENABLE INT
iSAVE ERR COD

: TIME OUT?

:TIME OUT ERRCOD
'Y

’

{WR PROT/SEC TYP?

{WR FAULT/SEC
: TYP?

{GET FDC STAT
; INIT NO ERR
7 ERR?
iN
Listing Continued . . .

.. . Continued Listing

4BFC
4BFF
4Cp0
4CO2
4C06

4C@8
4CQA
4COB
4C4C
4COD
4CQE

4COF .

4Cl10
4Cl1
4Cl12
4C13
4Cl4
4Cl15
4Cl6

4Cl17
4C18

214248
35

2806
FDCBO286
18B2

1E00
oF
pF
oF
D8
1C
oF
D8
1cC
oF
D8
1C
oF
D8

1C
Cco

CDAG4A
D5
DDEl
4F
3A5448
B9

- 382A

DD3600 89
DD360109
DD7502

DD7403
DD360400

DD360500

DD7106
DD360700

DD360800
DD360900
DD7006A

AF
C9
3E10

00497
00498
0499
00500
0501
00502 ;
#0503 ERROR
00504
00505
p@506
08507
pe508
o509
0510
00511
PB512
P@513
00514
90515
@516

p@517
pB518

Pp519
00520
0521
p@522
90523
0524
P0525
pB526
008527
p0528
00529
0530
0531
pB532

Q we S0~

PEN

09533
pB8534

00535

PB536
00537

0538
0@539
00540

PB541
p0542
P0543 EX1

LD
DEC
JR
RES
JR
LD
RRCA
RRCA
RRCA
RET
INC
RRCA
RET
INC
RRCA
RET
INC
RRCA
RET

INC
RET

HL, RTCNT
(HL)

0,(1Y+2)

"REDO

E,Q

FCB HANDLERS

EQU
CALL
PUSH
POP
LD
LD
Cp
JR
LD
LD
LD

LD
LD

LD

LD
LD

LD
LD
LD

XOR
RET
LD

$

SAVREG
DE

IX

C'A

A, (HIDRV)
C

C, EX1
(IX),80H
(IX+1),0
(IX+2),L

(IX+3) ,H
(IX+4) ,0

(IX+5) ,0

(IX+6) ,C
(IX+7) ,0

(IX+8) ,0
(IX+9) ,0

(IX+19) ,B

A
A,16

Small Operating System

s RETRY CNT
;s RETRY?
;NO, ERR

: FORCE INIT
; REDO

; ERRCOD START

; PARITY ERROR
s RECORD NOT FOUND

;WR FAULT/SEC
: TYP=6

;s MUST BE

;WR PROT/SEC
1 TYP=7

;OPEN FCB

;: SAVE REGS

;GET FCB IN IX

; IX->FCB

;XFER DRIV #
sGET HIGH DRV #
;BAD DRIVE?

s YES

s INIT CTRL BYTE
;CLR STATUS BYTE
;STOR LSB OF 1I/0
;s BUFF

; STOR MSB OF BUFF
s STARTING SEC,

; TRK=0,0

; (SEE @DEFIN

; CALL)

; STOR DRIVE

;CLR 'NEXT REC'
;s FIELD

: STORE LOGICAL
E

O ERROR

E

AD DRIVE ERR
Listing Continued . . .

Machine-language Disk I/O 155

Small Operating System

. .. Continued Listing
4C52 B7 ge544 OR A ¢SET NzZ
4C53 C9 90545 RET :
: pas546 ;
08547 ; CLOSE AN FCB
#8548 ;
4C54 #0549 CLOSE EQU S
4C54 CD894A #8550 CXLL PREP :CHECK IF FCB OK
4C57 CDh6g4cC 88551 ~ CALL FLUSH iWRITE UN~-WRITTE]
iDATA (IF ANY)
4C5A Cp #0552 RET NZ iRET IF ERR
4C5B DD360000 00553 LD (IX),0 +FCB CTRL
iBYTE= OFF
4C5F C9 #8554 RET i RET
: #0555 ;
008556 ; WRITE UN-WRITTEN DATA
80557 ; :
4C60 98558 FLUSH EQU $ _
4C60 DDCBO14E 099559 BIT 1,(1xX+1) ;ANY DATA TO
; : ’ :WRITE? 4
4C64 C8 #oa569 RET Z s NO, RET
4C65 DDCBO18E #0561 RES 1,(1X+1) i RESET FLAG
4C69 C33C4D #9562 JP SWRITE tWRITE REL SEC
#8563 ;
80564 ; DEFINE STARTING SECTOR IN FCB
#0565 ;
4C6C 00566 DEFIN EQU $
4C6C C5 00567 PUSH BC .+ SAVE BC
4C6D 8190099 @568 LD BC,0 i POSN FCB TO
sREC 0
4C79 CD2746 608569 CALL @POSN 7ALSO FLUSHES
= ;BUFF
4C73 C1 80570 POP BC sRESTO BC
4C74 Co 0571 RET NZ 7 ERROR
4C75 CD894A #8572 CALL PREP i SAVE REGS,
;s IX=FCB
4C78 DD4Egs S] LD C,(IX+6) ;GET DRIV
4C7B' CD7A4A 08574 CALL GETDCT iGET DCT OF DRV
4C7E FD7E®@5 #0575 LD A, (IY+5) ;GET # TRKS
4C81 BC #8576 CPp H i TRK SPEC OK?
4C82 3813 86577 JR C,EX3 iNO, ERR
4C84 DD7465 #6578 LD (IX+5),H STO TRK IN FCB
4C87 FD7E@7 80579 LD A, (IY+7) iGET SECS/TRK
4C8A E67F 98580 AND 127 s MASK VALUE
4C8C BD ggs58l CP L :SEC SPEC OK?
4C8D 3805 #0582 JR C,EX4 ;NO, ERR
4C8F DD7504 68583 LD (IX+4),L i STOR IN FCB
4C92 AF ' 00584 XOR A ;NO ERR
4C93 C9 #8585 RET
4C94 3E13 PO586 EX4 LD A,19 iBAD SEC ERR
4C96 01 009587 DEFB 1 ;s SAVE A
; (LD BC, NN)
4C97 3E12 #9588 EX3 LD A,18 iBAD TRK ERR
4C99 B7 #0589 OR A s SET NZ
4C9A C9 20590 RET
08591 ; :
pB592 ; POSN FCB TO RECORD _ Listing Continued . . .

1566 Chapter 9

Continued Listing

4C9B
4C9B
4C9E

4CAl
4CA4
4CAb
4CA7

4CA9
4CAA
4CAD
4CAE
4CAF
4CBl
4CB2
4CB3
4CB5

F WalsVad

4CB®6
4CB7
4CB9
4CBA
4CBC

4CBD
4CBE

AN
vl

4CC4

4CC7
4CC8

4CC9o

4CC9
4CCC
4CDP
4CD1
4CD2

4CD5
4CD5

4CD6
4CD9
4CDA
4CDB
4CDC
4CEQ
4CE3

Cb894A
CD604C

DD7E@A
1E60
B7

Cl
DD7108

A X W/ Yo}
DPD70669

DD7707

AF
C9

CDAP4A
DDCB@@7E
C8

#5
CAF@4C

C5

CD224D
Cl
Co

71
DDCBO1CE

N ad

DD3407
2802

90593
00594
008595
#0596

00597
98598
#0599
00600

Y, P N,

00625
00626
00627
00628
00629
00630

90631

23632

N

@633
00634

90635
00636
00637

00638
80639

o

00640
Po641

’
POSN

PO3

PO4

POl

) we we =~
]

3

1]

4

=
=
t
-
(@]

T w0 e ~

YTEO

EQU $

CALL PREP
CALL FLUSH

LD A, (IX+10)
LD E,0

OR A

JR Z,PO1
XOR A

LD HL, 0

INC B

DEC B

JR NZ,PO3
INC © C

DEC c

JR 7, PO4
ADD A,E

DEC BC

JR NC, PO2
INC HL

JR P02

PUSH HL

POP BC

LD (IX+8) ,C
LD (IX+9) ,B
LD (IX+7) ,A
XOR A

RET

HANDLE BYTE I/0 VIA 13H,

EQU $

CALL SAVREG

BIT 7,(IX)

RET Z

DEC B

JP Z,BYTEI

WRITE A BYTE

EQU $

PUSH BC

CALL SREAD
POP BC

RET NZ

LD (HL) ,C
SET 1,{IX+1)
INC (IX+7)
JR 2 ,BTX

Small Operating System

;VERF FCB

;FLUSH BUFF IF

s NEEDED

;GET LOG REC LEN
s DE=LRL

LRL=2567?

;1 YES,
;SEC #
;s A=0
sHL=SEC @

sMSB REC # 07

i ?

;s NO

;LSB REC # @7

i?

s POSN DONE

:ADD LRL

;s DEC REC CNT

;GO IF NC

;BMP REL SEC CNT
;s CONT

; PASS REL SEC TO
;BC

BC=REL

#STOR LSB OF SEC
+MSB OF SECTOR
#STOR BYTE WITHIN
; SEC

: NO ERROR

1BH ROM CALLS

+SAV REGS
;s FCB?

s NO, RET

s READ?

s READ BYTE

; C=BYT

:MAKE BUFF=SEC

; C=BYTE

iGO IF SREAD ERR
;XFR BYT TO BUFF
; '"BUFF=0/S DATA'
:BMP CUR BYTE #
;GO IF TIME TO
;WRITE

Listing Continued . . .

Machine-language Disk I/O

167

Small Operating System

- Coﬁtinued Listing

4CE5 AF 90642 .- XOR A :NO ERR
4CE6 C9 90643 RET
4CE7 CD604C 00644 BTX CALL FLUSH :WRITE BUFF
ACEA CO 00645 RET NZ : ERROR
4CEB CD164D 00646 - CALL INCSEC :BMP SEC #
4CEE AF . 00647 XOR A :NO ERR
ACEF C9 00648 RET
' 00649 ;
90650 ; READ A BYTE
- gP651 ;
4CF0 00652 BYTEI EQU $
4CF@ CD68AC 00653 CALL FLUSH - ;FLUSH BUFF IF
: ; NEEDED
4CF3 CD224D 00654 CALL SREAD :READ NEXT SEC
4CF6 CO 90655 RET NZ ; ERR
4CF7 CDPOG4D 090656 BIP - CALL PTHL s HL->NEXT BYT
4CFA CD124D 00657 CALL INCBYT ;BMP FCB 'NEXT
;BYTE'
4CFD AF 90658 XOR A :SET ZERO FLAG
ACFE 7E 60659 LD A, (HL) :GET BYTE
; FINALLY!
- 4CFF C9 00660 RET ;:RET
0661 ;
4D09 CDOUB4AD 009662 PTHL CALL PTH ; HL->BUFFER
4D@3 DD7EQ7 00663 LD A, (IX+7) :GET CUR BYTE
4DP6 85 00664 ADD A, L ;ADD CUR BYT
4DP7 6F 90665 LD L,A ;: XFER
4Dg8 DG 09666 RET NC :RET IF HL->BYTE
4DP9 24 00667 INC H ;BMP MSB,
; COMPEN=-"
; SATE FOR
; CROSSING
0668 : PAGE BOUNDRIES
4DBA C9 90669 RET
4DPB DD6E@2 00670 LD L, (IX+2) :GET LSB BUFF PTR
4D@E DD6683 8671 LD H, (IX+3) ;GET MSB
4D11 C9 00672 RET
60673
4D12 DD34@7 090674 INC (IX+7) :BMP NEXT BYT
4D15 CP 00675 RET NZ :RET IF OK
4D16 DDCBO186 00676 RES 0, (IX+1) ;RES 'BUFF=SEC'
; FLAG
4D1A DD3498 00677 INC (IX+8) ;BMP NEXT SEC
_ 4D1D C@ 80678 RET NZ :RET IF NO MSB
y ' ; BMP
_4D1E DD3409 00679 INC (IX+9) ;BMP MSB OF NEXT
’ ;1 SEC
4D21 C9 00680 RET
90681 ;
00682 ; READ THE FCB'S 'NEXT' SECTOR
PP683 ; (NOT A USER CALL)
00684 ;
4D22 PP685 S EQU $

158 Chapter 9

Listing Continued . . .

4D22
4D26
4D28
4D29
4D2A

4D2D
4D30

- 4D33

4D36
4D37
4D3B

4D3C
4D3C

4D3F
4D42
4D45
4D49
4D4C

4D4F
4D4F
4D52
4D55
4D58
4D5B

4DSE

. 4D61

Avrn

4U04

4D63
4D64

4D65
4D66
4D69

ATMVC T
$L/0D

4D6C
4D6E
4D70
4D71

4D73
4D73
4D76
4D79

. .. Continued Listing

DDCBP146
2802

AF

C9

‘CD4F4D

DD4 E@6
CD@B4D
CDP946
Co

c9

CD4F4D

DD4 E@6
CD@B4D
DDCB@156
CAl246
C31546

DD4 E@6
CD7A4A
DD5E@G 4
DD5605
DD4EO8

DD4609
78
Bl
C8

gB

1C
FD7E@7
E67F

BB

20F3
1E00
14

18EE

CD894A
DD7E@GA
B7

DDCB@1C6

00686
00687
P0688
00689
00690

00691
0692
00693
00694
90695
00696
00697
PP698
00699
0709
0701

0B702
00703
po704
0705
00706
o707
00708
00709
00719
po711
00712
pR713
00714
90715

o716
0e717
6o718
p0719

0720

00721
0722
00723
ve724

00725
00726
00727
o728
00729
00730

68731

0732
Pe733
00734
@735

) N ~o e

w\m ~e e

BIT
JR
XOR
RET
CALL
3

LD
CALL
CALL
RET
SET
RET

WRITE

EQU
CALL

LD
CALL
BIT
JP
JP

COMPUTE

EQU
LD
CALL
LD
LD
LD

LD
LD
OR
RET

DEC

INC
LD
AND
Cp

- JR

LD
INC
JR

@,(IX+1)
Z,S81
A

comp

C, (IX+6)
PTH
@RSEC
NZ
0,(IX+1)

THE FCB'S 'NEXT'

$
COMP

C, (IX+6)
PTH

2, (IX+1)
Z,@WSEC
@WSECP

Small Operating System

FF SECTOR?

= = W
ooc

td
o
w

COMPUTE TRK &
SEC

GET DRIVE
HL->BUFF
R

10 WO We WP W We We

SECTOR

; COMPUTE TRK &
:SEC

:GET DRIV

s HL->BUFFER
iWRITE SEC PROT?
s NO

1 YES

REAL TRK & SEC FROM REL SEC

$
C,(IX+6)
GETDCT
E, (IX+4)
D, (IX45)
C,(IX+8)

B, (IX+9)
C
'/

BC

E

A, (IY+7)
127 |

E

NZ,COl1
E,0
D

. Col

READ NEXT RECORD

EQU
CALL
LD
OR

$

PREP

A, (IX+10)
A

iGET DRIV

:GET DCT

s STA SECTOR
+STA TRK

iGET REL SEC TO
7 COMP

;DONE?

:?

sYES, DE=TRK &
;s SEC

sDEC REC SEC

7 COUNT

+BMP SEC #
;GET SEC #
;GET # SEC/TRK
;s TIME TO BUMP TRK
s #2
s NO
s RESET SECTOR CNT
;BMP TRK
; CONT

+VERF FCB
sGET LEL
s LRL=2567

Listing Continued . . .

Machine-language Disk I/O 159

Small Operating System

... Continued Listing

4D7A
4D7C
4D7D
4D80
4D81
4D82
4D83
4D85
4D86

4D87

4D8BA DDCB@186

4D8BE
4D91
4D92
4D95
4D96

4D97
4D97
4D9A
4D9D
4D9E
4DAD
4DA1
4DA2
4DA5
4DA6
4DA7
4DA9
4DAA

4DAB
4DAB
4DAE
4DAF
4DB2
4DB3

4DB4
4DB7
4DBY
4DBC
4DBD
4DBF
4DCO

4DC3
4DC4
4DC6

160 Chapter 9

280B
47
CDl300
Co

Cbé6g4C

CD224D
Co
CD164D
AF
C9

CD894A
DD7EGA

7E
CD1BO@
Co

23
19F8
AF

C9

CD3C4D
Co
CD164D
AF
C9

112540
1803
111D40
7E
FE@3
Cs8
CD1B@9

71E
FE@D
Cc8

00736
00737
00738
0739
00740
00741
o742
00743
00744
00745
00746
o747
00748
00749
00750
0751
0752
p@753
PP754
08755
0756
00757
0758
00759
00760
o761
0762
00763
00764
00765
00766
o767
0a768
00769
0e770
0771
00772
00773
00774
00775
00776
o777
o778
pe779
00780
00781
00782
09783
00784
00785

00786
00787
00788

XRO 2

WS90

!
WRI

* %o o

’
PRINT

LINE
DEV

JR . 4,XRO1
LD B,A
CALL 13H
RET NZ

LD (HL) ,A
INC HL
DJINZ XR@2
XOR A

RET

CALL FLUSH
RES B,(IX+1)
CALL SREAD
RET ~ NZ
CALL INCSEC
XOR A

RET

WRITE NEXT REC

EQU $

CALL PREP
LD A, (IX+10)
OR A

JR Z,WRI
LD B,A

LD A, (HL)
CALL 1BH
RET NZ

INC HL
DJINZ WS99
XOR A

RET

EQU $

CALL SWRITE
RET NZ
CALL INCSEC
XOR A

RET

DISP/PRINT LINE

LD DE,4025H
JR DEV

LD DE,401DH
LD A, (HL)
cp 3

RET Z

CALL 1BH

LD A, (HL)
cp 13

RET Z

1Y

;GET LRL

:READ BYTE

; ERR '

s STOR IN USEREC
;BMP HL

; LOOP

;NO ERR

:FLUSH BUFF

s BUFF<>NEXT
;READ NEXT SEC
;s ERR

sBMP SEC

s NO ERR

:VERF FCB
;GET LRL
sLRL=2567
'Y

+B=LRL

sWRITE BYT
7 ERROR

;BMP BUFPTR
: LOOP

iNO ERR

{WRITE BUFFER
; ERROR

:BMP SEC

¢NO ERR

;DCB ADR
; CON
;DCB ADR
;GET CHR
; EOL?
H 4
;WRITE BYTE TO
; DEV
;GET BYT
; EOL?
7Y
Listing Continued . . .

... Continued Listing

4DC7 23
4DC8 18F2

4DCA

00789
00790
pe791
00792

INC
JR
i

@INIT DM

system,ver 1.0 08/04/82',10,13

4DFA 0000
4DFC 111027
4DFF CD194E
4E02 11E803
4EQ5 CDl94E
4EP8 116400
4EQ0B CD194E
AEQOE 110A00
4E11 CD194E
4E14 3AFA4D
4E17 1827
4E19 C5
4E1A 0600
4E1C E5
4E1D 2AFA4D
4E20 B7
4E21 ED52
4E23 3807
4E25 F5
AE26 04
4E27 F1
4E28 2803
4E2A 18F4
4E2C 19
4E2D 22FA4D
4E30 78
4E31 El
4E32 C1
4E33 B7
4E34 2804
4E36 OEDD
4E38 1806
4E3A 79
4E3B B7
4E3C 2802
4E3E 3EF0
4E40 C630
4E42 77

4E43 23

4E44 C9
4E45 7E

08793
o794
80795
0796
o797
00798

- 00799

00800
00801
60802
p0803
po80 4
00805
00806
00807
00808
60809
TEM
09811
60812
TENE
00814
60815
60816
00817
pe818

00828
00829
po830
pB831
00832
pP833
p0834

[¥ Xo e N =4

66835
p0836
pa837
pP838

1C 1F 53 ,2F
6F 70 65 72
73 74 65 6D
30 20 30 38

-

“e Wwe “o

DEFW
Ci5 LD
’ CALL
CI4 LD
CALL
CI3 LD
CALL
C12 LD
CALL
LD
JR
PUSH
LD
PUSH
LD
LOP OR
SBC
JR
PUSH
INC
POP
JR
JR
LOP3 ADD
LOP2 LD
LD
POP
POP
OR
JR
LD
JR
LOP4A LD
OR
JR
LD
ADD
LD

—ar

INC
RET

Cvli

LOP4

’
NEXT LD

Small Operating System

HL ;BMP LINPTR
DEV : CONT

28,31,'S/0s disk operating

4F 53 2P 64 69 73 6B 20
61 74 69 6E 67 20 73 79
2C 20 76 65 72 28 31 2E
2F 30 34 2F 38 32 0A 0D

PUTS DECIMAL EQU OF (INT) VALUE.
ENTRY

HL->DEST, C=0 LEADING ZEROS
)

DE, 10000
CVIi

DE, 1000
Cvl

DE, 100
CvVli
DE,10
CVIi

A, (INT)
LOP4

BC

B'ﬂ

HL

HL, (INT)
A

HL,DE
C,LOP3
AF

B

AF
Z,LOP2
LOP
HL,DE
(INT) ,HL
A,B

HL

BC

A
Z,LOP4A
C,0
LOP4
A,C

A
Z2,LOP4
A,QF0H
A,30H
(HL) ,A
HL

A, (HL) ;GET CHR .

Listing Continued . . .

Machine-language Disk I/O 161

Small Operéting Syst’eni

... Continued Listing

4E46 FE@OD
4E48 C8
4E49 FE2C

ATVAT Qna

4E4B 2803
4EAD FE20
4E4F CO
4E50 23
4E51 18F2

AT D

aLno9

4E53 CDS5BA4E
4E56 CoO
4E57 2A4B4S8
4E5A C9

4E5B CDA@4A

4E5E CD@646
4E61 C@
4E62 CD7A4A
4E65 210045
4E68 D9
4E69 CDBB4E
4E6C B7 .
4E6D 2841
4E6F FEO1
4E71 2021
4E73 CDBBA4E
4E76 D682
4E78 47
4E79 CDBB4E
4E7C 6F
4E7D CDBB4E
4E89 67
4E8]1 CDBB4E
4E84 77
4E85 BE
4E86 2005
4E88 23
4E89 10F6
4E8B 18DC
4E8D 3Elé6

on n
4E8F 91

4E90 3El4
4E92 B7
4E93 C9

4E94 FE02
4E96 2014
4E98 CDBBA4E

ATOTN mnaa

“4LID LLnY4

4E9D 20F1
4E9F CDBB4E

162 Chapter 9

p0839
00840

P, .

P0865
b6866
pe867
0868
P0869
00879
pe871
0872
873

P W W N Te)

Vo R Y

NXX

Lt ~e we ~e

OAD

’
LODX

LMAN

LMOV

LER1
LER2

’
LXFR

CP
RET
Cp
JR
CPp
RET
INC
JR

b

13
Z
L] [}
v
Z , NXX
32
NZ
HL
NEXT

:C/R? EOL?
Y

;s COMMA?

Y, IGNOR

1 SPACE?
sNO, RET

s IGNOR SPAC
: LOOP

LOAD A OBJ PROGRAM, DE=TK, SEC, C=DRIVE

EQU
CALL
RET
LD
RET

CALL
CALL
RET
CALL
LD
EXX
CALL
OR
JR
CP
JR
CALL
SUB
LD
CALL
LD
CALL
LD
CALL
LD
Cp
JR
INC

DJINZ

JR
LD
DB
LD
OR
RET

Cp
JR
CALL
cp
JR
CALL

$

LODX
NZ

HL, (W3)

SAVREG
@VALID
NZ
GETDCT
HL,BUFF

GB

A

Zz ,LCOM
1

NZ ,LXFR
GB

2

B,A
GB

L,A

GB

H,A

GB
(HL) ,A
(HL)
NZ, LER1
HL
LMOV
LMAN
A,22

1

A' 2”

A

2

NZ , LL.COM
GB

2
NZ,LER2
GB

;s LOAD AREA
1 ERR
:GET XFR ADR

s SAV REGS

s VAL DRIVE
;DRIVE NOT READY
: IY=DCT

; INP BUFF

s SW REGS
+GET BYT

;s COMM?

iY '

; LOAD BLK?

s NO

+GET BLK LEN
;GET MEM BLK
#STO IN CNT
sGET LD ADR LSM
+XFR

sGET MSB

s XFR MSB
;GET OBJ BYT
+STO IN MEM
:VERF LD
;sBAD MEM
+BMP ADR

;1 LOOP

;DO NEXT BLK
s MEM FAULT

s PROT A

sNOT A PGRM
:SET ERR

: XFR ADR?

1 NO

;GET NXT BYT
s MUST BE 2

s NO. A PRGM
;GET XFR ADR

Listing Continued . . .

.. . Continued Listing
4EA2 6F
4EA3 CDBB4E
4EA6 67

AEA7 224B48

4EAA AF
4EAB C9

4EAC FE20
4EAE 30ED
4EB@ CDBBA4E
4EB3 47
4EB4 CDBBAE
4EB7 10FB
4EBY9 18AE .

4EBB D9
4EBC 7D
4EBD B7
4EBE 2016
4ECO FDAEOD
4EC3 CD@946
4EC6 2802
4EC8 Dl
4EC9 C9
4ECA 1C
4ECB FD7E07
4ECE E67F
4EDP BB
4ED1 2003
4ED3 1EQ0
4ED5 14
4ED6 7E
4ED7 2C
4ED8 D9
4ED9 C9

4EDA

4EDA E5
4EDB CD534E
4EDE El
4EDF CO -
4EEQG E5
4EEl1 2A4B48
4EE4 E3
4EE5 C9

4EE6 CDAO4A
4EE9 FEPA
4EEB D@
4EEC 210D47
AEEF 87

90893
00894
p0895
p0896
00897
0g898
pB899
00900
00901

. 90902

00903
poo04
008905
008906
00907
p0908
00909
00910
p0911
90912
90913
008914
pe915
@916
90917
90918

e Ro o o)

00940
00941
00942

ano A7
wwoao

90944
00945

;
LLCOM

LCOM

LCOMX

e

GB2

GBl

i
EXEC

~e wo

i
ENQUE

LD
CALL
LD
LD
XOR
RET

Cp
JR
CALL
LD
CALL
DJINZ
JR

EXX
LD
OR
JR
LD
CALL
JR
POP
RET
INC
LD
AND
CP
JR
LD
INC
LD
INC
EXX
RET

EQU
PUSH
CALL
POP
RET
PUSH
LD
EX

RET

L,A

‘GB

H,A
(W3) ,HL
A

32

NC, LER2
GB

B,A

GB
LCOMX
LMAN

A
NZ,GBl
C, (1Y)
@RSEC
% ,GB2
DE

E
A, (IY+7)
127

E
Nz ,GBl
E, 90

D
A, (HL)
L

$

HL
LOAD
HL
Nz
HL

HL, (W3)
(SP) ,HL

Small Operating System

;STO LSB
;GET MSB

;: STO

; STO IN ADR
s NO ERR

; COMM?

; NOT A PRGM
;GET COM LEN
;s XFR

; SKIP BYT

: LOOP

; CONT

: SW REGS

:GET PTR LSB
:GET SEC?

;s NO

;GET DRV

:READ SEC

;OK

:KILL INT CALL

; BMP SEC
;GET # SEC/TRK
s MASK

f oiax v

=2
o

; RESET SEC
;BMP TRK
;GET BYT

; SAVE HL

; LOAD FILE

sRESTO HL

;s ERR

; SAVE HL

;GET XFR ADR

:RES HL, PUSH JMP
:XFR TO BIN

ENQUE/DEQUE AN INTERRUPT RTN,

A=SLOT,

CALL
CP

RRET

Anid de

LD
ADD

DE->RTN

SAVREG
10

NC

HL, INTQUE

A,A

;s SAV REGS
;BAD SLOT?
:Y, RET

;QUE PTRS
:DOUBLE A

Listing Continued . . .

Machine-language Disk I/O 163

Small Operating System

... Continued Listing

4EF0
4EF1
4EF2
4EF3
4EF4
4EF5
4EF6
4EF7
4EF8
4EFB

4EFD
4EFD
4F00
4F03
AF04
4F @7
4F0A
4F0D

4F1B

4Fl1E
4F1E
4F21

4F24
4F27
4F29
AF2A
4F2B
4F2D
4F30
4F32

ARG

A TR

4F35
4F38
4F3B

AF3E
4F40
4F43
4F45
4F46
4F49
4F4C
4F4D

AF50
4F51
4F52

85
6F
F3

C9 -
116E49
18E9

32FA4D

211B4F
4C

CDOE4E
210D4AF
C33646

30300D

215D4F
221649
213F3C

ARG 1
-

A\ ol

717

BE
3620
212759
2003
221 FE49

21CA4D
CD3646
110002

PEDD
CD3046
2001
E9
CD3346
CD490 9
F3
C30D00

gg
Lo
0o
0000

164 Chapter 9

00946
00947
pp9o48

8949

00950
p@951
00952
00953
0954
PP955
PB956

68957

09958
00959
0960
90961
00962
00963
0964

0965

00966
08967
00968
00969
009790

68971

00972
00973
0974
pB975
00976
0977
00978

Q
98979

00980
00981
00982

0983
p0984
090985

88986

00987
00988
0989
00990
00991
00992
00993

28994

00995
00996

14
DOSINI

o
(]
(]
[

JPDOS

X122

EQU
LD
LD
LD
LD

LD
Ccp
LD
LD
JR
LD

AT
LAJU

LD
CALL
LD

LD
CALL
JR

TD
yr

CALL
CALL
DI
JP

DE, RETINT
ENQUE

]

3
(INT) ,A
HL, @ERM1
C,H

CI2

HL, @ERM
@LINE
'System

65 6D 26 65

~1 o0
N

'96°',13

$
HL,KIDVR

(4616H) ,HL -

HL,3C3FH
a,'a'

(HL) ,A
(HL)

(HL) ,32
HL, DODVR
NzZ,1001
(491EH) ,HL

©~

» .
HL,@INIT
@LINE
DE,200H

C,
@LOAD
Nz,X122
\I1L)
@ERROR
49H

@DH

~] O

N
(1]

<))

T =

;ADD PTR OFFSET
;1 XFR

;DISABLE INT
;STOR LSB RTN
+BMP PTR

1 STO MSB RTN

;s ENABLE INT

¢ SLOT NULLER
¢ CONT '

+STO VAL

: PLAC TO ONV
:NO LEAD @'S
1 CONV TO DEC
{GET MSG
:DISP, RET

72

+NEW KI DVR

iVID

;LC A

: STO

:LC MOD?
:STO SPACE
;VID DVR

;NO LC MOD

; STO NEW DVR

; INIT MSG
:DISP

; TRK2, SEC@, SYS
;s INP

sDRIV @

;s LOAD OBJ
;JP TO PRGM
+DIS ERR
+GET KEY
+KILL INT

;s REBOOT

LOWER CASE/REPEAT DRIVERS

ATATY

NUY

NOP
DwW

sRPT ON FLAG
;LAST ASCII CODE
s DELAY CNT

Listing Continued . . .

... Continued Listing

“4F54 00
4F55 00
4F56

4F5D

4F5D CDE303
4F60 B7
4F61 CAE94F
4F64 210838
4F67 FElA

AT, N N X ar

4F65 2007
4F6B CB56
4F6D 2003
4F6F AF
4F70 1877
4F72 FElF
4F74 2E80
4F76 2004

A1 Q MTMAZ
4L /10 LD49O

4F7A 28F3
4F7C FE20
4F7E 2013
AF80 CB46
4F82 280F
4F84 2El0
4F86 CB46

ADMNVOQO Q00
@ 00 4LOVJ

4F8A 3A554F
4F8D 2F
4F8E 32554F
4F91 18DC
4F93 4F
4F94 3A554F
4F97 B7

ARQQ 70Q
iz

Eh o

4F99 281C
4F9B FE4l
4F9D 3818
4F9F FE7B
4FAl 300C
4FA3 FE61

4FAS5 3004
4FA7 FE5SB
4FA9 306C
4FAB EE20
4FAD 1808
4FAF FE61
4FBl 3804
4FB3 FE7B
4FB5 30F4
4FB7 FElF
4FB9 2810
4FBB 2E40

90997
00998
0999

1000
01001
01002
01003
01004
01005
01006

N Xn"

VLYY
ploos
91009
01019
01011
01012
1013
P1014

o101
VilVlLD

01016
01017
01018
91019
01020
p1021
91022

T A2
ViWaLod

910624
81025
91026
91027
#1028
01029
91030

A10321

B e K o o

910632
p1033
1034
01035
01036
01037
01038

e W o

KCo

KCl

KC2

ROOGY
RO10

KC3
RO11

KC5

KC4

=
=t
o

nTm
Dll

JR
Cp
JR
BIT
JR
LD
BIT

TH
U

LD
CPL
LD
JR
LD
LD
OR

1.0

ki Bt

JR
Cp
JR
Cp
JR
CP

JR
cp

JR
XOR
JR
cp
JR
CPp
JR
CP

JR
LD

HL,3808H
26

Ty TP

NZ ,KC1
2, (HL)
NZ,KCl
A

KIl

31
L,80H
NZ ,RC2

[1 f T \
W\

Z,KCO
32

NZ,KC3
@, (HL)
Z,KC3
L’].GH
2, (HL)

7 w2
rArR L%

A, (CASE)

(CASE) ,A

Small Operating System

: RATE

s+ KI DVR

:+ SCAN KB

:NEW KEY?

i N

:VID MEM

sCTRL 2

iN

:1Z KEY ON?

4

; NUL SHIFT DWN
: CON

;CLEAR ASC 312
sHL=3880H, SHIFT
s NOT CLEAR KEY

e QI TEIMD
fonLr i

:N, NULL CLEAR

: SPACE?

+N

s SHIFT?

s N

:TO 0 KEY

;ON?

N

;GET CASE FLAG
;s SWITCH

:+ STO

s NUL SPACE
:STO INP KEY
;GET CASE

s NORM?

:GET CHR

ik Wwdise

;GO IF NORM
sLET?

i N

;LET?

H

;1 L/C?

s SWITCH

: LET?

iN
SWITCH CASE

WO WO NE WA WE NI NS W W W

L=3840H
Listing Continued . . .

Machine-language Disk I/O 165

Small Operating System

... Continued Listing

4FBD CB4E 01050 BIT 1, (HL) ;i CLEAR PRESSED?

4FBF 280A 91051 JR Z,KI6A /N

4FCl FE60 01052 Cp 1 : ;L/C?

4FC3 30E6 01053 JR NC,KC5 :MAKE U/C

4FC5 E6TF 010654 AND 7FH iGET REL FUNC
: CODE

4FC7 D629 #1055 SUB ; 32 i MAK REL

4FC9 C680 91056 ADD - A,128 +MAKE FUNCTION
: CODE

4FCB 01057 ROO4 EQU $

4FCB 32514F 01058 KI6A LD (LSTK) ,A :STO KEY

4FCE F5 01059 PUSH AF $SAV CHR

4FCF AF 01060 XOR A ;CLR RPT DELAY

4FDO 32504F 01061 ROQL LD (RPF) ,A i RPT OFF

4FD3 218001 01062 LD HL,180H ;DELAY TIME

4FD6 22524F 0l063 ROG5 LD (DELA) , HL ; INIT

4FD9 213640 01064 LD HL,4036H KEYS PRESSED

: iBUFFER

4FDC 11564F #1065 RO13 LD DE,KPB i RPT BUF

4FDF 010700 01066 LD BC,7 :# BYTS

4FE2 EDB® 01067 LDIR : MOVE

4FE4 F1 01068 POP AF ;GET CHR

4FE5 C9 01969 RET : RET

01070 ; ‘

4FE6 AF P1@71 KI5 XOR A :NO KEY

4FE7 18E2 01972 JR KI6A : CON

4FE9 213640 P1073 KI1 LD HL,4636H ;i KEY BUFF

4FEC 11564F P1074 RO14 .LD DE,KPB :RPT BUF

4FEF 06067 01075 LD B,7 . ;CHRS TO TEST

4FF1 1A 01076 KI2 LD A, (DE) ;GET KEY BYT

4FF2 BE 01077 Cp (HL) s SAME?

4FF3 20F1 1078 JR NZ ,KI5 iN

4FF5 23 01079 INC HL :BMP PTRS

4FF6 13 01080 INC DE

4FF7 10F8 01081 DJINZ KI2 :LOOP

4FF9 3A504F P1082 ROG2 LD A, (RPF) ;RPT ON?

4FFC B7 81083 OR A 1?7

4FFD 2017 1084 JR NZ ,KI4 H

4FFF 2A524F pl085 ROO6 LD HL, (DELA) : DELAY CNT

5002 2B 01086 DEC - HL i START RPT?

5003 22524F 01087 ROOG7 LD (DELA) ,HL - i RES

5006 7D 01088 LD A,L

5007 B4 01889 OR H i START RPT?

5008 2802 01090 JR Z2,KI3 ;Y

566A AF 1991 XOR A :NO KEY

500B C9 01092 RET

500C 3E46 #1093 KI3 LD A,70 :RATE VAL

500FE 32544F 910694 ROOS8 LD (RATE) ,A :STO

5011 32594F 91995 ROG3 LD (RPF) ,A ;i RPT ON

5014 AF 01096 - XOR A :NO KEY

5015 C9 01097 RET -

5016 01098 RA15 EQU $

5616 21544F P1099 KI4 LD HL, RATE : RATE BUF;RATE

;s BUF

Listing Continued . . .

166 Chapter 9

... Continued Listing

5019
501A
501C
501D
501E
5020
5023
- 5023
5026

5027
5027
5029
502A
502C
502E
5030
5032
5034
5036
5038
503A
503B
503E
5041
5044
5047
5048
504A
504B
504cC

504F
5052
5053
5056
5057
5059
505B

[~ s W= o)

JYIL
505E
5060
5061
5064
5065
5067
5068

506B

506C
506C

35
2802
AF

C9
3E46
32544F

3A514F
C9

3812
79
FE41
380C
FE7B
3008
FE61
3008
FE5B
3804
B7
C35804
DD6E@3
DD6604
DD7E@P5
B7
2801
71

79
C37D04

372940
47
3A2840
90
FEOG6
2011
C5
606
PEGA
C5
CD8D@5
Cl
10F9
AF

322940

n1
A5 8

79

91100
91101
01102
91163
91104
91105
01106
61107
91108
91109
01110
91111
91112
#1113
91114
91115
01116
91117
91118
91119
01120
91121
91122
91123
01124
91125
01126
91127
61128
61129
91130
91131
61132
§1133
01134
91135
91136
01137
91138
91139
01140
91141
91142
91143
91144
91145
61146
91147
91148
61149
91159

11 h]
21151

p1152
01153

KBl
RO16
RO17

ODVR

DD@

DD1
DD2

Cc2
CALLl1

z0

DEC
JR
XOR
RET
LD
LD ,
EQU
LD
RET

{HL)
Z,KBl
A

A,70
(RATE) ,A

$
A, (LSTK)

VIDEO DRIVER

EQU
JR
LD
cp
JR
CP
JR
Cp
JR
Cp
JR
OR
JP
LD
LD
LD
OR
JR
LD
LD
JP

PRINTER

LD
LD
LD
SUB
Cp
JR
PUSH
LD
LD
PUSH
CALL
POP
DJINZ
XOR
LD
POP
EQU
LD

$

C,DD1
IAI
C,DD@
'z'+1
NC,DD@
lal
NC,DD2
lzl.l.l
C,DD2

A .
458H

L, (IX+3)
H, (IX+4)
A, (IX+5)
A

Z,DD3
(HL) ,A
A,C
47DH

Small Operating System

;GET KEY VAL

s RET CUR CHAR
+GET CHR

;s LET?

N

s GARF?

1Y

#LC CHR?

1Y

;U/C?

Y

s NC

s NORM DISP ENTRY

iGET CURS ADR
iGET CURS CHR
;CUR ON?

N

;DISP O/L CHR
+GET CHR TO DISP
;DISP CHR AS IS

DRIVER EXTENTSION

A, (4029H)
B,A

A, (4028H)
B

6

NZ, 20

BC

B,6

C,10

BC

58DH

BC

c2

A

(4029H) ,A

BC
$
A,C

;s LINE COUNT

: STO

;s MAX COUNT

; SUB COUNT

s TIME TO PAGE?
N

s SAVE C=CHR

;# OF LINES
;LINE FEED

; SAVE REGS

;s CALL DVR

;GET VALS

; LOOP

;CLR LINE COUNT
;s RESET

;GET CHR TO PR
;GET CHR

Listing Continued . . .

Machine-language Disk /O 167

iy

iy

Smaltl Uperating System

... Continued Listing

506D
506F
5071

FEGA
2004

2A2940
242

5074 34

-~ a8

5075
5075

5078
5078

168 Chapter 9

C38D@5

91154

- 91155

1156
01157
1158
91159
Pllep
flle61l
pl162

ZX
CALL2

’
EOP

Cp
JR
LD
INC
EQU
Jp

EQU
END

10
NZ,ZX

HL, (4029H)

(HL)
$
58DH

$
DOSINI

LINE FEED?
N

COUNTER

BMP LINE COUNT

.
14
3
’
-
’
.
14

iJP TO DVR

User Interface Module

hkkkhkhkkkkhkkkkkkhkhhhhkhhhhhkhkkkkhkhhhhhhhhhhhhhhhhkhkhkkrkhkkkkkk

*

*

*

*

pov0O1
pooo2
00003
pop04
90085
pooo6
o087
00008

o kk

¢ k%

o kk

o kk

* %

s k%

*

S/0S - SMALL/OPERATING SYSTEM

USER INTERFACE MODULE
VERSION 1.0 - MODEL I

CREATED: 08/65/82

UPDATED: #8/06/82

(C) 1982

*

*

by Michael Wagner

*

khkkxkkhkhkhkkkhkkhkhhkkhhkkhkhkkhkkhkkhkhhkkhkkhkkhhkhhkhkkhkhkkhkhhkk

4630
4636
4639

4633
4800

4840
5100

5100
5102

CYIMA
RN 7L

5106

516C
5106C
510D
5110
5113
5115
5117
5119
511C
511F
5122
5124

5127
512A
512C
512F
5131
5134
5137

pooo
0009

o
wouvy

FB
31FC41
372040
E63F
2805
3E@D
CD3300
210651
CD3646
3E3F
CD3300

210048
f63F
CD409o
38F1
P1B851
CD4852
28E9

poe09

0o010
peall
popl2
poo13

o Pk]

00017
00018
peB1o
PeB20
00021
00022

AN

wovLO

Po024

peB25
pe0B26
vev27
p0028
po029
00030

N Bt ke

peB37

09038
24339

Pev4D
P04l
pov42
00043
peo44

Label equates

i
i
i
@LOAD EQU
@LINE EQU
@PRINT EQU
@ERROR EQU
INPBUF EQU
DRIVES EQU
’
ORG
’
Wl DW
W2 DW
W3 DW
@MSG DM
BA 53 2F 4F
14
START EQU
EI
LD
LD
AND
LD
CALL
Sgg LD
CALL
S@1 LD
CALL
LD
LD
CALL
JR
LD
CALL
JR

53

4630H
4636H
4639

4800H
4840H

5100H

R 2

/]
19,'s/0s',13
oD

$

SP,41FCH
A, (4020H)
63

7 _QAn

L4y oWl
A,13
33H

HL, @MSG
@LINE
A,'?'
33H

HL, INPBUF
B;63

40H

C,S01

BC, @ERR1
NEXT
Z,S01

; LOAD OJB CODE
;LINE VIDEO

¢+ ERROR DISP

+DOS USER INPUT
: BUFFER '
sHIGHEST DRIVE #

s WORK REGS

; INT ON

; INIT STACK
;GET CURSOR LOC
¢GET LINE POSN

e A T TN QMA
PEAL LA DL

;WRITE A C/R

; TO THE VIDEO
;GET 'S/0S' MSG
;DISP

;GET PROMPT
;WRITE TO THE

; VIDEO

;DOS INP BUF
;MAX IMP

;GET INP

;BREAK HIT

; 'DRIVE'

;GET NEXT CHR
;NULL LINE, REDO

Listing Continued . . .

Machine-language Disk I/O 169

User Interface Module

. Continued Listing

5139 CDD751
513C 384F
513E 2ﬁ4D

E140G AAAGA

wf e "X & - EAZ X “X

5143 BB
5144 3847
5146 7B
5147 320051
514A @1BE51
514D CD4852

K150 2823R

e U

CDD751
3836
2034
320251
P1C451
CD4852
2829
4 CDD751
3824
2022
CD4852

2009
112D40
5181 D5
5182 E5
2A0451
5186 C9

CD3346
518A C30C51

518D C5
21A051
CD3646
5194 El
CD3646
21CB51
CD3646
18EA

L70 Chapter 9

pPB45
pop4ae6
00847

60848

poB49
00B50
@051
00652
pPO53
pBOB54

PB855

pOB56
80057
00058
00059
Po060
00061
Poo62
00063

RN

Vo064
p0065
0066

poo67
0pPo68
PP069
00079
00071
0072
00B73
00074
00075
0O0B76
00077
00078
peB79
poo8o
pPo8l
poo82
poe83
poo84
00085
00P86
poo87
poo88s
09089
00090
poo9l
0092

00093

CALL
JR
JR

TN
L

Cp
JrR *
LD
LD
LD
CALL

UI\

JR
JR
-LD
LD
CALL
JR

CALL

JR
JR
CALL

LD
LD
LD
LD
LD
CALL
JR
LD
PUSH
PUSH
LD
RET

!

ERROR CALL

STARTV JP

e

DISE PUSH
LD

CALL
POP
CALL
LD

CALL

JR

~e

@ERR DM

CALL§

GETINP
C,DISE
NZ, DISE

lr\-nq- o

A, {DRIVES)

E
C,DISE
AE
(Wl).,A
BC, @ERR2
NEXT
Z,DISE
GETINP
C,DISE
NZ,DISE
(W2) ,A
BC, @ERR3
NEXT
Z,DISE

DMTAD
Gl-‘ll. LINE

C,DISE
NZ,DISE
NEXT

(W3) ,HL
A, (W2)
¢ (W1)
7.
LOAD
NZ , ERROR
DE, 40 2DH
DE

HL

HL, (W3)

A
C
a

@ERROR
START

BC

HL, @ERR
@LINE
HL

@LINE
HL, @ERR4
@LINE
STARTV

'* * Tnvalid or

;GET DRIVE #
;GO IF OVERFLOW
;GO IF MSB >8
;GET # DRIVES IN
: SYS

;s TOO BIG?

1 YES

+GET DRIVE #
;STO DRIVE #

; '"TRACK' MSG

i POSN TO TRKSPEC
s NO TRACK

sGET TRK #
;OVERFLOW ERR
;GO IF D>0

:STO TRK

; 'SECTOR' MSG
+POSN TO SEC

s NO SEC SPEC
iGET SEC #

;s OVERFLOW

:+D>0 ERR

s POSN HL TO

s PARAMS

1 STO PARAM PTR
+GET TRK

s STO TRACK

T I\DTIrI
+GET DRIVE

+XFR TO DRIVE REG
:LOAD OBJ CODE
+GO IF ERROR

+DOS RET

;FOR RET ADR

¢+ PUSH XFER ADR
:GET PARAM PTR

+: IMP TO RTN

A AN A LN

;DISP SYS ERROR
¢ PROMPT

; SAVE UNIT MSG
; ERR MSG

; DISPLAY

;GET UNIT MSG
; DISP

; REMAINING MSG
;DISP

; RESTART

missing ',3

2A 20 2A 20 49 6E 76 61 6C 69 64 20
6F 72 20 6D 69 73 73 69 6E 67 20 03

@ERR1 DM

'drive',3

64 72 69 76 65 03

Listing Continued . . .

... Continued Listing

51BE
51C4
51CB

51D7
51D7
51D8
51DB
51DC
51DE
51E®
51E2
51E4
51E6
51E8
51E9
51EA
51EB
51EC
51ED

51EE .

51F1
51F2

51F4
51F5
51F6

51F8
51F9
51FA
51FB
51FC

51FE

51FF
5200
5202

[Y o)
2LV

5204

E5
110000
7E
FE48
2831
D630
3827
FEGA
3029
23
E5
62
6B
E5
D5
119A19
B7
ED52
Dl
El
300E

29
29
19
29
1600
5F

19
3804
EB
El

18D5

pev94
000895
p0P096
00897
00098

pP0B99
po100

98101

00102
00103
pB104
00105
00106
00107
00108
p0109
pgl11o
pe111
pgll2
9113
00114
pB115
pPll6
p0117
00118
0119
00120
p9121
90122
90123
00124
0125
06126
09127
00128
p0129

pB130
pg131

A1 2N

68132
0133
p0134
0135

P9136
pB137
00138

anc120
woiLOo

p0140
00141

@ERR2
74 72
@ERR3
73 65
@ERR4

~e

C)&. MO WMo WP MO We We N Wo WO

ETINP

GI9

.
[

DM Ytrack',3
61 63 6B 83
DM 'sector',3

63 74 6F 72 03

DM

' number * *',13
20 6E 75 6D 62,65 72 20 2A 20 2A 0D

GETINP2 08/04/82

CONVERT DEC TO TWO BYTE
RANGE #-65535 (@-FFFFH)
HL-> DEC NUMBER
DE=DEC VALUE

Z= MSB=0 (D=0)
CF= OVERFLOW
HL->TERMINATING

ENTRY:
EXIT:

EQU
PUSH
LD
LD
cp
JR
SUB
JR
CP
JR
INC
PUSH
LD
LD
PUSH
PUSH
LD
OR
SBC

~ POP
' POP
JR

ADD
ADD
ﬂ“D
ADD
LD
LD

ADD
JR
EX

DAD
rour

JR

$

HL

DE,”

A, (HL)
'.H'

Z ,HEXINP
lgl
C,DDONE
10

NC, HEXINP
HL

HL

User Interface Module

INT

CHR

s SAVE LINPTR
: ZERO ACCUM
;GET CHR
+sHEX NUM?
s;NUM IS HEX
s MAKE CHR BIN
s TERM HIT
sBAD RANGE?
; TRY HEX INP
+BMP LINPTR
$SAVE PTR

s HL=ACCUM

: SAVE REGS

s ACCUM MUST LESS
s NC SET

s SUB 6553 FROM

s ACCUM

s RESTO REGS

s RESULT WILL
; OVERFLOW
; TIMES BY 10

;ZERO D

;: DE=NEW DIGIT TO
+ADD

:sADD NEW DIGIT
;GO IF OVERFLOW
;s PASS ACCUM TO DE

SADM T TNDMD
$OLL LLNDLN

;DO NEXT CHR

Listing Continued . . .

Machine-language Disk /O 171

User Interface Module

... Continued Listing

5206 E3
5207 E1
5208 37

5209 1803
520B 7A

520C B7
520D 7B
520E E3

520F E1

o e A A

5216 C9

5211 El
5212 110000
5215 7E
5216 FE48
5218 2826

521A D63¢

521C 3F

521D 3922
521F FEl17
5221 301E
5223 FE@A
5225 3807
5227 FEl1l

5229 3F
522A 3015
522C D6@7
522E 23
522F F5

5230 7A

5231 E6FP
5233 2410

- it LR X8

5235 F1
5236 EB
5237 29
5238 29
5239 29
523A 29

523B BS
523C 6F

523D EB
523E 18D5

5240 23
5241 7A
5242 B7
5243 7B

5244 Ca

LR A SR V- 4

5245 F1
5246 37

172 Chapter 9

00142
00143
00144

00145
00146

00147
pol14ag
00149
90150

1 1
26151

pP152
p0153
00154
0155
pR156
98157
90158

80159

00169
polel
pole2
0163
00164
0165
00166

08167

00168
00169
poe170
P0171
0172

00173

A1 7 4

. WOLIS

@175
o176
o177
0178
00179
0180
00181

1092
gels2

06183
0184
00185
@186
00187
00188
00189

AT on

69150
9191
pB192

GOl

DDONE

DDONE1l

.
’

HEXINP
HO1

HO 2

’
HDONEX
HDONE

HO3

EX
POP
SCF

JR
LD

OR
LD
EX
POP
RET

POP
LD
LD
Cp
JR
SuUB
CCF
JR
Cp
JR
Cp
JR
cp
CCF
JR
SUB
INC
PUSH
LD

JK
POP
EX
ADD
ADD
ADD
ADD
OR
LD
EX
JR

INC
LD

LD

RET
POP
SCF

(SP) ,HL
HL

DDONE1
A,D

Z , HDONEX

NC, HDONE

IGI_II

NC, HDONE

10
C,H02
17

NC, HDONE

7
HL
AF
A,D

PFOH
NZ,HO3
AF
DE, HL
HL, HL
HL, HL
HL, HL
HL, HL
L

L,A
DE, HL
HO1

HL
A'D
A
A,E

AF

;KILL OLD LINPTR
s KEEP CUR PTR

+ SET OVERFLOW

: FLAG

; CONT

;GET MSB OF

;s RESULT

sSET NZ,2

1 A=LSB VALUE

¢ SAVE CUR LINPTR
;HL=ORG LINPTR.

s HL=CUR LINPTR

s RESTOR LINPTR
sRESET ACCUM
+GET NEXT CHR

¢+ END OF NUM?
+YES

s DONE?

:?

1Y

+DONE?

1Y

;sDEC DIGIT?

1Y

sHEX DIGIT?
iSWI CF

sN, TERM

s MAKE A-F REL
iBMP LINPTR
#SAVE CUR DIGIT
sWILL NEW CHR

i OVERFLOW LINE?
3 ?

sYES

+GET NEW CHR
sHL=ACCUM

i SHIFT ACCUM 4<-

;CMP NEW LSB
iXFER TO ACCUM
: DE=ACCUM

;DO NEXT CHR

;BMP LINPTR
;GET MSB INP
¢SET NZ,2Z

i A=LSB VALUE

iGET LAST CHR
:SET OVERFLOW ERR

Listing Continued . . .

... Continued Listing

5247
5248

o W Wo

24L4Y
524B
524C
524E
5250
5252
5253
5254

5256

C9

7E
FEBD
C8
FE2C
2803
FE20
Cco
23
18F2

00193

00194 ;
P0195 NEXT
00196

00197

00198

90199

00200

p0201 ‘
00202 NEXTI1

e Lo Y W

0205

09000 total errors

RET

LD
CP
RET
CP
JR
(03
RET
INC
JR

END

User Interface Module

A, (HL) ;GET CHR

13 ;C/R?

/ ;END OF LINE
't ; COMMA?

% , NEXT1 : YES, IGNORE
32 ; SPACE?

NZ : ;NO, RET

HL ;:BMP PTR
NEXT ; LOOP

START

Machine-language Disk I/0 173

&
Q

) -

The Best Term Program in This Book

Appendix I

The Best Term Program in This Book

As an extra bonus, I threw in this terminal program that we used in preparing this
book. It is somewhat of an intellegent terminal. It allows instant resetting of the RS-
232 parameters, buffering of incoming data, disk file I/O to the buffer, and various
other functions. TERM will assemble in any TRS-80 assembler without problems.

’T‘F‘KRM sun

......... pports the baud rates: 110, 150, 300, 600 1200, 2400, 9600; the word
lengths: 5, 6, 7 and 8; the number of sto pb its: 1 and 2; thep 1ty check: Even, Odd
and None. '
Running TERM

Since TERM is a machine-langauge program, it will be entered from DOS. When

. A m i 1€ 4hnam frvmadl [fan tha PQ_

TERM s enl;ereu, it will announce u,bcu, tnen huxucuxawxy prompv you 10T ulie no-
232 settings (baud, parity, etc). You will then find yourself in the TERM menu. Most
functions are selected from here. Here is what the TERM menu looks like:

B — Assign the BREAK key value

C — Clear contents of buffer

D — Display contents of buffer

E — Toggle “echo transmit data” switch
L — Load a file into the buffer

P - Print contents of buffer

Q — Display status of RS-232 and buffer
R - Set RS-232 parameters

S - Transmit buffer data

T — Enter terminal mode

W — Write buffer to a file

X - Exit to DOS

Machine-language Disk /O 175

Explanation of the Menu Functions

B - Assign the break key value

This one is pretty self-explanatory. It Jets you assign the break key a particular
value. Most host computers use CONTROL: C (ASCII 38) for the break character.

C - Clear the contents of the buffer

TERM has the capability of buffering incoming data, and/or load disk filesinto the
buffer for transmission. This command simply clears the buffer of any data.

D - Display contents of the buffer -

This command displays the contents of the buffer. you may pause by pressing
(SHIFﬁT) ‘@’. You may abort the display by pressing break. The buffer is displayed
from start to finish (unless break is hit).

E — Toggle ‘echo transmit data’ switch

When in terminal mode (see T command), echo displays what you are sending. This
is for systems that do not echo your characters back to you. If you are communicating
with a system that echos your character and you have echo ON, you will see double
characters when you send. This echo does NOT work when using the SEND
(command S) command.

L - Load a file intq the buffer
This loads a disk file into TERM’s buffer. If the buffer already contains data, the

new file will be concatenated to the end of the current buffer contents. This allows
multiple file input. The filename must follow the L command, e.ii LNAME/TX.

P — Print (line-print) contents of buffer
This command line-prints the contents of the buffer. you may pause by pressing
(SHIFT) ‘@’. You may abort the printing by pressing break. The buffer is printed

from start to finish (unless break is hit).

Q - Display RS-232 and buffer status

This displays the current RS-232 settings, how many characters in the buffer, and

how many unused bytes remain in the buffer.

176 Appendix I

Explanation of the Menu Functions

R — Set the RS-232 parameters

This invokes the same protocol queries that you answered at the start of the
program. This allows you to re-program the RS-232 whenever you desire.

S — Send buffer contents _ ’

This command transmits the contents of the buffer to the host computer. You may
pause by pressing (SHIFT) ‘@’. You may abort the send by pressing break. The
buffer is sent from start to finish (unless break is hit).

T — Enter terminal mode

When this function is selected, you will enter the terminal mode. This lets you
directly communicate via the keyboard and video monitor to the host computer.
When in the terminal mode, the CLEAR key becomes your CONTROL key, e.g.
CLEAR: C sends a control C. You may buffer incoming data at any time by pressing

CLEAR Q. You may turn off the buffering by pressing CLEAR P. You may exit the
terminal back to the menu by pressing SHIFT BREAK. The incoming data

buffering is always OFF when entering the terminal mode.

W — Write buffer to a disk file

This allows you to write the buffer to a disk file for loading into you word processor
or whatever. The filename must follow the W, e.ii. W STOCK/PCL.

X - Exit to DOS

This simply exits to DOS via the 402D DOS vector.

Machine-language Disk I/0

177

— T mmee = arpys ssana

5200

5200
5300
5320 00
5321 69

0oES
POE9
POEA
POEB
0040
5322 09

5323

5323 F3
5324 DBEA
5326 @7
5327 3028
5329 DBEB
532B 4F

532C 3AEDS5 .

532F B7
5330 2802
5332 CBB9
5334 DBEA
5336 E638
5338 280F
533A @F
533B OF
533C oF
533D oF
533E JESF
5340 3807
5342 9E97
5344 OF
5345 3802
5347 OEBF
5349 79
534A 00
534B 00
534C 00
534D 00
534E B7
534F FB
5350 C9
5351 37
5352 FB

198 Appendix I

00011

00001
00002
00003
Vo004
000e5 ;

e Wwe we

14
00006 BUFFER

00007 FCB

00008 ACURS

00009
00010

00912

00P13 MSTAT

09914 BAUD
90015 CTRL
00016 DATA

00017 INITB

00018 VIDF
p0019
00020
00021

~e %o wo

00022 INPUT

00023
00024
00025

- 09026

00027
00028
00030
00031
00032
90033 IBT
00034
00035
00836
0B037
00038
00039
00040
00041
00042
00043
00044
00045
00046 OK
00047
00048
00049
000850
90051 GEB
p0e52
00053

TERM - SMART TERMINAL
VERSION 1.2 -~ 09/09/82

ORG 5200H
DEFS 256
DEFS’ 32
NOP

NOP

EQU OESH
BQU QE9H
EQU OEAH
EQU @EBH
HQU 040H

k-

G
I
.I
{
[
»

EQU $
DI
IN A, (CIRL) .
RLCA
JR NC, NODATA
IN A, (DATA)
LD C,A
LD A, (AHIB)
OR A
JR %, IBT
RES 7,C
IN A, (CTRL)
AND 38H
JR Z,0K
RRCA
'RRCA
RRCA
RRCA
ID C,159
JR C, 0K
ID C,151
RRCA
JR C, 0K
) C,191
NOP
NOP
NOP
NOP
OR A
EI
RET

00054 NODATA SCF

00055

A

PROGRAM

. :I/0 BUFF
;FCB
iCURR RS-232 PRGM
;CUR BAUD VAL

;MASTER RESET/MODEM STAT
;BAUD SELECT/SENSE SW
CONTROL AND RS232 STAT
;DATA 1/0

; INIT BYTE

;VIDEO FILTER FLAG

TIATYT /av~ r7m

UART/} ALIT

| %
2

0 WS WNe N W wo
p]
]
t

ofs
]
g

=g
w o
'é'ug
3

%E‘ZEE{
-
o

H

N NS Mg My Wy W W

%

5353 C9

5354

5354 F3
5355 4F
5356 DBEA
5358 CB77

535A 28FA

535C 79
535D D3EB
535F FB
5360 C9

5361

5361 D3E8
5363 D3E9
5365 79
5366 D3EA
5368 C9

5369

5369 7E
536A FEOD
536C C8
536D FE20
536F CP
5370 23
5371 18F6

5373
5373 DBEB
5375 FEFF

5377 C2CA53
537A 218253
537D CDP45C

5380 AF
5381 O
5382

53A1 @D
53A2 @F

00056
00057

00058
00059
00060
00061
00062
00063
00064

AAAES

KRS RIS wd

00066
pia67
90068
00969
00970
00071
poe72

AGAT73

MEIES

00974
00075
00076
0oov77
00078
poo79
00080
00081
p0p82
00083
pop8a
00085
po086
00087
00088
00089
00090
00091
00092
00093
00094
00995
00096
00097
p0098
00099
00100
00101
00102
06103
00104

RET
H
: PUTS A BYTE TO THE UART
H
OUTPUT EQU $ s
DI
1D C,A
aUTl IN A, (CTRL)
BIT 6,A
JR %,00TL
LD A,C
QUT (DATA) ,A
EI .
RET

INITIALIZED RS-232 UART

~e ™o ™o

INITRS HU §
QUT (MSTAT) ,A
QT (BAUD) ,A
LD A,C
oUT (CTRL) ,A
RET

H

i

H

H

NEXT EQU
LD A, (HL)
cp 13
RET &
cp 32
RET Nz
INC HL
JR NEXT

I

; PROGRAM START

1

SIART HQU $

IN A, (DATA)

cP 255
Jp NZ, SOK
LD HL, RSN
CALL DLINE
XOR A
RET

RSN DEFM

Teérm Program

;DISABLE INT

; SAVE BYTE

;GET STATUS

;CHECK TRANSMIT HOLDING

-3GO IF CURRENT BYTE NOT

;GONE YET
;GET BYTE
;OUTPUT BYTE
; ENABLE INT
RETURN

;RESETS RS-232
: SELECT BAUD
;GET CIRL WORD
;LOAD INFO

+ RETURN

TAKES NEXT DECIMAL INPUT AT (HL) AND PUTS IT IN
DE. C SET IS NUMBER WAS BIGGER THAN 65538
ALL REGS USE, HL~CHAR AFTER LAST NUMBER

;GET CHR
:C/R?
;YES, EOL
:+ SPACE?
;NO

;BMP

’

et g

;IS RSZ3Z THERE?
$YES

;ERR MSG

;1 DIS

sNO ER

'System not equipped with RS232!'

53 79 73 74 65 6D 20 6E 6F 74 20 65

— emew e - -

71 75 69 706 79 65 64 28 77 69 74 68

00185
00106

20 52 53 32 33 32 21
DEFB 13
INITM DEFB 15

Machine-language Disk I/O

179

Term Program

53A3 00197 DEFM 'TERM - MJW'
54 45 52.4D 20 2D 20 4D 4A 57
53AD 27 gp108 DEFB 39
53AE 00109 DEFM 'S TERMINAL PROGRAM VER 1.1°

e Y r o e Y e Y V)

53EF 2A185A

e T o

540D 3ElIF
540F CD3300
5412 CD6953
5415 C8

AN &~ e

J410 LbAL
5418 FEA2
541A CA2056
541D FES8
541F CA2D40
5422 FESO
5424 CADB58
5427 FE54
542C FES1
542E CA9A56
5431 FE45

180 Appendix I

53 20 54 45 52 4D 49 4E 41 4C 20 50
52 4F 47 52 41 4D 20 56,45 52 20 31

2E 31
00110
00111
00112 SOK
00113
00114
00115
00116
00117
#0118
09119 MAIN
00120
00121
00122
00123
00124 INQD
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
0p138
00139
00140
00141
00142
00143
po144
P0145
00146
00147
00148
00149
00150
98151
00152
90153
00154
PB155
90156
00157

e WNe W

EEEE%ESEEBEgEBEE%EBBBEBQEEBEEE

DEFB 10

DEFB 13

U $

1C9H

HL, INITM
DLINE

HL, (4020H)
(CURLO) , HL
RESET

$

HL,, MENUD
DLINE

HL, (4020H)
(CURLO) ,HL
SP,41FCH
HL, INQYD
HL

(4020H) ,HL
A,30

33H

A

(SPF) ,A
A' L > '
33H
HL,4318H
B,32

LIR
C,MAIN
a,31

33H

NEXT

Z

BRANCHES **

5,A

IBI

Z ,DEFBRK
lxl
Z,402DH

Z,PRINT
ITI
Z,TERM

Z,BSTAT
gt

RYRPNRRERANIE
g

HL, (CURLO)

:CLS

; INIT MSG
:DIS

iGET CUR LOC

sSET RS-232 PARAMS

;GET MENU
;DIS

#GET CURLOC
7STOR

s REINIT
sFOR RET

+PLACE TO PUT
sCUR LOC .
sERASE TO EOL
;DIS

sRESET

;7 MEM SPOOL FLAG
s PROMPT

;:DIS .

7 IN BUFF

;MAX INP

;GET INP

sBREAK, DIS MENU
;CAA

;CLR TO END OF SCR
+POSN TO CHR

¢ ENTER HIT

s PRINT BUFF?
iGO

¢ TERM MODE?
7QUERY STAT?

+MODE?

Aty

5433 CA1557

8AG RFER2

TSN b LS b

5438 CAADSA
543B FE57
543D CADES8
5440 FE53
5442 CAD358
5445 FE44

5447 CAD858
544A FEAC

544C CA7A59
544F FE41
5451 CAE95B
5454 FE48
5456 CAP256
5459 FEA3
545B CA4457
545E C9
545F

545F OF
5460 1C
5461 1F
5462

5480 0A
5481

549D 0A
549E

54BC 0A
54BD

54E3 0A
54E4

5503 0A
5504

5520 PA
5521

00158

aa150

Bl o

00160
p0161
00162
90163
p0164
00165
90166
02168
00169
00170
00171
00172
00173
p0174
00175
00176
00177
00178
o179
00180

pgl18l
00182

00183
09184

00185
00186

00187
00188

00189
00190

90191
90192

42 20
68 65
20 76

43 20
6E 74
66 66

44 20
63 6F
62 75

BEY9YARANAYBERRAYAS

DEFB
DEFB
DEFB
DEFM

4 ,BECHO

7%,ASCII
IHI ‘
%,BITS
lcl
%,CLEAR

$

15
28
31

Term Program

$RESET?

7 SAVE BUFF?

s SEND BUFF?
;DISPLAY BUFF?
;LOAD BUFF?

:SEN ASCII?

;TOG HI BIT STRIP
;éLEAR BUFF?

sNO CMD, MENU

'B - Assign the BREAK key value'
2D 20 41 73 73 69 67 6E 20 74
20 42 52 45 41 4B 20 6B 65 79

61 6C 75 65
DEFB 10
DEFM

65 72
DEFB
« DEFM

6E 74 65 6E 74 73 2 6F

'C - Clear contents of buffer'
2D 20 43 6C 65 61 72 20 63 6F
65 6E 74 73 20 6F 66 20 62 75

10

'D ~ Display contents of buffer’
2D 20 44 69 73 708 6C 61 79 20

66 66 65 72
DEFB 10
DEFM

DEFB
DEFM

DEFB

DEFM

65 6E 74 73 20 6F 66 2

65 72
DEFB
DEFM

66 25

'E - Toggle "echo transmit data" switch'
2D 20 54 6F 67 67 6C 65 20 22
68 6F 20 74 72 61 6E 73 6D 69
64 61 74 61 22 20 73 77 69 74

10

'L, - Ioad a file into the buffer!
2D 20 4C 6F 61 64 20 61 20 66
65 20 69 6E 74 6F 20 74 68 65
75 66 66 65 72

10

'P - Print contents of buffer'
2D 20 50 72 69 6E 74 208 63 6F

L L e Y]

10

Y B Lo e 1 4

L0 04 1D

'Q - Display status of RS-232 and buffer'

Machine-language Disk I/O

181

‘rerm rrogram

5548 gA
5549

5562 gA
5563

557B gA .
557C

5593 gA
5594

55AE @A
55AF

55BE 0D
55BF

55CA @D
55CB

55DA @D
55DB

55EC @3

55ED 00
55EE

5601 @3
5602

5602 3AED55
5605 2F
5606 32ED55
5609 F5
560A 21EE55
560D CD@P45C
5610 213957
5613 F1

182 Appendix I

00193
00194

00195
00196

00197
00198

00199
00200

00201
00202

00203

00204

80205
00206

00207
00208

00209
00210
00211
00212
00213
00214

p9215
00216
00217
pp218
#0219
00220

1,523}

& RS ot bl

00222
00223
00224

51 20 2D 20 44 69 73 79 6C 61 79 20
73 74 61 74 75 73 20 6F 66 20 52 53
2D 32 33 32 20 61 6E 64 2¢ 62 75 66
66 65 72
DEFB 10
DEFM 'R ~ Set, RS~232 parameters'
92 20 2D 20 53 65 74 20 52 53 2D 32
33 32 20 70 61 72 61 6D 65 74 65 72

DEFB 10

DEFM 'S - Transmit buffer data’'
53 20 2D 20 54 72 61 6E 73 6D 69 74
20 62 75 66 66 65 72 20 64 61 74 61

DEFB 10

DEFM 'T - Enter terminal mode!
54 20 2D 20 45 6E 74 65 72 20 74 65
72 6D 69 6E 61 6C 28 6D 6F 64 65

DEFB 10

DEFM 'W - Write buffer to a file!
37 26 2D 20 57 72 69 74 65 20 62 75
66 66 65 72 20 74 6F 20 61 20 66 69

DEFB 10

DEFM 'X - Exit to DOS!
58 20 2D 20 45 78 69 74 20 74 6F 20
44 4F 53

DEFB 13
BAD DEFM "Bad command’
42 61 64 20 63 6F 6D 6D 61 6E 64

DEFB 13
PAR DEFM 'Parameter error"
50 61 72 61 6D 65 74 65 72 20 65 72
72 6F 72

DEFB 13
ABRKM DEFM 'Break key value? !
42 72 65 61 6B 20 6B 65 79 20 76 61
6C 75 65 3F 29

DEFB 3
i
i TOGG HIT BIT STRIP
H
AHIB NOP

AHIBM DEFM 'BIT 7 STRIP IN NOW '
42 43 54 29 37 29 53 54 52 49 59 2¢
49 4E 20 4E 4F 57 29

DEFB 3

BITS EU $
LD A, (AHIB) iGET FL
CPL i SWITCH
D (AHIB) ,A ¢ SAVW
PUSH AF i SAVE
D HL,AHIBM #GET MSG
CALL DLINE +DIS
ID HL,AON 7GET ON
POP AF #GET COND,

#

5614 B7
5615 2003
5617 213357
561A CD@45C
561D C3E853

5620 CD755B
5623 21DB55
5626 CD@45C
5629 211843
562C 0603
562E CDBCS9
5631 380B
5633 CDB45B
5636 14
5637 15
5638 20E6
563A 7B
563B 32AC58
563E C3755B
5641 214F56
5644 1803
5646 21CB55
5649 CD#45C
564C C3E853
564F

565A @D
565B

566D OAOD
566F OA
5670 OA
5671

5699 @3
569A

569A CDC991
569D 215B56
56A0 CD@45C
56A3 11125C
56A6 2AB859
56A9 B7
56AA ED52
S6AC 22D557
56AF 219257
56B2 @EAL
56B4 CDD757

00225
00226
00227
09228
09229
09230
09231
00232
00233
00234
08235
09236
99237
09238
09239
09240
09241
09242
00243
00244
00245
00246
09247
009248
00249
09250
00251
00252

99253
00254

00255
00256
00257
00258

00259

00260

00261
00262
00263
90264
09265
00266
00267
00268
00269
00270
90271

56B7 ED5BB859 00272

OR A
JR Nz,G36
LD HL,, AOFF
G36 CALL DLINE
JP INCMD
I
; DEFINE BREAK g
[
DEFBRK CALL POSNC
1D HL , ABRKM
CALL DLINE
1D HL,4318H
LD B,3
CALL LIR
JR C,BKDD
CALL GETINP
INC D
DEC D
JR NZ ,DEFBRK
LD AE
LD (ABREAK) ,A
BKDD JP POSNC
OU™MEM LD HL,OME
JR AAl
PARERR LD HL,PAR
AAL CALL DLINE
JP INCMD
QME DEFM 'Buffer full’
42 75 66 66 65 72 20 66 75 6C 6C
DEFB 13
ASTA™ DEFM

AHIT

BSTAT

DEFW
DEFB
DEFB
DEFM

DEFB
BQU

EEEEB@%BBEEE

Term Program

'Status information'
53 74 61 74 75 73 20 69 6E 66 6F 72
6D 61 74 69 6F 6E

9DPAH
10
10

! Press any key to return to menu’
20 20 20 20 20 20 20 20 20 50 72 65
73 73 20 61 6E 79 20 6B 65 79 20 74
6F 20 72 65 74 75 72 6E 20 74 6F 20
6D 65 6E 75

;NEXT BYTE IN BUFF

Machine-language Disk I/O

183

56BB 2A4940
56BE B7
56BF ED52
56Cl 22D557
56C4 9Eg1
56C6 21AB57

ber]
56C8 CDD757

56CC 2A8A5A
56CF 22D557
56D2 0Eg1

56D4 216557
56D7 CDDD57
56DA 3A8C5A
56DD 327057
560 3A8D5A

b o]]
S6E3 327C57

56E6 216557
56E9 CD@45C
56EC 3A8FSA
56EF 21C357
56F2 FEA45

56F4 280A

S56F6 21C857
56F9 FEAF

56FB 2803

56FD 210C57
5700 CD@45C
5703 218a57
5706 CDP45C
5709 216F56
570C CD@45C
570F CD4999
5712 C3pCs53

5715

5715 3AB759
5718 EEFF
571A 32B759
571D F5
571E 213757
5721 CDg45C
5724 213357
5728 2803
572A 213957
572D C3@45C
5730 6F6E
5732 gD
5733 6F6666
5736 9D
5737

5743 @3
5744 21125C
5747 22B859

00273
00274
68275
00276
0e277
00278
00279
00280
00281
00282
00283
00284
0v285
00286
0o287
D288
Po289
00290
00291
00292
00293
00294
00295
00296
0B297
00298
00299 J37
00300
00301
00302
90303
00304
00305
bo306 ;
909307 BECHO
po308
00309
00319
09311
90312
00313
00314
00315
00316
00317
09318 DIST
00319 AON
00320
00321 ROFF
00322
00323 AECHO

00324
00325 CLEAR
00326

184 Appendix I

JP

DEFM
DEFB
DEFM

DEFB
DEFM

45 63 68 6F 20 69
DEFB 3

LD
LD

%EgEEEEE%%E%%EEEEEEEEEEEEEEEEE‘&}%E

HL, (4049H)
A :

HL,DE
(INT) ,HL

’
HL,BMSG1
C15 -
HL, (ABAUD)
(INT) ,HL
c 1l
HL,RSTAT -
CI4
A, (AWORD)
(ARQ1) ,A

A, (ASTOP)

e o

(ARQ2) ,A
HL, RSTAT
DLINE

A, (APAR)
HL,APEVEN
] El

2,J37

HL, APODD
1] Ql

2,333

HL, APNONE
DLINE

HL, ARQ3
DLINE
HL,AHIT
DLINE

49H
MATN

L xR]

$

A, (HDX)
255
(HDX) ,A
AF

HL,AECHO
DLINE

HL,A0FF

AF
4,DIST
HL,AON
DLINE
lonl
13
Yoff?
13

'Echo is now ¢

73 20 6E 6F 77 29

HL, EOP
(NB) ,HL,

.\:%B
(@]

ET LAST POS BYTE

[p]
€ &

3

]

e WP Wy u
G
B
-
vy}
x
L s

¥

+DISPLAY

¢DIS

;DISPLAY TXT
/get return msg
:dis

;WAIT FOR KEY
iRET

iGET ECHO SWITCH
} SWTICH |
7 SAVE

7 SAVE

;DIS

;GET OFF MSG

;GET STAT

$GO IF OFF

:DIS & RET

#START OF BUFF
;NEXT BYT

574A 22BA59
574D 215657

:—::nl CYAASRC

Nl WP “Fo el Nt

5753 C3E853
5756

5764 0D
5765

5770

577C

5789 @3
578A

5791 OA
5792

57C2 03

57C3 4576656E

57C7 @3
57C8 4F6464
57CB 03

(8]
-3
4
=
(V)

57D5 0009
57D7 111027
57DA CDF457
57DD 11E803
S7E® CDF457
57E3 116400
5786 CDF457
- 57E9 110A00
57EC CDF457
S57EF 3AD557
57F2 1827
57F4 G5
STF5 0600
57F7 E5
57F8 2AD557
57FB B7

Term Program

90327 ID (CB) ,HL ;CUR BYT
00328 ID HL,BCLE ;GET MSG
00329 CALL DLINE ;DIS
09330 JP INOMD ; CONT
00331 ;
99332 BCLE DEFM 'guffer cleared’
42 75 66 66 65 72 20 63 6C 65 61 72
65 64
90333 DEFB 13
0@334 RSTAT DEFM '9¢90 Baud, '
3@ 30 3¢ 30 20 42 61 75 64 2C 20
0@335 ARQL DEFM 'X Bit word, '
58 20 42 69 74 20 77 6F 72 64 2C 20
090336 ARQ2 DEFM 'X stop bits, '
.38 20 73 74 6F 70 20 62 69 74 73 2C
g .
90337 DEFB 3
99338 ARQ3 DEFM ' parity’
20 50 61 72 69 74 79
90339 DEFB 10
09340 BMSG DEFM '00000 Characters stored,
30 30 30 30 306 20 43 68 61 72 61 63
74 65 72 73 20 73 74 6F 72 65 64 2C
20
@934l BMSGl DEFM '0pP0P Free buffer bytes'
3¢ 30 30 30 30 20 46 72 65 65 20 62
75 66 66 65 72 20 62 79 74 65 73
p0342 DEFB 3
90343 APEVEN DEFM 'Even'
#0344 DEFB 3
99345 APODD DEFM 'oad'
00346 DEFB 3
@9347 APNONE DEFM 'Disabled*

44 69 73 61 62 6C 65 64

00348
00349
00350
00351
00352
99353
00354
00355
99356 CI4
00357
99358 CI3
09359
00360 CI2
00361
00362
00363
08364 CVI
00365
00366
00367
09368 LOP

Q ~o wo we “
G2
(8]

ESEoETE"

DEFB

3

PUTS DECIMAL EQU OF (INT) VALUE.
ENTRY : HL~>DEST, C=@ LEADING ZEROS

DEFW

geabd
wEEB%%E

)
DE, 10000

o1

DE, 1000
oVl
DE,100
V1

- DE,10

VI

A, (INT)
LOP4

BC

B,0

HL

HL, (INT)
A

Machine-language Disk I/O

185

Term Program

57FC ED52
57FE 3807
5800 F5

5801 04
F1

5802
2803

5803
5805 18F4
19

5807

5808 22D557
580B 78
580C

580D

580E
580F
5811
5813
5815
5816
5817

58210

wf ke of

581B
581D
581E
581F
5826 1C
5821 1F

5822 QE
5823

- i

5858 GA
5859 6D

585A
585A 212058
585D CDP45C
5860 1838
5862

5862 CD2353
5865 3803
5867 CDAESS
586A CD2BOU
586D B7
586E 26F2
5870 FEA1
5872 282C
5874 FELF
5876 28EA
5878 4F
5879 324038

186 Appendix I

00369
00370
00371

Ve T o e Lo

08372
09373
00374
00375
00376
00377
00378
09379

200
00380

09381
00382
00383
00384
00385
00386
09387

200
00388

00389
00390
#0391
00392
06393
00394
90395

00396

00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408

- 09409

00410
P41l
00412
00413
00414
00415
00416
00417
00418

SBC HL,DE
JR C,LOoP3
PUSH AF
INC B
POP AP
JR Z,10P2
JR LOP
LOP3 ADD HL,DE
LOP2 LD (INT),HL
LD A,B
POP HL
POP BC
OR A
JR Z,LOP4AA
LD C,0
JR LOP4
LOP4A LD A,C
(0.3 A
JR Z,LOP4
D A,-30H&255
LOP4 ADD A,30H
ID (HL) ,A
INC HL
RET
ATER{ DEFB 28
DEFB 31
DEFB 14
DEFM 'smart terminal mode -~ Press <SHIFT>—<BREAK)> to
53 6D 61 72 74 20 74p25 72 6D 69 6E
61 6C 20 6D 6F 64 65 20 2D 20 50 72
65 73 73 20 3C 53 48 49 46 54 3E 2D
3C 42 52 45 41 4B 3E 20 74 6F 20 65
73 63 61 79 65
DEFB 10
DEFR 13
H
; TERM ROUTINE
b
TERM BQU $
LD HL, ATERM ;GET MSG
CALL DLINE :DIS
JR NDI H
TMAIN EQU S
CALL INPUT sFECTH UART INP
JR C,NIP sNO INPUT
CALL CUTDEV ;OQUTPUT TO DO, BUFFER
NIP CALL 2BH iGET A KEY
OR A sSET F
JR Z,TMAIN sNO KEYINP
Cp 1 sBREAK
JR Z,CSW s CHECK
Ccp 31 ;CLEAR <CTRL>
JR Z,TMAIN H
LD C,A s XFR CHAR
LD A, (3840H) sGET CLR

587C CBAF

587E 79
SR7F 280A

St = KO

5881 E61F
5883 FELl1
5885 2814
5887 FELO
5889 280F
588B CD5453
588E 3AB759
5891 B7
5892 28CE
5894 79
5895 CD3300
5898 18C8
589A AF
589B 32AD58
589E 18C2
5870 3AB8038
58A3 1F
58M DADC53
58A7 3AACS8
58AA 18DF
58AC 01
58AD 00
58AE

58AE 4F
58AF CD3300
58B2 3AAD58
5885 B7
58B6 79
58B7 C8

58B8 ED5BB859

58BC 224940
58BF ED52
58Cl 3808
58C3 79
58C4 12
58C5 13

58C6 ED53B859

58Ca C9
58CB 3E8F
58CD CD3300
58D9 C36258

58D3 115453
58D6 180B
58D8 3E33
58DA @1
58DB 3E3B
58DD P1
58DE 3ELB
58H0 5F

00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
p0430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
pog444
p0445
p0446
0447
00448
00449
00450
90451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
P0464
00465
00466
00467
p0468
00469

A AT

uu4iIv

00471
00472
00473

BIT
ID
JR
AND
CP
JR
cp
JR
KLW CALL
LD
OR
JR
D
CALL
JR
NDI - XOR
STI1 LD
JR
Ccsw LD
RRA
JP
LD
JR
ABREAK DEFB
SPF NOP
QUTDEV EQU
LD
CALL
ID
OR
LD
RET
D
D
SBC
JR
D
LD
INC
LD
RET
NTH LD
CALL
JP
H
i
i
SEND LD
JR
DISP LD
DEFB
PRINT LD
DEFB
SAVE LD
LD

Z,KIW
31
IQI_64
Z,STI
'P'-64
Z,NDI
OUTPUT
A, (HDX)
A
Z,TMAIN
A,C

33H
TMAIN
A .
(SPF) ,A
TMAIN
A, (3880H)

C,MAIN

A, (ABREAK)
KLW

1

$

33H

A, (SFF)

A

Z

DE, (NB)
HL, (4849H)
HL,DE

C, NTH

Term Program

;1CIRL? -

;GET CHAR

s NO

;MAKE CIRL CHR
s SPOCL: INPUT?
1 YES

s SPOOL OFF?
$YES

;SEND

+HALF DUPE?

:NO

;YES

:DIS

s LOOP

s SPOOL OFF

;s STOR SPOOL FLG
; CONT

;sGET CIRL BYTE
$SHIFT IN C
;sABORT TERM MODE
sGET BREAK VAL
; CONT

sCHR 1

sMEM SPOOL FLAG

;SAVE CHAR
:DIS

;GET SPOOL
; CHECK
;sGET CHAR
sNO SPOOL
;GET CHAR
;GET HI ME
;OK?

;TO HI
;GET CHAR
s STORE CHAR
:BMP

PRINT/DISPLAY/SEND BUFFER

;OUTPUT ROUTINE
7 CONT
;DISPLAY ADR

3

PRIN ADR

3
§ A ANLLYA LU iawaN

WRITE FILE
GET LSB

~e we

Machine-language Disk I/O

187

Term Program

58EL 1604 00474 D,0 ;0

ID
58E3 ED532A59 00475 SAl LD (OQ+l) ,DE :STOR
58E7 4F 00476 LD C/,A #SAVE DEVICE
58E8 AF 00477 XOR A ;CLR
589 E5 00478 PUSH HL :SAVE LINE
58EA 21125C 09479 ID HL,EOP , #GET BUFF
58ED ED5BB859 00480 LD DE, (NB) sGET NEXT
58F1 DF po48l RST 18H ¢ COMPARE
58F2 283A po482 JR Z,PRER #NO BUFF CONT
58F4 E3 00483 EX (SP) ,HL sHL=FS. PUSH EOP
58F5 CD5159 00484 CALL SAVEL 7OPEN FILE IF SAVE
58F8 El 00485 BOP HL ;GET EOP
58F9 CD4459 00486 LP CALL MEMS ;TEST IF END
58FC 2015 00487 JR Nz ,JEI sNOT DONE
‘58FE 3A2A59 00488 ENDD LD A, (0Q+1) - $GET DEVICE
5901 FELB p0489 cp 1BH :FILE QUTPUT?
5903 200B 00490 JR Nz ,HR2 +NO
5905 110053 090491 LD DE,FCB ;GET FCB
5908 CD2844 00492 CALL 4428H ;CLOSE FILE
590B 2803 00493 JR Z,HR2 iNO ERR
590D CD7459 00494 CALL ERROR :DIS ERR
5910 C3E853 00495 HR2 JP INCMD ¢RET
5913 CD2BO@ 00496 JEI CALL 2BH iGET KEY
5916 FEO1 00497 JEI1 Ccp 1 ¢BREAK?
5918 CAFES8 00498 JP %, ENDD ;
591B FE60 00499 cp 96 ;SHIFT @2
591D 2005 00500 JR Nz ,JEI2 ;NO PAUSE
591F CD4908 00501 CALL 49H - §WAIT ON KEY
5922 18F2 00502 JR JEI1 iGO CHBECK KEY
5924 7E 908593 JEI2 LD A, (HL) 7GET BYTE
5925 23 p0504 INC HL +BMP BUFF
5926 110953 90505 1D DE,FCB ;GET FILE FCB
5929 CD3300 90506 OQ CALL 33H :DIS/PR/WRITE
592C 18CB pa507 JR LP ;LOCP
00508 ;
592E 213759 09509 PRER LD HL, PMH iGET MSG
5931 CDP45C 09510 CALL DLINE :DIS
5934 C3E853 @P511 JP INCMD sRET
5937 90512 PMH DEFM 'Buffer empty'
42 75 66 66 65 72 20 65 6D 70 74 79
5943 6D 90513 DEFB 13
pa514 ;
5944 00515 MEMS EQU $ #Z=EO BUFFER
5944 ED5BB859 00516 1D DE, (NB) #GET CUR
5948 DF 00517 - ReST 18H ;
5949 C9 00518 RET
- 594A 00519 HIGH HU $ #Z=PAST HI, ONE BYIE
594A ED5B4940 00520 D DE, (4649H) #GET HI
594E 13 90521 INC DE iBMP
594F DF 00522 RST 18H - ;COMP
5950 C9 00523 RET
: 00524 ;
00525 ; OPEN FCB FOR SAVE
00526 ;
5951 00527 SAVELI EQU $

188 Appendix I

5951 79

5952 FELB
5954 CO
5955 23
5956 CD6953
5959 110053
595C CD1C44
595F 210052
5962 0600
5964 CD2044
5967 C8
5968 CD7459
596B C3E853
596E CD7459
5971 C3EB53
5974 F6CO
5976 CD0944
5979 C9

597A

597A 23
597B CD6953
597E CA4656
5981 110053
5984 CD1C44
5987 0600
5989 210052
598C CD2444
598F C26E59
5992 2AB859
5995 CD4A59
5998 CA4156
599B 110053
599E CD1300
59A1 C2AB59
59M 77
5925 23
59A6 22B859
5929 18EA
59AB FEIC
S9AD 2805
59AF FELD
59B1 C26E59
59B4 C3E853
5987 00
59B8 125C
59BA 125C

59BC
59BC 3EQE
59BE CD3300

00528
00529
00530
99531
00532
00533
00534
00535
00536
90537
00538
00539
00540
99541
00542
00543
00544
00545
00546
p0547
008548
00549
90550
p@551
00552
90553

00577
00578
90579
00580
00581
00582

-

BEEE

[t ~e me ~e

D A,C
CP 1BH
RET N2
INC HL
CALL NEXT
LD DE,FCB
CALL 441CH
LD HL,BUFFER
b B,g
CALL 4420H
RET 2
CALL ERROR
JP INQD
CALL ERROR
JP INQD
OR PCOH
CALL 4409H
RET '
LOAD ROUTINE
BU $
INC HL
CALL NEXT
JP %,PARERR
LD DE,FCB
CALL 441CH
D B,9
1D HL,BUFFER
CALL 4424H
JpP NZ , ERRX
D - HL, (NB)
CALL HIGH
JP 7, CUTMEM
D DE,FCB
CALL 13H
JP NZ , EML
LD (HL) ,A
INC HL
LD (NB) ,HL
JR ILR2
cP 28
JR %, BN
Cp 29
JP ’ NZ’ERRX
. JP INCMD
NOP
DEFW BOP
DEFW EOP
LINE INPUT ROUTINE
QU $
LD A,14
CALL 33H

Term Program

;GET DEVICE
;QUTPUT TO FILE?
;NO

:BMP PIR

;GET NEXT

:GET FCB

;:MOVE FS

$GET 1/0 BUFFER
;LRL=256

: OPEN/ INIT

;sNO ERR
sDISPLAY ERR
sRET

sRET RET
;DIS ERROR

MOVE FS

;HALF DUPLEX FLAG
;NEXT BYT IN BUFF

' ;CURR BYT WHILE DIS/PR

Machine-language Disk I/O

189

Term Program

59C1 B5
59C2 48
59C3 0600
59C5 CD4990
59C8 FEA1
59CA 283B
59CC FEAD
59CE 2838
59D¢ FEO8
59D2 2826
59D4 FELF
59D6 2816
59D8 5F
59D9 78

190 Appendix 1

00583
00584
00585
90586
00587
00588
00589
00590
@591
@592
00593
00594
00595
08596
00597
00598
08599
00600
00691
00602
00603
00694
00695
00686
00607
00608
00609
00610
00611
00612
00613
00614
00615
09616
00617
00618
0619
00620
00621
00622
00623
00624
00625

Py Py e P

00627

00628

00629
p0630
00631
00632
00633

AL A

vyvo o4

90635

&
8

LIRL

LIRD

POP
RET
DEFW
DEFM

wre A~

CURLO
ARS1

GLEEEEEEEEE R PR EEEEEEEEEEE R

HL

C,B
B,-
49H

Z,BRKL’
13
Z,LDON

31
7,LIRD
E,A
A,B

Z,LIRL
32
C,LIRL
Tz'+1
NC, LIRL
(HL) ,A
33H

LIRL
A,B
Z,LIRL

33H

1Y

;BKSP

:DIS
;BACKUP
sDEC COUNT
; CONT

sFOR BREAK
:C/R

+GET BUFF
;SAVE CF
;CUR OFF

;C/R
sDIS

' ;GET CF

-

;QUR LOC

"Baud (110,150,300,600,1200,2400 48ﬂﬂ 19600)
42 61 75 64 20 28 31 31 30 2C 31 35
30 2C 33 30 30 2C 36 30 36 2C 31 32

?

5862 03
5A63

5A76 03
5A77

5A89 03
5ABA 0000
5A8C 00
SA8D 920
5A8E 00
SASF 6ED0
5A91 22
5A92 9600
5294 44
5a95 2CO1
5897 55
5A98 5802
5A9A 66
5A9B BOP4
5A9D 77
S5A9E 6009
S5AMG AA
5AA1 CO12
5AA3 CC
5AM 8025
5AN6 EE
S5AA7 0000
5AA9 00
S5AAA 4020
S5AAC 60

00637

00638
00639

00640
Po641

00642
00643
p0644
00645
00646
po647
00648
00649
90650
00651
00652
90653
00654
90655
00656
90657
00658
00659
00660
00661
00662
p0663
p0664
00665
00666
00667
00668
00669

Ve ¥ Pk No)

" Term Program

30 30 2C 32 34 30 39 2C 34 38 30 30

2C 39 36 30 30 29 20 20 3F 20

'DEFB

ARS2 DEFM

20
DEFB

ARS3 DEFM

DEFB
ARS4

DEFM

3

'word length (5,6,7,8) ?2°'
57 6F 72 64 200 6C 65 6E 67 74 68 20
28 35 2C 36 2C 37 2C 38 29 20 20 3F

3

'Stop bits (1,2) 2!
53 74 6F 70 20 62 69 74 73 20 28 31
2C 32 29 20 20 3F 20

3

YParity (E,O,N)

? '

56 61 7269 74 79 20 28 45 2C 4F 2C
4E 29 20 20 3F 20

DEFB 3

ABAUD DEFW ']

AWORD NOP

ASTOP NOP

APAR NOP

ABRATE DEFW 110
DEFM '™
DEFW - 150
DEFB 44H
DEFW 300
DEFB 55H
DEFW 600
DEFB 66H
DEFW 1200
DEFB 774
DEFW 2400
DEFB GAAH
DEFW 4800
DEFB @CCH
DEFW - 9600
DEFB PEEH
DEFW /]

AWORDL DEFB 0
DEFM g !
DEFB .60H

r

H SET RS~232 PARAMETERS

']

RESET HQU $
CALL POSNC
ID HL,ARS1
CALL DLINE
LD HL,4318H
ID B,4
CALL LIR
JR C,RESET
CALL GETINP
LD HL:, ABRATE

BST LD C, (HL)
INC HL

CURRENT

%%Eﬁ 78

TABLE

PXPNAY]
HHH
£E:
7

Machine-language Disk /O 191

Term Program

5AC8 46

5ACA 23
5ACB 78
5ACC Bl
5ACD 28DE
S5ACF 7A

5AD]1 20F3
5AD3 7B

5AD4 B9

5AD5 20EF
5AD7 2B

5AD8 TE

- 5AD9 322153
S5ADC ED538A5A

5BO6 7E
5B07 322053

S5BOA

5B2A CD755B
5BAD 21635A
5B10 CDP45C
5B13 211843
5Bl6 0601
5B18 CDBC59
5B1B 38ED
5BLD 7E

BRIE IVANEA

-t bAde bl oS M \ILIIED

5B21 D631
5B23 38E5
5B25 FEA2

192 Appendix 1

00682
00683
00684
00685
006 86
00687
00688
00689
00690
00691
00692
00693
00694
00695
P0696
00697
00698
00699
0700
00701
00702
pa703
00704
00705
00706
00707
00708
00709
00710
09711
0a712
009713
00714
00715
00716
0a717
00718
00719
00720
00721
00722
00723
00724

an1o
VWi Lo

00726
00727
00728
00729
00730
00731
00732

GAA722
Wi 99

09734
00735
00736

ghn we we
g

@u. ~eo wo

AHEEEREEERE

EEEEYAEHRESREEYE

B, (HL)

A,B

2 y RESET

A,D

NZ,BST
AE

NZ,BST

A, (HL)

(ABAUDV) ,A
(ABAUD) ,DE

GET WORD LEN

EB@BBE%%%QBE%EEBEBE

$
POSNC

HL,ARS2
DLINE
HL,4318H
B,1

LIR
C,GiL

A, (HL)
(AWORD) ,A
35H
C,GHL

4

NC, GWL
HL, AWORDL
D,9

E,A
HL,DE

A, (HL)
(ACURS) ,A

GET STOP BITS

BEQU

OATT
Al

$

TY N

EUDING
I'EIIARS3
DLINE
HL,4318H

s MSB

+IS BC 0?2

+Y, BAD INP

7 IRY NEXT

-#TRY NEXT

7POSN TO BUAD

;1 STOR VAL
$STOR #

5827 30EL
5B29 OEOD
S5RBR2B BY
5B2C 2802
5B2E QELD
5B30 3A2053
5B33 Bl
5B34 322053

5B37

5B37 CD755B
5B3A 21775A
5B3D CD@45C
5B40 211843
5B43 0601
5B45 CDBCS9
5B48 38ED
5B4A 7E
5B4B CBAF
5B4D 328ESA
S5B50 OESO
5B52 FEAS
5B54 280C
5B56 OEOO
5B58 FEAF
5BS5A 2806
5B5C OEO8
5BSE FEAE
5B60 20D5
5B62 3A2053
5B65 Bl
5B66 F607
5B68 322053
586B 4F
5B6C 3A2153
5B6F CD6153
5B72 C3755B

5B75

5B75 2A185A
5B78 114000
5B7B 19
5BIC 222040
SBIF 3ELF
5B81 C33300

5B84 E5
5B85 110000

00737
00738
00740
00741
00742 Y1SB
00743
007 44
00745
00746
00747
00748 GPB
00749

00750

0@751

09752

00753

00754

00755

00756

00757

00758

00759

00760

00761

00762

00763

00764

00765

pO766

00767

00768 YPX
00769

00770

00771

G772

00773

00774

00775

00776 ;
09777 POSNC
00778
00779
007 80
00781
00782
00783
007 84
00785
00786
00787

nnTaoon

Yyui oo

00789
00790
90791

g WO WO

G) S0 w0 we wo %o N

NC,GSB
c,0

A

%,Y1SB
C,10H

AI (ACURS) 3
C

(ACURS) ,A

EREERRER

GET PARITY

U $

CALL POSNC
HL,ARS4
DLINE
HL,4318H
B,1

LIR
C,GFEB

A, (HL)

5 'A
(RPAR) ,A
C,80H

IEI

Z,YPX
C’g

lol

Z2,YPX
C,8

INI

Nz ,GPB

A, (ACURS)
Cc

7

(ACURS) ,A
A, (ABAUIV)
INITRS
POSNC

$

HL, (CURLO)
DE,64
HL,DE
(4020H) ,HL
A,31

33H

4EEEEEY YEEEERAENAEHAERAEEEESEEEEE

Term Program

Y
s NO STOP
:1 STOP?
Y

.32 STOP

;GET BYTE
;ADD STOP BITS
:STOR

;DISP

;MAKE U/C
#STOR

: EVEN?
Y

+0DD

sNO PAR?
;INP ERR

FGET STAT

7ADD PARITY
sTURN ON CTRL
7STOR

FGET CTRL WORD

;GET BAUD VAL

. ;INIT RS-232

[

- We W W) We We
g -

GETINP - DECIMAL & HEX INPUT DECODER
ENTRY HL~> INP, EXIT DE=NUM

NIV = TAITD mN
\V NS l-'l.‘.Ll.\Y ‘;‘J&"‘S LA HI

ETINP PUSH HL

;SAVE LINE
s RESET

Machine-language Disk I/0

193

Term Program

5B88 7E
5B89 FEOD
5B8B 2003
5B8D E3
5B8E El
SB8F C9
5B90 23
5B91 FE20
5B93 28F8
5B95 FE30
5B97 3819
5B99 FE3A
5B9B 3015
5B9D D630
5BI9F E5
5BAG 62
5BAL 6B
5BA2 29
5BA3 29
5BM 19
5BAS 29
5BA6 3805
5BAB 1600
5BAA 5F
5BAB 19
5BAC EB
5BAD El
5BAE 30D8
5BBJ 18DB
5BB2 El
5BB3 110000
5BB6 7E
5BB7 FEID
5BB9 C8
5BBA FE20
5BBC C8
5BBD 23
5BBE FE48
5BC@ 28F4
5BC2 FE30

5BD2 D630
5BD4 EB
5BD5 F5
5BD6 7C
5BD7 E6FP

194 Appendix I

00792 GIN
00793
00794
00795 GIN3
0a796 :
00797
00798 GIN2
00799
00800
00801
00802
00803
00804
00805
00806
0o8oe7
00808
00809
29819
00811
po812
p0813
po8l4
P0815
00816
00817
00818 GINX
00819
00820
00821 ;

90822 HEXINP

00823
P0824 HEX
00825
00826
00827
00828
09829
00830
00831
00832
00833
00834
90835
00836
00837
90838
00839
00840
po84l
00842 HEX1
00843
P0844
00845
00846

5QE6EE %%gagee%@g@@ssgg%@%@%@gggﬁﬁge

[
[
|

d 5
£F

FELELLTLEEEEPLT:

A, (HL)
- 13

NZ,GIN2
(SP) ,HL

32
7,GIN3
ll

C, HEXINP
1o

NC, HEXINP
30H

H,D
L,E
HL, HL
HL,DE
HL, HL
C,GINX
D,ﬂ
E,A
HL,DE
DE,HL

NC,GIN
GIN3

DE, 0

A, (HL)

13
32

IHI
%, HEX
lgl

Tel

C,HEX1
lAl

30H
DE, HL
AF
AH
OFgH

sGET CHR
;DUN?

N

sLINE ON STK
;GET LIN '
;s DUN

- §BMP LIN

s SPACE?
;DUN
sNUM?
:N

s NUM?

;CONV BIN
#SAVE LIN
s HL=ACCUM

;HL=HL*10

:10/V ERR

:0

sGET CUR DIGIT
;ADD DIGIT.

- ;DE=ACCUM

. :
F et e ey alemaw

#GET INP START

;GET DIGIT
¢ DUN?

Y

;s DUN?

Y

sBMP ’

; '"HEX' SIG?
7 IGNOR

":0K?

N

s OK?

sINV CF
N

s NUM?

'Y

sHEX?
sBAD

:SUB AMT
:MAKE BIN
s HL=ACCUM
7SAVE BIN
;sGET MSB
s TEST IF MAX AL

58D9 37
5BDA 2803
5BDC EB
5BDD Fl1
5BDE C9
5BDF 29
SBEJ 29
5BEL 29
SBE2 29
5BE3 Fl
SBE4 BS5
5BED OF
5BE6 EB
5BE7 18CD

5BEY
5BES 3EOD

= e n'
SBEB CD5453

5BEE 3E20
5BF CD5453
5BF3 0C
S5BF4 CD2BEO0
5BF7 FEJ1
5BF9 C8
SBFA 79
S5BFB FESB
5BFD 28EA
SBFF 18EF

5CO1 C30052

5CP4

5Co4 7E
5C05 FEO3
5Co87 C8
5Cp8 CD3300
5COB 7E
5COC FESD
5COE C8
5COF 23
5Cl9 18F2
5C12

5C12

00847
00848
00849

anoe 6
wuoow

00851
00852
00853
00854
90855
00856
00857

[r.171e]
UU058

00859
00869
00861
00862
00863
p0864
00865

an866

L4 AS At AN

00867
p0868
09869
00870
00871
00872
00873
00874
00875
90876
00877
90878
0p879
p088H
po88l
00882
00883
00884
00885
p0886
00887
09888
00889
p0899
p089l1

0002y total errors

-~e ®™me we

ASCII

’
DLINE

BHHEERELEAEE ELLELT:

SCF
JR
m .

POP

" RET

ADD
ADD
ADD
ADD
POP
OR

D
e

EX
JR

SEND ASCII SET

QU
LD
CALL

Ag°

$

A,13
QUTPUT
A,32
QUTPUT
o
2BH

1

A
A'C

12'+1
7,ASCIT
ASC

5200H

$
A, (HL)
3

z

33H
A, (HL)
13

z

HL
DLINE
$

START

Term Program

$SET C

;0K

:RESTOR HL, LIN
:KILL

;SHIFT OVER 4X
;HL=HL*16

~ ;GET DIGIT

sADD NEW DIGIT
s HL=ACCUM

s DE=ACCUM

s CONT

+ SPACE
;SEND OUT
;BMP VAL
;GET KEY

!

;GET CHR
sDONE?
sY

;OUTPUT LINE TO VIDEO
;GET CHR

:END OF TEXT?

1 YES

;s DISP

;sGET CHR

:END OF TEXT?

-

;BMP TXT PIR
;CONT DISP

Machine-language Disk I/0

1956

Appendix II

FD1771-01 Data Sheetsuuueiinerenn e 197
FD1771-01 Application Notesouuuuivimeennn e, 217
FD179X-02 Data Sheetsovuuniee e 225
FD179X Application Notesc.oueeueinennsnnenunnnnnn. 247
HL-VL LLQ(/ Lo
1371 oo en 17271
4] A

196 Appendix II

FD1771 Data Sheet

WESTERN

DIGITAL
A T o N

cC o A P o A /
T
. (=
FD1771-01 Floppy Disk Formatter/Controller =
FEATURES : . .;_.APPLlCA'I:'IQ._,NS | 9
e SOFT SECTOR FORMAT COMPATIBILITY ¢ FLOPPY DISK DRIVE INTERFACE

e AUTOMATIC TRACK SEEK WITH VERIFICATION ' ® SINGLE OR MULTIPLE DRIVE

 READ MODE CONTROLLER/FORMATTER
Single/Multiple Sector Write with Automatic e NEW MINI-FLOPPY CONTROLLER

Sector Search or Entire Track Read
ector Search or Entire 1rac GENERAL DESCRIPTION

Selectable 128 Byte or Variable Length Sector
e WRITE MODE ‘ The FD1771 is a MOS/LS! device that performs the
Single/Multiple Sector Write with Automatic functions of a Floppy Disk Controller/ Formatter.
Sector Search The device is designed to be included in the disk
Entire Track Write for Diskette Formatting drive electronjr_::s, and conte:’ins a frl‘exible interface
organization that accommo ates the interface sig-
¢ PROGRAMMABLE CONTROLS nals from most drive manufacturers. The FDi771 is

Selectable Track-to-Track Stepping Time ibl ith th M 3740 data ent
Selectable Head Settling and Head Engage f:r",:‘z:t' e w ¢ 18 0 data entry system

Times
Selectable Three Phase or Step and Direction
and Head Positioning Motor Controls

e SYSTEM COMPATIBILITY
Double Buffering of Data 8-Bit Bi-Directional
Bus for Data, Control and Status
DMA or Programmed Data Transfers
All Inputs and Outputs are TTL Compatible

The processor interface consists of an 8-bit bi-
directional bus for data, status, and control word
transfers. The FD1771issetup to operate on a multi-
plexed bus with other bus-oriented devices.

The FD1771 is fabricated in N-channel Silicon Gate
MOS technalogy and is TTL compatible on all inputs
and outputs. The Aand B suffixes are for ceramic
and plastic packages, respectively.

— FODATA
ATA 181 _ ‘ﬁFD CLOCK
vge(-sV) Qg 1 /0P vpp(+12v) G o sy
Wed 2 301 INTRQ a1 L f-—
csd 3 3801 DRQ COMPUTER cs FLOPPY DISK = FLOPPY
RE(C] 4 37 DINT INTERFACE AE CONTROLLER wD DISK
Ao : 5 s W’ W FORMATTER o DRIVE
A Q6 s iP R WPRT
DALOC] 7 3410 TROO WF
DAL1C] 8 33AWF -
pAL2d 9 323 READY
pAC3d10 a1bwo s Tl o2
pacad11| V7 |sopwae READY
DALS 12 2031 7G43 o8
baLe 13 28 HLD 10K g 1K ERISTEE
DAL7 {14 27| FDDATA i oRO | EHZIDIRC
PR/STEP 015 26 O FDCLK T INTRO PHE
PH2/DIRC] 16 261 XTDS CLK (2 MHZ) _
PH3C}17 24[1CLK ™ Lo
M]18 23 HLT oIt /_ =
MREJ19 22D TEST 1
(GND) Vss 320 218V (+5%) .
HLT ONE SHOT
: Vss Ves Voo Ve A =
PIN CONNECTIONS T T
- 5 12 5

FD1771 SYSTEM BLOCK DIAGRAM

/

Machine-language Disk I/O 197

FD1771 Data Sheet

PIN OUTS

. ’

o Pin No. Pin Name Symbol Function

~ 1| Power Supplies \%/Nc I Y,

j 19 MASTER RESET bA logic low on this input resets the device and loads

) “03" into the command register. The Not Ready

-4 (Status bit 7) is reset during MR ACTIVE. When MR
is brought to a logic high, a Restore Command is
executed, regardless of the state of the Ready signal
from the drive.

20 Vss Ground

21 Vee +5V

40 Vbp +12V

Computer Interface
2 WRITE ENABLE WE A logic low on this input gates data on the DAL into
the selected register when CS is low.
3 CHIP SELECT CS A logic low on this input selects the chip and enables
computer communication with the device.
4 | READ ENABLE RE A logic low on this input controls the placement of
data from a selected register on the DAL when CS is
low. .
56 REGISTER SELECT Ao, Aq These inputs select the register to receive/transfer
LINES data on the DAL lines under RE and WE /E control:
A1 Ao RE WE
0 0 Status Register Command Register
0 1 Track Register Track Register
1 0 Sector Register Sector Register
1 1 Data Register Data Register
7-14 DATA ACCESS LINES | DALO-DAL7|Eight bit inverted bidirectional bus used for transfer
of data, control, and status. This bus is a receiver
enabled by WE or a transmitter enabled by RE.

24 CLOCK CLK This input requires a free-running 2 MHz + 1% square
wave clock for internal timing reference.

38 DATA REQUEST DRQ This open drain output indicates that the DR con-
tains assembled data in Read operations, or the DR
is empty in Write operations. This signal is reset
when serviced by the computer through reading or
loading the DR in Read or Write operation, respec-
tively. Use 10K pull-up resistor to +5.

39 INTERRUPT REQUEST | INTRQ This open drain output is set at the completion or
termination of any operation and is reset when a
new command is loaded into the command registet.
1Use 10K pull-up resistor to +5.

Floppy Disk Interface:

15 Phase 1/Step PH1/STEP |If the 3PM inputisa logic low the three-phase motor
control is selected and PH1, PHZ, and PH3 PH3 outputs

16 Phase 2/Direction PH2/DIRC |formaone e activelowsignaloutofthree. PHTisactive

. low after MR. If the 3PM input is a logic high the step

17 Phase 3 PH3 and direction motor control is selected. The step
output contains a 4 usec high signal for each step

18 3-Phase Motor Select |{3PM and the direction output is active high when stepping
in; active iow when stepping out.

198 Appendix II

m

FD1771 Data Sheet

Pin No. ‘ Pin Name “Symbol ‘ Function

— — _ - L

22 TEST S TEST This input is used for testing purposes only and E
should be tied to +5V or left open by the user. :1‘

- 23 HEAD LOAD TIMING | HLT The HLT input is sampled after 10 ms. When a logic -
) ' high is sampled on the HLT input the head is assumed g

to be engaged.

‘25 | EXTERNAL DATA. | XTDS A logic low on this input selects external data
SEPARATION separation. A logic high or open selects the internal
data separator.

26 FLOPPY DISK CLOCK | FDCLOCK | This input receives the externally separated clock
{External Separation) -when XTDS = 0. If XTDS = 1, this input should be tied
to a logic high.

27 FLOPPY DISK DATA FDDATA | Thisinput receives the raw read disk data if XTDS=1,
or the externally separated data if XTDS=0.

28 HEAD LOAD HLD ..| The HLD output controls the loading of the Read- '
‘ Write head against the media.
29 ~Track Greater than 43 | TG43 This output informs the drive that the Read-Write

head is positioned between tracks44-76. This output
is valid only during Read and Write commands.

30 WRITE GATE - |wa This output is made valid when writing is to be perQ

: formed on the diskette.
31 . | WRITE DATA . WD This output contains both clock and data bits of
, j 500 ns duration.
32. Ready . READY This input indicates disk readiness and is sampled

for a logic high before Read or Write commands are
performed. If Ready is low, the Read or Write oper-
ation is not performed and an interrupt is generated.
A Seek operation is performed regardless of the state
of Ready. The Ready input appears in inverted format
as Status Register bit 7. '

33 WRITE FAULT WF This input detects wiring faults indications from the
. drive. When WG=1 and WF goes low, the current

Write command is terminated and the Write Fault

status bit is set. The WF input should be made inactive
(high) when WG becomes inactive.

34 | TRACK 00 TROO This input informs the FD1771 that the Read-Write

v head is positioned over Track 00 when a logic low.
35 INDEX PULSE P Input, when low for a minimum of 10 usec, informs

the FD1771 when an index mark is encountered on
the diskette.

This input is sampied whenever a Write command is
received. A logic low terminates the command and
sets the Write Protect status bit.

37 DISK INITIALIZATION | DINT .| The iput is sampled whenever a Write Track com-
' mand is received. If DINT=0, the operation is termin-
ated and the Write Protect status bit is set.

36 WRITE

'U\
X
(@]
—
m
Q
-
s
Yl
X
-]

Machine-language Disk I/O 199

FD1771 Data Sheet

10-L22104

ORGANIZATION

The Floppy Disk Formatter block diagram is illustra-
ted on page 4. The primary sections include the
parallel processor interface and the Floppy Disk
interface. ' '

Data Shift Register: This 8-bit register assembles se-
rial data from the Read Data input (FDDATA) duriing

Read operations and transfers serial data to the

Write Data output during Write operations.

Data Register: This 8-bit register is used as a holding
register during Disk Read and Write operations. In
Disk Read operations the assembled data byte is
transferred in parallel to the Data Register from the
Data Shift Register. In Disk Write operations infor-
mation is transferred in paraliel from the Data Regis-
ter to the Data Shift Register.

‘When executing the Seek command, the Data Regis-

ter holds the address of the desired Track position.
This register can be loaded from the DAL and gated
onto the DAL under processor control.

Track Register: This 8-bit register holds the track
number of the current Read/Write head position. Itis
incremented by one every time the head is steppedin
(towards track 76) and decremented by one when
the head is stepped out (towards track 00). The con-
tents of the register are compared with the recorded
track number in the ID field during disk Read, Write,
and Verify operations. The Track Register can be

loaded from or transferred to the DAL. This Register
should not be loaded when this device is busy.

Sector Register (SR): This 8-bit register holds the
address of the desired sector position. The contents
of the register are compared with the recorded sec-
tor number in the ID field during disk Read or Write
operations. The Sector Register contents can be
loaded from or transferred to the DAL. This register
should not be loaded when the device is busy.

Command Register (CR): This 8-bit register holds
the command presently being executed. This regis-
ter should not be loaded when the device is busy
uniess the execution of the current command is tobe
overridden. This latter action results in an interrupt.
The command register can be loaded from the DAL,
but not read onto the DAL.

Status Register (STR): This 8-bit register holds
device Status information. The meaning of the Sta-
tus bits are a function of the contents of the Com-
mand Register. This register can be read onto the
DAL, but not loaded from the DAL.

CRC Logic: This logic is used to check or to generate
the 16-bit Cyclic Redundancy Check (CRC). The
polynomial is: G(x) = x'® + x'2 + x5 + 1,

The CRC includes all information starting with the
address mark and up to the CRC characters. The
CRC register is preset to ones prior to data being

shifted through the circuit.

4y —
A
// (DAL)

DATA OUT
BUFFERS

i | 3 | !
DATA COMMAND SECTOR TRACK __I:_ STATUS
AEG REG REG [REG REG
r_—+ / .
i FD DATA
DATA - P & DATA
- SHIFT ' SERAS
. Lo AaToR | FD CLOCK
] | L e
=™ X705
WRITE DATA AM
-—l DETECTOR
(TO DISK)
CRC LOGIC wi
1Ga3
DRQ
jp—"0 01
INTRQ l—
-— &C;_"é‘:g;é‘; TIMING AND DISK iP
R prlliides CONTROL INTERFACE [® TAgg
ﬁ : CONTROL READY
HE CONTROL _ CONTROL © p—LHUSTER .
—WE . = | PH2/DIRC o,
AD " PH3
A] 3 PM
- DI
HLD =
CLK (2 MHZ) HLT
=T g HLY

FD1771 BLOCK DIAGRAM

200 Appendix II

FD1771 Data Sheet

Arllhmetlc/Loglc Unit (ALU): The ALU is a serial
comparator incrementer, and decrementer and is
s P et P mmbimen A AmmanAria

used for register modification and comparisons with

the disk recorded 1D field.

AM Detector: The Address Mark detector is used to
detect 1D, Data, and Index address marks during
Read and Write operations.

Timing and Control: All computer and Floppy Disk
Interface controls are generated through this logic.
The internal device timing is generated from a 2.0

Aar it bmcmal mmiabal Alaal

ViHz exiernai crysiai CiOCK.

PROCESSOR INTERFACE

The interface to the processor is accomplished
through the eight Data Access Lines (DAL) and
associated -control signals. The DAL are used to
transfer Data, Status, and Control words out of, or
into the FD1771. The DAL are three-state buffers that
are enabled as output drivers when Chip Select (CS)
and Read Enab!v (RE) are active {low logic state) or
act as input receivers when CS and erte Enable
(WE) are active.

When transfer of data with the Floppy Disk Con-
troller is required by the host processor, the device
address is decoded and CS is made low. The least-
significant address bits A1 and A0, combined with
the signals RE during a Read operation or WE during
a Write operation are interpreted as selecting the fol-
lowing registers:

A1-A0| READ (RE) WRITE (WE)

0 O|Status Register Command Register
0 1]Track Register Track Register

1 0|Sector Register Sector Register

1 1 |DataRegister Data Register

sema za £ s

During Direct Memory Access (DMA) types of data
transfers between the Data Register of the FD1771
and the Processor, the Data Request (DRQ) output is
used in Data Transfer control. This signal also
appears as status bit 1 during Read and Write
operations.

On Disk Read operations the Data Request is acti-
vated (set high) when an assembled serial input byte
is transferred in parallel to the Data Register. This bit
is cleared when the Data Register is read by the pro-
cessor. If the Data Register is read after one or more
characters are lost, by having new data transferred
into the register prior to processor readout, the Lost
Data bit is set in the Status Register. The Read opera-
tion continues until the end of sector is reached.

On Disk Write operations the Data Request is acti-
vated when the Data Register transfers its contents
to the Data Shift Register, and requires a new daia
byte. It is reset when the Data Register is loaded with
new data by the processor. |f new data is not loaded

;
C

- at the time the next serial byte is required by the

Floppy Disk, a byte of zeroes is written on the
diskette and the Lost Data bit is set in the Status

Register. T

The Lost Data bit and certain other bits in the Status

’Register will activate the interrupt request (INTRQ).
The interrupt line is also activated with normai com-
pletion or abnormal termination of all controlier
operations. The INTRQ signal remains active until
reset by reading the Status Register to the processor
or by the loading of the Command Register. In addi-
tion, the INTRQ is generated if a Force Interrupt
command condition is met.

FLOPPY DISK INTERFACE

The Floppy Disk interface consists of head position-
ing controls, write gate controls, and data transfers.
.A 2.0 MHz + 1% square wave clock is requred at the
CLK input for internal control timing (may be 1.0
MHz for mini floppy). '
HEAD POSITIONING

Four commands cause positioning of the Read-
Write head (see Command Section). The period of
each positioning step is specified by the rfield in bits
1 and 0 of the command word. After the last direc-
tional step, an additional 10 milliseconds of head set-
tling time takes place. The four programmable
stepping rates are tabulated below

The rates {shown in Table 1) can be applied to a
Three-Phase Motor or a Step-Direction Motor through
the device interface. When the 3PM input is con-
nected to ground, the device operates with a three-
phase motor control interface, with one active low
signal per phase on the three output signals PH1,
PH2, and PH3. The stepping sequence, when step-
ping in, is Phases 1-2-3-1, and when stepping out,
Phases 1-3-2-1. Phase 1 is active low after Master

Py Al adm. Y veY 73
Reset. Note: PH3 needs an inverter if used.

The Step-Direction Motor Control interface is acti-
vated by leaving input 3P 3PM open or connecting it to
+5V. The Phase 1 pin PH1 becomes a Step pulse of 4
microseconds width. The Phase 2 pin PH2 becomes
a direction control with a high voltage on this pin
indicating a Step In, and a low voltage indicating a
Step Out. The Direction output is valid aminimum of
24 s prior to the activation of the Step pulse.

When a Seek, Step or Restore command is executed,
an optional verification of Read-Write head position
can be performed by setting bit 2 in the command
word to a logic 1. The verification operation begins at
the end of the 10 millisecond settling time after the
head is loaded against the media. The track number
from the first encountered 1D Field is compared
against the contents of the Track Register. If the
track numbers compare and the D Field Cyclic
Redundancy Check (CRC) is correct, the verity
operation is complete. If track comparison is not

Machine-language Disk I/O 201

WG ER

FD1%771 Data. Sheet

10122104

202

made but the CRC checks, an interrupt is generated,
the Seek Error status (Bit4) is set and the Busy status

STTR T2 SLEINS (=L O ST AT i e

bit is reset. _ »
" Table 1. STEPPING RATES

1771-X1 1771-X1 - |17710r — X1 1771 or - X1
CLK=2MHz |CLK=1MHz [CLK =2 MHz |CLK =1 MHz
r1 o] TEST=1 TEST=1 TEST=0 TEST=0
00 .6ms 12ms Approx. Approx.
01 6ms © 12ms 400us* 800us*
10 10ms 20ms
11 20ms 40ms

*For exact times consult WDC.

The Head Load (HLD) output controls the movement
of the read/write head against the disk for data
recording or retrieval. It is activated at the beginning
of a Read, Write (E Flag On) or Verify operation, or a
Seek or Step operation with the head load bit, h, a
logic one remains activated until the third index
pulse following the last operation which uses the

read/write head. Reading or Writing does not occur

until a minimum of 10 msec delay after the HLD sig-
nal is made active. If executing the type 2 commands
with the E flag off, there is no 10 msec delay and the
head is assumed to be engaged. The delay is deter-
mined by sampling of the Head Load Timing (HLT)
input after 10 msec. A high state input, generated
from the Head Load output transition and delayed

externally, identifies engagement of the head

against the disk. In the Seek and Step commands,
the head is loaded at the start of the. command exe-
cution when the h bit is a logic one. In a verify com-
mand the head is loaded after stepping to the
destination track on the disk whenever the h bit is a
logic zero. :

DISK READ OPERATION

The 2.0 MHz external clock provided to the device is
internally divided by 4 to form the 500 kHz clock rate
for data transfer. When reading data from a diskette
this divider is synchronized to transitions of the Read
Data (FDDATA) input. When a transition does not
occur on the 500 kHz clock active state, the clock
divider circuit injects a.clock to maintain a continu-
ous 500 kHz data clock. The 500 kHz data clock is
further divided by 2 internally to separate the clock
and information bits. The divider is phased to the
information by the detection of the address mark.

In the internal data read and separation mode the
Read Data input toggles from one state to the oppo-
site state for each logic one bit of clock or informa-
tion. This signal can be derived from the amplified,
differentiated, and sliced Read Head signal, or by the
output of a flip-flop toggling on the Read Data
puises. This input is sampled by the 2 MHz clock to
detect transitions.

The chip can also operate on externally separated

data, as supplied by methods such as Phase Lock
loop, One Shots, or variable frequency oscillators.
This -is accomplished by grounding the External
Data Separator (XTDS) INPUT. When the Read Data
input makes a high-to-low transition, the informa-
tion input to the FDDATA line is clocked into the
Data Shift Register. The assembled 8-bit data from
the Data Shift Regrster are then transferred to the

Data Register.

The normal sector Ienqth for read or Write opera-
tions with the IBM 3740 format is 128 bytes. This for-
mat or binary multiples of 128 bytes will be adopted
by setting a logic 1 in Bit 3 of the Read and Write
commands. Additionally, a variable sector length
feature is provided which allows an indicator recordea
inthe ID Field to control the length of the sector. Vari-
able sector lengths can be read or written in Read or
Write commands, respectively, by setting a Iogic 0in

Bit 3 of the command word. The sector length indica-

tor specifies the number of 16 byte groups or 16 x N,

‘where N is equal to 1 to 256 groups. An indicator of ali

zeroes is interpreted as 256 sixteen byte groups.

DISK WRITE OPERATION

After data is loaded from the pracessor into the Data
Register, and is transferred to the Data Shift Register,
data will be shifted serially through the Write Data
{WD) ouiput. interiaced with each’bit of dataisa pos-
itive clock pulse of 0.5 psec duration. This signal
may be used to externally toggle aflip-flop to control. -

the direction of Write Current flow.

When writing is to take place on the diskette the
Write Gate (WG) output is activated, allowing cur-
rent to flow into the Read/Write head. As a precau-
tion to erroneous writing, the first data byte must be
loaded into the Data Register in response to a Data
Request from the FD1771 before the Write Gate sig-
nal can be activated.

Writing is inhibited when the Write Protect inputis a
logic low, in which case any Write. command is
immediately terminated, an interrupt is generated
and the Write Protect status bit is set. The Write Fault
input, when activated, signifies a writing fault condi-
tion detected in disk drive electronics such as failure
o deiect write current fiow when the Write Gate is
activated. On detection of this fault the FD1771 ter-
minates the current command, and sets the Write'
Fault bit (bit 5) in the Status Word. The Write Fault
input should be made inactive when the Write Gate
output becomes inactive.

Whenever a Read or Write command is received the
FD1771 samples the READY input. If this input is
logic low the command is not executed and an inter-

rupt is generated. The Seek or Step commands are
performed regardless of the state of the READY

input. 3

Appendix II

COMMAND DESCRIPTION

The FD1771. will accept and execute eleven com-
mands. Command words should only be loaded in
the Command Register when the Busy status bit is
off (status bit 0). The one exception is the Force
Interrupt command. Whenever a command is being
executed, the Busy status bit is set. When a com-
mand is completed, an interruptis generated and the
Busy status bit is reset. The Status Register indicates
whether the completed command encountered an
error or was fault-free. For ease of discussion, com-
mands are divided into four types. Commands and
types are summarized in Table 2.

TYPE 1 COMMANDS

The Type 1 Commands include the F{ESTOF!E
SEEK, STEP, STEP-IN, and STEP-OUT commands.
Each of the Type 1 Commands contain a rate field
(ror1), which determines the stepping motor rate as
defined in Table 1, page 4.

The Type 1 Commands contain a head load flag (h)
which determines if the head is to be loaded at the
beginning of the command. Ifh=1, the head is
loaded at the beginning of the command (HLD
output is made active). If h=0, HLD is deactivated.

Table 2. COMMAND SUMMARY

BITS
TYPE| COMMAND 76543210
| Restore 0000hVrnr
| Seek 0001 hVrr
| Step JO 01 uhVrr
| Step In 01 0uhVnrr
| Step Out 011uhVrin
i | Read Command 100mbEOO
H | Write Command 101 mb Eajag
il | Read Address 11000E00
Il | Read Track 1110010sS
HI | Write Track 11110100
IV | Force Interrupt 110113121114

Note: Bits shown in TRUE form.

Table 3. FLAG SUMMARY

TYPE]
h = Head Load flag (Bit 3)

h = 1, Loadhead at beginning
h = 0, Do not load head at beginning

V = Verify flag (Bit 2).
V = 1, Verify on last track
V = 0, No verify
riro = Stepping motor rate (Bits 1-0)
Refer to Table 1 for rate summary
u = Update flag (Bit 4)

u = 1, Update Track register
u = 0, No update

T IS

FD1771 Data Sheet

Table 4. FLAG SUMMARY

TYPEII

m = Multiple Record flag (Bit 4)

m = 0, Single Record

s m = 1, Multiple Records

b = Block length flag (Bit 3)
b = 1, IBM format (128 to 1024 bytes)
b = 0, Non-IBM format

(16 to 4096 bytes)

ajag = Data Address Mark (Bits 1-0)
ajag = 00, FB (Data Mark)
ajap = 01, FA (User defined)
atag = 10, F9 (User defined)
atag = 11, F8 (Deleted Data Mark)

Table 5. FLAG SUMMARY

TYPEII

s = Synchronize flag (Bit 0)

§ = 0, Synchronize to AM
§ = 1, Do Not Synchronize to AM

TYPEIV

li = Interrupt Condition flags (Bits 3-0)

1, Not Ready to Ready Transition
1, Ready to Not Ready Transition
1, Index Pulse

1, Immediate interrupt’

= Enable HLD and 10 msec Delay
E = 1, Enable HLD, HLT and 10 msec

Delay
E = 0, Head is assumed Engaged and

mg-nuwn

there is no 10 msec Delay

Once the head is loaded, the head will remain
engaged until the FD1771 receives a command that
specifically disengages the head. If the FD1771
does not receive any commands after two
revolutions of the disk, the head will be auto-
matically disengaged (HLD made inactive). The
Head Load Timing Input is sampled after a 10 ms
delay, when reading or writing on the disk is to
occur.

The Type 1 Commands also contain a verification
(V) flag which determines if a verification operation
is to take place on the destination track. If V=1, a veri-
fication is performed; if V=0, no verification is
performed.

During verification, the head is loaded and after an
internal 10 ms delay, the HLT inputis sampled. When
HLT is active (logic true), the first encountered 1D
field is read off the disk. The track address of the ID
Field is then compared to the Track Register; if there
is a match and a valid ID CRC, the verification is
complete, an interrupt is generated and the BUSY

status bit is reset. If there is not a match but there is
Y

#

Machine-language Disk I/O 203

L0-L221ad

FD1771.Data Sheet;

10-H22104

valid.ID CRC, an interrupt is generated, the Seek
Error status bit (Status Bit 4) is setand the BUSY sta-
tus bit is reset. If there is a match but not a validCRG,
the CRC error status bit is:set (Status Bit3), and the
next encountered ID Field is read from the disk for the
verification operation. If an ID Field with a valid CRC

cannot be found after two revoiutions of the disk, the.

FD1771 terminates the operatlon andsents an inter-
rupt:(INTRQ). :

The STEP, STEP-IN, and STEP-OUT commands
contain an UPDATE flag (U). When U=1, the track
register is updated by one for each step. Whe U=0,
the track register is not-updated.

RESTORE (SEEK TRACK 0)

Upon receipt of this command the Track 00 (TROO)
input is sampled. If TROO is active low indicating the
Read-Write head is posmoned overtrack 0, the Track

-

Register is loaded with zeroes and an interrupt is
generated. If TROD is not active low, stepping pulses
(pins 15 to 17) at a rate specified by the rqrg field are
issued until the TROO input is activated. At this time
the TR is loaded with zeroes and an interruptis gen-'
erated. If the TROO input does not go active'low after
255 stepping pulses, the FD1771 terminates opera-
tion, interrupts, and sets the Seek error status bit.
Note that the RESTORE command is executed when

MR goes from an active to an inactive state. A verifi-

cation operation takes placg ifthe V flagisset. Theh

bit allows the head to be loaded at the start of
command.

SEEK :

This command assumes that the Track Register con-
tains the track number of the current position of the
Read-Write head and the Data Register contains the
desired track number. The FD1771 will update the

ENTER

HAS

A TYPE I

COMMAND BEEN

RECEIVED
2

SET BUSY. RESET CRC,
SEEK ERRORA. DRQ. INTRQ

SETHLD - RESET HLD 1
1S .
COMMAND YES SET
A IRECTION ™
STEP-IN e ——
2
NO
18
COM:AAND YES AESET
STECOUT DIRECTION
?
NO
IS,
COMMAND YES
A
STEP
a2
NO

r

NN

DR TO DSA

@ =
NO

| RESET DIRECTION | I SET DIRECTION l
T T

s
DIRECTION HES

o
¥

TRACK 0 AND
DIRECTION
EA

ISSUE
ONE STEP PULSE

DELAY ACCORDING
TO A1, RO FIELD

1S
COMMAND
A STEP. STEP-IN,
OR STEP-QUT,
2

YES

TYPE | COMMAND FLOW

204 Appendix II

TYPE | COMMAND FLOW

FD1771 Data Sheet

Track register and issue stepping puises in the
'appropriate direction until the contents of the Track

lvsletul areleqy 1al to the contents © of the data rnnlefnr

(the desired track location). A verification operatlon
takes place if the V flag is on. The h bit allows the

head to be loaded at the start of the command. An .

interrupt is generated at the completion of the
command.

STEP

Upon receipt of this command, the FD1771 issues

one stepping pulse to the disk drive. The stepping
motor direction is the same as in the previous step
command. After a delay determined by the rrpfield,

a verification takes place if the V fiag is on. If the u.

flag is on, the TR is updated. The h bit allows the
head to be loaded at the start of the command. An

INTRQ. RESET BUSY

INTRQ. RESET BUSY
SET SEEK ERAOR

HAS

1D AM BEEN

DETECTED
3

nnnnnnnn

ADDRESS OF (D

INTRQ
RESET BUSY
NOTE 1+ FEST 0 THERE 1% NO 10 MEDE

F TEST PANDCLK 1 MHI TNEHE I\ A 20MS DELAY

INTRQ. RESET BUSY
SET SEEX ERROR

TYPE | COMMAND FLOW

interrupt .is generated at the completion of the
command. :

STEP-IN
Upon receipt of this command, the FD1771 issues

one stepping pulse in the direction towards track

767 If the u flag is on, the Track Register is incre-
mented by one: After a delay determined by the rirg
field, a verification takes place if the V flag is on. The
h bit allows the head to be loaded at the start of the
command. An interrupt is generated at the comple-
tion of the command.

STEP-OUT

Upon receipt of this command, the FD1771 issues
one stepping pulse in the direction towards track 0. If
the u flag is on, the TR is decremented by one. Aftera
delay determined by the rqrg field, a verification
takes place if the V flag is on. The h bit allows the
head to be loaded at the start of the command. An
interrupt is generated at the completion of the
command.

TYPE It COMMANDS

The Type Il Commands include the Read Sector(s)
and Write Sector(s) commands. Prior to loading the
Type 1l command into the COMMAND REGISTER,
the computer must load the Sector Register with the
desired sector number. Upon receipt of the Type Il
command, the Busy status bit is set. If the E flag=1
(this is the normai case), HLD is made active and
HLT is sampled after a 10 msec delay. If the E flag is
0, the head is assumed to be engaged and thereis no
10 msec delay. The 1D field and the Data Fietd format
are shown below.

When an 1D field is located on the disk, the FD1771
compares the track number of the ID field with the
Track Register. If there is not a match, the next
encountered 1D field is read and a comparison is
again made. If there was a match, the Sector Number
of the ID field is compared with the Sector Register.
If there is not a Sector match, the next encountered
ID field is read off the disk and comparisons again
made. If the ID field CRC is correct, the data field is
then located and will be either written into, or read
from depending on the command. The FD1771 must
find an 1D fietd with a track number, Sector number,
and CRC within iwo revoiutions of the disk; other-
wise, the Record Not Found status bit is set (Status
bit 3) and the command is terminated with an
interrupt.

Each of the Type ||l Commands contain a (b) flag
which in conjunction with the sector length field
contents of the ID determines the length (number of
characters) of the Data field.

For iBivi 3740 compatibitity, the b flag shouid equai 1.
The numbers of bytes in the data field (sector) is then
128 x 2D wheren = 0,1, 2, 3.

Machine-language Disk /O 205

10-122104

FD1771 Data Sheet

SECTOR

_ ID | TRACK SECTOR CRC[CRC CRC | CRC ™
- GAP | AM | ‘NUMBER | zERO | NUMBER | LENGTH | 1 | 2 laar | am paTAFIELD | 1 | 2
o ID FIELD DATA FIELD
~J IDAM = ID Address Mark — DATA = (FE) (g CLK = (C7)¢g
TL Data AM = Data Address Mark — DATA = (F8, F9, FA, or FB), CLR= (C7)e
- .
Forb =1
Sector Length Number of Bytes -
Field (Hex) in Sector (Decimal) s .
00 128
01 256 TYRE N e
02 512 e
03 1024

SET BUSY RESET DRQ. LOST
‘" DATA. RECORD NOT FOUND. &
. STATUS BITS 5 4 6 INTRQ

When the b flag equals zero, the sector length field
(n) multiplied by 16 determines the number of bytes
in the sector or data field as shown below.

Forb=0
Sector Length Number of Bytes
Field (Hex) in Sector (Decimal)
01 16
02 32 ,
03 48 E.\T‘HLD
04 64
: : ! “SEE NOTE
J L NO HAS
. . EXPRED
FF 4080 ’
00 4096
Each of the Type Il commands also contain a (m) flag
which determines if the multiple records (sectors)

are to be read or written, depending upon the com-
mand. If m=0 a single sector is read or writtenand an
interrupt is generated at the compietion of the com-
mand. If m=1, multiple records are read or written
with the sector register internally updated so that an
address verification can occur on the next record.
The FD1771 will continue to read or write mulitiple
records and update the sector register until the sec-
tor register exceeds the number of sectors on the
track or until the Force Interrupt command is loaded
into the command register, which terminated the
command and generates an interrupt.

READ COMMAND

Upon receipt of the Read command, the head is
loaded, the BUSY status bit set, and when an ID field
is encountered that has the correct track number,
correct sector number, and correct CRC, the data
field is presented to the computer. The Data Address
Mark of the data field must be found within 28 bytes
of the correct fieid; if not, the Record Not Found sta-
tus bit is set and the operation is terminated. When
the first character or byte of the data field has been

WRITE
PROTECY
ON

INTRQ. RESET BUSY
SET WRITE PROTECT

NOTE if TEST 0 THERE IS NO 10 MS DELAY
tF TEST 1 AND CLK 1 MHz THERE IS A 20MS DELAY

TYPE Il COMMAND FLOW

shifted through the DSR, it is transferred to the DR,
and DRQ is generated. When the next byte is accum-
ulated in the DSR, it is transferred to the DR and
another DRQ is generated. If the computer has not
read the previous contents of the DR before a new
character is transferred that character is lost and the

206 Appendix II

FD1771 Data Sheet

INTRQ. RESEY BUSY
SET AECORD-NOT FOUND,

NO

NO

- _NO SR : SECTOR
ADDRESS OF ID
FIELD

2

I YES

BRING IN SECTOR LENGTH FIELD
COMPUTE LENGTH FROM D FLAG
STORE LENGTH IN INTERNAL

is
YES THERE A NO ° ;
T
CAC ERROR 3
2

SET CRC
STATUS ERROR

IS
COMMAND
A

WRITE
?

HAS

DATA AM

OCCURED WITHIN

12-28 BYTES,
2

INTRQ. RESET BUSY
SET RECORD-NOT FOUND

PUT RECORD TYPE IN
STATUS REG BITS 4 & 5

o] YES

SET ORQ

HAS
NEXT BYTE
BEEN ASSEMBLED
IN DSR
2
YES

AIAS
DR BEEN NO
READ BY SET DATA
COMPUTER LosT

HAVE
ALL BYTES
BEEN INPUT
2

NO

1 TO
SECTOR REG

INTRQ. RESET BUSY
*SET CRC ERROR " INTRQ RESET BUSY

TYPE it COMMAND FLOW

Lost Data status bit is set. This sequence continues
until the complete data field has been input to the
computer. If there is'a CRC error at the end of the
data field, the CRC error status bit is set, and the
command is terminated (even if it is a mulltiple
record command).

At the end of the Read operation, the type of Data
Address Mark encountered in the data field is recor-
ded in the Status Register (Bits 5 and 6) as shown
below.

Status Status Data AM
Bité6 Bit5 {Hex)
0 0 FB
0 1 FA
1 0 Fo
1 1 F8

TYPE 1l COMMAND FLOW

WRITE COMMAND

Upon receipt of the Write command, the head is
loaded (HLD active) and the BUSY status bit is set.
When an ID field is encountered that has the correct
track number, correct sector number, and correct
CRC, a DRQ is generated. The FD1771 counts off 11
bytes from the CRC field and the Write Gate (WG)
DR has been loaded by the computer). If DRQ has
not been serviced, the command is terminated and
the Lost Data status bit is set. If the DRQ has been ser-
viced, the WG is made active and six bytes of zeros
are then written on the disk. At this time the Data
Address Mark is then written on the disk as deter-
mined by the aiap field of the command as shown
on next page.

The FD1771 then writes the data field and generates
DRQs to the computer. if the DRQ is not serviced in

#

Machine-language Disk /O 207

(N YVANGE]

FD1771 Data Sheet

10122104

Data Mark Clock Mark
aq ag (Hex) {Hex)
0 1] FB C7
0 1 FA Cc7
1 0 F9 c7
1 1 F8 Cc7

time for continuous writing the Lost Data status bit is
set and a byte of zeros is written on the disk. The
command is not terminated. After the last data byte
has been written on the disk, the two-byte CRC is
computedinternally and written on the disk followed
by one byte gap of logic ones. The WG outputis then
deactivated.

(

I DELAY 2 BYTES OF GAP
L SET DRQ —l
I DELAY 8 BYTES OF GAP l

A
DR BEEN
LOADED BY
COMPUTER

INTRQ. RESET BUSY
SET LOST DATA

DELAY 1 BYTE OF GAP

)

TURN ON WG & WRITE
6 BYTES OF ZEROS

i

WRITE DATA AM
ACCORDING TO A1, A0 FIELD
OF WRITE COMMAND

SET DATA

LOS’
WRITE BYTE
OF ZEROS

|

WRITE CRC
WRITE 1 BYTE OF ONES

TURN OFF WG

ALL BYTES
BEEN WRITTEN
?

TYPE 1l COMMAND FLOW

TYPE Il COMMANDS

READ Address

Upon receipt of the Read Address command, the
head is loaded and the BUSY Status bit is set. The
next encountered ID field is then read in from the
disk, and the six data bytes of the ID field are
assembled and transferred to the DR, and a DRQ is
generated for each byte. The six bytes of the ID field
are shown below.

TRACK SIDE SECTOR | SECTOR |CRC | CRC
ADDR | NUMBER | ADDRESS | LENGTH 1 2
1 2 3 4 5 6

Although the CRC characters are transferred to the
computer, the FD1771 checks for validity and the
CRC error status bit is set if there is a CRC error.
The Sector Address of the ID field is written into the
Sector Register. At the end of the operation an inter-
rupt is generated and the BUSY Status is reset.

READ TRACK

Upon receipt of the Read Track command, the head
is loaded and the BUSY status bit is set. Reading
starts with the leading edge of the first encountered
index mark and continues until the next index puise.
As each byte is assembied it is transferred to the
Data Register and the Data Request is generated for
each byte. No CRC checking is performed. Gaps are
included in the input data stream. If bit 0(S) of the
command is a 0, the accumulation of bytes is syn-
chronized to each Address Mark encountered. Upon
completion of the command, the interrupt is
activated.

WRITE TRACK

Upon receipt of the Write Track command, the head
is loaded and the BUSY status bit is set. Writing
starts with the leading edge of the first encountered
index pulse and continues until the next index pulse,
at which time the interrupt is activated. The Data
Request is activated immediately upon receiving the
command, but writing will not start until after the first
byte has been loaded into the Data Register. If the
DR has not been loaded by the time the index pulse is
encountered the operation is terminated making the
device Not Busy, the Lost Data status bit is set, and
the Interrupt is activated. If a byte is not present in
the DR when needed, a byte of zeros is substituted.
Address Marks and CRC characters are written on
the disk by detecting certain data byte patterns in the
outgoing data stream as shown in the table below.
The CRC generator is initialized when any data byte
from F8 to FE is about to be transferred from the D

to the DSR. '

\

208 Appendix II

FDL7(1 Data Sheel

ENTER

YES

SET BUSY, RESET DRQ,
"LOST DATA, STATUS
BITS4.5 86

Py

INTRQ
RESET BUSY

SET HLD

HAS

10 MS PHYS
ExPLRED INDEX MARK?

HAS
DR BEEN
LOADED?

INTRQ 1
SET DATA LOST

YES

SEY DRQ

PHYS
INDE X MARK?

HAS
DR BEEN
LOADED?

TYPE i1l COMMAND WRITE TRACK

CONTROL BYTES FOR INITIALIZATION

DATA CLOCK
PATTERN MARK

(HEX) INTERPRETATION (HEX)
F7 Write CRC Character FF
F8 Data Address Mark c7
F9 Data Address Mark Cc7
FA Data Address Mark Cc7
FB Data Address Mark c7
FC Index Address Mark D7
FD Spare
FE |D Address Mark [o14

#

WRITE 2 CAC
CHARS CLK FF

WRITE FC
CLK D7 >

5 WRITE FD FE -
F8-FB CLK C7 -

WRITE DSR
CLK FF

INTRQ
RESET BUSY

¥

Yes s NO WRITE BYTE OF ZEROS
= DA BEEN SET DATA LOST

TYPE Il COMMAND WRITE TRACK

The Write Track Command wili not execute if the
DINT input is grounded; instead, the Write Protect
status bit is set and the interrupt is activated. Note
that one F7 pattern generates two CRC characters.

TYPE IV COMMAND
Force Interrupt

This command can be loaded into the command reg-
ister at any time. If there is a current’command under
execution (BUSY status bit set), the command will
be terminated and.an interrupt will be generated
when the condition“specified in the 1o through I3
field is detected. The interrupt conditions are shown
below:

Ip= Not-Ready-To-Ready Transition

= Ready-To-Not-Ready Transition

15 = Every Index Pulse

I3 = immediate Interrupt (Requires reset,

see Note) a.\

NOTE: If I - i3 =0, there is no interrupt generated but the current
command is terminated and busy is reset. This is the only

command that will clear the immediate interrupt.

Machine-language Disk 1/0

L0-LLLLAA

209

FD1771 Data Sheet

STATUS DESCRIPTION

Lo-_u_ucu

Upon receipt of any command, 'e'xeept the Force
Interrupt command, the Busy Status bit is set and

reset and the rest of.the status bits are updated or
cleared. In this case, Status reflects the Type |

the rest of the status bits are updated or cleared for
the néw command. If the Force Interrupt Command
is received when there is a current command under -
execution, the Busy status bit is reset, and the rest of .

the status bits are unchanged. If the Force Interrupt
command is received when there is not a current
command under execution, the Busy Status bit is

commands.
- 'The format of the Status Reglster is shown below.
» (BITS)
" 7 6 5 4 3 2 1 0
S7 | S6 | S5 1 84| 83| s2 | s1 SO

executed as shown in Table 6.

Table 6. STATUS REGISTER SUMMARY

. Status varies according to the type of command

ALLTYPEI : : »
BIT COMMANDS READ ADDRESS READ READ TRACK WRITE WRITE TRACK
S7 | NOT READY NOT READY NOT READY NOT READY NOT READY NOT READY
S6 | WRITE PROTECT 0 RECORD TYPE 0 WRITE PROTECT | WRITE PROTECT
S5 | HEAD ENGAGED 0 RECORD TYPE 0 WRITE FAULT WRITE FAULT
S4 | SEEK ERROR IDNOTFOUND | RECORD NOT 0 RECORD NOT 0

. , FOUND . FOUND
$3 | CRCERROR . CRC ERROR CRC ERROR 0 CRC ERROR 0
S2 | TRACKO LOST DATA LOST DATA LOST DATA LOST DATA LOST DATA
S1 | INDEX DRQ DRQ DRQ DRQ DRQ
S0 | BUSY BUSY BUSY BUSY BUSY BUSY
STATUS FOR TYPE | COMMANDS

BiT NAME MEANING

S7 NOT READY This bit when set indicates the drive is not ready. When reset it
indicates that the drive is ready. This bit is an inverted copy of
the READY input and logically “ored” with MR.

S6 PROTECTED When set, indicates Write Protect is activated. This bit is an
inverted copy of WRPT input.

S5 HEAD LOADED When set, it indicates the head is loaded and engaged This bit
isa Iog|cal “and”’ of HLD and HLT signals.

184 SEEK ERROR ‘When set, the desired track was not verified. This bit is reset to
: 0 when updated. .

83 | CRCERROR When set, there was one or more CRC errors encountered on
an unsuccessful track verification operation. This bit is reset
to 0 when updated.

82 TRACK 00 When set, indicates Read-Write head is positioned to Track 0.
This bit is an inverted copy of the TROO input.

S1 INDEX When set, indicates index mark detected from dnve This bit is
an lnverted copy of the IP input.

S0 BUSY When set, command is in progress. When reset, no command
is in progress.

%

210 Appendix II

FD1771 Data Sheet

STATUS BITS FOR TYPE Il AND Il COMMANDS |

BIT NAME
S7 | NOTREADY

MEANING _
This bit when set indicates the drive is not ready. When reset, it
indicates that the drive is ready. This bit is an inverted copy of
the READY inpyt and “ored” with MR. The TYPE Il and lll
Commands will not execute unless the drive is ready.

On Read Record: It indicates the MSB of record-type code from
data field address mark. On Read Track: Not Used. On any
Write Track: It indicates a Write Protect. This bit is reset when
updated.

On Read Record: It indicates the LSB of record-type code from
data field address mark. On Read Track: Not Used. On any
Write Track: It indicates a Write Fault. This bit is reset when
updated.

When set, it indicates that the desired track and sector were
‘not found. This bit is reset when updated.

If S4 is set, an error is found in one or more ID fields; otherwise
" it indicates error in data field. This bit is reset when updated.

When set, it indicates the computer did not respond to DRQ in
one byte time. This bit is reset to zero when updated.

This bit is a copy of the DRQ output. When set, it indicates the
DR is full on a Ready operation or the DR is empty on a Write
operation. This bit is reset to zero when updated.

When set, command is under execution. When reset, no
command is under execution.

(L WVANCE

s6 | RECORD TYPE/
WRITE PROTECT

S5 | RECORD TYPE/WRITE FAULT
S4 | RECORD NOT FOUND
S3 | CRCERROR

S2 LOST DATA

S1 DATA REQUEST

so | Busy

FORMATTING THE DISK (Refer to section on Type
Il Commands for flow diagrams.)

Formatting the disk is a relatively simple task when
operating programmed 1/0 or when operating under
DMA control with a large amount of memory. When

operating under DMA with limited amount of .

memory, formatting is a more difficult task. This is

because gaps as well as data must be provided at the.

computer interface.

Formatting the disk is accomplished by positioning
the R/W head over the desired track number and
issuing the Write Track command. Upon receipt of
the Write Track command, the FD1771 raises the
Data Request signal. At this point in time, the user
loads the Data Register with desired data to be writ-
ten on the disk. For every byte of information to be
written on the disk, a Data Request is generated. This
sequence continues from one index mark to the next
index mark. Normally, whatever data pattern
appears in the Data Register is written on the disk
with a clock mark of (FF)1g. However, if the FD1771
detects a data pattern on F7 through FE in the Data
Register, this is interpreted as data address marks
with missing clocks or CRC generation. For

instance, an FE pattern will be interpreted as an ID
address mark (DATA-FE, CLK-C7) and the CRC will
be initialized. An F7 pattern will generate two CRC
characters. As a consequence, the patterns F7
through FE must not appear in the gaps, data fields,
or ID fields. Also, CRCs must be generated by an F7
pattern.

Disks may be formatted in IBM 3740 formats with sec-
tor lengths of 128,256,512, or 1024 bytes, or may be
formatted in non-1BM format with sector lengths of 16
to 4096 bytes in 16-byte increments. IBM 3740 at the
present time only defines two formats. One format
with 128 bytes/sector and the other with 256 bytes-
/sector. The next section deals with the 1BM 3740 for-
mat with 128 bytes/sector followed by a section of
non-1BM formats.

IBM 3740 Formats — 128 Bytes/Sector

The 1BM format with 128 bytes/sector is depicted in
the Track Format figure on the following page. In
order to create this format, the user must issue the
Write Track command, and load the data register with
the following values. For every byte to be written,
there is one data request. -

w

Machine-language Disk /O 211

FD1771 Data Sheet

v Number Hex Value of Non-1BM Formats

- of Bytes Byte Written Non-IBM formats are very similar to the IBM formats

o 40 00 or FF except a different algorithm is used to ascertain the
;," 6 00 : sector length from the sector length byte in the ID
:a.' 1 FC (Index Mark) ., field. This permits a wide range of sector lengths
. * 26 00 or FF from 16 to 4096 bytes. Refer to Section V, Type il
3 6 00 commands with b flag equal to zero. Note that F7
1 FE (ID Address Mark) through FE must not appear in the sector iength byte

1 Track Number (0 through 4C) of the ID field.
] 20 e e o " In formatting the FD1771, only two requirements
L seclor Number {1 through 1A) regarding GAP sizes must be met. GAP 2 (i.e., the
1 00 a gap between the ID field and data field) must be 17
. F7 (two CRCs written) bytes of which the last 6 bytes must be zero and that
1" 00 or FF every address mark be preceded by at least one byte
6 00 of zeros. However, it is recommended that every
1 FB (Data Address Mark) GAP be at least 17 bytes long with 6 bytes of zeros.
128 Data (IBM uses E5) The FD1771 does not require the index address mark
1 F7 (two CRCs written) (i.e., DATA = FC, CLK = D7) and need not be present.
.. 27 00 or FF ‘ .
247 00 or FF. References:
*Write bracketed field 26 times. 1) IBM Diskette OEM Information GA21-9190-1.
**Continue writing until FD1771 mterrupts out. 2) SA900 IBM Compatibility Reference Manual —
Approximately 247 bytes. Shugart Associates.

PHYSICAL INDEX ﬂ —
46BYTES ‘—l_ / INDEX ADDRESS MARK .
GAP 1 GAP Gap3 |
2:{3 m‘éﬂ:‘;ﬂ posT- | 8- 10 |oatario| oata | &« DATA FIELD 2e DATA FIELD 2e DATA FIELD r
iNDEx | 28o{ Gap | Recorp | GAP | 280 lgapz| RECORD | Gara | 280 |car2| Recorp 2 28, {cap2| Recomp | GA
RECORD 320 BYTES o9 0g o S0
26 NOMINAL 32 ut 7 NO 1 v 5 NO 2 wZ NO 3 wz NO 26
eyTes | T |evres BYTES & T
BYTE
5 6 14 130 n
0 DELETED
TRACK SECTOR CAC CRC 128 BYTES OF USER CRC CAC
ADDRESS | apDRESS | ZEROES | focness | ZEROES | gvres | evrez e DATA eYTE1 | evie2
MARK
T T
1)
GAP 2 : : GAP 3
1 |
00 OR FF L o0 FF L OO OR FF
L— 11 BYTES ——l— 6BYTES —-J -—I 18YTE I—— 32 BYTES ———l
- WRITE GATE TURN ON FOR UPDATE -4 - WRITE GATE TURN-OFF FOR UPDATE
OF NEXT DATA FIELD OF PREVIOUS DATA FIELD

TRACK FORMAT

212 Appendix II

FD1771 Data Sheet

ELECTRICAL CHARACTERISTICS
Maxium Ralings

OPERATING CHARACTERISTICS (DC)

TA = 0°C to 70°C. Vpp - +12.0V + 6V.

VDD with respect to Vgg (Ground) +20 to -0.3V
Max Voltage to any input with +20 to -0.3V vge - -5.0+ 5V.Vgg = OV. VCC = +5V * 25V
respectto VBB Ipp = 10 ma Nominal, Igc = 30 ma Nominal,
Operating Temperature 0°Cto 70°C P - 0.4 ua Nominal
Storage Temperature -55°C to +125°C
Symbol Characteristic Min. | Typ. | Max. | Units Conditions
TN} Input Leakage 10 uA VIN = VDD
Lo Output Leakage 10 uA VouT = VDD
VIH Input High Voltage 26 v
ViL Input Low Voltage (All inputs) 08 '
VoH | Output High Voltage 2.8 v 10 = -100 uA
VoL Output Low Voltage 0.45 \" 1I0=10mA

TIMING CHARACTERISTICS

TA = 0°C 10 70°C. Vg © *12V + 6V.
Vgg * -5V ¢ 25V, Vgg * OV. Vg © *5V ¢+ .28V

Read Operations

NOTE: Timings are given for2 MHz Clock. For those
timings noted. values will double when chip is oper-
ated at 1 MHz. Use 1 MHz when using mini-floppy.

Symbol Characteristic Min. | Typ. | Max. | Units Conditions
TSET | Setup ADDR and CS to RE 100 nsec
THLD | Hold ADDR and CS from RE 10 nsec ,
TRE | RE Pulse Width 450 nsec CL=250pf
TDRR | DRQ Reset from RE 750 | nsec
TIRR | INTRQ Reset from RE 3000 | nsec
TDACC | Data Access from RE 450 | nsec CL = 25 pf
TDOH | Data Hold from RE 50 150 | nsec CL=250pf
Write Operations
Symbol | Characteristic Min. | Typ. | Max. | Units Conditions
TSET | Setup ADDR and CS to WE 100 nsec
THLD | Hold ADDR and CS trom WE 10 nsec
TWE | WE Pulse Width 450 | 300 nsec
TDRR | DRQ Reset from WE 750 | nsec
TIRR | INTRQ Reset from WE 3000 | nsec See Note
TDS | Data Setup to WE 350 nsec
TDH | Data Hold from WE - 150 nsec
External Data Separation (XTDS - 0)
Symbol Characteristic Min. | Typ. | Max. | Units Conditions
TPWX | Pulse Width Read Data & Read Clock| 150 350 | nsec
TCX Clock Cycle External 2500 nsec
TDEX | Data to Clock 500 nsec
TDDX | Data to Data Cycle 2500 nsec

M

Machine-language Disk /O 213

L0-1221Q4

FD1771 Data Sheet

lr a2 |
[t)] '-—Hmn j
A RS —- ty ™M 1 .
N |r —ef le—Tpmn | oravoL —1 L rt

l |
E DRQ VOL —!_(_]— ﬁ i e TiAR" —
~J ' R NTRG L.

. l.—_—l —
=J INTRQ H e Tiom] e vou
-k I‘“ service —=l & e —l_— voL = I
'c . 22 A0 A1 CS']_“ w
-k AD.A1.CS ——] _lﬁ viL
WE Twe VIH

RE
Tser l’——
| DATA VALID (DAL)
L WRITE DATA l’— Tos —e| o

DATA vaLID (BAL
At (BAL) le ’{ DH
{BUFFERS TR1-STATED) Toacc T NOTE
DOH 1 CS MAY BE PERMANENTLY TIED LOW IF DESIRED
H \::EN WRleING OA'YA INTO THIS SECTOR. TRACK. OR DATA AEGISTER, USER CANNOT
: AD THIS REGISTER UNTIL AT LEAST 8 USEC AFTER THE RISING EDGE OF WE WHEN
1. C3 MAY BE PEAMANENTLY TIED LOW IF DESIRED
2 FOR READ TRACK COMMAND. THIS TIME Mar BE 12° TO 32° HSEC WHEN S + 0 WAITING INTO THE COMMAND REGISTER. STATUS IS NOT VALID UNTIL SOME 20pSEC

LATER THESE TIMES ARE DOUBLED WHEN CLK ' 1 MHZ
3. tyarvice WORST CASE 24 uSEC
° ' TIME DOUBLES WHEN CLK - 1 MHZ

3. taqrvice WORST CASEZ6 uSEC.
*TIME DOUBLES WHEN CLK * 1 MHZ

READ ENABLE TIMING WRITE ENABLE TIMING

XTDS = 0
EXTERNAL DATA
SEPARATION

- e Sy Ll e
oo —] L [1 L l

F T v

cx

- S A e o
| M M

-—YDE,‘*’ -._rDE,(_—h VC,—.{
'DDX

NOTE 3
1 ABOVE TIMES ARE DOUBLED WHEN CLK 1 MHZ

2 CONTACT WDC FOR EXTERNAL CLOCK DATA SEPARATOR CIRCUITS

3 FOCLKANDFODATAMAY BE REVERSED FD1771DECIDES WHAT IS CLOCK AND WHAT 1S DATA

READ TIMING (XTDS = 0)
Internal Data Separation (XTDS = 1)
Symbol Characteristic Min. | Typ. | Max. |Units Conditions
TPWI Pulse Width Data and Clock 150 1000 | nsec
TCI Clock Cycle Internal 3500 5000 | nsec

Write Data Timing

Symbol Characteristic Min. | Typ. | Max. |Units Conditions

TWGD | Write Gate to'Data 1200 nsec |300 nsec + CLK tolerance

TPWW | Pulse Width Write Data 500 600 |[nsec '

TCDW | Clock to Data 2000 nsec + CLK tolerance
TCW Clock Cycle Write 4000 nsec + CLK tolerance

TWGH | Write Gate Hold to Data 0 100 | nsec

Miscellaneous Timing
Symbol Characteristic Min. |Typ. | Max. |Units Conditions
TCD1 Clock Duty 175 nsec | 2MHz + 1% See Note
TCD2 Clock Duty 210 nsec
TSTP Step Pulse Output 3800 4200 |nsec
TDIR Direct Setup to Step 24 nsec l
TMR Master Reset Pulse Width 10 nsec These times double

1b
TIP Index Pulse Width 10 nsec when CLK = 1 MHz
TWF Write Fault Pulse Width 10 nsec

_E“

Q

214 Appendix II

FD1771 Data Sheet

INTEANAL DATA

Vot BE TID i (S p—
1 I
¢DDATA ._[—C_L JT] I_D—] I c | fo— " —

#

}(Tor _%‘ i c|¥——| '—{ tave }‘—
(5[-/ M
» AN [
LEADING EDGE OF v
18us DATA PULSE e~

MUST OCCUR 1N

SHADED AREA 1,
NOTE

INTERNAL DATA SEPARATION MAY WORK FOR SOME APPLICATIONS HOWEVER VOH
FOR APPLICATIONS REQUIRING HIGH DATA RECOVERY RELIABILITY STEPIN
WODC AECOMMENDS EXTERNAL DATA SEPARATION BE USED ORE vo AT
o vouL
Tom "sre " oir Tt T gie

e A

Mo, ILJL

VL

READ TIMING (XTDS = 1) MISCELLANEOUS TIMING

WG J ee l—

t‘—'wcn

T oww

4

T pwi T pww 1

- 4R A -
LT M, i

T cow —‘-I J |
cw Tew 1

LAST DATA BIT
TO BE WRITTEN

4

wD

-

WRITE DATA TIMING

See page 725 for ordering information.

/

L WVALCE]

Machine-language Disk /O 215

FD1771 Data Sheet

10-1221Q4

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital
Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change

specifications at anytime without notice.

e

216 Appendix II

FD1771 Applications

WESTEHIV DIGITAL

c o R FP O

r / o N

1771-01 Application Notes

#

INTRODUCTION

The FD1771-01 Floppy Disk Formatter/Controller is
a MOS/LSI device designed to ease the task of inter-
facing the 8" or 5% (mini-floppy) disk drive to a host
processor. It is ideatly suited for a wide range of
microprocessors, providing an 8-bit bi-directional
"interface to the CPU for all control and data
transfers. Requiring standard + 12, £5V power supp-
lies, the 1771 is available in ceramic or plastic 40 pin
dual-in-line packages.

The 1771 has been designed to be compatible with the
1BM 3740 standard. This single-density Frequency
Modulated (FM) recording technique, records a
clock bit between a data bit serially on each track.
Figure 1 illustrates how a HEX “D2" is recorded.
Note that when the data bit to be written is zero, no
pulse or flux transition is recorded. For the 8” drive,
there are 77 tracks, with 26 sectors on each track.
Each sector contains 128 bytes of data. Although
there is no “standard” format for the mini-floppy,
most manufacturers utilize either 35 or 40 tracks per

side, wtih 16 sectors of 128 bytes each per track

Both the 8" and 5%" formats must be soft-sectored,

e., there are no physical holes to denote sector
locations. The hard-sectored disk has been losing
popularity, mainly due to the fact that the sector
lengths cannot be increased.

Being soft-sector compatible, the 1771 must know
where each sector begins on the track. This is per-
formed by using Address Marks. These bytes are
recorded on the disk with certain clock pulses miss-
ing, and are unique from ali other data and gap bytes
recorded on the track. Six distinct Address Marks
can be used:

Clock
Description ’ Data Pattern
Index Address Mark FC D7
!D Address Mark FE Cc7
Data Address Mark FB Cc7
User defined FA Cc7
User Defined F9 C7
Deleted Address Mark F8 (074

The two “User Defined” Address Marks are unique
to the 1771, and do not appear in the IBM 3740
standard. These Address Marks can be used to

define the type of data i.e., “object” or “text” data,
alternate sector data, or any other purpose the user
chooses.

PROCESSOR INTERFACE

The 1771 contains five internal registers that can be
accessed via the 8-bit DAL lines by the CPU. These
registers are used to control the movement of the
head, read and write sectors, and perform ali other
functions at the drive. Regardless of the operatlon
performed, it must be initiated through one or more
of these registers. They are selected by a proper
binary code on the AO, A1 lines in conjunction with
the RE and WE lines when the device is selected.
The registers and their addresses are:

CS| A | A, RE =0 WE =0

0 0 0 | STATUS REG | COMMAND REG
0 0 1 | TRACK REG TRACK REG

0 1 0 | SECTOR REG | SECTOR REG
0 1 1 DATA REG DATA REG

1 X X | Deselected Deselected

Command Register: This is a write-only register
used to send all commands to the 1771.

Status Register: This is a read-only register that
must be read at the completion of every command to
determine whether execution was successful. It
may also be used to monitor command execution,
and to sense when data is required by the drive for
read or write operations. '

Track Register: This R/W register holds the current
position of the R/W head.

Sector Register: This R/W register holds the desired
sector number for read and write commands.

Data Register: This R/W register contains the data
to be read or written to a particular sector.
INTERRUPTS

There are two INTERRUPT lines for CPU use. These
are the DRQ (Data Request) and INTRQ (Interrupt
Request). These are active high, open drain outputs
and require a pull-up resistor of 10K or greater to
+5V. Both of these signals also appear in the status
register as the Busy (INTRQ) and the data request
(DRQ) bits. The user has the option of utilizing these
hardware lines for system interrupts, or through

—

Machine-language Disk /O 217

L0-LLLL

FD1771 Applications

LO-LZL)

software by polling the status kegister Thechoiceis

denpndpnt upon the particular rn'!cropron ssor and

praRITLCUIGY

support hardware of the system.

INTRQ: This line is used to signify the completion of
any command. It is reset low when a new command
is loaded into the command register, or when the
status register is read.

DRAQ: This line is active high whenever the data reg-
ister requires servicing. During a read command, it
signifies that the data register contains a byte of
data from the disk and may be read by the CPU. Dur-
ing a write command, it signifies that the data regis-
ter is empty and may be loaded with the next byte to
be written on the disk. The DRQ line is reset whe-
never the data register is read or written to. ltis also
reset when a new command is loaded into the com-
mand register, providing the new command is not a
Forced Interrupt, and the 1771 is not busy (Busy Bit =0).

YV oYl of

WRITE SECTOR

With the use of the WRITE SECTOR command, the
CPU can access any desired sector(s) in a track.
Prior to loading this command, the R/W head of the
drive must be positioned over the specific track.
This can be first accomplished with the use of any of
the Type | commands. Once positioned, the CPU
must load the desired sector number into the sector
register, then issue the command. The head will
load, and the 1771 will begin searching for the cor-
rect ID field. If the correct sector and track is not
found within 2 revolutions of the disk, the RECORD-
NOT-FOUND bit will be set in the status register,
and the command will be terminated. Once found,
the 1771 will issue a DRQ in request of the first data
byte to be written. Once the data register is loaded,
the 1771 will issue a DRQ for each byte to be
recerded, until the entire sector is written. For the 8"

_drive, the user must load the data register 24

microseconds after a DRQ is generated. Failure 10
meet this time will cause the lost data bit to be set,
and a byte of zeros substltuted and written on the

“disk.

READ SECTOR

The READ SECTOR command functions in much
the same way as the WRITE SECTOR command.
The sector register must again be ioaded with the
desired sector number, before the read command
can be loaded. After the 1D field has been found, the
1771 will begin generating DRQ's, with the data reg-
ister being loaded with each byte of the sector field.
For the 8" drive, the user must read the data register
at least 26 microseconds after the DRQ is
generated. Failure to meet this time will cause the
lost data bit to be set in the status register, while the
next assembled byte will overwrite the contents of
the data register.

Both the Read and Write sector commands also

contain an “m* flag for accessing multiple sectors.
The sector register is incremented internally after
each sector is read or written to. Eventually the sec-
tor register will exceed the physical number of sec-
tors on the track. The user can either issue the
Forced Interrupt command after the last sector, or
wait for the 1771 to interrupt out. In the latter case,
the RECORD-NOT-FOUND status bit will be set.

FLOPPY DISK INTERFACE

AAAAA [P P S

For the most part, the actua! Floppy Disk Interface
will consist mainly of Buffer/Drivers. Most drives
manufactured today require an open collector TTL
interface, with appropriate resistor terminal net-
works. Figure 2 shows the interface of the 1771 to a
Shugart SA400 Drive. Aside from the data seperator,
the interface consists mainly of 7438'sand 7414 TTL
gates. A 9602 one-shot is used for the desired head
load delay. In this illustration, the 6800 micropro-
cessor is used via a 6820 Peripherai interface Adap-
ter to control all functions of the 1771. Similarly,
other parallel port devices (such as the 8255 for 8080
systems) can be used for the interface, or the 1771
may simply be tied directly to the systems data bus
and control lines, providing TTL loading factors are
observed.

DATA SEPERATION

The internal DATA SEPERATOR of the 1771 can be
used by tying the XTDS line high, and supplying the
combined clock and data pulses on the FD data line.
In order to maintain an error rate betterthan 1 in 108,

‘and external data seperator is recommended.

Since the 1771 system clock is at 2 MHz, this allows
fora500 ns resolution. The internal data window will
move 500 ns with respect to the incoming data bit.
On the inner tracks of the drive, the bit shift is more
severe and may occasionally cause a data or clock
bit to fall outside of this data window. Since the 1771
will perform up to 5 retries, this error rate may be
acceptable for some applications.

When the XTDS line is forced low, the 1771 will
accept seperated clock and data on the FDCLOCK
and FDDATA lines. Figure 3 illustrates the timing of
these signals. The actual FDCLOCK and FDDATA
lines may be reversed; the 1771 will determine which
line is clock and which is data when an Address
Mark is detected. This feature greatly simplifies the
design of the data seperator.

Figure 4 illustrates the Phase-Lock Loop method for
data seperation. The circuit operates at8 MHz, or 32
times the frequency of a received bit cell. The
MC4024 VCO is used to supply the nominal clock
frequency. The first 74LS161 counter provides a

divide by 16 frequency and a carry to one side of the
MC4044 phase detector The other input of the
MC4044 is tied to another 74LS161 counter which is

atfected by the incoming data stream. The output of

“

218 Appendix II

FD1771 Applications

the phase detector is a signal proportional to the dif-
ferences of the incoming pulses. This is then fed
through a iow pass fiiter, and to the input of the
.MC4024 to adjust the output frequency. Figures 5
thru 8 illustrate other types of data seperators.

These employ the “Counter Seperator” techniques
and are quite different from the Phase-Lock-Loop
method. With the addition of “One-Shot” deiay eie-
ment or an input clock, most of the complexity of the
I:PL circuit can be eliminated.

LO-LLLL

FIGURE 1. FM RECORDING.

% o
o b
o—2 wu sl = L] P \4 .
o—*nw o6 Y Ll weoana .
bl 3 auock L2
"o 7] . PR AL & sep Lot e - 4 | S—
. 2 »
A Op——v Ao Y] ME— ¢ aeaov A
» i) _
= e DR MEADLOAL Trdg bt
se o 10 5
400 o - L e e = L1 0 o
P & st ansoan LS ot 0
A 410 PR e &' —_ 22 - ——- J
TEST —_——
B 2 & €S -;1
ot | 22g rox ¥ 3 > .
. wr |2 ALAD DATA
rav WESTEAN OIGITAL 9 o
. a4 o vl :s v
Dtﬁl TS e .4_o<|.&_qu_-
bvj WOER S
rena e o
Voo R
e v % r""\’j i aeETT
. » L PROTECT S “C)emTE PROXCY
e O——i = an s g
R |2 Q_AQ&—-D ThaCK 60
2 : ran e
O A} Jovs ¥, SE—_ .y] e 10 g
3 [] DHTCTION
o O ol Ofta ome ¢ row 12 ! p——O> berciion
1 i 9 4%
0 O<F——7 o fF———D o 2 »—:!) o5
. 10| = SHP
o oa—2Y o k——Com 1 e
5 = T
s D2 oufy—— oo
n E o » AT DATR
nDa—— LY = S—_ P) WA DATA
s s] e
o > a—2 vas fp———— S 6R % e
2 9 123 WRITE GATE £J WAITL AL
o O — O T e
. H vSs vBB VDD vL(- en
o T 5 S B A | ’—j);-—onuwl st
R S
~ oo
‘a3
!))——D 1A ON

FIGURE 2. 1771 TO SHUGART SA400 DRIVE
RS I--.-

Machine-language Disk /0 219

FD1771 Applications

XTDS = 0
EXTERNAL DATA

SEPARATION
Ak A o e
FDCLOCK D— - I_I . _[*

Tex Tox ———

AR | A e A F
| a M

"“Den—'-l f—— Tm—c—l

Towx = 15ONSMIN NOTE: f - Toox 1
3000 NS MAX 1 ABOVE TIMES ARE DOUBLED WHEN CLK = 1 MHZ

Tex = 3500-5000 NS.

LO-LLLL

FDDATA

FIGURE 3. EXTERNAL DATA SEPERATOR TIMING.

—] 248 |-
- NOMINAL Y
10 8 7o 2K Do FDDATA C|> FDOATA()
A : '
2

7414

FDCLOCK “5[’&0‘3“0

SOFTS

94 3| 4| s| s %

e W0ABCOD

PE

»4:- TE 7aLs161

7415161 "
. C CK C
MC QA QB O MC QA QB QC Q
14| 1312 Tral 1] 12| 11
NC NC| NG N/CN/C N/C

DATA WINDOW
CLK WINDOW

(s

0 <
DO - &

+5V 15-60PF OR 33PF FIXED = 5%

& >

- SOFTS ﬁF‘l
D EEED L
IfpgLDA B C D
Ve ra1s161 Mca02s g
2] 15
CK T
MC OA OB OC QD
siultalva'nl S
N/CN/C N/CN/C

FIGURE 4. CIRCUIT PROVIDED COURTESY OF MOTOROLA AND ICOM CORPS.

220 Appendix II

FD1771 Applications

-—h
~
~

14 iy
¢ i0 FDCLOCK -

UNSEPERATED DATA L, N 7 7 - (=]

? 4 4 » a -b
+5V 9 1 D7 12 4
I | I | l I 10 ¢ cls 13 2
3
. alz P 5 FDDATA
}-.- 4uS -] by
NOMINAL |15 als 15
cD
4MHz CLK I 5

v —3 : %nssvnc
FODATA 1| . - ™6 10]

FIGURE 5. CIRCUIT PROVIDED COURTESY OF PROCESSOR APPLICATIONS LTD.

. . 7400 Vy ’

, . py i
D Q D Q 0D a 7400 D
UNSEPARATED 4 e 2
DATA FROM 7474 74175 74175 74175
DRIVE ' 00
>
-1 9
ao— > 3 s
TOGGLE DELAY
LOAD PULSE
7404
FDCLK/DATA
Y (TO FD1771-01)
7404
9 1 FODATA/CLK
| >° gt oo (7O FD1771-Q1)
6| 74161A
D OR
i ¢ 74163A ¢ ‘7
L£—1® 2 m
= 3
+5V = A ET
JAN
e +5V
4MHZCLK
(USE 2MHZ CLK FOR MINI-DRIVES)
FIGURE 6.

Machine-language Disk /0 221

FD1771 Applications

10-LLLE

1
nn nimly p 5uSEC
- ;
7404
2 L e o
RAW 1 12 9 " s| me |, H6
OATA NG 1|8 o 9 1ouseC
2
G7 10 3 = 13
+5V +5V
5 . # SEP CLK
J ' #- SEP DATA
680PF 5 1k
+5
1 2 10K
4
9602
Fe 3uSEC
M
+5v—29 Q L
37
+5V
377400
G5
Cc ™ - * Cc [+

mwoata _JILJILJLL NI NI N NN
sepoata JLJUJL L T 1L N

sepox ——JL 1 1 | N

U e F |

- S.SEC®] 3 < 3

10 = = 1useC
HE-9 | uSEC =]

* MISSING CLOCKS

FIGURE 7. CIRCUIT PROVIDED COURTESY OF ACUTEST CORP.
e ——————— e

222 Appendix II

FD179X Data Sheet

LO-LLLL

+READ DATA 1
2] 74 o2 ! b 0-2—— _SEP CIK
= At b

5
& 12 — | 7400 6 3 4
——~ % oN___¢| At o7 -SEP DATA
7400 N8 L 13 J At L/ 1%
Al
, 1200PF 47¢ 5K 1200PF 54 | 5K 1200PF 4 70 | 5K
g Iy _47&,. »%_»wv
; aly M_%_.wv - - +5V
i
! P P 1]2 15 |14
ssz |8 553 582 w0
3.0u8 2.0u8 0uS
a s 4 7 12 3.0u
7 s’ ke
@cu-ﬁo— . c2 GD—¢ I Yo op
[o)
3 T 13
1K
ANN— +5V
4 3
D . 4 7410 6
15 A2 Q
1
0] 74193

9
9
_L OCG I‘O 7410 8
L 1w o Lo &

RSN I I I O I B S R N B I
- SEP GLK ! I] U ! |
_sepoara U [r U U U

ss1(@) 1 11 f J S I S

$52 (@) 1 l—l I—L ,—L I_I
$83 (0 ﬂ i {]]] l__l I l I |
A2-6(Q.) N | |

FIGURE 8. CIRCUIT PROVIDED COURTESY OF SHUGART ASSOCIATES.
]

Machine-language Disk I/O 223

FD1771 Applications

LO-LLLL

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital
Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by

E implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change
specifications at anytime without notice.

M

224 Appendix II

FD1771 Applications

WESTERN DIGITAL

c 0 AR P r 7 o N

FD179X.02 o
. : o
[] 1 i
Floppy Disk Formatter/Controller Family 3
5 S
x
FEATURES S + PROGRAMMABLE CONTROLS S
« TWO VFO CONTROL SIGNALS — RG & VFOE Selectable Track to Track Stepping Time
« SOFT SECTOR FORMAT COMPATIBILITY Side Select Compare
o AUTOMATIC TRACK SEEK WITH VERIFICATION * INTERFACES TO WD1691 DATA SEPARATOR
o ACCOMMODATES SINGLE AND DOUBLE DENSITY * WINDOW EXTENSION
FORMATS ¢ INCORPORATES ENCODING/DECODING AND
IBM 3740 Single Density (FM) ADDRESS MARK CIRCUITRY
IBM System 34 Double Density (MFM) e FD1792/41S SINGLE DENSITY ONLY
Non IBM Format for increased Capacity e FD1795/7 HAS A SIDE SELECT QUTPUT
* READMODE , 179X-02 FAMILY CHARACTERISTICS
Single/Multiple Sector Read with Automatic Search or .]
Entire Track Read FEATURES 1791 | 1792 [1793 | 1794 | 1795 | 1797
Selectable 128, 256, 512 or 1024 Byte Sector Lengths Single Density (FM) X X X X X X
. V‘!“'Tj&“??’f Write with . Double Density (MFM)| X X X | X
Smsgearc r:.l tiple Sector Write with Automatic Sector True Data Bus X X X
Entire Track Write for Diskette Formatting Inverted Data Bus X | X X
¢ SYSTEM COMPATIBILITY Wirite Precomp X X X X X X
Double Buffering of Data 8 Bit Bi-Directional Bus for Side Selection Output X | X
Data, Control and Status oﬁ j ™
DMA or Programmed Data Transfers _ APPLICATIONS M { I v
All Inputs and Outputs ére TTL Compatibie 8" FLOPPY AND 5% MINI FLOPPY CONTROLLER
Oné(tsl';ip?a}ck and Sector Registers/Comprehensive SINGLE OR DOUBLE DENSITY
atus informetion CONTROLLER/FORMATTER
-~ AAW READ
<_oATA® .
NC 1 N 4071 Vgpt+12v) = "—"-“RCLK-—-———-
WE 2 39[0) INTRQ A RGISS0
[m] 38]7 DRQ . Al LATE
AE O « a7[) DoEN-- o & EARLY E
Ao s 36[71 WPRT M fE - wD o
A Qs ekl P — 5 P
At d 7 uf TGO v e — s
DALY] & 33 WFIVFOE E MA 179X %WK
DALZ] 9 3217 READY R | FLopev Disk + WF/VFOE ~ 'f
GAL3 e 31 wo . CFOC;\'RT:,STL}':: WPRT 2
DALs (] 1 30 WG N [WG
DALS 12 291 1643 T +5V = - 1
GACE (]13 28[7 HLD E -——— ¥
DAL 14 2711 RAWREAD ’; - TA00 u
sTep (] 15 267 ACLK A e L READY R
DIRC [] 16 FolnlK] [+ TG43 A
EARLY (] 17 24f cx E DRQ STEP p
LATE (] 18 23 WUt " INTRQ DIRC
R]9 22p) TEST CLK
{GND)Vsg []20] 2 P Ve 1+8V) .
+5v HLD
':1?9113=RG 1785/7 = 880 ONE SHOT
11797 TRUE 8US I"‘ BOEN |vss vop voc __HLT= po| (FUSED)
PIN CONNECTIONS o J_
+5V
T 412 45V
FD179X SYSTEM BLOCK DIAGRAM

Machine-language Disk /O 225

FD179X Data Sheet

PIN OUTS
- PIN
o NUMBER PIN NAME SYMBOL : FUNCTION'
:l" 1 NO CONNECTION NC Pin1is internally connected to a back bias generator and
© must be left open by the user.
—_ ¥
>6< 19 | MASTERRESET R A logic low (50 microseconds min.) on this input resets the
o device and loads HEX 03 into the command register. The Not
Ready (Status Bit 7) is reset during MR ACTIVE. When MR is
brought to a logic high a RESTORE Command is executed,
_ regardless of the state of the Ready signal from the drive.
Also, HEX 01 is loaded into sector register.
20 POWER SUPPLIES Vss Ground
21 Vee +5V £5%
40 Voo +12V 5%
COMPUTER INTERFACE:
2 WRITE ENABLE WE " A logic low on this input gates data on the DAL into the
: selected register when CS is low.
3 CHIP SELECT (] A logic low on this input selects the chip and enables
computer communication with the device.
4 READ ENABLE RE A logic low on this input controls the placement of data froma
selected register on the DAL when CS is low.
56 REGISTER SELECT LINES | A0, A1 These inputs select the register to receive/transfer data on the
DAL lines under RE and WE control:
CS A1 A0 RE _ WE
0o 0 o StatusReg Command Reg
0 o 1 Track Reg Track Reg
0 1 0 Sector Reg Sector Reg
0o 1 1 Data Reg Data Reg
714 DATA ACCESS LINES DALO-DAL7 Eight bit Bidirectional bus used for transfer of data, control,

and status. This bus is receiver enabled by WE or transmitter
enabled by RE. Each line will drive 1 standard TTL load.

24 CLOCK CLK This input requires a free-running 50% duty cycle square wave
clock for internal timing reference, 2 MHz + 1% for 8" drives,
1 MHz + 1% for mini-floppies.

38 DATA REQUEST DRQ This open drain output indicates that the DR contains
assembled data in Read operations, or the DR is empty in
Write operations. This signal is reset when serviced by the
computer through reading or loading the DR in Read or Write
operations, respectively. Use 10K pull-up resistor to + 5.

39 INTERRUPT REQUEST INTRQ This open drain output Is set at the' completion of any com-
mand and is reset when the STATUS register is read or the
command register is written to. Use 10K pull-up resistor to

+5.
FLOPPY DISK INTERFACE:

15 STEP STEP _ The step output contains a pulse for each step.

16 DIRECTION DIRC Direction Output is active high when stepping in, active low
when stepping out.

17 EARLY | EARLY Indicates that the WRITE DATA pulse occuring while Early is
active (high) should be shifted early for write precom-
pensation.

18 LATE LATE Indicates that the write data pulse occurring while Late Is

active (high) should be shifted late for write precompensation.

m

226 Appendix II

FD179X Data Sheet

E1LIMOTIAN
T Isw I TwiIiY

25

27

28

N

25

HEADLOADTIMING

READ GATE -
(1791, 1792, 1793, 1794)

SIDE SELECT OUTPUT
(1795, 1797)

READ CLOCK -

RAW READ
HEAD LOAD

TRACK GREATER THAN 43

WRITE GATE

WRITE DATA

READY

WRITE FAULT
VFO ENABLE

TRACK 00

HLT
RG

8§80

RCLK

RAW READ
HLD

TG43

WG

WD

READY

WF/VFOE

TROO

This input is used for testing purposes only and should be tied
to + 5V or left open by the user unless interfacing to voice coil
actutited steppers.

When a logic high is found on the HLT input the head is
assumed to be engaged. It is typically derived from a 1 shot
triggered by HLD.

This output is used for synchronization of external data
separators. The output goes high after two Bytes of zeros in
single density, or 4 Bytes of either zeros or ones in double
density operation.

The logic level of the Side Select Output is directly controlled
by the ‘S’ flag in Type Il or lit commands. WhenU = 1,SSO is
set to a logic 1. When U = 0, SSO is set to a logic 0. The SSO
is compared with the side information in the Sector 1.D. Field.
If they do not compare Status Bit 4 (RNF) is set. The Side
Select Output is only updated at the beginning of a Type Il or
il command. It is forced to a logic 0 upon a MASTER RESET
condition.

A nominal square-wave clock signal derived from the data
stream must be provided to this input. Phasing (i.e. RCLK
transitions) relative to RAW READ is important but polarity
(RCLK high or low) is not.

The data input signal directly from the drive. This input shall
be a negative pulse for each recorded flux transition.

The HLD output controls the loading of the Read-Write head
against the media.

This output informs the drive that the Read/Write head is
positioned between tracks 44-76. This output is valid only
during Read and Write Commands.

This output is made valid before writing is to be performéd on
the diskette.

A 200 ns (MFM) or 500 ns (FM) output pulse per flux transition.
WD contains the unique Address marks as well as data and
clock in both FM and MFM formats,

This input indicates disk readiness and is sampled for a logic
high before Read or Write commands are performed. If Ready
is low the Read or Write operation is not performed and an
interrupt is generated. Type | operations are performed
regardiess of the state of Ready. The Ready input appears in
inverted format as Status Register bit 7.

This is a bi-directional signal used to signify writing fauits at
the drive, and to enable the external PLO data separator. When
WG = 1, Pin 33 functions as a WF input. if WF = 0, any write
command will immediately be terminated. When WG = 0, Pin
33 functions as a VFOE output. VFOE will go low during a read
operation after the head has loaded and settled (HLT = 1). On
the 1795/7, it will remain low until the last bit of the second
CRC byte in the ID field. VFOE will then go high until 8 bytes
(MFM) or 4 bytes (FM) before the Address Mark. 1t will then go
active until the last bit of the second CRC byte of the Data
Field. On the 1791/3, VFOE will remain low until the end of the
Data Field. This pin has an internal 100K Ohm pull-up resistor.

This input informs the FD179X that the Read/Write head Is
positioned over Track 00.

Machine-language Disk I/O0 227

Z0-X6.1a4

FD179X Applications

FUNCTION

This input informs the FD179X when the index hole is en-
countered on the diskette. :

PIN NUMBER PIN NAME SYMBOL
35 INDEX PULSE P

36 WRITE PROTECT, PRT ThIS input is sampled whenever a Write Command is received.
A logic low terminates the command and sets the Write

Protect Status bit.

This input pin selects either single or double density
operation. When DDEN = 0, double density is selected. When
DDEN = 1, single density is selected. This line must be left

open on the 1792/4.

20-X6.104

37 DOUBLE DENSITY DDEN

GENERAL DESCRIPTION

The FD179X are N-Channel Silicon Gate MOS LSI
devices which perform the functions of a Floppy Disk
Formatter/Controller in a single chip implementation.
The FD179X, which can be considered the end result
of both the FD1771 and FD1781 designs, is IBM 3740
compatible in single density mode (FM) and System 34
compatible in Double Density Mode (MFM). The
FD179X contains all the features of its predecessor the
FD1771, plus the added features necessary to
read/write and format a double density diskette. These
include address mark detection, FM and MFM encode

-and decode logic, window extension, and write precom-

pensation. In order to maintain compatibility, the
FD1771, FD1781, and FD179X designs were made as
close as possibie with the computer interface, instruc-
tion set, and /O regi'sters being identical. Also, head
toad control is identical. In each case, the actual pin
assignments vary by only a few pins from any one to
another.

The processor interface consists of an 8bit bi-direc-
tional bus for data, status, and control word transfers.
The FD179X is set up to operate on a multiplexed bus
with other bus-oriented devices.

The FD179X is TTL compatible on all inputs and
outputs. The outputs will drive ONE TTL load or three
LS loads. The 1793 is identical to the 1791 except the
DAL lines are TRUE for systems that utilize true data
busses:

The 1795/7 has a side select output for controlling
double sided drives, and the 1792 and 1794 are “Single
Density Only” versions of the 1791 and 1793 respec-
tively. On these devices, DDEN must be left open.

ORGANIZATION
The Floppy Disk Formatter block dlagram Is illustrated

—————— NN
UI! vayve J ||IU pllllldly acuuuna muluue llIU pdldllcl

processor interface and the Floppy Disk interface.

Data Shift Register — This 8-bit register assembles
serial data from the Read Data input (RAW READ)
during Read operations and transfers serial data to the
Write Data output during Write operations.

Data Register — This 8-bit register is used as a
holding register during Disk Read and Write operations.
In Disk Read operations the assembled data byte is
transfeired in paraiiel to the Data Register from the
Data . Shift Register. In Disk Write operations in-
formation 'is transferred in parallel from the Data

Register to the Data Shift Register.

When executing the Seek command the Data Register
holds the address of the desired Track position. This
register is loaded from the DAL and gated onto the
DAL under processor control.

Track Register — This 8-bit register holds the track
number of the current Read/Write head position. 1t is
incremented by one every time the head is stepped in
(towards track 76) and decremented by one when the
head is stepped out (towards track 00). The contents of
the register are compared with the recorded track
number in the ID field during disk Read, Write, and
Verify operations. The Track Register can be loaded
from or transferred to the DAL. This Register should
not be loaded when the device is busy.

Sector Reglster (SR) — This 8-bit register holds the address
of the desired sector position. The contents of the register
are compared with the recorded sector number in the ID
field during disk Read or Write operations. The Sector
Register contents can be loaded from or transferred to the
DAL. This register should not be loaded when the device is
busy.

Command Register (CR) — This 8-bit register holds the
command presently being executed. This register should
not be loaded when the device is busy unless the new
command is a force interrupt. The command register can
be loaded from the DAL, but not read onto the DAL.

Status Raaistar (STRY — This &bit register holds device

WHALWY IIUYIVIUI (WY T TIInD Uil TUyYiowsl 1IVIUG USViIvY

Status information. The meaning of the Status bits is a
function of the type of command previously executed. This
register can be read onto the DAL, but not loaded from the
DAL.

CRC Logic — This Ioglc is used to check or to generate the
16-bit Cyclic Redundancy Check (CRC). The polynomlal is:
GX) = X" + X2 4+ x5 4+ 1.

The CRC includes all information starting with the address
mark and up to the CRC characters. The CRC register is
preset to ones prior to data being shifted through the
circuit. '

Arithmetic/Logic Unit (ALU) — The ALU is a serial com-
parator, incrementer, and decrementer and is used for
register modification and comparisons with the d|sk
recorded ID field.

Timing and Control — All computer and Floppy Disk In-
terface controls are generated through this logic. The in-
ternal device timing is generated from an' external crystal
ciock.

The FD179X has two different modes of operation ac-
cording to the state of DDEN. When DDEN = 0 double
density (MFM) is assumed. When DDEN = 1, single

228 Appendix I

FD179X Applications

#

joat}

DATAQUT ¥
BUFFERS

i
! 1 1

c0-X6.1a4

DATA COMMAND — SECTOR eJ‘_ — TRACK bt —{ 57;,‘_‘-'5
REG REG REG REG 141 EG
RAW READ
DATA
SHIFT
REG
ALU
P -l
[1
I AM DETECTOR | RCLK
—
CRC LOGIC

COMPUTER

compyten b eaurao:

INTERFACE

CiK OB R

DDEN"

> CONTROL
a0 ~* CONTROL {230 X 16)

CONTAOL DisK HEADY
> INTERFALE pg—————————
CONTRUL STEP
>
DIRC
b
EARLY
LATE
————
s

*NOT USED ON 1792 4

FD179X BLOCK DIAGRAM

density (FM) is assumed. 1792 & 1794 are single density
only.

AM Detector — The address mark detector detects ID, data
and index address marks during read and write operations.

PROCESSOR INTERFACE

The Interface to the processor is accomplished through the
eight Data Access Lines (DAL) and associated control
signals. The DAL are used to transfer Data, Status, and
Control words out of, or into the FD179X. The DAL are three
state buffers that are enabled as output drivers when Chip
Select (CS) and Read Enable (RE) are active (low logic state)
or act as Input receivers wheri CS and Write Enable (WE)
are active. .

When transfer of data with the Floppy Disk Controller is
required by the host processor, the device address is
decoded and CS is made low. The address bits A1 and AQ,
combined with the signals RE during a Read operation or
WE during a Write operation are interpreted as selecting

the following registers:

Al - AO READ (RB) WRITE (WE)
0 0 Status Register Command Register
0 1 Track Register Track Register
1 0 Sector Register Sector Register
1 1 Data Register Data Register

During Direct Memory Access (DMA) types of data
transfers between the Data Register of the FD179X and the
processor, the Data Request (DRQ) output is used in Data
Transfer control. This signal also appears as status bit 1
during Read and Write operations.

On Disk Read operations the Data Request is activated (set

high) when an assembled serial input byte is transferred in
parallel to the Data Register. This bit is cleared when the
Data Register is read by the processor. If the Data Register
Is read after one or more characters are lost, by having new
data transferred into the register prior to processor readout,
the Lost Data bit is set in the Status Register. The Read
operation continues untli the end of sector is reached.

On Disk Write operations the data Request is activated
when the Data Register transfers its contents to the Data

. |

Machine-language Disk I/O 229

' FD179X Applications

c0-X6.1a4

Shift Register, and requires a new data byte. It is reset

when the Data Register is loaded with new data by the
processor. If new data is not loaded at the time the next
serial byte is required by the Floppy Disk, a byte of zeroes
is written on the diskette and the Lost Data bit is set in the
Status Register. ; _

At the completion of every command an INTRQ is
generated. INTRQ Is reset by either reading the status
register or by loading the command register with a new
command. In addition, INTRQ is generated if a Force
Interrupt command condition is met.

The 179X has two modes of operation according to the
state of DDEN (Pin 37). When DDEN = 1, single density is
selected. In either case, the CLK input (Pin 24) is at 2 MHz
However, when interfacing with the mini-floppy, the CLK
input is set at 1 MHz for both single density and double
density.

GENERAL DISK READ OPERATIONS

Sector lengths of 128, 256, 512 or 1024 are obtainable in
either FM or MFM formats. For FM, DDEN should be
placed to logical “1.” For MFM formats, DDEN should be
placed to a logical “0." Sector lengths are determined at
format time by the fourth byte in the “ID" field.

Sector Length Table*
Sector Length Number of Bytes
Field (hex) in Sector (decimal)
00 128 '
01 ‘256
02 512
03 1024

*1795/97 may vary — see command summary.

The number of sectors per track as far as the FD179X is
concemed can be from 1 to 255 sectors. The number of
tracks as far as the FD179X is concemed is from 0 to 255
tracks. For IBM 3740 compatibility, sector lengths are 128
bytes with 26 sectors per track. For System 34 com-
patibility (MFM), sector lengths are 256 bytes/sector with 26
sectorsitrack; or lengths of 1024 bytes/sector with 8
sectors/track. (See Sector Length Table)

For read operations in 8" double density the FD179X
requires RAW READ Data (Pin 27) signal which is a 200 ns
pulse per flux transition and a Read clock (RCLK) signal to
indicate flux transition spacings. The RCLK (Pin 26) signal
is provided by some drives but if not it may be derived
externally by Phase lock loops, one shots, or counter
techniques. 1n addition, a Read Gate Signal is provided as
an output (Pin 25) on 1791/92/93/94 which can be used to
inform phase lock loops when to acquire synchronization.
When reading from the media in FM. RG is made true when
2 bytes of zeroes are detected. The FD179X must find an
address mark within the next 10 bytes; otherwise RG is
reset and the search for 2 bytes of zeroes begins all over
again. If an address mark is found within 10 bytes, RG
remains true as long as the FD179X is deriving any useful
information from the data stream. Similarly for MFM, RG is
made active when 4 bytes of “00" or “FF"” are detected. The
FD179X must find an address mark within the next 16
bytes, otherwise RG Is reset and search resumes.

During read operations (WG = 0), the VFOE (Pin 33) Is
provided for phase lock loop synchronization. VFOE will go
active low when:

"a) BothHLT and HLD are True
b) _Settling Time, If programmed, has expired
¢) The 179X is inspecting data off the disk

If WF/VFOE Is not used, leave open or tie to a 10K resistor

to +5.

GENERAL DISK WRITE OPERATION

When writing is to take place on the diskette the Write Gate
(WG) output Is activated, allowing current to flow into the
Read/Write head. As a precaution to erroneous writing the
first data byte must be loaded into the Data Register in
response to a Data Request from the FD179X before the

* Write Gate signal can be activated.

Writing is inhibited when the Write Protect input is a logic
low, in which case any Write command is immediately
terminated, an interrupt is generated and the Write Protect
status bit is set. The Write Fault input, when activated,
signifies a writing fault condition detected in disk drive
electronics such as failure to detect write current flow
when the Write Gate is activated. On detection of this fauit
the FD179X terminates the current command, and sets the
Write Fault bit.(bit 5) in the Status Word. The Write Fault
input should be made inactive when the Write Gate output
becomes inactive.

For write operations, the FD179X provides Write Gate (Pin
30) and Write Data (Pin 31) outputs. Write data consists of a
series of 500 ns pulses in FM (DDEN = 1) and 200 ns
pulses in MFM (DDEN = 0). Write Data provides the unique
address marks in both formats.

Also during write, two additional signals are provided for
write precompensation. These are EARLY (Pin 17) and
LATE (Pin 18). EARLY is active true when the WD pulse
appearing on (Pin 30) is to be written EARLY. LATE is active
true when the WD pulse is to be written LATE. If both
EARLY and LATE are low when the WD pulse is present,
the WD puise is to be written at nominal. Since write
precompensation values vary from disk manufacturer to
disk manufacturer, the actual value is determined by
several one shots or delay lines which are located external
to the FD179X. The write precompensation signals EARLY
and LATE are valid for the duration of WD in both FM and
MFM formats.

READY

Whenever a Read or Write command (Type Il or Ili) is
received the FD179X samples the Ready input. If this input
Is logic low the command Is not executed and an Interrupt
is generated, All Type | commands are performed re-
gardless of the state of the Ready input. Also, whenever a
Type Il or-lll command Is received, the TG43 signal output
is updated.

COMMAND DESCRIPTION

The FD179X will accept eleven commands. Command
words should only be loaded in the Command Register
when the Busy status bit is off (Status bit 0). The one
exception is the Force Interrupt command. Whenever g
command is being executed, the Busy status bit Is set.
When a command is completed, an interrupt is generated
and the Busy status bit is reset. The Status Register
indicates whether the completed command encountered
an ermor or was fault free. For ease of discussion,
commands are divided into four types. Commands and
types are summarized in Table 1.

w

230 Appendix II

FD179X Applications

TABLE1. COMMAND SUMMARY .

A. Commands for_ModeIs:.1791.179,'2,"1793,1794 o B. Commands for Models: 1795, 1797 -
' ' © - ‘Bits : : Bits (w]
Type:Command - 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 :‘h
| Restore 0 0 0 0 h VvV ’f1 | o 0 0 0 h v n 0] ©
| Seek 0 0 0 1 h v’ ®©|]o 0 0 1 h VvV 1 10 x
| Step 6 0 1+ T h VvV M 0 0 1 T h V 1 10 S
| Step-in 0 1 0 T h. VvV ™M1 1] 0 1 0 T h v n 0
| Step-out. - 0 1.1 T h v 1M1 r©] o 1 1 T h v n 0
It Read Sector 1 0 0 m 'S E C 0 1 0 0 m L E U 0
il Write Sector 1 0 1 m S. E C a; 1 0 1 m L E U ag
il Read Address 1] 0 0 Y E g 01 1 0 0 (o £ U 0
il Read Track 1 11 0 0 E 0 0 1 1 1 0 0 E U 0
Il Write Track 1 1.1 1 0 E 0 0] 1 101 1 0 E U 0
IV Force Interrupt 1 1 0 1t B 2 K ll1 1 o 1 BB 2 h o
FLAG SUMMARY TABLE 2. FLAG SUMMARY
Command : Bit . | -) o
Type - No(s) : Description
i : 6,1 110 = Stepping Motor Rate '
-See Table 3 for Rate Surnmary
I 2 V = Track Number Verify Flag|V = 0, No verify
i V = 1, Verify on destination track
i 3 h = Head Load Flag h = 1, Load head at beginning
: h = 0, Unload head at beginning
l 4 - T = Track Update Flag T = 0, Noupdate ’
: T = 1, Update track register
il 0 20 = Data Address Mark a0 = 0, FB(DAM)
- ' ‘ ' a0 = 1, F8 (deleted DAM)
| | 1 - C = Side Compare Flag C = 0, Disable side compare
:) C = 1, Enable side compare
&l 1 1- U= UpdateSSO U = 0,UpdateSSO to0
: U = 1,Update SSOto 1
& 2 | E=15MSDelay E = 0, No 15 MS delay
E = 1,15MS delay
I 3 | s = SideCompareFiag S '= 0, Compare for side 0
. : S = 1, Compare for side 1
» - ' LSB's Sector Length in ID Field
" 3 L = Sector Length Flag 00 o1 10 11
L =0 256 512 1024 128
L =1 128 256 512 1024
H -4 m = Multiple Record Flag m = 0, Single record
o = 1, Multiple records
v 03 Ix = Interrupt Condition Flags
o = 1 Not Ready To Ready Trarisition
I = 1 Ready To Not Ready Transition
12 = 1Index Pulse ‘
I3 = 1Immediate Interrupt, Requires A Reset
1310 = 0 Terminate With No Interrupt INTRQ)

*NOTE: See Type IV Command Description for further information.
—

Machine-language Disk /O 231

FD179X Applications

c0-X6.1a4

TYPE | COMMANDS

The Type | Commands include the Restore, Seek, Step,
Step-in, and Step-Out commands. Each of the Type |
Commands contains a rate field {f0 1), which determines
the stepping motor rate as defined in Table 3.

A 2 us (MFM) or 4 us (FM) pulse is provided as an output to
the drive. For every step pulse issued, the drive moves one
track location in a direction determined by the direction
output. The chip will step the drive in the same direction it
last stepped unless the command changes the direction.

The Direction signal is active high when stepping in and
low when stepping out. The Direction signal is valid 12 us
before the first stepping pulse is generated.

The rates (shown in Table 3) can be applied to a Step-
Direction Motor through the device interface.

TABLE 3. STEPPING RATES

CLk 2MHz 2 MHz 1 MHz 1 MHz 2 MHz 1 MHz
DDEN 0 1 0 1 x X
R1RO0 TEST=1 TEST=1 TEST=1 TEST=1 TEST=0 TEST=0
00 3ms 3ms 6 ms 6 ms 184us 368us
[V | 6 ms '6 ms 12 ms 12 ms 190us 380us
10 10 ms 10 ms 20 ms 20 ms 198ps 396us
11 15ms 15 ms 30 ms 30 ms 208us 416ps

After the last directional step an additional 15 milliseconds
of head settling time takes place if the Verify flag is set in
Type | commands. Note that this time doubles to 30 ms for
a 1 MHz clock. If TEST = 0, there is zero settling time.
There is also a 15 ms head settling time if the E flag is set in
any Type Il or lll command.

‘When a Seek, Step or Restore command is executed an

optional verification of Read-Write head position can be
performed by settling bit2 (V = 1) in the command word to
alogic 1. The verification operation begins at the end of the
15 millisecond settling time after the head is loaded against
the media. The track number from the first encountered ID
Field is compared against the contents of the Track
Register. If the track numbers compare and the ID Field
Cyclic Redundancy Check (CRC) is correct, the verify
operation is complete and an INTRQ is generated with no
errors. If there is a match but not a valid CRC, the CRC error
status bit is set (Status bit 3), and the next encountered ID
field is read from the disk for the verification operation.

The FD179X must find an ID field with correct track number
and correct CRC within 5 revolutions of the media;
otherwise the seek error is set and an INTRQ is generated.
ItV = 0, no verification is performed.

The Head Load (HLD) output controls the movement of the
read/write head against the media. HLD is activated at the
beginning of a Type | command if the h flag is set (h = 1), at
the end of the Type | command if the verify flag (V = 1), or
upon receipt of any Type Ii or lll command. Once HLD is
active it remains active until either a Type | command is
received with (h = 0and V = 0; or if the FD179X is in an
idle state (non-busy) and 15 index pulses have occurred.

Head Load timing (HLT) is an input to the FD179X which is
used for the head engage time. When HLT = 1, the FD179X
assumes the head is completely engaged. The head
engage time is typically 30 to 100 ms depending on drive.
The low to high transition on HLD is typically used to fire a
one shot. The output of the one shot is then used for HLT
and supplied as an input to the FD179X.

HLD
|-—50 TO 1DDm5——-|

-
1

L
T
HLT (FROM ONE SHOT)

HEAD LOAD TIMING

When both HLD and HLT are true, the FD179X will then
read from or write to the media. The “and” of HLD and HLT
appears as status Bit 5in Type | status.

In summary for the Type | commands: ifh = OandV = 0,
HLD is reset. If h = 1 and V = 0, HLD is set at the
beginning of the command and HLT is not sampled nor is
there an internal 15 ms delay. If h = OandV = 1, HLD is
set near the end of the command, an internal 15 ms occurs,
and the FD179X waits for HLT tobe true. If h = 1and V =
1, HLD is set at the beginning of the command. Near the -
end of the command, after all the steps have been issued,
an internal 15 ms delay occurs and the FD179X then waits
for HLT to occur.

For Type li and ill commands with E flag off, HLD is made
active and HLT is sampled until true. With E flag on, HLD is
made active, an internal 15 ms delay occurs and then HLT
is sampled until true.

RESTORE (SEEK TRACK 0)

Upon receipt of this command the Track 00 (TROO) input is
sampled. If TROO is active low indicating the Read-Write
head is positioned over track 0, the Track Register is loaded
with zeroes and an interrupt is generated. If TROO is not
active low, stepping pulses (pins 15 to 16) at a rate specified
by the 1 10 field are issued until the TROO input is activated.
At this time the Track Register is loaded with zeroes and an
interrupt is generated. If the TROO input does not go active
low after 255 stepping pulses, the FD179X terminates
operation, interrupts, and sets the Seek error status bit,
providing the V flag is set. A verification operation also
takes place if the V flag is set. The h bit allows the head to
be loaded at the start of command. Note that the Restore
command is executed when MR goes from an active to an
inactive state and that the DRQ pin stays low.

SEEK

This command assumes that the Track Register contains
the track number of the current position of the Read-Write
head and the Data Register contains the desired track
number. The FD179X will update the Track register and
issue stepping pulses in the appropriate direction until the
contents of the Track register are equal to the contents of

m

232 Appendix II

FD179X Applications

e
HAS
ATYPEI
COMMAND BEEN
RECEIVED
2
YES

SET BUSY, RESET CAC,
SEEK ERROR. DRQ. INTRQ

IS
H=1 s
»

Y

SET HLD RESET HLD
1S
COMMAND YES SET
A
s DIRECTION
?

NO

[

COMMAND

Yes RESET
DIRECTION

A
STEP-OUT
2

AN

e
;

g C

DR TO DSR

YES

s
DSA-TR
“\ ? /
! NO
v | RESET DIRECTION J [SET DIRECTION J
y— ¢

TRACK 0 AND
OIRECTION
=0

ISSUE
ONE STEP PULSE

DELAY ACCORDING
TO R1, RO FIELD

IS
‘COMMAND
A STEP, STEP-IN,
OR STEP-QUT,

?

TYPE | COMMAND FLOW

the Data Register (the desired track location). A verification
operation takes place if the V flag is on. The h bit allows the
head to be loaded at the start of the command. An interrupt
is generated at the completion of the command. Note:
When using multiple drives, the track register must be
updated for the drive selected before seeks are issued.

STEP

Upon receipt of this command, the FD179X issues one
stepping pulse to the disk drive. The stepping motor
direction is the same as in the previous step command.
After a delay determined by the 110 field, a verification
takes piace if the V flag is on. If the U flag is on, the Track
Register is updated. The h bit allows the head to be loaded
at the start of the command. An interrupt is generated at
the completion of the command.

STEPN

Upon receipt of this command, the FD179X issues one
stepping pulse in the direction towards track 76. If the U

TYPE | COMMAND FLOW

flag is on, the Track Register is incremented by one. After a
delay determined by the F1f0 field, a verification takes place
if the V flag is on. The h bit allows the head to be loaded at
the start of the command. An interrupt is generated at the
completion of the command.

STEP-OUT

Upon receipt of this command, the FD179X issues one
stepping pulse in the direction towards track 0. If the U flag
is on, the Track Register is decremented by one. After a
delay determined by the r1r0 field, a verification takes place
if the V flag is on. The h bit allows the head to be loaded at
the start of the command. An interrupt is generated at the
completion of the command.

EXCEPTIONS

On the 1795/7 devices, the SSO output is not affected
during Type 1 commands, and an internal side compare
does not take place when the (V) Verify Flag is on.

{0

Machine-language Disk /O 233

2o-xeLkdd

FD179X Applications

20-Xe.La4

VERIFY
SEQUENCE

{ inTAG RESET BUSY

INTRO. RESET BUSY
SET SEEX ERROR

HAS
NO 10 AM BEEN
CETECTED
El
NO TA: TRAC

1
ADDRESS OF ID
FIELD

3 YE - NO

chc : i bl
€RROA

A cAc chc

INTRO
RESET BUSY —

NOTE' IFTEST 0 THERE IS NO 15MS DELAY
FTEST 1ANDCLK 1 MHr THERE IS A 0MS DELAY

TYPE | COMMAND FLOW

TYPE Il COMMANDS

The Type Il Commands are the Read Sector and Write
Sector commands. Prior to loading the Type Il Command
into the Command Register, the computer must load the
Sector Register with the desired sector number. Upon
receipt of the Type |l command, the busy status Bit is set. If
the E flag = 1 (this is the normal case) HLD is made active
and HLT is sampled after a 15 msec delay. If the E flag is 0,
the head is loaded and HLT sampled with no 15 msec
delay. The ID field and Data Field format are shown on page
13.

When an ID field is located on the disk, the FD179X
compares the Track Number on the ID field with the Track
Register. If there is not a match, the next encountered ID
fleld is read and a comparison Is again made. If there was a
match, the Sector Number of the ID field Is compared with
the Sector Register. If there is not a Sector match, the next
encountered ID fleld is read off the disk and comparisons
again made. If the ID field CRC Is correct, the data field is

then located and will be either written into, of read from
depending upon the command. The FD179X must find.an
ID field with a Track number, Sector number, side number,
and CRC within four revolutions of the disk; otherwise, the
Record not found. status bit is set (Status bit 3) and: the
command is terminated with an interrupt.

SET BUSY, RESET DAQ, LOST
DATA. RECORD NOT FOUND. &
STATUS BITS 5 & 6 INTRQ

INTRQ - -
RESET BusY

NO
IS HLT 217

YES
5 YES SET
TR ;\' 43 TG4
NO
RESET TG43

INTRQ. RESET BUSY
SET WRITE PROTECT

*NOTE v TEST o THERF 15 NO 15M5 DELAY
W TFRT 1ANDCLK | MH: THERE 1% 10MS DELAY

TYPE Il COMMAND
Each of the Type Il Commands contains an (m) flag which
determines If multiple records (sectors) are to be read or
written, depending upon the command. If m = 0, a single
sector is read or written and an interrupt is generated at the
completion of the command. If m = 1, multiple records are
read or written with the sector register internally updated
so that an address verification can occur on the next

234 Appendix II

(45—

record. The FD179X will continue to read or.write multiple
records and update the sector register in numerical
ascending sequence until the sector register exceeds the
-number of sectors on the track or until the Force Interrupt
command is loaded into the Command Register; which

terminates the command and generates an interrupt.

For example: If the FD179X is instructed to read sector 27
and there are only 26 on the track, the sector register ex-
ceeds the number available. The FD179X will search for 5
disk revolutions, iinterrupt out, reset busy, and set the
record not found status bit.

The Type Il commands for 1791-94 also contain side select
compare flags. When C = 0 (Bit 1) no side comparison is
made. When C = 1, the LSB of the side number is read off
the ID Field of the disk and compared with the contents of
the (S) flag (Bit 3). If the S flag compares with the side
number recorded in the ID field, the FD179X continues with
the 1D search. If a comparison is not made within 5 index
pulses, the interrupt line is made active and the Record-
Not-Found status bit is set.

NO

ADDRESS OF ID
FIELD

DOES
SR = SECTOR
"N\ _ADDRESS OF 1D
FIELD

NO

BRING IN SECTOR LENGTH FIELD
STORE LE:EGGTH IN INTERNAL
I

1

vEs .
SET CRC THERE A NO RESET
STATUS ERROR GAC ERROR =
1S
COMMAND NO
A
it & READ
YES

W \

-FD179X Applicatiens

The Type Il and lll commands for the 1795-97 contain a side
select flag (Bit 1). When U = 0, SSO is updated to 0.
Similarly, U = 1 updates SSO to 1. The chip compares the
SSO to the ID field. If they do not compare- within 5
revolutions the interrupt line is made active and the RNF
slatus bit is set.

The 1795/7 READ SECTOR and WRITE SECTOR com-
mands include a ‘L’ flag. The ‘L’ flag, in conjunction with
the sector length byte of the ID Field, allows different byte
lengths to be implemented in each sector. For IBM
compatability, the ‘L’ flag should be set to a one.

READ SECTOR

Upon receipt of the Read Sector command, the head is
loaded, the Busy status bit set, and when an ID field is
encountered that has the correct track number, correct
sector number, correct side number, and correct CRC, the
data field is presented to the computer. The Data Address

READ SECTOR
SEQUENCE

PUT RECORD TYPE IN
STATUS REG BIT 5

NO

NEXT BYTE

BEEN ASSEMBLEC
IN DSR

SET DATA
LOST

NO ALL BYTES

BEEN INPUTTED,
>

«170
SECTOR REG

’ I] I ‘mmonzseraﬁsv’
N

INTRQ, RESET BUSY
SET CRC ERROA

r———

TYPE II COMMAND

TYPE Il COMMAND

Machine-language Disk I/O 235

20-X62104

FD179X Applications.

-

20°X6.1a

WRITE SECTOR
3 SEQUENCE

I DELAY 2 BYTES OF GAP —l

L SET DRO]
[DELAY 8 BYTES OF GAP]
A
DR BEEN)
LOADED BY INTRQ. AESET BUSY
COMPUTER SETLOSTDATA
{DRQ = g
2

YES

’ DELAY 1 BYTE OF GAP

6 BYTES OF ZEROS DELAY 11 BYTES

i 1

WRITE DATA AM
ACCORDING TO A0 FIELD
OF WRITE COMMAND

[TURN ON WG & WRITE

" | TuAn ON WG 8 WRITE
12 BYTES OF ZEROS

I DR TO DSA, SET DRQ |
| WRITE BYTE TO DISK]

SET DATA
LOST

0S
WRITE BYTE
OF ZEROS

WRITE CRC
WRITE 1 BYTE OF FF

TURN OFF WG

HAVE

ALL BYTES

BEEN WRITTEN
2

NO

TYPE Il COMMAND

Mark of the data field must be found within 30 bytes in
single density and 43 bytes in double density of the last ID
field CRC byte; if not, the D field is searched for and
verified again followed by the Data Address Mark search. If
after 5 revolutions the DAM cannot be found, the Record
Not Found status bit is set and the operation is terminated.
When the first character or byte of the data field has been
shifted through the DSR, it is transferred to the DR, and
DRQ is generated. When the next byte is accumuiated in
the DSR, it is transferred to the DR and another DRQ is
generated. If the Computer has not read the previous
contents of the DR before a new character is transferred
that character is lost and the Lost Data Status bit is set.
This sequence continues until the complete data field has
been inputted to the computer. If there is a CRC error at the
end of the data field, the CRC error status bit is set, and the
command is terminated (even if it is a multiple record
command).

At the end of the Read operation, the type of Data Address
Mark encountered in the data field is recorded in the Status
Register (Bit 5) as shown:

STATUS
BIT5
1 "Deleted Data Mark
0 Data Mark

WRITE SECTOR

* Upon receipt of the Write Sector command, the head is

loaded (HLD active) and the Busy status bit is set. When an
ID field is encountered that has the correct track number,
correct sector number, correct side number, and correct
CRC, a DRQ is generated. The FD179X counts off 11 bytes
in single density and 22 bytes in double density from the:
CRC field and the Write Gate (WG) output is made active if
the DRQ is serviced (i.e., the DR has been loaded by the
computer). If DRQ has not been serviced, the command is
terminated and the Lost Data status bit is set. If the DRQ
has been serviced, the WG is made active and six bytes of
zeroes in single density and 12 bytes in double density are
then written on the disk. At this time the Data Address
Mark is then written on the disk as determined by the a0
field of the command as shown below:

ag Data Address Mark (Bit 0)
1 Deleted Data Mark
0 Data Mark

The FD179X then writes the data field and generates DRQ’s
to the computer. if the DRQ is not serviced in time for
continuous writing the Lost Data Status Bit is set and a

byte of zeroes is written on the disk. The command is not
terminated. After the last data bvte hae heen written on tha

AL Ry, I IEO1 WG WY WO HIRS wOT wwoiail UN uie

disk, the two-byte CRC is computed internally and written

on the disk followed by one byte of logic ones in FM or in"
MFM. The WG output is then deactivated. For a 2 MHz

clbck the INTRQ will set 8 to 12 usec after the last CRC byte

is written. For partial sector writing, the proper method is to

write the data and fill the balance with zeroes. By letting the

chip fill the zeroes, errors may be masked by the lost data

status and improper CRC Bytes.

YPE iil COMMANDS

READ ADDRESS

Upon receipt of the Read Address command, the head
is loaded and the Busy Status Bit is set. The next
encountered ID field is then read in from the disk, and
the six data bytes of the ID field are assembled and
transferred to the DR, and a DRQ is generated for each
byte. The six bytes of the ID field are shown below:

TRACK SIDE SECTOR | SECTOR | CRC |CRC
ADDR NUMBER | ADDRESS | LENGTH 1 2
1 2 3 4 5 6

Although the CRC characters are transferred to the
computer, the FD179X checks for validity and the CRC
error status bit is set if there is a CRC error. The Track
Address of the iD fieid is written into the sector
register so that a comparison can be made by the
user. At the end of the operation an interrupt is

generated and the Busy Status is reset.

236 Appendix I1

ED179X Applications.

READ TRACK

Upon receipt of the READ track command, the head is
Inadad and tha Ruecv Qtatue hit ic sot Dnadmn starte with

IWGUGUy QU UHIT WIUD Y DWALUS a1 Dot § sotawr SRS W

the leading edge of the first encountered mdex pulse and
continues until the next index pulse. All Gap, Header, and
data bytes are assembled and transferred to the data
register and DRQ’s are generated for each byte. The ac-
cumulation of bytes is synchronized to each address mark
encountered. An interrupt is generated at the completion of
the command.

This command h everal characteristics which make it

. sldmbnla o AL n-—
Sunaocie 1or aiagn “a tic purposes. They are: the Read Gate

is not activated during the command; no CRC checking is
performed; gap information is included in the data stream;
the internal side compare is not performed; and the ad-
dress mark detector is on for the duration of the command.
Because the A.M. detector is always on, write splices or
ngise may cause the chip to look for an A.M. If an address
mark does not appear on schedule the Lost Data status flag
is set.

The ID A.M., ID field, ID CRC bytes, DAM, Data, and Data
CRC Bytes for each sector will be correct. The Gap Bytes
may be read incorrectly during write-splice time because of

evnchronization
Synchrecnizaiien.

ENTER

SET BUSY, RESET DR

LOST DATA. STATUS
errsa s

INTRQ
RESET BUSY

COPY 'S FLAG TD

S50 LINE (17657 ONLY)

HAS

15 MS

EXPIRED
2

DH T DSH

INTH() HESET
HUSNY SET WPR1L

SET DRQ

DELAY 3 BYTE
TIMES

SET INTRQ
LQST DATA
RESET BUSY

HAS
DRQ BEEN
SERVICE *30 M8 IF CLOCK

YES

YES (MFM)

DOES YES WRITE 2 CRC .
Lo CHARS CLK : FF
NO
DOES YES WRITE FC
DSA - FC CLK : D7
?
NO
WRITE FD, FE OR
DSHDPFE;_ [YES | Fe-FB.CLK : C7 -
NR Fa-FB INITIALIZE CRC
B
Ny
WRITE DSR
CLK = FF

PHYS
INDEX MARK
7

INTRQ RESET BUSY

WRAITE
BYTE OF ZEROS
SET DATA LOST

HAS
DR BEEN
LOADED?

WRITE A1" IN MFM
OCK|

WITH Ci
INITIALIZE CRC

WRITE C2° IN MFM

eil Gl JwiTH MISSING CLOCK
NO
00ES YES
el WAITE 2 CRC
?
NO
WRITE DSR

IN MFM

TYPE Il COMMAND WRITE TRACK

TYPE Il COMMAND WRITE TRACK

Machine-language Disk /O 237

c0-X6.1a4d

FD179X Applications

20-X6.104

CONTROL BYTES FOR INITIALIZATION

DATA PATTERN FD179X INTERPRETATION FD1791/3 INTERPRETATION

IN DR (HEX) IN FM (DDEN = 1) IN MFM (DDEN = 0)

00 thru F4 Write 00 thru F4 with CLK = FF Write 00 thru F4, in MFM

F5 Not Allowed Write A1* in MFM, Preset CRC

F6 Not Allowed Write C2** in MFM

F7 Generate 2 CRC bytes Generate 2 CRC bytes

F8 thru FB Write F8 thru FB, Clk = C7, Preset CRC Write F8 thru FB, in MFM

FC Write FC with Clk = D7 Write FC in MFM

FD Write FD with Clk = FF Write FD in MFM

FE Write FE, Clk = C7, Preset CRC Write FE in MFM

FF Write FF with Clk = FF Write FF in MFM

‘Missing_ clock transition between bits 4 and 5

WRITE TRACK FORMATTING THE DISK
(Refer to section on Type lIt commands for flow diagrams.)

Formatting the disk is a relatively simple task when
operating programmed /O or when operating under DMA
with a large amount of memory. Data and gap Information
must be provided at the computer interface. Formatting the
disk is accomplished by positioning the RW head over the
desired track number and issuing the Write Track com-
mand.

Upon receipt of the Write Track command, the head is
loaded and the Busy Status bit is set. Writing starts with
the leading edge of the first encountered index pulse and
continues until the next index pulse, at which time the
interrupt is activated. The Data Request is activated im-
mediately upon receiving the command, but writing will not
start until after the first byte has been loaded into the Data
Register. If the DR has not been loaded by the time the
Index pulse Is encountered the operation is terminated
making the device Not Busy, the Lost Data Status Bit Is set,
and the Interrupt is activated. If a byte is not present In the
DR when needed, a byte of zeroes Is substituted.

This sequence continues from one index mark to the next
index mark. Normally, whatever data pattern appears in the
data register is written on the disk with a normal clock
pattemn. However, if the FD179X detects a data pattern of
F5 thru FE In the data register, this Is interpreted as data
address marks with missing clocks or CRC generation.

The CRC generator Is initialized when any data byte from
F8 to FE is about to be transferred from the DR to the DSR
in FM or by receipt of F5 in MFM. An F7 pattern will
generate two CRC characters in FM or MFM. As a con-
sequence, the patterns F5 thru FE must not appear in the
gaps, data fields, or ID fields. Also, CRC's must be
generated by an F7 pattern.

Disks may be formatted in IBM 3740 or System 34 formats
with sector lengths of 128, 256, 512, or 1024 bytes.

TYPE IV COMMANDS

The Forced Interrupt command is generally used to ter-
minate a muitiple sector read or write command. or to in-

**Missing clock transition between bits 3 & 4

sure Type | status in the status register. This command can
be loaded into the command register at any time. If there is
a cumrent command under execution (busy status bit set)
the command will be terminated and the busy status bit
reset. .

The lower four bits of the command determine the con-
ditional interrupt as follows:

l0 = Not-Ready to Ready Transition
11 = Ready to Not-Ready Transition
I2 = Every Index Pulse

I3 = Immediate Interrupt

The -conditional interrupt is enabled when the cor
responding bit positions of the command (I3 - 10) are set to
a 1. Then, when the condition for interrupt is met, the IN-
TRQ line will go high signifying that the condition specified
has occurred. if 13 - 10 are all set to zero (HEX DO), no in-
terrupt will occur but any command presently under
execution will be immediately terminated. When using the
immediate interrupt condition (13 = 1) an interrupt will be
immediately generated and the current command ter-
minated. Reading the status or writing to the command
register will not automatically clear the interrupt. The HEX
DO is the only command that will enable the immediate
interrupt (HEX D8) to clear on a subsequent load command
register or read status register operation. Follow a HEX D8
with DO command.

Wait 8 micro sec (dauble density) or 16 micro sec (single
density before issuing a new command after issuing a

.forced interrupt (times double when clock = 1 MHz).

Loading a new command sooner than this will nullify the
forced interrupt.

Forced interrupt stops any command at the end of an in-
ternal micro-instruction and generates INTRQ when the
specified condition is met. Forced interrupt will wait until
ALU operations in progress are complete (CRC
calculations, compares, etc.).

More than one condition may be set at a time. If for
example, the READY TO NOT-READY condition (1 = 1)
and the Every Index Pulse (2 = 1) are both set, the
resultant command would be HEX “DA”. The “OR" func-
tion Is performed so that either a READY TO NOT- READY
or the next Index Pulse will cause an interrupt condition.

e —

238 Appendix I1

-.FD179X Data Sheet

. - ’ READ TRACK
_ ENTER : v . & SEQUENCE

L

5 O

] =

SET BUSY ({e]

RESET STATUS >
BITS 2,4,5 1

Q

N

INTRQ w
RESET BUSY
—

SHIFT ONE BIT
INTO DSR

COPY'S FLAG
TO SSO LINE
{1795/7 ONLY)

SET INTRQ \

RESET BUSY /

SET HLD

ADDRESS
MARK DETECTEC
?

YES

YES «

it HAVE 8
il No BITS BEEN
ASSEMBLED
DELAY 15MS* ?

NO SET LOST

EMPTY - DATA BIT

YES
y
- 7643
UPDATE TRANSFER
DSR TO DR
y
SET
DRQ
READ
ADDRESS

4

TYPE Il COMMAND

v
*If TEST= §, NO DELAY
It TEST=1 and CLK=1 MHZ, 30 MS DELAY Read Track/Address

Machine-language Disk I/0 239

FD179X Data Sheet

l B I READ ADDRESS

SEQUENCE

A1 g CYARGE]

HAVE 6
INDEX HOLES
PASSED
?

RESET BUSY
SET INTRQ
SET RNF y

HAS

IDAM BEEN

DETECTED
?

NO

SHIFT t BYTE
INTO DSR

TRANSFER
.BYTETO DR

SET DRQ

HAVE 6
BYTES BEEN
READ

TRANSFER TRACK
NUMBER TO SECTOR
REGISTOR
CRC YES SET CRC
EF*ROR ERROR BIT
NO

SET INTRQ
RESET BUSY

TYPE Il COMMAND
Read Track/Address

STATUS REGISTER

Upon receipt of any command, except the Force Interrupt
command, the Busy Status bit is set and the rest of the
status bits are updated or cleared for the new command. If
the Force Interrupt Command is received when there is a
current command under execution, the Busy status bit is
reset, and the rest of the status bits are unchanged. If the
Force Interrupt command is received when there is not a
current command under execution, the Busy Status bit is
reset and the rest of the status bits are updated or cleared.
In this case, Status reflects the Type | commands.

The user has the option of reading the status register
through program control or using the DRQ line with DMA or
interrupt methods. When the Data register is read the DRQ
bit in the status register and the DRQ line are automatically
reset. A write to the Data register also causes both DRQ's
to reset.

The busy bit in the status may be monitored with a user
program to determine when a command ‘is complete, in
lieu of using the INTRQ line. When using the INTRQ, a busy
status check is not recommended because a read of the
status register to determine the condition of busy will reset
the INTRQ line.

The format of the Status Register is shown below:

(BITS)
4 3 2

s7 S6 S5 S4 83 S2 S1.] S0

-
(<]
(4.}
(=}

Status varies according to the type of command executed
as shown in Table 4.

Because of internal sync cycles, certain time delays must
be observed when operating under programmed I/Q. They
are: (times double when clock = 1 MH2)

. Delay Req'd.
Operation Next Operation FM | MFM
Write to Read Busy Bit 12us : 6us
Command Reg. | (Status Bit 0) |
Write to Read Status | 28us |14 us
Command Reg. | Bits 1-7 !
Write Any Read From Diff. o , o©
Register Register !

IBM 3740 FORMAT — 128 BYTES/SECTOR

Shown below is the IBM single-density format with 128
bytes/sector. In order to format a diskette, the user must
issue the Write Track command, and load the data register
with the following values. For every byte to be written, there
is one Data Request.

240 Appendix II

_l"Ul'IHA pata sheet

IBM 3740 FORMAT — 128 BYTES/SECTOR
Shown below is the 1BM single-density format with 128

bytesisector. In order to format a disketts, the user must
issue the Write Track command, and load the data register
with the following values. For every byte to be written, there

is one Data Request.

NUMBER HEX VALUE OF
OF BYTES BYTE WRITTEN
40 FF (or 00y
6 00
1 FC (Index Mark)
* 26 FF (or 00)'
6 00
1 FE (ID Address Mark)
1 Track Number
1 Side Number (00 or 01)
1 Sector Number (1 thru 1A)
1 00 (Sector Length)
1 F7 (2 CRC's written)
1 FF (or 00)'
6 00 .
1 FB (Data Address Mark)
128 Data (IBM uses E5)
1 F7 (2 CRC's written)
27 FF (or 00)*
247" FF (or 00)'

*Write bracketed field 26 times
**Continue writing until FD179X interrupts out.
Approx. 247 bytes.
1-Optional ‘00’ on 1795/7 only.

IBM SYSTEM 34 FORMAT- 256 BYTES/SECTOR

Shown below is the IBM dual-density format with 256
bytes/sector. In order to format a diskette the user must
issue the Write Track command and load the data register
with the following values. For every byte to be written, there
ig one data request.

NUMBER HEX VALUE OF
OF BYTES BYTE WRITTEN
80 4E
12 00
3 F6 (Writes C2)
1 FC (Index Mark)
* 50 4E
12 00
3 F5 (Writes A1)
1 FE (ID Address Mark)
1 Track Number (0 thru 4C)
1 Side Number (0 or 1)
1 Sector Number (1 thru 1A)
1 01 (Sector Lengthy)
1 F7 (2 CRCs written)
22 4E
12 00
3 F5 (Writes A1)
1 FB (Data Address Mark)
256 DATA
1 F7 (2 CRCs written)
54 4E
598 * 4E

*Write bracketed field 26 times
**Continue writing until FD179X interrupts out.
Approx. 598 bytes.

OrYSICAL INDER

46 BYTES M
92 BYTES MFw

i TRACK 106 | SECTOR } SECTOR | CRC
af
!:ﬂ:‘:'ss wumpen | numBen | numega | LENGTH | BYTE

/— INDEX ADDRESS MAAK
}
T [P I O . LU
PRE INDEX 3 pvres POST NDEX | 1BYTES 0] 1D GAP FIELD DATA GAP Ly D 0] . OATA FIELD) 4 Lo
30 BYTE P |7 rm oavreru | mrw |RECORO | i gvieskm | mecomo | 3evieem | RECORD G472 RECORD | Gary [AECORD { aar z RECORD AECORD eap 4 sco;so Gae 4
“aeevres 1 | Onew o2 evres me| oney | MO 34 BYTE MM No v |esevremem] NO? e B L8
NOMINAL
1
DAtaOR
DELETED cRC CcRC

DATA USER DATA
ADDRESS

BYYE 1 @YTE 2’

IN MFM ONLY, IDAM AND DATA AM
ARE PRECEDED BY THREE BYTES OF
A1 WITH CLOCK TRANSITION BETWEEN
BITS 4 AND $ MISSING.

)

T
|
cae 2 |
|
]

T
|

o | a
I

6BYTES —o=]

*MISSING CLOCK TRANSITION
BETWEEN BITS J AND 4
L 1 BYTES
MEM 22 BYTES —/ 12 BYTES
WRITE GATE TURN ON FOR UPDATE .
OF NEXY DATA SIE1D

0 b—ed r@vie fe——2RYIES ——] O

3 TgrIL \ 3
. WRITE TURN OFF FOR UPDATE
OF PREVIOUS DATA FIELD

1BM TRACK FORMAT

¢0-X6.104d

Machine-language Disk I/O0 241

FD179X Data Sheet

1. NON-IBM FORMATS

co-X6.1ad

Variations in the IBM formats are possible to a limited
extent if the following requirements are met:

1) Sector size must be 128, 256, 512 or 1024 bytes.
2) Gap 2 cannot be varied from the IBM format.
3) 3bytes of A1 must be used in MFM.

In addition, the Index Address Mark is not required for
operation by the FD179X. Gap 1, 3, and 4 lengths can be as
short as 2 bytes for FD179X operation, however PLL lock up
time, motor speed variation, write-splice area, etc. will add
more bytes to each gap to achieve proper operation. It is
recommended that the IBM format be used for highest

* system reliability.

FM MFM
Gap! 16 bytes FF 32 bytes 4E
Gap It 11 bytes FF 22 bytes 4E
* 6 bytes 00 12 bytes 00
* 3 bytes A1
Gap llI** 10 bytes FF 24 bytes 4E
4 bytes 00 8 bytes 00
3 bytes A1
GaplV 16 bytes FF 16 bytes 4E

*Byte counts must be exact. -
**Byte counts are minimum, except exactly 3 bytes of A1

must be writien.

TIMING CHARACTERISTICS

Ta = 0°C to 70°C, Voo = + 12V = .6V, Vss = OV, Vcc =+5V + .25V

READ ENABLE TIMING (See Note 6, Page 21)

ORQ ——|

B [

j——— TipR* —————-l

INTRO &

O

AQ, A1, C-E U'_-l

(DALY

ISERVICE |em— |
VoL

THiD

| 1

—— TRE —oeed]

Tser [==—

Toacc L—— .

DATA

pe

I—_

VALID

——TDOHL—

3
NOTE 1 TS MAY BE PE‘RMANENTLV TIED LOW IF DESIRED
*TIME DOUBLES WHEN CLOCK * 1MH2
t SERVICE {(WORST CASE1
“FM 27548 -
"MFM 135uS
DRAQ RISING EDGE: INDICATES THAT THE DATA REGISTEA HAS ASSEMBLED
DATA.

DRQ FALLING EDGE: INDICATES THAT THE DATA REGISTER WAS READ
INTRQ RISING EDGE: OCCURS AT END OF COMMAND
INTRQ FALLING EDGE: INDICATES THAT THE STATUS REGISTER WAS READ.

REAb ENABLE TIMING

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS | CONDITIONS
TSET Setup ADDR & CS to RE_ 50 ' nsec
THLD Hold ADDR & CS from RE 10 nsec
TRE RE Pulse Width 400 nsec C. = 50 pf
TDRR DRQ Reset from RE__ 400 500 nsec
TIRR INTRQ Reset from RE 500 3000 nsec See Note §
TDACC Data Access from RE 350 nsec C. = 50 pf
TDOH Data Hold From RE 50 150 nsec C.L = 50 pf
WRITE ENABLE TIMING (See Note 6, Page 21)
SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS | CONDITIONS
TSET Setup ADDR & CS to WE_ 50 ‘nsec
THLD Hold ADDR & CS from WE 10 nsec
TWE WE Puise Width 350 : nsec
TDRR DRQ Reset from WE 400 500 nsec
TIRR INTRQ Reset from WE 500 3000 nsec See Note 5
DS - Data Setup to WE_ 250 nsec
TDH Data Hold from WE 70 nsec

242 Appendix II

FD179X Data Sheet

—_— 16" OR 32" 1S er——
T

The

{
I — r L | .
ORQ —l ! ~ Ivor_ "’W'——‘ r‘— ‘ E
: AAW READ - -J
: e . TiRA -—' §
v 2 , . I I ‘ I .
ISERWCEj'HLD L———— ven _-l ° ':'xv——"l S
- SO s B
RCLK
AQ A1 €S o l_. . i Ts —i ™ ——1
| ———— TWE —] i Tc ——-——i
wE ——]_L_j s
Tser '-
- | ["oaTa musT)
' Sl NOMINAL
—~ fs_ 'D"l" DISKETTE |[MODE |DDEN| CLK | T. | T, | T.
8" MFM 0 2MHz |1 us | 1us |2 pus
T D B & FM] 1 | 2MHz |2us | 2us | dus
RECEAST o SSEC N MEM AETER PHE RISKG EDGE OF WE 5" MFM 0 1MHz | 2us | 2u8 {4 s
{SERVICE (WORST CASEN (SO UALID UNTIL SOME 20 WOEGLIN Fv. 14 % SEC TN MFM 5" FM 1 1MHz {4 pus | 4us |Bus
WM 11 s TIME GOUBLES WHEN CLOCK — Tkig 0 WHEN G 1 ke :
. DRQ AISING EDGE: INDICATES THAT THE DATA REGISTER IS EMPTY 'NPUT DATA TIMING
DRQ FALLING EDGE: INDICATES THAT THE DATA REGISTER IS LOADED
- INTRQ RISING EDGE: INDICATE THE END OF A COMMAND
INTRQ FALLING EDGE: INDICATES THAT THE COMMAND REGISTER
1S WRITTEN TO
WRITE ENABLE TIMING
INPUT DATA TIMING:
SYMBOL CHARACTERISTIC Vi, TYP. MAX. UNITS CONDi iONS
Tpw Raw Read Pulse Width 100 200 ' nsec | See Note 1
tbe Raw Read Cycle Time 1500 2000 ' nsec {1800 ns @ 70°C
Tc RCLK Cycle Time 1500 2000 nsec {1800 ns @ 70°C
Txa RCLK hold to Raw Read 40 nsec | See Note 1
Txa Raw Read hold to RCLK 40 nsec | See Note 1
WRITE DATA TIMING: (ALL TIMES DOUBLE WHEN CLK = 1 MHz) (See Note 6, Page 21)
SYMBOL CHARACTERISTICS MiN. TYP. MAX. UNITS| CONDITIONS
1
Twp Write Data Pulse Width 500 650 nsec FM
200 350 nsec MFM
Twg Write Gate to Write Data 2 usec FM
1 usec MFM
Tbc Write data cycle Time 23,0r4 sec +CLK Error
Ts Early (Late) to Write Data 125 nsec MFM
Th Early (Late) From 125 nsec MFM
Write Data .
Twi Write Gate off from WD 2 usec FM
1 usec MFM
Twdl WD Valid to Clk 100 nsec CLK=1 MHZ
50 nsec CLK=2 MHZ
Twd2 WD Valid after CLK 100 nsec CLK=1 MHZ
30 nsec CLK=2 MHZ

.

Machine-language Disk I/O 243

FD179X Data Sheet .

c0-X6.1a4d

CLK
(2MHZ)
DDEN= 1

[———— 250 NS*’I

L

o,

wD

CLK
(2MHZ)
(DDEN = 0)

00]
-1

|<— Twd2
"-1.—125*;]71—125—4

L

.

Twdl

WD MUST HAVE RISING EDGE IN FIRST SHADED AREA AND TRAILING

EDGE IN SECOND SHADED AREA.

WRITE DATA/CLOCK RELATIONSHIP

. |.._mdz

MISCELLANEOUS TIMING: (Times Double When Clock = 1 MH2)

WRITE DATA TIMING

(See Note 6, Page 21)

~

SYMBOL CHARACTERISTIC MIN. | TYP. MAX. UNITS | CONDITIONS
TCD» Clock Duty (low) 230 250 | 20000 nsec
TCD: Clock Duty (high) 200 250 20000 nsec
TSTP Step Pulse Output 2o0r4 usec .
TOIR Dir Setup to Step 12 psec i%‘f_ﬂ‘g‘agn
T™MR Master Reset Pulse Width 50 usec '
TIP Index Pulse Width 10 psec
TWF Write Fault Pulse Width 10 usec See Note §

244 Appendix II

FD179X Data Sheet

NOTES:
1. Puilse width on RAW READ (Pin 27) is normally

100-300 ns. However, pulse may be any width if

(e L LY [t

pulse is entirely within wnndow If pulse occursinboth
windows, then pulse width must be less than 300 ns

sfor MFM at CLK = 2 MHz and 600 ns for FM at 2
MHz. Times double for 1 MHz.

. A PPL Data Separator is recommended for 8" MFM.

. tbe should be 2 us, nominal in MFM and 4 us nomlnal
in FM. Times double when CLK = 1 MHz. _

. RCLK may be high or low during RAW READ (Polarity
is unimportant).

. Times double when clock = 1 MHz.

. Output timing readings are at Vo, = 0.8vand Von =
20v.

(Avp CIANCE

g
o
[+ 2304] P A A

- 7€,

4
STEPIN R4
oiRc YOH

vOL ~4— RiRg* —#=

|—- ToIR .lTstlc———lTsrp'<— |<'Dm .-*'sw |_-
] [M
sTEP J L J l._‘ }—‘ -
MISCELLANEOUS TIMING
*FROM STEP RATE TABLE
Table 4. STATUS REGISTER SUMMARY

BIT

ALL TYPE I
COMMANDS

READ
ADDRESS

READ
SECTOR

READ
TRACK

WRITE
SECTOR

WRITE
TRACK

s7
S6

S5
S4
S3
82
S1
S0

NOT READY

WRITE
PROTECT

HEAD LOADED
SEEK ERROR
CRC ERROR
TRACK 0
INDEX PULSE"
BUSY

NOT READY
0

0
RANF
CRC ERROR
LOST DATA
DRQ
BUSY

NOT READY
0

RECORD TYPE
RNF

CRC ERROR
LOST DATA
DRQ

BUSY

NOT READY
0

0

0

0
LOST DATA
DRQ

BUSY

NOT READY

WRITE
PROTECT

WRITE FAULT
RNF

CRC ERROR
LOST DATA
DRQ

NOT READY

WRITE
PROTECT

WRITE FAULT
0
0
LOST DATA
DRQ
BUSY

STATUS FOR TYPE | COMMANDS

BUSY

BIT NAME

MEANING

S7 NOT READY

This bit when set indicates the drive is not ready. When reset it indicates that the drive
is ready. This bit is an inverted copy of the Ready input and logically ‘ored’ with MR.

S6 PROTECTED

When set, indicates Write Protect is activated. This bit is an inverted copy of WRPT
input.

S5 HEAD LOADED

When set, it indicates the head is loaded and engaged. This bit is a logical “and” of
HLD and HLT signals.

S4 SEEK ERROR

When set, the desired track was not verified. This bit is reset to 0 when updated.

S3 CRC ERROR

CRC encountered in ID field.

S2 TRACK 00

When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted
copy of the TROO input.

S1 INDEX

When set, indicates index mark detected from drive. This bit is an inverted copy of the

1D e
wn IPUI

S0 BUSY

When set command is in progress. When reset no command is in progress.

Machine-language Disk I/0

245

FD179X Data Sheet

STATUS FOR TYPE il AND ill COMMANDS
BIT NAME MEANING

S7 NOT READY This bit when set indicates the drive is not ready. When reset, it indicates that the drive

is ready. This bit-is an inverted copy of the Ready input and ‘ored’ with MR. The Type i

and Il ,_Comm_ands will not execute uniess the drive is ready.

S6 WRITE PROTECT|On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a

Write Protect. This bit is reset when updated.

S5 RECORD TYPE/ |On Read Record: It indicates the record-type code from data fleld address mark.
WRITE FAULT |1 = Deleted Data Mark. 0 = Data Mark. On any Write: It md:cates a Write Fault. This bit

is reset when updated.

S4 RECORD NOT {When set, it indicates that the desired track, sector, or side were not found. This bit is
FOUND (RNF) reset when updated.

20-X62104

83 CRC ERROR If S4 is set, an error is found in one or more ID flelds otherwise it indicates error in
: data field. This bit is reset when updated.
S2 LOST DATA When set, it indicates the computer did not respond to DRQ in one byte time. This bit is

reset to zero when updated.

S1 DATA REQUEST |This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read
Operation or the DR is empty on a Write operation. This blt is reset to zero when up-
dated.

S0 BUSY When set, command is under execution. When reset, no command is under execution.

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings Cw & Cout = 15 pF max with all pins grounded except
Voo with repect to Vss (ground): + 15to — 0.3V one under test.
Voltage to any input with respectto Vss = +15to — 0.3V Operating temperature = 0°C to 70°C
lec = 60 MA (35 MA nominal) Storage temperature = -55°Cto +125°C

loo = 15 MA (10 MA nominal)

OPERATING CHARACTERISTICS (DC) T

TA = 0°Cto70°C,Vop = + 12V = 6V, Vss = OV, Vce = + 5V = .25V
SYMBOL CHARACTERISTIC MIN. MAX. UNITS CONDITIONS
e Input Leakage 10 A ViN = Voo**
lo Output Leakage 10 uA Vour = Vop
ViH Input High Voltage 26 Vv
Vi Input Low Voltage 0.8 \
Vou | Output High Voltage 28 v lo = —100uA
Vo Output Low Voltage 0.45 Vv lo = 1.6 mA*
Po Power Dissipation 0.6 w

*1792and 179410 = 1.0mA
**Leakage conditions are for input pins without internal pull-up resistors. Pins 22, 23, 33, 36 and 37 have pull-up resistors.
See Tech Memo #115 for testing procedures.

See page 725 for ordering information.

246 Appendix 1I

FD179X Data Sheet

WESTERN DIGITAL

c

A T /. 0O N

-FD179X Applucatlon Notes

INTRODUCTION

Over the past several years, the Floppy Disk Drive has
become the most popular on-line storage device for
mini and microcomputer systems. Its fast access time,
reliability and low cost-per-bit ratio enables the Floppy
Disk Drive to be the solution in mass storage for mi-
croprocessor systems. The drive interface to the Host
system is standardized, allowing the OEM to substitute
one drive for another W|th mlnlmum ‘hardware/ software
modifications.

Since Floppy Disk Data is stored and.retrieved as a
self—clockmg serial data stream, some means of sep-

ﬂlal" |9 ll “7 U!U\lk flvlll {hc da’la al 'd ﬂoavlllblllls lhlo

data in parallel form must be accomplished. Data is
.stored on individual Tracks of the media, requiring con-
trol of a stepper motor to move the Read/Write head
to a predetermined Track. Byte sychronization must
also be accomplished to insure that the parallel data
is properly assembled. After all the design considera-
tions are met, the final controller can consist of 40 or
- more TTL packages.

To alleviate the burden of Floppy Disk Controller de-

sign, Western Digital has developed a Family of LSI.

Floppy Disk controller devices. Through its own set of
macro commands, the FD179X Controller Family will
perform all the functions necessary to read and write
data to the drive. Both the 8" standard and 5%" mini-
floppy are supported with single or double density re-
cording techniques. The FD179X is compatible with
the IBM 3740 (FM) data format, or the System 34

(MFlk'A'\ standards. Provisions for non-standard formats

and variable sector lengths have been inciuded to pro-
vide more storage-capability per track. Requiring stan-
dard +5, +12 power supplies the FD179X is available
in a standard 40 pin dual-in-line package.

The FD179X Family consists of 6 devices. The
differences between these devices is summarized in
Figure 1. The 1792 and 1794 are “single density only”
devices, with the Double Density Enable pin (DDEN)
left open by the user. Both True and inverted Data bus
devices are avajlable. Since the 179X can only drive

one TTL Load, a\true data bus system may use the
1791 with externaljnverting buffers to arrive at a true
bus scheme. The 1795 and 1797 are identical to the
1791 and 1793, except a side select output has been
added that is coptrolled through the Command Register.

SYSTEM DESIGN

The first consideration in Floppy Disk Design is to de-
termine which type of drive to use. The choice ranges
from single-density single sided mini-floppy to the 8"
double-density double-sided drive. Figure 2 illustrates
the various drive and data capacities associated with
each type. Although the 8" double-density drive offers
twice as much storage, a more complex data separator
and the addition of Write Precompensation circuits are
mandatory for reliable data transfers. Whether to go
with 8" double-density or not is dependent upon PC
board space and the additional circuitry needed to ac-
curately recover data with extreme bit shifts. The byte
transfer time defines the nominai time required to
transfer one byte of data from the drive. If the CPU
used cannot service a byte in this time, then.a DMA
scheme will probably be required. The 179X also needs
a few microseconds for overhead, which-is subtracted
from the transfer time. Figure 3 shows the actual ser-
vice times that the CPU must provide on a byte-by-byte
basis. If these times are not met, bytes of data will be
lost during a read or write operation. For each byte
transferred, the 179X generates a DRQ (Data Re-
quest) S|gna| on Pin 38. A bit is provided in the status
register which is also set upon receipt of a byte from
the Disk. The user has the option of reading the status
register through program control or using the DRQ Line
with DMA or interrupt schemes. When the data register
is read, both the status register DRQ bit and the DRQ
Line are automatically reset. The next full byte will
again set the DRQ and the process continues until the
sector(s) are read. The Write operation works exactly
the same way, except a WRITE to the Data Register
causes a reset of both DRQ's.

RECORDING FORMATS

The FD179X accepts data from the disk in a Fre-
quency-Modulated (FM) or Modified-Frequency-Mod-
ulated (MFM) Format. Shown in Figures 4A and 4B are
both these Formats when writing a Hexidecimal byte
of ‘D2'. In the FM mode, the 8 bits of data are broken
up into “bit cells.” Each bit cell begins with a clock
pulse and the center of the bit cell defines the data. If
the data bit = 0, no pulse is written; if the data = 1,
a pulse is written in the center of the cell. For the 8”
drive, each clock is written 4 microseconds apart.

Machine-language Disk I/O 247

X6.104

FD179X Data Sheet

Xe6iiad

in the MFM mode, clocks are decoded into the data
stream. The byte is again broken up into bit cells, with
the data bit wntten in the center of the bit cell if data
= 1. Clocks are only written if both surrounding data
bltS are zero. Figure 4B shows that this occurs only
once between Bit cell 4 and 5. Using this encoding
scheme, pulses can occur 2, 3 or 4 microseconds
apart. The bit cell time is now 2 microseconds; twice
as much data can be recorded without increasing the
Frequency rate due to this encoding scheme.
The 179X was designed to be compatible with the IBM
3740 (FM) and System 34 (MFM) Formats. Although
most users do not have a need for data exchange with
IBM mainframes, taking advantage of these well stud-
ied formats will insure a high degree of system
performance. The 179X will allow a change in gap
fields and sector lengths to increase usable storage
capacity, but variations away from these standards is
not recommended. Both IBM standards are soft-sector
format. Because of the wide variation in address marks,
the 179X can only support soft-sectored media. Hard
sectored diskettes have continued to lose popularity,
mainly due to the unavailability of a standard and the
limitation of sector lengths imposed by the physical
sector holes in the diskette.

PROCESSOR INTERFACE

The Interface of the 179X to the CPL! consists of an

SR L 0 GO L

8-bit Bi-directional bus, read/write controls and optional
interrupt lines. By selecting the device via the CHIP
SELECT Line, each of the five interna! registers can
be accessed.

Shown below are the registers and their addresses:

PIN 3[PIN 6 |PIN5 PiN 4 PiN2
CS A, A, RE=0' WE=&
0 0 0 |STATUS REG | COMMAND
0 0 1 |TRACKREG |REG
0 1 0 [SECTOR REG | TRACK REG
0 1 1 |DATA REG SECTOR REG
1 X X |H1-Z DATA REG
: H1-Z

Each time a command is issued to the 179X, the Busy
bit is set and the INTRQ (Interrupt Request) Line is
reset. The user has the option of checking the busy bit
or use the INTRQ Line to denote command comple-
tion. The Busy bit will be reset whenever the 179X is
idle and awaiting a new command. The INTRQ Line,
once set, can only be reset by a READ of the status
register or issuing a new command. The MR (Master
Reset) Line does not affect INTRQ.

248 Appendix II

The A, A,, Lines used for register selections can be
configured at the CPU in a variety of ways. These lines
may actually tie to CPU address lines, in which case
the 179X will be memory-mapped and addressed like
RAM. They may also be used under Program Control
#by tying to a port device such as the 8255, 6820, etc.
As a diagnostic tool when checking out the CPU in-
terface, the Track and Sector registers should respond
like “RAM” when the 179X is idle (Busy = INTRQ =
0).
Because of internal synchronization cycles, certain
time delays must be introduced when operating under
Programmed I/O. The worst case delays are:

HOPERATION NEXT » DELAY REQ'D}
OPERATION

WRITE TO READ STATUS |MFM = 14us*

JCOMMAND REG | REGISTER FM = 28us.

WRITE TO READ FROM A | NO DELAY

ANY REGISTER | DIFFERENT REG

*NOTE: Times Double when CLK = 1MHz (5%4" drive)

Other CPU interface lines are CLK, MR and DDEN.
The CLK line should be 2MHz (8" drive) or 1MHz (5%"
drive).with a 50% duty cycle. Accuracy should be +1%
(crystal 30urce) since all internal tlmlng, including step-

plng rates, are- based upon this ClObK

The MR or Master Reset Line should be strobed a
minimum of 50 microseconds upon each power-on
condition. This line clears and initializes all internal reg-
isters and issues a restore command (Hex ‘03’) on the
rising edge. A quicker stepping rate can be written to
the command register after a MR, in which case the
remaining steps will occur at the faster programmed
rate. The 179X will issue a maximum of 255 stepping

pulses in an attempt to expect the TROOQ line to go

MIOTS ~ TN

active low. This line should be connected to the drlve s
TROO sensor.
The DDEN line causes selection of either single den-

sity (DDEN = 1) or double density operation. DDEN
should not be switched during a read or write operation.

FD179X Data Sheet

FLOPPY DISK INTERFACE

The Floppy Disk Interface can be divided into three
sections: Motor Control, Write Signals and Read Sig-
nals. All of these lines are capable of driving one TTL
load and not compatible for direct connection to the
drive. Most drives require an open-collector TTL inter-
face with high current drive capability. This must be
done on all outputs from the 179X. Inputs to the 179X
may be buffered or tied to the Drives outputs, providing
the appropriate resistor termination networks are used.
Undershoot should not exceed —0.3 volts, while integ-

baien oemomn

In)
|Ily UI le an IU VOH lGVUlb aIlUulU UU I\Upl Wlllllll QpeU.

MOTOR CONTROL

Motor Control is accomplished by the STEP and DIRC
Lines. The STEP Line issues stepping pulses with a
period defined by the rate field in all Type | commands.
The DIRC Line defines the direction of steps (DIRC =
1 STEP IN/DIRC = 0 STEP OUT).

Other Control Lines include the TP or Index Pulse. This

Line is tied to the drives’ Index L.E.D. sensor and
makes an active transition for each revolution of the
diskette. The TROO Line is another L.E.D. sensor that
informs the 179X that the stepper motor is at its fur-
thest position, over Track 00. The READY Line can be
used for a number of functions, such as sensing “door
open”, Drive motor on, etc. Most drives provide a pro-
grammable READY Signal selected by option jumpers
on the drive. The 179X will look at the ready signal prior
to execuy mnn nl:An/mel: commands. READY is not

PIICAr o

inspected dunng any Type | commands. All Type |
commands will execute regardless of the Logic Level
on this Line.

WRITE SIGNALS

Writing of data is accomplished by the use of the WD,
WG, WF, TG43, EARLY and LATE Lines. The WG or
Write Gate Line is used to enable write current at the
drive’'s R/W head. lt is made active prior to writing data
on the disk. The WF or WRITE FAULT Line is used to
inform the 179X of a failure in drive electronics. This
signal is multiplexed with the VFOE Line and must be
logically separated if required. Figure 5 illustrates three
methods of demultiplexing.

The TG43 or “TRACK GREATER than 43" Line is
used to decrease the Write current on the inner tracks,
where bit densities are the highest. If not required on
the drive, TG43 may be left open.

WRITE PRECOMPENSATION

The 179X provides three signals for double density
Write Precompensation use. These signals are WRITE
DATA, EARLY and LATE. When using single density
drives (eighter 8" or 5%"), Write Precompensation is
not necessary and the WRITE DATA line is generally
TTL Buffered and sent directly to the drive. In this
mode, EARLY and LATE are left open.

For double density use, Write Precompensation is a
function of the drive. Some manufacturers recommend
Precompensating the 5" drive, while others do not.

With the 8" drive, Precompensation may be specified
from TRACK 43 on, or in most cases, all THACKS If
the recommended Precompensation is not specified,
check with the manufacturer for the proper configura-

tion required.

The amount of Precompensation time also varies. A
typical value will usually be specified from 100-300ns.
Regardless of the parameters used, Write Precom-
Eensatlon must be done external to the 179X. When
DDEN is tied low, EARLY or LATE will be activated at
least 125ns. before and after the Write Data pulse. An
Algorithm internal the 179X decides whether o raise
EARLY or LATE, depending upon the previous bit pat-
tern sent. As an example, suppose the recommended
Precomp value has been specified at 150ns. The fol-
lowing action should be taken:

EARLY LATE ACTION TAKEN
0 0 delay WD by 150ns (nominal)
0 1 delay wD by 300ns (2X value)
1 0 do not delay WD
There are two methods of performing Write
Precompensation:
1) External Delay elements
2) Digitally

Shown in Figure 6 is a Precomp circuit using the West-
ern Digital 2143 clock generator as the delay element.
The WD pulse from the 179X creates .a strobe to the
2143, causing subsequent output pulses on the @1, .02
and 93 signals. The 5K Precomp adjust sets the de-
sired Precomp value. Depending upon the condition of

EARLY and LATE, 21 will be used for EARLY, 82 for -

nominal (EARLY = LATE = 0), and &3 for LATE. The
use of “one-shots” or delay line in a Write Precom-
pensation scheme offers the user the ability to vary the
Precomp value. The &4 output resets the 74LS175
Latch in anticipation of the next WD pulse. Figure 7

shows the \Alh EA Dl V/l AT: relationshin, while Fiqure
HOWS UiS rEiauCnsnip, wnhc rigure

8 shows the timing of this write Precomp scheme.

Another method of Precomp is to perform the function
digitally. Figure 9 illustrates a relationship between the
WD puise and the CLK pin, allowing a digital Precomp
scheme. Figure 10 shows such a scheme with a pre-
set Write Precompensation value of 250ns. The syn-
chronous counter is used to generate 2MHz and 4MHz
clock signals. The 2MHz clock is sent to the CLK input
of the 179X and the 4MHz is used by the 4-bit shift
register. When a WD pulse is not present, the 4MHz
clock is shifting “ones” through the shift register and
maintaining Qp at a zero level. When a WD pulse is
present, a zero is loaded at either A, B, or C depending
upon the states of LATE, EN PRECOMP and EARLY.
The zero is then shifted by the 4MHz clock until it
reaches the Q, output. The number of shift operations
determines whether the WRITE DATA pulse is written
early, nominal or late. If both FM and MFM operations
is a system requirement, the output of this circuit shouid
be disabled and the WD pulse should be sent directly
to the drive.

-

X6.1a4

Machine-language Disk I/O 249

FD179X Data Sheet

X62104

s

DATA SEPARATION

~ The 179X has two.inputs (RAW READ & RCLK) and

one output (VFOE) for use by an external data sepa-
rator. The RAW READ input must present clock and
data pulses to the 179X, while the RCLK input provides
a “window" or strobe signal to clock-each RAW READ
pulse into the device. An ideal Data Separator would
have the leading edge of the RAW READ pulse occur
in the exact center of the RCLK strobe.

Motor Speed Variation, Bit shifts and read amplifier
recovery circuits all cause the RAW READ pulses to
drift away from their nominal positions. As this occurs,
the RAW READ puises will shift left or right with re-
spect to RCLK. Eventually, a pulse will make its tran-
sition outside of its RCLK window, causing either a
CRC error or a Record-not-Found error at the 179X.

A Phase-Lock-Loop circuit is one method of achieving
synchronization between the RCLK and ‘RAW READ

signals. As RAW READ pulses are fed to the PLL,

minor adjustments of the free-running RCLK frequency
can be made. If pulses are occurring too far apart; the
RCLK frequency is decreased to keep synchroniza-
tion. If pulses begin to occur closer together, RCLK is
increased until this new higher frequency is achieved.
In normal read operations, RCLK will be constantly
adjusted in an attempt to match the incoming RAW
READ frequency.

Another method of Data Separation is the Counter-
Separator technique. The RCLK signal is again free-
running at a nominal rate, untii a RAW READ pulse
occurs. The Separator then denotes the position of the
pulse with respect to RCLK (by the counter value), and
counts down to increase or decrease the current RCLK
window. The next RCLK window will occur at a nominal
rate and will continue to run at this frequency until an-
other RAW READ pulse adjusts RCLK, but only the
présent window is adjusted.

Both PPL and Counter/Separator are acceptable
methods of Data Separation. The PPL has the highest
reliability because of its “tracking” capability and is rec-
ommended for 8” double density designs.

As a final note, the term “Data Separator” may be
misleading, since the physical separation of clock and
data bits are not actually performed. This term is used
throughout the industry, and can better be described
as a “Data Recovery Circuit” rather than a Data
Separator.

The VFOE signal is an output from the 179X that sig-
nifies the head has been loaded and valid data pulses
are appearing on the RAW READ line. It can be used
to enable the Data Separator and to insure clean RCLK
transitions to the 179X. Since some drives will output
random pulses when the head is disengaged, VFOE
can prevent an erratic RCLK signal during this time. If
the Data Separator requires synchronization during a
known pattern of one’s or zero's, then RG (READ
GATE) can be used. The RG signal will go active when
the 179X is currently over a field of zeros or ones. RG
is not available on the 1795/1797 devices, since this
signal was replaced with the SSO (Side Select Output)
Line.

Shown in Figure 11 is a 212 IC Counter/Separator. The
74LS193 free runs at a frequency determined by the
CRYCLK input. When a RAW READ pulse occurs, the
counter is loaded with a starting count of '5’. When the
RAW READ Line returns to a Logic 1, the counter
counts down to zero and again free runs: The 74LS74
insures a 50% duty cycle to the 179X and performs a
divide-by-two of the Q output,

Figure 12 illustrates another Counter/Separator utiliz-
ing a PROM as the count generator. Depending upon
the RAW READ phase relationship to RCLK, the PROM
is addressed and its data output is used as the counter

value. A 16MHz clock is required for 8” double density,

while an 8MHz clock can be used for single density.

Figure 13 shows a Phase-Lock-Loop data recovery
circuit. The phase detector (U2, Figure 2) compares
the phase of the SHAPED DATA pulse to the phase
of VFO CLK + 2. f VFO CLK + 2 is lagging the
SHAPED DATA pulse an output pulse on #9, U2 is
generated. The filter/amplifier converts this pulse into
a DC signal which increases the frequency of the VCO.

If, correspondingly, CLK + 2 is leading the SHAPED
DATA pulse, an output pulse on #5, U2 is generated.
This pulse is converted into-a DC signal which de-
creases the frequency of the VCO. These two actions
cause the VCO to track the frequency of the incoming
READ DATA pulses. This correction process to keep
the two signals in phase is constantly occurring because
of spindle speed variation and circuit parameter
variations,

The operating specifications for this circuit are as
follows:

2MHz

+ 15%

50 microsec. “1111" or
“0000” Pattern

100 Microsec “1010" Pat-
tern

Free Running Frequency
Capture Range
Lock Up Time

The RAW READ pulses are generated from the falling
edge of the SHAPED DATA pulses. The pulses are
also reshaped to meet the 179X requirements. VFO
CLK + 2 OR 4 is divided by 2 once again to obtain
VFO CLK OUT whose frequency is that required by the
179X RCLK input. RCLK must be controlled by VFOE
so VFOE is sampled on each rising edge of VFO CLK
OUT. When VFOE goes active EN RCLK goes active
in synchronization with VFO CLK OUT preventing any
glitches on the RCLK output. When VFOE goes inac-
tive EN RCLK goes inactive in synchronization with
VFO CLK OUT, again preventing any glitches on the
RCLK output.

Figure 14 illustrates a PPL data recovery circuit using
the Western Digital 1691 Floppy Support device. Both
data recovery and Write Precomp Logic is contained
within the 1691, allowing low chip count and PLL re-
liability. The 745124 supplies the free-running VCO
output. The PUMP UP and PUMP DOWN signals from
the 1691 are used to control the 74S5124's frequency.

m

250 Appendix II

FD179X Data Sheet

COMMAND USAGE
‘Whenever a command is successfully Or unsuccess-

tully completed, the busy bit of the status register is
reset and the INTRQ line is forced high. Command ter-
mination may be detected either way. The INTRQ can
be tied to the host processor’s interrupt with an appro-
priate service routine to terminate commands. The
busy bit may be monitored with a user program and
will achieve the same results through software. Per-
forming both an INTRQ and a busy bit check is not
recommended because a read of the status register to
determine the condition of the busy bit will reset the
INTRQ line. This can cause an INTRQ from not
occurring.

RESTORE COMMAND

On some disk drives, it is possible to position the R/W
head outward past Track 00 and prevent the TROO
line from going low unless a STEP IN is first performed.
if this condition exists in the drive used, the RESTORE
command will never detect a TROO. Issuing several
STEP IN pulses before a RESTORE command will
remedy this situation. The RESTORE and all other
Type | commands will execute even though the READY
bit indicates the drive is not ready (NOT READY = 1).

READ TRACK COMMAND

The READ TRACK command can be used to manually
inspect data on a hard copy printout. Gaps, address
marks and all data are brought in to the data register
during this command. The READ TRACK command
may be used to inspect diskettes for valid formatting
and data fields as well as address marks. Since the
179X does not synchronize clock and data until the in-
dex Address Mark is detected, data previous to this ID
mark will not be valid. READ GATE (RG) is not ac-
tuated during this command.

READ ADDRESS COMMAND

in systems that use either multiple drives or sides, the
read address command can be used to tell the host
processor which drive or side is selected. The current
position of the R/W head is also denoted in the six
bytes of data that are sent to the computer.

TRACK SIDE

SECTOR CRC ‘?’;‘C

LENGTH 1

'I' N ARAREOR

Type il and Type Il commands quI not execute if the
READY line is inactive (READY = 0). Instead, an in-
terrupt will be generated and the NOT READY status
bit will be set to a 1.

FORCED INTERRUPT COMMAND

The Forced Interrupt command is generally used to

terminate a muitipie sector command or to insure Type

I status in the status register. The lower four bits of the

command determine the conditional interrupt as follows:
¥

1, = NOT-READY TO READY TRANSITION
1, = READY TO NOT-READY TRANSITION
1, = EVERY INDEX PULSE =

1, = IMMEDIATE INTERRUPT

Reaardless of the conditional interru int set, any com-
mand that is currently being executed when ‘the Forced
Interrupt command is loaded will immediately be ter-
minated and the busy bit will be reset indicating an idle

condition.

Then, when the condition for interrupt is met, the INTRQ
line will go high signifying that the condition specified
has occurred.

The conditional interrupt is enabled when the corre-
sponding bit positions of the command (I; —1,) are set
toa 1. If l, —|, are all set to zero, no-interrupt will occur,
but any command presently under execution will be
immediately terminated upon receipt of the Force In-
terrupt command (HEX DO).

As usual, to clear the interrupt a read of the status reg-
ister or a write to the command register is required.
The exception is when using the immediate interrupt
condition (I; = 1). If this command is loaded into the
command register, an interrupt will be immediately
generated and the current command terminated.
Reading the status or writing to the command register

will not automatically clear the interrupt; another forced |

interrupt command with I; —1, = 0 must be loaded into
the command register in order to reset the INTRQ from
this condition.

More than one condition may be set at a time. If for
example, the READY TO NOT-READY condition (I, =
1) and the Every Index Pulse (I2 = 1) are both set, the
resuitant command wouid be HEX “DA”. The “OR"

function is performed so that either a READY TO NOT-

READY or the next Index Pulse will cause an mterrupt ‘

condition.

DATA RECOVERY

Occasmnally the R/W head of the disk drive may get
“off track”, and_dust or dirt may get trapped on the
media. Both of these conditions wnII cause a RECORD

NOT FOUND and/or a CRC error to ceeur. This “soft
error”

can usually be recovered by the following
procedure:

1. Issue the command again
2. Unload and load the head and repeat step
3. Issue a restore, seek the track, and repeat step 1

If RNF or CRC errors are still occurring after trying
these methods, a “hard error” may exist. This is usu-

imnranar dielk handlina avnnciira tn
a”y catised b‘y’ improper GisK nanding, exposure o

high magnetic fields, etc. and generally results in de-
stroying portions or tracks of the diskette.

Machine-language Disk I/O0 251

X6.1Q4

FD179X Data Sheet

) CIATE!

FIGURE 1. DEVICE CHARACTERISTICS |

'DEVICE SNGL DENSITY | DBLE DENSITY | INVERTED BUS| TRUE BUS | DOUBLE-SIDED

1791 X X X

1792 X X

1793 X X X

1794 X X

1795 X X X X

1797 X X X

FIGURE 2. STORAGE CAPACITIES Y@ tireel
UNFORMATTED BYTE FORMATTED
CAPACITY (NOMINAL) | - BYTE CAPACITY

SIZE DENSITY | SIDES |PER TRACK| PER DISK TIME |peR TRACK| PER DISK
5%" SINGLE 1 3125 109,375 64us 2304** 80,640
5Y4" DOUBLE 1 6250 218,750 32us 4608 161,280
5Y4" SINGLE 2 3125 218,750 64us 2304 161,280
5%4" DOUBLE 2 6250 437,500 32us 4608 322,560
8" SINGLE 1 5208 401,016 - 32us 3328 256,256
8" DOUBLE i 10,416 802,032 16us 6656 | 512,512
8" SINGLE 2 5208 802,032 32us 3328 512,512
% DOUBLE 2 10,416 | 1,604.064 16us 6656 1,025.024

*Based on 35 Tracks/Side
**Based on 18 Sectors/Track (128 byte/sec)

252 Appendix II

***Based on 18 Sectors/Tr_ack (256 bytes/sec)

FD179X Data Sheet

n
FIGURE 3. NOMINAL VS. WORSE CASE SERVICE TIME E
: ' - 7 ICE TIM ©
o NOMINAL TRANSFER® WORST-CASE 179X SERVIC E S
SIZE DENSITY TIME READ WRITE
Y/ SINGLE ‘ 64us 55.0us 47.0us
LY/ DOUBLE 32us 27.5us 23.5us
8" SINGLE 32us 27.5us 23.5us
8" DOUBLE 16us 13.5us 11.5us
FIGURE 4A. FM RECORDING
4us
| | | [|
I BIT 0 ‘ BIT 1 | BIT 2 l BIT3 | BIT 4 | BITS | BIT 6 I BIT7 I
Hg; i 1 0 1 0 0 1 0
FLFL_FL L o PPl [Icl cl Jo] Jc

RULE: -
1) WRITE DATA BITS AT CENTER
OF BIT CELL IF A “1"

2) WRITE CLOCK BITS AT LEADING
EDGE OF THE BIT CELL

FIGURE 4B. MFM RECORDING

2us
l § | 1 1 1
I BITO | BIT1 I BIT2 I BIT 3 I BIT 4 I BITS | BIT6 l BIT7 |
1 1 [1] 1 [v] o] 1 [+]
HEX : :
A [N [iE N [l o

RULE:
1) WRITE DATA BITS AT CENTER
OF BIT CELL IFA “1"

2) WRITE CLOCK BITS AT LEADING
EDGE OF BIT CELL IF:

A) NO DATA BIT HAS BEEN WRITTEN LAST

—AND—
B) NO DATA BIT WILL BE WRITTEN NEXT

Machine-language Disk I/O 253

FD179X Data Sheet

FIGURE 5. WF/VFOE DEMULTIPLEXING CIRCUITRY

M +5
porg +5
?D‘ 10K 740501
) > <
Y4 10K I——— WG g (WG TO DRIVE)
3 WF .
AE—— — (WF FROM DRIVE)
33 VFOE 179X i
179X 30 [
74L504
e _—_— #» VFOE
74LS02
PIN 33 USED AS A VFOE SIGNAL ONLY * PIN 33 USED AS VFOE AND WF SIGNALS
+5
10K 740501
33 ——< WF (FROM DRIVE)
. WG ‘
179X | ‘]
o 4—» WG (TO DRIVE)
E——
* PIN 33 USED AS A WF SIGNAL ONLY
+5
- __1 10K
7438
7aLs175 C-EARLY |
Wb 9 - WD TO
ck 30f 2 DRIVE
1Q :
5|20 - 7 C-LATE ==
al10 15 C-NOMINAL !
[4Q :
EARLY 3Q
':) 1304p e O
LATE
1
- 74LS02
FD179X
© WD2143
11 8
N ef
6
02
4
———— m
AR
| 1 5K 17
+12 APw l
PRECOMP.
ADJUST |
FIGURE 6. 179X WRITE PRE-COMP

“

2564 Appendix II

FD179X Data Sheet

|—— 2, 3, 4us, = CLK TOL

— l‘_ 200‘NS:50
1 11

WD

_—

=L
|
| |

EARLY :

OR LATE

125 NS MIN. VALID
FOR DURATION OF

DOUBLE TIMES FOR 5" (MINI-FLOPPY) WD PULSE

WRITE PRE-COMP TIMING FOR MFM

X6.1a4

N 2,4us + CLKTOL —— gl
l.q— 500.NS = 50

WD ﬂ

EARLY : -

e e

250 NS MIN.

DOUBLE TIMES FOR 5" (MINI-FLOPPY)

450 NS MIN.

VALID BEFORE LEADING EDGE OF WD

WRITE PRE-COMP TIMING FOR FM

FIGURE 7. WRITE PRE-COMP TIMING

BITCELLO I BIT CELL 1 | BITCELL2 | BITCELL3 l BIT CELL 4 l BIT CELL § I BIT CELL 6 | BIT CELL7 BIT CELL 8 I BIT CELL 9

4 g ¢ P 1 4 s s g
e —" >j§# " A I~ -
LaTE J 1 1
cuaTe [L g1
1 A1 N 1
s T1 A1 / ! L
I

M I'IJ n

1 n
1 N

S

1
I
I

u

S
s U 1}\ u li U U U
w b Y g W | <]

G| d el

FIGURE 8. PRECOMP TIMING FOR CIRCUIT IN FIGURE 6

Machine-language Disk I/O 255

FD179X Data Sheet

X641Q4

500ns

500ns
CLK
@1MHz
’ >
4 S e——
wo LLL /A 1 Ll 14
(DDEN = 0) I
AN
N\
=100ns =100ns
CLK 250ns 250ns
@2MHz |
125ns i
[| L
=
2/ R/
we v iz
(DDEN = 0) ! | !
7™
=50ns =30ns
FIGURE 9. WD/CLK RELATIONSHIP FOR WRITE PRECOMP USE
74L5161
e
3l a
[]e
7—5' c
| 6{0 o] {3 2mHz
_— (TO 1791)
| 8| ®
&5
sMHz [O— 2 jo
1K
+5 O—AWW— m;E
_ | Tausos (TO DRIVE)
Wb
(FROMY791)
LATE —
(FROM 1791) LATE ala
TG43 (EN PRECOMP) aL500 NOM__ s|B
EARLY c
EARLY
(FROM 1791}

FIGURE 10. DIGITAL WRITE PRECOMP CIRCUIT

{PROVIDED COURTESY OF MPi, OKLAHOMA CiTY, OK 73112

256 Appendix II

FD179X Data Sheet

o
d
+5 -y
w0
§ R R, G = 150NS = 50 pv g
c ¢
|—1.1 15
- 18128
& g ’2
RAW READ S—"f I 27y
FROM DRIVE . ’ 5 L d RAWFEAD
1791/1793
11 26 .
S RCL
) 2lp a CLK
15]1a
[k g PP e aje NU. AG
10 c
. 58 _
o 741574 >—¢] DDEN
CU._5_<+5 . .
i 4ico clbLa
74,5190
CRYCLK
TYPE l DDEN 1 CRYCLK
& FM 1 8 MHz —
5" MFM ° 8 MHz

5 FM 1 4 MMz

FIGURE 11. COUNTER/SEPARATOR

Machine-language Disk I/O 257

FD179X Applications

745288 PROGRAMMING TABLE

ADDRESS DATA ACTION TAKEN

00 01 NONE

01 01 RETARD BY 1 COUNT

02 02

03 03 .

04 03 RETARD BY 2 COUNTS

05 04

06 05

07 06

08 08 ADVANCE BY 2 COUNTS
{ 09 i)

0A oC

0B % 0E

oc OF

oD OF ADVANCE BY 1 COUNT
i OE 00

OF 01

10 01 FREE RUN

‘11 02

12 03

13 04

14 05

15 06

16 07

17 . 0%

18 09 §

19 0A

1A 0B

1B oc

1C oD

10 0E

1E OF

1F 00

READ DATA
FROM
DRIVE

N

+5

1K

-

7414

+5

FIGURE 12. 179X DATA SEPARATOR

(PROVIDED ngﬂmm< OF ANDROMEDA SYSTEMS, PANORAMA CITY, CA 91402)

+5
10f- :
K
2
J..AT.& VFOLWE
741504
16 MHZ
CLOCK] 74,508
) - \3 27 —
2, } RAW READ
4 ’) 74 S L
S 1 .) .
K3 e 9 ALS174 T4s288 o =
14 _CLK L5 cs 12
3 6 13 Ds Q. 1 NG 2 — 0 Q
¢ o= = ki T 14 1A, = .
T o, al- 18 A D} 4 Y. ot % | mow
:] PN 1248, 0,] 3
4 15
74LS74 b, Q mv 11 fA, D} 2 13] 74L874
El P 10 |a, D1
17) +5
179%-01
A

FD179X

268 Appendix II

FD179X Applications

FD179X

(ZHIEL 50 "ALID YWOHYINO 'IdW 30 ASILENOD G30IAOKd)

LINJHID AHIA0D3Y Y.LVA 11d "€} 3HNDIY

Machine-language Disk I/O 259

FD179X Applications

~> <« 200NS = 25
RAW DATA i 271 RAW READ
FROM DRIVE [+5
. SINGLE
. -® DENSITY
* +g DOUBLE
|H._Omzm_._.< FD179X
+5V = 4
+5 DAL. DRQ,
:) . - | INTRQ,_Ao,A, \ CPU
1 J_m_a_ B% WE, RE,CS / INTERFACE
crp2 vee 6 . CLK.MR
” WoouT I Y
R2 47, 4.0MHZ 16 DDEN DDEN
c2 |8 vco 3
1 " *5% pht
+5V = 7 | " | 555 RCLK = RCLK
L |7as124 |, v wo1ea1 WG = wa
RANGE - FC AAN— +5V WDIN : wo
50K 47K 100K 17
ADJ 3| AnG BIAS VOLTAGE — 13]py BARLY e ot
€ ADJ LATE LATE
T 1450 1643 [-2 - 1643
8lsls B = — g —
= 33uF - sTB VFOE : VFOE/WF :
, 10 S
- 47K —_ o o _Vss| .
.m.04m 5 , 04_03 02 01 _ . 8
33a AL = AUL weRTlL38
2 o _ WPRT ————]
1{3]l5]7 DRIVE g 35)
. = o4 033201 y li, < PFE— < o
-] sTBIN o . DRIVE
17 ? WD2143-03 <ww] 0 16 DIRC gllrl@b
+12V _ _ _
= .15 32
1) ALL RESISTORS %W. = 5% = I STEP READY [———<]
2. SPECIFICATIONS = %« .
CAPTURE RANGE: £20%
LOCK-UP TIME: 25usec 0K > <}
(ALL ONE'S PATTERN, MFM) .H gLt
"3 FOR 5114 8
68uf .33uf
680 330
- FIGURE 14. 8" SINGLE/DOUBLE DENSITY SYSTEM

260 Appendix 11

FD179X Applications

Refer to 179X-02 Floppy Disk Formatter/Controller

. . “
Family Data Sheet for Command, Timing and Status o
Information. -t

S
See page 725 for ordering information. » b

Machine-language Disk /O 261

FD179X.Applications

X6.iQ4

Intormation furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital
Corporation for its use; nor for any infringements of patents or other rights of third parties which may resuit from its use. No license is granted by
implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change
specifications at anytime without notice.

262 Appendix II

give wo..Glossary

Glossary

access
The operation of seeking, reading or writing data on a storage unit (in this case, the
diskette).

access time
The time that elapses between any instruction being given to access some data and
that data becomin o ‘

ecoming available for use.

address
An identification (number, name, or label) for a location in which data is stored.

o>
o}
»
[
»

assembly language
A machine-oriented language for programming mnemonics and machine readable
" code from the mnemonics.

base 2

The ‘binary’ numbering system consisting of more than one symbol, representing a
sum, in which the individual quantity represented by each figure is based on a
multiple of 2.

haca 10

The ‘decimal’ numbering system — consisting of more than one symbol, representing
a sum, in which the individual quantity represented by each symbol is based on a
multiple Of 10' S S e R T e TR e R e T

Machine-language Disk I/0

263

Glossary

264 Glossary

base 16 7

The ‘hexadecimal’ numbering system — consistmg or more than one symbol

representing a sum, in which the individual quantity rep resented bv each symbol is
Pl UBULIDMIB G Oliilly 142 VY ARLVEL VA viJ 7 7

based on a multiple of 16.

bit
A single ‘binary’ digit whose value is ‘zero’ or ‘one’.

buffer
A small area of memory used for the temporary storage of data to be processed.

byte
Eight ‘bits’. A ‘byte’ may represent any numerical value between ‘0’ and ‘255’.

command fiie
A file consisting of a hst of commands, to be executed in sequence.

control code
In programming, instructions which determine conditional j Jumps are often referred
to as control instructions and the time sequence of execution of instructions is called

the flow of control.

CRC error
Cyclic Redundancy Check. A means of checking for errors by usmg redundant

information used primarily to check disk I/O while verifying

data type 7 _
The form in which data is stored; i.e., integer, single precision, double precision,
‘alphanumeric’ character strings or ‘strings’.

DEC
Initials for Directory Entry Code.

device

Any physical or logical contrivance capable of acceptlng, processmg or supplying
data.

direct access
Retrieval or storage of data by a reference to its location on a dlsk, rather than.
relative to the previously retrieved or stored data.

DIRECT STATEMENT (IN FILE)
A program statement that exists in the disk file that is not asmgned a line number.

Glossary

DIRECTORY
A table giving the relationships between items of data: Sometlmes a table or an
index giving the addresses of data.

disk
The small magnetic disk used to dtore logical data.

disk drive
The mechanical device that rotates reads and writes to a diskette.

displacement

A specified number of sectors, at the top or beginning of the file, in which the
‘bookkeeping’ and file parameters are stored for later use by various program
modules. -

driver
A routine that makes a particular device (usually hardware) work in a desired way.

DUMP

To transfer all or part of the contents of one section of computer memory or d1sk into
another section, or to some other computer device.

EQOF

Initials for ‘end of file’. It is common practice to say that the EOF is record number
nn or that the EOF is byte 15 of sector 12. Hence, it is a convenient term to use in
describing the location of the last record or last byte in a file.

extent
A contiguous area of data storage.

file

A collection of related records treated as a unit; The word file is used in the general
sense to mean any collection of informational items s1m11ar to one another in
purpose, form and content.

FILESPEC
A file specification and may include the ‘file name’, the ‘the file name extension’,

‘password’, and ‘disk drive’ specification.

file area
The physical location of the file, on the disk, or in memory.

Machine-language Disk I/O0 265

Glossary

header record
A record containing common, constant or identifying information for a group of
records which follow.

integer
A natural or whole number with no decimal point.

key
A data item used to identify or locate a record or other data grouping.

label
A set of symbols used to identify or describe an 1tem record, message or file.
Occasionally, it may be the same as the address in storage.

least significant byte
The significant byte contributing the smallest quantity to the value of a numeral.

load module
A program developed for loadlng into storage and being executed when control is
passed to the program.

logical

An adjective describing the form of data organization, hardware or system that is
perceived by an application program, programmer, or user; it may be different than
the real (phys1cal) form.

logical file
A file as perceived by an application program; it may be in a completely different
form from that in which it is stored on the storage units.

logical operator

A mathematical symbol that represents a mathematlcal process to be performed on

an associated operand. Such operators are ‘AND’, ‘OR’, ‘NOT’, ‘AND NOT and
‘OR NOT.

logical record
A record or data item as perceived by an application program; it ma
completely different form from that in which it is stored on ,b,, storag

(4-]

machine-‘language

See assembly language.

monitor

A program that may supervise the operation of another program for operation or
debugging or other purposes.

most significant byte
The significant byte contributing the greatest quantity to the value of a numeral

266 Glossary.

- Glossary

nibble ‘
The four right most or left most binary digits of a byte.

null v .
An absence of information as contrasted with zero or blank for the presence of no
information. -

on-line

An on-line system is one in which the input data enter the computer directly from
their point of origin, and/or output data are transmitted directly to where they are
used. The intermediate stages such as writing tape, loading disks or off-line printing
are avoided. ’

operating system

Software which enables a computer to supervise its own operations, automatically
calling in programs, routines, language and data as needed for continuous
throughput of different types of jobs.

parity o
Parity relates to the maintenance of a sameness of level or count, i.e., keeping the
same number of binary ones in a computer word to thus be able to perform a check
based on an even or odd number for all words under examination.

physical record
A collection of bits that are physically recorded on the storage medium and which
are read or written by one machine input/output instruction.

pointer

The address or a record (or other data groupings) contained in another record so
that a program may access the former record when it has retrieved the latter record.
The address can be absolute, relative, symbolic, hence, the pointer is referred to as
absolute, relative, or symbolic. '

primary entry
The main entry made to the directory.

random access
To obtain data directly from any storage location regardless of its position, with
respect to the previously referenced information. Also called ‘direct access’..

random access storage '
A storage technique in which the time re quired to obtain information is independent
of the location of the information most recently obtained.

read
To accept or copy information or data from input devices or a memory register; Le.,
to read out, to read in.

Machine-language Disk I/O 267

Glbssary

268 Glossary

record
A group of related fields of information treated as a unit by an application program.

relational operator
A mathematical sgmbol that represents a mathematical process to perform a
comparison describing the relat}onship between two values (e.g. < less than... >

greater than . . . equal. .. and combinations thereof).

search
To examine a series of items for any that have a desired property or properties.

sector
The smallest addressable portion of storage on a diskette.

seek
To position the access mechanism of a direct-access storage device at a specified
location.

PPV I TV .Sy Sy e
sequential access

Access in which records must be read serially or sequentially one after the other; ie.,
ASCII files, tape.

sort .)

To arrange a file or data in a sequence by a specified key (may be alphabetic or
numeric and in descending or ascending order).

source code
The text from which executable code is derived.

system file
A program used by the operating system to manage the executing program and/or
the computer’s resources.

vector

Aline representing the properties of magnitude and direction. Since such a ‘line’ can
be described in mathematical terms, a mathematical description (expressed in
numbers, of course) of a given ‘direction’ and ‘magnitude’ is referred to as a ‘vector’.

verify
To check a data transfer or transcription.

working storage
A portion of storage, usually computer main memory, reserved for the temporary
results of operations. :

write
To record information on a storage device.

zap
To change a byte or bytes of data in memory on on diskette by using a software utility
program.

Machine—languége Disk YO 269

)
Q-
>

L .

270

BASIC is not
nearly as slow as most -
programmers think it is. BASIC Faste
and Better shows you how to super-
charge your BASIC, with 300 pages
of fast, functions and subroutines.

You won't find any trivial ‘check-
book-balancing’ programs in this
book - it's packed with useful
programs,

Tutorial for the beginner, instruc-
tive for the advanced, and invaluable

TRS-80 INFORMATION SERIES - VOLUME IV

Lewis Rosenfelder
BASIC FASTER

Z
°Ur of BagIG progra™

for the professional, this
book doesn’t just talk . . .it
shows how! All of the routines are

1953 West
11th Street
Upland,CA
91786 (714)
gl 946-5805

o) yricks and tecf,m.q
(7

Ss

also available on disk, so that you
can save hours of keyboarding and
debugging.

BASIC Faster & Better and Other
Mysteries is $29.55, and the two
program disks are $19.95 each. The
#1 disk BFBDEM contains all the
demonstration programs, and #2
BFBLIB has all the library functions.

Get the book and/or disks from
your local IJG dealer and B. Dalton
bookstores.

ﬁ" m uimBookAaSolitwane

el
75 lh‘ﬂhﬂ'lu
TRS'SO DISK

Shcunin Hatiary Kitn:

THE (US'IW’I'B&S(D

Winriret Hourirr. Etrhurd Fforart

the custom [Illlllﬂ

& OTHER MYSTERIES

easy to-learn
easy to use

Microsoft trademark Microsoft Corporation
Apple trademark Apple Computer Inc.
TRS-80 trademark TANDY Corporation
Electric Pencil ©1981 Michael Shrayer

Prices Subject to change without notice

Add $4.00 shipbing and handling charge per item.

Califor_nia residents add 6% sales tax. Canadian residents add 20% for exchange rate.

BOOKS

TRS-80 Disk & Other Mysteries. H.C. Pennington. -
The “How to” book of Data Recovery. 128 pages. $22.50

Microsoft Basic Decoded & Other Mysteries.
James Farvour. The Complete Guide to Level ||
Operating Systems & BASIC. 312 pages:...$29.95

The Custom TRS-80 & Other Mysteries.

Dennis Bathory Kitsz. The Complete Guide to
Customizing TRS-80 Software & Hardware.

336 pages e $29.95

BASIC Faster & Better & Other Mysteries.
Lewis Rosenfelder. The Complete Guide to BASIC
Programming Tricks & Techniques. 290 pages $29.95

Electric Pencil Operators Manual. Michael Shrayer.

Electric. Pencil Word Processmg System Manual
128 PAGES. oooiiiii it e $24.95

The Custom Apple. Winfried Hofacker & Ekkehard
Floegel. The Complete Guide to Customizing the Apple
Software and Hardware. 190 pages $24.95

Michae!l D \I\Innnnr A Guido.to Mlonl'i:nn

QAT . T MG UIiuT LU aviaug i

for the TRS-80 Models | and .
Available October 1982 S $29.95

TRSDOS 2.3 Decoded & Other Mysteries.
James Lee Farvour. Commented Guide to TRSDOS 2.3 for

the Model L. Available December 1982 $29.95
Electric Pencil. Michael Shrayer.

Word Processing System. Available in DISK $89.95
STRINGY FLOPPY or CASSETTE aac $79.95

Red Pencil. Automatic Spelling Correction Program.
For use with the Electric Pencil Word Processing System.
Available in DISKONLYoooo.... $89.95

Blue Pencil. g Dictionary — Proofing Program.

For use with the Electric Pencil Word Processmg ;Sgstem.

Auvnilalhia in NIQK f'\l\ll Y a o
AVaHanIe N LDIoIN UINLY ... v WOIT . IJ

sk Requires Red Pencil program.

BFBLIB. Lewis Rosenfelder. Basic Faster & Better
Library Disk. 32 Demonstration Programs. Basic Overlays.
Video Handlers. Sorts & more for the Model | & Il.
Available in DISK ONLYcooiviiiiniininnns $19.95

BFBDEM. Lewis Rosenfelder. Basic Faster & Better
Demonstration Disk. 121 Functions, Subroutines &

-

User Routines for the TRS-80 Modei i & ii.
Available in DISK ONLY ..., $1 9.95

1953 West
11th Street
Upland,CA
91786 (714)
946-5805

ISBN 0-93k200-0b=-5

