David A. Lien

COMPUSOFT™ PUBLISHING -

A Division of CompuSoft™, Inc.

9 US.A.

San Diego, California 9211

LEARNING
LEVEL Il

by
David A. Lien

COMPUSOFT PUBLISHING
A Division of CompuSoft, Inc.
P.O. Box 19669 e San Diego, California 92119 U.S.A.

Copyright © 1979 by Compusoft Publishing,
A Division of CompuSoft, Inc.
San Diego, CA. 92119

Second Edition ® 1980

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording or
otherwise, without the prior written permission
of the publisher. No patent liability is assumed
with respect to the use of the information contain-
ed herein. While every precaution has been taken
in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages
resulting from the use of the information con-
tained herein.

Compusoft is a registered trademark of CompuSoft,
inc.

*TRS-80 is the registered trade mark of Radio
Shack, a Division of Tandy Corporation.

International Standard Book Numbtr: 0-932760-01-5
Library of Congress Catalog Card Number: 79-91309

10987654321

Printed in the United States of America

A Personal Note From The Author

Greetings again from the land of fruit and nuts!

It's been awhile since we shared the fun of learning to use our TRS-80
Computer at Level . Hearing from so many of you who took the time to
write kind notes about the Level | book, and meeting so many readers
from around the world who said “I learned about computers from your
book” has been a source of great personal satisfaction. We've done
our best to repeat the act at Level Il.

Learning Level Il was written in the same style you wanted continued
— with the emphasis on LEARNING. Like your Level | User’s/
Learner’s Manual, it is designed to teach — and the computer is your
laboratory. The combination, plus your imagination, is all you need.

Let’s sit back again, relax, and savor it. Whether you're upgrading
from Level | to Level Il or starting out with a brand new Level Il machine,
a relaxed but confident approach is important. I'll provide the rest.
. Every word in the “Personal Note” on page 1 of your Level | Manual
applies here, too!

Enjoy your new (or upgraded) Computer.

Dr. David A. Lien
San Diego — 1979

Acknowledgements

Because so many asked for this book, they must be the first acknow-
ledged. You asked for it — you got it! | sincerely hope it meets your
expectations.

To the Baileys of lowa and California go special thanks for supplying
quiet hideaways. Without those long, uninterrupted sessions at the
Ranch, in Rural lowa and at the Beach, this book never would have
been compileied.

Dave Waterman roughed out the section on interpreting error mes-
sages and the Chapters on using the Interface and Dual Cassettes.

CompuSoft secretary Nancy Burns, having never used a computer,
was the ideal “guinea pig.” She wrang out the upgraded Level | Manual
on a Level Il machine.

Having rattled around in the author’s head for two years made Learning
Level Il harder to finally bring to paper — not easier. Dave Gunzel, the
master Editor, aiso designed this attractive, coherent package.

Last but not least, LeWay Composing Service of Fort Worth, Texas set
the type and did paste-up. Their high quality work on our The BASIC
Handbook prompied many favorabie commenis irom ihose "in-
the-know.”

“f JUST WROTE A PROGRAM USING
A LOT oF @ooD 6RAPHICS AND
\e R T
e/ \ G
TRicn Branes S A W
Riert BARNES 1S A TORMER COULEBE PROFESIR AND STATE (EBISLATOR. .
PResereny , BARMES OBNS MO ofsRAws The Prastevs,ine , A Swox Falls
Pm‘(fm\ AND ORAPRC AIS FIRM,

Table of Contents

For

LEARNING LEVEL I
(A Ribald Novel in 3 Parts. . .)

PART I 1
Upgrading The Level I User’s Manual

PART I 55
New Power at the Command Level
Chapter 1 LEVEL II Overview 57
Chapter 2 The Editor 73
Chapter 3 The Editor — Second Semester 81
Chapter 4 Chasing Bugs 89
Chapter 5 Chasing The Errors 95

Chapter 6 AUTOmatic Line Numbering 103

T A WR WEW tn
B rake i Rki iy

Advanced Concepts of Level iI BASIC

Chaptér 7 Converting Programs from

Level I to Level 11 109
Chapter 8 The ASCII Set 119
Cliapter 9 Strings in General 129
Chapter 10 LEN, DEFSTR, CLEAR
and DIM 135
Chapter 11 Search and Sort 145
Chapter 12 VAL($) and STRS$(N) 153
Chapter 13 Having a Ball with STRING 157
Chapter 14 INKEY$ 171
Chapter 15 What Price Precision? 179
Chapter 16 PRINT USING 189

Chavoter 17 PRINT USING — Round 2 201
Chapter 18 Intrinsic Math Functions 209

Chapter 19 The Trig Functions 219
Chapter 20 Multi-Dimension Arrays 227
Chapter 21 PEEK and POKE 241
Chapter 22 A Study in Obscurities 251
Chapter 23 The Expansion Interface 261
Chapter 24 Time Out 271
Chapter 25 Dual Cassette Operation 285
APPENDIX 295

A: LEVEL I Error Messages

Reference Guide 297
B: ASCII Code Table 326
C: LEVEL II Reserved Words 327
Vi Commary of TEVET TRACIC

and LEVEL I Shorthand 328

Z: Cut and Paste Sections for
LEVEL I User’s Manual 333

START HERE!
The BASICs Are Everything

We have taken some unique and innovative approaches in this book
because so many of you are upgrading from Level I and are already
competent in Elementary BASIC. However, many of you are starting
fresh with a Level II machine, a Learner’s Manual written for Level I,
and a Level II Reference book — and that won’t do at all! Level II
was only a gleam in the eye when the Level I book was written. Not
to worry however. We can fix-um.

In nearly every field of endeavor, the BASICs are all-important. What
good are books to a non-reader? What good is algebra to someone
who can’t even add? If the foundation is faulty, it doesn’t matter
what is built above it.

Those pearls of wisdom are directed especially to those of you who
own a Level II machine and have not gone thru the Level I Manual. It
is important that you take advantage of the extensive work done by
the author in updating the Level I Manual to make that Manual work
with your new Level Il Computer. (That’s what Part [is all about.)
To fail to do so will certainly defeat your own desire to become as
powerful as your Computer.

Part 1 of this book is dedicated entirely to new TRS-80 owners. If
you’re one of these eager novices, you must begin your foray into
the not-so-difficult computer field with Part I of this book and the
Level I User’s Manual which came with the Computer. Enter the up-
dating changes from Part I into the Level I Manual as you go, a chap-
ter at a time. When you have mastered the Level I Manual, continue
on to Part II of this book. It’s all very simple once you get rolling.

“Old Timers” who cut their teeth on Level I BASIC need only spend
an hour or two reviewing Part I and updating the Level I Manual for
future reference. You old “pioneers” can then proceed directly to
Part 11 of Learning Level II and be on your way to yet greater glory
and, er. .. oblivion.

"DoN'T MIND GEORGE..,
HE'S BUSY RE-WRITING
KIS FIRST Book....”

"lE WiLL PROBABLY

WANT PART OF THE
, POIATES, Too!

- N4

10

PART I

Upgrading the LEVEL I Manual

11

Updating The

Level I User’'s Manual

Remember the good old days, scribbling with a stubby
crayon, cutting out paper and getting glue in our hair?

WE GET TO DO IT AGAIN!

After a little of this “sandbox” work here in Part I, we’ll
quickly learn Elementary BASIC with the aid of your Level
I User’s Manual. Then we can move on to Intermediate
BASIC in Learning Level II (that’s Part II and III of this neat
book).

As a quick flip through Part I shows, most changes to the
Level I User’s Manual are simple “mark-ups” with a pen. A
few pages require such extensive changing however that
replacement pages are provided . .. twice! Once, here in Part
I. Again, in Appendix Z where you can cut them out and
paste or tape them over the obsolete sections in the Level I
Manual. (We printed them twice so you won’t have to cut up
the main part of this book.)

So, grab a pen and the Level I User’s Manual, turn to the

. 1)
HTAL pPaps, alitl away wo gu . . .

12

Changes in pages 1 - 6

[JPage 5, right column, item 3B: If you have a CTR-80 Record- (Use the check box to
er, cross out all references to the dummy plug. check off as you
make the change)
Level II BASIC requires a different Volume control setting
for the Tape Recorder.

[JPage 5, 8 lines from the bottom, change the words highlight-
ed in heavy type

have the CRT-41’s Volume control set between 3 and 5. Then press the

[JOn page 6, right column, line 4 change to read:
board should light up and the screen should show MEMORY SIZE?
Press the §3Yj§3;1] key once and it will display
RADIO SHACK LEVEL II BASIC
READY

>

[[9A®T U] Seburyd asayl aB

Changes in Chapter 1

Level I BASIC had a nice feature called “Radio Shack Short-
hand” which, unfortunately, went the way of all good things
(like that first car. Mine was a 1931 Chevrolet Cabriolet. Sold
it for $50 to get college money. Saw one the other day for
$5,000. Aaaaaagh!!!!).

IBRUBKH S J9SA

The “Shorthand” was very handy, but Level II replaced it
with other, more powerful features. The Level I Manual uses
“shorthand” frequently, so we’ll have to go through and
change those places to “longhand”. Take a quick glance at
Appendix Y (or the Level I Manual’s inside back cover) for a
listing of the entire “LEVEL I Shorthand Dialect”. Don’t
bother studying it tho (too late now!).

13]

Make these ehanges in Level | User's Manual

[Page 7, Center of page, step 3 needs to be changed to:

MEMORY SIZE? will appear. Press |3

RADIO SHACK LEVEL II BASIC
READY

>

[J The first place “shorthand” appears is on page 7, near the
bottom. Change P.M. to PRINT MEM in both places. (Go
ahead — do it! Grab a pen and start making the changes. If
you ruin the manual you can always get another one at the
Radio Shack store. Cat. No. 26-2101.)

(3 In addition, in the third ‘“‘shaded” comment area in the far
right-hand comments column, scratch out the entire first line.

199

(L) Change the fourth comment in the ‘“‘shaded” area to read:

If you have 4K of memory, the number should be 3284.
With 8K of memory, it should be 7380. With 16K it
should be 15572.

[J Also, at the bottom of page 7, the number which will appear
after PRINT MEM is 15572 instead of 3583 (make the same
changes in the first paragraph on page 8).

[J On page 9, cross out the third shaded area.

14

| and get the display

|
|

|
|
|
|
|
l
|
|
|
|
|
|
|
|
I
I
K
I
|
s
| P
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|

Changes in Chapter 2

Here is our first “cut and paste” job. This and all other
“cut-outs” are duplicated in Appendix Z so you won’t have
to mutilate this main part.

Grab scissors and cut out the replacement (from the back of

the book) for the bottom part of page 11. Tape or glue it
over the existing text.

Oh — sorry about that! It “bombed”, didn’t it? The screen
said

?SN ERROR

We deliberately “‘set you up” to demonstrate the Computer’s
ERROR troubleshooter. The Computer is smart enough to
know when you’ve made a mistake in telling it what to do,
and so it prints a clue as to the nature of the error. In this
case, the ? tells you that it doesn’t understand what you are
saying. The SN stands for the word “syntax” (an obscure
word that refers to the pattern of words in a language).
ERROR means you have made one. Later on we’ll learn how
to make the Computer accept a “YES” or “NO’’ and respond
accordingly.

There are dozens of possible errors we can make, and in good
time we will learn the 23 “ERROR CODES” built into Level
II. Meanwhile, there is just one other important ERROR

situation which you should be able to recognize so you can

ry yourself out of accidental trouble. Let’s retype line 20
nd deliberately make a spelling error:

2¢ PRIMT "YOU CALLED, MASTER. DO YOU

HAVE A COMMAND?"
and RUN
Again we get an ERROR message
?SN ERROR IN 20

but after READY instead of a prompt we get

29

The dotted line is your
reminder that this section
is repeated at the back of
the book — cut it out from
there.

(All the type should be
on one line, but we
can’t fit it on the page
in this book. We’ll do
this “foldover” quite
often, so better get
used to it.)

— 18]

IBRUBK S,J@SM | [9A9] U] seburyo 8sayl oXeH

Make these changes in Level | User’'s Manual

116

This tells us that the error is in line 20, and by pressing the

‘Bi3:8 Key, line 2§ wiil be prinied in fuli so we can ook
for the error and correct it. (Shhh! If you know what else it
will let us do don’t say anything yet. We don’t want to con-
fuse anyone with too much too soon.)

% Retype line 20 to correct the misspelling in PRIMT before
| continuing on.

|
|
;
!
|
i
I
|
|
|
|

T L S ——

[JPage 13, change line 21 to read:

accepts Line numbers up to 65529.

[J Page 14, change line 7 to read:

65529. This requires two steps.

{_1Page 14, change last program line to:

65529 END i1

[Page 14, change 4th line from the bottom to:
Move END from #65529 to line #17, then RUN , . .
[JPage 15, delete the first 2 paragraphs. Also, delete the words

WHAT? and HOW? from under Miscellaneous, plus the entire
shaded area at the right.

Changes in Chapter 3
[Page 17, change the last line to:
simple READY

>

[] Page 20, change the 9th line up from the bottom to:

=

puter divides up the screen width into four zones of 16 %

characters each. When a PRINT 2

=3

®

)

®

@

5

Changes in Chapter 4 2

NONE %

=

r=

@®

<

®

Changes in Chapter 5 -

NONE %

qﬂ

®»

=3

®

=)

| 5

Changes in Chapter 6 =
NONE

Changes in Chapter 7

NONE

17|

Changes in Chapter 8
[] Page 37, change the last line to:
1

[OJPage 38, delete entire first paragraph.

[[J Page 38, change lines 17 and 18 to read:

grams. If you turn the Computer off, then on again, all
variables will be set to (. Typing RUN also “initializes”
the variables to (.

[JPage 39, in the first 4 lines, change all 3583’s to 1557 2and
4096 to 16384

In the top shaded area, the last 4 lines should read:

once more. (If your TRS-80 has less RAM, you
can expect a smaller number, as follows:

8K RAM: 7380
4K RAM: 3284.)

[JPage 39, replace the rest of page with the following, starting
with line 11. (Again, clip from the back of the book.)

The program you entered took 15572 — 15561 = 11 bytes of
pace. Here is how you can account for it:

Make these changes in Level | User's Manual

oy

|

|

I 1. Each line number and the space following it (reeardless
| of how small or large that line number is) occupies 4
| memory cells. The ““carriage return” at the end of the
| line takes 1 more byte, even though it does not print on
! the screen. Thus, memory ‘“overhead” for each line,
{ short or long is 5 bytes.

|

S P |

2. Each letter, number and space takes 1 byte. In the
above program 5 bytes for overhead + 6 bytes for the
characters = 11 bytes.

| Now, typeRUN, then check the memory again withPRINT

| MEM . 1T cnanged 10 13334 — / more bytesi winen KUN, a

| simple variable like the A takes up 3 bytes and the numerical
value takes another 4 — totaling 7.

} We will be studying memory requirements in more detail in
L_L.earning Level II, but this gives you a brief introduction.

O et s S e S — — —— — — — — —

[JPage 40, delete first 2 lines

[JPage 40, delete lines 7 thru 12

[[JPage 40, delete SORRY from the last line
[1Page 40, delete the shaded comment area.

Changes in Chapter 9
[JPage 41, line 9 should read:

tape, or loaded from tape, in under 3 minutes. Most pro-
grams are shorter and take even less

[JPage 41, 4 lines up from the bottom. Change CSAVE to

CSAVE "A"

[JPage 41, if you are using a CTR-80, delete the third shaded
area down from the top.

19 |

jeAeT U] seburys asayl oy

IBRUBY S,d8SM |

Make these changes in Level | User’'s Manual

[] Page 41, the bottom shaded area should continue:
“A” is our name for the program. Every program must

have a “name” consisting of one letter or number
enclosed in quotes.

[] Page 42, number 7. If you have a CTR-80 recorder, you’ll
notice that the REM jack is not labeled (it’s the one holding
the smallest plug). Doesn’t matter in any case since the
REWIND key works on this special recorder without pulling
the REM plug. So if you use a CTR-80, cross out the words:

Disconnect the small plug from the recorder’s REM jack and

[J Page 42, change number 2 to:
Push down the PLAY button until it locks. Set the
Volume control to about 5.

[J Page 42, under Loading, change line 9 to:
puter’s memory at the rate of about 2400 bytes per
minute.

[J Page 42, change the 5th line up from the bottom to:

Volumeissetto 5. ..

Changes in Chapter 10
[J Page 45, be sure that RUN is in the last line.

[J Page 46, change line 19 to:

FOR-NEXT loops can be stepped by any decimal number,
even negative numbers. Why one

120

[] Page 46, change the 4th line up from the bottom to read:

from 1 to 5. Line 10 still got printed 5 times. Change the
STEP from —1 to —2.5 and RUN again. Amazing!

[JPage 48, change the 4th line up from the bottom to read:

vious program. (With Level II, typing RUN automatically
resets all the variables back to () before the program exe-
cutes.)

Changes in Chapter 11

[(OPage 53, under “Solutions For Sale”, cross out all of #1 and
replace with the following:

Pressing a SHIFT key and the @ key ar the same time
will stop program execution or a LISTing. Pressing almost
any key will start it running again. RUN the program a
number of times, practicing stopping and starting it using
“shift-at™.

[JPage 53, delete the top shaded comments block.

[JPage 53, lower shaded block, cross out these words:

but it’s not a very useful one
That’s even messier than the first one.

[OJPage 54. Add a note in the right column:
(Clip from back of book.)

| When listing a program that has more than 16 lines and the
| lines you want to see scroll off the top of the screen, you
| can use the [ELIZXY key to stop the LISTing where you
| want it.

IBRUBK S,JoSM | [9A0T Ul Seburyd oseyl OB

21|

Make these changes in Level | User's Manual

[0 Page 54, change program line 2 (in The Egg Timer) to:

2 FOR X = 1 TO 3789

(J Page 54, change the 2nd line in paragraph below the program
to:

can do approximately 370 FOR-NEXT loops per second.
That means, by specifying the

[J Page 54, the Answer should be:

2 FOR X = 1 TO 11190

[JPage 183 contains the answer to Exercise 11-1. Change pro-
gram line 3 to read:

3 P = 378

[[) Page 55, delete both shaded areas, and replace the page with
the following:
(Clip from back of book.)
e ———— =

How to Handle Long Program Listings

| We now have two programs in the Computer. Let’s pull a
{ LIST to look at them. My, my — they are so long it won’t all

l fit on the screen. Now what do we do?

| Rather than wring our hands about the problem, type each of
| the following variations of LIST, and watch the screen very
| carefully as each does its thing:

T.TQT KA /T iote Anlyr lina &MY
— R AT AL D
LIST — 5@ (Lists all lines up thru 50)

LIST 5@ (Lists all lines from 5§ to end)

22

"So TUATS THE ReAsoN
MY E@6S END WP
HARD BolLeD!”

LIST 3@-78 (Lists all lines from 30 thru 70)

LIST 4-85 (Note that these numbers are not even in
the program)

How’s that for something to write home about?

Questions: How would you look at the resident program up
through line 9?2 ANSWER: type LIST -9 (Talk about a give
away!)

[
I
l
I
I
l
l
I
I
l
l
I
I

[JPage 56, in the shaded area, delete “Again,” and add this
note in the right hand column (cut and paste):

r—?r;;;a—r;-i-r;g—t—h_e-;)rogram(s) at different numbers. As you]

{ do, different (but very predictable) results occur. Don’t
| Wworry about the strange error messages. We’ll be studying
| them in great detail in Learning Level II, where we have a
| real need for them.

[Page 56, change lines 4 and 5 under Meanwhile, Back At the
Ranch to read:

our big program. First, let’s erase the test program by typ-
ingDELETE 1-9 Then type LIST to see what
happened. Wow! How’s that for power?
The variations of DELETE somewhat resemble LIST###,
but only DELETE### ,DELETE-### and DELETE
$#4-#44# will work.

[J Page 57, add this note at the top right.

CONT stands for CONTINUE

[Page 59, change item #2 to:

Total circuit power (circuit current squared, times circuit
resistance) I2 * (10 + R)

[

Now THERE'S ANOTHER
RELPFUL HINT! I'M GLAD
THEY DION'T DELETE

TRAT FRaM Te Boow!”

‘“T"‘
it
!

JBRURK S Josn | [9AeT U] seburyd @seyy oy

23

[JPage 188, delete the shaded comment.

[OPage 60, under Commands add DELETE# ##. Under Miscel-
laneous delete 4 Up-Arrow.

Changes in Chapter 12

[JPage 61, program line 1@, remove the space between TAB
and (5)

[JPage 62, change line 3 to:
Whether you follow TAB(##) with a semicolon or not
makes no difference. In either
1 Page 62, add the following note in the right column (cut and
paste):
| A semicolon is traditionally used following TAB, as |
| shown. Some interpreters allow a comma instead (as in |
| Level I). Level Il and most later BASIC interpreters allow l
| ablank or even nothing at all. {
I
} Experiment to see which you like best. {

[(OPage 63, computer program line 200, the first TAB should
contain the number 5, not 50.

Make these changes in Level | User's Manual

[Page 63, program line 21(, remove space between TAB and
(20).

24

Changes in Chapter 13
[Page 67, change lines 2 and 3 to:
counting A’s and B’s as they whiz by, you remember what

to do. Just press the Shift and @ keys at the same time to
stop execution and temporarily freeze the display. The

:1:]9.\4 key and typing

(O Page 67, replace lines 13 and 14 with:

?NF ERROR IN 60

Changes in Chapter 14
[} Page 70, change the last program line to:

Z = .14159
[J Page 70, delete last 3 lines.
(J Page 71, delete first paragraph.

[J Page 71, first line of second paragraph, delete LEVEL 1
BASIC
(JPage 71, 2nd to last paragraph, change last line as follows:

X into an integer and fractional part. It’s on page 70.

[(JPage 71, change last paragraph to:

We clearly can just go on taking the INT value of X over
and over to try and split out the digits. Let’s try it with Z.

IBRUBR SJoSn | [2A8T U] SBBUBYD 8saly] OB

25 |

Make these changes in Level | User's Manual

26

[Page 72, lines 4, 9, and 19, .14 1589 should be .14159

[] Page 73, change line 2 to:

95 FOR A = 1 TO 5
[JPage 73, line 17. Cross out L = 9.

[JPage 73, replace all the explanation under the “‘print-out”
with the following:
they are all there, but what gives with the last value of L.
l L =28 77?7 it’s supposed to be 9!

| Well, let’s analyze the program first, then worry about that

| little detail.

!

| Line 95 began a FOR-NEXT loop with 5 passes, one for each

} of the 5 digits right of the decimal.

; Line 120 creates a new decimal value of M (just a temporary
storage location) by stripping off the integer part. (Plugging

l in the values, M = 1.4159 — 1 =.4159)

{ Line 130 does the same as line 99 did, multiplying the new
| decimal value times 1§ so as to make the left-hand digit an
| integer and vulnerable to being snatched away by the INT
% function. (M = .4159 * 1) =4.159)

| Line 14 moves the control back to line 95 for another pass
through the clipping program . .. and the rest is history.

| Now about that little detail . . . the wrong value of the last
i digit. As you have noticed in this lesson, we have repeatedly
iscratched out the 8 from the number .14158Y — a reai

problem in Level 1. We just about escaped the problem in ;
| Level II, but not quite.

e s e e e . e o3 S s —— o i o S S Sl S, S SO i oA o S S e . S, S {5 T S~ o e e wters

Back in Chapter 8 we talked about the problem of computer
error when getting into the land of little numbers. We’ve now
plowed head-on into that problem. To understand it better
change line 95 to read:

3

95 FOR A =1 T0 1#
and RUN

Where did all those other numbers come from? (Beats me.)
Again, as we told you in Chapter 8, the last digit or 2 at the
end of a number is not to be trusted as being high-precision.

But there is a solution. Change line 95 back as it was, then
change line 30 to read:

30 X = 3.14159080
and RUN

Whew! Had us a little nervous there for a while . . . but then
success. By our declaring that the accuracy of X is to be a
few decimal places greater than we really need, we then are
assured that those digits we do need are reliable. There are
other ways to do this and we will learn them in Learning
Level II.

But let’s not get diverted from the main theme of this
Chapter.

[] Page 75, change line 1 to:

There it is. All the data you can handle (and then some).
By using the SHIFT and @ keys

o —— S— S Ao S i S e SO Vi WP S S i S e S . . St Wt e S S S W— Wiy i, W Y, e s et

271

IenuBK SJesn | [9Ae] U] seburyo esauyg eyep

Changes in Chapter 15
{CJPage 77, in the shaded area, change line 7 to:

up to 256 characters (including line number and

[JPage 77, in the shaded area, change line 9 to:

up four Display lines; but it’s still just one program

[JPage 80, Delete lines 4, 5, and 6; also, change line 7 to:

It is possible to create or simulate func-

[JPage 83, add this

Exercise 15-2: i
Remove all traces of the subroutine from the resident |
program. Use the SGN function that is already built into ;
Level II to accomplish the same thing we have been doing [
using a subroutine. Hint: T = SGN(X) |

d

r’ _________________________]
|
I
|
I
|

Changes in Chapter 16

[JPage 87, replace lines 6 and 7 with

12345

20D ERROR IN 32 (OD means Out of Data)

Make these changes in Level | User’'s Manual

numeric variables. It gets even better when you master this |

! {
f
| alphabet for string variables, just like with plain old |
| I
} manual and get back into the full-blown Learning Level 11, i
—d

28

[(] Page 88, change line 13 to:

and/or Combinations of letters, numbers and spaces. Type
NEW

[] Page 88, watch the spacing on program line 3. It should be:

3¢ PRINT "SEE MY FOXY ";A$

[Page 89, delete lines 2 and 3. Changes lines 4 and 5 to read:

Let’s use 2 string variables to accomplish the same thing,
seeing how they work with each other. Rework the pro-
gram to read

[] Page 89, Program line 3@ should have a space between the Y in
FOXY and the quote. Delete EXERCISE 16-1 and the rest
of the page, including the second shaded comment.

(] Page 90, delete entire page.
[] Page 91, delete entire page.

(] Page 92, Under Miscellaneous, delete (Y/N)-Teaching etc.

Changes in Chapter 17
NONE

lBnuUBK S.J8Sn | [9A®T U] seBurys aseyl oy

29

[OPage 96, delete lines 8 thru 15.

[OPage 96, lines 17 and 18 should read:

Control yourself! It’s easy to get carried away. While we
will be using multiple statement lines often from here on,
you will quickly see that it’s

[OPage 96, 2nd to last paragraph, delete first two lines and
change the third line to:

Multiple statement lines require careful understanding.

[JPage 96, in the shaded area, delete the last 3 lines.

[Page 97, note that the program incorporates some Level I
Shorthand. Eliminating the shorthand, here is how it should
read:

19 INPUT "TYPE IN A NUMBER" ; X
20 IF X = 3 THEN 58 : GOTO 78
34 PRINT "HOW DID YOU GET HERE?"

4@ END

Make these changes in Level | User’'s Manual

5¢ PRINT "X=3"
64 END

7@ PRINT "CAN'T GET FROM THERE TO HERE."

30

From this, you should be able to understand the rest of the
page. Change EXERCISE 18-1 to read (cut and paste):

n
| Using the Shorthand you have picked up incidentally so I
| far and that found on the back inside cover, convert the

| one on page 214 titled Loan Amortization into Level II 1
| BASIC. We have learned everything found in that program, |
| so with a bit of effort and clear thinking you should be |
{ able to do the job. The experience will come in handy

l
l

I
when converting other programs from various sources |
written in Level I BASIC, as well as understanding the '

L remainder of this Level I book. !

[JPage 98, under Miscellaneous, delete LEVEL 1 shorthand
dialect
Changes in Chapter 19

O Page 100, 4th line up from the bottom, change to:

3. The largest permissible value of X is 32767.

(OJPage 101. Here’s a good chance for you to practice a little
translating from Level I shorthand to Level II BASIC. Write
in the right hand column:

P. = PRINT IN. =INPUT F. =FOR G. = GOTO.

N. = NEXT

[BRUB SJ8SM | [9ADT U] SBBUBYD Bsey] oy

[JPage 104: Replace program lines 1 and 2 with

1 RANDOM

31

Changes in Chapter 20
[C1Page 108, delete lines 12, 13, and 14.

[JPage 111, change the shaded block to:

Of course you haven’t forgotten how to do that have you!
Type ERASE. . . no, no, no! Type NEW.

[JPage 112, change the program to read:
16 IF V+A<48 GOTO 28

18 PRINT "TOO MANY VERTICAL BLOCKS.NOT ENOUGH ROOM!"

[(JPage 112, add a shaded area.
Remember, you can’t draw pictures off the screen. If you

T T N T

get an error message like 7FC ERROR IN 7§, that means
you tried to do it.

[JPage 115, add a shaded area with the same message as above.

[JPage 115, change the first line to:

1¢ INPUT "VERTICAL ADDRESS (1 TO 47)";Y

[JPage 115, in the middle program, add this program line:

11 REM Y MUST BE LARGER THAN g

Make these changes in Level | User's Manual

[JPage 115, sixth line up from the bottom, change to:

down.

[0 Page 115, last program, change line 20 to:

2@ INPUT "VERTICAL STARTING POINT
(1 TO 47)";Y

32

[(JPage 116, the program at the top of the page, add a line 65:

65 IF Y = 48 GOTO 99

[J Page 116, delete lines 12 through 14 and the shaded area.

[0 Page 116, program lines 19 and 49, change to:

14 INPUT "HORIZONTAL STARTING POINT (1 TO 127)";X

40 RESET(X-1,Y)

[(OPage 116, add a new line 65 in the bottom program:

65 IF X=128 GOTO 99

[(JPage 117, delete top 9 lines.

[(JPage 117, change the following program lines:

2¢ INPUT "VERTICAL STARTING POINT
(1 TO 28)";Y

3¢ INPUT "LOWER BARRIER (38 TO 47)";K

8¢ RESET(X,Y-1)

IBRUBR S JoSA | [2A8T U] seburys dsay) oyB

[0 Page 118, delete top program lines 110 and 120

(JPage 118, change first program line 130 to:

138 IF Y<K THEN 8§

[(JPage 118, change program line 80 to:

8¢ RESET(64,Y-D)

33

Changes in Chapter 21
[} Page 124, top shaded area, change line 5 to:

A$ = " (YOUR NAME)"

[OJPage 125, change line 15 to:

Remember, its name is “A”. Its elements are numbered.

[Page 126, delete last line on the page

[Page 127, add this at the top of the right column (cut and

Awwk!! What is this ?7BS business? Well, since arrays take
up a lot of memory space, the TRS-80 automatically
allows us to use up to only 11 array elements without
question. (They can be numbered from @ to 1Q.) Then our
credit runs out. We earlier used elements numbered from
1 to 1@ without any problem.

called “A”, we have to “reDIMension” the array space
available. Our highest number in Array “A” needs to be
110, so we’ll add a program line:

5 DIM A(1182)

and RUN again

I
|
|
|
I
|
|
To use array elements numbered beyond 10 in the array %
|
I
!
|
|
|
|
|

Make these changes in Level | User's Manual

(] Page 127, delete the first 1() lines.
[JPage 127, change line 11 to:
Let’s just arbitrarily assign array locations 1¢1 through

1i¢ to

[JPage 127, delete all 3 shaded areas.

34

[OJTop of page 196, add:

5 DIM A(119)

[JPage 129, change program line 30 to:

DIM A(52) : FOR C=1 TO 52 : READ A(C) : NEXT C

[JPage 131, delete last 9 lines.

[JPage 132, delete first 8 lines and the shaded area

Changes in Chapter 22

O Page 133, add this note to the top right margin (cut and
paste):

|r-Leve1 IT BASIC uses the character @ in place of the word }
| AT, so every reference to AT should be changed to @. |
| PRINT AT and P.AT should always be replaced with |
| PRINT@. (EXTREME CAUTION: DO NOT USE THE |
| SHIFT KEY WITH @.) Make these changes as you go along |
| in this Chapter, and in the User Programs in Part C as you E

]

! use them.

[(JPage 133, these are the type changes to make throughout this
Chapter.

Line 11, change to:

Learn something new every day. The PRINT@ state-

Line 14, change to:

5¢ PRINT@2@J,"HELLO THERE 2@¢, WHEREVER YOU ARE."

IBRUBK SJesn | |8A8T U] seburys eseyl oxBR

35]

Make these changes in Level | User’'s Manual

[JPage 134, make these program line changes:

2§ PRINT@4G7, “H M S©

60
78

PRINT@47H ,H;":":M;":";8S

FOR N = 1 TO 318 : NEXT N

118 GOTO 18

[JPage 134, 2nd line up from the bottom, change to:

the TRS-80 with LEVEL II BASIC will execute some-
where around 300 simple FOR-NEXT

[JPage 135, 2nd line, change to:

timepiece (increasing or decreasing the 300 figure as
needed). Over the short run, this is

[JPage 135, change program line 8 to read:

80 RESET (64,Y-D)

[(JPage 136-137, replace the Graph Display program with this

36

PRINT@2¢, "G RAPH HEADTING"
PRINT@84,"- = = = = = = = = = = = "
REM * HORIZONTAL MARKERS *

FOR X = 1 TO 59

PRINT@9@G+X," . ";

NEXT X

8¢ REM * HORIZONTAL NUMBERS *

99 FOR X = @ TO 5

189
118
120
13g
149
150
16

178

PRINT@964+10*X,X;

NEXT X

REM * VERTICAL MARKERS *
FORY = # TO 13

PRINT@Y*64+68,"-"

REM * VERTICAL NUMBERS *
FORY = # TO 13
PRINT@Y*64+64,13-Y;

NEXT Y

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NEXT Y ’
|
|
|
|
|
|
|
|
{
GOTO 999

|

[JPage 137, the second line of the first shaded area, change to:

form . . . true or yes = —1 and false or no gives a (.

[Page 137, fourth line under “What is the POINT of all this?”,
change to:

with the address of X, Y. If that point is lit, the POINT
statement says ““—1”". If it is dark, the

[(Page 137, third line up from the bottom, change to:

Since we had not lit 30,30 the answer came back with

9.

[BRUBK S, J@Sn | [9A8T U] SeBuRy oSyl OB

37|

OPage 137, delete the last 2 lines on the page and the second
shaded area.

[Page 138, change the Let There Be Light program to (cut and
paste):

2@ INPUT "DO YOU WISH TO LIGHT THE BLOCK
(1 = YES Z = NO)";0Q

38 CLS
49 IF Q = @ GOTO 88

50 SET(X,Y)

8¢ RESET(X,Y)

188 IF POINT(X,Y) = -1 PRINT@28M,X;Y,
“1S LIT"
20@¢ IF POINT(X,Y) = @ PRINT@20M,X;Y,
"IS DARK"

l
|
|
l
|
|
|
|
|
|
|
{ 68 GOTO 188
|
|
|
|
|
|
l
|
|

999 GOTO 999

[(JPage 138, 6 lines up from the bottom, change to:

that occur. This 2 minute ““moving picture” really tells all
you need to know about the

Make these changes in Level | User’'s Manual

[(OPage 138-139, delete program line 199 and put PRINT@ in
its prover form: also eliminate the Level | shorthand.

[(JPage 149, delete lines 11, 12, and 13.

Changes in Chapter 23

No Changes

38

R |

Changes in Chapter 24

[[JPage 148, replace program line 1) with:

19 CLS:PRINT"TYPE A '1' FOR YES,
AND A '@' FOR NO"

[OPage 148, change line 17 to:

Line 10 clears the screen and gives operating instructions.

[JPage 149, add the following in the right column (cut and
paste):

e i e e e e e e e e e

— o i, S 7o — — — —— W——— 2917 T o . Wit SN IR Y N M WO ST P W S e i M S0, St S S

First the BAD news.

The + and * as used in the rest of the programs works fine
in Level I BASIC, however the logic doesn’t always act
logical when the going gets rough.

But, the GOOD news is that Level II BASIC let’s us use the
actual words AND and OR instead of the Mathematical
symbols, and they work just fine!

Here then is our opportunity to get some drill in convert-
ing + and * to OR and AND. Wherever there is ‘“‘mixed
logic”, using both * and + in the same program line, (as in
the Teachers Pet, next) switch over to the words AND and
OR. * and + can be used as shown in the easier ones which
follow. You should be able to switch back and forth be-
tween the words and symbols interchangeably.

—

[J Page 150, change line 18 to:

out the surprise caused by the logical AND in line 40.
Type this program in, and RUN.

IBNUBH S Josn | [@AeT U] seburyd osayl ayB

39|

[JPage 152, change the program lines to read as follows:

2 PRINT"ANSWER WITH A 1 FOR YES &
FOR NO"

3¢ PRINT

198 IF (A=@)+(B=g)+(C=0)+(D=f#) +(E=f)
THEN 138

[JPage 153, add the following at the top of the right column:
}_XJ] additional benefit of the changes in Level II handling |
| of AND and OR is that the parenthesis found at Level I |
| can be omitted (at least in straightforward uses). Go back |
l I
I |

I

and enter a program or two omitting the parenthesis and
using the logical words, just to get a feel for how it looks.

[Page 199, cross out the last line.

2

Changes in Chapter 25

a

Chapter 25 can be deleted. Level IT has added a number of
so-called “Library” Functions which make the use of
many advanced subroutines unecessary. The use of Square
Roots, Logarithms, the Trigonometric functions and
many other “intrinsic” or “library” functions is covered in
detail in the main body of Learning Level I1.

Make these changes in Level | User’'s Manual

The Chapter is not without value, however, even though
Level II has outdated much of it. If you need experience
in calling combplex subroutines. and want to have sub-
routines call other subroutines, then you can learn from
the Chapter. We are leaving it in its original Level I form
... so you will have to convert the Level I shorthand and
error messages for yourself.

[40

Changes in Chapter 26
[dPage 165, change the first two lines to:
By now, the Computer has given you plenty of nasty mes-

sages. You know something’s wrong, but it isn’t always
obvious exactly where, or why.

[JPage 165, in the bottom 5 lines the number 3583 appears
three times. Change it to 15572 in all three places.

[JPage 165, cross out the top shaded area. Change the second
shaded area to read:

or 7380 (8K machine) ;3284 (4K).

[JPage 166, lines 19 thru 18 should be changed to read:
Type (very carefully):
5 DIM A (3835)

18 FORX=1T03835:A(X)=X:NEXTX:FORY=
1703835 :PRINTA(Y) ;

28 IFA(Y) —A(Y~1)<>1PRINT"BAD"
30 NEXTY
Then, RUN

After a short wait for the array to ‘“‘spin-up”, the monitor
should display

1234567 8 (etc., through 3835)

[JPage 166, the 4th shaded area, change to:

For 8K of memory, use 1787 instead of 3835 in Line 5
and 10; for 4K, use 764.

|enuRR S, Jesn | [eAeT u] seburys esayl oYBR

41]

[JPage 166, the 5th shaded area, change to:

...or1787 .. .0or764

[JPage 167, delete the third shaded area and from line 20 to
the end of the page.

[CJPage 168, delete the first shaded area and lines 1 thru 7.

[JPage 168, item 1.b. should read:
1b. Use an illegal variable name?
Example:
1¢g INPUT 6G

ERROR: Variable names must be recognizable by the
Computer.

[JPage 168, 7 lines up from the bottom, change to:

number larger than 655297

[JPage 169, change the first line to:

f. Type a line more than 255 characters long?

Make these changes in Level | User’'s Manual

[(JPage 169, change line 10 to:

200 MAamMA) K
220 D2l 2,2

(Note deietion of second comma)

142

[OPage 170, items 5 and 6, change to:

5. The error comes back as 70M (out of memory) but the
PRINT MEM indicates there is room left in memory. If
you get an ?0M and are using the A(X) numeric array,
extra room (up to hundreds of bytes) has to be left for
processing. You have probably overrun the amount of
available memory.

6. The ERROR comes back as ?BS (Subscript out of

range).

a. Did you exceed the limits of one of the built-in
functions?

b. Did one of the values on the line exceed the maximum
or minimum size for Level II numbers?

(JPage 171, delete line numbers 19 and 2.

IBnuBR S Jespn | [eaeT ul seburBys asayl ayeH

43 |

Make these changes in Level | User's Manual

PART C
Level I
Some User’s Programs

These user’s programs were written especially for the Level I
TRS-80, but will also RUN at Level II. Virtually all require
slight modification, but the main one is simple conversion
from “‘shorthand” to regular BASIC. You already know
how to do this with the aid of the table on the inside back
cover of the Level I Manual.

Far and away the most treacherous conversion is from
PRINT AT to PRINT®@. Watch very carefully that:

i. you do NOT use SHIFT@ in place of just plain @, and
2. that the @ is followed by a comma, not a semicolon.

Certain other modifications are more complex, such as
changing the timing loops. Some modifications eliminate
complex subroutines and use intrinsic functions instead. The
following pages give you new program lines with the logic or
syntax changes incorporated to make every program RUN on
your Level II machine.

Test Grader Program

0 379 patra 5,3,2,5,1,2,4,3,1,4

Siowpoke

{3 Change line 2 to read:

puter says “G”, you press BREAK to stop it. Then it’s
the next player’s turn to

No program line changes are necessary.

44

12 — Hour Clock

a 74 FOR N = 1 TO 265

Checksum For Business
(JIn program line 170, delete the comma at the very end.
Design Program For
Cubical Quad Antenna
This program runs as is. It can be speeded up a bit by remov-
ing the square root subroutine starting with line 100@® and

working SQR into the program at those places which call the
subroutine.

Since we haven’t studied SQR yet, making that conversion is
an optional assignment for those who may already know

how to use it.
Speed Reading
l:l 20 B=(12*6@0/W) * 35¢

34 REM 358 = FOR/NEXT LOOPS IN ONE SECOND

The Wheel Of Fortune
] 5 DIM A(6f)

Dow-Jones Industrial Average Forecaster
U 198 INPUT AS$

119 IF A$ = "Y" THEN 278

[BnuUBK SJesn | (oA] seburyd esayl eyBl

45|

Make these changes in Level | User's Manual

On A Snowy Evening . . .
No logic or syniax changes required.

Triple check your PRINT@’s

Termites
No logic or syntax changes required.

Triple check your PRINT@s.

Sorry
| 5 DIM A(45)
500 FOR T = 1 TO 19@g@ : NEXT T : FOR X =

(] In lines 500 and 550, the arrows are supposed to be made up
of less than or greater than signs and equal signs, thus:

| <<<===K<<

Automatic Ticket Number Drawer
] Add or change these lines:
220 A(N) = RND(E)
230 FOR S = § TO N-1
240 IF A(N) = A(S) GOTO 22g¢
262 PRINTTAB(12);">===m—= >>> ";A(N) + B -

1 At Level 11,

more than that it is necessary to add a DIMension line. For
up to 25 winners, add:

the program will work for up to 1) winners. For

6 DIM A(25)

|46

1T TO 4

1

Craps
[0 Add or change these lines:
148 PRINT,,"YOUR POINT IS";N : GOTO 139
11¢ PRINT,,"YOU WIN!!" : PRINT : END

12¢ PRINT,,"YOU LOSE." : PRINT : END

Fire When Ready, Gridley
(] Delete line 1820
[J Change:

1819 CLS : GOTO 18

House Security
[J Make the following changes::

2@ PRINT"ANSWER EACH QUESTION WITH A NUMBER.
(1 = YES § = NO)"

8¢ IF (A=1)*(B=1)*(C=1)*(D=1)*(E=1) THEN 12§

Loan Amortization

[J Make these changes:

149 PRINT Z; : PRINTTAB(1#);P : PRINTTAB(2f) ;M;

158 PRINTTAB(30);B; : PRINTTAB(4f%) ;A

—47]

[BRUB S, J@sn | (@A Ul seburys esay) eyB

Make these changes in Level | User's Manual

APPENDIX A
Level I
Subroutines

Nearly all these subroutines are found in Level II as intrinsic
or library functions. Those that are not can be derived by
simpler means.

Specifically:
ArcCosine
ARCCOS(X) = -ATN(X/SQR(-X*X+1))
ArcSine
ARCSIN(X) = ATN(X/SQR(-X*X+1))

148

APPENDIX B
Level I Manual
Cassette Data Files
(JPage 221, change program line 100 to

1,@IZPRINT #‘"1 IAIBIC
[OJPage 221, delete lines 1, 11 and 12 up from the bottom.

(OPage 222, lines 2, 3 and 4 apply only if you are not using the
CTR-80 recorder, designed specifically to overcome this
and similar-type weaknesses. If you don’t have a CTR-80,
you might look up the article in the April 1978 issue of
KiloBaud magazine, written by Lien and Waterman. It
shows how to build an inexpensive control box to greatly
simplify controlling the recorder, and eliminate ground
loops as well.

[JPage 222, change program lines as follows
100 (delete, unnecessary)

114 INPUT #-1,A,B,C
[JPage 222, delete the shaded area and lines 17 and 18.
[JPage 223, change line 4 to read:

lock-up condition described above, or getting an OD
error message.

IBRUBK S, 408 | (@A U] seBuryds asayl eyBR

49 |

Make these changes in Level | User’'s Manual

[(JPage 223, change these program lines:
8¢ INPUT #-1,Y,%

22¢ PRINT #-1,T,H

[CJPage 223, 4th line from the bottom should begin

Line 80 (instead of 7Q)

[(JLast line should begin
Line 220 (instead of 21¢)

NOTE: While this program (as modified above) does demon-
strate the point of the chapter, the same program in greatly
expanded form is printed next. It is much easier to follow.
We will be using and modifying it later in Learning Level IT
for learning how to use twin cassettes. It is printed on the
facing page in case you wish to substitute it for the program
on page 223, and save it on tape for our later use.

50

10 REM * TEMPERATURE AND HUMIDITY RECORDING PROGRAM *

20 REM * DATA STORAGE MUST START ON THE 1ST DAY OF MONTH *

40 CLS : INPUT"WHAT DAY OF THE MONTH IS IT";D

5¢ INPUT"WHAT IS TODAYS TEMPERATURE";T

60 INPUT"WHAT IS TODAYS HUMIDITY";H

70 PRINT:PRINT

gﬂ IF D =1 GOTO 439 ' ON FIRST DAY IS NO PRIOR DATA
g

@ REM * INPUTTING DATA STORED ON CASSETTE TAPE *

110 PRINT"WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM"

120 PRINT"THE DATA TAPE. BE SURE IT'S REWOUND AND THE RECORDER"
139 PRINT"IS SET TO 'PLAY'," : PRINT : PRINT

140 INPUT"PRESS 'ENTER' WHEN EVERYTHING IS READY TO GO.";AS

160 CLS:PRINT"DATA IS NOW FLOWING INTO THE COMPUTER FROM TAPE."
170 PRINT : PRINT : PRINT"DATE","TEMP","HUMIDITY" : PRINT

180 FOR X = 1 TO D-1

19¢ INPUT #-1,Y,2 ' BRINGS IT IN FROM TAPE
195 PRINT X,Y,2 ' PRINTS IT ON THE SCREEN
200 B = B+Y : C = C+% ' KEEPS RUNNING TOTALS
218 NEXT X

316 B = (B+T)/D : C = (C+H)/D ' COMPUTES THE AVERAGES

326 PRINT D,T,H

330 PRINT : PRINT " * % THIS MONTHS AVERAGES **"

340 PRINTTAB(7);"TEMP";TAB(17);"HUMIDITY"

350 PRINTTAB(7);B;TAB(19);C

400 REM * STORING TODAYS TEMP & HUMIDITY ON TAPE *

410 PRINT:PRINT:INPUT"PRESS 'ENTER' WHEN READY TO CONTINUE";AS
420 CLS : PRINT : PRINT

430 PRINT"TODAYS TEMPERATURE AND HUMIDITY WILL NOW BE PRINTED"
440 PRINT"ON THE DATA TAPE. BE SURE 'RECORD' & 'PLAY' ARE"

450 PRINT"PRESSED. DO NOT REWIND THE TAPE, YET." : PRINT

460 INPUT"WHEN ALL IS READY, PRESS 'ENTER'";AS$: CLS

470 PRINT"TODAYS DATA IS NOW FLOWING FROM THE COMPUTER TO THE"
480 PRINT"TAPE. WE WILL INPUT THIS PLUS THE EARLIER DATA "

490 PRINT"TOMORROW.™ : PRINT

5¢86 PRINT #-1,T,H ' PRINTS TODAY ON TAPE

520 PRINT"TODAYS NUMBERS HAVE BEEN ADDED TO THE TAPE."

5389 PRINT"REWIND THE TAPE IN PREPARATION FOR TOMORROW."

I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
I
|
i 3¢@ REM * MONTHS AVERAGES TO-DATE *
I
|
I
I
|
|
|
I
I
I
I
I
I
I
I
I
I
[

[BnuUBK S, J8Sn | [9AST U] seburyds aseyl OB

APPENDIX C
Level 1

Combined Function and ROM TEST

This factory test program was designed to check out Level I
machines. It is a valuable program, but we must bear in mind
that it checks only the functions we have learned SO FAR.
The RAM test and display checkout are much more thorough
than the short one we learned earlier.

DPage 225 and 227. Change the program lines indicated:
15 CLS:PRINTE@,"TRS-80 LEVEL I FUNCTION TEST"

290 CLS:PRINT"LEVEL I FUNCTIONS ARE OK.
THE RAM TEST IS NOW RUNNING."

399 A

419 A$ = "GH"

MEM/4 - 35 : B=f@, 'INCREASE THE 35 AS NEEDED

479 PRINT@896
48f FOR X=1 TO 3% : PRINT A$; : NEXT X
509 IF K>§ A$="8g"

519 IF K<@ A$="GH"

Make these changes in Level | User’'s Manual

[Delete program lines 449 and 450.

iT an UM error message 1s received 1i the VICINIty oI 3Yy-35y,
it will be necessary to change the “35” in line 300 to adjust
the “‘head space”.

52

TECHNICAL SPECIFICATIONS
Level 1
Pin Connections

(OJPage 228, under Pin Connections for Expansion - Port Edge
Card

In all but the earliest models of the TRS-80, pin connect-
or #39 at the expansion port has been grounded. There-
fore, there is no longer a way to obtain 5 volts from the
edge card to power external devices.

P/N 39 should be changed to read:

39 GND Signal Ground

IBNUBH S.J0SA | [@AeT U] sebBurys asayl eyeR

53]

MY OLD MAN SURE HAS BEEN TOLGH To LIVE WITH

EVER SINCE HE'S LEARNED HOW To COMMAND
KIS COMPUTER..”

“LOOK OUT! HE MIGHT
CHANGE YoUu INTO A
HAND soME, YouNG FRoG!

ez <)

54

Part 11

New Power at the Command Level

55

“SAY BILL? | JUST WANTED YOU
TO KNOW THAT I'M FINALLY BEGINNING

TO UNDERSTAND LEVEL || BASIc/”

4,

“Now THERE'S
AN ONERVIEW! ...

56

CHAPTER 1

Level II Overview

Now that we’ve all learned “Elementary” BASIC we can get
serious about “Intermediate” BASIC, called Level II. This
is a sort of ““catch up” and “‘catch all” Chapter, showing you
a lot of little features of Level II BASIC that didn’t find a
home in the Level I User’s Manual. Read each of them, do
the sample programs and think about them. Each will fall
into place in the chapters which follow.

Variable Names

We know we can use the 26 letters of the alphabet as names
for variables. In Level II we can also use the numbers @
through 9 in conjunction with these letters:

A3 =65
F9 =37
etc.

Instead of having just the 26 letter variables (which in reality
is usually enough) the numbers give us an additional 26 * 19=
26(. They can be very handy, particularly if we want to label
a number of “sub’ variables (D1, D2, D3, etc.) which com-
bine to make a grand total which we can just call D,

We've given you a lot of
space in this right-hand

margin
notes,
Use it!

- for
comments,

your
etc.

57

PART I

In addition, we can use almost any two-letter combination
for a name. For example:

PI = 3.14159

C=PI*D circumference = 3.14159 * diameter
"(Now that really looks valuable.)

This feature gives us another 26 * 26 variables, and if that
isn’t enough to solve all your problems, nothing will. Nearly a
thousand possible variable names so far, and we’ll discover
several times that many before we’re through.

Enter this program and RUN, watching for an error message:
1 CI.S : PRINT

19 RATE 55

20 TIME = 3

3¢ DISTANCE = RATE * TIME

4@ PRINT RATE, TIME, DISTANCE
9¢ PRINT : LIST

7SN got us in line 3. Is the word DISTANCE too long?
Let’s cut it back to DISTA and RUN again.

OK, that got us past line 3@, but the same problem exists in
40. Cut DISTANCE back to DISTA and try again.

That’s more like it. Looks pretty good doesn’t it. We can
actually use words to name our variables. Add this line and
RUN:

Anocther SN error? What’s wrong with DIME???

58

"BUT WHEN YoU SAID t COULD
HAE soMe PIE, ! THOUGMTN Yo
MEANT 314|159 PIECES,,,

It just so happens that the word DIM (dimension) is only one
of a mess of “‘reserved” words, and we can’t use them in vari-
able names for obvious reasons. DIM is the first 3 letters of
DIME. The problem with DISTANCE in line 39 wasn’t length,
as we suspected (words can be hundreds of characters long).
It contained TAN, another reserved word.

Many of these words are not reserved for Level II BASIC,
but for “Advanced” BASIC as used in the DISK system
(TRSDOS). The result is the same — we can’t use them.
Appendix C contains the list of reserved words. (Better take a
look now ... there’s big trouble ahead if you don’t. 4 word
to the wise.)

Okay, how about just cutting back to 2 letters. We know we
can use almost any 2 letter combination for a name. Try:
ON TO IF and OR (won’t work). GO and OF work even tho
reserved.

Now try:
35 DI = 1§
and RUN.

It ran, but look at the answer! DISTA was printed as 10
instead of 165. What happened? DISTA surely can’t be the
same as DI. Well, it might look different, but the Computer
only sees the first 2 letters, and they are the same. The DI in
line 35 gave the DI in DISTA a new value.

The lesson here should be pretty clear. It’s very easy to get all
carried away with fancy variable names, and in the process
find lots of trouble. Remember KISS? (Keep It Simple,
Stupid!)

Chapter 1

59

PART [l

New String Variables

In addition to the new variables we’ve discovered so far, we
have all the letters of the alphabet available for strings, not
just A$ and B$. And the numbers § through 9 too, plus any 2
letter combination. These are all valid string names:

X$

D8$§

PIS

etc.

° rei

NOQTICE

THE FOLLOWING STUWOENTS
HANE MADE THE TEAM!

Almost another thousand variable names.

Array Names B&(R)
Same thing? Yep. DL$(X)
RL‘-;CK;
A(N B44$ (G
™ TR$(N)
THRT MUST BE
BC(N) THE FlRSTTSTmNB,’ ° The Conely 'Jna
D3(N) Q? Q%
E4$(N)
XYHN)

are all legal array names. The last 2 deal with
“string arrays.” We’ve devoted an entire Chapter later to the
expanded capabilities of arrays.

You of course know that old Level I Shorthand is no more,
having made way for other good things. There are several
little “‘shorthand” tricks that we can use, however.

60

Chapter 1

The first is the use of ? in place of the very common word,
PRINT. Type this line:

19 ?"QUESTION MARK"

and LIST it. Awwk! The pumpkin turned into a
coach. The Computer rewrote it to read:

19 PRINT"QUESTION MARK"
It also works at the command level. Try:

>?3*4 and we get

12

If you have the numeric keypad you’ll especially appreciate
this feature since the same upper-case characters are available
above the pad numbers as above the keyboard ones. They
just aren’t marked. Try it.

The value of this is, a touch typist can type ?” with the
right hand, while the left hand holds down the left SHIFT
key, considerably speeding up the typing of PRINT lines.

The * is shorthand for REM, and is especially nice when
documenting the purpose of a line. It makes program lines
into multiple statement lines. ’ = :REM.

50 X = Z*C/4 +33 ' THE SECRET EQUATION

The only place ’ can’t be used unaided is in a DATA line,
and that problem can be overcome by actually adding a : to

the DATA line. See lines 100@ and 1¢10 in this program.
10 REM * SEVERE WEATHER ALERT SYMBOIL AS SEEN ON KTIV~TV *

20 H = HORIZONTAL STARTING POSITION

30 ' V = VERTICAL STARTING POSITION

49 CLS ' N = NUMBER OF VERTICAL BLOCKS TO BE SET

50 READ H,V,N : V1 =V READ DATA & STORE V FOR RECALL
60 IF N = 8§ GOTO 60 LOCKING LOOP WHEN OUT OF DATA
76 FOR H = H TO H+2 3 PASSES FOR TRIPLE BLOCK WIDTH

80 FOR V = V TO V+N-1 COUNTS PRINTING OF N BLOCKS

90 SET(H,V) : NEXT V SETS LIGHT BLOCKS & CLOSES LOOP
100 V=Vl : NEXT H : GOTO58 RESETS V TO DATA LINE VALUE

1¢¢0 DATA 102,3,9, 165,106,1, 108,7,3, 111,6,1 =: ' DATA IS IN-
1010 DATA 114,7,3, 117,10,1, 120,3,9, 0,0,0 ¢ ' H,V,N, ORDER

61

PART I

The Period . is of minimal value as a BASIC shorthand
"»«'Qfd., b”t -F ynn vo Jncf fvnnﬂ a new llﬂP thPd ﬂﬂP or

Edited one (next chapter), you can repeat it ‘without typmg
its number by:

9% REM TEST LINE

then type
LIST.

and line 99 will be LISTed. This works even if the program
has been RUN, which can be an aid if you are troubleshoot-
ing a line and don’t want to write down its number. It also
works with a line that keeps popping up due to an error mes-
sage.

The ENTER Key

If you’re the very observant type you will have noticed that
program execution begins when the (S E:] key is pressed.
At Level 1, it began when the ENTER key was released. Try
it on the res1dent program. This becomes important later on
when we’re doing such precision things as setting the Real
Time Clock.

Special Keys

The keyboard is pretty self-explanatory, but there are several
keys we’ve not used yet.

RIGHT ARROW is used as a preset TAB. Go ahead and press
it a few times. It TABs over in increments of 8, starting
with 0. following a @, 8, 16, etc. sequence. Is helpful

when typing a program and you know exactly where
you are going and can indent accordingly.

62

A SHIFT RIGHT ARROW converts the screen display from
64 characters to 32 characters. Try it. The CLEAR key
clears the screen and returns printing to 64 characters
per line.

LEFT ARROW is for people who change their mind a lot.
You've already used it for correcting errors, one at a
time. By pressing the shift key at the same time, you
can wipe out the entire line you just typed.

UP ARROW will be studied in the next 2 chapters.

DOWN ARROW is also called the “linefeed”. It moves the

cursor down to the next line. Its use will be studied in a
later chapter.

NOT

In addition to the logical AND and OR functions, we now
have what is called logical NOT. Here is how it can be used:

1 CLS : PRINT

14 INPUT"ENTER A NUMBER";N
2¢ L = NOT(N>5)

30 IF L = g GOTO 5§

49 PRINT "N WAS NOT GREATER THAN 5"

5¢ PRINT "N WAS GREATER THAN 5" : PRINT

and RUN.

Line 20 is obviously the key one, containing NOT. If the
statement in line 20 is true (namely, that N is NOT larger
than 5) the Computer says the statement is false and makes
the value of L = —1. The test in line 3() then fails.

Chapter 1

LIST

63

PART Il

If, on the other hand, L is larger than 5, it’s because N is
larger than 5, the statement is false and the Computer makes
the value of L = (). True = —1 and Faise = (. it’s just an
extension of the “logical” math we learned in the Level 1
book. (Time for the primal scream, again. All together,
now...)

Order of Operations

When trying to figure out which gets calculated first in the
thick of your “humongous” equation, here’s the pecking
order:

Those operations buried deepest inside the parenthesis get
resolved first. The idea is to clear the parenthesis as quick-
ly as possible. When it all becomes a big tie, here’s the
order:

1. Exponentation — a number raised to a power (studied in
a later chapter).

2. Negation, that is, a number having its sign changed.
Typically, a number multiplied times —1.

. Multiplication, then division: from left to right.

. Addition, then subtraction: from left to right.

. Less than, greater than, equals, less or equal to, greater
or equal to, not equal to: from left to right.

. The logical NOT

. The logical AND

. The logical OR

wn bW

0 ~1 O\

64

Use of Quotes & Semicolons

Technically, it is not necessary to use quotes to close off
many PRINT statements.

19 PRINT"WHERE IS THE END QUOTE?
RUNs just fine. Leave it off at your own peril.

Also, semicolons are not absolutely necessary to separate a
TAB number and the opening quote marks:

19 PRINTAB(18) "OOPS, WE MISSED A SEMICOLON"
RUNs just fine. Leave it off at your own peril.

An interpreter that is “too forgiving” is like an airplane that
is “too forgiving.” It allows you to become sloppy, and when
you really need all the skill you can muster, it is gone from
the lack of practice imposed by its discipline. You are
strongly encouraged not to take these and other ‘“‘cheap”
short-cuts.

INPUT??

When INPUTting several variables in a single INPUT line, if
you fail to input them all, separated by commas, the special
prompt, ?? alerts you to the fact that more DATA must be

INPUT. Enter this program and enter only one number at a
time, followed by f4Yjf3-8 . Watch for the 77 :

19 INPUT A,B,C
and RUN

RUN it again and try to INPUT a letter instead of a number.
It responds with

?REDO

Chapter 1

65

PART Il

There is extensive information in the Appendix dealing with
Error Messages. REDO is reminding you that you can’t
INPUT a string variable into a request for a numeric one.

YES and NO

At Level I (uncorrected for Level II) we had a unique way to
set up a program to receive Y and N responses. It was nice
but definitely not part of mainline BASIC. The old timers
will remember:

19 v=1 : N=§
and away we went.

This is strictly verboten at Level II. (Try it if you don’t
believe.) Very soon we have a series of chapters dealing with
Strings, and there we learn the “standard” way to INPUT for
YES and NO responses.
Optional NEXT
FOR-NEXT loops don’t always have to specify which FOR
you are NEXTing. This can be useful when the loops are nest-
ed.
Type this program:

1 FOR N = 1 TO 5 : PRINT N

28 FOR Q =1 70O 3 : PRINT ;Q

30 FOR R =1 TO 4 : PRINT ,,R

4% NEXT : NEXT : NEXT

For gafety, in loops which can be broken out of with
IF-THEN tests, it is wise to be specific.

An alternate way to be specific is:

4@ NEXT R,Q,N

66

255 Characters per line

Level II permits up to 255 characters in a single program line
— 4 screen widths of 64 characters each. (Don’t ask me to
debug such a line!).

IF-THEN-ELSE

ELSE is an interesting addition to our stable of conditional
branching statements. It allows us an option other than drop-
ping to the next line if a test fails. Try this one:
1 CLS : PRINT
1 INPUT "ENTER A NUMBER";N
29 IF N=g PRINT "ZERO" ELSE PRINT "NOT ZERO"
3¢ PRINT : LIST

and RUN.

Chapter 1

67

PART 01

Optional THEN

Both THEN and GOTO are optional in expressions which do
not require GOing to a line number if the test passes. This
can be useful in long PRINT lines, where PRINTing is the
result if the test passes.

1¢ INPUT "X= ";X

2¢ IF X = f# PRINT "X = g" (works)
but

20 IF X = @ 198 (does not work)

99 END

1¢g PRINT "1@¢ HERE"

Line 20 must read either:

2@ IF X = @ THEN 1080 Note: A comma can re-
place THEN as in
20IF X =0, 100
o1 but
it is highly NOT recom-
zg IF X — g GOTO 1,0ﬂ mended. We've got enuf

problems without adding
that kind of non-standard
notation.

TABbing

The TAB function can handle numbers up through 255. This
has no value in displays printed on the tube, but on big line
printers it is common to PRINT lines up to 132 characters
long.

68

POS(N)

A new and sometimes useful statement allows the Computer
to report back the position of the cursor. This simple
program tells all:

1 CLS : PRINT
19 INPUT"ENTER A NUMBER BETWEEN -18 AND 53";A
20 PRINT TAB(1¢ + A)
37 PRINT POS (N)
49 PRINT"WAS THE NUMBER OF THE NEXT PRINT POSITION"
9% PRINT : LIST
and RUN.
Line 30 is the key one, containing POS. The N inside brack-
ets is just a “dummy”. Most anything else would have
worked as well — but something has to be placed there. POS
reports back any cursor position up thru 63. Numbers

beyond that start over again with zero, as you will find if you
enter a number larger than 53 in the above program.

Chapter 1

69

PART Il

CLOAD?

At Level 11 we are able to check a program on tape against
the one in memory. That way we can be sure of getting a
good “load” before erasing the memory. (Won’t that relieve
some acid indigestion?)

After doing a CSAVE“A”, rewind the tape. Set it up to play,
and type:

CLOAD?"A"
and RUN.
Watch the blinking asterisks. It looks like we are loading in a
program, but are actually just comparing it, character for
character, against what’s already there. We are not erasing or
changing the memory. If they don’t match up for any reason,
the test will stop and the screen read

BAD

“BAD” means we’d better CSAVE the program again, maybe
on a different tape.

If we type just
CLOAD?
without specifying the name of the program, it will check the

first program on the tape against memory, and that’s
normally all we want to do.

70

NOTES

72

“NES, \'D LIKE. To SEE. ONE OF YOUR,

COMPUTERS WITH THE. EDIT FEATURE..,

UH... \TS FOR. A FRIEND OF MINE WHO
MAKES A LOT OF PROGRAM ERRORS.'

IT's OKAX... HE BROUHT
s FRIEND'S CRETT CARD...

P

CHAPTER 2

The Editor

An extraordinarily valuable capability of Level 11 is a feature
called the EDITOR. Its purpose is as simple as its name. It
.lets you “EDIT”, or make changes in a program. The Level
II TRS-80 uses a so-called “‘line editor” since it edits letters
and numbers in only one line at a time. It is so easy to use
but so powerful you’ll never again want to use a computer
without one.

Type in this line (errors and all):

19 PRINT "THIS HEAR ARE SHORE A FLOXY CONFUSER."

and RUN

It should RUN just fine, and if that’s the way you usually
talk you’re probably wondering what all the fuss is about.
If, on the other hand, you wish to change the sentence to
something like

THIS SURE IS A FOXY COMPUTER.

then we need to do some EDITing in line 10.

Now in the “old days” with Level I, we would have to retype
the entire line, hoping we didn’t make more mistakes than we
eliminated. This particular example has so much to change it
might be just as easy to retype it, but our purpose is to
“exercise” the editor, so type:

EDIT 18

and see what happens.

73

PART Il

Hokay ... we get
19

a good (but not perfect) sign it’s in the EDITOR mode.

We know from studying the ‘‘changes” part of Learning
Level II that to get out of this situation we could just hit
. Being in EDITOR isn’t like being in BASIC. We
only use when we are done EDITing and want to
return to BASIC. The EDITOR is not part of BASIC. It’s a
special feature we call up from BASIC using the word EDIT.

Hit the L Key.
The screen now shows:

19 PRINT "THIS HEAR ARE SHORE A FLOXY CONFUSER."

19

By Typing L we LISTed the line being edited. Then the
cursor returned back where we started — still in EDITOR.

Since we want line 10 to read THIS SURE IS A FOXY
COMPUTER, let’s first get rid of the word HEAR. Tap the
space bar slowly and watch it print one new character each
time. After you get to

1¢ PRINT "THIS

press the letter D (which stands for DELETE) 5 times. It
will add to the screen:

“Holw DO YOU REMONE A SPACE
1 IHIIRIIALIRL F T ISNT THERE
I 11TH!IE!IIATLIR! o BeaiNn WTHP"

Between each pair of exclamation marks is the letter or space
which was DELETED. Press L again and let’s list the line and
see what it looks like now. But pressing L once just LISTs
the rest of the line. Pressing it a second time lists the entire
line as it now exists after EDITing. Shore enuf, the word
“HEAR?” and the space which preceeded it are gone.

74

Chapter 2

By the way, here are 2 additional ways to space forward and
backward — while still in the EDIT mode.

1. To space forward 5 spaces (or other number), you can
type 5 and then press the space bar.

2. To BACKspace S spaces (or other number), you can
type 5 <« .

Let’s now change the word ARE to IS, and learn another
EDITing trick in the process. The EDIT letter S stands for
SEARCH. Instead of using the space bar and tapping over to
the A in ARE, let’s let the Computer SEARCH for the letter
A. As we look at line 10 from left to right, we see that the A
in ARE is the first A in the line, so type:

SA (meaning, search for the first A)

and

1¢ PRINT "THIS

is displayed
Now we just learned that we can get rid of ARE by typing D
(for DELETE) 3 times in a row, but it’s quicker and easier to

just type

4D (do it) it means ‘“‘delete the next 4 characters™.
(ARE and the space following it)

The line now reads

14 PRINT"THIS !ARE !
Let’s type a couple of L’s to see what we have now:

19 PRINT"THIS SHORE A FLOXY CONFUSER."
We know we have to insert the word IS between THIS and
SHORE. Worded another way, we have to insert a new word

between the first two S’s. Any ideas? How about SEARCH-
ing for the 2nd S? We won’t print it — just search for it.

75

PART I

Type
23S (search for the 2nd S)
and the screen reads
19 PRINT"THIS _
Now we can use the INSERT feature. Very carefully, and

only once (since nothing will show on the screen), type L

You have activated INSERT. Type the letters
IS
and press the space bar once

The screen now reads

1§ PRINT"THIS IS _

We’ve inserted the IS and a space following it, but must now
leave the INSERT mode. We can always onpletely bail out
of the EDITor at any time by hitting[[EYi{33], but since we
have a lot more work to do on this line, we instead press
t=8 and the up-arrow 4 key at the same time. As
with pressmg I, nothing shows on the screen. Now press L to
see what we’ve got left.

1¢ PRINT "THIS IS SHORE A FLOXY CONFUSER."

19
If it seems like we’re going slowly, you're right! The EDITOR
is so important but so simple we may as well learn it right the
first time. You know the old story, ‘‘there’s never time to do
it right the first time, but always time to do it over.”

76

Chapter 2

Forging onward . .. let’s use the next feature called C (for
CHANGE, or exchange). We can change the word SHORE to
SURE by DELETing the H and CHANGING the O to a U.
So, let’s type

2SH to SEARCH for the 2nd H

19 PRINT "THIS IS S_
and D to DELETE it.

Very carefully, type a single
C (it will not show on the screen)

This permits us to change the next letter to some other letter
or character. Type

U
and then

L twice to get a fresh new line to see what’s left.
19 PRINT"THIS IS SURE A FLOXY CONFUSER."

Think for a moment. How can we change FLOXY to FOXY?

How about
SL to SEARCH for the first L, then
D to DELETE it, then
L twice to see what the line now looks like.

1¢ PRINT"THIS IS SURE A FOXY CONFUSER."

19

77

PART I

Only one more word to change. Should we go into the word
CONFUSER and DELETE the N & F and insert P & U?
Would it be easier to just CHANGE those letters instead?
What about the S? Think about it.

Of course! It takes fewer steps to CHANGE than to DELETE
and then INSERT, so we always CHANGE when possible.
Perform this sequence:

28N Search for the second N (the first one is in
PRINT)

2C prepare to CHANGE the next 2 letters
MP the 2 new letters

Ss SEARCH for the next S

C prepare to CHANGE one letter
T the new letter
L finish listing the line so we can look at it.

Whew! Finally done. But wait — we’re still in EDITOR.
Press {31328 , see the prompt, and know that we’re back
in BASIC. RUN it to be sure.

Despite our taking each editing task one step at a time, it is
possible to make all these EDITing changes in only one pass
through the line. The purpose of an editor is to save time,

Since you’re now the “ace of the base” when it comes to fly-
ing this EDITOR, let’s type

NEW
and type in old line 1@ again, then EDIT it in one pass.
14 PRINT"THIS HEAR ARE SHORE A FLOXY CONFUSER."

Follow with me now, step by step. If you blow it, start all
over by retyping line 10.

SEDIT18

78

2SH
8D
I

IS

to LIST it

SEARCH for 2nd H
DELETE next 8 characters
prepare for INSERT

the new letters

I:l[AE A terminate INSERT

SH

b

C

U

SL

D

SN

2C

MP

SS

C

T

LL

SEARCH for next H
DELETE the H
CHANGE next character
the new character
SEARCH for the next L
DELETE it

SEARCH for the next N
CHANGE next 2 characters
the new characters
SEARCH for the next S
CHANGE next character

the new character

to LIST the edited program for inspection

S\ Fi3:8 to leave the EDITor mode.

Pretty slick, huh? With some practice it will take you less
than 30 seconds. From here on, you should always use the
EDITOR for changes, especially in long lines. Compare the
time it would take to change only one letter or numberin a
very long line by retyping that line, with the speed of doing

it with the EDITOR.

Chapter 2

79

80

\}

CAN APPRECIATE YOUR. ABILITY To EDIT
COMPUTER. PROGRAMS BUT cAN oL LEAVE

THE NEWSPAPER. ALONE UNTIL AFTER
| ReAD IT?"

CHAPTER 3

The Editor—Second Semester

You could probably live happily ever after thinking you were
in fat city with what you learned in the previous chapter,
but the EDITOR has a number of other features which are
handy to use when the occasion arises. One which will cer-
tainly arise is typified by the following lines. Erase the
memory and type:

1g PRIMT "THAT ISN'T HOW YOU SPELL PRINT" (NOTE PRIMT is deliber-

ately misspelled)

and RUN

?SN ERROR IN 14

READY

19
means there is a syntax error in line 1¢. The Computer is
telling us WHAT? — [don’t understand what you are saying
and automatically putting us in the EDITOR mode at the line
which contains the error. This always happens in Level 11
when there is a syntax error. (More on Syntax and other

errors in the next two chapters.) Meanwhile, proceed normal-
ly by typing:

L to list the line

SM to find the first M

CN to CHANGE it to an N
L to list for final look

=) JI=138 to return to BASIC

81

PARTI0

While we’re at it, let’s examine another simple but sometimes
troublesome point. Let’s go back into EDIT and find the
first P in the program.

EDIT 18
19

SP
what happened . . .?

Isn’t the first P in the word PRINT? Yes, but when the Com-
puter starts out in the EDIT mode, the cursor positions itself
in place of the first letter of the first word, so it was already
at the first P. Our SP searched out the NEXT P, which was in
SPELL. Now you know.

There is a third and often convenient way to enter EDIT,
particularly when experimenting and changing a value over
and over in the same line. Type in this program:

19 REM * TESTING EDIT. *
20 FOR N = 1 TO 48¢ : NEXT N

99 END

Now let’s suppose we are trying to experimentally determine
how many FOR-NEXT loops our specific computer must go
thru to burn up exactly one second. We know it’s somewhere
around 400, but will have to “cut and try” with different
numbers many times, checking against a stopwatch to really
get close.

RUN the program first, then

EDIT 28
and change the Amm tn any athaer numher and RIIN again

To get back into the EDITOR to change line 2@ again it is

J
not necessary to EDIT 2 again. The Computer remembers

1

which line you last EDITed. Simply type

EDIT.(the . means ‘““the last line edited”)

82

Chapter 3

This nice feature, while convenient, is a bit squirrelly. If you
type a LIST, RUN more than once, or do any of a number of
normal things, the Computer forgets where you last EDITed.
It sort of runs out of steam at that point and throws you into
EDIT at the last line of the program. Type:

LIST Eiuas

then

EDIT. {3 1135

and you’ll see.
99

Q if for Quit (without changes)

We know that whenever we type RUN, all values are initializ-
ed to zero, but hold their last value after the RUN. It turns
out that whenever we do an EDIT, the values are also reset to
zero. This can be a disadvantage if we are in the process of
troubleshooting and are automatically thrown into EDIT by
a syntax error. Let’s add a line to the resident program to
demonstrate the point:

5¢ PRIMT N (NOTE: PRIMT misspell-

ing deliberate)
RUN the program and let it crash.

?SN ERROR IN 5@

Don’t make any changes in 50 at this time, but just exit the
EDITOR by hitting §31{=:8 .

Now check the value of N in memory by typing PRINT N at
the command level.

() is the value, indicating it has been initialized.

RUN the program again, crashing at 5@ again, but exit the
EDITOR by typing a simple:

Q which stands for “quit without changes”

83

PART I

Then

PRINT N Shows its value to be

431 (or one more than the number you finally ended

up with for N)

This may not really be all that profound, but if you’re chas-
ing a real ornery bug and want to check the values of the
variables before doing any EDITing, Q is the way to do it. A
fast

EDIT

will bring back the EDITOR at the offending line without
you even having to write down its number or having to
remember it.

Q also lets you escape from EDIT if you change your mind
and don’t really wani to make those changes you already
did.

(E)is for END and EXIT

E is the opposite of Q. When you are satisfied with the
changes, type E and you’re back in BASIC. E does the same
thing as hitting g3¥gd:} .

(A) is for ABORT

If, after making some changes via the EDITOR and looking at
them with an L you decide you don’t want to make them,
type an A. The changes, regardless how drastic, are not final
until you exit the EDITOR, and A will kick them all out and

let you start over again. Type L, following the A, to see what
the original line looks like again.

EDIT 2¢
and make a few changes. Enter an A and then L
to get the feel for it. Be sure if you enter
INSERT that you exit it first or the A won’t
work.

84

=]

K is for KILL

K is a combination of SEARCH AND DELETE, starting with
the beginning of the line. Type:

EDIT 2@ then
KT then
LL to see what happened

It KILLED everything up to (but not including) the first T.
“Take it all back™ by typing an A, then L, then try:

2KN then

LL and see that everything up to the 2nd N was
KILLED.

AL to “take it all back”

H is for HACK

HACK is sort of the mirror image of KILL in that it
DELETEs everything from the cursor to the end of the line.
It just “hacks” off the end of the line, without showing it
on the screen, AND goes into the INSERT mode. Nice if you
need it, and great for “hackers”.

If you don’t need to go into the INSERT mode, the old tradi-
tional “99D”, meaning DELETE the next 99 characters
(which is usually more than enough to erase the rest of the
line), is the best approach.

To implement HACK, SEARCH for the starting point, then
H off the end of the line, and type the new ending in its
place.

Chapter 3

85

PARTII

X is to eXtend

Suppose you wanted to go to the end of a line and add
some more to it — to extend it. You can type X which also
throws the EDITOR into INSERT. X is a one-step replace-
ment for:

S Which searches for the carriage return
I Puts EDITOR into Insert

Give it a try on one of the program lines.

That’s —30—

With steady but persistent practice, you will become very
skillful at using the EDITOR. It will in turn reward you
handsomely with great savings in time and frustration.

“IT SAVS SOMETHING HERE ABOUT A SYNTAX..
WHEN YoU COME TO THINK ABOUT IT, THEY'E
TAXED JUST ABOUT EVERYTHING ELSE!"

B

" Those ARE TRES
THAT WiLL ReALLY

WL You!*
AN

Q7

86

7 /,/ —

NOTES

88

(!
.. THERE Now, MR. AMBLER./ THAT SHouLD
TAKE CARE OF ALL THOSE BUS YOUR WIFE
SAS VOURE ALWANS COMPLAINING ABOUT!”

CHAPTER 4

L.
Chasing Bugs
We saw in the previous two Chapters that the EDITOR is a
powerful aid in changing programs once we find out what is
wrong. In this and the next Chapter we will learn how to use
the built-in diagnostic tools to help hunt down the actual
errors.

TRON/TROFF

The simplicity but power of TRON/TROFF is awesome.
Enter this program:

19 FORN = 1 TO 5
28 PRINT "SEE TRON RUN"
30 NEXT N
99 END
and RUN, to be sure it’s OK.

Now, type TRON (which stands for TRacer ON), then RUN,
The screen should say:

<1@><2@>SEE TRON RUN

<3@><2@>SEE TRON RUN

<3@><2@>SEE TRON RUN

<3@><2@>SEE TRON RUN

<3@><2@>SEE TRON RUN

<3@><99>
What does it mean?
The numbers between the< > are the program line num-
bers. TRON traces the sequence of program execution and

prints each line number as it is “hit”’. How’s that for power-
ful?

89

PART I

Now type TROFF (for TRacer OFF) and RUN.
The Tracing has stopped and

SEE TRON RUN

SEE TRON RUN

SEE TRON RUN

SEE TRON RUN

SEE TRON RUN

appears in the usual way. It’s the very essence of
simplicity.

Since TRON and TROFF can be used as program statements
as well as commands, the possibilities for troubleshooting
program logic are endless. Our little demonsiration program
is short and error-free, but by adding the following lines and
RUNning, you will see another way tracing is used.

5 TRON

35 TROFF

Imagine its value in a program with dozens or hundreds of
program lines all tangled up with IF-THEN’s, ON-GOTO’s,
etc. The errors that will drive you wild are those you can t
see. Although all characters appear to be upper-case on the
screen, it ain’t necessarily so. If you press the Elalla8 key
when typing a letter, the Computer will store it as a iower-
case letter (just the opposite of a regular typewriter). The
Computer has been trained to respond to both upper and
lower case letters in many cases, as in the word PRINT.

Enter a 10 (line 10) and then hold a
and type the rest of this line:

19 PRINT “HELLO THERE .

and continue to hold
typing RUN,

90

Chapter 4

Worked just fine, didn’t it. We don’t use those lower case
letters for anything else anyway.

Now enter this program, but hold down the §Jf[lzg@ key as
you type the @.

1 CLS
1§ PRINT@550, "MISTAKE HERE"
and RUN.

Aha! The screen shows a plain old @ but the Computer
doesn’t recognize it, sends us an error message and throws us
to the EDITOR.

An L displays a fine looking program line. Do a

sa (without the ElAH key) SHIFT @

and watch it SEARCH right over the @. Try again but hold
down ®§Jillg@# . It snags it, and a simple

ca (without Eillag)

changes it to what we need. The above is a very common
error since we use Elgl|HE @ so often to freeze listings and
runs.

The EDITOR is a great tool to spot such errors, especially in
very long lines where retyping would be tedious or
hazardous. Simply step through the entire line SEARCHing
for each character in turn. If you hit a lower-case character,
the SEARCH will pass right over it, and you’ve found the
bug. Try it! It really works.

Another nasty little invisible bug can be caused by hitting the
down arrow (¥) key by accident when typing in a program
line or when the EDITOR is in INSERT mode.

The result of either can be that parts of the program are
scattered all over the screen. If severe enough, even a LISTing
won’t divulge the exact problem. Often the best solution is
to just retype the offending line.

91

PARTII

Clear the memory with NEW, then type

1§ PRINT "DOWN ARROWY ¥ ¥ ¥ ¥ Y¥DILEMMA"
and experiment with the down arrow in both
AUTO and EDITOR modes and with and with-
out the izl key
As a little aside, the down arrow can be used to frustrate and
slow down ‘“program-peekers’” who insist on LISTing your
favorite program to find the secret formula.
Type in this program:
19 REM * SECRET EQUATION HIDER *
2§ REM * THE NEXT LINE HAS THE EQUATION *
3¢ X=1234567890/987654321 + 1234567890 - 9876543218

(insert 16 down arrows before pressing

49 PRINT"THE ANSWER IS";X
5¢ PRINT"MISSED THE SECRET FORMULA, DIDN'T YOU!"

99 END

and RUN

Then LIST. The LISTing at line 30 should whiz by so fast
you can’t read it. The only way to really freeze and analyze it
is to first discover the line number which has the hidden
arrows, then go into EDITOR there and step through each
character one at a time. It’s not at all foolproof, but slows
the interloper down. Makes it even harder if you give the
“eerret” line an nmusnal line number that’s harder to guess.

92

NOTES

94

“Boy WAS THAT DATE EVER A TM!
SHE SAD | oN SEEING HER. BECAUSE
| MoE A we!’

¢// y

0
/ //////// ’///'////////////z//,
d , ¥ 2&??0\?0“‘;\:‘2
D . 5 R\“l"

CHAPTER 5

Chasing The Errors

In Level I there were only 3 error messages — WHAT, HOW
and SORRY. WHAT worked pretty well, too, since it not
only identified the line number containing the error, but
often placed a question mark next to the offending character.
When it came to HOW, however, some much stronger medi-
cine was needed to help find those elusive errors.

Level II contains 23 different error messages. We’ll list them

for your reference. There are so many we need a separate
chapter plus an Appendix just to understand what they mean.

Let’s quietly tiptoe into the hall of errors by typing this little
test program:

1 CLS

1% REM * TESTING ERROR CODES *

2 INPUT"WHAT ERROR CODE NUMBER SHALL WE CHECK";N

39 ERROR N

RUN the program a number of times, (entering numbers
between 1 and 23), forcing the Computer to print out the
abbreviation code for various types of errors. Don’t waste
time trying to understand them now. You can study them in
detail in the Appendix.

The only new word above is in line 3. ERROR has little real
use in life except as above, printing the Error Code from its
code number.

Further, Error Codes are not necessarily interchangeable
between different interpreters. This is strictly an “in-house”
thing, tho the principle of Error Codes is universal.

95

PARTID

96

LEVEL II Error Codes

Code Abbreviation | Error

1 NF NEXT without FOR

2 SN Syntax error

3 RG Return without GOSUB
4 oD Out of data

5 FC Illegal function call

6 ov Overflow

7 OM Out of memory

8 UL Undefined line

9 BS Subscript out of range
10 DD Redimensioned array
11 /0 Division by zero

12 ID Illegal direct

13 ™ Type mismatch

14 0S Out of string space

15 LS String too long

16 ST String formula too complex
17 CN Can’t continue

18 NR NO RESUME

19 RW RESUME without error
20 UE Unprintable error

21 MO Missing operand

22 FD Bad file data

23 L3 Disk BASIC only

Chapter 5

Error Trapping

The ON ERROR GOTO statement is of more value, and you
should use it when you think you’re on the trail of a specific
type of error, but are not sure.

Suppose you suspect that someplace in the program there is
an accidental division by zero, and it’s goofing up the results.
Type in this test program:

9
20
3g
49
5¢
64
79

99

ON ERROR GOTO 78

PRINT

INPUT"WHAT NUMBER SHALL WE DIVIDE 148 BY";N
A = 199/N

PRINT"1¢# DIVIDED BY";N;"=";A

GOTO 12

PRINT"DIVISION BY ZERO IS ILLEGAL - MAYBE
EVEN IMPOSSIBLE!"

END and RUN. Try positive and negative values,
then try Q.

The ON ERROR GOTO is acting much as our old friend ON
X GOTO did, so there are no big surprises here.

Change line 1) to a REM line and try assorted values, ending
with @. Again, no big surprise. An error message was delivered
pinpointing both the nature and location of the error, and
execution was terminated with a READY.

Change line 10 back to

14 ON ERROR GOTO 7§

and also add

8¢ RESUME 24

and RUN with various values, including @.

97

PART 00

Notice that even tho the Computer was forced to operate
with an error (division by zero), execution did not terminate.
The error message was delivered and the Computer kept on
going, thanks to RESUME. This is the essence of error trap-
ping — identifying the error without “crashing” the program.
There may be several interrelated errors that can be found
easily only by continuing the RUN.

Change line 80 to
80 RESUME NEXT

and RUN.

Tho the results are similar to those with RESUME 20,
there is a subtle difference. RESUME NEXT causes execution
to resume at the NEXT line immediately following the line
which made the error. Thus line 50 gets printed, even tho
(in this case) it gives a wrong answer. RESUME 20 directed
execution to a very specific line. With a little head-scratching
you can quickly see how both of these features can be used
in difficult debugging situations.

Next, change line 8 to simply
84 RESUME
and RUN.
As you see, RESUME by itself (or RESUME 0) sends execu-
tion back to the line in which the error is being made. (If you
are having difficulty visualizing what is taking place in any of

these examples, just turn on TRON and it becomes as easy
as following a road map.)

98

More variations on the theme

Change line 8() back to
8¢ RESUME 2§
and add line 75

75 PRINT"ERROR IS IN LINE #";ERL

and RUN

ERL is a “reserved” word that prints the line number in
which the error occurs. For my money, this little jewel in
combination with ON ERROR GOTO to snag ’em, and
RESUME NEXT (or RESUME line number) to keep the pro-
gram from crashing, makes this whole hassle worthwhile.

A final esoteric touch may be obtained by adding the ERR
(not ERL) statement. ERR produces a number which when
divided by 2 and increased by 1 (oh, swell) brings us back to
the error code number. We’ve gone almost full cycle. Add
line 77

77 PRINT"AND ERROR CODE IS";ERR/2+1
and RUN.

Finally, to complete this loop begun several pages ago, add

78 PRINT"WHICH STANDS FOR" : ERROR ERR/2+1

and RUN.

Which brings us back to DO, a deer, a female deer ... (it
must be time to stop — getting too silly!)

We should note in passing that when using ERR, strange
moonbeams sometimes affect the Computer. The interpreter
temporarily takes on slightly different characteristics at the
command level. We deliberately won’t elaborate on them
here as they don’t seem harmful and will probably be ironed
out in future versions of the interpreter. Just tho’t it should
be mentioned tho, lest you suspect the saucers have been
flying again.

Chapter 5

99

PART I

A very ueful application of the error traps we’ve learned
allows the program to automatically LIST the program if
there is an error. It requires the addition of 2 temporary pro-
gram lines using all 3 ERROR statements.

From Appendix A (which covers the Error messages) comes
the example of what happens when there is an error in a
FOR-NEXT loop. Type in:

19 FOR A = 1 TO 5
2@ PRINT "THERE IS NO 'NEXT A'"
38 NEXT Z

and RUN.

In this simple program the Computer responds with

?NF ERROR IN 38.

There is a FOR-NEXT error in LINE 3@. By adding the fol-
lowing lines we can approximate the same result, plus cause
an automatic program LISTing:

5 ON ERROR GOTO 184
to ‘set’ the error trap

99 END
to END execution if all is well

148 PRINT ERL,ERR/2+1 : LIST
to print the line # with the error, the error code
(which can be found in Appendix A) and LIST
the program (or LIST ##-# #).

Try this routine. If all is well in the program, nothing will

seem different. If there is an error, it will be trapped as you
can see on the screen.

100

Wow — just like 7he BASIC Handbook!

Appendix A contains the results of a lot of effort expended
to help you understand what the 23 error messages really
mean. [t follows the style of The BASIC Handbook (by your
friendly author) and is meant to be a high quality reference
on TRS-80 Error Codes.

Tho readers traditionally do not read appendices, your assign-
ment is do a Go-Sub to Appendix A and at least carefully
skim its contents. Really serious students of the TRS-80 will
take the time to make Appendix A a separate study lesson,
going through each of the sample programs. An in-depth
knowledge for these important diagnostic tools will pay
dividends far beyond the time taken to understand them.

Chapter 5

101

"UEY MAN! LET ME GET LEROY OVER HERE]
HE WAS ALWAYS ©ooD AT BREAKING INTO AUTOS,
LETS SEE (F HE CAN BReAK ouT oF IT//

INFORMATION PLEASE
FOR. SAN QUENTYN...

A B
‘/‘ -

Rulsawos

102

CHAPTER 6

AUTOmatic Line Numbering

They Laughed When I Sat Down At The Computer To Play

As the artist approaches a blank canvass with only a gleam in
his eye, so you approach your empty Computer and type:

AUTO

the screen returns

4

Are we in EDITOR??? It looks like it! But we’re not. We are
in an AUTOmatic line numbering mode. Type:

PRINT"WHAT IS GOING ON HERE?" [N

and

29
pops up on the screen.

Type:

PRINT"THIS IS RIDICULOUS."
and

39
appears.

Well, it’s obvious at this point that we’re being fed the new
line numbers as fast as we need them. Hit the §3/I{=:8 key a
few more times and watch them jump. Okay — how do we

get OUT of AUTO? Hit the fE:T3V&key.

103

PART 01

Type LIST and see that only those line numbers you actually
nsed (10 and 20) contain anything.

Type NEW, then
AUTO 1009,200

Hit the key a half dozen times or so and the
pattern becomes immediately clear. The “10Q@** established
the beginning line number, and the “20(” determined the
spacing between lines.

Hitl:15Udand type NEW again, then
AUTO 1000

and

a few times.

f1:19.L,9 out of AUTO and start again with

AUTO 380884,1

and a few E0Ai3aes. Very handy with very big
numbers.

How about

AUTO 17,4
You get the idea. It is even possible to use AUTO as a state-
ment in a program, tho I can’t think of any reasonable excuse

for putting it there. Can you?

Unless you specify otherwise, AUTO will always begin on
line 19 and always space the lines 1{) numbers apart.

104

One important caution. Whenever you get fooling with some-
thing that’s automatic, a degree of personal control is lost.
Enter this quickie:

19 PRINT"NOW WHAT ARE WE UP TO?"

2@ PRINT"BEATS ME!"

99 END
Then type

AUTO

... oh, oh! What does the

18* mean?
The asterisk means that there is already a line number 10,
and if you hit §3Ypad;§ it will erase the existing line 10.
That’s fine if it’s what you want. Otherwise, you MUST
=iV €in order to escape.
The AUTO command is not just for the lazy, it can be a real
time saver (and save mental energy as well). For the touch

typist who doesn’t have to look at the screen when typing
fast, it’s a real delight.

Chapter 6

105

"THIS NEXT PART IS VERY IMPORTANT
T CAN CHANGE YOUR. COMPUTER INTO AN
OBEDIENT GIANT OR. A MALEVOLENT MONSTER..'

“Do Yoo WHPE T
coulD Riwe A copy
OF THE MALEVOLENT MONSTE]

&g

106

Part III

Advanced Concepts of
LEVEL II BASIC

107

108

"DAD SAD (T WOULD TAKE A LOT OF WORK.
To CONNERT THESE LEVEL | TAPES To
LEVEL. U] SHUcks, ALL | HAD To Do
WAS PENCIL [N ANOTKER. ‘I’ oN THESE
CASSETTE LABELS/

"
OkAV! Nawr o To
"€ NexT cunpeg!

&%

CHAPTER 7
Converting Programs From
LEVEL I
to
LEVEL II

This chapter concentrates on converting existing Level I
programs to Level II BASIC. Radio Shack furnishes a free
set of tapes containing conversion programs for this purpose.
Our task here is to learn how to use them to convert our old
Level I tapes to Level II tapes.

If you are starting right out at Level II and have no Level 1
tapes to convert, you may skip this Chapter entirely, and
proceed directly to the next one. You got plenty of practice
changing the programs at the end of the Level I Manual to
Level II.

Since we do not know the whole of Level II BASIC at this
time, we are not going to make major program logic changes,
only syntax changes. The idea is to make the programs RUN.
In some cases, particularly where subroutines can be replaced
with new intrinsic functions, you might wish to make such
replacements. But, best you wait until we have studied them
first . . .

Loading In The Program Conversion Tape

Since the conversion tape is to be loaded into a Level II
machine, set up the recorder the same as for any other Level
II tape. The volume control should be at about 5 (or wher-
ever it works best).

109

PART 000

Turn the Computer completely OFF using the POWER
switch on the back: let it rest for a few seconds, then turn

it back ON. It will then ask

MEMORY SIZE?

If you have 16K of RAM you respond with

31477 [ENERD

If you have 4K of RAM, type

The reason for engaging in this mysterious behavior is to tem-
porarily set aside a number of memory cells to hold the
special conversion program. It could be loaded in without
this “set-aside, but if for some reason you have to type
NEW (or need to convert a second Level I tape), the conver-
sion program itself would be destroyed.

Now that memory space has been reserved for the conversion
program, it takes some sleight of hand to get it loaded from
the tape into the Computer. Following the usual READY and

prompt, type

sYSTEM [ENRi=:8

The Computer will come back with

%D

after which you type

)N\l ENTER
{CONV icthe name nf the converdinn nrooram A
Look carefuily at the PROGRAM CONVERSION TAPE. One
side is for Computers with 16K of RAM, the other for those
with 4K. Insert it in the recorder, correct side up (rewind it
if necessary), and press the PLAY button. (Double-check to
see that the volume is set at about 5.)

110

Chapter 7

If you did everything right so far and the lights didn’t dim,
the tape should load into the Computer. (All this and we
didn’t even type CLOAD. Sort of makes you feel like you’ve
lost control, doesn’t it.)

It may take many seconds for the asterisks to start blinking
in the upper right corner of the screen, but don’t give up
until the tape stops. If for some reason it doesn’t ‘“‘take”,
rewind the tape and try again. Try “tweaking” the volume
control for the next try. If that doesn’t work, clean the
heads. Wiggle the cables. Move the power supply? Trade in
the whole works for an IBM 3707 Should there be trouble
after several attempts, it’s best to shut the Computer off and
start the entire cycle over from the beginning. Once you get
the hang of this, it goes pretty fast.

We’ll assume the best — it loaded. Again the strange prompt
returns, following which you must type some more heiro-
glyphics: 631478 (for 16K machines), or /19199 (for 4K
machines)

¢ M)
*2/31478 & /fiﬁ\

2 ’//’//////////// Wipittssrrmms

/ //
///////4 /

The Computer will come back and say:

LOAD TAPE & PRESS ENTER

What it’s really trying to say is:

“Take one of your old Level I tapes which contains a pro-
gram you want to convert to Level II and put it in the record-
er, just like you usually do. Be sure it is rewound, and set the
volume control to about 8, or wherever you usually set it for
loading Level 1. Press the PLAY button on the recorder, then

pressS N =;8."

The Level I tape should now load into your Level Il machine,
thinking it’s a Level I. We’ve got the machine all faked out,
and are safe as long as someone doesn’t bump the power
plug.

“HoLD o
‘LL leﬁ"'

*RBE.

111

PART 000

If it doesn’t like the tape we feed it, the message
I.LOAD TAPE & PRESS ENTER

is displayed again, and we try again, tweaking the volume
control a bit.

If the Level I program was too long to fit in the remaining
memory space (or the recording itself is a bit squirrely) the
Computer says:

PROGRAM TOO LONG
and returns to Level II BASIC with a READY.

This can happen even tho you might have used the same
program on the same machine prior to upgrading it to Level
I1. Remember, we have about 1500 bytes of RAM set-aside
to hold the CONVersion program, so there’s not as much
usable space as there was before,

If the program really is too long, there are several options:

1. If using a 4K machine, find a friend with a 16K
version.

2. Take your bag of gold to the candy store for some
more RAM.

3. If using a 16K machine, take your banker to the
candy store for more RAM.

4. Write shorter programs.

5. Take up stamp collecting.

Assuming all went well however, the screen will read:

PRESS ENTER TO BEGIN

Now what that really means is: “Press the §3)RE3s] key to
stort the COMVercion mrogrom running” The CONVercion
program is not a BASIC program, it’s written in machine
language. A bunch of ones and zero’s talking gibberish to
each other. That’s why we didn’t get to type RUN.

112

Chapter 7

(If you listen very carefully you can hear the corn sheller run-
ning as the Level I program is being more or less converted to
Level I1.)

Now the screen says:

CONVERSION COMPLETE

PRESS ENTER TO CONTINUE

Go ahead, press {3¥4{3z}], and the Computer responds with

Well — that’s comforting. At least we know we are back in
BASIC (Level II.) The program has been mostly converted,
and we can finish the job by adding missing lines, editing out
gliches and nonsense characters, and deleting such unneces-
sary things as trig subroutines. We have many more “‘intrinsic”
functions in Level II and can scrap the special subroutines
from Level L.

Sure, It Will Convert All Your Old Tapes
(... well, almost)

If the program was very simple it may not need any editing,
but chances are you will have to make some changes to
complete the conversion. Here is a sample of things to look
for:

1. Observe that all the old “‘shorthand” words (like P.) have
been changed to “longhand”. That means the program
will require more memory to hold the longer words. In
addition, if you have already used very long lines, tight-
ly packed, they may now overflow and be too long. If
so, extra lines can be added to take up the overflow.

2. The old PRINT AT graphic statements were changed to
PRINT@. No problem here, but Level I was tolerant and
allowed either a comma (,) or a semi-colon (;) after
PRINT AT. Level II allows only the comma. Semi-
colons will have to be changed.

113

PART 000

3. Conversely, commas used after Level I PRINT TAB’s
have to be changed to semicolons or omitted entirely.

4, Level I did not require DIMensioning of arrays. Level 11
does, if they contain more than 11 elements (§-10). A
DIM statement will have to be added for each such
array.

5. SET (127,47) cannot be exceeded in Level II. When
they were exceeded in lLevel I they just started over
again with zero. Edit or rewrite as necessary.

6. Level II executes programs faster than Level I. Numbers
used for timing in FOR-NEXT loops will have to be
changed. Run your own tests.

7. Each subroutine should be examined to see if there is
an intrinsic function available which does the same thing
much faster and in less space.

8. Level II does not allow a variable to be input as a value
for another variable. A little rewriting will take care of
this one.

After The Ball Is Over

After all this falderall, the program conversion is complete.
When the program RUNSs to your satisfaction, you’ll want to
save it again on tape. Some users wish to have both Level I
and II versions of their programs, leaving I on one side of a
cassette recording and II on the flip side. Various coding
schemes are helpful, such as colored stickers, ‘‘screw heads
down” {the screws holding the tapes together) for Level 1,
“screw heads up” for Level II, etc. If you don’t care to keep
Level I programs around, the above is all just academic.

Anyhoo ... we do want to save the Level Il version. Set up
the recorder as usual. CSAVE TA” the program on cassette
several times, for safety. CLOAD? the tape (with the volume
control back at 5) as a double-check. If all is well, mission
accomplished.

114

To Convert the Next Taped Program

If you didn’t shut off the Computer, the CONVersion pro-
gram is still in there. So is the converted BASIC program.
Type NEW to sweep out the BASIC program. The CONVer-
sion program is safe in the protected area set-aside.

To prepare the Computer to accept the next Level I tape for
conversion we again type:

SYSTEM [=\0i=;1

*2 /31478 (Va0

(or /19199 EENgd:f if 4K RAM)

and follow the instructions on the screen as before. Be sure
to adjust the volume to match the tape being played.

CONVERTING DATA STORAGE TAPES

Level I had a limited Cassette DATA File capability. Cassette
DATA tapes are accessed by programs, which are on another
tape and also have to be converted. See Appendix B of the
Level I User’s Manual for more information. (Extra copies of
the Manual are available through all Radio Shack stores as
Catalog #62-2016 at the token price of §5.95.)

There is serious question whether the hassle of converting
DATA tapes is worth the effort. If you have the DATA
written down somewhere it may be easier to re-enter’it via
the keyboard using your Level I control program converted
to Level II. If you don’t have the DATA written down, write
a short program in Level I which will read the DATA off tape
and present it on the screen or printer for copying. For those
readers who are brutes for punishment, we’ll go through the

DATA tape conversion procedure anyway. Rt

Using the procedures discussed in the first section, convert
your Control Program tape to Level II. Test it on some
dummy DATA to make sure it’s sound.

Chapter 7

"7 MUST HAYE Bean CONVERTED/!
1 L00KS JUST Likg
WS oTheR. TAPES! ”

G

115

PART 01

Prepare the Computer to accept the Level [DATA tapes by

yping
SYSTEM
which calls up
*7?
and we answer with DCONV

DCONV is the name of the DataCONVersion program.
Both sides of this tape are the same so we needn’t worry
about computer memory size. The recorder should be set
to about 5. Pop in the tape, press the PLAY key, and watch
the asterisks.

When the prompt returns
*2
type /17152
The Computer will say
TO READ IN DATA
LOAD THE LEVEL-I TAPE & PRESS ENTER
This means, insert your old Level I DATA tape in the record-

er. Change the volume nrol to about 8 and press the
PLAY key; then press {3 I

After the first short block of DATA has been loaded into the
Computer (watch the asterisks and listen for the clicking
relay), the screen will direct:

TO RECORD DATA,
LOAD THE LEVEL-II TAPE & PRESS ENTER

Freely translated, this says you should remove the Level I
tape now in the recorder, being careful not to let the tape
move. Put a fresh e in the recorder andset it up to record.
Then — press g4

116

Following a brief recording interlude, the screen will clear
and say

IF YOU HAVE MORE DATA ON THE LEVEL-I TAPE,

RELOAD IT (DO NOT REWIND) AND TYPE 1,
ELSE TYPE 2

Translation: “You have now converted one short block of
DATA from Level I to Level II. Would you care to try again?
If so, carefully remove the Level II tape now in the recorder,
marking the cassette so you don’t get it all mixed up with the
others. Insert the old original Level I DATA tape back into
the recorder, press the PLAY button, then type the number
1. If on the other hand you don’t have any more DATA to
convert (or are just going to chuck this whole complicated
business), type 2 and go fishing.”

Assuming you optioned to convert some more DATA and
typed 1, the same thing happened as before. A short block of
DATA was fed into the Computer, was converted to Level 11,
and the screen again directs:

TO RECORD DATA,
LOAD THE LEVEL-II TAPE & PRESS ENTER
On and on it goes . . .

Be sure that throughout this process you keep a careful count
of how many pieces of DATA you have to convert, and a
running count as they are converted. If you lose count, you
may have to start all over again — not a pleasant thought.

When done converting DATA tapes, return the Computer
back to its normal Level II BASIC mode by typing

2
once or twice. Failing that, turn it off, then on
again.

Load in the converted PROGRAM tape and try it out with
the converted DATA tape. If it all works, you’re back in busi-
ness — at Level I

Chapter 7

117

A TODANS SPECIALS
19] onsey 987 / /
|84 Jost 119

E YoUu WANT TO KNOW
WHAT NUMBERS MEAN

ASk wee

Yaee ol It stiais LI S A A e LA CHIIIIE:
osssisses 2228, 82 IIIE, CILHITE Y

(Ldad S S
'/// '////II IIIIIIII WY, 1171 IIIII f//ll/l (e umnn
A '/'//// '///'///// s mm//'/z’.’,”/ 4 ”//'z'/' g
”/// L) XL /1/”/// 1L, ///I it ///////// YA //I/
,/ // A '/////// '///////. T I LAY
2% '/ % //////; '////// ///IIII/://///I”/ r//////,/l/////// I, }///////// ///////

/41

\

118

CHAPTER 8

The ASCII Set

The purpose of this chapter is to learn how to use ASC and
CHRS. Before doing so however, we must learn about some-
thing called “the ASCII set”. ASCII is pronounced
(ASK’-EE) and it stands for American Standard Code for
Information Interchange. Since a computer stores and process-
es only numbers, not letters or punctuation, it’s important that
there be some sort of uniform system to specify which
numbers represent which letters and symbols. The ASCII
Chart in Appendix B shows the relationship between the
number system and symbols as used in your Level II TRS-80.

Type this program into your Computer:

14 FOR N = @ TO 255

2@ PRINT "ASCII NUMBER";N;

3¢ PRINT "STANDS FOR",CHRS$ (N)

49 FOR T = 1 TO 588 : NEXT T

50 NEXT N
As you RUN it, observe that the characters between ASCI!
code numbers 32 and 126 are printed on the screen. Those
numbers from 97 to 122 are just lower-case duplicates of
numbers 65 to 90, but the TRS-80 prints only upper case.

The other code numbers in that range stand for capabilities
which do not print on the screen.

119

PART Il

2

In case you end up in the Big House serving time for com-
puter fraud, this little program will make up your license
plate combinations, putting CHRS to good use. Pay special
attention to line 4¢. With the aid of the ASCII chart in
Appendix B, can you see why CHR3(RND(26)+64) creates
letters? Think it through, then type:

1

9
29
39
4
5¢

CLS

REM * LICENSE PLATE NUMBER GENERATOR *
FOR N=1 TO 3 : PRINT RND(1#)-1;

NEXT N : PRINT " ";

FOR N=1 TO 3 : PRINT CHR$ (RND(26)+64);
PRINT " "; : NEXT N : PRINT, : GOTO 2§

and RUN

Did you think it through?

The RND generator in line 4(spits out numbers between 1
and 26. We add 64 to each number to make the sum fall in
the range between 65 and 9(. What do we see on the ASCII
conversion chart between 65 and 9¢9. Hmmmm???

120

The ASCII code numbers between () and 31 are used
special control requirements in the TRS-80:

Code Function

0-7 None

8 ‘Backspaces and erases current character
9 None

10- 13 Carriage returns

14 Turns on cursor

15 Turns off cursor

16-22 None

23 Converts to 32 character mode

24 Backspace <« Cursor

23 Advance - Cursor

26 Downward ¥ linefeed

27 ‘ Upward A linefeed

28 Home, return cursor to display position(§,0)
29 , Move cursor to beginning Qf line

30 Erases to the end of the line

31 Clear to the end of the frame

for

Chapter

121

PART 100

The Code numbers between 128 and 191 are for graphics
characters, nearly all of which are irrelevant for the ordinary

computer user. SET, RESET and POINT serve most everyday
needs.

The ASCII numbers between 192 and 255 are so-called
“space compression codes”. You can use them to insert from
(¢ to 63 blank spaces in a printed line. Code 192 stands for @
spaces and 255 stands for 63 spaces. The in-between numbers
correspond accordingly. Erase the memory and RUN this
program:

19 PRINT"HELLO OUT";CHR$ (222); "THERE"

As you can see, CHR$(222) inserted 3(blanks, or ‘“‘tabbed
over” 30 spaces between OUT and THERE. To see the dif-
ference between using these ASCII code numbers and using
TAB, add this line:

20 PRINT"HELLO QUTY ; TAB (3¢) ; "THERE "
and RUN.

TAB spaces from the beginning of the line, while this series
of ASCII numbers actually inserts spaces from the last
PRINT position in the line.

There is in practice little uniformity internationally (or even
inside the U.S.) in the use of ASCII code numbers other than
those used for just letters and numbers. Fortunately, that is
sufficient for most of our everyday needs. If you contem-
plate the problems faced by the Japanese, Europeans and
others who need special letters and characters, you will get
some idea of how these numbers between 127 and 255 can
be put to good use.

So What is CHR$(N)??

We have used CHRS freely so far without describing it, but
you’ve undoubtedly figured it out anyway. CHRS(N) pro-
duces the ASCII character (or control action) specified by
the code number N. It is a one-way converter from the ASCII
code to the ASCII character, and allows us to throw charac-
ters around with the ease of throwing around numbers.

122

Chapter 8

Enter this simple program:

19 INPUT "TYPE ANY NUMBER BETWEEN 33 AND 127":N

2@ PRINT CHR$ (N)

38 RUN

and RUN

Almost all of our activity with ASCII numbers will be con-
fined to this range. However, these “quickie’ programs show
how to use several ASCII numbers that stand for actions
instead of numbers, letters or characters. Give them a try:

18 REM * CURSOR BLINKER *

2@ PRINT CHR$ (14);

3¢ FOR N=1 TO 58 : NEXT N

4¢ PRINT CHR$(15);

50 FOR N=1 TO 5@@ : NEXT N

6§ GOTO 2§

1 REM * DOUBLE WIDTH DEMO *
1¢ CLS

20 PRINT CHR$(23)

3§ PRINT@462,"HELLO OUT THERE"
49 FOR X=1 TO 5@@ : NEXT X

59 PRINT CHR$(28)

6§ FOR X=1 TO 5@f : NEXT X

7% GOTO 2

123

PART I

The use of double width letters adds considerable impact to
visual displays. There are however several rules which must be
followed. Type in this program, then we’ll explore them:

16 REM * ON BASE OF STATUE OF LIBERTY *
2¢ REM * LARGEST STATUE EVER ERECTED *

3¢9 CLS : PRINT CHRS(23)

4% PRINTQ456,"KEEP, ANCIENT LANDS,"

5¢ PRINT@522,"YOUR STORIED POMP!"

60 FOR T=1TOl17600 : NEXT

70 CLS : PRINT CHRS$(23)

8¢ PRINT@128,"GIVE ME YOUR TIRED, YOUR POOR,"
9 FOR T = 1 TO 1508 : NEXT

100 PRINT@256,"YOUR HUDDLED MASSES YEARNING TO"
110 PRINT@324,"BREATHE FREE,"

120 FOR T = 1 TO 1160 : NEXT

13¢ PRINT@448,"THE WRETCHED REFUSE OF YOUR"

149 PRINT@516,"TEEMING SHORE."

15¢0 FOR T = 1 TO 1900 : NEXT

160 PRINT@640,"SEND THESE, THE HOMELESS,"

170 PRINT@768,"TEMPEST-TOST TO ME,"

180 FOR T = 1 TO 20060 : NEXT

19§ PRINT@832,"I LIFT MY LAMP BESIDE THE GOLDEN"
200 PRINT@94G,"DOOR!"

210 GOTO0218

and RUN.

In line 30 we used ASCII character 23 to convert the video
display to 32 characters per line. In line 70 we needed a
CLS, but CLS automatically returns the video to 64 charac-
ters per line. This forced us to use another CHRS$(23) to get
back in the 32 character mode.

Look at each PRINT@ statement. See anything at all simi-
lar ... something we haven’t discussed? How about it,
Sherlock? (Shut up Watson! We know you see it.) Elemen-
tary, when you stop and think about it. Every video starting
address ends in an even number. Oh, yes . .. (cough) ... of
course.

124

Chapter

Every letter and number is printed double-width, and the
rules state that for double width we must start on an even
numbered block. Change line 40 to PRINT@457 instead of
456 and RUN.

Total wipeout! Can’t get much more dramatic than that.
Add 1 more number to make it PRINT@458

and RUN.

Notice anything? Look at the display very carefully. Then
change the program line back to PRINT@456

and RUN.
See it?

Right! We have to move over 2 video print addresses to move
the double-width display over just 1 space. Terribly obvious
when you think of it. Not very obvious when trying to
trouble-shoot a program and you aren’t aware of it.

This program needs a
good graphics display
of The Statue, com-
plete with flaming
torch. Also, a good pa-
per printout to hang on
the wall. How about it,
artists?

125

ASC is the exact opposite of CHKS(N). ASC is a one-way
converter from the ASCII character to its corresponding
ASCII number.

Type:

1¢ INPUT "TYPE ALMOST ANY LETTER, NUMBER
OR CHARACTER";A$

2@ PRINT"ITS ASCII NUMBER IS";ASC(A$)
3¢ PRINT
48 GOTO 18
and RUN.
it will print the ASCII number of almost all characiers. (I
don’t have any idea why this particular computer doesn’t

work with , ” : and some others, but then strings can be a
real mystery at times as we will see in the next chapters.)

The second way to use ASC is to imbed the character within
quotes, thus:

1§ PRINT ASC("A")

This latter method always seems to work with this particular
interpreter, but isn’t always convenient.

Before we can really understand what we are doing, we must
learn a lot more about strings. Before we could learn about
strings we had to learn something about ASCIL It’s like

te Lot DO ONY
(ST ARV SIS N AUNE =)

On to the next Chapter.

126

NOTES

LTS NOT SO CONFUSING AS LONG
AS YOU KEEP VOUR STRINGS
STRAIGHT "

ORIENTAL RU6 LOO

s B 2 o AP e & e = s

T

“UE MUST HANE SeeN
TRE INSIDE OF A Compuier

G

128

CHAPTER 9

Strings in General

It was not our intention to “string you along” in the previous
Chapter, but we can’t really understand how strings work
without first understanding the ASCII concept of numbers
standing for letters, numbers and other characters and con-
trol functions.

Level I BASIC allowed for only 2 strings — A$ and B$ — and
they were not very powerful. We could INPUT a name or
READ a string from DATA and use the STRINGs in PRINT
statements, but that was about all. You’ll be glad to know
that Level II BASIC has every string capability usually asso-
ciated with BASIC.

Comparing Strings

Among the most powerful string handling capability we need
is the ability to compare them. We compare the numbers in
NUMERIC variables all the time. How can we compare
strings of letters or words? Well, why do you suppose we put
the ASCII Chapter just before this one? Right! The
Computer can compare the ASCII code numbers of letters
and other characters. The effective result is a comparison
of what’s in the corresponding strings.

Type in this program:

1 CLS
19 INPUT"WHAT IS YOUR NAME";A$
2@ IF A$ = "ISHKIBIBBLE" THEN 5¢

3§ PRINT"SORRY. YOUR NAME ISN'T ISHKIBIBBLE - SO GET LOST!"
49 END

5¢ PRINT"IT'S ABOUT TIME. FORGET HOW TO SPELL YOUR NAME?"
and RUN.

If the Computer can compare that name it should be able to
compare anything!

129

PART 001

During the process of comparing what you enter as AS in line
10 to what's already in quotes in line 20, the ASCII code
numbers of each letter found in one string are compared,
letter for letter, from left to right with those in the other.
Every one must match, or the test fails. @

—— P— O

I

Strings and “‘quotes” go together like beer and chocolate %
cake. (Beer and chocolate cake ...?) You know
this from Level 1 where every PRINT XXX has its string
enclosed in quotes ... or it won’t work (PRINT “XXX” is
called a string constant, compared with A§, a string variable.)

RUN the above program again, this time answering the ques-
tion with “ISHKIBIBBLE”, but enclosed in quotes.

Sure — it ran OK. Worked either with or without quotes.
Interpreters have become increasingly lenient about this
matter, but every once in a while the rules come up from
behind and bite you if you play fast and loose with them.

If you INPUT a string, and it has no commas, semicolons,
leading or trailing spaces in it, you don’t need to enclose it in

quotes. You will never go wrong by ALWAYS enclosing
strings in quotes, but that can be a nuisance.

Frase the resident program and type in this next one, which
READs string data from a DATA line.

1 CLS

19 READ A$,B$,C$

2¢ PRINT AS$

3g PRINT B$

4@ PRINT C$

\py DATA COMPUSOET FUDLICHING, SAM DIECO, OF, 42119

and RUN

130

Chapter 9

Look carefully at the results. The screen shows:

COMPUSOFT PUBLISHING .
SAN DIEGO

CA

That’s fine, but where is the ZIP CODE??? And why didn’t
SAN DIEGO and CA get printed on the same line? The
answer, my friend, is blowing in the ... er, in the commas.
Ahem.

Because of the commas in the DATA line, the READ state-
ment sees 4 pieces of DATA, but only READs 3 of them.
What do we have to do in order to PRINT a comma as part

of a string? Right — enclose it, or the string containing it, in
quotes.

EDIT198
and change line 100 to read

194 DATA COMPUSOFT PUBLISHING, "SAN DIEGO, CA", 92119

and RUN.

Aaaah! That’s more like it. Notice that we didn’t have to
enclose all pieces of string DATA in separate quotes, but we
could have.

What would happen if we enclosed the entire DATA line in
quotes, leaving the existing quotes in there? (Think about it,
but don’t neglect to try it. Every question raised has a
specific purpose.)
Our editor is so easy to use, let’s make it read:
198 DATA"COMPUSOFT PUBLISHING,"SAN DIEGO, CA", 92119"

and RUN.

131

PART 100

Awwk! Disaster . .. A syntax error? Yes, there is no straight
forward way to print quotes as part of a string constant, even
by enclosing them inside another pair of quotes. The
Computer just isn’t smart enough to figure out which quote
mark is which. The usual way to overcome this standard
BASIC language deficiency is to substitute ’ for ”, inside
other quotes. Let’s try it.

19¢ DATA"COMPUSOFT PUBLISHING,'SAN DIEGO, CA', 92119"

and RUN.

Ooops, 70D (OUT OF DATA) error in 19? Of course. With
quotes surrounding the whole works there is now just one
piece of DATA and we are trying to read 3 pieces. Let’s
change line 10 to just read one piece:

19 READ A$
and RUN again.

There we go. Might look a little strange, but it proves the
point and warns us a little about the “touchiness” of strings.

When it comes to strings, that classic old ballad from the hills
is so appropriate:

“Ah-cigareets, and whuisky, and wild computers, they’ll)

. ’ . i3 /)’
drive you crazy, they’ll drive you insane: Vg WIS v AND

But, undaunted by this high class philosophy, we steer our vessel = o COMPUTEE:I

towards the next chapter.

As the sun sinks slowly in the west, tropical breezes fill the sails and
water laps against the bow. Stars appear, and from the beach fires
plaintive native chants are heard, calling . . .

TG HE WASO®
Tae RPow.
_.-HeN WE (OuO

o WM OFF. o

132

NOTES

“LEN AND | DO A LOT OF THINGS

BUT WE DoN'T Do WINDOWS /”

134

CHAPTER 10

LEN, DEFSTR,
CLEAR and DIM

One of the most frequently needed pieces of information
about a string is its length. Fortunately, the LEN function
makes it easy to find. Type:
1 CLS : PRINT
1@ INPUT"ENTER A STRING OF CHARACTERS";A$
29 L = LEN(A$)
3@ PRINT A$;" HAS";L;"CHARACTERS"
9¢ PRINT : LIST
RUN several times entering your name and other combina-
tions of letters and numbers. Try entering your name, last

name first, with a comma after your last name.

AHA! Can’t input a comma. How about if we put it all in
quotes? Try again.

Yep. Just like it said in the last Chapter.
LEN has only one significant variation, and it’s not all that
useful — unless you really need it. Change lines 10-3(to
read:

14 INPUT "ENTER A NUMBER";A

2@ L = LEN(A)

38 PRINT A;" HAS";L;"CHARACTERS"

and RUN.

135

PART 00

Crash time again! TM ERROR means we tried to input a
number into TEN — but it requires a string input. OK, let’s
change LEN to make it a string:

20 L = LEN("A")
and RUN, entering a number.

Hmmm. Doesn’t seem to matter what number we enter, it
always comes back saying that we have only 1 character.

The answer is, LEN evaluates the length of what is actually
between its parentheses (or quotes). At first we brought in
a string from the “outside” and measured its length. That
worked fine. We are now measuring the length of what’s be-
tween the quotes, and that length doesn’t change with the
value of A.

Like we said, this second way to use LEN has its limitations,
but does tell us the length of what’s there. (Change the resi-
dent program back to the way it appears at the beginning of
the Chapter.)

DEFSTR - For Thrill Seekers Only

Those among us who attract trouble will love this next one.
As if handling strings isn’t complex enough, this very power-
ful Statement looks nice and clean but can be the greatest
source of heartburn since the horseradish pizza.

DEFSTR allows us to define which variables are to be string
variables, so we don’t have to use $ any more. (Hmm . ..
Uncle Sain could put soine of this DEFSTR business to good
use.) Add this line:

5 DEFSTR A

le]

o it T Aiia e
and use the Editor to remov

Then RUN.

136

Chapter 10

Works great, doesn’t it. A was declared by line 5 to be a
string variable. So what’s all the fuss about?

Well, this is a very simple program, but let’s change 5 to read:
5 DEFSTR A-7Z
which makes all letters string variables
and RUN.

Crasho again! The L in line 2Q is now also a string. Since LEN
gives us a number as the length of a string, it doesn’t set at all
well with L (really L string). Imagine the fun this can create
in a long program.

DEFSTR follows the same format as the other DEF func-
tions, with DEFSTR A,B,C also being a legal statement.

It Came Upon a Midnight CLEAR
(Is that like a midnight requisition?)

When the Computer is first turned on, 5¢ bytes of memory
space are automatically set aside for use by strings — all
strings combined. Not very much space if we’re into a biggie.
At the command level, type NEW, then:

>PRINT FRE (A$)

It asks the Computer ““how much space is left for strings?”.
Not only AS$, but all strings. The “A$” is just a “‘dummy” we
have to use with FRE. B$, C$, or anything similar would work
just as well. PRINT FRE(X) (using most any character but
without the § sign) tells us the same thing as PRINT MEM -
how much total memory space is available.

Good thing we can learn
by our errors!

"IT CAME UPON A MIDNIGHT
CLEAR.!"

S

2

g

137

PART 010

The Computer should respond with

50
The CLEAR command/statement allows us to change the
amount of reserved string space to anything we want, up to
almost the total available memory. Going the other way, we
can eliminate all reserved space, leaving all memory for non-

string use. Let’s play around with some combinations and see
what happens:

>CLEAR #
>PRINT FRE (A$)
%}
Is that what you got? CLEARed zero and got zero? Good.
Type NEW and measure again.
>NEW
>PRINT FRE (A$)

g

What? Still zero? That’s right. The CLEAR command is a
high level one and is not affected by NEW. ‘“Power-up”
automatically sets aside 50 bytes, and wherever we reset it,
there it stays until it’s reset again.

Try:

>PRINT MEM

(I’'ve got the keyboard debounce loaded in. You
might get a little different number — but it
should be in the ballpark — — — about 15572.)

138

>CLEAR MEM/4

>PRINT FRE(A$)

3980 (or 3892)

We just arbitrarily said, “Let’s set aside a fourth of the
memory for use by strings.” CLEAR MEM/4 did it. If it turns
out to be too much (wasteful) or too little (Computer will
say ?08) it’s easily changed. A very adept programmer could
even come up with an error-trapping routine that would
CLEAR additional memory as needed if an ?70S message
came through, and the operator wouldn’t even know that
something happened.

PRINT FRE(X$) can also be used as a program statement.
Try it in any program using strings to watch what happens.

Type:
>CLEAR 58

and get us back to “normal.”

Chapter 10

139

DIM is to arrays what CLEAR is to strings. We already did
some DIMensioning in the updated Level I book with single
dimension numeric arrays. When we have a string array we
have to do the same thing
Suppose we have a program like this: (Type it in)

1 CLS : PRINT

19 FORN = 1 TO 16

2¢g READ A$ (N)

3¢ PRINT A$ (N),

4¢ NEXT N

$¢§ PRINT : LIST

1¢¢ DATA ALPHA,BRAVO,CHARLIE,DELTA, ECHO,FOXTROT

119 DATA GOLF,HOTEL,INDIA,JULIETTE, KILO,LIMA,MIKE

12 DATA NOVEMBER, OSCAR, PAPA

and RUN.

Oops. There’s a problem. ?BS ERROR means ‘‘not enough
space set aside for an array.” You’ll recall that only 11 ele-
ments per array (from 0-10) are set aside on power-up. We
are trying to read in 16 of them, starting with 1. The solu-
tion:

>5 DIM A$(16)

and RUN.

140

Chapter 10

That’s better. DIMensioning a string array is just like dimen-
sioning a numeric one — just call it by its name. In this case,
its name is A$. You ‘‘high speed” types will want to know
that to do ‘‘dynamic redimensioning” (that’s doing it while
the program is running), the program must encounter a
CLEAR first. Oh.

CONCATENATION

Concatenation? Concatenation??? Now what is that supposed
to mean? Isn’t even in the dictionary. Did you ever wonder
who pays who to sit around and think up such non-
descriptive words? Must have been done on a government
grant. Wait till Senator Proxmire hears about it.

Concatenation (pronounced con-cat-uh-na’tion) is a national
debt-sized word which means ‘“‘add”. In our case it means
““add strings together”. It’s easier to do than to pronounce.
Let’s change our resident program a bit to make it read:
1 CLS :
14
20
25

PRINT
FOR N = 1 TO 16
READ AS$

B$ = B$ + A$

39
49

98

PRINT B$
NEXT N

PRINT : LIST

"] SEE SOMEONE AROUT To CAST
A CONCATENATION oN You!. *

T MEANS SHES
QUST RODED B0
0

199 DATA ALPHA,BRAVO,CHARLIE,DELTA,ECHO,FOXTROT,GOLF,HOTEL

11¢ DATA INDIA,JULIETE,KILO,LIMA,MIKE,NOVEMBER,OSCAR,PAPA

141

PART I

Check it carefully but don’t RUN it yet. The key line is 25,

which simply says BS (a new variable) equals the old RS
(which starts out as nothing) plus whatever is in A$. It then
cycles around and keeps adding what is in B$ to what is
READ from DATA as A$. Now RUN.

“Hi! ™M 1ol ooll o,
Gotcha! We ran out of string space, says the ?70S. BS just 1001, loo. lol Hio
keeps growing and growing until the 5@ byte set-aside isn’t oolo ?”
enough.

How much is enough? Easy question, tough answer. The
VARPTR statement will give us the answer, but its use 74
requires a PhD from the funny farm where they only talk in ’?fa @;

ones and zeros. \
The easiest way is to stay within the noblest engineering (FN\\
tradition — add some more string space and see what

happens. It’s “cut and try” time.

5 CLEAR 1g¢ hGY

and

RUN
Getting closer. Let’s try again. (This warms the cockles of
any true experimenter’s heart — and drives any true theoreti-
cal scientists right up the wall. Chuckle.)

5 CLEAR 15¢

RUN
Still not enough. Looks close though, doesn’t it?

5 CLEAR 175

RUN

Sweet success. All due to our extensive planning, no doubt.

142

Better do a quick
>PRINT MEM
to see that there’s plenty of space left — and there is.

The purist will keep experimenting and find out that we need
exactly ... (. . message garbled in transmission . .) .. .bytes
of string space to make the program RUN, yet not waste any.
(Hint: If you add the number of characters in the last line
printed to those in the next-to-last line, you’ll be so close to
the answer it may bite you. We could even figure that one
out in advance.)

Anyhoo, the point of all this is concatenation. Line 25 just
did it, and that’s about all there is to it. We added strings
together.

Not done playing you say? OK, you non-believers, have some
fun with this simple program:

1 CLEAR 35
14 REM * CLEAR DEMO *
20 A$="g" : B$="/"
3¢ PRINT A$;LEN(A$)
49 A$ = A$ + B$
54 GOTO 38
In the next chapter we’ll learn how to tear strings into little

pieces. We've just learned how to put them back together.
(Somebody got something backwards here . . .)

Chapter 10

143

“IE THAT MACKINE OF NOURS IS SO GREAT
LETS SEE T SEARCH THROLGH THIS

CLEAN LAUNDRY AND SORTY ouT
JOUR. Socks!'”

1
‘ Row Do You \MPJTEA“‘

0B ROUTINE O LOOK-
ONDER THE BED 7

)
Ny 70

144

CHAPTER 11

Search and Sort

One of the Computer’s most powerful features is its ability to
search through a pile of DATA and SORT the findings into
some order. Alphabetical, reverse alphabetical, numerical
from smallest to largest, or the reverse — all are common.
This feature is so important we are going to spend this entire
chapter learning how to use it.

Typical applications of search and sort include:

1. Arranging a list of customers’ or prospects’ names in
alphabetical order.

2. Sorting names in zip-code order for lower-cost mail-
ing.

3. Sorting the names of clients in phone area code
order.

While not really all that complicated, the sorting process is
sufficiently rigorous that we are going to take it very slowly
and examine each step. Once we get the hang of it, the Com-
puter can blaze away without our considering the staggering
number of steps it’s going through.

Let’s start with a problem. We have the names of 8 customers
(if that doesn’t grab you, make it 8 million — the process is
identical). We need to arrange them in alphabetical order.

We start by storing their names in a DATA line. Type in:

1¢@@ DATA BRAVO, XRAY, ALPHA, ZULU,
FOXTROT, TANGCO, HOTEL, SIERRA

145

PARTI

Since we are sorting by name rather than by number, we have

v pdaten e venainlhlan Adawies ~ + T'1n 1
t0 USC SIiilg Variaocis, string arrays, ¢il. Laly wWoIK Cqu&ny

well with numbers such as zip codes, while numeric variables
and arrays work only with numbers.

The backbone of a sort routine is the array. Each name has
to be READ from DATA into an array. So:

19 REM * ALPHA SORT OF STRINGS FROM DATA *
20 CLLS : FORD =1 TO 8 : READ A$(D) : N=N+1 : NEXT D
Line 10 is of course just the title
Line 20 clears the screen, then “loads the array” by
READing the 8 names into storage slots A$(1) to
AS$(8). N is simply a counter which will follow
through the rest of the program. In this simple pro-
gram we could have made N=8, since we know how
many names we have. In the next sample program we
won’t know how many names there are, so let’s leave
N the way it’s usually used.
Important to the sort routine are 2 nested FOR-NEXT loops.
1. The first one, F, controls the First name.

2. S, the second one, controls the name to be compared
against the first one.

Names and words are compared as we learned in the
section on ASCII, remember?

Let’s establish our loops first, then fill in the guts later:
30 FOR F = 1 TO N-1 'F=FIRST WORD TO BE COMPARED
4 FOR S = F+1 TO N 'S=SECOND WORD TO BE COMPARED
92 NEXT S ' MAKES 7 PASSES

189 NEXT F ' MAKES 7 PASSES

146

Chapter 11

It may seem puzzling that F and S only have to make 7
passes when there are 8 names. Think of it this way. What-
ever word isn’t smaller (ASCII #) than the rest, just ends up
last. No need to test again to prove that.

The F loop READs array elements 1 through 7 (N—1 = 7).
The S loop READs array elements 2 through 8. This always

provides us with different array elements to compare against
each other.

Now let’s jump to the end of our program and prepare it to
PRINT out what we are about to do. Type:

119 FOR D = 1 TO N : PRINT A$(D), : NEXT D
When the sorting is done, the contents of A$(1) to A$(8)
will be the same as read from DATA, but will be in alpha-
betical order. We’ll PRINT the array contents on the screen.

Now for the sort routine itself. Type:

50 IF A$(F) <= A$(S) THEN 9§ 'TEST FOR SMALLER ASCII#

64 T$ = A$(F) ' TEMPORARY STORAGE FOR FIRST WORD
79 A$(F) = A$(S) ' COPY SECOND WORD TO FIRST PLACE
80 A$(S) = T$ ' SWITCH FIRST WORD TO SECOND PLACE

147

PART 00

And there is the biggie! If you can follow those last 4 lines
the rest is duck soun.

Line 50 says ‘“if the first word is smaller than (or equal
to) to the second word, leave well enough alone and
bail out of this routine by going to line 99, which
will end this pass and READ another word to com-

pare against F. If not, drop to the next line.”

Line 60 says, ““Oh, they weren’t in the right order, eh?
We’ll just store the First word in a temporary storage
location called T$ and hold it there for future use.
I’'msure we’ll need it again.”

Line 70 copies the name held in the second cell into the
first array cell. If the second one had an earlier start-
ing letter than the first one, we do want to do this,
don't we?

Line 8¢ completes the switch by copying the name
temporarily held in T$ into the second array cell.

A (1) and AS$(2) contents have now been exchanged
with the aid of the temporary holding pen, T3.

If we did ewrything right, the program should:

RUN.

and in a flsh the names appear on the screen in alphabetical
order:

ALPHA BRAVO FOXTROT
HOTEL
SIERRA TANGO XRAY
ZULU

RUN it to your heart’s delight. It’s one of the most powerful
things your Computer can do, and does it so well. Exactly
the same thing takes place with a very long list of names (or
zip codes, or whatever) but we would of course have to
reDIMension for a larger array and CLEAR more string space.

148

Us simple country boys
find this one easy:

There are two brahma
bulls in separate pens,
A$(1) & AS$(2), and we
want to switch them
around. Ain’t no way
we’re going to put them
in the same pen at the
same time. (Not with
me in there anyway.
Already broken too
many 2 by 4’s between
their horns, and have
some scars in the wrong
end from escapes that
were a hair too siow.)
That’s why we keep a
temporary holding pen
called T$. Got it?

Printing will be in stand-
ard 16 space tab zone
format (sorry we can’t
put it all on one line in
the book).

Chapter 11

Aw c’mon Horse — Whoa!

To get a really good look at what’s happening, it’s necessary
to slow the beast way down, and insert a few extra PRINT
lines. This lets us examine what’s going on inside by watch-
ing the tube.

Add these temporaries:

45 PRINT F;A$(F),,S;:A$(S)
47 FOR Z2 = 1 TO 10@@% : NEXT 2
55 PRINT " L=< L SWITCHEROO"
N . (Allow four spaces after
85 PRINT F;A$(F),,S;A$(S) the arrow — that way it
will look nice on the
and RUN. screen when you run

it.)
If that isn’t slow enough, change line 47 so there is time for
you to completely think it through. Pretend you’re the Com-
puter and make the decision that line 5() has to make. Take it
from the top — very slowly! RUN.

1 BRAVO 2 XRAY

Means ““in cell #1 is the word BRAVO. In cell #2 is the word
XRAY?”. (Just like they came from the DATA line.) Of those
two words, BRAVO is the “‘smallest” (ASCII#), so let’s leave
it in number 1 place. Onto the next pass of S.

1 BRAVO 3 ALPHA

Oops. BRAVO isin #1 and ALPHA is in #3, but ALPHA is
smaller than BRAVO. We better switch them around. So

<L==-<<L SWITCHEROO

1 ALPHA 3 BRAVO

149

PART 00l

Don’t worry too much about what is happening in the second
column. S is scanning through the array and its conients are
always changing, testing against what’s in the first column.
It’s what ends up in the first column that counts — and it
should bein increasing alphabetical order.

As the program keeps RUNning, watch the new words appear
in S, the second loop and column, and compare them against
what’s in F, the first one. Try to guess what the Computer’s
going to do. Also keep an eye on the increasing numbers on
the left. It’s the final word with a given number in the first
column that which will appear in the final printout.

RUN the program as many times as it takes (and at as many
sessions as it takes) to really follow what’s happening. It’s
awfully clever, and awfully important. We can carry this
principle over to many useful programs in the future, but
only if we really understand it.

When you feel it’s under control, iet’s add one more littie
display to the screen. What is T$ holding while all this sort-
ing is going on? Add to these lines so they read:

45 PRINT F;A$(F),,S;A$(S),"T$=";7%
85 PRINT F;A$(F), ,S;A$(S),"T$=";T$
and RUN.

“T'$=" starts off with nothing since there is nothing in the
holding pen. As F gets replaced in the switching process,
however, T$ holds it. On a clear head it’s not hard to follow
what’s happening. You’ll probably want to save this program
on tape and review it several times for a deep understanding
of the process.

150

Chapter 11

Sorting from the Outside

We don’t really have to keep all our names, numbers or other

information in DATA lines. It can be INPUT from the key-

board, from cassette tape, or from disk. The following pro-

gram is quite similar to the first, and the logic is identical.

Change these resident program lines:
5 D=1 : REM * ALPHA SORT OF NAMES VIA INPUT *
19 INPUT"NEXT NAME";A$(D) : IF A$(D)="END" GOTO 3¢
2@ D=D+1 : N=N+1 : GOTO 14

Delete line 1000

and RUN.
Enter several random names, and when finished, enter the
word “END”. The process displayed on the screen will be
identical to what we saw before.

Can you see the potential for all this?

151

/// ////// /////

;/// ///’/// //// //////////////// ///// 7
/4/ 7

;/ NG ///////,// WU ////

STRING ALong
_ NAPT!ST CHURCH
e ——

| VALS STEAK HousE

$ER\I\CESIOAM 7
%/ A NumesRr
// //// //////// A R,
,,/ . .
/// // i '////% .

%
,////// ///////// o

4 // Y o '/////////

//// // // /%

////'///////5///// .
’//// ////////// /// g

Rick Bavner—

152

CHAPTER 12

VAL(S)
and

STR$(N)

The “hassle factor” is unusually high when converting back
and forth between strings and numerics.

By definition, if we convert a numeric variable (can hold only
a number) to a string variable (can hold most anything), the
content of that string is still the number. No letters or other
characters were converted since they weren’t in the numeric
variable to start with.

Conversely, if we change a string variable to a numeric vari-
able, we can’t change any letters or other characters to num-
bers. Only the numbers in a string can be converted to a
numeric variable. (Don’t get this confused with ASCII con-
versions.)

If yow’ll keep the 2 previous paragraphs in mind, it’ll save an
awful lot of grief in dealing with strings.

153

PART

VAL

Let’s give string-to-numeric conversion a shot. The VAL func-
tion converts a STRING variable holding a number into a
number, if the number is at the beginning of the string. Enter
this VAL program:

17 CLS : PRINT
1@ INPUT"WHAT STRING SHOULD I CONVERT TO A NUMBER" ; A$
2 A = VAL(A$)
3¢ PRINT"THE NUMERIC VALUE OF ";A$;" IS ";A
9% PRINT : LIST
and RUN.
Try lots of different inputs, such as:
12345
ASDF
123ASD
ASD123
1,2,3
A,B,C
and the same ones over again, but enclosed in quotes.
The tube tells all.

Using the Editor, take the $ out of lines 1§, 20 and 3§ and
RUN, INPUJTting both numbers and letters, and RUN.

154

Chapter 12

What you’re seeing is typical of the frustrations that bedevil
string users who don’t follow the rules. VAL only evaluates
STRINGs, and we’ve put A, a numeric value, in where a
string belongs.

Let’s put that A in quotes and see what happens.
20 A = VAL("A")
and RUN.
No help at all! The rule remains unchanged. VAL converts a
STRING holding a number into that number. Looking at the
screen, we see it’s just not in the cards. Remember this frus-

tration when you get in the thick of debugging a nasty string-
loaded program.

STR$

Now let’s try the opposite, converting a numeric variable to
a string variable. Change the program to read:

1 CLS : PRINT

1¢ INPUT"WHAT NUMERIC SHOULD I CONVERT TO A STRING";A
2 A$ = STR$ (A)

3¢ PRINT"THE STRING VALUE OF";A;"IS";A$

99 PRINT : LIST

and RUN, using the same INPUTs we used when
wringing out VAL.

There you have it. A short but very important Chapter. You
should spend as much time on this one as any other chapter.
If you really learn the pitfalls in using these 2 powerful func-
tions, the returns will come back manyfold in debugging time.

165

"RoBIN, | THOU6HT DADDY ToLD YoU
O LEANE THE COMPUTER ALONE!”

i
THIS KD 1S P
TO CHAPTER. 4!

Dul. O\mxw? (\‘& S ' . %E %P
o :

156

CHAPTER 13

Having a Ball
With
STRING

Three different but very similar functions are used for play-
ing powerful games with strings. They are LEFT$, RIGHTS
and MIDS. Let’s start our exercise of them with this pro-
gram:

1 CLS : PRINT

30 S$ = "KILROY WAS HERE"

6J PRINT LEFT$(S$,6),

78 PRINT MID$(S$,8,3),

87 PRINT RIGHT$(S$,4)

99 PRINT : LIST

and RUN.

The screen shows:

KILROY WAS HERE

(How about that one, nostalgia buffs?)

167

PART 000

Learning to use these functions is exceedingly simple. Study
the nrogram slowly and carefully as we explain what hap-
pened.

LEFTS$ printed the leftmost 6 characters in the string named
S$.

MID$ printed 3 characters in the string named S§, starting
with the 8th character from the left. (Count ’em.)

RIGHTS printed the 4 rightmost characters in the string
named S$§.

We added commas after lines 6@ and 70 in order to print
everything on one line.

Let’s move some lines around to exercise our new-found
power. Move line 7 to line 50:

5¢ PRINT MID$ (S$,8,3),
and we get
WAS KILROY HERE
Now move line 80 to line 40 and add a trailing comma
4¢ PRINT RIGHT$ (S$,4),
and we get

HERE WAS KILROY

158

These 3 functions can really do wonders with strings. Let’s
enter a NEW program and examine each in more detail:

1 CLS : PRINT
19 FOR N = 1 TO 15
2 PRINT "N = ";N,
30 S$ = "KILROY WAS HERE"
4% PRINT LEFT$(S$,N)
54 FOR T=1 TO 5@¢ : NEXT T
60 NEXT N
9@ PRINT : LIST
and RUN
The “‘slow motion™ picture tells it faster than we can in
words. LEFTS$ picks off “N” letters from the left side of
string, and we PRINT them. See how this could be used to
strip off only the first 3 digits of a phone number, or the first
letter of a name, when searching and sorting?
Change line 10 to read:
19 FOR N = 1 TO 28
and RUN
As we see, even though there are only 15 characters in the

string, the overrun is ignored. (Change line 1() back to N=1
TO 15.)

Chapter 13

169

PART M0

RIGHTS works the same way, but from the right:
Change line 40 to read:
4¢ PRINT RIGHT$ (S$,N)
and RUN.
It’s the mirror image of LEFTS.

Now let’s exercise MID$ and see where it goes. Change line
40 to:

49 PRINT MID$ (S$,N,1)
and RUN.
It very methodically scanned the string, from left to right,
picking out one letter at a time. Again we slowed it down
with the delay loop in line 5@ to better understand what’s

happening.

With only a slight change we can make MID$ act like LEFTS.
Change line 40 to:

4¢ PRINT MID$ (S$,1,N)
and RUN,

It printed N characters, counting from number 1 on the left.

MID$ can also simulate RIGHTS. Change line 4.
4 PRINT MID$ (S$,16-N,N)

and DITN

160

Chapter 13

Would you believe RIGHTS backwards, one at a time?
4¢ PRINT MID$ (S$,16-N,1)
and RUN.
How about a sort of “histogram” type graph:
4% PRINT MID$(S$,N,N)
and RUN.
(Make your notes in the right hand column for future
reference. If all these examples don’t spark some ideas for

your future use, I give up.)

Let’s select a specific position in the string and print its
character? Make the program read:

1T CLS : PRINT

1§ INPUT"WHICH CHARACTER # DO YOU WANT TO PRINT";N
3¢ S$ = "KILROY WAS HERE"
4¢ PRINT MID$ (S$,N,1)

50 FOR T = 1 TO 58¢ : NEXT T

99 PRINT : LIST
and RUN.

161

PART 000

Just to make the point, we can assign any of these statements
to a variable. That variable can in turn be used in tests against

other variables. Change:
ag v$ = MID$(S$,N, 1)
45 PRINT V$
and RUN.

A short book could be written about these 3 functions, but
I think we’ve made the point. They are used frequently in
complex sort and select routines. If we remember to dissect
them into their simple components, they can be understood.
The next section is a good example.

INSTRING Routine

INSTRING is not an intrinsic function. It is a routine made
up of LEN and MIDS$, and can be of value when searching for
a needle in a haystack. It compares one string against another
to see if they have anything in common.

Let’s suppose we have a list of names and want to see if
another name (or part of that name) is in our list. It’s the
“part of” which makes this operation very different from a
straight comparison of name-against-name, which we already
know how to do with ordinary string-against-string compari-
sons. Here we learn how to locate a name (and similar names)
by asking for just a small part of it.

162

Chapter 13

Let’s start our program by entering the list of Names:

19489 DATA SMITH, JONES, FAHRQUART, BROWN,
JOHNSON

19819 DATA SCHWARTZ, FINKELSTEIN, BAILEY,
SNOOPY, JOE BFTSPLK, *

That was the easy part.
Now we have to provide a means of READing these names,
one at a time and comparing them, or parts of them, with the
name or part of a name which we INPUT. Add these lines:
19 CLEAR 188 : CLS
20 INPUT"ENTER THE NAME YOU ARE SEEKING ";N$: PRINT
3¢ READ D$
4¢ IF D$ = "*" PRINT "END OF SEARCH" : END
50 GOSUB 10800
60 IF T = § GOTO 3¢
78 PRINT N$;" IS PART OF ";D$
89 GOTO 38

Now this takes a bit of explaining:

Line 1¢ CLEARs 10Q bytes for strings, and CLS the
screen

Line 20 INPUTSs the name, or part of the name you are

trying to locate, and prints a blank space for easier
reading to give this book some class.

163

PART Ml

Line 30 READ:s a single name from our DATA file

Line 40 checks to see if we’re at the end of the DATA
file. If so, it says so and ENDs execution.

Line 50 shoots us to the INSTRING subroutine (cover-
ed next) which does all the sorting.

Line 60 checks the value of T, a number sent back from
the subroutine. If its value is () it means no such name
(or part) was found, and we should READ the next
one. If it was found, we drop to

Line 7¢ which PRINTSs both what we’re looking for and
what we found.

Line 8¢ sends us back to READ another name from
DATA.

That last part of the program isn’t nearly as shaggy as the sort
routine itself. Enter these final 3 lines:

1998 FOR T

1919 IF N$

1 TO LEN(D$) - LEN(N$)

MID$ (D$,T,LEN(N$)) RETURN
1920 NEXT T : T=§ : RETURN

RUN it a few times to get the hang of what’s
going on, then we’ll take it apart.

Line 1000 starts off by setting up a FOR-NEXT loop. How
far that loop continues depends on what number comes
out of the difference between the length of D§ (from
the DATA line) and the length of N$ (the name or part
we entered). Even if that number comes out zero or

negafi‘!‘?, wa’ll otill on thranoh the navt ? linec at least

once.

164

Line 1010 is of the IF-THEN variety. If the characters we
INPUT in N§ are the same as the characters taken from
D§, we RETURN to line 6(). LEN(NS$) counts the num-
ber of characters we INPUT, so MID$ can take the same
quantity from DS§. T gives MID$ the starting point to
count from.

At line 6(, we know T will not equal () since we just said
it equalled 1 in line 1000. Execution will therefore fall
through to line 7¢ which PRINTS the good news that
we have a “match”. Line 3(starts the search process
over again in another DATA name, looking for other
possible matches.

If, on the other hand, we did not get a match in line 1010
(by far the most frequent event), execution falls through to
line 102Q.

Line 1020 increments T by one digit, and execution returns
to line 100Q, dropping to line 1010. 1010 again tests
our INPUT against the same name READ from DATA,
but this time the starting point, T, moves over by one
place, and a different set of characters is selected. The
same scenario as before repeats.

Eventually the FOR-NEXT loop runs out of T’s, and line
1020 moves to its next statement, T=0. T=0 sets up a
signal for line 60 that the FOR-NEXT loop has run its
course and it’s time to READ a new name from DATA.
The RETURN in 102 returns execution back to line
50, then 60.

Now that wasn’t too bad, was it? CTwarnt nothin’, really.) A
little time beside the pool reflecting on the logic will do
wonders.

Chapter 13

165

PART 100

For those with only a silver fingerbowl, but no pool, this
extra line will show the inner machinations of line 1000.

19#5 PRINT"T=";T,"LEN(D$)=";LEN(D$),"LEN(N$)="
;LEN (N$) , "DIFF=";LEN(D$) - LEN(N$)

Run it through a number of times, halting executing as neces-
sary. It really does make sense!

When you’ve got that one under control, take out line 1005
to cut down the clutter. Better yet, go into Editor and place
a single * at the beginning of 1005, making it a REM line
which can be converted back to a working program line with-
out having to retype it.

Now add line 1007 to show what 1010 is doing.

1}5%7 PRINT"T=";T, "N$=" :N$,"THE MID$=":
MID$ (D$ IT!LEN(N$)) ’ "D$=" ;DS
and RUN.

This one really tells a story! Step right up and see for your-
self!

Does the string you INPUT really match up with what MID$
is pulling out?

Can there be any doubt?
How green was my valley?
Who was the starting pitcher in the 1923 World Series?

Who’s asking all these silly questions?
T + - bt 1 (R F P sron y o o~ oo ~ el
It doesn’t matter how hard a program seems, when broken

down to its individual parts it isn’t very hard. Like we’ve
pointed out before, “The BASICs Are BEverything”.

166

Snarled String?

In an earlier chapter we learned about STRS, which lets us
convert a numeric variable to a string variable. For the pur-
pose of confusion (no doubt), there is another “string-string”
that does something completely different. Fortunately, it is
written differently, too.

STRINGS$(P,A) is a specialized PRINT modifier which allows
us to PRINT a single ASCII character, represented by A, a
total of P times. Quite simple, really.

Type:

19 PRINT STRINGS$ (23,42);

2¢ PRINT"STRING$ FUNCTION";

30 PRINT STRING$(23,42);

and RUN.

Wow! That really moves. It printed ASCII character #42,
which is a *, 23 times, then printed the phrase STRINGS$
FUNCTION, then printed * 23 more times. This just has to
have some good applications.
Suppose we need to type a “‘header” across the top of a
report — let’s say the first line of it is to be solid dashes.
What is the ASCII code for a dash? Forgot? (Me too.) Every-
body back to Appendix B to find the code,
45 it is. We want to print, 64 times, the character represent-
ed by ASCII code 45. That’s the full width of a line on our
screen. The NEW program should look something like:

18 PRINT STRING$ (64,45)
Let’s RUN it and see what happens:

OUT OF STRING SPACE IN 1@

Chapter 13

167

PART 001

Suckered in again! Tho STRINGS is really a short of PRINT
statement, it’s also a STRING function, so is subject to the
string space restriction. Now what do we do?
Try adding:
5 CLEAR 64
and RUN.

That’s more like it.

An even easier way to use STRINGS is by replacing the
ASCII code of the character we wish to PRINT with the
actual character itself. (It must be enclosed in quotes.) This
works fine with characters that really PRINT, such as letters,
numbers and punctuation marks. Change line 1§ so the pro-
gram reads:

5 CLEAR 64
19 PRINT STRINGS$ (64,"-")
and RUN.

Works nice doesn’t it, and we didn’t have to look up an
ASCII code.

As with most string functions, we can bring in the string via a
string variable. This simple program shows a variation on the
theme, and may trigger some ideas:

124 INPUT"ENTER ANY LETTER, NUMBER OR SYMBOL" ;A%
2@ PRINT STRINGS$ (40,A$)
3¢ PRINT : GOTO 18

Play around with STRINGS a while, It’s really very helpful

when we need it, particularly for giving our printouts some

class. An obvious advantage is its ability to do a lot of
PRINTing with very little programming.

168

Chapter 13

On The Lighter Side

The specialized string functions allow us to do all sorts of
exotic things. Here is the beginning of a simple but fun pro-
gram which uses LEN and MIDS. You can easily figure it out,
especially after you’ve seen it RUN.

Enter:

1 REM * TIMES SQUARE BILLBOARD *

190 CLEAR 400

20 CLS:N=0:PRINT:READ AS

30 L=LEN(AS) : F=1

80 IF L>N THEN L=N+2

99 BS$ = MIDS(AS,F,L)

190 PRINT@518-N,;B$

11¢ FOR T=1T028 : NEXT T

196 IF N=55 GOTO 220

208 N=N+1 : IF N<55 GOTO 298

220 L=L-1 : F=F+1 : IF L<@ THEN L=0

23¢9 IF L=15 GOTO 20

29¢ CLS : GOTO8@

5¢06 DATA ". . . LUCKY LINDY HAS LANDED IN PARIS . . ."
51¢ DATA ". . . MET BY LARGE CROWD AT LEBOURGET AIRPORT . . ."

and RUN.

Your assignment, if you choose to accept it, is to complete
the program so it repeats, ends, or otherwise does not crash.

Good luck! .

.. ... Fsssss!
*SCARIEST THING | EVER sAW!
| WAS SITTING THERE READING AWNG WHeN

(T SAID SOMETHING ABOUT AN (MPOSNIBLE MISSION
AND THAT [T WOULD SELF- DESTRICT
IN FIWE SeCoNDS..."

g A CLEVER. GIMMICK
77\ " sEL MoRe Reoks]

g

169

\
v OB | THOUGHT YoU SAID THE ASSIGNMENT
WAS To BRING IN A SAMPLE OF
[
AN INKY sTRING!

170

CHAPTER 14

INKEY$

The INKEY$ (pronounced Inkey-string) Function is a power-
ful one which enables us to INPUT information via the key-
board without having to use the §af i34 key.

Type this program:
1 CLS
19 IF INKEY$="T"THEN 3§
2¢ GOTO 18
3¢ PRINT"YOU HIT THE LETTER 'T'"
4¢ GOTO 18
and RUN

The keyboard seems to be dead, until you hit the ‘T’ key.
The test in line 1Q then passes, execution moves to line 30
and a message is printed. Then the process starts over.

The INKEYS$ function glances at the keyboard for only an
instant, much like a room is illuminated by a flash bulb or
strobe light. Whatever is happening at that time is acted
upon. In order to keep the “strobe” flashing as fast as pos-
sible, we put INKEY$ into a loop (lines 19 and 20) and keep
it “circling” in a “holding pattern” over the keyboard. If we
press a key when INKEY$ isn’t looking, it will miss us and
we’ll have to do it again. Press the T key a number of times
and note that INKEY$ will occasionally miss your call.

171

PART 000

INKEYS$ can only “photograph” one letter or number for
each flash of the “strobe”. If we want to test for more than
one character we must write the program to test for each one
in sequence. In so doing however, INKEYS$’s reliability
deteriorates badly.

Add these lines to the program:
15 IF INKEY$="P"THENS5{
5¢ PRINT"YOU HIT THE LETTER 'P'": GOTO 19
and RUN.

As you see, the “miss” rate is much higher. Unless our key-
stroke matches the timing of the strobe, we won’t be seen.

If INKEY$ scans the keyboard and does not find a pressed
key (the usual case), it is said to read a “null string”.
INKEYS is a string function, and null means nothing. A null

string is represented by two quote marks with nothing be-
tween them, thus:

nn

The ASCII code for null is 0.

To see how fast the scanning takes place, try this NEW pro-
gram:

2¢ K$ = INKEY$: PRINT,,,K$: IF K$ = ""GOTO 50

3¢ GOTO 28

5¢ PRINT "NOTHING FOUND ON THE KEYBOARD" : GOTO 20
and RUN

Type in random characters and see them break the scan. Turn
on TRON briefly to watch the execution path.

172

INKEY$ can actually scan much faster than what we see
here, but when the scanning loop is burdened down with
extra tests and PRINT statements, it makes the distance
around the race track longer. In its optimum form, INKEYS
should have the shortest possible scanning loop for highest
speed.

You were wondering why we introduced K$ in the above
program, when INKEYS$ can be printed and tested all by
itself, weren’t you? Good thinking! Now, shown to the
public for the first time in this daring exposé, the startling
truth about INKEY$ is revealed.

Enter this NEW program:

19 PRINT INKEY$,INKEY$,INKEY$,INKEY$
Now, at first blush you might think that an INKEY$ is an
INKEYS, so if you type a character it should be printed 4
times.

RUN it.

Aha! It didn’t work! That must mean that all 4 INKEYS are
different. What a revoltin’ development this is!

In our search for the lost string, change the program:

GOTO 14

19 A$=INKEY$: PRINT A$,A$,A$,A$: GOTO 19

and RUN

Aha again! Now we’re getting somewhere. By setting a “regu-
lar” string variable equal to INKEYS, we can store its value
(if briefly) and process it much more efficiently and predict-
ably.

Get the general idea of how to use INKEY$? So simple, yet
the possibilities are enormous. Only a lot of experimenting
will make you comfortable with it, but INKEYS$ will keep
you awake nights staring at the ceiling thinking of ways to
put it to work.

Chapter 14

173

PART 100

Out of the blue of the Western Sky . ..

While chasing the solitude needed to write this book, your
author flew a heavily loaded light plane, packed with a
typewriter, a customized TRS-80 with accessories, plus lug-
gage (and of course, Ham radio) into a medium sized city
airport. Transferring this freight to a car turned out to be a
big deal since security wouldn’t let a car on the apron to off-
load the plane. (You’re supposed to drop it by parachute?)
After some cajoling (and a gratuity) it was agreed that my car
could be driven up near the apron, and an ‘“officially
approved” car could haul the goodies from the plane to the
car. It all ssemed a bit officious, but election time wasn’t
close enuf, so . ..

Anyway, to get my car thru the security fence it was neces-
sary to drive to an electrically operated gate and punch a
secret code into a numeric keypad for some sort of computer
to analyze, and automatically open the gate. The secret code
number was 1 93¢.

Needless to say, as soon as the TRS-80 was set up I had to
write a BASIC program to do everything but actually open
the gate. It provides a good example of a real-life application
of INKEYS, and is offered here for your amusement, amaze-
ment and study.

19 CLS:PRINT@79f, "TYPE THE COMBINATION"

2¢) PRINT@854,; "FOLLOWED BY A PERIOD"

3y PRINT@147, "THE ELECTRIC GATE IS CLOSED"

4 K$ = INKEY$: IF K$ = "" GOTO 4§
5§ READ D$: IF D$ = "." GOTO 1840
6@ IF D$ = K$ GOTO 40

78 RESTORE : GOTO 4§

19 REM * SEE 'CONTROLLING THE WORLD
WITH YOUR TRS-80' *

174

112 REM * BY YOUR FAVORITE AUTHOR FOR
DETAILS ON HOW *

12¢ REM * TO ACTUALLY OPEN AND
CLOSE THE ELECTRIC GATE *

139 CLS : PRINT@133, "YOU MAY ENTER NOW -
WAIT FOR THE ELECTRIC GATE TO OPEN"

14 FOR T=1T028@F : NEXT T : RESTORE
1994% paTa 1,9,3,4,.

The password (1930 followed by a period) is imbedded, a
character at a time, in DATA line #10@(. The commas only
separate the characters and should not be typed in to open
the gate. Line 4() holds the magic. It scans the keyboard look-
ing for something besides a null string, If it finds a key
pressed, execution drops to line 50.

Line 50 READs a piece of DATA. If it happens to be a
period (which can only be READ from DATA after each of
the other code characters have been READ), execution
moves to line 100 where the gate will be caused to open and
line 130 will tell you to enter the premises.

If, however, the test in line 5@ does not find a period, execu-
tion defaults to the next test, in line 60.

Line 60 checks to see if the keyboard character matches up
with the character READ from DATA. If so, the first hurdle
has been passed and execution returns back to line 40 for
INKEY$ to await another keyboard character. If the key-
board and DATA characters don’t match, the test fails and
execution drops to line 70.

Line 70 RESTOREs the DATA pointer back to its beginning,
and returns execution to line 4(to start scanning all over
again. The keyboard puncher sees none of this and has no
idea if he is making progress towards cracking the code.

Line 140 merely allows the gate a brief time to open and
close (and you to read the screen), then RESTOREs the
DATA and starts the program over again from the beginning.

GOTO14

Chapter 14

175

PART 001

The password can be changed to any combination of charac-
ters hy changing line 1000

If you wanted it to be ‘TRS-80” for example:
1688 DATA T,R,S,-,8,0,.
Or, ‘OPENSESAME’
14¢4¢ pATA O,P,E,N,S,E,S,A,M,E,
Don’t forget that last piece of DATA, the period. By chang-
ing line 50, of course, you could change that period to any-

thing you wanted.

Happy gate crashing!

176

NOTES

"IN SINGLE 0R DOULBLE PRecision 2’

178

CHAPTER 15

What
Price
Precision?

Unless otherwise told, Level II BASIC stores variables with an
accuracy of 7 digits, and prints them out accurate to 6. This
is called ‘“‘single precision” and is more than adequate for
most applications.

For large businesses or special scientific applications however,
greater accuracy is needed and we have a capability called
“double precision”. By telling the Computer to go “double
precision”, it will store numbers to an accuracy of 17 digits,
and print them out accurate to 16. We pay a price for this
precision however, both in the additional memory it takes to
store and process big numbers, and the extra time required to
do so.

Enter this program:

1 CLS : PRINT
1234567890987654321 (check ’em)
.P0p3000033123456789 (count ’em)

A 7 = X * Y

29 X
30 Y

Il

58 PRINT X;"TIMES";Y,"EQUALS" 12
99 PRINT : LIST
and RUN.
Ummm-hmmm. A very large number times a very small num-

ber, and the answer — all expressed in Exponential notation.
Accuracy clipped to 6 places.

Some of you recall the old
slide rule ... well it was

accurate to only 3 digits.

179

PART 100

With ease we can convert storage and processing of X, Y and
Z to double precision. This is almost too easy:

1¢ DEFDBL A- %

DEFDBL stands for “DEFine as Double Precision” and A-Z
means, ‘“‘make every variable starting with any letter from A
through Z double precision”.

Add the line and RUN.
Quite a difference, eh? We did lose a few digits out in the
hinterland, but it expanded our accuracy from 6 places to
16. (Did you see the E for exponential change to D for
double precision exponential?)
Such a line is terribly wasteful of memory space and time,
except in short programs; but fortunately only a few vari-
ables really need to be so precise.
Since the letters X, Y and Z are in sequence, we could tell the
Computer to handle only those 3 as double precision, and
leave all other variables (of which there are none, right now)
as single precision. Change line 10 to:

19 DEFDBL X-7

and RUN.

Same results.

There is a way to override the DEFDBL declaration. Suppose
we wanted Z to be printed as just single precision. We can
override line 10 by changing those lines which contain Z, as
follows:

49 71 = X * Y

54 PRINT X,Y,Z!

and RUN.

180

Our “raw” data and the calculating was held at high preci-
sion, but our final answer is printed out with single-precision
accuracy - just what we asked for. A very specific declara-
tion (like the ! , which stands for “‘single precision’’), always
takes precedence over a global declaration like in line 10.
(Global means ‘“‘valid for the entire program”, not just one
character or one line.)

There’s another way to achieve the above results — just
change line 10 to:

19 DEFDBL X,Y
or
14 DEFDBL X-Y
It is possible to override one ‘“‘global” DEFDBL declaration
with another. DEFSNG will change everything back to single

precision. Let’s try it:

6f DEFSNG X~-7Z

7% PRINT X;"TIMES";Y,"EQUALS";Z and RUN.

Good Grief — our “single-precision” numbers turned to
zeros!

Well, it turns out that X double precision is a completely
separate variable from X single precision: it’s as different
from X as is Y, or any other variable. If we want to use X and
Y again as single-precision numbers, we have to go back and
assign their values AFTER declaring them to be single preci-
sion. Hmmmm.

A cheap and dirty way to show the point is to change line 70
to

78 GOTO 28

and RUN — hitting the key after both
double and single precision versions are printed.
(Fortunately, there is rarely reason to redefine
a variable within a program. If necessary, we can
do so with conventional string techniques.)

Chapter 15

181

PART (00

Double Precision, Another Way

Instead of a ‘‘global” declaration of accuracy, we can do it
one variable at a time. Change the resident program to read:

1 CLS : PRINT

20 X#

1234567890987654321

.PPPPPRRAB123456789
49 7# = X$ * Y#

38 Y#

5¢ PRINT X;"TIMES";Y,"EQUALS";Z#
9¢ PRINT : LIST
and RUN.

Same results as before. The # sign declares that the variable
letter preceding it is to be handled as double precision,
overriding the normal presumption that it is single precision.
Remember, X# is not the same as X — it is an entirely dif-
ferent variable. Same with Y# and Z#. To prove the point,
add

10 X = 4.321

60 PRINT "X =";X

and RUN. X and X# were completely separate,
weren’t they?

182

Integer Precision

In a few cases, where the numbers at issue are integers (and
in the range between —32768 and +32767) execution can be
speeded up by declaring them to be integers using the % sign
or the DEFINT statement. Enter this NEW program:

2¢0 FOR N = 1 TO 5898

39 NEXT N

99 PRINT : LIST

and RUN.

Using a stopwatch or clock with a second hand, measure the
time it takes for the 500Q passes. Should be around 13%

seconds.

Now let’s declare N to be an Integer, which is all the accuracy
we need, and time it again. Add:

1% DEFINT N
and RUN.
Aha! It took only about 9% seconds. That’s an increase from

about 37(passes per second to about 525. A very significant
difference.

We can accomplish the same thing using specific declarations.
Delete Line 10 and change the program to read:

2 FOR N = 1 TO 50809
39 NEXT N$%
9¢ PRINT : LIST

and RUN. Using this method, it runs even faster,
coming in at about 9.1 seconds, or 55(passes per second.

Chapter 15

183

PART 100

One More Way
The conversion functions CSNG (#), CDBL(#) and CINT(#)
provide 3 additional ways to declare numbers as Single,
Double or Integer precision. Enter this NEW test program:

1 CLS : PRINT

20 X = 12345.67890

3¢ PRINT X

4% PRINT CSNG (X)

5¢ PRINT CDBL(X)

6§ PRINT CINT (X)

98 PRINT : LIST

and RUN

we get

12345.7

12345.7

12345.6787109375

12345

Line 30 printed the value of X, the same as we specified
in line 20, accurate to 6 digits.

Line 4@ printed the single precision value of X ———
A

LR ke
DALIT ad riliv Iy,

Line 50 printed the double precision value of X, but it
sure isn’t a duplicate of what we said X was to be
in line 20! Same old precision problem ——-—don’t
try to be more accurate than what we begin with,
single precision (It’s the programmer who’s sup-
posed to be creative, not the computer!)

184

Line 60 printed the integer value of X. No surprises
here. It behaved in the same manner as the INT
statement itself, and even has the same maximum
range (—32768 to +32767).

Let’s make the value of X negative and see what happens.
Change line 20 to

29 X = -12345.6789p

and RUN.

Again, no big surprises. CINT acted just like INT, rounding
downward to get the —12346.

Now let’s go back and declare the value of X to be double

precision, change it to a positive number, and do all our
printing in double precision. The new program should read:

1 CLS : PRINT
20 X# = 12345.6789f
3% PRINT X#
4 PRINT CSNG (X#)
5¢ PRINT CDBL (X#)
68 PRINT CINT (X#)
94 PRINT : LIST
then RUN

and the display reads:
12345.6789
12345.7
12345.6789

12345

Chapter 15

185

PART 00

All makes sense, and all quite predictable, isn’t it?

What do you think will happen if we again change the value
of X to a negative number? Think it through; then change
and RUN it.

Some Caveats

The Computer makes assumptions. If a constant is written
with 8 or more digits, or written in exponential with a “D”,
it is automatically stored as double precision. When that or
any other double-precision number is used in a calculation,
the entire calculation will be performed as though all num-
bers involved are double precision. This isn’t necessarily bad,
but an answer with lots of digits is no more precise than its
least accurate ancestors.

Division is unique. All division is done with single precision,
regardless how we declare the numerator and denominator.
If high accuracy is needed and division is required it’s best to
substitute multiplication instead, if possible.

If a plain old number falls within the range of —32768 to
+32767, or, if it contains a decimal point, or, if it is written
in exponential with an “E”, it will be stored with single pre-
cision. Otherwise, it is stored as an integer.

Finally, logical operations can be performed only with
integers.

Degrees of precision may not be the most inspiring subject,
nor seem to be the most consistent. But, if we’re at least
aware of them we’ll not be caught off guard and be deceived

by numbers that never were. (Seems to be a lot of those type
nvond eh?)

186

NOTES

N

| THINK. VVE DIRCONERED WHY WE ARE
SO POPULAR. .. MR. WRIGHT, OUR COMPUTER EXPERT,
NEVER. FOLLY MASTERED THE
'PRINT USING' COMMAND...”

FIRST
NATIONAL
BANK

Wol i PoPuARITY o

MITS THE FRST BANK
THAT'S ENER HAD
INTEREST IN ME!'

188

CHAPTER 16

PRINT USING

Of all the ways we have to PRINT, the most powerful (but
most confusing) is one called PRINT USING. The name
PRINT USING itself implies that you PRINT something
USING something else. That implication is correct.

As originally developed for use on large computers, PRINT
USING consists of two parts — PRINT and USING. PRINT

does as the name implies, USING the format (called the

“image”) found in another line. The TRS-80 PRINT USING
is similar, but does not always require a second line for the
“image” . .. as we will see.

PRINT USING With Numbers
Type:

19 A=123.456789
49 U$ = "HeH.H4"
5¢ PRINT USING U$;A
and RUN.
The answer is PRINTed as
123.46

It was rounded up and PRINTed to an accuracy of 2 decimal
places.

Add:
28 B=1.6
64 PRINT USING U$;B

and RUN.

189

PART I

The screen shows
123.46

1.68

The first thing to note is that we have called upon line 40,
our image line, twice — once in line 5@ and again in line 60.
Next, note that two answers appeared with their decimal
points lined up. Last, see that a @ has been added to the 1.6
to make it read 1.60. These latter two points are important
if you’re printing out business reports.

One more addition:
30 ¢ = 9876.54321

7@ PRINT USING U$;C

%,

Produces:
123.46

1.68
29876.54

What gives 77?7

Well, the % sign means we have overrun our image lines
capacity to print digits left of the decimal point, but it
prints them anyway. Better to lose our decimal point lineup
than important numbers, but it does call our attention to a
programming problem. Let’s add another # sign to make
room for that extra digit. (We are adding another element to
the field in the image line. Got that?)

40 U$ = "H##HE.HH"
and RUN.
That’s better — but the overrun message would appear

again if we tried to print a number with more than 4 digits on
the left.

190

So far, this PRINT USING business looks like it might have
some potential, lining up decimal points like it does. We
don’t have any other reasonable, straightforward way to
accomplish that, and it’s essential for printing dollars and
cents in business reports. Wonder how we can print a dollar

sign?
Let’s change our image line to:
49 U$ = "ShHEHE.HE" (count em carefully)
and RUN.
Nice, eh? The dollar signs all line up in a row:
$ 123.46
$ 1.60
$9876.54

But suppose we want the dollar signs to snug right up against
each dollar amount? Make 40 read:

49 U$ = "S$SH#EH.HE"
and RUN
and we get:
$123.46
$1.64

$9876.54

not specially attractive in this format, but taken
singly, as when writing checks, it’s almost essential.

Chapter 16

191

PART 100

The lessons so far are:

1.

PRINT USING with # prints the decimai point at
the same place for every size number printed.

It rounds off the cents (the numbers to the right of
the decimal point) to the number of # signs there.
It does not round off dollars (left of the decimal
point), but sends up an error flag %, prints all
dollars, and slips the decimal point to the right if
the field isn’t large enough.

If a single $ is added to the left, dollar signs will be
printed and lined up in a column like decimal
points. This single $ does not expand the field.

If two $ are placed on the left, one $ will be print-
ed on each line and will be placed immediately in
front of the first dollar digit. One of these § can
replace one # in the field, thereby not expanding
it.

We’ve covered a lot with very little program, but have a long

way to go.

Printing Checks

When using a printer for writing checks, it’s usually wise to
take extra precautions against “alterations”. This is easily
accomplished by changing line 40 to read:

4 U$ = "*EGHEHEET (count ’em)

The RUN now reads:

192

**%123.46
kkxkk1 6Q

*9876.54

That’s swell, it fills up the unused spaces alright, but we lost
the dollar sign. Okay, we’ll expand the image “‘field”” by one
space and put in a dollar sign.

49 U$ = "**$HE . ##" (aren’t you glad we have an
Editor for all these changes?)

See it Now:
*$123.46
*kk$1 .60
$9876.54

just like they do it uptown!

If you want to really impress others with the size numbers
you usually deal with at your lemonade stand, add lots more
signs to the image line, thus:

4 U$ = "**ShfR4ddhhaaadhdg. 44"

and your checks read:
kkkkkkkkkkkx*k*x$123 46
****************$1 . Gﬂ
kkkkkkkkkk*x*k*x$9876 .54
. .. very impressive.
Since we’re obviously big time operators, having franchised
our lemonade stands, it’s getting hard to keep track of the big
numbers. How about some commas to break them apart?
(Knock out those extra *’s first. Too hard to count them.)

4f U$ = "**§ HH.#4" (look closely)

and RUN.

Chapter 16

193

PART Il

**$123.46
kkk*k$1 . 6f

$9,876.54

Only one of our numbers has more than 3 digits, but a
comma separated its 9 and 8 for easier readability. In the
image field, the comma can be placed anywhere between the
$ and the decimal point, and only one comma is required to
automatically insert commas to the left of every 3rd digit left
of the decimal point. (You really big time operators who deal
in the millions will have to wait till the next chapter to see
how to go ‘“double precision” to avoid losing the loose
change.)

Stringing it out

Let’s rework our resident program to show some other
PRINT USING capabilities:

1 CLS : PRINT

19 A = 123.456789
20 B = 1.68
3 C = 9876.54321

4 US$ = "#4##d.dhSopoces) B EFHH B H (Sopaces) HHHE L HE"
5¢ PRINT USING U$;A,B,C
9¢ PRINT : LIST

Don’t mind lines 1 and 99. They are just handy for clearing

the screen, bringing the printout down a space, then LISTing

the program for study after it has been printed. I use the
technique all the time. You might like it too.

194

Anyway, RUN it and see how the same numbers can be dis-
played horizontally instead of vertically. All depends on what
you need at a given time.

123.46 1.60 9876.54

PRINT USING With Strings
Change the program to read:

1 CLS : PRINT

19 A$ = "IT'S"
15 B$ = "HOWDY"
24 C$ = "DOODY"
25 D$ = "TIME"
49 U$ = "sg"

5¢ PRINT USING U$;A$
99 PRINT : LIST

and RUN.

The only thing unique about this program is in line 4(. As if
we didn’t already have enough uses for the % sign to worry
about, here is another. % is a symbol in TRS-80 PRINT
USING which is to strings something like what the # is to
numbers.

We used two %%, so reserved two spaces for strings, and only
IT was printed. Unlike # however, to reserve more spaces in
the string field, we add blank spaces between the % signs.
Change line 40 to

J(‘? spaces)

4g U$ ="s " 3"

and RUN. 4 spaces are set aside and IT’S is
printed without clipping.

Chapter 16

195

PART 000

Let’s make room for printing another string on the same line.
(2 spaces) . (3 spaces)
4g U$ - l!%\ %% K’% "
5¢ PRINT USING U$;A$,B$
and RUN.
Oops! We ran
IT'SHOWDY
together.

To space them apart we must have to put an actual space in
the image field just as we did earlier with printing the

numerics.
{ (1 space)
%

on
]

oe

40 U$ = "3
and RUN.
That’s more like it.

Now it’s your turn. Complete lines 49 and 5@ to print IT’S
HOWDY DOODY TIME all on one line.

ANSWER:

(2 (1) (3) (1) 3 (1) ()
A U$ =" B 3% %% %

5¢ PRINT USING U$;A$,B$,C$,D$

(If you have trouble with spacing in PRINT USING, add an
adjacent “measuring” line like this to help.)

39 PRINT "123456789812345678981234567894"

196

Chapter 16

It’s time to quit doodling around and get down to business
too! Let’s change out HOWDY DOODY for some typical
report headings.

1 CLS : PRINT

14 A$ = "PART NUMBER"

15 B$ = "DATE PURCHASED"

2@ C$

25 D$ = "cosT"

"DESCRIPTION"

Il

a9 (you figure out this one yourself)

5¢ PRINT USING U$;2A$,B$,C$,D$

9¢ PRINT :LIST

ANSWER: (9 spaces) (4 spaces) (12 spaces)
49 U$ = "3 o)) 2 (There should be 4 spac-
es between the %’s
o o e omn where we had to split
/ © the line.)
(4 spaces) (9 spaces) (4 spaces) (2 spaces)

197

PART 00

Bring On the Money Changers

Here is a straightforward user program which uses PRINT
USING in a practical way. One would be hard pressed to get
the same results in so short a program without USING it.

If you're not in the international currencv business. just type
in the first half-dozen or so DATA lines, plus line 1500 to
get a feel for what PRINT USING can do. See how % and #
can be mixed with blank spaces on the same image line?

Count spaces in line 460 very carefully! Add a “measuring
line” #459 if necessary.

1 REM * INTERNATIONAL MONEY CHANGER *
2 REM * RATES AS OF AUGUST 1979 *

18 CLS

80 RESTORE : PRINT

168 INPUT" HOW MANY U.S. DOLLARS DO YOU WISH TO EXCHANGE ";D

1106 PRINT : PRINT TAB(18);"AT TODAYS RATE YOU WILL GET" :
409 READ AS$,A,B$,B : IF A$="END" THEN 80
460 P3$="% g #i T %
478 PRINTUSING P$;AS$;D/A;BS$;D/B

848 C=C+1 : IF C = 11 GOTO 9086

850 GOTO 400

900 FOR T=1TO500 : NEXT T : C=0 : PRINT :GOTO0400
1668 DATA ARGENTINE PESO, .0007

161¢ DATA AUSTRALIAN DOLLAR, 1.1295

1020 DATA AUSTRIA SCHILLING, .8751

1930 DATA BELGIAN FRANC, .0£342

1046 DATA BOLIVIAN PESO, .095

1956 DATA BRAZIL CRUZEIRO, .375

1060 DATA BRITISH POUND, 2.2368

1970 DATA CANADIAN DOLLAR, .8532

1680 DATA CHILEAN PESO, .0284

199¢ DATA COLOMBIAN PESO, .0284

1100 DATA DANISH KRONER, .1982

1119 DATA EGYPTIAN POUND, 1.45

1120 DATA ECUADORIAN SUCRE, .0357

1130 DATA FINNISH MARKKAA, .2622

1149 DATA FRENCH FRANC, .2347

1150 DATA GREEK DRACHMA, .0276

1160 DATA DUTCH GUILDER, .4975

1176 DATA HONG KONG DOLLAR. .1939

1180 DATA INDIAN RUPEE, .1263

1199 DATA INDONESIAN RUPIAH, .0016

1200 DATA IRANIAN RIAL, .61379

1219 DATA IRISH POUND, 2.0650

1220 DATA ISRAEL POUND, .£385

1230 DATA ITALIAN LIRA, .001224

1240 DATA JAPANESE YEN, .004619

198

[
°

PRINT

Lana s b
TTWHHTITT o

B
LR 3

Chapter 16

1250 DATA JORDIANIAN DINAR, 3.3613
1260 DATA KUWAIT DINAR, 3.6331
127¢ DATA LEBANESE POUND, .3082
1288 DATA MEXICAN PESO, .0439

1290 DATA N. ZEALAND DOLLAR, 1.0180
1309 DATA NORWEGIAN KRONER, .1994
1318 DATA PERUVIAN SOL, .#04388
1320 DATA PHILIPPINE PESO, .1376@
1330 DATA PORTUGAL ESCUDO, .#205
1340 DATA SAUDI ARAB RIYAL, .2976
1350 DATA SINGAPORE DOLLAR, .4660
1360 DATA S. AFRICAN RAND, 1.1928
1370 DATA SPANISH PESETA, .@151
1380 DATA SWEDISH KRONOR, .2374
1390 DATA SWISS FRANC, .6042

1400 DATA TURKISH LIRA, .0212

1410 DATA URAGUAY NEW PESO, .1372
142¢ DATA VENEZUELA BOLIVAR, .2330
1430 DATA W. GERMAN MARK, .5468
1500 DATA END,@,END,®

199

CHAPTER 17

PRINT USING

Round 2

In the previous chapter we learned almost everything really
needed to put PRINT USING to work. Here are a few other
“tricks” that some of you might find helpful.

When printing big bucks (over 999,999 dollars) it is neces-
sary to use double precision or we lose the loose change.

Type:

1 CLS : PRINT W
R HAVING OUR. ONN COMPUTER.

10 A$ = "SS##4, ###444. #4" A HELPS IMPRONE
"% | COR. CORPORATE IMAGE”
28 D = 123456789.91 1
)
3¢ PRINT USING A$;D 1% 5}7
N/
9% PRINT : LIST —uJa/y

TOO BAD T capny'r
IMeRONE

G .

and RUN.

Sure enough, it rounds to $123,457,000.00. Granted, it’s
only a few minutes interest on the nation debt. For businesses
doing the taxpaying however, the accuracy can be easily
improved by simply switching to double-precision. Change
lines 20 and 30 to

2% D# = 123456789.@1

3@ PRINT USING A$;D#

and RUN.

201

PART 001

There it is — $123,456,789.01 — enough change left over to
tip the porter who hides the public baggage carts. Notice
that the image line didn’t have to change. All we did was use
a technique we learned in an earlier Chapter.

If the 16-place accuracy of double precision isn’t adequate
to keep track of the Krugerrands in your mattress, you and
Scrooge McDuck can probably afford to spring for a bigger
computer.
Profit, or Loss?
Was that healthy number this quarter’s profit from the
lemonade stand, or was it a loss? We can make the image
line print either. Change it to read:

10 A$ = "+$SHEEE, HHHHAE R

and RUN.

Very nice. Wonder what would happen if D was a negative
number?

20 D# = -123456789.01

and RUN

So far, so good. Suppose we take the + out of the image line.
Wonder if it will print the negative number anyway? Use the
Editor and take it out of line 10.
Then RUN.

Oh, Phsaw! It goofed it up. Must be the + sign adds an
elament fn the imaage and the eign talec nn that evtra plqr‘a
Well, now we know.

Let’s put the + sign back in, this time at the end of the image.

10 A$ = "SSH##, bHfdds. H4+"

and RUN.

202

A

Mmmmm. That’s nice. Now let’s change D back to a positive
number and see what happens.

20 D# = 123456789.01
and RUN.

Very nice. Looks better to have the signs at the end, not
interfering with the dollar sign, don’t you think?

Most printers don’t print deficits in red. How can we tag
them so we don’t allow the project manager to slip them by
us. (We’ll just take all + numbers for granted.) Let’s try
changing the + to a minus and see what happens.

10 A$ = "SSH##, HhHHEH HH-"
and RUN.

Seems normal. How about when it’s hit with a negative
number.

20 D# = -123456789.01
and RUN.

AHA! Sticks out on the printout like a sore thumb. Now
about this little deficit here, Smythe

Deviant Forms of PRINT USING

Here’s a full-blown weirdo. Even a contradiction in terms.
Would you believe a double-precision number, clipped and
expressed in double-precision Exponential notation, in
PRINT USING? Even the technical types among us with mis-
matched socks and a rope for a belt will cringe at that one.
We aren’t going to bore the business types with the gory de-
tails, except for a quick intro for those who like to explore
the morbid (or is it moribund?).

Chapter 17

203

PART 000

Change or add these lines:
190 A$ = "AMAAREEEEHESEFEREEEESAS

1234567890987654321

209 D#
22 D = 1234567898987654321
374 PRINT USING AS$;D#
4¢ PRINT USING A$;D

and RUN.

What you see is what you get, both in double and single
precision. Using the Editor, move the block of 4 up-arrows
to the right, one position at a time, filling in with #’s. Have
fun!

Miore om Strings

There is one more PRINT USING character that has real
value. Like so many exotic “‘upgrades” of BASIC, it does
nothing that can’t be achieved using other BASIC words, but
does it easier. Enter this NEW program:

1 CLS : PRINT

2 X$ = "ALEXANDER"

3¢ Y$ = "GRAHAM"
49 7$ = "BELL"
(2 spaces)
50 A$ = "1 ! % %"
g DRINT TQTNC A%-¥$ VE 79

95§ PRINT : LIST

and RUN.

204

Who should appear before our very eyes but:
A G BELL

The ! serves to reserve an element in the field for the first
letter of the string assigned to it. Very handy when you want
the initials and last names of a list of people to line up in a
row on a printout.

Inputting the Image

We move farther and farther into the woods as we seek to
make BASIC’s formatting capabilities resemble the superior
(and far more complicated) ones of the FORTRAN language
from which it was derived. We can even INPUT the image
line, since it is a string. An easy way to see this is by using
our resident program, but change line 50 to read:

58 INPUT A$
and RUN.

We now have to respond by typing in the image line. (Seems
like they’re hard enough to create without INPUTting.)
The safest one to use is old line 5@, so respond to the ques-
tion mark with:

e

n o an
2 "1 %%

(2 spaces)

and see

A G BELL

appear again.

RUN again, this time responding with something like:
(2) {5) 2) (5) (2)
o ¥ v

1M O o) (o)
? "3 ¥YS 2Y%

oo

o)
°

and we should see something like

ALEX GRAH BELL

Chapter 17

205

PART 01

Try some other inputs and see how fast you get into trouble

writh TM arrare Tha Anwn.tn.anrth valne af thic nartienlar
YV ALEL L AVE wIiJE o L LAV AW VY 2E LA/ wldd Vix ¥ ledva WL CiLAL prRis Lanelalis

capability is a little elusive.

Another Short Cut

The final area of PRINT USING worthy of examination is
the incorporation of the image line into the PRINT USING
line. It requires some care, and has value primarily when only
a few variables are to be printed, or only printed once. In
most practical applications, the image line is referenced many
times during a run, frequently by different PRINT USING
lines.

Make a few changes in the resident program so it looks like
this:

1 CLS:PRINT

2 X$ = "ALEXANDER"
30 Y$ = "GRAHAM"
49 7z$ = "BELL"

(2 spaces)
6§ PRINT USING "! ! &~ &";X$,Y$,72$

94 PRINT : LIST
and RUN.

We simply did away with A$ and incorporated its elements
into a built-in image line, separated from the variables by a
semicolon. It does save space, and for short and uncompli-
cated PRINT USING applications, has value. For the long

e A ,.,\.M..I mrntad Avnan 420 laddae +n I,fmv. +Lm trnan anAd
ULtk wwiilprivavwa wiivs 1S CUelll °r SHagT sOG

PRINT USING lines separate

206

FINI

As you’ve seen, PRINT USING is the most complex of our
PRINT statements but by far the most powerful. If you're a
serious programmer you should master PRINT USING com-
pletely; take our many simple learning examples and expand
them into large, useful business routines.

Chapter 17

207

h

YOU'VE DONE AN AMAZING JOB ON YOUR.

SAUARE ROOTS ASSIGNMENT , JONATHAN,

S ALRIGHT,

Ts
He's !

NTRINSICALLY
HoNEST"

G

BUT How DO You DOCOMENT 117"

208

CHAPTER 18

Intrinsic
Mathematical
Functions

Level II BASIC includes a number of mathematical functions
for which we had to use sub-routines at Level I. These math
functions are all very straightforward and easy to use, but if
your math skills are a bit rusty, you will want to refresh them
to fully understand what we’re doing. We’ll keep everything
here at the 9th grade Algebra level so there’s no need to panic
(unless maybe you’re in the 6th grade .. .but even so, just
hang on and you’ll be OK).

INT(N)

We studied the INTeger function in some detail in the Level 1
Manual so won’t have to cover that ground again. However,
INT has been expanded at Level II, and is no longer limited
to numbers between —32768 and +32767. Larger numbers
are stored and executed with single precision.

209

PART 000

FIX(N)
FIX is just like INT, but instead of rounding negative num-
bers downward, it simply chops off everything to the right
of the decimal point.
Try this simple test at the command level:
>PRINT INT(-12345.67)
it will PRINT —12346
>PRINT FIX(-12345.67)
it will PRINT —12345
Which you use depends on what you want.
SQR(N)
The square root function is simple to use.
Type this:
19 INPUT"THE SQUARE ROOT OF";N
28 PRINT "IS ";SQOR(N)
3¢ PRINT
48 GOTO 19
and RUN.
Another way to take the square (or any) root of a number is
by using the 4 up-arrow. It of course means “raised to the
pquer”_. Fillqing .t}le square root of_ a nﬁu‘mber is the same as
raising 1t Lo Ltie 1/2 power. Change une 2y 1o:
28 PRINT "IS ";NA4(1/2)

and RUN some familiar numbers.

210

Chapter 18

The same logic which allows us to find the square root with the
up-arrow will let us find any other root. (Even the thought of
doing that in pre-computer days drove men, and some
women, mad.) Out of the sheer arrogance of power, let’s find
the 21st root of any number. Change the first two lines:

1¢ INPUT"THE TWENTY-FIRST ROOT OF "N

2@ PRINT "IS ";NA(1/21)

and RUN.

Now there is real horsepower! Problem is, how are we sure
that the answers are right. Well, it’s easy enough to add a few
lines that take the root back to its 21st power to find out.
Let’s clean up the program a bit and make it read:

19 INPUT"THE TWENTY-FIRST ROOT OF";N

15 R = NA(1/21)

2¢ PRINT"IS ";R

32 PRINT

33 PRINT R;"TO THE 21ST POWER = ";RA21

36 PRINT

49 GOTO 1§

and RUN.

They come out pretty close, don’t they? This “proof” pro-
cess might not stand up under rigorous scrutiny, but the
answers are correct.

211

PART 001

SGN(N)

SGN is a real easy one. Its purpose is to tell whether the sign
of a number is +, — or if the number is (. First let’s demon-
strate the principle with a simple program, then replace most
of the program with the SGN function.

18 INPUT"ENTER ANY NUMBER";N

28 IF N<@ THEN S=-1

3% IF N=@ THEN S=§

49 IF N>@ THEN S=1

5 PRINT S

6@ PRINT : GOTO 18

and RUN. Try various positive and negative
numbers, plus 0.

As you see, we are given the sign in sign language. *‘1”’ means
“positive”, ““—1” means ‘“negative” and “(”’ means “zero”.
That’s real handy because the answer is already coded in
number form, ready to use in a program that needs to know.

And now that we know how it works, let’s eliminate most of
the program with one simple line:

20 S=SGN(N)
Delete lines 3¢ and 40
and RUN.

Same results.

212

Chapter 18

ABS(N)

Absolute value has a lot to do with signs, or without them.
The absolute value of any number is the number without any
signs. If you’ve forgotten, this program will quickly refresh
your memory:

19 INPUT"ENTER ANY NUMBER ";N
2 A = ABS(N)

3¢ PRINT A

4% PRINT

50 GOTO 1f¢

and RUN. Try various large and small numbers,
positive and negative, and zero.

They all come out as they went in didn’t they, except the
sign is missing.

LOG(N)

No, a log isn’t what you build log cabins out of. But even the
swiftest among us have to refresh our memory from time to
time to keep all the details straight.

A log (logarithm) is an exponent. Exponent of what? The ex-
ponent of a base. What’s a base? A base is the number that a
given number system is built on. Aren’t all number systems
built on 10? *Fraid not.

10° = 1000
10 is the BASE. 3 is the log(exponent) and 100QQ is the
answer.

(Think it has something to do with “new math”, but I was
fortunately too old to take it, too young to teach it, and
grateful for having missed learning it from those who didn’t
understand it.)

213

PART 001

As if life wasn’t complicated enough, the LOG system is
centered arcund what are called natural logs. What that
means is the subject of another discussion, but we’re stuck
with it anyway. Natural logs use the number 2.71828 as their
base. (Really makes your day, doesn’t it!) Some interpreters
provide a second LOG option using 10 as the base, as in our
decimal system, but making the conversion isn’t too bad —
and we still do have to live with it.

Enter this program:
19 INPUT"ENTER ANY NUMBER" ;N
20 L = LOG(N)

3¢ PRINT"THE LOG OF";N;"TO THE NATURAL
BASE =";L

A PRINT
58 GOTO 19
and RUN.

Ummm Hmmm. Can’t relate to the answers? Enter the
number 100 and you should get the answer 4.60517. What it
means is, 2.71828 to the 4.60517 power = 10(. Lay that one
on them at the next meeting of the Audubon Society and
they’ll think you’re weird for sure.

Let’s jack this thing around to where the vast majority of us

who have to work with LOGs can use it . . . into the decimal
system.

Decimal-based Logs are called “common’ logs. Add this line:

35 PRINT"THE LOG OF";N;"'TO L'HE BASE 1y
= ";L * .434295

and RUN, using 10® as the number.

Ahhh! That’s more like it. We can all see that 10 to the 2nd
power equals 100. It’s good to be back on relatively solid
ground.

214

Chapter 18

The magic conversion rules are:

To convert a natural log to a common log, multiply the
natural log times .434295.

To convert a common log to a natural log, multiply
the common log times 2.3(26.

And that’s the name of that tune.

This final program clears it up and lays it out:
19 REM * LOGARITHM DEMO *
2@ INPUT"ENTER A NUMBER";N
38 PRINT

4¢ PRINT"THE NUMBER", ,"NATURAL LOG",
"COMMON LOG"

5§ PRINT N,,LOG(N),LOG(N)*.434295
60 PRINT

78 GOTO 2g

215

PART 000

EXP(N)
Sort of the opposite of LOG, is EXP. EXP computes the
value of the answer, given the EXPonent of a natural log.
(Another winner.)

2.71828 raised to the EXP power = the answer
Type in this program:

1§ INPUT"ENTER A NUMBER";N

28 A = EXP(N)

3¢ PRINT"2.71828 RAISED TO THE";N;
"POWER = ";A

4 PRINT

58 GOTO 19
and RUN. You're entering the EXPonent now,
so it’s easy to get the answers that are too big

for the Computer and cause it to overflow.

As a benchmark against which to test your program, enter
this number:

4.60517

The BASE of the natural log system raised to this power
should equal 10@.

If you’re this far into logs, you can create your own advanced
test programs from here, checking the results against a LOG
table. And if you're not too comfortable with all this . . . try

. | 7 ¥o. R § I P, P DU '
TILRINLILE W LUE CRULIL YWY ELIE LILC TSl r)

216

NOTES

218

"ALLOW ME To INTRODUCE MNSELF...

COMPUTER. CLUB NEWS

MY FRIENDS CALL ME TRG.”

{
ALL OF THE ANGLES!

o M
74

CHAPTER 19

The Trigonometric Functions

Since this is about as deep as we’ll get into mathematics,
we’re going to assume you know something about trig — at
least what was covered in the Level I Manual. It might be a
good idea to go back and review the last half of Chapter 25
in the Level I Manual just to come up to speed.

Trigonometry of course deals with triangles, their angles, and
the ratios between the lengths of their sides. In the triangle
below, the Sine (abbreviated SIN) of angle A is defined as the
ratio (what we get after dividing) of the length of side a to
the length of side ¢. COSine and TANgent are defined simi-

larly: B
SIN A =a/c ¢ a
COS A=b/c
TAN A=a/b]
A b Cc

From these relationships, we can find any ratio if we know
the corresponding angle. Let’s try this simple program:

14 INPUT"ENTER AN ANGLE BETWEEN @ AND
9¢ DEGREES":;A

20 S = SIN(A*.§174533)

3¢ PRINT"THE SIN OF A";A;"DEGREE ANGLE

Is";S
49 PRINT : GOTO 19

and RUN.

219

PART 00

It really works! Try the old “standard” angles like 45°, 30°,

£LN0° ON° N° atn
OU o, U, U, Dl

Unless you're right up to snuff on trig, line 20 undoubtedly
looks strange. Well, it turns out that most computers think in
radians, not degrees (always has to be some nasty twist
doesn’t there ...!) A radian is a unit of measurement equal
to approximately 57° (heard some of you cringe at that one).
In order to convert to degrees — which most of us use, we
changed the degrees we INPUT to radians. The SIN function
would not work correctly without this conversion.

To convert angles from degrees to radians, multiply the
degrees times (0.0174533.

To convert angles from radians to degrees, multiply the
radians times 57.29578.

Failure to make these conversions correctly is BY FAR the
greatest source of computer users’ problems with the irig

functions.

Cosine and Tangent work the same way. Change the resident
program to: .

1@ INPUT"ENTER AN ANGLE BETWEEN @ AND
99 DEGREES";A

20 C = COS(A*.@174533)

3¢ PRINT"THE COS OF A";A;"DEGREE ANGLE
Is";C

49 PRINT : GOTO 1§

220

For Tangent, RUN this program:

19 INPUT"ENTER AN ANGLE BETWEEN @ AND
99 DEGREES";A

28 T = TAN(A*.@174533)

3¢ PRINT"THE TAN OF A";A;"DEGREE ANGLE
Is";T

4% PRINT : GOTO 14
This next simple program displays all 3 major trig functions
at the same time. Note in line 3Q) we divide our incoming
angle by 57.29577 instead of multiplying it by 0.0174533.
The results are the same.

18 CLS

2¢ INPUT"ENTER AN ANGLE BETWEEN @ AND
99 DEGREES";A

39 A = A/57.29577
4% PRINT

5¢ PRINT"ANGLE","SIN","COS","TAN"

64 PRINT A*57.29577,SIN(A),COS(A),TAN(A)

The opposite of finding a ratio between two sides of a
triangle when an angle is known, is finding an angle when the
ratio of two sides is known. There are 3 functions commonly
used in trig to do this, but most computers only make
provision for one, called ATN (Arc of the TANgent).

Chapter 19

221

PART (10

This simple program takes the angle we INPUT, computes
and PRINTe ite TANgent then takes that tangent and

computes the arc (angle) of that tangent. The letter I is used
in the program since the arctangent is also known as the “in-
verse’® (sort of the “opposite”) of the tangent.

1 CLS

19 REM * ATN DEMO *

2@ INPUT"ENTER ANY ANGLE BETWEEN g AND
99 DEGREES";A

30 T = TAN(A/57.29578)

4% PRINT "TANGENT =";T,

50 1 ATN(T) * 57.29578

60 PRINT"ARC OF THE TANGENT = ";I

If you’re one of those rare types who are very familiar with
trig you can probably throw numbers around in such a
fasghion that the other 2 “inverse” trig functions, ARCSIN
and ARCCOS are not needed. But for those of us who still
get confused when we run out of fingers and toes we can use
the following conversions, all built into one simple program.
The accuracy is close enough for “government” work. Give it

a try:

19 CLS : REM * INVERSE FUNCTION DEMO
PROGRAM *

20 INPUT"ENTER A NUMBER - THE RATIO OF
2 SIDES";R

3@ A=ATN(R/SOR(ARS(1.0000F01-R42))) * 57.29578

222

49 C=98 - A : PRINT

50 PRINT"RATIO","ARCSINE","ARCCOS","ARCTAN"

64 PRINT" (NUMBER)"," (DEGREES)"," (DEGREES) ",
" (DEGREES) "

7¢ PRINT R,A,C,ATN(R)*57.29578
8¢ PRINT : GOTO 28

Remember that while the TANgent can be any number from
@ to nearly infinity, when our ratio (number) moves outside
that range, SIN and COS are both out of the first quadrant.
At that point we’ve moved out of the scope of this book.
(Good thing — I’'m a little bored with it all, too . . .)

Graphing TRIG Functions

It is often helpful to graph mathematical functions so we can
better understand what’s going on. The TRS-80 graphics are
adequate for a non-precision examination of many mathe-
matical functions, and the following short demo programs
illustrate that capability.

Just imagine there is a coordinate system drawn on the screen
(or draw your own, either with the Computer or a china
marker). The numbers in these demo programs are not magic,
they just allow the graphs to be drawn large, but not so large
they try to run off the screen.

Chapter 19

223

PART 000

These programs are included to get yvou started (and to liven

T erimansmismnmead +mn ~n
up this uxaytu; LRperimiliit o get what 1 you wany tfor your

own particular application.
Graphing of Single Sine Wave
1 CLS : PRINT@@,"SINE"
19 FOR X = § TO 255
20 Y = SIN(X/409)
3¢ SET(X/2,20-Y*2f)
4@ PRINT@S5@,"X=";INT(X/2);

58 PRINT@58,"Y=";INT(20-Y*20) ;

6§ NEXT X
7¢ GOTO 78

Graph of 3 Cosine Waves
1 CLS : PRINT@7,"COSINE"
19 FOR X =@ TO 765
20 Y = COS(X/49)
3¢ SET(X/6,20-Y*20)

40 PRINT@45,"X=";INT(X/6);

I L NN AY

s — -~ " " —— [a s] Ll
DU PRINILIEOI, 1= jANL\&Yy™L «wy g

224

Graph of the Tangent

1 CLS : PRINT@7,"TANGENT"

19 FOR X = @ TO 126

2 Y = TAN(X/90)

3y SET(X,47-Y*8)

4¢ PRINT@4g,"X=";INT(X);

50 PRINT@48,"Y=";INT(47-Y*8);

6@ NEXT X

78 GOTO 78
There is obviously quite an education to be had by careful
study of the graphs. Look for such things as relative thick-
ness of the line at different points, the rate at which blocks
are lit relative to the other variable, etc. Sure beats the “‘early

days” when we had to try and imagine these things on a
blackboard.

Chapter 19

225

226

'AND To ATTRACT THE GROWING COMPUTER. INDUSTRY
MID To SHow THAT We ARe A PRoeRgsSS\VE oY
WE WILL Do AWAY NITH STREETS AND AVENUES
AND CALL THEM ROWS AND COLUMNS/...

A
DOWNTOWN DEVELOPMENT PLANS - PHASE onE

\/
\)\)
e
.(\

RS S

GREAT 1VER, Now
WHERE'S SKID ROW 7

2P

CHAPTER 20

Multi-Dimension Arrays

In the Level I Manual, we learned that an array is nothing
more than a temporary parking area for lots of numbers. Not
much has changed, except at Level II we can store either
numbers or alphabet characters, or both. In addition, because
of the greatly increased string handling capability, we have
the ability to compare string contents outside the matrix
(or array) with those inside it. At Level I we could only com-
pare numbers with both numeric and string arrays. We have
more possible array names now than we could ever use, not
just A(N).

An array which only has 1 dimension, that is, just one long
line-up of parking places is sometimes called a vector. That’s
what we had to work with at Level I. We can take that same
l-dimensional array and cut it into, say, 4 equal chunks,
and position those chunks side by side. We then call it a 2-
dimensional array — since the parking places are lined up in
ROWS and COLUMNS (or STREETS and AVENUES). Not
a single thing has changed about its DATA holding or proces-
sing abilities. Only the addresses of the parking places (or
elements or memory cells) has changed.

Enter this program:
19 DIM M(52)

any array with more than 11 elements (counting
?) must be DIMensioned.

20 FORV = 1 TO 52
3¢ PRINT V
4@ NEXT V

and RUN
227

PART Il

The RUN simply shows us the 52 storage positions and the
numbers (addresses) of those positions. They are all lined
up in a single row, so can be calied a vector. What it didn't
show us was the contents of those memory cells, Let’s
change the program and find out what’s being stored:

3¢ PRINT M(V)
and RUN.

Hmmmm. Every cell is storing the number (). Why? Because
every value is initialized at zero on power-up; and by typing
RUN, we find this out — just like with all the other numeric
or string variables we have encountered at Level IL. It’s sure
nice to know what we have to work with, instead of just
random numbers floating around .. . a distinct improvement
over Level I. Now we know both how to find the address of
each memory cell, and how to find its contents.

Let’s now cut our 52 cell array into 4 equal strips, and line
them up side by side. That would make ... ah...er... 13
rows ... er ... each containing 4 cells ... right? Or 4
columns containing 13 cells. A “2 dimensional array” — has
rows and columns. Let’s start over with this NEW program:

19 DIM M(13,4)

that’s 13 rows by 4 columns
2¢0 FOR R = 1 TO 13
3 FOR C =.1 TO 4

49 PRINT R;C,

50 NEXT C
6§ NEXT R
and RUN.

228

And there we see the addresses of all 52 cells displayed on
the screen at the same time. Again, nothing has changed from
the earlier vector array containing the same 52 cells. We just
rearranged the furniture and gave it different addresses. They
read:

1 1 means “first row, first column
8 3 means ‘“8th row, 3rd column”
etc.

Now let’s find out what each of these cells is holding in the
way of DATA. Change line

4¢ PRINT M(R,C),
and RUN.

See, the contents remain unchanged. They are still at their
initialized value of zero, since we have made no arrangement
to store information in them. Isn’t this easy (. . . so far)?

Memory cells have to be “loaded” with DATA to be of any
value. This can be done by reading the DATA in from DATA
lines, by INPUTting it via the keyboard, or from a previously
recorded DATA tape. Best of all, it can be input at high
speed from a disk, but that’s not part of this book. It’s
covered in Learning Disk BASIC and TRSDOS, but we can
still load our Matrix from DATA lines imbedded in the pro-
gram. The results and potential are just not nearly as
dramatic.

Chapter 20

229

PART 000

Add these DATA lines:

199 DATA 1,2,3,4,5,6,7,8,9,18,11,12,13,
14,15,16,17,18,19,28

119 DATA 21,22,23,24,25,26,27,28,29,3f,
31,32,33,34,35,36,37

120 DATA 38,39,40,41,42,43,44,45,46,47,
48,49,58,51,52

and this line to READ the DATA and plug it into matrix
cells:

35 READ M(R,C)

and RUN.

There we can see the DATA all nicely arranged in the matrix,

and each matrix position has a specific address. Let’s stay in

the command mode for a minute and “poll” or ““interrogate”

several matrix positions and see what they are holding. Ask:
>PRINT M(2,3)

write down 7, the answer. We’ll RUN the
program again later and check it.

>PRINT M(11,4)
it says that cell holds the number 44
>PRINT M(3,5)

?7BS error? Why did we get that? Oh, there isno
column 5. No wonder.

230

Let’s RUN the program again and check the screen, counting
down the Rows and over the Columns to see if our answers
match up.
Mine did — how about yours?
As an aside, type

CLEAR

then, at the command level, check any matrix memory spot
again.

>PRINT M(2,2)
and we get (). CLEAR re-initialized all cells to

zero, along with all other variables. We can of
course reload them by RUNning again.

Chapter 20

231

PART 00

Okay, Now What Do We Do With It?

Good question. Everything you learned in the Level I User’s
Manual applies. We’ve only rearranged the deck chairs on this
Titanic — the end result is unaffected.

At this point, what we’ve learned is best utilized for calling
up and loading relatively unchanging DATA. It is placed in a
matrix so it can be accessed and compared, processed or
otherwise put to work. Typical applications are:

1.

232

Technical tables. Instead of having to keep looking
up the same information in tables, store the tables
in DATA lines and let the Computer look them up,
do the calculations and give you the final answer.
Works great in this application, and the time saved
quickly pays for the Computer. If we didn’t have
the LOG and TRIG functions built in, they would
be ideal candidates for storing of table info.

I've seen this approach used by a lumber yard to
furnish fast quotes on materials, and by a printing
shop for fast quoting of all sorts of printed mate-
rials. In the latter case, the program is written so
simply that the customer bellys right up to the
counter, answers the computer’s questions, and gets
his quote right there on the screen. The latest prices
on all the paper products and printing costs are held
in DATA lines and “‘spun up” into the Matrix at the
beginning of the day. The customer just responds to
a “menu” on the screen, and answers the questions.
After the quote is calculated, the menu reappears
for the next customer.

When DATA is loaded in externally, either via the
Lovhoord or 2 DATA tone wa ohviondy doan’ want
to have to go through that loading process each
time we want an answer. It’s important therefore,
not to let execution END. Always have it come
back to a screen “menu” of choices, or at least a
simple INPUT statement. If an END is hit, the
matrix crashes and the DATA has to be reloaded.

String Matrices

So far we have seen only numbers in our arrays. We can also
use them to hold letters or words, using the same rules we
learned earlier in the Chapters on Strings, including CLEAR-
ing enough space for the Strings. We have to give string
matrices String names. Make these subtle changes in our
resident program:

19 DIM M$(13,4)

35 READ M$(R,C)

4¢ PRINT M$(R,C),
and RUN.

Absolutely no difference! We now have a string matrix. The
data was all numeric, but it handled it beautifully.

Now let’s change our DATA (and cut down the program a bit
so we don’t have to type so much) and try it again. Change:

20 FOR R = 1 TO 6

1¢¢ DATA ALPHA, BRAVO, CHARLIE, DELTA,
ECHO, FOXTROT, GOLF, HOTEL

119 DATA INDIA, JULIETTE, KILO, LIMA, MIKE,
NOVEMBER, OSCAR, PAPA

129 DATA QUEBEC, ROMEO, SIERRA, TANGO,

UNIFORM, VICTOR, WHISKEY

138 DATA XRAY, YANKEE, ZULU

and RUN.

Chapter 20

233

PART 000

Really no difference between the string matrix and the

numeric ones before except the handle letters. Stop for a

moment and contemplate the string-comparing and string-
handling techniques you learned a few Chapters ago. Your
mind should be running flat out at this point, considering the
possibilities.

How about mixing strings and numerics?

(Sounds good — I'll have one on the rocks)

Oh! Funny you should ask. That’s why we ran all numbers
in a string matrix, then all words with that same program.
They mix very well, as long as we make it a string matrix
and not a numeric one.

We have one final program. It is not meant to be a practical
one, but could be expanded to INPUT the DATA from tape
(or better, disk) and be quite usable. However, it does
demonstrate a few important possibilities and is worth enter-
ing and studying:

The Objective

The objective of this demo program is to allow a church
treasurer to keep track of who gave what, when. Could do
the same thing with a service club, or any organization that
has a membership and dues. We want to be able to access
every member’s record by name, and get a readout on his
status.

Let’s start the program with the DATA. Type this in the
NEW program:

198§ REM * DATA FILE *

1819 DATA @7.4179,JONES,15
1429 DATA $#7.%179,SMITH,87
193¢ DATA $7.8179,BROWN, 24
1§49 DATA @7.§179,JOHNSON,53
1¢5% DATA §7.£179,ANDERSON, 42

234

Chapter 20

Analyzing the DATA, we’ve employed several techniques.
The first number in each DATA line employs ‘“data compres-
sion”, that is, “encoding” several pieces of information into
one number. This number contains the month, date and year
in one 6 digit number. (Using string techniques, we could
easily strip them apart again if we wished, for special
reports.) Single precision will hold the 6 digits accurately.

The second thing we’ve done with this first number is protect
the leading @. Since months below October are represented
by only one number, the leading zero would be lost on these
months and the number changed to only 5 digits. There are
other ways to get around that problem, but we will throw in
a decimal point just to act as an unmovable reference.

The second element in each DATA line is the name. We
could put in the full name, but if we used a comma we’d of
course have to enclose the name in quotes.

The third element of each DATA line holds the amount of
money given on that date.

Obviously, a full DATA set would contain many entries for
each Sunday, and many Sundays in a row. We don’t need to
enter that much DATA to demonstrate the principles
involved so will just keep it short and to the point.

"IT sEeMS AS IF OUR TREASURER. ACCIDENTLY
ERASED THE DATA FILE WITH THE OFFERING RECORDS
So PERHAPS WE CouLD (JUST START
AL over...”

THE LORD WORKS N
MNSTERIOUS WAYS..

%

235

PART 001

We now have to READ this DATA into a string matrix, dis-

wnlnvrica~ 24 Aem +lan mmsmnnn Aamoerra s AL
< G .
piayiiag it Ol wiC 5CiClIl as Wi gU. mlid

5 CLS:PRINT"ENTRY #","DATE","NAME","TITHE $" :PRINT

19 FOR E = 1 TO 5 : PRINT E, 'THIS SUNDAY'S ENTRY

20 FOR M = 1 TO 3 '"MEMBERS NAME

39 T =M '"WEEKLY TITHE IN $
49 READ R$ (E,M,T)

50 PRINT R$ (E,M,T),

60 NEXT M
78 NEXT E
and RUN.
Very good. The Matrix is loaded, and confirmed on the
screen. We see the first 5 bookkeeping entries from Sunday,

July 1,1979.

Now that we know it loads OK, we can remove some of the
software. Change these lines:

19 FORE = 1 TO 5 "THIS SUNDAY'S ENTRY
Delete line 50

and RUN.

236

Chapter 20

Good. We still get the heading, but the display is gone. Now,
how can we interrogate the Matrix to pull an individual mem-
ber’s record? Guess we first have to ask a question. Type:
19@ INPUT"WHOSE RECORD ARE YOU SEEKING" ;N$
and RUN.
Seems to work OK. We will just answer the question with any
member’s name as it appears in the DATA lines. Then we
have to scan the matrix and compare N§, the name we
INPUT, with each element, R$(EM,T), until we find a
match. This means setting up the FOR-NEXT loops again and
scanning every element. Add:
119 FORE = 1 TO 5
12§ FOR M = 1 TO 3
139 T =M
149 IF R$(E,M,T) = N$ GOTO 280
150 NEXT M
160 NEXT E : PRINT "NOT IN THE FILE " : GOTO 188
2¢@ PRINT E, R$(E,M~-1,T-1) ,R$(E,M,T) ,R$(E,M+1,T+1)
219 PRINT : GOTO 1@8
and RUN.
Try names that are in the DATA lines, and those that are not.

Lines 160 and 210 have built-in defaults back to the
question.

237

PART 100

The key line is #2@0. It prints 4 things:
E Obviously the entry number on that date

R$(E,M-1,T-1) not so obviously, the contents of the
memory cell just preceding the one containing the
member’s name. The name being the center of 3
cells on each DATA line, we must print both it and
the one before it and the one after it.

RS$(E,M,T) The cell containing the name
RS$(E,M+1,T+1) The cell following it

If you have trouble visualizing what line 209 is doing, add
this temporary line. It prints the address of each DATA ele-
ment just below it, and is very helpful:

2¢5 PRINT E, E;M-1;T-1, E;M;T, E;M+1;T+1

and RUN

Implications

Again, the preceding program was not written to be a model
of programming style and efficiency — but to be a good
learning program. You should now sit by the bank of the
creek and think through how you would modify it to load in
say, 1000 lines of DATA from cassette tape via an INPUT
statement. Then, add more DATA each Sunday and shoot
that updated DATA back out to tape for reuse the following
Sunday, or inbetween as needed. It is possible, and marginal-
ly practical to use your TRS-80 for this application.

By the time you solve the software problems, you will get

some additional encouragement in the Chapter on using Dual
Cassettes.

238

NOTES

"THE BINOCULARS? OH, | USE THEM TO EXAMINE
ALL oF THE PEEK STATEMENTS/..

240

CHAPTER 21

PEEK
and
POKE

PEEK and POKE are BASIC words that allow us to do non-
BASIC things. They provide the means whereby we can
PEEK into the innards of the Computer’s memory, and if we
wish, POKE in new information.

It is not our purpose here to become an expert in machine
language programming, or even on how the Computer works.
We have to approach this and related topics a little gingerly
lest we fall over the edge into a computer abyss (or is it an
abysmal computer?).

We do know, however, that computers do their thing entirely
by the manipulation of numbers. Therefore, when we PEEK
at the contents of memory, guess what we’ll find? Numbers?
Very good! (Ummmyass).

241

RPART 00

Decimal Address

65535
49151
32767
20479

16870
16429
16421
16413
16405
16384
16383
15360

15359

12288
12287

242

Hex Address

END “48K" SYSTEMS FFFF
END “32K” SYSTEMS BEFF
END ““16K" SYSTEMS 7EFE
END “4K" SYSTEMS 4FFF
RESERVED WITH
MEM. SIZE OPTION
STRING SPACE
STACK
FREE MEMORY
ARRAYS
SIMPLE VARIABLES
BASIC PROGRAM TEXT
42E8
1/0 BUFEER
41EC
RESERVED
402D
LINE PRINTER DCB
4025
VIDEO DCB
4010
KEYBOARD DCB
4015
BASIC VECTORS (RST's 1-7)
4000
3FFF
VIDEO MEMORY
3C00
3BFF
RESERVED FOR MEMORY-MAPPED
1/0
3001
3000
LEVEL 11 ROM
0000

Figure 1. Level Il Memory Map

As you can easily see from the Memory Map in Figure 1,
large chunks of the Computer’s memory are set aside, or
“mapped” for very specific uses. (Oh, you can’t see it
easily . ..? Had your eyes checked lately?) The Level Il ROM
for example, uses byte addresses § through 12287. All num-
bers we talk about here are decimals, not hex, octal, binary
or Sanskrit.

Type in this program:
2f N=#
5¢ PRINT N, PEEK(N), CHR$(PEEK(N))
68 N=N+1
78 GOTO 5@
Let’s analyze the program before RUNning it.

Line 20 sets the beginning address where we want to start
PEEKing. As Figure 1 shows, there are lots of good places
to go spelunking, and we can change line 20 to start wher-
ever we want.

Line 5@ prints three things:

A.The address — that is, the number of the byte, the
contents of which we are PEEKing at.

B. The contents of that byte, expressed as a decimal
number between @ and 255.

C.For convenience (and some value), the contents of
that address converted to its ASCI character. (Many
of the ASCII characters are not printable — we warn-
ed you it was a ribald novel.) Go back to the chapter
on ASCII if your memory has grown dim.

OK, now RUN the program, being ready to stop it with
SHIFT@ if you see something interesting. It can also be
stopped at any time with the BREAK key, and restarted with
CONT without having to start all over again with N at Q.

Chapter 21

243

PART 000

Didn’t see anything interesting? What did you find starting at
address 261777 You have to be able to read verticaily as the
letters swish by.

When the letters jump to double width, hit STOP, then
CLEAR, then CONT, as they are too hard to read when so
large. Change N to start at different places in memory and
PEEK to your heart’s delight. You can’t goof up anything by
just PEEKing. It’s indiscriminant POKEing that gets you into
trouble.

The command level is very handy for resetting the starting
address. Change the value of N by just typing:

N=5008

for example, then
CONT

instead of RUN

When done PEEKing with this program and having seen far
more information than can possibly be absorbed, rework line
50 to read simply

5¢ PRINT CHR$ (PEEK(N));
and RUN.

It PRINTs only the ASCII characters, horizontally, and is the
ideal program to RUN when friends visit. Just act casual
about the whole display and avoid any direct questions.
Makes a great background piece for a science fiction movie.

When you find an interesting spot, hit BREAK, then

PRINT N
at the command level to find out where in
memory you are PEEKing. (Don’t you wish you
could explore the corners of your mind as
easily?)

CONTinue on when ready.

244

"SOME DAY YOUR. INDISCRIMINANT POKING
1S &oiINe To &ET You IN A LoT
OF TROUBLE, LERON!”

Having moved from PEEKing to leering, it’s time to see what
else we can do.

Careless POKEing can leave holes. ..

Before POKEing, we’d better see that we’re not POKFEing a
stick into a hornets’ nest. It’s with the greatest of ease that
we destroy a program in memory by POKFEing around where
we shouldn’t.

Obviously there is no use POKEing in the ROM area since
ROM stands for Read Only Memory. It’s not changeable. The
rest of the “Memory mapped” area, from 12288 thru 17129
is reserved for specific things, so best not to POKE in there
while we’re just bungling around. Anything above 17129
should be available memory, unless taken up with our BASIC
program or required for processing. With such a short pro-
gram as ours we surely can’t goof anything up? Can we?

Let’s PEEK around 20000 and see if anything is going on
there. Change two program lines to:

20 N = 20000
58 PRINT N; PEEK (N) ,
and RUN

Next page, please . . .

Chapter 21

245

PART 000

20999
2ppp4
2p0@8
20912
20016
20020
20924
20928
20932
20936
2pp4p
29044
20948
20952
28056
2ppep

255

255

255

255

255

255

AT SRR ST S

20991
20p85
200989
20813
28817
209921
209925
28929
20933
20837
28941
28845
28049
208853
208857
20061

255

255

255

255

255

255

255

255

ST S e S T

29082
2ppp6
20019
20014
2018
20922
20026
20030
20034
20938
20042
20046
28950
20954
20958
20062

255

255

255

255

255

255

255

255

A ST ST S TR ST S S N

29993
2pPp7
20p11
20815
20919
200923
20927
20931
20835
20939
28943
20947
28951
28955
20959
20963

What we see are the address numbers and their contents, in
easy-to-read parallel rows. Unless you’ve been messing around
with other programs since power-up, you should just see nice
rows of 255’s and (’s. The memory at these locations is not

being used

246

255

255

255

255

255

255

255

255

A TR SHEE S R S~ S

Chapter 21

Great! Let’s change our program and POKE in some informa-
tion and do something with it. Make it read:

1§ REM * POKE PROGRAM *

20 N = 200080

49 READ D

58 POKE N,D

68 N = N+1

78 IF N = 2@g@g11 END

8¢ GOTO 49

142 DATA 8¢,69,69,75,45,65,45,66,79,79,33

Before RUNning, let’s analyze it.

Line 20 initializes the starting address at 20000
Line 40 READs a number from the DATA line
Line 50 POKEs the DATA “D” into address “N”
Line 60 increments the address number by one

Line 7¢0 ENDs execution when we have POKEd in all 11
pieces of DATA

Line 80 sends us back for more DATA

Line 100 stores the DATA we are going to POKE into
memory.

Now — RUN

247

PART 100

Well, that was sure fast. I wonder what it did? How can w
1A
i

£2ed neidD Qlna1d s DODY a4 349 Voo ot 1o
PG out. oaduiG we Cosss av iy Y85, our il

-+
S

program in and just start a new one at 200.
2@ REM * PEEK PROGRAM *
218 FOR N=2gg@g@8 TO 28818
22% PRINT N, PEEK(N)
23@ NEXT N

and RUN20O®

20008 89
20001 69
20002 69
20093 75
200@4 45
20685 65
20006 45
20087 66
20098 79
200099 79
20019 33

How about that. We really did change the contents of those
memory locations. We shot the numbers from our DATA line
right into memory. Now if we only knew what those num-
bers stood for. Wonder ... if we changed them to ASCII
characters, would they tell us anything?

248

Chapter 21

Add:
285 CLS
22 PRINTQ47@+N-20@@@,CHRS (PEEK (N)) ;

to print at a certain location on the screen

and RUN20@

Print The Results Here

And that’s how PEEK and POKE work.

249

CHAPTER 22

A Study
in Obscurities

SYSTEM

SYSTEM is a BASIC word that lets you get out of BASIC . . .
in case you want to. There are some good reasons to, not the
least of which is to load in the Keyboard Debounce tape.

You may recall in the chapter on Converting Programs from
Level I to Level II we used SYSTEM.

Insert the tape titled KEYBOARD DEBOUNCE SYSTEMS *
KBFIX in your recorder. (The tape is available free at Radio
Shack stores.) Be sure it’s fully rewound. Press PLAY, then

type:
sysTEM [ENiF;

the screen will respond with

%7

a sure sign you are at SYSTEM level. (Not the
same as BASIC Command Level.)

Type

KBFIX Ha nd;

the name of the machine language program we
wish to load. The asterisks will appear plus
another

2

251

PART 001

This time we respond simply with

.

and watch the screen document what is happen-
ing.

TRS-80 RELOCATING LOADER.
BASE = BFFF (or some other HEX number)

KB DEBOUNCE ROUTINE.

LOADING RELOCATION DIRECTORY.
LOADING RELOCATABLE CODE.
RELOCATION COMPLETE, BASE = BFCS
| (or other HEX)

READY

>

It’s all very efficient and computer-like.

After we went from command level to SYSTEM level, the
tape played in a machine language program which changed
the machine language program which controls the keyboard.
The change fixed the keybounce problem (if you’ve had one

. maybe you didn’t even know about it), then returned
control back to the BASIC command level.

252

There are other reasons to use SYSTEM than wanting to load
machine language tapes — though that is a good one. By
using the TRS-80 EDITOR/ASSEMBLER, available through
Radio Shack stores, if you are interested, you can create your
own high-speed assembly language programs. But, lest we for-
get, BASIC was created primarily because assembly language
progamming is quite confusing (not much English language —
a lot of letters and numbers . .. ugh). If you think BASIC is
tough — you ain’t seen nothin’ until you try programming in
machine or assembler. An “assembly” language is a low level
language which allows the user to create machine programs,
but to do so by writing characters instead of all numbers.
Assembler is easier to program with than machine (all ones
and zeros), but much more difficult than high level languages
such as BASIC.

USR

The USR function has a variety of uses, most of them having
little to do with BASIC. It allows us to “‘call” or “‘gosub” a
program written in assembly language, and “‘return” back to
our BASIC program when it’s finished. To make much sense
of USR youw’ll need assembly language skills — not a part of
this book. You will have a chance to see USR in action in the
upcoming chapter dealing with the REAL TIME CLOCK. We
use it there almost like a simple toggle switch to turn the
clock on and off when we want.

In its simplified form we might think of
X=USR(1)
as meaning “‘turn it on”
and
X=USR (f)
as meaning “turn it off”

What it actually means of course is determined by the func-
tion of the machine language program it’s “calling”.

Chapter 22

253

PART 000

USR in use

Without getting out too deep in the water, memory addresses
16526 and 16527 are inspected by USR to find out where in
memory we have stored a machine language program.

If it starts at 32000 for example, we have to express 32000
in Hexadecimal, then split that HEX number into its least
and most significant bytes, convert those bytes separately
back to decimal, and POKE that information into 16526 and

16527. (Are you really sure you want to go through with
this?)

Looking at the HEX-to-Decimal conversion chart, 32000 is
readily seen (by any Ace digital engineer) to equal 7530

HEX. We divide 7530 into 30 and 75, the least and most
significant bytes respectively. By converting them back to
decimal using the same chart, we get:
3% = LSB = 48 decimal
and
75 =MSB = 117 decimal

Ummm-ahhhh-yaas!

Now, we POKE that starting address into our BASIC pro-
gram, something like this:

19 POKE 16526,48 : POKE 16527,117

and we’re set to call our non-existent machine language pro-
gram at 32000 from BASIC by simply saying:
X=USR (1)

Suitably impressed? Or, just frustrated! ... 7 ...

254

HEX

Most Significant Bytes

Least Significant Bytes

CODE

m o 0

T

v

0
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53348
57344

61440

T

U
256
512
768
1024
1280
1536
1792
2048
2304
2560

2816

II

I
0

Hex-to-Decimal Conversion Chart

Decimal Value = IV + III + II + I

Chapter 22

265

PART 100

That’s as far as we’re going to press our luck on this one right
now. You’ll have a chance to actually do all these good things
in the REAL TIME CLOCK chapter, and we don’t want to
leave you so terror-stricken that you won’t get that far.

Machine and Assembly language programming books on the
Z-80 are readily available for that small percentage of readers
who want to pursue the subject. You at least now have a suf-
ficient introduction to nod your head and smile knowingly
when others try to impress you with their knowledge of these
things.

INP

The TRS-80 has 256 “ports” or channels of communication
with the “outside world”. They are numbered from @ to
255. Because this whole subject is worthy of an entire book
itself, we will only learn enough here to get an elementary
“feel” for it.

Only one of these ports in the TRS-80 is specifically assigned
a single task. Port number 255 controls the cassette recorder.
All other ports are available to take in information or send it
out via the bus connector under the access door at the back
of the Computer. (Just look now — no fiddling please.)

You’re not going to “Control The World” with what you
learn about ports in this Chapter, but enter this program and
you may be surprised at what INP can do.

14 OUT 255,80

20 S = INP(255): PRINT S,

3¢ IF S = 255 GOTO 5@

256

47 PRINT "NO DATA CCMING FROM CASSETTE"
GOTO 18

5¢ PRINT,"DATA IS FLOWING FROM CASSETTE" :
GOTO 1¢

CompuSoft Publishing
has an excellent book
titled Controlling The
World With Your TRS-
80 (by vyour favorite
author) which takes the
beginner all the way
through advanced appli-
cations of the TRS-80
using digital information
INPut and OUTput via
these 256 ports.

Now, place a program tape in the recorder (BLACKJACK
will do nicely). Set the volume where you usually do.
Remove the REM motor control plug, and press PLAY. Type
RUN.

Haha! Didn’t expect that, did you? Here’s how it works:
Line 10 Disregard for right now

Line 20 Looks at port #255 and reads a coded mes-
sage, then prints that code.

Line 3Q Tests that code number against the number
255. If code 255 is read, execution branches to
line 50. If not, it defaults to line 40. Execution
returns to Line 10 where we begin the “polling”
of the port again.

Astute observers have probably noted that we get either a
255, which apparently means DATA IS FLOWING, or a 127,
which means it isn’t. Why these particular numbers appear is
beyond the scope of this book. The point is, DATA either IS
or ISN’T flowing, and this is what INP reads, and acts upon.

If you want to have a little fun, Play the tape again but adjust
the volume control very carefully (down around 2) so that
variations in data flow are sensed and appear as changes in
the message on the screen. Doesn’t take much imagination to
go from this point to different kinds of visual displays.

Chapter 22

The number 255 in this
program line bears no rela-
tion whatever to the fact
that we just happen to be
“polling” port number
255. (Can’t help that the
coincidence might be con-
fusing.)

257

PART 000

One more view of INP. Enter this NEW program, and RUN.
14 FOR N = @ TO 255
2@ PRINT N; INP(N),
3 NEXT N

This program scans all 256 ports and gives us their status.

They all report “255” except port #255. It should say
“127”, which we now know means

NO DATA COMING FROM CASSETTE

ouT
Let’s see what OUT does. Remove any cassette from the
recorder, and leave the hatch open so you can see the drive
hub. Press the PLAY key, and type in this program:

18 INPUT"4 = ON & @ = OFF";N

2@ ouT 255,N

39 GOTO 14

and RUN, responding to the INPut? and watch-
ing the drive hub.

We are sending directions OUT to port 255, the recorder
port, and telling the motor to be either ON or OFF.

That’s a sample of what OUT does. Nuff said.
Oh yes, the QUT in line 10 of the section on INP? Well, you

see there’s this littie rubber pand inside tne COMpuULer Ll
has to be pulled to reset the . . .

2568

Chapter 22

VARPTR
While VARPTR is found in this version of BASIC, it’s about
as far from main-line BASIC as anythmg we have It tells
us where in memory a given variable is stored at a given time.
Enter this program:

19 REM * VARPTR ADDRESS LOCATER *

2@ CLsS

3 FOR R = 1 TO 7 : READ A$(R)

4@ PRINT"THE CHARACTER IS ";A$(R);

5¢ PRINT". ITS ADDRESS IS ";VARPTR(A$(R))

6 PRINT : NEXT

74 DATA A,B,C,D,1,2,3

and RUN

The results are simple to understand. We * ‘spun up” some
DATA values in a string array, then let VARPTR tell us the

addresses where information about those values was stored.

Anything beyond that deals with assembly language, so we
will only doff our hat in passing.

“WHERE IN THE WORLD IS
ROYAL, 1OWA?"

ARPTR

mwmw‘%
LOCATES MISS!
P«DDRE%S

q;ﬁ;&lsm?
O (ﬂ@ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

WWWWMWW«XXXXM
R Boves XARXAX,

259

CHAPTER 23

The Expansion Interface

The TRS-80 can be connected directly to one Cassette
Recorder and one additional device such as the Radio Shack
Screen Printer. To use additional devices it becomes neces-
sary to connect a ‘“Black Box” that provides additional
INPUT/OUTPUT jacks and can ‘“‘talk” to each device. The
TRS-80 Expansion Interface is such a box. It incorporates
circuit cards which generate the necessary control signals,
and has INPUT/OUTPUT jacks to operate up to four mini
floppy drives, one printer, and two cassette recorders.

The Expansion Interface also has a digital clock circuit that
can be read either by a machine language program (available
free from Radio Shack) or the TRS-80 Disk Operating Sys-
tem (TRSDOS). Space is provided within the unit to install an
additional circuit card to meet other specialized needs such as
interfacing with RS-232 devices. Its most common use how-
ever is as a place to add an additional 16K or 32K bytes of
memory, which adds to the 16K already inside the main
computer case.

Setting It Up

Remove the Expansion Interface from its carton along with
the ribbon cable, power supply, instruction book and other
goodies. Some units are supplied with a buffer (a plastic box
with ribbon cable attached at both ends) which is easily
damaged if not handled carefully, or an extra DIN plug/jack
assembly for connection between the Interface and the
Computer.

261

PART 000

Installing The Power Supplies

Remove the power supply compartment cover (located on
the top right hand side of the Interface as you face it) by
removing the three Phillips-head screws. Connect one Power
Supply cable’s 5-pin DIN plug to the matching 5-pin DIN
connector on the edge of the printed circuit board. Place this
power supply inside the Expansion Interface, closest to the
front.

Notice that space is provided in the Interface compartment
for two power supplies. This enables you to place the
Computer’s power supply out of sight along with the one for
the Interface. If you choose to place the Computer’s power
supply in this compartment, route its cables thru the door
cutouts in back. Connect the DIN plug to the power jack on
the Computer as usual. Replace the power supply cover door
on the Expansion Interface, being careful not to damage the
case by over-tightening the screws.

Positioning The Expansion Interface

Place the Expansion Interface behind the TRS-80 Computer
with the identification plate facing the Computer. The
following tasks must be accomplished before plugging in A.C.
power cables from the Computer power supply, Expansion
Interface power supply, and any accessories.

Lift the little door covering the Expansion Port Connector on
the TRS-80’s left rear panel and slide it slightly to the right —
then lift it up and away from the Computer. (Be careful not
to break the little tabs.) Attach one end of the Expansion
Ribbon Cable to this Expansion Port. It is important that the
ribbon cable extends downward, out the bottom of each edge
connector.

Tinite anplied with the huffered cahle have arrowe non the
Buffer Box indicating which connector to attach to the
Computer and which to the Expansion Interface. With non-
buffered cables you may use either end. Attach the curved
door onto the Computer case. It should close, allowing the
ribbon cable to feed out between it and the case.

262

Finally, attach the Expansion Ribbon Cable connector to the
Bus jack located to the left of the push-button power
switch on front of the Expansion Interface.

Turning It On

After all connections have been made and double checked,
plug the A.C. power plugs from the two power supplies, plus
the Video Display unit into an A.C. outlet. If you spring for a
3-wire power strip with switch, pilot light and circuit breaker
(about $20), you will find it to be a great convenience and
well worth the money. Turn on the Video Display unit,
Expansion Interface, and, while holding down the BREAK
key, turn on the TRS-80 Computer.

If MEMORY SIZE? is not displayed on the video monitor,
turn off the Interface. Power up the Computer first, then
turn on the Interface. The MEMORY SIZE? question should
appear and you can respond to it as usual.

Another Gimmick

If you are not interested in using dual cassettes because you
have no need for data storage, or you are using the Disk sys-
tem, you can still make use of the cassette switching relay in
the Expansion Interface as a noise generator for special
effects. (Most expensive New Year’s Eve noise maker in the
house!)

Each time the Computer switches from cassette #1 to cassette
#2 and back again, you’ll hear a clicking sound. By increasing
the switching speed, the slight click-sound becomes a buzz
easily heard by all. Using the relay in this manner is not
recommended if you intend to use the dual cassette feature
in the future because you are reducing the life expectancy of
the relay. Think of it as opening and closing your car door
several hundred times each time you get in the car. Before
long, either the door hinges or your arm will fail. (More prob-
ably the smog devices!)

Chapter 23

263

PART 000

Now that you know the pitfalls, try this program to hear the
“buzzer” in action. Refore RIUINning be certain both
Recorders are disconnected from the Interface, to prevent
possible damage to them, or a possible fusing together of the

relay contacts.
19 REM BUZZER GENERATOR
2@ PRINT "PRESS'B' TO HEAR THE BUZZER"
39 A$=INKEY$: IF A$= "B" GOTO 5f
49 GOTO 3¢
50 FOR X= 1 TO 58
64 POKE 14388,1
79 POKE 14308,0
84 NEXT X
9f FOR X= 1 TO 1@f@: NEXT

188 GOTO 38

By setting bit () at address 14308 to 1, and then to () in lines
6(Q and 70, the relay in the Interface switches back and forth
between Cassette #2 and Cassette #1 respectively. This
sound can be ‘“tuned” somewhat by changing the relay
switching-time in line 50 to generate the special effects used
in game programs like Pong, Submarine, etc. .. .

Figure 1 shows the additional hookup points to the Expan-
sion Interface. Note that connection point #3 is used for
hooking to Radio Shack’s line printers. Smaller printers

L.,.L ~mam taa LAA'I ~Ad Alanndle, bt TDC ON Livan Acn ~mae
ara (ST

aar v wasan v u.u.uvua_y VW varv kN U vy Gio wwit

nected at point #2, which is a direct extension of the TRS-80
bus.

The DIN jacks in the back will be discussed in more detail in
the chapter dealing with dual cassette operation. Point #8,
front and center, is used to connect to the optional RS-232
interface board.

264

Chapter 23

265

PART 000

Use the utmost care in hooking up to these ports. Triple check
to see that the right end of the cable is being used and that
the cable always feeds downward from the connector. I've
seen these interfaces and peripherals “buy the farm’ when
the user was experimenting with what should go where, and
how — with the power ON. (No, it wasn’t me . . . this time!)

LLIST and LPRINT

These BASIC Commands/Statements are almost too easy.

LLIST is typed at the command level when you want a
listing on the printer

LPRINT is used in a program when you want the pro-
gram to print something on the printer.

Both can be used either as statements or commands. If you
want to print both on the screen and on paper, use duplicate
program lines, with PRINT in the one for the screen, and
LPRINT for the printer.

Enter any program of your choice and convert it to LPRINT
the results on your printer. Make a “hard copy” LLISTing
of it. ’

If you accidentally precede either PRINT or LIST with the
letter L and don’t have a printer connected, there may be
trouble. It’s especially easy to have a simple LIST turn into
LLIST if the L key bounces. If an Expansion Interface is
not connected, a simple RESET will make things OK again.

If an Interface IS connected, it automatically assumes (right
or wrong) that Disk drives are also connected and won’t let
you do a simple RESET. You either have to hook up a
printer and let it accept the information directed its way by
the LLIST or LPRINT, or press RESET (with the BREAK
key down), losing your program in the process.

If you have an Interface, you should do frequent dumps to
cassette tape when developing new programs — just in case.

266

Photo courtesy of Centronics

LPRINT TAB

We can only TAB as far as position 63 using LPRINT. To go
beyond that point it is necessary to resort to devious means.

We can recall that PRINT STRINGS is used to repeat a num-
ber of characters or actions. We can use it to sneak around
the above rule by having it repeat a number of spaces. For
example:

14 LPRINT STRING$(75,32);X

will “print” 75 blank spaces before printing the value of
X. “32” is the ASCII code for a blank space.

Advanced LPRINT Capabilities

5 different ASCII codes are set aside for use with printers.
Since different printers respond differently, we can only
talk here in general terms, and learn how to test our own
printer to see how it responds. The 5 codes are:

10 line feed and carriage return
11 roll paper to top of next sheet
12 roll paper to top of next sheet
13 line feed and carriage return
138 carriage return and line feed

To see what this all means, hook up your printer (assuming
you have one ... if not, guess you can stay with us and read
on). Then enter this program:

1 CLS:PRINT

14 INPUT "ENTER A CODE NUMBER";N

20 LPRINT CHR$ (N)

99 PRINT : LIST

and RUN

Chapter 23

267

PART 000

Try each of the codes and see what happens. Some codes
may do nothing. Your printer’s manual mav have additional
(or replacement) codes.

There are no universal rules. Keep your test program simple
and be aware that LPRINT with CHRS$ is not always pre-
dictable when mixed on the same program line.

The ““top of form™ or “‘top of next sheet” feature is a neces-
sary one for using the printer to prepare printed statements,
or printing information which must always start at the top of
a page. Users with “continuous roll” printers have little need
for a “top of form”.

When your Computer is turned on, if it’s going to do any
printing, it automatically assumes it will be printing 6 lines
per inch on sheets of paper 11 inches long, 66 lines per
page. This information is stored in memory location 16424.
Type:

>PRINT PEEK (16424)

and we should get back the number

67

That’s one more than the number of lines to be
printed.

If we use a different size paper, we can change the number of
lines for that page by POKEing in a different number.

Suppose we are printing on paper that is 8 inches long. 8
inches times 6 lines per inch = 48.48 + 1 = 49, We will:

>POKE 16424,49

268

In order for the “‘top of page” feature to work, it is also
necessary for the Computer to keep track of how many lines
have been printed on each page. This information is stored in
memory location 16425. Let’s PEEK:

>PRINT PEEK (16425)

and we’ll get a number, the size of which
depends on how many lines have already been
printed. That will vary with how much experi-
menting we’ve been doing, and with which code.

The difference between how many lines can be printed on a
page (memory location 16424) and how many have been
printed (memory location 16425) tells the Computer how
many have yet to be printed before starting the top of a new
page. It’s all very simple, in principle.

We can even POKE a 1 into location 16425 at the beginning
of our program to initialize the counter. Each time we use a
“form feed” code (11 or 12), the counter is reset back to 1
for a new page.

With a little experimenting, you will have your big printer
doing what you paid to have it do.

Photo courtesy of Centronics

Chapter 23

269

“THE REAL TIME CLOCK. IN THE KITCHEN SAVS
IT'S 2 AM., HAROLD!

SHe WANTS TO CONTROL EUENTS
WITH HeR. MASTER. CLOCK ...

G

270

CHAPTER 24

Time Out

The Real Time Clock

The Expansion Interface has one additional feature — a Real
Time clock. “Real Time” means “now’ time. It contains a
real clock, the time being controlled by an internal quartz
crystal. In addition, that clock can be accessed (gotten to) by
software (programs) and used to serve as an event-timer or
master clock to control events. Up till now we’ve used simple
FOR-NEXT loops to approximate times — satisfactory only
over a short period.

The Level II ROM does not have the software built in to
activate and control the clock. In order to use it, we must
load in a machine language program from a tape furnished
free by Radio Shack. It’s on the same tape as the keyboard
“debounce” program which we learned to load in as Chapter
22.

POKEing The Big Machine

Tighten your belt and put on the helmet. We are going to
RAM the line — with finesse.

Power up the Computer and Expansion Interface. Since this
entire book is about Level II, what follows does not apply to
the Interface when used with floppy disks. The disk system
has its own debounce routine which is activated automati-
cally, as well as a clock routine that can be activated without
going thru what we are about to do.

271

PART Ml

When the Computer asks
MEMORY SIZE
Answer with:
65400 if you have 48K of RAM
49016 if you have 32K of RAM
32632 if you have 16K of RAM
20344 if you have 4K of RAM
to leave room at the “top” of memory for both
the keybounce and clock routines. (Users with
either 4 or 16K of RAM would obviously be
using the Interface box for something other than
to hold extra memory ... there might be some
of them, somewhere.)
The screen will verify we are in Level I1 BASIC and say
READY
>
We enter the SYSTEM mode by typing
SYSTEM
and following the
*? we type
RELO
the name of the machine language program we

want to read from Radio Shack’s tape.

Set up the recorder to play the KEYBOARD DEBOUNCE/
REAL TIME CLOCK SYSTEM * RELO tape

and press

272

After a time, the usual asterisks will appear in the upper right
hand corner, followed by another

*? to which we respond

V@l ENTER |

The Computer wishes to engage us in rather extensive dia-
logue, saying:

TRS-80 RELOCATING LOADER
BASE = (a hexidecimal number)
+

Ignoring it all, we charge blindly onward, and confidently
press the single letter

S and watch the screen. The recorder rolls, and up
comes

KB DEBOUNCE ROUTINE.
plus another
+ to which we say

L (Doesn’t really matter for now what all this
means. That’s for another time, place, and spe-
cialized book. There are some hints as we go
along, but not enough to divert us from the
main thing we’re trying to learn right now.)

Persistent, it is, and it chatters

LOCATING RELOCATION DIRECTORY.
LOADING RELOCATABLE CODE.

RELOCATION COMPLETE, BASE = (another HEX number)

Chapter 24

273

PART 010

This time we have to write down that HEX number since we

will need to use it very scon, {If you have 32K of RAM vou

should get the number BFCS8.) Again we see a

+ and with equal persistence we say again
S (meaning Search for the next machine language
program)

It says “I found it, and its name is”

REAL TIME CLOCK
+

Again we say ‘“don’t just sit there using up juice, LOAD it”
and type an

L
it repeats itself in a computerlike monotone, saying:

LOADING RELOCATION DIRECTORY.
LOADING RELOCATABLE CODE.
RELOATION COMPLETE, BASE = (another HEX number)

Yes, we have to write this HEX number down, too. Don’t get
the two mixed up! (32K RAM users should get BF7A.) See-
ing another

4

we decide we’ve had enough of this chatter, and elect to
Escape to BASIC by typing

E and see the welcome

READY
>

Whew! Another close scrape with machine language!
But there is more work to be done. We first have to activate

the KEYBOARD DEBOUNCE routine. (Yes, this is a lot
more work than just LOADing KBFIX, as we did earlier.)

274

Turning to our HEX number notes, we look up the BASE of
the DEBOUNCE routine. What do you have? 32K users got
BFC8. Going to the HEX-to-Decimal conversion chart on the
next page, we convert BFC8 to a decimal number. Follow me
through this example:

Working from left to right:

B =45056

F= 3840

C= 192
Add them all together and they spell

8= 8

49096

Chapter 24

275

PART 001

HEX | Most Significant Bytes Least Significant Bytes

CODE| v 11l 11 1
0 0 0 0 0
1 4396 256 16 1
2 8192 512 32 2
3 12288 768 48 3
4 | 16384 1024 64 4
5 20480 1280 80 5
6 24576 1536 96 6
7 28672 1792 112 7
8 32768 2048 128 8
9 36864 2304 144 9
A | 40960 2560 160 19
B 45056 2816 176 11
C 49152 3072 192 12
D 53348 3328 208 13
E 57344 3584 224 14
F 61440 3840 240 15

Hex-to-Decimal Conversion Chart

Decimal Value = IV + Il + I + I

276

Now, if you don’t see how we got that, STOP right now and
don’t go on until you figure it out. We can’t continue with-
out knowing how to make these conversions.

OK, the BASE of the KEYBOARD BOUNCE routine is at
memory location 49¢96. We have to increase that number by
one, then go back into machine language to activate the pro-
gram.

Living with real gusto, we leap at the keyboard and type
SYSTEM
followed by

*? /49097
then flee to the safety of

READY
>

Closing in on the REAL TIME CLOCK, it’s sweaty palms all
the way. No way to avoid this machine language biz.

Look at the second HEX number you wrote down. It is the
BASE of the CLOCK routine, and we must increase it by
one, then get tricky. What number did you get? 32K users
got BF7A. One number larger than BF7A must be BF7B.
Look at the chart, if necessary.

Having made that startling discovery, we now have to split
our HEX number into 2 parts — the most important, and the
least important. (You know, things like this could easily give
computers a bad reputation as being unnecessarily complex!)

Anyway, since the little numbers are always on the right, we
say

7B represents the least significant bytes
and, by uncanny reasoning, we conclude
BF must represent the most significant bytes

Chapter 24

277

PART 101

Now we get to convert them separately to decimal. Sticking
have 4K, 16K or 48K of RAM — the example here illustrates
the principle):

Isb=7B=112+11= 123 decimal
msb=BF =176+ 15= 191 decimal

Terrific! What are we supposed to do with that? The fastest
way to the answer is to type in this program, study it care-
fully, then RUN it.

19 REM * REAL TIME CLOCK PROGRAM ¥

2@ CLS : PRINT "WE HAVE TO START BY
SETTING THE CLOCK" : PRINT

3¢ INPUT"WHAT IS THE HOUR ";H

4¢ INPUT"WHAT ARE THE MINUTES ";M

5¢ INPUT"WHAT ARE THE SECONDS ";S : CLS

1@ POKE 16481,H * POKES IN THE
STARTING HOUR
11¢ POKE 16488,M ' POKES IN THE
STARTING MINUTES
12¢ POKE 16479,S ' POKES IN THE
STARTING SECONDS
15¢ POKE 16526,123 ' SETS UP LSB FOR
A CALL FROM USR
16§ POKE 16527,191 ' SETS UP MSB FOR
A CALL FROM USR
20§ X = USR(1) "USR(1) STARTS CLOCK.

USR (@) STOPS
3¢@g PRINT@5,"HOURS","MINUTES","SECONDS"
5¢@% PRINTR7%,PEEK(16481) ,PEEK(1648f),
PEEK(16479)
9999 GOTO 5@¢

See how our LSB and MSB fit in Lines 150 and 160?
Memory locations 16479-81 hold the time, as seen in Lines

109-120.

278

Chapter 24

Pretty slick, eh? It’s a minimum sort of program, but its
expansion is limited only by your own imagination. As a
starter, let’s change line 500 and add 510:

509 H=PEEK(16481) : M=PEEK(1648§)
S=PEEK (16479)
519 PRINTQ7¢,H,M,S

and RUN.

The modified program assigns variables to the hour, minute
and second, giving us a means to compare them against other
numbers. Add these lines:

609 REM * USE OF LOGIC WITH REAL TIME CLOCK *
619 IF H = 12 AND M = 35 AND S = 52 THEN 1¢g¢
798 GOTOS5@8¢
1949 REM * A ROUTINE NEEDED HERE TO
THROW THE BIG SWITCH ¥
1919 PRINT "HYDROTURBINE #7 STARTUP
SEQUENCE INITIATED"

and RUN.

Combining real time with program logic presents possibilities
that boggle the mind. (To learn how to actually “throw the
big switch” see Controlling The World With Your TRS-80. It
is an entire book dedicated to designing, constructing and
controlling hardware with BASIC software, and is made to
order for those interested in this sort of thing. Published by
CompuSoft. Same author. Ahem.)

RUN again, with this change:

1919 PRINT@450, "HYDROTURBINE #7 STARTUP SEQUENCE INITIATED"

279

PART I

Rut there’s more! Add these lines:

20@f# REM * LOGS ACTIVITIES ON CASSETTE TAPE *
201 T =T + 1 : IF T =>2 GOTO 508
'ONLY ONE WRITE TO TAPE

2028 X = USR(f) ' SHUTS OFF CLOCK
2039 ¢ = 71 ' LET CODE 71

MEAN TURBINE #7 STARTUP
2049 PRINT #-1,C,H,M,S ' LOG EVENT

AND TIME ON TAPE

2@58 PRINT#648, "EVENT LOGGED ON TAPE"
268 X = USR(1) ' TURN CLOCK
BACK ON

and RUN.

Wow! Now we can maintain a log on tape of every event that
occurs at the old powerhouse. It will be no problem at all to
write a little program to INPUT that DATA back off tape
and print on the screen or a printer.

You’re wondering what lines 2020 and 2060 are all about?
Well, the Real Time Clock, both in Disk and non-Disk sys-
tems, really screws up cassette operation. It’s a technical
problem which will hopefully be solved in future models. The
clock must be turned off in order to do tape INPUTs and
SAVEs. Don’t try to CSAVE a program without first shutting
off the clock (otherwise it won’t take). Fortunately, the
clock can be readily turned OFF and ON, both with program
statements and at a command level by using

X=USR(f@)
to turn it off
A=USK 1)

to turn it back on

280

Chapter 24

In tlie process, some time is lost, and the clock will fall
behind a bit. If every second is really that precious in your
application, you could note that we lose about 5 seconds
each time we log an event on tape. Can you think of an easy
way to add 5 seconds to the time after such logging? Sure
you can.

On the brighter side, if program execution is STOPped with
a STOP statement or the BREAK key, the clock keeps
running even tho the time isn’t displayed on the screen. Typ-
ing CONT will resume program execution and the clock will
be right on time.

Since the clock does not reset to zero at the end of 12 hours,
you might say it’s a 24 hour clock. Since it doesn’t reset at
the end of 24 hours either, maybe it’s more of an elapsed
time clock. In any case, if you want these resets, they have to
be accomplished in the program software — not a very diffi-
cult task.

The final Coupe de Grace (our French speaking readers like
a little of that sort of thing. Wonder what it means?) for this
Chapter is the automatic logging of events on your printer.
If you don’t have a printer yet, beware of line 1120, since
execution freezes until a printer accepts that line. Just put a
REM there if you don’t have a printer.

1198 REM * LOGS ACTIVITIES ON PRINTER *

111 N = N + 1 : IF N => 2 GOTO 588
' PRINT ONLY ONCE

1128 LPRINT"TURBINE #7 STARTUP
BEGAN AT ";H;M;S

113¢ PRINT@584, "EVENT LOGGED ON PRINTER"

So, cock the recorder, turn on the printer, set the clock at a
little before 12:35:52, and stand aside.

" AND FOR DESSERT, ILL HAVE
THE CouP be eRAcE!”

WES EATEN
HERE BeFoRe '

<D

281

PART 100

49 .. .50 ...51 ...52 KERCHUNK!!! There goes the

big turbine ... it’s winding up! Ratatatatata, the printer is
getting it all down. Hmmmmmm Hmmmmmm Hmmmmmm,
round and round go the tape hubs. Yep . .. the video screen

is reporting the action.

RUN it again, Sam ... RUN it again! (as Wagner’s euphoric
“Ride of the Valkerie” swirls in our head).

Breathes there a man with soul so dead, who never to himself
has said . . .

“This must be how good the old sow feels wallowing in wet
mud on a hot day.”

MUSIC: Up and out.

282

NOTES

\\
DUAL CAsseTTES! FANTASTIC! ,
| JUST LOVE A 600D STEREGC SYSTEM!'

|Rusk. Srtywes-

“SEE IF HE CAN PLNY ;
‘DUALING BANJOS!

- 7

284

CHAPTER 25

Dual Cassette Operation

With the Expansion Interface’s dual cassette feature, it is pos-
sible to Write and Read data to and from tape using two sep-
arate and independent cassette recorders. (A similar feat can
already be performed without an Interface using one recorder
and two cassette tapes, but it can be tedious to the point of
being impractical.) Two recorders, one set to PLAY and the
other to RECORD, provide a practical, reliable and economi-
cal way of using your TRS-80 to perform genuine ‘“Data
Processing.”

Setting Up For Dual Cassettes

Connect the Tape Interconnection Cable (the one with a
5-pin DIN plug on each end) from the Computer’s TAPE jack
to the Expansion Interface cassette INPUT/OUTPUT con-
nector (the DIN connector located on the back panel next to
the power cables — Point #6). Connect the DIN plug from a
Cassette Recorder (designated as #1) to the DIN jack on the
Interface’s back panel located next to the Mini Disk port —
Point #5. The other end of this cable should be connected to
the Cassette recorder as normal.

285

PART 10

y ON/OFF

#1

Connect the cable from the second Cassette Recorder (desig-
nated #2) to the remaining DIN jack on the Interface back
panel. (The center DIN jack, point #6.)

Now that the dual cassette connectors on the Expansion
Interface have been identified, attach stick-on labels to the
DAacKk O The INLEIldCe Cdse (ALLVE Caull Cuiliiior)y to 5ave
time trying to identify them again in the future.

286

Enter this program to verify that the two Recorders are con-
nected properly and are ready for use. Position the recorders
with the access doors open so you can see the drive spindles.
It helps to leave the cassettes out at this time. Press the
PLAY key on each, and RUN.

14 REM * DUAL CASSETTE TEST *

2¢ CLS : PRINT "TYPE '1' TO RUN CASSETTE

3¢ PRINT "TYPE '2' TO RUN CASSETTE #2"

40 N$ = INKEY$: IF N$ = "" GOTO 49

54 IF VAL(N$)

i

1 THEN PRINT#-1,1

64 IF VAL (N$) 2 THEN PRINT#-2,1

79 GOTO 4g

Alternate between pressing the “1” key and 2" key.
Watch the drive spindles on both Recorders to see that each
is operating as we have instructed. If you use CTR-80’s,
watch for the red light as well.

When using the Interface, the recorders can be addressed
individually. Number 1 is identified as #-1 and number 2 is
#—2. Any combination of both on PLAY, both on
RECORD, one doing each or both doing neither can be used.

When CLOADing and CSAVEing, if neither recorder is speci-
fied, #1 is automatically assumed. The correct way to specify
each is:

CSAVE#-1,"A" or CSAVE#-2,"A"

and

CLOAD#-1,"A" or CLOAD#-2,"A"

Chapter 25

287

PART I

To check for a good load, use either

CLOAD#-12"A" or CLOAD#-2, ?2"A"

CLOAD? by itself with automatically default to test for a
good load on the first program encountered on drive #1.

You will recall back in the Level I manual we had a program
for logging Temperature and Humidity, and in Part I of this
book an upgraded version was shown. We’re going to use that
upgrade now — first to refresh our memory on how to use a
single cassette, then modifying it to use twin cassettes.

The program is reprinted here for your convenience. If you
saved it on tape before, CLOAD it in. If not, start typing.
19 REM * TEMPERATURE AND HUMIDITY RECORDING PROGRAM *

20
40
50
60
70
80
100
110
120
130

REM * DATA STORAGE MUST START ON THE 1ST DAY OF MONTH *
CLS : INPUT"WHAT DAY OF THE MONTH IS IT";D

INPUT"WHAT IS TODAYS TEMPERATURE";T

INPUT"WHAT IS TODAYS HUMIDITY";H

PRINT : PRINT

IF D = 1 GOTO 4390 " OM FIRST DAY TS NO PRIOR DATA

REM * INPUTTING DATA STORED ON CASSETTE TAPE *

PRINT"WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM®
PRINT"THE DATA TAPE. BE SURE IT'S REWOUND AND THE RECORDER"
PRINT"IS SET TO 'PLAY'." : PRINT : PRINT

INPUT"PRESS 'ENTER' WHEN EVERYTHING IS READY TO GO.";AS
CLS:PRINT"DATA IS NOW FLOWING INTO THE COMPUTER FROM TAPE. "
PRINT : PRINT : PRINT"DATE","TEMP","HUMIDITY" : PRINT

FOR X =1 TO D-1

INPUT #-1,Y,2 ' BRINGS IT IN FROM TAPE
PRINT X,Y,2 ' PRINTS IT ON THE SCREEN

B = B+Y : C = C+2Z ' KEEPS RUNNING TOTALS

NEXT X

REM * MONTHS AVERAGES TO-DATE *

B = (B+T)/D : C = (C+H)/D ' COMPUTES THE AVERAGES
PRINT D,T,H

PRINT : PRINT " *% THIS MONTHS AVERAGES **"
PRINTTAB(7) ; "TEMP"; TAB(17) ; "HUMIDITY"
PRINTTAB(7) ;B; TAB(19) ;C

REM * STORING TODAYS TEMP & HUMIDITY ON TAPE *

PRINT : PRINT: INPUT"PRESS 'ENTER' WHEN READY TO CONTINUE" ;AS
CLS : PRINT : PRINT

PRINT"TODAYS TEMPERATURE AND HUMIDITY WILL NOW BE PRINTED"
PRINT"ON THE DATA TAPE. BE SURE 'RECORD’ & FPLAY'® ARE"
PRINT"PRESSED. DO NOT REWIND THE TAPE, YET." : PRINT
INPUT"WHEN ALL IS READY, PRESS 'ENTER'";AS$: CLS
PRINT"TODAYS DATA IS NOW FLOWING FROM THE COMPUTER TO THE"
PRINT"TAPE. WE WILL INPUT THIS PLUS THE EARLIER DATA "
PRINT"TOMORROW." : PRINT

PRINT #-1,T,H ' PRINTS TODAY ON TAPE
PRINT"TODAYS NUMBERS HAVE BEEN ADDED TO THE TAPE."
PRINT"REWIND THE TAPE IN PREPARATION FOR TOMORROW. "

RUN the program through several days of arbitrary tempera-
tures and humidity — enough to make a DATA tape.

Now let’s modify the program and have cassette #1 act as the
source of our historical DATA, and cassette #2 the place we

will

record the updated DATA. This means we will INPUT

from #1 and PRINT to #2.

Fire up the Editor and make the program read like this:

10

20

40

50

60

70

80

100
119
120
1349
140
150
160
165
170
182
19¢
195
197
200
210
3040
319
320
338
340
350
430
440
470
480
490
500
525
530
540

REM * TEMP AND HUMIDITY RECORDING PROGRAM USING 2 TAPES *

REM * DATA STORAGE MUST START ON THE 1ST DAY OF MONTH *#*
CLS : INPUT"WHAT DAY OF THE MONTH IS IT";D

INPUT"WHAT IS TODAYS TEMPERATURE";T

INPUT"WHAT IS TODAYS HUMIDITY";H

PRINT : PRINT

IF D = 1 GOTO 430 ' ON FIRST DAY IS NO PRIOR DATA
REM * INPUTTING DATA STORED ON CASSETTE TAPE *
PRINT"WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM"
PRINT"TAPE DRIVE #1. BE SURE THE LATEST TAPE IS REWOUND"
PRINT"AND THE RECORDER IS SET TO 'PLAY'." : PRINT
PRINT"PUT FRESH TAPE IN DRIVE #2, AND SET TO RECORD."
PRINT:INPUT"PRESS 'ENTER' WHEN BOTH TAPES ARE READY.";AS$
CLS:PRINT"DATA IS NOW FLOWING FROM DRIVE #1 INTO THE"
PRINT"COMPUTER, AND FROM THERE BEING RE-RECORDED ON #2"
PRINT : PRINT : PRINT"DATE","TEMP","HUMIDITY" : PRINT
FOR X = 1 TO D-1

INPUT #-1,Y,2 BRINGS IT IN FROM TAPE

]
PRINT X,Y,2 ' PRINTS IT ON THE SCREEN
PRINT #-2,Y,%2 ' PRINTS IT ON DRIVE #2
B = B+Y : C = C+2Z ' KEEPS RUNNING TOTALS
NEXT X
REM * MONTHS AVERAGES TO-DATE *
B = (B+T)/D : C = (C+H)/D ' COMPUTES THE AVERAGES

PRINT D,T;H

PRINT : PRINT " *x THIS MONTHS AVERAGES **"
PRINTTAB(7) ; "TEMP"; TAB(17) ; "HUMIDITY"

PRINTTAB(7) ;B;TAB(19);C : PRINT : GOTO 4740

PRINT"BE SURE THERE IS A FRESH TAPE IN DRIVE #2 AND"
INPUT"IT IS SET TO RECORD. PRESS 'ENTER' WHEN READY";AS
PRINT"TODAYS DATA NOW FLOWING FROM COMPUTER TO DRIVE #2.,"
PRINT"WE WILL INPUT THIS PLUS THE EARLIER DATA FROM DRIVE"
PRINT"#2, TOMORROW," : PRINT

PRINT #-2,T,H ' PRINTS TODAY ON TAPE #2
PRINT"RECORDING COMPLETE." : PRINT

PRINT"REWIND & STORE TAPE #2 IN PREPARATION FOR TOMORROW."
PRINT"KEEP THE OLD TAPE AS A BACKUP FOR AT LEAST ONE DAY."

Chapter 25

289

PART 00l

RUN the modified program through at least 5 days tempera-
ture and humidity readings to get a good feel for how it
works.

Pretty nifty, huh!

This learning program is not an ideal model of programming
technique for dual cassette operation. It was written to cause
lots of relay clicking, turning on and off of motors, blinking
lights and screen action, and help us LEARN what’s going on.
It contains far more explanatory verbage than actual program
logic.

Due to the chance of an error everytime a relay is switched,
or motor started or stopped, in actual practice it’s best to
keep the mechanical action to a minimum. How can we do
this?

Make the data dumps, both to and from the Computer, as
large as possible each time a motor is actuated. Ideally, we
might have only one dump from drive #1 to the Computer at
the beginning of a session; then only one dump from the
Computer to drive #2 at the end. The software and
Computer reliability are exceedingly high. Enhance the soft-
ware as much as possible to cut down reliance on hard-
ware. Got any ideas?

How about this one? Could we set up an array that is 31 days
long by 2 pieces of data wide? Yes.

Could we then dump to tape the entire array, with all
‘addresses initialized to zero? Yes.

Could we then bring in this “‘null array” in one tape-read,
change the data for only one day, then unload the entire

array in one dump? Yes. Could we even improve on this idea?
Vaco

There you have it! Users who are serious about data process-
ing with cassette tape have their assignment.

290

Precautions

Those who are serious about using ordinary cassette tape
recorders for computer work should bear in mind that they
were designed for recording talk and music, not digital data.
We are only using them because they are inexpensive and
available.

Only the very highest quality tape should be used. Certified
tape, such as that sold at Radio Shack stores is a bit expen-
sive — but required if you want high reliability. Quality is
even more critical in DATA applications than for storing
programs. We normally make only one recording of the
DATA instead of multiple dumps, and only one READ, tho
that could be changed in the software.

Periodic maintenance is a must. Tape heads must be cleaned
after every few hours use, and demagnetized frequently. The
tape drives and tapes must be kept impeccably clean. Data
Processing is not the same as just “fooling around” with com-
puters, and erratic tape systems will drive you to drink faster
than any software bug. (Hic!).

If approached with purposeful diligence and an understand-
ing of the level of technology we are dealing with, cassette
systems can do the job.

Chapter 25

291

292

POSTLUDE
From the Promontory

Well, we’ve come a long way. It’s time to pull up the old
wagon train, scan the horizon and see where we are.

We’ve hacked our way through the jungles of Level I and con-
verting it to Level I1. We’ve forged the swamps of Strings and
portaged across machine language without getting too wet.
Having mastered most of BASIC, we stand now at the
threshold of the next frontier — disk systems.

Many readers will branch off on the long trail, seeking to
control hardware with their TRS-80 before going to disk.
Others will head over the pass directly to disk. Most will
wonder if they can ever master the complexities. I wish you
well in your journeys, and, if you wish, I’ll be there waiting
to help you through.

Have a good trip!

293

‘‘ Appendix’’

“WELL, YOUR. APPENDIX 1S SOMESWHAT ENLARGED,
BUT WENE DECIDED TO LEAVE IT IN..."

295

Appendix A

LEVEL II Error Message
Reference Guide

297

?7BS is displayed by the Computer when the
elements in a numeric or string matrix are
beyond the range of values reserved in the
DIM statement.

\

BS (Subscript out of Range)
Code 9

TEST PROGRAM
1§ REM 'BS' ERROR MESSAGE GENERATOR
2¢ PRINT "THE VALUE OF X IS";
38 A(X)=1
4 PRINT X;
58 X=X+1

64 GOTO 3¢

SAMPLE RUN

THE VALUE OF X IS # 1 2 3456 78 9 18
?BS ERROR IN 3¢

Matrix A(X) has not been formally dimensioned so the Com-
puter automatically reserves space for 11 elements () to 10).
The value of X is incremented by one in line 5¢ and when the
value of X reaches 11 the matrix exceeds its reserved space. Its
subscript is then out of range.

The DIM value can be varied depending on the number of
Matrix elements needed and the available memory space.

By redimensioning the array, more elements can be stored. Add-
ing this line expands the maximum matrix size to 40 elements.

25 DIM A(40)

298

?CN is displayed when the command CONT
or CONTINUE (either one works) is typed
and there is no program to continue, the pro-
gram has just been EDITed, or a line has just
been added or deleted. CONT was originally
designed to cause execution to resume after
hitting a STOP, without initializing the
variables to zero. In this interpreter, it can be
used instead of RUN without a prior STOP. CN (Can’t Continue)

Code 17

To generate this error message, type NEW _ENTER RS0
CONT . Since we removed all programs it can’t CON-
TINUE and displays the error message:

?CN ERROR
Another cause of the message is typing
CONT ###

when that line number doesn’t exist.

299

7DD is displayed when the Computer is told
to DIMension a numeric or string Matrix after
it has already been DIMensioned earlier in the
same program. It is protesting “Double
Dimensioning.”

DD (Redimensioned Array)
Code 10
TEST PROGRAM
1¢ REM 'DD' ERROR MESSAGE GENERATOR
2¢ DIM A(20)
3¢ INPUT "ENTER A VALUE FOR MATRIX A(15)";A(15)
4¢ PRINT "THE VALUE OF MATRIX A(15) IS";A(15)

50 GOTO 20

SAMPLE RUN

ENTER A VALUE FOR MATRIX A(15)? 5
THE VALUE OF MATRIX A(15) IS 5
? DD ERROR IN 2§

An attempt was made in line 5@ to redimension A.
To see this program run error free, change line 5¢ to GOTO 30

and RUN. The Computer sees the DIM statement for array A
only once.

300

?/@ is displayed when the Computer is asked
to divide a number by @. You may think of
your Computer as the smartest thing going,
but it is not capable of handling numbers of
infinite value.

At the command level type:

2

PRINT 4/8 é} (;)ixlfision by Zero)
“ode 11

The Computer responds with

?/8 ERROR
The same error occurs when a program calls for division using a
variable that has either been initialized to ¢ or has never been
assigned a value larger than (. (All variables are initially set to
zero when RUN is typed.) Here is a typical example of how
the error may occur in a program:
TEST PROGRAM

19 REM /# ERROR MESSAGE GENERATOR

28 N=24g

38 X=1¢

4 PRINT N;"DIVIDED BY";X;"EQUALS";N/X

5¢ PRINT N;"DIVIDED BY";Y;"EQUALS";N/Y

SAMPLE RUN
2@ DIVIDED BY 18 EQUALS 2
2% DIVIDED BY ¢ EQUALS
?/¥ ERROR IN 5§
'The Computer does fine until it reaches line 50 and is asked to

divide the value of variable N by a variable (Y) that has not
been assigned a value other than zero.

301

9FC is displayed when illegal values are used
with the built-in math functions or the Com-
puter cannot figure out what to compute
because of the values it received.

FC (Illegal Function Call)
TEST PROGRAM #1 Code 5

19 REM 'FC' ERROR MESSAGE GENERATOR
2§ PRINT "TRY TO COMPUTE THE SQUARE ROOT OF -5"
3¢ PRINT SQR(-5)

SAMPLE RUN
TRY TO COMPUTE THE SQUARE ROOT OF -5
?FC ERROR IN 3§

The Computer is unable to compute the square root of a nega-
tive number in line 30 so it stops and displays the error message.

The same error message is displayed by substituting RND for
SQR in line 3¢ because the Computer cannot produce a random
value from a negative designation.

An FC error message is also displayed when a negative number
is used in a DIM statement or a numeric or string array. Try
RUNning each of the following:

18 DIM A(-5)

19 A(-5)=18

19 INPUT A$(-5)

If you attempt to use the USR function and haven’t boned up

on machine language programming, you will no doubt see the

FC error message displayed. When the Computer cannot find the

starting address (must be POKED in by you) in which to run

the machine language routine, it stops and displays the FC error

message. To demonstrate this for yourself, type the command
PRINT USR(N)

Since we did not POKE in a starting address, the Computer
responds with:
?FC ERROR

302

?FD is displayed when the Computer fails to
read the proper data from cassette tape during
the INPUT #-1 statement.

FD (Bad File Data)
Code 22

TEST PROGRAM

18 REM 'FD' ERROR MESSAGE GENERATOR
20 READ A$

3¢ PRINT A$

4¢ PRINT#-1,A$

50 IF A$="999"GOTO 74

60 GOTO 28

7¢ INPUT"REWIND, PRESS PLAY, THEN PRESS 'ENTER'";X$
84 INPUT#-1,A

99 PRINT A

19 IF A=999 END

118 GOTO 8¢

12¢ DATA A,B,999

SAMPLE RUN
A
B
999
REWIND, PRESS PLAY, THEN PRESS 'ENTER"?

Place a blank tape in the cassette recorder and set to the
RECORD mode. RUN the program and follow the directions on
the screen.

The program recorded string data on the tape in line 4¢). Line

8(tried to read it back as numeric data. When the Computer

recognized it was receiving bad data, it stopped and displayed
?FD ERROR IN 8¢

To see this program run without the FD error, change the
DATA in line 120 to all numbers

1290 DATA 1,2,3,999
and RUN.

303

21D is displayed when the Computer is asked
to INPUT a value or string in the Immediate
or Direct mode. The INPUT and INPUT #-1
statements can only be used in a program.
Type each of these commands:

INPUT A
TNPUT R ID (Illegal Direct)
INPUT#-1 Code 12

Each is refused by the Computer, which displays

?ID ERROR

304

?L3 is displayed by the Computer when a
statement or command is used that is not part
of Level II BASIC, but is part of TRS-80 Disk
BASIC. Type the command:

PRINT TIMES$
The Computer cannot find this function in its
Level 11 interpreter but recognizes it as one of
the Disk BASIC functions so it displays the
eITor message:

?L3 ERROR
Try also

SAVE

and LOAD

L3 (Disk BASIC)
Code 23

305

7LS is displayed when an attempt is made to
store more than 255 letters or charactersin a
string variable.

LS (String Too Long)
Code 15

TEST PROGRAM

19 REM 'LS' ERROR MESSAGE GENERATOR

20 CLEAR 1999

30 N$="X":N=1

4@ N=N+N:PRINT N,

50 N$=N$+N$: PRINT N$

60 GOTO 4§
The CLEAR statement in line 2() reserves enough money space
to allow it to hold up to a total of 10@Q string characters. The
interpreter, however, does not permit any one string variable to
hold more than 255 characters. When an attempt is made in line
5¢ to place 256 letters in variable N§, the Computer stops and

displays the error message;

?LS ERROR IN 5@

Lines 30-40 also provide a ‘“counter” to show how many
characters are assigned to N§ on each pass.

306

?MO is displayed when the Computer is not
given all the information required to carry out
its directive.

For example, type the command:

CSAVE

MO (Missing Operand)
Code 21

Since the program name was omitted from the CSAVE com-
mand, the Computer cannot execute it. It displays the error
message:

?MO ERROR

To avoid this error, add a single letter or number program name
to the CSAVE command, such as:

CSAVE"A"

307

?NF is displayed when an attempt is made to
RUN a program containing a FOR-NEXT
loop, but the word “FOR?” is missing.

NF (NEXT without FOR)
Code 1
TEST PROGRAM #1
19 REM 'NF' ERROR GENERATOR
2¢ PRINT "WATCH OUT - - - HERE COMES THE NF ERROR"
3¢ NEXT
SAMPLE RUN

WATCH OUT - - - HERE COMES THE NF ERROR
?NF ERROR IN 3§ ’

The Computer prints the message in line 2(), then looks back for
an unused “FOR”’ statement.

The NF error is also displayed when {lle variable following a
NEXT statement does not match the one following “FOR”.
Add these lines to the TEST program and RUN;

15 FOR X=1 TO 14

38 NEXT Y

The “NEXT Y” in line 39 does not match the only FOR state-
ment, in line 15.

The NF error message is also printed when nested FOR-NEXT
loops are out of sequence. That is, one FOR-NEXT loop over-
laps the other.

308

?NF

TEST PROGRAM #2
19 REM 'NF' ERROR IN A NESTED FOR-NEXT LOOP
2 FOR X=1 TO 2
39 FOR Y=1 TO 4
49 PRINT "NF ERROR COMING FROM FAULTY NESTED LOOPING"
50 NEXT X

60 NEXT Y

SAMPLE RUN

NF ERROR COMING FROM FAULTY NESTED LOOPING
NF ERROR COMING FROM FAULTY NESTED LOOPING
?NF ERROR IN 6

Line 40 is printed twice before the NF error message hits, since
a NEXT statement cannot send the Computer back in the pro-
gram beyond a FOR statement that has not found its match.

It’s acceptable in Level II BASIC to omit the variable following
the NEXT statement. The Computer loops back in the program
and finds a FOR statement that complements the NEXT state-
ment, thereby avoiding FOR-NEXT statements with variables
out of sequence.

To demonstrate this feature, remove the variables X and Y from
lines 50 and 6Q in TEST PROGRAM #2 and RUN. The Com-
puter searches out the appropriate FOR statement and prints
line 40 eight times, without error.

309

?NR is displayed when an ON ERROR GOTO
statement is used to branch to a specified pro-
gram line, and the Computer does not en-
counter a RESUME statement before the pro-
gram stops. The NR error message is not dis-
played if the END statement is used after the
ERROR routine.

S

NR (No RESUME)
Code 18

TEST PROGRAM
19 REM 'NR' ERROR MESSAGE PROGRAM
2 ON ERROR GOTO 140
39 GOTO 5

199 PRINT "AN ERROR SENT ME TO LINE 1gg"

SAMPLE RUN

AN ERROR SENT ME TO LINE 188

?NR ERROR IN 1@%
Not finding the line 5 specified in line 30, the Computer dis-
plays the message in line 100. Since it does not find a RESUME
statement, it stops and displays the NR error message. To pre-
vent this error, add either of these statements.

114 END
or 118 RESUME

and create some new problems.

310

70D is displayed when the Computer is told
to READ more items from the DATA state-
ments than are available.

OD (Out of Data)
Code 4

TEST PROGRAM #1

19
20
39
40
5¢
60

REM 'OD' ERROR MESSAGE GENERATOR

FOR X=1 TO 5

READ A
PRINT A,
NEXT

DATA 9,8,7,6

SAMPLE RUN

?0D ERROR IN 3¢

Lines 20 through 5@ enable the Computer to READ and PRINT
numbers from the DATA statement five times. During the 5th
pass of FOR-NEXT loop, however, the READ statement can’t
find a fifth piece of DATA. The program is literally “out of

DATA”.

An OD error message is also displayed when the INPUT #-1
statement asks for more DATA than is available on a cassette
DATA tape.

311

20D

TEST PROGRAM #2
19 REM 'OD' ERROR CAUSED BY MISSING TAPE DATA
2¢ READ A,B,C
3¢ PRINT A,B,C
49 PRINT#-1,A,B,C,
5¢ PRINT "REWIND TAPE, SET RECORDER TO PLAY,"
6¢ INPUT "THEN PRESS 'ENTER'";X$
7¢ INPUT#-1,A,B,C,D
8¢ PRINT A,B,C,D
9¢ DATA 1,2,3,4

Place a blank tape in the cassette recorder and set it to
RECORD. Then RUN the program and follow instructions.

SAMPLE RUN

2 2 3
REWIND TAPE, SET RECORDER TO PLAY,
THEN PRESS 'ENTER'?
20D ERROR IN 7§

The Computer recorded 3 numbers on tape in line 49 but it is
looking for 4 items in line 7Q. Once the Computer senses it is
missing one number, it stops the recorder and displays the error
meeqnge

312

70M is displayed when an attempt is made to
store a program larger than the Computer’s
memory storage space. It is also displayed
when a matrix variable is assigned more ele-
ments than there is space in memory to store
it.

For example, this program cannot run on a

Computer with a memory size of 16K bytes OM (Out of Memory)
or less. Code 7
TEST PROGRAM

1¢ REM 'OM'ERROR MESSAGE GENERATOR
2¢ DIM A(7¢,79)

3¢ FOR X=1 TO 5%

4 TFOR Y=1 TO 58

50 PRINT X,Y

6§ NEXT Y

70 NEXT X

SAMPLE RUN
?0M ERROR IN 10

The Computer “‘saves” space in memory for matrix “A” with
the DIM statement in line 20. Change the values in line 20 to
DIM A(50,50) and check remaining memory space by adding

25 PRINT MEM

This modified program can run error-free in machines with 16K
bytes of memory, and have room to spare.

Another activity that eats up lots of memory space is to answer
the MEMORY? question (asked when the Computer is turned
on or is RESET) with a value that reserves too much memory
for machine language or for the SYSTEM function. To generate
this error, turn off your 16K Computer, let it settle down a few
seconds, then turn it back on. Answer the MEMORY? question
with the value 18Q0@Q and check available memory with PRINT
MEM. It would now be difficult to store a moderate sized
BASIC program since we have reserved most of the memory
space for other uses.

313

708 is displayed when more letters or charac-
ters are assigned to a string variable than it is
capable of storing.

OS (Out of String Space)
TEST PROGRAM Code 14

19 REM 'OS'ERROR MESSAGE GENERATOR

20 N$=N$+"A"

3¢ N=N+1

49 PRINT N;

580 PRINT N$

68 GOTO 28
The letter “A” is added to the variable N§ until the Computer
runs out of space reserved for string variables. (50 bytes are
reserved on power-up.) It then stops and displays the error mes-
sage:

?0S ERROR IN 38

It is possible to increase or decrease the string storage space by
changing the space reserved for strings using the CLEAR state-
ment. Type CLEAR 10 and RUN,

See how this reduces the number of characters that variable N§
can store? The sum of the spaces required for the last 2 values
of the string must be within the string space allocation. 5+4=9.

If CLEAR 0 is typed, all string space is removed, making it

impossible for string variables to store a single letter or charac-
ter. Try it.

314

70V is displayed when the Computer is un-
able to use a number because it is either too
large or too small. An overflow condition can
also be created by routine mathematical
calculations at either the statement or com-
mand levels. Type

PRINT 25A5f

OV (Overflow)
(25 to the 5Qth power) Code 6

Being far beyond the Computer’s maximum number handling
capacity of 1.701411+E38, the OV message appears.

When arrived at by a program calculation the same thing
happens:
TEST PROGRAM #1
19 REM 'OV' ERROR MESSAGE DUE TO STATEMENT
20 N = 1
3% PRINT S5@AN,
49 N = N + 1

50 GOTO 38

SAMPLE RUN
50 2509 1259048 6.25E+06
etc.
?0V ERROR IN 30

Another cause of overflow is attempting to store a number
larger than is allowed (32767) in a variable designated as an
integer (by the % operator).

315

0V

TEST PROGRAM #2

(37
20
30
49
50
60

RUN this sample program and watch the number increase in
value from 32500 to 32767. When the Computer is asked to
add the value 1 to variable A% when it’s storing the value
32767, it cannot comply since it is already at its maximum. The

REM 'OV' ERROR MESSAGE GENERATOR
PRINT "WATCH TNE NUMBER GROW"

32500

= A% + 1

A

oe

A

oo
|

PRINT @23,A%

GOTO 4§

Computer stops and displays the error message:

?0V ERROR IN 4§

316

7REDOQ is printed when a letter or string is
typed where an INPUT statement calls for a
number.

REDO (Type a number)
No Code Number

TEST PROGRAM

18 REM 'REDO' ERROR GENERATOR
2@ INPUT "TYPE ANY NUMBER";N

3¢ PRINT N

SAMPLE RUN

TYPE ANY NUMBER? X
?REDO
TYPE ANY NUMBER?

After rejecting the letter X as not being a number, it returns
execution to the INPUT line where the ERROR occurred, with-
out crashing the program. Very handy indeed! And REDO is
not one of the 23 “standard” error codes.

7RG is displayed when the Computer reads a
RETURN statement and there is no corre-
sponding GOSUB.

RG (RETURN without GOSUB)
Code 3

TEST PROGRAM #1
19 REM 'RG'ERROR MESSAGE GENERATOR
2¢ PRINT "AN EXAMPLE OF THE RG ERROR"

38 RETURN

SAMPLE RUN

AN EXAMPLE OF THE RG ERROR
?RG ERROR IN 38

There is no GOSUB statement to match the RETURN in line
30.

A common programming mistake made when using the GOSUB
statement, is not providing protection against reading the same
RETURN statement more than once. For example, enter this
program in your Computer and RUN;

318

RG

TEST PROGRAM #2

19 REM 'RG' ERROR MESSAGE GENERATOR

20 GOSUB
3¢9 PRINT
4¢ PRINT

59 PRINT

68 RETURN

SAMPLE RUN

&)
"I HAVE RETURNED FROM THE SUBROUTINE"
"NOTHING HERE TO STOP ME"

"THIS IS A TYPICAL SUBROUTINE"

THIS IS A TYPICAL SUBROUTINE

I HAVE RETURNED FROM THE SUBROUTINE
NOTHING HERE TO STOP ME

THIS IS A TYPICAL SUBROUTINE

?RG ERROR IN 6§

The RG error message is printed because there was no block
protecting the RETURN statement in line 6. To prevent this,

change line 40 to

49 END

319

7RW is displayed when the Computer en-
counters a RESUME statement without first
finding an ON ERROR GOTO statement.

>

RW (RESUME without ERROR)
Code 19

TEST PROGRAM

19 REM 'NR' ERROR MESSAGE PROGRAM

2 RESUME

3¢ ON ERROR GOTO 140

49 READ A

5¢ END

198 PRINT "SEE THE ERROR IN LINE ag2"
The Computer reads the RESUME statement in line 20, but
since it hasn’t seen an ON ERROR GOTO statement yet, it
stops and displays:

?RW ERROR IN 2§

This error can be avoided by moving it past line 20, and other
problems avoided by adding an implied “GOTO” line 50.

119 RESUME 50

320

The Computer displays ?SN when a com-
mand, statement or function is misspelled or
an operator is omitted. Type this command:

RAN

Since the Computer cannot find the word
RAN in its list of commands, it assumes you

have misspelled something and displays the SN (Syntax)
error message Code 2
?SN ERROR

This program demonstrates how the SN error can be generated
by omitting an operator:
TEST PROGRAM

19 REM 'SN' ERROR MESSAGE GENERATOR

200 PRINT @474"HELLO OUT THERE"

RUN this program. The Computer is unable to find a comma in
line 20 after the 474 so it halts and displays

?SN ERROR IN 2§

READY

29

The Computer automatically enters the EDIT mode when a
SN error occurs in a program. The SN error generally occurs
because of a typographical error.

To see the SN error caused by a misspelled statement, replace
line 20 with

2¢ PRIMT "I CAN'T SPELL PRINT"

321

This error message is displayed when string
manipulation has become too complicated or
too long for the Computer.

\

ST (String Formula Too Complex)
Code 16

To avoid typing a lengthly program in the
Computer to demonstrate this error message,
it can be simulated by typing in the following
short program;
19 REM 'ST' ERROR MESSAGE PROGRAM
2¢ ERROR 16
RUN this program. The Computer displays the error message:

?ST ERROR IN 2§

Note: This error code is practically impossible to initiate in the
BASIC used in the TRS-80 Level 11

322

7TM is displayed when a numeric value is
assigned to a string variable or a string is
assigned to a numeric variable.

TM (Type Mismatch)
TEST PROGRAM Code 13

1§ REM 'TM' ERROR MESSAGE GENERATOR
2@ INPUT "ENTER ANY NUMBER";N
38 N$=N

SAMPLE RUN

ENTER ANY NUMBER? 5
?TM ERROR IN 3§

When a number is entered in line 20, the Computer tries to
assign this value to string variable N$ in line 3(. Since the two
variables are not compatible, the program crashes.
RUN the program again and enter a letter instead of a number.
The Computer gives you another chance to enter numeric data
by displaying the error message

?REDO
and returns execution to the line where the error occurred.
Type Mismatching can be a real headache since strings tend to
be confusing at times. Try RUNning each of these in the Test
Program:

38 X=N$

3¢ IF N$=N GOTO 2@

30 X="R"*8

3¢ ON N$ GOTO 14

323

Does this mean it’s an X-rated program? Well,
it may be X-ceptional if you ever actually see
this error in the normal course of everyday
programming.

?UE is displayed when the ERROR statement
is used to self-inflict an error and the resulting
error code is not one of the 23 used by the

computer. UE (Unprintable Error)
Code 20

For example, type the Command:

ERROR 5§

The Computer checks its list of error codes and can’t find this
one. It lets you know about it by displaying the message:

?UE ERROR

TEST PROGRAM
19 REM 'UE' ERROR MESSAGE PROGRAM

20 ERROR 5§

SAMPLE RUN

?UE ERROR IN 2§
The same error message plus the line number containing the
ERROR statement is printed when the error occurs inside a

program.

Hmmmm. Very strange!

324

UL is displayed when a branching statement
such as GOTO or GOSUB calls for a line num-
ber that does not exist.

UL (Undefined Line)
Code 8
TEST PROGRAM
19 REM 'UL' ERROR MESSAGE GENERATOR
20 PRINT "I WILL NOW ATTEMPT TO GOTO LINE 58"
38 GOTO 5
4% REM THERE IS NO LINE 50 IN THIS PROGRAM

SAMPLE RUN

I WILL NOW ATTEMPT TO GOTO LINE 5¢

?UL ERROR IN LINE 38
The Computer displays the PRINT statement in line 20, then
attempts to GOTO line 5¢. There being no line 50, it stops and
displays UL.

A UL error also occurs when GOTO and GOSUB statements are
followed by a variable (not a number). Add these lines to the
sample program:

25 N=2¢
38 GOTO N

and RUN.

Although this is really more of a syntax error, the TRS-80
gives us a UL.

Finally, the UL error message is also displayed when the EDIT
command calls for a line number not in use.

Type:
EDIT 100
The Computer responds with:

?UL ERROR

325

Appendix B: ASCII Code Table

Decimal ASCII Decimal ASCII Decimal ASCII
Code Character Code Character Code Character
32 space 63 ? 94 >
33 ! 64 @ 95 —
34 ” 65 A 97 a
35 # 66 B 98 b
36 h 67 C 99 c
37 % 68 D 100 d
38 & 69 E 101 e
39 ’ 70 F 102 f
40 (71 G 103 g
41) 72 H 104 h
42 * 73 I 105 i
43 + 74 J 106 j
44 , 75 K 107 k
45 — 76 L 108 1
46 . 77 M 109 m
47 / 78 N 110 n
43 0 79 O 111 0
49 1 80 P 112]
50 2 81 Q 113 q
51 3 82 R 114 T
52 4 83 S 115 S
53 5 84 T 116 t
54 6 85 U 117 u
55 7 86 \Y 118 \%
56 8 87 W 119 w
57 9 88 X 120 X
58 : 89 Y 121 y
59 ; 90 Z 122 Z
60 < 91 Aor | 123 {
61 = 92 v 124 N
62 > 93 < 125 }
126 ~

NOTE: Codes 96 thru 126 for the TRS-80 represent the lower-case forms of 64-95; how-
ever, only upper case characters are displayable on standard Level 11 machines.

326

ABS
AND
APPEND
ASC
ATN
AUTO
CDBL
CHRS
CINT
CLEAR
CLOCK
CLOSE
CLS
CMD
CONT
COS
CSNG
CVD
CVI
CVS
DATA
DEFDBL
DEFFN
DEFINT
DEFSNG
DEFUSR
DEFSTR
DELETE
DIM
EDIT
ELSE
END
EOF
ERL
ERR
ERROR
EXP
FIELD
FIX

Appendix C:
Level II Reserved
@ FN

FOR
FORMAT
FRE
FREE
GET
GOSUB
GOTO
IF
INKEY$
INP
INPUT
INSTR
INT
KILL
LEFTS$
LET
LSET
LEN
LINE
LIST
LOAD
LOC
LOF
LOG
MEM
MERGE
MID§
MKD$
MKI$
MKS$
NAME
NEW
NEXT
NOT
ON
OPEN
OR
ouT

Words*

PEEK
POINT
POKE
POS
POSN
PRINT
PUT
RANDOM
READ
REM
RENAME
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
SAVE
SET
SGN
SIN
SQR
STEP
STOP
STRINGS
STRS
TAB
TAN
THEN
TIMES$
TO
TROFF
TRON
USING
USR
VAL
VARPTR
VERIFY

*Many of these words have no function in LEVEL II BASIC;
they are reserved for use in LEVEL II BASIC DISK. None of
these words can be used inside a variable name. You’ll get a
syntax error if you try to use these words as variables.

S!E |

Appendix Y:

ymary of LEVEL 1 BASIC

(supplied for reference only)

Commands
NEW

RUN

RUN## #

LIST

LIST###

CONT

Purpose Example

Clears out all program NEW (not part of program)
lines stored in memory

Starts program execution RUN (not part of program)
at lowest-numbered line

Starts program execution RUN 300 (not part of program)
at specified line number

Displays the first 12 pro- LIST (not part of program)
gram lines stored in

memory, starting at low-

est numbered line. Use

A key to display higher-

numbered lines (if any)

Same as LIST, but starts LIST 300 (not part of
at specified line number program)

Continues program execu- CONT (not part of program)
tion when BREAK AT
is displayed

Statements
PRINT

INPUT

INPUT

READ

DATA

RESTORE

LET

GOTO

328

Purpose Example

Prints value of a 10 PRINT “A+B=";
variable or expression; A+B

also prints whatever is

inside quotes

Tells Computer to let 1¢ INPUT ABC
you enter data from
the Keyboard

Also has built-in 19 INPUT “ENTER A”; A
PRINT capability

Reads data in DATA 10 READ A B,C,AS
statement

Holds data to be read 20 DATA 1,2,3, “SALLY”
by READ statement

Causes next READ 30 RESTORE
SLALEILTIIL LU start witi

first item in first

DATA line

(Optional) Assigns a new value ¢ LET A=3.14159
to variable on left of

equals sign

Transfers program control 19 GOTO 300
to designated program line

Summary of LEVEL I BASIC-—continued)

Purpose Example

IF-THEN Establishes a test point 1QIF A=B THEN 300

FOR-NEXT Sets up a do-loop to be 10 FORI=1 TO 10
executed a specified 20 NEXT I
number of times

STEP Specifies size of increment 1¢) FOR [=¢ TO 1 STEP 2
to be used in FOR-NEXT
loops

STOP Stops program execution 19 IF A(B STOP
and prints BREAK AT
Mmessage

END Ends program execution 99 END
and sets program counter
to zero

GOSUB Transfers program control 19 GOSUB 3009
to subroutine beginning at
specified line

RETURN Ends subroutine execution 301¢ RETURN
and returns control to
GOSUB line

ON Multi-way branch used 19 ON N GOTO 30,40,50
with GOTO and 10 ON N GOSUB 3000,
GOSUB. 4000, 5000

Print

Modifiers Purpose Example

AT (Follows PRINT) Begins 19 PRINT AT 650, “HELLO”
printing at specitied
location on Display

TAB (Follows PRINT) Begins 10 PRINT TAB (10);
printing at specified “MONTH”; TAB (20);
number of spaces from “RECEIPTS”
left margin

Graphic

Statements Purpose Example

SET Lights up a specified 10 SET (30,40)
location on Display

RESET Turns off a specified 20 RESET (30,4¢)
graphics location on
Display

POINT Checks the specified 30 IF POINT (30,40)=1
graphics location: if THEN PRINT “ON”
point is “on”, returns
a 1;if “off”, returns
af

CLS Turns off all graphics 19 CLS

locations (clears screen)

329

Built-In

Functions Description Example
MEM Returns the number of 19 PRINT MEM
free bytes left in
memory
INT(X) Returns the greatest 19 [=INT (Y)
integer which is less than
or equal to X (-32768< x< 32768)
ABS(X) Absolute value of X 10 M=ABS (A)
RND () Returns a random 10 X=RND(()
number between () and 1
RND(N) Returns a random 10 X=RND(500)
integer between
1 and N (1S N<32768)
Math
Operators Function Example
+ Addition A+B
o Subtraction A-B
* Multiplication A*B
/ Division A/B
= Assigns value of right- A=B
hand side to variable
on left-hand side
Relational
Operators Relationship Example
< Is less than A Is greater than A>B
= Is equal to A=B
<= Is less than or equal to A<=B
>= Is greater than or equal to ~ A>=B
<> Is not equal to A<>B
Logical
Operators Function Example
* AND (A=3)*(B=7)
“Aequals 3 and
B equals 7”
+ OR (A=3)+(B=7)
“A equals 3 or
B equals 77

330

Summary of LEVEL I BASIC—continued

Variables Purpose Example

A through Z Take on number values A=3.14159

A% and B$ Take on string values A$=RADIO SHACK
(up to 16 characters)

A(X) Store the elements of A(Q)=400

a one-dimensional array
(X<MEM/4-1)

LEVEL I Shorthand Dialect

Command/Statement Abbreviation | Command/Statement Abbreviation
PRINT P. TAB (after PRINT) T.
NEW N. INT I.
RUN R. GOSUB GOS.
LIST L. RETURN RET.
END E. READ REA.
THEN T. DATA D.
GOTO G. RESTORE REST.
A

INPUT IN. ABS

RND R
MEM M.

SET S.
FOR F.

RESET R
NE

XT POINT P

STEP (after FOR) S. PRINT AT PA
STOP ST. CLOAD CL.
CONT C. CSAVE Cs.

331

Appendix Z: Cut and Paste Section for

LEVEL I Manual

"HOLD ON SALLY.. MY DADDY

WANTS To RORROW MY
SCISIoRS AND PASTE AGAIN...

333

Cut and Paste page
Change for Chapter 2, bottom of Page 11

Oh — sorry about that! It “bombed”, didn’t it? The screen
said

?5N ERROR

We deliberately “‘set you up” to demonstrate the Computer’s
ERROR troubleshooter. The Computer is smart enough to “
know when you’ve made a mistake in telling it what to do,
and so it prints a clue as to the nature of the error. In this
case, the ? tells you that it doesn’t understand what you are
saying. The SN stands for the word “syntax” (an obscure
word that refers to the pattern of words in a language).
ERROR means you have made one. Later on we’ll learn how
to make the Computer accept a “YES”” or “NO’’ and respond
accordingly.

There are dozens of possible errors we can make, and in good
time we will learn the 23 “ERROR CODES” built into Level
I1. Meanwhile, there is just one other important ERROR
situation which you should be able to recognize so you can
pry yourself out of accidental trouble. Let’s retype line 20
and deliberately make a spelling error:

2@ PRIMT "YOU CALLED, MASTER. DO YOU
HAVE A COMMAND?" (All the type should be

on one line, but we
can’t fit it on the page
in this book. We’'ll do
that quite often, so bet-
ter get used to it.)

and RUN

Again we get an ERROR message
?SN ERROR IN 28

but after READY instead of a prompt we get

29

This tells us that the error is in line 2@, and by pressing the
key, line 20 will be printed in full so we can look
for the error and correct it. (Shhh! If you know what else it
will let us do don’t say anything yet. We don’t want to con-
fuse anyone with too much too soon.)

Retype line 200 to correct the misspelling in PRIMT before
continuing on.

——————— e = 335

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

Cut and Paste page

15561

The program you entered took 15572 — 15561 = 11 bytes of
space. Here is how you can account for it:

1. Each line number and the space following it (regardless
of how small or large that line number is) occupies 4
memory cells. The “‘carriage return” at the end of the
line takes 1 more byte, even though it does not print on
the screen. Thus, memory ‘“overhead” for each line,
short or long is 5 bytes.

2. Each letter, number and space takes 1 byte. In the
above program 5 bytes for overhead + 6 bytes for the
characters = 11 bytes.

Now, typeRUN, then check the memory again withPRINT
MEM . It changed to 15554 — 7 more bytes! When RUN, a
simple variable like the A takes up 3 bytes and the numerical
value takes another 4 — totaling 7.

We will be studying memory requirements in more detail in
Learning Level II, but this gives you a brief introduction.

Chapter 11, Page 54, Add this note at the top of the right

column: =

When listing a program that has more than
16 lines and the lines you want to see scroll
off the top of the screen, you can use the
key to stop the LISTing where
you want it.

337

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

— — — — S— a—
—— C— — o— oo— —

Cut and Paste page
Chapter 11, Page 55, entire page

I —— —

How to Handle Long Program Listings

We now have two programs in the Computer. Let’s pull a
LIST to look at them. My, my — they are so long it won’t all
fit on the screen. Now what do we do?

Rather than wring our hands about the problem, type each of
the following variations of LIST, and watch the screen very
carefully as each does its thing:

LIST 5@ (Lists only line 50)

LIST — 5f (Lists all lines up thru 50)

LIST 5@— (Lists all lines from 50 to end)

LIST 3@-70 (Lists all lines from 3 thru 70)

LIST 4-85 (Note that these numbers are not even in
the program)

How’s that for something to write home about?

Questions: How would you look at the resident program up
through line 9?2 ANSWER: type LIST —9 (Talk about a give
away!)

i R —2

Chapter 11, Page 56, in the shaded area, delete **Again,”
and add this note in the right hand column: >

Try starting the program(s) at different
numbers. As you do, different (but very
predictable) results occur. Don’t worry
about the strange error messages. We’ll be
studying them in great detail in Learning
Level II, where we have a real need for

them.
______ - _—%

339

I cn— ——T) S—T W—OIIN eSS SANGHTOND IO OGO eI | 0 ool MDD SR

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

e cm—

Chapter 12, Page 62, add the following note at the top of

the right column:

Cut and Paste page

A semicolon is traditionally used fol-
lowing TAB, as shown. Some interpreters
allow a comma instead (as in in Level I).
Level II and most later BASIC interpreters
allow a blank or even nothing at all.

Experiment to see which you like best.

They are ali there, but what gives with the last value of L.
L =8 777 it’s supposed to be 9!

Well, let’s analyze the program first, then worry about that
little detail.

Line 95 began a FOR-NEXT loop with 5 passes, one for each
of the 5 digits right of the decimal.

Line 120 creates a new decimal value of M (just a temporary
storage location) by stripping off the integer part. (Plugging
in the values, M =1.4159 — 1 =X .4159)

Line 130 does the same as line 99 did, multiplying the new
decimal value times 19 so as to make the left-hand digit an
integer and vulnerable to being snatched away by the INT
function. (M = .4159 * 10 =4.159)

Line 140 moves the control back to line 95 for another pass
through the clipping program . . . and the rest is history.

Now about that little detail . . . the wrong value of the last
digit. As you have noticed in this lesson, we have repeatedly
scratched out the 8 from the number .141589 — a real
problem in Level I. We just about escaped the problem in
Level II, but not quite.

(Tape this and next
page together and fold
to fit in your Manual.)

341

THIS IS THE BACK
CUT AND PASTE
PAGE

T — — — . . —— ——— ———— gr—— p—— s o sttt mupansts s st

Rest of page 73

Cut and Paste page

Back in Chapter 8 we talked about the problem of computer
error when getting into the land of little numbers. We’ve now
plowed head-on into that problem. To understand it better,
change line 95 to read:

95 FOR A = 1 TO 18

and RUN .

Where did all those other numbers come from? (Beats me.)
Again, as we told you in Chapter 8, the last digit or 2 at the
end of a number is not to be trusted as being high-precision.

But there is a solution. Change line 95 back as it was, then
change line 30 to read:

30 X = 3.14159¢98
and RUN

Whew! Had us a little nervous there for a while . . . but then
success. By our declaring that the accuracy of X is to be a
few decimal places greater than we really need, we then are
assured that those digits we do need are reliable. There are
other ways to do this and we will learn them in Learning
Level I1.

But let’s not get diverted from the main theme of this
Chapter.

Chapter 15, Page 83, add this at bottom of page:

EXERCISE 15-2:

Remove all traces of the subroutine from the resident pro-
gram. Use the SGN function that is already built into Level
Il to accomplish the same thing we have been doing using a
subroutine. Hint: T = SGN(X)

A

343

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

— — —— —— C——— q— — — ———— G cprtmn Sranorn — e J—

Cut and Paste page

Chapter 16, Page 88, add the following note in the center
of the right hand margin. I —

In LEVEL II BASIC we can use all 26 let-
ters of the alphabet for string variables, just
like with plain old numeric variables. It
gets even better when you master this
manual and get back into the full-blown

Learning Level 11. g

EXERCISE 18-1:

Using the Shorthand you have picked up incidentally so
far and that found on the back inside cover, convert the
one on page 214 titled Loan Amortization into Level II
BASIC. We have learned everything found in that program,
so with a bit of effort and clear thinking you should be
able to do the job. The experience will come in handy
when converting other programs from various sources
written in Level I BASIC, as well as understanding the

remainder of this Level I book. s

Chapter 21, Page 127, for top of right column o

Awwk!! What is this ?BS business? Well,
since arrays take up a lot of memory space,
the TRS-80 automatically allows us to use
up to only 11 array elements without ques-
tion. (They can be numbered from @ to
10.) Then our credit runs out. We earlier
used elements numbered from 1 to 10
without any problem.

To use array elements numbered beyond
10 in the array called “A”, we have to
“reDIMension” the array space available.
Our highest number in Array “A” needs to
be 110, so we’ll add a program line:

5 DIM A(119)

and RUN again €

345

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

Chapter 22, Page 133, add this note to the
top right margin:

Cut and Paste page

Level II BASIC uses the character @ in
place of the word AT, so every reference to
AT should be changed to @. PRINT AT
and P.AT should always be replaced with
PRINT@. (EXTREME CAUTION: DO
NOT USE THE SHIFT KEY WITH @)
Make these changes as you go along in this
Chapter, and in the User Programs in Part
C as you use them.

=5

e v e . e, W e, . e ot e e S S, st ——- . s

2§ PRINT@2¢, "G RA P H HEADTING"
3§ PRINT@84,"- - = — — = = = = = - = "
4 REM * HORIZONTAL MARKERS *

50 FOR X = 1 TO 59

6@ PRINTQOZZ+X,".";

7¢ NEXT X

S g

(For top of page 137)

e e e e e e e e e s e e s e e T R e, o S T S T, S, P 1 o . e e s e et

8¢ REM * HORIZONTAL NUMBERS *
99 FOR X = @ TO 5

199 PRINT@964+19*X,X;

118 NEXT X

12¢ REM * VERTICAL MARKERS *

136 FOR Y = § TO 13

347

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

T AT e GRS TS mmmn e e e v e st s e, ot soarre. pumee stmasen oo

Cut and Paste page
Rest of program for page 137

148 PRINT@Y*64+68,"-"

158 NEXT Y

168 REM * VERTICAL NUMBERS *
170 FOR Y = § TO 13

180 PRINTQ@Y*64+64,13-Y;

198 NEXT Y

999 GOTO 999

_____________________ e —%

Chapter 22, Page 138, replace the Let There Be Ligh

program with: o

19 X=75 : Y=248

2@ INPUT "DO YOU WISH TO LIGHT THE BLOCK
(1 = YES g = NO)";Q

3¢ CLS

4 IF Q = § GOTO 8§
50 SET(X,Y)

68 GOTO 13

84 RESET (X, Y0

199 IF POINT(X,Y)

-1 PRINT@20M,X;Y,
"IS LIT"

2¢¢ IF POINT(X,Y) ¢ PRINT@280,X;Y,

"IS DARK"

999 GOTO 999 E?

349

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

— — p— — —— e
—— — —— S—— | t—— a—— —— o—— —— ——

, Cut and Paste page
Chapter 24, Page 149, add to right column
i a €

First the BAD news.

The + and * as used in the rest of the pro-
grams works fine in Level I BASIC, how-
ever the logic doesn’t always act logical
when the going gets rough.

But, the GOOD news is that Level 1I
BASIC let’s us use the actual words AND
and OR instead of the Mathematical sym-
bols, and they work just fine!

Here then is our opportunity to get some
drill in converting + and * to OR and AND.
Wherever there is ‘“‘mixed logic”, using both
* and + in the same program line, (as in
the Teachers Pet, next) switch over to the
words AND and OR. * and + can be used as
shown in the easier ones which follow. You
should be able to switch back and forth be-
tween the words and symbols interchange-

ably. g

Chapter 24, Page 153, add the following at the top
of the right column: =

An additional benefit of the changes in
Level II handling of AND and OR is that
the parenthesis found at Level I can be
omitted (at least in straightforward uses).
Go back and enter a program or two
omitting the parenthesis and using the
logical words, just to get a feel for how it
looks.

2 S -

351

-
\
| THIS IS THE BACK
l
i
l
|
N

. c— — o So————— ——0 w———) OO it O O st SO—r—rtt D oot Wt tO

OF A
CUT AND PASTE
PAGE

St a———— | d———— oo pts it oo, o st s, fupee. o, G S
—— .

— e £ K T cma—

Cut and Paste page

For Page 223, replace program with this one

REM
REM
CLS : INPUT"WHAT DAY OF THE MONTH IS IT";D
INPUT"WHAT IS TODAYS TEMPERATURE";T
INPUT"WHAT IS TODAYS HUMIDITY";H
PRINT:PRINT

IF D = 1 GOTO 434 !

————————— =

* TEMPERATURE AND HUMIDITY RECORDING PROGRAM *
* DATA STORAGE MUST START ON THE 1ST DAY OF MONTH *

ON FIRST DAY IS NO PRIOR DATA

219
3908
310
320
330
349
350
400
419
4209
439
449
459
460
479
480
490
500
520
530

REM * INPUTTING DATA STORED ON CASSETTE TAPE *

PRINT"WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM"
PRINT"THE DATA TAPE. BE SURE IT'S REWOUND AND THE RECORDER"
PRINT"IS SET TO 'PLAY'." : PRINT : PRINT

INPUT"PRESS 'ENTER' WHEN EVERYTHING IS READY TO GO.";AS$
CLS:PRINT"DATA IS NOW FLOWING INTO THE COMPUTER FROM TAPE,"
PRINT : PRINT : PRINT"DATE","TEMP","HUMIDITY" : PRINT

1 TO D-1

'Y, 2 ' BRINGS IT IN FROM TAPE

' Z ' PRINTS IT ON THE SCREEN

C = C+2Z ! KEEPS RUNNING TOTALS

14

o K

NEXT X

REM * MONTHS AVERAGES TO-DATE *
B = (B+T)/D : C = (C+H)/D '
PRINT D,T,H

PRINT : PRINT " ** THIS MONTHS AVERAGES
PRINTTAB(7) ; "TEMP"; TAB(17) ; "HUMIDITY"
PRINTTAB(7) ;B; TAB(19) ;C

REM * STORING TODAYS TEMP & HUMIDITY ON TAPE *
PRINT:PRINT: INPUT"PRESS 'ENTER' WHEN READY TO CONTINUE";A$
CLS : PRINT : PRINT

PRINT"TODAYS TEMPERATURE AND HUMIDITY WILL NOW BE PRINTED"
PRINT"ON THE DATA TAPE. BE SURE 'RECORD' & 'PLAY' ARE"
PRINT"PRESSED, DO NOT REWIND THE TAPE, YET." : PRINT
INPUT"WHEN ALL IS READY, PRESS 'ENTER'";A$: CLS
PRINT"TODAYS DATA IS NOW FLOWING FROM THE COMPUTER TO THE"
PRINT"TAPE. WE WILL INPUT THIS PLUS THE EARLIER DATA "
PRINT"TOMORROW." : PRINT

PRINT #-1,T,H ' PRINTS TODAY ON TAPE
PRINT"TODAYS NUMBERS HAVE BEEN ADDED TO THE TAPE."
PRINT"REWIND THE TAPE IN PREPARATION FOR TOMORROW."

COMPUTES THE AVERAGES

*%N

353

THIS IS THE BACK
OF A
CUT AND PASTE
PAGE

- i at—— . ——— v oo g s, Wit amnarn st

— — N — CO— a——

Cut and Paste page

Put this one in the front of your Level I Manual . . .
you deserve it. .

TEAR OFF AND PASTE IN FRONT oF YOUR. BoOK....

T ————— ~
| TRS-80 USER'S MANUAL |
l WRITTEN BY DANID LIEN l
| RE-WRITTEN BY l
. |
I (YOUR NANE) I
S J

365

Other CompuSoft Books Include:

The BASIC Handbook, An Encyclopedia of The BASIC
Language THE definitive BASIC language reference book.
Explains in detail over 250 BASIC words with examples of
how to use them and what you can do if your computer
doesn’t have them.

Controlling The World With Your TRS-80

A “do-it-yourself” hardware book for users interested in
hardware primarily as the means to an end ... not the end
itself. This exciting book shows how to hook your TRS-80 to
the outside world without opening the box. Assuming a
minimum of electronics background, it takes the reader
through a progressive series of simple but important hardware
experiments, plus teaching related computer theory and how
to write control software — in BASIC. (1980)

Learning Disk BASIC and TRSDOS

Teaches advanced BASIC plus the TRS-80 Disk Operating
System in a way that it all makes sense. Helps you become as
powerful as your computer. An absolute “must” for every-
one with a disk system. (1980)

Learning PASCAL

Teaches the PASCAL computer language as used on the
Apple, TRS-80 and other microcomputers. Starts at the
beginning, but assumes a working knowledge of another
computer language such as BASIC, and some hands-on expe-
rience with a computer. (1980)

Learning FORTRAN

Teaches the FORTRAN computer language as implemented
by Microsoft on the TRS-80 and other microcomputers.
Starts at the beginning, but assumes a working knowledge of
another computer language such as BASIC, and some hands-
on experience with computers. (1980)

357

Index for Parts II and I of Learning Level 11

Subject Page No.
ABS(N) 213
Arrays 60, 227-
Arrow, down 63
Arrow, left 63
Arrow, right, with Shift 63
Arrow, up 63
ASCII 119-, 326,
ASC($) 126
AUTO 103-
Cassette, dual 285-
CDBL 184
Characters per line 67
Check printing 192
CHR$(N) 122
CINT 184
CLEAR 137
CLOAD? 70, 287
Concatenation 141
Converting programs

(L. I'to L. II) 109-
COS 219-
CSAVE 287-
CSNG 184
DEFDBL 180
DEFINT 183
DEFSNG 181
DEFSTR 136
DIM 140, 227-
Editing 73-, 81-
ERL 99
ERR 99
Errors 95-, 298-,

Expansion Interface 261-

Subject Page No.
EXP(N) 216
FIX(N) 210
Graphing 223
Hex-to-Decimal

Chart 255, 276
IF-THEN-ELSE 67
Image 189-, 205-
INKEY$ 171-
INP 256
INPUT?? 65
Instring 162
INT(N) 209
LEFT$ 157-
LEN 135
LEVEL I BASIC,

Summary 328
LLIST 266
LPRINT 266
LOG(N) 213
Matrix 233-
Memory map 242
MID $ 157-
NEXT, optional 66
NOT 63
Null 172

ON ERROR GOTO 97
Order of Operations 64

ouT 258
Password 174, 175
PEEK 241, 268-
POKE 241, 268, 271
POS(N) 69
Precision, double 179-

Subject Page No.
Precision, integer 183
Precision, single 179.
PRINT USING 189, 201-
Quotes 65
Real Time Clock 271-
Reserved words
LEVEL II 327
RIGHTS 157-
Search 145
SGN(N) 212
Semicolon 65
Shorthand 60, 328
SIN 219-
Sorting 145-
SQR(N) 210
STRING 129-, 135-, 146-,
153-, 157-, 171-, 195, 204
233
STRINGS$ 167, 267
String Variables 60, 129-
STR$ 155
SYSTEM 110, 251, 272
Tab 62
T ABbing 68
TAN 219-
THEN, optional 68
Trapping Errors 97
TROFF 89
TRON 89
USR 253, 280,
VAL 154
Variable names 57, 153-
VARPTR 259

359

For Additional Copies
of

Learning Level I1

Contact your local Computer, Electronics or Book Store
or

Send $15.95 each + $1.45. Postage & Handling to

COMPUSOFT PUBLISHING
P. O. Box 19669-P
San Diego, CA 92119

(California addresses add 6% sales tax)

Foreign orders must be prepaid in
U.S. funds. For airmail delivery include
additional $6.00 per book.

Educational Discounts available for quantity purchases.
Write for details.

ISBN #0-932760-01-5

360

$15.95

‘This Is The Fastest and Easiest Way To Learn Level ll!

l.earning Level N picks right up
where the Level | TRS-80 User’s Manual
left off. Written by the same author, it
teaches you Level Il BASIC (plus the
many command features) in the same v s,
easy-to-learn style that made the Level = e
| Manual famous. This book was written = |
specifically for your Level Il TRS-80.

FE i tail oyt
iyttt

CompuSoft Publishing

specializes in books that help you

LEARN technical subjects. They are A e B .
designed to help the individual learn by Dr. Lien is Dean of Mathematics and Physical

himself, tho many are used in class-: Sciences at Grossmont College in California.

rooms as well. The reader is led very
carefully from one level of understand-
ing to another, with very little taken for
granted.

e & - W
s i
o ;g.:? ."". .‘ﬂ:. # .
i

=

Each book is carefully planned and
written by Dr. David Lien, prominent
Educator and Master Teacher with
many years’ experience in private
technical schools, public Colleges and
Universities. Author of books in a
variety of technical areas, his most
widely known work to-date is the
TRS-80 Level | Users manual, with
hundreds of thousands of copies in
print. He brings the full weight of his
teaching genius and technical back-
ground to bear in the CompuSoft

- “Learning Series.”

COMPUSOFT™ PUBLISHING
A Division of CompuSoft™, Inc.
P.O. Box 19669 ® San Diego, California 92119 U.S.A.

| - Quality Technical Books — Written So You Can Understand Them
ISBN#0-932760-01-5 | Printed in U.S.A.

