INVITATION : TO

PASCAL

FOR 1 HE

TRS-80

INVITATION TO
PASCAL
FOR THE
TRS-80

INVITATION TO

PASCAL

FOR THE

TRS-80

Lawrence L. McNitt

Copyright © 1985 by Petrocelli Books, Inc.
All rights reserved.

Designed by Diane L. Backes
Typesetting by Backes Graphics

Printed in the U.S.A.
First Printing

Library of Congress Cataloging in Publication Data

McNitt, Lawrence L.
Invitation to Pascal for the TRS-80.

includes Index.

1. TRS-80 computers—Programming. 2. PASCAL
(Computer program language) 1. Title.
QA76.8.T18M374 1984 001.64'2 84-25600
ISBN 0-89433-253-8

Contents

PREFACE
PART I-INTRODUCTION TO PASCAL

1. INTRODUCTION
1.1 Philosophy
1.2 Structured Programming
1.3 Modular QOrganization
1.4 Strong Typing
1.5 Programming Process

2. PRIMITIVE PROGRAMS
2.1 Printing Messages
2.2 Parts of a Pascal Program
2.3 Variables
2.4 Arithmetic

3. PROGRAM ORGANIZATION
3.1 Variable Declarations
3.2 Type Declarations
3.3 BEGIN, END blocks
3.4 Statements and Semicolons
3.5 Programming Style Conventions

4. REPETITION, LOOPING
41 FOR...DO
4.2 WHILE
4.3 REPEAT...UNTIL

5. CONDITIONAL EXECUTION
5.1 IF... THEN
5.2 IF...THEN... ELSE
5.3 CASE...OF
5.4 Boolean Expressions

6. PROCEDURES AND FUNCTIONS
6.1 Subprograms with Global Variables
6.2 Subprograms with Local Variables
6.3 Types of Variable References
6.4 Functions

iv

O Hw -

[e¢]

11
12

15
15
22
28
33

39
39
41
45
49
53

57
57
63
69

73
73
80
87
91

97
97
104
109
114

10.

".

12.

13.

14.

ARRAYS

7.1 Numeric Vectors

7.2 Numeric Matrices

7.3 Nonnumeric Vectors and Matrices

. ADVANCED FEATURES

8.1 Records and Pointers
8.2 Files
8.3 Recursion

PART HI-APPLICATIONS

. ELEMENTARY MATHEMATICS

9.1 Tabulating Functions
9.2 Plotting Functions
9.3 Solving Equations

9.4 Searching for Maximum and Minimum

MATRIX APPLICATIONS
10.1 Business Applications
10.2 Markov Chains

10.3 Simultaneous Equations
10.4 Linear Programming

CALCULUS

11.1 Sequences

11.2 Series

11.3 Estimating the Slope
11.4 Area under a Curve

SIMULATION

12.1 Random Numbers

12.2 Random Walk

12.3 Monte Carlo Simulation
12.4 Monte Carlo Optimization

DATA ANALYSIS

13.1 Summary Measures
13.2 Tabulating Frequencies
13.3 Sorting

13.4 Curve Fitting

LISTS

14.1 Dense Ordered List
14.2 Loose Random List
14.3 Linked List

INDEX

119
119
124
129

133
133
139
147

151

163
163
160
166
178

189
189
203
210
216

229
229
236
242
250

257
257
267
274
276

283
283
293
302
307

321
321
333
343

357

Preface

Pascal is the language of choice for introductory programming courses. Computer
science teachers choose Pascal to establish good programming habits. Most pro-
grammers retain the programming style they developed with their first program-
ming language. BASIC and FORTRAN are primitive languages compared to
Pascal. Those who initially learn to program in the more primitive languages are
less likely later to use the more flexible control structures available in COBOL,
PL/I, and Pascal.

Pascal allows more data types and user-defined data structures than the
more primitive languages, but it is not as forgiving as BASIC. Its strong-typing
feature requires that all data be fully defined and properly used. Data values
should be checked for proper type at run time. When errors are found, the run
is aborted. Pascal is primarily a teaching tool and secondarily a production lan-
guage. Its reason for existence is to introduce programming concepts and develop
skill in their use.

Pascal is available as an option for many microcomputers and will become
popular for advanced high school courses and for college-level computer science
courses. BASIC is the primary language for microcomputers and is the first lan-
guage taught to high school students.

Pascal will gain in popularity as a scientific programming language as the
number of computer science graduates mounts, FORTRAN has been the primary
language for scientific computing and will remain strong because of the wealth
of available software.

Pascal is less likely to make inroads into the COBOL application area since
many Pascal implementations are weak in the area of disk file manipulation.
COBOL is the predominant language for business file processing. The newer Pascal-
like languages ADA and MODULA should continue the assault on FORTRAN
and COBOL.

This book introduces the Pascal language with the Alcor Pascal system sold
by Radio Shack for its TRS-80 computers. This Pascal implementation has a good
reputation for completeness and efficiency of execution. This book serves as a
study guide with numerous example programs. The material is presented in a
logical order designed to aid the learning process. “Invitation to Pascal for the
TRS-80" complements the “TRS-80 Pascal”’ manual, an indispensible reference
tool that comes with the software package.

vii

viii/INVITATION TO PASCAL

Part | contains an introduction to Pascal covering its major features, its
philosophy, and how to use it on the TRS-80. Part |1 includes several applications
chapters illustrating the use of Pascal for practical problem situations.

Introduction to Pa

1 Introduction

OV E Rva E Pascal is the language of choice for introductory

programming courses in many computer science
departments. Writing style is as important in computer programming as it is in
writing short stories or books. Computer science teachers choose Pascal because
it establishes good programming habits. Most programmers retain the program-
ming style they develop with their first programming language.

Those who initially learn to program in the more primitive languages of
BASIC or FORTRAN are less likely to use the more flexible control structures
available in Pascal, PL/I, or COBOL. In fact, those who learn Pascal as their first
language are more likely to write better, more readable BASIC or FORTRAN
programs than those who first learned to program with one of the more primi-
tive languages.

Does this mean that the person who learns programming with BASIC or
FORTRAN is destined to mediocrity? Not at all. Anyone who resists the inate
aversion to change can study Pascal with the goal of improving his programming
style. This may involve thinking new. thoughts and dreaming new dreams. The
good programmer continues to grow. He or she reads programs written by others,
tries new languages, compares alternative approaches, and polishes his or her
programming style.

Niklaus Wirth developed Pascal in the late 1960s and published the report
in 1971. The name Pascal was chosen in honor of the French mathematician Blaise
Pascal who lived in the 17th century. Most programming languages are acronyms
and are capitalized, e.g., FORTRAN, COBOL, BASIC, APL. The programming
language Pascal is an exception. Since it is not an acronym, the name Pascal is
not capitalized.

“Invitation to Pascal for the TRS-80" introduces the Pascal language with
the Alcor Pascal system sold by Radio Shack for its TRS-80 computers. This im-
plementation has a good reputation for completeness and efficiency of execution.
This book serves as a study guide and contains numerous example programs. it is
designed to complement the language reference manual by presenting the material
in a logical order to aid the learning process.

4/INVITATION TO PASCAL

O

1.1 PHiLOSOPHY

Niklaus Wirth developed Pascal because of his disenchantment with teaching in-
troductory computer programming courses using the languages that existed in
the 1960s. Computer scientists were just beginning to define the principles of
their discipline. It was becoming a science known as software engineering.

LANGUAGES AVAILABLE FOR INSTRUCTION

Until the 1970s most introductory computer programming courses used FOR-
TRAN, the predominant scientific programming language. The commands con-
trolling program flow were primitive, resulting in unnecessary dependence on the
GO TO construct.

ALGOL had much better tools for the flow of control but computer science
instructors had to contend with balky compilers. These were difficult to use and
inefficient in a college environment in which large numbers of students were using
limited computer resources.

John Kemeny and Thomas Kurtz at Dartmouth College developed BASIC
(Beginners All-purpose Symbolic Instruction Code). This language has had a
tremendous impact on computing. Compared to other computer programming
languages, BASIC is simple to learn and easy to use. Like FORTRAN, the flow
of control commands are too primitive to satisfy the needs of computer science
instruction.

PURPOSE OF PASCAL

Niklaus Wirth had two goals in developing Pascal. First, he wanted a language
that would be suitable for teaching computer programming as a systematic disci-
pline. By the late 1960s the science of computer programming was emerging and
computer scientists were polishing its fundamental concepts and methods.

Second, Wirth wanted to develop an implementation of the language that
would be reliable and make efficient use of computer resources in an academic
environment. In a college environment the introductory computer programming
courses place an immense load on the compiler as students debug their programs,
The time spent executing the program is almost inconsequential. Compilation
time is the bottleneck.

The needs of government and industry differ from those of academia. Com-
puter programs in the professional world must have efficient run-time character-
istics. When the program has been debugged, the compiled object code is placed
in a library. It is run many times without having to be recompiled. In an academic
environment, the student debugs a program, submits it to the teacher, and begins
a new program.

Introduction /5

Pascal is a teaching tool, and is designed for fast compilation. Although some
implementations of Pascal do provide fast execution speed, this was not the
primary purpose. Some implementations of Pascal are weak in manipulating
external files, therefore, not all Pascal implementations work well in a produc-
tion environment.

ONE-PASS COMPILATION

A compiler is a computer program that takes a source program as input and pro-
duces an object program as output. A Pascal compiler translates a Pascal source
program into an appropriate object program.

Compilers for most computer programming languages require at least two
passes through the source program text. The first pass creates a symbol table and
object program skeleton. The second pass fills in the object program skeleton
with memory addresses from the symbol table.

A properly implemented Pascal compiler requires only one pass through the
source program. This means that the symbol table entries must be completed
before generating the object code requiring those entries. All variables and loca-
tion names must be defined before they are used by the program procedure.
Subroutines are defined before they are used. A one-pass Pascal compiler can
provide very fast compilations.

Although Pascal appears to be a comprehensive language when compared to
BASIC, it does not have all the “'bells and whistles” of PL/l, ADA, and other
comprehensive production languages. Compared to the more comprehensive lan-
guages, Pascal compilers can be both lean{small} and fast (compilation speed).
The result is a system that makes efficient use of computer resources in an aca-
demic environment.

1.2 STRUCTURED PROGRAMMING

Structured programming requires self-discipline. It controls the way in which the
programmer writes the program. It restricts the programmer’s choices of com-
mands specifying the flow of control within the program for most programming
languages. The GO TO statement is just too primitive to use as a standard flow
of control statement.

Pascal is designed to make structured programming as natural as possible. It
employs those structured control statements proven successful. It makes the use
of the GO TO statement inconvenient enough to hinder its unbridled use. The
other control statements available make the GO TO statement almost unnecessary.

HARDWARE/SOFTWARE COSTS

The relative cost of hardware and software has changed dramatically during the
last 30 years. Only large institutions could afford computers in the 1950s. Now

6/INVITATION TO PASCAL

computers have not only invaded the business world but the home. The drastic
increase in computer use results from lower hardware costs.

Programmer productivity has not kept pace with falling hardware prices.
Software development costs have risen with programmers’ salaries. The two broad
categories of computer programming are systems programming and applications
programming. The systems programmer writes the compilers and supervisor rou-
tines needed for the daily operation of the computer. The applications program-
mer writes the computer programs, such as payroll, developed specifically for
the operational needs of the organization.

Programmer productivity has remained at an average 10-15 debugged,
documented statements per day for applications programmers regardless of lan-
guage. Only 10 percent of the programmer’s time is spent coding the program in
the selected language. Ninety percent is spent on other steps of the programming
process. Because of the complexities of their task, systems programmers average
only 2-3 debugged statements per day. These productivity figures have remained
remarkably constant for the last 20 years.

During the early years of computing, hardware costs were paramount.
Energy was devoted to make effective use of the computer. People, including
programmers, took a back seat. The marked drop in hardware cost—combined
with increasing salary costs—resulted in ashift in emphasis. Efficient use of people
is now the byword. Part of this shift in emphasis is the move to improve pro-
grammer productivity. Structured programming is one of the tools to increase
that productivity.

SOFTWARE PROBLEMS

Software engineering identifies three main problem areas in the software develop-
ment process:

1. programmer productivity
2. software reliability

3. software maintenance.

Programmer productivity (lines of debugged statements per day) remains
constant, therefore, salary increases cause software development cost increases.
Software engineers seek to provide the programmer with better tools to lower
software costs.

These tools include more powerful languages for which each language state-
ment provides more functional capability. The higher-level languages of FOR-
TRAN and COBOL replaced lower-level assembly languages for applications pro-
gramming. Even higher-level database retrieval and manipulation languages fur-
ther increase the power of each debugged statement, thus increasing effective
programmer productivity.

Introduction /7

Other tools from software engineering address the problem of improving
programmer productivity with existing languages. Structured programming is
one of these tools. By following a carefully disciplined approach, the programmer
can increase the number of debugged statements per day.

Structured programming also addresses the problem areas of reliability and
software maintenence. The careful, disciplined approach results in programs hav-
ing fewer errors. This not only reduces the time spent debugging the program
before its release, it also increases the reliability of the final program. A program
is unreliable if it produces inaccurate results. It is also unreliable if it crashes
{fails during run time) because of internal logical errors.

If all programmers follow the same, disciplined approach, their program-
ming styles will be similar. The result is a library of programs that will be easy to
maintain, Failure to enforce standardization results in programs of widely differ-
ing styles which are time-consuming and difficult to maintain.

FLOW OF CONTROL CONSTRUCTS

Corrado Bohm and Guiseppe Jacopini, in a highly theoretical paper, proved that
a few simple control structures can be used to express any programming logic,
regardless of how complex it is, The program has one entry point, one exit point,
no infinite loops, and no unreachable program segments, The three types of con-
trol structures consist of sequence (natural order from top to bottom), alternation
(If-then-else), and repetition (looping). Primitive GO TO statements are not
essential for those languages that allow flexible nested | F (alternation) statements.

ALGOL, PL/1, and COBOL permitted flexible | F statements and program-
mers discovered, independently of Bohm and Jacopini, that large, complex
programs could be written without use of the GO TO statement. The resulting
programs were often clearer and easier to understand than the corresponding
programs using traditional methods requiring the GO TO statement.

THE “GO TO” CONTROVERSY

Edsgar Dijkstra, in a letter to the editor of the Communications of ACM entitled
"GO TO Statement Considered Harmful,”” March, 1968, advocated the position
that the GO TO statement was both unnecessary and potentially harmful, His
observation was that the quality of a programmer is in decreasing function of the
density of GO TO statements that he used in the programs. Dijkstra suggested
abolishing the GO TO statement from all higher-level languages as it is too primi-
tive and is an invitation to make a mess of the program.

To GO TO or not to GO TO became one of the chief coffee-break topics
among programmers. Some advocates of GO-TO-less programming became self-
righteous zealots. The GO TQ advocates became scoffers of the whole idea. For-

8/INVITATION TO PASCAL

tunately, many programmers took a saner middle ground, observed, compared
programs, experimented with the new approach, and began adopting those fea-
tures permitted in their language.

The Pascal language was spawned from these early structured programming
considerations, but COBOL and FORTRAN also profited. Now structured pro-
gramming constructs are appearing in these traditional languages. 1t is becoming
easier to write clear, readable programs. Dijkstra said some things that needed to
be said to attract the attention of the programming community. The program-
ming world is a better place for his efforts.

1.3 MODULAR ORGANIZATION

Concurrent with the structured control constructs came the concept of dividing
a program into modules. It is easier for the finite human mind to develop a pro-
gram one piece at a time. This process is known as iterative refinement, top
down design, or divide and conquer.

SUBROUTINE LiBRARIES

The beginnings of modular programming predate the GO TO controversy by 10
years. Early compilers such as FORTRAN included the subroutine concept in
which frequently used routines were separately compiled and placed in a library.
If subroutines in the library of general interest are documented and placed in a
library accessible to the programming community, they become a powerful tool
to increase the productivity of programmers.

The use of subroutines requires an extra step between the source program
and the final object program. The source programs are compiled into object
programs that are not yet ready for execution. The main program and its sub-
routines must be linked together so that they can communicate properly. The
resulting linked object program must then be loaded into the computer and its
execution supervised by the system software developed for that task. All of this
system overhead typical of the COBOL and FORTRAN environment has resulted
in language implementations almost totally inappropriate for the academic
community with its heavy demand for compile-debug activities.

BOTTOM-UP OR TOP-DOWN

A programmer does not have to reinvent the wheel if a subroutine to perform
the desired task is already in the library. Many FORTRAN programs consist of
calls to the library subroutines embedded in a framework of control statements.
The subroutines form a language of a higher level than the primitive statements
themselves. Programmer productivity is improved by a factor of 10 to 100. The
result is a method of programming now called the bottom-up approach to modu-
lar programming.

Introduction /9

In this approach, programmers develop the set of language tools in the form
of subroutines. They then design their application programsaround the tools. This
method has been very successful in scientific computing for which the programs
remain relatively stable over time, However, the bottom-up approach has not
proven as successful in systems programming and in the business environment.
These programs are constantly being modified to include enhanced abilities or
changing governmental regulations.

in a business or systems programming project more emphasis is placed on
local efficiency rather than on general-purpose reusability. The method of
approach recommended by software engineering has become that of top-down
design, or iterative refinement. Define the overall tasks first. Subdivide the over-
all task into a few subtasks. Tackle each subtask in turn, dividing it into subsub-
tasks, etc.

HIERARCHICAL ORGANIZATION

When implemented in a programming language, the overall task becomes the
main routine which calls subroutines defining the subtasks. With large programs
the subroutines forming the subtasks call subroutines on a still lower level defin-
ing the subsubtasks. The result is an hierarchical tree of subroutines with the
main routine as its root.

Regardless of which approach is used, bottom-up or top-down, the resuit is
a similar tree of subroutines rooted in the main calling program. With the bottom-
up approach the programmer adapts the program to fit the subroutines available
in the library. In the top-down approach he creates the necessary subroutines
level by leve!l until finished with the lowest level. The top-down approach does
not rule out the use of predefined subroutines, but they are used on the lowest
level only.

In practice, programmers use a combination of top-down and bottom-up
approaches. However, practice is now moving to top-down, iterative refinement
development.

ADVANTAGES OF MODULARIZATION

The complexity of a program, or program module, is not proportional to its size.
Complexity may be proportional to the square of the size. A program containing
400 statements may take from four to eight times as long to understand as a
similar program containing 200 statements. The larger program has more variables
to monitor and more alternative paths to consider in its flow of control. The
program quickly becomes more than the human mind can cope with.
Modularizing a program into an hierarchical tree of subroutines brings order
out of chaos. The programmer focuses on one module at a time. Communication
between calling program and subroutine is through data in the form of a parame-

10/INVITATION TO PASCAL

ter list. The large, incomprehensible program has been subdivided into manage-
able chunks, each of which can be analyzed separately.

Assuming the square law is appropriate, a 400-line program will be 100
times as complex as a 40-line program. What is the result of dividing the 400-line
program into 10 modules of 40 lines each? Does this mean that the modularized
program is 10 times as easy to understand as the single 400-line program? Not
exactly. The programmer must still remember the communication among the
modules through their argument lists.

Modularization helps the maintenance programmer locate the areas of the
program that need changing. It also assists in understanding the necessary inner
workings of the program by isolating the module of interest from the rest of the
program.

TEAMWORK

Many large programming projects include teams of programmers working together.
Having a team of several programmers working on one large monolithic, disor-
ganized program is more than difficult. Subdividing the program into modules
results in easier assignment of programming tasks. The programmers work on
the modules in parallel. The communication between programmers coincides
exactly with the communication that takes place among the modules. The
programmers are vitally concerned with the parameters used to communicate
with the other modules. However, they are not concerned with the inner work-
ings of the other modules.

INPUT-PROCESS-OUTPUT

Each module of a program accepts one or more inputs, processes them, and pro-
duces one or more outputs. The inner workings of the module can be kept hidden.
The module is a black box which performs its task converting inputs to outputs
as specified. Only when the module is suspected of behaving improperly, or if
changes are necessary, does the box need to be opened.

MODULE AS MATHEMATICAL FUNCTION

Two programmers faced with the task of modularizing the same program may
define different sets of modules. They will modularize the program in different
ways. Computer scientists suggest using the mathematical concept of a function
as a guide when modularizing a program. The function

w=Ff(x,v,z)

states that the result w is a function of the variables x, y, and z. There are three
inputs to this function, but only one output. This is the key.

Introduction/11

Each module should have only one output; that is, it should perform only
one task. If necessary, divide complex modules performing more than one task
into two or more modules, each performing one task.

On the highest levels of the subroutine tree, a module may have one or
more files as input and create one file as output. At intermediate levels the mod-
ule may have one or more vectors as input and produce one vector as output. At
the lowest module levels each module may have one or more values as input and
generate one value as output.

1.4 STRONG TYPING

Pascal requires that each variable be explicitly defined and properly used. Some
programmers view this as a blessing; others view it as a curse. Computer science
instructors love it because it forces beginning programming students to be con-
sistent in the definition and use of variables. A variable associates a name with a
value. The value is assigned to the named variable by placing it in memory at the
location reserved for that variable by the compiler.

STRONG TYPING AS A BLESSING

One facet of human nature is the ability to redefine our view of the world. The
programmer begins writing the program with one view and the data required by
that view. After discussing the program with the customer (who will later be using
the program), the programmer revises his view of the data. Forgetting about the
impact on the portions of the program already written, the programmer begins
to use the new view.

The result is a program that does not fit together well. If the programmer
is lucky, the inconsistency will come to light during testing and be corrected. The
unlucky outcome occurs when the program goes into production giving results
that look plausible but that are still wrong. Or, the results are usually correct,
but under rare conditions the inconsistency causes incorrect results.

Strong typing enforces consistency in data definition and use. Most Pascal
programs do type checking at run time; many other programming languages do
not. Run-time type checking is expensive because the programs run more slowly.
However, they are more likely to give notice of erroneous results. Execution
speed is not of primary importance to introductory computer science students,
therefore, those learning Pascal should use the type-checking feature.

Some Pascal systems are designed to produce programs that perform well
in a production environment. Run-time type checking is an option for these sys-
tems. The careful programmer will use type checking unless there is an over-
powering reason not to use it.

12/INVITATION TO PASCAL

STRONG TYPING AS A CURSE

Most systems programmers don't like strong typing. They often need to work on
a level only slightly removed from the inner workings of their computer. They are
working with internal codes that are not meaningfully defined in Pascal. Pascal
is not necessarily efficient at handling these codes. The systems programmer turns
off the type checking to do what needs to be done without being razzed by the
compiler or the executing program.

Many Pascal systems produce programs that are not very “‘user friendly."”
If the user types a letter of the alphabet when the program expected a numeric
digit, the program aborts (stops running) and the user has to begin again. To cir-
cumvent this problem programmers may turn off the run-time type checking fea-
ture and put in their own type checking routines that handle the user more gently.

1.5 PROGRAMMING PROCESS
The programming process consists of several steps:

1. define the problem
. develop the algorithm

. code the program

. document the program

2

3

4, debug and test the program

5

6. place program in production
7

. maintain program.

Beginning programmers tend to focus on step 3. As programs get larger
and more complex, an inordinate amount of time is spent with step 4. To prevent
wasting time on step 4 they must turn additional attention to step 2. Developing
the algorithm consists of designing the step-by-step approach with its data organi-
zation.

Most programmers write programs for other people. To prevent building
the “‘wrong’’ program, the programmer must spend more time with the user
defining the problem (step 1) and preparing documentation (step 5). Program
maintenance includes correcting bugs that escaped step 4. Maintenance also
includes adding new features to the program. During the eight to twelve-year life
of a typical program, many programmers find they will have devoted more time
to ongoing maintenance than to the initial programming effort indicated by
steps 1 through 6.

WHAT CONSTITUTES A GOOD PROGRAM?

Software engineering is the science of software development. Software consists
of the computer programs that make the computer work. A computer program

Intraduction/13

is a set of instructions for the computer to execute one at a time. The Pascal
compiler is a software product (program) that translates Pascal source programs
into object programs usable by the computer system.

Why is one program better than another one? What is a good program? Is
there such a thing as a bad program? Is it possible to label programs good, better,
and best? |s it possible to label programmers? Is a programmer who writes good
programs a ‘‘good’’ programmer?

The following is a list of desirable qualities that a computer program may
have:

work correctly

clear, readable, easy to understand

fast execution speed

compact (fit in small amount of memory)

easy for beginners to learn

efficient for regular use by experienced operators

quickly programmed

® N o ok w2

portable {easy to convert to another computer model).

This list is not exhaustive. What type of computer program is appropriate
for the task at hand? Some of these qualities are mutually conflicting. Optimizing
the program execution speed may increase its memory requirements and limit its
portability. Finishing the program as quickly as possible does not leave much
time for optimizing any of the other qualities. A program that is easy for a
beginner to learn is often very annoying to the experienced operator.

Almost everyone agrees that the program must work correctly. That is
why it is number 1 on the list. Software engineering has elevated quality 2 to the
same level, every program should be clear, readable, and easy to understand. The
programmer chooses the other qualities on the basis of the problem situation.
The program should be appropriate to its task and to the people who will be
using it.

EGO-LESS PROGRAMMING

Gerald Weinberg popularized the concept of ego-less programming. After invest-
ing many hours in their work programmers perceive their programs as extensions
of themselves. They conceive the inner workings of the program in their minds,
design and build them using creative talents similar to those of a sculptor. They
nurse the program through the testing and debugging stage like a mother takes
care of her child. Is it any wonder that the programmer’s ego is so tied up with
his or her program?

14/INVITATION TO PASCAL

What happens to a programmer’s ego if a bug is found after the program is
placed in production? His ego is deflated. What if the user doesn‘t like the pro-
gram? Another blow to his ego. Other programmers may comment about his
dumb program. He may lash outin anger. The programming manager recommends
changes in his programming style. He starts looking for a position with a company
that is more appreciative.

Gerald Weinberg suggests divorcing the ego from the program. The pro-
gram is an object designed to perform a task. The programmer should accept
advice and criticism without suffering a bruised ego. Programmers should be
encouraged to review each other’s work at regular intervals. They should study
others” methods and programming styles with the goal of improving them to the
benefit of all.

Most programmers must make a conscious effort to remove the ego factor
from their programming. They must work at taking an objective view of the pro-
grams they write. Above all, they must be willing to adapt, to try new approaches.

BUILDING ON THE EXPERIENCES OF OTHERS

The serious programmer soon learns to build on the experiences of others. The
following few books are rich in personal experiences, immensely informative,
and delightful to read.

""The Psychology of Computer Programming” by Gerald Weinberg does
more than any other book to present the programming life as it is rather than as
it ought to be. This book is worth five years of on-the-job experience to a budding
programmer. To be forewarned is to be forearmed for those who must relive these
traumatic incidents.

“The Mythical Man Month'’ by Frederick P. Brooks provides a rare oppor-
tunity to sit with a man who writes about what happened, including mistakes,
without trying to cover up. This Biblical honesty is a far cry from the rulers of
ancient Egypt who tried to erase any record of their failures, leaving only glow-
ing accounts of their successful military campaigns. This book is for those who
unknowingly are about to become embedded in the tar pit of missed deadlines
and cost overruns of large software projects.

""How to Manage Structured Programming” by Edward Yourdon points
out some of the pitfalls facing the person who thinks he is going to bring about a
revolution in the way programmers, managers, or users operate. Yourdon includes
advice about how to bring about change. He discusses modern programmer pro-
ductivity tools in the light of corporate politics.

All three books are entertaining and authoritative. Computer programming
should not be a lone wolf activity between a computer and a programmer. Com-
puter programming is a social activity carried on by real people who are often
much too human.

2 Primitive programs

OV E RV! E The first step in learning Pascal is to become fa-
miliar with the computer, its keyboard, disk drive
operation, and setting up the printer. With this comes the need to learn how to
use a text editor for creating and modifying Pascal source programs. Another
important duty is the selection of software for the major Pascal system disk.
This chapter covers some of the preliminary details needed to use the Radio
Shack Alcor Pascal system. This is the Pascal system distributed through Radio
Shack stores. It also covers the overall structure of the Pascal language and gives
some simple example programs. The goal is to introduce the language and to
demonstrate its use on the Radio Shack TRS-80.

O

2.1 PRINTING MESSAGES

Become familiar with your computer before using the Pascal system. Alcor Pascal
works well on a Radio Shack TRS-80 Model |, Model 111, or Model 1V with at
least 48K RAM, two disk drives, and a printer. TRSDOS (Tandy Radio Shack
Disk Operating System) is the most common operating system for these com-
puters, although Alcor Pascal operates on other operating systems.

OPERATING SYSTEM UTILITIES

The TRSDOS utilities of primary interest include DIR (display directory of files
stored on disk), BACKUP (create backup copies of entire disks), and FORMAT
(initialize data diskettes). The disk drives are number 0 and 1 for a two-drive
Radio Shack system. The diskette in drive O should contain the TRSDOS system
software for "booting up” the system and providing the system utilities. The
diskette in drive 1 can be a data diskette. A data diskette does not contain the
TRSDOS system software.

WORKING COPIES

The Alcor Pascal system for the Models | and |11 comes with five diskettes. Two
of the diskettes are for the Model 11 and already include the TRSDOS 1.3 system

15

16/INVITATION TO PASCAL

software. The other three diskettes are for the Model | and require that users
supply their own TRSDOS 2.3 system software. The TRS-80 Model IV can use
the Model |11 version of Alcor Pascal, but the special Model 1V Alcor Pascal makes
better use of the faster Z-80 processor.

Use the original diskettes only for preparing working copies. The wise com-
puterist will keep the originals in a safe place, a backup set in a separate safe place,
and will use one or more working sets for normal processing. One set of working
copies kept near the computer work area can function as the system master for
creating customized system diskettes for writing and running Pascal programs.

Model 11 and 1V owners can create backup and working copies of the Alcor
Pascal system disks immediately. Turn on the computer before placing a diskette
in a disk drive. Let it warm up for a few seconds. Place one of the Pascal system
diskettes in drive O and then press the orange Reset key. Answer the requests for
the date and time in the format specified, pressing the ENTER key after each one.

Call the BACKUP utility by typing the word BACKUP followed by the
ENTER key. With the system disk to be copied in drive O, designate O for the
SOURCE Drive Number and 1 for the DESTINATION Drive Number. Use PASS-
WORD as the SOURCE disk master password. The BACKUP utility will format
the blank diskette in drive 1 and then copy the contents of the SOURCE diskette
to the DESTINATION diskette.

The three diskettes containing the Model | version of Alcor Pascal do not
contain the TRSDOS 2.3 system software. Therefore, the Model | owner must call
the backup utility from one of his system diskettes before inserting the SOURCE
and DESTINATION diskettes for the copy operation.

PASCAL SYSTEM DISKETTES FOR MODELS Il AND IV

Many TRSDOS system files are not necessary for Pascal program development.
The TRSDOS PURGE command with the system option may be used to remove
the files:

BASIC/CMD XFERSYS/CMD MEMTEST/CMD
CONVERT/CMD LPC/CMD HERZ/BLD

from the master working copies. For Model 111 and 1V owners the two system
diskettes are labeled Disk 1 of 2 and Disk 2 of 2. Disk 1 of 2 is the primary system
diskette to use when learning Pascal. Diskette 2 of 2 needs a copy of the file
ERRORS/DAT from disk 1 of 2 to provide a complete Pascal compiler. Disk 2
of 2 does not contain the text editor for creating Pascal source programs.

The Pascal compiler on Disk 2 of 2 consists of a segmented Pascal compiler
allowing additional space for compiling large source programs. The Pascal com-
piler for either diskette produces object programs consisting of pseudo-machine
language which must be interpreted as it is executed. Disk 2 of 2 contains a pro-

Primitive Programs/17

gram that generates native Z80 microprocessor code from the pseudo-code. The
result is a program that runs up to five times faster but takes up to three times as
much internal memory to run.

Usually, Model 11l and Model 1V owners use the Pascal system diskette 1
of 2 containing TRSDOS 1.3 as the development system during the process of
creating and debugging the Pascal program. When finished, the source and object
programs are saved permanently on other diskettes. After becoming familiar with
the editor, delete the files

HELP/HLP KEY/HLP CMD/HLP
PATCHER/CMD DATABASE/PCL LDOS/PAT

from the working copy of the system disk 1 of 2, leaving more room for saving
source and object programs under current development.

PASCAL SYSTEM DISKETTES FOR MODEL |

Model | owners keep their own TRSDOS 2.3 diskette in drive O and use the Pascal
system diskettes from drive 1. The resulting Pascal source and object programs
will reside on the user diskette in drive 0.

LDOS OPERATING SYSTEM

Users of the LDOS operating system will need to patch their operating system.,
Detailed instructions for doing this are given in the Alcor Pascal Reference Manual.

CREATING AND EDITING PASCAL SOURCE PROGRAMS

The Alcor Pascal system includes a text editor for creating and editing text files.
The resulting files are compatible with normal TRSDOS files if they are saved
in the ASCII format, Radio Shack’s SCRIPSIT word processor is a suitable pro-
gram editor if the source programs are saved using the S,A program-name format
for creating ASCII files.

The text editor consists of a main file ED/CMD and three subsidiary files—
HELP/HLP, KEY/HLP, and CMD/HLP used for displaying help messages from
within the editor. When editing an old file, the editor creates a temporary work
file labeled TO11/TMP to hold changes. After the editing session is completed,
the system assigns the old name to the working file and deletes the old file.

The text editor maintains a buffer capable of holding up to 13,000 charac-
ters in internal memory. For pre-existing files the APPEND command adds more
lines of the old file to the buffer and the WRITE command writes lines from the
buffer to the new file. Typing Shift/@ (hold shift key down while typing @ sym-
bol) adds a blank line to the buffer. This operation is needed to create space in
the buffer when creating a new file,

18/INVITATION TO PASCAL

CURSOR MOVEMENT

Simple cursor movement uses the standard arrow keys. The cursor will move left
or right one character and up or down one line at a time. Holding the Clear key
down while typing the appropriate cursor movement key will move the cursor
to the left or right of the line or scroll the document one page toward the begin-
ning or toward the end of the file,

TEXT INSERTION AND DELETION

Holding the Shift key down while typing the right-hand cursor movement key
deletes the character under the cursor. Holding the shift key down while typing
the left-hand cursor deletes the entire line. Holding the Clear key down while
typing the letter K deletes the text from the cursor to the end of the line.

Holding the Shift key down while typing the @ symbol inserts a blank line
into the text buffer at the current location. The normal text editing mode is
type-over in which new text replaces existing text. Holding the Clear key down
while typing the letter | changes the mode to insertion mode until the next cursor
movement key is pressed or until the ENTER key is typed.

COMMAND MODE

Holding the Clear key down while typing the letter C places the editor in com-
mand mode. The commands of primary interest include APPEND, WRITE, and
EXIT. APPEND adds the specified number of lines to the buffer. WRITE sends
the specified number of lines from the buffer to the work file, EXIT writes the
file to the disk.

The QUIT command leaves the editor without saving the changes. The
HELP command displays help messages. SHOWLINE positions the cursor at a
specified line number in the buffer. INSFILE inserts text from a specified external
file into the buffer. The commands FIND and REPLACE perform the common
text-editing functions. The commands + and - position the cursor a specified
number of lines forward or backward in the buffer.

SAMPLE PASCAL PROGRAM

This program and the next include a short excerpt from ““She was a Phantom of
Delight” by William Wordsworth. The two lines

And now | see with eye serene,
The very pulse of the machine

are taken out of context but do reflect the exciting anticipation of the person
embarking on new ventures with the computer.

Primitive Programs/19

The first exercise is to use the editor to create an initial Pascal source pro-
gram that displays the first line of the excerpt. Use Shift-0 (zero) to switch be-
tween uppercase and lowercase letters, The text of the source program follows:

PROGRAM PRINT?;
BEGIN

WRITELN (‘And now | see with eye serene,’);
END.

Every Pascal program must have the parts PROGRAM, BEGIN, and END. The
period after the last END is mandatory. The semicolon after the program name
is also mandatory. Semicolons separate Pascal statements.

The file ED/CMD contains the text editor. Typing the command

ED

loads the editor and the message *EOB (end of buffer) appears at the top of the
screen. Hold the Shift key down and type the @ symbol four times {(one for each
line of the program). Type in the program exactly as it appears including the period
and the semicolons. Once the text is entered, hold the Clear key down while typing
the letter C to enter command mode. Type the command EXIT and respond with
the file name PRINT1/PCL to place the Pascal source program PRINT1/PCL on
the system diskette in drive Q.

The Pascal compiler translates the source program into an object program.
The command

PASCAL PRINT1

compiles the source program PRINT1/PCL and generates the object program to
be stored in the file PRINT1/0BJ. The compiler sends a listing of the program
to the video screen together with any error messages.

Running the Pascal object program requires a routine called RUN/CMD,
Typing the command

RUN PRINT1

runs the object program PRINT/OBJ. The run time routine asks for files for the
two logical files called INPUT and OUTPUT. Normally, data entry for the INPUT
file comes from the keyboard and output from the OUTPUT filegoes to the video
display. Pressing the ENTER key for each request gives this usual assignment.

The normal input and output can be redirected. Typing a TRSDOS file
name allows input or output to be redirected to a disk file. Typing the letter L
sends the output to the printer rather than to the video display.

The output of the run is the one line message

And now | see with eye serene,

contained in the WRITELN statement of the Pascal program.

20/INVITATION TO PASCAL

STACK AND HEAP

The editor, the compiler, and the resulting Pascal programs identify two areas
of memory usage. The STACK contains most of the variables. The HE AP contains
dynamic variables and file descriptors. The editor or compiler displays the amount
of STACK and HEAP space used out of the amount available. The amount of
HEAP and STACK allocated by the system is usually sufficient. If not, more can
be allocated.

EDITING AN EXISTING PROGRAM
Now change the program to include the second line. The command

ED PRINT1/PCL

loads the editor and tells it to edit the file PRINT1/PCL. The editor automatically
appends the first 100 lines of text to the buffer. Move the cursor tothe WRITELN
statement and insert a blank line by holding the Shift key down while typing the
@ symbol. Now type the line

WRITELN (‘the very pulse of the machine’);
giving the following program:

PROGRAM PRINT1;
BEGIN
WRITELN (‘And now | see with eye serene,’);
WRITELN ('The very pulse of the machine’);
END.

Hold the Clear key down while typing the letter C to enter the command mode.
Type the command

EXIT

and respond with the ENTER key to the request for the file name to use for the
edited version.

SPECIAL EXECUTION-TIME KEYS

The Break key will terminate the current program and will also stop the compiler.
If the @ kev is pressed during the running or compiling of the program, the com-
puter will pause until the Enter key tells it to resume execution. With extensive
output going to the video screen, the @ and Enter keys may be used many times
during the program execution or compilation.

Primitive Programs/2 1

ERROR MESSAGES

The compiler will flag parts of the program that contain syntax errors and will
attempt to point out the problem with error messages. It isagood idea to become
familiar with these messages and the problems they point out by introducing in-
tentional errors into a program.

Use the text editor to remove theright-hand quote from the first WRITELN
statement of the program PRINT1/PCL. The resulting program should be as
follows:

PROGRAM PRINT1;
BEGIN
WRITELN (‘And now | see with eye serene,);
WRITELN (‘The very pulse of the machine’);
END.

The command
PASCAL PRINT1

compiles the updated Pascal source program contained in PRINT1/PCL and in-
cludes several error messages., The missing quote symbol throws the compiler off
the track, causing additional error messages.

MOST-USED EDITOR CONTROL KEYS

1 Cursor up one line

4 Cursor down one line

- Cursor right one character
« Cursor left one character

Clear * Scroll back one page

Clear ¥ Scroll forward one page
Clear =+ Toend of line

Clear <« To beginning of line

Shift - Delete character under cursor
Shift < Delete line

Clear K Delete to end of line

Shift @ Insert blank line

Clear | Insert text at cursor position

Clear O Split line into two lines at cursor

22/INVITATION TO PASCAL

EDITOR COMMAND MODE (Clear C)

APPEND Append text to buffer
WRITE Write text to file
EXIT Exit editor and save file
QUIT Quit editor without saving file
+ 120 Move cursor forward 120 lines
- 230 Move cursor back 230 lines
SHOWLINE 45 Move cursor to line 46
INSFILE Insert another file at cursor position
FIND Search for character string
REPLACE Replace character string
EXERCISES

1. Write a Pascal program to print the following lines from “The Raven by
Edgar Allan Poe:

Once upon a midnight dreary
while | pondered weak and weary,
Over many a quaint and curious
volume of forgotten lore,

2. Remove the semicolon at the end of the first WRITE LN statement and observe
the error messages.

3. Modify the program of problem 1 by removing the period following the END
statement.

4, Modify the program of exercise 1 by removing the semicolon after the pro-
gram name of the PROGRAM statement.

2.2 PARTS OF A PASCAL PROGRAM
The parts of a Pascal program should be as follows:
program heading
label declarations
constant definitions
type definitions

variable declarations

Primitive Programs/23

procedure and function definitions
main body of program

Some parts of the program may not be necessary. For example, the simple pro-
grams of Section 1.1 did not need to declare labels, constants, types, or variables.

PROGRAM HEADING

The program heading is the first line of the Pascal program. It gives the name of
the program and the needed files. The program heading

PROGRAM PRINT1 (INPUT,OUTPUT);

identifies the program with the name PRINT1 and specifies that the program
will use normal input and output channels. Input data comes from the keyboard
and output goes to the video display. Alcor Pascal ignores the text contained
within the parentheses.

The program heading

PROGRAM PRINT1 (OUTPUT);

specifies that there will be output only, no input. Most Pascal programs include
normal input and output operations. Many Pascal compilers allow the use of these
files without explicitly defining them. The program heading

PROGRAM PRINT1;
is equivalent to the heading
PROGRAM PRINT1 (INPUT,QUTPUT);

for many Pascal systems,

LABEL DECLARATIONS

Pascal uses GO TO statements which require labels (names) to identify the sec-
tions of the program used as the objects of the GO TQ statements, A program
that uses no GO TO statements needs no labels. The label declaration part of
Pascal programs alerts the person reading the program that GO TO statements
are present and permits the development of one-pass Pascal compilers.

CONSTANT DEFINITIONS

A constant does not change. Pascal permits the assigning of a name to a quantity
that never changes. For example, the symbol Pl may be assigned to the numerical
quantity 3.141859 for formulas involving the area or circumference of a circle.

24/INVITATION TO PASCAL

TYPE DEFINITIONS
Pascal has the following fundamental data types:

1. Real: Numbers with decimal points.
2. Integer: Whole numbers,

3. Char: Symbols, including letters of the alphabet, numeric digits, and
punctuation used by the computer to communicate with the outside
world.

4, Boolean: Logical result (true, false, binary O or 1).

Using these primitive data types, the Pascal programmer can define more
complex types. Thisis apowerful tool in the hands of an experienced programmer.

PROCEDURE AND FUNCTION DEFINITIONS

The programmer subdivides large programs into smaller sections called modules.
Each module is a procedure or function. The main procedure comes at the end
of the program. Procedures and functions called by the main procedure must be
previously defined if Pascal is to be a one-pass compiler. Short programs, such as
PRINT?1 in Section 1.1 may have only one procedure. Long programs should
be created as a main program calling subroutines in the form of procedures and
functions.

MAIN BODY

The main body of the Pascal program consists of a single compound statement
formed from elementary statements separated by semicolons. The single com-
pound statement is also called a block. The BEGIN and END give the scope of
the block in the same manner that the left parenthesis ("' and the right paren-
thesis)" define the scope of a parenthetical expression. Each procedure and
function contains its BEGIN and END block definition. The END for the main
program block is followed by a period. Subsidiary functions and procedures re-
quire semicolons following the END delimiters of their compound statements.

NULL PROGRAMS AND STATEMENTS

Pascal permits the creation of programs and functions that don't do anything.
The program

PRCGRAM DONCTHING;
BEGIN
END.

defines the program DONOTHING which has no input or output and does no
processing. Its BEGIN. .. END block is empty. In Pascal terminology, it is a null

Primitive Programs/25

program. Pascal also permits the definition of empty files which contain no data.
They are called null files. A variable normally contains data. A variable that con-
tains no data is a null variable.

SPECIAL SYMBOLS NOT VISIBLE ON THE KEYBOARD

Several Pascal symbols are not visible on the TRS-80 keyboard. The editor gener-
ates these symbols as you hold the Clear key down while typing the required
numeric digit. There is also an alternate symbol that Pascal compilers accept for
those systems having terminals lacking the desired primary symbol.

The following lists the symbol and its Clear key code for the Alcor Pascal
editor:

Character Clear/digit

{ Clear/1
) Clear/2
~ Clear/3
{ Clear/4
} Clear/5
| Clear/6
- Clear/7

Not every terrninal has these symbols; therefore, the following alternate symbols
are common:

Primary Alternate

symbol symbol Meaning

{ (» Open comment

1 *) Close comment
~ @ Pointer symbol

{ (. Open array index
] J Close array index

WRITELN VERSUS WRITE STATEMENTS

There are many ways of writing computer programs. This brings out the creative
instincts of the programmer. Consider the line

| came, | saw, | conquered.

attributed to Julius Caesar. The program

PROGRAM PRINT2A (OUTPUT);
BEGIN

WRITELN ('l came, | saw, | conquered.’);
END.

26/INVITATION TO PASCAL

uses a style similar to the program of Section 1.1. The output of this program
consists of the single line

| came, | saw, | conquered.

The WRITELN statement finishes the current line of output so that any
subsequent output statements begin a new line. The following program uses a
separate WRITELN statement for each phrase of the quotation:

PROGRAM PRINT2B (OUTPUT);
BEGIN
WRITELN (‘I CAME,’);
WRITELN (‘I SAW,’};
WRITELN ('l CONQUERED.');
END.

The output of this program follows:

I came,
| saw,
| conquered.

The WRITE statement places the indicated item on the output line with-
out the end-of-line signal. Use of the WRITE statement tells the system that
more will be added to the line later. The following program uses the WRITE
statements for the first two phrases and finishes with the WRITELN statement
for the last phrase:

PROGRAM PRINT2C (OUTPUT);
BEGIN

WRITE (‘| came,’);

WRITE ('l saw,’);

WRITELN (‘1 conquered.’);
END.

The output from this program follows:
| came,l saw,| conquered.

Now the problem is the lack of control over the spacing of the phrases.
There should be a space after each comma and before the beginning of the next
phrase. The following program includes an extra space at the end of each of the
first two phrases:

PROGRAM PRINT2D (OQUTPUT);
BEGIN

WRITE (‘| came, *);

WRITE ('l saw, ‘);

Primitive Programs/27

WRITELN ('l conquered.’);
END.

An alternative approach is to place the extra space at the beginning of each of
the last two phrases. The following program uses this approach:

PROGRAM PRINTZ2E (QUTPUT);
BEGIN

WRITE ('t came,’);

WRITE (‘ | saw,’);

WRITELN (' | conquered.’);
END.

In either case, the following output results:

| came, | saw, | conquered.

SEMICOLONS SEPARATE STATEMENTS

Pascal uses semicolons to separate statements within a BEGIN... END block.
Strictly speaking, a semicolon is not needed between the last statement of the
BEGIN...END block and the END keyword. The Pascal compiler assumes that
a null statement follows the last semicolon.

The program

PROGRAM PRINT2F (OUTPUT);
BEGIN

WRITELN (‘l came, | saw, | conquered.)
END.

does not need a semicolon after its one WRITELN command. The semicolon
after the WRITELN command in the following program is permissible, but results
in a null statement between the WRITELN statement and the END.

PROGRAM PRINT2G (OUTPUT);
BEGIN

WRITELN (‘| came, | saw, | conquered.’};
END.

The following program does not use the semicolon before the END delimiter
and does not generate the extra null statement:

PROGRAM PRINT2H (OUTPUT);
BEGIN

WRITE (‘] came,’);

WRITE (' | saw,’);

WRITELN (' | conquered.’)
END.

28/INVITATION TO PASCAL

The following program uses the extra semicolon resulting in the extraneous null
statement:

PROGRAM PRINT2I (OUTPUT);

BEGIN
WRITE (‘I came,’);
WRITE (' | saw,’);
WRITELN (' | conquered.’);
END.
EXERCISES

1. The line, "It has long been an axiom of mine that the little things are infinitely
the most important.” from “The Adventures of Sherlock Holmes'* by Sir
Arthur Conan Doyle is appropriate for computer programming. Write a pro-
gram that displays this quotation using two or more WRITELN statements.

2. Write a program displaying the quotation in exercise 1 using one or more
WRITE statements followed by a WRITELN statement.

3. Remove the semicolons from the program of exercise 1 or 2 and note the error
messages that result.

2.3 VARIABLES

A constant is an entity that cannot change. A label is a named section of a pro-
gram used as an object of a GO TO statement. The variable is a named entity that
can be changed during the running of the program.

IDENTIFIERS

An identifier is a program name, constant name, variable name, procedure name,
or label. The first character must be a letter of the alphabet. Permissible characters
for the rest of the name include the digits O through 9, the dollar sign $, and the
underline character _. There is no distinction between uppercase and lowercase
letters. The names

APPLE Apple apple aPplLe

are equivalent. Most programmers use either all capital letters or all lowercase
letters for variable names.

Alcor Pascal allows names longer than eight characters but only the first
eight are significant. An identifier cannot contain a space and cannot be continued
from one line to the next. Most programmers using Alcor Pascal will limit variable
names to eight characters or less.

Primitive Programs/29

RESERVED WORDS

Certain words have special meaning for the Pascal compiler and cannot be used
as identifiers within the source program. The reserved words are

AND END NIL SET
ARRAY FILE NOT THEN
BEGIN FOR OF TO
CASE FUNCTION OR TYPE
CONST GOTO PACKED UNTIL
Div IF PROCEDURE VAR
DO IN PROGRAM WHILE
DOWNTO LABEL RECORD WITH
ELSE MGOD REPEAT

CONSTANT DEFINITIONS

The constant definition attaches a symbolic name (identifier) to a data constant,
The form is

identifier = constant

for which identifier is a user-defined name and constant is a valid integer, real
number, or character string. The keyword CONST starts the constant section of
the program.

The following program contains several constant definitions and displays
the constants:

PROGRAM PRINT3A (OUTPUT);
CONST

NUMBER = 365;

Pl =3.14159;

LINE1 = “The end of a perfect day’;

LINE2 = 'Don't tread on me’;
BEGIN

WRITELN (‘'NUMBER =’ NUMBER);

WRITELN (Pt = *,Pi);

WRITELN (‘LINE1 =",LINE1);

WRITELN (‘LINE2 =’ ,LINE2)
END,

The sample run follows

Number = 365

Pi = 3.14159E+00

The end of a perfect day
Don't tread on me

30/INVITATION TO PASCAL

Notice the consecutive quote symbols in LINE2, Most computer programming
languages use this method of embedding a quote within a string of characters,

NUMBERS

Numerical quantities are of two types: integer and real. An integer is a whole
number and allows no fractional part. A real number permitsa fractional part. Real
numbers are stored using scientific notation consisting of a mantissa (fraction)
and an exponent (power of 10). The scientific notation number

2.74125 x 104

stands for the decimal number 27,412.5. Pascal displays the number as 2.74125E
+04. This notation is also useful for defining real constants and for creating data
files to be read into the program,

MATCHING DATA TYPES

Pascal requires the use of appropriate data types. Integer variables cannot receive
real values. Character variables cannot receive numerical quantities nor can nu-
merical variables receive character data. The data types must match.

ASSIGNMENT STATEMENTS
The Pascal assignment statement is of the form:

identifier := identifier, literal, or expression;

An identifier is a user-supplied name. A literal is a numerical quantity or acharacter
string enclosed in quotes. An expression defines arithmetic operations on literals
and identifiers. The assignment statements

identifier := identifier
and
identifier := literal

move the contents of the literal or identifier on the right to the identifer on the
left. The assignment staternent

identifier := expression

computes the expression on the right and places the result in the identifier on
the left of the = symbol.

Primitive Programs/31

VARIABLE DECLARATIONS

Variables use symbols to represent the data. The computer reserves a portion of
memory for each variable. The data must be defined before it is processed. The
constant and variable definitions come before the BEGIN, .. END block of pro-
cessing statements.

The keyword VAR signals the start of the variable definition portion of
the program. The three data types of interest now are integer, real, and character.
The keywords INTEGER, REAL, and CHAR define these data types. There are
several ways of organizing the VAR section. The following defines each variable
separately:

VAR
NUMBER : INTEGER;
AGE : INTEGER,;
AREA : REAL;
AMOUNT : REAL;
ANSWER : CHAR;

When more than one variable is of the same type, common practice is to
list the variable names in series with one colon separating the variable list from
the type specification. The following section uses this approach:

VAR
NUMBER,
AGE : INTEGER;
AREA,
AMOUNT : REAL;
ANSWER : CHAR,;

To conserve space, some programmers will pack several identifier names
on the same line as the type definition. The following illustrates this approach:

VAR

NUMBER, AGE : INTEGER;

AREA, AMOUNT : REAL;

ANSWER : CHAR;
Packing too much information on one line makes the program hard to read. The
first approach results in more readable programs.

ASSIGNING VALUES TO VARIABLES
The following program uses literals and constants to assign values to variables:

PROGRAM PRINT3B (OUTPUT);
CONST

32/INVITATION TO PASCAL

Pl = 3.14159;
VAR

NUMBER,

AGE : INTEGER;

AREA,

AMOUNT : REAL;

ANSWER : CHAR;

BEGIN
NUMBER := 25;
AGE :=43;
AREA :=P{;
AMOUNT := 23.95;
ANSWER :="Y";

WRITELN (‘NUMBER IS

WRITELN (‘AGE IS

WRITELN (‘AREA IS

WRITELN (‘AMOUNT IS

WRITELN ("ANSWER IS
END.

" NUMBER};
' AGE);

" AREA);

" AMOUNT);
', ANSWER)

Running the program produces the following output:

NUMBER IS 25
AGE IS 43
AREAIS 3.14169E+00

AMOUNT IS
ANSWERIS Y

EXERCISES

1. Write a Pascal program to display the following line from Robert Burns’ “To

a Mouse'":

The best laid plans o' mice an’ men

2. Write a Pascal program that declares the two integer variables SIZE and ROWS,
the three real variables LENGTH, WIDTH, and AREA, and the character vari-
able FLAG. Use assignment statements to place the value 10 in SIZE, 5 in
ROWS, 2.5 in LENGTH, 1.0 in WIDTH, 2.5in AREA, and “N" in FLAG. Use
WRITELN statements to display the contents of the variabies.

3. Write a Pascal program that defines constants having the same names and
values as the program of exercise 2. Use WRITELN statements to display the

constants.

2.39500E+01

Primitive Programs/33

2.4 ARITHMETIC
A simple arithmetic expression performs one arithmetic operation. The expression
12+13

forms the sum of the value 12 and 13. The symbol "+’ designates the arithmetic
operator addition. The result of an arithmetic expression is called its value.

LOCAT!ON OF EXPRESSIONS

Arithmetic expressions are usually associated with assignment statements. The
statement

ANSWER := VALUE1 + BASE1;
assigns the value of the expression to the variable ANSWER. The output statement
WRITELN ("ANSWER 1S ,12 + 13);

displays the message “ANSWER IS" together with the value of the expression
(12+13).

INTEGER ARITHMETIC

Integers are whole numbers. They may be positive, negative, or zero. They cannot
have fractional parts. The literals 12 and 13 are integers. The operator symbol
separates the two operands upon which it works. The operator symbols

+ Addition

- Subtraction

* Multiplication

DIV integer (truncated) quotient
MOD Modulo {integer remainder)

give integer results when both operands are integers. The negation operator sym-
bol is the minus sign, the same as subtraction, and negates the operand on the right.
The arithmetic expression

12+13

gives the integer result 25 since the literals 12 and 13 are both integers. The ex-
pression

3+4
gives the result 12 after multiplying the integers 3 and 4. The expression
8-5

34/INVITATION TO PASCAL

gives the result 3 computed by subtracting the integer 5 from the integer 8.
The expression

14 Div4
gives the integer result 3, and the expression
14 MOD 4

gives the result 2 since dividing the integer 4 into the integer 14 gives the integer
quotient 3 with 2 the remainder. The expression

- ANSWER

negates the value in the variable called ANSWER.
The following Pascal program computes the area of a rectangle (assuming
that all measurements are whole numbers):

PROGRAM AREA (OUTPUT);

VAR
LENGTH,
WIDTH,
AREA : INTEGER;
BEGIN
LENGTH :=40;
WIDTH := 30;

AREA := LENGTH * WIDTH;

WRITELN (‘LENGTH ',LENGTH);

WRITELN (‘WIDTH ‘' "WIDTH);

WRITELN (‘AREA ', AREA)
END.

The sample output follows:

LENGTH 40
WIDTH 30
AREA 1200

REAL ARITHMETIC

If both operands of the arithmetic operation are real, then the value of the ex-
pression is also real. The operator symbols for real operands include

+ Addition

- Subtraction

* Multiplication
[Division

and give real results.

Primitive Programs/35

The expression
2.7+4.1
gives the real result 6.8. The expression
12.75-9.25
gives the result 3.5. The expression
25+*25
gives the product 6.25. The expression
88/20

gives the real result 4.4.

The integer arithmetic operators DIV and MOD are not defined for real
numbers. The division operator symbol “//” requires that both operands be real.
The expression

14/4

has the real value 3.5 rather than the integer quotient 3. Both values are converted
to real form before the division takes piace.

The following program computes the area and circumference of a circle of
radius 3.5 using real values:

PROGRAM CIRCLE (QUTPUT);
CONST
Pi =3.14159;
RADIUS = 3.5;
VAR
AREA,
CIRCUM : REAL;
BEGIN
AREA := RADIUS * RADIUS * Pi;
CIRCUM :=2.0 * RADIUS * PI;

WRITELN (‘RADIUS ‘,RADIUS);

WRITELN (‘AREA " AREA);

WRITELN (‘CIRCUMFERENCE *,CIRCUM)
END.

The sample test run follows:

RADIUS 3.560000E+00
AREA 3.84845E+01
CIRCUMFERENCE 2.19911E+01

36/INVITATION TO PASCAL

MIXED MODE EXPRESSIONS

Pascal permits mixed mode expressions for arithmetic operators other than DIV
and MOD. A mixed mode expression contains both integer and real operands.
For a mixed mode expression the result will be real and the arithmetic will be
carried out in real mode. The mixed mode expression

16/2.0

gives the real result 8.0 since the integer 16 is divided by the real number 2.0.
A falling body accelerates at the constant rate of 32.2 feet per second per
second. The formula

v=at

gives the velocity v after ¢ seconds of a body accelerating at the constant rate a.
The formula

d = 5at?

gives the distance d after ¢ seconds.

The following program computes the velocity in feet per second and distance
in feet after t=5 seconds with the integer variable TIME containing the time in
seconds, the real variable ACCEL containing the 32.2 feet per sec?, the real vari-
able VELOCITY containing the velocity in feet per second, and the real variable
DISTANCE containing the distance in feet:

PROGRAM FALL (OUTPUT);
VAR
TIME : INTEGER;
ACCEL,
VELOCITY,
DISTANCE : REAL;
BEGIN
TIME :=5;
ACCEL :=32.2;
VELOCITY := ACCEL * TIME;
DISTANCE := 0.5 * ACCEL * TIME * TIME;

WRITELN (‘TIME " TIME);

WRITELN ("ACCELERATION ',ACCEL)};

WRITELN (‘"VELOCITY ""VELOCITY};

WRITELN (‘DISTANCE ", DISTANCE)
END.

The test run output follows:

TIME 5
ACCELERATION 3.22000E+01

Primitive Programs/37

VELOCITY 1.61000E+02
DISTANCE 4.02500E+02

PRECEDENCE ORDERING

Pascal arithmetic operators follow the normal precedence of elementary algebra.
This ordering follows:

Highest () Parentheses
- Negate
DIVMOD » / Multiply, divide
Lowest + - Add, subtract

STANDARD FUNCTIONS

The Pascal language contains a number of standard buiit-in functions applicable
to arithmetic operations. An argument enclosed with parentheses is given to the
function which returns a value. The following lists some of these functions:

ABS(X) Absolute value, same type as argument

ROUND(X) Round real argument giving integer

TRUNC(X) Truncate real argument giving integer

SQR(X) Square integer or real argument giving result of same type

SQRT(X) Square root of integer or real argument giving real result

The length of the longest side (hypotenuse) of a right triangle is equal to
the square root of the sum of the squares of the lengths of the other two sides.
To travel from one city to another, a driver may travel 30 miles West on one road
and 40 miles North on another. Because of the extensive traffic between the two
cities, the road commission is recommending a new road be built to connect the
two cities by the most direct route. What will the new travel distance be?

The following program computes the shortest distance as the square root
of the sum of the squares of the two sides:

PROGRAM SHORTEST (QUTPUT);
VAR

SIDET1,

SIDE2,

SUMSQR,

DISTANCE : REAL;
BEGIN

SIDE1 := 30.0;

SIDE2 := 40.0;

38/INVITATION TO PASCAL

SUMSQR :=SIDE1 * SIDE1 + SIDE2 * SIDE2;

DISTANCE := SQRT(SUMSQR);

WRITELN (‘FIRST SIDE ‘,SIDET);

WRITELN (‘SECOND SIDE ',SIDE2);

WRITELN (‘DISTANCE ', DISTANCE)
END.

The output from the test run follows:

FIRST SIDE 3.00000E+01
SECOND SIDE 4.00000E+01
DISTANCE 5.00000E+01

EXERCISES

1. Compute the area and length of the perimeter of a rectangle having a length
of 36 feet and a width of 22 feet.

2. Compute the velocity in miles per hour and distance in feet of a falling body
at the end of 8 seconds,

3. Compute gross pay for 33.4 hours of work for a person earning $9.25 per hour.

4. An automobile travels 431 miles on a tank of gas. The cost of filling the tank
is $27.87 and the price is $1.279 per gallon. Compute the gas mileage in miles
per gallon and the fuel cost in cents per mile.

5. A sales commission consists of a base amount of $450.00 plus a 7 percent
commission on sales of $23,400.00. Compute the amount of the commission.

3 Program organization

O\/ E RVI E Learning the many intricate details of program-
ming requires time commitment. This chapter re-
inforces and expands the features introduced in the second chapter. This is the
second of several spirals through Pascal, each building on the foundation laid by
previous spirals.
Take time to run the example programs and experiment with them, Change
the programming style. Try different varieties of uppercase, lowercase, and mixed-
case variable names. Experiment, observe, compare,

O

3.1 VARIABLE DECLARATIONS

A variable is a symbolic name referencing a computer memory location. The
computer programmer chooses the name, but there are some restrictions. The
name cannot be one of the common reserved words. The Radio Shack Alcor
Pascal allows long variable names but uses only the first eight characters to dif-
ferentiate between variables.

VARIABLE NAMES

Pascal does not distinguish between uppercase and lowercase within variable
names. The names

ENDOFDAY, endofday, and EndOfDay

are equivalent. Some programmers prefer to type all Pascal commands in upper-
case letters. Others type key words such as VAR, BEGIN, and END in caps and
use lowercase letters for user-supplied names. Still others prefer mixed-case vari-
able names with a capital letter beginning each subpart of the name.

VARIABLE TYPES

The three primitive types of variables introduced at this stage are real, integer,
and character. The Pascal programmer defines more complex data structures from

39

40/INVITATION TO PASCAL

these primitive types. Pascal is very type-conscious. |t becomes very ““haughty’* if
a programmer or ultimate user tries to give the variable a value of the wrong type.,

FORMAT-CONTROLLED OUTPUT

Each literal and variable carries with it a default format. Pascal uses the default
format for WRITE and WRITELN commands unless the programmer defines
another format. The command

WRITELN (‘answer is’, AGE, AVERAGE)

contains the character string literal ‘answer is’ and two variables. Let AGE be an
integer and AVERAGE be a real number.

The following program includes the literal and variablesin theone WRITELN
statement:

PROGRAM FORMAT1 (OUTPUT);
VAR
AGE : INTEGER;
AVERAGE : REAL;
BEGIN
AGE :=32;
AVERAGE :=3.75;
WRITELN (‘ANSWER IS’, AGE, AVERAGE)
END.

The output of the test run follows:
ANSWER IS 32 3.750000E+00

The default size for string literals and variables is the length of the string.
The string literal ‘"ANSWER IS’ uses 9 character positions. Following the string
literal with a colon and number overrides the default field size. The extra charac-
ter positions are filled with spaces.

Alcor Pascal assigns an 8-digit field to each integer literal or variable. This
is the default width, but it can be changed by the programmer. Following an in-
teger variable or literal by a colon and a number overrides the default field width.
For example, AGE:4 places the value of the integer variable AGE in a field 4
digits wide.

The forms of display for real variables are fixed and exponential format.
The default format is exponential with a width of 12 positions. This format is
like scientific notation. The value 3.760000E+03 stands for 3.75 times 10 to the
3rd power, or 3,750. This is the default format. Using the format AVERAGE:8
gives a field size of 8 positions and results in the value 3.75E+03,

Fixed format numbers are not in scientific notation and require two speci-
fication numbers separated by colons. The format AVERAGE:8:2 defines a field

Program Organization /41

width of 8 positions and locates the decimal point two places from the right.
The result is in the form 3750.00.
The following program illustrates the use of format-controlled output:

PROGRAM FORMAT2 (OUTPUT);

VAR
AGE : INTEGER;
AVERAGE : REAL;
BEGIN
AGE := 32;

AVERAGE :=3.75;
WRITELN (‘ANSWER 18:12, AGE:5; AVERAGE:6:2)
END.

The output from the test run follows:

ANSWER 1S 32 3.75

EXERCISES

1. Write a program to compute a person’s gross earnings. The pay rate is $9.25
per hour and the hours worked are 37.6. Display the values for pay rate, hours
worked, and gross pay in fixed decimal format.

2. Write a program to compute the average of the following quiz scores formatting
the average using the fixed decimal form:
8 6 9 7 8

3. Write a program to compute the average miles per gallon for an automobile
that travels 317 miles on 12.4 gallons of gas. Format the result as fixed decimal
with the decimal point three places from the right.

3.2 TvYPE DECLARATIONS

The four fundamental Pascal data types are real, integer, character, and Boolean.
Real numbers are in scientific notation with mantissa and exponent. Integers in-
clude no fractional part. Characters consist of letters of the alphabet and other
printable symbols. Boolean values are true or false depending on the result of a test.

USER-DEFINED TYPES

Pascal gives the programmer a powerful tool for defining specialized data types.
The keyword TYPE identifies the part of the Pascal program containing the type
definitions. The form of the definition is

identifier = type specification;

with a mandatory semicolon. Note that type specifications and constant defini-
tions use the eguals sign =" while the assignment statement uses the symbol “*:="".

42/INVITATION TO PASCAL

A common method of defining a data type is specifying a list of possible
values. The type specification

WHERE = (NORTH, SOUTH, EAST, WEST);

defines the type WHERE as the four directions. In the VAR portion of the pro-
gram the statement

DIRECTION : WHERE;

defines the variable DIRECTION to be of the type WHERE. Thevariable DIREC-
TION can contain one or more of the four directions defined for the type WHERE.
An error condition results if the variable DIRECTION does not contain one of
the four listed directions as its data type.

One type may consist of elements that are a subset of another type. The

type definition
DAYS = (SUN, MON, TUE, WED, THU, FRI, SAT);

defines the type DAYS as the names of the seven days of the week. The type
definition

WEEKEND = (SAT, SUN);

defines the type WEEKEND as SAT and SUN. The two types DAYS and WEEK-
END are inconsistent. The values within the parentheses enumerate the permis-
sible values and specify their logical order (SUN comes before MON, which comes
before TUE, etc.). Types defined by enumeration cannot intersect. The days
SAT and SUN of the type WEEKEND also appear in the list enumerating the
permissible values of DAYS.

It is possible to define a type as asubrange of another, more inclusive, type,
The type definition

WORKDAYS = MON .. FRI;

defines the type WORKDAYS consisting of the days of the week from MON
through FRI. The days MON, TUE, WED, THU, and FRI form a subrange of the
seven days of the week. The subrange specification MON... FR! gives the begin-
ning and ending values of the subrange. The relative ordering within the subrange
is consistent with the enumerated type.

The type definition

DAYSOFMONTH =1.. 31;

defines the type DAYSOFMONTH consisting of the integers 1, 2, ..., 31. Any
value outside this range causes an error message. The type definition

LETTERS ="A"...'Z";

Program Organization /43

defines the type LETTERS as the letters of the alphabet from the primitive type
CHAR.

ORDINALITY
The type definition

DAYS = (SUN, MON, TUE, WED, THU, FRI, SAT);

enumerates seven permissible values. The seven days have the seven ordinal posi-
tions 0, 1, ..., 6. THU is the fifth day of the week and is in ordinal position 4.
WED, which is in ordinal position 3, is the predecessor of THU. FRI is the suc-
cessor of THU. SUN has no predecessor, and SAT has no successor.

The built-in functions ORD, PRED, and SUCC are of special interest for
enumerated types. The function ORD(TUE) returns the ordinal position 2, and
the function ORD(SUN) returns the value 0. The function PRED(TUE) returns
the predecessor of TUE, which is MON, The function SUCC(TUE) returns the
value WED. The function PRED(SUN) is undefined as is SUCC(SAT). For the
data type CHAR the built-in function CHR returns the character having the given
ordinal position.

EXTERNAL REPRESENTATION

User-defined enumeration types have no external representation. Their values
cannot be read in from external files nor can they be written out. The type within
a Pascal program retains its definition and type checking internally.

VARIABLE DECLARATIONS
Variable declarations may use primitive types or user-defined types. Thestatement

DAY : DAYS;

defines the variable DAY to be of the type DAYS consisting of the names of the
seven days of the week. The statement

WRKDAY : WORKDAYS;

allows the variable WRKDAY to assume one of the values MON, TUE, WED,
THU, or FRI if the type definition

WORKDAYS = MON .. FRI;

defined the type WORKDAYS.
Alternately, the variable declaration

WRKDAY : MON ... FRI;

44/INVITATION TO PASCAL

accomplishes the same task. The variable declaration limits the permissible values
to a subrange of the type. The variable declaration

MONTH :1..12;

limits the value of the variable MONTH to the integers 1 through 12. Thoughtful
use of subrange limits for variable declarations results in more reliable programs
since Pascal does internal type checking.

Subrange limits may be set at the variable declaration or at the definition
of a named type. The named type approach is preferable when several variables
have the same subrange limits. When two variables are compared, they must be
of the same named type. Passing parameters to Pascal functions and procedures
requires the use of named types for user-defined data structures.

EXAMPLE PROGRAM

The following program illustrates the use of type definitions and variable declara-
tions:

PROGRAM TYPE1 (OUTPUT);
TYPE
DAYS = (SUN, MCON, TUE, WED, THU, FRI, SAT);
LETTERS="A"..'Z";
VAR
DAY : DAYS;
WRKDAY : MON .. FRI;
INITIAL : LETTERS;

MONTH : 1..12;
BEGIN
DAY :=SUN;
WRKDAY := THU;
INITIAL :="L";
MONTH :=4;
WRITELN (‘POSITION OF DAY ',ORD(DAY) };

WRITELN (‘POSITION OF WORKDAY ",ORD (WRKDAY));
WRKDAY := PRED(WRKDAY);

WRITELN (‘POSITION OF PRED ' ORD(WRKDAY));
WRITELN (‘CURRENT LETTER " INITIAL);
WRITELN (‘PREDECESSOR "PRED(INITIAL));
WRITELN (*SUCCESSOR " SUCC(INITIAL));
WRITELN {(‘MONTH " MONTH)

END.

Sample run

POSITION OF DAY 0

POSITION OF WORKDAY 4

Program Organization /45

POSITION OF PRED 3
CURRENT LETTER L
PREDECESSOR K
SUCCESSOR M
MONTH 4

The program can print the user-defined types based on integer and character
types, but it cannot print the user-defined type DAYS based on enumeration be-
cause the enumerated type has no external representation. The integer and char-
acter types do have external representations.

EXERCISES
1. Write a program defining the days of the week with one subrange giving the
normal work days MON, ..., FRI, and another subrange defining the days

SAT and SUN as the weekend. Use MON rather than SUN as the first day of
the week.

2. Write a program that defines the type YEAR to be within the range 71, 72,
..., 99. Determine the ordinal position for the year 84. Determine the pre-
decessor and successor years, Let CURRENT be a variable of type YEAR con-
taining the value 84 representing the current year. Use the variable PREVIOUS
of type YEAR to contain the value of the predecessor year. Use the variable
NEXTYEAR of type YEAR to contain the value of the successor year. Display
the ordinal position and value for 83, 84, and 85.

3. Write a program that displays the ordinal position of each of the characters
‘A", 'B’, 'C’. Use this information to determine the ordinal positions of ‘D', ‘E’,
‘F’. Use the built-in CHR function to display the characters ‘D’, ‘E’, and 'F'.

3.3 BEGIN, END BLOCKS

Pascal often uses the key word END as a terminator. The primary use is as the
terminator of a BEGIN END block. Every BEGIN must have a corresponding
END. Not every END has a BEGIN, however. Anything contained within the
BEGIN and its corresponding END is treated as if it were one statement.

The BEGIN END block is vital in the looping of Chapter 4 and the condi-
tional statements of Chapter 5. The purpose is to form a single compound state-
ment from a sequence of simple statements. The entire Pascal program consists
of one large statement enclosed in a BEGIN END biock with a period terminating
the END.

BEGIN END BLOCK

The following program displays Alfred Lord Tennyson’s famous lines from “The
Charge of the Light Brigade' :

46/INVITATION TO PASCAL

PROGRAM CHARGE1 (OUTPUT);
BEGIN
WRITE (‘Half a league,’);
WRITELN (’ half a league,’);
WRITELN (‘Half a league onward.’};
WRITELN (‘All in the Valley of Death’);
WRITELN (‘Rode the six hundred.’)
END.

The program consists of the single compound statement composed of the five
simple statements. The first two statements display one line. The first statement
uses the WRITE command to display the first part, and the second statement uses
the WRITELN command to finish the line.

The following program places the first two statements in a separate BEGIN
END block nested within the outer BEGIN END block defining the whole pro-
gram:

PROGRAM CHARGE2 (OUTPUT);
BEGIN
BEGIN
WRITE (‘Half a league,’);
WRITELN (’ half a league,’)
END;
WRITELN (‘Half a league onward’);
WRITELN (‘All in the Valley of Death’);
WRITELN (‘Rode the six hundred.’)
END.

The display from the test run follows

Half a league, half a league,
Half a league onward.

All in the Valley of Death
Rode the six hundred.

DISCIPLINED PROGRAMMING

Large programs are divided into tasks which are divided into subtasks. Subtasks
may be divided into subsubtasks, etc. The result is an hierarchical tree of modules
with the main program as its root. The nested hierarchy of BEGIN END blocks
shows this structure.

COMMENTS

A comment is an explanation about the program that is placed in the program
listing for people to read. The braces “{"* and }" enclose the comments which

Program Organization /47

are ignored by the computer. Comments can appear anywhere within the program.
They may give the purpose of a command, give additional information about a
variable, or describe the purpose of a BEGIN END block.

Many keyboards, including those for the Radio Shack TRS-80, do not have
the left and right braces. The alternate symbol pair “(*" serves as the left-hand
delimiter and the symbol pair “+)" serves as the righthand delimiter. Most Pascal
compilers recognize both sets of delimiters for comments. The Alcor Pascal editor
accepts the special key sequence Clear 4 for the left brace {" and the sequence
Clear 5 for the right brace "’ }"'. Hold the Clear key down while typing the appro-
priate digit.

COMPUTE AREA AND CIRCUMFERENCE

The following program computing the area and circumference of a rectangle il-
lustrates the use of nested BEGIN END blocks and comments:

PROGRAM COMMENT1 (OUTPUT);

VAR
LENGTH, {LENGTH OF RECTANGLE}
WIDTH, {WIDTH OF RECTANGLE}
AREA, {AREA OF RECTANGLE}
CIRCUM {CIRCUMFERENCE}
: REAL;
BEGIN

{ Compute the area and circumference
for a rectangular garden plot. }
BEGIN
{ Get dimensions of rectangle }
LENGTH := 23.5;
WIDTH := 14.0
END;
BEGIN
{ Compute area and circumference }
AREA := LENGTH * WIDTH;
CIRCUM := 2.0 * (LENGTH + WIDTH)

END:;
BEGIN
{ Display results }
WRITELN (‘'LENGTH " LENGTH:9:2);
WRITELN (‘WIDTH ''WIDTH:9:2);
WRITELN (‘AREA ' AREA:9:2);
WRITELN (‘CIRCUMFERENCE ,CIRCUM:9:2)
END;

END.

48/INVITATION TO PASCAL

The output from the test run follows:

LENGTH 23.50
WIDTH 14.00
AREA 329.00

CIRCUMFERENCE 75.00

VELOCITY AND DISTANCE

The following program computes the velocity in feet per second and distance in
feet of an object undergoing constant acceleration:

PROGRAM COMMENT2 (OUTPUT);

VAR
TIME, (* Time in seconds *)
ACCEL, {* Acceleration in feet/sec/sec/ *)
SPEED, (* Velocity in feet/sec *)
DISTANCE (* Distance in feet *)
: REAL;
BEGIN

(* Compute the velocity in feet per second
and the distance in feet for an object
accelerating at a constant rate in feet
per second per second for a given time
in seconds *)

BEGIN
(* Get problem parameters *)
TIME :=5.0;
ACCEL := 32.2

END;

BEGIN

(* Compute velocity and distance *)
SPEED := ACCEL * TIME;
DISTANCE := 0.5 * ACCEL * TIME * TIME

END;
BEGIN
(* Display results *)
WRITELN (‘TIME ', TIME:9:1);
WRITELN ("ACCELERATION ',ACCEL:9:1);
WRITELN (‘"VELOCITY ' SPEED:9:1);
WRITELN (‘DISTANCE ,DISTANCE:9:1)
END;

END.
The output from the test run follows:

TIME 5.0
ACCELERATION 32.2

Program Organization /49

VELOCITY 161.0
DISTANCE 402.5

This program uses the alternate symbols “(*“ and “*)"' to deliniate comments.

EXERCISES

1. Write a program to compute the area and circumference of a circle having a
radius of 4.0. Use comments and nested BEGIN END blocks.

2. Write a program to compute a 5 percent commission for a $23,500 sale. Use
comments and nested BEGIN END blocks.

3. Write a program to compute the average miles per gallon and the average fuel
cost per mile for an automobile that travels 374 miles on fuel costing $21.96
at $1.179 per gallon. Use comments and nested BEGIN END blocks.

3.4 STATEMENTS AND SEMICOLONS

The semicolon follows the program header and is used as a statement separator.
It also follows each constant definition, type definition, and variable type dec-
laration. Commas separate the variables declared with the same type declaration
statement.

EMPTY OR NULL STATEMENT

A semicolon is not necessary before the END of a compound statement. The
BEGIN and END words act as statement parentheses. They are delimiters of the
compound statement. A semicolon immediately preceding an END statement
results in a null statement between the semicolon and the END. This usually
does no harm, but it is unnecessary.

OUTPUT FILE

The display screen is the normal output device for most microcomputers and
computer terminals. All Pascal programs have use of the default output file pre-
declared by the Alcor Pascal compiler. At run time the user may reassign the
default file OUTPUT to the printer by responding with the letter L rather than
the Enter key to the OUTPUT file request.

The following program displays a well-known remark made by Benjamin
Franklin at the signing of the Declaration of Independence:

PROGRAM SIGN1 (OUTPUT);

BEGIN
WRITELN (‘Yes, we must, indeed,’);
WRITELN (‘all hang together or,’);

B50/INVITATION TO PASCAL

WRITELN (‘most assuredly,’);
WRITELN (‘we shall all hang separately.’)
END.

First, run the program typing the Enter key for the request for INPUT
and OUTPUT file assignments. The display is as follows

Yes, we must, indeed,

all hang together or,

most assuredly,

we shall all hang separately.

Now run the program typing the Enter key for the INPUT file assignment and
the response :L (line printer) for the OUTPUT file assignment. The output should
go to the printer. It is not necessary to recompile the program to reassign the
INPUT and OUTPUT files.

TYPES OF FILES

Files may be TEXT or nontext files. TEXT files contain variable values of type
REAL, INTEGER, or CHAR. The types can be mixed with REAL, INTEGER,
and CHAR values in the same file. The values read from the file must agree in
type with the variables into which they areplaced. TEXT files contain an external
representation of the values of the type variables.

Nontext files contain the contents of the typed variables in internal form.
In the case of INTEGER and REAL variables, the cost of converting external into
internal forms and vice versa can be very high. Files that are created for the sole
purpose of being read in by another program can be in internal form. Files to be
sent to the video display or printer should be TEXT files. Data entered from the
keyboard is in TEXT form.

INPUT FILE

The keyboard is the default INPUT file. Alcor Pascal automatically declares the
TEXT file INPUT for use in the program. TEXT file processing is on a line-by-line
basis. A file pointer locates the part of the file to be used by the next READ and
READLN statement. The READ command brings the next data item from the
file and advances the pointer to the place immediately following the item brought
in. The READLN command fetches the next data item and advances the pointer
to the beginning of the next line.

Alcor Pascal automatically declares the default INPUT file and positions
it properly for use. Other external files require additional commands for their
use. Each line of a TEXT file is terminated with a carriage return character gen-
erated by the Enter key. Use the READLN command when requesting values
one-at-a-time from the keyboard.

Program Organization /51

OBTAINING DATA FROM THE KEYBOARD

The following program computing the area and circumference of a rectangle uses
the READLN command to obtain data from the keyboard:

PROGRAM KEYIN1 (INPUT, OUTPUT);
VAR
LENGTH,
WIDTH,
AREA,
CIRCUM : INTEGER;
BEGIN
READLN (LENGTH, WIDTH);
AREA := LENGTH * WIDTH;
CIRCUM :=2 * (LENGTH + WIDTH);
WRITELN (‘AREA ', AREA);
WRITELN (‘CIRCUMFERENCE ‘,CIRCUM)
END.

The test run including data entry from keyboard follows:

40 30
AREA 1200
CiIRCUMFERENCE 140

PROMPT MESSAGES

When obtaining data from the keyboard interactively, a good practice is to display
a short message describing what is wanted before each READ LN command. Using
the WRITE command for the prompt message results in the user’s response ap-
pearing on the same line as the message on the screen.

The following program computing the area and circumference of arectangle
uses the WRITE command to display the prompting message and the READLN
command to obtain the data value:

PROGRAM KEYIN2 (INPUT, OUTPUT);
VAR
LENGTH,
WIDTH,
AREA,
CIRCUM : INTEGER;
BEGIN
WRITE (‘LENGTH?’);
READLN (LENGTH);
WRITE (‘WIDTH ?);
READLN (WIDTH);
AREA := LENGTH * WIDTH;

52/INVITATION TO PASCAL

CIRCUM :=2 * (LENGTH + WIDTH);

WRITELN (‘AREA ', AREA);

WRITELN (‘CIRCUMFERENCE ',CIRCUM)
END.

The test run with sample dialog follows:

LENGTH ? 40
WIDTH 7?30
AREA 1200
CIRCUMFERENCE 140

COMMENTS AND NESTED BEGIN END BLOCKS

The following program adds comments and nested BEGIN END blocks to improve
program readability:

PROGRAM KEYIN3 (INPUT, OUTPUT);

VAR
LENGTH, { Length of rectangle }
WIDTH, { Width of rectangle }
AREA, { Area of rectangle }
CIRCUM { Circumference }
: INTEGER;
BEGIN

{ Compute the area and circumference
of a rectangular garden plot. }

BEGIN
{ Get garden plot dimensions }
WRITE (‘'LENGTH OF PLOT ?');
READLN (LENGTH);
WRITE (‘WIDTH OF PLOT ?);
READLN (WIDTH)

END;

BEGIN
{ Compute area and circumference }
AREA := LENGTH * WIDTH;
CIRCUM :=2 * (LENGTH + WIDTH)

END;
BEGIN
{ Display results }
WRITELN (‘AREA " AREA);
WRITELN (‘CIRCUMFERENCE ",CIRCUM)
END

END.

Program Organization /53

The sample output from this program follows

LENGTH OF PLOT ? 40
WIDTH OF PLOT ?30
AREA 1200
CIRCUMFERENCE 140

EXERCISES

1. Electricity costs 6.75 cents per kilowatt hour. A surcharge of 10 percent is
added to the bill. Write a program using interactive data entry to compute the
electric bill for a home that uses 2,340 kilowatt hours of electricity.

2. Write an interactive program that asks for the Fahrenheit temperature and then
computes the corresponding Celsius temperature reading.

3. Write an interactive program to compute the dollar amount of an invoice if
12 items are ordered at $96.00 each.

3.5 PROGRAMMING STYLE CONSIDERATIONS

Style is an extremely important tool for readability. Cosmetics have no bearing
on the operation of the program, but the appearance of the program listing is
important for readability. Programmers should make every effort to make their
programs easy to read. There are many ways of writing the same program.

UNREADABLE PROGRAM

Consider the following program that jams as much as possible on one line and
includes no comments:

PROGRAM STYLE1 (OUTPUT);VAR LENGTH,WIDTH,AREA,
CIRCUM:INTEGER;BEGIN LENGTH:=40;,WIDTH:=30;
AREA:=LENGTH*WIDTH;CIRCUM:=2*(LENGTH+WIDTH);
WRITELN('LENGTH’,LENGTH);WRITELN('WIDTH',WIDTH);
WRITELN('AREA’, AREA);WRITELN({'CIRCUMFERENCE’,
CIRCUM) END.

The following program is equivalent and much easier to read:

PROGRAM STYLE2 (INPUT, OUTPUT);
VAR

LENGTH,

WIDTH,

AREA,

CIRCUM : INTEGER;

BEGIN

LENGTH := 40;

WIDTH := 30;

54/INVITATION TO PASCAL

AREA := LENGTH * WIDTH;
CIRCUM :=2 * (LENGTH + WIDTH);

WRITELN (‘LENGTH ",LENGTH);
WRITELN (‘WIDTH "WIDTH);
WRITELN (‘AREA ", AREA);
WRITELN (‘CIRCUMFERENCE ’,CIRCUM)
END.

Indenting subordinate parts of the program adds even more to readability as the
following program shows:

PROGRAM STYLES3 (OUTPUT);
VAR
LENGTH,
WIDTH,
AREA,
CIRCUM : INTEGER;
BEGIN
LENGTH :=40;
WIDTH :=30;
AREA := LENGTH * WIDTH;
CIRCUM :=2 * (LENGTH + WIDTH);

WRITELN (‘LENGTH ",LENGTH);

WRITELN (‘"WIDTH "WIDTH);

WRITELN (‘AREA ', AREA);

WRITELN (‘CIRCUMFERENCE ’,CIRCUM)
END.

Dividing the program into blocks and adding comments is helpful for larger
programs:

PROGRAM STYLE4 (OUTPUT);

VAR
LENGTH, { Length of rectangle }
WIDTH, { Width of rectangle }
AREA, { Area of rectangle }
CIRCUM { Circumference }
INTEGER;
BEGIN

{ Compute the area and circumference
for a rectangle. }

BEGIN
{ Get dimensions of rectangle }
LENGTH :=40;
WIDTH :=30

END;

BEGIN

Program Organization/55

{ Compute area and circumference }
AREA := LENGTH * WIDTH;
CIRCUM := 2 * (LENGTH + WIDTH)

END;

BEGIN
{ Display results }
WRITELN (‘LENGTH ', LENGTH);
WRITELN (‘WIDTH ' WIDTH),;
WRITELN (‘AREA ", AREA);
WRITELN (‘CIRCUMFERENCE ', CIRCUM)

END

END.

UPPERCASE AND LOWERCASE LETTERS

Many Pascal programmers adopt a style using uppercase letters for Pascal key
words and lowercase letters for programmer-supplied terms. The following pro-
gram uses this approach:

PROGRAM styleb (OUTPUT);
VAR
length, { Length of rectangle }
width, { Width of rectangle }
area, { Area of rectangle }
circum { Circumference }
: INTEGER;
BEGIN
{ Compute the area and circumference }
for a rectangle
BEGIN
{ Get dimensions of rectangle }
length := 40;
width := 30
END;
BEGIN
{ Compute area and circumference }
area :=length * width;
circum := 2 * (length + width)
END;
BEGIN
{ Display results }
WRITELN (‘Length ' length);
WRITELN (‘Width ' width);
WRITELN (‘Area ‘,area);
WRITELN (‘Circumference ! circum)
END
END.

B56/INVITATION TO PASCAL

CHOICE OF STYLE

The programmer chooses a style that is appropriate for the task at hand. If the
program is to be placed in a program library for use by others, it should be more
carefully written with the intended users in mind. It should also be written with
other programmers in mind. This is the reason for following programming con-
ventions, including style. Each organization will adopt a standard style and insist
that programmers use that style for programs to be placed in the library.

EXERCISES

1. Write a program to compute the volume and surface area of a sphere having a
diameter of 6 feet. Use comments and nested BEGIN END blocks.

2. Write a program to compute the gross pay for a person earning $9.75 per hour
for 36.5 hours. Use comments and nested BEGIN END blocks.

3. Write a program using interactive data entry to compute the surface area,
volume, and net weight of a cylinder 12 feet long by 3 feet in diameter. As-
sume that the cylinder is filled with water. Use comments and nested BEGIN
END blocks.

4 Repetition, looping

O\/ ERV; E Many activities are repetitive. Accumulating the

sum of a set of values requires repeated addition.
Computing a compound interest table requires repetitious calculation and printing
for each line of the table. Searching for the first occurrence of a value requires
repeating the test.

A program loop consists of a sequence of one or more statements to be
executed repeatedly. All programming languages contain control statements for
altering the normal sequential flow of execution within the program. Pascal pro-
vides three general looping control structures: WHILE, REPEAT, and FOR.

a

4.1 ForDoO

The Pascal FOR DO statement provides looping control by using acontrol variable
with an automatic updating feature. The information required by the FOR state-
ment includes the name of the control variable, the initial and final values for
the control variable, and the statement representing the body of the loop.

The control variable starting and ending expressions must be ordinal, that
is, integer, character, or enumerative. The control variable cannot be real. The
control variable is incremented or decremented by one ordinal position each time
through the loop.

INCREMENTING AND DECREMENTING
The statement

FOR | :=1TO 30 DO WRITE ();

repeats the WRITE statement 30 times. The variable | assumes the value 1 the
first time, 2 the second time, etc. The statement

FOR | := 30 DOWNTO 1 DO WRITE (1);

also repeats the WRITE statement 30 times but with the values 30, 29, ..., 1
assigned in turn to the variable I.

57

58/INVITATION TO PASCAL

The keyword TO implies incrementing by one position each time with the
ending value normally following the starting value. The keyword DOWNTO im-
plies decrementing by one position with the final value normally preceding the
starting value.

The control variable does not have to be an integer. The statement

FOR ICHAR :=‘B' TO ‘K’ DO WRITE (ICHAR);

repeats the WRITE statement 10 times assigning the character values in the order
B,C,..., K. Thestatement

FOR ICHAR := ‘K’ DOWNTO ‘B’ DO WRITE (ICHAR);

assigns the letters in reverse order K, J, ..., B.

COUNT THE WAYS
One of Elizabeth Barrett Browning’s famous verses begins

How do | love thee? Let me count the ways.
| love thee to the depth and breadth and height
My soul can reach, when feeling out of sight.

The following Pascal program makes up in output volume what it lacks in linguistic
elegance and taste:

PROGRAM LOVE (OQUTPUT);

VAR
COUNT : INTEGER;

BEGIN
WRITELN (‘How do | love thee?’);
WRITELN (‘Let me count the ways.’);
FOR COUNT :=1TO 6 DO

WRITELN (COUNT)
END.

The output of the program follows:

How do | love thee?
Let me count the ways.
1
2
3
4
5

If this program does not count high enough to suit the occasion, a simple change
to the final value for the control variable will up the count.

Repetition, Looping /59

TABLE GENERATION

Charles Babbage, in the early 1800s, conceived the idea of an automatic machine
he called the analytical engine which could both calculate and print mathematical
tables for navigation and other purposes. His vision was unattainable until the first
working computers of the 1940s. What was one of their main applications? Cal-
culating and printing mathematical tables.

The following Pascal program illustrates this application by generating a
table giving the velocity in feet per second and distance in feet travelled by an
object accelerating at the constant rate of 8 feet per second per second:

PROGRAM body (OQUTPUT);
VAR
accel,
time,
final,
velocity,
distance : INTEGER,
BEGIN
accel := 8;
final :=5;
WRITELN (‘Time Velocity Distance’);
FOR time := 1 TO final DO
BEGIN
velocity := accel * time;
distance := accel * time * time DIV 2;
WRITELN (time:5, velocity:13, distance:10)
END
END.

The output follows:

Time Velocity Distance
1 8 4
2 16 16
3 24 36
4 32 64
5 40 100

The Pascal FOR statement generates integers in steps of 1 only. It cannot
directly generate real values, although the programmer may use the counter vari-
able in expressions generating real values. This program illustrates one of the main
uses of the BEGIN END block to form a compound statement under the control
of the FOR statement.

B60/INVITATION TO PASCAL.

SQUARE ROOT TABLE

The following program uses the counter variable to generate the real values 1.0,
1.1, ..., 2.0 for generating the square root tables of those values:

PROGRAM sgroot (QUTPUT);
VAR
counter : INTEGER;
value,
root : REAL,;
BEGIN
WRITELN (‘Value Square root’);
FOR counter :=1TO 11 DO
BEGIN
value := 0.9 + counter / 10.0;
root := SQRT(value);
WRITELN (value:5:1, root:10:4)
END
END.

The output follows

Value Square root

1.0 1.0000
1.1 1.0488
1.2 1.09564
1.3 1.1412
1.4 1.1832
1.5 1.2247
1.6 1.2649
1.7 1.3038
1.8 1.3416
1.9 1.3748
20 1.4142

The integer control variable may appear in mixed expressions with real variables

to generate many possible values.

FOR LOOPS WITH CHARACTER CONTROL VARIABLE

The following program illustrates the use of the FOR looping construct with a

nonnumeric control variable:

PROGRAM char1 (OUTPUT);
VAR

letter : CHAR,;
BEGIN

FOR letter :=‘B" TO ‘E' DO

Repetition, Looping /61

WRITELN (letter)
END.

The output follows:

mooOw

The following program uses the DOWNTO version to decrement the con-
trol variable:

PROGRAM char2 (QUTPUT);
VAR
letter : CHAR;
BEGIN
FOR letter := ‘K’ DOWNTOQ ‘E' DO
WRITELN (letter)
END.

The output follows:

MmTMOI—X

FOR LOOP WITH ENUMERATED TYPES

Integer, character, and enumerated types are ordinal and can be used for control
variables of FOR loops. Enumerated types cannot be used directly for input and
output. The following program defines the enumerated type DAYS consisting of
the names of the days of the week. It uses the FOR loop with the variable DAY
and this enumerated type to generate output values:

PROGRAM daylist (OUTPUT);

TYPE

days = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
VAR

day : days;

value : integer;
BEGIN

value := 0;

FOR day := Sun TO Sat DO

B62/INVITATION TO PASCAL

BEGIN
value := value + 1;
WRITELN (value)
END
END.

The output follows:

NOOTHSE WN -

INTERACTIVE DATA ENTRY

One use of the FOR loop is as a counter controlling the repetition of the loop.
This is useful for repeated data entry and calculation. The following program uses
interactive data entry. The program asks for the number of values, and then asks
for the values one by one, summing them into an accumulator.

PROGRAM sum1 (INPUT, OUTPUT);
VAR
number,
counter : INTEGER;
value,
sum : REAL;
BEGIN
WRITELN (‘Form the sum of’);
WRITELN (‘a set of values.);
WRITELN (" ');
WRITE (‘Number of values? ’);
READLN (number);
sum :=0.0;
WRITELN (‘Value’);
FOR counter := 1 TO number DO
BEGIN
WRITE (‘No.’, counter:2," ?’);
READLN (value);
sum :=sum + value
END;
WRITELN (" ');
WRITELN (‘Sum’, sum:10:5)
END.

Repetition, Looping/63

The output of a sample run follows:

Form the sum of
a set of values.

Number of values ? 3
Value

No. 1?35

No. 2721

No. 373.2

Sum 8.80000

EXERCISES

1. Write a program that will print all the letters of the alphabet from A to Z
on the same line.

2. Write a program that will print all the letters of the alphabet in reverse order
from Z to A on the same line.

3. A Fibonacci sequence of numbers begins with the numbers 1 and 2 and forms
each successive number as the sum of the previous two numbers. The first few
values of the sequenceare 1, 2, 3, 5, 8, 11, 19. Write a program that generates
the first 15 terms of the Fibonacci sequence.

4. Write a program to compute the average of the following test scores:
83 79 91 84 85

Use interactive data entry, asking for the number of test scores and using that
number with a FOR loop to control the reading and summing of the test scores.

4.2 WHILE

The three loop control structures in Pascal are the FOR DO loop, the WHILE
loop, and the REPEAT UNTIL loop. The FOR DO loop increases or decreases
a loop control variable a set number of times. It has major applications in the
generation of data values for use within the loop.

The WHILE and the REPEAT UNTIL loops are generalized looping struc-
tures. Both structures employ a test using a variable or expression. It is the re-
sponsibility of the programmer to initiate and update the variables in the expres-
sion used in the loop control test.

The WHILE statement performs its test at the beginning of the loop. The
REPEAT UNTIL statement does its test at the end of the loop. The computer
executes the body of the WHILE loop if the condition test is true, The computer
will loop back and repeat the body of the REPEAT UNTIL loop until the test
is satisfied.

64/INVITATION TO PASCAL

RELATIONAL OPERATORS

Relational operators result in outcomes that are either ‘“true’” or '‘false’’. The
common relational operators follow:

it

True if left operand equals right

< True if left less than right

<= Trueif left less than or equal to right
>= True if left greater than or equal to right
> True if left greater than right

<> True if left not equal to right

EXAMPLE RELATIONAL EXPRESSIONS

The relational operator compares the two operands located on each side of the
operator symbol. The expression

COUNT =125

is true if the contents of the variable COUNT is less than or equal to 25. The ex-
pression is false if the contents is greater than 25.
The expression

AMOUNT <> FLAG1

is true if the contents of the variable AMOUNT differs from that of the variable
FLAG. The expression is false if the contents of the two variables are equal.
The expression

(COUNT DIV 2) = (AMOUNT + DIFF)

is true if the expression on the left is equal to the expression on the right. The
expression is false if they are not equal.

COMPOUND LOGICAL EXPRESSIONS

Compound Boolean expressions are formed from simple expressions using com-
binations of “and" and “or"’ operators. The compound expression

(COUNT <=NUMBER) AND (AMOUNT > 0)

is true if the contents of COUNT is less than or equal to the contents of NUMBER
and the contents of AMOUNT is greater than O. If the contents of COUNT is
greater than the contents of NUMBER or if the contents of AMOUNT is less than
or equal to 0, the value of the compound logical expression is false.

Repetition, Looping /65

The compound Boolean expression
(BIG> VERYBIG) OR (AMOUNT = 0)

is true if the contents of BIG is greater than the contents of VERYBIG or the
contents of AMOUNT equals 0. The expression is false if the contents of BIG is
less than or equal to the contents of VERYBIG and the contents of AMOUNT
is not equal to 0.

A compound expression formed with the OR operator is true if at least
one of the two logical expressions is true. The compound expression is false only
if both are false. A compound expression formed with the AND expression is
true only if both logical expressions are true. It is false if at least one of the two
is false.

NEGATION

The operator symbol NOT operates only on the logical expression to the right.
The expression

NOT AMOUNT <=0

is true if the contents of the variable AMOUNT is not less than orequal to 0. Too
much use of the NOT operator results in unreadable programs. The expression

AMOUNT >0

is equivalent and easier to understand.

SQUARE ROOT TABLE

The following program uses the WHILE construct to control the looping while
generating a table of square roots of the values 1.0, 1.1, ..., 1.5:

PROGRAM sgroot (QUTPUT);
VAR
value,
root : REAL;
BEGIN
value := 1.0;
WHILE value <=1.6 DO
BEGIN
root := SQRT(value);
WRITELN (value:5:1, root:10:6);
value := value + 0.1
END
END.

B66/INVITATION TO PASCAL

The sample output follows:

1.0 1.000000
1.1 1.048810
1.2 1.095445
1.3 1.140150
1.4 1.183220

The program looks like it should have included one more line because of
the statement

WHILE value <= 1.5 DO

which should have executed the body of the loop for the value 1.5. The problem
results from the fact that computers that use binary internal numbers cannot
represent the decimal fraction .1 exactly. The roundoff error in repeating .1 re-
sulted in a value slightly greater than 1.50000 which triggered the premature exit
from the WHILE loop.

The program initializes VALUE before executing the WHILE statement.
Each time through the WHILE loop the program computes the square root, prints
the line of the table, and adds the value .1 to VALUE to update it for the next
time through the loop. The internal representations of the fractional numbers
are only approximations to the corresponding decimal fractions,

COMPUTE FACTORIAL

For integer values of n greater than O, the mathematical expression n!, called n
factorial, has a value equal to the product of the first n integers. The value for
21 is 2 since 1 times 2 gives the value 2. The value for 3! is 1 x2x 3=6, Thevalue
forBlis 1x2x3x4x5=120.

PROGRAM USING FOR LOOP

The following program uses the FOR TO looping structure to generate the integers
needed for generating the product:

PROGRAM fact1 (OQUTPUT);
VAR
count,
number,
fact : INTEGER;
BEGIN
number :=5;
fact :=1;
FOR count := 1 TO number DO
fact := fact * count;
WRITELN (number,’ factorial ="' fact)
END.

Repetition, Looping/67

Sample output follows:
5 factorial = 120

By initializing the variable fact to the value 1, the statement
fact := fact * count;

in the FOR DO loop forms the product of the values 1, 2, ..., number,

PROGRAM USING WHILE LOOP

The following program uses the WHILE loop with the programmer controlling
the updating of the variable count;

PROGRAM fact2 (OUTPUT);
VAR
count,
number,
fact : INTEGER;
BEGIN
number :=5;
fact :=1;
count :=1;
WHILE count <= number DO
BEGIN
fact := fact * count;
count :=count + 1
END;
WRITELN (number:2 ’ factorial = ’,fact)
END.

The sample output follows:
5 factorial = 120

Although the WHILE construct accomplishes the same thing as the FOR
statement, it is not as easy to understand. The single FOR statement initializes
the control variable, increments it, and makes the necessary test. However, the
WHILE construct is more flexible since it is not limited to ordinal variables.

USING TRAILER VALUE TO TERMINATE DATA ENTRY

One method of terminating data entry is to use a trailer value and test for that
value every time through the loop. The WHILE statement requires that the variable
used by the test have a value in it. This results from the nature of the WHILE
statement with its test at the beginning of the loop. The following program reads
in a set of real values forming their sum and using the value -999.999 as a trailer
value signaling the end of the data:

B68/INVITATION TO PASCAL

PROGRAM sum (INPUT, OUTPUT);
VAR

value,
sum : REAL;

BEGIN

WRITELN (‘Form sum of a set of values’);
WRITELN (‘using -999.999 to terminate’);
WRITELN (‘data entry.’);
sum := 0.0;
WRITE (‘value ?');
READLN (value);
WHILE value <> -999.999 DO
BEGIN
sum :=sum + value;
WRITE (‘value ? ’});
READLN (value)
END;

WRITELN (‘sum =’ ,sum:10:4})

END.

Sample run

Form sum of a set of values
using -999.999 to terminate
data entry.

value ? 2.4

value ? 3.8

value ? 1.2

value ? -999.999

sum = 7.4000

EXERCISES

1.

Write a program to compute the sum of the first 15 integers. Use a WHILE
loop to generate the integers.

Write a program to compute the sum of the squares of the first 15 integers.
Use a WHILE loop to generate the integers.

. Write a program to compute and print the square root table for the values 10.0,

10.2,..., 14.0.

. Write a program using real variables to compute 30! (30 factorial). UseaWHILE

loop to generate the integers.

. Write a program to compute the average of the following test scores:

88 73 77 81 92

Use -1.0 as a trailer value to terminate the data entry loop.

Repetition, Looping /69

4.3 REPEAT UNTIL

The REPEAT UNTIL looping construct performs its test at the end of the loop
and always executes at least once. The body of the WHILE loop does not execute
at all if the condition fails on the first try because the test comes at the beginning
of the loop. The REPEAT UNTIL staternents provide an exit controlled loop.

BODY OF THE LOOP

Both the FOR loop and the WHILE loop control the following Pascal statement
only. Compound statements formed with BEGIN END blocks are required if the
body of the loop contains more than one statement, The REPEAT statement de-
fines the beginning of the REPEAT UNTIL loop. The UNTIL statement with the
relational expression defines the end of the loop. These two Pascal statements
define the scope of the loop. There is no need for a BEGIN END block to form
a compound statement from several elementary statements.

TEST AT END OF LOCP

The UNTIL statement at the end of the loop includes a relational expression. |f
the expression is false, the loop is repeated from the REPEAT statement. If the
expression is true, control falls to the statement immediately following the UNTIL
statement,

The WHILE statement executes the loop if the relational expression is true.
The REPEAT UNTIL construct repeats the loop if the expression is false. The
WHILE statement performs the test at the beginning of the loop. The REPEAT
UNTIL construct performs the test at the end of the loop.

SQUARE ROOT TABLE

The following program uses the REPEAT UNTIL construct in the generation of
a square root table for the values 1.0, ..., 1.5:

PROGRAM sqgroot (OUTPUT);
VAR
value,
root : REAL,;
BEGIN
value := 1.0;
REPEAT
root := SQRT(value);
WRITELN (value:5:1, root:10:6);
value := value + 0.1
UNTIL value > 1.501
END.

70/INVITATION TO PASCAL

The sample output follows:

1.0 1.000000
1.1 1.048810
1.2 1.095450
1.3 1.140180
1.4 1.183220
1.5 1.224750

The upper limit of 1.501 allows for roundoff error accumulation of the repeated
additions of .1 to the loop control variable. The reason for doing this is that the
computer cannot represent the decimal fraction .1 exactly in internal binary form,

INFINITE LOOPS

It is easy to write a WHILE loop or a REPEAT UNTIL loop that never terminates.
An infinite loop is a nonterminating loop. To create a loop that will terminate,
one of the statements within the loop must modify the loop control variable.
The following program does not contain the statement:

value = value + 0.1
from the previous program:

PROGRAM infinite (QUTPUT);
VAR
value,
root : REAL;
BEGIN
value := 1.0;
REPEAT
root := SORT(value);
WRITELN (value:5:1, root:10:6)
UNTIL value >=1.5
END.

The beginning few lines of output follow:

1.0 1.000000
1.0 1.000000
1.0 1.000000
1.0 1.000000

This program is in an infinite loop. This is apparent as it runs. The output
does not terminate after six lines as expected. The program does not compute
the square roots of the values 1.0, 1.1, 1.2, ... as desired. Press the Break key
to terminate the execution of a Pascal program.

Repetition, Looping/71

STOPPING A RUNAWAY PROGRAM

Normal output from a Pascal program goes to the video screen. Information
quickly scrolls off the screen with voluminous output. Pressing the @ key during
program execution causes the Pascal program or Pascal compiler to stop execu-
tion temporarily. Pressing the Enter key causes the computer to resume where it
left off.

Holding the Break key down for a few moments causes the program to stop
execution and control passes to the operating system. This is the mode used to
stop a program that is in an infinite loop.

If the Break key does not stop the program, pressing the Reset key should
reload the operating system. This is a more drastic action and may destroy in-
formation on the diskette if done during disk input or output operations. If the
Reset key does not stop the stampeding program, turning off the computer is
always the last resort. Again, if done during input and output operations with
disk, this may damage the information stored on the diskettes.

Try the Break key before resorting to the Reset key. Try the Reset key
before turning off the power. If the disk drive lights are off, pressing the Reset
key should not damage the data on the diskettes. The Radio Shack manual sug-
gests removing the diskettes from the drives before turning the power off.

POWER FAILURES AND DISKETTE BACKUP POLICIES

The greatest fear of the computer user is not a runaway program although the
results can be startling when unexpected. Power failures are the bane of the com-
puterist’s existence. Usually, the loss resulting from apower failure is limited only
to that work done since the last write operation to the diskette. |f the power
failure comes during a disk access, the resulting damage to the diskette directory
may make that diskette unusable. Do not press the reset key or turn off the power
while the disk drive lights are on.

The programs written while first learning Pascal may not have lasting value.
They are tools for the learning process. As programming skills increase, so does
the value of the programs. The programmer is soon embarking on an adventure-
some journey, creating a personal library of Pascal programs that have lasting
utility. Backup copies of these diskettes are cheap insurance.

STOPPING DATA ENTRY WITH TRAILER VALUE

One way to make a general-purpose program is to enable it to process a variable
amount of data. The processing takes place in a program loop, with one item
processed each time through the loop. To stop the program, use a trailer value
having an invalid value. The program continues processing the data until it picks
up the trailer value.

The following program computes the sum of a set of values obtained from
the keyboard with the trailer value -999 indicating the end of the data:

72/INVITATION TO PASCAL

PROGRAM sum (INPUT, OUTPUT);

VAR

value,

sum : INTEGER;
BEGIN

sum :=0;

WRITE (‘value ?');
READLN (value);
REPEAT
sum := sum + value;
WRITE (‘value ?°);
READLN (value})
UNTIL value = -999;
WRITELN (‘Sum ="', sum)

END.

The sample output follows:

value ? 12

value ? 15

value ? 11

value ? -999
Sum = 38

The program includes an initial READLN command to establish the initial value
for the input variable., This is accumulated into the variable sum. The program
reads the next value just before the test at the end of the loop.

EXERCISES

1. Write a program to compute the sum of the first 15 integers. Use a REPEAT
UNTIL loop to generate the integers.

2. Write a program to compute the sum of the squares of the first 15 integers.
Use a REPEAT UNTIL loop to generate the integers.

3. Write a program to compute and print the square root table for the values 10.0,
10.2,..., 14.0. Use a REPEAT UNTIL loop to generate the integers.

4. Write a program to compute the average of the following test scores: 88, 73,
77, 81, 92. Use a REPEAT UNTIL ioop and a trailer value of -1.0 to terminate
data entry.

B, Write a program to compute the sum of the terms

x"/n!

for the value x=2 and n=0, 1, 2, ... until the value of the last term is less
than .00001.

b Conditional execution

V A Boolean variable has only two possible values,
O E RVE E “true’’ and "false’’. A Boolean expression formed
by the relationships "<, "“<=", =", "<>" "“>=" and ">" also assumes only
the same two values. Of what use is a variable that can assume only two possible
values? Consider the WHILE and REPEAT UNTIL looping constructs. Boolean
expressions allow the conditional execution of a loop.

Boolean variables and Boolean expressicns are among the most useful be-
cause they give decision-making ability to the program. Chapter 4 covers the
conditional execution of loops. This chapter extends the decision-making ability
to the conditional execution of Pascal statements. This is the mechanism that
brings flexibility to the computer program which processes one set of data in
one manner and a different set of data in another manner. The program adapts
its processing method to the specific characteristics of the data.

O

5.1 Ir... THEN

The simplest conditional statements are of the form "|F Boolean expression
THEN statement”. Similar statements abound in everyday life. ““If it is raining
when | leave for work, | will take an umbrella.”” The statement, “'It is raining
when | leave for work,” will be either true or false. If it is true, the action state-
ment, | will take an umbrella,” goes into effect.

Buried deep within one of the bank’'s computer programs is a conditional
statement to the effect, "'|F customer checking account balance is less than zero,
THEN send ‘account overdrawn’ notice to customer.” Within a payroll program
is a statement to the effect, “IF hours worked is greater than 40 hours, THEN
compute overtime pay at time-and-a-half."”

FLOW OF CONTROL

Normally, the flow of control within a Pascal program is from beginning to end.
Some describe this flow of control as from top to bottom because the beginning
of the program is toward the top of the screen. The looping constructs override

73

74/INVITATION TO PASCAL

this natural order, but the body of the loop is still sequentially executed from
beginning to end. After finishing the looping operation, the program continues
in sequential fashion with the statements immediately following the loop.

The simple |F ... THEN statement provides a short single-statement con-
ditional execution. It slipsan additional statement into the sequence of statements
if the condition is true. By using BEGIN END blocks the extra statement can be
a complex structure of Pascal statements including nested looping constructs.

OVERTIME PAY

An organization pays time-and-a-half for overtime beyond 40 hours a week. Gross
pay is normally the hourly pay rate times the number of hours worked. Overtime
hours earn an additional B0 percent because of the time-and-a-half rule. The
following program uses the simple conditional |F statement to add the overtime
factor:

PROGRAM pay1 (OUTPUT);

VAR
rate,
hours,
gross : REAL;
BEGIN
rate := 9.25;
hours := 47.5;

gross := rate * hours;
IF hours > 40.0 THEN
gross := gross + 0.5 ¥ rate * (hours - 40.0);
WRITELN (‘gross pay ’,gross:9:2)
END.

Sample output from program:

gross pay 474.06

MAXIMUM VALUE

Another application of the simple IF ... THEN conditional statement issearching
for the maximum among a set of values. The statement

IF value > maximum THEN maximum := value

updates the value of the variable maximum to reflect the maximum value found
so far. The contents of “variable” is moved to “maximum” if it is larger than the
existing “maximum’”’,

The variable “maximum’ must be initialized to an extremely small value
or to the first data value. Using a trailer value within the data items to terminate
data entry suggests using the WHILE or the REPEAT UNTIL looping constructs.

Conditional Execution/75

The following program uses the REPEAT UNTIL looping statements and reads
the first data item before starting the looping section of the program:

PROGRAM max1 (INPUT, OUTPUT);
VAR
value,
maximum : REAL;
BEGIN
WRITELN (‘Determine the maximum value’);
WRITELN (‘in a set of data. Use the');
WRITELN ('value -999.999 to terminate.’);
WRITELN (' *);
WRITE (‘value ? ');
READLN (value);
maximum := value;
REPEAT
IF value > maximum THEN
maximum := value;
WRITE (‘value ?');
READLN (value)
UNTIL value = -999.999;
WRITELN (" ‘);
WRITELN (‘maximum value = ',maximum:9:2)
END.

Sample output from program:

Determine the maximum value
in a set of data. Use the
value -999.999 to terminate.

value ? 25.95
value ? 17.95
value ? 31.49
value ? -999.999

maximum = 31.49

SALES COMMISSION

A store pays its sales force weekly on a commission basis. The commission is 5
percent of the first $10,000 in sales, 8 percent of the next $10,000 in sales, and
10 percent of all sales beyond $20,000. The following interactive program re-
quests the total sales for each salesperson and computes the resulting commission:

PROGRAM sales (INPUT, QUTPUT);
VAR

76/INVITATION TO PASCAL

amount, { Amount of sales }
comm { Sales commission }
: REAL;
BEGIN

{ Compute sales commission for the sales
force using the rates 5% for the first
$10,000, 8% for the second $10,000, and
10% for sales beyond $20,000. }
BEGIN
{ Initial message }
WRITELN (‘Compute the sales commission’);
WRITELN (‘for the sales force.’);
WRITELN (" *);
WRITELN (‘Use sales amount -999.99);
WRITELN ('to terminate data entry.")
END;
BEGIN
{ Process }
WRITELN (* ’);
WRITE (‘Sales amount ? ');
READLN (amount);
WHILE amount <> -992.99 DO
BEGIN
{ Determine commission }
IF amount < 10000.0 THEN
comm := 0.05 * amount;
IF amount >= 10000.0
AND amount < 20000.0 THEN
comm := 500.0
+0.08 * (amount -10000.0);
IF amount >= 20000.0 THEN
comm := 1300.0
+0.10 # (amount - 20000.0);
WRITELN (‘Commission =, comm:9:2);
{ Get next sales amount }
WRITELN (");
WRITE (‘Sales amount ? ‘);
READLN (amount)
END
END
END.

Sample output from this program:

Compute the sales commission
for the sales force.

Conditional Execution /77

Use the value -899.99
to terminate data entry.

Sales amount ? 12700.00
Commission = 716.00
Sales amount ? 8275.73
Commission = 413.79

Sales amount ? -999.99

ENUMERATED TYPES

One of the problems inherent with enumerated vatiable types is that they have
no external representation. The programmer can supply this external representa-
tion through the use of conditional output statements. The following program
defines an enumeration type listing the names of the seven days of the week and
uses |F ... THEN statements within a FOR loop to display the names of the days:

PROGRAM daylist (OUTPUT);

TYPE
days = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
VAR
day : days;
BEGIN
FOR day := Sun TO Sat DO
BEGIN
IF day = Sun THEN WRITELN (‘Sunday’);
IF day = Mon THEN WRITELN (‘Monday’);
IF day = Tues THEN WRITELN (‘Tuesday’);
IF day = Wed THEN WRITELN (‘Wednesday’);
IF day = Thu THEN WRITELN (‘Thursday’);
IF day = Fri THEN WRITELN (‘Friday’);
IF day = Sat THEN WRITELN (‘Saturday’);
END
END.

The output from this program follows:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

The output displays the longer form of the names while the internal type names
are the three-letter abbreviations.

78/INVITATION TO PASCAL

TEST FOR END OF LINE

One line of input to the program may contain more than one item., The READLN
command fetches only the first item and positions the file pointer to the next
line. The READ command picks up one item and positions the pointer to the
next item.

There are two special terms reserved for describing the status of an input
file. The term EOLN stands for end of line, and the term EOF stands for end of
file. These are standard Boolean variables having outcomes “true” or ““false”.
Chapter 8 covers external files and use of the EOF variable.

Interactive data entry uses the keyboard for input data. Pressing the Enter
key at the end of each line is the signal that the line is completed. Control passes
to the computer which processes that line. Data from the keyboard is text data
consisting of letters of the alphabet, numeric digits, periods, and other printable
symbols.

Nonprintable characters include carriage return, line feed, end of file marker,
and many other special control symbols. Many systems use the carriage return or
the combination carriage return and line feed to designate the end of the line.

The EOLN and EOF variables are most commonly used with the WHILE
and REPEAT UNTIL looping structures. They are also available for reference by
IF ... THEN conditional statements,

FREQUENCY COUNT FOR THE LETTERE

The following program uses a REPEAT UNTIL loop to read a one-line message
from the keyboard and count number of occurrences of the lowercase letter ‘e’:

PROGRAM letter1 (INPUT, OUTPUT);
VAR
letter : CHAR;
count : INTEGER;
BEGIN
count :=0;
WRITELN (‘Type line for frequency count’);
READ (letter);
REPEAT
IF letter = ‘e’ THEN count := count + 1;
READ (letter)
UNTIL EOLN;
WRITELN (‘Frequency for letter e = ’,count)
END.

Sample output from the program follows:

Type line for frequency count

Conditional Execution/79

Come, let us reason together.
Frequency for letter e = 5

NULL LINE

The REPEAT UNTIL loop always executes at least once because the test comes
at the end of the loop. If the person keying in the data types the Enter command
without including any prior data items, the line is empty. It is a null line in the
same sense that a semicolon immediately prior to an END results in a null Pascal
statement,

The WHILE construct with the test at the beginning of the loop avoids the
problem of trying to process data that isn‘t there if the input line is empty. The
following program uses the WHILE looping construct with its test at the begin-
ning of the loop:

PROGRAM letter2 (INPUT, QUTPUT);
VAR
letter : CHAR;
count : INTEGER;
BEGIN
WRITELN (‘Type line to analyze’);
READ (letter);
count :=0;
WHILE NOT EOLN DO
BEGIN
IF letter = ‘e’ THEN count := count + 1;
READ (letter)
END;
WRITELN (‘Frequency for letter e = *,count)
END.

Sample output from the program:

Type line to analyze
Friends, Romans, countrymen, lend me your ears.
Frequency for letter e = 5

Now try running the program letter2 with a null line containing no letters
at all,

EXERCISES

1. Write a program using pay rate and hours worked to compute gross pay giving
time-and-a-half for time over 40 hours. Use interactive data entry.

80/INVITATION TO PASCAL

2. Write a program that computes the minimum of a set of data obtained inter-
actively from the keyboard.

3. Write a program that fetches one line of input from the keyboard and forms
the frequency count for each of the vowels ‘a’, ‘e’, ‘i’, ‘0’, and 'u’.

4. Write a program that reads in the exam scores 88, 83, 75, and 86, computes
the average exam score and assigns a letter grade based on the average. Use
the following scale:

90-100% A
80-80.99 B
70-79.89 C
60-69.99 D

0-59.99 F

5,2 Ir.. . THEN...ELSE

The IF ... THEN ... ELSE conditional statement gives the computer a choice of
two possible statements. The computer will execute only one of the statements,
If the condition is true, the computer executes the first of the two statements. |If
the condition is false, the computer executes the second statement.

ALTERNATION

Alternation refers to the process of choosing one of two possible courses of action.
Either or both of the alternate statements can consist of compound statements
formed into BEGIN END blocks,

COMPUTE REGULAR AND OVERTIME PAY

A company pays time-and-a-half for overtime beyond 40 hours a week. The pay
is categorized into regular pay and overtime pay. Gross pay is the sum of regular
pay and overtime pay. The following program uses an IF ... THEN ... ELSE
statement to compute overtime pay if necessary or sets overtime pay to 0.0 if
not necessary. Another IF ... THEN ... ELSE statement computes regular pay.

PROGRAM pay1 (OUTPUT);
VAR

rate,

hours,

regular,

overtime,

grosspay : REAL;
BEGIN

rate := 8.25;

Conditional Execution /81

hours := 47.5;
IF hours <=40.0 THEN
regular := rate * hours
ELSE
regular := rate * 40.0;
IF hours <=40.0 THEN
overtime := (0.0
ELSE
overtime := 1.5 * rate * (hours - 40.0);
grosspay := regular + overtime;
WRITELN (‘Regular pay = ' regular:9:2);
WRITELN (‘Overtime pay = ', overtime:9:2);
WRITELN (‘Gross pay ="' grosspay:9:2)
END.

The output from the program follows:

Regular pay = 370.00
Overtime pay = 104.06
Gross pay = 474.06

IF... THEN ... ELSE WITH BEGIN END BLOCKS

The gross pay calculation involves only the two conditions overtime and no over-
time. The following program makes the test once and uses the BEGIN END blocks
to define compound statements for alternate execution:

PROGRAM pay2 (OQUTPUT);
VAR
rate,
hours,
regular,
overtime,
grosspay : REAL,;
BEGIN
rate := 9.25;
hours := 4.75;
IF hours <=40.0 THEN
BEGIN
regular := hours * rate;
overtime := 0.0
END
ELSE
BEGIN
regular := 40.0 * rate;
overtime := 1.5 * (hours - 40.0) * rate
END;

82/INVITATION TO PASCAL

grosspay := regular + overtime;

WRITELN (‘Regular pay =’ regular:9:2);
WRITELN (‘Overtime pay = ‘,overtime:9:2);
WRITELN (‘Gross pay ! grosspay:9:2)

END.

The output from this program follows:
Regularpay = 370.00

Overtime pay = 104.06

Gross pay = 474.06

NESTED IF ... THEN ... ELSE STATEMENTS

A distributor features two types of products and offers quantity discounts at
different quantity breaks for each type. The per-unit discount is 20 percent for
quantities of 10 or more class A products. Thediscount is 5 percent for quantities
of 100 or more class B products.

The following program computes the total purchase cost for an order given
the type of product (class A or class B), the regular per-unit price, and the quan-
tity ordered:

PROGRAM discnt1 (INPUT, OUTPUT);
VAR
class : CHAR;
price,
amount : REAL;
quantity,
number,
count : INTEGER;
BEGIN
WRITE (‘Number of orders ? ');
READLN (number);
FOR count := 1 to number DO
BEGIN
WRITELN {* *);
WRITE {‘Product class ? ’);
READLN (class);
WRITE (‘Per-unit price? ');
READLN (price);
WRITE (‘Quantity ')
READLN (quantity);
iF class = ‘A’ THEN

IF quantity < 10 THEN
amount := price * quantity
ELSE

amount := 0.8 * price * quantity

ELSE
IF quantity <100 THEN
amount := price * quantity
ELSE

amount := 0.95 * price * quantity;

Conditional Execution /83

WRITELN (‘Amount of purchase = ', amount:9:2)

END
END.

Sample output from the program follows:

Number of orders ? 4

Product class ? A

Per-unit price? 3.95

Quantity 7?25

Amount of purchase = 79.00

Product class ? B

Per-unit price? 0.14

Quantity ?5

Amount of purchase = .70

Product class ? B

Per-unit price? 0.69

Quantity ? 144

Amount of purchase = 94.39

Product class ? A

Per-unit price? 12.95

Quantity 74

Amount of purchase = 51.80

QUANTITY DISCOUNTS USING BOOLEAN EXPRESSIONS

Boolean expressions provide an alternate method to nested IF statements. The
following program uses compound Boolean expressions to test the product class

and quantity for the quantity discount problem:

PROGRAM discnt2 (INPUT, OUTPUT);
VAR

class : CHAR;

price,

amount : REAL;

quantity,

number,

count : INTEGER;
BEGIN

WRITE (‘Number of customers ? *);

84/INVITATION TO PASCAL

READLN (number);
FOR count := 1 TO number DO
BEGIN

WRITELN (" ');

WRITE (‘Product class ? ');

READLN (class);

WRITE (‘Per-unit price ? ');

READLN (price);

WRITE (‘Quantity)

READLN {quantity);

IF class = ‘A’ AND quantity <10 THEN
amount = price * quantity;

iF class = ‘A’ AND quantity >= 10 THEN
amount := 0.8 * price * quantity;

IF class = ‘B” AND quantity <100 THEN
amount := price * quantity;

IF class = ‘B’ AND quantity >= 100 THEN
amount := 0.95 * price * quantity;

WRITELN (‘Amount of purchase = ', amount:9:2)

END
END.

The output is the same as the previous program.

SERIES OF QUANTITY DISCOUNTS
A series of nested IF ... THEN ... ELSE statements of the type

|F condition THEN statement
ELSE IF condition THEN statement
ELSE |F condition THEN statement
ELSE IF condition THEN statement
ELSE statement

is very useful., The nested IF comparisons continue only until the first true con-
dition. After executing the statement following the THEN clause of the first
“true’’ condition, the rest are no longer needed.

A series of nested IF statements of this type can replace a similar series of
IF statements requiring complex Boolean expressions. In some cases the nested
IF construct is easier to understand than the corresponding |IF statements using
Boolean expressions. In other cases, Boolean expressions are easier to understand.

A manufacturer offers progressively higher discounts for a series of order
quantities. The regular per-unit price is $19.95. For orders of 20 to 49 the per-
unit price is $17.95. For orders of 50 to 199 the per-unit price is $16.95. For

Conditional Execution/85

orders of 200 or more the per-unit price is $15.95. The following program uses
a series of nested IFF ... THEN ... ELSE statements:

PROGRAM discnt3 (INPUT, OUTPUT);

VAR
quantity : INTEGER;
price,
amount : REAL;
BEGIN

WRITELN (‘Determine quantity discount price’);
WRITELN (‘and amount of purchase for several’);
WRITELN (‘order quantities. Use quantity of’);
WRITELN (‘O to terminate.’);
WRITELN (' *);
WRITE (‘Quantity ? ‘);
READLN (quantity);
REPEAT
IF quantity <20 THEN
price := 19,95
ELSE IF quantity <50 THEN
price := 17.95
ELSE IF quantity <200 THEN
price := 16.95
ELSE
price := 15.95;
amount := price * quantity;
WRITELN (‘Per-unit price ' price:9:2);
WRITELN (‘Amount of purchase’,amount:9:2);
WRITELN (* ’);
WRITE (‘Quantity ? ‘);
READLN (quantity)
UNTIL quantity =0
END.

Sample output follows:

Determine quantity discount price
and amount of purchase for several
order quantities. Use a quantity of
0 to terminate.

Quantity ? 7
Per-unit price 19.95
Amount of purchase 139.65

Quantity ? 26
Per-unit price 17.95
Amount of purchase 448.75

86/INVITATION TO PASCAL

Quantity ? 50

Per-unit price 16.95
Amount of purchase 847.50
Quantity ? 200

Per-unit price 15.95
Amount of purchase 3190.00

IF THEN BLOOPERS

Several problems arise when using IF ... THEN statements, especially those that
are deeply nested. A misplaced semicolon will cause a program to perform dif-
ferently from that intended. The statement

IF X <25 THEN price := 24.95;

will assign the value 24.95 to the variable price only if the value of X is less than
25, The statement

IF X< 25 THEN; price := 24.95;

assigns the value 24.95 to price regardless of the value contained in X. The semi-
colon after the THEN keyword terminates the |F statement.

Somedeeply nested IF... THEN statements are ambiguous to people reading
the program, but not to the Pascal compiler. Many of the ambiguities are removed
by noting that Pascal always associates an ELSE statement with the immediately
preceding open |F statement. It that is not intended, then careful use of BEGIN
END blocks can force the compiler to associate the ELSE statement with the
appropriate IF ... THEN statement,

The ELSE portion of the IF ... THEN ... ELSE statement can be omitted
entirely. It is very difficult to read programs having nested |F statements if some
of the IF statements have ELSE statements and some do not, Use extreme care
when writing, testing, and debugging nested IF statements.

EXERCISES

1. Write a checkbook balancing program. Read the initial balance first, then read
the transactions one at a time. For each transaction, type the letter “D’* for a
deposit and the letter “C" for a check. The value of the transaction will be
positive. Use a transaction type of ““S" to stop the data entry. Compute and
display the service charge. There is no service charge if the balance never falls
below $200.00. The service charge is $.10 per check if the balance does fall
below $200.00.

2. Write a program that fetches one line of input from the keyboard and counts

PN TN T T T T ITRnT

the frequencies of each of the vowels "a”, ""e"”, "i"’, 0", and “u". Use a nested
IF ... THEN ... ELSE statement.

Conditional Execution /87

3. Write a program that reads in a set of 4 exam scores for each of 5 students
and computes the average exam score. Assign a letter grade as follows:

90.00-99.99 A
80.00-89.99
70.00-70.99
60.00-69.99
00.00-69.99

m O O w

5.3 CAsE...OF

When one of several alternate statements must be selected, it is possible to use
IF statements to control theselection. The | F statements are in the form of deeply
nested |F statements and are difficult to construct, difficult to test, difficult to
debug, and difficult to read. Avoid deeply nested |F statements that are difficult
to read.

The CASE selection statement is of the form

CASE expression OF
value1 list : statement1;
value2 list : statement2;
value3 list : statement3;
etc.
valuen list : statementn
END;

The expression must result in values which are integer, character, or Boolean. It
may reference a variable of an enumerated ordinal type. The expression cannot
result in a real value.

ERROR CONDITIONS

What if the expression resuits in a value not contained in the list? Many Pascal
systems consider this an unrecoverable error and the program stops working. Other
Pascal systems, including Alcor Pascal, continue program execution with the state-
ment immediately following the END.

OTHERWISE OPTION

Alcor Pascal defines an OTHERWISE option giving a set of statements for exe-
cution if the expression results in a nonlisted value. The format of the CASE state-
ment with the OTHERWISE option is

CASE expression OF
valuel list : statement1;

88/INVITATION TO PASCAL

value2 list : statement2;
value3 list : statement3;
valued list : statement4;
OTHERWISE
statement 5;

statement 6;

statement 7

END;

COUNT LETTER FREQUENCIES
The following program uses the CASE selection statement to count the frequencies

PN T N T N T

of the vowels "“a", "'e"’, "'i"’, 0", and ""u’’:

PROGRAM letter1 {INPUT, OUTPUT);
VAR
letter : char;
counta,
counte,
counti,
counto,
countu,
countk : INTEGER;
BEGIN
counta :=0;
counte :=0;
counti :=0;
counto :=0;
countu :=0;
countk :=0;
WRITELN (‘Type line to be analyzed');
READ (letter);
WHILE NOT EOLN DO
BEGIN
CASE letter OF
‘a’, ‘A’ : counta :=counta + 1;
‘e’, ‘E' : counte := counte + 1;
‘i, 'V :counti :=counti +1;
‘o', ‘O’ : counto :=counto + 1;
‘u’, ‘U’ : countu :=countu + 1;
OTHERWISE
countk :=countk + 1
END;
READ (letter)
END;
WRITELN (‘Frequency for’);

Conditional Execution /89

WRITELN (‘Vowel a’,counta);

WRITELN (‘Vowel e’,counte);

WRITELN {"Vowel! i',counti);

WRITELN (‘Vowel o’,counto);

WRITELN (‘Vowel u’,countu);

WRITELN (‘Consonants’,countk)
END.

Sample output for the program follows:

Type line to be analyzed
On the road to Mandalay, where the flying fishes play

Vowel a 5
Vowel e 5
Vowel i 2
Vowel o 3
Vowel u 0

Consonants 37

ENUMERATED DATA TYPES

The following program defines a data type consisting of the seven days of the
week and uses the FOR loop to enumerate the days. The CASE selection state-
ment displays the full names rather than the abbreviations used in the data type:

PROGRAM daytlist (OUTPUT);

TYPE
days = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
VAR
day : days;
BEGIN
FOR day := Sun TO Sat DO
CASE day OF
Sun : WRITELN (‘Sunday’);
Mon : WRITELN (‘Monday’);
Tue : WRITELN (‘Tuesday’):
Wed : WRITELN {‘Wednesday’):
Thu : WRITELN (‘Thursday’);
Fri : WRITELN (‘Friday’);
Sat : WRITELN (‘Saturday’)
END
END.

The output from the program follows:

Sunday
Monday

90/INVITATION TO PASCAL

Tuesday
Wednesday
Thursday
Friday
Saturday

ASSIGNING LETTER GRADES

The following program assigns and displays a letter grade for an integer test score
on an exam having 100 as the maximum possible score:

PROGRAM assign (INPUT, OQUTPUT);
TYPE
grades = ‘A’ .. 'F';
VAR
score : INTEGER;
grade : grades;
BEGIN
WRITELN (‘Assign letter grades to’);
WRITELN (‘exam scores. Use an exam’);
WRITELN (‘score of -99 to terminate.’);
WRITELN (* *);
WRITE (‘Score ? ');
READLN (score);
REPEAT
CASE score DIV 10 OF
10, 9 : grade :='A’;

8 : grade := ‘B";
7 : grade :='C’;
6 : grade :='D’;
OTHERWISE
grade :="‘F'
END;

WRITELN (‘Grade = ’,grade);
WRITELN {* ');
WRITE (‘Score ? ’);
READLN (score)
UNTIL score = -99
END.

Sample output for the program follows:

Assign letter grades to
exam scores. Use an exam
score of -89 to terminate.

Score ? 83
Grade =B

Conditional Execution/91

Score ? 69
Grade=D

Score ? 91
Grade = A

Score ?-99

The Pascal CASE selection statement is a powerful statement for organizing multi-
way action problems,

EXERCISES

1. A service station charges $1.319 per gallon for unleaded gas during the week
and $1.379 on weekends. Days are numbered sequentially starting with 1 for
January 1, 2, for January 2, etc. February 1 is day 32 since January has 31
days. This is a common business practice.

Look at the calendar for the current year to determine the day of the
week for January 1. Using that information, write a program that accepts the
number of the day, displays the name of the day, and assigns the proper price
per gallon. Use the CASE selection statement.

2. Write a program that computes the average exam score for three exams for
each of five students. Assign letter grades using the boundaries given by the
program “grades’’. Convert the average grade (real) to an integer score and use
the CASE selection approach.

3. Write a program that accepts an integer value and displays the message “odd"’
or “even’” depending on whether the integer is odd or even. Use CASE selec-
tion and a selector expression of the type

number MOD 2

which gives the remainder after dividing the integer variable number by 2.

5.4 BOOLEAN EXPRESSIONS

Boolean algebra is named in honor of the mathematician George Boole. Objects
in Boolean algebra assume one of two values (true or false). The objects are state-
ments or assertions. Two or more are combined into compound statements using
Boolean algebra.

TYPE BOOLEAN

Pascal permits the definition and use of Boolean variables, The following program
defines two Boolean variables, assigns values to them, and displays the results:

PROGRAM boole1 (OUTPUT);
VAR

92/INVITATION TO PASCAL

start,

stop : BOOLEAN;
BEGIN

start ;= TRUE;

stop := FALSE;

WRITELN (start);

WRITELN (stop)
END.

The sample output follows:

TRUE
FALSE

RELATIONAL EXPRESSIONS

The value of a Boolean variable is often set with a relational comparison. The
following program uses relational expressions to set the value of Boolean variables:

PROGRAM boole2 (OUTPUT);

VAR
less,
equal,
greater : BOOLEAN;
first,
second : INTEGER;
BEGIN
first :=19;
second = 12;
less := first <second;
equal := first = second;

greater := first > second;

WRITELN (’Less than
WRITELN (‘Equal to

WRITELN (‘Greater than

END.
The sample output follows:

Less than FALSE
Equal to FALSE
Greater than TRUE

BOOLEAN OPERATORS

! less);
‘,equal);
' greater)

The Boolean operators are AND, OR, and NOT. The operation AND is true if
both of the operands are true. The operation OR is true if at least one of the ex-

Conditional Execution /93

pressions is true. The operator NOT is true if the operand is false. The following
program illustrates the use of the AND, OR, and NOT operators.

PROGRAM boole3 (OUTPUT);
VAR
first,
second,
result1,
result2,
result3 : BOOLEAN;
BEGIN
first := TRUE;
second := FALSE;
resultl := first OR second;
result2 := first AND second;
result3 := NOT first;
WRITELN (‘Result 1 ', result1);
WRITELN (‘Result 2 ", result2);
WRITELN (‘Result 3 *,result3)
END.

The sample output follows:

Result 1 TRUE
Result 2 FALSE
Result 3 FALSE

OPERATOR PRECEDENCE

Alcor Pascal uses the following precedence ordering of the arithmetic and logical
operators:

Highest () Parentheses
+ - When used as unary operators
* / DIV MOD
+-
=<><><L=>=
NOT
AND
Lowest OR

This precedence ordering differs from some Pascal implementations. They place
NOT on the same order as unary operators, AND on the level of * and /, and OR
on the same level as addition and subtraction.

94/INVITATION TO PASCAL

RELATIONAL EXPRESSIONS AND BOOLEAN VARIABLES

The following program defines an enumeration variable containing the common
three-letter abbreviations for the names of the days. It uses a FOR loop to test
each day to determine whether it is a weekday or a weekend day.

PROGRAM boole4 (OUTPUT);

TYPE
days = (SUN, MON, TUE, WED, THU, FRI, SAT);
VAR
day : days;
weekday,
weekend : BOOLEAN;
BEGIN
FOR day := SUN TOSAT DO
BEGIN
weekend := (day = SAT) OR (day = SUN);
weekday := (day > SUN) AND (day < SAT);
WRITE (‘Week day ’',weekday);
WRITELN (* Weekend ‘,weekend)
END
END.

The sample output follows:

Weekday FALSE Weekend TRUE

Weekday TRUE Weekend FALSE
Weekday TRUE Weekend FALSE
Weekday TRUE Weekend FALSE
Weekday TRUE Weekend FALSE
Weekday TRUE Weekend FALSE
Weekday FALSE Weekend TRUE

BOOLEAN VARIABLES FOR LOOPING CONSTRUCTS

The loop control variables for WHILE and REPEAT loops can be Boolean vari-
ables. The following program repeats the loop until the Boolean variable is TRUE:

PROGRAM booled (INPUT, QUTPUT);
VAR

value,

sum : REAL;

stop : BOOLEAN;
BEGIN

sum :=0.0;

REPEAT

WRITE ('Value ? *);

Conditional Execution/95

READLN (value);
stop := (value = -999.0);
IF NOT stop THEN
sum :=sum + value;
UNTIL stop;
WRITELN (‘Sum ’,sum:9:2)
END.

The following is a sample test run:

Value ? 13.0
Value ? 15.5
Value ? -999.0
Sum 28.50

EXERCISES

1. Write a program that obtains data from the keyboard and determines both
the largest and the smallest values. Use the trailer value -999.0 to terminate
the data entry.

2. Write a program that obtains data from the keyboard and counts the number
of runs of increasing or decreasing value. The data

12 39 28 23 16 32 35 25 40
has the fiveruns (12, 39), (39, 28, 23, 16), (16, 32, 35), (35, 25), and (25, 40).

3. Write a program that obtains a line of text from the keyboard and computes
the average number of letters in each word. The comma, period, semicolon,
and space may be used to separate words on the line.

6 Procedures and functions

OV ERVH E The subprogram brings order and discipline to

the creation of large programs. The programmer
divides large programs into modules, each of which performs one of the needed
tasks. Subdividing a program into BEGIN/END blocks provides some help in
organizing the program.

Pascal permits the programmer to define and use procedures and user-
defined functions. Procedures bring order out of chaos. Large programs should
be designed as an hierarchical tree with a main program calling procedures which
call lower-level procedures, until the lowest-level procedures accomplish the pro-
cessing steps.

The organization chart of a program looks just like an organization chart
of a company. The span of control is just as important to a program as itis to a
company. Rarely should one procedure directly call more than six or eight sub-
ordinate procedures.

Procedures within a large program should be independent of each other.
The term loose coupling applies to this property of independence. Procedures
communicate with each other through argument (parameter) lists. Another im-
portant property is cohesion. An internally cohesive procedure does only one task.
Combining two or more disconnected tasks into one procedure is poor practice.

This chapter introduces the use of procedures and user-defined functions,
It discusses the relative merits of global versus local variables. It compares the
major types of procedure variable references.

O

6.1 SUBPROGRAMS WiTH GLOBAL VARIABLES
Consider the following program which computes the area and circumference of a
circle:

PROGRAM circle? {(INPUT, OUTPUT);
VAR

radius,

area,

97

98/INVITATION TO PASCAL

circum : REAL;

BEGIN
WRITELN (‘Compute the area’);
WRITELN (‘and circumference’);
WRITELN (‘of a circle.’);
WRITELN;
WRITE (‘Radius ?’);
READLN (radius);
area := 3.14159 * radius * radius;
circum := 2.0 * radius * 3.14159;

WRITELN;

WRITELN (‘Area ', area:9:2);

WRITELN (‘Circumference ’,circum:9:2)
END.

The output from a sample run follows:

Compute the area
and circumference
of a circle.

Radius ? 2.5

Area 19.63
Circumference 15.71

This program displays an initial message identifying its purpose, requests
the radius of the circle, and displays its area and circumference.

BEGIN/END BLOCKS AND DOCUMENTATION

Chapter 3 illustrates the use of BEGIN/END blocks and comments to organize
the program into identifiable tasks. The following program uses this approach:

PROGRAM circle2 (INPUT, OUTPUT);
VAR
radius,
area,
circum : REAL;
BEGIN
{ Compute the area and circumference
of acircle }
BEGIN
{ Initial message }
WRITELN (‘Compute the area’);
WRITELN (‘and circumference’);
WRITELN (‘of a circle.’)
END;
BEGIN

Procedures and Functions /99

{ Getdata }
WRITELN;
WRITE ('Radius ?’);
READLN (radius)
END;
BEGIN
{ Compute measures }
area := 3.14159 * radius * radius;
circum :=2.0 * radius * 3.14159
END;
BEGIN
{ Display result }
WRITELN;
WRITELN (’'Area ‘,area:9:2);
WRITELN (‘Circumference ’,circum:9:2)
END
END.

The sample output is the same as for the previous program. This program more
clearly identifies the three tasks of the program.

PROCEDURES
A procedure is a subprogram identified by name. The procedure heading

PROCEDURE name1

assigns the label name1 to the procedure consisting of the following statements
including the BEGIN/END block. The following procedure displays the initial
message:

PROCEDURE initial;
{ Initial message }

BEGIN
WRITELN (‘Compute the area’);
WRITELN (‘and circumference’);
WRITELN (‘of a circle.”)

END;

The radius is requested interactively by the following procedure:

PROCEDURE getdata;
{ Get data !}
BEGIN
WRITELN;
WRITE (‘Radius ? ');
READLN (radius)
END;

100/INVITATION TO PASCAL

The following computes the area and circumference:

PROCEDURE compute;
{ Compute measures }
BEGIN
area := 3.14159 * radius * radius;
circum := 2.0 * radius * 3.14159
END;

The area and circumference is displayed by the following procedure:

PROCEDURE display;
{ Display results }
BEGIN
WRITELN;
WRITELN (‘Area ‘,area:9:2);
WRITELN (‘Circumference ’,circum:9:2)
END;

The following is the main program which uses the procedures:

PROGRAM circle3 (INPUT, OUTPUT);
{ Compute the area and circumference
for a circle }
VAR
radius,
area,
circum : REAL;
BEGIN
initial;
getdata;
compute;
display
END.

COMPLETE PASCAL PROGRAM USING PROCEDURES

Most higher-level languages require the compiler to make at least two passes
through the source program while generating the object program. Pascal compilers
need only one pass if the programmer defines everything before it is needed.
Variables must be declared before they are used. Procedures must be defined
before they are used. Procedure definitions follow VAR declarations and come

before the BEGIN/END block of the main program.,

The following complete Pascal program includes the procedure definitions

and the main program as they should appear:

Procedures and Functions/101

PROGRAM circle3 (INPUT, OUTPUT);
{ Compute the area and circumference
of a circle }
VAR
radius,
area,
circum : REAL;
PROCEDURE initial;
{ Initial message }
BEGIN
WRITELN;
WRITELN (‘Compute the area’);
WRITELN (‘and circumference’);
WRITELN (‘of a circle.’)
END;
PROCEDURE getdata;
{ Getdata }
BEGIN
WRITELN;
WRITE (‘Radius ? ');
READLN (radius)
END;
PROCEDURE compute;
{ Compute measures }
BEGIN
area := 3.14159 * radius * radius;
circum := 2.0 * radius * 3.14159
END;
PROCEDURE display;
{ Display results }
BEGIN
WRITELN;
WRITELN (‘Area ‘,area:9:2);
WRITELN (‘Circumference’,circum:9:2)
END;
BEGIN
{ Main program }
initial;
getdata;
compute;
display
END.

The output is the same as that of the previous programs.

102/INVITATION TO PASCAL

EMPHASIZE PROGRAM LISTING DIVISIONS

Long Pascal programs will still be difficult to read unless the programmer uses
strong measures to emphasize the divisions into procedures. Many programmers
use one or more blank lines to separate procedure definitions from each other
and from the body of the main program. Programmers familiar with Pascal’s
structure know to look for the body of the main program at the end of the listing
with a period terminating the last END.

Other programmers place the name of the procedure in a box of asterisks
as an initial identifying comment. The following program illustrates this practice:

PROGRAM circle4 (INPUT, OUTPUT);

{ Compute the area and circumference
of a circle }

VAR

radius,
area,
circum : REAL;
{ X EFEEREEEEE XS EEREEE R R R R E R R R R A E KRR ERE NSRS}
* initial »
[EXTEZEEEXEEEEREREEEREEE R R R R R R R R RS EE R EE R E R X J }
PROCEDURE initial;
{ initial message }

BEGIN
WRITELN;
WRITELN (‘Compute the area’);
WRITELN (‘and circumference’);
WRITELN (‘of a circle.)

END;

{ [EXTEEREEEEEEEEEEEEEEEEEEEEERER RS X R R KRR XX X]
* getdata *
**************************#******%*****ﬁ*}

PROCEDURE getdata;

{ Getdata }

BEGIN

WRITELN;

WRITE (‘Radius ?');
READLN (radius)

END;

{ IEEXEEEREEEEE EEE SN ENEEEEREELELEREEE LR R R 2]
® compute measures *
CEEZEEERETEEEEEEEEERE R R E R R R R R AN EE A AR AR XXX &) }

PROCEDURE compute;

{ Compute measures }

Procedures and Functions/103

BEGIN
area := 3.14159 * radius * radius;
circum := 2.0 * radius * 3.141569
END;
{'I-*I'-I'***I‘O*l--l****iiﬁ**lii**i***&*’.***iiﬁ&
- display *
‘l**ﬁ*i*******l’!i**ﬁ***“*i*i*#il*!ll"il%i}
PROCEDURE display;
{ Display results }
BEGIN
WRITELN;
WRITELN (‘Area !, area:9:2);
WRITELN (‘Circumference ‘,circum:9:2)
END;
{0!*!&****'#*******ﬂ*ﬁ'*ﬁ**&lilllQ‘lﬂ{{ii‘.
¢ circle4 main body .
“***i***i*#ﬁﬁ*'****l’i‘l*&*I'i‘.’i}.lil'!ﬁ}
BEGIN
initial;
getdata;
compute;
display

END.
Sample output from the program follows:

Compute the area
and circumference

of acircle.

Radius ? 6.0

Area 78.54

Circumference 31.42

EXERCISES

1. Write a program to compute the value of n! (n factorial) for a positive integer
n. Limit n to therange 1, 2, ..., 20. Compute n! as the product of the first n

integers, but use a real variable to contain the product. Use a modular program
organization with one procedure displaying an initial message, the second cal-
culating the product, and the third displaying the result, Test using an n of 6.

2. Write a program calculating the sum and sum of squares of the following values:

83 91 75 69 82

104/INVITATION TO PASCAL

Use a modular organization with one procedure displaying an initial message,
a second reading the data and accumuiating the sum and the sum of squares,
and the third displaying the result.

3. Write a program to compute the surface area, volume, and net weight of a
cylinder 12 feet long by 3 feet in diameter. Assume that the cylinder is filled
with water. Use modular organization with procedures.

4. Write a program to compute the regular pay, overtime pay, and gross pay for
several individuals. Use modular organization with procedure calls. Test using
the following: 36.5 hours at $8.25 per hour, 43.1 hours and $5.96 per hour,
32 hours at 7.45 per hour, and 47.5 hours at $9.25 per hour.

6.2 SUBPROGRAMS WiTH LOCAL VARIABLES

Variables declared in the main program are global variables available to all sub-
ordinate procedures. After control returns to the main program, changes to global
variables made in the subsidiary procedure remain. The variables A and B in the
following program are global because they are defined in the main VAR declara-
tion section:

PROGRAM global (QUTPUT);
{ Hlustrate use of global variables }
VAR

a,

b : INTEGER;
{ Subordinate procedure }
PROCEDURE change;
BEGIN

a:=21;

b :=22;

WRITELN (a,b)
END;
{ Body of main program }
BEGIN

a:==11;

b:=12;

WRITELN (a,b);

change;

WRITELN (a,b)
END.

The program displays the following:

11 12
21 22
21 22

Procedures and Functions/105

The main program sets the values of ato 11 and b to 12 and displays them.
It then calls the subsidiary procedure which changes the variable values to 21 and
22 and displays them. After control returns to the main program, it displays the
contents of a and b which reflect the changes made by the subsidiary procedure.

LOCAL VARIABLES

Variables declared in the subsidiary procedure are local to that procedure and
are kept hidden from higher-level procedures, including the main program. Vari-
ables given similar names in both the main routine and subsidiary procedures will
not interfere with each other. The following program illustrates this:

PROGRAM local (QUTPUT);
{ Hlustrate use of local variables }

VAR

a,

b : INTEGER;
{ Subordinate procedure }
PROCEDURE change;
VAR

a,

b : INTEGER;
BEGIN

a:=21;

b :=22;

WRITELN (a,b)
END;
{ Body of main program }
BEGIN

a:=11;

b :=12;

WRITELN (a,b);

change;

WRITELN (a,b)
END.

The program displays the following output:

11 12
21 22
1M 12

The main program initializes the variables a to 11 and b to 12 and displays
their values. It calls the subsidiary procedure which declares and initializes its
own local variables and displays their values. Upon returning to the main pro-
gram, the last WRITELN statement displays the initial values of the variables a
and b which were not changed by the subsidiary procedure.

106/INVITATION TO PASCAL

INFORMATION HIDING AND LOOSE COUPLING

Information hiding is an important principle of computer science. Global variables
declared at the level of the main program are available for all subsidiary procedures
to inspect and change even though they are irrelevant. It is far better to define
local variables for restricted use by the subsidiary procedures whenever possible.
Keeping local variables hidden within procedures reduces the coupling between
modules and enhances their mutual independence.

SENDING OUTPUT TO THE PRINTER

Future programs will be longer and will have more output. Redirecting video out-
put to the printer is one way of providing a permanent record of the output. For
many programs, however, the resulting output is not well-organized. A better
practice is to use the keyboard and video screen for interactive data entry and to
send the organized output to the printer for a permanent record.

All Pascal programs can use the standard files INPUT and OUTPUT. The
INPUT file is usually the keyboard. The OUTPUT file is usually the video dis-
play. By using the physical device names :L (printer), :C (console), or :D {dummy
device) the user can redirect 1/O to an appropriate device. The printer does not
make the best input device. Alternately, the 1/O may be redirected to disk files
by typing the desired TRSDOS file names for the run time prompt messages.

The programmer may declare and use files in addition to the normal INPUT
and QUTPUT default files. The logical name of the file must be declared as type
TEXT in the VAR section. It must also appear as the first name in the parameter
list of the READ, READLN, WRITE, or WRITELN command. Input files must
be RESET to initialize the pointer before the first READ or READLN. Output
files require the REWRITE command to initialize their pointer before the first
WRITE or WRITELN.

EXAMPLE GRADE ANALYSIS PROGRAM

The following program sends the printer some weli-known lines attributed to
Abraham Lincoln:

PROGRAM printer {(out);

VAR
out : TEXT;

BEGIN
REWRITE (out);
WRITELN (out,’You can fool all of the people’);
WRITELN (out,’some of the time, and some of the');
WRITELN (out,‘people all of the time, but you’);
WRITELN (out,’cannot foo! all of the people’);
WRITELN (out,‘all of the time.")

END.

Procedures and Functions/107

Respond with the physical device name :L to the run time prompt for the
file “out”. The five lines will be sent to the printer.

EXAMPLE PROGRAM SENDING OQUTPUT TO THE PRINTER
A class of six students have taken three exams with the following results:

1D Exam 1 Exam 2 Exam 3

101 73 79 81
105 89 96 88
17 72 86 93
124 74 61 64
131 83 62 49
139 42 55 61

Compute the average exam score for each student and assign a letter grade of A,
90%; B, 80%; C, 70%; D, 60%; and F, below 60% for the average exam score.
When running the program use the device parameter :L to send the normal out-
put to the printer rather than to the video display.

The prog am follows:

PROGRAM gradel (INPUT, QOUTPUT, printer);
{ Compute exam averages and
assign letter grade }
VAR
printer : TEXT,;
answer,
grade : CHAR;
number : INTEGER;
average : REAL;
{***
* initial *
***}
PROCEDURE initial;
BEGIN
WRITELN (‘Compute the average exam score’);
WRITELN (‘for several students and assign’);
WRITELN (‘appropriate letter grade.’)

END;
{***
* compute *

***}

PROCEDURE compute;
VAR

id,

count : INTEGER;

108/INVITATION TO PASCAL

score,
sum : REAL;
BEGIN
sum := 0.0;
WRITELN;
WRITE (‘1D number ? ');
READLN (id);
WRITELN ‘Score for’);
FOR count := 1 TO number DO
BEGIN
WRITE ("Exam ',count:2);
READLN (score);
sum := sum + score

END;
average := sum / number;

END;
{************%********%*******#%*%********

assign »

&****************Q***ﬁ**********w%*******}
PROCEDURE assign;
BEGIN

|F average >= 90.0 THEN grade := ‘A’
ELSE IF average >= 80.0 THEN grade := ‘B’
ELSE IF average >=70.0 THEN grade := 'C’
ELSE IF average > = 60.0 THEN grade := ‘D’
ELSE grade := ‘F’

END;
{**%**%********%**%*****#**&**#**********ﬁ
* body of main program »

****%*%%****%%*******4***{%******&#**%}&#}

BEGIN
REWRITE (printer);
WRITELN (printer,’ID number Average Grade');
WRITELN;
WRITE {’Number of exams ? ’);
READLN {number);
REPEAT
compute;
assign;
WRITELN (printer,id:9,average:9:2,grade:5);
WRITELN;
WRITE (‘Enter another student (Y/N)');
READLN (answer)
UNTIL answer = “N"'
END.

Procedures and Functions/109

EXERCISES

1. Debug and test the program calculating the grade point averages and letter
grades. Route the file ""printer” to the printer using the device name :L to
the run time prompt. Press the enter key for the INPUT and QUTPUT file
prompts to permit interactive data entry,

2. Write a program using subsidiary procedures and local variables to determine
the elapsed time in hours and minutes for two given times using a 24-hour clock.

3. Write a program that will print a compound interest table. Use interactive data
entry to obtain the beginning balance ($7,250), interest rate (12.5 percent),
compounding periods per year {quarterly), and number of years (25). For
each year, print one line giving the year, interest earned during the year, and
the accumulated balance at the end of the year.

6.3 TYPES OF VARIABLE REFERENCES

Variables may be global or local. Variables declared by the Pascal program are
global to all procedures defined within that program. Each subsidiary procedure
defines its own local variables. A procedure that defines a local variable of the
same name as a global variable cannot reference the global variable. The local
declaration takes precedence.

HIERARCHICAL OR NESTED ORGANIZATION

Large Pascal programs are organized as hierarchical trees with the main program
forming the root and the subsidiary subroutines tied together much as acompany
organization chart. The main routine calls procedures which, in turn, call lower-
level procedures. The lower-level procedures are usually nested within their hosts.
Variables declared in a procedure are global to those procedures nested within if
they have not declared variables with the same name,

SUBPROGRAM PARAMETERS

A parameter is a value or variable used for communicating information between
a procedure and its calling program. A value parameter is a variable local to a
procedure whose value is passed to it as an argument of the procedure call. Pass-
by-value communicates the actual value to the subprogram.

A variable parameter is a local identifier used as a synonym for the global
variable. The local variable is used instead of the global variable name. This is
called pass-by-reference.

The procedure call contains an argument list enclosed in parentheses.
Commas separate entries in the list, The pass-by-value method may use constants
and literals. The pass-by-reference method must use variables. The parameter list,
or argument list, contains groups of parameters separated by semicolons. The

110/INVITATION TO PASCAL

keyword VAR for a group of parameters identifies them as variable parameters.
A group that does not begin with the keyword VAR designates value parameters,

PASS BY VALUE

For a rectangle of length / and width w, the expression /w gives the area, and
2(/+w) gives the length of the perimeter (hereafter referred to as the circum-
ference). The following program uses value parameters to pass the length and width
measurements to the procedure. It then calculates the area and circumference:

PROGRAM param1 (INPUT, OUTPUT);
VAR
long,
short : INTEGER;
PROCEDURE compute (length, width : INTEGER);
VAR
area,
circum : INTEGER;
BEGIN
area := length * width;
circum := 2 * (length + width);
WRITELN;
WRITELN (‘Length ' length);
WRITELN (‘Width ', width);
WRITELN (‘Area ', area);
WRITELN (‘Circumference ’,circum)
END;
BEGIN
compute (40, 30);
long := 50;
short := 25;
compute (long, short)
END.

Output from the program follows:

Length 40
Width 30
Area 1200
Circumference 140
Length 50
Width 25
Area 1250

Circumference 150

Procedures and Functions/111

LOOK BUT DON'T TOUCH

The pass-by-value method initializes the subprogram’s local variable. The sub-
program can use that value, but it cannot change the value of the variable in the
calling program. Observe the result of running the following program:

PROGRAM look1 (OUTPUT);

VAR

a,

b : INTEGER;
PROCEDURE touch (a, b : INTEGER);
VAR

product : INTEGER;
BEGIN

product :=a * b;

WRITELN;

WRITELN (a, b, product);

a:=4;

b:=5;

product :=a * b;
WRITELN (a, b, product);
END;
BEGIN

a:=3;
b:=4,
touch (a, b);
WRITELN (a, b);
touch (6, 8)
END.

Output from the program follows:

3 4 12
4 5 20
3 4

6 8 48

The subsidiary procedure cannot modify the values of the variables passed to it
as value parameters.

PASS-BY-REFERENCE USING VARIABLE PARAMETERS

The calling program passes the address of the argument with the pass-by-reference
method. This allows the subprogram to modify the contents of the variable within
the calling program. This is stronger binding than the pass-by-value approach. Pass-
by-value provides one-way communication from the calling program to the sub-

112/INVITATION TO PASCAL

program. The subprogram can “look but not touch”, Pass-by-reference through
the use of variable parameters allows two-way communication. The subprogram
can return values to the calling program.

The following program uses variable parameters and pass-by-reference,
allowing complete two-way communication:

PROGRAM look2 (OUTPUT);

VAR

product,

a,

b : INTEGER;
PROCEDURE touch (VAR x, v, p : INTEGER);
BEGIN

a:=x*y,;

WRITELN (x, v, p);

x :=6;

=8;
END;
BEGIN
a:=3;
b:=4,

touch (a, b, product);
WRITELN (a, b, product)
END.

The program output follows:

3 4 12
6 8 12

The main program placed the value 3 in aand the value 4 inb. It passed these
as variable parameters to the procedure “touch’ which computed the product and
displayed the three values. It also changed the values of the variable parameters,
referred to as x and y in the subprogram. (They referenced the variables a and b
in the main program.) The parameter lists of the calling statement and the sub-
program are linked together by position.

CHOICE OF METHOD

Many programming languages, including FORTRAN and COBOL, have subroutine
capabilities with pass-by-reference methods. Few of the traditional languages
implement pass-by-value parameters. Pascal programs can choose between the
two methods.

Pass-by-value parameters provide the loosest coupling between subprogram
and calling program and should be used where possible. Pass-by-reference using

Procedures and Functions/113

variable parameters permit the subprogram to reach into the calling program'’s
variable space to change their values. This is much stronger coupling and should
be used only when needed.

MIXED PARAMETERS

The argument list may contain a mixture of value parameters and variable para-
meters, Value parameters are those which the subprogram may look at but not
change. Variable parameters are the results returned to the calling program from
the subprogram.

The following program computes the area and circumference of a rectangle
sending the length and width as value parameters to the compute procedure which
returns the area and circumference as variable parameters:

PROGRAM param2 (OUTPUT);
VAR
length,
width,
area,
circum : INTEGER;
PROCEDURE compute (a, b : INTEGER;
VAR p, s : INTEGER);

BEGIN
p:=a*b;
s =2*(a+b)
END;
BEGIN
length := 40;
width := 30;
compute (length, width, area, circum);
WRITELN (‘Length " length);
WRITELN (‘Width ' width);
WRITELN (‘Area ' area);
WRITELN (‘Circumference ’,circum)
END.

The program output follows:

Length 40
Width 30
Area 1200

Circumference 140

EXERCISES

1. Write a program to compute the regular and overtime pay given the hours
worked and the hourly pay rate. Use a procedure to accept the hours worked

114/INVITATION TO PASCAL

and pay rate as value parameters, and return regular pay and overtime pay as
variable parameters. Display the regular pay, overtime pay, and gross pay for
a person who works 47.5 hours at the regular rate of $9.25 per hour using
time-and-a-half over 40 hours.

2. An ID number is used for unique identification. A check digit is added to
each uniqgue code number to reduce the risk of making erroneous entries. A
simple scheme forms the sum of the other digits and lets the check digit be
sum modulo 10. The B-digit 1D number 43175 is valid as the sum of the first
four digits is 15 for which 15 modulo 10 gives the check digit 5 which appears
as the rightmost digit. Write an interactive program that validates 1D numbers
using a procedure that accepts an ID number and returns a Boolean variable
that is TRUE if the number is valid and FALSE if it is not. Test using the
numbers 11327, 51842, 31395, and 78533.

3. Write a program that accepts a line of characters one character at a time and
computes the number of vowels in the line. Use a procedure which accepts a
character as a value parameter and adds the value 1 to a variable parameter,
giving the cumulative count of the number of vowels.

6.4 FuncTIONS

Functions are subprograms that return exactly one value to the calling program.
Pascal contains numerous built-in functions. The following built-in functions are
available with Alcor Pascal:

ABS(X) Absolute value
SQR(X) Square

SQRT(X) Square root
LN(X) Natural logarithm
EXP(X) Natural exponential
SIN(X) Sine

COS(X) Cosine
ARCTAN(X) Arctangent
ODD(X) Odd

EOLNIf) End of line

EOF (f) End of file
TRUNC(X) Truncate
ROUND(X) Round

SUCC(X) Successor

Procedures and Functions/115

PRED(X) Predecessor

ORD(X) Ordinal number of X
CHR(X) Value having ordinal number
LOCATION(X) Location of variable
SIZE(X) Size of type in bytes

Most built-in functions require one argument and return one resuft. The
statement

root := SQRT(value);

places the square root of the contents of the argument value into the variable
named root. The argument may be an expression. The statement

diag := SQRT (a*a + b*b);

places the square root of the sum of the squares of a and b into the variable diag.
The result of the function may be part of a larger expression. The statement

diag := SQRT(SQR(a) + SQR(b));

uses the built-in SQR function to square each of the variables a and b in the pro-
cess of calculating the square root of the sum of the squares.

USER-DEFINED FUNCTIONS

The heading of a function begins with the keyword FUNCTION rather than
PROCEDURE. The function must represent a value and must have a type identi-
fier. A colon separates the type identifier from the rest of the heading. The func-
tion name from the heading appears at least once in the body of the function.
The result is assigned to that name as if it were a variable.

The argument list for a function rarely includes variable parameters. The
arguments are usually value parameters. |f more than one result is needed, use a
procedure with appropriate variable parameters or define a separate function for
each result.

Computer scientists suggest that each module should perform only one task.
This keeps the internal cohesion of each module high. Those program segments
that return values are best thought of in terms of functions. There may be several
inputs, but only one defined output for each module.

LENGTH OF THE DIAGONAL

The length of the diagonal of a right triangle is the square root of the sum of the
squares of the lengths of the two sides of the right angle. The following program

116/INVITATION TO PASCAL

uses the function DIAGONAL to compute the square root of the sum of the
squares of the two arguments:

PROGRAM distance (OUTPUT);
VAR
sidet,
side2,
length : REAL;
FUNCTION diagonal (a, b : REAL) : REAL;

BEGIN

diagonal := SQRT(a*a+b * b)
END;
BEGIN

side1 := 3.0;

side2 = 4.0;

length := diagonal (side1, side2);

WRITELN (‘First side ‘,side1:9:2);

WRITELN (‘Second side ' ,side2:9:2);

WRITELN (‘Diagonal ' length:9:2)
END.

The output of the program follows:

First side 3.00
Second side 4.00
Diagonal 5.00

BOOLEAN FUNCTION

The runction type may be any of the simple variable types including REAL,
INTEGER, CHAR, and BOOLEAN. The following program includes a function
TEST which returns the value TRUE if the first argument is evenly divisible by
the second argument and FALSE otherwise:

PROGRAM numbert (QUTPUT);
VAR

valuet,

value2 : INTEGER;

result : BOOLEAN;
FUNCTION test (a, b : INTEGER) : BOOLEAN;
VAR

remain : INTEGER;
BEGIN

remain :=a MOD b;

test :=remain=0
END;

Procedures and Functions/117

BEGIN
valuel := 24;
value2 := 8;

result := test (valuel, value2);

WRITELN (value1, value2, ‘Resuit = ’,resuit);
WRITELN (30, 7, ' Result ="', test(30,7));
WRITELN (60, 5, Result =", test(60,5))

END.

The program output follows:

24 8 TRUE
30 7 FALSE
60 5 TRUE
EXERCISES

1.

Write a function that returns the integer value 1 if the real argument is positive,
0 if the argument is 0, and -1 if the real argument is negative. Write a program
to test the function using the values 12,75, 3.69, -.76 -75.95, and 325.00.

. A machine costing $12,500 has a service life of five years and no salvage value.

Write a program to calculate the amount of depreciation for a given year for
each of the following depreciation methods. Define the function “straight’’ to
give the straight-line depreciation. Define the function “double” to give the
double declining balance depreciation for the specified year. Define the func-
tion “sum" to use the sum-of-the-years digits method.

. Write a program to compute the value .998 raised to the 40th power. Define

the function POWER requiring two arguments. The first argument is real and
is the value to be raised to the power given by the second argument which is
an integer.

/ Arrays

O\/ E R\/E E Pascal provides the ability of maintaining lists of

values in variables. The values may be integers,
real numbers, characters, Boolean values, or enumerated data types. The values
are referenced by relative position within the list using a subscript. A simple list

is indexed in one dimension only. More complex lists are indexed to two or more
dimensions. A table having rows and columns is a two-dimensional structure.

O

7.7 NUMERIC VECTORS

In the language of mathematics, the vector X contains an ordered set of values
X1, X2, ..., X,. The value X3 is the third element of the vector, The numbers
to the lower right are subscripts. The symbol x; designates the /th element of
the array.

In computer science, avector is aone-dimensional array. A cell is an element
of the array. Arrays are not limited to the numerical values. The array may con-
sist of real, integer, character or Boolean values, but all must be of the same type.
Subscripts are usually integers, but they may be of any ordinal type including
user-defined enumerated types.

ARRAY DEFINITIONS
There are several methods for defining arrays within a program. The statements

VAR
data : ARRAY [1..25] OF REAL;

define the variable data to be an array of 25 real values.
The array type definition may be in the TYPE section. The statements

TYPE

vector = ARRAY [1..25] OF REAL;
VAR

data : vector;

define the variable data to be of type vector which is an array of 25 real values.

119

120/INVITATION TO PASCAL

The subscript range may be a type defined earlier in the TYPE section. All
types must be defined before they are used if Pascal is to retain its one-pass com-
pilation capability. The statements

TYPE

subscripts = 1 .. 25;

vector = ARRAY [subscripts] OF REAL;
VAR

data : vector;

illustrate this cascading of type definitions.

PASSING ARRAYS TO PROCEDURES AND FUNCTIONS

Large arrays should be passed to procedures and functions as variable parameters.
This pass-by-reference method gives the subprogram access to the actual array
itself. Even though the Pascal translator may permit passing arrays as value para-
meters, this is rarely done.

Defining the array type in the VAR section is possible. The statement

VAR
data : ARRAY [1..25] OF REAL;

illustrates this. Pascal translators do not usually accept this form in the heading
of the procedure or function.
The array type must be given a name in the TYPE section. The statements

TYPE

vector = ARRAY [1..25] OF REAL;
VAR

data : vector;

define the type vector which is then used in the procedure or function heading.

COMPUTE AVERAGE

The following program computes the average of a set of values after reading them
into an array :

PROGRAM averagel (INPUT, QOUTPUT);

VAR
data : ARRAY[1..25] OF REAL;
number,
index : INTEGER;
sum,
average : REAL;
BEGIN

WRITELN;

Arrays/121

WRITE (‘Number of observations ? '};
READLN (number);
WRITELN;
WRITELN ('Value for’);
FOR index := 1 TO number DO
BEGIN
WRITE (‘Obs ’,index:2,’ ?');
READLN (datalindex])
END;
SUM :=0.0;
FOR index := 1 TO number DO
sum := sum + data[index] ;
average := sum / number;
WRITELN;
WRITELN ('Sum ‘sum:9:2);
WRITELN (‘Average ',average:9:2)
END.

The following output results from a test run:

Number of observations ? 5

Value for

Obs 1?2120
Obs2?11.0
Obs 37 19.0
Obs4?14.0
Obs5 ? 15.0

Sum 71.00
Average 14.20

ARRAY WITH PROCEDURE CALLS

It is better to break the program into modules rather than have the program do
everything in one long main BEGIN/END block. This may mean passing the array
to the procedure as a variable parameter. The following program uses one pro-
cedure to read the values into the array and the second procedure to calculate
the sum and the average:

PROGRAM average2 (INPUT, OUTPUT);

TYPE

vector = ARRAY [1..25] OF REAL;
VAR

number : INTEGER;

sum

average : REAL;
data : vector;

122/AINVITATION TO PASCAL

PROCEDURE getdata
(VAR number : INTEGER;
VAR values : vector);

VAR

index : INTEGER;
BEGIN

WRITELN;

WRITE (‘Number of observations ? ');
READLN (number);
WRITELN;
WRITELN (‘Value for');
FOR index := 1 TO number DO
BEGIN
WRITE (‘Obs ‘,index:2," ?');
READLN (values[index])
END
END;
PROCEDURE compute
(VAR number : INTEGER;
VAR data : vector;
VAR sum,
avg : REAL);
VAR
index : INTEGER;
BEGIN
sum :=0.0;
FOR index := 1 TO number DO
sum := sum + data[index] ;
avg := sum / number
END;
BEGIN { Main routine }
getdata {number, data);
compute (number, data, sum, average);
WRITELN;
WRITELN (‘Sum ' s5um:9:2);
WRITELN (‘Average ’',average:9:2)
END.

The output is the same as for the previous program.

The procedures ‘‘getdata’” and “compute’’ are kept as independent of the
main program and of each other as possible. All communication is through the
parameter list. This method of programming makes it possible to write very large
programs, Also, procedures developed for one program are easily integrated into

other programs.

Arrays/123

CHARACTER ARRAYS

Although numeric arrays are common, they are not the only types of arrays.
Character arrays are also important. The following program establishes an array
containing the vowels a, €, i, 0, and u and uses the array in counting the number
of vowels in an input message:

PROGRAM count1 (INPUT, QUTPUT);

VAR
vowels : ARRAY [1..5] OF CHAR;
index,
count : INTEGER;
symbol : CHAR;

BEGIN
vowels[1] :
vowels[2] :
vowels[3] :
vowels[4] :
vowels[5] :
WRITELN;
WRITE (‘Message ? ');

READ (symbol);
count :=0;
WHILE NOT EOLN DO
BEGIN
FOR index :=1 TO 5 DO
IF symbol = vowels[index]
THEN count :=count + 1;
READ (symbol)
END;
WRITELN;
WRITELN (‘Number of vowels =/, count)
END.

1

~

@ o

nnu

~
<
~ <.

e .

1

TR

< O

in

Sample output from this program follows:

Message ? Now is the time for all good men
Number of vowels = 10

ORDINAL SUBSCRIPTS

The subscripts must be one of the ordinal types. They can be integer, character
or user-defined enumerated types. The following program uses the names of the
days of the week to determine the price that an item costs on that day:

PROGRAM price (OUTPUT);
TYPE

124/INVITATION TO PASCAL

days = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

VAR
price : ARRAY [days] OF REAL;
day : days;

BEGIN

price[Sun] :=19.95;
price[Mon] := 18.45;
price[Tue] :=17.95;
price[Wed] := 18.35;
price[Thul :=19.20;
price[Fri] :=17.15;
price[Sat] := 18.75;
FOR day := Sun TO Sat DO
WRITELN (price[day]:9:2)
END.

The output of this program follows:

19.95
18.45
17.95
18.35
19.20
17.16
18.75

EXERCISES

1. Write a program to read a set of integer values into an array. Compute and
display the average, minimum, and maximum values.

2. Write a program that will read a set of integer values into an array maintaining
the array in ascending order. Inserting the kth value into its proper position
may require moving some values down to make room. Display the sorted list
when finished.

3. Write a program to compute the product of the first 100 integers (1) (2) (3)
... (100). This is a very large number. Create an array of 200 integers, letting
each integer contain one of the digits. Perform the repeated multiplications
digit by digit to form the product.

7.2 NUMERIC MATRICES

A two-dimensional array has a base type array of one dimension. It is an array
of arrays. The following table represents unit sales figures for an item that comes
in three colors and four model numbers:

Arrays/125

Color Model number

1 2 3 4
Red 114 219 174 256
White 193 247 225 318
Blue 109 183 196 230

There is a vector of unit sales figures for each color.
The following type specification describes the table as an array of arrays:

TYPE
color = (Red, White, Blue);
model =1 ..4;

sales = ARRAY [model] OF INTEGER;
table = ARRAY [color] OF sales;

VAR
unitsale : table;

G

The variable “unitsale” is a table of integers. Each element of the table
consists of an array of type “sales’”” which is a vector of integers. The subscripts
Red, White, and Biue designate the color dimension. The subscripts 1, 2, 3, and
4 designate the model dimension. The color dimension is the row of the table
and the model dimension is the column.

The type specification can be combined into one statement as in the fol-
lowing:

TYPE
color = (Red, White, Blue);
model =1..4;

table = ARRAY [color] OF ARRAY [model] OF INTEGER;:
VAR
unitsale : table;

Multidimensional arrays are so common that there is a shorthand method
of defining them. The type specification

TYPE

color = (Red, White, Blue);

model = (1.. 4);

table = ARRAY [color, model] OF INTEGER;
VAR

unitsale : table;

gives the primary (row) dimensicon as color and the secondary (column) dimension
as model,
The last variable declaration reduces to the following:

TYPE
color = (Red, White, Blue);

126/INVITATION TO PASCAL

model = (1..4);
VAR
table = ARRAY [color, model] OF INTEGER;

A comma separates the dimensions of the array definition. Pascal allows more
than two dimensions for problems having more than two categorizations.

BUILD A MATRIX

The following simple Pascal program illustrates the definition of a three-row by
two-column matrix of integers:

PROGRAM print (OUTPUT);
VAR
matrix : ARRAY [1..3, 1..2] OF INTEGER;
1,
j 1 INTEGER;
BEGIN
matrix[1,1] :=12;
matrix[1,2] := 15;

matrix[2,1] = 11;

matrix[2,2] :=17;

matrix([3,1] = 19;

matrix[3,2] :=18;

FORi:=1TO3DO
BEGIN

FORj:=1T02DO
WRITE (matrix[i,jl);
WRITELN;
END
END.

The program output follows:

12 15
1M 17
19 18

TABLES WiITH ENUMERATED TYPE SUBSCRIPTS

The subscripts must be ordinal. They can be integer, character, or enumerated
types. The following table gives low and high values for each of the four seasons
of the year:

Season Sales limits
Low High
Spring 124 263

Summer 217 403

Arrays/127

Fall 254 388
Winter 176 293

The following program uses the subscripts Spring, Summer, Fall, and Winter to
designate the season and the subscripts Low and High to designate the limits of
the table:

PROGRAM demand1 (QUTPUT);
TYPE
season = (Spring, Summer, Fall, Winter);
level = (Low, High);
table = ARRAY [season, level] OF INTEGER;
VAR
demand : table;
row : season;
column : level;
BEGIN
demand[Spring,Low] = 124;
demand [Spring,High] := 263;
demand[Summer, Low] :=217;
demand [Summer,High] := 403;
demand[Fall,Low] :=254;
demand[Fall,High] := 388;
demand [Winter,Low] := 176;
demand [Winter,High] := 293;
FOR row := Spring TO Winter DO
BEGIN
FOR column := Low TO High DO
WRITE (demand[row,column]);

WRITELN;
END
END.
The program output follows:
124 263
217 403
2564 388
176 293

COLUMN SUMS AND ROW SUMS

The following program uses interactive data entry for the values of the table and
then computes the column sums and row sums:

PROGRAM table1 (INPUT, OUTPUT);
VAR
table : ARRAY [1..20, 1..30] OF REAL;

128/INVITATION TO PASCAL

nrows,
ncolumns,
row,
col : INTEGER;
sum : REAL;
BEGIN
{ Getdata !}
WRITELN;
WRITE (‘Number of rows ?2);
READLN (nrows);
WRITE (‘Number of columns ?'});
READLN (ncolumns);
WRITELN;
WRITELN (‘Enter value for’);
FOR row := 1 TO nrows DO
BEGIN
WRITELN;
WRITELN (‘Row ', row:2);
FOR col := 1 TO ncolumns DO
BEGIN

WRITE (* Col ',co0l:2,”?");

READLN (table[row,coi])
END
END;
{ Row sums }
WRITELN;
WRITELN {‘Row Sum’);
FOR row = 1 TO nrows DO
BEGIN
sum :=0.0;
FOR col := 1 TO ncolumns DO
sum :=sum + table[row,col];
WRITELN (row:3, sum:12:2)
END;
{ Column sums }
WRITELN;
WRITELN (‘Column Sum’);
FOR col := 1 TO ncolumns DO
BEGIN
sum := 0.0;
FOR row := 1 TO nrows DO
sum := sum + table[row,col];
WRITELN (col:3, sum:12.2)
END
END.

Arrays/129

Sample output from this program follows:

Number of rows 72
Number of columns ? 3

Enter value for

Row 1
Col 1224
Col 2?21.7
Col 3?7356
Row 2
Col 1?22
Col 2?18
Col 3733
Row Sum
1 7.10
2 7.30
Column Sum
1 4.60
2 3.50
3 6.80

This program illustrates methods for creating and using tables of values.

EXERCISES

1. Write a program that wil! read a set of exam scores into a table. Make the stu-
dents correspond to the rows and the exams correspond to the columns, Com-
pute the average grade for each exam. Compute the average grade for each
student assigning the letter grades using boundaries of 90% for A, 80% for B, etc.

2. Write a program that computes the area and circumference (length of the
perimeter) of several rectangles. Define a table having each row represent one
rectangle and the columns consist of an ID number, length, width, area, and
circumference. Read in the ID number, length, and width. Compute the area
and circumference and store them in the table. Print the results when finished.

7.3 NONNUMERIC VECTORS AND MATRICES

Arrays are not limited to numerical values. They may contain data of any defined
Pascal type. The most common types are REAL, INTEGER, and CHAR. The
most common nonnumeric arrays contain character data.

130/INVITATION TO PASCAL

READING AND WRITING CHARACTER STRINGS

A character string is an array of character data. The data must be read in one
character at a time and stored in the array. The following program uses the READ
command to read one line of input from the keyboard one character at a time
and then prints the result:

PROGRAM char1 (INPUT, OUTPUT);
VAR
line : ARRAY [1..80] OF CHAR;
number,
index : INTEGER;
symbol : CHAR;
BEGIN
WRITELN;
WRITE (‘Message ? ');
index :=0;
REPEAT
READ {symbol);
index :=index +1;
line[index] :=symbol;
UNTIL EOLN;
number := index;
WRITELN;
FOR index := 1 TO number DO
WRITE (linelindex]);
WRITELN
END.

Sample output from the program follows:

Message ? Now is the time

Now is the time

The program uses the variable index to place each character as it is read in.
The REPEAT UNTIL loop terminates when the end of the line is reached. The
number of characters in the input line is stored in the variable called number.

PRINTABLE SYMBOLS

The built-in Pascal function CHR(X) gives the character corresponding to the
integer value X. The code numbers run from O to 255 for a total of 256 possible
symbols. Many of the common printing symbols fall between 33 and 122, The
following program uses the CHR function to generate the symbols for the char-
acter array:

PROGRAM char2 (OUTPUT);

Arrays/131

VAR
index : INTEGER;
vector : ARRAY [33..122] OF CHAR;
BEGIN
FOR index := 33 TO 122 DO
vector[index] := CHR(index);
FOR index := 33 TO 80 DO
WRITE (vector[index]);
WRITELN;
FOR index := 81 TO 122 DO
WRITE (vector[index]);
WRITELN;
END.

The output of this program follows:

1"“#$%8&’() *+,-./0123456789:: <=>?@ABCDEFGHIJKLMNOP
QRSTUVWXYZ[\]™_@abcdefghijkimnopgrstuvwxyz

The integer variable index is used twice in the same line
vector[index] := CHR(index);

It uses CHR(index) to generate the symbol designated by the value of index
and places that character into the array vector using index as its subscript.

TWO-DIMENSIONAL CHARACTER ARRAYS

By using two-dimensional character arrays it is possible to store several character
strings in a form that is easy to examine. |f all lines are approximately the same
length, a two-dimensional table works well. The following program stores 5
names, up to 20 characters each, in a 5-row by 20-column array of character data:

PROGRAM name1 (INPUT, OUTPUT);
VAR
names : ARRAY [1..5, 1..20] OF CHAR;
person,
position : INTEGER;
BEGIN
WRITELN;
WRITELN (‘Type names of 5 people’);
FOR person :=1 TO 5 DO
BEGIN
WRITE (‘Name ?’);
READ (names[person,1]);
FOR position := 2 TO 20 DO
IF EOLN THEN
names[person,position] ="'

7

132/INVITATION TO PASCAL

ELSE
READ (names[person,position]);
END;
WRITELN;
FOR person =1 TO 5 DO
BEGIN

FOR position := 1 TO 20 DO
WRITE (names [person,position]);
WRITELN
END

END.

Sample output from the program follows:

Type the names of 5 people

Name ? John Smith
Name ? Mary Allen
Name ? Mark Miller
Name ? Sue Keller
Name ? Henry Taylor

The input loop reads the names of the 5 people, one at a time. It fetches the
characters, one at a time, and filis out the row of the character array with spaces
after sensing the end-of-line symbol.

EXERCISES

1.

Write a program to read in several lines of input. Compute the frequency count
for each letter of the alphabet. Include both the uppercase and lowercase
forms of the same letter.

. Write a program to compute the average exam grade and assign a letter grade

to each of several students. Use interactive data entry to supply the students’
names and exam scores. Send the names, exam averages, and letter grades to
the printer for a permanent record.

. Write a program that accepts several lines of text and then counts the number

of occurrences of each of the words “a”, “‘the”, and "of"”. Assume that words
do not span from one line (row) to the next. Spaces, commas, semicolons,
and periods are the only symbols separating words,

. Write a program that accepts several lines of text and counts the frequencies

for words of length 1, 2, 3, ..., 25.

8 Advanced features

OV ERVg E Pascal includes several advanced features which

make it a powerful programming language. These
include the definition of records, pointers, files, and recursion. Beginners should
build a sound foundation with the elementary features of Pascal before attempting
complex projects using these features.

The applications section starting with Chapter 9 builds on the first section.
The significance of Pascal’s advanced features will be seen in the applications.

O

8.1 RECORDS AND POINTERS

Arrays are useful structures for storing quantities of data. The indexing feature
with subscripts provides ready access to individual elements of the array. Pascal
allows other varieties of structured data types, including sets and records.

SETS

A set is a collection of elements. Order is not important. An element either be-
longs in the set or it does not. Order is important in the array structure. An in-
dividual element is referenced by location within the array.

In Pascal, a set is a collection of scalar values of the same type. Each ele-
mentary object is called an element. A set is represented by enclosing its list of
elements in brackets. The scalar values must be ordinal; they cannot be real. The
set may contain integers, characters, or enumerated data types.

The TYPE and VAR sections of the Pascal program define SET specifica-
tions and declare SET variables. The sections

TYPE

grades = (A, B, C, D, F);
VAR

result : SET OF grades;

define the set “‘result” to contain elements from among the five letter grades.

133

134/INVITATION TO PASCAL

Pascal assignment statements establish the contents of set variables. The
following statement places the letter grades “A", “C"", and "D"’ into the set called
result:

result := [A, C, D];
An empty set contains no elements. The statement
result ;=[]

places no elements in the set, resulting in an empty set.

The universe is the set of all elements defined for that set type. The universe
consists of all five letter-grades. A subset is a collection of grades taken from the
universe. The order is unimportant, and an individual element appears only once.
The empty set, also called null set, is asubset of every other set. Oneset is a subset
of a second set if every element of the first set is also contained in the second set,

SET OPERATIONS

Pascal set operations include the following:
+ Union
* Intersection

- Difference

The union of two sets gives a set that contains those elements contained in at least
one of the two sets. The intersection of two sets gives a set that contains those
elements that are common to both sets. The difference between two sets gives
those elements contained in the first set but not the second.

RELATIONAL OPERATORS

Relational operators give the Boolean values TRUE or FALSE. The following are
the Pascal relational operators for sets:

IN True if element is contained in the set

= True if both sets contain same elements
<> True if sets do not contain same elements
<= Trueif first set is subset of second set

>= True if first set is superset of second set

For the first set to be a superset of the second, the second set must be a subset
of the first.

Advanced Features/135

DAYS OF THE WEEK

The following program defines several sets using the letter grades and illustrates
the use of set operations and relational operators:

PROGRAM set1 (OUTPUT);
TYPE
grades = (A, B, C, D, F);
VAR
universe,
superior,
above,
middle,
below,
passing,
failure : SET OF grades;
BEGIN
superior := [A];
above := [A, Bl;
below := [D, FI;
middle := [B, C, D];
passing := above + middle;
universe := passing + below;
failure := universe - passing;
IF D IN passing THEN
WRITELN (‘D is passing grade’)
ELSE
WRITELN (‘D is not passing grade’);
IF [] = (above * below) THEN
WRITELN (‘Mutually exclusive’)
ELSE
WRITELN (‘Not mutually exclusive’);
IF middie <= passing THEN
WRITELN (‘Middle is subset of passing’)
ELSE
WRITELN (‘Middle is not subset of passing’}
END.

The output from the program follows:

D is passing grade
Mutually exclusive
Middle is subset of passing

136/INVITATION TO PASCAL

RECORDS

An array or a set may be used to store related information only if that information
consists of a single data type. The Pascal record data type permits the storing of
related information together if the elementary elements are not of the same type.

The following list contains an 1D number, name, unit price, and quantity
on hand for several inventory items:

Code Number Name Unit price Quantity on hand
103 Alpha 19.95 346
117 Sublime 47.99 91
142 Extra 29.95 185

The Pascal program is to handle up to 20 inventory items. Each variable can be
defined using its own array.

The following TYPE and VAR sections define the variables code, name,
price, and quantity as arrays containing the information for up to 20 items:

TYPE
index = 1..20;

VAR
code : ARRAY [index] OF INTEGER;
name : ARRAY l[index, 1.. 10] OF CHAR;
price : ARRAY [index] OF REAL;
quantity : ARRAY [index] OF INTEGER;
item : INTEGER;

Defining the subscript range in the TYPE section makes it easier to change the
program later for a larger number of inventory items.

Each component of a Pascal record is called a field and has a data type
associated with it. The following TYPE and VAR sections define a record type
and use that record type definition in the declaration of a variable:

TYPE
iteminfo = RECORD
code : INTEGER;
name : ARRAY [1..10] OF CHAR;

price : REAL;
quantity : INTEGER
END;

VAR
item : iteminfo;

Jtem is a record variable, The variable item code references the code number
of the current record. The variable item.price references its price, and item.quantity
references the number of units on hand. Thevariable item.name references a string
of 10 characters, giving the name of the current item.

Advanced Features/137

Some Pascal compilers provide two ways of storing character and Boolean
data types. The normal mode is usually the fastest but makes inefficient use of
internal memory. The PACKED mode makes most efficient use of memory but
is slower. The line

name : PACKED ARRAY [1..10] OF CHAR

instructs the compiler to make the most efficient use of memory.

DYNAMIC DATA STRUCTURES

Dynamic data structures change size and even shape to meet the current require-
ments of the program. These changes occur at run time without having to re-
compile the program. Records are a primary form of dynamic data structure.
Pointer variables provide access to the records.

POINTERS

Pointers are used to reference records. The predefined function NEW allocates
the amount of space from the heap for one record and assigns the address of that
memory region to the pointer. The Pascal statement

NEW (pointer);

allocates storage space for the code number, name, price, and quantity informa-
tion for one inventory item. It assigns the address to the pointer variable,
The symbols ™ and @ designate pointers. The variable declaration

pointer : Nitem;

declares the variable called pointer for the record called item. Within the body of
the program the statement

printer~.price := 19.95;

places the value 19.95 into the price field of the current record item.

The Pascal predefined function DISPOSE returns memory to the heap and
deletes the current value of the pointer. The Pascal keyword NIL can be assigned
to the pointer to indicate that it does not point to a valid record.

An array of pointers can serve to access a set of dynamic records that are
stored internally at the same time. Alternately, one or more of the fields within
a record may point to other records.

INVENTORY LIST

The following program places the information for the three inventory items into
three dynamic records:

PROGRAM invi (QUTPUT);

138/INVITATION TO PASCAL

TYPE
iteminfo = RECORD
code : INTEGER;
name : PACKED ARRAY [1.. 10] OF CHAR;
price : REAL;
quantity : INTEGER
END;
itemptr = ~iteminfo;
listptr = ARRAY [1..20] OF itemptr;
VAR
pointer : itemptr;
ptrlist : listptr;
position,
index : INTEGER;
BEGIN
NEW (pointer);
ptrlist[1] := pointer;
pointer™.code := 103;
pointer~.name[1] :=‘A’;
pointer~.name[2] :=‘I’;
pointer~.name[3] :=‘p’;
pointer~.name[4] := ‘h’;
pointer~.name([5] :=‘a’;
FOR position := 6 TO 10 DO
pointer~.name [position] =" ’;
pointer~.price := 19.95;
pointer~.quantity := 346;
NEW (pointer);
ptriist[2] := pointer;
pointer~.code := 117;
pointer~.name[1] :='S’;
pointer~.name(2] = ‘u’;
pointer~.name[3] :='b’;
pointer~.name[4] = I’;
pointer~.name([b] :=‘i’;
pointer.name[6] :='m’;
pointer™.name([7] := ‘e’;
FOR position := 8 TO 10 DO
pointer~.name[position] =’ ';
pointer~.price := 47.99;
pointer™.quantity := 91;
NEW (pointer);
ptrlist[3] := pointer;
pointer~.code := 142;
pointer~.name[1] :='E’;
pointer~.name[2] :='X’;

[I R

nou

Advanced Features/139

pointer®.name[3] :=‘t’;
pointer~.name([4] := t';
pointer~.name([5] :=‘a’;

FOR position := 6 TO 10 DO
pointer~.name [position] ="' ';
pointer®.price := 29.95;
pointer®.quantity := 185;
FOR index :=1 TO 3 DO
BEGIN
pointer := ptrlist[index];
WRITE (pointer~.code,’ ');
FOR position :=1 TO 10 DO
WRITE (pointer~.name[position]);
WRITE (* ’pointer~.price:7:2);
WRITELN (* ’,pointer~.quantity)
END
END.

The following output results:

103 Alpha 19.95 346
117 Sublime 47.99 91
142 Extra 29.95 186
EXERCISES

1. Write a program that will use interactive data entry to obtain information for
the inventory items, List the contents of the records complete with column
headings.

2. Write a program that will place the name, three exam scores, average score,
and letter grade for each of several students in a dynamic record. Create an
array of pointers to access the records.

8.2 FiLEs

Simple variables, arrays, sets, and records store data during the execution of a
program. They do not retain values from one run to the next. The data must be
stored in an external file for use at a later time.

An internal file is a dynamic data structure that exists only during the exe-
cution of the program. An external file is saved on an external storage device such
as tape or disk and is available for use at a later time.

The two standard external files are named INPUT and OUTPUT. Normally,
the keyboard provides data to be read by the READ and READLN commands
and the video screen serves as the output device for the WRITE and WRITELN
commands. These default files are of type TEXT.

T40/INVITATION TO PASCAL

Alcor Pascal allows file redirection at run time without recompiling the pro-
gram. Typing the ENTER key uses the default device. Typing :L for the OUTPUT
file sends the output to the printer. Typing the name of adisk file enables the pro-
gram to obtain the data from the disk file or store the output data in the disk file.

USING TEXT EDITOR TO CREATE INPUT FILE

The Alcor Pascal program editor is called using the name ED. This text editor
can create data files just as it can Pascal source programs. Use the editor tocreate
a data file called DATA1/DAT containing the following data:

5

12
1"
19
14
15

The first line contains the number 5, indicating that there aren = 6 values in the file.

Use the following program to form the sum of the five data values 12, 11,
..., 15, remembering to type the disk file name DATA1/DAT for the INPUT =
prompt:

PROGRAM sum1 (INPUT, QUTPUT);

VAR
number,
count,
value,
sum : INTEGER;
BEGIN
READLN (number);
sum :=0;
FOR count := 1 TO number DO
BEGIN
READLN (value);
sum :=sum + value;
END;
WRITELN (‘Sum =’ sum)
END.

The output from this program follows:
Sum= 71

This program merely redirects the source of the standard INPUT file from
the keyboard to the disk file. This is a powerful feature that makes the use of
interactive programs practical with large data fil