INTFODUCTION TO TRS-80

LEVEL 1l BaSIC

alD cOmMpurer procrammine

iniroduction 1o
TRS-80 LEVEL §i BASIG
300 COMPUIEH PROERFMIMINE

PN

iniroduction 1o
TRS-80 LEVEL Il BASIC
300 COMmPUIEr PROERITIRINE

MICHAEL P. ZABINSKI, Ph. D.

Professor
Fairfield University

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Zabinski, Michael P

introduction to TRS-80 LEVEL II BASIC and computer
programming.

Includes index.

1. TRS-80 (Computer)—Programming. 2. BASIC
(Computer program language) [Title.
QA76.8.T18Z32 001.6472 80-15015
ISBN 0-13~499962-2 (pbk.)

ISBN 0-13-499970-3 (case)

© 1980 by PRENTICE-HALL, Inc.,
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

1098765432

Editorial/production supervision

and interior design by Linda Mihatov
Cover design by RL Communications
Manufacturing buyer: Joyce Levatino

TRS-80 is the registered trademark of Radio Shack, a Division of Tandy Corporation.

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

To
Toby,
Fric,
and
Marion

cCoNieRts

vii

Preface

List of Examples

Introduction

1

Your TRS-80 Computer

1.1
1.2
1.3

2

Getting Started 3
The Keyboard 3
Communicating with the Computer 4

Specifying Information

2.1

NP NS
NS I]

2.5

2.7

3

Numerical Information 6

Character Information 7

Variables &

Assignment 9

Exercises1 12

Arithmetic Functions 13

Hierarchy of Arithmetic Operations 14
Variable Types 16

Exercises2 19

Computer Programs

3.1

32

33
34
35
36
3.7
38

Writing a Program 23

Program Clarity, Displaying Messages and Comments 28
Exercises 3 29

Keyboard Response: Input 317

Editing Computer Programs 33

Debugging Programs 37

Stop and Continue Execution 39

Saving a Program on Cassette Tape 40

Declaring Variable Types 41

Exercises 4 42

xi

xiii

23

viii contents

4

Decisions 46
4.1 Relational and Logical Operations 46
4.2 Flowcharts 49
Exercises 5 52
4.3 Transfer Statements 53
44 On Error Go To 59
Exercises 6 52
Looping 66
5.1 Loop Structure 66
5.2 IF-THEN Loops 66
5.3 FOR-NEXT Loops 70
Exercises 7 75
5.4 Subscripted Variables 79
5.5 Nested Loops &2
5.6 Multiple Subscripts 84
5.7 Debugging Loops: Tracing and Playing Computer &5
Exercises 8 89 .
Input-Output 93
6.1 READ and DATA Statements 93
6.2 Formatting Qutput 97
6.3 Cassette Input-Output 107
Exercises9 109
Library Functions 112
7.1 INT Function 112
7.2 RND Function 114
7.3 More Functions 116
Exercises 10 119
Subroutines 122
8.1 The Purpose of Subroutines 722
8.2 Unconditional Transfer to Subroutines 722
8.3 Conditional Transfer to Subroutines 125
8.4 A Final Comment 128

Exercises 11 128

ix

contents

y

Graphics 131
9.1 Background 131
9.2 Graphing with SET (X,Y) 131
9.3 OQther Graphics Functions 137
Exercises 12 139

10

Strings 142
10.1 Review 142
102 ASCII Codes and Related Functions (ASC and CHRS$) 143
10.3 Character Manipulation Functions (LEN, LEFTS, RIGHTS$, MIDS$) 146
10.4 Other String Functions 148
Exercises 13 155

APPENDICES
;

Error Messages 159
!

Reserv!d Words 161
[

BASIC Glossary 162

Solutions to Even-Numbered Exercises 171

Index 181

orelisce

The computer language, BASIC, short for Beginner’s All-purpose Symbolic
Instruction Code, was developed at Dartmouth College by John Kemeny
and Thomas Kurtz in 1964. Since then it has gained acceptance in industry,
research, and education. Its use is continuously growing as computer manu-
facturers, and especially home computer manufacturers, recognize its
simplicity and popularity. The Radio Shack TRS-80 microcomputer com-
municates in BASIC. This book provides an introduction to TRS-80 Level II
BASIC and, through it, to some of the important concepts and applications
of computer programming.

The reasons for the increased use of BASIC are many. Persons interested
in learning practical computer use find BASIC to be a fast way to reach their
goal. Because BASIC has a conversational, interactive nature and a simple
structure, it is an attractive teaching tool with which computer programming
concepts can be presented to beginners.

Just as the English language has many dialects, so does BASIC have many
different implementations. The TRS-80 has two versions of BASIC com-
monly referred to as Levels I and II. Level II is more extensive than Level I
and is the subject matter of this book. Level II BASIC contains a powerful
arithmetical facility along with a large library of common mathematical and
nonmathematical functions. It has many error diagnostics, which produce
easily understandable error messages and excellent editing features. Level I
also includes comprehensive graphic capabilities and numeric accuracy of up
to 16 digits. These attributes combined with good input-output procedures
make Level II BASIC an ideal computer language.

This book is directed at the beginning programmer. With a small set of
instructions, the beginner can very quickly begin to write elementary com-
puter programs. We take advantage of this feature of BASIC and emphasize
those parts of the language that are most frequently used. Many examples
are included to illustrate the use of BASIC and to demonstrate how a com-
puter can be programmed to perform many different tasks. In addition, an
abundance of exercises is presented at the end of each chapter with solutions
to selected problems given at the end of the book. The reader is encouraged
to try as many exercises as possible, for computer programming is best
learned by doing.

The level of presentation and selection of material make this book suit-
able for a wide variety of readers. No previous experience with computers
and no mathematical background beyond the basic arithmetic skills are
assumed. The material is presented as it would appear on the TRS-80 video
display. A unique feature of this book is the inclusion of explanatory com-

xii

preface

ments alongside the computer displays. These comments highlight and rein-
force the text discussion by pointing out new procedures and emphasizing
important points. The reader would therefore benefit by working along with
the text, trying out the illustrative examples on the computer, and experi-
menting with variations. The way to learn a new computer language is to use
it. Each student should run as many programs as he has time for so as to
acquire a feel for this new tool.

This is a textbook suitable for the self-learner or for a one-semester
introductory course. It should not be viewed as a reference manual in
BASIC. The primary purpose of the book is to introduce Level II BASIC
as well as computer-programming concepts. It is for the nonspecialist who
wants to learn to use the TRS-80 effectively.

I am greatly indebted to many people who have contributed to the
development of this book. Particular thanks are due to Stephen Cline, editor,
Prentice-Hall, and to David Gunzel, director technical publications, Radio
Shack. I also express my appreciation to Ann Hannon of Greenwich High
School and to the teachers of the Orange Public Schools for reviewing the
manuscript and providing helpful suggestions. In addition, I wish to thank
John Donovan, Richard Golden, Edward Hanlon, Howard Hecht, and
John McCann for their support in the preparation of this text and my wife
whose advice and typing were magnificent. Programming for the chapter
exercises in this book was done—brilliantly—by Michael Galaty.

MicHAEL P. ZaBINskI, Ph. D.

list of examples

Chapter 2

Interchange Values of Variables 17
Compound Interest 14

Metric Conversion 16

Single Versus Double Precision 18
A Divisibility Check 18

Rounding to the Nearest Penny 19

Chapter 3

Walking Kitty Corner 27
An Arithmetic Trick 32
Mortgage Payments 38
Temperature Conversion 40

Chapter 4

Find the Largest Among Three Numbers 56
Producing Variable Displays 58

Data Validity Checks 60

Change for a Dollar Bill 61

Chapter 5

The Rule of 72 68

Evaluating an Infinite Series 71

Averaging a Set of Numbers 73

How Fast Can the Computer Add? 74

The Legend of the Wise Old Man 75

Find the Largest Element of an Array &0

The Multiplication Table 82

Magic Squares &4

Sorting a List of Numbers in Descending Order &6

Chapter 6

Unit Pricing 95

Practice Your State Capitals 95
A Sales Report 98

Graphing an Equation 100
Pascal’s Triangle 101
Checkbook Balancing 105

xiii

Xiv list of examples

Chapter 7

Long Division 112

Rounding to Any Desired Accuracy 113

Generating Random Numbers Between Given Limits 114
Tossing Heads and Tails 115

Random Graphic Display 115

A Bar Graph of the ABS Function 116

The Rule of 72 Verified 118

Chapter 8

Producing a Blinking Display 124
Computer-Assisted Instruction 125

Chapter 9

Graph of Degrees Fahrenheit and Celsius 133
Bar Graph of a Frequency Count 135
Random Walk 137

Chapter 10

Maintaining a Status Message on the Screen 145
Number of Words in a Text 147

Palindromes 147

Coding a Message 148

Underlining a Title 150

Binary-to-Decimal Conversion 150

Character String Entry Routine 152

Shoot the M’s, A Video Game 153

Shoot the Duck 153

Etch-a-Sketch 154

iniroduction to
TRS-80 LEVEL 1l BASIC
300 COmpUIer PROERIMMINE

introduction

The computer revolution is here! Today, computers are invading virtually
every aspect of life in America. They are changing the way we work, play,
and even think. That they have affected the lives of nearly all of us is indis-
putable. Their impact has been experienced in areas as widely separated as
space research and primary instruction. We live in a world that is increasingly
dependent on computers. These machines not only calculate our paychecks
and our bank balances, but they are invading areas where their application
once seemed inconceivable. The physician may use the computer to diagnose
a case, the attorney to research a legal matter, the policeman to investigate
the records of an alleged criminal, and a history teacher to simulate the Civil
War. It now seems improbable that any career will remain untouched by
computers, as computers are penetrating directly or indirectly into nearly
every aspect of human affairs.

The seemingly unlimited usefulness of the computer itself has been aug-
mented by its rapid development. The number of computers produced has
risen dramatically. In the early 1950s there were less than 1000 computers
in existence. By 1976 the number of computers had risen to 200,000. This
phenomenal growth is primarily due to the major scientific advances in com-
puter design. The first electronic computer, the ENIAC, which was huge and
filled an entire room, was built in 1946. It consisted of 18,000 vacuum
tubes, and tended to overheat and break down. Since that time, with the
advent of transistors, integrated circuits, and the silicon chip, computers
have become smaller, more reliable, faster, and less expensive. We distinguish
between computers, minicomputers, and microcomputers. Around 1965 the
least expensive computers were called minicomputers. In general, they are
less powerful, cheaper, and smaller, although there is considerable overlap.
To some extent history repeated itself with the advent of tke microcom-
puter. In the early 1970s, very low cost computer products began to appear
and were called microcomputers. The prefix micro- applies to the very small
size as compared with a mini. Once again there is considerable overlap be-
tween micro- and minicomputers. Minicomputers lowered the price of com-
puters to less than $100,000 and brought the computer into the laboratory
and the manufacturing plant’s production line. Microcomputers reduced
the price of computers to below $1,000 and brought the computer into the
small business and the home.

Regardless of size and price, all computers possess common characteris-
tics of design and performance. Typically, a computer consists of five units:
input, output, memory, arithmetic, and control. Information must be fed
into the computer as input, for example, via the keyboard or punched cards.

introduction

The data or instructions are stored in the computer’s memory. Computer
storage can be visualized as a set of post-office boxes with each box capable
of holding a single number or character of information. These boxes are
arranged in such a way that their contents can be easily reached or accessed.
Memory holds the information received, the commands to be followed, and
the results of work accomplished. The actual calculations take place in the
arithimetic unit. Besides caiculating, a computer can make comparisons to
determine whether two quantities differ. Such comparisons are also made in
the arithmetic unit. The results of the computer’s work are displayed
through the output unit. In the case of the TRS-80, the display may be on
the screen or on the printer. The control unit coordinates the flow of data.
Like the conductor of an orchestra, it coordinates the activities of the units
of the computer to ensure proper processing.

A basic characteristic of the computer is that it has no inherent intelli-
gence. It does not understand any human language; nevertheless, a computer
can act upon instructions given in a language that is well suited to tasks the
computer can accomplish. The language of the TRS-80 is BASIC; it allows
you to create instructions using familiar English terms. Another important
characteristic of a computer is its ability to carry out instructions extremely
quickly. This fact, along with the observation that many tasks involve re-
peating similar operations, has led to the concept of a computer program. A
program consists of a set of instructions provided to the computer in ad-
vance of actual computations. By first giving a computer all the instructions
needed to accomplish a task, and then telling it to start executing the in-
structions, the computer can work at its own tremendous speed, repeating
particular operations as many times as necessary to get the job done.

The language of BASIC, the Beginner’s All-purpose Symbolic Instruction
Code, was born in 1964. It was developed at Dartmouth College by Kemeny
and Kurtz. The BASIC language is oriented to conversational use at the com-
puter. The idea was to make the language syntax very easy to learn and use.
In 1967, Kemeny and Kurtz reported that they had introduced some 2,000
students at Dartmouth to BASIC, indeed a very basic computer language.

| your TRS-80 compuier

1.1 GETTING STARTED

The TRS-80 computer consists of four units. The power supply, the key-
board, the video monitor, and the cassette recorder. The keyboard is used to
type information into the computer. The information we type in and the
computer’s responses are displayed on the screen. The computer itself is
inside the keyboard. The cassette recorder is used to load from tape pro-
grams into the computer or to record programs on tape. These units need
to be connected and plugged in carefully. Follow the detailed instructions
that accompany the computer, and be sure you get all the plugs to fit
properly. To turn on the computer, press the power button on the video
display and the power button on the back of the keyboard. Once the power
is turned on, the red light on the keyboard lights up and the display

MEMORY SIZET

appears on the screen. Press the white key labeled ENTER. The computer
responds

FARDIC ZHACE LEVEL I1 BRSIC

EEADLY

~—

The computer is now ready for your instructions in Level II BASIC. Com-
puters equipped with Level I BASIC display the READY immediately after
power has been turned on.

1.2 THE KEYBOARD

BASIC is a conversational computer language that enables us to carry on a
dialog with the computer. We talk to the computer by using a typewriter-
like keyboard. We type our messages and transmit them to the computer. At
the same time, the information we type also appears on the screen.

The keyboard is divided into two zones. The first zone is the primary
part of the keyboard; it contains all the keys necessary to operate the com-
puter. The second zone, located on the right side of the keyboard, contains
a duplicate set of numeric keys and a second white ENTER key. It is a

4 ch. 1 | your TRS-80 computer

calculator-style numeric keypad that makes typing of numbers convenient
and efficient for those wlho are accustomed to calculator usage. Some earlier
model keyboards do not have a numeric keypad. The letters of the alphabet
shown on the keys print only in capitals. The SHIFT key need not (but may)
be pressed for the letters to be displayed in capitals. The letter O and the
number zero should not be confused since they are not interchangeable. To
avoid confusion, the number zero is slashed (@).

Some of the keys are shared by two characters. To type the upper char-
acter press the SHIFT key. This is just like typing capitals on a regular type-
writer. For convenience the keyboard has two SHIFT keys located at the
right and left ends of the bottom row of keys. Aside from the usual charac-
ters, such as letters, digits, addition, subtraction, and punctuation, several
characters are peculiar to BASIC. The multiplication sign is a star (*), the
division sign is a slash {/), and the exponent is an up-arrow (1). In addition,
there are other special-purpose keys, for example, #, @, $, and %. These will
be introduced later. Finally, several keys located along the right and left
edges of the keyboard are used to manipulate where on the screen the in-
formation is typed. These include the CLEAR, —, <, BREAK, 1 and | keys.

1.3 COMMUNICATING WITH THE COMPUTER

When we first turned on the computer we pressed ENTER to obtain the
READY followed by >~ . The — is called the cursor. We now do some
typing. Type | AM HAPPY. The space bar is used for spaces between words.
Notice how the cursor moves to the right. The cursor indicates where the
next character will appear on the screen. Suppose we typed by mistake the
word HPPY (the A is missing). To erase the text, we press the < key. Each
time we press the key one character is erased. The shift < (press the SHIFT
and < keys at the same time) erases the entire line at once. Erase it.

Each line on the screen can hold up to 64 characters. Enter any text and
count them. As you type briskly, you may press a second key before you
have released the first. At first type slowly to be sure no extraneous charac-
ters are typed. Now erase the line and type in the entire ABC in double
letters, AABBCCDDEE . . . Press shift — and notice that the letters are
suddenly twice the size and that every other letter of the AABBCC .. . text
has been deleted. Each letter of the ABC now only appears once. Continue
typing digits and other characters. Up to 32 characters fit on a line. When
the line is filled, the cursor automatically moves to the next line. To erase
the line, press shift <. The enlarged cursor remains. Additional typing will
continue to appear in the 32 character per line format. To return to the
normal type size, press CLEAR. This key clears the screen and places the
smaller cursor at the top left comer of the screen. We can now type 64
characters per line.

Press the | key. It moves the cursor down along the left edge. When it is
at its lowest position, type your name. Then press the | key 15 times and
watch your name move up to the top of the screen. There are 16 lines on
the screen. Repeat this exercise. Press CLEAR and then pIGSS | to move the
cursor to the bottom left corner of the screen. Now press 1, 4, 2, 4, 3, 4, .
15,4, 16. Subsequently, continue to typein J, 17, }, 18, and notice how the
first few numbers disappear from the display. Press CLEAR to erase the
screen and to place the cursor at the top left comer.

sec. 1.3 [communicating with the computer

So far we have not truly communicated with the computer. We have
typed information onto the screen but did not transmit it to the computer.
To transmit information to the computer, the ENTER key must be pressed.
Type your name and press ENTER.

COMMENTS
TRZ—~Z8 Type in a name and press ENTER.
TEH EREOE Computer responds: SyNtax error,
FEERL'Y
> The cursor is waiting.

Oops! What happened? The computer did not understand our entry and
therefore responded with the error message. This is one of many types of
error messages that the computer uses to inform you of errors. To avoid such
error messages, we must adhere to the rules of BASIC. We must learn how to
properly communicate with the computer.

seore | S0ECITYINE infORmation

The great power of computers lies in their ability to handle a large amount
of information rapidly. We begin our study of BASIC by looking at some of
the types of information that we can use. The two types of information dis-
cussed in this chapter are numerical information and character information.
We can request that the computer display information on the screen by using
the instruction PRINT.

2.1 NUMERICAL INFORMATION

Numbers such as 18, 157, or 89 can represent information of importance to
you, such as your age, weight, and grade on your last exam. Decimal num-
bers are expressed in the usual manner, for example, 18.5 or 3.14159.

A number such as 18.5 is a positive number. It could therefore be writ-
ten equally well as +18.5. The plus sign is optional. In the case of a negative
number, we must place the minus sign before the number.

COMMENTS

FRINT Z. & You type in PRINT followed by a
= number. Then press ENTER. That
FRIMT number is then displayed by the
IO e computer on the screen. Note that
trailing zeros after the decimal
point are dropped, and for values
less than one, the zero before the
decimal point is also deleted. The
+ sign is not printed; the - sign is
printed. A number without a sign

is always positive.

ot

1

[
P
k]

FRINMT +Z. 1z Positive numbers are displayed with
N i a leading blank instead of the plus
sign.
FRIMT -2 42 Negative numbers are displayed
-4 without a leading blank.
FRINT —g Ziz8 Leading and trailing zeros are not

- ElZ displayed.

A The ? is an abbreviation for PRINT.

= In contrast to Level | BASIC,
Level 1l allows only for very few
abbreviations. For clarity, we do

not use the abbreviated form.

7 sec. 2.2 [character information

REMEMBER: Always press ENTER to transmit your message to the computer.

BASIC uses a modified version of scientific notation for representing
very large numbers or very small numbers. Scientific notation breaks a num-
ber into two parts, a number between 1 and 10 and an exponent of 10. For
example, the speed of light is about 300 million meters per second, which
can be written as 300,000,000 or in scientific notation as 3 X 108. In BASIC
we can express this numerical information as the number 3E8, where E indi-
cates that 8 is the exponent of 10. The following examples illustrate scien-
tific notation.

Number Scientific Notation BASIC
1230000 1.23 X 106 1.23E+062
0.000123 1.23 X 1074 1.23E-04

2BASIC replaces ‘“times ten to the” by E.

COMMENTS
PREINT 18006& Once the ENTER key is pressed the
uRulalslsls computer displays 100000.
FREINT 1900006 At 1 million, scientific notation is
1E+86& used.
FRINT 1E+5
180668
FRINT 1E& 1E6 is a valid numeric constant.
1E+8&
PRINT @ &1
&l
FRINT 6. g8i Scientific notation is used by the
1E-82 computer for numeric constants

of 0.001 or less.

2.2 CHARACTER INFORMATION

In addition to numerical information, BASIC also allows for the use of char-
acter information in the form of character strings. Character strings may
consist of a single character such as

IIAII' IIBII, IICII, 11211' ll3ll, II*II' II+II, II=II
or several characters such as

IIABCII' l123ll' ll*+=ll

Character information must be enclosed in quotation marks.

2.3 VARIABLES

FRINT " "

FPRIMT

FREINT "HE SRID "TO BE OR NOT TOQ BE"®

TEN ERROR

FRINT "THIS WORKS
THIZ WORKS

ch. 2 [specifyving information !

COMMENTS
FRINT "HY Character data are typed in with
H quotes. On output, the computer
FRINT "z3v displays character data without
=3 the quotes,

REMEMBER: Character information is always enclosed in quotes. It may contain up
to 255 characters.

The following examples illustrate additional features of character infor-
mation.

COMMENTS

Request that a blank be printed.

The computer displays a blank;
double spacing.

Print nothing.

The computer again skips a line;
displays a blank.

Try to display a quote.

Cannot have more than one set of
quotation marks.

Rest beyond first set of quotes is

SHID

ignored.
FRINT "HE SAID "TO BE OR MNOT TO BE-" So we use apostrophes within the
HE =RIEG “TO BE OF HOT TO BE- quotes.

The closing quotes are missing.
They are not required.

The syntax error (SN ERROR) encountered above is one of many differ-
ent error messages that the computer uses to denote an illegal procedure. A
complete list of the error messages is given in Appendix 1.

The previous sections introduced different types of information; thus
far it has been necessary to enter information from the keyboard. We often
want to store information in the computer for later use. This capability is
provided through variables. A variable is a name that represents data stored
in the computer. It may be numerical or character data. It is not fixed, but
may be changed whenever desired.

We want to compute the interest that a savings account will earn in one
year. We need to have the account balance at the start of the year. This value
is not fixed; it may vary from person to person. We assign this quantity a
name, for example B. The quantity B is called a variable. For one person, B
may be 1000; for another it may only be 100. So B varies but always repre-
sents the balance at the start of the vear. Another variable that we need in
order to compute the interest paid by the bank is the interest rate. We can
name it R.

2.4 ASSIGNMENT

sec. 2.4 [assignment

Notice that we used the variables B and R to represent the account Bal-
ance and the interest Rate. It is a good idea to select variable names that
are closely associated with the quantity they represent. For example, use the
variable name M for Mary’s age and J for John’s age.

Variable names are formed from alphabetic characters and numerals.
Variable names must start with a letter (A-Z) and may be followed by letters
or digits (0-9). Examples of valid numerical variable names are

A A3 AB Zzb
Examples of invalid nwnerical variable names are
A+ 3A

The A+ contains an illegal character; the 3A does not begin with a letter.

String variables contain character information; numerical variables con-
tain numerical information. String variable names are formed by appending a
dollar sign ($). The maximum number of characters that may be included in
a character string is 255 characters. Examples of valid string variable names
are

A$ A9% DC$S
Examples of invalid string variable names are

A+$ The +is an illegal character.

8C$ The variable name cannot begin with a
character other than a letter.

XY The $ is missing; this is a legal
numerical variable name.

In Level I BASIC only two string variables are available. These are variables
A$ and BS.

REMEMBER: The name of a string variable always ends with a $.

The procedure by which we specify the value of a variable is called assign-
ment. Assignment is indicated by the equal sign (=). To assign the value 1000
to the variable D, we use the instruction D=1000 or LET D=1000. The LET
is optional.

Type in D, the equal sign, and 1000, Then press ENTER. From this
point on, D has the value 1000. The value of D can subsequently be changed
through another assignment statement. To display the current value of the
variable D, we type in PRINT D and press ENTER.

10

ch. 2 [specifying information

COMMENT
LET D=18@a Assign D the value 1000.
FPRINT D Request display of the value of D.
1e8a The present value of D is 1000.

REMEMBER: The LET is optional; we will omit it.

When the computer encounters the assignment statement D=1000, it
places the value 1000 in a storage location in its memory and associates
this storage location with the variable name D. The assignment instruction
in itself does not cause the value of the variable D to be displayed. A sepa-
rate PRINT is needed. Then printing the value of D does not change its value
in storage.

COMMENTS
LET D=zoag The variable D is now 2000. Note
the assignment does not cause the
value of the variable to be dis-
played.
FREINT @
ZEea The value of D is displayed.
FRINT D
20aa The value of D is still 2000.

Spaces (blanks) within statements such as between the PRINT and vari-
able D are optional. Spaces are generally included only for readability.

Variables are initially set to zero by the computer. So unless otherwise
specified, all variables have zero values to start with. In Level I BASIC, the
value of an undefined variable is unpredictable. For example, we have not as
yet assigned the variable R a value. So we expect the value of R to be zero.
The LET is optional, so we omit it.

COMMENTS
FRINTE R has not been assigned a value and
& is therefore zero; the space be-
R=& @y tween PRINT and R is optional.

The assignment statement does not
cause a display by the computer.

FEINT K

AT R is now .07.
F=i R is assigned the value zero.
FRINT B

5] R is again zero.

Variable names may exceed two characters, but only the first two char-
acters are used by the computer. The variables NU and NUMBER are there-
fore one and the same. The computer does not recognize the letters beyond
the U. Also, variable names may not contain words used in the BASIC
language, such as ON, FOR, or NEXT. There are many such keywords com-
monly referred to as reserved words. A list of the BASIC reserved words is
given in Appendix 2. ‘

11 sec. 2.4 [assignment

COMMENTS
MUMBER =1 Variable names more than two
FRINT HUMEER characters in length are permis-
i sible.
FRIMT Hi NU and NUMBER are the same
4 variables. Only the first two char-
acters are recognized,
Hil=16 NU is specified as 10.
FRINT HUMBER
i Now NUMBER is also 10.
GOME=T GONE is an illegal variable. It con-
TEH ERROR tains the BASIC reserved word
ON.

The assignment is not always just the usual equality. For example,

COMMENTS
FRIMT A A has not been assigned a value.
5] Like all undefined variables, it
starts out as zero.
A=1 A is assigned the value 1.
FRINT A
1 The old value of A (=0) has been
replaced by 1.
A=A+ The value of A is replaced by its old

FREINT & value (=1} plus 2.
e Aisnow3{= 1 + 2).

We may think of the assignment as a replacement. Even though in arithmetic
A = A + 2 is not a valid relationship, in BASIC it is. We have in this example
introduced for the first time an arithmetic operation, the addition. In the
next section we discuss arithmetic operations in detail.

The assignment statement works similarly with strings.

COMMENTS
Hi$F="Togy" ' The character string TOBY is as-
FRINT Mif signed to the variable N13.
TORY
MHE2F="MARIOH AMHDL ERICY N2$ is the name of a string vari-
FRINT HZF able whose value is MARION
MARIOMN AHD ERIC AND ERIC.
HiF=NZ% Variable N1$ is assigned the value
FRINT Hif of variable N2§.
MARION AND ERIC The value of N1$ is no longer
FRINT HzF TOBY.
MARION AMHD ERIC The value of N2$ remains un-

changed in the process.

C:> Example: Interchange Values of Variables

Two variables A and B have been assigned values (for example, A=10 and B = 20). Write a

sequence of instructions to interchange the values of A and B without simply stating
B=10and A=20.

12 ch. 2 | specifying information

mmI
o]

el]

B
<

-

pagex
pa AN xR
5

et ITES bt
- .
=
=5

“nm

Pt TR
5o I
=z
—t

=

COMMENTS

A and B are given values.

Ais 10.

B is 20.
Set A equal to B.

A is now 20 as desired.

Set B equal to A.

B is 20, but we want it to be 10;
this is because B = A sets B equal
to the current value of A (=20).

So we introduce a third variable, C:

PRI 2 B I (S
[iRl

Rl R
R
a
=

I
[}

T

FRINT B

b
ha

COMMENTS

A is 10 to start with.

B is 20 to start with.

Set C equal to A.

Set A equal to B.

Set B equal to C, which equals the
original value of A, that is, 10.

A is now 20 as desired.

B is now 10 as desired.

REMEMBER: When a variable is assigned-a new value, its old value is lost.

EXERCISES 1

In the following exercises, record the result you anticipate in the column Anticipated
Display. If the actual display differs from the anticipated display, record the result in the
column Display with an explanation. Refer to Appendix 1 for error messages.

1. Fill in the Anticipated Display, enter the instructions, record the results, and explain.

Instruction

WL 95T (6 Diqrs

BEFlE Corn G
Dovh e PRECIS o
ST ™NTiF(e

O QL0 O

aa

h

. FRINT

. PRINT

. PRINT
. D=8

FREINT
FRINT
. PRINT

PRINT 1224

CFRINT 45

L
HEn
E

i, PFREINT
jo FRINT
k. 7

1t [.‘
YEHECD

i

[

Anticipated Display

-

>
Display K503
| isplay 9&7/0\&\

J

/

13

sec. 2.5 [arithmetic functions

2. Use the PRINT statement to display your age.

3.
4.
5.

7.

Use the PRINT statement to display your name.

Use two PRINT statements to display your name and home address.

Enter the following instructions. If you anticipate an error, indicate the source of that

eITOT.
Instruction Anticipated Display Display

a. PREIMNT MY HAME

b, FRIMT “HE =AIL. "I AM HAFEY " o

C. AF="TERRIFILY

d. ACE=1

e. A=

f. A+I=3

6. Specify and then display:

a. A string variable that contains the letters of the alphabet without spaces between
the letters.

b. Astring variable containing all the digits from 0 to 9.

a. Find the largest N for which 10N does not exceed the limit for a constant on your
computer. (HINT: In scientific notation, enter successively increasing numbers of
the form 1E2, 1E10, and so on.)

b. How does the computer indicate when a number is too big to be used? (This is
called overflow.)

c. Try entering successively smaller numbers, such as 1E-2, 1E-10, and so on. What

happens?

2.5 ARITHMETIC FUNCTIONS

Addition (+), subtraction (=), multiplication (*), division (/), and exponenti-
ation (1) are the five available arithmetic functions. (Level I BASIC does not
have exponentiation.) On the screen the symbol for exponentiation appears
properly as amarrow-peinting-up ([E). The printer, however, prints this sym-
bol as a square bracket ([).

COMMENTS

PRINT 1+z The instruction is entered.
ks The sum is displayed.

PREINT 1-2 Subtracting 2 from 1 yields -1.

-1

A=S

PRINT 9#A The constant 9 is multiplied by the
45 variable A. The result is 45.

B=18

PRINT B/H One variable is divided by the other.
z 10 divided by 5is 2.

FRINT SLz Five squared is 25. On the printer,
25 exponentiation shows up as a

bracket {[).
PRINT 4@ S The square root of 4 is 2; the ex-
b ponent 0.5 is equivalent to the
square root.

14 ch. 2 [specifying information
The instruction PRINT 1+2 differs from PRINT “17+“2”:

F’RIF‘T uill+l12u
i2

Character strings are not added; they are concatenated (strung together).

PRINT llill+ll2ll+"3n
122

Q Example: Compound Interest

Suppose you deposit $1000 in a savings account. What will be the interest paid and the
balance of your account after 1 year and after 10 years? Assume the money is com-
pounded once a year and earns an interest of 7%.

COMMENTS
I=1608%6. a7 Compute the interest paid the first
PRINT I year.
e The interest is $70.
B=1088+]1 Balance at the end of the first vear

is the interest earned added onto
the initial deposit.

FRINT E The balance at the end of the first
ie7s year is $1070.
B=1a80+1. av Combining the above steps vields
FRINT B the balance in one computation.
lava Compute the baiance after 10 years.
B=188@+1. GFL 18 The bracket indicates exponentia-
PRINT B tion.
1867, 15 After 10 vears the balance is
$1967.15.
FRINT BE~1088 The difference between the final
&7, AS balance and the initial deposit of

$1000 is the total interest paid
over 10 vears.

In the above example we introduced the idea of more than one arithmetic
function appearing in a single instruction. In the computation B=1000+* 1.07{10
we have a multiplication (¥) and an exponentiation ([). The order in which
these arithmetic operations is performed is most important. In this case the
‘exponentiation is first, followed by the multiplication.

REMEMBER: On'the screen the symbol for exponentiation“is t; on the printer and
in this book it is . ; e

2.6 HIERARCHY OF ARITHMETIC OPERATIONS

Arithmetic operations are generally evaluated from left to right, keeping in
mind these rules:

1. Whatever is inside the innermost set of parentheses is always evalu-
ated first. The next innermost parentheses are evaluated next, and so on.

15

sec. 2.6 [hierarchy of arithmetic operations

2. The arithmetic functions have the following three levels of prece-
dence: exponentiations (raising to a power) before all others, then multipli-
cations and divisions, and finally additions and subtractions, which are
performed last.

3. Within each level the operations are performed from left to right.

The following examples demonstrate these rules (assume X = 1, Y = 2, and
Z=3):

Expression Value Comments

X+Y-2Z 0 + and - have equal hierarchy, so compute
from left to right.

X+Y=*2Z 7 Multiplication first followed by addition.

X*Z]Y 1.5 # and / have equal hierarchy, so compute
from left to right.

Zx(X +Y) 9 Parentheses are evaluated first, followed
by the multiplication.

Z]Y +Y[X 3.5 First Z/Y, then Y/X, then the
addition.

Ze(X/(Y +Z) .6 The innermost parentheses are evaluated
first: Y + Z = 5. Next the outer paren-
theses are evaluated.

XY +Z)=1/(2+3)=1/5=0.2. Finally
the multiplication is carried out:
3%0.2=0.6.

REMEMBER: In case of a tie in precedence, the sequence of operations is left to
right.

It is important to note that the presence of parentheses may or may not
affect the value of the expression. If the parentheses do not alter the value of
the expression, the parentheses are said to be redundant and are included for
clarity alone. For example,

Expression Value Comments
Z/Y +Y/X 3.5 As explained above.
(Z/Y)+(Y/X) 3.5 The parentheses are redundant; they only
help clarify the sequence.
ZIY +Y)/X .75 Now the parentheses affect the value. First

the () are evaluated (Y + Y) = 4; then
from left to right, Z/4/X = 3/4/1 =0.75/1
=0.75.

Another rule to remember is that arithmetic operations can follow one

16 ch. 2 [specifying information

another without being separated by parentheses:

COMMENTS
FRINT S—¢-2n» The parentheses can separate the
7 two arithmetic operations.
FPRINT S~-2 The same result without the {).

-
1

Example: Metric Conversion

Write a sequence of instructions to convert the height 5 feet 10 inches to inches and to

centimeters.
COMMENTS

F=5 5 feet.

I=1@ 10 inches.

IN=F+12+1 Compute the inches: first the mul-
tiplication, and then the addition
is performed.

FRIMNT IM

e 5 feet 10 inches equals 70 inches.

CHM=LF+12+1 042 59 The {) are evaluated first; then

FRINT CHM multiply by 2.54 to convert inches

177 & to centimeters.

REMEMBER: (1) Every expression must contain the same number of right and left
parentheses. (2) The product AB must be written as A*B.

2.7 VARIABLE TYPES

We have distinguished between variables that store numerical values and
variables that store character information. Numerical values can be stored in
integer, single-precision and double-precision modes. These three different
types of variables store numbers with different degrees of precision. Single-
precision variables are accurate to 6 significant figures; double-precision
variables are accurate to 16 significant ﬁgures Integer variables store only
whole numbers in the range -32768 to +32767. Each type of variable has a
corresponding character that sms The type. String variables are declared
by means of a $, for example, ABS. The maximum number of characters
that can be stored in a string variable is 255. Single- and double-precision
variables are declared by means of a ! and a #, respectively, for example, AB!
and AB#. Integer variables are declared with the % symbol, for example,
AB%. The variable types are summarized in Table 2.1. The limits on single-
precision numeric constants are -1.701411E+38 to +1.701411+E38; double-
precision numbers must be in the range -1.701411834544556D+38 to
+1.701411834544556D+38. The D represents the exponent in double-

e

pre0151on scientific notation. —

17

sec. 2.7 [variable types

TABLE 2.1 Declared Variables

Variable Identification Limits on
Type Character Magnitude Examples

Single ! -1.701411E+38 to AAl=1.23456E+38; Al =-1.23456;
Precision +1.701411E+38 inclusive six digits displayed

Double # -1.701411834544556D+38 to B# = 1.234567890123456D+38;
Precision +1.701411834544556D+38 16 digits displayed

Integer % -32768 to +32767 inclusive 1% = 32767, ACE% = -32000

String 3 Up to 255 characters TEXTS = “TO BE OR NOT TO BE”

REMEMBER: When a variable is not declared as an integer, a string, or single or double

precision, it is‘automatically given single precision.

The following examples illustrate the variable types:

FRIMT AE

1. 23457

HE=1234567
FEREIMT HB
1. 23457E+80

HE=E. 2ol=34567
FRINT RE
1. 2345VE—-@Z

RE =1 234587
FREINT ABE!
1. 23457

RE | =1234567
FRINT AE!
1. ZZ4STE+EE

1. 2E40eTEREL 23457 0+1e

0N ERROR

COMMENTS

AB is a seven-digit single-precision
number,

Six digits are displayed. The sixth
digit is rounded off.

The sixth digit is rounded up.

AB is a seven-digit number.
Six digits are displayed, rounded,
and in scientific notation.

AB is a ten-digit number.
Leading zeros are not significant.

Declare AB! as a single-precision
variable.

Rounded and six significant figures
are displayed.

Declare AB! as asingle-precision var-
iable. E indicates single-precision
scientific notation; six significant
figures are displayed in scientific
notation.

Declare AB# as a doubie-precision
variable.

The sixteenth digit is rounded.

A 17-digit number. Sixteen signifi-
cant figures are displayed. The D
indicates double-precision scien-
tific notation.

Declare AB% as an integer variable.
Overflow error occurs since AB%
exceeds 32767.

18 ch. 2 [specifying information

COMMENTS
AEF="12E340678901 234527 Declare AB$ as a string variable.
FRINT AB$ AB$ contains 17 characters.
1224567881 234567 All 17 characters are displayed.

REMEMBER: The variables AB, ABS$, AB!, AB#, and AB% are all different variables.

g> Example: Single Versus Double Precision
Multiply in both single and double precision 14593 by 846 and 2220247 by 8.

COMMENTS
H#=1459% 535 A# is a double-precision variable.
FRINT R# The multiplication is in double
122456878 precision with all eight digits dis-
played.
F=id4593+w84e Single-precision multiplication; an-
FEINT A swer rounded to six significant
1. 2EZ4ETE+ET figures.
A=2228z47+5 Single precision.
FRINT A
1. FPEZE+ET Due to roundoff, only five digits

are displayed.

Double precision.

FRIMT A#
177E1L97E An American Bicentennial date.

Q Example: A Divisibility Check

Integer variables only retain the integer portion of a number and ignore the decimal
fraction. Integer arithmetic therefore differs from conventional arithmetic in that the
result is always an integer.

COMMENTS
A=7
B=2
AE=F.E
FRIMT HE
HE;H E AB% is an integer variable.
FRINT HEX Only the integer portion of the

fraction A/B is retained.

Variable B divides into variable A evenly if AB equals AB%. In the above example AB
does not equal AB%, so 7 is not divisible by 2.

19 exercises 2

COMMENTS
A=
B=2
AE=A-"E
REH=A"E
FREIMNT HRE
F‘EjﬁIHT AEX AB equals AB%. So A is divisible by

= B: 6 is divisible by 2.

C:> Example: Rounding to the Nearest Penny

COMMENTS

D equals $1.236.
=1L .S Converts dollars to cents and adds
FRIMT 0.5 cents.
1241 100 X 1.236 + 0.5 = 1236 + 0.5
=124.1.
D=0 Drop fractional cents; truncate C.
FRINT CXHAS180 Convert to dollars and cents; 124/
124 100 = 1.24.
$1.236 is rounded to $1.24.

In this example we take advantage of integer arithmetic. We must remember that C% can-
not exceed 32767. In the event that it does, a different approach must be taken in
rounding. It involves the integer INT function, which is discussed in a later chapter. Does
the above method properly round down? Try D = 1.234 for which the expected result is
1.23.

EXERCISES 2

1. Evaluate each of the following expressions; be sure you understand how each result is
obtained. Refer to Appendix 1 for explanations of error messages.

Instruction Anticipated Display Display
3+2-5
I+2*5
2+2/5
LEHZ23%5
2wS-2
1+Z45~2
2 (D=2 08,,018-30 -
. 2H(G-23 /00185822 !
=3, E=5, C=18, A$="A". BF="B"., C%="C", [=2E-10, R#=3.
D#=zE-106

S Fmme e TR

FRINT A/B s b
PRINT (C-B2*A

FRINT ({B+1)#*C-B

PRINT RH-B=®C

PRINT CLH

PRINMT ~CLH

ch. 2 [specifying information

Instruction Anticipated Display Display

FRINT (-C3[A
FRINT <4[ALZ
FRIMT A$+B$+C$
Ax=R"B

FRINT A=

FRINT D

PRINT D#

FRINT A+D
FRINT A#+D#

A

FRINT AX

j. PRINT 1EZ&
FRINT EZ8
PRINT 1-1EZ
PRINT 1.3
PRINT 1-z#
FRINT 1-/3!+1-3#
FRINT 2X+1.-Z#

. Multiply in single and double precision: 4869684.5 times 8.

. Is LET A + B = C a valid BASIC statement? Why or why not? Once you have
answered the question, enter the statement into the computer.

. Write a minimal {as few characters as possible) BASIC expression for each of the
following:

Conventional Notation BASIC Notation
a. A+B-C
b. CX(A-Y)
c. (AXB)-2
d. AX(BXOXA
“c-Bp

3
f. AX B-CAX (A—B)_(AX Q)

3

. Convert the following from BASIC notation to conventional notation:

woY-2

e it

e MY R

Ak -y

Rt (2400 XY

oo o

. Let AB = Sand AC = 6. Print the sum, the difference, the product, and the quotient
of AB and AC.

. Print the square, the cube, the square root and the cube root of 2. (Note: the cube
root corresponds to an exponent of ' or 0.333333))

. What is the displayed value? (LET A = §5.)

FRINT A/B
FRINT A=g
PRINT ALY
PRINT o+
PRINT @-8

a0 T

21

exercises 2

9.
10.

11

12.

13.

14.

15.

16.

17.

The grades on your last five tests were 80, 90,95, 63, and 75. Find their average.

Mr. Jones joined the programmer’s union and now earns $9.50 per hour for a 40-
hour week and overtime at a rate of 1% times his normal rate ($14.25) for any hours
worked beyond 40 hours. Compute the weekly total gross pay and the overtime gross
pay (if any) for the following hours worked.

a. 40 hours

b. 37 hours

c. 47 hours

Hero’s formula for the area of a triangle is

e

area =/SX (S-A) XS -BX(S-0

where A, B, and C are the lengths of the three sides of the triangle and S is one-half
of the perimeter; give BASIC expressions to evaluate Hero’s formula, assuming

a. The lengths of the sides are 3,4, and 5.

b. The lengths of the sides are stored in the variables 81, S2, and S3.

Given a time duration in T hours and M minutes, write a BASIC expression to ex-
press this in seconds. Print your answer for 1 hour and 30 minutes, and then also for
0 hours and 1 minute.

The following expression converts degrees Celsius (C) to degrees Fahrenheit (F):
F=%C+32

Print the degrees Fahrenheit equivalent to -10, 0, 10, and 20 degrees Celsius.

Compute the interest on $24 compounded annually at 3% since 1627, the year Man-
hattan was bought for $24 from the Indians. The bank balance at the end of NV years
is P X (1 +)V, where I represents the annual interest rate (as a decimal; for exam-
ple, 7% is 0.07) and P the initial bank deposit.

a. How long does it take to double your money in the bank? Assume annual interest
rates of 5%, 7%, and 9% and an initial balance of $1000.

b. Does the time to double your money change when the initial deposit is varied
from $1000 to $50007

The amount of the monthly payment necessary to pay off a home mortgage is given
(in conventional notation) by

a+nY
P=AXIX ——r
1+ -1
where A is the amount of the mortgage and I is the monthly interest rate (as a deci-
mal). For example, if the annual interest rate is 7%, the monthly interest rate in
decimal form is 0.07/12. N is the number of monthly payments. Give a BASIC ex-
pression that is equivalent to this formula. Assuming A has a value of $30,000,
evaluate and print this expression for
a. A lifetime of 20 years (480 months) at (vearly) interest rates of 8% and 10%.
b. An interest rate of 10% and a lifetime of the mortgage of 20 and 30 years.

As N gets larger, what value does the following expression take on:

lN
1+—) =2
N

Let N =10, 100, and 1000.

22

ch. 2 [specifying information

18. The positions of points on a graph are given in terms of their X (horizontal) and Y
(vertical) coordinates. Suppose the coordinates of the first point are specified as X1,
Y1, and the coordinates of the second are X2, Y2.

a. Give a BASIC expression to print the slope of a line passing between these two
points. The slope of the line is given as the ratio of the difference in their Y coor-
dinates to the difference of their X coordinates:

Y2 - Y1

slope = ——«—
P X2 - X1

b. Give an expression to print the distance between the two points. The distance is
given by
[(X1 - X2)* + (Y1 - Y2)’]'

Use these expressions to compute the slope and distance for the following three sets
of points:

(1,2) and (4, 8)

(3,4) and (5,4)

(-1,2)and (-1, 6)

3|compuier progrsms

chapter &

In the last chapter the compound interest example demonstrated the PRINT
instruction along with the arithmetic operations. We computed the annual
interest and the end-of-year balance of our savings account. We also deter-
mined the balance after 10 years. This set of instructions is quite useful, and
we may wish to use it several times. Therefore, it may be desirable to save
this set of instructions rather than to reenter it every time. This can be done
by writing a computer program. The computer program will make it possible
to determine the balance in the savings account for different interest rates,
different initial deposits, and different durations, without having to retype
all the instructions for every computation. To do this, we combine the
instructions into a computer program.

3.1 WRITING A PROGRAM

To illustrate how to write a program, we will copy from the last chapter
the instructions to compute the interest earned and the end-of-year balance
for a given initial deposit and a specific interest rate. We store the Deposit
in variable D and the interest Rate (in decimal form) in R.

COMMENTS
D=1a@a Initial deposit specified.
F=A. 87 Interest rate specified in decimal
form.
I=[wkR Compute the interest earned.
FRIMT I Print the interest earned.
7@ The interest is 70.
FRINT D+1 Compute and print the end-of-year
i1gve balance.

In performing these calculations, the computer is in the command mode.
Whenever the > — appears on the screen, the computer is in the command
mode.

We want to show how to write the above instructions in the form of a
computer program so that they can be saved and do not have to be reen-
tered every time we wish to make these computations. To enter a program,
we type in a line number followed by the instruction.

23

24

ch. 3 [computer programs

COMMENTS
@ I=[wR Line number 30 calculates the
interest.
458 FPRINT I Display the interest.
58 FRINT D+1 Calculate and display the balance.
&8 EMD Last line of the program.

This program consists of four statements. Each statement has a line number;
each statement may be up to 255 characters in length) The END statement is
the last statement. We notice ‘fﬁ"at even thou"'h we are in the command
mode, no results are displayed as each statement is entered. We distinguish
in the command mode between the immediate mode and the programming
mode. In the immediate mode, statements have no line numbers; in the
programming mode they do.

To run the program, we assign a value to the variables D and R. We may
give them any values we want. We then execute the program by typing RUN
and then pressing the ENTER key. The RUN command places us in the
execution mode. Computer programs are executed in the execute mode.

COMMENTS
De=1@0e D and R are specified in the imme-
p=@, @y diate mode.
FLiM Execution of program requested.
a Oops, the interest is zero.
& The balance is also zero.

What happened to our very first program? The RUN command caused execu-
tion of the program stored in memory. But at the same time the RUN als also
executes a CLEAR, a command that resets all the numeric variables to zero
and all string variables to null. So in our case the variables D and R are reset
to zero by the RUN command. To avoid this complication, we rewrite the
program by adding to it the following two lines:

R
]
K t

y
R

8

Gl |_‘|

n II

L
F

This is a form of editing, which will be discussed in more detail later. We
now execute the program.

COMMENTS
RELIN Request execution of the program.
T The interest is displayed.

.‘
l:l

lt The total balance is displayed.

The results are as expected. After the execution of the program has been
completed, the READY reappears. We are again in the command mode.

COMMENTS
FREIMT D61 Prints the value of D and | in the
A0GEE TE immediate mode.
Their old values are still in memory.
18 L=l B8 Enter a new line 10 in the program-

ming mode.

25

sec. 3.1 [writing a program

R Request execution; switch from

command mode to execution

S is] mode. Interest is now 700. Bal-
ance is now 10700.

J ':!
'\

T
18

B i

The semicolon in the PRINT allows us to display the values of several vari-
ables on the same line. All variables that are to be printed in this manner
must be separated by semicolons. The values of D, R, |, and B are all in
memory at this point and can be displayed in the immediate mode.

COMMENTS
FRINT DiRs I.0+1 The semicolons must separate the
LEBEG Gy FEs 1uyae variables.

REMEMBER: (1) Whenever the > — appears, we are in the command mode.

(2) In the command mode we distinguish between the programming and
immediate modes.

(3) In the immediate mode, statements have no line numbers.

(4) In the programming mode, statements must have line numbers; line
numbers allowed are 0 to 65529 inclusive.

(5) The RUN statement switches from the command mode to the exe-
cution mode.

numbers must be integers (whole numbers) between 0 and 65529.
Each line in the program must have a number, and the execution of the pro-
gram proceeds in ascending order of line numbers. The line numbers of suc-
cessive instructions can be spaced. As a matter of fact, a spacing of 10 is
recommended so that additional instructions can be sandwiched in at a later
time. What is the spacing between line numbers in the savings account pro-
gram we wrote? To take another look at the program, we type in LIST and
ENTER. A listing of the program appears on the screen.

COMMENTS
Liz Request a listing of the program.
1e De=1loEon Successive line numbers differ by
28 R= a7 10 in this particular program.
28 I=Deek
Gt FRINT I
S8 FREINT D+I =
SR EMD The END is optional and may be

omitted.

The LIST command instructs the computer to display the lines of the pro-
gram that are in memory. The various versions of the LIST command are

COMMAND COMMENTS

LI=T Entire program is displayed.

LIST z& Line 20 of the program is displayed.
LIZT ng All lines as of line 20 are displayed.
LIST —2n All lines up to and including line 20

are displayed.

26

ch. 3 [computer programs

COMMENTS
LIST Za-—&2@ All iines 20 through 80 inclusive are
displayed.
LIZT The line just entered or edited is dis-
played.

Since the END statement is optional, let us delete the END in line 60 of
the above program. To delete line 60, we type in 60 and press ENTER.

COMMENTS
=8 and press ENTER Delete line 60 of the program.
LIZT & Request a display of line 60.
RERDY Line 60 no longer exists, so just the
= READY and the cursor appear.
SE 0 EMD The END statement is reinserted.
DELETE €8 Another way to delete a line: type
DELETE and the line number.

LIZT & Line 60 has again been deleted.
EEALY
~ -
RN Execute the above program without

FER the END statement.

1RA7FES The answers are the same as before.

The DELETE command erases program lines from memory. It is possible
to delete individual lines or a sequence of lines.

COMMAND COMMENTS

DELETE <& Delete line 60.

DELETE —c& Delete all program lines up to and
including line 60.

DELETE 48-£6 Delete all lines starting with line 40
and including line 60.

CELETE. Delete the line just entered.

A convenient command to use during programming is the AUTO com-
mand. During program entry, this command AUTOmatically displays the
next line number. All you have to do is enter the actual BASIC statement.
This line-numbering function is invoked by typing in AUTO. The numbering
begins with line 10 and continues thereafter in increments of 10. Lines 20
and 30 then follow. The various versions of the AUTO command are

COMMAND SEQUENCE OF LINE NUMBERS

AUTD 10,20, 30,., ..
AUTO 58 50, 60, 70, . ..
AUTO 5@, 5 B0, 55, 60, ...

The starting line number and the increment can be specified. To stop the
automatic line-numbering function, press the BREAK key. The READY sign
appears. At this point, additional line numbers may be entered or the pro-
gram may be run. In the event that AUTO displays a line number already in
use, an asterisk appears alongside the number. Press the BREAK key if you
do not wish to reprogram that line.

27

sec. 3.1 [writing a program

To erase the program from memory, we type in NEW. This command
clears the screen, displays READY, and deletes the entire current program
from memory. In the process it resets all numeric variables to zero and string
variables to null. Then if we request execution by entering RUN, no results
are displayed:

COMMENTS
RUM Request execution.
Tog The interest earned.
167a6 The end-of-year baiance.
NEW Erase the program in memory.
RUN Execution requested.

No results; the program is gone.
PRINT DiR; I D+I The values of the variables have
8 8 & @ been set to zero by the RUN com-
ma_nd.

REMEMBER: Before typing in a program, enter NEW to delete the program already in
memory.

The variable MEM contains the number of unused bytes of memory. This
variable can be used in the immediate and programming modes.

COMMENTS
NEW Erase memory.
PRINT MEM
45572 The number of available bytes is
15572.
A=1 Specify A.
FRINT MEM Now 15565 bytes remain; it took 7
15565 bytes to specify A = 1.

The total number of available bytes depends on the computer’s memory. A
16K computer has 15572 bytes available; a 4K computer has 3284 bytes.

Q Example: Walking Kitty Corner

According to the Pythagorean theorem, the length C of the hypotenuse of a right triangle
is given by the expression

C= VAT B? A

where A and B are the lengths of the other two sides. Write a program to compute and
PRINT the hypotenuse C given the sides A and B. Also compute and print the difference
between the sum of the sides A + B and the hypotenuse C. This difference represents the
distance saved in walking kitty corner across an intersection. A program to perform these
calculations is shown below. Remember to type in NEW before entering the program.

28

ch. 3 | computer programs

COMMENTS
1z A=3 Specify A as 3.
14 B=d Specify B as 4.
16 C=cAl2+Bl 208 5 C is computed from A and B; tak-
18 PRINT C ing the square root corresponds to
28 FRINT A+B-C raising to the exponent 0.5,
22 END Line numbers are picked freely but
in ascending order,
RUN Execution is requested.
5 The hypotenuse is 5 and the differ-
2 ence (A +B) -Cis2;{4+3-5
= 2).

In this program we first specify A and B and then compute C. Once C is computed,
the results are printed in lines 18 and 20. In order to make another computation with
different numbers, we must change the values of A and B. New values are assigned to A
and B by changing lines 12 and 14 in the program.

COMMENTS
12 A=i1z Change lines 12 and 14.
14 B=5
RUMN Now execute with a different A and
B.
13 C = 13.
4 A+B-C=12+5-13=4.

REMEMBER: In'memory the statements of a program aré stored in line-number order.
The sequence in which the lines are typed is not important.

3.2 PROGRAM CLARITY, DISPLAYING MESSAGES AND COMMENTS

It is important that a program be written in a way that is easily understood
by the reader. A good program is one that proceeds smoothly and logically
from beginning to end. A good program therefore requires good planning.

Another factor influencing the readability of a program is the complex-
ity of the BASIC expressions that are used. Because of the large number of
built-in functions that are available and the ability to chain expressions
together (we will see that later), some amazing calculations can be accom-
plished in one line of code. The argument that such expressions execute
more rapidly is not really relevant if the milliseconds of saved computer time
are gained at the expense of minutes or hours of the programmer’s and
reader’s fime.

Program clarity is also enhanced by the appropriate choice of variable
names and the use of explanatory comments within the program. Comments
are indicated by REM. They are nonexecutable statements that merely
improve the readability of the program through explanatory comments.

Another aspect of clarity deals with the output of the results. It is often
useful to display messages along with the numerical results of a calculation.
It helps us to recall what the results mean. We can display messages by dis-

29

Lis
1@
12
14
15
17
18

22

RN

exercises 3

playing a character string as a step in our program or on the same line by
placing a semicolon between the character string and the variable. For ex-
ample, in the kitty corner program we now enter into the computer

17 PRINT "THE HYFOTEMUZE IS"
28 FRINT"DIFFEREMCE IM LENGTHZ IS": A+E-C

Since the rest of the program is still in the computer, line 17 is added to it,
and the new line 20 replaces the old version of line 20. We also add a com-
ment REMinding us that variables A and B are the legs of the right triangle.

18 REM R&BE ARE THE LEGS OF A RT. TRIANGLE

Like all other statements, a REM statement may be up to 255 characters
in length. The abbreviation for REM is the apostrophe.

18 7 H&E HRE THE LEGS OF A RT. TEIANGLE
This version of line 10 is identical to the above. For clarity we do not use the

abbreviated form of REM.
We now list the program and execute it.

COMMENTS
T Request a listing of the program.
T R&E ARE THE LEGS OF A RT. TRIANGLE The reminder comment.
A=12
EB=3
C={Alz+BL 2°[8. 5 The bracket means exponentiation.
FREINT "“"THE HYFOTENUSE IS® Line 17 was properly inserted.

FRINT C
FRINT"HIFFERENMCE IN LENGTHS IS"; A+B-C The new version of line 20 is now

EML:

part of the program.

Execution is requested.

THE HYFOTENUSE IS

1=

DIFFERENCE IN LENGTHS IS 4

EXERCISES 3

The difference 12 + 5 - 13 = 4,

The character strings and numerical values are printed in one case on separate
lines and in the other case on the same line. Note the blank space between
the word IS and the number 4. For a negative result the minus sign takes up
this space.

REMEMBER: REM statements make a program easier to follow. Character informa-
tion with PRINT statements makes the output results self-explanatory.

1. Give the display you expect from executing the following examples. Check your re-
sults by entering them in the immediate mode. Watch out for the positions of the
blanks in the expressions and their displays.

ch. 3 [computer programs

Instruction Anticipated Display Display

a. FRINT S

b, FRINT S+&

c. PREINT Si 6

d. FRINT "FIVE": &

e. PEINT "FIVE": "SIX"

f. FRINT "FIVE": -&

g. PRINMNT "FIVE " &

h. FEINT "1 2 = " vgv

i, m=1Z

FEINT A DOZEN IS "; %

j- PRINT “TWO DOZEN IS" 2%%
k. w=5

LOPRINT e
m. PRINT "HE=Yd "=y

n. FRINT MEM

0. NEWM

p. FEINT HEM

18 FRINT © “THIS IS A TEST

FLIN

2. Write the proper BASIC expressions to produce the following output. Use the vari-
ables A = 1, B = 10, and C = 100 to produce numeric output. (For example, the
111 in part c is obtained by displaying A + B + C.)

My COMPUTER LIEES ME
169 YERRS AGR

i1l YEARRS RGO

.1 FLUS 18 EGURLS 41
HE HRAS -18 DOLLARS

opoop

3. The variables M. D, and Y are used to store today’s date. Write the statements that
will express the date as --/--/--. The date June 11, 1984, will then appear as
6/11/84. Repeat the process with variables A$, BS$, and Y$.

4. Specify an opening bank balance. Compute and display the interest for one day, one
week, one month, three months, half a year, and one year. Assume an annual interest
rate of 8%. Change the interest rate to 12% and repeat the computations.

5. What output will the following programs produce?

a. 28 PRINT “A BREAK TODAY" b. 18 A$="BASEBALL "
18 PRINT "voU DESERVE" 26 E&="HOT DOG °
@ PRINT "AT MCDONALDS" 38 CH="AFFLE FIE"
48 FRINT R$+B$+C$
S& PRINT"AND CHEYROLET"
c. 18 A=6

28 LET B=1
38 PRINT A: " OF".E:" IS"
48 7 BSZ: " A DOZEM OF THE OTHER"

Note: Did you type in NEW before entering each program?
6. Write programs that will produce the following displays:

a.IM FRENCH RED I5 ROUGE b. THE SUM OF X RMD ¥ IS: S
IM GERMAM IT IS ROT THE FPRODUCT OF & AMD %Y 15: &
Note: In this program let X and Y equal 2

and 3, respectively.

4“You Deserve a Break Today®” and “McDonald’s®” are registered trademarks owned by Mec-
Donald’s Corporation and are reprinted only by written permission.

bReprinted by permission of General Motors Corporation.

31

sec. 3.3 | keyboard response: input

7.

11.

12.

13.

Write and run a program that uses variables A, B, and C to display Dif A = 2, B = 3,

C=4,and D =A*B - C.

. Write a program to put in two numbers and output their quotient. What if either one

of the two numbers is zero?

. Write a program to put in three numbers and display their average.

10. Write a program to compute the volume of a cube of side S. The program should

yield output in the following forms. (The volume is the side cubed. Use § = 10, and

subsequently S = 20.)

a. THE voLUME IS

b. THE OLiUME IS #———-

c. THE SIDE IS#——

d. THE SIDE IS s~
THE VOLIME IS#————

The # stands for a space (blank), and the dashes are to be filled in by the values of

the variables.

Modify the program of the previous exercise to compute and display the surface area
of the cube in addition to its volume. The surface area equals six times the area of

each face. The area of each face is S*S. Use S = 15. The output should be

THE LENGTH OF ERCH SIDE IS #——
THE WOLUME IS #————#ANDx THE SURFACE ARERA IS%———-

The = stands for a space (blank).

Write a program to produce the following picture of a tree.

p
R

P
PR
EPE

kY
P
AR

Investigate how much memory is taken up by each of the following instructions:
A=1

Fr=1

A#=1

Ai=1

H$= 1 1 H

FRINT 1

i@ A=l

@ me P20 T

3.3 KEYBOARD RESPONSE: INPUT

In all our programs so far we emphasized the need for specifying information
prior to execution. In the case of the program kitty corner we specified the
sides of the triangie in lines 12 and 14 of the program; in the case of the
compound interest program we specified the deposit and the interest rate. A
more convenient way of entering this information is to do so during the
actual execution. This is accomplished with the INPUT statement. When the
INPUT statement is encountered during execution, the computer stops to
let the user enter the necessary information via the keyboard. The INPUT
statement can call for several numeric or string variables at once. The items

32 ch. 3 [computer programs

in the list must be separated by commas. We now incorporate the input
statement into the compound interest program, which we presented earlier.
Remember to type in NEW before entering the program.

COMMENTS

18 REM COMPOUND IMTEREST Just a REMinder.
15 FRINT "ENTER THE INTEREST RATE. FOR Ex. @ a7" Tells you what to enter.
2 IMPUT R
25 PRINT "EMTER IMITIAL DEFOSIT & MG OF YERRS SEFP.

BY A COMHMA"
ZEROIMPUT DM Enter two items.
E5 B=lebid+RALH Bracket is exponentiation.
48 FRINT "THE BRALAMCE HAFTER". MN: "YEARS 1= $'B Output with appropriate messages.
4% FRINT "THE TOTAL INTEREST FPRID IS $Y, B-D
Sl BN
FUM Request execution,
EMTER THE IMTEREEST RATE FOR EX. & 67
T | arv The ? indicates input expected.

i

EMTER IMITIAL DEFOSIT & MO OF YEARS SEF. BY B COMMA Type 0.07 and press ENTER.
ER R = v [P You enter 1000, 1

THE ERLANCE AFTER 1 YERR:Z IS £ 1670

THE TOTAL IMTEREST FPRID IS $ T

LM Request another execution.
EMTER THE INTEREST RATE FUR EX. @ &7

ToE ar You enter 0.07

EMTER IMITIAL DEFOSIT & WG OF YEARS SEF. BY A COMMA

T 1a08, 16 The deposit is $1000 for 10 years.
THE ERLAMNCE AFTER 18 YEARS IS & 1987 15

THE TOTAL INTEREST FARID IS $ 957 15

REMEMBER: The INPUT statement is an excellent means for data entry during exe-
cution. It makes the program general in use.

Example: An Arithmetic Trick

The computer asks you to think of a three-digit triple number (such as 222, 666, 888,
and so on). You then “tell” the computer the total of the three digits (18 for 666). The
computer will then reveal your original number.

cLs

INFUT "HI. WHRT IS YOUR NAME": NE

FREINT "0k "M " I HAYE AN ARITHMETIC TRICK FOR YOU"
FRINT “THIMK 0OF A THREE-DIGIT TRIFLE HUMBER®

FRIMT "TYFE IM THE SUM OF ITZ DIGITSY

IMPUT &
FEINT M£: ". YOUR MUMBER MRS " ZFw5;v1v
EMD

]

[N By PR (O O PR O R 0
VST T S

VEL
A

1,

'In order to keep the program and comments separate, line 25 of the above program has been

split. The computer actually displays it on one line. Similarly, lines of programs are split elsewhere in
the book.

33 sec. 3.4 [editing computer programs

RN

HI., WHAT IS YOUR WNAMEY ERIC

O ERIC I HAYE AN ARITHMETIC TRICK FOR YOU
THINE OF A THREE-DIGIT TRIFLE NUMEER

TYFE IN THE SUM OF ITS Z LIGITS

T 1s

ERIC, YOUR MUMBER MWARS ocog !

The CLS command is introduced in line 10. CLS clears the screen. It is a good idea to
start programs with the CLS command since it removes from the screen during execution
all unnecessary clutter.

The above program illustrates the use of INPUT in conjunction with numeric and
string variables. As input, a string may be entered with or without quotes around it. How-
ever, if the string contains a comma, a leading blank, or a colon, then the quotes are
required.

A new form of the INPUT statement is shown in line 20. This statement is equivalent
to the two statements:

268 PRINT “HI. HHAT IS5 YOUR NAMETY
25 INPUT M#

Upon execution of the program, the message Hl, WHAT IS YOUR NAME is displayed on
the screen along with a question mark. The computer adds the question mark to denote
INPUT. It is therefore recommended that the message be phrased in such a way that it
forms a question. Once the message appears on the screen, the user enters a value for the
variable and presses ENTER. A semicolon must separate the message from the variable in
the INPUT statement.

REMEMBER: You cannot input a string into-a numeric variable, or vice versa. If you
do; the computer will respond by displaying' 7REDO. It requests that all data for the
particular INPUT statement be reentered.

3.4 EDITING COMPUTER PROGRAMS

In the process of writing computer programs we frequently make errors that
need to be corrected before the program will operate properly. If the error is
detected before the ENTER key has been pressed, the < key can be used to
backspace the cursor and delete one character at a time. The shift < key is
used to delete an entire line. There are other ways of correcting the code if
an error is detected after the ENTER key has been pressed.

Suppose the following program has been written to assign the values 5
and 10 to the variables X and Y, and then to compute and print their ratio.

COMMENTS
LIZT Request a listing.
18 Y=5
28 Y=ig

Z@ FRIMT “THE RATTIO OF ¥ AND Y ISV =5% RATTIO is misspelled.

34

ch. 3 [computer programs
We execute the program:

COMMENTS

RUH
THE RATTIO OF ¥# AND Y IS @ RATTIO needs editing.

This result is unexpected; it is incorrect. We also notice that the word
RATTIO has a typographical mistake. So the program needs editing. We
need to fix line 10 where the Y is to be replaced by X, and in line 30 the
word RATTIO is misspelled. (Note: in Level I BASIC we would need to
completely retype lines 10 and 30.)

Since line 10 is so short it makes good sense to retype the line. As for
line 30, removing a letter T without retyping the entire line is helpful. In
order to demonstrate editing, we now edit both lines 10 and 30.

First we switch from the command mode into the edit mode by typing
in the EDIT command along with the line number to be edited. Then press
ENTER.

COMMENTS
EDIT 4@ and press ENTER Switch from the command mode
ie into edit mode.

The computer’s response; the _ in-
dicates the cursor’s position.

Now we press L (list line) without ENTER; the computer responds by listing
line 10 as it is presently stored in the computer followed by 10_.

COMMENTS
16 ¥=5 We now wish to replace the Y in
i6 _ line 10 by an X.

18 X _
Type C to indicate a character is to
be changed followed by X.

At this point we have replaced the Y by X in line 10. The remainder of line
10 is fine. Pressing the space bar moves the cursor over to the right, one
space at a time, and displays the remainder of the line.

COMMENTS

18 ¥=5 _ Pressing the space bar twice dis-
plays the = 5.

Now press ENTER to record the change.

While editing, we do not press ENTER. Once ENTER is pressed the com-
puter records the changes made in the current line and returns you from the
edit mode to the command mode. Additional lines can then be edited or the
program can be run.

We continue to edit our program. Next we will remove the extra T in
line 30:

COMMENTS

EDIT 28 and press ENTER Request edit of line 30.
30 _ Computer’s response to the request.

35 sec. 3.4 [editing computer programs

TABLE 3.1 Editing procedures

Purpose

Procedure

When in command mode

Delete an entire line
Replace an entire line

N

When in edit mode

Switch to command mode and record
changes

Save changes and switch to command
mode

Cancel changes and switch to command
mode

Cancel changes and switch cursor to
start of line

Display characters one at a time

Display entire line
Display rest of line
Delete rest of line

Delete characters within a line

Delete all characters from current
cursor position up to nth occurrence
of character ¢ counting from present
cursor position

Change n characters within a line

Insert characters within line

Move cursor n spaces to the left

Move cursor to nth occurrence of char-
acter ¢, counting from current
position

Move cursor n spaces to the right

Switch to edit mode to edit line number

Type the line number and then ENTER

Type the new version of the line and
then ENTER

Type EDIT N and ENTER

Type ENTER
Type E
Type Q
Type A

Type space bar; cursor moves to the
right

Type L; can now edit the line

Type X; can now add to line

Type H; can now add to line; to stop but
remain in edit mode type SHIFT?

Type nD to delete n characters starting
at the current cursor position; or type I
and press < key to delete one charac-
ter at a time; to escape I mode but
remain in edit mode, type SHIFT?®

Type nKc;if no value is specified for n,
then all characters will be deleted up
to but not including the first occur-
rence of character ¢

Type nC to change n characters starting
at the current cursor position

Type I; to stop but remain in edit mode,
type SHIFT?

Type n<

Type nSc

Type n space bar

Press L to display the entire line:

38 PRINT "THE RATTIOQ OF X AND % IS":i K7V

3@ _

COMMENTS

Computer displays line 30 and sets
up for its change.

Now press the space bar to display the line one character at a time up to the

first T in RATTIO.

36

ch. 3 | computer prograins

TABLE 3.2 Editing examples

BASIC Statement Correction Editing Procedure
1@ PRINT R:B:.:B#G Change B’s to G’s Type EDIT 10 and ENTER.
and delete the third Press space bar eight times

semicolon until the first semicolon

appears. Press C followed by
G to change the first Bto a
G. Press the space bar once
to display the second semi-
colon. Press D to delete the
third semicolon. Then press
C and G. Press ENTER to
escape the edit mode and
return to the command
mode.

28 PRINT L:M; ~N Delete the minus Type EDIT 20 and ENTER.
Press X to display the entire
line. Press< twice to erase
-N. Type N and press
ENTER.

38 PRINT A:B; C Change the B to B52 Type EDIT 30 and ENTER.
Press 2S to search for the
second semicolon. Then
type 2152 to insert the two
digits. Press ENTER.

48 INPUT EZ, K. MZ Change the Kto TZ Type EDIT 40 and ENTER.
Press SK to search for the
first occurrence of K. Press
C followed by T and I fol-
lowed by Z to respectively
change the K to T and insert
Z after the T. Press ENTER.

58 FPRINT LET A=3 Delete PRINT and Type EDIT 50 and ENTER.

LET Press KA to delete all char-
acters up to the first occur-
rence of A. Press ENTER.

INFUT A. B Change line number Retype entire line as line 65.

60 to 65 Then delete line 60 by typ-
ing 60 and ENTER. Line
numbers cannot be changed

Ty
fagd

directly.
COMMENTS
368 PRINT “THE RAT _ Press space bar to display the line
uptotheT.

To delete the second T, press D (Delete) once and press ENTER to return to
the command mode. Another way to delete the second T is to press I (Insert)
followed by backspace < once and then ENTER.

To display the current version of line 30 we enter

COMMENTS

LIST 2@ Request display of line 30.
38 PRINT "THE RATIO OF ¥ AND ¥ 15" XY It is now correct.

37 sec. 3.5 [debugging programs
We run the edited program and obtain the expected output.

RUN
THE RATIC OF X AND ¥ IS . 5

Numerous editing features are available in Level II BASIC. (Level I
BASIC’s editing is very limited.) Table 3.1 summarizes editing procedures.
Table 3.2 gives additional examples of editing.

REMEMBER: Do not hesitate to experiment with the edit procedures. Practice will
make you proficient.

The editing commands make it possible to change any character within a
line except the line number. To change a line number, it is necessary to
delete the line and then retype the entire line with the new line number.

3.5 DEBUGGING PROGRAMS

Unfortunately, nobody is perfect and we do make mistakes. Naturally, an
important aspect of programming and a major portion of program develop-
ment time is normally devoted to isolating and correcting errors. This proc-
ess is called debugging.

Generally, programming errors are classified as language errors and logi-
cal errors. These two types of errors differ in that language errors are de-
tected by the computer whereas logical errors are not. Once the program has
been typed in and is run for the first time, the computer will interpret each
line and list the language errors in the form of diagnostic messages. Here the
computer is most helpful as it displays abbreviated error codes, such as /0
ERROR for division by zero or SN ERROR (SyNtax error) along with the
line number in which the error occurred. Some errors even switch execution
into the edit mode. A complete list of these errors is given in Appendix 1.

Once we have corrected all the language errors, we expect to run the pro-
gram and obtain the desired output. When the answers do not make sense,
we must set out to locate the errors in logic. They are usually more difficult
to find since the computer offers us no assistance. For example, in com-
puting the end-of-year balance of a savings account we may inadvertently
subtract the interest earned instead of adding it to the initial deposit, or we
may use an incorrect formula in our financial model. Clearly, logical errors
are more difficult to detect than language errors. A more systematic ap-
proach must be taken so that we can be reasonably sure that the program is
free of bugs.

A useful approach is to first run the program with test data for which the
results are known. If the computer’s answers check out, we are ready to
make a run with the actual data. Most data processing applications involve a
large amount of data. Therefore, it is important that the data be checked by
the program as they are entered. For example, if the data involve ages, nega-
tive ages are impossible; similarly, working a 400-hour week instead of a 40-
hour week is not possible. A data validity check built into the program will
help to avoid erroneous results due to bad data.

The process of debugging lengthy programs is facilitated by a well-

38

ch. 3 | computer programs

organized program that computes the variables of interest in an orderly
fashion. Also, assigning variables names that suggest their meaning helps in
the debugging process.

w Example: Mortgage Payments

As an example of the debugging process, we present a program that computes monthly
mortgage payments. The payment is

a+nV

P=MXIX —oe
a+ny-:

where P is the monthly payment, M is the amount of the mortgage, 1 is the monthly
interest rate, and N is the number of monthly payments for the duration of the loan.
The program we have is

8 REM FROGRAM COMPUTES FMONTHLY FORTGRGE FAYMEMTS
S5 PRINT "ENTER THE AMOUNT AND YEARRS OF MORTGHGE"
Z8a INFPUT M. Y

2% PRINT "ENTER THE INTEREZT RARTE IN X"

3@ INFUT I

35 REM CONVERT MORTGAGE DURATIOM FROM YEARRS TO MONTHS
48 N=Y4lz

43 REM CALCULATE THE MONTHLY IMTEREST RATE

58 I=171z

553 REM CALCULATE MONTHLY FRYMENTZS

68 F=pfhla I+l NACCd+T o0 CH-10

S5 PRINT "THE MONTHLY PFAYMENT IS %" F

T8 ENL

Having typed in the program, we will now execute it for the first time, keeping in
mind that it may have language as well as logical errors. The test data we plan to use first
are M =1200,Y = 1,1 = 1; a mortgage of $1200 for one year at 1% interest rate. The
expected monthly payments for 12 months (1 year) are slightly more than $100.

COMMENTS
RUMN Request execution,
EMTER THE AMOUWT AND YERRS OF MORTGARGE Computer displays the message.
7 olzed,s 1 You enter the values.
EMTER THE IMTEREST RATE IM X Computer displays the message.
T4 You enter the value.
TEN ERROR IN &8 During execution computer detects
REALY a syntax error and switches from
en __ the execution mode to the edit

mode.

We have encountered error SN, a syntax error, in line 60, and the computer has
placed us in the editing mode. We press L to display the entire line:

F=fp I l+T 0 DNSCCL+T 30 CHN-12

1534
i i)

We notice that the parentheses do not balance; we must delete the last (in line 60. Press
X to display the entire line with the cursor appearing at the end of the line.

68 P=MelaCl+I 0 NS CId+T 0 CR-10

39 sec. 3.6 [stop and continue execution

Now press « five times to move the cursor to the left under the last left parenthesis (,
and retype from there the N-1). Press ENTER to store the line. We List line 60:

COMMENTS
LIST &a Request a display of line 60.
68 PP lacl+I 00 S0 i+ v H-1 3 The corrected version of line 60 is
in memory.

Now that the syntax error has been corrected we again run the program.

RN

EMTER THE AMOUNT AND YEARS OF MORTGAGE
T odzee. 1

EMTER THE INTEREST RATE IW X

E

o

THE MOMNTHLY FAYPEMT IS # 181 29

No more language errors! We have an answer, but it is incorrect. We expected an answer
slightly more than $100. Now what? We have a logic error! Going over the program line
by line we notice that the interest rate in line 50 needs to be converted to the decimal
equivalent of percent; that is, we must multiply the interest rate by 0.01. We retype line
50.

SE I=IsE. 6117 and press ENTER.

RUN
ENTER THE AMOUNT AND YEARS OF MORTGAGE
Y olz88. 1

ENTEFR THE INTEREST RATE IN =
B

THE MONTHLY PARYMENT IS # 1668 542

Now the answer makes sense. We have done it and can now expect the program to work
for other data.

FiLIM

EMTER THE AMOUNT AND YEARS OF MORTGARGE
T Gaene. 25

EMTER THE INTEREST RATE IN ¥

Tola s

THE MOMTHLY FPARYMENT IS ¥ 472 @51

If during the data entry you change your mind and wish to start over, press BREAK
to get the READY. Then type RUN and enter the desired data.

REMEMBER: Never take it for granted that the answers from the computer are neces-
sarily correct,

3.6 STOP AND CONTINUE EXECUTION

An important debugging technique is to place several STOP statements with-
in a program. The STOP interrupts the execution and prints the message
BREAK IN line number. For example, if line 25 is a STOP, then upon execu-

40

ch. 3 [computer programs

tion of line 25 the message BREAK IN 25 will appear. Once execution has
been stopped it is possible to examine variables by printing their values. To
resume execution after a STOP or a BREAK, type in CONT and press
ENTER. If the program is modified during the BREAK, then execution can-
not be resumed by means of the CONT statement. Instead, type in RUN and
start the execution all over.

Q Example: Temperature Conversion

COMMENTS

18 IWNFUT "DEGREES FAHEEMHEIT":F Input temperature in °Fahrenheit.

el B TR e B Convert to “Celsius.

23 =TOF Stop execution here.

Z8 FRINT F.FL. SsCoCL. B Print the temperatures and their

48 END square roots. Bracket is exponen-
tiation.

RLIM Request execution.

DEGREES FARHEENHEITY 3& lnputoF.

BREMAE IM 2% Execution is stopped.

FRIMT Examine the value of C in immedi-

@ ate mode. °C = 30.
COMT Request continuation of execution.
ZE 9, 2VEE2 I8 5 4Fva: The temperatures and their square

roots.

DEGREES FAHRENHEITY @

ERERE IM 25

FRINT Since °C is negative, the square root

-17 FITE cannot be taken,

FiIN Instead of typing in CONT, now
type in RUN for another execu-
tion,

3.7 SAVING A PROGRAM ON CASSETTE TAPE

Once a program executes free of any bugs, it may be desirable to save it on
tape for future use. Place the cassette tape into the recorder, rewind the tape,
set the digital counter to zero, and press the RECORD and PLAY buttons.
The CSAVE command loads a program from the computer onto the tape.
With this command you must specify a program name. For example

CSAYE "M
moves the program residing in memory onto tape and calls it ““{”". The name
of a program may be any single alphanumeric character other than the
quotes. If the name is several characters in length, only the first character is
recognized by the computer. So CSAVE “INTEREST" is equivalent to
CSAVE “1”. Once the program has been saved on tape, read the digital
counter and make a note of where on the tape the program is saved.

41

sec. 3.8 [declaring variable types

REMEMBER: To avoid confusion, write the names of the stored programs on the case
of the tape.

When a program is saved on tape, there is always the possibility that the
transfer is not flawless. Therefore, a subsequent loading of the program from
the tape may result in errors or even possibly in a loss of the program. One
possible safeguard is to save the program on tape twice, giving it two differ-
ent names, for example, CSAVE ““I"" and CSAVE “K".

The CLOAD? command offers another alternative. Once program *'I"’
has been saved on tape using the command CSAVE “I”, it can be checked by
the command

CLORDT "Iv

Rewind the tape and press the PLAY button on the recorder. The program
on tape and the program in memory are compared line by line. If the pro-
grams do not compare perfectly, the message “BAD’’ appears. The CSAVE
“1" command will then have to be executed again.

The CLOAD command will load the first program from the cassette into
the computer. To ready the recorder, rewind the tape and press the PLAY
button. However, if the desired program is not the first program on the tape
but rather the fifth program whose name is “’l’’, then the command

cioRn It
will skip over the first four programs and load the program ‘/I"’. This pro-
gram was originally loaded on tape using the command CSAVE “1”. So as

long as the tape is rewound, the computer can pick up the desired program
and load it into memory.

3.8 DECLARING VARIABLE TYPES

In the previous chapter we noted that variables can be declared as single preci-
sion, double precision, integer, or string. The characters !, #, %, and $ specify
these variable types and are part of the variable’s name. Instead of appending
the appropriate character to the variables’ names, it is also possible to declare
variables as integer, single precision, double precision, and string by means
of separate statements in the program. Declaring a variable as integer may be
useful, since integer values take up less memory than other numeric values.
Also, integer arithmetic is faster. In some applications it may be necessary to
declare variables as double precision to produce more accurate results.
The statement

COMMENTS
23 DEFINT AR. B.E-G Variables A, B, E, F, G are integers.

declares variables A and B, as well as variables E through G, as integer vari-
ables. These variables and all variables whose names start with these letters

42

EXERCISES 4

ch. 3 | computer programs

are taken as integers within the program as of line 25. For example, variables
ABC, A2, and EZ are then integer variables. However, the variables A2! or
EZ# are, respectively, single- and double-precision variables even though
their names start with the letters A and E. The type declaration characters

{see previous chapter) always override the declaration statement.

The statements

IR DEFSHG #5-Z
5 DEFLEBL 2. W

48 DEFSTR k. L

define the listed variables as single-precision, double-precision and string vari-
ables, respectively. These statements may be used in the command mode

with and without line numbers.

DEFINT
DEFZNG
DEFLEL
DEFETH
IT=4@888
TN ERREOR

W I e

133 4EETED

FRINT A+D
L2T4SETIR, 2345671
SH="STRING"

FRINT S§+H

»TH ERROR

FAE="STRIMNG"
FEIMNT S$+A%
STRIMNGSTRIMG

REMEMBER: The variable identification characters !, #, %, and $ override the DEFini-

tion statements.

The following exercises illustrate techniques you have learned in the preceding sections.
When you write programs, be sure that the programs actually work properly. Work out
some test examples by hand and compare them with the computer’s results. Take the

COMMENTS

Variables X, Y, Z are single preci-
sion.

Variables S, U, V, W are double pre-
cision.

Variables K, L are strings.

COMMENTS

The variables are declared.

IT starts with 1; overflow occurs
since integers cannot exceed
32767.

In single precision have 6 significant
figures.

in double precision have up to 16
significant figures,

Surprise: A and D can be added.
Result is in double precision.

Type Mismatch error. Cannot add a
string to a number.

Declare A$ as a string variable.
S and A$ can be concatenated; they
are both string variables.

time to organize your input and output displays into an easily readable form.

43

exercises 4

1. Suppose the following program has been entered:

18 A=18
26 E=39
38 FRINT "THE FRODACT OF A AND B IS"; A*E
48 END

What display will the following instructions produce

Instruction Anticipated Display Display

LIST

LIST Zg
LIST 16-36
CLIST.

LIST —<48
LIST Za
ELIT =&
CEDIT.

CEDIT
. ELN
. RUN
1
m. o=
n. RUM

o2
o}

2. The program listed above needs to be edited to correct the typographical error in

line 30. Perform the edit and then list the line to be sure it has been edited properly.

Perform the edit by

a. Retyping the entire line. List the program to check your editing; then reenter the
line with the typographical error in it.

b. Entering EDIT 30 followed by the X command. Move the cursor back, erase the
A, and then retype properly.

c. Entering EDIT 30. Then press the space bar up to the D before the A. Then press
C followed by U, the proper letter in PRODUCT. Then press ENTER.

3. Enter the following instruction

1€ PRINY “ABCEF"

Edit the line to insert the letter D in the appropriate spot using the I edit command.

4. Edit each of the following BASIC statements. Try several approaches, and for each

statement determine the best procedure. First enter the given BASIC statement; then
type EDIT N, where N is the line number of the statement to be edited.

BASIC Statement CORRECTION

18 FERINT Delete the extra R

15 INT H Insert a PU for INPUT

S8 PRINT “FHYSICS IS FHUN" Replace PH by F

25 FRINT A E. C Replace the commas by semicolons

@ IMFPUT "YOUR RAGE"; X Replace the X by AGE

5 END Replace 35 by 99

FE W=D IR S Replace the Y and X by C and F,
respectively

35 PRINT "DON-T TREAD OH ME" Remove all characters to the right
of TREAD

S8 FPRINT "OME FOR THE MOMEY" Replace the third letter O by $

535 LET ®=5 Delete the LET

44

ch. 3 | computer programs

5. Consider the following program:

NE
18 INFUT A
28 PRINT A

The following data are entered for A during execution:

Anticipated Display Display
a. D
b. Z. 6
c. 4+1
d. FIVE
e' it F’ I l‘!.IE i
6. Consider the following program:
18 IMFUT R#¥
28 FRINT A%
The following data are entered for A$ during execution:
Anticipated Display Display
a. FIVE
b. 5
c. FIVE AND TEN
d. S+1@
e. FIVE. HND TEN
f. FIVE 1@
g “FIVE:i@"
h' s TEN"
i. TEN
j. RE"C
k. “FIVE, SIx"
7. Combine each of the following into a single INPUT statement.
a4, 18 PRINT"HHAT IS YOUR NAMET?M
28 INFUT A%
b. 18 PRINT "YOUR NAME AND AGE?"
28 INPUT A$. AGE
8. Modify the mortgage program of the previous section to input with a single INPUT
statement the amount of the mortgage, its duration, and the interest rate. Test your
modification.
9. Telegrams cost $0.20 per word. Write a program to input the number of words and
display the cost.
10. Write a program to input three temperatures and compute the average temperature.
a. The temperatures are to be entered one at a time.
b. The temperatures are to be entered all on one line.
The output is to be of the following form
THE HAVERAGE TEMFERRTURE IS, ..
11. Degree days are computed by subtracting the day’s average temperature from 65.

(The average temperature must be less or equal to 65 since negative degree days have

45

exercises 4

12.

13.

14.

15.

16.

17.

no meaning.) Modify the program of the previous problem to include a display of the
day’s degree days.

Write a program that upon execution yields the following output.

HELLO
HI' MHAT IS YOUR MNRME?
7 you enter your name here

HELLO followed by your name
My NAME IS NEUTER COMPUTER

Write a program to input from the keyboard a name, address, city, state, and zip
code. Then output these data in the form of an address label. For example,

FOR DAVIS
3 ORAMNGE 5T
BOSTOMN. MA alzze

Use INPUT for data entry. Be sure to type in NEW before entering the program. If
the total number of characters in your address label exceeds 50, type NEW and
ENTER, followed by CLEAR 200 and ENTER.

Write a program to produce the following dialog:

FLEARSE AMNSHER THE FOLLOMING QUESTION
MHAT i YO PREFER. BOYS OR GIRLSY

T enter your choice here . . .

HEY. I T FREFER. .. THATS GREAT!

Write a program to input two numbers from the keyboard. Then output their sum
and difference on one line, and on the following line their product and ratio. Display
your results with appropriate descriptive text.

a. Input the two numbers on two separate lines.

b. Input the two numbers on the same line.

The pressure that a diver experiences as he dives into the ocean is given by the
relation

where H is the depth in feet and P the pressure in atmospheres. Write a program to
input a depth and compute the corresponding pressure with the following format:

AT A DEFTH OF. . FEET THE FRESSURE IS . . ATMOSPHERES

If today’s population is P people and the population increases each year by I percent,
in N years the population will be

P+(1 + I[/100)Y
Write a program to input P, I, and N and then output the following:

TOLAY S POPULATION IS .
AT A GROWTH RATE OF ... X PER YEAR
THE FOPULATION WILL BE. .. IN. .. YEARS

chapiep 4' 683§3i0ﬂ3

The normal sequence of executing statements in a computer program is by
increasing line numbers. The statement with the lowest line number is exe-
cuted first, and the statement with the highest line number is executed last.
Thereafter, execution of the program stops. In this chapter we learn tech-
niques that allow programs to deviate from this normal sequence of exe-
cution. This process is called branching and is made possible by transfer
statements. As a result, considerable versatility is added to computer pro-
grams since they can proceed through different sequences of instructions
depending on conditions encountered during execution. For example, if A
exceeds B we wish to print A, while if B exceeds A we print B, and if A
equals B we print the values of both A and B. So in addition to transfer
statements we need to learn about decision-making statements. The computer
must decide if A is larger than, less than, or equal to B, and execution must
then branch to the appropriate print statement. Such decision statements
involve relational operations such as greater than and less than.

4.1 RELATIONAL AND LOGICAL OPERATIONS

46

In addition to the arithmetic operations, BASIC also has relational opera-
tions that are useful for making comparisons. There are six relational opera-
tors (same as in Level I):

. Greater than: >

. Less than: <

. Equal: =

. Greater than or equal: >= or =>
. Less than or equal: <= or =<

. Not equal: <>or><

N P W B e

Frequently, rather than determining the value of the larger of two num-
bers, we may wish to determine whether one number is or is not larger than
another number. We may want a yes or a no to the question, is the account
overdrawn or is a grade on an exam passing? The result is a logical value, true
or false, yes or no. In BASIC, yes corresponds to a -1 and ano to a 0:

47 sec. 4.1 [relational and logical operations

COMMENTS

PRINT 4>
-1 Yes, 4 is greater than 3.
FPRINT Z>4

5] No, 3 is not greater than 4.
PRINT 5=5
-1 Yes, 5 equals 5.
H=2
E=%
FRINT B>H
-4 Yes, B is greater than A.
FRINT S+AH>B 5*A = 10.
-1 Yes, 10 is greater than 4.
FRINT Dy AZER A is not greater than B.

a 5 times O is zero.
FRINT 1+E>A The sum of 1 and B is greater than
-% A. The addition is performed first

and then the comparison is made.

REMEMBER: A true statement corresponds to a -1
A false statement corresponds to a 0.

Several expressions containing relational operations can be combined
using logical operations. There are three logical operators: AND, OR, NOT.

COMMENTS
FRINT ¢332 AND (g>—1i Both expressions are true; the AND
-1 yields a true, -1.
PRINT Zx2 AND (S>i8n Both expressions are not true; the
& AND vields a false, 0.
PRINT 32 OR &2>-1 Both expressions are true; the OR
-1 yields a true, -1.
FRINT (3-2x OR (S>ien Either expression is true; the OR
-1 yields a true, -1.
PRINT 252653 OR (S>ies Neither expression is true; the OR
5] yields a false, 0.
FREINT MNOT (3-3h The expression in {) is true; the
a NOT inverts a true to a false.
FRINT NOT S<{Z The expression is false; the NOT in-
-1 verts the faise to a true.
FRINT NGT (52 The expression is missing a right
TSN ERROR parenthesis.

Expressions involving logical operators need not be placed in parentheses;
however, parentheses help make the statements easier to read.

The logical operators AND, OR, and NOT (in Level I BASIC the AND is
a %, the OR is a +, and the NOT is not available) do not perform arithmetic;
they perform comparisons and give a true (~1) or false (0) answer. Table 4.1
summarizes their use.

In Table 4.1 reference is made to logical variables A and B. A logical vari-
able is a variable that is specified by means of a logical operation.

48 ch. 4 | decisions

TABLE 4.1 Logical operations

Logical Variables AND OR NOT
A B A AND B AORB NOT A
-1 -1 -1 -1 0
-1 0 0 -1 0

0 -1 0 -1 -1

0 0 0 0 -1

COMMENTS
HA=502
FEIMT A A is a logical variable whose value is
-1 -1.
B=—1
FRINT B B is a numerical variable whose
-1 value is -1.

Logical operations can only be performed with logical variables, relational
expressions, or the numbers 0 and -1. Logical variables always have a value

0or-1.
COMMENTS
A=D0E Ais-1:Bis 0.
B=2>5 A and B are logical variables.
FRINT A AND B -1 AND 0 is 0.
a Result as expected.

REMEMBER: Logical expressions and logical variables can only have values of 0 and
-1,

Logical expressions may also be formed with string variables. When string
variables are compared, the letter A is “less” than a B, which is “less’ than a
C, and so on.

COMMENTS

FRINT "YES">"NO™ The letter Y is “‘greater’’ than the
-1 letter N.
PRINT “"YES"="HNO"

a The two words are unequal.
PRINT "YES"{"YESS"
-1 YES is ““less’’ than YESS.
RE="ERIC"

Ef="MARION" ‘
FRINT <A$>UBONYY> AND (B$>"GIRLYY Both expressionsinthe { } are true,
-1 so the AND vyields a -1.

REMEMBER: When strings are compared, the letter ‘A is “less” than the letter B, and
soon.

49

4.2 FLOWCHARTS

sec. 4.2 | flowcharts

TABLE 4.2 Hierarchy of operations®

1. Exponentiation: X1Y (or X[Y)

2. Negation: -X

3. Multiplication and division: X*Y and X/Y (left to right)
4. Addition and subtraction: X+Y and X-Y (left to right)
5. <, > =, <=, >=, <> (left to right)

6. NOT

7. AND

8. OR

4The innermost parentheses are evaluated first, followed by the next level out. On the
same level, operations are performed according to the above order.

The rules for hierarchy of operations were introduced earlier. These rules
need to be extended at this point to include the relational and logical opera-
tors. Table 4.2 summarizes the order in which operations on the same nest-
ing level (for exampie, within the same parentheses) are performed.

When faced with the assignment of writing a story, a writer generally first
creates an outline. Similarly, when faced with a problem to be soilved on the
computer, a programmer must first break down the solution process into
component steps that can be programmed. It is often convenient to have a
pictorial way of displaying the steps to be used in the computer program.
This is called a flowchart. For complicated problems and complicated com-
puter programs, a flowchart is a must. Even though for less complicated
problems a flowchart is not always necessary, it is a good idea to get into
the habit of flowcharting each and every program. This approach will help
organize your thoughts and avoid major errors in logic. A clear flowchart is
then translated into BASIC. The symbols used here for flowcharts are shown
in Table 4.3. There is no generally accepted set of symbols for flowcharts.
However, these symbols are frequently used.

In the last chapter we developed the compound interest program. A
flowchart for that program is given in Figure 4.1. The line numbers of the
program corresponding to each step in the flowchart are shown. The begin-
ning of the program is indicated by the START box. The input of the inter-
est rate, initial deposit, and number of years on deposit are contained in
input boxes. The balance after N years is then computed and is contained in
a rectangular box, which indicates processing of data. The results are sub-
sequently displayed. These are contained in output boxes. The end of the
program is shown by the terminal box STOP.

A flowchart to input and compare the values of variables A and B is
shown in Figure 4.2. This flowchart illustrates a two-way decision. The vari-
ables A and B are first entered and then compared in the decision box. De-
pending on whether A is or is not greater than B, the appropriate message is
displayed. If a program was to be written from this flowchart, the path of its
execution would then depend on how large A is with respect to B. However,
both paths lead to the same terminal box STOP,.

50

ch. 4 [decisions

TABLE 4.3 Flowchart symbols

Symbol

Symbol Name

Type of Instruction

O o) I

|

Processing box

FOR-NEXT loop box

Terminal box

Input/output box

Decision box

Connector

Subroutine

Flow lines

Processing of data

Sets limits for counter
variable

Starting or stopping
execution

Input or output of
information

Decision for conditional
transfers

Connects flowchart segments

Represents a section of the
program

Indicate direction of program
flow

The flowchart of Figure 4.2 illustrates a two-way decision. It determines
whether A is or is not greater than B. If A is not greater than B, it might be
important to know whether A equals B or whether A is less than B. Figure
4.3 illustrates this three-way decision, which requires two decision boxes. It

is an extension of the two-way decision of Figure 4.2.

Flowcharts may have several correct versions. Similarly, there are many
ways to write a computer program to perform a specific task. For example,
the first decision box in the flowchart of Figure 4.3 could contain the ques-
tion, is A < B? Another possibility is to have the second decision box test if
A < B? In each case the subsequent output boxes would display different

messages, but the task would be accomplished equally well.

START Program Line Numbers

t

DISPLAY
ENTER THE INTEREST RATE {15)
FOR EXAMPLE 0.07

INPUT

{
~
=]

DISPLAY
ENTER INITIAL DEPOSIT
AND NO. OF YEARS SEP. BY A (25)
COMMA

Y

INPUT
D.N

t

\COMPUTE BALANCE BAL/ {351

DISPLAY
BALANCE AFTER N YEARS IS B (40)

DISPLAY ‘
THE TOTAL INTEREST PAID IS B-D (45)

!

FIGURE 4.1 Flowchart of the compound interest program.

DISPLAY DISPLAY
“A IS NOT GREATER A IS GREATER
THAN B” THAN B”

! {

FIGURE 4.2 Flowchart illustrating a two-way decision.

52 ch. 4 | decisions

START
\ INPUTAB /
Y

DISPLAY
“A IS GREATER
THAN B”

DISPLAY
“A EQUALS B”
DISPLAY]
“A IS LESS THAN B?”

{

4

(STOP ’

FIGURE 4.3 Flowchart illustrating a three-way decision.

EXERCISES 5

Before executing the instructions, fill in the anticipated display column and then check
against the computer result. When you make a mistake, jot down a short explanation of
the mistake.

1. Instruction Anticipated Display Display

a. 28 FRINT z8
18 PRINT 48
RN

. FRINT ==X

. PRINT S26

. PRINT (5062

. A=i|
B=I6
FRINT

f. FRINT ¢

g. PRINT «ZE>:4:

h. FRINT NOT o324
1
]

k
1

o o o

i FRINT —1 ANL -1
j. FRINT HOT 5

FPRINT NOT NOT A&
CPRINT C-413 AND C-2<018F OR L—1<1i@0

m. FREINT {-1243 AND (J-zddis QR C—1<1803

53 sec. 4.3 | transfer statements

n. FRINT "JACK" AND “JILL"
0. FRINT "JACK" = “.JILL"
p. PRINT "JRCK" > “.JILL"
q. PRINT wgnpn v

r. PRINT "RCE"<"ACE "

5. PRINT "ZVIH"Z"ZVIG"

t. PRINT ", nae o

2. Draw a flowchart for a program to input two numbers and output their sum.

3. Draw a flowchart for a program to input two numbers and output them in ascending
order.

4. Draw a flowchart for a program to input three numbers and output them in ascending
order.

5. Draw a flowchart for a program to input three names and output them in alphabetic
order.

6. Draw a flowchart for a program to input two pairs of numbers, A, B and C, D. Deter-
mine which of the following messages is appropriate; then output that message. We
exclude the possibility of A = Bor C = D.

a. A>BandC>D
b. A>BandC <D
c. A<BandC>D
d. A<BandC <D

7. Draw a flowchart and write the program to input six numbers with a single input state-
ment, and then output two numbers per line.

4.3 TRANSFER STATEMENTS

Normally, execution of programs is sequential, starting with the first state-
ment in the program and ending with the last. Transfer statements make it
possible to deviate from this normal sequence. There are conditional and
unconditional transfer statements.

An unconditional transfer causes a change in the order of execution. The
instruction

ie GO TG 35

will cause transfer of execution from line 10 directly to line 35, skipping
over all intermediate instructions. Other examples of acceptable GO TO
statements are

COMMENTS
45 GO TO 75 From line 45 transfer directly to
9% Q0TO 15 line 75.

From line 95 transfer back to line
15. The space between the GO
and TO is optional.

54

ch. 4 | decisions

COMMENTS
18 A=1 A sample program to illustrate the
15 B=1a GO TO.
28 GO TO 48
Z8 PRIMT "LINE Z8 R="iH
468 PRINTULINE 48 B="iB
S5 EMEs
FUM Request execution.
LIME <43 B=18 Line 30 was skipped over.

Note that line 30 will always be skipped over. It is unreachable.

Another use of the GO TO transfer is to cause execution to begin at
a specified line number. Recall the RUN statement causes execution to sfart
at the first line of the program. The RUN also sets all numerical variables
equal to zero. The GO TO lets you pass values assigned to variables in the
immediate mode to variables within a program. We illustrate this feature
with the above program.

COMMENTS
E=1 88 Specify B = 100.
GO TO 48 Start execution at line 40,
LINE 448 B=10d Result of execution. B is now 100.
RUM Request execution.
LINE 48 B=1@ B is now again 10.
GO TGO 25 Start execution at line 25.
UL ERROR Undefined Line error: there is no
line 2b.

REMEMBER: The line number in the GO TO statement must be an existing line num-
ber in the program. It must be a number and cannot be a variable.

Transfer statements consisting of expressions provide considerably more
flexibility. They are called conditional transfers. The order of execution is
controlled by conditions encountered within the expression of the statement.
These transfer statements use the words IF-THEN-ELSE. The following ex-
amples demonstrate the IF-THEN-ELSE conditional transfers. The same
examples are also illustrated along with corresponding flowcharts in Figure
4.4,

COMMENTS

IF <>8 THEN 15 If X is positive, transfer to line 15;
,,,,, otherwise continue on line 12,

IF AZE PRINT "A IS LARGER THAW B" If A exceeds B, print message; other-
,,,,, wise continue on line 25 without
printing.

IF ARE AND CHD THEM 2o If A exceeds B and C exceeds D,
,,,,, transfer to line 38; otherwise con-
,,,,, tinue on line 32.

=8

S

48

4=

43 .

onoLn
(1]

55

IF A%¥="YES" THEHW 35 ELSE EMD

we® THEN 15

>B PRINT "A Iz LARGER THAM BY

IF A%E AMO CH0 THEM I

AN GL=38 FPRIMT "GRADE BY

END

YES
S5 .
&2 IF ACB THEM A=-f
25 B=HT S

LINE 10

LINE 15
LINE 20

YES

PRINT
A 1S LARGER THAN B”
NO

[P |
LINE 25]
LINE 30

LINE 32

YES
LINE 38
LINE 40

PRINT
“GRADE B”

LINE 45

LINE 60

FIGURE 4.4 Flowcharts illustrating IF-THEN-ELSE conditional transfer statements.

56 ch. 4 | decisions

48 .,

47 IF G568 AND Gr=88 FRINT "GRARDE B" Only if G is in the 80’s, print it as
45 ., . a B.

5@ IF AF="YES" THEN S5 ELSE END If AS is YES, transfer to line 55;
S50 . otherwise end execution.

1]
[
1

I

S2 IF ALY THEN if A is negative, respecify it and

&5 B=AL. 5 take its square root; otherwise
take the square root directly.
Bracket is exponentiation.

Example: Find the Largest Among Three Numbers

We input three numbers and by means of several decisions find the largest. The flowchart
for this process is shown in Figure 4.5. It requires three IF-THEN statements to pinpoint
the largest number. The line numbers of the corresponding program are shown in the

flowchart.
COMMENTS

18 REM FIND THE LARGEST NUMEER REMinder.
28 FPRINT "ENTER 3 UNERUAL NUMBERSY
I8 INPUT ALB. O
G IF ARE THEN 7@
S8 IF EXC THEM FRINT "B IS LARGEST="; E. GOTQ 98
S8 FRINT "C IS LARGEST=":(C: END Two statements are chained.

The colon chains them.
Y8 IF CoA THEN &g
28 FRINT "A IS LARGEST=";H
S

8 ERND A second END statement.
Rl Request execution.
EMTER Z UHNERUAL MUMBER=
Tod.E The three numbers are entered.

C 1% LARGEST= =
Rl Request another execution.
EHTER Z UHEZUAL HUMEERS
Tl 2 =3 Type in three numbers and press
A I% LARGEST=-1 ENTER.
The minus sign occupies the blank.

The first decision compares A to B in line 40. If A is larger than B, we transfer to
line 70 and compare A to C. If A is also larger than C, we transfer to line 80 where we
print the message that A is the largest along with the value of A. Execution is subse-
quently terminated in line 90.

On the other hand, if A is not larger than B, execution transfers from line 40 to line
50. We then already know that B exceeds A, and now compare B to C. If at this point B is
larger than C, then B is indeed the largest and the appropriate message is displayed in line
50. Execution is then terminated through the unconditional GO TO 90. Finally, if in line
60 B is not larger than C, then C must be the largest, since we already established that
B > A. The message “C IS LARGEST" along with its value is displayed in line 60, with
execution terminated thereafter.

Aside from illustrating the IF-THEN statement, we introduced two new concepts
with the above program: statement chaining, resulting in multiple statement lines. This is

57

sec. 4.3 | transfer statements

START

INPUT
(20) - {30} \ "3 UNEQUAL NUMBERS"
AB,C

(70)
YES NO DISPLAY
“A IS LARGEST: A / (80)
YES

NO DISPLAY
’ “C 1S LARGEST": C / (60)

(50}

\

DISPLAY
‘B IS LARGEST"”: B

L

(90) ‘ STOP >

FIGURE 4.5 Find the largest among three numbers.

a useful way of programming since it saves memory space in the computer. You can chain
as many BASIC statements as you wish in one line. Chained statements must be separated
by colons, and the total number of characters cannot exceed 255.

We also notice that more than one END statement appears in the program. There is
an END statement chained in line 60 and an END in line 90. The GO TO 90 in line 50
could also be replaced by an END in order to save the transfer to line 90 from line 50.

REMEMBER: Multiple statement lines save memory space but may make it more dif-
ficult to read the program.

The IF-THEN-ELSE allows for a two-way decision. Using several |F-
THEN statements allows for multiple decisions.
ON expression GO TO Ist line number, 2nd line number, . . .
is a multiway branching statement that causes execution of the program to
transfer to the first line number if the value of the expression is 1. If the
value of the expression is 2, execution transfers to the second line number,
and so on. For example,

OM 2 G0 TO Z8, 58, 44

will transfer execution to line 30 if Z = 1, to line 50 if Z = 2, and to line

58 ch. 4 [decisions

40 if Z = 3. If Z is O or larger than 3, control transfers to the next line in the
program after the ON-GO TO statement. If Z is not an integer, for example,
3.5 only the integer portion is considered, in this case 3, and transfer is made
to the appropriate line number, in this case line 40. If Z is negative, an error
occurs (FC ERROR). This information is illustrated in the execution of the
following program.

il OW 2 GO TO 34, 58, 44
I FRINT "TRAWSFER TO LINE 38 WITH Z="; Z:END
48 FPRIMT "TRAWSFER TO LINE 48 WITH Z="; Z:END
5@ FPRINT "TRANSFER TO LINE 56 WITH Z=": Z:END
COMMENTS
Z=1 Specify Z.
GO TO 18 Execute program from line 10.
TRANSFER T LINE Z8 WITH Z2=1 Transferred to first line no.
=z
G0TO 18
TEANSFER TGO LINE 5@ WITH Z=2 Transferred to second line no.
GOOTO A
TRAMSFER TGO LINE 48 WITH Z=3X Transferred to third line no
Z=7
GO TO 1@
TEANSFER TO LINE 3@ WITH Z=7 Transferred to first line no., since Z
exceeds 3.
2=y
GO TO 19 Transferred to first line no., since Z
TRAMSFER TO LIME 28 WITH Z=8 is zero.
Z=1. 9 Z is not an integer.
GO TO 18 Integer portion of Z is 1, so trans-

ferred to first line no.

o

TRAKNSFER TO LINE 38 WITH &=1.

GO TO 4@
PFC ERROR IN 18 Error, since Z is negative.

Q Example: Producing Variable Displays

Write a program to input a person’s sex (SEX) (male = 1, female = 3) and his/her age
(AGE). Have the computer analyze these data to determine whether the person is or is
not a senior citizen (> = 65 years old).

i@ INPUT "ENTER PERSON-S SEX (M=1,F=3> AND AGE": SEX. AGE
28 IF SEX<C>1 AND SER<>Z THEN 18

=3 IF AGE>=6D THEN E=SEX.GOTO 58

48 E=SExX+1

56 OM E GOTO &4, 7@, 88, 96

60 PRINT "MALE SENIOGR CITIZEN" (END

78 PRINT "YOUNG MALE" :END

88 PRINT "FEMALE SEMIOR CITIZEN":END

98 PRINT "YOUNG FEMARLE" :END

59

sec. 4.4 | ON ERROR GO TO

This program has some interesting logic. Line 10 is as usual. Line 20 is a data validity
check. If the person’s sex is neither 1 nor 3, execution returns to line 10 where the data
need to be entered again. In data-processing applications it is very important that the
input be checked. The results are only as good as the input data. A famous saying sums it
up best: Garbage In Garbage Out (GIGO).

In line 30 of the program, E is equal to SEX if AGE > = 65. Thus E = 1 for a male
and E = 3 for a female senior citizen. If the person’s age is less than 65, execution trans-
fers to line 40, where E=SEX+1, that is, E = 2 for males and E = 4 for females who are
not senior citizens. So at this point E is either 1,2, 3, or 4 depending on the person’s sex
and age. In line 50 we take advantage of this fact and transfer depending on the value of
E to line 60, 70, 80, or 90, where the appropriate display is produced.

4.4 ON ERROR GO TO

ie

The data validity check discussed in the previous section is a way of guarding
against bad data. Unless detected upon entry, the data would go unnoticed
and would be used to generate meaningless results. There are other circum-
stances where a program seems to be running well, free of syntax and logic
errors. Suddenly,after having been used successfully for several runs, an error
message occurs and execution is interrupted. For example, the square root
of a variable may be computed somewhere within a very long program. If the
value of the variable depends on numerous other prior calculations, then it
is certainly possible for the variable to be negative on occasion. This results
in an error. Another possiblity is that a division by zero may occur due to
some unforeseen circumstances. Such errors may turn out costly, since they
interrupt the execution. After the proper corrections have been made, the
entire run needs to be repeated.

The ON ERROR GO TO statement sets up an error-trapping routine,
which in the event of an error allows the program to continue without a
break in execution. The ON ERROR GO TO statement must be placed in
the program prior to the occurrence of the error that it is supposed to trap.

OM ERROR GO TO S8

Yo Eed KRR
Sy

FRINT "THE SLOFE I5"; S

ON ERROR GO TG &

FRINT "WARNING DIVISION BY ZERD: USED 1E-86 INSTERD OF ZERGQ"
N=1E—BE

RESUME

The ON ERROR GO TO 0 terminates the error-trapping process. It dis-
ables the ON ERROR GO TO 80 statement of line 10. Consequently, any
errors occurring after line 70 will cause a break in the execution without
transfer to the error-trapping routine of lines 80 to 90.

The RESUME statement located at the end of the error routine transfers
execution back to the statement in which the error occurred, in this case line

60 ch. 4 | decisions

50. The ON ERROR GO TO statement with its error routine is generally
designed to guard against one specific type of error. However, it will trap all
errors, even those it was not designed to trap. The RESUME statement can
take on several forms:

COMMENTS

RESUME Resume at line in which error
occurred.

RESUME © Resume at line in which error
occurred.

RESUME 106 Resume at line 100.

RESUME MNEXT Resume at line following statement

in which error occurred.

REMEMBER: In the event of an error, the ON ERROR GO TO-RESUME prevents a
break in execution.

ERL is another useful error routine function. It returns the line number
at which an error occurred. So if an error occurs at line 20, then ERL assumes
the value 20. ERL equals O as long as no error has occurred since the com-
puter has been turned on. In the immediate mode, ERL equais 65535 when
an error occurs.

COMMENTS
PRINT ERL Computer has just been turned on.
a ERL equals zero.
S=1-A Division by zero.
7.8 ERROR
PRINT ERL Once an error is made in the imme-
5535 diate mode, ERL equals 65535.
16 A+B=C lilegal statement.
FRINT ERL
E5535 ERL is 66535 before execution.
RN Request execution.
TSN ERROR IM 1@ SyNtax error in line 10.
FRINT ERL
ia ERL is now 10. Error occurred in
line 10.

Q Example: Data Validity Checks

The following portion of a program illustrates the steps required to trap errors made dur-
ing data entry.

168 CLERR 12

118 UN ERROR GOUTO z@©

1z@ INPUT "CUSTOMER®S NAME"; N$

120 INPUT "CUSTOMER”S NUMBER"; Az

146 PRINT "INPUT DATA ARE OK": END

280 IF ERL=136 THEN 230

218 PRINT "NAME MUST BE LESS THAN 413 CHARACTERS"

228 RESUME 4126

228 PRINT "CUSTOMER’S Il NUMBER MUST BE LESS THRAN 32768"
2480 RESUME 1Z=@

61

sec. 4.4 | ON ERROR GO TO

In line 100 we introduce the CLEAR n command. Like CLEAR, it resets all numeric
variables to zero and all string variables to null. In addition CLEAR n reserves space for
string variables 1 characters in length. # may be a number, a variable, or an expression.
Once line 100 is executed, the string variable N$, customer’s name, can be up to 12 char-
acters long. If a name longer than 12 characters is entered in line 120, transfer is made to
the error-trapping routine of lines 200 to 240. In line 130 provisions are made for enter-
ing a customer number as an integer. Recall, integer variables can only assume values in
the range -32768 to +32767 inclusive. Therefore, if A% is larger than 32767 execution
will transfer to the error-trapping routine. ;

The error-trapping routine, lines 200 to 240, displays the appropriate message
depending on where the error was made. Variable ERL is either 120 or 130, correspond-
ing to errors made in lines 120 or 130, respectively. During execution the error-trapping
routine remains unnoticed as long as the data entered conform. In this example the name
must be less than 13 characters and the customer’s number must be less than 32768.
However, when an illegal name is entered, the error routine forces the operator to reenter
a proper name. Execution cannot proceed until a proper name has been entered. The
same is true for the customer number. The operator is given the opportunity to correct
the error made on data entry without a break in execution.

We now execute the program and observe the error-trapping routine.

FLIM

CUSTOMER S MAMET ERIC ACE HAROLD
NAME MUST BE LESS THAM 1% CHARRCTERS
CUSTOMER S MAME™ ERIC HAROLD
CUSTOMER S HUMBERY 42345

LRI R R]

STOMER-S IR MUMBER MUST BE LESS THRAN I27e8
CUSTOMER S HUMBERT 12345
INFUT DHRTH ARE OK

The first customer’s name we entered, ERIC ACE HAROLD, was too long. The correct
name ERIC HAROLD was subsequently accepted and the customer’s ID number re-
quested. The number 42345 exceeded 32767 and was therefore rejected. Once the proper
number, 12345, was entered, the input data were recognized as OK.

REMEMBER: A string variable can store up to 255 characters only if enough storage
space has been CLEARed.

C;> Example: Change for a Dollar Bill

Suppose a one dollar bill is tendered as payment for a sale of less than $1.00. Output the
change from the sale, assuming that coin collectors have hoarded all the 50¢ coins. A
flowchart is shown in Figure 4.6.

The approach taken is to compare the amount of change first with 25. As long as the
change C exceeds 25, the counter Q is incremented to reflect the number of quarters
included in the change. When C is less than 25, it is compared with 10 to check for dimes.
Subsequently, C is checked for nickels and pennies. The variables S, C, Q, D, N, and P
represent, respectively, the amount of the sale, the change, the number of quarters in the
change, and the number of dimes, nickels, and pennies.

62

START Program Line Numbers

INPUT
SALES

{(15)
[a=D=n=P=0] (20)
c<25 \YES (25)
?
NO
Q=Q+1
(40)]
X
c<0 I (45)
?
3
NO
D=D+1
50)-(55)
C=C-10 (501
(60) -
\ i
)
YES
<5 (65)
?
NO
N=N-+1
{80
P=C (85)

!

DISPLAY
Q,D.N,P {90)
4
(STOP)

FIGURE 4.6 Change of a dollar bill.

63

exercises 6

H T "AMOUNT OF THE SALE IN CENTS": S
HA—

wt x

Fi
1E
58

"ll.lH

IF Coz
Gi=i+1
L=C-25
GOTO 25

IF C<16 THEN 65

D=D+1

C=C-16

GOTO 45

IF C<S GOTO 85

N=t+1

C=C-5

GOTO 65

F=C

PRINT @ "QUARTERS “iDx "DIMES "N "NICKELS "; P; "FENNIES"

o M=@: F=g

THEH 45

fﬂ Il “'l

N o bl Leb B3R b=
D oG) O R L

1L
o

G o0 =~ @
DA B R R U

R
AMOUNT OF THE SALE IW CENTE? iz
3 GUIARTERS 1 GIMES g MICKELS 3 FENNIES

3

In this example we assumed that the amount tendered was 100¢. Can you generalize the
program for any amount up to $1007?

A variation of the IF-THEN statement is demonstrated in line 65. Instead of the
IF-THEN, it is permissible to use IF-GO TO or IF-THEN GO TO.

EXERCISES 6

Before executing the instructions, fill in the anticipated display column and then check
against the computer result, When you make a mistake, jot down a short explanation of
the mistake.

L. Instruction Anticipated Display Display

A=18
E=26
C=-3

a. IF AYE FRINT A

b. IF AZE FRINT B

c. IF A>C PRINT "C"

d. IF B>A AND A>T PRINT AsE

e. IF ALE OF B>C PRIMT "YESSM

f.IF H>EB PRINT A ELSE FRINT B

g. IF A<E FRIMNT E. PRINT A

h. IF B>D PRINT "SURFRISE"

i. IF B>R IF A>C PRIMT "UMEXFECTED®

j. PRINT "THE ANSWER IS: PRINT A

2. Enter the following program:

28 IF RA$>BF OR R$LCE PRINT A END
36 IF B$>C$ PRINT B¥ ELSE PRINT C$:.END

64 ch. 4 | decisions

10.

11.

Instruction Anticipated Display Display

a. AE="JOE"
BF="JIM"
C#="JOEY"
Go TO 2@

b, RE="JILL"
GO TO z@

c. BE="MRRION"
C$="ERIC"
Ga TO z8

d. Ag="ANN"

GG TO z@

. Write a single statement to

Set Aequalto 5,Bto6,and Cto 7.

Transfer to line 50 if A > B.

Display C DOES NOT EQUAL D if C is unequal to D.

Transfer to line 100 if Y is less than Z and W is larger than V.

Stop execution if Z is 10.

Branch toline 1if Z = 1,toline2ifZ = 2,toline 3if Z = 3,to line 2if Z = 4,
toline1ifZ = 5,and toline4if Z = 6.

U

. Write short programs to perform the following:

a. Input two numbers and print their sum oaly if the sum is positive.

b. Input two numbers and print whether their sum or product is greater.

c. Display the message, WHAT IS THE CAPITAL OF FRANCE? If the person
responds PARIS, have the computer display the message YOU ARE OK. For all
other (incorrect) responses, display the message, NOPE, SEE YOU IN PARIS.

d. Display the message, WHAT IS YOUR AGE? For ages 12 or less, have the com-
puter respond YOU ARE A CHILD; for ages 13 through 19 respond, YOU ARE
A TEENAGER; for ages 20 or above, respond YOU’RE AN ADULT.

. Draw a flowchart and write a program to input three unequal numbers and display

them in ascending order.

. Draw a flowchart and write a program to input four numbers and display the largest.

Try to write the program with the minimum number of steps.

. Draw a flowchart and write the program to input a number and output its absolute

value;that is, output the number as a positive number.

. Draw a flowchart and write a program to compute and display a salesman’s gross pay.

The pay is based on sales and is computed according to the following formula: for
sales up to and including $1000, he is paid a flat $100; for sales from $1000 up to
and including $2000, he is paid 15%; above $2000, he is paid a bonus of $250 and
7% of sales. The sales are input to the program.

. Draw a flowchart and write a program to update the balance of your checking ac-

count. Input the amount of the check or the amount of the deposit and output the
balance. If the balance falls below $100, charge the account a $2 service charge. If
the balance drops below zero, display an appropriate message and charge the account
a $5 service charge.

Draw a flowchart and write a program to input a person’s age and output the age
along with the message: THIS PERSON IS A MINOR (<18), or THIS PERSON IS A
SENIOR CITIZEN (>=65), or THIS PERSON IS NEITHER A MINOR NOR A
SENIOR CITIZEN. Include a data validity check to be sure the person’s age is not
negative or greater than 120.

Draw a flowchart and write a program to input the three coefficients A, B, C of the
quadratic equation AX? + BX + C = 0. Depending on whether B* - 4AC is posi-

65

exercises 6

tive, negative, or zero, output respectively the messages: THE ROOTS ARE REAL,
THE ROOTS ARE IMAGINARY, THE ROOTS ARE REPEATED.

12. One root of the quadratic equation AX? + BX + C = 0is (-B + v/B? - 4AC)/(2A).
Write a program to input A, B, and C, and then compute and display the root. Use an
ON ERROR GO TO statement to treat the case in which the square root of a nega-
tive number is taken, that is, when B#B - 4%AxC < 0. If B¥B - 4%A=C is positive
or zero, display the message “REAL ROOT” along with the root itself. Otherwise
display the message “IMAGINARY ROOT”. Be sure to first draw a flowchart. Test
your program with A = 1, B = 3,C = 2,and then againwith A = 1,B = 2,C = 3.

13. Write a program to input the number of words in a telegram and display the cost.
Assume the first 15 words cost a flat $3.50, with extra words $0.20 each.

14. Write a program to input a number and display a message declaring the number as
odd or even. Does your program work for positive as well as negative numbers?

chapier Sl iD@Qaﬂg

5.1

5.2 IF-THEN LOOPS

66

LOOP STRUCTURE

A major advantage of computers lies in their ability to do repetitive tasks
rapidly and accurately. The steps that are repeated within a program form a
loop. In general, a loop consists of four parts in which we initialize, process,
increment, and test.

In the initialization part we assign starting values to variables. For exam-
ple, we may initialize a variable that represents a counter to 1. In the process
section the calculations are performed. The counter is then incremented, and
a test is performed to check if the loop should be continued or terminated.
The order in which the four parts of a loop appear is interchangeable. Two
possible loop structures are shown in Figure 5.1.

It is important to note that the variables are only initialized once. While
looping, the process, increment, and test parts are repeated over and over
until the test condition is satisfied, for example, when the counter has
reached a preassigned limit. It is also possible to have loops that omit some
of these four parts. For example, the increment part may not be necessary
if no counter is used. Instead, a computed variable may be checked to termi-
nate the loop.

The test part of the loop can be performed with the IF-THEN statement. If
the counter has reached its limit, or if a certain condition has been met, the
IF-THEN transfers execution out of the loop.

Let us find the sum of all the integers from 1 to 100.

COMMENTS
16 SUM=8: KOUNT=1 Initialize sum and counter,
28 SUM=SUM+KOUNT Process.
28 KOUNT=KOUMT+1 Increment the counter.

48 IF KOUNT<=1868 THEN z© Test. As long as the counter is less
or equal to 100 we continue to

loop.

56 PRINT SUM: END

RUN

59568 The sum of integers 1 to 100 is
5050.

67

sec. 5.2 [IF-THEN loops

g l,

INIT%ALIZE INITIALIZE

—— !

PROCESS
RO TEST
! CONTINUE
LOOP?
INCREMENT
X
PROCESS
YES TEST 4
CONTINUE
LOOP? INCREMENT

N

FIGURE 5.1 Two loop structures showing the four parts of a loop.

The next program demonstrates a loop that is terminated when a calcu-
lated variable reaches a certain value and not when the counter reaches its
limit. Let us find N such that 2N just exceeds 1000.

COMMENTS
18 N=0 Initialize.
28 N=N+1 Increment.
26 ¥=zZI[N Process.
48 IF X<=1088 THEN 206 Test.

3@ FRINT "N="iN;"., ZLN=";¥:END
RUN
N= 18, ZI[N= 1624

We recognize 2110 or 1024 to be 1K;a 4K memory thus corresponds to
4 X 1024 = 4096 bytes and not 4000 bytes as is commonly assumed. In
the above, lines 30 and 40 can be combined to shorten the program (30 IF
2[N<=1000 THEN 20). The sequence of the four parts of the loop differs
from the illustrations in Figure 5.1.

A common mistake made by inexperienced programmers is to include
the initialization statement in the loop. Let us make that mistake by editing
line 40 to branch back to line 10 instead of to line 20.

43 IF A<=18@06 THEN 1@

RUN

What happened? The computer is in a coma! No result!? We press BREAK to
stop the execution and insert line 35.

35 FRINT N

RUN

Now the execution shows only a column of 1’s. Press SHIFT and @ simul-

68 ch. 5 [looping

taneously to halt execution. The display is frozen. As you can see from the
display, the program is in an infinite loop. To resume execution, press any
key. Since we branch back to line 10, N is reset to zero each time and never
increases to a point where 21N exceeds 1000. Since 211 is 2, X always
equals 2. To get out of this infinite loop, we press the BREAK key, which
terminates the execution and returns the cursor onto the screen. We also

delete line 35, which we inserted for illustrative purposes.

COMMENTS
BREAK IN 30 Response of computer to BREAK
command.
RERDY Cursor returned,
35 Delete line 35.
FRINT %
2 Atline30,N = ;21N = 211 = 2.

REMEMBER: Do not initialize the counter within the loop.

On occasion it may be desirable to have an infinite loop. For continuous
loop programs such as games, it is convenient to place the RUN statement
within the program. If RUN is the last statement of the program, then the
entire program will be executed over and over. The RUN will cause repeated
executions and will also set all the variables to zero and null each time an
execution starts over.

COMMENTS
1 PRIMT "FOREWERY
S8 RUM RUN used within the program.
FLIN Request execution.
FOREVER First execution.
FOREWVER Second execution.
FOREVER
N Infinite loop.
etc.

Press the BREAK key to escape from the infinite loop;to continue exe-
cution, type CONT and press ENTER.

Q Example: The Rule of 72

A deposit left in the bank to earn interest will eventually double in value. The rule of 72
states that the number of years needed for the money to double is approximately equal
to 72 divided by the annual interest rate. So, for example, if the interest rate is 4% the
time to double will be 18 years (72/4). A flowchart for the program to verify this rule is
shown in Figure 5.2. The program follows it closely with corresponding line numbers
shown in the flowchart.

i@ REM THE RULE OF 72
28 PRIMT "IMITIAL DEFOSIT AND INTEREST ERTETS
25 CIWNPUT CEF. IM

sec. 5.2 [IF-THEN loops

Program Line Numbers
START

INPUT {20)-(25)
DEPOSIT. INTEREST

L]
BAL = DEPOSIT (40)-(60)
COUNTER =0
]
>

BAL = BAL + BAL = INTEREST/100| (70

!

COUNTER = COUNTER + 1 (80)

BAL < 2 » DEPOSIT (85)
3)
DISPLAY
TIME TO DOUBLE (90)-(95)

FINAL BALANCE

FIGURE 5.2 The rule of 72.

COMMENTS
ZB REM EQUARTE THE IHITIAL BRLAMNCE TO THE EPOSIT
48 BRAL=DEP Initialize,
S8 REM O IMITIALIZE A COUMTER
SH M= Initialize,
S5 REM COMFUTE A NEM BALANCE
Ve BEAL=BAL+BAL+IN106 Process.
FE OREM IMNCEEMENT THE COUNTER
SR =ML Increment.
25 IF BARLIZ+LEFP THEWM 7a Test.
26 PRIMT "TIME TO DOUBLE IS". M: "wERRS"
S5 PRINT "FIMAL BARLAMNCE IS #": BAL
25 ERL
RN Request execution.
IMITIAL DEFPOSIT AMDe IMTEREZT RRTE™
T oleea, 4

Input the data.

IMITIAL DEFOSIT AMDe INTEREST RHTEY
ToLeE Forgot to enter the interest rate.

So enter interest rate now.
Rule of 72: 72/6 = 12 years.

70 ch. 5 | looping

The rule of 72 program can readily be used to determine whether a larger (or smaller)
initial deposit affects the time to double. Try initial deposits of $500, $1000, and $2000.
What is your conclusion? The rule of 72 is verified by means of an exact formula in a
later chapter.

5.3 FOR-NEXT LOOPS

The FOR and NEXT statements together provide another way of performing
loops. The IF-THEN loop required a four-part loop structure: initialize, pro-
cess, increment, and test. The FOR-NEXT loop only requires the initialize
and process parts. It is generally simpler to use and consequently preferred
by many programmers. The general form of the FOR-NEXT loop is as

follows:
COMMENTS
18 FOR A=B TO O STEFR D STEP D is optional.
= The bracket drawn from line 10 to
line 50 outlines the range of the
loop.
S0 NEST A The A is optional.

A is a counter variable whose initial value in the loop is B. The NEXT
statement is the last statement in the loop. Once that line is reached, execu-
tion returns to the beginning of the loop, that is, the FOR statement. The
counter A is increased by the STEP D. If A is less or equal to C, the upper
limit of the counter, execution proceeds through the loop. Once line 50 is
again reached, execution returns to the beginning of the loop; the counter A
is again incremented by D, and checked if it exceeds the value of C. If A
does exceed C, the loop has been completed and execution transfers to the
first line after the NEXT statement, in the above example line 60. If no
STEP is used, a STEP of 1 is assumed. In the FOR statement, the initial
value, final value, and increment can be constants, variables, or expressions.
When the FOR statement is reached, these values are evaluated and stored in
memory. Respecifying (changing) these values within the loop will not
change the range of the loop. However, it is not permissible to change the
value of the counter within the loop.

The following examples illustrate the FOR statement:

STATEMENT RANGE OF VARIABLE

L PR T = & 7O 4 T assumes the values 0, 1, 2, 3, 4.

£ FOR F = v 4 TO <. 4 STEF 8.1 F assumes the values 6.1, 6.2, 6.3,
6.4.

LOFOR Z o= 4 TO 18 ZTERP Z Z assumes the values 1, 3, 5, 7, 9.

4 FOF 1 = 18 T -3 STER —4 M assumes the values 10, 6, 2, -2.

5OFOR F o= 5 TO 3 P assumes only the value b.

& FORZ=1TumaTEr-1 Z assumes only the value 1; the

spaces are optionai in BASIC.

71

sec. 5.3 | FOR-NEXT loops

We notice that the STEP can be positive, negative, integer, or a fraction.
In the first example the assumed STEP is 1. In the second example the STEP
is a tenth and F is incremented accordingly. In the third example the STEP is
2, and after Z = 9 is incremented by 2, Z = 11. This is greater than the
value 10; therefore, the loop ends without Z ever assuming the final vaiue
10. In the fourth example a negative STEP is demonstrated. Again, the final
value is not reached since -6 is less than -3. In the fifth example no STEP is
specified, so STEP 1 is assumed. After P is incremented the first time, its
value is 6. Since 6 is greater than the final value 3, the loop ends. In the last
example, Z is O after it is incremented for the first time. Since 0 is less than
1, the starting value of Z, the loop ends.

REMEMBER: If no STEP is specified in a FOR- NEXT loop, a STEP of 1 is assumed
by the computer.

The following short program prints the numbers 32 through 34, their
squares, and their cubes:

COMMENTS
18 FOR M=Z2 TO 24 STEP 1 is assumed.
E:E* FREIMNT M: MM MLZ M*M is computed faster than M?12.
ZE OMEART The M is optional in NEXT.
=1y
Z2 dizd 3Z27Ven
: 1883 35957 Upon completion of the loop, the
"4 1158 23304 counter has the incremented value
FRINT M that just exceeds the final value;
5 M=34+1=3b.
18 FORE =18 TG 5 STEFR -2
28 HEST K
@ PRINT K
RLIM
] Once the loop is completed the

counteris4;K =6 - 2 = 4.

c;> Example: Evaluating an Infinite Series

The infinite series
1+1/2+1/3+1/4+..-+1/N

has an infinite number of terms. Since each successive term is smaller than the previous
term, one expects the sum of the series to add up (converge) to a certain value. Does it?
Let us investigate the sum of the first 10, 50, and 100 terms, that is, for N = 10, 50, and
100.

COMMENTS
28 S=@ Initialize the sum S.
28 FOR K=1 TCO M STEP = 1 assumed.
[‘4‘3 S=5a4+ -k
S8 WEAT K
el FRINT “SuM="; 3 END is optional and we omit it,

ch. 5 | looping

We now execute the program by specifying N and then transferring to line 20.

COMMENTS
H=18
GO To 26
SUM= 2. 92897 The sum for 10 terms.
M=58
GOTO 28
Slir= 4, 43524 The sum for 50 terms.
M=1 60
GO TO zZe
SiM= 3. 4873g The sum for 100 terms.

Indeed this series does not converge; it diverges. Successive terms keep adding on to the
total sum, making the sum larger and larger.

In the last example we ran the program for N = 100. The loop consisting of lines 30
to 50 was executed 100 times as the counter K assumed the values 1 through 100. The
sum was then displayed in line 60. Supposé we display the value of the counter upon
completion of the loop.

COMMENTS
=161
GO To 28
M= 5. 18738
FRINT & The loop’s counter is incremented
i@ one final time.

For a loop ranging from 1 to 20 with a STEP of 2, the counter assumes the values
1,3,5...17,19. The loop is completed and the counter is incremented one final time.
The counter is then 21 and execution of the rest of the program follows.

COMMENTS

18 FOR #=1 TO 26 ZTEF 2 The loop’s upper limit is 20.

28 MEAT K The STEP is 2.

2B PRINT K The last value of K within the loop
is 19.

RLIN

21 Upon completion of the loop, K

equals 19 + 2.

If the STEP is 3 in the above program then K is 22 (19 + 3) upon completion of the loop.

REMEMBER: Every FOR-NEXT loop must-have:a:FOR -and a NEXT statement.

FOR-NEXT loops are used frequently and any particular program may contain sev-
eral such loops. It is possible to branch in and out of loops using conditional or uncon-
ditional transfer statements. However, such jumps can be made only within a particular
FOR-NEXT loop or from it to the outside. No jump may be made into a loop. A loop
may only be “entered” through its FOR statement (first statement of the loop). This
means that a GO TO statement, an ON-GO TO statement, or an |F-THEN statement that
is outside a FOR-NEXT loop cannot transfer control to any statement inside the loop.

73 sec. 5.3 | FOR-NEXT loops

However, a GO TO statement, an ON-GO TO statement, or an |F-THEN statement that is

inside a FOR-NEXT loop may transfer control anywhere within or anywhere outside the
loop. The following are examples of legal jumps:

P py”
]~y

COMMENTS

—188 FOR KOUNT=41 TO 146 Set up a loop.

58 GO T 279 Transfer inside loop.
8 PRINT “INSIDE LOOP"
5 IF HOUMTS-T8 THEN 468 Transfer inside loop.

8 IF TESTL28 THEM S0 Transfer outside loop.

—dEE NEXT ROUNT

Se@ GO TO 27¥e Illegal transfer into loop. A proper

version of line 560 is 560 GO TO
100.

C:> Example: Averaging a Set of Numbers

Suppose we know how many numbers we wish to average. Let that number be N. We
must add up all the numbers to be averaged and divide the total by N. We first input N
and subsequently go through the loop N times to input the numbers to be averaged. In
the process we also add up the numbers to compute their sum. Once the loop is completed
the average (= SUM/N) is computed and displayed.

16
=g
=8
4@
45

REM HAVERAGE A SET OF MNUMBERS

FRINT "HOW MANY NJUMEERS [0 Y0OU WISH TO AYVERRGET!
IMFUT N

REM INITIALIZE THE SUM TO ZERO

SUM=g

FOR K=1 TO N

INFUT "EMTER A HNUMBER". MNUMEBER

SUM=SLIFM+HUMBER

MEXT K

FRINT “THE AVERAGE OF THE": MN:; "NUMBERS IS"; SUMSHN
END

Type in the program and use it to compute your average grade in mathematics to
date, or the average size of the last 12 checks you wrote.

Suppose we wish to average a set of numbers and we do not have an exact count of
how many numbers there are. For example, we wish to determine the average amount of
a whole pile of checks. We know that the value of a check cannot be a negative number.

74 it 5 [/ dooping

18 REM AVERAGE A SET OF HUMBERS
15 REM THE MNUMEBER OF HUMBERS IS UNEMDbWN
26 HM=@: Sii1=8

2B PRINT "ENTER A MUMBER IF DUOME EMTER -23"

48 INFUT HUMBER

54 IF NUMBER = -95 THEN &6

£8 N=N+1: SUM=SUR+NUMBER

TE GOTO I

88 PRINT “THE AYERAGE OF ":N; "NUMEERS IS SUM/H: END
RLUIM

ENTER R NUMEER IF LOME ENTER -39
7 &7

EMTER A HUMEER IF LONE EMTER -9%
7 95

EMTER A NUMEER IF DOME ENTER -39
T oEL

EMTER A NUMEER IF LOME ENTER -2%
—55

THE AYERAGE OF 2 HUMBERS IS &7, 6667

This version of the averaging program uses an |F-THEN loop. The earlier version
utilized a FOR-NEXT loop. In line 50 we check the value of NUMBER. If it equals -99
then the last data entry has been made. The -99 serves as a flag. Each NUMBER is tested
in line 50 to check if it equals the flag. If it does, execution transfers out of the loop to
line 80 and the average is displayed.

Example: How Fast Can the Computer Add?

The program we present in this example can be used to determine the time it takes to
perform an addition or any other operation. We begin by executing a loop that actually
computes nothing. A stopwatch is used to measure the time to perform the loop 5000
times. The time interval starts when the ENTER key is pressed after typing RUN and
ends when the READY appears again.

)

T o
LR

af [b=
XEDAREA]
]
]
o
—
[
n
]
=t
i)

i
m
:i
51

Execute this program several times and compute the average time of execution. The
average time to perform this loop 5000 times turns out to be about 29 seconds. Now re-
place line 20 by

and run the program again several times. In the presence of the new line 20, it takes about
35 seconds to perform the loop 5000 times. The difference in the two times of execution
is 6 seconds. Dividing this difference by 5000 yields the time for a single addition, 0.0012
seconds. Similarly, it is possible to investigate the time of execution for the multiplication
A = 1*1, or compare the difference in the time it takes to execute PRINT 1 versus ? 1.
Another interesting question this approach may help resolve is whether A = 2#2 is faster
or slower than A = 2 1 2. Or how about comparing the execution time of the three-line
loop (lines 10 to 30) with the execution time of a one-line loop containing the same three

statements chained together? Can you think of any other operations that you may wish
to investigate?

75 exercises 7

C:> Example: The Legend of the Wise Old Man

An old legend has it that a wise man, when offered any reward he desired, requested that
the squares of a checkerboard be filled with kernels of wheat. One kernel was to be placed
on the first square, two on the second, four on the third, eight on the fourth, and so on.
How many kernels of wheat would be required to fill the 64-square checkerboard?

This problem requires summation of 64 integers. Successive integers are in the ratio
of 2 : 1. A flowchart is shown in Figure 5.3. The program follows it closely.

COMMENTS
i@ FEEM THE WISE LD MAM
28 sUM=a Initialize the sum:
ZE FOR EOUNT=0 TO &3
[4@ SUM=SUIM+Z0 ROUNT 210=1;211=2;etc.
SE MEST NEXT by itself is OK.
i FRINT "TOTARL MHZ. OF KERMELS ="; SUM
TE OEMD
Rt
TOTAL MO, OF HEERMELS = 1. 84468E+19 Indeed he was a wise man!
Program Line Numbers
START
SUM =0 (20)
l KOUNT
> 0TO 63 (30) - (50)
<1 SUM = SUM + 2 t KOUNT
DISPLAY (60)
SUM
(70)

FIGURE 5.3 The wise old man.

EXERCISES 7

1. What final value will be displayed in each of the following programs:

a. 18 A=4. B=z o b. 1@ A=1&. BE=0
zZ8 b=B+A VL) 26 B=E+A
8 A=A-1 8 A=f—-2
48 IF A1 THEWM za 48 IF A= THEW z6
S8 FRIMT B+15 ‘ 38 PRINT B+15

76 ¢h. 5 | looping

Anticipated display

Actual display

c. 16 K=k+1 d. 18 K=K+1
28 PRINT K . 28 FRINT K

38 RUN

Z@ GO TO 18

Anticipated display

Actual display

Note: Did you remember to type in NEW before entering each program?

2. How often is the IF-THEN executed in each of the following programs? What value

will be displayed?

a. 18 [A= 5. B=g: C=1 b. 18 A= 5: B=l1: C=1
28 C=CH0A+7T 28 C=C0s(R+7 0
38 B=B-1:A=A+S 3@ B=E+l: A=A+S
48 IF E>r9 THEN 28 48 IF B<=8 THEN z2@
58 FRINT C S8 PRINT C

Anticipitated display

Actual display

3. Consider the flowchart for the program to sum the integers (whole numbers) from 1
to 10. The numbers in the circles represent line numbers in the corresponding pro-

gram.

START Program Line Numbers

DISPLAY
“SUM 1S"”: S

a. Identify the initialization, incrementation, test, and process parts of the loop.
b. Write the corresponding program consisting of lines 10 through 80.
¢. Write a shorter version of the same program.

77

exercises 7

4.

10.

11.

12.

13.

d. Generalize the program to sum all the integers from MIN to MAX. Use INPUT to
enter values for MIN and MAX during execution.
e. Rewrite the program using a FOR-NEXT loop.

Write short programs to perform the following. Write these programs with an IF-
THEN loop and then with a FOR-NEXT loop. In each case decide which version
is the simpler.

a. Display all the integers from 1 to 20.

b. Display all the odd integers from 1 to 20.

In increments of 0.5, display all the numbers between 7 and 14.

Display the fractions %, %, ¥s, . .., %o in decimal form.

Display every third number starting with 10 and going no lower than -10.
Determine and display the product of the first 10 positive even numbers.
Compute and display the product of all the integers from A to B. A and B are
input data;assume A < B.

@ @ 0

. Modify the rule of 72 program presented in this chapter to display the balance for

each year.

. Rewrite the rule of 72 program using a FOR-NEXT loop.

Write a program to add the consecutive positive integers and print the last integer
added when the sum first exceeds 1000.

A baseball player hits the ball so that the horizontal distance from the plate to the
ball in feet is given by the equation X = 80T, where T is the time in seconds since
the ball was hit. The height of the ball above the ground is given by the equation
Y =4 + 70T - 16.1T%. Write a program to produce a three-column table giving
values of T, X, and Y at %4 -second intervals as long as the ball has not gone over the
fence (X is less than 355 feet).

. Write a program that will read 50 scores and then get a count of the number of

grades in each of the given ranges 1 to 25,26 to 50,51 to 75, and 76 to 100.

You purchase a franchise in a newly formed association and are told that your profit
(in $1000 units) can be projected for the next 8 years by the formula

P=T3%-5T% + 10T - 51

where P represents profit and T the time in years. At T = 0, the time of the purchase
of the franchise, P = -51. Your cost of the franchise is therefore $51,000. A negative
profit indicates a loss. Write a program to determine:

a. At the close of which year do you show a profit for the first time?

b. What is your cumulative total profit, or loss, for the first 8 years?

Write a program to compute the net wages of the employees of a company. You are
given the gross wages; income tax of 20% if income is $800 or less, 22% if income is
more than $800;union dues of 1% of total wages; FICA 6% of income equal to or less
than $900. Do not be concerned with dependents. The company has 8 employees.

Write a program to play the following game: The computer tries to guess a number
you have in mind from one to 100. First it guesses a number and you tell it if the
number is too high, too low, or correct. On the basis of the information you give, the
computer guesses again. This continues until the computer guesses right.

Mr. Jones is offered employment by ABC Company, and is afforded the opportunity
of taking two different methods of payment. He can receive a monthly payment of
$700 and a $5 raise each month, or he can receive a monthly wage of $700 with a
yearly raise of $80. Write a program that will determine the monthly wages for the
next eight years in each case. Determine the cumulative wages after each month, and
from the information determine which is the better method of payment.

78

ch. 5 [looping

14.

15.

16.

17.

18.

How many terms of the series 1 + % + %4 + %2 .. .must be added so that the sum
will be greater than or equal to 4?

Write a program to input a positive integer P and display P as well as P! (P factorial),
where Pl = 1 X 2 X 3...P;forexample,3! =1 X 2 X 3.

Computethe quantity Q =4 X (1 - 1/3 + 1/5 - 1/7 + 1/9 - --.). Input the num-
ber of desired terms in the series and output Q. Do you recognize the quantity Q?

If the current population is 200,000,000 and the population grows 1.5% per year,
find the year in which the population will reach 300,000,000. Use INPUT to enter
the growth rate and the upper limit on the population.

City A has 1000 residents and is agriculturally self-sufficient (i.e., it cultivates enough
food to feed itself). In fact, it produces enough food for 100,000 residents. However,
every 10 years the population doubles and in that time enough food can be produced
to feed 4000 more people than in the previous 10 years. Output a table of data in the
following form:

AFTER YEAR POPULATION FOOD SUPPLY FOR
0 1000 100000
10 2000 104000

19.

20.

21.

22.

23.

Have the data stop when the population outgrows the food supply.

Job A pays $12 per day and lasts 30 days. Job B pays $1 for the first day, $2 for the
second, $3 for the third, and so on. Which job pays more over a period of 30 days?
Obviously, job A is a better deal for a while. When does job B become a better deal?

Write a program to compute the balance of a Christmas Club account after one year.
The annual interest rate is 6% compounded monthly. Run the program for monthly
deposits of $10, $20, and $40.

If a person earns 6% compounded monthly on the minimum balance for the month,
and he or she withdraws $100 per month from an account that starts at $10,000,
how long can this go on?

Use a computer to help you solve this problem. Mrs. Freezman lives on a street where
the house numbers are 1,2,3 It is interesting to note that the sum of the house
numbers less than Mrs. Freezman’s house number is equal to the sum of the house
numbers greater than hers. Her number contains three digits. What is her house num-
ber and how many houses are there on the street? It can be shown that the desired
house number X is related to the number of houses on the street N according to the
relation

X = -0.5 ++/0.25 + 0.5N + 0.5N2
An iterative formula for finding the square root of N is given by the formula

G+ N
2G

where G is the initial guess for the square root of N and B is a better approximation.

79 sec. 5.4 [subscripted variables

Count the number of iterations necessary to get successive computed values to differ
by no more than 1E-6. Use N = 5 and G = 3. (Compute B; then let G be that value
of B and compute a new B, and so on.)

5.4 SUBSCRIPTED VARIABLES

At times it is desirable to have the computer keep a table of values in its
memory, for example, a list of 12 test scores: 65, 63, 75, 76, 90, 83, 87, 98,
76,75, 81, and 68. The complete set of the quantities is called an array, and
each individual quantity is called an element of the array. The first element
of the array is 65, the second element is 63, and the last element is 68. We
can give the whole list a variable name, for example, the name S. We then
refer to the first item in the list, 65, by S(1). What is S(5)? IfJ = 3, what is
S(J)? S is a subscripted variable; it has one subscript and is sometimes re-
ferred to as a one-dimensional array.

Before we can work with our list in a program, we need to store it in the
computer’s memory. First we must tell the computer to reserve sufficient
space for storing our array. We use a DIM statement to reserve storage space.
For example,

COMMENTS
18 DIM Sdizs Array S is of depth 12.
28 FOR I=1 TO iz S{13) would therefore not be per-
[3@ INFUT SCIn missible.

48 MNEXT I

Note that in this program the counter of the FOR-NEXT loop is used as the
subscript. As | takes on the values 1 through 12, the elements of the array S
are entered. Once this program has been executed, the array is stored and we
can use its elements; suppose 65 has been entered as the first element and 98
as the eighth element of array S.

COMMENTS
PRINT Scdiy Display the first element of S.
&5
PRINT S(C3» Display the eighth element of the
35 array.

We sum the elements and display their average:

COMMENTS
56 SUM=a
52 FOR K=1 TO 1z Start of loop: the counter is K.
[54 SUM=SUM+SCR) The counter is used as the subscript.
56 MEXT K End of loop.

58 PRINT "AVERAGE IS": S iz
The following is an example of a DIMension statement

18 DIM ALS2, BORD, CCD+50

80 ch. 5 [looping

The quantity in () may be a constant, a variable, or an expression. In this
case, X and D must be specified prior to line 10.
There are several rules and restrictions we must be aware of:

1. The subscript O is permissible. A DIM statement of depth 12, DIM
S(12), actually reserves 13 memory locations for S(0), S(1), ..., S(12).

2. The DIM statement is optional if the largest subscript used for the
array is 10.

3. Try to estimate the anticipated size of the array so that excessive
memory is not tied up through the DIM statement.

4. The DIM statement may be placed anywhere in the program, but
must be placed prior to where the array is first used.

5. The depth specified by a DIM statement may be a number or a
numerical expression. DIM S(A + 2) is valid provided A has been specified
beforehand.

6. A single DIM statement may be used to declare several variables, for
example, DIM A(30), B(40), C(50).

7. A program may contain several DIM statements, but each array can
only be declared once.

8. The same variable name can be used in a program for a subscripted
variable and for a nonsubscripted variable; S and S(K) are two different
variables.

9. The subscript can be an arithmetic expression; S(2 * 3 + 2) and
S{A + 5) are permissible.

10. Arrays may contain numeric or string information. AS$(l) is an array
containing strings.

Example: Find the Largest Element of an Array

This program demonstrates the use of a subscripted variable, the DIM statement, and two
FOR-NEXT loops. A flowchart of the program is shown in Figure 5.4. First the number
of elements in the array is entered with an INPUT statement. Once the length of the array
is known, the DIM statement is specified as DIM S(N). N is the number of elements in the
array. The first loop, lines 30 to 38, is used to input the array S, one element at a time.
The array is then examined to locate its largest element. To begin with the first element,
S(1) is assumed to be the largest (line 42). It is assigned to variable BIG. Subsequently,
the remaining elements S(2) through S(N) are compared with BIG. The FOR-NEXT loop
of lines 50 to 58 therefore extends for values of | from 2 to N. Every element S(i) is
compared with BIG in line 52. If S(I) exceeds BIG, then an element larger than the cur-
rent largest element has been encountered. BIG is equated to that element in line 56.
Once the loop has been completed the largest element of the array is displayed in line 60.

18 INPUT “HUMEBER OF ELEMEMNTS IN THE ARRAY"; N
20 DIM SCM2
2@ FOR I=1 TO N
[?4 INPUT SCI
38 HNEXT 1
40 REM HSSUME THE LARGEST ELEMENT IS Sdi?
42 BIG=5C1>
S8 FOR I=2 TO N
5z IF S(I:I=BIG THEN 5%
54 REM S¢Iy IS LARGER THAN THE FREVIOUS LARGEST ELEMENT
56 BIG=G{I»
58 NEXT 1
S8 PRINT "THE LARGEST ELEMENT I&": BIG

81

sec. 5.4 | subscripted variables

START Program Line Numbers

INPUT

NUMBER OF ELEMENTS (101
N
|
E—— (30)-(38)
INPUT
s(1) (34)
_ 1
BIG = S(I) (42)
| s
- S TON (50-58)
YES
(52)
\
NO
BIG = S(I) (56)
A 4
DISPLAY
LARGEST ELEMENT (60)
BIG

STOP

FIGURE 5.4 Find the largest element of an array.

RUN

NUMEER OF ELEMENTS IN THE ARRAY? 4
¥ 18

1z

7 oa

7 34

THE LARGEST ELEMENT IS 34

2

J

Enter this program and test it. Does it work for negative values as well as for positive
values? What if N = 1?7 How would you modify the program to locate the smallest ele-
ment of array S(1)?

Since string data can also be compared and ordered, the above program can be used
to find the element in a string array that is closest to the end of the alphabet. Instead of
dealing with the numerical array S(l}, we would deal with the string array S$(1). S$(I)
may, for example, contain a list of names.

5.5 NESTED LOOPS

If one loop is completely enclosed in another loop, the loops are called nested
loops. Loops may be nested three, four, or more deep. The only limit is the
amount of available memory. Figure 5.5 illustrates the concept of nested
loops. It shows a segment of a program that includes several nested loops.
The outer loop (lines 100 to 650) contains two inner loops. The first inner
loop consists of lines 210 to 270. The second inner loop (lines 330 to 590)
itself contains an inner loop (lines 400 to 510). The brackets are drawn in
Figure 5.5 to outline the range of each loop. Loops are legally nested if the
brackets do not intersect.

REMEMBER: When you write programs containing nested loops, draw brackets to
outline the range of each loop. Be sure the brackets do not intersect.

82

Example: The Multiplication Table

We use nested loops to produce a multiplication table for the numbers 4 through 9.

COMMENTS

18 REM MULTIPLICATION TAEBLE

1S PRINT ¢ 4 5 o 7 @ on Display heading.

2B FOR OMTER=4 TO 2 Outer loop starts.

Zd FRINT Skip a line.

25 PRIMT OMTER: & % Display numbers at margin.
TR OFOR ITHMER=4 TGO 9 Inner loop starts.
[49 FRIMT OWTER®IMMER: Compute and display.

D@ WNESRT IMHER Inner loop ends.

a8 MEXT OWTER Quter loop ends.

The index of the outer loop is OWTER. We did not use the variable OUTER since it con-
tains the BASIC reserved word OUT and is therefore an illegal variable. Aside from
demonstrating nested loops, this example introduces a new way of tabulating numbers.
The semicolon at the end of lines 25 and 40 compresses the display on one line. The semi-
colon at the end of a PRINT statement, sometimes referred to as a hanging semicolon,
suppresses the line feed. In the absence of line 24, the output would be so compressed
that the numbers would fill the entire screen and would make no sense. Line 24 has no
hanging semicolon and thus interrupts the compression. Enter the program and run it
with and without line 24.
We now execute the program, which includes line 24.

RUM

4 3 & 7 8 8
4 16 286 24 28 32z 36
S 26 25 2@ X5 48 435
& 24 36 E& 42 48 54
v 28 33 42 4% 58 B3
8 32 48 48 D& 64 e
S 3% 4D B4 8E Tz &l

The program can be edited to display a multiplication table with a different range,

sec. 5.5 | nested loops

AEE FOR L1 = 4 TO 1é
L]
[]
@

Sk FORE Lz = 1 10 49 STEF &
-]
[}
S

278 HE=T L&
1]
[}
]

e FOR LZ = S 7O Z6

@
L]
®

GEAE FOR Ld = 28 T 1 STEP -5
[
o
®

R HE®T L4
-]
]
L]

= 15 MEXT L=

[
-]
®

ooE NEST L

FIGURE 5.5 Nested loops.
for example, for the numbers 1 through 10, or a table for the 10%, il%, 12°s ... 15%.

Which lines need to be edited? The alignment of the numbers in the multiplication table
may have to be improved using techniques to be introduced in the next chapter.

The hanging semicolon is further illustrated in the following example:

COMMENTS
18 FOR E=1 TO 3
28 FRINT "ROW": Note the hanging semicolon.
28 MEXT K
48 PRINT "YOUR BOARTH
RUN
ROW RCGW ROM YOUR BOAT Entire display is on one line.

Now delete the semicolon in line 20 and again RUN the program.

COMMENTS
28 FRINT "ROW" No hanging semicolon.
RUN
ROW Display appears on successive lines.
RO
RQM

YOUR BOAT

5.6 MULTIPLE SUBSCRIPTS

Subscripts are used to identify individual numbers in a list of numbers called
an array. AGE (2) and AGE (N) refer to the second and Nth item in the
array called AGE. Such arrays are known as singly subscripted arrays. They
are one-dimensional arrays.

It is also possible to use arrays with more than one subscript. When two
subscripts are used, the array is called a matrix. It is a two-dimensional array.
The elements in a matrix are arranged in rows and columns. Consider the
problem of storing the ages of students in a classroom. The classroom has
three rows of chairs with each row containing five seats. A matrix containing
the desired information is shown below.

Row Column
1 2 3 4 5
| 21 19 20 18 i7
2 20 28 18 16 19
3 19 20 19 18 22

The matrix has 3 rows and 5 columns. The student in row 2 and column 3 is
18 years old. This group of ages can be stored in the memory of the com-
puter in a doubly subscripted array. The programmer must give it a name,
following the same rules used for naming any variable. The array could be
named AGE. It must then be decided which of the two subscripts in AGE
(J,K) is to refer to the row and which to the column. Frequently, the first
subscript is taken to represent the row number and the second to represent
the column number. The memory location AGE (2,3} would then represent
the age of the student sitting in row 2 and column 3. AGE (2,3) is 18. Space
for these numbers is reserved in memory by the DIM statement

DIM AGE (3.5)

This statement will cause the computer to reserve space for 15 numbers. The
general form of our matrix is AGE (ROW, COL). The DIM statement is op-
tional if both subscripts do not exceed 10. For the array AGE, no dimension
statement is necessary up to AGE (10, 10). Since AGE (0,0) is permissible,
we can have up to an 11 X 11 matrix in memory without a DIM statement.
All the rules mentioned in describing arrays with single subscripts can be
extended to variables with multiple subscripts.

The idea of a double-subscripted array can be extended to multiple
subscripts. For example, the array AGE (ROW, COL, CLASS) is a triple-
subscripted array in which the three subscripts represent the row number,
column number, and the class that the individual is attending. AGE (2,3,4)
refers to the person’s age who sits in row number 2, column 3, and attends
class number 4.

Example: Magic Squares

Consider the following matrix of numbers:

[=XNEN I)
—h O
[o IR USRI

84

85 sec. 5.7 | debugging loops: tracing and playing computer

This matrix is a magic square. It has the property that the sum of the numbers along each
row, column, and diagonal is the same. We now write a program to input these numbers
into a two-dimensional array SQ, and then check if it is indeed a magic square.

COMMENTS
18 EEM MAGIC SOUARRE No DIM needed since ROW and
— 15 FOR ROM=1 TO = COL are assumed less than 11.
28 PREINT YENTER 1 MO AT R TIME FOR RO This line is split to keep program
NUMEBER": ROM and comments separate.
25 FOR COL=1 TO =
I:E THFUT S ROkl ool o Enter 1 element of SQ at a time.
5 OMEST COL. RO Both ioops end here.
S8 REM CALC. & PRINT S OF EFACH ROW
— 45 FORE ROW=1 TO 2
S8 SUMOROM =8 Initialize a sum for each row.
55 OFOR COL=1 TO Z
[s SN ROW) =SUM RO 2+ S0 ROKW, COL
o5 MERT COL
FECPRINT "THE SUM OF ROMNY: ROM: " I5% SUMCRO
— 75 MEST REOW

EEM CRLIZ & PRIWNT SUM OF A DIRGOMAL

SUM=6 Initialize SUM. SUM is a different
FoR L=1 TO = variable from SUM(ROW).
SUM=ZU+S0L. L SQ(L,L) is a diagonal term; 5Q{2,2)

- MEET L is the diagonal term in the second
FRINT "2 OF DIAGOMAL™: SUM row.
EML

RN

EMTER 1 HC. AT A TIME FOR EOM NUMBER 1
=

4

EMTER 1 N2 AT A TIME FOR ROW NUMEBER 2
EHTEF{ 4 MO AT A TIME FOR ROk NUMBER 2
T A

-

THE SUM OF ROM 4 IS 45

THE =S OF Bl 2 IS 45

THE Sidit OF ROM 2 I 45

UM OF LIAGoMAL 15

This program is a little longer than it needs to be. The loop to sum the diagonal elements
(lines 88-92) can be combined into the nested loops that compute the sum of the ele-
ments in each row (lines 45-75). Can you do it?

A new statement is introduced in line 35: NEXT COL, ROW terminates two loops.

The inner loop has the first counter variable, COL, and the outer loop’s counter variable
is ROW.

5.7 DEBUGGING LOOPS: TRACING AND PLAYING COMPUTER

In this section we present two techniques most helpful in debugging loops:
playing computer and tracing a loop. In the process of illustrating these two

86 ch. 5 | looping

methods of debugging, we will consider errors that are commonly made in
programs containing loops. These errors are not syntax errors, but rather
errors in logic that result in meaningless answers or infinite loops.

The trace function lets you check on the execution of a program. As the
execution proceeds from line to line, each and every line number is displayed.
These line numbers appear inside brackets and represent sequentially all the
lines that were executed, even repeatedly within a loop. Once the program is
entered, type in TRON, and press ENTER followed by RUN and ENTER.
To remove the trace, type TROFF. Once the trace is completed, we examine
the flow of the execution for any irregularities. The trace is done for us by
the computer. On the other hand, playing computer requires a manual trace.
The programmer goes through the program manually line by line, carrying
out its logic and computations in an attempt to find the instructions that are
responsible for the logic error. Frequently, the trace and playing computer
are used together to debug a program.

Example: Sorting a List of Numbers in Descending Order

The problem we consider in this section is that of sorting a list of numbers in descending
order, from the high to the low value, and displaying the result. We use the subscripted
variable S(1) where | = 1 to 10. The array S{1) therefore contains 10 numbers. This pro-
gram is an extension of the program to determine the largest element of an array, which
was presented in this chapter. Once the largest element is found it must be placed in S(1).
Subsequently, elements S{2) through S(10) need to be checked to again locate the largest
element among them. And so on until the last element, S(10), is reached. It is necessarily
the smallest element of the original array S({i).
We enter the following program:

COMMENTS
i6 REM SORT IW DESCEMDING ORDER
28 INPUT "LEMGTH OF ARRAYY: M
A PRINT "EMTER THE ELEMENTS ONE AT A TIME"
FoOoR I=1 7O M
[ok ITHFUT =0TIs
ZB MEST I
48 FOR K=s1i 70 MN-1 Begin search for Kth largest ele-
42 REM ASZUME Sok» IS LARGEST ment.
SE FOR I=k+1 TO N Search begins with element K + 1,
Se IF waJaa=SOEr THEN 59 Located an element larger than
5S4 REM FERFORM AN INTERCHAMGE S(K).
BE SOk =Sl Place the larger element in S(K).
5% MEXET I.HK End of inner and outer loops.
&1 FRINT "THE SORTEDR ARERY"
E2 FOR L=1 TO M. FRINT SdL»: NEXT Entire loop in one line of code.
= EMD

We now check the program with test data. We will sort the two-element array 10, 20. The
expected result is the sorted list 20, 10.

COMMENTS
RLIM
LENGTH OF RAREAYY? 2 You enter 2 for N.
EMTER THE ELEMENTS OME RT A TIME
T oi@ S(1) = 10.

T EE S(2) = 20.

87

RN

LENGTH OF ARRRAY? &
ENT

L

[B g

[E N

sec. 5.7 [debugging loops: tracing and playing computer

THE SORTED ARRAY
18 Qops!
=g It is not in descending order,

The program needs to be debugged. We will trace the program. There is no need to
trace the beginning of the program where the array is entered. So we put a trace on the
section of the program in which the sort takes place, between lines 40 and 59.

The TRON and TROFF are now part of the program. Once the program is debugged,
these two lines will have to be deleted.

COMMENTS

You enter 2 for N.

ER THE ELEMEMNTS OQME AT A TIME

5] S(1) = 10.

(5] S(2) = 20.

A2 ERI(SZ BRI EETHE SORTED RARRAY Sequence in which lines were exe-
cuted.

B2 IF S{IC=SqK» THEN S=
RUN
LEMGTH OF ARRAY? 2

CHBI(HZH0SEN (T2 (T4 (5E

Array not sorted properly.

We now examine the trace. In line 40 the outer loop is set up with K = 1;line 42 is only
a REM. In line 50 the inner loop is started with | = 2. In line 52 the comparison $(2} <
= §(1} is made. But S(2) is not < S$(1}, so next we expect to branch to line 56. The trace
however indicates that line 59 is executed after the test of line 52. There is a bug here.
Looking over line 52 we notice that the subscript J is an error; it should be S{1). We edit
line 52 and execute the program.

COMMENTS

Edit line 52: Replace S{J} by S{i).
Request execution.
You enter 2 for N.

ENTER THE ELEMEMTS ORE AT A TIME
? 18 S(1) = 10
' 2@ s(2) = 20.

Sy CeB:THE

Rl The trace. Line is split to separate
SORTED ARRAY

program and comments.
OK, 20 is the larger number.
There’s a bug here. This should be a
10.

o

Poopa

We still have a bug. The first element of the sorted array is indeed 20, but the second
is supposed to be 10. We now play computer as we go through the trace.
After the data have been entered, the loop on K is set up in line 40. The following

ch. 5 [looping

table is the result of playing computer:

Line No. from Trace K | S{1) S(2} Comments

40 1 10 20

42 REM Unchanged

50 1 K+1=2 10 20

52 1 2 10 20 S{2) is not < = S{1};
transfer to line 54.

54 REM Unchanged

56 1 2 20 20 S{1) = S(2).

59 1 2 20 20 Inner and outer loops
exhausted.

60 TROFF

The trace and playing computer verifies the result of the sorted array having the ele-
ments 20 and 20. Where is the bug? In looking over the table we notice that both ele-
ments become equal to 20 in line 56. The difficulty must be there. The bug is in the way
we interchange elements. What we want is for S(K)} to be what S({I} was and for S(I) to be
what S{K) was. The values of the two variables are interchanged as follows:

COMMENTS
S5 TEMP=SCE TEMP is a temporary variable,
S5 SUKI=SCI: This line we already have.
57 S0 Ix=TEMFP S(l} is specified = TEMP = S(K).
RLIM

LENGTH OF RARRAY? 2
ENTER THE ELEMENTS ONE AT A TIME
T i@
7 2@
CHED A2 (BN (52 (S (S5 (56 (571 (593 (6B THE SORTED ARRAY
26
18

Bravo! We now remove the trace by deleting lines 39 and 60. Type 39 and ENTER.
Type 60 and ENTER.

RLUN

LENGTH OF ARRAY? =

ENTER THE ELEMEMNTS ONE AT A TIME
i

) el
i

< 4n

-f

SORTED ARRAY

L1 ol (Y
PO gl e I N

i

The program now works. We found two bugs, which resulted in the following three cor-
rections to the original program:

1. Replace the J by an | in line 52
2. Add the line: 55 TEMP = S(K)
3. Add the line: 57 S(I) = TEMP

89

EXERCISES 8

exercises 8

Another approach to debugging, which is not demonstrated in the exam-
ple, is to introduce several PRINT statements into the program. These display
intermediate values of variables that may help identify irregularities.

It is also possible to debug a loop by introducing several STOP state-
ments into the program. Execution will BREAK at each STOP with a line
number message. The values of the variables of interest can then be printed
and examined in the immediate mode. To continue the execution, type
CONT and press ENTER.

REMEMBER: Every program, however short or “simple,” needs to be tested. Use test
data for which the answers are known. If the results are not as expected, trace the pro-
gram and play computer to determine where the bug is creeping in.

1. Before executing the instructions shown, fill in what you anticipate the display will
be. Add an explanation for any errors you make.

Assume PR A P R FE="YES"

SIR"

Instruction Anticipated Display Display

PRINT A
PRIMNT A
FRINT
PRINT
FRINT
FRINT
FRIMT
PREIMT AF+AF{S?
FRINT C{2, 5o
FRINT CdF, 44
FRINT REF+BE$03, 7o

R PR me 2o Op

2. Enter the following program, but do not run it.

DIM A4

FOR L=8 TO 28
AL =L

NEXT L

EOR PR OV
DO o o o

Now enter the instructions shown below in the order given, and fill in what you antici-
pate the display will be. Add an explanation for any errors you make.

Instruction Anticipated Display Display
FPRINT Roza:
FRINT L
Rt
PRINT Au@s
FRINT A{z8»
FRINT RACEDs
PRINT R{-12
FRINT Ad4Lln
FRINT L

ch. 5 [looping

3. What integer numbers would be stored in each element of array M by the following
program?

ol

]
2D e A

g% -
T
-

e

=1 TO
L=1 TG

| '1] X
1.
1
[N

[AR A

.l r [
i
I

=
i o]
mu

T O g Lol DY RS

4. Write a program to display the integers 1 through 6.
a. One integer per line.
b. All the integers on one line.
¢. Three integers per line.
d. Repeat parts a, b, and c for the integers 1 through M; input M.

5. What integers would be stored in each element of the array by the following program?

18 A=43

28 FOR B=1 TO =
28 FOR C=1 TO 2
48 FOR D=1 TO =
58 ECB. DL Cr=R
8 H=E-1
FE OMEXET LGB

6. Investigate how much memory is taken up by each of the following statements. Re-
call, variable MEM contains that information.

a. DIM \oi@s

b. LIM ACLEE?

c. FOR ®=1 TO 18 ACKI=H: NEWT ¥

d. Any other instructions vou might be interested in.

7. Write a program to set the even-numbered elements of array A to 5 and the odd-
numbered elements to 10. The array has 20 elements.

8. Write a program to set each element of array M to its element number. M is a one-
dimensional array of length 30.

9. The program below computes the total number of items in an inventory. Enter the
program and run it.

A8 DI Mo FPods, Q40

i1 REM RESERVE SPACE FOR 4 ITEMS. 4 PRICES AND 4 QUANTITIE:
23 REM HERE IS THE FOINT WHERE INFUT BEGINZ

i0e FOR I=1 TO 4

148 INFUT "ITEM CODE NUMBER": NCID

128 INPUT "ITEM FRICE $":Folx

1Z8 IMNPUT "GUANTITY IM STOCK": QI3

146 MEXT I

288 REM THIZ PART OF THE FROGRAM DISPLAYS INFORFATIOMN

218 C=a

Zz8 FOR K=1 TG 4

¥ FRINT “"THERE HBRE": GO "OF ITEM HUMBER": HOK:

C=C+E0k D

NE®T K

REM WE MWILL FRINT THE TGTAL CARRIELR RS "CY

FRINT "THE TOTAL MUMBER OF ITEMS WE HAVE FOR SALE IS C

A U I O (SN (8

B £
DR B ol

-
(il 0

91

exercises 8

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modify the program to compute and display the following:
a. Total value of the inventory.
b. Average cost of an inventory item.

Input a list of ten numbers and display the list in reverse order.
Given a positive number A and an integer M, compute AM without using t.

Write a program to input a list of five names and corresponding ages. Display the
names and ages of those persons whose age is over 65. Use the following data:

MORRIS 75, JOAN 43, SANDY 46, SARA 68, PAULA 16

Write a program to display the names and ages of the previous problem in ascending
order on age.

Write a program to input five first names and output (a) the name that is alphabeti-
cally closest to the beginning of the alphabet, and (b) closest to the end of the
alphabet.

Modify the magic square program to compute the sum of the elements in each col-
umn. Then check if all the sums are equal and display the appropriate message, THE
SUMS OF ALL THE COLUMNS ARE (ARE NOT) EQUAL.

The balances in a checking account at the end of each of the first six months of the
year were 230, 450, 610, 610, 380, 420. If the balance on December 31 was 710,
write a program to input the data, and create an array giving the net amounts de-
posited or withdrawn during each of the six months.

A company handles 12 items. Initially, there are 1000 of each item. Write a program
using subscripted variables that will assign a price to each item. Have the program
input two numbers N and C, and have the computer display the cost of item N, and
also tell how many items will be left in storage after C of these have been sold.

Two matrices A and B are each of dimension M X N, where M = 3 and N = 2. Write
a program that compares the corresponding elements of A and B and then forms a
matrix that contains the larger of the elements. Have the computer display the matrix
of larger elements.

A special event was attended by 18 people. They paid a total of $24.60 for admis-
sion. The men paid $2.21 per ticket, the women paid $1.77 per ticket, and the
children paid 99¢. How many children attended the event? Hint: Use three nested
loops.

Write a program that inputs a two-dimensional list of numbers and displays the row
number(s) and column number(s) of those rows and columns whose elements are all
larger than 100. Use the following array to test the program:

100 195 182 225
85 125 235 67
129 342 100 750

Given a ticket number, check the list of ten lucky numbers to see if the ticket is a
winner. Display an appropriate message.

Given a list of numbers sorted in ascending order, merge a number X into the list.
Display the new list.

The mode of a list of numbers is the value that occurs most often. An array may have
more than one mode. Write a program to accept an array and display the mode(s)
and the number of times the mode(s) occur.

92

ch. 5 | looping

24.

25.

26.

Merge two lists of numbers, each sorted in descending order, into a single array also
sorted in descending order. Display the new array. Modify the program to handle
string variables.

In football, points are scored as follows:

A touchdown with a successful conversion 7 points
A touchdown without a successful conversion 6 points
A field goal 3 points
A safety 2 points

Write a program to input a final score and output the number of combinations of 2’s,
3, 6’s and 7’s that will produce that score. For example, 9 points can be scored by the
combinations 2+ 2+2+3,3+3+3,6+3,and 7 + 2. The order in which the points
are scored is not important; that is, the combinations 7+ 2 and 2 + 7 are the same.
The output should be of the form:

... POINTS CAN BE SCORED IN .. . DIFFERENT WAYS.

Consider nine slips of paper numbered with the digits 1,2, 3,...,9. Group the nine
slips into three three-digit numbers, such as 467,291, and 538. Determine the group-
ing that will give the smallest possible product of the three three-digit numbers. Hinz:
One number is in the 100’s, the second in the 200’s, and the third in the 300’s.

chapier ‘ l iﬂﬂl’i‘ 0”‘9“‘

Input-output statements communicate information to and from the com-
puter. We have used the INPUT statement to enter data from the keyboard
during execution. This approach gives the user of the program considerable
flexibility, since he can use different data each and every time the program is
executed. This advantage is however offset by the fact that a program con-
taining INPUT statements can only operate with human intervention and can
therefore not be run unattended until all the interactive dialog has been com-
pleted. For some data entry, the INPUT is quite awkward. For example,
large arrays are typed in one element at a time, a very slow and tedious pro-
cess. In this chapter we present the READ and DATA statements, as well as
INPUT # for data entry. The READ statement accesses data stored in the
program; the INPUT # reads data stored on tape.

The PRINT statement has been used to produce displays on the screen.
We have however been unable to control precisely where on the screen the
output appears and also the way in which the output is displayed. For ex-
ample, we may wish to output a neat financial report with the $ signs posi-
tioned in the first position preceding the numbers. The PRINT USING
statement specifies the format of the output.

When a program generates output that serves as input for another pro-
gram, it is convenient to output these data onto tape. The data can then be
read from the tape at a later time. The PRINT # is used for that purpose.

6.1 READ AND DATA STATEMENTS

93

The READ and DATA statements together permit reading data. The READ
specifies the variables’ names whose numeric or string values are located in
the DATA statement. The general form of the READ statement is

READ list of variables separated by commas
and the general form of the DATA statement is

DATA list of values separated by commas

94

ch. 6 [input-output

Here are some examples of READ and DATA statements:

EXAMPLES

i
13

| A (]

o

35

S

RERL
DATA

ey
[m
bed £

b

DATH
RERD

b =
o
=

=

RERD A. B. C
DRTA 1.2

The statement

L MEIGOY

+ KOUNT . AF

COMMENTS

This is equivalent to the single state-
ment: 10A=1:B=2:C=3

For every variable there is a cor-
responding value in DATA. DATA
can appear before READ. Here
SUM = 0, KOUNT =1, and A$
= “GIGO".

The DATA statement may have
more values than needed. The ex-
tras are ignored.

Each READ statement continues
reading the DATA statement
where the previous READ left off.
Here A =1,B =2,andC = 3.

Successive DATA statements are
like one long line of data. Here
A=1B=2andC = 3.

Results in an OD error (Out of

Data). No value furnished for C.

1 RERD X

tells the computer to find the first DATA statement in the program and take
the value of X from the list of values in the DATA statement. Fach time a
READ statement is executed, the computer reads the next value from the
DATA statement. The computer remembers what values have already been
read, that is, where it left off with the last READ statement. If there are no
more values left in the DATA statement, the computer moves on to the next
DATA statement. The computer considers all DATA statements as one long
line of data. If there are no more DATA statements, an OD error (Out of
Data) occurs.

REMEMBER: For every variable appearing in a READ statement, there must be a
corresponding value in a DATA statement. DATA statements can appear anywhere in
the program.

The DATA statement can contain strings or numeric constants. No ex-
pressions are allowed. The strings do not have to be enclosed in quotes unless
they include commas, colons, or leading blanks.

1¢ RERD A%, Bs$
13 DATA JOHN SHMITH,

"SMITH.

JOHNM"

COMMENTS

The quotes around SMITH, JOHN
are required because of the
comma in the name.

95

sec. 6.1 | READ and DATA statements

The RESTORE statement causes the next READ statement to start over
with the first item in the first DATA statement of the program. This makes
it possible to reuse the same data within a program.

COMMENTS
18 REARD A.EB:DATA 1,2, 3 The DATA statement can be
28 RESTORE chained. A = 1,B=2.C= 1and
28 FRERD C not =3 due to RESTORE.

C:> Example: Unit Pricing

The unit price of an item is computed by dividing its price by its weight. The result is the
price of the item per unit of weight. For example, an item weighing 50 grams and costing
75 cents has a unit price of 1.5¢ per gram. The program illustrates this computation for
three items.

18 FOR k=1 TO 3

l_ I READ WORY, FOKD

I__- FRINT "ITEM NO":K: "UNIT PRICE IS":FOK1/W(K>; "CENTS PER GRAM®
S8 DATR 215, 34, 524, 265, 4683, 175

£ dr
(RN

<

1 MNERT K

3

RUN

ITEM HQ 1 UNIT PRICE IS . 4327283 CENTS FER GRAM
ITEM NO 2 UNIT PRICE IS . S88637 CENTS FER GRANM
ITEM NO Z UNIT PRICE IS . 441975 CENTS PER GRAM

This example shows that READ-DATA can also be used in conjunction with
subscripted variables. In addition, the program may be run for another group
of three items by retyping line 50 followed by RUN; for example,

S8 DATA S, 16. 16, 31, &, 28

Rl

ITEM NO 4 UNIT PRICE IS 3.2 CENTS PER GRAM
ITEN MO 2 UMIT PRICE IS Z. 1 CENTS FER GRAM
ITEM NO I UNIT FPRICE IS 35 CENTS PER GRAM

REMEMBER: The DATA statement provides a means of data entry at the time of
execution. Edit the DATA statement and then RUN.

The above program computes three unit prices. This is limiting. Can you gen-
eralize the program so that any number of unit prices can be computed?

C:> Example: Practice Your State Capitals

The following program helps you learn the capitals of the New England states. The states
and their respective capitals are coded into the DATA statement. They are part of the
program. A flowchart for the program is shown in Figure 6.1.

START Program Line Numbers
DISPLAY (10)
OPENING MESSAGE

Y
1
1TO6 {35)-(37)
(20)-(24) !
DATA READ
STATES, CAPITALS ss(1), Cs(l) (36)
3
A
KOUNT =0 (38}
L (40)-(60)
1706 .
i
DISPLAY
““WHAT IS THE CAPITAL OF” (44)
S$(L)
Y
(48)
NG CsiLi<>A8) (50)
(52) &
<4 KOUNT = KOUNT +1 _
"“INCORRECT TRY AGAIN"
(54)
Y
(56)
(58) 14
DISPLAY
“NO! THE CORRECT DISPLAY
ANSWER 1S"; C$(L) “CORRECT" (56)
Y 3
DISPLAY
“YOU DID"; KOUNT: “CORRECT (70)-(75)

OUT OF 6. GOODBYE"

STOP

FIGURE 6.1 Practice your state capitals.

97

sec. 6.2 | formatting output

CLz o FRINT "DO YOU KMOW THE CAFITALS OF THE SIK MEW
EMGLAMD STRTEST"

COMMECTICUT, HARTFORD. MAIME. AUGUSTE

DATA MASZACHUSETTS, BOSTON. MEW HAMFSHIRE. COMCORD

DHTH RHODE ISLAWD. FROVIDEMCE. YERMONMT. MONTRELIER

FEM ., READ IM STATES 5% AND RESFECTIVE CRFITALS Cf

LRTH

35 FOR I=1 TO &
[36 REALD SH(Ix, CHE{I
E7 ONEXT I
38 KOUNT=8. REM BEGIN QUIZ
—@d FOR =1 TO &
44 FRINT "WHART IZ THE CAPITAHL QF ":S$CLn; vov
48 INFUT A%
58 IF CHLsCHAF THEN S4
S22 KOUNT=KOUNT+1: GOTO &6
54 PRINT "WOPE. TREY AGAIN": INPUT A$
55 IF C#{Lx=A% PRINT "NOW Y0U HAVE IT!":. GOTG &8
58 PRINT "NO. THE CORRECT ANSHWER IS ":Cs$<(L3»
&8 NEXT L
78 PRINT: PRINT "vOU GOT"; KQUNT; "OUT OF s*®
79 PRINT "IT WAS A PLEASURE SERVING YOU": END
RLN
D YO ENOW THE CRFITALS OF THE SIH MWEW EMGLAND STHTEST
WHART IS THE CAFPITAL OF COMMECTICUT?
7 HARTFORD
HMHAT I3 THE CARFITAL OF MRINE?T
T OAUGUSTA
WHAT I5 THE CARFITAL OF MASSACHUSETTSTY
* BOSTON
WHAT IS THE CARFITAL OF MHEW HAMPSHIRET
T OMAMCHESTER
HNOFE. TREY AGARIN
T ODOMHT ENOW
MG, THE CORRECT ANSKER IS COMCORD
PHAT IS THE CHRFEITAL OF rRHODE ISLARDT
T OPROVIDENCE
WHAT I THE CAFITAL OF WERMOMNT™®
T OBEURLINGTOM
NOFE. TEY AGAIN
T MONTFRELIER
MOM YO HAVE IT
YOU GIOT 94 OuT OF &
IT MRS A FLEARSURE SERVYIRNG YO
This

this case
them for

program can be executed over and over again without ever having to reenter the
names of the states and their capitals. The INPUT statement would not be appropriate in
because the student may not know the capitals himself. If the teacher entered
him, it would be extremely inconvenient to reenter them each and every time.
A possible alternative to the READ-DATA statements is in this case a series of LET state-

ments setting separately each state and each capital to S$(1} and C${l).

6.2 FORMATTING OUTPUT

Instructions on how to display the items of the PRINT list are called for-
instructions. They determine the format of the display. So far we
have formatted our output with semicolons and blanks placed between the

matting

98 ch. 6 | input-output

items to be printed. For example,

With the semicolon separating the numbers, each positive number is printed
with a leading and a trailing blank. For negative numbers the leading blank is
taken up by the minus sign. There are therefore two spaces between the 1
and the 2; the string of three blanks between the 2 and the -3 results in four
spaces in the output. It is often desirable to tabulate the output. This means
specifying precisely the column in which the item in the PRINT list will be
displayed. A comma placed between each item to be printed ensures that
successive items start 16 spaces apart. Up to four numbers per line can thus
be printed. The screen has four zones. So using commas gives a zoned format.

FRINT “"ZOME L%, "ZOME 2%, "ZOME 2. "ZONE 4¢
ZOMNE 1 ZONE 2 ZONE = ZONE 4

If more than four items are printed, the output takes up more than one line.
Successive commas make it possible to skip zones.

PRINT 1. 2.2. 4, 0.6

1 2 3 4
5 &
FRIMT 4.2, 3. .9
1 z
3 4

Normally each PRINT statement begins a new output line. Output from two
or more consecutive PRINT statements can be made to appear on the same
line by placing a2 comma after the last item it the PRINT statement. This
hanging comma will cause the next PRINT statement to display on the same
line. For example,

18 PRINT "JACK".
28 PRINT "AND".
28 FPRINT “JILL"

RURN
JHCK AN JILL

This is in contrast to hanging semicolons, which were introduced earlier.

18 PRINT "JACK™:
28 PRINT “AND";
38 PRINT “JILL™

RUN
JACKANDJIILL

@ Example: A Sales Report

A car agency with three salesmen sells two car models, A and B. The commission on the
sale of model A cars is $125; commission on the sale of model B cars is $95 for the first

99

sec. 6.2 | formatting output

10 cars and $145 for subsequent sales. The sales for each model by each of the three
salesmen are as follows:

Salesman 1 Salesman 2 Salesman 3
Model A 6 9 4
Model B 8 5 12

The following program uses READ-DATA statements to input the data and then outputs
a sales report. The sales data are stored in three one-dimensional arrays: N$(!) contains
the salesmen’s names; ASALES{l) and BSALES{l) refer to sales of models A and B,
respectively. The subscript | takes on the values 1, 2, and 3 for the three salesmen.

18 REM SALES REPORT
~1z FOR I=1 TO 3

15 RERD N#{Ix, ASALESCIY, BSALESCI?

18 DATA ERIC. 6. 8, ROM, 8. 5, JEFF., 4, 12
21 ACOMCI»=125 * RASALESCI?

24 CHECK=BSALESCI>-416@

27 IF CHECK>8 THEN 36

28 BCOMII»=85 = BSALESCI:

I3 GOTO Z8

36 BCOMC I =958+145 * CHECK

39 MEXT I

4z FEM FREPARE REFORT

COMMENTS

DIM statements are not needed
here.

For each salesman, read his model
A and B sales.

Sales data for each salesman.

Commission for modei A sales.

Model B sales above ten cars.

Over ten cars the commission is
$145 per car.

43 CLS. PRINT "SUPER AGEMCY SALES REFORTY: PRINT

48 PRINT . MECLl, NECZh, NECEs

21 PRIMT "MODEL A SALES". ASALES (LY, ASALESCZY, ASALES(ZE
T4 FRIMT " COMMISSIONS'. ACOMCLs, ACOMC2 D, ACOMCES
37 PRIMT "MODEL B SALES". BESALESCLr, BEALESCZ. BSALESZD

8 PRINT " COMMISSIONS!. BOOMOL . BCOMCZ 2, BCOMOZE2
3 END

The program contains one loop. In the loop we read the data and compute the commis-
sions. In lines 27 to 36 the commissions for model B sales are determined in a special
way to account for the stipulation that the commission rate increases from $95 to $145
for all sales above ten model B cars. We now execute the program

RN
SUFER AGEMCY SALES REFORT

ERIC ROM JEFF
MODEL A SALES = 2 4
COMMISSI0ONS =1 11z5 Sag
MODEL B LE= & 3 iz
COMMISSIONS TEB 473 iz4@

This report uses the four zones to create the four columns of information. Descrip-
tive information appears in the first zone. Sales data pertaining to each of the three
salesmen appear in the remaining three zones.

100 ch. 6 | input-output

Two serious limitations are evident from the sales report. First, if the
agency had more than three salesmen, we would require more than the four
available zones. We need a way of squeezing together the tabular display.
Second, the earnings in dollars are not lined up the way financial informa-
tion is usually displayed. The PRINT TAB and PRINT USING statements
help, respectively, to alleviate these two shortcomings.

The TAB function can be used to bring the columns of the report closer
together. The principle is the same as in setting tabs on a typewriter. The
column selected for outputis represented by the argument (in parentheses) of
the TAB function. TAB(K)} means move the cursor to the Kth print position.
The argument K can be a constant or an expression between 0 and 255 inclu-
sive. TAB positions greater than 63 are on succeeding lines. TAB may be
used several times within a PRINT statement, and no punctuation is required
after a TAB specification.

REMEMBER: No space is allowed between TAB and the parenthesis; TAB (K} is not
permissible. The proper form is TAB(K).

FRINT TRECZ:ZTRABCEIE
FRINT TRECZ. D23 TRECS. €18

FRIMT TRBO-Z22Z
PFC ERROR
FRINT TRE.S2:

FRINT TABOSHE: TABCL1L 3

i@ FOR KE=1 TDO 5
28 PRINT TARECE "TOHER"
38 MERT K

FLIN
TOMER
TOWER
TOWER
TOWER
TOWER

EXAMPLES COMMENTS
PRINT "COL 4': TRE<L92"COL 1igv COL 1 starts in the first print posi-
oL 4 COLLE tion; COL 10 in the tenth.

No punctuation is required.

The 8is in the eighth print position.

The expression in (?), the argu-
ment, is truncated; TAB uses an
integer argument.

The argument cannot be negative.
Unexpected.

As expected.

The index K of the FOR-NEXT

loop is the argument of the TAB
function.

w Example: Graphing an Equarion

We use the TAB function to graph X versus Y for the parabola Y = X2.

COMMENTS
18 FOR ¥=-& TO & STEP 2 Graph the points at X = -6, -4, -2,
ZE Y= o6 N 0.2,4,86.
28 PRINT THBC(Y G ®
48 NEXT =
45 END

RN

101 sec. 6.2 | formarting output

[PP——

T
|
|
|
l
i
l
l
1
|
!
|
I
|
|
|
|
l
!
I
|
I
Y
<

e e e |
[

Each point on the graph is identified by the value of X at the point. The X and Y axes
were drawn in manually. Similarly, the points can manually be connected to trace out the
parabola. Notice that the parabola is upside down. This is because the X and Y directions
are interchanged: here X is vertical and Y is horizontal. A more sophisticated approach to
graphing is presented in a later chapter.

E:> Example: Pascal’s Triangle

The numbers in this triangle have the property that every number is the sum of the num-
ber above it and the number to the left of the one above it.

REM FASCALS TRIANGLE
FOR D=1 TO ¥

FCD, Do=d

ME®T [

FOoR ROW=1 TO &

=i

FOR COL=1 7O ROW
ACROM+L, COLY=R(ROWN. COL +ACROM, COL-12
FRINT TAEBCK:: ACROM. COL Y
E=t+3

MEXT COL

FRINT :FRINT

NERT ROW

l

=3 O e B bed bt PG b
[ictll AR IO RO 0O o R

l

The loop of lines 15 to 25 sets the diagonal elements of the triangle to 1. The nested
loops calculate and display the triangle of numbers. Line 45 is the algorithm for com-
puting a new number A(ROW + 1,COL) based on the number above it, A(ROW,COL},
and the number to the left of the one above it, A(ROW,COL-1}. The TAB function is
used to display the triangle with the variable K providing the number of tabs for even
spacing. We now execute the program.

RLIMN
1
i i
1 = 1
i et 3 i
1 4 & 4 i

1 S ia ig S5 1

To appreciate the usefulness of the TAB function run the program without the
TAB(K)} in line 50 and note what a difference the TAB makes in the appearance of the
triangle.

102

ch. 6 | input-output

Pascal’s triangle has several other properties. The descending diagonals
are the same as the coiumns. The numbers in each row correspond to powers
of 11: the first row is 110 = 1, the second is 11! = 11, the third is 112
= 121, and so on. Similarly, the sums of the numbers in each row are powers
of 2. For example, the third row is 1 + 2 + 1 =4 = 22, Two additional
properties of Pascal’s triangle deal with more advanced mathematics. The
sum of the numbers along with the ascending diagonals form the Fibonacci
sequence, and the numbers in each row correspond to the coefficients of the
binomial expansion. Can you edit the program to verify any of these proper-
ties?

The TAB{X) function controls the cursor’s position within the 64 print
positions on a line. The POS(X) function has the value corresponding to the
cursor’s position. POS(X) is therefore an integer between 0 and 63 inclusive.
The argument X is a dummy argument and may be any number or numeric
expression. When the cursor is in the usual position beneath the READY, it
is in the O position.

COMMENTS
READY
PRINT POSCLn The argument 1 is a dummy argu-
& ment.

One possible application of the POS function is to display a report con-
sisting of several columns with a prescribed spacing between columns. We
now redo the headings of the Super Agency sales report.

FRINT “MODEL" TREBCPOS(1Lx+52 "ERIC" TAB(POSC(Lx+5> "RON"
TRABLPOS(Lx+5: "JEFF" TAB(POS(Lx+32 "BRIAN"
MODEL ERIC RON JEFF BRIAN

In this case we displayed the headings five spaces apart. Notice that we can
now comfortably fit five columns across the screen. We no longer depend on
the four zones of the screen to provide the layout.

The screen displays up to 16 lines with 64 characters per line. This gives
a total of 64 times 16 or 1024 print positions. These print positions are
labeled O through 1023 and can be individually accessed using the PRINT @
statement.

PRINT @ 8.1 displays a 1 at the top left corner of the screen
FRINT & &4, 2 displays a 2 on the second line along the left margin of the screen
FRIMT @ &4+, 3 displays a 3 midway along the left margin of the screen

The PRINT @ statement may be used to graph an equation. In order to
plot on successive lines, the location specification must take into account the
presence of 64 print positions per line. The following program graphs the
equation Y = X * X, Itusesthe PRINT @ statement and presents an alterna-
tive to the version described earlier in this chapter in which the TAB func-
tion was utilized.

COMMENTS

Initialize the line counter to zero.

[l
cr
AW

-
1
*
kA4

o
I

¥y =
-
]

TEF

[Kg]
"1

le) Pt
SN A
ol

O

103

sec. 6.2 | formatting output

48 PRINT @ Sdwl+y, ¥ Graph at row | and position Y.
f_-t_:‘l I=I+1 Increment the counter to print in
&8 NERT X the next row.

Type in the program and check that its output is identical to the graph
produced by the program that uses the TAB function.

It is important to note that the @ symbol in the PRINT @ statement may
not be typed with the SHIFT key depressed. The symbol will appear to be
correct on the screen, but an error will occur.

The format of the output may be selected in another way. The statement

PRINT USING “string”;item list

allows you to specify the format with which the item list is to be displayed.
The actual format is given by the “string”. For example, suppose we have a
list of variables A, B, C whose values are $27.216, $351.951, and $5. We
wish to display these variables in a neat column.

COMMENTS

18 A=27. 21&; B=351, 951 O=5 Specify A, B, and C.
20 IMAGES="4 3844 H##" Specify the “‘string”” for PRINT
Z8 PRINT USIMNG IMAGE:: A USING.
48 PRIMT UZSIHG IMAGES: B
28 PRINT USIMNG IMAGE#:
RN

a7, 22 Rounded to the nearest penny.
£3Z51. 95 Fractional penny dropped.

¥5, @6 Floating $ sign.

The decimal points are lined up nicely; this can also be done slightly differ-
ently:

COMMENTS
FA=27. 216 B=351. 351 =5 In this version, line 20 is not
FRIMT USING "$3#&& #4"; needed.

FRIMT USING “"$EH## ##"
FRINT USIMNG “$s#E4H ##

o

O e laf b
I

The string “$$###. 44" represents the numeric field that is selected for
the variables A, B, and C. Each # specifies the position of a digit. In this case,
numbers with more than two digits beyond the decimal point are rounded.
The digits 5 and above are rounded up, and the digits 4 and below are
dropped. The $$ characters place a $ sign in front of the number.

REMEMBER: The string “$$###.##" will round to the nearest penny in a PRINT
USING statement.

The following example further illustrates use of the PRINT USING state-
ment:

18 FRINT USING "IN #### MANHATTAN WAS BOUGHT FROM THE
INDIANEG FOR #3## ##". 1628, &4

Rk
IM dezs MAMHATTAN WAS BOUGHT FROM THE INDIANS FOR $24. 08

104 ch. 6 /| input-output

In addition to the $ and # characters, there are several other symbols
used in conjunction with numerical and string data. These are summarized in
Table 6.1 and illustrated in the following examples:

COMMENTS
14 REM FORMATTING OF MNUMERICRL DRTH The “string’”’ in PRINT USING is
E2EOIMPUT IMAGES. NUMBER variable IMAGES.
Z@ PRINT USIHG IMAGES$: NUMEBER The semicolon is required.
S8 G0 TO 28 Infinite loop for data entry.

We now execute the program and try different entries for the variables
IMAGES$ and NUMBER. Since the program continuously loops back to line
20, we only have to enter RUN once. To escape the loop, press BREAK.

COMMENTS

RUN

7 o #4234 5
wlz234. 5

Request execution.

Data are entered.

123.45 is rounded. Each # corre-
sponds to one digit.

The % indicates that specified field

(IMAGES$) is too small. Largest
number that fits into #H#HH is
999.9.

Vi, HHE H#Y, 12345

1. 234 58 The comma is inserted and trailing
zeros added.

T o+ #1222 Display a leading + sign if number is

+12 =2 positive.

T OHE #+. 12 3

12, 3+ A trailing + sign is now displayed.

TABLE 6.1 Image specifiers for PRINT USING

Symbol Usage Example
Display a digit. i
Specify location of decimal point. HHE
. Indicate where comma is to appear. # A
+ For positive numbers, display a leading or +EAH
trailing + sign; for negative numbers a - sign HHHE
is displayed.
- Display a leading or trailing - sign regardless —HHH#
if the number is positive or negative. -
3$ Display a $ sign immediately preceding the SSHHEHH
leftmost digit.
ik Replace leading blanks with asterisks. * A
wx$ Display a $ sign preceding the leftmost digit * = S HH
and replace leading blanks with asterisks.
At Display number in scientific notation (on the # A
line printer, 1 is [).
! Display the first character of a string. !
%% Display the first two characters of a string. %%
Yospaceso Display N characters of a string. N equals 2 % %
plus number of spaces.

sec. 6.2 /| formatting output

To-# #0123

-12. =3

T OHE #— -12 3
iz 3~

FOHE #0123

7 ook, 12

)

TookddHE. 12

B R 5

TORHEEHE #4412 56

12 55

T OEEHEEE ##1Z 56

F12. 58

T ok EddHE ##. 12
wdok$l TGS

b
[ai}

TR OHEBHELLLL. 12 56

8, 125cE+82

TORHE BHEECLIC. 12 96
12, SennE+BE

-

A leading - sign is displayed even
though 12.3 is positive.

-12.3 is negative, so a trailing - is
displayed.

12.3 is positive, so instead of a -
sign a trailing blank is dispiayed.

Two asterisks are displayed.

Fill leading blanks with asterisks.
Two asterisks appear plus two
more for two leading blanks.

$ sign appears in front of leading
blanks.

$ sign appears immediately to left
of first digit.

Combination of above; $ sigh ap-
pears to left of first digit; remain-
ing blanks filled with *'s.

Exponential notation with no sig-
nificant digit to left of decimal.

Two significant digits to left of
decimal point.

To escape, enter BREAK.

The PRINT USING statement is also useful in displaying character infor-

mation.

16
20
za
413

REM FORMATTING OF CHARACTER
INPUT IFAGES$. TH. F#. 2%

FPRIMT UZING IMAGE$: T$.F$, Z%
GO TGO 28

3
I
[

COHM. FITZGERALD: KEMNEDY

%] iy
n

+ LYHDOK, BRINES, JOHMSON

+ BINK. NONE

- -
gl
=z
[)
I
Ex
fw]
]

PoX Fe THOMAS, STEARNS, ELIOT

Ley
m
—
™
Tt
o
-

IR IR ARSI s B
]

BREAK IM z&
RERDY
~—

COMMENTS

DRTH

Infinite loop for data entry.

The ! displays the first character of
each string.

Place a blank between the first
characters of each string.

The first two characters of each
string are displayed.

A combination of the ! and % for-
mats.

To escape from program, press
BREAK.

C:> Example: Checkbook Balancing

This program is used to balance a checking account. The program makes use of the PRINT
USING statement. First the initial balance is entered. Then the individual transactions are
entered; the month and day are typed in separated by a comma. Subsequently, the trans-
action is entered. A positive transaction is a deposit and a negative transaction is a check

106

ch. 6 | input-output

charged against the account. To escape from the entry routine, enter END,END for the
month and day. Two numeric and two string subscripted variables are used. The string
variables store the month and day of the transaction, M${!) and D$(l), respectively. The
transaction array is TRANS(!), and the account balance is BAL(l), where BAL(0) is the
initial balance. Once all the transactions and their dates have been entered into their
respective arrays and the balances computed, the report is generated in lines 75 to 85.
The loop’s upper limit is I-1 (line 75), since the Ith transaction is a dummy transaction,
which is not included. I is used to escape from the input loop. Following the listing of

[sTART

Program Line Numbers

INPUT

INITIAL BALANCE (20}
BAL(0)

i

(50) :

DAY TO STOP ENTER END, END”

DISPLAY
BAL(!1) = BAL(I-1) + TRANS(I) “ENTER TRANSACTION'S MONTH,. (30)

4
INPUT ¥
“ENTER DEPOSIT/CHECK"; INPUT (35)
TRANS(I) M$(l), D$(1)
(45)
NO
{40)
DISPLAY
INITIAL BALANCE";
BAL(0) (60)-(65)
y
DISPLAY
> (70)

HEADINGS

K
ﬁl;m (75)-(85)
i
\ DISPLAY /
M$(K); DS(K); TRANS(K); BAL(K) (78)-(80)

3

DISPLAY
“FINAL BALANCE"; BAL{I-1} (90}
STOP

FIGURE 6.2 Checkbook balancing.

107

sec. 6.3 | cassette input-output

the program is a sample run, which illustrates the data entry and the resulting report.
Type in the program and try it out on your own checkbook. You may wish to put a trace
on the execution to gain full understanding of the logic. A flowchart of the program is
shown in Figure 6.2.

18 DIM BALCLEE . TRANSCLEE . DECL0E], ME(1Ba

15 CLE . CLERR 188

=8 INPUT "IMITIAL BALAMCE": BRLCG:

25 I=I+1

S8 FPRINT "TRAMSACTION MONTH. DRY FOR EX. MAY, 26; TO STOP ENTER END. END"

S5 INPUT M$CIl, Dl

48 IF MECIr="EHD" THEN €0

43 INFUT "ENTER DEFOSITO+2 CHECKC-1"; TRANSCI

S8 BALCIN=BALCI-12+TRANS I >

20 GOTO 25

&8 CLS: PRINT "INMITIAL BALANCE". | P$="sohs##, $##48# ## DOLLARS"
&3 FRINT USING P$; BAL.G2

T8 PRINT: FRINT "DRTE DEPACHECK(—2 EBALANCE"
v3 FOR k=1 TO I-1

78 PRINT USING "X B CK D

79 PRINT USIHG "RE": D$(K);

S8 FPRINT USING "##, ####88 #$#-" TRANSCK Y, BAL K

35 NEXT K

98 PRINT: PRINT “FINAL BALANCE ", BRL{I-13

Rt

IMITIAL BALAMNCET 1oaa

TEAMZACTION MOMTH. DAY FOR ExX. MAY, Z8; TO STOF ENTER END. END
T OMARCH. 5

ENTER DEFOSIT.+1 CHECK.—37 ~55
TRAMSACTION MOMTH. DAY FOR EX. HAY, T STOP ENTER END. END
¥ MARCH. 18

EMTER DEFOSITO+ CHECK -7 d1@8
TEAMSACTION MOMTH. DAY FOR Ex. MAY. 28; TO STOF ENTER END, END
7 EMD. EHD

IMITIAL BRLAMNCE swswsddl, @80, a8 DOLLARS

DARTE CEPCCHECE L =3 ERLANCE
MARCH b 55, 98- 343 06
MARCH iz 188 aa 1. 845 09

FIHAL EALAMCE % 1045

6.3 CASSETTE INPUT-OUTPUT

The TRS-80 supports two auxiliary memory devices, cassette tapes and mini
disks. The major difference between a tape and a disk is that the tape is a
sequential device, while a disk is a random-access device. In order to load
into the computer a specific program stored on tape, it is necessary to for-
ward the tape up to where the program of interest is stored. A program
stored on disk may be accessed directly. Programs as well as data files can be
stored on these auxiliary memory devices for later use. In this section we
briefly discuss the input-output statements used in accessing a cassette tape.

To save a program on tape or to read a program from tape we use the
CSAVE and CLOAD commands. These have been discussed earlier. The

108

S

=

[O |
[N]

20
8z
84
86
&8

SPOSITION TRFE FOR RERALING. WHEN READY

ch. 6 | input-output

PRINT #-1 and INPUT #-1 statements, respectively, print data on tape and
read data from a cassette tape. The -1 specifies the device number, a cassette
recorder. If two cassette recorders are used simultaneously, the device num-
bers are -1 and -2.

Storing data on tape is particularly useful when these data are to be up-
dated occasionally or in data-processing applications involving lots of data.
Small amounts of data that need little or no updating can conveniently be
stored in a DATA statement within a program. The general form of the
PRINT #-11is

FRINT #-1.8.B.C. ., A% BF CF ..

The comma after the #-1 is required.

The list of items to be printed can contain numerical as well as string
variables, but in total cannot exceed 255 characters. The general form of
the INPUT #-1 statement is

IWNFUT #-1. A, B, C ..« A% BS CF. L

In order to read data from tape the variables in the PRINT #-1 and
INPUT #-1 statements must be fully compatible. The INPUT #-1 statement
must be identical to the PRINT #-1 statement that created the data file on
tape.

The following sections of a program input from tape 100 names and year-
to-date earnings, process the data, and then print on tape the updated
earnings.

COMMENTS

Press the PLAY button on recorder.
This line is split to keep program

ENTER GO"; Gi$

FOR k=1 TO 168
THFUT #-1. Ak
MEXT K

LEas Bk

FOR k=1 TO 1€
ECk =Rk +FRAY R
MEST K

INFUT "REWIND TAPE. WHEN READY ENTER GO": Q%
IF Q$"G0" THEN 86

FOR K=1 TD 160

FRINT #-1. A$(K», ECKD

NEART K

and comments separate.
Read from tape 100 names and
year-to-date earnings.

Update year-to-date earnings; array
PAY(K} must be entered in the
lines between 56 and 70.

Press the RECORD and PLAY but-
tons on the recorder.

Print the names and the updated
year-to-date earnings on tape.

109 exercises 9

Once the tape is positioned (line 50), the data are read in from the tape in
lines 52 to 56. The earnings are updated in lines 70 to 74 by adding the cur-
rent pay to the year-to-date earnings. The newly computed earnings are then
stored on tape in lines 84 to 88. Line 80 stops execution to allow the opera-
tor to rewind the tape or to insert a new tape. It is usually good practice to
save the previous data as a back up.

In the above example the number of records processed was 100. Gen-
erally, the number of records in a file is unknown. The last record of the file
must be easily identifiable so that the INPUT#-1 can be properly terminated.
A “dummy” record, also commonly referred to as a flag, is printed on tape
at the end of the file. During the process of reading the tape into memory,
each record is checked so that the last record can be identified. The last
record may, for example, contain the employee’s name “LAST RECORD”.
This name is then the last record’s identifying flag.

S8 I=8

Sz I=I+1

5S4 INPUT #-1, A$CI, ECI

a6 IF AF(IXCR"LAST RECORD" THEN 52
38 ...

Once the last record has been read from tape, execution proceeds in line 58.
The total number of records processed is |, which includes the last (dummy)
record.

EXERCISES 9

1. Find the error(s) in each of the following:

Incorrect Instruction Reason
DATE L. 2.3
DRTH 172 173 1-°4
DRTA. <

po o

ot bod

4
S

DATHA

3. Before executing the instructions, fill in the anticipated display and compare it with
the actual display. Enter the instructions in the given sequence.

Instruction Anticipated Display Display
a. PRINT 4; 2
b. FRINT 1.2
C. PRIMTL. . 2
d.

18 FRINT 1.2
28 FPRINT. Z. 4
RUH

110

ch. 6 [input-output

10.

11.

12.

13.

Instruction Anticipated Display Display
e. PRINT TRE L xer
f. FRINT TARBCLN: o
g FRIMT TRE«1l. o
h. ¢LS
i PRINT USIHG “$## ##": 2. 1415
j. FRIMNT UZING “EEH, REY 2222 55
k. FRINT USIHNG “+&## #": 408
L PFRIMT USING "!':"TO BE OF NOGT TO BEY
m EFRINT USIMG ! 1% "FETER": "JOSERPH"
n FREINT
0. FEINT
p. FRINT TREC1IEMFOZCLE:
g. PRINT TARECLEX. POZCLED
I FRINT @ &, "HOME"
S. FRIMT @ i8z4.-2+6d./2, "MIDSCREEM"

. What output will the following program produce?

DATAH 2.4, 6.8
READ H. B
RESTORE

READ MW, = Y. 2
FRIMNT i B b BaYe &

-
fn]

DRI N PN (5 B =
DA o

Write a program to input a date as three variables, M, D, and Y. For example, 6/11/
1940 will store M, D, and Y as 6, 11, and 1940, respectively. Output the date entered
in the form JUNE 11, 1940. The names of the months are to be stored in a DATA
statement.

. READ a list of numbers. Place the positive numbers of the DATA list into an array P

and the negative numbers into the array N, Display the arrays P and N.

. Write a program to graph the equation Y = X+ X?-X+2 for X=0,05,

1,...,3.Each point on the graph is to be identified by the value of X at the point.

Write a program to display in tabular form the numbers 1 through 10, their squares,
square roots, cubes, and cube roots. The columns are to be 12 spaces apart.

. Modify the car agency sales report program to include the total number of cars sold

by each salesman and the total commission earned by each salesman.

Modify the car agency sales report program to include a fourth salesman. Use the
TAB function to lay out the report, taking advantage of the entire screen. Assume
the fourth salesman sold no model A cars and 14 model B cars.

What display does the following program produce?
4@ FoOR I=1 TO 16 FRINT TREBCIX"+" NEXT I

Can you explain it?

Print a list of integers on a cassette. Copy this list from the cassette onto a second
cassette with all duplicates removed.

Write a program to create an inventory file. Each record includes the following items:
part number, number on hand, price, vendor’s name (20 characters). Once the file is
created on tape, display it on the screen.

111

exercises 9

14. Write a program to create a mailing list on tape. Make provisions for initially entering
names and addresses from the keyboard and subsequently adding and deleting names
from the keyboard. The mailing list is to be displayed with an appropriate format
and must include a dummy last record. Use your telephone book as a source of data.

15. Scan a file of employees’ social security numbers, names, and birth dates. The com-
pany’s mandatory retirement age is 65. Display a list of those employees who must
retire within the next year, within two years, and within three years.

16. Write a computer program to build a file containing the earnings of the employees of
a company. The company has 50 employees whose earnings are updated on a weekly
basis from the keyboard. The file is to contain the name and year-to-date earnings
of each employee. Each week the tape is read and an updated version is generated.

chagier 4

7.1 INT FUNCTION

library factions

The BASIC language contains many different functions. Each function per-
forms an operation that would otherwise take several statements in your pro-
gram. Collectively, they form a library of functions. Like the arithmetic
operations of addition or multiplication, the library functions make it possi-
ble to perform certain calculations that occur very frequently without having
to program them separately each time. They are convenient to use and re-
duce the programming effort. Some library functions perform tasks that are
quite complicated to program as they require advanced techniques. The
functions are preprogrammed routines and are supplied with BASIC. Library
functions are generally identified by a three- or four-letter name followed by
an argument in parentheses. They are used as expressions in BASIC state-
ments; properily applied they will save you many steps.

The INTeger function, INT(A), examines the argument A and returns a value
equal to the greatest integer not larger than A. For example, the expression
for the greatest integer less than or equal to 3.14 is INT(3.14), which is 3.
INT(A) can be referred to as “the greatest integer in A”. The argument A
may be zero or any positive or negative number. The argument may also be
an expression:

COMMENTS
FRIMNT IMTCE 1402 3 is largest integer not larger than
3 3.14.
FRINT IMT(-Z 143 -4 s largest integer not larger than
—} -3.14. Note, -3 is larger than
= -3.14.
FRIMT IMTJZ. ddsR[2> The argument may be an expression.
14% INT {3.14+6+6) = 113.
FREINT IMTOH:
& X is undefined; X = 0.

112

Example: Long Division

The INT function may be used to determine the quotient and remainder in long division.
For example, dividing 16 by 5 gives a quotient of 3 and a remainder of 1. Converting 70
inches to feet and inches requires the division of 70 by 12, which yields 5 remainder 10,
or 5 feet and 10 inches.

113 sec. 7.1 | INT function

COMMENTS
18 FRINT "EMTER A AND B FOR AJBE"
28 INFUT A B Want to divide A by B.
ZE Q=INTOARABR: Compute the quotient.
48 R=fA~B+0 Compute the remainder.
S8 PRIMT “QUOTIEMT=". &
28 FRINT "REEMARIMODER=Y; R
LM
EMTER A RME B FOR ACB How many hours and minutes are
T OS5, e there in 365 minutes?
CHIDTIENT= 5 5 hours, and
FEMAIMDER= 55 55 minutes.

How would you use this program to determine the number of days, hours, and minutes
in 3000 minutes?

g> Example: Rounding to Any Desired Accuracy

This program takes advantage of the INT function to round a number N up or down to as
many digits D beyond the decimal point as is requested by the user.

18 INFUT "THE HUMBER YOU MISH TO ROUND"; N

28 INFUT “"ACCURATE TO HOW MANY DIGITS BEYOND THE DECIMAL POINT®; D
I8 IF MOd THEM S8

48 PRINT IMTOM+108L D+ S3 1800 EMND

TE OPRINT C1+IMTOM*+100 D+ S33-1800: END

When this program is executed for several values of N and D, the following results are
obtained

Number N Digits D Result (Rounded N)
3.14 1 3.1
3.16 1 3.2
-3.14 1 -3.1
3.14 0 3
314 -1 310

Note, D = 1 rounds the first digit to the right of the decimal point. D = -1 rounds the
first digit to the left of the decimal point.

In line 30 of the program we check if the number to be rounded is negative. Suppose
Nis 3.14 and D is 1. Let us play computer and check line 40,

COMMENTS
N=3Z 14. D=1
PRINT M+10LD+. S 101D = 10;N*101D = 3.14
2.3 N*101D + 5 = 31.9
PRINT INTC{N#18L D+ 5>
21 31.9 is truncated.
PRINT INT(N#1OL D+ S53/16800
31 The final answer.

Can you play computer and check line 50 of the program for N = -3.14and D = 1?

114 ch. 7 [library functions

In a previous chapter we used the PRINT USING statement to round numbers. The
“string”” within the PRINT USING statement specified the desired number of digits to the
right of the decimal point. The present program also rounds to the left of the decimal
point. For example, in the last example of the above table of results we rounded 314 to
310.

REMEMBER: If X is an integer, INT(X) equals X. If X is a positive number, INT(X)
equals the whole number part of X. If X is negative, INT{X) is the next lower whole
negative number.

7.2 RND FUNCTION

The function RND generates random numbers between 0 and 1 and random
integers greater than 0. The RND function is useful to simulate random
events, for example, flipping a coin. The computer cannot toss a coin even
once. But it can be programmed to simulate these tosses, that is, to produce
outcomes that correspond to heads and tails. Since the outcome events of
heads and tails are equally likely, the outcomes are random and the function
RND can be used.

RND(0) generates a six-digit random number larger than 0 and less than
1. RND(N) generates a random positive integer between 1 and the integer
portion of N. N must be a positive number less than 32768.

COMMENTS
FRINT RHDCE = 0. Random number between 0
TEETER and 1.
FRIMT REHOoe: Throw a die and roll a 4;a random
4 integer larger than 0.
FRINT RMDOSZ Pick a card from a b2-card deck.
T
FRINT REMDOE: Flip a coin; for example, heads is 1
1 and tails is 2.
FRINT REHOOE S The integer portion of the argument
. REaSER is used.
FRINT REHEJE TS50 Generates an integer between 1 and
&l 6 inclusive.

When the statement RANDOM is executed in a program before the RND
function is used, it will initialize the random-number generator to a new
starting value. This will ensure that the RND function will produce a fresh
sequence of random numbers that differs from any previous sequence.

Example: Generating Random Numbers Between Given Limits

The following program generates any number of random numbers between the lower
limit L and the upper limit U. The random number X is in the range L < X < U.

115 sec. 7.2 | RND function

COMMENTS
16 RAMDOM Ensures randomness.
28 INFUT "DESIRED MO, OF RAMDOM MOS. Y N
@ INFUT "LOWER. UFPPER LIMITSY: LU
46 FOR E=1 TO N
S8 PRIMNT L+dU—LowRNDCBE
28 HEAT E
RUN

I

DESIRED NQ. OF RAMDOM HO
LOMER., UPPER LIMITS? 4.3
1. 85971 1. 22652 1. Bo4é

& The numbers are all between 1 and
3.
RUN
DESIRED MG OF RAMDOM MNOsS, 7 =
LOWER., UPFER LIMITES? 1.3 These three numbers differ from
Z. 88418 2 2353 1. 3B&:d the above; a random process.

Try this program for L, Uof 0, 10 and 0, 0.5. What happens if you enter -10,0 for L, U?
or 10,07

C:> Example: Tossing Heads and Tails

COMMENTS
16 RRMDOM
15 H=6.T=@
28 INMPUT “"HUMBER OF TOSSES": N
38 FOR K=1 TO N Generate a 1 ora 2 randomly;a 1is
48 IF RNDOZa=2 THEN &8 tails, a 2 is heads.
S8 T=T+1: GO TQ 7@
S8 H=H+L

T8 NEXT K
283 PRINT Ns “TOSSES" +T: “TRILS": H: U"HERDS"

RUN

HUMBER OF TOSSESY 164

188 TOSSES 44 TRILS ©9 HERDS

In this program we arbitrarily assign the occurrence of the random number 1 to tails

and 2 to heads. As the number of tosses increases, we’expect the number of heads and
tails to be approximately equal. Type in the program and execute it for N = 10, 100, and
1000. If we repeat the run for N = 1000 a second time, will the number of heads be the
same as the first time?

REMEMBER: RND(0) gives a random number larger than O and less than 1. RND(N)
gives a random integer greater than O and less than or equal to N; for example, if
N = 5, the random integer is greater than O and less than 6.

C> Example: Random Graphic Display

In this example we again generate a 1 or a 2 randomly, but instead of assigning them to
tails and heads, respectively, we print a blank if a 1 occurs and print a star if a 2 occurs.
This pattern of blanks and stars is set into a rectangle of width W and height H.

116 ch. 7 [library functions

168 RAMDOM: CLS
15 INPUT "WIDTH AND HEIGHT OF DISFLAY" M. H

—z@ FOR I=1 TO H

FOR K=1 TO MW

IF RNDZ3=2 THEM 45

PRINT "

GOTO 56

FRINT "%

NEXT K

FRINT

NEXT I

END

|

T @ O J b L B
A QU]

A sample execution follows:

RUN

MIDTH RMD HEIGHT OF DISFLAY? 12,6
& RS B 2

L S SR #

#* b i &

L 3 E R I

Enter the program and execute it for W = 50 and H = 12. You can experiment with sev-
eral different display characters, such as dashes, periods, or slashes, by editing lines 35
and 45. Another variation in the graphic display is possible by editing line 30

28 OIF FHDCDy=2 THEM 45

On the average only one out of five random numbers produced by this line are 2’s. The
graphic display will therefore consist primarily of blanks. Try it, and then edit lines 30,
35, and 45 together to produce some TRS-80 art. More sophisticated techniques for pro-
ducing graphic displays are presented in a later chapter.

7.3 MORE FUNCTIONS

Table 7.1 lists a number of available library functions in addition to INT and
RND. You may have not heard of some of them, depending on your mathe-
matical background. The list is included for reference. In each case the argu-
ment A may be in single or double precision and may be an integer, constant,
Or an expression.

Example: A Bar Graph of the ABS Function

The ABS(X) function returns a positive value regardless of whether the argument X is
positive or negative. Both ABS(5) and ABS(-5) equal 5. In this example we plot the
equation Y = ABS(X) in the form of a bar graph, also called a histogram. We let X take
on values between -18 and 18 inclusive. To plot a bar graph, it is necessary to display a
character such as = on the screen Y times for each value of X. So if Y = 5, five *’s will
represent the value of Y in the form of a bar.

sec. 7.3 | more functions

TABLE 7.1 Additional library functions

Function

Description

ATN(A)

COS(A)
SIN(A)

TAN(A)
EXP(A)}

LOG(A)

SQR{A)}
ABS(A)
CBDL(A)
CINT(A)
CSNG(A)
FIX({A)

SGN(A)
TAB(A)

Arctangent of the argument A. This is the angle in radians whose
tangent is A. To convert radians to degrees, multiply radians
by 57.2958.

Cosine of A. Argument A must be in radians. If A is in degrees,
use COS{A*.0174533).

Sine of A, Argument A must be in radians. If A is in degrees, use
SIN{A*.0174533}).

Tangent of A. Argument A must be in radians. If A is in degrees,
use TAN(A*.0174533).
Computes the exponential function et This is the inverse of the
natural logarithm function LOG(A):ie., A = EXP{LOG(A)}.
Computes the natural logarithm of A. A cannot be negative.
This is the inverse of the exponential function, EXP(A}; i.e.,
A = LOG(EXP(A)). To compute the logarithm of A to the
base B use LOG(A)/LOG(B).
Computes the square root of A. Argument A cannot be negative.
This function is identical to At.5, but is faster.
Absolute value of AL If A > 0, ABS{A) = A IfA = 0,
ABS(A) = 0.If A < 0, ABS(A) = -A,
Converts the expression in the argument A into a value in double
precision.
Identical to INT(A) except A must be in the range -32768 to
+32767.
Converts the expression in the argument A into a value in single
precision.
Truncates all the digits to the right of the decimal point. For
A > 0, FIX(A) = INT(A). For A < 0, FIX{A) =INT(A) + 1.
Equals 1 if A > 0;equals 0if A = 0;equals -1 if A < 0.
PRINT TAB(A} moves the cursor to position A on the line. If

A > 63, cursor moves to next line. Argument A must be
between 0 and 255 inclusive.

FRIMT USING “##8",
FOR I=1 To W
FRINT "t

MEST I

FRINT

NEXT

~) Ty LR g el B3

[o R I U R

0 -

FLIM
—] Sk bbb b b b b s
- l PR R o8 SBOE oE SE SR B e S Y
— b g
feEs
bbb oo
B SO TR 2P T T P A e S S O T
‘_1_ E: R o SH SR e N A R B O R e T

118 ch. 7 [library functions

The numbers displayed along the margin of the bar graph are the X values. The number of
#s in each bar reflects the value Y, that is, the absolute value of X. The absolute value of
-18 is 18, and consequently 18 #’s are displayed at -18. Similarly, ABS(18) is 18, and
18 #’s are displayed at X = 18. For X = 0, no #’s should appear, since ABS(0) is 0. Do
you know why a single * appears at X = 07

D Example: The Rule of 72 Verified

In an earlier chapter we introduced the rule of 72. The rule states that the number of
years needed for a bank deposit to double in value is approximately equal to 72 divided
by the annual interest rate. In this example we will check this rule of thumb and investi-
gate its accuracy. The exact doubling time is the logarithm of 2 to the base (I + R),
where R is the interest rate expressed as a decimal fraction. We compare the exact and
approximate doubling times for interest rates ranging from 2% to 20%.

18 REM CHECE THE RULE OF ¥z

i%s CLE

2@ PRIMT . "wWEARS TO DOUBLEY

% FRIMT "INTEREST RATE". "EXACT FORMULAY. "RULE OF 7z, "DIFFERENCE"
I8 FOR I=Z2 To 28 STER &

%5 REM COMWERT IMTEREST RATE TO DECIMAL FORM
450 E=Is1680

45 0 TR D I =S

58 B=

=5 PR E. A-E

8 MEST I

The LOG function is used in line 45 to compute the exact time to double. The logarithm
of 2 to the base (1 + R) is the quotient of LOG(2) and LOG(1 + R). Execution of the
program yields the following results.

P

YERRS TO LOUBLE
IMTERESZT RATE EAACT FORMULA RULE OF 72 LIFFERENCE
z e - 9397295
<+ ig —-. 226956
= iz - 184336
& 3 5. 4745E-83
ie . & . ByY254dzz
iz . = . 116263
14 . 5. 14286 . 14vze9
16 4. 4. 5 . ivelre
1= 4. < . 187835
za z. 36 . 28i7vsed

The rule of 72 seems to be quite accurate as demonstrated by the fourth column of
the table. The difference between the exact number of years and the years predicted by
the rule is small. The rule is most accurate for an 8% interest rate. For interest rates less
than 8%, the difference is negative. This means that the rule of 72 is overestimating the
number of years to double. For interest rates larger than 8%, it underestimates the num-
ber of years. All in all, it is a very good rule of thumb.

EXERCISES 10

1. Before executing the instructions, fill in the anticipated display and compare it with
the actual display.

Instruction Anticipated Display Display

FRINT INTCS
FRINT :
FRIMNT
FRINT
PRINT Fix
FRINT Fla
FRINT SGMH -
PRINT SGM 53
FRINT RHDRES
PRIMT RMDCOH2
FRINT RHDCZ:
FRINT RHDOo3
FRINT RMDOS2 23
FRIMT RHD{-&2
FRINT IWNTORMDOG::
FRINT ABSC-52
FRINT ABSCDD
FRINT AESCE
FRINT CINT{Lles 20
FRINT CIMTO45E730
FRINT ChBLCLASZS
FRINT 5@
FRINT SRREC—d45

T w0808 E Fe PR e R T

[0]

. What do the following expressions represent?

=g LT 8 H

#INTLRABS R

a.
b.
c.
d.

3. Write a program that performs the same function as INT(X). Input to the program is
a noninteger number X, and the output is the integer portion of X. Do not use the
library function INT in the program.

4. Write single statements to generate the following:
a. Arandom integer X, where 10 <= X <= 20.
b. A random number X, where I < X < 2.

5. Modify the program presented in this chapter to generate N random numbers be-
tween given limits. Input N, L, and U, and now generate only integers in the range
L to U, where L and U are to be included in the range.

6. Write a program to throw a die N times and display the frequency of occurrence of

each of the six possible outcomes. Modify the program to monitor throwing two dice
N times.

7. Write a program to create your own random-number generator. Follow the procedure:
Input a starting number ST for example ST = 11.

Input a constant, BASE, for example BASE = 17.

Input a constant, MULT, for example MULT = 5.

Compute a new value for ST = ADD + MULT =*ST.

Compute a new value for ST = remainder left after ST (from step d) is divided by
BASE. At this point ST is an integer between 0 and BASE-1. Hint: The remainder
of X/Yis X - Y*INT(X/Y).

L

119

120

ch. 7 | library functions

10.

11.

12.

13.

14.

15.

16.

f. Compute Z = ST/BASE. Z has a value between 0 and (BASE - 1)/BASE. If
BASE is much larger than 1, then (BASE - 1)/BASE is close 1. Z is the desired
random number between 0 and 1.

g. Repeat steps d to f for additional random numbers.

Test this random-number generator for randomness. Use it to throw a die N times.
Does the six come out approximately one-sixth of the time? Hint: The random num-
ber in step { needs to be converted into a random number in the range 1 to 6.

. Test the randomness of the statement RND(20) by generating N random numbers

and displaying the following properties of the stored random numbers.
a. The average of the random numbers.

b. The number of values less or equal to 10.

¢. The number of odd integers.

d. The number of times a value appears twice in succession.

Compare the results obtained for N = 100, 500, and 1000 with the expected results.

Give BASIC statements that simulate the following operations:

a. Finding the total of a roll of three dice.

b. Choosing 3 cards from a deck of 52 cards, replacing each card after it is drawn.

¢. Choosing 13 cards from a deck of 52 cards without replacing the cards after they
are drawn.

d. Spinning a roulette wheel.

e. The birth dates of N people.

Write a program to play the game of Hi-Lo. The computer picks a number from 1 to
100 for you to guess. After each guess, the computer responds by telling you whether
the guess was too high or too low. The computer keeps track of the number of
guesses you take and informs you of the number of guesses it took you to guess the
number.

Generate three random integer numbers each in the range from 1 to 8. Do not allow
for the random numbers to be repeated; that is, the three numbers must all be
different.

Toss a coin N times and determine the longest run of heads. Try your program for
N = 10, 100, 500, and 1000.

Given a three-digit whole number, display its reversal. The number 123 is then dis-
played as 321. Hint: Use the INT function to isolate the digits.

The number 153 has an interesting property. It equals the sum of the cubes of its
digits; that is, 153 = 13 + 53 + 33. There are only four three-digit numbers (in-
cluding 153) with this property. Find these four numbers; they are in the range
100 to 500.

A market survey indicates that a manufacturer can sell 100,000 toys if the selling
price is $1. For every cent he lowers the price he can sell an additional 5000 toys.
Write a program to compute the gross sales for each selling price from $1 to 50¢.
Display the results in the form of a graph of selling price versus sales. What price
yields the maximum sales?

The sine of an angle may be obtained from the series

X3 XS X’I X9
SINX = X - 4+ -
3! 5t 7t 91

where X is measured in radians. The ! sign is called factorial. For example, five
factorial (5!) is computed as 5 X 4 X 3 X 2 X 1 and 3! =3 X 2 X 1. Write a
program that uses the first five terms of the series to compute the sine of an angle

121

exercises 10

17.

18.

19.

20.

measured in radians. In tabular form, compare the sines computed from this series
and from the library function SIN for angles of 10, 30, 60, 90, 120, 150, and 180
degrees. (One degree equals 0.0174533 radians.)

Modify the bar graph program presented in this chapter to display a bar graph of
the sine function in the range 0 to 360 degrees.

Write a program to plot a graph of the sine function using the TAB function. Dis-
play the graph for angles between 0 and 360 degrees.

Write a program to compute eX using the first six terms of the following series:

. x* x?
e =1+ Xt b+
2t 3!

where 3! (three factorial) is 3 X 2 X 1. Compare the results for X = 0,0.5,1,1.5,
..., 3 with the EXP(X) function.

Write a program to verify the following trigonometric relation:
SINCEHRI=2HSINCA LIS A D

for the angles A = 0, 10, 20, ..., 90 degrees. Display the expression on the left side
of the relation in one column and the expression on the right side in a second column.
Then visually check to see if the values are the same.

8.1 THE PURPOSE OF SUBROUTINES

A subroutine consists of a set of program statements that may be used re-
peatedly at different places throughout the program. Subroutines are usually
written to carry out generalized procedures. For example, it may be neces-
sary to sort arrays at different points within a program. Instead of repeating
the statements required to perform a sort each and every time sorting is
required within a program, it is possible to write the sort statements as a
subroutine. This subroutine will then appear only once.

A subroutine can be an aid in writing shorter and more compact pro-
grams. The programmer can break his program into smaller logical compo-
nents that are easier to work with, resulting in a more readable program. A
subroutine can result in an economy of code for procedures that are to be
performed repeatedly within a program or performed repeatedly in separate
programs. Long complex programs that include no repetitive tasks may be
broken into several segments. These segments then make up the complete
program. They can be coded and debugged separately, and within the pro-
gram one subroutine can refer to another subroutine.

8.2 UNCONDITIONAL TRANSFER TO SUBROUTINES

122

A subroutine is a sequence of statements within a program. Any line number
within a program may be the start of a subroutine, as long as it is followed at
some point by the statement RETURN. Access to the subroutine is gained
from the main program. The statement GOSUB n, where n is the starting line
number of the subroutine, causes the transfer to the subroutine. The com-
puter then branches to the line indicated (line n) and executes all the state-
ments up to the RETURN statement. Execution subsequently returns back
to the line following the GOSUB statement. The GOSUB is an unconditional
transfer statement. For example,

123

sec. 8.2 | unconditional transfer to subroutines

COMMENTS
188 REM MAIN FROGRAM Start of the main program.
i;LSB GOSUB 286 Unconditional transfer to line 200.
168 PRINT A.B. O

Lines 160 to 190 are executed after
the subroutine.

EMD
REM SUBROUTINE BEGINS

End of the main program.
The subroutine consists of lines 200
to 250.

R

PN (]
LU]

238 RETURM Branch back to the main program

at line 160.

It may be necessary to have more than one subroutine. In that case we
have a main program and two or more subroutines. Each subroutine is
reached from the main program. If one subroutine calls on another subrou-
tine, the subroutines are nested. For example, suppose the main program
calls on subroutine A, which in turn calls on subroutine B. Once execution
of B is completed, execution does not return directly to the main program,
but rather to subroutine A. Specifically, execution returns to the statement
following the GOSUB within subroutine A. Once the remaining lines of the
subroutine A have been executed, execution returns to the main program at
the line following the GOSUB. The main program terminates with an END
statement; the subroutines each terminate with a RETURN. A subroutine
may have more than one RETURN statement, and execution always returns
to the statement following the GOSUB statement. We now type in a program
that includes two nested subroutines.

A FRINT "FROM MAIN FROGRAM®

GOSUE 26a

FRIMT "FIMALLY. BACK IN MAIN PROGREAM AT LINE 126"
END

FEINT "ENTER SUBROUTINE A AT LINE zea"

T GOSUE Zeg

FREINT "BRCE IN SUBROQUTIMWE A AT LIHE zza"
8 PRIMT "RETURNIMG TG MARIN PROGRAMY

RETURN

FRIMT "EMTER SUBROUTINE B AT LIMNE Z80"
FEINT "RETURMIMNG TO SUBROUTIME A"

RETURN

This program demonstrates the execution of two nested subroutines.
The main program consists of lines 100 to 130, subroutine A consists of lines
200 to 240, and subroutine B includes lines 300 to 320. It is a good idea to
assign line numbers in different ranges (100’s, 200’s, and 300’s) to individual
subroutines. It makes it easier to follow the program. Run the program and
observe the sequence in which the execution is performed.

124 ch. 8 | subroutines

RUKM

FROM MRIN FROGRAM

ENTER SUBROUTINE A RT LIME 2
EMTER SUBROUTINE B RT LINE =
RETURNING TU SUEROUTINE R
BERACK IN SUBROUTIME A AT LINE z28
RETURMING TQ MAIM FROGRAM

FIMARLLY., BRCK IMW MAIN FROGRAM AT LIME iz6

(s]5]
(8]s)

REMEMBER: Every subroutine must have a RETURN statement.

g> Example: Producing a Blinking Display

On occasion it may be of interest to display a message that is sure to catch the user’s
attention. Examples of such instances include when an illegal entry is made, when a spe-
cific error occurs during execution, such as division by zero, or when one team is declared
a winner in a computer game.

i INFUT "TEXET TO BE DISPLAYED!: A%
1i@ INPUT "DELAY TIME IN SECONMDSY: S
12d DELAY = Z85+5

iZa CLS
148 GOsUE
158 PRINT
1e0 GOsSUR 286

i7@ GOTO 138

288 REM TIirE DELAY SUBROUTINE
i@ FOR I=1 TG DELAY: MERT 1
228 RETUREN

(o]
hex]

n N (8]

Type in the program and then execute it. Enter your favorite phrase and a delay time
of 2 seconds. The phrase will then blink every 2 seconds on the screen. The program is in
an infinite loop as line 170 always transfers execution back to line 130, where the screen
is cleared. To terminate the blinking display, press the BREAK key. During execution of
the program, transfer is made to the time delay subroutine twice, once from line 140 and
once from line 160. The first statement of the subroutine is in this case a REM statement.
The subroutine consists of a FOR-NEXT loop. The number of times this loop is executed
in line 210 depends on the desired duration of the delay between successive displays on
the screen. Variable DELAY determines this duration. It is computed in line 120 as the
product of 385 and the number of seconds S between successive displays. The number
385 is the number of times the computer executes the FOR-NEXT loop of line 210 in 1
second. You may use a timer to verify it.

This program clearly demonstrates the usefulness of subroutines. Transfer is made to
the subroutine twice, but the subroutine appears only once and consists of lines 200 to
220. Each time the execution of the subroutine is completed, execution returns to the
statement following the GOSUB. The computer “remembers” where it must return.
Another important consideration is that this subroutine can be used in any other program
in which a blinking message is to be displayed.

8.3 CONDITIONAL TRANSFER TO SUBROUTINES

The GOSUB is an unconditional transfer to a subroutine. It may be desirable
to transfer conditionally to a subroutine.

COMMENTS

18 Gosie zoa Transfer unconditionally to the
subroutine at line 200.

18 IF AXE THEM GOSUE Zow Conditional transfer: if A exceeds B,
2 ... transfer to the subroutine at line

200:otherwise continue at line 20.
18 ON E GOSUBR 208, 208, 409 Conditional transfer: if E equals 1

transfer to subroutine A at line
200; if E = 2, transfer to subrou-
tine B at line 300;if E = 3, trans-
fer to subroutine C at line 400.

CD Example: Computer-Assisted Instruction

The following program is an arithmetic drill on short division. The program counsists of a
main program (lines 100 to 165) and two subroutines. The dialog between the computer
and the student is established in the main program where the problems are posed. De-
pending on the student’s response, the ON-GOSUB branches to the appropriate subrou-
tine. If the student’s answer is incorrect, execution transfers to the first subroutine (lines
200 to 250), where the computer states the correct solution and randomly picks one of
three comments to encourage the student. Execution branches to the second subroutine,
lines 300 to 330, if the answer is correct. The computer selects randomiy and displays
one of three preprogrammed compliments. This example demonstrates the use of two
subroutines that are accessed by means of an ON-GOSUB statement. A flowchart of
the program including line numbers is shown in Figure 8.1.

}

188 CLE . IMFUT "HI. WHAT IS YOUR HAME": ME

185 PRIMT M#&: " TODAY WE-LL FPRACTICE SHORT LIVISION. M

i18s PRIMT "FOR EXAMPLE I-LL DISFLAY 4257210 ARl YOUSLL TYPE INY
187 FRINT "YOUR ANSHWER & FOLLOWED BY “ENTER". Y0P OWLY GET 4¢
ilgg PRIMT “"CHANCE AT EACH OF THE S FROBLEMS' S0 CONCENTRATE!"
118 k=8, COUNT=8: FEAMNDOM

115 COUNT=COUNT+1 . L=1

1268 A=RMDCZEY . C=RsRNDOZSS

125 IHFUT "MHEW YOI ARE RERDY TYFE “GO7 AWND FRESS ENTER': G¥. CLS
12 PRINT

1368 PRINT “HERE"S FROBLEM HUMBER": COUNWNT: " "0 "o f: M=70

1Z5 INFUT "MHAT I3 YOUR ANSHER". B

148 IF A = B THEM L=2

145 O L GOSUER Zoo, 288

156 IF COUNTCE THEN 115

455 FRINT. PRINT NE: " YOU MISSEDRY: S-k: "PROELEMS OUT OF 3¢

168 FRIMT "IT WAS A PLEASURE WORKING WITH YOU ——- S0 LONG ":HN¥
165 EMD

26 REM SUBRQUTINE . RESFOND TO IMCORRECT AMSHER

285 ON RHDOZ: GOTO 218. 220, 238

246 FREINT "HOFE. YOU LOST YOUR COOL". GOTO 248

22 PRINT "YOU HEED TG CONCENTRATE MORE" . GOTCO =244

ZZE PRINT "COME ON “iHN$: " YOU CAN DO BETTERY

125

126 ch. 8 /| subroutines

START

PRELIMINARY DIALOG WITH STUDENT
INITIALIZE VARIABLES (100)-(126)

Program Line Numbers

Y

PRESENT PROBLEM TO
STUDENT

INPUT
STUDENT'S ANSWER (135)

{140)-{145)

(130}

YES
(200}-(250) § r
SUBROUTINE SUBROUTINE
RESPOND TO RESPOND TO (300)-(330)
) INCORRECT ANSWER < CORRECT ANSWER

. T

ALL

NO “PROBLEMS (150)
DONE?
PRINT
STUDENT'S SCORE (155)-(160)
AND FAREWELL
{165)
FIGURE 8.1 Computer-assisted instruction.
=248 FPRIMNT "THE CORRECT AMSWER IS": SR
258 RETURN
Z80 REM SUBROUTINE: RESFOMD TO CORRECT ANSMWER
204 K=K+1
@Y oM RNDOES GOTO 216, 328, 3368
218 PRINT "RIGHT ON ——-— YOU ARE DOING GREAT WORK''": RETURN

FRINT "TERRIFIC! I LOVE IT!":. RETURNM
FRINT MW#: " Y0U RRE A HHIZ KID": RETURN

e

[y

104

RUHN

HI, WHAT IS YOUR NAME? MARION

MARION TOOHY ME'LL FRACTICE SHORT LIMISION

FOR EXAMPLE 1°LL DISFLAY 126/81 AND YOU'LL TWFE IM
YOUR ANSWER & FOLLOWED BY “ENTER”. YOU ONLY GET 1
CHANCE AT EACH OF THE 5 FROELEMS! S0 CONCENTRATE!
WHEW w0U ARE REALY T¥PE “GO° AND FRESS ENTER? GO

127

sec. 8.3 | conditional transfer to subroutines

HERE "2 FROELERM HUMBER 1 . 255-715=7

WHAT IS YOUR ANSKERT 13

YOU MEED TO CONCEMTRATE MORE

THE CORRECT AMNSKER I5 47

WHEN YOU ARE READY TYFE “GO- AND FRESS ENTERT GO

HERE S FPROBLEM MUMBER 2 . 2/9=7

MHAT IS YOUR ANSHERE? 1

MARIOHN Y04 ARE A WHIZ KID

WHEN WOU ARE RERDY TYFE GO AND FRESS ENTERT G

]

HERE "= PROBLEM WUMBER Z ; 4@ 15=7

WHRT IZ YOUR ANSHER?T 12

TERRIFIC! I LOWE IT!

HWHEN %0l ARE READY TYFE “GO- AMD FRESS EMTERT GO

HERE"Z FPROBLEM MUMBER 4 :© 4Z6-17=7

WHAT IS YOUR AMSMERT &

MARION YOU ARE A WHIZ KID

HMHEN ¥0U RRE READY TYFE “GO° AMD FPRESS ENTERT GO

HERE S FROELEN WUMEER 5 . 48/18=%
MHAT 15 wWOUR AMSWERT 4
RIGHT OM ——~ %0U ARE DOING GREAT MORE!

MARIOM YOU MISSED 1 FROBLEMS OUT OF S
IT WARZ A FLEASURE WORKIMG WITH YOU ——— S0 LONG MARION

In line 110 of the program, variables K and COUNT are initialized. K counts the
number of correct answers given by the student, and variable COUNT keeps track of how
many problems have been issued. The statement RANDOM reseeds the random-number
generator and guarantees a new sequence of random numbers each time the program is
executed.

In line 115 the counter is incremented and variable L is set to 1. L is a flag: L = 1
corresponds to an incorrect answer, and L = 2 corresponds to a correct answer given by
the student.

Lines 120 to 135 generate the problem, display it, and accept the student’s answer.
The problem is created in such a way (line 120) that the answer is always an integer less
or equal to 25.

Lines 140 to 145 check the student’s answer and transfer execution to the appropri-
ate subroutine. If the answer is incorrect, L = 1, execution transfers to the first subrou-
tine at line 200. If the answer is correct, L = 2, execution is transferred to the second
subroutine at line 300.

The first subroutine, lines 200 to 250, displays a message that is randomly picked
among lines 210, 220, and 230. The correct answer is also given. The RETURN transfers
execution back to the main program at line 150.

The second subroutine, lines 300 to 330, selects and displays randomly one of three
compliments in response to the student’s correct answer. Subsequently, execution returns
to line 150 of the main program.

In line 150 of the main program, variable COUNT is checked; if it equals 5, all five
problems have been answered and the final tally is presented in lines 155 to 160. Other-
wise, execution returns to line 115, where the next problem is presented.

The END statement is usually optional. In this program it is however required. If the
END in line 165 were omitted, execution would proceed from line 160 directly into the
subroutine lines 200 to 250. That would make no sense, and in addition an RG ERROR

128

ch. 8 | subroutines

would occur, indicating a RETURN without GOSUB. In the absence of the END, execu-
tion of the subroutine is invoked without a GOSUB statement. A RETURN is then
impossible to execute.

REMEMBER: Programs that include subroutines generally require an END statement.

8.4 A FINAL COMMENT

EXERCISES 11

The examples we have studied only begin to illustrate the many ways sub-
routines can be used by the programmer. In many instances, a program may
involve many calculations that are exceedingly involved and complex. For
example, an analyst might be concerned about the financial future of a com-
pany. Many factors affect the company ; among them are the cost of materials
and manufacturing, inventory control, sales, and the share of the market.
Using these and other characteristics, the analyst will attempt to forecast the
company’s future. The resulting total program can be very substantial. In
such a case it is good practice to break the program down into separate seg-
ments. Each of these could then be written as a separate subroutine, and the
main program would be a mere skeleton consisting of little more than a
series of GOSUB statements. In many instances it is even convenient to
perform input-output operations in separate subroutines. The advantages of
such an approach include the following:

1. It is easier to write several short subroutines than one very long
program,

2. Subroutines can be debugged and tested separately. Errors are located
more readily in this manner.

3. Modifications to the program can be made more easily. It is possible
to add a subroutine or to modify an existing one without affecting the rest
of the program.

4. Subroutines make it more convenient to read a program or document
its function.

1. Enter the following program. Before executing it, anticipate the output it will
produce.

16 PRINT "START®
28 GOsUR 7a
48 FRINT "BACK IH MRINY

58 END Anticipated display
TE PRINT “SUBROUTINE 17
TS RETURN Actual display

2. To the above program, add the line 25 GOSUB 70. What output will the program
now produce? Delete line 25.

129

exercises 11

3.

4.

10.

11.

12.

In the program of problem 1, delete line 50. What output will the program now
produce? Reenter line 50.

Add the following statements to the program of problem 1.
GOSUE 28

FRINT "SUBROUTIHE 2v
RETURHM

D s P
[A

Before executing the program, anticipate its output.

Add the following statement to the program of problem 4: 72 GOSUB 80. Antici-
pate the output of the new version of the program.

. Add the statement 45 GO TO 10 to the program of problem 5. Now what happens?

. Write a subroutine that examines an array of 10 numbers and outputs how many

numbers are negative. Input the array in the main program.

. Modify the program to produce a blinking display (presented in this chapter) to

input the number of times the message is to be displayed.

. Extend the blinking display program to operate like a digital clock. The display is to

be the actual time.

Write a program to simulate a dice game. For each roll of the dice, use a subroutine
that generates two random numbers between 1 and 6. On the first toss you win with
a total of 7 and the computer wins with a total of 12. Any other sum becomes your
point. You continue to throw, trying to match this point. If you roll a 7 in the pro-
cess, the computer wins. Keep a tally of games won and lost.

Write a subroutine to compute and output the mean and standard deviation of data
stored in an array A. Input the array in the main program. Use the following mathe-
matical relationships for the computation.

SUM A
MEAN =
SUM A? - (SUM A)?*/N
STANDARD DEVIATION = N
where SUM A = sum of all data points in array A
SUM A? = sum of the squares of all the data points
N = number of data points; the number of elements of array A

Write a main program to input data and a subroutine to perform a data validity
check. If the number is negative or greater than 100, the subroutine displays an
appropriate message and returns to the main program for more data entry. The mean
and standard deviation are to be computed and displayed in a second subroutine.

Write a subroutine for calculating compound interest using the formula

RA\NT
A=Pll+ =

where A = accumulated amount (principal plus interest)
P = invested principal
R = annual interest rate (in decimal notation)
T = number of years
N = number of times the interest is compounded each year.

130

ch. 8 | subroutines

13.

14.

15.

Values for these variables are to be entered in the main program. Use the following
values: P = $100, R = 0.05 (5%), T = 10 years, N = 1, 2, 4, 8, 16, 32, 64, 128,
and 365. Print a table of N and A.

Write a subroutine to compute N factorial (N!). For example, 4 factorial (4!) equals
4 X 3 X 2 X 1 =24 Input N in the main program, and output N! from the sub-
routine.

Write a subroutine to calculate e* using the formula

o2t 31 41 5

€

In the main program, input X and the number of desired terms from the infinite
series. Use the subroutine of the previous problem to compute the factorial terms.
The program to compute ¢* will therefore include nested subroutines.

Extend the program that computes e* to include a convergence criterion. Instead of
specifying the number of terms of the series that are to be included, have the sub-
routine include as many terms as are required until the relative difference between
successive terms is no more than some prespecified value C. The relative difference is
the absolute value of the ratio of the previous term minus the current term divided
by the current term. Input C in the main program, and write a subroutine to deter-
mine whether the series has converged. The series has converged when the relative
difference of successive terms is less than C. A typical value for C is 0.00001.

chapier y ‘ gﬁaphics

9.1 BACKGROUND

Graphic capabilities are quite important for educational, business, and recrea-
tional purposes. We can, for example, graph equations and bar charts or
create computer art. The functions that make it all possible control the cur-
sor and give the programmer the flexibility of printing characters on the
screen at specific locations.

The cursor control instructions that have already been introduced are
CLS, CLEAR, TAB(X), POS(X), and PRINT @. CLS clears the screen and
moves the cursor along with the READY to the upper left corner of the
screen. The CLS instruction can be part of the program. Upon its execution
the screen is cleared and thus readied for subsequent output. The CLEAR
key clears the display and returns it to a 64 character per line format. The
TAB(X) function moves the cursor to the specified position X on the current
line. If X is greater than 63, the cursor is moved to subsequent lines. The
TAB function is useful in tabulating data or graphing equations. The POS(X)
function returns a number from 0 to 63, indicating the current cursor posi-
tion on the screen. The POS function can, for example, be used in conjunc-
tion with the TAB function to space data evenly across the screen. The
PRINT @ statement specifies exactly where on the screen the display is to
appear. The specified location is a number between 0 and 1023. It corre-
sponds to the 1024 (16 X 64) available print positions on the screen.

The CLS, TAB, POS, and PRINT @ statements-are most effective in for-
matting output, especially for reports. However, they are not quite as effec-
tive for plotting graphs or generating computer art. These instructions rely
on a screen grid of 1024 print positions: 16 lines with 64 characters per line.
This may be too crude and does not offer sufficient resolution. There are
other graphic statements that offer a finer grid on the screen.

9.2 GRAPHING WITH SET(X,Y)

131

In graphing, we use a grid consisting of 128 points horizontally and 48 lines
vertically. This grid of 6144 print positions offers the programmer a fine
network of points. Each of these points can be addressed.

The SET (X.Y) function places a small rectangular block at position
(X,Y) on the screen. X is the horizontal position 0 through 127 and Y the
vertical position O through 47. X and Y can be numbers or expressions but

132

ch. 9 /| graphics

must be nonnegative. Location 0,0 is at the top left corner of the screen and
127,47 is at the bottom right corner.

SET (0,0} & B SET (127.0)

MIDPOINT .SET (63,23}

SET (0,47 & B SET (127.47)

SET(X,Y) may be used in the immediate mode and in the programming
mode. Type in

SET (2@, 250

The computer’s response is a small rectangular point appearing at X = 20
and Y = 25. Similarly, we can graph a point in the programming mode at
X =20and Y = 35:

18 SETCZE. Z5
el

This short program yields an additional point on the screen directly be-
neath the first point. The two points are separated by 10 vertical graph
positions.

When graphing, it is usually desirable to remove all clutter from the
screen including the READY. The following short program accomplishes
this.

COMMENTS
18 CLE Clear the screen.
28 SET 8. 250 One point is plotted at X = 20, Y = 35.
ZE GOTO 38 Remain in an infinite loop.

Line 30 represents a new programming trick. Upon execution of the pro-
gram, the computer is hung up at line 30. The purpose of this maneuver is to
suppress the READY from appearing on the screen at the end of the execu-
tion. We escape this hangup and obtain the READY by pressing the BREAK
key. Graphing with the TAB and PRINT @ instructions permits use of any
characters to denote points on the graph. The SET statement, in contrast,
always plots with small rectangles. The fine grid accessible with SET instruc-
tions makes it possible to plot points so close to each other that they form
lines. Compare, for example,

18 CLs
28 FOR == TO 18 PFRINT TABCKIX: @ HE=T #
2% PRINT
ZR OFOR H=E PRIMT THBOHI"HE": © HEXHT K
5 Sl SETOH, 1680 0 NERT ®
=

48 FOR =
SE G0 T S8

133 sec. 9.2 | graphing with SET (X, Y)

To escape press the BREAK key. The first two lines of output were pro-
duced with the TAB function and the third using the SET statement. The
SET displayed an actual line. To terminate execution, press BREAK.

REMEMBER: X and Y in SET(X,Y) cannot be negative.
X may be greater or equal to 0 and less or equal to 127.
Y may be greater or equal to 0 and less or equal to 47.
X = 0 is along the left edge of the screen.
Y = 0 is along the top of the screen.

C:> Example: Graph of Degrees Fahrenheir and Celsius

We wish to graph degrees Celsius versus degrees Fahrenheit. This graph will be a line that
can be used to look up corresponding temperatures in the two temperature scales. The
relationship to be plotted is

where C and F are temperatures in the Celsius and Fahrenheit scales, respectively.

COMMENTS

ia CLs

2B FOR F=3ZZ TO 86 Range of °F is 32 to 86, a total of
55 points on the graph.

Z8 C=DBw F-ZZ3,9 The temperature conversion for-

3z A= mula.

4z =0 Without lines 32 and 42, line 50

[0 SETH. Y would be SET(F,C).

&8 NEXT F

e G0 TG Fa Prevent the READY from appear-
ing.

RLUM See Figure 9.1, version (a).

Execute the program and observe the shape of the graph. It is a line that starts at the
top left corner of the screen at F = 32 degrees Fahrenheit agnd C = 0 degrees Celsius. The

°F = 86— 30C
°C=30 l.
24
18

12

-—°°C=0

Version {(a) Version (b) Version {c)

FIGURE 9.1 Several versions of the degrees Fahrenheit-Celsius graph.

134

ch. 9 [graphics

line then progresses downward and to the right. The last point corresponds to F = 86
degrees Fahrenheit and C = 30 degrees Celsius. The graph is shown in Figure 9.1, version
(a).

Normally, graphs are plotted with increasing values of Y in the upward direction. The
screen of the TRS-80 is not laid out that way. The grid on the screen has Y increasing
downward. We can overcome this by subtracting the computed value of C from 30. We
insert line 40:

The value of C computed in line 30 is recomputed in line 40. For example, if C = 0
in line 30, it will be recomputed in line 40 as C = 30. C = 30 instead of C = 0 is then
graphed. Line 40 has the effect of starting the Y-axis at the bottom of the screen and
pointing upward. Version (b) of Figure 9.1 shows an execution of the program with
X = 32 degrees Fahrenheit and Y = O degrees Celsius now at the bottom left of the
screen.

Finally, we modify the program to draw and label the axes. The axes are labeled with
numbers in lines 11 to 14. Then the Y-axis is drawn in line 16 and dotted with markers in
line 17. The X-axis is drawn in lne 17, and the markers are placed along the X-axis in line
18. In line 20 we expand the range of the graph by including degrees Fahrenheit from 12
to 86. A flowchart of the program is shown in Figure 9.2.

16 CLS

14 PRINT B 3. "38 C": PRINT @ 131. "24": PRINT @ 253. "1g"

12 PRINT @37, "12": FRINT @ 545, "&"

13 FRINT @ 7@, " 1@ 2@ 48 S8 s@ F@ 80 F
14 FRINT @ 77, "—6"

START Program Line Numbers
DRAW AXES: MARK
\\YANDLABELAXE%// -9

'

F
_,_4*#5;#5;;:%___— (20) - (60)

!

COMPUTEC (30)
X=F
C=30-C (32) - (42)
Y=C

!

TURN ON BLOCK
AT (XY} {50

3

¥
‘ STOP > (70)

FIGURE 9.2 Conversion of degrees Fahrenheit to degrees Celsius— final version.

135

sec. 9.2 [graphing with SET (X, Y)

16 W=@. FOR v=8 TO 48: SET(N ¥3: NEXT ¥

17 ¥=1: FOR v=@& TO 48 STEF 3: SETCH ¥a: MEWT ¥
15 ¥=30: FOR x=8 TO 86: SETON. Y. NEAT ¥

15 ¥=29: FOR ¥=8 TO &6 STEF 5: SETOX ¥ MERT X
28 FOR F=i2 TO 86

I8 C=S#(F-320/9

32 K=F

48 C=36-

4z =0

SET i vy

NEWT F

GOTO 76

=} TN
(Y

Execution of this program yields version (¢) in Figure 9.1. The markers are every five
plot positions along the X-axis. The corresponding values of degrees Fahrenheit (F) and
degrees Celsius {C) are displayed at every other marker. The scales differ for the two axes.
There are three plot positions for each print position vertically. A multiple of three is
therefore used. Horizontally, two plot positions correspond to one print position.

C;> Example: Bar

Graph of a Frequency Count

As another example of the use of the SET function, we write a program to generate a bar
graph of the frequency of occurrence of a 2, 3,4 . . .12 when two dice are thrown 100
times. There are a total of 36 possible ways that two dice can turn up the 11 different
outcomes of 2, 3, 4 . .. 12 points. We expect, for example, one thirty-sixth of all the
throws to yield 2 points between the two dice. A flowchart of the program is shown in
Figure 9.3.

COMMENTS
18 CLS: RANDOM
28 FOR k=1 TO 1aa Throw the dice 100 times.
25 I=RHDOss+RNDCE One random number for each die.
2@ HI-Zx=RACI-20+1 There are 11 outcomes numbered O
48 NEAT K to 10. Sum up the frequencies.
S8 PRINT @ 3. "24": PRINT & 141, "ig" Print numbers along vertical axis:
52 FPRINT & 253, "42". PRINT ® 3I&567."g" frequency of occurrence.
o PRIMT @ 383, " = = < =) [SAE Label the X-axis.
ed FRINT" v = S =} i 2"
Ta K=@: FOR Y= TO 24. SETOK. Y Draw the Y-axis.
T4 MEXRT ¥
V2 os=l: FOR ¥=8 TO 24 STERP & SETWR. 2 Place markers on the Y-axis.
TE MHESRT ¥
Te Y=2d: FOR X=8 TO 128 SETOL Y Draw the X-axis.
Yo MEST =
oF FOR k=8 TO 18
TS R=IZeTikk
49 FOR Y=24-ACK> TO 24 SETOs. Y Draw the bar chart for each of the
L MHEST ¥ 11 outcomes.
S5 NEAT K

Lines 80 to 95 draw the vertical bars of the bar chart. Line 80 sets up aloop to be
executed 11 times, once per outcome. The plot position of the bar along the X-axis is
computed in line 85. For the first outcome (K = 0, throwing a 2), X is 20. For each
subsequent outcome, X increases by eight plot positions; that is, successive bars are eight
plot positions apart. The height of each bar is the frequency of occurrence, A(K), of the
Kth outcome. The bars are graphed upward from the X-axis and not down from the top

136 ch. 9 | graphics

START

Program Line Numbers

Y
THROW 2 DICE (25)
| = TOTAL POINTS !
Y
INCREMENT ELEMENT IN
FREQUENCY OF OCCURRENCE | (30
ARRAY A
A
DRAW, MARK AND
\ LABEL AXES / (80)-77)
< 80)-(95)
0TO 10 (80}-(95)
_ ¥
X=20+8+K (85)
(90)-(91)
24-A(K) TO 24

Y
\ SET(X.Y) ; (90)

A

3
‘ STOP)

FIGURE 9.3 Bar graph of a frequency count.

of the screen. Therefore, the bar corresponding to a frequency of occurrence A{K) is
drawn from Y = 24 - A{K) down to Y = 24 (onto the X-axis).
We now execute the program.

RUN

2 3 456 78901 2

The bar graph verifies our expectations: the seven is tossed most frequently. In this ex-
ample of 100 tosses of two dice, the seven occurred 21 times. The least frequent tosses

137 sec. 9.3 | other graphics functions

are the two and the twelve, each of which occurred 4 times. Note, the outcomes of tossing
10,11, and 12 are labeled as 0, 1, and 2 respectively along the X-axis of the bar graph. Do
you expect the same frequencies to occur if we rerun the program and simulate 100 more
tosses?

9.3 OTHER GRAPHICS FUNCTIONS

The RESET(X.,Y) and POINT(X,Y) are two more functions that enhance the
graphics capabilities of the TRS-80. The RESET function turns off a graphics
block at the location specified by the coordinates X and Y. As with the SET
function, X and Y must be nonnegative and be constants or expressions. In
general, the integer portion of X and Y specifies the coordinates to be

graphed.
COMMENTS
SETwLGG, 460 Graph a single point.
FESETw 106, 480 Erase that point.

The POINT(X,Y) function examines the graph location (X,Y) and checks
whether it has been SET before. If the location (X,Y) has been SET (is on),
POINT(X,Y) takes on the value -1. If the location (X,Y) has not been SET
before, that is, if the location is off, the POINT(X,Y) function returns a O.

COMMENTS
SETCA08, 480 Graph the point.
FRINT POINT.LG6, 46 Check if (100,40} has been SET.
- Yes, it has been SET.
FEZETC 106, 485 Erase the point (100,40).
FRINT POINT 166, 400 The point {100,40} is no longer
& SET.

C:> Example: Random Walk

We visualize a mouse moving along in an open area. The mouse makes steps of the same
length with equal probability in the forward and backward directions as well as to either
side. The question is, what is the mouse’s path if it never steps twice on the same location?
This restriction may cause the mouse to be trapped when it finds itself surrounded by
locations previously occupied. We simulate the random walk on the screen and start the
mouse off at X = 64, Y = 20. When it reaches the edge of the screen (X = 0, or
X=127,0r Y = 0, 0r Y = 47), the walk ends successfully. A flowchart of the program
is shown in Figure 9.4. Corresponding line numbers of the program are shown in the
flowchart.

18 OM ERROR GO TO &8
11 CLS. RAMDOM

B YW=ZB . k=@
15 SETM. ¥

138

ch. 9 [graphics

START

[x=64: Y=20; k=0 | (12)

(10) (80)
ON ERROR PRINT AT EDGE
“DONE'":K;"STEPS" STOP

RANDOM
NUMBER
=?

SURROUNDED BY NO _ (70}
ON POINTS?

PRINT (60!

“STUCK AFTER";
K; “STEPS”

STOP

FIGURE 8.4 Random walk.

17 F=RHDCd s

18 aM T OG0 To Ze. Za. 48 . Se

2B IF POIMTos. Y=z THEHM &

1 w=4-Z. G0 TO 415

B OIF POIMTOs+2. v THEN oB

HEatg s G0 TO AS

IF POIMTOS: ¥+25 THEM &

YD G0 TO 45

IF POINT(sE~-2, ¥y THEM &8

H=p—-2 G0 TO 15

IF FOIMT O+, v AMD FOINTOR-2. %3 AMD POINTCOR, Y+22) AND
FOINTCN, Y=—22 THEM FRIMT & @, "STUCE";K: GO TO &8

GO T 47

PRINT & @, "DONE"; K: GO TQ 80

[n1}
1]

&
i
e
i

-
!

B~
Q®

139

exercises 12

RUN
EDGE OF SCREEN
} REACHED
- —_—— BB
DONE 26 T
]
BR
26SsTEPSTO B
REACH EDGE |=
BE
i,
BE
l..*—START
HERE

The random walk starts out at X = 64 and Y = 20 (lines 12 to 15). We then gen-
erate random numbers in the range 1 through 4 (line 17). Random numbers 1, 2, 3, and
4 correspond, respectively, to a forward (up) step, a step to the right, a backward (down)
step, and a step to the left. Each step in the simulation corresponds to a jump of two
blocks on the screen. In line 18, depending on the value of the random number Z. execu-
tion transfers to line 20, 30, 40, or 50. The POINT(X,Y) function is used to detect
whether a location to which the mouse is about to move has previously been occupied. If
that position is available, (POINT(X,Y)=0), then the step is taken by transferring to line
15. If the position is not available, a new random number needs to be generated in line
17. But before generating the new number it is necessary to check if the mouse is trapped.
The POINT function is used in line 60 to check if there are any previously unoccupied
locations either above, below, or to either side of the present position of the mouse. If
the mouse is trapped, an appropriate message is displayed at the corner of the screen;
otherwise, a new random number is generated in line 17 and the process of checking
repeats.

The random walk is successfully completed when the mouse is at the screen’s edge or
attempts to go beyond. When the arguments X and Y in SET and POINT exceed their
permissible limits, an error occurs. The occurrence of the error signals that the walk is
complete. We take advantage of this feature and use the ON ERROR GO TO statement
in line 10 to transfer to line 80 in the event of an error. Line 80 displays the message
"DONE" along with the total number of steps taken to complete the walk.

Type in the program and observe the movements of the mouse. The motion can be
slowed by inserting a delay prior to turning on the graphic block in line 15. Such a delay
may consist of a dummy FOR-NEXT loop. Another possible variation is to change the
jump size (presently at 2) to 1 or 3 or more. All lines containing the expressions X + 2,
X -2,Y+2,0orY -2 would have to be modified accordingly. In the process of exe-
cuting the program, some unique graphic patterns may develop.

EXERCISES 12

1. Before executing the following instructions, fill in what you anticipate the display
will be. Add an explanation for any error you make.

Instruction Anticipated Display Display
FRIMNT TAB.18:18
FRINT B3 i@, 1
C. FRIMT FOS 1wl

T

140 ch. 9 | graphics

Instruction Anticipated Display Display
FPRINMT TARAE.18» FOZO1G2
[Y
SETC18. 485
FESET« 18, 162
18 GO TO 1@

LR

i ERERK

18 SETOE, B

2@ IF POIMTOR. G THEW FRINT"ONY
ELSE FRINWT "OFF"

oo @ &

[y

LIk
k. 18 RESETLE, 85
FLIM
L SETCLE. 5. 18, &3
m. RESET18, 16, 13
n. SET«ie. 185
o. FOINT oig, 18
p. FRINT FOIMT.18, 180

2. What displays do the following programs produce?

a.

RIS et
MOl

CLS . W=

FOR w=8 TO 47 SETCH W) HERT
FOR #=L TO 125

FOR w=1 TO 43

SET (k. W
MEST 7
W=RHD
RESETX
RESETU
RESETC
RESET. B3
GOTO 15

-
G
i
)
(]
i8]
[

R ARt B L0 B SR P N

=
DA IR <X B I U A]

I S el Sl el ol sl ol ol o

3. a. Write a program to draw a vertical line at X = 63 and a horizontal line at Y = 23.
b. Add markers every 5 units along the X - axis and every 3 units along the
Y - axis.

4, Write a program to display a rectangle of width W and height H. The top left corner
of the rectangle is to appear at X = A and Y = B. Input variables W, H, A, and B
from the keyboard. How large may A, B, H, and W be?

5. Generalize the rectangle program to display N rectangles. Generate W, H, A, and B
randomly. Input N from the keyboard. Select W between 1 and 10, H between 1 and
18, A between 0 and 117, and B between 0 and 29.

6. Write a program to plot a conversion graph from inches to centimeters (1 inch = 2.54
centimeters). Plot centimeters along the X-axis in the range O to 100 centimeters.
Along the vertical axis, place markers every 6 inches. How many such markers are
required?

7. Modify the random walk program of this chapter to eliminate the restriction that the
same location cannot be occupied more than once. Run the program many times.
Which edge of the screen does the mouse reach most frequently?

8. Write a program to simulate the following random walk: A drunk is staggering along
an alley. He or she takes 2-foot-long steps with equal probability in the forward and
backward direction. On the average, how far does the drunk move from the starting
point at midscreen in N steps? Let N = 10, 50, 100, 500. Assume the drunk moves
along the X-axis.

141 exercises 12

9. Write a program to generate 100 random numbers in the range 1 to 10. Output a bar
chart showing the frequency of occurrence of each of the 10 random numbers. Do
you expect the frequencies to be the same?

10. Write a program to plot two lines on the same graph. The equations to be graphed
areY = XandY = 3X.Let X = 0,1,2,...,10. Place markers and label the axes.

chapier

10.1 REVIEW

142

SiRings

The great power of the computer lies in its ability to not only manipulate
numeric information but also process character information. Numeric vari-
ables are used to hold numeric quantities. These may be added, subtracted,
multiplied, divided, evaluated in a function, or compared. Character informa-
tion may consist of any combination of alphabetic and numeric characters,
punctuation, and symbols. A string is a specific sequence of such characters.
Strings do not enter into ordinary arithmetic operations. It certainly would
make no sense to multiply the name of a person by ten or take its square
root. However, we may want to process the name. In earlier chapters we
have learned how to specify string variables, how to input and output them,
how to compare them, and even how to “add” them. Addition of strings is
called concatenation and refers to the process of appending one string to
anothef. It is not an arithmetic addition. String variables differ from numeric
variables in that they have a $ symbol as the last character of the name. The
following sequence of instructions reviews string manipulations.

COMMENTS

AF="BIN" Specify the string variable AS.
FRINT A% “BIN" is a string constant.
BIN Variable A$ is displayed.
Bxala="0G0" String variables may be subscripted.
FRINT Af+B$C1y The two string variables are con-
B INGD catenated.
FRINT Af=Bf]i> The two string variables are com-

e pared. They are unequal.
FRINT A$<B$oin Alphabetically, “BIN" is before
-1 (less than} “GO".
48 IMFUT “YoUR NAME': N$ A one-line program 1o input your

name.

Rl Request execution.
YOUR NAME? BOE BRSIC Your entry,
RLIH Request another execution.
YOUR NARME™ BRZIC. BOE The string you enter now contains
TEATRA IGNORELD a comma; an error occurs: you
PRIMT H¥ need * " around entry.

BRAZIC Only the part of the name prior to

the comma is stored.

143

sec. 10.2 | ASCI codes and related functions (ASC and CHR$)

The last example indicates that a string constant must be enclosed in
quotes when entered as INPUT if it contains a comma. Colons or leading
blanks also require the quotes. The same rule regarding commas, colons, and
leading blanks applies to INPUT # and READ-DATA statements.

10.2 ASCIH CODES AND RELATED FUNCTIONS (ASC and CHR$)

Two strings can be compared to determine which string variable or string
constant is alphabetically closer to A. The characters are compared one at a
time from left to right. Actually, the ASCII code of each character is com-
pared. ASCII is short for American Standard Code for International Inter-
change. It is a convention for identifying each character by a number. To
perform operations on strings, this code is used within the programming
language to designate the various alphanumeric characters. There are a total
of 128 codes dealing with alphanumeric characters and an additional 127
codes (total of 255 codes) for the TAB function and for graphics.

A list of the ASCII codes and their usage is given in Table 10.1, which
shows for each ASCII code the corresponding keyboard key and the corre-
sponding character that it displays on the screen. For example, the code 65
corresponds to the letter A on the keyboard. Code 65 also displays the letter
A on the screen. On the other hand, the ASCII code | corresponds to the
BREAK key on the keyboard, while on the screen it produces no display.
The most common codes may be summarized as follows:

ASCII Code Keyboard and
Number Screen Display
48-57 Digits 0 to 9
65-90 Letters A, B, .. ., Zz
129-191 Graphics symbols

The ASC(“string”) function returns the ASCII code of the first character
of the “string.”” The “‘string” is the argument and must appear within the
parentheses. It may be a string constant or a string variable. The CHR$ (ex-
pression) function returns a one-character string corresponding to the ASCII
code specified by the expression. The argument must be numerical and must
be a constant, a variable, or an expression in the range 0 to 255. The ASC
and CHRS$ functions perform opposite operations and are illustrated in the
following examples:

COMMENTS
FRIMT ASCC"AYS Display the ASCIi code of letter A.
=55 ASCII code of letter A is 65.
FRINT ASCO"AR" Display the ASCII code of “AB".
=5 Only ASCII code of first letter is
displayed.
FRINT AzCo"g"s Display ASCII code of digit 0.
S5 Itis 48.
FRINT ASCo® "o Display ASCII code of a blank.

32 Itis 32.

144

TABLE 10.1 ASCI! codes

ASCH Keyboard Screen ASCII Keyboard Screen
Code Key Display Code Key Display
0 None None 58 :
1 BREAK (also None 59 ; ;
SHIFT BREAK) 60 < <
2-7 None None 61l = =
3 - None 62 > >
9 - None 63 ? ?
10 \ None 64 @ @
11 None Carriage Return
12 None Carnage Return 65 A A
13 ENTER (also Carriage Return 66 B B
SHIFT ENTER) 67 C C
14 None Turn on cursor 68 D D
15 None Turn off cursor 69 E E
16-22 None None 70 F F
23 None Convert to 71 G G
expanded print 72 H H
24 SHIFT < Backspace cursor 73 1 I
25 SHIFT — Forward space 74 J J
cursor 75 K K
26 SHIFT | Linefeed 4 76 L L
27 SHIFT t Linefeed t 77 M M
28 None Cursor to position 78 N N
(0,0); convert to 79 (6] (0]
regular print 80 P P
29 None Cursor to be- 81 Q Q
ginning of line 82 R R
30 None Erase to end of 83 S S
line 84 T T
31 CLEAR (also Clear to end of 85 U U
SHIFT CLEAR} frame 86 v v
87 W w
32 Space Bar Space 88 X X
33 ! ! 89 Y Y
34 " ! 90 Z z
35 # #
36 $ $ 91 None 4t orf
37 % % 92 None i
38 & & 93 None <~
39) ! 94 None -
40 ((95 None _— (Underline)
41))
42 * * 96 SHIFT @ @ (Lower case if available)
43 + + 97122 SHIFT A-
44 , SHIFT Z Lower case A-Z (if available};
45 - - otherwise uppercase
46 . .
47 / / 123 None t
124 None I
48 0 0 125 None «
49 1 1 126 None -
50 2 2 127 None . (Underline}
51 3 3 128 None Space
52 4 4
53 5 5 129-191 None Graphics blocks
54 6 6 192-255 None TAB(X)for X =0,1,...,63,
55 7 7 respectively
56 8 8
57 9 9

145 sec. 10.2 | ASCII codes and related functions (ASC and CHRS$)

FRINT CHRE$(cS: Display the symbol corresponding
A to code 65. 1t is letter A,
FRINT CHREFCRSC O H" 0 CHR$ and ASC have opposite func-
A tions.
FRINT ASCOCHRECES:D !

=3

The following program displays and performs the function of all the
ASCII codes. Even though a delay has been incorporated into the program,
you may wish to stop and freeze the display at any time. To stop the execu-
tion (without a BREAK), enter SHIFT @. To continue from where you left
off, press any key (except the SHIFT and BREAK keys). Compare Table
10.1 to the screen’s display during execution.

COMMENTS
18 REM DISPLAY ASCII CODES AMD FUNCTIONS
=8 CLS Print code number and its screen
@ FOR =0 T 255 PRINT i CHE$(X, display.
46 FOR I=1 TO 19568 HNEXRT I Dummy loop for slowdown.
S8 NEXT ®

The next program decodes a message using the CHR$ function.

COMMENTS

18 REALD =

28 DARTA &5, 22, 78, 73, 66, 65,

28 PRINT CHRFOA

4@ GOTO i@ An infinite loop; eventually there
will be no more data to read.

TE, 69, 32, ¥, 83, 32, T2, 65: 76 70, 32, 650, 32, €6, 89, 84, 63

LN
A NIBEBLE IS HRLF A BYTE
00 ERROR IN 1@ Out-of-data error in line 10.

w Example: Maintaining a Status Message on the Screen

When lengthy and time-consuming internal computations are taking place, it is often a
good idea to maintain a status message on the screen. This message indicates that the sys-
tem is busy and perhaps gives some idea how close to completion it is. In this example we
maintain a steady display of a loop counter during loop processing.

18 CLE . FPRINT CHRE$CZED

SR FOR I=1 TO 186

38 FRINT CHEFO27) TRECLS2"NOW FROCESSING LOOFY; I; "OF ie@"
48 FEM LOOF PROCESSIMG BEGINS

SEOFOR D=1 TO 288 NEXT [

S5 MEST I

Line 10 clears the screen and moves the cursor down from the top of the screen. In line
30, CHR${27) moves the cursor up to the output line and TAB(15) centers the message.
Line 50 is a loop that delays the display. When this routine is used in conjunction with
loop processing, the loop of line 50 would not be included. What happens if the CHR${27)
is not included in line 30? How about if CHR$(26) is omitted in line 10? Can you explain
the resulting displays?

146

ch. 10 [strings

REMEMBER: The ASCand CHR$ functions complement each other; ASC(CHR$(65))
= 65 and similarly CHR$(ASC("A"}) = “A".

10.3 CHARACTER MANIPULATION FUNCTIONS

(LEN, LEFTS$, RIGHTS, MIDS$)

In this section we introduce several functions that may be used to analyze
strings. The LEN(“‘string”) function returns the number of characters in-
cluded in a string. The argument can be a string constant, a string variable, or
an expression. Since a string may be up to 255 characters in length, LEN
(“string”) is a number between 0 and 255 inclusive. The LEFTS$(‘string”.N)
function returns the first N characters of the string. The string in the argu-
ment may be a string constant, variable, or expression, and N may be any
numeric constant, variable, or expression between 0 and 255. The function
RIGHTS$(*string”,N) operates like the function LEFT$(“string”,N) but
returns the last N characters of the string. The MID§(“‘string”’ ,M,N) function
returns a portion of “‘string” starting with the Mth position and containing N
characters. For example, PRINT MID$(“ABCD",2,3) displays the string
BCD. It starts with the second character of the string ABCD and is three
characters long.

COMMENTS
FE = "TRSZ-SH¢ Specify string A$.
FRIMT LEM:CA® There are six characters in A$.
S
FRINT LEFT#OA%. 20 The first three characters in A$ are
TR= displayed.
FRIMT RIGHT$LA:, 23 The last two characters in A$ are
S displayed.
Ef={ EFT#.A%, 77 The 7 is acceptable even though it
FRIMT B¥ exceeds LEN(A$).
TRZ-—-28
FRIMT LEMOBES: Is B$ = 6 or 7 characters in length?
& B$ has six characters.
FPRIMT LEFT#.A%, LENCAR) LEN function may be an argument
TRS—ZE for another function.
FRIMT MID®EAE, 2. 50 Select three characters from AS,
R starting with the second.
ERINT MIDECHT, LEMHOAE . 19 Display the last character in AS.

(2l

The LEN and LEFT$ functions are used in the following program to
create a unique display.

HE="TRS~z0"

FOR =1 TO LEMNCAF:
FREINT LEFT®<A%, Mo
ME=T M

16
25
4

147 sec. 10.3 [character manipulation functions (LEN, LEFTS, RIGHTS, MID$)

The number of characters displayed on each line of output is controlled by
M. M increases from 1 to 6;the length of the string ““TRS-80"" is 6.

REMEMBER: The functions LEFT$, MID$, and RIGHTS$ have strings as arguments
and are used to isolate specific characters within the strings.

g> Example: Number of Words in a Text

In this program we input a text and check to determine how many words it contains. The
number of blanks in a text is a direct measure of the words. The number of words equals
the number of blanks plus 1. The text can be no longer than 255 characters. The CLEAR
600 reserves 600 bytes for string storage.

16 CLEAR <BD:. CLS: COUMT=8

<@ IMNPUT “YOuR TEXT " A%

28 FOR k=1 TO LEMw.A%?

48 IF MIDE.AF. B, 4 <" "THEN &8

D COUNT=COURT+1

=8 HEST K

7B OFRINT "HUMBER OF WORDE": COUNT+1
FLitd

FOUR TEAT? TO BE OF MOT To BE
HUMEBER OF WORDE &

The number of characters in the entire text, LEN(A$), determines the range of the loop
(lines 30 to 60). The text’s characters are compared one at a time to the blank “ * in
line 40. If a character equals a blank, the counter COUNT is incremented by 1. Enter the
program and try it on your favorite phrase. Does the program work for a text consisting
of a single word?

C:> Example: Palindromes

A palindrome is a word that reads the same forward or backward, for example, OTTO or
MADAM. The following program determines whether a specific string is a palindrome.

18 CLERR 1@6a

28 IMPUT "YOUR TEAT": A%

28 FOR K=LEN$(R$> TO 1 STEP -1

48 BEF=EBF+MID$S(A$, K, 10

8 NEXT K

@ IF A¥=b% THEN PRINT "IT IS A PALINDROME": END
8 PRINT "IT IS NOT A PALIMNDROME®

YOUR TEXRT? MADAM
IT IS A PALINDROME

The loop of lines 30 to 50 rearranges the text A$ and forms string BS$. This new string is
string A$ backward. If A$ equals BS$, the text is a palindrome, and otherwise it is not.
What happens if the text we input in line 20 consists of a single character? Try it. Can
you think of any palindromes?

148 ch. 10 | strings

Example: Coding a Message

To code a message, we add a certain number to the ASCII value of each of the characters
of the message. This added value is the code. It is entered as part of the INPUT and is
called N.

16 CLEARR 160466

z& INFUT "YOUR CODE VALUE": M

28 INFUT "YOUR MESSAGE": A%

48 FOR k=1 TO LEMNTR$:

5¢ REM ISOLATE THE KTH CHARACTER

55 BEF=MIDH{R$. K, 10

&9 REM HADD N TO THE ASCII CODE OF THE KTH CHRARACTER
65 B=N+ASCI(E$

76 REM CONCATENATE THE CODED CHARACTER TG THE CODED MESSAGE
75 CODE$=CODE$+CHR$(BD

268 NEXT K

9@ FPRINT “"THE CODEDR MESSAGE . W CODES

RUN

YOUR CODE WALUEY 1

THE MESSHRGE? ABC

THE CTODBED MESSAGE: BCD

This program works fine as long as the sum of the ASCII codes of the characters and N
does not exceed 255 in line 65. If N is very large or if characters with high ASCII code
values are used, it may be necessary to test B. If B exceeds 255, then specify it as
B = B - 255.

Can you write a similar program to accept a coded message along with its code value
and output the decoded message?

10.4 OTHER STRING FUNCTIONS

The STRINGS$(N.“character’) returns a string consisting of N identical char-
acters. N is a numeric constant, variable, or expression, and the character can
be any alphanumeric character as an ASCII code number. The STRINGS
function may be used effectively to prepare graphic displays and bar graphs.
The following examples illustrate the use of this function:

COMMENTS
PRINT STRIMNGHS, "A"2 N = 5;the character is an A.
ARRAR
FRIMT STRING$(S, 650 N = B; the character is the ASCII
AFRARARA code 65, which is the letter A.
PRINT STRIMGH(1648, "R"2
0S8 ERRUOR An out-of-string space error occurs;

CLEAR 100 is needed.

The request for a string of 100 A’s caused an error. When the computer is
first turned on, a CLEAR 50 is automatically executed. The CLEAR n com-
mand resets all numeric variables to zero and all string variables to null. In
addition, this command reserves n bytes for string storage. A request of 100

149

sec. 10.4 | other string functions

A’s exceeds 50, the limit set automatically when the computer is turned on.
To avoid the OS error, we first execute CLEAR 100.

The FRE(*string”) function returns the amount of unused string storage
space. The argument string is a dummy argument. Any string constant, vari-
able, or expression can be used as a valid argument.

COMMENTS
FRINT FREC("R"2 When the computer is first turned
58 on, 50 bytes are reserved for
strings.
AF=STRINGE{Z8, "A"2 A$ is a string of 30 A'S.
FRINT FREC"E"? Any string is acceptable as an argu-
e ment of FRE.
20 bytes are now left (b0 - 30
= 20).
CLEAR 368 A$ is set to null and 300 bytes are
FRINT LEMOA$: now reserved.
o} A$ is now a string of zero length.

A$=STRIMG$ (S0, "A" 3 AS$ is 80 characters in length.
FRINT FREC"C"D

2z 220 bytes remain unused.
AF=STRIMGE IBE, "A" lllegal-Function-Call error.
TFC ERROR A string cannot exceed 255 char-
acters.

The FRE(“string’) function is not to be confused with the MEM function,
which returns the unused bytes in memory.

The STRS$(expression) converts a numeric expression or constant to a
string. For example, if Pl = 3.1415, then STR$(Pl) equals the string
“3.1415”. The leading blank is to allow space for a negative sign. Since
STR$(P!) is a string constant, only string operations may be performed with
it and no arithmetic operations.

The function VAL(‘string”’) returns the number represented by the char-
acters of the argument string. For example, VAL("’123"') equals the numeric
constant 123. The VAL and STR$ functions perform opposite operations.

COMMENTS

A=12Z3

PRINT STR$CLZZD Convert 123 to the string ""123"".
1232 123 is a string.

FRINT STR$U1Z23+1 Type-Mismatch error.

*TM ERROR Cannot add 1 to a string.

PRINT YALCTA2E"s+1 VAL{""123") is the number 123.
Lz 123 + 1 = 124,

B=YALCSTRECAL A and B are equal since VAL and

PRINT B=H STR$ perform inverse operations.

-1

FRINT LEMCSTREC-Z03 The string “-3” consists of two
2 characters,

FRINT LEHCSTRS(I0 The 3 is positive and therefore has a
2 leading blank; the string then has

two characters.

REMEMBER: The VAL and STR$ functions complement each other; VAL(STR$(7))
equals the number 7, and, similarly, STR$(VAL("'8"}) equals the string “8”.

150 ch. 10 / strings

q> Example: Underlining a Title

The following program underlines all the nonblank characters in a title. A flowchart is
shown in Figure 10.1.

166 CLERR S6E

165 INFUT "WHAT IS YOUR TITLE": T#
118 CLS: M=
128 FRINT T#
138 FOR E=1 TO LEM(T$:

14@ IF MIDECTH. ko L3<0" " THEW WsH+Ll: GO TO 168
156 GOSUE 88

168 HEXT k

178 REM LOOF COMPLETED

1826 GOSUE Z@@

196 END

208 REM SUBROUTINE TO UNDERL IME

216 FRINT STRIMGECH. "="1,

2z@ FRINT " "

230 H=@

4@ RETURN

L - x]

RN
WHAT 15 YOUR TITLEY COMPUTERZ RRE FUOR K1DE
COMPUTERS ARE FOR KIDS

After the title is entered the screen is cleared. The title is displayed and the underlining
appears on a separate line single spaced below the title. Does the program work for a title
consisting of a single character or a title consisting of several words each separated by
several blanks?

The program consists of a main program (lines 100 to 190) and a subroutine (lines
200 to 240). In the main program we examine each character in the title. The counter N
is incremented if the character is not a blank. Once a blank character is encountered in
line 140, transfer is made to the subroutine, where N minus signs are printed to underline
N nonblank characters in the title. The STRINGS$ function is used for this purpose. Then
a blank is printed to properly break the underlining of the title beneath the blank. Execu-
tion subsequently returns to the main program within the loop at line 160. Each time
transfer is made to the subroutine the nonblank characters between successive blanks are
underlined. Once the loop is completed, transfer is made for the last time to the subrou-
tine in line 180, and the last characters of the title are underlined.

Example: Binary-to-Decimal Conversion

In this example we input a binary number consisting of zeros and ones. The computer
then converts the binary number to its decimal equivalent. For example, the binary num-
ber 1101 is converted as follows: 1101 =1 X 23 +1 X 22 +0 X 21 +1 X 2°
=8+ 4+ 0+ 1 =13 Sobinary 1101 is equivalent to decimal 13.

18 INFUT "BINARY HUMBER": B$
26 N=@: DEC=8

39 FOR K=LEN<B$» TO 1 STEP -1
48 MN=N+1

58 D$=MID$ BE K, 1>

151

sec. 10.4 [other string functions

START Program Line Numbers

INPUT
TITLE T$ (108)
(110)
PRINT
TITLE TS (120
| K
—] K=1TO LEN(T$) | (130)-{160)

IS
Kth CHARACTER IN
T$ A BLANK?

YES

(150}

GOSUB 200

SUBROUTINE

(140}
UNDERLINE N
CHARACTERS AND THEN |:200)-(240)
PRINT 1 BLANK.

LET N =0
i ¥
REM
LOOP COMPLETED {170)
¥

FIGURE 10.1 Underlining a title.

&8 DEC=DEC+HVALCDEI+IL (M-13
T8 NEXRT
868 FRINT "DECIMAL EQUIVALENT": DEC

RUN
EINRRY HNUMBER?Y il
DECIMAL EQUIVALENT =

The binary number is entered as a string of zeros and ones. Each character in the string,
that is, each zero and each one, is converted to a number using the VAL function in line
60. It is then multiplied by the proper place value. The place values are 22,21, 22, and so
on, for successive digits starting at the right end of the string B$. The sum in line 60
yields the decimal equivalent DEC of the binary number B$.

The INKEY$ function is used to receive information, one character
at a time, from the keyboard. The ENTER key need not be pressed to com-

152

¢h. 10 [strings

plete the data entry. This is in contrast to entering data with the INPUT
statement. With INKEY$ the single character is automatically processed
once the key is pressed. It is, however, not displayed on the screen. When
the INKEYS$ is encountered, the keyboard is examined to determine if a key
has been pressed. If no key has been pressed, the null character is assumed.
The following short program places a single character at the top corner of
the screen.

i@ CLS
28 FRIMT @ &, INKEY$®: GO TO z8

We execute the program and notice that the character corresponding to
whichever key we press appears on the screen. To stop execution, press
BREAK to escape from the infinite loop in line 20.

We now edit line 20 and take out the GO TO 20.

1@ CLS
28 PRINT ® &, INKEYS$

When RUN is entered, the READY appears immediately, indicating comple-
tion of execution. The INKEY$ needs to be placed within a loop so that the
keyboard is repeatedly scanned for an entry. If it is not placed within a loop,
as in the above edited version of the program, the keyboard is scanned only
once. If by that time no entry has been made, INKEY$ is a null string.

REMEMBER: The INKEY$ function makes it possible to enter data without pressing
the ENTER key.

@ Example: Characrer String Entry Routine

Any string up to 255 characters in length can be entered with this routine. There is no
restriction on the type of characters entered; digits, letters, as well as symbols are permis-
sible. Once the / character is entered the string is complete. The ENTER key need not be
pressed.

18 CLEARR 1888 CLS

28 FREIMT "ENTER AMY CHARACTER STRIMNG"

B FOR I=1 TO Z5S

i GF=INKEY$: IF Q="" THEM 46

o8 OIF QE="S" THEM 7@ ELSE R$=A$+aid

8 NEKT I

FEOPREINT . PRINT “"THE STRING YO EMTEREDR I="
28 FRINT A%

RN

EMTER AMNY CHARACTER STRING

THE STRING %0l EMTERED IS
HE SHID "PLEARSE DONCT EAT THE DRISIES®

In this case we entered a string containing quotes and an apostrophe. They are all part of
the string A$.

153 sec. 10.4 | other string functions

C:> Example: Shoot the M’s, A Video Game

The INKEY$ function is particularly useful in writing programs to play video games.
These games usually require quite sophisticated programming. Shoot the M’s is a simple
game for preschoolers. It requires no skill and only luck. The object of the game is to
eliminate the M’s from the screen by pressing the space bar. Once all the M’s have disap-
peared, press the BREAK key and PRINT L to find out how many shots it took.

18 CLS: RANDOM

26 FOR K=& TO 18

36 FRINT @ Gdwk+ze, "M H"

48 NEXT K

S8 L=

£ QF=IMKEY# IF G3="" THEM €@
T L=l+l

S8 FRINT @ RHDCLEGE), G

S| GOTO e

The loop of lines 20 to 40 displays on the screen a column consisting of five rows of the
character string “M M". The counter L keeps track of the number of shots we take. Each
shot is one INKEY$ entry, which equals the character string Q$. This entry is made by
pressing the space bar, Q% is therefore a blank character string. It is printed in line 80 at a
randomly determined print position. Eventually, the blanks replace all the M’s and the
game is over. At that point, press BREAK followed by PRINT L to display the number of
shots taken to displace the M’s.

g> Example: Shoor the Duck

This game is a more sophisticated video game that requires some skill. A duck moves
across the top of the screen. A gun, located at the lower edge of the screen, is fired at the
duck. The up arrow key activates the gun, and the message *BOOM?* appears on the
screen in the event of a hit.

16 REM SHOOT THE DUCK

414 CLE: PRINT . "IMSTRUCTIONS”

12 PRIMT "UP ARROMW KEY FIRES GUN"

14 PRINT: PRINT "sokdsr GOUD LUCK sk
15 INFUT "PRESS “ENTER‘ MWHEN READY'": 6%
1€ T#=CHR$(1283+CHR$ (191 }+CHRF (191 1 +CHR$(ATED
17 THE=TE+CHR$ (2523 +CHRF (LI +CHRFCLES I +CHRE (254
18 T#=T#+CHRF(1L4ZI+CHRE(A4B0+CHRE (255
19 REM INITIALIZE POSITION OF GUN

20 CLS: SET(E3, 472

232 REM MOVE DUCK RCROSZ SCREEM ALONG Y=0
24 REM VARIABLE T4 IS THE DUCK

29 FOR K=1 TO €@: PRINT @ K. T$

26 REM CHECK FOR KEYBOARD ENTRY

30 C$=INKEY$: IF C$="" THEN 58

35 C=R5CCS$>

26 REM V¥V IS5 Y-POSITION OF BULLET

27 REM BULLET IS AT x=63

38 REM CHECK IF GUM JUST FIRED

38 7 AND BULLET NOT IN MOTION

46 REM Y IS SET TO 47 WHEN GUM IS FIRED
42 IF ¥<{=8 AND (=91 LET Y=d47¢

56 SETCEZ. 47> 7 SET GUN POSITION

154 ch. 10 [strings

59 REM CHECK IF BULLET IN MOTION

&8 IF ¥<{=8 THEN 3@

78 REM BULLET IS AT POSITION (&63. Y’

7o RESETI8Z, ¥): ¥=¥-4. IF Y{=@ GOTO 56
72 REM POINTC(E3, Yi=-1 WHEM BULLET HITS DUCK
88 IF POINTC(EZ.¥)=0 SET(E3Z,Y¥»:. GOTO 98
835 CLS: PRINT @ K., "+BOOM*"

86 REM TIME DELAY FOR +*BOOM# DISPLAY
87 FOR L=1 TO 25@:. NEAT L

89 GOTO z8

90 NEXT K: GOTO 25

The program contains many REM statements that explain the code. In addition, the fol-
lowing comments may be helpful:

Lines 16 to 18: Variable T$ consists of several graphic characters that together
assume the shape of a duck.

Line 25: The duck moves one step at a time across the screen; the end of the FOR-
NEXT loopisat line 90. As the duck moves across the screen (along Y = 0), its horizontal
position is specified by the value of K.

Line 75: The bullet moves straight up. Its vertical position Y therefore continuously
changes as the value of Y decreases from 47 to 0. The horizontal position of the bullet is
unchanged and equals the horizontal position of the gun at X = 63. The bullet’s position
is RESET before each move. Its path therefore appears as a sequence of dots and not as a
line,

Line 80: If the bullet reaches a position that is set by the presence of the duck, that
is, for which POINT(63,Y) = -1, then the bullet is colliding with the duck and the mes-
sage *BOOM* appears.

Line 87: The time delay leaves the message *BOOM®* on the screen for a short period
of time.

Line 89: The game starts over after the time delay of line 87. To stop execution,
press BREAK,

The game illustrates video game programming. Several refinements could be included
to improve the game. The duck could be made to move back and forth, and a scoreboard
could be added. The game may be more fun if the position of the gun is controlled by
the player and if a timer were incorporated to score the number of hits within a specific
time interval.

Example: Etch-a-Sketch

This popular children’s toy is used to draw a pattern of lines—a graphic display. We simu-
late this toy on the computer.

COMMENTS
i8 REM ETCH-A-SKETCH
15 #=€3. ¥=zZ:. CLS The starting point is at mid-screen.
=8 OM ERROR GOTO &g
2% EEM BLINEING BLOCK
28 RESET(S Y3 SETCH, ¥ A sequence of RESET and SET
5 RESETCN: Y. SETCHN, Y3 produces blinking.
48 CH=IMNKEY$. IF Cg="" THEMN 28 The next move is entered.
S8 C=ASC(CE>
54 REM RIGHT ARROW MOVE? ASCIlI code of right arrow key is 9;

155

exercises 13

IF C=9 LET #=h+l
REM LEFT ARROW MOVE?
IF C=8 LET H=x-i

3 increment 1 position to right.
=

a

4 REM UF ARREOW MOVE?

5

9

ASCIl code of left arrow key is 8;
increment 1 position to left.

ASCII code for up arrow key is 91;
increment 1 position up.

ASCII code for down arrow key is
10: increment 1 position down.

Draw line to new position.

IF C=591 LET v¥=Y-1
REM DOMM ARROW MOVE?
78 IF C=18 LET Y=Y+i
7O OSETCL YD GOTO 48
&8 REM ERROR ROUTINE

84 REM AVOID GOING OFF SCREENM Remember, Y = 0 is along top of

screen.
835 IF Xo4z7 LET w=12T7 Do not allow X to exceed 127 or be
368 IF #x<8 LET X=6 less than 0.
92 IF Y47 LET ¥=47 Do not allow Y to exceed 47 or be
85 IF ¥<B LET Y=6 less than 0.
38 RESUME 4@ To stop execution, press BREAK.

The sketch starts out with a small blinking block at mid-screen (X = 63, Y = 23). From
there, depending on which key is pressed, a line is drawn sideways, up, or down. The
INKEY$ function is used in line 40 to specify the direction in which the line is to be
drawn. The ASCII code of the key pressed is determined in line 50 and then tested in
lines 55 to 70 to determine the direction in which the line is to proceed. The new line
segment is drawn in line 75 using the SET function. The error routine (lines 85 to 98)
ensures that execution is not interrupted when the cursor attempts to go off screen.

There are several ways in which the program can be modified: the starting point of
the sketch may be placed at a position other than mid-screen or larger line segments may
be drawn. For example, it may be desirable to make the line segments in the right-left
directions three times as large as the up-down segments. Another possibility is to intro-
duce an additional key that will draw along the diagonal. This will give the “artist” added
flexibility. Can you implement any of these changes?

EXERCISES 13

1. Before executing the instructions, fill in the anticipated dispiay and compare it with
the actual display.

Instruction Anticipated Display Display
FRINT ASCo"B"a
PRINT RSCo BEOY ™
PRIMT ASCCSL
FRIMT RSCUFIVER
FRINT ASCCYS"s

,iPRINT RSO M2
G PRIMT ARSCO™ "
"PRINT CHR$C4E
. FRINT CHR$CES5s
PRINT CHRE#{&5+
. PRINT CHR#{34+
. PRINT CHR$CZZES
CLERR

. PRINT RZCCCHRECTER:
0. PRINT CHREFC(RSCO"TRS!

BB mme P me fo op

p. G$=CHR#(I40
q. FRINT G$+"TRS-26"+0$

156 ch. 10 [strings

2. When filling in the anticipated displays, be sure to account for leading and trailing
blanks.

e

L s

3. Which of the following expressions are equivalent? Assume:

[on

B e n PR mo oo o

e e O

R 7@

@Yo

Instruction

GE="TO

FRINT
FRINT
FRIMT
FRINT
PRINT
FRINT

PRINT
FRINT

PRINT
FRINT
PRINT
FRINT
FRINT
PRINT
FRINT
FRINT
FRINT
PRINT
FRIMT
PRINT
FRINT

Instruction

PRINT
PREINT
FRINT
FRINT
FRINT
FRIMT

FRINT
FRINT
CLERAR
FRINT
PRINT
FRINT

FRINT

F$="FUN"

FRINT
FRIMT
FRINT
PRINT
FRINT

Anticipated Display

BE OR NOT TO BE"

Display

LENCHR$

LEMOGE

LEFT$ Q4. G

LEFT# R, B2

LEFT# 0¥, 287

LEFTS RS, LENCGE) 2

RIGHT# G, G2

RIGHT® R#, 53+LEFTH(0%. B2

A¥= "1 A EARLY"
B$ = "I AM LATE"

LEFTSHRE, 43
MIDECAS. €, 10
RIGHTS (R, 12
LEFT#CB%, G2

A%

LEMCR$D
LENCLEFTS RS, 450
MIDECES, 1,42

MIDsCRE, LEMCAE . 12
LENCRIGHTS$CE#, 452
LEMCBF
MIDSCRIGHT$# (A% 0.6, 10
LEFT#CB#$. Sy+RIGHTS (RS, T

Anticipated Display
FRE."S&" o

Display

STRIMGEC4E, "=

STRINGECSE, "="0

STRIMGELE, "=")

STRIMGE LR, "

STRIMGE. s, 5, "="2

STRIMNGHCq, "ABCY)

FRE."="2

45E

FREC"SY »

STRIMNGHEL 2GS, "S7 0

Wy

STRIMGEHC2IE, "55

STRIMNGECZSE, "EMDY 3

FRE."A$"

HMEM

WAL LS i -1E

"RU+STRELL

LEMCETREVIZE 1

157

exercises 13

10.
11.

12.

Instruction Anticipated Display Display
L PRINT LEMcSTR$—1330 0
U, FREINT YALC1&:
Vo PRINT STRE#OWAL LSz
w. 18 FRINT @ 1906, INKEY: . GO To ia
X. RUN
. What do the following programs accomplish?
a. 1& FOR k=1 TO Z b, 18 CLS. k=e5
26 CH=IMEEY$. IF C#="" THEM 2@ 28 FOR A=8 TO
I8 Ti=T#+0% . MEXT kL ZE FOR B=8 TO £3
48 CLS. FRINT @ Soé. T+ 48 FRINT CHR$ KD
TE G0 TO D6 S8 HEST B
SE R=R+d
ve MNEST A
=@ G0 TO SR

IHFUT
FRINT H: "COMPUTER": CHR$F CABS U SGHNON~L 34833)

o
2
15

iy
I

=<

. a. Write a program to input a text and output the number of E’s occurring in the

text.

b. Modify the program of part a to output the number of times each vowel occurs in
the text.

c. Modify the program of part (a) to display the number of times the ending ING ap-
pears in the text.

. Write a program to input a coded message along with its code value and output the

decoded message. Before writing the program, review the example Coding a Message
presented in this chapter.

. An imperfect palindrome is a statement that reads the same forward or backward

after all nonalphabetic characters have been removed. Write a program to input a text
and test if it is an imperfect palindrome. Check your program on

SMADAM T AlaR
EGRD A BRSE TOME DEMOTES & BRDL AGE

Hint: Determine the ASCI code of each of the string’s characters and test if it falls

in the range 65 to 90 inclusive; if it does not, the character is dropped since it is not a
letter.

. Write a program to input the names of N different states and list them in a right-

aligned format. For example,

COMMECTICUT
FEHODE ISUAMD
MAIME

MHAZZACHUSETT=
MERM HEMFSHIREE
VERMONT
Hint: Use the TAB and LEN functions in a PRINT statement.

Determine the longest word in a sentence.

Suppose the variable W$ is a character string containing only letters. Determine the
number of letters in W$ that are also in “TOBY".

Program the computer to play the game of BUZZ. In this game we count from 1 to

158 ch. 10 [/ strings
100, but for any number containing the digit 7, display BUZZ instead of displaying
the number. For numbers that contain a 7 and are divisible by 7 display BUZZ BUZZ.

13. Merge two lists of names that are in alphabetic order into a single list of names also in
alphabetic order.

14. Find every two-digit number that equals the sum of the squares of its digits.

sppeadix I '89000 messag&s

The following table summarizes the Level II BASIC error messages and
includes a brief description of their cause and corrective action.

Error
Error Code
Message Number Cause (Corrective Action)

NF 1 FOR statement missing, or | and K in NEXT I.K out of order.
Add FOR statement, or delete NEXT statement.

SN 2 Syntax error. Incorrectly formed statement; for example, error
in punctuation or unmatched parentheses.

RG 3 RETURN without GOSUB. GOSUB must be executed before
RETURN. Delete RETURN statement or add a GOSUB
statement.

oD 4 Out of data. Insufficient data in INPUT # or READ-DATA.

FC 5 Illegal use of a function. Adhere to the proper format of the
function; for example, cannot take the square root of a nega-
tive number.

ov 6 Overflow. Value exceeds allowable maximum ; for example, an
integer cannot exceed 32767.

oM 7 Out of memory. Memory capacity of the computer exceeded.
Cut back on DIM, REM, and other statements.

UL 8 Undefined line. Reference made to a missing line number. Add
the line to which execution is to branch.

BS 9 Subscript out of range. Modify the DIM statement to include
the desired subscript.

DD 10 An array is dimensioned twice. Specify array’s DIM only once.

/0 11 Division by zero. Avoid zero in the denominator.

D 12 lilegal use of INPUT ; line number missing.

™ 13 Mismatch of variable types; for example, a string variable is
assigned to a numeric variable, or vice versa.

(O] 14 Out of string space. Increase N in CLEAR N.

LS 15 String too long. Maximum string length is 255 characters.

ST 16 String operation too complicated. Break up into shorter steps.

CN 17 CONTinue statement cannot be executed; for example, after an
END statement, or after editing.

NR 18 RESUME statement is missing. Add a RESUME at the end of
the error-trapping routine.

RW 19 RESUME encountered without an ON ERROR GO TO. Check
for missing ON ERROR GO TO.

159

160 app. I | error messages

Error
Error Code
Message Number Cause (Corrective Action)
UE 20 Invalid error code number used with ERROR statement. Check
list of error code numbers.
MO 21 The operation is missing an operand. Add the operand.
FD 22 File data are not acceptable. Data on tape are not compatible.
L3 23 This BASIC statement is only available when the computer’s
mini disk is connected through the interface.

sppedix Wl reserved words

161

None of the following words can be used inside a variable name. A syntax
error will occur if these words are used as variables. However, all words end-
ing with the symbol $ (for example CHR$) may be used as legal variables
when the $ is dropped. Therefore, CHR is a legal variable. Some of the words
listed below have no function in Level II BASIC; they are reserved for Level
II Disk BASIC.

@ ELSE LOC RESTORE
ABS END LOF RESUME
AND EOF LOG RETURN
ASC ERL LSET RIGHTS
ATN ERR MEM RND
AUTO ERROR MERGE RSET
CDBL EXP MID$ RUN
CHRS$ FIELD MKD$ SAVE
CINT FIX MKI$ SET
CLEAR FN MKS$ SGN
CLOCK FOR NAME SIN
CLOSE FORMAT NEW SQR

CLS FRE NEXT STEP
CMD FREE NOT STOP
CONT GET ON STRINGS$
COS GOSUB OPEN STR$
CSNG GOTO OR SYSTEM
CvD IF ouT TAB

CVI INKEY$ PEEK TAN
CVS INP POINT THEN
DATA INPUT POKE TIME$
DEFDBL INSTR POS TO
DEFFN INT POSN TROFF
DEFINT KIiLL PRINT TRON
DEFSNG LEFT$ PUT USING
DEFSTR LEN RANDOM USR
DEFUSR LET READ VAL
DELETE LINE REM VARPTR
DIM LIST RENAME VERIFY
EDIT LOAD RESET

sppeadix

Abbreviations
ABS({X)
Access time

Address

Algorithm
Alphanumeric character
AND

Argument
Arithmetic operators

Array
ASC/(string)

ASCII code

Assembler

Assignment
ATN(X)

AUTO
BASIC
Baud

162

glosssry

The following glossary provides short descriptions of Level 1I BASIC com-
mands, instructions, and functions. Most of the terms are described in detail
within the text and can be located readily through the index. In addition,
the glossary includes some frequently encountered programming and data-
processing terms.

Level II BASIC allows for only three abbreviations: ? for PRINT, * for REM, . for last line
entered, edited, or in which an error occurred.

A library function to determine the absolute value of X. The absolute value of X is always
positive; for example, ABS{5)=5, and ABS(-5}=5b.

The time interval between the instant at which data are called for from storage and the
instant delivery begins.

A location in memory where a byte is stored.

A step-by-step procedure for solving a specific problem, or for performing a specific task.
Any letter, digit, or special symbol.

A logical operation; -1 AND -1=-1;0 AND -1=0;0 AND 0= 0.

The expression on which a function operates to yield a specific result; for example, 5 is
the argument in SQR(5).

Perform arithmetic with numeric variables: addition (+), subtraction (-), multiplication
(%), division (/), exponentiation (1).

A subscripted variable; an ordered list of numbers or strings.

Returns the ASCII code of the first character of the string. Performs the inverse of the
CHRS$ function.

American Standard Code for Information Interchange;in Level II BASIC the codes corre-
spond to numbers 0 to 255.

Converts a symbolic language program into machine language.

The procedure by which the value of a variable is specified. Assignment is indicated by
the equal sign; for example, X=b.

A library function to determine the arctangent of X. Displays the angle {(in radians) whose
tangent is X.

A command for automatic line numbering.
Beginner’s All-purpose Symbolic Instruction Code; one of many computer languages.

Speed in which information is transferred; measured in bits per second.

163

Binary number
Bit

Branching
BREAK key
Built-In function
Byte

CBDL(X)
Chaining

CHRS$ (N)

CINT(X)

CLEAR
CLEAR key

CLEARN

CLOAD

CLOAD “NAME"”

CLOAD? “NAME"

CLS
Coding
Colon (:) key

Comma

Command mode

Compiler
Computer program

Concatenate

Conditional transfer

CONT

Cos(X)
CSAVE “NAME"”

app. lI | BASIC glossary

A number in the base 2 number system consisting of the digits 0 and 1.

Binary diglT;a single digit in the binary number system;i.e.,a binary 1 or a binary 0.
See transfer statements.

Stops execution; to resume type CONT. Also used to escape the AUTO command.
See library functions.

Smallest unit of memory; consists of 8 bits.

A library function to present X in double precision.

Forming a multiple statement line. Saves memory space. Colons are used between state-
ments to chain them together into one line.

Returns the character that has N as its ASCII code. The argument N may be any expres-
sion whose numerical value is 0 to 255. Performs the inverse of the ASC function.

A library function to determine the largest integer not greater than X. The argument X
must be between -32768 and 32767 ; for example, CINT(2.2)=2, and CINT(-2.12)=-3.

A command to set all numeric variables to zero and all string variables to null.

Clears screen; returns cursor to first line; switches from 32 to 64 characters per line
format.

A command to reserve N bytes of memory for strings. In addition, the command sets all
numeric variables to zero and string variables to null. When the computer is first turned
on, 50 bytes are automatically reserved.

Command to load the very next program stored on the cassette into the computer.

Command to load the program NAME from cassette into the computer. Only the first
character of NAME is recognized by the computer.

Command to compare a program on cassette with the program in the computer. Useful
in checking whether a program was properly stored on cassette.

A statement to clear the screen and move the cursor to the top left.
Writing a computer program.
Used to chain statements together; for example, 10 FOR I=1 TO 5: PRINT {: NEXT.

Causes the items of a list in a PRINT statement to be displayed in successive zones
across the screen; for example, PRINT A B,C.

Computer responds to commands upon entry. When in this mode, the >_ is displayed. In
the command mode, distinction is made among immediate and programming modes.

Converts a high-level language program into machine language.
See program.

String together two or more string variables; for example, “AB’" + “C" gives “ABC". The
plus sign identifies concatenation.

A statement that transfers execution to a specific line in a program depending on whether
a certain condition is met.

Command to continue execution after it has been stopped with the BREAK key or with
a STOP statement. BREAK and CONT are useful in debugging.

A library function to determine the cosine of X. The argument X must be in radians.

Command to store program currently in the computer on tape. To transfer the program
back from cassette to computer, use CLOAD “NAME”.

164

CSNG(X)

Cursor

DATA
Data validity check

Debugging
DEFDBL lerters
DEFINT lerters

DEFSNG lerters
DEFSTR lerters
DELETE

Device number

DIM

Double-precision
variable

Dual cassetres
Dummy argument

Edit mode

EDITN
END

ENTER key

ERL

ERR

ERR/2+1

ERROR code

Error message

Error N

Execute mode

app. IIl | BASIC glossary

A library function to form the single-precision version of X, for example, CSNG
{1.234567890) is 1.23457.

Pointer on the screen indicating position in which next typed entry will be made.

A statement that stores data in one or more lines within a program. These data can be
read with a READ statement; for example, 10 DATA 10,20,”ERIC".

Giving the operator an opportunity to check the data just entered and to make correc-
tions before data are processed.

The process of locating and removing errors from a program.
Variables beginning with the specified letters are declared as double-precision variables.

Variables beginning with the specified letters are declared as integer variables. Saves mem-
ory and executes faster.

Variables beginning with the specified letters are declared as single-precision variables.
Variables beginning with the specified letters are declared as string variables.

Command to erase a line or several lines of a program in memory; useful in editing; for
example, DELETE 50, DELETE -50, or DELETE 50-80.

In the presence of two cassette drives, it is necessary to specify which cassette drive is to
be accessed; for example, CLOAD #-1,F" or PRINT#-2,A,B.

Reserves memory space for subscripted variables. Specifies the range of each subscript. If
no DIM statement is used, a range of 11 (subscripts 0 to 10) is allowed as the dimension
of each array; for example, 10 DIM A(10,10) is not needed.

Sixteen significant figures; for example, A#=1.234567890123456.

Using two cassettes on line.
An argument that can take on any value whatsoever and produce the same result.

Add, change, or delete lines in a program. Enter mode through EDIT N (N = line num-
ber). Escape edit mode by pressing Q.

Command to display line number N and switch to edit mode.

This statement terminates execution without a BREAK. END is optional. In its absence,
execution stops when the last statement of the program is executed.

Press to communicate an instruction to the computer.

Function returns the line number at which an error has occurred. It equals zero if no
error has occurred. If an error occurs in immediate mode, ERL=65536. Useful within an
error-handling routine.

Function returns the (error code -1)*2 of the error that has just occurred. Useful within
an error-handling routine.

Function returns the error code of the error that has just occurred. Useful within an error-
handling routine.

This statement causes the computer to proceed exactly as if the error corresponding to
the specified code has occurred. Useful in testing an ON ERROR GOTO routine.

Diagnostic information given by the computer about an error in the program;see Appen-
dix 1.

Every error has a code number N. There are a total of 23 error codes numbered 1 to 23.

Computer executes a program; mode entered by typing in RUN.

165

Execution

Execution sequence

Expansion interface

Exponentiation
EXP(X}
EXTRA IGNORED

File
FIX{X)
Flag

Flowchart

FOR

FOR-NEXT loop

FRE(string)

GOSUB N

GOTO N

Graphic block

Halt execution

Hanging comma

Hanging semicolon

Hexadecimal number

Hierarchy of operations

High-level language

IF-THEN-ELSE

Immediate mode

INKEY$

INP(P)

app. Il | BASIC glossary

Programs are executed to yield results.

Unless otherwise specified the execution of a program is sequential by line number, start-
ing with the first statement of the program.

Allows the use of additional devices: a second cassette, a printer, up to four mini disk
drives, and up to 48K bytes of RAM.

ATB: A to the power B; for example, 213=8.
A library function to determine ¢”; for example, EXP{1) = 2.71828.

Computer’s response to entry of more data than required by INPUT. Execution continues
without interruption.

An organized collection of information.
A library function to truncate X at the decimal point; for example, FIX(3.1415)=3.

A special identifier; for example, it may identify the last data entry or the last record in a
file.

A grid of boxes interconnected by arrows, which shows the overall structure of a com-
puter program.

The first statement in a FOR-NEXT loop.

The first statement of the loop is the FOR statement; the NEXT statement is the last.
Together the sequence of statements constitutes a loop that is executed a specified num-
ber of times.

Returns the available string storage space; the argument string may be any (dummy)
string variable or constant. Available space is related to CLEAR N,

Unconditional transfer to the subroutine beginning at line N.

Unconditional transfer to line N. In immediate mode (no line number), this statement
will start execution at line N, Unlike the RUN command, it does not initialize all variables
to zero and null.

The video display is divided into 1024 graphic blocks: 128 horizontal and 48 vertical
blocks. These can be addressed through the graphic functions. The point 0,0 is at the top
left corner of the screen.

Press SHIFT @ to freeze the display. To resume execution, press any key.

Suppresses the line feed. Successive PRINT statements display in successive zones on the
same line; for example, b0 PRINT A,

Suppresses the line feed. Successive PRINT statements display on the same line; for ex-
ample, 50 PRINT A;

A number in base 16.
Order of priority for performing numeric and string operations.

A computer language easy for humans to use. A program in such a language needs to be
translated to machine language before it can be executed.

A statement to test an expression. Depending on whether it is true or false, execution
transfers to different lines within a program. The IF is a conditional transfer statement.

A form of the command mode; no line numbers are used; also called calculator mode.

Monitors the keyboard over a short interval and displays the key pressed within the
interval. If no key pressed, returns the null (empty) string.

Returns the current value from the specified port P. There are 256 ports numbered 0
through 255. Requires an expansion interface.

166

INPUT “MESSAGE";

AB
INPUT#-1,AB

Integer arithmetic

Integer variable

Interpreter

INT(X)

«~ Key
{ Key

- Key

Keyboard rollover

Language errors

Left to right rule

LEFTS$/(string, N}
LEN(string)
LET

Library functions

Line length
Line number

LIST

LLIST

Logical errors

Logical expression

Logical operators

Logical variables
LOG({X)

Looping

app. III | BASIC glossary
Displays the message (if any) and interrupts execution so that values may be entered from
the keyboard for A and B.

Input the values of A and B from the cassette. The input list must be identical to the
PRINT#-1,A.B that created the tape.

Arithmetic with integer variables. It is faster than single- or double-precision arithmetic.
Results of arithmetic are integers; for example, 3/2=1.

Whole numbers between -32768 and +32767 inclusive; for example, A%=1984. Integer
variables take up less memory than other variables.

A program that takes the high-level language program and leads the computer through
the steps necessary to execute it. An interpreter does not translate the source program
into an object program. It merely interprets the code so that the computer can execute it.

A library function to determine the largest integer not greater than X, for example,
INT(32800.5)=32800, and INT{-32800.5)=-32801.

Backspaces the cursor and erases characters.
Moves the cursor down to the next line.

Moves the cursor to the next tab position. Tab positions are at 0, 8, 16, 24, 32, 48, and
56.

You can press a second key before releasing the first key.

Errors detected by the computer. The computer checks each line of code and lists errors
in the form of diagnostic messages.

BASIC statements are executed from left to right and are in addition subject to a hierarchy
of operations.

Isolates the first N characters of string.
Determines the number of characters including blanks in string.
An assignment statement. The LET is optional;i.e., 10 LET A=5 and 10 A=5 are identical.

Functions to perform a variety of different tasks that have been programmed into the
computer. These functions can be called upon within the program; for example, the func-
tion SQR{X) determines the square root of X.

A line within a program may be up to 255 characters in length.
Identifies a line in a program; any integer from 0 to 65529 is permitted.

Command to display the program currently in the computer. LIST 20 displays just line
20. Specific sections of the program are displayed by LIST-20, LIST20-, or LIST 20-40.

Identical to LIST except lists on the line printer.

Using an incorrect formula or an inappropriate function will yield incorrect results. Errors
in logic are more difficult to isolate than language errors since the computer does not
detect them and does not respond with diagnostic messages.

An expression that is either true or false. The expression equals ~1 if it is true and 0 if it is
false.

Operators that relate logical data and return logical results. Use with numeric and string
variables (AND, NOT, OR).

A variable whose value is ~1 or 0. It is specified by means of a logical operation.
A library function to determine the log to the base ¢ of X.

A repetitive process in which several lines within a program are executed a specified num-
ber of times.

167

Low-level language

LPRINT
Machine language

Main program

Matrix
MEM
Memory map

MEMORY SIZE?

MIDS(string,M,N)

Mini disk

Monitor mode

Nested loops

NEW

NEXT

NOT
Null string

Object program

One-dimensional array

ON ERROR GOTO N

ON N GOSUB N1,N2,

N3...

ON N GOTO N1,N2,

N3...

Operators

OR
OUT PN

PEEK (address)
POINT(X.,Y)

POKE address, N

app. IIl | BASIC glossary

Machine language; computer can directly perform operations specified in machine lan-
guage.

Identical to PRINT except prints on the line printer.

The language used by the computer; it is in binary.

The portion of the computer program that does not include the subroutines. Access to
the subroutines is gained from the main program.

A two-dimensional array ; for example, A(l,J}.
Returns the number of unused and unprotected bytes in memory.
Address locations of TRS-80 BASIC.

Appears on the screen when the computer is first turned on. Respond by pressing ENTER
unless you wish to reserve some memory for a machine language program.

Isolates N characters of string, starting with the Mth character. If N is not specified, all
the characters starting with the Mth are isolated.

A storage device capable of storing up to 89,600 bytes. Has an access time much faster
than tapes. Allows sequential and random access.

Loads machine language programs.

One loop is completely enclosed in another loop. Innermost loop is executed most
rapidly.

Command to erase the entire program currently in the computer; sets all numeric variables
to zero and all strings to null. Does not change the string space reserved by a previously
executed CLEAR N.

The last statement of a FOR-NEXT loop.
A logical operation; NOT -1=0; NOT 0=-1,

An empty string containing no characters. The RUN command sets all numeric variables
to zero and all string variables to null.

The compiled version of a source program. It is in a form that can be executed directly.
A subscripted variable with one subscript; for example, A(l).

An unconditional transfer; when an error occurs, execution transfers to line N, where an
error-trapping routine starts.

A conditional transfer to one of several subroutines; if N=1 transfer to the subroutine
beginning at line N1, if N=2 to line N2, and so on.

A conditional transfer; if N=1 execution transfers to line NI, if N=2 to line N2, and so
on.

Perform arithmetic, logical, relational, and string operations; for example, addition or a
less—than comparison.

A logical operation; -1 OR -1=-1;00R ~1=-1;00R 0 = 0.

Sends the value N to port P. Both arguments must be in the range 0 to 255; useful with
an expansion interface.

Returns the value stored in the specified address.

A pgraphic function to test whether the graphic block at the horizontal position X and
vertical position Y is turned on or off. If it is on, the function returns a -1, and if it is not
turned on, it returns a 0.

Stores the value N into the memory location of the specified address. N must be between
0 and 255.

168

POS({X)

PRINT “MESSAGE",
AB

PRINT “MESSAGE";
AB

PRINT USING
PRINT @ N,AB

PRINT #-1,A,B
Program
Programming mode
Radians

RAM
RANDOM

Random access

Random number
READ A,B
REDO

Relational operators

REM

Reserved words

RESET(X,Y)

RESTORE

RESUME N

RETURN

RIGHTS(string,N)
RND(X)

app. III | BASIC glossary
Determines the current cursor position: a number from 0 to 63. X is any (dummy) argu-
ment.

Displays the message (if any) and the values of A and B in successive zones of the screen.
Displays the message (if any) and the values of A and B with few spaces between them.

Specifies a format for displaying numeric and string values. Useful in report generation.

Displays the values of A and B starting at position N. The screen is divided into a grid of
1024 positions numbered 0 to 1023.

Prints the values of A and B onto a cassette tape. The list to be printed cannot exceed
755 characters. These data can subsequently be read into the computer with the state-
ment INPUT#-1,A,B.

A set of instructions in BASIC to perform a specific task.

A form of the command mode; each statement must have a line number.

A measure of angies; 1 radian = 57.296 degrees.

Random Access Memory:; memory that is available for storing programs and data.

Reseeds the random-number generator and ensures that the computer generates a new
sequence of random numbers.

Files may be accessed directly as, for example, on a mini disk. This is in contrast to
sequential access of files on tape.

A number whose value cannot be predicted from the numbers that precede it.
Reads values for A and B from a DATA statement.
Computer’s response to entry of inappropriate numeric or string data for INPUT.

Compare numeric and string variables. Return logical results; ~1 for true, and 0 for false.
In numeric expressions, the numbers are compared; in string expressions, the ASCII
values are compared: less than (<), greater than (>), equal (=), less than or equal (<=),
greater than or equal (>>=), unequal (<>).

A remark used to clarify the program; an explanatory comment. The computer ignores
the statement.

Words reserved for Level II BASIC and DISK BASIC. These may not be used as variable
names.

A graphic function to turn off the graphic block at the horizontal position X and vertical
position Y. The point (0,0) is at the top left corner of the screen; 0<=X<{128 and
0<=Y<48.

The next READ statement following RESTORE will read data from the very first DATA
statement in the program.

Terminates an error-trapping routine and causes execution to transfer unconditionally to
line N. RESUME will transfer to the line at which the error occurred. RESUME NEXT
will transfer to the line following the error.

Ends a subroutine and returns execution to statement following the GOSUB.
Isolates the last N characters of string.

A library function to generate a random number. RND(0Q) produces a random number
between 0 and 1. RND({10.5) produces a random number between 1 and 10.

169

ROM

Routine

RUN

Scientific notation

Semicolon

Sequential access

SET (X, Y)

SGN(X)

SHIFT key
SHIFT @ key
SHIFT — key

SHIFT < key

Single-precision
variable

SIN(X)

Source program

SQR({X)
Statement

STEPN

STOP

String

String operators
STRINGS(N,“C"")
STRS$(N)

Subroutine

Subscript

app., I | BASIC glossary

Read Only Memory; memory occupied by system programs; this memory can only be
read and not used for storage.

A set of instructions to perform a specific task.

Command to request execution of a program. Entry of execution mode. RUN N requests
that execution start at line N. The RUN command also automatically executes a CLEAR
command; sets all numeric variables to zero and strings to null.

Breaks a number into two parts: a number between 1 and 10 and an exponent of 10; for
example, 1000000=1E6; exponent characters E and D for single and double precision,
respectively.

Causes the items of a list in a PRINT to be displayed close together with few spaces; for
example, PRINT A:B:C$.

Files are stored sequentially one after the other (for example, on tape) and are conse-
quently accessed sequentially, To access the last file on tape, it is necessary to go through
the entire tape. This is in contrast to random access on disks.

A graphic function to turn on the graphic block at the horizontal position X and vertical
position Y. The point (0, 0) is at the top left corner on the screen; 0<< = X<128 and
0<=Y<438.

A library function that examines the argument X and returns a -1 if X is negative, a 0 if
X is zero, and a 1 if X 1s positive.

Press to type uppercase characters.
Stops execution and freezes the display; to resume, press any key.

Converts to 32 characters per line display. To convert back to 64 characters, press CLEAR
key.

Returns cursor to start of current line and erases entire line.

Six significant figures; for example, Al=1.23456. All variables are in single precision unless
otherwise declared.

A library function to determine the sine of X. The argument X must be in radians.

A program written in a language that must be translated into machine language before it
can be executed.

A library function to determine the square root of X. The argument X cannot be negative.
A BASIC instruction.

Part of the FOR statement; the STEP N increments the loop’s counter by N during each
sweep.

Interrupts execution and displays the line at which execution was stopped. The command
CONT will resume execution.

A sequence of alphanumeric characters; string variables are tagged with a $ to distinguish
them from numeric variables. Strings are enclosed in quotes; for example, A$=""TRS-80".

Strings may be concatenated (+) or compared using relational operators.
Produces a string consisting of N characters C; for example, STRING $(3,"+") is +++.

The numeric expression N is converted to a string; for example, STR$(1.2) is “1.2"". Per-
forms the inverse of the VAL function.

A subprogram, a section within a program that may be accessed from the program itself
or from other subroutines during execution.

The expression in parentheses identifying the specific element of an array; for example,
the in A(l).

170

Subscripted variable

SYSTEM
TAB(X)

TAN(X)

Trace
Transfer statements

Translator
TROFF
TRON

Two-dimensional array
Type definition

Unconditional transfer

USR(X)
VAL(string)

Variable

Variable declaration
character

Variable name

Variable types
VARPTR(V)

Zero subscripted
element

Zone

app. Il | BASIC glossary

A list of items: for example, A{l) is a one-dimensional array ; A$({l,J) is a two-dimensional
array containing strings; A%(l J.K,L} is a four-dimensional array of integer values.
Command to enter the monitor mode for loading a machine language file from cassette.

A library function; for example, the statement 10 PRINT TAB(20)A will display the
value of A starting at the twentieth print position. Each line contains 64 print positions
numbered 0 to 63. TAB(65) displays on the next line. The argument must be between 0
and 255.

A library function to determine the tangent of X. The argument X must be in radians.

A technique for debugging programs. The line number of each statement 1s displayed as it
is executed, TRON and TROFF turn the trace on and off, respectively.

BASIC statements that cause execution to deviate from the normal sequence of execution
(starting with the lowest line number and executing subsequent lines in ascending order).

A program that converts a high-level language to another high-level language.
Command to turn off the Trace.

Command to request a trace of the program during execution. Useful in debugging; the
computer displays the line number of each line as it is executed. The TROFF command
terminates the trace. TRON and TROFF may be used within a program.

A subscripted variable with two subscripts; for example, A{l J).
A statement that declares variables as integer, string, single, or double precision.

Deviate from the usual sequential execution and branch to a specific line in the program,
for example, 10 GOTO 50.

Transfers to a machine language subroutine. For Level II BASIC, X must be zero.

Converts the digits in string to a number; for example, VAL{""1984"} is the numeric con-
stant 1984, Performs the inverse of the STR$ function.

A quantity represented by a symbol that can assume various values.

Identifies the variable type; a character is appended to the variable name: !, single preci-
sion; #, double precision;%, integer; $, string. Without a declaration, variables are assumed
to be single precision.

Identifies the variable; must begin with a letter; may be followed by a digit or a second
letter. Additional letters or digits are ignored by the computer. Valid names T, TR, TRS.
Variables TR and TRS are the same.

Four different types: single precision, double precision, integer, and string.
Produces an address to help locate where the variable name V and its value are stored.

First element in an array, A(O).

The screen is divided into 4 zones, each containing 16 print positions.

SOLUTIONS TO EVEN-NUMBERED EXERCISES

CHAPTER 2
EXERCISES 1
CH. 2,EX. 1, PROBLEM 2
PRINT 45
i35
CH. 2, EX. 1, PROBLEM 4

PRINT"LEONID BREZHNEY"
LEONID BREZHMEY
PRINT"SOVIET UMION"
SOVIET UNION

CH. 2. EX. 14, PROBLEM &-A
ALPHABET$="ARBCUEFGHI JKLMNOPGRSTUVIHAY S
PRINT ALFHABETS

AREBCDEFGHI JKLMNOPGRSTUVIWXYZ

CH. 2, EX. 1,PRUOEBLEM c-B
N$="@123436783"
PRINTNS$

9123456783

CHAFTER 2
EXERCISES &

CH. &, En. &, FROBLEM 2
SP I =48636584. 5%8
PRINT SP!

3. 89570E+B7
DF#=4869684. D#x&

PRINT DF#
38957476
CH. 2, EX. 2.PROBLEM 4
H> A+EB-C
B2 CH{A-Y)
C> -2
D> FrBrl R
ED> C-BA/3-0D
F> CA¥B-CH(A—B A/ (G-Ru-Fxl
CH. 2, EX. &, FRUBLEI1 5
RAB=5
AC=6
PRINT AB+ARC
11
FRINT RB-AC
-1
PRINT AB#AC
28
PRINT RB/RC
Q33333
CH. 2, EX. 2,PROBLEM 8
A 7?78 ERROR
B> a
co 1
Do a
E> 7-8 ERROR

. 2, EX. 2, PROBLENM 18

» PRINT 40+9. 58

y PRINT 37¥=*3. 58

> FRINT 403, So+7+lid, 28

CH. 2,EX. &.,FROBLEM 1z
NOTE . S=(T*aO+MixEH
PRINTLHEB+30 0 x60

5406

PRINT @+68+1 460

=%

CH. 2, Ex. 2, PROBLEM 14
P=z4

I= 83

N=1980-18627
BALANCE=P#{1+I 3L N
PRINT BALANCE
&lelaa

CH. 2. EX
= @8,1z
PRINT 36000+ I+ i+170488- (CL+]1s0488-10
zag, 5894

I= 1,12

PRINT 20600+ I+(1+I13L 480/ ({1+I1x[45810
254, 744

2, PROBLENM i&

CH. 2, EX. 2 PROBLEM
AY SLOPE=(¥Z-Yi)/{KZ-K1}
By Wi=i

K2=4

Y=z

vz=g

DISTANCE=({xZ-risl 2+ va-Y1lrl /L.

PRINT DISTANCE

6. 7agz1
SLOPE=(Y2-Yli/(Ka—xis
PRINT SLOFE

&

CHAPTER =
EXERCISES 3

18 REM CH. Z.EX 3. PROBLEWM =z
26 PRINT"MY COMPUTER LIKES MEY
30 C=196 “STORE 1886 IN C

4@ PRINTC: "YERRS RAGO"

B=1@ “STORE 16 IM E

A=1 "STORE 1L IN A

7O PRINTR+E+C; "YEARS AGO"

“NOTE . SEMICOLONS ARE OFTIONAL
PRINTA; “"FLUS"B"EGQUALS"A+B
PRINT"HE HAS ".-B; "DOLLARS"

REM CH. 3, EX. 3. FROBLEN 4
I= @88 "SET I=INTREST RFATE
B=lo@@o ‘B IS BRALANCE

FRINT “INTEREST FARID ON'; B
PRINT"FOR H DAY IS": I/ Z€5%E
PRINT"FOR 8 WEEK IS"I/Sz*B
“NOTE. SEMICOLON OFTIONAL
PRINT"FOR 3 MONTHS IS"I 44E
v8 PRINT"FOR €& MONTHS IS"IASZ#+E
FRINT"FOR A YERR IS“Isb

(]

171

solutions to even-numbered exercises

18 REM CH. 3, EX. 3, FROBLEM &-R

26 PRINT"IN FRENCH RED IS ROUGE"
3@ PRINT"IN GERMAN IT IS ROT

4@ “NOTE: TRAILING QUOTES OPTIONAL

i8 REM CH. 3.EX 3, PROBLEM &-B

20 X=2

30 Y¥=3

49 PRINT"THE SUM OF X HAND Y IS UX+Y

58 PRINTTHE PRODUCT OF X AHND Y IS: "Xy

18 REM CH 3.EX. Z.FROBLEIM &

28 A=16

25 B=26

27 PRINTUQUOTIENT OF" A; “TO" B; "IS": ACE
38 “NOTE: B CANNOT BE ZERO

16 REM CH 3.Ex
28 S=16
3@ PRINT"THE VOLUME I1s™
48 PRINTS#S*S

3. PROBLEM 1&-A

18 REM CH. 3. EX. 3, PROBLEM 18-E
26 s=ie
30 PRINT"THE VYOLUME IS",; S#5#5

18 REM CH. 3, EX. 3, PROBLEM 18-C
28 S=1@
36 PRINT"THE SIDE 15';S

16 REM CH. 3, EX. 3, PROBLEM 16-D

28 S=ie

30 PRINT"THE SIDE I1S":S

40 PRINT"THE YOLUME IS"; Swiws

56 REM

6@ REMARKS: REPLACE LINE 2B EBY 5=28

i@ REM CH. 3, EX. 3, PROBLEM 1z
280 PRINT" R

38 PRINT" XXX

468 PRINT" ®XKXK"

580 PRINT"XxKHARK"

68 PRINT" Kxx"

78 PRINT" HKK"

CHRAPTER >
EXERCISES 4

CH. 3, EX. 4,PROBLEM =
RAXREENTER LINE 20 WITH THE
CORRECT VERSION
BOTYPE “EDIT 38 THEN PRESS
‘X DELETE CHARACTERS UNTIL
REACH "R’ OF PRODUCY, NEXT
TYPE “UCT OF A AND B IS " A*B".
COTYPE “EDIT 38 TO ENTER EDLIT MODE
PRESS THE SPACE BAR UNTIL THE "D~
OF PRODUCT SHOMWS, TYFE “C7 TO CHRNGE
THE NEXT CHARACTER: NOW
TYPE “U” AND THEN “ENTER”

CH.

ig
i3
26
23
e
<48
45
58
55
99

18
20
38

10
28

48
58
i@
20
48

S5e

3, ER. 4, PROBLENM 4

PRINT “USE D OFTIOM

INPUT H USE I OPTION

FRINT "PHYSICS IS FUN® “UZSE » OFTION
PRINT HiB: C “USE € OFTION

INPUT "YOUR RGE"; AGE “USE & OFTION
C=5%(F-325-5 “USE C OPTION
PRINT"DLON’T TREARD ‘USE K OPTIOH
PRINT"ONE FOR THE M#$MEY" “USE S&C OFT
X=5 “UsSE [+ OFTION

END “RETYFE LINE 35 AS 93. TYFE 33

REM CH. Z.Ex. <, PRUBLEM &

“MONTHLY MORTGAGE FAYMENTS
INPUT"AMOUNT & YRS OF MORTGAGE": M.
INPUTHENTER INTEREST RATE IN &' 1
“CONVERT MORT. DURATION FROM % TO M
hN=Y*1z

“CALCULATE MONTHLY INTEREST

I=I% @i/12

“CALCULATE MONTHLY PAYMENTS

=k Dk CI+1 30 MNACCI+L oI N-L)

PRINT "MONTHLY FAYMENT IS $'.F

REM CH. 3, EX. 4, PROBLEM 16-H
INPUT"FIRST TEMP".F
INPUT"SECOND TEMP". S
INPUT"THIRD TEMP". T
PRINT"AVERRGE TEMF IS“(F+S+T2-3

REM CH. 3, Ex. <. PRUBLEN 10-B
INPUT"EMTER X TEMP'S":F. 5. 7T
PRINT"AVERAGE TEMP IS“(F+S+T1/3

REM CH. 3, Ex. 4, FROBLEN 12
PRINT"HELLOQ"

INPUT"HI WHAT IS YOUR NRME" N$
PRINT"HELLO ":N$

PRINT"MY MAME IS NEUTER COMPUTER"

REM CH. 3. EX. 4, PRUBLEM 14

PRINT "FLERSE ANSHER THE FOLLOWING
QUESTION"

INPUT "DO YOU PREFER BOYS OR
GIRLS": L%

PRINT "HEY. 1 TOQO PREFER "Ci4"
THRT "= GRERT!"

REM CH. 3, Ex . PROBLENM 16

INFUT "DEPTH IN FEET".H

P=8. 6235%H

PRINT "RAT R DEFTH OF",H: "FEET THE *.
“NOTE THE SEMICOLON AT THE END OF

i LINE 48 SUPPRESSES THE LINE

. FEED —— 3EE CHAFTER S

PRINT "PRESSURE IS".F: "ATHUSFHERES.

i@
2a
29
38
40

CHAPTER 4
EXERCISES &

REM CH. 4.EX &, PROBLEM 4-R
INPUT"ENTER & NUMBERS", M1, Nz

IF Ni+N2<=8 THEN 40

PRINT"THE SUI4 OF"HL"+"N2"="; Ni+Nz
END

172

solutions to even-numbered exercises

18 REM CH. 4, EX. &, PROBLEM 4-B

20 INPUT"TWO NUMBERS'; N1, Nz

2@ IF Ni+N2<=N1xN2 THEN 48

35 PRINT “SUM IS GRERTER". END

48 IF N1+N2=N1i+N2 THEN So

45 PRINT "PRODUCT 1S GREATER": END
S0 PRINT “PROCUCT EGQUARLS SumM*

18 REM CH. 4, EX. 6&.PROBLEM 4-C

28 INPUT"THE CAPITAL OF FRANCE", CAP%

30 IF CAP$="PARIS" PRINT"YOU ARE OK" @ END
40 FRINT "NOPE, SEE YOU IN PRRIS. “

1@ REM CH. 4.EX. o, FROBLEM &
15 INPUT "ENTER 4 NUMBERS";H. B, C.D

z@ IF RA>B AND AXC AND ALXD FRINT A:GOTOCH
39 IF BXA AND BLC RND EBXD FRINT B GOTOSE
48 IF C>A AMD COE AND C>0 PRINT O GOTOSE

56 PRINT D
68 FRINT "IS LARGEST" END

18 REM CH. 4, EX &, PROBLENM &
15 INPUT "SRALES". S

S{=1606 THEN PAY=168:G0T0S
S{=2808 THEN PARY=. 15%S GOT
48 PRY=288+ O7*5S
58 PRINT “FAY 1IS", PRY

a
Wists)

i@ REM CH. <, EX. ., PROBLEM 19

15 INPUT "RGE'"; 8

17 IF RA<C=6 PRINT"INVALID AGE" GOTO 15
18 IF A>128 FRINT"INVALID AGE" :GOTO 15
28 IF A>=18 THEM 3@

25 PRINT "PERSON IS A MINOR":END

2@ IF A>=65 THEN 5@

48 PRINT "PERSON IS NEITHER A MINOR"
41 PRINT "NOR B SENIOR CITIZEN": EMD
38 PRINT “FERSOMN IS H SENIOR CITIZEN®

18 REM CH. 4. EX. &, FPROBLEM 1&
45 ON ERROR GOTO Se

18 INPUT "A.B.C", A, B, C

260 X=(-B+(BxB—d+A*C30. 5o/ (2*A2
3@ PRINT "REAL ROOT ISY, x

48 END

5@ PRINT "IMAGINARY ROOT"

60 RESUME 48

18 REM CH. 4. EX. &, PROBLEM 14

28 INPUT "NUMBER", NX

40 TESTA=NZ/2Z

€8 IF NZ=2+TESTX PRINT "EVEN" END
88 PRINT "CDD"

CHAPTER 5
EXERCISES 7

CH. S5, EX. 7.FROBLEM 4 A-E
A2 1@ PRINT N+1
28 IF N<{19 THEM N=N+1: GOTO 18
OR 1@ FOR N=1 TU z8
13 PRINT N: HEXT N

B>

OR

CH.
18
i3

i35
i5
20
30
40
45
5o
=07}

1@ PRINT MN+i. IF N>=18 THEM END
15 N=N+2: GOTU 18

16 FOR N=1 TO 26 STEF 2

135 PRINT N. NEXT N

18 N=7

28 PRINT N. IF N>=14 THEN END
25 N=N+8. 5. GO TO z8

16 FOR N=7 TO 14 STEF . S

15 PRINT N. NESXT N

18 N=Z2

26 PRINT 4N

25 IF N=18 THEM END
328 N=N+1. GOTO 24

19 FOR N=ZX TO 18

15 PRINT 4-/N NEXT N

18 N=198

20 PRINT M: N=N-Z

25 IF No=-18 THEN zZ@

i@ FOR N=l1& TO -i@ STEF -3
13 PRINT N. NEAXT N

5,EX. 7, PROBLEM 4-F
N=2: P=1

P=P#N: N=N+2: IF N<=1& THEM 26
PRINT "FRODUCT"; F

REM USING R FOR-NEXT LOOF

P=1

FOR N=2 TO 1@ STEF =
P=PaN. NEXT M

PRINT “"PRODUCT".F

3, EX. 7. FPROBLEM 4-G
INPUT A.B: P=1

IF A<CB THEN 13

REM SWAP A & B

C=A. R=B. B=C

=H

F=PaN N=N+1 . IF N<=B THEM
PRINT "PRODUCT":P

REP USING R FOR-MNEXT LOOF
=1

FOR N=A TO B: P=P+h NEXT N
PRINT "PRODUCT".F

Pt
)

5. EX. 7.PROBLENM &

- “ RULE OF vz

INPUT "DEPOSIT & INTEREST RRTE". DE. 1N
BR=DE

FOR N=1 TO 16866

BA=BR+Ef*IMN-1608

FPRINT"BALANCE FOR YERAR'".HM; "IS", BA

IF BRAL>=DExz THEMN 58

NEXT N

PRINT "TIME TO DOUBLE 1S"iN; "YERRS"
PRINT"FINAL BALANCE IS 4$'":ER

REM CH. 5,EX. 7, PROBLEM &
PRINT “SEC x e
X=8@wT

Y=4+70HT 16, LeT#T

IF X355 THEN 78

PRINT T," " "y
T=T+ 5 GOTO 1§

PRINT "OUT OF THE BALL PARK"

173

solutions to even-nuinbered exercises

ig
20
38
48

e

REM CH. 5. EX. 7. PROBLEM 10
CLS: FLAG=8. PROF=-51
T=T+1
FPTHTHT-SkTHT+10¥T-51
PROF=PROF+F

PRINT T.,F.FROF

IF T=8 THEN c@

IF F>8 AND FLAG=& THEN <0

GOTO 18

FLRG=1

PRINT "FROFIT IS 4ST POS. IM YEAR": T
GOTO 418

PRINT “CUMULATIVE FROFITY, PROF#1E86

REM CH. S, EXA. 7. FROBLEM 1=z
PRINT"I WILL GUESE YOUR MNUMBER RHNDY
PRINT"YOU TELL ME IF MY GUESES IS™
PRINTYHIGH. CORRECT, COR LOW"

L=1

H=10&

Ga=CL+Ho 2
FRINT"GUESS Iz, GH: "H. G, OR LY
INFUT Q%

IF G$="H" LET H=Gs. 0OOTO Z@

IF @e="L" LET L=Gx. oUTO Za

IF @300 PRIMNT G 7" QUTO4a
FRINT"AH I WAS RIGHT"

REM CH. D.Ex. 7. FROBLEM 444
D=1

T=T+1,D IF Ti=4 THEN 48
D=D+i. GOTO z@

FPRINT D: "TERMS SUM UF TO =47

REIM CH. 5, Ex. V. FROBLEM 1e

INPUT “# OF TERPMS":T

F=1: D=1: x=8: K=i

Rukrod DawF . b=b+2. F=—F fk=k+l
IF K<=T THEN 48

PRINT “FOR". T, "TERMS, SUI 15" d#i

REM CH. 5, EX. 7.FROBLEM 1&
P=1600 : F=100680

PRINT"YEAR " "FOPULATION
YEVHLE . Pe2aF, FeF+4000
FRINT ¥; " ek "F
IF F<F PRINT"FOOD OUT IN YERR",Y:END
GOTO 26

REM CH. 3.ExX. 7., PROBLEM 28
B=0
INFUT "MONTHLY DEPOSITY: D
FOR X=1 TO 41z
B=D+B+B#E. B 12
NEXT ¥
PRINT "AFTER A YEFR YOU HAVE $'. E

REIM CH. S, Ex. 7. PROBLEN z&

< PRINT "PLERSE BE FATIEMT"

FOR MN=1 T0 535

REM GIVEN RELATION BETHEEN # 3% N
KE=—@. 5+C0. 25+0. TN+, SHpNoL B, ©
REM X MUST BE AN INTEGEE

IF X#<led THEN 45

REM ® ROUNDED TO 3 PLACES

u EOOL

36 - MUST BE AN INTEGER

40 Xu=xX#: X1=xX#-KH: Xa=xi+looe

43 IF Ru=6 THENW S©

45 MNEXT N

S8 K=x#: FRINT "H=", N: "H=";»x

55 END

68 REM NOTE, ANSHWER N=g9¢ & A=d45z

CHARPTER ©
EAERCISES &

i@ REM CH. 5. EA. & FROBLEM 4-8
28 FOR ¥Y=1 TOU & FRINT Y. NEXT ¢

REM CH. 5.EX. 8, FROBLEDN «4-E
FOR Y=1 TO & FRINT Y¥: . HEXT ¥

[g
[]

REPM CH. S.Ex. & PROBLEI 4-C

FOR K=l TO 3. PRINT A HEST X
PRINT

FOR M= 4 TO ©: FRINT ®:: HNERT H

[P N
[LRE

CH. 5.Ex. 8 FROBLEM €
NEW
FRINT MEM
15572
DIM ACLED
PRINT HEN

155z6

i@ REM CH. 53.Ex. & FROBLEM &
28 DI MCEes
38 FOR m=L1 TO Z6. Muri=s. HEXT x

1@ REM CH. S.EA S, FROBLEN 1@
15 FOR %=1 TO 48

26 PRINT “FHTER NUMBER". %

25 INPUT RS
38 NEAT X

35 FOR %=18 TO 1 STEF —1
48 PRINT AURD.

45 NEXT

18 REM CH. S.EX. &, FROBLEM 412
2@ FOR x=1 TO 5

UINAME D s HE (D

"AGE", AR

THEN &5
"ORAGE": ACX:

16& REM CH. S, EX. 8, FROBLEM 14-A
15 DIM N&CSws

2@ FOR L=1 TO S

2B INPUT "MHAMEY, N$(L>

48 NEXKT L

58 FOR L=1 TO 4. FOR I=L+i TO &
60 IF N$cLo<=N$cIlx THEMN 7@
65 S¥=N$(Ls . MNECL»=h$ (I
78 NEXT I.L

7S PRINT "NAME CLOSEST TG "fA°
86 PRINT "NAME CLOSEST TO 2

N${I)=53%

174

R £F 2N
AP P EN S

solutions to even-numbered exercises

16
20
25
38
35
40
50
(=05]
re

&g

&8

Sz
94
36
sg
S9

8z

CH.

S, EX. 8 FROBLEM 16
FOR C=1 T0 &

PRINT"BALANCE FOR MONTH". C; "WRS"
INPUT TKCJ
NEXT C©

T=718

FOR C=L TO 6. DCCs=TCLI-T T=T(CH
PRINT “NET DEFUSIT MONTH'C'WAS"DnCo
NEXT

END

S, EX. & PROBLEM 15

1 TO N

FOR #=1 TO it

FPRINT "INPUT HAuUA", yvan
INPUT AR Yo

FPRINT "INFUT BuUEM, "¢y
INFUT B(X. Y2

NEXT . '

FOR »=1i TQO M. FUOR ¥=1 TO N
IF Aus. Y2 > BORL YD THEN 78
Clxes Yo=BOx, ¥ . GOTO ¥S
COX, Pa=AdK, ¥

FRINT CCx, %o,

NEXT %

FRINT© HEXT X

REM CH. S, Ex. 8, PROBLEM Zo
M=3. N=4 DI M(3, 43
FOR ¥=1 TO M

FOR Y=4 TO N

PRINT "ENTER " ", "W
INPUT MUK, Yo

NEXT &, %

FOR H=1i TO M

FOR =1 TO N

IF MR, Y20=188 THEN 35
MEXT ¥

FRINT "ROW "i¥

NEXT »

FOR "=1i TO M

FOR K=1i TO M

IF Moy, #:{=106 THEN 393
NEXT X

PRINT "COLUMM ", %

NEXT &

REM CH. 5. EX. 8, PROBLEM z2

DIM A28, Bogdn

INFUT “THE NUMBER TO BE PMERGED".
PRINT "EMTER THE SORTED ARRAYY
FOR K=1 TO 1@

PRINT "ELEMENT HO. “i K

INFUT AdCKD . NEXT

FOR k=1 TO 19

IF ACK THEN &@

BOKO=AK?
GOTO 86
BOK3=¥
B+l o=ACKY

GOTU So

NEXT K

BCRi=X

GOTO 335

FOR L=K+2 TO 411

B{Ly=AL-1)

NEXT L

FOR L=1 TO 41 :PRINT BCLY: . NEXRT

55

cg

ia

48

REM CH. S, EX. 8. FROELEM 24A

DIM N{2as: CLs

FRINT "ENTER THE FIRST ARRRY"
FRINT"SORTED IW DESCEMUIMG ORDER®
FOR X=1 TO S

PRINT "WUMBER": X

INFUT HuxK>

HEST =

FRIMNT "ENTER THE SECOND ARRAY"
PRINTYSORTED IM DESCEMDIMNG UORDER®
FOR #=5 TO 1i&

FRINT “NUMBER". #~5

INPUT MY

NEAT &

FOR J=1 TO =

FOR R=J+1 TD 41&

IF NoJaLHCRs THEN 7S5

S=RCRD . MORI=NGTD D Mo Js=S

NEAT R, J

FOR H=1 TO 18. PRINT MH{Xs. HEST

REM CH. 5.EX. & PROBLEM Z4EBE

- DI N$(2Bs: CLS

FRINT "EMTER THE FIRST ZTRINMG™
PRINTYSORTED IN DESCEHDING ORDER®
FOR X=i TO S

FRINT "ELEMENT". ¥

INFUT N#{®D

NEXT X

PRINT "EWNTER THE ZECOMD ARRAY"
PRINTYSORTED IMN DESCEMLING ORDER"
FOR ®=6 TO i@

FRINT “ELEMENT", #~5
INPUT N$CXX

MEXT ¥

FOrR J=1 TGO 2

FUOR R=J+1L TO 1é

IF N$CJLTN$SIRY THEW 75
SHE=N$SIRY . NE(RI=NS T
NEXT R, J

FOR X=1 TO 48 PRINT N$Cx©

NECIi=54%

i HERT

REM CH. S5.&X. 8. PROBLEM zZ&

z FPRINT "BE PATIENT"

MIN=LEZ6
A=1l. D=2 G=Z
FOR B=4 TO
FOR C=4 TO

IF B=0C THEN 37
FOR E=4 TO

IF E=E OR E
FOR F=4 TO 9

IF F=E OR F=(OR F=B THEM 3Z
FOR H=4 TO 9

IF H=B OR H=C OR H=E ORH=FTHEHNZ1
FOR I=4 TO 3

IF I=HORI=FORI=EORI=CORI=BTHEMZ3
N1=106+16%E+(
Na=288+18+E+F
NI=308+18+H+1
F=NLANZ+#NI

IF MINC=F THEM &3
Si=N1. Sa=hz SIE=N3
MIN=F
NEXT
MNEXT
NEXT
MEXT
NEXT
NEXT
PRINT S4.5z: 53

(SRR}

It

C THEN 35

WO MTE w—

solutions to even-numbered exercises

1@
15
17
zo
25
27
3
48
45
Sa
55
5g
(5]
&5
78

&2

¢ FRINT UNQ " TRECLZ 5

5 PRINT “"COMMISSIU

CHAFTER ©
EAERCISES 9

REM CH. &.EX. 3, FROBLENM 2
< DATA 4.2, 3, 18. 28, 20

REM CH. ©.Ex. 3, FRUBLENM ©
REARD L. &2=1. =1

REM L IS5 ARRAY LENGTH
FOR ®=J) TO L. RERD Y
IF Y¥>=8 THEN 3a
NOZo=Y: Z=Z+u. LGOTO 48
PLZZo=N " ZZ=Zz+1

NEXT

FRINT "ARRAY F"

FOR =1 TO ZZ-1

PRINT Puils HEXT &
PRINT: FRINT "ARRAY R
FOR ®=1 7O Z-41

PRINT N{®2s 0 NEXT &

DATA S, ~4,2: 3. -5 8

REM CH. 3, FROBLEM &
URARE": TRBC 24,
X tQUBERY,

Tu

B EX

PRINT "=zG. ROOT": TREC
FRINT TARBL453, "CUBE ROO
FOR x=1 TO 1i©

PRINT X; TRBulE:, XK#x: TRBE ad:.
FRINT KL, 5 TRBE(3E ~LZ,
PRINT THBL4S ., KL (L2
NEXT %

REI1 CH. &, Ex. 5, FROBLENM 1@
REM SRLES REFORT

FOR I=1 TO 4
READL N+oId ASAL
DATA ERIC. &, 8. R
DATH FRED, 28,
FACOMCI =125 * ASALESCI?
CHECK= BSALES(I»-10

IF CHECK>® THEN 3&

BCOMC I »=S5+BSALES(IX

GOTO 37

BCOMII3=5258 + 1454LHECK
TCOMCIZ=ACOMCI 3 +BCOMCT
TOSALESCI 2 =ASALES (I +BSALESCIY
NEXT 1

REPM PREFARE REPORT

ESCIN, BSALES(I?
Ok. 50 80 JEFF. ¢ e

o

. CLS

PRINT "SUPER AGENCY SALES REPORT®
PRINT
FRINT THBEL20: NS4 TREBC24 2, NECa s,
PRINT TRE(Z63: N$(3; TABCA8, N$(42

2 PRINT "R SALES': TABL 120 ASLL
3 PRINT TARE(Z24), ASCE

da

30, TRE S8 RS)

" TRBCLzL ACCLS;
PRINT TRB(Z42; ACCZ TAB(362, AC(3).,
FRINT TABE(485, ACC4S

PRINT "B SHALES": TAB(LZ: BS(Lx: TAB(E4D;
PRINTBS (2, TAB(Z6:: BS(2 0 TRE(4E), BS<4)
FRINT"COMMISSIONS": TRB(LZM: BC Ly
FRINT TRB(242: BC(2r; TABL3E 2 BOCS

FRINT THB(3E:, AS:

3 PRINT TRBC4S:, BCOud)

FRINT
PRINT"SALESHAN", "SALES",
FOR I=1 TO <

CCOMMISSION"

FPRINT N${Io TSALESCL s TCOMCIS

NEXT 1
END
REM CH. &, Es. 3, FROBLEM 12

DI H{leveo, Moles)

FRINT"BUILD THFE. ENTER S55 TOo STOF"
FRINT"FLACE REWOUND TRAPE IMN DRIVE
PRINT"FRESS “RECORD- & “FLAY-
PRINT"ENTER INTEGERS FRUM KEYEBRD
PRINT "-258 < INTERGER < 256
INPUT "INTEGER", N&x

PRINT #-4, Nx

IF NH<D G55 THEN 30

PRINT "REWIMD TRPE, PRESZ FPLAY"™
PRIMT "FOR DUPLICATE DATA CHECK. "
INPUT "KEY ENTER MWHEM REARDY". 03
INFUT #-1. N

IF HuNA+258:=1 THEM 7@
HONH+288 =1 bi=bi+1 Mobo=He

IF MRS5S THEN 78

PRINT “CASSETTE #& IN DRIVE.
PRINT "REWIND & FPRESS "RECORLY
INFUT "KEY EWNTER WHEM DOME": Q3
FOR ®=1 TO W: PRINT #-1.ro0

NE®T ®

REM PLACE EMD OF FILE

’ IDENTIFIER AT EMD OF THFE
PRINT #-1.335

REM CH. &, EX 5, PROBLEM 14

DIM N$C(2S, A$(990. CE(R3 0

DIM S$(995. Z4(29

CLEAR zeoo “CLERR STRING SFACE
INPUT “I5 THIS & NEW FILE Y-/H". @3
IF G$="N" THEN 38

IF @$CoY" THEN 14

A=1 ¥ IS RECORD NUMBER

FRINT "ARDD, DELETE. STOF Y.

INPUT " R.D.3": 0%

IF G$="5" THEN 47

IF G$="D" THEN &4

IF Q"R PRINT®YY, GUOTG 24
INFUT "NAME (STOP="EMD " N ss
IF N$UK3="END" LET K=x+1i. OOTO i
INFUT "ADDRESSY: A$ sl

INPUT "CITY"; GO0

INFUT "STARTE". S$CHs

INPUT "ZIF CODE": Z$0x>

X=X+l GOTO 25

GOTO 24

PRINT "REWIND & #RECORD*

INPUT "KEY EHNTER MWHEMN READY". 4
REM “WRITE ALL RECORDSX

FOR %=1 TO XK-1

FRINTH#-1, N$CY D, A$CY S, CHCY i, 53 (Y0, 4o
PRINT M#(Y2

NEXT ¥

FRINT #-—d1., "END", Gi$, 6%, Q4. %

END

REM SCAN RECORDS FOR HAME

INPUT "MNARME TO FIND"; HNis

REHM FIND HAME ROUTINE

FOR Y=1 TO K-z

IF Nis=N$(Y» THEW 74

NEXT ¥

PRINT Mig, " NOT FOUND"

GOTO =24

REM DELETE RECORD ROUTINE

176

solutions to even-numbered exercises

99

FOR &=Y TO R
REM CISFLACE DELETED RECORD
N&ECZo=N${Z+1>
A$(Zo=R$(Z+L7
CECZo=CHCZ+1
SH(ZI=5S$(Z+dr
ZE(To=2$C2+10

T NEXT 2. R=x~-1

REM DUOME

GOTO 21

PRINT "REWIND TAPE, FRESS PLAY"
REM FIRST RECORD

n=L

INFUT “"FRESS ENTER WHEH RERDY". &3
INPUT #-
PRINT N$(X>»

IF N$(Xy="END" THEN 21
X=xX+1. GOTO 54

REM CH. &, Ex. 9, PROBLEI 1c

INFUT "HOW MANY EMPLOYEES'". MW

DIM ECSB., N${58D, YD SEs

PRINT "HAVE Y0OU BUILT “;

PRINT "R MASTER FILET"

INFUT "RESFOND WITH ¥ OR N", G#
IF G$="%" THEN 32

IF Q$<>"H" GOTO 39

PRINT "BUILD MRSTER FILE"

PRINT "REWIND & “RECORD"

INFUT "FRESS EWTER WHEM READY". Q%
FOR E=1 TO W

INPUT "HRME"., N¥

INPUT “YEAR TO DRTE ERARMINGS®: %D
PRINT #-4, E. H$. YD

NEXT E

PRINT "#WEEKLY UPDRTE*"

PRINT "REMWIND & 'PLAY "

INPUT "PRESS ENTER WHEM REARDY". G$
FOR E=1 TO W

INPUT #-1, EXED, N$CEX, YDCES

NEXT E

FOR E=1 TO W

FRINT MECEDX; * V. "HEEKS ERRNINGSY,
INPUT WE. YD ES=YDLCEI+ME

NEXT &

INFUT "WRITE ON TAFE'. 3%
IF a$="N" THEN 12

IF Q"Y' THEN 33

FOR E=1 TO W

PRINT #-1.ECEY, N$CED, YDCED
PRINT ECEL, N$CED, YDCE?
NEXAT E

GOTO =4

PRINT "INYALID RESFONSE"

GOTD 47

b bbb A

Ha
B>
Co
v

i@
28
ze

.

CHAPTER 7
EXERCISE 1@

7. Ea 18, PROBLEM Z

REMAINDER WHEN X IS DIV EY ¥

TRUMCHTES %, X MAYBE FOS. NEG.

DECIMAL FRACTION OF #.

BRANCH TO 140. 26, 0R 38 IF & IS HEG.
ZERO OR P03 RESPECTIVELY

OR @

REM CH. 7.EX. 18, PROELEN 4
LPRINT"A2 FREINT S+RNDC(Ld:
LPRINT"EX PRINT 1+RND @

A, NBCRD, ASCRD, CHCHI. SEOXE, Z3 s

=

16
1'7
15
28
25
38
35
40
Se
55
&0
&5
7o
7S
38
8%
Sg
35

196
185
1i@
118

i8
12
i3S
28
25
20
35
48
45
Sa

io
iz
1z
i3
26
25
38
35
4¢a
45
S8
53

50

REM CH. 7.EX. 48, PROBLEN &
RANDOM: DIM Bolzs

INPUT “THROW DIE HOM QFTEM". M
CLE: REM THROW OME DIE

FOR K=1 TO N

R=RNL(E S
FCR»=A(RI+1L . NEXT Kk
PRINT"FREG. OF TOSSING .

PRINT "1 THRU € WITH 1 DIE“
FOR K=1 TO &: PRINT AvEZ
REM THROW 2 DICE

PRINT

FOR k=Ll TO N
R=RHD{EI+RMNIG)

BRs=B(Rs+1 NEXT K

PRINT "FREQ. OF TOSSING 2 THRU w2".
PRINT " WITH & DICE"

FOR K=2 TG 1z
FRINT K.BCK>

HEHXT k

NEXT k

REM CH. 7.EX. 48, FROBELEM 2
DIM AC188: RANDOM

INFUT "NO. OF RANDOM NOS. "ok
B=RND(20x ABI=1

FOR k=2 TO M. R=RND.Z@>
REM FOR FART U
IF B=R LET F=F+i
ACRI=ALR.+1 B=R
REM PRRT A
FOR k=1 TG &
TT=TTHRAACKD |
PRINT "THE RAVE
REH PART E
FOR k=1 TO Z@
TEM=TEM+A:K: HEXT K
PRINT "NO. OF YALUES
REM FART C
FOR k=l TO 2& STEF 2
OLD=0DD+RGE: NERT K
PRINT "WO. OF ODD INTEGERS', OLD
REM FART D
FRINT NG

MHEST K

T
GE IS", TTeH

L=1@ ", TEM

OF REPERTZ'. F

REM CH. ©v.Ex 18 FROBLEM 16
CLS G=6G RAMDOM R=RHD. 006

PRINT "1 HAYE A WO, BETHEEN 1 & 188"
G=G+1 PRINT "GUESZ NO. ™. G

INPUT ¥

IF »=R THEM 58

IF #<R THEN 45

PRINT "TOO HIGH" GOTO &9

PRINT "“TOOG LOW® GOTG 3@

FRIMNT "yOU DIC IT IN“: G, "GUESSES"

REM CH. 7.Es. lUJF&UELEH 4=
REM HEADS=L, TRILS
REM FLAG=1 FOR HERDZ

FLAG=8. SEQ=8 MAX=8 FHNDUH
INPUT "HOW MANY TOSSES'. H

IF RND Zs=2 THEW 35

FLAG=1 SEG=1 :GOTQ <8
FLAG=6

FOR K=2 TO N

IF RHD(Zs=2 THEN €@

IF FLAG LET SEG=SER+L GOTO &5
IF FLAG=© LET SEG=1 FLAG=1
GOTO €5

FLAG=8 ' SEu=8

177

solutions to even-numbered exercises

63
ve
75

10
iz
15
i6

20
23
30

i@
i1
i2
i5
20
23
3e
35
48

5%
53
68
65
70

10
i1
iz
20

37
48
86

i@
i2
i3
15
28
25
30
35
49

IF SEG>MAX LET MAX=SEG
NEXT K
PRINT "LONGEST RUN OF HERADS"; MAX

REM CH. 7,EX. 4@, PROBLEM 14
FOR N=10@0 TO 995
Di=INT(N/168> ~
D3=N-10*INT(N/186>
D2=¢{N-188%D1-D35 /18

K=D1L 3+D2L 3+DL3L 3

IF N=xX PRINT N

NEXT N

REM CH. 7,EX. 460.FROBLEM 16
PRINT "ANGLE", "SINC(X>»", "SERIES
FOR K=1 TO 7

READ ANGLE

DATA 10, 206, 60, 98, 120, 156, 1530
K= 8174533+ANGLE

SERIES=8: SIGN=-1:. P=-1

FOR M=1 TO S

P=P+2: FACT=1: SIGN=-5IGN
FOR L=1 TO P

FRCT=FACT=#L . NEXT L
SERIES=SERIES+SIGN*XLP/FACT
NEXT M

PRINT ANGLE. SINCX), SERIES
NEXT K

REM CH. 7,EX. 410, PROBLEM 18

cLs

FOR ANGLE=0® TO 360 STEP 30
Y=SINC(B. 2L74533%ANGLE>

7 ¥ IS5 MAGNIFIED BY 1@ & SHIFTED
7 BY 4@; FOR Y=1i GRAPH SHOMWS vY=z2
PRINTY-"; TABC4@#wY+4z 5 ANGLE

NEXT ANGLE

REM CH. 7, EX. 18, PROBLEM 28
PRINT "“A", "SINCz*A>",

PRINT "Z#SINCRI*COS(AI"

FOR X=8 TO 9@ STEP i@

A=0. B1743533%x

LEFT=SINC2%R)
RIGHT=2*4SINCAI#COSCAS

PRINT x; LEFT. RIGHT

NEXT X

10
iz
i35
20
25
30
335
40

185 INPUT
125 FOR X=1 TO N
178 NEAT X:. END

CHAPTER 8
EXERCISES 11

CH. 8, EX. 14,FPRUBLEM 8
ADD THE FOLLOWING LINES TO THE PROGRAM
"NO. OF BLINKING DISFLAYS'": N

REM CH. 3, EX. 411, PROBLEM 419
W=@:L=06: CLS. RANDOH

PRINT "THIS IS A DICE GAME!!™
GOSUB 1008

P=01+02

IF P12 THEN 45

GOSUB 1386

GOTO 4eS

45 IF P<>7 THEN 68

5@ GOSUB 1260

S5 GOTO 1e5

€8 PRINT “YOUR POINT ISP

65 PRINT "PRESS ENTER TO CONT. ROLLING"
78 INPUT G

75 GOSuUB 1oee

80 IF DA+Dz<>7¥ THEN 935

83 GOsuUB 41i3zew

96 GOTO 165

S5 IF D4+Dz<P THEN 68

188 GOSUB 1200

165 INPUT "PLAY AGRIN ¥ OR N';R$
iie CLS

115 IF R&="¥" THEN 15

120 PRINT:. FRINT

125 PRINT "Y0OU WOMN"; Wi

128 PRINT "AND LOST";L; “"GAMES. "

130

43S

146

143

156

1068
1918
1020
1039
1640
ie5a
1068
1280
1216
1220
1225
1236
1240
1308
izie
1220
1325
1338
13402

1@ R
12 €
13 R
28 F
25 R
38 D
35 D
48 G

IF WOL THEN 145

PRINT "NEXT TIME BRING MONEY"
END

PRINT "I DON-T WANT TO PLAY FOR $"
END

REM SUBROUTINE FOR DICE ROLL
DA=INT(RNDCEI+1)

D2=INMT(RND(&E>+12

PRINT

PRINT"ROLL IS AR 7";Dds "7 & “"iba2; "7

PRINT

RETURN

REM WIN ROUTINE
PRINT

PRINT "YOU WIN t!!"
PRINT

W=bi+1

RETURN

REM LOSE ROUTINE
PRINT

PRINT "I LOVE A GOOD LOSER!!im"
PRINT

L=lo+d

RETURN

Eit CH. 8, EX. 41, PROBLEM 12
LS. PRINT "N","R"

EAD P.R. T

OR K=14 TO 9

ERD N<CK3

ATA 106.. 85, 160, 1. 2.4

ATA 8, 16, 22, 64, 128, 365
0OSUEB 180

45 NEXT K. END

106

REM COMPOUND INTEREST SUBROUTINE

105 A=PH(LHRANCKD DL CTHNCKD »
116 PRINT N<K>.H
115 RETURN

18 REM CH. 8.EX 414,FROBLEM 14

12 PRINT "INPUT X FOR EXP(Xi";

13 PRINT " AND THE NUMBER OF TERMS"
15 INPUT ¥ N

2@ GOsSUB 100

23 PRINT M: "TERMS, EXPC"; X: ") IS E
38 END

iee

‘SUBROUTINE TO COMPUTE EXP(XJ

105 E=1

110 FOR L=1 TO N
115 GOsSUB zo@
128 E=E+X[LAF

178

solutions to even-numbered exercises

125 NEXT L

138 RETURN

286 REM SUBROUTINE FOR FRACTORIAL
285 F=1

248 FOR K=4 TOQ L

215 F=F*K. NEXT K

220 RETURN

CHAPTER 2
EXERCISES i1z

18 REM CH. 39, EX. 4, FROBLEN 4

20 REM &+W MUST BE <=127

21 7 Y+H MUST BE <=47

38 INPUT "WIDTH & HEIGHT", W, H

35 INPUT "TOF LEFT CORNER AT X, "Y' A, B
38 CLS

48 v=B

43 FOR X=R TO A+W. SET X, ¥2: NEXT X
50 X=A+H

35 FOR ¥=B TO B+H. SET (X, ¥>. MEXKT ¥
6@ Y=B+H

65 FOR K=fR+W TO A STEP -1

66 SET(X, ¥y NEXT X

78 X=AR

7S FOR ¥=B+H TO B STEF -i

76 SET(X, ¥y NEXT ¥

80 GOTO 88

18 REM CH. 9, EX. 12, FROBELEM &
12 CLS

15 X=8: FOR ¥=86 TO 4z

16 SET(K, YO NEXT ¥

<28 X=1: FOR ¥=@& TO 42 STEF €
21 SETIK, Yoo NEAT ¥

25 ¥=42. FOR X=8 TO 127

26 SET(X, ¥i . NEXT X

20 FOR C=06 TO 1106

35 I=CAz 54

48 K=C. ¥Y=4z-1

4z IF Y08 SET (X, ¥

45 NEXT C

30 GOTO Se

18 REM CH. 3,EX. 12, FROBLEM &
11 ON ERROR GOTO 88

12 INPUT "TOTAL HNO. OF STEFS'S N
13 X=64. Y=28. K=0: DIST=0

14 CLS. RANDOM

15 SET (K, ¥s

16 K=K+1: IF K-N THEW &
17 Z=RND(2)

18 IF 2=z THEN 31

21 X=X-z. DIST=DIST-Z. GOTO 4S5
31 X=X+2: DIST=DIST+2: GOTC 45
41 Y=¥Y+2. GOTO 45

51 X=X-2. GOTO 15

80 N=K

85 GOTO &5

S8 PRINT @& ©, “AFTER",M; "STEFS "
93 PRINT "DISTANCE =";DIST: “FEET"
935 GOTO 395

<

18 REM CH. 9, EX. 12, PROELEM 16
12 CLS. REM LABEL Y-AXIS
15 PRINT @ 3, "38" FRINT @ 134, "24"

PRINT @ 259, “18". FRINT @ 387, "iz2"
PRINT @ 545, "e"

REM LABEL X-AXIS

PRINT @ 784, " 2";

PRINT * % 6"
PRINT * & i@

REM DRAM Y-AXIS

Ax=@: FOR Y= TO 28

SET (X, "2 MNEXT ¥

REM MARKERS ON Y-AXIS
X=1: FOR ¥=8 TO 38 STEP
SET (X, ¥r. NEAT ¥

REM DRAW X—-AXIS

¥Y=38: FOR X=@ TO 106
SET (X, Y2 NEXT x

REM MARKERS ON X-AXIS
Y=2%. FOR X=8 TO 1886 STEF 18
SET (X, ¥>: NEXT ¥

FOR X=@ T0 1@

Y=K, ¥Y=36-Y

#SCALE=460%X

SET (XSCALE. Yo NEXT X

FOR X=8 TO i@

Y=3%X. ¥Y=30-¥

XSCALE=18%X

SET {XSCALE, Y»: @ NEXT X

GOTO 70

(08

< 34 39 94

i@

28
20
40
56
€8

73

26

CHAPTER 418
EXERCISES 13

REM CH. 16, EX. 13, PRUBLEM &6-A
CLERR 5@8: Z=@

INFUT "YOUR TEXT", T$

FOR K=1 TO LENCT$>

IF MID$(TS, K, L3="E" THEN Z=2+1
E=E+4

NEXT K

PRINT “THE LETTER E OCCURS"; Z;
PRINT “TIMES IN YOUR TEXT"

REM CH. 10,EX. 13, PROBLEM &-B
CLEAR 3ve: =9

INPUT "YOUR TEXT". T$

FOR K=1 TO LEN(T#:
AE=MIDH (TS Ko 45

- FOR R=14 TO S

IF X$=MID$("AEIOU". R, 147 THEN Z=2+1
NEXT R

NEXT kK

PRINT "THE VOWELS OCCUR®; Z;

PRINT “TIMES IN YOUR TEXT®

REM CH. 1@, EX 13. PROBLEM &-C
CLEAR SBB. Z=8

INPUT "YOUR TEXT"; T¢

FOR K=1 TO LEN(T#$X

IF MIDHCTH, K, 40="ING " THEN Z=2+1
IF MID$CTS, K, 40="1ING. " THEN Z2=2+1
NEXT K

IF RIGHT$(T$, 3>="ING" LET Z=Z+1
PRINT “THE EMNDING “ING” OCCURSY,
PRINT Z; "TIMES IN YOUR TEXT. "

179

solutions to even-numbered exercises

ie
iz
20

48
5
Sz
55
=13
60
65
7o

8@
85
87
se
s2

1@
iz
i5
20
29
38
35
48
45
S50
68

REM CH. 10,EX. 43,PROBLEM 8
CLEAR 1068

INPUT “YOUR TEXT"; A$

FOR K=1 TO LEN<H$?
Xe=MID$(A$, K; L

IF ASCC(XREID>64 AND ASC(X$I(ILTHEN 55
GOTO 60

P$=P$+X$

PRINTP$

NEXT K

REM D$ CONTAINS ONLY LETTERS
FOR K=LEMNCP$> TO 1 STEF -1
BE=B$+MIDS(P$, K, 15: NEXT K
IF P$=B$ THEN 50

PRINT "NOT AN IMPERFECT PALINDRGNE"
END

PRINT "IMPERFECT PALINDROME™

END

REM CH. 48,EX. 413, PROBLEM 10

INPUT "YOUR SENTENCE (NO FPERIGDZ"; R#$
FOR K=1 TO LENCAS$)

IF MID${A%$. K, 1,=" " THEN €@
B$=B$+MID$ (A K, 15

GOTO 8@

IF LENCMAXK$)ICLENCB$> THEN MAX$=B%$

B‘: " "

NEXT K

IF LENCKHMAX$OCLENCBS) LET MA$=B$
PRINT "THE LONGEST WORD IS: ";MA$

REM CH. 18, EX. 13, PROBLEM 1z
FOR K=1 TO 106©

A$=STR$ (K>

FOR L=1 TO LENCAS$D

IF "7"=MID$(A$, L, 1> THEN 40
NEXT L

GOTC €0

PRINT K; "BUZZ “;

IF INTCKA70%7<OK THEN 60
PRINT "BUZZ ",

NEXT K

REM CH. 1@,EX. 13.PROBLEM 14
PRINT “THE SPECIRL NUMBERS ARE:"
FOR K=18 TO 95

Ni=INT(K/10>

N2=K—1@+N1

IF KCONL#NL+N2aNZ THEN 45

PRINT Ki

FLAG=1

NEXT K

IF FLAG=1 END

PRINT “"THERE ARE NO SUCH NUMBERS®

180

index

181

A

Abbreviation, 162
PRINT, 6
REM, 29
ABS function, 116, 117
Absolute value, 64
Algorithm, 101

Alphanumeric character, 162

AND, 47
Apostrophe, 29
Argument, 100, 112
dummy, 102
Arithmetic:
functions, 13

hierarchy of operations, 14, 49

integer, 18
trick, 32
Arithmetic functions:
addition, 13
division, 13
exponentiation, 13
multiplication, 13
subtraction, 13
Array, 27,79
largest element, 80
Ascending order, 53
ASC function, 143
ASCII code, 143, 144
Assignment, 9
ATN function, 117
AUTO, 26
Averaging, 73
Axes X and Y, 101

B

Back-up tape, 109
Bar graph, 116, 135, 141

Binary numbers, 150
Binomial expansion, 102
Blanks, 10
Blinking:
block, 155
display, 124, 129
Branching, 46
BREAK, 26,40, 67, 68, 89, 145

C

Cassette input-output, 40, 107
CBDL function, 117
Celsius degrees, 21, 40, 133
Chaining, 56
Character:

alphanumeric, 162

blank, 8

information, 6, 8

strings, 7,42, 142
Checkbook balancing, 105
Checking account, 64, 91
Christmas Club, 78
CHRS function, 143
CINT function, 117
CLEAR, 24
CLEAR key, 4
CLEAR 1, 61, 148
CLOAD, 41
CLOAD?, 41
CLS, 33
Coding a message, 148
Comma, 98

hanging, 98
Command mode, 23, 25
Comments, 28
Compound interest, 14, 32, 51, 129
Computer-assisted instruction, 125

182

index

Conditional transfer, 54
to subroutines, 125
CONT, 40, 68, 89
Convergence criterion, 130
COS function, 117
Counter, 66
increment, 67
test, 67
CSAVE, 40
CSNG function, 117
Cursor, 4, 5,26

D

DATA, 93
Data validity check, 37,59, 60, 64
Debugging, 37, 85
Decisions, 46

three-way, 53

two-way, 51
Declaring variable types, 41
DEFDBL, 42
Definition statements, 42
DEFINT, 41,42
DEFSNG, 42
DEFSTR, 42
Degree:

Celsius, 21, 133

days, 44

Fahrenheit, 21, 133
DELETE, 26
DELETE characters, 34
DELETE line, 33
Dice, 119, 120, 129, 135
Digital clock, 129
DIM, 79
Display:

slowdown, 145

status message, 145
Distance formula, 22
Divisibility check, 18
Division:

sign, 13

by zero error, 37, 60
Dollar bill change, 61
Double-precision, 16, 17, 42
Drill and practice, 97
Dummy:

argument, 102

loop, 145

record, 109

E

EDIT, 34
Editing, 24, 33
examples, 36
procedure, 35
Edit mode, 34
Element, 79
Employee:
earnings, 111
file, 111
END, 25, 128
ENTER key, 5,7
Equal, 46
Equal sign, 11
Erase:
character, 4
line, 4
program, 27
screen, 4
ERL function, 60
ERR function, 164
ERROR code, 164
Errors:
10,37, 60
FC, 58
language, 37
logical, 37
messages, 159
0D, 94, 145
ov, 17
SN, 5,8,37,60
™, 149
Etch-a-sketch, 154
Execution:
BREAK, 67, 68, 145
halt, 68
mode, 24, 25
sequence, 46
EXP function, 117, 130
Exponent. 7
Exponent sign:
on printer, 13, 14
on screen, 13, 14
EXTRA IGNORED, 165

F

Factorial, 78, 120, 130
Fahrenheit degrees, 21,40, 133
False statement, 47

183

index

FC error, 58
Fibbonacci sequence, 102
File:
employee, 111
inventory, 110
FIX function, 117
Flag, 74, 109
Flowchart, 49
symbols, 50
Football, 92
Formatting output, 97, 104
FOR-NEXT, 70
FOR-NEXT loop, 70
FRE function, 149
Frequency count, 119, 135

G

Games:
buzz, 157
etch-a-sketch, 154
hi-low, 77, 120
shoot the duck, 153
video, 153

GIGO, 59

GOSUB, 122

GO TO, 53

Graph:
bar, 116, 135, 141
equation, 110
histogram, 116
lines, 132, 141
metric, 140
parabola, 100
random, 116, 137, 140
rectangle, 140
temperature, 133

Graphic block, 132

Graphic display, 115, 133, 136, 139

Graphics, 131, 137

Greater than, 46

H

Halt execution, 68

Hanging comma, 98

Hanging semicolon, 82

Heads and tails, 115

Hero’s formula, 21

Hierarchy of operations, 14, 49

Hi-Lo game, 77, 120
Histogram, 116
Hypotenuse, 27

I

IF-GO TO, 63
IF-THEN, 54, 66
IF-THEN-ELSE, 54, 55
IF-THEN GO TO, 63
Immediate mode, 24, 25
Increment counter, 66, 67
Infinite loop, 68, 104, 145
Infinite series, 71, 78, 130
Information:
character, 6, 8
numerical, 6
Initialize counter, 66, 67, 68
INKEYS function, 151
Inner loop, 82
INP function, 165
INPUT, 31, 33,93
cassette, 107
#-1,108
Integer:
arithmetic, 18
variable, 16,17, 41
Interest, 23,27, 38
compound, 14, 32
INT function, 112
Inventory file, 110
Iteration, 78
Iterative formula, 78

K

Keyboard, 3
response, 31
Kitty corner, 27

L

Language errors, 37, 38
Leading plus sign, 104
Leading zeros, 17
LEFTS function, 146
Left to right rule, 14
LEN function, 146
Less than, 46

LET, 10

184

index

Level I versus Level I1, 6,9, 37
Library functions, 112, 117
Line number, 23, 25
BREAK IN, 39
LIST, 25,39
LLIST, 166
LOG function, 117,118
Logical errors, 37, 38
Logical expressions, 48
Logical operations, 47
Logical variables, 48
Long division, 112
Loops:
debugging, 85
dummy, 145
FOR-NEXT, 70
IF-THEN, 66
infinite, 68, 104, 145
inner, 82
nested, 82,91, 101
outer, 82
structure, 66, 67
LPRINT, 167

M

Magic squares, 84,91
Mailing list, 110
Main program, 122
Manbhattan Island, 21
Matrix, 84,91
Mean, 129
MEM function, 27, 149
MEMORY SIZE?, 3
Merge, 91, 158
Messages, 28, 29

coding, 148

decoded, 157

error, 159
Metric conversion, 16, 140
MIDS$ function, 146
Minus sign, 6
Mode, 91
Mortgage payment, 21, 38
Multiple statement lines, 56
Multiple subscripts, 84
Multiplication:

sign, 13

table, 82

N

Negative numbers, 6
Nested loops, 82, 91, 101
Nested subroutines, 123, 130
NEW, 27,76
NOT, 47
Numbers:

negative, 6

positive, 6

scientific notation, 7
Numeric constant, 7
Numeric keypad, 3

Numeric limits on magnitude, 17

0

OD error, 94, 145

ON ERROR GO TO, 59,65, 137

ON-GOSUB, 125
ON-GO TO, 57
Operations:
hierarchy, 14, 49
logical, 47
relational, 46
OR, 47
Outer loop, 82
OUT function, 167
Output, 93
cassette, 108
formatting, 97
zones, 98
Overflow, 13
error, 17

p

Palindrome, 147, 157
Parabola, 100
Parentheses, 14
redundant, 15
Pascal’s triangle, 101
PEEK function, 167
Picture tree, 31
Playing computer, 86, 113
POINT function, 137
POKE function, 167
Population, 45
POS function, 102
Positive numbers, 6

185

index

PRINT, 6,7
abbreviation, 6
expanded, 4

PRINT TAB, 100, 102, 117

PRINT USING, 100, 103, 104

PRINT @, 102

PRINT #-1, 108

Program:
clarity, 28
debugging, 37, 84
delete, 27
editing, 33
erase, 27
line number, 23
listing, 25
mode, 24
readability, 28
saving, 40
tracing, 86
writing, 23

Programming:
mode, 24,25
trick, 132

Pythagoreah theorem, 27

Q

Quadratic equation, 64
Quotation marks, 7
Quotes, 8, 33

R

RANDOM, 114

Random graphic display, 115
Random integer, 114

Random number, 114

Random number generator, 119
Random walk, 137

READ, 93

READY, 3,24, 102

REDO, 33

Relational operations, 46
REMark, 28, 29

Reserved words, 10, 11,82, 161
RESET function, 137
RESTORE, 95

RESUME, 59

RETURN, 122

Right triangle, 27

RIGHTS function, 146
RND function, 114
Roulette, 120
Rounding, 113

to nearest penny, 19, 103
Roundoff, 17
Rule of 72, 68,77, 118
RUN, 24, 54

S

Sales report, 98
Saving programs, 40
Scientific notation, 7
Semicolon, 25
hanging, 82
Series:
exponential, 130
Fibbonacci, 102
infinite, 71, 78, 130
sine, 120
SET function, 131
SGN function, 117
SHIFT key, 4
SHIFT @, 67, 145
Shoot the duck, i53
Significant figures, 16, 17, 105
Simulate:
birthdates, 120
dice, 119, 120, 129, 135
heads and tails, 115
roulette, 120
SIN function, 117
Single-precision, 16,17, 42
versus double-precision, 18
Siope formula, 22
Stowdown display, 145
Sorting, 86
Space bar, 36
SQR function, 117
Standard deviation, 129
State capitals, 95
Statement chaining, 56
Status miessage, 145
STEP, 70
STOP, 39, 89
String, 7, 142
concatenation, 14, 142
entry routine, 152
functions, 143, 148
variables, 8, 17

186

index

STRINGS function, 148
STRS$ function, 149
Subroutines, 122
conditional transfer, 125
nested, 123, 130
Subscript, 79
Subscripted variables, 79
element, 79
multiple, 84
rules, 80
single, 79
Syntax error, 5, 8, 37, 60

T

TAB function, 100, 102, 117
TAN function, 117

Temperature conversion, 21, 40, 133

Three-way decision, 52
TM error, 149
Trace, 86, 88
Trailing plus sign, 104
Trailing zeros, 6, 104
Transfer:
conditional, 54
statements, 46,53
unconditional, 53
TROFF, 86, 88
TRON, 86, 88
True statement, 47
Two-way decision, 51

U

Unconditional transfer, 53
Underlining a title, 150
Unit pricing, 95

USR function, 170

A\
VAL function, 149
Variable, 8
declare, 17,41
display, 58

double-precision, 16, 17,42
integer, 16,17, 42
interchange values, 11
MEM, 27
numerical, 9
single-precision, 16, 17, 42
string, 8, 17,42
subscripted, 79, 84
types, 16,41
Variable displays, 58
VARPTR function, 170
Video game, 153

w

Wise old man, 75

Y

Year-to-date earnings, 108

Z

Zero:
division by, 37
leading, 17
subscript, 80
trailing, 6, 104
Zone, 98

INTTODUCTION TO TRS-80

LEVEL Il BaSIC

allD Compurter procramming

This is an easy-to-follow book suitable for a wide variety of readers who are
new to computers and computer programming. It is ideal for the beginner who
wants to learn about computers without wishing to become an expert. Dr.
Zabinski’s INTRODUCTION TO TRS-80 LEVEL Il BASIC AND
COMPUTER PROGRAMMING shows how to use the TRS-80 computer for
a wide range of exciting applications such as checkbook balancing, computer
graphics, multiplication tables, magic squares and video games.

BASIC has a conversational, interactive nature and a simple structure; it is an
attractive teaching tool with which computer programming concepts can be
presented to beginners. With a small set of instructions, the beginner can very
quickly begin to write elementary computer programs—a stimulating and
enjoyable experience. Many practical examples are included to illustrate the
use of BASIC and to demonstrate how a computer can be programmed.

The opening chapter describes major characteristics of the Radio Shack
TRS-80, its keyboard, and how to communicate with the computer.
Subsequent chapters discuss, in direct and easy-to-follow language, tech-
niques for specifying information, computer programs, decisions, looping,
input and output, library functions, subroutines, graphics and strings.

Numerous illustrative examples and an abundance of chapter exercises (over
200!), including many of their solutions, are provided. They help the reader
assess progress, reinforce comprehension, and provide valuable practical
experience.

By Michael P. Zabinski, Ph. D.
Fairfield University
Fairfield, Connecticut

Michael P. Zabinski, Ph. D., is a professor at Fairfield University, Fairfield,
Connecticut, and a founder and director of the only computer camp for
youngsters in the United States. He is a consultant to public schools on
computer usage in the classroom. Dr. Zabinski is author of programming
books as well as educational materials for Radio Shack.

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

