INTRODUCTION
TO0 ‘
T-BUG

by Don Inman & Kurt Inman

INTRODUCTION TO T-BUG

INTRODUCTION TO

T-BUG

THE TRS-80 MACHINE
LANGUAGE MONITOR

By Don and Kurt Inman

dilithium Press
Portland, Oregon

© Copyright, dilithium Press, 1979
1009 8 7 65 43 21

All rights reserved. No part of this book may be reproduced in any
form or by any means without permission in writing from the
publisher, with the following two exceptions: any material may be
copied or transcribed for the non-profit use of the purchaser; and
material (not to exceed 300 words and one figure) may be quoted in
published reviews of this book.

ISBN: 0-918398-33-9

Library of Congress catalog card number: 79-67461

Printed in the United States of America
dilithium Press

P.O. Box 92
Forest Grove, OR 97116

This book is dedicated to Bob Albrecht, who opened up the
wonderful world of computers to both of us. Although he pro-
fesses a violent dislike for machine language programming, the
Dragon strongly supports the idea of “de-mystifying” com-
puters. This “de-mystifying” has been our aim in writing this
book.

The Authors

TABLE OF CONTENTS

INTRODUCTION ... it ce i eee
THE FIRST PROBLEM: Talking to the Computer.
THE SECOND PROBLEM: Displaying Data
fromMemory ...t e
THE THIRD PROBLEM: Using the Recorder...........
THE FOURTH PROBLEM: Gaming
THE FIFTH PROBLEM: Drawing Your Own Graphics ..
THE SIXTH PROBLEM: Games Using Graphics........
THE SEVENTH PROBLEM: Debugging with T-Bug
APPENDIX e

INTRODUCTION

The computer is a tool for solving problems that come in
various forms—educational, recreational, vocational, etc.
Learning to program a computer is a meaningless task unless it
is approached in a problem-solving setting. This book was writ-
ten with that thought in mind. Rather than going through the
set of Z80 instructions and creating artificial uses, we have
created problems and then discussed instructions that may be
used to solve the problems. We also feel that it is much easier to
learn to program by studying simple programs written by others
than to strike out on one’s own, armed with a mere bag full of
instructions.

The book is centered around Radio Shack’s T-BUG™*
Monitor and Debugging Aid and eight small pages of informa-
tion supplied in Radio Shack’s T-BUG User Instruction
Manual.

Equipment necessary to use the book, rather than merely read
it, consists of:

1. A TRS-80 computer with 4K RAM

2. A video monitor

3. A cassette recorder

4. The T-BUG cassette

We assume that you have a knowledge of hexadecimal nota-
tion but have little or no background in machine language
programming.

T-BUG is a machine language monitor designed to be used
with the TRS-80 equipped with either Level I or Level II
BASIC. The monitor allows you to enter machine language pro-
grams, examine and modify memory, and transfer control to

*T-BUG is a trademark of Radio Shack, a Division of Tandy Corp.

2 INTRODUCTION TO T-BUG

the program which you have entered.

T-BUG is provided on cassette tape by Radio Shack stores
and is loaded into the TRS-80 by the use of the CLOAD com-
mand in Level I BASIC. If your TRS-80 is equipped with Level
II BASIC, the SYSTEM command is used.

L.evel 1 BASIC was used in the early portions of this book
until our Level 11 BASIC ROM arrived. However, all programs
were verified and modified to show Level II use as well. There
are some differences.

The locations of several subroutines used in the demonstra-
tion programs differ for ihe iwo levels of BASIC. The sub-
routines are also “packaged” differently. These differences will
be pointed out when the subroutines are used.

All addresses, instructions and data are entered in hexa-
decimal notation (hereafter referred to as hex) and the video
display uses the same notation when in T-BUG. Hex numbers,
with their decimal equivalents, are given in Table 1, page 107.

This book has been written to introduce you to the use of
T-BUG and is not intended io be a complete machine language
text or to cover the entire Z80 instruction set. The pace is slow
and is designed to provide you with information to use T-BUG
immediately. Useful programs are used to demonstrate
T-BUG’s features with practical applications wherever possible.

SUMMARY OF T-BUG COMMANDS

M The MEMORY command is used to either modify or ex-

amine memory. A four-digit hexadecimal address must be
£

T . b ey

iyped (o the right of M. The hex value of the contents &
that memory location will then be displayed as:
M (address) (contents)
You type T-BUG responds

If the contents of the address are not to be changed,
depress ENTER and the next higher memory address will
be displayed along with its contents.

If the contents of the address are to be changed, you
type in the correct value, and T-BUG automatically
displays the next higher address along with its contents as:

iVi (address) (old contentis) (new conients)
M (next address) (contents)

INTRODUCTION 3

#J

#B

#F

#G

To exit the MEMORY function command mode:
Type: X

The JUMP command transfers control to a specified
memory location. The computer begins execution of the
program from that location. This beginning memory loca-
tion is entered as a four-digit hex number following the J.
The specified location must contain the first byte of an
operation code (opcode). The jump occurs immediately
after entry of the address.

J (address)
Example: # J 4A00

Execution begins immediately after
this last digit is typed.

The BREAK command inserts a breakpoint at the address
specified in the command. The address must be either the
address of a single-byte instruction or the first byte of a
multiple-byte instruction. When the user program reaches
the specified address, the breakpoint terminates program
execution and transfers control back to T-BUG. The for-
mat is:

B (address)

Example: # B 4A17
After the last digit of the address
is typed, control is returned to
T-BUG.

Only one breakpoint may be utilized at a time.

This command is not named in the T-BUG manual so I will
call it the FREE command. It “frees” the last breakpoint
that was set (removes it and replaces the original instruc-
tion that the breakpoint replaced).

Example: #F
After the F is typed, control is returned
to T-BUG.

The GO command is used to continue execution of a pro-
gram after a breakpoint has been used to halt execution
and the F command used to remove the breakpoint.

INTRODUCTION TO T-BUG

Example: # B 4A17
J 4A00 Program is executed to the
. breakpoint. Corrections to the
program may be made.

Breakpoint is removed.

#
#

@ T

Execution resumes at the point
where the breakpoint was.

¥

Execution resumes at the restored instruction with the
registers automatically restored.

R The REGISTER command displays the contents of all the

#P

special and general purpose registers as shown on page 5 of
the T-BUG Users Instruction Manual and on page 99 of
this book. Register contents may be modified through the
use of the MEMORY function. The appropriate RAM

register storage locations are aleo found on page 5 of the

Users Instruction Manual.

The PUNCH command is used to store memory contents
on a cassette tape. The command instructs the computer to
write on the cassette all information between two user
specified addresses. The starting address must be less than
the ending address, and the cassette must be made ready by
depressing the RECORD and PLAY buttons on the
recorder, T-BUG controls the cassette tape motion (turn-
ing it on if the correct buttons have previously been set)
and displays a # sign on the screen when the ouiput has

been compieted.

P (start address) (end address)
Example: # P 4A00 4A19

Execution begins when the
last digit has been typed.

INTRODUCTION 5

The format for Level 1I BASIC is:
P (start add.) (end add.) (entry add.) (file name)
Example: # P 4A00 4A45 4A20 GOBUGY

Execution begins when the
6th character has been
typed.

If the file name contains less than 6 characters, the
ENTER key must be pressed after the last character in the
name.

L For Level I users, the LOAD command is used to load a
program or data into the computer’s memory from a
cassette tape. It is assumed that the tape was prepared in
the manner described under the PUNCH command. The
data is loaded into the memory locations specified on the
tape when punched. The cassette should be ready with the

pLAY button depressed, and the cassette rewound to the
correct starting point. The required user entry is:

#L
As soon as the L is typed, the tape is set in motion
and loaded. An asterisk (*) will blink as data is
input, and the end of the loading function is signaled
by the usual # sign appearing on the display.

If the tape is loaded improperly, T-BUG will display an E
on the monitor to the right of the LOAD command. Try it
again.

Level II users load cassettes via the SYSTEM command
as described on page 42.

THE USE OF T-BUG MEMORY

The area of memory which may be used for your programs
and data begins at location 4400 for Level [BASIC users and at
location 4981 for Level 11 BASIC users. To avoid confusion, we
have written all sample program solutions to start at location
4A00 which is within the user memory for both versions.

6 INTRODUCTION TO T-BUG

LEVEL i LEVEL il

4000 4380
T-BUG internal

storage and
LN s\l AL DGt

stack
4400 4980
User memory
4FFF L:lpper for programe 4FFF Qpper
limit 4K and data limit 4K
memory memory
7FFF Upper 7FFF Upper
Hmit 16K iimit i6K
memory mermory

Figure .1 Memory Map

THE FIRST PROBLEM
Talking to the Computer

Before we try to do anything fancy with the computer, we
should make sure that we can communicate with it.

Problem: Input some data from the keyboard and make it
appear on the video display.

How to Reach a Solution: The computer must both scan
the keyboard to see when a key has been struck and
figure out which key it was. The stroke of each key
puts out a distinctly coded electronic signal which is in-
terpreted by the computer. The correct character for
that key must then be displayed on the video screen.
As each keystroke is displayed, the cursor (which
keeps track of the displayed position on the screen)
must be advanced one position to be ready for the next
keystroke. We must also devise some way to terminate
our program so that we can perform other tasks.

DEMONSTRATION PROGRAM NUMBER 1

Our first program is one of the most useful tools you will use
with T-BUG. It allows you to input characters from the
keyboard and display them on the screen. The cursor advances
one position each time a keystroke is made. The program is
shown on page 8 of the 7-BUG User Instruction Manual. You
will notice that it has a four-column format. We will add a name
to each column and also put in two extra columns for the
machine language instructions (called opcodes) and their

8 INTRODUCTION TO T-BUG

addresses.
i I 1 v v Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
LOOP CALL CHKIO Scan keyboard
JP Z,LOOP Go back if nothing
there
MORCOD cP oD Carriage return?
JP NZ,LOOP If not, get another
character

Figure 1.1 Table of Instructions—Program 1

Column 1 (LABEL) is optional. It is there to provide a
reference point for jumps or to merely label different functional
parts of a program. Column IV is the mnemonic (easy to
remember) name for the instruction which is performed in con-
junction with the operand which appears in Column V. The
remarks in Column VI are also optional. They are used to ex-
plain what is “going on” in the program; they are not a part of
the program itself. The remarks are useful to both the program-
mer and the program user. Columns II and 111 are for the “real”
part of our machine language program. The address of each in-
struction (in hex notation) is placed in Column II. Column III is
used for the hex representation of each mnemonic-operand
pair. These values are found in a Z80 instruction code manual
(also see Table 11, pages 108 and 115). Each two-digit hex code

nnnnn a o
occupies one memory location in the computer,

Line 1. CALL CHKIO is represented by:

LEVEL. | LEVEL Il

CD (CALL) CD (CALL)
40 (low-order address) 2B (low-order address)
0B (high-order address) 00 (high-order address)

The instruction CALL CHKIO is stored in three memory
locations and is therefore called a three-byte instruction.
Notice the difference in memory locations for the two ver-
sions of BASIC. 1f we place this instruction in our siariing
memory location, we would have:

THE FIRST PROBLEM 9

LEVEL | LEVEL HI
Address Opcode Address Opcode
4A00 CD 4A00 CD
4A01 40 4A01 2B
4A02 0B 4A02 00

Notice the reverse order of
CHKIO’s address (which is actually
OB40 or 002B).

Since three memory locations are used for this one
instruction, we put them all on one line in Columns II and I1I of
Figure 1.1. The first line of the instruction table would look like
this:

| i 1 v v vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
LOOP 4A00 CD 4008 CALL CHKIO Scan keyboard

LEVEL I
LOOP 4A00 CD 2B 00 CALL CHKIO Scan keyboard

LEVEL I1

Although only 4A00 appears in the address column, we must
remember that this instruction actually occupies three memory
locations (4A00, 4A01 and 4A02).

Line 2. JP Z,LOOP is represented by:

CA (JP 2
00 (low-order address of LOOP)
4A (high-order address of LOOP)

This is another three-byte instruction and will occupy the
next three sequential memory locations. After the
keyboard is scanned by CALL CHKIO, this instruction
determines whether or not a key has been struck. If not, the
instruction sends program execution back to scan the
keyboard again. If a character has been struck, execution
goes on to the next line of the program.

10 INTRODUCTION TO T-BUG

Our Level I table now looks like this:

| I} 1 v \ Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
LOOP 4A00 CD 40 0B CALL CHKIO Scan keyboard
4A03 CA 00 4A JP Z,LO0OP Go back if nothing
there

The Level II version of these first two lines requires a more
detailed approach. We must make sure that the accumulator is
clear (0) before we scan for a keystroke. We do this by cailing
the keyboard scan routine, exclusive {g’)Ring the accumulator
with itself, and then calling the keyboard scan again to look for
a keystroke. The equivalent of lines 1 and 2 in the Level I pro-
gram become four lines for Level II.

Level II table becomes:

1 i 1 A% \" Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A00 CD 2B 00 CALL CHKIO Scan keyboard
4A03 AF XOR A Clear accumulator
" , to zero
LOOP 4A04 CD 28 00 CALL CHKIO Scan again
4A07 CA 04 4A JP Z,LOOP Go back if nothing
there

LOOP has Notice the extra call to CHKIO, and the insertion of the exclusive
OR instruction at line 2. If the first two lines are omitted, an ex-
traneous character, which we do not want, will appear due to some
value which may be left in the accumulator.

moved

The JP Z,LOOP instruction occupies three addresses in both
versions of the program.

Next line. CP CD is represented by:
FE (CP or ComPare the vaiue in ihe accumuiaior
with the value which foilows.)

OD (The hex value = 13 decimal. OD is the ASCH
code for CARRIAGE RETURN.)

This two-byte instruction compares the ASCI code for
the key which was struck to the value OD. If the values are
the same, the Z (zero) flag is set to 1 (meaning the dif-

THE FIRST PROBLEM 1"

ference between the two values is zero). If the values are
different, the Z flag is not set (it is sometimes called reset.
The flag is reset to 0). Status flags, such as the zero flag, are
merely individual bits in the status register which are set to
a 1 or a 0 depending on the “status” of the computer after
an instruction has been executed.

Our tables are growing. In the Level I version, CHKIO echos
the keystroke on the display. However, an extra line must be
added for the Level II version to display the keystroke.

Level I
| [} i v Vv Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
LOOP 4A00 CD 40 0B CALL CHKIO Scan keyboard
4A03 CA 00 4A JP ZLOOP Go back if nothing
there
MORCOD 4A06 FEOD cP oD Carriage return?
Level II
[I Hi v \' vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A00 CD 2B 00 CALL CHKIO Scan keyboard
4A03 AF XOR A Clear accumulator
to zero
LOOP 4A04 CD 2B 00 CALL CHKIO Scan again
4A07 CA Ot} 4A JP Z,LOOP Go back if nothing
4AOA Cioj 3300 CALL OUTC Display keystroke
MORCOD 4A0D FE oD CP oD Carriage Return?

The next instruction demands a decision based on the com-
parison of the accumulator and the ASCII code for carriage
return. If they are the same, the Z flag has been set to 1 as
described earlier.

Next line. JP NZ,LOOP (Jump if the Z flag is not set) is
represented by:

C2 (JPN2) Cc2
Levell 00 (low-order address of LOOP) 04 Levelll
4A (high-order address of LOOP) 4A

12 INTRODUCTION TO T-BUG

If the zero flag is not set, execution of the program goes
back to address 4A00 (4A04 for Level II). If it is set, the
program goes on to address 4A0B (4A12 for Level 1I).

This short program is now complete. Our completed instruc-
tion tables for Level I and Level 1I are shown in Figures 1.2 and
1.3.

Level 1
1 i 11 v A Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
LOOP 4A00 CD 40 0B CALL CHKIO Scan keyboard
4A03 CA 00 4A JP Z,LOOP Back if nothing
MORCOD 4A06 FEOD cP on Carriage Return?
4A08 C2 00 4A JP NZ,LOOP No, get next one

Figure 1.2 Final Instruction Table—Program 1

Level II
I i i v Y Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A00 CD 2B 00 CALL CHKIO Scan keyboard
4A03 AF XOR A Clear accumulator
to zero
LOOP 4A04 CD 2B 00 CALL CHKIO Scan again
4A07 CA 04 4A JpP Z,LOOP Back if nothing
AA0A CD 3300 CALL ouTC Digplay it
MORCOD 4A0D FEOD CP oD Carriage Return?
4A0F C2 04 4A JP NZ,LLOOP No, get next one

Program Review

The program scans the keyboard until a key is struck (lines 1
and 2 for Level I, lines 3 and 4 for Level IT). When this happens,
the characier for that key is echoed on the video display. The
computer then compares the ASCII code tor the typed character
with OD, the ASCII code for a carriage return.

THE FIRST PROBLEM 13

If the two values do not match, execution of the program is
returned to scan the keyboard for another character. What will
happen if a carriage return has been struck?

We have made no provision for this possibility. For the time
being, let’s not worry about it. We’ll use a breakpoint after we
have entered the program. When a carriage return is entered,
the program will encounter the breakpoint and transfer control
back to the T-BUG monitor.

After the program is entered we will be able to type in any
message and see it displayed on the video screen. We will be
communicating with the computer. Note, however, that the
computer is merely repeating everything which we type. For the
computer to understand what we are saying will require more
programming.

LEVEL LEVEL 1l

Scan keyboard
Scan keyboard Empty accumulator

Scan keyboard

Compare ASC!! Code with OD

Display it
Compare ASCH Code with OD
@ No @
Yes

Figure 1.4 Flowchart of Program 1

14 INTRODUCTION TO T-BUG

LOADING T-BUG FROM LEVEL | BASIC

With your TRS-80 and recorder connected, apply power. The
computer will be ready for you to program in BASIC language
as the video display responds with:

READY
>

The s a signal that the computer is in the BASIC ROM,
and the __ shows the present cursor position. Whatever you in-
put from the keyboard will be displayed at the cursor position.

Now it’s your turn to load the T-BUG cassette. Be sure the
cassette is in the recorder and rewound to the beginning of the
tape.

1. Type in: CLOAD. (Do nof press the ENTER key vet!)

2. Press the pLAY button on the recorder. Nothing should
happen vet because the computer controls the movement
of the cassette.

3. Now, press the ENTER key on the TRS-80 keyboard.
The cassette should start. After a short time, two
asterisks appear, and the right one blinks. This is a visual
sign that the loading is in progress.

4. When T-BUG has finished loading into the computer, the
sign appears on the screen, and the recorder is stopped.

(#

5. Press the stop button on the recorder. The # sign is an
indication that conirol has been passed from the BASIC
ROM to the T-BUG monitor. T-BUG is now ready for
the program to be entered.

LOADING T-BUG FROM LEVEL Il BASIC

With your TRS-80 recorder connected, apply power. The
computer will respond: MIEMORY SIZE? __.
1. You press ENTER .
2. The computer responds:

THE FIRST PROBLEM 15

O

10.
11.
12.

MEMORY SIZE?
RADIO SHACK LEVEL Il BASIC
READY

>

You type: SYSTEM.
Press ENTER .

. The computer responds:

>SYSTEM
*?_

You type: TBUG. Do not press ENTER yet.

Press the prLaYy button on your recorder. Nothing
should happen yet because the computer has control of
the recorder.

Now press ENTER on the TRS-80 keyboard. The
recorder should start. After a short time, two asterisks
appear, and the right one blinks.

. When T-BUG has finished loading, the computer

displays another *?__ and the recorder is stopped.
Press the stop button on your recorder.

Now type: / and press ENTER .

The # sign appears on the screen, indicating that control
is now in the T-BUG monitor. T-BUG is now ready for
the program to be entered.

(4

NOW LET’S USE T-BUG

The # sign is on the screen.
1. To examine or alter memory: Type: M

#M M for
“Memory”

2. Now type in the beginning address: 4A00

M 4A00 XX Two hex digits will
appear at XX. That
value is in 4A00 now.

16 INTRODUGCTION TO T-BUG

3. Our program starts with the value CD so we type: CD

(# M 4A00 XX CD The CD has replaced
4A01 YY the old value XX.

The next address
appears. Voila!

Two hex digits appear after
the address.

4. Next in our program is the CALL address. Type in: 40
for Level I; or 2B for Level I1.

M 4A00 XX CD
4A01YY 40
4A02 XX

There’s the next address
and its contents

M 4A00 XX CD
4A01 YY 2B
4A02 XX

New value

5. Next type: 0B for Level I; or 00 for Level II.

7 7
M 4A00 XX CD # M 4A00 XX CD
4A01YY 40 4A01 YY 2B
4A02 XX 0B New value 4A02 XX 00
4A03 YY 4A03 YY

Next address

6, 7, 8, etc. This process continues. All you have to do is
type in the opcode values from our table (page 12).
T-BUG and the computer do the rest.

We finally type our last step: 4A and the program is
completely entered as is shown.

The complete entry sequence for both Level I and 11 is
shown in Figure 1.4.

LEVEL | LEVEL Il
M 4A00 XX CD # M 4A00 XX CD
4A01 YY 40 AA01 YY 2B
4A02 XX 0B 4A02 XX 00
4A03 YY CA The last values 4A03 YY AF
4A04 XX 00 in the rows are | 4A04 XX CD
4A05 YY 4A the codes for l 4A05 YY 2B
4A06 XX FE our program. 4A06 XX 00

THEFIRST PROBLEM 17

4A07 YY OD 4A07 YY CA
4A08 XX C2 4A08 XX 04
4A09 YY 00 4A09 YY 4A
4A0A XX 4A 4A0A XX CD
4A0B YY 4A0B YY 33
4A0C XX 00
When the program has been -] 4A0D YY FE
entirely entered you will see only A4A0E XX 0D
the last 16 lines on the screen. 4A0F YY C2
4A10 XX 04
4A11 YY 4A
4A12 XX

Figure 1.4 Program Number 1 as Entered

TO GET OUT OF THE MEMORY EXAMINE/ALTER MODE
Type: X

The display will roll up one line and the # sign will appear at
the bottom of the program.

To finish the program we will use the breakpoint we men-
tioned earlier. After the number sign that appeared when we
exited the memory mode, type:

B4AOB for Level I or B4A12 for Level I1.

“B”* for breakpoint Its address

EXAMINE MEMORY

After entering a program it is always a good idea to check and
make sure you entered it correctly. It is easy to make mistakes
when working in hex. To examine what you have in memory is
quite simple. All you have to do is type an M followed by the
first address that you want to examine. The computer then
prints that address and the value which that address location
holds. To view the next sequential address, just press the

ENTER key. To examine a string of sequential addresses, such
as a previously entered program, just keep pressing the ENTER
key. Each stroke of the ENTER key provides a new address and
its contents.

18 INTRODUCTION TO T-BUG

When you entered the program breakpoint in the program
that we are working with, the # sign was displayed on the screen.
Following that # sign:

1. Type M 4A00.

2. Press the ENTER key.

3. Repeat step 2 until the complete program has been
checked for correct entry.

4. If any corrections are to be made, enter the correction
immediately following the value that is in error. After the
correction is made, you do not have to press the ENTER
key as in step 2. The computer takes care of that auio-
matically when a correction is made.

When you have completed the examination and correction of
your program, you should see the following sequence on your
screen:

LEVEL! LeveL it
B 4A0B 7AN08 00
M 4A00 CD 4A07 CA
4A01 40 : 4A08 04
4A02 0B ~ Your Program —| 4A09 4A
4A03 CA 4A0A CD
4A04 00 4A0B 33
4A05 4A 4A0C 00
4A06 FE 4A0D FE
4A07 0D 4A0E 0D
4A08 C2 4A0F C2
4A09 00 4A10 04
4AAOA 4A 4A11 4A
4A0B CD 4A12 CD
4A0C 81 AA12 80
4A0D 40 / / 4A14 43
4A0E FF Where did this 4A15 FF

come from? X
This CALL > This value may

This value may subroutine was inserted be anything.
be anything. automatically as a result Ignore it.
Ignore it. of # B 4A0B or # B 4A12.

This breakpoint command

ig nged ag an aid in program
debugging. The result of its
execution places control back in

THE FIRST PROBLEM 19

the T-BUG command mode so that you
may take any action that you desire.

‘We now have the program entered correctly. To get out of the
MEMORY EXAMINE mode, type: X.

Our # sign appears again. T-BUG is ready for another
command, and we are ready to RUN our program.

RUNNING THE PROGRAM
All you need to do to run the program is type:
J (for JUMP to) followed by 4A00

Now press the CcLEAR key on the keyboard. If this doesn’t
clear the screen, continually press the down arrow | key until
the screen is cleared.

Now type the following message on the keyboard. (Don’t use
the carriage return at the end of a line.)

DEMONSTRATION PROGRAM NUMBER 1 FOR T-BUG. ANYTHING YOU NOW TYPE
WILL APPEAR ON THE SCREEN WHAT WILL HAPPEN IF YOU PRESS THE CA
RRIAGE RETURN (THAT'S THE ENTER KEY ON THE TRS-80)? TRY IT

‘What happened???? I thought I told you not to hit the car-
riage return. The program was terminated, and the computer
jumped back to the T-BUG monitor.

Here’s what I see on my display:

HE SCREEN. WHAT WILL HAPPEN (F YOU PRESS THE CA

OGRAM NUMBER 1 FOR T-BUG. ANYTHING YOU NOW TYPE
HAT'S THE ENTER KEY ON THE TRS-80)? TRY IT.

This gets blanked out, and our friend, the
sign, appeared. That means we’re back in
T-BUG COMMAND mode.

The way our program is now written, every time we hit the
carriage return key, the breakpoint sends us back to the
monitor. This is ridiculous. We must be able to use the carriage
return in the regular way. Can’t we change something so that the
program won’t jump back to T-BUG on every carriage return?

Why not make the comparison to something that we are not
likely to usé when typing text? Let’s try the @ symbol. The

20 INTRODUCTION TO T-BUG

ASCII code for @ is 40 (hex). Therefore, we must replace the
compare instruction (FE 0D) with FE 40. We can do this easily
with T-BUG using the ALTER MEMORY mode.

ALTER MEMORY
Cur #sign is already on the screen as a result of executing the

breakpoint. All we have to do is type M4AO7 for Level | or
M4AOE for Level II after the # sign. The display shows:

LEVEL ! LEVEL Il
(# M 4A07 OD # M 4A0E OD
Now type: 40. The display shows:
LEVEL | LEVEL Ul
(# M 4A07 OD 40 (# M 4A0E OD 40
i 4A08 Cz ‘ 4AOF CZ
Now type: X. The display shows:
LEVEL | LEVEL Il
M 4A07 OD 40 # M 4A0E OD 40
4A08 C2 4A0F C2
#

Now run the program again by typing JAA00 and press CLEAR
{or | pressed several times) io clear the screen.

Vou may now nse the carriage return or whatever else you
want to type (except the @ sign, of course). When you are tired
of typing messages, try a few graphic designs. If you've had
enough, then hit the @ key to get back to the monitor.

End of Problem 1

THE SECOND PROBLEM
Displaying Data from Memory

You learned to talk to the TRS-80 through T-BUG by solving
Problem 1. However, the program merely echoed the characters
that you typed. Now let’s go one step farther.

Problem: Retrieve information that has been previously
stored in memory, and display the information on the
video screen.

How to Reach a Solution: Write a program which will
display characters from ASCII coded information
previously stored. We will show two separate solu-
tions.

A. Place each character in the accumulator, display
it immediately, then go on to the next character.
B. Recall each character from the memory location
where it has been previously stored.
Each solution will terminate with instructions similar
to that used in our first program.

SOLUTION TO PROBLEM 2A

This program is also adapted from a suggested subroutine
shown on page 8 of the T-BUG Users Manual. This program for
Level I BASIC uses two instructions, LOAD ACCUMULA-
TOR IMMEDIATE and RESTART 2. The program for Level
11 is similar. However, it uses a CALL instruction to output the
character instead of the RESTART used in the Level I version.

The Z80 mnemonic for LOAD ACCUMULATOR IM-

22 INTRODUCTION TO T-BUG

MEDIATE is: LD.
The operand is: reg,data.
The opcode for this instruction (in binary notation) is:
00 XXX 110 yy

where the XXX bits are selected from the table below according
to the register that is to be used. The symbols, yy, are replaced
by the hex value of the data that is to be loaded.

REGISTER TABLE

000=8B

001=C

010=D

O11=E

100 =H In our particular case,
101 =L we are using register A,
1M11=A the accumulator,

Figure 2.1 Register Code Table

Thus the instruction in our problem becomes:
00111 110yy or
(in hex) 3 E yy

The Z80 mnemonic for RESTART is: RST.
The operand is: n.
The opcode is: 11 XXX 111 where XXX is replaced by the

value 010 for n, and the instruction becomes:
11010111 or
(inhex) D 7
Level 11 users will call a subroutine named OUTC (output a

Loncnntar) awhich vocidan § vanr sl + 43 [
character) which resides in memory beginning at location 0033.

It is a three-byte instruction:

CD the opcode
33 the low-order address byte
00 the high-order address byte

Tables similar to those used for Program 1 would start with
the following two lines:

THE SECOND PROBLEM 23

Level 1
| i 1l I\ v Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
START 4A00 3E 50 LD A,50 Load ASCH code
4A02 D7 RST 2 Display it
Level 11
| i 1 v v Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
START 4A00 3E 50 L.D A,50 Load ASCII code

4A02 CD 3300 CALL OouTC Display it

This part of the program would place a P on the video screen.
The hex number, 50, is the ASCII value for the letter P. The
cursor would be advanced one position ready for the next
keystroke. The two instructions would be repeated over and
over by our program until our message on the screen was com-
plete. Of course, we would insert different ASCII values each
time to make the message meaningful.

Let’s write a program which will display:

PROGRAM
#2

On the following two pages you will find tables for part of the
new program. One is for Level I users, and the other is for Level
II users. See if you can fill in the blanks in the address, opcode,
and operand columns for your particular version of BASIC.
You’ll need an ASCII table and the Z80 instruction set. These
can be found in the appendix at the back of this book.

24 INTRODUCTION TO T-BUG

Level 1
| H i v \' Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS

START 4AQ0 3E 50 LD A50 Load ASCII P
4A02 D7 RST 2 Display it
[N LD A Load ASCH R
N D7 RST 2 Display it
— —_— LD A Load ASCH O
J— D7 RST 2 Display it
—_ — Le A, Load ASCH G
I D7 RST 2 Display it
_ . LD A L.oad ASCII R
— D7 RST 2 Display it
N — LD A,__ Load ASCII A
— D7 RST 2 Display it
_ _ LD A, Load ASCH M
R D7 RST 2 Display it
J— — LD A, Load ASCII carriage

Fewuirn
— D7 RST 2 Display it
— _ LD A, L.oad ASCII #
- D7 RST 2 Display it
— _ LD A, Load ASCIl 2
— D7 RST 2 Display it
— — LD A Load ASCII carriage
return

— b7 RST 2 Display it

Figure 2.2 Worksheet for Program 2A

THE SECOND PROBLEM 25
Level I
i Il il v \ Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
START 4A00 3E 50 L.D A,50 Load ASCII P
4A02 CD 3300 CALL OUT_C Display it
. . LD AL~ Load ASCIIR
— CD 3300 CALL ouTC Display it
- —— LD A,__ Load ASCII O
[CD 3300 CALL ouUTC Display it
N —— LD A__ Load ASCH G
_ CD 3300 CALL OUTC Display it
JR— —— LD A, Load ASCII R
—_— CD 33 00 CALL OuUTC Display it
_ —— A__ Load ASCII A
- CD3300 CALL OUTC Display it
—_— —_— LD A Load ASCII M
N CD 33 00 CALL ouTC Display it
. R R LD A__ Load ASCII carriage
return
PR CD 3300 CALL OouUTC Display it
— — LD A Load ASClI #
J— CD 3300 CALL ouTC Display it
— e LD A Load ASCH 2
— CD 3300 CALL QUTC Display it
J— - LD A Load ASCII carriage
return
CD 3300 CALL ouUTC Display it

Figure 2.3 Worksheet for Program 2A

26 INTRODUCTION TO 7-BUG

We will make use of Program 1 as the concluding part of Pro-
gram 2A. The complete Machine Language Program to be
entered for Level I is:

ADDRESS CODE

4A00 3E Your answers on
4A01 50 P page 24 should
4A02 D7 agree with these.
4A03 3E

4A04 52]

4A05 D7

4A06 3E

4A07 4F (0]

4A08 D7

4A0S 3E

4A0A 47 G

4A0B D7

4A0C 3t

4A0D 52 R

4A0E D7

4A0F 3E

4A10 41 A

4A11 D7

4A12 3E

4A13 4D M

4A14 D7

4A15 3k

4A16 oD carriage return
4A17 D7

4A18 3E

4A1S 23 #

4A1A D7

4A1B 3E

AM1C 32 2

4A1D D7

4A1E 3E

4A1F 0D carriage return
4A20 D7

4A21 CcD N

4A22 40

4A23 0B

THE SECOND PROBLEM

4A24
4A25
4A26
4A27
4A28
4A29
4A2A
4A2B
4A2C
4A2D
4A2E

Program 2A for Level II is a little longer.

ADDRESS

4A00
4A01
4A02
4A03
4A04
4A05
4A06
4A07
4A08
4A09
4A0A
4A0B
4A0C
4A0D
4A0E
4A0F
4A10
4A11
4A12
4A13
4A14
4A15
4A16
4A17
4A18
4A19

CA
21

4A
FE
40
C2
21

4A
CD
91

40 7

CODE

3E
50
CD
33
00
3E
52
CD
33
00
3E
4F
CD
33
00
3E
47
CD
33
00
3E
52
CD
33
00
3E

27

All this is from
program 1 with
appropriate jump
addresses
changed.

Your answers on
page 25 should
agree with these.

28

4A1A
4A1B
4A1C
4A1D
4A1E
4A1F
4A20
4A21
4A22
4A23

AADA
a2

4A25
4A26
4A27
4A28
4A29
4A2A
4A28
4A2C
4A2D
4A2E
4A2F
4A30
4A31
4A32
4A33
4A34
4A35
4A36
4A37
4A38

AADO

T IWG

4A3A
4A3B
4AA3C
4A3D
4A3E
4A3F
4A40
4A41
4A42
4A43

41

CD_ .

33
00
3E
4D

ra)
7

33
00
3E

nMn

s

CD
33
00
3E
23
CD
33
00
3E
32
CD
33
00
3E
0D
cD
33
00
CDX
2B
00
AF
CD
2R
00
CA
3B
4A
cD
33

00

INTRODUCTION TO T-BUG

A

carriage return

All this is from
Program 1 with
appropriate jump
addresses
changed.

THE SECOND PROBLEM 29

4A44 FE
4A45 40
4A46 C2
4A47 3B
4A48 4A
4A49 CD
4A4A 80
4A4B 43 /

LOADING PROGRAM 2A

Load T-BUG in the manner described for Program 1. Then

you can load the program.
1. When the # sign appears, type: M 4A00

(# M 4A00 XX

2. Enter the machine language code for each appropriate
address. Remember, T-BUG automatically gets the next
address after each entry that you make. If you make a
typing error, you can correct it later. Start your entries as

follows:
Level I Level 11
"ﬂm\moo X)}SE # M 4A00 XX 3E
4A01 \%Y(50 4A01 YY 50
4A02 XX D7 4A02 XX CD
4A03 YY 3E 4A03 YY 33
4A04 XX 52, 4A04 XX 00
etc. etc.

3. When the program has been completely entered, type: X.
This exits the MEMORY mode and returns you to the
COMMAND mode with the # sign displayed.

4. Now type: M 4A00 to examine your entries. If an entry is
correct, press ENTER to view the next entry. If an entry
is incorrect, type the correct value for that address.
T-BUG will enter the new value and display the next one.

30 INTRODUCTION TO T-BUG

5. When all entries have been verified, type: X and the #
sign appears again.

6. A new way to clear the screen is shown. At the bottom of
the screen are vour last entries:

Level I Level 11
4A2C CD 4A49 CD
4A2D 91 4A4A 80
4A2E 40 4AA4B 43

\ # K i
Following the # sign, type: B 4B00. Then type: J 4B00.

The screen will clear (at least the left 16 columns) and the
number sign will appear at the upper left.

I(#

7. To RUN the program, type: J 4A00 and there it is:

PROGRAM
#2

You are now looping in that portion of the program
which was taken from Program 1. Type in any message
that you want, and it will appear on the screen. Feel free
to get rid of any frustrations you are having with machine
language programming.

PROGRAM 2B

Now let’s look at the second method which displays ASCII
data stored in memory. We’ll put the ASCII data in memory
first, and then load the data into the accumulator from memory
via our program. The program will be much shorter and morz
efficient.

Two registers (B and C) will be used to “point” to the correct
memory location as data is required by the program. Registers,
such as B and C, are special memory locations used by many in-
structions in the Z80 set. This program will demonstrate one use
of these registers.

THE SECOND PROBLEM

31

Here are the ASCII codes that we used in Program 2A along
with the memory locations where they will be stored.

ADDRESS

4B00
4B01
4B02
4B03
4B04
4B05
4B06
4B0O7
4B08
4B09
4BOA

CODE CHARACTER

50
52
4F
47
52
41
4D
0D
23
32

Z2r>P0V003T T

N3O

arriage return

0D carriage return

TO LOAD THE DATA

Access the monitor in the usual manner so that the # sign is

showing.

1. Type: M 4B00

(# M 4B00 XX

2. Type the ASCII code for P: 50

-
M 4B00 XX 50
4B0O1 YY

3. Type the ASCII code for R: 52

-

/# M 4B00 XX 50

4B01 YY 52
4B02 XX

4. Type the ASCII code for O: 4F

/# M 4B00 XX 50
4B01 YY 52
4B02 XX 4F -
4BO3 YY

32 INTRODUCTION TO T-BUG

Continue with:
Type the ASCII code for G: 47
Type the ASCII code for R: 52

i bl AQMIT nndn £ae A AA
A_yy\, i Ao COAC 107 Al 4

Type the ASCII code for M: 4D
9. Type the ASCII code for carriage return: 0D

10. Type the ASCII code for #: 23

11. Type the ASCII code for 2: 32

12. Type the ASCII code for carriage return: 0D

Once the data has been entered, we are ready for the pro-
gram. Before entering the program and using it, you should
have a general idea of how it works.

~4.°~.vv

oo

HOW THE PROGRAM WORKS

As mentioned earlier, we will use the B and C registers to tell

tha ~memmiréas athasa $0a find tha (]n‘n ‘)I;, v\gnl] twre rarngfarc
inl COmpUisry wWali? 1@ ind ing Ga CoisiLIs

because each one of them holds only one byte of data. Ad-

Arcocas ars fu 70y hirtae Imma “s...n ~e fiin raoiotare
GITEECE AIC VWO OYLCe IO — ATICC, WO ITgisicio.

Qur first byte of data was placed in address 4B00. Therefore,
when the program starts, the BC register pair should be “point-
ing” to address 4B00. To do this, we load 4B into register B and
00 into register C. /

The program loads the accumulator from the address held in .
the register pair, BC. The character represented by the ASCII
code (which is in the memory location pointed to by the BC
register pair) is then dlsplayed on the video screen.

The value in register C is then incremented by one. Now the
BC register pair points to memory location 4B01. The value in
register C is then tested to see if all the characters have been
displayed. If not, we repeat the process using the value in the
BC register pair to select each new character.

~Eg mie] ot Thoens ~F

The prograni introdiices several new instructions. Three of
them are LOAD instructions. We used LOAD ACCUMULA-
TOR IMMEDIATE in Program 2A. Each of these LOAD in-
structions is used for a different purpose.

LOAD a Register Pair with 16 Bits of Data:

TTY e Antn

Avis kprgnalaiia

%
MNEMONIC OPERAND

THE SECOND PROBLEM 33

The opcode is made up of the following binary bits which
have been grouped for easy hex conversion.

OOVXXKTi 0001 where XX is the code for a particular register
pair and is selected from Figure 2.4.

CODE REGISTER PAIR

00 BC
01 DE
10 HL

11 Stack Pointer

Figure 2.4 Register Pair Codes—Data

We will use the BC register pair, so the opcode is:

0000 0001 binary or
01 hex

Qur instruction is thus:

01 00 4B
LD BC,4B00

since we want the BC register pair to “point” to address 4B00.

LOAD Accumulator from Memory Addressed by a
Register Pair

LD A,(rp)
MNEMONIC OPERAND

The opcode is determined by the register pair to be used as
follows:

000X 1010 binary where X is selected from Figure 2.5 below.
Only the register pairs BC and DE are used
with this instruction.

34 INTRODUCTION TO T-BUG

CODE REGISTER PAIR
0 BC

-

i ot
Figure 2.5 Register Pair Codes — Addresses
Since we are using BC in our program, the opcode is:

0000 1010 binary or
0A hex

Our instruction becomes: OA The parentheses
LD A,(BC) denote “the contents
of” or “from the
memory pointed to

vy {(RXj.

This one-byie insiruciion copies ihe vaiue contained in the
memory location pointed to by the register pair BC into the ac-
cumulator. A long mouthful, but a very useful instruction.

LOAD One Register (Destination) from Another Register
(Source)
/LD dst\,src
MNEMONIC OPERAND

The opcode is determined by the registers used as follows:

01 ddd sss binary where the values chosen for ddd and sss
are selected from the table given in Figure
2.1.

We will be copying data from the source register (C) into the
destination register (A). Therefore, our opcode is:

1111 001 binary or

0111 1001 binary for easier hex conversion

o]

THE SECOND PROBLEM

Our instruction then, is: 79

7

INCREMENT a Register

LD A,C

INC reg
s ~
MNEMONIC

OPERAND

35

The opcode for this new instruction is also determined from
Figure 2.1 according to the register to be used.

The opcode is: 00 XXX 100

Since we are using register C, we want:

00 001 100 binary or
0000 1100 binary for easy hex conversion

Our instruction in hex is: OC

INC C

This instruction increases the current value in register C by one.

Program 2B for Level I Users

| i I v v Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
START 4A00 01 00 4B LD BC,4B00 Load BC regs.
LOOP 4A03 OA LD A,(BC) L.oad A from
memory
4A04 D7 RST 2 Display it
4A05 (o] INC C Count up 1
4A06 79 LD AC Get C's value
4A07 FE 0B CP 0B Compare to 0B
4A09 C2 03 4A JP NZ,LOOP If not 0B, go back
HOLD 4A0C CD 40 0B CALL CHKIO Scan keyboard
4A0F CA 0C 4A JP ZHOLD Check for keystroke
4A12 FE 40 CP 40 Was it @
4A14 C2 0C 4A JP NZ,HOLD If not, go back
4A16 CD 91 40 CALL MON Go to T-BUG

36

INTRODUCTION TO T-BUG

Program 2B for Level II BASIC Users

| 1 i v \ Vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
START 4A00 0100 4B LD BC,4B00 Load pointer
LOOP 4A03 0A LD A,(BC) Load data
4A04 CD 33 60 CALL ouTC Display it
4A07 0oC INC C Pointer +]
4A08 79 LD AC Load C
4A09 FE 0B CP 0B See if done
4A0B G2 03 4A JP NZ,LOGOP Go back if not
HOLD 4A0E CD 2B 00 CALL CHKIO Scan keyboard
4A11 CA OE 4A JP ZHOLD Try again if nothing
4A14 FE 40 cp 40 Was it @7
4A16 C2 0E 4A JpP NZ,HOLD Go back if not
4A19 CD 80 43 CALL MON Done

We will assume that you have loaded the data into memory
locations 4B00 through 4BOA and are back in the monitor with

the # sign on the

display.

Type: M 4A00

01
00
4B
CA

etc. until the program has been entered.

Level |

M 4A00 XX 01
4501 YY 00
4A02 XX 4B
4A03 YY OA
4A04 XX D7
4A05 YY OC
4A06 XX 79
4A07 YY FE
4A08 XX OB

The last two
characters are your
entries. XXs and
YYs are values
that were in
memory prior to

e pntripo
cnirics,

Level Il

M 4A00 XX 01
4A01 YY 00
4A02 XX 4B
4A03 YY OA
4A04 XX CD
4A05 YY 33
4708 XX 00
4A07 YY 0C
4A08 XX 79

THE SECOND PROBLEM

Load B, C registers with 4B00

A

/

Load accumulator from memory
location held in B, C

Display character
Increment register C

Load register C into the accumulator

Compare the value in accumulator
with OB

No
Equal?
Y VYes
Y
Scan keyboard
No

Yes

Go to monitor—END

Figure 2.6 Flowchart for Program 2B

4A09 YY C2
4A0A XX 03
4A0B YY 4A
4A0C XX CD
4A0D YY 40
4A0E XX 0B
4A0F YY CA

4A09 YY FE
4A0A XX 0B
4A0B YY C2
4A0C XX 03
4A0D YY 4A
4A0E XX CD
4A0F YY 2B

37

38

INTRODUCTION TO T-BUG

4A10 XX 0C 4A10 XX 00
4A1T1YY 4A 4A11YY CA
4A12 XX FE 4A12 XX OE
4A13YY 40 4A13 YY 4A
4A14 XX G2 4A14 XX FE
4A15YY OC 4A15 YY 40
4A716 XX 4A 4A16 XX C2
4A17 YY CD 4A17 YY OE
4A18 XX 91 4A18 XX 4A
4A19 YY 40 4A19 YY CD
4ATA XX 4ATA XX 80
4A1B YY 43
4A1C XX

When you have finished loading the program,

Type: X

Then type: M 4A00 to step through your program to check
the entries.

TO RUN THE PROGRAM

Having entered the data at memory locations 4B0O through
4BOA and the program at memory locations 4A00 through the
appropriate final location, you are now ready to try it out.
Type: J 4A00 and the display responds:

PROGRAM
#2

Don’t forget that after the message is displayed the program is
in a loop and will only exit the loop if you press the @ key.
You may wish to change the data which is being dispiayed.
PROGRAM # 2is not a very interesting message.

70 ALTE

1. Load ASCII data for whatever message you desire in
memory locations 4B00-4B?7.

2. Change the value at location 4A08 (or 4A0A for Level II)
to the number of characters that you wish to display (hex
notation).

3. Rerun the program with a: J 4A00.

THE THIRD PROBLEM
Using the Recorder

Sooner or later, your programs are going to be so good that
you will want to save them for future use. They will also grow to
such a size that it will be tedious to load them from the
keyboard every time that you want to use them.

Problem: Saving programs for later use and getting them
quickly and easily into the computer,

How to Reach a Solution: Save the program on a tape
cassette and use the recorder to reload the program
when desired. Two methods to produce this result will
be shown for Level I BASIC users and one method for
Level I1. The first method for Level I makes use of the
PUNCH and LOAD commands from the monitor.
The second method makes use of T-BUG subroutines
CTON, CSAVEO and CLOADO. The PUNCH,
LOAD method is used from the COMMAND mode;
and the CTON, CSAVEO, CLOADO method can be
incorporated into a program. The other method, for
Level 1I, uses the PUNCH command, with a special
format, for saving programs, and the SYSTEM com-
mand for loading.

SAVING A PROGRAM ON A CASSETTE—LEVEL |

As noted in the T-BUG manual, the PUNCH command pro-
vides a 128-byte leader, a synchronization code, the starting and
ending addresses, the data, and a one-byte check sum. It records

40 INTRODUCTION TO T-BUG

all the information between the two user provided addresses.

Assuming you are in the command mode, and the usual # sign
shows on the display:

1. Enter Program #2B from the keyboard.

2. Type: X (to exit the MEMORY mode).

3. The # sign appears again.

4. Press the pLay and RECORD buttons on your
recorder. T-BUG has control of the tape movement so
nothing happens yet.

5. Type: P 4A00 4B0B and the tape motion should start,
and the program wiii be recorded.

6. Another # sign will appear on the display to signal that
the program recording has finished.

The program is saved (you hope). It is advisable to record a
program at least twice in case of problems. To do this, repeat
steps 4 and 5. Don’t forget to make a note of the index seltings
of the recording for future use. There is no way to name files of
your recordings via T-BUG using Level I. Therefore, you must
keep written records (i.e., name of program, whal il does, how
to use it, where to find it on tape, etc.).

ENTERING THE PROGRAM FROM CASSETTE—LEVELI

Pretend now that it is a few days later, and you want to run
the program again. Rather than enter the program from the
keyboard, let’s use the tape that you just saved. To make sure
that the recording works, use the MEMORY command to put
zeroes in some of the memory locations.

M 4A00 01 00
4A01 00 00
4A0Z 4B G0
4A03 05 00__

"\\changed to zeroes

i ™ original program

Now, if the program really loads from the tape, we’ll know
that we are not just seeing data left from the original program.
Type: X to get the # sign back.
i. Rewind the casseiie Lo ihe index number where the siart
of your recorded program exists.
2. Press the pLAY button on the recorder.

THE THIRD PROBLEM 41

3. Type: L (The tape motion should start and two asterisks
appear at the top right corner of the display. The right
one should blink.)

4. When the program has been loaded, the screen will clear
and the # sign will appear again. (An E appearing to the
right of the LOAD command means an error in loading
has occurred. Try again.)

SAVING A PROGRAM ON A CASSETTE—LEVEL Il

A note on page 9 of the T-BUG manual describes the use of
the PUNCH command for Level II BASIC users. It is similar to
that of Level I except for some additional entries. Four entries
must follow the letter P:.

1. The starting address

2. The ending address

3. The program’s entry point (which is sometimes different
from the starting address)

4. The program’s file name (up to 6 characters)

Assuming that you are in the command mode, and the # sign
shows on the display:

1. Enter Program 2B (page 00) from the keyboard (don’t
forget the data—memory locations 4B00-4B0B).

2. Type: X (to exit the MEMORY mode).

3. The # sign appears.

4. Press the PLay and REcORD buttons on your
recorder. T-BUG has control of the tape movement so
nothing should happen yet.

5. Type: P 4A00 4B0OB 4A00 DEMOTB

start end entry file
add. add. point name

The tape motion should start immediately if your file
name is 6 characters long. If it is less than 6, you must
press the ENTER key.

6. When the recording is complete, another # sign will ap-
pear on the display as a prompt.

7. To make an additional copy of the program, repeat steps
4, 5 and 6. The file name provides you with a method of
locating this particular program on your cassette when
you are ready to load it from tape.

42 INTRODUCTIONTO 7-BUG

ENTERING THE PROGRAM FROM CASSETTE—LEVEL Il

Programs may be entered in the same way that T-BUG is
loaded for Level II — by means of the SYSTEM command. Let’s
use the demonstration tape that we have just recorded

(DEMOTRB) to illustrate the procedure.

Assume that your computer is off. The first thing to do

load T-BUG.
1. Turn on the computer and the display shows:

;(‘
iS5

|(MEMOCRY SiZE?

2. Press ENTER .
3. The computer responds:

MEMORY SIZE?

RADIO SHACK LEVEL il BASIC
READY

3

4. Type: SYSTEM and press ENTER .
5. The computer responds:

MEMORY SIZE?

RADIO SHACK LEVEL I BASIC
READY

> SYSTEM

*

6. Type: TBUG (but do not press ENTER yet).

7. Press pLAY on the recorder (nothing should happen

yet).

8. Now press ENTER on the TRS-80 keyboard. The
recorder starts, and soon the two asterisks appear and the

right one blinks.

9. When the loading is completed, the display shows
another *? __ and the recorder is stopped. Press the

sToP button on your recorder.

10. Type the file name: DEMOTB (but do not press ENTER

yet).

11. Press PLAY on the recorder (nothing shiould happeit

yet).

THE THIRD PROBLEM 43

12. Now press ENTER on the TRS-80 keyboard. The
recorder should start. After a short time, the two
asterisks appear, and the right one blinks.

13. When the loading is completed, the display shows
another *? __ and the recorder is stopped. Press the
sTop button on your recorder.

-

MEMORY SIZE?

RADIO SHACK LEVEL Il BASIC
READY

> SYSTEM

*? TBUG

*? DEMOTB
*?

14. Type: /| and press ENTER , and the program will
automatically run (starting at the entry point named in
your tape).

A SECOND METHOD FOR LEVEL | USERS

The Level I T-BUG user can make use of some handy
subroutines described on pages 8 and 9 of the T-BUG manual.
They are CTON, which turns the cassette on, CSAVEQ, which
saves a program, data, or both; and CLOADO, which loads a
program.

By modifying Program 2B in the following way, we can auto-
matically save our program. We will also change the data, as
shown on the next page. This added portion of the program will
save the data used in our program if the recorder is set for re-
cording. It works like this:

ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A17 CD CALL CTON Start the recorder
4A18 E9

4A19 oF

4A1A 26 LD H,4A Load starting address
4A1B 4A (4A00) in the HL
4A1C 2E LD L,00 register pair

4A1D 00

4A1E 16 LD D,4A Load ending address

4A1F 4A of the data (plus 1) in

44 INTRODUCTION TO T-BUG

4A20 1E LD E,48 the DE register pair
4A21 48

4A22 cDh CALL CSAVEO Records data starting
4A23 4B from the memory
4A24 OF location stored in HL

and ending in the
location named by DE

4A25 CcD CALL MON When the program
4A26 91 has been saved go
4A27 40 back to T-BUG

NOTE: The extra location called for by DE is used to ctore a check sum for

error detection.

Fill in the ASCII codes for the data to be used in our modified
program. Then enter the data via the MEMORY command.

ADDRESS CHARACTER CODE

4A30
4A31
4A32
4A33
4A34
4A35
4A36
4A37
4A38
4A39
4A3A
4A3B

AADD
i iV

4A3D
4A3E
4A3F
4A40
4A41

AMAD
e late

4A43
4A44
4A45
4A46

aa

4A47

o
@

AR RN AR

B 3 5
O—log MOY O MO
(0]

» TUZ>o

)
ke
A
D

—O0OmMm<>MO0

Figure 3.1 Woerksheet for ASCII Codes

THE THIRD PROBLEM 45

Since our message for the revision is longer than before, we’ll
also have to change the value in location 4A08 to 18 (there are
18 characters in our new message).

M 4A08 OB 18 New value
Old value

We're now ready to try the program. You should examine the
memory to see that it has been entered correctly.

TO RUN THE PROGRAM

1. After typng X to clear the MEMORY mode, type: B4C00
then J4C00. This will clear the screen.

2. Put the recorder in the RECORD mode with the cassette
index at a new setting to record the program and the
data.

3. Type: JAAOO
a. The program is run with your message displayed.

(DEMO OF CTON AND CSAVEO!

b. Pressthe @ key when you have finished viewing the
screen.

c. The recorder will start, and the program will be saved
on tape.

d. When the # sign appears, it is finished.

You may want to remove this added section when making
future runs to avoid re-recording it every time the program is
used. To do this, type: M4A17 and then CD 91 40 into loca-
tions 4A17, 4A18, and 4A19.

If you want to get real fancy, automatically load and run the
program in the following manner:

1. Reset the recorder to the index setting where you started
the recording made previously.
2. Access the MEMORY mode and type in:

M 4A50 XX CD Calls CTON to turn on
4A51 YY E9 recorder
4752 XX OF

46 INTRODUCTION TO T-BUG

4A53 YY CD Calls CLOADO to
4A54 XX FA send data from
4A55 YY OE recorder to computer
AMBR XX C2

4A57 YY 00 After loading, jumps
4A58 XX 4A to start of program

and executes it

Type: X to get out of MEMORY mode.

Set the PLAY button on the recorder.

5. Then type: J 4A50 and the instructions entered in step 2
above will be executed followed by the program at 4A00.

oW

SUMMING UP

Volume and tone levels necessary for saving and loading via
tape recorders may vary from one recorder to another. Follow
the directions furnished with the Radio Shack reference
materials, but you may have to experiment to find the best set-
tings for your recorder. The method that you use with the
recorder will depend upon the version of BASIC which you
have in your TRS-80.

It is convenient, if not necessary, to use some permanent
storage device (such as a cassette recorder) as you are creating
long programs. It is also a great timesaver when you want to re-
enter some previously used program. Therefore it is important
that you learn the recording and loading techniques well.

It is also important that you document the files of programs

that you save. This should include: file name, recorder index

settings (start and end), volume and tone levels used, and
whatever else that you feel will be helpful.

THE FOURTH PROBLEM
Gaming

After three chapters of machine language programming, it’s
time for some fun and games. The recreational aspect of com-
puting is usually one of the first areas investigated by the begin-
ning programmer. We use it here as a break from our more
serious endeavors.

Problem: Have some fun while learning to use T-BUG

How to Reach a Solution: Design a computer game that
one lonely programmer can play when tired of serious
learning. We’ll use a number guessing game. You can
match wits with the computer by trying to guess the
number it is hiding deep down in its innards.

Your guess will be input from the keyboard. Then
the computer will compare the input with its hidden
number. Appropriate messages will appear on the
screen to aid you in your quest.

NUMBER

Our guessing game has been used in many variations for some
time. The originator’s name has long been lost, but some varia-
tion of the game appears in almost every book of computer
games and programs. The logic for our game is very simple, as
shown in Figure 4.1.

48

GO

g
o
P

Y

Get a number (N) and save it

.

INTRODUCTION TO T-BUG

<t

Y

Input a quess from keyboard {G)

Compare the numbers

\Yes
IsN>G?

No

Print “TOO BIG"
|

Y

Print “TOO SMALL"

I

1

Print “"CORRECT”

Figure 4.1 Flowchart for Number

THE FOURTH PROBLEM 49

HOW THE PROGRAM WORKS

We will discuss the program in four sections, as marked by
the Roman numerals in Figure 4.1.

I. Computer Gets a Number
I1. Input the Guess
III. Compare the Numbers
IV. Decide to Replay or Quit

Il. Computer Gets a Number.

Where does the number that the computer hides come from?
Rather than confuse the issue with a complicated random
number generator, we have the compuer use a number from
register R, the memory refresh counter. This register is not used
by the programmer normally. It is a device for refreshing
dynamic memories, if dynamic memories are used in the com-
puter’s hardware. Since the user is unaware of its contents, it is
an ideal number generator for our game.

The current value of register R will require some program-
ming manipulations to change it into two binary-coded digits so
that the value may be interpreted as a two-digit decimal number.
This value is then tucked away in memory location 4B20 for
future use.

Il. Input the Guess

When it is time for you to tell the computer your guess, it will
print on the screen:

* NUMBER *
GUESS? .

It will then wait for you to type in your two-digit number. When
you have entered the first digit, the computer calls the CHKIO
subroutine which gets the character that you typed in (the tens
digit of your guess) and echoes it on the screen. It changes the
ASCII code of the digit by means of the AND and RLCA com-
mands. The upper 4 bits of the ASCII code are stripped off, and
the lower 4 bits are moved into the upper 4-bit position.

50 INTRODUCTION TO T-BUG

Example: 1. You type in the digit 5

2. ASCII code in accumulator =35 (or 0011 0101
binary)

3. We then AND the accumulator with the value
of OF.
a. 0011 0101 in accumulator
b. 0000 1111 AND with OF (hex)
¢. 0000 0101 Result left in accumulator. The

5 upper 4 bits have been removed.

Next, the RLCA command is used four times to move every-
thing in the accumulator left 4 places (each use of RLCA moves
each bit one place to the left. After 4 times, the lower 4 bits have
been moved to the upper 4-bit positions as shown.

Example: 1. 00000/101 in the accumulator from previous

LRSS 95

3. 0001 0100 after the 2nd RLCA
4. 0010 1000 after the 3rd RLCA

5. 0101 0000 after the 4th RLCA

M .
our 5 digit
is now here

Next, the computer calls the CHKIO subroutine again and
gets your next input (the ones digit of your number) and prints it
on the screen. It then takes the ASCII code for the digit you just
typed in. This time it ANDs it with the hex number OF, as
before. This time, it does not rotate the bits. Instead, register C
(our previous digit) is added to our new value. Now the ac-
cumulator holds what is called the binary-coded-decimal value

of your original number.

Example: 1. You type in a second digit, 4
2. The ASCII code=34
a. (or 0011 0100 binary) in accumulator
b. G000 111l AND wiih OF
c. 0000 0100 Result left in accumulator

THE FOURTH PROBLEM 51

3. 0101 0000 Value from register C to be
added
4, 0101 0100 Result of addition (now in

5 4 accumulator)

The procedure discussed above is called packing. The process
takes two ASCII numbers entered from the keyboard and com-
bines them into one binary byte for use in the program. The
“packed” number is then put back into register C for future use.

The computer then does a carriage return and line feed on the
screen to get ready for the message which will tell you the result
of your guess.

lll. Compare the Numbers

This section of the program, although small, is probably the
most important part of the game. The computer has chosen a
number, N. You have input a guess, G. Three possible condi-
tions may resuit:

1. N=G Your guess is correct

2. N>G Your guess is too small

3. N<G Your guess is too big

The computer must let you know which of the three condi-
tions exists. It will print a message to inform you of the result.
The decision as to which message to deliver is made from a com-
parison of the two values, N and G. The instruction which does
the comparison is:

/CP C where C is the hex value in the C register

opcode reg.

The operation which takes place when the instruction is ex-
ecuted is A —C. The result of the subtraction is discarded (the
value in the accumulator and that in register C remain un-
changed), but certain status flags (in the status register F) are
set, or reset, according to the results of the comparison.

The status flags that concern us are:

1. The ZERO flag (Z) is set to 1 if the result of the com-
parison is zero (N=G). The ZERO flag is reset to 0 if the
result is not zero (N>G or N<QG).

2. The CARRY flag (C) is reset to 0 if no borrow occurs in

52 INTRODUCTION TO T-BUG

the subtraction (N>G). The CARRY flag is set to 1 if a
borrow does occur (N<G).
Therefore, these three paths are provided in the program:

Compare N and G

N=G N>G N#G and N#G
ZERO flag = 1 CARRY flag= 0 CARRY flag = 1
{ino boirow) 3 {borrow)
Print “CORRECT" I l Print “TOO BIG” I lPrint “TOO SMALL"

Figure 4,2 Paths of Number Comparison

Before ihe comparison is made, ihe compuier has prinied on
the screen:

(YOUR GUESS WAS

It then loads the computer’s number, N, into the accumulator
from memory (4B20) and compares it with your guess, G, which
is in register C.

If the result is zero (both numbers are the same), the com-
puter tells you that you were correct and asks you if you want to
play again.

Compare A and C

/Is N=G? D

* No
If the two numbers are not equal, the NO branch is taken.
The computer then tests the CARRY flag. If the CARRY flag
has been reset to 0, no borrow occurred (N—G is positive).
Therefore N>G and the YES branch is taken. If the CARRY
flag has been set to 1, a borrow did occur (N -G is negative).
Therefore N<G and the NO branch is taken.

e

YOUR GUESS WAS CORRECT!
PLAY AGAINY _

SR

THE FOURTH PROBLEM 53

No

Yes YOUR GUESS WAS TOO SMALL.
GUESS? _

No

YOUR GUESS WAS TOO BIG.
GUESS? _

The computer, in either case, gives you the correct message
and asks you for a new guess.

Compare accumulator and register C

Print “CORRECT"

Play again?
No

l Print "TOO BIG" ! I Print “TOO SMALL" I

1 Y

GO BACK FOR A NEW GUESS

IsN>G?

Figure 4.3 Flowchart for Compare Section

54 INTRODUCTION TO T-BUG

IV. Decide to Replay or Quit

There are two methods to exit from the program.

The first method is incorporated in that part of the program
where you input your guess. Instead of typing in your two-digit
number when the computer displays GUESS? __, merely type
in the letter Q (for quit).

YOUR GUESS WAS TOO LOW.
GUESS? Q

The computer will then jump to that section of the program
which displays:

(PLAY AGAIN? __

Type: NO and control is given to the T-BUG monitor in the
COMMAND mode.

The second method arises when you have made a correct
guess. The computer displays:

YOUR GUESS WAS CORRECT!
PLAY AGAIN? _

Once again, type: NO and control returns to T-BUG.
The flowchart for the exit section of the program is shown in
Figure 4.4.

Level I Program* — NUMBER

Level I users note changes
in brackets given below.

| " i v \ Vi

LABEL. ADDRESS OPCODE MNEMONIC OPERAND REMARKS

START 4A00 CD 96 44 CALL RANDOM Get N
4A03 21CO04A LD HL,4ACO Print name of game
4A06 06 0D LD B,0D
4A08 CD 8C 4A CALL PRINT

INIT 4A0B 21004B LD HL,4B00 Call for a guess and
4A0E 06 09 LD B,09 print it
4A10 CD 8C 4A CALL PRINT
4213 CD 2B 00]*CALL CHKIO Clear accumulator
4A16 AF XOR A

DATA 4A17 CD [2B 00]' CALL CHKIO Get input (G or Q)

THE FOURTH PROBLEM

Y
Input a guess (G) from keyboard

1

Print “CORRECT"”

Is N>G? .
Y
Print “TOO BIG"” Print “TOO SMALL"
Jump back for a new guess Jump back for a new guess

Figure 4.4 Flowchart for Exit Section

56

DATA1

SMALL

OK

Quit

INPUT

PRINT

4A1A
4A1B
4A1E
4A20

4A23
420
4A28
4A29
4A2A
4A2B
4A2C

4A2D
4A30
4A31

4A34
4A37
4A39
4A3A
4A3B

4A3D
4A40
4A43
4A45

4A48
4A4B
H-Ee

4ALF

4A52
4A55
4A57
4A5A

4A5D
4AB0
4A62
4A65

4A68
4A6B
4ABD
4AT0
4A73
4AT75

4A78
4A78
4ATC
4ATF
4AB1

4A84

4AB8
4A89

4ABC
4A8D
4A90
4A01
4A92

B7 OR
CA 17 4A JP
FE 51 cP
CA704A JP

[CD 33 00} GALL
£6 OF ANL
07 RLCA
07 RLCA
07 RLCA
07 RLCA
4F LD

CD [2B 00} CALL
B7 OR
CA 2D 4A JP

[CD 33 00 CALL
E6 OF AND
81 ADD
4F LD
3E 0D LD

[CD 33 00)* CALL
21CD4A LD
06 11 L.D
CD 8C 4A CALL

3A204B LD
B9 cP
CAGE 4A JF

D2 5D 4A JP

21EB4A LD
06 08 LD
CD 8C 4A CALL
C30B4A JP

21DE4A LD
06 0A LD
CD 8C 4A CALL
C30B4A JP

21F34A LD
06 0D LD
CD 8C 4A CALL
21094B LD
06 OE LD
CD 8C 4A CALL

CD [2B 00] CALL

87 OR
CA784A JP
FE 59 cp
C4 [80 43]* GALL
3E 0D LD
[CD 33 00F CALL
C3004A JP
7E LD
{CD 33 00 CALL
05 DEC
c8 RET
23 INC

INTRODUCTION TO T-BUG

A
Z,DATA
51
Z,QUIT
QuTC
OF

CA
CHKIO

A
Z,DATA1

ouTC
HL,4ACD
B,11
PRINT
A,(4820)
c

ZOK

NC,SMALL

HL,4AE8
B,0B
PRINT
INIT
HL,4ADE
B,0A
PRINT
INIT

HL,4AF3

Z,INPUT
59
NZ,4380
AOD
ouTC
START

A(HL)

OuUTC
B

Z

HL

Sirip upper 4 Dits oft
the ASCII tens digit
and rotate 4 places
left

Store it
Now get ones digit

Combine the digits
and save

Print “YOUR GUESS
WAS”

Get number and guess

and compare them
i N=G juinmp o OK
1f N>G jump to
SMALL

TOO BIG

Try again
TOO SMALL

Try again
CORRECT

PLAY AGAIN?

INPUT yes or no

To monitor it no

MESSAGE

THE FOURTH PROBLEM

57

4A93 C38C4A JP PRINT

RANDOM 4A96 ED 5F LD AR Get a random number
4A98 57 LD DA
4A99 E6 OF AND OF Lower digit
4A9B FE 0A cP 0A
4A9D DA A3 4A JP C,NEXT
4AA0 37 SCF Set CARRY flag
4AA1 D6 06 suB 06 Subtract 6

NEXT 4AA3 S5F LD EA
4AA4 7A LD AD Upper digit
4AA5 EB FO AND FO
4AA7 FE AO cP A0
4AA9 DA AF 4A JP C,DONE
4AAC 37 SCF
4AAD D6 60 suB 60

DONE 4AAF 83 ADD AE Combine digits and
4ABO 32204B LD (4820),A store
4AB3 c9 RET

" [2B00]' Level | change to 40 0B

[CD 33 00)* Levell change to D7 00 00
[80 43]* Level | change to 91 40

ASCII Data for the Program

ADDRESS DATA MESSAGE
4ACO 2A 20 4E 55 4D 42 45 52 20 2A 0D 0A 0A * NUMBER *
4ACD 0D 0A 59 4F 55 52 20 47 55 45 53 53 20 57 4153 20 YOUR GUESS WAS
4ADE 54 AF 4F 20 4C 4F 57 2E 0D 0A TOO LOW
4AES8 54 4F 4F 20 48 49 47 48 2E 0D 0A TOO HIGH
4AF3 20 20 43 4F 52 52 45 43 54 21 0D OA 0A CORRECT!
4B00 0D OA 47 55 45 53 53 3F 20 GUESS? _
4B09 0D 0A 50 4C 41 59 20 41 47 41 49 4E 3F 20 PLAY AGAIN? _

HOW TO PLAY NUMBER

In this game, you try to guess a decimal number. The range
depends upon how much memory your machine has. The com-
puter’s number is taken from the memory refresh register, R. If
you have a 4K machine, this number will range from 0 through
49, If you have a 16K machine, the number will range from 0
through 79.

1. Load the program and data via T-BUG as you have done

before.

2. When step 1 has been completed, typing X will send you

back to the monitor with the # sign displayed. Type: J
4A00. The computer will then ask for a guess by display-
ing:

58

~1

INTRODUCTION TO T-BUG

* NUMBER *
GUESS? __

Enter your guess as a two-digit decimal number —do not

press the ENTER key.

The computer will tell you that your guess was too high,

too low, or correct.

a. If your guess was too high or too low, the computer
will ask for another guess.

YOUR GUESS WAS TOO HiGH.
GUESS? _

b. If your guess was correct, it will ask if you want to play
again.

(YOUR GUESS WAS CORRECT!
l PLAY AGAIN? __

a. If the answer to 5b is YES (you typed YES and pressed
ENTER), the computer will choose a new number and
ask for a new guess.

* NUMBER *
GUESS? __

b. If your answer to 5b is NO, you are returned to the
T-BUG COMMAND mode.

(#

At any time when asked for a new guess, you can end the
game by typing Q. The computer will ask:

(f‘l BFESE D f\

WA W kg |

PLAY AGAIN? —_

Type NO, and you will be back in T-BUG.
e

THE FIFTH PROBLEM
Drawing Your Own Graphics

T-BUG can be used effectively to create your own designs,
display oversize characters, and other things on the video
display. This can liven up your programs with dramatic visual
effects.

Problem: Create your own images on the video display.

How to Reach a Solution: The TRS-80 video display is
divided into rectangles (128 horizontally and 64 ver-
tically). If you have read An Introduction to TRS-80
Graphics, Don Inman, dilithium Press, you know how
to create graphic displays using Level 1 BASIC. Each
individual rectangle is turned ON or OFF by using the
BASIC commands, SET and RESET. Machine
language graphics can be performed more efficiently.
Not only can you turn on individual rectangles, but
you can also turn on blocks of 6 rectangles at once.
Any combination of rectangles in the block of six can
be lit (see Table 1V, page 117 for the possibilities).

MEMORY MAP OF THE VIDEO DISPLAY

Memory locations 3C00 through 3FFF in the TRS-80 com-
puter are used to display information on the video screen. Each
block of six rectangles, 2 wide by 3 high, is assigned a unique
location. On the Video Worksheet (page 61), the numbering
system is shown starting with location 3C00 in the upper left
corner. The memory locations are numbered successively from

60 INTRODUCTION TO T-BUG

left to right and top to bottom. Some typical locations are
shown below.

0123466788ABCO0EF 123456 789ABCDEFI0[1234586
N HE BRI E AR BN !]
3c00 |0 T hOT T | i i
[L |
3C00 309 3¢10 |

KIZLIRARD 1] f

@
(2]
2

3080 . Endl

" !
f
|

3cc0

3000[1

These memory locations are used to store ASCII values for
the kevboard strokes. but they may also be used with special
graphics codes. When this is done, use caution and stay within
the houndaries of the locations assigned to the video display.
Other nearby memory locations are used by the TRS-80 for
other things.

When the correct graphic code is stored in one of the memory
locations, a unique pattern is lighted in that particular block of
six rectangles. Your machine language program, input via
T-BUG, can have complete control of the video display, and
you can create your own designs.

THE GRAPHICS CODE

There are many combinations which can be used to make dif-
ferent patterns from six rectangles. Here are the ways:

i
m m ﬁ ﬂ g @ Using one small rectangle—6 ways.
1 2 3 4 5 6
5 6 7 8

- =
~ £
R -
=

Two small rectangles— 15 ways.

o [t
P
FE
[
F
Fams]
i

<
N
vl
=Y
o1

61

THE FIFTH PROBLEM

430 m(mmhumamemmmcom‘ammhmmq N_Ww cum<mm~mmqm~—c—uunum< gL95yg7t
034¢ 034
0848 084¢
ovde ovde
003¢ gode
033t 0338
083¢ 083t
ov3e oy3t
003t 003¢
0aae 030¢
080E 080g
ovae 0vag
000¢E 80ae
633¢ 933¢
083¢ 08¢
ovae e
603e 003¢

43038v681936¢

43008VYE68L885¢¢E71

430028V68L85vET

[

43008Y68L95%E7 14D

=35

&=

Figure 5.1 TRS-80 Video Display Worksheet

62 INTRODUCTION TO T-BUG

6
i
16
-

H
|

T
T

{
{

Using three small rectangles —
20 ways. Fill them in.

= o b

=

wEEH s BT B

===
E3 ~EEd

s o
SE=H s

—
N
T -
Jbg

Using four small rectangles —
15 ways. Fill them in.

S
»EEH & BT B

e] e |

:
I

1

E » Bt :
e 5558 ©EEB GET «E

1

-

- (Bl ™

41
g Five small rectangles E Six small rectangles
3

o

—6 ways. —1 way.

= ===
i 3EH V=S

1
:

If we add them all up, we find that 63 different arrangements
are possible. Sixty-three is aiso the number of special graphic
codes which the TRS-80 provides, one for each pattern. There-
fore, we can display each of the 63 combinations of the six-
block rectangies.

Each combination is designated by a unique hex number from
81 through BF. The complete table of patterns with their special
hex codes are shown in Figure 5.2. The hex code is given directly
below the pattern.

[se]
=<
o0
N
[e]
w
Qo
i~
o0
o
[o3]
1)
[
~J
o]
oo}
o
[{e]
[se]
>
[so]
jvs)
(o]
o
o)
O
o]
izal
o
m
(<]
o

=,
==
= |
-
o
e
=]

=
-
s | ™

===

©
pucd
©
N
©
w
©
Y
©
o
©
=]
©
~J
© i
53]
©
©
©
>
©
@
&l
]
©
O
[}
m
©
i

% o Tl
b T
™ i
e
==
=l =

> i

>
> il
] E=

==

3 [

g =
I

S [

[

8 i

3 [

$2 il

-

o]
&)
o)
Q

3 I
|

o=
L

ws]
~J
o
M

Figure 5.2 Graphic Codes

THE FIFTH PROBLEM 63

USING THE GRAPHIC CODES

Suppose that you wish to place the pattern of four rectangles
whose code is AD near the left side of the second line of the
video display. Choosing memory location 3C49, the following
instructions provide one way to correctly light the screen.

3JEAD LD A,AD Load data into the accumulator

3249 3C LD (Addr),A Load accumulator’s contents
into memory (3C49)

The execution of these instructions would place the pattern on
the display in the position shown below.

0123456789ABCDEF|0|123456789ABCDEF
i v : T i l

l
I

=)
—

3C00 :

3C40

3c80

3cco

3000

LAYING OUT A DESIGN

Using a TRS-80 Video Display Worksheet, as shown on page
00, a design can be made marking the individual rectangles that
you want to light. These can then be sectioned into convenient
6-block units and be coded.

In the following example, I first put dots in each rectangle
that I wanted to light.

64 INTRODUCTION TO T-BUG

" 3]
1 2
012345678 9ABCDEF|0(1234567889ABCDEFDj12345
T ‘ [EH N RRNN
3ca0 T ! T i I
o R R |
3C40 RS 1l olol oo slof Jofe] o K +
|| #[s] gud 00700 of 9]
380 B TRl T Tl Bl L 2 J
3cC0 . X
3000 NN T 7]

I then sectioned off the 6-block large rectangles to corfespond
to their memory locations.

1] 7]
0123456789ABCDECF|0}j1 23456 789ABCDETF|B]12345
! [1I M
3000 N
scao [TTC e a RARRNRARERA SR RERHARE Tl
’H’ o]} afo! o) of o af io]el of [of
r {0 |o] L efe! 1o|o] oie] le]v| aun U 0 Uik 8|
3080 -“5,2‘} o S ERERNECRER NN RN RO SRR ; .
sy v G TTTER
TN ain ole
3060 e oy 3 g
sl SiRECLOCERAD
7t 1 TN NRU
3000 (Hine Ay SRINCANAAAEN
il ! CRTIII

Using the graphic codes from Figure 5.2, I then made a table
of codes needed for the memory locations used. Notice that
there are some blanks in the code columns below. In those loca-
tions we want no colored small rectangles. We use the ASCII
code for “space” (20) to place a blank in those locations. A
printed ASCII character occupies a block of six small rectangles

just as tne graphic characiers do.

THE FIFTH PROBLEM 65

Table of Codes and Display Memory Locations

Line 1 Line 2 Line 3
Code Memory Code Memory Code Memory
82 3C48 BF 3C8A 9B 3CDF
83 3C49 3C8B 8B 3CEQ0
BF 3C4A 3C8C BC 3CE1
83 3C4B 3C8D BC 3CE2
81 3C4C AA 3C8E 87 3CE3
BO 3C4D B5 3C8F A4 3CE4

AA 3C4E BO 3C90
B7 3C4F BA 3CaH
B3 3C50 85 3C92
BB 3C51 AF 3C93 \
84 3052 BO 3C94 Line 4
BF 3C53 BO 3C95 Code Memory
3C54 9F 3C96 98 3D20
3C55 8A 3C97 81 3D21
BF 3C56 B5 3C98 89 3D22
A8 3C57 BO 3C99 90 3D23
97 3C58 BB 3C9A
83 3C59 85 3C9B
83 3C5A 3C9C
81 3C58B 3C9D
3C5C 3C9E
3C5D 89 3C9F
3C5E B8 3CAO0
3CS5F 8F 3CA1
82 3C60 8F 3CA2
Ad 3C61 B4 3CA3
AO 3C62 86 3CA4
86 3C63

WRITING THE PROGRAM

One way to provide data for a program is to store the data in
a data table and use a register pair to point to the correct data as
needed. We will do this. We will also use another register pair to
access the correct memory location on the video display. Each
line of 6-block rectangles will be loaded by a separate loop in
our program. The program will be broken up to correspond to
the four lines that we must enter.

66 INTRODUCTION TO T-BUG

The DE register pair is used to point to the desired data, and
the HL register pair is used to tell where the data should be
stored in the display memory. The accumulator will be used as a
transfer location. The data is placed in the accumulator from
the memory table and then transferred to the correct dispiay
location. The program begins at memory location 4A00, as
usual, The data is stored in memory beginning at location 4B00.

The E register is tested in each loop to see whether all the data
for that line has been entered or not. If it has, control is passed

to the next loop.
The Level I pragram is shown first, and the Level TT program

R ARISL, A2E

follows. They are very similar. A new method to clear the screen
is shown at the top of the Level II version.

Level I Graphics Program —SA

| i 3l v \ Vi
LABEL ADDRESS OFCODE MNEMONIC GPERAND REMARKS
START 4A00 2148 3C LD HL,3C48 Load pointers
4403 110048 LD DE 4200
LOOP1 4A06 1A LD A(DE) Load data
4A07 77 LD (HL),A Display it
4A08 23 INC HL Move pointers
4A09 13 INC DE
4A0A 7B LD AE Check for end of
4A08 FE 1C cp A1C data
4A0D C2 06 4A JP NZ,LOOP1 Go back if not done
4A10 218A3C LD HL,3C8A Set pointer for line
2
LOOP2 4A13 1A LD A,(DE) l.oad data
4A14 77 LD (HL),A Display it
4A15 23 INC HL
4A16 13 INC DE
4A17 7B LD AE Check for end of
4A18 FE 37 cP A37 data
4A1A C2 13 4A JP NZ,LOOP2 Back if not done
AA1D 21 DF 3C LD HL,3CDF Pointer to line 3
LOOP3 4A20 1A LD A,(DE) Load data
4A21 77 LD (HL),A Display it
4A22 23 INC HL
4A23 13 INC DE
424 B LD AE Check for end of
4A25 FE 3D CcP A3D data
4A27 C2 20 4A JP NZ,LOOP3 Back if not done
4A2A 21203D LD HL,3D20 Pointer to line 4
1.0O0PA AH2D 1A D A (DE) lLoad data
4A2E 77 LD (HL),A Display it

4A2F 23 INC HL

THE FIFTH PROBLEM

67

4A30 13 INC DE

4A31 7B LD AE Check for end of

4A32 FE 41 CcP A41 data

4A34 C2 2D 4A JP NZ,LOOP4 Back if not done
ENDO 4A37 CD 40 0B CALL CHKIO Leave display until

4A3A FE 40 CcP A,40 @ key is struck

4A3C C2 37 4A JP NZ,ENDO

4A3F CD 91 40 CALL MON

Level II Graphics Program —5A
| 1t l v \ vi
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS

START 4A00 21003C LD HL,3C00 Clear screen by
LOOPO 4A03 3E 20 LD A,20 filling it with

4A05 77 LD (HL),A spaces until

4A06 23 INC HL HL = 4000

4A07 7C LD AH

4A08 FE 40 CP A,40

4A0A C2 03 4A JP NZ,4A03

4A0D 21483C LD HL,3C48 Display line 1

4A10 110048 LD DE,4B00
LOOP1 4A13 1A LD A(DE)

4A14 77 LD {HL),A

4A15 23 INC HL

4A16 13 INC DE

4A17 7B LD AE

4A18 FE1C CP AC

4A1A C2 13 4A JP NZ,LOOP1

4A1D 218A 3C LD HL,3C8A Display line 2
LOOP2 4A20 1A LD A(DE)

4A21 77 LD (HL),A

4A22 23 INC HL

4A23 13 INC DE

4A24 7B LD AE

4A25 FE 37 CP A37

4A27 C2 20 4A JP NZ,LOOP2

4A2A 21DF3C LD HL,3CDF Display line 3
LOOP3 4A2D 1A LD A(DE)

4A2E 77 LD (HL),A

4A2F 23 INC HL

4A30 13 INC DE

4A31 7B LD AE

4A32 FE3D CP 2,3D

4A34 C2 2D 4A JP NZ,LOOP3

4A37 21203D LD Hi.,3D20 Display line 4
LOOP4 4A3A 1A LD A,(DE)

4A38 77 LD (HL),A

4A3C 23 INC HL

4A3D 13 INC DE

4A3E 7B LD AE

68 INTRODUCTION TO T-BUG

4A3F FE 41 CP A,41
4A41 C2 3A 4A JP NZ,LOOP4
ENDO 4A44 CD 2B 00 CALL CHKIO Wait for an @
4A47 FE 40 CP A40
Ap40 2 44 AA P NZ.ENDO
4A4C CD 80 43 CALL MON

LOADING THE PROGRAM AND DATA

Now we'’re ready. Load T-BUG from cassette.
Type: M 4A00

Type: the program

Type: X (to exit memory mode)

Type: M 4B00

Type: the data which follows:

Line 1 Line 2 Line 3

Address Data Address Data Address Data

4B00 82 4B1C BF 4B37 1°]=]

4B02 BF 4B1E 20 4B39 BC

4B03 83 4B1F 20 4B3A BC

4B04 81 4B20 AA 4B3B 87

4B05 BO 4B21 B5 4B3C Ad

4B06 AA 4B22 BO

4B07 B7 4B23 BA

4B08 B3 4B24 85

4B09 BB 4B25 AF .

4BOA 84 sB26 B0 , Hned

4B0B BF 4B27 BO muMies ee

4B0C 20 4R28 9F 4B3D 98

4R0D 20 4B29 8A 4B3E 81

4B0E BF 4B2A B5 4B3F 89

4B0F AB 4B2B B0 4B40 20

4B10 97 4B2C BB

4B11 83 4B2D 85

4B12 83 4B2E 20

4B13 81 4B2F 20

4B14 20 4B30 20

4B15 20 4B31 89

4816 20 ARZ2 ba

4B17 20 4B33 8F

THE FIFTH PROBLEM

4B18 82 4B34 8F
4B19 A4 4B35 B4
4B1A AO 4B36 86
4B1B 86

Type: X (to exit memory mode)
Type: J 4A00 and there is the display, quick as a wink

!

69

Figure 5.3 As Seen on the Display

e —__— ;
%‘é ;ua» o) !F‘"’m ﬁi!
o By S 8

Teowemtl Dl m}& 2 M

wyld b
Wt Py

Figure 5.4 As Seen on the TRS-80 Screen Printer

70 INTRODUCTION TO T-BUG

A LARGER DISPLAY

In our second graphics program (5B), we will display the three

figures shown in Figure 5.5. Each figure will be drawn sepa-
rately. Below are the graphics codes for figures 5.5A and 5.5B.

A table for you to complete for figure 5.5C is in Figure 5.6.
Codes for

Figure 5.5A Codes for Figure 5.5B
Code Memory Code Memory Code Memory
82 3C48 g BF 3C5B B3 3D21
AF 3C49 all | B3 3D22
87 3C4A BFs) | | AA 3D23
BF 3C64 BF 3D24
B8 3087 85 3C865 85 3D25
BD 3C88
AA 3C89 BF 3C9B BF 3D5B
A8 3C8A BF 3C8C BF 3D5C
BD 3C8B 83 3C9D AA 3D5D
90 3C8C B3 3C9E A7 3DSE
B3 3CoOF BE 3D5F
AF 3CC7 B3 3CA0 AA 3D60
B2 3CCs8 B3 3CA1 B6 3D61
BA 3CC9 93 3CA2 AF 3D62
B2 3CCA AB 3CA3 AA 3D63
BA 3CCB BF 3CA4 BF 3D64
85 3CCC 95 3CA5 95 3D65
8B 3D08 BF 3CDB BF 3D9B
BF 3D09 BF 3CDC BF 3D9C
9F 3DOA AA 3CDD BO 3D9D
g1 2D0OR B6 3CDE B3 3DOE
AF 3CDF B3 3D9F
AA 3D49 AA 3CEO B3 3DA0
A7 2CE1 B3 3DAf1
A0 3D88 BE 3CE2 B1 3DA2
BE 3D89 AA 3CES3 BA 3DA3
B4 3D8A BF 3CE4 BF 3DA4
95 3CE5 95 3DA5
B8 3DC7
BF 3DC8 BF 3DiB BF 3DDB)
BF 3DC9 BF 3D1C [all
BF 3DCA A2 3D1D BFs
BD 3DCB B3 3DIE BF 3DE4)
90 3DCC 99 3DIF 95 3DE5

9D 3D20

71

THE FIFTH PROBLEM

Figure 5.5 Video Display

0] 5] [o]
uwnum«mmﬁmmvawnumnumdmmhw.mqu—Nm Qo08v6E8L95reif{l{a33008V68285tE2Z1
| I T T T
ag4¢ [T i i 034E
084¢ ' 084E
04€ Sifijovde
t
004¢ 7 “ooae
i
IRED i 0238
[
083¢ W 083¢
ov3€ [ovae
003¢ o3 5 EHOD1 w_.,ﬂ.u.mwmw_m_ T Tooag
3ae | ! T oae
| ! !)
0g0E 10 A ! 0808
1 K T
ovee || B : ; lovae
: ! :
T _ ,, :
o0g |- TR T e a : T leoae
oaoe |11 B A LT O T oo
i i : : {
i : i il i HEHN Sl] L [
083€ NS , T e] R T osne
oot LT D LT i ! It SUL I jovoe
000 { T T T LT V , hannnntic
N i i IR NA : H
430028VY68L9GvcZ1{0|430)8vYvE8BLISYETL 0)8v68L95¢v¢e¢ 1{0{43C39VE6RL3GYELZ10
£ 1

72 INTRODUCTION TO T-BUG

CODE MEMORY CODE MEMORY
BO 3C78
3C79
3CT7A
3CB7

Figure 5.6 Graphic Codes for Figure 5.5C

PROGRAM 5B

Vou probably noticed that there was much repetition in nro-
gram SA. Each loop, which created one line of the display, con-
tained instructions which were also used in other loops. Pro-
gram SB shows a much more efficient way to handle these
repetitions. The repeated instructions are placed in a subroutine
which is called when needed. The values for the compare in-
struction, which change for each subroutine call, are contained
in a table which is “pointed to” by the HL register pair.

THE FIFTH PROBLEM 73

This time we use three register pairs:

1. BC points to the memory location of the video screen.

2. DE points to the graphics code table.

3. HL points to the compare value table.

The program is made up largely of just two instructions:

1. LOAD the video memory location.

2. CALL the DISPLAY subroutine.

Let’s start with the DISPLAY subroutine. It is similar to the
instructions entered in each loop of program 5A, but it is
entered in the computer only once this time. It will be used
many times but it need only be entered once.

DISPLAY
|] 1l v \ \
LABEL. ADDRESS OPCODE MNEMONIC OPERAND REMARKS
LOOP1 4B00 1A LD A,(DE) Load graphic code
4B01 02 LD (BC),A Output to display
4B02 03 INC BC
4B03 13 INC DE
4B04 7B LD AE See if more
4B05 BE CP (HL)
4B06 C20048B JP NZ,LOOP1 If more, go back
4B09 23 INC HC Point to next data
block
4BOA Cc9 RET Return to main
program

We will also use the clear screen technique of the Level II pro-
gram 5A. This will be the entry point for running the program
(4C00). Notice that it is not our first address used.

CLEAR SCREEN

| It 1l v \ \l
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4C00 01003C LD BC,3C00 Start at upper left
LOOP2 4C03 3E 20 LD A,20 Put in a space
4C05 02 LD (BC),A Put on screen
4C06 03 INC BC
4C07 78 L.D AB
4C08 FE 40 cp A40 Look for end of
CRT memory
4C0A C2034C JP NZ,LOOP2 Go back if not there

4C0D C3 00 4A JP 4A00 Go to main program

74 INTRODUCTION TO T-BUG

When we run the program, we start at 4C00, the ciear screen
portion. At the end of this section the program control is passed
by the line at 4COD to the main program.

The rest of the program is rather dull and monotonous. It is
iisted on the next two pages.

Main Proaram SB (For Level ¥ and Level IT)

ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A00 01483C LD BC,3C48 Display location

4A03 112048 LD DE,4820 Character location
4A086 210B4B LD HL,4B0OB Compare value location
4A09 CD004B CALL DISPLA Display the character
4A0C 01873C LD BC,3C87 Point to nexi character
4A0F CDO00 4B CALL. DISPLA Display the character
4A12 01C73C Lb BC,3CC7 Point to next character
4A15 CDo004B CALL DISPLA Display the character
4A18 01083D LD BC,3D08 Point to next character
4A18 CD004B CALL DISPLA Display the character
AA1E 01493D LD BC,3D49 Point to next character
4A21 Ch 0048 CALL DISPLA Dispiay tihe characier
4A24 01883D LD BC,3D88 Point to next character
4A27 CD004B CALL DISPLA Display the character
4A2A 01C73D LD BC,3DC7 Point to next character
4A2D CD004B CALL DISPLA Display the character
4A30 01583C LD BC,3C5B Point to next character
4A33 CDO004B CALL DISPLA Display the character
4A36 019B3C LD BC,3C9B Point to next character
4A39 CDO004B CALL DISPLA Display the character
4A3C 01DB3C LD BC,3CDB Point to next character
4A3F CD004B CALL DISPLA Display the character
4A42 011B3D D BG,3D1B Point to next characier
4A45 CD004B CALL DISPLA Display the character
4A48 015B3D LD BC,3D58B Point to next character
4A4B CDO00 4B CALL DISPLA Display the character
4A4E 019B3D LD BC,3D9B Point to next character
4A51 CDO00 4B CALL DISPLA Display the character
4A54 01DB3D LD BC,3DDB Point to next character
4A57 CDO004B CALL DISPLA Display the character
4A5A 01783C LD BC,3C78 Point to next character
4A5D CD004B CALL DISPLA Display the character
4A60 01B73C LD BC,3CB7 Point to next character
4A63 CD004B CALL DISPLA Display the character
4A86 O01F53C LD BC,3CF5 Point to next character
4A69 CD004B CALL DISPLA Display the character

4A6C 01343D LD BC,3D34 Point to next character

THE FIFTH PROBLEM

4A6F
4A72

4A75
4A78

4A7B
4ATE

4A81

CD004B CALL
017530 LD

CD004B CALL
01B43D LD

CD 00 4B CALL
01 F43D LD

CD 004B CALL

DISPLA
BC,3D75

DISPLA
BC,3DB4

DISPLA
BC,3DF4

DISPLA

75

Display the character
Point to next character

Display the character
Point to next character

Display the character
Point to next character

Display last character

We finish with a loop which looks for the character “@” to
end the program. Level I and Level II versions differ in this

loop.

LOOP3

LOOP3

4A84
4A87
4A89
4A8BC

4A84
4A87
4A89
4A8C

CD 40 0B CALL
FE 40 CP
C2 84 4A JP
CD 91 40 CALL

CD 2B 00 CALL
FE 40 CcP
C2 84 4A JP
CD 80 43 CALL

CHKIO
A,40

NZ,LOOP3

MON

CHKIO
A40

NZ,LOOP3

MON

Level I

Only!

Level I

Only!

That completes the program. Note the differences in LOOP3
for Level I and Level II users. Use the appropriate loop for your
machine. After a brief rest, you should be ready to enter the
graphic code data shown in Figure 5.7 and the compare value
data table shown in Figure 5.8. This will give you a chance to see
if you selected the correct codes for Figure 5.5C. Those codes
begin at memory location 4B8A.

Address Code

4B20
4B21
4B22

4B23
4B24
4B25
4B26
4B27
4B28

4B29
4B2A
4828
4B2C
482D

82
AF
87

Address Code

4B43 BF
4B44 BF
4B45 BF
4B46 BF
4B47 95
4B48 BF
4B49 BF
4B4A 83
4B4B B3
4B4C B3
4B4D B3
4B4E B3
4B4F 93
4850 AB

4B51 BF

4867
4B68

4B69
4B6A
4B6B
4B6C
486D
4B6E
4B6F
4B70
4B71
4B72
4B73

4B74

Address Code

BF
95

Address Code CRT*

4B8A
4B8B
4B8C

4B8D
4B8E
4B8F
4B90

4B91
4B92
4B93
4894
4895
4B96

BO
BO
20

3C78
3C79
3C7A

3cB7
3CB8
3CB9
3CBA

3CF5
3CF6
3CF7
3CF8
3CF9
3CFA

76

4B2E

4B2F
4B30
4B31
4832

4B33

4B34
4B35
4B36

ADDT7
RO

4B38
4B39
4B3A
4B38B
4B3C

483D
4B3E
4B3fF
4B40
4B41
4B42

85 4B52
8B 4B53
BF 4B54
9F 4B55
81 4B56
4B57
AA 4B58
4B59
AO 4B5A
BE 485B
B4 4B5C
4B5D
B8
BF 4B5E
BF 4B5F
BF 4B60
BD 4B61
90 4B62
4B63
BF 4B64
BF 4B65
BE 4B66
BF
BF
BF

4B75
4B76
4B77
4B78
4B79
aB7A
4B78
4B7C
4B7D
4B7E

4AB7F
4B80
4881
4B82
4B83
4884
4B85
4886
4B87
4B88
4B89

INTRODUCTION TO T-BUG

4B97
4B98
4B99
4B9A
4B9B

4B9C
4B9D
4BSE
4BIF
4BAO

4BA1
ABA2
4BA3
4BA4
4BA5

4BAB
4BA7
4BA8

3D34
3D35
3D36
3D37
3D38

3D75
3D76
3D77
3D78
3079

3DB4
3DR5
3DB6
3DB7
3DB8

3DF4
3DF5
3DF6

/

/
The codes in these columns are the
answerg to the table in Figure 5.6,
The display locations are given in
the last column.

Figure 5.7 Graphics Code Data for Program 5B

Memory

4B0B
4B0C
4BOD
4BOE
4BOF
4810

4B11
4B12
AB13
4B14
4B15
4B16
4B17
4818
4B19
4B1A

Content

23
29
2F
33
34
37
3D
48
53
5E
69
74
7F
8A
8D
91

THE FIFTH PROBLEM 77

4B1B 97
4B1C 9C
4B1D A1l
4B1E A6
4B1F A9

Figure 5.8 Data Table for HL Pointer

USING PROGRAM 5B

We're now ready to try out the program. Follow the steps

below:

1. Load the main part of the program (4A00-4A8E) using
T-BUG.

2. Load the DISPLAY subroutine (4B00-4B0A).

3. Load the data (4B0OB-4BAS).

4. Load the CLEAR SCREEN program (4C00-4COF).
Notice that at the end a JUMP is made to the main part of
the program.

5. Type: X (to exit the MEMORY mode).

6. When the # sign appears, type: J 4C00.

The screen will immediately be filled with our three figures as

shown in Figure 5.9.

gt

R |

e

=W Vit
A ,g;ﬁ%‘mﬁ
SR

prith el e

Figure 5.9 Display as Seen on the TRS-80 Screen Printer

78

INTRODUCTION TO T-BUG

THE SIXTH PROBLEM
Games Using Graphics

Recreational uses of computers inevitably lead to games, and
the key to exciting games is the creative use of graphics.

Problem: Design some simple graphics to enhance a com-
puter game.

How to Reach a Solution: We will use an old favorite, a
version of the game of NIM, to demonstrate how
graphics can be used in place of verbal clues and
responses.

The screen displays an original pile of fifteen sticks
which continually diminishes as the opposing players
remove 1 to 3 sticks with each turn. The player who is
forced to take the last stick loses.

The program is rather long. Therefore we will ex-
plain each portion as it is encountered.

OUR GAME OF NIM

In this version of NIM, the game begins with a pile of fifteen
sticks. It is played by one player who opposes the computer.
Each player, in turn, removes from one to three sticks from the
pile. The one who must take the last stick is the loser. The com-
puter is always allowed to go first in our version.

80

INTRODUGCTION TO T-BUG

LABEL ADDRESS OPCODE MNEMONIC OPERAND

REMARKS

START 4A00 21003C LD HL,3C00 Erase the display
LOOPO 4A03 3E20 LD A,20

4805 77 LD (ML) A

4A06 23 ING HL

4A07 7C LD AH

4A08 FE40 CP A40

4A0A G2 03 4A JP NZ,LOOPO

4A0D 263C LD H,3C Draw the pile of

4AOF 11 BO4C LD DE,4CBO sticks

4A12 OEOA LD C,0A

4p14 CD 1D ACCALL LOOP1

4A17 263D LD H,3D

4A19 0E05 LD C,05

4A1B CD 1D 4CCALL LOOP1

Instructions at 4A00-4A0A clear the video display as before.
The instructions 4A0D-4A1B draw a pile of 15 sticks for the
start of the game. The subroutines named LOOP1 and
LOOPIA actually construct the pile. LOOPIA is called from
LOOPI

(

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4AATE 219C3D LD HL,3D9C Label the pile
4A21 11 E04C LD DE,4CEQ

4A24 0E 08 LD c,08
4A26 CD 14 4G CALL LOOP2
4A29 CD 33 4C CALL LOOP3

Instructions 4A1E-4A26 print the message THE PILE under
the pile of sticks. The instruction at 4A29 calls a subroutine

THE SIXTH PROBLEM 81

which performs a time delay so that the message can be read
before the program proceeds.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A2C CD FO4CCALL LOOP4 Computer takes its
4A2F 11 AB4C LD DE,4CA8 turn
4A32 1A LD A,(DE)
4A33 77 LD (HL),A

LOOP4 prints the message | TAKE, and the other three in-
structions add the value, 2, to the message so that it reads, |
TAKE 2.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A34 CD 33 4C CALL LOOP3 Erase two sticks
4A37 06 5F LD B,5F
4A39 CD 65 4B CALL LOOP1A

Loop 3 again provides a time delay, and the instructions at
4A37 and 4A39 erase two sticks leaving 13. The display shows:

/

THE PILE
ITAKE2
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A3C FD 21 FO4A LD 1Y,4AFO0 Player’'s turn
4A40 CD 004D CALL LOOPS
4A43 CD 104D CALL LOOP6
4A46 CD 50 4C CALL LOOP7
4A49 CD334C CALL LOOP3

4A4C CD654B CALL LOOP7A

82 INTRODUCTION TO T-BUG

The 4-byte instruction at 4A3C sets the index register, 1Y, to a
memory location which holds the correct value to be used by
register B for this stage of the program. LOOPS5 prints YOU
TAKE ? in the lower left part of the screen. LOOP6 erases |
TAKE 2 on the lower right. LOOP7 waits for the piayer to input
his choice from the keyboard and prints it after YOU TAKE ?
__. LOOP3 is the time delay again, and LOOPTA erases the
correct number of sticks as chosen by the player.

You see on the screen:

/

1 to 3 of the unshaded
sticks will disappear

P e
/0
oo Qo R oo R o)
Rm EE) EE BN eXEn

THE PILE

YOU TAKE # ~~———
h (where #1s e)

number of

sticks chosen

LABEL. ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A4F CD FO 4C CALL LOOP4 Computer's turn
4A52 78 LD A,B
4A53 FE 99 CP A,99
4A55 CA 11 4B JP Z,I;TAKE3 9
4A58 FE9D CP A9D
AABA CA 21 4B P ZITAKE2
4A5D C3 31 4B JP ITAKE1

LOOPA4 prints the message, | TAKE . The computer then ex-
amines the value in register B to see how many sticks were
erased by the player’s last choice. It will then take 1 of 3
branches depending upon that value. The computer always
chooses a number that makes the sum of the player’s input and
its own choice equal to 4, The ITAKE branches print the ap-
propriate number of the computer’s cnoice and conirol ietuins
to this next section.

THE SIXTH PROBLEM 83

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
BACK 4A60 CD 20 4D CALL LOOP8 Erase sticks
4A63 CD 33 4C CALL LOOP3
4A66 06 AF LD B,AF
4A68 CD 65 4B CALL LOOP7A

LOOPS erases YOU TAKE #, and LOOP3 gives a time delay.
The other two instructions erase the appropriate number of
sticks for the computer’s choice.

The display now shows:

-~

Now anly 9
sticks left

THE PILE
| TAKE #
LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A6B FD 21 F34A LD 1V, 4AF3 Change value for
register B

The values used by register B must be changed so that the cor-
rect sticks will be wiped out following the player’s next input.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4A6F CD 00 4D CALL LOOPS Player's turn again
4A72 CD 10 4D CALL LOOPS
4A75 CD 50 4C CALL LOOP?
4A78 CD 33 4C CALL LOOP3
4A7B CD 65 4B CALL LOOP7A

This is the same sequence of instructions used in the player’s
last turn (4A3C-4A48). One, two or three sticks are erased after

84

the player’s choice is printed.

INTRODUCTION TO T-BUG

YOU TAKE #

P

s S ovnnn R oawee QY -

THEPILE

One, two, or three
of the unshaded
sticks erased

LABEL ADDRESS OPCODE MNEMONIC OPERAND

REMARKS

4ATE
4A81

4482
4A84
4A87
4A89
4A8C

CD F0 4C CALL
78 L.D
FEDR COP
CA 41 4B JP
FEDF CP
CA 47 4B JP
C3 4D 4B JP

LOOP4
AB

ne
Z,TAKEC
EO DF
Z,|TAKEB
ITAKEA

Computer's turn

Once again, LOOP4 prints | TAKE , and register B is com-
pared to see what the player’s choice was. The computer makes
a choice, and control is returned to the next section.

LAREL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
BACK1 4A8F 1A LD A,(DE) Erase sticks
4A90 77 LD (HL),A
4A91 CD 20 4D CALL LOOPS8
4A94 CD 33 4C CALL LOOP3
4A97 06 EF LD B,EF
4A89 CD 65 4B CALL LOOP7A

LOOPS8 wipes out YOU TAKE #, LOOP3 gives a time delay,
and the other two instructions erase the appropriate number of
sticks. Only the last row of five sticks is now left.

LABE!L ADDRESS OPCODE MNEMONIC OPERAND

REMARKS

4A9C

FD 21 F6 4A LD

1Y,4AF6

THE SiIXTH PROBLEM 85

Once again the index register is changed to provide new values
for register B for the player’s last turn.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4AAQ CD 00 4D CALL LOOPS Player’s turn
4AA3 CD 10 4D CALL LOOP6
4AAB CD 50 4C CALL LOOP?
4AA9 CD 33 4C CALL LOOP3
4AAC CD 6C 4BCALL LOOPTB

LOOPS prints YOU TAKE 2, and LOOPS6 erases | TAKE #.
LOOP7 waits for the input and prints it. LOOP3 provides a
time delay, and LOOP7B erases the appropriate number of
sticks.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4AAF CD F0 4CCALL LOOP4 Computer raps it up
4AB2 78 LD A,B
4AB3 FE 19 CP 19
4ABS CA 53 4B JP Z,ITAKECC
4AB8 FE 1D CP 1D
4ABA CA 59 4B JP Z,\ITAKEBB
4ABD C3 5F 4B JP ITAKEAA

LOOP4 prints | TAKE , and register B is examined to see
what the player’s choice was. The branch taken prints the com-
puter’s number and control is returned to the next section. Here
is the present status of the display:

/

Player’s choice has
erased 1,2, 0r 3
of the unshaded sticks

[ovonon R e R e B R

THE PILE

YOU TAKE # | TAKE

86 INTRODUCTION TO T-BUG

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
BACK2 4ACO 1A LD A/(DE) Finish him off
4act 77 LD (HL),A
AACG2 CD 20 4D CALL 1.OOP8
4ACS CD 33 4C CALL LOOP3
4AC8 0825 LD B,25
4ACA CD 6C 4BCALL LOOP7B

The two instructions at 4AD2 and 4AD3 print the computer’s
number. LOOPS wipes out YOU TAKE #, and LOOP3 gives a

tima dalav T OOPTR then aracac all the cticke in the lact row ev.
fime ge:ay, LOVY /2 1hen erasgs ail the slicys n tne ast row €x

cept one. The player has now clearly lost the game. This is how
the screen looks:

(/
[2o
THE PILE
| TAKE #

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4ACD CD 33 4C CALL LOOP3 Give a victory
4ADO 06 07 LD B,07 message
4AD2 2103 3F LD HL,3F03

ROUND 4ADS5S 11 DO 4C LD DE,4CDO
4AD8 OE 07 LD C,07
4ADA CD 14 4C CALL LOOP2
4ADD 05 DEC B
4ADE C2 B5 4A JP NZ,ROUND

This section prints the victory message on the screen.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS

ENDALL 4AE1 GD {80 43]° CALL MION End ol progiam

* 191 40) for Level |

THE SIXTH PROBLEM

87

The control is passed back to the T-BUG monitor. The game
is over and the final display shows:

(s

Address

4AF0
4AF1
4AF2
4AF3
4AF4
4AF5
4AF6
4AF7
4AF8

| WIN!

1 WIN!

THE PILE

FWIND 1TWIN! 1T WIN!

Data for Register B

Data

99
9D
Al

DB
DF
E3
19
1D
21

This data provides stopping
places for erasure of sticks when
the player inputs his choices.

The program contains some jumps to the following sections
which print the number selected by the player’s input or to set
the DE register pair to select the correct number.

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS
ITAKE3 4B 11 A94C LD DE,4CA9 Printa 3
4B14 1A LD A(DE)
4815 77 LD (HL),A
4B16 C3 60 4A JP BACK
ITAKE2 4B21 11 AB4C LD DE,4CA8 Print a 2
4824 1A LD A,(DE)
4B25 77 LD (HL),A
4B26 C3 60 4A JP BACK

88

ITAKEC

ITAKEB

ITAKEA

ITAKECC

ITAKERR

ITAKEAA

A
483

4B34
4B35
4B36

4841
4B44
4B47
4B4A

4B4D
4B50
4B5&3
4B56
ABEQ
4B5C

4B5F
4B62

77 LD
C3 60 4A JP

11 A94C LD
C3 6F 4A JF
11 A84C LD
C3 8F 4A JP
11 A7 4C LD
C3 8F 4A JP
11A94C LD
C3 GO 4A JP
11A84C LD
C3 CO 4A JP

11 A74C LD
C3 CO 4A JP

INTRODUCTION TO T-BUG

DE,4CAT Printa i
A,(DE)

(HL),A

BACK

DE,4CA9 Ready for 3
BACK

DE,ACA8 Ready for 2
BACK1

DE,4CA7 Ready for 1
BACKA1

DE,4CA9 Ready for 3
BACK2

ne AcAo [= PPN
[e "] neal

BACK2

DE,4CA7 Ready for 1
BACK2

That’s the program except for the subroutines which follow in
order of ilieir appearance in ihe main program.

LOOP1
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4C1D 1A LD A/(DE) Constructs the pile of
4C1E 6F LD LA 15 sticks. Calls
4C1F 13 INC DE L.OOP1A to draw each
4C20 CD 00 4C CALL LOOP1A individual stick.
4C23 0D DEC C
4C24 C2 1D 4C JP NZ,4C1D
4GC27 C9 RET

LOOP1A
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4C00 06 03 LD B,03 Draw a stick at the
4C02 3E 83 LD A,83 location pointed to by
4C04 77 LD (HL),A the HL register pair.
4C05 23 INC HL
4C06 05 DEC B
4C07 C2024C JP NZ.4C02
4C0A Cc9 RET

THE SIXTH PROBLEM 89

LOOP2
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4C14 1A LD A,(DE) Print the message
4C15 77 LD (HL),A pointed to by the DE
4C16 13 INC DE register pair on the
AC17 23 INC HL display at the location
4C18 (1]3] DEC C pointed to by HL.
4C19 C2 14 4C JP NZz,4C14
4C1C c9 RET

LOOP3
ADDRESS OPCODEMNEMONIC OPERAND REMARKS
4C33 DD 21 FF FF LD IX,FFFF A new 4-byte
4C37 DD 2B DEC IX instruction. index
4C39 DD 22 E8 4C LD (4CEB),(IX) register (IX) used as a
4G3D 3AE94C LD A(4CE9) counter in the time
4C40 FE 00 cp A00 delay.
4C42 C2374C JP NZ,4C37
4C45 Cc9 RET

LOOP4
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4CF0 21293F LD HL,3F29 Loads HL and DE
4CF3 11 A0 4C LD DE,4CAQ register pairs to
4CF6 OE 07 LD C,07 correct locations for
4CF8 CD 14 4C CALL LOOP2 printing a message.
4CFB Cc9 RET Register C provides

correct character
count.

LOOPS
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4D00 2107 3F LD HL,3F07 Prints the words
4D03 11 C04C LD DE,4CCO “YOU TAKE ?”
4D06 OF 09 LD C,09
4D08 CD 14 4C CALL LOOP2

4D0B C9 RET

90

INTRODUCTION TO T-BUG

LOOP6
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4010 21255F LD Lt 3F20 Erases the message
4D13 0E 0C LD C,0C “| TAKE #” using HL
4D15 3E 20 LD A,20 to point to the display
4aD17 77 LD (HL),A tocation. C is a count
4D18 23 INC HL for the number of
4D18 0D DEC C characters.
4D1A C217 4D JP NZ,4D17
4D1D C9 RET

LOOP7
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4C50 ch2B o0l CALL CHKIO Waits for a keyboard
4C53 AF XOR A input. When received,
4054 cD[2B 00]* CALL CHKIO compares il wiliy
4C57 FE 31 CP 31 ASCIl codes for 1, 2,
4C5C FE 32 CcpP 32 appropriate jump to
4C5E CA7B4C JP Z,4C7B print the value
4C61 FE 33 CcP 33 selected.
4C63 CA8C4C JP Z,AC8C
4C66 C3544C JP 4C54
4C69 00 00 00 NOP These NOPs do
4C6C 00 00 00 NOP nothing. Some unused
4C6F 21 10 3F LD HL,3F10 instructions have
4C72 11 A74C LD DE,4CA7 been removed.
4C75 1A LD A(DE) Program comes here
4C76 77 LD (HL),A if inputis a 1.
ACT7 FD 4600 LD B,(1Y + 0)
AC7A co RET
4C78B 00 00 NOP More NOPs that do
4C7D 000000 NOP nothing. Program
4C80 2110 3F LD HL,3F10 comes here if input is
4C83 11 A84C LD DE4CA8 a2
AC88 1A LD A(DE)
AC87 77 LD (HL),A
4C88 FD 4601 LD B,(1Y + 1)
4C8B Cc9 RET
4C8C 00 00 NOP More NOPs. Program
4C8E 00 00 00 NOP comes here if input is
4CO1 21 10 3F LD HL,3F10 agd.
4C94 11 A94C LD DE,4CAS
4C97 1A LD A,(DE)

THE SIXTH PROBLEM 91

4C98 77 LD (HL),A
4C99 FD 4602 LD B,(IY +2)
4C9C C9 RET

* [40 0B] for Level |

LOOPTA
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4B65 21003C LD HL,3C00 Sets up area for
4B68 CD 73 4B CALL LOOP7C erasure of sticks.
48B6B Cc9 RET

LOOP7B
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4B6C 21003D LD HL,3D00 Sets up area for
4B6F CD 73 4B CALL LOOP7C erasure of sticks.
4B72 c9 RET

LOOPTC
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4B73 3E 20 LD A,20 Erases sticks by
4B75 77 LD (HL),A loading spaces into
4B76 23 INC HL appropriate display
4877 D LD AL memory.
4B78 B8 CcP B
4B79 C2734B JP NZ,4B73
4B7C Cc9 RET

LOOP8
ADDRESS OPCODE MNEMONIC OPERAND REMARKS
4D20 2107 3F LD HL,3F07 Sets up display
4D23 C3 134D JP 4D13 address, then jumps

into LOOPS6.

DATA FOR THE MESSAGES

This final section provides the data for the messages which
are printed by the program.

92 INTRODUCTION TO T-BUG

Address Code Character

4CA0 49 1
4CA1 20 space
ACA2 54 T
4CA3 41 A
4CA4 4B K
4CA5 45 E
4AA6 20 space
4CA7 31 1
ACAR 32 2
4CAQ 33 3
4CCO 59 Y
4CCA1 4F 0
4CC2 55 U
4CC3 20 space
4CC4 54 T
4CChH 41 A
CC6 4B K
4CC7 45 E
4CC8 3F ?
4CDO 49 |
4CDA1 20 space
4CD2 57 w
4CD3 49 l
4CD4 4E N
4CD5 21 !
4CD6 20 space
4CEO 54 T
4CE1 48 H
ACE2 45 E
4CE3 20 space
4CE4 50 P
4CE5 49 1
4CE6 4C L
4CE7 45 E

This version of NIM is not a game you will enjoy playing as
there is no chance for success. The computer is in complete con-
trol at all times since it gets to make the first move. The game is
presented here as a vehicle to show how graphics can enhance a
game.

THE SIXTH PROBLEM 93

The program is long, and the possibilities for errors in enter-
ing it are many. You may want to go on to the next problem on
debugging techniques before tackling such a long program. I
made many mistakes and many revisions in writing the pro-
gram. T-BUG was a great help.

There is much room for improvement in the program, and
you may find that you wish to revise it. You can change the
number of sticks. You could even desing an option as to who
gets to make the move, Then you could beat the computer.

A good exercise is to try to add graphics to other computer
games available in books, magazines, club newspapers, or
wherever you find them.

94

INTRODUCTIONTO T-BUG

THE SEVENTH PROBLEM
Debugging with T-BUG

What do you do when your program doesn’t work in the way
that you think it ought to? Was it your program logic, or did
you make mistakes when you entered the program? T-BUG has
some features to help you out.

Problem: A program has been written to solve a problem,
but it fails to reach the correct solution.

How to Reach a Solution: If a program doesn’t perform the
job it was intended to do: either the user did not design
the program correctly, or the user entered some faulty
values. Program debugging is aided by some features
of T-BUG. The BREAK command described on page
4 of the T-BUG users manual is one. The REGISTER
command described on pages 4 and 5 of the same
manual is another.

We will look at a faulty program and see how to use both of
those commands in correcting program errors.

A BAD PROGRAM

Suppose that we have written a program to input a decimal
digit (0-9) from the keyboard and print out the ASCII code for
that digit.

Three errors will be incorporated in the program for debug-
ging purposes. We won’t tell you where they are, but their
presence is rather obvious. The program is supposed to work
like this:

96 INTRODUCTION TO T-BUG

1. You input a digit (0-9) from the keyboard.
2. Stored in memory is a message which the computer will
print out:

Your input
THE ASCIil CODE FOR XIS YY\
its ASCII code

3. The program then waits for you to enter one of two possi-
ble choices:
a. Type: ENTER if you wish another eniry;
b. Type: @ to get back to T-BUG.

The program uses the HL register pair to point to the ASCII
data of the message, stored in memory locations 4B01 through
4B17. The DE register pair points to the video display locations.
Register B is used to temporarily store your digit while the ac-
cumulator is busy doing other tasks. For purposes of clarity,
we’ll make the Level I and Level II programs as nearly alike as
possible.

We will use the BREAK and REGISTER commands to debug
the program. Notice that a breakpoint can only be inserted in
one place at a time. You then remove it and move it to the next
desired location.

We have broken the program up into its five functional parts.
The labels for these sections are 1.OOP0O, LOOP1, LOOP2,
LOOP3, and LOOP4. The remarks explain the functions of
each section.

The program is written for Level II BASIC, but only four

rhan Ao i
changes are needed for Level I. These changes are listed at the

bottom of the program.

THE PROGRAM—#7

LABEL ADDRESS OPCODE MNEMONIC OPERAND REMARKS

4A00 21003C LD HL,3C00 This section clears the

LOOPO 4A03 3E 20 LD A,20 screen for the
4A05 77 LD (HL),A message by filling it
4A06 23 INC HL with blank spaces.
4A07 7C LD AH
4A08 FE 40 cP A,40
AA0A C203 4A JP NZ,LOOPO
4A0D 210148 LD HL, 4801 This loop waits ior you
4A10 CD [2B 00} CALL CHKIO to enter a decimal

4A13 AF XOR AA digit, 0-9.

THE SEVENTH PROBLEM

97

LOOP1 4A14 CD [2B 00]* CALL CHKIO
4A17 FE 00 CP A00
4A19 CA144A JP Z,LOOP1
4A1C 11403C LD DE,3C40 This loop prints the
4A1F 4F LD B,A first part of message:

LOOP2 4A20 7E LD AHL) “THE ASCIl CODE
4A21 12 LD {DE)LA FOR ™.
4A22 13 ING DE
4A23 23 INC HL
4A24 7D LD AL
4A25 FE 14 CP A14
4A27 C2204A JP NZ,LOOP2
4A2A 78 Lo AB This prints your digit
4A2B 12 LD (DE),A and the word “I1S ". On
4A2C 13 INC DE the screen now: “THE

LOOP3 4A2D 5E LD AHL) ASCIt CODE FOR X
4A2E 12 LD {DE),A 1S " (where X is your
4A2F 13 INC DE digit).
4A30 23 INC HL
4A31 7D LD AL
4A32 FE17 cp A7
4A34 C22D 4A JP NZ,LOOP3
4A37 3E 33 LD A33 This adds a “3"
4A39 12 LD {DE}JA followed by your digit
4A3A 13 INC DE and the final message
4A3B 78 LD AB “THE ASCil CODE
4A3C 12 LD (DE)LA FOR X IS 3X"

LOOP4 4A3D CD [2B 00y CALL CHKIO Make a choice: Type:
4A40 FE 0D CP A0D ENTER 10 gO back or
4A42 CA 00 4A JP Z,4A00 @ to T-BUG.
4A45 FE 40 cP A40
AAAT C23D 4A JP NZ,4A32
4A4A CD {80 43)* CALL MON

Level | users: Substitute [40 OB]'; [91 40]

DATA FOR THE BAD PROGRAM

Address Code Character

4B01 54

4802 48

4B03 45

4B04 20 space
4B05 41

4B06 53

4B07 43

4B08 49

4B09 49

4B0A 20 space
4B0B 43

4B0C 4F 0

98 INTRODUCTION TO T-BUG

4B0D 44 D
4BOE 45 E
4BOF 20 space
4B10 46 F
4B11 4F O
4B12 52 R
4B13 20 space
4B14 20 space
4B15 49 l
4B16 53 S
4B17 20 space

GETTING READY

Load the program, then the data, and finally type: X to exit
the MEMORY mode.

DEBUGGING THE PROGRAM

First try to run the program by typing: J 4A00. The screen
goes blank, waiting for your digit. Type in a 5. When I typed
the 5 my screen showed:

2
THE ASCIHIUCODE FOR V32 The 2 used in
this example
may be any
digit from 0-9.

Something is wrong! Looking back at the program, I see that:
1. LOOPO which clears the screen worked perfectly.
2. LOOPI waited for the digii (o be eniered and then weni
on as it was supposed to do.
3. LOOP2 should save our digit in register B and print THE
ASCll CORE FOR |
Obviously, our program went astray in LOOP2. That may
not be the only place, but that is where we should start looking.
Somehow, a U was inserted between the words ASCIi and
CODE. The V32 and the extraneous 2 in the first line also look
suspicious.
We will put a breakpoint in the program immediately follow-
ing the instruction which moved our digit into register B. We

THE SEVENTH PROBLEM 99

can then examine register B with the REGISTER command to
see what was placed there.

FIRST TRY AT DEBUGGING

Type: @ to get back to the monitor. The # sign will appear.
Now, type: B 4A20.
Your screen will look something like this:

2
#B 4A20 OR V32
#

After the second # sign type: J 4A00. The screen will go
blank. Now, type your digit, 5. A brief flash of the message is
seen, then the screen is cleared and the # sign appears at the top.

The program has stopped at the location where we put our
breakpoint (4A20), and now we can examine the registers.

Type: R for a display of the registers in the format shown
below:

A’ F’ B’ c’
D’ E’ H’ L’
A F B C
D E H L

IXH XL IYH 1YL
SPH SPL PCH PCL

This is what my register display looked like:

FFFF FFFF The FFFF
| FFFF FFFFE B values may
A/—'\ f'\\ C vary.
3502 3235
g\/3040 4301_/ Iﬁ
\
FFFF FFFF
FFFF 4A20 PCL

PCH

100 INTRODUCTION TO T-BUG

The registers that concern us, at the present, are:

A the accumulator

B the register where our digit should be (ASCII)

C,D,E,H, L

PCH .

PCL the program counter (high and low addresses)

The BREAX command stopped the program at memory loca-
tion 4A20 as shown by the values in the program counter
registers (PCH and PCL). Looking back at the program again,
we must consider what has been done immediately prior to this

P S . T T gy
SPUL L1 s pPlugldlil.

The contents of the accumulator were moved into
register B by the instruction at 4A1F (supposedly!).

The register display shows that the value 35 (ASCII code for
our digit) is in the accumulator, but the value 32 (ASCII code
for 2) is in register B. Something went wrong right there! 1t may
be a coincidence, but I notice that register C contains the 35 we
were looking for. Stop and fook up the Z80 instruction for LD
dst,src.

For LD B,A the code should be 47. In our program it
is 4F. Somebody goofed! That’s error number one.

To correct this error:

1. Type: X to get out of the MEMORY mode.

2. Following the # sign, type: M 4A1F and sure enough, the
display shows our error:

(# Wi 4A1F 4F

3. Type the correction: 47 and the display shows:

M 4AA1F AF 47 Correction

4A20 CD Beginning of
BREAK command
still there. It must
be removed next.

4, Type: X to exit the MEMORY Mode.
5. Type: F to remove the BREAKPOINT.

THE SEVENTH PROBLEM 101

6. Type: J 4A00 to try the program again.
When we try the program again, the screen goes blank as it
should. If we type in a 5 again, the display shows:

5
(THE ASCIIUCODE FOR V35

Something is still wrong! Since we're not getting the first part
of our message correct, I suspect that we still have errors in
LOOP2. Let’s put in a break further down in the same loop. Let
it pass through the loop one complete time.

Press the @ key to get back to T-BUG.

After the # sign type: B 4A27.

Then after the next # sign type: J 4A00. The screen goes
blank.

Type in your digit, 5. The screen blanks with the # sign at the
top.

Type in the REGISTER command:

The display shows:

/FFFF FFFF
FFFF FFFF
A
0293 3535 —L
3C41 4BO02
DE__ |7~ N __ H
FFFF FFFF
FFFF 4A27 where the break

occurred.

Just before our breakpoint, the contents of register L were
moved into the accumulator. Notice from the display that this
was done correctly. Also the DE and HL register pairs have
been incremented correctly. It seems that this loop is working as
it is supposed to. Let’s move on.

We should probably look next at what happens between the
exit of LOOP?2 and the beginning of LOOP3. This would call
for a BREAK to be inserted at 4A2D, the beginning location for
LOOP3.

If you are still in the REGISTER mode, type: X.

Then remove the present BREAK (at 4A27) by typing: F.

Now, type: B 4A2D.

102 INTRODUGTION TO T-BUG

Then, type: J 4A00.

When the screen goes blank, type in your digit, 5.

When the # sign comes up, type: R to look at the registers
again.

Here’s what my registers show:

/FFFF FFFF

FFFF FFFF
A=B=35—~
is OK 3542 3535
3C54 4R14 HI, OK —out of
1) LOOP2
FFFF FFFF
FFFF 482D Pointing to the break
The section that we are checking loads our digit (ASCII 35)

into the accumulator from register B. It then puts it into the
wemory iocaiion poinied Lo by DE. We can see ihai 35 has been
copied from register B into the accumulator, Since DE has been
increrienied and now reads 3C54, we shiouid 100K al micinory
location 3C53 to see if the value, 35, was placed there as desired.
Everything else seems to be correct.

Type: X to exit the REGISTER mode.

Then type: M 3C53

(# M 3C53 35

Sure enough, it holds the value 35,

We look fine up to LOOP3.

Now type: X.

Then type: F.

Where do we look next? Let’s check the first two instructions

235 222

of LOOP3. That would be addresses 7A2D and 7A2E. There-
fore the BREAK shouid be inserted at 4A2F. At this point our
digit should have been printed. These two instructions should
move the ASCII code for the letter “I” (from the word “IS”)
from the memory location pointed to by the HL register pair
into the accumulator. Then the accumulator’s contents should
be placed in the display memory location pointed to by the DE
register pair. To see if this has been done:

Afier ihe W sigin, type: B $AZT.

Then type: J 4A00.

THE SEVENTH PROBLEM 103

When the screen goes blank, type your digit, 5.
When the # sign comes on again, type: R.
Here is what I see:

p
FFFF FFFF
FFFF FFFF

A=35""T
3542 3535

DE=3C20~3C20 4B14 - HL =4B14
FFFF FFFF
FEFF 4A2F

It’s plain to see that the accumulator holds 35, the ASCII
code for 5. It should hold 20, the ASCII value for a space, since
20 is in memory location 4B14. This space should have been
displayed following our digit. HL is pointing to the right place;
and if you examine memory location 4B14, you will see that 20
is there. From our previous BREAK, we know that 3C54 was in
the DE register pair just before we came into this loop, and we
have given no instruction to change it. How did 3C20 get there?
That is not correct.

Looking at the instruction at location 4A2D, we se¢ a

(LD A,(HL)

Let’s check the Z80 opcode for this instruction. It says 7E. But,
we have a 5E in our program. The 5E instruction would move
the contents of HL into register E, not the accumulator. Since
4B14 contains the value 20, this was moved into register E, not
the accumulator. The instruction at 4A2E then moved the con-
tents of the accumulator (still 35) into the memory pointed to by
the register pair DE (3C20 instead of 3C54). That is why we saw
that isolated number in the top row of the display.

Let’s clear up that instruction now.

Type: X.

Then, type: M 4A2D.

The display shows the culprit:

(# M 4A2D 5E

Change it by typing: 7E.

104 INTRODUCTION TO T-BUG

(# M 4A2D 5E 7E
4A2E 12

Now type: X.

Then type: F.

Then: J 4A00.

When the screen goes blank, type your digit, 5.
Now we see:

(THE ASCIl CODE FOR 51835

That looks fine —except that we seem to be missing a space
between IS and 35. The message completed in LOOP3 should
read: “THE ASCIlI CODE FOR 5 IS . There should be a space
after the word “IS”. The missing space may be discovered if we
put a break at the exit of LOOP3. Let’s try a BREAK at 4A37.

Type: @ to get to T-BUG.

After the #, type: B 4A37,

After the next #, type: J 4A00.

When the screen goes biank, type: 5.

When the # appears, type: R.

Now my display shows:

FFFF FFFF
FFFF FFFF
A=17T"N
1742 3535
DE=3C573C57 4B17 ——— HL =4B17
FFFF FFFF
FFFF 4A3T7

On the last pass through LOOP3, something is displayed
(either the “S” in “IS” or a space after the “S”). Then DE and
HL are incremented. Therefore HL should point to one
memory location following the data displayed. But it can be
seen that HL now points to the location where our last space is
located. The accumulator, which now holds 17 (the current
value of L), verifies this also. We don’t really want to come out
of the loop until HL points to 4A18,

Our compare vaiue at memory iocation 4A33 is i 7. The space
missing is in location 4B17. Since the compare instruction and

THE SEVENTH PROBLEM 105

the JUMP NZ instruction cause an exit to the loop when HL has
been incremented to 4B17, we never get the last ASCII code
read in. We should change the value in 4A33 to 18 (one more
than the last location of the message).

After the # sign, type: M 4A33.

The display reads:

(# M 4A33 17

Type: 18.
The display now shows:

M 4A33 17 18
4A34 CD

Type: X to exit

After the #, type: F to remove the BREAK.
After the next #, type: J 4A00.

The screen goes blank. Type: 5.

And there, at last, is the correct message:

(THE ASCII CODE FOR 5 IS 35

Now that we know that the program works for the digit 5:

Type: ENTER and input a new digit.

‘Repeat this for all ten digits to be sure that it works for all of
them.

Type: @ when you are tired of the whole thing.

Now, you know how to debug all those errors which you are
sure to put into your future programs. Don’t be discouraged.
Every programmer makes mistakes. The better you become at
finding your errors quickly, the better programmer you will
become. T-BUG can be a great aid for those who enjoy working
in machine language.

SUMMING UP

We have merely scratched the surface of machine language
programming in this book. However, you should now be
familiar with the capabilities of T-BUG. It is a simple, but quite
useful, tool which can be used to your advantage when creating
your own programs in machine language.

106 INTRODUCTION TO T-BUG

Although machine language programming may seem much
more demanding and much slower than programming in a high-
level language, such as BASIC, programs can be much more ef-
ficient and executed in a much shorter time. If you don’t believe
this, try writing a program which will display the graphics of
Program 5B using your Level I or Level il BASIC. Then com-
pare the time it takes the TRS-80 to “draw” the three figures on
the screen from your BASIC program and from your machine
language program.

Your programming abilities will only improve with continual
use. Experiment with the Z80 insiruciion set. We have only used
a few instructions so that the programs would be easily
understood. Work with short program segments, saving them
on tape. Then, combine the short modules into larger, more
complex programs.

if you have Level 1I BASIC, the Radio Shack Editor/
Assembler package is a good investment for machine language
programmers. It can be used to write, edit and assembie
machine language programs from their mnemonic codes. The
assembler keeps track of all the memory locations and other
tedious details. The use of an assembler is the next step up for a
serious machine language programimer.

APPENDIX

Tables
DEC. HEX.
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
10 (07
11 0B
12 0C
13 oD
14 OE
15 OF
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17

24

18

Table I Decimal-Hex Conversion

DEC. HEX.
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F
64 40

DEC.

81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100

101
102
103
104

HEX.

51
52
53
54
55
56
57
58
59
5A

5B
5C
5D
5E
5F
60
61
62
63
64

65
66
67
68

108

25 19
26 1A
27 1B
28 1C
29 1D
30 iE
31 1F
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
Table il

INSTRUCTION

ADC

ADC

ADC

ADC

ADGC

ADC

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

AND

AND

AND

AND

AND

BIT

65 41
66 42
67 43
68 44
69 45
70 46
71 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50

HL,rp
A,(IX +d)
A(lY +d)
Ar

Ayy
A,(HL)
HL,rp
A,(IX+d)
A, (Y +d)

b4
!’"\,pp

bY,rr
A,r

Yy
(HL)
(IX+d)
(1Y +d)

b,(HL)

INTRODUCTION TO T-BUG

105 69
106 BA
107 6B
108 6C
109 6D
110 6k
111 6F
112 70
113 71
114 72
115 73
116 74
117 75
118 76
119 77
120 78
Opcodes

HEX OPCODE

CE yy

8E

ED 01xx1010

DO 8E yy

FD 8E yy

10001xxx

C6 yy

806

00xx1001

DD 86 yy

FD 86 yy

DD 01001
FD 00xx1001

¥ atatatal

E6 yy

AB

DD A6 yy
FD A6 vy

ALLAOEN.
UV IVUAAA

CB 01bbb110

APPENDIX 109

Table II (Continued)

INSTRUCTION OPERAND HEX OPCODE

BIT b,(IX +d) DD CB 01bbb110
BIT b(lY +d) FD CB 01bbb110
BIT b,r CB 01bbbxxx
CALL [thh CD 11 hh
CALL NZ,lthh C4 1l hh
CALL Z,lthh CC Il hh
CALL NC,lIhh D4 1l hh
CALL C,lthh DC Il hh
CALL PO, lIhh E4 Il hh
CALL PE,lthh EC Il hh
CALL P,llhh F4 1l hh
CALL M,llhh FC Il hh
CCF 3F

CcpP yy FE yy

CP (HL) BE

CP (IX +d) DD BE yy
CcP (1Y +d) FD BE yy
CP r 10111xxx
CPD ED A9
CPDR ED B9
CPI ED A1
CPIR ED B1
CPL 2F

DAA 27

DEC (HL) 35

DEC IX DD 2B
DEC Y FD 2B
DEC (IX+d) DD 35 yy
DEC (Y +d) FD 35vyy
DEC rp ~00xx1011
DEC r 00xxx101
Di F3

DJNZ yy 10 yy

E1 FB

110 INTRODUCTION TO T-BUG

Table II (Continued)

INSTRUCTION OPERAND HEX OPCODE

EX AFAFY ng

EX DE,HL EB

EX (SP),HL E3

EX (SP),IX DO E3
EX (SP),IY FD E3
EXX D9
HALT 76

IM 0 ED 46
M 1 ED 56
M 2 ED 5E
IN A.lyy) DB yy

IN r,(r) ED 01xxx000
INC (HL) 34

NC IX DO 23
INC iY FD 23
INC (IX+d) DD 34 yy
INC (1Y + d) FD 34 yy
INC rp 00xx0011
INC r 00xxx100
IND ED AA
INDR ED BA
IN{ ED A2
INIR ED B2
JP lthh C3 Il hh
JP (HL) EQ

JP (1X) DD E9
JP (Y) FD ES
JP C,iinnh DA 1 hin
JP NC,lthh D2 1l hh
JP Z,ihh CA Il hh
JP NZ,lihh C2 Il hh
JP PO,lthh E2 1l hh
JP PE,llhh EA H hh
JP P,lithh F2 It hh
™y RA I L A kL

v AT TR

JR yy 18 yy

APPENDIX 1

Table II (Continued)

INSTRUCTION OPERAND HEX OPCODE

JR C.yy 38 yy

JR NC,yy 30 yy

JR Zyy 28 yy

JR NZ,yy 20 yy

LD r,r 01dddsss

LD ryy 00xxx110 yy

LD r,(HL) 01xxx110

LD r{(X+d) DD 01xxx110
LD (1Y +d) FD 01xxx110
LD (HL),r 01110xxx

LD (IX 4+ d),r DD 01110xxx yy
LD (Y +d),r FD 01110xxx yy
LD (HL),yy 36 yy

LD (IX +dy,yy DD 36 yy yy

LD (1Y +d),yy FD 36 yy yy

LD A,(BC) 0A

LD A(DE) 1A

LD A,(lthh) 3A Il hh

LD (BC)L,A 02

LD (DE),A 12

LD (hh),A 3211 hh

LD Al ED 57

LD AR ED 5F

L.D LA ED 47

LD R,A ED 4F

LD rp,llhh 00xx0001 I hh
LD IX,lihh DD 21 1l hh

LD 1Y,lihh FD 211l hh

LD HL,(Ilhh) 2A 1l hh

LD rp,(lthh) ED 01xx1011 i hh
LD IX,(l1hh) DD 2A 1l hh

LD 1Y (lihh) FD 2A 1l hh

LD (Ithh), HL 22 Il hh

LD (ithh),rp ED 01xx0011 1l hh
LD (Ithh),IX DD 22 Il hh

LD (Hhh),IY FD 22 Il hh

LD SP,HL F9

LD SP,IX DD F9

112 INTRODUCTION TO T-BUG

Table II (Continued)

INSTRUCTION OPERAND HEX OPCODE

Lo gply FDF2

LBD ED A8

I DDR ED B8

LDI ED AO

LDIR ED BO

NEG ED 44

NOP 00

OR yy F6 yy

OR (HL) B6

OR (IX+d) DD B6 yy

OR (Y +d) FD B6 yy

OR r 10110xxxX
OTDR ED BB

oTIR EDR2

ouT (C),r ED 01sss001
ouTt (yy),A D3 yy

OouTD ED AB

OuTI ED A3

POP 1X DD E1

POP Y FD E1

POP p 11xx0001
PUSH IX DD E5

PUSH Y FDES

PUSH p 11xx0101
RES b,(HL) CB 10bbb110
RES b,(IX+d) DD CB yy 10bbb110
RES : oY +d) FD CB yy 10bbb11C
RES b,r CB 10bbbxxx
RET C9

RET NZ Co

RET z C8

RET NC DO

RET C D8

RET #O EO

RET PE E8

APPENDIX 113

Table I (Continued)

INSTRUCTION OPERAND HEX OPCODE

RET P FO

RET M F8

RETI ED 4D

RETN ED 45

RL (HL) CB 16

RL (IX+d) DD CB yy 16
RL (1Y +d) FD CB yy 16
RL r CB 00010xxx
RLA 17

RLC (HL) CB 06

RLC (IX+d) DD CB yy 06
RLC (1Y + d) FD CB yy 06
RLC r CB 00000xxx
RLCA 07

RLD ED 6F

RR (HL) CB 1E

RR (IX+d) DD CByy 1E
RR (1Y +d) FD CB yy 1E
RR r CB 00011xxx
RRA 1F

RRC (HL) CB OE

RRC (IX+d) DD CB yy OE
RRC (Y + d) FD CB yy OE
RRC r CB 00001xxx
RRCA OF

RRD ED 67

RST p TIxxx111
SBC Ayy DE yy

sSBC A,(HL) 9E

SBC HL,rp ED 01xx0010
SBC A(IX+d) DD 9E yy
SBC ALY +d) FD 9E vy
SBC r 10011xxx
SCF 37

SET b,(HL) CB 11bbb110

SET b,(IX + d) DD CB yy 11bbb110

14 INTRODUCTION TO T-BUG

Table II (Continued)

INSTRUCTION OPERAND HEX OPCODE

SET b Y +d) FD CB vv 11bbh110
SET b,r CB 11bbbxxx
SLA (HL) CB 26

SLA (X +d) DD CB yy 26
SLA (IY +d) FD CByy 26
SLA r CB 00100xxx
SRA (HL) CB 2E

SRA (X +d) DD CByy 2E
SRA (Y +d) FD CB yy 2E
SRA r CB 00101xxx
SRL (HL) CB 3E

SRL (IX +d) DD CB vy 3E
SRL (IY +d) FD CByy 3E
SAL i C3 0011 ixxx
suR A(HL) 96

suB A(IX+2) DD 96 yy
sSuB AY +2) FD 96 yy
SuB Ar 10010xxx
SUB Ayy D6 yy

XOR yy EE yy

XOR (HL) AE

XOR (IX+d) DD AE yy
XOR (Y +d) FD AE yy
XOR r 10101xxX

Symbols used in Table II:

d =displacement bbb = bit code

p = restart code ddd = desiinaiion regisier code
r =register code $85 = source register code

x = binary bit hh = high-order hex digits

y = hex digit Il = jow-order hex digits

pp = (contents of) register pair code pp
rp = register pair code
rr = (contents of) register pair code rr

APPENDIX

Table Il Hex-ASCII

115

Hex MSD

Hex LSD

i-N

[84]

»

TMOODPOONOOH WN - O

SP

+ o——~ll R x

WCOONDDANHEWUN O

DV A

CZErXee—IOTMMOOTP»O

| pr——r—N<XS<CAHODOT

o033 —x——TJa ~0COT® |

mil————N<SXZE2<CcC~0 OV

v}

INTRODUCTION TO T-BUG

Table IV Graphic Characters and Codes

IAREE ARG
(0 N O N oy B Wy N
81 82 83 84 85 8 87 88

nlARE

89 8A 8B 8C 8D

|

95

6

!
=
=

[(s]

[{=]

O\

>

© HL]
o B g
©

(@]

©

W)

>
N
ped
o1

>
>
>
)

4

| B
S [l

B1 B5
1]
I | =

w
©
o
>
o B
w
w
(]
w
lwj

17

APPENDIX

TRS-80 Video Display Worksheet

(o] [o] fo]

434 m<mm~mmvnN—nmmmumdmmncm«.mN_Nummumdmmsmm@mm——ummumd mmmmcmNﬁ_
094€ 094€
084 084€
o4t orde
004¢ 004¢
03¢ 003E
083¢ 083¢
ov3e 0b3g
o03e 03¢
0o0g 0oag
psac Hjosae
ovag 0vae
o008 , 000e
099¢ 53¢

|
083€ ; 083¢
ov3E |] ovag
03¢ i i 1 000€
i T i ; :
quum«mmNmm«.mw—ammnum(mm\,cmquﬁammmumdxmmhwmwmu_mumcum<mm\.wm@m~wc
£ 14 L)

118 INTRODUCTION TO T-BUG

INDEX

Page

PN 72 a1 11531 1 10 4. ARG G 20
ASCIICOdeS. ..ottt ittt e 115
BREAKcommand(B)coiiiiiiieeniiaennnn. 3
Breakpointviu i e 3
CHKIO Subroutinecovveirennunrniiernnnaennns 8
CLOAD .o e e e 14
@] 570 7-N 5 16 T U 43
COMMANDS, T-BUGSUMMATY ovvievenaeeenns 2
CSAVEOD oo e 43
DEBUGGINGaProgramcoouiivneennnenseans 95
DECIMAL toHEX cOnversionevvaeeanee 107
EXamine memoryovvnrennrinirnnonnsenernreenss 17
Filenameoviiiiiiii it iiaeaaeans 5
FREEcommand(F) ..., 3
GOcommand(G)ovriiiiiii i 3
GRAPHIC cOdes ..ottt it 60, 116
Hexadecimalnotationo iiiiiiiiineenns 2
INPUT from keyboard subroutine 7
JUMPcommand (J)oooinniiiiiiiieiiineeenns 3
Listof T-BUGcommandsccoiiiiinnnennans 2
LOADcommand (L)coviiniiiniiiii e 5
Loading a program from cassette: LEVELT............. 40
LEVELII 42

Loading T-BUG: LEVELI oo 14
LEVELII iiiaens 14
MEMORYcommand (M)coviiiiiniiinnnnennns 2
1% (31110 /20 11 7: 1 « JOU RGO S 6

OUTCSUDIOULINE « o ot vttt it it ie i et iananenss 22

120 INTRODUCTION TO T-BUG

OQUTPUT tovideosubroutine.vn.nn. 21
Packingnumbers........... i i 51
PUNCHcommand(P) ..., 4
Recorder,useof i i 39
REGISTER command (K)vviveintnnnnnnnrnnanns 4
Registers. .o e e 30
RESTART .. i 22
Running a machine language program 19
Saving a programontape: LEVELI 39

LEVELIIL................... 41
Statusflags 10
SYSTEMcommandcoiieineieiinennnaans, 42
T-BUGMORItOrottt it iie e 1
Video MemOIY MaP . . ot ov v i s in e ineerrinennens 61,117
Xeommando i i i e 17

Z-80inStructionset 108

About the Book . . .

This is the only book to describe in detail the machine language monitor |
operations of the popular Radio Shack TRS-80 computer. Each com-
mand is explained and discussed in detail and examples are given to
show how the commands may be used. Each step of every sample pro- -
gram is accompanied by a sketch of the corresponding video display for
complete “'no question about it"" understanding of the operations. The
examples constitute practical applications which make this book not
only instructional, but useful as well.

About the Aut 0r'S . . .

Don Inman, who gradué é from the University of Northern lowa wsth_ _
a Bachelor's Degree in Mathematics is a long-time computer afi-
cionado. When he’s not busy teaching at a local High School, he’s
usually tied up in a computer text or some how-to-book project. Don is.
also the author of INFRODUCTION TO TRS-80 GRAPHICS and is
presently working on yet another TRS-80 book for dilithium.

Kurt Inman is Don’s 15 year old son and an author in his own right. He.
will collaborate with his-dad on his next TRS-80 book as well. "

Other dP books on the TRS-80

INTRODUCTION TO TRS-80 GRAPHICS
by Don Inman

This book is the fastest-selling dP title ever and readers from every sector have praised
its broad scope and ease of understanding. It begins with the basic concept on line draw-
iIng then moves into geometric shapes, moving figure animation and more advanced pro-
jects. An understanding of BASIC is required.

ISBN 0-918398-18-5 $8.95

MICROSOFT BASIC
by Ken Knecht

Another quick selling dP titg, this book is particularly useful for TRS-80 owners, but can
be used with any machine using the MITS family of BASIC interpreters. This book sup-
ples. a useful intro and tutorial iIn Microsoft BASIC and illustrates concepts with ex-
amples that will actually run on your computer. -

ISBN 0-918398-23-1 $8.95

diithium Press
30 NW 23rd Place
ISBN 0-918398-33-9 - Fortland, Dregon 97216 .

