iINntroduction to

TRS-80
LEVEL II BASIC

and
computenr

programming

michael p. zabinski

introduction 1o
TRS-30 LEVEL Il BASIG
300 COmPUIer PROERFMMINE

introduction 1o

TRS-80 LEVEL Wl BASIC
300 COMPUICR PROERIMMING

MICHAEL P. ZABINSKI, Ph. D.

Professor
Fuairfield University

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Zabinski, Michael P

Introduction to TRS-80 LEVEL II BASIC and computer
programming.

Includes index.

1. TRS-80 (Computer)—Programming. 2. BASIC
(Computer program language) 1. Title.
QA76.8.T18232 001.642 80~15015
ISBN 0-13-499962-2 (pbk.)

ISBN 0-13-499970-3 (case)

©1980 by PRENTICE-HALL, Inc.,
Englewood Cliffs, New Jersey 07632

All rights reserved, No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3

Editorial/production supervision

and interior design by Linda Mihatov
Cover design by RL Communications
Manufacturing buyer: Joyce Levatino

TRS-80 is the registered trademark of Radio Shack, a Division of Tandy Corporation.

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC,, Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

To
Toby,
Eric,
and
Marion

contents

vii

Preface

List of Examples

Introduction

1

Your TRS-80 Computer

1.1
12
1.3

A

Getting Started 3
The Keyboard 3
Communicating with the Computer 4

Specifying Information

2.1
2.2
2.3
24

2.5

2.6
2.7

3

Numerical Information 6

Character Information 7

Variables &

Assignment 9

Exercises 1 12

Arithmetic Functions 13

Hierarchy of Arithmetic Operations 4
Variable Types 16

Exercises2 19

Computer Programs

3.1
32

3.3
34
35
36
37
38

Writing a Program 23

Program Clarity, Displaying Messages and Comments 28
Exercises 3 29

Keyboard Response: Input 31

Editing Computer Programs 33

Debugging Programs 37

Stop and Continue Execution 39

Saving a Program on Cassette Tape 40

Declaring Variable Types 41

Exercises 4 42

Xi

Xiii

23

viii contents

4

Decisions
4.1
4.2

43
44

S

Looping
5.1
5.2
5.3

54
55
5.6
5.7

£

Relational and Logical Operations 46
Flowcharts 49

Exercises 5 52

Transfer Statements 53

On Error Go To 59

Exercises6 52

Loop Structure 66
IF-THEN Loops 66
FOR-NEXT Loops 70
Exercises 7 75
Subscripted Variables 79
Nested Loops 82
Multiple Subscripts 84

Debugging Loops: Tracing and Playing Computer 85

Exercises 8 89

Input-Output

6.1
6.2
6.3

7

READ and DATA Statements 93
Formatting Qutput 97

Cassette Input-Qutput 107
Exercises 9 109

Library Functions

7.1
72
7.3

g

Subroutines
8.1 The Purpose of Subroutines 122
8.2 Unconditional Transfer to Subroutines 122
8.3 Conditional Transfer to Subroutines 725

84

INT Function 112
RND Function 114
More Functions 116
Exercises 10 119

A Final Comment 128
Exercises 11 128

46

66

93

112

122

contents

y

Graphics
9.1 Background 131
9.2 Graphing with SET (X,Y) 131
9.3 Other Graphics Functions 137
Exercises 12 139

10

Strings
10.1 Review 142

10.2 ASCI Codes and Related Functions (ASC and CHRS) 143
10.3 Character Manipulation Functions (LEN, LEFT$, RIGHT$, MID$) 146

10.4 Other String Functions 148
Exercises 13 155

APPENDICES

Error Messages

Reserved Words

BASIC Glossary

Solutions to Even-Numbered Exercises

Index

131

142

159

161

162

171

181

prelsce

The computer language, BASIC, short for Beginner’s All-purpose Symbolic
Instruction Code, was developed at Dartmouth College by John Kemeny
and Thomas Kurtz in 1964. Since then it has gained acceptance in industry,
research, and education. Its use is continuously growing as computer manu-
facturers, and especially home computer manufacturers, recognize its
simplicity and popularity. The Radio Shack TRS-80 microcomputer com-
municates in BASIC. This book provides an introduction to TRS-80 Level II
BASIC and, through it, to some of the important concepts and applications
of computer programming.

The reasons for the increased use of BASIC are many. Persons interested
in learning practical computer use find BASIC to be a fast way to reach their
goal. Because BASIC has a conversational, interactive nature and a simple
structure, it is an attractive teaching tool with which computer programming
concepts can be presented to beginners.

Just as the English language has many dialects, so does BASIC have many
different implementations. The TRS-80 has two versions of BASIC com-
monly referred to as Levels I and II. Level II is more extensive than Level I
and is the subject matter of this book. Level II BASIC contains a powerful
arithmetical facility along with a large library of common mathematical and
nonmathematical functions. It has many error diagnostics, which produce
easily understandable error messages and excellent editing features. Level 11
also includes comprehensive graphic capabilities and numeric accuracy of up
to 16 digits. These attributes combined with good input-output procedures
make Level II BASIC an ideal computer language.

This book is directed at the beginning programmer. With a small set of
instructions, the beginner can very quickly begin to write elementary com-
puter programs. We take advantage of this feature of BASIC and emphasize
those parts of the language that are most frequently used. Many examples
are included to illustrate the use of BASIC and to demonstrate how a com-
puter can be programmed to perform many different tasks. In addition, an
abundance of exercises is presented at the end of each chapter with solutions
to selected problems given at the end of the book. The reader is encouraged
to try as many exercises as possible, for computer programming is best
learned by doing.

The level of presentation and selection of material make this book suit-
able for a wide variety of readers. No previous experience with computers
and no mathematical background beyond the basic arithmetic skills are
assumed. The material is presented as it would appear on the TRS-80 video
display. A unique feature of this book is the inclusion of explanatory com-

xii

preface

ments alongside the computer displays. These comments highlight and rein-
force the text discussion by pointing out new procedures and emphasizing
important points. The reader would therefore benefit by working along with
the text, trying out the illustrative examples on the computer, and experi-
menting with variations. The way to learn a new computer language is to use
it. Each student should run as many programs as he has time for so as to
acquire a feel for this new tool.

This is a textbook suitable for the self-learner or for a one-semester
introductory course. It should not be viewed as a reference manual in
BASIC. The primary purpose of the book is to introduce Level 11 BASIC
as well as computer-programming concepts. It is for the nonspecialist who
wants to learn to use the TRS-80 effectively.

I am greatly indebted to many people who have contributed to the
development of this book. Particular thanks are due to Stephen Cline, editor,
Prentice-Hall, and to David Gunzel, director technical publications, Radio
Shack. I also express my appreciation to Ann Hannon of Greenwich High
School and to the teachers of the Orange Public Schools for reviewing the
manuscript and providing helpful suggestions. In addition, I wish to thank
John Donovan, Richard Golden, Edward Hanlon, Howard Hecht, and
John McCann for their support in the preparation of this text and my wife
whose advice and typing were magnificent. Programming for the chapter
exercises in this book was done—brilliantly—by Michael Galaty.

MicHAEL P. ZaBINSKI, Ph. D.

list of examples

Chapter 2

Interchange Values of Variables 1]
Compound Interest 14

Metric Conversion 16

Single Versus Double Precision I8
A Divisibility Check 18

Rounding to the Nearest Penny 19

Chapter 3

Walking Kitty Corner 27
An Arithmetic Trick 32
Mortgage Payments 38
Temperature Conversion 40

Chapter 4

Find the Largest Among Three Numbers 56
Producing Variable Displays 58

Data Validity Checks 60

Change for a Dollar Bill 61

Chapter 5

The Rule of 72 68

Evaluating an Infinite Series 71

Averaging a Set of Numbers 73

How Fast Can the Computer Add? 74

The Legend of the Wise Old Man 75

Find the Largest Element of an Array &80

The Multiplication Table 82

Magic Squares 84 :
Sorting a List of Numbers in Descending Order 86

Chapter 6

Unit Pricing 95

Practice Your State Capitals 95
A Sales Report 98

Graphing an Equation 100
Pascal’s Triangle 101
Checkbook Balancing 105

xiii

Xiv list of examples

Chapter 7

Long Division 112

Rounding to Any Desired Accuracy 113

Generating Random Numbers Between Given Limits 174
Tossing Heads and Tails 115

Random Graphic Display 115

A Bar Graph of the ABS Function 116

The Rule of 72 Verified 118

Chapter 8

Producing a Blinking Display 124
Computer-Assisted Instruction 125

Chapter 9

Graph of Degrees Fahrenheit and Celsius 133 ‘
Bar Graph of a Frequency Count 135 {
Random Walk 137

Chapter 10

Maintaining a Status Message on the Screen 145
Number of Words in a Text 147

Palindromes 147

Coding a Message 748

Underlining a Title 150

Binary-to-Decimal Conversion 150

Character String Entry Routine 152

Shoot the M’s, A Video Game 153

Shoot the Duck 153

Etch-a-Sketch 154

introduction

The computer revolution is here! Today, computers are invading virtually
every aspect of life in America. They are changing the way we work, play,
and even think. That they have affected the lives of nearly all of us is indis-
putable. Their impact has been experienced in areas as widely separated as
space research and primary instruction. We live in a world that is increasingly
dependent on computers. These machines not only calculate our paychecks
and our bank balances, but they are invading areas where their application
once seemed inconceivable. The physician may use the computer to diagnose
a case, the attorney to research a legal matter, the policeman to investigate
the records of an alleged criminal, and a history teacher to simulate the Civil
War. It now seems improbable that any career will remain untouched by
computers, as computers are penetrating directly or indirectly into nearly
every aspect of human affairs.

The seemingly unlimited usefulness of the computer itself has been aug-
mented by its rapid development. The number of computers produced has
risen dramatically. In the early 1950s there were less than 1000 computers
in existence. By 1976 the number of computers had risen to 200,000. This
phenomenal growth is primarily due to the major scientific advances in com-
puter design. The first electronic computer, the ENIAC, which was huge and
filled an entire room, was built in 1946. It consisted of 18,000 vacuum
tubes, and tended to overheat and break down. Since that time, with the
advent of transistors, integrated circuits, and the silicon chip, computers
have become smaller, more reliable, faster, and less expensive. We distinguish
between computers, minicomputers, and microcomputers. Around 1965 the
least expensive computers were called minicomputers. In general, they are
less powerful, cheaper, and smaller, although there is considerable overlap.
To some extent history repeated itself with the advent of the microcom-
puter. In the early 1970s, very low cost computer products began to appear
and were called microcomputers. The prefix micro- applies to the very small
size as compared with a mini. Once again there is considerable overlap be-
tween micro- and minicomputers. Minicomputers lowered the price of com-
puters to less than $100,000 and brought the computer into the laboratory
and the manufacturing plant’s production line. Microcomputers reduced
the price of computers to below $1,000 and brought the computer into the
small business and the home.

Regardless of size and price, all computers possess common characteris-
tics of design and performance. Typically, a computer consists of five units:
input, output, memory, arithmetic, and control. Information must be fed
into the computer as input, for example, via the keyboard or punched cards.

introduction

The data or instructions are stored in the computer’s memory. Computer
storage can be visualized as a set of post-office boxes with each box capable
of holding a single number or character of information. These boxes are
arranged in such a way that their contents can be easily reached or accessed.
Memory holds the information received, the commands to be followed, and
the results of work accomplished. The actual calculations take place in the
arithmetic unit. Besides calculating, a computer can make comparisons to
determine whether two quantities differ. Such comparisons are also made in
the arithmetic unit. The results of the computer’s work are displayed
through the output unit. In the case of the TRS-80, the display may be on
the screen or on the printer. The control unit coordinates the flow of data.
Like the conductor of an orchestra, it coordinates the activities of the units
of the computer to ensure proper processing.

A basic characteristic of the computer is that it has no inherent intelli-
gence. It does not understand any human language; nevertheless, a computer
can act upon instructions given in a language that is well suited to tasks the
computer can accomplish. The language of the TRS-80 is BASIC; it allows
you to create instructions using familiar English terms. Another important
characteristic of a computer is its ability to carry out instructions extremely
quickly. This fact, along with the observation that many tasks involve re-
peating similar operations, has led to the concept of a computer program. A
program consists of a set of instructions provided to the computer in ad-
vance of actual computations. By first giving a computer all the instructions
needed to accomplish a task, and then telling it to start executing the in-
structions, the computer can work at its own tremendous speed, repeating
particular operations as many times as necessary to get the job done.

The language of BASIC, the Beginner’s All-purpose Symbolic Instruction
Code, was born in 1964. It was developed at Dartmouth College by Kemeny
and Kurtz. The BASIC language is oriented to conversational use at the com-
puter. The idea was to make the language syntax very easy to learn and use.
In 1967, Kemeny and Kurtz reported that they had introduced some 2,000
students at Dartmouth to BASIC, indeed a very basic computer language.

| your TRS-80 compuier

1.1 GETTING STARTED

The TRS-80 computer consists of four units. The power supply, the key-
board, the video monitor, and the cassette recorder. The keyboard is used to
type information into the computer. The information we type in and the
computer’s responses are displayed on the screen. The computer itself is
inside the keyboard. The cassette recorder is used to load from tape pro-
grams into the computer or to record programs on tape. These units need
to be connected and plugged in carefully. Follow the detailed instructions
that accompany the computer, and be sure you get all the plugs to fit
properly. To turn on the computer, press the power button on the video
display and the power button on the back of the keyboard. Once the power
is turned on, the red light on the keyboard lights up and the display

MEMORY SIZET

appears on the screen. Press the white key labeled ENTER. The computer
responds

FADID SHACE LEWEL 11 BRSIC
RERALY
> -

The computer is now ready for your instructions in Level II BASIC. Com-
puters equipped with Level I BASIC display the READY immediately after
power has been turned on.

1.2 THE KEYBOARD

BASIC is a conversational computer language that enables us to carry on a
dialog with the computer. We talk to the computer by using a typewriter-
like keyboard. We type our messages and transmit them to the computer. At
the same time, the information we type also appears on the screen.

The keyboard is divided into two zones. The first zone is the primary
part of the keyboard; it contains all the keys necessary to operate the com-
puter. The second zone, located on the right side of the keyboard, contains
a duplicate set of numeric keys and a second white ENTER key. It is a

4 ch. 1 [your TRS-80 computer

calculator-style numeric keypad that makes typing of numbers convenient
and efficient for those who are accustomed to calculator usage. Some earlier
model keyboards do not have a numeric keypad. The letters of the alphabet
shown on the keys print only in capitals. The SHIFT key need not (but may)
be pressed for the letters to be displayed in capitals. The letter O and the
number zero should not be confused since they are not interchangeable. To
avoid confusion, the number zero is slashed (@).

Some of the keys are shared by two characters. To type the upper char-
acter press the SHIFT key. This is just like typing capitals on a regular type-
writer. For convenience the keyboard has two SHIFT keys located at the
right and left ends of the bottom row of keys. Aside from the usual charac-
ters, such as letters, digits, addition, subtraction, and punctuation, several
characters are peculiar to BASIC. The multiplication sign is a star (*), the
division sign is a slash (/), and the exponent is an up-arrow (1). In addition,
there are other special-purpose keys, for example, #, @, $, and %. These will
be introduced later. Finally, several keys located along the right and left
edges of the keyboard are used to manipulate where on the screen the in-
formation is typed. These include the CLEAR, =, <, BREAK, 1 and | keys.

1.3 COMMUNICATING WITH THE COMPUTER

When we first turned on the computer we pressed ENTER to obtain the
READY followed by >— . The — is called the cursor. We now do some
typing. Type | AM HAPPY. The space bar is used for spaces between words.
Notice how the cursor moves to the right. The cursor indicates where the
next character will appear on the screen. Suppose we typed by mistake the
word HPPY (the A is missing). To erase the text, we press the < key. Each
time we press the key one character is erased. The shift < (press the SHIFT
and < keys at the same time) erases the entire line at once. Erase it.

Each line on the screen can hold up to 64 characters. Enter any text and
count them. As you type briskly, you may press a second key before you
have released the first. At first type slowly to be sure no extraneous charac-
ters are typed. Now erase the line and type in the entire ABC in double
letters, AABBCCDDEE . . . Press shift - and notice that the letters are
suddenly twice the size and that every other letter of the AABBCC ... text
has been deleted. Each letter of the ABC now only appears once. Continue
typing digits and other characters. Up to 32 characters fit on a line. When
the line is filled, the cursor automatically moves to the next line. To erase
the line, press shift <. The enlarged cursor remains. Additional typing will
continue to appear in the 32 character per line format. To return to the
normal type size, press CLEAR. This key clears the screen and places the
smaller cursor at the top left corner of the screen. We can now type 64
characters per line.

Press the | key. It moves the cursor down along the left edge. When it is
at its lowest position, type your name. Then press the | key 15 times and
watch your name move up to the top of the screen. There are 16 lines on
the screen. Repeat this exercise. Press CLEAR and then press to move the
cursor to the bottom left corner of the screen. Now press1,4,2,4,3,4,....
15, 1, 16. Subsequently, continue to typein |, 17, |, 18, and notice how the
first few numbers disappear from the display. Press CLEAR to erase the
screen and to place the cursor at the top left corner.

sec. 1.3 | communicating with the computer

So far we have not truly communicated with the computer. We have
typed information onto the screen but did not transmit it to the computer.
To transmit information to the computer, the ENTER key must be pressed.
Type your name and press ENTER.

COMMENTS
TREZ-26 Type in a name and press ENTER.
PEM ERROR Computer responds: Syntax error.
FEAL'Y
> The cursor is waiting.

Qops! What happened? The computer did not understand our entry and
therefore responded with the error message. This is one of many types of
error messages that the computer uses to inform you of errors. To avoid such
error messages, we must adhere to the rules of BASIC. We must learn how to
properly communicate with the computer.

-4 specifying information

The great power of computers lies in their ability to handle a large amount
of information rapidly. We begin our study of BASIC by looking at some of
the types of information that we can use. The two types of information dis-
cussed in this chapter are numerical information and character information.
We can request that the computer display information on the screen by using
the instruction PRINT.

2.1 NUMERICAL INFORMATION

Numbers such as 18, 157, or 89 can represent information of importance to
you, such as your age, weight, and grade on your last exam. Decimal num-
bers are expressed in the usual manner, for example, 18.5 or 3.14159.

A number such as 18.5 is a positive number. It could therefore be writ-
ten equally well as +18.5. The plus sign is optional. In the case of a negative
number, we must place the minus sign before the number.

COMMENTS
FRINT % @ You type in PRINT followed by a
k! number. Then press ENTER. That
FRIWNT Z. 426 number is then displayed by the
S computer on the screen. Note that

trailing zeros after the decimal
point are dropped, and for values
less than one, the zero before the
decimal point is also deleted. The
+ sign is not printed; the - sign is
printed. A number without a sign
is always positive.

FRINT +Z. 12 Positive numbers are displayed with
o4z a leading blank instead of the plus
sign.
FRIMT -3, 12 Negative numbers are displayed
-3 4z without a leading blank.
FRIMT —-@ Zi26 Leading and trailing zeros are not

displayed.

S The ? is an abbreviation for PRINT.
= In contrast to Level | BASIC,
Level Il allows only for very few
abbreviations. For clarity, we do
not use the abbreviated form.

7 sec. 2.2 [character information

REMEMBER: Always press ENTER to transmit your message to the computer.

BASIC uses a modified version of scientific notation for representing
very large numbers or very small numbers. Scientific notation breaks a num-
ber into two parts, a number between 1 and 10 and an exponent of 10. For
example, the speed of light is about 300 million meters per second, which
can be written as 300,000,000 or in scientific notation as 3 X 108. In BASIC
we can express this numerical information as the number 3E8, where E indi-
cates that 8 is the exponent of 10. The following examples illustrate scien-
tific notation.

Number Scientific Notation BASIC
1230000 1.23 X 106 1.23E+062
0.000123 1.23 X 1074 1.23E-04

aBASIC replaces “times ten to the” by E.

COMMENTS
FRINT 106068 Once the ENTER key is pressed the
aRalnlsists] computer displays 100000.
FRINT 1008088 At 1 million, scientific notation is
1E+8& used.
FEINT 1E+5
sG]]ee]
FRINT 1E& 1E6 is a valid numeric constant.
1E+A&
PRINT @ ai
a1
FRINT @ &8l Scientific notation is used by the
1E-8Z computer for numeric constants

less than 0.01.

2.2 CHARACTER INFORMATION

In addition to numerical information, BASIC also allows for the use of char-
acter information in the form of character strings. Character strings may
consist of a single character such as

IIAIII “B”, “C", 11211, 11311, II*II, “+”, s
or several characters such as

IIABCII’ 11237I’ Il*+___ll

Character information must be enclosed in quotation marks.

2.3 VARIABLES

ch. 2 [specifying information

COMMENTS
FRINT "A" Character data are typed in with
A quotes. On output, the computer

FRINT “23"

displays character data without
2= the quotes.

REMEMBER: Character information is always enclosed in quotes. It may contain ﬁp

to 255 characters. : ‘

The following examples illustrate additional features of character infor-

mation.

FRINT »

FRIMNT

FRINT "HE SAID “TO BE OR NOT TO BE""
HE SAID
TEN ERROR

COMMENTS

Request that a blank be printed.

The computer displays a blank;
double spacing.

Print nothing.

The computer again skips a line;
displays a blank.

Try to display a quote.

Cannot have more than one set of

FRINT "THIS WORKS
THIS WORKS

quotation marks.
Rest beyond first set of quotes is

ignored.
FRINT “"HE SAID “TO BE OR MNGT TO BE-"® So we use apostrophes within the
HE ZRID “TO BE OR WOT TO BE- quotes.

The closing quotes are missing.
They are not required.

The syntax error (SN ERROR) encountered above is one of many differ-
ent error messages that the computer uses to denote an illegal procedure. A
complete list of the error messages is given in Appendix 1.

The previous sections introduced different types of information; thus
far it has been necessary to enter information from the keyboard. We often
want to store information in the computer for later use. This capability is
provided through variables. A variable is a name that represents data stored
in the computer. It may be numerical or character data. It is not fixed, but
may be changed whenever desired.

We want to compute the interest that a savings account will earn in one
year. We need to have the account balance at the start of the year. This value
is not fixed; it may vary from person to person. We assign this quantity a
name, for example B. The quantity B is called a variable. For one person, B
may be 1000; for another it may only be 100. So B varies but always repre-
sents the balance at the start of the year. Another variable that we need in
order to compute the interest paid by the bank is the interest rate. We can
name it R.

2.4 ASSIGNMENT

sec. 2.4 | assignment

Notice that we used the variables B and R to represent the account Bal-
ance and the interest Rate. It is a good idea to select variable names that
are closely associated with the quantity they represent. For example, use the
variable name M for Mary’s age and J for John’s age.

Variable names are formed from alphabetic characters and numerals.
Variable names must start with a letter (A-Z) and may be followed by letters
or digits (0-9). Examples of valid numerical variable names are

A A3 AB 25
Examples of invalid numerical variable names are
A+ 3A

The A+ contains an illegal character; the 3A does not begin with a letter.

String variables contain character information; numerical variables con-
tain numerical information. String variable names are formed by appending a
dollar sign ($). The maximum number of characters that may be included in
a character string is 255 characters. Examples of valid string variable names
are

A$ A9$ DC$
Examples of invalid string variable names are

A+$ The +is an illegal character.

8C$ The variable name cannot begin with a
character other than a letter.

XY The $ is missing; this is a legal
numerical variable name.

In Level I BASIC only two string variables are available. These are variables
A$ and BS$.

REMEMBER: The name of a string variable always ends with a §.

The procedure by which we specify the value of a variable is called assign-
ment. Assignment is indicated by the equal sign (=). To assign the value 1000
to the variable D, we use the instruction D=1000 or LET D=1000. The LET
is optional.

Type in D, the equal sign, and 1000. Then press ENTER. From this
point on, D has the value 1000. The value of D can subsequently be changed
through another assignment statement. To display the current value of the
variable D, we type in PRINT D and press ENTER.

10

ch. 2 [specifying information

COMMENT
LET D=1865 Assign D the value 1000.
FRINT [Request display of the value of D.
1888 The present value of D is 1000.

REMEMBER: The LET is optional; we will omit it.

When the computer encounters the assignment statement D=1000, it
places the value 1000 in a storage location in its memory and associates
this storage location with the variable name D. The assignment instruction
in itself does not cause the value of the variable D to be displayed. A sepa-
rate PRINT is needed. Then printing the value of D does not change its value
in storage.

COMMENTS
LET [De=z@ag The variable D is now 2000. Note
the assignment does not cause the
value of the variable to be dis-
played.
FRINT [
2008 The value of D is displayed.
FREIMT L
e s e] The value of D is still 2000.

Spaces (blanks) within statements such as between the PRINT and vari-
able D are optional. Spaces are generally included only for readability.

Variables are initially set to zero by the computer. So unless otherwise
specified, all variables have zero values to start with. In Level I BASIC, the
value of an undefined variable is unpredictable. For example, we have not as
yet assigned the variable R a value. So we expect the value of R to be zero.
The LET is optional, so we omit it.

COMMENTS
FRIMNTER R has not been assigned a value and
& is therefore zero; the space be-
R=@. @7 tween PRINT and R is optional.

The assignment statement does not
cause a display by the computer.

FREINT K
a7 R is now .07.
F=& R is assigned the value zero.
FRINT E
5] R is again zero.

Variable names may exceed two characters, but only the first two char-
acters are used by the computer. The variables NU and NUMBER are there-
fore one and the same. The computer does not recognize the letters beyond
the U. Also, variable names may not contain words used in the BASIC
language, such as ON, FOR, or NEXT. There are many such keywords com-
monly referred to as reserved words. A list of the BASIC reserved words is
given in Appendix 2.

11 sec. 2.4 [assignment

COMMENTS
MUMBER =1 Variable names more than two
FREINT HUMEER characters in length are permis-
A sible.
FRIMNT HU NU and NUMBER are the same
4 variables. Only the first two char-
acters are recognized.
MHid=18 NU is specified as 10.
FRIMT HUMEBER
1 Now NUMBER is also 10.
GOME=Y GONE is an illegal variable. It con-
oM ERROR tains the BASIC reserved word
on. 5

The assignment is not always just the usual equality. For example,

COMMENTS
FRIMNT A A has not been assigned a value.
e Like all undefined variables, it
starts out as zero.
A=1 A is assigned the value 1.
FREIMNT A
1 The old value of A (=0} has been
replaced by 1.
Re=FA+2 The value of A is replaced by its old
B value (=1) plus 2.

FEIMT
= Aisnow 3 (= 1 + 2).

We may think of the assignment as a replacement. Even though in arithmetic
A = A + 2 is not a valid relationship, in BASIC it is. We have in this example
introduced for the first time an arithmetic operation, the addition. In the
next section we discuss arithmetic operations in detail.

The assignment statement works similarly with strings.

COMMENTS
MH1i$="TOEY" The character string TOBY is as-
FRIMNT Mlf signed to the variable N1$.
TOEY
M2#="MARIOMN AND ERICT N2$ is the name of a string vari-
FRIMT Hz# able whose value is MARION
FIRRION AN ERIC AND ERIC.
Hl$=MHz#¥ Variable N1$ is assigned the value
FRIMT MHi# of variable N2§.
MARIOMN AMD ERIC The value of N1$ is no longer
FRINT Me# TOBY.
MARIOW AMD ERIC The value of N2$ remains un-

changed in the process.

C:> Example: Interchange Values of Variables

Two variables A and B have been assigned values (for example, A=10 and B = 20). Write a
sequence of instructions to interchange the values of A and B without simply stating
B=10and A =20.

12 ¢h. 2 [specifying information

COMMENTS
A=1& A and B are given values.
B2
FRIMT A
16 Ais 10.
FRIMT B
b 5] B is 20.
A=E Set A equal to B.
FEIMT A
=6 A is now 20 as desired.
E=H Set B equal to A.
FRINT E B is 20, but we want it to be 10;
28 this is because B = A sets B equal

to the current value of A (=20).

So we introduce a third variable, C:

COMMENTS

A=16 A is 10 to start with.
E=za B is 20 to start with,
=R Set C equal to A.
A=k Set A equal to B.
B==i Set B equal to C, which equals the
FRIMT A original value of A, that is, 10.

26 A is now 20 as desired.
FREIMNT E

1e B is now 10 as desired.

‘REMEMBER: When akvariable is assigned a new value, its old value is lost.

EXERCISES 1

In the following exercises, record the result you anticipate in the column Anticipated
Display. If the actual display differs from the anticipated display, record the result in the
column Display with an explanation. Refer to Appendix 1 for error messages.

1. Fill in the Anticipated Display, enter the instructions, record the results, and explain.

Instruction Anticipated Display Display

- FRINT = 1
. FRINT
FRINT -,
PRINT 15EZ
PRINT -ZSE-2
Cre=1 6

FRINT [

PRINT "L

. FRINT E

i. PRINT "D+ D L
j.|FRINT “RECL
k. P

e s o

5o

13 sec. 2.5 [arithmetic functions

2. Use the PRINT statement to display your age.

3. Use the PRINT statement to display your name.

4. Use two PRINT statements to display your name and home address.
5

. Enter the following instructions. If you anticipate an error, indicate the source of that
error.

Instruction Anticipated Display Display

FEINT MY HAKME
PRIWT “"HE =AIL, "I AM HAPFY""

jo S}

CTERRLFLL"

O 2o

6. Specify and then display:
a. A string variable that contains the letters of the alphabet without spaces between
the letters.
b. A string variable containing all the digits from 0 to 9.

7. a. Find the largest N for which 10N does not exceed the limit for a constant on your
computer. (HINT: In scientific notation, enter successively increasing numbers of
the form 1E2, 1E10, and so on.)

b. How does the computer indicate when a number is too big to be used? (This is
called overflow.)

c. Try entering successively smaller numbers, such as 1E-2, 1E-10, and so on. What
happens?

2.5 ARITHMETIC FUNCTIONS

Addition (+), subtraction (=), multiplication (*), division (/), and exponenti-
ation (1) are the five available arithmetic functions. (Level I BASIC does not
have exponentiation.) On the screen the symbol for exponentiation appears
properly as an arrow pointing up (). The printer, however, prints this sym-
bol as a square bracket ([).

COMMENTS
PRINT 1+z The instruction is entered.
=z The sum is displayed.
PRINT 1-2 Subtracting 2 from 1 yields -1.
-1
A=5
PRINT 2#%R The constant 9 is multiplied by the
45 variable A. The result is 45.
B=1&
PRINT B/H One variable is divided by the other.
2 10 divided by 5 is 2.
PRIMT SL2 Five squared is 25. On the printer,
25 exponentiation shows up as a
bracket ([).
PRINT 4[@ S The square root of 4 is 2; the ex-
2 ponent 0.5 is equivalent to the

square root.

14 ch. 2 [specifying information
The instruction PRINT 1+2 differs from PRINT “177+“2°:

PRINT “1i"+"2"
1z

Character strings are not added; they are concatenated (strung together).

PRINT nln+u2n+||3n
123

C:> Example: Compound Interest

Suppose you deposit $1000 in a savings account. What will be the interest paid and the
balance of your account after 1 year and after 10 years? Assume the money is com-
pounded once a year and earns an interest of 7%.

COMMENTS
I=1600%6, &7 Compute the interest paid the first
PRINT I year.
e The interest is $70.

E=16068+1 Balance at the end of the first year
is the interest earned added onto
the initial deposit.

FRINT E The balance at the end of the first

leve year is $1070.

E=1a80+1, @7 Combining the above steps yields

FRIMNT B the balance in one computation.

ilava Compute the balance after 10 years.

B=1ga6+1. 67018 The bracket indicates exponentia-

FRINT B tion.

1967, 15 After 10 vyears the balance is

FRINT BE-16800
SET. 45

$1967.15.

The difference between the final
balance and the initial deposit of
$1000 is the total interest paid
over 10 years.

In the above example we introduced the idea of more than one arithmetic
function appearing in a single instruction. In the computation B=1000+*1.07[10
we have a multiplication (*) and an exponentiation ([). The order in which
these arithmetic operations is performed is most important. In this case the
‘exponentiation is first, followed by the multiplication.

REMEMBER: On the screen the symbol for exponentiation is 1; on the printer and
in this book it is .

2.6 HIERARCHY OF ARITHMETIC OPERATIONS

Arithmetic operations are generally evaluated from left to right, keeping in
mind these rules:

1. Whatever is inside the innermost set of parentheses is always evalu-
ated first. The next innermost parentheses are evaluated next, and so on.

15

sec. 2.6 [hierarchy of arithmetic operations

2. The arithmetic functions have the following three levels of prece-
dence: exponentiations (raising to a power) before all others, then multipli-
cations and divisions, and finally additions and subtractions, which are
performed last.

3. Within each level the operations are performed from left to right.

The following examples demonstrate these rules (assume X = 1, Y = 2, and
Z = 3):

Expression Value Comments

X+Y-2Z 0 + and - have equal hierarchy, so compute
from left to right.

X+Y =27 7 Multiplication first followed by addition.

X*ZY 1.5 + and / have equal hierarchy, so compute
from left to right.

Zx(X+Y) 9 Parentheses are evaluated first, followed
by the multiplication.

Z]Y +Y/X 3.5 First Z/Y, then Y/X, then the
addition.

Zx(X/(Y + 7)) .6 The innermost parentheses are evaluated
first: Y + Z = 5. Next the outer paren-
theses are evaluated.
X/(Y+Z)=1/(2+3)=1/5=0.2. Finally
the multiplication is carried out:
3%0.2=0.6.

REMEMBER: In case of a tie in precedence, the sequence of operations is left to

right.

It is important to note that the presence of parentheses may or may not
affect the value of the expression. If the parentheses do not alter the value of
the expression, the parentheses are said to be redundant and are included for
clarity alone. For example,

Expression Value Comments
Z]Y +Y/X 3.5 As explained above.
(Z/Y) +(Y/X) 3.5 The parentheses are redundant; they only
help clarify the sequence.
Z/(Y +Y)/X .75 Now the parentheses affect the value. First

the () are evaluated (Y +Y) = 4; then
from left to right, Z/4/X = 3/4/1 =0.75/1
=0.75.

Another rule to remember is that arithmetic operations can follow one

16 ch. 2 [specifying information

another without being separated by parentheses:

COMMENTS
FRIMT S-¢=203 The parentheses can separate the
I two arithmetic operations.
FRINT S--2 The same result without the {).

C:> Example: Metric Conversion

Write a sequence of instructions to convert the height 5 feet 10 inches to inches and to

centimeters.
COMMENTS

F=3 5 feet.

I=16 10 inches.

IM=F*12+]1 Compute the inches: first the mul-
tiplication, and then the addition
is performed.

FRINT IM

e 5 feet 10 inches equals 70 inches.

CH={ F+12+1 %z 54 The () are evaluated first; then

FRIMT CH multiply by 2.54 to convert inches

177. & to centimeters.

REMEMBER: (1) Every expression must contain the same number of right and left
parentheses. (2) The product AB must be written as A=B.

2.7 VARIABLE TYPES

We have distinguished between variables that store numerical values and
variables that store character information. Numerical values can be stored in
integer, single-precision and double-precision modes. These three different
types of variables store numbers with different degrees of precision. Single-
precision variables are accurate to 6 significant figures; double-precision
variables are accurate to 16 significant figures. Integer variables store only
whole numbers in the range -32768 to +32767. Each type of variable has a
corresponding character that specifies the type. String variables are declared
by means of a §, for example, AB$. The maximum number of characters
that can be stored in a string variable is 255. Single- and double-precision
variables are declared by means of a ! and a #, respectively, for example, AB!
and AB#. Integer variables are declared with the % symbol, for example,
AB%. The variable types are summarized in Table 2.1. The limits on single-
precision numeric constants are -1.701411E+38 to +1.701411+E38; double-
precision numbers must be in the range -1.701411834544556D+38 to
+1.701411834544556D+38. The D represents the exponent in double-
precision scientific notation.

17

sec. 2.7 [variable types

TABLE 2.1 Declared Variables

Variable Identification Limits on
Type Character Magnitude Examples

Single ! -1.701411E+38 to AA!'=1.23456E+38; A! = -1.23456;
Precision +1.701411E+38 inclusive six digits displayed

Double # ~1.701411834544556D+38 to B#=1.234567890123456D+38;
Precision +1.701411834544556D+38 16 digits displayed

Integer % -32768 to +32767 inclusive 1% = 32767; ACE% = -32000

String $ Up to 255 characters TEXTS$ = “TO BE OR NOT TO BE”

REMEMBER: When a variable is not declared as an integer, a string, or single or double

precision, it is automatically given single precision.

The following examples illustrate the variable types:

AE=1. 23454
FREINT AB

1. 23458
AE=1, 2Z45&7
FRIMT ABE

1. 2Z457

AE=1224567
FRINT RE
1. ZZ457VE+BS

FE ! =1 ZE456E7
FRINT AE!
1. 2457

RE!'=123245e7
FRIMT AEB!
1. 2E45VE+De

RE#=1 23
FRINT AE
1. 22456

FRINT HE‘#
1. 2E2458e7e3alaZ457h+1e

ABEx=12Z4567
FRINT ABX
0V ERROR

COMMENTS

AB is a seven-digit single-precision
number.

Six digits are displayed. The sixth
digit is rounded off.

The sixth digit is rounded up.
AB is a seven-digit number.

Six digits are displayed,
and in scientific notation.

rounded,

AB is a ten-digit number.
Leading zeros are not significant.

Declare AB! as a single-precision
variable.

Rounded and six significant figures
are displayed.

Declare AB! as asingle-precision var-
iable. E indicates single-precision
scientific notation; six significant
figures are displayed in scientific
notation.

Declare AB# as a double-precision
variable.

The sixteenth digit is rounded.

A 17-digit number. Sixteen signifi-
cant figures are displayed. The D
indicates double-precision scien-
tific notation.

Declare AB% as an integer variable.
Overflow error occurs since AB%
exceeds 32767.

18 ch. 2 / specifying information

AE$="12245678
FRIMT FE
13EASETEINLIT4TET

COMMENTS

Declare AB$ as a string variable.
AB$ contains 17 characters.
All 17 characters are displayed.

REMEMBER: The variables AB, AB$, AB!, AB#, and AB% are all different variables.

C:> Example: Single Versus Double Precision

Multiply in both single and double precision 14593 by 846 and 2220247 by 8.

AR=1452Z+045
FRINT A#

12345ETE

Fi=1450Z w848
FEIMT H
1. 2E45TVE+ET

A=222824 7 +8
FRIMT A
1. PYeZE+ay

FERIMNT RA#
177elsve

COMMENTS

A# is a double-precision variable.
The multiplication is in double
precision with all eight digits dis-
played.

Single-precision multiplication; an-
swer rounded to six significant
figures.

Single precision.

Due to roundoff, only five digits
are displayed.

Double precision.

An American Bicentennial date.

l::> Example: A Divisibility Check

Integer variables only retain the integer portion of a number and ignore the decimal
fraction. Integer arithmetic therefore differs from conventional arithmetic in that the

result is always an integer.

COMMENTS
A=Y
E=2
AE=A"E
FRIMNT HE
HE AB% is an integer variable.
Fr Only the integer portion of the

fraction A/B is retained.

Variable B divides into variable A evenly if AB equals AB%. In the above example AB
does not equal AB%, so 7 is not divisible by 2.

19 exercises 2

COMMENTS
A=E
B=2
HE=RE
RERN=H"E
FFIPT HE
FF IMT AEX AB equals AB%. So A is divisible by

3 B; 6 is divisible by 2.

C:> Example: Rounding to the Nearest Penny

COMMENTS

Le=i D equals $1.236.
C=18 A4 o Converts dollars to cents and adds
FRIMT 0.5 cents.

124, 1 100 X 1.236 + 0.5 = 123.6 + 0.5

=124.1.

D=l Drop fractional cents; truncate C.
FEINMT ChoLloo Convert to dollars and cents; 124/

1. 24 100 = 1.24.

$1.236 is rounded to $1.24.

In this example we take advantage of integer arithmetic. We must remember that C% can-
not exceed 32767. In the event that it does, a different approach must be taken in
rounding. It involves the integer INT function, which is discussed in a later chapter. Does
the above method properly round down? Try D = 1.234 for which the expected result is
1.23.

EXERCISES 2

1. Evaluate each of the following expressions; be sure you understand how each result is
obtained. Refer to Appendix 1 for explanations of error messages.

Instruction Anticipated Display Display
4. PRINT Z+2-5
b. PRINT Z+2#S
PRINT 3+2-5
PRINT (Z+23%3
PRINT 2«5-2
FRINT 1+3#43-2
FRINT 2%{9-22/018-3)
PRINT 24(9-23A{10-53420

A=3, B=5, C=18., A$="R"., B$="B", C#="C". Db=2E-10, A#=3, _
D#=z2E-10

o

— T gath @

FRINT R/B

PRINT (C-Br=#A
FRINT {B+1x#C- B
FRIMT A-B#*C
FRINT CLH

FRINT -CLAH
FRINT <-C3[RA
FRINT 4LAL2
PRINT A$+Bs+C¥
A==AE

ch. 2 [specifying information

Instruction Anticipated Display Display

FRINT A%
PRINT D
PRINT Di#
PRINT A+D
FRINT A#+D#
7R
FH=32757
FRINT Ax+1
AN=32768
PRINT A
Ax=8. 81
PRINT AX
Br=-8. 1
PRINT Bx

j. FRINT 1Exo
FRINT E38
PRINT 1.1E38
FRINT 1/%!
PRINT 1/%#
FRINT 1/3!+1/34
PRINT Z+1/3#

. Multiply in single and double precision: 4869684.5 times 8.

. Is LET A + B = C a valid BASIC statement? Why or why not? Once you have
answered the question, enter the statement into the computer.

. Write a minimal (as few characters as possible) BASIC expression for each of the
following:

Conventional Notation BASIC Notation
A+B-C
.CXA-Y)
.(AXB)-2
LAX (BXO XA

“c-Bp
3

(DCL()O"P’

—

AXB-CX(A-B)_\y ¢
3

. Convert the following from BASIC notation to conventional notation:

we—-2

Skl Ty
b R

Wk ekl

Rk (20 =Y

opo T

. Let AB = 5and AC = 6. Print the sum, the difference, the product, and the quotient
of AB and AC.

. Print the square, the cube, the square root and the cube root of 2. (Note: the cube
root corresponds to an exponent of % or 0.333333.)

. What is the displayed value? (LET A = 5.)

PRINT A9
PRINT A+g
FRINT ACH
FRINT 9+6
FRIMT &-@

o800 o

21

exercises 2

9.
10.

11.

12.

13.

14.

15.

16.

17.

The grades on your last five tests were 80, 90,95, 63, and 75. Find their average.

Mr. Jones joined the programmer’s union and now earns $9.50 per hour for a 40-
hour week and overtime at a rate of 1%, times his normal rate ($14.25) for any hours
worked beyond 40 hours. Compute the weekly total gross pay and the overtime gross
pay (if any) for the following hours worked.

a. 40 hours

b. 37 hours

c. 47 hours

Hero’s formula for the area of a triangle is

area = /S X (S-A)X(S-B)X (S-0C)

where A, B, and C are the lengths of the three sides of the triangle and S is one-half
of the perimeter; give BASIC expressions to evaluate Hero’s formula, assuming

a. The lengths of the sides are 3,4, and 5.

b. The lengths of the sides are stored in the variables S1, S2, and S3.

Given a time duration in T hours and M minutes, write a BASIC expression to ex-
press this in seconds. Print your answer for 1 hour and 30 minutes, and then also for
0 hours and 1 minute.

The following expression converts degrees Celsius (C) to degrees Fahrenheit (F):
F=9%C+ 32

Print the degrees Fahrenheit equivalent to -10, 0, 10, and 20 degrees Celsius.

Compute the interest on $24 compounded annually at 3% since 1627, the year Man-
hattan was bought for $24 from the Indians. The bank balance at the end of V years
is P X (1 + D)V, where [represents the annual interest rate (as a decimal; for exam-
ple, 7% is 0.07) and P the initial bank deposit,

a. How long does it take to double your money in the bank? Assume annual interest
rates of 5%, 7%, and 9% and an initial balance of $1000.

b. Does the time to double your money change when the initial deposit is varied
from $1000 to $5000?

The amount of the monthly payment necessary to pay off a home mortgage is given
(in conventional notation) by

(1 +ny

P A><I><(1_|_I)N_1
where A is the amount of the mortgage and I is the monthly interest rate (as a deci-
mal). For example, if the annual interest rate is 7%, the monthly interest rate in
decimal form is 0.07/12. N is the number of monthly payments. Give a BASIC ex-
pression that is equivalent to this formula. Assuming A has a value of $30,000,
evaluate and print this expression for

a. A lifetime of 20 years (480 months) at (yearly) interest rates of 8% and 10%.

b. An interest rate of 10% and a lifetime of the mortgage of 20 and 30 years.

As N gets larger, what value does the following expression take on:

IN
1+ =2
N

Let N =10, 100, and 1000.

22

ch. 2 [specifying information

18. The positions of points on a graph are given in terms of their X (horizontal) and Y
(vertical) coordinates. Suppose the coordinates of the first point are specified as X1,
Y1, and the coordinates of the second are X2, Y2.

a. Give a BASIC expression to print the slope of a line passing between these two
points. The slope of the line is given as the ratio of the difference in their Y coor-
dinates to the difference of their X coordinates:

Y2 - Y1

slope = ————
P X2 - X1

b. Give an expression to print the distance between the two points. The distance is
given by
[(X1 - X2)? + (Y1 - Y2)*]2

Use these expressions to compute the slope and distance for the following three sets
of points:

(1,2) and (4,8)

(3,4) and (5,4)

(-1,2) and (-1, 6)

chaptenSlCUmplﬂeﬁ PROERIMS

In the last chapter the compound interest example demonstrated the PRINT
instruction along with the arithmetic operations. We computed the annual
interest and the end-of-year balance of our savings account. We also deter-
mined the balance after 10 years. This set of instructions is quite useful, and
we may wish to use it several times. Therefore, it may be desirable to save
this set of instructions rather than to reenter it every time. This can be done
by writing a computer program. The computer program will make it possible
to determine the balance in the savings account for different interest rates,
different initial deposits, and different durations, without having to retype
all the instructions for every computation. To do this, we combine the
instructions into a computer program.

3.1 WRITING A PROGRAM

To illustrate how to write a program, we will copy from the last chapter
the instructions to compute the interest earned and the end-of-year balance
for a given initial deposit and a specific interest rate. We store the Deposit
in variable D and the interest Rate (in decimal form) in R.

COMMENTS
D=1 G5 Initial deposit specified.
F=@ &7 Interest rate specified in decimal
form.
I=[ekR Compute the interest earned.
FRIMT 1 Print the interest earned.
TR The interest is 70.
FRIMT [+ Compute and print the end-of-year
18va balance.

In performing these calculations, the computer is in the command mode.
Whenever the >— appears on the screen, the computer is in the command
mode.

We want to show how to write the above instructions in the form of a
computer program so that they can be saved and do not have to be reen-
tered every time we wish to make these computations. To enter a program,
we type in a line number followed by the instruction.

23

24

ch. 3 | computer programs

COMMENTS
8 I=DsR Line number 30 calculates the
interest.
48 FRINT 1 Display the interest.
S8 FRINT D+1 Calculate and display the balance.
a8 EMD Last line of the program.

This program consists of four statements. Each statement has a line number;
each statement may be up to 255 characters in length. The END statement is
the last statement. We notice that, even though we are in the command
mode, no results are displayed as each statement is entered. We distinguish
in the command mode between the immediate mode and the programming
mode. In the immediate mode, statements have no line numbers; in the
programming mode they do.

To run the program, we assign a value to the variables D and R. We may
give them any values we want. We then execute the program by typing RUN
and then pressing the ENTER key. The RUN command places us in the
execution mode. Computer programs are executed in the execution mode.

COMMENTS
=188 D and R are specified in the imme-
F=g, ay diate mode.
Rk Execution of program requested.

o

Qops, the interest is zero.
The balance is also zero.

=
[ix]

What happened to our very first program? The RUN command caused execu-
tion of the program stored in memory. But at the same time the RUN also
executes a CLEAR, a command that resets all the numeric variables to zero
and all string variables to null. So in our case the variables D and R are reset
to zero by the RUN command. To avoid this complication, we rewrite the
program by adding to it the following two lines:

i

RN
()
fan)

Do)

18

(5]
1';"

(I

o
R

-

)

This is a form of editing, which will be discussed in more detail later. We
now execute the program.

COMMENTS

RLIM Request execution of the program.
T The interest is displayed.
The total balance is displayed.

AT

Y

7L

,.
!

1

The results are as expected. After the execution of the program has been
completed, the READY reappears. We are again in the command mode.

COMMENTS
FRIMT D1 Prints the value of D and | in the
1e8s Fa immediate mode.
Their old values are still in memory.
18 D=10886 Enter a new line 10 in the program-

ming mode.

25

sec. 3.1 [writing a program

R Request execution; switch from
T command mode to execution
1B7ER mode. Interest is now 700. Bal-

ance is now 10700.

The semicolon in the PRINT allows us to display the values of several vari-
ables on the same line. All variables that are to be printed in this manner
must be separated by semicolons. The values of D, R, |, and B are all in
memory at this point and can be displayed in the immediate mode.

COMMENTS
FRIMT [GE: 1:D+1 The semicolons must separate the
15T O = W a1 < T I 5 e [variables.

REMEMBER: (1) Whenever the >» - appears, we are in the command mode.

(2) In the command mode we distinguish between the programming and
immediate modes.

(3) In the immediate mode, statements have no line numbers.
(4) In the programming mode, statements must have line numbers; line
numbers allowed are 0 to 65529 inclusive.

(5) The RUN statement switches from the command mode to the exe-
cution mode.

Line numbers must be integers (whole numbers) between 0 and 65529.
Each line in the program must have a number, and the execution of the pro-
gram proceeds in ascending order of line numbers. The line numbers of suc-
cessive instructions can be spaced. As a matter of fact, a spacing of 10 is
recommended so that additional instructions can be sandwiched in at a later
time. What is the spacing between line numbers in the savings account pro-
gram we wrote? To take another look at the program, we type in LIST and
ENTER. A listing of the program appears on the screen.

COMMENTS
LI=T Request a listing of the program.
18 [=188660 Successive line numbers differ by
28 R=, 87 10 in this particular program.
ZE I=[ekk
48 FRINT I
58 FRIMT D+]1
S EMD The END is optional and may be
omitted.

The LIST command instructs the computer to display the lines of the pro-
gram that are in memory. The various versions of the LIST command are

COMMAND COMMENTS

Entire program is displayed.

Line 20 of the program is displayed.

All lines as of line 20 are displayed.

All lines up to and including line 20
are displayed.

26

ch. 3 [computer programs

COMMENTS
LIZT ze-2a All lines 20 through 80 inclusive are
displayed.
LIZT. The line just entered or edited is dis-
played.

Since the END statement is optional, let us delete the END in line 60 of
the above program. To delete line 60, we type in 60 and press ENTER.

COMMENTS
6t and press ENTER Delete line 60 of the program.
LIZT & Request a display of line 60.
FERLDY Line 60 no longer exists, so just the
=~ READY and the cursor appear.
S EMD The END statement is reinserted.
DELETE &8 Another way to delete a line: type
DELETE and the line number.

LIST &8 Line 60 has again been deleted.
FEERLY
~ -
FLIM Execute the above program without

TR the END statement.

18788 The answers are the same as before.

The DELETE command erases program lines from memory. It is possible
to delete individual lines or a sequence of lines.

COMMAND COMMENTS

DELETE &i Delete line 60.

LELETE —&@ Delete all program lines up to and
including line 60.

CELETE 4@-ai Delete all lines starting with line 40
and including line 60.

DELETE. Delete the line just entered.

A convenient command to use during programming is the AUTO com-
mand. During program entry, this command AUTOmatically displays the
next line number. All you have to do is enter the actual BASIC statement.
This line-numbering function is invoked by typing in AUTO. The numbering
begins with line 10 and continues thereafter in increments of 10. Lines 20
and 30 then follow. The various versions of the AUTO command are

COMMAND SEQUENCE OF LINE NUMBERS

AUTO 10, 20, 30,. ..
AUTD S 50, 60, 70, . ..
ALTO 5@, 5 50, 55, 60, ...

The starting line number and the increment can be specified. To stop the
automatic line-numbering function, press the BREAK key. The READY sign
appears. At this point, additional line numbers may be entered or the pro-
gram may be run. In the event that AUTO displays a line number already in
use, an asterisk appears alongside the number. Press the BREAK key if you
do not wish to reprogram that line.

27 sec. 3.1 [writing a program

To erase the program from memory, we type in NEW. This command
clears the screen, displays READY, and deletes the entire current program
from memory. In the process it resets all numeric variables to zero and string
variables to null. Then if we request execution by entering RUN, no results
are displayed:

COMMENTS
RUHN Request execution.
Taa The interest earned.
i1a7aa The end-of-year balance.
NEW Erase the program in memory.
RUN Execution requested.

No results; the program is gone.
FRINT DiFRs I D+I The values of the variables have
B @8 @ @ been set to zero by the RUN com-
mand.

REMEMBER: Before typing in a program, enter NEW to delete the program already in
memory. :

The variable MEM contains the number of unused bytes of memory. This
variable can be used in the immediate and programming modes.

COMMENTS
MNEW Erase memory.
FPRINT MEHM
1557 The number of available bytes is
15572,
A=1 Specify A.
FPRINT MEM Now 15565 bytes remain; it took 7
15565 bytes to specify A = 1.

The total number of available bytes depends on the computer’s memory. A
16K computer has 15572 bytes available; a 4K computer has 3284 bytes.

C:> Example: Walking Kitty Corner

According to the Pythagorean theorem, the length C of the hypotenuse of a right triangle
is given by the expression

C =A% + B2 A

where A and B are the lengths of the other two sides. Write a program to compute and
PRINT the hypotenuse C given the sides A and B. Also compute and print the difference
between the sum of the sides A + B and the hypotenuse C. This difference represents the
distance saved in walking kitty corner across an intersection. A program to perform these
calculations is shown below. Remember to type in NEW before entering the program.

28 ch. 3 [computer programs

COMMENTS
12 A=3 Specify A as 3.
14 B=4 Specify B as 4.
1€ C=dAl2+BL 22 8. 5 C is computed from A and B; tak-
18 PRINT C ing the square root corresponds to
28 PRINT R+E-C raising to the exponent 0.5.
22 END Line numbers are picked freely but
in ascending order.
RUMN Execution is requested.
5 The hypotenuse is 5 and the differ-
2 ence(A +B)-Cis2;(4+3-56
= 2).

In this program we first specify A and B and then compute C. Once C is computed,
the results are printed in lines 18 and 20. In order to make another computation with
different numbers, we must change the values of A and B. New values are assigned to A
and B by changing lines 12 and 14 in the program.

COMMENTS
12 A=1z2 Change lines 12 and 14.
14 B=35
RUHN Now execute with a different A and
B.
13 C =13.
4 A+B-C=12+5-13 = 4,

REMEMBER: In memory the statements of a program are stored in line-number order.
The sequence in which the lines are typed is not important.

3.2 PROGRAM CLARITY, DISPLAYING MESSAGES AND COMMENTS

It is important that a program be written in a way that is easily understood
by the reader. A good program is one that proceeds smoothly and logically
from beginning to end. A good program therefore requires good planning.

Another factor influencing the readability of a program is the complex-
ity of the BASIC expressions that are used. Because of the large number of
built-in functions that are available and the ability to chain expressions
together (we will see that later), some amazing calculations can be accom-
plished in one line of code. The argument that such expressions execute
more rapidly is not really relevant if the milliseconds of saved computer time
are gained at the expense of minutes or hours of the programmer’s and
reader’s time.

Program clarity is also enhanced by the appropriate choice of variable
names and the use of explanatory comments within the program. Comments
are indicated by REM. They are nonexecutable statements that merely
improve the readability of the program through explanatory comments.

Another aspect of clarity deals with the output of the results. It is often
useful to display messages along with the numerical results of a calculation.
It helps us to recall what the results mean. We can display messages by dis-

29

LIS

i@ -

12
14
18
17
18

-y
Lo

RN

exercises 3

playing a character string as a step in our program or on the same line by
placing a semicolon between the character string and the variable. For ex-
ample, in the kitty corner program we now enter into the computer

17 PRINT "THE HYFOTEWUZE IS“
28 FRINT"DIFFEREMCE IM LEMNGTHS IS": A+E-C

Since the rest of the program is still in the computer, line 17 is added to it,

and the new line 20 replaces the old version of line 20. We also add a com-

ment REMinding us that variables A and B are the legs of the right triangle.
i3 REM R&E ARE THE LEGS OF A RT. TRIANGLE

Like all other statements, a REM statement may be up to 255 characters
in length. The abbreviation for REM is the apostrophe.

18 © A&E ARE THE LEGS OF A RT. TRIAMGLE
This version of line 10 is identical to the above. For clarity we do not use the

abbreviated form of REM.
We now list the program and execute it.

COMMENTS
T Request a listing of the program.
A&E ARE THE LEGS OF A RT. TRIANGLE The reminder comment.
A=1z
E=3
C= AL 2+BL 200 B. 5 The bracket means exponentiation.
FRIMT "THE HYPOTERUSE IS® Line 17 was properly inserted.
FRINT C
FRINT"DIFFERENCE IN LENGTHS IS"; A+B-C The new version of line 20 is now

EHD

part of the program.

Execution is requested.

THE HYFOTENUSE IS

13

CDIFFEREMCE IM LENGTHS IS 4 The difference 12 + 5 - 13 = 4.

EXERCISES 3

The character strings and numerical values are printed in one case on separate
lines and in the other case on the same line. Note the blank space between
the word IS and the number 4. For a negative result the minus sign takes up
this space.

REMEMBER: REM statements make a program easier to follow. Character informa-
tion with PRINT statements makes the output results self-explanatory. ~

1. Give the display you expect from executing the following examples. Check your re-
sults by entering them in the immediate mode. Watch out for the positions of the
blanks in the expressions and their displays.

30 ch. 3 [computer programs

Instruction Anticipated Display Display
a. FRINT 5
b. PRINT S+&
c. PRIMT S &
d. FRINT “"FIYE"; &
e. FRIMNT "FIWE": "SIx"
f. FRINT "FIVE": —-&
g. FRINT "FIWE '; ®
h. FRINT "1 2 I "; g
i d=12

FRINT "H DOZEM IS5 "X

j. FRIMT "THO DOZEN IS" 2%%
k. ¥=8

L PRINT it

m., FRIMNT "kE="iHZ "Y=" 4

n. PRINT MEM

0. HEM

p. FRINT MEM

18 FRINT S “THIS IS A TEST

FUM

2. Write the proper BASIC expressions to produce the following output. Use the vari-
ables A =1, B = 10, and C = 100 to produce numeric output. (For example, the
111 in part c is obtained by displaying A + B + C.)

MY COMFUTER LIKES ME
166 YERRS RGO

111 YERRZS RGO

1 FLUS 48 EQUALS 11
HE HAZ -1& OLLARS

o oo o

3. The variables M, D, and Y are used to store today’s date. Write the statements that
will express the date as --/--/--. The date June 11, 1984, will then appear as
6/11/84. Repeat the process with variables A$, B$, and Y$.

4. Specify an opening bank balance. Compute and display the interest for one day, one
week, one month, three months, half a year, and one year. Assume an annual interest
rate of 8%. Change the interest rate to 12% and repeat the computations.

5. What output will the following programs produce?

a. 28 FRINT "A BREAE TODAY" b. 18 AE="BHSEEARLL "
18 PRINT "vOU DESERVE" a 28 BE="HOT [OG "
28 FRINT "AT MCLONALD S I8 CH="AFFLE FIE"
48 FRINT A$+E$F+C#$ b
28 FRINT"AND CHEVROLET™
C. 16 A=¢
28 LET B=1

38 PRINT A" OF“iE: " IS
48 7 BS20 " A DOZEM OF THE OTHER™

Note: Did you type in NEW before entering each program?
6. Write programs that will produce the following displays:
a.IM FREMCH RED I5 ROUGE b. THE ZUM OF % AMD ¥ IS: S

IM GERMAM IT IS ROT THE FROGUCT OF X AMD V¥ iE-: &
Note: In this program let X and Y equal 2
and 3, respectively.

4“You Deserve a Break Today®” and “McDonald’s®” are registered trademarks owned by Mc-
Donald’s Corporation and are reprinted only by written permission.

bReprin’ced by permission of General Motors Corporation.

31

sec. 3.3 | keyboard response: input

7.

10.

1.

12.

13.

Write and run a program that uses variables A, B, and C to display Dif A = 2,B = 3,
C=4,and D =A*B - C.

. Write a program to put in two numbers and output their quotient. What if either one
of the two numbers is zero?

. Write a program to put in three numbers and display their average.
Write a program to compute the volume of a cube of side S. The program should
yield output in the following forms. (The volume is the side cubed. Use S = 10, and
subsequently S = 20.)
a. THE VOLUME IS
b. THE YOLUME 15 #———-
¢. THE SIDE IS#——
d. THE SIDE IS #--

THE VOLLIME IS#———-—
The * stands for a space (blank), and the dashes are to be filled in by the values of
the variables.
Modify the program of the previous exercise to compute and display the surface area
of the cube in addition to its volume. The surface area equals six times the area of
each face. The area of each face is S*S. Use S = 15. The output should be
THE LEMGTH OF ERCH SIDE IS #—-
THE WOLUME IS sk————%RAND THE SURFACE AREA IS#————

The * stands for a space (blank).
Write a program to produce the following picture of a tree.
Investigate how much memory is taken up by each of the following instructions:
a. A=l
b. AX=1
c. R#=1
d. A'=1
e. RAE="1"
f. PRINT 1
g. 18 A=1

3.3 KEYBOARD RESPONSE: INPUT

In all our programs so far we emphasized the need for specifying information
prior to execution. In the case of the program kitty corner we specified the
sides of the triangle in lines 12 and 14 of the program; in the case of the
compound interest program we specified the deposit and the interest rate. A
more convenient way of entering this information is to do so during the
actual execution. This is accomplished with the INPUT statement. When the
INPUT statement is encountered during execution, the computer stops to
let the user enter the necessary information via the keyboard. The INPUT
statement can call for several numeric or string variables at once. The items

32 ch. 3 [computer programs

in the list must be separated by commas. We now incorporate the input
statement into the compound interest program, which we presented earlier.
Remember to type in NEW before entering the program.

COMMENTS

18 REM COMPOUND IMTEREST Just a REMinder.
15 FRINT "EMTER THE IWNTEREST RATE. FOR EX. B @7" Tells you what to enter.
28 INFUT R
2% PRIMT "ENTER IMITIAL DEFOSIT & MO, OF YEARS :?:EF'.1

BY A COMMA"
E@E OIMPUT Do M Enter two items.
5 B=D#cl+RILN Bracket is exponentiation.
48 FRINT "THE BALAMNCE AFTER": M: "YEARS 12 £ B Output with appropriate messages.
43 PRINT “THE TOTHL IMTEREST FRID I $':B-D
S8 EMD
UM Request execution.
ENTER THE IMTEREZT FEATE FOR EX. & &7
A, ér The ? indicates input expected.
EMTER IMITIAL DEFOSIT & MO OF YEARS SEF. EBY A COMMA Type 0.07 and press ENTER.
s 17 15 T You enter 1000, 1
THE ERLANCE AFTEE 1 YEARS 1% £ 4670
THE TOTAL IMTEREZT FRID IS # 7@
RUM Request another execution.
EMTER THE IMTEREZT RATE FUOR EX. & @7
Toa av You enter 0.07
EMTER IMITIAL DEFOSIT & MO OF YERRS SEF. BY A COMMA
T oAeea. 16 The deposit is $1000 for 10 years.

THE BALAHCE AFTER 18 YERRS IS & 19G7. 15
THE TOTAL INTEREST PRID IS % SBETF. 15

REMEMBER: The INPUT statement is an excellent means for data entry during exe-
cution. It makes the program general in use.

C:> Example: An Arithmetic Trick

The computer asks you to think of a three-digit triple number (such as 222, 666, 888,
and so on). You then “tell” the computer the total of the three digits (18 for 666). The
computer will then reveal your original number.

18 CLs

28 INFUT “"HI. WHAT IS YOUR HNAME": N¥

ZE FRINT "O0E ":M$: " I HAVE AM RRITHMETIC TRICK FOR You“
48 PRIMT "THIME OF A THREE-LIG1IT TRIFLE MHUMBER"

S8 FRINT "TYFE IM THE UM OF ITS DIGITS"

S8 INFLUT S

TA FRIMT M$: ", YOUR MUMBER MAS " S7wg; vin

=6 EMD

'In order to keep the program and comments separate, line 25 of the above program has been
split. The computer actually displays it on one line. Similarly, lines of programs are split elsewhere in
the book.

33 sec. 3.4 | editing computer programs

FLIM

HI. WHAT IZ YOUR NAMET? ERILC

Ok ERIC I HAYE AN ARITHMETIC TRICE FOR YOU
THIME OF A THREE-DIGIT TRIFLE MNUMEBER

TYFE IW THE SuM OF IT2 2 DIGITS

i R

ERIC. wOUR MUMBER MRS cee !

The CLS command is introduced in line 10. CLS clears the screen. It is a good idea to
start programs with the CLS command since it removes from the screen during execution
all unnecessary clutter.

The above program illustrates the use of INPUT in conjunction with numeric and
string variables. As input, a string may be entered with or without quotes around it. How-
ever, if the string contains a comma, a leading blank, or a colon, then the quotes are
required.

A new form of the INPUT statement is shown in line 20. This statement is equivalent
to the two statements:

26 FPRIMT "HI. WHAT IS YOUR MAMER"
25 INFUT ME

Upon execution of the program, the message Hl, WHAT IS YOUR NAME is displayed on
the screen along with a question mark. The computer adds the question mark to denote
INPUT. It is therefore recommended that the message be phrased in such a way that it
forms a question. Once the message appears on the screen, the user enters a value for the

variable and presses ENTER. A semicolon must separate the message from the variable in
the INPUT statement.

REMEMBER: You cannot input a string into a numeric variable, or vice versa. If you

do, the computer will respond by displaying ?REDO. It requests that all data for the
particular INPUT statement be reentered.

3.4 EDITING COMPUTER PROGRAMS

In the process of writing computer programs we frequently make errors that
need to be corrected before the program will operate properly. If the error is
detected before the ENTER key has been pressed, the < key can be used to
backspace the cursor and delete one character at a time. The shift < key is
used to delete an entire line. There are other ways of correcting the code if
an error is detected after the ENTER key has been pressed.

Suppose the following program has been written to assign the values 5
and 10 to the variables X and Y, and then to compute and print their ratio.

COMMENTS
LIST Request a listing.
18 Y=5
28 =16

@ PRINT "THE RATTIO OF X AMD Y IS =Y RATTIO is misspelled.

34

ch. 3 [computer programs
We execute the program:

COMMENTS

FLIM
THE RATTIO OF % AND Y 12 @ RATTIO needs editing.

This result is unexpected; it is incorrect. We also notice that the word
RATTIO has a typographical mistake. So the program needs editing. We
need to fix line 10 where the Y is to be replaced by X, and in line 30 the
word RATTIO is misspelled. (Note: in Level I BASIC we would need to
completely retype lines 10 and 30.)

Since line 10 is so short it makes good sense to retype the line. As for
line 30, removing a letter T without retyping the entire line is helpful. In
order to demonstrate editing, we now edit both lines 10 and 30.

First we switch from the command mode into the edit mode by typing
in the EDIT command along with the line number to be edited. Then press
ENTER.

COMMENTS
EDIT 16 and press ENTER Switch from the command mode
1@ into edit mode.

The computer’s response; the _ in-
dicates the cursor’s position.

Now we press L (list line) without ENTER; the computer responds by listing
line 10 as it is presently stored in the computer followed by 10_.

COMMENTS
16 ¥=35 We now wish to replace the Y in
16 _ line 10 by an X.

Type C to indicate a character is to
be changed followed by X.

At this point we have replaced the Y by X in line 10. The remainder of line
10 is fine. Pressing the space bar moves the cursor over to the right, one
space at a time, and displays the remainder of the line.

COMMENTS

18 #=5 _ Pressing the space bar twice dis-
plays the = 5,

Now press ENTER to record the change.

While editing, we do not press ENTER. Once ENTER is pressed the com-
puter records the changes made in the current line and returns you from the
edit mode to the command mode. Additional lines can then be edited or the
program can be run.

We continue to edit our program. Next we will remove the extra T in
line 30:

COMMENTS

EDIT 2@ and press ENTER Request edit of line 30.
36 _ Computer’s response to the request.

35 sec. 3.4 [editing computer programs

TABLE 3.1 Editing procedures

Purpose

Procedure

When in command mode

Delete an entire line
Replace an entire line

N

When in edit mode

Switch to command mode and record
changes

Save changes and switch to command
mode

Cancel changes and switch to command
mode

Cancel changes and switch cursor to
start of line

Display characters one at a time

Display entire line
Display rest of line
Delete rest of line

Delete characters within a line

Delete all characters from current
cursor position up to nth occurrence
of character ¢ counting from present
cursor position

Change n characters within a line

Insert characters within line

Move cursor 7 spaces to the left

Move cursor to nth occurrence of char-
acter ¢, counting from current
position

Move cursor n spaces to the right

Switch to edit mode to edit line number

Type the line number and then ENTER

Type the new version of the line and
then ENTER

Type EDIT N and ENTER

Type ENTER
Type E

Type Q
Type A

Type space bar; cursor moves to the
right

Type L; can now edit the line

Type X; can now add to line

Type H; can now add to line; to stop but
remain in edit mode type SHIFT?

Type nD to delete n characters starting
at the current cursor position; or type I
and press < key to delete one charac-
ter at a time; to escape I mode but
remain in edit mode, type SHIFT?

Type nKc;if no value is specified for n,
then all characters will be deleted up
to but not including the first occur-
rence of character ¢

Type nC to change n characters starting
at the current cursor position

Type I; to stop but remain in edit mode,
type SHIFT?

Type n<

Type nSc

Type n space bar

Press L to display the entire line:

2@ PRINT "THE RATTIO OF X AND Y IS5": kY

39 _

COMMENTS

Computer displays line 30 and sets
up for its change.

Now press the space bar to display the line one character at a time up to the

first T in RATTIO.

ch. 3 [computer programs

TABLE 3.2 Editing examples

BASIC Statement Correction Editing Procedure
18 PRINT A: B B#G Change B’s to G’s Type EDIT 10 and ENTER.
and delete the third Press space bar eight times

semicolon until the first semicolon

appears. Press C followed by
G to change the first B to a
G. Press the space bar once
to display the second semi-
colon. Press D to delete the
third semicolon. Then press
C and G. Press ENTER to
escape the edit mode and
return to the command
mode.

28 PRINT L;r; ~N Delete the minus Type EDIT 20 and ENTER.
Press X to display the entire
line. Press< twice to erase
-N. Type N and press
ENTER.

38 PRINT R:Bs C Change the B to B52 Type EDIT 30 and ENTER.
Press 2S to search for the
second semicolon. Then
type 2152 to insert the two
digits. Press ENTER.

4@ INPUT EZ. K. MZ Change the K to TZ Type EDIT 40 and ENTER.
Press SK to search for the
first occurrence of K. Press
C followed by T and I fol-
lowed by Z to respectively
change the K to T and insert
Z after the T. Press ENTER.

S8 PRINT LET A=S Delete PRINT and Type EDIT 50 and ENTER.

LET Press KA to delete all char-
acters up to the first occur-
rence of A. Press ENTER.

&8 INPUT R. B Change line number Retype entire line as line 65.

60 to 65 Then delete line 60 by typ-
ing 60 and ENTER. Line
numbers cannot be changed

directly.
COMMENTS
38 PRINT "THE RAT _ Press space bar to display the line
up to the T.

To delete the second T, press D (Delete) once and press ENTER to return to
the command mode. Another way to delete the second T is to press I (Insert)
followed by backspace < once and then ENTER.

To display the current version of line 30 we enter

COMMENTS

LIST =@ Request display of line 30.
3@ PRINT "THE RATIO OF X AND ¥ IS"; KoY It is now correct.

37

sec. 3.5 | debugging programs
We run the edited program and obtain the expected output.

RUN
THE RATIO OF X AND ¥ IS .5

Numerous editing features are available in Level 11 BASIC. (Level I
BASIC’s editing is very limited.) Table 3.1 summarizes editing procedures.
Table 3.2 gives additional examples of editing.

REMEMBER: Do not hesitate to experiment with the edit procedures. Practice will
make you proficient. ‘

The editing commands make it possible to change any character within a
line except the line number. To change a line number, it is necessary to
delete the line and then retype the entire line with the new line number.

3.5 DEBUGGING PROGRAMS

Unfortunately, nobody is perfect and we do make mistakes. Naturally, an
important aspect of programming and a major portion of program develop-
ment time is normally devoted to isolating and correcting errors. This proc-
ess is called debugging.

Generally, programming errors are classified as language errors and logi-
cal errors. These two types of errors differ in that language errors are de-
tected by the computer whereas logical errors are not. Once the program has
been typed in and is run for the first time, the computer will interpret each
line and list the language errors in the form of diagnostic messages. Here the
computer is most helpful as it displays abbreviated error codes, such as /0
ERROR for division by zero or SN ERROR (SyNtax error) along with the
line number in which the error occurred. Some errors even switch execution
into the edit mode. A complete list of these errors is given in Appendix 1.

Once we have corrected all the language errors, we expect to run the pro-
gram and obtain the desired output. When the answers do not make sense,
we must set out to locate the errors in logic. They are usually more difficult
to find since the computer offers us no assistance. For example, in com-
puting the end-of-year balance of a savings account we may inadvertently
subtract the interest earned instead of adding it to the initial deposit, or we
may use an incorrect formula in our financial model. Clearly, logical errors
are more difficult to detect than language errors. A more systematic ap-
proach must be taken so that we can be reasonably sure that the program is
free of bugs.

A useful approach is to first run the program with test data for which the
results are known. If the computer’s answers check out, we are ready to
make a run with the actual data. Most data processing applications involve a
large amount of data. Therefore, it is important that the data be checked by
the program as they are entered. For example, if the data involve ages, nega-
tive ages are impossible; similarly, working a 400-hour week instead of a 40-
hour week is not possible. A data validity check built into the program will
help to avoid erroneous results due to bad data.

The process of debugging lengthy programs is facilitated by a well-

38

¢h. 3 [computer programs

organized program that computes the variables of interest in an orderly
fashion. Also, assigning variables names that suggest their meaning helps in
the debugging process.

Example: Morigage Payments

As an example of the debugging process, we present a program that computes monthly
mortgage payments. The payment is

1+

P=MXIX-—
a+ny-1

where P is the monthly payment, M is the amount of the mortgage, I is the monthly
interest rate, and N is the number of monthly payments for the duration of the loan.
The program we have is

18 REM FROGRAM COMFUTES MONMTHLY MORTGAGE FAYMEMTS
13 FRINT "ENTER THE AMOUNT AMD YEARS OF MORTGRGE"
28 INFUT M. Y

23 PRINT "EMTER THE INTEREST RATE IN &

38 INPUT I

I3 REM COMVERT MORTGAGE DURATION FROM YERRS TO MOMTHS
48 N=YwlZ

43 REM CALCULATE THE MONTHLY INTEREST RATE

S8 I=1-12

33 REM CALCULATE MOMTHLY PAYMENTS

68 F=Mb I I+l o0 MO 0d+T 00 M—L10

&5 PRINT "THE MOMTHLY FPAYMENWT 15 $'% P

T8 ENC

Having typed in the program, we will now execute it for the first time, keeping in
mind that it may have language as well as logical errors. The test data we plan to use first
are M = 1200, Y = 1,1 = 1; a mortgage of $1200 for one year at 1% interest rate. The
expected monthly payments for 12 months (1 year) are slightly more than $100.

COMMENTS
RLIM Request execution.
EMTER THE AMOUNT AHD YEARRS OF MORTGAGE Computer displays the message.
ToAzed. 4 You enter the values.
ENTER THE IMTEREST RATE IM = Computer displays the message.
oA You enter the value.
FEN ERROR IN €8 During execution computer detects
REALY a syntax error and switches from
an the execution mode to the edit

mode.

We have encountered error SN, a syntax error, in line 60, and the computer has
placed us in the editing mode. We press L to display the entire line:

6 P=Mm bkl +T DM CCL+T 00 =10
We notice that the parentheses do not balance; we must delete the last (in line 60. Press
X to display the entire line with the cursor appearing at the end of the line.

EE Pl d+ T 0D N0+ T CH-1

39 sec. 3.6 [stop and continue execution

Now press < five times to move the cursor to the left under the last left parenthesis (|
and retype from there the N-1). Press ENTER to store the line. We list line 60:

COMMENTS
LIST &8 Request a display of line 60,
Bl Peflala0l+T LW 0L+ 0L W—-1 0 The corrected version of line 60 is
in memory.

Now that the syntax error has been corrected we again run the program.

FIIM

EHMTER THE AMIUNT AMD YEARES OF MORETGARGE
Tolzea, 4

EMTER THE IMTEREZT RRTE IM =

B

THE MOWTHLY FAYFEWT IS # 1&1 2325

No more language errors! We have an answer, but it is incorrect. We expected an answer
slightly more than $100. Now what? We have a logic error! Going over the program line
by line we notice that the interest rate in line 50 needs to be converted to the decimal
equivalent of percent; that is, we must multiply the interest rate by 0.01. We retype line
50.

S8 [=T«+6, fil-1% and press ENTER.

RUN

EMTER THE AMOUNT AND YEARRS OF MORTGRGE
Tolzed, 1

EMTER THE INTEREST RATE IN X

T4

THE MOMTHLY FAYMENT IS # 166 342

Now the answer makes sense. We have done it and can now expect the program to work
for other data.

RLIM

EMTER THE AMIUNT AND YEARS OF MORTGRGE
T oEeE, 25

EMTER THE INTEREST RATE IM X

E 1 S

THE MOMTHLY FAYMENT 1% & 472 @51

If during the data entry you change your mind and wish to start over, press BREAK
to get the READY. Then type RUN and enter the desired data.

REMEMBER: Never take it for granted that the answers from the computer are neces-
sarily correct.

3.6 STOP AND CONTINUE EXECUTION

An important debugging technique is to place several STOP statements with-
in a program. The STOP interrupts the execution and prints the message
BREAK IN line number. For example, if line 25 is a STOP, then upon execu-

40

ch. 3 [computer programs

tion of line 25 the message BREAK IN 25 will appear. Once execution has
been stopped it is possible to examine variables by printing their values. To
resume execution after a STOP or a BREAK, type in CONT and press
ENTER. If the program is modified during the BREAK, then execution can-
not be resumed by means of the CONT statement. Instead, type in RUN and
start the execution all over.

Q Example: Temperature Conversion

COMMENTS
18 IMFUT "DEGREES FAHREMHEIT": F Input temperature in °Fahrenheit.
2B C=SeCF-I80 A0 Convert to °Celsius.
23 ZTOP Stop execution here.
B OPRIMT FiFL. S: oL, S Print the temperatures and their
48 END square roots. Bracket is exponen-
tiation.
R Request execution.
CEGREES FAHREMHEITY =& Input°F.
BEERKE IH 25 Execution is stopped.
FRIMT Examine the value of C in immedi-
s ate mode. °C = 30,
COMT Request continuation of execution.
SE B ZVIEEZ B S5 4F72: The temperatures and their square
roots.
LDEGREES FAHREWMHEITY @
EREAE 1M 25
FRINT Since °C is negative, the square root
-1V, FETe cannot be taken.
FilH Instead of typing in CONT, now
type in RUN for another execu-
tion.

3.7 SAVING A PROGRAM ON CASSETTE TAPE

Once a program executes free of any bugs, it may be desirable to save it on
tape for future use. Place the cassette tape into the recorder, rewind the tape,
set the digital counter to zero, and press the RECORD and PLAY buttons.
The CSAVE command loads a program from the computer onto the tape.
With this command you must specify a program name. For example

CSAYE "I

moves the program residing in memory onto tape and calls it ““I”". The name
of a program may be any single alphanumeric character other than the
quotes. If the name is several characters in length, only the first character is
recognized by the computer. So CSAVE “INTEREST” is equivalent to
CSAVE “1”. Once the program has been saved on tape, read the digital
counter and make a note of where on the tape the program is saved.

41

sec. 3.8 | declaring variable types

REMEMBER: To avoid confusion, write the names of the stored programs on the case
of the tape.

When a program is saved on tape, there is always the possibility that the
transfer is not flawless. Therefore, a subsequent loading of the program from
the tape may result in errors or even possibly in a loss of the program. One
possible safeguard is to save the program on tape twice, giving it two differ-
ent names, for example, CSAVE ““I"" and CSAVE “K".

The CLOAD? command offers another alternative. Once program
has been saved on tape using the command CSAVE /1", it can be checked by
the command

lllll

CLoADr It

Rewind the tape and press the PLAY button on the recorder. The program
on tape and the program in memory are compared line by line. If the pro-
grams do not compare perfectly, the message “BAD’" appears. The CSAVE
“1"" command will then have to be executed again.

The CLOAD command will load the first program from the cassette into
the computer. To ready the recorder, rewind the tape and press the PLAY
button. However, if the desired program is not the first program on the tape
but rather the fifth program whose name is “I"”’, then the command

cLoRD "1t
will skip over the first four programs and load the program ‘/I”’. This pro-
gram was originally loaded on tape using the command CSAVE “I"". So as
long as the tape is rewound, the computer can pick up the desired program
and load it into memory.

3.8 DECLARING VARIABLE TYPES

In the previous chapter we noted that variables can be declared as single preci-
sion, double precision, integer, or string. The characters !, #, %, and $ specify
these variable types and are part of the variable’s name. Instead of appending
the appropriate character to the variables’ names, it is also possible to declare
variables as integer, single precision, double precision, and string by means
of separate statements in the program. Declaring a variable as integer may be
useful, since integer values take up less memory than other numeric values.
Also, integer arithmetic is faster. In some applications it may be necessary to
declare variables as double precision to produce more accurate results.
The statement

COMMENTS
25 LEFIMT A.B. E-G Variables A, B, E, F, G are integers.

declares variables A and B, as well as variables E through G, as integer vari-
ables. These variables and all variables whose names start with these letters

42

EXERCISES 4

ch. 3 [computer programs

are taken as integers within the program as of line 25. For example, variables
ABC, A2, and EZ are then integer variables. However, the variables A2! or
EZ# are, respectively, single- and double-precision variables even though
their names start with the letters A and E. The type declaration characters
(see previous chapter) always override the declaration statement.

The statements

28 DEFEMG K-2Z
=3 DEFLBL S0 -

48 LEFETR K, L

COMMENTS

Variables X, Y, Z are single preci-
sion.

Variables S, U, V, W are double pre-
cision.

Variables K, L are strings.

define the listed variables as single-precision, double-precision and string vari-
ables, respectively. These statements may be used in the command mode

with and without line numbers.

DEFINT 1
LEFSHG A
DEFLEL [
LEFSTR S

FRINT A+D
12345e720, 2345671
SE="ETRIMNG

FRINT S#+A

T ERROR

AFE="STRIMNG"
FREIMT S$+A%$
STRINGSTRIMG

COMMENTS

The variables are declared.

IT starts with I; overflow occurs
since integers cannot exceed
32767.

In single precision have 6 significant
figures.

In double precision have up to 16
significant figures.

Surprise: A and D can be added.
Result is in double precision.

Type Mismatch error. Cannot add a
string to a number.

Declare A$ as a string variable.
S and A$ can be concatenated; they
are both string variables.

REMEMBER: The variable identification characters !, #, %, and $ override the DEFini-

tion statements.

The following exercises illustrate techniques you have learned in the preceding sections.
When you write programs, be sure that the programs actually work properly. Work out
some test examples by hand and compare them with the computer’s results. Take the
time to organize your input and output displays into an easily readable form.

43

exercises 4

1. Suppose the following program has been entered:

18 A=18
28 B=3Z8
ZB PRINT "THE FRODACT OF A AMD B IS": A=*=E
G5 EMD
What display will the following instructions produce
Instruction Anticipated Display Display
a. LI=T
b. LIST Zo
c. LIST 1&-38
d. LIST.
e. LIST ~-<48
f.LIST Z8
g. ELIT 3@
h. ELIT.
i. EDIT
j. RN
k. RUM 28
l. 18
m. L5
n. RUM

2. The program listed above needs to be edited to correct the typograplical error in
line 30. Perform the edit and then list the line to be sure it has been edited properly.
Perform the edit by

a.

b.

Retyping the entire line. List the program to check your editing; then reenter the
line with the typographical error in it.

Entering EDIT 30 followed by the X command. Move the cursor back, erase the
A, and then retype properly.

. Entering EDIT 30. Then press the space bar up to the D before the A. Then press

C followed by U, the proper letter in PRODUCT. Then press ENTER.

3. Enter the following instruction

1 FRINT "RECEF"

Edit the line to insert the letter D in the appropriate spot using the I edit command.

4. Edit each of the following BASIC statements. Try several approaches, and for each
statement determine the best procedure. First enter the given BASIC statement; then
type EDIT N, where N is the line number of the statement to be edited.

BASIC Statement CORRECTION

18 FERINT Delete the extra R

1% INT A Insert a PU for INPUT

28 PRINT "FHYSICZ I3 FHUNM" Replace PH by F

25 PRINT A.EB. C Replace the commas by semicolons
28 IWNFUT "wOUR AGE": # Replace the X by AGE

35 EMD Replace 35 by 99

FA =540 H-E2 003 Replace the Y and X by C and F,

respectively

45 FPRINT "DOMT TREAD OH ME" Remove all characters to the right
of TREAD

S8 PRINT "OME FOR THE MOMEY" Replace the third letter O by $

535 LET ®=5 Delete the LET

44 ch. 3 [computer programs

5. Consider the following program:

10.

11.

NEH
18 IMFUT A
28 FRINT A

The following data are entered for A during execution:
Anticipated Display Display
q

4+1
FIVE
I!F' IIVUEII

eRoT

. Consider the following program:

16 IMFUT A%
28 FRINT RA#$

The following data are entered for A$ during execution:

Anticipated Display Display
a. FIVE
b. 5
c. FIVE AND TEN
d. S+1@
e. FIVE:, AND TEN
f. FIVE:18
g "FIVE:i@"
h. » TEN"
i. TEN
j. AE"C
k. "FIVE. SIs"

. Combine each of the following into a single INPUT statement.

a. 18 PRINT"WHAT IS YOUR NARME?"
28 INFUT R¥

b. 1@ FRINT "YOUR NAME AND RAGET"
=8 INFUT A#. AGE

Modify the mortgage program of the previous section to input with a single INPUT
statement the amount of the mortgage, its duration, and the interest rate. Test your
modification.

. Telegrams cost $0.20 per word. Write a program to input the number of words and

display the cost.

Write a program to input three temperatures and compute the average temperature.
a. The temperatures are to be entered one at a time,
b. The temperatures are to be entered all on one line.

The output is to be of the following form

THE AVERAGE TEMFERATURE IS. ..

Degree days are computed by subtracting the day’s average temperature from 65.
(The average temperature must be less or equal to 65 since negative degree days have

45

exercises 4

12.

13.

14.

15.

16.

17.

no meaning.) Modify the program of the previous problem to include a display of the
day’s degree days.

Write a program that upon execution yields the following output.

HELLO
HI! WHAT IS YOUR MNAME?
7 you enter your name here

HELLID followed by your name
MY MAME IS NEUTER COMPUTER

Write a program to input from the keyboard a name, address, city, state, and zip
code. Then output these data in the form of an address label. For example,

FOWN DRYIS
IR ORAMGE =T
EOSTOM. MA BlEEe

Use INPUT for data entry. Be sure to type in NEW before entering the program. If
the total number of characters in your address label exceeds 50, type NEW and
ENTER, followed by CLEAR 200 and ENTER.

Write a program to produce the following dialog:

FLERSE ANSWER THE FOLLOMING GQUESTION
WMHAT DO YOIl PREFER: BOYS OR GIRL:?

7 enter your choice here . . .

HEY., 1 ToO FREFER. .. THAT S GREAT!

Write a program to input two numbers from the keyboard. Then output their sum
and difference on one line, and on the following line their product and ratio. Display
your results with appropriate descriptive text.

a. Input the two numbers on two separate lines.

b. Input the two numbers on the same line.

The pressure that a diver experiences as he dives into the ocean is given by the
relation

where H is the depth in feet and P the pressure in atmospheres. Write a program to
input a depth and compute the corresponding pressure with the following format:

AT A DEFTH OF. .. FEET THE FRESSURE IS .. RTMOSFHERES

If today’s population is P people and the population increases each year by I percent,
in N years the population will be

Px(1 + 1/100)Y

Write a program to input P, I, and N and then output the following:

TODAY S FOPULATIOM IS, ..
AT A GROWTH RATE OF ... X PER YEAR
THE POPULRTION WILL BE. .. IN. .. YERRS

chapiep 4' dBCigi()ﬂS

The normal sequence of executing statements in a computer program is by
increasing line numbers. The statement with the lowest line number is exe-
cuted first, and the statement with the highest line number is executed last.
Thereafter, execution of the program stops. In this chapter we learn tech-
niques that allow programs to deviate from this normal sequence of exe-
cution. This process is called branching and is made possible by transfer
statements. As a result, considerable versatility is added to computer pro-
grams since they can proceed through different sequences of instructions
depending on conditions encountered during execution. For example, if A
exceeds B we wish to print A, while if B exceeds A we print B, and if A
equals B we print the values of both A and B. So in addition to transfer
statements we need to learn about decision-making statements. The computer
must decide if A is larger than, less than, or equal to B, and execution must
then branch to the appropriate print statement. Such decision statements
involve relational operations such as greater than and less than.

4.1 RELATIONAL AND LOGICAL OPERATIONS

46

In addition to the arithmetic operations, BASIC also has relational opera-
tions that are useful for making comparisons. There are six relational opera-
tors (same as in Level I):

1. Greater than: >

2. Less than: <

3. Equal: =

4. Greater than or equal: >= or =>
5. Less than or equal: <= or =<

6. Not equal: <> or > <

Frequently, rather than determining the value of the larger of two num-
bers, we may wish to determine whether one number is or is not larger than
another number. We may want a yes or a no to the question, is the account
overdrawn or is a grade on an exam passing? The result is a logical value, true
or false, yes or no. In BASIC, yes corresponds to a ~1 and ano toa 0:

sec. 4.1 | relational and logical operations

COMMENTS

PRINT 43>Z
-1 Yes, 4 is greater than 3.
PRINT =>4

g No, 3 is not greater than 4.
PRINT 3=5
-1 Yes, 5 equals 5.
H=2
FRINT BX-A
-1 Yes, B is greater than A.
FRINT S+A>E 5*A = 10,
-1 Yes, 10 is greater than 4.
FRINT S+CAZED A is not greater than B.

a 5 times O is zero.
FRINT 1+B>A The sum of 1 and B is greater than
-1 A. The addition is performed first

and then the comparison is made.

REMEMBER: A true statement corresponds to a -1
A false statement corresponds to a 0.

Several expressions containing relational operations can be combined
using logical operations. There are three logical operators: AND, OR, NOT.

COMMENTS
FRINT 03223 AND C8>—13 Both expressions are true; the AND
-1 yields a true, -1.
PRINT 22 AMD (S183 Both expressions are not true; the
& AND vyields a false, O.
FRINT 22 OR &%-1 Both expressions are true; the OR
-1 yields a true, -1.
FRINT (322 OFR (S5>16n Either expression is true; the OR
-1 yields a true, -1.
FRINT «Z>a2@x QR (SH1dx Neither expression is true; the OR
& yields a false, 0.
FRINT HOT (SLE2 The expression in {) is true; the
[NOT inverts a true to a false.
FRINT MNOT S<Z The expression is false; the NOT in-
-1 verts the false to a true.
FRINT MNOT (53 The expression is missing a right
TEN ERROE parenthesis.

Expressions involving logical operators need not be placed in parentheses;
however, parentheses help make the statements easier to read.

The logical operators AND, OR, and NOT (in Level I BASIC the AND is
a *, the OR is a +, and the NOT is not available) do not perform arithmetic;
they perform comparisons and give a true (1) or false (0) answer. Table 4.1
summarizes their use.

In Table 4.1 reference is made to logical variables A and B. A logical vari-
able is a variable that is specified by means of a logical operation.

48 ch. 4 | decisions

TABLE 4.1 Logical operations

Logical Variables AND OR NOT
A B A AND B AORB NOT A
-1 -1 -1 -1 0
-1 0 0 -1 0

0 -1 0 -1 -1

0 0 0 0 -1

COMMENTS
A=S32
FEIMT A A is a logical variable whose value is
-1 -1.
B=—1
FRINT B B is a numerical variable whose
-1 value is -1,

Logical operations can only be performed with logical variables, relational
expressions, or the numbers 0 and -1. Logical variables always have a value

Oor-1.

A=202

B=2>5

FRINT A AND B
a

COMMENTS

Ais-1;BisO0.

A and B are logical variables.
-1 AND 0 is O.

Result as expected.

REMEMBER: Logical expressions and logical variables can only have values of 0 and

-1.

Logical expressions may also be formed with string variables. When string
variables are compared, the letter A is “less’ than a B, which is “less” than a

C, and so on.

FRINT “"YES">"“NO"
-1

FIF-INT " &lESll:lINDQI

)

FRINT "YES"<"YESS"
-1

A$="ERIC"

BE¥="MARION"

PRINT C(RA$:"BOY"> AND (B$>"GIRL"Y

-1

COMMENTS

The letter Y is “greater’’ than the
letter N.

The two words are unequal.
YES is ““less’” than YESS.

Both expressions in the (
so the AND yields a -1.

) are true,

REMEMBER: When strings are compared, the letter A is “less’ than the letter B, and

SO on.

49

4.2 FLOWCHARTS

sec. 4.2 | flowcharts

TABLE 4.2 Hierarchy of operations®

1. Exponentiation: X1Y (or X[Y)

2. Negation: -X

3. Multiplication and division: X*Y and X/Y (left to right)
4. Addition and subtraction: X+Y and X-Y (left to right)
5. <, >, =, <=, >=, <> (left to right)

6. NOT

7. AND

8. OR

AThe innermost parentheses are evaluated first, followed by the next level out. On the
same level, operations are performed according to the above order.

The rules for hierarchy of operations were introduced earlier. These rules
need to be extended at this point to include the relational and logical opera-
tors. Table 4.2 summarizes the order in which operations on the same nest-
ing level (for example, within the same parentheses) are performed.

When faced with the assignment of writing a story, a writer generally first
creates an outline. Similarly, when faced with a problem to be solved on the
computer, a programmer must first break down the solution process into
component steps that can be programmed. It is often convenient to have a
pictorial way of displaying the steps to be used in the computer program.
This is called a flowchart. For complicated problems and complicated com-
puter programs, a flowchart is a must. Even though for less complicated
problems a flowchart is not always necessary, it is a good idea to get into
the habit of flowcharting each and every program. This approach will help
organize your thoughts and avoid major errors in logic. A clear flowchart is
then translated into BASIC. The symbols used here for flowcharts are shown
in Table 4.3. There is no generally accepted set of symbols for flowcharts.
However, these symbols are frequently used.

In the last chapter we developed the compound interest program. A
flowchart for that program is given in Figure 4.1. The line numbers of the
program corresponding to each step in the flowchart are shown. The begin-
ning of the program is indicated by the START box. The input of the inter-
est rate, initial deposit, and number of years on deposit are contained in
input boxes. The balance after N years is then computed and is contained in
a rectangular box, which indicates processing of data. The results are sub-
sequently displayed. These are contained in output boxes. The end of the
program is shown by the terminal box STOP.

A flowchart to input and compare the values of variables A and B is
shown in Figure 4.2. This flowchart illustrates a two-way decision. The vari-
ables A and B are first entered and then compared in the decision box. De-
pending on whether A is or is not greater than B, the appropriate message is
displayed. If a program was to be written from this flowchart, the path of its
execution would then depend on how large A is with respect to B, However,
both paths lead to the same terminal box STOP.

50

ch. 4 | decisions

TABLE 4.3 Flowchart symbols

Symbol Symbol Name

Type of Instruction

Processing box

FOR-NEXT loop box

Terminal box

Input/output box

Decision box

Connector

O Odo [

Subroutine

|

Flow lines

Processing of data

Sets limits for counter
variable

Starting or stopping
execution

Input or output of
information

Decision for conditional
transfers

Connects flowchart segments

Represents a section of the
program

Indicate direction of program
flow

The flowchart of Figure 4.2 illustrates a two-way decision. It determines
whether A is or is not greater than B. If A is not greater than B, it might be
important to know whether A equals B or whether A is less than B. Figure
4.3 illustrates this three-way decision, which requires two decision boxes. It

is an extension of the two-way decision of Figure 4.2.

Flowcharts may have several correct versions. Similarly, there are many
ways to write a computer program to perform a specific task. For example,
the first decision box in the flowchart of Figure 4.3 could contain the ques-
tion, is A < B? Another possibility is to have the second decision box test if
A < B? In each case the subsequent output boxes would display different

messages, but the task would be accomplished equally well.

51

START Program Line Numbers

L

DISPLAY
ENTER THE INTEREST RATE (15)
FOR EXAMPLE 0.07

INPUT (20)

{,_

DISPLAY
ENTER INITIAL DEPOSIT
AND NO. OF YEARS SEP. BY A (25)
COMMA

INPUT
D,N

{
X}
=]

&OMPUTE BALANCE BAL/ (35)

DISPLAY
BALANCE AFTER N YEARS IS B (40)

DISPLAY .
THE TOTAL INTEREST PAID IS B-D (45)

it

STOP (50)

FIGURE 4.1 Flowchart of the compound interest program.

START

DISPLAY DISPLAY
“A IS NOT GREATER “A IS GREATER
THAN B” THAN B”

! !

FIGURE 4.2 Flowchart illustrating a two-way decision.

52

EXERCISES 5

ch. 4 | decisions

START

INPUT A,B

DISPLAY
“A 1S GREATER
THAN B”

DISPLAY
“A EQUALS B”

DISPLAY |
“A 1S LESS THAN B?”'

! .

< STOP ,

FIGURE 4.3 Flowchart illustrating a three-way decision.

Before executing the instructions, fill in the anticipated display column and then check
against the computer result. When you make a mistake, jot down a short explanation of
the mistake.

1. Instruction Anticipated Display Display

a. 28 FRIMT 26
18 PRINT 48
R

. PRIMT

. FRINT

. PRINT

. A=18
E=Z@
FRIMT

. FRINT iR

CPRINT ZB4a AMD

FRINT MOT CZLd0

. PRIMT -1 AMND ~1

FRINT MOT S

CPREINT NOT NOT @

CPRIMT =14 AMND C-20180 OR C—1<1@0

o Ao O

Siga e

[
bt PN Cks e

m. FRINT {—d4%1r AMD Co-zodgn O O—d<01@0 0

53 sec. 4.3 | transfer statements

. PRINT "JACE" AMD "JILL"
. PRINT "JARCE" = "JILL"
. PRINT "JARCK" > “"JILL"

PRINT "Znev o
FRINT "ACE"<"ACE "
. FRINT "ZWIH"Z"2VIG"
CPRINT ",oman

+w 0" o B

2. Draw a flowchart for a program to input two numbers and output their sum.

3. Draw a flowchart for a program to input two numbers and output them in ascending
order.

4. Draw a flowchart for a program to input three numbers and output them in ascending
order.

5. Draw a flowchart for a program to input three names and output them in alphabetic
order.

6. Draw a flowchart for a program to input two pairs of numbers, A, B and C, D. Deter-
mine which of the following messages is appropriate; then output that message. We
exclude the possibility of A = Bor C = D.

a. A>BandC > D
b. A>BandC <D
c. A<BandC >D
d. A<BandC <D

7. Draw a flowchart and write the program to input six numbers with a single input state-
ment, and then output two numbers per line.

4.3 TRANSFER STATEMENTS

Normally, execution of programs is sequential, starting with the first state-
ment in the program and ending with the last. Transfer statements make it
possible to deviate from this normal sequence. There are conditional and
unconditional transfer statements.

An unconditional transfer causes a change in the order of execution. The
instruction

18 G0 To =%

will cause transfer of execution from line 10 directly to line 35, skipping
over all intermediate instructions. Other examples of acceptable GO TO
statements are

COMMENTS
45 GOTO 735 From line 45 transfer directly to
line 75.
9% G0TO 145 From line 95 transfer back to line

15. The space between the GO
and TO is optional.

Commonly the GOTO statement is used without a space.

54

11
iz
13

Z6

21

36

ch. 4 | decisions

COMMENTS
18 A=1 A sample program to illustrate the
15 B=16 GOTO.
28 GGTO 48
Z8 PRIMT “"LINE 28 A=":HA
48 FRINTYLIMNE 48 B="iEBE
S8 EMD
RUM Request execution.
LINE 48 B=19 Line 30 was skipped over.

Note that line 30 will always be skipped over. It is unreachable.

Another use of the GOTO transfer is to cause execution to begin at
a specified line number. Recall the RUN statement causes execution to start
at the first line of the program. The RUN also sets all numerical variables
equal to zero. The GOTO lets you pass values assigned to variables in the
immediate mode to variables within a program. We illustrate this feature
with the above program.

COMMENTS
E=188 Specify B = 100.
GOTOQ 48 Start execution at line 40.
LINE 48 E=186 Result of execution. B is now 100.
RUN Reqguest execution.
LINE 48 B=1@ B is now again 10.
GOTO 25 Start execution at line 25.
UL ERROR Undefined Line error; there is no
line 25.

REMEMBER: The line number in the GOTO statement must be an existing line num-
ber in the program. It must be a number and cannot be a variable. -

Transfer statements consisting of expressions provide considerably more
flexibility. They are called conditional transfers. The order of execution is
controlled by conditions encountered within the expression of the statement.
These transfer statements use the words IF-THEN-ELSE. The following ex-
amples demonstrate the IF-THEN-ELSE conditional transfers. The same

examples are also illustrated along with corresponding flowcharts in Figure
4.4.

COMMENTS
IF X>8 THEN 15 If X is positive, transfer to line 15;
..... otherwise continue on line 12.
1F A>E PRINT "R IS LARGER THAN B" If A exceeds B, print message; other-
,,,,, wise continue on line 25 without
printing.
IF ﬁffE: AMD C>D THEN 38 If A exceeds B and C exceeds D,

..... transfer to line 38; otherwise con-
..... tinue on line 32.

e .
11 IF 438 THEN 45

1z
e LINE 12
YES
= i w
2T IF AXE FRINT "R IS LARGER THAM EB"
et e .
PRINT
NO
LINE 25
A
Z1 IF AXE AMD CkRD THEM 22
YES
i l LINE 32 l
YES
T I
F LINE 40
42 IF GeIR8 AMD GR=58 FRIMT "GRALE BY -
45 .

PRINT
“"GRADE B”

LINE 45 !

IF AE="YES" THEM 55 ELZE EMD

oo
[

END

YES

LINE 55

R LINE 60
62 IF A8 THEM H=—f _
G5 BE=AT 5

A=-A

FIGURE 4.4 Flowcharts illustrating IF-THEN-ELSE conditional transfer statements.

56 ch. 4 | decisions

T

42 IF GC38 AND G-=858 FRINT "GRADE B" Only if G is in the 80’s, print it as
E 3 a B.

5@ IF Af="YES" THEM S5 ELSE END If A$ is YES, transfer to line 55;
5RO otherwise end execution.

(=Y S

&2 IF A8 THEN A=-H If A is negative, respecify it and
&5 B=AL. 5 take its square root; otherwise

take the square root directly.
Bracket is exponentiation.

\‘\ . ’
i Example: Find the Largest Among Three Numbers

We input three numbers and by means of several decisions find the largest. The flowchart
for this process is shown in Figure 4.5. It requires three IF-THEN statements to pinpoint
the largest number. The line numbers of the corresponding program are shown in the

flowchart.
COMMENTS
18 REEM FIND THE LARGEST MNUMEER REMinder.
28 FRINT "ENTER 3 UMERUAL NUMBERS"
@ INPUT A B C
48 IF A>E THEM 7@
S8 IF BEXC THEM FRINT "B IS LARGEST=";E: GOTCO 96
a8l FRINT "C I LARGEST=";C: END Two statements are chained.
78 IF C-A THEN &8 The colon chains them.
88 PRINT "A IZ LARGEST=":A
298 END
A second END statement.
i Request execution.
EMTER Z UMESUARL HMUMBEERS
e =T

. E The three numbers are entered.
CO18 LARGEST= 3

Fidid
EMTER Z UMERUAL HUMBERZS
R W PP Type in three numbers and press
A 1% LARGEST=-1 ENTER.

The minus sign occupies the blank.

Request another execution.

The first decision compares A to B in line 40. If A is larger than B, we transfer to
line 70 and compare A to C. If A is also larger than C, we transfer to line 80 where we
print the message that A is the largest along with the value of A. Execution is subse-
quently terminated in line 90.

On the other hand, if A is not larger than B, execution transfers from line 40 to line
50. We then already know that B exceeds A, and now compare B to C. If at this point B is
larger than C, then B is indeed the largest and the appropriate message is displayed in line
50. Execution is then terminated through the unconditional GOTO 90. Finally, if in line
60 B is not larger than C, then C must be the largest, since we already established that
B > A. The message “C IS LARGEST" along with its value is displayed in line 60, with
execution terminated thereafter.

Aside from illustrating the IF-THEN statement, we introduced two new concepts
with the above program: statement chaining, resulting in multiple statement lines. This is

57

sec. 4.3 | transfer statements

INPUT
(20) - (30) \ "3 UNEQUAL NUMBERS"
A,B,C

‘ DISPLAY
“A1S LARGEST”; A / (80)

DISPLAY
\ “C IS LARGEST"”; C (60)‘

(50) \

\

DISPLAY ‘
‘B IS LARGEST”; B

{ .)

4

(gm(STOP)

FIGURE 4.5 Find the largest among three numbers.

a useful way of programming since it saves memory space in the computer. You can chain
as many BASIC statements as you wish in one line. Chained statements must be separated
by colons, and the total number of characters cannot exceed 255.

We also notice that more than one END statement appears in the program. There is
an END statement chained in line 60 and an END in line 90. The GOTO 90 in line 50
could also be replaced by an END in order to save the transfer to line 90 from line 50.

REMEMBER: Multiple statement lines save memory space but may make it more dif-
ficult to read the program.

The IF-THEN-ELSE allows for a two-way decision. Using several |F-
THEN statements allows for multiple decisions.
ON expression GOTO 1st line number, 2nd line number, . . .
is a multiway branching statement that causes execution of the program to
transfer to the first line number if the value of the expression is 1. If the
value of the expression is 2, execution transfers to the second line number,
and so on. For example,

O & G0TO 28, 58, 46

will transfer execution to line 30 if Z = 1, to line 50 if Z = 2, and to line

58

ch. 4 | decisions

40 if Z = 3. If Z is 0 or larger than 3, control transfers to the next line in the
program after the ON-GOTO statement. If Z is not an integer, for example,
3.5 only the integer portion is considered, in this case 3, and transfer is made
to the appropriate line number, in this case line 40. If Z is negative, an error
occurs (FC ERROR). This information is illustrated in the execution of the
following program.

18 0OW £ G0 TO 26, 58, 48
Z8 FRINT “"TRAMSFER TO LIME 28 WITH Z="; £:END
48 FPRINT “"TRAMSFER TO LIME 48 WITH &="; £Z:.EHND
S8 FPRIMT "TRAMSFER TO LINE 5@ WITH Z=": £:END
COMMENTS
&= Specify Z.
GOTO 18 Execute program from line 10.
TRAMSFER TO LIME 28 WITH Z=1 Transferred to first line no.
GOTO 16
TEANSFER TG LIME S8 WITH =2 Transferred to second line no.
SZTH 1@
TRAMSFER TO LINE 48 WITH Z=3 Transferred to third line no.
2=7
GOTO 1@
TRANSFER TO LINE 36 WITH Z=7 Transferred to first line no., since Z
exceeds 3.

GOTO 1@

Transferred to first line no., since Z

LIMNE Z8 MWITH Z=8 is zero.

Z is not an integer.

Integer portion of Z is 1, so trans-
LINE 28 WITH £=1. 95 ferred to first line no.

PFC ERROR IMN 18 Error, since Z is negative.

E:> Example: Producing Variable Displays

Write a program to input a person’s sex (SEX) (male = 1, female = 3) and his/her age
(AGE). Have the computer analyze these data to determine whether the person is or is
not a senior citizen (> = 65 years old).

18 INPUT
28 IF SEX<>»1 AND SEX<>E THEN 18
28 IF AGE>=65 THEN E=SEX:GOTO 56
48 E=SEX+1

58 ON E GOTC &8, 7@, 86, 96

68 PRINT
78 FRINT
80 FRINT
S8 PRINT

"ENTER PERSON-S SEX oM=1, F=32> AND RAGE": SEX, AGE

"MALE SEMIOR CITIZEN" END
"YOUNG MALE" (END

"FEMALE SENIOR CITIZEN":END
"YOUNG FEMALE" :END

59

sec. 4.4 /| ON ERROR GO TO

This program has some interesting logic. Line 10 is as usual. Line 20 is a data validity
check. If the person’s sex is neither 1 nor 3, execution returns to line 10 where the data
need to be entered again. In data-processing applications it is very important that the
input be checked. The results are only as good as the input data. A famous saying sums it
up best: Garbage In Garbage Out (GIGO).

In line 30 of the program, E is equal to SEX if AGE > = 65. Thus E = 1 for a male
and E = 3 for a female senior citizen. If the person’s age is less than 65, execution trans-
fers to line 40, where E=SEX+1, that is, E = 2 for males and E = 4 for females who are
not senior citizens. So at this point E is either 1,2, 3, or 4 depending on the person’s sex
and age. In line 50 we take advantage of this fact and transfer depending on the value of
E to line 60, 70, 80, or 90, where the appropriate display is produced.

4.4 ON ERROR GO TO

The data validity check discussed in the previous section is a way of guarding
against bad data. Unless detected upon entry, the data would go unnoticed
and would be used to generate meaningless results. There are other circum-
stances where a program seems to be running well, free of syntax and logic
errors. Suddenly,after having been used successfully for several runs, an error
message occurs and execution is interrupted. For example, the square root
of a variable may be computed somewhere within a very long program. If the
value of the variable depends on numerous other prior calculations, then it
is certainly possible for the variable to be negative on occasion. This results
in an error. Another possiblity is that a division by zero may occur due to
some unforeseen circumstances. Such errors may turn out costly, since they
interrupt the execution. After the proper corrections have been made, the
entire run needs to be repeated.

The ON ERROR GOTO statement sets up an error-trapping routine,
which in the event of an error allows the program to continue without a
break in execution. The ON ERROR GOTO statement must be placed in
the program prior to the occurrence of the error that it is supposed to trap.

ON ERROR GOTO &6

YaZotd K=KZ-HA

Sy

FRINT "THE SLOFE IS"; S

ON ERROR GOTO @

FRINT "WARNING DIVISION EY ZERD: USED 1E-86 INSTERD OF ZERQ"
R=1E-B6

RESUME

The ON ERROR GOTO 0 terminates the error-trapping process. It dis-
ables the ON ERROR GOTO 80 statement of line 10. Consequently, any
errors occurring after line 70 will cause a break in the execution without
transfer to the error-trapping routine of lines 80 to 90.

The RESUME statement located at the end of the error routine transfers
execution back to the statement in which the error occurred, in this case line

60 ch. 4 | decisions

50. The ON ERROR GOTO statement with its error routine is generally
designed to guard against one specific type of error. However, it will trap all
errors, even those it was not designed to trap. The RESUME statement can
take on several forms:

COMMENTS

RESUME Resume at line in which error
occurred.

RESUME © Resume at line in which error
occurred.

RESUME 1@
RESLIME MEXT

Resume at line 100.
Resume at line following statement
in which error occurred.

REMEMBER: In the event of an error, the ON ERROR GOTO -RESUME prevents a
break in execution.

ERL is another useful error routine function. It returns the line number
at which an error occurred. So if an error occurs at line 20, then ERL assumes
the value 20. ERL equals O as long as no error has occurred since the com-
puter has been turned on. In the immediate mode, ERL equals 65535 when
an error occurs.

COMMENTS
PRINT ERL Computer has just been turned on.
In] ERL equals zero.
S=1-H Division by zero.
78 ERROR
FRINT ERL Once an error is made in the imme-
35395 diate mode, ERL equals 65535.
18 A+B=C Illegal statement.
FRINT ERL
E9E3E5 ERL is 65535 before execution.
LN Request execution.
e ERROR IM 1@ SyNtax error in line 10.
FRINT EFRL
168 ERL is now 10. Error occurred in

line 10.

Example: Data Validity Checks

The following portion of a program illustrates the steps required to trap errors made dur-
ing data entry.

16@ CLEAR 12

116 UN ERROR GOTO 206

126 INPUT "CUSTOMER S NAME": N$

128 INPUT "CUSTOMER S NUMBER"; AX

148 PRINT “INPUT DATA ARE OK": END

208 IF ERL=13Z8 THEN 238

218 FRINT "NAME MUST BE LESS THRN 13 CHARACTERS"

228 RESUME 128

228 PRINT "CUSTOMER“S ID NUMBER MUST BE LESS THRN 32768"
248 RESUME 136

61

sec. 4.4 [ON ERROR GO TO

In line 100 we introduce the CLEAR n command. Like CLEAR, it resets all numeric
variables to zero and all string variables to null. In addition CLEAR n reserves space for
string variables n characters in length. n may be a number, a variable, or an expression.
Once line 100 is executed, the string variable N$, customer’s name, can be up to 12 char-
acters long. If a name longer than 12 characters is entered in line 120, transfer is made to
the error-trapping routine of lines 200 to 240. In line 130 provisions are made for enter-
ing a customer number as an integer. Recall, integer variables can only assume values in
the range -32768 to +32767 inclusive. Therefore, if A% is larger than 32767 execution
will transfer to the error-trapping routine.

The error-trapping routine, lines 200 to 240, displays the appropriate message
depending on where the error was made. Variable ERL is either 120 or 130, correspond-
ing to errors made in lines 120 or 130, respectively. During execution the error-trapping
routine remains unnoticed as long as the data entered conform. In this example the name
must be less than 13 characters and the customer’s number must be less than 32768.
However, when an illegal name is entered, the error routine forces the operator to reenter
a proper name. Execution cannot proceed until a proper name has been entered. The
same is true for the customer number. The operator is given the opportunity to correct
the error made on data entry without a break in execution.

We now execute the program and observe the error-trapping routine.

FUM

CUSTOMER S MAMEY? ERIC ACE HAROLD

HAME MUST BE LESS THAM 1% CHARARCTERS
CUSTOMER "= MAME? ERIC HRROLD

CUSTOMER S MUMBERT 423245

STOMER S ID WUMEBER MUST BE LESE: THRAN Z27ed
CUSTOMER S MUMBERT 12345

INFUT DATAR ARE Ok

The first customer’s name we entered, ERIC ACE HAROLD, was too long. The correct
name ERIC HAROLD was subsequently accepted and the customer’s ID number re-
quested. The number 42345 exceeded 32767 and was therefore rejected. Once the proper
number, 12345, was entered, the input data were recognized as OK.

REMEMBER: A string variable can store up to 255 characters only if enough storage
space has been CLEARed.

Example: Change for a Dollar Bill
" Suppose a one dollar bill is tendered as payment for a sale of less than $1.00. Output the

change from the sale, assuming that coin collectors have hoarded all the 50¢ coins. A
flowchart is shown in Figure 4.6.

The approach taken is to compare the amount of change tirst with 25. As long as the
change C exceeds 25, the counter Q is incremented to reflect the number of quarters
included in the change. When C is less than 25, it is compared with 10 to check for dimes.
Subsequently, C is checked for nickels and pennies. The variables S, C, Q, D, N, and P
represent, respectively, the amount of the sale, the change, the number of quarters in the
change, and the number of dimes, nickels, and pennies.

START Program Line Numbers

INPUT

SALE S (10)
(15)
[a=D=N=P=0] (20)
YES (25)
3
NO
Yy
Q=Q+1
C =025 {30)-(35)
(40)
YES
cs10 (45)
.
NO
D=D+1 ‘ i}
o= o0 (50)-(55)
(60)
c<s N\YES (65)
?
\
NO
N=N-+1
(80) b
P=C (85)

DISPLAY
Q,D,N,P (90)

y

(STOP ’

FIGURE 4.6 Change of a dollar bill.

63

exercises 6

IMFPUT "AMOUKT OF THE SALE IM CENTS": S
C=18E-5

Q=8 [=8. M=8: P=0

IF 025 THEM 45

C=a-d

D=0—-25

GOTO 25

IF Co18 THEN &
L=+

C=C—-16

GOTO 45

IF C<C5 GoTo 835
M=p+1

C=C-5

GOTO &5

F=i

FRIMT & "QURRTERZ il "DIMES "iNi "MICKELS "iPi "FENNIES"

O F e bl PRI R P
L]

[DA (R IO I)

[M B AR

o

(S B R o

i

FIM
RAOUMT OF THE SALE IM CEMTS? 1z
Z QUARTERS 1 DIMES g MHICKELS 3 PENMIES
In this example we assumed that the amount tendered was 100¢. Can you generalize the
program for any amount up to $100?
A variation of the IF-THEN statement is demonstrated in line 65. Instead of the
IF-THEN, it is permissible to use IF-GOTO or IF-THEN GOTO.

EXERCISES 6

Before executing the instructions, fill in the anticipated display column and then check

against the computer result. When you make a mistake, jot down a short explanation of
the mistake.

1. Instruction Anticipated Display Display

A=1&
E=z6

IF A<E PRINT A
IF RXE FRINT B
IF AR>C PRINT "C"
IF BXA AMD RS0 FRINT AE
B OR BRD PRINT "YESZY
. IF AXE PRIWNT A ELSE FRINT B
. IF ACE FRINT B: FRINT A
. IF BZD PRINT "SURFRISE
. IF BRFAOIF ARC PRINT "UNESFECTED"

~50R e A0 O
—
-n
X
b
m

j. FRINT "THE AMZMWER IS: FRINT A

2. Enter the following program:

28 IF AF>BEE OR A$2CEF PRINT A END
28 IF E$>C$ PRINT B4 ELSE PRINT C#:END

64 ch. 4 | decisions

10.

11.

Instruction Anticipated Display Display

a. A$="JOE"
BF="JIM"
C$="JOEY"
GOTO 26

b. Ag="JILL"
GOTO 2@

c. BE="MARION"
C$="ERIC"
GaTo 26

d. A$="FHN"
GOTO 26

. Write a single statement to

. Set Aequalto5,Bto 6,and Cto 7.

Transfer to line 50 if A > B.

Display C DOES NOT EQUAL D if C is unequal to D.

Transfer to line 100 if Y is less than Z and W is larger than V.

Stop execution if Z is 10.

. Branch toline 1if Z = 1,toline2ifZ = 2,to line 3if Z = 3, to line 2if Z = 4,
toline 1if Z = 5,and to line 4if Z = 6.

me Ro T

. Write short programs to perform the following:

a. Input two numbers and print their sum only if the sum is positive.

b. Input two numbers and print whether their sum or product is greater.

c. Display the message, WHAT IS THE CAPITAL OF FRANCE? If the person
responds PARIS, have the computer display the message YOU ARE OK. For all
other (incorrect) responses, display the message, NOPE, SEE YOU IN PARIS.

d. Display the message, WHAT IS YOUR AGE? For ages 12 or less, have the com-
puter respond YOU ARE A CHILD; for ages 13 through 19 respond, YOU ARE
A TEENAGER; for ages 20 or above, respond YOU’RE AN ADULT.

. Draw a flowchart and write a program to input three unequal numbers and display

them in ascending order.

. Draw a flowchart and write a program to input four numbers and display the largest.

Try to write the program with the minimum number of steps.

. Draw a flowchart and write the program to input a number and output its absolute

value; that is, output the number as a positive number.

. Draw a flowchart and write a program to compute and display a salesman’s gross pay.

The pay is based on sales and is computed according to the following formula: for
sales up to and including $1000, he is paid a flat $100; for sales from $1000 up to
and including $2000, he is paid 15%; above $2000, he is paid a bonus of $250 and
7% of sales. The sales are input to the program.

. Draw a flowchart and write a program to update the balance of your checking ac-

count. Input the amount of the check or the amount of the deposit and output the
balance. If the balance falls below $100, charge the account a $2 service charge. If
the balance drops below zero, display an appropriate message and charge the account
a §5 service charge.

Draw a flowchart and write a program to input a person’s age and output the age
along with the message: THIS PERSON IS A MINOR (<18), or THIS PERSON IS A
SENIOR CITIZEN (>=65), or THIS PERSON IS NEITHER A MINOR NOR A
SENIOR CITIZEN. Include a data validity check to be sure the person’s age is not
negative or greater than 120,

Draw a flowchart and write a program to input the three coefficients A, B, C of the
quadratic equation AX? + BX + C = 0. Depending on whether B> - 4AC is posi-

65

exercises 6

12.

13.

14.

tive, negative, or zero, output respectively the messages: THE ROOTS ARE REAL,
THE ROOTS ARE IMAGINARY, THE ROOTS ARE REPEATED.

One root of the quadratic equation AX? + BX + C = 0is (-B + V B2 - 4AC)/(2A).
Write a program to input A, B, and C, and then compute and display the root. Use an
ON ERROR GOTO statement to treat the case in which the square root of a nega-
tive number is taken, that is, when B=B - 4xA%C < 0. If B#B - 4xA=C is positive
or zero, display the message “REAL ROOT” along with the root itself. Otherwise
display the message “IMAGINARY ROOT”. Be sure to first draw a flowchart. Test
your program with A = 1, B = 3,C = 2, and then again with A = 1,B=2,C=3.

Write a program to input the number of words in a telegram and display the cost.
Assume the first 15 words cost a flat $3.50, with extra words $0.20 each.

Write a program to input a number and display a message declaring the number as
odd or even. Does your program work for positive as well as negative numbers?

chapten 5 , 'UUDi“g

5.1 LOOP STRUCTURE

5.2 IF-THEN LOOPS

66

A major advantage of computers lies in their ability to do repetitive tasks
rapidly and accurately. The steps that are repeated within a program form a
loop. In general, a loop consists of four parts in which we initialize, process,
increment, and test.

In the initialization part we assign starting values to variables. For exam-
ple, we may initialize a variable that represents a counter to 1. In the process
section the calculations are performed. The counter is then incremented, and
a test is performed to check if the loop should be continued or terminated.
The order in which the four parts of a loop appear is interchangeable. Two
possible loop structures are shown in Figure 5.1.

It is important to note that the variables are only initialized once. While
looping, the process, increment, and test parts are repeated over and over
until the test condition is satisfied, for example, when the counter has
reached a preassigned limit. It is also possible to have loops that omit some
of these four parts. For example, the increment part may not be necessary
if no counter is used. Instead, a computed variable may be checked to termi-
nate the loop.

The test part of the loop can be performed with the IF-THEN statement. If
the counter has reached its limit, or if a certain condition has been met, the
IF-THEN transfers execution out of the loop.

Let us find the sum of all the integers from 1 to 100.

COMMENTS
18 SUM=8: KOUNT=1 Initialize sum and counter.
28 SUM=SUM+KOUNT Process.
28 KOUNT=KOUMNT+1 Increment the counter.

48 IF KOUNT<=168 THEN Zz© Test. As long as the counter is less
or equal to 100 we continue to

loop.

S8 FPRINT SUM: END

RUN

285 The sum of integers 1 to 100 is
5050.

67

sec. 5.2 | IF-THEN loops

| l

INITIALIZE INITIALIZE

_____4 N

PROCE
OCESS TEST
{ CONTINUE
LOOP?
) INCREMENT
PROCESS
YES TEST ‘
CONTINUE
LOOP? INCREMENT

.

FIGURE 5.1 Two loop structures showing the four parts of a loop.

The next program demonstrates a loop that is terminated when a calcu-
lated variable reaches a certain value and not when the counter reaches its
limit. Let us find N such that 2N just exceeds 1000.

COMMENTS
16 N=0 Initialize.
28 HN=N+1 Increment,
20 ¥=2Z[N Process.
48 IF X<=18866 THEN 28 Test.

58 PRINT "N="iN;", 2ZLN=";KX:END

RUN
N= 1@. 2[N= 1824

We recognize 2110 or 1024 to be 1K;a 4K memory thus corresponds to
4 X 1024 = 4096 bytes and not 4000 bytes as is commonly assumed. In
the above, lines 30 and 40 can be combined to shorten the program (30 IF
2[N<=1000 THEN 20). The sequence of the four parts of the loop differs
from the illustrations in Figure 5.1.

A common mistake made by inexperienced programmers is to include
the initialization statement in the loop. Let us make that mistake by editing
line 40 to branch back to line 10 instead of to line 20.

48 IF A<=18606 THEN 16

RUN

What happened? The computer is in a coma! No result!? We press BREAK to
stop the execution and insert line 35.

25 FRINT N

RUN

Now the execution shows only a column of 1’s. Press SHIFT and @ simul-

68 ch. 5 | looping

taneously to halt execution. The display is frozen. As you can see from the
display, the program is in an infinite loop. To resume execution, press any
key. Since we branch back to line 10, N is reset to zero each time and never
increases to a point where 21N exceeds 1000. Since 211 is 2, X always
equals 2. To get out of this infinite loop, we press the BREAK key, which
terminates the execution and returns the cursor onto the screen. We also
delete line 35, which we inserted for illustrative purposes.

COMMENTS
BREAK IN 3B Response of computer to BREAK
command.
READY Cursor returned.
5 Delete line 35.
FRINT X
2 Atline30,N = 1;2tN = 211 = 2.

REMEMBER: Do not initialize the counter within the loop.

On occasion it may be desirable to have an infinite loop. For continuous
loop programs such as games, it is convenient to place the RUN statement
within the program. If RUN is the last statement of the program, then the
entire program will be executed over and over. The RUN will cause repeated
executions and will also set all the variables to zero and null each time an
execution starts over.

COMMENTS
18 PRINT "FOREWER"
28 RUH RUN used within the program.
FLIM Request execution.
FUREYER First execution.
FOREYER Second execution.
FOREVER
. Infinite loop.
etc.

Press the BREAK key to escape from the infinite loop; to continue exe-
cution, type CONT and press ENTER.

Q Example: The Rule of 72

A deposit left in the bank to earn interest will eventually double in value. The rule of 72
states that the number of years needed for the money to double is approximately equal
to 72 divided by the annual interest rate. So, for example, if the interest rate is 4% the
time to double will be 18 years (72/4). A flowchart for the program to verify this rule is
shown in Figure 5.2. The program follows it closely with corresponding line numbers
shown in the flowchart.

18 REM THE RULE 0OF 72
Z8 FPRIMT "IMITIAL DEPOS1T AMD INTEREST RETET"
25 INPUT DEF. IN

69

sec. 5.2 | IF-THEN loops

Program Line Numbers
START

INPUT (20)-(25)
DEPOSIT, INTEREST
(]
BAL = DEPOSIT (40)-(60)
COUNTER =0

BAL = BAL + BAL * INTEREST/100| (70)

:

COUNTER = COUNTER + 1 (80)

BAL <2 *; DEPOSIT (85)
DISPLAY
TIME TO DOUBLE (90)-(95)

FINAL BALANCE

FIGURE 5.2 The rule of 72.

COMMENTS
Z@ REM EGQUATE THE IMITIAL BRLAMCE TO THE DREPOSIT
48 pRAL=0LEF Initialize.
SE REM O IMITIALIZE A COUMNTER
S8 M= Initialize.
&5 REM COMFUTE A NEM BRLAMNCE
T8 BAL=BAL+EAL+IHNS108 Process.
FE REM IMCREMEHWT THE COUNTER
SE M=H+L Increment.
25 IF BAL<CZ+DEF THEM 7@ Test.
S PRIMT “TIME TO DOUBLE 15" Wi "YERRZY
9% FRIMNT "FIMAL BALAKWCE IS %" BAL
Qo B
FUM Request execution.
IMITIAL DEFOSIT AMD INTEREST RATE™
Tl 4 Input the data.
TIME TO DOUBLE I= 12 YERRS
FIMAL BALANKCE Iz # 2825 82
RN
IMITIAL DEFOISIT AMDe IMTEREST RATEY
¢ deed Forgot to enter the interest rate.
o e

TIME To DOLELE I8 13 Y¥E

FIMARL BALAMCE IZ # 28lz &

AR

So enter interest rate now.
= Rule of 72: 72/6 = 12 years.

|13

70 ch. 5 /| looping

The rule of 72 program can readily be used to determine whether a larger (or smaller)
initial deposit affects the time to double. Try initial deposits of $500, $1000, and $2000.
What is your conclusion? The rule of 72 is verified by means of an exact formula in a
later chapter.

5.3 FOR-NEXT LOOPS

The FOR and NEXT statements together provide another way of performing
loops. The IF-THEN loop required a four-part loop structure: initialize, pro-
cess, increment, and test. The FOR-NEXT loop only requires the initialize
and process parts. It is generally simpler to use and consequently preferred
by many programmers. The general form of the FOR-NEXT loop is as

follows:
COMMENTS
168 FOR A=E TO o STERF L STEP D is optional.
P T The bracket drawn from line 10 to
line B0 outlines the range of the
. loop.
S

A HEST H The A is optional.
=05

Ty
Xx

A is a counter variable whose initial value in the loop is B. The NEXT
statement is the last statement in the loop. Once that line is reached, execu-
tion returns to the beginning of the loop, that is, the FOR statement. The
counter A is increased by the STEP D. If A is less or equal to C, the upper
limit of the counter, execution proceeds through the loop. Once line 50 is
again reached, execution returns to the beginning of the loop; the counter A
is again incremented by D, and checked if it exceeds the value of C. If A
does exceed C, the loop has been completed and execution transfers to the
first line after the NEXT statement, in the above example line 60. If no
STEP is used, a STEP of 1 is assumed. In the FOR statement, the initial
value, final value, and increment can be constants, variables, or expressions.
When the FOR statement is reached, these values are evaluated and stored in
memory. Respecifying (changing) these values within the loop will not
change the range of the loop. However, it is not permissible to change the
value of the counter within the loop.

The following examples illustrate the FOR statement:

STATEMENT RANGE OF VARIABLE

L FOR T =@ TO ¢ T assumes the values 0, 1, 2, 3, 4.

< FOR F = e 1 TO & 4 2TEF &1 F assumes the values 6.1, 6.2, 6.3,
6.4.

EFOR £ = 4 T 48 STERP 2 Z assumes the values 1, 3, 5,7, 9.

4 FORE W = 16 TO -3 STEF -4 M assumes the values 10, 6, 2, -2.

& Y= 5 TO O3 P assumes only the value 5.

& FORS=1ToasTER-1 Z assumes only the value 1; the

spaces are optional in BASIC.

71

sec. 5.3 | FOR-NEXT loops

We notice that the STEP can be positive, negative, integer, or a fraction.
In the first example the assumed STEP is 1. In the second example the STEP
is a tenth and F is incremented accordingly. In the third example the STEP is
2, and after Z = 9 is incremented by 2, Z = 11. This is greater than the
value 10; therefore, the loop ends without Z ever assuming the final value
10. In the fourth example a negative STEP is demonstrated. Again, the final
value is not reached since -6 is less than -3. In the fifth example no STEP is
specified, so STEP 1 is assumed. After P is incremented the first time, its
value is 6. Since 6 is greater than the final value 3, the loop ends. In the last
example, Z is O after it is incremented for the first time. Since 0 is less than
1, the starting value of Z, the loop ends.

REMEMBER: If no STEP is specified in a FOR-NEXT loop, a STEP of 1 is assumed
by the computer.

The following short program prints the numbers 32 through 34, their
squares, and their cubes:

COMMENTS

FOR M=22 TO =4 STEP 1 is assumed.
FREINT M: M+t MLZE M*M is computed faster than M12.

MEXT

OF k=18 TO S STEF -2
MEST K
“RINT K

D Lt
DX]
nE T

i
T

The M is optional in NEXT.

Upon completion of the loop, the
counter has the incremented value
that just exceeds the final value;
M=34+1= 35,

Once the loop is completed the
counteris4; K = 6 - 2 = 4,

C;> Example: Evaluating an Infinite Series

The infinite series

1+12+1/3+1/4+ .-+ 1/N

has an infinite number of terms. Since each successive term is smaller than the previous
term, one expects the sum of the series to add up (converge) to a certain value. Does it?
Let us investigate the sum of the first 10, 50, and 100 terms, that is, for N = 10, 50, and

100.

COMMENTS
28 S=R Initialize the sum S.
2@ FOR k=1 TO M STEP = 1 assumed.
[4»:1 S=5+1/K
SE MEXRT K
€8 PRINT "SUM="; 5 END is optional and we omit it.

ch. 5 | looping

We now execute the program by specifying N and then transferring to line 20.

COMMENTS
M=16
GOTO =@
SUM= 2. 92897 The sum for 10 terms.
M=55
GOTO =26
Slivl= 4, 459921 The sum for 50 terms.
M=1 EE
GOTO 26
SUM= 5 187I8 The sum for 100 terms.

Indeed this series does not converge; it diverges. Successive terms keep adding on to the
total sum, making the sum larger and larger.

In the last example we ran the program for N = 100. The loop consisting of lines 30
to 50 was executed 100 times as the counter K assumed the values 1 through 100. The
sum was then displayed in line 60. Suppose we display the value of the counter upon
completion of the loop.

COMMENTS
H=186
GOTO ze
SUM= 5. 18738
FRINT The loop’s counter is incremented
161 one final time.

For a loop ranging from 1 to 20 with a STEP of 2, the counter assumes the values
1,3,5...17,19. The loop is completed and the counter is incremented one final time.
The counter is then 21 and execution of the rest of the program follows.

COMMENTS
E:LIFJ FOR k=1 TO 26 =STEF 2 The loop’s upper limit is 20,

28 MEST K The STEP is 2.

ZE FRINT K The last value of K within the loop
is 19.

RN

21 Upon completion of the loop, K

equals 19 + 2,

If the STEP is 3 in the above program then K is 22 (19 + 3) upon completion of the loop.

REMEMBER: Every FOR-NEXT loop must have a FOR and a NEXT statement.

FOR-NEXT loops are used frequently and any particular program may contain sev-
eral such loops. It is possible to branch in and out of loops using conditional or uncon-
ditional transfer statements. However, such jumps can be made only within a particular
FOR-NEXT loop or from it to the outside. No jump may be made into a loop. A loop
may only be “entered” through its FOR statement (first statement of the loop). This
means that a GOTO statement, an ON-GOTO statement, or an |F-THEN statement that
is outside a FOR-NEXT loop cannot transfer control to any statement inside the loop.

73 sec. 5.3 |/ FOR-NEXT loops

However, a GOTO statement, an ON- GOTO statement, or an |F-THEN statement that is
inside a FOR-NEXT loop may transfer control anywhere within or anywhere outside the
loop. The following are examples of legal jumps:

COMMENTS
—1@8 FOR KOUNT=1 TO 166 Set up a loop.
158 GOTO 278 Transfer inside loop.
276 PRINT "IMSIDE LOOF"
275 IF EQUMT-S6 THENM 488 Transfer inside loop.
318 IF TEST>20 THEM S6d Transfer outside loop.
—4BE MEST EQUNT
68 GOTO 27@ lllegal transfer into loop. A proper
version of line 560 is 560 GOTO
100.

Example: Averaging a Set of Numbers

Suppose we know how many numbers we wish to average. Let that number be N. We
must add up all the numbers to be averaged and divide the total by N. We first input N
and subsequently go through the loop N times to input the numbers to be averaged. In
the process we also add up the numbers to compute their sum. Once the loop is completed
the average (= SUM/N) is computed and displayed.

16 REM AVERRAGE A SET OF MUMEERS
28 FRIMT "HOW MANY MNUMEBERS DO Y0OU WISH TO AYERRGE?T"
2@ IMFPUT N
4@ REM IMITIALIZE THE UM To ZEROD
45 SUM=8
58 FOR K=1 TO N
[Se IMFUT "ENTER A MHUMEBER": MNUMEBER

78 SM=SIM+HUMEER

58 MEXT E

S5 PRINT "THE AVERAGE OF THE": M: "MUMBERZ IS"; SUM-M
SS9 END

Type in the program and use it to compute your average grade in mathematics to
date, or the average size of the last 12 checks you wrote.

Suppose we wish to average a set of numbers and we do not have an exact count of
how many numbers there are. For example, we wish to determine the average amount of
a whole pile of checks. We know that the value of a check cannot be a negative number.

74 ch. 5 | looping

16 REM AYERAGE A SET OF NUMBERS

15 REM THE MUMEER OF NUMEERS 15 UNEMOMWH

26 M=4: SUM=a

28 PRINT "EMTER A HUMBER IF DLOME ENTER —53¢

48 INFUT MHUMEER

S8 IF HUMBER = -39 THEN &8

28 M=M+1: SUM=SUM+NUMBER

e GOTo Za

g8 PRINT "THE AYERAGE OF " N; "HUMBERS I5": SUMAM: EMD

;E?ER A HNUMEER IF LOHE EMTER -39
éN?ER A MUMBER IF LOME EMTER —-99

= 55

EHEER A MUMEER IF [DOME EMTER —%9
ég?éﬁ A HUMEER IF [OME EWTER -929
;ﬁg AYERAGE 0OF Z MUMBERS IS &7. 6867

This version of the averaging program uses an IF-THEN loop. The earlier version
utilized a FOR-NEXT loop. In line 50 we check the value of NUMBER. If it equals -99
then the last data entry has been made. The -99 serves as a flag. Each NUMBER is tested
in line 50 to check if it equals the flag. If it does, execution transfers out of the loop to
line 80 and the average is displayed.

C:> Example: How Fast Can the Computer Add?

The program we present in this example can be used to determine the time it takes to
perform an addition or any other operation. We begin by executing a loop that actually
computes nothing. A stopwatch is used to measure the time to perform the loop 5000
times. The time interval starts when the ENTER key is pressed after typing RUN and
ends when the READY appears again.

18 FOR S=1 TO S08a
=28 A=l
ZB MEXT =

Execute this program several times and compute the average time of execution. The
average time to perform this loop 5000 times turns out to be about 29 seconds. Now re-
place line 20 by

1l

2B A=1+1

and run the program again several times. In the presence of the new line 20, it takes about
35 seconds to perform the loop 5000 times. The difference in the two times of execution
is 6 seconds. Dividing this difference by 5000 yields the time for a single addition, 0.0012
seconds. Similarly, it is possible to investigate the time of execution for the multiplication
A = 1*1, or compare the difference in the time it takes to execute PRINT 1 versus ? 1.
Another interesting question this approach may help resolve is whether A = 2*2 is faster
or slower than A = 2 1 2. Or how about comparing the execution time of the three-line
loop (lines 10 to 30) with the execution time of a one-line loop containing the same three
statements chained together? Can you think of any other operations that you may wish
to investigate?

75 exercises 7

l > Example: The Legend of the Wise Old Man

An old legend has it that a wise man, when offered any reward he desired, requested that
the squares of a checkerboard be filled with kernels of wheat. One kernel was to be placed
on the first square, two on the second, four on the third, eight on the fourth, and so on.
How many kernels of wheat would be required to fill the 64-square checkerboard?

This problem requires summation of 64 integers. Successive integers are in the ratio
of 2 : 1. A flowchart is shown in Figure 5.3. The program follows it closely.

COMMENTS
18 REM THE WISE OLD MARRN
28 SUM=8 Initialize the sum;
26 FOR FOUNT=8 TO &3
l:-ua SLM=SLIM+ZL KOUNT 210=1,211=2;etc
58 HNEXT NEXT by itself is OK.
&8 FRINT "TOTAL NQ. 0OF KERNELS ="; SUM
T EML
RN
TOTAL MO, OF EERHELS = 1. 844€8E+19 Indeed he was a wise man!
Program Line Numbers
START
SUM =0 (20)
| KOUNT
> 0TO 63 (30) - (50)
< SUM = SUM + 2 + KOUNT
DISPLAY 60
SUM (6o)
(70)

FIGURE 5.3 The wise old man.

EXERCISES 7

1. What final value will be displayed in each of the following programs:

a. 18 A=4. E=z b. 18 A=1&:. B=@
zZ8 B=B+A 28 B=BE+R
28 A=A-1 8 A=R-g
43 IF RAXl THEN z8 48 IF RA>=86 THEM zv
S8 PRINT B+135 5@ PRINT B+15

76

ch. 5 [looping

Anticipated display

Actual display

¢. 168 K=k+1
28 FRINT K
38 RUM

Anticipated display

d. 18 K=K+1
28 FPRINT K
38 GOTO 18

Actual display

Note: Did you remember to type in NEW before entering each program?

2. How often is the IF-THEN executed in each of the following programs? What value

will be displayed?

a. 18 A= 5: B=8. C=1 b. 18 A= 5: B=1: C=1
28 C=CHCR+T 2 28 C=C*(A+7 3
38 B=B-1:.A=A+5 38 B=B+1: A=A+5
48 IF B8 THEM z©6 48 IF B<=8 THEN =z@
S8 FRINT C 58 PRINT C

Anticipitated display

Actual display

3. Consider the flowchart for the program to sum the integers (whole numbers) from 1
to 10. The numbers in the circles represent line numbers in the corresponding pro-

gram.

START

S=0

Program Line Numbers

DISPLAY
“SUM IS”; S

a. ldentify the initialization, incrementation, test, and process parts of the loop.
b. Write the corresponding program consisting of lines 10 through 80.
c. Write a shorter version of the same program.

77

exercises 7

4.

10.

11.

12.

13.

d. Generalize the program to sum all the integers from MIN to MAX. Use INPUT to
enter values for MIN and MAX during execution.
e. Rewrite the program using a FOR-NEXT loop.

Write short programs to perform the following. Write these programs with an IF-
THEN loop and then with a FOR-NEXT loop. In each case decide which version
is the simpler.

Display all the integers from 1 to 20.

Display all the odd integers from 1 to 20.

In increments of 0.5, display all the numbers between 7 and 14.

Display the fractions %, %, ¥s, . . . , %o in decimal form.

Display every third number starting with 10 and going no lower than -10.
Determine and display the product of the first 10 positive even numbers.
Compute and display the product of all the integers from A to B. A and B are
input data;assume A < B.

@ - 0 O

. Modify the rule of 72 program presented in this chapter to display the balance for

each year.

. Rewrite the rule of 72 program using a FOR-NEXT loop.

. Write a program to add the consecutive positive integers and print the last integer

added when the sum first exceeds 1000.

. A baseball player hits the ball so that the horizontal distance from the plate to the

ball in feet is given by the equation X = 80T, where T is the time in seconds since
the ball was hit. The height of the ball above the ground is given by the equation
Y =4 + 70T - 16.1T?. Write a program to produce a three-column table giving
values of T, X, and Y at '4-second intervals as long as the ball has not gone over the
fence (X is less than 355 feet).

. Write a program that will read 50 scores and then get a count of the number of

grades in each of the given ranges 1 to 25,26 to 50,51 to 75, and 76 to 100.

You purchase a franchise in a newly formed association and are told that your profit
(in $1000 units) can be projected for the next 8 years by the formula

P=T3-5T%+ 10T - 51

where P represents profit and T the time in years. At T = 0, the time of the purchase
of the franchise, P = -51. Your cost of the franchise is therefore $51,000. A negative
profit indicates a loss. Write a program to determine:

a. At the close of which year do you show a profit for the first time?

b. What is your cumulative total profit, or loss, for the first 8 years?

Write a program to compute the net wages of the employees of a company. You are
given the gross wages; income tax of 20% if income is $800 or less, 22% if income is
more than $800;union dues of 1% of total wages; FICA 6% of income equal to or less
than $900. Do not be concerned with dependents. The company has 8 employees.

Write a program to play the following game: The computer tries to guess a number
you have in mind from one to 100. First it guesses a number and you tell it if the
number is too high, too low, or correct. On the basis of the information you give, the
computer guesses again. This continues until the computer guesses right.

Mr. Jones is offered employment by ABC Company, and is afforded the opportunity
of taking two different methods of payment. He can receive a monthly payment of
$700 and a $5 raise each month, or he can receive a monthly wage of $700 with a
yearly raise of $80. Write a program that will determine the monthly wages for the
next eight years in each case. Determine the cumulative wages after each month, and
from the information determine which is the better method of payment.

78

ch. 5 [looping

14.

15.

16.

17.

18.

How many terms of the series 1 + % + % + % ... must be added so that the sum
will be greater than or equal to 4?

Write a program to input a positive integer P and display P as well as P! (P factorial),
where P! = 1 X 2 X 3 .. .P;forexample,3! =1 X 2 X 3.

Compute the quantity Q =4 X (1 - 1/3 +1/5 - 1/7 + 1/9 ---.). Input the num-
ber of desired terms in the series and output Q. Do you recognize the quantity Q?

If the current population is 200,000,000 and the population grows 1.5% per year,
find the year in which the population will reach 300,000,000. Use INPUT to enter
the growth rate and the upper limit on the population.

City A has 1000 residents and is agriculturally self-sufficient (i.e., it cultivates enough
food to feed itself). In fact, it produces enough food for 100,000 residents. However,
every 10 years the population doubles and in that time enough food can be produced
to feed 4000 more people than in the previous 10 years. Output a table of data in the
following form:

AFTER YEAR POPULATION FOOD SUPPLY FOR
0 1000 100000
10 2000 104000

°

19.

20.

21.

22.

23.

Have the data stop when the population outgrows the food supply.

Job A pays $12 per day and lasts 30 days. Job B pays $1 for the first day, $2 for the
second, $3 for the third, and so on. Which job pays more over a period of 30 days?
Obviously, job A is a better deal for a while. When does job B become a better deal?

Write a program to compute the balance of a Christmas Club account after one year.
The annual interest rate is 6% compounded monthly. Run the program for monthly
deposits of $10, $20, and $40.

If a person earns 6% compounded monthly on the minimum balance for the month,
and he or she withdraws $100 per month from an account that starts at $10,000,
how long can this go on?

Use a computer to help you solve this problem. Mrs. Freezman lives on a street where
the house numbers are 1,2,3 It is interesting to note that the sum of the house
numbers less than Mrs. Freezman’s house number is equal to the sum of the house
numbers greater than hers. Her number contains three digits. What is her house num-
ber and how many houses are there on the street? It can be shown that the desired
house number X is related to the number of houses on the street N according to the
relation

X =-0.5 +4/0.25 + 0.5N + 0.5N2
An iterative formula for finding the square root of N is given by the formula

G? +N
2G

where G is the initial guess for the square root of N and B is a better approximation.

79 sec. 5.4 | subscripted variables

Count the number of iterations necessary to get successive computed values to differ
by no more than 1E-6. Use N = 5 and G = 3. (Compute B;then let G be that value
of B and compute a new B, and so on.)

5.4 SUBSCRIPTED VARIABLES

At times it is desirable to have the computer keep a table of values in its
memory, for example, a list of 12 test scores: 65, 63, 75, 76, 90, 83, 87, 98,
76,75, 81, and 68. The complete set of the quantities is called an array, and
each individual quantity is called an element of the array. The first element
of the array is 65, the second element is 63, and the last element is 68. We
can give the whole list a variable name, for example, the name S. We then
refer to the first item in the list, 65, by S(1). What is S(5)? If J = 3, what is
S(J)? S is a subscripted variable; it has one subscript and is sometimes re-
ferred to as a one-dimensional array.

Before we can work with our list in a program, we need to store it in the
computer’s memory. First we must tell the computer to reserve sufficient
space for storing our array. We use a DIM statement to reserve storage space.
For example,

COMMENTS
18 DIM Sqizs Array S is of depth 12.
28 FOR I=1 TO 12 S(13) would therefore not be per-
[3@ INFUT S{In missible.

48 MEXRT I

Note that in this program the counter of the FOR-NEXT loop is used as the
subscript. As | takes on the values 1 through 12, the elements of the array S
are entered. Once this program has been executed, the array is stored and we
can use its elements; suppose 65 has been entered as the first element and 98
as the eighth element of array S.

COMMENTS
PRINT S<di» Display the first element of S.
53
PRINT Sogn Display the eighth element of the
98 array.

We sum the elements and display their average:

COMMENTS
56 SUM=a
52 FOR K=1 TO 12 Start of loop; the counter is K.
[54 SUM=SUM+S ks The counter is used as the subscript.
5& MNEST K End of loop.

58 FRINT "AVERRGE IS": SUMALz2
The following is an example of a DIMension statement

18 DIM ACLSY, BoXa, CCD+30

80 ch. 5 [looping

The quantity in () may be a constant, a variable, or an expression. In this
case, X and D must be specified prior to line 10.
There are several rules and restrictions we must be aware of:

1. The subscript O is permissible. A DIM statement of depth 12, DIM
S(12), actually reserves 13 memory locations for S(0), S{1), ..., S(12).

2. The DIM statement is optional if the largest subscript used for the
array is 10.

3. Try to estimate the anticipated size of the array so that excessive
memory is not tied up through the DIM statement.

4. The DIM statement may be placed anywhere in the program, but
must be placed prior to where the array is first used.

5. The depth specified by a DIM statement may be a number or a
numerical expression. DIM S(A + 2) is valid provided A has been specified
beforehand.

6. A single DIM statement may be used to declare several variables, for
example, DIM A(30), B(40), C(50).

7. A program may contain several DIM statements, but each array can
only be declared once.

8. The same variable name can be used in a program for a subscripted
variable and for a nonsubscripted variable; S and S(K) are two different
variables.

9. The subscript can be an arithmetic expression; S(2 * 3 + 2) and
S(A + b) are permissible.

10. Arrays may contain numeric or string information. A$(l) is an array
containing strings.

C:> Example: Find the Largest Element of an Array

This program demonstrates the use of a subscripted variable, the DIM statement, and two
FOR-NEXT loops. A flowchart of the program is shown in Figure 5.4. First the number
of elements in the array is entered with an INPUT statement. Once the length of the array
is known, the DIM statement is specified as DIM S(N). N is the number of elements in the
array. The first loop, lines 30 to 38, is used to input the array S, one element at a time.
The array is then examined to locate its largest element. To begin with the first element,
S(1) is assumed to be the largest (line 42). It is assigned to variable BIG. Subsequently,
the remaining elements S(2) through S(N) are compared with BIG. The FOR-NEXT loop
of lines 50 to 58 therefore extends for values of | from 2 to N. Every element S(l) is
compared with BIG in line 52. If S(I) exceeds BIG, then an element larger than the cur-
rent largest element has been encountered. BIG is equated to that element in line 56.
Once the loop has been completed the largest element of the array is displayed in line 60.

18 INPUT "MUMBER OF ELEMENTS IN THE ARRAY"; N
28 DIM SCND

—38 FOR I=1 TO N

L?4 INPUT SCI2

38 NEXT I
48 REM ASSUME THE LARGEST ELEMENT IS Sdia
42 BIG=SC1>

98 FOR I=2 TO N

S2 IF S(Ix»<=BIG THEN 58

54 REM S{I» IS5 LARGER THAWN THE FREVIOUS LARGEST ELEMENT
56 BIG=S{I?

58 NEXT 1

&8 PRINT "THE LARGEST ELEMENT IS“; BRIG

81

sec. 5.4 | subscripted variables

START Program Line Numbers

INPUT (10)
NUMBER OF ELEMENTS
N
|
1TON (30)-(38)

!

i INPUT
\ S(1) (34)

y

BIG = S(I) (42)
I |
YES
(52)
NO ,
BIG = S{l) (56)
= y
DISPLAY
LARGEST ELEMENT (60)
BIG

FIGURE 5.4 Find the largest element of an array.

RUN

NUMBER OF ELEMENTS IN THE ARRAY? 4
* 1@

iz

? 8

? 34

THE LARGEST ELEMENT IS 34

X

Enter this program and test it. Does it work for negative values as well as for positive
values? What if N = 1? How would you modify the program to locate the smallest ele-
ment of array S(1)?

Since string data can also be compared and ordered, the above program can be used
to find the element in a string array that is closest to the end of the alphabet. Instead of
dealing with the numerical array S(I), we would deal with the string array S$(1). S$(1)
may, for example, contain a list of names.

5.5 NESTED LOOPS

If one loop is completely enclosed in another loop, the loops are called nested
loops. Loops may be nested three, four, or more deep. The only limit is the
amount of available memory. Figure 5.5 illustrates the concept of nested
loops. It shows a segment of a program that includes several nested loops.
The outer loop (lines 100 to 650) contains two inner loops. The first inner
loop consists of lines 210 to 270. The second inner loop (lines 330 to 590)
itself contains an inner loop (lines 400 to 510). The brackets are drawn in
Figure 5.5 to outline the range of each loop. Loops are legally nested if the
brackets do not intersect.

REMEMBER: When you write programs containing nested loops, draw brackets to
outline the range of each loop. Be sure the brackets do not intersect.

l > Example: The Multiplication Table

82

We use nested loops to produce a multiplication table for the numbers 4 through 9.

COMMENTS

16 REM MALTIPLICATION THRELE

1% PRIMT " 4 bl = 7 @ an Display heading.

28 FOR QMTER=4 TO 9 Outer loop starts.

24 FRINT Skip a line.

25 PRIMT QWTER: © 93 : Display numbers at margin.
TROFOR IMHMER=4 TO 9 Inner loop starts.
fam FRIMT OWMTERIHMER: Compute and display.
~5E MEST IMHER Inner loop ends.

s MEST OWTER Quter loop ends.

The index of the outer loop is OWTER. We did not use the variable OUTER since it con-
tains the BASIC reserved word OUT and is therefore an illegal variable. Aside from
demonstrating nested loops, this example introduces a new way of tabulating numbers.
The semicolon at the end of lines 25 and 40 compresses the display on one line. The semi-
colon at the end of a PRINT statement, sometimes referred to as a hanging semicolon,
suppresses the line feed. In the absence of line 24, the output would be so compressed
that the numbers would fill the entire screen and would make no sense. Line 24 has no
hanging semicolon and thus interrupts the compression. Enter the program and run it
with and without line 24.
We now execute the program, which includes line 24.

RUN

4 3 & T e S
4 16 28 24 28 32 36
= 286 25 @8 X5 48 45
& 24 3@ & 4z 48 D4
v 28 35 42 4% S8 B3
g8 32 49 48 D& &4 T
- 6 45 54 €F TFTe #1

The program can be edited to display a multiplication table with a different range,

sec. 5.5 / nested loops

188 FoR L1 = 1 70 16

®
®
®

21 FOR L& = 1 10 1% STEF =2
®
L]
®

276 MEST L&
@
[]
®

—— 3EE FOR LE = 5 TO 26

®
®
®

¥l FOR L4 = 5@ To 4 STEF -5
®
©
@

S MEXT L
[]
[]
(-]

—— S3E MEXT L3

®
[
®

B5E HWEXT Li

FIGURE 5.5 Nested loops.

for example, for the numbers 1 through 10, or a table for the 10’s, 11’s, 12’s . . . 15%.
Which lines need to be edited? The alignment of the numbers in the multiplication table
may have to be improved using techniques to be introduced in the next chapter.

The hanging semicolon is further illustrated in the following example:

COMMENTS

18 FOR K=1 TO 3

28 FPRINT "ROMW": Note the hanging semicolon.
38 MEXRT K

48 PRINT "YOUR BOATY

RUN
ROW ROW ROW YOUR BOAT Entire display is on one line.

Now delete the semicolon in line 20 and again RUN the program.

COMMENTS
28 FPRINT “"ROW" No hanging semicolon.
RUN
ROW Display appears on successive lines.
ROW
ROM

YOUR BORT

5.6 MULTIPLE SUBSCRIPTS

Subscripts are used to identify individual numbers in a list of numbers called
an array. AGE (2) and AGE (N) refer to the second and Nth item in the
array called AGE. Such arrays are known as singly subscripted arrays. They
are one-dimensional arrays.

It is also possible to use arrays with more than one subscript. When two
subscripts are used, the array is called a matrix. It is a two-dimensional array.
The elements in a matrix are arranged in rows and columns. Consider the
problem of storing the ages of students in a classroom. The classroom has
three rows of chairs with each row containing five seats. A matrix containing
the desired information is shown below.

Row Column
1 2 3 4 5
1 21 19 20 18 17
2 20 28 18 16 19
3 19 20 19 18 22

The matrix has 3 rows and 5 columns. The student in row 2 and column 3 is
18 years old. This group of ages can be stored in the memory of the com-
puter in a doubly subscripted array. The programmer must give it a name,
following the same rules used for naming any variable. The array could be
named AGE. It must then be decided which of the two subscripts in AGE
(J,K) is to refer to the row and which to the column. Frequently, the first
subscript is taken to represent the row number and the second to represent
the column number. The memory location AGE (2,3) would then represent
the age of the student sitting in row 2 and column 3. AGE (2,3) is 18. Space
for these numbers is reserved in memory by the DIM statement

DIM AGE (3,5)

This statement will cause the computer to reserve space for 15 numbers. The
general form of our matrix is AGE (ROW, COL). The DIM statement is op-
tional if both subscripts do not exceed 10. For the array AGE, no dimension
statement is necessary up to AGE (10, 10). Since AGE (0,0) is permissible,
we can have up to an 11 X 11 matrix in memory without a DIM statement.
All the rules mentioned in describing arrays with single subscripts can be
extended to variables with multiple subscripts.

The idea of a double-subscripted array can be extended to multiple
subscripts. For example, the array AGE (ROW, COL, CLASS) is a triple-
subscripted array in which the three subscripts represent the row number,
column number, and the class that the individual is attending. AGE (2,3,4)
refers to the person’s age who sits in row number 2, column 3, and attends
class number 4.

C:> Example: Magic Squares

84

Consider the following matrix of numbers:

[©X NN I 5]
o \O
co W A

85 sec. 5.7 | debugging loops: tracing and playing computer

This matrix is a magic square. It has the property that the sum of the numbers along each
row, column, and diagonal is the same. We now write a program to input these numbers
into a two-dimensional array SQ, and then check if it is indeed a magic square.

FEM PRGIC SOURRE
FOR ROW=1 TO =
FRINT "EMTER 1 MO AT A TIME FOR ROW

MUMBER" ; ROM
25 FOR CoOL=1 TO =
J:EE IMPUT SRCROR. COL
E5 MEST COL. ROM
48 REM CALC, & PRINT SUM OF ERCH ROW
45 FOR ROM=1 TO Z
SE SUMCROM =8
FOF COL=1 TO =
SUMCROMy=5SUMCROM D+ 50 CROM, COL
ME=T COL
T8 FRINT "THE UM OF ROW": ROM: "IS5": SUMCROM 2
MEWT RO
FEM CRLC. & FRIMT =l OF A DIAGOHAL
SUM=E
FOR L=1 TO =
SUM=SUM+z 0L, Lo
2 MEST L
FEINT "sUM OF DIAGOHAL™: SUM
S END

LA el ol
DR el

1
&y T LR
bk ol

P

00 o g
0000 o 00

8z
55
e

FLIk
EMTER 4 HO. AT A TIrE FOR ROM MUMBER 1

-

el

MO, RT A TIPME FOR ROW NUMEBER 2

Wi m
—
=

EeN |

EH;’EF: 1 M AT A TIME FOR ROW NUMEER

L) L =] —l RO I O
m
1l
[

1l

R <
¥4
THE SUM OF FOM 4 IS 45
THE SUM OF ROM & 15 45
THE SUM OF ROW 2 IS 45

SUM OF DRIAGOMAL 45

COMMENTS

No DIM needed since ROW and
COL are assumed less than 11.

This line is split to keep program
and comments separate.

Enter 1 element of SQ at a time.
Both loops end here.

Initialize a sum for each row.

Initialize SUM. SUM is a different
variable from SUM(ROW}).

SQ(L,L) is a diagonal term; SQ(2,2)
is the diagonal term in the second
row.

This program is a little longer than it needs to be. The loop to sum the diagonal elements
(lines 88-92) can be combined into the nested loops that compute the sum of the ele-

ments in each row (lines 45-75). Can you do it?

A new statement is introduced in line 35: NEXT COL, ROW terminates two loops.
The inner loop has the first counter variable, COL, and the outer loop’s counter variable

is ROW,

5.7 DEBUGGING LOOPS: TRACING AND PLAYING COMPUTER

In this section we present two techniques most helpful in debugging loops:
playing computer and tracing a loop. In the process of illustrating these two

86 ch. 5 / looping

methods of debugging, we will consider errors that are commonly made in
programs containing loops. These errors are not syntax errors, but rather
errors in logic that result in meaningless answers or infinite loops.

The trace function lets you check on the execution of a program. As the
execution proceeds from line to line, each and every line number is displayed.
These line numbers appear inside brackets and represent sequentially all the
lines that were executed, even repeatedly within a loop. Once the program is
entered, type in TRON, and press ENTER followed by RUN and ENTER.
To remove the trace, type TROFF. Once the trace is completed, we examine
the flow of the execution for any irregularities. The trace is done for us by
the computer. On the other hand, playing computer requires a manual trace.
The programmer goes through the program manually line by line, carrying
out its logic and computations in an attempt to find the instructions that are
responsible for the logic error. Frequently, the trace and playing computer
are used together to debug a program.

s> Example: Sorting a List of Numbers in Descending Order

The problem we consider in this section is that of sorting a list of numbers in descending
order, from the high to the low value, and displaying the result. We use the subscripted
variable S(I) where | = 1 to 10. The array S(l) therefore contains 10 numbers. This pro-
gram is an extension of the program to determine the largest element of an array, which
was presented in this chapter. Once the largest element is found it must be placed in S(1).
Subsequently, elements S(2) through S(10) need to be checked to again locate the largest
element among them. And so on until the last element, S(10), is reached. It is necessarily
the smallest element of the original array S{l).
We enter the following program:

COMMENTS
18 REM SORET IWM DESCENDING ORDER
28 IMPUT “LEMGETH OF AREAY": N
38 PRIMT "EMTER THE ELEMENTS ONE AT A TIME"
—Z2 FOR I=1 T0 N
G IMFUT Soln
- Z58 HEXT 1
48 FOR E=1 T0 M-1 Begin search for Kth largest ele-
4z REM ASSUME SOk» IS LARGEST ment. . i
— S8 FOR I=E+1 TO N Search begins with element K + 1.
S IF SoJro=SOoEr THEM 59 Located an element larger than
54 REM FERFORM AM IMTERCHAMGE S(K)?
HE SCRI=SOI0 Place the larger element in S(K).
58 HEXT I.K End of inner and outer loops.
&1L FRINT "THE SORTELD ARRAYY
&2 FOR L=1 TO M: PRINT S<L»: NEXT Entire loop in one line of code.
&g END

We now check the program with test data. We will sort the two-element array 10, 20. The
expected result is the sorted list 20, 10.

COMMENTS
RUM
LEMGTH OF RARRAY? 2 You enter 2 for N.
EMNTER THE ELEMEMTS OME AT A TIME
T od| S(1) = 10.
T o6 S(2) = 20.

87

RN

LENGTH OF ARRAY? Z

sec. 5.7 | debugging loops: tracing and playing computer
THE =0ORTED ARRAY

16 Oops!
o] It is not in descending order.

The program needs to be debugged. We will trace the program. There is no need to
trace the beginning of the program where the array is entered. So we put a trace on the
section of the program in which the sort takes place, between lines 40 and 59.

The TRON and TROFF are now part of the program. Once the program is debugged,
these two lines will have to be deleted.

COMMENTS

You enter 2 for N.

EMTER THE ELEMENTS OHME AT A TIHE

T oig S{1) = 10.

T 2@ S(2) = 20

CABIGEDSB (B2 (590 (60X THE SORTED ARRAY Sequence in which lines were exe-
i@ cuted.

28

Array not sorted properly.

We now examine the trace. In line 40 the outer loop is set up with K = 1;line 42 is only
a REM. In line 50 the inner loop is started with | = 2. In line 52 the comparison S(2) <
= S(1) is made. But S(2) is not < S(1), so next we expect to branch to line 56. The trace
however indicates that line 59 is executed after the test of line 52. There is a bug here.
Looking over line 52 we notice that the subscript J is an error; it should be S{l). We edit
line 52 and execute the program.

COMMENTS

52 IF S¢Ix<=Sc(K) THEN 5%

RLIN

LENGTH OF ARRAY? 2

ENTER THE ELEMENTS ONE AT A TIME

7 18

7 e

C4B3 (420 (5B (521 (540 (561 (590 662 THE
SORTED ARRAY

2a

2@

Edit line 52: Replace S(J) by S(l).
Request execution.
You enter 2 for N.

S(1) = 10.

S(2) = 20.

The trace. Line is split to separate
program and comments.

OK, 20 is the farger number.

There's a bug here. This should be a
10.

We still have a bug. The first element of the sorted array is indeed 20, but the second
is supposed to be 10. We now play computer as we go through the trace.
After the data have been entered, the loop on K is set up in line 40. The following

ch. 5 /| looping

table is the result of playing computer:

Line No. from Trace K I S(1) S(2) Comments

40 1 10 20

42 REM Unchanged

50 1 K+1=2 10 20

52 1 2 10 20 S(2) is not < = §(1);
transfer to line 54.

54 REM Unchanged

56 1 2 20 20 S(1) = s(2).

59 1 2 20 20 Inner and outer loops
exhausted.

60 TROFF

The tracé and playing computer verifies the result of the sorted array having the ele-
ments 20 and 20. Where is the bug? In looking over the table we notice that both ele-
ments become equal to 20 in line 56. The difficulty must be there. The bug is in the way
we interchange elements. What we want is for S{(K) to be what S(I) was and for S(I) to be
what S(K) was. The values of the two variables are interchanged as follows:

COMMENTS

TEMP is a temporary variable.
This line we already have.
S(l) is specified = TEMP = S(K).

oo in
-] &N

RN "

LENGTH OF ARRAY? 2

ENTER THE ELEMENTS ONE AT A TIME

7 1@

7 2@

CHEI A CS@I (52 (S (S5 (56X (ST (596 THE SORTED ARRAY
2@

1@

Bravo! We now remove the trace by deleting lines 39 and 60. Type 39 and ENTER.
Type 60 and ENTER.

RUN

LENGTH OF ARRAY? =

EMTER THE ELEMENTS ONE AT A TIME
T -5

726

THE SORTED ARRAY

28

18

-

The program now works. We found two bugs, which resulted in the following three cor-
rections to the original program:

1. Replace the J by an | in line 52
2. Add the line: 55 TEMP = S(K)
3. Add the line: 67 S(I) = TEMP

89

EXERCISES 8

exercises 8

Another approach to debugging, which is not demonstrated in the exam-
ple, is to introduce several PRINT statements into the program. These display
intermediate values of variables that may help identify irregularities.

It is also possible to debug a loop by introducing several STOP state-
ments into the program. Execution will BREAK at each STOP with a line
number message. The values of the variables of interest can then be printed
and examined in the immediate mode. To continue the execution, type
CONT and press ENTER.

REMEMBER: Every program, however short or “simple,” needs to be tested. Use test
data for which the answers are known. If the results are not as expected, trace the pro-
gram and play computer to determine where the bug is creeping in.

1. Before executing the instructions shown, fill in what you anticipate the display will
be. Add an explanation for any errors you make.

PRIMNT Af+R%(Sx
FRIMT Tz, S
FRIWNT Co2, 14k
FRINT R$+BF03, T2

Assume Ag=""vESZ"
HECSy="HO"
Cig. 5=y
BECZE, Toa=" SIR"
Instruction Anticipated Display Display
a. PRIMNT Aclx
b. PRINT AACLND
c. PRIMT
d. FRINT
e. PRINT
f. PRINT
g. PRIMNT A%
h.
i.
j-
k.

2. Enter the following program, but do not run it.

16 DIM AC4ED

28 FOR L=& TO 36
IE ACLY=L

48 NEXT L

£ b
Dougt

Now enter the instructions shown below in the order given, and fill in what you antici-
pate the display will be. Add an explanation for any errors you make.

Instruction

FRINT Rcz@n
FRINT L

FUN

PRINT Ad@:
FRINT A28l
FRINT RCES
PRINT RAC-13
PRINT RAd41n
PRINT L

Anticipated Display Display

ch. 5 /| looping

3. What integer numbers would be stored in each element of array M by the following

program?

mmI

DA

-
=
P s |

Z T
m i
o 1

foa b

4. Write a program to display the integers 1 through 6.

a. One integer per line.
b. All the integers on one line.
c. Three integers per line.

d. Repeat parts a, b, and c for the integers 1 through M; input M.

5. What integers would be stored in each element of the array by the following program?

at B

A=13
FOR B=1 TO
FOR C=1 TO
FOR D=1 TO
EvE. Do Co=A
A=A-1

(ST L

B BN B OO KA OV
R I I o U U]

MEST D.C.E

6. Investigate how much memory is taken up by each of the following statements. Re-
call, variable MEM contains that information.
a. DIM HolBs
b. DIM ACLBE
c. FOR #®=1 TO 1&. RACHI=A: NEST &
d. Any other instructions you might be interested in.

. Write a program to set the even-numbered elements of array A to 5 and the odd-
numbered elements to 10. The array has 20 elements.

. Write a program to set each element of array M to its element number. M is a one-
dimensional array of length 30.

. The program below computes the total number of items in an inventory. Enter the
program and run it.

A8 DIM Mo, Podl, QO

11 REM RESERVE SPACE FOR ¢4 ITEMS. 4 PRICES AND 4 QUANTITIEZS
9 REM HERE IS THE FOINT MHERE INFUT BEGINZ

168
116
126
138
148

FOR I=1 TO 4

INFUT "ITEM CODE WUMEER": NC12
INPUT “ITEM FRICE #":iFiIl
IMPUT "GUANTITY IMN STOCK": QCL>
NESXT 1

8 REM THIS FART OF THE FROGRAM DISPLAYS INFORMATIONM
o C=68
8 FOR k=1 TO 4

FRINT "THERE ARE": GCK>: "OF ITEF NUMBER": NCK3
C=C+EEK

NEXT K

REM MWE WILL FRINT THE TOTAL CARRIED AS “C"

FRINT "THE TOTAL MNUMBER OF ITEMS WE HRAVE FOR SALE

Isv: C

91

exercises 8

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modify the program to compute and display the following:
a. Total value of the inventory.
b. Average cost of an inventory item.

Input a list of ten numbers and display the list in reverse order.
Given a positive number A and an integer M, compute AM without using 1.

Write a program to input a list of five names and corresponding ages. Display the
names and ages of those persons whose age is over 65. Use the following data:

MORRIS 75, JOAN 43, SANDY 46, SARA 68, PAULA 16

Write a program to display the names and ages of the previous problem in ascending
order on age.

Write a program to input five first names and output (a) the name that is alphabeti-
cally closest to the beginning of the alphabet, and (b) closest to the end of the
alphabet.

Modify the magic square program to compute the sum of the elements in each col-
umn. Then check if all the sums are equal and display the appropriate message, THE
SUMS OF ALL THE COLUMNS ARE (ARE NOT) EQUAL.

The balances in a checking account at the end of each of the first six months of the
year were 230, 450, 610, 610, 380, 420. If the balance on December 31 was 710,
write a program to input the data, and create an array giving the net amounts de-
posited or withdrawn during each of the six months.

A company handles 12 items. Initially, there are 1000 of each item. Write a program
using subscripted variables that will assign a price to each item. Have the program
input two numbers N and C, and have the computer display the cost of item N, and
also tell how many items will be left in storage after C of these have been sold.

Two matrices A and B are each of dimension M X N, where M = 3 and N = 2. Write
a program that compares the corresponding elements of A and B and then forms a
matrix that contains the larger of the elements. Have the computer display the matrix
of larger elements.

A special event was attended by 18 people. They paid a total of $24.60 for admis-
sion. The men paid $2.21 per ticket, the women paid $1.77 per ticket, and the
children paid 99¢. How many children attended the event? Hint.: Use three nested
loops.

Write a program that inputs a two-dimensional list of numbers and displays the row
number(s) and column number(s) of those rows and columns whose elements are all
larger than 100. Use the following array to test the program:

100 195 182 22§
85 125 235 67
129 342 100 750

Given a ticket number, check the list of ten lucky numbers to see if the ticket is a
winner. Display an appropriate message.

Given a list of numbers sorted in ascending order, merge a number X into the list.
Display the new list.

The mode of a list of numbers is the value that occurs most often. An array may have
more than one mode. Write a program to accept an array and display the mode(s)
and the number of times the mode(s) occur.

92

ch. 5 [looping

24.

25.

26.

Merge two lists of numbers, each sorted in descending order, into a single array also
sorted in descending order. Display the new array. Modify the program to handle
string variables.

In football, points are scored as follows:

A touchdown with a successful conversion 7 points
A touchdown without a successful conversion 6 points
A field goal 3 points
A safety 2 points

Write a program to input a final score and output the number of combinations of 2’s,
3’s, 6’s and 7’s that will produce that score. For example, 9 points can be scored by the
combinations 2+ 2+ 2+3,3+3+3,6+3,and 7 + 2. The order in which the points
are scored is not important; that is, the combinations 7 + 2 and 2 + 7 are the same.
The output should be of the form:

... POINTS CAN BE SCORED IN . .. DIFFERENT WAYS.

Consider nine slips of paper numbered with the digits 1,2, 3, ...,9. Group the nine
slips into three three-digit numbers, such as 467,291, and 538. Determine the group-
ing that will give the smallest possible product of the three three-digit numbers. Hint:
One number is in the 100’s, the second in the 200’s, and the third in the 300’s.

chapler 4 Input - ouiput

Input-output statements communicate information to and from the com-
puter. We have used the INPUT statement to enter data from the keyboard
during execution. This approach gives the user of the program considerable
flexibility, since he can use different data each and every time the program is
executed. This advantage is however offset by the fact that a program con-
taining INPUT statements can only operate with human intervention and can
therefore not be run unattended until all the interactive dialog has been com-
pleted. For some data entry, the INPUT is quite awkward. For example,
large arrays are typed in one element at a time, a very slow and tedious pro-
cess. In this chapter we present the READ and DATA statements, as well as
INPUT # for data entry. The READ statement accesses data stored in the
program; the INPUT # reads data stored on tape.

The PRINT statement has been used to produce displays on the screen.
We have however been unable to control precisely where on the screen the
output appears and also the way in which the output is displayed. For ex-
ample, we may wish to output a neat financial report with the $ signs posi-
tioned in the first position preceding the numbers. The PRINT USING
statement specifies the format of the output.

When a program generates output that serves as input for another pro-
gram, it is convenient to output these data onto tape. The data can then be
read from the tape at a later time. The PRINT # is used for that purpose.

6.1 READ AND DATA STATEMENTS

93

The READ and DATA statements together permit reading data. The READ
specifies the variables’ names whose numeric or string values are located in
the DATA statement. The general form of the READ statement is

READ list of variables separated by commas
and the general form of the DATA statement is

DATA list of values separated by commas

94

ch. 6 | input-output

Here are some examples of READ and DATA statements:

EXAMPLES COMMENTS

18 RERLD A. B. C This is equivalent to the single state-

15 DATH 1. 2. 3 ment: 10A =1:B=2:C=3

28 DATAH @, 1, "GIG0" For every variable there is a cor-

25 READ SUM. KOUNT, A% responding value in DATA. DATA
can appear before READ. Here
SUM = 0, KOUNT =1, and A$
= “GIGO".

0 RERD A B The DATA statement may have

5 DATA 1. 2. 2 more values than needed. The ex-
tras are ignored.

46 READ A. B Each READ statement continues

44 RERL reading the DATA statement

48 DRATA 1., 2.2 where the previous READ left off.
Here A =1,B=2,andC = 3.

58 READ A.B.C Successive DATA statements are

S4 DATA 1.2 like one long line of data. Here

56 DATA 2 A=1B=2,andC = 3.

68 RERD A.B.C Results in an OD error (Out of

65 DATA 1.2 Data). No value furnished for C.

The statement

1 READ X

tells the computer to find the first DATA statement in the program and take
the value of X from the list of values in the DATA statement. Each time a
READ statement is executed, the computer reads the next value from the
DATA statement. The computer remembers what values have already been
read, that is, where it left off with the last READ statement. If there are no
more values left in the DATA statement, the computer moves on to the next
DATA statement. The computer considers all DATA statements as one long
line of data. If there are no more DATA statements, an OD error (Out of
Data) occurs.

REMEMBER For every varlable appearmg in a READ statemen“‘:,“ o
corresponding value in a DATA statement DATA statements can app, ar anywhere m
~the program. . ; ; - .

The DATA statement can contain strings or numeric constants. No ex-
pressions are allowed. The strings do not have to be enclosed in quotes unless
they include commas, colons, or leading blanks.

COMMENTS

1e& RERD A%.B$

15 DATA JOHMN SMITH. “SMITH. JOHMW" The quotes around SMITH, JOHN
are required because of the
comma in the name.

95 sec. 6.1 | READ and DATA statements

The RESTORE statement causes the next READ statement to start over
with the first item in the first DATA statement of the program. This makes
it possible to reuse the same data within a program.

COMMENTS
1@ READ A, B:DATA 1.2, 2 The DATA statement can be
28 RESTORE chained. A =1,B=2.C=1and
38 RERD C not =3 due to RESTORE.

C:> Example: Unit Pricing

The unit price of an item is computed by dividing its price by its weight. The result is the
price of the item per unit of weight. For example, an item weighing 50 grams and costing
75 cents has a unit price of 1.5¢ per gram. The program illustrates this computation for
three items.

18 FOR k=1 TO 3
28 RERD WCKD, POKD

38 FRIMT "ITEM NO"; K: "UNIT PRICE IS":FCKIAWCKD; "CENTS FPER GRAM"
48 NEXT K

58 DATA 215, 34, 521, 265, 485, 179

[{8]

RLUN

ITEM NQ 1 UNIT FRICE IS . 4ZFz285 CENTS FER GRAM
ITEM MO 2 UNIT PRICE IS | S@8eZF CENTS FER GRAM
ITEM NO Z UNIT PRICE IS . 441975 CENTS PER GRAM

This example shows that READ-DATA can also be used in conjunction with
subscripted variables. In addition, the program may be run for another group
of three items by retyping line 50 followed by RUN; for example,

S8 DATA S, 1e. 16, 34, &, =8

RLIN

ITEM NO 4 UNIT PRICE IS 3. 2 CENTS PER GRAM
ITEM HO 2 UNIT PRICE IS 3.1 CENTS PER GRAM
ITEM WO X UMIT PRICE IS 2 % CENTS PER GEAM

REMEMBER: The DATA statement provides a means of data entry at the time of
execution. Edit the DATA statement and then RUN.

The above program computes three unit prices. This is limiting. Can you gen-
eralize the program so that any number of unit prices can be computed?

c:> Example: Practice Your State Capitals

The following program helps you learn the capitals of the New England states. The states
and their respective capitals are coded into the DATA statement. They are part of the
program. A flowchart for the program is shown in Figure 6.1.

96

START

DISPLAY
OPENING MESSAGE

(20)-(24)

]
1706 |«

1

DATA

STATES, CAPITALS

READ
S$(1), C$(1)

1706
Y

DISPLAY

“WHAT IS THE CAPITAL OF"”
S$(L)

NO

(52)

] KOUNT = KOUNT +1

CS(L)<>AS$?

(58)

\

DISPLAY
‘INCORRECT TRY AGAIN’

/

NO

DISPLAY
“NO! THE CORRECT DISPLAY
ANSWER IS”; C$(L) “CORRECT”

Y

DISPLAY

“YOU DID"”; KOUNT; “CORRECT
OUT OF 6. GOODBYE"

STOP

FIGURE 6.1 Practice your state capitals.

Program Line Numbers

(10)

(36)-(37)

(36)

(38)

(40)~(60)

(44)

(48)

(50)

(54)

{54)

(56)

(56)

(70)-(75)

97 sec. 6.2 | formatting output

[
&

CLS: PRINT "DO YOU KNOW THE CAFITALS OF THE SIX MEM
EHGLAMD STATEST"

8 DATA CONNECTICUT. HARTFORD. MAIME. AUGUSTA

& DATA MASSACHUSETTS, BOSTOM. HEW HAMFSHIRE. CONCORD

4 DATA RHODE ISLAND, PROVIDEMCE. WERMONT. MONTPELIER

@ REM. READ IM STATES S# AND RESPECTIYE CAFITALS Cf

S FOR I=1 TO &

& READ S$cIs, CHCID

7 NEXT I

38 KOUNT=0: REM BEGIN QUIZ

—4p FOR L=1 TO &

44 PRINT "WHAT IS THE CAPITAL OF “; S$CL; "7

48 INFUT A$

58 IF C$CLi<»AE THEN 54

S2 KOUNT=KOUNT+1: GOTO &0

S4 PRINT "NOFE. TRY AGAIN": INPUT AS$

56 IF C$cLy=fA$ PRINT "NOW YOU HAVE IT!": GOTO &@

52 PRINT "NO. THE CORRECT ANSWER IS "; C$(LJ

Lem NEXT L

76 PRINT: PRINT "YOU GOT"; KOUNT: "OUT OF &"
75 PRINT "IT WAS A PLEASURE SERVING YOU": END

RUN

DO YO ENGW THE CAPITALS OF THE SIX WEW EMGLAMD STRTESY
WHART IS5 THE CAFPITAL OF CONMMECTICUT?

? HARTFORD

WHAT IS5 THE CAFITAL OF MAINE?Y

7 AUGUSTA

WHAT I5 THE CAFITAL OF MASSACHUSETTS?
T BOSTON

WMHAT IS THE CAFITAL OF MEW HAMPSHIRE?Y
? MAMCHESTER

NOFE. TRY AGHIN

T DOMNT ENOW

MO, THE CORRECT ANSWER IS5 COMCORD
WHAT 15 THE CAPITAL OF RHODE ISLANDY
7 PROVIDENCE

WHAT IS5 THE CAFITAL OF WERMONT®

7 BURLIMNGTOM

HOPE. TRY AGAIM

? MONTFELIER

MO YO0 HAVE IT

wOU GOT 4 OUT OF &
IT WAS A PLEARSURE SERWING YOU

This program can be executed over and over again without ever having to reenter the
names of the states and their capitals. The INPUT statement would not be appropriate in
this case because the student may not know the capitals himself. If the teacher entered
them for him, it would be extremely inconvenient to reenter them each and every time.
A possible alternative to the READ-DATA statements is in this case a series of LET state-
ments setting separately each state and each capital to S$(I) and C$(1).

6.2 FORMATTING OUTPUT

Instructions on how to display the items of the PRINT list are called for-
matting instructions. They determine the format of the display. So far we
have formatted our output with semicolons and blanks placed between the

98 ch. 6 | input-output
items to be printed. For example,

PRINT 4; 2" "i-3

1z -3

With the semicolon separating the numbers, each positive number is printed
with a leading and a trailing blank. For negative numbers the leading blank is
taken up by the minus sign. There are therefore two spaces between the 1
and the 2; the string of three blanks between the 2 and the -3 results in four
spaces in the output. It is often desirable to tabulate the output. This means
specifying precisely the column in which the item in the PRINT list will be
displayed. A comma placed between each item to be printed ensures that
successive items start 16 spaces apart. Up to four numbers per line can thus
be printed. The screen has four zones. So using commas gives a zoned format.

FRIMT "ZOME 1", "ZOME 2", "ZONE Z". "ZONE g¢
ZOME 1 ZONE =2 ZONE Z ZONE 4

If more than four items are printed, the output takes up more than one line.
Successive commas make it possible to skip zones.

FRIMT 1.2.32. 4, 5. €
i
3

1l
N

[y (N

FRINT 4,.2,.3..4

[y
£ P

Normally each PRINT statement begins a new output line. Output from two
or more consecutive PRINT statements can be made to appear on the same
line by placing a comma after the last item in the PRINT statement. This
hanging comma will cause the next PRINT statement to display on the same
line. For example,

16 PRINT “"JACKY.
28 PRINT "AMND".
38 FPRINT "JILL"

RUN
JACK AMD JILL

This is in contrast to hanging semicolons, which were introduced earlier.

18 PRINT "JACK";
28 PRINT “AND";
38 PRINT "JILL"

RUN
JACKANDJILL

C:> Example: A Sales Report

A car agency with three salesmen sells two car models, A and B. The commission on the
sale of model A cars is $125; commission on the sale of model B cars is $95 for the first

99

sec. 6.2 | formatting output

10 cars and $145 for subsequent sales. The sales for each model by each of the three
salesmen are as follows:

Salesman 1 Salesman 2 Salesman 3

Model A 6 9 4
Model B 8 5 12

The following program uses READ-DATA statements to input the data and then outputs
a sales report. The sales data are stored in three one-dimensional arrays: N$(1) contains
the salesmen’s names; ASALES(l) and BSALES(!) refer to sales of models A and B,

respectively. The subscript | takes on the values 1, 2, and 3 for the three salesmen.

1a
riz

REM SALES REPORT
FOR I=1 TO 2

READ N${Ix, ASALESCIY, BSALESCI?

DATR ERIC. 6, 8. RON, 9, 5, JEFF. 4, 12
ACOMCI»=125 * ASALESCI>
CHECK=BSALES(I>-16

IF CHECK>8 THEN 36

BCOM{I»=95 * BSALESCIX

GOTQ =%

BCOMC I »=956+145 * CHECK

MEXT 1

REM FREEFRRE REFORT

COMMENTS

DIM statements are not needed
here.

For each salesman, read his model
A and B sales.

Sales data for each salesman.

Commission for model A sales.

Model B sales above ten cars.

Over ten cars the commission is
$145 per car.

CLS: PRINT "SUPER AGENCY SALES REFORT": PRINT

FRINT o MECLi Neizl, NEC3E s

PRINT "MODEL A SALES". ASALESCLY, ASALESCZY, ASALESCZ)
FRINT " COMMISSIONS", ACOMOL Y, ACOMCZ), ACOMCED
FPRINT "MODEL B SALES". BSALESCL». BERLESC(ZY. BSALESC(32
FRINT " COMMISSIONS", BOOMCLy, BOOMO 22, BCOMCE)

ENL

The program contains one loop. In the loop we read the data and compute the commis-
sions. In lines 27 to 36 the commissions for model B sales are determined in a special
way to account for the stipulation that the commission rate increases from $95 to $145
for all sales above ten model B cars. We now execute the program

RN
SUFER AGENCY SALES REFORT
ERIC RON JEFF
MODEL A SALES & 3 <
COMMISSIONS rg=ls 1125 586
MODEL B SALES] S5 iz
COMMISSIONS vE8 475 1z4e

This report uses the four zones to create the four columns of information. Descrip-
tive information appears in the first zone. Sales data pertaining to each of the three
salesmen appear in the remaining three zones.

100 ch. 6 | input-output

Two serious limitations are evident from the sales report. First, if the
agency had more than three salesmen, we would require more than the four
available zones. We need a way of squeezing together the tabular display.
Second, the earnings in dollars are not lined up the way financial informa-
tion is usually displayed. The PRINT TAB and PRINT USING statements
help, respectively, to alleviate these two shortcomings.

The TAB function can be used to bring the columns of the report closer
together. The principle is the same as in setting tabs on a typewriter. The
column selected for output is represented by the argument (in parentheses) of
the TAB function. TAB(K) means move the cursor to the Kth print position.
The argument K can be a constant or an expression between 0 and 255 inclu-
sive. TAB positions greater than 63 are on succeeding lines. TAB may be
used several times within a PRINT statement, and no punctuation is required
after a TAB specification.

REMEMBER: No space is allowed between TAB and the parenthesis; TAB (K) is not
- permissible. The proper formis TAB(K).

EXAMPLES COMMENTS
FRINT "CZOL 4" TRECLS"COL 16" COL 1 starts in the first print posi-
tion; COL 10 in the tenth.

ooL o4 CoLie

FRINMT TRECZ. 503 TRAECS, €18
¥ E;

FRINT TREC-Z23Z
PFC ERROR

18 FOR K=1 TO S
28 FRINT TRE KX "TOMER"
38 MEAT K

RN
TOMER
TOMER
TOWER
TOMHER
TOMER

No punctuation is required.

The 8is in the eighth print position.

The expression in (?), the argu-
ment, is truncated; TAB uses an
integer argument,

The argument cannot be negative.
Unexpected.

As expected.

The index K of the FOR-NEXT

loop is the argument of the TAB
function.

C;> Example: Graphing an Equation

We use the TAB function to graph X versus Y for the parabola Y = X2.

COMMENTS
18 FOR ¥=-& TO & STEP 2 Graph the points at X = -6, -4, -2,
28 Y=ok M 0,2,4,6.
I8 PRINT TRBECY) A
48 MEAT *
45 END

RUN

101

sec. 6.2 | formatting output

1
5
i
i

|
]
|
I
|
|
I
|
|
|
!
|
I
I
|
l
l
l
I
I
l
Y
<

- ———T
5

Each point on the graph is identified by the value of X at the point. The X and Y axes
were drawn in manually. Similarly, the points can manually be connected to trace out the
parabola. Notice that the parabola is upside down. This is because the X and Y directions
are interchanged: here X is vertical and Y is horizontal. A more sophisticated approach to
graphing is presented in a later chapter.

Example: Pascal’s Triangle

The numbers in this triangle have the property that every number is the sum of the num-
ber above it and the number to the left of the one above it.

18 REM PRASCAL'S TRIANGLE
15 FOR D=1 TO ¥
[E_'Eﬂ FACDo Dol
2B MEXT [
— B FOR ROW=1 TO &
25 k=0
4@ FOR COL=1 TO RGOW
45 ACROM+L, COLy=ACROW, COLI+ACROM, COL-13
S8 PRINT TARECK 2 ACROM. COLY;
55 K=k+5
&8 MEXT COL
55 FPRINT FRINT
TS NEXT ROW

The loop of lines 15 to 25 sets the diagonal elements of the triangle to 1. The nested
loops calculate and display the triangle of numbers. Line 45 is the algorithm for com-
puting a new number A(ROW + 1,COL) based on the number above it, A(ROW,COL),
and the number to the left of the one above it, A(ROW,COL-1). The TAB function is
used to display the triangle with the variable K providing the number of tabs for even
spacing. We now execute the program.

RN
1
11
1z 1
1 3 21
1 4 5 4 1

1 & 16 ia 3 1

To appreciate the usefulness of the TAB function run the program without the
TAB(K) in line 50 and note what a difference the TAB makes in the appearance of the
triangle.

102

ch. 6 | input-output

Pascal’s triangle has several other properties. The descending diagonals
are the same as the columns. The numbers in each row correspond to powers
of 11: the first row is 11° = I, the second is 111 = 11, the third is 112
= 121, and so on. Similarly, the sums of the numbers in each row are powers
of 2. For example, the third tow is 1 + 2 + 1 = 4 = 22, Two additional
properties of Pascal’s triangle deal with more advanced mathematics. The
sum of the numbers along the ascending diagonals form the Fibonacci se -
quence, and the numbers in each row correspond to the coefficients of the
binomial expansion. Can you edit the program to verify any of these proper-
ties?

The TAB(X) function controls the cursor’s position within the 64 print
positions on a line. The POS(X) function has the value corresponding to the
cursor’s position. POS(X) is therefore an integer between 0 and 63 inclusive.
The argument X is a dummy argument and may be any number or numeric
expression. When the cursor is in the usual position beneath the READY, it
is in the O position.

COMMENTS
REACY
PRINT FOSC(d> The argument 1 is a dummy argu-
[} ment.

One possible application of the POS function is to display a report con-
sisting of several columns with a prescribed spacing between columns. We
now redo the headings of the Super Agency sales report.

FEINT "MODEL" TABCPOSC(L13x+5r "ERIC" TRABC(POSCL»+5)> "RON"
TRECPOS(L2+53 "JEFF" TABCPOSC(L:»+5)> "BRIAN"
MODEL ERIC RON JEFF BRIAN

In this case we displayed the headings five spaces apart. Notice that we can
now comfortably fit five columns across the screen. We no longer depend on
the four zones of the screen to provide the layout.

The screen displays up to 16 lines with 64 characters per line. This gives
a total of 64 times 16 or 1024 print positions. These print positions are
labeled O through 1023 and can be individually accessed using the PRINT @
statement.

PRINT @ 8,1 displays a 1 at the top left corner of the screen
PRINT @& &4, 2 displays a 2 on the second line along the left margin of the screen
PRIMT @ s4#g.3Z displaysa 3 midway along the left margin of the screen

The PRINT @ statement may be used to graph an equation. In order to
plot on successive lines, the location specification must take into account the
presence of 64 print positions per line. The following program graphs the
equation Y = X * X. Itusesthe PRINT @ statement and presents an alterna-
tive to the version described earlier in this chapter in which the TAB func-
tion was utilized.

COMMENTS

1@ CLS: Initialize the line counter to zero.
28 FOR #
3@ Y

||
i}
5t

-6 TO & STEF &

103

sec. 6.2 | formatting output

48 PRINT @ &dsI+Y%, N Graph at row | and position Y.
S8 I=I+1 Increment the counter to print in
&8 NEXT X the next row.

Type in the program and check that its output is identical to the graph
produced by the program that uses the TAB function.

It is important to note that the @ symbol in the PRINT @ statement may
not be typed with the SHIFT key depressed. The symbol will appear to be
correct on the screen, but an error will occur.

The format of the output may be selected in another way. The statement

PRINT USING “‘string”;item list

allows you to specify the format with which the item list is to be displayed.
The actual format is given by the “string”. For example, suppose we have a
list of variables A, B, C whose values are $27.216, $351.951, and $5. We
wish to display these variables in a neat column.

COMMENTS
18 A=27. 216:. B=3251 351: =5 Specify A, B, and C.
26 IMAGES="$$488 H§" Specify the ‘string’’ for PRINT
A OPRINT USING IMAGE#: A USING.
G8 PRINT USIHG IMBGES: B
S@ FRINT USING IMAGE#: o
RN
27, 22 Rounded to the nearest penny.
$3I51. 95 Fractional penny dropped.
5. QA Floating $ sign.

The decimal points are lined up nicely; this can also be done slightly differ-
ently:

COMMENTS
1B A=27F. 246 B=32D1. 351: C=3 In this version, line 20 is not
IR PRINT USIMG "+$8##E #H#"; A needed.
48 PRINT USING "#:#4# #&": E
SR PRINT USING “dE#EsE ##"5 O

The string “‘$$##4#.#4#" represents the numeric field that is selected for
the variables A, B, and C. Each # specifies the position of a digit. In this case,
numbers with more than two digits beyond the decimal point are rounded.
The digits 5 and above are rounded up, and the digits 4 and below are
dropped. The $$ characters place a $ sign in front of the number.

REMEMBER: The string “$$###.##" will round to the nearest penny in a PRINT
USING statement. ‘

The following example further illustrates use of the PRINT USING state-
ment:

18 FRIMT USING "IN #### MAKNHATTAN WAS BOUGHT FROM THE
THDIANS FOR ®d#$# ##", loza, 24

FLIM
IN 1826 MANHATTAN MAS BOUGHT FROM THE INDIANZS FOR $24. 08

104 ch. 6 | input-output

In addition to the $ and # characters, there are several other symbols
used in conjunction with numerical and string data. These are summarized in
Table 6.1 and illustrated in the following examples:

COMMENTS
18 REM FORMATTING OF NUMERICAL DATA The “string’” in PRINT USING is
28 IMFUT IMAGE#. MUMEBER variable IMAGES$.
28 PRIMNT USIWNG IMAGES$: NUMEER The semicolon is required.
48 GOTO 26 infinite loop for data entry.

We now execute the program and try different entries for the variables
IMAGES$ and NUMBER. Since the program continuously loops back to line
20, we only have to enter RUN once. To escape the loop, press BREAK.

COMMENTS
RUN Request execution.
T OHEH #, 123 45 Data are entered.
123 5 123.45 is rounded. Each # corre-
TOoHEH #1234.05 sponds to one digit.
wlzz4. 5 The % indicates that specified field

(IMAGES$) is too small. Largest
number that fits into ###H#.# is
999.9.

TV, 44 #EY,. 1234. 5

1. 234, 58 The comma is inserted and trailing
zeros added.

T O+HE #0128 3 Display a leading + sign if number is
+1z2. = positive.

T OH# #1233

12 3+ A trailing + sign is now displayed.

TABLE 6.1 Image specifiers for PRINT USING

Symbol Usage Example

Display a digit. HH#HH

. Specify location of decimal point. HHHH A

, Indicate where comma is to appear. H B B

+ For positive numbers, display a leading or +HHH
trailing + sign; for negative numbers a - sign HiH+
is displayed.

- Display a leading or trailing - sign regardless ~HHHH
if the number is positive or negative. HHE-

$$ Display a $ sign immediately preceding the S SHH HHH
leftmost digit.

ook Replace leading blanks with asterisks. ® #wFhHE A

*%§ Display a § sign preceding the leftmost digit sk S HHE HH
and replace leading blanks with asterisks.

M Display number in scientific notation (on the H A
line printer, 1 is [).

! Display the first character of a string. !

%% Display the first two characters of a string. %%

Y%spaces%h Display N characters of a string. N equals 2 % %
plus number of spaces.

sec. 6.2 | formatting output

T o-## #1123
-12. =

T OHE B -1z 3
12 -

T O #-, 12 3
12. 3

T ki, 13
wowl 3

T osonibiEE. 12

B R e e

TORHHEH #0125

1Z 58

T EEHEEE HH# 12 5
F1z. 58

T oknEHEHE #E L2 Be
skl 2 SE

TR OHHEHILCC. 12
8, 125cE+a2
TOHHE BEEHILCL. 12 55

12 SeR0E+Ba

A leading - sign is displayed even
though 12.3 is positive.

-12.3 is negative, so a trailing - is
displayed.

12.3 is positive, so instead of a -
sign a trailing blank is displayed.

Two asterisks are displayed.

Fill leading blanks with asterisks.
Two asterisks appear plus two
more for two leading blanks.

$ sign appears in front of leading
blanks.

$ sign appears immediately to left
of first digit.

Combination of above; $ sign ap-
pears to left of first digit; remain-
ing blanks filled with *'s,

Exponential notation with no sig-
nificant digit to left of decimal.

Two significant digits to left of
decimal point.

To escape, enter BREAK.

The PRINT USING statement is also useful in displaying character infor-

mation.

16 REM
=8 IMFPUT IMAGES, T, F$. 2%

28 PRINT USING IMAGE$: T¢. F$, 2%
48 GOTD 2a

RLIN

7L JOHM. FITEGERALD, KEMHEDY
JFE

TOUD O LLYHDON. BAIMES, JOHMSOM
L BJ

T WM CARDS, SINK. HOME

CASING

R e THOMAS, STEARNS: ELIOT
T & ELIOT

BRERK IM 28

RERDY

~_

COMMENTS

FORMATTING OF CHARACTER DATH

Infinite loop for data entry.

The ! displays the first character of
each string.

Place a blank between the first
characters of each string.

The first two characters of each
string are displayed.

A combination of the ! and % for-
mats.

To escape from program, press
BREAK.

E:> Example: Checkbook Balancing

This program is used to balance a checking account. The program makes use of the PRINT
USING statement. First the initial balance is entered. Then the individual transactions are
entered; the month and day are typed in separated by a comma. Subsequently, the trans-
action is entered. A positive transaction is a deposit and a negative transaction is a check

106 ch. 6 | input-output

charged against the account. To escape from the entry routine, enter END,END for the
month and day. Two numeric and two string subscripted variables are used. The string
variables store the month and day of the transaction, M$(1) and D$(1), respectively. The
transaction array is TRANS(I), and the account balance is BAL(l), where BAL(0) is the
initial balance. Once all the transactions and their dates have been entered into their
respective arrays and the balances computed, the report is generated in lines 75 to 85.
The loop’s upper limit is |-1 (line 75), since the Ith transaction is a dummy transaction,
which is not included. It is used to escape from the input loop. Following the listing of

START Program Line Numbers

INPUT

INITIAL BALANCE (20)
BAL(0)

]

(50) DISPLAY
BAL(1) = BAL(I-1) + TRANS(I) “ENTER TRANSACTION’S MONTH, (30)
DAY TO STOP ENTER END, END"”

(65)

1
INPUT Y
“ENTER DEPOSIT/CHECK"; INPUT (35)
TRANS(1) M$(1), D$(1)
{45))
(40)
DISPLAY
INITIAL BALANCE”:
BAL(0) (60)-(65)
Y
DISPLAY
HEADINGS (70)
(75)-(85)
| DISPLAY
M$(K); D$(K); TRANS(K): BAL(K) (78)-(80)
¥
¥

DISPLAY
“FINAL BALANCE"; BAL(I-1) (90)
STOP

FIGURE 6.2 Checkbook balancing.

107 sec. 6.3 | cassette input-output

the program is a sample run, which illustrates the data entry and the resulting report.
Type in the program and try it out on your own checkbook. You may wish to put a trace
on the execution to gain full understanding of the logic. A flowchart of the program is
shown in Figure 6.2.

168 DIM BRLCAEB, TRANSCLEBY, D100, MEd18a

1% CL=S: CLEARR l68&

28 INFPUT "IMNITIAL BHRLANCE": BALCEX

25 I=I+1

38 PRINT "TRANSACTIOM MONTH. DAY FOR EX. MAY.X6; TO STOFP ENTER END. END"
I3 INPUT MECTs, DECI

4@ IF MECIr="END" THEN &8

43 INFUT "EMNTER DEPOSIT 42 CHECK{—3"; TRANSCI»

38 BALCI»=BALCI-12+TRANSCI 2

29 GOTO 25

8 CLS: PRINT "INITIAL BALANCE". : P$="x+$##, #4444 ## DOLLARS"
63 FRINT USING P4 BALC(GD

T8 PRINT: PRINT "DARTE DEPACHECK (=2 BALANCE"
va FOR K=1 TO I-41
T8 FRINT USING "X PSR 14 O H

o
9 FRINT USING "xXE"; DECKD;

88 FRINT USING "##, ###$4# ##-"; TRANSCK . BALCK?
S NEXT K

@ FRINT: FRINT “"FINAL BALAMCE "; BALC(I-12

RLIM

INITIAL BARALANCE? 1086

TEAMZACTION MOMTH. DAY FOR EX. MAY, Z68; TO STOFP ENTER END. END
¥ OMARCH. 5

EMTER DEFOSITO+ACHECK C-37 —55
TRAMSACTION MOMTH. DAY FOR EX MAY, Z8; TO STOP ENTER END. END
T MARCH. 18

EMTER DEFOSITO+2SCHECE -7 108

TRANSACTION MOMTH. DAY FOR EX. MAY. Z8; TO STOP ENTER END. END
T EMD. EMD

IMITIAL BALAMCE #esasddl, D8@ @@ DOLLARS

LATE DEFSCHECE =3 ERLANCE
[MARCH <] 35, eg- 245 06
MARCH ia 186, aa 1. 845 @0

FIMAL EALAMNCE % 1645

6.3 CASSETTE INPUT-OUTPUT

The TRS-80 supports two auxiliary memory devices, cassette tapes and mini
disks. The major difference between a tape and a disk is that the tape is a
sequential device, while a disk is a random-access device. In order to load
into the computer a specific program stored on tape, it is necessary to for-
ward the tape up to where the program of interest is stored. A program
stored on disk may be accessed directly. Programs as well as data files can be
stored on these auxiliary memory devices for later use. In this section we
briefly discuss the input-output statements used in accessing a cassette tape.

To save a program on tape or to read a program from tape we use the
CSAVE and CLOAD commands. These have been discussed earlier. The

108

2a
B2
84
=1
&g

"FOZITION TAPE FOR READING. WHEN READY

FOR k=1 TO

ch. 6 | input-output

PRINT #-1 and INPUT #-1 statements, respectively, print data on tape and
read data from a cassette tape. The -1 specifies the device number, a cassette
recorder. If two cassette recorders are used simultaneously, the device num-
bers are -1 and -2.

Storing data on tape is particularly useful when these data are to be up-
dated occasionally or in data-processing applications involving lots of data.
Small amounts of data that need little or no updating can conveniently be
stored in a DATA statement within a program. The general form of the
PRINT #-1is

FREINT #-1.A. B, 200 A% B CH.

The comma after the #-1 is required.

The list of items to be printed can contain numerical as well as string
variables, but in total cannot exceed 255 characters. The general form of
the INPUT #-1 statement is

IMNFUT #-1.A.B.C. ... (% B¥. CH. ..

In order to read data from tape the variables in the PRINT #-1 and
INPUT #-1 statements must be fully compatible. The INPUT #-1 statement
must be identical to the PRINT #-1 statement that created the data file on
tape.

The following sections of a program input from tape 100 names and year-
to-date earnings, process the data, and then print on tape the updated
earnings.

COMMENTS

Press the PLAY button on recorder.

This line is split to keep program
ENTER GQ"; Gi¢ and comments separate.

1 515 Read from tape 100 names and

IMFUT #-1. BECke, ECkD
ME=T K

FOR k=1 TO 16
ECko=ECk 3 +FAY (K
HEST K

INPUT "REWIND TAPE. WHEN READY EMTER GO"; @%
IF a$"GO" THEN 86

FOR K=1 TO 166

FRINT #-1, A$(K3, ECKD?

NEXT K

year-to-date earnings.

Update year-to-date earnings; array
PAY({K) must be entered in the
lines between 56 and 70.

Press the RECORD and PLAY but-
tons on the recorder,

Print the names and the updated
year-to-date earnings on tape.

109 exercises 9

Once the tape is positioned (line 50), the data are read in from the tape in
lines 52 to 56. The earnings are updated in lines 70 to 74 by adding the cur-
rent pay to the year-to-date earnings. The newly computed earnings are then
stored on tape in lines 84 to 88. Line 80 stops execution to allow the opera-
tor to rewind the tape or to insert a new tape. It is usually good practice to
save the previous data as a back up.

In the above example the number of records processed was 100. Gen-
erally, the number of records in a file is unknown. The last record of the file
must be easily identifiable so that the INPUT#-1 can be properly terminated.
A “dummy” record, also commonly referred to as a flag, is printed on tape
at the end of the file. During the process of reading the tape into memory,
each record is checked so that the last record can be identified. The last
record may, for example, contain the employee’s name “LAST RECORD”.
This name is then the last record’s identifying flag.

56 I=8

52 I=I+1

S INFUT $#-1, AFCT Y, ECID

96 IF A$CIHCOULAST RECORD" THEN Sz
S8 ...

Once the last record has been read from tape, execution proceeds in line 58.
The total number of records processed is |, which includes the last (dummy)
record.

EXERCISES 9

1. Pind the error(s) in each of the following:

Incorrect Instruction Reason
PATE 1. 2.3
DARATA L2, 173, 179
DATH. 3. 4
DATA 2. 5

pooe

[

1l

2. Combine the following two DATA statements into a single statement:

18 DATA 1.2, 2
15 DRTA 18, 28, 36

3. Before executing the instructions, fill in the anticipated display and compare it with
the actual display. Enter the instructions in the given sequence.

Instruction Anticipated Display Display
a. FRINT &1: 2
b. PRINT 1.2
C. FRIMTL. . 2
d. 18 FRINT 1.2

28 PRINT. Z. <
FUM

110

ch. 6 | input-output

10.

11.

12.

13.

Instruction Anticipated Display Display
e. PFRINT TREC1)&
f. FRINT THEr1M: &
g. FRINT TRE«12. &
h. CLE
1. PRIMT USING "$£## ##": 3 1415
j. FEINT USING "$&# $#F": 2222 50
k. FRINMT USING "=+## #"; 468
I PRINT USING "!'":"TO BE OFR NOT TO BE"
m. FREINT USING *! ¥ "PETER": "JOSEFH"
n. PREINT FOSd12
0. PRINT POSCLa, POSC2s, POSCE 2, POSCE 2, POSCSS
p. FRINT TRECLEXFOSC(LE
q. PRINT TAREC18:, FOS{1a
. PRINT @ g, “HOME"
S. PRIMT & 18z4-2+e4,2, "MIDSCREEM"

. What output will the following program produce?

CHTA 2. 4. 6.8

RERAL A. B

RESTORE

FRERD M. x4 2
FRIMT F: B W Hi s &

O S Ll P b
Do B s B A |

. Write a program to input a date as three variables, M, D, and Y. For example, 6/11/

1940 will store M, D, and Y as 6, 11, and 1940, respectively. Output the date entered
in the form JUNE 11, 1940. The names of the months are to be stored in a DATA
statement.

. READ a list of numbers. Place the positive numbers of the DATA list into an array P

and the negative numbers into the array N. Display the arrays P and N.

Write a program to graph the equation Y = X® + X2 - X +2 for X =0, 0.5,
1, ..., 3. Each point on the graph is to be identified by the value of X at the point.

Write a program to display in tabular form the numbers 1 through 10, their squares,
square roots, cubes, and cube roots. The columns are to be 12 spaces apart.

Modify the car agency sales report program to include the total number of cars sold
by each salesman and the total commission earned by each salesman.

Modify the car agency sales report program to include a fourth salesman. Use the
TAB function to lay out the report, taking advantage of the entire screen. Assume
the fourth salesman sold no model A cars and 14 model B cars.

What display does the following program produce?
18 FOR I=1 T0O 18: FRINT TRBCI»"#" NEXT I

Can you explain it?
Print a list of integers on a cassette. Copy this list from the cassette onto a second
cassette with all duplicates removed.

Write a program to create an inventory file. Each record includes the following items:
part number, number on hand, price, vendor’s name (20 characters). Once the file is
created on tape, display it on the screen.

111

exercises 9

14. Write a program to create a mailing list on tape. Make provisions for initially entering
names and addresses from the keyboard and subsequently adding and deleting names
from the keyboard. The mailing list is to be displayed with an appropriate format
and must include a dummy last record. Use your telephone book as a source of data.

15. Scan a file of employees’ social security numbers, names, and birth dates. The com-
pany’s mandatory retirement age is 65. Display a list of those employees who must
retire within the next year, within two years, and within three years.

16. Write a computer program to build a file containing the earnings of the employees of
a company. The company has 50 employees whose earnings are updated on a weekly
basis from the keyboard. The file is to contain the name and year-to-date earnings
of each employee. Each week the tape is read and an updated version is generated.

—4 librsry fuactions

7.1 INT FUNCTION

The BASIC language contains many different functions. Each function per-
forms an operation that would otherwise take several statements in your pro-
gram. Collectively, they form a library of functions. Like the arithmetic
operations of addition or multiplication, the library functions make it possi-
ble to perform certain calculations that occur very frequently without having
to program them separately each time. They are convenient to use and re-
duce the programming effort. Some library functions perform tasks that are
quite complicated to program as they require advanced techniques. The
functions are preprogrammed routines and are supplied with BASIC. Library
functions are generally identified by a three- or four-letter name followed by
an argument in parentheses. They are used as expressions in BASIC state-
ments; properly applied they will save you many steps.

The INTeger function, INT(A), examines the argument A and returns a value
equal to the greatest integer not larger than A. For example, the expression
for the greatest integer less than or equal to 3.14 is INT(3.14), which is 3.
INT(A) can be referred to as “the greatest integer in A”. The argument A
may be zero or any positive or negative number. The argument may also be
an expression:

COMMENTS
FRINT IMTCE 140 3 is largest integer not larger than
3 3.14.
FRINT IHMTC(-Z 143 -4 is largest integer not larger than
-} -3.14. Note, -3 is larger than
F=g -3.14.
FRINT IMTCZ 1d4+R[202 The argument may be an expression.
11Z INT (3.14+6+6) = 113.
FREINT INTH?
= X is undefined; X = 0.

C:> Example: Long Division

112

The INT function may be used to determine the quotient and remainder in long division.
For example, dividing 16 by 5 gives a quotient of 3 and a remainder of 1. Converting 70
inches to feet and inches requires the division of 70 by 12, which yields 5 remainder 10,
or 5 feet and 10 inches.

113 sec. 7.1 | INT function

COMMENTS
18 PRINT "EMTER A AND B FOR ASBY
28 INFUT A. B Want to divide A by B.
2@ Q=INTCAASB Compute the quotient.
43 R=RA-Bs Compute the remainder.
S8 PRIMT "QUOTIEMT=": R
S8 PRINT "REMAIMNLDER="; R
RLIM
EMTER R AND B FOR ASB How many hours and minutes are
T OEED. 0 there in 355 minutes?
BUOTIEHT= 5 5 hours, and
FEMARIMUER= 55 b5 minutes.

How would you use this program to determine the number of days, hours, and minutes
in 3000 minutes?

C:> Example: Rounding to Any Desired Accuracy

This program takes advantage of the INT function to round a number N up or down to as
many digits D beyond the decimal point as is requested by the user.

1 INFUT "THE HUMEBER YOU MWISH TO ROUND"; N

=8 IMFUT "ACCURATE TO HOW MAMY DIGITS BEYOND THE DECIMAL POINT®; D
8 IF MoB THEM S5&

48 FRINT IMTOM+l8l D+ ShA1ell: EMD

SE FPREINT Cd+IMTOM+1a0 D+ S0 1800 END

L2

When this program is executed for several values of N and D, the following results are

obtained
Number N Digits D Result (Rounded N)
3.14 1 3.1
3.16 1 3.2
-3.14 1 -3.1
3.14 0 3
314 -1 310

Note, D = 1 rounds the first digit to the right of the decimal point. D = -1 rounds the
first digit to the left of the decimal point.

In line 30 of the program we check if the number to be rounded is negative. Suppose
Nis 3.14 and D is 1. Let us play computer and check line 40.

COMMENTS
HN=Z 14: D=1
PRINT M+18L D+ 5 101D = 10;N*101D = 3.14
213 N+*10TD + .5 = 31.9
PRINT INT{N#10L 0+ 5>
31 31.9 is truncated.
PRINT INT<N#18L D+ S)-1680L0
31 The final answer.

Can you play computer and check line 50 of the program for N = -3.14and D = 1?

114 ch. 7 | library functions

In a previous chapter we used the PRINT USING statement to round numbers. The
“string” within the PRINT USING statement specified the desired number of digits to the
right of the decimal point. The present program also rounds to the left of the decimal
point. For example, in the last example of the above table of results we rounded 314 to
310.

REMEMBER: If X is an integer, INT(X) equals X. If X is a positive number; INT(X)
equals the whole number part of X. If X is negative, INT(X) is the next lower whole
negative number.

7.2 RND FUNCTION

The function RND generates random numbers between 0 and 1 and random
integers greater than 0. The RND function is useful to simulate random
events, for example, flipping a coin. The computer cannot toss a coin even
once. But it can be programmed to simulate these tosses, that is, to produce
outcomes that correspond to heads and tails. Since the outcome events of
heads and tails are equally likely, the outcomes are random and the function
RND can be used.

RND(0) generates a six-digit random number larger than O and less than
1. RND(N) generates a random positive integer between 1 and the integer
portion of N. N must be a positive number less than 32768.

COMMENTS

FRIMT RHDG: N = 0. Random number between 0
. VESFED and 1.

FRIMT RHDJOEs Throw a die and roll a 4;a random
4 integer larger than 0.

FRIMT RMHDoSz0 Pick a card from a 52-card deck.
SR

FRINT RMOC2 Flip a coin; for example, heads is 1
i and tails is 2.

FRINT REMODu@, S The integer portion of the argument
. REESED is used.

FRINT EMDue, 752 Generates an integer between 1 and
= 6 inclusive.

When the statement RANDOM is executed in a program before the RND
function is used, it will initialize the random-number generator to a new
starting value. This will ensure that the RND function will produce a fresh
sequence of random numbers that differs from any previous sequence.

| , Example: Generating Random Numbers Between Given Limits

The following program generates any number of random numbers between the lower
limit L and the upper limit U. The random number X is in the range L < X < U,

115 sec. 7.2 |/ RND function

COMMENTS
16 RAMDOM Ensures randomness.
28 INFUT "DESIRED NO. OF RANDOM HMOS, Y5 M
Z@ INFUT "LOWER. UPFER LIMITS": L.U
48 FOR K=1 TO N
S8 PRINT L+JU=LoeRMDCE;
5@ MEXT K
RUN
CESIRED WO, OF RAMDOM HOZ * 3
LOMER, UFPER LIMITS? 1,3
189371 1. z2zesz2 1. S5d4€s The numbers are all between 1 and
3.
RUN
DESIRED MO, OF RAMDOM MOS, 7 =2
LOMER., UPFER LIMITST 4,2 These three numbers differ from
2. 88418 2. 23853 1 58631 the above; a random process.

Try this program for L, Uof 0,10 and 0, 0.5. What happens if you enter -10, 0 for L, U?
or 10,07

C:> Example: Tossing Heads and Tails

COMMENTS
16 RAMDOM
15 H=8:T=8
28 INPUT "HUMBER OF TOSSES": N
38 FOR K=1 TO N Generate a 1 or a 2 randomly;a 1is
48 IF RNDCZ0=2 THEM €8 tails, a 2 is heads.
58 T=T+1: GOTO 7@
&8 H=H+1
Ta NEXT K

88 FRINT Ni "TOSSES" 5 T: “"THILSY: Hi “HERDS®

RUN
NUMBER OF TOSSES?T 166
188 TOSSES 44 TAILS S8 HERDS

In this program we arbitrarily assign the occurrence of the random number 1 to tails
and 2 to heads. As the number of tosses increases, we expect the number of heads and
tails to be approximately equal. Type in the program and execute it for N = 10, 100, and
1000. If we repeat the run for N = 1000 a second time, will the number of heads be the
same as the first time?

REMEMBER: RND(0) gives a random number larger than O and less than 1. RND(N)
glves a random integer greater than O and less than or equal to N; for example, if
= 5, the random mteger is greater than 0 and less than 6.

Q Example: Random Graphic Display

In this example we again generate a 1 or a 2 randomly, but instead of assigning them to
tails and heads, respectively, we print a blank if a 1 occurs and print a star if a 2 occurs.
This pattern of blanks and stars is set into a rectangle of width W and height H.

116 ch. 7 | library functions

18 RAMDOM: CLS
15 INPUT "WIDTH AND HEIGHT OF DISFLAY'"; W.H
28 FOR I=1 TO H
29 FOR K=1 TO W
28 IF RNDCEZ=2 THEMN 45
35 PRINT " '
4@ GOTO 56
43 FRINT "#%;
58 NEXT K
35 FPRINT
&8 NEXT I
&3 END

A sample execution follows:

RUN

WIDTH AND HEIGHT OF DISFLAY? 12,6
* sk okobop b

Lt S +

+ b 2

oAbk hdok ok

Enter the program and execute it for W = 50 and H = 12. You can experiment with sev-
eral different display characters, such as dashes, periods, or slashes, by editing lines 35
and 45. Another variation in the graphic display is possible by editing line 30

IECIF RHDOS=2 THEM 49

On the average only one out of five random numbers produced by this line are 2’s. The
graphic display will therefore consist primarily of blanks. Try it, and then edit lines 30,
35, and 45 together to produce some TRS-80 art. More sophisticated techniques for pro-
ducing graphic displays are presented in a later chapter.

7.3 MORE FUNCTIONS

Table 7.1 lists a number of available library functions in addition to INT and
RND. You may have not heard of some of them, depending on your mathe-
matical background. The list is included for reference. In each case the argu-
ment A may be in single or double precision and may be an integer, constant,
or an expression.

C:> Example: A Bar Graph of the ABS Function

The ABS(X) function returns a positive value regardless of whether the argument X is
positive or negative. Both ABS(5) and ABS(-5) equal 5. In this example we plot the
equation Y = ABS(X) in the form of a bar graph, also called a histogram. We let X take
on values between -18 and 18 inclusive. To plot a bar graph, it is necessary to display a
character such as * on the screen Y times for each value of X. So if Y = 5, five #’s will
represent the value of Y in the form of a bar.

117

sec. 7.3 | more functions

TABLE 7.1 Additional library functions

Function

Description

ATN(A)

COS{(A)
SIN(A)

TAN(A)
EXP(A)

LOG(A)

SQR(A)
ABS(A)
CBDL(A)
CINT(A)
CSNG(A)
FIX(A)

SGN(A)
TAB(A)

Arctangent of the argument A. This is the angle in radians whose
tangent is A. To convert radians to degrees, multiply radians
by 57.2958.

Cosine of A. Argument A must be in radians. If A is in degrees,
use COS(A*.0174533).

Sine of A. Argument A must be in radians. If A is in degrees, use
SIN(A*.0174533).
Tangent of A. Argument A must be in radians. If A is in degrees,
use TAN(A*.0174533).
Computes the exponential function e®. This is the inverse of the
natural logarithm function LOG(A);i.e., A = EXP(LOG(A)).
Computes the natural logarithm of A. A cannot be negative.
This is the inverse of the exponential function, EXP(A); i.e.,
A = LOG(EXP(A)). To compute the logarithm of A to the
base B use LOG(A)/LOG(B).
Computes the square root of A, Argument A cannot be negative.
This function is identical to A%t.5, but is faster.
Absolute value of A. If A > 0, ABS(A) = A IfA = 0,
ABS(A) = 0.If A < 0, ABS(A) = -A.
Converts the expression in the argument A into a value in double
precision.
Identical to INT(A) except A must be in the range -32768 to
+32767.
Converts the expression in the argument A into a value in single
precision.
Truncates all the digits to the right of the decimal point. For
A >0, FIX(A)=INT(A). For A < 0, FIX(A) =INT(A) + 1.
Equals 1 if A > 0;equals 0if A = 0;equals -1 if A < 0.
PRINT TAB(A) moves the cursor to position A on the line. If
A > 63, cursor moves to next line. Argument A must be
between 0 and 255 inclusive.

& To 18 STEF &

X

iy

i

FRIMT USIMG “###"
FOR I=1 TO W

FRINT "'

NEAT 1

FRINT

MEHT

RS TR B SRR N

o =

DA R U]

118

ch. 7 [library functions

The numbers displayed along the margin of the bar graph are the X values. The number of
*’s in each bar reflects the value Y, that is, the absolute value of X. The absolute value of
-18 is 18, and consequently 18 #’s are displayed at -18. Similarly, ABS(18) is 18, and
18 *’s are displayed at X = 18. For X = 0, no #’s should appear, since ABS(0) is 0. Do
you know why a single * appears at X = 0?

C:> Example: The Rule of 72 Verified

i
15
Z@
=5
5
A
45
S
55
(=35

In an earlier chapter we introduced the rule of 72. The rule states that the number of
years needed for a bank deposit to double in value is approximately equal to 72 divided
by the annual interest rate. In this example we will check this rule of thumb and investi-
gate its accuracy. The exact doubling time is the logarithm of 2 to the base (1 + R),
where R is the interest rate expressed as a decimal fraction. We compare the exact and
approximate doubling times for interest rates ranging from 2% to 20%.

FEM CHECE THE RULE OF 7z

CLE

FPRINT . "YEARS TO DOUBLE"Y

FRIMT "INTEREST RATE". "E=ACT FORMULA". "RULE OF 72", "DIFFERENCE"
FOR I=2 TO 28 STEF =

REM COMYERT IMTEREST RATE TO DECIMAL FORM

F=1/160
A=LOGE 23 /L0GEL+R
E=F2/1

FRINT I.F.E. A-E
MEXT I

The LOG function is used in line 45 to compute the exact time to double. The logarithm
of 2 to the base (1 + R) is the quotient of LOG(2) and LOG(1 + R). Execution of the
program yields the following results.

FiM

YERRLZ T DOUEBLE
INTEREZT RATE EXACT FORMULA FULE OF v2 D IFFERENCE
2 35, pezv 6 -. B9¥z95
4 17V, 673 is - 226956
& 11, 2257 iz - 184336
& 3, 3 6. 4745E-83
1a 7. v . BY2Sd4zz
1= E. & . 118263
14 5. 3. 14286 . 147262
i 4. 4. 3 .dvelrs
15 . <+ . 187835
26 3. - . 281784

The rule of 72 seems to be quite accurate as demonstrated by the fourth column of
the table. The difference between the exact number of years and the years predicted by
the rule is small. The rule is most accurate for an 8% interest rate. For interest rates less
than 8%, the difference is negative. This means that the rule of 72 is overestimating the
number of years to double. For interest rates larger than 8%, it underestimates the num-
ber of years. All in all, it is a very good rule of thumb.

EXERCISES 10

119

1. Before executing the instructions, fill in the anticipated display and compare it with

the actual display.

Instruction Anticipated Display Display

FRIMT
FRINT
FRIMT
FRINT
FREINT FI® v K
FRINT FIx =3 52
FRINT SGH (-5
FRIMT ZGH o5
FREIMT REMHCcE:
FRINT RHOCAD
FRINT RHDIZ
FEINT RMDCE:
FRINT EMHDOS2 59
FRIMT RHDO-&
FRINT IMTORENDOES
FRIMT ABSY
FRIMT REBSCS)
FRIMT RESCE
FRINT CIMT 16,30
FRIMT CIMNTC45&750
FREINT ChBLCLAZ0
FREINT SRR
FRIMT SiRC—93

[
peCp]

f£<crpn0ToBB mF PR me R0 T

. What do the following expressions represent?

a. M= IHT R
b. SGMCH#INTCABS D
FES

C. B
d. OHN SGHOED GOTO 1@, 2. 58

. Write a program that performs the same function as INT(X). Input to the program is

a noninteger number X, and the output is the integer portion of X. Do not use the
library function INT in the program.

. Write single statements to generate the following:

a. Arandom integer X, where 10 <= X <= 20.
b. A random number X, where 1 < X < 2.

. Modify the program presented in this chapter to generate N random numbers be-

tween given limits. Input N, L, and U, and now generate only integers in the range
L to U, where L and U are to be included in the range.

. Write a program to throw a die N times and display the frequency of occurrence of

each of the six possible outcomes. Modify the program to monitor throwing two dice
N times.

. Write a program to create your own random-number generator. Follow the procedure:

a. Input a starting number ST for example ST = 11.

b. Input a constant, BASE, for example BASE = 17.

Input a constant, MULT, for example MULT = 5.

. Compute a new value for ST = ADD + MULT =*ST.

. Compute a new value for ST = remainder left after ST (from step d) is divided by
BASE. At this point ST is an integer between 0 and BASE-1. Hint: The remainder
of X/Yis X - Y+*INT(X/Y).

eo

[¢’]

120

ch. 7 [library functions

10.

11.

12.

13.

14.

15.

16.

f. Compute Z = ST/BASE. Z has a value between O and (BASE - 1)/BASE. If
BASE is much larger than 1, then (BASE - 1)/BASE is close 1. Z is the desired
random number between 0 and 1.

g. Repeat steps d to f for additional random numbers.

Test this random-number generator for randomness. Use it to throw a die N times.
Does the six come out approximately one-sixth of the time? Hint: The random num-
ber in step f needs to be converted into a random number in the range 1 to 6.

. Test the randomness of the statement RND(20) by generating N random numbers

and displaying the following properties of the stored random numbers.
a. The average of the random numbers.

b. The number of values less or equal to 10.

c. The number of odd integers.

d. The number of times a value appears twice in succession.

Compare the results obtained for N = 100, 500, and 1000 with the expected results.

. Give BASIC statements that simulate the following operations:

a. Finding the total of a roll of three dice.

b. Choosing 3 cards from a deck of 52 cards, replacing each card after it is drawn.

c. Choosing 13 cards from a deck of 52 cards without replacing the cards after they
are drawn.

d. Spinning a roulette wheel.

e. The birth dates of N people.

Write a program to play the game of Hi-Lo. The computer picks a number from 1 to
100 for you to guess. After each guess, the computer responds by telling you whether
the guess was too high or too low. The computer keeps track of the number of
guesses you take and informs you of the number of guesses it took you to guess the
number.

Generate three random integer numbers each in the range from 1 to 8. Do not allow
for the random numbers to be repeated; that is, the three numbers must all be
different.

Toss a coin N times and determine the longest run of heads. Try your program for
N =10, 100, 500, and 1000.

Given a three-digit whole number, display its reversal. The number 123 is then dis-
played as 321. Hint: Use the INT function to isolate the digits.

The number 153 has an interesting property. It equals the sum of the cubes of its
digits; that is, 153 = 13 + 53 + 33, There are only four three-digit numbers (in-
cluding 153) with this property. Find these four numbers; they are in the range
100 to 500.

A market survey indicates that a manufacturer can sell 100,000 toys if the selling
price is $1. For every cent he lowers the price he can sell an additional 5000 toys.
Write a program to compute the gross sales for each selling price from $1 to 50¢.
Display the results in the form of a graph of selling price versus sales. What price
yields the maximum sales?

The sine of an angle may be obtained from the series

X X5 X7 x°
SINX = X m— +-— - — +
3151 719!

where X is measured in radians. The ! sign is called factorial. For example, five
factorial (5!) is computed as 5 X 4 X 3 X 2 X 1 and 3! =3 X 2 X 1. Write a
program that uses the first five terms of the series to compute the sine of an angle

121

exercises 10

17.

18.

19.

20.

measured in radians. In tabular form, compare the sines computed from this series
and from the library function SIN for angles of 10, 30, 60, 90, 120, 150, and 180
degrees. (One degree equals 0.0174533 radians.)

Modify the bar graph program presented in this chapter to display a bar graph of
the sine function in the range 0 to 360 degrees.

Write a program to plot a graph of the sine function using the TAB function. Dis-
play the graph for angles between O and 360 degrees.

Write a program to compute eX using the first six terms of the following series:
x* x3
=1+ X+ttt
3t
where 3! (three factorial) is 3 X 2 X 1. Compare the results for X = 0,0.5,1,1.5,
..., 3 with the EXP(X) function.

Write a program to verify the following trigonometric relation:
SIMCEZHH =20 S TNOR DS CA Y

for the angles A = 0, 10, 20, . .., 90 degrees. Display the expression on the left side
ofthe relation in one column and the expression on the right side in a second column,
Then visually check to see if the values are the same.

chapier s subroutines

8.1 THE PURPOSE OF SUBROUTINES

A subroutine consists of a set of program statements that may be used re-
peatedly at different places throughout the program. Subroutines are usually
written to carry out generalized procedures. For example, it may be neces-
sary to sort arrays at different points within a program. Instead of repeating
the statements required to perform a sort each and every time sorting is
required within a program, it is possible to write the sort statements as a
subroutine. This subroutine will then appear only once.

A subroutine can be an aid in writing shorter and more compact pro-
grams. The programmer can break his program into smaller logical compo-
nents that are easier to work with, resulting in a more readable program. A
subroutine can result in an economy of code for procedures that are to be
performed repeatedly within a program or performed repeatedly in separate
programs. Long complex programs that include no repetitive tasks may be
broken into several segments. These segments then make up the complete
program. They can be coded and debugged separately, and within the pro-
gram one subroutine can refer to another subroutine.

8.2 UNCONDITIONAL TRANSFER TO SUBROUTINES

122

A subroutine is a sequence of statements within a program. Any line number
within a program may be the start of a subroutine, as long as it is followed at
some point by the statement RETURN. Access to the subroutine is gained
from the main program. The statement GOSUB n, where n is the starting line
number of the subroutine, causes the transfer to the subroutine. The com-
puter then branches to the line indicated (line n) and executes all the state-
ments up to the RETURN statement. Execution subsequently returns back
to the line following the GOSUB statement. The GOSUB is an unconditional
transfer statement. For example,

123

sec. 8.2 | unconditional transfer to subroutines

COMMENTS
188 REM MAIN FROGREAM Start of the main program.
:_1,5;:-1 GUSUE 206 Unconditional transfer to line 200.
168 FRIMT H. B, C
Lines 160 to 190 are executed after
the subroutine.
1951 EML End of the main program.
288 REM SUBROUTINE BEGINS The subroutine consists of lines 200

to 250.

258 RETURM Branch back to the main program

at line 160.

It may be necessary to have more than one subroutine. In that case we
have a main program and two or more subroutines. Each subroutine is
reached from the main program. If one subroutine calls on another subrou-
tine, the subroutines are nested. For example, suppose the main program
calls on subroutine A, which in turn calls on subroutine B. Once execution
of B is completed, execution does not return directly to the main program,
but rather to subroutine A. Specifically, execution returns to the statement
following the GOSUB within subroutine A. Once the remaining lines of the
subroutine A have been executed, execution returns to the main program at
the line following the GOSUB. The main program terminates with an END
statement; the subroutines each terminate with a RETURN. A subroutine
may have more than one RETURN statement, and execution always returns
to the statement following the GOSUB statement. We now type in a program
that includes two nested subroutines.

188 FPRINT “FROM MAIN FROGRAM"

118 GosUe 288

iz@ PRINT "FIMALLY. BACK IMN MAIN PROGRAM AT LINE 1za"
138 END

288 PRINT "ENTER SUBROUTINE A AT LIME z@a"
<18 GOSUB Zoa

228 PRINT "BACE IN SUBROUTINE A AT LINE zza"
228 FRIMT "RETURMING TO MAIW PROGRAM"

248 RETURN

88 FRIMT "ENTER SUBROUTINE E AT LINE Zag"
318 PRINT "RETURMING TO SUBROUTIME A"

28 RETURN

This program demonstrates the execution of two nested subroutines.
The main program consists of lines 100 to 130, subroutine A consists of lines
200 to 240, and subroutine B includes lines 300 to 320. It is a good idea to
assign line numbers in different ranges (100’s, 200’s, and 300’s) to individual
subroutines. It makes it easier to follow the program. Run the program and
observe the sequence in which the execution is performed.

124 ch. 8 | subroutines

FUM

FROM MAIM FPROGRAM

EMTER SUBRQUTIME A AT LIME 2@
EMTER SUBROUTINE E AT LINE 38
RETURNING T SUBROUTINE A
BACK IN SUBROUTIME A AT LINE 226
RETURMING TO MAIM FROGRAM

FIMALLY. BACK IM MAIN FROGRAM AT LIMNE 126

1
5]

!
Lol

REMEMBER: Every subroutine must have a RETURN statement.

w Example: Producing a Blinking Display

On occasion it may be of interest to display a message that is sure to catch the user’s
attention. Examples of such instances include when an illegal entry is made, when a spe-
cific error occurs during execution, such as division by zero, or when one team is declared
a winner in a computer game.

188 IMPUT "TEST TO BE DISFLAYED": A%
118 IMPUT "DELAY TIME IM SECOWDE": S

1ze DELAY = Z85+5
128 CLS

148 GOsUE 208

158 FPRIMT A%

1868 GOSUE 286

ive GOTO 138

<88 REM TIME DELAY SUBROUTINE
216 FOR I=1 TO DELAY: MEXT I
228 RETURN

Type in the program and then execute it. Enter your favorite phrase and a delay time
of 2 seconds. The phrase will then blink every 2 seconds on the screen. The program is in
an infinite loop as line 170 always transfers execution back to line 130, where the screen
is cleared. To terminate the blinking display, press the BREAK key. During execution of
the program, transfer is made to the time delay subroutine twice, once from line 140 and
once from line 160. The first statement of the subroutine is in this case a REM statement.
The subroutine consists of a FOR-NEXT loop. The number of times this loop is executed
in line 210 depends on the desired duration of the delay between successive displays on
the screen. Variable DELAY determines this duration. It is computed in line 120 as the
product of 385 and the number of seconds S between successive displays. The number
385 is the number of times the computer executes the FOR-NEXT loop of line 210 in 1
second. You may use a timer to verify it.

This program clearly demonstrates the usefulness of subroutines. Transfer is made to
the subroutine twice, but the subroutine appears only once and consists of lines 200 to
220. Each time the execution of the subroutine is completed, execution returns to the
statement following the GOSUB. The computer “remembers” where it must return.
Another important consideration is that this subroutine can be used in any other program
in which a blinking message is to be displayed.

8.3 CONDITIONAL TRANSFER TO SUBROUTINES

The GOSUB is an unconditional transfer to a subroutine. It may be desirable
to transfer conditionally to a subroutine.

COMMENTS

18 GOsUE zea Transfer unconditionally to the
subroutine at line 200.

18 IF AXB THEW GOSUE 2688 Conditional transfer: if A exceeds B,
28 ... transfer to the subroutine at line
200; otherwise continue at line 20.

18 0N E GOsSUE 208, 260, 468 Conditional transfer: if E equals 1
transfer to subroutine A at line
200; if E = 2, transfer to subrou-
tine B at line 300;if E = 3, trans-
fer to subroutine C at line 400.

C:> Example: Computer-Assisted Instruction

The following program is an arithmetic drill on short division. The program consists of a
main program (lines 100 to 165) and two subroutines. The dialog between the computer
and the student is established in the main program where the problems are posed. De-
pending on the student’s response, the ON-GOSUB branches to the appropriate subrou-
tine. If the student’s answer is incorrect, execution transfers to the first subroutine (lines
200 to 250), where the computer states the correct solution and randomly picks one of
three comments to encourage the student. Execution branches to the second subroutine,
lines 300 to 330, if the answer is correct. The computer selects randomly and displays
one of three preprogrammed compliments. This example demonstrates the use of two
subroutines that are accessed by means of an ON-GOSUB statement. A flowchart of
the program including line numbers is shown in Figure 8.1.

188 CLS: IMFUT "HI. MWHAT IZ YOUR MHAME": HF

185 PRIMT N#: " TODAY MWE-LL FRACTICE SHORT DIMISION

1@E FRIMT "FOR EXAMFLE I-LL DISFLAY 126721 AMD YOULL TYFE INY
187 FRINT “"YOUR AMSHWER & FOLLOMED EY “EMTER-. YOO ONLY GET 1M
188 PRIMT "CHAMCE AT EACH OF THE S PROBLEMS! S0 CONCENTRATE!"
118 k=6 COUNT=8: RANDOM

115 COUMT=COUNT+1: L=i1

128 A=RHDCZED 0 C=ReRNDZD0

125 IMFUT "MHEHW Y0U ARE REACY TYFE “GO° AMD PRESS ENTER": GF:. CLS
126 PRINT

138 PRINT "HERE-S PROELEM HUMBER": COUMT: " M Qo " A M=t

1EZ5 INFUT "MHAT IS YOUR ANSHER": B

148 IF C/A = B THEN L=2

145 ON L GOSUB 29@, 200

156 IF COUNT<SS THEN 115

155 FRIMT: FRINT N&F: " YOU MISSEDR": S—k: "PROBLEMS OUT OF 3"
1668 FRINT "IT MWAS A PLEASURE MWORKING WITH YOU ——- SO LOMG ": N#
165 END

oBE REM SUBROUTINE: RESFOND TO INCORRECT ANSHER

285 OWN RHDCZE2 GOTO 248, 226, 2324

248 PRINT "MOFE. YOU LOST %OUR COOL*Y: GOTO 248

B PRINT "YOU MNEED TO CONCENTRATE MOREY: GOTO 248

B PRINT "COME OM "“:N$:" Y0OU CAN DO BETTER™

125

126

ch. 8 | subroutines

START Program Line Numbers

PRELIMINARY DIALOG WITH STUDENT
INITIALIZE VARIABLES (100)-(126)

PRESENT PROBLEM TO
STUDENT

INPUT
STUDENT'S ANSWER (135)

(140)-(145)

(130)

|

{200)-(250)

SUBROUTINE SUBROUTINE
RESPOND TO RESPOND TO (300)-(330)
INCORRECT ANSWER CORRECT ANSWER

L !

ALL

«—NO “PROBLEMS (150)
DONE?
PRINT
STUDENT'S SCORE (155)-(160)

AND FAREWELL

FIGURE 8.1 Computer-assisted instruction.

=248 PRINT "THE CORRECT AMSWER IS5":C/R

=58 RETURM

ZBE REM SUBROUTINE: RESFOMD TO CORRECT ANSKHER

36 K=K+1

287 OW RNDCZ) GOTO 348, 326, 338

218 PRINT "RIGHT OWN --- YOU ARE DOING GREAT WORK'": RETURN

228 PRINT "TERRIFIC! I LOVE IT'": RETURN
238 PRINT N#: " YOU ARE A WHIZ KID": RETURN
RUMN

HI. MWHAT IS YOUR HAME? MARION

MARION TOLAY MWE'LL PRACTICE SHORT DIMISION

FOR ERAMFLE I°LL DISFLAY 126-21 AND YOU'LL TYFE INM
TOUR ANSWER € FOLLOWED BY “ENTER-. YOU ONLY GET 1
CHAWCE AT EACH OF THE S PROBLEMS! SO CONCEMTRATE!
HHEM YOU ARE READLY TYFE “GO° AND FRESS EMTERT? GO

127 sec. 8.3 | conditional transfer to subroutines

HERE "= FPROBLERF MWUFBER 1 © 2535715=7

WHAT IS5 YOUR AMSWERT 15

YOl MEED TO CONCEMTRATE MORE

THE CORRECT AMSHWER IS 47

WHEW YU ARE REALDY TYPE “GO7 ANDR FREZS EMTERY GO

HERE "= FROBLEM MHUMBER = @ 3/3=7

MHAT I= YOUR ANSHERT 4

FIRRIOW YOU ARE A WHIZ KID

MHEM YOU ARE RERADY TYFPE “GO° AND FRESZS EMTERT GO

HERE "= FROBLEIM HNUMEBER = : 126.715=7

MHAT IS YOUR AMSHER? 12

TERRIFIC! I LOVME IT!

MHEMW YOU ARE RERDY TYFE “GO° AMD PREZS EMTER? GO

HERE "= FROELEM MUMBER 4 : 1Ze-17=7

WHAT 15 YOUR ANZHERT =

MARION YO ARE A WHIZ EID

WHEN YOU ARE READY TYPE “GO° AMD FRESS EMTERT GO

HERE "= FROEBLEPM MHUMBER 5 © <48.718=7
MHAT IS YOUR AMSHERT 4
RIGHT OM ——— YOU ARE DOIMG GREAT MWORE!

MARION YOU MISSED 1 FROBLEMZ OUT OF 35
IT WAS A FLEASURE WOREIMG WITH YOU ——— S0 LONG MARIOHM

In line 110 of the program, variables K and COUNT are initialized. K counts the
number of correct answers given by the student, and variable COUNT keeps track of how
many problems have been issued. The statement RANDOM reseeds the random-number
generator and guarantees a new sequence of random numbers each time the program is
executed.

In line 115 the counter is incremented and variable L is set to 1. Lisaflag: L = 1
corresponds to an incorrect answer, and L = 2 corresponds to a correct answer given by
the student.

Lines 120 to 135 generate the problem, display it, and accept the student’s answer.
The problem is created in such a way (line 120) that the answer is always an integer less
or equal to 25.

Lines 140 to 145 check the student’s answer and transfer execution to the appropri-
ate subroutine. If the answer is incorrect, L = 1, execution transfers to the first subrou-
tine at line 200. If the answer is correct, L = 2, execution is transferred to the second
subroutine at line 300.

The first subroutine, lines 200 to 250, displays a message that is randomly picked
among lines 210, 220, and 230. The correct answer is also given. The RETURN transfers
execution back to the main program at line 150.

The second subroutine, lines 300 to 330, selects and displays randomly one of three
compliments in response to the student’s correct answer. Subsequently, execution returns
to line 150 of the main program.

In line 150 of the main program, variable COUNT is checked; if it equals 5, all five
problems have been answered and the final tally is presented in lines 155 to 160. Other-
wise, execution returns to line 115, where the next problem is presented.

The END statement is usually optional. In this program it is however required. If the
END in line 165 were omitted, execution would proceed from line 160 directly into the
subroutine lines 200 to 250. That would make no sense, and in addition an RG ERROR

128

ch. 8 /| subroutines

would occur, indicating a RETURN without GOSUB. In the absence of the END, execu-
tion of the subroutine is invoked without a GOSUB statement. A RETURN is then
impossible to execute.

REMEMBER: Programs that include subroutines generally require an END statement.

8.4 A FINAL COMMENT

EXERCISES 11

The examples we have studied only begin to illustrate the many ways sub-
routines can be used by the programmer. In many instances, a program may
involve many calculations that are exceedingly involved and complex. For
example, an analyst might be concerned about the financial future of a com-
pany. Many factors affect the company ; among them are the cost of materials
and manufacturing, inventory control, sales, and the share of the market.
Using these and other characteristics, the analyst will attempt to forecast the
company’s future. The resulting total program can be very substantial. In
such a case it is good practice to break the program down into separate seg-
ments. Each of these could then be written as a separate subroutine, and the
main program would be a mere skeleton consisting of little more than a
series of GOSUB statements. In many instances it is even convenient to
perform input-output operations in separate subroutines. The advantages of
such an approach include the following:

1. It is easier to write several short subroutines than one very long
program.

2. Subroutines can be debugged and tested separately. Errors are located
more readily in this manner.

3. Modifications to the program can be made more easily. It is possible
to add a subroutine or to modify an existing one without affecting the rest
of the program.

4. Subroutines make it more convenient to read a program or document
its function.

1. Enter the following program. Before executing it, anticipate the output it will
produce.

FRIMT "STRRT"

0 GOSUER 7o

FRINT "BACE IM MRIMN"

EML Anticipated display
FRIMT "SUBROUTIME 1¢

FETIIRN Actual display

L
b}

I 0. I A 8
[AR A

2. To the above program, add the line 25 GOSUB 70. What output will the program
now produce? Delete line 25.

129

exercises 11

3.

10.

11.

12.

In the program of problem 1, delete line 50. What output will the program now
produce? Reenter line 50.

. Add the following statements to the program of problem 1.

Z EasUe 2a
S8 PRIMNT "SUBROUTIME 2
25 RETURHM

Before executing the program, anticipate its output.

. Add the following statement to the program of problem 4: 72 GOSUB 80. Antici-

pate the output of the new version of the program.

. Add the statement 45 GOTO 10 to the program of problem 5. Now what happens?

. Write a subroutine that examines an array of 10 numbers and outputs how many

numbers are negative. Input the array in the main program.

. Modify the program to produce a blinking display (presented in this chapter) to

input the number of times the message is to be displayed.

. Extend the blinking display program to operate like a digital clock. The display is to

be the actual time.

Write a program to simulate a dice game. For each roll of the dice, use a subroutine
that generates two random numbers between 1 and 6. On the first toss you win with
a total of 7 and the computer wins with a total of 12. Any other sum becomes your
point. You continue to throw, trying to match this point. If you roll a 7 in the pro-
cess, the computer wins. Keep a tally of games won and lost.

Write a subroutine to compute and output the mean and standard deviation of data
stored in an array A. Input the array in the main program. Use the following mathe-
matical relationships for the computation.

SUM A
MEAN =

STANDARD DEVIATION =

\/SUM A? - (SUM A)*/N
N -1

where SUM A = sum of all data points in array A
SUM A? = sum of the squares of all the data points
N = number of data points; the number of elements of array A

Write a main program to input data and a subroutine to perform a data validity
check. If the number is negative or greater than 100, the subroutine displays an
appropriate message and returns to the main program for more data entry. The mean
and standard deviation are to be computed and displayed in a second subroutine.

Write a subroutine for calculating compound interest using the formula

RNT
A==PQ—+->
N

where A = accumulated amount (principal plus interest)
P = invested principal
R = annual interest rate (in decimal notation)
T = number of years
N = number of times the interest is compounded each year.

130

ch. 8 | subroutines

13.

14.

15.

Values for these variables are to be entered in the main program. Use the following
values: P = §100, R = 0.05 (5%), T = 10 years, N = 1, 2, 4, 8, 16, 32, 64, 128,
and 365. Print a table of N and A.

Write a subroutine to compute N factorial (N!). For example, 4 factorial (4!) equals
4 X 3 X 2 X 1=24. Input N in the main program, and output N! from the sub-
routine.

Write a subroutine to calculate e* using the formula

x=1+_Xm+_>g_2+)_(_3+Xi+E+“_
1 20 3t 41 3!

e

In the main program, input X and the number of desired terms from the infinite
series. Use the subroutine of the previous problem to compute the factorial terms.
The program to compute e* will therefore include nested subroutines.

Extend the program that computes e* to include a convergence criterion. Instead of
specifying the number of terms of the series that are to be included, have the sub-
routine include as many terms as are required until the relative difference between
successive terms is no more than some prespecified value C. The relative difference is
the absolute value of the ratio of the previous term minus the current term divided
by the current term. Input C in the main program, and write a subroutine to deter-
mine whether the series has converged. The series has converged when the relative
difference of successive terms is less than C. A typical value for C is 0.00001.

chapier y l gﬁaphics

9.1 BACKGROUND

Graphic capabilities are quite important for educational, business, and recrea-
tional purposes. We can, for example, graph equations and bar charts or
create computer art. The functions that make it all possible control the cur-
sor and give the programmer the flexibility of printing characters on the
screen at specific locations.

The cursor control instructions that have already been introduced are
CLS, CLEAR, TAB(X), POS(X), and PRINT @. CLS clears the screen and
moves the cursor along with the READY to the upper left corner of the
screen. The CLS instruction can be part of the program. Upon its execution
the screen is cleared and thus readied for subsequent output. The CLEAR
key clears the display and returns it to a 64 character per line format. The
TAB(X) function moves the cursor to the specified position X on the current
line. If X is greater than 63, the cursor is moved to subsequent lines. The
TAB function is useful in tabulating data or graphing equations. The POS(X)
function returns a number from 0 to 63, indicating the current cursor posi-
tion on the screen. The POS function can, for example, be used in conjunc-
tion with the TAB function to space data evenly across the screen. The
PRINT @ statement specifies exactly where on the screen the display is to
appear. The specified location is a number between 0 and 1023. It corre-
sponds to the 1024 (16 X 64) available print positions on the screen.

The CLS, TAB, POS, and PRINT @ statements-are most effective in for-
matting output, especially for reports. However, they are not quite as effec-
tive for plotting graphs or generating computer art. These instructions rely
on a screen grid of 1024 print positions: 16 lines with 64 characters per line.
This may be too crude and does not offer sufficient resolution. There are
other graphic statements that offer a finer grid on the screen.

9.2 GRAPHING WITH SET(X,Y)

131

In graphing, we use a grid consisting of 128 points horizontally and 48 lines
vertically. This grid of 6144 print positions offers the programmer a fine
network of points. Each of these points can be addressed.

The SET (X,Y) function places a small rectangular block at position
(X,Y) on the screen. X is the horizontal position 0 through 127 and Y the
vertical position 0 through 47. X and Y can be numbers or expressions but

132

ch. 9 / graphics

must be nonnegative. Location 0,0 is at the top left corner of the screen and
127,47 is at the bottom right corner.

SET (o,O)r M SET (127,0)

MIDPOINT .SET (63,23)

SET (0,47) B B SET (127,47)

SET(X,Y) may be used in the immediate mode and in the programming
mode. Type in

SET 2|, 250

The computer’s response is a small rectangular point appearing at X = 20
and Y = 25. Similarly, we can graph a point in the programming mode at
X =20and Y = 35:

18 SETC2E, 350
FLiM

This short program yields an additional point on the screen directly be-
neath the first point. The two points are separated by 10 vertical graph
positions.

When graphing, it is usually desirable to remove all clutter from the
screen including the READY. The following short program accomplishes
this.

COMMENTS
ia L= Clear the screen.
28 SETC 28, 250 One point is plotted at X = 20, Y = 35,
@ GoTO =a Remain in an infinite loop.

Line 30 represents a new programming trick. Upon execution of the pro-
gram, the computer is hung up at line 30. The purpose of this maneuver is to
suppress the READY from appearing on the screen at the end of the execu-
tion. We escape this hangup and obtain the READY by pressing the BREAK
key. Graphing with the TAB and PRINT @ instructions permits use of any
characters to denote points on the graph. The SET statement, in contrast,
always plots with small rectangles. The fine grid accessible with SET instruc-
tions makes it possible to plot points so close to each other that they form
lines. Compare, for example,

18 L=

28 FOR w=8 TO 18: PRINT TARABCHIK: © HEAT A
25 PRINT

I8 FOR #=8 TO Z8: PRINT TRBURI"E": . HEMT =
48 FOR #=8 TO &8: SETCH, 182 @ HERT #

SE GOTO Se

FLM

g 4 4 5 & ¥ g 58 1aé

LA AR E RN R R R,

133 sec. 9.2 /| graphing with SET (X, Y)

To escape press the BREAK key. The first two lines of output were pro-
duced with the TAB function and the third using the SET statement. The
SET displayed an actual line. To terminate execution, press BREAK.

REMEMBER: X and Y in SET(X,Y) cannot be negative. :
X may be greater or equal to 0 and less or equal to 127.
Y may be greater or equal to 0 and less or equal to 47.
X = 0 is along the left edge of the screen.
Y = 0 is along the top of the screen.

Q Example: Graph of Degrees Fahrenheit and Celsius

We wish to graph degrees Celsius versus degrees Fahrenheit. This graph will be a line that
can be used to look up corresponding temperatures in the two temperature scales. The
relationship to be plotted is

=3 (F-32)
9

where C and F are temperatures in the Celsius and Fahrenheit scales, respectively.

COMMENTS
18 CL=
o8 FOR F=3Z2 TO 286 Range of °F is 32 to 86, a total of
55 points on the graph.
= The temperature conversion for-
mula.

Without lines 32 and 42, line 50
would be SET(F,C).

GOTO 7aé Prevent the READY from appear-

ing.
LM See Figure 9.1, version (a).

Execute the program and observe the shape of the graph. It is a line that starts at the
top left corner of the screen at F = 32 degrees Fahrenheit and C = 0 degrees Celsius. The

°F =32
°C =30 — ~—°C=0
Version (a) Version (b) Version (c)

FIGURE 9.1 Several versions of the degrees Fahrenheit-Celsius graph.

134

ch. 9 | graphics

line then progresses downward and to the right. The last point corresponds to F = 86
degrees Fahrenheit and C = 30 degrees Celsius. The graph is shown in Figure 9.1, version
(a).

Normally, graphs are plotted with increasing values of Y in the upward direction. The
screen of the TRS-80 is not laid out that way. The grid on the screen has Y increasing
downward. We can overcome this by subtracting the computed value of C from 30. We
insert line 40:

48 C=I6-C

The value of C computed in line 30 is recomputed in line 40. For example, if C = 0
in line 30, it will be recomputed in line 40 as C = 30. C = 30 instead of C = 0 is then
graphed. Line 40 has the effect of starting the Y-axis at the bottom of the screen and
pointing upward. Version (b) of Figure 9.1 shows an execution of the program with
X = 32 degrees Fahrenheit and Y = 0O degrees Celsius now at the bottom left of the
screen.

Finally, we modify the program to draw and label the axes. The axes are labeled with
numbers in lines 11 to 14. Then the Y-axis is drawn in line 16 and dotted with markers in
line 17. The X-axis is drawn in line 18, and the markers are placed along the X-axis in line
19. In line 20 we expand the range of the graph by including degrees Fahrenheit from 12
to 86. A flowchart of the program is shown in Figure 9.2.

ia CLS

11 PRINT @ 3, "Z8 C": PRINT @ 134, "24": FRINT @ 253, "1g"

12 PRINT @387, "12": PRINT @ 515, "&"

1X FPRINT @ 7odg." ia 28 48 Se &8 Fals) g8 F»
Y

o
14 PRINT @
START Program Line Numbers
DRAW AXES; MARK
\\VMVDLABELAXEﬁ//] (11) - (19)
F

COMPUTE C (30)
X=F
] C=30-C (32) - (42)
Y

=C
!

TURN ON BLOCK
AT (X,Y) (50)
< STOP ’ (70)

FIGURE 9.2 Conversion of degrees Fahrenheit to degrees Celsius— final version.

135

sec. 9.2 | graphing with SET (X, Y)

16 W=@: FOR v=8 TO 48: SETCA ¥i: HEXT v

17 ®=1l: FOR ¥=@ TO 48 STEF 3: SETCH. Y2 : NEAT ¥
18 ¥=38: FOR x=8 TO S6: SETON Yo NEXT

192 ¥=29: FOR x=8 TO &6 STEF 5: SETCR. Y. MEXT X
28 FOR F=i12 TO &6

C=S#(F-323/'9
32 M=F

C=3-C

=
SETCM, w0
NEXT F
GOTO 7@

Execution of this program yields version (c) in Figure 9.1. The markers are every five
plot positions along the X-axis. The corresponding values of degrees Fahrenheit (F) and
degrees Celsius (C) are displayed at every other marker. The scales differ for the two axes.
There are three plot positions for each print position vertically. A multiple of three is
therefore used. Horizontally, two plot positions correspond to one print position.

C:> Example: Bar

Graph of a Frequency Count

As another example of the use of the SET function, we write a program to generate a bar
graph of the frequency of occurrence of a 2, 3,4 .. .12 when two dice are thrown 100
times. There are a total of 36 possible ways that two dice can turn up the 11 different
outcomes of 2, 3, 4 . .. 12 points. We expect, for example, one thirty-sixth of all the
throws to yield 2 points between the two dice. A flowchart of the program is shown in
Figure 9.3.

COMMENTS
18 CLS: RANDOM
28 FOR KE=1 TQ 188 Throw the dice 100 times.
=3 I=RHDCS s +RMDCED One random number for each die.
3@ ACI-2a=ACI-20+1 There are 11 outcomes numbered O
48 NEAT K to 10. Sum up the frequencies.
I8 FPRINT @ 3, "a4": PRINT @ 131, "18" Print numbers along vertical axis:
52 FPRINT @ 253, "1iz2": PRINT @ Zg7."s" frequency of occurrence.
6 FRINT @ 83, ¢ = ks 4 b eY; Label the X-axis.
&S PRINT® 7 & =] & i a"
TEe x=8: FOR Y=8 TO 24: SETCR. Y2 Draw the Y-axis.
Vi MEXRT ¥
TE W=l FOR Y=8 TO 24 STEF &: SETCR. Y2 Place markers on the Y-axis.
TE HEST &
e w=24: FOR H=@ TO 128:. SETM. Y2 Draw the X-axis.
TP MEST =
28 FOR kK=a TO i
85 N=IO+Dek
r:JEi FOR Y=z4-ACks TO 24 SETOH. Yo Draw the bar chart for each of the
:_a:L HEST *rf 11 outcomes.
95 NEART K

Lines 80 to 95 draw the vertical bars of the bar chart. Line 80 sets up a loop to be
executed 11 times, once per outcome. The plot position of the bar along the X-axis is
computed in line 85. For the first outcome (K = 0, throwing a 2), X is 20. For each
subsequent outcome, X increases by eight plot positions; that is, successive bars are eight
plot positions apart. The height of each bar is the frequency of occurrence, A(K), of the
Kth outcome. The bars are graphed upward from the X-axis and not down from the top

136 ¢h. 9 / graphics

Program Line Numbers

START

Y
THROW 2 DICE (25)
| = TOTAL POINTS
Y
INCREMENT ELEMENT IN
FREQUENCY OF OCCURRENCE (30)
ARRAY A
3
DRAW, MARK AND _
\ LABEL AXES / (80)-(77)
< (80)-(95)
070 10)
Y
X=20+8*K (85)
90)-(91
24-A(K) TO 24 90)-(01)

Y

\ SET(X)Y) / (90)

A

(STOP >

FIGURE 9.3 Bar graph of a frequency count.

of the screen. Therefore, the bar corresponding to a frequency of occurrence A(K) is
drawn from Y = 24 - A(K) down to Y = 24 (onto the X-axis).
We now execute the program,

RUN

m 24

B 18

W12

Eo

2 3 456 78901 2

The bar graph verifies our expectations: the seven is tossed most frequently. In this ex-
ample of 100 tosses of two dice, the seven occurred 21 times. The least frequent tosses

137

sec. 9.3 | other graphics functions

are the two and the twelve, each of which occurred 4 times. Note, the outcomes of tossing
10, 11, and 12 are labeled as 0, 1, and 2 respectively along the X-axis of the bar graph. Do
you expect the same frequencies to occur if we rerun the program and simulate 100 more
tosses?

9.3 OTHER GRAPHICS FUNCTIONS

The RESET(X,Y) and POINT(X,Y) are two more functions that enhance the
graphics capabilities of the TRS-80. The RESET function turns off a graphics
block at the location specified by the coordinates X and Y. As with the SET
function, X and Y must be nonnegative and be constants or expressions. In
general, the integer portion of X and Y specifies the coordinates to be
graphed.

COMMENTS
SETy 166, 480 Graph a single point.
FESET.LBG, 46 Erase that point.

The POINT(X,Y) function examines the graph location (X,Y) and checks
whether it has been SET before. If the location (X,Y) has been SET (is on),
POINT(X,Y) takes on the value -1. If the location (X,Y) has not been SET
before, that is, if the location is off, the POINT(X,Y) function returns a 0.

COMMENTS
SET LB, 4 Graph the point.
FRIMT POIMT LG8, & Check if (100,40) has been SET.
-1 Yes, it has been SET.
FESETC L0, 480 Erase the point (100,40).
FRINWT FOIMTCLEG, 4@ The point (100,40) is no longer
& SET.

C:> Example: Random Walk

We visualize a mouse moving along in an open area. The mouse makes steps of the same
length with equal probability in the forward and backward directions as well as to either
side. The question is, what is the mouse’s path if it never steps twice on the same location?
This restriction may cause the mouse to be trapped when it finds itself surrounded by
locations previously occupied. We simulate the random walk on the screen and start the
mouse off at X = 64, Y = 20. When it reaches the edge of the screen (X = 0, or
X =127,0r Y = 0, 0r Y = 47), the walk ends successfully. A flowchart of the program
is shown in Figure 9.4. Corresponding line numbers of the program are shown in the
flowchart.

18 OM ERROR GOTO S8
11 CLS: RAMLOM

iz 4 Y=ZB: K=8
15 ZETuk. Y

138 k ch. 9 | graphics

START

| x=64: vy=20; k=0 | (12)

(10) (80)
ON ERROR PRINT AT EDGE
“DONE":K;“STEPS"" STOP

RANDOM
NUMBER

SURROUNDED BY NO (70)

ON POINTS?

PRINT
“STUCK AFTER";
K;“STEPS”

STOP

FIGURE 9.4 Random walk.

16 F=k+1

s SN [N

12 0OW 2 GOTO 28, 26, 46 , 56

28 IF POINTOHE. Y=-Zs THEM &8

21 Y=W-2 G0TD 45

28 IF POINTOR+2. Yx THEM &6

2l H=ssaz GOTO L5

48 IF POIMTOE, Y4210

41 =Yz GOTO 45

R IF POINTCH-2

Tl H=s-2 GOTO 15

S8 IF POINTOS+E, Y AMD POINTOS-2, ¥ AMD POINT G Y+2) AND
FOINTCR, ¥Y-23 THEM FPRIMT B &, "STUCK": k: GOTO €@

Ye GoTo 17

80 PRINT & @, "DONE":K: G0TO 20

THEM &&

THEM £

139

exercises 12

RUN
EDGE OF SCREEN
f REACHED

DONE 2o i

K

26 STEPSTO
REACH EDGE

:I
|||<-START
HERE

The random walk starts out at X = 64 and Y = 20 (lines 12 to 15). We then gen-
erate random numbers in the range 1 through 4 (line 17). Random numbers 1,2, 3,and
4 correspond, respectively, to a forward (up) step, a step to the right, a backward (down)
step, and a step to the left. Each step in the simulation corresponds to a jump of two
blocks on the screen. In line 18, depending on the value of the random number Z, execu-
tion transfers to line 20, 30, 40, or 50. The POINT(X,Y) function is used to detect
whether a location to which the mouse is about to move has previously been occupied. If
that position is available, (POINT(X,Y)=0), then the step is taken by transferring to line
15. If the position is not available, a new random number needs to be generated in line
17. But before generating the new number it is necessary to check if the mouse is trapped.
The POINT function is used in line 60 to check if there are any previously unoccupied
locations either above, below, or to either side of the present position of the mouse. If
the mouse is trapped, an appropriate message is displayed at the corner of the screen;
otherwise, a new random number is generated in line 17 and the process of checking
repeats.

The random walk is successfully completed when the mouse is at the screen’s edge or
attempts to go beyond. When the arguments X and Y in SET and POINT exceed their
permissible limits, an error occurs. The occurrence of the error signals that the walk is
complete. We take advantage of this feature and use the ON ERROR GO TO statement
in line 10 to transfer to line 80 in the event of an error. Line 80 displays the message
“DONE"" along with the total number of steps taken to complete the walk.

Type in the program and observe the movements of the mouse. The motion can be
slowed by inserting a delay prior to turning on the graphic block in line 15. Such a delay
may consist of a dummy FOR-NEXT loop. Another possible variation is to change the
jump size (presently at 2) to 1 or 3 or more. All lines containing the expressions X + 2,
X -2,Y+2,0rY -2 would have to be modified accordingly. In the process of exe-
cuting the program, some unique graphic patterns may develop.

EXERCISES 12

1. Before executing the following instructions, fill in what you anticipate the display
will be. Add an explanation for any error you make.

Instruction Anticipated Display Display
a. FRIMT TRE«18.:18
b. FRINT & 18, 18
C. PRINT FOS{i@én

140 ch. 9 | graphics

Instruction Anticipated Display Display
FRINT TRECLA, POSC183
CLE
SETCA8, 1850
RESETC16, 160
18 GOTD 18
FLIM
L BRERAK
Joo 18 SETCE. 83

28 IF POINMTOE, 82 THEN FRIMNT"OR"
ELSE FRINMT "OFF"

e e

FIM

18 RESET 8. B0
RN

SETC1E, S A8 &l
RESETCA8, 16, 13
SETCLE, 183

FOIRT o1&, 160
FPRINT FOIMT 1. 1es

.”*‘

’F"?P.Er“

2. What displays do the following programs produce?

a. 18 CLs: ==a
28 FOR Y=8 T0 47 SET R, Yr o HEST Y. GOTO 2
b. 118 FOR H=1 TO 125
128 FOR Y=1 TO 43
iz :ETV“;?'
1 w
156
e
17
1a8
158
288 GoTo 158

i
b

3. a. Write a program to draw a vertical line at X = 63 and a horizontal line at Y = 23.
b. Add markers every 5 units along the X - axis and every 3 units along the
Y - axis.

4. Write a program to display a rectangle of width W and height H. The top left corner
of the rectangle is to appear at X = A and Y = B. Input variables W, H, A, and B
from the keyboard. How large may A, B, H, and W be?

5. Generalize the rectangle program to display N rectangles. Generate W, H, A, and B
randomly. Input N from the keyboard. Select W between 1 and 10, H between 1 and
18, Abetween 0 and 117, and B between 0 and 29.

6. Write a program to plot a conversion graph from inches to centimeters (1 inch = 2.54
centimeters). Plot centimeters along the X-axis in the range O to 100 centimeters.
Along the vertical axis, place markers every 6 inches. How many such markers are
required?

7. Modify the random walk program of this chapter to eliminate the restriction that the
same location cannot be occupied more than once. Run the program many times.
Which edge of the screen does the mouse reach most frequently?

8. Write a program to simulate the following random walk: A drunk is staggering along
an alley. He or she takes 2-foot-long steps with equal probability in the forward and
backward direction. On the average, how far does the drunk move from the starting
point at midscreen in N steps? Let N = 10, 50, 100, 500. Assume the drunk moves
along the X-axis.

141 exercises 12

9. Write a program to generate 100 random numbers in the range 1 to 10. Output a bar
chart showing the frequency of occurrence of each of the 10 random numbers. Do
you expect the frequencies to be the same?

10. Write a program to plot two lines on the same graph. The equations to be graphed
areY = Xand Y = 3X.Let X =0,1,2,...,10.Place markers and label the axes.

sonee W0

10.1 REVIEW

142

SIRINgS

The great power of the computer lies in its ability to not only manipulate
numeric information but also process character information. Numeric vari-
ables are used to hold numeric quantities. These may be added, subtracted,
multiplied, divided, evaluated in a function, or compared. Character informa-
tion may consist of any combination of alphabetic and numeric characters,
punctuation, and symbols. A string is a specific sequence of such characters.
Strings do not enter into ordinary arithmetic operations. It certainly would
make no sense to multiply the name of a person by ten or take its square
root. However, we may want to process the name. In earlier chapters we
have learned how to specify string variables, how to input and output them,
how to compare them, and even how to ‘“add’ them. Addition of strings is
called concatenation and refers to the process of appending one string to
anothef. It is not an arithmetic addition. String variables differ from numeric
variables in that they have a $ symbol as the last character of the name. The
following sequence of instructions reviews string manipulations.

COMMENTS
FE="BIN" Specify the string variable A$.
FRINT A% “BIN" is a string constant.

EBIN Variable A$ is displayed.

Bl a="G0" String variables may be subscripted.
FRINT R#+B&01> The two string variables are con-
EINGO catenated.

PRIMNT RA$=B#C1) The two string variables are com-

e] pared. They are unequal.
FREINT Ax<B$Cd: Alphabetically, ““BIN” is before
-1 (less than) “GO".

A one-line program to input your
name.

18 IMFPUT "SOUR NAME": MN$

FUM Request execution.
YOUR NAMET BOE BRSIC Your entry.
Rt Request another execution.

YOUR NAME? BRSIC. BOB The string you enter now contains

TERTRA IGHORED a comma; an error occurs; you

PE:EHT HE need ” " around entry.

BRZIC Only the part of the name prior to
the comma is stored.

143

sec. 10.2 | ASCII codes and related functions (ASC and CHRS)

The last example indicates that a string constant must be enclosed in
quotes when entered as INPUT if it contains a comma. Colons or leading
blanks also require the quotes. The same rule regarding commas, colons, and
leading blanks applies to INPUT # and READ-DATA statements.

10.2 ASCII CODES AND RELATED FUNCTIONS (ASC and CHR$)

Two strings can be compared to determine which string variable or string
constant is alphabetically closer to A. The characters are compared one at a
time from left to right. Actually, the ASCII code of each character is com-
pared. ASCII is shert for American Standard Code for Information Inter-
change. It is a convention for identifying each character by a number. To
perform operations on strings, this code is used within the programming
language to designate the various alphanumeric characters. There are a total
of 128 codes dealing with alphanumeric characters and an additional 127
codes (total of 255 codes) for the TAB function and for graphics.

A list of the ASCII codes and their usage is given in Table 10.1, which
shows for each ASCII code the corresponding keyboard key and the corre-
sponding character that it displays on the screen. For example, the code 65
corresponds to the letter A on the keyboard. Code 65 also displays the letter
A on the screen. On the other hand, the ASCII code 1 corresponds to the
BREAK key on the keyboard, while on the screen it produces no display.
The most common codes may be summarized as follows:

ASCII Code Keyboard and
Number Screen Display
48-517 Digits 0to 9
65-90 Letters A,B,...,Z
129-191 Graphics symbols

The ASC(“string’’) function returns the ASCII code of the first character
of the “string.” The “‘string” is the argument and must appear within the
parentheses. It may be a string constant or a string variable. The CHRS (ex-
pression) function returns a one-character string corresponding to the ASCII
code specified by the expression. The argument must be numerical and must
be a constant, a variable, or an expression in the range 0 to 255. The ASC
and CHR$ functions perform opposite operations and are illustrated in the
following examples:

COMMENTS
FREINT ASCC A" Display the ASCI| code of letter A.
=5 ASCII code of letter A is 65.
PREINT ASCC"RE"D Display the ASCI! code of “AB".
&5 Only ASCII code of first letter is
displayed.
FRIMT ASCo@a™s Display ASCII code of digit 0.
] It is 48.
FRIMT RSCL™ Yo Display ASCII code of a blank.

iz - It is 32.

144

TABLE 10.1 ASCII codes

ASCII Keyboard Screen ASCII Keyboard Screen
Code Key Display Code Key Display
0 None None 58 : :
1 BREAK (also None 59 ; ;
SHIFT BREAK) 60 < <
2-7 None None 61 = =
8 « Backspace & Erase 62 > >
9 - None 63 ? ?
10 \ Carriage Return 64 @ @
11 None Carriage Return
12 None Carriage Return 65 A A
13 ENTER (also Carriage Return 66 B B
SHIFT ENTER) 67 C C
14 None Turn on cursor 68 D D
15 None Turn off cursor 69 E E
16-22 None None 70 F F
23 None Convert to 71 G G
expanded print 72 H H
24 SHIFT « Backspace cursor 73 I I
25 SHIFT — Forward space 74 J J
cursor 75 K K
26 SHIFT | Linefeed 4 76 L L
27 SHIFT % Linefeed 1 77 M M
28 None Cursor to position 78 N N
(0,0); convert to 79 0 (6]
regular print 80 P P
29 None Cursor to be- 81 Q Q
ginning of line 82 R R
30 None Erase to end of 83 S S
line 84 T T
31 CLEAR (also Clear to end of 85 0] U
SHIFT CLEAR) frame 86 \" \%
87 w w
32 Space Bar Space 88 X X
33 ! ! 89 Y Y
34 " " 90 Z Z
35 # #
36 $ $ 91 t 1t orl
37 % % 92 None 1
38 & & 93 None A
39 ! ! 94 None -
40 ((95 None —. (Underline)
41))
42 * * 96 SHIFT @ @ (Lower case if available)
43 + + 97-122 SHIFT A-
44 R R SHIFT Z Lower case A-Z (if available);
45 - - otherwise uppercase
46 . .
47 / / 123 None 1
124 None 4
48 0 0 125 None “
49 1 1 126 None >
50 2 2 127 None — (Underline)
51 3 3 128 None Space
52 4 4
53 S 5 129-191 None Graphics blocks
54 6 6 192-255 None TAB(X) for X = 0,1,...,63,
S5 7 7 respectively
56 8 8
57 9 9

145

16
za

=@
43

FLIN

16
28
38
ot
S

READ

LATA &5 22, 78, 73, 86, 68,

sec. 10.2 | ASCII codes and related functions (ASC and CHR $)

FRINT CHRE#F(&S: Display the symbol corresponding
H to code 65. It is letter A.
FRINT CHRECRSCO"R" 30 CHR$ and ASC have opposite func-
A tions.
FRINT ASCCCHRECES) s

=3

The following program displays and performs the function of all the
ASCII codes. Even though a delay has been incorporated into the program,
you may wish to stop and freeze the display at any time. To stop the execu-
tion (without a BREAK), enter SHIFT @. To continue from where you left
off, press any key (except the SHIFT and BREAK keys). Compare Table
10.1 to the screen’s display during execution.

COMMENTS

REM DISFLAY ASCII CODES AMD FUNCTIONS

cL= Print code number and its screen

FOR H=0 TOQ 255 PRIMT i CHRE$R, display.

FOR I=1 TO 1%8: NEKT I Dummy loop for slowdown.

NEXT =

The next program decodes a message using the CHR$ function.

COMMENTS

TE, 69, 32, T3. 83, 32, T2, 65, 76, 7B, 22, 65, 32, 66. 89. 84, 63

FPRINT CHR#FCH;

GOTO 4@

An infinite loop; eventually there
will be no more data to read.

A NIBELE IS HALF A BYTE

0

ERROR IN 16

Out-of-data error in line 10.

C:> Example: Maintaining a Status Message on the Screen

When lengthy and time-consuming internal computations are taking place, it is often a
good idea to maintain a status message on the screen. This message indicates that the sys-
tem is busy and perhaps gives some idea how close to completion it is. In this example we
maintain a steady display of a loop counter during loop processing.

CLE: PRINT CHRE$CZE

FOR I=1 TO 108

FRINT CHR#OZF2: TRECLS"NOW FROCESSING LOOPY; I; "OF iee"
FEEM LOOF PROCESSIMNG BEGIMNS

FOR D=1 TO @@ NEAT D

MEST I

SN R R RO (R
LYot B ot I ot B I]

Line 10 clears the screen and moves the cursor down from the top of the screen. In line
30, CHR$(27) moves the cursor up to the output line and TAB(15) centers the message.
Line 50 is a loop that delays the display. When this routine is used in conjunction with
loop processing, the loop of line 50 would not be included. What happens if the CHR$(27)
is not included in line 30?7 How about if CHR$(26) is omitted in line 10? Can you explain
the resulting displays?

146

ch. 10 / strings

REMEMBER: The ASCand CH R$ functlons complement each other ASC(CH R$(65))
= 65 and similarly CHR$(ASC(*A”)) = “AT.

10.3 CHARACTER MANIPULATION FUNCTIONS

(LEN, LEFTS$, RIGHT$, MID$)

In this section we introduce several functions that may be used to analyze
strings. The LEN(‘‘string”) function returns the number of characters in-
cluded in a string. The argument can be a string constant, a string variable, or
an expression. Since a string may be up to 255 characters in length, LEN
(“string”) is a number between 0 and 255 inclusive. The LEFT$(“string”,N)
function returns the first N characters of the string. The string in the argu-
ment may be a string constant, variable, or expression, and N may be any
numeric constant, variable, or expression between 0 and 255. The function
RIGHT$(“‘string”,N) operates like the function LEFT$(‘‘string”’,N) but
returns the last N characters of the string. The MID$(“‘string”’,M,N) function
returns a portion of “‘string” starting with the Mth position and containing N
characters. For example, PRINT MID$("“ABCD"",2,3) displays the string
BCD. It starts with the second character of the string ABCD and is three
characters long.

COMMENTS
A$ = "TRS-SEY Specify string A$.
FRIMT LEMCHED There are six characters in A$.
=
FRINT LEFT#®CR%. 20 The first three characters in A$ are
TR displayed.
FRINT RIGHT® AR, &0 The last two characters in A$ are
p=Te) displayed.
Ed=LEFTH A, 72 The 7 is acceptable even though it
FRIMT EBE# exceeds LEN(AS$).
TRZ—-2B
FRINT LEMCES Is B$ = 6 or 7 characters in length?
= B$ has six characters.
FRINT LEFT#OA%. LEM A% LEN function may be an argument
TRE—E8 for another function.
FRIMNT MID$ A 2020 Select three characters from AS$,
Fz— starting with the second.
FRINT MIDFECAT, LEMNCARE . 10 Display the last character in A$.

]

The LEN and LEFT$ functions are used in the following program to
create a unique display.

F$="TRE-GE"
FOR: M=1 TO LEMCAS
FRINT LEFT$ R, M3
MEST

1
4

T
DA I

147 sec. 10.3 [character manipulation functions (LEN, LEFT$, RIGHTS, MID$)

The number of characters displayed on each line of output is controlled by
M. M increases from 1 to 6;the length of the string “TRS-80"" is 6.

- REMEMBER: The functions LEFT$, MID$, and RIGHT$ have strmgs as arguments
and are used to isolate specific characters within the strings.

g> Example: Number of Words in a Text

In this program we input a text and check to determine how many words it contains. The
number of blanks in a text is a direct measure of the words. The number of words equals
the number of blanks plus 1. The text can be no longer than 255 characters. The CLEAR
600 reserves 600 bytes for string storage.

1@ CLEAR e CLS: COUMT=

S8 THPUT "WYOlk TEAT " A%

EZ8OFOR E=1 TO LEMoR#F?

e IF MIDECRF. ko Ly <" "THEM &g

S COUMNT =000 T+

e MNEST R

FEC PRINT "HUMEBER OF WORLCE"™: COUNT+1
FLitd

TOURE TESTT T0 EBE OR HOT TO BE
HUMEER OF MORDE &

The number of characters in the entire text, LEN(A$), determines the range of the loop
(lines 30 to 60). The text’s characters are compared one at a time to the blank “ ” in
line 40. If a character equals a blank, the counter COUNT is incremented by 1. Enter the
program and try it on your favorite phrase. Does the program work for a text consisting
of a single word?

C:> Example: Palindromes

A palindrome is a word that reads the same forward or backward, for example, OTTO or
MADAM. The following program determines whether a specific string is a palindrome.

18 CLERR 1608

28 INPUT "YOUR TEXT": A%

328 FOR K=LEM£: R%> TO 1 STEF -1

48 Bf=BF+MID$C A%, K, 12

58 NEXT K

& IF A¥=B%¥ THEN PRIMT "IT IS A PALINDROME": END
20 PRINT "IT IS NOT A PALIMDROME"

RUN
YOUR TEXT? MADAM
IT IS A PALINDROME

The loop of lines 30 to 50 rearranges the text A$ and forms string B$. This new string is
string A$ backward. If A$ equals B$, the text is a palindrome, and otherwise it is not.
What happens if the text we input in line 20 consists of a single character? Try it. Can
you think of any palindromes?

148 ch. 10 | strings

C:> Example: Coding a Message

To code a message, we add a certain number to the ASCII value of each of the characters
of the message. This added value is the code. It is entered as part of the INPUT and is
called N.

18 CLERR 1666

28 INFUT "YOUR CODE VYALUE™; N

28 INFUT "YOUR MESSAGE": A%

48 FOR k=1 TO LENC(RA%>

58 REM ISOLATE THE KTH CHARACTER

35 BE=MIDFAE, K, 12

58 REM RLD N TO THE RASCII CODE OF THE KTH CHARACTER
65 B=N+ASC(BES$)

78 REM CONCATENATE THE CODED CHRARACTER TO THE CODED MESSAGE
S CODE$=CODE$+CHR$(B)

268 NEXT K

98 PRINT "THE CODED MESSAGE . "; CODES

RUN

YOUR CODE VALUE? 1

THE MESSAGE? ABC

THE CODED MESSAGE : BCD

This program works fine as long as the sum of the ASCII codes of the characters and N
does not exceed 255 in line 65. If N is very large or if characters with high ASCII code
values are used, it may be necessary to test B. If B exceeds 255, then specify it as
B =B - 255,

Can you write a similar program to accept a coded message along with its code value
and output the decoded message?

10.4 OTHER STRING FUNCTIONS

The STRINGS(N, “character”) returns a string consisting of N identical char-
acters. N is a numeric constant, variable, or expression, and the character can
be any alphanumeric character or an ASCII code number. The STRINGS$
function may be used effectively to prepare graphic displays and bar graphs.
The following examples illustrate the use of this function:

COMMENTS
PRINT STRIMG$CS. "R") N = 5; the character is an A.
ARARRA
PRINT STRING#C(S, 652 N = 5; the character is the ASCII
ARAARA code 65, which is the letter A.
PRINT STRING$C168, "A"2
P05 ERROR An out-of-string space error occurs;

CLEAR 100 is needed.

The request for a string of 100 A’s caused an error. When the computer is
first turned on, a CLEAR 50 is automatically executed. The CLEAR n com-
mand resets all numeric variables to zero and all string variables to null. In
addition, this command reserves n bytes for string storage. A request of 100

149

sec. 10.4 | other string functions

A’s exceeds 50, the limit set automatically when the computer is turned on.
To avoid the OS error, we first execute CLEAR 100.

The FRE(string”) function returns the amount of unused string storage
space. The argument string is a dummy argument. Any string constant, vari-
able, or expression can be used as a valid argument.

COMMENTS
FRINT FREC"A"D When the computer is first turned
56 on, 50 bytes are reserved for
strings.
A$=STRING$L38, "A" AS$ is a string of 30 A'S,
FRINT FREC"EB"D Any string is acceptable as an argu-
28 ment of FRE.
20 bytes are now left (50 - 30
= 20).
CLERR Z60 AS$ is set to null and 300 bytes are
FRINT LEMCAS$: now reserved.
5] A$ is now a string of zero length.

AE=STRIMG$.(28, "A" > AS$ is 80 characters in length.
FRINT FREZ"C">

zZze 220 bytes remain unused.
AE=STRIMGH (386, "A" > lllegal-Function-Call error.
?FC ERROR A string cannot exceed 255 char-
acters.

The FRE(‘string”) function is not to be confused with the MEM function,
which returns the unused bytes in memory.

The STR$(expression) converts a numeric expression or constant to a
string. For example, if Pl = 3.1415, then STR$(Pl) equals the string
“©3.1415”. The leading blank is to allow space for a negative sign. Since
STR$(PI) is a string constant, only string operations may be performed with
it and no arithmetic operations.

The function VAL(“‘string”’) returns the number represented by the char-
acters of the argument string. For example, VAL(“123"’) equals the numeric
constant 123. The VAL and STR$ functions perform opposite operations.

COMMENTS

A=123

PRINT ZTR${1230 Convert 123 to the string **123".
i2% 123 is a string.

FRINT STR$C12Z30+1 Type-Mismatch error.

*THM ERROR Cannot add 1 to a string.

FRINT WAL{"42Z"s+1 VAL('*123") is the number 123.
124 123 + 1 = 124.

E‘E?S#"ZI?*"H“ A and B are equal since VAL and

-1 STR$ perform inverse operations.

FRINT LEMCSTREC-Z00 The string ‘-3’ consists of two
2 characters.

FRINT LEMCSTR$(ZD The 3 is positive and therefore has a
2 leading blank; the string then has

two characters.

REMEMBER::‘The VAL and STR$fuﬁctions complement each other; VAL(STR$(7))
equals the number 7, and, similarly, STR$(VAL("8")) equals the string “8”.

150 ch. 10 | strings

s> Example: Underlining a Title

The following program underlines all the nonblank characters in a title. A flowchart is
shown in Figure 10.1.

188 CLEAR &8

185 IMFUT "MHAT I5 YOuR TITLE": T#
118 CL5: MH=8

1268 FRIMT T#

138 FOR =1 TO LEMCT$2

148 IF PMIDECTE, ko Lo " THEW M=HW+Ll: GOTO 1@
156 GOSUER 268

led MEST b

i¥é REM LOOF COMPLETED

126 GOSUE 26868

196 EHD

288 REM SUBROUTIME TO UMDERLIME
218 FRINT STRIMGHEOM. "—" 3

28 FRIMT " "

238 N=@

Z4i RETURM

i

FUM
WHAT 1% YOur TITLE? COMPUTER:S ARE FOR E1DE
COMPUTERSZ RAREE FOR K1DZ

After the title is entered the screen is cleared. The title is displayed and the underlining
appears on a separate line single spaced below the title. Does the program work for a title
consisting of a single character or a title consisting of several words each separated by
several blanks?

The program consists of a main program (lines 100 to 190) and a subroutine (lines
200 to 240). In the main program we examine each character in the title. The counter N
is incremented if the character is not a blank. Once a blank character is encountered in
line 140, transfer is made to the subroutine, where N minus signs are printed to underline
N nonblank characters in the title. The STRINGS$ function is used for this purpose. Then
a blank is printed to properly break the underlining of the title beneath the blank. Execu-
tion subsequently returns to the main program within the loop at line 160. Each time
transfer is made to the subroutine the nonblank characters between successive blanks are
underlined. Once the loop is completed, transfer is made for the last time to the subrou-
tine in line 180, and the last characters of the title are underlined.

c:> Example: Binary-to-Decimal Conversion

In this example we input a binary number consisting of zeros and ones. The computer
then converts the binary number to its decimal equivalent. For example, the binary num-
ber 1101 is converted as follows: 1101 =1 X 23+ 1 X 22+0 x 2! + 1 X 2°
=8+ 4+ 0+ 1 =13.80binary 1101 is equivalent to decimal 13.

18 INFUT "BINARY HUMBER": B#
268 M=@. DEC=@

28 FOR K=LENCBE#$} TO 1 STEP -1
48 M=+l

58 Dd=MIDECBE, K. 10

151

sec. 10.4 | other string functions

START Program Line Numbers

INPUT

TITLE T$ (105)
(110)
PRINT
TITLE T$ (120
| K
—] k=170 LEN(TS) | (1301160

(150)

GOSUB 200

SUBROUTINE

UNDERLINE N
CHARACTERS AND THEN }:200)-(240)
PRINT 1 BLANK.

LET N =0
' - ¥
REM
LOOP COMPLETED (170)
1
GOSUB 200 (180)

STOP (190)

FIGURE 10.1 Underlining a title.

66 DEC=DEC+WVAL (D a#20 (N1
7@ MNEXT '
86 FRINT "DECIMAL EQUINVALEMT": DEC

RUN
EINARY HUMEBER? 14
DECIMAL EQUINVALENT =

The binary number is entered as a string of zeros and ones. Each character in the string,
that is, each zero and each one, is converted to a number using the VAL function in line
60. It is then multiplied by the proper place value. The place values are 29,2122 and so
on, for successive digits starting at the right end of the string B$. The sum in line 60
yields the decimal equivalent DEC of the binary number B$.

The INKEYS$ function is used to receive information, one character
at a time, from the keyboard. The ENTER key need not be pressed to com-

152

ch. 10 / strings

plete the data entry. This is in contrast to entering data with the INPUT
statement. With INKEY$ the single character is automatically processed
once the key is pressed. It is, however, not displayed on the screen. When
the INKEY$ is encountered, the keyboard is examined to determine if a key
has been pressed. If no key has been pressed, the null character is assumed.
The following short program places a single character at the top corner of
the screen.

1@ CLS
26 FRINT @ ©, INKEY$: GOTO 26

We execute the program and notice that the character corresponding to
whichever key we press appears on the screen. To stop execution, press
BREAK to escape from the infinite loop in line 20.

We now edit line 20 and take out the GOTO 20.

ia CLS
268 PRINT @ &, INKEYS

When RUN is entered, the READY appears immediately, indicating comple-
tion of execution. The INKEY$ needs to be placed within a loop so that the
keyboard is repeatedly scanned for an entry. If it is not placed within a loop,
as in the above edited version of the program, the keyboard is scanned only
once. If by that time no entry has been made, INKEYS$ is a null string.

REMEMBER: The INKEY$ function makes it possible to enter data ‘without pressing
the ENTER key. : ~

£:> Example: Character String Entry Routine

Any string up to 255 characters in length can be entered with this routine. There is no
restriction on the type of characters entered; digits, letters, as well as symbols are permis-
sible. Once the / character is entered the string is complete. The ENTER key need not be
pressed.

18 CLEAR 1668 LS

28 FPRINT "EMTER AMY CHARACTER STRING"

28 FOR I=1 TO 255

48 QE=IMREY$: IF E="" THEM 48

S8 IF =" THEM T8 ELSE R$=R$+3#

S8 MNERT I

FB FRINT: FRIWT "THE STRING YOU EMTERED 1=
s8 FRINT A%

RLiM

EMTEFR AMY CHARACTEFR STRIMNG

THE STRIMG wOU ENTERED IS
HE SHAID "FLEASE DOM'T EAT THE DRISIES®

In this case we entered a string containing quotes and an apostrophe. They are all part of
the string A$.

153 sec. 10.4 | other string functions

C:> Example: Shoot the M’s, A Video Game

The INKEYS$ function is particularly useful in writing programs to play video games.
These games usually require quite sophisticated programming. Shoot the M’s is a simple
game for preschoolers. It requires no skill and only luck. The object of the game is to
eliminate the M’s from the screen by pressing the space bar. Once all the M’s have disap-
peared, press the BREAK key and PRINT L to find out how many shots it took.

18 CL=: FAMDOM

28 FOR E=& TO 48

2@ PRINT @ ed+k+ze. "M M

468 HEST K

28 L=@

8 GE=IMEEY®: IF Gd="" THEM <@
va L=L+1

S8 FRINT @ RHLCLE0G). G3

28 GOTO &8

The loop of lines 20 to 40 displays on the screen a column consisting of five rows of the
character string “M M"". The counter L keeps track of the number of shots we take. Each
shot is one INKEYS$ entry, which equals the character string Q$. This entry is made by
pressing the space bar. Q$ is therefore a blank character string. It is printed in line 80 at a
randomly determined print position. Eventually, the blanks replace all the M’s and the
game is over. At that point, press BREAK followed by PRINT L to display the number of
shots taken to displace the M’s.

C:> Example: Shoot the Duck

This game is a more sophisticated video game that requires some skill. A duck moves
across the top of the screen. A gun, located at the lower edge of the screen, is fired at the
duck. The up arrow key activates the gun, and the message *BOOM?* appears on the
screen in the event of a hit.

16 REM SHOUOT THE DUCK

11 CLS: PRINT . "IMSTRUCTIONS"

12 FRIMT "UP ARROW KEY FIRES GURN"

14 PRINT: PRINT "ot GOOD LUCK skspopadt
15 INFUT "PRESS “ENTER” MWHEN RERDY"“: 0%
16 T#=CHR#$(128)+CHRF(LILI+CHRF (AL +CHRE(ATED
17 TH#=TE+CHR$ (252} +CHRE (1982 +CHRE (1820 +CHR$ (254 0
18 T$=T$+CHR$(142>+CHRE (1B +CHR$ (2550
12 REM INITIALIZE POSITION OF GUN

28 CLS: SETCEZ, 472

23 REM MOVE DUCK RCROSS SCREEM ALOMG Y=6
24 REM VARIABLE T4 IS THE DUCK

25 FOR K=1 TO &@: PRINT @ K.T$

26 REM CHECK FOR KEYBOARD ENTRY

36 C$=INKEY4$: IF C$="" THEN 5@

35 C=RSCCCHED

26 REM ¥ IS5 Y-POSITION OF BULLET

37 REM BULLET IS AT X=&3

38 REM CHECK IF GUM JUST FIRED

35 AND BULLET NOT IN MOTION

46 REM Y IS SET TO 47 WHEN GUN IS FIRED
42 IF ¥Y<=0 AND C=91 LET Y=d47

56 SET(EZ. 47> 7 SET GUN FOSITION

154 ch. 10 | strings

55 REM CHECK IF BULLET IN MOTION

€@ IF ¥<{=8 THEN 5@

78 REM BULLET IS AT POSITION (63, Y¥)

73 RESET(EZ, ¥): ¥=Y-4:. IF Y<=@ GOTO 59
79 REM POINTC(6EZ. ¥o=—1 WHEN BULLET HITS DUCK
88 IF POIMNT(EZ, ¥>=06 SET(6Z.Y»: GOTO S8
83 CLS: PRINT @ K. "+BOOM*"

86 REM TIME DELRAY FOR +BOOM+ DISPLAY
87 FOR L=1 TO 256: NEXT L

82 GOTO 26

98 NEXT K: GOTO 25

The program contains many REM statements that explain the code. In addition, the fol-
lowing comments may be helpful:

Lines 16 to 18: Variable T$ consists of several graphic characters that together
assume the shape of a duck.

Line 25: The duck moves one step at a time across the screen; the end of the FOR-
NEXT loopisat line 90. As the duck moves across the screen (along Y = 0), its horizontal
position is specified by the value of K.

Line 75: The bullet moves straight up. Its vertical position Y therefore continuously
changes as the value of Y decreases from 47 to 0. The horizontal position of the bullet is
unchanged and equals the horizontal position of the gun at X = 63. The bullet’s position
is RESET before each move. Its path therefore appears as a sequence of dots and not as a
line.

Line 80. 1f the bullet reaches a position that is set by the presence of the duck, that
is, for which POINT(63,Y) = -1, then the bullet is colliding with the duck and the mes-
sage *BOOM* appears.

Line 87: The time delay leaves the message *BOOM* on the screen for a short period
of time.

Line 89: The game starts over after the time delay of line 87. To stop execution,
press BREAK.

The game illustrates video game programming. Several refinements could be included
to improve the game. The duck could be made to move back and forth, and a scoreboard
could be added. The game may be more fun if the position of the gun is controlled by
the player and if a timer were incorporated to score the number of hits within a specific
time interval,

C:> Example: Etch-a-Sketch

This popular children’s toy is used to draw a pattern of lines—a graphic display. We simu-
late this toy on the computer.

COMMENTS

REM ETCH-A-SKETCH

H=E3: Y=23: CLS The starting point is at mid-screen.
ON ERROR GOTO &8

REM EBLINKING BLOCK

RESETUCH: Yo SETCH, ¥ A sequence of RESET and SET
RESETCH: ¥ SETOH, Yo produces blinking.

CE=INKEY$: IF C&="" THEM 306 The next move is entered.
C=RASC{CED

O L B bd d P P b
O DA NGO ES

REM RIGHT RRROW MOYE? ASCIHI code of right arrow key is 9:

155

exercises 13

55 IF C=% LET #H=x+1 increment 1 position to right.

59 REM LEFT ARROW MOVE? ASCII code of left arrow key is 8;

S8 IF C=8 LET H=x-1i increment 1 position to left.

&4 REM UF ARFEOW MOVE? ASCII code for up arrow key is 91;

€35 IF C=51 LET ¥=Yv-1 increment 1 position up.

53 REM DOMH ARROW PMOYE? ASCII code for down arrow key is

78 IF C=18 LET Y=Y+1 10; increment 1 position down.

TS SETCH, Y GOTO 46 Draw line to new position.

88 REM ERROR ROUTINE

84 REM AVOID GOING OFF SCREENM Remember, Y = 0 is along top of
screen.

85 IF RKr1a? LET ®=1&7 Do not allow X to exceed 127 or be

S8 IF B<8 LET x=@8 less than 0.

9% IF Y47 LET ¥=d47 Do not allow Y to exceed 47 or be

25 IF Y<8 LET Y=@ less than 0.

38 RESUME 46 To stop execution, press BREAK,

The sketch starts out with a small blinking block at mid-screen (X = 63,Y = 23). From
there, depending on which key is pressed, a line is drawn sideways, up, or down. The
INKEYS$ function is used in line 40 to specify the direction in which the line is to be
drawn. The ASCII code of the key pressed is determined in line 50 and then tested in
lines 55 to 70 to determine the direction in which the line is to proceed. The new line
segment is drawn in line 75 using the SET function. The error routine (lines 85 to 98)
ensures that execution is not interrupted when the cursor attempts to go off screen.

There are several ways in which the program can be modified: the starting point of
the sketch may be placed at a position other than mid-screen or larger line segments may
be drawn. For example, it may be desirable to make the line segments in the right-left
directions three times as large as the up-down segments. Another possibility is to intro-
duce an additional key that will draw along the diagonal. This will give the “artist” added
flexibility. Can you implement any of these changes?

EXERCISES 13

1. Before executing the instructions, fill in the anticipated display and compare it with
the actual display.

Instruction Anticipated Display Display

. PRINT RZCO"R"

. PRINT RECOTEROY" 2
FRIMT RSCCS
FRIMNT RECCFIVES
FRINT ARSCC"S"D
PRINT RzCC" "o
FRIMNT RSCO"":
FRINT CHRE$C(42
FRIMT CHRE%C&S
FRINT CHRFCES+IZ20
FRINT CHR&EC24+3220
FRIWNT CHRECZE

CLERE

FRIMT RAZCOCHRECTED 2
FRINT CHRECASCOUTRE"

08 mFe PR e O

p. G¥=CHR#CI40
q. FRINT Q#+"TRE-26"+0#

156 ch. 10 | strings

2. When filling in the anticipated displays, be sure to account for leading and trailing
blanks.

v

~F W@ se o o

3. Which of the following expressions are equivalent? Assume:

—

8

B e PR e a0 o

— D O O“p:

© T OB

Instruction

QE="TO

FRINT
FRINT
FRIMT
FRINT
PRINT
FRINT

PRINT
FRINT

PRIMNT
FRINT
FRINT
FRINT
FRINT
FREINT
FRINT
FRINT
FRINT
PRINT
FRINT
FRINT
FRINT

Instruction

FRINT

. PRINT
. FRINT
. FRINT
. FRINT
. FRINT

FRINT

. PRIMT
. CLERR

FRINT
FRINT

FREINT

FRINT

. AF="FUH"

FRINT
FRINT
FRINT
FRINT
FRIMNT

Anticipated Display

BE OR HWOT TCQ BE"

Display

LEHCRS

LEMCRES

LEFT#oQ%, S

LEFT#(a%, @0

LEFT#C 0%, 2@

LEFT$ G, LENCGEY)

RIGHTS (G, S

RIGHT$ (%, Sua+LEFTS$ Q% 52

A¥= "I AM EARLY"
Bd = “I AM LATE"

LEFT$CAE, 42
MIDECAS, &, 13
RIGHT$(R$. 1
LEFT$(B%, S

RA¥

LEMCRAE
LEMWCLEF TS A%, 420
MIDECES, 1, 42

MIDECAE, LENCAS . 10
LEMCRIGHT$(E$, 400
LENCBES
MIDECRIGHTH A%, 60, 6,10
LEFT$(B%, SH+RIGHT$ A%, 5O

Anticipated Display
FEE:."S@av s

Display

STRIMGE Cd4i, "=

STRINGECE@, ="

STRINGEG, "=")

STRIMGE @, "3

STRIMNGH G, 5. ="

STRINGE G, "ABC"

FREL"="

S Lels)

FREC"Z"

STRINGH 285, "5

g}

STRINGE 255, "S55

=

i

STRIMNGH 256, "END"

FREC"R$" 2

FIEM

WAL LR -1z

THUSTRE L

LEMCETRECLZED D

157

exercises 13

Instruction Anticipated Display Display
t PRINT LEMUSTREC-125 0
U. FRINT %ALcdia;
Vo FRIMT STRE WAL Lz s
w. 18 FRINT @ 1666, INKEY:: QOTO 1e
X. FUH

5. What do the following programs accomplish?

10.
11.

12.

a. & FOR k=1L TO = b. 18 CLZ: k=g3
28 CH=IMKEY$: 1IF C4="" THEM 2@ 2B FOR A=6 TO 25
28 Ta=T3+0%F . MEST K 28 FOR B=a TO &Z
S8 CLS: PRINT & Soe, T3 4 SIWT CHEZ GRS
S0 G0TD S8 bl

DU RN 0t B O O O I Y
o
T
—
-
-
—
-

o=

A IMFUT M
A PRINT M "COMPUTER": CHRECABS CSONOM-1 248500

i
P b
(]

a. Write a program to input a text and output the number of E’s occurring in the
text.

b. Modify the program of part a to output the number of times each vowel occurs in
the text.

c. Modify the program of part (a) to display the number of times the ending ING ap-
pears in the text.

. Write a program to input a coded message along with its code value and output the

decoded message. Before writing the program, review the example Coding a Message
presented in this chapter.

. An imperfect palindrome is a statement that reads the same forward or backward

after all nonalphabetic characters have been removed. Write a program to input a text
and test if it is an imperfect palindrome. Check your program on

MAGAM 1M RADAR
EGRL R BRZE- TOME LEMOTES A EBRD AGE

Hint: Determine the ASCII code of each of the string’s characters and test if it falls
in the range 65 to 90 inclusive; if it does not, the character is dropped since it is not a
letter.

. Write a program to input the names of N different states and list them in a right-

aligned format. For example,

COMMEDT IO
FHODE TELAMD
MHAIMNE

MAZSACHUSETTS
HEM HRMFEZHIREE
VERPFIGNT
Hint.: Use the TAB and LEN functions in a PRINT statement.

Determine the longest word in a sentence.

Suppose the variable W$ is a character string containing only letters. Determine the
number of letters in W$ that are also in “TOBY"".

Program the computer to play the game of BUZZ. In this game we count from 1 to

158 ch. 10 [strings
100, but for any number containing the digit 7, display BUZZ instead of displaying
the number. For numbers that contain a 7 and are divisible by 7 display BUZZ BUZZ.

13. Merge two lists of names that are in alphabetic order into a single list of names also in
alphabetic order.

14. Find every two-digit number that equals the sum of the squares of its digits.

appeadix ' ,BFPOP WIBSS3EES

The following table summarizes the Level II BASIC error messages and
includes a brief description of their cause and corrective action.

Error
Error Code
Message Number Cause (Corrective Action)

NF 1 FOR statement missing, or | and K in NEXT |,K out of order.
Add FOR statement, or delete NEXT statement.

SN 2 Syntax error. Incorrectly formed statement; for example, error
in punctuation or unmatched parentheses.

RG 3 RETURN without GOSUB. GOSUB must be executed before
RETURN. Delete RETURN statement or add a GOSUB
statement.

OD 4 Out of data. Insufficient data in INPUT # or READ-DATA.

FC 5 Illegal use of a function. Adhere to the proper format of the
function; for example, cannot take the square root of a nega-
tive number.

ov 6 Overflow. Value exceeds allowable maximum ; for example, an
integer cannot exceed 32767.

oM 7 Out of memory. Memory capacity of the computer exceeded.
Cut back on DIM, REM, and other statements.

UL 8 Undefined line. Reference made to a missing line number. Add
the line to which execution is to branch.

BS 9 Subscript out of range. Modify the DIM statement to inciude
the desired subscript.

DD 10 An array is dimensioned twice. Specify array’s DIM only once.

/0 11 Division by zero. Avoid zero in the denominator.

ID 12 Illegal use of INPUT; line number missing.

™ 13 Mismatch of variable types; for example, a string variable is
assigned to a numeric variable, or vice versa.

0S 14 Out of string space. Increase N in CLEAR N.

LS 15 String too long. Maximum string length is 255 characters.

ST 16 String operation too complicated. Break up into shorter steps.

CN 17 CONTinue statement cannot be executed; for example, after an
END statement, or after editing.

NR 18 RESUME statement is missing. Add a RESUME at the end of
the error-trapping routine.

RW 19 RESUME encountered without an ON ERROR GOTO. Check
for missing ON ERROR GOTO.

159

160

app. I | error messages

Cause (Corrective Action)

Error
Error Code
Message Number
UE 20
MO 21
FD 22
L3 23

Invalid error code number used with ERROR statement. Check
list of error code numbers.

The operation is missing an operand. Add the operand.

File data are not acceptable. Data on tape are not compatible.

This BASIC statement is only available when the computer’s
mini disk is connected through the interface.

sppeadix Nl reserved words

161

None of the following words can be used inside a variable name. A syntax
error will occur if these words are used as variables. However, all words end-
ing with the symbol $ (for example CHR$) may be used as legal variables
when the $ is dropped. Therefore, CHR is a legal variable. Some of the words
listed below have no function in Level II BASIC; they are reserved for Level
II Disk BASIC.

@ ELSE LOC RESTORE
ABS END LOF RESUME
AND EOF LOG RETURN
ASC ERL LSET RIGHT$
ATN ERR MEM RND
AUTO ERROR MERGE RSET
CDBL EXP MID$ RUN
CHR$ FIELD MKD$ SAVE
CINT FIX MKI$ SET
CLEAR FN MKS$ SGN
CLOCK FOR NAME SIN
CLOSE FORMAT NEW SQR
CLS FRE NEXT STEP
CMD FREE NOT STOP
CONT GET ON STRINGS
COS GOSUB OPEN STR$
CSNG GOTO OR SYSTEM
CvD IF ouT TAB

CVI INKEY$ PEEK TAN
CVS INP POINT THEN
DATA INPUT POKE TIMES
DEFDBL INSTR POS TO
DEFFN INT POSN TROFF
DEFINT KILL PRINT TRON
DEFSNG LEFTS$ PUT USING
DEFSTR LEN RANDOM USR
DEFUSR LET READ VAL
DELETE LINE REM VARPTR
DIM LIST RENAME VERIFY

EDIT LOAD RESET

appendix l‘BAS'G glﬁssaﬂy

Abbreviations

ABS(X)

Access time

Address

Algorithm
Alphanumeric character
AND

Argument

Arithmetic operators

Array
ASC(string)

ASCII code

Assembler

Assignment

ATN(X)

AUTO
BASIC
Baud

162

The following glossary provides short descriptions of Level II BASIC com-
mands, instructions, and functions. Most of the terms are described in detail
within the text and can be located readily through the index. In addition,
the glossary includes some frequently encountered programming and data-
processing terms.

Level II BASIC allows for only three abbreviations: ? for PRINT, * for REM, . for last line
entered, edited, or in which an error occurred.

A library function to determine the absolute value of X. The absolute value of X is always
positive; for example, ABS(5)=5, and ABS(-5)=5.

The time interval between the instant at which data are called for from storage and the
instant delivery begins.

A location in memory where a byte is stored.

A step-by-step procedure for solving a specific problem, or for performing a specific task.
Any letter, digit, or special symbol.

A logical operation; -1 AND -1=-1;0 AND -1=0;0 AND 0= 0.

The expression on which a function operates to yield a specific result; for example, 5 is
the argument in SQR(5).

Perform arithmetic with numeric variables: addition (+), subtraction (~), multiplication
(%), division (/), exponentiation (1).

A subscripted variable; an ordered list of numbers or strings.

Returns the ASCII code of the first character of the string. Performs the inverse of the
CHRS$ function.

American Standard Code for Information Interchange;in Level II BASIC the codes corre-
spond to numbers 0 to 255.

Converts a symbolic language program into machine language.

The procedure by which the value of a variable is specified. Assignment is indicated by
the equal sign; for example, X=b.

A library function to determine the arctangent of X. Displays the angle (in radians) whose
tangent is X.

A command for automatic line numbering.
Beginner’s All-purpose Symbolic Instruction Code; one of many computer languages.

Speed in which information is transferred; measured in bits per second.

163

Binary number
Bit

Branching
BREAK key
Built-In function
Byte

CBDL(X)
Chaining

CHR$ (N)

CINT(X)

CLEAR
CLEAR key

CLEARN

CLOAD

CLOAD “NAME"

CLOAD? “NAME"

CLS
Coding
Colon (:) key

Comma

Command mode

Compiler
Computer program

Concatenate

Conditional transfer

CONT

COs(X)
CSAVE “NAME"

app. I1I | BASIC glossary

A number in the base 2 number system consisting of the digits 0 and 1.

Binary diglT; a single digit in the binary number system;i.e., a binary 1 or a binary 0.
See transfer statements.

Stops execution; to resume type CONT. Also used to escape the AUTO command.
See library functions.

Smallest unit of memory; consists of 8 bits.

A library function to present X in double precision.

Forming a multiple statement line. Saves memory space. Colons are used between state-
ments to chain them together into one line.

Returns the character that has N as its ASCII code. The argument N may be any expres-
sion whose numerical value is 0 to 255. Performs the inverse of the ASC function.

A library function to determine the largest integer not greater than X. The argument X
must be between ~32768 and 32767 ; for example, CINT(2.2)=2, and CINT(-2.12)=-3.

A command to set all numeric variables to zero and all string variables to null.

Clears screen; returns cursor to first line; switches from 32 to 64 characters per line
format.

A command to reserve N bytes of memory for strings. In addition, the command sets all
numeric variables to zero and string variables to null. When the computer is first turned
on, 50 bytes are automatically reserved.

Command to load the very next program stored on the cassette into the computer.

Command to load the program NAME from cassette into the computer. Only the first
character of NAME is recognized by the computer.

Command to compare a program on cassette with the program in the computer. Useful
in checking whether a program was properly stored on cassette.

A statement to clear the screen and move the cursor to the top left.
Writing a computer program.
Used to chain statements together; for example, 10 FOR =1 TO 5: PRINT |: NEXT.

Causes the items of a list in a PRINT statement to be displayed in successive zones
across the screen; for example, PRINT A,B,C.

Computer responds to commands upon entry. When in this mode, the >__ is displayed. In
the command mode, distinction is made among immediate and programming modes.

Converts a high-level language program into machine language.
See program.

String together two or more string variables; for example, “AB"" + “C'’ gives "“ABC”. The
plus sign identifies concatenation.

A statement that transfers execution to a specific line in a program depending on whether
a certain condition is met.

Command to continue execution after it has been stopped with the BREAK key or with
a STOP statement. BREAK and CONT are useful in debugging.

A library function to determine the cosine of X. The argument X must be in radians.

Command to store program currently in the computer on tape. To transfer the program
back from cassette to computer, use CLOAD “NAME”’.

164

CSNG(X)

Cursor

DATA
Data validity check

Debugging
DEFDBL letters
DEFINT lezters

DEFSNG letters
DEFSTR letters
DELETE

Device number

DiM

Double-precision
variable

Dual cassettes
Dummy argument

Edit mode

EDITN
END

ENTER key

ERL

ERR

ERR/2+1

ERROR code

Error message

Error N

Execute mode

app. III | BASIC glossary

A library function to form the single-precision version of X; for example, CSNG
(1.234567890) is 1.23457.

Pointer on the screen indicating position in which next typed entry will be made.

A statement that stores data in one or more lines within a program. These data can be
read with a READ statement; for example, 10 DATA 10,20,”’ERIC".

Giving the operator an opportunity to check the data just entered and to make correc-
tions before data are processed.

The process of locating and removing errors from a program.
Variables beginning with the specified letters are declared as double-precision variables.

Variables beginning with the specified letters are declared as integer variables. Saves mem-
ory and executes faster.

Variables beginning with the specified letters are declared as single-precision variables.
Variables beginning with the specified letters are declared as string variables.

Command to erase a line or several lines of a program in memory; useful in editing; for
example, DELETE 50, DELETE -50, or DELETE 50-80.

In the presence of two cassette drives, it is necessary to specify which cassette drive is to
be accessed; for example, CLOAD #-1,"F" or PRINT#-2,A,B.

Reserves memory space for subscripted variables. Specifies the range of each subscript. If
no DIM statement is used, a range of 11 (subscripts 0 to 10) is allowed as the dimension
of each array; for example, 10 DIM A(10,10) is not needed.

Sixteen significant figures; for example, A#=1.234567890123456.

Using two cassettes on line.
An argument that can take on any value whatsoever and produce the same result.

Add, change, or delete lines in a program. Enter mode through EDIT N (N = line num-
ber). Escape edit mode by pressing Q.

Command to display line number N and switch to edit mode.

This statement terminates execution without a BREAK. END is optional. In its absence,
execution stops when the last statement of the program is executed.

Press to communicate an instruction to the computer.

Function returns the line number at which an error has occurred. It equals zero if no
error has occurred. If an error occurs in immediate mode, ERL=65536. Useful within an
error-handling routine.

Function returns the (error code -1)*2 of the error that has just occurred. Useful within
an error-handling routine.

Function returns the error code of the error that has just occurred. Useful within an error-
handling routine.

This statement causes the computer to proceed exactly as if the error corresponding to
the specified code has occurred. Useful in testing an ON ERROR GOTO routine.

Diagnostic information given by the computer about an error in the program;see Appen-
dix 1.

Every error has a code number N. There are a total of 23 error codes numbered 1 to 23.

Computer executes a program; mode entered by typing in RUN.,

165

Execution

Execution sequence

Expansion interface

FExponentiation
EXP(X)
EXTRA IGNORED

File
FIX(X)
Flag

Flowchart

FOR

FOR-NEXT loop

FRE(string)

GOSUB N

GOTO N

Graphic block

Halt execution

Hanging comma

Hanging semicolon

Hexadecimal number

Hierarchy of operations

High-level language

IF-THEN-ELSE

Immediate mode

INKEY$

INP(P)

app. Il | BASIC glossary

Programs are executed to yield results.

Unless otherwise specified the execution of a program is sequential by line number, start-
ing with the first statement of the program.

Allows the use of additional devices: a second cassette, a printer, up to four mini disk
drives, and up to 48K bytes of RAM.

ATB; A to the power B; for example, 213=8.
A library function to determine e*; for example, EXP(1) = 2.71828.

Computer’s response to entry of more data than required by INPUT. Execution continues
without interruption.

An organized collection of information.
A library function to truncate X at the decimal point; for example, FIX(3.1415)=3.

A special identifier; for example, it may identify the last data entry or the last record in a
file.

A grid of boxes interconnected by arrows, which shows the overall structure of a com-
puter program.

The first statement in a FOR-NEXT loop.

The first statement of the loop is the FOR statement; the NEXT statement is the last.
Together the sequence of statements constitutes a loop that is executed a specified num-
ber of times.

Returns the available string storage space; the argument string may be any (dummy)
string variable or constant. Available space is related to CLEAR N.

Unconditional transfer to the subroutine beginning at line N.

Unconditional transfer to line N. In immediate mode (no line number), this statement
will start execution at line N. Unlike the RUN command, it does not initialize all variables
to zero and null.

The video display is divided into 1024 graphic blocks: 128 horizontal and 48 vertical
blocks. These can be addressed through the graphic functions. The point 0,0 is at the top
left corner of the screen.

Press SHIFT @ to freeze the display. To resume execution, press any key.

Suppresses the line feed. Successive PRINT statements display in successive zones on the
same line; for example, 50 PRINT A,

Suppresses the line feed. Successive PRINT statements display on the same line; for ex-
ample, 50 PRINT A;

A number in base 16.
Order of priority for performing numeric and string operations.

A computer language easy for humans to use. A program in such a language needs to be
translated to machine language before it can be executed.

A statement to test an expression. Depending on whether it is true or false, execution
transfers to different lines within a program. The IF is a conditional transfer statement.

A form of the command mode; no line numbers are used; also called calculator mode.

Monitors the keyboard over a short interval and displays the key pressed within the
interval. If no key pressed, returns the null (empty) string.

Returns the current value from the specified port P. There are 256 ports numbered 0
through 255. Requires an expansion interface.

166

INPUT “MESSAGE";

AB
INPUT#-1,A,B

Integer arithmetic
Integer variable

Interpreter

INT(X)

<« Key
J Key
- Key

Keyboard rollover

Language errors
Left to right rule

LEFTS$(string,N)
LEN(string)
LET

Library functions

Line length
Line number

LIST

LLIST

Logical errors
Logical expression

Logical operators

Logical variables
LOG(X)
Looping

app. III | BASIC glossary
Displays the message (if any) and interrupts execution so that values may be entered from
the keyboard for A and B.

Input the values of A and B from the cassette. The input list must be identical to the
PRINT#-1,A,B that created the tape.

Arithmetic with integer variables. It is faster than single- or double-precision arithmetic.
Results of arithmetic are integers; for example, 3/2=1.

Whole numbers between -32768 and +32767 inclusive; for example, A%=1984. Integer
variables take up less memory than other variables.

A program that takes the high-level language program and leads the computer through
the steps necessary to execute it. An interpreter does not translate the source program
into an object program. It merely interprets the code so that the computer can execute it.

A library function to determine the largest integer not greater than X; for example,
INT(32800.5)=32800, and INT(-32800.5)=-32801.

Backspaces the cursor and erases characters.
Moves the cursor down to the next line.

Moves the cursor to the next tab position. Tab positions are at 0, 8, 16, 24, 32, 48, and
56.

You can press a second key before releasing the first key.

Errors detected by the computer. The computer checks each line of code and lists errors
in the form of diagnostic messages.

BASIC statements are executed from left to right and are in addition subject to a hierarchy
of operations.

Isolates the first N characters of string.
Determines the number of characters including blanks in string.
An assignment statement. The LET is optional;i.e., 10 LET A=5 and 10 A=5 are identical.

Functions to perform a variety of different tasks that have been programmed into the
computer. These functions can be called upon within the program; for example, the func-
tion SQR(X) determines the square root of X.

A line within a program may be up to 255 characters in length.
Identifies a line in a program; any integer from 0 to 65529 is permitted.

Command to display the program currently in the computer. LIST 20 displays just line
20. Specific sections of the program are displayed by LIST-20, LIST20-, or LIST 20-40.

Identical to LIST except lists on the line printer.

Using an incorrect formula or an inappropriate function will yield incorrect results. Errors
in logic are more difficult to isolate than language errors since the computer does not
detect them and does not respond with diagnostic messages.

An expression that is either true or false. The expression equals -1 if it is true and 0 if it is
false.

Operators that relate logical data and return logical results. Use with numeric and string
variables (AND, NOT, OR).

A variable whose value is -1 or 0. It is specified by means of a logical operation.
A library function to determine the log to the base e of X.

A repetitive process in which several lines within a program are executed a specified num-
ber of times.

167

Low-level language

LPRINT
Machine language

Main program

Matrix
MEM
Memory map

MEMORY SIZE?

MIDS(string, M,N)

Mini disk

Monitor mode

Nested loops

NEW

NEXT

NOT
Null string

Object program

One-dimensional array

ON ERROR GOTO N

ON N GOSUB N1,N2,

N3...

ON N GOTO N1,N2,

N3...

Operators

OR
OUT PN

PEEK (address)
POINT(X,Y)

POKE address, N

app. Il | BASIC glossary

Machine language; computer can directly perform operations specified in machine lan-
guage.

Identical to PRINT except prints on the line printer.

The language used by the computer; it is in binary.

The portion of the computer program that does not include the subroutines. Access to
the subroutines is gained from the main program.

A two-dimensional array; for example, A(l,J).
Returns the number of unused and unprotected bytes in memory.
Address locations of TRS-80 BASIC.

Appears on the screen when the computer is first turned on. Respond by pressing ENTER
unless you wish to reserve some memory for a machine language program.

Isolates N characters of string, starting with the Mth character. If N is not specified, all
the characters starting with the Mth are isolated.

A storage device capable of storing up to 89,600 bytes. Has an access time much faster
than tapes. Allows sequential and random access.

Loads machine language programs.

One loop is completely enclosed in another loop. Innermost loop is executed most
rapidly.

Command to erase the entire program currently in the computer; sets all numeric variables
to zero and all strings to null. Does not change the string space reserved by a previously
executed CLEAR N.

The last statement of a FOR-NEXT loop.
A logical operation; NOT -1=0; NOT 0=-1.

An empty string containing no characters. The RUN command sets all numeric variables
to zero and all string variables to null.

The compiled version of a source program. It is in a form that can be executed directly.
A subscripted variable with one subscript; for example, A(l).

An unconditional transfer; when an error occurs, execution transfers to line N, where an
error-trapping routine starts.

A conditional transfer to one of several subroutines; if N=1 transfer to the subroutine
beginning at line N1, if N=2 to line N2, and so on.

A conditional transfer; if N=1 execution transfers to line N1, if N=2 to line N2, and so
on.

Perform arithmetic, logical, relational, and string operations; for example, addition or a
less—than comparison.

A logical operation; -1 OR -1=-1;0 OR -1=-1;00R 0 = 0.
Sends the value N to port P. Both arguments must be in the range 0 to 255; useful with
an expansion interface.

Returns the value stored in the specified address.

A graphic function to test whether the graphic block at the horizontal position X and
vertical position Y is turned on or off. If it is on, the function returns a -1, and if it is not
turned on, it returns a 0.

Stores the value N into the memory location of the specified address. N must be between
0 and 255.

168

POS(X)

PRINT “MESSAGE",

A.B

PRINT “MESSAGE";

AB
PRINT USING
PRINT@N,A,B

PRINT #-1,A,B
Program
Programming mode
Radians

RAM
RANDOM

Random access

Random number
READ A,B
REDO

Relational operators

REM
Reserved words

RESET(X,Y)

RESTORE
RESUME N
RETURN

RIGHT$(string,N)
RND(X)

app. III | BASIC glossary
Determines the current cursor position: a number from 0 to 63. X is any (dummy) argu-
ment.

Displays the message (if any) and the values of A and B in successive zones of the screen.
Displays the message (if any) and the values of A and B with few spaces between them.

Specifies a format for displaying numeric and string values. Useful in report generation.

Displays the values of A and B starting at position N. The screen is divided into a grid of
1024 positions numbered 0 to 1023.

Prints the values of A and B onto a cassette tape. The list to be printed cannot exceed
255 characters. These data can subsequently be read into the computer with the state-
ment INPUT#-1,A,B.

A set of instructions in BASIC to perform a specific task.

A form of the command mode; each statement must have a line number.

A measure of angles; 1 radian = 57.296 degrees.

Random Access Memory ; memory that is available for storing programs and data.

Reseeds the random-number generator and ensures that the computer generates a new
sequence of random numbers.

Files may be accessed directly as, for example, on a mini disk. This is in contrast to
sequential access of files on tape.

A number whose value cannot be predicted from the numbers that precede it.
Reads values for A and B from a DATA statement.
Computer’s response to entry of inappropriate numeric or string data for INPUT.

Compare numeric and string variables. Return logical results; -1 for true, and 0 for false.
In numeric expressions, the numbers are compared; in string expressions, the ASCII
values are compared: less than (<), greater than (>), equal (=), less than or equal (<=),
greater than or equal (>=), unequal (< >).

A remark used to clarify the program; an explanatory comment. The computer ignores
the statement.

Words reserved for Level II BASIC and DISK BASIC. These may not be used as variable
names.

A graphic function to turn off the graphic block at the horizontal position X and vertical
position Y. The point (0,0) is at the top left corner of the screen; 0<=X<128 and
0<=Y<48.

The next READ statement following RESTORE will read data from the very first DATA
statement in the program.

Terminates an error-trapping routine and causes execution to transfer unconditionally to
line N. RESUME will transfer to the line at which the error occurred. RESUME NEXT
will transfer to the line following the error.

Ends a subroutine and returns execution to statement following the GOSUB.
Isolates thé last N characters of string.

A library function to generate a random number. RND(0) produces a random number
between 0 and 1. RND(10.5) produces a random number between 1 and 10.

169

ROM

Routine

RUN

Scientific notation

Semicolon

Sequential access

SET (X, Y)

SGN(X)

SHIFT key
SHIFT @ key
SHIFT — key

SHIFT < key

Single-precision
variable

SIN(X)

Source program

SQR(X)
Statement

STEPN

STOP

String

String operators

STRINGS$(N,“C")

STR$(N)

Subroutine

Subscript

app. III | BASIC glossary

Read Only Memory; memory occupied by system pragrams; this memory can only be
read and not used for storage.

A set of instructions to perform a specific task.

Command to request execution of a program. Entry of execution mode. RUN N requests
that execution start at line N. The RUN command also automatically executes a CLEAR
command; sets all numeric variables to zero and strings to null.

Breaks a number into two parts: a number between 1 and 10 and an exponent of 10; for
example, 1000000=1E6; exponent characters E and D for single and double precision,
respectively.

Causes the items of a list in a PRINT to be displayed close together with few spaces; for
example, PRINT A;B;C$.

Files are stored sequentially one after the other (for example, on tape) and are conse-
quently accessed sequentially. To access the last file on tape, it is necessary to go through
the entire tape. This is in contrast to random access on disks.

A graphic function to turn on the graphic block at the horizontal position X and vertical
position Y. The point (0, 0) is at the top left corner on the screen; 0< = X<128 and
0<=Y<48.

A library function that examines the argument X and returns a -1 if X is negative, a 0 if
X is zero, and a 1 if X is positive.

Press to type uppercase characters.
Stops execution and freezes the display; to resume, press any key.

Converts to 32 characters per line display. To convert back to 64 characters, press CLEAR
key.

Returns cursor to start of current line and erases entire line.

Six significant figures; for example, Al=1 2.?3456 All variables are in single precision unless
otherwise declared. '

A library function to determine the sine of X. The argument X must be in radians.

A program written in a language that must be translated into machine language before it
can be executed.

A library function to determine the square root of X. The argument X cannot be negative.
A BASIC instruction.

Part of the FOR statement; the STEP N increments the loop’s counter by N during each
sweep.

Interrupts execution and displays the line at which execution was stopped. The command
CONT will resume execution.

A sequence of alphanumeric characters; string variables are tagged with a § to distinguish
them from numeric variables. Strings are enclosed in quotes; for example, A$=""TRS-80"".

Strings may be concatenated (+) or compared using relational operators.
Produces a string consisting of N characters C; for example, STRING $(3,+"") is +++.

The numeric expression N is converted to a string; for example, STR$(1.2) is *“1.2"". Per-
forms the inverse of the VAL function.

A subprogram, a section within a program that may be accessed from the program itself
or from other subroutines during execution.

The expression in parentheses identifying the specific element of an array; for example,
the | in A(l).

170

Subscripted variable

SYSTEM
TAB(X)

TAN(X)

Trace

Transfer statements

Translator
TROFF
TRON

Two-dimensional array
Type definition

Unconditional transfer

USR(X)
VAL/(string)

Variable

Variable declaration
character

Variable name

Variable types
VARPTR(V)

Zero subscripted
element

Zone

app. IIl | BASIC glossary

A list of items; for example, A(l) is a one-dimensional array; A$(l,J) is a two-dimensional
array containing strings; A%(l,J,K,L) is a four-dimensional array of integer values.
Command to enter the monitor mode for loading a machine language file from cassette.

A library function; for example, the statement 10 PRINT TAB(20)A will display the
value of A starting at the twentieth print position. Each line contains 64 print positions
numbered 0 to 63. TAB(65) displays on the next line. The argument must be between 0
and 255.

A library function to determine the tangent of X. The argument X must be in radians.

A technique for debugging programs. The line number of each statement is displayed as it
is executed. TRON and TROFF turn the trace on and off, respectively.

BASIC statements that cause execution to deviate from the normal sequence of execution
(starting with the lowest line number and executing subsequent lines in ascending order).

A program that converts a high-level language to another high-level language.
Command to turn off the Trace.

Command to request a trace of the program during execution. Useful in debugging; the
computer displays the line number of each line as it is executed. The TROFF command
terminates the trace. TRON and TROFF may be used within a program.

A subscripted variable with two subscripts; for example, A(l,J).
A statement that declares variables as integer, string, single, or double precision.

Deviate from the usual sequential execution and branch to a specific line in the program;
for example, 10 GOTO 50.

Transfers to a machine language subroutine.

Converts the digits in string to a number; for example, VAL(’“1984"') is the numeric con-
stant 1984, Performs the inverse of the STR$ function.

A quantity represented by a symbol that can assume various values.

Identifies the variable type; a character is appended to the variable name: !, single preci-
sion; #, double precision; %, integer; $, string. Without a declaration, variables are assumed
to be single precision.

Identifies the variable; must begin with a letter; may be followed by a digit or a second
letter. Additional letters or digits are ignored by the computer. Valid names T, TR, TRS.
Variables TR and TRS are the same.

Four different types: single precision, double precision, integer, and string.
Produces an address to help locate where the variable name V and its value are stored.

First element in an array, A(0).

The screen is divided into 4 zones, each containing 16 print positions.

SOLUTIONS TO EVEN-NUMBERED EXERCISES

CHRPTER 2
EXERCISES 1

CH. 2,EX. 1,PROBLEHM 2
PRINT 15
15

CH. &, EX. 1, PROBLEM <
PRINT"LEOGHID BREZHNEY"
LEONID BREZHNEY
PRINT"SOVIET UNION"
SOVIET UNION

CH. 2.EX. i, PROBLEM &-R
ALPHABET$="RBCOEFGHI JKLMNOFGURSTUVWAYZ"
PRINT ALFHRBET$

ABCLEF GHI JKLMNOPGRSTUVWRYZ

CH. 2, EX. 1, PROBLEM &-B
N$="8123456759"

PRINTNS

8123456789

CHRFTER 2
EXERCISES =2

CH. 2, EX. &, PROBLEM 2
SP ! =4869684, 5*8
PRINT SP!

3. 89SPSE+OY
DP#=4869684. 5*&
PRINT DP#

38957476

CH. 2,EX. 2.PROBLEN 4

A> A+B-C
B CH(A-Y2
Co> AxB-2

D> FBCHA
E> C-B/3-D
F> CA%B=CH(A-BJ >/ (3-RAr-FA*C

CH. 2,EX. &, PROBLEM &
AB=5
AC=6
PRINT AB+AC
ii
PRINT AB-AC
-1
PRINT AB#RC
20
PRINT AB/AC

CH. 2, EX. 2, PROBLEH &
A2 ?/8 ERROR

B>
co>
)
E> 7?78 ERROR

O]

CH. 2,EX. 2, PROBLEM 1@

A PRINT 40%9. 58
B> PRINT 37»5. 0B

[PRINT 4@%x3. S@+7*id4. 20

CH. 2, EX. &, FROBLEM 1z
NOTE: S=(T+60+M1*60
PRINT (1%60+30 0468
5406
PRINT(@*60+1 %68
60

CH. 2, EX. 2, PROBLEM 14
P=24

I=. 83

N=1980-1627
BALANCE=P*{1+1 [N
PRINT BALANCE

&i6160

CH 2.EX. 2, FROBLEM 1&

I= 8s8/1z

PRINT 320006+I+Ci+I3[480,/ ((i+13[48810
208, 594

I= i/12

PRINT 36600+ I+(1+I10[480/ (C1+]13[45610
254, 744

CH. 2,EX. 2, PROBLEM 18&
R SLOPE=(Ya-Y1) -/ (Ra—x1>
B> Ri=1
Ra=4
Wi=2
Y2=8
DISTANCE=C{Kz-rirl2+(va-Yirlz0. 5
PRINT DISTANCE
& 7agzl
SLOPE=CY2=YLli)/ (Ra—-XK1s
PRINT SLUOFE
2

CHRPTER =
EXERCISES 3

18 REM CH. 2, EX. 3, PROBLEM 2

280 PRINT"MY COMPUTER LIKES ME"

30 C=1006 “STORE 108 IN C

48 PRINTC: "YEARS RAGO"

50 B=10 “STORE 16 IN B

60 A=1 “STORE 1 IN A

78 PRINTA+BE+C; "YEARS RGO"

75 “NOTE: SEMICOLONS RARE UFTIONAL
86 PRINTA; "PLUS"B"EQURLS"FA+EB

5@ PRINT"HE HAS "; -B; "DOLLARS"

18 REM CH. 3, EX. 3. PROBLEM 4
15 I=. @8 “"SET I=INTREST RATE
20 B=10008 ‘B IS BALANCE

20 PRINT "INTEREST FRID ON"; B
48 PRINT"FOR A DAY IS5": I/3€5*E
58 PRINT"FOR A WEEK IS"I/Sz*B
35 “NOTE: SEMICOLON OFTIONAL
68 PRINT"FOR 3 MONTHS IS"I/44E
78 PRINT"FOR & MONTHS IS"I/Z*EB
8@ PRINT"FOR A YEAR IS"I»B

171

solutions to even-numbered exercises

18 REM CH. 3,EX. 3, PROELEM &-R

2@ PRINT"IN FRENCH RED IS ROUGE™
3@ PRINT"IM GERMAN IT IS5 ROT

48 “NOTE: TRAILING QUOTES OPTIONAL

18 REM CH. Z3.EAX 3. PROBLENM &-B

20 X=2

38 ¥Y=3

48 PRINT"THE SUM OF X HAND Y IS:"K+Y

580 PRINT"THE PRODUCT OF X RAND Y IS:"xXsY

i8 REM CH. 3. EX. 3. PROBLEM &

280 R=16

25 B=26

27 PRINT"QUOTIENT OF"; R; "TO": B: "I5"; A/B
30 “NOTE: B CRNNOT BE ZERO

18 REM CH. 3.Ex 3. PROBLEM 10-A
28 S=16

3@ PRINT"THE VYOLUME IS"

480 PRINTS#S*S

18 REM CH. 3, EX. 3, PROBLEM l16-E
26 S=10
20 PRINT"THE VOLUME IS"; SHS#S

18 REM CH. 3, EX. 3, PROBLEM 16-C
20 5=10
36 PRINT"THE SIDE I&"™; S

16 REM CH. 3, EX. 3. PROBLEM 1e-D

20 S=16

36 PRINT"THE SIDE IS"™; S

46 PRINT"THE VOLUME IS"; SkS#s

50 REM

66 REMARKS: REPLACE LINE 28 BY 5=z2@

18 REM CH. Z.EX. 3, PROBLEM 12
20 PRINT" R

38 PRINT" XxX"

48 PRINT" XXXKK"

58 PRINT"XXRKRKK"

68 PRINT" RKXX"

70 PRINT" HXK"

CHAPTER 3
EXERCISES 4

CH. 3, EX. 4, PROBLEM &
ROREENTER LINE 30 WITH THE
CORRECT VERSION
BITYPE “EDIT 38° THEN PRESS
¥ DELETE CHRARRCTERS UNTIL
REACH “"RA“ OF PRODUCT. NEXT
TYPE “UCT OF A AND B IS "; A*B".
COTYPE “EDIT 387 TO ENTER EDRIT MODE
PRESS THE SPACE BAR UNTIL THE "D~
OF PRODUCT SHOMWS, TYPE “C° TO CHANGE
THE NEXT CHARACTER: NOW
TYPE “U” AND THEN “ENTER”

i@
15
20
25
30
48
45
5e

99

18
30

i@
28
30
40
58

i@
20

40

Se

ie
2e
2]
40
45

46 -
47

Se

CH.

3, EX. 4, PROBLEM 4

PRINT “USE D OFTION

INPUT R ‘USE 1 OFTION
FRINT "PHYSICS IS FUN" “USE » OPTION
PRINT H: B:C “USE © OFTION

INPUT "YOUR RAGE"; AGE "USE » OFTIOM
C=5%(F-322/5 “USE C OPTIUM
PRINT"DOMN’T TREAD “USE K UPTIDN
PRINT"ONE FOR THE M$MEY" “USE S&C OFT
X=35 “USE [OFTION
END “RETYFE LINE 35 R: 93, TYPE 35

REM CH. Z.EX. 4. PROBLEM &

“MONTHLY MORTGRGE PRYHENTS
INPUT"AMOUNT & YRS OF MORTGAGE": K. ¥
INPUT"ENTER INTEREZT RATE IN &' 1
“CONVERT MORT. DURATION FROM & TO M
N=Ys*ilz

“CALCULATE MONTHLY INTEREST

I=I* @1/.1z

“CRLCULATE MONTHLY PRYMENTS

Pt I CI+L D NACCI+HL DN~

PRINT "MOMTHLY PAYMENT IS $':F

REM CH. 3. EX. 4, PROBLEM 16-A
INPUT"FIRST TEMF"; F
INPUT"SECOND TEMF"; S
INPUT"THIRD TEMF"“; T
PRINT"AVERAGE TEMF IS"C(F+S+T3,/3

REM CH. 3. Ex. <. PROBLEIMN 186-B
INFUT"ENTER X TEMP S":F,S. T
PRINT"AVERAGE TEMP IS"(F+S+Ti 3

REM CH. 2, EX. 4, PROBLENM 1z
PRINT"HELLO"

INPUT"HI WHRT IS YOUR NAME": N$
PRINT"HELLO ":iN$

PRINT"MY MAME IS MEUTER COMPUTER"

REM CH. . EX. 4, PROBLEM 14

PRINT "PLEASE ANSWER THE FUOLLOWING
QUESTION"

INPUT "DO YOU PREFER BOYS OR
GIRLS": C%

PRINT "HEY, I TOO PREFER "C%"
THRT S GRERT!'"

REM CH. 3, EX. 4, PROELEN 16

INFPUT "DEPTH IN FEET"; H

P=8. B295+xH

PRINT "AT A DEPTH OF"; H: "FEET THE ";
“NOTE THE SEMICOLON AT THE END OF

) LINE 48 SUFPRESSES THE LIWE
FEED -- ZEE CHAFTER S

PRINT "PRESSURE IS"; Fi "ATMOSFHERES.

shiobt

10
20
25
38
40

CHRPTER 4
EXERCISES €

REM CH. 4.EX. 6, FROBLEM 4-RA
INPUT"ENTER 2 HUMBERS"; N1, Nz

IF N1+N2{=0 THENW 4@

PRINT"THE SUM OF"M4"+"Nz"="; ML+Nz
END

172

solutions to even-numbered exercises

1@ REM CH. 4.EX. o, PROBLEM 4-B

20 INPUT"TWO NUMBERS": N1, Nz

20 IF Ni+N2<=NikN2 THEN 48

35 PRINT "SUM IS GREATER": END

40 IF Ni+N2=Ni#N2 THEN 5@

45 PRINT "PRODUCT IS GRERTER": END
58 PRINT "PRODUCT EQUALS SUM"

18 REM CH. 4., EX. €&, PROBLEM 4-C
20 INPUT"THE CAPITAL OF FRANCE"; CAP%

20 IF CAP$="PARIS" PRINT"YOU ARE OK" @ EMND

4@ PRINT “"NOPE. SEE YOU IN PARIS. "

16 REM CH. 4,EX. o, FROBLEM &
15 INPUT "ENTER 4 NUMBERS"; A. B, LC.D

26 IF A>B AND A>XC AND RXD FRINT A:GOTO&
36 IF B>A AND B>C AND BX>D PRINT B.GOTO&
48 IF C>R AND C>E AND COD PRINT C:GOTOS

56 PRINT D
680 PRINT "IS LARGEST":END

19 REM CH. 4. EX. €, PROBLEN &

15 IMPUT "SALES": S

28 IF S<=1680 THEM PHY=160.G0T0S
38 IF =2088 THEN PAY=. 15%5:G0T
48 PRY=25@+. a7*5

58 PRINT “FAY 1S";PRY

=]
oo

16 REM CH. 4, EX. &, FROBLEM 18

15 INPUT “AGE"; A

17 IF A<=6 PRINT"INVALID AGE":GUTO 15
18 IF A>1ize PRINT"INVALID AGE".GOTO 13
26 IF FA>=18 THEN 30

25 PRINT "PERSON IS A MINOR":END

20 IF A>=65 THEM 5o

48 PRINT "PERSON IS NEITHER A MINOR"
41 PRINT “NOR A SENIOR CITIZEN": EHND
58 PRINT "FERSON IS A SENIOR CITIZEN"

189 REM CH. 4. EX. o, FROBLEM 1z
15 ON ERROR GOTO S8

18 INPUT "A,B.C";A. B, C

28 K=(-B+(B¥B-4#F*U3[. So C2xRy
30 PRINT "RERL ROOT IS'; s

48 END

58 PRINT "IMAGINARY ROOT"

60 RESUME 48

18 REM CH. 4, EX. &, FROBLEM 14

20 INPUT "NUMBER"; Nx

40 TESTX=NK/2

€0 IF NH=2*TEST: PRINT "EVEN" .END
98 PRINT "0ODD"

* bt B it 2 e 2

CHAFTER S
EXRERCISES 7

CH. 5,EX. 7.FROBLEWM 4 R-E
A 18 PRINT N+1

26 IF N<19 THEN HW=N+1: GOTO 18
OR 4@ FOR N=i TU z©

15 PRINT N: HEXT N

B>

18 PRINT HW+1: IF NO=18 THEM END
15 N=N+2: GOTUO 18

OR 18 FOR N=1 TO z8 STEF 2

15 PRINT N. NEXT N

18 N=7

28 PRINT N: IF N>=14 THEM EHND
25 N=N+8. 5: GOTO z8

16 FOR N=7 TO 14 STEF 5

45 PRINT N: NEKT N

18 N=X

20 PRINT 1/N

25 IF N=18 THEM END
2@ N=N+1i: GUTO 29

OR 18 FOR N=3 TO 1o

E>

OR

CH.

20

CH.

i3
14
15
1s
28
3@

45
S50
=]

1@
15
i8
20
40
45
Se
’e

15 PRINT 1-N: MNEXT N

10 N=18

20 PRINT H: N=N-Z

25 IF N>=-18 THEN z©

18 FOR N=18 TO -18 STEF -Z
15 PRINT N: NEXT N

S, EX. 7, PROBLEM 4-F
N=2: P=1
P=PxN: HN=N+2: IF N<=1B THEM z@
PRINT "PRODUCT":; F
REM USING R FUOR-NEXT LOOF
P=4
FOR N=2 TO i@ STEP =2
P=PaN: NEXT M
PRINT “FRODUCT":F

S, EX. 7. FROBLEM 4-G

INPUT R.B: FP=1

IF A<B THEN 15

REM SWAP A & B

C=A: RA=B. B=C

N=F

F=P#N: H=N+1:IF N{=B THEN 2
PRINT "PRODUCT":P

REM USING R FOR-NEST LOOF
P=1

FOR N=R TO B: F=PxMN. NEST M
PRINT "PRODUCT":F

[t

5. EX. 7. PROBLEM &
7 RULE OF vz
INPUT “DEFOSIT & INTEREST RATEY; DE. 1N
BA=DE
FOR N=1 TO i6w60
BA=BA+ER*IN-108

PRINT"BALANCE FOR YEAR": M; "15"; BA
IF BAL>=DE*2 THEN 58

NEXT N

PRINT “TIME TO DOUBLE 1S'iNi "YEARSY

PRINT“FINAL BRALRANCE 15 $";EBR

REM CH. S.,EX. 7,PROELEM 8
PRINT "SEC bl L
X=80*%T

Y=4+70#T—16. 1hT*T

IF X>355 THENW 7@

PRINT T; " “iHEs " iy
T=T+ 5: GOTO 18

PRINT "OUT OF THE BRLL PARK"

173

solutions to even-numbered exercises

1@

i8
28
22

25
30
35
48
45
Se
=15

16
i5

i9
28
23X
3a
48
435
=15
=]
78
t=ls]

16
i5
28
38

16

36
46
S
e

i8
14
15
ze
30
48
Se

16
15
28
25
el
35
48

ie
iz
i5
18
20
25
30
35

REM CH. S.EX
CLS: FLAG=8:
T=T+1
FTHTHT-ST4T+1@#T-51
PROF =PROF +F

PRINT T, P, PROF

7. PROBLEM 18
PROF=-51

IF T=& THEN c@&

IF F>8 AND FLRG=G THEMN 45

GOTC 18

FLAG=1

PRINT “FROFIT IS 1ST FPOS. IN YEAR": T

GOTO 418
PRINT "CUMULATIVE PROFIT"; FROF#1l&86

REM CH. S5, EA 7.,PRUBLEM iz
PRINT"I WILL GUESS YOUR NUMBER AND"

PRINT"Y0OU TELL ME IF MY GUESS ISt
PRINT"HIGH. CORRECT, OR LOW"

L=1

H=186

Ga=cL+Ho o2

FRINT"GUESS I3":Gis "H.C, UOR L

INPUT G

IF @$="H" LET H=GX: GOTO 3@

IF G="L" LET L=GX. GOTO Z6

IF Q#>"C" PRINT 6% " 7" GOTO4@

FRINT"AH I WAS RIGHT"

REM CH. S.Es. 7, FROBLEM 14
D=1

T=T+1,/D: IF Ti=4 THEN 46
D=D+1: GOTO 6

PRINT D; "TERMS SUM UP TO =4

REM CH. 5, EX. 7,FROEBLENM 1&
INPUT "# OF TERM3":T

F=1. D=1: K=86: K=1

REXFCLADOwF . D=b+z: F=-F: K=k+1
IF K<=T THEN 48

PRINT "FOR": T; "TERMS, SUM IS"; 4

REM CH. S5,EX. 7, FROBLEMN 18
P=1686 : F=106660

PRINT"YEAR “; "POPULATION " "FOOD®
Y=Y+10: P=24F: F=F+dbbo

FRINT ;" "Fs e "F

IF FCP PRINT"FOOD OUT IN YERR" Y:EHD
GOTO 26

REM CH. 5.EX
B=0
INFUT “"MONTHLY DEPOSITY: D
FOR X=1 TG 1Z
B=D+B+B*B. BS/1E
NEXT *
PRINT "AFTER A YEAFR YOU HAVE $':E

7. PROBLEM 28

REM CH. S.EX. 7, FPROBLEM Z2

PRINT "PLEASE BE FATIENT"

FOR N=1 TO 959

REM GIVEN RELATION BETHWEEM % 4 H
R#=—8, S+(8. 25+8. S+N+T, SHH+NIL B, 5
REM X MUST BE AN INTEGEFR

IF XK#<168 THEN 45

REM X ROUNDED TO X PLACES

36
48
43
45
=17]
55
Y]

4 MUST BE AN INTEGER
Ra=R# s Al=K#-XK: KH=X1+x1000
IF RKe=8 THEN S@

NEXT W

AR PRINT "N="; Ni "K="; ¥

END

REM NOTE, ANSWER N=E9€ & X=45z

ia

[
oS

CHAPTER S
EXERCISES &

REM CH. 5. EX
FOR ¥=1 TO &:

&, PROBLEM 4-F
FRINT 4Y: MNEXT ¥

REM CH. 35, EX.
FOR Y=1i TO &:

8, FROELEN 4-E
FRINT ¥ @ NERT ¥

18 REM CH. 5, EAx. &, PROBLEM 4-C
26 FOR K=L TO 3: PRINT i : HEST »
23 PRINT
38 FOR #“= 4 TO &: FRINT i : NEWT ¥
CH. 5.Ex. 8. FROBLEM &
NEW
PRINT MEM
1557z
DIM ARC162
PRINT MENM
15520
18 REM CH. S.Ex. . FROBLEIM &
28 DIM MC38n
30 FOR K=1 TO 36: Muxr=k: HEXT
1@ REM CH. 5. Ex. & FROBLEM 1@
15 FOR =1 TO 1@
28 PRINT "REMTER MUMBER"; X
25 INPUT Ak
38 NEXT X
35 FOR ®=18 TO i STEFP -1
48 PRINT ACAL;:
45 NEXKT W
18 REM CH. 5.EX. & PROBLEM 12
28 FOR X=1 TGO 5
3@ INPUT “NAME": H$CHD
35 INPUT "AGE"; ACKD
4@ NEXT
58 FOR X=1 TO S
55 IF ACHI<C=65 THEN &5
68 FRINT N3 " RGE": ACKDY
65 NEXT X
1@ REM CH. S, EX. 8. PROBLEM 14-A
15 DIM N£(Sa:

za
3]
48
50
60
65
va
75
80

FOR L=1 TO 5

INPUT “MAME"; M$L>

NEKXKT L

FOR L=1 TO 4. FOR I=L+1 TO S
IF N$(LO»<C=N$CID THEW 7@
S$E=N$CL 0 NSCLI=H$CIs: N$(Id=5%
NEXT I.L

PRINT "NAME CLOSEST TO ‘R~
PRINT "NAME CLOSEST TO “Z2-

RERCE 2N N
i MELS

174

solutions to even-numbered exercises

CH. 5, EX. 8, FRUBLEM 16

16 FOR C=1 TO &

20 PRINT"BALANCE FOR PONTH": {5 "WAZY

25 INPUT TCCo

36 NEXT C

35 T=7iw

48 FOR C=1 TO &: DCs=TCLo-T:T=TuLx

58 PRINT "NET DEPOSIT MOMTH"CUWRS"DWC)
€8 NEXT C

7@ END

18 REM CH. 5, EX. &.FROBLEM 15
15 M=3: N=z

28 FOR Y=1 TO N

29 FOR H=1 TO I

38 PRINT "INPUT RAu"s". YY"
33 INPUT RACA. Yo

48 FPRINT "“INFUT Bu"s". "YUt
45 INFUT BUX. ¥I

50 NEKXT #. %

55 FOR a=1 TQ M: FUOR Y=1 TO N
60 IF AR Y2 Buis. Yy THEWN 7@
65 CO¥, Yo=BUK, Y2 GOTO 73

7O COX, Yo=RACK, ¥

79 PRINT Cns o

86 NEXT ¥

85 PRINT: HEXKT X

18 REM CH. 5. EX. S, FROBLEM 28
15 M=3: N=4 .DIM M(3. 40
20 FOR H¥=1 TO M

38 FOR Y=1 TO N

43 PRINT "ENTER "5 ® ". "5V
45 INFUT MOK s

356 NEXT Y. =&

68 FOR H=1 TO M

65 FOR Yv=1 TO N

TO IF MoK, ¥al=108 THEM 55
75 NEAT ¥

S8 FPRINT "ROW ":¥

85 NEXT »

Sa FOR %=1 TO M

92 FOR #=1 TO H

9S4 IF MR, Ya{=188 THEN 2%
36 NEKT X

98 PRINT "COLUMM “;%

99 NEAT v

18 REM CH. 5, EA 8, FROBLEM 22

12 DIM AczBr. Bzl

15 INFUT "THE NUMBER TO BE MERGED": #
20 PRINT "ENTER THE SORTED ARRAY"
23 FOR K=1 TO i@

25 PRINT “"ELEMENT HQ. ": K

28 INFUT ACk» . NEXT

30 FOR kK=1 TO 19

4@ IF RACKL=x THEN €@

S0 BCKI=RACK:

55 GOTO se

68 BC(Ki=X

65 BC(R+1i=ACKs

ve GOTO 96

88 NEXT K

82 BC(KI=¥

&4 GOTO 35

58 FOR L=k+2 TO 41

952 BAlLs=AlL-1:

94 NEXT L

9% FOR L=1 TO 41:PRINT BCL?: @ NEWT

16

15
i6

pot
<!

29
25
30
33
36
4a
45
45

S5
58
©d
2

k=l
t=la)

ia

15
iv
p=is]
23
20
35
48
45
52
€
&35
7e
S
76
fe
=15}
85
86
87
89
S1
93
95
97
98
95

REM CH. 5, EX. 8. FROBLEM =4R

DIM WNize»: CLS

FRINT "ENWTER THE FIRST RRREAY"
FRIMT"SORTEDL IM DESCEMDING ORDER"
FOR XK=1 TO S

PRIMT "HUMBER": X

INFUT HMOx»

NEMT &«

FRINT "ENTER THE SECOND RARRAY"
PRINTYSORTED 1IN DESCENDING ORDER"
FOR #=6 TO 1&

FRINT "NUMBER": #-3

INPUT NCHD

HEXT K

FOR J=1 TO

FOR R=J+1 TO 18

IF NCJxLMCRs THEN 75

S=HCRY : MORI=NCTY D HoJ)=5%

NEXT R, J

FOR “=1 TO 1@. PRINT Mixs: @ MHEST

REM CH. S.Ex. 5. FROBLEM 4B

2 DIM Neczer: CLE

FRINT "EHWTER THE FIRST STRING"
PRINTYSORTED IM DESCENDIMG ORLER"
FOR X=1 TO S

PRINT "ELEMENT": ¥

INPUT N#$OHD

NEXT &

PRIMT “"EWTER THE SECOMD ARRAY!
FRINT"SORTEL IM DESCEMLIMNG ORDER"
FOR K=6 TO 1@

FRINT "ELEMENT"; 53

INPUT N#$ K2

HEXT X

FOR J=1 TQ 2

FOR R=J+1 ToO i@

IF NECJsZN$CRY THEM 73

SH=N$CRY . NP CRI=NSCI) . NECT =53
NEXT R, J

FOR x=1 TO 15: PRINT NEcxx " 5 DHERT

REM CH. S.&4. 8. FROBLEM z&

 PRINT "BE FATIENT"

MIN=1EZ8
A=1: D=z:. G=Z
FOR B=d4 TO 2
FOR C=4 TO 2

IF B=C THEHN 37
FOR E=4 TO 3

IF E=B OR E=C THEN 23
FOR F=4 TO o

IF F=E OR F=C OR F=B THEM 33
FOR H=4 TO 9

IF H=B OR H=L OR H=E ORH=FTHEHNZ1l
FOR I=< TO 3

IF I=HORI=FORI1=EURI=CORI=BTHEMZS3
N1=4106+16+E+C
Na=200+10+E+F
N3=30@+10+H+1
P=NLaMN2+NI

IF MIN<=F THEM &3
Si=M1l: Sa=Nz: S3=NZ
MIN=F
NEX
MNEXT
NEXT
NEXT
NEAT
NEXT
PRINT 51 5253

QoM T I o~

175

solutions to even-numbered exercises

ia
15
iv
20
25
27
3e
48
45
S8
55
Sg
&8
&5
ve

16

iz
14
i5

25

=

Al
[I ¢

16
ii
iz
15

i&

21
24

28
33
36
37
38
33
43
45
46
50

S5z
53
S4
56
57
58
33
50
61
62
&3
64
65
€6

2 FRINT "NO. " TRECLZ ;"

CHRFTER &
EXAERCISES 9

REM CH. &, Ex. 5, FRUBLEM 2
" DATA 4.2, 3, 18, 26, 28

REM CH. &.EX. 3, FROBLENM &
RERD L: ZZ=1. Z=i

REM L I5 ARRAY LENGTH
FOR ®=J TO L: RERD %
IF ¥2=0 THEN 39

N Zo=Y: Z=Z+i. GOTO 48
PLZZr=Y: Za=Ze+1

NEXT

FRINT “ARRAY F"

FOR H=1 TO ZZ-1

FRINT Fuiis . HEXT A
PRINT: FRINT "ARRAY N"
FOR R=1 TO Z-1

PRINT NC(RZ: @ NERT ®
DATA S, -1, 2, 3. -5, @

REM CH. 3, FROELENM &
GUARE": TABX 243,
FRINT "SG. ROOT": TRE.ZE»;: “CUBE";
FRINT TAB(4&3; "CUBE ROOT*

FOR X=1 TO 16

PRINT ® TRBULZD; Wk
PRIMT K[.S5i THEB(3E
PRINT TABC4S: KL €130

A

B, EX.

TREC 24D
AL 5

NEKXT X

REM CH &, Ex. 9 PRUBLENM 1@
REM SALES REFORT

FOR I=1 TO 4 R

READ N4(I0, ASALESCI), BSALESCI)
DATR ERIC, &, 8, ROM. 9. 5, JEFF, 4. 12
DRTA FRED, 28, =

RCOMCI =125 * FASALESCI?
CHECK= BSALES(I)-1@&

IF CHECK>® THEM 3£

BCOMCI »=55+BSALES I

GOTO 37

BCOMCI =558 + 145+CHECH
TCOMCI>=RCOMC I 3 +BCOMC T 2
TSALESC I =ASALESCI »+BSALES (I
NEXT I

2 REM PREFARE REPORT

CLs

PRINT "“SUPER RAGENCY SALES REFORT™
FRINT

PRINT TRBECLZ0: N$CL0: TABC24; NECS0;
PRINT TRB(363: N$<31; TABCAE; N$(d)
FRINT "A SALES"; TRECLZ3: ASCL);
PRINT TRE(Z243; AS(ED;
PRINT TRAB(3E1; ASKIM; TABC 48 ASC4s
PRINT “COMMISSIUNS"; TRBCA1Z 2 ACCL;
PRINT THB(243; ACCZ); TABCI6D; AC(3Y;
PRINT TAEC48; ACC4)

PRINT "B SALES": TABCAZ: BSCLY: THECSS);
PRINTBSCZ2:; TABCI6:; BSCE 2 TRECHE) BS(3)
FRINT"COMMISSIONS"; TRECLZ) BOCUdys
PRINT TAB 241 BCCZ): TABUIGY; BOO3);
PRINT TRB(452; BC 4D

FRINT
FRINT"SALESMAN", "SALES", "COMMISSION"
FOR I=1 TO 4

62

ae
38
51
Sz
93
o4
85

97

38 -

99

18
11
iz
i3
i4
15

i7
z1
z2
23
24
25
35
36
37
28
48
42

46
47
48
54
S€
S8
59
50
62
63
64
65

&7
68

FRINT M&{Is. TSALESCI . TCOMCI
NE®T 1
ENL

REM CH. 6, Ex. 3, FROELEIM 1&

DIM H(1BBBs, M{166

FRINT"BUILD TAFE. ENTER 555 T0 STOR"
FRINT"FLACE REWOUKRD TRPE IN DRIVE
PRINT"FRESS “RECORD: & “FLAY"
PRINT"ENTER INTEGERS FRUM KEYEBFRD
PRINT "-25& < IWTERGER < 258
INPUT "INTEGER"; N&

PRINT #-1, Wi

IF MNx<{> 555 THEN 3o

PRINT "REWIMD TAPE, FRESS PLAY""
PRIMT "FOR DUPLICRTE DRTA CHECK. ®
INPUT "KEY ENTER WHEN RERDY":G$
INFUT #-1, Wi

IF H{WX+256r=1 THEM 7@
HONR+2580 =1 M=+l . MW =HE

IF Hx<{>555 THEN 7B

PRINT "CRSSETTE #2 IN DRIVE.
PRINT "REWIND & FRESS “RECORD
INFUT "KE% ENTER MWHEN DONE": Q3
FOR x=1 TO W: PRINT #-1. M s

NEXT «

REM PLACE EMD OF FILE

IDENTIFIER RT EMD OF THFE
FRINT #-1. 555

REM CH. &, EX. 9, PROBLEM 14

DIM N$(99), A9, CHC30

DIM S$(98), ££(39)

CLERR zoow “CLERR STRIMNG SFACE
INPUT "I5 THIS R NEW FILE YoMN": a#
IF u$="H" THEN 5@

IF QeLs"Y" THEN 14

Aw=1l 7 K IS RECORD MNUMBER

PRINT "“ADD, DELETE. STOF "

INPUT " R.D. 35" c%

IF G$="5S" THEN 47

IF G$="D" THEN &4

IF Qe5"A" PRINT"?"; © GOTO 21
INFUT "NAME (STOP="EHND" " Nd s
IF N&(Ko="END" LET X=x+1: GOTO Zid
INFUT "ADDRESS"; A% (s

INPUT "CITY"; C3CXD

INFUT "STRATE": S#CA»

INPUT "ZIF CODE"; Z$:¥)

K=+l GOTO 35

GOTO 214

PRIMT "REWIND & +RECORD=*

INPUT "KEY ENTER WHEMN READY"; Gi3
REM HWRITE ALL RECORDSH

FOR ¥=1 TO x~-1i

FRINTH-L, H$CY), R$CY D, CHCY 0, S3CY 0, S0y
PRINT HWs$(4)

NEXT %

FRINT #-1."END", %, 04, 03, Q%

END

REM SCAN RECORDS FOR HAME

INPUT “WAME TO FIND"; His

REM FIND HAME ROUTINE

FOR %=1 TO X-z

IF Ni#=N$CYs THEW 74

NEXT v

PRINT Hig; " NOT FOUND"

GOTO =21

REM DELETE RECORD RUOUTINE

176

solutions to even-numbered exercises

8@ FOR Z=Y TO »

81 REM ISFLACE DELETED RECORD
82 N$(Z)=N$(Z+1>

82 A$(Zr=R$(Z+1>

84 CH(Zo=CHCZ+L0

85 S#(Zr=S$(Z+1

86 Z$(Zo=2$(Z+1)

87 NEXT 2: R=x-1

88 REM DOME

89 GOTO 21

99 PRINT "REWIND TAFE, FRESS FLAY"
94 REM FIRST RECORD

32 K=1

9% INFUT "FRESS ENTER WHEM RERDY":
94 INPUT#-1, N$ (Ko, A$S XD, CHCRD,
95 PRINT N$(X>

96 IF N$(Xy="END" THEN 2i

97 X=X+1. GOTO 54

18 REM CH. 6. EX 9, PROBLEM 1lc

14 INFUT "HOW MANY EMPLOYEES". b

12 DIM ECSOr, N$C(SEO, YD 500

15 PRINT "HAVE YOU BUILT "

16 PRINT "A MASTER FILE™"

17 INFUT “"RESFOND WITH Y OR N"; G
18 IF G$="%" THEN 32

19 IF G$G"H" GUTO 39

28 PRINT "BUILD MASTER FILE"

21 PRINT "REWIND & “RECORD: "

22 INFUT "PRESS EWTER WHEM READY':
23 FOR E=1 TO W

24 INPUT "HNRAME"; N$

28 PRINT #-1, E. M. YD

38 NEXT E

32 PRINT "sWEEKLY UPDATE*»"
34 PRINT "REWIMD & “PLAY "
36 INPUT "PRESS ENTER WHEH READY"
38 FOR E=1 TO W

48 INPUT #-1, ECEY, N$ (B, YDED

42 NEXT E

44 FOR E=1 TU M

45 PRINT HWElEx " "
48 INPUT MWE:
58 NEAXT E
S2 INFUT "WRITE OM TAFE": U$
54 IF @%="N" THEN 1z

56 IF @${>"Y" THEN 33

58 FOR E=1 TO W

68 PRINT #-1.ECEs, N$(Es, YDuED
61 PRINT ECEY, N$C(ED, YDUED

62 NEAT E

64 GOTO 24

99 PRINT "INVALID RESFOMSE" .

YOCE =YL CE s+ WE

GOTO

reees ook ok b ok

CHARFTER 7
EXERCISE 1@

CH. 7,EA 16, PROBLEI 2

Ay REMRINDER WHEN X IS DIV, EY ¥

B» TRUMCATES X; » MRAYBE FUS. MNEG.

C» DECIMAL FRACTION OF A

D> BRANCH TO 16. 26. UOR 36 IF » IS
ZERO OR P05 RESPECTIVELY.

18 REM CH. 7.E®
26 LPRINT"A}
20 LPRINT"E

16, PROBLENM <
FRINT S+RMNDCL1:
PRINT dA+RND{GE

G

SR, EF

(W2

26 INPUT “"YERAR TO DHTE ERRMINGS": YD

€23

"WEEKS ERRNIMGS";

iv

OR @

HEG.

1a
12

ze
25
38
x5

42
45
Sa
52
55
&8
65
e
ve
75
380

189 OLD=0DD+FACk

REM CH. 7.EX 46, FROBLEM €
RANDOM: DIF Blz2

INPUT "THROW DIE HOW QOFTEHM": H
CLS: REM THROW OME DIE

FOR K=1 TO N

R=RND (&

ACRI=ACRI+1L . NEART K
PRINT"FREG. OF TOSSING "
PRINT "1 THRU € WITH 1 LIEY

FOR K=1 TO &: PRINT AukD:
REM THROW 2 DICE

PRINT

FOR K=1 TQO N
R=RHD{SI+RMLsLE)
B{Rs=B(Rx+1. NEXT k

PRINT "FREG OF TOSSIMG & THRU L%
PRINT " WITH & DICE"

FOR K=2 TO 12
PRINT K, EBCKJ.

HEXT k.

NEXT Kk

REM CH. 7.EAX 418, FROBLEM &
DIM Avlaos: RAKHDOM

INFUT "NO. OF RAMNDOM NOS "0 N
B=RND 2 UJ: HuBr=1

R=RND 2@

REM FUOR FART D
IF B=R LET F=F~+il
ACRI=ACRI+1L. B=R.
REM PRART H

FOR K=1 T zo
TT=TT+HR*RCKY (HEST K

PRINT "THE AYERAGE 1S": TT M

REI1 PART B

FOR k=1 TO z&

TEN=TEM+RALk . MHEAT Kk

FRIMT "NO. OF WALUES <=16 ": TEN
REM PHART C
FOR K=1 TO za

ME®T ke

STEF 2
HEXT K

185 PRIMT "WO. OF 0DD IWNTEGERS"; OLLs
ii@ REM FART D

115 FRINT “HOQ.

18
12
i5
2a
&5
20
35
48
45
Se

18
iz
iz
i3
28
25
38
35
4@
45
58
53
55

50

OF REPERTEZ": F

REM CH. v.Ex 1. FROBLEINM 1o
CLS. G=@: RANDOM: R=RHD.LQE.
PRINT "1 HAYE A WO BETHEEN i & l&@"

G=G+1. FRINT "GUESS NO. "G
INFUT A
IF #=R THEM 58

IF #<{R THEN 43
PRINT "TOO HIGH":
PRINT "TOO LOW":
FRINT "Y0OU DI0 IT INYG Gi

GOTO 26
GOTO 26
“GUESSES"

REM CH. 7.E=s. lB,PRDBLEH iz
REM HEARDS=4, TRILS=
REM FLAG=1 FOR HEH[3
FLAG=8: SEQ=E8: MAR=G.
INPUT “HOW MARMNY TOSSE
IF RNDKZs=2 THEM 35
FLAG=1: SEG=1 .GOTO 4@
FLRAG=@

FOR K=z TO N

IF RHNDugr=2 THEH €8

IF FLAG=L LET SEG@=SE@+1 GUTO
IF FLAG=8 LET SE@=1: FLAG=1
GOTO €5

FLAG=8: SEu=9

TS
RAHDOM
Ui N

T
n

177

solutions to even-numbered exercises

65 IF SEG>MAK LET MAX=SEX 45 IF P<O7? THEN 68
70 NEXT K 56 GOSUB 1zee
753 PRINT "LONGEST RUN OF HEARDS": MAX 55 GOTO 185

€@ PRINT "YOUR POINT ISP
65 PRINT "PRESS ENTER TO CONT. ROLLING"

10 REM CH. 7,EX. 10, PROBLEM 14 70 INPUT G
12 FOR N=1068 TO 559 75 GOsuB 1eee
15 DAi=INT(N/160> ~ 80 IF D1+D2<>7 THEN 95
16 D3I=N-10%INT(N/16> 83 GOosuB 1z0@
17 D2=(N-188%01-D3).10 96 GOTO 165
28 X=D1[3+D2L3+D3(3 95 IF D1+D2<{>P THEN &8
23 IF N=X PRINT N 188 GOSUB 1200
30 NEXT N 165 INPUT "PLAY AGRIN ¥ OR N";R$
i1 CLS
115 IF R$="%¥" THEN 15
1@ REM CH. 7.EX. 10,FROELEM 16 120 PRINT: FRINT
11 PRINT "ANGLE", "SINC(X)", "SERIES 123 PRINT "YOU WON"; W;
12 FOR K=1 T0 7 128 PRINT "AND LOST";L; "GAMES. "
135 READ ANGLE 138 IF WoL THEN 145
28 DATA 10, 306, 68, 90, 120, 156, 156 135 PRINT "NEXT TIME BRING MONEY"
23 K=, 8474533«ANGLE 140 END
30 SERIES=8: SIGN=-1: P=-1 143 PRINT “I DONT WANT TO PLAY FOR $¢
33 FOR M=1 TO0 S 158 END
46 P=P+2: FACT=1: SIGN=-S5IGN 1008 REM SUBROUTINE FOR DICE ROLL
43 FOR L=1 TO P 1010 Di=INTC(RNDCE)+1>
90 FRCT=FARCT=*L: NEXT L 1020 D2=INT(RNDC(&>+1)
535 SERIES=SERIES+SIGN*XLP/FACT 1830 PRINT
60 NEXT M 1640 PRINT"ROLL IS A “";Dd: "7 & “";Dzs "7
63 PRINT ANGLE. SINCX>, SERIES 1850 PRINT
78 NEXT K 1060 RETURN
1200 REM WIN ROUTINE
1218 PRINT
10 REM CH. 7.EX. 10, PROBLEM 18 1220 PRINT "YOU WIN !¢
11 CLS 1225 PRINT
1z FOR ANGLE=0 TO 368 STEF 30 1228 W=W+1
28 Y=SIN(@. B8174533+ANGLE> 1240 RETURN
35 7 ¥ IS MAGNIFIED BY 16 & SHIFTED 1300 REM LOSE ROUTINE
37 7 BY 1z; FOR ¥Y=1 GRAPH SHOWS W=z2 1310 PRINT
4@ PRINT"-"; TRB(10#Y+1z; ANGLE 1320 PRINT "I LOVE A GOOD LOSER!!!"®
80 NEXT ANGLE 1325 PRINT
1330 L=L+1

1340 RETURN
10 REM CH. 7.EX. 418, PROBLEM 26
12 PRINT “A", "SINC(zZ*A>",

13 PRINT "a#SINCA*COSCA> ™ 10 REM CH. 8,EX. 411, PROBLEM 12
15 FOR X=8 TO 98 STEFP 16 12 CLS: PRINT "N","A"

20 A=0. B174533%X 15 READ P:R, T

25 LEFT=SINC2#As 2@ FOR K=41 TO 9

30 RIGHT=2#SINCAI#COSCAD 25 RERD N<K3J

35 PRINT X, LEFT. RIGHT 30 DATA 1006.. 65, 16, 1, 2, 4

48 NEXT X 35 DATA 8,16, 22, €4, 128, 365

48 GOSUE 100
45 NEXT K. END
180 REM COMPOUND INTEREST SUBROUTINE

CHAPTER B 105 A=P*(1+R/NCKI DL CTHNCKD 3
EXERCISES 11 118 PRINT N<K3, A
115 RETURN

CH. 8, EX. 11,FROBLEM B
ADD THE FOLLOMWING LINES TO THE PROGRANM

105 INPUT "NO. OF BLINKING DISFPLAYS":N 186 REM CH. 8,EX. 4141, FROUBLEM 14
123 FOR X=1 TO N 12 PRINT “INPUT X FOR EXPC(Xs";
178 NEXT X: END 13 PRINT " RAND THE NUMBER OF TERMS"

15 INPUT X, N
20 GOSUB 1Ge

10 REM CH. 8, EX. 141, PROBLEM 1@ 25 PRINT N; "TERMS, EXPC";¥; "> IS E
12 W=0:L=8: CLS: RANDOM 38 END

15 PRINT “THIS IS A DICE GAME!!" 100 “SUBROUTINE TO COMPUTE EXP(X>
28 GOsSUB 1600 105 E=1

25 P=Di+D2z 140 FOR L=1 TO N

20 IF P<>1z THEN 45 115 GOsSUB z68

X5 GOsSUB 1366 120 E=E+X[L/F

40 GOTO 165

178

solutions to even-numbered exercises

125 NEXT L

1308 RETURN

206 REM SUBROUTINE FUOR FRCTORIAL
205 F=1

210 FOR K=1 TO L

215 F=F#K: NEXT K’

220 RETURN

CHAPTER 9
EXERCISES 1z

18 REM CH. 9, EX. 12, FROBLEM 4
20 REM X+W MUST BE <=127
21 7 Y+H MUST BE <=47
30 INPUT "WIDTH & HEIGHT"; W.H

38 CLS
48 Y=B

S0 X=A+W

66 Y=B+H

65 FOR X=A+W TO A STEFP -1
66 SETC(X, ¥2»: NEXT X

70 X=R

7?5 FOR ¥Y=B+H TO B STEF -1
76 SETC(X, ¥ . NEXT ¢

88 GOTO 8v

18 REM CH. 9,EX. 12, FROBLEM €
12 CLS

15 K=@: FOR ¥=8 TO 42

16 SETCX, ¥>: NEXT ¢

28 X=1: FOR ¥=0 TO 42 STEF €
21 SETCK, ¥Yo: NEXT ¥

25 ¥=42: FOR X=0 TO 127

26 SETX, Yo NEXT X

30 FOR C=6 TO 1ie6

35 I=CA2. 54

4@ K=C. Y=d4z-1

42 IF Y-8 SET (K, YY)

45 NEXT C

S50 GOTO Se

18 REM CH. 3, EX. 412, PROBLEM &

i1 ON ERROR GOTO 8o

12 INPUT "TOTAL NO. OF STEFS'SN
13 X=64: Y=z26: K=0: DIST=8

14 CLS: RANDOM

15 SET (K, %2

16 K=K+1: IF K>N THEN 5@

1?7 Z=RND<(2J

18 IF Z=2z THEN 31

21 X¥=K-2: DIST=DIST-z: GOTO 495
31 X=X+2: DIST=DIST+z: GOTO 15
41 ¥=Y+2: GOTO 45

51 X=X-2: GOTO 15

88 N=K

85 GOTO &85

98 PRINT @ B, “AFTER"; M; "STEFS ";
93 PRINT "DISTANCE =";DIST; "FEET"
95 GOTO 95

18 REM CH. S.EX. 12, PROBLEM 18
12 CLS: REM LABEL Y-AXIS

45 FOR X=A TO A+W: SET <X, Y¥s: NEXT

35 INPUT "TOF LEFT CORMER AT X.Y'"J A, B

e

~

55 FOR ¥Y=B TO B+H: SET (X, Y. NEAT V¥

45 PRINT @ 3, "38": PRINT @ 134, "24"

16
i7?
i35
20
22
23
24
23
26
27

29
20
32
24
35
36
37
4@

47
58
55
=)
63
65
7o

PRINT @ 253, "18": PRINT @ 387, "iz2"
PRINT & 515, "&"

REM LABEL XK-AXIS

PRINT @ 7a<," 2"

PRINT 4

PRINT " =3 ie"
REM CDRAW Y-AXIS

A=@: FOR Y¥=0 TO 26

SET (X, ¥>: NEXT ¥

REM MARKERS ON Y-AXIS
X=1: FOR ¥=8 TO 38 STEP
SET (K, %¥>»: NEXT ¥

REM DRAKW X-AXIS

¥=328: FOR X=@ TO io6
SET <X, ¥Y»: NEXT X

REM MARKERS ON X-AXIS
¥Y=29: FOR X=0 TO 106 STEF 1i©
SET <Xa¥J>: NEXT X

FOR X=8 TO 18

Y=X: Y=306-Y

HASCALE=16%X

SET (XSCALE, ¥»: NEXT X

FOR X=6 TO i@

Y=3%X: ¥Y=30-Y

XSCALE=10%X

SET (XSCALE, ¥Y»: NEXT X

GOTO 70

[

ie
i2
20
20
40
S5a
60
7e
73

18
12
poe)
30
40
4z
44
56
68
7@
73

10
i2
2e
30
40
42
66
65
ve
7z

CHAPTER i@
EXERCISES 13

REM CH. 1@, EX. 13, PROBLEM &-A
CLEAR S66: Z=0

INPUT “"YOUR TEXT"; T4

FOR K=1 TO LENC(TS$>

IF MID$CTS, K, 15="E" THEN Z=2+1
=E+1

NEXT K

PRINT "THE LETTER E OCCURS"; Z;
PRINT "TIMES IN YOUR TEXT"

REM CH. 1@, EX. 413, PROBLEM &-B
CLEAR SvB: =

INPUT "YOUR TEXT"; T¢

FOR K=1 TO LEN(T$.
K$=MIDL(T$, K, 10

FOR R=1 TO S

IF X$=MID$C"AEIOU", R, 1 THEN Z=2+1
NEXT R

NEXT K

PRINT "THE VOWELS OCCUR"; Z;
PRINT "TIMES IN YOUR TEXT"

REM CH. 18, EX. 13, FRUBLEM e-C
CLERR S&6: Z=06

INPUT "YOUR TEXT"; T$

FOR K=1 TO LENCT$>

IF MID$(TS$, K, 40="ING " THEN Z=Z+1
IF MID$CTH, K, 40="1ING. " THEN Z=Z+1
NEXT K

IF RIGHT$(T$, 3>="ING" LET Z=Z+1
PRINT “"THE EMDING “ING” OCCURS"Y;
PRINT Z; “TIMES IN YOUR TEXT. "

179

solutions to even-numbered exercises

10
iz
20
3e
48
56
Sz2
535
Sé
60
63
70
7S
80
8%
87
56
7

10
20
30
40
30
55
€0
76
80
85
S50

16
iz
15
20
25
38
33
4@
43
50
68

1@
iz
iS5
20
25
30
35
48
45
58
55

REM CH. 18,EX. 43, PROBLEM 8

CLEAR 1009

INPUT "YOUR TEXT"; A$

FOR K=1 TO LENCAS$)

AKE=MID$ (A%, K, 1>

IF ASC(X$5>64 AND ASCC(X$I<ILTHEN 55
GOTO €0

P$=P$+X$

PRINTP$

NEXT K

REM D$ CONTARINS ONLY LETTERS

FOR K=LENCF$> TO 4 STEF -1
B$=B$+MID$(P$, K. 15 : NEXT K

IF P$=B$ THEN 30

PRINT "NOT AN IMPERFECT PRLINDRONE"
END

PRINT "IMPERFECT PALINDROME"

END

REM CH. 10.EX. 13, PROBLEM 18
INPUT "YOUR SENTENCE (NO FERIOD>"; A$
FOR K=1 TO LENCA$)

IF MID$CAS. K, 1y=" " THEN €0
B$=B$+MID$ (A%, K, 15

GOTO 88

IF LENCHRX$><LEN(B$> THEN MAX$=B$

B‘:'l "

NEXT K

IF LENCKMAX$)><LENCBS$> LET MA$=EB$
PRINT "THE LONGEST WORD IS: “;MR$

REM CH. 1@, EX. 13, PROBLEM 12
FOR K=1 TO 108

A$=STR# (K>

FOR L=1 TO LENCAS$>

IF "7"=MID$CA%, L. 1> THEN 40
NEXT L

GOTO €©

PRINT K; "BUZZ ";

IF INTCKA70%7<OK THEN 68
PRINT "BUZZ *;

NEXT K

REM CH. 1@6,EX. 13, PROBLEM 14
PRINT "THE SPECIAL NUMBERS RRE:"
FOR K=18 T0O 99

N1=INT(K/ 18>

N2=K-410+N1

IF KCONLDHNL+HNZHRNZ THEN 45

PRINT Ki

FLAG=1

NEXT K

IF FLAG=1 END

PRINT “THERE ARE NO SUCH NUMBERS"

180

index

A Binary numbers, 150
Binomial expansion, 102

Abbreviation, 162 Blanks, 10

PRINT, 6 Blinking:

REM, 29 block, 155
ABS function, 116, 117 display, 124, 129
Absolute value, 64 Branching, 46
Algorithm, 101 BREAK, 26,40, 67, 68, 89, 145
Alphanumeric character, 162
AND, 47

Apostrophe, 29

Argument, 100, 112 C
dummy, 102 N .
Arithmetic: Cassette input-output, 40, 107

CBDL function, 117
Celsius degrees, 21, 40, 133
Chaining, 56

functions, 13
hierarchy of operations, 14, 49
integer, 18

Character:
trick, 32 .
. . . alphanumeric, 162
Arithmetic functions:
blank, 8

addition, 13

division, 13

exponentiation, 13

multiplication, 13

subtraction, 13
Array, 27,79

largest element, 80
Ascending order, 53

information, 6, 8
strings, 7,42, 142
Checkbook balancing, 105
Checking account, 64, 91
Christmas Club, 78
CHRS function, 143
CINT function, 117

} CLEAR, 24
ASC function, 143 CLEAR key, 4
ASCII code, 143, 144 CLEAR n 6,1 148
Assignment, 9 CLOAD A’fl ’
ATN function, 117 CLOAD:? 41
AUTO, 26 CLS. 33 ’
Averaging, 73 C d" 148
Axes X and Y, 101 PR
hanging, 98
B Command mode, 23, 25
Comments, 28
Back-up tape, 109 Compound interest, 14,32, 51, 129
Bar graph, 116, 135, 141 Computer-assisted instruction, 125

181

182 index

Conditional transfer, 54 E
to subroutines, 125
CONT, 40, 68, 89 EDIT, 34
Convergence criterion, 130 Editing, 24, 33
COS function, 117 examples, 36
Counter, 66 procedure, 35
increment, 67 Edit mode, 34
test, 67 Element, 79
CSAVE, 40 Employee:
CSNG function, 117 earnings, 111
Cursor, 4, 5, 26 file, 111
END, 25,128
D ENTER key, 5,7
Equal, 46
DATA, 93 g?ausil sign, 11
Data validity check, 37, 59, 60, 64))
i character, 4
Debugging, 37, 85 .
.. line, 4
Decisions, 46]
) program, 27
three-way, 53
two-way. 51 screen, 4
Dotan Yo . al ERL function, 60
DGE%?;II;II% v::;]a e types, ERR function, 164
T ERROR code, 164
Definition statements, 42 Errors:
DEFINT, 41, 42 10 3'7 60
DEFSNG, 42 FC, 58’
DEFSTR, 42 ’ .
language, 37
Degree: logical, 37
Celsius, 21, 133 ’
messages, 159
days, 44 OD, 94, 145
Fahrenheit, 21, 133 OV, 17’
DELETE, 26 SN ’5 8 3760
DELETE characters, 34 A
. , T™, 149
DELETE line, 33 Etch-n-sketch. 154
Dice, 119, 120, 129, 135 Excecjtfozc :
Digital clock, 129 BREAK, 67, 68, 145
DIM, 79
Display: halt, 68
pay: mode, 24, 25

slowdown, 145

status message, 145
Distance formula, 22
Divisibility check, 18
Division:

sign, 13

by zero error, 37, 60
Dollar bill change, 61
Double-precision, 16, 17, 42

sequence, 46
EXP function, 117, 130
Exponent, 7
Exponent sign:

on printer, 13, 14

on screen, 13, 14
EXTRA IGNORED, 165

Drill and practice, 97 F
Dummy:
argument, 102 Factorial, 78, 120, 130
loop, 145 Fahrenheit degrees, 21,40, 133

record, 109 False statement, 47

183

index

FC error, 58
Fibbonacci sequence, 102
File:

employee, 111

inventory, 110
FIX function, 117
Flag, 74, 109
Flowchart, 49

symbols, 50
Football, 92
Formatting output, 97, 104
FOR-NEXT, 70
FOR-NEXT loop, 70
FRE function, 149
Frequency count, 119, 135

G

Games:
buzz, 157
etch-a-sketch, 154
hi-low, 77, 120
shoot the duck, 153
video, 153

GIGO, 59

GOSUB, 122

GO TO, 53

Graph:
bar, 116, 135, 141
equation, 110
histogram, 116
lines, 132, 141
metric, 140
parabola, 100
random, 116, 137, 140
rectangle, 140
temperature, 133

Graphic block, 132

Graphic display, 115, 133, 136, 139

Graphics, 131, 137

Greater than, 46

H

Halt execution, 68

Hanging comma, 98

Hanging semicolon, 82

Heads and tails, 115

Hero’s formula, 21

Hierarchy of operations, 14, 49

Hi-Lo game, 77, 120
Histogram, 116
Hypotenuse, 27

IF-GO TO, 63
IF-THEN, 54, 66
IF-THEN-ELSE, 54, 55
IF-THEN GO TO, 63
Immediate mode, 24, 25
Increment counter, 66, 67
Infinite loop, 68, 104, 145
Infinite series, 71, 78, 130
Information:
character, 6, 8
numerical, 6
Initialize counter, 66, 67, 68
INKEYS function, 151
Inner loop, 82
INP function, 165
INPUT, 31, 33,93
cassette, 107
#-1,108
Integer:
arithmetic, 18
variable, 16, 17, 41
Interest, 23,27, 38
compound, 14, 32
INT function, 112
Inventory file, 110
[teration, 78
Iterative formula, 78

K

Keyboard, 3
response, 31
Kitty corner, 27

L

Language errors, 37, 38
Leading plus sign, 104
Leading zeros, 17
LEFTS function, 146
Left to right rule, 14
LEN function, 146
Less than, 46

LET, 10

184

index

Level I versus Level 11, 6, 9, 37
Library functions, 112,117
Line number, 23, 25
BREAK IN, 39
LIST, 25, 39
LLIST, 166
LOG function, 117,118
Logical errors, 37, 38
Logical expressions, 48
Logical operations, 47
Logical variables, 48
Long division, 112
Loops:
debugging, 85
dummy, 145
FOR-NEXT, 70
IF-THEN, 66
infinite, 68, 104, 145
inner, 82
nested, 82,91, 101
outer, 82
structure, 66, 67
LPRINT, 167

M

Magic squares, 84,91
Mailing list, 110
Main program, 122
Manhattan Island, 21
Matrix, 84,91
Mean, 129
MEM function, 27, 149
MEMORY SIZE?, 3
Merge, 91, 158
Messages, 28, 29

coding, 148

decoded, 157

error, 159
Metric conversion, 16, 140
MIDS$ function, 146
Minus sign, 6
Mode, 91
Mortgage payment, 21, 38
Multiple statement lines, 56
Multiple subscripts, 84
Multiplication:

sign, 13

table, 82

N

Negative numbers, 6
Nested loops, 82,91, 101
Nested subroutines, 123, 130
NEW, 27,76
NOT, 47
Numbers:

negative, 6

positive, 6

scientific notation, 7
Numeric constant, 7
Numeric keypad, 3
Numeric limits on magnitude, 17

0)

OD error, 94, 145
ON ERROR GO TO, 59, 65, 137
ON-GOSUB, 125
ON-GO TO, 57
Operations:
hierarchy, 14, 49
logical, 47
relational, 46
OR, 47
Outer loop, 82
OUT function, 167
Output, 93
cassette, 108
formatting, 97
zones, 98
Overflow, 13
error, 17

P

Palindrome, 147, 157
Parabola, 100
Parentheses, 14
redundant, 15
Pascal’s triangle, 101
PEEK function, 167
Picture tree, 31
Playing computer, 86, 113
POINT function, 137
POKE function, 167
Population, 45
POS function, 102
Positive numbers, 6

185

index

PRINT, 6, 7
abbreviation, 6
expanded, 4

PRINT TAB, 100, 102, 117

PRINT USING, 100, 103, 104

PRINT @, 102

PRINT #-1, 108

Program:
clarity, 28
debugging, 37, 84
delete, 27
editing, 33
erase, 27
line number, 23
listing, 25
mode, 24
readability, 28
saving, 40
tracing, 86
writing, 23

Programming:
mode, 24,25
trick, 132

Pythagorean theorem, 27

Q

Quadratic equation, 64
Quotation marks, 7
Quotes, 8,33

R

RANDOM, 114

Random graphic display, 115
Random integer, 114

Random number, 114

Random number generator, 119
Random walk, 137

READ, 93

READY, 3,24,102

REDO, 33

Relational operations, 46
REMark, 28,29

Reserved words, 10, 11, 82, 161
RESET function, 137
RESTORE, 95

RESUME, 59

RETURN, 122

Right triangle, 27

RIGHTS function, 146
RND function, 114
Roulette, 120
Rounding, 113

to nearest penny, 19, 103
Roundoff, 17
Rule of 72, 68,77, 118
RUN, 24, 54

S

Sales report, 98
Saving programs, 40
Scientific notation, 7
Semicolon, 25
hanging, 82
Series:
exponential, 130
Fibbonacci, 102
infinite, 71,78, 130
sine, 120
SET function, 131
SGN function, 117
SHIFT key, 4
SHIFT @, 67, 145
Shoot the duck, 153
Significant figures, 16,17, 105
Simulate:
birthdates, 120
dice, 119, 120, 129, 135
heads and tails, 115
roulette, 120
SIN function, 117
Single-precision, 16, 17,42
versus double-precision, 18
Slope formula, 22
Slowdown display, 145
Sorting, 86
Space bar, 36
SQR function, 117
Standard deviation, 129
State capitals, 95
Statement chaining, 56
Status message, 145
STEP, 70
STOP, 39, 89
String, 7, 142
concatenation, 14, 142
entry routine, 152
functions, 143, 148
variables, 8, 17

186

index

STRINGS function, 148
STRS function, 149
Subroutines, 122
conditional transfer, 125
nested, 123, 130
Subscript, 79
Subscripted variables, 79
element, 79
multiple, 84
rules, 80
single, 79
Syntax error, 5, 8, 37, 60

T

TAB function, 100, 102, 117
TAN function, 117
Temperature conversion, 21,40, 133
Three-way decision, 52
TM error, 149
Trace, 86, 88
Trailing plus sign, 104
Trailing zeros, 6, 104
Transfer:
conditional, 54
statements, 46, 53
unconditional, 53
TROFF, 86, 88
TRON, 86, 88
True statement, 47
Two-way decision, 51

U

Unconditional transfer, 53
Underlining a title, 150
Unit pricing, 95

USR function, 170

v

VAL function, 149
Variable, 8
declare, 17, 41
display, 58
double-precision, 16, 17, 42
integer, 16, 17, 42
interchange values, 11
MEM, 27
numerical, 9
single-precision, 16, 17, 42
string, 8, 17,42
subscripted, 79, 84
types, 16,41
Variable displays, 58
VARPTR function, 170
Video game, 153

w

Wise old man, 75

Y

Year-to-date earnings, 108

Z

Zero:
division by, 37
leading, 17
subscript, 80
trailing, 6, 104
Zone, 98

introduction to

TRS-80
LEVEL II BASIC

and
computer

programming

This is an easy-to-follow book suitable for a wide variety of readers
who are new to computers and computer programming. It s ideal
for the beginner who wants to learn about computers without
wishing to become an expert. Dr. Zabinski's INTRODUCTION T0O
TRS-80 LEVEL Il BASIC AND COMPUTER PROGRAMMING shows
how to use the TRS-80 computer for a wide range of exciting
applications such as checkbook balancing, computer graphics,
multiplication tables, magic squares, and video games.

BASIC has a conversational, interactive nature and a simple struc-
cure: it is an attractive teaching tool with which computer prograrm-
mMing concepts can be presented to begnners. With a small set of
Nnstructions, the beginner can very quickly begin to write elementanry
computer programs—a stimulating and enjoyable experience. Many
practical examples are included to illustrate the use of BASIC and to
dermonstrate how a computer can be programmed.

The opening chapter describes major charactenristics of the Rado
Shack TRS-80, its keyboard, and how to communicate with the
computer. Subsequent chapters discuss, IN direct and easy-to-
follow language, technigues for specifying information, computer
programs, decisions, looping, iNnput and output, library functions,
subroutines, graphics, and strings.

Numerous illustrative examples and an abundance of chapter exer-
cises [over 200, including many of their solutions, are provided.
They help the reader assess progress, reinforce comprehension,
and provide valuable practical experience.

By Michael P. Zabinski, Ph.D.
Fairfield University
Fairfield, Connecticut

Michael P. Zabinski, Ph.D., is a professor at Fairfield University, Fair
field. Connecticut, and a founder and director of the only computer
camp for youngsters in the United States. He is a consultant to
public schools on computer usage in the classroorm. Dr. Zabinski 1S

author of prograrmming books as well as educational materials for
Radio Shack.

0-13-499962-2

	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	y.pdf
	2-001.pdf
	2-002.pdf
	2-003.pdf
	2-004.pdf
	2-005.pdf
	2-006.pdf
	2-007.pdf
	2-008.pdf
	2-009.pdf
	2-010.pdf
	2-011.pdf
	2-012.pdf
	2-013.pdf
	2-014.pdf
	2-015.pdf
	2-016.pdf
	2-017.pdf
	2-018.pdf
	2-019.pdf
	2-020.pdf
	2-021.pdf
	2-022.pdf
	2-023.pdf
	2-024.pdf
	2-025.pdf
	2-026.pdf
	2-027.pdf
	2-028.pdf
	2-029.pdf
	2-030.pdf
	2-031.pdf
	2-032.pdf
	2-033.pdf
	2-034.pdf
	2-035.pdf
	2-036.pdf
	2-037.pdf
	2-038.pdf
	2-039.pdf
	2-040.pdf
	2-041.pdf
	2-042.pdf
	2-043.pdf
	2-044.pdf
	2-045.pdf
	2-046.pdf
	2-047.pdf
	2-048.pdf
	2-049.pdf
	2-050.pdf
	2-051.pdf
	2-052.pdf
	2-053.pdf
	2-054.pdf
	2-055.pdf
	2-056.pdf
	2-057.pdf
	2-058.pdf
	2-059.pdf
	2-060.pdf
	2-061.pdf
	2-062.pdf
	2-063.pdf
	2-064.pdf
	2-065.pdf
	2-066.pdf
	2-067.pdf
	2-068.pdf
	2-069.pdf
	2-070.pdf
	2-071.pdf
	2-072.pdf
	2-073.pdf
	2-074.pdf
	2-075.pdf
	2-076.pdf
	2-077.pdf
	2-078.pdf
	2-079.pdf
	2-080.pdf

	y.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf

