

INSIDE OS9
LEVEL I

THE INSIDE STORY OF OS9 FOR THE
TANDY COLOR COMPUTER 3

by
Kevin K. Darling

PUBLISHED BY
Frank Hogg Laboratory, Inc.
770 James Street
Syracuse, New York 13203

Copyright © 1987 by Kevin K. Darling
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Printed and bound in the United States of America

Distributed by Frank Hogg Laboratory, Inc.

Disclaimer

The opinions in this book are strictly those of the
author and do not necessarily represent the views
of Frank Hogg Laboratory, Inc.

The authors have exercised due care in the preparation of this book and the programs contained
in it. Neither the author or the publisher make any warranties either express or implied with regard t
o the information and programs contained in this book. In no event shall the authors or publisher be

liable for incidental or consequential damages arising out of the furnishing, performance, or use of

any information and/or programs.

TRS-80 Color Computer is a trademark of the Tandy Corporation.
0S-9 and BASICO9 are trademarks of Microware and Motorola.

First edition published in April 1987

INSIDE OS9 LEVEL I

table of contents

1-INTRODUCTION

Section 1-1 Forward and General Info
Section 1-2 Basics of OS9

Section 1-3 The GIME MMU

Section 1-4 DAT Images

Section 1-5 Level Two

2-THE SYSTEM

Section 2-1 Direct Page variables and System memory map.
Section 2-2 System calls (F$calls)

Section 2-3 System calls (1$calls)

Section 2-4 Interrupts

3-DEVICES

Section 3-1 RBF Random Block File Manager
Section 3-2 RBF calls

Section 3-3 SCF Sequential File Manager
Section 3-4 Pipe manager

Section 3-5 General Information

4-WINDOWS

Section 4-1 Window Basics

Section 4-2 Global and CC3I0 Memory
Section 4-3 Fonts and things

Section 4-4 Window Descriptor

5-MISCELLANEOUS

Section 5-1
Section 5-2
Section 5-3
Section 5-4
Section 5-5

6-SOURCES

Section 6-1
Section 6-2
Section 6-3
Section 6-4
Section 6-5
Section 6-6

7-REFERENCE

Section 7-1
Section 7-2
Section 7-3
Section 7-4
Section 7-5

The Shell

Using Rogue to make OS9 Level
Bug Fixes

Graficom Font Conversion

User Tips

Alarm Utility
DMem Utility
MMap Utility
PMap Utility
Proc Utility

SMap Utility

GIME Register Map
Tables and other Stuff
Video Display Codes
Keyboard codes

Error codes

INSIDE OS9 LEVEL I

Introduction

INSIDE OS9 LEVEL I
INTRODUCTION
Section 1

FOREWORD

Around the middle of Febuary, Frank Hogg asked me to do a "little something" on Level Two OS-
9 for the CoCo-3. This is the result, a compilation of old and new notes I and others had made for
ourselves.

Organizing anything about OS-9 is tough, since each part of it interacts closely with the rest. In the
end, I decided to simply present information as a series of essays and tables. Some of these are
ones that I had made for L-I, but apply equally well to L-II. Maybe in a half year or so we'll come
out with a second edition, but we really wanted to help people out NOW.

To me, at least, it is very like being blind not knowing exactly what occurs during the execution of
a program that I have written. For that reason, I have taken a look at OS-9 on the CoCo from the
inside out.

The idea is that if you can figure out what's happening on the inside, you have a better chance of
knowing what to do from the user level. In essence, this whole collection is a reference work for
myself and my friends out there like you.

Level-II wasn't out yet at the beginning of this writing, and I had not seen the Tandy manual until
the end, so please bear with me if things have changed somewhat.

In general, I will not duplicate explanations provided by the Tandy manuals, Microware manuals
or the Rainbow Guide. Instead, my intention is to enhance them. You should get them, too. Dale
Puckett and Peter Dibble are working now on a book about windows for the user. I will be doing
more on drivers soon.

This reference work is the result of many hours of studying and probing by myself and others.
Hopefully, it will save you at least some of the time and trouble that we have had. Since this is
meant as part tutorial, part quick reference, some tables may occur more than once as I felt
necessary.

Special thanks are due to Frank Hogg, for publishing this and for being "patient” with delays. I
also owe a lot to the many people on CompuServe's OS-9 Forum, who keep asking the right
questions.

Thanks also to Pete Lyall for letting me use his excerpts on login, Kent Meyers for much help on
internals, and to Chris Babcock for delving into the fonts for us.

And, of course, none of this would have been done without the support and love of my dearest
friend and sweetheart, Marsha. Thank you, Sweet Thang!

I hope it helps. Best wishes, and Have Fun.
Kevin K Darling - 30 March 1987

1-1-1

OVERVIEW OF 0S9

INSIDE 0OS9 LEVEL Il
INTRODUCTION
Section 1

The following is all of OS9 in one spot:

UNIVERSAL SYSTEM TABLES:

Direct page vars -

Memory bitmaps -

Service dispatch
tables -

Module directory -

Device table -

IRQ polling table -

PROCESS INFORMATION:

table pointers, interrupt vectors
maps of free / in-use memory

vectors for SWI2 system calls
pointers to in-memory modules
info on used devices (/DO,/P,etc)
vectors interrupts to drivers

Process descriptors - process specific information

Path descriptors -

I/O open file information

Driver static storage - device driver constant memory

PROGRAM MODULES:

User programs -
Kernal -

Toman -

File Mgrs -
Drivers -

your program

handles in-memory processing
controls 1/0 resources

file handling and editing

data storage and transfer

Device descriptors - device characteristics

SIMPLE SYSTEM MEMORY MAP

00000-01FFF
02000-
-71DFFF
T7EO000-7EFFF
T7F000-7FFFF

System Variables
Free memory,

bootfile
video memory

Kernal

I/0 and GIME

1-1-2

INSIDE OS9 LEVEL II
INTRODUCTION

Section 1
THE MAIN PLAYERS:
Modules Responsibilities
REL, BOOT . Reset hardware and Boot
0s9P1 . Initialization of system
0S9P2 Handling of most SWI2 service calls (except I/0)

Memory management and process control
Module directory upkeep, module searching
Allocation of process descriptors

IOMAN . Handling I/0 related SWI2 service calls
Allocation of path descriptors
IRQ polling table entries
Device IRQ polling
Device table entries for desc, driver, filmgr
Queuing processes trying to use same path desc
Allocation of driver static memory
Copying device desc init table to path desc
Calling file mgr for I/O calls

RBFMAN . Allocation of data buffers
SCFMAN File & directory allocation and management
PIPEMAN Edit, seek, read, write of file

Queuing processes trying to use same device
CC3DISK . Allocation of verify buffer
CC310 Read / write of data buffers from / to device
PRINTER Device interrupt handling
RS232 Device status / error monitoring
REL - Resets hardware, calls 0S99l
INIT - Data module containing system constants
BOOT ~ Load 0OS9Boot if initial dir's, paths fail
CC3GO - CHX CMDS, Startup, Autoex, Shell
CLOCK - System timekeeping, VIRQ's, Alarm calls

Process Descriptors - info on each process

Path Descriptors - info local to each I/O path

Device Table - device memory, desc, filmgr, driver
Polling Table - device status address, driver IRQ vector
Module Directory - address, user cnt of program modules

INSIDE OS9 LEVEL 1l
INTRODUCTION
Section 2

MULTI-TASKING PRINCIPLES

The power of the 6809's addressing modes enables the m/l programmer to easily write code that
will execute at any memory address. Furthermore, if the code is written to access program
variables by offsets to the index registers, more than one user can execute that code as long as he
has his own data area.

The point of all this is that the 6809 made it easy for Microware to write an operating system that
can load a program anywhere there is enough contiguous memory, assign the user a data space,
and through SWI2 (trap) calls, access system I/O and memory resources.

Now, since we know that we can be processing code and sharing the 64K memory space with
other programs, we can allow more than one program / user at more or less the same time by
switching between the processes fast enough to appear to each user that he has his own computer.

How often is fast? In some other multi-tasking systems, each process is responsible for signaling
to the operating system kernal that it was ready to give up some of its CPU time. The advantage of
this method was that time-critical code wasn't interrupted. (OS9 users can simply shut off
interrupts if this is necessary.) But this method depends on the user to write the switching signal
into his code so that it was hit often enough to give other processes a chance to run.

In OS9, there is always a system ‘clock’ that interrupts the 6809 about 10 times a second, and
causes the next process to be given a CPU time slice.* Other interrupts from any I/0 devices
needing service cause the system to execute the interrupt service routine in the driver for that
device, and quickly resume the original process.

Switching between processes is the easy part. Each process has a process descriptor, holding
information about it. When the 6809 is interrupted, the current address it is at in the program, and
the CPU's registers are saved on the system stack in the process's data area. The stack pointer's
value is saved in the current program's process descriptor for later retrieval.

The kernal then determines who gets the next time slice according to age and priority. The stack
pointer of the new main process is loaded from its process descriptor, and since the stack pointer is
now pointing to a 'snapshot’ of its process's registers, a RTI instruction will cause the program to
continue as if nothing had ever stopped it.

So, in essence, each process thinks that it is alone in the machine with its own program and data
area limits defined, although if needed, it can find limited info on the others. Besides device
interrupts and normal task-switching, two other events may have an effect on a program's running
without its knowing about it: I/O queuing and untrapped signals.

* Actually 60 times/second on the CoCo, but a process time slice is considered to be 6 'ticks', or
1/10th second.

1-2-1

INSIDE OS9 LEVEL 1l

MULTI-TASKING PRINCIPLES
PROCESS QUEUES/STATES

PROCESS QUEUES

STATES

INTRODUCTION
Section 2

These are just what they sound like - an ordered arrangement of programs. They are kept in a
linked list, that is, each has a pointer to the next in line. When a process changes queues, the
process descriptor itself isn't moved, just the pointers are.

A process is always in one of three major queues (except for the current process):

Active - Normal running; gets its turn in varying amounts of the total processor time
according to its age, priority, and state.

Sleeping - A program has put itself to Sleep for a specified tick count, or until it gets a signal.
(As in waiting for its I/O turn)

Waiting - Special Sleep state that terminates on a signal or child’s death / F$Exit. Entered via
F$Wait.

The P$State byte in a process's descriptor has different bits set depending on what the program is
doing, where it is currently executing, and what external occurences have affected it.

A process has one or more of these state attributes:

SysState %1000 0000
TimSleep %0100 0000
TimOut %0010 0000

Suspend %0000 1000

Condem %0000 0010

Dead %0000 0001

Is using system resources, or is being started/aborted by the kernal.
Asleep: awaiting signal, sleep over.

Has used up its time slice. This is a temporary flag used by the
kernal.

Continues to age in active queue, but is passed over for execution.
Used in place of Sleep and Signal calls in someL-II drivers.

Has received a deadly signal, dies by a forced F$Exit call as
soon as it is no longer in a system state.

Is already unexecutable, as its data and program areas have been
relinquished by an F$Exit call. The process descriptor is kept so that
the death signal code may be passed to the parent on F$Wait.

The System State is a privileged mode, as the kernal doesn't make the process give up the next
time slice, but instead lets it run continuously until it leaves the system state.

1-2-2

INSIDE OS9 LEVEL I
INTRODUCTION
Section 2

The reason for this is that the process is servicing an interrupt, changing the amount of free
memory, or doing I/O to a device, and thus should be allowed to run until it is safe to change
programs, or it has released the device for other use.

It is because of the System State that interrupts are allowed almost always. Any driver interrupt
code acts as an "outside" program that temporarily takes over the CPU, but the current process is
not changed and will continue when the driver is finished taking care of the interrupt source.

MULTI-TASKING PRINCIPLES
110

If two or more processes want to do input/output/status operations on the same device, all except
the first will have to wait in line (queue). Under OS9, IOMan and the file managers are responsible
for this control.

Each open path has a path descriptor associated with it. This is a 64-byte packet of information
about the file. Because OS9 allows a path that has been opened to a file or device to be duplicated,
and used by another process, several programs may be talking about the same path (and path
descriptor). Provision must be made to queue an I/O attempt using the same path. (The most
common instance of this is with /TERM.)

Since all I/O calls pass through the system module IOMAN, the I/O manager, it checks a path
descriptor variable called PD.CPR to see if it is clear, or not in use. If it is in use, the process in
inserted in a queue to await it's turn.

Here the process descriptor plays a part. Two of its pointers are used here: PSIOQP (previous link)
, and P$SIOQN (next link). PSIOQP is set to the ID of the process just ahead of this one, and the
PSIOQN of the process ahead in ling is set to this one's ID, forming a chain (linked list) of process
ID pointers waiting to use this particular device.

When a process has made it through a manager to the point that the manager must do I/O through a
device driver, it checks a flag in the driver's static (permanent) storage called V.BUSY. If it is
clear, no one is using the device at that instant, and V.BUSY is set to the process's internal ID
number.

If V.BUSY is not clear (another process got there first and is waiting for it's call to finish), the
manager inserts the process in an 1/0O queue to wait its turn.

When the process (executing the file manager) is through with the device, it clears V.BUSY, and
all the processes waiting in line are woken up to try again. As far as I know, V.Busy only becomes
very important if a driver has put it's process to sleep, as otherwise the program would have
exclusive access while within a system call anyway.

Thus a process seeking use of a device and its driver must wait FIRST for the path to be clear, and
THEN for the device used by that particular path. If two processes are talking to two different
files, or have each opened their own paths and the file is considered shareable, they will only have
to wait in line for device use.

Again, it should be noted that once one process has started I/O operations, it has near-total use of
the CPU time, except of course for interrupt routines or if it goes to sleep in the driver or a queue.

1-2-3

INSIDE OS9 LEVEL 1l
INTRODUCTION
Section 2

MULTI-TASKING PRINCIPLES
SIGNALS

Signals are communication flags, as the name implies. Since processes operate isolated from each
other, signals provide an asynchronous method of inter-process flagging and control.

Commonly used signals include the Kill and the Wakeup codes. Wakeup is essential to let the next
process in an I/O queue get its turn in line at a path or device.

OS9 has a signal-sending call, F$Send, which sends a one byte signal to the process ID specified,
and causes the recipient to be inserted in the active process queue. Any signal other than Kill or
Wake is put in the P$Signal byte of its process descriptor.

If it was the Kill signal, the P$State byte in the process descriptor has the Condemned bit set to
alert the kernal to kill that process. A Wake signal clears the P$Signal byte, since just making the
destination an active process was enough.

Signals are not otherwise acted upon until the destination process returns to the User state. (It'd be
unwise to bury a process in the midst of using the floppy drives, for instance.) However, drivers
and the kernal may take note of any pending signals and alter their behavior accordingly.

When the kernal brings a process to the active state, the P$Signal byte in the descriptor is checked
for a non-zero value (Kill=0, but the Condemned bit was set instead, causing a rerouting to the
F$Exit 'good-bye' call as soon as the killed process enters a non-system state). The process is
given a chance to use the signal right off.

If the program has done a F$Icpt call to set a signal trap, a fake register stack is set up below the
process's real one, holding the signal, data area and trap vector: P$Signal, P$SigDat, P$SigVec.
The kernal then does its usual RTI to continue the program where it left off.

Instead, the program picks up at the signal vector where it usually stores the signal in the data area
for later checking when convenient (totally up to the programmer, though). The trap routine is
itself expected to end with a RTI, thus finally getting back to the normal flow of execution by
pulling the real registers that are next on the stack.

If the program has NOT done a F$Icpt call, the kernal drop-kicks it into F$Exit, the same as a Kill
signal does.

SIGNALS:
0 S$Kill Abort process (cannot be trapped)
1 SS$Wake Insert process in Active process queue
2 S$abort Keyboard abort (Break Key)
3 SSIntrpt Keyboard interrupt (Shift-Break)
4 SSWindow Window has changed
5-255 user defineable so far

1-2-4

0SS FORK

INSIDE OS9 LEVEL I
INTRODUCTION
Section 2

0S9 FORK

INITIATING A PROCESS

P$-- process descriptor

D.- Direct Page Variable

PS$User
P$Prior
PS$SAge
PS$State
D.Proc
PSDIO

PSPATH IOMAN

P$SWI 0S9
PSSWI2

PSSWI3

P$Signal
P$SigVec

P$EModul
P$PModul IOMAN
0S9

PSADDR
PSPagCnt

0s9p2

0s9
PSSP

D.Proc
PS$CID
P$SID
PSPID
P$State

PS$Queue

ACTION

Allocates a 64~byte process descriptor.
Copy parent's user index

and priority.
Age set to zero.
State of process is System State.
Current process desc is now this one.
Copies parent's default directory ptrs.

Called three times to I$Dup the first 3
paths of the parent (std in, out, error).
Make these 3 vectors = D.UsrSvc (0040).

Clear process's signal, signal vector.

F$Link to desired program module.
F$Load from xdir if not in memory.
Error end if not Program/System module.
F$Mem request to >= data area needed.

Copy parameters to top of new data area.
Set stack pointer to RTI stack registers.

Set up RTI stack with register values:

PC - module entry point
U - start of data area
Y - top of data area
X - parameters pointer
DP - start of data area
D - length of parameters passed

SP-> CC - interrupts okay, E flag for RTI

Put back parent as current process.

Get PARENT's other child, and

make it new proc's sibling link.
(PARENT's new PS$SCID = new P$ID)
Copy parent's ID to new proc desc.

State of new is no longer System State.
Return new child's ID to parent.
F$AProc - insert process in active queue.

1-2-5

INSIDE OS9 LEVEL I
INTRODUCTION

Section 2
0S89 I/0 0S89 1/0
OPENING A FILE/DEVICE
PD.- path descriptor vars V$—-—- device table
V.-- device static storage Q$-- IRQ poll table

P$-- process descriptor

VAR MOD ACTION

1 PD.PD IOMAN Allocates a 64-byte block path descriptor
PD.MOD Sets access mode desired.
PD.CNT Sets user cnt=1 for this path desc.

2 PD.DEV IOMAN Attaches the device (drive) used.
VSSTAT Allocates memory for device driver (CCDisk)
V.PORT Sets device address in driver static memory

3 V.xxxx DRVER The driver's init subroutine is called to
V. XXXX initialize the device and static memory.
If device uses IRQ's, uses F$SIRQ call:
4 QSPOLL 059 Sets up IRQ polling table entry.
(address, flip & mask bytes, service add,

QS$PRTY static storage, priority of IRQ)
5 VS$DRIV IOMAN Sets up rest of device table.
VSDESC (module addresses of desc, driver, mgr)
VSFMGR
VSUSRS Sets user count of device=1

6 PD.OPT IOMAN Copies device desc info to path desc.
e (default values: drive #, step rate,
PD.SAS sides, baud rate, lines/page, etc.)
Calls file managr Open subroutine:

7 PD.BUF FLMGR Allocates buffer for file use.

PD.DVT Copies device table entry for user.
PD.FST- Opens file for use, and sets up
PD.xxx file mgr pointers and variables.

8 PSPATH IOMAN Puts path desc # in proc desc 1/0 table.
Returns table pointer to user as path nmbr.

2,3,4,5 only if first time for that device,
else VSUSRS = VSUSRS + 1
PD.DEV = Device table entry
4 only if device uses IRQ's

1-2-6

INSIDE OS9 LEVEL Il
INTRODUCTION
Section 3

GIME DAT

The memory management abilities of the CoCo-3 are the source of it's ability to run Level-II. To
help explain what a DAT is, and it's usefulness, here's a text file I first posted on the OS9 Forum
on 5 August 86.

Q: What is the difference between the 512K boards that are sold now and the 512K CoCo-3?
LOGICAL vs PHYSICAL ADDRESSES ---

To understand the difference, you must first keep in mind that the 6809, having 16 address lines,
can only DIRECTLY access 64K of RAM. The only way for the CPU to use any extra memory is
to externally change the address going to the RAM.

The address coming from the CPU itself is called the Logical Address. The converted address
presented to the RAM is called the Physical Address.

For instance, the CPU could read a byte from $E003 in it's 64K Logical Address space, but
external hardware could translate the $E003 into, say, a Physical Address of $1B003, by looking
up the entry for the 4K block $E in a fast RAM table.

A coarser, but more familiar, example to CC owners is the $FFDF (64K RAM) '‘poke’. The SAM
chip can address 96K of Physical memory (64K RAM and 32K ROM). When that register was
written to, the SAM translated all accesses to memory in the Logical (CPU) range of $8000-$FEFF
to Physically point to the other 32K bank of RAM, instead of the ROM. A similar example is the
use of the Page Bit register, to translate Logical accesses to $0000-$7FFF into using the other
Physical 32K bank of RAM.

MEMORY MANAGEMENT ---

The hardware that does the actual translation between the Logical --> Physical addresses is called a
Memory Management Unit (MMU). In the case above, the SAM was the MMU. One common type
of hardware MMU is called a DAT, for Dynamic Address Translation. A DAT consists of a Task
Register and some fast look-up RAM. It's called Dynamic partly because the translation table is not "
fixed, but can be modified. I'll go into more detail on a DAT later.

THE COCO-2 BOARDS ---

The memory expansions sold for the CC2 are an extremely simple form of a DAT. Most only
allow the upper or lower 32K of Logical Addresses to access a different upper or lower 32K bank
of Physical Memory. Leaving out I/O addresses and ROM for the moment, their 64K modes
simplistically look like: (for 256K)

1-3-1

INSIDE OS9 LEVEL I
INTRODUCTION

Section 3
Logical (CPU) XXXX
Address:
SFFFF +-—m—- Fm——— o Fo————t
I I I I I
IU0 I Ul TU2 1IU3 I Upper 32K Banks
I I I I I
I I I I I example: CPU access of
$0100
$8000 +————- - e F———— + using Bank 2 = L2+$0100
I I I I I is RAM address $20100.
I I I I I
IL0O ILI IL2 IL3 I Lower 32K Banks
I I I I I
$0000 +——-—- Fom——— Fm——— t————- +

$O0XXXX 1XXXX 2XXXX 3XXXX Physical (RAM) Hex Address

The Physical memory that the CPU addressed is chosen from a combination of (L0 or L1 or L.2 or
L.3) AND (U0 or U1 or U2 or U3). Some boards would mostly only allow the selection of Banks
in number pairs (eg: L1+U1, L2+U2), or keeping LO constant, and varying the Upper (U0-U3).

The important point here is that you could not 'mix & match’ the Banks (Upper appear as Lower,
Lower as Upper, or say, map U2 from $0000-$7FFF and U3 as $8000-$FFFF).

To use data from one bank to another generally required the copying of that data. This is why most
applications of the extra memory were as RamDisks, or extra data storage, NOT as programs.
(Tho you could have four different copies of the Color Basic ROMS for example, or four different
0S89 '64K machines' running one at a time.)

THE COCO-3 DAT ---

To make the most economical use of the available RAM, and make the most use of reentrant (used
by more than one process at a time) and postion-independent (runnable at any address, possibly
using a different data area) programs or sections of data, the DAT has to be much more flexible
than the Bank switching schemes above.

For instance, in the example given of four copies of the Basic ROMS, what if you had not
modified the Extended Color ROM? You would have wasted 24K of RAM (3 banks x 8K) on
extra copies. (Actually, you wasted 32K, since it'd be even better just to keep the original ROM 'in
place'.) Or what if you really wanted one ROM copy and seven 32K RAM program spaces? Or
you need to temporarily map in 32K of video RAM? Or keep seven different variations of the Disk
ROM, which would all (at least on a CC2) need to made to appear at $C000 up?

And we haven't even discussed OS9 yet!

What have we figured out? We need both smaller translation 'blocks’ and a way of making those
physical blocks appear to the CPU at any logical block size boundary.

1-3-2

INSIDE OS9 LEVEL i
INTRODUCTION
Section 3

What size should a block be? So far, it seems that the smaller the better for a programmer or
operating system, because that could leave more 'free blocks' left over for other use. This will
become apparent later, in the Level-II discussion. Many Level-II machines use a 4K block. The

CoCo-3 uses an 8K block size. In most cases, this may not be restrictive, except perhaps on a base
128K machine.

And so we come to the CoCo DAT. Here's a simple diagram:

e + o —— +

I I I Task# I VIDEO ADDR

I CPU I Al13-Al5 RO-R2 I-—————-—-— I 1 (19 addrs)

I I--——-——- [e————— >I DAT I P13-P18 +——1-—-—-%+

I I (3 addrs) I RAM TI-——-——-—- /—-———>1 I

I I I I (6 data) I RAM I 512K

I I pmmm + I ADD I-->RAM

I I A0-A12 PO0-P12 I MUX I

I I--——-—- Y /====>1 I

Fe——— + (13 addrs) F—————— +
/2N GIME....''veevun. /

As shown, the DAT RAM would be 8 six-bit words x 2 tasks (explained below).

From left to right, the Logical Addresses from the CPU are translated into a extended Physical
Address to access the RAM.

The upper 3 CPU lines (A13-A15) are used to tell the DAT which 8K Logical Block is being used
(1 of 8 in a 64K map) and act as DAT RAM address (RO-R2) lines. At that Logical Block address
in the DAT is a 6-bit data word, which forms the extended Physical Address lines P13-P18. The

lower CPU address lines are passed thru as is to point within the 8K RAM block (out of the 512K
RAM) selected by P13-P18.

Note that 6 bits can form 64 block select words. Multiply 64 possible blocks by 8K per block, and
there's your 512K RAM. You may write any 6-bit value to each of the 8 DAT RAM locations, thus
choosing which of the 64 8K-blocks you wish to appear within the 8K address block the CPU
wishes to access. You could even write the same value several times, making the same 8K physical
RAM show up at different logical CPU addresses.

The Task number acts as the DAT R3 address line, and simply allows selection between 2 sets of
eight DAT RAM words. This makes it simpler to change between 64K maps. Normally, you can
software select the Task number.

AN ANALOGY ---

Okay, this has been rough on some of you, and my explanation may need some explaining <grin>
so a simpler analogy is in order:

Let's say you have a fancy new TV cabinet with 8 sets from bottom to top in it. You can watch all
8 at a time. (This makes you the CPU, and each screen is 8K of your logical 64K address space.)

1-3-3

INSIDE OS9 LEVEL Il
INTRODUCTION
Section 3

Ah, but each set also has 64 channels! So you can tune each set to ANY of the channels, or several
to the SAME channel. (Each channel is like one 8K block out of the 64 available to you in a 512K
machine.) When you tune in a program, you are said to have "mapped it in".

An analogy to the Task Register would be if each set had TWO channel selectors A and B, and you
had one switch to select whether ALL the sets used their A or B setting. This is generally called
"task switching". If you wanted to switch to a C,D, or E task, you'd have to get up and retune all 8

sets on their A or B selectors (all A or all B), possibly from a list (called a "DAT Image") you had
made from TV Guide.

Get it now? The CC2 512K expansions would then be like the same cabinet, only the top or
bottom four sets always tune together and only have 8 selector positions; the same eight channels
per same position. Which would you buy?

NOW | HAVE IT! --
BUT WHAT USE IS ALL THIS?

So far, we've seen that the 64- 8K blocks can be arranged any which way that you'd like to see
them, 8 at a time. As a quick example of what could be done, let's see how a text editor might
work. We'll assume the upper 32K is RSDOS always, and not to be touched, to keep this simple.

This leaves us with 32K, or four 8K blocks for our program and data (the text). In our example,
we'll make the editor code itself just under 24K long, which leaves us only 8K for text. So, here's

the map:

E000~FFFF logical block 7 hires cmds & I/0O
CO0O0O0~DFFF 6 disk basic
AQ00~BFFF 5 color basic
8000-9FFF 4 extended basic
6000~-7FFF 3 editor

4000-5FFF 2 editor

2000-3FFF 1 editor

0000-1FFF 0 text

(Note that this is kind of unrealistic, since you'd probably not want to have the text down in
RSDOS variable territory, but this is just an extremely simple example, okay?)

Okay, you type in 8K of text. Normally, that'd be all you could do, but remember that we can
make any Physical 8K Block map into any Logical 8K Block. So the editor, when it realizes that
it's buffer is almost full, could teil the GIME MMU to make a different RAM block (out of the 64,

minus those used by Basic for text, etc) appear to the CPU in our logical block 0 (from $0000-
$1FFF).

Even if Basic uses up 8 actual ‘RAM blocks for it's own use, and the editor uses 3, we still could
use (64-11) or 53x8K blocks. That's over 400K of text space! By swapping real (physical) RAM
into our 64K (logical) map like this, the only limitation on spreadsheets, editors, etc, is that the
programmer must respect the 8K block boundaries.

Hmmm... you say. I could even swap in different editor programs, if I had to, couldn't I? You
bet. Now you're starting to get an inkling of how Microware did Level-II.

1-3-4

INSIDE OS9 LEVEL Il
INTRODUCTION
Section 3

OK, WHAT ABOUT OS9 LEVEL-II?

L2 gives each process up to 64K to work with. It allocates blocks of memory (you got it - up to
eight 8K blocks!) for that process to use as program or data areas.

Having 512K of memory does NOT mean you could do a "basic09 #200k" command line. The
CPU can still only access 64K at a time, but the space not used by Basic09 (which itself is about
24K long) is usable for data. So about 64K minus 24K is about 40K, which is very big for a
Basic09 program.

Notice a gotcha here, though. If Basic09 was 25K long, then you'd have much less data area
possible. Why? Remember the 8K blocks! A 25K program would map in using four 8K blocks
(three wouldn't be enough), using up 32K of your 64K map. The same goes if you asked for 9K
of data space. You'd get two 8K blocks of RAM mapped in, taking up 16K of CPU space. Aha!
Now you understand why the smaller the block size the better.

Back to the good parts. Remember that most OS9 programs are reentrant and position-
independent. This means that no matter how many processes or terminal-users want to use a
certain program, only ONE copy needs to be in memory. (Check the difference: if you had 10
Basic09 programs running, each needing 30K of data space - they'd need only 24K for B09 +
10*30K, versus 10*(24K+30K), a 216K savings!) The Amiga's programs, for example, aren't
reentrant. It'd need 540K.

As far as making 200K virtual programs, there ARE ways of doing that. You could start other
processes (Forking), or map in different data modules. Even better, you can pre-Load modules,
and by Linking and Unlinking them, they will swap in and out of your 64K address space, a
technique much faster than using RamDisks. (A Loaded module is off in RAM somewhere, but not
in your map until Linked to.) This is what Basic09 does, by the way, so by writing a program that
calls lots of small subprograms, each would get swapped in automatically as you needed them.
Instant 400K basic!

TOO MUCH TO SAY ---

Well, there's about a zillion other things I wanted to put in here, like how the page at $FE00-
$FEFF is across all maps, to make moving data easier (some move code is there); or how each
Level-II process or block of programs has a DAT Image associated with it, that can be swapped
into the DAT RAM,; or that up to 64K is allocated to the System Task, where the Kernal and
Drivers and buffers are; or the neat tricks you could do using the DAT; or show you a possible
memory map using the DAT; or about how interrupts switch to the System Task.

(Some of this IS covered in this new collection - Kevin)

1-3-5

INSIDE OS9 LEVEL I
INTRODUCTION
Section 4

DAT IMAGES and TASKS

It may seem that we're spending a lot of space on the DAT, but it's very important to the whole of
L-II. So...

As you now know, the DAT in the CoCo-3 allows you to specify which of up to eight blocks will
appear in the 6809's logical address map when their numbers are stored and enabled in the GIME's
MMU or DAT.

Ideally, an MMU would have enough ram to handle the maps for any conceivable number of
programs, modules or movement. But ram that fast is expensive and uses lots of power. So a
compromise was made -- in the GIME's case, two sets of DAT registers. That is, two complete
64K maps can be stored and switched between at will.

You will surely need one map for the system plus another for a shell at least. So how does OS9

handle the needs of all the other programs you want to run? By swapping sets of block numbers
into the DAT as needed.

The set of block numbers is stored in a packet of information called a DAT Image. Because various
0S89 machines use different size blocks (2K, 4K, 8K, are most frequent) and have differing
amounts of memory blocks available, a DAT Image can vary in size even though a process
descriptor has 64 bytes available for one.

On the CoCo-3, it's 16 bytes long, made up of 8 two-byte entries. The first byte of each entry is
usually zero, while the second byte is the physical block number. The exception is when an entry
contains a special value of $333E, which is used to indicate that that logical block is unused as
memory for that map.

When expanding the amount of blocks allocated to a map, OS9 checks for the special $333E flag
bytes. That's how it knows where to place new blocks in the DAT Image.

DAT Images are created for several purposes. The one that affects you the most is the image stored
in a process descriptor. Whenever a process comes up in the queue for running, it's DAT image is
copied to one of the two sets of GIME task map registers. Then that set is enabled by setting the
task register select. Instantly the new logical map is the one seen by the CPU. When a process'
timeslice is up, it also gives up the use of the task number.

The task register number used for the process DAT image is usually the same number stored in the
P$Task byte in other L-II computers. On the CoCo-3 however, P$Task contains the number of a
virtual or fake DAT task map. There are 32 of these, which make it appear as though the GIME
had 32 sets of map registers.

If the images are already in the process descriptors, why have virtual tasks? Because it's simpler
for the system to look them up in a known table versus searching all over.

The first two virtual DAT tasks (0 and 1) are reserved for the system's use. The first is for the
usual kernel, drivers, descriptors, buffers. The second is for GrfDrv's screen and buffer access.

So on the CoCo-3, the task number refers to a table entry that points to the DAT Image to be used.
Except for special cases, the pointer is to the image within a process descriptor.

1-4-1

INSIDE OS9 LEVEL i
INTRODUCTION
Section 4

Another use for the images is in the module directory. Unlike Level One, where the entry could
simply contain the module's address within the 64K you had, Level Two entries point to a DAT
Image of the block or blocks containing the module and any others loaded with it.

While a module file is being loaded, OS9 temporarily allocates a process descriptor and a task
number for it. The file is then read into blocks of memory that F$Load has requested. Then the
descriptor & task are released, leaving the modules in a kind of "no-man's-land”, waiting to be
mapped into a program's space.

The visible residue of loading a file of modules is that the free memory count goes down, and any
new modules found are entered into the system map's module directory. Otherwise, they don't
directly affect a process map until linked into it.

Each Module Directory entry is made up of:

00-01 MD$SMPDAT - Module DAT Image Pointer
02-03 MD$MBSiz - Block size total

04-05 MD$MPtr - Module offset within Image
06-07 MD$Link - Module link count

A program such as Mdir can use these to display what it does about the modules in memory. First,
it gets the module directory using F$GModDr. Then by using the DATImage and offset associated
with an entry, Mdir F$Move's the header and name from the blocks where the module has been
loaded.

The Mdir example illustrates a third common usage of images, moving data into your program'’s
map for inspection.

Anytime you need to "see" memory external to your process (sorry, you can only legally read it; no
writes), you can create a DAT image of your own and use it with F$Move. OS9 will take the offset
and amount you pass, and copy that amount over to your map from the offset within the image you
made.

In the case of Mdir, the image was moved over by F$GModDr along with the module directory
entries. So there's no need to build an image in that case. Just use the MD$MPDAT pointer.

You may also in some cases request movement of data between maps using a reference to a Task
number instead. OS9 itself will internally index off the tasks' images for you.

Notice that throughout this section, the image is used over and over simply to allow the cpu to read
or write to extended memory.

In the next section, we'll see some examples of DAT Images and maps.

1-4-2

INSIDE OS9 LEVEL Il
INTRODUCTION
Section 5

LEVEL TWO IN MORE DETAIL

I will be using "L-1T" for Level Two, and "One" for Level One, so as to make differentiating the
names a little easier as you read. Other word definitions I use here are (loosely):

space - any 6809 logical 64K address area.

mapping, mapped in -causing blocks to appear in a space.

a map - a space containing mapped-in modules/RAM blocks.

system map - the 64K map containing the system code.

task - a particular map with a certain program and data area

task number - number of a particular task map.

DAT map - a task ready to use thru the hardware/software
enable of the task number's map.

task register - task number stored here to enable a DAT map.

user code - the programs/data you use (applications).

system code - the programs/data the system uses (file mgrs,
drivers, descriptors, and the kernal F$ & I$Calls,
IRQ handlers, and scheduling codes).

LEVEL TWO vs ONE: General

DAT -

SWi's -

The core of understanding L-II is in understanding the separation and handling of 8K blocks, and
their use in logical 64K spaces. And why.

Under One, you only had 64K of contiguous physical RAM in one 64K logical map. L-II uses the
DAT to map any physical 8K blocks of RAM containing program and data modules into a 64K
logical address map. When a program's turn to run comes up, the block map data (called a DAT
Image) for it's 64K space is copied to and/or enabled in the GIME's DAT.

L-II was designed to run most programs written for One, which is possible since system calls are
made using a software interrupt call, passing parameters (via cpu registers pushed on a memory
stack) that are pointed to by the 6809's SP register. This gives two advantages over Level One:

1: Virtually none of the system code has to reside in the 64K space containing the user's program
and data areas. The system map is switched in place of the caller's map.

2: OS/9 needs only to know the caller's SP and task number (both kept in the caller's process
descriptor in the system map) to access the parameters passed, or to move data between the two
maps.

(Note that a kernal could be written to do simply this on any CoCo that had the Banker or DSL.
Ram expansion, etc. But you'd lose the advantage of the smaller flexibly-mapped blocks provided
by the GIME's DAT.

The corollary advantage, and the "why" of L-1I, is that each user program can have almost an
entire 64K space to itself and it's data area, as can also the system code.

1-5-1

INSIDE OS9 LEVEL 1l
INTRODUCTION
Section 5

THE SYSTEM TASK MAP:

Up to 63.75K of kernel, bootfile (drivers, mgrs, etc).
I/O buffers.

Descriptors.

System vars & tables.

System calls and other interrupts temporarily "flip" the program flow into this task map. User
parameters and R/W data copied from/to system ram for drivers and file managers to act upon.

EACH USER TASK MAP:

Up to 63.5K total for each program and it's pgmdata area. Each task map made out of up to 8
module or pgmdata blocks (8K each) that are mapped in from the 64 (minus those used by the
system task or other user tasks) blocks available in a 512K machine.

THE SYSTEM MAP

Oddly enough, the system map is close to what you're used to under Level One. Memory is
allocated for buffers and descriptors in pages just as before. The main difference is that no user
programs (should) share space here, as they did under Level One.

You still have the Direct Page variables from $0000-00FF along with other system global memory
just above it up to $1FFF Towards the top (????-FEFF) we run into descriptors, buffers, polling

tables, and finally the I/O modules and the kernal. A CoCo-III Level Two System Map looks like
this:

0000-0FFF Normal L-II System Variables

1000-1FFF New CC3 global mem and CC3IO tables
2000-xxxx free ram

xxxx-DFFF Buffers, proc descs, bootfile
EO00-FDFF REL, Boot, 0S9

FEOO-FEFF Vector page {(top of 0S9pl)
FFO0O-FFFF I/0 and GIME registers

Some areas of special interest include the ...

Vector Page RAM:

This page of RAM is mapped across ALL 64K maps. This "map-global" RAM is necessary so that
no matter what other blocks are mapped in place of the system code, there is always a place for
interrupts (hardware or software) to go and execute the special code in OS9p1 that switches over to
the system task.

1-5-2

INSIDE OS9 LEVEL 1l
INTRODUCTION
Section 5

THE SYSTEM TASK MAP:

Up to 63.75K of kemel, bootfile (drivers, mgrs, etc).
I/O buffers.

Descriptors.

System vars & tables.

System calls and other interrupts temporarily "flip" the program flow into this task map. User
parameters and R/W data copied from/to system ram for drivers and file managers to act upon.

EACH USER TASK MAP:

Up to 63.5K total for each program and it's pgmdata area. Each task map made out of up to 8
module or pgmdata blocks (8K each) that are mapped in from the 64 (minus those used by the
system task or other user tasks) blocks available in a 512K machine.

THE SYSTEM MAP

Oddly enough, the system map is close to what you're used to under Level One. Memory is
allocated for buffers and descriptors in pages just as before. The main difference is that no user
programs (should) share space here, as they did under Level One.

You still have the Direct Page variables from $0000-00FF along with other system global memory
just above it up to $1FFF Towards the top (????-FEFF) we run into descriptors, buffers, polling
tables, and finally the I/O modules and the kernal. A CoCo-III Level Two System Map looks like
this:

0000~0FFF Normal L-II System Variables

1000-1FFF New CC3 global mem and CC3IO tables
2000-xxxx free ram

xxxx-DFFF Buffers, proc descs, bootfile
EOOO-FDFF REL, Boot, 0S9

FEOO-FEFF Vector page (top of 0S9pl)
FFO0O-FFFF I/0 and GIME registers

Some areas of special interest include the ...

Vector Page RAM:

This page of RAM is mapped across ALL 64K maps. This "map-global" RAM is necessary so that
no matter what other blocks are mapped in place of the system code, there is always a place for

interrupts (hardware or software) to go and execute the special code in OS9pl that switches over to
the system task.

1-5-2

INSIDE OS9 LEVEL |l
INTRODUCTION
Section 5

BlockMap:

In a 512K CoCo OS/9 has 64 RAM blocks of 8K each to choose from (8K x 64 = 512K). Each is
known by a number from 00-3F. The blockmap is a table of flags indicating the current status of
each of these blocks, which could be ...

FREE RAM = Ram blocks not in use as Module/ PgmData areas.
RAM IN USE = Ram blocks in use for either:

Modules - Blocks that contain program, subroutine, or data modules. MDIR will show these.
Before a module is used, it will have been loaded into free ram blocks. On link or run, those
blocks are then mapped into (made to appear in) any task's space. A data module mapped into
several maps can provide inter-task vars. Subroutine mods (like for RUNB) can be
linked/unlinked, in/out of a task map.

Data - Free ram that has been mapped into a task space for use as pgm data areas. Normally these
blocks are only mapped into one task space (unlike module blocks). These blocks will be released
to the free RAM pool when the program using them exits.

DAT Images:

Since each task map requires knowing which (of up to 8) blocks are to be mapped in for that
process (yes- system code execution is also a process), AND since OS/9 must know in which
blocks that program modules have been loaded into, OS/9 keeps individual tables or "images" of
those block numbers.

Each Image has 8 slots, two bytes each. A special block number, $333E, is used to designate an
unused logical block for that task.

Module Directory:

In Level One, the module directory simply had to point to the module's address. Under L-II, it
points to the DAT Image table showing the block(s) the module is physically in and it's beginning
offset within the DAT Image logical 64K map.

Process Descriptors:

A descriptor contains pretty much the same info as it did under L-One, but adds the DAT Image for
that process, which will be set into the DAT when it's turn to run comes up.

There is also a local process stack area, used while in the system state (executing system code after

a system call). This is because the process's real stack is of course in another map, and a local
stack is needed if the process were interrupted or went to sleep.

1-5-3

INSIDE OS9 LEVEL i
INTRODUCTION
Section 5

SYSTEM MEMORY ALLOCATION

As I said above, the system map is still allocated internally in pages. However, when you first boot
up, it usually will only have about 5 blocks mapped in. Something like:

Logical Physical
Address Block (s)
0000-1FFF 00
2000-7FFF

8000~DFFF 01,02,03
EO00-FEFF 3F

block 00 is always here

no ram needed here yet

this is your bootfile, first vars
block 3F always contains the kernal

The system process descriptor of course has the DAT Image that corresponds to this block map.

Any RAM left over in blocks allocated for loading the bootfile is taken by page for system use. For
instance, the device table normally is just below the bottom of the boot. :

Once you begin running several processes and opening files, the system must allocate more RAM
for descriptors and buffers. When all the pages that are free in the blocks already mapped in are
used up, OS89 maps in another block, which is then also sub-allocated by page.

Page allocation is still used because buffers, descriptors and tables usually are a page or two size,
just as under Level One. So it's still the best use of available memory.

USER MAPS
MODULE and DATA AREAS

Each user process has the use of a map made up of up to eight 8K blocks. However, it is seldom
that all eight are in use (certain basic09 and graphics programs excepted).

More likely, each task map will look like:

Logical Physical

Address Block (s)

0000~1FFF 27?2 - 8K data area

2000-DFFF - no ram needed here yet
EQOO-FEFF ?7? ~ block containing program

Again, the process descriptor DAT Image has a copy of the block numbers actually used (instead
of 77).

Unlike Level One, RAM for a user process is NOT allocated by page. There's no need to, for two
reasons. First, the data area is not shared with any other process.

Second, no memory can be used from any left over in the program block. Many people ask why
not? Hey, they say, since you can map a block anywhere, why can't some other program take
advantage of the unused RAM? The answer is basically that it would just take too many resources
to keep track of what module should stay because part of the block was being used for data.

1-5-4

INSIDE OS9 LEVEL I
INTRODUCTION
Section 5

Even more importantly, what if a program requested more memory while it was running? You'd be
stuck, as data areas must be contiguous and any modules within that block would be in the way.
One more reason: Level Two was designed to take advantage of modules in ROM. So there's no
way to assume that RAM is available in that block.

So, the upshot is that data areas are allocated from any free RAM blocks in the machine, and
always 8K at a time. Even if your program only needed two pages to run in, it still gets a block.
Now you can see that the smaller the block the better, as in this case having 4K blocks would leave
more free RAM for other programs to use.

Just like in Level One, programs end up at the highest logical address possible in a map, and data
areas at the bottom. For the same reason as in One, this is done to allow the data area to grow as
much as possible if needed.

One very important point to make at this time: since all modules that were loaded together are also
mapped into spaces together, it pays to keep module files close to an 8K boundary. More details on
this are in the MISC TIPS section at the end of the book

SWITCHING BETWEEN MAPS

Okay, now we come to the nitty-gritty of Level-Two. This is where we tie together all we've talked
about so far. But it's not tough, so don't worry.

Let's say that a program is running in it's own map, and wishes to use a system call for I/O. How
does the code get over to the system map where the drivers are?

An OS9 system call is simply a software interrupt. What that means is that what the program is
doing and where it's at is saved in the process' memory on a stack of variables.

Then, like all interrupts, program flow is redirected (by reading the CoCo's BASIC ROM,
specially mapped in just long enough to get the addresses) to the vector page at logical address
FEOQO which is at the top of all maps.

The code within that page is part of OS9p1 and it knows that it should change the GIME task
register select to task 0, which is always the system map. As soon as it does that, all the kernal, file
managers, drivers etc are accessible to the CPU, which will come down out of the vector page to
complete your system call. If needed, OS9 will go back to code located in the vector page where it
can map in your user task long enough to get and put data.

At the end of the call, the system code jumps back up into the vector page, maps your process'
DAT Image back into the GIME's task map 1, then enables task register 1 which allows your
program space to reappear to the CPU.

Then the saved registers are taken back off the stack in your map, and your program continues.
If you want to, you can think of Level Two as really giving your program 128K of RAM, as the
net effect compared to Level One is just that... under One, your program had to share space with

the drivers and kernal, and any system calls stayed within the same old 64K map. Under Two,
your program jumps between 64K maps when you make a system call.

1-5-5

INSIDE OS9 LEVEL i
INTRODUCTION
Section 5

One side note: because of the manipulation of the GIME's MMU and the necessity of copying
much data between maps, L-1I is normally slower than Level One. However, the CoCo-3 makes
up for this as it runs at twice the speed of our older CoCo's.

EXAMPLE MAPS

Here are some example process, module and memory maps generated by the programs I've
included in the back of this book. Study them and you can see the relationship between what is
reported by each utility. They should help give you a better feel as to what's going on in your
machine.

EXAMPLE ONE:

I'had two shells running, and of course the particular utility that was printing out at the time.

ID Prnt User Pty Age St Sig .. Module Std in/out
2 1 0 128 129 80 0 00 Shell <TERM >TERM
3 2 0 128 129 80 0 00 Shell <W7 >W7
4 3 0 128 128 80 0 00 Proc <W7 >D1

Below's my PMAP output. The numbers across the top (01 23 etc) are short forms of (0000-
1FFF, 2000-3FFF) addresses in each task's logical map. Notice that there are indeed eight 8K
block places in each map, but only those blocks that are needed are mapped in (and are in the DAT
Image of that process, which by the way, is where the map information is gotten by PMAP).

ID 01 23 45 67 89 AB CD EF Program
1 00 04 01 02 03 3F SYSTEM
2 05 06 .. Shell
3 07 06 .. Shell
4 OA «. .. «. .. 08 PMap

Now, notice that in the SYSTEM map is Block 00 = system global variables, Block 3F = kernal,
Blocks 01,02,03 = bootfile, and Block 04 plus probably part of 01, = system data and tables.

In the shell and pmap lines, we see that Blocks 05,07,0A are being used for data. Block 06 must

contain the Shell, and Block 08 must contain Pmap. We can confirm all this by looking at the
module directory output below and comparing block numbers:

1-5-6

INSIDE OS9 LEVEL i
INTRODUCTION
Section 5

Module Directory at 00:03:51
Blk Ofst Size Ty Rv At Uc Name

3F D06 12A Cl 1 r 00 REL - the kernal

3F E30 1D0 Cl1 1 r 01 Boot

3F 1000 ED9 CO 8 r 00 0S9pl

01 300 CAE CO 2 r 01 0S9p2 - boot modules
01 FAE 2ECO 1 r 01 Init

01 6947 1EE C1l 1 r 02 Clock

01 6B35 1AE 11 1 01 CC3Go

06 0 5rC 11 1 03 Shell - the Shell file
06 5FC 2E7 11 1 r 00 Copy

06 1E10 2D 11 1 r 00 Unlink

08 0 28E 11 1 r 01 Proc - my cmds file
08 435 1B1 11 1 r 00 MMap

08 5E6 1F8 11 1 r 00 PMap

08 7DE 1D5 11 1 r 00 SMap

08 9B3 136 11 1 r 00 DMem

08 AEY9 240 11 1 r 00 Dump

09 0 IFFC C1 1 r 01 GrfDrv - grfdrv is alone

Using my MMAP command, we can see below how many blocks are left for the OS9 system to
use. Take notice of the block 3E being allocated... that's the video display ram block.

RAM for video is allocated from higher numbered blocks, since there is a better chance of finding
contiguous RAM that way. Normally, blocks don't have to be together for OS9 to use them, but
the GIME requires that screen memory be that way for display.

o1

N

3 6 78 9ABCDETF

[{I-N

MUMMU 7 <--blocks 00-0A

5
U u U

=
(e}

U U <--3E, 3F

w N = O W

Number of Free Blocks: 51
Ram Free in KBytes: 408
EXAMPLE TWO

This real example I ran off the other day. I had five shells, all of which had started another process

(by me typing it in).

ID Prnt User Pty Age St Sig .. Module Std in/out
2 1 0 128 129 80 0 00 Shell <TERM >TERM
3 2 0 128 130 80 0 00 Shell <W7 >W7
4 3 0 128 129 80 0 00 Shell <W4 >W4
5 4 0 128 129 80 0 00 pix <W4 >W4
6 2 0 128 129 80 0 00 pix <TERM >TERM
7 3 0 128 129 80 0 00 Shell <W5 >W5
8 7 0 128 128 80 0 00 pix <W5 >W5
9 3 0 128 129 80 0 00 Shell <W6 >Wé

10 3 o] 128 128 80 0 00 Proc <W7 >D1

11 9 0 128 129 CO 0 GO Ball <We6 >Wé

INSIDE OS9 LEVEL Il
INTRODUCTION
Section 5

Note the high block numbers in most of the programs. Each window was showing an Atari ST
picture in it, and process #11 had Steve Bjork's bouncing ball demo running.

True windows that use GrfInt and Grfdrv are NOT mapped into a program's space. But this was
special, as I was running many VDGInt screens, which usually ARE mapped in (on purpose) so
that the programs could directly access the video display.

Notice also that my System task had fully been allocated by block. The SMAP later shows what
part of them was free.

Db 01 23 45 67 89 AB CD EF Program
1 00 31 11 04 01 02 03 3F SYSTEM
2 05 06 .. Shell ~see note below
3 07 «. v .+ 06 .. Shell
4 09 06 .. Shell
5 OE 3A 3B 3C 3D OD pix
6 OF 36 37 38 39 0D pix
7 10 +o <. .. 06 .. Shell
8 12 32 33 34 35 OD pix
9 13 06 .. Shell

10 18 19 PMap

11 14 16 17 31 15 Ball

The other point to note is that the Tandy-provided shell file (block 06) goes over the block size-512
byte limit, and thus cannot be mapped into the top block slot, because it would fall on top of the
vector page and /O area from FEQO-FFFF.

Here's the MMAP output. Lots of video ram allocated, huh?

== === === === === =
0 UUUUUUMUMUMMMMUTU
1 UUUUUMUUUM
2
3 UUUUUUUUUUUUUUU

Number of Free Blocks: 23
Ram Free in KBytes: 184

1-5-8

INSIDE OS9 LEVEL I
INTRODUCTION
Section 5

And just to show how close I was to a real limit, here's the SMAP utility output. It shows in pages
how much memory is left in the system task map. The 32x16 old-style VDG text screens and all

the process descriptors (two pages each!), plus a page for each window's SCF input buffer made
things rather tight.

g = = = = = = = = = = = = = = = =
0 UUUUUUDUUUUDUUUDUUU
1 UU0UUU0UUUUVUUUDUUUODUUU
2 UUUUUUUUUUUUUUUU
3 U 0UUUUVUUUUUUUDUULUUTU
4

5 __UUUU_UUUUOUUUU
6 UUU0UUUUUUUUUUUUUDU
7 UUULUULUUUUUULUUUUU
8 UUUUUUUUUDUUVLUUULUDU
9 UUUUUUDUUUUUVDUUUUDU
A UU0DUUUGUUUUUUUUUUDU
B U UU0UUUUUUUUUUUUUDU
C UUUUULUDUUUUDUUUUDUU
D U UUUUUUUUUUVLUDUUVUDU
E U 0DUuUGuUUUUUUVBTUUDUDUUUU
F Uovuvuuvuuvuvuuouvuuovuuovuouugy
Number of Free Pages: 19

Ram Free in KBytes: 4

1-5-9

INSIDE OS9 LEVEL II

The System

L-l PROCESS

00 P$ID
01 PSPID
02 P$SID
03 P$CID
04-05 PSSP
06 P$Task
07 PS$PagCnt
08-09 PSUser
0A PS$Prior
0B P$Age
(1] P$State
0D~0E PS$Queue
OF P$SIOQP
10 PSIOQN
11-12 P$PModul
13-14 PS$SWI
15-16 PS$SWI2
17-18 PS$SSWI3
19 P$Signal
1A-1B P$sigVec
1C-1D P$Sigbhat
1E P$DheadLk
20-2F PS$SDIO
30-3F P$Path
40-7F PSDATImg
80-9F P$Links
AQ0-AB
AC

rmb $200-.
P$Stack
P$Size

INSIDE OS9 LEVEL Il

The System
Section 1

DESCRIPTOR VARIABLES

Process ID
Parent's 1ID
Sibling's ID
Child's 1D

The family proc id numbers.
Stack Pointer storage

SP position within Process map
Task Number

Virtual DAT task number
Data Memory Page Count
User Index
Priority
Age

The age always begins at Priority.
Status

System, Image Changed, Dead, etc.
Queue Link (next process desc ptr)

For active, waiting, sleeping procs.
Previous I/0 Queue Link (Proc ID)
Next I/0 Queue Link (Proc ID)

Path or driver queues.
Primary Module pointer

Offset within proc map to program.
SWI Entry Point
SWI2 Entry Point
SWI3 Entry Point

May be changed
Signal Code
Signal Intercept
Signal Intercept

Signal storage

to point to proc map.

Vector
Data Address (U)
and user-defined vector.
Dominant proc ID for locked I/0
Default I/0 ptrs (chd, chx)
Drive table and LSN entries.
I/0 Path Table (real path numbers)
User path numbers 0-F index here to the
actual path descriptor number involved.
DAT Image (only 16 used in CoCo-3)

The block map of this 64K process space.
Block Link counts (for user map) (8 used)
To keep track of map-internal links.

Network variables?
Path number (0,1,2) for selected window

Local stack

equ 512 Top of Stack

equ 512 Size of Process Descriptor

2-1-1

INSIDE OS9 LEVEL I

The System
Section 1

There are three main differences between a L-I and Level Two process descriptor. The L-1I
additions are:

. DAT Image - so OS9 knows what to map in for the process.

. Link Chnts - so an unlink won't unmap blocks with other
still-linked-into-this-map modules.

. Stack area- used while in the system state.

The link counts apply to that process map only, and are counts of block links, not individual
modules. Say you had a merged module file loaded with Runb, Syscall and Inkey all together
taking up two blocks. The first logical block number of the whole group will have a link count of
one.

Then perhaps your program calls Inkey. Inkey is found in your map already, and the first block
number link count is incremented in the process descriptor. The module directory link count is
incremented also.

Now Inkey finishes and is unlinked. The link count is decremented in the module directory and
could easily now be zero. But you don't want Runb and Syscall to go away, too! And they won't

because the process map block link now only goes down to one again, and so both blocks mapped
will stay mapped.

The stack area is needed when an interrupt (software or hardware) occurs. The initial register save
will be within the process' stack area. Then OS9 flips over to the system map, where, in case this
process' time is up and it's whole state must be saved, OS9 begins using the process descriptor
stack area instead.

In a way, the process descriptor stack is an extension of the process data area into the system map.

Under L-1, of course, there was no need for this, as everyone's stack was available at all times.

L-Il Direct Page Variable Map $00XX

* Names are standard L-II. Defs with no name are new CC3 vars.

20-21 D.Tasks Task Proc User Table

Points to 32 byte task# map.
22-23 D.TmpDAT Temporary DAT Image stack

Used to point to images used in moves.
24-25 D.Init INIT Module ptr

Points to the Init module.

26-27 D.Poll Interrupt Polling Routine
Vector to IOMan sub to find IRQ sources.
28 D.Time System Time Variables:
28 D.Year Year
29 D.Month Month
2A D.Day Day
2B D.Hour Hour
2C D.Min Minute
2D D.Sec Seconds

INSIDE OS9 LEVEL 1

The System
Section 1

2E D.Tick Tick countdown for slice

60 Hz IRQ count. (60 ticks = 1 second)
2F D.Slice Current slice remaining

Ticks left for current process normal run.
30 D.TSlice Ticks per Slice constant

Set to 6 = 1/10 second per process slice
32 D.MotOn Drive Motor time out
36-37 Boot start address
38-39 Boot length

New variables for use by os9gen & cobbler.

40-41 D.BlkMap Memory Block Map

Points to 64 byte physical block flag array.
44-45 D.ModDir Module Directory

Points to the 8 byte dir entries start.
48-49 D.PrcDBT Process Descriptor Block Table

Points to 256 byte array of msb addresses.
4A-4B D.SysPrc System Process Descriptor

Points to proc desc used while in SysState.
4C-4D D.SysDAT System DAT Image

Points to the image within D.SysPrc desc.
4E~-4F D.SysMem System Mem Map

Points to 256 byte page table for systm map.
50-51 D.Proc Current Process Desc

Points to the proc desc in use now.
52-53 D.AProcQ Active Process Queue

First proc desc link of procs ready to run.
54-55 D.WProcQ Waiting Process Queue

First proc desc link of procs that F$Wait'd.
56-57 D.SProcQ Sleeping Process Queue

First proc desc link of procs sleeping.
58-59 D.ModEnd Module Directory end

5A-5B D.ModDAT Module Directory DAT image end

6B-6C "Boot Failed™ REL vector
Vector to display of this message.
71-17C CoCo reset code

55 NOP NOP B7 FF DF 7E FOOE
80-81 D.DevTbl 1I/0 Device Table

Points to array of 9-byte device entries.
82-83 D.PolTbl 1I/0 Polling Table

Points to array of 9-byte IRQ poll entries.
88-89 D.PthDBT Path Descriptor Block Table ptr

Points to base 256-byte path descs table.
8A D.DMAReq DMA Request flag (MPI slot use)

Set= MPI slot has been changed. CC3Disk flag.

90 GIME register copies:

91 Init Reg $FF91 shadow for tasks
92 IRQEN SFF92 shadow IRQ enables
93-9F other GIME shadows

A0 Speed flag (1=2Mhz)

Al-A2 Task DAT Image Ptrs Table ptr

Pointer to 32 image pointers for task #'s.

2-1-3

A3
a4
AS5-A6

A7-A8

A9-AA
AB-AC
AD-AE
AF

BO0-B1

B2-B3

co-C1
Cc2-C3
C4-C5
Cc6-C7
Cc8-C9
CA-~CB
CC-CD
CE-CF
DO

EO-E1
E2-E3
E4-E5
E6-E7
E8-E9
EA-EB
EC-ED

F2-F3
F4-F5
F6-F7
F8-F9
FA-FB
FC-FD

D.SysSvc
D.SysDis
D.SysIRQ
D.UsrSvc
D.UsrDis
D.UsrIRQ
D.SysStk
D.SvcIRQ
D.SysTsk

D.Clock
D.XSWI3
D.XSWI2
D.XFIRQ
D.XIRQ
D.XSWI
D.XNMI

D.SWI3
D.SWI2
D.FIRQ
D.IRQ
D.SWI
D.NMI

INSIDE OS9 LEVEL i

The System
Section 1

0=128K, 1=512K temp flag
FF91 Task Reg Bit (which system state task)
Global CC3IO memory
Pointer to $1000: global mem.
Grfdrv SP storage
Pointer to end of global mem. sysmap 1 stack.
Grfdrv ->kernal return vector
Kernal ->grfdrv second sysmap
Clock SvcIRQ vector for VIRQ
GIME IRQ bits status
Set bit = unpolled interrupt as yet.
VIRQ table
Pointer to the Virtual Interrupt table.
CC310 Keybd IRQ vector
Vector to keyboard scan sub... used by Clock.
System Service Routine entry
System Service Dispatch Table
Sys State IRQ Routine entry
User Service Routine entry
User Service Dispatch Table
User State IRQ Routine entry
System stack
In-System IRQ service
System Task number

Secondary Vectors:

Primary Interrupt Vectors:
(most point to their D.X form above)

OTHER SYSTEM RAM USAGE

(from above pointers- for info only)

0100-011F D.Tasks
0120-015F 00A1-AZ2
0200-023F D.BlkMap
0300-03FF D.SysDis
0400-04FF D.UsrDis
05060-05FF D.PrcDBT
0600-07FF D.SysPrc
0800-08FF D.SysStk
0900-09FF D.SysMem
0A00-OFFF D.ModDir
1000-1FFF

Task table

Virtual dat tasks ptr
Block usage map
($80=notram, $0l1l=in use,
Sys call dispatch table
User call dispatch table
Proc Desc ptrs table
System proc desc

(0900) system stack space
System page ram map ($01=in use)
Module DATImages

+$02=module)

Global cc3io mem, alarm & system use

2-1-4

SAMPLE SYSTEM

INSIDE OS9 LEVEL 1l

The System
Section 1

LOW MEMORY DUMP (00000-00FFF)

01234567

e Dl ST S N R B
A001000000000000
0000000000000000
010000008FAE967E
0601000000008300
020002400A001000
6D00760000007800
0000000000000000
55550074127FFFDF
8100825F00000000
6C00080009000000
0101200100100020
82E6B98400000000
F3160300FE12F27E
0000000000000000
FCD2F274F316F000
0000F271F271F271

01234567

s Tt Tt S URR SR
0101010000000000
0000000000000000
064011876D406D40
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

012345¢67
O et ot T S RS
0101010101010301
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

8 9ABCDETF

+=+-+-+=t-+-+—-+-
0000000000000000
00000000FFFF0000
0000000006233904
69E3000000000000
0500060006400900
OBF80E8600000000
0000007FFF917EED
TEED5F0000000000
8000000000000000
0315000000F80000
OOFE69FE7DESD500
0000000000000000
0400FD370900E9D5
0000000000000000
FE12F287F0000000
E971F271AD9B0000

8 9ABCDETF
R s ot T S
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

8 9ABCDETF
=ttt ettt
0303010000000000
0000000000000000
0000000000000000
0000000000000101
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

2-1-5

System Direct Page
Variables

Task Numbers Use Table

Virtual Dat: pointers
to task # DAT Images

The ones here are:

task 0 (0640)= system
task 1 (1187)= grfdrv

task 2 (6D40)= dump

Block

80
02
01
03

Map (64 bytes)
not ram
contains module
ram in use

module, ram-in-use

"Mfree"™ would check
this map using
F$GB1lkMp call.

0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03A0
03BO
03C0
03D0
03E0
03F0

0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
04A0
04B0O
04C0
04D0
04EOQ
04F0

0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
05a0
05B0
05C0
05D0
05E0
05F0

INSIDE OS9 LEVEL 1l

012345¢67

e s T et S
F39397278439852F
894089F68A040000
F72EF7C38BEF8B24
8C4ABC638CTEBCAS
000096BF96A00000
F820F89795FC9945
8D738DF4F3689062
FB23F967F9BA8BE46
FC66FC77FCALFCCl
FAF6FB12FB1C85DE
S8EAE8EEBSF13F99C
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

012345¢67

Bt et ot S
F39396FA8439852F
894089F68A040000
F72EF7B88BE28B17
8C4A8C638CT7TE8SCAS8
000096BF95A00000
0000000000000000
00000000F3680000
0000F96700000000
0000000000000000
0000000000000000
S8EAES8EEB00000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

012345¢67

ottt b=t =t
060678766D000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
00006000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

The System
Section 1

8 9ABCDETF
ot e et S S S

863486AE884488DF System Dispatch Table

8AC18AA58ACDI8FD
8B98EADBSAESF636
8CAO08DO3EAA40000
000000000000EA60
FDOFFD86F4548D50
F386F8FAF8208E24
FA86FA3FFA25FC56
FAA60000FABD000O
9530F38BF6799D74
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
00000000000090DE

8 9ABCDETF
fmt—tmtmp—t—t—t—
863486AE884488DF
8AC18AAS58ACDY8FD
8BB8BEADBSAEBF636
8CAO8DO3EAA40000
000000000000ERG0
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000008E74
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
00000000000090D9

8 9ABCDETF
s Tt ot St B
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

2-1-6

(SWI2)

(IScall vector)

User Dispatch Table

(SWI2)

Notice that many
calls are not
available to the
user.

(IScall vector)

Process Descriptors
Base Table (PrcDBT)

Here: 0600 - n/a
0600 - id 1
7800 - id 2
7600 - id 3
6D00 ~ id 4

INSIDE OS9 LEVEL 1l

012345¢617

et et s SN SR
0100000200000000
0000000000000000
8100000000028100
0101010000000000
0000333E333E0004
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

O+ O

1234567
Bt ak S SRS SR
000000000000000

003F004000410042

o+ O

12345¢67

e T S e S
000000000000000
10FEFEF400026D00

012345¢67

e T e
0101010101010101
0101010101010101
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101

The System
Section 1

8 9ABCDETF
Fet—t—t—t—t—t—t—
0000FFFFAQ0000000
0000000000000000
0000007500000000
0000000000000000
000100020003003F
0000000000000000
0000000000000000
0000000000000000
0052000000000001
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

8 9ABCDETF
e s et S
000000000000000

@
w0
>
tw
Q
o
=
ol

totmtmt bttt
0101010101010101
0101010101010101
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010101
0101010101010180

2-1-7

The System (id 1)

Process Descriptor

- DAT Images

- and it's stack area

System Stack Page

System 64K Page Map

Each byte =
01 = in use
00 = free
80 = not ram

(top page is I/0)

one page

INSIDE OS9 LEVEL Il

012345¢67

sk S ST S S
OFF41EDY90D060000
OFF41ED910000000
OEF66CE30FAE0001
OEF66CE319CF0014
OEF66CE330510008
OEF66CE330B10000
OEF66CE336C40004
OEF66CE34FDF0001
0EF66CE35D610000
OEF66CE35DE60000
OEF66CE35E6C0000
OEF66CE35EF20000

0000000000000009
0000000000000009
0000000000000006
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000001

00000000003F0000

The System

Section 1

8 9ABCDETF
L e Tk S DN S
OFF41EDS0OE300001
0OEF66CE303000001
OEF66CE30FDC0001
OEF66CE32BFD0014
OEF66CE33081000C
OEF66CE330E10004
OEF66CE342FA0001
0EF66CE35D1C0002
OEF66CE35DA30000
OEF66CE35E290000
OEF66CE35EAF0000
OEF66CE35F350002

0000000800000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
00020003003F0000

0000000000000000

2-1-8

Module Directory

Each entry is 8 bytes
and contains:
DAT Image Ptr - 2

Block Size - 2
Offset to Mod - 2
Link Count -2
"Mdir" gets this table

using F$GModDr call.

and towards the end
is the temporary
DATImage stack.

- end system vars.

Begin CC3 global mem

INSIDE OS9 LEVEL II

The System
Section 2

0S9 SYSTEM CALLS

The OS9 system service calls, a SWI2 opcode followed by the call number, are the only
recommended means to utilize memory, I/O and program control. A process inherits the SWI
vectors from its parent, but may change them by the F$SSWI call.

Most of the calls are handled by the OS9 or OS9P2 modules. Any I/O call is vectored to IOMAN,

which does its own internal table look-up. Another exception is the get-time call, which is dealt
with by the Clock module.

There are two tables that contain the call vectors. The first table is from $00300-003FF, and is the
table for calls made while in the system state. The user call table is at $00400-004FF.

To be in the system state, a program must currently be executing code within a system, manager,
or driver module. This mainly occurs because of a system call. In other words, once a SWI call is
made, all calls made within that call are vectored by the system table.

There are three main reasons for having a system mode. First, if a program is aborted while doing
I/O (system mode), the program must be allowed to release I/O resources for other programs to
use. Second, path numbers used while in the system mode are the actual path desc block number,
and so must be distinguished from a process's path table pointer. And third, since new SWI and

IRQ vectors are set on entry to the system mode, time is saved by bypassing this set-system-mode
sub.

When a SWI2 call is made, the registers are placed on the current process's stack, and the stack
pointer is saved in the process descriptor for easy access by the system modules. This way, the
modules can use all the registers (except the SP) with impunity, and they all know where to get
parameters passed and where to return values. Each module may do a fair amount of SWI2 calls
itself. Under Level One, that meant that you needed to keep a large stack area for your program.

That's not so important under Level Two, as the system or process descriptor stack is used mostly
instead.

The calls from $28-$33 are regarded as privileged calls, since they have resource allocation powers

that would be dangerous if used by a passing (non-system) program module. They may only be
used while in the system state.

SWI2 SERVICE REQUEST 0S9

USER SWIZ2 SYS SWI2

1 1
State=sys 1
DP = 0 bP = 0
U=SP, store PSSP U = SPp
Table=user (D.UsrDis) Table=sys (D.SysDis)

1 1
BSR Docall BSR Docall
State=user 1

1 1

END END

2-2-1

INSIDE OS9 LEVEL I

The System
Section 2

Docall Subroutine 0s9

Get PC off IRQ stack
Get next byte (call)
Inc stack PC past call byte
1
(I/0 call >=$80 ?) n=—————————————o >.
ly 1
Vector at table-2 (I/0) (Call >= $37?) y———==—=—m >.
1 1n 1
1 Get call vector 1
1 (vector=0?) y-———————- >1
1

JSR the call vector 'Illegal SvC'
1
.<--n (C set for err?)
1 ly
1 Return Reg.B=err code in B

Return lower 4 bits of CC
1
END SUB

I/0 Vector I/0 SERVICE CALL IOMAN

USER SYS
1 1
Table=CBCS8 Table=CBEA

(call>$90?) y-—————m——————m >'Illegal svC!
1n
Get call vector
JMP to vector (Hidden RTS to 0S9 Docall above)

2-2-2

[SR W PR PR S S SR T

INSIDE OS9 LEVEL I

The System
Section 2

SWI 01 FSLOAD

IOMAN

Alloc temp proc desc
Totram=0, Totmod=0

Set proc prty=caller's
Open EXEC. path to file
FS$Al1Tsk, D.Proc=temp

Call ReadMod header

[Yl e el

D.

(MSID 87CD okay?) n

F$VModul into moddir err

1

ly

Call ReadMod rest

1

1

(known module?) n---->update

1y TotMod
1<—- —— -1

Set FoundMod flag

Proc=caller proc

Close EXEC. path
Check TotRam-TotMod
Release blocks unused
Dealloc temp proc desc

(FoundMod flag set?) n-->return err

ly

Return ptr to first module

1
END

o b e e b b e

Subroutine ReadMod

IOMAN

.<=--n

o R e b

sub
1
ModSiz=ModSiz+request
(ModSiz >TotRam?)
ly
Calc # of blocks needed
Find free blocks and set=$01

Set into temp proc desc datimg

TotRam=TotRam+new blocks
F$SetTsk: update datimg

Read in header/module
1
RTS

2-2-3

INSIDE OS9 LEVEL |

The System
Section 2

Verify Module

Call CRC check
F$FModul in ModDir
.<-n (find same name?)

1 1
1 (revision higher on new?) n---> E$KnwMdl
1 ly
1= >1
Set ModImg

MPDAT,MPtr,MDLink=0
MBSiz=up to and including module

1
.<-n (module in another block?)
1 1y
1 Free other entry
lee————— >1
Mark BlkMap with "ModBlock™
1
END
SWI 02 FSUNLINK 0S9pP2
Calc proc desc datimg block #
(does BlkMap show module?) n---—>okay end
ly

Decrement P$Link cnt
Search ModDir

(same MDSMPtr?) n---—-—- >
ly
(same block #?) n--—-—- >
ly
MDS$Link cnt-1
.<-n (link cnt=07?)
1 ly
1 Do IODEL if needed
1 Call ClearDir sub
1

Decrement P$Link cnt
.<-n (link cnt=07?)

1 ly
1 Mark P$Datimg blocks as free
lee————— >1

END

2-2-4

INSIDE OS9 LEVEL I

The System
Section 2
Subroutine ClearDir 0Ss9P2
sub
1
Get dir entry block #
Check BlkMap flag ——-—=——- >end if already clear
Pt to ModDir
1<~ - .
.<-n (blk=this entry?) 1
1 ly 1
1 End if MD$Link<>0 1
l1-————- >1 1
Next ModDir entry 1
(last entry?) n---—-- >1
ly
Free BlkMap flags
CLear DatImg
Clear ModDir entry
1
RTS
SWI 03 FS$FORK 0s9pP2

FSAllPrc desc
Copy parent's P$User,Prior,DIO
I$Dup std 0,1,2 paths
Call MakeProc
F$Al11Tsk for child
F$Move parameters to child map
F$Move register stack from proc desc to map
F$DelTsk of child
Return child id to caller
Set PSCID of parent, PPID, PSSID of child
Clear SysState of child
F$AProc: activate child
1
END

Subroutine MakeProc 0S9P2

sub
1
F$SLink to module -ok~-->.
lok 1
F$Load module 1

(Prgrm/Systm+Objct?) n----- > err
ly

Set P$PModul

F$SMem for new D.Proc

Set new register stack in proc desc
1
rts

2-2-5

INSIDE OS9 LEVEL i

The System
Section 2
SWI 4B FS$AllPrc 0Ss9p2
Check D.PrcDBT table for free entry
F$SrgMem 512 byte proc desc
Set D.PrcDBT entry
1
Set PS$SID in proc desc
Clear PS$SDATImg
State = SysState
1
END
SWI 3F FSALLTSK 0S9P1
Quick End if has P$Task
Call ResTsk
Call SetTsk
1
END
SWI 42 FSRESTSK 0s9P1
Point to D.Tasks table
Skip first two (reserved for systm)
Find free entry, mark it used
Return entry number as task
1
END
SWI 43 FSRELTSK 0os9rPl
Point to D.Tasks table
Clear task entry
unless is SysTsk
1
END
SWI 41 F$SSETTSK 0S9P1

Clear ImgChg flag in P$State

Get PS$Task

Copy P$DATImg's to task map
1

END

subroutine Check Task

PS$State has ImgChg flag set? n-->rts
ly
Call SetTsk
1
rts

2-2-6

INSIDE OS9 LEVEL I

The System
Section 2
SWI 04 FSWAIT 0S9P2
(children?) n~==——-——ave—- > 'No Children' error
ly
(any dead yet?) y———————————mmmm—mm >.
1n 1
Return Regs.A=0 Regs.D= ID/code
Stop IRQ's Fix sibling links
Place proc at front of W.Queue Dealloc. child desc
Make a fake RTI stack 1
F$Nproc:start next process END
1
1

<F$Exit of child wakes parent>
<Regs.D has child ID/code>
1
Get real SP
1
END

SWI 08 F$SEND 0S9P2

(dest ID=0?) y————-- >Send signal to all!
1n
Send to ID only
1
END

<-=>
1
Stop IRQ's
1
.——n (code=abort?)
ly
Make proc condemned state

Store signal
Wake up proc
Signal=0 if signal=l
Insert proc in A.Queue
1
END of SUB

2-2-7

INSIDE OS9 LEVEL i

The System
Section 2

SWI 06 FSEXIT 0S9pP2

P$Signal = Regs.B
Close all I/0 paths
Return data memory
Unlink primary module

1
Point to our last child
B 1
1
1 B ettt .
1 1 1
1 .<-n (is it dead?) 1 Return proc desc's of all
1 1 ly 1 dead (F$Exit'd) children.
1 1 Dealloc proc desc 1
1 lremee- >1 1
1 Zero parent ID 1 Live kids are now orphans.
1 Point to sibling 1
1 1 1
1 >1 1
(any children?) y-->1
1n
1
(we have parent?) y-----—--— >. If we are orphan ourselves
1n 1 we exit quickly.
Dealloc our proc desc 1
K ———— 1 1
1 1 If parent hasn't F$Waited,
1 1 we are marked as Dead for
1 1 parent's Wait or Exit.
1 1
1 1
1 ittt n (parent waiting?)
1 1 ly
1 Mark us as Take parent out of W.Queue
1 Dead F$Activate parent
1 1 Put ID/code in parent's Regs.D
1 1 Fix sibling links
1 1 Dealloc child proc desc
1 1 1
1l >lemm e >1
1
D.Proc = 0000
1
END

2-2-8

INSIDE OS9 LEVEL I

The System
Section 2
SWI 00 FSLINK 0S9P1
Type=Reg.A
Name ptr=Reg.X
Find module dir entry -err—-----—— >$DD error
1
.<--y (reentrant?)
1 1n
1 (link cnt=07?) n-—==—-——-—- >$D1 error
1 ly
l-—— >1
1
Inc link cnt
Return type/lang/hdr/entry
1
END
SWI 0C F$ID 0S9P2
Get ID from Proc Desc
Get User from Proc Desc
1
Return ID in Reg.A
Return User in Reg.Y
1
END
SWI 0D FS$SPRIOR 0S9p2
ID# = Reg.A
Find Proc Desc for ID -err—-—---- >'Not Found'
1
(same index?) n-—————————————- >'Not Yours'
ly
New proc priority=Reg.B
1
END
SWI OE F$SWI 0S9P2
Point to Proc Desc's SWI table
Type= Reg.A
(type>3?) y————=—====———= >'Illegal SWI Code'
1n
New vector=Reg.X
1
END
SWI OF FSPERR IOMAN

Get Error Path (#2) from Proc Desc table
Convert Reg.B code to ASCII number
Print 'ERROR #'
Print err number
1
END

2-2-9

INSIDE OS9 LEVEL I

The System
Section 2
SWI 15 FSTIME CLOCK
Destination=Reg.X
FSMove D.Time to dest
1
END
SWI 16 F$SETIME 0s9pr1
Source=Reg.X
Move source to D.Time
F$Link to 'Clock’
1
(error?) y---——-———-———- >'Unknown Module'
1n
Jmp to Clock init (after this, Clock usually sets it's
1 own F$Setime call - see below)
(END)
System Module Init CLOCK

Set constants/vars
Insert Clock vector at D.IRQ
F$SSVC new Time call

1

END

2-2-10

INSIDE 0S9 LEVEL I
The System
Section 3

2% T T A O 0 T S £ i N e £ 4 96 2T 5 % X 2 50 NN 0 T2 2 I 2 5T 27 233 0 6 M A M 53 6 O N O SR S 0 S 2 I S O G) e A e 6

SWI 2A F$IRQ IOMAN

2 2 T T T T TR T X TR R I SR TR O B £ S I SR e SR N M AT MR XX 35 2 O T O KR AG N IR 2 NI I T 9 OF £3 03 I e B I IR I X N AT M R am

Get packet values
Get max # IRQ entries from INIT
Point to poll table (<$62)

1
.<--y (Reg.X=07?)
1 1n
1 (mask=0?) y---<—mw=== >error
1 in
1 Search for empty
1 1
1 (no empties?) y-=-—-=-— >'Poll Table Full!'
1 1
1 Sort by priority
1 Insert new entry
1 1
1 END
1
le—e———- >, * KILL ENTRY *
1
Find entry by data address At INIT Module+$0C
Delete it is max # entries.
Move rest up in table
1
END

POLLING TABLE ENTRY FORM:

00-01 Address of status port
02 Flip byte

03 Mask byte

04-05 IRQ service address
06-07 Storage memory address

08 Priority (0-low,255-high)
System Module IRQ Polling Routine IOMAN

Point to polling table
Get max # entries from INIT
) —_— >

Point to next entry
(end of table?) y---- -
1n 1
1<~—=~ ——— 1
Get status byte '‘Table Full Errxr'
Flip and Mask Return error
<--n (found it?)
ly
Do service routine
(error?)
1n
END

s TS sr S s T CSr EE S S S S N RS NSRS EEES SIS ST R RS S e

_——.

b b e

e

=
A
i
|
<

2-3-1

INSIDE 0S9 LEVEL Ii

The System
Section 3

E e e o e it ot e e e o]

SWI 80/81

F$link~-device desc
(get header, device address)
F$link--device driver
(get driver entry address)
F$link--file manager
(get mgr entry address)
1
Get max # of entries (INIT)
Get device table add (<$60)
1

ISATTACH/DETACH

Ty T b L R e T]

err

-->(entry empty?) y

1
<--n (any user?)
ly
Insert in I/0 queue

Save entry ptr
1<

S L o e e

(same desc?) .
(mem alloc'd?) y---~-~-- >

T T SR =

1

{(same port add?) n----=---=----~

1
Save user cnt

Point to next entry
<--n (last?)
ly

e el e A ™

(entry found?) y--------—--=--=

1n
Find empty spot
(error?) y--->'Table Full!
1
.<=-y (mem alloc‘'d?)
1 in
1 Allocate drvr mem & clear
1 Set V.Port add in mem
1 Do driver init sub

(Check desc/drvr modes)
1
(user cnt=0?)

(same driver?) R
(user cnt=07?) y-emmms s

I Tl o SR SRR

[S L ol e T

1 (device shareable?) n---------=--- >

Increment user cnt

Return table entry in Regs.U
1
END

2-3-2

IOMAN

I$DETACH
1

Dec user cnt

Unlink desc

Unlink driver

Unlink mgr

1
END

DEVICE TABLE ENTRY:
0 - Driver mod
2 - Static mem
4 - Desc mod
6 - File mgr mod
8 -~ User count

'Illegal Mode'

'Device Busy'

INSIDE 0S9 LEVEL 1l

The System
Section 3
SWI 83 15DUP IOMAN

Get free path # from Proc Desc err---->'Path Table Full'
Find path desc of old path err~--->'Unknown Path’
Increment path desc image cnt

Return new Proc path ptr in Regs.B

ey e P = == == -~

SWI 83/84 ISCREATE/OPEN IOMAN

e mEsrsErEsSS SRS ST EER =

Get free path # from Proc Desc
1
Get requested mode
Allocate path desc
Do File Manager Create/Open
1
Put path desc # in Proc path table
Return Proc path number in Regs.A

Y Y b b L T Lt PoE et == Smsmms=== =

SWI 8F ISCLOSE IOMAN

—rsosro—mrosS=SCsoESTTos=S=Sao===mi&= m== Feey

Get Proc path ptr for A=path#
Zero that path ptr in Proc Desc
Find path desc
Decrement # of open images
1
.<-~y (current proc ID?)
1n
Update I/0 queue
Save caller's stack in PD.REGS
Do File Manager Close
1
Wake up proc's in pd.links
1
(proc.ID=path.ID?) n--->.
ly 1
Clear path.ID 1

IR N T SR S SV SR SR

(open images=0?) n---->.
1y 1
ISDETACH device 1
Kill path desc 1
1

oo e e T o T ST S T OT 5 N AT T S e SN S N 0T 5 T S0 o T3 U5 0 R K O e R MR I AR

2-3-3

INSIDE 0S9 LEVEL Nl

The System
Section 3
SWI 86 I$SCHGDIR IOMAN
Save SWI code for later use
Allocate temp path desc
1
Do File Manager Chgdir sub (RBFman finds dir desc LSN &
1 dr# and puts in Proc Desc)
R L R >.
1 1
data dir exec dir
1 1

(dec user cnt in device table for old dir's device)
{inc user cnt in device table for new dir's device)
(set new device table entry into Proc Desc)
1
Point to device table entry for this temp path
ISDetach drive
F$Dealloc64 - kill this temp path desc
1
END

PROCESS DESCRIPTOR DEFAULT DIR ENTRIES:

data exec from
20-21 25-26 Device table entry ptr (IOMAN)
22 27 Drive number (not used) (RBFman)
23-24 28-29 Dir file desc LSN (RBFman)
SWI 89 ISREAD IOMAN
Find path desc
1
(read attr?) n-----~---—--c--- > 'No Permission®
ly
l<~rwmr e
.<--n (path desc in use?) 1
1 ly 1
1 Place in I/0 Queue 1
1 wakeup —-—==————o———o- >1
1
l-—==--- >.
1

Do File Manager Read sub
Wake up others in I/0 Queue
Clear path user if still us (PD.CPR)

e

2-3-4

INSIDE 0S9 LEVEL 1

The System
Section 3

Subroutine IOMAN

e e T et

ALLOCATE PATH DESCRIPTOR (Open, Create)

Get pd's base (D.PthDBT)
Allocate 64 byte block
Set user cnt=1, mode=mode requested
1
Point to pathname
Skip blanks
1
.-~y (lst char='/'?) If *'/', it's full pathname;
1n Else use default dirs for this
1 process descriptor.
dir type?

data dir exec dir
(get device tble entry from Proc Desc)
1
(entry=07?) y-—----~-----roo—mm e >
1n
Point to device desc name
1

[I = I S SN S S SR S

Parse name of device
(error?) YT e e e e e — e e >
1n
1
Attach device
Save table ptr in path desc
1
(attach err?) y~—=—-—rmcr—me e >
in
1
Get device desc init size ‘Bad Pathname'
Move up to 32 bytes to path desc Deallocate pd block
1 1
END Error End

I el i

2-3-5

INSIDE 0S9 LEVEL Il

The System
Section 4

IRQ HANDLING
I have included this general text for the hackers out there.

Technical notes on the flow of hardware interrupt handling in OS9 L-I CoCo ver 1.X or 2.0, and
OS9 L-II Gimix ver 2.0 or CoCo 1.X.

The 6809 has three hardware interrupt lines, NMI, FIRQ, and IRQ. This doc concentrates on the
IRQ, which is the one used by OS9 for it's clock and I/O device polling routines.

I'll cover the various paths OS9 may take when it receives an IRQ, which don the current level,

revision & system state. Note that because I only touch on IRQ-related code, other variables are
involved.

IRQ'S - CLOCKS and DEVICES

There are two main source catagories of IRQ's: clock and device. They're both vectored to the

same handler at their start, but branch differently. (CoCo OS-9 adds the VIRQ and FIRQ), but they
end up being treated as an IRQ.)

The timesharing type has to do with updating the D.Time variables and calling the kernal's
D.Clock process-switching algorithm. It comes from a regular timed interrupt source, such as the
60Hz Vertical Sync on the CoCo, or a clock chip or timer on other systems.

The other type is from a device asking for service. Usually that device's driver has entered an
F$IRQ request, so that the OS will know where to vector, after the polling routine has found that
IRQ source device.

BASIC INTERRUPT HANDLING

All 6809 machines fetch their cpu interrupt vectors from a ROM that can be read at logical
addresses FFFX. The IRQ vector is at FFF8-F9.

Level-l CoCo 1/2

The ROM in these computers vectored to 010C, which contains a BRA to 0121, which does a JMP
[D.IRQ].

level-l Coco 3

The new ROM vectors IRQs to FEF7, where it does a LBRA to 010C, maintaining compatability
with 1.X or 2.0 OS-9. See CoCo 1/2 above. L-1I of course needs the FEXX page pseudo-vectors
so that there is always IRQ handling code across all task maps.

2-4-1

INSIDE 0S9 LEVEL II

The System
Section 4

Level-ll Task Switching

In Level-II, interrupts are ROM-vectored to the code at the top of OS9p1. This code lies within the
page that is mapped across all task maps (on some systems, an interrupt causes a hardware reset of
the task register to the system map instead, so a user has the full 64K available). In either case, the
task register is set to the SysTask, the Direct Page register is set to zero, and then- JMP [D.IRQ]
D.IRQ defaults to the IntXfr (interrupt transfer) code in OS9p2, which does what boils down to a
JMP [D.XIRQ]. This is changed by the Clock module.

0S-9 VECTOR INITIALIZATION

TRANSFER

When 0S9 first cranks up, it sets the following:

D.UsrIRQ - kernal user-irqg routine
D.SysIRQ - " system "
both of which will and up JSR'ing [D.Poll]
D.SvcIRQ - has D.SysIRQ in it
D.IRQ - kernal JMP [D.SvcIRQ]
D.Poll - kernal COMB, RTS

This means that initially all IRQ's go thru the kernal to [D.SvcIRQ] back to the kernal's own
Sys/UsrIRQ code, which then calls [D.Poll] to find the source. As the kernal does not do polling,
and IOMan isn't initialized yet, D.Poll returns an error. The Sys/UsrIRQ code then shuts off IRQ's
by setting the CC bits as a precaution.

TO SYSTEM STATE - Level-l or 1l

Whether a program is in the user or system state when an interrupt occurs affects what D.SvcIRQ
contains.

If in user state, it contains the vector constant copied from D.UsrIRQ. The routine in OS9p1 at that

address saves the task's SP, sets SWI vectors to use system vectors, and copies D.SysIRQ into
D.SvcIRQ.

The OS9p1 routine at [D.SysIRQ] does not save or set up anything as you are already in the
system state. This helps speed interrupt handling.

IOMAN INIT

When the first I$Call is made, the kernal links to and initializes IOMAN (I/O MANager). Ioman
inserts a vector to itself in D.Poll. From then on, IRQ's still go thru the kernal [D.SvcIRQ] to the
Sys/UsrIRQ code, but their call to

[D.Poll] is now honored by ioman, which does the source searching (polling).

Also on the init call, ioman sets up several tables. These are the device table [D.DevTbl], polling
table [D.PolTbl], and on the CoCo the VIRQ (virtual irq) table [D.CltTab].

These tables will be used by ioman for keeping track of active devices, inserting and deleting
F$IRQ entries, and by ioman's D.Poll routine in finding the source of an IRQ.

242

INSIDE 0S9 LEVEL 1

The System
Section 4

CLOCK INIT and OPERATION

'We must include Clock modules here because they are important in the IRQ heirachy. A side note:
some clock modules keep their device address in the M$Size (data size) portion of their module
header.

Clock modules keep track of the real time. Interrupts usually are vectored almost directly to them,
and they decide for themselves if a clock IRQ was involved. In effect, a special device driver IRQ
routine.

They are not in a polling table because a) the clock must be serviced quickly, and b) they may jump
directly or thru another module to the kernal's timesharing routine (D.Clock) and so cannot be
called as a subroutine such as device IRQ handlers are.

When the first F$STime call is made (best from SysGo), OS9p! links to any module called
"Clock", and JSR's to it's entry point. There the Clock module inserts itself into the system D.IRQ
vector, so that it gets called first.

After that, IRQ's come to Clock, who checks to see if it's timer was the source. If so, it updates
the time variables as needed, and jumps via D.Clock to the kernal (L-II jumps via D.XIRQ to the
kernal).

If the timer or clock chip was NOT the IRQ source, then Clock jumps [D.SvcIRQ] so that OS9 can
check for the correct device.

Exception #1: on the CoCo L-I ver 1.X, the IRQ's go first to CCIO (so it could time the disk
motors), then to Clock via [D.AItIRQ], then Clock continued by [D.Clock].

Exception #2: on the CoCo L-I ver 2.0, Clock jumps via [D.AItIRQ] to the CCIO keyboard scan.
CCIO finishes the jump to [D.Clock].

IOMAN IRQ POLL SYNOPSIS

As we know now, when the Clock's D.IRQ code finds that an IRQ has occurred from other than
it's IRQ, the IOMan D.Poll vector is eventually called.

IOMan looks thru the Polling Table, which has been presorted by device priority. Each Q$POLL
address is read, XOR'd with the Q$FLIP byte, AND'd with the Q$MASK byte, and if is not=$00
after all that, the Q$SERY routine in the driver for that device is called to service and clear that
IRQ.

If the driver service code finds that a mistake has been made in it's selection, it can set the C bit,
and IOMan will continue the search thru the table. See D.SvcIRQ above.

2-4-3

INSIDE 0S9 LEVEL |l
The System
Section 4

IRQ FLOWCHARTS

CoCo Level I

IRQ
1
ROM: jmp [D.IRQ]
(was it clockirqg?) y--—=-=———-———-—w-—- >update time
nl 1
jmp {D.SvcIRQ] jmp [D.AltIRQ]
(D.UsrIRQ)-~~-- or —-—--- (D.SysIRQ) scan keyboard
1 1 jmp [D.Clock]
D.SvcIRQ = D.SysIRQ jsr [D.Poll) update ticks
jsr {D.Poll] R y (ticks>0 or SysState?)
1 rci nl
1 1
B D bt bttt 1

choose next proc
D.SvcIRQ = D.UsrIRQ

rti
b.Poll
scan devices, do driver irq sub
rts
Level II
IRQ
1
ROM: jmp to allmap page (XFEXX)
TaskReqg = SysTask
jmp [D.IRQ): {old L-II): {(CoCo L-II):
(was it clockirq?) y--=-=~--=---—- >update time - - - - ->update time
nl 1 1
D.SvcIRQ = D.Poll D.SvcIRQ = D.Clock D.SvcIRQ = D.Virq
1<~ - - - ~l<- = = = = - - - - - 1
jmp [D.XIRQ]:
(D.USrIRQ) ~~~~~ oy -—------ (D.SysIRQ)
1 1
SP = D,SysStk jsr [D.SvcIRQ]
D.XIRQ=D.SysIRQ rti
jsr ([D.SvcIRQ]
1
(slice up?) n------—-—- .
ly 1
choose proc to run 1
l¢mmmmmm e 1
D.XIRQ = D.UsrIRQ D.Virq:
switch task to user update Virqg table
rti call D.Poll if Virg
jsr [D.KbdIRQ] scan
D.Poll: D.Clock: check & do alarm sig
find source, driver IRQ sub update ticks jmp [D.Clock]
rts rts (rts)

2-4-4

INSIDE 0S9 LEVEL i

The System
Section 4

NOTES:

All code is OS9p1, except D.IRQ/D.Virg-->Clock, and D.Poll-->IOMan.
In most cases, IRQ's (and FIRQ's) are not reenabled until the RTIL

The L-II D.Clock is a subroutine, but the L-I D.Clock both updates the ticks, and then falls
through to the timeshare routine.

Notice that if an interrupt occurs while in , other processes get achance to run if the current process
is out of time.

GENERAL NOTES:
virqs end up as irgs

Just after the end of the 0S9pl module are the offsets to the following
default code within it:

.Clock routine

.SWI3 (these are D.X... in Level-II)

.SWI2

.FIRQ

.IRQ

.SWI

. NMI

'IRQ-RELATED DP.VARS and SYSTEM TABLES

OO0 oouogo

The following are the Direct Page ($00XX) variables that have to do with interrupt processing, and
their addresses on the CoCo and GIMIX machines. Each contains a two-byte vector to the code
within a System module that handles it, or point to a table.

Your system may vary, so check your OS9Defs file, if you don't own one of those computers.
Addresses are included simply to give a rock to cling to.

NAME L-I L-II

D.Init 2A-2B 24-25 Init Module pointer
D.DevTbl 60~-61 80-81 I1/0 Device Table pointer
D.PolTbl 62-63 82-83 I/O Polling Table pointer

D.FIRQ 30-31 F6-F7 FIRQ handler

D.IRQ 32-33 F8-F9 IRQ

D .NMI 36-37 FC-FD NMI

D.SvcIRQ 38-39 CE-CF IRQ vector set by Clock depending on IRQ type
D.Poll 3A-3B 26-27 Source device polling routine

D.A1tIRQ 6B-6C Alternate IRQ hook

D.Clock 81-82 EO-El Kernal timeshare routine

D.C1Tb 86~87 BO-Bl VIRQ device entry table ptr

D.KbdIRQ B2-B3 Keyboard scan

D.XIRQ E8-E9 Secondary IRQ vector set to D.UsrIRQ or D.SysIRQ

2-4-5

INSIDE 0S9 LEVEL Ii

The System
Section 4

Then there are the Direct Page variables that contain initialized vector constants,
that interrupts may be handled differently depending upon the OS state:

D.UsrIRQ 3C-3D CA-CB User state D.SvcIRQ vector
D.SysIRQ 3E-3F C4-C5 System state D.SvcIRQ vector

IOMAN TABLES === == oo e e e

The size of these tables is calculated from the DEVCNT and POLCNT entries in the
system INIT module.

DEVICE TABLE ENTRIES

VSDRIV 00-01 Driver module addrss
VSSTAT 02-03 Device static storage
VSDESC 04-05 Device Descriptor
VSFMGR 06-07 File Manager

V$USRS 08 Device User Count
DevSiz equ .

POLLING TABLE ENTRIES

Q$POLL 00-01 Polling address (device status byte address)
QSFLIP 02 Flip byte for negative logic IRQ bits
QSMASK 03 Mask byte for IRQ status bit

Q$SERV 04-05 Driver IRQ service routine

Q$STAT 06-07 Device static memory pointer

QS$SPRTY 08 Device polling priority (position in table)
PolSiz equ .

2-4-6

80

INSIDE OS9 LEVEL I

Devices

INSIDE 0S9 LEVEL 1I

Devices
Section 1

0S9 1/0 0S89 I/0
RBFMAN FILE

PD.- path descriptor vars V$-- device table
V.-- device static storage Q0$-- IRQ poll table
DD.~ drive tables (LSN 0) P$-- process descriptor

Opening a disk (RBF) file takes the following steps:

VAR MOD ACTION

1 PD.PD IOMAN Allocates a 64-byte block path descriptor.
PD.MOD Sets access mode desired.
PD.CNT Sets user cnt=1 for this path desc.

2 PD.DEV IOMAN Attaches the device {(drive) used.
V$STAT Allocates memory for device driver (CCDisk).
V.PORT Sets device address in driver static memory.

3 V.NDRV CCDISK The driver's init subroutine is called to

V.TRAK initialize the device, and static memory
DD.TOT (drive tables) to default values.
4 Q$POLL 0s9 Sets up IRQ polling table entry.
e (address, flip & mask bytes, service add,
QS$PRTY static storage, priority of IRQ)

S VSDRIV IOMAN Sets up rest of device table.

VS$DESC (module addresses of desc, driver, mgr)
V$FMGR
V$USRS Sets user count of device=1

6 PD.OPT IOMAN Copies device desc info to path desc.
... - (drive #, step rate, density, tracks,
PD.SAS sides, interleave, seg alloc size)

7 PD.BUF RBFMN Allocates buffer for file use.

PD.DVT Copies device table entry for user.
PD.DTB Calc's drive table add for quick ref'rnce.
DD.TOT CCDISK Copies LSN O init info to drive table.

. (diskette's format, root dir, ID, attr's,
DD.RES number of tracks, sectors, bitmap size)

PD.DSK RBFMN Gets disk ID and finds the file:

PD.DFD LSN of directory file desc

PD.DCP Entry # of pathname in directory file
PD.FD LSN of pathname's file desc

PD.CP Current file pos

PD.SIZE File size

PD.SBL Offset from beginning of file segment
PD.SBP LSN of file segment

PD.SSZ Segment size in sectors

PD.ATT File attributes (DSEWR)

8 PSPATH IOMAN Puts path desc # in proc desc I/0 table.
Returns table pointer to user as path number.

3-1-1

INSIDE 0S9 LEVEL 1l

Devices
Section 1
DEVICE DRIVER ENTRIES RBFMAN
INIT U =device static memory CC,B <error code

Y =device descriptor
. Set V.NDRV to number drives controller handles
Set DD.TOT to non-zero value so RBFman can read LSN 0
. Set V.TRAK to high number if driver controls serk op code
* Use F$Irqg to place driver IRQ service routine in poll table
Init controller
* Copy V.BUSY to V.WAKE, FS$Sleep 0, check V.WAKE=0

READ U =device static memory CC,B <error code
Y =path descriptor
B,X =LSN

Get PD.BUF Dbuffer address from path descriptor

Get PD.DRV drive number from path descriptor

Send LSN converted to track and sector to controller
* Copy V.BUSY to V.WAKE, F$Sleep 0, check V.WAKE=0

Read the data into the buffer if not a DMA controller

If LSN O, copy DD.SIZ bytes into drive table

WRITE U =device static memory CC,B <error code
Y =path descriptor
B, X =LSN

Get PD.BUF buffer address from path descriptor

Get PD.DRV drive number from path descriptor

Send LSN converted to track and sector to controller
. Write the data into the buffer if not a DMA controller
* Copy V.BUSY to V.WAKE, F$Sleep 0, check V.WAKE=0

GETSTT U =device static memory CC,B <error code
PUTSTT Y =path descriptor
A =status call

* Wait for any I/0 to complete
* Disable any device IRQ's
* Remove device from IRQ polling table

* IRQ Service Routine

Kill IRQ request if necessary
Send wakeup signal to V.Wake
Clear V.Wake

Clear Carry bit

RTS

3-1-2

INSIDE 0S9 LEVEL I

Devices
Section 1

DEVICE VARIABLES Static Memory RBFMAN
Name Offset Description
V.PAGE 00 Port extended address
V.PORT 01-02 Device address
V.LPRC 03 Last active process ID (not used
V.BUSY 04 Active process ID (dev busy flag) O=not busy
V.WAKE 05 Process ID to awake after command completed
V.USER . Beginning of file mgr/driver var's
V.NDRV 06 Number drives controller can handle
07-0E Reserved
DRVBEG . Beginning of drive tables

(One table for each drive, up to V.NDRV)

This section of each table copied from LSN 0 of disk. Dr#0
DD.TOT 00-02 Number of sectors OF-11
DD.TKS 03 Number of tracks 12
DD.MAP 04-05 Number bytes in allocation map 13-14
DD.BIT 06-07 Sectors/bit in map (sectors/cluster) 15-16
DD.DIR 08-0A LSN of root directory 17-19
DD .OWN 0B-0C Owner's user number 1A-1B
DD.ATT 0D Disk attr (D S PE PW PR E W R) 1C
DD.DSK OE-OF Disk ID 1D-1E
DD.FMT 10 Disk format 1F
DD.SPT 11-12 Sectors/track 20-21
DD.RES 13-14 Reserved 22-23
DD.SIZ . Size of bytes tc copy from LSN O .
V.TRAK 15-16 Current track 24-25
V.BMB 17 Bit map in use flag 26
V.FileHd 18-19 Open file list 27-28
V.DiskID 1A-1B Disk ID 29-2A
V.BMapsz 1C Bitmap size in sectors 2B
V.MapSct 1D Lowest reasonable bitmap sector 2C
V.ResBit 1E Reserved bit map sector 2D

1F-25 Reserved 2E~34
DRVMEM . Drive table size

{other drive tables follow)

Drive table address =
Also found in PD.DVTB

DRVBEG + (PD.DRV * DRVMEM)

INSIDE 0S9 LEVEL I

Devices
Section 1

mEmome==

===

RBFMAN

Module DEVICE DESCRIPTOR

Name Offset Description

M$ID 00-01 Sync bytes ($87CD)

M$Size 02-03 Module size

M$Name 04-05 Offset from start to module name string

M$Type 06 Type/lang ($F1)

MS$Revs 07 Attr/revision

M$Parity 08 Header parity

M$FMgr 09~0A File manager name offset

M$PDev OB-0C Driver name offset

M$Mode oD Device capabilitlies

MS$Port 0E~-10 Device extended address

M$Opt 11 Number of options in initialization table

IT.DTP 12 Device type (1=RBF)

IT.DRV 13 Drive number (0...n)

IT.STP 14 Step rate: 0- 30 ms
1- 20 ms
2- 12 ms
3- 6 ms

IT.TYP 15 Device type: bit0- 0=5 1/4 1=8 inch
bit5- O=noncoco l=coco
bit6- O0=os9std 1l=nonstd
bit7- O=floppy 1l=hard

IT.DNS 16 Density: bit0- O=single 1=double
bitl- 0=48 tpi 1=96 tpi

IT.CYL 17-18 Cylinders (tracks)

IT.SID 19 Sides

IT.VFY 1A 0= verify disk writes

IT.SCT 1B-1C Sectors/track

IT.TOS 1D-1E Sectors/track (track 0)

IT.ILV 1F Sector interleave

IT.SAS 20 Minimum #sectors/segment alloc

. End of option table.
21~ Name strings here.

3-1-4

INSIDE 0S9 LEVEL Ii

Devices
Section 1
PATH DESCRIPTOR PD.Variables RBFMAN
Name Of fset Description*h
PD.PD 00 Path number
PD.MOD 01 Access mode l=read 2=write 3=update
PD.CNT 02 Number of paths using this path desc
PD.DEV 03-04 Device table entry address
PD.CPR 05 Current Proc ID using this path for I/0
PD.RGS 06-07 Address of user's register stack
PD.BUF 08-09 Data buffer (256 bytes) address for RBF/drvr
PD.SMF OA Buffer state: see below
PD.CP OB-0OE Current file position
PD.SIZ OF-12 File size
PD.SBL 13-15 File beginning segment number (FSN)
PD.SBP l6-18 Actual segment beginning LSN
PD.Ss2 19-1B Segment size in sectors
PD.DSK 1C~-1D Disk 1ID
PD.DTB 1E-1F Drive table address for this drive~h

PD.OPT 20 Device class 0=SCF 1=RBF 2=PIPE

PD.DRV 21 Drive number O0-n

PD.STP 22 Step rate

PD.TYP 23 Device type 5,8,hard

PD.DNS 24 Disk density

PD.CYL 25-26 Number of tracks (cylinders)

PD.SID 27 Number of sides

PD.VFY 28 Verify flag 0=do verify on write

PD.SCT 29-2A Sectors/track

PD.TOS 2B-2C Sectors/track (track 0)

PD.ILV 2D Sector interleave

PD.SAS 2E Segment allocation size in sectors”“h
PD.TFM 2F DMA transfer mode

PD.Exten 30-31 Path extension (not used)

PD.SToff 32 Sector/track offset

PD.ATT 33 File attributes (D S PE PW PR E W R)
PD.FD 34-36 File descriptor LSN (list of segments)
PD.DFD 37-39 Dir file desc LSN (of dir holding file)
PD.DCP 3A-3D File dir ptr (filename entry in dir file)
PD.DVT 3E-3F Device table entry address for user“h

Buffer state flag bits:

$01 - buffer modified

$02 - current sector

$04 - file desc in buffer
$08 - end of file sector
$10 - end of file

$20 - in disk driver

$40 - buffer busy~h

3-1-5

INSIDE 0S9 LEVEL I

Devices
Section 1
Template DEVICE DESCRIPTOR RBFMAN

IFP1
USE DEFS/0S9defs
USE DEFS/RBFdefs
ENDC

type SET Devic+Objct
revs SET ReEnt+1l

MOD rend,devnam, type, revs, fmnam,drvnam

FCB SFF all access modes”"b
FCB S$FF, $FF, $40 device address”b
FCB optl option length”b

optns EQU *

FCB DT.RBF type = 1 for RBFman devices”b

FCB $03 drive number (0...n)"b

FCB $02 step rate “b

FCB $40 device type: bit0- 0=5 1/4 1=8 inch
* bit5- O=noncoco 1l=coco
* bit6- O0=o0s9std 1l=nonstd

bit7- O=floppy 1l=hard

FCB $01 density: bit0- O=single 1l=double
* bitl- 0=48 tpi 1=96 tpi

FCB $00,5$23 cylinders (tracks)

FCB $01 sides

FCB $01 0= verify disk writes

FCB $00,$12 sectors/track

FCB $00,512 sectors/track (track O0)

FCB $01 sector interleave

FCB $01 minimum #sectors/segment alloc

optl EQU *-optns

devnam FCS /D3/

fmnam FCS /RBF/

drvnam FCS /CCDisk/
EMOD

rend EQU *

L ot ey e T e T ot L e T PP

This is a typical RBF device descriptor. You may modify the
constants and names (devnam, drvnam) to suit your device name,
driver, and characteristics.

INSIDE 0S9 LEVEL Il

Devices
Section 1

Ron - ok, ok <heh-~heh>.

Have you tried formatting the disk anyway? I can't
remember now,

but I don't think the desc extensions are used there.

Anyway try
one of these:
DIVA OA or 09
DIVY 0100 0080
DIVU 0302 0101
DIVA

is the # of bits used for the cylinder number.
DIVY is the # of heads * sectors/trk * shift value.

DIVU mask (# of bits set) is (DIVA-8) bits. The DIVU shift is DIVA-8.

If you've disassembled the driver, you'll see that you end up with the sectors
remaining in D (shifted to the left), with the cyl hi in the last one or two
bits of B. They mask off those bits, and put them as the cyl hi value. Then D

must be shifted right to get back in the correct position. Thus the shift value
is dependent upon how many cylinders you have.

I THINK either of the two sets of values above will work. Also I think your
drive is 15meg, not 20.

INSIDE 0S9 LEVEL Il

Devices

Section 2
Disk Format LSN FORMATS RBFMAN
LSN 0 (ID sector) DD.vars FILE DESC Sector:
DD.TOT 00 Number disk sectors FD.ATT 00 DSPEPWEWR
DD.TKS 03 Number tracks FD.OWN 01 Owner ID
DD.MAP 04 Bytes in alloc map FD.DAT 03 Last YMD:HM
DD.BIT 06 Sectors / cluster FD.LNK 08 Link count
DD.DIR 08 Root dir LSN FD.SIZ 09 File #bytes
DD.OWN OB Owner's user num FD.DCR 0D Date create
DD.ATT OD Disk attributes FD.SEG 10 Segment list
DD.DSK OE Internal disk ID = =~————m——e—emmm——meeo
DD.FMT 10 Format,dens,sides Seg list:
DD.SPT 11 Sectors / track Up to 48 S5-byte
DD.RES 13 Reserved entries: 3LSN,2size
DD.BT 15 Bootstrap LSN strt = —-—mmmmmm e
DD.BSZ 18 Boot size in bytes Dir file:
DD.DAT 1A Create time YMD:HM 29 bytes-name
DD.NAM 1F Disk name(32 bytes) 3 bytes-~LSN desc
LSN 1 (Bit map)
Each bit = 1 cluster of the number of sectors from DD.BIT.

Each disk file has at least one sector: the File Desc. This sector (see format above) contains
the segment list, which is a list of the sectors used by that file. Each 5 byte entry (in order)
points to the next block of sectors: the beginning LSN of the block, and the number of
contiguous LSN's from and including the beginning block LSN.

Thus, if your disk files got so fragmented that the file could not be held in 48 blocks of
any number of neighboring sectors, the File Desc couldn't handle it. This is extremely
unlikely, of course.

The sectors pointed to in the segment list contain the file itself, which might be a m/1
program, an ASCII file, or a list of other files.

A file that consists of a list of other files is assigned (by the Attr or Makdir commands) the
Directory attribute. The list of files, and THEIR File Desc sector, is kept in a special order
(see Dir file above right).

The directory file can have an essentially unlimited number of 32-byte entries consisting of
the file name (up to 29 char) and the 3-byte LSN of the filename's File Desc sector. Note
that the first two filenames are automatically inserted by RBFman and they are "."and "..",
which point respectively to the dir file's own File Desc, and the File Desc of the dir file just
above it in heirarchy.

DD.DIR points to the LSN of the first File Desc which has the Directory attribute, and is a

list of all the files and directory files that you see when you do a 'Dir’ of the device holding
the disk.

3-2-1

INSIDE 0S9 LEVEL 1l

Devices
Section 2

Drop bit 7 of attr parm
Find file LSN

(file exits?) y-—-----——--—---~ >'File Exists®
1n

(dir found?) N == ————— >'Path not Found'
ly

Get segment PSN of dir file
Get size of dir file

Allocate >=one sector (segment)
Save number of sectors alloc'd
Save new segment PSN

Seek start of dir file

Get 32 byte entry 1 * Make new dir entry *
.<--y (empty spot?) 1
1 1n 1
1 Point to next 32 1
1 (error?) n==——————-- >1
1 ly
1 (eof ?) Ar=———— == >Error End
1 ly
1 Extend file by 32
1 Update file size
1 Read new sector
lew————— >1
1

Clear 32 bytes
Move <=29 name chars to buffer
Move alloc'd desc LSN to buffer
Write out updated dir file LSN
1
Clear buffer * Make desc sector *
State=file desc
Insert file attr, user ID, time, date
Set link count=1

1
Check number sectors alloc'd

1
.<--y (any sectors left?)
1 1n
1 Set first seg LSN=desc LSN+1
1 Set first seg size=sectors-1
1=~ >1

Write out file desc LSN
Put file desc LSN in path desc
Zero file size, pos in path desc
Seek 0 in new file

1

END

3-2-2

INSIDE 0S9 LEVEL 1l

Devices
Section 2
OPEN File Mgr Entry RBFMAN
Find dir LSN

1
.<~--y (file desc PSN?)
1 ln (@ - open whole device)
1 1
1 (mode=dir?) y=-=----—~==—-- > '$D6 error'
1 ln
1 Zero seg begin PSN,FSN
1 Get #sectors from drv table
1 Store as pd.segment size
1 Store*256 as pd.file size
1 1
1 END
1
le———m—— >,

1

Check file attr err------ > 'No Permission’
1

PD.pos, FSN, msb seg size=0
Move file attr fm buffer to pd.attr
Move first LSN & segment size to path desc
Move file size to pd.file size
1
END

Path desc var's:

PD.CP 0B
PD.SIZ oF
PD.SBL 13 Segment beginning file sector (FSN)
PD.SBP le6 Segment beginning disk sector (LSN)

4 Current file position
4
3
3
PD.SSZ 19 3 Segment size in sectors
1
3
3
4

File size

PD.ATT 33 File attr (D S PE PW PR E W R)

PD.FD 34 File desc PSN (the list of sectors for file)
PD.DFD 37 Dir file desc PSN (one level up from 34)
PD.DCP 3A Dir file entry pointer to this filename

The FSN, as I call it, is the offset in sectors frcm the
beginning of the actual file position.

The LSN is the actual disk sector that the FSN is equal to.

The PSN is also the actual disk LSN.

3-2-3

INSIDE 0S9 LEVEL I

Devices
Section 2
CLOSE File Mgr Entry RBFMAN
$D3EB
(images=0?) n-—--=----- >END
ly
(mode=write?) n-----—----—---————o————- >.
ly 1
(file desc ?) n-=--————-————---————e— - >1
ly 1
Insert date in desc buff Return buffer
Move file size to desc buff 1
Check disk ID & write buff END
Check EOF status
1
END
CHGDIR File Mgr Entry RBFMAN
$D43A

Open pathnanme

1
o=l
1 1
data exec
1

Put dr# & file desc LSN in Proc Desc
Return buffer

END

.<--n (sector in buffer?)

1 ly
1 Get pos of buff start
1<--y (seek within buff?)
1 1In
1 Get buff within seek
le—==——- >1
Set new pd.pos
1
END

3-2-4

INSIDE 0S9 LEVEL |l

Devices
Section 2
Find File Subroutine RBFMAN
State=altered

Request buffer, set PD.BUF
PD.file desc PSN=0
PD.disk ID=0

1
(1st char='/'?) n-=--=-- >.
ly 1
Get device name 1
l<==mmmmm y (1lst char='Q'?)
1 1n
1 PD.file desc PSN= Proc Desc default
1 data/exec dir desc PSN
B bt 1

PD.DVT=PD.DEV
PD.DTB=static mem+drvbgn+{(dr# * drvmem)
1
.<--y (was 1lst char '@'?)
1n
Read LSN O
PD.disk ID=disk ID
1
<-~y (PD.file desc PSN=0?)
1n
PD.file desc PSN = root dir PSN

o e

[
|
]

t
|
|
|
1

v

ot

Read file desc LSN
1
(next char '/!?) pe=————e—mmmmm—— >.
1y 1
Check file attr err--->'No Permsn' 1
Read 32 bytes 1
l-—m—mmmre— e >, (end of name?) y-->.
F$Parsenam 1

1 Pt to next filename Save ptr to name
1 lmmmm e e e 1 1
1<~y (unused entry?) END
1 1n
1<-n (same names?) * FOUND NAME *
ly
Set PD.dir file PSN & entry ptr
PD.file desc PSN=this LSN
1
(at end of file?) y----——- >'EOF error'

il e e R S R R e e i

Returns last dir file PSN & entry found.
File desc PSN = the LSN at that dir file position.
IF '@', PSN=0, size= entire disk

3-2-5

INSIDE 0SS LEVEL 1l

Devices
Section 3

0s9 1/0 0S89 1/0
SCFMAN FILE

PD.- path descriptor vars V$-- device table
V.-~ device static storage Q$-- IRQ poll table
P$-~ process descriptor

Opening a serial (SCF) file takes the following steps:

$#¢ VAR MOD ACTION

1 PD.PD IOMAN Allocates a 64-byte block path descriptor.
PD.MOD Sets access mode desired.
PD.CNT Sets user cnt=1 for this path desc.

2 PD.DEV IOMAN Attaches the device (driver) used:

VSSTAT Allocates memory for device driver (RS232).
V.PORT Sets device address in driver static memory.
3 RS232 The driver's init subroutine is called to

initialize the device.

4 Q$SPOLL 0s9 Sets up IRQ polling table entry.
- (address, flip & mask bytes, service add,
QSPRTY static storage, priority of IRQ)

5 VSDRIV JOMAN Sets up rest of device table.

VS$DESC (module addresses of desc, driver, mgr)
VS$FMGR
V$USRS Sets user count of device=1

6 PD.OPT IOMAN Copies device desc info to path desc.
e (upper/lower case, 1lf, lines/page,
PD.XOFF file chars, baud rate, echo device)

7 PD.BUF SCFMN Allocates 1 byte buffer.
V.LINE Copies desc lines/page to lines left var.
PD.DV2 I$Attach echo device, set dev table ptr.

8 PSPATH IOMAN Puts path desc # in proc desc I/O table.
Returns table pointer to user as path number.

2,3,4,5 only if first time for that device,
else V$SUSRS = VSUSRS + 1
PD.DEV = device table entry.

4q only if device uses IRQ's.

INIT U =device static memory CC,B <error code
Y =device descriptor
. Initialize any static vars, constants
Use F$Irqg to place driver IRQ service routine in poll table
Init controller

3-3-1

INSIDE 0S9 LEVEL 1l

Devices
Section 3
READ U =device static memory A <char
Y =path descriptor CC,B <error code

. Get next char from input buffer in static memory
. If none: copy V.BUSY to V.WAKE, F$Sleep 0, check V.WAKE=0

WRITE U =device static memory A <char
Y =path descriptor CC,B <error code

. Put char into static memory output buffer
. Enable ready-to-transmit interrupt
. If full: copy V.BUSY to V.WAKE, F$Sleep 0, check V.WAKE=0

GETSTT U =device static memory CC,B <error code
PUTSTT Y =path descriptor
A =status call

. Do wildcard driver call if not handled by IOMAN/RBFman

TERM U =device static memory CC,B <error code
. Wait for output buffer to empty
. Disable any device IRQ's
. Remove device from IRQ polling table

e L o L o e Y e L L L P et Y L)

IRQ Service Routine

Read data if necessary into input buffer.
If pause char read, set V.PAUS of memory area V.DEV2 <>0.
. If quit or keybd interrupt is read, send appropriate signal
to the last user (V.LPRC) and error code=char.
Write the output buffer to device until it is empty,
disable ready-to-transmit interrupt.
. Send wakeup signal to V.WAKE
Clear V.WAKE

3-3-2

INSIDE 0S9 LEVEL I

Devices
Section 3

DEVICE VARIABLES Static Memory SCFMAN
Name Offset Description
V.PAGE 00 Port extended address
V.PORT 01-02 Device address
V.LPRC 03 Last active process ID
V.BUSY 04 Active process ID (dev busy flag) 0=not busy
V.WAKE 05 Process ID to awake after command completed
V.USER . Beginning of file mgr/driver var's
V.TYPE 06 Device parity type
V.LINE 07 Lines til end of page
V.PAUS 08 Pause request O=none
V.DEV2 09-0A Echo device memory area
V.INTR OB Interrupt char
V.QUIT ocC Quit char
V.PCHR oD Pause char
V.ERR OE Error collector
V.XON OF X-ON char
V.XOFF 10 X-OFF char

11-15 used by Japanese computers
V.PDLHD 16-17 Path desc's head link for device users

18~-1C reserved
V.SCF . End of SCFman vars

1D- Free for device driver vars

V.LPRC is used by the IRQ routine. If a quit or interrupt char is received, the
routine should signal the last process to use the device with the signal
associated with that char.

This is why the Shell usually catches your <shft-brk> or <brk> multi-task/ abort

keystrokes, and takes the appropriate action. Note that if your program uses the
device itself, you get the strange alternating set of Shell/ program messages.

3-3-3

INSIDE 0S9 LEVEL 1l

Devices
Section 3
Module DEVICE DESCRIPTOR SCFMAN
Name Of fset Description
M$ID 00-01 Sync bytes ($87CD)
M$Size 02-03 Module size
M$Name 04-05 Offset from start to module name string
M$Type 06 Type/lang (S$F1)
M$Revs 07 Attr/revision
M$Parity 08 Header parity
M$FMgr 09-0A File manager name offset
M$PDev OB-0C Driver name offset
M$Mode oD Device capabilities
M$Port OE-10 Device extended address
M$Opt 11 Number of options in initialization table:
IT.DTP 12 Device type (0=SCF)
IT.UPC 13 Case: 0= U/1 1=Upper only
IT.BSO 14 Backspace: O=bsp pnly l=bsp, space, bsp
IT.DLO 15 Delete: O=bsp over line 1l=<cr>
IT.EKO 16 Echo: O=nc echo
IT.ALF 17 Auto linefeed: 0=no auto linefeed
IT.NUL 18 Null: number of delay nulls sent after <cr>
IT.PAU 19 Pause: O0=no pause at end of page
IT.PAG 1A Lines per page
IT.BSP 1B Backspace code char from device
IT.DEL 1c Delete-line code from device
IT.EOR 1D End of record code from device
IT.EOF 1E End of file code fm dev ('EOF' is echoed)
IT.RPR 1F Reprint line code from device (buffer echoed)
IT.DUP 20 Duplicate line code (all buffer echoed)
IT.PSC 21 Pause code from device
IT.INT 22 Interrupt code from device
IT.QUT 23 Quit code from device
IT.BSE 24 Backspace code echoed to echo device
IT.OVF .25 Line too long code to echo (bell)
IT.PAR 26 Parity: init byte for ACIA control register
IT.BAU 27 Baud rate
IT.D2P 28-29 Echo device name offset
IT.XON 2A X-on char
IT.XOFF 2C X-off char
IT.COL 2C Number of columns
IT.ROW 2D Number of rows

End of option table.
2E~ Name strings here.

3-3-4

INSIDE 0S9 LEVEL I

Devices

Section 3
PATH DESCRIPTOR PD.Variables SCFMAN
Name Of fset Description
PD.PD 00 Path number
PD.MOD 01 Access mode l=read 2=write 3=update
PD.CNT 02 Number of paths using this path desc
PD.DEV 03-04 Device table entry address .
PD.CPR 05 Current Proc ID using this path for I/0
PD.RGS 06~-07 Address of user's register stack
PD.BUF 08-09 Data buffer (256 bytes) if used
PD.FST Beginning of SCFman vars
PD.DV2 OA-0B Echo device table ptr (output)
PD.RAW 0oC Edit flag O=read/write 1l=readln/writln
PD.MAX 0OD-OE Readline max char cnt
PD.MIN OF Device use flag O=my devices
PD.STS 10-11 Status routine module address
PD.STM 12-13 Reserved for status routine

14~1F Reserved

PD.OPT 20 Device class 0=SCF 1=RBF 2=PIPE

PD.UPC 21 Case O=upper and lower l=upper only
PD.BSO 22 Backspace O=bsp 1=bsp, space, bsp

PD.DLO 23 Delete O=bsp over line 1l=cr/lf

PD.EKO 24 Echo 0=no echo

PD.ALF 25 Auto 1f 0=no auto line feed after cr
PD.NUL 26 Null cnt nulls sent after cr/lf for delay
PD.PAU 27 Pause lines left before pause; O=no pause
PD.PAG 28 Lines / page

PD.BSP 29 Backspace char

PD.DEL 2A Delete-line char

PD.EOR 2B End of line char (normally $0D, O=til EOF)
PD.EOF 2C End of file char (read only)

PD.RPR 2D Reprint line char

PD.DUP 2E Duplicate last line char

PD.PSC 2F Pause char

PD.INT 30 Keyboard interrupt char (ctrl-C)

PD.QUT 31 Keyboard abort char (ctrl-Q / Break)
PD.BSE 32 Backspace echo char

PD.OVF 33 Line overflow char (Bell code)

PD.PAR 34 Device init byte (parity)

PD.BAU 35 Baud rate code

PD.D2P 36-37 Offset to DEV2 name string

PD.XON 38 X~ON char for ACIA

PD.XOFF 39 X-OFF char

PD.ERR 3A Most recent I/0 error status

PD.TBL 3B-3C Device table entry copy for user

Input of a keyboard INT/QUT character returns that char as
the I/O error code, and sends an interrupt/abort signal to the
last active user process of this path.

3-3-5

INSIDE 0S9 LEVEL Il

Devices
Section 3

Template

DEVICE DESCRIPTOR

SCFMAN

L T e e T T P L L L T P Pttt e

ifpl

use /dd/defs/defsfile

endc

type SET DEVIC+OBJCT
revs SET REENT+1

MOD len,nam, type, revs, mgr,drvr

FCB READ.+WRITE. mode

FCB SFF

FDB $SFFO0
FCB opt-*~1
FCB DT.SCF

FCB o]
FCB 1
FCB [¢]
FCB 1
FCB 1
FCB 0
FCB 0
FCB 24
FCB 08
FCB $18
FCB $0D
FCB 0
FCB 04
FCB 01
FCB $17
FCB 3
FCB 5
FCB $08
FCB 07
FCB [
FCB 4
FDB echo
opt EQU
nam FCS
FCS
mgr FCS
drvr FCS
echo FCS
EMOD
len EQU
END

keyboard while

to a terminal display connected to the RS-232 port.

ext'd add
device address
option byte cnt
SCF device

case= UPPER and lower
backspace=bs sp bs
delete=bs over line
auto echo

auto linefeed

no nulls on CR

no page pause

lines per page
backspace char
delete line char
end of record char
no end of file char
reprint line char
dup last line char
pause char

abort char
interrupt char
backspace echo char
line overflow (bell)
printer type

baud rate=2400

echo device
*

"Remote"

" " patch space
"SCF" file mgr name
"ccIo" driver name
nTle echo device

*

Using 'Shell </remote >/tl1 >>/tl’

allows you to use the CoCo

visual output is redirected (and input echoed)

3-3-6

INSIDE 0S9 LEVEL Ii

Devices
Section 4

0s9 I/0 0s9 1/0
PIPEMAN FILE

PD.- path descriptor vars V$~- device table
V.-- device static storage Q$~- IRQ poll table
P$~- process descriptor

Opening a pipe (PIPEMAN) file takes the following steps:

VAR MOD ACTION

1 PD.PD IOMAN Allocates a 64-byte block path descriptor.
PD .MOD Sets access mode desired.
PD.CNT Sets user cnt=1 for this path desc.

2 PD.DEV IOMAN Attaches the device used:
V$STAT Allocates memory for device driver (none).
V.PORT Sets device address in driver static memory.

(address = 00 0000)

3 PIPER The driver's init subroutine is called to
initialize the device (does nothing).

4 No interrupts used by PIPER.

5 VSDRIV IOMAN Sets up rest of device table.
VS$DESC (module addresses of desc, driver, mgr)
VSFMGR
VSUSRS Sets user count of this pipeman=1

6 PD.OPT IOMAN Copies device desc info to path desc.
(just type= Pipe)

7 PD.BUF PIPMN Allocates 256-byte buffer.
Sets begin, end, nextchar ptrs in PD.

8 PSPATH IOMAN Puts path desc # in proc desc I/0 table.
Returns table pointer to user as path number.

2,3,5 only the very first time a pipe is used,
else VSUSRS = VSUSRS + 1
PD.DEV = device table entry
4 not used at all

Note that both the driver and descriptor (Piper, Pipe) are
only dummy modules, there just to make IOMAN happy.

3.4-1

INSIDE 0S9 LEVEL i

Devices
Section 4

PATH DESCRIPTOR PD.Variables PIPEMAN
Name Offset Description
PD.PD 00 Path number
PD .MOD 01 Access mode 1l=read 2=write 3=update
PD.CNT 02 Number of paths using this path desc
PD.DEV 03-04 Device table entry address
PD.CPR 05 Current Proc ID using this path for I/O
PD.RGS 06-07 Address of user's register stack
PD.BUF 08-09 Data buffer (256 bytes) address each Create
PD.FST Beginning of Pipeman vars

0A Read user

0B Number read users

0c Read signal

0D End of line char

OE Write user

OF Number write users

10 Write signal

11 Not used

12-13 End of buffer

14-15 Pointer to next address to store char

16-17 Pointer to next address to read char

18 Data flag O=no data in circular buffer

Pipeman uses no static memory. Instead, it allocates a 256 byte buffer each time a 'file' is
created. This buffer is returned when the last user has closed a path to it, or there are no
more readers.

Note: these are for Level One. I haven't had a chance to check on L-II vars, but the concept

will be the same, with the exception that Pipeman will do an F$Move of the data between
process maps.

3-4-2

INSIDE 0S9 LEVEL Nl

Devices
Section 5

GENERAL DRIVER NOTES
LEVEL TWO DEVICE ADDRESSES

(Message from me to CompuServe OS9 Forum 24Mar87:)

Finally went looking for the reason why I've been telling everyone that their extended device
addresses had to be $07FXXX instead of the old L-I $FFXXXX. Here's the dope:

L-II IOMan (just like a GIMIX) takes the address ($07FF) top bytes, and converts it to an /O
block number... on the CoCo, it translates to block $3F. Well, this makes sense as far as it goes,
as extended address $07FXXX is indeed the top of mem,; that is, the last block or $3F block.

It then looks to see if that block is already mapped into the system 64K map...if it's block $3F, it
already is, cuz that's the kernal and I/O area from $E0QO-FFFF.

BUT! If the extended address does NOT translate out to $3F ($FFFF = block number $FF!!), then

it maps that block into the system map. And ignores it as RAM cuz it's obviously I/O, right? So
you just lost 8K in your System 64K map.

8K is a lot to take away from the system map, and that's when those of you using Rogue got the
dreaded 207 error for no seeming reason.

You also got the error if it couldn't map the block in. This error number has been changed to 237
(no ram), in the latest versions, btw.

Since the converted logical address would also be wrong, some things died. Devices with hard
coded addresses had fewer problems.

That's the scoop, guys.. so make sure to use the $07FXXX if writing up new device descriptors.
That is, offset $OE in your device descriptor must be = $07 and the next =$FX.

On the other hand, $00 0XXX should be okay also, as block 00 is also always in the system map.

SCF SPECIAL CHARS

As you know, SCF drivers are responsible for sending either an S$Abort (for character matching
V.QUIT) or S$Intrpt (char = V.INTR) signal to the last process (V.LPRC) that used the device.

A note about the above... character matching is done against the V.xxx static memory variables,
NOT against the path descriptor PD.yyy equivalents. This is even though the V.xxx were set by
SCF to the PD.yyy characters when the process gained the use of the device.

Why not just use the PD stuff? Because most devices are IRQ-driven, and there's no easy way for
0S9 to get the path descriptor pointer to the asynchronous IRQ code that is servicing that driver.
Hence they are copied to the V.xxx driver memory which IS known, as IOMan has it in it's
interrupt polling table.

3-5-1

INSIDE 0S9 LEVEL |

Devices
Section 5

RBF THINGS -

The Device Descriptor describes the maximum capabilities of the device; the Path Descriptor is
used for variables pertaining to the file itself (pos, length, Isn's, dirs, etc); and the Drive Tables are
for info about THAT one diskette currently in the drive (format, tracks, sectors, bitmap size, root
dir, id, which track the head is pointing to, whether a process is changing the bit map, etc).

Those of you who write RAMdisk drivers usually follow the lead of the floppy drivers. Okay, but
some parts are different. For example in your Init, you should probably set the DD.TOT to the
actual sector size of the "drive”. And unless you wish to use it as some kind of flag, there is NO
need to do anything to DD.TRAK. That's done there only so floppy drives can restore to track zero
the first time they're called. If your driver doesn't need it, don't mess with it.

IRQ's On LEVEL TWO

Let's take a quick look at how ACIAPAK sets up for interrupts, to give other driver writers some
help.

ACIAPAK Init Routine:

Does an FS$SIRQ call

Stops all interrupts

Resets the CART PIA line for no Multi-Pak FIRQ's
Gets Direct Page 0092 (GIME IRQ register shadow)
OR's it with 01 to enable CART-->IRQ conversions
Stores that value back at 0092 and FF92

Restores the CC register

Sets the MPI slot for CART from slot 0

What CLOCK Does on Interrupt:

On an IRQ, Clock read GIME FF92 IRQ register
OR'd that value into Direct Page OOAF
JSR'd the Interrupt Polling Routine...

ACIAPAK Interrupt Routine:

Get Direct Page 00AF (contains FF92 IRQ read by Clock)
NOT with 01 to indicate that CART IRQ was read

Store that value back at O00AF

Do the interrupt routine

Go back and check for another IRQ before RTS

OTHER L-ll DRIVER CHANGES

Because the system map is so much like under L-I, only a few changes must be made. The most
obvious is the interrupt handling, as discussed above. Timing loops have to compensate for the
2Mhz speed, also.

For RBF devices that must change slots, the main (and sometimes almost only) change is that
D.DMAReq has moved from 006A to 008A.

3-5-2

INSIDE 0S9 LEVEL 1l

Devices
Section 5

The file managers take care of moving data between system maps, so many old drivers will work
fine (once the descriptor address is changed as pointed out). For example, once the address has
been changed the Disto Parallel Printer port driver works.

One last note: CC3DISK no longer turns on precompensation on the inner tracks. Supposedly
most drives never needed it.

3-5-3

INSIDE OS9 LEVEL i

Windows

INSIDE 0S9 LEVEL Il

Windows
Section 1

THE WINDOW DRIVERS

The windowing system on the CoCo-3 is composed of the window device descriptors, the main
driver CC3IO specified in those descriptors, and several co-modules that handle window output.

The modules and a schematic of their relationship:

Term - Actually, the W0 descriptor OR a VDG descriptor
W1-W7 - Window descriptors
W - Special window descriptor

CC3I0 - Keyboard scanning (60 times a second if key down)

Joystick/mouse reads
Some stat calls

VDGInt

Emulates L-I v2.0 gfx environment
Adds hires gfx screens mapped into proc space

WindInt- Preprocessor for hi-level windowing/menu calls
plus window codes

GrfInt - Preprocessor for window codes
Some stat calls

GrfDrv - Text/gfx display

e — — — — ———— e —————— — — ——_——_———— ————_——_—_—_— e —————————————

TOMAN
1
CC3I0 - Term W W1 W2 .. Main driver/desc
1
.{=———either-l-or——-=--————-—- .
1 1 1
1 GrfInt WindInt Output processing
1 1-———- S ———— 1
VDGInt 1

GrfDrv Screen data

(video output)

COMPARISON WITH OTHER |/O DEVICES

Like other OS9 devices, reading and writing and stat calls are done through a main driver. Each
device has it's own address, static memory, and has an input buffer for type-ahead. Outputted
characters are not queued, but go straight to the screen.

Unlike others, though, each window also shares the same input device (the keyboard or mouse).
They also share use of the GIME chip. This means that some way must be used to keep track of
which window sets up it's display on the GIME, and which window gets the input from the
keyboard. For this purpose, all of the window devices also share a common or global memory.

4-1-1

CC3i0

VDGINT

INSIDE 0S9 LEVEL Il
Windows
Section 1

This global memory is located at in block 00, extended address 001000-001FFF, and is always
mapped in for the CoCo terminal driver modules to use. A very preliminary and cursory look at
this memory area is provided in the next section of the book.

The /W descriptor also introduces a new technique. This wildcard device flags CC3IO to open the
next free window in place of it. I think that requesting the name from a path opened using /W will
instead return /Wx instead (x=number).

Instead of hardcoding window numbers, good L-II programs that need to open another virtual
terminal should use /W.

CC3I0 is very similar to it's L-I (ver 2.0) counterpart, CCIO. Some of it's code is even the same
for the keyboard, lo-res mouse read, and so on. However, where CCIO used CO80 or CO32 as
comodules to handle the screen output, CC3I0 now passes codes on to the GrfInt/GrfDrv or
VDGlInt comodules. (The name "CO80" can still be found within CC3]O, but was probably there
just for debugging purposes, as it is no longer used.)

VDGInt contains the equivalent of the Level One CO32 and GRFO modules. It handles the 32x16
text screens, semi-graphics and original VDG-style graphics screens.

Because of this emulation, you can still run many older programs that ran on the CoCo-1/2's,
including TSEDIT.

In addition, VDGInt provides for new screens that allow speed-dependant programs to take
advantage of the CoCo-3's high resolution graphics. Unlike the GrfInt screens that are not mapped
into a program's space, VDGInt graphics screens are. This means that games like Koronis Rift can
directly access the screen memory to be displayed, allowing much faster updating of the screen
than by using escape codes.

VDG text screens are normally allocated from the system map, as allocating a full 8K block just for
a 512 byte display would be wasteful. To provide compatibility, the use of the SS.AlfaS GetStat
call WILL map the screen into the caller's task space (since it returns the address within a logical
64K area), along with any other system variables that just happened to be in the same system map
block. For this reason, programs that use this call should be careful to stay within the 32x16 screen
area, lest they accidentally write over crucial system data.

Windows within a screen are not provided for, although it is possible to set up more than one VDG
screen. And, you can still <CLEAR-key> between these screens and normal windowing screens.

Character and graphics functions are not provided for the CoCo-3 specific modes. The only text
output is through use of the 32x16 character display.

4-1-2

INSIDE 0S9 LEVEL I

Windows
Section 1

GRFINT/WINDINT

GRFDRV

Grflnt takes the parameters passed with a window code (as when you do a "display 1b 31 5 38"),
checks them for values exceeding limits or specifications, and stores the possibly converted
parameters in the system map global memory and window tables.

GrfInt then calls GrfDrv with an internal code, which is used as a table index to call the appropriate
GrfDrv subroutine for any screen manipulation.

WindInt will be included with the Multiview graphics shell package. It will take the place of
GrfInt, providing the same calls plus adding new ones for creating pull-down menus, boxed
windows, scroll bars and other hi-level windowing abilities.

GrfDrv is the module that does any actual storage or drawing of data on the screen. It also handles
allocation of screen memory and buffers. In other words, anything specific to the CoCo-3.

Both GrfInt and WindInt will use GrfDrv as the driver that manipulates the video data. By

breaking things up this way, it's possible for perhaps just a new GrfDrv to be written for other
display devices, or the next CoCo.

The most unique aspect of the GrfInt/GrfDrv combination for lovers of L-II is that it's code size,
and the need to have direct access to so much memory (like 32K for each gfx screen), caused the
authors of CoCo-3 L-II to adopt what amounts to an extension of the 64K system map into another
64K space to handle the memory needed.

A CLOSER LOOK:

cc3io

On initialization, CC3IO inserts it's IRQ handler vector into D.AItIRQ at $00B2 in the direct page
variables. It also sets vectors for window select, mouse reads and the terminal bell (this is used by
CLOCK's F$Alarm call).

Depending on the device type ($80= window, else= VDG), it will link or load, and inititialize the
Interface module required. Obviously, VDG device types use VDGInt. Window devices cause
CC3IO to first try locating WindInt. If that fails, it then goes after GrfInt.

On IRQ's, CLOCK calls CC3IO as a subroutine to read the keyboard, check for fire buttons,
decrement the mouse scan delay, and send signals to processes needing them.

The Write routine passes all the characters onward to the Interface modules, but can be requested
by them to read more than one parameter for escape codes.

The CLEAR key flip between windows is also caught during interrupts, which you can see by

holding CLEAR down while doing disk access. Be careful, though - this causes my machine to
crash.

4-1-3

GRFINT

INSIDE 0S9 LEVEL 1l

Windows
Section 1

Other than that, CC3IO really knows very little about windows.

CC3IO also handles these:
GETSTATS SETSTATS
SS.ComSt SS.ComSt
SS.Mouse SS.Mouse
SS.Montr SS.Montr
SS.KySns SS.KeySns
SS.Joy SS.Tone

SS.GIP
S$S8.88ig
SS.MsSig
SS.Relea
SS.0pen

Grflnt has six entry points, Init, Write, Getstt, Setstt, Term, and SetWindow. At offset 0026
begins the window escape code table, each entry made up of a parameter count, vector, and a code
byte to be used for internal GrfDrv calls.

On initialization, GrfInt links or loads "grfdrv" or "../.CMDS/grfdrv". GrfDrv MUST end up on an
8K block exact boundary, which is why it should be loaded off disk. GrfInt calls GrfDrv's Init
routine and then unlinks it. This causes GrfDrv to be unmapped from the system task, which is
okay as GrfDrv has already moved itself over to the second system map.

GrfInt moves a default palette into global memory where other modules may find it. This table is
listed later.

GrflInt sets up the window entry tables, screen tables, and requests system memory for the
graphics cursor tables.

As said before, it handles the task of getting all the parameters for the window display codes. It
checks for a valid window destination. Parameters are collected and passed onto GrfDrv for
execution.

Loading of Get/Put buffers is partially taken care of here, too. GrfInt reads in up to 72 bytes at a
time into a global buffer for GrfDrv to read from.

It also sets the page length according the window size, does most of the window Select routine,
and computes relative coordinates.

GRFINT also handles these:
GETSTATS SETSTATS
S$S.ScSiz SS.0Open
SS.Palett SS.MpGPB
SS.FBRegs Ss.DfPal
SS.DfPal

4-1-4

INSIDE 0S9 LEVEL II

Windows
Section 1

GRFDRV

After being loaded by GrfInt or WindlInt, GrfDrv is called to initialize itself. It sets up the second
task map (Task One, which is reserved, as is task zero, for the system use) to contain itself, global
system memory, and areas for swapping in buffers and screens to access. This map looks like:

Logical
Block Addrss Use
0 0000-1FFF System Global Memory
1 2000-3FFF Buffers mapped in here
2 4000-5FFF -
3 6000-7FFF Grfdrv
4 8000-9FFF Screens mapped in here
5 AQ0O0-BFFF " "
6 CO000~DFFF " "
7 EQQO-FDFF " "

To get to GrfDrv, Grflnt sets up a new stack with GrfDrv's entry point as the PC, then jumps via
direct page vector 00AB to OS9p1. OS9p1 copies the reserved Task One DAT Image into the
GIME's second DAT set, flips over to the GrfDrv map, and does a RTL

Returning to the normal system map (back to GrfInt) is just the opposite, except the vector at 00A9
is used to flip back to the always set up Task Zero system map.

Interrupts are still enabled on the GrfDrv map, and OS9 saves which system map (0 or 1) it was in

when the interrupt occurred. After servicing the interrupt, OS9 resets the DAT to the correct task
number.

GrfDrv handles all character writing (text or graphics) and graphics routines (line, point, etc).

It checks for window collisions, sets the GIME, translates colors, handles buffers, and executes
terminal codes such as CLS, INSLINE, etc.

Allocation and release of buffer and video memory is also done within GrfDrv.

SCREEN MEMORY

Screen memory is allocated using FSAIHRAM (from high block numbers at the top of memory),
because the GIME requires contiguous physical memory for display, and there's a better chance of
finding such up there. The OS9 kernal gets program and data blocks from the lower end.

Actually, it really shouldn't matter all that much where you found contiguous RAM, but perhaps
they felt it was safer up high. Since we have no ROM blocks to map into DAT Images as a safe
area (for blocks not used in a program map), the DAT.Free marker used by the CoCo (333E)
means that a video page (3E) is all that should get clobbered if a bad program runs amuck through
it's logical address space. (That is, unless it should run into the GIME and 1/O page at XFFXX!)

INSIDE 0S9 LEVEL 1l

Windows
Section 1

Each new window doesn't necessarily take up a lot more memory. If you open a window on a
previously allocated screen, it's still going to use that screen memory. It's inside that screen, and
so is also inside that memory block or blocks.

Graphics screens are allocated by blocks, since the smallest form uses 16K or two blocks. When
all the windows on a screen are closed, all the blocks are returned to free memory.

Text screens are allocated a block at a time, and that block is divided up into at least two screens, if
they are both 80 column (4K each) screens. So you can have two 80's, one 80 and two 40's, or
four 40's per 8K RAM block. That is, you can if you apply the patch to GrfDrv that's in the
BUGS section of this manual. See it for more details.

Obviously, it makes more sense, memory-wise, to use text screens where feasible.

MISC WINDOW TIPS

The keyboard mouse toggled on and off by <CTRL-CLEAR> changes the arrow keys into a hires
joystick, and the function keys into fire buttons. I believe that it takes over in place of the external
right-hand joystick. In this mode, the arrow keys are set up as:

Arrow - move 8 positions
Shift-arrow - move 1 position
Ctrl-arrow - move to far edge

If you've set the proportional switch and are using the stdfonts character set, change the font to C8
02 for a better display.

Each device (TERM, Wx) has a 128 byte input queue. This means that you can go to an inactive
window, type something blindly on it. Then if you started a program on that window, what you
typed previously will be immediately read. For example, if you typed "dir" on W3, then went back
and "shell <>>>/w3&", the dir command would be executed by the new shell.

In most cases, it might be better to use the Forgnd, Backgnd text color set commands, instead of
the Palette command. There are eight colors already provided for, and except for two color
graphics windows, should be easier to use and remember.

Want to see what your StdPtrs file looks like? Merge them into a window. Open a 320x192
graphics window for best results. Then "display 1B 4E 0100 0050" to move the graphics cursor to
an open spot. Now you can "display 1B 39 CA p", where p=1-7 to see how the various pointers
look.

4-1-6

INSIDE 0S9 LEVEL I

Windows
Section 1

AREAS OF INTEREST

For those who might wish to customize their system by changing some of the module defaults, and
could use a quick reference to the tables used, here are some helpful assembly areas:

CC3IO
* Keyboard & Mouse Delay Init (1lst device):
007D 861E 1da #30 1/2 second
007F A78861 sta $61,x set keybd delay constant
0082 A78829 sta $29,x and first delay
0085 8603 lda #3503 1/20 second
0087 A78862 sta $62,x secondary delay
008A 4A deca A=02
008B A784 sta X ($1000)=02
008D 6C883C inc $3C,x mouse flag
0090 8601 1lda #S01
0092 A7883D sta $3D, x right joystick
0095 8678 lda #120 2 seconds
0097 A7883E sta $3E,x set button timeout
009A CCFFFF 1ldd #SFFFF
009D ED8828 std $28,x init keyboard vars
00AC ED882B std $2B, x
00A3 CC0078 ldd #50078 set ss.mouse for device
00A6 EDC828 std U0028,U (scan rate & timeout)
* Keyboard Mouse Coord Deltas:
* Normal, Shift, Control
00F4 0801 fcb 8,1 right
00F6 027F fdb 639
00F8 FB8FF fcb -8,-1 left
00FA 0000 fdb 0
00FC 0801 fcb 8,1 down
00OFE 0OBF fdb 191
0100 F8FF fcb -8,-1 up
0102 0000 fdb 0
* Special Key Code Table:
* Normal, Shift, Control
05A2 406000 fcb $40,$60, 500 @
05a5 0c1ci3 fcb $0C, $1C,$13 up
05A8 0OAlAl2 fcb $0A,$1A,512 down
05AB 081810 fcb 508,518,510 left
05AE 091911 fcb 509,519,511 right
05B1 202020 fcb $20,520,%20 space

4-1-7

INSIDE 0S9 LEVEL 1l

Windows
Section 1
05B4 303081 fcb $30,$30,%81 0 0 case
05B7 31217C fcb $31,%21,87C 1 !
05BA 322200 fcb $32,%$22,%00 2 "
05BD 33237E fcb $33,523,$7E 3 #
05C0 342400 fcb $34,524,500 4 $
05C3 352500 fcb $35,$25,%00 5 %
05C6 362600 fcb $36,526,500 6 &
05C9 37275E fcb $37,$27,85E 7 '
05CC 38285B fcb $38,528,%$5B 8 ([
05CF 39295D fcb $39,%529,85D 9)]
05D2 3A2A00 fcb $3A,32A,%00 : *
05D5 3B2B7F fcb $3B, $2B,$7F ; +
05D8 2C3C7B fcb $2¢,$3¢c,$7B , <
05DB 2D3DSF fcb $2D, $3D, $5F - = _
05DE 2E3E7D fcb $2E, $3E, 87D . >
05E1 2F3F5C fcb $2F, $3F, $5C / ? \
05E4 0ODODOD fcb $0D, $0D, $0D enter
05E7 828384 fcb $82,$83,5$84 clear
0SEA 05031B fcb $05,$03,$1B break
05ED 313335 fcb $31,$33,$35 F1
05F0 323436 fcb $32,%$34,%36 F2
GRFINT
* Default Palette Table:
* whi, blu, blk, grn, red, yel, pur, cyn
02F2 3F090012 FCB $3F,509,%00,$812,%$24,5%36,5%2D,$1B
02FA 3F090012 FCB $3F,$09,$00,512,524,%36,$2D, $1B
GRFDRV
L03C? 1dd #s$c8o1l set default font for gfx windows
L08CC equ * Translate Color For RGB:
pshs x
tst >x1009 check monitor type
(0=comp color, 1=RGB, 2=mono)
bne L08D9 ..skip if not composite color
leax >L08DB,pcr translation table
1db b,x get new gime palette byte
L08D9 equ *
puls pc,x rts.

4-1-8

INSIDE 0S9 LEVEL 1l

Windows
Section 1

LO8DB equ * 64 Color Translation Table:

FCB $00,%$0C,$02,$0E,$07,$09,$05,510
FCB $1C, $2C, $0D, $1D, $0B, $1B, $0A, $2B
FCB $22,%11,$12,%21,503,$01,513,532
FCB S$1E, $2D, $1F, $2E, $OF, $3C, $2F, $3D
FCB $17,$08,%15,%06,$27,$16,526,$36
FCB 519,$2A,%1A,$3A, 518,529, 528,538
FCB $14,%$04,$23,%33,$25,$35,%24,$34
FCB $20,%3B,$31, $3E, $37,$39, $3F, $30

INSIDE 0S9 LEVEL |l

Windows
Section 2

* System and CC3I0O Memory Map (block 00)
Our personal disasm variable map from Rogue.
Kevin Darling

*

* % O ¥ %

1000
1001
1002
1007
1009
100Aa
100B
100C
100E

100F
1015
1016
1017
1019
101B
101C
101D

1020
1023
1024

1025
1027
1028
1029
102A

102F
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
103B

*

Kent Meyers

14 Feb 87, 30 Mar 87

Not necessarily accurate for latest versions.

Global and CC3I0 Memory Starts at $01000:

IREEEREEEREE BEERY BEY Bgiiggdy BHEBEdREE

RN e B

N e NN

=N WHERNNHRFEO

V- EN

map side (grfdrv)

grfdrv stack pointer
monitor type (0,1,2)
same as active dev flag
v.type of this dev
device static memory ptr
WindInt map flag?

F$Alarm time packet
F$Alarm process id
F$Alarm signal code
terminal bell vector

ptr to default palette ptr
tone duration in ticks
bell flag

active window devmem
screen changed flag
$80=grf/windint, $02=vdg found

last keybd row fnd
repeat delay cnt now
grfdrv init'd flag
SHIFT key down

CTRL key down

ALT key down
keysns byte

same key flag
SHIFT/CLEAR flg
grfdrv init'd flag

mouse sample tick counter

* Mouse Packet:

($20 bytes)

4-2-1

INSIDE 0S9 LEVEL 1l

Windows
Section 2

103cC rmb 1 00
103D rmb 1 fire bit#,rdflg 01

bit 0O=fire button #

bit 1l=side (0=right,l=left)

bit 6=set if was keybd mouse
103E rmb 1 timeout constant02
103F rmb 1 keybd flag 03
1040 rmb 1 04
1041 rmb 1 cntr 05
1042 rmb 2 O0-FFFF cnt 06
1044 rmb 1 fire chg bit 08
1045 rmb 1 fire chg bit 09
1046 rmb 1 up time 0A
1047 rmb 1 up time 0B
1048 rmb 1 chg counter oc
1049 rmb 1 chg counter 0D
104A rmb 1 down time 0E
104B rmb 1 down time oF
104C rmb 2 10
104E rmb 2 returned X 12
1050 rmb 2 returned Y 14
1052 rmb 1 16
1053 rmb 1 0=o0ld,l=hires 17
1054 rmb 2 X coordinate 18
1056 rmb 2 Y coordinate 1a
1058 rmb 2 X window ic
105A rmb 2 Y window 1E

*

1060 rmb 1 mouse sample rate
1061 rmb 1 first key delay ticks
1062 rmb 1 secondary repeat ticks
1063 rmb 1 enable kbdmouse toggle flag
1064 rmb 1 one shot ignore CLEAR key flag
1065 rmb 1 fire button dwn (F1=01 F2=04)
1066 rmb 1 mouse to use (AND 66+67<>0:update packet)
1067 rmb 1 mouse coord changed flag
1068 rmb 6 comodule entry vectors...
106A rmb vdgint entry
106E rmb grfdrv entry
1070 rmb 1 move data cntr for buffers
1071 rmb 4 32 bit window alloc map
1075 rmb 2 ptr to 576 byte gfx tables
10BF rmb 1 cc3io L0116 flag (chg mouse?)
10C2 rmb 2 cc3io shift-clear key sub (L0614)
10C4 rmb 2 cc3io set mouse sub (LO6AE)
10C6 rmb 1 fire not read: zero if ssig sent
10C7 rmb 16 palette reg data (sys default)
10E7 rmb
1100 rmb x grfdrv variables
1200 rmb x data buffer for gpload
1280 rmb x window tables ($40 each)
1290 window table base offset used
1a80 rmb x screen tables

4-2-2

INSIDE 0S9 LEVEL 1l

Windows
Section 2

* - -
* GrfInt/GrfDrv Vars:

grfdrv equ $0100 use for global offset

110E rmb 1 char bsw bits

1120 rmb 2 ellipse parms:

1122 rmb 2

1124 rmb 2

1126 rmb 2 .

112E rmb 2 windentry now

1130 rmb 2 screen table now

1132 rmb 3 3 byte buffer table

1135 rmb 3 grp,offset

1138 rmb 3 grp,offset returned (new)
113B rmb 2 end of vars ptr?

113D

1147 rmb 2 HBX,LBX

1149 rmb 2 HBY,LBY

114B rmb 2 current X

114D rmb 2 current Y

114F rmb 2 HSX,LSX

1151 rmb 2 HSY,LSY

1153 rmb 2 Circle, ellipse, arc
1155 rmb 2 Ellipse, arc

1157 rmb 1 GRP

1158 rmb 1 BFN

1159 rmb 1 SVS

115A rmb 1 PRN

115B rmb 2 BX putgc

115D rmb 2 BY putgc

115F rmb 1

1160 rmb 1 STY marker

1161 rmb 1 fore rgb data WE:06

1162 rmb 1 back rgb data WE:07

1163 rmb 1 bytes/row SC:04

1164 rmb 2 lset vector? WE:16

1166 rmb 2 Pset offset WE:OF

1168 rmb 2 grfdrv lset WE:14

116A rmb 2 max X coord WE:1B

116C rmb 2 max y coord WE:1D

116E rmb 2 X pixel cnt

1170 rmb 2 Y pixel cnt

1172 rmb 2 get/put ow save screen strt
117D rmb 1 buffer block # (get block)
117E rmb 2 buffer offset grp/bfn
1180 rmb 2 HBL,LBL

1182 rmb 2 3 byte extended screen address
1185 rmb 2 temp

1187 rmb 16 grfdrv (sysmap 1) DAT Image
1197 rmb 1 temp

1199 rmb 2 this windentry ptr

4-2-3

1198
119cC
119D

1280

*

INSIDE 0S9 LEVEL i

Windows
Section 2

rmb 1 counter temp
rmb 1
rmb 2 offset to buffer in block

rmb x windentries: base=1290

* Window Entry: ($40 each)

~-10 W.
-0E
~0D
~-0B
~-09
-07
-05
-03
~02
-01
00

(17:Y
0B
oc
OE
OF
10
11
12
14
16
18
19
1B
1D
1F

24
26
28
2A

org -$10

screen table ptr
back wind# link
screen logical start
CPX, CPY

SZX, SzY

X,y sizes?

cursor address

sty marker byte

X byte cnt (cwarea)
cwarea temp
bytes/row
fore/back prn
def attr byte FUTTTBEBB
char bsw bits: (default=$89)
80 TChr
40 Under
20 Bold
10 Prop
08 Scale
04 Invers
02 NoCurs
01 Protect
LSET #
GRP for font
font offset
GRP for PSET
pset offset?
LCD mode
overlay grp
overlay offset
ptr to grfdrv LSET table
vector (1lFDE/1FF4)
gcursor BFN
gcursor offset
max X coord (0-79,0-639)
max Y coord (etc txt/gfx)
BLength
grp/offset for next gpload
screen logical start default
cpx,cpy defaults
sSzx,szy
reserved

1e88ddddiggadggidd

sEdigddigagcdiaid

ANNNWNHNNMNNMNENMNNNNERERNDENDERE

2888

4-2-4

00
01
02
04
05
06
07
08
10

00
01
03
05

1D
1E
1F
21
22
23

26

28
29

27
2B
2C
2D
2F
31
33
34

INSIDE 0S9 LEVEL 1l

* Screen Table:

S. rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb

* Gfx Table (32 of 18 bytes each) pt'd to by .75-6

RO RBRERFENRPR

Windows
Section 2

($20 each)

sty marker

first block # (used flag)
screen logical start
bytes/row

border prn

foregnd prn (software border)
backgnd prn

6 palette regs (0ORGBRGB)

rmb 1

rmb 2 BX of graphics cursor
rmb 2 BY

rmb 13

* Internal Screen TYpe marker byte:
* User STY =>Mark

FF
00
05
06
07
08
02
01

FF current screen
FF current screen
01 640 two color
02 320 four

03 640 four

04 320 sixteen

85 80 col

86 40 col

* Device Memory:

rmb
V. rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb

rmb
rmb

rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb

— NP RPERPENRRG

=

HERENDNDN P&

.SCF
O0=window, 2=vdg, 4=2? , 6=grfdrv

parity, baud (also char temp)
case flag

keysns enable

screen change flag

keybd ssig id,signal

mouse ssig id,signal

SS.Mouse (X):

init'd to $00 mouse sample rate
init'd to $78 mouse fire timeout
SS.Mouse (Y):

mouse to use

parm cnt

parm vector

ptr to parms start

ptr to next parm storage

last char read buff offset

next char read

4-2-5

35
36
37
38
51
80

2C
2D
2E
2F
30
31
32
33

35

00
01
03
04

07
09
0B
ocC
oD
OE
oF
10

00
02
04
06
08
oa
oC
OE
10
12
14
16
18
ia

*

INSIDE 0S9 LEVEL Il

rmb
rmb
rmb
rmb
rmb

rmb

1
1
1
X
x
$

Windows
Section 2

window entry number

dwnum from descriptor
internal comod call number
parm storage

80 read buffer

* Device Descriptor:

DXSiz
DYSiz
DWNum
DWIni
DSTyp
DXPos
DYPos
DFCol
DBCol
DBord

* -

SEESEE

e s

rmb
rmb
rmb

S2X

szy

window number

0=no defaults, l=use defaults
STY

CPX

CPY

Foregnd PRN

Backgnd PRN

Border PRN

*

Get/Put Buffer Header ($20 each?):

B.Block rmb 1 block link
B.Offset rmb 2 offset in block
B.Grp rmb 1 group number
B.Bfn rmb 1 buffer number
B.Len rmb 2 BL length
B.XDots rmb 2 # x dots in char
B.YDots rmb 2 # y dots in char
B.RowsC rmb 1 # rows in char

rmb 1

rmb 1
B.STyp rmb 1 sty marker byte
B.BlkSiz rmb 1 number of blocks

rmb $10 reserved

data

* e ———— — —————— e, —————————— e ——————
* Internal GrfDrv Call Numbers (from Grfint)
What Escape # What Escape
Init 2C DEFGB 29
Terminate 2E KILLBUF 2A
DWSET 20 30 GPLOAD 2B
DWPROTSW 36 32 Move buffer
DWEND 24 34 GETBLK 2C
OWSET 22 36 PUTBLK 2D
OWEND 23 38 Map GP Buffer
CWAREA 3A Alpha put
SELECT 21 3C Control codes
PSET 2E 3E 05 xx cursor calls
BORDER 34 40 1F codes
PALET 31 42 Goto xy
FONT 3A 44 PUTGC 4E
GCSET 39 46 Set Window

4-2-6

1cC
1E
20
22

26
28
2A

DEFCOLR
LSET
FCOLOR
BCOLOR
TCHRSW
PROPSW
SCALE
BOLD

*

INSIDE 0S9 LEVEL Ii

30
2F
32
33
3C
3F
35
3D

Windows
Section 2

48
4A
4AC
4FE
50
52
54
56

POINT
LINE
BOX
BAR
CIRCLE
ELLIPS
ARC
FFILL

42,43
44-47
48,49
417, 4B
50
51
52,53
4F

4-2-7

INSIDE 0S9 LEVEL 1l

Windows
Section 3

CHARACTER FONTS -
‘by Chris Babcock

Each font has a maximum size of $400 bytes.

The first $100 bytes are broken up and scattered around in the area $80 to $FF.

The next $300 bytes contain the definitions for the area $20 to $7F.

Each character is represented by 8 bytes. If the bit is 1 the pixel will be set and if it is O the pixel

will not be set (as you would expect.) The graphic mode is always interpreted as mode five for the
fonts.

The font color is the foreground palette. This means the font can not be more than two colors, the
foreground palette and the background palette for the on/off conditions of the bits.

A font always uses exactly 8 scan lines per character row. The number of pixels across per
character can be either 6 or 8. Using a size of six allows up to 53 characters across in 40 column
graphic windows and 106 in 80 column graphic windows. Eight pixels allow 40 or 80 in the
corresponding graphic

windows.

The following is the breakup of the file:

Position in file Character codes represented

30000 -~ S$OOCF $C1-S$DA and $E1-SFA stored here
$00D0 - S$OOFF SAA-SAF and $BA-S$BF stored here
$0100 - SO3FF $20~$7F stored in this area

$0170 — $0177 (S2E) $A0-SA9 $BO0-SB9 S$CO S$DB $EO SFB-SFF

Note: All the above reference $2E ('.')

Proportional spacing uses a different method of putting characters on the screen. The 8 bytes are
checked to find the range of bits used. Then a blank bit is added to the range at the end. This range
is used as the character. The driver is not smart enough to do a proper backspace; it always uses a
backspace of the number of pixels selected when the buffer was loaded. A text graphic example of
this is below using the word "Mistake."

4-3-1

INSIDE 0S9 LEVEL I

Windows
Section 3

Normal:

76543210765432107654321076543210765432107654321076543210

X X X

XX XX X X

XXX X XXXXX XXXXX XXX X X XXXX
X XX X X X X X X X X
X X X XXXX X X X XX XXXXXX
X X X X X X X X XX X

X X X XXXXX X XXX X X X XXXX

Proportional:

76543210765432107654321076543210765432107654321076543210

X X X

XX XX X X

X X X X XXXXX XXXXX XXX X X XXXX
XXX X X X X XX X X
X X X XXXX X X X XX XXXXXX
X X X X XXX X XX X

X X X

XXXXX X XXX X X X XXXX

The transparent character option causes only the set bits to be placed on the screen. Bits already set
are not removed from the screen as they would be without this option selected. Using this mode
allows the text to overlay graphics on the screen without erasing the character block area.

If moving the cursor, change to fonts you're going to use before moving, otherwise the cursor
ends up one line down. Unless you're going from 6-6 or 8-8, then okay.

Note that fonts don't have to be real text. You could for example, set up a font of small objects.
The ROGUE game uses special fonts to represent people, gold, trapdoors, etc.

4-3-2

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056

0001
0000
0000
001B
000B
0001
0002
0000
0004

00F0
0001
0080
0001
0002
0000

0000

000D
000E
000F
0011
0012

0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F

INSIDE 0S9 LEVEL I

Windows
Section 4

nam Window Descriptor - CC3 LII
ttl INSIDE 0S9 LEVEL II

SRC for /W1-W9

roll your own descriptors

1st version -24Jan87

Copyright 1987 by Kevin Darling

* * * *

*

Change these to make a new /Wx descriptor:
(only "window" need really be changed)

For Window numbers great than 9, you must
manually set the dnam at the end.

The following is just a sample...

* %% * * *

window set 1 the window number

cpx set 0 begin col

cpy set 0 being row

cols set 27 number cols

rOows set 11 number rows

mode set 1 (1=40 col text, 2=80 col text,
fore set 2 foregnd and cursor palettes
back set 0 backgnd palette

bord set 4 border palette

* cols should be <= the mode maximum.
* fore+8 is actual foregnd palette, fore is cursor.

devic equ S$FO quicker than defsfile
objct equ $01
reent equ $80
READ equ 501
WRIT. equ $02
DT.SCF equ 0
87CD0044 mod len,dnam, devic+obijct, reent+l,mgr,drv
03 fcb READ.+WRIT. device mode
07 fcb $07
FFAl fdb $FFAO0+window port address
1A fcb opts-*-1 option byte count
00 fcb DT.SCF device type
00 fcb 0 case=upper and lower
01 fcb 1 backspace mode
00 fcb 0 delete mode
01 fcb 1 echo on
01 fcb 1 auto line feed on
00 fcb 0 no nulls after cr
00 fcb 0 no pause
18 fcb 24 lines per page default (MW)
08 fcb $08 backspace char
18 fcb $18 delete line char
0D fcb $0D end of record char
1B fcb $1B end of file char
04 fcb $04 reprint line char

4-4-1

INSIDE 0S9 LEVEL Il

Windows

Section 4
00057 0020 01 fcb $01 dup last line char
00058 0021 17 fcb 517 pause char
00059 0022 03 fcb 503 interrupt character
00060 0023 05 fcb 505 quit character
00061 0024 08 fcb 508 backspace echo char
00062 0025 07 fcb 507 line overflow char
00063 0026 80 fcb 580 type=window
00064 0027 00 fcb 500 baud
00065 0028 0036 fdb dnam echo device
00066 002A 00 fcb $00 xon character
00067 002B 00 fcb $00 xoff character
00068 002cC opts equ * End of Path Desc Options
00069
00070 002C 1B fcb cols
00071 002D OB fcb rows
00072 002E 01 fcb window window #
00073 002F 01 fcb 1 use defaults option
00074 0030 01 fcb mode
00075 0031 00 fcb Ccpx
00076 0032 00 fcb cpy
00077 0033 02 fcb fore forgnd and cursor palette
00078 0034 00 fcb back backgnd palette
00079 0035 04 fcb bord border palette
00080
00081 0036 576E dnam fcec "Wn"
00082 0038 Bl fcb $BO+window
00083 0039 5343Ce mgr fcs "SCE" file manager
00084 003C 43433349 drv fcs "CC3I10" driver
00085
00086 0041 3EF9CA emod
00087 0044 len equ *
00088 end

00000 error(s)

00000 warning(s)

$0044 00068 program bytes generated
$0000 00000 data bytes allocated
$0160 00352 bytes used for symbols

0000 S BACK 0004 S BORD 001B S COLS 0000 s CPX 0000 s CPY

00F0 E DEVIC 0036 L DNAM 003C L DRV 0000 E DT.SCF 0002 S FORE
0044 E LEN 0039 L MGR 0001 S MODE 0001 E OBJCT 002C E QPTS
0001 E READ. 0080 E REENT 000B S ROWS 0001 S WINDOW 0002 E WRIT.

4-4-2

INSIDE 0S9 LEVEL I

Windows
Section 4

These are the Tandy-supplied options:
(in same order as descriptor)

OPTION W Wl W2 W3 W4 W5 We W7
cols 00 1B 0C 28 3C 13 50 50
rows 00 OB OB OC OB OB 0OC 18
wind# FF 01 02 03 04 05 06 07
deflt 00 01 01 01 01 01 01 01
mode 00 01 FF FF 02 FF FF 02
CcpxX 00 00 1Cc 00 00 3D 00 00
cpy 00 00 00 oOC 00 00 OC OO0
fore 00 02 00 02 00 02 02 00
back 00 00 01 07 01 07 00 01
bord 00 04 01 01 04 04 04 01

Note that a descriptor with TYPE=1 is a VDG
window instead of these (TYPE=80).

4-4-3

INSIDE OS9 LEVEL i

Miscellaneous

SHELL

INSIDE 0S9 LEVEL |1l

Miscellaneous
Section 1

INFORMATION

CoCo-3 Level Two has a new shell, derived from the original that was used before for both L-1
and L-II systems. The changes made were done mostly because of windows and our 8K blocks.

To the user, there are four main new features:
. The ability to redirect multiple paths to the same file, using the <>, <>>, <>>>, >>> options.

. The usage of a path number as a device reference: that is, you can redirect a command's standard

input, output or error to the current in/out/err paths. To do this, you use the pseudo device names
"/0, /1, or /2".

The main use that you'll see of this is inside shell script files. An example should be in your
Startup file, where you'll find "setime </1" instead of "setime </term" like you're used to seeing.
Since path 1 (standard output) is still the device that you're viewing, the effect is the same, but
now the same Setime script will also work with say, an external terminal. This feature gives you
more flexiblility and less hard-coding of device names. '

. The "i=/devicename" option. This is known as the immortal option. What it does is open all three
standard paths to the device named, and sets a flag in the shell's data area.

The flag indicates that the shell should not end operations on an End-of-File. This is needed
because CC3GO would have no idea where to restart a shell, unlike the older SysGo which could
pretty well assume /TERM.

This also provides a quick and dirty tsmon-like way to use an external terminal without it dying on
you. Just use something like "shell i=/T2 &" to keep a shell on /T2. You could also have done
"shell <>>>/t2", but that one could die on an EOF.

A related new feature is that if a new shell starts up but gets back an error printing "Shell", then it
does die. This might happen if you start a shell and the open-window call fails. The reason is to
keep from having phantom shells laying about with no paths open... they'd be impossible to kill.

. The ability to send special shell characters as parameters. Before, if you tried an: echo hello! ,
the shell would send 'hello’ (without the quotes) to echo, but then take the '!" and try to pipe to the
next command, which wasn't there of course.

Now, you can type: echo "hello!" , and what echo gets and prints out is: "hello!", but including
the quote marks, unfortunately.

A SMALL PROBLEM

As seen in the flowchart, if the shell can't find a program in memory, it tries reading it's header
from the current execution directory. If that fails, it tries to use a file from the data directory as a
shell script for a new shell.

5-1-1

INSIDE 0S9 LEVEL |l

Miscellaneous
Section 1

The older shells would first F$Link a module into it's own map to get the header information
needed for a F$Fork of the new process. Unfortunately, with our 8K blocks, it's possible that this
link might fail because the new program was too large to fit in the blocks left in a shell's map
(normally 5 under ver 2.00.01).

The new L-1I shell uses two new OS9 system calls to get around this: FESNMLink and F$NMLoad,
both of which do NOT link a module into the caller's map, but instead just return some information
from the module's header (like Data Size).

To keep the module link count straight, the shell also does an F$UnLoad, which uses a module's
NAME to call unlink.

This is fine. A minor problem can occur, though, if the name of the module that shell wants to
unload differs from the module's real name. This can happen if, for example, you had the Ident
command on your disk under the filename "Id". What would happen is that when you typed "id",
the shell would end up F$NMLoad'ing Ident from your commands directory and executing it. This

is normal. But then shell would try to Unload "id", as that's the name it saved from the command
line.

The net effect is that Ident would stay linked in the module directory until you manually unlinked
it.

Another way this could occur is if you used a partial or full pathname. Examples: "/d1/cmds/bob"

or" ../bob". In neither case will the F$Unload call work since those "names" do not match any in
memory.

As I'said, this is minor, and the shell can be rewritten someday to also read in the real name after it
reads the header from disk. I suspect a later version will have this. The point is that you should be
aware of this and so not be surprised.

KILLING WINDOW PROCESSES

While we're on the shell, I want to bring up another "gotcha" that makes perfect OS9 sense, but
that still took a while to figure out.

Let's say that you began with a shell on TERM. Then you started one on W2 with "shell i=/w1&"
and you went over to that one. Now you start another one with "shell i=/w7&" and then moved
back to the original TERM window.

There let's say that you kill the shell on W7. You do a Procs and that shell continues to show up
with an error 228.

The "gotcha" is that the shell on W1 was the parent of the dead W7 shell, and until you go to W1
and hit a key, the dead shell can't get thru to W1 to report it's death.

A similar thing can bite you worse. If you had started a process on W7 using the same method and

it dies while you're doing something important (like editing a file) on the parent's window (W1),
then you'll be confused by the death message popping up in the middle of your session.

5-1-2

MISC

INSIDE 0S9 LEVEL Hi

Miscellaneous
Section 1

Now this quirk has been around OS9 forever, but unless you used a lot of terminals, it didn't
matter too much. With many windows now, it becomes more important and aggravating.

The partial solution that I use is to always start all my shells on other windows from my first
window. That way, I at least know where their deaths will show up (-005 etc). This would go for
any program I wanted to run in the bacground mostly unseen (using "&").

Typing "w" <enter> on the parent shell's window after killing a child is another good idea, as that
causes that shell to Wait for the death report without messing up your screen.

Just wanted to add a couple of things about the shell that don't seem to be well-documented.

Many people falsely assume that "OS9" recognizes that a module is, say, a Basic09 packed I-Code
procedure and so "OS9" calls up RUNB to execute it. The truth is that this is all done by the Shell.
Trying to fork an I-Code module from a machine language program would fail unless you yourself
specified the module as a parameter to RUNB and forked RUNB.

The other small point is that using parenthesis starts a sub-shell. For example, the command " (((

echo hi; sleep 500))) " would cause 3 sub-shells to be formed, each calling the next. Try this
sometime with a Procs command running on another window so you can see all the shells formed.

5-1-3

INSIDE 0S9 LEVEL I

Miscellaneous

Section 1
SHELL Flowchart SHELL
1 Data Area:
Clear vars redirected pths
Set signal intercept #pages
Store parm size pathname ptr
.<~-y (parm size=0?) parm size
1 Gosub DOCMD parm ptr
1 (end of parms?) y--—--—-- >END mem for mod
11— >1 this char
Print 'Shell’ '(' count
amm——— >1 signal storage
1 Print '0S9°' P flag
1 ISReadline T
1 (end of file?) y—-——-—-——~ >END X
1 1< . Setpr ID #
1 (-X flag?) 1 19 byte buff
1<-- Print err msg 1 input buffer
1 (-T flag?) 1
1 Echo in to #2 1
1 Gosub DOCMD 1
1<--n (error?) y-—-—--— >1
* DOCMD SUB *
1
Exec W, *,CHD,CHX,EX,KILL,X,P,T,SETPR, ;
Find ()'s
Exec & , ! ; # < > >>
Start Process
Undo redirection
Wait if required
RTS
* START PROCESS *
1
Link to name err————————-— >.
Unlink 1
1 Open xfile err—-———--——--— >.
1 Read hdr 1
1 Close file 1
1< e 1 1
.<~-y (M/L code?) Cmd = 'Shell
1 Else find lang (Runb, PascalSs) < name’
1 Cmd=lang, parm=name 1
l--————- >1< - e 1

Link to cmd/language
Load if necessary

Set mem size

F$fork

F$sleep 1

F$Sunload cmd name
RTS

5-1-4

INSIDE 0S9 LEVEL 1l

Miscellaneous
Section 2

This section is not really needed any more, as L-II will be out by the time this gets published.
However, for those those who are getting started with L-II by way of the Tandy game disk
"Rogue" cat # 26-3297,

- USING Rogue TO MAKE A SYSTEM DISK:

1- under L-I, format a disk.
2—- 089gen that disk using the 0S9boot file on Rogue *.
3—- copy over CMDS dir with grfdrv and shell **.
4- drop back to RSDOS and copy over the L-II kernal with:
5 REM Rogue in drive 0, new disk in drive 1.
10 CLEAR 10000
20 FOR SE = 1 TO 18
30 DSKIS$ 0,34,SE,AS$,BS
40 DSKO$ 1,34,SE,AS$,BS
50 NEXT SE

* LR Tech owners may include their driver and desc after copying the new "shell” file and
"grfdrv" to it, OR after changing the desc name from "HO" to something else so that the bootup
gets shell/grfdrv from the floppy. Then CHX /HO/CMDS.

You should also change the HO desc byte at $OE from $FF to $07 and reverify that module. That's
the extended device address.

** You may include other utilities merged into the Rogue shell file (do an ident on it first!), to be
included at startup. The total length of your shell file should be under $1E0O long.

You MUST have Grfdrv and Shell in your CMDS dir. They must also have the "e" attribute set on
the files.

Since L-II will map in the entire block of cmds loaded in a file, you should try to keep things on an
n*8K+(8K-512) boundary.

Your L-I mfree, mdir, and procs will NOT work.
PRINTER will work if you change the baud rate to 1/2 before.
One other thing: do NOT unlink Shell in memory. Crash-o!
. MAKING WINDOWS:
Examples are also in Rogue's MAKE40, MAKE80, MAKEGW shell files.
However, because Rogue does not include the W, and W1-W7 device descriptors, you cannot

make more than one window or screen of windows with it. Solution: make a set of window
descriptors using the source code elsewhere in this text.

5-2-1

INSIDE 0S9 LEVEL I

Miscellaneous
Section 2

Don't worry too much about the default size and palettes, you can send the escape codes to
override them anyway. Example:

iniz wl (if you have iniz cmd)

display 1b 20 2 0 0 30 c 9 0 1 >/wl

shell i=/wl &

(now hit the CLEAR key: you should flip to that screen)

Read the Sept 86 RAINBOW article on windows, plus try out the later examples they give if you
have 512K.

]
Be aware that your CLEAR and @ keys are no longer the same as the CTRL and ALT keys!

5-2-2

INSIDE 0S9 LEVEL I

Miscellaneous
Section 3

BUGS - SOFTWARE

Level Two for the CoCo-3 has gone through many revisions, and most of the bugs have been
ironed out over the months. What are left in version 2.00.01 are relatively minor. Not all are listed
here. Check the electronic forums for recent updates.

MODULE: Clock
PROBLEM: Bad error code return.
SPECIFICS: Somebody left the '#' sign off of a LDB #ES$error.

SOLUTION: Patch and reverify.

Offset Old New
0191 D6 Cé6

MODULE: IOMan

PROBLEM: Sorts queues wrong.

SPECIFICS: Change first made in L-I 2.0 to insert processes in I/O queues according to priority.
Used wrong register.

SOLUTION: Patch and reverify.

Offset Old New
09A6 10 12
09A7 A3 El

MODULE: GrfDrv
PROBLEM: Non-efficient use of screen memory.
SPECIFICS: Opening a 40 column screen should use the last 2K of an 8K screen block if it's free

for use. However, apparently a bad Def was used in MW's source code and GrfDrv cannot match
an internal code as a 40 column screen.

SOLUTION: Patch and reverify.

Offset Old New
033A 84 86

MODULE: IOMan

PROBLEM: Cannot have more than one VIRQ device at a time.

SPECIFICS: While Clock gets the size of the VIRQ table from the Init module (as it should),
IOMan has a different size hard-coded in. Clock inserts the first entry at the front of the VIRQ
table, but the next call starts searching at the end of the table...which turns out to usually be the
header of the first module in your bootfile. Symptoms: if your disk drive is still going (waiting for
motor time-out), you cannot Iniz a ModPak device. Or, if you Iniz a ModPak device, your drives
will never shut off.

SOLUTION: Easiest patch is to the INIT Module, to change the
number of IRQ/VIRQ devices down from 15 to say, 12.

Offset Old New
000C OF 0C

5-3-1

INSIDE 0S9 LEVEL II

Miscellaneous
Section 3

MODULE: CC310

PROBLEM: SS.Montr getstat call bad.

SPECIFICS: Although the manual doesn't mention it, CC3IO also supports getting the current
monitor type set by montype. The value (0,1,2) is returned in the X register. The code in CC310
should have been a STD R$X instead of STB R$X though.

SOLUTION: Patch and reverify.

Offset Old New
07D2 E7 ED

BUGS - HARDWARE

The GIME chip itself, on many machines, has problems with map changes causing "snow" on the
screen, horizontal scrolling difficulties, and a few other items.

The most basic problem is one of bus-timing, and a fix is expected soon from Tandy. This is all
can say right now.

The Speech/Sound Cartridge, because it uses the clock signals generated from the 6809E, is driven
too fast at the 2MHz speed of L-II to operate correctly. This is also true of several third-party
interfaces and ramdisk paks.

Information on hacking the SSC can be had on the electronic forums. Users of other gear should
contact their suppliers for updates or patches to their hardware.

Many of us with the original Tandy floppy disk controllers have found that they simply cannot
handle the 2Mhz speed. There are two things you can do about this.

You can try replacing the Floppy Disk Controller chip or data separator chips, and hope you
bought a faster part than before. Or you can opt for one of the third-party controllers.

Both Disto and J&M controllers seem to work fine so far. The newer, the better, seems to be the
rule of thumb.

As far as hard disk set-ups go, the ones at this time that I know will work at 2MHz is the LR Tech
from Owlware, FHL's QT CoCo, and perhaps the J&M.

5-3-2

INSIDE 0S9 LEVEL I

Miscellaneous
Section 3

BUGS - MANUAL

At the last moment before this went to press, several people with Level Two called to ask about
some mistakes in the manual. I won't point out the ones like misspellings, just the ones that might
confuse you.

SUBJECT: Creating GFX Windows
SECTION: BASIC09 Reference
PAGE: 9-37

Here they tell you how to create a graphics window, but show the "merge sys/stdfonts >/w1"
AFTER the wcreate. Nope. All you get is dots on the screen. You must merge stdfonts BEFORE
opening any gfx windows, unless you care to do a FONT command to that window after merging.
They had it correctly on the page before (9-35) about merging so that you can type later.

SUBIJECT: F$FORK, FSLINK, FSLOAD, ISCREATE, ISMAKDIR, ISOPEN
SECTION: OS9 Tech Reference
PAGE: 8-16, 8-23, 8-26, 8-49, 8-56, 8-58

On all of these, after the call X should be pointing to the $0D (carriage return) at the end of the
string.

SUBJECT: F$FORK
SECTION: OS9 Tech Reference
PAGE: 8-15

The Y register contains the parameter area size in BYTES, not in pages.

SUBJECT: F$TIME
SECTION: OS9 Tech Reference
PAGE: 8-40

To be exact, on exit X points to the time packet returned to the area at (X) that you had originally
passed for the call.

SUBJECT: I$SDELETE
SECTION: OS9 Tech Reference
PAGE: 8-50

On return, X should be pointing to the beginning of "MEMO".

5-3-3

INSIDE 0S9 LEVEL 1

Miscellaneous
Section 3

SUBIJECT: FSALARM
SECTION: OS9 Tech Reference
PAGE: 8-66

F$Alarm is a user call, too. And they left out how to use it. Here's the info:

This call has several variations, which have to do with setting time variables that the Clock module
will try to match once a second. You may clear the alarm setting, read it, or set it for one of two
exclusive actions.

D = 0000 : clear the setting

X = ptr to 5-byte time packet (YYMMDDHHMM)
D = 0001 : cause the CC3IO "beep" for 16 seconds
after the time packet sent matches system time.

X = ptr to spot for time packet return

D = 0002

X < current alarm setting packet returned
D < current proc id and signal pending

X = ptr to 5-byte time packet (Y YMMDDHHMM)
A = proc id to signal on time match
B = signal to send on time match

SUBJECT: F$DATLOG
SECTION: OS9 Tech Reference
PAGE: 8-78

Actually, not a bad example, but only if you're running on a machine with 4K blocks. On the
CoCo-3, Ouput X = $4329. The actual code just multiplies B*$2000 and adds it to X.

SUBIJECT: SS.RDY
SECTION: OS9 Tech Reference
PAGE: 8-113

On devices that support it, the B register will return the number of characters that are ready to be
read. Both CC3I0 and ACIAPAK support this feature.

SUBJECT: SS.MOUSE
SECTION: OS9 Tech Reference
PAGE: 8-125 on

Somebody forgot the two reserved bytes between Pt. ToTm and Pt.TTTo. As printed, offsets after
ToTm are wrong. So insert a "rmb 2 - reserved" after Pt. ToTm.
Also ignore the system use note at the end after Pt.Siz.

5-3-4

INSIDE 0S9 LEVEL I

Miscellaneous
Section 3

SUBJECT: SS.DSCRN
SECTION: OS9 Tech Reference
PAGE: 8-143

Il
i

Also, if you specify screen number zero (Y=0000), then you will return to the normal VDG
(32x16) screen. This should be done before a SS.FScm if you wish to return to a text screen.

SUBJECT: INSIDE OS9 LEVEL II BOOK
SECTION: All
PAGES : Many

This is such a great book that the minor errors can be explained by the authors desire to get the
information out to you quickly. You should send them lots of money and good wishes. By the
way, this portion of the book is being written very close to April 1st.

PS The word 'them' in the second sentence should be changed to FHL.

PPS Remember it's real close to April 1st.

5-3-5

INSIDE 0S9 LEVEL Il

Miscellaneous
Section 4

FONT CONVERSION

This is an RSDOS program from Chris Babcock that converts Graphicom-II font files to the format
required by OS9. After conversion, you must copy the file over to an OS9 disk.

You must also specify the group/buffer numbers that you will later use to access the font using the
FONT commands. We've been personally using group DO, and buffers 1-8 or so.

10 CLEAR 500, &H7B00:POKE&HI95CY, &H17 : POKE&HFF22, PEEK (§HFF22) OR&H10:CLS:PRINT"Graphi
com II Font to 0S5-9 Font Copyright 1987 by Chris babcock - Program for Coco 3"
20DATA141,83,134,27,141,59,134,43,141,55,182,14,0,141,50,182,14,1,141,45,134,5,141
,41,204,0,8,141,46,141,44,204,4,0,141,39,79,16,142,1,0,141,22,49,63,38,250,142,124,
0,16,142,3,0,236,129,141,17,49,62, 38

30 DATA 248,126,164,45,141,28,38,3,126,206,217,126,207,181,141,18,38,3,126,206,215,
126,207,179,141,8,38,3,126,201,86,126,202,4,52,2,182,193,66,129,48,53,130

40 FOR I=&HE(04 TO &HE04+103:READ DT:POKE I,DT:NEXT

50 PRINT"What is the filename of the font (Maximum 8 Chars. Ext is

"+CHRS (34) +"SET"+CHRS$ (34)+") ":PRINT"Use #:FILENAME if other drive.™

60 LINEINPUT"”;";F$:PRINT@235,".SET"+CHRS$ (13) :F$=LEFTS$(F$,10)+".SET"

70 PRINT"New filename for the font (Maximum 8 Chars. Ext is

"+CHRS (34) +"0S9"+CHRS (34)+") ":PRINT"Do NOT enter a drive # now."

80 LINEINPUT":";G$:PRINT@393,".0S9":G$=LEFTS(GS$,8) :G$=GS$S+STRINGS (8-

LEN (G$),32) +"0s9"

90 INPUT"Drive number for 05-9 file";D

100 LOADM F$

110 CLS:PRINT"Group number for the 0S-9 Font (Give in hexadecimal 00-

FF) " :LINEINPUT":" ;GRS

120 GR=VAL("&H"+GR$) : IF GR<0 OR GR>255 THEN 110

130 PRINT"Buffer/Font number (Hex also)":LINEINPUT":";BFS$

140 BF=VAL("&H"+BFS$) :IF BF<0 OR BF>255 THEN PRINT@96,"™"; :GOTO 130

150 POKE&HEB,D:POKE&HO95A,D

160 POKE&HEOO,GR:PQKE&HEOl,BF

170 X=&H94C:FOR I=1 TO 11:POKE X,ASC(MIDS$(GS$,I,1)) :X=X+1:NEXT
I:POKE&H957,1:POKE&H958,0

180 PRINT"Saving..."

190 EXEC&HEO04

200 CLS:PRINT"Use XCOPY or TRSCOPY to move thefile over to an 0S-9 Level IT disk.
MERGE the file and type DISPLAY 1B 3A GROUP BUFFER <cr>"

210 END

5-4-1

INSIDE 0S9 LEVEL Il

Miscellaneous
Section 5

TIPS, GOTCHAS, and LAST MINUTE STUFF
Using L-1 VDG Programs

Many of you may want to run programs such as TSEDIT or Steve Bjork's bouncing ball demo
within a L-II screen. Fortunately, Microware provided for this. However, your disk only comes
with one VDG-type descriptor, TERM-VDG.

For programs that don't have "/TERM" hard-coded in them, you can set up a window device as a
VDG screen using the following method (where wX= any window number):

deiniz wX
xmode /wx type=1 pag=16
shell i=/wX &

This will give you another screen that you can flip to, where you can run TSEDIT or other older
programs.

0S9Boots

Under L-1, many of us only loaded drivers and other modules as needed, to save memory. Level
Two acts a bit differently, and your methods must change.

You should put ANY and ALL drivers and descriptors that you plan to use, IN your OS9Boot file.
If you don't, then each time you load a separate driver, you will take up 8K of your 64K system
map... doesn't take more than a couple to really limit the number of tasks or open files that you can
have.

When using OS9Gen or Cobbler to make a new boot disk, be sure that you have a CMDS
directory with a Shell file and the GrfDrv module. The execution attributes should also be set on
these two files. Otherwise, you'll get the dreaded "OS9BOOT FAILED".

Merged Module Files:
If you ident your /DO/CMDS/shell, you'll see that more than one command is included in that file.
The reason is that it pays to get as close to an 8K block boundary as possible, so that you use less
memory. If you separately loaded each of those commands, each would take an 8K block. Even
with 512K, you'd lose memory very quickly.

0S9 will try to fit a block of modules into the upper part of a 64K task map... but remember that
the FEXX page and our I/O is from FEQO-FFFF in all maps. So the ideal size of a merged file is:

(8K * N) - 512 bytes, where N ranges from 1-7)

Actually, N should be kept around 1, if possible. So a Shell file for instance, should ideally be just
under $1E00 long. That's (8K * 1)-512 = $2000-$200 = $1E00.

RUNB is 12K, so it takes up 2 blocks, but you still have room for about 5K of things like syscall,
inkey, gfx2, etc.

5-5-1

INSIDE 0S9 LEVEL I

Miscellaneous
Section 5

To create a new shell file, for example, you might do:

merge shell dir free mdir procs ... etc >newshell
rename shell shell.old; rename newshell shell
attr shell e pe

A "dir e " can tell you the size of merged files or you can print out an Ident of all your commands
and use that as a reference to calculate from.

F$Load from system state:

Requires an extra parameter if done from a driver or other module that will be in the system map.
The U register must point to the process descriptor of the process who's map you want the new
module loaded into. Example for loading module file into the system space:

leax modnam,pc point to name of module to load
1du D.SysPrc get system proc desc pointer
089 F$Load load file "modnam”™ into system map

F$Link from system state:

Will put the module into the map of the current process (D.Proc). It also gets the name (X points to
it) from the D.Proc map. So to link a module into system space, you must "trick" OS9:

1dd D.Proc get current process

pshs d save it

1dd D.SysPrc get system proc desc

std D.Proc make it current proc temporarily
.. (set up link parms)

0S9 F$Link link module(s) into system map
puls d retrieve true user process

std D.Proc and reset as current process

Forking RUNB modules:

Pete Lyall and I just figured this one out, and even though it's fully explainable, it's still a
gotcha...

Let's say that you have a Basic09 I-code (packed) module named "Bob", and it requires 10K of
data area. Typing "bob" from the shell command line causes shell to check Bob's header. There it
finds that Bob needs 10K and also needs RUNB. So the shell effectively does a "runb bob #10k".
Fine.

But! If you have the need to fork "RUNB BOB" from within a m/l program and don't know what
data size Bob (or any I-code module) needs, you'll probably try just using a F$Fork RUNB with
Bob as a parameter - which will fail because RUNB's header only has a default data size required
of 4K (possibly 8K for

CoCo-3). And 4K isn't enough for Runb to use Bob.

(note: just doing a "runb bob" from the shell cmd line would fail, too)

5-5-2

INSIDE 0S9 LEVEL 1l

Miscellaneous
Section 5

Moral is that you should either check an I-code's header yourself, or you could instead do a
"F$Fork Shell bob" and let shell handle everything.

Using L-I Debug on Level Two:

There is no debug included on the L-II disk set. It will be on the Developer's Pak disk. In the
meantime, if you can't use Modpatch for what you need to do, you can partially patch your current
debug to at least let you modify modules in memory.

Debug will link to a module, but does so just to get the module address. It immediately unlinks the
same module to keep the system link count correct. Under L-I, this means that the module is
mapped into debug's space, then mapped out right after that.

As debug is now, you CAN use it on any modules that were in your bootfile, but that's because
those cannot be unlinked. To debug other loaded modules, you have to change debug while under
Level ONE:

Offset Old New
06CC 10 12 this changes F$Unlinks to NOP's
06CD 3F 12
06CE 02 12

06D0 10 12 " "
06D1 3F 12
06D2 02 12

Then save it and reverify, of course. The only gotcha now is that since modules are not unlinked at
all, then if you try debugging all sorts of modules at one time, you could get an error #207 from
the debug map getting filled up. No problem, just Quit and enter Debug again.

Login 1l Patch

This patch will allow you to use your level I LOGIN' command (which currently crashes on a
level II system) on a level II system. It corrects the code so that it uses the F$suser call instead of
trying to manipulate the system's direct page, which is inaccessible under level II for writing (in
USER mode). This patch is a joint effort of Kent Meyers and Pete Lyall.

display c
t
* LOGIN2.DBG ~ A patch script by Pete Lyall
*
* This is a shell procedure to use DEBUG to patch the LOGIN
* command for use on a Level II 0S9 system. Note: If you HAVE
* NOT already patched your DEBUG command for use on a level II
* gystem then either do THAT first, or run this script on a
* LEVEL I system where DEBUG will work.
*
*
-t
tmode .1 -pause
load login
debug
1 login

5-5-3

INSIDE 0S9 LEVEL Il

Miscellaneous
Section 5

. .+52
=49

=20

=32

1 login
. .+57
=30

1 login
. .+ba
=31

1 login
. .+69
=49

=20

=32

1 Jogin
. .+6e
=30

1 login
. .+71
=31

1 login
. .+234
=1f

=02

=10

=3f

=l1c

=12

1 login
. .+4%
=66

=15

=73

q

save login.II login
display ¢

The patch is completed.
Now simply UNLINK LOGIN until it is out of memory

The updated LOGIN command has been saved as 'login.ii' in
the current directory.

To use it, simply copy it to a LEVEL II disk's CMDS
directory and rename it to 'login'. Also ensure that all
the attributes are set properly for execution.

% % % %k % F % ¥ * % % »Ct

Enjoy!

5-5-4

INSIDE OS9 LEVEL Il

Sources

Microware 0S-9
Alarm - INSIDE

00001
00002
00003
00004
00005
0000C6
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
.00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

00000
00000
$0026
$00D2
$00CA

INSIDE 0S9 LEVEL 11
SOURCES
Alarm

Assembler RS Version 01.00.00 03/30/87 00:15:04 Page 001
0S9 LEVEL II

nam Alarm
ttl INSIDE 0S9 LEVEL II
* alarm - test that sets alarm for next minute.
* causes beep from coco sound output for 15 secs.
* just for fun.
* Copyright 1987 by Kevin Darling
0006 FS$Exit equ 6
0015 F$Time equ $15
001E F$Alarm equ $1E
0054 D.Time equ $54
0057 D.Min equ $57
0000 87CD0026 mod len,name, $11,$81,entry,msize
D 0000 time rmb 10
D 000A rmb 200
D 00D2 msize equ .
000D 416C6172 name fcs "Alarm"
0012 01 fcb 1
0013 entry
0013 30C4 leax time,u
0015 103F15 0S89 F$Time
0018 6C1D inc D.Time-D.Min,x next minute (bad on 59)
0012 CC0001 1dd #s0001
001D 103F1lE 0Ss9 FS$SAlarm set alarm time
0020 103F06 0S9 F$Exit
0023 A9F133 emod
0026 len equ *
end
error (s)
warning(s)

00038 program bytes generated
00210 data bytes allocated
00202 bytes used for symbols

0057 E D.MIN

0015 E FSTIME

0054 E D.TIME 0013 L ENTRY 00lE E FSALARM 0006 E FSEXIT
0026 E LEN 00D2 E MSIZE 000D L NAME 0000 D TIME

Page 6-1-1

INSIDE 0S9 LEVEL 11
SOURCES
DMemn

DMEM ~ dmem <block> <offset> [<length>] | dump
dmem -<proc#> <offset> [<length>] ! dump

Dmem writes up to $1000 bytes to standard out, that it has copied over
for you from other maps. If no length is given, it defaults toc 256
($0100) bytes. Examples using data above:

dment 4 0 ! dump
dmem 2 1CA 1AE ! dump
dmem 0 0 1000 >/dl/file

durps first 256 bytes of GrfDrv
dumps CC3Go
file conteins lower sysmem vars

dmem -3 0 20 ! dump : dump first 32 shell data bytes
dmen: -3 EQO00 5FA ! dump : another way of dumping Shell
drem -1 0 1000 >/él/file : file contains lower sysmem vars

Good use of PROC, PMAP, MDIER, and DMEM depends on the data you get
from each. Open a graphics window and recheck the MMAP. Kill a Shell,
and notice the status and signal codes. ILook up the status bits in
your old DEFS file, signal from Error codes. Watch bhow modules get
mapped in usirg PMAP and MDIR.

Figure out system data use by krocking out the blocks you know are in
other use, with PMAP and MMAP.

INSIDE 0S9 LEVEL II
SOURCES

DMem

Microware 0S~9 Assembler RS Version 01.00.00 03/30/87 00:15:20
DMem - INSIDE 0S9 LEVEL

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049

slvlolvlvlvlviwlw)

0000
000D
0011

0006
0018
001B
008A
008C

1000

0000
0002
0003
0005
0007
0008
0208
1208
12D0

0048

001z
0012
0014
0016
0016
0018
001Aa
001C
001lE
0020
0022
0024
0026
0028

II

nam
ttl

DMem
INSIDE 0S9 LEVEL II

* DMEM - display block/mem offset
offset [lenl! dump"
offset [lenl! dump"

* "dmem blk
* "dmnem #id

* 08feb87 -
* 22jan87 -

* Copyright

87CD0136
444D65ED
02

OF00
OF01

A680
8120
272A
810D
2726
8030
810A
2504
8407
8B09

change page offset to byte or id.

version 1

1987 by Kevin Darling

mod
name fcs
fcb

FSExit equ
F$SGPrDsc equ
F$CpyMen equ
1$Write equ
I$writln equ

buffeiz set

acce rmb
input rmb
offset rmb
dlen rmb
id rmb

prcdsc rmb
buffer rab
stack rmb
msize equ

dat equ

hexin
clr
clr

hex(01
lda
cmpa
beq
cmpa
beqg
suba
cmpa
bcs
anda
adda

len,name, $11,$81,entry,msize
"DMem"
2

$06
$18
$1B
$8A
$8C

$1000

= NN =N

512
buffsiz
200

prcdsc+5$40

acc
acc+l

X+

$#$20

hexrts

$#$0D

hexrts

#s$30

#10

hex2 0-
$7 A-
#9

™o

Page 6-2-2

Page 00]

INSIDE 059 LEVEL 1I

SOURCES
DMem

00049 0028 8B09 adda #9

00050 002A hex2

00051 002a 48 asla

00052 002B 48 asla

00053 002C 48 asla

00054 002D 48 asla

00055 002E 9702 sta input

00056 0030 DCOO 1d4d acc get accumulator

00057 0032 0902 rol input

00058 0034 59 rolb

060059 0035 49 rola

00060 0036 0902 rol input

00061 0038 59 rolb

00062 0039 49 rols

00063 003A 0902 rol input

00064 003C 59 rolb

00065 003D 49 rola

00066 O0G3E 0902 rol input

00067 0040 59 rolb

00068 0041 49 rola

00069 0042 DDOO std acc

0007¢C 0044 20DO bra hex01

00071 0046 hexrts

00072 0046 301F leax -1,x

00073 0048 DCOO 144 acc

00074 0042 39 rts

00075

00076 004B entry

00077 004E 1700DA lbsr skipspc skip leading

00078 004E 102700C7 lbeq badnum . was <cr>

00079 0052 812D cmpa #'- else is it #id ?

00080 0054 2617 bne entry0 .. NO

00081

00082 0056 3001 leax 1,x yes, skip '-!

00083 0058 8DRS8 bsr hexin get id number

00084 005A 1F98 tfr b,a

00085 005C 3410 pshs x

00086 005E 30C90008 leax >prcdsc,u

ooo87 0062 103F18 0s9 F$GPrDsc get that proc desc

00088 W 0065 10250053 lbcs error

00089 0069 3510 puls »x

00090 0G6B 2006 bra entryl

00091

00092 006D entry0

00093 006D 8DA3 bsr bexin get block #

00024 006F OF48 clr dat set in feke datimg
" 0009 0071 D749 stb dat+l

00096

00097 0073 entryl

00098 0073 1700B2 lbsr skipspc get offset

00099 0076 1027C09F lbeq badnum

001C0 w 007A 17FF95 lbsr hexin

00101 007D DDO3 std offset

00102

Page 6-2-3

00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117

00118

00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00133

007F
0082
0084
0087
008E
008D
0090
0092
0092
0095
0095

0097
009EB
009D
00AO0
00A2
00A4
00A8
00AB
00AD

00AF
00B2
00B6
00B8
00BB
00BB
00BC
00BC

OOBF
00OBF
00EB
00EC
0118
005A
0119
0119
011D
0121
0123
0126

0128
0128
012A
012C
012E
0130
0132

170076
270E
17FF8B
10831000
2308
CC1000
2003

ccolo00
DDO05

30C90048
1F10
109E05
9EO03
3440
33C90208
103F1E
3540
250D

109E05
30C90208
8601
103F8A

SF
1G3F06

5573653A
oA
206F723A
0D

308DFFA2
108EOOQ5A
8602
103F8C
2093

A680
8120
27FA
301F
810D
39

INSIDE 0S9 LEVEL Il

entry2

entry3

bye

€error

help

helplen
badnum

skipspc

SOURCES
DMem

lbsr skipspc
beq entry?2
lbsr hexin
cmpd #8$1000
bls entry3
144 #$1000
bra entry3
ldad #s0100
std dlen
leax >dat,u
tfr x,d
ldy dlen
1dx offset
pshs u
leau Dbuffer,u
0s9 F$CpyMem
puls u
bcs error
ldy dlen
leax buffer,u
1lda #1
0s9 ISWrite
clrb
0s9 F$Exit
fcc "Use:
fcb $0A
fcc " or:
fcb $0D
equ *-help
leax help,pc
1ldy thelplen
1da #2
0Ss9 ISWritln
bra bye
lda X+
cmpa #$20
beq skipspc
Jeax -1,x
cmpa #S0D
rts

Page 6-2-4

DMem

DMem -<id>

get possible length

D=dat image ptr
Y=count
X=offset within dat image

point within buffer

<block> <offset> [<length>] !

<offset> [<length>] |

00154
00155
00156
00157

0133 979412

0136

INSIDE 0S9 LEVEL Il

len

SOURCES
DMem

emod
equ
end

$0136 00310 program bytes generated
$12D0 04816 data bytes
$0223 00547 bytes used

0000 D
0048 E

0092 L
0018 E
0012 L
0002 D
0008 D

ACC
DAT

ENTRY2
F $GPRDSC
HEXIN
INPUT
PRCDSC

0119 L
0005 D

0095
OOBF
0046
0136
0128

mpee e

allocated

for symbo

BADNUM
DLEN

ENTRY3
HELP
HEXRTS
LEN
SKIPEPC

1s

0208
004B

00BC
005A
008A
12Dp0
1208

"o

Ommmr

*

BUFFER
ENTRY

ERROR
HELPLEN
ISWRITE
MS1ZE
STACK

Page 6-2-5

1000
006D

001B
0016
008C
000D

-0

Stmem

BUFFS12Z
ENTRYO

00BB
0073

F$CPYMEM 0006

HEXO01

002A

ISWRITLN 0007

NAME

0003

BYE
ENTRY1

FSEXIT
HEX2
ID
OFFSET

INSIDE 0S9 LEVEL II
SOURCES
MMap

MMAP ~ Show memory block map, display mfree.
U = used, M = loaded module, . = no RAM, else FREE.
Of course, add at least one free block, since
MMap's using one for data! This is my 128K map:

= = - = = = = = = - - = = = -— =

0 vDvuvumMUMUM _ _ _ _ _ U .

l L - L] - . L . . . - L] - - L] L] L]

2 . L] - L] . L] L] . L L] . L]

3 - . * L L - - . L] L] . * L . L] L‘
Number of Free Blocks: 5

Ram Free in KBytes: 40

Page 6-3-1

INSIDE 0S9 LEVEL II
SOURCES
MMap

Microware 0S-8 Assembler RS Version 01.00.00 03/30/87 00:15:48 Page 001
MMap - INSIDE 0S9 LEVEL II

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
0001z
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00638
00039
00C40
00041
00042
00043
00044
0004=
00046
00047
00048
00049
00050

vRolvivivielolvioRolviv

0006
0019
008A
008C

0000
000D
0011

0400
0000
0001
0004
0005
0006
0007
0aooa
gooc
00CE
000F
040F
04D7

0012
001z
0035
0024
003€
0036
0059
0024

005A
005A
005D
00€1
0063
0067
006A
006E
0072
0075
0077
007A

nam MMap

ttl INSIDE 0S9 LEVEL II
* mmap - memory blockmap for cc3
* 01 feb 87
* Copyright 1987 by Kevin Darling

FSExit eqgu 6
F$GElkMp equ £19
ISWrite equ $8A
ISWritln equ $8C
87CDO1E1 mod len,name,$11,$81,entry,msize
4D4D61F0 name fcs "MMap"
03 fcb 3
buffsiz set 1024
leadfleu rmb 1
number rnb 3
free rmb 1
row rmb 1
spc rmb 1
out rmk 3
mapsiz rmb 2
blksiz rmb 2
blknum rmb 1
buffer rmb buffsiz
stack rmb 200
msize egu .
header
2020202¢ fcc " 0123456789 ABCDEFTF"
0D fcb $0D
hdrlen egu *-~header
hdr2
20232020 fCC " # = == = =T = = T &= =S X o= ooz o= ="
0D fcb S0D
hdrlen2 equ *~hdr?2
entry
1700EF lbsr crtn
308DFFE1 leax header,pc
8601 1da #1
108E0024 1dy #hdrlen
103F8C cse ISWritln
308DFFC(C8 leax hdr2,pc
108E0024 ldy $hdrlen2
103F8A 0S9 Is$write
304F leax buffer,u get block map
103F19 0s9 F$GB1lkMp
1025009R lbcs error

Page 6-3-2

00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
0c104

007E
0080

0082
0084
0086
0088
008A
008C
008C
008E
0090

0092
0094
0097
0099
009D
009F
00Al
00A3
00A6
00A8
00AA
00AC
00AF

00R1
00B1
00B3
00B5
00B7
00B9
00BB
00BD
00OBF
00BF
0oC1
00C3
00C5
00C5
00C7
00C9
00cCo
00CB
00CB
00CD
00CF
00D1
00D3
00D5
00D9

INSIDE 0S9 LEVEL 11

OF0E
O0F04
* std blksiz
* sty mapsiz
304F
8630
9705
8640
3402
loop
A6E4
850F
261F

3410
1700B5
3046
108E0004
9605
9707
0Co05
CC2020
9706
DDO08
8601
103F8A
3510

loop2
E680
270A
2BR12
C502
260A
C655
200C
freeram
C65F
0C04
2006
module
C64D
2002
notram
C62E
put
D767
c620
D708
3410
3047
108E0002
8601

SOURCES
MMap

clr blknum
clr free
leax buffer,u
1da #$30
sta row
l1da $#$40
pshs a
1da /S
bita #S$0OF
bne loop2
pshs x
lbsr crtn
leax spc,u
1dy #4
1lda row
sta out
inc row
ldd $#$2020
sta spc
std out+l
1da #1
0Ss9 ISWrite
puls x
1db P X+
beg freeram
bmi notram
bitb #2
bne module
1db #'0
bra put
1db $#'
inc free
bra put
1db #'M
bra put
1db $'.
stb out
1db $#$20
stb out+l
pshs x
leax out,u
1dy $#2
1da $1

Page 6-3-3

save count

get next block

ram-in-use

not used

module

not ram

0C105
00106
0C107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
0c120
00121
00122
00123
00124
00125
001z6
00127
00128
00129
00130
00131
00132
00133
00134
00135
00126
00137
00138
00139
00140
00141
00142
00143
00144
00145
0Cl4e6
00147
0C148
00149
00150
00151
00152
00153
00154
00155
0C156
00157
06158

W

1)

0ODE
OODE
00EO
00E2
00E6

0OOES8
OOEA
00EC
OCFO
OOF4
O0OF6
0OF9
0OFB
00FC
OOFF

010)

0105
0109
0l0E
G10FE
0110
0112
0113
0116
G118
0118
06119
0119

011C
0018
0134
0018

¢14C
cl4cC
Cl4FE
€150
01c2
0154
01:8
0152
015D

015F
O15F
0161
Cl63
0165
0l6¢
0l€R
016E

103F8A
3510
6AE4
1026FFA6
3502

8D62
8D60
308D002C
108E0018
8601
103F8A
D604

4F
170071
8D4B

308DOO2F
108E0018
8601
103FEA
D604
8608

3D
17005A
8D34

5F
1C3F06
204E756D
20202020

3412
860D
8767
3047
108E0001
8601
1G63F8C
3592

8707
341¢C
3047
108E0001
8601
103F8A
3590

INSIDE 0S9 LEVEL II

bye
error
freensg
freelen
rammsg

ramlen

crtn

print

SOURCES
MMap

0s9 ISWrite
puls x
dec 'S
ibne 1loop
puls a
bsr crtn
bsr crtn
leax freemsg,pc
1dy #freelen
lda #1
0Ss9 ISvirite
1db free
clra
1bsr outdec
bsr crtn
leax rammsg,pc
1ldy #ramlen
lda #1
Cs9 Is$Write
1db free
lda #8
mul
1bsr cutdec
bsr crtn
clrb
0so FSExit
fcc
egu *~freemsg
fcc "
equ *—ranmsg
pshs a,x
lda #s0D
sta out
leax out,u
1ldy #1
lda #1
0s9 IsSWritln
puls a,x,pc
sta out
pshs x
leax out,u
ldy #1
1da #1
cs9 ISWrite
puls x,pc

" Number of Free Blccks:

Page 6-3-4

Ram Free in KBytes:

INSIDE 0S9 LEVEL I1I

SOURCES
MMap

00159
00160 0170 outdec equ * D=number
00161 0170 3041 leax number,u
00162 0172 OF00 clr leadflag
00163 0174 6F84 clr ' X
00164 0176 6F01 clr 1,x
00165 0178 6F02 clr 2,x
00166 017Aa hundred
00167 017A 6C84 inc ' X
00168 017C 830064 subd #100
00169 017F 24F9 bec hundred
00170 0181 C30064 addd #100
00171 0184 ten
00172 0184 6CO1 inc 1,x
00173 0186 83000A subd #10
00174 0189 24F9 bcc ten
00175 018B C3000A addd #10
00176 018E 5C incb
00177 018F E702 stb 2,x
00178 0191 8DO8 bsr printled
00179 0193 8D06 bsr printled
00180
00181 0195 printnum
00182 0195 A680 1da rX+
00183 0197 8B2F adda #$30-1 make ascii
00184 0199 20C4 bra print
00185
00186 019R printled
00187 C19E 0DOO tst leadflag print leading zero?
00188 019D 26F6 bne printnum ..yes
0018&9 019F E684 1db ' X is it zero?
0c190 0121 0CO00 inc leadflag
00191 0123 5A decb
00192 01A4 26EF bne printnum ..o, print zero's
001¢3 01A6 OFO0O0 clr leadflag else surpress
00194 01A8 8620 1da #$20
001¢5 012A 3001 leax 1,x
00196 Cl1AC 20B1 bra print
00197
001¢8 0lAE 42D247 emod
00199 01B1 len equ *
00200 end

Page 6-3-5

INSIDE 0S9 LEVEL II
SOURCES
MMap

00000 error(s)

00003 warning(s)

$01B1 00433 program bytes generated
$04D7 01239 data bytes allocated
$02B9 00697 bytes used for symbols

000E D BLKNUM 000C D BLKSIZ 000OF D BUFFER 0400 S BUFFSIZ 0118 L BYE
014C L CRTN 005A L ENTRY 0119 L ERROR 0006 E FSEXIT 0019 E FSGBLKMP
0004 D FREF 0018 E FREELEN 011C L FREEMSG OOBF L FREERAM 0036 L HDR2
0024 E HDRLEN 0024 F HDRLEN2 0012 L HEADER 017A L HUNDRED O008A E ISWRITE
008C E ISWRITLN 0000 D LEADFLAG OlEl E LEN 008C L LOOP 00Bl1 L LOOP2
000A D MAPSIZ 00C5 L MODULE 04D7 E MSIZE 000D L NAME 00C9 L NOTRAM
0001 D NUMBER 0007 D OUT 017C E OUTDEC 015F L PRINT 019B L PRINTLED
6195 L PRINTNUM OOCE L PUT 0018 E RAMLEN 0134 L RAMMSG 0005 D ROW
0006 D SPC 040F D STACK 0184 L TEN

Page 6-3-6

INSIDE 0S9 LEVEL II
SOURCES
PMap

e e e e T T T e e e N e e A e B A T Ee e B M S e T B T e e T e T T e e e N DS E I I eI e
PR S T S S S S S S T S T N T S S T N S T S T S N TS ST NS T R T RN T T EN T ST =SS

PMAP - Process DAT Image Maps. The best. Shows blocks in use
by processes. Lower is data, top is modules.

Example: block 09 is mapped into $6000-7FFF in the
system dat map. Note that Shell in block 06 (see DIRM
above!) is simply mapped into both procs 2 and 3 at
$EQOOO-FEFF along with any other modules in that block.

iD 01 23 45 67 89 AB CD EF Program
1 00 09 01 02 03 3F SYSTEM
2 05 L] LN J L] e L] LR 4 06 Shell
3 07 L L . e L L LR J 06 Shell
4 OA .o LN o 8 L] L L3N 1 08 PMap

Page 6-4-1

INSIDE 0S9 LEVEL II

SOURCES
PMap

Microware 0S-9 Assembler RS Version 01.00.00 03/30/87 00:16:17 Page 001
PMap - INSIDE 0S9 LEVEL II
00001 nam PMap
00002 ttl INSIDE 0S9 LEVEL II
00003 * PMap - CC3 proc datimg display
00004 * 08 feb 87 : derived from my Proc cmd.
00005 * Copyright 1987 by Kevin Darling
00006
00007 0088 D.PthDBRT equ $0088
00008 00G3 PD.DEV equ $03
00009 0004 VS$DESC equ $04
00010
00011 0006 FS$Exit equ 6
00012 0018 F$GPrDsc equ $18
00012 001B F$CpyMem equ $1B
00014 008A IS$Write equ $8A
0001% 008C I$writln equ $8C
00016
00017 0004 M$Neare equ 4
00018
0001¢ 0000 PSID equ 0
00020 0001 PSPID equ 1
00021 0004 PSSP equ 4
00022 00C6 P$Task equ 6
00023 0007 P$PagCnt equ 7
00024 0008 P$User equ 8
00025 oooa P$Prior equ $0A
0002¢ 000B PS$SAge equ $0B
00027 000C P$State equ $0C
00028 0010 PSIOQN equ $10
00029 0011 P$PModul equ $11
00030 0c19 P$Signal equ $1¢
00031 0030 P$Path equ $30
00032 0040 PSDATImg equ $40
00033
00034 0000 87CDO1F8 mod len,mname, $11, 581 ,entry,msize
00035 000D 504D61F0 mname fcs "PMap"
00036 0011 01 fcb 1
060037
00038 0200 buffsiz set 512
00039
00040 D 0000 umer: rmb 2
00041 D 0002 sysimg rmb 2 pointer to sysprc datimage
00042 D 0004 datimg rmp 2 dating for copymem
00043 D 0006 lineptr rmb 2
00044 D 0008 number rmb 3
006045 D 000B leadflag rmb 1
00046 D 000C path rrb 2
00047 D O0OE pid rmk 1
00048 D 00OF hdr rmb 12 header
00049 D 00l1E out rmb 80
00050 D 006B buffer rrb buffsiz each proc desc
00051 D 026B stack rmb 200

Page 6-4-2

00052 D
00053
00054
00055
Program
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071 W
00072
00073
00074
00675 W
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00030
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

0333

0012
0012

003E
002D
003F
003F
006B
006B
002D

006C
006C
006E
0070
0072
0076
007a
007D
0081
0085
0089
008C
0090
0094
0098

009B
009B
009D
00AQ
00A2
0oa4
00A6
00A8
00AB
00AE
00BO
00B2

00B4
OOB4
00B5
00B5S

O0OB8
0006

00BE
00BE
00CO
00C3

INSIDE 0S9 LEVEL II

msize

header
20494420

0D

hdrlen

header?2
2D2D2D2D

hdrcr
oD

hdrlen2

entry

DFO00
8601
OFOCE
308DFFF5
108E0001
103F8C
10250034
308DFF8D
108E002D
103F8C
10250025
308DFFAB
108E002D
103F8C

mair
DEOO
30C81E
OF06
CCOE
270E
960F
30C86RB
103F18
25EB
8DOC
20E7

bye
S5F

error
103F06
53595354 sysnam
syslen

output
A684
1700E6
1700C1

Page 6-4-3

SOURCES
PMap

equ

fcc " ID 01 23 45 67 89 AB CD EF
fcb $0D

equ *-header
fcc Mo —— e— = e e e .- —e
fcb $0D

equ *-—header?2

stu umem

lda #1

clr pid

leax hdrcr,pc

1ldy #1

0Ss9 ISWritln

lbcs error

leax header,pc

ldy #hdrlen

0s9 ISWritln

lbcs error

leax header2,pc

ldy #bhdrlen2

0s9 ISWritln

1du uniem

leax out,u

stx lineptr

inc pid next process

beqg bye «+2255 = exit
lda pid proc id

leax buffer,u destination buff
0s9 F$GPrDsc get proc desc
becs main ..1loop if not one
bsr cutput report proc data
bra main ..loop.

clrb

0S9 F$Exit

fcs "SYSTEM"

equ *-sysnam

1lda P$1ID,x process id

lbsr outdecl

lbsr space

00105
00106
00107
001¢C8
001G9
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
0C12]

00122
00123
00124
00125
00126
00127
00128
00129
00130
00121

00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
0Cl46
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158

00C6
00C9
00cC

00CF
00D1
00D4
00D6
00D8
00D8
00DA
00DB
00DD
00EO
00E3
0CES
OOES8
00EB
00ED
00ED
00EF
00F2
00F2
0CF4
00F6

OCF8
OOFbB
OOFF
0100
0102
0105
0107
01CR
C10E
0110
0110
0112
0114
0115
0117
0119
011R
011B

011D
011D
011F
0121
0123
0125

1700BE
1700BB
1700B8

INSIDE 0OS9 LEVEL II
SOURCES
PMap

lbsr space
lbsr space
lbsr space

* Print Process DATImage:
* X=proc desc

3410
308840
C608
3404

EC81
4D
2710
10%E06
CC2E2E
EDAl
10SF06
17009C
2005

1Fr98
170093

6AE4
26E2
3514

pshs x

leax PS$DATImMg,X

1db #8

pshs b
prntimg

1dé X+

tste

beq prntimg2

ldy lineptr

1dd #"..

std Y+t

sty lineptr

lbsr space

bra prntimg3
prntimg2

tfr b,a

lbsr outhexl
prntimg3

dec 'S

bne prntimg

puls b,x

* Print Primary Module Name:

17008C
318840
1F20
DDO04
AE8811
2614
308DFFAD
109E06
C606

A680
A7R0
5A

26F9
8D43
2002

8D19

9E06
860D
A784
DEOO
30C81E

lbsr space

leay PSDATImg,X
tfr y.d

stad datimg

ldx P$PModul ,x
bne doname
leax >sysnam,pc
1dy lineptr
1db fsyslen

copy

1da P X+

sta Al

decb

bne copy

bsr name2

bra printlin
doname

bsr printnam
printlin

1dx lineptr

1da #s0D

sta ' X

1du unem
leax cut,u

Page 6-4-4

D=dat image in proc desc

X=offset in map

now print whole line:

00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212

0128
012C
012E
0131
0135

0136
0136
0138
013A
013cC
0140
0143

0147
0149
014B
014D
014F
0153
0156
0158

015C
015C
015F
0160
0161
0161
0162
0164
0166
0168

0le6A
016C
0l6E
0170
0172
0174
0174
0176
0177
0179
017B
017B
017D

017F
017F

108E0050
8601
103F8C
1025FF80
39

* Find and Print

INSIDE 0OS9 LEVEL II

SOURCES
PMap
1dy #80
lda #1
0Ss9 ISWritln
lbcs error
rts

a Module Name:

* X=mod offset, U=data area, datimg=ptr

3440
334F
DCO04
108E000A
103F1B
1025FF6F

EC44
DEO6
308B
DCO4
108E0028
103F1B
3540
1025FF59

3410
9E06
5F

5C

A680
2AFB
Cl28
2411

847F
A71F
Clo09
2409
8620

A780
5C

Cl109
25F9

OF06
3580

printnam

name?2

name3

name4

nameS

outhex2

pshs u

leau hdr,u
lda datimg
ldy #10

0s9 F$CpyMem
lbcs error
1dd M$Name,u
ldu lineptr
leax d,x

ldd datimg
1ldy #40

0s9 F$CpyMem
puls u

lbcs error
pshs «x

ldx lineptr
clrb

ipncb

1da X+

bpl name3
cmpb #40

becce name5
anda #S$7F
sta -1,x
cmpb #9

bce nameS
1da #$20
sta P X+
incb

cmpb #9

becs nameé
stx lineptr
puls x,pc
pshs b

destination
proc datimg ptr
Y=length

get header

get name offset from header
move name to output line
X=offset in map to name

max char len
get name

B is length

fix it up, then

- ————— —— — " " —— - — " — i = " ————— —f—

INSIDE 0OS9 LEVEL II

SOURCES
PMap

060213 0181 &D08 bsr hex1
00214 0183 3502 puls a
00215 0185 outhexl
00216 0185 8D04 bsr hex1l
00217 0187 space
00218 0187 8620 1da $#520
00z19 0189 2014 bra print
00220
00221 018B hexl
00222 018E 1F89 tfr a,b
00223 018D 44 lsra
00224 018E 44 1sra
00225 018F 44 lsra
00226 €190 44 lsre
00227 0191 8DO02 bsr outhex
00228 0193 1Fr98 tfr b,a
00229 01¢5 outhex
00230 0195 &40F anda #S$0F
00221 0197 810A cmpa #$0A 0-9
00232 0199 2502 bes outdig
00233 019B 8B0O7 adda #$07 A-F
00234 ¢19D outdig
00235 019D 8B30 adda #$30 make ASCII
00236 019F print
00237 019F 341¢C pshs x
00238 0121 SE06 1dx lineptr 4+++
00239 0123 A780 sta X+
00240 01A5 CFO06 stx lineptr
00241 01a7 3590 puls x,pc
00242
00243 K e e e e o i e e e - e e o e A e S e ——
00244 01A9 outde&l equ * A=number
00245 0129 1F89 tfr a,b
00246 . CGlAB 4F clra
00247 01AC outdec equ * D=numrber
00248 C1AC OFOB clr leadflag
00249 012E 3410 pshs x
00250 C1BO SEOQO 1dx umemn
00251 01E2 3008 leax number,x
00252 01E4 6F84 clr ¢ X
00253 ClE6 6F01 clr 1,x
00254 01p8 6F02 clr 2,x
00255 01EA hundred
00256 0OlEA 6C84 inc ¢ X
00257 ClEC 83C064 subd #100
00258 O1BF 24F9 bce hundred
00259 01C1 C30064 addd #100
00260 01C4 ten
00261 01C4 6C0O1 inc 1,x
00262 01C6 83000A subd #10
00263 C1C9 24Fr9 bcc ten
00264 01CB C3000a addd #10
00265 01CE 5C incb
00266 01CF E702 stb 2,%

Page 6-4-6

INSIDE 0S9 LEVEL 11

SOURCES
PMap

00267
00268 01p1 8DOF bsr printled
00269 01D3 8DOD bsr printled
00270 01D5 8DO0S bsr printnum
00271 W 01D7 17FFAD lbsr space
00272 01DA 3590 puls x,pc
00273
00274 01DC printnum
00275 01DC A680 lda X+
00276 01DE 8B2F adda #8$30-1 make ascii
00277 01E0 20BD bra print
00278
00279 01E2 printled
00280 01E2 ODOB tst leadflag print leading zero?
00281 01E4 26F6 bne printnum ..yes
00282 01E6 E684 1db X is it zero?
00283 01E8 O0COB inc leadflag
00284 01EA 5A decb
00285 01EB 26EF bne printnum ..no, print zero's
00286 01ED OFOB clr leadflag else surpress
00287 O1EF 8620 1da #$20
00288 01F1 3001 leax 1,x
00289 O01F3 20AA bra print
00290
00291 01F5 474519 emod
00292 01F8 len equ *
00293 end

00000 error(s)

00004 warning(s)

$01F8 00504 program bytes generated
$0333 00819 data bytes allocated
$§0499 01177 bytes used for symbols

006B D BUFFER 0200 S BUFFSIZ 00B4 L BYE 0110 L COPY 0088 E D.PTHDBT
0004 D DATIMG 011B L DONAME 006C L ENTRY 00B5 L ERROR 001B E F$CPYMEM
0006 E FS$EXIT 0018 E F$GPRDSC 00OF D HDR 006B L HDRCR 002D E HDRLEN
002D E HDRLEN2 0012 L BEADER 003F L HEADER2 018B L HEX1 01BA L RUNDRED
008A E ISWRITE 008C E ISWRITLN 000B D LEADFLAG O0l1F8 E LEN 0006 D LINEPTR
0004 E MS$NAME 009B L MAIN 000D L MNAME 0333 E MSIZE 015C L NAME2
0161 L NAME3 0174 L NAME4 017E L NAMES 0008 D NUMBER 001BR D OUT

01AC E OUTDEC 01A9 E OUTDEC1 019D L OUTDIG 0195 L OUTHEX 0185 L OUTHEX1
017F L OUTHEX2 O00BE L OUTPUT 000B E PSAGE 0040 E PSDATIMG 0000 E PS$ID
0010 E P$SIOQN 0007 E PSPAGCNT 0030 E PSPATH 0001 E PSPID 0011 E PSPMODUL
000A E PSPRIOR 0019 E P$SIGNAL 0004 E PSSP 000C E PSSTATE 0006 E PSTASK
0008 E PSUSER 000C D PATH 0003 E PD.DEV 000E D PID 019F L PRINT
01E2 L PRINTLED 011D L PRINTLIN 0136 L PRINTNAM 01DC L PRINTNUM 00D8 L PRNTIMG
00ED L PRNTIMG2 00OF2 L PRNTIMG3 0187 L SPACE 026B D STACK 0002 D SYSIMG
0006 E SYSLEN 00B8 L SYSNAM 01C4 L TEN 0000 D UMEM 0004 E VSDESC

Page 6-4-7

INSIDE 0S9 LEVEL 11
SOURCES
Proc

e o e e s S e et B w20 T B S BT B M S e S e E S S A S mer S e S e S m s m A m S s S m A = S e S S S e S e S o me o e
E 2 3 S 3331311t 1 13 T 124ttt 3 3 1 1 23 24t 3 2 1+ 2t 1 42+ S+ F 1 5+ ¢ -3

PROC - Like procs, but shows standard in/out devices:
St = status byte, Sig = pending signal in hex and dec.

Example:
089: dirm >/w7 & (setpr 2 255; proc >/dl/test)

ID Prnt User Pty Age St Sig .. Module Std in/out

—— . armn e e ——— o e - —— - - —— - - — -

2 1 0 255 255 80 0 00 Shell {Term >Term
3 2 0 128 128 80 0 00 Shell <W1 >Wl
4 2 0 128 128 00 0 00 DirM {Term >W7
5 2 0 128 130 80 0 00 Shell <Term >Term
6 5 0 128 129 80 0 00 Proc <Term >D1

Page 6-5-1

INSIDE 0S9 LEVEL II
SOURCES
Proc

Microware 0S-9 Assembler RS Version 01.00.00
Proc - INSIDE 0S9 LEVEL II
00001 nam Proc
00002 ttl INSIDE OS
00003 * Proc - L-II Procs for coco 3
00004
00005 * 06 feb 87 : add std out also
00006 * 03 feb 87 : add path name display
00007 * 01 feb 87 : working version
00008 * Copyright 1987 by Kevin Darling
00009
0001¢C 0088 D.PthDBT equ $0088
00011 0003 PD.DEV equ $03
00012 0004 V$DESC equ $04
00013
00014 0006 F$Exit equ 6
00015 0018 F$GPrDsc equ $18
00016 001B F$CpyMen equ $1B
00017 008A I$Write equ $8A
00018 008C ISWritln equ $8C
00019
00020 0004 M$Name equ 4
00021
00022 0000 PSID equ 0
00023 0001 PSPID equ 1

© 00024 0004 PSSP equ 4
00025 0006 PS$Task equ 6
00026 0007 PS$SPagCnt equ 7
00027 0008 P$User equ 8
00028 000A P$Prior equ $0A
00029 000B PSAge equ $0B
00030 600C PSState equ $0C
00031 0010 PSIOQN equ £10
00032 0011 P$PModul equ $11
00033 0019 P$Signal equ $19
00034 0030 P$pPath equ $30
00035 0040 PSDATImg equ $40
00036
00037 0000 87CD0O28E mod len,mname
00038 000D 50726FE3 mname fcs "Proc"
00039 0011 09 fcb 9
00040
00041 0200 buffsiz set 512
00042
00043 D 0000 umen rmb 2
00044 D 0002 sysimg rmb 2
00045 D 0004 datimg rmb 2
00046 D 0006 lineptr rmb 2
00047 D 0008 number rmb 3
00048 D 000B leadflag rmb 1
00049 D 000C path rmb 2
00050 D OOOE pid rmb 1

Page 6-5-2

03/30/87 00:17:04 Page 001

9 LEVEL II

, 511,881 ,entry,msize

pointer to sysprc datimage
datimg for copymem

00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00078
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104

Dopooouoo

O0O0OF
0010
0050
00AO0
02A0
04A0
0568

0012
0012
0048
0037
0049
0049
007F
007F
0037

0080
0080
0082
0084
0086
008A
008E
6091
0095
0099
009D
00AOQ
00A4
OCAS8
00AC

OOAF
00R1
00B5
00B8
00BA
COBD

00BF
O0OBF
0oC1
00C4
00C6
00Cs8
00CA
00CC
00DO
00D3
00D5
00D7

20494420
0D

2D2D2D20

0D

DFO00
8601
970E
308DFFF5
108E0001
103F8C
10250045
308DFF79
1G8E0037
103F8C
10250036
308DFFAl
108E0037
103F8C

8601
30C902A0
103F18
2520
308840
SF02

DEQO
30C850
SFC6
0COE
270F
960E
30C900A0
103F18
25EA
8D06
20E6

INSIDE OS9 LEVEL 11

SOURCES
Proc
namlen rmb 1
hdr rmb 64
out rmb 80
buffer rmb buffsiz
sysprc rmb buffsiz
stack rmb 200
msize equ .
header
fcc
fcb $O0D
hdrlen equ *-header
header?2
fcc
hdrcr
fcb $0D
hdrlen2 equ *-header2
entry
stu umem
lda $#1
sta pid
leax hdrcr,pc
1dy #1
0s9 ISWritln
lbcs error
leax header,pc
1dy #thdrlen
089 I$writln
lbcs error
leax header?2,pc
1dy #hdrlen2
0Ss9 I$Writln
lda 1
leax >sysprc,u
0Ss9 FSGPrDsc
bcs error
leax PSDATImg,x
stx sysimg
main
1du umem
leax out,u
stx lineptr
inc pid
beq bye
1da pid
leax Dbuffer,u
0S9 FSGPrDsc
bcs main
bsr output
bra main

" ID Prnt User Pty Age

Page 6-5-3

header

each proc desc
sys proc desc

St Sig ..

get system proc desc

just for it's datimg

next process
.+2255 = exit
proc id
destination buff
get proc desc
..loop if not one
report proc data
..loop.

Module

INSIDE 0S9 LEVEL II

SOURCES
Proc

00105 00D9 bye
00106 00D9 5F clrb
00107 00DA error
00108 00DA 103F06 0s9 FS$Exit
0C109
00110 00DD output
00111 00DD A684 lda P$ID,x process id
00112 00DF 17015D lbsr outdecl
00113 00E2 A601 1da P$PID,x parent's id
00114 00E4 170158 lbsr outdecl
00115 00E7 170133 lbsr space
00116 OCEA ECO08 1dd P$User ,x user id
00117 00EC 170153 lbsr outdec
00118 0OEF 17012B lbsr space
00119 O0F2 A60A lda P$Pricr,x priority
00120 00F4 170148 lbsr outdecl
00121 OOF7 A60B lda PSAge,x
00122 O0F9 170143 lbsr outdecl
00123 * 1lda P$Task,x task number
00124 * 1lbsr outhexl
00125 60FC 17011F lbsr space
00126 OOFF A60C lda PsState,x state
0012 0101 170117 lbsr outhexl
00128 0104 A68819 1da P$Signal,x signal
00129 0107 170135 lbsr outdecl
00130 010A 268819 1da P$Signal,x signal in hex
00121 010D 17010CB lbsr outhexl
00132
00133 0110 17010A lbsr space
00134 0113 EC8830 idd P$Path,x save proc stdin path #
00135 0116 DDOC std path and pathl stdout
00136
00137 * Print Prinary Module Name:
00138 * X=proc desc
00139 0118 318840 leay PSDATImg,X
00140 011 1F20 tfr y.d D=dat image in proc desc
00141 011D DDO0O4 std dating
00142 011F AE8811 1dx P$PModul ,x X=offset in map
00143 0122 C609 1db #9
00144 0124 D70F stb namlen
00145 0126 1700A2 lbsr printnam
0C146
00147 * Print Std Input Device:
00148 012¢ 863C 1da $'<
00149 012B 8D21 bsr device
00150 012D stdout
00151 012D 960D 1da path+l
00152 012F 270C sta path
00153 0131 863F 1da $'>
00154 0133 8D19 bsr device
00155
00156 0135 prirtlin
00157 0135 9E06 1dx lineptr now print whole line:
00158 0137 860D 1da $s0D

Page 6-5-4

00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212

0139
013B
013D
0140
0144
0146
0149
014D

014E
014E
0150
0153
0155
0157
0159
015E
015E
015E
0160
0161
0163
0166

0167
0167
0leA
01e6C
0l16F
0173
0176

017A
017¢C
0180
0182
0185

0189
018B
018C
018D
018F
0191
0193
0195
0187
0198

019A
019C
019E
01A0
01nr4

A784
DEOO
30C850
108E0050
8601
103F8C
1025FF8D
39

DEOO
1700E2
960C
2610
8620
C605
10%E06

A7A0Q
5A
26FB
109F06
39

33C810
DCO02
8E0088
108E0002
103F1B
1025FF60

9E10
108E0040
DCO02
103F1B
1025FF51

108E0002
103F1B

INSIDE 0S9 LEVEL 1I

device

devicel

device?2

SOURCES
Proc

sta X
1du umem
leax out,u
ldy #80
lda $#1
0s9 ISWritln
lbcs error
rts
1du umem
lbsr print
1da path
bne device2
lda $$20
1db 5
ldy lineptr
sta Az
decb
bne device0
sty lineptr
rts
leaut hdr,u
1dd sysimg
1dx #D.PthDBT
ldy #2
059 F$CpyMem
lbcs error
ldx hdr
ldy $64
1dd sysimg
Cs9 F$CpyMem
lbcs error
1db path
1srb
1srb
lda b,u
pshs @
1db path
andb #3
1lda $540
mul
puls a
addb #PD.DEV
tfr d,x
1dd sysimg
i1dy $#2
0Ss9 F$CpyMem

Page 6-5-5

("< >")

get path table offset:
in system map
from direct page ptr

get path descriptor table:
(X was D.PthDBT ptr)

point to path block:

four paths / sub-block

A=msb block address

then point to path within

D=path descriptor address

and get device table ptr

00213
00214
00215
addrs
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265

01A7
01AB

01AD
01AF
01B0
01B2
01B6
01B9

01BD
O01BF
01C1
01C3
01C5
01cC7
01C9

01CB
01CB
01CD
01D0
01D2
01D6
01D9

01DD
01DF
0l1El
01E3
01ES
01E9
01EC
OlEE

01F2
01F4
01F6
O1F7
01F7
01F8
O1FA
O01FC
OlFE

0200
0202
0204
0206
0208
020A

1025FF2F
9E10

C604

3A

DCO02
108E0002
103F1B
1025FF1D

9E10
DEOO
DCO02
DD04
C605
D70F
2000

INSIDE 0S9 LEVEL II

SOURCES
Proc

lbcs error
1dx hdr
1db #VSDESC
abx
1dad sysimg
ldy #2
0s9 F$CpyMem
lbcs error
1dx hdr
1du umem
1dd sysimg
std datimg
1db #5
stb namlen
bra printnam

* Find and Print a Module Name:
* X=mod offset, U=data area, datimg=ptr

3440
33C810
DC04
108E000A
103F1B
1025FEFD

EC44
DEO06
308B
DC04
1080028
103F1B
3540
1025FEES8

3410
9E06
5F

5C

A680
2AFB
Cl128
2411

847F
A71F
D10OF
2409
8620

printnam

name3

name4

pshs
leau
ldd
1dy
0Ss9
lbcs

1dd
1du
leax
1dd
1ldy
0Ss9
puls
1bcs

pshs
1dx
clrb

incb
lda
bpl
cmpb
bcc

anda
sta
cmpb
becc
lda

u

hdr ,u
datimg
#10
F$CpyMem
error

M$Name,u
lineptr
d,x
datimg
#40
F$CpyMem
u

error

X
lineptr

1 X+
name3
$#40
nameb

$$7F
_1,x
namlen
nameb
#5$20

Page 6-5-6

X=device table entry sys

but we want it's desc ptr

then get desc address:

and get device name

destination
proc datimg ptr
Y=l1length

get header

get name offset from header
move name to output line
X=offset in map to name

max char len
get name

B is length

fix it up, then

00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00226
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319

020A
620C
020D
020F
0211
0211
0213

0215
0215
0217
0219
021B
021B
021D
021D
021F

0221
0221
0223
0224
0225
0226
0227
0229
022B
022B
022D
022F
0231
0233
0233
0235
0235
0237
0239
023B
023D

023F
023F
0241
0242
0242
0244
0246
0248
024A
024C
024E

3404
8Do8
3502

8D04

8620
2014

INSIDE 0S9 LEVEL II1

name5

outhex2

outhexl

space

hexl

outhex

cutdig

print

outdec

outdec

SOURCES
Proc

sta P X+
incb
cmpb namlen
bcs named
stx lineptr
puls x,pc
pshs b
bsr bhex1
puls a
bsr hex1
1da #3520
bra print
tfr a,b
1sra
lsrs
1sra
1sra
bsr outhex-
tfr b,a
anda #S0OF
cmpa #S$0A
bcs outdig
adda #$07
adda #8530
pshs x
1dx lineptr
sta X+
stx lineptr
puls x,pc
equ *
tfr a,b
clra
equ *
clr leadflag
pshs x
1dx umem
leax number,x
clr X
clr 1l,x
clr 2,x

Page

—— O —— — — ——— — T — - - - T - G - S G - S -t G a =~ —

0-9
A-F

make ASCII

++++

A=number

D=number

INSIDE 0S9 LEVEL 11

SOURCES
Proc

00320 0250 hundred
00321 0250 6C84 inc ' X
00322 0252 830064 subd #100
00323 0255 24F9 bce hundred
00324 0257 C30064 addd #1100
00325 025A ten
00326 025A 6CO01 inc 1,x
00327 025C 83000A subd #10
00328 025F 24F9 bce ten
00329 0261 C3000A addd #10
00330 0264 5C incb
00331 0265 E702 stb 2,x
00332
00333 0267 8&DOF bsr printled
00334 0269 8DOD bsr printled
00335 026B 8D05 bsr printnum
00336 W 026D 17FFAD lbsr space
00337 027¢ 3590 puls x,pcC
00338
00339 0272 printnum
00240 0272 A680 1da X+
00341 0274 8B2F adda #$30-1 make ascii
00342 0276 20BD bra print
00343
00344 0278 prirtled
00345 0278 ODOB tst leadflag print leading zero?
00346 027A 26F6 bne printnum ..yYes
00347 027C E684 1db ' X is it zero?
00348 027E OCOB inc leadflag
00349 0280 5A decb
06350 0281 26EF bne printnum ..no, print zero's
00351 0283 OFOB clr leadflzag else surpress
00352 0285 8620 lda #820
00353 0287 3001 leax 1,x
00354 0289 20AA bra print
00355
00356 028B O1lEEAF emod
00357 028E len equ *
00358 end

Page 6-5-8

00000
00004
$028E
$0568
$047B

00AQ
014E
001B
0037
0250
0006
01F7
0050
021B
0000
0011
0006
0235
021D
025A

el allalo oo NalecRalolal ol Nalie

error(s)

warning(s)

INSIDE 0S9 LEVEL 11
SOURCES
Proc

00654 program bytes generated
01384 data bytes
01147 bytes used

BUFFER
DEVICE
F$CPYMEM
HDRLEN
HUNDRED
LINEPTR
NAME3
ouT
OUTHEX1
PSID
P$PMODUL
P$TASK
PRINT
SPACE
TEN

0200
015E
0006
0037
oosa
0004
020A
0242
0215
0010
000A
0008
0278
04A0
0000

S

vl ol ol NoRolalolalloNoRoloNla

allocated

for symbols

BUFFSI1Z
DEVICEOQO
FSEXIT
HDRLEN2
ISWRITE
M$NAME
NAME4
OUTDEC
OUTHEX2
P$IOQN
P$PRIOR
PSUSER
PRINTLED
STACK
UMEM

00D9
0167
0018
0012
008C
OORF
0211
023F
00DD
0007
0019
00o0C
0135
012D
0004

ol alalelc o RallcNalalic Rl il

BYE
DEVICE2
F$GPRDSC
HEADER
ISWRITLN
MAIN
NAMES
OUTDEC1
OuTPUT
PSPAGCNT
PS$SSIGNAL
PATH
PRINTLIN
STDOUT
V$DESC

Page 6-5-9

0088
0080
0010
0049
000B
000D
000F
0233
000B
0030
0004
0003
01CR
0002

UrpmmEBoororm

D.PTHDRT
ENTRY
HDR
HEADER2
LEADFLAG
MNAME
NAMLEN
OUTDIG
PSAGE
P$SPATH
PSSP
PD.DEV
PRINTNAM
SYSIMG

0004
oopA
007F
0221
028E
0568
0008
022B
0040
0001
000C
000E
0272
02A0

vl ololviolclallvicloRalal ol

DATIMG
ERROR
HDRCR
HEX1

LEN
MSIZE
NUMBER
OUTHEX
PSDATIMG
PSPID
PSSTATE
PID
PRINTNUM
SYSPRC

INSIDE OS9 LEVEL II
SOURCES
SMap

SMAP -~ Show system page memory map. As above, except in pages.
Important info adding drivers, starting many procs, etc.

#::::’:::::l:::::::
0 UuuUuuouuUuuUuvUUGUUUUUDUU
l vvuvouuvuUuvuvuuUouUuUuUuUUUU
2
3 _ o .o - e . _
4 _ _ .. I
5 _ _ _ _ _ _ _ _ _ o
6 oo
T .o
8 _UUuUuUu_UuUuuvuuvuuvuvuuuouu
9 vvuvuvuuvvuUuuvuuUuUUUUUUDU
A D UUUDUUUUUUDUUDUUUU
B oUuuuvuvouvuuvuvuuvuvuouuuvuu
Cc tuvuvuvuvuvuUuuUuuUuUvuULUVLULUUU
D vuvuvuvuuvuvuuvuououovuuUuvuUuuUu
E U uvuuvuvuuuvuuvuvuuubuuu
F Uvuvuuvuvuvuvuvuuvuuvuuovuuuoeu.
Number of Free Pages: 98

Ram Free in KBytes: 24

Page 6-6-1

INSIDE 0S9 LEVEL II

SOURCES
SMap

Microware 0S-9 Assembler RS Version 01.00.00 03/30/87 00:17:48 Page 001
SMap - INSIDE 0OS9 LEVEL II
00001 nam SMap
00002 ttl INSIDE 0S9 LEVEL II
00003 * SMap - system memory blockmap for cc3
00004 * 08 feb 87
00005 * Copyright 1987 by Kevin Darling
00006
00007 004E D.SysMen equ $004E system mem map
00008
00009 0006 F$Exit equ 6
00C10 001B F$CpyMen equ $1E
00011 008A IsSWrite equ $8A
00012 008C ISWritln equ $8C
00013
00014 0000 87CDO1D5 mod len,name, $11,$81,entry,msize
00015 000D 534D61F0 name fcs "SMap"
00016 0011 01 fcb 1
00017
0001¢ 0100 buffsiz set 256
00019
00020 D 0000 leadflag rmb 1
00021 D 0001 numrber rmb 3
00022 D 0004 free rmb 1
00023 D 0005 row rmb 1
00024 D 0006 spc rmb 1
00025 D 0007 out rmb 3
00026 D 000A mapsiz rmb 2
00027 D o000C blksiz rmb 2
00028 D 00OE blknum rmb 1
00029 D OOQOF buffer rmb buffsiz
00030 D O1CF stack rmb 200
00031 D 01D7 meize equ .
00032
00033 0012 header
00034 001z 20202020 fcc " 01234567 89ABCDEFTF"
00035 0635 0D fcb $0D
00036 0024 hdrlen equ *-header
00037 0036 bdr2
00038 0036 20232020 fcc "F ===z ==:======z==z=="
00039 0059 0D fcb $0D
00040 0024 hdrlen2 equ *~hdr2
00041
00042 005A 00000000 datimg féb 0,0
00043
00044 005E entry
00045 005E 17010F lbsr crtn
00046 0061 308DFFAD leax header,pc
00047 0065 8601 1da #1
00048 0067 108E0024 1dy #hdrlen
00049 006E 103F8C 0S89 I$Writln
00050 006E 308DFFC4 leax hdr2,pc
00051 0072 108E0024 1dy #hdrlen2

Page 6-6-2

00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00C679
00080
000¢&1
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105

0076

0079
007D
007F
0082
0086
0088
008A
008D
008F

0093
0095
0099
009B
009D
00AOQ
00A2

00A6
00AS8

00AA
00AC
O0CAE
00BO
00B2
00B2
00B4
O0R6

00B8
00BA
00BD
O0OBF
00C3
00C5
00C7
00C9o
00CB
00CD
00CD
00CF
00Dl
00D4
C0D6
00D8
00DA
00DD

103F8A

* Get SysMap Ptr
308DFFDD

1F10

8EOO4E

108E0002

3440

334F

103F1B

3540

102500AC

* Get SysMap:
AEAF

108E0100

3440

334F

103F1B

3540

10250099

OFCE
OFC4
* std blksiz
* sty mapsiz
304F
8630
9705
6FE2
loop
A6E4
850F
2627

341¢C
1700B3
3046
108E0004
9605
813A
2604
8641
9705
oknum

9707
0CO05
CC2020
2706
DDO08
8601
103F8A
3510

INSIDE 0OS9 LEVEL II

SO

059

leax
tfr
1dx
ldy
pshs
leau
0s9
puls
1bcs

1dx
ldy
pshs
leau
0Ss9
Fuls
1bcs

clr
clr

leax
l1da
sta
clr

lda
bita
bne

pshs
lbsr
leax
ldy
lda
cmpa
bne
lda
sta

sta
inc
1dd
sta
std
lda
0S89
puls

Pag

URCES
SMap

ISWrite

datimg,pc
x,d
#D.SysMem
#2

u
buffer,u
F$CpyMem
u

error

buffer,u
$buffsiz
u
buffer,u
F$CpyMem
u

error

blknum
free

buffer,u
$£$30

row

+r—S

'S
#SOF
loop2

X
crtn
Spc,u
4
row
#$3A
oknum
$#541
row

out

row
$#$2020
spc
out+1
#1
ISWrite
X

e 6-6-3

get map address

save count

INSIDE OS9 LEVEL II

SOURCFES
SMap

00106 00DF loop2
00107 OODF E680 1db X+ get next block
00108 00E1 270A beg freeram
00109 00E3 2BR04 bmi notram
00110 O00E5 C655 1db $'C ram-in-use
00111 00E7 2008 bra put
00112 00E9 notram
00113 00E9 C62E 1db #'. not RAM
00114 OCEB 2004 bra put
00115 00ED freeram
00116 00OED C65F 1db #'_ not used
00117 OOEF 0C04 inc free
00118 00F1 put
00119 00F1 D707 stb out
00120 00F3 C620 1db #s20
00121 0OF5 D708 stb out+1l
00122 0CF7 3410 pshs x
00123 00F9 3047 leax out,u
00124 OOFE 108E0002 ldy #2
00125 00OFF 8601 lda #1
00126 0101 1C3F8A Cs9 ISWrite
001z7 0104 3510 puls x
00128 C106 6AE4 dec 'S
00129 W 0168 1022FFA6 1bhi 1loop
00130 C10C 3502 puls a
00131
00132 01CE 8D60 bsr crtn
00133 0110 8D5E bsr crtn
00134 0112 3080002C leax freemsqg,pc
00135 0116 108E0017 1dy #freelen
00136 011A 8601 lda #1
00137 C11C 163F8A 0Ss9 Isvirite
00138 Q11F D604 1db free
00139 0121 4F clra
00140 W 0122 17006F lbsr outdec
00141 0125 8D49 bsr crtn
00142
00143 0127 308DO002E leax rammsg,pcC
00144 012E 108E0017 1dy #ramlen
00145 0l1zF 8601 lda #1
00146 0131 103F8A 059 Isvirite
00147 C134 D604 1db free
00148 ¢136 4F clra
00149 0137 54 1srb
00150 0138 54 1srb
00151 w 0139 170058 lbsr outdec
00152 013C 8D32 bsr crtn
00153 013E bye
00154 013E 5F clrb
00155 013F error
00156 013F 102F06 ©Ss9 F$Exit
00157
00158 0142 204E756D freemsg fcc " Number of Free Pages:
00159 0017 freelen equ *~freemsg

Page 6-6-4

INSIDE 0OS9 LEVEL II

SOURCES
SMap

00160 0159 20202052 rammsg fce " Ram Free in KBytes: "
00161 0017 ramlen equ *-~rammsg
00162
00163 0170 crtn
00164 0170 3412 pshs a,x
00165 0172 860D 1da #s0D
00166 0174 9707 sta out
00167 0176 3047 leax out,u
00168 0178 108E0001 ldy #1
00169 017C 8601 1lda $#1
00170 017E 103F8C 0S9 ISWritln
00171 0181 3592 puls a,x,pc
00172
00173 0183 print
00174 0183 9707 sta out
00175 0185 3410 pshs x
00176 0187 3047 leax out,u
00177 0189 108E0001 1dy #1
00178 018D 8601 1da #1
00179 018F 103F8A 089 I$Write
00180 0192 3590 puls x,pc
00181
00182 0194 outdec equ * D=number
00183 0194 3041 leax number,u
00184 0196 OFO00 clr leadflag
00185 0198 6F84 clr !X
00186 019A 6FO01 clr 1,x
00187 019C 6F02 clr 2,x
00188 019E hundred
00189 019E 6C84 inc X
00190 01A0 830064 subd #100
00191 01A3 24F9 bcc hundred
00192 01A5 C30064 addd #100
00193 O1AS8 ten
00194 01A8 6C01 inc 1,x
00195 01AA 83000A subd %10
00196 01AD 24F9 bce ten
00197 01AF C3000A addd #10
001¢8 01B2 5C incb
00199 01B3 E702 stb 2,x
00200 01B5 8D08 bsr printled
00201 01B7 8DO06 bsr printled
00202
00203 01B9 printnum
00204 01B9 A680 1lda X+
00205 01BB 8B2F adda #$30-1 make ascii
00206 01BD 20C4 bra print
00207
00208 O1BF printled
00209 O1BF 0DOO tst leadflag print leading zero?
00210 01C1 26F6 bne printnum ..yes
00211 01C3 E684 1db X is it zero?
00212 01CS 0C00 inc leadflag
00213 01C7 5Aa decb

Page 6-6-5

INSIDE 0S9 LEVEL II

SOURCES
SMap

00214 01C8 26EF bne printnum ..No0, print zero's
00215 01CA OFO0O clr leadflag else surpress
00216 01CC 8620 1da $#$20
00217 C1CE 3001 leax 1,x
00218 01D0 20Bl bra print
00219
00220 01D2 1F9FSF emod
00221 01D5 len equ *
00222 end

00000 error(s)

00003 warning(s)

$01D5 00469 program bytes generated
$01D7 00471 data bytes allocated
$02D7 00727 bytes used for symbols

000E D RLKNUM 000C D BLKSIZ COOF D BUFFER 0100 S BUFFSIZ Ol13E L BYE
0170 L CRTN 0C4E E D.SYSMEM O005A L DATIMG 005E L ENTRY 013F I ERROR
001B E FSCPYMEM 0006 E FSEXIT 0004 D FREE 0017 E FREELEN 0142 L FREEMSG
OOED L FREERAM 0036 L HDR2 0024 E HDRLEN 0024 E HDRLEN2 0012 L HEADER
O019E L BUNDRED O0O08A E ISWRITE O008C E ISWRITLN 0000 D LEADFLAG 01D5 E LEN
00B2 L LQOOCP 00LF L LOOP2 000A D MAPSIZ 01D7 E MSIZE 000D I. NAME
00E9 L NOTRANM 0001 D NUMBER 00CD L OKRKNUM 0007 D oOUT 0194 E OUTDEC
0183 L PRINT 01BF I, PRINTLED O0l1P9 L PRINTNUM OOF1 L PUT 0017 E RAMLEN
0159 L RAMMSG 0065 D ROW 0006 D SPC 0l10F D STACK 01A8 I. TEN

Page 6-6-6

INSIDE OS9 LEVEL i

Reference

INSIDE 0S9 LEVEL I

Reference
Section 1

I COCO~-3 MEMORY, and GIME REGISTER MAP (1 Sept 86) I

SYSTEM MEMORY MAP:

RAM 00000 - 7FFFF 512K bytes

ROM 78000 TFEFF when enabled

I/0 XFFO00 XFFFF I1/0 space and GIME regs

64K PROCESS MAP:
RAM 0000
I/0 FFO0O0

FEFF (possible vector page FEXX)
FFFF (appears in all pages)

Note: the Vector Page RAM at 7FE(Q0 - 7FEFF, when enabled, will appear instead
of the RAM or ROM at XFE(Q0 - XFEFF. (see FF90 Bit 3)

XFF00-0X PIAO (not fully decoded)
XFF10~1F reserved

XFF20-2X PIAl (not fully decoded)
XFF30-3F reserved

XFF40-5F SCS (see note on FF90 Bit 2)
XFF60-7F undecoded (for current peripherals)

XFF80-8F reserved

FF90 INITIALIZATION REGISTER 0

Bit 7 - CoCo Bit 1= Color Computer 1/2 Compatible

Bit 6 - 1= MMU enabled

Bit 5 - 1= GIME IRQ output enabled to CPU

Bit 4 - 1= GIME FIRQ " "

Bit 3 - 1= Vector page RAM at FEXX enabled

Bit 2 - 1= Standard SCS

Bit 1 - ROM mapping 0 X - 16K internal, 16K external
Bit 0 - " " 1 0 - 32K internal

1 1 ~ 32K external

CoCo bit set = MMU disabled, Video address from SAM, RGB/Comp Palettes = CC2.
Interrupt bits 5 and/or 4 must be set for FIRQ/IRQ FF92-3 to pass to CPU.
Access and moves throughout mem are usually done from constant RAM at FEXX.
If Bit2=0, then XFF50-5F is SCS, and XFF40-4F will be internal to CoCo.

FF91 INITIALIZATION REGISTER 1
Bit 5 - TINS Timer INput Clock Select: 0= 70 nsec, 1= 63 usec
Bit 0 - TR MMU Task Register Select (0/1 - see FFAQO-AF)

7-1-1

INSIDE 0S9 LEVEL 1l

Reference
Section 1

FF92 IRQENR Interrupt Request Enable Register (IRQ)
FF93 FIRQENR Fast Interrupt Request Enable Reg (FIRQ)
(Note that the equivalent interrupt output enable bit must be set in FF90.)
Both registers use the following bits to enable/disable device interrupts:

Bit 5 - TMR Timer

Bit 4 - HBORD Horizontal border
Bit 3 - VBORD Vertical border
Bit 2 - EI2 Serial data input
Bit 1 - EIl Keyboard

Bit 0 - EIO Cartridge (CART)

I have no idea if both IRQ & FIRQ can be enabled for a device at same time.

FF94 Timer MSB Write here to start timer.

FF95 Timer LSB

Load starts timer countdown. Interrupts at zero, reloads count & continues.
Must turn timer interrupt enable off/on again to reset timer IRQ/FIRQ.

FF96 reserved
FF97 reserved

FF98 Alpha/graphics Video modes, and lines per row.

Bit 7 = BP 0 is alphanumeric, 1= bit plane (graphics)
Bit 6 = na N
Bit 5 = BPI 1= color burst phase change
Bit 4 = MOCH MOnoCHrome bit (composite video output) (l=mono)
Bit 3 = H50 50hz vs 60hz bit
Bit 2 = LPR2 Number of lines/char row:
Bit 1 = LPR1 (Bits 2-1-0 below:)
Bit 0 = LPRO
000 - 1 line/char row 100 - 9 1lines/char row
001 - 2 101 - 10
010 - 3 110 - 11 (2?)
011 - 8 111 - 12 (2?)

FF99 VIDEO RESOLUTION REGISTER

Bit 7 -~ na v (bits 6-5):

Bit 6 ~ LPF1l Lines Per Field: 00= 192 lines 10= 210 lines
Bit 5 -~ LPFO " " " 01l= 200 lines 1ll= 225 lines
Bit 4 - HR2 Horizontal Resolution

Bit 3 - HR1 " "

Bit 2 - HRO " " (see below for HR, CRES bits)
Bit 1 - CRES1 Color RESolution bits

Bit 0 - CRESO " "

7-1-2

INSIDE 0S9 LEVEL i

Reference
Section 1

TEXT MODES:

Text:

CoCo Bit= 0 and FF98 bit7=0. CRESO =

64
40
32

80 char/

HR2 HR1 HRO (HR1 =
line 1 X 1
1 X 0
0 X 1
0 X 0

1 for:

attribute bytes are used.

don't care for text)

GRAPHICS MODES:

X
640
640

512
512

320
320
320

256
256
256

160

Col
4

16

ors HR2 HR1 HRO CRES1 CRE
- 1 1 1 0 1
- 1 0 1 0 0
- 1 1 0 0 1
- 1 0 0 0 0
- 1 1 1 1 0
- 1 0 1 0 1
- 0 1 1 0 0
- 1 1 0 1 0
- 1 0 0 0 1
- 0 1 0 0 0
- 1 0 1 1 0

S0 Bytes/line

160
80

128
64

160
80
40

128
64
32

40

Other combo's are
possible, but not
supported.

0ld SAM modes work if CC Bit set. HR and CRES are Don't Care in SAM mode.
Note the correspondence of HR2 HRO to the text mode's bytes/line. -Kev

FF9A
FF9B

FF9C
FFOD
FF9E
FFOF

Border Palette Register (XX00 0000 =
Reserved

Vertical Fine Scroll Register

Screen Start Address Register 1 (bits
Screen Start Address Register 0 (bits
Horizontal Offset Register

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

7 -

ORNWBUOO
|

horizontal offset enable bit
X6 ... offset count (0-127)
X5 for column scan start.
X4
X3
X2
X1
X0

CoCo 1/2 compatible)

18-11)
10-3)

(128 char width always)

If Bit 7 set & in Text mode, then there are 128 chars (only 80 seen)/line. This allows an
offset to be specified into a virtual 128 char/line screen, useful for horizontal hardware
scrolling on wide text or spreadsheets.

INSIDE 0S9 LEVEL II

Reference
Section 1

FFA0O-AF MEMORY MANAGEMENT UNIT (MMU)
FFAO~A7 Task #0 Map Set (8K block numbers in the 64K map)
FFA8-AF Task #1 Map Set (Task map in use chosen by FF91 Bit 0)

Each register has 6 bits into which is stored the block number 0-63 ($00-$3F) of the
Physical 8K RAM block (out of 512K) that you wish to appear at the CPU Logical address
corresponding to that register.

Also can be shown this way: the 6 register bits, when the Logical Address in the range of
that register, will become the new Physical RAM address bits:
18 17 16 15 14 13

MMU Register: CPU:
Task0 Taskl Logical Address / Block#
FFAO FFAS8 0000 - 1FFF 0 The 6-Bit Physical Block Number
FFAl FFAS 2000 - 3FFF 1 placed in a MMU register will
FFA2 FFAA 4000 - S5FFF 2 become the A13-Al18 lines when
FFA3 FFAB 6000 - TFFF 3 the corresponding Logical Add
FFA4 FFAC 8000 - OFFF 4 is accessed by the CPU.
FFAS FFAD A000 - BFFF 5
FFA6 FFAE C000 - DFFF 6
FFA7 FFAF EQ000 - FDFF 7

A- 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Taking address bits 18-13, we have: 0 1 1 0 1 0, or $1A, or 26. This is the physical RAM
block number, out of the 64 (0-63) available in a 512K machine.

Now, let's say you'd like to have that block appear to the CPU at Logical Block 0 (0009-
1FFF in the CPU's 64K memory map) .

You would store the Physical Block Number ($1A) in either of the two Task Map registers
that are used for Logical Block 0 (FFAQ0 or FFA8). Unless your pgrm doing this is in the
Vector RAM at FEXX (set FF90 Bit 3, so ALWAYS there), you would want to use your current

Task Map Register Set. If the TR bit at FF91 was 0, then you'd use MMU register FFAO0 for
the $1A data byte.

To find the address within the block, use Address Bits 12-0 plus the Logical base address
(which in this case is $0000):

Now you could read/write address $1001, which would actually be $35001.

INSIDE 0S9 LEVEL I

Reference
Section 1

FFBO-BF COLOR PALETTE REGISTERS (6 bits each)

FFB0 - palette 0
FFBl - palette 1

FFBF - palette 15

The pixel or text attribute bits in video memory
form the address of a color palette (0-15).
It is the color info in that palette which is seen.

Reg bits- 5 4 3 2 1 0
CMP ... Il1 10 P3 P2 Pl PO
RGB ... Rl Gl Bl RO GO BO Red Green Blue

When CoCo Bit is set, and palette registers preloaded with certain default values (ask,
you need these), both the RGB and CMP outputs appear the same color,

(64 RGB combo's)

Intensity and Phase (16 colors x 4 shades)

supposedly.

40/80 Column Text Screen Bytes are Even=char, Odd=attribute, in memory.

Characters selected from 128 ASCII.

Char Attributes- 8 bits... FUTTTB BB
Flashing, Underline, Text foregrnd, Backgrnd colors 0-7.

NO text graphics-chars.

FFCO-DF SAM : same as before (mostly compatible Write-Only Switches)

FFD8 = CPU .895 MHz

FFD9 = 1.79 MHz
FFDE = Map RAM/ROM
FFDF = all RaM

(no address~dependent speed)

7-1-5

if

INSIDE 0S9 LEVEL II

Reference
Section 1

ADDENDUM

This is an addendum to the GIME information.
Thanks to Greg Law and his friend Dennis Weldy for much register info.

GIME Register Corrections:

$FF91 - Bit 5, Timer Input Select. Looks like O=slower speed, instead. Haven't
had time to put a scope on it to check actual clocks, yet. Not sure.

$FF92-3 - Interrupt Request Regs: You can also read these regs to see if there
is a LOW on an interrupt input pin. If you have both the IRQ and FIRQ for the
same device enabled, you read a Set bit on both regs if that input is low.

For example, if you set $FF02=0 and $FF92=2, then as long as a key is held
down, you will read back Bit 1 as Set.

The keyboard interrupt input is generated by simply AND'ing all the matrix
pins read back at $FF00. Therefore, you could select the key columns you
wished to get by setting the appropriate bits at $FF02 to zero. Pressing the
key drops the associated $FF00 line to zero, causing the AND output to go low
to the GIME. Setting $FF02 to all Ones would mean only the Joystick Fire
buttons would generate interrupts.

$FF94-95 - Storing a $00 at $FF94 seems to stop the timer. Also, apparently
each time it passes thru zero, the $FF92/93 bit is set without having to re-
enable that Int Request.

SFF98 - Bit 5 is the artifact color shift bit. Change it to flip Pmode 4
colors. A One is what is put there if you hold down the F1l key on reset. POKE
&HFF98, &H13 from Basic if your colors artifact the wrong way for you.

SFFIOF - Horz Offset Reg. If you set Bit 7 and you're in Gfx mode, you can
scroll across a 128 byte picture. To use this, of course, you'd have to write

your own gfx routines. On my machine, tho, an offset of more than about 5
crashes.

SFFBO-BF - As I originally had, and we all know by now, FFB0-B7 are used for
the text mode char background colors, and FFB8-BF for char foreground colors,
in addition to their other gfx use.

CoCo-3 Internal Tidbits:

The 68B09E address lines finally have pullup resistors on them. Probably put
in for the 2MHz mode, they also help cure a little-known CoCo phantom: since
during disk access, the Halt line tri-states the address, data, and R/W lines,
some old CoCo's would float those lines right into writing junk in memory. Now
S$FFFF would be presented to the system bus instead.

Since the GIME catches the old VDG mode info formerly written to the PIA at

SFF22, those four now-unconnected lines (PB4-7 on the 6821) might have some
use for us.

7-1-6

INSIDE 0S9 LEVEL I

Reference
Section 1

Also, Pin 10 of the RGB connector is tied to PB3 on the same PIA. Shades of

the Atari ST. Could possibly be used to detect type of monitor attached, if we
like.

Data read back from RAM must go thru a buffer, the GIME, and another buffer.
Amazing that it works at 2 MHz.

In case you didn't catch the hint from GIME.TXT on FF90 Bit 2, the option of

an internal SCS select opens up the possibility of a CoCo-4 with a built-in
disk controller.

GIME PINS:
61 63 65 67 01 03 05 07 09 09 ———m—w— 01 68 ——==——- 61l
60 62 64 66 68 02 04 06 08 11 10 10 60
58 59 13 12 1l 1
56 57 15 14 1 1
54 55 17 16 1 1
52 53 Bottom 19 18 1 Top 1
50 51 21 20 1 1
48 49 23 22 1 1
46 47 25 24 1 1
44 45 42 40 38 36 34 32 30 28 26 26 44
43 41 39 37 35 33 31 29 27 27 -~- -~ 43

01 - GND 18 - D6 35 - +5 Volts 52 - Al3

02 - XTAL 19 - D7 36 - 73 53 -~ Al4

03 - XTAL 20 - FIRQ* ->CPU 37 - 24 54 - A1S5

04 -~ RAS* 21 - IRQ* -~>CPU 38 - test (+5) 55 - VSYNC*
05 - CAsS* 22 - CART* Int in 39 - 75 56 — HSYNC*
06 - E 23 -~ KeyBd* Int in 40 - Zé6 57 - D7 (RAM)
07 - Q 24 -~ RS8232* Int in 41 - 27 58 - D6

08 - R/W* 25 - A0 (fm CPU) 42 - 78 59 - D5

09 - RESET* 26 - Al 43 - A4 (fm CPU) 60 — D4

10 -~ WEn* 0 27 - A2 44 - AS 61 - D3

11 - WEn* 1 28 - A3 45 - A6 62 - D2

12 - DO (CPU) 29 - 82 . 46 - A7 63 ~ D1

13 - D1 30 - s1 . 47 - A8 64 - DO

14 - D2 31 - SO . 48 - A9 65 - Comp Vid
15 - D3 32 - 20 (RAM) 49 - Al0 66 — Blue
16 - D4 33 ~ 21 50 - All 67 - Green
17 - D5 34 - 22 51 - Al2 68 — Red
Notes: WEnx = Write Enables for Banks 0 and 1 RAM

§2-0 = (address select code -> 74LS138) :

000 -0- ROM 010 -2- FFOX, FF2X 100 -4- int SCS 110 -6~ norm SCS
001 -1- CTS 011 -3- FFlX, FF3X 101 -5~ n/a 111 -7~ 22?2ram??

INSIDE 0S9 LEVEL I

Reference
Section 1

CONNECTORS:
(CN5,6 -~ top to bottom, CN2 - left to right)

CN6 - Gnd, +5, D1, DO, D2, D3, D6, D7, D5, D4, WEnl, Gnd
CN5 - Gnd, D2, D3, D1, WEnO, DO, CAS, D6, D5, D4, D7, Gnd
CN2 - Gnd, RAS, 20, 21 , 22, 23, 26, 25, 24, 27, 28, Gnd

Tho as far as the CN's go, even if I have messed up all but the CAS, RAS,
WEn's, and +5, you could connect the extra RAM Dx and Zx pins in parallel to
each bank in any order. Most RAM's don't care.

CN6 and CN5 data lines go to separate 256K banks, of course.

General Info:

Data is written to the RAM by byte thru IC10 or ICll, selected by WEn 0 or 1.
(write enable 0 = even addresses, write enable 1 = odd addresses)
Two bank RAM data is read back to the GIME thru IC1l2 & IC13, byte at a time.
The CPU can then get it from the GIME by byte.
IC 10, 11, 12 = 74LS244 buffer. IC13 = 74Ls374 latch clocked by CAS* rise.
RAM Read --> ICl2 --> GIME enabled by CAS low. (read first)
RAM Read --> IC13 --> GIME enabled by CAS hi. (latched & read)

Test Points:
TP 2 = E TP 4 = RAS TP 6 = Comp Video TP 9
TP 3 = Q TP 5 CAS TP 8

Green
Red TP10 = Blue

7-1-8

INSIDE 0S9 LEVEL I

Reference
Section 2

IRQ POLLING TABLE

A list of 9-byte entries, one for each device controller / driver that has
used the F$Irg call. When an IRQ comes, IOMAN uses this list to find the
device that is requesting service.

IOMAN then JSR's to the driver's interrupt routine, which is expected to clear
the IRQ, and do whatever I/0 is required. The driver normally will wake up
V.WAKE, the process that was using the device. (The driver had put the process
to sleep.)

DEVICE TABLE

When a device is first called upon, IOMAN inserts quick reference info about
the device in the table, and calls the device's INIT subroutine that first
time only.

Table used by IOMAN for making path desc's & calling the device's file mgr;
by file mgr to call device's driver.

MODULE DIRECTORY

Table of modules in memory, at 00AQO-00FFF. Contains info on their physical
address, and used by 0S9 for quick lookup of module names. Also used to keep
track of the number of users.

PATH DESCRIPTORS

Each open path has a Path Descriptor, which is shared by all processes that
got the path desc by I$Dup'ing a path, or by having the path passed to it by
the F$Fork call, which dup's the first 3 standard path's of the parent to the
child.

The desc block number is NOT the number you use in a program to access the
path. The block number is stored in the process desc I/0 path table in the
order in which the paths are opened (they take the first empty spot found in
the proc path table).

Your number is simply an index into the path desc I/O table in your process
descriptor, which is then used by IOMAN to get the real path desc block

number.

The base address of all path desc's is in D.PthDBT.

7-2-1

INSIDE 0S9 LEVEL I

Reference
Section 2

Entry Format IRQ POLLING TABLE

QS$POLL 00-01 Polling address (status byte)
Q$FLIP 02 Flip byte for negative logic
QSMASK 03 Mask byte for IRQ bit

QS$SERV 04-05 Service routine

QS$STAT 06-07 Static storage address

QS$PRTY 08 Priority of device
POLLSIZ . Size of each entry
Entry Format DEVICE TABLE

VSDRIV 00-01 Driver module

VSSTAT 02-03 Driver static storage
VS$DESC 04-05 Descriptor module
VSFMGR 06-07 File manager module

VSUSRS 08 Device user count
DEVSIZ . Size of each entry
Entry Format MODULE DIRECTORY

MD$MPDAT 00-01 Module's block(s) DAT Image Pointer
MD$MBSiz 02-03 Memory Block Size

MDSMPtr 04-05 Offset pointer in block to module
MD$Link 06-07 Module Link Count

Block Format PROC/PATH DESRIPTORS

Descriptors (process/path) are allocated in 64-byte blocks, out of 256-byte
pages. The very first block is dedicated as pointers to this and any other
pages needed to hold the max # of descriptors in use.

00~-3F MSB's of pages allocated to this type of descriptor
40-7F Descriptor #1
80-BF Descriptor #2
CO-FF Descriptor #3

Therefore, byte $01 in the first page above points to the next page of four
64-byte blocks:

00-3F Descriptor #4
40-7F Descriptor #5
80-BF Descriptor #6
CO-FF Descriptor #7

The descriptor # is used as the proc ID / path pointer by the system. If the

descriptor is not in use (killed/closed), the first byte of the block is
cleared as a flag, else it is equal to the descriptor number itself.

7-2-2

INSIDE 0S9 LEVEL Il

Reference
Section 2

MODULE TYPES

$10 Prgrm Program module $CO0 Systm System module
$20 Sbrtn Subroutine mod $D0 FlMgr File manager
$30 Multi Multi-module SE0 Drivr Device driver
$40 Data Data module SF0 Devic Device descriptor
UNIVERSAL MODULE HEADER
M$ID 00-01 Sync bytes ($87CD)
M$size 02-03 Module size
M$Name 04-05 Offset from start to module name
M$Type 06 Type / language nibbles
M$Revs 07 Attributes / revision nibbles
MSParity 08 Header parity
..... Rest of header, program, and CRC value.
INIT MODULE
00-08 Universal header
Maxmem 09-0B Top of free memory
PollCnt OC IRQ polling table max entry count
DevCnt 0D Device table max entry count
InitStr OE-OF Startup module name offset ('CC3GO")
SysStr 10-11 Default device name offset ('/D0Y)
Stdstr 12-13 Standard I/0 pathlist ('/TERM")
BootStr 14-15 Bootstrap module name ('Boot ")
ProtFlag 16 Write-protect enable flag
Name strings
PROGRAM MODULE
00-08 Universal header
M$Exec 09-0A Execution entry offset
M$Mem 0B-0C Data memory size required
Program
SUBRQUTINE MODULE
00-08 Universal header
MS$Exec 09-0A Subroutine entry point (may be elsewhere)
M$Mem 0B-0C Stack space required (optional for pgm use)

Subroutine(s)

7-2-3

INSIDE 0S9 LEVEL 1l

Reference
Section 2

FILE MANAGER

00-08 Universal header

MSExec 09-0A Offset to Execution Entries Table

Name string, etc.

Execution Entries Table (all LBRA xxxx)
FMCREA 00-02 Create new file
FMOPEN 03-05 Open file
FMMDIR 06-08 Make directory
FMCDIR 09-0B Change directory
FMDLET 0C-0E Delete file
FMSEEK 0F-11 Seek position in file
FMREAD 12-14 Read from file
FMWRIT 15-17 Write to file
FMRDLN 18-1A Read line with editing
FMWRLN 1B-1D Write line with editing
FMGSTA 1E-20 Get file status
FMSSTA 21-23 Set file status
FMCLOS 24-26 Close file

File manager program

DEVICE DRIVER
00-08 Universal header

MS$SExec 09-0A Offset to Execution Entries Table
M$Mem 0B-0C Static storage required
M$Mode 0D Driver mode capabilities

Name string, etc.

Execution Entries Table (all LBRA xxxx)
DSINIT 00-02 Initialize device
D$SREAD 03-05 Read from device
DSWRIT 06-08 Write to device
DSGSTA 09-~0B Get device status
DSPSTA 0C-0E Put device status
DSTERM OF-11 Terminate device

Device driver program

7-2-4

INSIDE 0S9 LEVEL i

Reference
Section 2

DEVICE DESCRIPTOR

M$FMgr
M$PDev
M$Mode
M$Port
M$Opt

M$DTyp

00-08
09-0A
0B-0C
oD
0E-10
11

12
13-

Universal header

File manager name offset for this device
Driver name offset

Device capabilities

Device extended address

Number of options in initijialization table
Device type 0=SCF 1=RBF 2=PIPE 4=NFM
Initialization table (copied to path desc)
Name strings

7-2-5

INSIDE 0S9 LEVEL I

Reference
Section 3

VIDEO DISPLAY CODES

All codes are hex (natch) and are sent to the desired device window.
(see also pages 20 on, in September 86 RAINBOW for examples)

Parameters with H** L** parts are the High (msb) and Low (lsb) bytes.
Device windows are the /Wx's, overlay windows go within device windows.
Visible screens will change to the one containing the current active window.

(each displayable screen can have several windows in it)
DWSET 1B 20 STY CPX CPY SzZX SZY PRN PRN (PRN)

Device Window Set — set up a device window (/Wx)

DWEND 1B 24
Device Window End

SELECT 1B 21
Select Active Window - send this code to the device window whose screen you
wish to become visible and the new active keyboard user.

OWSET 1B 22 SVS CPX CPY SZX SZY PRN PRN
Overlay Window Set - set up an overlay window within a device window
OWEND 1B 23
Overlay Window End
CWAREA 1B 25 CPX CPY SZX SzZY
Change Window Area - changes active window portion
Notes:
/Wx - up to 31 windows, plus /W and /TERM
CPX CPY - starting char col & row

SZX SZY ~ size in rows & cols

PRN - palette register number (00-0F)

RAVA - save switch (0=no, l=yes) to save data under OW
STY - window screen type

= current type: allows multiple windows in a screen
= 40x24 text

80x24 text

640x192 two color gfx

320x192 four color

640x192 four color

= 320x192 sixteen color

O d VN O
[

DEFGPBUF 1B 29 GRP BFN HBL LBL
Define Get/Put Buffer - preset a buffer size

KILBUF 1B 2A GRP BFN
Kill Buffer - return buffer to free mem

GPLOAD 1B 2B GRP BFN STY HSX LSX HSY LSY HBL LBL DATA...
Get/Put Buffer Load

GETBLK 1B 2C GRP BFN HBX LBX HBY LBY HSX LSX HSY LSY
Get Graphics Block

7-3-1

INSIDE 0S9 LEVEL Il

Reference
Section 3

PUTBLK 1B 2D GRP BFN HBX LBX HBY LBY

Put Graphics Block

Notes:
GRP -
BFN -
HBL/LBL - 16 bit length
-SX -SY - size X Y

-BX -BY - buffer X Y

Get/Put Buffer Group Number 00-FE
Get/Put Buffer Number 01-FF (within Group)

Get/Put Groups and their Buffer subsets are used to store screen data, fonts,

and pattern ram info.

Certain Group numbers are pre-defined as reserved, or as fonts, patterns,
etc. Within those Groups, specific Buffer numbers are set aside.

For your own use, you should do an F$ID call to get your process id, kill the
group, then open it for your use. This keeps things separated. '

The standard Groups and Buffers within those groups:
01 - 8x8 font

C8 - fonts

C9 - clipboards

CA - pointers

CB - patterns (2 color)
CC - patterns (4 color)
CD - patterns (16 color)

PSET 1B 2E GRP BFN
LSET 1B 2F LCD

02
03

01

03
04
05
06
07

01
02
03
04
05
06
07
08

6x8 font
8x8 gfx

arrow

pencil

large cross-hair
wait

stop!

text) (

small cross-hair

dot

vertical lines
horz lines
cross—hatch

- left slant
- right slant
- small dot
- big dot
Pattern Set - select buffer as pattern ram array
Logic Set - select mode for pattern display
0 = store data on screen as is
1 = AND pattern data w/screen data
2 = OR "
3 = XOR "

7-3-2

INSIDE 0S9 LEVEL 1l

Reference
Section 3

DEFCOLR
PALETTE
FCOLOR
BCOLOR
BORDER

Notes:

PRN
PRN
PRN
PRN

CIN

Default Color Reset
Set Palette Reg

Foreground Color - use palette # PRN
Background Color - use palette # PRN
Border Color - use palette # PRN

color (00-3F RRRGGGBBB xslated by monitor type)

SCALESW
DWPROTSW
GCSET
FONT
BCHRSW
TCHRSW
BOLDSW
PROPSW

Notes:

CURSOR
POINT
LINE
LINEM
BOX
BAR
PUTGC
FFILL
CIRCLE
ELIPSE
ARC
RARC

HBR

BFN
BFN

LBR

Other Terminal Codes:

HOME

GO XY
ERASELINE
ERASEEOL
CURSOROFF
CURSORON
RIGHT
BELL

LEFT

upP

01
02
03
04
05
05

20
21
06
07
08
09

Scaling - 01 = drawing is relative to window size
Window Protect Switch (boundary detection)

Set source of Graphics Cursor data

Select Font - previously loaded into buffer
Block Char - draw char font as full char block
Transparent Char - draw char dots only

Boldface Char

Proportional

option switch (00=0ff, 0l=on)

LBY RCURSOR 1B 41 (Relative Coords)
LBY RPOINT 1B 43 ~ use relative coords
LBY RLINE 1B 45 HBXo LBXo HBYo LBYo
LBY RLINEM 1B 47 for these cmds

LBY RBOX 1B 49

LBY RBAR 1B 4B

LBY

HBRx LBRx HBRy LBRy
HBRx LBRx HBRy LBRy HX01l LX01 HY01 LY01l HX02 LX02 HY02 LYO02
HBRxoO

" etc
ERASEEQOS OB
CLSHOME 0cC
RETURN <CR> 0D
REVERSEON 1F 20
REVERSEOFF 1F 21
UNDERLINEON 1F 22
UNDERLINEOFF 1F 23
BLINKON 1F 24
BLINKOFF 1F 25
INSLINE 1F 30
DELLINE 1F 31

DOWN

0A

7-3-3

INSIDE 0S9 LEVEL 1l

Reference
Section 4

Keyboard Definitions with Hex Values

1B
0D
20
10
11
12

NORM SHFT CTRL NORM SHFT CTRL NORM SHFT
0 30 0 30 _1F @ 40 60 NUL 00 P 50 p 70
1 31 t 31 7C A 41 a 61 SOH 01 Q51 g 71
2 32 ™ 22 00 B 42 Db 62 S8STX 02 R 52 r 72
3 33 # 23 7E C 43 ¢ 63 ETX 03 S 53 s 73
4 34 $ 24 00 D 44 d 64 EOT 04 T 54 t 74
535 % 25 00 E 45 e 65 EMD 05 U 55 u 75
6 36 & 26 00 F 46 f 66 ACK 06 vV 56 v 76
7 37 ' 27 @ 5E G 47 g 67 BEL 07 W 57 w77
8 38 (28 [5B H 48 h 68 BSP 08 X 58 x 78
9 39) 29] 5D I 49 i 69 HT 09 Y 59 y 79
: 34 * 2A 00 J 4A j 6A LF OA Z 5A =z 7A
; 3B + 2B s K 4B k 6B VT 0B
, 2C < 3C 7B L 4C 1 6C FF O0C BREAK 05
- 2D = 3D __5F M 4D m 6D CR 0D ENTER 0D
. 2E > 3E 7D N 4E n 6E CO OE SPACE 20
/ 2F 2 3F \ 5C O 4F o 6F CI OF LEFT 08
RIGHT 09
<CLR><0> = shift u/l case DOWN 0A
UP ocC

The only new key code generated is the 7F rubout key.

<control>-;

7-4-1

13

INSIDE 0S9 LEVEL I

Reference
Section 5

200 E$PthFul
201 E$BPNum
202 ES$Poll
203 E$BMode
204 ES$DevOvf
205 E$BMID
206 ESDirFul
207 E$MemFul
208 E$UnkSvc
209 E$ModBsy
210 E$BPAddr

211 ESEOF
212

213 ESNES
214 ESFNA

215 ES$BPNam
216 ESPNNF

217 ES$SLF
218 ES$CEF
219 ESIBA
220 ES$HangUp
221 ESMNF
222

223 E$DelSP
224 ESIPrciID

226 ES$SNoChld
227 ESISWI
228 ES$PrcAbt
229 ES$PrcFul
230 E$SIForkP
231 E$KwnMod
232 ES$BMCRC
233 ESUSigP
234 ESNEMod
235 ES$BNam
236 E$BMHP
237 E$NoRam
238 ES$BPrcID
239 ES$NoTask
240 ES$SUnit
241 E$Sect
242 ESWP

243 ESCRC
244 ES$Read
245 ES$Write
246 ES$NotRdy
247 E$Seek
248 ESFull
249 ESBTyp
250 ES$DevBsy
251 ES$DIDC
252 E$Lock
253 E$Share
254 ES$Deadlk

Exit

Keyboard abort
Keyboard interrupt
Path Table full

Bad Path Number
Polling Table Full

Bad Mode

Device Table Overflow
Bad Module ID

Module Directory Full
Process Memory Full
Unknown Service Code
Module Busy

Bad Page Address

End of File

Attempt to return memory not assigned
Non-Existing Segment
File Not Accessable
Bad Path Name

Path Name Not Found
Segment List Full
Creating Existing File
Illegal Block Address
Carrier lost

Module Not Found
Sector out of range
Deleting Stack Pointer memory
Illegal Process ID

No Children

Illegal SWI code

Process Aborted

Process Table Full

Illegal Fork Parameter
Known Module

Bad Module CRC

Unprocessed Signal Pending
Non Existing Module

Bad Name

Bad module header parity
No Ram Available

Bad Process ID

No available Task number
Illegal Unit (drive)

Bad SECTor number

Write Protect

Bad Check Sum

Read Errecr

Write Error

Device Not Ready

Seek Error

Media Full

Bad Type (incompatable) media
Device Busy

Disk ID Change

Record is busy (locked out)
Non-sharable file busy

I/0 Deadlock error

7-5-1

INSIDE 0S9 LEVEL II

INDEX

A Closer Look

A Small Problem
ADDENDUM

AREAS OF INTEREST

An Analogy

BUGS- Hardware

BUGS~ Manual

BUGS-~ Software

Basic Interupt Handling
CC310

CC310

CHARACTERS FONT

Clock INIT & Operation
CoCo-3 Internal Tidbits
Comparison with Other I/0 Devices
Connectors

Dat

Dat Images & Tasks

Each User Task Map
Example Maps

Example Cne

Example Two

F$Lirk from system state
F$Load from system state
FONT CONVERSION

Forking RUNE modules
GENERAL DRIVER NOTES
GIME Register Corrections
GRFDRV

GRFDRV

GRFINT

GRFINT/WINDINT

General Information
General Notes virgs end up as irqg
Gime Dat

I/C

ICMAN INMIT

IOMAN IRQ Poll Syropsis
IRQ Handling

IRQ's On Level Two
JRQ's~ Clock & Devices

IRGC- Related DP.Vars & System Tables

Informaticn
Killing Window Processes

L-II Direct Page Varieble Map $00XX

L-JI Process Descriptor Variables
Level II Task Switching

Level Two Device Addresses

Level Two In More Detail

Level Two vs One: General

Level-I CoCo 1/2

Level-1I CoCo 3

[
o
HFERWNDWYOHW

!
|

NI OSSO
!

[
I

I B A | [}
B G0 e e B W W W W e e e
[!

P!
' It
d pd et pd = N RO MEHEMNMEBEWNDWHOOWBRBOTWARHDHDDNNSIAOADDHEHIOHEAMAWEREWN

1 L O T O N TR N N A A I
!

1
!

DDNNHFHFWNNNNMNUODNDWRONNNHEEFEDDNBLADBRBJWOUTUTO RSB SN DD
1

INSIDE OS9 LEVEL II

INDEX

Logical vs Physical Addresses
Login II Patch

Making Windows

Memory Mgmt

Merged Module Files

Misc.

Misc. Window Tips
Multi-tasking Principles
Multi-tasking Principles
Multi-tasking Principles
Multi-tasking Principles
Now I Have It, Whats its Use?
0S9 Boots

0S9 System Calls

0S8 Vector Initialization
Ok, What About 0S9 Level-II
Other L-II Driver Changes
Other System Ram Usage
Overview of 0S9

Process Information
Process quenes

Program Modules

RBF Things

SCF Special Chars.

SHELL

Screen Memory

Signals

Simple System Memory Map
States

Swi's

Switching Between Maps
System Memory Allocation
THE WINDOW DRIVERS

TIPS, GOTCHAS & LAST MINUTE STUFF

The CoCo~2 Boards
The CoCo-3 Dat

The Main Players
The System Map

The System Task Map
Too Much To Say

Transfer To System State-Level I/II

Universal System Tables

User Maps Module & Data Areas
Using L-I Debug On Level Two
Using L-1I VDG Programs

Using Rogue to Make a System Disk

VDGINT
VIDEO DISPLAY CODES

SR UTUI U R e s b U1 s b et bt e 8 U1 W0 W0 = = bt 0 R W 2 N N UT e b b = UT UY U1
|

WHNUOOOHBWOOFWWORUOUUNHNHEEHOURNHEREROWBNTWRNNNNHMOWND OTW
1

HFNHFHWBNNNONDNWNHEFERESORNDOD ST HEFERDRNRODNONBENDTN B WWN O W R kW

LU
ot

| I T T T O T O N D Y T U O O N T Y B
{ JS AN A NN Y N N T N NN N N A N N O A U N

Congratulations on your purchase of the first of
what we hope will be many books on the most
powerful operating system available, OS-9!

This copy of 'INSIDE OS9 LEVEL II' will be up-
graded as time goes by and as more information
is collected.

To get your discounted copy of the next edition of
'INSIDE OS9 LEVEL II' fill out the coupon below
and mail it in.

COUPON

This coupon entitles the bearer to edition 2 of 'INSIDE OS9 LEVEL II' when it
becomes available for 50% of the cover price of this copy. The price of
$20.00 includes COD UPS charges. This coupon is good for shipment in the
USA only.

Name

Address(no POBOX)__

Ciy. State, 2P,

Date

Mail to:
Frank Hogg Laboratory, Inc.
770 James Street
Syracuse, New York 13203

DON'T LET YOUR FINGERS DO THE
WALKING!

Typing in the long listings from INSIDE OS9 LEVEL Il can be a real
pain. By ordering INSIDE OS9 LEVEL 1l DISK you can eliminate that
hardship. The disk includes the programs in the book plus many other
nifty programs by the author.

The INSIDE OS9 LEVEL Il DISK is just $20.00 and contains all the
programs in the book plus others by the author.

You can use your Visa, MasterCard, American Express or Diners Club
card. or you can enclose payment and mail your order to:

Frank Hogg Laboratory, Inc.
770 James Street
Syracuse, New York 13203
315/474-7856

YES! Send me the INSIDE OS9 LEVEL |l DISK
Name
Adaress
City State 2P
Payment Enclosed_____ Charge my Visa account____ Charge my MasterCard account___ Charge My

American Express account(5% surcharge) Charge my Diners Club account(5% surcharge)

Account No. Card Expires

Signature Interbank No.

Non-US orders add $2.00 US to cover additional shipping. NY State residents add 7% sales tax.

Frank Hogg Laboratory is the largest
supplier of software for OS9. We have
also been supporting OS9 longer than
any other company. If you would like to
get on our mailing list to receive free
newsletters and catalogs please fill out
the coupon below and mail it in.

Thank You

MAILING LIST COUPON

YES! Please put me on your mailing list to receive free newsletters
and other information about OS9.

My interest is:

Name

Address

Ciy. State P

Dae

Mail to:
Frank Hogg Laboratory, Inc.
770 James Street
Syracuse, New York 13203

	Cover
	Inside OS9 Level II
	Table of Contents
	1. Introduction
	Section 1-1. Foreward and General Info
	Overview of OS-9
	Simple System Memory Map
	The Main Players

	Section 1-2. Basics of OS9
	Multi-Tasking Principles
	Process Queues
	States
	I/O
	Signals
	Initiating a Process
	Opening a File/Device

	Section 1-3. The GIME MMU
	Gime DAT
	Logical vs Physical Address
	Memory Management
	The CoCo-2 Boards
	The CoCo-3 DAT
	An Analogy
	Now I have it! - But What use is all this?
	OK, What about OS9 Level-II?
	Too Much to Say ---

	Section 1-4. DAT Images
	Section 1-5. Level Two
	Level Two Vs One: General
	DAT-
	SWI's-
	The System Task Map
	Each User Task Map
	The System Map
	The System task Map
	Each User Task Map
	The System Map
	Vector Page RAM
	BlockMap
	DAT Images
	Module Directory
	Process Descriptors

	System memory Allocation

	User Maps
	Module and DATA Areas
	Switching Between Maps
	Example Maps
	Example One
	Example Two

	2. The System
	Section 2-1. Direct Page Variables and System Memory Map
	L-II Process Descriptor Variables
	L-II Direct Page Variable Map $00XX
	Other System RAM Usage

	Section 2-2. System Calls (F$calls)
	OS9 System Calls
	SWI2 Service Request
	Subroutine
	I/O Service call
	F$LOAD
	ReadMod
	Verify Module
	F$UNLINK
	ClearDir
	F$FORK
	MakeProc
	F$AllPrc
	F$ALLTSK
	F$RESTSK
	F$RELTSK
	F$SETTSK
	Check Task
	F$WAIT
	F$SEND
	F$EXIT
	F$LINK
	F$ID
	F$SPRIOR
	F$SWI
	F$PERR
	F$TIME
	F$SETIME
	Init

	Section 2-3. System Calls (I$calls)
	F$IRQ
	IRQ Polling Routine
	I$ATTACH/DETACH
	I$DUP
	I$CREATE/OPEN
	I$CLOSE
	I$CHGDIR
	I$READ
	Subroutine

	Section 2-4. Interrupts
	IRQ Handling
	IRQ'a - Clocks and Devices
	Basic Interrupt Handling
	Level I CoCo 1/2
	Level I CoCo 3

	Level II Task Switching
	OS-9 Vector Initialization
	Transfer to System State - Level I or II
	IOMAN Init
	CLOCK Init and Operation
	IOMAN IRQ Poll Synopsis
	IRQ FlowCharts
	CoCo Level I
	CoCo Level II

	Notes
	General Notes
	IRQ-Related DP.Vars and System Tables
	IOMAN Tables

	3. Devices
	Section 3-1. RBF Random Block File Manager
	RFMAN File
	Device Driver Entries
	INIT
	READ
	WRITE
	GETSTT/PUTSTT
	TERM
	IRQ Service Routine

	Static Memory
	Device Descriptor
	PD.Variables
	Device Descriptor Template

	Section 3-2. RBF Calls
	LSN Formats
	File Mgr Entry
	CREATE
	OPEN
	CLOSE
	CHGDIR
	SEEK
	Subroutine

	Section 3-3. SCF Sequential File Manager
	SCFMAN File
	Device Driver Entries
	INIT
	READ
	WRITE
	GETSTT/PUTSTT
	TERM
	IRQ

	Static Memory
	Device Descriptor
	PD.Variables
	Device Descriptor Template

	Section 3-4. Pipe Manager
	PIPEMAN File
	PD.Variables

	Section 3-5 General Information
	General Driver Notes
	Level Two Device Addresses
	SCF Special Chars
	RBF Things
	IRQ's on Level Two
	Other L-II Driver Changes

	4. Windows
	Section 4-1. Window Basics
	The Window Drivers
	Comparison with other I/O Devices
	CC3IO
	VDGINT
	GRFINT/WINDINT
	GFRDRV

	A Closer Look
	CC3IO
	GRFINT
	GRFDRV

	Screen Memory
	Misc Window Tips
	Areas of Interest
	CC3IO
	GRFINT
	GRFDRV

	Section 4-2. Global and CC3IO Memory
	Section 4-3. Fonts and Things
	Character Fonts

	Section 4-4. Window Descriptor

	5. Miscellaneous
	Section 5-1. The Shell
	Information
	A Small Problem
	Killing Window Processes
	Misc
	Shell Flowchart

	Section 5-2. Using Rogue to make OS9 Level II
	Using Rogue to make a System Disk
	Making Windows

	Section 5-3. Bug Fixes
	Bugs- Software
	Bugs- Hardware
	Bugs-Manual

	Section 5-4. Graphicom Font Conversion
	Section 5-5. User Tips
	Using L-1 VDG Programs
	OS9Boots
	Merged Module Files
	F$Load from System state
	F$Link from System State
	Forking RUNB Modules
	Using L-I Debug on Level Two
	Login II Patch

	6. Sources
	Section 6-1. Alarm Utility
	Section 6-2. DMem
	Section 6-3. MMap
	Section 6-4. PMap
	Section 6-5. Proc
	Section 6-6. SMap

	7. Reference
	Section 7-1. GIME Register Map
	Addenum
	GIME Register Corrections
	CoCo-3 Internal Tidbits
	GIME Pins
	Connectors

	General Info

	Section 7-2. Tables and other Stuff
	Section 7-3. Video Display Codes
	Section 7-4. Keyboard Codes
	Section 7-5. System Error Codes

	Index
	Coupons
	Back Cover

