from DATAMOST, INC. $14.95

REWARD
BOOKS

*TRS-80 is a trademark of
Tandy Corp.

HOW TO WRITE A COMPUTER PROGRAM

Volume |

TRS-80 EDITION
by Ed Faulk

illustrations by
Jeannine Likins

DISCLAIMER

DATAMOST, INC. shall have no liability or responsibility to the
purchaser or any other person or entity with respect to any liability,
loss or damage caused or alleged to be caused directly or indirectly
by this manual or its use, including but not limited to any interruption
in service, loss of business and anticipatory profits or consequential
damages resulting from the use of this product.

COPYRIGHT © 1982 by DATAMOST, INC.

This manual is published and copyrighted by DATAMOST, INC.
Copying, duplicating, selling or otherwise distributing this product
is hereby expressly forbidden except by prior written consent of
DATAMOST, INC.

The term TRS-80 and the RADIO SHACK logo are registered
trademarks of RADIO SHACK, a division of TANDY CORP.

RADIO SHACK or TANDY CORP were not in any way involved
in the writing or other preparation of this manual, nor were the facts
presented here reviewed for accuracy by either company. Use of
the term TRS-80 should not be construed to represent any endorse-
ment, official or otherwise, by RADIO SHACK or the TANDY CORP.

Published by Datamost, Inc. Reston Pub}}st/wligg Company, Inc.
A Prentice-Hall Company

9748 Cozycroft '.Aven.u © Reston, Virginia

Chatsworth, California 91311 Toll free (800) 336-0338

ISBN 08359-2992-2

TABLE OF CONTENTS

Page
I OTUCHIONot e v
Section 1 — Theldea......ccvvevieiiiiiiiiiiii e, 1-1
Chapter 1 — Idea Categoriesc.coevviiinns 1-1
Chapter 2 — Where to Getldeas........................... 1-9
Chapter 3 — Combining Ideas.......................oeen. 1-19
Section 2 — Planning the Program 2-1
Chapter 4 — Program Functions..................ooevns 2-1
Chapter 5 — Program Overviewoooeeenninnn. 2-19
Section 3 — Designing the Program....................... 3-1
Chapter 6 — Flowcharts ..o 3-1
Chapter 7 — Pseudo-code.............c.coeiiiiiiniiiinns 3-23
Section 4 — Coding the Programcooeeeinenn. 4-1
Chapter 8 — Modular Coding Techniques................. 4-1
Chapter 9 — Structured Approaches 4-32
Section 5 — Testing/Debuggingooovveiiininnns 5-1
Chapter 10 — Approaches to Testing...................... 5-1
Chapter 11 — Fixing Bugs the Easy Way 5-17
Section 6 — The End of the Journeyooees 6—1
Chapter 12 — Readable Documentation 6-1
Chapter 13 — Epilogue..........cooooiiiiiiininn, 6-17
Apaeﬁdices .. A-1
B-1

Introduction

During many years teaching computer programming lan-
guages, | was often amazed at the number of times students would
ask the question “But, how do | actually write a program?” They
were smart enough to realize that knowledge of a given computer
programming language was not the same as being a programmer
in that language.

In this book, I will provide some simple techniques for program
development that have proven successful over the years, both for
myself and others. The methods that we will be discussing have
been called by various names over the last 10 years or so; some-
times the methods are called “modular programming;” sometimes
“structured programming,” and sometimes “top-down deviopment.”
In any event, this technique is a mechanical attempt to define the
sort of functions that the “top-notch” programmers use (sometimes
unconsciously) so that all programmers can approach that level of
proficiency.

While | won't guarantee that this book will turn you into a “super
programmer,” | will guarantee that these techniques can make you
a better programmer if you will apply them diligently. The hard part,
of course, is to believe that these methods will work for you! To
prove that they will, we shall develop a program during the course
of this book. The program is not a trivial one, and in fact is one that
might be useful to you. This development will actually serve several
purposes: (1) it will provide a simple set of examples for the topics
that are being discussed; (2) it will prove that the techniques work,
and (3) it will add to your library of subroutines.

As an overview to the book, let's take a look at the method by
which | developed the chapters (functional subroutines of the book).
There is an implied sequence in Sections 1 through 3, but Sections
4 through 6 really occur simultaneously upon the completion of Sec-
tion 3. That is, you will get the idea, develop it and actually plan the
program one step at a time. Once you begin coding the program
you should also be testing and documenting as you go along. In a
book, however, this is somewhat difficult to express, and so | have
chosen to explain this here in the introduction to prevent later con-
fusion. Those who decide to skip reading this may be in for a surprise
when they get to Chapter 8, but who cares? They can always come
back and read the introduction at a later date!

But, back to the overview, Chapters 1 through 3 provide the
genesis, if you will, the foundation. Here we emphasize how impor-

\

tant it is to have an idea of what we want to do. Rarely does one sit
down io wrile a program without kKnowing what the program is to do!
In Section 1 we talk about the idea, how to get ideas, what an idea
for a progam is, and how to embellish the idea. Section 2 carries
the discussion to the next level, the planning of the program and the
expansion of the idea, along with the evaluation of its suitability for
a computer. Chapters 6 and 7 discuss two different ways of prepar-
ing a program for coding.

In Section 4 we discuss coding the program, or the implemen-
tation of the idea. Seciion 5 iakes a iook at how {0 go aboui iesiing
the program while Section 6 lays out some guidelines for program
documentation. In all, this book may be considered a guideline to
program development. Obviously, it is not exhaustive in its treatment
of the various topics, since each of the chapters has itself been the
object of one or more books.

At the end of the book you will find a reference list of various
books that may be helpful to you in the development of your own
programs. | have read all of the books that are referenced and have
found them to be quite useful to me.

One last idea before we jump into the book itself. Since this is
a “how to” book, it assumes only a minimal knowledge of the com-
puter that you are using, and a passing familiarity with BASIC. If you
are not familiar with the computer, please read the manufacturers
literature that comes with the computer. If you are not familiar with
BASIC, don’t worry about it too much. As we go along, the program
examples and descriptions should explain the components of BASIC
that we are using. It would still be a good idea to find one of the
basic BASIC (no pun intended) books for your own study either
before or after you read this book.

There’s often a number of people that actually go into writing a
book and this book is no exception. At the risk of forgetting some
(here, not in my heart) I'd like to thank Dave Gordon who had faith
in me, Ed Tischofer who wrote the Applesoft version of the CHEK-
BOOK program, Ron Markel who assisted in the IBM 5150 version
of CHEKBOOK and Jeannine Likins whose marvelous illustrations
grace the pages of this book. All of these people gave generously
of their time and talents so that you could be reading this book. Also,
since Murphy's law applies to books as well, | wish to state that |
am solely responsible for all errors, all those who contributed are
plameiess.

Dedicated to Sandy, Don and Teri
vi

Section 1 — The Idea

In this section we’'ll take a look at several different thoughts
related to the development of program ideas, but not the programs
themselves. We will be looking at the different ways to get ideas,
the different categories of programs that these ideas will develop
into, and ways to combine ideas for more effective programs. This
section will provide the basis for the rest of the book by providing a

~foundation on which to build your development techniques.

CHAPTER 1

Idea Categories

As we think about the types of programs that have been written,
it is easy to define some simple “pigeon-holes” into which they all
fit. It is these “pigeon-holes” that form the various categories for our
ideas. The reason for starting this book this way is to immediately
begin orienting your thinking into the proper channels.

Programming has been called an art. But it is an art with sci-
entific overtones. Although there is a sense of the artistic associated
with really good programs, there is an underlying discipline that
allows everyone to construct good working programs. It is this struc-
ture that we will be learning more about, and our look at ideas will
reveal the reasons for building categories for our ideas.

?‘i‘{ h] ‘ \N .‘lnl\:\ R

Let's start with the simple categories. First, we have game pro-
grams. Games come in two basic types; (1) board games and (2)
non-board games (such as arcade games and adventure type games).
Game programs require a great deal of attention to details, espe-
cially about the rules so that, if you are converting a game, you can
be assured of the completeness of the implementation. You might
also want to think about the various ways in which information about
the game can be communicated, both text displays and graphics.
All of these considerations lead to the overall design of the program.

Our second category is utility programs, programs that perform
functions which would normally be considered part of the system
itself rather than a program you would want to run over and over
again. Examples of this group would include file-to-file copy pro-
grams, disk reconstruction programs, etc. Concern here is for speed
and accuracy of the functions to be performed. Communication with
the computer user or operator is also important, but the detailed
requirements of a game program may be avoided.

Another area that we may be interested in is that of educational
software. We may develop programs to assist us in a class we are
taking, or perhaps to assist our children in their studies. Educational
programs may even fall into the games category, but for the pur-
poses of this discussion we will consider them separately.

Probably the largest category for most of us will be in the area
of application programs. These are programs that are designed to
perform some specific task which is ususally, but not always, busi-
ness related. We often think of general ledger, payroll, and other
accounting programs in this category. For us, however, we can also
think in terms of our own personal needs; most of the programs we
will be developing for use on our own computers will probably fall
into this “applications” category.

Just why this is so probably needs to be looked at in some
detail. If we consider the needs for programs that we have, they will
more than likely fall into the same sort of groupings as those men-
tioned in the various hobbyist magazines. Programs for keeping
track of things; collections, records, magazine articles, etc. We may
develop programs to keep track of the family budget (remember, we
used that argument to justify getting the darn thing in the first place!),
—or to convert a recipe for-four to allow us to feed a visiting army
(some company used an advertisement like that in the early stages
of marketing their computer!).

1-3

Although we normally place apnplication programs in the busi-
ness world, we also see their needs in our own lives. An application
program is, in its simplest definition, any program that is not part of
the operating system, and so therefore it is really a collection of all
of the categories listed above except for utility programs. But we
need to go beyond this rather broad view of application programs
to see how we can get our ideas of programs channeled into logical
pains.

Before plunging into this, I'd like to point out that we will be
discussing a technique for coming up with programs, not a fzil-safe
method for building programs. This set of techniques may not work
for all of you, and you shouldn't feel that you are forced to stop doing
things the way that you've been doing them so far. In fact, you may
be pleasantly surprised to discover that you are already “doing it
right!”

The techniques presented here are, to be honest, some that at
first | found to be downright impossible to follow through on because
they seemed so strange! But, after careful evaluation, | decided that
I really didn't like them for two very personal reasons; (1) they seemed
to limit my God-given right to make artistic statements (whatever
that means), and (2) they forced me to approach the programs in a
formal, non-personal fashion. All of this seemed to limit my own
personal desires. How wrong | was!

The approach defined by these techniques actually made the
job of writing programs much, much easier. It did this in several ways;
| was forced to think about the program design in terms of functions
and the relationships between those functions, in terms of the data
flow through the program, and in terms of the way in which the
computer could best perform the required tasks. The end result, not
surprisingly, was a better structured program that was easier to
understand and document as well as one that required less debug-
ging (removal of program errors).

Now, having built some rather big “pigeon-holes” into which
these programi ideas can be placed, we can proceed to explain the
reasons for doing this. Let's consider a slightly exaggerated example
to make it easier to understand.

Ideas, like water, tend to fiow in the easiest direction. But, and
here’s the real problem, that flow is often uncontrolled, or rather
undirected. If we have an idea for a program, say to automate our
magazine subscription processes — renewals, what we are sub-
scribing to, costs, and so on — we have started with an idea which
is applications related. But, if we take the easiest path we will imme-
diately start writing the program.

Is there anything wrong with that? Not really, but it does show
a lack of thought if we start programming (sometimes called “cod-
ing” because we are said io write “iines of code,’ especially when
writing machine language code) without having spent some timeon
thinking about the “pigeon-hole” into which the new program belongs.
You see, we may already have some of the routines that we need
for the development of this program. They may be in a magazine

-T2 =i

R PE Ui
\r_lrIL - /

SSORT,
SoR7S0

= T =
article that we've read, or perhaps they're in a program we wrote
some time ago. If we haven't trained ourselves to think in terms of
the basic building-blocks of programs and the common relationships
between programs of similar types, we may spend lots of time rein-
venting the wheel.

Actually, | think that we would all remember solving a major
problem that we had encountered before, but perhaps we’d not thought
about it until it was too late. Although, | must admit that | have often
forgotien about some simple ways io code a particular routine, and

1-6

had to reinvent it. That hasn’t happened to me since | started using
the methods that we will be describing in this book.

Ideas are the basis for a program, but they need to be chan-
neled, just as flowing water needs to be channeled to be made
useful. This chapter presents some ways in which ideas may be
channeled, some tools to help simplify the way in which we think
about programs we are about to write. We won't discuss how we
transfer ideas into lines of program code, that will have to wait for
Section 2, but we will look at ways to clarify our own thinking.

Let's take a simple idea and see what happens when we apply
some simple “idea directing” to expand on the idea so that it can be
developed into a fully functioning program. We can use the maga-
zine tracking idea for this purpose. We'll see that this approach,
although it seems to be the long way around, actually cuts through
much of the leg-work required to write a program.

Our basic idea of a magazine subscription tracking program is,
as we've already said, an applications program. That is, it is designed
to solve a specific, real life problem that is not related to the com-
puter’s operating system, the computer itself, or any other “non-
problem” related item. What does that do for us? First, we can imme-
diately eliminate some routines from other programs, specialized
disk I/O routines that are operating system independent are out, as
are game-type graphics.

We might include some random access techniques, but nothing
that the operating system itself can't handle. We might consider the
use of graphics to accentuate renewal information or perhaps price
changes (although we know that no publisher would do that to us,
would they?). We will want some kind of reporting mechanism as
well as human interfaces (we “gots to talk to the user, right?).

See, by simply looking at the kinds of routines needed by the
programs category or “pigeon-hole” we can quickly come up with a
list of routines that might be needed without doing any detailed
evaluation of the program’s needs. It is this kind of thinking that
allows the neat and logical development of programs regardless of
the category chosen.

As we shall see, this is going to be covered in some detail as
we proceed, but we needed to make sure you understood the rea-

~-sons for doing this. Boring? Perhaps, but so is-a class-in-blueprint

reading, and just as important! We might remember, especially at 3

1-7

a.m. while trying to get rid of the remaining bug (remember the last
time, we were almost there and . . .), that the most boring job in the

world is “shooting a bug” we thought we had fixed. By the way, for
you history buffs, the term “bug” which refers to a problem in a

program or hardware, was coined in the early IBM days when a
moth was found in a relay (big clunky things, used as switches for
on-off conditions, sort of like huge bits) preventing it from closing.
Getting rid of it was called “debugging” and the term has stuck. See,
there is a reason for some of the computer terminology!

1-8

CHAPTER 2

Where to get Ideas

Ideas float around us everyday. There is hardly a day that goes
by in which we don't get a new idea. In this chapter we will examine
some of the ways to get ideas, as well as some of the places that
we can look for ideas.

The problem of a programmer is the same as that of a writer in
many ways. Both are creative tasks and both are highly dependent
upon getting an idea. For writers, there is often a time of drought, a
dry spell where there are no ideas. Usually, this is solved by sitting
down at a word processor (who uses a typewriter these days?) and
starting to write, writing anything at all. This is usually trash and is
thrown away. But it gets the writer going. It seems that ideas always
like being around activity and other ideas.

For programmers the same is true. We aren’t usually lucky
enough to be able to sit down and write best-selling software every
day, but we can churn out stuff that we like, and the heck with every-
body else! Right? Right!

Now, realizing that we are going to churn out acceptable soft-
ware is not the same as churning out quality software. We are going
to learn to produce only top-grade stuff, high yield programs. Even
if we never sell the programs we will feel better about the program
if we know that it is good, clean software.

In this industry, there’s often a tendency to look at a program
and say, “This one’s just a quick and dirty, no need to make it clean,
elegant, or fancy. Just make it work!” But if we can crank out quality
stuff in the same amount of time or less, why settle for a Q & D
(Quick & Dirty)? The point of this book is that it takes no more time
to produce quality software than it does to produce junk if, and that's
a big if, the problem is approached correctly.

How do we approach the problem correctly? Well, to quote a
well worn cliche, “Begin at the Beginning” The idea itself is the
begining. Picture this; we're at a movie, and the screen flashes bright
with the words “THE END"” just as we get to our seats. What's the
firstinstinct? Hey — are we late? Check the watch and find out.

Why did we do that? We're conditioned or trained to expect
those words to relate to the end of a movie rather than the beginning.

1-9

1-10

A few movies have been produced that do begin with those words,
and end with “THE BEGINNING..” or some such, and they produced
the anticipated results, confusion.

Programs, on the other hand, are not supposed to result in
confusion, but rather in clarity. They solve a problem, and should do
so in a direct fashion. If we have understood the requirements or
the need for the program we should be able to code a program that
will meet them. But, how do we develop these requirements? Where
do they come from?

Unless you've been asleep, you already know the answer. They
come from evaluating the idea; from a logical development of the
concepts behind the program.

“Ok, you've convinced me. But where do | get ideas?” Very
good, an intellegent question. Ideas, says the man, are where you
find them. Horace Greely is reported to have said “Go west, young
man.” and it is indeed certain that ideas are in the west (also the
north, south and east). But more importantly, ideas are in US! If we
will take the time to research them, develop them and expand upon
them, we will find that we have a never ending source of new ideas.

This source of ideas depends upon our perception of the world
around us, how we see what we are “passing through.” By looking
around us with the eye of a programmer rather than just a visitor we
will soon begin to see ideas for programs in the events that take
place around us.

Programs are designed to solve a particular need or problem,

or perhaps to stimulate us with a game or an educational program.
We will be better able to develop games if we see what is going on.

1-11

Look at the first game programs — football, craps, blackjack, etc.
Aii had one thing in common — the gaime aiready existed and the
computer was being used to replace a human being so that the
game could be played anytime it was wanted. Chess is an exception
to this rather general statement in that it was developed more as an
exercise in artificial intellegence than as a game in and of itself. In
fact, that brings out ancther point — don't limit your views, Chess
program development was rather stagnant while it was being inves-
tigated from a “scientific’ viewpoint. lt wasn’t until people started
working on chess programs “for the fun of it” that development really
took an upswing. We must realize that programs like MicroChess
and SARGON were quantum leaps ahead of the majority of the
programs that had been developed on the huge mainframes. The
people that wrote these programs couldn’t depend on those blind-
ingly fast monster computers to churn through hundreds of thou-
sands of positions a second, so they developed a better approach,
one that was suited to the microcomputer. It was, as the ad says,
an idea whose time had come.

Open your eyes to the things around you, there may be many,
many program ideas there just waiting to be developed. If you think
of the number of programs that are under development today, you'l
find one common point, all of them began with an idea based upon
an observed (or hoped for) need. In some cases there has been a
duplication of efforts, either because of ignorance or because of the
NIH syndrom. NIH stands for “Not Invented Here” and is often a
very destructive tendency. It assumes that, unless a program was
written here (wherever that is), it's no good! Sometimes it's better to
rewrite a program, but often it's much better to spend your time and
energies on the development of a different program.

There are, of course, exceptions! If you feel that the program
is a real loser, and, that you could develop a winner based upon the
old program then by all means go ahead and duplicate the effort. If
nothing else, it will serve as a training ground; you may learn a new
trick or two, and you may actually succeed! However, beware of the
old cliche “Nothing ventured, nothing gained” and make sure that
you are aware of the time exposure and risks involved in modifying
or rewriting a program. Will the end result justify the expense of
time? It really doesn't matter whether you are doing this as a hobby
or a profession since time is limited and there’s no sense in wasting
it in unprofitable (not necessary in the monetary sense) pursuits.

(AR I

: . ~ , .-.'. * :. .:::’ e ; 2,
As we develop and grow in our love of computers, we often
start subscribing to different magazines, professional as well as
hobbyist. These are a treasure trove of ideas. Various articles in
them may kick off an idea or two that you can follow up on. It's
possible that a program may have a routine in it that you need to
get past a stumbling block in an idea that you had for a program.
Ideas like to be around activity, and so you may be able to
stimulate the flow of ideas by joining a computer club. There are
many different kinds of clubs and they come in all sizes and shapes.
Some examples are the Boston Computer Society and the Orange
County TRS-80 User's Group (OCTUG). The first is open to any
kind of computer (and is also quite large) while the second is open
to anyone but concentrates on the various Radio Shack computers
(and is also quite large). The discussions that flow around these
clubs are quite often the source of inspiration for a new program or
two. If you don't live near an area where there is a club, check the
listing in some of the general hobbyist magazines, not only will you
find clubs for your particular computer, but also some general clubs.
Almost all of these clubs have a newsletter that is mailed out on a
regular basis and it too can be the source of ideas.
Another good source of ideas is your place of work. No matter
where you work, even in the most boring job imaginable, there'’s
always something that can be the stimulus for an idea if we will learn

~—toreally LOOK. You see; it's oftenthe familiarity-with-the places —

around us that kill ideas! We will fail to see the possibilities because
we are closed to them, too familiar with what we have and, sadly,

blind to what we don't. There’s an old saying that familiarity breeds
contempt, but that's not exactly true, it might be more accurate t

say that familiarity breeds indifference! We become so wrapped up
in the day-to-day things that we really don’t see what's around us.

How often have we traveled and marvelled at the sights around

us, without seeing similar things at home? That’s the same symp-

m, just in a different setting. The bottom line, then, is that there is

178}
(AR Y juau. ni UG THIL Oty WA VISR IO

no place like home, and that an idea, like gold, is where you find it.

So, although this chapter is called “Where to Get Ideas,” it's
really all about life, and the fact that ideas are everywhere. But, and
this is a big but, ideas need to be recognized. That may seem like
an obvious statement, but it really isn’t. More than once | have over-
looked an idea for a really good program, and someone else has
come up with it, and sometimes made a fair profit!

@),
¢
SN o)
:_@: o O
-, - &
= (d
9
10
&
) 1 O
O
[- O
Tt O® 0 . .‘O@G
A @)
— o4
q 0.0
: =

1-14

How does one go about recognizing an idea? That's a hard
question to answer, and in fact, there really isn't an answer! But
there are some tips that we can pass on. They aren't sure-fire by
any means, but with a little work they will lead into the proper habits
for recognizing an idea — whether or not it's a good idea is up to
you to decide.

The first tip is a purely mechanical one. As you look at various
jobs or tasks, ask yourself if they could be performed on a computer.
If the answer is yes, you have an idea. There are some obvious
questions that need to be asked after that point such as does it
require any special hardware or software requirements. Also, what
does it require in the way of interfaces to the “real world.” If any of
these considerations make the idea unworkable, don't just forget it,
write it down. It may be something that becomes workable later as
newer hardware or software development tools are released.

The second tip is actually one that is contained in the first. Write
down everything that might make a program; good, bad or indiffer-
ent. Don't judge an idea immediately. Let it sit for a day or so and
reevaluate it in a different light. We sometimes have a tendency to
think an idea is great just because we thought of it (and that may

be true) or, conversely, that it's bad because it seems bad at that
precise instant.

Time, it’s said, heals all wounds. it also has another nice prop-
erty. it provides us with distance from our source of an idea. That
distance can help us evaluate an idea with a remarkable amount of
clarity. Taking time before evaluating an idea should become a rule
that is never broken, never bent. The primary reason is that nature
is a contrary beast, and an idea that seems good often isn't and
conversely an idea that seems poor often isn’'t. Remember, Murphy
had the right idea — if, under any given set of circumstances, some-
thing can go wrong — it willl With ideas, that means we’ll spend
time developing bad ideas and we’ll throw away good ideas. it can
surely lead to a sense of frustration.

Finally, the last tip, and the one that's hardest to follow-up on,
is to never overlook a possible source of ideas. ldeas are useless
if you pass them up, if you don't even look their way! We've covered
a lot of area in terms of where to look. The main purpose is to help
develop your own sense of where to get ideas. It's different for each
of us, and you alone can determine where best to get ideas, at what

level of development you will be able to recognize an idea.

o

1-16

It's possible that ideas will need to be reasonably well devel-
oped, and so books and magazines could be good sources. As your
sophistication in picking up ideas grows, you should be able to spend
more and more time getting ideas from less well developed sources,
say from discussions at club meetings or with other computer hob-
byists.

One final point, don't limit your reading material in the computer
field. Its said that the best way to learn English is to read, read,
read. The same is true of computers. You can best expand your
knowledge in that area by reading (as you are doing now). The more
books you read on the subject, the more facile you will become in
getting, recognizing, and developing ideas. And that, after all, is the
name of the game.

1-17

\

? ~SNNWN

/

\\.\

1-18

CHAPTER 3

Combining Ideas

In this chapter we shall take a look at how some relatively simple
ideas can be combined to form a complete picture of a program.
We will be looking at various ideas which may be combined by you
to form programs as well as the ideas which will form the basis for
a program that will be developed throughout the rest of this book.
So, pay attention and take notes, there might be a quiz at the end
of this chapter (Yuck!).

We'll begin by taking some VERY obvious ideas from the world
around us. Let’s take, for example, scheduling our time. As students
we might have to worry about classes, homework, dates, extracur-
ricular activities, dates, football games, dances, dates, etc. It might
be nice to make sure we don't schedule a date with two different
girls (or guys) on the same night. Right? Or perhaps you're a busi-
ness man and need a way to better manage your time, again a
scheduling program might come in handy.

In any event, most people in business and the military have
been faced with the idea of time management, or how to avoid
wasting their valuable time. There are many programs that are quite
involved and complicated being released now to serve this purpose
and all were based upon the idea of a computer based calendar/
scheduling program. So that you can develop your own version of
such a program, let's take a look at what might be involved.

I

4

|

17 I;g‘/r‘?
el

ax !ﬂ—_- 15_—’—- |23_.—

)l

STVR] THASOAT FRIDAY SATURDAY
8¢h
b

el |

T

i I
7T 280w 29 307 St P - |

Ty

There are some obvious requiremenis. The program must be
abie 10 keep track of the day of the week and the date. !t should be
able to make entries for various times of the day and should warn
you of scheduling conflicts (places where two or more events are
scheduled at the same time). It might be nice to have entries that
are “memo” type notes rather than scheduling information.

How about that? From a rather simplz idea, one that has kept
a lot of companies in business marketing calendars with lines for
the various working hours of a day, we have derived some simple
requirements for a program. ii you've iooked at any oi these “WOTK-
a-day” desk type calendars, you'll notice that the weekdays have
two pages — one divided by hour and the other blank for making
notes. Just exactly what we were discussing! There was no reason
to be esoteric or to really strain our brains trying to come up with
exceptionally difficult design criteria; all we needed to do was to look
around us and keep our eyes open.

Now, let's go one step further. What happens if our schedule
changes (we're all perfect, but some of those we deal with aren’t
and THEY cause the changes)? Well then, we need a way to change
and delete entries from the calendar (my, my — sounds like an
eraser). Still, nothing out of the ordinary, we're just looking at how
we really solve a problem and trying to define how we would do it
on the computer.

To make sure you have gotten the point of this chapter, let's
review what we have said, and see how it fits this example. We've
been talking about the combination of ideas, taking several small
ideas and combining them to form a more complete program (we'll
talk more about that later on in this chapter). The ideas we have
used are:

1) A Calendar.

2) Entries by day/time.

3) Ability to flag scheduling conflicts.
4) Update/Delete capability.

Have we omitted any ideas? Actually, what's been omitted is not so
much an idea as a program requirement — reporting! We need
some way to get the information out, perhaps in hard-copy format.
See how easy it is?

Let's continue this discussion by looking at the idea of a check-
hook. What do we do with a checkbook (besides writing rubber

checks)? Right. Sometimes we write real (that is, good) checks.
What about service charges? Do we get interest on our checking
account? When we write a check, do we ask ourselves if there is
sufficient money in the account to cover the check? Do we write the
check anyway?

In this simple paragraph we have discussed a number of small
ideas, none of which are large enough to make a good program all
by itself. But, by combining them, we have a basis for a large, rel-
atively sophisticated program! We'll come back to these ideas later
— they’ll form the basis for the program that we will be developing
throughout the remainder of the book. But for now, let’s continue to
look at ways to combine ideas, some guidelines for doing various
forms of combinations.

First we'll take a look at what we mean when we talk about
“combining ideas.” We've seen some examples of combining ideas,
one in some detail when we talked about the calendar program, but
we need to dwell on this some more. Combining ideas is a lot like
driving and drinking — dangerous! In the case of ideas, it’s not fatal
to you, but it may be to your program! Ideas can usually be combined
when-they-have-somerelationship;,-some-common-ground-between——
them. Sometimes ideas that are not directly related may be com-
bined to form a program. For the purpose of building some pigeon-

1-21

holes to hold our “combinations,’ let’s try the following:

Simple Programs — Based upon one idea only.
Compound Programs — Based upon two or more related ideas.
Complex Programs — Based upon two or more unrelated ideas.

This will provide us with a way of talking about programs that is not
overly confusing. But (why is there always a but?), for those of you
who might have written programs before reading this book (there’s
always at least one in every crowd), we might want to remember
that there’s no such thing as a simple program, some are just less
complex than others. So, when we are using the terms “simple,’
“compound,” and “complex,’ let’s keep in mind that it's for the pur-
pose of this discussion only, and does not relate to the “real world.”
Ok?

Now, let's examine some obvious combinations of ideas. The
first that comes to mind is a set that is almost always considered to
be one idea rather than three. When we write a program that uses
any kind of data entry, we usually provide entry, update, and delete
routines. The tip-off that this is really three ideas should come from
the fact that this is usually implemented as three separate routines.
This provides us with a rule of thumb (a guideline that is stated as
being obvious), “One idea per routine.” Therefore, our defined “sim-

ple*-program-is-really-only-a-single-routine:
Nothing’s ever THAT simple! There are usually support routines
necessary for every program, and they are not usually considered

EQULALS

ONE. ROUTINE

as separate ideas (but they are). Yes, a question from the back. Oh,
you want an example? Glad you asked! Screen input routines may
be considered as merely ways of getting data into the program; but
they can actually be very complex, especially if we are using “full-
screen” type data entry routines. In this case, the term “full-screen”
is used to indicate that we have a “fill-in-the-blanks” format on the
screen and, under program control, the user is entering data which
is being verified and echoed in a way that simplifies data entry.
Obviously, using routines like that require some thought, and
are usually written as subroutines. Remember, one idea, one rou-
tine. What this does for us is to allow the development of a common
“fuil-screen” routine that can be modified and dropped into the pro-
gram, thus we don't really have to worry about the particulars of the
routine, just the appropriate changes. This will make the program
development go faster since; (1) the routine is available, and (2) it's
already been tested so we only need to verify the changes.

Other examples are report printing routines, file handling rou-
tines, sorts (there’s an example of a good sort in the appendix),
ETC. Once these routines have been developed they should go into
a library for future use. There is no sense in doing something over
and over when that’s what computers are good at (and they're faster
at it than you are). Let the computer help you develop good pro-
grams. After all, you're the boss, not the employee.

Ok, what about compound programs? Well, to be honest with
you, almost every program is a compound program in that it has
several related ideas present in the form of support routines. But
that's not really the point that we're trying to make. Instead, let's
consider our calendar program again. It should be easy to see the
relationship between the various ideas. This is actually a compound
program because there are many ideas, each of which would form
a single routine.

By the way, let's pause for a moment and discuss the difference
between a routine and a subroutine. A routine is the physical imple-
mentation of an idea, while a subroutine is a block of code used in
many different areas of a program, and coded once for simplicity,
compactness of code, and ease of testing/debugging. Easy enough?
Don’t worry about that now as we will take another look at these
two terms later on in the book. For now | just wanted to make sure
we were all talking about the same thing. ;

Now, what about a complex program. Are there any simple
examples of a complex program? That's not an easy question to
answer, but we’ll take a look at what a complex program is, and see
if maybe there might not be some examples from everyday life that
we can draw upon. By our earlier definition a complex program is
one that is based upon two or more unrelated ideas. The key to this
definition is the letters “un” meaning not (after all, that’s the only
difference between a compound and a complex program).

We know what an “un-cola” is because of our exposure to the
television advertising people, what's an “un-relative?” Let's take a
simple example which is, I'll admit, a bit absurd. Suppose we wrote
a program that would determine the winner of the sixth at Santa
Anita and, as a separate function, determine the maximum possible
energy that could be released from an apple weighing a half kilo-

gram (roughly 1.1 pounds) utilizing the standard expression relating
energy to mass (E = mc?) with the results expressed in ergs.
Alright already, so we can come up with bizzare examples

(actually, its mandatory to do so, failure to pose ridiculous examples
can result in being kicked out of the Society for the Advancement
of Dumb Examples (SADE)). Now, let’s try something a little less far
out! Suppose you wanted to write a Real Estate package that would
provide a local office with a listing of all homes in the immediate
area. This listing would include prices, size in square feet, number
of bedrooms, relative location and so on. In addition, the program
would keep track of the various lending institutions’ current rates
and policies.

This, although it seems to be related, isn't. They are both lists,
and so in that sense they will fit together, but the type of lists and
the source of the data is quite unrelated. The resulting program
might be quite useful, but would indeed fall under our definition of
a complex program. This definition, as was pointed out earlier, is
not one that fits well in the real world and is really only useful in
discussions of this sort where we can put blinders on and ignore
certain aspects of the way it really is.

| certainly hope that you will keep this in mind as we continue
through the book. Places where we refer to these rather simplistic

definitions will be pointed out so that it doesn’t confuse you (or me).
We will continue with our discussion of program development, espe-
cially as it concerns the development of our example program.

One last point before we go on to Section 2. The material that
was presented here in this first section was designed to get you
thinking in a fashion that might have been foreign to you. The reason
for this is quite simple. For most of the past 25 years of computer
programming activities, we've been doing it wrong. It's only been
within the last several years that an attempt has been made to
systematize (here’s your new word for the day, it's another fancy
word that means making an orderly classification) the development
of software. Several new branches of software development have
been formed, the most promising being called “Software Engineer-
ing.” This term is used to refer to the underlying techniques used to
develop software and the attempt to bring the more concrete tools
of engineering to bear on the problem.

The theory is that this will allow development of better computer
programs that take less time to write and debug. While this may be
just a nicety for the hobbyist, it can also be a boon since the average
hobbyist doesn’t spend all of his time playing with his computer (I
understand there are even some hobbyists that actually sleep!).

So, we've spent a moderate amount of time developing the
understanding of the background of programs, the idea. And we've
taken a look at some of the different sources of ideas in the world
around us. We've gone to some lengths to develop a couple of ideas
into rather primative program design statements which could lead
to the development of a couple of quite useful programs.

But, and this is more important that all the rest, we've provided
a framework for your thinking. We've learned that we can channel
our thoughts so as to maximize the results and the time spent, not
in a 1984 sense of “rightthink” but in a more disciplined sense of
personal development. | like to think that we are trained to think so
that we can improve on our training. That is exactly what | have tried
to provide in these first three chapters. And now, let's see if it will
really work!

1-27

Section 2 — Planning the Program

In this Section we will be addressing the way in which we put
our ideas together. There is a right way and then there are some
other ways, not necessarily wrong. Don’t misunderstand me, we
aren’t going to be grinding any axes here, just looking for the most

efficient way of getting a program written, debugged, and docu-

mented in the least amount of time, with the least amount of difficulty.
Sounds simple, doesn't it? Well, it isn't!

There are lots of ways to put programs together and each pro-
grammer will develop a technique that is unique. What we are going
to try to do is show how you can take your own technique and, with
the tools given here, expand them into a better, more efficient tech-
nique. One that s still yours, but one that has been tried and tested
by the professionals.

CHAPTER 4

Program Functions

As we begin this chapter, let's make sure we understand where
we are going. An old adage for teachers is that you must tell the
students what you are going to teach them, teach them what you
have told them you are going to teach, and then tell them what you
taught them. We’ll use the same approach for this book. Here I'll tell
you what I'm going to teach you, then we’'ll actually learn the mate-
rial. Then we'll go over what we learned, that is, I'll tell you what |
taught you. Make sense? Seem fair? Good!

As with everything that we will try to do throughout our lifetime,
programming is something that needs to be learned. There are very
few things that we do that are instinctive in the way of human activ-
ities. With the exception of the life preserving functions of breathing,
pumping blood, maintaining the proper biological necessities of life
and the basic flight/fight reactions, most of our activities are acquired
through some aspect of learning.

What we are about to undergo is a form of learning, a more
typical example to be sure, but one that tends to be offensive to
some individuals. We will be learning to place a scientific framework

ﬁ / r%’
’I'H:RE { /‘f%, I (‘
oNaRRow! g
\ %
@ \ (v

around an activity that has been considered an artistic endevor.
Wiiting programs is, at best, a challenge and at worst an encounier
with frustration and hopelessness. How often have we started writ-
ing a program that seemed so easy when we started and turned out

to be one gigantic pain in the neck (or elsewhere)?

It's that pain that we are going to try to eliminate. In this chapter
we will be looking at how to go about defining the functions that are
needed in a program based upon the ideas that we have. it is only
by doing this religiously, without fail, that we will be able to minimize
the frustration felt by starting programs that wind up becoming either
too big to handle, to unwieldy to maintain, or both! Without further
ado, let’s press on, shall we!

If you will recall, we started this book by promising to develop
a program. In Chapter 3 we discussed some of the ideas we wanted
to implement in the program we were about to develop. These ideas
related to a checkbook program. Now, at first glance, there doesn't
seem to be anything very exciting about developing a checkbook
program. After all, that can be done quickly and simply with a pocket
calculator, right? Wrong!

We're not going to waste our time with a program that is too
trivial to even think about. Let's go over some of the ideas that we
had wanted to implement and, as we go, we’ll take a look at the
function (or functions) contained in the idea. Ready? Actually, you'd
better be! It's too late to turn back now!

The first idea we had when we thought about checkbooks was
that we write checks, both real ones and (for some of us, occasion-
ally) rubber ones. Ok, funiction one is to write a check. For the time

2-3

being we'll assume we have a printer that can print on regular checks
so that we don't need to order continuous form checks. See, very
simple. One idea equals one routine to print checks.

“There’s probably more to this programming stuff than that,’
says you.

“Right!” says I.

That's just the title of a functional routine in the program since
there’s no BASIC statement called PRINT CHECK (at least there
wasn't the last time | looked). Actually, I'm lying! That's almost a
perfectly good statement, and it's possible that the variable CHECK
may be defined in such a way as to contain the data we want to
print, already formatted and everything! See what | mean? Nothing’s
ever as simple as it seems!

“Wait a minute. If we're going to write a check, aren't we going
to need to see if it's going to be a good check or a rubber one?”

Good point! I'd almost forgotten that. Another routine or two will
be needed to check the amount and tell us if we can cover the check
we're writting while another will decrement the balance (that’s a
fancy way of saying subtract the check amount from what we've got
left in the bank). And while we're at it, we might want to log who the
check was written to, the amount, and the date. Boy, this is sure
gettin’ complicated!

Don't despair, you'll see how easy this is when we actually write
this program.

“What? We’re gonna’ write this turkey?” you ask, incredulously.

“Yup! And you're gonna’ love every minute of it!” says |.

“Not hardly.” you mutter under your breath.

To continue developing our program, let's assume that we are
all rich enough to get interest on our checking accounts. We know
that the interest rates are public knowledge and we are also able to
get information from the bank regarding the way in which the interest
is calculated, the posting dates, etc. With this information we can
write a routine to implement the interest calculations. Again, we are
taking the idea of interest and making a single routine from it. | don’t
want to dwell on this too much, but it's importance can not be under-
stated — never, never, never, make a routine that contains more
than one idea (or function). The results can be terrible! Debugging,

~maintenance, and testing can be made far more difficult than they
need to be if you ignore this very simple rule of thumb.
What, a complaint from the back? Yes, | know that this will

2-5

reduce the artistic freedom to create a program any way you want.
But, stop and think about it for a minute. Are you creating a program
for the fun of writing it, or are you trying to develop a running tool?
If your answer is the former — go ahead and do whatever you want
to do. It's your time and up to you to do whatever “turns you on.”
But, if you are doing this because you need (or want) the program,
then try following the guidelines we're covering here. They’ll help!
Really they will!

Enough of the soapbox, let’s get on with the business at hand.
We've taken some examples of the sort of things we are talking
about when we talk about program functions. What else is there to
talk about? Actually, there is very little left to discuss except the
possibility that we want some rules or guidelines regarding func-
tions. Especially their organization and placement in a program.

Fair enough! Since the topic of this chapter is program func-
tions, it seems reasonable that we discuss more than just the func-
tions needed in this program, although we will come back to that in
just a moment or two.

How should program functions (or, to use a better term, rou-
tines) be organized. There are two schools of thought on this and,
since there doesn’t seem to be any really strong arguments sup-
porting either school, we'll look at both and choose the one that

seems betterto us.
The first school of thought is oriented toward languages like
PL/1 and XPL (a dialect of PL/1 developed at Stanford University).

2-6

Both of these are compiled languages (a compiler is a program that
iakes source language statements and converts them into machine
language statements directly executable by the computer without
the need of an interpreter such as BASIC). The major difference is
that PL/1 is usually what's called a “multi-pass compiler” while XPL
is a “single pass compiler” You'll see the significance of that in a

momnant
ENANL N NI

Both of these languages suggest that all variables be defined
first. This is then followed by all of the subroutines, from most minor
to major, and then the mainline code or program statements. For a
single pass compiler this seems to make sense since all names
referenced later on in the program should be defined before they
are used. The exception to this is GOTO's that jump forward in the
program. There isn't much that can be done about that. With PLA
this isn’t a firm requirement since it can make multiple passes of the
source file, but it’s still a good idea from a maintenance standpoint.
It makes it very easy to follow the flow of the program and to see
how variables are defined if this all takes place in one location in
the program.

The other school of thought, seen especially in COBOL, is that
the variables are defined first, followed by the mainline code which
is then followed by the various subroutines. Again, since most COBOL
compilers are multiple pass compilers, this seems reasonable, and
makes sense when the requirements of the language are consid-
ered. Especially since the structure of the language requires that
the DATA DIVISION (where the variables are defined) occur before
the PROCEDURE DIVISION (which is where the routines them-
selves are located).

Now, you might ask, does BASIC have a tradition? YES! There
is indeed a tradition associated with BASIC. Since the language was
developed at Dartmouth over 15 years ago as a language for teach-
ing beginning students the fundamentals of programming, it has
probably been subjected to more mistreatment than any language
in history. The only tradition that BASIC has is that variables are
defined anywhere the programmer wants to define them; and that
routines are scattered all over the place. Sometimes routines are
duplicated or, worse yet, split up and dropped, a line at at time,
throughout the program. We certainly don't want to emulate this
rather shady practice. And, if we will think back, all of us have had
a program that looked like that, although it may not have started out

2-7

5l — |

0 -

that way it probably did wind up looking pretty shabby, even if it did
work.

Ok then, given all of these different approaches, how should
we structure our programs? Well, as a rule of thumb, it makes sense
to define all of our variables first, that's one thing all of the various
development techniques have in common and so it must be good.
Next, aiways try to structure code so that the routines are self-con-
tained. If that's impossible, then make sure that any subroutines are
called in a consistent fashion.

As far as routines are concerned, many of the experts in the
field now consider it best if all entries to a routine take place at the
top, and all exits take place at the bottom (physically) regardless of
the type of processing that takes place withing the routine itself. This
makes it very easy to change, without the possibility of destroying
a working routine.

As you can see, all of these “rules” really aren’t rules but are
simply guidelines. You may already be doing some of these things
and some you may not want to do. But, don't refuse them just because
you've never used them before or because what you do now works.
Those aren't good reasons for not trying something new. They're
just excuses to not grow and develop. Since you're reading this
book, we can assume that you are interested in being a better pro-
grammer (or learning how to be a programmer), and are therefore
willing to learn and experiment. That's what it takes. None of the

——material that we will be discussing.-in-this-book-is-radically-new-and———
none of it is whimsical. All the material comes from a lot of years of
work in the field and listening to what the so-called experts have to

2-8

say. Some of them are quite knowiedgabie and some aren’t, but aii
mean well,

In putting together this book, I've tried to make sure that the
material presented here is good, accurate, and reasonably workable
in the hobbyist world. I've not concerned myself with the needs of
large scale, multi-man-year projects (although the material lends
itself to that very nicely). What's here shouldn't even be interpreted
as things that | always do! Each program has its own unique needs
and one should never approach a program assuming that there's
oniy one way to write it.

But | digress! Back on the ranch, we see the cow . . . Whoops,
wrong book.

in defining the structure of a program, especially when talking
about program functions, it might be nice to provide a few examples.
First, let's take a simple program that will calculate the area of a
regular four-sided figure (called a rectangle, of which a square is a
special case).

The program must have an input routine, a calculation routine
and an output routine. The support routines would include clearing
the screen and processing errors (exceptionally large numbers that
might cause overflows as well as the entry of a length or width of
zero which is, of course, invalid). Program termination might also
be another special support routine but only if it is other than the
“END” statement. instead of BASIC, let's use a form of language
called “pseudo-code” to define this program. We'll cheat and use
this as an introduction to the material that will actually be presented
in Chapter 7.

The way in which pseudo-code is used will become quite clear
very quickly and, therefore, there is no need to provide more than
asample as an introduction. Therefore, the following is our program,
carefully structured by functional block.

BEGIN PROGRAM.
CLEAR SCREEN AND DISPLAY PROGRAM
TITLE.

GET INPUT.
PROMPT FOR INPUT THEN READ WIDTH
AND LENGTH VALUES.
IF BOTH WIDTH AND LEMCGTH ARE ZEROD:

2-9

USE THE TERMINATION ROUTINE.
IF EITHER WIDTH OR LENGTH IS ZERO:
USE THE ERROR ROUTINE.

CALCULATION ROUTINE.,
CALCULATE AREA BY MULTIPLYING
LENGTH TIMES WIDTH.
PRINT THE AREA AND GO PROMPT FOR
MORE INPUT.

ERROR ROUTINE.
DISPLAY ERROR MESSAGE.
GO GET MORE INPUT,

TERMINATION ROUTINE.,
CLEAR SCREEN THEN DISPLAY
TERMINATION MESSAGE.

As you can see, this is a very straight-forward way to define a pro-
gram at a moderate level of detail but not quite at the program level.
We'll use this technique more in Chapter 7 where we will fully develop
the ways in which this can be used.

Before we get too far into this chapter, it might be nice to define
a program function so that we will all have the same ideas in mind
as we go along. A program function is not the same as a routine
although it may appear that way. If we stop and think about what it
is we talk about when we mention a function, we often think about
the DEF FN statement in BASIC. This statement allows us to define
a single statement function that may be referenced vy its name
alone.

2-10

That's actually a pretty good description of a function but it's not
a good definition. A function is a wholy contained impiemeniation
of an idea or part of an idea. That is, it may be a routine, or it may
be a single unit of code that produces what might be considered a
“kernel” of information processing. That's pretty abstract, but what
it all boils down to is just this; a function is a group of instructions
that perform some defined unit of work, usually related.

“OK”", says you, “what'd he just say?”

Let's take some examples and see if maybe we can clarify the
issue. Suppose we are writing a program and in that program we
need to calculate the remainder of a number divided by another
number (called modulus arithmetic). That isn’t really a routine since
it is needed as a part of a routine but, it may be needed in more
than one routine. We could build it as a sub-routine called by the
various routines that need it, or we could build it as a function.

In this case, it's quite clear what a function is. This chapter is
not just about that kind of function, but of the broader, more general
definition of a function. In this case, we talk about the limited defi-
nition of function, as well as routines and subroutines, in terms of
how to structrure the program.

At the beginning of the chapter we talked about where to place
the various routines and data definitions. That is the primary thrust
of the chapier, the logical siructuring of a program. it is only through
a positive, well thought out structure, that a program becomes easily
maintained and undersiood.

2-11

If you've been writing programs for any length of time, you may
have had occasion to go back to some program written a long time
ago and found that you had difficulty in understanding the flow and
structure of the program. That is probably due to the fact that you
didn’'t spend a lot of time in thinking out the structure of the program.

Just as an author must think about the structure of a book, the
placement of the chapters, and the flow of the information contained
in the book, so too the programmer must think out the placement of
the routines in his program, the flow of data through the program.
This is important not just for the author of the program but also for
whomever may use the program later. This is especially true if you
are planning on marketing the program.

A commercially marketed program has certain requirements
that far exceed those of programs written for one’s own use. A com-
mercial program must be fully documented and easy to maintain (as
well as being bug-free). Additionally, the program that is being mar-
keted has some other considerations of which speed of execution
must be one. Who wants to sit and wait for a program to perform
some function? Careful design of the program will allow the maxi-
mum speed possible, given the limitations of the machine and the
language used.

There is, of course, another consideration. If we are marketing -
a program written in BASIC and we are shipping the program in
source form (that is, a non-compiled program), we may want to allow
the user or purchaser of the program to customize it for his own
needs. This again requires that the program be logically structured

——and-easy-to-follow. After-all,- we're-all-expert programmers-but those ——
that will be buying our products may not be and they'll need all the
help they can get!

2-12

Sound reasonable? | certainly hope so! But this is all theory,
how do we go about putiing it inio practice? That's not as easy i0
do, but there are some simple mechanical appraoches that will make
the job a little easier. Keep in mind, however, there is nothing that
will make up for shortcomings in the program design. No mere
mechanical trick will overcome a poor program design or imple-
mentation. So, regardless of whether or not you plan on marketing
your program, it makes sense to make the program the best that
you possibly can. Not only for your own enjoyment and protection
later on, but also because you might find out iater that your program
is a marketable commodity, and it would surely be difficult to go back
later on and fix the program to the point where it can be marketed
and supported!

We must never forget that marketing a program is a little like
having a baby! The program (or, more accurately, the user) must be
nursed along and cared for. Marketing a program requires that you
be willing to take the responsibility for your product. Even if you
market it through a company such as Datamost (the publisher of
this book), you may still be called upon if there is a problem, and it
certainly behooves you to be able to fix the problem as quickly as
possible so that the publisher can get the fixes out in a timely fash-
ion, and so that you can get on with whatever you were doing.

ook,
O'MALLY...
TRICKS
AIN'T
TRICKY f
CODE.

Let’s talk a little about some of those mechanical tricks that we

had mentioned above. And, as we do so, | ask you to keep in mind
that these are just that, tricks, not tricky code. There is a difference!
Tricky code is defined as code that does something other than that
which is obvious. This should always be avoided, even if the code
that is used takes a few more bytes or an additional few lines of
code. The resulting clarity more than makes up for the extra size.
Also, programmers use tricky code to show how good they are but
you and |, as really good programmers, are so secure in the knowl-
edge of our own skills that we don't need to prove it with tricky code.

Now, on to the tricks! Our first consideration has to do with the
way in which the computer executes instructions. Sequentially, right!
Since the normal flow of the program is from the top to the bottom,
it makes sense to utilize this logic in the construction of a program.
Lay out your code so that the normal path through the code runs
from top to bottom in a straight-through flow. This will minimize the
problem of code that jumps all over the place and is hard to follow.
Then, for the unusual case or the exceptions, jump out of the normal
flow. This jump may be a GOSUB to a routine that will get missing
information, prompt the user for some action, or some other function
where control will return to the program at the next instruction.

In the case of an error that terminates the logical flow, then a
GOTO is acceptable and sould be used in a clear fashion so that
when looking at the program later on you will still be able to under-
stand the reason for the code break. A GOTO at the bottom of the
normal flow is also acceptable and should be used. If you are work-
ing with languages that allow either a DO...UNTIL or a DO...WHILE
construct, then that could be used with the termination condition
being set when the condition which signals the end of processing
is detected. This is more in keeping with the spirit of “structured
programming” but, because of language limitations, is not always
available to users of BASIC. Another conditional statement that might
be available is the WHILE...WEND construct from Microsoft. This
allows execution of a loop WHILE a given condition is true.

By the way, I've been assuming that the program’s main line of
code will be repeated more than once and so some kind of looping
condition must exist. When writing a program, it is essential to con-
sider-the-loop-controlling factors: There-are several reasons fordoing
s0. The most obvious is to allow the program to correctly determine

2-14

when processing should terminate, and the other is because pro-
grams iend to fail most often at the so-called “boundry.” gonditions.

\O'
\

Just what do we mean by “boundry conditions?” The simplest
definition is seen in processing data from a file where the first “READ”
is the initial boundry condition and the last READ is the terminal
boundry condition. In each of these cases, it is necessary to do
some special data handling to correctly establish processing. For
example, if you are checking the sequence of input, you need to
make sure that the hold area where the initial value will be stored
is initialized to a value lower or higher (depending upon the expected
sequence) than any that can exist in the file. Also, if you are sum-
marizing on some key, it’s necessary to make sure that the key is
initialized on the first read without triggering any of the normal non-
match conditions. By the way, when we talk about keys we are refer-
ing to a data field within a record that can uniquely identify a specific
record. Some examples may be Social Security Numbers, bank
account numbers, drivers license numbers, license plates, etc.
Although these are all called “numbers,’ it's easy to see that letters
will also work (as exemplified by license plates). At the end of the
input, we need to make sure that the code can treat end-of-data as
a non-match condition to force the performance of the normal non-
match processing as well as the end-of-data processing.

Because of the uniqueness of these two conditions, there is a
greater likelyhood of a program failing in these two areas than in
any other condition. All of these problem areas are going to be
discussed more fully in Section 5 where we will talk about testing
and debugging.

2-15

Some other considerations that should be made relate to the
question of speed. Because of the way in which the BASIC inter-
preter works, it is best to define all variables by placing data in them
as soon as possible in the program. On the other hand, defining
their usage via the DEFINT, DEFSNG, DEBDBL and DEFSTR
parameters is very useful and should still be done, especially since
using the appropriate TYPE flag ($, %, ! and) uses one additional
character and takes a little longer to scan. Of course, the explicit

declaration of the variable throughout the program does make its
usage clear, but sufficient documentation will compensate for this
single compromise with the language.

Clarity of thought is important in the development of any cre-
ative work, but especially so in the development of a program where
the computer will become an extension of your brain, carrying out
the tasks you have ordained for it. This can be quite an accomplish-
ment, to have such a powerful ally in the processing of data. But, if
the program is not well thought out and properly constructed, the
program can be handicapped in a severe fashion. It may function
poorly, it may be slow in execution, and may actually produce erro-
neous results.

All of these are conditions that plague those installations of
large computers which insist on development of programs in the
minimum time possible or who refuse to spend the time (when it's
available) to go back and “clean up their act” so that they can max-
imize the results of their programming staff and the computer facil-
ities themselves. I've often thought that they should be forced to
develop programs on a micro so that they would realize what a
limitation machine size and speed is and would therefore utilize their

big, powerful machines to their fullest. Ah well, | do dream a lot,
don't 1?

Where does all of this leave us? By developing our thinking
before we develop the program, we are in a better position to buiid
the program. We will know what the program must do and have an
idea of the various component parts the program must have to per-
form it's intended functions.

Suppose we didn’t know what a car was and all we had in mind
was a means of transportation for one or more people. We can think
of all kinds of machines that will fit that bill — even today we have
trains, cars, buses, airplanes, motorcycles, bicycles, tricycles, uni-
cycles, etc. All of these are different implementations of the same
idea and all are different; they look differently, they are designed
with different criteria, and they are implemented differently.

Computer programs provide us with one of mankind's most
interesting challenges. Even for a given trivial program, there will
be as many implementations as there are programmers to imple-
ment it. This is due to the “artistic” side of programming. Since each
of us will perceive a problem differently, we will each approach it
from a slightly different tack, and will consequently produce a dif-
ferent program. It is this individuality that makes programming so
much fun. The program that you write is solely the product of your
mind and you alone are it's creator!

However, this good side has a corresponding negative side
(notice | didn't say “bad” side, just a negative side). There is a
tendency among programmers to “just start coding” and the pro-
gram then flows from the keyboard. Sometimes that's exactly what
happens, the program flows from the keyboard and not from the
mind. It's like a writer who gets lost in his words, or like a builder
who never develops a detailed plan of a building before he starts
building it — it just ain’t gonna work!

There’s no reason to feel that a program needs the same kind
of spontaneity that the idea itself had. A program that is worth writ-
ing, is worth writing well (to coin a phrase). And, if it's worth writing
well, it's definitly worth thinking out first. If you pick up a program
and look at it, it's very easy to see how much thought went into the
development of it. One easy give-away is the line numbers. Are they
incremented by the same amount throughout (with the possible
exception of the ending line number of each routine)? Does the code
flow smoothiy or does there seem to be places where the GOTOs
just don't seem to fit, places that look like they've been changed
several times? Does ihe physicai appearance of the prograim seeim

2-17

neat and clear?

All of these, and more, go into making a really top-notch pro-
gram. There’s so much to consider, that in a book of this scope, we
really can’t get into all of the factors that affect a program. For those
of you using BASIC as a regular language, | strongly recommend
“The Little Book of BASIC Style” and, for all programmers, “The
Elements of Programming Style” both of which are referenced in
the bibliography in the back of this book.

Now it's time to press on. In the next chapter we will be address-
ing the idea of a program overview and how it might fit into the
scheme of program development. As we do, I'd like you to continue
to think about the material we have looked at in this chapter to see
how it can be applied. We will not be reviewing this material and,
so, we will assume that you have fully grasped the significance of it
before proceeding. This material is important and should be carried
forward as the discussion proceeds.

X

DADDT ViLL BE

"% T3 (EVER SO PLEASED
Al ? SIVITH MY PROGRESS

THUS FAR..! VELL,
As THE OLD Boy SAYs,
*ONWARD 1"

CHAPTER 5

Program Overview

What on earth is a program overview? One possible definition
of an overview is a look down on, or a description of, something.
An overview for a program is usually, but not always, a written
description of the program, its functions and data requirements (both
input and output). For our developmental purposes the overview
should be anywhere from a few notes to several pages of descrip-
tion.

The overview should contain, at a minimum, a line about each
functional block of code (routine, subroutine, function statements,
data statements, and data definitions), a description of the input
data as well as a statement about the output requirements. There
should also be a description of the flow of data through the program,
with any tricky logical decisions laid out in a decision table fashion.
This need not by really neat, but should be of sufficient clarity to aid
you in the various developmental tasks you will be undertaking.

The overview can be done in an outline format or whatever
format you personally prefer. | like to use the outline format because

2-19

it is inherently hierarchical, and the programs that are developed
under this scheme will show the clarity of this hierarchy. By the way,
the term hierarchical means a structure that has rows or ranks with
differing levels of importance. In the case of a program, a major
routine may be built up of one or more minor routines. Thus there
is an inherent hierarchy or level of routines. This is a common term
in the data processing world and one with which we should all become
more familiar.

As we have done in the past, we will discuss the reasons for
the importance of the program overview along with some simple
ways of building the overview. This will be covered especially in the
process of the development of the overview of the program that we
will be developing during the remainder of this book.

vnf” ‘|’

7

Let us begin with a very simple example, one that will actually
take longer to develop the overview than it will to write the program
(which will be left as an exercise for the reader). Let's go back to
the trivial example of the last chapter, building a program that will
calculate the area of a rectangle. As we are all aware, this is a
program that the world could probably live without, and so we won't
dwell on_the program _so_much_as the developmental techniques
themselves. The program can be considered merely a means of
providing us with the framework for our example.

2-20

The overview, inen, wiii refiect the need for g
the input, the calculations, and the cutput routines. W |
the various “overhead” routines, those used to advise the user of
the program function, as well as the clean-up routines used at the
beginning and end of the program. Such an overview might look like

the following:
I) Prodram to Calculate the Area of a
Rectandle
A) Initialization Routines.
i) Clear the screen
ii) Diseplay the program title
iii) Initialize and define all
variables
B) Promept for InpPut
€) InPut Processing
i) Read inpPut variables
ii) If End of Data (Length) and
Width) terminate
iii) Validate variables
a) Lendth or Width eaual to
zero? If sos error,
b) Lendth or Width less than
zero? If sos error.,
D) Calculate Area Width x Lendgth
E) Display results
i) Print "AREA = A
ii) If Lendth = Width print "THIS
IS A SQUARE"
iii) Go gdet more inpPut
F) Termination Routine
i) Print termination messade
ii) Terminate

As you can see, this overview took longer than it would take to write
the program that corresponds to it. But because the program is so
simple, it makes it easy to visualize the entire program and see how
the overview lays the program open for inspection. Also, it becomes
relatively simple to write the program from this overview.

We will be looking at flowcharts a little later on and you should
be able 1o see the similarity between the overview and the flowchart

2-21

for the same program. We will continue to use this very simple
program example for looking at these various techniques because
we can quickly evaluate the effectiveness of the new developmental
method under discussion. Of course, | hope you don't think that this
sort of care should be taken for every program. Some programs are
so trivial that they can be designed at the keyboard, but many are
not. Part of learning how to program well is the ability to recognize
which programs are which!

‘\’///./‘é‘/\/ﬁ\/‘
Ty e

il AP
3
.- . I A,
i, R
L 1 s
'«
\\ vz
-g /‘
N
HIEL, _\’\\:\
(R
hY N 1\

In the meantime, let's consider some of the important reasons
for taking the time to develop a program overview. If we assume
that an overview is to be used as part of the process of developing
a program rather than as the only developmental step, we can usu-
ally spend only as much time as necessary on it. On the other hand,
if we use only the overview, we should spend a considerable amount
of time developing it. The purpose of the overview is to allow several
things to happen: (1) help us clarify our thinking about a program,
(2) assist us in determining whether or not we have defined all of

the parts of the program that are necessary,-and-(3)-form-part-of
the final program documentation. But the most important function
of the overview is to ensure the logical structuring of a program.

2-22

A LOGICAL sRocToRe 15
; }{ NAUGHT NECESSARILY THE
N same As A !/

H‘f%IC AL STRUCTURE -

e

This structuring is not necessarily a physical structuring, but
rather is used to assist in logical structures. The primary difference
is that the logical structure requires that certain functions be per-
formed, but these functions do not have to have their code physically
adjacent. In fact, based upon the principles we have already dis-
cussed, it makes more sense to have the high-level routines in one
place in a program with the lower-level routines in another place.
This makes the more usual “working” code smaller and easier to
read.

2-23

A “rule of thumb” that is often used states that a given routine
should not occupy more than one page. This keeps the amount of
code to a minimum and makes it very easy for someone to pick up
the program, quickly grasping the significance of a given block of
code. If you've ever looked at a program where the code was scat-
tered all over the place, with no spaces anywhere, you know how
difficult it can be to read. Imagine the difficulty you might have trying
to maintain that program! Now, before you throw this book in the
trash, hold on a second. | know that it's popular to remove all spaces
from a program to minimize the time it takes the BASIC interpreter
to scan a given line, as well as to conserve memory. This same
reason is given for packing as many statements on a single line as
possible. If this is necessary, by all means go ahead and do it. But,
you might want to consider keeping a copy of the program around
that has spaces, remarks, and single statement lines. This can be
used for maintenance purposes and for storage with the program’s
original documentation. In fact, | usually recommend not “scrunch-
ing” programs unless it is absolutely the only way to get a program
to run. The difference in speed and memory utilization isn’t usually
all that great anyway!

While we're talking about the physical appearance of the pro-
gram, let me drop a few other ideas into the discussion. There are
a few easy tricks that will help keep program structure obvious. One
of the easiest tricks is to simply use indentation. For example:

100 FOR I=1 TO 100

110 PRINT I}
120 J=8OR(I)

130 PRINT J3

140 K=1123

150 PRINT K

160 FOR L = 1 TO 10
170 M(L)=0

180 NEXT L

190 NEXT I

This makes it very easy to see the related FOR...NEXT pairs. The
amount of indentation keeps the FOR and the NEXT at the same

point on a line, while the indented material is obviously part of the
corresponding FOR...NEXT loop. This sort of physical structuring

2-24

not only allows a neater program from a visuai siandpoint, it aiso
shows the thought put into ihe physical structuning. By the way, this
is another example of a hierarchical structure.

Since we are talking about ways to develop a program, it seems
reasonable to also talk about ways to visualize a program. The over-
view of the program is just that, a way to assist you in visualizing
the program.

“But” says you, “how do | develop an overview to visualize the
program if | can’t visualize the overview?”

That's a good question, and we'ii answer it right now. Noimally
when we are about to write a program, we have an idea of the data
that goes into the program as well as what we want to get out of the
program. The first two blocks of the overview are already done for
us! This might look like:

I) Prodgram 10 o¢eee000
A) Prodram InpPut
1) Get input data in format .o
2) Yalidate data using .o

Z) Prodram OutrPut.
1) Produce repPOrtSesoss .
2) Generate outrput files.oe

As you can see, there’s not a whole lot of information that is con-
tained in this overview. It's not really much more than a beginning
and an end. But, therein lies the secret — it's a beginning!

fr \ TS T
\ » N VHENN You

BUILT VHAT GOES
% IN—BET*/E%; <

With the definition of the input and its editing requirements as
well as the definition of the output and its various reports and files,
you are in a fine position to define the middle blocks of the overview.
Knowing what you have, and what you need, it should be a simple
matter to define the processing necessary to connect the two.

As is usually the case, the process of arriving at a real definition
of this processing is often an iterrative or repeating process. We will
often begin to define these requirements then discover that we've
either forgotten something or we've got more processing than is
necesary. As we go along we can correct this and the final result
should be a description of the actual processing requirements.

To assist you in understanding the material that we are cover-
ing, let's go ahead and plunge right into the overview for the check
writing program. We'll begin with the definition of the input and out-
put requirements. Why are we starting there? That's an obvious
question and, fortunately, there’s an easy, obvious answer. We're
starting there because if we don't have known output requirements,
there’'s no need for the program ('Cuz we don't known what the
program’s supposed to do!). If we don’t known what input we need
to get the required output, we have one of two problems. One is that
we don't really understand the function the program is going to solve,
and the other is that we don't have the foggiest idea of what it is
we're doing! If we really don’t understand the input/output require-
ments, then we need to go back to the requirements stage where
we define what we are going to do. That should be followed by the
definition stage in which we define the approach to be taken. Once
these two steps have been completed we can then continue to the
design stage.

Since we understand the function we are performing (the prob-
lem we are to solve) we can press on. Our input will consist of a
payee (the person or firm the check is being written to), the amount
that the check is being written for, and possibly a note to allow us
to specify why we are writing the check. We will also need to have
a date on the check, and possibly we will want to keep track of the
check number to make sure that the program knows about all the
checks that have been written.

“Sound like we've covered all of the input/output require-

ments?’,-l-ask.
“Not by a long shot, monkey ears!”
Right, we need to discuss the other “hidden” inputs and outputs.

2-26

For example, all of this data is being stored in a file that keeps track
cf the checks (we'll call it a Check Register File, or CRF for short).
Anything else? Well, if we have more than one account that is being
handled by this program, it might be nice to have a separate CRF
for each. Look at that, will ya! Already I've shown my propensity for
(means predilection for, or inclination to) developing acronyms which
are a sort of nick-name. That's perhans the bane of programmers,
We often come up with names that are longer than are allowed by
the computer. For example, the file could be called the
CHECK.REGISTER.FILE on a large IBM computer (System 360/
370 or 303x series) but not on most microcomputers, thus the need
for the acronym.

Anyway, are there any other inputs or outputs that we need to
consider? The answer may or may not be yes at this point. See how
positive | am? The reason for providing an answer of the “definitely
maybe” category is that although the program we are developing
may not have any other files to consider, we may be interfacing this
program to other, pre-existing programs that have specific file
requirements. It is necessary that we consider those programs as
we design the current program so that the files will interface cor-
rectly. By the way, we've used two terms synonomously here, files
and input/output requirements. A file can be either a data file on
cassette tape, floppy or hard disk, or it can be a printed report.
Usually a displayed piece of data is not considered in the category
of input/output for the purposes of this part of the design. We'll get
to that in a moment.

As long as we're talking about files, let's consider one other
important part of the design. Where will the file reside? This is,
perhaps, a moot point. If your system only supports cassette files,
or only disk files, then the question’s already been answered! For
most users that have disk files the question is answered because
of the speed difference between disk and tape. But, there may be
some particular reason for supporting say, a stringy floppy as opposed
to a disk.

This consideration, and others like it, are the things that you
should be considering as the design of the program evolves. | hope
that you noticed the key word in the last sentence: evolves. That is
precisely the way in which a program design should come about.
Beware of any program design that seems to spring into mind full-
biown. Again: smaii, simpie programs are exciuded from ihis dis-

2-27

cussion.

Program development is an evolutionary process. In fact, some
large companies are already experimenting with a formal version of
the process we in the microcomputer arena have used for a long
time -— iterative design. For us it's usually a matter of necessity; the
original design didn’t work, so we just keep on playing with the code
until it does work. For these large companies it has become a way
of getting better user involvement.

That term “user” is another very important word. For programs
developed for our own personal use, we are the user. Since that is
the case, getting user involvement from the very start is guaranteed
(unless, of course, we develop the program in our sleep). But, what
if we are getting together with a few friends to develop a program
that will be shared between several other people. Who should be
involved? What should the amount of involvement be?

The answer to both questions is easy to state and, sometimes,
very difficult to put into practice. The user (frequently called the “end
user”) should be involved from the beginning of the program design
(if possible) and should be as involved as possible. Obviously this
excludes any products that are being developed to be marketed.
For this sort of program, the end user involvement can be replaced
by carefully examining the requirements for the program being
developed, and using friends as “model” end users.

Let's get back to one of our defered subjects (displayed data).
Out of all of the various program development topics covered in the
trade journals.over the last several years, one very central point has
been raised. That point is that the program must be “user friendly.

Just what does that mean? To begin with, the program shoul
X ; = :
L}

municate with th ar in tarme tha 11ea

7]

-y s NI B AN D M WO

gramming terms he may or may not be familiar with. Secondly, the
program should never, never assume anything.

A common error seen in many programs is the use of a YES/

NO question to get a response from a user. Such a question may
aclk if the user wants a report printed, Nothing wrong with that! It
uses terms the user knows and the response is something from
everyday usage. Right? But in the code, there is a check for, per-
haps, “Y” and “YES” with any other response being considered as
a negative response. But, what if the user typed in “YEA’ because
his finger slipped and got the “a” key instead of the “s” key? Sorry
about that, no report! The program made an assumption that since
it wasn't one of the expected positive responses it must have been
a negative response. Always check for all legal possibilities and
reject any that aren't logical. It's always better to ask again than to
guess.

Displays should be designed to speak clearly to the user. The
Chinese have a saying that a picture is worth a thousand words.

‘,Ll:r:!’fL_L‘ g 3 Y
- ONE. Py
S QORI T
Ay ‘“%V‘ WORDs _/Nb
374 Y
pa %
1) Py 1 11
° L IR T
L~ r— P r— LLL

The various displays, especially menu displays, should speak vol-
umes. Some simple rules that might make this easy to do are pre-
sented for your enjoyment. First, make all screens in a given pro-
gram consistent, both in format and in usage. Second, make any
letter or number codes used for function selection consistent. For
example, don’t use “E” to mean EDIT in one screen while “E” means
END in another screen. Also, while we're on this topic, try not to
use numbers if at all possible. Numbers are great for computers but
people don't think in terms of numbers.

Below is a sample screen that shows some of the ideas we've
discussed as implemented. The screen is from a mailing list pro-
gram and allows the selection of several different options. This is

the master menu.

2—29

HRERRRFLEARRFRRRERRERRRRERAFFRRRRRRRRRREERRF

Fome e MAIL LIST MENU --cmeemmmnaoo *
#*ENTER SELECTION ==> 05/25/82%
* 11:15:21 %
* 1 ADD ADD A NEW RECORD *
* 2 DELETE DELETE A RECORD *
* 3 UPDATE CHANGE A RECORD #*
* 4 LABEL PRINT MAILING LABELS *
#* 9 LIST PRINT MASTER LIST #*
* 6 LIABILITY PRINT LIABILITY REPORT #
7 RENEMW RUN AUTO-RENEWAL *
* 8 TERMINATE RETURN TO DOS *
* *
* *
* *
* *
* *

LE SRS XTI TR RN

This program was designed for a computer club to maintain the
mailing list and to perform some special routines used for the news-
letter. The display allowed the use of a number for selection, but
only with the support of the short title (such as ADD or DELETE)
as well as having a descriptive entry on each function line. This
allowed the user to select an option knowing what would be per-
formed. Obviously, the RENEW and LIABILITY options were a little
strange until you understood the function of the program, as well as
the user of the program.

The key here is that you can make the screen tell the user
everything needed to make the selection without undue reference
to the program documentation. Recently, the large computer world
has been looking at the way we in the micro world have been able
to market programs with little documentation. That has been accom-
plished by having user friendly programs. Programs that help the
user to run it. One of the keys to this is having complete selection
screens. Screens that are not ambiguous or confusing. Screens that
will always look the same so that the user will be able to look at any
screen-in-the-program-and-be-able-to-understand-it—The-hardest——
part is to understand that there are users out there that are not
computer oriented. They may own computers and use them, but

2-30

they are not oriented toward them and don’t want to learn any more
than is necessary 1o use the computer to perform the functions they
want it to perform.

This is not unreasonable and is perfectly understandable. But
what does it mean for us, the programmers? It means that when we
design a program and are considering the various routines and func-
tions necded, that we have done so with the end result in mind. That
we have carefully designed the program using tools like the program
overview or like flowcharts and pseudo-code (the subjects of the
next Section).

So far we have only begun the design process — the “leg work”
if you will. We still need to perform the detailed design, the nitty-
gritty of programming. I'm aware that you might want to know why,
but there’s so many reasons that I'm going to answer those ques-
tions as we go along. We will plunge directly into the next Section
now, but we'll take along the ideas we've already covered. You'll see
that they will come in handy.

2-31

Section 3 — Designing the Program

In this section we will take a look at what it takes to go from our
preliminary design of the last Section to a final program design that
is ready for coding. We'll be using two of the more common tools of
mainframe programmers (flowcharts and pseudo-code). It isn’t nec-
essary that any program utilize both of these techniques. We're
looking at them both so that you can chose one or the other for your
own personal use.

Taking a program from the preliminary design is not an extremely
difficult task, but it does require a great deal of attention to detail.
Once this step is completed, you should be ready to directly translate
the final product into a running program. Assuming that the trans-
lation effort is done properly, there should be a minimum of testing
and debugging required.

The primary emphasis here will be on the unique requirements
of each technique for the final development. We’'ll also take a look
at the items which must be considered in the final stages of program
design. Again, the end result is a method of rapidly converting any
intermediate idea into a working program.

CHAPTER 6

Flowcharts

As we have already discussed, the development of a program
can be likened to the design of a building. There is a large amount
of planning that must take place. The design of the various subrou-
tines and functions is similar in concept to the design of the plumbing
and electrical requirements for a building. Just as a contractor uses
a blueprint to map out the development of a building, so too the
programmer has a similar tool. The tool is called a flowchart.

The flowchart is not a new development, and in fact goes back
to the very early days of program design and development. A flow
chart may be used in two different ways. The most common method
is the mapping of the flow of code — the sequence of instruction

———execution:-A-second-technique; developed-by-IBM;is-called“HIPO”
(Hierarchy plus Input, Process, Ouput). This technique shows the
flow of data through the program rather than the execution sequence

3-1

u Dony

(TR Son"oRon
"

Z ORDER, DO y

2

of the instructions. Although this may be called a flowchart, it’s usu-
ally called a HIPO Diagram or HIPO Chart.

We will not get into the HIPO Diagram too much, but will touch
lightly on it near the end of the chapter. For the most part, we will
concern ourselves with the use of flowcharts for program design.

To begin the discussion let’s focus immediately on what is con-
veyed in a flowchart. To do that we need to understand the symbols
used in a flowchart. There is a specific number of symbols that are
approved by the American National Standards Institute (ANSI) and
these are almost the only symbols we will be using. We will be using
ANSI X3.5-1970 standards which conform to ISO (International
Organization for Standards) Standard 1028. Naturally, various flow-
charting template manufacturers have added their own special sym-
bols, but we will not use them. The application of some of the sym-
bols will be, admittedly, my own preferance rather than a “standard.”
This will only be in those cases where there is no standard.

Figure 6-1 shows the full set of symbols and the keyword asso-
ciated with each symbol. Since this may be the first exposure for
some of us to this material, we’ll take a few minutes to go over the
meaning of each of the symbols to make sure that we're all in “synch”
Please, for those who are familiar with this material, stick with us.
That way we’ll all have the same understanding of the material as
we go forward.

The PROCESS symbol (a plain rectangle) is used to indicate
normal processing. That is, processing that does not include 1/0,
decision making, or transfer of control (GOTO). It may be used to
indicate a GOSUB, but there are better ways of doing that.

The INPUT/OUTPUT symbol (a parallelogram) is used to indi-
cate the transfer of data from a file (disk, cassette, or stringy floppy).
This is not used for printed material, data that is displayed on the
video unit, or for material that is entered at the keyboard in response
to a prompt; there are special symbols used for that.

The CONNECTOR symbol (a circle) is used to show control
transfer from one part of the program to another, but only if it can
be done on the same page (of paper). If the flowchart is big enough
to require multiple pieces of paper, use the special OFFPAGE CON-
NECTOR (a pentagon) to indicate control transfer to a point on a
. different piece of paper. Please note that this OFFPAGE CONNEC-
TOR is not an ANSI standard, but is rather one added by IBM which
| like because of the positive statement that it makes. This is due to

3-3

<>]

Process Decision

Input/Output
Display Connector
Offpage Connector

V

CoO = <]
e JAY

Arrowheads Document
. Mapnetic Tape
Disk Magnetic Disk
l . Auxdilary Manual Operation
Manual Input T —
Communications Link

Punched Card Punched Tape

Figure 6-1. ANSi Fiowchariing Symbois

the fact that a flowchart should clarify, not confuse!

COMMENT symbols are part of a group of symbols called
“composite symbols,” formed by changing one of the basic symbols.
In this case the PROCESS symbol is changed by removing the right
side line, and by running a dotted line to the symbol from the appro-
priate point in the flowchart.

ARROWHEADS are used to indicate the direction of processing
flow. This is the instruction sequencing, not the data flow! ARROW-
HEADS are placed on flowlines (the lines that connect the various
flowcharting symbols). These lines, like electrical schematic draw-
ings, may cross without implying a connection. Connections are
positively indicated (see the sample in Figure 6-2).

DECISION blocks are indicated with the diamond shape. This
is used for IF statements. The normal flow is into the top of the
diamond, and there are three possible exit conditions (less than,
greater than, and equal). These are, of course, not always used in
this fashion. We'll see some specialized usage of this block as we
discuss STRUCTURED PROGRAMMING.

The TERMINAL symbol does NOT relate to a Video Terminal.
Instead, it relates to a terminal or exit condition in a program or
routine. It is represented by a capsule shape, a sort of flat oval like
arace track. This is used to show that the logical end of that function
has been reached. It may mean the end of the program or merely
the end of the routine.

There are other symbols that are commonly used to represent
the outside world. These are the so-called “system” symbols. We
will be concerned with six of them. These relate to various storage
media, as well as input/output devices (as opposed to files).

Our first symbol relates to printed reports. The DOCUMENT
symbol is merely the representation of a piece of paper. As usual,
the purpose is to make clear, at a glance, the function intended.
Continuing that trend, the symbol for a magnetic tape (cassette tape)
is a circle with a line under it. This is a composite symbol that usually
refers to a reel of tape on a large computer, one that is similar to a
reel-to-reel tape recorder. Since that's the only symbol available,
we'll go ahead and use it.

Disk storage has two different symbols associated with it. One

is a general “on-line storage” symbol, and looks like Buck Rogers
1930’s era space ship. The other symbol looks like a 55 gallon drum.

For our purpose, we'll use the spaceship symbol. It seems to be
more universaily used, and it is not a composite symbo! which the
disk symbol is. I've shown both in Figure 6-1, but have indicated a
preferance for the former.

Since there isn’t really a symbol that is appropriate for the stringy
floppy, we'll consider it what it really is, a tape drive, and use the
TAPE symbo! for it. It really doesn’t matter unless the program is
device dependent; then, it would probably make sense to add the
word “STRINGY” to the graphic representation, or to add a comment
block to that effect.

Manual input (data input from the keyboard) is indicated by the
sort of squished rectangle. This is also used if you have switches
that can be read by the program. Any form of input that does not
come from a file (disk, cassette, or stringy floppy) should come from
this manual source or from a communications source. A COMMU-
NICATION LINK is indicated with the lightning bolt. This represents
data either transmitted from or to the computer.

The final symbol that we will be working with on a regular basis
is the DISPLAY symbol. This is used to indicate data being displayed
on the video unit. The symbol is shaped like a simple CRT unit, with
a curved face and a strangly tapered tube. Again, the ability to
recognize it quickly was the more important design consideration.

Figure 6-1 contains the remainder of the symbols that are used
in flowcharts simply because we need to be complete. We will not
be using any of these symbols as we proceed through our discus-
sion because they are related more to the development of software
systems than to the development of programs. We will touch lightly
on the considerations of program design that will lead to good sys-
tem design, but that will be incidental rather than as the primary
thrust of this Section.

We will begin our discussion of flowcharts with some simple
guidelines regarding the use of flowcharts. Since the time of Alex-
ander the Great and The Great Grape Ape, one question has stood
out in the history of man. How detailed should a flowchart be? The
question has a very simple answer, and a moderately simple answer.
We'll cover each in turn.

The simple answer says that the flowchart need only contain
material for each routine or major logic junction.

“And;” the astute student asks, “just what the heck is a ’'logic
junction’?”

3-6

Funny you should ask, | was just getting to that. A logic junction
is any point in a program where a change of instruction sequence
will take place as the result of a decision made based upon data. In
other words, as the result of an IF or, perhaps, an ON...GOTO or
ON...GOSUB. These are usually flaged so that the programmer can
make sure he keeps the decision in the program where needed.

The moderately simple answer that | mentioned says that a
flowchart should maintain enough detail to allow you to code the
program without any unnecessary references to other documents
as far as the logic of the program is concerned. Of course, it may
be necessary to refer to a print layout to ensure getting the report
correctly formatted, or to a file layout to make sure the files being
processed by the program are correctly defined. The flowchart is
not used for those functions, it's only for logical structuring of a
program.

So far, this hasn't really told you anything has it? Well, to be
frank, there’s not really much to the great mystique of flowcharts.
They can be very detailed or very skimpy. For example, the flowchart
below is perhaps as short as any flowchart could ever be. On the
other hand, a flowchart can have every possible line of code on it.
That's overkill and isn't recommended.

Later on in this book we’re going to be talking about how to
document a program and the flowchart will become a permanent
part of that document. Assuming that you will want to maintain the
program documentation, it makes little sense to force a flowchart to

be so detailed that every little change to a program will require
redrawing the flowchart. That's only one of the reasons that a flow-

chart should not be a line-by-line representation of the program.
There are many other good reasons, most of wiich have io do with
the so-called law of diminishing returns. That is, beyond a certain
point the amount of effort put into a flowchart exceeds the possible
benefit of that effort.

For example, if you have defined a program sufficiently well
enough to be flowcharted, you've probably already spent a lot of
time thinking about the program itself. Once the preliminary design
is done, the flowchart should be only enough to solidify that design.
Just enough to make sure that you can remember where you are
going with the program. Spending the necessary amount of time
that it would take to build a super-detailed flowchart will require an
inordinate amount of attention to detail at a time when you should
be concentrating on merely noting the functions, at a moderate level
of detail, that need to be performed. This can be done more rapidly
and thus there is less of a chance that you will omit some high level
detail. The old saying about not seeing the forest for the trees really
applies here.

The bottom line, then, is that there is a limit to the usefullness
of flowcharts, and that limit is one placed upon the purpose of the
flowchart. Again, we’re not trying to limit your creativity. In fact, we're
trying to do just the opposite! By allowing you to place only the
amount of material in any of these design techniques as you will
need, you alone are defining how these tools will be used. You are
the final judge of the effectivness of any tool that you are going to
use.

Some books I've read have referred to the misuse of various
tools by comparing it to using a pair of pliers as a hammer, useable

but certainly not ideal. Actually, it's that very “usableness” that we're
trying to convey. Who cares if it's a misuse as long as it works? One
of the things that | push very strongly for is the basic right of every
programmer to be an individual and to develop programs in the
means best suited to his own disposition. This does not mean that
I'm against egoless programming in a commercial environment where
several programmers may be working on the same program. Just
the opposite! I'm firmly behind the efforts to make all programming
egoless, that is, free from the nagging need to make each program
a personal statement. If a program is being developed by one pro-
grammer for his own use, he can do whatever he wants to do. All
we're trying to do here is to set the stage for efficient development
of clean programs.

To see how we could use flowcharts, let's take a look at two
examples of flowcharts for the program to calculate areas (our sim-
ple program from the last chapter). This first flowchart (Figure 6-2)
shows a moderate level of detail, sufficient as a map or guide to
writing the program. Notice that the decision blocks are the only
places where there is great detail. This is as it should be. Regardless
of the amount of detail in the overall flowchart, decisions should
always be clearly spelled out so that when the program is written
later, there will not be any hidden logic that would take extra time to
reconstruct, or that might possibly be forgotten.

The second example (Figure 6-3) is a fully detailed flowchart,
drawn at the instruction detail level. In this case, we can see that
the program has already been written. The flowchart merely needs
to be translated on a symbol-by-symbol basis to have the entire
program ready to run. Of course we already know that this is a bad
practice. To reiterate, we don’t develop a program full blown, we do
it step by step so as to ensure the accuracy of the final product. If
we are doing the last step as one of the intermediate steps we may,
and quite likely will, miss some important detail. That's the primary
reason for showing this flowchart at this time. There’s no need to
ever develop a program flowchart at this level of detail. | realize that
one should never say never, but in this case it's a reasonable thing
to say.

As you can see from both of these examples, however, there

——is-very-little-left-that-is-required-as—far-as-coding-the-program-is
concerned. The structure of the program has become apparent due
to the flowchart; the mainline comes first and is treated as a fall-

3-9

BEGIN

INITIALIZATION
PROCESSING

_________D

PROMPT FOR &
READ INPUT DATA

LENGTH TERMINATION
& WIDTH = 87 PROCESSING

LENGTH ERROR
or WiDTH = @87 PROCESSING

CALCULATE~
AREA = LENGTH *

DISPLAY AREA

Is this a square?

indicate t's a
SGUARE

Figure 6-2. Flowchart for AREA Calculation Program

INITIALIZATION
Routing

?

Prompt for and
READ Length and
WIDTH

DISPLAY an

ERROR message

Length = 87

PRINT
"PROGRAM
TERMINATED "

CALCULATE END
AREA = WIDTH
* LENGTH

PRINT “AREA
- AREA

PRINT ~THIS IS
A SQUARE”

Figure 6-3. Full Detail AREA Calculation Flowchart

3-11

through structure. All subroutines are last and are entered only as
necessary. The onily branches out of the mainiine are fo return to
the prompt or as the result of an unusual condition; either an error
or a termination.

This is not structured programming, however. For those of you
who are interested in structured techniques, the third flowchart (Fig-
ure 6-4) shows the structure as it might appear if we were to use
this technique.

By ihe way, as iong as we're touching on structured techniques,
there are some flowchart related functions that should be men-
tioned. Figure 6-5 shows some special structures that are used in
flowcharts that are based upon a structured development technique.
These are really just specialized uses of the symbols already dis-
cussed.

“Ok, just how does one start to draw a flowchart?”

Another pertinent question! If we stop and think about it, we
have one of those simple mechanical tricks that we can use to build
a flowchart starting point. We begin with a terminal symbol labeled
“BEGIN." Having begun, we simply follow through by adding blocks
that describe the various processes that the program must perform.

These additional blocks should have a structure that is similar
to that of the program overview. That is, we should be building upon
the developmental work we've already done. The flowchart is not,
or at least shouldn't be, the first stage of program development.
Assuming that it isn't, we can see that we must already have an idea
of what the program is to do as well as how it is to do it. With this
information, we can then break the functions into logical structures.

- 3-12

INITIALIZATION
PROCESSING

LENGTH

TERMINATION
& WIDTH = 87

PROCESSING

LENGTH
or WIDTH = 9?

PRINT “INVALID CALCULATE AND
DATA. REENTER" PRINT AREA =
LENGTH * WIDTH

PRINT “THIS
1S A SQUARE"

\,
NG

Figure 6-4. Structured Flowchart of AREA Calculation Program

3-13

iF THEN ELSE

< kK K Kk

00 WHILE

Figure 6-5. Structured Programming Flowchart Symbols

3-14

“How does one determine the beginning of a logical structure?”

That's another good question. The answer is, fortunately, very
easy to express. As we think of the various parts of the program we
see that there are places that we must “jump to” in order to perform
either the repetitive or the unique parts of the program. That is, we
may be “looping” through some routine (or many routines). The
entry point to that loop is the beginning of a logical structure. If we
branch out of the main code to perform some specialized section
of code, we have another logical structure that begins at the point
where we enter the particular routine.

1T HeLP Jus
(PBUNCHES 17 You

0!0 WITH”FLD\V / g /T

3-15

Does that make it all clear? | certainly hope so. If it doesn't,
don't worry about it too much; we'll be taking a clicser icok as we go
through the flowchart for our main program.

Another question that's often heard has to do with the desira-
bility of just building a “block level” flowchart. Such a chart is shown
in Figure 6-6 for our “area” program. There isn’'t much thatis different
between the overview we developed in the last chapter and this
flowchart. In fact, that's the reason for not suggesting this approach
to developing a flowchart. Remember, the idea here is to develop
a program slowly. Much as wine needs to age, and different wines
age at different rates, so too programs need time to develop. Some
will develop quickly while others will take a while to be brought to
fruition.

That's normal and desirable! Again, we're trying to develop a
set of “program development guidelines” that will allow all programs
to be produced in the minimum amount of time with the maximum
yield. That means that we will force all programs to undergo a sim-
iliar, but not identical, maturation process. This process has to be
flexible to allow for the individual differences and preferences. But
to make one stage of development identical in content and different
in form seems to defeat the purpose of everything we've learned so
far!

Assuming that you are in agreeement with what we've said so
far, let’s continue to look at how a flowchart might be used. We've
already mentioned that a flowchart should be part of the final pro-
gram documentation, but does it have any other uses? Of course it
does, or | wouldn't be mentioning it. Right? Of course!

The primary purpose of the flowchart is as a guide to the pro-
grammer as he is coding the program. The flowchart may be likened
to a blueprint. It contains all of the program structural data, that is,
it indicates the sequence of instructions, and the paths that should
be taken based upon any logical or data related decisions. If properly
developed, the flowchart should make the actual writing of the pro-
gram a snap. The nard work should already be done. The other
advantage of the flowchart is that it is an evolutionary step in the
development of a program and, as such, it should be useful as a
tool to help clarify your own thinking about the program.

As you develop the fiowchart, it's easier to make changes at
that stage than it is during the coding stage where changes may
turn out to be massive. Again, the major reason is ihe diiierence in

3—-16

BEGIN

Do whatever ini-
tialization is
needed

O,

Read & Validate

all input. Issue
ERROR/TERMINATION
messages as needed

Perform all calc-
ulations. PRINT
result and the
SQUARE if needed

Figure 6-6. AREA Calculation Program Block Level Flowchart

3-17

amount of detail. As we get i0 each succeeding siep in ihe devei-
opment of a piogiam we gst more and more detailed. That is a
normal step, and is the primary one that we are trying to cultivate
throughout this book. Regardless of the steps that you will actually
take, if you allow the program to grow slowly in a controlled envi-
ronment you will find that the program will tend to be cleaner and
work better sooner.

As you can see, the emphasis here is not so much on the
flowchart itself, but on the tool! Just what do | mean by the “tool” if
not the fiowchart? Actually, flowcharis and aii of ihal genie are
designed for one reason only, as aids to proper program develop-
ment. That's not to say that we can dispense with them, but rather
that they serve as a means of focusing our attention on the problem
at hand. This is much the same as an oriental mystic who will chant

..... 7
\\\ i

a mantra during his meditation as an aid to more complete meditia-
tion, attempting to bring his full concentration inward.

Concentration. Attention to detail. These are the primary tools
that a programmer must have. But more than having a tool, the
owner must also know how to use that tool. It serves no purpose to
be able to focus complete attention on a problem in the early stages
of development and then forget about it during the latter stages.
That's another reason for the flowchart; it serves as a memory aid.
As you go through the early stages of development you may be
writing down various program functions. Once you start the flow-
chart you will incorporate these functions into a working picture of
the program. During coding, all of the prior thought put into the
program should be directly available to you in the form of the flow-
chari.

3-18

The flowchart is a pictographic representation of the program.
Sort of like the models of the human body, you remember them, the
“Visible Man” and the “Visible Woman.” Well, the flowchart might be
called the “Visible Program.” Here in all its glory is the logic behind
the program, laid out for all to see. That leads us to another reason
for developing flowcharts. With the logic laid bare, there is a clarity
of thought that takes place. We can very quickly see whether or not
we have correctly evaluated the needs of the program. If there are
connecting lines that should go someplace, but can't or if we don't
know where they should go, we obviously have to spend more time
thinking about the program. There’s something missing in the design.

This can be considered sort of a “software logic probe.” A hard-
ware logic probe is used to test various components of a computer
(integrated circuits and so on), and our software logic probe is used
to test the program design. Actually, the analogy isn't all that hot
because the logic probe for hardware is usually accurate while the
software logic probe may not be.

Are there any other uses for a flowchart? Well, there's walipa-
per, scratch paper, and so on. Seriously, there’s always reasons for
anything. We can consider just a couple of ideas that might make it
more enticing to take the time to develop a good flowchart.

Let’s start with one that's an outgrowth of an idea we’ve already
presented. What do you do if, after several weeks of program devel-
opment, you're suddenly unable to continue? Unreasonable? Not
at all! If you're a student you might have final exams or, if you're a
businessman, you might have to travel, attend a conference, or
whatever. For some reason you can'’t continue with the development
of your current program. Do you forget it? Not hardly! If you have a
flowchart you don't really have to worry since the ideas are all set
down in a form that is ready to translate to code. You can come
back and pick up almost where you left off. Of course, there is some
relearning time, but this should be minimized if you have followed
all of the stages of development as outlined here.

A second reason is one that, at first, will sound quite trite, but
I think you'll discover that there is some truth to it. Assume for the
moment, that you are capable of never forgetting anything, regard-
less of how trivial. As you decide how the program should be written,

you merely place a mental image of it in_your “memory file.” When
you actually get around to writing the program, you recover this file
and there it is, a program fully developed and ready to code! Sound

r————-"--—7 .
»- ﬁa}a Cotrmard 1T\ -
! = waicn 1)

15 (pUSTER!
Uy

far-fetched? Not really, that's what a flowchart is. It will be there
whenever you want it, and will allow you to translate the fully devel-
oped ideas into running code. The second reason, then, is that these
flowcharts can become a file of programs to be written later on when
there’s more time available.

Now that we’'ve covered why we want to develop a flowchart,
are there any helpful ideas that will tell us how to go about devel-
oping a flowchart? Not really, let’s talk about girls...

Of course there are! First of all, at the beginning of this chapter
| mentioned that | was using a template. Just what the heck is a
template? I'll bet you thought | wasn't going to define that one, huh!
A template is, usually, a piece of plastic with the various shapes
punched out. The one | use comes from IBM (whoever they are).
i's available as part number GX20-8020. There is usually a “dash-
number,” or number following that part number, but it's not needed
to order the part. if you want one, it can be acquired through your
local IBM dealer (you know...the one you got your last System 370
through).

3-20

What about other tricks or techniques? Well, to be honest, there
really aren't any books about flowcharting. So, any ideas given here
will relate only to the way in which | use flowcharts or the way I've
seen them used. The first step is to get a piece of paper big enough
to write on (shopping bags don’t work too well). Then get a pencil
(not a crayon). By the way, a sharp pencil works better than one with
no point! | try to set the flowchart so that the most logical functions
appear first — either subroutines or the mainline, depending upon
the school of thought I'm following.

The basic steps that follow are then to simply map out the logic
blocks, don't worry about the connecting lines yet. Once you have
filled up the piece of paper (which I find usually takes three columns
of symbols) you can then go back and put in the connecting lines.
Again, doodling fills paper but isn't what we’re looking for! Actually,
as you can see, its basically a mechanical task. To make it easier,
let's take a look at the flowchart for our CHEKBOOK program. It
follows most of the rules that I've espoused so far, and should serve
as an admirable example (although | won't say whether it's a good
or a bad example).

For simplicity sake, this flowchart follows a modular approach.
We will look at how the program might have been built in a structured
view in Chapter 9. In that chapter we will also present a possible
high-level (minimimal detail) flowchart that will allow you to see the
differences in thought behind the modular and the structured
approaches to programming. | do, however, recommend a modified
top-down approach to programming regardless of whether you use
structured or modular techniques. We'll talk about the modifications
- ——to-top-down-in-Chapter-7-where-we'll-be-primarily-concerned-with
pseudo-code, another development tool that may be used in lieu of
flowcharts.

3-21

As you can see, there is very little in the way of dialogue asso-
ciated with the flowchart for our checkbook program. That is as it
should be. Since we know what the program is to do (from earlier
chapters where we spelled out the requirements) we should not
need much verbiage. That is, indeed, one of the primary purposes

of the flowchart. So, read and discover. The program will follow but

we'll first logl at another v way t0 rlo\lnlnn a program without the use

of flowcharts.

Why? Aren't flowcharts any good? Seems to be a strange ques-
tion to ask at the end of a chapter on flowcharts, but I'd miss the
boat if | didn’t explain the good and the bad points. Flowcharts have
one significant long-term drawback — they quickly get “out-of-synch”
with the program unless they are maintained very carefully when
the program is changed. That's one of the reasons | suggested using
a slightly higher level of flowchart rather than a detail level that
merely echos the code in the program. That will make the flowchart
last longer since the changes will have to be more pronounced to
have an effect on the program. Also changes will be relatively easy
to make since only the major effect of the changes (normally) will
have to be indicated. Obviously, if there are changes to decision
blocks (which are always spelled out) this may require more drastic
surgery to maintain.

But (here’s the big rub) flowcharts are useful. They provide all
of the nice things we've talked about so far, as well as being some-
thing that can fit right into the documentation package for the pro-
gram. We'll talk more about documentation later, but this is really all
we need to say now on it.

So, go ahead, use flowcharts as a development tool if you find
it fits with what you are doing. As with all of the other material pre-
sented in this book, not everybody does it all the time. That old
saying “but everybody’s doing it” doesn't hold water here. So what?
Even if you are the only one to use it, it could save you hours or
even days down the road. You may not use it for every program,
but, if you do use it when it's needed, it'll surely pay for the time it
takes to develop it. After all, it's just a picture — maybe it can save
the time it would take to write a thousand words.

3-22

CHAPTER 7

Pseudo-Code

Now that we've gotten flowcharts fully mastered (we have got-
ten them mastered, haven't we?), let's press on with another way to
assist in the development of a program. Flowcharts used pictorial
symbols to define the logical flow of the program. Pseudo-code uses
a different form of symbols — words — to accomplish the same
purpose. Here we use words to describe the way in which a program
must work. Sometimes these words may be the words that would
have been contained in the symbols used on a flowchart and some-
times not. It doesn't really matter. We'll be looking at how we go
about developing this pseudo-code so that it's meaningful to you
and anyone that might be working on your program.

There are two different ways in which pseudo-code may be
written. Our first one is sometimes called a “structural map” or chart
of a program. Here we'll talk about hierarchy again, but this time at
the module level. If we remember how we developed an outline of
the program (way back in Chapter 4), we recall that we were looking
at a hierarchical structure which we defined as a series of different
levels or rows of importance. This first form of pseudo-code that
we’'ll use is really a map that shows the way in which the various
routines interact with one another, starting with the highest level and
working down to the lowest functional levels of the program.

This approach allows the logical structuring of a program to be
clearly seen. The purpose is, again, to make the programmer more

3-23

3-24

aware of the way in which the various routines of the program must
interact. This module interaction is one of the primary points in a
program where there can be errors. Since debugging is such a large
part of the current development schedule of a program, it seems
reasonable to spend as much time as possible “up-front” eliminating
the bugs before they can occur.

That's one of the primary purposes for approaching program
development in the fashion that we're describing in this book, to
minimize the number of errors that creep into programs during the
design and coding stage. Obviously, there will be some bugs since
NOBODY is perfect. What we want to do, of course, is keep them
to a minimum — the fewer bugs we put in the quicker we can get
‘em out again (it says here).

Before we get too deeply involved in the mechanics of pseudo-
code, let's take a quick look at the development of the tool so that
we might be better able to see how it fits into the scheme of things.
Pseudo-code is defined as a code that requires translation before
execution. That's probably not terribly meaningful yet, but it will be!

Pseudo-code was developed as part of the so-called structured
programming methodology. The entire thrust of this particular way
of developing programs is that the program is thought out in a com-
plete, logical fashion. We begin first at the highest level (or least
amount of detail) and work successively down through the levels of

¥

“TAKE CARE
OF THiS Popé
ME !

detail until we get to the greatest amount of detail at the bottom of
the hierarchy chart. Think of it as a corporation; the top leveis define
what must be done, and pass these directions down to the various
levels of underlings until the poor guys at the bottom (who do all the
work) get the message. At each level only the amount of information
needed to get the job done is passed to the routine that performs
the actual task {sounds like the government).

The approach here was to make sure that any given routine
was only as complex as that routine needed to be in order to perform
its particular function. Each routine would then be called a primative,
or bottom element. For example, some primatives might be respon-
sible for reading a record, writing a record, printing report headers
(title lines and so on) on a fresh page of paper, or whatever. Each
routine would only know what was necessary for it to perform its
appointed task. For example, the routine to read a record would not
need to know what page the report was on, and so that information
would not be passed to it. Of course, in a BASIC program that data
is available, but shouldn't be looked at — the variable containing it
should never be referenced in the read record routine!

“Ok, but what, exactly, is pseudo-code?”

A fine question and one that we'll answer right now. Pseudo-

code is a sort of programming language, but one that uses rather
strange English as opposed to formal computer language. For

example, the followin might be a way of expressing a routine that
will repetitively read records until we find one that contains some
specific condition {(which is, apparently, undefined):

3-26

READ: routine
DO WHILE (condition false)
READ a record
END (DO WHILE)
END READ.

The routine is expressed in a fashion that seems quite simple, and
yet the entire logic of the routine is clear to see. We don't need to
know what the condition is at this level of code, that can be added
as we develop the program still further. Remember, we are using
this as a developmental tool, and it can be used throughout the
development life cycle of a program.

Let's digress a moment to refresh our memory on the life cycle
of a program. We begin with the idea which is then refined and,
perhaps, merged with other ideas. This is then planned out and
developed into a programmable idea. The requirements are defined
and the program is designed. Following design the program is coded,
tested, debugged, documented, and used!

The stages then are: need, definition, requirements, design,
coding, testing/debugging, documentation, usage. There are some
additional stages called, in general, “maintenance” which contain
all of the initial development stages (only in miniature) and are used
to enhance the program as the needs behind the original program
change or evolve into something different.

Armed with this information let's see how what we know of
pseudo-code could be used. Obviously we can use it in the design
and coding stages as well as the maintenance stage. What about
the documentation stage? Indirectly, yes! We can use the pseudo-
code as part of the documentation just as we used the flowcharts
of the previous chapter. Perhaps we can use a very simple form of
pseudo-code in designing the testing cycles that we must go through.
There doesn't really seem to be any other places that pseudo-code
will fit properly. And that's also as it should be. We have a design
tool, not a definition or requirements tool. Let’s let it remain a design
tool. Of course, design goes through many different levels, and so
this tool, unlike flowcharts, would seem to be usable throughout the
entire design stage.

Some guidelines-are often-given-regarding-how-much-material——
should be placed into a pseudo-code description of a program. As
with flowcharts the amount of detail will vary depending upon the

3-27

/A & MINTMOM,)

-CODE.
i

~Flow of Program..

individual, but there is what we can call a minimum set of data. This
minimum set should include the basic flow of the program, the pri-
mary sequences from top to bottom, along with calls to the various
non-linear routines (error, special condition, etc.). All logical choices
made by the program should again be clearly spelled out so that
when you begin coding the program there will not be any problem
in writing the code once that phase has actually begun.

What we are discussing here is again a development method-
ology. This particular methodology is taken from development tech-
niques like “top-down” and “bottom-up.” There are as many advo-
cates of this as there are for any other form of development. I'm not
trying to imply that this is superior to any other technique. What |
am saying is that these techniques have shown themselves to be
efficient and useful in the development of programs. Other methods
are also good and some are also efficient, but these seem to com-
bine some of the best of all of the various development techniques
that have been foisted upon the programmers of the world.

While we're talking about pseudo-code, let’s also talk about
another form of a chart that goes hand-in-hand with pseudo-code.
Let's talk about hierarchy charts. We've already mentioned them,
so let's cover exactly what they are and where they might be used.

A hierarchy chart is similar to a flowchart in that it uses pictures
or symbols to represent various parts of the program. However,
unlike a flowchart, the hierarchy chart uses only boxes. These boxes
are aligned much like an organizational chart. In fact, they are orga-
nizational charts. These hierarchy charts reflect the iogical organi-
zation of the program. They are used to graphically illustrate the
various module dependencies. By ithat we mean ihat each moduie

3-28

is getting data from or giving data to another module. No module is
independent in a program; it has some relationship with at least one
other module in the program. This relationship is indicated via a
connecting line between the boxes representing the modules.

Aside from the obvious usages of the hierarchy chart we can
also use it as a checklist of modules to be written. Sort of a fail-safe
method of guaranteeing that the routines are all present and accounted
for (even though it won't guarantee that they will work). As a sec-
ondary check, it can make sure that you have coded the routines in
the right sequence!

“How'’s that again?”

it will make sure that the routines are written in the order of
theirimportance. That is, for top-down construction, you have coded
the higher-level modules first and the lower-level modules last. This
means that you can start testing while you are coding. You replace
the lower-level routines with dummy routines that merely return;
then you can begin testing. As you complete each logical layer you
will be assured that any bugs that creep in will be either hidden in
the linkage between the routines, or in the new routines that are yet
to be added. Simple? It certainly is!

But let's get back to the pseudo-code. How does all of this relate
to that? Let's take a good look at some simple pseudo-code for the
AREA calculation program that we introduced back in Chapter 4.
We'll start by drawing the hierarchy chart so that you'll be able to
see the precise relationships between the various routines. We'll
further assume that we’re going to make this a “structured” program.
I've placed the word structured in quotation marks because this isn't

really structured, it's being done that way merely to facilitate this
discussion. Here’s our chart:

3-29

INITIALIZATION.
CONTROL,
TERMINATION

READ A RECORD DISPLAY PROMPT CALCULATION

DISPLAY RESULTS ERROR CHECK TERMINATION

Figure 7-1. Hierarchy Chart for AREA Calculation Program

As you can see, there are three levels of hierarchy. The top level
(called Initialization, Control, Termination) is responsible for setting
up the correct environment (clearing the screen, initializing varia-
bles, etc.). It will call the “Display Prompt” routine which will request
data from the user. After returning from that routine, our main level
will call “Read A Record” which will get data from the keyboard.
Data from the keyboard will be routed through “Control” to the “Cal-
culation” routine. “Calculation” will call “Termination Check” (see if
both width and length are zero) which will return control if we are at
end. Assuming that this was not a termination condition, control will
be passed to “Error Check” where a test will be made to see if either
value was zero. An error message may be displayed if either value
is zero: control is returned. If all went well the calculation is per-
formed (in Calculation) and the results displayed via a call to “Dis-
play Results” Control is returned to “Control” for the next go around.

Obviously, all of that detail is not present in that small hierarchy
chart, but I've added it so that we can see what is happening. Now
let's take a look at a possible set of pseudo-code for this same
program:

PROGRAM: Area

Initialize all variables
Clear the Screen
While still Pprocessing:
GOSUB Display Promet
PRINT "ENTER LENGTH AND WIDTH"
RETURN
GOSUB Read A Record
READ LW
RETURN
GOSUB Calculation
GOSUB Termination ChecK
Test for L=0 and W=0
RETURN
If end conditions RETURN
GOSUB Error ChecK
Test for L=0 or W=0
If sos» display error messade
RETURN
If error conditions RETURN
Calculate A = LxW
GOSUB Display Results

PRINT "AREA =" j}A
If L=W PRINT "THIS IS A SQUARE"
RETURN
RETURN

End While (Still Processing,)
Termination Processing,

As you can see, this is almost written in BASIC. It is clear that this
was developed near the end of the development cycle since there
is so much detail involved. Notice the indentations that allow the
reader to immediately follow the logic. It makes clear what is hap-
_____pening in each routine. This is the same concept as the indentation
we discussed earlier when talking about how a BASIC program should
look from a purely physical standpoint.

3-31

Actually, this is more detailed than most pseudo-code should
ever need to be. Also, it quickly becomes obvious that this trivial
program should not need to be written in a manner that requires so
much program overhead. By that we mean the structured approach
has some program size limitations below which it costs more to use
than it could ever return. One of the chief task that remains for the
programmer is the need to be able to tell which program needs
which development technique. This is why we said earlier that you
could still retain your own personal artistic freedom in the devel-
opment of programs while increasing your own productivity!

You may have noticed that we keep coming back to this idea of
making a personal statement. Why? Because each programmer will
bring a particular background, a particular understanding to the
solution of a problem. It's that uniqueness that makes this field so
interesting. We each have our own perception of the “correct”
approach to writing a program to meet a particular need. No two of
us will ever write a program in exactly the same way (with the pos-
sible exception of some very trivial programs).

Let's get back to pseudo-code and take a look at the ways in
which it can be used. We've seen that we can make a fairly detailed
description of a program using this technique, and we said that it
can be used during the program design cycle. Let's see if we can
follow a simple example through the design stages and see the way
in which pseudo-code has helped us develop the program. For the
sake of simplicity we'll be using our standard example of the AREA
calculation program. Our first iteration (iteration means to make a
pass through some cyclic process, an iterative process is one that
requires many passes to complete) will be at a very high level. It
might look like this:

PROGRAM: Area
Initialize
While still processings:
Display Prompt
Read A Record
Calculation
Display Results
End While (Still Processing,)
Termination Processing,

As you can see, this retains the structural requirements of the pro-
gram while not containing a large amount of detail. This is a rea-
sonably good first pass at designing the program. While we could
write the program from this data we might miss something. There's
no mention of the termination condition or of any special checks for
errors or a square. While not terribly significant for this small, aimost
trivial, program it could be important for a larger, more complex
program.

Let's continue with the evolution of this program and see if we
can’t determine the next stage or iteration. Adding the checks we've
just mentioned ought to add just the right amount of detail. It might
the look like:

PROGRAM: Area
Initialize
While still Processing:
Diseplay Prompt
Read A Record
Calculation
Termination Check
Test for L=0 and H=0
RETURN
If end conditions» RETURN
Error Check
Test for L=0 or W=0
If sos display error messade
RETURN
If error conditions RETURN
Calculate A=LxMH
Display Results
If L=W PRINT "THIS IS5 A SQUARE"
RETURN
RETURN
End While (Still Processing.,)
Termination Processindg.

This has now become fairly detailed, merely by adding the special

checks for the termination condition and for a square. Of course, if

another iteration is required we would then arrive at the example
given when we first introduced this concept.

3-33

Now that we’ve done this for a small program, let's do it for our
major program. We've already laid out the requirements for the
checkbook program so we can quickly build a minimal level of detail
in pseudo-code. We can also build a hierarchy chart which may help
us to determine just exactly how we want to structure our program.

While we’re talking about structure, let's bring out another very

important point. We've mentioned the two schools regarding place-

ment of subroutines while not taking a stand on el‘ther And yet there
seems to be an implicit approval given to the idea of placing sub-
routines last since that’s where they wind up in a hierarchy chart.
Actually, for most BASIC interpreters it makes sense from a perfor-
mance standpoint to place the subroutines first (since most of them
start scanning from the beginning of the program to find a line num-
ber reference). We will allow you to decide where you want to place
them, and please don’t assume that any recommendation is implied
by the use of hierarchy charts or any other tool. Now, let's get on
with our pseudo-code for the checkbook program. Our first pass
might look something like this:

PROGRAM: ChecKbooK
Initialization
While processing data
Prompt for data
Validate data
Process
Post a ChecK
Write a ChecK
Print Account Statements
End Process
End (while Processing data)
Termination routines

This rather simple set of statements contains most of the necessary
routines for the program, at least there is a statement for each.
Addtionally, there is a lot of room for growth! As we go through the
iterative process of evolving our program design, we'll be adding
more and more detail to this.

Once we've got the basic logic down, we can then begin by
expanding to the next leve! of the hierarchy. At the level below the

NOi140 139 ANIW 3HL AVIdSIO

(SLINIWALYLS 3HL VYO NOULYBVdIYd XDV INILNOY 3LY0dN INLACH
1nid ININFLYIS 139 1NIEd ¥ 1VWHO4 480 NOWWOD V1VO 139 NOWWOD

I |

SINIWALYLS
3NILNOY YOUYE3 JHvdIdd HIIHI ¥ INIHd NI3HI ¥V 1504 INUNOY NI

3-35

(a8
3NUNoY 3NLLNOY mﬂmm_e__mc«wu‘_mmomv
NOUVNINGAL §53008d NIVW NOILVZITVLLING

3NINIVIH

Figure 7-2. CHECKBOOK Program Hierarchy Chart

major routines, we will have a moie detaile
k4 on

a i
fired
first lovel nlus some information abot

3 CL
[74)
-

13
Ee LRy vvvu L

line about the third level. This increasing amount of detall continues
until we arrive at a final product. The final product should allow us
to completely write the program without spending any time deciding
how the program should be constructed. In fact, once we've reached
this stage the rest of the program development (the coding) could
almost become a purely mechanical task!

If we go on to the next level of detail, we might wind up with
pseudo-code on the order of:

PROGRAM: ChecKbook
Initialization
Initialize variables
Oren all files
While processing data
Prompt for data
Validate data
Is this a valid option?
Process (based on option)
Get required data
Yalidate data (based upon option)
Post a Check
Write a ChecK
Print Account Statements
End Process
End (while processing data)
Termination routines
Display any final messades
Close files

As you can see, we've added logic for selecting routines to be used
in the main processing area, as well as getting data for both option
selected and the data needed for each of these routines. We won't
go much further in developing this now. Instead, we’'ll take a look at
the hierarchy chart that might be associated with this program at
this stage.

It's easy to see that there are four levels of hierarchy reflected
in the chart. Looking back at the pseudo-code and counting the
levels of indentation we find (Surprise! Surprise!) four levels of

indentation. How about that! There really is a correlation between
the pseudo-code and the hierarchy chart that is readily apparent.
While we are looking at this revelation (which you probably guessed
would hold true) we ought to make one other observation. The for-
mat of the hierarchy chart and the pseudo-code both reflect an
arbitrary first level, one called PROGRAM which corresponds to
MAINLINE in the chart. This is merely a convention that aillows
lower-level structure. it isn't really a level by itself, but may be con-
sidered a box into which the program can be placed.

By the way, you may recall that we mentioned a charting tech-
nique called HIPO in the last chapter. Well, the hierarchy chart that
we've been using is actually based upon that charting technique.
Remember, HIPO stands for Hierarchy plus Input, Process, Output.
We haven't really looked at the IPO part of HIPO nor shall we. The
reason is that it isn’t essential to the discussion. That's more of a
documentation tool than it is a design tool even though it has been
used for design, and is promoted as a design aid.

One idea that needs to be stressed, and perhaps should be
written on every computer terminal and CRT is that programs must
be properly designed before they can be properly coded. That seems
like an obvious statement, and yet time and again it has been over-
looked. Programs have been developed without any real or formal
attempt at designing it first. Now that we've examined some of the
design techniques and seen that they can be useful (if somewhat
time consuming), we can understand that there is a trade-off. Beyond
a certain point excess time spent in design is not going to be prof-
itable. On the other hand, not spending enough time in design may
result in excess time being spent in the coding and debugging stages
of the program development cycle.

e i
(f ’53 = ("IDEFINED
BEVORE
Ny £S ST

P . MrENN.

Ll

©

'l .

(™

R

1
P =

-

-

3-37

o il P P Il

s not an imaginary thing
by writars of honlke and maaasine articles desioned to confue

VW R LD W W eI ul AW B I CAY LIV LN I G W s el § W e
- b b= y

programmers (or their management). If we look at the way in which
program development has grown from an infant “science” to the
present day state, we can see some good and a lot of bad that has
gotten us to where we are. If any other function had produced as
many unhappy users, as much rubbish, and as many errors as has
the programming function, it would have long since been discarded.
As it is, we survive as an entity because there is: (1) a need for us
and (2) we have our own machines!

However, neither of these two reasons are valid excuses. We
need to be aware that our skills can be sharpened by using a more
scientific approach to program development, and that's the purpose
of the material we’ve covered so far. As we continue in the book,
we will be looking at ways to apply the design ideas that we've picked
up. We'll be taking the design critera for our checkbook program
and actually coding the program. We'll code it using both the “flow-
through” or straight line method of coding as well as the structured
“top-down” approach. This contrast should allow you to get a better
feel for the two approaches, and decide with which you feel most
comfortable.

We've talked about the possible impacts of poor design on the
end product. Let’s stop for a moment and explain what happens to
the design/coding cycle as a result of poor design. We can begin by
assuming that we have a rough idea of the program content and its
functions; so we begin coding. As we encounter difficulties in coding
a particular routine we may have to stop and rewrite some code to
make it fit better. Or perhaps we may have to stop to duplicate some
code changing some variable names because we didn’t think that a
given routine might be needed more than once. That’s twice the
number of routines to be debugged for each routine that is dupli-
cated; twice the number of chances for errors to creep in.

Once the program is coded, we start testing and find that it
doesn’t quite work the way we want it to, so we go back and make
a few changes. They work, but now some bugs appeared in other
areas of the program. Strange, those changes couldn’t have caused
that problem. Back to the coding stage, let's get that bug! More
coding and that bug goes away but now there's a new bug. Gotta
rewrite a routine to eliminate that bug, but that affects the routine
interfacing logic so there’s still more changes.

o

p-
&
D
3

| think you get the point. As a wise man once said, if a thing's
worth doing, it's worth doing well. From our standpoint that could be
interpreted as saying that we ought to only code the program once;
after we've designed the program, not before.

Let's make a few final points on program design as we close
out this section on design. We've presented three techniques that
you can use — flowcharts, pseudo-code and hierarchy charts. Of
these techniques, flowcharting is the oldest and least effective way
of designing programs in the “modern” style. By that we mean that
flowcharts will reflect the flow-through style of programming by
showing the flow of instructions while not indicating any program
structure other than, possibly, modules.

There is nothing wrong with this if you plan on utilizing the
modular coding techniques. If, however, you are planning on using
the newer structured techniques you might want to consider using
the hierarchy chart and pseudo-code. These two techniques work
well together and allow a rapid and (almost) painless way of design-
ing a program. One advantage here is that the structure of the
program is made obvious from the design tools used, either through
the indentation of the pseudo-code or through the levels which are
so visable in the hierarchy chart.

Unfortunately, none of these techniques will guarantee you a
good working program. They are nothing more than tools of the
trade. For a writer one of the tools that is available is the “typewriter”
which is used to produce an end product, words. This tool has a
learning curve associated with it because of the need to be able to
touch type. Obviously, the tool may be used by someone that doesn’t

know how to touch type (I don't) but it may be less efficient. | learned
my own style of typing and can type better than 65 words per minute

once | get warmed up, but | make more mistakes while I'm getting
warmed up. The key here is that we must learn to use the tools we
have. We may not use them the way they're iniended io be used
(such as using pliers as a hammer) but we can get the job done.
The better we use the tools the better the job (pliers may bend the
nail).

These techniques were formulated as ways to allow the pro-
grammer fo maximize his efioris, that is, to get the most out of the
effort put into developing a program. | mentioned at the beginning
of this book that these were technigues that the really good pro-
grammers used all the time, and we were simply getting the benefit
of people that had observed the good programmers and written
down what it was that they did. What | omitted (and they did too) is
that really good programmers don't just jump in. They take their time
and make sure they know where they're going. They get the “road
maps” that allow them to know the route they are to take. They know
what the user expects the final product to do, and so they work
toward that as a goal. They don't mistake getting a program up and
running as a goal, it isn’t. The goal must always be to provide what
the user wants.

We discussed the user before, but each of us is a user. We
write programs that we want to use. If we are doing this so we can
market the end result, we do a market study to determine what the
market wants, and then the “market” becomes the user. In all cases
we need to produce a product that will make the user happy. If we're
the user, we don’t want to spend all of our time rewriting the program
to do what we want (we won’t be happy doing that). If the end user
is a customer, we want a user that's so happy that others will come
and purchase our product. We all like money, right? By now we've
all gotten the message. We design the program, we code the pro-
gram, and we enjoy the fruits of our labors. With any luck, that's
exactly the way it will work. All we have to do is follow the guidelines
set out for us by the experts in the field. Not because they're experts
(which, by the way, comes from the Latin “ex” meaning “out of” and
“spurt” meaning “a drip under pressure”), but because they're right!

3-40

Section 4 — Coding the Program

We've now reached the point in our program development cycle
where we will actually start coding the program. In this section we
will take a look at two of the more popular coding schemes. In
Chapter 8 we’'ll be looking at modular coding techniques. This will
allow us to immediately remove ourselves from some of the very
early coding styles which were less conducive to effective program
development.

in Chapter 9 we'll be looking at ways to take larger programs
and use the most popular of the current program coding schemes
(structured programming). We'll remain somewhat neutral in our
observations regarding both of these schemes as well as the current
great argument regarding the presence or absence of the verb
“‘GOTO”

Throughout this section we’'ll actually be writing our checkbook
program. To make the comparison of these two development tech-
niques more objective, we'll actually write the same program utilizing
both techniques. That should allow us to be able to decide which
technique is more appropriate for our own particular needs and
desires.

CHAPTER 8

Modular Coding Techniques

The term modular calls to mind all kinds of nicely packaged
ideas. In fact, that's exactly what we're looking for — nice packages!
We've used the term modular to refer to prefabricated houses (mod-
ular housing), to truck bodies placed on trains for long distance
shipping (modular shipment units), and so on. In each case we're
looking at the idea of a closed, self-contained unit.

When we speak of modular coding we're also talking about a
self-contained unit. This unit is, however, made up of lines of pro-
gram text or code. In Chapter 4 we introduced the idea of a function
saying that a function was the same as a routine and a routine was
the implementation of an idea. What that boils down to in the current

context is that a module is a routine. This is a nice, convienient
quantum or unit of code.

Now, if we can define units of code that can be structured as
modules, what more is there? Actually, being able to break the code
into modules is only a small part of the task. We must also be able
to interface these modules correctly. Let's take a simple example, a
modular stereo system. If we have a tuner, turntable, amplifier, and
tape deck, we have four units which must be interfaced. The tuner,
turntable, and tape deck need to be interfaced with the amplifier.
The amplifier, in turn, needs to be interfaced with speakers.

The interfacing requires that we have the correct kind of plugs
on the end of the cables. If we have DIN plugs on everything but
the amplifier, and the amplifier expects phono plugs we have a prob-
lem — it ain’t gonna fit! If our amplifer produces 250 watts of output
power we know that it was designed to be fed into low-efficiency
speakers (or else it would blow the windows out of our house). If
we only have high-efficiency speakers we have another kind of prob-
lem — we'll blow the speakers apart if we run the volume too high!

Interfacing is critical! We must make sure that we can properly
communicate with each module. If we have a Frenchman and a
German speaking to each other in their own native languages, we
have a cacophony (a raucous noise), but not a dialogue (unless they
both understand the other’s language). Again we see that correctly
communicating is a function of proper interfacing.

| Sie HAT ETVAS }f{ Zes vieoxevs” |
| KikAiren ! agp” =t \ @0\ envouorarr]

The idea of modular code is really great, but there are all kinds
of requirements that must be met. Modular coding was designed to
allow large programs to be written by many different programmers,
each responsible for a certain number of modules. This required
that each module have a defined interface, a list of the data that
was required to correctly use the module. When this information
was either incorrect or, more commonly, ignored by the program-
mers, there occurred a large number of programming errors. The
program didn’t work as designed.

In spite of the fact that we're now at the coding section of the
program, we're still talking about the design of the program. This
discussion is still applicable here since design can, and should,
continue during the coding cycle. Specifically the design that has
taken place so far has always been at an increasingly greater level
of detail until the time when we have enough to begin coding. At the
start of the coding cycle we should have enough information to
decide on the modules that will be in the program as well as the

______interfaces to these modules. This is the kind of design we're now

talking about, and it is properly considered as part of the coding
cycle.

-

L 4

A%

v cHoe
; SHOULDER

Before we actually get into writing our checkbook program let’s
talk about some of the principles of modular coding. We'll be dis-
cussing the way one actually implements a program using modular
techniques so that it will make the examples that we'll be using later

on clearer. If we decided to use either the hierarchy chart or the
pseudo-code, we will aiready have the basic modular structure that
is needed. With flowcharts, we will have some very large modules.
We'll take a look at how we’'d use flowcharts first.

At each dividing point in a flowchart we will wind up with a
CONNECTOR (the circle) that will set off certain parts of the flow-
chart from other parts. We can use these as the delimiters (things
that set off or mark the boundries) of a module. in some cases this
will result in fairly large modules, but if the entire block of code seems
to be related by performing the same function, that's all right. If there
seems to be more than one function included in this block of code,
then try breaking it up by logical function. Actually, we're looking for
logical groupings which can be considered as functions or routines.
If we can successfully break the flowchart up into these separate
routines we’ll be well on our way to writing a modular program.

This process should be fairly easy for the special condition and
error routines. They're already pretty well broken up by virtue of the
fact that we jump out of the main line of code to get to them. Of
course, there is still a CONNECTOR symbol at the top. By the way,
the bottom of a routine may be indicated either by the presence of
another CONNECTOR or by a TERMINATOR. Normally either of
these would indicate a break in the logical structure. Since there is
an exception to every rule, let’s get it out of the way as quickly as
we can. Sometimes we may draw a flowchart that has some code
which we jump around because of some data dependent conditions.

This may require the use of a CONNECTOR, but should notindicate
the end of module. A better way to represent this condition is to draw

the code that will be executed as a result of the compare (or what-
ever it is) directly in line and connect the other leg of the compare
(or whatever) directly to where it re-enters to main stream of the
code. This will eliminate an unnecessary CONNECTOR as well as
keeping the flowchart neater and easier to read. It will also mean
that the flowchart is a better representation of the program!

If you chose to use the hierarchy chart the logical modular breaks
are automaticaily shown. They wili correspond to ihe various biocks
on the chart — very straight forward and easy to visualize! With
pseudo-code there is also an explicit grouping of code that will form
a given module. This grouping will require some care since there is
always a tendency to take more than should be placed in a module.
The basic rule here is that each level of indentation forms a module.
The exceptions to this are, unfortunately, numerous. First, let's make
sure we understand the intial statement. We take any given level of
indentation and that forms the module. We do not take the material
at a lower level just because it is between two areas with the same
indentation. For example, look at the rather simple pseudo-code
structure below, it contains only letters. These letters represent the
module into which the code will be placed.

As can be seen, there are three statements that will go into module
“B,” two that go into module “C,” and one dummy module called “A”

This sort of structure can also lead to grabbing oo much mate-
rial at any given level. For example, the “B” level in the chart above
is going to be quite popular for a lot of material, but not al/ of that
material belongs in one module. We have to be very selective in
determining if it all fits into the same logical routine. If it doesn't then
it should be placed into a different module (but at the same level of
hierarchy). This is where the flowchart and the hierarchy chart have
a clear-cut advantage over the pseudo-code.

Of course, any discussion of this nature is only academic. Since
the design process will probably bring out the identities of the mod-

ules quite clearly, there should not be any difficulty in building mod-
ules appropriately! Right?

We've discussed a “dummy module” a number of times. Just
what the heck is this dummy module, and how do you go about
coding it? To make life simple we’'ll consider the dummy module to
be the variable definitions — the DIM and other related statements.
This will not hold true for languages other than BASIC but it'll work
just fine for us for right now! Actually, as we mentioned earlier, the
dummy module really doesn't exist, it's just there so that we can
have an arbitrary “level 0” or beginning for our pseudo-code or
hierarchy chart. We don’t need it for a flowchart.

Now that we've all absorbed this theoretical material, let's get
on with the nitty-gritty. We'll actually begin coding the program!

“Well, where do we begin? This book was supposed to tell us
how to write a program and we don’t even know where to begin!”

Hey! Foul! We've already begun. We began when we did the
program design. Now we’re merely going to take that design and
implement it in a programming language. The first thing that we
should do is to establish a set of variables. Each set has a different
function. For example, we need loop control variables, data varia-
bles, special purpose variables, and so on. For the sake of my pro-
gramming roots (which are located in FORTRAN) | always use the
variables “I” through “N” for loop control. Variables “Ix” throught
“Nx” are not reserved for this purpose, and may be used in other
ways.

Again, the reason for reserving these variables and defining
them up-front is to eliminate any guessing that might take place later
on during the coding stage — have | used that variable already? We
want to plan the code as carefully as we planned the program, and
this is another reflection of that planning.

Let's restate the functional blocks of code that we've decided
we will be needing. First we have the INITIALIZATION routines
(establish dimensions, open files, load inital data, and so on). We'll
need a MENU routine that displays the various options available to
the user and validates his response. The actual processing routines
that are needed are the POST routine to post manually written checks,
the WRITE routine used for computer generated checks, the STATE-

— MENT routine which will produce the check register statements.

Now, since we’ve carefully designed the program, we know that

these are the only routines needed, right? Wrong! As usual, the

-

¥

A
v

writer (me) has kepi some seciets which we'll oW con sider.
nesd a way to set up the a""c""ts in the first place, or as new
accounts are added to the program. Remember, the program can
process up to five accounts in our initial implementation. So, we
need a routine called SETUP. Any more? Yup! We need a way to
make a DEPOSIT to the account, and a way to PURGE the data
from the Check Register File. The END routine should also make
sure that the CRF is updated as a result of any changes made during
the processing cycle.

Now aie there any more? No, that's everything (| think). Actually,
we'll see if we've thought of everything as we go along. Design
oversights usually come up during testing, that's when the user gets
to see what's being made available so that he can verify whether or
not it will meet his requirements (and his sometimes unstated needs).

Let's begin the coding, then, with the INITIALIZATION routines.
Here’s what might be needed:

¢

g

10 REM CHECKBOOK PROGRAM
20 REM This pProdram will Process multiple accounts (w
ith the limit currently set to 5).

30 REM

40 CLEAR 4000 ‘RESERVE STRING SPACE

50 DEFDBL A

60 MN=150 'CHECKS PER MONTH

70 MA=S ‘MAX ACCOUNTS

80 DIM CR$(MNMA) sAB{MA) sAN(MA) ‘ChK Redg, Acct., Bal.
Acct #

90 DIM CN(MA) sNU$(25) »MO$(12) ‘CHK NOS, AMOUNTS s MO
NTHS

100 REM =~ mmm e e et e e

110 REM OPEN FILES:» PROCESS DATE

120 REM

130 CLS

140 T4="CHEKBOOK -- A CHECK ACCOUNTING PROGRAM"

150 PRINT TAB(32-(LEN(T®$)/2))T%

160 PRINT : PRINT "SYSTEM INITIALIZATION IN PROCESS, P
LEASE HWAIT"

170 ON ERROR GOTO 250

180 DPEN "I",1,"CRF/DAT" : ON ERROR GOTO ©

190 FOR I=1 TO MA : INPUT #1,AN(I) : NEXT I

200 FOR I=1 TO MA INPUT #1+AB(I) : NEXT I

210 FOR I=1 TO MA INPUT #1,CN(I) : NEXT I

220 IF EOF(1) CLOSE : GOTO 300

230 INPUT #1,I,J : LINE INPUT #1,CR$(I,J)

240 GOTO 220

250 PRINT "ERROR, CHECK REGISTER FILE NOT FOUND. FILE
WILL BE CREARTED!"

260 PRINT "HIT ENTER TO CONTINUE"

270 A$=INKEY$: IF A%$="" GOTO 270 ELSE IF ASC(A%$)<>13
GOTO 270

280 RESUME 2890

290 ON ERROR GOTO O

300 DT$=LEFT$(TIME%,8) : GOSUB 2510

310 IF VAL(DT$)<>0 GOTO 340

320 LINE INPUT "ENTER TODAY'’S DATE (MM/DD/YY): "iDT%

330 GOTO 310

As we can see, lines 10 through 330 take care of most of the ini-
tialization logic. We do have a GOSUB 2510 which loads some
special values used in printing checks which we’ll talk about in a
moment. So far, everything is fairly straight-forward. We should note

that this program will work for both disk and cassette based systems

since the CRF (Check Register File) is not updated directly. The

data is read into the various arrays during initialization and will be
rewritten-atthe-end-of the programras partof the terminationroutine.
If you are using a cassette based system, replace the “INPUT #1”
statements with “INPUT #-1.

The MENU routine is another very simpie piece of code inai
displays a menu similar 1o that described in Chapter 5. All of the
main options (program functions) should be displayed so that the
user can select the main option he wants. If there are other, lower
options, they should be selected from a different menu screen. Here's

this routine:

340 REM ~cmemmm e e e e e
350 REM DISPLAY MENU, GET & VALIDATE OPTIONS

360 REM

370 CLS

380 PRINT STRING$(24,"-")" CHEKBOOK MENU "STRING$(25,"
_II)

390 PRINT

400 PRINT " 1 -- POST POST A HAND WRITTEN CH
ECK"

410 PRINT " 2 -- WRITE WRITE A CHECK"

420 PRINT " 3 -- STATEMENT GENERATE THE CHECK STA
TEMENTS"

430 PRINT * 4 -- SETUP SETUP A NEW ACCOUNT®

440 PRINT * 5 -- DEPOSIT POST A DEPOSIT TO ACCO
UNT"

450 PRINT * 6 -- PURGE PURGE CURRENT MONTH'S
CRF "

460 PRINT " 7 -- END TERMINATE THE PROGRAM"

470 PRINTE 182,LEFT$(TIME$.8)3

480 PRINTE 246,RIGHT$(TIMES$:8)3

490 PRINTE G64,"SELECT OPTION ===> "iCHR$(14)]}

500 A%=INKEY$: IF A%$="" GOTO 500

510 PRINT A%$3CHR$(15)35 : OP=VAL(A%)

520 IF OP>=1 AND OP<=7 GOTO 550

530 PRINT® 50,"INVALID OPTION";

540 GOTO 490

550 ON OP GOSUB 940, 1240, 1300, 1860, 2070, 2810, 227
0

560 GOTO 370

Lines 340 through 560 form the menu routine. Note that the variable
used to read the option (OP) is more or less meaningful (within the
constraints of BASIC). This convention is used to make it easier to
remember the variables that are being used throughout the pro-
gram. We'll see why this is important later.

Our next block of code that we'll be writing, just for the heck of
it, is one we haven't discussed directly. if we stop and think about
it, just for a moment, we’'ll quickly realize that it makes sense. The
routine we're talking about is a common routine used to get the
information for writing checks. That makes sense. We have two
different routines (POST and WRITE) that need basically the same
information so rather than write two separate routines we can write
one common routine that meets the needs of both. We can test
some variable to see which routine invoked us, and that can be used

o make the decision on the various pieces of data thatwe'llmeed.—
Since it takes longer to talk about it than to write it, here it is:

570
280
580
600
610
620

640
650
660
670
680
690
700
710
720
730
740
750
780

COMMON CHECK
DATA INPUT
\ ROUTINE

REM COMMON CHECK DATA INPUT ROUTINE
REM

PRINTE 128,CHR%(31)

PRINTE@ 128,""5

CD$(1)=" ACCOUNT: "+STRING$(15,CHR$(85))
Chs(2)=" WRITTEN TO: "+STRING$(25,CHR%$(95))
CD%(3)=" CHECK AMOUNT: $"+STRING®(7,;CHR$(95))
CD$¢4)=" NOTES: "+STRING$(25,CHR$(95))
DX$=GTRING$ (2 sCHRE(95)) : DX$=DX$+"/"+DX$+"/"+DX$
CDs(5)=" DATE WRITTEN: "+DX%

CDs(B)=" CHECK NUMBER: "+5TRING$(7:CHR$(95))
CN=-1

FOR I=1 TO 4 : PRINT CD%$(I) : NEXT I

IF CC=1 PRINT CD%${(5) : PRINT CD%(B)

PRINTE 142,CHR$(14)3F : GOSUB B4O : AC=VAL(IX$)
PRINT@ 209,CHR%(14)35 : GDSUB B40 : WT$=IX$
PRINTE 276, CHR$(14)5 : GOSUB 840 : AM=VAL(IX$)
PRINTE 332,CHR%$(14)5 : GOSUB BA40 : NT$=IX%

IF CC<>1 GOTO 800

770 PRINTE 403:CHR$(14)3 GOSUB 840 : DU$=IX$
780 PRINTE 487:CHR$(14)3 GOSUB 840 : CN=VAL(IX$)
800 PRINTE 512,""35 : INPUT "IS THIS CORRECT"iAN%
810 IF AN$="ND" OR AN&="N" GOTO GOO

820 IF ANS<>"YES" AND AN%<>"Y" GOTO 800

830 PRINTE@ 512,CHR$(31)3 : RETURN

8B40 IX$="" : A$=INKEY$
850 A%=INKEY$: IF A%$="" GOTO 850 ELSE IF ABC(A%$)<>13
PRINT A%3

860 IF ASC(A%$)>31 THEN IX$=IX$+A$: GOTO 8350

870 IF ASC(A%$)=8 THEN IF LEN(IX$)>0 THEN IX$=LEFT$(IX$
+LEN(IX$)-1) = GOTO 850

880 IF ASC(A%)=24 PRINT * "3 : FOR I=1 TO LEN(IX%) : P
RINT CHR$(B)3 : NEXT I : IX$="" 3 GOTO 830

890 IF ASC(A$)=13 PRINT CHR$(15)§ : RETURN

900 GOTO 850

The code between lines 570 and 900 takes care of getting the com-
mon information; the account number (for posting purposes), to whom
the check was written (also called the PAYEE), the amount of the
check, any notes or comments about the check. Some optional data
are the date written and the check number (used by the POST rou-
tine).

Since we've just developed the routine to handle the common
check input routine, let's go ahead and write the POST and WRITE
routines. We'll write the POST routine first since we can then use
some of the code in the POST routine for the WRITE routine. Spe-
cifically, we can use all of the routines that find the entries for the
appropriate account, create the entries for the check register file as

well as the routine that adjusts the balance of the account. So,
without further ado, here’s the POST routine:

4-13

910
920
930
840
850
960

870
2980
890

REM POST A HAND WRITTEN CHECK HERE

REM

IF AN(1)=0 GOSUB 1860

CLSs

PRINT STRING$(20,"-")" CHECK POSTING ROUTINE " STR

ING$(21,"-")

CC=1 : GOSUB BOO

FOR I=1 TO MA : IF AC=AN(I) GOTOD 1020 ELSE NEXT I
PRINT "ERROR: ACCOUNT NOT FOUND. RE-ENTER."

1000 INPUT "ACCOUNT NUMBER"3IAC

i0io

G070 8890

4-14

1020 FOR J=1 TO MN : IF CR#%(J,I)="" GOTO 1050 ELSE NEX
T J

1030 PRINT "ERROR: CHECK REGISTER IS FULL. HIT ENTER T
DO CONTINUE."

1040 GOTO 1180

1050 CR$(JsI)=UT$+CHR$(255)+STR$(AM) +CHR$ (255) +NT$+CHR
$(255)

1060 IF DW$<>"" CR$(JI1)=CR%(JsI)+DW$ ELSE CR$(J»I)=CR
$(J+I)+LEFT$(TIMES +8)

1070 IF CC<>0 GOTO 1130

1080 IF (AB(I)-AM)>=0 GOTO 1130 ELSE PRINT "BALANCE MWI
LL GO NEGATIVE."

1090 INPUT "WRITE CHECK ANYWAY"3iAN$

1100 IF AN$="YES" OR AN$="Y" GOTO 1130

1110 IF AN$="NO" OR AN$="“N" CR$(J,I)="" : RETURN

1120 GOTO 1090

1130 AB(I)=AB(I)-AN

1140 IF CN=-1 THEN CN=CN(I) : CN(I)=CN(I)+1

1150 CR$(J»I)=STR$(CN)+CHR$(255)+CR$(JyI)

1160 IF AB(I)<O0 PRINT "BALANCE IS NOW NEGATIVE."

1170 IF OP<>1 RETURN

1180 PRINT "ACCOUNT POSTED. HIT ENTER TO CONTINUE."

11890 A$=INKEY$: IF A$="" GOTO 1180 ELSE IF ASC(A%$)<>1
3 GOTO 1180

1200 RETURN

As is readilly seen, lines 910 through 1200 are more complicated
than any we've used so far. Line 1050 deserves some special atten-
tion. Here we are concatenating (computerized glueing together)
several strings of characters into a single character string. Each of
the separate strings is delineated with a CHR$(255). This flag will
be used to break the string apart for later processing. For now, it
keeps everything about a check in a single entry that is easily decoded.

Attention should also be given to the technique used to find the
account number (line 980). Here we have an example of jumping
out of a FOR...NEXT look without completing the loop. This is nor-
mally bad coding technique. The reason we use it here is that we
will not return to that loop once we've broken out of it. If we find what
we're looking for, great! The variables are all set correctly and that's
all that's needed. If we don't find the account number, we can then
tell the user so that he can establish the account or supply the
correct account number.

Now that the POST routine is in place it's a relatively easy task
to write the WRITE routine. We simply call the POST routine after

calling the common data inputroutine. We also needto use aspecial
routine to format the check and print it. The thing that makes it

cial is the conversion of numbers to words. In short, we must

a value like “$1253. 22" come out as “ONE THOUSAND TWO
HUNDRED FIFTY-THREE AND 22/100's” on the check. That may
sound difficult, but it really isn't! Here then is the WRITE routine in

it's simplest form:

opo

[WRITE-A-
CHECK.

1210 REM —ccmmmmm e mm e e

1220 REM WRITE A CHECK ROUTINE

1230 REM

1240 IF AN(1)=0 GOSUB 1880

1250 CLS

1260 PRINT STRING$(20,"-")" CHECK WRITING ROUTINE "STR
ING$ (21 ,"-"

1270 CC=0 : GOSUB 600 : GOSUB 980

1280 IF AN$<>"N" AND AN$<>"NO" GOSUB 2550

1290 RETURN

There really isn’t much to it, is there? Only nine lines (three of which
are REMarks). Fortunately all of the hard work is being performed
in other routines. That's the reason there are three GOSUB state-
ments. We'll look at the check formatting routine in a little while so
just be patient!

Since we've now been able to write checks as well as post hand
written checks, we should be able to print the check register. In order
to do that we need to write the STATEMENT routine! See how easy
that is? Anyway, here it is:

i300
1310
i320
1330
1340

1350
1360

1370

1380

1380
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1530
1560
1370
1580
1590
1800
ig10
1620
1630
1840
16850
1660
16870
1680
1690
1700
1710
1720
1730

1740
1750
i760

REM PRINT CHECK REGISTER

CLS

PRINT STRING$(21,"-")" PRINT CHECK REGISTER "STRI
NGS(Z21,"-")

PRINT

HD$="CHK # TO WHOM WRITTEN AMOUNT NO
TES DATE"

Fé=taasus 72 Thae uun, 48 7
% "

Dg=" 9 b yuun, 88 %
z % s

INPUT "FOR ALL ACCOUNTS" 5ANS

IF AN$="YES" OR AN$="Y" GOTO 1460

IF AN$<>"NO" AND ANs<>"N" GOTO 1390

INPUT "ACCOUNT"3SAC

FOR I=1 TO MA : IF ANC(I)=AC GOTD 1470 ELSE NEXT I

PRINT "ERROR: ACCOUNT NOT FOUND., RE-ENTER."
GOTO 1420

I=1

LPRINT "ACCOUNT NUMBER: "ANC(I)ITAB(D59)S3

LPRINT "REPORT DATE: "SLEFT$(TIME$.8)
LPRINT " "

LPRINT "CHECK REGISTER:"

LPRINT " *

LPRINT HD$

LPRINT ®* "

CA=0 : DP=0

J=1

IF CR$(J,I)="" GOTO 1720

CR$=CR$(JyI)

FOR K=1 TOD 4
L=INSTR(CR% CHR$(255))
PT$(K)=LEFT$(CR%sL-1)
CR$=RIGHT$(CR$ +LEN(CR%)-L)

NEXT K

CN=VAL(PT$(1))

AM=VAL(PT$(3))

IF CN>=0 THEN CA=CA+AM : GOTO 1690

LPRINT USING D$3PT$(2)AMsPTS(4) +CR%

DP=DP+AM

GOTO 1700

LPRINT USING F$3CNsPT$(2) 1AM PTS(4) ,CR%

J=Jd+1

GOTO 1560

LPRINT " *

LPRINT USING "BEGINNING BALANCE: Sun e, a8
AB(I)+CA-DP

LPRINT USING "DEPOSITS: $un uus,we"5DP
LPRINT USING "TOTAL CHECKS: $uun nun,w8"iCA
LPRINT USING "CURRENT BALANCE: Sauunn, w8
AB(I)

4-18

1770 IF AN%$="NO" OR AN$="N" GOTO 1820

1780 I=1I+1

1790 LPRINT " *

1800 LPRINT " *

1810 IF I<KMA AND AN(I)<>0 GOTO 1470

1820 IF OP<>3 RETURN

1830 PRINT "HIT ENTER TO CONTINUE"

1840 A%=INKEY$: IF A%="" GOTD 1840 ELSE IF ASC(A%$)<>1
3 GOTO 1840

1850 RETURN

The STATEMENT routine, which occupies lines 1300 to 1850, is by
far the longest routine we’ve written so far. The reason is that it does
more than any of the others! it must break the CRF entries apart
(lines 1570 through 1620) as well as setting up the various print
formats and so on. As is easily seen, however, the routine is not at
all complex, it just takes more lines of code than the others. So far
we’ve been able to test the program functions as we've added them,
but we haven’t been able to set up any accounts. That's for a reason.
We've been testing the error handling routines. Here then is the
routine used to set-up and account. It's short and to the point.

1860
1870
1880
1890
1900

1910
1920
1930
iv4ao
1850
1960

1870

1880
1890
2000
2010

2020

2030

B EM e e e e e e e

—

REM SET-UP AN ACCOUNT

REM

CLS

PRINT STRING%(20,"-")" ACCOUNT SET-UP ROUTINE "ST
RING$ (20,"-")

PRINT

IF AN(1)=0 PRINT "NO ACCOUNTS SET-UP YET."

PRINT

FOR I=1 TO MA : IF ANC(I)=0 GOTO 18970 ELSE NEXT I
PRINT "ERROR, ACCOUNT REGISTER FULL"

RETURN

INPUT "ACCOUNT NUMDER"FAN(I)

INPUT "STARTING ACCOUNT BALANCE"JAB(I)

INPUT "NEXT CHECK NUMBER FOR THIS ACCOUNT"SCN(I)
PRINT

PRINT "ACCOUNT ESTABLISHED. HIT ENTER TO CONTINUE

"
+

A$=INKEY% : IF A%$="" GOTOD 2020 ELSE IF ASC(A%$)<>1
3 GOTO 2020
RETURN

In lines 1860 through 2030 we simply get the account number (and
make sure we have room for it in the array) and the starting balance.
By the way, if you are dealing with alphabetic account numbers the
array type will have to be changed from numeric, double precision
to string. A simple change made by deleting line 50 and appending
the string flag ($) to the end of the variable name (AN$)!

Since, from time to time, a person who writes checks might like
to make a deposit to the checking account, we've thoughtfully pro-
vided a way to enter that data. In lines 2040 to 2230 there is a deposit
routine which looks like this:

nnnnnnn

lllllllll

2060 REM
2070 CLS

208C PRINT STRINGS(24.,"-"}" POST A DEPOSIT "
STRING$(24,"-")

2050 PRINT

2100 INPUT "ACCOUNT NUMBER"3AC

2110 FOR I=1 TO MA : IF AN(I)=AC GOTD 2140 ELSE NEXT I

2120 PRINT "ERROR: ACCOUNT NUMBER NOT FOUND. RE-ENTER"

2130 GOTO 2100

2140 INPUT "DEPOSIT AMOUNT"3DA

2150 FOR J=1 TO MN : IF CR$(J,sI)="" GOTO 2190 ELSE NEX
T J

2180 PRINT "ERROR: CHECK REGISTER FULL, HIT ENTER TO C
ONTINUE"

2170 A$=INKEY$: IF A$="" GOTO 2170 ELSE IF ASC(A$)<>1
3 GOTO 2170

2180 GOTOD 2230

2180 CR&(JI1)="-1"+CHR$(255)+" "+CHR$(255)+8TR$(DA)+CH
R$(255)+"DEPOSIT"+CHR$ (255)+LEFT$(TIME$:8)

2200 AB(I)=AB(I)+DA

2210 PRINT "DEPOSIT POSTED. HIT ENTER TO CONTINUE."

2220 A%$=INKEY$: IF A%$="" GOTO 2220 ELSE IF ASC(A$)<>1
3 GOTO 2220

2230 RETURN

As usual we get the account number and verify it before we actually
post the account. Since deposits are fairly simple, all we need is the
amount and the account number. We can then build the CRF entry
using the current system date and the dummy note DEPOSIT. Actually,
it might be nice to add the deposit date so that the register will
accurately reflect the current account status. That enhancement is
left to the reader. After all, we're supposed to be learning from this
book, not buying a finished piece of software. There will be more
enhancements mentioned as we go along.

Once everything has been done, it might be nice to write the
modified CRF back to either disk or cassette before terminating the
program. For that purpose we have the END routine. This again is
a very short routine:

2240

2250 REM TERMINATION PROCESSING

2260 REM

2270 CLS

2280 PRINT STRING$(21,"-")" TERMINATION PROCESSING "S5T
RING$(22,"-")

2290 PRINT

2300 PRINT “"WRITING CHECK REGISTER FILE."

2310 OPEN "O",1,"CRF/DAT"

2320 FOR I=1 TO MA : PRINT #1,AN(I) : NEXT I

2330 FOR I=1 TO MA : PRINT #1,AB(I) : NEXT I

2340 FOR I=1 TO MA : PRINT #1,CN(I) : NEXT I

2350 FOR I=1 TO MA

2360 FOR J=1 TO MN

2370 IF CR$(J,I)="" GOTO 2400

2380 PRINT #1,J:1:CR$(J»I)

2390 NEXT J

2400 NEXT I

2410 ULOSE

2420 PRINT "PROGRAM ENDED."

2430 END

tion routine wiites over
V ew CRF with ta that is in the
CRF arrays. As another enhancement it mlgh be nice to be able to
specify a file name in both the INITIALIZATION and END routines
so that you can use any file name as opposed to just CRF/DAT.
Now the fun part begins. You may remember that we talked
about the fact that we should be developing a library of subroutines.
Veii, as we were developing this program, | happened to remember
a subroutine that had been floating around on one of my disks
“somewhere” in the dick cahinst, Just nvgn*lu whoro well | wasnt

oV N ¥

quite sure. After some searching (next week | just gotta get orga-
nized) | was able to find the routine | wanted.
In lines 2440 through 2510 shown here:

2040 REM mmmmmm e e e e e e e

2450 REM FORMAT & PRINT CHECK (DATA)

2460 REM

2470 DATA ONE»TWO»THREE sFOURFIVESIX»SEVENEIGHT +NINE
+TEN

2480 DATA ELEVEN»TWELVE »THIRTEEN sFOURTEEN »FIFTEEN sTWEN
TY »THIRTY

2490 DATA FOURTYsFIFTY :SIXTY SEVENTY EIGHTY +NINETY

2500 DATA JANFEB sMAR sAPR sMAY s JUN » JUL +AUG +SEP O0CT »NOV »

DEC
2510 FOR I=1 TO 23 : READ NUS(I) : NEXT I : FOR I=1 TO
12 : READ MO$(I) : NEXT I : RETURN

we see a rather cryptic comment “FORMAT & PRINT CHECK (DATA)”
on a REMark statement. The data seems to be the names of some
numbers, perhaps choosen at random. Actually, there is a specific
pattern to these numbers. In fact, the names are for those numbers
which are unique. The only exception is the number fourteen which
could have been made up of the name “four” and the word “teen.”
The reason we didn't do it that way is because fifteen is again a
unique word. All other values can be made up of the names here
plus the words HUNDRED and THOUSAND. As you will see, these
words are included in the code in lines 2520 to 2800 which we'll get
to in a moment.

The remaining data is the abbreviations for the month names
which are printed on the check in the place for the date written. Line
2510 actually loads these values into their respective arrays.

4-24

What is it we are trying to do here? We'll be taking the check
amount and converting it to words since that is the way in which
checks are written. Both numbers and words are usually included
on the checks (to prevent altering the amount of the check). Usually
this is omitted if a “check writer” is used since these machines will
emboss the check with the amount making alteration exceedingly
difficult.

Let’s take a look at the code that we've used, and then we'll
explain the logic behind it since we haven't covered it anywhere else
in the book. Here’s the code:

& PRINT: _
A ~CHECK S

2520 REM momcmm e e e e e

2330 REM FORMAT AND PRINT CHECK

Z23540 REWN

2350 WDg=""

2560 A1=INT(AM/1000)

2570 AZ=INT((AM-A1#1000)/100)

2580 A3=INT(AM-(A1*1000+A2%100))

2590 A4=AM-INT(AM)

2600 IF A1<>0 THEN WD$=NU$(A1)+" THOUSAND "

2610 IF AZ2<>0 THEN WD$=WD$+NU$(A2)+" HUNDRED "

2620 IF A3=0 GOTD 2700

2630 IF A3<1E THEN WD$=WD$+NU$(A3) : GOTD 2700

Z840 IF A3<Z0 GOTOD 2690

2650 AS=INT(A3/10) : A3=A3-10#AS

2660 IF A3<>0 GOTO 2680

2670 WD4$=WD$+NU$(A5+14) = GOTO 2700

2680 WD$=WD$+NUS(AS+14)+"-"+NUS(A3) : GOTO 2700

2690 WD4$=WD$+NU$(A3-10)+"TEEN"

2700 WD%$=WD$+" AND"+STR$(INT(A4%100))+"/100's"

2710 LPRINT TAB(41) 5MOS(VAL(TIMES)) §""SMIDS(TIMES +4+2)
" 2" ITAB(SE) SMIDS(TIMES +7+2)

2720 LPRINT " ®

2740 LPRINT TAB(10)5WT$5TAB(SB)5 : LPRINT USING "#3# %
#,88" 5AM

2750 LPRINT » *®

2760 LPRINT WD$

2770 LPRINT * *®

2780 LPRINT " " ¢ LPRINT * "

2790 LPRINT TAB(5)3iNT$

2800 RETURN

As you can see, lines 2520 through 2800 form the body of the
routine. The routine itself is actually broken into four functional sec-
tions (mini-routines?). Lines 2550 through 2590 perform the “ini-
tialization” logic. The variable that will hold the final text (WD$) is
setto a “null string” (a null string is a character variable that contains
no data and has a length of zero), the amount field is broken down
to facilitate table lookup (lines 2560-2650). This breakdown is
accomplished by the careful use of the INT function. We strip off the
part of the number that we don’t want by dividing by the appropriate
power of 10 (1000, 100, and 10) and then getting rid of the decimal
portion.

Having accomplished this splitting apart, lines 2660 through
2700 actually format the text. The thousands and hundreds are very
straight-forward for the amounts we are using (if the amount exceeds
15,000 we'll need to add some extra logic to handle the numbers in
the same fashion as we handled the tens). The tens are another
problem. If the number is between 1 and 15 we can get the value
directly via table lookup, but if the number is between sixteen and
nineteen we need to form a composite word (see line 2690). For
numbers between 20 and 99 we need still more logic. If the number
is an even multiple of 10 (20, 30, 40, etc.) then we need only the
first part of the name (line 2670). However, if the number is not an
even multiple we again must form a composite word (as in line
2680). Finally, the cents amount is multiplied by 100 and the decimal
part (caused by rounding error) is truncated and thrown away. The
result is then placed at the end of the string of words followed by
the constant “/100’s.” As an enhancement here, we might want to
place the word “NO” over this terminator if the cents value is zero.

Once the amount has been converted into words, lines 2710
through 2790 do the actual printing of the check. This is in the rather
typical “personal check” format which is easilly changed for other
check formats. Note that the date is extraced from the system var-
iable TIME$ (on the TRS-80) so that the date can be printed in a
more usual fashion, for example, “APR. 13, 82" where the check
contains the “19” part of the year.

We are nearly through with the discussion of this version of the
orogram, The only section thal remains is the PURGE routing that
will print a final report and then eliminate the data. This is done so
that only the most current data is kept on file. Purges might be run
on a monthly or quarterly basis depending upon how many checks
are written and deposits made during any given time period.
Remember, the program only has room for 150 entries before a
purge becomes necessary (unless, of course, you change the
dimension variable in line 60).

Here then is the PURGE rouiine:

PURGE CHECK
~REGISTER
FILE

ZB10 REM = cmeee e oo cmeme e e e e

2820 REM PURGE CURRENT CRF

2830 REM

2840 CLS

2850 PRINT STRING$(2Z2,"-")" PURGE CURRENT CRF "STRINGS
(23,"-")

2860 GOSUB 1360

2870 IF AN$="YES" OR AN%="Y" GOTO 2890

2880 FOR I=1 TO MA : IF AN(I)=AC GOTO 2900 ELSE NEXT I
2880 FOR I=1 TO MA

2800 FOR J=1 TO NM

2910 CR$(JI)=""

2820 NEXT J

2830 IF AN$="NO" OR AN$="N" GOTO 2850
2840 NEXT I

2950 PRINT "CRF PURGED. HIT ENTER TO CONTINUE."

2960 A$=INKEY$: IF A$="" GOTO 2960 ELSE IF ASC(A%$)<>1
3 GOTO 2960

2870 RETURN

Comprising lines 2810 to 2970 this is the last routine in the program.
It uses the STATEMENT routine to format and print the reports and
then resets the CRF array to nulls. This does not affect the account
number, account balance, or check number arrays which must be
left untouched.

This is, of course, only a basic program. There are many
enhancements that can be made to make the program more useful.
For example, you might want to consider adding a routine that dis-
plays the account numbers and allows the user to select a number
associated with that account rather than requiring the entire account
number to be input for each check posted or written and for each
deposit.

Another enhancement might be to add a comment for each
account (personal, business, petty cash, etc) that could also be
stored. If there are multiple checking accounts this would certainly
make the selection of an account easier.

You will notice that there are two routines that have not been
implemented. One of these is the posting of interest (for accounts
that get interest). This is left to the reader as an exercise. It's not a
difficult enhancement, but it's one that will definitely test your under-

standing of the material we have presented so far.

LES Vorrures Howagp —=
. W =T e » -
FA A= 2

a3

G N

.
and, +he »
O?TTO”AL A 0o,
TNHANCEMENTS Jo

TNCLUDE : VYOORS, WHEELS
TRANS Miss150) , HDOD o

— g 2
E——————R e : q
e i N = &

Another routine that could be added would be a way to post
service charges. With the program as it curently stands, you could
post interest charges as a hand written check using check number
1 (or some non-zero check number reserved for that purpose). Again,
adding this routine is not difficult, and will give you a chance to play
with a program that is fully debugged and functional as it stands.
After all, that's the sort of thing that you'll be doing more and more
of as your routine library gets bigger and bigger. With more routines
the development of new programs will become less and less tedious
and more and more a function of modifying an existing routine or
program by adding or removing features.

That's life in the fast track! All programs lend themselves to that
sort of development and the nice thing about it is that it makes your
job as a programmer so much easier. Just think, it's almost as if you
had the computer writing your programs for you! In fact, it's one step

better, you are using your computer as a tool to assist you in devel-
oping a program rather than just as a passive device being banged
upon as you press the keys writing the “definitive” sort one more
time!

This Chapter has shown us one way in which the program could
have been developed, a modular approach. It was fairly easy to see
the modules in the program (especially since we broke it out for
you). By the way, the complete listing is also available in the back
of the book in Appendix A.

As we go on to the next Chapter we'll be taking another look
as this program. This look will focus on a way in which we could
have used the structured techniques to write the same program.
Rather than rewriting the program (which serves little purpose) we'll
look at the structural differences that would be necessary, and will
take some of the routines and write them in a structured fashion so
that you can get the flavor of the technique. In Appendix B is the
fully rewritten program so that, for the curious, you can see how it
might have looked.

One last point here, this is the way in which | have written this
program. Obviously other people might have approached the pro-
gram from an entirely different perspective and therefore produced
an entirely different program that performed the same functions.
That's perfectly natural and good! In fact, I'm all in favor of that.
Variety is, after all, the spice of life! The important point here is that
just because I've done this program in this fashion doesn’t make it
right (or wrong). This is my style, and not necessarily yours. If you
want (and | do recommend this) write the program your way! In doing
so you will be enhancing your own creativity as well as testing the
material in this book.

CHAPTER 9

Structured Approaches

The word “structured” brings all sorts of visual images to mind;
it implies an underlying organization, something that is composed
of parts. This is especially true of “structured programs.” In this
chapter we will be taking another look at the CHEKBOOK program
in an effort to evaluate the differences between the modular approach
to writing a program and the structured approach.

Let's begin by reviewing some of the history behind the struc-
tured approach so that we can place it in perspective. With this
understanding, we’ll be able to view the topic in a clear and une-
motional fashion (And if you don't, I'm gonna beat your computer
into scrap iron!). Actually, that untypical tirade (I'm usually quite
calm) is used to point out that many of the proponents of this method
are quite obviously bigoted and don't understand the methodology
well enough to see that there may be many valid ways of viewing
“structured programming.”

Professor Edsger Dijkstra first coined the term “structured pro-
gramming” sometime in the mid-1960s. In 1972 a book called
“Structured Programming” was written by O.-J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare (published by Academic Press, New York). The
book consisted of three separate notes dealing with “Structured
Programming,” “Structured Data,” and “Hierarchical Program Struc-
tures.” In this book the methodology was fully defined which would
later lead to a large number of enhancements to the fledgling sci-
ence called “Software Engineering.”

This methodology, briefly stated, held that there must be an
inherent logical structure, not only for the program but also for the
design effort and the data processed by the program. The actual
implementation of these ideas waited for others to build upon them
and make them real. The first such test came about in the early
1970’s when IBM (whoever they are) undertook a project in New
York for the New York Times. The structured approach (as it was
then envisioned) made this monumental task one of relative ease.
The project was finished ahead of schedule and under budget. IBM,
which was notorious for good management practices of budgeting
and scheduling, was amazed!

I

In the various trade journals the phenomenal success of this
technique was praised and discussed. Unfortunately, there were
several innovations that IBM was using. One of these was the Chief-
Programmer approach wherein a “super” programmer does most
of the work assisted by mere mortal programmers. These lesser
beings actually wrote much of the code and performed the more
mundane tasks of library maintenance and so on. This freed the
creative genius of the super programmer for more productive work.

In any event, the various “software houses” and consulting
agencies looked at the final product and began designing courses

explaining the so-called “structured” methodology as each of them
perceived it. Unfortunately, these perceptions were often incomplete
and incompatible!

This incompatibility has led to the running:argument of the pres-
ence of the “GOTO” verb in a program. Some will claim that it should
never be found in a program while others claim that it may be used
“only in dire need.” Still others (myself included) say it can be used
where it is the most obvious verb to use provided that its use will
not reduce the readability and maintainability of the program.

Another problem that has developed as a result of the disagree-
ment over “GOTO” is the use of nested IFs. To define this, let’s take
an example. | should warn you that not all of the various BASIC
dialects available on the popular microcomputers today will allow
nested IFs.

Let’'s assume that we want to perform some action based upon
a number of conditions. The actions are as follows; if the variable A
is equal to 5 and the variable B is greater than 1 we will terminate
the current processing (via a RETURN) but if A is equal to 5 and
Cis equal to 1 we will set B equal to 9. We could code this as:

I

mm

A=5 AND B>1 RETURN
A=3 AND C=1 THEN LET B=8

=t

4-34

or we could write:

IF A=3 THEN IF B>1 RETURN ELSE IF C=1
LET B=9

Both of these statements say the same thing. If A is not equal to 5,
neither of the other tests will be made, while if B is greater than 1
we will RETURN otherwise the test for C being equal to 1 will be
made.

The obvious complaint is that this code can become quite hard
to follow if there are many levels. One solution that has been pro-
posed is to indent each level of IF so that the current level is visually
obvious. Taking our last IF this might look like:

IF A=5 THEN
IF B>1
RETURN ELSE
IF C=1
LET B=9

This makes the levels (2) very obvious in exactly the same way as
the levels of pseudo-code were obvious. In fact, this is always a
good idea. Anything that you can do to make a program easier to
read will more than likely make it easier to maintain later on!

If we forget about all of these petty arguments (and most of
them are) we will be able to concentrate on the more important
aspects of this particular methodology. Why would we want to use
structured programming? What are the basic benefits? Who cares,
anyway?

Now, let’s take a look at these questions. By answering them
we should be in a better position to evaluate the usefulness of this
technique. With regard to why we might want to use structured pro-
gramming there are many possible answers. The most obvious answer
is that we might not want to use it! I'll bet you didn't expect that
answer, did you?

Actually, the statement may be true! Assuming (for the moment)
that you do want to use structured programming we can evaluate
the reasons. Structured programming allows us to write a program
in a step-wise fashion, that is, we can write each section of code

from the highest level to the lowest as we need it. There’s no need
to consider routines outside of the one we are currently using.

“Bui,” you say, “that
ming!”

Very good, you've been paying attention to the material as it's
been presented! As it stands, there’s very little difference. However,
the major difference is the way in which the routines are “entered.”
By “entered” we mean the transfer mechanism (like GOTO or
GOSUB). With structured programming a routine is always entered
via a GOSUB and exited via a RETURN. There should only be one

exception: the termination routine may exit with an END statement

{STCOP should not be used except during the debugging stage since

it is possible to CONTinue from a STOP).

Another major difference between modular programming and
structured programming is the main line. For modular coding it may
be quite lengthy. On the other hand structured programming allows
avery short main line — it should only contain the GOSUBs needed
to transfer control to the appropriate subroutines. There may be a
GOTO at the bottom of the main line that will return control to the
top of the main line (unless your particular dialect of BASIC will
support a WHILE...WEND type of construct).

%rxaﬁmes you

vse

Now that we've addressed the reasons for using structured
programming, let's take a short look at some of the benefits. As we
saw with the modular approach to the CHEKBOOK program, there
were a few problems in testing since the needed routines (such as
SETUP) weren't coded until later in the program coding cycle. With
structured programming this difficulty is overcome. Since the amount
of pre-definition time is greater for structured programming than it
is for modular coding there will be less chance for an oversight of
ihis nature.

As you may have guessed, the oversight was deliberate, and
was added for severai reasons. Lei's iake a look at the main line of
our structured program:

30 REM = oo m e e e e

60 REM MAIN LINE CODE

70 REM

80 GOSUB 120 "INITIALIZATION

90 GOSuUB 590 ‘MENU

100 ON OP GOSUB 800 » 1040 » 1250 , 1780 + 1980 , 217
0 s 2350

110 GOTO 90

As we can see, there are only four lines of code, two GOSUBs, one
ON...GOSUB, and one GOTO. We're not counting REMarks state-
ments since that would up the count to 7 lines, a truly excessive
number! Note also that the initialization routine which came first in
the modular version is now contained somewhere else in this version
of the program. The only exception is the CLEAR statement which
is used to reserve string space. If this had been included in the
initialization routine it would also have cleared the GOSUB return
pointer so that we would have had an error (RETURN without
GOSUB).

This initialization routine actually takes all of the code from the
other version of the program and places it all in one central location
so that all initialization is performed at one time; then the routine is
no longer needed.

As you look through the listing of this program you will find an
occasional GOTO contained in the code. This is because | tried to
maintain the same routines as were used in the modular program
s0 you could see the similarities between the two programming
methodologies. Another reason for the presence of the GOTOs is

—that I'm not a purist, | am not convinced that GOTO should be abol-
ished!

Are there any other benefits that might be accrued as a result
of using structured programming? Well, it won't make you sexier or
more popular, nor will it keep you from getting cavities and early
morning pasty film. What it will do is place you in the main stream
of programming philosophy. Since structured programming is the
current “fashionable” technique you will be more saleable if you are
familiar with the style. If you aren’t selling your talents (as a pro-
grammer) you might still be interested since the bulk of the trade
journals are spending considerable time discussing this technique.
The more conversant you are with structured programming the more

be able to enhance your own programming abilities.
We did have one last question to address, “Who cares, any-
way?” Remember that one? Actually, you should care! The purpose

4-37

SN Ak ok A o o o4 o o e § ot o~ b

nere is not io convince you that struciured programming is the best

th.“a since buttered popcorn { {l don’t think it Ie\ hut rather that it is

a technique with a lot of things to recommend it. It reduces the
amount of time spent programming; it provides cleaner, more read-
able source code (programs); it minimizes unit test time (time spent
debugging the individual programs of a system).

But, this may all seem very academic. What single reason is
there for using (or not using) structured programming?

That's a hard question to answer. There are really so many
different parts to that question that it would take a bock all by itself
to answer (and maybe even that wouldn't be enough). Instead, let's
take a quick review of the program development cycle in terms of
the amount of time spent. The table below summarizes the time
allocations used before and after 1980 (an accepted before/after
time frame for structured programming).

Activity Pre-1980 Post-1980
Requirements 10% 10%
Feasibility Study 5% 5%
Design 20% 40%
Cading 20% 15%
Testing 40% 25%
Documentation 5% 5%

As you can see, this is rather different. The time allowed for design
has doubled while the time for coding has gone down by 5% in spite
of the fact that the current applications (programs) are far more
complex than they used to be. The testing time has also been reduced
as a result of the cleaner programs which resulted from better design.
Actually, the Post-1980 figures are a bit optimistic and usually the
design time comes out around 30% with the other 10% divided
between coding, testing, and documentation.

In his “Notes of Structured Programming,” Dijkstra points out
that the size of a program is the very reason for a discussion of
structured programming. We would certainly not attempt to write our
Area Calculation program using the structured techniques because
the overhead involved in building the modules and the linkage mech-
anisms between the moduies would get in the way of the iogic of
the program. Structured programming is really a valid technique for
moderate to iarge programs (however you measure ihai).

4-38

As was pointed out in Chapter 6 on flowcharts, structured pro-
gramming really only uses three flowchart symbols; the “SEQUENCE,’
“IFTHENELSE” and “DOWHILE” symbols. During the mid-1960's
two [talian computer scientists (B6hm and Jacopini) proved that
these three symbols were the only ones needed and could ALWAYS
be used to express any given flowchart. This provided a boost to

the use of structured programming. It also made the design of pro-
grams easier by reducing the number of logical structures that must
be considered.

Although this may sound rather far from the realm of microcom-
puters, it really isn't. Remember, structured programming was

designed for moderate to large programs. It is programs of these
very sizes that we have problems with on a microcomputer (either
because of memory constraints or from language constraints).

As we continue to enhance our own skills on the computer we
own, we probably amaze ourselves at what can be done. Remember
what it was like when the machine was new? For you newcomers,
this should be encouraging — there’s always a way to make the
machine do what you want. Either through new skilis or new
approaches or...

Let's go back to the CHEKBOOK program and look at it with
an eye to the differences caused by structured programming. The

——first-item-we-see-is-that-the-hierarchy-of routines-(levels-of-impor-
tance) is more clearly carried out. That is, the higher level routines
occur first while the secondary or lower level routines occur further

4-39

down the program. By the way, the term “down the program” simply
means that part of the program with higher line numibsers. it actually
refers to a part of the listing which, if held vertically, would be at the
bottom of the listing.

Interestingly enough, there are 64 GOTOs in this version of the

program. It would certainly appear that | am not a purist! When
compared to the modular version of the program we find that we d did

ipelar U o S

use fewer GOTOs (but only by 3). So, there must be something else
about structured programming than the omission of GOTOs if | have
guts enough to call this a structured program. Actually, | suffer from
a problem similar to that which Dijkstra faced, a size restriction. If
we were to develop a program of sufficient size to warrant the full
use of all of the structured programming techniques, it would be too
big to be used as an example in this book (but not too big for a
microcomputer).

Perhaps a better way of facing this problem is to give some
simple examples. We are often faced with the difficulty of expanding
from a specific example and making a generalized statement out of
it. As anyone who has taken a class in logic knows you can never
go from the specific to the general, only from the general to the
specific! Therefore, we are doomed to failure from the beginning.
It's like taking the example we used earlier and saying an airplane
and a motorcycle are the same thing because they can both be used
to transport an individual from one location to another. Let's see a
motorcycle, on its own, take someone from New York to Paris (France).
its a wet ride!

This is similar to the problem facing us when explaining struc-
tured programming. A program that is simple enough to be used for
an example is too small to be conclusive proof for the advantages
of structured programming! While this may seem to be self-defeat-
ing, we can approach the problem from a slightly different angle. If,
instead of trying to find reasons for using the technique, we looked
at the problems that face us when writing programs and look at the
solutions that are offered by structured programming, we will have
a better handle on the problem.

Ok, what are the problems? Complexity is the first problem. As
a program gets bigger and bigger it becomes more complex. Debug-
ging is another problem. We often wait until we've written the pro-
gram before we begin testing and then we find that we've omitted
parts of the program. As we add more code to compensate for the
omissions the structure of the program starts to decay, and becomes
less obvious. This, of course, makes the program more complex
and therefore harder to debug, and so on, and so on,...

Documentation is always the bane of programmers. How does
one go about documenting a large, cumbersome program? What is
the minimum that is needed to allow use and maintenance of the
program? How does one maintain the documentation as changes
or enhancements are made to the program?

We’ll tackle the documentation problem briefly here, and let the
rest remain for Section 6. Can structured programming help us with

——documentation?-Surprisingly-enough,-the-answer-is-“Yes-it can!”-B
reducing the documentation to the level at which you are working
the amount of documentation is minimized (at any given point in

4-41

time), and the finai resuit is synchronized with the program. This wiii
make maintenance easier {o perform and the documentation will be
easier to update since it will already correspond to the structure of
the program. More on that later.

Now we'll talk about the problems with coding and complexity.
Let’s address just one of the problems. When we were discussing
the various “traditions” behind the different languages (back in Chapter
4) we mentioned that BASIC programmers had a tendency to place
code anywhere they wanted in the program. This often resulted in
GOTOs that juimped ail over the piace. Weil, aiihough i'm not a
purist, that’s the kind of GOTO I'd like to stamp out!

Structured programming is often cited as the chief cause of the
discussion revolving around the existence of the GOTO verb. Actually,
good programmers have always disliked the indiscriminate use of
that particular verb. For example, imagine the following code:

120 A=B
130 GOSUB 1350
140 GOTO 8900

L]

900 C=B
8910 GOTO 320

You can readily see that if the program consisted of a lot of code
like that stuff above it would be very difficult to follow the logic.
Remember the flowchart symbols that were used with structured
programming? They all had a single entry point and a single exit
point. They were, in effect, black-boxes that could be called upon
to perform a given function without regard to how that function was
performed.

If we build programs using the concepts of structured program-
ming, we will have little difficulty in overcoming the problem of com-
plexity. As someone once pointed out, God took six days to create
the world (Genesis 1:1-31). Although | doubt that the writers of Gen-
esis ever imagined they would be used as an example for good
programming style we’ll use them anyway. The idea here was to
break a complex task into separate parts and tackle each individual
part. The only problem was making sure that there would be proper
interfacing. Such interfacing might be considered the separation of
the water from the dry land, or the night from the day. In the case

4-42

of water we have the beaches, for night and day we have sunrise
and sunset (which also makes a neat title for a song).

The key to structured programming is to eliminate unnecessary
GOTOs that lead to different parts of the program. Within any given
module or unit a GOTO may be used if it makes sense, and if it
doesn’t reduce the visibility of the logic. Therefore, we use
GOSUB...RETURN to control the execution of the various compo-
nents of the program. By the way, you will notice that | used the term
“module” to refer to one of the components of a program; that’s
perfectly correct and natural. What we want to stress here is the
idea of using logic to direct the formation of a program rather than
necessity. By that we mean the program should be designed care-
fully enough that we won't have to code around missing logic in the
design. Such coding can only lead to difficulty.

Ok, now that we've talked about the “theories” of structured
programming, how do we go about putting it into practice? Actually,
that's a lot easier than it may seem. We begin (as usual) at the top
('ll bet you thought I'd say beginning).

Just where is the top? If you'll remember the various discus-
sions we've already had regarding the “dummy module” you'll be
well on your way toward figuring out the top. We'll start by coding
the highest level routines first and add the lower level routines once
we've tested what we've already written. For example, we might first
code the statements that identify the program, both by name and
by function. This is then followed by the highest level routine, the
main line.

At this stage we will actually spend some “wasted time” by
writing some code that will eventually be thrown away — RETURNs
that correspond to each of the lower level routines that are invoked
by the main line. We will not worry about routines that would be
invoked by routines invoked by the main line! Everybody got that?
We work at one level and dummy out the next level with RETURN
so that we can test the code that's already been written. This allows
us to overlap the test and coding cycles thereby shortening the time
for both!

Having tested the main line (all four lines in the case of CHEK-
BOOK) we can then proceed to write the lower level routines, one
atatime:-Sincethere’s-stilla-question-of sequence welook forsome
sort of indicator that would tell us the order in which they should be
written. Usually there’s an implied priority even within routines or

4-43

modules at the same ievei of the hierarchy. For exampie, we wouid
probably wiite the MENU routine next since that is the key for getting
to any of the other routines! Make sense? Of course it does!

No it doesn’t! The next routine that should be written is the
initialization routine. We've got to get all of the variables initialized
before we can begin any actual processing. Way back in Jr. High
School | had a Shop teacher who stressed that there were three
stages in any job: setup, the job itself, and clean-up. In writing a
program to perform a task we must remember those same three
stages. initiaiizaiion can be considered ihe “setup” while lermination
is the “clean-up.”

Once we’ve coded the initialization routine we can then proceed
to the MENU routine. This is where the testing gets tricky. How do

we know that the initialization proceeded according to plan? There's

every possible variable with some kind of automated approach. Such
a program would have to be loaded into memory before the program
is actually run since most microcomputer BASIC interpreters have
the nasty tendency to reset all variables if you edit the program
(which includes adding new lines to the program).

A second approach is to examine the variables that you know
are used 1o see if they are correctly initialized. The drawback to this
approach is that you must check not only the variables initialized in
this routine but also those used in the other routines. This is not

necessary if the RUN command causes the interpreter to reset all
variables. By the way, most of the computers will reset the numeric
variables to zero and the string variables to null (strings that contain
no characters and have a length of zero). We'll talk more about this
in Chapter 10, Approaches to Testing.

Once the MENU routine has been coded the program will be
able to provide access to the other routines. At this stage we should
look at any other ways to determine the coding sequence. Several
ideas quickly come to mind. First, we decided that some of the
routines (WRITE, PURGE) would use code that exists in other rou-
tines. Because these routines are now closely related they should
be kept together so that their interdependencies (big word, means
to rely upon the other) will be both logically and visually obvious.
Therefore, if we choose to write the POST routine first, we would
then take the WRITE routine immediately afterwords.

Another way to determine the sequence is to look at the num-
bers in the MENU and write them based upon that sequence. By
the way, | chose not to place PURGE near STATEMENT for a simple
reason. | felt that the use of the STATEMENT code was merely a
convenience for PURGE. The primary purpose of PURGE was not
printing a statement, but rather purging the CRF The structure |
chose was based upon the sequence of the routines in the MENU.
Since that clearly points out a structure that is self-documenting |
went with it. After all, it's much easier if you go with the flow!

This also has another nice property; the GOSUBs in the main
line refer to increasingly higher line numbers as the MENU reference
number gets higher. This seems natural to the orderly mind, and is
therefore accepted more readily by another person who might, for
some unknown reason, want to tamper with the perfection of my
code. (Can you stand it?)

As we are all aware by now, there’s more to programming than
simply scribbling some lines of code on the back of a grocery bag
with a crayon! If we have carefully thought out the program in advance,
and have written it with the same care, there should be very few
bugs. One axiom of programming that | fear we will never change
is that there is always one more bug! Just because it hasn't been
discovered doesn’t remove the fact that it's there.

Now;-having-designed-a-good-program,-having-written-a-good
program, what's left? Well, we've still got to test the program and
then we've got to document it. Each of these items will be covered

in some detail in the following chapters. At this stage it's important
to note that we’ve now set the stage for what will follow. We’ve looked
at two different ways of coding a program. Modular coding required
a little less thought in terms of physical structure, and just as much
in terms of how to break the program into modules.

Structured programming required a little more thought in terms
of the placement of the modules and in terms of the flow of data
through the program. This is the reason for the so-called structured
data flow charts. We've not covered data too much, but that's because
the study of data structuring is a very complex subject best left to
the experts. There’s no reason we need to be concerned with limited
redundancy, independent structures, flat-files, inverted-files and all
of the other buzzwords dropped so easily by those involved in data
base management and data management.

Hopefully we also realized that the actual coding of a program
is, in a sense, incidental to the actual task of “programming.’ It is
merely the implementation, the embodiment, of the ideas which
were carefully thought out in the design stages. | think that we've
all come to realize that there’s more to programming than just sitting
at a keyboard and churning out a best-selling piece of code.

One thing that we've only touched lightly on is what to write. |
suspect that the world really doesn't need a new version of LIFE or,
perhaps, even STARTREK, regardless of how sophisticated. Games
are fine and have their place, but the efforts that are put into game
writing must be done in an area that will reap some benefits (other

4-46

than just enhancing your programming skills). Adventure games are
really selling well (as of the time of this writing) and are also ideal
areas for either modular or structured programming. Although | men-
tioned that we wouldn't be discussing games, | felt that this mention
was justified based upon the popularity of certain kinds of games
and the applicability of the programming methods we’ve just been
studying!

Let's consider a few last points before we press on to the topic
of testing. On several occasions we’ve mentioned that you should
be building a library of routines for use when writing programs. As
each problem is solved it can be cataloged. Later on, as you write
other programs, you will be able to refer to it and save coding time
by extracting fully functional and tested routines. This will obviously
shorten not only coding time but also testing time.

As each routine is added to your library you are effectively
adding “working capital” to your skills as a programmer. You will
never again have to solve the same problem two, three or more
times. The solution will be there, waiting to be used. If you continue
to use either the modular or the structured programming techniques
it will be easy to merge the routines into later programs because
they are written in a data independent fashion. By that we mean that
they only need to know a little about what is happening in the rest
of the program. What little they do need is passed to them in the
form of parameters and then acted upon.

The only changes that might be needed would be in the area
of variable names, and that's where the idea of standardized names
comes in handy. If certain variables or ranges of variables are always
reserved for use in modules, there will be minimal overlap. All good
ideas, what!

o A

: (S5 |

AV |

Section 5 — Testing/Debugging

Now we've progressed to the point where we need to make
sure the program does what it was designed to do. We do that
through a process called “testing.” The removal of problems or errors
from a program is called “debugging” and we'll be looking at some
easy ways to do that.

Throughout this Section we'll constantly be referring to the cor-
rect approaches to testing, and pointing out the areas where popular
myth has misplaced the emphasis on testing.

We've seen how good design can lead to simplifications in the
program writing or coding stage, now we'll see where proper design
of the tests can lead to simplification in the final checkout stages of
a program’s developmental life cycle. This is the area where most
programmers are the weakest. This weakness may have several
different causes and we'll be examining the various things which
might reduce your effectiveness as a tester.

CHAPTER 10

Approaches to Testing

The idea of testing a program may be, to some, a nasty idea.
After all, we've spent some time designing and writing the program,
and there is no reason to assume that we're anything but perfect.
If that is the case, the program should work correctly the first time!
Right? Don't forget about Murphy! ’

7o
[,/“/\»,

We must all remember that even though we are perfect, there
may be times when we are coding our programs that we aren’t quite
up to par. It's at times like that when we might let little errors creep
into our code. If we can all admit that we have, on occasion, failed

to have a program work exactly the way we wanted it to the very
first time it ran, we'll be well on our way to being good testers and
debuggers. To see what that'll take, let’s jump right in with a discus-
sion of testing.

We could have called this chapter “Testing, Its Goals and Pur-
poses” because that's exactly what we're going to be talking about.
(The only reason | didn’t call it that is 'cuz my publisher said it didn’t
sound very good!) Before we can discuss how to go about doing
this thing called testing, we need to understand what it is that testing
does and is.

Let's stop and think for a minute. When you have a friend over
and you've just finished working on a program (assuming it's that
kind of friend) what happens? The friend will usually say:

“What'll we do next?”

To which you reply “Let’s see if it works!”

Do you agree? Well, you're doing it wrong! By the way, rule 1
of writing says never tell the reader he’s wrong, but | believe that
you're reading to learn, and to learn sometimes means unlearning
bad habits.

Testing. The process of determining if a program will perform
the functions it is supposed to perform without producing errors,
either detected or undetected! The first assumption that you must
make is that there are errors in your perfect program (which is,
therefore, not perfect). Once you've made that assumption you can
then proceed to the real business at hand, that of removing the bugs.

Why is this so difficult? Actually, it isn’t. The major problem
comes about when a reasonably intelligent person (you) is suddenly
confronted with the possibility that you blew it! Right there, in front
of your friend, is the evidence of your failure! Don't take it so hard,
there’s hope for you still. Actually, most programs don’t work right
the first time (an exception is this one: 10 END).

The psychological make-up of most programmers is such that
there is often a problem in tearing their own code apart. There are
two basic symptoms; either the code is right and the computer is
wrong (possible, but not overly likely), or the programmer will rewrite
entire sections of code in an effort to kill the bug by the sheer weight
of lots of lines of code! Both approaches are a complete waste of

time.
If we begin with the assumption that we are going to make the
program shrivel up and die as a result of our testing we'll be way

5-3

ahead of the game! To get right to the point, let’s take a couple of
rather typical statemenis about iesting a program. We'll exaimine
each in turn to see how, if at all, they apply to the real world.

First, we can say that we test a program by making sure it does
what we've asked it to do. Ok, fine! What have we asked it to do?
Is the definition of the problem sufficient to allow the development

of tests adequate to prove that the system will worlk? Will we be

attempting to prove that a program works merely by excessive
example (which isn’t proof, but we’ll come to that). Let's go back to
our simple area calculation program. We know that we must test it
to see if it will detect a length of zero, both length and width of zero,
and also width and length equal to each other. Very good. Should
we test other combinations to see if the program will fail if fed real
numbers? What if the width is 9x 10 and the length is 9x10%°
(which is a HUGE square)? Will the program correctly detect that?
NO! The numbers are too large and will result in the program ending
with an OVERFLOW error.

Should we prove that the multiplication routine in ROM will work
correctly? If so, for how many cases should we prove it? That leads
us to the second approach which says that we should test every
possibilit. Can you imagine testing a chess playing program for
every possibility? | can’t even imagine living that long. For our area
calculation program we would have an infinitely long period of time
if we tried every possible number. Even if we limited the possibilities
to the real number scale and chose only integers it would still take
more than my lifetime to complete! Actually, we'd suffer OVERFLOW
long before we could ever test every possibility.

So, we can't test just for what is expected, and we can't test for
every possibility. Just what the heck do we test for? It all depends!
As an author | can get away with that statement, but it's really true.
It depends upon the program, the amount of time available for test-
ing, the criticality of the testing, and so on. The more critical the
program is the more completely it should be tested. Imagine writing
an operating system and releasing it to the public without thorough
testing! IBM (those guys again) successfully did that for years; they'd
let the customer find the bugs and assist with the fixes. Big com-
panies can (sometimes) do that, micro users can’'t. We need to have
a system work correctly the first time and every time.

For BASIC users some of the testing problems are quickly
resolved. The interpreter will not allow string data where numbers

5-4

should be (but will allow numbers where string data should be). Part
of the testing is therefore simplified. But there’s another, nastier side
to BASIC. Because of its ease of use, BASIC will often mask bugs.
We can hit BREAK (or ESC or whatever) and stop the execution of
the program, make a fix and continue. But, will we remember what
that fix was? Will we care how it affects other routines? That's where
the greatest amount of caution must be taken.

P AR ik oy
Rz, BUG/>2

b

How, then, do we approach testing? We've already started by
accepting the fact that the program contains one or more bugs. We
next decide ih~! the testing plan (yup, we writes test plans too)
should have been laid down as part of the design effort. While a
program is being designed is the best time to decide how it should
be tested. In fact, one of the early concepts associated with top-
down design was that you start by designing the test plan and work
down until the program is in production! There’s a lot of good to say
about that approach.

But where does that leave us? Most of us were faithful to the
book, and took everything one step at a time. Well, some of you
might have skipped the introduction for which I'm sorry. We did
mention there that the coding and testing cycles went hand in hand.
They do occur simultaneously. In the last chapter we discussed how
you could be testing your program as it was being written by adher-
ing to some rather simple guidelines regarding how the program
was coded. The same principle applies here. There are several
stages of testing. We can call them “unit testing,” “integration test-
ing,’ and “system testing.” These terms refer to the testing of the
program, the part of the system the program interface with, and the
entire system. If, for example, your program is the only program in

a system (a stand-alone program) then the integration testing may
be skipped. The unit testing is done to make sure that the individual

programs work according to their design specifications, that is, that
there are not apparent errors. integration and system testing don’t
start until all of the units are properly working.

Since we’ve already mentioned a “test plan” let's take a look at
what goes into such a plan. Obviously we must define what it is we

are testing, what the input will be as well as what the expected output
will be, This should be done for each and every test that will be
performed. Using this as a guideline you can begin performing the
tests. Unfortunately we who use microcomputers must usually vio-
late one of the first principles of testing — we must test our own
programs. The reason that this is not recommended is that most
programmers would rather prove that their programs work rather
than trying to make them fail. Again, we normally test from the wrong
basis, trying to prove that there aren’t any bugs rather than trying

to find bugs.

Since we can usually find what it is we are ldoking for, there
are two things to keep in mind. One relates to the results of the
testing; we must always carefully examine the results to make sure
they are what they're expected to be. How often have we looked at
something and seen what we expected to see rather than what was
really there? The second point is that if we are looking for bugs we
have a greater chance of finding them than if we are looking to prove
that there are no bugs!

Ancther principle of testing is that when the “test cases” (the
data/processing being tested) are planned they should include data
that is reasonable and good as well as invalid and unexpected data.

Remember, most programs are subjected to more testing in the first
hour that a user has it than it will be in most cases during the entire
test cycle of the producer! If your testing is better refined (and defined)
you have a greater chance of a program with few bugs being released.
Remember, rule 1 says that there'’s always one more bug!

Let me give you an example of unexpected data. If we remem-
ber the AREA calculation program you will recall that we have some
specific tests, namely for a square, zero length or width, and an end
condition. What happens if a negative number is input to the pro-
gram? Whoa! Everybody knows that an area must be composed of
positive numbers. Ok, granted that everybody knows that; will
everybody remember that? What if we get someone that is a path-
ological program bomber and he deliberately inputs a negative num-
ber? Tough, you say? No, your program should be as “bomb-proof”

“” I (LK I

32

as you can make it, even against users like that. By the way, most
users are like that from time to time. It may not be intentional, but it
does seem to work out like that. | used to have a person working
for me that could break any program. We'd do all our testing and,
once we were sure it was good, give it to her to see where we’'d
failed in testing. She always found something.

That leads to the next philosophical point behind testing. We
must test every program to see that it does what it is supposed to
do. We must also test to see that it does not do what it is not sup-
posed to do.

“Just what the heck does that mean?”

Funny you should ask, | was just about to tell you. Let’s consider
the U.S. Government and the Social Security Administration. They
do most of their work using computers. From time to time they write

“benefit” checks to those entitled to receive them. Now, if the amounts
are correct and they are correctly posted we can say that these

5-7

programs are working correctly. Right? What if the programs are
writing checks to people that don't exist? Then the program is work-
ing incorrectly. Of course, there’s usually a human error behind this
particular occurrence, but that's not the point here, it's possible that
there’s a bug in the program that causes it to generate a check for
Quincy P. Ripoff every 1000 checks. If that's the case the program
is most assuredly not right (even if Quincy himself told the computer
to do that!).

There is a certain perversity of nature that is often called the
Poisson distribution. This is a definition of a kind of random number.
For example, the Poisson distribution can be used to predict the
number of raisins in a square inch of raisin bread, the number of
typos on a page of a book and the number of errors in a section of
code. This is a rather round about way of getting to the next axiom
of testing. There is an increased probability of find a bug in a section
of code where a bug has already been found. What that means to
us is that once we find a bug in a routine, we should test that routine
again, there’s probably another bug hiding in there. Sometimes the
removal of one bug will bring others to light. In any case, there
seems to be a good bet that there will be more bugs found there.

One final idea while we're talking about the philosophy of test-
ing. A test should never be planned or designed under the assump-
tion that no errors will be found. Remember, a successful testis one
that finds a previously unknown bug. Again and again | will be
repeating that idea, testing is to find bugs, and is not primarily to
prove that a program works! As long as that idea remains foremost
in your mind during testing you will have little difficulty in deciding
just exactly what you are to do when testing a program.

Alright, enough with the theory. How do you go about applying
these neat theories? Actually that's easier to do than to write about.
As the program is being designed there is an understanding of what
the program is to do. At that point it is possible to define the results
of the various levels of testing that will be taking place. For example,
if there is a routine to calculate certain discounts based upon price
and quantity it is a simple matter to define some test data, both valid
and invalid, that can be fed to that routine. With that data and an
understanding of what the routine is supposed to do you can write
a iesi pian. When that test plan is actually executed, the output can
be evaluated. If the results are exactly what was expected the test
ciiteiia is mei. if, however, there is exira output of the program fails

5-8

to produce the expected results the test was successful, the program
failed indicating the presence of a bug!

See how backward testing is? A test succeeds if the program
fails, and the test criteria are met if the program doesn't fail. Seems
strange and probably feels wrong in a way that's hard to describe.
Don’t worry about it if it does. Lots of people who make their living
in the programming field still test the wrong way because they can't
bring themselves to look at the possibility that their code might be
wrong. As a result they try to prove that their code works instead of
looking for bugs.

Testing a program requires a controlled environment. By that
we mean the program under test should be isolated from any changes
made either to the computer or the data coming into the test. Make
sure that you are testing the program and not something else. If the
program is being changed, it makes sense to change one thing at
a time. In other words, control what it is that is being done. If you
change the program and the hardware, how will you be able to
determine which it was that affected the outcome of a test?

Another approach to testing is one that lends itself to the pro-
fessional environment almost as well as it lends itself to the micro-
computer world. This is called the “walk through.” There are some
advantages to this technique as well as some very definite disad-
vantages. We'll talk about the disadvantages first because they are
such as to either make the technique work or fail miserably.

Are you often proud of your code? Will you become defensive
if someone shows you another (not necessarily better) way of doing
something? If you answered yes to both of these questions there
may be some difficulty for you to utilize the walk through technique!
The reason for saying that is based upon the necessity of your being
able to explain the inner workings of your code almost as if someone
else had written it. The term that is used for this is “egoless pro-
gramming.” What this means is that you can evaluate your own code
openly, honestly, and without the need to defend the code when it
is questioned. Sound easy? It isn't!

Actually, walk throughs are used at several stages in the life of
a “professional” program; the design cycle, the test plan design
cycle, the coding cycle and the testing cycle. Because there seems

little reason to use that logic for a microcomputer, we’'ll simply use
it as part of the testing cycle. There's some question, however,
regarding whether this is properly placed in “testing” or is better

5-9

called a part of “debugging” There’s a place for it in each phase. In
the testing cycle it can be used to ensure that the code has followed
the design. it merely requires going over the code (not necessarily
line by line) and showing how it meets the requirements of the design.

Why would | want to subject myself to this “humiliation?” Actually,
if that's the approach that will be taken, don't bother, it won’t work!
If however it can be approached with a sense of challenge, with a
desire to let your peers evaluate your work in the cold, hard light of
day. This can be a time when some will say how neat your code is
and others will say “why didn't you do it this way” without regard for
the personal touches you put in the code. Don't feel bad, that hap-
pens to even the best of programmers!

Actually, as the people performing this kind of review get more
and more experience at doing them, they’'ll spend more time on
getting to the real reason for the review. Questions will be more
pertinent. Questions like “How does this work?” and “Where’'s this
function?” will replace the “It'll run faster if.. sort of statement. The
end result will be that everyone will learn. Your techniques will be
picked up by those reviewing the program and you will pick up their
ideas and techniques. It can be quite beneficial.

Some of the things that can be looked for in a walk through
include looking for references to variables that haven't been initial-
ized (a big source of erroneous results), making sure that references
to tables (subscripts) are within the DIMension boundaries and mak-
ing sure that uses of intrinsic functions (STRINGS$, MID$, ATN, etc.)
all have the correct sort of parameter (thus avoiding the TYPE MIS-
MATCH error).

Another source of errors (especially with structured program-
ming) is making sure that comparisons (IFs) that are nested perform

5-10

T
R

:;;‘}’,/';,ul'[!,/[‘li_{/._'- Bt L

SAST

the proper compares. IFs have some other major problems; they

can be confusing when used as compound or complex statements.
For example, to perform an action based upon one of two conditions

5-11

wiiere A imust
CorAmusth

written as:

IF (A>=B AND B< >C) OR (A<B AND
B=C) THEN ¢ 60

But if we wanted EXACTLY the reverse of that condition we must
remember that OR becomes AND and AND becomes OR. Thus the
compare becomes:

IF (A<B OR B=C) AND (A>=B OR B< >C)
THEN + ..

Is this correct? Let’s re-expand the statement into English and see.
We said that we will perform the action if A is less than B and either
A>B or B< >C or if B=C and either A>=B or B< >C. Let’s get
rid of the obvious impossibility and see if we've still got the same
thing. Again, the task will be performed if A is less than B and B is
not equal to C or if B is equal to C and A is greater than or equal to
B. See, it's not the same thing. In reversing the compare we goofed!
It should have read:

IF (A<B OR B< >C) AND (A<=B OF B=C)
THEN ...

Where we can now say we’ll perform the action if A is less than B
and B=C or if B< >C and A> =B (eliminating the impossible con-
dition of (A>B and A< =B) and (B< >C and B=C). The statement
is the same, but much harder to read. Use the easier form (if pos-
sible) but be careful if you must turn it around to keep the logic
consistent!

The other problem with the IF statement refers to nesting of IFs
and making sure that there are the proper number of ELSE... THENs
for the logical implementation. That means that there must be a
corresponding ELSE for every IF except, possibly, the last one. More
problems have arisen over the improper use of nested IFs than just
about any other command (except GOTO). As usual, exercising the
proper amount of caution during the coding cycle will usually prevent
the problem from occuring at all. There should be no difficulty finding
this sort of problem during testing.

5-12

Another major area of problems which we pointed out in the
last two sections when we talked about writing the program is the
module interface. This is not as big a problem in BASIC as it is in
PASCAL, FORTRAN, COBOL or assembly language. The major
source of problems in BASIC will occur in USR calls or in the use
of the CALL statement available in Microsoft's BASIC-80. The prob-
lem has to do with the number and type of the parameters. This
problem may also occur when using built-in functions. For example,
you can't pass negative numbers to the SQR or LOG routines. This
area needs to be examined carefully to ensure that there is sufficient
coding to prevent this occurance.

File handling can lead to another source of errors. Here there
are so many kinds of errors that we'll spend a little time exploring
the sorts of errors that can occur. Most of the common BASIC inter-
preters today support both sequential and random files. It is impor-
tant that the programmer make sure that the program is processing
the correct form of a file. If you open a random file for output as a
sequential file you will probably destroy the usefulness of the file for
programs that expect to read the file as a random file (which requires
that all records be the same length).

Making sure the file exists before it is opened for input or that
there is sufficient error handling to catch the fact that the file is not
present is important. Some computers (especially the Apple) will
simply create the file if it doesn’t exist and then the error will be
transfered to the first read where there will be an end-of-data con-
dition set. This again must be tested for.

Improper FIELDing of data to be placed in random access files
can cause severe problems. This is an area where the length of a
field is important. Another problem that is related to this is the improper
use of LSET and RSET (for those computers that support them).
These are used for STRING variables; MKI$, MKS$, and MKD$ are
used for putting numbers in the file while CVI, CVS, and CVD are
used to retrieve them from the file.

Random files seem to cause a lot of problems because of the
way in which the “buffer” or temporary storage area is used. One
of the more common symptoms of this problem is the “unexplained”
occurance of the same record many times throughout the file
(apparently-at random).-This-is-usually-caused by updating-a record
without first reading the record. Another cause is getting a record
for update and writing it back to a different location in the file by

5-13

PAY ATENTION To \OUR Axd DONT BE
DISTRACTED /

changing the relative record number. In either case, the entire bufler
(usually a sector long) is rewritten and all of the data in that sector
will be writien wiierever you tell it 1o go. This can result in the other

5-14

records in the buffer being written along with the desired record
while the old records in the buffer are overlaid by these new ones.

| once helped a friend track down a serious problem. He was
opening a file for OUTPUT and then closing it again very quickly
without doing anything. This was to force the file to exist if it didn't
already. That seemed to make sense. The problem that he had was
that, although the routine worked fine if the file didn't exist, when the
file did exist it was always treated as if it were empty! Of course it
was. Once the file had been opened for output it was treated as if
all of the existing data was “throw-away” data and the end-of-file
pointer was reset to the beginning of the file.

Another serious file related problem is one that can creep into
BASIC very easily. If you have a file that contains five variables in a
record, three numeric and two that contain strings, there is the potential
for problems. If LINE INPUT is used to read the data from the key-
board and there is an imbedded comma it will process beautifully.
You can write it to disk without any problem. Try and read it back
using INPUT. The comma is, of course, a field delimiter. This will
cause an extra field to be placed in the file which will throw all of the
other data off by one field. Because BASIC does not treat sequential
records as records but rather as a collection of fields there can be
some nasty problems involved in removing bugs of that nature.

While we’re on that subject, let’s look at another easy place for
problems to occur. It is sometimes advantageous to write a record
at one time, and then to read the data back in parts. For example,
we’'ll take our 5-field record again and this time we’ll read back the
first three fields in one part of the program and the other two fields
in two different locations. If there exists the possibility that one or
both of these other fields might not be read in, you can bet that it
will happen. This will again lead to a file that is out of synchronization
with the program. This is another problem that can be very hard to
track down. It's especially so if either all of the fields are string or all
numeric. Now there won't be a TYPE MISMATCH error to indicate
the problem, the numbers might just be wrong or an address might
get messed up, or whatever.

Another testing procedure is called “desk checking” where you
will sit down and read the code you have written to see if it will work.

Thiscan-be-(and-usually-is)relatively-unproductive—This-approach
is such that only the most obvious of errors will be caught. The more
typical errors are syntax errors, not logic errors. By the way, that

5-15

— s
GOSUB...
. (S, 0o N"\./

AT MU

points out an important fact. When testing, there are actually two
different kinds of errors. The first and simplest kind is the syntax
error, typing the keyword or command wrong, using a dollar sign
when it isn’t needed, forgetting to use parenthesis for a subscripted
variable, and so on.

The second type of error is the logic error. This is the sort of
error that we are really looking for. Desk checking can be useful for
some logic errors such as a GOTO that lands at itself because it
was left over from the testing stage. Other errors that are common
are line numbers that are left out because, at the time, the line
number was unknown and you failed to go back and fill it in. For this
reason desk cehcking can be fairly useful, and is recommended
before the first full-scale test of the program. Obviously if you have
been using the “test as you go” approach the effectiveness of desk
checking is greatly reduced because you will have already removed
most of these common, obvious errors.

While you are testing there are actually two cycles going on,
testing and debugging. These two operations work hand in hand to
effect the production of a running program. In the next chapter we'll
be seeing how we can use the testing techniques to simplify debug-
ging. We'll also see how debugging can be done in an (almost)
painless fashion.

There are, of course, lots of different ways to test programs just
as there are lots of different ways to debug programs. In this chapter
we've tried to look at the more common areas that problems like to
hide in in order to determine how o test a program. in ihe nexi we
talk about how to get those bugs out into the open where we can
siomp them out!

CHAPTER 11

Fixing Bugs the Easy Way

Having arrived at this stage, we are now in trouble. If we have
a bug we have a problem, ergo, we’re in trouble! No, I'm not Sheer-
luck Bones, that'’s just a statement of fact. Once we've found that
we have a bug we have two major problems; we must identify the
cause of the bug and then we must fix it. In this chapter we’ll be
addressing some easy approaches to those two tasks. We'll also
take a look at some common causes for bugs and some ways to
prevent them. All in all, this is going to be a fun chapter!

Before we jump into all of the goodies, let's stop and make sure
we understand what a bug is. After all, how can we get rid of ‘'em if
we don't know what they are? A bug is defined as a defect or error
in a coded program. Thus it is a malfunction or a mistake. What that
means to us is that we’ve done one of any number of different things.
We've either told the computer to do something it can’'t, we've told
it something other than what we intended to tell it, or we've failed to
tell it something we did intend to tell it.

Obviously then there are some simple solutions. If we told it to
do something it can’t, we “un-tell” it. If we told it something other
than what we thought we told it we correct our error and tell it cor-
rectly. If we failed to tell it to do something we just add the code to
cause it to do whatever it is we originally wanted. Sound simple? It

may or may not be, but the perversity of nature says that it won’t
be!

5-17

One difficulty in making simplifications like those above is that
the real world is often not simple. For example, let’s assume that we
told it to do everything we wanted it to do, the computer could do
everything we asked it to do, and we asked it in a fashion that it
could understand. Now, still assuming all of that, let’s also say that
the program doesn't work right. Why?

5-18

Again there are several possible reasons. Maybe we've told it
to do things in the wrong sequence. Maybe we've never executed
all of the statements in the program because of some logic errors.
Maybe we were wrong in our first assumption! That's three “maybes”
that we've got to deal with. Actually, if debugging were as simple as
it seems at first glance, there wouldn’t be a need for this chapter!

First some simple guidelines. When the program first starts its
test cycle, make sure that any error handling (ON ERROR GOTO)
is either very carefully controlled or not used at all. The reason for
this is that an error condition might crop up and be intercepted by
an error trapping routine designed for some other error. For exam-
ple, you might set an error trap to catch a non-existent file before
opening it for INPUT, and then fail to reset the error trap. Thus, when
a divide by zero error occurs later on, the trap for a missing file is
entered and you've got no idea how or why (other than by looking
at ERL on the TRS-80 and other computers that use BASIC-80 to
see where the error occurred).

Now let's take a hypothetical error and see how we would
approach it. The error could be anything, and the code could be
anywhere in the program. What we're going to be doing is looking
at a general principle that can be applied anytime there's an error
that needs to be fixed.

An error has occurred and the line number is displayed on the
screen. The program has terminated and the system is now waiting
for us to do something. On the TRS-80 we may or may not be in
EDIT mode. Whatever you do DO NOT CHANGE THE PROGRAM
YET! Any changes will eliminate the tracks that are available for us
to look at, including data values.

Our first step is to list the line we are currently processing. Is
the statement syntactically correct? If it is, are the values being
processed reasonable? If you don’t know, list ‘'em on the screen,
use the PRINT command in immediate mode to look at them. Make
sure the numbers are valid for any intrinsic functions that might be
being used. Evaluate the type of error. Maybe it will tell you what
has happened and maybe it won't. For example, the message “ILLE-
GAL FUNCTION CALL" is nearly useless since it could mean any-
thing!

gOur next problem is to determine if we have the line that caused
the-problem-or-merely-the-one-that-displayed-the-symptom-of-the
problem. It's possible that we’ve gotten a divide by zero error and it
seems obvious that the denominator is correctly zero therefore we
need a trap to catch divide by zero errors at this pointin the program.
That's the worst assumption that could be made right now! The

5-19

divide by zero may only be symptomatic of a problem in an earlier
statement where the dividend is calculated and one of the variables
has not been initialized and is siiii zero. Muitipiication by zero gen-
erally yields zero! Remember, ask yourself is it the cause or the
symptomn that you're fixing.

Actually the example above is relatively simple because the
program has been terminated as a result of a condition that the

computer didn’t like (it couldn’t do it). What about those times where

the test case was successful, that is, a bug was detected by virtue
of the fact that the expected results were not produced? That can
be a little harder to find. There are some common approaches to
this and some, unfortunately, good approaches that are not com-
mon. We'll take a look at both of these.

The first approach is the “guessing game” approach. That’s
where the programmer says, “Because of the kind of error it must
have occurred here!” Having done that he uses the trace facility
(TRACE) to keep track of where the program is going. The difficulty
with this approach is that the line numbers go by awfully fast making
it difficult to follow along in the listing. The second problem is that
the amount of data produced is usually quite large. A third problem

5-20

is that this only looks at the logic flow of the program and the problem
may be data dependent.

Ok, let's add some PRINT statements to display the data as it
changes or as we pass certain points in the program. This is fine,
and again produces mountains of data that need to be evaluated.
But did you display all of the pertinent data or was some omitted?
Also, if this data is displayed on the screen there’s a limit to how
much data can be retained, and therefore it is of limited usefulness.
Of course, hard-copy versions are better but it's still difficult to wade
through all of this material. A final drawback is that it allows the
machine to attempt the debugging while the programmer becomes
merely a spectator. Debugging, like sex, is not a spectator sport.

This approach to debugging has often been called the “brute
force” method. It has some advantages in that you can see exactly

After all you should be using your brain to decide what the bug is,
not letting the computer tell you. Look at it this way, if the computer
knew where the bug was and what it was, then the computer could
fix the bug. Obviously that’s not going to happen!

What we want to stress is the fact that the programmer (you)
should think your way out of a bug. There are a number of approaches;
we will be addressing two. These two methods are relatively simple
to describe and, in fact, you've already been exposed to them in
school. For want of better names they can be called “inductive” and
“deductive” approaches to debugging.

Each of these methods requires that you be familiar with the

——program:-Therefore; we'llbegin-by-assumingthatyou-are-debugging
your own program. If you are debugging someone else’s program
you must have available the documentation for the program. This

521

shouid teii you what ine progiaivi is supposed 1o do along Wi
it does whatever it is that it does

The two basic approaches mentioned above require that you
take two different approaches. The “deductive” approach requires
that you begin by examining the error and attempting to define areas
of the program that could have been responsible for the problem.
The “inductive” approach requires just the opposite, begin with the
data that indicates the presence and absence of an error and work
from that toward the problem spot in the program. We’'ll be spending
a gieat deal of time in covering these two metheds.

We’ll begin by saying that all debugging processes can be car-
ried out without a computer! Remember, | said “can” not “are” What
that means is that the programmer can utilize his own knowledge
of a program to arrive at the problem area without resorting to the
use of the computer if he will follow some simple principles. These
principles are all good, common sense ideas that have probably
been mentioned by almost everyone in the data processing industry
over the last ten or fifteen years. They’ve also been overlooked when
they've been needed by all but a handful of programmers. Just what
are these mysterious principles? How can we apply them to our own
needs with a microcomputer? Does it cost extra?

Well, P'll tell ya, with tax, license and dealer prep it comes to
$0.00 extra! That's right, it's absolutely free! Now | know that we've
all been told that there’s no such thing as a free lunch, but this isn't
lunch — it's getting rid of bugs. It's sort of like the difference between
using a home remedy to get rid of nasty crawling things from your
home as opposed to calling in a professional exterminator. Both will
work (assuming your home remedy works) but the former is much,
much less expensive.

However, since there’s no such thing as a free lunch, there is
a minor cost involved — it takes being willing to think about the
problem. If you've ever watched any of the game programs on tel-
evision (whatever that is) and tried to figure out the hidden message,
or puzzle or whatever, you've already applied some of the tech-
niques that we'll be using in our debugging. The major asset here
is an ability to think logically to a conclusion.

We'll begin by discussing deductive debugging because we are
more apt to be familiar with these techniques. Deductive debugging
requires that we begin by taking the areas of a program that might
possibly be responsible for an error and then attempting to deduce

5-22

“THE RECOMMENDED APPROACA T ‘
PROGRAM. DEBU4ey NG 15,

—
e

o0

which one really is responsible based upon being able to eliminate
one or more due to clues or data that might be present in the test
case output, or in the program logic itself.

This might be compared to the work that is done when you take
your car to the shop for service. If the lights don’t work the repairman
will seldom check the muffler or the exhaust system — the first

deduction indicates that ihe cause wiii be in ihe eieciricai sy‘siem. i
Sl mad S b Avlen thee Han mresbboans § o)
lI II‘J IQUIU ﬂl (%) ll (L=} KUU I 1 VYUI I\ii) i ICH o lﬁ Ub WG I ¥

dead battery or a blown master link. In fact, at th pomt you’re
probably already guessing that it might be a blown fuse or circuit
breaker. See, deductive reasoning does work!

The same approach is used when taking a program apart. You
can say that records that are out of sequence (when they’re sup-
posed to be in sequence) could be caused by a failure of the sort
routine, by the fact that the sort routine wasn'’t used, or by some
oiher routine that acis upon the daia ihat is supposed io be soited.
If some data is sorted correctly and some is not, then it may not be
the sort routine, or there may be some special conditions under
which the sort routine fails. That is the sort of thinking that must go
into finding a bug using the deductive approach.

So, to reiterate, the steps used with deductive debugging are
to list the possible causes of the problem, eliminate as many as
possible by examining the data thereby refining the original list of
possible causes. When you are down to one or two remaining pos-
sible causes it is then up to you to prove conclusively that one or
the other is the cause of the observed bug. This is done by actually
“playing computer” and walking the known data through the various
steps making the calculations as you go. This is, of course, a time
consuming process but it may yield very good results. You can either
prove or disprove the theory that you have found the area that is
causing the error.

The next process, inductive debugging, is one that takes a little
more work. It is more like what Quincy the Medical Examiner does
on television. It is a piecing together of many small parts to arrive
at the conclusion. He performs an autopsy and looks at the data
(| PEPARTHENT OF FORENSIC PROGRAMMING

o 3"9/
< L

gathered as a result of his work (a programmer is often said to be
performing a “post-mortem” when debugging). As the first step of
his data analysis he organizes the data by category, carefully noting
any discrepancies in the gathered data. Once this is done, he will
formulate a hypothesis regarding the cause of death. If there is
sufficient evidence (like, say, a quart of poison in the stomach) he
may theorize that there was an attempt at suicide, or that the deceased
didn’t know what he was drinking. He will then attempt to prove that
this was the cause of death. It may be incidental that the individual
in question also had been shot 392 times.

if the observed facts (data) do not agree with the requirements
of the hypothesis he will try another one until he finds one that fits.
This is the reason for so many of the early Quincy shows, there was
always a policeman ready to call a death homicide and Quincy would
prove that it wasn't, or vice versa. This usually took the better part
of an hour, but of course the writers usually knew how it would come
outin the end. A programmer trying to remove a bug from a program
often doesn’t know what the clues are when they're found, and may
not be able to relate them back to the source of the problem. In any
event, he will dutifully note them and continue. Eventually there will
be enough data to lead one to a conclusion (theory) about what
happened.

Both of these techniques require a careful evaluation of the
data produced by the program. It is this data that will allow you to
determine if the program has failed (that is, the test case was suc-
cessful). These data are the clues which will eventually lead you to
the bug.

“Ok, what if | use these techniques and still can’t find the bug?”
you ask.

That's a fair question. More than once I've had programmers
come to me and say they tried to follow the “logical” approach to
debugging and no matter how hard they tried they couldn’t find the
bug! There are a couple of simple things that can be done imme-
diately. First, don't beat your head against a stone wall trying to force
the bug to disappear by sheer will power. It won't happen. Also, after
about three hours you'll be so groggy and punchy from trying to find
the bug that you might not recognize it even if you did find it.

What to do? Well, one time honored suggestion is to sleep on

it. Let your subconscious mind work on the problem. It is usually
better at that sort of thing because it doesn't care about such inhi-
bitions as saying “it can't possibly be there.” The subconscious also

5-25

works full time, that is, 24 hours a day.

ifthat doesn’t work, try deccribing the nroblem to someone elee,
've found that telling someone else about the problem has brought
the source of the problem out into the light simply by my explaining
how a given routine “has” to work. Sometimes | won't see the error
of my ways, but the person to whom I'm explaining it will. Seems
he’s not as close to the problem as | am and can evaluate it from a
more level headed position than | can. Whatever the reason, this
seems to work about 80% of the time. For the remaining 20% there
are some cther approaches that may be tried.

If you've tried all the “thinking” approaches and don't seem to
be getting anywhere, then try to use an intelligent mix of thinking
and “brute force” methods to arrive at the cause of the bug. | empha-
size the word “combination” because you should never quit using
the thinking approaches. The use of the brute force methods should
be used as an aid to gather more data which may be used to further

evaluate the problem.

IF You CAN'T FND THE BOA: |

1. SLEEP on 1T,

2.PESCRIBE THE
PROBLEM TO SOMEDNE ELSE

8, Usg A coMBINATION
oF e "BRUTE FORCE "
TecHMQUES AND THE
“THINKING " TECHNIBOES -

Another reasonable method is to try running different sets of
data through the program. Before you do that, however, make sure
you have carefully decided what the results should be so that you
can evaluate the results from the proper reference point. This is
anotner way of getling additional data for the evaluation purpose.
Remember, the more useful data you have the better your chances
of finding the bug are.

5-26

One point should be mentioned. Assuming that you still haven't
found the problem there is bound to be a certain amount of frustra-
tion setting in. At times like these it's usually nice to say “well, | don't
know what's wrong so I'll try changing this and see what happens.’

blmR‘éu Mlocis
SRS ANoTARS

'Il

"Check 4he orea of your last Gx

It doesn’t matter what “this” is, it's still a bad idea. First of all, there’s
very little hope that the changed line is the cause of the problem. In
fact, it's 1/n where “n” is the number of statements in the program
(assuming that each line has an equal probability of being in error).
The other reason for refraining from this sort of activity is that
it can result in masking the error, or causing other errors. Remem-
ber, any code used to make a change or remove a bug is more likely
to be in error than the original lines of code were. These little axioms
are all quite nice, but how then does one go about removing a bug
that can’t be found using any other ideas suggested so far?
Unfortunately, there really aren’t any other ways of finding bugs.
There’s the “guessing” method which says that the most likely areas
for containing the bugs should all be rewritten to make sure that the
bug gets caught. The reason this is not recommended is that it is
worse than just making changes at random. There are a couple of
good reasons for this. First of all, if there was a bug in code that
was carefully planned and laid out, then how much greater are the

chances that there will be a bug in some code that is hastily con-
ceived and implemented “just in case.”

5-27

Assuming that we've found the bug, just how do we go about

correcting it? That's not always as easy as it sounds. There’s always
a tendency to say that flndmg a bug is almost the same thing as
fixing a bug. There’s nothing further from the truth! Once a bug is
found the work is really just beginning! Identifying a bug means that
you may now begin evaluation of the error and its effects on the rest
of the program.

Very few bugs exist by themseives. Miost of them reside within
a program and do affect the operation of the rest of the program.
Before any channns are made it ig lmnnrmnf to evaluate the gcope

T SIS

of the problem and to make sure that the fix will not introduce another
bug somewhere. This is another reason that the documentation for
a program must be fairly complete.

There are some principles that govern the way in which bug
fixing should be approached. One, told to me by an old-timer, said
that you should never fix bugs when the heat is watching. I'm not
sure what he meant by that, but he seemed to know what he was
talking about. Word had it he was one of the best fixers on the strip.

Seriously now, the first premise, which we've already men-
tioned, is that bugs don't like to live alone. Where there is one bug,
there’s probably more. It's almost a universal rule that if a program-
mer has let down his guard sufficiently to allow one bug to creep in
he’s let many in. This is due to the fact the each line of code that is
written is related to the other lines of code around it. If there’s an
error, it may cause other errors by virtue of the way in which that
error affects the rest of the program.

We've also discussed some other very important ideas. First of
all, we must always try to fix the bug, not merely the symptom. Don’t
be confused and fix the thing that appears to be the bug without
concern for what the real bug is. We pointed that out when talking
about a zero divide. The error caused by dividing by zero may simply
indicate a problem elsewhere in the program. You can determine
this by evaluating the data — can the denominator ever assume a
value of zero validly? If it can then you'd better be checking for that
condition. If it can’t then a check for a zero divide error will merely
mask the real problem and will correct the symptom without ever
touching the bug.

Another point that's already been covered is that the code being
used for a fix is not guaranteed to be correct. This simple statement
is often ignored by more programmers and, not surprisingly, is the

5-28

cause of more follow-up errors than anything else. What that means
to you and me is that we need to be more careful in the application
of fixes. Make sure we've got the real problem, and then evaluate it
carefully. How best can we fix it? What will this fix do to other routines
in the program? Is the fix compatible with the original design and
intent of the program?

P

‘jm MZZ‘;W“%J"'
07(;/4';&() "oR':wsz“AND”M)

(B 'DATAI:”YPJF:L Lk
Mo 4

-
4 i

These are all questions that we should ask ourselves each and
every time we work out the code for a fix. Additionally, we need to
spend time designing the code that is used for a fix. Just as we
carefully designed the program in the first place so too we must take
the time to design the fix. This code is just as important as the
original code (perhaps more so) and must be fit in so smoothly that
the fix becomes invisible. That is, it must not affect the readability
or usability of the program in a negative sense.

How's that again? What we're saying is that fixes often stand

______outlike a bright red flower in a field of green grass. There’s nothing

worse than a fix that calls attention to itself.
“Why is that?”

5-29

Remember, part of the ideal toward which we are striving is a
program that will be easy io read and easy to mainiain. if a fix
becomes a flashing neon light the next time the program is worked
on the fix will get undue attention, perhaps to the detriment of the
rest of the program. This can lead to the programmer giving the fix
more priority than it deserves. All of this can lead to the idea that
the program structure is not what it appears to be. We want to keep
the program both visually and logically structured so that mainte-
nance is easy to perform, but also so that the program works as
efficiently as possible.

Now, with all of that in mind, let's look at a corollary of the original
statement. If a fix for an error is not guaranteed to be correct, then
the possibility of the fix being in error increases as the complexity
of the program grows. What that means is that as the number of
lines increases, the chances for a given fix being correct decreases.
This again ties back to the idea of the relationship between the
different lines of code.

What does this mean to us? It means that when we've finished
installing the “fix” we need to go back to the test cycle with an
awareness that the “fixed” area is now more prone than ever to fail.
We should be especially careful to make sure that the fix is thor-
oughly exercised. In fact, some have even said that when the next
error is found the first part of the program to look at is the area of
the fixes, whether they can be pin pointed as possible error sources
or not!

By the way, although this book is primarily aimed at the BASIC
programmer, there is another important point that relates to the
assembly language programmer. When removing bugs from assem-
bled programs there is an almost overwhelming urge to make
“patches” to the object code. Don't! The drawback to this is two fold.
First there is a tendency to do this in a hurry which means that the
evaluation and design of the fix is not done in a manner which is
conducive to proper fixes. Additionally, it is entirely probable that the
fixes will never be reflected in the source code so that the next time
the source is assembled the bug is still there. Most unsanitary! Not
only that, it makes for a great deal of frustration when you think back
and decide that you’ve already fixed that bug once!

While we're talking about debugging, lel's take one more topic
and throw it out. Each and every one of us has a certain dislike for
various forms of regimentation. As a result we like 1o be “individuals”

5-30

For programmers there is a very obvious way in which this is stated.
We all have certain failings that are, unfortunately, somewhat com-
mon.

We don't all make the same mistakes, but each of us will have
a tendency to make the same mistakes over and over again until
we learn what the mistakes we are making are and find some way
to prevent them. One such way is to keep track of the kinds of errors
you find in your own programs. After doing this for a while you'll be
able to formulate a statement of the kinds of errors that you've found
and, hopefully, be able to define a way to prevent them in the future.

For example, if you know that 70% of your errors occur in nested
IF statements you might spend more time when coding them to
insure that they are coded correctly. That is, that the computer can
do them, that they are what you want, and that they are stated in a
fashion that is correct in terms of sequence and syntax. This will
help eliminate errors down the road.

Now there is no such thing as a bug free program, just as there
is no such thing as a perfect programmer. We are all going to fail
from time to time (why, just last year | left out a PRINT statement
that...oh, never mind). But as we carefully evaluate our failures and
determine why we fail (rather than how) we might be able to apply
ourselves to correcting the reason behind the failures. As with pro-
grams, we need to correct the bug, not the symptom.

Unfortunately there has been very little literature on this subject
and so we're all working on our own. One thing of which we should
all be certain is that there has never been a program that had no
bugs (with the exception noted earlier), nor will such a program ever
exist. Let me give you an example of a bug that was so severe that
the fix actually doubled the size of the program. IBM (again!) has a
program called IEFBR14 which is, in reality, just a way of getting
access to the various system routines used in job initialization. This
program consisted of one instruction which was a “BR 14” which
means to branch (jump) to the address contained in register 14.
Well, that seems ok, the system supplies the return address to a
called routine in register 14 so jumping to it should be just like exe-
cuting a Z-80 RET instruction. Actually, there was nothing wrong
with the code in this program! The error lay in the what the system

expected in another register when the_program returned to.it. Reg-
ister 15 was supposed to contain a number that indicated the status
of the job. This number should be in the range of zero to 4,096. In

5-31

the case of our little BR 14 program the number in register 15 was
the ENTRY PQOINT of the program which was usuaily larger than
4,096! The fix was to add the instruction “SR 15,15” which subtracts
register 15 from itself. This results in a return code of zero which
was acceptable. The BR 14 instruction took two bytes and the SR
15,15 instruction took two more bytes thus doubling the size of the
program!

The real example here is that sometimes the bug may appear
outside of your program and yet still be caused by your program.
Never make the assumption that your program is so simpie it must
be correct. After all, what could be more correct than a single
instruction program? There’s no such thing as a bug free program.
That simple principle should probably be tatooed on the back of
both hands of every programmer in existence.

This section has discussed both testing and debugging. While
they've been treated in different chapters they do go hand-in-hand.
They are related in that one is used to find what the other fixes. The
title of this chapter perhaps gave you the wrong idea — that is that
bugs were easy to fix — they aren't. If they were easy to fix the
computer could do it for you! The idea here was the same as the
ideas throughout this book; to present a methodology that would
lead to a simpler way of finding and fixing bugs. One that will allow
you to maximize your own personal productivity.

As strange as it may seem, finding bugs can be reduced to an
almost science. All it takes is the patience of Job, the wisdom of
Solomon, the steadfastness of the Sphinx, and the world's greatest
sense of humor. Seriously, if you will approach each bugas a chance
to prove to yourself how good you really are, if you can make it a
game — you against the bug — there’s a good chance that finding
and zapping bugs will become a relatively painless process.

No, there’s not even a sure-fire method of finding bugs. You've
got to track 'em down through good, thorough testing practices and
procedures. Remember to keep track of the ideas that you've had
during the testing cycle relating to how you can improve your tests.
This will allow you to build better test plans the next time around.
After doing this several times you will find that test plans, testing
and debugging will become almost like second nature. There won't
be any more hair puiling (you'll aiready be bald), screaming (your
vocal cords will be shot) or long, sleepless nights over bugs. Really,
finding and correcting bugs can be fun!

5-32

5-33

Section 6 — The End of the Journey

We’ve arrived at the end of a long journey. We've described
how you go about writing a program. We started by taking an idea
and fleshing it out, adding material where it was needed to make a
real, live program out of it. Now that we've got the program tested
and debugged there's still one more step, one very important step.
'm sure most of you have seen the cartoon that say's “the job’s not
done 'till the paperwork’s done.”

This finai section wiii cover ine iopic of paperwork — specificaily
the documentation that's required for a program. We've covered
some of the material as we went along, but we’ll cover it in more
detail here so that you can get a good idea of what's really needed.

CHAPTER 12

Readable Documentation

The title of this Chapter says a lot about what we want to accom-
plish. A great deal of care is taken these days to make sure that a
program is “user friendly” That's all well and good, but it must also
be pointed out that a program is only part of the package. There’s
also documentation.

“But the program’s just for me! Why do | need documentation?”
you ask.

That's a fair question (you guys are sure on your toes with those
questions). Why do you need documentation? We've already pointed
out that you might be picking up a program that was written some
time in the past. Let's imagine what might happen.

First we find a disk (or a tape) and we load the program that's
on there just to see what it is. It looks neat and we decide to run it.
Wait a minute, what do we need to run it? What does it do? Are
there any special requirements before we start executing the pro-
gram?

Without documentation we would have to answer those ques-
tions using the program itself as the documentation. Let's also assume
that this program was written before you read this book and there-
fore the program is constructed in a rather haphazard fashion. Now

6-1

“‘\M 13/"1 I “,,‘;
P
e
Y

_DO(.UM&V\‘*'\ “ Y
s}fdje—D\rcd' on . XY / G‘

\ i,\; @ | W

iags

L

) V
e

we have a real problem. It's been so long since we wrote the program
that we’d forgotten about it and now we can't figure out what, if
anything, it was supposed to do. In fact, we don’t even remember if
it ever ran. Oh well, it was a good idea anyway!

6-2

This is the sort of thing that we want to avoid. What we’ll be
coveiing in this Chapter is the way to document a program so that
it is truly painless to do so, and so that we can decide how much
documentation we need. After all, if the program is only for our own
use there’s no sense in writing a 500 page user’s manual for a 200
line program!

Let's begin by setting down some simple guidelines about what
should be in the documentation. We can then proceed to define how
much should be used based upon whether the program is for your
own use or is to be marketed. One important point should be made
before we continue. If you are using this book to enhance your own
skills and you work for a company in the data processing area, don’t
forget that each company has it's own set of rules and regulations
regarding what should and should not be in the documentation. The
material we’ll be covering here has been generalized so that it can
apply to a broad spectrum of the microcomputer users, not neces-
sarily the commercial users. Therefore, caveat emptor (or be careful
of who it is that you buy a used chariot from)!

If you ask thirty different data processing managers what should
be included in documentation there’s a good chance that you'll get
fifty or more different answers. The most common answer is likely
to be “It all depends!” And, believe it or not, that’s perhaps the best
answer that can be given. The question itself is so open, so nebulous
that there’s really no one answer that can satisfy it. What we’ll be
doing is to try and pinpoint the items that all of these hypothetical
managers would have mentioned. These common points will prob-
ably address the questions of “what,” “why,” “how,” and “under what
circumstances.”

1 | == }

DOCOMENTATION SHOULD
Smal ANSWER THE aur—:sm%’s:

SWHAT?
: \\N‘\ ! \N"HY” "
(How

~

) *UNDER
WHAT CIRCUMS/T/ANCES“

M .
. Ay ZadTH]
;// i Woivviz
//// ‘4' ///'/)/f,',/:

6-3

Briefly we'll define each of these terms and then develop more
complete answers as we go along. “What” is used to specify what
it is that the program does. “How” therefore will tell us how the
program does whatever it does. “Why" is the statement of the prob-
lem that the program was intended to solve while “under what cir-
cumstances” defines the operating environment under which the
program will solve that problem. See how easy it is? Don't get over
confident, if it were really that easy there wouldn’t be several million
programmers that hate documentation, or would there?

In addition to the points covered above regarding what the doc-
umentation should include, there are also several different kinds of
documentation. By that we mean that you should have documen-
tation regarding the program, user documentation, operator docu-
mentation and, possibly, control documentation. For microcomputer
users the user and operator documentation are usually the same
document, perhaps separated into different parts.

Let's begin by discussing the requirements for program docu-
mentation. That's perhaps the easiest to do since most of it has
already been done! What we mean here is that the bulk of the pro-
gram documentation will consist of the design documents as well
as any changes made by you as you were coding the program. This
will effectively answer the questions of why the program was written,
what the program does and how the program does it. The amount
of material here should be of sufficient detail that you can refer back
to it at any time and be able to understand the reasons for the
program, and the reasons behind the implementation. That is, that
you can understand why you wrote the program the way you did.

In addition to these design documents there should also be a
narrative for each routine which will describe the routine in general.
This description should include any interface requirements such as
variable usage, data returned, file status and so on. The narrative
should also include a brief overview of the logic used in the routine
especially for any code that is more complex than usual. This is
primarily aimed at being a record that will allow later maintenance
of the program. Of course, the “beauty” of the document is defined
by the destination. If you're the only one that will ever use it (except
for the possibility of a few close friends) then hand written in a

reasonably legible form is probably acceptabte:
Another area that should be included in the program documen-
tation is examples of the files. Input, output and report examples

6-4

should all be carefully laid out so that you will be able to remember
what the program expects in the way of data. The report formats
are especially useful if you are trying to show someone else what
the program will do. It's always easy to explain that sort of thing with
a picture around. As usual, a picture can be worth a thousand words.
The user/operator documentation is designed to allow some-
one (other than yourself) to run the program, This requires a fairly
complete description of the problem that the program is designed
to solve along with a general description of how it solves the prob-
lem. The detail that is present in the internal programmer docu-
mentation is not only unnecessary but also unwanted. Most users
don’t care how a program does what it was purchased to do, all they
care about is the fact that it does indeed perform as advertised.

The majority of the user documentation for microcomputer pro-
grams on the market today are awful! They assume that the users
know everything that the programmer knew when the program was
written. The documentation makes assumptions about the knowl-
edge and skill level of the user and these assumptions are normally
invalid! There’s a principle that is always mentioned anytime anyone
is talking about communicating an idea or an abstract concept to
someone else — “KIiSS” or Keep It Simple Sweetheart. Some peo-
ple have been known to change the last “S” to mean something
eise, but we’ll use this more generous definition.

6-5

KISS. There's something inherently nice about simplifications
like this. What it implies is that the material being written should
make minimal assumptions about the reader; the terms should be
those that the reader will be familiar with, the material should be
presented in a logical, step-by-step fashion so that the reader can
grasp the meaning easily.

We could be talking about several different things here so I'll
begin by clarifying what I've just said. Whenever any material is
written for someone else, the writer just naturally tends to use words
that are familiar to him. This can be a severe limitation because the
reader may not know the words. If you've ever watched children
trying to read you're aware that they’ll normally skip over words they
don’t know rather than taking the time to look them up. If there are
lots of words that are unfamiliar then the child will tire of the book

quickly and go on to somethmg else. The same idea holds true for
the users of our programs. The documentation must be simple enough
for them to read and understand.

Another problem that is found in documentation is that the reader
just gets tired of reading after a while. To make this clear, how many
people do you know that purchased computers that are now just
sitting around gathering dust or are used only occasionally as a
game machine? Why do you suppose people would purchase com-
puters and then let them sit around doing nothing? The answer is
very simple — the documentation makes it too difficult for them to
learn how to use the computer! There are a great many people that
can't learn simply by reading; they have to practice. This is some-
times called “manual learning” because they learn what they prac-
tice rather than what they read.

This-is-one-ofthe-reasons-thathomework-is-assigned-in-school:
Many people can quickly grasp the concepts in class but must then
practice to make the skill their own. Homework is not the best answer,

6-6

but it is the only sure way to provide practice. These principles must
be considered when wiiting documentation. That means that there
should be lots of examples. These examples are used to explain
the basic operation of the program, from power-up to power-down
if necessary! There should also be examples of just about every
kind of action that the user can take with a program. Remember,
Murphy has predicted that if anything can go wrong it will. This is
usually interpreted as meaning that the documentation will omit some
critical sequence for the novice operator which is likely to cause him
to destroy the program, the operating system or the disk.

Another failing of most documentation is that it expects the user
to know what data he needs before he executes the program. Often
he won’t know until he gets to the input routine in the program and
suddenly discovers that he doesn't have the data and doesn’t know
how to get out of the routine he’s currently in so he can go get the
data. That's a most unfriendly situation to be in!

“Yes, a question from the back.”

“Then, are you suggesting that the documentation must be as
carefully planned as the program?”

Very good, that's exactly what we’re suggesting. See, | knew
that you were paying attention. As with everything related to the
computer, the more time and attention put into the product the better
it will be. This is true of any human endeavor but is especially so in
the case of computers.

Now that we've talked a little about what has to go into the
documentation, let's take a look at some of the mechanics of doc-
umenting. in other words, let's look at how you go about writing
documentation. There’s some simple rules that govern the construc-
tion of good, readable documentation.

The first idea that we need to keep in mind is that documentation
is meant to communicate with someone else. The process of com-
municating is a very complex function that requires cooperation on
both ends. The document that is being written for someone else to
read has some rather broad requirements that are defined by the
language that is used. Since we will normally be writing in English
we must follow the rules of the English language. Since we are going
to be communicating with people that are not necessarily “comput-
erists,” that is, people that are “into” computers, we must restrict the
use of buzzwords and slang that is peculiar to computers.

If we address ourselves first and foremost to the reader we will
be better able to document our programs. What does the reader
expect from us? What is his background? Is he willing to work at
understanding the documentation? These questions are really at
the center of the problem relating to good computer documentation.
By the way, this applies to hardware as well as software documen-
tation.

By answering the questions we've just asked we will further
define what must be in the documentation, at least from a mechan-
ical standpoint. The reader expects us to tell him how to use the
program, what data is required, and what the result of using the
program will be. Further, he expects us to tell him this in terms that
he is familiar with. He doesn’t want to wade through a lot of techn-
ocratic double-talk. We will lose the reader if the terms used aren't
common, everyday terms used by the average person. If the pack-
age is an accounting package aimed at the small business man it
is permissible to use some accounting terms, but remember that
the small businessman is probably not a CPA or an accountant so
be careful of the terms used. At the same time, don't try and invent
terms based upon common words that might confuse the issue. It
is better to be correct and wordy than incorrect and terse. In other
words, if you can’t use the correct term because it might confuse,
don't build a funny term just to eliminate using more words. Always
take the time to explain the meaning of words if you must use tech-
nical terms!

When writing documentation, or any material for that matter,
we must consider the audience that we are targeting our writing to.
If we are writing a program that is used for calculating orbital mechanics

we have a certain idea of the sort of person that might use the
program and therefore an idea of the educational requirements.

There’s stiii no reason o aitempt {0 overwheim our readeis wiii a
display of our prowess with the English language. They ¢ d
them to do so unnecessarily with our documentation!

There are some other considerations while we're at it. The
mechanics of writing require that we organize our thoughts into sen-
tences and paragraphs rather than putting words on paper at ran-
dom. To do this properly requires an understanding of how we read.
Reading is a process of transferring data from our short term mem-
ory o fong term memory in a seiies of images. These images arw
not related to words but rather to concepts. The human brain is an
amazingly complex computer, and it functions in pictures rather than
in words.

The human brain also likes to take advantage of “phrases”
since the short term memory can only hold a few words at a time,
usually around six or seven. This means that sentences that are
long and complex may not be fully understood. For example, most
of the sentences in this book are in the range of 15 to 20 words
long. The longest is around 50 words and the shortest is one word.
Because you are an interested reader you have made a sacrifice
and worked a little harder at understaning some of the material that's
in this book. You see, interest plays an important role in the gathering
of data.

Since there’s so much desire in American society for instant
gratification there’s a need to make sentences shorter and harder
hitting. If you don’t like a show on television you can always change
the channel, if a program takes to long responding you hit BREAK
just to see if the program is still running. This impatience is also
visible with people that are reading. Try reading the Count of Monte
Cristo or any other of the classics of that period and you'll find
yourself skipping over long, tedious sentences that are merely used
as “color” sentences. There’s just no desire to read anything that
doesn’t immediately seem relevant.

If we understand that lack of tolerance on the part of our reader
we can try and keep the material tightly written. This will eliminate
some of the problems. So what we're talking about is writing that is
easy to read and o the point. We want to minimize the number of
words that are not in the working vocabulary of the reader. Are there
any other ideas that we will need to keep in mind when we are writing
our documentation?

We need to remember that, for the most part, our documenta-
tion is all that the user will see of our work. He will never meet us,
and may never talk to us. It is therefore necessary that the docu-
mentation address as many of the points about the operation of our
program as we can think of. We must also write the documentation
so that the user will really believe that we care about him. That's
part of what will bring him back to purchase from us again.

What if we aren’t planning on marketing the program, do we still
need that kind of documentation? Of course not, there’s no reason
that we would need that much for ourselves. On the other hand, we
will want most of the same material so that we could pick up the
program a year or two later and still be able to use it. We can take
more liberties with the language since we are intimately familiar with
the background of our intended reader. The use of buzzwords and
poor spelling or grammar is acceptable here, but only marginally so.

The problem with doing anything on a marginal basis is that it
can tend to become a habit, one that’s tough to break. We must
always strive to produce our best work regardless of whether it’s for
ourselves or for outside consumption. There'’s never an excuse for
poorly written documentation that’s incomplete or, worse yet, incor-
rect. Remember, even when writing for yourself you must realize
that time can dull even the sharpest of memories, and you may not
remember all that you think you will.

In order to make this whole discussion of documentation come
full circle, let’s take a look at how we might go about documenting
the CHEKBOOK program. This will provide a reasonable approach
at documentation since we have all developed the program through-
out the course of the book and therefore should be reasonably famil-
iar with the way in which the program works. For this reason, we
won't write the program documentation. The book itself is more than
adequate since it covers all of the design criteria as well as a nar-
rative of each of the routines. All of the flowcharts covering the
program are also included. This is, of course, more documentation
than is normally needed. After all, who wants to write a book for
each program? The documentation that we’'ll be writing, then, is the
user documentation. This should clarify all of the issues that we've
been discussing.

6-10

The CHEKBOOK program was written to provide a simple method
of making sure that all checks are carefully tracked and entered.
Many times we have written a check and then forgotten to enter it
in the register, or have failed to properly balance the checkbook.
Using CHEKBOOK this problem will never happen. It will automat-
ically keep track of the current balance for not just one but up to five
different criecking accourits.

This program is capable of writing checks with the assumption
that you have an impact printer attached to your computer. This
printer must be capable of handling your normal check stock, or you
can order special continuous form checks from your bank. The pro-
gram will automatically keep track of check numbers too!

To use this program you will need to have at least one disk drive
(or a cassette recorder if you have the tape based system). Place
the program disk in the first drive and “boot” the system according
to the directions supplied by the computer manufacturer. This nor-
mally involves turning on the power or, perhaps, hitting the reset
button. Enter BASIC following the manufacturers directions and run
the program “CHEKBOOK/BAS.”

The program will be asking for data related to your current
checking account status such as the current balance, the next check
number and so on, so please have this material ready when you run
the program. The first time the program is run the Check Register
File (called the CRF) will not be present on the disk, and there is no
need for concern because the program will simply create this file
for you.

After the program has gotten ready to begin processing it will
display the “menu” or list of things that it can do. While it is getting
ready it will display the message “SYSTEM INITIALIZATION IN
PROGRESS, PLEASE WAIT” which means that the program is
reading data from disk and doing some other “house keeping” to
get ready to take care of your requests.

When the “menu” or list of options is displayed on the screen
you will see a list of seven different functions that the program can
perform. In the upper right hand corner of the screen (where the
dashes are now) is the area reserved for error messages. The
selection of an invalid code will result in an error message there,

6-11

Hit “ENTER” or “RETURN” on your keyboard to see the results.

We will briefly go over each of these functions so that you will
know what they are used for. The POST routine is used if you have
written a check yourself (a hand written check) and you want the
system to know about it. This is a good idea so the balance main-
tained by the computer will agree with the one the bank has.

The WRITE routine is used whenever you want the computer
to write a check for you. It will always use today's date and the
current check number when the check is entered into the Check
Register File (CRF). We'll talk more about the CRF in a moment or
two.

The STATEMENT routine will print out statements showing all
transactions (checks written, deposits made, etc.) for either a selected
account or all of the accounts that the system knows about. This
function will require the use of a printer so make sure it is ready
before using STATEMENT,

Selection number four is the SETUP routine. This is used any-
time you want to tell the computer about a new account. It is also
used the first time you use routines 1 or 2 (POST and WRITE) if
there are no accounts set up.

The DEPOSIT routine is used anytime you want to tell the com-
puter that you have put more money into the checking account. The
computer will add this amount to the balance as well as making an
entry in the CRF

Because there is a limit to the number of entries the computer
can hold in it's memory, we've provided a PURGE routine as selec-
tion six on the menu. This will print a final check register (called the
Month End Statement) and then will adjust the month starting bal-
ance. It will also get rid of all of the entries that have been made
since the last PURGE or since the program was first run if there
have never been any PURGEs. The program can hold up to 150
entries (deposits, checks, etc.) so we suggest that PURGE be run
at month end, or on a regular cycle.

The END routine will cause the system to rewrite the Check
Register File (CRF) and then the program will end. This makes sure
that all activities that have taken place are saved so that the program
will know what has happened in the past.

-————Each-of these-routines-requires-different-information-thatmust—
be supplied so we’'ll now take a quick look at what is needed. The
POST and WRITE routines require some information in common,

6-12

both wiii want to know wno ihe check is writien io, the amount of
the check and the account on which the check is drawn. You will be

given an opportunity to supply a comment for entry in the CRF and,
in the case of WRITE, on the check. In addition to this information,
POST will want to know the date the check was written (if you hit
ENTER the system will use the current date) and the check number
(entering “-1” will cause the current check number to be used).

The STATEMENT routine will ask if it is to print statements for
all accounts. You may answer with either YES or Y to indicate you
wani aii accounis, or if you wani {0 specify an accouit nuinber you
may reply NO or N. If you have elected to specify the account num-
ber the program will now ask for it. The statement will then be printed
on the printer.

The SETUP routine will ask for the account number (you may
either number accounts as 1, 2, 3, etc. or use the real account
numbers). The starting balance and the next check number will also
be needed by this routine.

The DEPOSIT routine will want only the account number that
the deposit is to be posted to and the deposit amount.

PURGE will need the same information as the STATEMENT
routine.

The END routine requires no information.

The information that is maintained by the program is all stored
in the Check Register File also called the CRFE. This is a sequential
file stored either on disk or on tape. The file contains the account
numbers, current balances and the next check number for each of
the accounts that are setup. It will also contain a record for each
check that has been written of which the system is aware as well as
all deposits that have been entered into the system. The information
is stored as a single group of letters and numbers with a delimiter
that tells the program how to break this group apart.

The error messages that are issued by the program include the
following. in each case we have attempted to indicate what action
should be taken to correct the error. In the event that you can not
recover from an error, you may usually rerun the program. As long
as the END routine has not been used the data in the CRF file is
still untouched, and you have effectively’ backed-out or reversed
everything you have done.

1) ERROR, CHECK REGISTER FILE NOT FOUND. FILEWILL
BE CREATED!

This message indicates that there is no CRF on the disk, and
the program will treat this as the first execution of the program. After
the END routine has been used once there will be a CRF and the
message will not occur again. If there should be a CRF file check
to see if you have the correct disk in the drive.

2) NO ACCOUNTS SET-UP YET.

This message indicates that the SETUP routine has not yet
created an account that can be used. If this message appears after
the selection of the POST or WRITE routine you will continue in that
routine after establishing an account. If this message appears in the
SETUP routine itself it is simply an informational message.

3) ERROR, ACCOUNT NUMBER NOT FOUND. RE-ENTER!

This message is used when the system can’t find the account
number supplied for the POST, WRITE, DEPOSIT, PURGE, or
STATEMENT routine. Correct the account number by re-entering it.

4) BALANCE WILL GO NEGATIVE, WRITE CHECK ANYWAY?

This message is used when the WRITE routine detects that the
amount of the check exceeds the balance in the account. You may
still write the check.

5) ERROR, CHECK REGISTER IS FULL. HIT ENTER TO
CONTINUE.

This error indicates that there are currently 150 entries for the
account number being processed. Hitting ENTER will cause the
computer to return to the menu and no action will be taken. This
means that whatever you were attempting to do (POST, WRITE or
DEPOSIT) did not take place, and the computer has ignored the
request. This may be corrected by running a PURGE.

6) INVALID OPTION

This message will only appear in the upper right hand corner
of the screen when the menu is displayed. It indicates that you entered
a number or letter other than the numbers 1 through 7 which are
the only valid routine numbers. Please correct the entry.

You will note that the MENU routine does not require you to hit
ENTER after entering the routine number. All other data must be
followed by the ENTER key to register the data to the computer.

This concludes the documentation for the CHEKBOOK pro-
gram.

There it is. It's not terribly long, nor is it terribly complex. The
documentation tells the user exactly what is needed to run the pro-

6-14

gram without burdening him with extra words. Of course, there'’s a
iot more we couid have said, but thai's probably more than we needed
to say. The idea is to provide a guide that he can follow and under-
stand. If he can quickly start using the program we’ve probably
allowed him to learn what the program expects, and we've made

him feel like the program is easy to use.

owmen‘\‘x\'low\\ou(cl ‘oe M

The name of the game is to be user friendly, both in the program
and in the documentation. We must always remember both sides of
the task. If we forget one or the other we may lose a customer. If we
are using the program for our own use we may later find that we
have a salable product, but it's too much trouble to clean up the
program and documentation to make it sell well.

As a final recommendation, always treat every program as if it
were intended for the commercial market place. There may be times
that that becomes a real pain in the neck (or elsewhere) but it will
eventually become a habit that will yield a large number of benefits
to you. You'll find that your programs are all much better (and each
gets better than the last). You'll find that you are developing pro-
grams just as quickly and with fewer bugs. Who knows, you may
even be having more fun!

6—-15 -

CHAPTER 13

Epilogue

Well, this is it. We've come a long way since we started this
book. There’s been a lot of ground covered and we've done some
fun things (at least | did). | certainly hope that you've had as much
fun as | have. There’s a lot to say for developing a program the right
way. There's aiways ihe sense of accompiishmenit thai goes aiong
with it. Especially if the program is relatively clean and requires
minimal debugging!

Back near the beginning of this book (some 52,000 words ago)
we mentioned that there was a principle of teaching that states that
you tell the student what you're going to teach, then you teach the
material, and then you tell 'em what it is that you taught 'em! We're
now at that point in the book.

We've covered some of the more important of the program
development techniques when we discussed the modular and struc-
tured methodologies. These two techniques will allow you to develop
programs based upon work that you've already done. It's sometimes
very frustrating to try and take material from another program when
it's scattered all over the place. This is especially true if there’s some
code there that you really need to finish off another project. You've
got to go through the program and evaluate the function that you
want, determine which code is essential to the function and which
is not, and then extract that code and make it useable in the new
program. It's no wonder that so many programmers would prefer to
rewrite and reinvent the routine than to try and extract it.

Perhaps of equal importance, we've finally laid down some
guidelines that help us in starting a program. So many times we've
begun our programming in the middie, completely skipping the
beginning stages. And, with that handicap completely ignored, we've
asked ourselves why we have so many problems. | ask you now, is
it any wonder that the programs work at all? If they do, it's only due
to your own dedication and tireless efforts.

Sometimes programmers will come to me and tell me that they
have thought about becoming involved in data processing as a
profession, but gave up the idea when they realized how hard it was
— they didn't want to spend theilr whole lives debugging programs.

6-17

Well, let me tell you, there’s no job easier than data processing if it's
correctly approached! The money’s good and the challenge is always
there. The hard part of the job is staying current. For example, in
the three months it's taken me to write this book there have been
over twenty new computers announced in the microcomputing
industry, there’'ve been at least 10 new hard disk drives, and count-
less operating systems for the TRS-80.

Change is essential to life, and it’s the driving force behind data
processing in all of it's phases. We in the microcomputing industry
are in the drivers seat now. The monster computers are still going
to be there, but the revolution in business is the small computer. |
don't know if the “ideal” computer is a TRS-80, and Apple or an IBM
or any of the other computers out there. Each one has something
to recommend it and, usually, a bunch of things to cause you to shy
away from it. All are popular and are supported by the independent
software and magazine suppliers, the Apple and the IBM are well
supported by the independent hardware suppliers while the TRS-
80 is marginally supported with brand-x hardware.

Which computer do | recommend? You may have guessed that
my answer is “It all depends!” What do you want to do and how fast
do you want it done? What kind of image do you want? | can't rec-
ommend the Apple for all things because it's not an “all things to all
people” computer. For the same reason | can’t recommend the TRS-
80 or the IBM or the Atari or the Commodore or the Flash-97.2 or
any other computer. They each have their reason for existence, and
| guess that the buying public will determine what they need.

I myself believe that as long as there’s a market for a given
computer the computer will continue to exist. If the manufacturers
want to play games with the buying public they will be the ones to
suffer in the long run. | find myself looking at this area with a com-
pletely different viewpoint than | did way back in 1977. When the
industry first started | guessed that someday | would own a micro-
computer (little did | guess that | would own four of them). My first
love was a baby blue IMSAI 8080 computer. Unfortunately | don't
know a flip-flop from a diode! | didn't want something that | had to
put together (because it would either never be put together or else
it wouldn't work).
|- wanted-a-computer-that-you-could-plug-into-the-wall-turn-iton——
and have it work! Back then that was an unreasonable thing to ask
for. After several years on mainframe computers it was what | wanted

and i was wiiiing io wait i\io, im not going io ieii you what i got

....................
some of what was good for the blg computers was good for the little
computers. More importantly, | learned that what was good for the
littte computers was always good for the large mainframes. | dis-
covered that the development techniques that were being touted for
the big computers worked very well for the little computers.

What really happened was that | began talking to other com-
puter users and discovered that everybody in the microcomputer
worid (that i was exposed o) wanied io iearn more about how to
program correctly. They wanted to do this programming with minimal
difficulty and with maximum results. Again these are trends that were
becoming popular in the management circles of large corporations
— get the most for the buck regardless of whether it was a buck
spent for hardware, software, or people. Maximize everything became
the rallying cry (especially maximize profits).

Seeing the demand (I was in management at the time) | began
to see what was needed. Could the two worlds be merged? | used
the microcomputer at work to do some planning — more managers
got interested. But something else happened. We were looking for
programmers and there was a critical shortage of good program-
mers. | had a guy come along that was experienced in the Apple
computer but had no other background in data processing. Could |
use him?

My management was skeptical but | went ahead and hired him
(I always trusted my judgement on people | hired). we were very
lucky. This individual turned out to be a super programmer and |
never regretied hiring him. He has learned to apply the Apple tricks
and techniques to the mainframe and it has benefited him. At the
same time, | was teaching him about the mainframe developmental
techniques which provided him with still more abilities to meet dead-
lines and schedules. The ideas that I've presented here do work.
They work in the business world and the work in the hobby world.

Well, where do we go from here? | certainly hope that you'll
take the time to play with the techniques that we've discussed here
and try to develop your own programming skills so that you will be
a better programmer. I'd certainly hate to think that you became a
Worse programmer as a result of reading this book.

“Ok, but what if | can’t come up with an idea right now so that
| can practice?”

6-19

As usual, that's a very good question. Let's answer it by saying
that there’s always a lot of things that can be done with the CHEK-
BOOK program. For example, you could find a way to add a routine
that will read a file which contains a list of people or companies that
are paid on a regular basis and have the program determine if the
time has come to pay them. This should be around five working
days before the payment is due. The program could then prompt
the user to make the payment and to specify the amount or to over-
ride the payment (in case he’s a little short that month).

There are lots of other ideas that can be implemented in this
program. As we mentioned, the routines to process the service
charges and the interest payments have been omitted and these
need to be added. You could play around with them. Another nice
enhancement would be to add a routine that would keep a name
associated with the account number to make it more recognizable.
It might be something like “personal,” “business,” “gambling” or
whatever. This would make it easier to decide which account was
which. You might even display the account number with the names
below them any time the user must select an account number. The
user could then specify the sequence number instead of the account
number. Remember, the fewer keystrokes the user has to make the
fewer chances he has to make a mistake.

As we pointed out, ideas are everywhere and as you play with
this program you'll undoubtedly come up with ideas of your own.
Evaluate them and, if they seem reasonable, add them to the pro-
gram. Just remember to make sure that you've thought out the impact
of the changes to minimize any problems that you might encounter.
Once you've planned the changes, carefully implement them and
see how the work out. It's possible that you may decide they weren't
as beneficial as you'd thought they might be so you’ll want to back
the changes out. Or perhaps they worked out better than you thought
they would. Great!

There’s so much that you can do that | hesitate to discuss it
further. One point that | would like to make is that you are the only
one that can really make the techniques in this book work for you.
If you don’'t want to use them — don't. But do give them a try, they're
a little difficult to get the first time around (it took me several passes

______at using them_before | became comfortable with_them)._If you will
keep at it the skills will become almost second nature and you'll
experience minimal difficulty in the future.

6—-20

Before we go, iet’s talk about an area ihat’s been sKipped in
this bool buit is important enough to be mentioned. When vou write
a SYSTEM, that is, a collection of related programs, there is a need
for a greater awareness of interfaces. Just as we were very careful
in insuring the interfaces of modules in a program, so we must be
careful with the programs in a system.

In a way, these programs become “system modules” in the
same way as related lines of code became modules in a program.
The only difference is one of scale. If we considered a module a
routine, so we can consider a program a function. Each was treated
as a “black box” in that it did a particular function. This is pretty
abstract and it would probably help if we looked at an example.

Let's assume that we are writing a payroll system. This system
must read a file from another system (let’s call it the personnel sys-
tem) which contains the records of all the employees in the company
and their pay rates. We will match the information (social security
number, employee number, name, etc.) with the corresponding infor-
mation in the “hours worked” file. Once we've made a match we’ll
compute the salary, taxes, deductions, etc. This information will then
be posted in the various accounting system files. We will need to
write checks for the employees and also tell the federal government
about the withholding of FICA (Social Security) taxes.

Let's assume that we will have four programs in the payroll
system; (1) Employee File Update Program, (2) Accounting File
Update Program, (3) Check Writing Program, and (4) Government
Notification Program. We could see that using our original definitions
(from way back in Section 1) these are “routines” in the sense that
they can be expressed as a single idea. The problem here is, as we
said, one of scale. We've simplified the statements to the point that
there are actually multiple layers of code needed to make the “rou-
tines” work. They are validly considered as programs — system
modules if you will.

This does bring up an interesting question — how do we deter-
mine when we've broken an idea down to the bottom level, that is,
to the “routine” level as opposed to the program level? That question
is, unfortunately, hard to answer. Perhaps the best answer that |
could give is to take a look at the routine and see if there are any
underlying steps that are not “primitive” or elementary steps. In
other words, if any of the underlying steps could be a routine itself
then we're not down to the bottom layer. Is that clear?

6-21

Again, a system is made up of programs. Each program has
the same relationship to a system as the modules of a program do
to that program. This is a very important point, and really needs to
be understood. Most programmers have no difficulty in making sure
that files are correctly defined between different programs, but even
that obvious interface can sometimes be a problem. A more severe
problem, however, is that there are often data dependent interfaces
that are not passed. For example, what if there are no checks to be
written? Can the payroll system handle that fact or will if have a
problem?

As we've already mentioned, sometimes one system will inter-
face with another system. Now the problem of scale becomes even
larger. At this point the systems become modules to a super-system.
This is usually as large as we would want to get in an analysis of
this kind. This sort of interfacing is no more difficult than that which
you've already faced in designing and developing your programs.
Don't let it bother you (assuming that you're the sort of person that
might be bothered by this sort of thing).

To try and place this whole discussion in perspective, we can
take a look at a company. Each individual within a company has
someone to whom he reports. At each level of the company as we
go up there are increasing levels of responsibility with (hopefully)
increasing levels of authority. Lines of code are the bottom layer of
“data processing” and as we increase we go to modules (or sub-
routines) to programs to systems to super-systems to THE SYSTEM
which is usually the all encompassing term used to describe the
hardware on which the software runs.

Each layer is important, and just as with a company, the bottom
layers are more critical to the success or failure of the organization
than the higher layers. This means that an entire system can fail if
a single line of code fails. Seem strange or unbelievable? Recently
the United States was placed on a “Yellow Alert” because of a faulty
line of code in a NORAD (North American RADar Defense) program.

There can never be enough emphasis placed upon the impor-
tance of properly defining and writing each line of code. If we never
have a failure of the lines of code, if the interfaces between the
modules are carefully though out and tested, if the programs are

_____tested properly_and carefully_fitted into_the systems_there will be
fewer problems. Those that remain will probably be in the realm of
“pilot error” Places where the user or the operator made a mistake

6-22

— not a data entry error because we should catch those — but a
sysiem conirof error.

For example, how do you go about catching the fact that the
user has hit the reset button? On some computers you could trap
the interrupt caused by the reset but that's not the sort of thing that
would be done at the “application” programmer level. That sort of
thing is usually left to a type of proagrammer called a “systems pro-
grammer.” Most microcomputer programmers eventually become
systems programmers by learning machine or assembly language
for their computers. At that level they can then trap reset buttons
(maybe).

We must always remember the immortal words of Edsel T. Mur-
phy, “If, under any given set of circumstances anything can go wrong,
it invariably will!” This axiom has guided the lives of most of the
programmers that I've ever met or heard about. We live in constant
awareness of that axiom -- but we don't let it get us down. We
continue to develop and refine our own skills (and we find hiding
places where no one else can find us, especially our bosses).

So keep practicing your programming skills. And, if you didn’t
like this book you probably won't like “How to Write a Computer
Program Volume [, Advanced Programming Concepts” which will
be available in a few months. This book will take you into some of
the neater areas of programming including taking a good look at
sorting, random number generation, some game concepts as well
as a good look at file management techniques. Keep an eye out for
it at your favorite computer or book store.

6-23

BIBLIOGRAPHY

Barden, Jr., W., PROGRAMMING TECHNIQUES FOR LEVEL Il BASIC,
Radio Shack, 1980

Bauer, F L., SOFTWARE ENGINEERING, Springer-Verlag, 1975

Couger, J. D. and McFadden, F R., INTRODUCTION TO COMPUTER
BASED SYSTEMS, Wiley, 1975

Dahl, O.-J., Dijkstra, E. W,, and Hoare, C. A. R., STRUCTUREDPRO-
GRAMMING, Academic Press, 1972

Jones, C. B., SOFTWARE DEVELOPMENT: A RIGOROUS APPROACH,
Prentice-Hall International, 1980

Kernighan, B. W,, and Plauger, P. J., THE ELEMENTS OF PROGRAM-
MING STYLE, McGraw-Hill, 1978

—————, SOFTWARE TOOLS, Addison-Wesley, 1976

Lien, D. A., THE BASIC HANDBOOK 2nd EDITION, Compusoft Publishing,
1981

Myers, G. J., THE ART OF SOFTWARE TESTING, Wiley-Interscience,
1979

Nevison, J. M., THE LITTLE BOOK OF BASIC STYLE, Addison-Wesley,
1978

Rosenfelder, L., BASIC FASTER AND BETTER, UG, 1981

Yourdon, E., MANAGING THE STRUCTURED TECHNIQUES, Yourdon
Press, 1979

Zelkowitz, M. V,, Shaw, A. C., and Gannon, J. D., PRINCIPLES OF SOFT-
WARE ENGINEERING AND DESIGN, Prentice-Hall, 1979

Subject Page
A

Approaches 10 Testingocvevv i 5-1
C

Coding the Programcoovviiiiiiiiiiiiiincciie 4-1

Combining Ideasccccovviiiiiiiiiiiiii 1-19
D

Designing the Programc..ooiviiiiiiie s 3-1

Documenting the Program ... 6-1
E

EpIlOQUEcoviiiiiiiiiiiii i 6-17
F

Fixing Bugs the EasyWayccooviiiiiiiininnnn. 5-17

Flowcharsccovoviiiiiiiii i e e 3-1
i

Idea Categoriesccoeviiiiiiiiiiiiiiiin 1-1

Introductioncoooiiiiiii v
M

Modular Coding Techniquesccoeeviiviiiiiiinnnnn. 4-1
P

Planning the Programccooiiiiiiiiiiinnnns 2-1

Program FUNCtionScccovveiiiiiiiniiiicne 2-1

Program OVEIVIEWcccociieiiiiiiiiiniirnsiieieneenas 2-19

Pseudo COOEccovviiiiiiiiiiiiiii e 3-23
R

Readable Documentationcocviiiiiinn 61
S

Structured Approachescoovvviiiiiiieieiiinieinn. 4-32
T

Testing/Debuggingcoovvvieiiiiiiiiiiniiii 5-1

The Ideacvviieiiicii e e -1
w

Where 10 Get IdeaS .ovvvvvviiiiiiiiriiiiiicneiiiiarseans 1i-9

APPENDIX A
MODULAR PROGRAM
LISTING

10 REM CHECKBOOK PROGRAM
20 REM This prodgram will Process multiple accounts (w
ith the limit currently set to 5).
30 REM
40 CLEAR 4000 ‘RESERVE STRING SPACE
50 DEFDBL A
60 MN=150 'CHECKS PER MONTH
70 MA=S ‘MAX ACCOUNTS
80 DIM CR&(MN,MA) sAB(MA) +AN(MA) ‘ChK Reds Acct., Bal.:
Acct #
90 DIM CN(MA) »NU$(25) »MO$(12) 'CHK NOS» AMOUNTS» MO
NTHS
100 REM memm e
110 REM OPEN FILESs PROCESS DATE
120 REM
130 CLS
140 T$="CHEKBOOK -- A CHECK ACCOUNTING PROGRAM"
150 PRINT TAB(32-(LEN(T$)/2))T%
160 PRINT : PRINT *SYSTEM INITIALIZATION IN PROCESS:s P
LEASE WAIT®
170 ON ERROR GOTOD 250
180 OPEN "I" ,1,,"CRF/DAT" : ON ERROR GOTO O
190 FOR I=1 TO MA : INPUT #1,AN(I) : NEXT I
200 FOR I=1 TO MA : INPUT #1,AB(I) : NEXT I
210 FOR I=1 TO MA : INPUT #1,CN(I) : NEXT I
220 IF EOF(1) CLOSE : GOTO 300
230 INPUT #1,I,J : LINE INPUT #1,CR$(I,J)
240 GOTO 220
250 PRINT "ERRORs CHECK REGISTER FILE NOT FOUND. FILE
WILL BE CREATED!"
260 PRINT "HIT ENTER TO CONTINUE"
270 A$=INKEY$: IF A%="" GOTO 270 ELSE IF ASC(A%)<>13
GOTO 270
280 RESUME 290
290 ON ERROR GOTO O
300 DT$=LEFT$(TIME%$,8) : GOSUB 2510
310 IF VAL{(DT$)<>0 GOTO 340
320 LINE INPUT "ENTER TODAY'’S DATE (MM/DD/YY): "iDT%

A-1

230
340
35¢
360
370
380

380
400

410
420

430
440

450

460
470
480
480
500
510
520
530
540
550

560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780

GOTO 210

REM mccmmmm i c e e e
REM DISPLAY MENU: GET & VALIDATE OPTIONE

REM

CLS

PRINT STRING$(24,"-")" CHEKBOOK MENU "STRING$(25,"
"

=)

PRINT :

PRINT * 1 -- POST POST A HAND WRITTEN CH

ECK*

PRINT * 2 -- WRITE WRITE A CHECK"

PRINT " 3 -- STATEMENT GENERATE THE CHECK STA

TEMENTS”

PRINT * 4 -- SETUP SETUP A NEW ACCOUNT®

PRINT " 5 -- DEPOSIT POST A DEPDSIT TO ACCO

UNT"

PRINT " B -- PURGE PURGE CURRENT MONTH'’S

CRF "

PRINT " 7 -- END TERMINATE THE PROGRAM"

PRINT@ 182,LEFT$(TIMES 8) 3

PRINT® 24B6,RIGHT$(TIMES$+8)3

PRINTE@ G4,"SELECT OPTION ===> "3SCHR$(14)3
A$=INKEY$: IF A%$="" GOTO 500

PRINT A%$35CHR$(15)35 = OP=VAL(A%$)

IF OP>=1 AND OP<=7 GOTO 550

PRINTE SO,"INVALID OPTION"S

GOTO 490

ON OP GOSUB 940, 1240, 1300, 1880, 2070, 2810, 227
0

GOTO 370

REM mrmemem e e e e e e e
REM COMMON CHECK DATA INPUT ROUTINE

REM

PRINTE 128,CHR$(31)
PRINTE 128,""3

CDs(1)=" ACCOUNT: "+STRING$(15,CHR%(95))
CDs(2)=" WRITTEN TO: "+STRING%(25/)CHR$(95))
CD$(3)=" CHECK AMDUNT: $"+STRING#(7,CHR$(83))
CD$(4)=" NOTES: "+STRING%(25,CHR$(95))
DX$=STRING$(2CHR$(95)) : DX$=DX&+"/"+DX$+"/"+DX%
CD$(5)=" DATE WRITTEN: "+DX$%

CD&(B)=" CHECK NUMBER: "+S8TRING$(7,CHR%(853))
CN=-

FOR I=1 TO 4 : PRINT CD$(I) : NEXT I
IF CC=1 PRINT CD%(3) PRINT CD%(B)
PRINTE 142,CHR$(14)5 GOSUB B840 : AC=VAL (IX%)

PRINTE 208,CHR%(14)5 : GOSUB B840 : WT$=IX%
PRINTE 276,:CHR%(14)3F : GOSUB 840 : AM=VAL (IX$%)
PRINTE 332,CHR%(14)5F = GOSUB 840 : NT$=IX%

IF CC<>1 GOTO 800
PRINTE 403,CHR%(14)5

GOSUB B840 : DW$=IXs$
PRINT® 487,CHR%(14)3 s

cosus 840 CN=UAL(IX$)

an ea

800

PRINTE 512,""§ : INPUT "IS THIS CORRECT"j3AN$

810 IF AN$="NO" OR AN%="N" GOTD 600

820 IF AN$<>"YES" AND AN$<>"Y" GOTD 800

830 PRINT@ 512,:CHR$(31)3 : RETURN

B4O IX$="" : A$=INKEY%

850 A$=INKEY$: IF A%$="" GOTO 850 ELSE IF ASC(A$)<>13
PRINT A%$3

860 IF ASC(A%$)>31 THEN IX$=IX$+A$: GOTO B850

870 IF ASC(A%)=8 THEN IF LEN(IX%$)>0 THEN IX$=LEFT$(IX$%
'LEN(IX$)-1) : GOTO 850

880 IF ASC(A%$)=24 PRINT " “"§j : FOR I=1 TO LEN(IX$) : P
RINT CHR$(8)3 : NEXT I ¢ IX$="" : GOTO 850

880 IF ASC(A%)=13 PRINT CHR$(15)5 : RETURN

8900 GOTO 850

910 REM —cmo e e e e e e

8920 REM POST A HAND WRITTEN CHECK HERE

930 REM

940 IF AN(1)=0 GOSUB 1860

950 CLS

960 PRINT STRING$(20,:"-")" CHECK POSTING ROUTINE " STR
ING$(21,"-")

870 CC=1 : GOSUB B0OO

980 FOR I=1 TO MA : IF AC=AN(I) GOTO 1020 ELSE NEXT I

990 PRINT "ERRORs ACCOUNT NOT FOUND. RE-ENTER."

1000 INPUT "ACCOUNT NUMBER"3AC

1010 GOTO 980

1020 FOR J=1 TO MN : IF CR$(J,I)="" GOTO 1050 ELSE NEX
T J

1030 PRINT "ERROR: CHECK REGISTER IS FULL. HIT ENTER T
0 CONTINUE.,"

1040 GOTO 1190

1050 CR$(J+I)=WTS+CHRE(255)+5TR$ (AM) +CHR$ (255) +NT$+CHR
$(255)

1060 IF DW$<>"" CR$(J,»I)=CR$(J,I)+DW$ ELSE CR$(JsI)=CR
$(JHyI)+LEFT$(TIMES +8)

1070 IF CC<>0 GOTO 1130

1080 IF (AB(I)-AM)>=0 GOTO 1130 ELSE PRINT "BALANCE WI
LL GO NEGATIVE."

1080 INPUT "WRITE CHECK ANYMWAY"5ANS$

1100 IF AN$="YES" OR AN$="Y" GOTO 1130

1110 IF AN$="NO" OR AN$="N" CR$(J,I)="" : RETURN

1120 GOTO 1090

1130 AB(I)=AB(I)-AM

1140 IF CN=-1 THEN CN=CN(I) 1 CN(I)=CN(I)+1

1150 CR$(J,»I1)=STRS(CN)+CHR$(255)+CR$(J 1)

1160 IF AB(IN<O PRINT "BALANCE IS NOW NEGATIVE."

1170 IF 0OP<>1 RETURN

1180 PRINT "ACCOUNT POSTED. HIT ENTER TO CONTINUE,"

1190 As=INKEY$: IF A$="" GOTO-1190 ELSE-I1F ASCLA$I<> L
3 GOTO 1190

1200 RETURN

1210 REM w-cmmcmmme e e e

1220 REM WRITE A CHECK ROUTINE
i230 REN

1240 IF AN(1)=0 GOSUB 1860

1250 CLS
1260 PRINT STRING$(20,"-")" CHECK WRITING ROUTINE "STR
INGHE(21 4"-")

1270 CC=0 : GOSUB B0OO : GOSUB 980
1280 IF AN$<>"N" AND AN$<>"NO" GOSUB 2550

12an HIDA)

DI:'T
PYA~AV Nt =R RS g4

1300 REM —-accmer e e m e e e e

1310 REM PRINT CHECK REGISTER

1320 REM

1330 CLS

1340 PRINT STRING$(21,:"-")" PRINT CHECK REGISTER "STRI
NGE(21"-")

1350 PRINT

1360 HD$="CHK # TO WHOM WRITTEN AMOUNT NO
TES DATE"

1370 Fg="anusuns % LGuk wun, 88 ¥
2 % A

1380 Dg=" % Y nun, v 7
7 FA

1390 INPUT "FOR ALL ACCOUNTS"3iANS%

1400 IF AN$="YES" OR AN&="Y" GOTO 14860

1410 IF AN%<>"NO" AND AN$<>"N" GOTO 13890
1420 INPUT "ACCOUNT"3AC

1430 FOR I=1 TO MA : IF AN(I)=AC GOTO 1470 ELSE NEXT I
1440 PRINT "ERROR,» ACCOUNT NOT FOUND. RE-ENTER."
1450 GOTO 1420

1460 I=1

1470 LPRINT "ACCOUNT NUMBER: "AN(I)3STAB(59)3
1480 LPRINT "REPORT DATE: "SLEFT$(TIME%:8)
1430 LPRINT " "

1500 LPRINT "CHECK REGISTER:"

1510 LPRINT " "

1520 LPRINT HD$

1530 LPRINT " "

1540 CA=0 : DP=0

1550 J=1

1560 IF CR$(J,IN="" GOTO 1720

1570 CR$=CR$(J+1)

1580 FOR K=1 TO 4

1590 L=INSTR(CR%:CHR$(255))

1600 PT$(K)=LEFT$(CR$,L-1)

1610 CR$=RIGHT$(CR$:;LEN(CR%$)-L)

1620 NEXT K

1630 CN=VAL(PT$(1))

1640 AM=VAL(PT$(3))

1650 IF CN>=0 THEN CA=CA+AM : GOTO 1680

1660 'LPRINT USING D$3iPT$(2) +AMPTS(4) »CRS
1670 ' DP=DP+AN

1680
1680
1700
1710
1720
1730

1740
1750
1760

1770
1780
17890
1800
1810
1820
1830
1840

1850
1860
1870
1880
1890
1900

1910
1820
1930
1840
1950
1960
1970
1980
1980
2000
2010

2020

2030
2040
2050
2060
2070
2080

2080

GOTO 1700

LPRINT USING F$3iCN:PT%(2) :AMPT$(4) CRS

J=J+1

GOTO 1560

LPRINT " ®

LPRINT USING "BEGINNING BALANCE: LR NE L L R L
AB(I)+CA-DP

LPRINT USING "DEPOSITS: Sus suu, 88" 5DP
LPRINT USING "TOTAL CHECKS: sas,sus, 28" CA
LPRINT USING "CURRENT BALANCE: Sus nn, 88" j
AB(I)

IF AN$="NO" OR AN$="N" GOTO 1820

I=I+1

LPRINT * "

LPRINT * "

IF I<MA AND AN(I)<>0 GOTO 1470

IF OP<>3 RETURN

PRINT "HIT ENTER TO CONTINUE"

A$=INKEY$: IF A$="" GOTO 1840 ELSE IF ASC(A%$)<>1
3 GOTO 1840

RETURN

REM mccmmcm et -
REM SET-UP AN ACCOUNT

REM

CLS

PRINT STRING$(20,"-")" ACCOUNT SET-UP ROUTINE "ST
RING$(20,"-")

PRINT

IF AN(1)=0 PRINT "“NO ACCOUNTS SET-UP YET."

PRINT

FOR I=1 TO MA : IF AN(I)=0 GOTO 1970 ELSE NEXT I
PRINT "ERRORs ACCOUNT REGISTER FULL"

RETURN

INPUT "ACCOUNT NUMBER"SAN(I)

INPUT "STARTING ACCOUNT BALANCE"3iAB(I)

INPUT "NEXT CHECK NUMBER FOR THIS ACCOUNT"ISCN(I)
PRINT

PRINT "ACCOUNT ESTABLISHED. HIT ENTER TO CONTINUE

n
+

A$=INKEY$: IF A$="" GOTFO 2020 ELSE IF ASC(A$)<>1
3 GOTO 2020

RETURN

REM —ccmmmmmc e e e
REM POST A DEPOSIT

REM

CLS

PRINT STRING$(24,"-")" POST A DEPOSIT "
STRING#(24,"-")

PRINT

2100
2110

INPUT "ACCOUNT NUMBER"SAC
FOR I=1 TO MA : IF AN(I)=AC GOTO 2140 ELSE NEXT I

2120
2130
2140
2150

2160
2170

2180
21890

2200
2210
2220

2230
2240
2250
2260
2270
2280

2280
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470

2480

2490
2300

2510

2520

PRINT “ERROR,» ACCOUNT NUWMBER NOT FOUND. RE-ENTER®
GOTO 2100

INPUT "DEPOSIT AMOUNT" SDA

FOR J=1 TO MN : IF CR$<(J,I)="" GOTO 2180 ELSE NEX
TJ

PRINT "ERROR, CHECK REGISTER FULL. HIT ENTER TO C
ONTINUE"

A$=INKEY$: IF As="" GOTO 2170 ELSE IF ASC(A%)<>1
3 GOTO 2170

GOTO 2230

CR$(JHI)="-1"+CHR$(255)+" "+CHR$(255)+5TR$(DA)+CH

R$(255)+"DEPOSIT"+CHR$ (255)+LEFT$(TIME$ »8)
AB(I)=AB(I)+DA
PRINT "DEPOSIT POSTED. HIT ENTER TO CONTINUE."

A$=INKEY$: IF Ag$="" GOTO 2220 ELSE IF ASC(A%)<>1
3 GOTO 2220

RETURN

REM —cmmem e e e e e e
REM TERMINATION PROCESSING

REM

CLS

PRINT STRING$(21,"-")" TERMINATION PROCESSING "ST
RING$(22,"-")

PRINT

PRINT "WRITING CHECK REGISTER FILE."

OPEN "O":1,"CRF/DAT"

FOR I=1 TO MA : PRINT #1,AN(I) : NEXT I
FOR I=1 TO MA : PRINT #1,AB(I) : NEXT I
FOR I=1 TO MA : PRINT #1.CN(I) : NEXT I
FOR I=1 TO MA

FOR J=1 TO MN
IF CR$(J,1)="" GOTO 2400
PRINT #1+JsI1CRE(1)
NEXT J
NEXT I
CLOSE
PRINT "PROGRAM ENDED.,"
END
REM mccmr e e e e e e e e e e e
REM FORMAT & PRINT CHECK (DATA)
REM
DATA ONE »TWOsTHREE »FOURsFIVE sSIX »SEVENEIGHT sNINE

sTEN

DATA ELEVEN,TWELVE :THIRTEEN FOURTEEN sFIFTEEN THEN
TYsTHIRTY

DATA FOURTYFIFTY :SIXTY :SEVENTY EIGHTY sNINETY
DATA JANFEB »MAR»APR »MAY » JUN » JUL »AUG »SEPOCT +NOV »
DEC

FOR I=1 TO 23 : READ NU$(I) ¢ NEXT I : FOR I=1 TO
12 : READ MO$(I) : NEXT I : RETURN
1 g

2530
2540
2550
2560
2370
2580
2590
2600
2610
2620
2630
2640
2850
2660
2670
2680
2690
2700
2710

2720
2740

27350
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850

2860
2870
2880
2890
2900
2910
2820
2830
2840
2850
2960

2870

REM FORMAT AND PRINT CHECK
REM
ND$= an
Al1=INT(AM/1000)
AZ2=INT((AM-A1%1000)/100)
A3=INT(AM-(A1*¥1000+A2%100))
Ad=AM-INT (AM)
IF A1<>0 THEN WD$=NU$(A1)+" THOUSAND *
IF A2<>0 THEN WD%=WD$+NU%$(AZ2)+" HUNDRED "
IF A3=0 GOTO 2700
IF A3<16 THEN WD$=WD$+NU%(A3) : GOTO 2700
IF A3<20 GOTO 2880
AS=INT(A3/10) : A3=A3-10%A5
IF A3<>0 GOTO 2680
WD$=WD$+NU$ (AS+14) : GOTO 2700
WDH=WDS+NUS (AS+14)+" -"+NU%(A3) : GOTOD 2700
WD$=WD$+NU$(A3-10)+"TEEN"
WDH=WDS$+" AND"+STRE(INT(A4%100))}+"/100's"
LPRINT TAB(41) iMOS(VAL(TIMES$))i""iMIDS(TIMES »4,+2)
i"H"ITAB(S6) IMIDS(TIMES »7+2)
LPRINT * "
LPRINT TAB(10)iWT$35TAB(S58) 3 : LPRINT USING "% ,%%
#,88" 54M
LPRINT " *
LPRINT WD$
LPRINT " "
LPRINT " " : LPRINT " "
LPRINT TAB(S)iNT$
RETURN
REM —cmm e e
REM PURGE CURRENT CRF
REM
CLS
PRINT STRING$(22,"-")" PURGE CURRENT CRF "STRINGS
(23,"-")
GOSUB 1360
IF AN$="YES" OR AN$="Y" GOTO 2880
FOR I=1 TO MA : IF AN(I)=AC GOTO 2900 ELSE NEXT I
FOR I=1 TO MA
FOR J=1 TO NM

CR$(JyI)=""
NEXT J
IF AN$="NO" OR AN$="N" GOTO 2950

NEXT I

PRINT "CRF PURGED, HIT ENTER TO CONTINUE."
A$=INKEY$: IF A%$="" GOTO 2860 ELSE IF ASC(A%$)<>1
3 GOTO 2960

RETURN

A-7

APPENDIX B
STRUCTURED PROGRAM
LISTING

10 REM CHECKBOOK PROGRAM (STRUCTURED VERSION)

20 REM This prodram will process multirle accounts (w
ith the limit currently set to 5).

30 REM

40 CLEAR 4000 ‘CLEAR STRING SPACE

S5O0 REM mmrec e e m e e e

60 REM MAIN LINE CODE

70 REM

80 GOSUB 120 CINITIALIZATION

90 GOSUB 590 'MENU

100 ON OP GOSUB 800 » 1040 » 1250 » 1790 , 1980 » 217
0 » 2350

110 GOTO 90

120 REM cmrmm e e e e e

130 REM INITIALIZATION

140 REM

150 CLS

1680 PRINT TAB(13)"CHEKBDOK -- A CHECK ACCOUNTING PROGR
AM“

170 PRINT

180 PRINT "SYSTEM INITIALIZATION IN PROGRESSs PLEASE W
AIT,"

190 DEFDBL A ‘FOR LONG ACCOUNT NOS

200 MN=150 ‘MAX CHECKS PER MONTH

210 MA=5 ‘MAX ACCOUNTS

220 DIM CR%$(MNsMA) :AB(MA) sAN(MA) “CHK REG. ACCT BAL,» A
CCT #

230 DIM CN(MA) sNU$(23) »MO$(12) ‘CHK NOS, AMODUNTSs MO
NTHS

2U0 REM ~ s mm e e e e e e et e i e

250 REM INITIALIZE VARIOUS VARIABLES

260 REM

270 HD%="CHK # TO WHOM WRITTEN AMOUNT NOT
ES DATE"

280 Fe="s#uuns 7 Yhas nnn, a8 7 4

x ‘x'll
290 D=" ¥4 Leun nun, w8 L 4
% 'Z'l‘
300 CD®(1)=" ACCOUNT: "+STRING$(15,CHR%(83))
310 CD%(2)=" WRITTEN TO: "+STRING$(25CHR%(85))

B-1

320
330
340
350
3680
370
380
380
400
410
420
430
440
450

460
470

480
480
500
510
520

530

540
550

560
570

580
580
600
610

630

840
B50
660
670

680
680

700
710
720
720

CDs(3)=" CHECK AMOUNT: $"+STRING$(7 +CHR$(85))
CD$¢4)=" NOTES: "+STRING$(25,CHR$(95))
DRA%=STRINGS(Z2,CHRS(85)) : DX$=DX&+"/"+DXs+" /" +DX$
CD$(5)=" DATE WRITTEN: "+DX%

CDs(B)=" CHECK NUMBER: "+STRING$(7,CHR$(95))

ON ERROR GOTO 450

OPEN "I",1,"CRF/DAT" z ON ERROR GOTO 0

FOR I=1 TO MA INPUT #1,ANCI) : NEXT I

FOR I=1 TO MA INPUT #1,AB(I) : NEXT I

FOR I-1 TO MA INPUT #1,CN(I) : NEXT I

IF EOF(1) CLOSE : GOTO 500

INPUT #1,1IJsCR$(1,J)

GOTD 420

PRINT "ERRORs CHECK REGISTER FILE NOT FOUND. WILL
BE CREATED!"

PRINT "HIT ENTER TO CONTINUE,"

A$=INKEY%$: IF A%$="" GOTD 470 ELSE IF ASC(A%$)<{>13
GOTO 470

RESUME 4890

ON ERROR GOTO ©O
DE=LEFT$(TIMES$ »8)

FOR I=1 TD 23 : READ NU$(I)
FOR I=1 TD 12 : READ MO$(I)
ME$.,8)

IF VAL(D%)=0 LINE INPUT "ENTER TODAY’S DATE (MM/DD
/¥Y): "i5D$

RETURN

DATA ONE sTWO»THREE sFOUR FIVE »SIX »SEVENEIGHT +NINE s
TEN

DATA ELEVEN THELVE sTHIRTEEN ;FOURTEENFIFTEEN TWENT
YsTHIRTY

DATA FOURTY FIFTY »SIXTYSEVENTY sEIGHTY NINETY JAN
FEB MAR

DATA APR sMAY »JUN,JUL »AUG,SEPOCT +NOV sDEC

REM m o e e e e e e e e

NEXT I
NEXT I : D&=LEFT$(TI

REM MENU ROUTINE

REM

CLS

PRINT STRING$(24,"-")" CHEKBODK MENU "STRING$(25"-
n)

PRINT

PRINT " 1 -- POST POST A HAND WRITTEN CHECK™"
PRINT " 2 -- WRITE WRITE A CHECK"

PRINT * 3 -- STATEMENT GENERATE THE CHECK STAT
EMENTS"

PRINT " 4 -- SETUP SETUP A NEW ACCOUNT"
PRINT " 5 ~-- DEPOSIT POST A DEPOSIT TO ACCOUNT
n

PRINT * B -- PURGE PURGE CURRENT MONTH’S CRF®
PRINTE " 7 -- END TERMINATE THE PROGRAM"
PRINTE 182,LEFT$(TIMES$ sB) 3

PRINTE 246 ,RICHTS(TIMES:B)}

B-2

740 PRINTE B84,"SELECT OPTION ===>"3jCHR#$(14)3
750 A$=INKEY$: IF A$="" GOTO 750
760 PRINT A%$3iCHR$(15)3§ : OP=VAL(A%)
770 IF OP>=1 AND OP <=7 RETURN
780 PRINTE S50,"INVALID OPTION"}
790 GOTO 740
BOO REM ----cmmmcr e
810 REM POST A HAND WRITTEN CHECK
820 REM
830 IF AN(1)=0 GOSUB 17890 ‘SET UP AN ACCOUNT
840 CLS
850 PRINT STRING%(20,"-")" CHECK POSTING ROUTINE "STRI
NG$(21 ,"-")
860 GOSUB 2550 ‘COMMON INPUT ROUTINE
870 FOR I=1 TO MA : IF AC=AN(I) GOTD 910 ELSE NEXT I
880 PRINT "ERROR: ACCOUNT NOT FOUND. RE-ENTER."
880 INPUT "ACCOUNT NUMBER"IAC
900 GOTO 870
910 FOR J=1 TO MN : IF CR$(JyI)="" GOTO 940 ELSE NEXT
o
920 PRINT "ERROR: CHECK REGISTER IS FULL. HIT ENTER TO
CONTINUE."
930 GOTO 1020
840 CR$(JI1)=WUTH+CHRS(255)+5TR$ (AM) +CHR$(255) +NT$+CHR$
(255)
950 IF DW$<>"" CR$(J+I)=CR%(J+I1)+DW% ELSE CR$(J,I)=CR%
(JsI)+D%
8960 IF OP=2 RETURN ‘CALLED BY "WRITE"
970 AB(I)=AB(I)-AM
880 IF CN=-1 THEN CN=CN(I) : CN(I)=CN(I)+1
980 CR$(J,I)=STRE(CN)+CHR$(255)+CR%(J,I)
1000 IF AB(I)<0 PRINT "BALANCE IS NOW NEGATIVE."
1010 PRINT "ACCOUNT POSTED. HIT ENTER TO CONTINUE.,"
1020 A$=INKEY$: IF A%="" GOTO 1020 ELSE IF ASC(A%$)<>1
3 GOTO 1020
1030 RETURN :
1040 REM -—cmcmmm e e e =
1050 REM WRITE A CHECK ROUTINE
1060 REM
1070 IF AN(1)=0 GOSUB 1790 ‘SET UP AN ACCOUNT
1080 CLS
1080 PRINT STRING$(20,:"-")" CHECK WRITING ROUTINE "STR
ING$(21,"-")
1100 GOSUB 2550 ‘COMMON INPUT ROUTINE
1110 GOSUB 870 ‘USE POST ROUTINE CODE
1120 IF (AB(I)-AM)>=0 GOTO 1170 ELSE PRINT "BALANCE WI
LL GO NEGATIVE."
1130 INPUT "WRITE CHECK ANYWAY"iANS
1140 IF AN$="Y" OR _AN$="YES" GOT0 1170
1150 IF AN$="N" DR AN$="NO" GOTO 1220
1160 GOTO 1130
1170 AB(I)=AB(I)-ANM ‘POST ACCOUNT

B-3

1180 CN=CN(I) = CNC(I)=CN(I)+1

1180 CRE(LI)=CSTRS(CNI+CHRS (255} +ORS{

1200 GOSUB 2840 ‘FORMAT & PRINT CHECK

1210 PRINT "CHECK WRITTEN, "3

1220 PRINT "HIT ENTER TO CONTINUE.,"

1230 A$=INKEY$: IF A$="" GOTO 1230 ELSE IF ASC($)<>13
GOTO 1230

1240 RETURN

1250 REM oo cm oo m e e e e e e

1260 REM PRINT CHECK REGISTER

1270 REM

1280 CLS

1290 PRINT STRING$(21,"-")" PRINT CHECK REGISTER "STRI
NG$(21,"-")

1300 PRINT

1310 INPUT "FOR ALL ACCOUNTS"_. &

1320 IF AN$="YES" OR AN$="Y" GOTO 1380

1330 IF ANS<(>"NO" AND AN%<>"N" GOTO 1310

1340 INPUT "ACCOUNT"3AC

1350 FOR I=1 TO MA : IF AN (I)=AC GOTO 1390 ELSE NEXT
I

1360 PRINT "ERROR: ACCOUNT NOT FOUND., RE-ENTER."

1370 GOTO 1340

1380 I=1

1390 LPRINT "ACCOUNT NUMBER: "AN(I)

1400 LPRINT "REPORT DATE: "jiD%

1410 LPRINT " *

1420 LPRINT “"CHECK REGISTER:"

1430 LPRINT * *

1440 LPRINT HD$%

1450 LPRINT »

1460 CA=0 = DP=0

1470 J=1

1480 IF CR&(JyI)="" GOTO 1840

1480 CR$=CR4$(J,I)

1500 FOR K=1 70 4

1510 L=INSTR(CR$ »CHR$(255))

1520 PT$(K)=LEFT$(CR$ sL-1)

1530 CR$=RIGHT$(CR%:LEN(CR%) -L)

1540 NEXT K

1550 CN=VAL(PT%(1))

1560 AM=VAL (PT4$(3))

1570 IF CN>=0 THEN CA=CA+AM : GOTO 1610

1580 DP=DP+AM

1590 LPRINT USING D1$5PT$(2) +AM,PT$(4) sCRS

1600 GOTO 1620

1610 LPRINT USING F1$35CNPT$(2) sAMPT$(4) sCR%

1620 J=J+1

1830 GOTO 1480

1640 LPRINT " *

1650 LPRINT USING "BEGINNING BALANCE: $##,sus8,88" JAB
(I)+CA-DP

LI JRY
[

1660
1670
1680

1690
1700
1710
1720
1730
1740
1750

1760
1770

1780
1780
1800
1810
1820
1830

1840
1850
1860
1870
1880
1880
1800
1910
1920
1830
1940
18950
1960

1870
1880
1990
2000
2010
2020

2030
2040
2050
2080
2070

2080

LPRINT USING "DEPOSITS: $ue,nun, 88" DP

LPRINT USING "TOTAL CHECKS: Gua unn, 28" jCA
LPRINT USING "CURRENT BALANCE: $ue,nen, 28" JAB
(1)

IF AN$="NO" OR AN$="N" GOTO 1750

I=1I+1

LPRINT " *

LPRINT " *®

IF I<MA AND AN(I)<>0 GOTO 1390

IF OP<>3 RETURN

PRINT "STATEMENT"3 : IF AN$<>"NO" AND AN$<{>"N" PR
INT "8"35

PRINT " PRINTED., HIT ENTER TO CONTINUE."
A$=INKEY$: IF A%$="" GOTO 1770 ELSE IF ASC(A%$)<>1
3 GOTO 1770

RETURN

REM - e m e e e e e e e —
REM SET-UP AN ACCOUNT

REM

CLS

PRINT STRING$(20:"-")" ACCOUNT SET-UP ROUTINE "ST
RING$ (20 +"-")

PRINT

IF AN(1)=0 PRINT "NO ACCOUNTS SET-UP YET."

PRINT

FOR I=1 TO MA : IF AN(I)=0 GOTO 1800 ELSE NEXT I
PRINT "ERRORs» ACCOUNT REGISTER FULL., "3

GOTO 1850

INPUT "ACCOUNT NUMBER"§AN(I)

INPUT "STARTING BALANCE"3AB(I)

INPUT "NEXT CHECK NUMBER FOR THIS ACCOUNT"SEN(I)
PRINT : IF 0OP<>4 RETURN

PRINT "ACCOUNT ESTABLISHED. "3

PRINT" HIT ENTER TO CONTINUE."

A$=INKEY$: IF A%="" GOTO 1960 ELSE IF ASC(A$)<>1
3 GOTO 1960

RETURN

REM ~cmmmm e e e e
REM POST A DEPOSIT

REM

CLS

PRINT STRING$(24,"-")" POST A DEPOSIT "STRING$(24
(24,"-")

PRINT

INPUT "ACCOUNT NUMBER"3AC

FOR I=1 TO MA : IF AN(I)=AC GOTO 2080 ELSE NEXT I
PRINT "ERROR,» ACCOUNT NUMBER NOT FOUND. RE-ENTER."

GOTO 20490

2080 ITNPUT P DEPOST T AMOUNT DA
FOR J=1 TO MA : IF CR$(J,I)="" GOTO 2120 ELSE NEX
T J

B-5

2100

2110
2120

2130
2140
2150

21680
2170
2180
2190
2200
2210

2220
2230
2240
2250
2260
2270
2280
2280
2300
2310
2320
2330

2340
2350
2360
2370
2380
2390

2400
2410
2420
2430
2440
24350
2460
2470
2480
2490
2500
2510
252¢
2530
2540
2550

PRINT "ERROR, CHECK REGISTER FULL., HIT ENTER TO C
ONTINUE"
GOTD 2150
CR$(JsI)="-1"+CHR$(Z35)+" "+CHR$(255)+8TR$ (DA)+CH
R$(255)+"DEPOSIT"+CHR$(255)+D$%
AB(I)=AB(I)+DA
PRINT "DEPOSIT POSTED. HIT ENTER TOD CONTINUE."
A$=INKEY$: IF A%="" GOTO 2150 ELSE IF ASC(A%$)<>1
3 GOTO 2150
RETURN
REM - e e e e e e -
REM PURGE CURRENT CRF
REM
CLs
PRINT STRING$(22,"-")" PURGE CURRENT CRF "STRING%
(23,"-")
PRINT
GOsuB 1310 “PRINT FINAL STATEMENTS(S)
IF AN$="YES" OR AN$="Y" GOTO 2260
FOR I=1 TO MA : IF AC=AN(I) GOTO 2270 ELSE NEXT I
FOR I=1 TO MA

FOR J=1 TD MN

CR&(J»I)=""
NEXT J
IF AN$="NO" OR AN$="N" GOTO 2320

NEXT I
PRINT "CRF PURGED. HIT ENTER TO CONTINUE."
A$=INKEY$ = IF As$="" GOTO 2330 ELSE IF ASC (A$)>
D13 GOTO 2330
RETURN
REM —cmmmc e e
REM TERMINATION ROUTINE
REM
CLS
PRINT STRING$(21,"-")" TERMINATION ROUTINE "STRIN
Ge(22,4"-")
PRINT
PRINT "WRITING CHECK REGISTER FILE."
OPEN "O"s1,"CRF/DAT"
FOR I=1 TO MA PRINT #1 ,ANC(I) : NEXT I
FOR I=1 TO MA PRINT #1,AB(I) : NEXT I
FOR I=1 TO MA PRINT #1,CN(I) : NEXT I
FOR I=1 TO MA
FOR J=1 TO WMN

IF CR&(JsI)="" GOTD 2510
PRINT #1,J+I CR$(JsI)
NEXT J
NEXT I
CLOSE
PRINT "PROGRAM ENDED."
END
REM cemmm e e e e m

B-6

2560 REM COMMON INPUT ROUTINE

2370 REM

2580 PRINTE 128,CHR%(31) ‘CLEAR TO END OF SCREEN
2380 PRINTE 128,""}

2600 CN=-1

2610 FOR I=1 TO 4 : PRINT CD%(I) : NEXT I
2620 IF OP=1 PRINT CD%(35) PRINT CD%(6)

2630 PRINTE@ 142,CHR$(14)3F : GOSUB 2780 : AC=VAL(IX$)
2640 PRINTE@ 209,CHR%(14)35 : GOSUB 2780 : WT$=IX$%
2650 PRINTE 276,:CHR%(14)3F : GOSUB 2780 : AM=VAL(IX$)
2660 PRINT@ 332,CHR%(14)5§ : GOSUB 2780 : NT$=IX$
2670 IF OP<>1 GOTO 2710

2880 PRINTE 403,CHR%(14)5 : GOSUB 2780 : DW$=IX$
2890 PRINTE 467 CHR%(14)5 : GOSUB 2780 : CN=VAL(IX%)

2700 IF CN<1 AND OP=2 GGTO 2690

2710 PRINTE S512,""§ : INPUT "IS THIS CORRECT"3jAN%

2720 IF AN&="NO" DR AN%="N" GOTO 2580

2730 IF AN&<>"YES" AND AN$<>"Y" GOTO 2710

2740 PRINTE 512,CHR$(31)35 : RETURN

2750 REM —-cmmc e e e e e e e -

2760 REM SPECIAL CHARACTER-BY-CHARACTER

INPUT ROUTINE

2770 REM

2780 IX$="" : A%=INKEY%

2780 A$=INKEY$: IF A%$="" GOTO 2790 ELSE IF ASC(A%$)<>1
3 PRINT A%$3

2800 IF ASC(A%)>31 THEN IX$=IX%+A% : GOTO 2790

2810 IF ASC(A%)=8 THEN IF LEN(IX%$)>0 THEN IX$=LEFT$(IX
$LENC(IX$)-1) : GOTO 2790

2820 IF ASC(A%$)=24 PRINT " "3 : FOR I=1 TO LENC(IX$) :
PRINT CHR$(8)3F : NEXT I : GOTO 2780

2830 IF ASC(A%)=13 PRINT CHR$(15)35 : RETURN

2840 REM -~---mmmm e e e e

2850 REM FORMAT & PRINT CHECK

2860 REM

2870 WD&=""

2880 A1=INT(AM/1000)

2890 AZ2=INT((AM-A1%1000)/100)

2900 A3=INT(AM-(A1%¥1000+A2%100))

2810 A4=AM-INT(AM)

2920 IF A1<>0 THEN WD#$=NU$(A1)+" THOUSAND "’

2930 IF A2<>0 THEN WD$=WD&+NU%(A2)+" HUNDRED "

2940 IF A3=0 GOTO 3020

2950 IF A3<16 THEN WD$=WD%+NU$(A3) : GOTO 3020

2960 IF A3<20 GOTO 3010

2970 AS=INT(A3/10) : A3=A3-10#%AS5

2980 IF A3<>0 GOTO 3000

2990 WD#=WD$+NU$(AS+14): GOTO 3020

3000 WD$=WD$+NUS(AS+14)+"-"+NU%(A3) : GOTO 3020

3010 WDH=WD$+NU$(A3-10)+"TEEN"
3020 WD$=WD%+" AND"+STR$(INT(AA%100))+"/100’s"
3030 LPRINT TAB(41)MO$(VAL(D%)) 3", "SMID$(D%$:4,2) 5TAB(

B-7

56) SRIGHT$(D%,2)

3040 LPRINT " ¥

3050 LPRINT TAB(10)3iWT$STAB(S58) 3§ ¢ LPRINT USING "##,u%
#,88" AN

3060 LPRINT " "

3070 LPRINT WD$%$

3080 LPRINT " " : LPRINT " *

3090 LPRINT " * = LPRINT " "

3100 LPRINT NT$

3110 RETURN

B-8

Reston Publishing Company, Inc. ISBN 08359-2992-2

A Prentice-Hall Company
Reston, Virginia
Toll free (800) 336-0338

"D DATAMOST:

9748 Cozycroft Ave., Chatsworth, CA 91311. (213) 709-1202

