W

INCLUDES ALL
CURRENT PRINTERS

-
2
-

TANDY®

A MICROTREND /VALLEYWARE BDOK

CGP 115
220
DMP 100
110
120
200
400
420
500

2100
2100P

DW |, II,
1B

DWP 210
410

LP 1, I,
I, 1V,
V, VI,
VI, VI

QP I, 1i
TP 10
Plotter/Printer

How To Use Your
Radio Shack Printer

William Barden, Jr.

A Microtrend/Valleyware Book
San Diego

23298

s

O

e

00, G

A

Pubiished in 1985 by Microtrend
3719 Sixth Avenue
San Diego, CA 92103

Copyright © 1985 by William Barden, Jr.

First Edition
First Printing— 1985
123456789

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from

the publisher. No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors
or omissions. Neither is any liability assumed for damages resulting from
the use of the information contained herein.

Interior Design by Ed Roxburgh and Richard Carter

Library of Congress Catalog Card No. 85-00000
ISBN 0-915391-09-0

Printed in the United States of America

il

Contents

Sectiond. PrinterBasics. i 1
Chapter 1. A Brief Look at Radio Shack Printers 3
Chapter2. Basicsof Printingt 8
Chapter 3. How Your Printer Communicates

withYourSystem i 23
Chapter 4. AllThe CharactersFitToPrint 33
Chapter 5. How To Talk To Your Printer. 42
Chapter 6. What Kind of Printing Can You Do

withYour Printer? 51

Section2. PrintingText i 59
Chapter 7. Text and Word Processing Printing. 61
Chapter 8. Word-Wrap, Justification, and

Proportional Spacing 92
Chapter 8. Word Processing Applications 110

Section3. GraphiCsot 121
Chapter 10. GraphicsPrinting 123
Chapter11. ScreenPrinting............ ... 142

Chapter 12. Creative Graphics 163

PREFACE

Printers for computers have gotten too smart! Only a few years ago when
you bought a printer for a computer system, you could print lines, and
possibly underline text, and that was about it. Now, however, you can print
in boldface, print graphics patterns to draw figures, print proportionally
spaced text similar in appearance to typesetting, vary the line and
character spacing, and create your own character fonts! The only trouble
is, you must know how to tell your printer to do these wonderful things. And
that's what this book is about—to let you know how to use your Radio
Shack printer to its best advantage.

You can use this book for any Radio Shack computer—Model I, 11, 111, 4,
4P, 12, 16, Tandy 2000, Model 100, and MC-10. The common element here
is your system printer — it operates fairly independently of the type of com-
puter you're using.

This book is for the new generation of Radio Shack printers, the ones that
have become so intelligent that it's sometimes confusing to understand
what's involved in utilizing all of their features. We'll try to unravel the
printer ‘‘codes’” in this text and give you simple instructions on doing things
such as:

Spacing lines and characters

Performing bold printing and underlining

Superscripting and subscripting

Printing graphics patterns and pictures

Plotting graphs

“Dumping’’ the display in either text or graphics modes
Playing typesetter to produce your own letterheads or logos

Printers are not hard to use once you understand some of the concepts
involved. In the first section of this book, we'll give you some of the
background on printers. Regardiess of the printer you have, all printers do
about the same types of things in about the same way. Knowing some ofthe
basics greatly simplifies your use of Radio Shack printers whether you have
the simplest printer or the most complex.

In Section 1, we'll describe in general terms what can be done with your
printer, what printer terms you should be familiar with, the way the printer

communicates with your computer system, the “‘character set”” found in all
printers, and the types of printing that you can do. We'll also discuss Radio
Shack printer codes and how they evolved.

In Section 2, we'll cover specitic text-related functions that can be per-
formed by your printer— everything from listing programs and data, to pro-
portional spacing. In doing this we’ll provide plenty of concrete examples
that can be used for any Radio Shack printer. These examples will all be in
Radio Shack BASIC, but you can apply them to assembly language or other
languages as well. This section covers text printing only and applies for
every model of printer, from an early Line Printer | to the new DMP-2100
and daisy-wheel models.

In Section 3 of the book, we’ll provide information on how to use the
graphic functions of your printer. There's a lot of material covered here —
everything from simple plotting to complete *‘high-resolution’ graphics pic-
tures and screen dumps. Graphics is one of the areas in which not much in-
formation is available, and we've tried to give you many practical examples
of graphics applications. Although the section primarily covers dot-matrix
printers, it also describes how to plot points and graphs with daisy-wheel
printers.

The appendix is a list of decimal, binary, and hexadecimal conversions
from O through 255, which should help in preparing printer data.

Want to use the hidden power of your smart printer that you've been
unable to tap? Try the examples here and we guarantee you’ll be able to do
more than just print lines. Now where did | put that replica of the Magna
Carta that | had printed out on a DMP-2100 . . .

WTB, jr.

This book is dedicated to those unsung frontiersmen of the West—the
UPS people who delivered dozens of printers to my computer rooms. Sorry
about that Radio Shack beach ball on the stairs, Tiny . . .

SecTioN]

Printer Basics

CHAPTER 1

A BRIEF LOOK AT
RADIO SHACK PRINTERS

In this chapter we'll look at how microcomputer printers have evolved
over the last few years. We'll see how printers have become the intelligent
devices they are today— actually self-contained computers in their own
right. We’'ll also look at which printers are covered in this book, and
describe in general terms what each is capable of doing.

HOW RADIO SHACK PRINTERS
EVOLVED INTO INTELLIGENT DEVICES

Early Radio Shack printers, and the printers of all other manufacturers, had
fewer capabilities than ordinary typewriters. Generally, they could print only
lines of text in a single text style. The spacing for the lines was usually set at
six lines per vertical inch, and the spacing between characters was usually
ten characters per inch along the line. No underlining or boldface was
allowed. Printing produced by such printers looked very similar to what you
see in Figure 1-1.

Thiz iz cotematrin Frinter.
Thiz breakt wn Forng charactars by
poedntdns 8 mabein of co wf bhe new Printer lnclude

UFFER CRSE charactsrs, Pogerd ool A DommaE.

Figure 1-1. Ancient (1970) Printing in Computer Printers

Contrast the quality of this printing with the printing of a moderately priced
Radio Shack printer of today, shown in Figure 1-2. Quite a difference!

In 1978, the printing in Figure 1-1 was about all that any computer printer
would do. Even printers for larger computer systems generally just spewed
out simple, uncomplicated lines of text, although at some very rapid rates.

A BRIEF LOOK AT RADIO SHACK PRINTERS 3

(The rates were so fast that an unattended printer might literally eject paper
halfway across the room!)

- Pﬁhtﬂef‘Hl"ﬂt’:iflik Three elements contributed to the growth of printers from machines that

o e simply printed text to machines that performed all kinds of fancy func-
~ WHAT PRINTERS N ; . i I .
DID IN THE '70s : tions—the microprocessor, word processing, and *‘high-resolution graphics.

_ Printers in the ;“7,:03 ~ ~ MICROPROCESSORS ARE PRINTER CONTROLLERS
~ generally just printed out Microprocessors are ““‘computers on a chip’’ that literally reduce the size of
~ pages and pages of reports a great deal of complicated electronics circuitry to a *‘chip’’about the size

and program listings. The of a stick of chewing gum. Every Radio Shack computer — the Color Com-

printed material was of fairly .

high-quality, but not oriented puter, Model 4, Tandy 1200 and 2000, and others—has a microprocessor
towards word processing. as its central computing component.

Typical printers were high- Microprocessors, though, are used in more than general-purpose
 cost chain and drum printers, microcomputers. They were originally designed to be used in peripheral
_ although there were dot- : : : :

, e o ~ devices such as video terminals. Oddly enough, microprocessors really
. matrix printers at the low end , , . , : - . \

of the price scale—about weren’t employed in these devices in any great quantities until after inexpen-

$2,000 for a minicomputer sive microcomputers (such as the Radio Shack Model I) became a reality.

. printer. Design engineers then started using microprocessors not only in microcom-
‘ : o puters, but also in devices that attached to microcomputers. One of the first
uses of microprocessors in peripheral devices was in microcomputer

printers.

This is a sample ot text produced by the Radio Shack DMP-2100. This
printer is a dat-matrix printer; but it has a 24-wire printhead,
enabl ing near letter-quality type. Special features of this new
printer include underlining: cospressed and & <~pamde o printing
correspondence or standard printing, bold printing, proportional spacing,
and many others.

Figure 1-2. Contemporary Computer Printing

Microprocessors operate at such high rates of speed in making decisions
that they can easily handle the relatively slow speed of a mechanical
device, such as a line printer. The microprocessor, through a
microprocessor program, makes such decisions as Are we at the end of a
line?, How many characters have been printed?, and Have we spaced to a
new line?.

At first a little intelligence crept into printers. Line printers typically
printed a line and then did a carriage return back to the beginning of a new
line in the same way that a typewriter does a carriage return. One of the
earliest features to be put into printers was the ability to do ‘“‘bidirectional
printing.”” The time during which the carriage returned was used to print the
next line or a portion of the next line in reverse, speeding up the overall
printing speed, as shown in Figure 1-3.

More and more intelligence was installed in printers as time went on. Cur-
rent printers all have microprocessors built in and are small computers in
themselves. The microprocessor interprets the stream of characters com-
ing from the microcomputer and controls the actions of the printer.
Microprocessors control the spacing for proportional printing, graphics
printing, and boldface printing. And there’s more to come. With each
generation of printers, look for more and more intelligence to be built in!

4 HOW TO USE YOUR RADIO SHACK PRINTER

ONE DIRECTION PRINTING

-
o

\

THIS IS THE FIRST LINE) THREE
C < “SCANS”

AND THIS IS THE SECOND LINE

BI-DIRECTIONAL PRINTING

THIS IS THE FIRST LINE) TWO

- B “SCANS”

AND THIS IS THE SECOND LINE

Figure 1-3. Bidirectional Printing

WORD PROCESSING

The second factor affecting printer capabilities was the rise in importance
of word processing. One of the first applications for which microcomputers
were used was processing text material. Computer users weren't happy
with simply printing text— they wanted the ability to underline, print in bold,
print superscripts and subscripts, and otherwise enhance the appearance
of printed documents.

To implement these functions, more sophisticated printers evolved, using
the built-in microprocessor and controlling computer programs. Current
Radio Shack printers can produce documents that look aimost as if they
had been typeset. The printers have many functions related to word pro-
cessing. The Radio Shack DMP-2100, for example, produces near-letter-
quality type in a variety of “‘fonts.”” The future holds the promise of many
more features in printers that will enable a user to produce documents that
meet or exceed the typesetting standard.

GRAPHICS CAPABILITIES

The third factor that has prompted development of printers is greater
graphics capabilities in microcomputers. The Color Computer can display
256 by 192 picture elements and the Tandy 2000 can display 640 by 400
picture elements on its monitor. In both cases, as well as in other
microcomputers, it’s handy to be able to reproduce the screen on a printing
device. Current Radio Shack printers fulfill this need, in addition to
generating plots and graphs without first going to the computer screen.
Again, the future will be more and more elaborate graphics capability in
printers. The Radio Shack DMP-2100 prints 180 separate points per vertical
inch and up to 300 points per horizontal inch with a 24-wire print head, and
there's every indication that this print density will be exceeded in future
printers.

WHAT YOUR PRINTER CAN DO

All in all, then, your Radio Shack printer is a fairly smart device that can do
much more than simply print lines. We’ll have to qualify this, however, and
say that what your printer can do is pretty much related to its age. If you
have an older Radio Shack printer, you won't be able to accomplish as

- Printer Hints

HOW MANY POINTS
ARE ADEQUATE?

Obviously, you can never

have too many points

available for printer graphics.

A 35-millimeter film negative

has about 3000 by 3000

points—a total of 9,000,000
separate elements—or about

2200 points per linear inch,

and some people still com-
plain about graininess. Even

the density of the DMP-2100

“at 180 points per inch, is not

good enough to define
typefaces as precisely as
those produced by typeset-

ters, which use about 2500

scan lines per inch to con-

struct characters. However,
there’s another side to having .

a lot of points—it takes

the computer to process the
points. Those 9,000,000
elements of the 35-mm

 scads and scads of time for ‘

negative would take 25 hours

of processing time in BASIC
before the graphics picture.

could be printed out!

A BRIEF LOOK AT RADIO SHACK PRINTERS

5

6

much as you could with some of the current models. To give you some idea
of what your printer is capable of and what we'll be covering in the last two
sections of this book, here’s a thumbnail sketch of each of the printers
covered in this book:

DOT-MATRIX PRINTERS USING NORMAL PAPER

LPI, LPIl: These are the first Radio Shack printers and, like other
printers of the time, are not very “intelligent.”” You'll find very little that can
be done with these models. We'd strongly advise buying a newer
printer—even the inexpensive ones will far exceed the capabilities of the
LPI and LPII.

LPHI: This is the next Radio Shack printer after the LPI and LPII.
Although it's a fast printer and will handle larger paper widths, it's also not
very smart. If your primary goal is good copy and graphics, and not print
speed, think seriously about trading up to a more recent printer.

LPIV: This printer contains more intelligence than the LPIIl and can
print in a number of different type styles. Its primary goal was to produce
proportionally spaced text. It has no graphics capability.

LPV: This is basically an upgrade of the LPIII with bold printing and
underlining capability. A good, high-speed printer, but useful primarily for
straight text.

LPVI: A good, high-speed printer that can handle larger paper widths,
but without many other features.

LPVIl: This is one of the first graphics printers that could print dot pat-
terns. It's weak on text printing, but does a fairly good job on graphics.

LPVIIl: This is one of the first Radio Shack printers to offer not only
graphics, but word processing capability. It offers a variety of features such as
underlining, subscripting, block graphics, and a number of different type styles.

DMP-100: This is an upgraded Line Printer VII, with underlining capability.
It's primarily a graphics printer without word processing frills.

DMP-200, DMP-400, DMP-500: These three printers are upgrades of
the LPVIII, LPVI, and LPV, respectively. They all offer both word processing
and graphics modes. In general, they aren't as powerful as current Radio
Shack printers, but are fairly flexible.

DMP-110, DMP-120, DMP-420: These are some of the most recent
Radio Shack printers and offer a wide range of both word processing and
graphics features.

DMP-2100: This is the top-of-the-line dot-matrix printer that has a wide
range of word processing and graphics features. The characters are formed by
a high-density print head to produce text approaching daisy-wheel quality.

DOT-MATRIX PRINTERS USING SPECIAL PAPER

Quick Printer | and Il. These are early, inexpensive printers using
special thermal paper. Neither has special features nor graphics capability.
Best to trade up on these if you want to do anything significant.

TP-10: This is a recent addition to the Radio Shack line, designed for
the MC-10 computer, although it can be used on the Color Computer. It will
print plain text and low-density graphics when used with the MC-10 or Color
Computer. Not too powerful, but inexpensive.

DAISY-WHEEL PRINTERS

DW-II: Thisis an “impact’’ (non dot-matrix) printer with interchangeable
character wheels. It's a top-of-the-line word processing printer without
graphics capability in the usual sense, although graphics can be done by
printing periods or other characters. The DW-IIB is a more recent version.

HOW TO USE YOUR RADIO SHACK PRINTER

DWP-410: This is a slower, less expensive version of the DW-II.

DWP-210: This is a still slower, less expensive version of the daisy-
wheel printer.

Qume, WP-50: These are early, discontinued daisy-wheel printers.

COLOR GRAPHICS PLOTTERS

CGP-115: This is an inexpensive four-color plotter device that can also
print text characters. Graphics is done by a different method than the dot-
matrix printers. We'll cover only its text character modes in this book.

CGP-220: This is a color ink-jet printer that is essentially a dot-matrix
printer with limited word processing capability.

WHAT THIS BOOK WILL COVER

You can see that there have been quite a few models of printers with more
and more built-in intelligence as the models progressed. Current Radio
Shack printers conform to a standard set of printer codes—the same
codes are used to print an underline on a DMP-110 as on a DWP-420, for
example. We'll use these codes as a base in showing you how to use your
printer to perform a variety of functions from proportional spacing to
graphics pictures. We'll also note which printers cannot perform a function
as we describe it. In some cases, there are alternative ways to perform the
actions, and we'll show you what can be done with your printer if it's an
earlier model.

This book is basically divided into three separate sections. In the section
you're reading we'll give you the background on Radio Shack printer
specifications and define some of the terms used in the remainder of the
book. If you're not very familiar with printers, it'll probably be worth your
while to read through this section. It's fairly easy material.

In the second section we’ll show you how to implement different text and
word processing functions with your printer. This will apply to all printers,
because every printer has the capability to print lines of text characters. In
the third section we'll show you how to perform graphics functions on your
printer, assuming, of course, that you have a later model printer with
graphics capability. We'll also show you how to use your daisy-wheel printer
for limited graphics.

What will you need to know to use the material in this book? Some
knowledge of BASIC will be a great help. |f you don’'t have a good
knowledge of BASIC, however, there are still a great many things that can
be done without writing involved, complex BASIC programs. One example is
constructing a five-line program to print mailing labels on your printer or an
equally short program to produce your company’s logo. We'll show you how
as we go along.

 Printer Hint
WHY SO ~
MANY PRINTERS?

Confused by too many ..
Radio Shack printers? You
should count your blessings.
Radio Shack has continued to
bring out: printers at the rate
of about four per year since
they first entered the small
computer business. The ;
significant thing about new -
printers is that they keep

- pushing the technology —

more and more intelligence, :
higher-density graphics, and
better-looking type faces.

“And lower prices for com-

parable features. If | sound
like a Radio Shack shill, |

_don’t mean to—it’s just that -

printers are one area in which
there are stillalotof
improvements:to be made.

I’m looking forward to next

season’s models!

A BRIEF LOOK AT RADIO SHACK PRINTERS

7

CHAPTER 2

BASICS OF PRINTING

In this chapter we'll take a look at the different types of printers and the
different modes of printing. We'll then describe some of the basic concepts
in printing both text and graphics.

TYPES OF PRINTERS

There are five different types of printers that Radio Shack currently carries:
dot-matrix printers, daisy-wheel printers, thermal printers, ink-jet printers,
and printer/plotters. Each printer really accomplishes the same
task—producing text or a graphics pattern on a piece of paper. In most
cases, the printed characters will be a black or contrasting color on a paper
background. In a few cases, colored printing is produced.

DOT-MATRIX PRINTING

If you look on the screen of your Radio Shack computer, you'll see that indi-
vidual characters are formed by tiny dots, rather than smooth line
segments. This type of character formation is called dot-matrix, because a
matrix of dots is used to produce the character or symbol. Figure 2-1 shows
how different characters are formed on several types of Radio Shack
printers.

Dot-matrix printing is popular because it’s relatively easy to make a print
head composed of tiny wires that strike the paper through an inked ribbon to
produce the character image. Most Radio Shack printers produce the
character by printing one column of dots at a time. The microprocessor and
program contained within the printer receives one character code, such as
the value 65 for an ‘A", and then looks up the corresponding column con-
figurations in a program table to find the proper columns to print, as shown
in Figure 2-2. (The LPVII, DMP-100, and DMP-110 are dot-matrix printers,
but use a somewhat different approach to forming the dot-matrix. See
Figure 12-20.)

The dot-matrix print mechanism lends itself very nicely to graphics print-
ing. The program in the printer simply bypasses the ‘‘table lookup’’ for the
characters and prints whatever you've specified for the column instead, as
shown in Figure 2-3.

Usually, only a portion of the character position is used to print the text
character. A space is left above or below, or in both places, so that there is

8 HOW TO USE YOUR RADIO SHACK PRINTER

Q DMP-100 (LP-VII)
CHARACTER
FORMATION

O 5 x 7 DOT MATRIX

O0000O0O
O
O
O
O
O
O
O
O

DMP-110
CHARACTER
FORMATION

8 x 7 DOT MATRIX

OO0O0O0O00O0OO0O
O O
O O

Figure 2-1. Dot Matrix Printing

white space between lines of characters. There’s also space on one side of
the character so that there’s space between adjacent characters, as shown
in Figure 2-4. When graphics printing is done, all of the vertical and horizon-
tal dot positions can be filled so that there is no white space between dots,
unless you want it. A dot-matrix printer printing in graphics, then, can fill the
entire sheet of paper with dots, with no line- or character-spacing in
between, as shown in Figure 2-5.

DAISY-WHEEL PRINTERS

Daisy-wheel printers are impact printers that print by striking a raised
character against an inked ribbon. While a normal typewriter has only two
characters per key lever, a daisy wheel contains all the characters in a
character set for the printer. These characters are arranged like the petals
of a daisy around a metal or plastic wheel.

The microprocessor in a daisy-wheel printer receives a character to be
printed from the computer and then looks up the position of the proper petal
for the character. It then rapidly rotates the daisy wheel to the proper posi-
tion, and a hammer presses the petal against the inked ribbon, producing a
character image, as shown in Figure 2-6.

The advantage of daisy-wheel printers is that high-quality type can be
printed without dots, and different type styles can be produced by simply
switching wheels. You can go from “Courier” to ‘‘Madeline” in a few
seconds by switching wheels.

Printer Hint
DAISY-WHEEL QUALITY

WITHOUT SWITCHING

WHEELS

* Wouldn't it be nice to have

daisy-wheel quality without.

having to switch daisy-
wheels? If you havea
DMP-2100, you're almost
there! The DMP-2100isa
dot-matrix printer witha
special 24-wire print head, .

instead of the usual seven- or

nine-wire print head. The 24
wires print in the same ver-

tical space as a lower-density

print head and produce a

~ much more detailed print

image. With such a fine

resolution, it’s possible to

actually construct different

type fonts, and that’s what’s

done in the DMP—21‘00.‘Dif~'~i

ferent type fonts can be

selected in microseconds

under: software control, 'rat‘h‘er‘;

than the many seconds it
takes to change daisy- '
wheels.. ,

BASICS OF PRINTING

9

—PATTERN FOR A, 1ST COL

1 0o 0 1 0 0 O fp=—e——————— A, 2ND COL
----------- A, 3RD COL
___________ A, 4TH cOL
A, 5TH COL
CHARACTER
TABLE B, 1ST COL
(SECOND
1 COLUMN
I PRINTING)
~

i

Io fa
-

R kT p——

O O

O OO O O

VY

O

Figure 2-2. Column Printing

THERMAL PRINTERS

Thermal printers use a special aluminum-coated paper. The print
mechanism is essentially a dot-matrix mechanism with print wire. Instead of
the wires striking the paper through an inked ribbon, however, current flows
through the wires causing a spark discharge to the paper, heating it, and
turning it black.

Only the TP-10 printer uses this method currently, although the earlier
Quick Printer | and Quick Printer 11 also were thermal printers.

10 HOW TO USE YOUR RADIO SHACK PRINTER

LPRINT CHR$(169)

1) 4

0 § BINARY

0 § REPRESENTATION
1 , OF 169 LESS

o | 128 TOINDICATE

1 | “GRAPHICS”

0

GRAPHICS
. ° NN L PATTERN BEING
‘ PRINTED IN

COLUMN 2
®

Figure 2-3. Graphics Column Printing

INK-JET PRINTERS
Ink-jet printers are also dot-matrix printers. In this case, however, the dots
are formed by shooting droplets of ink onto the paper from a central reser-
voir. Because there's no ribbon, it's possible to draw from several ink sup-
plies and produce colored printing, even to the extent of mixing colors to
produce a spectrum of colors. This new type of printer has great potential
because the dots are crisp and can be made very small. See Figure 2-7.
Ink-jet printers are a recent innovation in printers and Radio Shack has

BASICS OF PRINTING 1

& Bf ¢SPACE
A= :?: lB.II;:\JTE“S,EEN

BETWEEN
CHARACTERS

ABCTEF T
H I}k L HH

Figure 2-4. White Space
in Text Printing

GRAPHICS DOTS, DOTS MARKED
WITH X WOULD NOT PRINT IN
NORMAL TEXT PRINTING BUT DO

/ IN GRAPHICS
O
3 \
O
O
TEXT O
ROW O GRAPHICS ROW 1
:
O
O
O i
D B W CR D G B0 B D O D R o un O ‘
BLANK ®
Y ®
‘ O
GRAPHICS ROW 2
O
TEXT O
ROW e
2
Q. \
J:
O
BLANK ® GRAPHICS ROW 3
® 1

Figure 2-5. Graphics Print Density

one model currently, the CGP-220. It's capable of producing high-resolution
color images.

PLOTTERS

Plotters are not really printers at all, although they can be used to produce
text characters. A typical plotter has one or more pens and a mechanism to
move the pens over a fixed sheet of paper or across a moving roll of paper,
as shown in Figure 2-8.

The pen can be lifted from or put down on the paper under program con-
trol. It can also be moved to a new x/y coordinate as shown in Figure 2-9. A
line segment is created by a series of tiny steps. If the step distance is small
enough, smooth line segments and characters can easily be constructed.

The CGP-115 printer/plotter operates according to these general prin-
ciples, and there are a number of other printer/plotters that work similarly.
Since this is quite a different technique than the printing methods discussed
here, and since the printer/plotters are not word processing oriented, we'll
leave the details to another book.

12 HOW TO USE YOUR RADIO SHACK PRINTER

THESE ARE FLEXIBLE
“PETALS” THAT ARE
SMASHED AGAINST THE
RIBBON AND PAPER

64 PETALS TYPICAL

DAISY-WHEEL
ROTATES TO
SELECT PROPER
PETAL

\\,___/

Figure 2-6. Daisy Wheel Printing

Figure 2-7. Ink-Jet Printing

TYPES OF PRINTING

Radio Shack has divided the types of printing that can be done with their
printers into three categories:

Data Processing

Word Processing

Graphics Printing
The first two modes are very similar. The best way to describe the dif-
ference between data processing mode and word processing mode is to say
that in word processing mode superscripting and subscripting of characters
is possible, whereas in data processing mode it is not. In general, data pro-
cessing mode is oriented toward getting a basic listing on the line printer, but
in word processing mode the object is to make the printed text look ‘‘pretty.”
We'll look at the differences in detail in later chapters; for now just remember
that the two modes are more alike than different. If you have an older printer,
by the way, you probably won't have the two modes — you'll have only text

BASICS OF PRINTING

13

14

PAPER
MOVES
FORWARD
OR REVERSE

PEN MOVES PIN ROLLER
TO RIGHT MOVES PAPER
OR LEFT. FORWARD OR
PEN CAN BE REVERSE

PUT “DOWN”

ON PAPER OR

LIFTED “UP”

FROM PAPER

Figure 2-8. Plotter Operation

characters and graphics, or just text characters.

In the third category, the graphics mode, the printer output is a pattern of
dots. It's usually impossible to print a preformed text character in this
mode, and although it is possible to construct a pattern of dots that look like
a text character, it's not an easy task. In this mode it's also possible to
space over a single dot or point position at a time so that the graphics pat-
tern can be printed anywhere along the line. This dot positioning is also
possible in data or word processing mode in newer Radio Shack printers. A
sheet of paper 82 inches by 11 inches usually has on the order of 500 dot
positions horizontally and 700 dot positions vertically, although this varies
with the printer model. Any one of those dot positions can be printed or left
blank to make up a ‘‘graphics picture’’ as shown in Figure 2-10.

The printer modes are set by sending a specific code to the printer from a
BASIC program or another type of program. If the printer has more than one
mode, it's usually very simple to switch from one mode to another under
program control.

BASIC OPERATIONS IN DATA AND
WORD PROCESSING

Paper

Figure 2-11 shows paper for Radio Shack printers. The paper comes in a
few standard types. Most dot-matrix printers use fan-fold plain or green-bar
paper. This paper is stacked in accordion folds and usually has 3000 or

HOW TO USE YOUR RADIO SHACK PRINTER

X 100, 80
NEW POSITION
OF PEN AFTER
LINE IS DRAWN
PAPER
MOVED
IN
REVERSE
THIS
FAR
CURRENT POSITION
X OF PEN
™~
/
. PEN MOVED TO -~

RIGHT THIS FAR

LINE IS ACTUALLY
A SERIES OF TINY
STEPS

Figure 2-9. Line Segments in Plotters

5000 sheets in a 10- by 11- by 13-inch box. The paper has holes along its
edge so that the feed-mechanism pins can move the paper up past the print
mechanism. The most common paper width is 9%2 inches with perforations
along both sides so that the paper edges can be torn off. The result is a stan-
dard 8 z-inch width. Of course, there are perforations horizontally every 11
inches so that the fan-fold sheets can be ‘‘burst' into standard 8%2- by
11-inch sheets.

Some Radio Shack printers will only accept paper that is 92 inches wide
or less; other printers, such as the DMP-400 and DMP-2100 can accept
14-7/8 inch wide fan-fold paper.

BASICS OF PRINTING

15

Pnnter Hmt

‘ MORE ON PAPER

The two stock paper sizes

_are 9%- by 11-inch fan-fold
. paper, and 147/a by 11-inch

 fan-fold | paper. The first size

has perforated edges SO you

can tear down the sheets to
8%:- by 11-inch size. You can

buy these two types of paper

_in a variety of colors and

weights. The most popular

smaller size is white in an 18- .

or 20- pound stock. The
glarger size comes ina

“‘green-bar”’ style which,

believe it or not, has green

bars running honzontally
across the paper.
In addttlon to basic printing

stock, you can get a variety

of forms for printing just

. about anythmg If you print

on threetinch by five-inch
index cards, for ex ample, you
can buy tractor feed stock

 that tears down to three-inch
by five-inch size. Sumnarly,
_ you can get fan-fold

envelopes checks, invoice
forms, letterheads, or mailing
labels. Check with Radio

_ Shack first and if they don’t

have it, there are literally -
dozens of computer forms

- suppliers in your area waiting

16

to send you thelr catalogs

A 700

OR MORE
DOTS
VERTICALLY

Do

500 OR MORE

“DOT COLUMNS”

THESE COLUMNS
SKIPPED PURPOSELY ~
NORMALLY THEY WOULD
CONTAIN DOTS

Figure 2-10. Graphics Printing

Radio Shack thermal printers, and printers such as the CGP-115, use
either thermal paper or paper that is a narrower width than the standard 9%
inch tear-down fan-fold paper. Usually this paper comes in rolls. Older
model printers (LPI, LPII, etc.) also use roll paper.

In addition to the standard printing paper for printers, there’s a host of
labels, forms, envelopes, and other paper products that you can use on the
printer. Most of these are oriented towards tractor-feed or pin-feed
mechanisms, so your printer must be capable of feeding paper that has
holes along each edge. In some cases, though, it's possible to use friction
feed printers with the forms, although the printer may not space accurately
over many pages.

PRINTER LINES

Figure 2-12 shows a typical 8Y2- by 11-inch printer page. (Chances are
you have a printer that will accept that size paper.) Early printers (1978)

HOW TO USE YOUR RADIO SHACK PRINTER

9"; INCHES
BETWEEN EDGES
/ /
/ /
/ /
/ /
1%
(o] IO
O O
o o
O IO
@] IO
© \ / |
© TEARING OFF |°
o EDGES TRIMS o
o 12 INCH OFF O| 11 INCHES
o EACH SIDE — o| LONG
o RESULT IS 8:- o
o INCH WIDTH o
O (@]
le) O
o) O
1o (@]
o O
o]
© o Y
/ PERFORATION ON
/ / BOTTOM AND TOP
/ / EDGE TRIMS SHEETS
/ / TO 11 INCH INDIVIDUAL
/ LENGTHS

Figure 2-11. Printer Paper

printed text at ten characters per inch and six lines per inch. The maximum
number of characters that can be printed horizontally for this type of spac-
ing is 85, and the maximum number of lines per page is 66. This standard
spacing is still in use today for most Radio Shack printers, except for
printers using smaller roll paper such as the CGP-115 and TP-10.

Newer printers, though, can vary both the character spacing and the line
spacing. You might want to vary the character spacing to print elongated or
double-width characters to emphasize a heading. in other cases, you might
want to print compressed characters to fit more text into a given space.
There's also a mode in many printers called proportional spacing that
makes text look nicer and also makes it easier to read. In proportional spac-
ing, characters are given different spacing according to their width—an i is
allocated less space than a W, for example. Figure 2-13 shows plain text at
both ten characters per inch and proportionally spaced from a DMP-400.

The line spacing also affects the readability of documents. Many newer

BASICS OF PRINTING

17

4

82"

A

TYPICAL
PRINT
AREA WITH
66 LINES ONE INCH MAR- ”
AT 6 LINES/ GINS IS 6V jy

INCH y
INCHES (65 CHARS)
: BY 9 INCHES
- (54 LINES

85 CHARACTERS
<@ AT 10 CHARS/ ===
INCH

Figure 2-12. Typical Printer Page

’Here’s the weather for the Orange County, California
area —~ warm with hazardous smog levels. We suggest
staying indoors and reading a good book on computer
printers,’

'Here's the weather for the Orange County, California
area - warm with hazardous smog levels. We suggest
staying indoors and reading a good book on computer
printers.'

Figure 2-13. Proportional Spacing

printers allow you to vary the line spacing, down to small increments. Figure
2-14 shows line spacing at the plain vanilla six lines per inch, eight lines per
inch, and twelve lines per inch.

END OF LINE

In general, printers don't recognize the end of a line. If you have 9V2-inch
paper in your 14-7/8-inch carriage printer and print 100 characters at ten
characters per inch without a new line, the printer will print past the edge of
the paper and onto the platen, or roller. You (or the program you’re running)

18 HOW TO USE YOUR RADIO SHACK PRINTER

This shows a line spacing
of 6 lines per 1inch.

This shows a line spacing
of 8 lines per inch

Thi shows a _line _spacin
oq ?2 ines pevr 1ncﬁ. 9

Figure 2-14. Line Spacing

must know the maximum number of characters the paper will take. In
almost all printers, though, if you attempt to print more than a given number
of characters per line, the line will “‘wrap around’ onto the next line, with
the additional characters starting a new line.

LINE FEED AND CARRIAGE RETURNS

There are two confusing terms that describe how a new line starts under pro-
gram control —-line feed and carriage return. In early Radio Shack printers,
sending a carriage return character to the printer caused the printer to posi-
tion the print head to the beginning of a new line. This was a different action
than in other (non-Radio Shack) printers, where a carriage return simply
moved the carriage back to the beginning of the current line. In the non-Radio
Shack printer, a line-feed character would then be sent to roll the paper up to
the next line position. This action is shown in Figure 2-15.

Later Radio Shack printers, though, came with switch settings so that the
printer would do either a carriage return, line feed or simply a carriage
return when it received a carriage-return character. Radio Shack software
generally sends only a carriage-return character for a new line.

A carriage return/line feed or carriage return only, then, results in the
printer going to the next line. In older printers, this means that the printer
will advance 1/6th inch for the new line; in more recent printers, the printer
will advance 1/6th inch, 1/8th inch, 1/12th inch, or whatever it has been pro-
grammed to do. We'll show you how to do this in a later chapter.

MOVING THE PAPER

A top-of-form operation results in the paper being ejected one full page. If
the line spacing is at six lines per inch, this operation will be the equivalent
of 66 line feeds. Top-of-form operations position the paper to the first print-
ing position on the next page.

Early Radio Shack printers could only move the paper forward to the next
line for printing. However, more recent printers can also move the paper
backwards. This allows you to do such things as plotting graphs without
having to first construct a “‘print image’" of the way the graph should look,
and then print it out from top to bottom. Not every Radio Shack printer has
this option, however.

GRAPHICS OPERATIONS

In one sense, graphics operations are a lot more simple than text opera-
tions. There are only a few operations that can be done in this mode: print-

Printer Hint

WHY HAVE A CARRIAGE
RETURN AND LINE
FEED? ~

Here again, the reason for
having both a carriage return
and line feed is largely
historical. Early teletype-
writers were slow
devices—on the order of five
or six characters per second.
It took time for the carriage
to return from the end of a’
line back to the beginning;
and so it was advantageous
to be able to space to the
next line without waiting for
the carriage return. (This is
perfect for putting things in
columns, for example, a line
feed, a few backspaces, and
you're ready to print again.)
With intelligence in printers,
the print position can be
found easily without process-
ing a separate line feed and
carriage return; but early
Radio Shack printers were
perhaps a little too smart in
doing both a carriage return
and line feed. ~

BASICS OF PRINTING 19

20

Examples:
Case 1

This is the end of the line [CR] [LF]
And this is the next line.
Case 2

This is the end of the line [CR]
And this is the next line.
Case 3

This is the end of the line [LF]
And this is the next line.

How the Examples Print on Non-Radio Shack Systems
Case 1
This is the end of the line

And this is the next line. (Normal)
Case 2

And ithihésridvet hievet line (Overprinted)
Case 3

This is the end of the line

And this is the next line.
(No carriage return)

How the Examples Print on Radio Shack Systems:
Case 1

This is the end of the line

And this is the next line. (Two line feeds)
Case 2

This is the end of the line

And this is the next line. (Normal)
Case 3

This is the end of the line

And this is the next line. ([LF] causes [CR], [LF])
[LF] = Line Feed Character 10
[CR] = Carriage Return Character 13

Figure 2-15. Line Feed Vs. Carriage Return

HOW TO USE YOUR RADIO SHACK PRINTER

ing a graphics column, doing a carriage return/line feed, and positioning the
print head to a new dot position along the line.

The basic unit of location with a graphics printer is a dot column.
Generally, this is an offshoot of the size of the dot matrix used in defining a
character for dot-matrix printers. If characters are twelve dots wide, for
example, there will probably be 960 dot positions across the line for every
80 characters (see Figure 2-16). Most Radio Shack printers allow you to
position the print head (via a special set of codes) to any one dot or point
position. Line feeds are used to position the print head vertically.

Suppose we wanted to print the graphics pattern shown in Figure 2-17.
One graphics command would position the print head to the upper left-hand
column. Another graphics command would print the column. Two more
graphics print commands would print the two remaining columns along the
first line. After the last column was printed, a line feed would move the print
head to the next graphics line (not necessarily the same as a text line,
depending upon the printer). Another position command would move the
print head to the extreme left position for the second graphics row. Six more
graphics print commands would print the second row. The sequence would
then be repeated one more time for the last row.

The sequence of operations above is typical for every Radio Shack
graphics printer. There is a great deal more work in defining the graphics
picture and programming the sequence of commands than in doing the
actual printing.

12 x 80 DOT COLUMNS
FOR 80-CHARACTER

A

WIDTH IN GRAPHICS

¢ EACH CHARACTER 12

DOTS WIDE
A T I W N X X N X
N Y Y S B
R N Y T . I
. ® - + « . . ® . .. OO OGOSOOGOS - -
.9 e © 0600 ©0® - - -® - - - - -+ .0 -
@ « - - e e @ e e @ e e @
® . . ® - - - 200000000 - -
T O I O B B

1 23 456 7 8 91011121314151617 181920212223 24

!
FIRST DOT COLUMNS
PRINT

POSITION

Figure 2-16. Dot Column Positions

Y

BASICS OF PRINTING

21

Printer Hint
A GRAPHICS PICTURE
IS WORTH A THOUSAND
HOURS

As mentioned in an earlier
Hint, it takes a long time to
process graphics data. We
didn’t mean to be too
pessimistic in mentioning 25
hours, however: A typical full-
page graphics picture might
consist of 1/4 of the page
area devoted to graphics —
about 20 square inches.
Assuming that each graphics
element is about 1/100 of an

‘inch by 1/10 of an inch, it

22

would take about 20,000
elements to make up a
graphics picture. Assuming
that each element could be
processed in BASIC at the
rate of about 100 elements
per second, it would take
about 200 seconds to print
the picture, an acceptable
rate. However, the
100-element-per-second rate
is the best case and the pro-
cessing time can be 10 or 20
times slower for heavy.
“number crunching’’ of
graphics data.

GRAPHICS COMMAND

POSITIONS PRINT

SECOND COMMAND
PRINTS COLUMN

GRAPHICS
LINE 1

GRAPHICS
LINE 2

PRINT HEAD HEAD HERE
NOW HERE
@/4@ NEXT TWO COLUMNS PRINTED
ooo/,@ LINE FEED HERE
o
o]
o
ANOTHER POSI- 0 SIX MORE COMMANDS
ITION COMMAND 329959 PRINT SIX COLUMNS
MOVES HEAD 000000 THEN LINE FEED
HERE 000000
000000
000000

000

000
000
000000000000000000000000000000000000000
0000000000000000000000000000000000000
00000000000000000000000000000000000

____@ REPOSITION AND PRINT
45 MORE COLUMNS

Figure 2-17. Graphics Pattern Positioning

GRAPHICS
LINE 3

HOW TO USE YOUR RADIO SHACK PRINTER

In this chapter we'll look at how your printer is connected to your Radio
Shack computer and how the two devices '‘talk’’ to one another. There are
several different levels of this communication, and we'll discuss what’s
involved in printer communication on each level.

PARALLEL VS. SERIAL CONNECTIONS

There are two ways that a Radio Shack printer can be connected to a Radio
Shack computer system, or to another manufacturer’s system—parallel
and serial. Some Radio Shack printers are only serial devices, some are
only parallel devices, and some are both parallel and serial.

PARALLEL CONNECTIONS

A parallel printer is connected to a computer system as shown in Figure 3-1.
Data is transferred one byte at a time and the actual transfer takes a few
millionths of a second. The parallel connection uses eight lines to transfer
each of the eight bits that make up one byte of data. By the way, generally,
one character of text (including spaces) is held in one byte of data. To print
the text ““FORT WORTH TORNADO SEASON,"” 25 bytes of data are trans-
ferred to the printer. Each time a byte is transferred, the eight bits making
up the character are transferred over the eight lines simultaneously. In
addition to the eight data lines there are lines for other signals (*‘out of
paper’’ status, ‘‘ready’’ status, etc.), so the resulting cable is about 14
separate lines. (Radio Shack parallel printer cables generally use 34 lines
but many of these lines are ground signals.)

SERIAL CONNECTION
A serial printer is connected to a computer system as shown in Figure 3-2.
Data is still transferred one byte at a time for each character, but that byte

G

Printer Hint

MORE ON
PARALLEL
CONNECTIONS

The parallel connection is
also called a Centronics port,
after the printer manufacturer
who developed it. It uses a
36-pin Centronics connector
with a standard configuration,
and is the same connector
used on non-Radio Shack
printers and computer
systems. The parallel plug on
the Radio Shack computer
end is typically an: edge con-
nector, or "header,”’ but the
electronics signals all conform
to the Centronics specifica-
tion—you just have to know
how to connect the Radio
Shack pins to the 36-pin Cen-
tronics connector. (Another
type of plug used on IBM PC-
type systems:like the Tandy
2000 and 1200 is the DB-25,
a 25-pin connector.)

HOW YOUR PRINTER COMMUNICATES WITH YOUR SYSTEM

23

24

DATA1

COMPUTER
MODEL I, I,
I, 4, 4P, 12,
16, MODEL 100

i

Tlarer

DATA 1

ONE CHARACTER
SENT OVER ON

% 8 LINES AT ONE
TIME — ABOUT

[=-] Ba¥] (=28 {841 B [5] []

YVYVYVYVY

DATA STROBE

BUSY

v

PRINTER
(ANY PRINTER

INTERFACE)

2

OUTPAPER

A

UNIT SELECT

FAULT

GROUND

v
]
[}
]

Figure 3-1.

GROUND

Paralle! Printer Connection

is split up into eight bits and the bits are sent over a single pair of wires

during a specific time period.

The process is very similar to signalling over a long distance with a
buzzer and remote switch. You could prearrange with a friend that you
would send either a buzz or no buzz, representing either a binary 1 or 0, at
about noon. One second after a “‘signalling buzz,” your friend would look for
the first data buzz, two seconds after for the second data buzz , and so
forth, for a total time of eight seconds, as shown in Figure 3-3. Your friend
would record either a buzz (a one) or no buzz (a zero) at precise one-second
intervals after the first buzz, and after eight seconds he’d have the eight bits

of data making up the byte, or character.

HOW TO USE YOUR RADIO SHACK PRINTER

5/1,000,000 SECOND!

WITH “PARALLEL”

ONE CHARACTER SENT
OVER ON ONE LINE
IN 10 INTERVALS — ABOUT
1/60 TO 1/240 SECOND
oM e 0101101011
PUTER, MC-10 | | [| | |] |
THROUGH >
SPECIAL 0 o
SERIAL <
gl;%'}mg? HANDSHAKE PRINTER
(ANY PRINTER
COMPUTER SGND WITH “SERIAL”
;g';ggg” INTERFACE)
INTERFACE*

*NOTE: CUSTOM PROGRAMMING AND
CONNECTIONS MAY BE REQUIRED
FOR SYSTEMS OTHER THAN
COLOR COMPUTER AND MC-10

Figure 3-2. Serial Printer Connection

Of course, when a computer sends data it is much faster and can send
the eight bits in 1/30 to 1/240 of a second, or faster.

WHICH IS BEST?

The advantage of a parallel connection is that it is faster and may not
require a special serial driver program (which we’ll discuss later). The ad-
vantage of a serial connection is that the cable is less expensive, as it re-
quires fewer wires (four on the Color Computer and MC-10), and the length
of the cable can be a great deal longer than the parallel cable.

You can easily tell whether your printer uses serial, parallel, or both.
First, of course, look in your manual; it should tell you what type of connec-
tion is required. If you're one of those people who hate manuals (aren't we
all?), look on the back of your printer. If the printer has a parallel connection,
it will look like Figure 3-4, a 36-pin Centronics connector. If the printer has a
serial connection, it will look like Figure 3-5, a four-pin DIN connector.

Table 3-1 shows the type of connection for Radio Shack printers available
at this time. There will be additional printers out by the time this book is
published that are not in the table; chances are most of these will be both
parallel and serial.

If your printer is both parallel and serial, you may have to switch between
one and the other with a switch on the back of the printer, as shown in
Figure 3-6. In some printers, switching may be done automatically when
you plug in one connection or the other.

SETTING THE SWITCHES

Most new printers have a set of switches called D/P switches which must be
set before the printer is powered on. The switches look like Figure 3-6, and are
usually located on the rear of the printer (they're inside some of the printers).

Printer Hint

MORE ON SERIAL
CONNECTIONS

Radio Shack printers with
serial connections conform
loosely to the RS-232-C
serial communications
specification. This spec
defines the way data is sent
through as few as two wires
for transmission, in one direc-
tion, or three wires for
transmission in two direc-
tions. Radio Shack serial con-
nections have four wires—
one for incoming (to the :
printer) data, one for outgo-

ing data, a ground wire, and a -

status line. Standard Radio

Shack transmission rates are

600 or 1200 bits per second,
corresponding to 60 or 120
characters per second.

The normal RS-232-C con-
nector is a 25-pin DB-25 con-
nector. This connector is
used on all Radio Shack com-

puters except for the Color

Computer and MC-10. Serial
printer cables use only four
of the 25 RS-232-C signals.
Most of the remaining signals
are used for telephone

- modem connections.

Note: There are enough
differences between the RS-
232-C specification and the
Radio Shack implementation
of the spec that connecting a
Radio Shack printer to a non-
Radio Shack computer may
require special programming
and connections.

HOW YOUR PRINTER COMMUNICATES WITH YOUR SYSTEM

25

SERIAL I/0

\ /

\

Figure 3-5. Serial Connector
(Typical)

A ‘ NOTE “KEY”

+1 +2(+3 +4 +5 +6 +7 +8

NOON START SEC SECS SECS SECS SECS SECS SECS SECS
TIME | A "

BUZZ BUZZ NO NO NO NO NO BUZZ NO

/ BUZZ BUZZ BUZZ BUZZ BUZZ BUZZ
THE 1 0 0 0 0 0 1 0

“START” .
BUZZ THE LETTER
“A” IN REVERSE
ORDER

Figure 3-3. Serial Transmission

NOTE ONE SIDE
LONGER THAN THE
OTHER

4

o e
LLLLLLLLLLLLLLLLLL LY

Figure 3-4. Parallel Connector (Typical)

The most important point to remember about the switches is this: ON
MOST PRINTERS THE SWITCHES ARE READ ONLY WHEN THE PRINTER
IS FIRST TURNED ON. IF YOU CHANGE THE SWITCH SETTINGS, THEY
WON'T BE READ AGAIN UNTIL THE PRINTER IS TURNED OFF AND THEN
ON! (If I only had a new ribbon for every time I've been caught on this
important point, all my listings would be dark . . .)

The number and types of switches vary, but we'll try to give you a
description of most of the functions. The DIP switches for all printers are
shown in Figure 3-7.

SERIAL VS. PARALLEL

This switch selects either a serial or parallel connection as described
above. It won’t be found on printers that are only parallel (LPI through LPVI,
daisy-wheel printers DW-I and DW-II, DMP-2100), or on printers that are
only serial (TP-10).

26 HOW TO USE YOUR RADIO SHACK PRINTER

Table 3-1. Parallel and serial connections for Radio Shack printers

LPI: Parallel only

LPH: Parallel only

LPHI: Parallel only

LPIV: Parallel only

LPV: Parallel only

LPVI: Parallel only

LPVII: Paraliel or 600 BPS Serial
LPVILI: Paraliel or 600/1200 BPS Serial
DMP-100: Parallel or 600/1200 BPS Serial
DMP-110: Parallel or 600/1200 BPS Serial
DMP-120: Parallel or 600/1200 BPS Serial
DMP-200: Parallel or 600/1200 BPS Serial
DMP-400: Parallel or 600/1200 BPS Serial
DMP-420: Parallel or 600/1200 BPS Serial
DMP-500: Parallel only

DMP-2100: Parallel only

DW-I: Parallel only

DW-1I Parallel only

DW-1IB: Parallel only

DWP-210: Parallel or 600/1200 BPS Serial
DWP-410: Parallel only

CGP-115: Paraliel or 600/1200 BPS Serial
CGP-220: Parallel or 600/2400 BPS Serial
QP-I: Parallel only

QP-II: Parallel or 600 BPS Serial

Plotter/Printer: Parallel only

When there’s a serial/parallel switch, there’s also a switch to set the bits
per second, or baud rate. You have a choice between 600 bits-per-second
(60 characters per second) or 1200 (120 characters per second). The
CGP-220 selection is between 600 and 2400 bits per second. If you're using
a Color Computer or MC-10, use the 600 BPS position, because that’s the
standard baud rate for the MC-10 and Color Computer.

On the LPVII and LPVIII, you'll have a choice of “7BS” or “*8BS.”” Select
7BS for 7-bit serial, and we'll describe how to use 8-bit serial later.

CR VS. CRLF

On the newer printers there's a switch for NL (new line) or CR (carriage
return). On older printers there may be a switch for CRLF or CR. This is the
carriage return/line feed problem described in the previous chapter. Setting
the switch to NL or CRLF gives a carriage return and a line feed whenever a
carriage-return character is received by the printer. This is the normal set-
ting for Radio Shack printers. Setting the switch to the CR position results in
just a carriage return being done when a carriage-return character is
received by the printer. This position should be used when a Radio Shack
printer is being used with another computer system that uses this conven-
tion, such as the Tandy 1200 or Tandy 2000.

In newer printers there's another switch marked similarly—LF and NL.
This switch controls the action of the line-feed character. As we discussed
in the previous chapter, a line feed was originally used to cause a new line
action. The standard Radio Shack action is to do only a line feed without a
carriage return, so set this to LF.

TANDY VS. ASCll CHARACTERS

Another switch on newer printers enables you to select either Tandy/
Modified ASCII or ASCII characters. We'll get into ASCII codes in another
chapter, but for now, let’s just say that the standard setting for this switch is
“TANDY"' or “‘Modified ASCII."

HOW YOUR PRINTER COMMUNICATES WITH YOUR SYSTEM

8 L 9

Tifulaelelili

NO—=—

Figure 3-6. Dip Switches
on Printers (Typical)

Printer Hint

CHANGING THE
COLOR COMPUTER
PRINTER PARAMETERS

The Color Computer com-
municates with the printer by
a software printer driver. The
printer driver uses values in
several RAM memory loca-
tions to define the baud rate,
line delay (delay on carriage
returns for certain printers),
comma field width (tab
width), last comma field (last
tab field), line printer width
{number of characters per
line) and character count
(number of characters in cur-
rent line). You can read or
write these parameters at any
time by using a BASIC PEEK
(read) or POKE (write) com-
mand. For example, to
change the baud rate to
1200, you’d enter this com-
mand:

100 POKE 95,0: POKE 96,41
Here are the locations:

Location
(Decimal) Description

149 Baud rate. Use O for
300, 600, 1200, or
2400.

150 Baud rate. Use 180
for 300, 87 for 600,
41 for 1200,-18 for
2400.

151 Line delay. Use 223
for each second
delay.

152 Line delay. Use O.

1563 Use 16 for normal
tabs.

154 Use 112 for last tab
field.

165 Use 132 or whatever
line length you'd like.

166 Normally, you
wouldn’t alter this;
it’s just used to hold
the current character
count for the line.

27

CGP-115 s seen FROM REAR CGP-220
ROM REAR
PARALLEL — SERIAL AS SEEN F
600 u 2400
80 CHARS/] 40 CHARS/ ’
LINE LINE 600 1200
BPS BPS
CR — NL
SPECIAL LP-VII
oHARS —T— 7-BIT ASCII
AS SEEN FROM REAR
PAR—— E PARALLEL
8BS — 8-BIT SERIAL
DWP-210 7 BS— 7-BIT SERIAL
DISABLE NO DMP-400, -420, -500
PAPER SELF .
EMPTY TEST LP-VI SERIAL NL MODIFIED
. ASCII
600 | HIGH
BPS | IMPACT / AUTO SEEK 600 BPS WP CR ‘ KANA
PARALLEL \ / INACTIVE l] I I
T T T 4 p-4
s\ LT T
/ ' \ \ 1 2 3 4 5 6 7 8
1
SERIAL LOW \AUTO | ! ' I I l l l
IMPACT SEEK
1200 ENABLE SELF ACTIVE | |
BPS PAPER TEST 1200 BPS DP NL EUROPEAN
EMPTY *
DMP-420 PARALLEL LF ASCII
LP-VII *
PARALLEL CRACTIVE MODIFIED
ASCI
8-BIT SERIAL 1200 NL LF EUROPEAN
BRS | l
| I | l /

[]

600 BPS

7-BIT
SERIAL

SERIAL

CR ASCII
INACTIVE

Figure 3-7. Dip Switch Settings

ON

OFF

* = NOT USED ON
DMP-500

28

HOW TO USE YOUR RADIO SHACK PRINTER

DMP-120 DMP-200
600 NOT NOT
CR TEST BPS SERIAL wp SERlAL USED USED
NOT
600 BPS KANA USED
z | ON SIDE
o D D D D __l U U L U
NL—+— 1 5 —+ NOT
/ / l \ USED
Y OFF SIDE
1 2 3 4 i
I | | | DP 1200 BPS EUROPEAN NOT
' ' PARALLEL NOT USED
NORMAL PARALLEL USED
NL 1200 BPS
DMP-2100
z
sHdHHHHE®
T 1 2 3 4 5 6 7 8
DYS-8
DMP-100 OFF oN
AS SEEN FROM REAR .
PAR = PARALLEL - ASCIl CHARACTER TANDY CHARACTER
600 —— 600 BPS
1200 1200 BPS 6 |CARRIAGE RETURN WITH LINE FEED CARRIAGE RETURN ONLY
5 LINE FEED ONLY LINE FEED WITH CARRIAGE RETURN
4 DP MODE WP MODE
L, 3 2 1 CHARACTER
OFF OFF OFF STANDARD-10
OFF OFF ON STANDARD-12
OFF ON OFF CONDENSED-16.7
DMP-110
AS SEEN FROM REAR OFF ON ON STANDARD-10
I ON OFF OFF CORRESPONDENCE-10
PAR 600 1200 ON OFF ON CORRESPONDENCE-12
yd |
PARALLEL | 1200 BPS ON ON OFF STANDARD-10
600 BPS ON ON ON PROPORTIONAL

HOW YOUR PRINTER COMMUNICATES WITH YOUR SYSTEM

29

30

KANA VS. EUROPEAN

Another switch on newer printers selects either Japanese Kana characters
or European characters. This is not what you'd think. It doesn’t affect the
normal text you'll send to the printer, but will affect a subset of characters
that are selected by special codes. Newer printers have the ability to print
the Japanese characters, which are phonetic representations, or special
European characters such as the German umlaut or British pound sign.

DP VS. WP

Another switch lets you select either data processing or word processing
actions when you power up. Remember that the switches are read only on
power up — selecting one or the other will automatically result in those actions
after the printer is turned on. However, you can change this selection under
program control, so you aren't forced to adhere to the switch setting. In word
processing mode, superscripts and subscripts may be done, along with some
other functions we’ll cover later. The normal setting for this is WP.

NEW VS. OLDER LINE PRINTERS

The DMP-400, -420, and -500 were upgrades of the earlier LPV] and V. The
newer printers operate a little differently, compared to the older models. To
make the upgrade as smooth as possible, the newer printers have switch set-
tings to make the printers act exactly like the older models. Unless you're
running old software, use the settings for the DMP-400, -420, and -500.

MISCELLANEOUS SWITCH SETTINGS

The CGP-115 has a switch setting for printing 40 or 80 characters per line.
Use whichever you prefer, although the 80-character mode is more difficult
to read. The DMP-2100 has three switches which select the typeface to be
used after power up. Refer to the manual for these options.

THE BASIC CHARACTER FLOW

Whether your printer uses parallel or serial connections, the basic process
for communicating with the printer is the same, and is shown in Figure 3-8.
The characters are sent out, one at a time, by the program in your com-
puter. This program may be an applications program, such as VisiCalc, a
COBOL program, a BASIC program, an assembly language program, or
another type of program. For each type of program the action is the
same-—we'll illustrate these actions with a short BASIC line:

100 LPRINT “THE QUICK PROGRAMMER JUMPED OVER THE
LAZY ENGINEER”

When the BASIC interpreter program processes this message, it first
recognizes the "LPRINT" (PRINT#-2, in the Color Computer) as a command
that causes a message to be printed. It then processes the remainder of the
line and finds that it is required to print “THE QUICK PROGRAMMER
JUMPED OVER THE LAZY ENGINEER”. The double quotes around the
message are used to tell the BASIC interpreter where the message begins
and ends. They are not printed.

The BASIC interpreter then sends each character of the message to the
printer, starting with the T in “THE". This involves an assembly language
program in the interpreter called the “‘printer driver,”” which we won’t
discuss. Suffice it to say that the 50 characters in the message are sent to

HOW TO USE YOUR RADIO SHACK PRINTER

Applications
Program

May call Printer
Software Driver or
has its own
Software Driver

Basic
Program

100 LPRINT “THE
QUICK PROGRAMMER
JUMPED OVER THE
LAZY ENGINEER”

Assembly
Language Program

Calls Printer
Software Driver
directly or has its
its own Software Driver

{

Basic
Interpreter

Decodes LPRINT
(PRINT#-2),
Command and calls
Printer Software Driver

THE QUICK
PROGRAMMER
JUMPED . . .

Printer me
Software Driver KCIUQ EHT
Sends one character 50 Characters
at a time sent one at
to printer a time
Figure 3-8. Printer Communication

Printer

Printer Hint

ASSEMBLY LANGUAGE
PRINTER DRIVER

The printer driver in the
BASIC interpreter is an
assembly language program
that communicates with the
printer hardware. A typical
driver-consists of several
hundred bytes of machine-
language code. It takes an in-
put string of characters to be
printed (all found at one loca-
tion in RAM) and strips off
the characters one at a‘time
for printing. It might also
“filter’’ some of the
characters for special pro-
cessing, looking for certain
codes, such as the 12 code
for top-of-form (more about
that below). Each character is
sent to a lower-level print-
character subroutine which
handles the actual com-
munication with the printer;
reads in the printer status
(ready?, out of paper?, etc.)
and sends the next character
to be printed at the
appropriate time.

Problems Department:
When the printer driver
encounters a top-of-form
character (12), it attempts to
space lines to the top of the
next page. The 12 code that
the driver thinks is top-of-
form may actually be a
numeric value within-an
escape sequence. In addition
to the top-of-form problem,
the printer driver also
changes a line-feed code (10)
to a carriage return code !
(13), causing problems for
certain escape sequences.
Another problem is that the
printer driver might :
automatically cause a new
line after a certain number of
characters have been sent
out for each line—this may
be an undesirable action on
some escape sequences.
We’ll describe how to circum-
vent these problems later.

HOW YOUR PRINTER COMMUNICATES WITH YOUR SYSTEM 31

32

. ‘Pn"knter Hint
MORE ABOUT BUFFERS
AND SPOOLING

Printer buffers are typically
only a few thousand bytes
- long, each byte holding one
_character to be printed (or a
control code). Radio Shack and
- other manufacturers sell hargd-
ware print spoolers which ex-
tend the few thousand bytes in-
to tens of thousands. Radio
Shack calls theirs a Printer
Controller (PTC-64, part num-
ber 26-1269).

The hardware print spooler
is connected between the
computer and printer. It ac-
cepis characters to be printed
as fast as the computer can
pump them out, storing the
characters in. memory. At the
~same time, the spooler is
- handling the printer communi-
cation and sending characters
from the other end of the stor-
age—the first characters .
received are the first printed. If
a 20-page report is to be -
printed, the spooler stores the
10,000 characters in memory
and keeps on printing the
report. Meanwhile, the compu-
ter has been fooled into think-
ing that the printer has receiv-
ed and printed the 10,000
characters, s0 it goes on to the
next task. The spooler, there- -
fore, frees up the computer to
continue on another task,
avoiding long waits while data
is being printed. ;

- The same approach is used
on some Radio Shack operat-
ing systems to spool the data
to be printed under software
control. In this approach, a
large portion of memory is set
aside as a buffer to hold char-
acters to be printed. The oper-
ating system sends characters
1o this buffer instead of the
printer: A background task con-
tinually checks the buffer,
sending characters to the
printer if the buffer contains
data. The background task
runs simultaneously with nor-
mal processing, such as a
BASIC program. Here again,
the computer thinks it's done
with the printer and goes on to
other things, freeing up the
system.

the printer in 50 separate actions in the interpreter, but to the printer it looks
like a fairly constant stream of characters.

Note: The printer driver in your system is not usually compatible with
some of the escape sequences we’ll be discussing in this book. By not com-
patible, we mean that occasionally strange things will appear to happen
(usually new line action) when you attempt to use some of the escape
sequences. We'll define what the problems are and how to overcome them
as we describe each printer function, so don’t be too concerned about com-
patibility at this point.

Each time the printer receives a character it starts the printing process.
The computer executes hundreds of thousands of instructions per second
and sends characters at the rate of tens of thousands per second, in
parallel operation, or up to thousands per second in serial mode. To the
computer, the printing process is incredibly slow. The computer could have
executed many instructions from the time the printer receives the character
and starts moving the dot-matrix pins or daisy-wheel hammer to print the
character, until the character is actually printed.

All printers, therefore, contain buffers to overcome the problem of speed
difference between the computer and the printing action. The buffer in the
printer is a small amount of memory, usually a few hundred to thousands of
characters long, which stores characters as fast as the printer receives
them from the computer. The computer can send all 50 of the 50 characters
in the preceding message in a short time and then go and do other things
while the printer is printing.

In the preceding message, the computer can send the 50 characters in
about 1/2000 of a second in parallel mode. However, the fastest rate at which
the characters can be printed ranges from about 1/3 of a second for a fast
printer to three seconds for a slow printer. (In serial mode, the character
transmission speed is more evenly matched to the printer speed. It takes
about 5/12 of a second to send the 50 characters at 1200 bits per second.)

What if thousands of characters are being printed? Is it possible to send so
many characters so fast that the printer buffer fills up? If the preceding BASIC
line is changed to:

100 PRINT “THE QUICK PROGRAMMER . . . ENGINEER"
110 GOTO 100

the printer buffer would soon fill up. When full, the printer sends a signal back
to the computer that the buffer is full, and the computer waits before sending
more characters. (You wouldn't be aware of the signal, but the ‘“printer-
driver” program would be.) As soon as the printer emptied some of the buffer,
the computer would send more characters.

You don’t have to know how the buffer in the printer is used, but it is an
important part of the printer and causes some otherwise unexplained
actions —things such as a portion of a previous line being printed when you
restart a program, or printing after the program has stopped.

HOW TO USE YOUR RADIO SHACK PRINTER

This chapter will describe the different character sets printed by Radio
Shack printers. Most conform approximately to ASCII characters, a stan-
dardized set of alphabetic, numeric, and special characters. Others include
block graphics characters, Japanese and European characters, and special
control code characters.

WHAT ASCII IS

ASCI| stands for ““American Standard Code for Information Interchange”
and was established to create a uniform way of representing the alphabetic
characters from uppercase A through Z, lowercase a through z, the digits
0 through 9, and special characters such as @, $ and &. ASCII is an old
code in terms of computing age. It was established when one of the primary
printing devices was a teletypewriter. Teletypewriters (many are still in use)
use paper tape as a storage medium instead of magnetic tape or disk. The
paper tape uses eight columns along the tape to represent one frame of
data, equivalent to one character, as shown in Figure 4-1.

The original ASCl| code used seven bits represented by punched holes in
the tape (one bit was always unpunched), and this seven-bit code carries
over to the ASCI| used today in Radio Shack printers. Table 4-1 shows the
original ASCII code.

The first 32 characters, from decimal O through decimal 31, are control
characters. These are non-printing characters that perform special functions.
The line-feed and carriage-return characters discussed in a previous chapter
fall into this group, as do such characters as form feed. Most of the characters
in this portion of the ASCII code were primarily designed for telephone com-
munications and really don't have specific functions in printers.

ALL THE CHARACTERS FIT TO PRINT

Printer Hint

MORE ON
CONTROL CODES

The communications
heritage of the control codes
can be seeh in their ,
mnemonics. Code 1—an
SOH—is a ‘‘'Start of
Header’’; code 4—an
EOT—is an “‘End of
Transmission,”’ and so forth.
Other codes are more pro-
saic— VT is Vertical Tab, FF
is Form Feed, and BSis
Backspace. Code 127, while
not in the Control Code
group is an “‘all ones’’ in ;
binary. This code is a Delete
code and was used to
obliterate all seven punch
positions in a paper tape by
punching all holes! So much
of computer technology has
roots from thirty years ago...

33

EIGHT

ONE “FRAME”
OF DATA (8 BITS)

HOLE POSITIONS |

~
| THIS HOLE
| POSITION ALWAYS
| BLANK FOR ASCI|

Figure 4-1. Paper Tape Representation

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
S|
DLE

Null (All Zeros)

Start of Heading
Start of Text

End of Text

End of Transmission
Enquiry
Acknowledgement
Bell, or Attention Signal
Backspace
Horizontal Tabulation
Line Feed

Vertical Tabulation
Form Feed

Carriage Return

Shift Out

Shift In

Data Link Escape

DCH
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
Fs
GS
RS
us
Sp
DEL

Table 4-1. Original ASCII Code
First Hexadecimal Digit

000 | 001 [010 JO11 | 100 | 101 { 110 | 111
0000 [NUL [DLE [SP 0 [@ | P | ~]
Device Control 1 0001 | SOH | DC1 ,!_ 1 A Q 2 g
Device Control 2 0010 | STX | DC2 2 B R b r
gev?ce gon{ro: 2 0011 | ETX | DC3 | # 3 ¢ S c $
evice Contro
Negative Acknowledgement 0100 | EOT | DC4 $ 4 0 T d t
Synchronous/Idle Second 0101 | ENQ [NAK | % 5 £ 1] e u
End of Transmitted Block Hexadecimal 0110 | ACK | SYN | & 6 F v 1 v
Cancel (Error in Data) Digit .
End of Medium 0111 | BEL | ETB 7 G W] W
Start of Special Sequence 1000 | BS | CAN { 8 H X h X
Esca
File gsparator 1001 HT EM) 9 I Y i y
groupdSéaparator 1010 | LF | SUB | % : J Z j z
ecord Separator -
Unit Separator ou fvrjescf + | k]| k]|
Space 1100 | FF | FS , < L \ 1 |
Delete wl [RJes [- T = w3 m][]
o 1110 | SO RS . > N A n ~
1111 S] us / ? 0 — 0 DEL

Contiol Special Alpha- Alpha-
Codes and betic betic
Numeric and and

Special Special

Note: Most Radio Shack software printer drivers change a line-feed
character (10) into a carriage return character (13). This results in occa-
sional problems in certain escape sequences. We'll discuss the problems
as we come to them.

34

The remaining 96 characters in the ASCIlI chart are all printable
characters. Note that the first code (32) is a space, followed by a group of
special characters, followed by the digits O through 9, followed by another
set of special characters, followed by the uppercase alphabetic characters
A through Z, followed by another set of special characters, followed by the
lowercase letters a through z, followed by another set of special characters.

HOW TO USE YOUR RADIO SHACK PRINTER

There's a logical grouping to the codes, even though there are a lot of
special character groups.

Over the years, manufacturers have usually followed the printable por-
tion of the ASCII set, occasionally throwing in their own characters for some
of the less frequently used characters. In the control code area, the basic
carriage return, line feed, form feed (top-of-form), the escape character,
and a few others have been used regularly by many manufacturers.

The escape character (code 27) has been standardized as a character to
be used for starting special escape sequences, which define bold printing,
italics, superscripting, subscripting, and the like. Unfortunately, because
every printer differs in its capabilities, there is not a great deal of standar-
dization among manufacturers in defining the escape sequences.

RADIO SHACK ASCIl USE

Radio Shack, like other manufacturers, has modified the basic ASCII codes
with its own set of characters. This set of characters is almost identical to the
printable ASCI! set—it's called the Tandy character set or modified ASCII.
Whereas codes 91 through 94 print[, . ,], and A in ASCII, the equivalent
Tandy characters are 4 , ¥ , <« ,and —» . Newer Radio Shack
printers can be switched between standard printable ASCII and the Tandy set,
with the standard ASCII being the default. Older Radio Shack printers generally
use the Tandy character set. The standard printer character set is shown in
Table 4-2, along with the exceptions for various printers.

CODE SEQUENCES

The control code area, from decimal O through decimal 31, has been stan-
dardized in recent Radio Shack printers. All printers from about the LPVIII
have used this standardized control code sequence. The purpose of the
standardization is to make programs work the same on all printers when
printing data, underlining, doing subscripting, bold printing, and so forth.
The current definitions for control codes are shown in Table 4-3. Explaining
the use of these control codes is what the majority of this book is about!

Note that many codes start with the escape character, but other codes
use only a single character. These characters are sent to the printer the
way any other characters are, but since they aren't printable or displayable,
or can’t be (in many cases) entered from the keyboard, special techniques
must be used to include them in BASIC programs, and we'll be describing
those in the next chapter.

THE REMAINING 128 BYTES

If you'll think about the ASCII codes for a moment, you'll notice that there
are 128 codes, because there were seven columns of holes. (With one hole
we could have two codes: 0 or 1; two holes: four codes 00, 01, 10, and 11;
three holes: eight codes; four holes: sixteen codes; five holes: 32 codes; six
holes: 64 codes: and seven holes: 128 codes.) However, 128 codes are only
half of the total number of codes we could hold in the eight bits per byte of
all Radio Shack computers. In eight bits, we could hold 256 codes. This
means that instead of 128 characters from 0000000 (0) through 1111111
(127), we can get 256 characters from 00000000 (0) through 11111111
(255). 1f binary isn't your forte, don't worry about that calculation; but it is

ALL THE CHARACTERS FIT TO PRINT

35

; Prin‘tér Hint
BINARY NUMBERS

Binary numbers are not all

~ that difficult to understand.

On the other hand, they're
not really necessary for most
printer operations, so don’t
feel that you must learn

them. We've put in an appen-

dix to help you translate from
decimal to binary and hex-

~ adecimal for all the values

that really matter with
printers—0 through 255
decimal (00 through FF hexa-

decimal, or 00000000

- through 11111111 binary).

Binary numbers are most
often used in coding graphics

_data or in external program-
ming mode in proportional

spacing on daisy-wheel
printers. If you're going to be

_doing a lot of those opera-

tions, it might behoove you to
look into binary operations.

~ One book is ‘Microcomputer

36

Math’’ by William Barden, Jr.,
Howard W. Sams & Co.;
Publisher. Commerciall...

Table 4-2. Tandy (Modified ASCII) Vs. ASCII Characters

Code Char. Code Char. Code Char.
Dec. Hex. Dec. Hex. Dec. Hex.

32 20 (Space)| 64 40 @ 9% 60

33 21 ! 65 41 A 97 61 a
34 22 “ 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 F 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ' 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 | 105 69 i
42 2A * 74 4A J 106 6A }
43 2B + 75 4B K 107 6B k
44 2C s 76 4C L 108 6C |
45 2D — 77 4D M 109 6D m
46 2E . 78 4E N 110 6E n
47 2F / 79 4F 0O 111 6F e}
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 S
52 34 4 84 54 T 116 74 t
53 35 5 85 55 T 117 75 u
54 36 6 86 56 v 118 76 v
55 37 7 87 57 w 119 77 w
56 38 8 88 58 X 120 78 X
57 39 9 89 59 Y 121 79 y
58 3A : 90 5A Z 122 7A z
59 3B ; 91 5B [123 7B {
60 3C < 92 5C \() 124 7C !
61 3D = 93 5D 1) 125 7D }
62 3E > 94 5E ~(—)| 126 7E N
63 OF ? 95 5F — | 127 7F @

@ ON CGP-115

ON QP-li
Parentheses characters are ‘'Tandy’’ or '‘Modified ASCII"

Printers Using Tandy Set: LPIl (moditied), LPIll (modified), LPV (modified), QP-1

Printers Using ASCII Set: LPI (uppercase only), LPIV, LPVI, LPVII, QP-l, TP-10, CGP-115,
CGP-220, DMP-100, DMP-110, DMP-120, DMP-200

Printers in Which One or Other Set May Be Selected: DMP-400, -420, -500, -2100, LPVIII
Daisy-wheel printers generally use ASCll wheels

true that eight bits can define 256 unique values from 0 through 255.

We could use the decimal values from 128 through 255, then, to define
some additional characters. However, since we've covered all printable
characters, what is left? It pretty much depends upon the printer and when
it was designed

Early Radio Shack printers, like the LPI and LPII, don’t use any additional
characters. Starting with the LPV, however, the additional values are
defined as European or special characters, such as a German umlaut or
British pound sign. And since Radio Shack computer systems had some
graphics capability, special block graphics were also defined. In addition,
printers like the LPVII (later the DMP-100) used the upper 128 characters as
graphics characters.

HOW TO USE YOUR RADIO SHACK PRINTER

Table 4-3. Control Codes

8 Backspace one character on older daisy wheels

8,n Backspace n pnts/microspaces on newer printers

10 Line feed, execute, most printers

12 Top of form, execute, most printers

13 Carriage return, execute, most printers

14 Underline end, most printers

15 Underline start, most printers

18 Select graphics, newer dot-matrix

19 Select data processing, new dot-matrix

20 Select word processing, new dot-matrix

26 Carriage return, execute, some printers

27,1-27,9 Proportional space 1-9 points or microspaces, newer printers

30 End graphics mode, newer dot-matrix

31 Elongation start, older printers

32 Elongation end, older printers

27,10 Set full reverse line feed, newer printers

27,14 Elongation/pitch start, newer printers Table 4-4. European and

27,14 Select condensed type, older printers R

27,15 Elongation/pitch end, newer printers Special Characters

27,15 Cancel condensed type, older printers

27,17 Select proportional type, newer printers

27,18 Select 10 pitch, correspondence type, newer dot-matrix 1460 ‘

27,19 Select 10 pitch, standard type, newer printers a

27,19 Select graphics, older printers 161

27,20 Select condensed type, newer dot-matrix 162 G

27,20 End graphics mode, older printers 163 [

27,21 Set carriage return only, some daisy wheels N

27,22 Reset carriage return only, some daisy wheels 164

27,23 Select 12 pitch standard type, newer dot-matrix 165 M

27,24 Daisy-wheel parameters, start, newer daisy wheels 166 @

27,25 Daisy-wheel parameters, end, newer daisy wheels v

27,26 Set 1/8th forward line feed, some daisy wheels 167

27,28 Set 1/2 forward line feed, most printers 168 +

27,29 Select 12 pitch, correspondence type, several printers 1469 §

27,30 Set 1/2 reverse line feed, newer printers 8

27,30 Bold end, older printers 170

27,31 Bold start, newer dot-matrix 171 ®

27,32 Bold end, newer dot-matrix 172 X

27,32 Set 1/2 reverse line feed, older dot-matrix 173 X

27,49 Set 1/20 forward line feed, several printers

27,50 Set 1/12 forward line feed, newer dot-matrix 174 %

27,51 Set 1/36 forward line feed, several dot-matrix 17S b |

27,51 Set twice forward line feed, old daisy wheel 176 ¥

27,52 Set 1 1/2 forward line feed, old daisy wheel

27,52.n Set top of form to n, newer dot-matrix 177 A

27,54 Set full forward line feed, most dot-matrix 178 (o}

27,56 Set 3/4 forward line feed, most dot-matrix 179 O

27,66 Select italics, DMP-110

27,71 Set 4/5 forward line feed, several dot-matrix 180 ¢

27,77 Select microfont, DMP-110 181 -

27,73,n1,n2,d1,d2,d3 Print high-res graphics, several printers 182 3

27,138 Set full reverse line feed, old printers

28,n1,n2 Repeat print data, newer dot-matrix 183 8

184 o
185 B8

EUROPEAN AND JAPANESE CHARACTERS 186 -

Many Radio Shack printers are made in Japan. So it's reasonable to think 187 é
that there may be Japanese character sets buried within the innards of the 188 :
printer ROM or Read Only Memory. Also, many printers are marketed in 189 -
Europe, so European characters are also likely candidates. The trend in later 150 §
Radio Shack printers has been to make these character sets software selec- 191

table. Current Radio Shack printers come with either a Kana (Japanese
phonetic) or European/special character set, or only the European/special set.
The standard code values for the European/special characters for most

ALL THE CHARACTERS FIT TO PRINT

37

Printer Hint

MORE ON
BLOCK GRAPHICS

Block graphics have been
put into printers as a conven-
ience for drawing simple
graphic figures and ruled
lines, either vertical or
horizontal. They're a lot more
convenient than normal
graphics because they don’t
have to be coded as special

values. You simply choose
the proper block-graphics
character from the table and
print it, much as you would
any other character in the
printer-character set.

100
105
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
1000
1010
1020
2000
2010
2020
3000
3010

3020

38

'DRAW FORM PROGRAM
CLEAR 1000

printers are shown in Table 4-4. (Some printers come with 64 characters; see
“Printing European and Special Symbols’ in Section I1.)

Note that these character sets don't require any special escape
sequence or other preparation—any time a character in the range of the
values given in Table 4-4 is sent to a printer in which the set is included, the
appropriate character is printed.

BLOCK GRAPHICS

Another set of standard characters found on many newer printers is block-
graphics characters, shown in Table 4-5. Block-graphics characters are dif-
ferent from the usual graphics operations in printers because they are pro-
duced in normal text mode by sending a single character. Each produces
any of 16 combinations of graphics blocks for a two-by-two matrix, line
segments, or triangles. There is one qualification for using these
characters, however. When they are used, the line feed for the printer must
be set to less than the normal spacing. This can easily be done, and we'll
show you how in another chapter. For now, take a look at Listing 4-1. It is a
listing of a BASIC program that produces the form shown in Figure 4-2.

GRAPHICS PRINTING

The most common use of the upper 128 characters is in graphics
mode to produce a graphics column of dots. In early Radio Shack printers,
such as the LPVIII and DMP-100, a column of seven dots was printed by
sending a character in the range of 128 through 255. The most significant
bit in the character value was ignored, and the remaining seven bits defined
the row in the column to be printed. This technique still applies. Characters

LPRINT CHR$(27);CHRS (28)

A=240: B=241:
A=245: B=224:
FOR I=1 TO 4
FOR J=1 TO 5:

C=242:
C=245

NEXT I

A=244: B=241:

A=245: B=224:

FOR I=1 TO 6:

A=244: B=241:

A=245: B=224:

FOR I=1 TO 63:
A=246: B=241:

C=243:
C=245:
GOSUB

C=250:
C=245:

C=248:

GOSUB 1000:
IF I<>4 THEN GOSUB 2000

3000:

GOSUB 3000:

GOSUB 1000 'TOP LINE

NEXT J 'SIDES ONLY
'SIDES AND SHORT LINE

D=249:
D=245

GOSUB 3000 'BEGIN ROX
NEXT I
D=249:
D=245

'VERTICAL LINES
GOSUB 3000 'LOWER BOX

NEXT I 'VERTICAL LINES

D=247: GOSUB 3000 'BOTTOM LINE

LPRINT CHRS (27);CHRS (54)

END

'SUB TOP OR SIDE LINES
LPRINT CHR$ (A) ; STRINGS (59,B) ; CHRS (C)

RETURN

'SUB SIDES AND SHORT LINE

LPRINT CHRS (245);STRINGS (5,224)

RETURN

i STRINGS (25,241) ; STRINGS (29,224) ; CHRS (245)

'SUB ALL OTHER LINES
LPRINT CHR$(A);STRING$(14,B);CHRS(C);STRING$(14,B);CHR$(C);STRING$(14,B);CH
R$ (C); STRINGS (14,B) ; CHR$ (D)

RETURN

Listing 4-1. BASIC Program for Form

HOW TO USE YOUR RADIO SHACK PRINTER

Figure 4-2. Form Done by Block Graphics

in the range of 128 through 255 are still graphics characters when the
graphics mode of the printer is set. However, if the graphics mode isn’t set,
then the character in this range may be a European, Japanese, or block-

graphic character.
As a sample of graphics printing, look at Figure 4-3. It shows a BASIC

ALL THE CHARACTERS FIT TO PRINT 39

Table 4-5. Block Graphics

Characters

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

(blank)

!‘.B.l

P~ BB F o w ™

FAdbh N+ e

program and resulting graphics picture produced on the DMP-2100. The
graphics mode is set by LPRINT CHR$(18).

THE GENERAL CHARACTER
SET OF NEW PRINTERS

In the newer Radio Shack printers, such as the DMP-120, DMP-420, and
DMP-2100, then, there might be several different sets of characters. If the
printer is in the data-processing or word-processing modes (really the same
as far as the character sets are concerned) the printer will print normal text
when sent a value in the 32 through 127 range of characters, will print Euro-
pean characters when sent a value in the 160 through 191 range of
characters, and will print block graphics when sent a value in the 224
through 254 range of characters.

If the printer has been set to graphics mode, it will print a graphics row
when receiving characters in the range of 128 through 255. Other
characters will be ignored.

The control codes will not print but will cause some special action, if
received in either the data-processing/word-processing modes, or in
graphics mode.

There’s another character to be considered that isn’t defined in any of
the before-mentioned character sets. When an undefined control sequence
is sent, newer, smarter Radio Shack printers will print an hourglass shaped
symbol like this X . This lets you know on the printout that an incorrect con-
trol code sequence or character was received. Another action the printer
might take is to simply ignore the seguence or character. We'll discuss this
in detail in a later section.

106
110
120
130
140
15@
160
170
180
190
200
210

40

T COWROY GRAPHICS PROGRAM

CLEAR

2000

LPRINT CHR$(18)

READ A

IF A=-1 THEN 190

IF A<x~2 THEN LPRINT CHR$(A)3: GOTO 130
READ B, C

LPRINT STRING® (R, CHR$(C));

GOTO 130

LPRINT CHR$(30)

P COWBOY VALUES

DATA ~2,5E5138,~2,11,1E8,2245352,14@g~ﬂ,4,1ﬁ8,“E93919E,13

HOW TO USE YOUR RADIO SHACK PRINTER

220 DATA *2,5%,1E8,~2,1@1128,142,1593191,248,E4@,242,E46,L46,35573557233,134,134
» 130,13

238 DATA —2,5@,128,—2,13,128,248,—2,3,255,159,1439159919@,?4@,224,—3,4,128,192,2
Ty 192,224, 224,192, 224,192,192, 13

24@ DATA —2;5@,128;—2,11,128,176,*2,6;255,254,2541ﬁ5592559E5ﬂ9253,ﬁ54,~2,é,255,1
91, ~2,3,159,~2,3,255, 190,252,168, 13

’25@ DATA """:.':) 5@5 1:8,"‘:1 79 1:81 ::_'4-; :4@, :/'IBI; :5:1 :54, "".:'; 1.91 ;'55’:::_'45":'; :7)-) 19:,"; 1.:8'; 128, i
294159,1434,159,13

26@ DATA *2a5@,128,24@,248,252,188,142,13@,159,191,“Eq6q255,15971911E555253,159,
131, ~2444129,128,128,129,129,131,135

27@ DATA 259%2,152,128,129,131,198,252,13

280 DATA —2;5@,128,129,135,159,252,~2,5,128,243,255,143,131,129,128,135,143,*293
s 136, 152, 240, 224, -5,5, 128, 140,142,135, -2,3, 128

290 DATA 131,131,129,13

300 DATA —%,5@, 128, -2, 10, 158, 129,131, 134, 140, 184,240,324, 13

310 DATA -1

Figure 4-3. Sample Graphics Picture and Listing

ALL THE CHARACTERS FIT TO PRINT 41

42

- CHAPTER§

HOW TO TALK TO
YOUR PRINTER

In this chapter we'll learn how to communicate with Radio Shack printers
through BASIC and applications programs. We’ll describe which BASIC
commands are involved with all Radio Shack equipment. This won't be a
detailed account of how to do specific functions on printers but will prepare
you for the material in the second and third sections of the book.

BASIC PRINT COMMANDS

The fundamental BASIC command for communicating with a printer is the
LPRINT command on the Model I, II, 111, 4,4P, 12, 16, Model 100, and Tandy
1000, 1200 and 2000. This is almost exactly equivalent to the fundamental
print command on the MC-10 and Color Computer, the PRINT#-2, com-
mand. We'll give both versions in the following examples.

DIRECT MODE

The simplest way to print something on your printer is to enter an LPRINT or
PRINT#-2 command in the direct mode in BASIC. If you wanted to print the
message “THIS IS A TEST”, you’d follow this procedure:

Turn on the computer and load BASIC. On Model I, 11, 4, 4P, MC-10, and
Color Computer systems without a disk, you're in BASIC as soon as you
power up. You'll see a title message and then an “OK’’ or ** >"" prompt. On
systems with a disk, such as the Model |, I, Ill, 4, 4P, 12, 16, Model 100 with
disk, Color Computer with disk, Tandy 1000, 1200, and 2000, you may have
to enter

BASIC

to load the BASIC interpreter from disk. Follow your operating system
manual for this.
Now type the following line:

LPRINT “THIS IS A TEST" (I, II, Ill, 4, 4P, 12, 16,
Model 100, Tandy 1000, 1200, 2000)
PRINT #-2,“THIS IS A TEST"" (Color Computer, MC-10)

HOW TO USE YOUR RADIO SHACK PRINTER

If your printer is turned on and is “on line” (indicated by an ON LINE indi-
cator light on the front panel for most printers), you should see it print the
message

THIS IS A TEST

After printing the message, BASIC will display an “'OK" or ** >"" on the
screen, indicating that it has stopped running and is waiting for the next
command.

What you’ve done is execute a BASIC LPRINT (PRINT#-2,) command in
the direct mode. In the direct mode, only a single line of BASIC is executed
and it's executed immediately. This is different from a BASIC program
where a number of different lines are executed.

Now try something else. Enter the following line:

LPRINT “THE NUMBER IS "";2.45 (I, 1, lll, etc.)
PRINT#-2,“THE NUMBER IS ";2.45 (CC, MC-10)
If the printer was ready for printing, you should have seen the message:

THE NUMBER IS 2.45

In this case the message enclosed in double quotes was printed, followed
by the value of 2.45. Because there was both text and a constant value, you
can see that more than one item can be printed with an LPRINT or
PRINT#-2, command. The LPRINT or PRINT#2, command can print as
many items as you can fit onto a line.

PRINTING TEXT

Let’s look at the first item —the text message. Printing text is the main task
we'll be doing with our printer. Text is always enclosed in double guotes.
The double quotes mark the text as a string, a fancy way of saying that there
are printable text characters involved. Try the following:

LPRINT “THE FIRST IS "";2.45;" THE SECOND IS "';3.56
PRINT#-2,"THE FIRST IS "' ;2.45; “THE SECOND IS '*;3.56

You should see this message printed on your printer:
THE FIRST IS 2.45 THE SECOND 1S 3.56

Here we had four different items in the list, and they were printed one
after the other. There were two text messages, or strings, enclosed in
quotes, and two numeric values. The LPRINT or PRINT#-2, command
always prints the items from left to right in the order they appear.

COMMAS VS. SEMICOLONS
Now try this command:

LPRINT “THE FIRST IS *“,2.45,”” THE SECOND 1S",3.56
PRINT#-2,"THE FIRST IS **,2.45,”" THE SECOND 15",3.56

Did you notice anything different in this printing? You should have noticed a
wide space between the items— something like this:

THE FIRST IS 2.45 THE SECOND IS 3.56

The spacing will vary with the type of computer you have. The difference
in the two sets of statements is that semicolons were used in one and
commas were used in the other. When semicolons are used between print
items, they tell the BASIC interpreter to avoid spaces between the items as
they are printed. When commas are used between print items, they tell the

HOW TO TALK TO YOUR PRINTER

- Printér Hint‘
MORE ON

~ DIRECT MODE

You can execute any com-
mand to the printer in direct

“mode. Just code the proper

string of characters and send

‘them to the printer viaan

LPRINT (most systems) or

PRINT#2, (Color Computer f
and MC-10). If you want to

print out a bold listingona
dot-matrix printer with bold
print capabrhty you 'd srmply
enter ‘

~ LPRINT CHR$(27) CHR$(31)

~ and the bold mode would be '
‘set in the printer.

In direct mode, youcan

~ execute as many commands

as you can cram into one
string. You could even run ;
short programs asin

FOR| = 1 TO 1000: LPRINTI
LPRINT 1*}: NEXT |

whrch would print the
numbers from 1 through

1000, and the squares of the

numbers, on your printer.

43

44

Printer Hint
ELIMINATING BLANKS
AND OTHER GOODIES

If you'd like to get rid of
leading blanks in printing
numeric values, you must
first convert the numeric
value to a character string by
an STR$ command. Having
converted it to a string, you
can then look at the first
character of the string, by a
LEFT$ command, and check
1o see if it is a blank. If it is,
discard it. You can also
check the number of
characters in the string by
the LEN command so that
you can put figures in col-
umns. Another good com-
mand is LPRINT USING,
which will let you format
strings to control the number
of places in the printed
strings. We can’t give you a
course in BASIC here (we've
got our hands full with 30
printers...)—these are only
clues to give you some idea
of which commands can be
used. :

BASIC interpreter to tab, or jump ahead, to predefined places along the
print line. The tab positions are 0, 16, 32, and 48 for the Model I, lll, 4 and 4P
(Model Ill mode); 0, 14, 28, 42, and 56 for the Model II, 12, 16 and Tandy
2000; 0 and 16 for the Color Computer and MC-10; 0 and 14 for the Model
100; and 0, 8, 16, etc. for the Tandy 1000 and 1200.

You can intermix commas and semicolons any time you'd like. In this line:

LPR'NT “A: ”;2’“8 — ”;3,“C= ,,;4
PRINT#-2,"A="12,"B="3, C="14

you'd get the print line
A= 2 B=3 - C=4

with the number of spaces between the sets of values determined by your
system.

CONSTANTS

Everything enclosed in double quotes is treated as text strings, but what
about the numeric values in the LPRINT and PRINT#-2, lines? Anytime the
BASIC interpreter finds an LPRINT item that is not surrounded by double
quotes, it assumes it is not text to be printed. If the item is a numeric value,
like 4, 5.66, 100000, or other values, it is printed more or less as it appears.
We say more or less because there are exceptions to this. BASIC may con-
vert some numeric values to slightly different forms before printing. The
value 1.2222222222222222 will be printed in a shorter form, due to the
accuracy of BASIC (1.22222222 in the Color Computer, for example) and
the value 123334444444 will be printed in scientific notation
(1.23334444E + 11 in the Color Computer, for example). If you use con-
stants in LPRINT and PRINT#-2, commands, expect them to be changed
slightly if they are not whole integer numbers like 123, 67676, or 1000000,
or if they contain a lot of digits. To print a constant exactly, surround it with
double quotes to make a string out of it.

Notice in the examples above that BASIC also places a leading blank
before positive values and a trailing blank after any value. This is just the
way BASIC works, so be prepared to see this format on LPRINT or
PRINT#-2, lines.

SIMPLE PROGRAMS

The simplest printer program is a single LPRINT or PRINT#-2, command.
This program is just like the direct commands we were using in the above
examples, except that the command now has a line number associated with
it. Any time a line number is used, BASIC assumes that a program is being
constructed and stores the line number and commands as a BASIC pro-
gram line. Taking the case of the preceding example, let’s construct a
simple program:

100 LPRINT "“THIS IS A TEST”
100 PRINT#-2," THIS IS A TEST”

(Enter the first line for Model I, 11, 111, etc. and the second line for the Color
Computer or MC-10.)

Unlike the BASIC commands executed in the direct mode, this command
is not immediately executed. It's stored in memory as a BASIC program. To
see it, enter a LIST after the BASIC “OK" or *“ >’ prompt:

HOW TO USE YOUR RADIO SHACK PRINTER

OK

LIST

100 LPRINT “THIS IS A TEST”
OK

To execute the program, enter a RUN command after the prompt. The
RUN command means ‘‘Execute (run) the program from the first line of the
program’’.

RUN

After the RUN, you should see the message THIS IS A TEST printed out
on your printer, just as you did in the direct mode.

Let’s try another one. Suppose you wanted to print out the text A MAN,
A PLAN, A CANAL, PANAMA!" on one line, followed by the text “READS
THE SAME SDRAWKCAB!". This program would do the job:

100 LPRINT “A MAN, A PLAN, A CANAL, PANAMA!"
110 LPRINT “READS THE SAME SDRAWKCAB!"

100 PRINT#-2,”A MAN, A PLAN, A CANAL, PANAMAL!"
110 PRINT#-2,""READS THE SAME SDRAWKCAB!"

You can see from the above that you can use as many LPRINT or
PRINT#-2, commands in the program as you wish. Each one will print a
single line of text on the printer. This program will print three lines:

100 LPRINT “THIS IS A SAMPLE OF TEXT"
110 LPRINT “PRINTED ON THREE LINES"
120 LPRINT “WITH A PRINTER"

100 PRINT#-2, “THIS IS A SAMPLE OF TEXT”
110 PRINT#-2, “PRINTED ON THREE LINES"
120 PRINT#-2, “WITH A PRINTER"

If the items in the print list are ended with a semicolon or a colon, a new line
will not be started. This program will print the text above on a single line:

100 LPRINT “THIS IS A SAMPLE OF TEXT";
110 LPRINT “PRINTED ON THREE LINES";
120 LPRINT “WITH A PRINTER"

100 PRINT#-2, “THIS IS A SAMPLE OF TEXT";
110 PRINT#-2, “PRINTED ON THREE LINES™;
120 PRINT#-2, “WITH A PRINTER"

The print line would look like this:

THIS IS A SAMPLE OF TEXTPRINTED ON THREE LINESWITH A PRINTER

Notice that the lines ran together because no spaces were left in
between the three text strings. Note also that the last LPRINT or PRINT#-2,
command had no semicolon after the list. If a semicolon had been placed
after the list, the line would not have been printed on many printers because
most printers print the line only after a carriage-return character has been
received. BASIC automatically sends a carriage return after each LPRINT
or PRINT#-2, that ends without a semicolon or comma.

If a comma is used to end a print list, BASIC will tab the print position to the
next tab without printing. Further printing will proceed from the new tab posi-

Printer Hint

DELETING, INSERTING

BASIC LINES

To delete any BASIC line,
just type in the line number
with no other characters. To
delete line 100, for example,

- type
100
followed by <ENTER >.

To insert a BASIC line, use a
line number that’s intermediate
between the two line numbers
around the insertion point. To
insert the line LPRINT “YOU,
TOO, CAN WRITE REAL GOOD’’

between

110 LPRINT
“W. BARDEN, JR’

120 LPRINT '‘REPORT 1" -

you could use

115 LPRINT ‘'YOU, TOO, CAN

WRITE REAL GOOD’' .

The result would be

110 LPRINT
‘W. BARDEN, JR.”

115 LPRINT "'YOU, TOO, CAN

WRITE REAL GOOD”!
120 LPRINT '‘REPORT 1

HOW TO TALK TO YOUR PRINTER

45

46

Printer Hint
MORE ON VARIABLES

Variable names are two
characters in earlier systems
(up.to the Model Ill) and more
than two characters in later
systems, such as the Model
IV ‘and Tandy 2000. We'll use
two characters in all of the
programs in this book to
make the code compatible
with all systems. The first
character in variable names
must be an alphabetic
character. Other characters
can be alphabetic or numeric.
You can use .any combination
of characters for a variable
name, except for certain
reserved system names.

There are two main types
of variables—numeric and
string variables. We’ll be
dealing with both in the pro-
grams and code in this book.
Numeric variables can hold
numeric values from very
small numbers to very large
numbers. Just set the
variable equal to a numeric
quantity by an equals sign
(AA =1.234; BV = 100000;
C =2). Depending upon the
computer system, there are
also subclasses of numeric
variables. In spite of this
complexity, however, you
should have no problem if
you just stay with simple
numbers, the way you nor-
mally write them (but without
commas).

tion. If a following LPRINT or PRINT#2, is not done after a terminating
semicolon or colon in a print list, the entire line or a portion of a line may be
lost.

An LPRINT or PRINT#-2, alone simply prints a line without anything on it.
In fact, this causes BASIC to send only a carriage-return character alone.
To see how this works, look at the program below. It is a complete program
to print mailing labels in five lines!

100 LPRINT “William Barden, Jr.”

110 LPRINT **200 N.S. Memory Drive”
120 LPRINT **Computer City, CA. 92692"
130 LPRINT: LPRINT: LPRINT

140 GOTO 100

100 PRINT#-2, “"William Barden, Jr.”

110 PRINT#-2, ©*200 N.S. Memory Drive"
120 PRINT#-2, “"Computer City, CA. 92692
130 PRINT#-2: PRINT#-2: PRINT#-2

140 GOTO 100

There are several things that may not be obvious in the preceding exam-
ple: More than one BASIC command can be put on a line. When this is the
case, a colon is used to separate the commands. The GOTO command in
BASIC is used to jump to a line, and in this case, causes the same sequence
of BASIC lines to be executed over and over. Press the <BREAK > key to
stop the program before yo'u're up to your eyeballs in mailing labels!

This program prints three separate lines for the mailing labels, prints
three blank lines (by the LPRINT or PRINT#-2, statements), and then repeats
the whole procedure again and again. The spacing is set for six lines-per-
inch and spacing between labels of one inch.

VARIABLES

The LPRINT or PRINT#-2, item list can have text in the form of strings and con-
stants as we saw above. It can also have variables. Variables are BASIC quan-
tities that are assigned names of one or two characters (or more in Model IV
and in MS-DOS BAS'Cs). The value for the quantity may be changed within the
program. It’s like keeping the combination to a wall safe inside a shoebox.
You've printed “WS"’ on the outside of the box to stand for Wall Safe. Inside the
box is a slip of paper with the combination of the wall safe. You can redo the
combination at any time and store a new value inside the WS box on the slip of
paper. The WS box is the variable and the slip of paper is the current value of
the variable.
Let's see how variables are printed. The program

100 A=34.56: B=-56.89

110 LPRINT “VALUE OF A="A;"VALUE OF B=";B
100 A=34.56: B=-56.89

110 PRINT#-2,"VALUE OF A=""A;"VALUE OF B=";B

will print
VALUE OF A= 34.56 VALUE OF B=-56.89

The value of the A variable was printed after the first text message,
followed by the second text message, followed by the value of the B
variable. Semicolons were used so that no spaces were used other than

HOW TO USE YOUR RADIO SHACK PRINTER

those put in for the variables. You can see that a variable is printed the
same as a constant, with a leading space or minus sign and a trailing space.

Another type of variable is the string variable. This variable can hold a
constant text string, or can be used to hold different text strings. The follow-
ing program uses the string variables “A$"”, *'B$", “C$" to print the same
three-line message as before:

100 A$="THIS IS A SAMPLE OF TEXT"
110 B$ = “PRINTED ON THREE LINES”
120 C$="WITH A PRINTER"

130 LPRINT A$: LPRINT B$: LPRINT C$
140 LPRINT A$;B$;C$

100 A$ = “THIS IS A SAMPLE OF TEXT"

110 B$ = “PRINTED ON THREE LINES"

120 C$="WITH A PRINTER"

130 PRINT#-2,A%: PRINT#-2,B$: PRINT #-2,C$
140 PRINT#-2,A$;B;C$

Line number 130 prints out the three lines as before—it's really three
separate LPRINT or PRINT#-2, commands. Line 140, however, prints out
something completely different. Because there’s only one LPRINT or
PRINT#-2, command, line 140 prints out the three string items, which come
out as:

THIS IS A SAMPLE OF TEXTPRINTED ON THREE
LINESWITH A PRINTER

MORE ON STRING VARIABLES

String variables are used all the time in LPRINT and PRINT#-2, commands.
There are a number of string-related functions in BASIC that are used to
make string handling easier and that also help in defining LPRINT or
PRINT#-2, strings. One of these is the CHR$() function.

CHR$() is used to create a one-character string from any value. We saw
earlier how string constants could define a string to be printed, so why is
CHR$() needed? Even though a one-character string could be defined and
printed, as in:

100 LPRINT “&”
100 PRINT#-2,"&"

which would print the single-character string “&”, this method isn't adequate
for all single-character strings that are required. What about printing a control
code from the 32 characters that are not displayable? How would you send a
carriage return, control code 13, to the printer, for example?

Most control codes can’t be displayed or produced from the keyboard,
and that's where CHR$() comes in. In addition, graphics characters, Euro-
pean characters, and block graphics also cannot always be produced from
the keyboard, and CHR$() is used for those characters as well. CHR$() will
produce a one-character string equal to a value inside the parentheses. The
one-character string can be combined with a text string to produce a com-
bination string.

To see how this works, let's use CHR$() to produce a line of text, five
blank lines, and another line of text:

100 A$ =""THIS IS THE FIRST LINE OF TEXT"

HOW TO TALK TO YOUR PRINTER

47

48

110 B$ = "THIS IS THE SECOND LINE OF TEXT”
120 LPRINT A$ + CHR$(13) + CHR$(13) + CHR$(13) + CHR$(13)
+ CHR$(13) + B$

100 A$ = ““THIS IS THE FIRST LINE OF TEXT”

110 B$ = "THIS IS THE SECOND LINE OF TEXT"”

120 PRINT#-2, A% + CHR$(13) + CHR$(13) + CHR$(13) + CHR$(13)
+ CHR$(13) + B$

In line 120, we used a carriage return control code character, a decimal
13, as shown in Table 4-3. The actual string created in line 120 was made up
of 66 characters, 30 from the A$ string, 31 from the B$ string, and the five
decimal 13 values, as shown in Figure 5-1.

|<€— 30 CHARACTERS ———-]|
A$ = “THIS IS THE FIRST LINE OF TEXT”

|<—31CcHARACTERS —]
BS$ = “THIS IS THE SECOND LINE OF TEXT”

AS$ + CHR$(13) + CHR$(13) + CHR$(13) + CHR$(13) + CHR$(13) + B$

30 CHARACTERS + 5 CHARACTERS + 31 CHARACTERS

Figure 5-1. Combining Strings for Printing

All of the characters were sent to the printer when the LPRINT or
PRINT#-2, command was executed. In addition, a carriage return was add-
ed at the end of the print, as BASIC does when an LPRINT or PRINT#-2, item
list doesn’t end with a semicolon or comma. The result on the printer was:

THIS IS THE FIRST LINE OF TEXT

THIS IS THE SECOND LINE TEXT

The five carriage returns between the text caused five new lines, as
we've explained in previous chapters.

The CHR$() function can be used to produce any values to be sent to the
printer. Any eight-bit value from 0 through 255 can be produced—even
displayable characters. The program

100 LPRINT CHR$(65) + CHR$(66) -+ CHR$(57)
100 PRINT#-2,CHR$(65) + CHR$(66) + CHR$(67)

prints the text ABC on the line printer.

The most important use of CHR$(), however, is in producing control
codes and escape sequences to be sent to the printer for special functions.
An example is the following program, which uses CHR$() to set underlining
on many printers.

100 LPRINT “THIS IS NOT UNDERLINED"

HOW TO USE YOUR RADIO SHACK PRINTER

110 LPRINT CHR$(15);
120 LPRINT “BUT THIS IS”

100 PRINT#-2,” THIS IS NOT UNDERLINED"
110 PRINT#-2,CHR$(15);
120 PRINT#-2,"BUT THIS IS”

Note that a semicolon followed the CHR$(XX) to prevent a new line. The
string could have been:

“THIS IS NOT UNDERLINED" + CHR$(15) + *‘BUT THIS IS”

We'll be seeing a lot of the CHR$() function in sections two and three of
this book, where we’ll be using special control codes and escape se-
quences for many different functions.

COLOR COMPUTER AND MC-10 USERS
ONLY—LOWERCASE

Up to this point, most of our examples have used uppercase, or capital let-
ters. To produce lowercase letters on the Color Computer or MC-10, just
hold down <SHIFT >, followed by 0. Characters entered after that will be
in inverse video on the screen. This will indicate that they are lowercase
(small letters). Figure 5-2 shows how the text “TWEEDLEDUM and
tweedledee” appears on the Color Computer or MC-10 screen. To get back
to uppercase, press <SHIFT> followed by O again. We'll use both upper-
and lowercase in the examples from now on, so don't think that your printer
will only be able to print in uppercase.

UPPEIjCASE LOWERCASE

Figure 5-2. Color Computer/MC-10 Upper and Lower Case

BASIC PRINTER DRIVER CAUTIONS

BASIC programs are generally a lot easier to work with than other programs
when it comes to using printer functions. However, as we've mentioned
before, BASIC uses a software line-printer driver that may create problems
in certain escape sequences. We'll let you know what the problems are as
we discuss each line printer function. However, let’s start with a definition
of what kinds of problems to expect. They’re not catastrophic, but they may
cause baffling results, unless you know what’s happening.

e The BASIC line-printer driver intercepts all line-feed (10)
characters and changes them to carriage returns (13).
The rationale for this is the old ‘‘Radio Shack line
feed/carriage return with just a carriage-return

HOW TO TALK TO YOUR PRINTER

49

50

What alternatives do you have in working with the BASIC printer driver?
You could write your own driver, but then it becomes a chore to figure out
where to put the driver in all types of systems, for all operating systems, and
for all configurations of memory. The alternative chosen for this book is to
work with the BASIC driver and to point out areas in which problems may

character’” which we discussed earlier. When a 10
character is found anywhere in characters to be printed,
it will be changed to a 13 character. Some escape se-
quences include numeric values, and if one of those
numeric values is a 10, it will be changed to a 13!

A top-of-form character (12) causes a page-eject action
based on an internal line count in the software driver.
If a 12 character is used inside an escape Sequence, it
will be detected as a top-of-form character by the
printer driver. This will cause a series of line feeds to
space printer paper to the top of what the printer
driver thinks is the next page.

The printer driver contains a variable that sets the
number of characters per line. Normally, this would
cause a new-line action after the line-printer driver
thought the right edge of the paper was close.
However, if a large number of backspacing characters
are sent, or if a large number of graphics characters
(which have hundreds of positions per line) are sent,
making the character count for the current line appear
to exceed the maximum number per line set in the
printer driver, the printer driver will send a carriage
return before the end of the line is printed.

occur. Usually the problems are surmountable.

HOW TO USE YOUR RADIO SHACK PRINTER

CHAPTER B

WHAT KIND OF
PRINTING CAN YOU
DO WITH YOUR
PRINTER?

In this chapter we’ll expand upon the material presented in Chapter
4—the control codes for different functions on your printer. The control
codes determine what basic functions can be performed, but they don’t
define many of the other functions that can be done by combining
sequences of control codes. For example, many printers have a control-
code sequence for printing a single column of graphics, but you can use a
series of these to print out a complete graphics picture. In this chapter we'll
give you the actual control codes for your specific printer; in Section Il we’ll
show how to use the sequences for text printing applications. In the final
section we’'ll show you how to use the sequences for graphics applications.

THE MASTER TABLE

Table 6-1 at the end of this chapter is a master list of control-code and other
code sequences, cross-referenced by printer type. The printer types are
listed across the top of the chart and are grouped as follows: all Roman
numeral line printers, all DMP (dot-matrix) printers, all daisy-wheel printers,
the CGP-115 printer/plotter, the CGP-220 ink-jet printer, all thermal printers,
and the early Printer/Plotter.

The left-hand side of the chart lists all functions by general type—all line
feed-related functions are grouped together, for example. In some cases
there will be (old) and (new) sequences. ‘Old"’ refers to the older printers
and ‘‘new’’ refers to the most recent printers. In some cases, newer
printers have switch settings to emulate older printers —the DMP-500 has a
switch to emulate the old Line Printer V codes, for example. This is denoted
by a **J"" at the junction of the appropriate function row and printer column.

If there's a dot at a particular function/printer junction, it means that the

WHAT KIND OF PRINTING CAN YOU DO WITH YOUR PRINTER? 51

52

printer can perform that function by the control code given. If there's no dot,
it means that the printer can't use that control code.

The code for the function is given as a decimal number in the column at
the left of the table. We haven’t provided the hexadecimal equivalent
because decimal will be most commonly used in a CHR$() command and
works on all Radio Shack printers. If you'd like to use hexadecimal, consult
the appendix for the decimal to hexadecimal conversions. You'll be able to
use the prefix &H to specify hexadecimal in some Radio Shack computer
systems, but not all.

The columns labeled DP, WP, and GR refer to the three modes found in
newer Radio Shack printers: data processing, word processing, and
graphics, as discussed in Chapter 2. Depending upon the printer, some of
these modes will not be present. In newer “'DMP" printers, you’ll probably
find that all modes are present-—you’ll be able to do fast, practical printing
in data-processing mode, better looking printing in word-processing mode,
and dot-graphics in graphics mode. In older “LP"’ printers there’ll probably
be only the data-processing option and no word-processing option, with
possibly a graphics mode, as well. In some older printers, there may be only
a text printing mode, which is essentially a data- and not word-processing
mode. Daisy-wheel printers have only word-processing mode, as the
printers are oriented towards quality printing with subscripting.

The dot, "*P", or “M" under the DP, WP, and GR columns refers to the
type of action that is taken when the command is sent to the printer. A dot
means that the command is received and recorded, but that no printing or
motion results. A "*P”" means that printing results after the command has
been received, as in the case of the repeat command. An ‘M’ means that
some type of motion occurs without printing, such as positioning the print
head to a certain print column.

You'll notice that most of the basic functions start with an escape
character, a decimal 27, or a hexadecimal 1B. This is especially true in the
newer printers. Sequences that do not start with an escape are primarily
underlining, line feeds, and carriage returns.

FUNCTIONS

In the following discussion we’ll describe the major categories of com-
mands and how they work, in general terms. We'll go into excrutiating detail
in the next two sections.

SELECT MODE

These commands generally are found on the newer generation of printers
and select one of the three modes of printing— data processing, word pro-
cessing, or graphics. A decimal 30 usually resets the graphics mode. In
some of the printers, the command sequence is switch-selectable to make
the newer printer compatible with an older model. Remember that the big-
gest difference between the data-processing and word-processing mode is
in the line feed. In data-processing mode a line feed of less than a full line is
generally not acted upon until the end of the line. In word-processing mode,
a line feed of less than a full line is acted upon when it's received so that
superscripting and subscripting can be done.

BOLD PRINTING
The next catagory of commands sets bold printing and is found in the newer

HOW TO USE YOUR RADIO SHACK PRINTER

DMP printers. Bold printing can also be done with the daisy-wheel printers,.

but by different means—we’ll show you how in the next section.

ELONGATION

This function can be done on most printers. Older printers use the old
elongation start and end commands, a single command instead of an
escape sequence. The elongation command keeps the same character
height but spreads out the dot matrix over twice the distance, horizontally.
This results in a larger character — about twice normal size. The actual size
of the character depends upon what pitch has been selected—an
elongated character in “‘condensed’” mode will be a different size than one
in “‘standard’” mode, for example. The elongate mode used in daisy-wheel
printers doesn't elongate characters—it can't, because the characters are
not dot matrix. What it does do, however, is to set a 12-characters-per-inch
pitch. The standard pitch for daisy-wheel printers is 10 characters per inch,
and this is reinstated after the printer gets a 27,15 code sequence. For
daisy-wheel printers, therefore, the effect is to produce a more condensed
printing, the opposite of the elongated printing action.

UNDERLINING

Underlining is set not by an escape sequence, but by the old control code
for underlining, decimal 15. Underlining is found on most printers, and when
it isn't there by a control-code function, it is possible to achieve it
sometimes by repositioning and printing a graphics line.

LINE SPACING, LINE FEEDS, AND CARRIAGE RETURNS

Line spacing is set in many printers by sending an escape seguence.
Depending upon the printer, different line spacings forward and back can
be set. There's almost always a half-reverse line feed and a half-forward
line feed because of superscripting or subscripting requirements. Also, in
some cases, there's a special line-space setting for printing graphics which
don't use the ‘‘empty space’’ between character lines. Line-space settings
are given in Table 6-1, in line-feed units which are usually six lines per inch,
that spacing being the historical standard and one that's commonly used
for normal printing. A half-line feed is, therefore, 1/12 of an inch; a 3/4-line
feed is 1/8 of an inch, and a 1/48-line feed is 1/288 of an inch.

In two older printers, line feeds of three lines per inch and four lines per
inch are used—this comes out to a “times 2" and "times 1 1/2" of the
standard 1/6 of an inch line feed, respectively.

It's important to note when a line-feed spacing is set and when it is
executed. In data-processing mode, the line spacing is usually set by the
line-spacing command, and executed when carriage-return or line-feed
characters are sent to the printer. In word-processing mode, most line-
spacing commands set the spacing, and the spacing is done at the time of
the carriage return or line feed. However, half-line feed commands are
usually executed as they're received, for subscripting, along with certain
other spacing commands. In graphics mode, certain line spacing com-
mands are also executed when they're received.

The carriage-return and line-feed actions can be very confusing. On
newer printers, they work this way: The carriage-return action is usually set
by a DIP switch so that a carriage return can result in either a carriage
return and line feed, or only a carriage return. The normal setting for Radio
Shack software is for both a carriage return and line feed. On daisy-wheel
printers, a special escape sequence (27,21/27,22) can be sent, which is

~ Printer Hint
MORE ON BOLD
Bold prinkting is done
automatically in dot-matrix

printers. Once the command
is sent to the printer, its elec-

tronics will print a character
twice, to highlight the
character in bold. Once bold

mode is set, bold printing

remains in force until the
printer is reset. :
~In daisy-wheel printers,

. bold print is achieved by

printing the characters, then
executing a series of com-

head, and reprinting the
characters again over the
first set. See ‘‘Using Bold

Printing’’ in Section Il.

WHAT KIND OF PRINTING CAN YOU DO WITH YOUR PRINTER?

“mands to backspace the print :

53

Printer Hint
MORE ON FONTS

A font is a complete set of

type in one style. There's a
wide range of fonts to choose
from when you have typeset-
ting done commercially —
literally hundreds and hun-
dreds of different styles, from
*script”’ to ‘‘computer”’
styles. As printers become
powerful in terms of higher
density printing, we’ll see
more and more type fonts
implemented on printers,
making the printer design a
combination .of electronics and

. typography and graphics arts.

54

similar to setting the DIP switch, and is used for overprinting or bold face.
On older printers, the carriage-return action is also sometimes switch
selectable, but this varies with the printer. The typical case for most older
printers is a carriage return with line feed to get both a new line and a start
at the beginning of the line.

The carriage return spaces the line in accordance with the most recent
line-spacing command. If you've set 3/4-line spacing, for example, a
carriage return will cause a 3/4-line space and not a full line space. Set the
proper line spacing before a carriage return is issued.

The line-feed action is also determined by the printer model. On some newer
models, a line feed can be switch selectable to cause a carriage return and line
feed or a line feed only. The typical case is carriage return and line feed. In
many cases Radio Shack software intercepts the line feed character and even
though the printer is capable of performing a line feed without carriage return,
the software does both a carriage return and line feed.

FORM FEED

The top-of-form escape sequence is used on newer printers only and is us-
ed to set the page length. After the page length is set, sending a form-feed
character (decimal 12) will eject the proper amount of paper from the
printer. However, in most cases Radio Shack software will intercept the
form-feed character and issue a series of carriage returns instead, making
the top-of-form action useless. Assembly language programs can circum-
vent this action.

TYPE FACE, PITCH

There are usually several typefaces and pitches that can be set on newer
printers. In the daisy-wheel printers, of course, the typeface is determined
by the actual wheel, and the pitch (number of characters per inch along the
line) is set by the 27,14/27,15 codes. A pitch of 10 is called *‘pica,” in
typewriter terms. A pitch of 12 is called ‘elite,” in typewriter terms. A pitch
of 12 is more dense than a pitch of 10—you can get 96 characters in an
8-inch line versus 80 characters in the 10-pitch line.

Condensed characters are even closer together than 12-pitch
characters. Typically they are 16.7 characters per inch, but this depends
upon the printer.

In addition to allowing you to select the pitch, some printers also give you a
selection of fonis. A font is a fancy word for appearance of the type, or the
style. A plain font would be good for practical high-speed printing—this is call-
ed a standard font. A fancier font would be better for documents intended to
impress—the font here is called “‘correspondence.” An italicized type is
offered on one printer, and the “microfont” of the DMP-110 is especially for
subscripting.

HORIZONTAL POSITION

In most of the newer printers, and in some of the older graphics printers, you
can position the print head to a print position along the line. This print position is
based upon the number of dots making up the line, which is related to the
number of dots making up a character. If a character is six dots wide, for exam-
ple, an 80-character line would have 480 dot positions. The horizontal position
escape sequence gives you the ability to position the print head anywhere
along the line. You can do the same type of positioning in many daisy-wheel
printers; but as there are no dot positions, the spacing is specified in
“microspaces,”’ from one to six or one to nine per character position.

HOW TO USE YOUR RADIO SHACK PRINTER

DAISY-WHEEL PARAMETERS

Daisy-wheel printers have a special escape code sequence which is used with
proportional printing daisy wheeis. We'll show you how to do it in Section .

SHEET FEEDING

More expensive printers have sheet feeders, rnechanisms that feed the
printer single sheets of paper, one at a time. The sheet feed is activated by
an escape sequence.

REPEAT SEQUENCE

Many newer printers have & repeat sequence which allows you to repeat
the same character many times. This is especially handy for graphics.

SPECIAL ACTIONS

The CGP-115 is the four-color plotter device that isn’t really a standard
printer at all. We've included it in this book because it's capable of printing
text, and of performing a few other limited text operations. The CGP-115
commands relate to seiecting tex: mode (from graphics), moving the paper
in reverse, and rotating the pen holder to select one of four colors.

The CGP-220 is the color ink-jet printer. Although the actions are very
similar to a normal dot-matrix printer, there are some special commands,
relating to color selection and the proportions of characters, that aren’t
found in other printers.

The last group of functions can be classified in the “‘strange and unusual’
bin. (We'll say “‘strange and unusual’’ only if you don't own a Quick Printer I, II,
or Daisy-wheel I; in that case we'l' say ...ah... “powerful.”’) vhese are very non-
standard codes listed for completeness only.

OTHER PARAMETERS

For easy reference, we've also included other particulars in Table 6-1
relating to block graphics characters, European characters, Japanese Kana
characters, and serial vs. parallel connections.

Printer Hint
BEL CODE

The audio alarm is an
interesting code. On old
teletypewriters, there was a
BEL code which rang a bell
on the machine. A three-bell
story; coming in over the wire
service teletypewriter, was a
“hot story.”’ Since most

- microcomputers have a built-

in speaker, the bell in the
printer is not often used
anymore, except for the QP-1.

WHAT KIND OF PRINTING CAN YOU DO WITH YOUR PRINTER?

55

Table 6-1. Printer Master Table

’...
ooooooog meLwo %
_="TnSFYRa_Z5¥sy _ %
_==2>5>31% 3 aegirco
553558553 22253868887
CODE FUNCTION DP WP GR 1234567811124452DD241212TFP
18 Select graphics (new) [¢] o ¢t e s v . . 000000JJ Jo [}
27,19 graphics (old) J oo o s e e s s e
19 data processing o P o TP o T o T o K o T o N o MU SELECT
20 word processing o] e e e s s s s 0 L0 L0 0000 4 o4 .. e e MODE
30 Graphics mode, end (new) 0O0000004JJdJo e 0 e e .
27,20 , end (old) [. Jd ..
27,31 Bold start o o « «« .00.00000
27,32 Bold end (new) o] o e e v oo 0.0JdJJo . BOLD
27,30 Bold end (old) o e e v d e e L Jd ce
27,14 Elongation/pitch start (new) o o} o .o0o.0...0.000JJJoQQQAQ o] o}
27,15 end (new) o} o) 0O .0.0...0.000dJdJJoNNNN o o} ELONGATION
31 Elongation start (oid) o} o 000 o JJJ .
32 end (old) o} o o0 JJJ . ..
15 Underline start o] o] .+ .00..00000000O0O0 00O o . UNDERLINE
14 end ¢} 0 « + . 00. .00000000O00O0 00 o0 o}
27,54 Line feed,forward,set, full o o e} o} 0O 00O0O0OOO O . o
27,71 , 415 M M M . . O v v . . oo
27,56 , 314 o M o 00 . 0. 0000O0O0. . o .
27,28 , 12 o M 00O o} 0000O0DO0O. 00O ..
27,26 , 118 o]00 .
27,50 , 1112 o . 00000 . -
27,49 , 1720 M M M . FS T o J . LINE SPACING,
27,51 , 1/36 o] . « + + + + 4000 .« . « v« + 4+« « « . LINEFEEDS,
27,52 , 1172 o . © 4 4 4« 4+« + 4 4w v 0+ e+ 4 s « . . .CARRIAGE RTNS
27,51 , twice [} . . e e e e . . o} e e e e e e
27,10 Line fd,rvrse,set,full(new) o M P . 0 . 00000 . 00O ..
27,138 ,rvrse, full (old) M . .00 e e e e e . e .
27,30 ,rvrse,set,1/2(new) o M . .0 . o o.o0dJJo 00O - .
27,32 Jrvrse,set,1/2(old) 0o PR P Y N .o Coe e e
27,21 Carriage return only, set o} e e e . . e 000
27,22 , reset ¢} c « + + 4 s e e 4. . .000
10 Line feed, execute M M M ooDDBBAGBAI| BDHBGBGBGGA A | | | 1 o . | |
13 Carriage return, exec (new) M M M o000EGCCAHCAACHCHCHBHCHHA RRR . Ao o A A
26 Carriage return, exec (old) M M ... E.EE. - E .
2752,n Top of form, set ton o o O « ¢« ¢ v v v+ 2 +.0.00000: 4+« 4+ 4+ 4 4« .+ .. FORMPFEED
12 , execute o [¢] o F . e v s s 0. 00000F ...
27,17 Type, proportional, select [} 0o [o 0O.0.00000.0O00O0 voe e e
27,18 ,10 pitch,corresp,sel o o 0 . 00000 .« « v oo 4o oo .
27,19 ,10 pitch,stndrd,sel o o] o . o.000dJJJo .. . PR
27,29 ,12 pitch,corresp,sel o o . . T S o 2
27,23 ,12 pitch,stndrd,sel o) ¢} . « v+ s+ .0 .0MoOOO . s« « +« « « . « TYPEFACE,
27,20 ,condensed,select (new) o o] . oO...0.000JdJJo. .. e e e e PITCH
27,14 ,condensed,select (old) o e e . o P N Y . e e e e
27,15 ,condensed,cancel (old) o . o e s s dd
27,66 Jitalics o} o S o T v e e e
27,77 ,microfont o o LT«
27,16, Position to point position M M . SoSo.LLLLO 0 . .
n1,n2
27,1 - 27,6 Proportional space 1-6 pts M M M0.0.00000.0.0. 4+« « ..
27,1-279 space 1-9 msp et v s 4 4 e i 4 e e e e e s e e w0 4 4 s e s« . HORIZONTAL
8,n Backspace n pnts/microspces M M ¢+ 0 ¢ s .0 .0 .00000 . +«00 .+ o o « « POSITION
8 Backspace one character [¢] PRSI 00 o . . (¢}
27,24 Daisy Wheel prmrtrs, start o © e s 4 4 4 4 e e e 4 e e s s e 000 . .« .+« . . DAISYWHEEL
27,25 , end o F o I« JK « T
27,73, High-res graphics, print P P e < T T HIGH
ni,n2, RESOLUTION
d1,d2,d3

56 HOW TO USE YOUR RADIO SHACK PRINTER

FUNCTION

Insert new paper
Insert new paper

DP WP GR 1234567811124452DD241212TFP

Text mode, select
Line feed, reverse
Pen holder, rotate

28,84,n1
27,67
27,78

Color, seiect color n1
, scan mode
Dot pitch ratio 1:1
4:3

15
27,32
27,127

Audio alarm

80 chars per line
40 chars per line
20 chars per line
16 chars per line
Print cents sign
Print xxxx sign
Clear buffer

OLDER
PRINTERS

Block Graphics Characters
European/Japanese Character Sets
Paraliel Interface

Serial Interface

XCe—ITOTMMOO®>» O

LEGEND

ata processing, graphics only
CRLF always
Also code 138
Also code 141
LF only, also code 138
CR only
Also code 11
LF or CRLF switch selectable
CR or CRLF switch selectable
LF only
Codes switch selectable
Use d1, d2 only

AN<K<CHAOTOTUVZZ

. . O v v o «
.0 . .
0 .00000 .+ « + «
. e . e s e « « O
.. . o
.. e 0 ..
« o e . O 4 s o
< TR
. 000000
TUTTTTTT.VVV.
00000000O0O0O0O
z2z2z2z22. .. zZ.Y
Motion
Sets 10 characters per inch
Printing

Sets 12 characters per inch
CRLF except after 27,21

Use n1 only

European character set
Japanese character set

Subset of European characters
600 bits per second only
600/1200 bits per second
600/2400 bits second

OTHER
PARAMETERS

TEXT AND WORD PROCESSING PRINTING

57

SECTION 2

Printing Text

CHAPTER /

yrORD
>SING

Up to this point we really haven't given you much in the way of solid
“‘code’’ that you can use on your printer. In this section we’ll try to remedy
that situation— it's dedicated to giving you practical examples of how you
can perform different printing functions. Usually the code will apply to
almost all printers; but, in other cases, special techniques are used for older
printers or for printers that are somewhat unique.

This section is organized functionally, from simpliest function to most
complex. It’s a mix of general topics and specific information. You'll find
material on how to proportionally space characters along with a program to
print the text screen of your system. The table of contents or index will point
you to the location of techniques for the function or application in which
you're interested. This chapter covers text processing only — refer to Section
3 for information on graphics.

Note: LPRINT is used as the general print command in this section and
the next. If you have a Color Computer or MC-10, simply substitute
PRINT#-2, (don’t forget the comma) for every LPRINT you see.

LISTING PROGRAMS AND DATA

When you are in BASIC, but not running a program, you can print the
material currently in memory by a simple command that works on all Radio
Shack systems—LLIST. The LIST command (one L) displays the current
program on the screen, and the LLIST (two Ls) is sirilar except that the pro-
gram is sent to the system printer instead of the screen. Suppose that you
had this program in memory

TEXT AND WORD PROCESSING PRINTING 61

62

100 LPRINT “‘William Barden, Jr.”

110 LPRINT ‘200 N. S. Memory Lane"
120 LPRINT ““‘Computer City, CA 92692"
130 LPRINT: LPRINT: LPRINT

140 GOTO 100

It could be listed by entering an LLIST after the BASIC OK or > prompt
message:

OK
LLIST

or
> LLIST

The listing would be done at the current line spacing and pitch which, in
most cases, would be six-lines-per-inch spacing and 10-characters-per-inch
pitch.

The LLIST command is virtually foolproof. If the printer is ‘‘ready,”” or ON
LINE, the listing will proceed from beginning to end. To stop the listing at
any time, just press < BREAK >, and the listing will stop.

If you want to list only a portion of the program, you can use a range of lines:

LLIST 100-300

for example, will list all lines from 100 through 300. Don't worry if the lines
don't exist, the LLIST over a range will attempt to list any lines found within
the range specified.

You can also use a minus sign to signify “‘all lines before” or “‘all lines after.”

LLIST -9000
for example, lists all lines up to and through line 9000, and
LLIST 9000-

lists all lines from 9000 through the end of the program.

While running a BASIC program, of course, you'd use the LPRINT (all
Radio Shack computers except the Color Computer and MC-10) and
PRINT#-2, (Color Computer and MC-10). We covered those commands in
some detail in Chapter 5 and won't repeat the descriptions here.

SELECTING FONTS IN DOT-MATRIX
AND DAISY-WHEEL PRINTERS

Newer Radio Shack printers have a lot of different combinations of
typefaces that can be used in printing. We'll describe some of the
characteristics of the different type styles available here and show you how
to use them.

There are two things over which you have control when selecting a type
face in printers—the type style and print density.

DAISY-WHEEL PRINTERS
There's a large variety of type styles aveilable for the daisy-wheel printers. The
printing on daisy-wheel printers looks as good or better than a typewriter and
approaches the appearance of copy produced by a typesetter.

Selection of a type style for daisy-wheel printers is largely a question of

HOW TO USE YOUR RADIO SHACK PRINTER

which one looks best to you. There are three main categories of type
wheels: those designed to be used at 10 characters per inch (10 pitch),
those designed to be used at 12 characters per inch (12 pitch), and those
designed to be proportionally spaced. A 10-pitch type is sometimes called
“pica’”’ and a 12-pitch type ‘“‘elite.”” Proportional spacing type wheels are
designed to be used with variable widths, rather than a fixed pitch (see
“*Proportional Spacing’’ in this section).

Since the type style is designed for either 10 pitch, 12 pitch, or proportional
spacing, there’s not too much variation in the “‘print density’’ in daisy-wheel
printing—you choose the best type wheel for the task and stick with it.

Normally, you set the front panel switch on the daisy-wheel printer to 10,
12, or PS, based upon the type wheel mounted. However, you can select
pitch through software if you wish. You can compress a short amount of
text, for example, by selecting 12-pitch for a 10-pitch wheel. Selecting
10-pitch is done by sending a CHR$(27);CHR$(15) to the printer, selecting
12-pitch is done by sending a CHR$(27);CHR$(14), and selecting propor-
tional spacing is done by sending a CHR$(27),CHR$(17). The pitch selected
would remain in force until you sent a new command or powered up the
printer again. Turning on the printer causes it to read the pitch setting from
the front panel switches.

Here’s a sample segment of code to produce a short, 12-pitch piece of
text for a 10-pitch wheel.

100 LPRINT “This is 10 pitch’;CHR$(27);CHR$(14);
110 LPRINT ** this is 12 pitch’";CHR$(27),CHR$(15);
120 LPRINT ** and back to 10 again”

The result is shown in Figure 7-1.

This is 10 pitch, this is 12 pitch, and back to 10 again

Figure 7-1. Twelve Pitch Segment in Ten Pitch Mode

DOT-MATRIX PRINTERS

Type Styles There are either one or two styles of type you can choose with
a dot matrix printer. Older dot-matrix printers have just one style of type —the
plain vanilla dot-matrix standard type. This is a type that has no frills; it prints
a simple dot matrix. Newer printers, though, are oriented more toward word
processing and pretty type. Newer printers usually offer both a simple dot-
matrix type, called standard and a fancier type, called correspondence.
Correspondence is usually a higher-resolution type that uses a denser dot-
matrix to form characters that look less like dot-matrix and more like daisy-
wheel type. In the best case, the DMP-2100 uses a 24-pin print head to print
characters that look almost as good as daisy-wheel characters.

Print Density There are three basic ‘‘pitches’ in dot-matrix
printers—normal, compressed, and condensed. Your printer may have all
or some of these, although it will always have the normal pitch. Normal
pitch prints at 10 characters per inch. Compressed print has 12 characters
per inch. Condensed print has a density of 16.7 characters per inch.
Depending upon the type of printer you have, you can select both the style,
standard or correspondence, and the pitch of the type. You could print in
standard style type in normal (10 cpi), compressed (12 cpi) or condensed
(16.7 cpi) on the DMP-500, for example.

TEXT AND WORD PROCESSING PRINTING

63

- Prmter Hlnt
DMP-110 ITALIC
AND MICROFONT

' CHARACTERS

The DMP 110 has two

. unique font types not found

on other printers, italic and

microfont.

The italic stylé uses a
12-by-16 dot-matrix and is
used to highlight portions of

text. To set italics in either

data-processing or word-
processing mode, use a
CHR$(27);CHRS$((66). To
reset jtalic, set any of the
other print styles. Figure

7-2A shows a sample of

italics. =

_The microfont type style is
a kflvke by*elght dot-matrix
designed for superscripting
and subscript’ing., (The ver-

. tical height is one-half of

64

normal, but e:ght dots are
printed!) Set the microfont by
CHR$(27);CHR$(77), and

reset it by setting one of the -

other print styles. Figure
7-2B shows a sample of the
mxcrofont

Compressed and condensed print densities allow you to print a lot more
characters on the same line. If you have an 8-inch print line, you’ll be able to
get 96 characters in compressed mode and 133 characters in condensed
mode, compared to the 80 characters in normal pitch. By the way, the
reason for the condensed pitch of 16.7 characters per inch is that this print
density can pack 132 columns in under eight inches. Since many larger
printers and computer systems print on 14 7/8-inch, 132-column green-bar
paper, the condensed pitch allows you to get the expanded printout on
narrower width paper—a handy feature.

In addition to the three standard print densities, you can also select an
elongated print mode in dot-matrix printers. This is usually a feature that you
can select in addition to one of the other densities. In elongated mode (see
“Elongated Printing,”” in this chapter), characters are printed at twice the
normal width horizontally by printing twice the number of columns of dots.
When elongated mode is used with normal pitch (10 cpi), the print density
becomes five characters per inch. When used with compressed printing (12
cpi), the density becomes six characters per inch. When used with con-
densed printing (16.7), the density becomes 8.35 characters per inch.

In addition to the print densities described above, newer printers also
have a proportional-spacing mode. In this mode, characters are printed at
variable widths. Each printer using this mode has a table of character
widths in the printer ROM, which defines the width of each character. Pro-
portionally spaced characters look neater and are more readable than
characters printed at a fixed width.

SELECTING TYPE STYLES AND PRINT DENSITY

Type styles and print densities in dot-matrix printers are selected by escape
sequences. The escape sequence starts with a CHR$(27); and ends with a
second CHR$() value. Once the type style or print density is in force, it
remains in force until a new type style or print density is chosen.

Table 7-1 shows the possible combinations of type styles and print den-
sities for every printer in this book. Table 6-1 shows which escape sequence

is used to set them.
Normally you can intermix type styles at any time. You could print some

text in normal pitch, immediately followed by text in condensed mode, and
then reset the normal pitch again. Figure 7-2 shows a sample printing of a
mixture of type, and the program used to produce the printout.

SETTING AND RESETTING DATA,
WORD PROCESSING, AND GRAPHICS
MODES

The LPVIIl, DMP-110, DMP-200, DMP-400, DMP-420, DMP-500 and
DMP-2100 all have both data-processing and word-processing mode, in
addition to graphics mode.

Note: Both data-processing and word-processing modes are ‘‘text
printing”” modes —both modes produce text characters without graphics.
The major difference in the two text modes is this: In word-processing mode
some line-spacing commands are acted upon immediately, causing the

HOW TO USE YOUR RADIO SHACK PRINTER

Table 7-1. Type styles and print densities

Printer Type Styles, Print Density

LPI Standard 10

LPII Standard 10!

LPII Standard 10’

LPIV Standard 10", condensed 16.7', proportional’

LPV Standard 10, condensed 15'

LPVI Standard 10", condensed 15!

LPVII Standard 10°

LPVII Standard 107, condensed 16.7, proportional’

DMP-100 Standard 10'

DMP-110 Standard 107, elite 127, condensed 177, correspondence 10,
correspondence elite 12, proportional, italic 10, super-, sub-,
microfont 177

DMP-120 Standard 10, condensed 16.7'

DMP-200 Standard 10', compressed 12!, condensed 16.7', correspondence 10!,
proportional!

DMP-400 Same as DMP-200

DMP-420 Same as DMP-200

DMP-500 Same as DMP-200

DMP-2100 Standard 10', compressed 12!, condensed 16.7', correspondence 10',
correspondence 12, proportional’

DW-I, -II, -1IB, Varies with type wheel

DWP-210, 410

CGP-115 Standard 10!, others

CGP-220 Standard 10!, also dot pitch ratio 1:1

QP-I Standard 5, 10, 20

QP-lI Standard 9!

TP-10 Standard 10°

Plotter/Printer

Standard 10, others

"= Halve pitch for elongated mode

This is text at 10 characters per inch;
this is condensed text; and this is normal again.
100 LPRINT ”This is text at 10 characters per inch, ”;

110 LPRINT CHR$(27);CHR$(20);”this
120 LPRINT CHR$(27);CHR$(19);”and this

put by God, Elioct,

is condensed texts”;
is normal again.”

Figure 7-2. Mixture of Type Styles

it was a photograph from Life!

Figure 7-2A. DMP-110 ltalic Type

You can intersperse fcrofont Text av amw sime oy yee it for superscripts.

Figure 7-2B. DMP-110 Microfont

paper to be moved up or down. This is primarily for superscripting and

subscripting, but also applies to other line spacing. In data-processing r
mode, the line-spacing command is remembered and acted upon at the end

of a line; it stays in force for all lines until reset.

The printer is set in data-processing mode every time the power is turned

TEXT AND WORD PROCESSING PRINTING

65

Printer Hint

FONT SELECTION
BY SWITCHES

You can select the font, or
type style, and print density
in the DMP-2100 by setting
its DIP switches. The DIP
switches are under the cover,
in the front right of the
printer. There’s a chart
directly below the DIP
switches. When you set the
switches, the printer will read
the switches every time it is
powered up and then choose
a type style (correspondence
or standard) and a print den-
sity (10, 12, or.16.7 pitch)

. based on the switches. You

won't have to send out the
escape sequence for the font
or print density in this

case —the printer will use the
DIP switch settings as the
default value. You can still
change the type style or den-
sity, however, by issuing the
proper escape sequence
commands to override the
DIP switch settings at any
time. If the bulk of your print-
ing work is in.correspond-
ence-10 for letter writing, for
example, you'd probably want
1o set the DIP switches for
that default, and the printer
would. be ready to go for your
word processing when you
powered up.

Other printers that operate
in similar fashion are the
DMP-200, DMP-400,
DMP-420, and DMP-500.

; ‘Type styles on these printers

are set by a small rotary
switch under the front. cover.

The rotary switch can be set

66

to the desired style and print
density with a small
screwdriver.

on. To set word-processing mode, the CHR$(20) code is sent to the printer.
100 LPRINT CHR$(20)

Word-processing mode will stay in force until either a '‘select data-
processing mode’’command or ‘‘select graphics mode’ command is sent.
To reset data-processing mode, send a CHR$(19)

100 LPRINT CHR$(19)

While in either data- or word-processing mode (or text mode on earlier
printers), graphics mode is selected by a CHR$(18).

100 LPRINT CHR$(18)

You can switch around from mode to mode at any time, even in the
middle of a line, although normally you'd want to stay in either word-
processing or data-processing mode for the bulk of a document. The code
CHR$(30) ends graphic mode and restores whatever mode was set
previously.

LPRINT CHR$(30)

Figure 7-3 shows how to print a mix of data processing and graphics—a
box with text inside it. (This program was written for the DMP-2100; dot-
column spacing may be different for your printer.)

Note: DMP-400, DMP-420, and DMP-500 printers have DIP-switch set-
tings to select graphics. Normally the switches are set for the new codes to
start and end graphics, (CHR$(18) and CHR$(30)). However, the “old”
codes of CHR$(27);CHR$(19) (start) and CHR$(27);CHR$(20) (end) can be
selected so that older applications programs which print graphics will run
on the newer printers without problems. Use the old switch settings only if
you are running older applications programs.

POSITIONING PRINT ON THE PAPER

One of the biggest tasks in printing is calculating the proper position of the
text on paper. If you look on a piece of paper as a type of ‘‘screen’’ similar
to the graphics screen you have on your system, then a position on the
paper screen is referenced by two schemes. The first is by lines and
character positions along the lines. The second is by lines and dot-columns
or microspaces.

PRINTERS WITHOUT DOT COLUMNS
AND VARIABLE LINE SPACING

Read this section if you have an LPI, LPII, LPIII, LPV, LPVI, DMP-120, DW-I,
CGP-115, QP-1, QP-lI, TP-10 or Plotter/Printer. These printers operate with a
fixed number of lines per vertical inch, usually six or six and eight, and with

‘a fixed number of character positions along the line. The number of

character positions depends upon the pitch, or number of characters per
inch. Different pitches can usually be selected. See Table 7-2 to see what

HOW TO USE YOUR RADIO SHACK PRINTER

TEXT IN BOX

90 CLEAR 1000
100 LPRINT CHR$(18);CHR$(255);:STRINGS(120,CHR$(129)) ; CHR$(2S5)

110 LPRINT CHR$(255);CHR$(30);:”

TEXT IN BOX

120 LPRINT CHR$(255);STRING$(120,CHR$(192)); CHR$(2SS)
130 LPRINT CHR$(30)

Figure 7-3. Mixture of Data Processing and Graphics

»;CHR$(18) ; CHR$(255)

line spacing and pitches are available for your printer and how to select
them. Table 6-1 shows the escape sequences used to select the spacing

and pitches.
Table 7-2. Line spacing and pitches

Lines/Inch Pitch (Characters/inch,
Printer Line Spacing Dot Columns or Microspaces/Inch)
LPI 6 10-16.5 manually variable
LPl 6 10
LPHI 6,8 10!
LPIV 6 10', 16.7", proportional’
LPV 6,8 10'; 157
LPVi 6,8,12 107, 15!
LPVII 6,9(graphics) 10!
LPVIHI 6,8,12 10", 16.7", proportional’
DMP-100 6,9(graphics) 107, 60 (positioning)
DMP-110 6,7.5,8.6,12,120 10", 12, 171, 120 (positioning)
DMP-120 6,8,12,72 10, 16.7"
DMP-200 6,8,10.2,12,72 10, 121, 16.7", 120-200 (positioning)
DMP-400 6,8,9.8,12,36 10, 12!, 16.71, 60-100 (positioning)
DMP-420 6,8,10,12,36 10", 121, 16.7", 60-100 (positioning)
DMP-500 6,8,12,36 10t, 12, 16.7", 60-100 (positioning)
DMP-2100 6,8,7.5,8.57,120 10", 127, 16.71, 180 (positioning)
DW-| 3,4,6 10, 12
DW-II 6,12 10, 10, proportional, 80 (positioning)
Dw-1IB 6,12 10, 12, proportional, 120 (positioning)
DW-210 6,12,48 10, 12, proportional, 120 (positioning)
DW-410 6,12,48 10, 12, proportional, 120 (positioning)
CGP-115 6 10!
CGP-220 6,8 10, 80 (positioning)
QP-1 5 5,10, 20
QP-Il 5 g
TP-10 6 10!
Plotter/Printer 6 10, others

t= Halve pitch for elongated mode

Positioning text in these printers is easy. A print position on the paper is
referenced by lines and a column number within the line. If you're working
with six lines per inch, there are 66 lines per 11 inches of standard paper.
Eight lines per inch will be 88 lines per page. The number of character posi-
tions will be nominally ten per inch, and on most printers of this type can be
changed to five per inch in elongated mode.

To print “This is line 20, char pos 5", you'd have:

100 FOR 1=1TO 19

110 LPRINT

TEXT AND WORD PROCESSING PRINTING

67

68

120 NEXT | ‘
130 LPRINT ** This is line 20, char pos 5"

Notice that in the code above, four spaces precede the printable portion
of the text. The spaces position the text along the line. Another way of doing
this in BASIC is to use the TAB function. The TAB function jumps over a
given number of character positions. You could have used

130 LPRINT TAB(S);“ This is line 20, char pos 5"

and gotten the same effect. The tab positions used in TAB correspond to
any printer column and are numbered starting from 1. Note that the tab
positions are not related to any physical position on the printer paper. A ‘
TAB(20) at ten characters per inch will be two inches from the left paper
margin, while a TAB(20) at five characters per inch will be four inches from
the left margin. The TAB value refers strictly to the number of character
positions that will be tabbed, counting from the left margin (TAB = 1).

DOT-MATRIX PRINTERS WITH DOT
COLUMNS AND VARIABLE LINE
SPACING

All of the previous information applies to the printers in this group when the
lines per inch are fixed at six or eight and plain text characters are printed
without proportional spacing or graphics, so you'd best read it before
continuing if you have an LPVIIl, LPVIIl, DMP-100, -110, -200, -400, -420,
-500, -2100, or CGP-220.

In addition to the standard line and character spacing described above,
the printers in this group can space in fractions of lines and character posi-
tions. This comes in handy for such things as superscripting, subscripting,
and graphics spacing.

CHARACTER POSITION SPACING

Dot-matrix printer lines, for printers in this category, are divided into dot col-
umns. A single text character for a dot-matrix printer is made up of six to 20
columns of five to nine dots each (non-elongated mode), as shown in Figure
7-4. The columns are produced automatically when a character is printed in
text mode. Because the printer already has built-in electronic and
microprocessor logic for spacing over columns to print the text character,
why not make it possible to position the print head of the printer over any
column? These printers allow that little bit extra of intelligence, and it
becomes a powerful feature.

Generally the number of dot columns along a line are related to the pitch
and typeface of the printing. Depending upon your printer, standard pitches
are 10, 12, and 16.7 characters per inch. The greater the pitch number, the
more columns that can be crammed into the spacing for one character. The
number of dot-columns per inch varies from about 60 to 200 per horizontal
inch. The exact number for your printer is shown in Table 7-3.

The dot-column numbering begins at 0, starting at the left margin, as shown
in the table. To move the print head to any dot column, you must do a dot-
positioning command. The format for this command is

CHR$(27);,CHR$(16);,CHR$(MM);CHRS$(LL)

HOW TO USE YOUR RADIO SHACK PRINTER

|
<
@ @ =
7 DOTS ® ® S
/
‘A X K K X I
COLUMN ® ® U DMP-100
® ®
® @ |
6 COLUMNS
® L1
222
¢ o HE
[] @ o
000
covom! ® ® o003 DMP-110
‘XXX KXKX) §§§
o ® 555
@ ®
12 COLUMNS
[) |1
2Z2 2
oo =£
i |
7 DOTS/ ® ® Q0 DMP-500
COLUMN ® ® oo
‘X X X K Bl
o e i
@ @ 1

.,
12 COLUMNS

Figure 7-4. Typical Dot Arrays for Characters

The first two CHR$() characters mark the command as a column-
positioning command. The next two define the dot column to the printer so it
can move to the proper position. To find the MM and LL values, divide the
dot column involved by 256. Save the quotient as MM and the remainder as
LL. Suppose you wanted to position the print head to dot column 402, about
2.2 to 6.7 inches from the left margin, depending upon your printer and
pitch. Dividing 402 by 256 gives a quotient of 1 and a remainder of
146—MM s, therefore, 1 and LL is 146. This code would print the text
“TEXT" starting at dot column 402:

100 LPRINT CHR$(27);CHR$(16);CHR$(1);,CHR$(146);" TEXT"

Note that a semicolon was used after the escape sequence. If a
semicolon was not used, BASIC would send a carriage return after the
escape seguence and cause a line feed.

Note: Because this escape sequence contains numeric values that
may be any number from 0 through 255, you may have problems with the
BASIC printer driver. If a numeric value in a CHR$() turns out to be a 12,
which is identical to the top-of-form character, the print driver will attempt
to execute a page eject by doing a series of new lines after it receives the
12. If a numeric value turns out to be a 10, identical to a line-feed character,
it will be changed to a 13 in the printer driver. Avoid escape sequences con-

TEXT AND WORD PROCESSING PRINTING

69

70

taining these values by using a slightly larger or smaller value in the dot
positioning, or use a combination of two or more positioning commands to
get to the proper position.

Table 7-3. Dot columns per inch

Dot Maximum Graphics # Dots/

Dots/inch addressable columns width line space vertical inch
LPI: N/A
LPI: N/A
LPIII: N/A
LPIV: N/A
LPV: N/A
LPVI: N/A
LPVII: 60 fixed 480 fixed 8" 0.11" 63
LPVII: 120 fixed 480 fixed® 8" 0.1" 72
DMP-100: 60 fixed 480 fixed 8" 0.11" 63
DMP-110: 120 fixed 960 fixed 8" 0.1" 72, 144¢
DMP-120: 1201, 2003 9601, 1600? 8" 0.1" 72
DMP-200: 1207, 1442, 200° 960", 11522, 1600° All:5 8" 0.1" 72
DMP-400: 60", 722, 1003 7921, 9502, 13202 All:s 13.2" 0.1" 72
DMP-420: 60, 722, 100° 7921, 9502, 1320° All:® 13.2" 0.1" 72
DMP-500: 601, 722, 100® 792", 9502, 1320°% All: 13.2" 0.1" 72
DMP-2100: 60°, 180* 8161, 24484 13.6" 0.12" 60,180*
DW-| N/A
DW-II N/A
DW-11B: N/A
DWP-210: N/A
DWP-410: N/A
CGP-115: N/A
CGP-220: 80 fixed 640 fixed 8" 0.12" 60
QP-I: N/A
QP-II: N/A

TP-10: N/A-block
graphics only

Plotter/ N/A

Printer

N/A = No graphics
'= Standard 2= Compressed

*= Condensed *= High resolution
*= Two dots printed for every
dot column

The column-positioning command can be used at any time, whether
you're in graphics or text mode. We'll show you further use of the column-
positioning sequence in applications examples in this section.

Backspacing can be done on a dot column basis as can forward position-
ing. Use the CHR$(8),CHR$(NN) sequence for this. The NN value, however,
is not a dot column number—it’s the number of dot columns to space
backwards. From 1 to 256 dot columns can be spaced backwards. (A value
of O is considered 256 dot columns.) The backspace can be used for
boldface printing. See “'Using Bold Printing” in this chapter. Again, watch
the numeric values and avoid a CHR$(12) and CHR$(10).

LINE POSITIONING

Lines, in this group of printers, are subdivided into fractions of lines. The
base unit for line feeds is a full forward line feed, a line feed that is
equivalent to six lines per inch. As we've noted before, six lines per inch is
the historical line spacing that is most typical for any printer. This line spac-

HOW TO USE YOUR RADIO SHACK PRINTER

ing is the default line spacing for the printer when the power is first turned
on. To return to this normal spacing, a

CHR$(27),CHR$(54)

escape sequence is used.

A half forward line feed is found on all printers in this group and is
equivalent to 12 lines per inch, making the line spacing 1/12 of an inch. One
of the chief uses of half forward line feeds is for subscripting as in

H,0
The half forward line spacing is set by a
CHR$(27);CHR$(28)

escape sequence.

There's an important difference between execution of this escape
sequence in data-processing mode and in word-processing mode. In data-
processing mode, the line spacing is set, but not acted upon. In other
words, the paper is not moved immediately after receiving the escape
sequence, but is moved after a carriage return is received at the end of the
line. In word-processing mode, the line spacing is immediately acted upon.
The primary reason for this is to implement subscripting and superscripting
in word-processing mode.

The half reverse line feed is the other half of the line spacing required for
subscripting or superscripting. It moves the paper in reverse 1/12 of an inch
(12 lines per inch). The escape sequence for this is

CHR$(27);CHR$(30)

Again, if the printer is in data-processing mode, no action is taken after
the printer receives the escape sequence, until the next carriage return. In
word-processing mode, though, the paper is moved immediately. Suppose
that you want to print H,0 in word-processing mode. You'd do this:

LPRINT CHR$(20);*‘H’";CHR$(27);,CHR$(28);"'2"";CHR$(27);
CHR$(30),*'0”

The CHR$(20) sets word-processing mode. The letter *H"" is then printed.
The CHR$(27);CHR$(28) then does a half forward line feed to space the
paper 1/12 of an inch forward. The ‘2" is printed. The CHR$(27);CHR$(30);
then spaces the paper back 1/12 of an inch to the original baseline. The *'O”
is then printed. The line spacing to be used at the end of the line is un-
changed—it’ll still be the full line feed.

If this were tried in data-processing mode, there would be no subscript-
ing. The half forward line feed would be recognized by the printer and
stored, but no paper movement would occur. The 2" would be printed on
the same line as the *‘H" because of this. The half reverse line feed would
be recognized and stored. After the ‘O’ was printed, the printer would be
set for 1/12 of an inch reverse line feeds — not what we wanted at all!

All of the printers in this group also have a full reverse feed, a
CHR$(27);CHR$(10) escape sequence. In data-processing mode, this sets a
full reverse line feed, but does not move the paper. In word-processing mode,
the paper is moved immediately after the escape sequence is received.
Here's the kicker, however —the CHR$(10) portion of the full reverse line
feed is intercepted by the printer driver and changed to a CHR$(13)! To avoid

TEXT AND WORD PROCESSING PRINTING

71

this, use two reverse half-line feeds in place of the full reverse line feed,
unless you are communicating with the printer directly.
To summarize what we have covered so far:

e Full forward line feed (CHR$(27);CHR$(54)), is recognized
in data-processing mode.

¢ Full reverse line feed (CHR$(27);CHR$(10)), moves the
paper in word-processing mode but not in data-
processing mode; it becomes the new line spacing in
data-processing mode only.

° Half forward line feed (CHR$(27);CHR$(28)) moves the
paper in word-processing mode but not in data-
processing mode; it becomes the new line spacing in
data-processing mode only.

e Half reverse line feed (CHR$(27);CHR$(30)) moves the
paper in word-processing mode but not in data-
processing mode; it becomes the new line spacing in
data-processing mode only.

The remaining line-positioning commands are all forward commands that
are dependent upon the specific printer you have. Table 6-1 shows what
spacing is available, the escape sequence, and when movement occurs.
Some of the spacing is used for graphics mode, to properly space the line
so that no white space occurs between lines. We'l| give you examples of its
use in the next section.

The smallest line spacing possible in this series of printers is 1/20 for-
ward, amounting to 1/120 of an inch. The escape sequence here
(CHR$(27),CHR$(49)) is immediately acted upon in all modes. To show you
what spacings are involved, try the following program. It spaces in incre-
ments of 1/120 up to 12/120 (1/10) of an inch. The result is shown in Figure
7-5.

100 FOR I=1TO 12

110 LPRINT “SPACING"’;

120 FOR J=1TO |

130 LPRINT CHR$(27);CHR$(49);
140 NEXT J

150 NEXT |

SPACINGSPAC INGSPAC INGg
PACINGgpaAC ING
SPACINGgpacING
SPAC ING

SPACING

Figure 7-5. Dot Matrix Variable Line Spacing

72

Note that the 1/120-inch line spacing is acted upon immediately and dues
not affect the line spacing previously set. It’s used on a temporary basis to
get the fine spacing required for graphics and some text.

DAISY-WHEEL PRINTERS

All of the information under ‘‘Printers Without Dot Columns and Variable
Line Spacing’’ applies to the DW-II, DWP-210, and DWP-410 daisy-wheel

HOW TO USE YOUR RADIO SHACK PRINTER

printers, as well, when the lines per inch are fixed at six and plain text
characters are being printed without proportional spacing.

In addition to the standard line and character spacing described above,
the printers in this group can space in fractions of lines and character posi-
tions. This comes in handy for such things as superscripting, subscripting,
and justification (clean right margin).

CHARACTER POSITION SPACING

Daisy-wheel printers space in fractions of character positions by using a
unit called a microspace. A microspace is 1/60 of an inch in the DW-Il and
DWP-410, and 1/120 of an inch in the DWP-210. (The DWP-410 can space in
1/120-inch units, but the basic microspace is 1/60 of an inch.) Microspaces
are analogous to the dot columns used in dot-matrix printers. Microspace
positioning is used to print boldface (by moving a microspace and reprinting
the character—see “Bold Printing’’ in this chapter), and to proportionally
space characters (see ‘‘Proportional Spacing’’).

Microspaces are not measured from the left margin as are dot columns
in dot-matrix printers. The spacing is done a specified number of
microspaces from the point at which the print head is positioned. To move
the print head in small increments, you must perform a microspace-
positioning command. The format for this command is

CHR$(27),CHR$(NN)

The NN value can be 1 through 6 for the DW-II, representing 1/60, 2/60
(1/30), 3/60 (1/20), 4/60 (1/15), 5/60 (1/12), or 6/60 (1/10) of an inch. The NN
value is the same as the DW-II for the DWP-410, with the addition of a
1/120th space when NN is equal to 0. For the DWP-210, the NN value can
be any number from O though 255. (However, watch for 10 and 12
values — use other ones instead because of printer driver interception.) The
NN value represents 0/120 to 255/120 of an inch. The code below inserts
spaces from 1/60 of an inch to 6/60ths of an inch, 1/120 to 6/120 of an inch
on the DWP-210, between two *‘T'’ characters. The space inserted is in ad-
dition to the normal 1/10 of an inch spacing between the Ts. The result is
shown in Figure 7-6 for the DWP-210.

100 FOR I=1TO 6

110 LPRINT “T"";CHR$(27);CHR$(I);"T"
120 NEXT |

130 PRINT

TT
TT
TT
TT
TT
TT

Figure 7-6. Daisy Wheel Microspacing

Note that microspacing commands don’t affect the normal pitch of the
characters. |f the pitch has been set to 10 characters per inch (the default
spacing at power up, depending upon dip-switch settings) this pitch will
remain in force, as will a 12-character per inch pitch if selected.

TEXT AND WORD PROCESSING PRINTING

73

The microspacing command simply inserts a space in addition to the one in-
serted for 1/10 inch, 1/12 inch, or proportional spacing. Note that a semicolon
was used after the escape sequence. If a semicolon is not used, BASIC sends
a carriage return after the escape sequence and causes a line feed.

Micro backspacing can be done on a microspace basis in addition. The
CHR$(8);CHR$(NN) sequence is used for this in the DWP-210 and DWP-410
(the DW-I and DW-Il backspace on character position with a CHR$(8) code).
The NN value can be 0 to 9 for the DWP-410, representing a backspace of
0/60 to 9/60 of an inch. The NN value can be any value from 0 through 255
on the DWP-210 and DW-IIB, representing backspaces of 0/120 to 255/120
of an inch. ,

LINE POSITIONING

Lines in the daisy wheel printers are subdivided into fractions of lines. The
base unit for line feeds is a full forward line feed, a line feed that is
equivalent to six lines per inch. As we've noted before in this book, six lines
per inch is the historical line spacing that is most typical for any printer. This
line spacing is in effect continuously. Other line spacings can be done to
print above the current line by a one-half reverse line feed (1/12 of an inch),
or by one full reverse line feed, or to print below the current line by a one-
half line feed (1/12 of an inch), or 1/8-line feed (1/48 of an inch; DWP-210,
DWP-410, and DW-IIB only). Table 6-1 shows the possibilities and the
escape sequences to cause the paper movement.

The half-forward and half-reverse line feeds are used primarily for
subscripting and superscripting. They move the paper 1/12 of an inch (12
lines per inch). The escape sequence for this is

CHR$(27);CHR$(28) (half forward)
CHR$(27);CHR$(30) (half reverse)

Suppose that you want to print H,0 in word-processing mode. You'd do this:

LPRINT “H";,CHR$(27);CHR$(28),"‘2'";CHR$(27);
CHR$(30),"0"

The letter ""H"" is printed first. The CHR$(27);CHR$(28); then does a half
forward line feed to space the paper 1/12 of an inch forward. The “2" is
printed. The CHR$(27),CHR$(30); then spaces the paper back 1/12th inch to
the original line. The ‘O’ is then printed.

All of the printers in this group also have a full reverse feed, a
CHR$(27);CHR$(10) escape sequence. Like the other line spacing com-
mands in daisy-wheel printers, this one is acted upon immediately to move
the paper. However, the CHR$(10) is changed by the BASIC printer driver to
a CHR$(13)— it thinks it's a line feed. This means that you must use two
half-reverse line feeds in place of the full-reverse line feed unless you are
circumventing the BASIC printer driver.

To summarize daisy-wheel line spacing capabilities:

e Full forward line feed is always in force.

e Full reverse line feed (CHR$(27);CHR$(10)) moves the
paper immediately after it is issued.

e Half forward line feed (CHR$(27);CHR$(28)) moves the
paper immediately after it is issued.

* Half reverse line feed (CHR$(27);CHR$(30)) moves the
paper immediately after it is issued.

The smallest line spacing you can get in this series of printers is 1/8-line

74 HOW TO USE YOUR RADIO SHACK PRINTER

feed forward, amounting to 1/48 of an inch and it's available on the
DWP-210, DWP-410, and DW-lIB. The escape seguence here
(CHR$(27);CHR$(26)) is immediately acted upon in all modes. This com-
mand can be used to create any line spacing that is a multiple of 1/48 of an
inch. To show you what these spacings look like, try the following program
on your DWP-210 or DWP-410. It spaces in 1/48-inch increments up to
12/48 (1/4) of an inch. The result is shown in Figure 7-7.

100 FOR | =1 TO 12
110 LPRINT "SPACES";

120 FOR J=1TO |

130 LPRINT CHR$(27),CHR$(26);
140 NEXT J

150 NEXT |

160 LPRINT

SPACES
SPACES
SPACESSPACES

SPACES
SPACES

SPACES

SPACES

Figure 7-7. Daisy Wheel Variable Line Spacing

SPACES

SPACES

Note that the 1/48-inch line spacing is acted upon immediately and does
not affect the normal 1/6-line spacing. A 1/6-line space is still issued for an
LPRINT or carriage return character (CHR$(13)). The 1/48-inch line spacing
is used on a temporary basis to get the fine spacing required for some text.

SETTING TOP-OF-FORM
AND SENDING FORM FEED

Radio Shack printers have no way of knowing the size of paper in the
printer. There is no mark or other means that the printer can sense to detect
a new page. However, Radio Shack printers, and other computer printers,
have two command sequences available that can be set to adjust the print-
ing for different page lengths and to advance the paper to the top-of-form.
You could, for instance, print three- by-five-inch index card forms using a
Radio Shack printer. Typical tractor/pin feed index cards are shown in
Figure 7-8. (Friction feed could also be used without major problems.)
However, before we discuss the two commands, we'll have to warn you
about when they can be used. Radio Shack software generally has a
FORMS control that handles formatting of printing. On the Model IV, for
example, you can set the number of lines per page, the number of lines in
the print area, indentation, and other parameters by using the FORMS com-
mand in TRSDOS. All data sent to the printer through TRSDOS will be
formatted according to the parameters you set up in the FORMS command.

TEXT AND WORD PROCESSING PRINTING

75

Printerk Hiht
HARD TOP-OF-FORM

Newer operating systems,

“such as Model IV TRSDOS

76

and LDOS, allow you to
select what’s called a hard
top-of-form. In this mode, the
top-of-form character, a
CHR$(12), is sent through
the printer driver unmolested
and the problem of the ;
system intercepting the 12
code is solved—you can
define your own form sizes
and send a top-of-form code
any time you'd like. However
(there’s always a catch...) if
you select a hard top-of-form,
some applications software
that relies on a soft top-of-
form may not work!

1]
@ FAN FOLD @
R | g
A
@ @
@& @
3 INCHES \
® (sunes ' @
3
& ' @
@ ! /PERFORATION ®
o }-
® @
® - 5 INCHES . ®
- (50 CHARACTERS) g
@ @
1
& ' @
@ PERFORATION @
I /
1 1
1 [}

Figure 7-8. Printing Three by Five Index Cards

(The FORMS command is found on most other Radio Shack computers as
well.) Most Radio Shack BASICs also detect (filter) the command that would
cause the printer to advance to the next page and send a series of line
feeds instead. In addition, most applications programs also control page
formatting. Scripsit and SuperScripsit, for example, allow you to set the
page length and other parameters. Although the FORMS control commands
are recognized by the printer, they won't usually be received by the printer
because of this filtering by the system. About the only approach left is to use
your own assembly language program:; assembly language commands
usually are not filtered by the system. With that in mind, let’s describe what
the two commands do.

SETTING TOP-OF-FORM

The escape sequence CH R$(27),CHR$(52);CHR$(NN) sets the form length in
the printer. This command will be sent to the printer through BASIC. The NN
parameter may be a value of O through 255, and it represents the number of
lines per page. (A O value is considered 256.) The form length is automatically
set to 66 at power-up of the printer, 66 being the number of lines per inch for a
standard 11-inch page at six lines per inch. Going back to our previous exam-
ple of printing three-by-five index cards, the top-of-form command could be
used to set the form length here by

LPRINT CHR$(27);CHR$(52);CHR$(18)

which would set the form length to 18 lines per page (three inches at six

HOW TO USE YOUR RADIO SHACK PRINTER

lines per inch). This is a good time to add that the units here are based
loosely on six-lines-per-inch line spacing, but they could just as well be
based on eight lines.

TOP-OF-FORM

Having set the form length, how do you control the form spacing or page-
eject? This is done through a top-of-form character—a CHR3$(12). The
CHR$(12) is not sent to the printer in most BASICs; it's usually intercepted
by BASIC or the operating system software and a series of line feeds are
sent to the printer instead, based on a line count and form length held in
BASIC. However, if a CHR$(12) does get to the printer via an assembly
language program, the CHR$(12) would cause this action: The printer would
compare the current line count with the number of lines per form. It would
then space the paper until the same position on the next page was reached,
as shown in Figure 7-9. Executing a series of CHR$(12) commands would
space three inches for every CHR$(12).

100 LPRINT CHR$(12);CHR$(12);,CHR$(12)

would space 9 inches.

-] @

® ®

® ®

@]

: TOP OF FORM MESSAGE : ~— FORM LENGTH SET

o|LINE2 ° HERE BY CHRS$(27);
3 e ° CHR$(52); CHR$(18)

® @
(48 e e|<— CHR$(12) ANYWHERE IN

LINES) |° e| THIS AREA GETS TO,

@ (2]

° ¢ HERe

: TOP OF FORM MESSAGE :

o o|<— CHR$(12)

) ®

] @

) -]

@ -]

@ @

® @

-] (-]

: . /

©|TOP OF FORM MESSAGE e

@ [}

[®

-] ®

® o |« CHR$(12)

-] -]

[L]

® @

® e /

[[}

L] e

©|T0P OF FORM MESSAGE °

-] @

@ ®

@ (]

Figure 7-9. Top of Form Spacing

Listings 7-1 and 7-2 show two programs, one for the Model Ill and 4 and the
other for the Color Computer, that show you how the top-of-form can be sent
directly to the printer in assembly language. The words “TOP OF 3-INCH
FORM’ are printed on 10 forms, each three inches in length. They will run
directly as a BASIC program; the assembly language program is coded in
DATA values, relocated to RAM memory, and then executed from BASIC.

Printer Hint

WHEN IS
TOP-OF-FORM SET?

Top-of—fbrm is set
automatically on power up to

whatever position the paper

is in. The first print line is
beneath the print head, at

that point. Top-of-form is also

set to the current paper posi-
tion after you’ve fun out of
paper and reset the system.
What this amounts to is that
you should position paper or
forms, initially, to the first

vertical line or area you want

printed.

Printer Hint

HOW THE
TOP-OF-FORM
PROGRAMS WORK

The top-of-form programs
contain a short assembly-
language program in machine

language form. The assembly

language program is moved
to an unused area of memory
so that it can be called by
the BASIC program as a sub-

routine. The BASIC portion of k

the program sets form length
by the CHR$(27);CHR$(52);
CHR$(18) sequence —the 18
value sets the length to 18
lines, or three inches at six -
lines per inch. ;
The BASIC program then:
prints out ‘‘TOP OF 3:INCH
FORM’’ and ‘‘calls’’ the
assembly. language subrou-

tine. The assembly language
subroutine sends a code of =
12 to the line printer directly,

without going through the
portion ‘of the printer driver
that intercepts the top-of-
form code. The assembly
language subroutine then

returns to the BASIC program

and repeats the action ten
times, by the FOR...TO loop
in the programs. L

TEXT AND WORD PROCESSING PRINTING

77

78

100
110
120
130
140
150
160
170
180
190
200
210
220

100
110
120
130
140
150
160
170
180
190
200
210
220

'MODEL III, 4 PROGRAM FOR TOP OF FORM
'PROTECT MEMORY AT 32511
DATA 33,232,55,126,230,240,254,48,32,249,62,12,211,248,201

FOR

I=32512 TO 32526

READ A : POKE I,A

NEXT I

DEFUSR(0=32512

LPRINT CHR$(27);CHRS$(52);CHRS(18);

FOR

I=1 TO 10

LPRINT"TOP OF 3-INCH FORM"
A=USR(0)
NEXT I

END

Listing 7-1. Model lll, 4 Top of Form Program

' COLOR COMPUTER TOP OF FORM PROGRAM
CLEAR 100,16127
DATA 134,12,173,159,160,2,5

FOR

I=16128 TO 16134 '

READ A: POKE I,A

NEXT I

DEFUSR0=16128
PRINT#-2,CHRS$ (27) ;CHRS (52) ;CHRS (18) ;

FOR

I=1 TO 10

PRINT#-2,"TOP OF 3-INCH FORM"
POKE 111,254

A=USRO(0)

NEXT I

Listing 7-2. Color Computer Top of Form Program

SETTING TOP-OF-FORM IN SOFTWARE

You can simulate top-of-form by setting up the proper variables in the BASIC
print driver that controls the printing and intercepts the top-of-form command.
In the Model |, the variables are

Location 16424: Form length in lines plus one
Location 16425: Line count

Use the POKE command to POKE in the number of lines you want per
page. Using our three-by-five index card example, this POKE would set the
lines per page properly:

100 POKE 16424,19

From that point on, you could use a CHR$(12) to do a top-of-form — it
would be intercepted by BASIC, but BASIC would use the 18 value as the
lines per page. The line count variable holds the number of the current line.
An example for printing the *“TOP OF 3-INCH FORM”* message is shown in
Figure 7-10.

For the Model Il and IV, the variables are

Location 16424: Form length in lines plus one
Location 16425 Line count

Location 16426: Character count

Location 16427: Character length per line-2

HOW TO USE YOUR RADIO SHACK PRINTER

100
110
120
130
140
TOP

TOP CF FORM

JMODEL 1,111,4 TOP OF FORM EXAMPLE
POKE 16424319

LPRINT ”TOP OF FORM”

LPRINT CHR$(12);

GOTO 120

OF FORM

{A

3 INCHES
(48 LINES)

v

TOP OF FORM~

Figure 7-10. Top of Form Example

The first two variables are the same as the Model |. The variable at loca-
tion 16427 controls the line length. If the line to be printed exceeds the
character line length, a line feed is done automatically. This parameter is
set at 255, initially, in the Model IIl. If you have a Model Ill, try this to see
how the line length parameter works:

100 LPRINT **123456789012345678901234567890"
110 POKE 16427,25
120 LPRINT “*123456789012345678901234567890"

You should have seen this printed:
123456789012345678901234567890
123456789012345678901234567

890

The print driver software automatically set a line feed when the maximum
number of characters per line was exceeded! The character length and line
length parameters remain in force until new POKEs or a Reset occurs.

TEXT AND WORD PROCESSING PRINTING

79

Printer Hint
JAPANESE ‘
KANA SYMBOLS

Five printers—the LPVIII,
DMP-200, -400, -420, and
-500—have a switch selec-
table Japanese character set.
The characters selected

replace the European charac-

ter set from codes 160
through 191 (in the LPVIII,
the Japanese character
codes go from 160 through

. 2283). Setting a DIP switch
and then powering up the
printer will select either the
European or Japanese
character set. See Figure
3-7. The Japanese kata-kana
character set is used for
foreign words and phrases
that have been translated into

. Japanese (many technical
words would be in kata-kana).
The symbols stand for
phonetic representations of

~sounds and syllables, rather
than objects themselves; as
in kanji symbols, the main
style of Japanese writing.

PRINTING EUROPEAN
AND SPECIAL SYMBOLS

Newer Radio Shack printers have a built-in set of European symbols.
Actually the term European symbols is a misnomer because there are sym-
bols for more than just ordering Flask in Stockholm seeing that your stein is
flllle in Munich, or trying to eat the septleme course in Paris. There are also
monetary symbols (English pound and Japanese Yen), fractions (1/4, 3/4,
and 1/2), and others.

Printers having this built-in set of symbols are:

LPV, VI, VI

DMP-110, -120, -200, -400, -420, -500, -2100

DW-II (subset), DWP-210 (subset), DWP-410 (subset)
CGP-220

The complete list of symbols is shown in Table 7-4. The printers in the
table don’t have a completely standardized European character set, some
include only a portion of the set, while others have gaps (blanks) for certain
characters. The DMP-110 and CGP-220 extend the basic codes of 160-191
by adding additional codes from 192-223. The DW-II, DWP-210, and
DWP-410 will not print the entire set. (The DWP-410 includes only a few
characters in the set.)

The symbols are all printed by using a CHR$(NN) code in which the NN is
the value of the symbol to be printed. To print the three words we mentioned
(plus copyright protection for this unique code), do this:

100 LPRINT CHR$(171);**William Barden, Jr."”

110 LPRINT ““FI”;CHR$(183);"'sk"

120 LPRINT “f"";CHR$(184);"‘lle”’

130 LPRINT “'septi’’;CHR$(189); “me"’

The result is shown in Figure 7-11

To make recalling the symbol code you used a little easier, try using a
string variable with the code defined by a CHR$:

99 CR$ =CHR$(171): SW$ = CHR$(183): GM$ = CHR$(183):
FR$ = CHR$(189)

100 LPRINT CR$;*William Barden, Jr.”

110 LPRINT “Fi";SWS$; " 'sk"’

120 LPRINT “f",GM$;"lle”

130 LPRINT “'septi"’;FR$;"'me”

You can use any string variable names you'd like —ones that you find
easy to remember.

UNDEFINED CODES

Newer Radio Shack printers print a symbol that looks like an hourglass for

every undefined code. The purpose of printing this symbol, instead of just

ignoring the undefined code, is to let you know, via the printed copy, that

you've made a mistake in an escape or control code sequence. Perfect

printed copy should have no hourglass symbols for undefined codes.
Suppose that you've tried to print a CHR$(17), as in

80 HOW TO USE YOUR RADIO SHACK PRINTER

o LPV, LPVI, DMP-120

Text

Table 7-4. European and Special Symbols

* LPVIIl, DMP-200,
DMP-400, DMP-420,
DMP-500 Standard,

¢ LPVIll, DMP-200,

DMP-400, DMP-420,

DMP-500 proportlonal

Compressed or * DMP-110, DMP-2100, * DMP-110, « DW-il, DWP-210,
[CGP-220 all text CGP-220 only DWP-410

Code Char. Code Char. Code Char. Code Char.
Dec. Hex Dec. Hex Dec. Hex Dec. Hex

160 A0 (Blank) 160 A0 . 192 C0 & 128 80 &

161 Al a 161 At 4 193 C1 & 156 9C [
162 A2 [162 A2 [194 C2 i 163 A3 £+
163 A3 £ 163 A3 £ 195 C3) 165 A5 [
164 A4 (Blank) 164 A4 . 196 C4 G 166 A6 °

165 AS H 165 A5 K 197 C5 - 167 A7

166 A6 ° 166 A6 ° 198 C6 & 188 A8 1+
167 A7V 167 A7 Y 199 €71 169 A3 ™M
168 A8 t 168 A8t 200 C8 4 170 AA @

169 A9 § 169 A9 § 200 C9 1 71 AB ©
170 AA (Blank) 170 AA© * 202 CA ¢ 172 AC %+
171 AB @ 171 AB © o« 203 CB 1 173 AD %+
172 _AC % 172 AC_ %+ 204 CC__i 174 AE Y2+
173 AD _(Blank) 173 AD W+ 205 CD @ 175 AF 4+
174 AE 174 AE 2 206 CE ' & 187 BB é +
175 AF 4 175 AF 9 207 CF__© 188 BC U+
176 B0 ™ 176 BO M 208 DO A 189 BD & +
177 B1 A 177 B1 A 209 D1 e 190 BE +
178 B2 O 178 B2 O 210 D2 A 191 BF 1+
179 83 U 179 B3 U 211 D3 & 192 CO § +
180 B4 ¢ 180 B4 ¢ 212 D4 @ 204 CC W+
181 B5 (Blank) 181 B5 v 213 D5 @ 219 DB A+
182 _B6 @ 182 B6 @ 214 D6 N 220 DC_ O+
183 B7 © 183 B7 © 215 D7 E 221 DD U+
184 B8 i 184 B8 U 216 D8 A 222 DE ¢
185 B9 B 185 89 B 217 D9 i 223 OF — +
186 BA (Blank) 186 BA TM + 218 DA O 251 FB @ +
187 BB e 187 BB & 219 DB U 252 FC o+
188 BC U 188 BC u 220 DC ¢ 253 FD U+
189 BD @ 189 BD @ 221 DD U 254 FE B+
190 BE (Blank) 190 BE 2220 DE E

191 BF 1 191 BF 1 223 DF A

+ Blank on DWP-210

* Space on CGP-220

Figure 7-11. Sample European Symbol Printing

8William Barden,
Flask
tulle

septié&me

Jr.

100 LPRINT “HOURGLASS ';CHR$(17);""HERE"

The result you see printed is shown in Figure 7-12.

On older printers, the design philosophy was 1o simply ignore characters
received that weren't recognized as printable characters or control codes.
In newer printers, however, there are a lot more functions, each with its own
escape or control code sequence, and a lot more possibility of error in send-
ing data to a printer.

o
¥
nim

Figure 7-12.

e

Py

niin®

Hourglass Symbol (Elongated)

TEXT AND WORD PROCESSING PRINTING

81

82

When a newer printer receives a character that it doesn’t recognize, the
printer generally prints an hourglass symbol, unless that character
represents a valid control code. If the character represents a valid control
code, it ignores the character and doesn't print anything. Suppose that the
printer is in data-processing mode and receives a CHR$(30) character. Nor-
mally, that would be an “end graphics mode’* command. The printer
ignores the character. If the printer is in data-processing mode and
receives a CHR$(17), though, it prints an hourglass, because the CHR$(17)
is not on its list of ““possible’” codes.

The printer will also ignore escape code sequences in which the values
are out of range. If you attempt to position the printer to dot column 65,535
by sending

LPRINT CHR$(27);,CHR$(16);CHR$(255);CHR$(255); “TEXT"’

the printer will ignore the positioning function. This also applies to repeat
characters that are not printable characters and not possible codes — if you
attempted to repeat the CHR$(17) 14 times, for example,

LPRINT CHR$(28);CHR$(14);CHR$(17)

The printer also ignores codes that are redundant. For example, if you
tried to set graphics mode and were already in graphics mode, the code
would be ignored.

To sum it all up, if you see an hourglass symbol, there’s an error in your
sequence of print data. Look at the point in the BASIC program that corre-
sponds to printing commands on either side of the hourglass symbol.

ELONGATED PRINTING

Elongated printing is a cheap and easy way to get large characters on dot-
matrix printers. The large characters can be used as headings or titles on
reports and other documents. Figure 7-13 shows the difference between
normal characters and elongated characters. The elongated characters are
twice the width but the same height as normal characters. To elongate, a
dot-matrix printer, in the simplest case, prints two dots for every one dot
printed in the standard spacing.

Figure 7-13. Elongated Printing

The print sample in Figure 7-13 was produced by

100 LPRINT “NOT ELONGATED"
110 LPRINT CHR$(27);,CHR$(14);"'NOW ELONGATED"”

Elongated characters can be set in any text mode in newer printers (LPH,
IV, ViII, DMP-110, -120, -200, -400, -420, -500, -2100, CGP-220, TP-10) by
sending a CHR$(27),CHR$(14); escape sequence to the printer. Once set,
elongation will be in effect until you reset it. To reset the elongated mode,
send a CHR$(27);CHR$(15).

Normal characters and elongated characters can be intermixed at any

HOW TO USE YOUR RADIO SHACK PRINTER

time. Just remember that an elongated character takes up twice the width of
a normal character. The twice-the-width attribute applies in whatever pitch
you select. If you're in a condensed-print mode (normally 12 characters per
inch), you'll get six characters per inch in the elongated character mode. If
you’re in a compressed print mode (normally 16.7 characters per inch), you'll
get 8.35 characters per inch in the elongated mode.

Elongated characters are set in older printers (LPIII, V, VI, VII, DMP-100) by
the older control code sequence CHR$(31) and reset by CHR$(32). The action,
however, is the same. (Use CHR$(30) to reset elongation in the LPVII and
DMP-100.) The DMP-400, -420, and -500 have dip switch settings which allow
you to switch between the old and new elongated character codes. Use the
new settings unless you're running software created for the older printers.

The DW-l, DW-Il, DWP-210, and DWP-410 also recognize the
CHR$(27);CHR$(14) and CHR$(27);CHR$(15) codes. The ‘‘elongation”
here, though, is not double-width spacing, but a more compressed
12-character-per-inch pitch. Resetting the elongated mode restores the ten-
character-per-inch normal pitch on these printers.

As with other escape codes, you can set up a string variable to use when
you want to elongate in BASIC:

100 SE$ = CHR$(27) + CHR$(14): EE$ = CHR$(27) + CHR$(15)
110 LPRINT ““NO ELONGATION"';SE$; "ELONGATION'";EE$

UNDERLINING

Underlining is generally set by a CHR$(15) and reset by a CHR$(14). Excep-
tions to this are the LPVII, in which underlining can be done by a combina-
tion of text printing and graphics. We'll show you how here.

Underlining is implemented in all “DMP’" printers, all daisy-wheel
printers (except the DW-I), the LPIV, LPV, LPVIII, and QP-I. The CHR$(15)
and CHR$(14) can be used at any time in these printers to underline as
many characters as you'd like. Here's a case in which the L, D, and A of
LoaD Accumulator are underlined:

100 LPRINT CHR$(15);“‘L’";CHR$(14);*'0a’;CHR$(15);"'D"";CHR$(14);
110 LPRINT ** ";:CHR$(15);"'A"";CHR$(14); ‘ccumulator”’

The result is shown in Figure 7-14. Since line 100 had a semicolon on the
end, there was no line feed between the ‘D" and the ** " and the text was
printed out on a single line. Note that to avoid underlining the blank
space,underlining was turned off before printing the blank and turned on
directly after.

LoaD Accumulator

Figure 7-14. Underlining Example

Underlining will remain in force until a 14 code is sent to the printer or
until the printer is cycled off and on.

As for other function codes, you can use a string variable as a mnemonic
to set and reset underlining:

100 SU$ = CHR$(15): EU$ = CHR$(14)
110 LPRINT SUS$:"‘This is underlined'’;EUS$;"* and this isn't”

TEXT AND WORD PROCESSING PRINTING

83

SPECIAL CASE FOR THE LPVII

Underlining can be done on the LPVII, but it’s fairly involved. You must print the
text, do a carriage return by a CHR$(26), switch to graphics mode by a
CHR$(18), print a graphics character corresponding to the underline
(CHR$(192)) over the text, and then switch back to text mode. To underline the
word “SAMPLE" in the text “This is a SAMPLE", for example, you’d have:

100 LPRINT CHR$(30) ‘text mode

110 LPRINT *‘This is a SAMPLE"’; ‘print text

120 LPRINT CHR$(26); ‘carriage return

130 LPRINT * " 'space to text (10 blanks)
140 LPRINT CHR$(18); 'set graphics mode

150 LPRINT CHR$(28);CHR$(36);CHR$(192); 'print underline

160 LPRINT CHR$(30) 'back to text.

The CHR$(26) made the printer return to the beginning of the line without
a line feed. The LPRINT of spaces positioned the print head over the S of
SAMPLE. Graphics mode was then set by a CHR$(18). The underline
character was printed by a repeat code (see ‘‘Using Repeat Codes for
Text’ in this chapter) that repeated the graphics character 192 a total of 36
times— 36 times because there are six dots per character, horizontally in
the LPVII. The 192 character prints a single dot on the bottom of the print
position. Involved? Yes, but necessary for underlining on this printer.

USING REPEAT CODES FOR TEXT

Repeat codes are used when the same character must be repeated many
times. It's a condensed way of instructing the printer to print the string of
identical characters, and is similar to the STRING$ function in BASIC.
Repeat codes are available in the LPVII, LPVIII, and all DMP printers (except
the DMP-120, CGP-220, and TP-10). Suppose you wanted to print a heading
on a report that looks like Figure 7-15. One way to print it is:

100 LPRINT * "

110 LPRINT * EFFECT OF GAMMA RAYS ON COMPUTER
MERCHANDISERS"

120 LPRINT "

S s s e - ——

D . O T T — ———— — T —— o ————— — — —— — - ——— o — ——_ M —— o— — i~ — 1o ————_— -~ -

A - L . S . . ——] —] T — Y T — T ———————]]~ " {o-. t—— " S T o ——— — —]~ -~ o " o — — o~

Figure 7-15. Repeat Code Example

84

A more condensed way to print the heading uses repeat codes:

100 LPRINT CHR$(28),CHR$(64); -

110 LPRINT TAB(8)," EFFECT OF GAMMA RAYS ON COMPUTER
MERCHANDISERS”

120 LPRINT CHR$(28),CHR$(64);*-"’

The repeat function uses the special escape sequence
CHR$(28);CHR$(NN);CHR$(CC), where NN is the number of times a

HOW TO USE YOUR RADIO SHACK PRINTER

character will be repeated, and CC the value of the character to be
repeated. As you can see from the examples, we can use a one-character
string for the character, if the character can be entered from the keyboard.
Or a CHR$() code can be used. We could have used
CHR$(28);CHR$(64);CHR$(45) in the example —the CHR$(45) is equivalent
to . The NN value can be 0 through 255. (A value greater than 255 will
not be accepted by BASIC, and if sent to the printer won't be handled prop-
erly; the printer expects to see the repeat count in the next character and
values greater than 255 would have to be in two bytes (characters). If a 0
value is accepted by the printer it will be treated as a 256, however.)

Note: Because this escape sequence contains numeric values that
may be any number from O through 255, you may have problems in using
the BASIC printer driver. If a numeric value in a CHR$() turns out to be a 12,
identical to the top-of-form character, the print driver will attempt to execute
a page eject by doing a series of new lines after it receives the 12. If a
numeric value turns out to be a 10, identical to a line feed character, it will
be changed to a 13 in the print driver. Avoid escape sequences containing
these values by using a slightly larger or smaller value in the repeat
sequence or use a combination of two or more repeat sequences to get the
same result. Another good idea is to use a STRING$ function in BASIC,
which operates the same as a repeat sequence, but as a BASIC and not a
printer command.

The repeat function is probably most useful in graphics applications,
because the printing density is so much greater than in text printing, and
because it would be tedious to use a discrete CHR$() value for every
graphics character to be printed. See ‘‘Repeat Codes for Graphics.”

USING BOLD PRINTING

Bold printing can be used to emphasize titles or terms in text. It's easy to do
if you have an LPV, DMP-110, -200, -400, -420, -500, or DMP-2100. It's also
possible with a DW-I, DW-II, DWP-210, or DWP-410, but you have to do a
little more work to get it. We'll show you how.

DOT-MATRIX PRINTERS

The escape sequence CHR$(27);CHR$(31) is used to start bold printing on
the dot-matrix printers mentioned above. The escape sequence
CHR$(27);CHR$(32) is normally used to end bold printing. To print the word
BOLD in boldface, use this code:

100 LPRINT “‘This is ';CHR$(27);CHR$(31);"'BOLD"";CHR$(27);
CHR$(32);** printing.” '

Boldface characters can be printed anywhere in text printing. In bold
printing, each character is printed, a slight advance along the line is made,
and the character is printed again.

Most of the dot-matrix printers (all but the DMP-110, -200, and -2100) can
switch to an “‘old"” stop bold code, a CHR$(27),CHR$(30) in place of the
CHR$(27);CHR$(32). The switch can be made by setting DIP switches.

Printer Hint

BASIC STRINGS
FUNCTION

The STRINGS function in
BASIC is very similar to the
repeat code in printers. The

STRING$ function generates

a number of identical charac-
ters as'a BASIC string vari-
able. An A% = STRING$

(30,“A’), for example, sets

string variable A$ equal to
C“AAAAAAAAAAAAAAAAAAA-
AAAAAAAAAAA’. An LPRINT
STRINGS (5,CHR$(13))
sends five CHR$(13) charac-
ters to the printer (five car-
riage returns). The STRINGS
can be used in lieu of the
repeat code in printers, or in
place of the repeat in those
printers that do not have this
repeat function. Like the
printer repeat, only one
character or value can be
repeated in STRINGS.

One reason for using the
STRING$ function is to avoid
problems with the BASIC
printer driver, because of
repeat codes that contain

“‘problem’’ characters, such

as 10 and 12. (The 10is
changed to a 13, and the 12
causes top-of-form action in
many printer drivers.)

TEXT AND WORD PROCESSING PRINTING

85

86

There’s a conflict between old and new half reverse line feeds, and bold end
escape sequences, and the switches resolve it for older software. Use the
new switch settings unless you're running older applications software,
which uses the old escape sequence. ‘

You cannot mix bold printing and elongated printing on the DMP-200,
DMP-400, DMP-420, and DMP-500. You can mix them on the DMP-110 and
the DMP-2100.

DAISY-WHEEL PRINTERS

There is no built-in command to print boldface on the daisy-wheel printers.
Bold printing must be done via the software, whether it's your own BASIC
program or an applications program. Printing bold characters is usually
done by printing the character, backspacing to the start of the character,
and overprinting the same character. (Another way of doing it is to
backspace to one microspace less than the start of the character and
reprint the character, but this may cause some double-image registration
problems.) This technique is easy when the character pitch is constant, as
in 10-character-per-inch or 12-character-per-inch spacing. However, when
proportional characters are being printed, the width of each character is
variable, and it's hard to define what the backspace should be in terms of
microspaces.

To print bold for text that is not proportionally spaced, it's probably best
to use a subroutine to print each character, because it would be tedious to
include all of the escape codes after each character of text. The subroutine
would look like this:

10000 ' PRINT BOLD

10010 " ENTER WITH ZZ$ = STRING TO BE PRINTED
10020 * EXIT AFTER PRINTING STRING IN BOLD
10030 Z1=10: D1=0

10040 FOR =1 TO LEN(ZZ$)

10050 LPRINT MID$(ZZ$,1,1);

10060 IF D1=1 THEN LPRINT CHR$(8); ELSE LPRINT
CHR$(8),CHR$(Z1/2);CHR$(8);CHR$(Z1/2);

10070 LPRINT MID$(ZZ$,1,1);

10080 NEXT |

10090 RETURN

Before you try the subroutine, do this: If you have a DW-I printer, change
D1=0toD1=1.Change Z1 to the pitch you're using— 10 or 12 characters
per inch by setting Z1 to 6 for DW-I, DW-II, or DWP-410 in 10 pitch, 5 for a
DW-I, DW-II, or DWP-410 in 12 pitch, 12 for a DW-1IB or DWP-210 in 10
pitch, 10 for a DW-1IB or DWP-210 in 12 pitch.

You can now call the subroutine from any point in your BASIC program to
print bold. To print the word BOLD in boldface in the text “This is BOLD
printing”’, you'd have something like this:

100 LPRINT “This is
110 ZZ$ = “BOLD": GOSUB 10000
120 LPRINT ** printing”

The subroutine first prints one character, using a BASIC MID$ command
to access the character. It then backspaces 10 or 12 microspaces, depend-
ing upon what value you give Z1. To avoid printer driver problems from
using a backspace sequence with a 10 or 12, the program backspaces in

HOW TO USE YOUR RADIO SHACK PRINTER

two steps, half the distance each time. For the special case of the DW-I, a
backspace alone will prevent the printer from spacing after printing. The
character is then reprinted, causing a bold impression. This sequence is
repeated for all of the characters in the string. After the last character has
been printed twice, the subroutine returns to the main program. Read ‘‘Pro-
portional Spacing,” in this section, to see how bold printing is done for
proportional spacing.

SUPERSCRIPTING AND SUBSCRIPTING

Superscripting and subscripting are done by using half line feeds, as
described in **Positioning Print on the Paper.”’ The escape sequence for half
forward line feed is CHR$(27);,CHR$(28) and for half reverse line feed is
CHR$(27);CHR$(30). Superscripting and subscripting are available on the
LPIV, LPVIII, DMP-110, -200, -400, -420, -500, -2100, DW-II, DWP-210, and
DWP-410.

DAISY-WHEEL SUPER- AND SUBSCRIPTING

If you're using a daisy-wheel printer to subscript or superscript, simply
insert the escape sequence for the half reverse (superscript) or half forward
(subscript) directly before the text you want to subscript or superscript.
After the text, you'll need to move the paper the other direction to return to
the original base line. See Figure 7-16. Suppose that you wanted to print the
text “'Ap is the term for Igc as we know from the study of ‘‘N-dimensional
Lattices in Fort Worth''. We'd use these sequences

100 LPRINT “*A”;CHR$(27);CHR$(30);''2'" ;CHR$(27);CHR$(28);
" is the term for I"";CHR$(27);CHR$(28);
110 LPRINT "cc”’;CHR$(27);CHR$(30);"* as we know...”

2

A® 1s the term for Icc as we know...

Figure 7-16. Super- and Subscripting Example

A less complicated way to do this is to set the sequence for a half reverse
line feed and full reverse line feed equal to a string. Let's call the half
reverse string US$ for upper script and the half forward string DS$ for down
script. We have this:

99 US$ = CHR$(27) + CHR$(30): DS$ = CHR$(27) + CHR$(28)
100- LPRINT “A’;:US$;2":DS$; is the term for I'";DS$,;
110 LPRINT ‘“‘cc’;US$;" as we know ... "

This makes the coding much less tedious. Of course, if you're using a
word processing program, such as SuperScripsit, you don’t have to worry
about putting in the proper codes, the program will do it for you.

After the paper moves, the old line feed spacing is retained. In other
words, doing a half line feed doesn’t mean that the printer is set at that
spacing— subsequent line feeds will be full 1/6-inch line feeds.

DOT-MATRIX PRINTER SUPER- AND SUBSCRIPTING

If you're using a dot-matrix printer that has half forward and half reverse
capability, you must be in word-processing mode to perform the subscript-

Printer Hint .
MORE ABOUT

' BASIC SUBROUTINES

You may use as many
subroutines in your BASIC
programs as you'd like. Each
subroutine can start with any
series of commands, but
must end with a RETURN
command. Subroutines can
be as few lines or as many
lines as you'd like. Any time a
sequence of commands or
print data is repeated, it'sa
good chance to incorporate
them into subroutine code to
save repeating the commands
each time. Subroutines can
also call other subroutines;
which can call other
subroutines, and so forth. If
you’re unclear about how
subroutines work, study
some of the ones in this
book, and spend an hour or

so. with.the BASIC manual for =

your system—it’ll be worth
the trouble and save you time
in BASIC print programs.

TEXT AND WORD PROCESSING PRINTING

87

88

ing or superscripting. This is because the half forward and half reverse line
feed codes are not acted upon immediately in data-processing mode —the
line feed is set to be acted upon at the end of the current line. If you had not
set word-processing mode before printing the example above, the text
would have been printed as

. A2 is the term for Icc as we know...”

The reason for the erroneous print is that each line feed code is
remembered by the printer, but not acted upon (the paper doesn't move).
The first half reverse line feed is overwritten by the next half forward line
feed code, which is then overwritten by the half forward line feed code,
which is then overwritten by the half reverse line feed code! At the end of
the line, the line spacing remains at half reverse line feed. If subsequent
lines were then printed, they'd space in reverse, at 1/12-inch spacing as
shown in Figure 7-17.

i%ﬁgséthe term for lcc as we know...

Figure 7-17. Super- and Subscripting in Data Processing Mode

Always use word-processing mode for super- or subscripting!

The LPIV, by the way, acts as if it were in word-processing mode; it was
the first word-processing printer for Radio Shack.

The DMP-110 uses a one-half size microfont to achieve super- and
subscripting.

BACKSPACING AND STRIKETHROUGHS
FOR FIXED PITCH

There are times when you'd like to backspace and overtype a character or
string of characters you've just printed. You might want to ‘‘slash’ a zero,
for example (the zero is not slashed on the DMP-2100), or you might want to
display a number of strikethroughs in a contract by printing a dash or slash
through text. It's easy to do this if you have an LPIV, LP VIII, DMP-110, -200,
-400, -420, -500, DW-I, DW-II, DMP-210, DMP-410, CGP-115, or Plotter/
Printer. These printers all have the capability to backspace one character
position, and sometimes on a dot-column, or a microspace, basis. This
description refers to a fixed-pitch backspacing. It's possible to backspace
in proportional mode, but it's a little more work—see ‘‘Proportional Spac-
ing”" in this section.

BACKSPACING FOR THE DW-I, DW-ll, CGP-115, OR PLOTTER/PRINTER
These printers all use a CHR$(8) character to backspace one character
position. To print the text “The contract is effective on January 8,1984
February 20, 1984" with the text '"January 8, 1984’ slashed through, you'd
have this:

100 LPRINT ““The contract is effective on January 8, 1
984", STRINGS(14,CHRE(®));" /M1l February 20, 1984

The text “‘The contract is effective on January 8,1984"" would first be
printed. At this point the print head is positioned over the next character

HOW TO USE YOUR RADIO SHACK PRINTER

position after the “4”" in 1984. The STRING$(14,CHR$(8)) now sends 14
CHR$(8) characters, which backspace the print head to a position over the
“J" in January. Fourteen slash characters are now printed, followed by
““ February 20, 1984" as shown in Figure 7-18.

The contract is effective on JAMAAYY/B/XIBA February 20, 1984

Figure 7-18. Backspacing Example

BACKSPACING FOR THE LPIvV, LPVIIl, DMP-110, -200, -400, -420, -500,
and -2100

These dot-matrix printers all use the sequence (not an escape sequence) of
CHR$(8);CHR$(NN) where the CHR$(8) marks the sequence as backspace and
NN is a value of 1 through 255 (1 through 126 for the LPIV). The backspace
moves the print head back NN dot columns. Successive backspace com-
mands can be used to move back more than 255 dot columns.

In using this code, you must know the number of dot columns involved in
printing the character in order to move back to exactly the start of the
previous character position(s). This depends upon the pitch and the type
style selected. Table 7-5 lists the dot columns for all of the dot-matrix
printers in this category.

Table 7-5. Dot column backspacing for dot-matrix printers

Printer # Dots/character width (except proportional)*

LPIV Standard: 10 condensed: 9

LPVIH Standard, condensed: 12

DMP-110 Normal standard, normal correspondence, italic: 12; elite standard, elite

correspondence: 10; condensed, super-, sub-, microfont: 7
DMP-200 All:12

DMP-400 All:12
DMP-420 All:12
DMP-500 All:12
DMP-2100 Standard 10: 18, standard 12: 15; condensed: 18, correspondence 10: 36;

correspondence 12: 30

*Double # dots for elongated

To perform the same strikethrough as the example on an LPVIIl in ten-
character per inch mode, you'd have:

100 LPRINT **The contract is effective on January 8, 1
984'"; CHR$(8);CHR$(180Q); /111N February 20, 1984

Here the number of dots per character width was 12, so 12 times 15, or
180 dot columns, were backspaced to put the print head at the beginning of
“January.”

If elongated mode is in force, double the number of dot columns per
character-width. Proportional characters are a special case, as we men-
tioned— see the description of “‘Proportional Spacing’’ in this section.

Note: Because the backspace escape sequence contains numeric values
that may be any number from 0 through 255, you may have problems in using
the BASIC printer driver. If a numeric value in a CHR$() turns out to be a 12,

TEXT AND WORD PROCESSING PRINTING

89

90

identical to the top-of-form character, the print driver will attempt to execute a
page-eject by doing a series of new lines after it receives the 12. If a numeric
value turns out to be a 10, identical to a line feed character, it will be changed
to a 13 in the print driver. Avoid backspacing 10 or 12 dot columns.

BACKSPACING FOR THE DWP-210, DWP-410,
AND DWII-B DAISY-WHEEL PRINTERS

These daisy-wheel printers all use the sequence (not an escape sequence)
of CHR$(8);CHR$(NN) where the CHR$(8) marks the sequence as
backspace, and NN is a value of O through 255 for the DWP-210, and 0
through 9 for the DWP-410. The backspace moves the print head back NN
microspaces or 1/120 of an inch for the DWP-210, or 1/60 of an inch for the
DWP-410. Use a repetitive number of these backspace commands to move
back a large number of character positions.

In using this code, you must know the number of microspaces used in the
character just printed. If 10 pitch is being used, this will be 12/120 on the
DWP-210 and 6/60 for the DWP-410. If 12 pitch is in use, it's 10/120 for the
DWP-210 and 5/60 for the DWP-410. Proportional spacing is a special case
discussed under ‘‘Proportional Spacing’’ in Chapter 8.

To perform the same strikethrough as for example, on a DWP-210 in
ten-character-per-inch mode, use

100 LPRINT “The contract is effective on January 8, 1
984", CHR$(8);CHR$(90); 111111111 February 20, 1984"

Here the number of microspaces per character width was six, so six
times 15, or 90 microspaces, were backspaced to put the print head at the
beginning of “January.”

Note: Because the backspace escape sequence contains numeric
values that may be any number from 0 through 255, you may have problems
in using the BASIC printer driver. If a numeric value in a CHR$() turns out to
be a 12, identical to the top-of-form character, the print driver will attempt to
execute a page-eject by doing a series of new lines after it receives the 12.
If a numeric value turns out to be a 10, identical to a line-feed character, it
will be changed to a 13 in the print driver. Avoid backspace escape
sequences containing values of 10 or 12.

A GENERALIZED
BACKSPACE SUBROUTINE

Backspacing a large number of dot columns or microspaces is difficult
because a number of individual backspaces must be done. The BASIC code
below is a generalized subroutine to backspace any number of microspaces,
or dot columns, up to the limit of the line. In the code below, variable ZZ
specifies the number of backspaces to be done, for either a dot-matrix or daisy-
wheel printer, using the CHR$(8);CHR$(NN) command. Set ZZ equal to either
dot columns or microspaces, from 1 to the limit of the line length.

HOW TO USE YOUR RADIO SHACK PRINTER

10000 ' BACKSPACE SUBROUTINE

10010 ZA=ZZ-INT(ZZ/9)*9: ZB = INT(ZZ/9)

10020 {F ZB=0 THEN 10040

10030 FOR ZI =1 TO ZB: LPRINT CHR$(8),CHR$(9);: NEXT ZI
10040 IF ZA <> 0 THEN LPRINT CHR$(8);CHR$(ZA);

10050 RETURN

To backspace 35 characters in 12-pitch daisy-wheel printing, you'd call
the subroutine this way:

100 ZZ =35*12: GOSUB 10000

Use six in place of 12 for a DW-II. To backspace 35 characters in dot-matrix
printing with 12 dot columns per character, you'd call the subroutine by:

100 ZZ =35*12: GOSUB 10000

TEXT AND WORD PROCESSING PRINTING 91

CHAPTER 8

92

WORD-WRAP,
JUSTIFICATION,

AND PROPORTIONAL
SPACING

In this chapter we’ll describe how to print text lines without splitting
words Iin the process as both justified and unjustified lines. This material
applies to all dot-matrix and daisy-wheel printers with a fixed pitch— 10, 12,
or 16.7 characters per inch. In another discussion in this chapter we’ll
describe how to do the same thing with proportional spacing.

WRAP AROUND

What happens when the number of characters to be printed on one printer
line exceeds the number that can physically be printed? Suppose, for exam-
ple, that you have an 80-character-per-line printer set at ten characters per
inch, and then try to print these lines:

“"Computer analysts were staggered today when Tandy
Corporation announced a new printer product—the
Tandy LP-XXXIV.5, a unit capab'e of illuminating
manuscripts. Analysts predicted reductions in
monastary work forces.”

The result will print as shown in Figure 8-1. The first 80 characters, from
“Computer’’ through the “r'" in “printer’” are printed on the first line. The
next line starts with “inter product...”. Bringing down the line in such a
fashion is called wrap around. The alternative to wrap around is to keep on
printing at the end of a line —the characters in the last print position will be
overprinted until a line feed occurs. (Early teletypewriters did, in fact, do
exactly that. You'd come back to a listing after coffee to find the last 1,287
characters printed in the last character position of the line, because you left
out a carriage return, line feed!)

HOW TO USE YOUR RADIO SHACK PRINTER

I: 80 CHARACTERS :I

Computer Analysts were staggered today when Tandy Corporation announced a new pr
inter product - ¢he Tandy LP-XXXIV.5, a unit capable of illuminating manuscripts
Analysts predicted reductions in monastery work forces.

Figure 8-1. Wrap Around in Printers

WORD WRAP

If you're printing text, however, you'd like to insert a line feed not at the last
character of the line, as the wrap around feature does, but after a word
break. The text should read as shown in Figure 8-2. Printers don’t have
enough intelligence to do this currently; although it’s certainly possible to
implement such a feature in printer firmware, the software contained in a
printer. For the time being, we've got to implement such a feature in com-
puter software—it's called word wrap.

LINES END AT
“WORD BREAK”

Computer Analysts were staggered today when Tandy Corporation §nnouq:ed.a
new printer product - the Tandy LP-XXXIV.5, a unit capable ot illuminating
manuscripts. Analysts predicted reductions in monastery work forces.

Figure 8-2. Word Break

How do you do this? One way involves processing a line in fixed pitch —
10 characters or 12 characters per inch, horizontal spacing. Another way
involves proportionally spaced characters. We'll cover the method for fixed
pitch here. The method for proportional spacing in both dot-matrix and
daisy-wheel printers is described in ““Proportional Spacing’’ in this chapter.

JUSTIFICATION VS.
UNJUSTIFIED LINES

When the word wrap is done on every line, the lines will have a ragged right
margin. This type of margin is called unjustified and is fine for manuscripts
and other informal printed material. Justified text, on the other hand, has a
clean, straight right edge in a clean vertical column. See Figure 8-3.

It's fairly easy to produce unjustifed text. We'll use the text above to illus-

trate. See Figure 8-4. The process goes like this:

1. Find the number of character positions in a line, based upon the left
and right margins. In this case, it's 55 character positions.

2. From text to be printed, start counting characters by word, including
spaces.

3. When the total number of characters in the current line of words
exceeds the number of characters in a line (at the second “‘r”

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING 93

“CLEAN”

RIGHT EDGE
Computer Analysts were staggered today when Tandy Corporation announced
new printer product - the Tandy LP-XXXIV.5; a unit capable of illuminatin
manuscripts. Analysts predicted reductions in monastery work forces. Th
LP-XXXIV.S5 is the newest model in a long line ot Roman Numeral printers.

The +tirst Raoman Numeral printers; the LP-1, was introduced in MCMLXXVII,
{ol lowed by others at the rate ot IV per year.

Figure 8-3. Justified Text

character in the word **Corporation’), go back to the end of the
previous word (the end of “‘Tandy’’).

4. Print all words from the first through the last complete word on the
line.

¢ 55 CHARACTERS = >l
LINE LENGTH

—omputer Analysts were stasgered today when Tandy Corporation announced a new

¢ TEXT TO LAST WORD ;!

THAT WILL FIT = 49
CHARACTERS

Figure 8-4. Producing Unjustified Text

A subroutine to accomplish this is shown in Listing 8-1. It will work for
both dot-matrix printers and daisy-wheel printers. The subroutine will take
any string of up to 150 characters or so (assumed to be words), and do a
word wrap, printing the line with an unjustified right edge.

10000 ' FIXED PITCH WORD WRAP SUBRUUYLNE

10010 ' ENTRY: ZZ$=STRING

10020 ' ZR=RIGHT MARGIN IN CHARACTER POSITIONS FROM EDGE
10030 ' ZL=LEFT MARGIN IN CHARACTER POSITIONS FROM EDGE

10040 ' ZV=LINE SPACING 1=SINGLE, 2=DOUBLE, ETC.

10050 ' EXIT: LINE PRINTED AND ZZ$=REMAINDER OF STRING

10060 ZC=ZR-ZL : IF LEN(ZZ$)<=ZC THEN ZC=LEN(ZZ$) : GOTO 10100

10070 IF ZC=0 THEN RETURN ELSE IF MID$(ZZ$,ZC,l)<>" " THEN ZF=1 ELSE ZF=0
10080 IF MID$(2Z$,2C,1)<>" " THEN F=1
10090 IF MIDS(ZZ$,ZC,1)<>" " OR (MIDS$(ZZ$,zC,1)=" " AND F=0) THEN ZC=ZC-1 :

IF ZC>0 THEN 10080
10100 LPRINT TAB(ZL); LEFTS$(ZZ$,ZC)+STRINGS (ZV-1,13)
10110 ZZ$=MID$(ZZ$,Z2C+1l) : RETURN

Listing 8-1. Word Wrap Program

To use the subroutine, put the text string you want word-wrapped and
printed, into string ZZ$, the left margin in character positions in ZL, the right
margin character positions in ZR, and the line spacing in ZV (ZV = 1 doesn’t
skip lines, ZV = 2 double spaces, and so forth). Then call the subroutine and
the line will be printed with word wrap. The remainder of the text will be
returned in ZZ$. Suppose you had ten long strings of text to print, with a left

94 HOW TO USE YOUR RADIO SHACK PRINTER

margin of 10, a right margin of 65, and single line spacing. The strings are in
AA$(1) through AA$(10). This code would print the text with word wrap:

100 ZZ=""":ZL=10: ZR=65: ZV =1

110 FOR I=1TO 10

120 ZZ2$ =ZZ$ + AAS(l): GOSUB 10000

130 NEXT |

140 IF 2Z$ < > THEN GOSUB 10000 ELSE 160
150 GOTO 140

160 ...

~ What about printing justified lines? In this case the process is similar.
You'd follow the same steps as outlined for the unjustified word wrap exam-
ple. After finding the last word to fit in the line, however, you’'d then do this:

1. Subtract the number of characters through the last word (49 through
“Tandy'') from the total number of character positions in the line (55
with ZL =10, ZR=65). In the previous example (Figure 8-4), it’s six
character positions.

2. The result of the subtraction is the number of character positions left
over. This number of character positions must be spread out between
words on a somewhat orderly basis, to avoid large gaps between any
two words. We'll do it randomly here, putting six character positions
in six interword spaces.

3. The result is a line of justified text. The text ""Corporation announced
a new..." is left over and applies to the justification procedure for the
next line.

The subroutine shown in Listing 8-2 is similar to the previous subroutine,
except that it also justifies lines. Use it with the same variables as in the
previous case.

10000 'FIXED PITCH WORD WRAP AND JUSTIFICATION

10010 'ENTRY: ZZ$=STRING

10020 ' ZR,ZL=RIGHT, LEFT MARGINS IN CHAR POSITIONS
10030 ZV=LINE SPACING, 1=SINGLE, 2=DOUBLE,...
10040 'EXIT: LINE PRINTED AND ZZ$=REMAINDER OF STRING
10050 ZB=ZR-2ZL : ZC=0 : ZS=0

10060 FOR Z2I=1 TO LEN(ZZ$)

10070 IF MIDS$(22$,2I,1)=" " THEN ZE=ZI : 2C=0 : ZS=ZS+1 : GOTO 10090
10080 2zC=ZC+1

10090 ZB=ZB-1

10100 IF zZB=0 THEN 10130

10110 NEXT 2I

10120 LPRINT TAB(ZL-1);Z2$: 22$="" : GOTO 10250

10130 IF ZS>0 THEN 2%S=%S-1 : ZI=ZE : ZB=ZC+1 : ZY$=MIDS$(2Z$,ZI+1)
10140 ZZ$=LEFTS$(2Z$,Z2I-1)

10150 ZF=ZB~INT(ZB/ZS)*ZS : ZB=INT(ZB/ZS)

10160 LPRINT TAB(ZL-1);

10170 FOR ZI=1 TO LEN(ZZ$)

10180 zZD$=MIDS$(ZZ$,ZI,1l) : LPRINT ZD$;

10190 IF ZD$<>" " THEN 10220

10200 LPRINT STRINGS$(ZB," "); : ZS=7S+1

10210 IF ZF>0 THEN LPRINT" "; : ZF=ZF-1 : IF ZF>ZS AND RND(2)=2 THEN 10210

10220 NEXT 2I
10230 LPRINT STRINGS(ZV,13);
10240 2z$=7Y$
10250 RETURN

Listing 8-2. Word Wrap/Justification Program

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING

95

PROPORTIONAL SPACING

Compare the two lines of type in Figure 8-5. Which looks better? The first
line of type is similar to type produced by many typewriters. Like many com-
puter printers, this type has a uniform width for each character— 10
characters per inch in pica style and 12 characters per inch in elite style.
The second line of type is produced by a typesetter. You'll notice that there
are more characters in the same space and that each character has a dif-
ferent width. An “‘i,”” for example, occupies a much smaller width than an
“M."" Proportionally spaced type, like the second example, is more pleasing
to the eye, and more easily scanned. It is also faster to read and less tiring.

Menus are used not only in posh restaurants, but in posh com-
Menus are used not only in posh restaurants, but in posh com-

Figure 8-5. Proportionally-Spaced Type Vs. Monospaced Type

96

Virtually all books and magazines and a lot of commercially prepared print-
ing is done in proportionally spaced characters. It’s logical to add propor-
tionally spaced type to printers, and many of the Radio Shack printers have
that capability. Proportionally spaced characters created by a dot-matrix
printer will not look as aesthetically pleasing as those produced by a type-
setter. However, daisy-wheel characters that are proportionally spaced, and
the high-density characters produced by the DMP-2100, are a lot more pleas-
ing to the eye than earlier printers which used a fixed 10 or 12 pitch and a
small matrix of dots.

DOT-MATRIX PROPORTIONAL SPACING

Proportionally spaced characters are available on the LPIV, VIII, DMP-110,
-200, -400, -420, -500, and -2100. Proportional spacing is selected by the
escape sequence CHR$(27),CHR$(17). Proportionally spaced characters
can be used in both data- and word-processing modes. Of course, when you
use proportionally spaced characters, a pitch selection of 10 or 12
characters per inch is meaningless, as all characters are spaced according
to their width.

To see what proportional spacing looks like on your printer, compared to
normal printing, run the following short program:

100 LPRINT *‘This is not Proportional Spacing”’
- 110 LPRINT CHR$(27);CHR$(17)
120 LPRINT *This is now Proportional Spacing”

The result will look like Figure 8-6.

This is not Proportional Spacing
This is now proportional Spacing

Figure 8-6. Printer Proportional Spacing

HOW TO USE YOUR RADIO SHACK PRINTER

CHARACTER WIDTHS

Much of the time when you're using proportionally spaced characters,
you'll be working within a word-processing program, such as SuperScripsit,
which automatically handles the tasks of figuring out character widths and
justification. However, it's possible to work with proportionally spaced
characters in your own program. To do this, you need to know the widths for
each character. These widths are found in the back of your printer manual.
We won't reproduce them here as they vary quite a bit from printer to
printer.

The character widths are defined in terms of dot oolumns (If you're un-
familiar with how dot positioning is done, this might be a good time to read
“‘Positioning Print on Paper,” which describes dot-column coordinates.)
From the table in your manual, you can see that character widths range
from ten, for such characters as a period or comma, to 20, for such
characters as a percent sign and uppercase W.

LINE JUSTIFICATION

There's no problem at all in using proportional-spaced characters with a
ragged-right margin, as shown in Figure 8-7. Just print a line of text using an
average character width of about 15 dots per character. Occasionally, lines
will be longer than you desire, if there’s an overabundance of wide
characters, or smaller than normal if there are more narrow-width
characters. In general, though, you can simply include the text you want
printed in common BASIC LPRINT lines.

Menus are used not only in posh restaurants, but in posh computer
software. You've seen menus on Radio Shack software, but let's
illustrate the use of them to jog Your memory. Suppose that we have
written an applications program to process weather data. When
the program is first loaded, it may display a menu of functions
that may be selected; as shown in figure 4-6. If entry 4 is desired,
then the user types a '4', and a new menu of items related to
'ANNUAL WEATHER DATA' is displayed for further selection. This
type of implementation is termed 'MENU-DRIVEN.' Menus provide an
easy-to-use format that is very descriptive. This section should def-
initely be interpreted as a plus for menu use. (I have a brother-in-
law in the menu-printing business.) Menu printing is easy, of

Figure 8-7. Dot-Matrix Proportionally-Spaced Type with Unjustified Edge

However, suppose that you want to justify the text shown in Figure 8-8
below. We'll describe an algorithm, which is essentially a plan of approach,
that does the task.

1. Find the number of dot columns in a line based upon the position of
the left and right margin. In this case it's 800 dot columns. (We're
using a ‘‘generic’’ printer here, and the number of dot columns per
inch may not match your printer.)

2. From text to be printed, start counting character widths by word,
including spaces.

3. When the total number of dot columns in the current line of words
exceeds the number of dot columns in a line (in the word ‘‘Market’’),
go back to the beginning of the previous word (‘*Computer”’).

‘ ‘;Printer Hint

. WIDTHS FOR

PROPORTIONAL -
kSPACING CHARACTERS

; You can easily verify the ;
width data found in the back

-~ of your daisy-wheel or dot-

matrix printer manual. dust .
set the PS switch on your
daisy-wheel printer, or do a

- CHR$(27);CHR$(17) on your

dot-matrix printer, and type

~ out 50 identical characters.

Measure the width of the

kresu!’ung line, divide by 50 to
_get the width of an individual -

character, and then divide .
that figure again by 1/60 to
get the width of the

: character in 1/60 of an mch
 units. Example If 50 upper

case H's take 5 inches, then -
each H is 5 inches/50 wide,

~or 1/10-inch. Dividing 1/10 by
~1/60 gives us 5 units, the
width for an H. If you type
~ the same numberof

characters for all characters

in a set, you can see easily

which characters are the
same width—they'll end up -
at the’ same point.

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING 97

98

UNJUSTIFIED

'"The microcomputer boom is over,' analysts at Computer
Market Prognostication and Rumor Co.; Inc. announced
today. 'There are currently over 300 manufacturers of
microcomputers all claiming to be shipping units at the
rate of 10,000 units per weel:. There are 40 million
households in the U.S. and we've been checking every
other one. We found micros in only 3 out of 1757
households. Clearly someone is distorting the facts.'

JUSTIFIED

'The microcomputer boom is over,' analysts at Computer
Market Prognostication and Rumor Co.; Inc. announced
today. 'There are currently over 300 manufacturers of
microcomputers all claiming to be shipping units at the
rate of 10,000 units per week. There are 40 wmillion
households in the U.S5. and we've been checking every
other one. We found wmicros in only 3 out of 1757
households. Clearly someone is distorting the facts.'

Figure 8-8. Text for Justification 1

4. Find the number of dot columns in all words through the last complete
word.

5. Subtract the number of dot columns in all words from the total
number of dot columns per line.

6. The result of the subtraction is the number of dot columns left over.
This number of dot columns must be spread out between words on a
somewhat orderly basis to avoid large gaps between any two words.

7. The result is a line of justified text. The text “‘Market
Prognostication . .. " is left over and applies to the next line's
justification procedure.

You can see that it's not an easy task to justify text with proportional
spacing. To simplify things for your own programming, use the subroutine
shown in Listing 8-3. It will take any string of up to 150 characters (assumed
to be words), and justify it, based on the total number of dot columns per
line and character widths.

To use the subroutine, include the DATA statements for the character
widths of your own printer. The ones we've included here are the first 96
values for the DMP-400, so if you have that printer you can leave the DATA
lines as they are. Otherwise, enter a total of 160 values, one for each
character from 32 through 127, zeroes for the ‘‘unused’ characters from
128 through 159, and one each for values 160 through 191 for the European
character set (see “'Using European Symbols). If your printer does not
have code for some of the European characters or other characters, enter a
zero for the width. The widths must be in strict order as shown, otherwise
some characters will be the wrong width.

To use the subroutine, put the text string you want justified in ZZ$, the left
margin in dot columns in ZL, the right margin in dot columns in ZR, and the
line spacing in ZV (ZV = 1 doesn’t skip lines, ZV = 2 double spaces, and so

HOW TO USE YOUR RADIO SHACK PRINTER

100 CLEAR 1000

110 DIM CH(160)

120 ' WIDTH VALUES FOR DMP-400. SUBSTITUTE VALUES FOR YOUR PRINTER.
130 DATA 10,10,12,20,18,20,18,10,10,10,16,16,10,16,10,16

140 DATA 16,16,16,16,16,16,16,16,16,16,10,10,14,16,14,16

150 DATA 18,20,18,18,20,18,18,20,20,12,18,18,18,20,18,20

160 DATA 18,18,18,18,20,18,18,20,18,18,16,14,16,14,18,20

170 DATA 18,18,16,16,16,16,14,16,16,10,10,16,10,20,16,16

180 DATA 16,16,14,16,14,16,16,20,16,16,14,14,10,14,16,18,0

190 FOR I=0 TO 95

200 READ CH(I)

210 NEXT I

220 Z7ZS="Your text here."

230 ZL=10: ZR=820: ZV=1

240 GOSUB 10000: IF ZZ$S<>"" THEN 240 ELSE STOP

10000 ' PROPORTIONAL JUSTIFICATIONS SUBROUTINE FOR DMP-200, -400, ETC.
10010 ' ENTRY: ZZ$=STRING

10020 ° CH ()=CHARACTER WIDTH ARRAY

10030 ° ZR=RIGHT MARGIN IN DOT COLUMNS FROM EDGE

10040 ° 7L=LEFT MARGIN IN DOT COLUMNS FROM EDGE

10050 °* 7V=LINE SPACING 1=SINGLE, 2=DOUBLE, ETC.

10060 ' EXIT: LINE PRINTED AND ZZS$S=REMAINDER OF STRING

10070 zU=1

10080 LPRINT CHRS$ (27);CHRS(17);

10090 ZB=ZR-ZL: ZC=0: ZS=0

10100 FOR ZI=1 TO LEN(ZZS$)

10110 ZDS=MIDS$(Z2$,Z2I,1): IF 72DS=" " THEN ZE=ZI1: 72C=0: 2S=2ZS+1: GOTO 10130
10120 2ZC=ZC+CH(ASC(ZD$)~-32)

10130 ZB=ZB-CH(ASC(ZD$)-32)

10140 IF ZB<=0 THEN 10180

10150 NEXT ZI

10160 IF ZL=1 THEN 10170 ELSE FOR 72I=1 TO Z2L-1:LPRINT CHRS (27) ;CHRS (ZU) ; : NEXT Z1
10170 LPRINT 2ZS$: ZZ$="": GOTO 10310

10180 IF ZsS=0 THEN 10310

10190 2Z2I=%ZE: ZB=Z2B+ZC+9+ZU: ZY$=RIGHT$(ZZ$,LEN(ZZ$)—ZI)

10200 ZZ$=LEFTS(ZZ$,Z2I-1)

10210 2S=%7S-1:7ZF=7ZB-INT(ZB/ZS)*ZS: 7B=INT (ZB/ZS) : PRINT ZF,ZB
10220 IF ZL=1 THEN 10240

10230 FOR ZI=1 TO ZL-1l: LPRINT CHRS (27);CHRS (ZU) ; : NEXT ZI

10240 FOR ZI=1 TO LEN(ZZ$)

10250 ZD$S=MIDS$(z22$,2I,1): IF 7ZDS<>" " THEN LPRINT ZD$;: GOTO 10280
10260 FOR ZJ=1 TO ZB+9+2U: LPRINT CHRS$ (27);CHRS (ZU) ;: NEXT 2J
10270 IF ZF<>0 THEN LPRINT CHR$(27);CHR$(ZU);:ZF=ZF—1

10280 NEXT Z1

10290 LPRINT STRINGS (ZV,13);

10300 ZZ$=ZYS$S

10310 RETURN

Listing 8-3. Dot-Matrix Proportional Justification Program

forth). Then call the subroutine and the line will be printed, justified on the
right with word wrap. The remainder of the text will be returned in ZZ$. Sup-
pose that you had ten long strings of text to print, with a left margin of 100
dot columns, a right margin of 700 dot columns, and double line spacing.
The strings are in a string array of AA$(1) through AA$(10). This code would
print the double-spaced text:

100 ZZ=""": ZL=100: ZR=900: ZV =2
110 FOR I=1TO 10
120 ZZ$ = ZZ% + AA$(1): GOSUB 10000

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING 99

100

10000
10010
10020
10030
10040

ZI :
10050
10060
ETURN
10070

130 NEXT |

140 IF ZZ$< > THEN GOSUB 10000 ELSE 160
150 GOTO 140

160...°

GENERAL BACKSPACE SUBROUTINE FOR PROPORTIONAL PRINTING

Sometimes you want to backspace proportional characters for overprinting. (A
good example is slashing zeroes on the DMP-2100. Unfortunately, the zero, the
alphabetic O, and the D look very similar—especially if you're debugging a
program at 2:00 AM). The subroutine in Listing 8-4 will allow you to backspace
80 you can slash zeroes or strike through other characters.

'SUB STRIKE-OVER FOR DOT-MATRIX PRINTERS

'Z2Z2$ = CHAR TO BE STRUCK OVER

'ZY$ = CHAR TO STRIKE OVER

ZU=1

ZB=CH(ASC(2z2z$)-32) : FOR ZI=1 TO ZB : LPRINT CHRS (8) ;CHR$ (2U); : NEXT
LPRINT ZY$;

ZD=7B-CH(ASC(ZY$)-32) : IF zZD=0 THEN RETURN

IF zD>0 THEN FOR ZI=1 TO ZD : LPRINT CHR$(27);CHR$(ZU); : NEXT ZI : R

ZD=-ZD : FOR ZI=1 TO ZD : LPRINT CHRS$(8);CHRS$(ZU); : NEXT %I : RETURN
Listing 8-4. Dot-Matrix Proportional Backspace Program

Enter the subroutine with the character for the backspace in ZZ$ and the
character to be overprinted in ZY$. At the return from the subroutine, the
print head will be positioned as if the first character alone had been printed.
(The second character is assumed to be equal to or smaller than the first.)
The width values for the characters must be in the CH array as before.

DAISY-WHEEL
PROPORTIONAL SPACING

Proportionally spaced characters are available on the DW-II, DWP-210, and
DWP-410. You should have a proportional daisy-wheel in your printer for
best results. (You must also set the 10/12/PS front-panel switch on your
printer to the *'PS” position.) The proportional character sets are designed
for best appearance when doing proportional spacing. (Typewriter print
faces are designed for best appearance when doing uniform spacing.) Pro-
portional spacing is selected by the escape sequence CHR$(27);CHRS$(17).
When you're using proportionally spaced characters, a pitch selection of 10
or 12 characters per inch is meaningless, as all characters will be spaced
according to their width.

To see what proportional spacing looks like on your daisy wheel, com-
pared to normal printing, run the following short program:

100 LPRINT “‘This is not Proportional Spacing”
110 LPRINT CHR$(27);CHR$(17)
120 LPRINT *‘This is now Proportional Spacing”’

CHARACTER WIDTHS

Much of the time when you're using proportionally spaced characters,
you'll be working within a word-processing program such as SuperScripsit,

HOW TO USE YOUR RADIO SHACK PRINTER

which automatically handles the tasks of figuring out character widths and
justification. However, it's possible to work with proportionally spaced
characters in your own program. To do this, you need to know the widths for
each character. These widths are found in the back of your printer manual,
but we’ll reproduce them here in Table 8-1. See the cautionary note in
“Printer Hints.”

Table 8-1. Proportional spacing widths

(Space) 6 @ 7(6) X 5
! 3 A T7(B) a 5
" 4 B 6 (5) b 5
6 Cc 7¢(8) c 5
$ 5 D 6(6) d 5
% 7 E 6 e 5
& 7 F 6(5 f 4
: 4 (3) G 7 g 5
(3 H 6 h 5 (6)
) 3 | 3 i 3
* 5 J 5 i 34
+ 5 K 7(6) k 5
, 3 L 6 | 3
— 4 M 8(7) m 7
. 3 N 6 n 5
! 4 (6] 7 (6) 0 5
0 5 P 6(5 p 5(6)
1 5 Q 7(6) g 5
2 5 R 7(p) r 4(5)
3 5 S 5 S 4
4 5 T 6 t 4(9)
5 5 Uu 6 U 5(6)
6 5 \ 6 Y 5
7 5 w o 8(7) w7
8 5 X 7 (6) X 5 (6)
9 5 Y 7 (6) u 5 DW-1I, DW-1i1B, DWP-410
: 3 Z 6 z 5 shown
; 3 [3 { 3 (DWP-210 in
< 5 \ 4 | 3 parentheses)
= 5] 3 } 3
> 5 A 5 N 5
? 5 5

The character widths are defined in terms of microspaces. (If you're
unfamiliar with how dot positioning is done, this might be a good time to read
“Positioning Print on the Paper,” which describes microspace units.) From the
table, you can see that character widths range from three, for such characters
as a period or comma, to eight, for such characters as a percent sign and up-
percase W. Character widths are always defined in 1/60-inch units, even
though your printer may be capable of spacing in 1/120-inch units.

LINE JUSTIFICATION

There's no problem at all in using proportional-spaced characters with a
ragged-right margin, as shown in Figure 8-9. Just print a line of text using an
average character width of about five microspaces per character. (Slightly
less for the DMP-210.) Occasionally, lines will be longer than you desire, if
there's an overabundance of wide characters, or smaller than normal if
there are more narrow-width characters. In general, though, you can simply
include the text you want printed in common BASIC LPRINT lines.

However, suppose that you want to justify the text shown in Figure 8-10
below. We'll describe an algorithm that does the task, using the text in the
figure as an example:

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING

101

102

Menus are used not only in posh restaurants, but in posh computer
software. You've seen menus on Radio Shack software, but let's
illustrate the use of them to jog your memory. Suppose that we have
written an applications program to process weather data. When
the program is first loaded, it may display a menu of functions
that may be selected, as shown in figure 4-6. If entry 4 is desired,
then the user types a '4', and a new menu of items related to
'ANNUAL WEATHER DATA' is displayed for further selection. This
type of implementation is termed 'MENU-DRIVEN.' Menus provide an
easy—-to-use format that is very descriptive. This section should def-
initely be interpreted as a plus for menu use. (I have a brother-in-
law in the menu-printing business.) Menu printing is easy, of

Figure 8-9. Daisy Wheel Proportionally-Spaced Type with Unjustified Edge

'The microcomputer boom is over,' analysts at Computer
Market Prognostication and Rumor Co., Inc. announced
today. 'There are currently over 300 manufacturers of
microcomputers all claiming to be shipping units at the
rate of 10,000 units per week. There are 40 million
households in the U.S. and we've been checking every
other one. We found micros in only 3 out of 1757
households. Clearly someone is distorting the facts.'

'The microcomputer boom is over,' analysts at Computer
Market Prognostication and Rumor Co., Inc. announced
today. 'There are currently over 300 manufacturers of
microcomputers all claiming to be shipping units at the
rate of 10,000 units per week. There are 40 million
households in the U.S. and we've been checking every
other one. We found micros in only 3 out of 1757
households. Clearly someone is distorting the facts.'

Figure 8-10. Text for Justification 2

—t

. Find the number of microspaces in a line based upon the position of
the left and right margin. In this case it’s 540 microspaces. (We're
using a Daisy Wheel lIB or DWP-210 printer here, with 120
microspaces per inch. The DW-tl and DWP-410 will have 60 micro-
spaces per inch.)

2. From text to be printed, start counting character widths by word,

including spaces.

3. When the total number of microspaces in the current line of words

exceeds the number of microspaces in a line (in the word “‘Market”’)

go back to the beginning of the previous word.

Find the number of microspaces in all words through the last word.

5. Subtract the number of microspaces in all words from the total

number of microspaces per line.

6. The result of the subtraction is the number of dot columns left over.

B

HOW TO USE YOUR RADIO SHACK PRINTER

This number of microspaces must be spread out between words on a

somewhat orderly basis to avoid large gaps between any two words.
7. The result is a line of justified text. The text ‘*‘Market

Prognostication . . . "' is left over and applies to the next line’s

justification procedure.

You can see that it's not an easy task to justify text with proportional
spacing. To simplify things for your own programming, use the subroutine
shown in Listing 8-5. It will take any string of up to 255 characters (assumed
to be words), and justify it, based on the total number of microspaces per
line and character widths.

100 CLEAR 1000
110 DIM CH(128)
120 DATA 6,3,4
130 DATA 3
140 DATA 6
150 DATA 5
160 DATA 0
170 FOR I=
180 READ CH(
190 NEXT I

200 Z%$="This is a test of proportional justication on Daisy Wheel printers
including the DW-II, DW-IIB, DWP-210, and DWP-410. Change line 10070 to %2
U=1 for the DW-II. The subroutine justifies and prints from string zz$."

210 2ZL=60: ZR=420: Zv=1
220 GOSUB 10000: IF zz$<>"" THEN 220 ELSE STOP

10000 ' DAISY WHEEL JUSTIFICATION SUBROUTINE FOR DW-II, DWP-210, DWP-410

10010 ' ENTRY: ZZ$=STRING

10020 ! CH ()=CHARACTER WIDTH ARRAY

10030 ' 7R=RIGHT MARGIN IN 1/60THS INCH FROM EDGE
10040 ° 7L=LEFT MARGIN IN 1/60THS INCH FROM EDGE

10050 ' 7V=LINE SPACING 1=SINGLE, 2=DOUBLE, ETC.

10060 ' EXIT: LINE PRINTED AND ZZ$=REMAINDER OF STRING

10070 ZU=2 'CHANGE TO ZU=1 FOR DW-II

10080 LPRINT CHR$(27);CHRS$(17);

10090 ZB=ZR-ZL: ZC=0: ZS=0

10100 FOR ZI=1 TO LEN(ZZ$)

10110 ZD$=MIDS(Z%Z$,2I,1): IF ZD$=" " THEN ZE=ZI: 7C=0: ZS=%S+1: GOTO 10130

10120 ZC=ZC+CH(ASC(ZD$)-32)
10130 ZB=ZB-CH(ASC(ZD$)-32)
10140 IF ZB<=0 THEN 10180
10150 NEXT ZI

10160 IF 2ZL=1 THEN 10170 ELSE FOR ZI=1 TO ZL-1:LPRINT CHR$ (27);CHRS (ZU) ;¢

EXT ZI

10170 LPRINT 2Z$: Zz$="": GOTO 10310

10180 IF 2zS=0 THEN 10310

10190 ZI=ZE: ZB=ZB+ZC+4+ZU: 7ZY$=RIGHTS (ZZ2$,LEN(ZZ$)-Z1)

10200 ZZS=LEFTS$(2Z$,2I-1)

10210 2ZS=%S-1:ZF=7%B-INT(ZB/ZS)*ZS: ZB=INT(ZB/ZS)

10220 IF zZL=1 THEN 10240

10230 FOR ZI=1 TO ZL-1: LPRINT CHRS$ (27);CHR$(ZU);: NEXT Z1
10240 FOR ZI=1 TO LEN(ZZS$)

10250 ZDS=MID$(ZZ$,ZI,1): IF ZD$<>" " THEN LPRINT ZD$;: GOTO 10280
10260 FOR 2J=1 TO ZB+4+ZU: LPRINT CHR$ (27) ;CHRS$ (ZU) ; : NEXT ZJ
10270 IF ZF<>0 THEN LPRINT CHRS (27) ; CHRS (ZU) ; : ZF=ZF~1

10280 NEXT ZI

10290 LPRINT STRINGS (ZV,13);

10300 ZZ$=2Y$

10310 RETURN

Listing 8-5. Daisy Wheel Proportional Justification Program

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING

103

104

To use the subroutine, first change the DATA statements for the
character widths of your own printer. The ones we've included here are for
the DWP-210 daisy wheel, so if you have that printer you can leave the
DATA lines as they are. Otherwise, enter a total of 160 values, one for each
character from 32 through 127, zeroes for the *‘unused’’ characters from
128 through 159, and one each for values from 160 through 191 for the
European character set (see ‘‘Using European Symbols™). If your printer
does not have code for some of the European characters or other
characters, enter a zero for the width. The widths must be in strict order as
shown, otherwise some characters will be the wrong width.

To use the subroutine, put the text string you want justified in ZZ$, the left
margin in microspaces in ZL, the right margin in microspaces in ZR, and the
line spacing in ZV (ZV =1 doesn't skip lines, ZV = 2 double spaces, and so
forth). Then call the subroutine and the line will be printed, justified on the
right with word wrap. The remainder of the text will be returned in ZZ3%. Sup-
pose that you had ten long strings of text to print, with a left margin of 120
microspaces, a right margin of 840 microspaces, and single line spacing.
The strings are in a string array of AA$(1) through AA$(10). This code would
print the text:

100 ZZ="": ZL =120: ZR=840: ZV =1
110 FOR I=1TO 10

120 ZZ$ =ZZ$ + AA$(1): GOSUB 10000
130 NEXT |

BOLDFACE PRINTING IN PROPORTIONAL SPACING

We discussed boldface printing in “Using Bold Printing’” in Chapter 7 and
said that it was difficult to backspace and overprint in bold when you have
variable character widths. Knowing the widths, though, makes it a little
easier. The subroutine shown in Listing 8-6 allows you to do your own bold
printing of a string of text. You must enter the DATA values in the CH array,
as before, for your own printer. Call the subroutine with the text to be
printed in bold in ZZ$. The subroutine will print the text and return.

10000 'sUB BOLD PRINT FOR DAISY WHEEL PRINTERS

10010 'Zz$ = STRING TO TYPE BOLD

10020 zU=2 'CHANGE TO ZU=l FOR DW-IT

10030 LPRINT ZZ$;

10040 FOR 2J=1 TO LEN(ZZS$)

10050 ZB=CH(ASC(ZZ$)-32)

10060 FOR ZI=1 TO 2ZB : LPRINT CHRS$(8);CHR$(ZU); : NEXT 27T
10070 NEXT 2zJ

10080 LPRINT ZZ$; : RETURN

Listing 8-6. Daisy Wheel Bold Space Proportional Mode Program

GENERAL BACKSPACE SUBROUTINE FOR PROPORTIONAL PRINTING
Sometimes you want to backspace proportional characters for overprinting.
The subroutine in Listing 8-7 will allow you to backspace so you can slash
zeroes or strike through other characters. Again, the CH array must contain
character widths.

Enter the subroutine with the character for the backspace in ZZ$ and the
character to be overprinted in ZY$. At the return from the subroutine, the
print head will be positioned as if the first character alone had been printed.
(The second character is assumed to be equal to or smaller than the first.)
The width values for the characters must be in the CH array as before.

HOW TO USE YOUR RADIO SHACK PRINTER

10000 'SUB STRIKE-OVER FOR DAISY WHEEL PRINTERS
10010 '%z$ = CHAR TO BE STRUCK OVER

10020 'zZY$ = CHAR TO STRIKE OVER

10030 zZU=2 'CHANGE TO ZU=1 FOR DW-II

10040 ZB=CH(ASC(ZZ$)-32) : FOR 2zI=1 TO ZB : LPRINT CHRS (8) ;CHRS$ (ZU) ;

ZI : LPRINT ZYS$;
10050 ZD=Z%B-CH(ASC(ZY$)-32) : IF ZD=0 THEN RETURN

10060 IF 2zD>0 THEN FOR ZI=1 TO ZD : LPRINT CHRS$ (27) ;CHRS (ZU) ;

ETURN

10070 ZD=-%D : FOR ZI=1 TO %D : LPRINT CHRS$(8);CHRS$ (ZU);

Listing 8-7. Daisy Wheel Proportional Backspace Program

EXTERNAL MODE FOR DAISY WHEELS

When you run a standard daisy print wheel in PS mode, the printer uses an
internal width table to determine the character widths to use for spacing the
characters. The standard widths are shown in Table 8-1. The printer reads
the 10/12/PS switch on the front panel to determine whether PS mode is in
effect. PS mode can also be set under software control by sending a
CHR$(27);CHR$(17) escape sequence to the printer.

The standard spacing from the internal table in the printer's ROM is used
regardless of what type of wheel you actually have mounted on the printer.
You can actually run in proportional-spacing mode with a Courier wheel
designed for 12 pitch, even though the resulting print will not look as nice as
a PS typeface designed specifically for PS mode.

Certain daisy wheels don't fit the spacing requirements for either 10 or 12
pitch or for the standard proportional spacing widths. The *‘Cubic 15" type
face, for example, is meant to be spaced at 15 characters per inch. If you
were to use 12 pitch for this daisy-wheel, the type would have wide spaces
between letters, as shown in Figure 8-11—not at all what the type
designers had in mind.

This is a sample of CUBIC 15 at 12 pitch.

This is a sample of CUBIC 15 at 15 pitch.

Figure 8-11. Cubic 15 Spaced at 12 Pitch Vs. 15 Pitch

How do you adjust the spacing for wheels such as Cubic 15 and others?
There's a special daisy-wheel printer mode called external programming
mode which lets you define the widths for each character. Using the exter-
nal programming mode, you can define widths from O through 15/60 of an
inch for all characters on a print wheel. You can also define two additional
parameters, impression level and ribbon feed.

The external programming mode must be run when the 10/12/PS front-
panel switch is set to PS. Sending a CHR$(27),CHR$(24) starts this mode;
sending a CHR$(27);CHR$(25) resets to the normal PS mode.

After the external programming mode is initiated, characters are typed
by sending two codes for each single character to be typed, as shown in
Figure 8-12. The first code is the normal code for the character. The second
code is a special value from 0 through 255 that defines the width, ribbon
feed, and impression level.

The character width and impression level are determined from a

: NEXT ZI

: NEXT

: NEXT ZI : R

: RETURN

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING

105

106

PRINT “A” IN EXTERNAL PROGRAMMING MODE:
LPRINT CHR$(65); CHR$(76)

T p— \.._,\._/
EJA(’)’RMAL ASCI| — A S—
0-255 0!150501 1!050()
N = g P —
CHARACTERWIDTHIN HAMMER IMPRESSION
1/60THS INCH 0-15 LEVELO-7

RIBBON FEED, 1 = NORMAL, 0 = LONG

Figure 8-12. External Mode Printing

character table included with each daisy print wheel that requires external
programming mode. A sample table is shown in Figure 8-13.

The width in the sample table is the width to use for each character for
proper spacing. In this case, for Cubic 15, the widths are all 4/60, or 1/15 of
an inch—what you would expect for a 15 pitch font.

The impression level, or hammer set determines how hard the print hammer
wilf strike the daisy-wheel character. The smaller the character, the less force
required to produce a print image. It’s like hitting a wooden table top with a ball-
peen hammer compared to a wooden mallet —the ball-peen hammer will leave
a deeper impression in the wood if both are swung with the same force. The rib-
bon feed determines the amount the ribbon is advanced.

You can use the two codes given with the daisy wheel table for impres-
sion level and ribbon feed directly. In the case of the Cubic 15, for example,
you'd print a "“T"" character in external program mode this way:

100 LPRINT CHR$(84);CHR$(76)

The 84 is the normal ASCII code for the T, and the 76 is the coded value
for a character width of 4/60 of an inch, ribbon feed of 1, and impression
level of 4.

Two codes must be sent for every character printed in external program
mode.

You can also code the second character to be sent in external program-
ming mode with your own widths, ribbon feed, and impression level. One
caution: Go easy on the impression level. Higher impression levels mean
the hammer strikes harder, which might result in more wear on the wheels.
To code your own parameters, do this:

1. Determine a width value in 1/60-inch units from 0 through 15. Multiply
it by 16.

2. Use a ribbon value of one, amounting to a value of eight in the coded
character.

3. Use a reasonable impression level based on the values found for the
same character in the proportional spacing charts (see Table 8-2).
This should be a value of 0 through 7.

4. Add the values together to get the CHR$() value.

As an example, suppose you wanted to make all Ws extra wide, but not

HOW TO USE YOUR RADIO SHACK PRINTER

Radie fhaek

To use this font, you must use external pro-
gram mode (see page 16 of 26-1158 Owner's
Manual). Input corresponding codes as given
befow.

Pour utiliser cette fonte, vous devez étre en
mode de programme externe (voir page 16
du manuel de l'usager 26-1158). Entrez les

codes correspondante tels

ci-dessous.
0
~
g 26-1487 26-1487
N
=
HEX DEC HE X DEC HE X DEC HE X DEC
40+4E 64+ 78 © 60+48 96+ 72 & B0+4D 128+ 77
= t 21+4A 33+ 74 41+6C 65+ 76 61+4D 97+ 77 ¢ 9C+4C 156+ 76
5 " 22+4A 344+ T4 424+44E 66+ 78 62+4D 98+ 77 £ A3+4D 163+ 77
o 2344 35+ 78 43+4C 67+ 76 63+4C 99+ 76 u AS5S+4D 165+ 77
v a

24+4E 36+ 78
25440 37+ 77
26+4E 38+ 78
27+49 39+ 73
28448 40+ 75
29+48 41+ 75
2A+48 42+ 75
2B+4A 43+ 74
2C+48 444+ 72
20+48 45+ 72
2E+48 46+ 72
2F+48 47+ 75
30+4C 48+ 76
31+4B 49+ 75
32+4C 50+ 76
33+44C 51+ 76
34+4C 52+ 76
35+4C 53+ 76
36+4D 54+ 77
37+4C 55+ 76
38+4D 56+ 77
39+4D 57+ 17
3A+49 58+ 73
3B+4A 59+ 74
3C+4B 60+ 75

46440 68+ 77
45+4D 69+ 77
46+4C 70+ 76
47440 71+ 77
48+4C 72+ 76
49448 73+ 75
4A+48 744+ 75
4B+4E 75+ 78
4C+4B 76+ 75
4D+4E 774+ 78
4E+4C 78+ 76
4F+40 79+ 77
50+4D 80+ 77
51+4E Bl+ 78
52+4D 82+ 77
53+4C 83+ 76
54+4C B4+ 76
55+4C 85+ 76
56+4C Bé+ 76
57T+4E 87+ 78
58+4D B8+ 77
59+4C 89+ 76
SA+4C 90+ 76
5B+4B 91+ 75
5C+4B 92+ 75
30448 61+ 75 5D+4B 93+ 75
3E+4B 62+ 75 SE+49 94+ 73
3F+4B 63+ 75 SF+40 95+ 64

644+4D 100+ 77 A6+4A 166+ T4
65+4C 101+ 76 © AT+48 167+ 72
66+4B 102+ 75 AB+4C 168+ 76
67440 103+ 77 A9+4C 169+ 76
68+4C 104+ 76 AA+4D 170+ 77
69+48 105+ 75 AB+4D 171+ 77
6A+48 106+ 75 AC+4D 172+ 77
6B+4C 107+ 76 AD+4D 173+ 77
6C+4B 108+ 75 AE+4D 1744+ 77
6D+4E 109+ 78 AF+4E 175+ 78
6E+4C 110+ 76 BB+4D 187+ 77
6F+4C 111+ 76 BC+4C 188+ 76
70+40 1124+ 77 8D+4D 189+ 77
71+4D 113+ 77 " BE+4B 190+ 72
72+48B 114+ 75 BF+4C 191+ 76
73448 115+ 75 CO+4D 192+ 77
T4+48B 116+ 75 CC+4D 204+ 77
75+4C 117+ 76 DB4+4D 219+ 77
76+48 118+ 75 DC+4E 220+ 78
77+4D 119+ 77 DD+4D 2214+ 77
78+4C 120+ 76 DE«4C 222+ 76
79+4C 121+ 76 DF+44 223+ 68
TA+4C 122+ 76 FB+4D 251+ 77
7B+48 123+ 75 FC+4D 252+ 77
7C+4B 124+ 75 FD+4D 253+ 77
70448 125+ 75 FE+4E 254+ 78
TE+49 126+ 73

Impression control should be in the Low position.
e 4+ ke~ - Oe 2R W W
© CF 0wl s 20 2 O @ 1 —+

Régluge de la Force de Frappe ""Low’”

P R N R AL L =T N

NOTE :
NOTE

e N <X E€C N TOVOZICXL~IOTMON®@>» B
oo B RSN K

>~ — = N~ X £ < C m® ™ 0D O3 3 =Xt o TO ® Q0O T

WV H A e e

|

Printed in japan

Figure 8-13. External Mode Character Table

donnés

87156121

very dark. The maximum width would be 15/60 of an inch. Multiply this by 16
to get 240. Add a ribbon value of eight to get 248. Adding an impression
level of 1 results in 249 as the second CHR$() value. The extra wide W
would be printed by

100 LPRINT CHR$(87),CHR$(249)

Because the external programming mode is a lot of work, you may not
want to use it for your own programs. However, it does give you complete
control over the way characters are formed. The program in Listing 8-8
shows a proportional spacing justification program that works with an exter-
nal programming mode typeface, in this case Cubic 15. Use it as an exam-
ple for your own specifications. The CH$() array contains 96 character
widths as before, but this time the impression level and ribbon feed are also
included in the array values. The properly encoded values can be found on
the character table included with each daisy print wheel. The one we're
using here is shown in Figure 8-13.

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING

107

108

Printer Hint

NOTES ON THE
IMPRESSION LEVEL
AND RIBBON FEED

Don’t expect the impres-
sion level to have too big an
impact (sorry...) on the
darkness of the print. There
is a detectable difference,
but-not as much as you might
expect. It’s probably best to
stay at the values defined by
your printer manual, to save
wear and tear on the daisy-
wheel.

The normal setting for
ribbon feed (a one bit, or 16
value) sets a normal ribbon
feed. A zero bit:(16.not
added to the external mode
value) defines a long amount
of ribbon. If you’ve noticed
your daisy-wheel printer
ribbon after printing, you may
have observed that it over-

~prints to extend the ribbon
life in the normal mode. This
is fine for almost every
application, but for producing
camera-ready copy, you may
want to go to a long feed of
ribbon to get the cleanest
copy possible.

100 CLEAR 1000
110 DIM CH(128)

Table 8-2.

(Space)
!

"

e RNeedw

+ o

] -

OCONOIUDWON—=O ~— -

Ny IEA-

Impression levels DW-1I, DW-1IB, DWP-410

CRWON-UIUTRTABRRRODWODONWW®W ="M NN
!>w/ﬁN<X§<C4mBOﬂOZirXL—IQTNUOw>©
O~ WV RRUORRARPUOUUBROWDWWEG DTG A®DD G
3w-—/~«-<><§<c~m~x.o‘oo:3-—x~—-—v3'co--maoc‘m .
TR RAPPONOPOWRANTBRROWAWORTWAUONCOO

120 DATA 96,74,74,78,78,77,78,73,75,75,75,74,72,72,72,75,76,75,76,76,76,76,

77,76,77,77,73,74,75,75,75,75

130 DATA 78,76,78,76,77,77,76,77,76,75,75,78,75,78,76,77,77,78,77,76,76,76,

76,78,77,76,76,75,75,75,73,64

140 DATA 72,77,77,76,77,76,75,77,76,75,75,76,75,78,76,76,77,77,75,75,75,76,

75,77,76,76,76,75,75,75,73,0

170 FOR I=0 TO 95
180 READ CH(I)
190 NEXT I

200 ZZ$="This is a test of proportional

including the DW-II, DW-IIB, DWP-210,

justication on Daisy Wheel printers

and DWP-410. Change line 10070 to ZU

=1 for the DW-II. The subroutine justifies and prints from string Z%z$."

210 ZL=60: ZR=220:

220 GOSUB 10000: IF Zz$<>"" THEN 220 ELSE STOP
10000 'EXTERNAL PROG. JUSTIFICATION SUB. FOR DW-II, IIB, DWP-210, 410

10010 ' ENTRY: ZZ$=STRING
! CH()=CHARACTER WIDTH ARRAY
! ZR=RIGHT MARGIN IN 1/60THS INCH FROM EDGE
10040 ZL=LEFT MARGIN IN 1/60THS INCH FROM EDGE
]
1

10020
10030

10050
10060

HOW TO USE YOUR RADIO SHACK PRINTER

ZV=LINE SPACING 1=SINGLE,
EXIT: LINE PRINTED AND ZZ$=REMAINDER OF STRING

2=DOUBLE, ETC.

10070 zZU=2 'CHANGE TO %ZU=1 FOR DW-1II

10080 LPRINT CHR$ (27);CHRS (17);CHRS(27);CHRS (24);

10090 2ZB=%ZR-ZL: ZC=0: 72S=0

10100 FOR ZI=1 TO LEN(ZZS$S)

10110 zZD$=MIDS$(Z%$,%2I,1): IF ZD$=" " THEN ZE=ZI: ZC=0: ZS=ZS+1l: GOTO 10130
10120 2C=2%C+(CH(ASC(ZD$)-32) AND 240)/16

10130 ZB=ZB-(CH(ASC(ZD$)-32) AND 240)/16

10140 IF 2ZB<=0 THEN 10200

10150 NEXT 2I

10160 IF ZL=1 THEN 10170 ELSE FOR 2I=1 TO ZL-1:LPRINT CHRS$(27);CHR$(ZU);: N
EXT %I

10170 FOR ZI=1 TO LEN(ZZ$) : ZDS$=MID$(ZZ$,2I,1)

10180 LPRINT ZD$; : IF ZDS$>" " THEN LPRINT CHRS (CH(ASC(ZD$)-32));

10190 NEXT %I : 2Y$="" : GOTO 10310

10200 IF ZS=0 THEN 10330 :

10210 ZI=%E: ZB=%B+ZC+4+ZU: ZY$=RIGHTS(ZZS$,LEN(ZZ$)-2I)

10220 ZZ$=LEFT$(2%Z$,ZI-1)

10230 2S=7S-1:ZF=ZB-INT(ZB/%ZS)*ZS: ZB=INT(ZB/ZS)

10240 IF ZL=1 THEN 10260

10250 FOR 2I=1 TO ZL-1: LPRINT CHRS$(27);CHRS$(ZU);: NEXT ZI

10260 FOR ZI=1 TO LEN(ZZS)

10270 ZD$=MIDS(2Z$,ZI,1l): IF ZDS$S<>" " THEN LPRINT ZDS$;CHRS (CH(ASC(ZD$)-32))
: ¢ GOTO 10300

10280 FOR ZJ=1 TO ZB+4+2U: LPRINT CHRS$ (27);CHRS (ZU);: NEXT ZJ

10290 IF 2ZF<>0 THEN LPRINT CHRS (27);CHRS (ZU);:ZF=ZF-1

10300 NEXT ZI

10310 LPRINT CHR$ (27);CHRS$ (25);STRINGS(ZV,13);

10320 2z$=27Y$

10330 RETURN

Listing 8-8. External Programming Mode Proportional Program

WORD-WRAP, JUSTIFICATION, AND PROPORTIONAL SPACING 109

CHAPTERQ

110

WORD PROCESSING
APPLICATIONS

In this chapter, we'll apply some of the tricks we’ve learned to specific
printing situations. We'll discuss in detail the printing of mailing labels and
form letters. Later we’ll cover printing text screens.

PRINTING MAILING LABELS

This is one of the easiest applications to do with a printer. Mailing labels
come in a variety of sizes; Radio Shack currently carries one-wide,
4Va-inch; two-wide, 9Vz-inch; and three-wide, 9V2-inch. Typical labels
appear as shown in Figure 9-1.

The labels are spaced on the forms so that there's a vertical séparation
of oneinch between labels. This represents six lines at a standard spacing
of six lines per inch.

In the programs below we'll use standard line spacings of six lines per
inch and a pitch of ten characters per inch. These are the normal settings
that your printer should use after you turn it on—you won't have to perform
any special actions for these conditions. In some cases, you may have to
set some DIP or front-panel switches to get this spacing.

PRINTING ONE-WIDE LABELS

Insert the labels in your tractor feed or friction feed printer so that the first print

position is over the *'1"" of the rule above the carriage, if your printer has a rule.

If your printer does not have a rule, insert the labels near the left margin.
Use the following program in BASIC to print the same label over and over:

100 LPRINT “William Barden, Jr.”

110 LPRINT 200 N. S. Memory Lane
120 LPRINT “‘Computer City, CA 92692"
130 LPRINT: LPRINT: LPRINT

140 GOTO 100

This program will print the three address lines, skip three lines, and then
repeat the process. If your printer is set up for six-lines-per-inch line spac-
ing, the printing will be spaced at one inch intervals. You may have to tem-
porarily put the printer off line, and then paper feed to align the vertical

HOW TO USE YOUR RADIO SHACK PRINTER

EXACTLY ONE
INCH BETWEEN
LABELS (6 LINES
AT 6 LINES/INCH)

LABEL WIDTH
3Y2 INCHES (35
CHARACTERS)

LABEL HEIGHT
1-15/16" (MAXIMUM
OF 8 LINES AT

8 LINES/INCH)

Figure 9-1. Mailing Labels

spacing of the labels. You may also have to add some leading spaces
before printing, if your labels are in the middle of the carriage. You can do
that one of two ways: An easy way is simply to use spaces before the text:

100 LPRINT ** William Barden, Jr.”
110 LPRINT * 200 N.S. Memory Lane
120 LPRINT * Computer City, CA 92692

130 LPRINT: LPRINT: LPRINT
140 GOTO 100

Here we've not only added spaces to make the printing appear further along
the line, but we've centered the text.

A second approach to adding spaces is to use the TAB command in

BASIC. The TAB command will tab to a specified column position. If your
labels start at about position 30 along your carriage (look at the rule above
the carriage if your printer has one, or measure in inches and multiply by
10), you'd use TAB(30) before the text to be printed:

100 LPRINT TAB(30); ‘William Barden, Jr.”

110 LPRINT TAB(30);*200 N. S. Memory Lane”
120 LPRINT TAB(30); ‘Computer City, CA 92692
130 LPRINT: LPRINT: LPRINT

140 GOTO 100

If you want to print a fourth, or fourth and fifth line, just delete one or two

of the LPRINTs and use text instead:

100 LPRINT TAB(30);"'William Barden, Jr.”

WORD PROCESSING APPLICATIONS

111

112

110 LPRINT TAB(30);"200 N. S. Memory Lane”
120 LPRINT TAB(30);"‘Computer City, CA 92692"
130 LPRINT TAB(30);'(714) 555-1212"

140 LPRINT: LPRINT

150 GOTO 100

PRINTING TWO-WIDE AND THREE-WIDE LABELS

The easiest way to do this is to spread out identical text along the same line,
using tabs. For two-wide labels:

100 LPRINT “*William Barden, Jr."";TAB(XX);"‘William Barden,Jr.”’
110 LPRINT *200 N. S. Memory Lane’"; TAB(XX);*'200 N.S.
Memory Lane"”
120 LPRINT ""Computer City, CA 92692’ ; TAB(XX):
“Computer City, CA 92692
130 LPRINT: LPRINT: LPRINT
140 GOTO 100

Use a tab position of about 5 for XX and about 47 for YY. Three-wide
labels use an additional TAB and text.

You can also substitute one or two different addresses, in the second or
third position, to “‘gang print”’ two or three addresses at the same time. If
the placement of the printing is off slightly, adjust the TAB values. If you'd
like to center the text, you can do that also by adjusting the TAB values. Just
remember that the total number of characters across is 85, in 8.5 inches,
for normal 10-pitch spacing.

Press <BREAK > at any time to stop the BASIC program. Entering RUN
will start the program again. Save the program on disk or cassette once you
have the proper spacing.

USING DIFFERENT PITCHES
OR LINE SPACING

You can use the same programs with different character pitches or line
spacing. If you want to use 12 characters per inch, for example, TAB on that
basis. If you used eight-lines-per-inch line spacing, you have room for seven
LPRINT lines and could do this:

100 LPRINT “‘George Boole"

110 LPRINT *"‘Logical Computer Data Digital Comm Company'’
120 LPRINT ""Mail Station 1254

130 LPRINT “‘Highland Center Road”’

140 LPRINT ‘‘State Route 54" '

150 LPRINT "'Annapolis, Maryland”

160 LPRINT ‘55555

170 LPRINT

180 GOTO 100

Before printing, set the printer to the proper pitch and line spacing. See
““Positioning Print on the Paper’’ to find out how to do this.

HOW TO USE YOUR RADIO SHACK PRINTER

PRINTING BOILERPLATE
AND FORM LETTERS

| hope the Bar Association or Postal Service doesn’t get after us for this, but
in this section we’d like to tell you how to easily print standard contracts,
“poilerplate,” and form letters. What I'm discussing here is any documen-
tation that is the same except for a few areas in which the name and
address, dollar amounts, or other short text or data change. I'm sure you've
seen form letters in the mail. (Ours usually start “‘Dear Mr. Jr. Barden,”
although once | had a “‘Dear William ${654&&" — undoubtedly from
another android . . .)

It's fairly easy to write a program to generate form letters, standard con-
tracts, or other boilerplate. One that will work with a typical form letter is
shown in Figure 9-2.

Computer Clearinghouse
10500 S. Swindle Lane
Silicon Valley South, Califormnia 92003

Mr. ZXZZ&&X%Z% Bavrden, Jr.
200 N.S. Memory Lane
Computer City, CA 92692

Dear Mr. , Jr.:

You have won either a Mercedes-Benz 300SD, a color televi-
sion, or a ball point pen! All you have to do to collect your
prize, Mr. . Jr., is to call, toll free, (800) 555-1212 and
talk to one of our representatives. To qualify for the prize,
Mr. , Jr., simply buy over $99 worth of merchandise from our
catalog. If you!ll take the time to look through the catalog,
now, Mr. , Jr., (or may I call you ZZZ&&XZX?) you'll find SUPER
deals on just about every type of old computer you've ever
wanted. $149.95 for a complete Univac I! How about a Harvard
Whirlwind computer for $149.95t1 Would you believe a used
Cray I, for only $999.95311!

These are just e few bargins you'll find from us.

Call that number, now, XXX&&!1!1l. Or we'll stuff your mailbox
from Monday through Saturday with 3-pound catalogs!

Warmest personal regards,

Carmine O'Flaherty, Sales Manager

Figure 9-2. Typical Form Letter

WORD PROCESSING APPLICATIONS

113

114

Printef Hint

HOW THE FORM
PROGRAM WORKS

The FORM program works
with the strings in ZZ$(1)
through ZZ$(NN). Each entry
in the ZZ$ array represents
one line to be printed. The
program scans each entry,
one character at a time. If the
current character, and the
next, are not equal to *'&&”’,
then the program assumes
that the character is not a
start of a control code and
prints the first character. If
the two characters are equal
to *‘&&"’; then a special
action is taken to send out
the proper escape sequence
for the control code. These
actions are all fairly straight-
forward except for bold prin-
ting on a daisy-wheel printer.
In this case the backspace
subroutine is called by the
main program to do the
backspacing required for the
daisy wheel. The backspace
subroutine is similar to the
one shown in ‘‘Backspacing
and Strikethroughs for Fixed
Pitch.” - -

The bulk of the form letter is canned text. There’s a return address which
never changes, and the body of the form itself. There’s also a *‘To”’address,
which we’ve designated as five “‘&&F'’ text strings. The “‘&&F’’stands for
Field—a text area to be filled in by the user. Inside the body of the form are
other fields, which have the same format—two ‘&’ characters and the
letter F.

The program operates this way: It will take each line of text to be printed
and print it, exactly as it appears. However, each time the program
encounters &&F characters, it will pause and then prompt you to enter the
proper characters for the field. After you've entered the text for the field, the
program will print out the text, and then print any remaining text up to the
next &&F field.

In addition to printing plain text, the program uses these characters to in-
dicate functions:

&&U Start Underline

&&E End Underline

&&B Start Boldface

&&N End Boldface

&&A Above one half line (for superscripting)
&&D Down one half line (for subscripting)

&&P New page

&&L Skip Line

&&S Stop, page eject, and prepare for new letter

These functions can occur anywhere in the text. However, an underline,
boldface, superscript, or subscript must start and end on the same line
(start again on the next line if necessary). Do not use the functions unless
your printer is equipped to handle them.

The condensed form of the form letter, using these function codes, is shown
in Figure 9-3. To make up your own form letter, follow the sample here. All lines
of the text must be put into the form ZZ$(1)=""xxx xxxx xxx'’ through
ZZB(NN) = "xxx xxx xxxxx"', where NN is the last line of the text and the x's are
text characters. The last line of text is ended by ZZ$(NN) = “&&S’". Each ZZ$()
string is a separate line to be printed. This program is meant to be used with
dot-matrix printers that have word-processing mode or with daisy-wheel
printers unless the superscripting and subscripting functions are not used, in
which case it can be used with any printer.

Note: Change the number of characters per line in the printer driver
(see “'Setting Top-of-Form .. .) to 255 if you are doing a great deal of bold
printing on a daisy-wheel printer. The BASIC printer driver counts all
characters, even backspaces, in figuring line length and may do an
automatic new line after many backspaces.

The program can be used with proportionally spaced characters, but the
lines may not be right-justified for lines containing fields. The program does
not justify lines—you’'ll have to adjust the ZZ$() strings for the best
appearance to produce a master form letter or contract.

The dialogue of the program appears as shown in Figure 9-4, for our
sample form letter:

The FORM program is shown in Listing 9-1. The program starts at line
10000. Append it to your own BASIC lines which define the master text to be
printed.

HOW TO USE YOUR RADIO SHACK PRINTER

90 CLEAR 2000

100 'FORM PRINT PROGRAM

110 DIM ZZ$(100)

120 CLS: LPRINT CHR$(20) ‘SET WORD PROCESSING MODE FOR SUB/SUPERSCRIPT

130 72$(1l)="Computer Clearinghouse"

140 2z2$(2)="10500 S. Swindle Lane"

150 2Z$(3)="Silicon Valley South, California 92005"

160 zz$(4)="&&L"

170 2z2$(5)="&&F"

180 2Z$(6)="&&F"

190 zz2$(7)="&&F"

200 2z$(8)="&&L"

210 2zz$(9)="Dear &&F"

220 2z$(10)="&&L"

230 22$(11)="You have won either a &&BMercedes-Benz 300SD&&N, a &&Bcolor televi&&N
_n

240 77$(12)="&&Bsion&&N, or a ball point pen! All you have to do to &&Ucollect&&E
your"

250 77$(13)="prize, &&F, is to call, toll free, &&F and"

260 77Z$(1l4)="talk to one of our representatives. To qualify for the prize,"

270 27$(15)="&&F, simply buy over $99 worth of merchandise from our"

280 7z$(16)="catalog. If you'll take the time to look through the catalog,”

290 27$(17)="now, &&F, (or may I call you &&F?) you'll find &&BSUPER&&N"

300 72$(18)="deals on just about every type of old computer you've ever"

310 Z2Z$(19)="wanted. &&U$149.95&&E for a complete &&BUnivac I&&N! How about a &&BH
arvard&&N"

320 2Z$(20)="&&BWhirlwind computer&&N for &&U$149.95&&E!! Would you believe a used

330 22$(21)="&&BCray I&&N, for only &&U$999.95&&E!I!!"

340 27Z$(22)="&&L"

350 %2$(23)="These are just a &&Bfew bargains&&N you'll find from us."
360 Z2$(24)="&&L"

370 %2$(25)="Call that number, now, &&F!!! &&BOr we'll stuff your mailbox&&N"
380 2ZS$(26)="&&Bfrom Monday through Saturday with 3-pound catalogs&&N!"
390 zz$(27)="&&L"

400 272$(28)=" Warmest personal regards,"

410 Zz$(29)="&&L"

420 72$(30)="&&L"

430 zzs$(31)=" Carmine O'Flaherty, Sales Manager"
440 2Z$(32)="&&S" 'indicates end of data

10000 ' PRINT FORMS PROGRAM. PRINTS FORM LETTER FROM Z72$ ARRAY

10010 ' WITH SPECIAL && CODES FOR UNDERLINE, BOLD, SUPER-

10020 ' OR SUBSCRIPTING, NEWK'I

Figure 9-3. Condensed Form of Form Letter

PRINTING TEXT SCREENS

There are applications programs to print the screen for most Radio Shack
computer systems. However, it's also possible to print the screen from
within a BASIC program by a short BASIC subroutine. We'll describe screen
print programs in BASIC here that will print text only. You'll find a corre-
sponding program in Section |l for printing graphics screens.

MODEL |, Ill, AND 4 SCREEN PRINT

In these computers, the screen display area uses RAM memory locations
15360 through 16383, for a total of 1024 screen characters (Model 4 in
Model |1l mode). It's possible to PEEK and POKE these locations like any

WORD PROCESSING APPLICATIONS 115

Computer Clearinghouse
PROGRAM DISPLAYS LINES 10500 S. Swindle Lane

AS IT TYPES THEM

PROGRAM ASKS FOR
USER TEXT

Silicon Valley South, California 92005

&&F?™™r. William Bardens; Jr. (ENTER AFTER
TEXT)

&&F?200 N.S. Memory Lane

8&F ?Camputer Cit

Figure 9-4. Form Letter Dialogue

116

Printer Hint -

HOW THE MODEL |, HI,
4 SCREEN PRINT
PROGRAM WORKS

This program uses
variables ZR (row) and ZC
(column) in two loops. A
PEEK command in the inner
loop looks at the video
memory location to see which
character is on the screen.
The video memory location is
defined by the row and
column values in ZR and ZC
and the start of the video

_memory. at 15360. If the
video memory. value is less
than a space or greater than
the last text character (127),
a blank character is printed,
otherwise, the actual
character in the video
memory location is printed.
After each row of 64
characters is printed, two line
feeds double-space the rows.
The program returns to the
calling program after the 16
rows have been printed. :

others. (PEEK and POKE are two BASIC commands that allow you to
access an RAM memory locations to write data or to read data.)

What characters are stored in video RAM depends upon what is being
displayed upon the screen and it may range from normal text (ASCII) to
graphics characters. The program below PEEKSs (reads) all video RAM loca-
tions, discards any character that is not printable (not a code of 32 through
127), and then prints 16 lines, representing the 16 lines of the screen:

10000 " MODEL 11,4 16 BY 64 TEXT SCREEN DUMP
10010 ' PRINTS SCREEN DOUBLE-SPACED ON PRINTER
10020 FOR ZR=0TO 15

10030 FOR ZC=0 TO 63

10040 ZB = PEEK(15360 + (ZR*64) + ZC)

10050 IF(ZB <32) OR (ZB >127) THEN LPRINT ** '';: GOTO 10070
10060 LPRINT CHR$(ZB);

10070 NEXT ZC

10080 LPRINT: LPRINT

10090 NEXT ZR

10100 RETURN

To use this program, simply enter it, together with your own BASIC pro-
gram or with another BASIC program. Insert a

GOSUB 10000

at every place in the BASIC program where you want the screen printed.
The screen display will automatically be printed out when the subroutine at
10000 is executed by the GOSUB.

An actual printout is shown in Figure 9-5. Note that the program double
spaces lines to get proportions cioser to the actual screen ratio of 4 to 3.

MC-10 AND COLOR COMPUTER SCREEN PRINT PROGRAM
See ““Using the TP-10 to Print the Screen ... " in Section IlI, if you have a
TP-10 printer.

The Color Computer and MC-10 also use a portion of RAM memory to
store the text screen. The screen characters are similar, but not identical,
to the ASCII characters printed on Radio Shack printers. Certain ranges of
characters are displayed in inverse video —black on green instead of green

HOW TO USE YOUR RADIO SHACK PRINTER

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
10510
10520
10530
10540
10550
10560
10570

' PRINT FORMS PROGRAM. PRINTS FORM LETTER FROM ZZ$ ARRAY

' WITH SPECIAL && CODES FOR UNDERLINE, BOLD, SUPER-

' OR SUBSCRIPTING, NEW PAGE, SKIP LINE, AND STOP.

' APPEND TO THE END OF YOUR MASTER BASIC CODE.

7X=0: 22$="": ZP=12 '***USE ZP=12 FOR DAISY WHEEL***

IF ZX=>100 THEN 10350 'NOTE: CHANGE %X LIMIT TO MATCH %Z$ DIM STMT
ZX=7X+1

IF Z2$<>"L" THEN PRINT "": LPRINT ""

7L=LEN(ZZ$ (2X))

IF ZL=0 THEN 10050

7ZY=0 'NEW LINE

IF ZY=>ZL THEN 10050

ZY=2Y+1

IF MIDS(ZZ$(ZX),2Y,2)<>"&&" THEN 10320

72$=MID$ (Z72$ (ZX),2Y+2,1)

IF 22$="U" THEN PRINT CHR$(15);: LPRINT CHR$(15);: GOTO 10290
IF Z2$="E" THEN PRINT CHR$(14);: LPRINT CHR$(1l4);: GOTO 10290
IF Z2$="A" THEN LPRINT CHRS (27);CHR$(30);: GOTO 10290

IF Z2$="D" THEN LPRINT CHRS (27);CHR$(28);: GOTO 10290

IF Z2$="L" THEN PRINT CHR$(13);: LPRINT CHRS$(13);: GOTO 10290
IF 72$="p" THEN PRINT CHR$(12): LPRINT CHR$(12): GOTO 10290

IF Z2$<>"B" THEN 10240

IF ZP>0 THEN GOSUB 10410: GOTO 10290

PRINT CHRS$ (27);CHR$(31);: LPRINT CHR$(27);CHR$(31);: GOTO 10290
IF 228<>"N" THEN 10260

PRINT CHRS(27);CHR$(32);: LPRINT CHRS$(27);CHR$(32);: GOTO 10290
IF Z2$<>"F" THEN 10310

PRINT "": LINE INPUT "&&F?";ZE$
LPRINT ZES;

ZY=ZY+2

GOTO 10110

IF 72$="S" THEN 10350

PRINT MIDS(ZZS$(ZX),ZY,1);
LPRINT MIDS(ZZS$(zX),2Y,1);

GOTO 10110

PRINT CHRS$(12): LPRINT CHR$(12)
PRINT "PRESS R TO RESTART"

Z$=INKEYS

IF Z$="" THEN 10370

IF NOT (Z$="R" OR Z$="r") THEN 10370

RETURN

'SUB BACKSPACE FOR DAISYWHEEL PRINTER

ZY=Z7ZY+3

ZD=2Y

IF MID$(ZZ$(2ZX),ZD,2)="&&" THEN ZD=ZD-1: GOTO 10480

IF ZD=>%ZL THEN 10480

ZD=7D+1

GOTO 10440

7ZD=(ZD-2Y)+1

PRINT MIDS(ZZS$(ZX),2Y,ZD);: LPRINT MIDS$(ZZ$(ZX),ZY,ZD);
272=2D*ZP

ZA=ZZ-INT(2Z/9)*9: ZB=INT(ZZ/9)

IF ZB=0 THEN 10540

FOR ZI=1 TO ZB: LPRINT CHRS$(8);CHRS$(9);: NEXT 2ZI
IF ZA<>0 THEN LPRINT CHRS (8);CHRS (ZA);

LPRINT MIDS$(22$(ZX),%2Y,2ZD);

ZY=ZY+ZD

RETURN

Listing 9-1. FORM program

WORD PROCESSING APPLICATIONS

117

118

- Prihter Hint
HOW THE COLOR
COMPUTER SCREEN
PRINT PROGRAM WORKS

This program uses
variables ZR (row) and ZC
(column) in.two loops. A
PEEK command in the. inner
loop looks at the video
memory location to see which
character is on the screen.
The video memory location is
defined by the row and
column values in ZR and ZC
and the start of the text
screen at 1024. If the video
memory. value is greater than
127, it is a graphics charac-
ter and a space is substi-
tuted. If the value is less than
32, it.is changed to an ASCII
value by adding 32. If the
value is greater than 95, it is

changed to the proper ASCII -

value by subtracting 64. The
value iis then printed by a
:CHR$() print. After each row
of 32 characters is printed, a
line feed is done. After print-
ing 16 rows, the program
returns to the calling
program.

>LIST

10000 ’* MODEL I,III,4 16 BY &4 TEXT SCREEN DUMP
10010 ’ PRINTS SCREEN DOUBLE-SPACED ON PRINTER
10020 FOR ZR=0 TO 15

10030 FOR ZC=0 TO 43

10040 ZB=PEEK(15360+(ZR%*b64)+2ZC)

10050 IF (ZB<32) OR (ZB>127) THEN LPRINT ” ”;: GOTO 10070
10060 LPRINT CHR$(ZB);

10070 NEXT ZC

10080 LPRINT: LPRINT

10070 NEXT ZR

10100 RETURN

READY

>

>RUN

Figure 9-5. Model |, Ill, 4 Screen Print Example

on black. In addition, you may have block graphics characters displayed on
the screen-—these must be discarded in any print.

The text screen in the Color Computer is located at RAM locations 1024
through 1535. The program below PEEKs each of these locations, discards
any non-printable character, translates from inverse video to the proper
ASCII character, and then prints 16 lines of 32 characters each.

10000 " COLOR COMPUTER 16 BY 32 TEXT SCREEN DUMP

10010 FOR ZR=0TO 16

10020 FOR ZC =0 TO 31

10030 ZA = PEEK(1024 + (ZR*32) + ZC)

10040 IF ZA >127 THEN ZA =32

10050 IF ZA <32 THEN ZA=ZA + 32

10060 IF ZA >95 THEN ZA = ZA-64

10070 PRINT#-2,CHR$(ZA);

10080 NEXT ZC

10090 PRINT#-2

10100 NEXT ZR

10110 RETURN

To use this program, simply enter it, together with your own BASIC pro-
gram, or with another BASIC program. Insert a

GOSUB 10000

at every place in the BASIC program where you want the screen printed.

HOW TO USE YOUR RADIO SHACK PRINTER

The screen display will be automatically printed out when the subroutine at

10000 is executed by the GOSUB.
An actual printout is shown in Figure 9-6. The 3.2- by 2.66-inch dimen-

sions are close to the 4 to 3 aspect ratio of the screen.

1@eee ' COLDR COMPUTER 16 BY 32
TEXT SCREEN DUMP

10019 FOR ZR=0 TO 15

10020 FOR 2C=0 TQ 31

10030 £A=PEEK{1QZ4+ (ZR%32)+2C)
10040 1IF ZA>127 THEN Z2A=32
10030 IF ZA{32 THEN ZA=ZA+3E
10060 IF ZA>90 THEN ZA=Z2A-64
10079 PRINTH#-Z,CHR$ (Z24);

10080 NEXT ZC

19090 PRINT#-2

10190 NEXT ZR

12110 RETURN Printer Hint

oK CUSTOM TAILORING

RUN THE SCREEN PRINT
PROGRAMS

You can easily modify the
programs above and custom
tailor the screen print to your
own specifications. You might

Figure 9-6. Color Computer/MC-10 Screen Print Example

MC-10 SCREEN PRINT PROGRAM . want to spread the printing
Use the program above for the MC-10, however, change line 10030 to read: out, with a blank between
each character, or print in
10030 ZA = PEEK(16384 + (ZR*32) + ZC) double-width mode, or

perhaps you might want to
vary the spacing between

lines to produce a printout
with a closer approximation

to the screen. Use the appro-
priate control codes, either
before the printing takes
place, or in the subroutine at
the beginning, with a ‘‘reset”
at the end. To get a double-
width mode printout, for
example, you'd add these
two lines: ‘

10005 LPRINT
CHR$(27);CHR$(14)

‘Note: ““New’’ Codes

10095 LPRINT
CHR$(27);CHR$(15)

Experiment with different
combinations of things, if you
know a little BASIC. Even if
you don’t know BASIC very
well, you won’t hurt anything
by changing the code slightly!

WORD PROCESSING APPLICATIONS 119

[N

o

SECTION 3

Graphics

cHAPTER{()

GRAPHICS PRINTING

In this section we'll look at graphics printing. As in Section Il on text print- Characters
ing, this material is organized from simple topics to more complex topics. It
includes detailed information on how to use graphics modes, and also more

general topics about graphics applications, such as printing graphics 224 (blank)

screens and designing your own character sets. 225 "

This section is primarily for users with dot-matrix printers, although 226 -

owners of daisy-wheel printers may want to read the material on plotting, 227 -

which describes how to draw lines and graphs. 228 .

229 n

230 o

, _ , 231 -

Note: As in Section I, we’ll use the LPRINT command in some cases to 232 -

stand for both the LPRINT (Model I, I, etc.) and the PRINT#-2, command used 233]

in the Color Computer and MC-10. Just substitute PRINT#-2, (don’t forget the 234 2

comma) for the LPRINT if using the programs for the Color Computer or MC-10. 23¢, o

236 2

237 &

238 ol

BLOCK GRAPHICS an -

240 r

241 -

The block graphics characters can be used to draw horizontal and vertical 247 A

lines, forms, and simple figures. Block graphics are available on all newer 243 -

printers, including the LPV, VI, VIII, DMP-120, -200, -400, -420, -500, and 244 F

-2100. There are no block graphics on daisy-wheel printers. 245 |

GENERAL DESCRIPTION 246 N

The block graphics characters are not included in the standard ASCI! gig "

characters, but are part of the upper 128 set of characters in the range of 249 1

codes from 128 through 255. The actual codes used for block graphics 250 +

characters are codes 224 through 254, and are shown in Table 10-1. 251 v

There are three groups of block graphics, as you can see from the table. 252 4

The first group contains the actual block graphics characters 253 -

themselves —they are all of the 16 shapes that can be made by combining 254 "
elements of a two by two block. These graphics are not related to the
graphics blocks you'll see on the screen of a Model |, I, or 4/1ll. They are

similar to the lower-resolution graphics modes in the Color Computer and
MC-10, though.

GRAPHICS PRINTING 123

'

ONE LINE
IN FULL
LINE FEED

R
a

ONE LINE IN ¥z LINE FEED

Figure 10-1. Full Line Spacing
on Vertical Line Segment

124

The second group of block graphics contains line segments. These are
short line segments that can be used to draw horizontal and vertical lines,
and to connect horizontal and vertical lines.

The third group of block graphics contains four filled-in triangles.

The most important thing to remember about the block graphics is that
you don’t have to be in graphics mode to use them! In fact, if you are in
graphics mode, you won't be able to use them. The block graphics
characters are printed by simply LPRINTing a block graphics character, by
using a CHR$(). A block graphics character will occupy one character posi-
tion on the paper, the same as any other printable character.

You must also not be in a correspondence or proportional-spacing
character set when using block graphics. The exception to this is the
DMP-2100. You can use the block graphics characters in any pitch also. If
you're in 12 pitch (compressed characters on most printers), you'll get 12
block graphics characters or line segments per inch. If you're in 16.7 pitch
(condensed characters on most printers), you'll get 16.7 block graphics
characters or line segments per inch.

DRAWING HORIZONTAL LINES USING BLOCK GRAPHICS

To draw horizontal lines, use the 241 code in the block graphics character
set. This is a short horizontal line segment that occupies the middie of the
character position. To draw a horizontal line across the width of the paper,
for example, do this:

100 LPRINT CHR$(28),CHR$(80),CHR$(24 1)

This statement draws 80 horizontal line segments, or an 8-inch horizontal
line at ten characters per inch, using the repeat code.
To draw a horizontal line at any position, TAB first and then draw the line:

100 LPRINT TAB(42),CHR$(28);,CHR$(40);,CHR$(24 1)

This statement draws a four-inch horizontal line from a point 4.2 inches
from the left margin.

DRAWING VERTICAL LINES USING BLOCK GRAPHICS

The block graphics character code 245 is used to draw vertical lines. This
character is a short vertical line segment in the middle of a character posi-
tion. The length of the line segment is one-half of the character position
height, though. For this reason, you can’t use a full line spacing for drawing
a vertical line segment—you must first set a half forward line feed by a
CHR$(27);CHR$(28). If you use full line spacing, you'll get a dashed vertical
line as shown in Figure 10-1. Setting the half forward line feed has to be
done only once, at the beginning of a program to draw lines. (Reset back to
full line spacing by CHR$(27);CHR$(54).)
This code draws a vertical line of 80 segments, or about 624 inches:

100 LPRINT CHR$(27);CHR$(28)
110 FOR I=1TO 80

120 LPRINT CHR$(245)

130 NEXT |

We couldn’t use a repeat code above because it would have given us 80 ver-
tical bars across one line, rather than 80 characters on 80 separate lines.

HOW TO USE YOUR RADIO SHACK PRINTER

DRAWING BOXES AND FORMS

The vertical and horizontal line segments can be used together to draw a
box or rectangle, and that's where the remainder of the line segments come
in. The horizontal and vertical line segments are in the exact center of a
character position. A right-angle character code of either 240, 242, 246, or
247 can connect a vertical and horizontal line at any corner, as shown in
Figure 10-2. Furthermore, a vertical line can be joined to a midpoint on a
horizontal line, or vice versa, by using the character codes of 243, 244, 248,
and 249. Finally, a cross character (250) is the intersection point for two
crossed lines.

(240) (243) (242)
— T]
‘& 1 [| 1] 1 y 1 1 i 1 |
e
T T '\ - (250)
Vet ~ p
e il -~
T L | L L 1 T 1 | 1 | l—
1 | 1 1 1 1 T I 1]
£ £ A
(246) L (2s8) L 1 (247)

NOTE: “TIC” MARKS PUT IN
TO SHOW SPACING.

Figure 10-2. Block Graphic Line Segments

Using these character codes, it’s fairly easy to draw a box or form. Sup-
pose we wanted to draw the simple form shown in Figure 10-3. The first step
in producing such a program is to lay it out on a graphics layout sheet that
shows character positions. If you are using a 10 pitch (ten characters per
inch) and 12 lines per inch spacing (don't forget the ‘‘half line”
requirement), you'd want to use a layout sheet with identical spacing.
Figure 10-4 shows the layout.

Printer Hint

BUSINESS FORMS
RULER

One handy item:to have
when working with printers is
a business forms ruler. It can
be found in data-processing
supply catalogs or at well-
equipped: stationary stores. |
stole the one | use from:my
wife who, in another incarna-
tion, was a business systems
computer analyst, and it’s
great. It has 16 inches
marked off in 1/10-inch
segments (10-pitch), another
scale in sixths and 12ths (full
and half line spaces), another
in 5/32nds (haven’t found a
use for that yet), and a nor-

~“mal inch-ruler scale.

GRAPHICS PRINTING 125

P 2INCHES »
LINE 1
2 A
3
7.8 INCHES
(47 LINES)
LINE 46
47 Y

Figure 10-3. Form Example

The simplest way to print such a form is by the brute force method. From
the layout figure, you can see that there will be 47 lines to be printed. The
basic print program will look like this:

100 LPRINT CHR$();CHR$();CHR$() . . .
110 LPRINT CHR$();CHR$();CHRS() . . .
120 .
130 .
140 .

560 LPRINT CHR$();CHR$();CHRS$() . . . -

Each line will have 21 character positions, and you'll have to go over the
layout sheet and find the corresponding block graphics character for the
line segment and use that code in the CHR$ code. All told, there’ll be 987
CHR$() codes! This is too much work for anyone with a computer, although
it will produce the form.

A better approach is to do a little analysis of the form. Are there segments
that can be repeated? The first thing you'll probably notice with this form is
that lines 4 through 46 are the same. Why not do a simple loop here for 43
times to repeat that data? It would look like this:

126 HOW TO USE YOUR RADIO SHACK PRINTER

» 10 CHARACTERS/
- INCH — >

1
1234567890

OCOONDO B WN -

-

12 LINES/
INCH

Figure 10-4. Form Layout

130 FOR =1 TO 43
140 LPRINT CHR$();CHR$();,CHR$() . . .
150 NEXT |

We didn't fill in the CHR$ values yet, but we will. The entire program now
looks like this:

100 LPRINT CHR$();CHR$();CHRS() . . .
110 LPRINT CHR$();CHR$();CHR$() . . .
120 LPRINT CHR$();CHR$();CHR$() . . .
130 FOR I=1TO 43

140 LPRINT CHR$();CHR$();,CHRS() . . .
150 NEXT |

160 LPRINT CHR$();CHR$();CHR$() . . .

GRAPHICS PRINTING 127

128

The first three lines print lines 1, 2, and 3, the next three lines print lines 4
through 46, and the last line prints line 47 of the form. Is there anything else
we can simplify? Each of the 43 lines has only three printing characters,
with a series of spaces in between. We could use either a TAB, a Repeat, a
string constant, or a STRINGS$ function for this:

140 LPRINT CHR$(245); TAB(10);CHR$(245); TAB(20),CHR$(245)

140 LPRINT CHR$(245);CHR$(28);CHR$(9);CHR$(32);: CHR$(245);
CHR$(28),CHR$(9): CHR$(32);CHR$(245)

140 LPRINT CHR$(245); * " ,CHR$(245);"
CHR$(245)

140 LPRINT CHR$(245);STRING$(9," "');CHR$(245);STRING$(9" *");
CHR$(245)

We can use the same technigue for the remaining four lines. The final
result looks like this:

90 LPRINT CHR$(27);CHR$(28)

100 LPRINT CHR$(240);STRING$(9,CHR$(241));CHR$(243);
STRING$(9,CHR$(241));CHR$(242)

110 LPRINT CHR$(245);" ";,CHR$(245);" ik
CHR$(245)

120 LPRINT CHR$(244);STRING$(9,CHR$(241)): CHR$(250);
STRING$(9,CHR$(241));CHR$(249)

130 FOR =1 TO 43

140 LPRINT CHR$(245);" ";,CHR$(245);" i
CHR$(245)

150 NEXT |

160 LPRINT CHR$(246);STRING$(9,CHR$(241))::CHR$(248);
STRING$(9,241));CHR$(247)

This code is at least quite a bit shorter than 987 separate CHR$ values,
although it is a little more complex. You can't go too far wrong in using
these technigues, because it's easy to see the results and make slight
adjustments to the code if required.

The same approach can be followed for any form—lay out the form first,
and then look for lines that are similar and which can be shortened by using
the repeat function, text strings for blanks, or STRING$ expressions.
Another good idea is to make similar lines into subroutines. See your BASIC
manual for this.

A FORMS PROGRAM FOR LAZY USERS

Okay, | know that you want to leave programming to programmers and
don’t want to muck around init . . . The program below will save you a great
deal of programming time and draw a form for you. All you have to do is
enter the coordinates of line intersections. The program in Listing 10-1 will
work with character positions up to 132 columns wide, and with up to 132
half-lines per page. It isn’t a fast program, but it will do the job.

The program requires a system with at least 32K of user RAM memory,
otherwise you'll get an “‘out of memory’’ error. You must first change TA in
line 170 (Listing 10-1) to the value of a protected area in memory in which

HOW TO USE YOUR RADIO SHACK PRINTER

the program data is to reside. Use a value of 14768 for a 32K Color Com-
puter, 47536 for a 64K Color Computer, 31152 for a 48K Model |, Iil, 4, or
4P, or leave the program as is for a 64K Model I, Ill, 4, or 4P. In loading
BASIC, protect this area minus one by setting Memory Size (I, lll, 4, or 4P) or
doing a CLEAR 100,NN in the Color Computer.

100 'FORM GENERATOR PROGRAM

110 'PROTECT MEMORY AT TA-1

120 CLS : PRINT"FORM PROGRAM" : PRINT

130 CLEAR 1000

140 DEFINT A-Z 'FOR MODEL I,III,4

150 DATA 245,241,246,245,245,240,244,241,247,241,248,242,249,243,250
160 FOR X=1 TO 15 : READ S : S$=S$+CHRS$(S) : NEXT

170 TA=&HFFFF-132*132+1 'SET TA TO START OF 17424-BYTE AREA

180 FOR Z=TA TO TA+132*132 : POKE Z,0 : NEXT

190 INPUT"LINE COORDS. (X1,Y1,X2,Y2)";X1,Y1,X2,Y2

200 IF X1=X2=Y1=Y2=-1 THEN 250

210 IF (X1<>X2 AND Y1<>Y2) OR (X1=X2 AND Y1=Y2) OR (X1>X2 OR Y1>Y¥2) OR (X1<0 OR
X1>131) OR (Y1<0 OR Y1>131) THEN 190

220 IF X1=X2 THEN 240

230 FOR N=X1 TO X2 : POKE TA+N+Y1*132,1 : NEXT N : GOTO 190

240 FOR N=Yl1 TO Y2 : POKE TA+X1+N*¥132,1 : NEXT N : GOTO 190

250 LINE INPUT"LABEL:";AS$

260 IF A$="" THEN 310

270 INPUT"LABEL COORDS. (X,Y)";X,Y

280 IF X<0 OR X>131 OR Y<0 OR Y¥Y>131 THEN 270

290 FOR N=1 TO LEN(A$) : POKE TA+Y*132+X+N-1,ASC(MIDS$(A$,N,1)) : NEXT
300 GOTO 250

310 'PRINT

320 FOR Y=0 TO 131

330 FOR X=0 TO 131

340 O=TA+X+Y*132

350 IF PEEK(0)=0 THEN LPRINT " "; ELSE IF PEEK(O)=1 THEN GOSUB 400 : LPRINT MIDS$
(S$,D,1); : ELSE LPRINT CHRS$ (PEEK(O));

360 NEXT X

370 LPRINT CHR$(27);CHRS (28)

380 NEXT Y

390 END

400 'SUB CHECK NEIGHBORS

410 D1=0 : D2=0 : D3=0 : D4=0

420 IF PEEK(0-132)=1 AND ¥Y>0 THEN Dl=1
430 IF PEEK(O+1)=1 AND X<131 THEN D2=1
440 IF PEEK(O+132)=1 AND Y¥Y<131 THEN D3=1
450 IF PEEK(O-1)=1 AND X>0 THEN D4=1

460 D=D1+D2*2+D3*4+D4*8

470 RETURN

Listing 10-1. Business Forms Program

A form produced by the program is shown in Figure 10-5. The form was
designed by using a layout sheet, shown in Figure 10-6. On the layout sheet,
the column positions are numbered from 0 through 131, and the lines are
numbered from O through 131.

Number the intersections of lines as shown in Figure 10-5. Each inter-
section will have a column number, followed by a row number.

Now start the program. You should see the title

FORM PROGRAM

The program will next clear a large array that holds each print position. It
will take several minutes to do this. Next, the program will ask:

GRAPHICS PRINTING 129

Silicon Valley South Color Computer User’s Group
Name Address Phone
P.0O, Pox 9999, Silicon Valley South, CA

Figure 10-5. Business Forms Program Example

LINE COORDS. (X1,Y1,X2,Y2)?

Enter the column, row coordinates of each line in the form. If the first line
went from column 2, line 10 and ended at column 2, line 34, for example,
you'd enter:

LINE COORDS. (X1,Y1,X2,Y2)? 2,10,2,34

130 HOW TO USE YOUR RADIO SHACK PRINTER

¢————————— 132 COLUMNS 1/10" SPACING —_——
1 2 3
0 0 0 0
A0 1
10
20
132
HALF
LINES
112" 30
SPACING

Figure 10-6. The Form Layout Sheet

Note that the first row is numbered O and the last row is numbered 131,
and that the first column is numbered O and the last column is numbered
131. The coordinates prompt will be repeated—enter as many lines as
there are lines on the form. It doesn’t matter if you enter the line coor-
dinates more than once. Always work from left to right and from top to
bottom when specifying coordinates. The X1/Y1 coordinate should be the
leftmost and topmost coordinate. The program will not accept coordinates
entered with the X2/Y2 coordinate to the left or top of the X1/Y1 coordinate.
When you've entered the last coordinate, enter a -1,-1,-1,-1 to tell the pro-
gram that the entry is over.

Next, the program will ask you for labels for columns or other areas of the
form. Enter the text for the label first. The program will then ask “‘LABEL

GRAPHICS PRINTING

131

132

 Printer Hint
MORE ABOUT
THE FORM PROGRAM

- The form generator pro-
gram works like this: First,
the program reads the start-
ing and ending points for the
lines. It checks each set of
points to make certain that
the lines are either horizontal
(X1 =X2) or vertical (Y1.=Y2),
~_and that the points are within
the form. For every character

position along the line, a “‘1”

is POKEd into the form array,
contained in 132-by-132
bytes in RAM memory.

Next, the program reads the
user text and coordinates,
making similar checks on the
starting point for the text. The
text is also stored in the form
array, in protected memory.

At this point, the array con-
tains points and text. If a
byte in the array isa ‘1, a
line must be drawn. However,
‘what type of line? To deter-
mine the type of line, the pro-
gram checks the neighbors of
each array-byte that contains
a *'1.” Based upon the ‘“‘line”
or ‘'no line’’ status of the
neighbors, the proper block
graphics character is
selected. It's like the pro-
cessing for the game of
““Life’ for those of you who

‘are mathematical games

freaks... s

COORDS. (X,Y)?". Enter the leftmost coordinate of the label. If you wanted
“Part Number”' to start at column 23 and row 5, for example, you'd enter

LABEL? Part Number
LABEL COORDS. (X,Y)? 23,5

Don't forget that each character in a label takes more than one half line
and that you must space two half lines for normal text printing. Use an
< ENTER > character alone to end the input once you've entered the last
label.

After you've entered the last label, the program will start processing the
coordinates. It constructs a matrix of print codes in an array for printing.

After you've entered the last label, the entire form will be printed out,
complete with labels. You may have to get a priniout several times before
you've adjusted the final coordinates and labels, but this is the price you
pay for not programming the form yourself!

USING BLOCK GRAPHICS
FOR DRAWINGS

The block graphics characters can also be used for drawing figures on
printer paper. However, because the block graphics figures are rather
coarse, you won't get the fineness of detail that's possible with full
graphics. Each block graphics character represents one possible con-
figuration for a two-by-two block matrix.

Each graphics element within the graphics block is about 1/4 the size of a
normal character. As with the line segments, you’ll have to set a half line
feed by sending a CHR$(27),CHR$(28) to the printer. In 80 columns by 50
full-sized lines, the typical print area on an 8'2- by 11-inch piece of paper,
there are 160-by-100 graphics elements, or about 16,000 separately prin-
table blocks, a graphics resolution that isn't too bad if you're printing a
single picture on the page.

To print a picture using block graphics, first layout the picture on a layout
form, as shown in Figure 10-7. The layout form will have 20 horizontal
elements per inch and 12 vertical elements per inch. There will be four
elements per character position. Black in the elements to be used and
remember that you can use the triangles shown in Table 10-1. (The triangles
take up four graphics elements, however.)

After blacking in the figure, convert the character positions to block
graphics codes as shown in Figure 10-8. You can now construct a simple
series of LPRINT statements that will print out the figure. Don't forget to in-
itially set half lines:

100 LPRINT CHR$(27);CHR$(28)
110 LPRINT CHR$(XX);,CHR$(XX); . . . CHR$(XX)
120 LPRINT CHR$(XX);CHR$(XX); . . . CHRS(XX)

130 LPRINT CHR$(XX),CHR$(XX); . . . CHR$(XX)

The actual result is shown in Figure 10-9, along with an alternative pro-
gram that reads DATA values to do the printing. The picture quality is good,

HOW TO USE YOUR RADIO SHACK PRINTER

ONE CHARACTER
POSITION

:

ONE HALF

LINE

Figure 10-7. Graphic Layout Form for Block Characters

T

but not nearly as good as the standard graphics described elsewhere in this
section, provided your printer is capable of the standard graphics. The
block graphics can be used to black-in parts of forms, or for other functions,
in addition to drawing pictures.

BASICS OF GRAPHICS MODE

Graphics mode is available in many newer Radio Shack dot-matrix printers.
Printer graphics can be used to draw lines, to reproduce different character
sets, or fonts, and to draw pictures. Virtually anything that can be broken down
into dots can be reproduced with a dot-matrix printer. However, lest you think
that it's simple to do this, we’ve got to add that while it's possible to produce in-
credible art using a dot-matrix printer, it may take a great deal of programming
to accomplish the task.

GRAPHICS PRINTING

133

(}NE CHARACTER POSITION

CHAR-
ACTER

THIS BLOCK
GRAPHICS

CHARACTER
IS CHR$(236)

Figure 10-8. Converting to Block Graphic Codes

THIS BLOCK
GRAPHICS

CHARACTER
IS CHR$(235)

PRINTER GRAPHICS BASICS

All Radio Shack dot-matrix printers reproduce text characters by printing a

dot-matrix representation of the characters.

When graphics mode is set in a dot-matrix printer, the character printing is
disabled, and the print head is under control of the program (BASIC,
assembly language, or another type). The program now passes data that tells

134 HOW TO USE YOUR RADIO SHACK PRINTER

100 LPRINT CHR$(27);:CHR$(28)

110 FOR I=1 TO 10

120 LPRINT

130 FOR J=1 TO 11

140 READ V

150 LPRINT CHR$(V);

160 NEXT J

170 NEXT I

180 LPRINT CHR$(27);CHR$(54)

190 ’'BUTTERFLY DATA VALUES

200 DATA 224,224,224,224,234,224,233,224,224 5,224,224
210 DATA 232,232,232,224,234 224,233,224 ,232,232,232
220 DATA 234,239,231,239,226,232,225,239,231,239,233
230 DATA 226,239,232,239,233,232,234,239,232,239,225
240 DATA 224,226,239,239,239,232,239,239,239,225,224
250 DATA 224,224,228,238,239,232,239,237,227,224,224
260 DATA 224,238,235,236,239,232,239,235,236,237,224
270 DATA 224,236,237,238,235,224,236,237,238,235,224
280 DATA 224,224 ,236,239,225,224,226,239,235,224,224
290 DATA 224,224,224,231,224,224 224,231,224 224,224

il

Figure 10-9. Sample Block Graphic Picture

the printer to fire one or more of the wires in the print head to print from one
to seven dots in a vertical column. After the column is printed, the printer ad-
vances the print head to the next column. See Figure 10-10. The columns are
generally the same columns that are used in printing text characters.
Because each text character is made up of 6 to 20 columns, graphics printing
controls 6 to 20 columns per print position, or 60 to 200 columns per horizon-
tal inch, depending upon the printer involved.

The number of dots that print a vertical column is almost always seven in
Radio Shack printers. (The DMP-110 prints 16 dots per column and the
DMP-2100 prints 24 points per vertical column in a high-resolution mode,
however. See “DMP-110 High-Resolution Graphics”and-"‘DMP-2100 High-
Resolution Graphics” in this section. This discussion applies to the low-
resolution mode of the DMP-110 and DMP-2100).

Seven dots per vertical column is probably an offshoot of earlier Radio
Shack printers which used seven vertical dots per character. Also, seven
bits can conveniently fit into a byte to be sent to the printer. (The “‘most
significant,” or leftmost, bit was set in early printers to indicate a graphics
character instead of a text character.)

The basic idea in graphics printing, then, is to print a row of seven-dot col-
umns across the paper. The number of columns that can be printed varies
with the printer and the pitch selected. A condensed or compressed pitch, of
12 or 16.7 characters per inch, operates with the dot columns closer together
and if this spacing is maintained in graphics mode (it isn’t always, depending
upon the printer), you can fit more columns into the same width. The number
of columns per inch and across the paper that can be held in each printer is
shown in Table 10-2.

Printer Hint

SEVEN BITS
GIVES PROGRAMMERS
SLEEPLESS NIGHTS

Using seven dots per
graphics column is a nuisance
for most programmers who
are so geared to powers of
two that many have either 1,
2,4, or 8 children. If graphics
columns consisted of eight
dots per column; then it would
be much easier to process
and store graphics data in
memory and basic programs.
As it is, you've got to divide a
vertical coordinate by 7, which
gives you the graphics line
containing the dot. You've
then got to equate the re-
mainder of the division to one
of seven dots, changing the
remainder into a power of
two. It sounds easy, but can
get somewhat messy.

GRAPHICS PRINTING 135

GRAPHICS 123 435
COLUMNS

(SAME AS TEXT
DOT COLUMNS)

7DOTST. P

PERCOLUMN . . . ¢ @

e e e

NON-GRAPHIC TEXT 0666
CHARACTERS 0066

. e . 00000

- @ ® . @

® - (] N
.0 eo0e©e0 e
eeeeeeeo o C e - . .
e e L@ . ® - . .
- . e 000 0
T I Y I B

123 456789

|
FIRST DOT COLUMNS

PRINT
POSITION

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

GRAPHICS SHAPE
§ 7 ETC. CRINTED IN 13 DOT
~ /COLUMNS OR 1+ PRINT
POSITIONS

® 0000600 -
006G -
6806 - - -
0O -
®e

.

. .

9@ -

ETC.

Figure 10-10. Column Printing in Graphics

136

Table 10-2. Printer column per inch spacing and dot columns
Dot Maximum Graphics # Dots/
Dots/inch addressable columns width line space vertical inch
LPI; N/A
LPIt: N/A
LPHI: N/A
LPIV: N/A
LPV: N/A
LPVI: N/A
LPVII: 60 fixed 480 fixed 8" 0.11" 63
LPVII: 120 fixed 480 fixed® 8" 01" 72
DMP-100: 60 fixed 480 fixed 8" 011" 63
DMP-110: 120 fixed 960 fixed 8" 0.1" 72, 1444
DMP-120: 120', 2003 960", 1600° 8" 01" 72
DMP-200: 120, 1442, 200° 960", 11522, 1600° All:S 8" 0.1" 72
DMP-400: 80", 722, 100° 7927, 9502, 1320° All:® 13.2" 0.1" 72
DMP-420: 601, 722, 100° 7921, 9502, 1320° Ali:5 13.2” 01" 72
DMP-500: 60, 722, 100° 792", 9502, 1320° All:S 13.2" 0.1" 72
DMP-2100: 60, 180* 816", 2448+ 13.6" 0.12" 60,1804
DW-| N/A
DW-II N/A
DW-IIB: N/A
DWP-210: N/A
DWP-410: N/A
CGP-115: N/A
CGP-220: 80 fixed 640 fixed 8" 0.12" 60
QP-I: N/A
QP-It: N/A
TP-10: N/A-block
graphics only
Plotter/ N/A
Printer
N/A = No graphics '= Standard 2= Compressed *= Condensed *=High resolution $= Two dots printed for every

dot column

HOW TO USE YOUR RADIO SHACK PRINTER

If the printer were to keep the same spacing for graphics lines as for text
lines, there’'d be a gap between adjacent rows, as shown in Figure 10-11.
Since we want to be able to print all dot positions on the paper, the graphics
mode on all printers operates with a graphics mode line spacing that butts
one graphics row against the preceding graphics row, as shown in the
figure. This line spacing is again dependent upon the printer, but is about
1/10 of an inch, or a line spacing of ten graphics lines per inch, rather than
the nominal six lines per inch used in a lot of text printing.

BASIC allows you to address a dot on a graphics screen by using a
SET (PSET) or RESET (PRESET) command that uses x,y coordinates.
However, there is no corresponding BASIC command for printing a
graphics page on a printer. It would be nice to have a built-in BASIC
command that would allow you to print the 100th dot in the 16th row of
the page. However, the command is just not available. How, then, do
you specify the dots to print when using printer graphics? You have to
know the pattern or image you wish to print beforehand, and convert it
into seven-dot vertical columns, dot column numbers, and graphics
lines.

A SIMPLE EXAMPLE
OF GRAPHICS PRINTING

Suppose that you want to draw a triangle, five lines down and 402 dot
columns over, as shown in Figure 10-12. The program below shows
how it would be done. The steps to follow are these:

Set graphics mode.

Space a number of graphics lines down.

Space over a number of dot-columns.

Print the required columns, one column at a time.
Repeat for the next graphics to be drawn.

oo

THIS IS TEXT PRINTING EEREEXK)

. ®
ON SEVERAL LINES. NOTE Y ——®
THAT THERE IS SPACE ® —— O
BETWEEN LINES OF TEXT. ® e e e R
® —

® e _— e

©ee 000 e

eeee000Q@0O .. ©

° e

® — e

XEEXKEKX] e

® — @

® — @

eeooeceeee ____ O

Figure 10-11. Improper Graphics Row Spacing

ONE ROW OF GRAPHICS
} SPACE IN BETWEEN!

SECOND ROW OF GRAPHICS

GRAPHICS PRINTING

137

138

100 LPRINT CHR$(18);

110 LPRINT: LPRINT: LPRINT: LPRINT: LPRINT

120 LPRINT CHR$(27);CHR$(16);CHR$(1);,CHR$(146)

130 LPRINT CHR$(192),CHR$(224); CHR$(208); CHR$(200);
140 LPRINT CHR$(196);CHR$(194);CHR$(193);CHR$(194);
150 LPRINT CHR$(196);,CHR$(200);CHR$(208);CHR$(224);
160 LPRINT CHR$(192)

Let’s look at those steps in detail. First, graphics mode must be set.
Graphics mode is almost always set by sending a CHR$(18) to the
printer. From the time that the printer receives the CHR$(18) until
graphics mode is reset by a CHR$(30), the printer will assume that it's
receiving data that defines graphics dot column positions or dots to
be printed.

Next, the required number of graphics lines are skipped. Graphics
lines are skipped the same way you'd skip text lines-—by sending a
carriage return by an LPRINT. In this case, the printer recognizes that
graphics mode is set and instead of doing a full line space, does a
graphics-mode line space, about 1/10 of an inch. In the program here,
we've issued five LPRINTSs to space down five lines.

We're now at the proper graphics line. The next step is to space over
the required number of dot columns. Consult Table 10-2 for the
number of dot columns your printer uses. We'll assume that you
haven't set a pitch other than the standard 10-pitch (ten characters per

[]
L] e
] ©0 000000000600
_| SPACE DOWN 5 (GRAPHICS)
L LINES BY 5 LPRINTS
T SPACE OVER 402 DOT _
COLUMNS -
BY CHRS$ (27); CHRS$ (16) \
SEQUENCE
PRINT FIGURE
BY 13 GRAPHICS
COLUMNS

Figure 10-12. Sample Graphics Figure

inch) that is the default condition for the printer (dependent upon the
DIP switch settings in the Model 2100). The printer knows where the
print head is located at all times. Sending this character string will
move the print head to the proper dot column:

CHR$(27),CHR$(16);CHR$(MM);CHR$(LL)

HOW TO USE YOUR RADIO SHACK PRINTER

The only sticky problem here is in the MM and LL parameters. Taken
together, they represent the dot column for the print head position. To
find the proper values, divide the dot-column position by 256, and save
the remainder. The quotient is MM and the remainder is LL. In this
case we want to position the print head to dot column 402. Dividing
402 by 256 gives the answer, 1 with a remainder of 146. MM is
therefore 1 and LL is 146.

Note: Because this escape sequence contains numeric values
which may be any number from 0 through 255, you may have problems
in using the BASIC printer driver. If a numeric value in a CHR$() turns
out to be a 12, identical to the top-of-form character, the print driver
will attempt to execute a page-eject by doing a series of new lines
after it receives the 12. If a numeric value turns out to be a 10, identical
to a line feed character, it will be changed to a 13 in the print driver.
Avoid positioning commands containing these values by using a
slightly larger or smaller value in the CHR$() numeric variable, or use a
combination of two or more positioning commands.

We're now positioned at the proper dot column. The triangle figure
is made up of 13 columns. We'll have to send 13 CHR$() values to fire
the print head at 13 columns. Before you can send the values,
however, you'll have to encode the dot patterns into the CHR$() values.
To do this, follow the example in Figure 10-13. The topmost dot has a
weight of 1, the next 2, the next 4, the next 8, the next 16, the next 32,
and the next 64. For every dot that has to be printed, add its value into
the CHR$() total and then add 728. In the third column, for example, we
have the fifth and seventh dot, so we'd add 16 and 32 for the two dots
plus 128, for a CHR$() value of 176. The 128 value marks the data as
graphics data rather than a text character.

After the last column is printed, the print head is located over the next dot
column, ready for the next command.

This is the general procedure for printing any graphics character or block
of characters. It's tedious, but necessary for printing graphics.

For more on graphics see ‘‘Printing Pictures in Graphics Mode."

REPEAT CODES FOR GRAPHICS

Repeat codes for graphics are used in the same way as for text—to repeat
a character more than one time. It's a condensed way of instructing the
printer to print identical graphics characters, and is similar to the STRING$
function in BASIC. Repeat codes are available in the LPVII, LPVIII; and all
“DMP"’ printers except the DMP-120, CGP-220, and TP-10. Suppose that
you were printing a double line with a graphics character, with both the top
and bottom dots set for 200 dot columns, as shown in Figure 10-14,

You could send a whole series of graphics characters:

100 LPRINT CHR$(18);
110 LPRINT CHR$(193);CHR$(193);CHR$(193) . . .

Printer Hint

USING THE
DOT-COLUMN VALUE

The dot-column value is
really a 16-bit binary number.
if you don't know anything

‘about binary, you can skip

this explanation and get along
nicely. However, if you'd like
to know more about the
format, read on.

The dot column is ex-
pressed in two bytes, or
16-bits. Unlike 16-bit values
in the Model |, 1I, Ill, and 4,
(but like 16-bit values in the
Color Computer and MC-10)

- this 16-bit number is ordered

most significant byte followed
by least significant byte.

Values up to 65,535 can be
held in 16 bits, so there’s
really no problem in specify-
ing dot column numbers here
(at least until we get the next
generation of printers!).

Printer Hint

HOW TO FIGURE
THE DOT VALUES

The dot values for each
dot column are really an
eight-bit binary number. (If
you don’t like binary, skip this.
section.) You can look at the
“weights”’ as the 1 bitsina
binary value. The bottommost
dot is the bit in bit-position
six, the next dot is the bit in
bit-position five, and so forth,
up to the top dot, which is
the bit in bit-position zero.
The highest-order bit, bit-
position seven, is always set
to signify graphics data. If
you were printing (from the
bottom of the column), dot,
no dot, dot, no dot, dot, no
dot, dot, you'd have - o
11010101 for the value, or -
decimal 213, the same as
128 +64+0+16+0+4
+0+1. :

GRAPHICS PRINTING 139

——— {
—— D

T e

] @ 32
®© ®®© ®©® 60 © © © © & @~

P .
SAME
AS ON 64 + 128 = 192
RIGHT 32 + 64 + 128 = 224
16 + 64 + 128 = 208

8 + 64 + 128 = 200
4 + 64 + 128 = 196
2 + 64 + 128 = 194
1+ 64 + 128 = 193

I

i

Figure 10-13. Coding Graphics Columns

or you could do a loop

100 LPRINT CHR$(18);
110 FOR I=1TO 200
120 LPRINT CHR$(193);
130 NEXT |

You could also use a BASIC STRING$ command (as discussed in a
Printer Hint in Section Il). However, another way to do the task is to use a
repeat code. The repeat function uses the special escape sequence
CHR$(28),CHR$(NN);CHR$(CC), where NN is the number of times that a
character will be repeated, and CC is the value of the character to be
repeated. We could have used CHR$(28);CH R$(200);CHR$(193) above.

The NN value can be 0 through 255. (A value greater than 255 will not be
accepted by BASIC, and if sent to the printer would not be handled properly.
The printer expects to see the repeat count in the next character and values
greater than 255 would have to be in two bytes or characters. If a 0 value is
accepted by the printer it will be treated as a 256, however.)

The repeat function is useful in graphics applications because the printing
density is so much greater than text printing, and it would be tedious to use a
discrete CHR$() value for every graphics character to be printed, as would be
the case in sending a CHR$(193) 200 times above.

Note: Because the repeat escape sequence contains numeric values
that may be any number from 0 through 255, you may have problems in us-
ing the BASIC printer driver. If a numeric value in a CHR$() turns out to be a
12, identical to the top-of-form character, the print driver will attempt to ex-
ecute a page eject by doing a series of new lines after it receives the 12. If a

140 HOW TO USE YOUR RADIO SHACK PRINTER

200 DOT COLS

— i

() ONE GRAPHICS LINE

}

THESE DOTS
NOT SET — SHOWN
FOR CLARITY

1@
ONE COLUMN = 20
CHRS$ (193) 40
80 b 238 + 1+ 64 =193
16 O
320
64 ©

Figure 10-14. Repeat Code Example

numeric value turns out to be a 10, identical to a line-feed character, it will
be changed to a 13 in the print driver. Avoid repeat sequences containing
these values by using a slightly larger or smaller value in the CHR$()
numeric variable, or use a combination of two or more repeats to get the
same result.

Another good alternative is to use the STRINGS$ function in BASIC to repeat
from within a BASIC statement. If you use STRINGS, however, beware of sen-
ding too many characters to the printer through the printer driver! Too many
characters may cause the printer driver to interject a line feed when it thinks
that the number of characters per line has been exceeded. One solution to this
is to periodically reset the count of the number of characters for the current
line in the BASIC driver (location 155 in the Color Computer, location 16426 in
the Model 11l and 4). This fools the print driver into thinking that the number of
characters in the current line is less than the number allowed, and prevents a
spurious line feed.

GRAPHICS PRINTING

141

: CHAPTER {4

142

SCREEN PRINTING

In this chapter we’ll tell you how to use your printer to print a graphics
screen. Graphics on the Model I, Ill, and 4 is quite a bit different than on the
Color Computer and MC-10, so we'll have to split up this discussion into two
parts, each one based upon the type of computer system. In addition to dif-
ferences between computer systems, there are differences in the ap-
proaches to be used.

GRAPHICS ON THE MODEL I, Ill, AND 4

Before we discuss how to print the screen on the Model I, Il, and 4, let’s
refresh our memory about what graphics are available on these systems.
Screen memory on the three systems starts at location 15360 through
16383, as shown in Figure 11-1. There are 64 columns per line and 16 lines
on the screen. Each column represents one character position—a single
text or graphics character can be held in that character position. There are
1024 character positions on the total screen.

PRINTIng text on the screen is no problem. Characters are displayed by do-
ing a PRINT, which will display text at the next line on the screen: the screen
will scroll as more lines of text are written. PRINT @ can be used to PRINT text
starting at any location on the screen—the location number from 0 through
1023 is used in the PRINT @ statement. PRINT @ 128, “TEXT"", for example,
prints TEXT at location 128, the start of the third line. Text can also be printed
by a POKE command directly to one of the screen memory locations. When a
POKE is done, an ASCII character is stored directly in screen memory.

Each of the 1024 character positions can be used to hold a graphics
character instead of a text character. Graphics characters look like Figure
11-2. There are six graphics elements per character, arranged in two col-
umns by three rows. A graphics element can be either off (black) or on
(white). Because there are six graphics elements per character position,
there is a total of 6144 (1024 times 6) graphics elements on the screen, ar-
ranged in columns numbered 0 through 127 and rows numbered 0 through
47,

A graphics element is normally set by the SET command, which sets
(turns on) a specified graphics element at a given column, row position. Do-
ing a SET (64,8), for exar-ple, will set the graphics element in the middle of
line 4. A graphics elemer can be reset (turned off), by doing a RESET com-

HOW TO USE YOUR RADIO SHACK PRINTER

MODEL I, 1l
4 VIDEO % 16 LINES

SCREEN

v

64 CHARACTERS/

LINE
MEMORY
LOCATION T o W
15360 LINEO,CHARO
15361 1
15362 2
1024 BYTES — ONE
A o FOR EACH SCREEN
- T [CHARACTER
16381 LINE 15, CHAR 61
16382 LINE 15, CHAR 62
16383 LINE 15, CHAR 63
7~ ,L
Figure 11-1. Model I, fli, 4 Screen Memory Map

mand with the same format. A POINT command reads back the contents of
the graphics element— A = POINT(63,31), for example, sets variable A to -1
if the graphics element is on, or to a 0 when the graphics element is off.

Graphics elements can also be set by using POKEs. In this case, the
POKE address is to one of the screen locations 15360 through 16383. The
value for the POKE is calculated by assigning weights to each of the
elements in a character position, as shown in Figure 11-3. The weights of 1,
2,4, 8,16, and 32 are added together to get the value for the POKE. A value
of 128 is added to the result to indicate to the system that the character
position holds a graphics character and not a text character.

SCREENS PRINTING

143

-

i

>3

—
et
~

Em
s

—
[
oS

-
&

-

152

1

168

;i|1,

W A
B
T

145

mlw
-

153

E™
-

161

S
& W

169

-
i

177

B
f =

185

146

154

162

170

178

186

155

163

128 COLUMNS
(2/ICHAR POSITION)

GRAPHICS
CHARACTERS

48 ROWS
(3/LINE)

144

Figure 11-2. Model |, lli, 4 Graphics Characters

Another method for setting graphics elements is to use a CHR$ function
in a string. The value for the CHR$ is calculated, as in the POKE case, and

used in the graphics string. The string “THIS IS TEXT *“ + CHR$(153)+
“ AND GRAPHICS" results in the intermixed text and graphics shown in

Figure 11-4.

HOW TO USE YOUR RADIO SHACK PRINTER

83 8 @ v ~-
1 1 l 1]]
1 0 ! ! L 1 ! | VIDEO MEMORY
] | l | 1 l BYTE
1 T 1 T T 1
ALWAYS A ~ ~
1 FOR
GRAPHICS
ALWAYS A SET
0 FOR ACCORDING
GRAPHICS TO GRAPHICS
ELEMENT AS
1 2 SHOWN
1= ONO = OFF
4 8
16 32
1+8+ 16 + 128 = 153 1+2+ 16 + 32+ 128 = 179
Figure 11-3. Model I, Ill, 4 Graphic Character Weights

GENERAL SCHEME FOR PRINTING GRAPHICS

The general approach to printing graphics from the screen is to read all of the
1024 screen locations from video memory at 15360 through 16383 directly by
using PEEKs. The PEEK command reads the contents of a memory location.
The program can then decode the graphics value from the PEEK variable and
print out a corresponding block graphics or high-resolution graphics character
to reproduce the screen.

One of the biggest problems in dumping the screen is achieving the same
proportions on the printout as appear on the screen. The Model |, Ill, and 4
screen has an aspect ratio of about 4-to-3— four horizontal units to three
vertical units. This makes a graphics element about 4/128 or 1/32 of a unit
horizontally by 3/48 or 1/16 of a unit vertically, roughly a 1-to-2 aspect ratio
for each graphics element. To reproduce the screen on a printer, the pro-
gram must have the same proportions on the printout of graphics elements.

SCREEN PRINTING

145

CHR$(153)

/

THIS IS TEXT @ AND GRAPHICS /%

Figure 11-4. Intermixed Test and Graphics on the Model |, lll, 4

10000
10010
10020
10030
10040
10050
10060

USING BLOCK GRAPHICS TO PRINT OUT THE SCREEN

Block graphics are discussed in **Using Block Graphics’ in this section, so
you might want to read that material to get a background on the block
graphics characters. Block graphics are available in the newer printers and
are really a subset of characters in the range 224 to 254. They are printed
not in graphics mode, but in normal text mode.

Elements in the block graphics characters print at about 1/20 of an inch
horizontally by 1/24 of an inch vertically. That's an aspect ratio of
(1/20):(1/24), or about 24/20, or 6 to 5. However, if two vertical block
graphics elements are used for every screen element, the ratio becomes 3
to 5. Although the 3 to 5 ratio is not equal to the aspect ratio of the screen,
it's not a bad match to the screen graphics element ratio of one to two.

The program in Listing 11-1 uses block graphics characters to print a screen
made up of graphics and text characters. The program is a subroutine that you
can call from your own BASIC program or simply use as a stand-alone pro-
gram. (To use the program as a stand alone program, delete the RETURN line.)
Figure 11-5 shows a typical printout.

'SUB MODEL I,III,4 BLOCK GRAPHICS SCREEN PRINT

CH$ (0)=CHRS$ (224) : CHS$(1)=CHR$(233) : CHS$(2)=CHRS$(234) : CHS$(3)=CHRS (239)
LPRINT CHR$ (27);CHR$(28); 'SET HALF LINE FEED

FOR Z¥Y=0 TO 15

FOR ZX=0 TO 63

ZP=15360+ZX+2Y*64
IF PEEK(ZP)<128 THEN ZZ$(1)=2Z2$(1)+" " : ZZ$(2)=22$(2)+CHRS$ (PEEK(ZP)) : ZZ

$(3)=22$(3)+" " : GOTO 10080

10070

Z27Z$(1)=2Z$ (1)+CHS$ (PEEK(ZP) AND 3) : ZZ$(2)=2Z$(2)+CHS$ ((PEEK(ZP) AND 12)/4)

272$(3)=12Z$ (3)+CHS$ ((PEEK(ZP) AND 48)/16)

10080
10090
10100
10110
10120

146

NEXT ZX

FOR ZX=1] TO 3 : LPRINT ZZ$(ZX) : ZZ$(ZX)="" : NEXT ZX
NEXT ZY

LPRINT CHRS$ (27);CHR$(54) 'RESET FULL LINE FEED
RETURN

Listing 11-1. Model |, lll, 4 Block Graphics Screen Print Program

HOW TO USE YOUR RADIO SHACK PRINTER

Cosine Curve

ist 120

120 FOR X=@ TO 12.7 STEP .@9 : SET(X#10@, COS(X)#1@+20) : NEXT

130 PRINT @ 90;"Cosine Curve"
READY

>run

Figure 11-5. Model |, lll, 4 Block Graphics Screen Print Example

USING STANDARD GRAPHICS TO PRINT THE SCREEN

Standard graphics can also be used to print the screen of the Model |, Ill, or 4.
The general subject of how to print standard graphics is covered in “‘Basics of
Graphics Mode,” in this section. You might want to read that material if you're
unsure about how to print in standard graphics.

We could use standard graphics to print only graphics characters.
However, it might be overkill and it might be wiser to use the less com-
plicated block graphics for this task. Graphics printing can be used to print
both text and graphics characters on the Model |, Ill, 4, and 4P screen
Here’'s how.

The video display of these systems is made up of 1024 character posi-
tions, as noted previously. Each character position is divided into 6 horizon-
tal by 12 vertical pixels, or picture elements, as shown in Figure 11-6. Text
characters use a five-by-seven dot-matrix for uppercase, and a five-by-eight
dot-matrix for lowercase with descenders, as shown in the figure. The re-
maining four or five rows at the bottom of the character position are blank,
to give a separation between lines. The righthand column for every text
character position is also blank, to provide space between text characters.

Graphics characters use a three-by-four matrix for each of the Six
graphics elements, as shown in Figure 11-7.

Radio Shack printer high-resolution graphics is done by printing columns of
seven dots, as described in *'Basics of Graphics Mode.”” The problem in doing
a screen print on the Model |, Ill, 4, or 4P is using the seven-dot column to

SCREEN PRINTING 147

148

Printer Hint
HOW THE
MODEL i, lll, AND 4
BLOCK GRAPHICS
SCREEN_PR!NT :
PROGRAM WORKS

_This program scans the
video memory at RAM loca-
tions 16360 through 16383
by a PEEK from each loca-
tion. The video memory is
scanned a row at a time. For
each row, three row
segments are constructed
and held in ZZ$(1) through
Z7$(3), a three-element
string array. If the current
character is displayable, it is
added to the ZZ$(2)-string
and blanks are added to
ZZ$(1) and ZZ$(3). If the
current character is a
graphics character, the prop-
-er block graphics character is
added to ZZ$(1), ZZ2$(2), and
ZZ$(3). At the end of each
row, ZZ$(1), 2Z$(2), and
ZZ$(3) are printed out in
three half-line feed lines. As
each ZZ$ string is printed, it
is set to a “'null’’ value in
preparation for the next line.

6 PIXELS/
&= CHARACTER e
POSITION

5 PIXELS/ »

~ CHARACTER
A A
7 PIXELS/
CHARACTER
A
12 PIXELS/
CHARACTER POSITION
4
Figure 11-6. Model 1, lll, 4 Character Pixels

reproduce as accurately as possible the 192 pixels represented in 16 vertical
columns. Printing one graphics column for a character position won’t work,
because a graphics column is seven dots, and a minimum of 12 is required for
both text and graphics characters. Printing two graphics columns might work
because that would be close to the 12 dots required, but 14 can’t be divided
evenly by three, to separate the column into graphics elements. Printing three
graphics columns per character position appears to be the answer—that’s 21
dots, or seven dots per graphics element. The 21 dots can be divided into 14 or
16 dots for character representation—not completely accurate, but close
enough. See Figure 11-8.

Standard printer graphics uses about 0.1- to 0.12-inch line spacing. If we
print three graphics columns for every character position, we'll have 16
times 3 = 48 lines at 12 lines per inch, or 4.8 to 5.8 inches vertically to
represent the height of the screen. What about the horizontal dimension,
ideally at about 6.4 to 7.7 inches, to keep the screen aspect ratio of 4 to 3?
The width of the screen print will depend upon the print position density
along the line. Chances are your printer can use variable pitch, but assume
a standard pitch of ten characters per inch. The dot column density is usual-
ly about 60 columns per horizontal inch, or six columns per character posi-
tion. To print six horizontal pixels in each character position, we need 64

HOW TO USE YOUR RADIO SHACK PRINTER

6 PIXELS/
<g=——=CHARACTER ——3~
POSITION

3 PIXELS
—»| PER <—
$ ELEMENT

4 PIXELS
PER
ELEMENT

12 PIXELS/
CHARACTER
POSITION

Figure 11-7. Model |, lll, 4 Graphics Pixels

times 6, or 384 graphics columns. At 60 columns per inch, that would be
about 6.4 inches, close to the proportion for the screen, and still narrow
enough to fit on a standard paper width. Your printer may have somewhat
different proportions in graphics for the screen width.

A GRAPHICS SCREEN PRINT

The program in Listing 11-2 is a graphics screen print program that will print
both text and graphics from a Model |, lll, 4, or 4P screen. It can be used as
a subroutine in your own BASIC program, or can simply stand alone by

deleting the RETURN line. Figure 11-9 shows the printout from the program
for a typical screen.

GRAPHICS ON THE COLOR COMPUTER
AND MC-10

There are two types of graphics available on the Color Computer, and one
currently available on the MC-10. Low-resolution text graphics is available
on both machines. High-resolution graphics is possible on the MC-10, but
currently is only supported by the Color Computer.

SCREEN PRINTING

149

/ONE GRAPHICS CHARACTER

i H
]
GRAPHICS i : 1
LINE 1 : i
§
R
]
GRAPHICS ! 1
LINE 2 i : THREE
!] GRAPHICS
1 : LINE/ISCREEN
GRAPHICS | i LINE
LINE 3 I !
]]
CHARACTER S P
POSITION 1 2 3 4 5
Figure 11-8. Model I, Ill, 4 Standard Graphics Program Format

10000 'SUB MODEL I,III,4 STANDARD GRAPHICS SCREEN PRINT

10010 CHS$(0)=" "

10020 CHS$(1)=CHRS$ (18)+CHRS (28)+CHRS (3)+CHRS (255)+CHRS (28)+CHRS (3)+CHRS (128) +CHRS
(30)

10030 CH$ (2)=CHRS (18)+CHRS (28)+CHRS (3)+CHRS (128)+CHRS (28) +CHRS (3)+CHRS (255) +CHRS
(30)

10040 CHS (3)=CHR$ (18)+CHRS (28)+CHRS (6)+CHRS (255)+CHRS (30)

10050 FOR 2zYy=0 TO 15

10060 FOR ZX=0 TO 63

10070 ZP=15360+ZX+ZY*64

10080 IF PEEK(ZP)<128 THEN ZZ$(1)=2Z$(1)+" " : 22$(2)=Z%Z$(2)+CHRS$ (PEEK(ZP)) : 2%
$(3)=22$(3)+" " : GOTO 10100

10090 ZZ$(1)=2Z$(1)+CHRS$(PEEK(ZP) AND 3) : 22$(2)=2ZS$(2)+CHR$ ((PEEK(ZP) AND 12)/
4) : 77Z$(3)=22$(3)+CHRS ((PEEK(ZP) AND 48)/16)

10100 NEXT 2zX

10110 FOR 2ZX=1 TO 3

10120 FOR 2Z=1 TO LEN(ZZS$(ZX)) : IF ASC(MIDS$(ZZ$(2X),Z2%,1))>3 THEN LPRINT MIDS(Z
Z$(ZX),%2%2,1); ELSE LPRINT CHS (ASC(MIDS$(22$(Z2X),2Z,1)));

10130 NEXT ZZ : LPRINT CHRS$(18) : LPRINT CHR$(30); : ZZ$(zX)=""

10140 NEXT ZX,ZY

10150 RETURN

Listing 11-2. Model |, lll, 4 Standard Graphics Screen Print Program

150 HOW TO USE YOUR RADIO SHACK PRINTER

Cosine Curve

ist 150

15@ FOR X=@ TO 12.7 STEP .09 @ SET(X*10,COS(X)*1@+2@) = NEXT

151 PRINT & 9@, "Cosine Curve";j
READY

Figure 11-9. Model I, lll, 4 Standard Graphics Screen Print Example

LOW-RESOLUTION GRAPHICS

Low-resolution graphics in the MC-10 and Color Computer use the text
screen of either computer. The text screen is the screen used to display
BASIC text and for system messages and commands. it’'s made up of 16
lines with each line containing 32 character positions, as shown in Figure
11-10. A single text character or graphics character can be held in each
character position.

Displaying text on the screen can be done by a PRINT statement. The
text will scroll as more lines are printed on the screen. A PRINT @ com-
mand can be used to display text at any of the 512 character positions on
the screen. PRINT @ 128, “TEXT", for example, will print TEXT at location
128, the start of the fifth line. Text can also be printed by doing a POKE com-
mand directly to one of the screen memory locations. The codes used for
the text screen, however, are somewhat different from normal ASCII
representation, as shown in Table 11-1.

The Color Computer currently doesn’t have a lowercase display.
However, lowercase can be entered for printing by using inverse video
characters, as shown in the table. Inverse video characters are green on
black, instead of black on green and are selected by holding down the
SHIFT key, followed by the 0 key. Pressing the two keys again will restore
the normal video. :

The text screen is a part of RAM memory and characters can also be
stored into the text screen by a POKE command. The characters POKEd will
correspond to the codes given in Table 11-1. The text screen is at location
1024, as shown in Figure 11-11.

SCREEN PRINTING

151

Printer Hint

HOW THE MODEL
I, Ill, 4 STANDARD

GRAPHICS SCREEN COLOR COMPUTER/
PRINT PROGRAM WORKS T INES L 16 LINES

BY 32 CHARACTERS/

This program is similar to LINE = 512 CHARACTERS

the block graphics screen
print program. In place of a
graphics block, however, a
seven-dot column graphics
pattern is printed.

The program scans the
video memory at RAM loca-
tions 15360 through 16383 "
by a PEEK from each loca-
tion. The video memory is 32 CHARACTERS PER LINE
scanned a row at a time. For
each row, three row Figure 11-10. Color Computer/MC-10 Text Screen
segments are constructed

and held in ZZ$(1) through
ZZ%(3), a three-element

string array. If the current

character is displayable, it is Table 11-1. Color Computer/MC-10 screen codes
added to the ZZ$(2) string

and blanks are added to Green on Black Black on Green
ZZ%(1) and ZZ$(3). If the (Inverted) (Normal)

current character is'a

graphics character, the ? E\@ ' gg (bla?nk) Sg % g? (b'a}"k)
proper string for the graphics 2 B 34 " 66 B 08 "
pattern is added to ZZ$(1), 3 C 35 # 67 C 99 #
ZZ$(2), and ZZ$(3). At the 4 D 36 $ 68 D 100 $
end of each row, ZZ$(1), 5 E 37 % 69 E 101 %
- ZZ$(2), and ZZ$(3) are 6 F 38 & 70 F 102 &
printed out in three graphics- 7 G 39 oG 103 '
mode line feeds. As each g T Z? § ;g F" 1182 §
2Z% ftrmg is prln'ted, it is set 10 J 40 4 74 J 106 4
tf) a ‘null’’ value in prepara- 11 K 43 + 75 K 107 n
tion for the next line. 12 L 44 ' 76 L 108
Graphics mode is switched 13 M 45 — 77 M 109 _
on and off, depending upon 14 N 46 . 78 N 110 .
whether a graphics pattern or 15 O 47 % 79 0 111 {
printable character is being 16 P 48 0 80 P 112 0
printed. ~ 17 Q 49 1 81 Q 113 1
18 R 50 2 82 R 114 2
19 S 51 3 83 S 115 3
20 T 52 4 84 T 116 4
21 U 53 5 85 U 117 5
22 \ 54 6 86 \ 118 6
23 W 55 7 87 W 119 7
24 X 56 8 88 X 120 8
25 Y 57 9 89 Y 121 9
26 4 58 : g0 Z 122 :
27 [59 ; 91 [123 ;
28 § 60 < 92 N 124 <
29] 61 > 93] 125 >
30 t 62 = 94) 126 =
31 - 63 ? 95 <« 127 ?

152 HOW TO USE YOUR RADIO SHACK PRINTER

POKE 1025,65 STORES “A”
TO LINE 0, CHAR 1

32 CHARACTERS/LINE

COLOR COMPUTER/

MC-10 TEXT SCREEN * 16 LINES

L

MEMORY “ P

LOCATION* 1

1024 LINE 0, CHAR 0

1025 1

1025 2

*STARTS AT

A A ¢ 16384 FOR
g T MC-10

1533 LINE 15, CHAR 29

1534 LINE 15, CHAR 30

1535 LINE 15, CHAR 31
A ’L

Figure 11-11. POKEing to the Color Computer Text Screen

Each of the 512 character positions can also be used to hold a graphics
character instead of a text character. Graphics characters are shown in
Figure 11-12. There are four graphics elements per character, in two rows
by two columns. A graphics character can be one of eight colors; the color
for the character is selected by coding the proper color code into the
character.

A graphics element can be set by using the SET command. The SET com-
mand sets a specific graphics element in a column, row position to a
specified color. SET 63,32,3 for example, sets the last graphics element on
the screen to blue. There are 64 columns for graphics elements because
there are two elements per horizontal character position. There are 32 rows

Printer Hint

COLOR

COMPUTER GRAPHICS

The Color Computer has a
number of different graphics
modes. Low-resolution
graphics works with the text
screen and allows only
64-by-32 elements. Each
character position must have
the same color, but there are
eight colors allowed. Text may
be mixed in with the graphics
in low-resolution mode.

High-resolution graphics
works with graphics screens
that are much larger than the
text screen area. In this
mode, two or four colors are
allowed, but no text. The
advantage of high-resolution
graphics is that it's very
dense—256 by 192 pixels in
two colors. There are also a -
variety of BASIC commands
to draw circles, ellipses,
lines, and rectangles and to
paint them with colors.

For a complete discussion
of Color Computer graphics,
see my Radio Shack book
titled (believe it or not)
““Color Computer Graphics.”’

SCREEN PRINTING 153

for graphics elements, because there are two elements per vertical

POSSIBLE GRAPHICS character position.
CHARACTERS FOR ANY Graphics elements can also be set by using POKEs. The format for the
CHARACTER POSITION POKE is POKE loc,value, where “loc” is a memory location in the text

i screen from 1024 through 1535, and "‘value’' is a coded value for the pixels
| l to be set and the color. The code for the POKE is determined by adding 128,

plus a color code, times eight plus a weight value for the graphics element
to be set. The weights to be used are shown in Figure 11-13. The weight
values of 1, 2, 4, and 8 are added to the 128 value and the color code, and
the result is POKEd into the text screen location.

POKE 1026, 128 +3*16 + 9
STORES RED H TO LINE 0, CHAR 2

T] 1
COLOR
1 CODE 8 4 2 1

32 CHARACTERS/
LINE

COLOR COMPUTER/
MC-10 TEXT SCREEN 16 LINES

MEMORY
LOCATION*

1024

1025 *STARTS AT 16384
1026 FOR MC-10

184

At
Y

1533

1534

m e lenlafls |5 lSw
R of e

Figure 11-12. Color Computer/MC-10 1535

i -13. C C ter/MC-10 Graphics Character Weights
Text Screen Graphics Characters Figure 11-13 ofor Computer aphics Lhara '9

154 HOW TO USE YOUR RADIO SHACK PRINTER

Another method for setting graphics elements uses the CHR$ function.
The value for the CHR$ is calculated, as in the POKE case, and used in a
string. The string “THIS IS TEXT *‘+ CHR$(134)+ " AND GRAPHICS”

results in the intermixed text and graphics shown in Figure 11-14.

CHRS$(1334)

/

THIS IS TEXT

AND GRAPHICS/ &

Figure 11-14. Color Computer/MC-10 CHR$ Use for Graphics

/

GENERAL SCHEME FOR PRINTING GRAPHICS

The general approach to printing text screen graphics from the screen is to
read directly all of the 1024 screen locations from video memory at 1024
through 1535 by using PEEKs. The PEEK command reads the contents of a
memory location. The program can then decode the graphics value from
the PEEK variable and print out a corresponding block graphics or high-
resolution graphics character to reproduce the screen.

One of the biggest problems in dumping the screen is achieving the same
proportions on the printout as appear on the screen. The Color Computer
and MC-10 screen have an aspect ratio of about 4-to-3— 4 horizontal units
to 3 vertical units. This makes a graphics element about 4/64, or 2/32 of a
unit horizontally by 3/32 of a unit vertically, roughly a 2-to-3 aspect ratio for
each graphics element. To reproduce the screen on a printer, the program
must try to get the same proportions on the printout of graphics elements.

USING BLOCK GRAPHICS TO PRINT OUT A TEXT SCREEN

Block graphics are discussed in “Using Block Graphics,” in this section.
You might want to read that material to get a background on the block
graphics characters. Block graphics are available in the newer printers and
are really a subset of characters in the range 224 to 254. They are printed
not in graphics mode, but in normal text mode.

The elements in the block graphics characters print at about 1/20 of an
inch horizontally by 1/24 of an inch vertically. That's an aspect ratio of
(1/20):(1/24) or about 24/20, or 6 to 5. However, if two vertical block
elements are used for every screen element, the ratio becomes 3 to 5.
Although this is not equal to the aspect ratio of the screen, the 3-to-5 ratio is
acceptably close to the 2-t0-3 screen ratio.

The program in Listing 11-3 uses block graphics characters to print a
screen of graphics characters or text characters. The program is a
subroutine that you can call from your own BASIC program, or which can
stand alone. (For the program to stand alone, delete the RETURN line.)
Figure 11-15 shows an actual printout of the Color Computer screen from
this program. If you will be using the program on the MC-10, change the
“1024" in line 10040 to '32768"".

Printer Hint

HOW THE COLOR
COMPUTER/MC-10
BLOCK GRAPHICS
SCREEN PRINT
PROGRAM WORKS

This program scans the
video memory, at RAM loca-
tions 1024 through 1535, by
a PEEK from each location.
The video memory is scanned
a row at a time. For each
row, two row segments are
constructed and held in
Z2Z%$(1) and ZZ$(2), a two-
element string array. If the
current character is a
displayable character, it is
added to the ZZ$(2) string
and a blank is added to
Z2Z3%$(1). If the current
character is a graphics
character, the proper block
graphics character is added
to ZZ$(1) and ZZ$(2). At the
end of each row, ZZ$(1), and
ZZ$(2) are printed out in two
half-line feed lines. As each
ZZ$ string is printed, it is set
to a “‘null”’ value in prepara-
tion for the next line.

SCREEN PRINTING 155

10000
10010
10015
10020
10030
10040
10041
10042
10043
10044
10045
10050
10070
10075
10080
10090
10100

156

'SUB COLOR COMPUTER BLOCK GRAPHICS SCREEN PRINT
CHS$(0)=CHRS$(224) : CHS$S(1l)=CHRS(234) : CHS(2)=CHRS$(233) : CHS(3)=CHRS(239)
PRINT $-2,CHRS$(27);CHRS(28); 'SET HALF LINE FEED

FOR 2Y=0 TO 15

FOR ZX=0 TO 31

7P=1024+ZX+2Y*32

IF PEEK(ZP)>127 THEN 10050

ZP=PEEK(ZP)

IF ZP<32 THEN 7%P=%2P+96 : GOTO 10045

IF ZP>95 THEN ZP=%ZP-64

228(1)=22$(1L)+" " : 722$(2)=22$(2)+CHRS(ZP) : GOTO 10070
ZZ2$(1)=22$(1)+CHS((PEEK(ZP) AND 15)/4) : 22$(2)=22$(2)+CHS (PEEK(ZP) AND 3)
NEXT ZX

FOR ZX=1 TO 2 : PRINT #-2,22$(zZX) : Z2$(ZX)="" : NEXT

NEXT ZY

PRINT #-2,CHRS$(27);CHR$(54); 'SET FULL LINE FEED

RETURN

Listing 11-3. Color Computer/MC-10 Block Graphics Screen Dump Program

Sine Curve . HE

%
l"n

LIST 10000

10000 ’SUR COLOR COMPUTER BLOCK
GRAPHICS SCREEN PRINT

OK

RUN

Figure 11-15. Color Computer/MC-10 Block Graphics Screen Print Example

HIGH-RESOLUTION GRAPHICS IN THE COLOR COMPUTER

The second type of graphics available in the Color Computer is high-resolution
graphics. High-resolution graphics includes graphics modes that range from a
64-by-64 screen resolution in four colors, to a 256-by-192 one-color resolution.
When these modes are in force (set by the PMODE command in BASIC), there
are two types of screen areas in memory —the text page and one or more
graphics pages. The BASIC program can switch back and forth between the
text screen and graphics screen at will via the SCREEN command. The text
screen is used for text entry and display, and the graphics screens are used for
display of pure graphics data without text (unless the text is generated by the
graphics program).

Graphics modes are either four-color or two-color. When four colors are
used, the graphics page is divided up into elements of two bits each, or four
elements per byte within the page, as shown in Figure 11-16. Each element

HOW TO USE YOUR RADIO SHACK PRINTER

of two bits holds the color code for the screen element. When a two-color
mode is used, there are eight elements per byte, or one bit per element, as
shown in the figure.

FOUR-COLOR MODES SPECIFIES ONE OF FOUR
/COLORS — 00, 01,10, 11
&

BYTEO |01|{10|11|/01] ROWO,COLO,1,2,3
1|10|11]|01|11]| ROWO,COL4,5,6,7
2(10{10|11|00| ROWO, COL 8, 9, 10, 11

6143 [11]01]00 11| ROW 191, COL 124, 125, 126, 127

' SPECIFIES ONE OF TWO
TViO-COLOR MODES /COLORS -0, 1

BYTEO ROW 0, COL 0-7
ROW 0, COL 8-15
ROW 0, COL 16-23

-t
o
—h
-t
—h
-
-

-
-
-
ojo
—
—
-
-

N
-
—
oy
-
—
-
ey

?
\}
3
{

6143 [0]o]o[oo]o]o]o]| Row 191, cOL 248-255

Figure 11-16. Color Computer High-Resolution Graphics

The first row of the graphics screen, in either a two-color or four-color
mode, is found in the first 64, 128, or 256 elements in the graphics page,
depending upon the number of pixels in the graphics resolution selected. In
a 128-by-192 four-color mode, for example, the first row is in the first
128-by-2 bits (= 256 bits = 32 bytes) of the graphics screen. The next row is
in the next 32 bytes, and so forth.

Printing a graphics screen involves scanning the graphics screen area in
memory, element by element, finding the graphics color code for each ele-
ment, and then using block graphics or high-resolution graphics to print out
a simulation of the graphics pixel, or picture element.

As in the case of a text screen, one of the biggest problems in such a
print screen program is matching the proportions of the screen. Another
problem is that, except for the CGP-220 Ink-Jet Printer, the colors on the

SCREEN PRINTING

157

screen can'’t be reproduced. We’ll consider a two-color 256-by-192 screen
print program here to avoid the problem of what to do about colors, and
assume that you'll probably want to use the program to print the highest-
resolution screen.

A 256-by-192 screen print program will print 256 graphics pixels for every
row. We could use block graphics for this, but since each element of a block
graphics character is 1/20 of an inch wide at 10 pitch, the resulting printed
row would be 12.8 inches wide, too large for most printers. A better solution
is to use high-resolution print graphics where the typical number of columns
per horizontal inch is 100. High-resolution print graphics uses a half line
feed of about 0.1 to 0.12 inch, making the number of dots per vertical inch
70 to 83. Printing two vertical dots for every screen pixel results in 192
times 2, or 384 dots total. When the screen is printed out, the height of the
picture will be 384/83 to 384/70, or about 4.6 to 5.5 inches.

What about the horizontal dimension, which should be about 6.1 to 7.3
inches, to preserve the screen proportions of 4-to-3? Printing two columns
for every horizontal pixel would give us 512 columns per picture about 8.5
inches at 60 columns per inch, somewhat wider than optimum, but ade-
quate.

The program shown in Listing 11-4 prints a 256-by-192 two-color screen
on your Color Computer printer. It takes a long time to process the 49,152
(1) points on the screen, so be prepared to wait for a while before getting the
finished printout. The program is set up as a subroutine which you can call
from your own BASIC code, or you can delete the RETURN line for it to
stand alone. Figure 11-17 shows an actual printout from the program.

"10000 'HI RES SCREEN PRINT

10010 ZM=1536 : PRINT #-2,CHRS$(18); *

10020 FOR ZY=0 TO 191 STEP 3.5: FOR ZX=0 TO 31 : ZZ=ZM+ZX+INT(ZY)*32

10030 zZC(1)=PEEK(ZZ) : ZC(2)=PEEK(%Z+32) : ZC(3)=PEEK(Z74+64) - ZC(4)=PEEK(22+96)
10040 FOR 2ZW=7 TO 0 STEP -1 : %272=2"%W

10050 1IF (%ZC(1) AND ZZ)>0 THEN ZD(1l)=1 ELSE 7D(1
10060 IF (zC(2) AND ZZ)>0 THEN zZD(2)=1 ELSE ZD(2
10070 IF (ZC(3) AND ZZ)>0 THEN Z%ZD(3)=1 ELSE ZD(3
10080 IF (zC(4) AND ZZ)>0 THEN 7ZD(4)=1 ELSE %D(4
10090 IF ZYy =INT(ZY) THEN ZD$=CHRS(128+2ZD(1)*3 D(2)*12+2ZD(3)*48+4+2ZD(4)*64)
10100 IF ZY <>INT(ZY..) THEN ZD$=CHRS (128+ZD(1)*1+ZD(2)*6+2ZD(3)*2447D(4)*96)
10110 PRINT #-2,ZD$;2DS$: NEXT ZW,ZX : PRINT #-2 : NEXT 7Y

10120 PRINT#-2,CHR$(30); : RETURN *'ZM = FOR DISK BASIC

~—

Listing 11-4. Color Computer High-Resolution Screen Dump Program

TO PRINT THE SCREEN
IN THE MC-10 AND COLOR COMPUTER

The TP-10 can be used as a normal printer to print text with 32 characters
per line (16 in the elongated mode) and with a standard line spacing of six
lines per inch. However, unlike other Radio Shack printers, it will print an
almost exact copy of an MC-10 or Color Computer screen, complete with
low-resolution graphics. (Of course, on the MC-10 only low-resolution
graphics is supported.)

The 6-inch line spacing on the TP-10 means that 16 lines can be printed in
an area 2.66 inches high. Since the character spacing is 10 pitch (ten

158 HOW TO USE YOUR RADIO SHACK PRINTER

Figure 11-17. Color Computer High-Resolution Screen Print

characters per inch), the 32 characters per line of the MC-10 or Color Com-
puter can be printed in an area 3.2 inches wide. The aspect ratio or propor-
tion of width to height, is 4-t0-3.3, very close to the screen aspect ratio of
4-t0-3. The printout closely resembles the screen.

The character set of the TP-10 is shown in Table 11-2. It isn't too exciting
until you reach the upper 128 characters within the range of 128 through
255. These characters are block graphics characters which reproduce the
two-by-two graphics-elements-per-character position of the MC-10 or the
low-resolution graphics mode of the Color Computer. The block graphics
characters use three-by-six dots for the left-hand blocks and four-by-six dots
for the right-hand blocks—not exact proportions, but close enough. See
Figure 11-18.

There are 16 different configurations of a two-by-two graphics matrix, and
the character set includes all 16. In the MC-10, or the low-resolution mode of
the Color Computer, graphics characters are displayed by PRINTing a CHR$()
value on the screen. The value is formed as shown in Figure 11-19.

The graphics elements in each character position are assigned weights
of 1, 2, 4, and 8. To find the value for CHR$(), add together the weights, and

SCREEN PRINTING 159

160

Table 11-2. TP-10 Character Set

Code Char.
Dec. Hex.

Code Char. Code Char. Code Char. 128 144 160 176 80 90 AO BO 5"""
Dec. Hex. Dec. Hex. Dec. Hex. 192 208 224 240 CO | DO EO FO L _;
32 20 (Space)| 64 40 @ 9% 60 129 145 161 177 81 |91 A1 BI I |
3 21 ! 65 41 A 97 61 a 193 209 225 241 C1 D1 E1 F1 |
34 22 z 66 42 B 98 62 b e

, c T 130 146 162 178 82 | 92 A2 B2 '
3 23 # 67 43 c 194 210 226 242 C2 | D2 E2 F2 h'.
36 24 $ 68 44 D 100 64 d T
: 131 147 163 179 83 | 93 A3 B3 1 1
v, 4 F 101 65
87 25 o | 69 45 0 © 195 211 227 243 c3 | D3 E3 r3 [
38 26 & 70 46 F 102 66 f L
39 27 , a7 G | 103 6 g 132 148 164 180 84 |94 A4 Ba ||
0 28 (R m 104 68 " 196 212 228 244 C4 | D4 E4 F4 § 1|
41 29) 73 49 | 105 69 i 133 149 165 181 85 | 95 A5 B5 |
22 oA . 74 aA] 106 6A i 197 213 229 245 C5 | D5 E5 F5 |
43 2B + 75 4B K | 107 6B &k 134 150 166 182 86 | 96 A6 B6 |
44 2C , 76 4C L 108 6C i 198 214 230 246 C6 | D6 E6 F6 |
45 2D — 774D M | 109 86D m 135 151 167 183 87 | 97 A7 B7 I
46 2F . 78 4E N 110 6E n 199 215 231 247 C7 | D7 E7 F7
ar of ! 9 4F O | 11 6F o 136 152 168 184 88 | 98 A8 B8 I"‘.
48 30 0 80 50 P 1270 P P00 216 232 248 C8 | D8 E8 F8 ¢ '
49 31 1 81 51 Q 113 71 q ==
50 32 2 82 52 R 114 72 T 137 153 169 185 89 | 99 A9 B9 R
51 33 3 83 53 S 115 73 s 201 217 233 249 C9 | D9 E9 F9 L
52 34 4 84 54 T 16 74 t 138 154 170 186 BA | 9A AA BA ‘:
53 35 5 85 55 T 17 75 u 202 218 234 250 CA | DA EA FA)
%4 36 6 86 56 V.| 118 76 v 139 155 171 187 8B | 9B AB BB A
55 37 7 87 57 W e 77 w P03 219 235 251 CB| DB EB FB
56 38 8 88 58 X 120 78 —
6 X 140 156 172 188 8C | 9c AC BC [
57 3¢ 9 89 59 21 79y P04 220 236 252 CC|DC EC FC | i
58 3A : 90 5A z 122 1A 2 =
141 157 173 189 8D | 9D AD BD
59 3B , 91 5B [123 78 { ‘
P05 221 237 253 CD| DD ED FD
60 3C < 92 5C N 124 7C i L
61 3D = 93 5D] 125 7D } 142 158 174 190 8E | 98 AE BE
P S YR - 6 T~ P06 2220 238 254 CE| DE EE FE il
63 3F 2 95 &F — 143 159 175 191 8F | 9F AF BF
DO7 223 239 255 CF | DF EF FF

then add 128 to mark the character as graphics. You'll also have to add a
color code of 0 to 112, as shown in the figure. That’s how the screen value
is calculated. The CHR$() for the TP-10 printer is calculated much the same
way, but without the Color Code. This means that the values for the 16
graphics blocks are 128 (no graphics elements on) to 143 (all elements on).
Since the color code is ignored in the printer codes, however, the next 16
codes from 144 through 159 also print the same graphics characters, and
the next 16 from 160 through 175, and so forth. This means that you can go
directly to the MC-10 or Color Computer screen, find the CHR$() value at
each character position, and print it directly without having to worry about
the color code. Whatever the color code is on the screen, the printer will
reproduce every graphics element that is on and will not print off elements.
(Background colors will not print.)

HOW TO USE YOUR RADIO SHACK PRINTER

COLOR COMPUTER/ TP-10
MC-10 SCREEN CHARACTERS
6 : 6
PIXELS DOTS
6 6
] PIXELS DOTS
4 4 3 f R
PIXELS PIXELS DOTS DOTS

Figure 11-18. TP-10 Block Graphics Characters

Here's a simple program to print the MC-10 screen or the low-resolution
screen of the Color Computer. It will print both text and low-resolution graphics.

10000 ' MC-10/COLOR COMPUTER SCREEN PRINT FOR THE TP-10
10010 FOR ZL=0TO 15

10020 FOR ZC =0 TO 31

10030 ZA = PEEK(1024 + (ZL*32) + ZC)
10040 IF ZA >127 THEN 10070

10050 IF ZA< 32 THEN ZA=ZA+ 96
10060 IF ZA >95 THEN ZA = ZA-64
10070 PRINT#-2,CHR$(ZA);

10080 NEXT ZC

10090 PRINT#-2

10100 NEXT ZL

10110 RETURN

Change the “1024"" in line 10030 for an MC-10 system. The program is
designed to be called from your main program as a subroutine. Delete line
10100 to use the program ‘“‘in line’" with your other BASIC code.

The program PEEKSs the values from the screen RAM area, then sends
the values directly to the printer via a CHR$(). An actual print of the screen
by this program is shown in Figure 11-20. Compare this simple program
with some of the other programs for printing the screen in “Printing
Graphics Screens.”” This one is much less complicated and gives almost
true proportion.

: Printer Hint
HOW THE =
COLOR COMPUTER
HIGH-RESOLUTION
SCREEN PRINT
PROGRAM WORKS

The program processes
three graphics rows at a time.
Each of the 192 graphics

_rows on a graphics screen is

made up of 32 bytes of e
8-bits each, for a total of 256
bits across, in the highest-
resolution mode. For each of
64 iterations in the program
for three rows, an inner loop

- of 32 iterations processes

each of the 32 bytes per
row, and a third loop pro-
cesses bits horizontally.

In the innermost loop, the
four values in the ZC array

are set equal to the bit status

of the vertical column of four
bits, starting from the current
row position. Although only
three column bits are com-

~ pletely processed, either the

first or last bit of the column
must be printed in‘a “half
pattern.” Each PRINT#-2,
prints a vertical graphics pat-
tern representing 3% column
bits. This is repeated for the
eight bits-per-row byte, for
the 32 bytes per row, and for
the 64 sets of three rows
each. :

SCREEN PRINTING 161

162

Printer Hint
COLOR :
COMPUTER/MC-10
SCREEN CHARACTERS

The Color Computer/ -
MC-10 screen characters are
quite different from normal
ASCIl and that’s why we went
through some gyrations in the
TP-10 screen print program.
The basic premise is that
both black on green, the nor-
mal text display, and green
on black characters can be
represented in codes from O
through 127. This requires
some fancy footwork in con-
verting the actual screen
values to ASCII for printer
use, but it’s not too involved.

Figure 11-19.

GRAPHIC ELEMENT
WEIGHTS

-

COLOR
"] cope 8 4 2 1
T~ - GREEN
ALWAYS 16 = YELLOW
32 = BLUE
A ONE FOR
48 = RED
GRAPHICS
VALUE = 128 54 = BUFF
80 = CYAN
96 = MAGENTA
112 = ORANGE

IBUFF: 128 + 64 + 8 + 1 = 201

IN ORANGE = 128 + 112 + 4 + 2 = 246

Color Computer/MC-10 Low-Resolution Graphics Weights

Figure 11-20.

TP-10 Screen Print for Color Computer/MC-10

HOW TO USE YOUR RADIO SHACK PRINTER

CREATIVE
GRAPHICS

You can use the graphics mode to draw vertical lines, horizontal lines,
and to create forms and pictures. Before we describe how to do this in
graphics mode, first consider whether using block graphics might be a bet-
ter way to do this. Block graphics are discussed in *‘Using Block Graphics,”
and are available on most of the newer printers. If your printer doesn’t have
block graphics, however, like the DMP-100 (DMP-VII), then you can still pro-
duce nice forms using graphics alone.

If you don’t understand how graphics work, read "“Using the Graphics
Modes’’ to get some background on the basics of graphics. If you have a
daisy-wheel printer, see “‘Plotting Along with Dot-Matrix and Daisy-wheel
Printers” for a method to draw lines with daisy-wheels.

DRAWING HORIZONTAL
LINES USING GRAPHICS

This is the easiest instance in using graphics, since a one dot pattern can
be repeated across the paper to produce the line, as shown in Figure 12-1.

To draw the line, you must first decide how far down on the paper you
want the line to be drawn, as shown in the figure. Because you'll be using
graphics lines, which are not a full line feed, you'll have to space the line
down by a series of carriage returns, after setting graphics mode by
CHR$(18). The line-feed vertical spacing increments range from 0.1 to 0.12
inches depending upon your printer. Next, you'll have to decide how far in
from the left edge of the paper you want the line to start. You can then
space to the dot column position by a position function, with the proper dot
column specified. The position is done by a CHR$(27);CHR$(16),CHR$(MM);
CHRS$(LL), where MM and LL are found by dividing the column position you
want by 256, and using the quotient as MM and the remainder as LL. To
space to the 402 dot column, for example, divide 402 by 256 to get an MM

CREATIVE GRAPHICS

163

164

— N
—— W
l;:.

SEVEN DOTS

(.1 e o
FOR ONE COLUMN 000000000000

0008000 — =

/

REPEATING THIS PATTERN OF
DOTS ACROSS THE PAPER
DRAWS A HORIZONTAL LINE

Figure 12-1. Drawing Horizontal Lines in Graphics Mode

of 1 and an LL of 146. The dot column spacing will vary with your printer
type and the pitch which you are using. See Table 10-2 to find the proper
column position for your printer.

Note: Because the positioning escape sequence contains numeric
values that may be any number from O through 255, you may have problems
in using the BASIC printer driver. If a numeric value in a CHR$() turns out to
be a 12, identical to the top-of-form character, the printer driver will attempt
to execute a page-eject by doing a series of new lines after it receives the
12.If a numeric value turns out to be a 10, identical to a line-feed character,
it will be changed to a 13 in the printer driver. Avoid escape sequences con-
taining these values by using a slightly larger or smaller value in the CHR$()
numeric variable, or use a combination of two or more escape seqguences.

The next step is to decide which dot or dots you want for the line, as
shown in Figure 12-2. The spacing of the seven dots in a graphics column is
about 0.1 inch, so if you use one dot the line will be about 1/70 of an inch
high. You may want to use more than one dot, to get a thicker line. The dots
are weighted according to their position from top to bottom. The top dot is a
weight of 1, the next is a weight of 2, the next is 4, the next is 8, the next is a
16, the next is 32, and the seventh (bottommost) dot is a weight of 64. Add
together the weights for the dots you want printed, and then add a value of
128 to the result, to indicate that the character is a graphics character.

If you wanted the top and bottom lines printed, for example, you'd have 1
+ 64 + 128, or CHR$(193).

Next, decide how long you want the line to be, in dot columns. Again, this
depends upon your printer type and column spacing. After you've figured
out the line length in dot columns, you can use the repeat function to repeat
the CHR$() value in groups of 255. The repeat function uses the code
sequence CHR$(28);CHR$(NN);CHR$(CC), where NN is the number of
times for the repeat 1-255, and CC is the value of the character to be
repeated. In this case the CC value will be the value you calculated for the
dots you wanted printed.

HOW TO USE YOUR RADIO SHACK PRINTER

£
m
[2]
=
-
[72]

I
@ - T
@ 4

o ® 8 ~0.1"
® 1
® 3
® o

COMPARATIVE WEIGHTS (NOT TO SCALE)
ONE DOT (129)

TWO DOTS (131)

THREE DOTS (143)

FOUR DOTS (143)

FIVE DOTS (159)

SIX DOTS (191)

SEVEN DOTS (255)

COMBINATIONS OF DOTS
1 AND 64 DOT (193)

1 AND 8 DOT (137)
ETC.

Figure 12-2. Using Dots for Horizontal Lines

Note: Because the repeat sequence contains numeric values that may
be any number from O through 255, you may have problems in using the
BASIC printer driver. If a numeric value in a CHR$() turns out to be a 12,
identical to the top-of-form character, the print driver will attempt to execute
a page eject by doing a series of new lines after it receives the 12. If a
numeric value turns out to be a 10, identical to a line-feed character, it will
be changed to a 13 in the print driver. Avoid escape sequences containing
these values by using a slightly larger or smaller value in the CHR$()
numeric variable, or use a combination of two or more repeats to get the
same result. Another alternative is to use the BASIC STRING$ command to
repeat from within BASIC.

Using the double line as an example, the following short program will print
across the page, starting at 16 graphics lines down (about 1.6 inches on most
printers) and column position 102, for 200 dot columns (see Figure 12-3).

100 LPRINT CHR$(18)
110 FOR I=1TO 16

CREATIVE GRAPHICS

165

166

120 LPRINT

130 NEXT |

140 LPRINT CHR$(27),CHR$(16);CHR$(0); CHR$(102);
150 LPRINT CHR$(28);CHR$(200);CHR$(193)

PRINTING VERTICAL LINES

Printing vertical lines is just about as easy as printing horizontal lines. The
only difference is that between each print, you have to space to the next
graphics line, as shown in Figure 12-4. This will probably involve using a
position function to reposition the print head to the proper print column.
Suppose you want to draw a vertical line at dot column 406, starting at
graphics line 16 and extending through graphics line 48, as shown in Figure
12-5. Here's how it would be done.

16 GRAPHICS
LINES DOWN

= -

OVER
102 DOT
COLUMNS

Figure 12-3. Sample Horizontal Lines in Graphics Mode

First, you space down the proper number of lines by a series of 16 line
feeds (LPRINTS). Then establish a loop of 33 steps. During each step, posi-
tion the print head over the proper column by doing a CHR$(27);CHR$(16);
CHR$(MM);CHR$(LL), and then fire the print head by doing a CHR$(255),
which prints all seven dot columns. For a line that was less than a multiple
of seven dots, adjust the top and bottom prints accordingly. We'll use a full
column here for simplicity. The final program looks like this:

100 LPRINT CHR$(18)

110 FOR I=1 TO 16

120 LPRINT

130 NEXT |

140 FOR I=1 TO 33

150 LPRINT CHR$(27);CHR$(16);CHR$(1),CHR$(146);CHR$(255)
160 NEXT |

DRAWING FORMS USING GRAPHICS

If you can't use the forms program in *‘Using Block Graphics,” (this section),
then you can use the following approach. We'll duplicate the form shown in
Figure 12-6. First, lay out the form on a sheet of paper. ldeally, the layout sheet
would have line spacing equal to the graphics line spacing and column

HOW TO USE YOUR RADIO SHACK PRINTER

LEFT

MARGIN
VERTICAL LINE (SHOWN
BROKEN FOR CLARITY)
REPOSITIONING

~&— DONE GRAPHICS LINE 1

FOR EVERY 1 2

LINE I 3

| 4

Figure 12-4. Drawing Vertical Lines in Graphics Mode

SPACE DOWN BY
16 LINE FEEDS
(1.6 TO 1.9 INCHES)

GRAPHICS LINE

REPOSITION
oo FOR EACH e
LINE SEGMENT

406 DOT

COLUMNS

N L

o~

Figure 12-5. Sample Vertical Line in Graphics Mode

CREATIVE GRAPHICS 167

ISAGE CHART
ARDEN "JR

2
oo

MODEL 1+

MODEL 1111

MODEL 1V

COLOR COMPUTER:

UNIVAC 11t

CRAY X-MP:

Figure 12-6. Sample Form
Done by Graphics

168

Printer Hint -
PRINTING
BAR CODES

It’s possible to print bar
~codes with most of the
printers currently carried by
Radio Shack. One graphics
column suffices for the thin-
nest bar code line, and two-

and three-dot columns can be k

used for the other bars. If
you have a Model 100, it
might be interesting to exper-
iment with creating your own
bar codes and then reading
them with the optional bar
code reader. ‘

numbering to correspond to your printer. If you want text on the form, you'll
need to do some planning at this stage. Text can be interspersed with graphics,
but you'll have to use three graphics lines to separate the text from the lines, as
shown in the figure. Also, you'll have to set data-processing or word-processing
mode immediately before the text, and reset it immediately after any text.
From a layout sheet you can determine the spacing for repeat functions
to draw the horizontal line segments and to space over to the next vertical
line segment. If the form does not start at the left margin, you'll also have to
calculate the column positioning for the left edge of the form. Chances are
you will be able to use a BASIC subroutine to advantage, also. In the form
shown in Figure 12-6, the horizontal lines in the middle of the form all use
the same sequence of characters and can be put into a subroutine like this:

220 'SUB SIDES AND HORIZONTAL LINES
230 LPRINT CHR$(255);STRING$(200,129);STRING$(98,129);CHR$(255)
240 RETURN

As a matter of fact, the other lines can also be put into a subroutine,
except for the line with text in it:

250 'SUB SIDES ONLY

260 FOR ZJ=1TO 2

270 LPRINT CHR$(255);STRING$(200,128);STRING$(98,128); CHR$(255)
280 NEXT ZJ

290 RETURN

The top and bottom lines are special cases because of the corners of the
form and the intersection of the middle line. The second graphics line also
has text in it—a CHR$(30) is done immediately before the text and graphics
is then set again after the text.

The final program is shown in Listing 12-1.

PRINTING PICTURES
IN GRAPHICS MODE

It's fairly easy to print all kinds of pictures by using the printer graphics
mode. Although it's easy, we don’t want to mislead you—it's also very
tedious to print pictures, especially if they involve a great deal of
nonrepetitive patterns. We'll show you how to produce pictures in the
following material.

If you haven't read the material on ‘‘Using the Graphics Mode,” read it
now to get a good understanding of the basic steps in using graphics mode.

If you have a Color Computer, perhaps the easiest way to print pictures is
to construct the picture first on your Color Computer screen, and then print
the picture by using the screen print program shown in Listing 11-4.
However, if you don’t own a Color Computer or if you'd rather work directly
with printer graphics, read on.

MAKING A PRINTER LAYOUT SHEET

If you're going to print a number of pictures, you will benefit greatly by mak-
ing up a printer layout sheet. A sample is shown in Figure 12-7. This is an

HOW TO USE YOUR RADIO SHACK PRINTER

100 'COMPUTER USAGE CHART

110 CLEAR 1000

120 LPRINT CHR$ (18)

130 GOSUB 220: GOSUB 250

140 FOR ZI=7 TO 8: GOSUB 300: NEXT ZI

1506 GOSUB 250: GOSUB 220

160 FOR 2ZI=1 TO 6

170 GOSUB 220: GOSUB 250: GOSUB 300: GOSUB 250
180 NEXT 2zI

190 LPRINT STRINGS (200,129);STRINGS (100,129)
200 LPRINT CHRS (30)

210 END

220 'SUB SIDES AND HORIZONTAL LINES

230 LPRINT CHRS$(255);STRINGS (200,129);STRINGS (98,129) ;CHRS (255)

240 RETURN
250 'SUB SIDES ONLY
260 FOR zJ=1 TO 2

270 LPRINT CHRS (255);STRINGS (200,128);STRINGS (98,128);CHRS (255)

280 NEXT 2zJ

290 RETURN

300 'SUB SIDES AND TEXT

310 IF ZI=1 THEN ZT$="MODEL I: "

320 IF ZI=2 THEN ZT$="MODEL III: "

330 IF 2I=3 THEN ZT$="MODEL 1V: "

340 IF %2I=4 THEN ZT$="COLOR COMPUTER:"

350 IF 2I=5 THEN ZT$="UNIVAC II: "

360 IF ZI=6 THEN ZT$="CRAY X-MP: "

370 IF %2I=7 THEN ZT$="COMPUTER USAGE CHART"
380 IF %2I=8 THEN 2ZT$=" WILLIAM BARDEN JR. "
390 IF ZI<7 THEN ZA=12: ZB=196: GOTO 410
400 ZA=89: ZB=89

410 LPRINT CHRS$ (255);STRINGS (ZA,128);

420 LPRINT CHRS$ (30); 'DISABLE GRAPHICS

430 LPRINT ZTS;

440 LPRINT CHRS$(18); 'ENABLE GRAPHICS

450 LPRINT STRINGS (ZB,128);CHRS$(255)

460 RETURN

Listing 12-1. Sample Form Program for Graphics

oversize sheet which has ruled lines representing the column positions and
graphics lines in exact proportion to how they will appear on your printer.
The sheet shown represents the graphics for a DMP-400. The DMP-400 col-
umn density is 100 columns per horizontal inch in condensed mode and the
graphics line is 0.1 inch high. The sheet shown in the figure represents a
portion of the printed paper, 1.38 inches wide by 1.6 inches high. It has
been scaled up so it's actually 7.8 inches wide by 9.3 inches high, or 34
times the area of the actual print area.

The layout sheet makes it easier to convert a figure into the CHR$()
values required to produce the graphics picture. As shown in Figure 12-8,
the figure to be drawn can be placed on top of the layout sheet, or drawn
over the sheet. Once the figure to be drawn is superimposed, the next step
is to draw an index, or reference, line to the left of the figure. This reference
line is the *‘0"" column position for the columns defining the figure. Next, the
CHR$() values are calculated for each line of the figure. (In this case, by the
way, the figure is an electronics symbol for a transistor.)

CREATIVE GRAPHICS

169

170

Il

Figure 12-7. Graphics Layout Sheet Sample

CALCULATING CHR$ VALUES

The CHR$ values are calculated by using the weighted dot position method
described in *'Using the Graphics Mode.”" In this method, the topmost dot is
1, the next 2, the next 4, the next 8, the next 16, the next 32, and the seventh
(bottommost) 64. The final CHR$() value is calculated by adding together all
of the dot weights, plus 128 (to indicate graphics mode). Several samples
are shown in Figure 12-9.

Next, the horizontally repetitive portions of the figure are found in addi-
tion to areas in which a dot column position can be specified. The repetitive
portions are patterns that repeat along a graphics line and for which you
can use the repeat code of CHR$(28) + CHR$(NN) + CHR$(CC), where NN
is the number of times to repeat, and CC is the value to repeat. The repeat
code or STRING$ can be used here for blank areas and for several other
horizontal lines. In some areas, a column position can be specified to avoid

HOW TO USE YOUR RADIO SHACK PRINTER

‘r—- INDEX LINE = 0 COLUMN POSITION

Figure 12-8. Laying Out the Figure

having to print large amounts of white space. The column position is
specified by a CHR$(27);,CHR$(16),CHR$(MM);CHRS$(LL) code seqguence,
where MM is the quotient of the column position divided by 256, and LL is
the remainder. The column position, by the way, is from the left margin posi-
tion on the paper, which might not correspond to the left index column in
this picture. Here we'll assume that the left margin of the paper corre-
sponds to the left margin of the layout sheet.

Note: Because the repeat sequence contains numeric values that may be
any number from 0 through 255, you may have problems in using the BASIC
printer driver. If a numeric value in a CHR$() turns out to be a 12, identical to
the top-of-form character, the print driver will attempt to execute a page eject
by doing a series of new lines after it receives the 12. If a numeric value turns
out to be a 10, identical to a line-feed character, it will be changed to a 13 in the
print driver. Avoid repeat sequences containing these values by using a slightly

CREATIVE GRAPHICS

171

172

127 + 128 = 255

D W -
AN BN -

HIHT]

T

N~

[-- 20 -3 S RECN

®
°/ 16
el 32

64

> 60 + 128 = 188

Figure 12-9. Caiculating Graphics Character Weights

larger or smaller value in the CHR$() numeric variable, or use a combination of
two or more escape sequences to get the same result. The STRING$ function
in BASIC is also a good alternative.

Next, collect all of the CHR$() values up to the last blank area on a line.
The result is shown in Table 12-1. There are a lot of terms (especially
“leading’’ blank values of 128), because of the fine resolution that print
graphics affords.

The CHR$() values can now be entered into a program after an LPRINT
(PRINT#-2,) for each graphics line. (Of course, first you'll have to set
graphics mode by a CHR$(18).) An alternative way to print the CHR$ values
is to do something like what is shown in Listing 12-2.

This program lists all of the CHR$() values in DATA statements. This saves
a lot of writing because the CHR$() characters do not have to be repeated.
The carriage returns at the end of each line are included in the DATA
statements as CHR$(13). To print the figure, a loop is done that READs a
single DATA value and then prints it out as a CHR(); value. The loop is ended
when a final (dummy) value of -1 is READ by the loop. A -2 value in the DATA
statements indicates a repeat code. We're using a STRINGS$ function here for

HOW TO USE YOUR RADIO SHACK PRINTER

Table 12-1. Graphics codes for picture

LINE 1
128,
128,
128,
128,255, 255, 255

LINE 2
128,
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,192,224,
240,240,248,184,188,156,158,142,142,143,143,135,135,135,135,135,135,135,135,135,
135,255,255,255,143,142,142,158,156,188,184,248,240,240,224,192

LINE 3
128,
128,128,128,128,128,128,128,128,128,128,128,128,128,224,248,252,254,191,143,135,
131,129,128,128,128,128,128,128,128,255,255,255,255,176,176,152,152,140,140,134,
134,131,131,129,128,128,128,128,128,128,128,128,129,131,135,143,191,254,252,248,
224

LINE 4
128,
128,128,128,128,128,128,156,156,156,156,156,156,156,255,255,255,255,156,156,156,
156,156,156,156,156,156,156,156,156,255,255,255,255,128,128,128,128,128,128,128,
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,255,255,255,
255

LINE 5
128,
128,128,128,128,128,128,128,128,128,128,128,128,128,131,143,1569,191,254,248,240,
224,192,128,128,128,128,128,128,128,255,255,255,255,134,134,140,140,152,248,240,
240,248,248,192,128,128,128,128,128,128,128,128,192,224,240,248,254,191,159,143,
131

LINE 6
128,
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,129,131,
135,135,143,142,158,156,188,184,184,248,248,240,240,240,240,240,240,240,240,240,
240,255,255,255,248,184,184,188,156,158,142,143,135,135,131,129

LINE7
128,
128,
128,
128,255,255,255

a repeat. When the program finds a -2 in a DATA value, it READs the next two
values and uses them in a following STRING$ to repeat. The result of this
printing is shown in Figure 12-10, an actual printout on the DMP-400. Print-
outs for other printers may have slightly different proportions.

The process above can be repeated for any pattern or picture to be
printed. As you can see, however, it is laborious to encode the picture into
the proper CHR$() values and it takes many values to produce a picture. If
you are performing many such printouts, a good alternative is to buy a Color
Computer and use it to generate the image before printing out the screen.

There are currently only a few programs that will manipulate printer
graphics in the same way that the Color Computer does via its LINE, CIRCLE,
and other commands.

As another example of graphics, look at the program in Listing 12-3. This
cowboy program prints the graphics pattern shown in Figure 12-11 on a
DMP-2100. (You can use the same figure on another printer, but it may
appear in different proportions.)

The program reads DATA values one at a time, printing each as a graphics
column, as in the previous program. The exceptions to this are the -1 value,
which marks the end, and the -2 values, which mark the beginning of repeat
data. The Repeat data is done as a STRINGS, as in the previous program.

Figure 12-10. Graphics Example 1

CREATIVE GRAPHICS

173

100 ' TRANSISTOR GRAPHICS PROGRAM

110 CLEAR 1000

120 LPRINT CHRS$ (18)

130 READ A

140 IF A=-1 THEN 190

150 IF A<>-2 THEN LPRINT CHR$(A);: GOTO 130

160 READ B,C

170 LPRINT STRINGS (B,CHRS$ (C)):

180 GOTO 130

190 LPRINT CHRS (30)

200 'TRANSISTOR DATA VALUES

210 DATA -2,61,128,255,255,255,13

220 DATA —2,38,128,192,224,240,240,248,184,188,156,158,142,142,143,143
230 DATA -2,10,135,255,255,255,143,142,142,158,156,188,184,248

240 DATA 240,240,224,192,13

250 DATA -2,33,128,224,248,252,254,191,143,135,131,129,—2,7,128,—2,4,255
260 DATA 176,176,152,152,140,140,134,134,131,131,129,-2,8,128,129,131
270 DATA 135,143,191,254,252,248,224,13

280 DATA -2,26,128,-2,7,156,-2,4,255,-2,12,156 ,~2,4,255,-2,24,128

290 DATA -2,4,255,13

300 DATA -2,33,128,131,143,159,191,254,248,240,224,192,-2,7,128,-2,4,255
310 DATA 134,134,140,140,152,248,240,240,248,248,192,—2,8,128,192,224
320 DATA 240,248,254,191,159,143,131,13

330 DATA -2,38,128,129,131,135,135,143,142,158,156,188,184,184,248,248
340 DATA -2,10,240,255,255,255,248,184,184,188,156,158,142,143,135

350 DATA 135,131,129,13

360 DATA -2,61,128,255,255,255,13

370 DATA -1

Listing 12-2. Transistor Graphics Program

100 'COWBOY GRAPHICS PROGRAM
110 CLEAR 2000

120 LPRINT CHRS$ (18)

130 READ A

140 IF A=-1 THEN 190

150 IF A<>-2 THEN LPRINT CHR$ (A);: GOTO 130

160 READ B,C

170 LPRINT STRINGS (B,CHRS (C));

180 GOTO 130

190 LPRINT CHRS$(30)

200 'COWBOY VALUES

210 DATA -2,50,128,-2,11,128,224,252,140,-2,4,128,-2,3,192,13

220 DATA -2,50,128,-2,10,128,142,159,191,248,240,242,246,246,255,255,223,134,134
,130,13

230 DATA -2,50,128,-2,13,128,248,-2,3,255,159,143,159,190,240,224,-2,4,128,192,2
24,192,224,224,192,224,192,192,13

240 DATA -2,50,128,-2,11,128,176,-2,6,255,254,254,255,255,252,253,254,-2,6,255,1
91,-2,3,159,-2,3,255,190,252,168,13

250 DATA -2,50,128,-2,7,128,224,240,248,252,254,-2,18,255,224,-2,3,192,128,128,1
29,159,143,159,13 , ,

260 DATA -2,50,128,240,248,252,188,142,130,159,191,-2,6,255,159,191,255,255,159,
131,-2,4,129,128,128,129,129,131,135

270 DATA 252,152,128,129,131,198,252,13

280 DATA -2,50,128,129,135,159,252,-2,5,128,243,255,143,131,129,128,135,143,-2,3
,136,152,240,224,-2,5,128,140,142,135,-2,3,128

290 DATA 131,131,129,13

300 DATA -2,50,128,-2,10,128,129,131,134,140,184,240,224,13

310 DATA -1

Listing 12-3. Cowboy Graphics Program

174 HOW TO USE YOUR RADIO SHACK PRINTER

PLOTTING ALONG WITH DOT-MATRIX
AND DAISY-WHEEL PRINTERS

Many Radio Shack printers, including the daisy-wheel printers, have the
ability to back up the paper (typesetters call this “‘reverse leading’’).
Generally, you won't want to use this feature to print graphics that require a
great deal of precise repositioning.

To see whether your printer is capable of repositioning precisely, try this
program. It sets word-processing mode, prints a plus/minus pattern, spaces
eight inches, spaces back to the original line by using half line feeds, and
then prints the pattern again. If your printer can precisely position the
paper, the pattern will appear exactly overlaid.

100 LPRINT CHR$(20)
110 LPRINT - -4 -4+ -F-d-d-dotodddodtodd-t-+-
e e i i St e
120 FOR I =1 TO 48
130 LPRINT CHR$(27);CHR$(30);
140 NEXT |
160 FOR =1 TO 96
170 LPRINT
180 NEXT |
190 LPRINT" -4 -4 -4 -+-F-d-d-toddd-dotodod-t-t-+-
R e s s S ST SR

Most likely, the repositioning will not be precise. You may be able to
adjust the paper tension on a tractor feed or manually to get a better reposi-
tioning, but in general you should probably avoid using this technique for
graphics. Typical results are shown in Figure 12-12.

GOOD REPOSITIONING
S o ek et e e S R e e R et ok et el el St St B S A S

TYPICAL REPOSITIONING
It el Sl ol et Bt et

Figure 12-12. Repositioning Example

We've been using a top-to-bottom approach on many of the graphics pro-
grams here because of the repositioning limitations. An exception to this is
occasionally plotting, which prints points on a graph. The requirements here
are not as stringent as repositioning a graphics dot within 1/120 of an inch
over 8 inches—if you're off by a small amount, who's going to tell?

The program shown in Listing 12-4 uses the reverse leading capability of a
dot-matrix or daisy-wheel printer to plot points on a graph. A typical plot from
the program is shown in Figure 12-13, which shows a plot of a cosine wave.

The program is defined as a subroutine that you can call from your own

Figure 12-11. Graphics Example 2

CREATIVE GRAPHICS

175

10000 'SUB GRAPH (MAIN)

10010 2ZX=INT(ZX) : ZY=-INT(ZY)

10020 IF ZX=7A AND ZY=ZB THEN RETURN

10030 IF ZX>ZW/2 OR ZX<-ZW/2 OR ZY>ZH/2 OR ZY<-ZH/2 THEN RETURN

10040 IF ZX=ZA THEN 10060

10050 ZN=2ZX-ZA : ZA=2ZX : GOSUB 10090

10060 IF Zzy=ZB THEN 10080

10070 ZN=ZY-ZB : ZB=ZY : GOSUB 10220

10080 ZZ$="."+ZBS : FOR ZT=1 TO 0 : NEXT %T : GOSUB 10330 : RETURN

10090 'SUB MOVE HORIZ (IN 1/120'S)

10100 PRINT"horiz:";ZN

10110 IF ZN<O THEN 10170

10120 ZR=ZN-INT(ZN/ZC)*ZC

10130 ZN=INT(ZN/ZC)

10140 Z2Z$=STRINGS(ZN,32) : GOSUB 10330

10150 IF ZR>0 THEN FOR ZT=1 TO ZR : 7272$=2SS$: GOSUB 10330 : NEXT ZT

10160 RETURN

10170 ZN=-ZN

10180 ZR=ZN-INT(ZN/9)*9 : ZN=INT (ZN/9)

10190 zz$="" : IF ZN>0 THEN FOR ZT=1 TO ZN : 22$=7272$+CHRS (8)+CHRS (9) : NEXT
T

10200 27Z$=ZZ$+CHRS (8)+CHRS (ZR) : GOSUB 10330

10210 RETURN

10220 'SUB MOVE VERT (IN 1/48'S)

10230 PRINT"vert:";ZN

10240 IF ZN<O THEN 10290

10250 ZR=ZN-INT(ZN/ZF)*ZF : ZN=INT (ZN/ZF)

10260 IF ZN>0 THEN ZZz$="" : FOR 2T=1 TO ZN : %Z$=272$+ZM$: NEXT ZT : GOSUB
10330 :

10270 IF ZR>0 THEN ZZ$="" : FOR 2ZT=1 TO ZR : Z2$=2%%2$+ZLS$: NEXT %ZT : GOSUB
10330

10280 RETURN

10290 ZN=-ZN : ZR=ZN-INT(ZN/ZF)*ZF : ZN=INT(ZN/ZF)

10300 FOR 2T=1 TO ZN+1 : 22$=ZR$: GOSUB 10330 : NEXT ZT

10310 FOR ZT=1 TO ZF-ZR : ZZ$=ZL$: GOSUB 10330 : NEXT 2T

10320 RETURN

10330 'SUB PRINT STRING

10340 LPRINT ZZ$; : POKE 16426,5 : RETURN

10350 'SUB INITIALIZE

10360 '*** CHANGE ZS$=CHRS (27)+CHRS$(0) FOR DWP-410

10370 '*** CHANGE ZF=20, 2C=18, ZLS$=CHRS (27)+CHRS$ (49) FOR DMP-2100
10380 '*** CHANGE ZF=12, ZL$=CHRS$ (27)+CHRS (50) FOR DMP-200

10390 zZc=12 ' CHAR WIDTH
10400 ZBS$=CHRS$ (8)+CHR$ (ZC/2)+CHRS (8)+CHRS$ (ZC/2) ' FULL BACKSPACE
10410 ZS$=CHR$ (27)+CHRS (1) ' 1/120 IN. SPACE
10420 ZR$=CHRS$ (27)+CHRS (30)+CHRS (27)+CHRS (30) ' FULL REV. LF
10430 ZL$=CHRS (27)+CHRS (26) ' 1/48 IN. LF
10440 ZM$=CHRS$ (27)+CHRS (28)+CHRS (27)+CHRS (28) ' FULL LF

10450 ZzF=8 ' FRACT. OF LF
10460 ZN=ZH/2 : GOSUB 10220

10470 ZN=ZW/2 : GOSUB 10090

10480 ZA=0 : ZB=0 : RETURN

10490 END

Listing 12-4. Graph Plotter Program

176 HOW TO USE YOUR RADIO SHACK PRINTER

0.1 RADIAN STEPS 1.0 RADIAN STEPS

ANVANNAYANYANVANYA
uj: ./ \../": %"_, \./ \\/ _/

Figure 12-13. Plot Example

100 'PRINTER GRAPHICS SUBROUTINE
110 CLEAR 1000
120 Zw=400 : ZH=200

130 GOSUB 10350
140 FOR X=-200 TO 200 STEP 4 : ZX=X : 2ZY¥=0 : GOSUB 10000 : NEXT X

150 FOR Y=-100 TO 100 STEP 2: ZY=Y : ZX=0 : GOSUB 10000 : NEXT Y

160 FOR X=-10 TO 10 STEP .1
170 zX=X*20 : ZY=COS(X)*20 : GOSUB 10000
180 NEXT X : STOP

Listing 12-5. Graph Plotter Program Calling Sequence

BASIC program. The call for the cosine plot is shown in Listing 12-5. There
are four parameters involved:

CREATIVE GRAPHICS 177

178

Printer Hint

HOW THE PLOTTING
PROGRAM WORKS

The plotting (graph) pro-
gram moves the paper in a
daisy-wheel or dot-matrix
printer to the proper line and
microspace or dot column
position for each point
plotted. The secret in the
program is to avoid the
dreaded full reverse line feed
and backspace sequences
which might have a CHR$(10)
or CHR$(12) in them. These
characters will create havoc
in the BASIC print driver. To
avoid problems, the program
spaces back in half-line
spaces, and moves forward in
1/48-inch increments for
daisy-wheels. For dot-matrix
printers, the program spaces
back in half-line spaces and
moves forward in .1/120-inch
and 1/72-inch increments.

Horizontally, the program
moves in 1/60- or 1/120-inch
increments for daisy-wheel
printers, and in single dot-
columns for dot-matrix
printers. ,

A single period is printed
when the proper point is
found. Not too elegant, but
‘the program can create some
nice graphs!

1. ZW is the width of the plot in microspaces (daisy-wheel printers) or
dot positions (dot-matrix printers). This will be the actual physical
width of the plot.

2. ZH is the height of the plot in increments of 1/48 of an inch (daisy-
-wheel printers) or 1/120 of an inch (dot-matrix printers). This will be
the actual physical height of the plot.

3. ZX and ZY are the coordinates for the point on the graph in horizontal
and vertical units.

The width in ZW and the height in ZH are defined only once in the “‘call-
ing"” program. A call is made to the subroutine at 10350 with ZW and ZH
defined. This subroutine sets up the coordinates the graph will use. The
graph is assumed to be in standard Cartesian coordinates, with an origin in
the center. The maximum and minimum X and Y will be one-half of the ZW
and ZH values, as shown in the figure.

After the coordinates are established by the 10350 subroutine, the remaining
action will be taken by the subroutine starting at line 10000. This subroutine is
called with the point to be plotted in ZX and ZY. The subroutine will move the
paper in the printer, print a period for the point, and then return. Every point to
be plotted requires a separate call to the 10000 subroutine.

Before running the program, make these changes, depending upon the
type of printer you have:

e DW-IIB, DWP-210: Leave as is
e DWP-410: Change line 10410 to

10410 ZS$ = CHR$(27);CHR$(0)

e DMP-400, -420, -500: Leave as is
e DMP-200: Change lines 10450 and 10430 to

10430 ZL$ = CHR$(27) + CHR$(50)
10450 ZF =12

e DMP-2100: Change lines 10430 and 10450 to

10430 ZL$ = CHR$(27) + CHR$(50)
10450 ZF =20

DMP-2100
HIGH-RESOLUTION GRAPHICS

The DMP-2100 is an interesting printer because it has a 24-pin(!) print head.
The 24 pins occupy about the same space as seven pins on a normal print
head on printers like the DMP-500. The DMP-2100 uses all 24 pins to produce
different fonts, or typefaces, and the resuit is dot-matrix printing which looks
remarkably like daisy-wheel letter quality printing. (When the printed copy is
photocopied, the dots blend in even more and the quality is further improved.)

A total of 24 pins in a vertical printing column 0.12 inches high gives a dot
resolution of 200 dots per vertical inch, or 2000 dots in a 10-inch vertical

HOW TO USE YOUR RADIO SHACK PRINTER

printing area on a piece of paper. What about the horizontal resolution?
Each dot printed in any of the other modes is actually made up of a three-by-
three matrix of points in high-resolution mode. This means that there are
actually three points for every dot horizontally and since there are 60 dots
per inch normally, there will be 180 dots per inch in high-resolution mode, or
about 1800 dots across a 10-inch width of paper, as shown in Figure 12-14.
There are nine points for every normal dot. Putting it another way, there are
3,600,000 points in a 10-inch by 10-inch print area on the paper, and each
one of those points can be programmed to print!

POINT
CcOoL

POINT
coL

POINT
coL

POINT
CcoL

POINT
coL

POINT
coL

ONE DOT

l ¢ ONE DOT ~
COLUMN 1 COLUMN l

0.005 IN
HIGH-RESOLUTION

000000
OO0000 4 |
elolelelolof &
slelelelele

1/60" IN 1/60" IN
NORMAL NORMAL
MODE MODE

(60 DOTS/INCH)

e

1/180" IN HIGH- RESOLUTION MODE (180 POINTS/INCH)

Figure 12-14. DMP-2100 Printing

MODE (200 POINTS/INCH)

Although there’s a great deal of capability here, don’t forget that process-
ing a lot of points takes a large amount of time, especially if you are working
in BASIC. A typical program loop of

100 FOR I=1 TO 1000
110 NEXT |

takes less than two seconds on a typical Radio Shack system (much faster
on the Tandy 2000), making the processing time per iteration about 2/1000
of a second, and that’s for the simplest loop. Assuming that we could main-
tain this speed while processing points for the printer, we'd require 2/1000
times 3,600,000, or 7,200 seconds, to process a 10-by-10-inch area in high-
resolution mode. That's about two hours! In fact, you'd expect to spend
from three to ten times longer than that to process the points using BASIC,
and that makes casual processing in high-resolution mode prohibitive.
However, high-resolution mode can be used for smaller areas, and for such
things as creating your own fonts (see ‘'‘Designing Your Own Character
Sets’’). Another option is to use assembly language to speed up high-

Prinier Hint

ASSEMBLY ~
LANAGUAGE —AGAIN

Not to harp too much on
the subject, but you might
want to consider assembly
language programming. On
the negative side, assembly
language is very tedious and
hard to learn. However, once
you learn it, you can do some
truly amazing things and at
very high speeds—up to
hundreds of times faster than
BASIC. The DMP-2100, with.
its extraordinarily high point
density, is a perfect can-
didate for a high-speed
assembly language program.
You can cut down the pro-
gramming overhead time -
drastically, and utilize the 5
DMP-2100 to its best advan-
tage. There are two courses
available from Radio Shack
for assembly language —
“The Assembly Language
Tutor for the Model |, lll, and
4" and ‘‘The Assembly
Language Tutor for the Color
Computer.”” Each is a good .
starting point for. assembly
language studies.

CREATIVE GRAPHICS 179

180

resolution mode and other printing— you could speed up BASIC processing
by a factor of 100 or more!

USING HIGH-RESOLUTION GRAPHICS

You can use high-resolution graphics mode in any text-printing mode.
That’s nice because it allows you to intersperse text with your own high-
resolution characters. There’s one primary escape sequence for using high-
resolution graphics and it looks like this:

CHR$(27),CHR$(73);,CHR$(MM);CHR$(LL);CHR$(XX); . . . CHR$(XX);

The escape sequence is divided into three parts. The CHR$(27) and
CHR$(73) inform the DMP-2100 that the data following will be in high-
resolution mode.

The CHR$(MM) and CHRS$(LL) are similar to the dot-column position
seguence for normal graphics or text—the MM in this case, however, is high
order value for the point-column length, and the LL is the low order value. The
point column is the dot column times three, because there are three horizon-
tal points for every horizontal dot, as shown in Figure 12-15. Note that the
point column fength is different from the point-column position. This will be
the actual number of point columns printed for the graphics, as shown in the
figure. The MM and LL values are computed the same way as for the dot-
column values—the point-column number is divided by 256, with the re-
mainder going to LL, and the quotient going to MM. A total of 1000 point col-
umns, for example, would use an MM value of 3 (1000/256 is a quotient of 3),
and an LL value of 232 (1000/256 = 3, remainder of 232).

The last part of the escape sequence consists of a series of data values.

Each data value corresponds to one 8-pin column print. Since there are
three 8-pin columns making up each 24-pin print, there will be three times
the number of data values as there are point columns. If the point-position
length specifies 24 point columns to be printed, there are 72 data values.
Until the printer receives the complete set of data values, it treats the next
data value as part of the high-resolution graphics data, so it's very impor-
tant to send the correct number of data values, after the number of point
columns are specified.

Note: Because this escape sequence contains numeric values that may
be any number from 0 through 255, you may have problems in using the
BASIC printer driver. If a numeric value in a CHR$() turns out to be a 12, iden-
tical to the top-of-form character, the print driver will attempt to execute a
page eject by doing a series of new lines after it receives the 12. If a numeric
value turns out to be a 10, identical to a line-feed character, it will be changed
to a 13 in the print driver. You must avoid these values if possible. About the
only other alternative you have is to circumvent the BASIC printer driver by
using your own print driver. Because the dot density is so great in the
DMP-2100, it should be possible to set a dot adjacent to the proper one
without affecting the graphics too dramatically.

Let's take a concrete example. Suppose that you wanted to print the
shape shown in Figure 12-16. This shape consists of 24 points on the left
edge, two columns of intermediate points, and 24 points along the right
edge — a kind of abbreviated “*A.”” We’d reproduce the actual printing here,
but it's very narrow!

HOW TO USE YOUR RADIO SHACK PRINTER

SETS HIGH-RES SETS # OF POINT COLUMNS

p"
CHR$(27); CHR$(73); CHR$(0); CHR$(3);
CHR$(112);CHR$(128); CHR$(240);
CHR$(96); CHR$(16);CHR$(48);

3 VALUES FOR

CHR$(64);CHR$(1);CHR$(224) EVERY POINT
COLUMN
128 “’
“ |@®
32 ‘
16
8
4
1
128 ‘
64
32
. | |®
8
R
‘8
1
128
64
32
16
8
4
1

Figure 12-15. DMP-2100 High-Resolution Printing

There are four point-columns to be printed here —a little bit wider than a
single graphics dot in normal graphics mode. The point position length is
therefore four, and we'll have CHR$(27);CHR$(73); CHR$(0);CHR$(4) as the
first part of the escape sequence.

Each point column is divided into three segments, as shown in the figure,

CREATIVE GRAPHICS

181

COLUMNS
1234

(=]
(=]
(]

OC0000000O00DO0DO0DODOO0ODODOOOOO0OO0OO
o
o
Q0000000000 O0DODODOOOOO0OD0O00O

SEGMENT 1 (8 DOTS)

SEGMENT 2 (8 DOTS)

SEGMENT 3 (8 DOTS)

Figure 12-16. Simple Shape for
DMP-2100 High Resolution Printing

with each segment specifying eight points. Like the seven-dot graphics
values, each point position has a weighted value. Unlike the seven-dot
graphics values, though, the topmost point is 128, the next 64, the next 32,
the next 16, the next 8, the next 4, the next 2, and the last is 1, as shown in
Figure 12-17.

Since all pins are “on” for the first segment, the value here is 255 (128 +
64 +32+16+8+4 +2+ 1). The next value (the second segment down in the
first point column) is also 255, and the last is also 255. The first three CHR$()
values for the points are, therefore, CHR$(255); CHR$(255);, CHR$(255)..

The topmost segment of the next point column has only the 128-weighted
pin “on,” so the data value is 128. The middle segment has only the
16-weighted pin “'on,"” so the value is 16. The bottom segment has no pins
“on,” so the value is 0. The next three CHR$() values are, therefore,
CHR$(128),CHR$(16);CHR$(0);

The third point column is identical to the second, and the next three
values will be the same: CHR$(128);CHR$(16);CHR$(0);.

The final point column is the same as the first, CHR$(255);CHR$(255);
CHR$(255);.

The complete code to print this shape is:

100 LPRINT CHR$(27),CHR$(73);CHR$(0);CHR$(4);
CHR$(255),CHR$(255);CHR$(255);CHR$(128); CHR$(16);
110 LPRINT CHR$(0);,CHR$(128);CHR$(16);CHR$(0);
CHR$(255),CHR$(255);CHR$(255)

WEIGHTS

SEGMENT 1

SEGMENT 2

SEGMENT 3

©
O0O00O0000JIDOO0O0O0O0OJOO0OO00O00

CHR$ CHARACTER (BYTE)
PER SEGMENT

128 L. L
64 _| _|
32 4 4
16 L L

8 L 1
4 L L

Figure 12-17. DMP-2100 Point Weights

182 HOW TO USE YOUR RADIO SHACK PRINTER

HIGH-RESOLUTION MODE AND LINE FEEDS

To print consecutive rows of high-resolution graphics, use the 4/5-line feed
code —CHR$(27);CHR$(71). This escape sequence will set a 4/5-line feed
that is 4/5 of the nominal six-lines-per-inch spacing (0.133 inch). There will
be no white space between adjacent high-resolution rows. To print a
checkerboard pattern of high-resolution dots over an area 2.66 inches wide
by 1.06 inch high, for example, you'd do something like this:

100 FORJ=1TO 8

110 LPRINT CHR$(27);CHR$(73),CHR$(1);,CHR$(224);
120 FOR I=1TO 480

130 LPRINT CHR$(170);CHR$(170),CHR$(170);

140 NEXT |

150 LPRINT CHR$(27),CHR$(71);

160 LPRINT CHR$(27);CHR$(16),CHR$(0);CHR$(0);
170 NEXT J

The escape sequence at line 160 repositions the print head at the beginning
of the next line. The 4/5-line feed is one of those line feeds that are acted upon
immediately, causing vertical movement, but not a carriage return. If this
escape sequence is not used, the next row of graphics starts displaced to the
right by 480 point-positions!

See Figure 12-18 for the actual result.

Figure 12-18. DMP-2100 Checkboard Pattern

Note: Avoid printing points in the same column. Stagger the dots instead,
as shown in Figure 12-19. We violated this rule in our short code segment
which printed out the special symbol with two vertical lines, but do as we say
and not as we do. This is an electrical limitation and should be observed during
all high-resolution printing. The graphics resolution is dense enough so that it’s
virtually impossible to see that solid characters are actually printed with this
checkerboard pattern, as you can tell from the program above if you actually
print the pattern.

For details on how to use the higher-resolution graphics mode to create
your own fonts and type faces, see ‘‘Redefining the Character Set or
Designing Your Own Characters’ in this chapter.

DMP-110 HIGH-RESOLUTION GRAPHICS

The DMP-110 has a high-resolution graphics mode that allows you to print
16 dots in a vertical column that is the same height as a normal graphics

CREATIVE GRAPHICS

183

184

DON'T ALTERNATE
DO THIS! PATTERN

o
o
o
o
(@]
(@]

b
—T"’"

5/1000"!

o
o
(]
o
O O 0O 0O O O 0O 0O O 0 o0
O 0O 0O O 0O 0O O OO0 0O o0 o0
O OO0 O O O O 0O 0 oo
O OO O OO O OO0 O0OO0OoO0

<—;1/180"

1

Figure 12-19. Staggering Points on the DMP-2100

column—about 0.1 inch. The DMP-110 is capable of the high-resolution
graphics because of its unique print mechanics. Rather than firing a matrix
of pins, the DMP-110 uses two print hammers to strike a ridged platen at
precise times to form the print dots, as shown in Figure 12-20.

A total of 16 dots in a vertical printing column 0.1 inch high gives a dot
resolution of 160 dots per vertical inch, or 1600 dots in a 10-inch vertical
printing area on a piece of paper. For horizontal resolution, there are 960
dot positions per line, or 120 dots per inch. This means there are 1,536,000
dots in an 8-inch by 10-inch print area on the paper, and each one of those
points can be programmed to print!

Although that's a great deal of capability, don't forget that processing a
lot of points takes a great deal of time, especially if you are working in
BASIC. A typical program loop of

100 FOR |=1 TO 1000
110 NEXT |

takes less than two seconds on a typical Radio Shack system, making the
processing time per iteration about 2/1000 of a second, and that's for the
simplest loop. Assuming that we could maintain this speed while processing
points for the printer, we'd require 2/1000 times 1,500,000, or 3,000
seconds, to process an 8-by-10-inch area in high-resolution mode. That's
about 50 minutes! In fact, you'd expect to spend from three to ten times
longer than that to process the points using BASIC, and that makes a casual
processing in high-resolution mode prohibitive. However, high-resolution
mode can be used for smaller areas, and for such things as creating your

HOW TO USE YOUR RADIO SHACK PRINTER

PAPER

RIDGED PLATEN
WITH.18 RIDGES

<A
— D
PRINT /‘17/1 /‘1
:—g\MMERS\

s |
ca
—

,VLLL-L_,_LJ_L

Figure 12-20. DMP-110 Printing

own fonts (see ‘‘Redefining the Character Set or Designing Your Own
Characters’’). Another option is to use assembly language to speed up high-
resolution mode and other printing— you could speed up BASIC processing
by a factor of 100 or more!

USING HIGH-RESOLUTION GRAPHICS .
You can use high-resolution graphics mode in any printing mode. That's
nice because it allows you to intersperse text with your own high-resolution
characters. There's one primary escape sequence for using high-resolution
graphics and it looks like this:

CHR$(27);CHR$(73); CHR$(MM);CHRS$(LL);CHRS$(XX); . . . CHR$(XX);

The escape sequence is divided into three parts. The CHR$(27) and
CHR$(73) inform the DMP-110 that the data following will be in high-
resolution mode.

The CHR$(MM) and CHR$(LL) are similar to the dot column position

CREATIVE GRAPHICS

185

186

sequence for normal graphics or text —the MM in this case, however, is the
high order value for the dot-column length, and the LL is the low order value
for the dot-column length. Note that the dot-column length is different from
the dot-column position. This will be the actual number of dot columns
printed for the graphics, as shown in Figure 12-21. The MM and LL values
are computed the same way as for normal graphics dot-column
values—the dot-column number is divided by 256, with the remainder
going to LL, and the quotient going to MM. A total of 900 dot columns, for
example, would use an MM value of 3 (900/256 is a quotient of 3), and an LL
value of 132 (900/256 = 3, remainder of 132).

The last part of the escape sequence consists of a series of data values.
Each data value corresponds to one eight-dot column print. Since there are two
eight-dot columns making up each 16-dot print, there will be twice the number
of data values as there are dot columns. If the dot-position length specifies 20
dot columns to be printed, there are 40 data values. Until the printer receives
the complete set of data values, it treats the next data value as part of the high-
resolution graphics data, so it's very important to send the correct number of
data values, after the number of dot columns are specified.

SETS # OF

SETS HIGH-RES DOT COLUMNS
e NN

CHR(27);CHR$73);CHR$(0); CHR3$(3);
CHR$(139);CHR$(99); 2VALUES FOR
CHR$(2); CHR$(4); EVERY DOT
CHRS$(9);CHR$(1); COLUMN

'@ @
> @@

4

@ @

16

32
64

128

b

16

2 @
s | @
128

Figure 12-21. DMP-110 High-Resolution Printing

HOW TO USE YOUR RADIO SHACK PRINTER

Note: Because this escape seqguence contains numeric values that
may be any number from 0 through 255, you may have problems in using
the BASIC printer driver. If a numeric value in a CHR$() turns out to be a 12,
identical to the top-of-form character, the print driver will attempt tc execute
a page eject by doing a series of new lines after it receives the 12. If a
numeric value turns out to be a 10, identical to a line-feed character, it will
be changed to a 13 in the print driver. Although it’s hard to avoid these
characters, it may be possible to set adjacent dots in graphics such that the
graphics pattern isn't affected too dramatically.

For a concrete example, suppose that you wanted to print the shape
shown in Figure 12-22. This shape consists of 16 points on the left edge, two
intermediate points, and 16 points along the right edge—a kind of
abbreviated “A.”

There are four dot-columns to be printed here—a little narrower than a
normal text character. The dot position length is, therefore, four; and we'll
have CHR$(27);CHR$(73);CHR$(0);CHR$(4) as the first part of the escape
seqguence.

Each dot column is divided into two segments, as shown in the figure,
with each segment specifying eight points. Like the seven-dot graphics
values (see ‘‘Basics of Graphics Mode”), each point position has a
weighted value —the topmost point is 1, the next 2, the next 4, the next 8,
the next 16, the next 32, and the next 64, but (unlike other printers) the last
is 128, as shown in Figure 12-23.

Since all pins are “‘on’’ for the first segment, the value here is 255
(1+2+4+8+16+32+64+128). The next value (the second segment
down in the first point-column) is also 255. The first two CHR$() values for
the points are,therefore, CHR$(255);CHR$(255);.

WEIGHTS

1
2
4
8
16

SEGMENT 1

SEGMENT 2

-—h

N

®
0000000000000 00O0

128

CHR$ CHARACTER (BYTE)
PER SEGMENT

128 . L.
64 | L
32 L. L
16 | L

8 4 4+
4 L 4
2 1 4
1

Figure 12-23. DMP-110 High-Resolution Weights

COLUMNS

1234

(1]

0000 B Ee——

o [¢]

o [+

o o SEGMENT 1 (8 DOTS)
o [o]

o [o]

(o] o

0000

(o] o]

(o] [+

[¢] o

o o SEGMENT 2 (8 DOTS)
(o] o

o o

o [+]

o o

Figure 12-22. Simple Shape for

DMP-110 High-Resolution

CREATIVE GRAPHICS

187

188

The topmost segment of the next point-column has the 1-weighted dot
on,” so the data value is 1. The bottom segment has the 8-weighted dot
“on", so the value is eight. The next two CHR$() values are therefore
CHR$(0);CHR$(8);.

The third point-column is identical to the second, and the riext two values
will be the same — CHR$(0);CHR$(8);.

The final point-column is the same as the first— CHR$(255);CHR$(255)

The complete code to print this shape is:

100 LPRINT CHR$(27);CHR$(73);CHR$(0);,CHR$(4);
CHR$(255),CHR$(255);CHR$(0); CHR$(8);
110 LPRINT CHR$(0);,CHR$(8);CHR$(255);CHR$(255);

HIGH-RESOLUTION MODE AND LINE FEEDS

To print consecutive rows of high-resolution graphics, use the 4/5 line feed
code—CHR$(27),CHR$(71). This escape sequence will do a 4/5-line feed
that is 4/5 of the nominal six-lines-per-inch spacing (4/5 of 0.166 inch). No
white space will appear between adjacent high-resolution rows. To print a
checkerboard pattern of high-resolution dots over an area four inches wide
by 1.06 inches high, for example, you'd do something like this:

100 FORJ=1TO 8

110 LPRINT CHR$(27);,CHR$(73);CHR$(1);CHR$(224);
120 FOR 1=1 TO 480

130 LPRINT CHR$(170);CHR$(170);

140 NEXT |

150 LPRINT CHR$(27),CHR$(71);

160 LPRINT CHR$(10);CHR$(16);CHR$(0);CHR$(0);
170 NEXT J

The escape sequence at line 160 repositions the print head at the beginning
of the next line. If this is not used, the next row of graphics starts one line lower,
but displaced to the right by 480 dot columns! The rationale for this is that the
4/5 line feed is one of those line spacing commands that is acted upon imme-
diately to move the paper; but it does not cause a carriage return—only a line
feed. See Figure 12-24 for the actual result.

For details on how to use the higher resolution graphics modes for
creating your own fonts and type faces, see ““Redefining the Character Set
or Designing Your Own Characters’’ in this chapter.

INTERMIXING TEXT
AND GRAPHICS

On most printers with graphics, you can intermix text and graphics by
switching back and forth between text (data- and word-processing) and
graphics modes. You could, for instance, print the figure shown in Figure
12-25 with the following program:

90 CLEAR 1000

100 LPRINT CHR$(18),CHR$(255);STRING$(120,CHR$(129));CHR$(255)
110 LPRINT CHR$(255);,CHR$(30);"" TEXT IN BOX '’
CHR$(18);,CHR$(255)

120 LPRINT CHR$(255);STRING$(120,CHR$(192));CHR$(255)

130 LPRINT CHR$(30)

g

HOW TO USE YOUR RADIO SHACK PRINTER

Figure 12-24. DMP-110 High-Resolution Print Example

TEXT IN BOX

Figure 12-25. Intermixing Text and Graphics

However, in some cases you might want to stay in graphics mode and
print text as part of the graphics, or in other cases you might want to print
enlarged text, or your own fancy font or typefaces. We'll show you how to
do all of those things here.

PRINTING TEXT IN GRAPHICS MODE

Text characters are defined in the built-in character sets of the printers as a
dot-matrix. The dot-matrix ranges from a five-by-seven dot-matrix for older
or less expensive printers, to a nine-by-twenty dot matrix for more recent
printers. Newer printers also print in half-dot-columns so that adjacent col-
umns can overlap. A typical character set definition is shown in Figure
12-26, which defines a portion of the character set for the DMP-120.

There's no reason that you can't use the same definition in graphics
mode to print characters in the same way. The printing is much slower (if
you're using BASIC), but you can integrate text with graphics.

The best way to handle this is with a character generation
subroutine.Such a subroutine is shown in Listing 12-6.

The basic ‘‘skeleton’’ of the subroutine looks like this:

10 ' SUB PRINT ONE CHARACTER AS GRAPHICS DOT MATRIX
11 ' ZZ$ = CHARACTER TO BE PRINTED
12

99 RETURN

The vertical dots stand for missing BASIC code. The subroutine is located
starting at line 10 to make it faster (at the beginning of your program), and
so you can add your own graphics program lines after it.

To use the subroutine at any time, just put the text to be printed into string
variable ZZ$, call the subroutine, and the subroutine will print out the text
from the graphics data. The subroutine can be called at any time and for

CREATIVE GRAPHICS

189

40 44 48 ac
| []
] [
-
4 45 49 4D
42 46 4 4E
43 a7 4B aF

Figure 12-26. Typical Printer Character Set Definition

any position on the printout. It will blindly print the characters at that point
on the listing. You'll have to make certain there's enough room remaining
on the paper, and generally make certain that the layout is proper for the
printing to proceed.

To call the subroutine to print “Text Sample”, you'd do this:

100 ZZ$ = “‘Text Sample’’: GOSUB 10000
110 (more of your own graphics here)

Within the subroutine, characters are defined by a five-by-seven dot
matrix. We could have used a larger matrix, but there’s a problem when

190 HOW TO USE YOUR RADIO SHACK PRINTER

10 'SUB 7 BY 10 PATTERN GENERATOR

11 CLEAR 2000

12 LPRINT CHRS$ (18)

13 DIM 2T(127,10)

14 ZZ$=CHR$(3)+CHR$(4)+CHR$(2)+CHR$(4)+CHR$(l)+CHR$(4)+CHR$(0)+CHR$(4)+CHR$(6)+C
HRS (4)+CHRS (5)

15 FOR ZI=0 TO 127

16 FOR 2J=1 TO 10: 2ZT(2I,2J)=128: NEXT ZJ

17 NEXT 2I

18 zI=-1

19 IF ZI=>127 THEN 26

20 ZI=2I+1: 2J=0

21 IF ZJ=>10 THEN 19

22 2J=2J+1

23 READ ZT(ZI,2%J)

24 IF 2T(%I,%J)=-1 THEN 26

25 GOTO 21

26 ZL=LEN(ZZ$)

27 IF ZL=0 THEN 40

28 FOR ZX=1 TO ZL TEHERESE -ECEE
29 ZC$=MID$(Z2%$,2X,1)

30 ZN=ASC(ZCS$)

31 IF ZN>-1 AND ZN<=ZL THEN 34

32 LPRINT STRINGS(10,128);

33 GOTO 37

34 FOR Z¥=1 TO 10

35 LPRINT CHRS (ZT(ZN,ZY));

36 NEXT 7Y

37 LPRINT CHRS$(128); 'SPACE AFTER CHAR

38 NEXT ZX

39 LPRINT CHRS (30)

40 RETURN

41 DATA 136,136,136,136,136,136,136,136,136,136
42 DATA 166,239,201,201,201,201,201,201,251,178
43 DATA 128,255,255,137,137,137,153,185,239,198
44 DATA 129,129,129,129,255,255,129,129,129,129
45 DATA 255,255,255,255,255,255,255,255,255,255
46 DATA 190,255,225,241,217,205,199,195,255,190
47 DATA 182,255,201,201,201,201,201,201,255,182
48 DATA -1

Listing 12-6. Pattern Generation Subroutine

printing more than one graphics line, which would be necessary if the
matrix was over seven dots high. For this reason we adopted the scheme
used on early Radio Shack printers of not having descenders on lowercase
letters. (The descender is the portion of the character that goes below the
base line of the character.) We have a character set of 96 characters here
with a provision for up to 256 characters. You can easily add your own, or
modify the existing characters. We'll show you how. By the way, there's no
reason that this character set can’t be used for any symbol that can be
defined in a six-by-seven matrix. Several characters can be combined to
produce much larger designs and patterns, also.

You don’t have to worry about how the subroutine works, but there are a
few cautions we must make regarding its use. First of all, you can’t use two-
letter variable names starting with Z, such as ZZ, ZA, or ZA$, in your own
program. Secondly, if you have DATA statements in your own program, you
cannot use the value 999999 in any of the DATA values. Also, make certain
your DATA statements come first, before those in the 10000 area. (The pro-

CREATIVE GRAPHICS 191

192

gram assumes you might have DATA statements and searches for its data.)
To show you how the program works to generate Figure 12-25, here's the
earlier code, modified for the subroutine call.

100 LPRINT CHR$(18),CHR$(28); CHR$(XXX);CHR$(XXX);
110 LPRINT CHR$(255): ZZ$ = “TEXT”: GOSUB 10000
120 LPRINT CHR$(255),CHR$(28);CHR$(XXX);CHR$(XXX)

REDEFINING THE CHARACTER SET OR
DESIGNING YOUR OWN CHARACTERS

You can substitute any characters in place of the ones given above, or add to
the character set in the codes 128 through 255. To do this, determine what the
code for the character will be. Suppose you wanted to add the shape shown in
Figure 12-27 as code 128. (This is the secret symbol for the Benevolent and
Protective Order of Ancient Programmers (BPOAP), by the way.)

Figure 12-27. Custom Character

First of all, draw the figure out on a seven by ten grid, as shown in the
figure. Now encode each of the six columns of the figure the same way
you'd specify a graphics data column. The topmost bit is 1, the next 2, the
next 4, the next 8, the next 16, the next 32, and the last is 64. Add 128 to the
final result. You now have ten values, in this case 0,14, 2, 18, 254, 254, 18,
2,14, and 0. Find the 128th set of values in the data statements and replace
the zeroes you find there with the ten values. Now anytime you call the
subroutine with a CHR$(128), you’ll get the character you defined.

100 ZZ$ =""This is the Symbol ** + CHR$(128) + ** and it looks

nice’”’

110 GOSUB 10000
DEFINING LARGER BLOCKS
You can use several of the characters to make a larger symbol. Suppose
you want to make the four-element symbol shown in Figure 12-28. Define
four sets of ten values, as shown in the figure and then replace codes 129

through 132 as the four parts of the figure. To print out the figure, use two
graphics lines:

100 ZZ$ = CHR$(129) + CHR$(130): GOSUB 10000

HOW TO USE YOUR RADIO SHACK PRINTER

110 LPRINT
120 ZZ$ = CHR$(131) + CHR$(132): GOSUB 10000

Note that the subroutine never prints the line (never sends a carriage
return code). It’s always up to your own code to do that.

There are 128 undefined blocks of code which you can define in any way you
wish. This technique can be used to draw diagrams which utilize the same
types of symbols over and over, such as electronic schematic or logic
diagrams, plumbing or electrical wiring, or others, as shown in Figure 12-29.

Figure 12-28. Four-Element Character

DEFINING FINER CHARACTERS
No, the title of this section doesn’t mean finer characters as in ‘‘Mighty
Fine,” but finer in terms of resolution. Five-by-seven characters are fine for
utilitarian printing in graphics mode, but perhaps you'd like to design your
own font or typeface. We'll use a 24-by-16 matrix to do this, primarily
because that's the vertical resolution of the DMP-2100, the most dense
graphics printer in the Radio Shack line. The technique, however, will work
with any Radio Shack printer. Printers other than the DMP-2100 will have to
print two graphics lines for each character, making the minimum character
size about 0.2 inch high and the number of characters per inch about five.

A grid for drawing such characters is shown in Figure 12-30, complete
with stylized “T" character. There are two parts to the grid. Printers other
than the DMP-2100 can use the grid with 14 rows and 16 columns. The
DMP-2100 can use the grid with 16 rows and 16 columns.

To define a character, draw it on the grid and then fill in the dots that most
accurately represent the character. If you are defining a character for the

CREATIVE GRAPHICS

193

194

PATTERN
0

PATTERN
1

PATTERN
2

Figure 12-29. Custom Character Set

TEE SECTION

90° ELBOW
SECTION

360° SPRINKLER
HEAD

DMP-2100, read “DMP-2100 High-Resolution Graphics,” and remember

that you should not use adjacent pins in the same column.

The next step is to convert the character columns to CHR$() values. If
you are not using the DMP-2100, the first seven dots define the first CHR$()
value, and the dots in the second seven dots define the second CHR$()
value for the column. If you are using the DMP-2100, the first eight points
define the first CHR$() value and the next eight points define the second
CHR$() value. The third CHR$() is always CHR$(0) to provide spacing for

alternate rows of characters.

HOW TO USE YOUR RADIO SHACK PRINTER

0.16" AT 100 DOTS/"

y Pt
90000000
Faseenwegesnnsy
' | T e \ LINE 1
l 1] 11 : [JLl NON-DMP-2100
02" | _‘ l T P*» ”L’_‘_’_ PRINTERS
i EEEE S]
i% J[.Hiz T | LINE 2
1 [eee 4%
}
T T
ﬂ .}!_.l. .OQ.O.QJ" L
'—’7" 0 06 |
e ® | || o
4%0,,-, L]
CE
® EERN
:. l L
0.12" o0 i _A: DMP-2100
® |
e
®e B
1 @ ®
116 e® v*
(XX
Te]
;TL_
1 i
A | \r H.

< 0.089" AT 180 DOTS/" —>

Figure 12-30. Fine Characters

To convert for non DMP-2100 printers, the dots are weighted from top to
bottom in values of 1, 2, 4, 8, 16, 32, and 64. If you are using the DMP-2100,
the dots are weighted from top to bottom in values of 128, 64, 32, 16, 8, 4, 2,
and 1. Add up the dots for each group, and add 128 for the non DMP-2100
case. The converted values for both the DMP-2100 and other printers are
shown in Figure 12-31.

At this point, if you're using a DMP-2100, follow the printing escape
sequence described in “DMP-2100 High-Resolution Graphics.” For other
printers you must use the printer escape sequence described in ‘‘Basics of
Graphics Mode,” on two separate graphics lines. The top half of the
character is printed first by sending 16 columns of data. The bottom half of
the character is then printed in the next graphic line, at the same horizontal
position as the top half. This means that all upper halves of text must be
printed first, followed by all lower halves. It will take some BASIC overhead
to make certain that the characters are positioned correctly. Listing 12-7
shows two short programs to print out the string of the characters we've
defined above, and Figure 12-32 shows the result.

- . Printer Hint
“SHOOTING DOWN’’

One favorite trick used by
commercial illustrators and
graphics arts people for - -
making graphics and printing |
look good is make it big and
shoot it down. Make your print.
large and then have an offset-
printing plate madeina
smaller size. It's commonplace
for a print. shop to reduce
your camera-ready copy down
to any size you desire. You
might consider designing
some of your own type fonts
four or five times oversize
with some of the techniques
in this section, then reducing
the copy for letterheads,

“logos, or other copy.

CREATIVE GRAPHICS 195

| i | | | | A
[] | | -
...0.00:.0.000 " es
® | e -
1]) E
o
-4 ¥ NON-DMP-2100
® 2 PRINTERS
g . N LINE 1
i L] .
ge | () ©
g8 ® 06 e
glgiFISIgIg|g(8]2] 3
L LT T T T s
......l.‘..l.‘_,;
1 0@ ® BE
1 1® [) @ |-
L) ®
® <,
®e o
o -
[] &
@o 3
L] 8
«
se * DMP-2100
[-
()] «
Ze (-] -
§§5 i .__.’ g
hok @ @ 3
8 | 9@e 8
£ge
886 (X ©
JL .
eiflg|z]z]3(z(5= |88z (5 8|8]|] «
| olo|lelo|~|g g Slololo|ololo|ole]| «
‘qo §j$ 5 § ololo|o|o c\‘c olololo| -
T | | [

Figure 12-31. Converting Values for Fine Characters

COLOR PRINTING ON THE CGP-220

The CGP-220 is a dot-matrix ink-jet printer capable of printing dots in black,
red, green, or blue, or different combinations of red, green, and blue. If
you're not printing in color, the CGP-220 behaves pretty much like other dot-
matrix printers—it prints text and standard seven-column graphics in 640
dot columns across the paper. When you're using the CGP-220 in the Color
Scan mode, however, the printer requires a set of commands different from
anything we've described so far.

PRINTING TEXT IN COLORS

T 7 The basic command for changing colors in the printer uses the escape sequence
CHR$(27),CHR$(84);CHR$(C), where C is a color code of 48 through 55:
48 = Black
49 = Red
Figure 12-32. Printing a Fine Character 50 =Green
51 =Yellow

196 HOW TO USE YOUR RADIO SHACK PRINTER

100 'NON-2100 PRINT GRAPHICS PROGRAM
110 LPRINT CHRS$ (27);CHRS (20)

120 LPRINT CHRS$ (18)

130 READ A

140 IF A=-1 THEN 170

150 LPRINT CHRS (A);

160 GOTO 130

170 LPRINT CHRS$ (30)

180 END

190 DATA 128,134,130,130,130,130,130,130,254,130,130,130,130,130,134 /13

200 DATA 128,128,128,128,128,128,140,136,143,13
210 DATA -1

100 'DMP 2100 PRINT PROGRAM

110 LPRINT CHRS (27);CHR$ (73);CHR$ (0);CHRS (16);
120 FOR I=1 TO 48

130 READ A

140 LPRINT CHRS$ (BA);

150 NEXT I

160 END

170 DATA 0,0,0,112,0,240,96,0,48,64,0,224,64,7,128,64,3

0,0,64,112,0,67,192,0

180 DATA 78,0,0,120,0,0,96,0,0,64,0,0,64,0,0,96,0,0,112,0,0,0,0,0

Listing 12-7. Fine Character Programs

52 = Blue (Cyan)

53 = Magenta

54 = Violet

55 = White (no print)

Changing the color code changes the color for any text printing, so you can
switch back and forth between these colors to print text in different colors for
highlighting:

LPRINT “This is regular text’;CHR$(27);CHR$(84),CHR$(49);
“ and this is text in RED';CHR$(27);CHR$(84),CHR$(51);
“and YELLOW”

THE COLOR SCAN MODE

The color mode in the CGP-220 is called the color-scan mode. This mode
uses a bit-encoding scheme reminiscent of standard graphics, but in spite
of what the operating manual tells you, is really quite different!

In this mode, the print line is divided into 80 dot-rows, as shown in Figure
12-33. Each dot row controls eight dots across the row. There's a total of 640
dots across any print line, so it takes 80 dot rows to control each print line.

The dot-row is the same as one of the rows used to make up a row of text
characters or a row of graphics characters, as you might suspect. The
spacing between color-scan rows is the same as a one-to-one ratio in the
other modes — about 0.08 inch for seven vertical dots, or about 80 dots per
vertical inch, as shown in the figure.

The CGP-220 normally prints from 1 to 80 dot-rows, although more than
80 dot-rows can be printed. Usually you'd print all 80 dot-rows, or 640 dots
across the color line. Because the printer uses three color sources, red,
green, and blue, and because you can mix the colors in any dot position,
you must specify a red-green-blue color for each dot!

The escape sequence for doing this is CHR$(27);CHR$(67),CHR$(LL);
CHR$(...)...CHRS$(...). The first two values mark this as the sequence

CREATIVE GRAPHICS

197

198

80 DOT-ROWS

640 DOTS
v
)

(80 DOTS/

(PAPER) INCH
DOT DOT DOT DOT DOT
1 8 16 642 639
00000000}/00000000|0000 --- Jf |o0o0o00000O
DOT-ROW DOT-ROW DOT-ROW DOT-ROW

1 2 3 80

Figure 12-33. CGP-220 Dot Rows

to set color-scan mode. The next value, CHR$(LL), tells the printer how
many dot-rows you want to print. If you want to print 100 dots along the line,
for example, the LL value would be 13— 100/8 is 12.5, but you can't print a
partial dot-row. If you want to print 80 dot-rows, or all 640 dots along the
line, you'd specify 80 for LL.

The number of values following the first three CHR$ values depends upon
the number of dot-rows you specify. There will be three times the number of
dot-rows you specify in the CHR$(LL) value — three values for each dot-row
to specify red, green, and blue for each dot. If you print 80 dot-rows (640
dots), you'd have 80 times 3 or 240 values following. »

The values following are in a definite order: First come all of the values
for red, next the green values, and finally the blue values.

Suppose you wanted to print ten dot-rows, or 80 dots, as shown in Figure
12-34. You'd have a total of ten red values, ten green values, and ten blue
values. It helps if you think of the values arranged to correspond to the dot
rows, as shown in the figure.

What's in the value? Each value contains a code value for the eight dots
per dot-row that it represents. The first red value contains on-off codes for
the first eight dots. The next red value contains on-off codes for the next
eight dots, and so forth. The first blue value contains on-off codes for the
first eight dots. The next blue value contains on-off codes for the second
eight dots, and so forth. The green values are similar.

For each dot-row, the dots have weighted codes similar to those in the
standard graphics, as shown in Figure 12-35. The left dot has a weight of 128;

HOW TO USE YOUR RADIO SHACK PRINTER

80 DOTS OUT
OF 640 =
10 DOT ROWS

(PAPER)

f—/
Vs
DOT-ROW 1 DOT-ROW 2 DOT-ROW 3 DOT-ROW 10
00000000|/00000000|/00000000}0000---] 00000000
RED VALUE 1 2 3 VALUE 10
aneen |[vawes J[2 |
BLUE VALUE 1 2 3 VALUE 10

30 VALUES
10 FOR EACH
DOT ROW

Figure 12-34. Color Values in Dot Rows

RED

GREEN

BLUE

the next dot, a weight of 64, the next 32, the next 16, the next 8, the next 4, the
next 2, and the last 1. To find the code for the dot-row, add up all of the codes
for those dots which should be on. The result is the CHR$ value.

Suppose you wanted to print the first, second-to-last, and last dot of a dot-
row. You'd have 128 + 2 + 1 or 131 for the CHR$ value. The value for each
dot-row is computed separately from any other. In our example above, there
are ten values for each color, representing 80 dot columns.

This encoding process is repeated for each of the three colors. In the
example above we’d have 30 values, the first ten for the red colors in the dot-
rows, the next ten for the green colors in the same dot-rows, and the next ten
for the blue colors in the same dot rows. The most important thing to remember
is that there are three ink jets, and that red, green, and blue ink, or any com-
bination, can be squirted onto a dot position at the same time.

What happens when you mix colors? As in the red/green/blue mixing of a color

CREATIVE GRAPHICS

198

200

_one-to-one |

- adjusted ‘;feley;sku‘)ﬁnk."}(: ,hefe‘ are

256 dots horiz
dots vertically in high-
resolution mode in the Color

Computer, but the screen pro-

The one-to-one

- CHR$(27);CHR$(78). In this
‘mode, the characters will be

_squashed down on the lines,

~ but the line spacing will
remain the same—six lines -

per inch. The normal three-to-

four proportion can be reset
by the escape sequence
- CHR$(27);,CHR$(80).

aproperly

portion is four units Widg by
one ratio can
also be used in text mode by
sending the escape sequence

00000000 . . DOT LINE

DOT-ROW 1

00000000
DOT-ROW 2

00000000
DOT-ROW 3

000O0.

[0 o o o o o o o| 8 DOTS/DOT ROW

128 64 32 16 8 4 2 1 WEIGHTED VALUES

ecee..e: =128 + 32+ 16 + 2 = 178
128 + 8 + 4 = 140
seccccee =128 + 64+ 32 + 16 + 8 + 4 + 2 + 1 = 255

........ =0

® s s 900 0 o

o

Figure 12-35. Dot Weights in Dot Rows

television tube, the three basic colors can be mixed to create other colors.

To see how this process works, look at the following program. It prints
100 dot lines across the paper, or about 100/80, 1.25 inches. The outer loop
is controlled by variable K, which prints 100 complete rows. For each row,
the CHR$(27),CHR(67);CHR$(80); print 80 dot-columns, or 640 dots across
the row. With 80 dot-rows there must be 240 corresponding values, 80 for
each of the three colors.

The 80 values are produced in three segments, each controlled by a FOR
I=1TO 10 loop that LPRINTSs eight values. What colors can we expect? This
program produces all possible combinations of colors in vertical bands. The se-
guence goes like this: black (0,0,0), blue (0,0,255), green (0,255,0), violet
(0,255,255), red (255,0,0), magenta (255,0,255), yellow (255,255,0), and white
(255,255,255). The 255 value turns on (prints) all dots in a dot-row for the color,
and the 0 value turns all dots off (doesn’t print) the color. However, the (255,
255, 255) notation to turri all dots on, will result in a “no print.”

100 FOR K=1TO 100

110 LPRINT CHR$(27);CHR$(67);CHR$(80);

120 FOR 1=1TO 10

130 LPRINT CHR$(0);CHR$(0); CHR$(0);CHR$(0); CHR$(255);
CHR$(255);CHR$(255);CHR$(255);

140 NEXT |

150 FOR 1=1TO 10

160 LPRINT CHR$(0);CHR$(0); CHR$(255);CHR$(255); CHR$(0);
CHR$(0),CHR$(255);CHR$(255);

170 NEXT |

180 FOR I=1TO 10

190 LPRINT CHR$(0),CHR$(255); CHR$(0);CHR$(255);CHR$(0);
CHR$(255),CHR$(0); CHR$(255);

200 NEXT |

210 NEXT K

HOW TO USE YOUR RADIO SHACK PRINTER

Decimal

©CoOoO~NOOOAWN—=O

Binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
0001000t
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100

Hexa-
decimal

00
01

02
03
04
05
06
07
08
09
0A
0B
0oC
0D
OE
OF
10
11

12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21

22
23
24
25
26
27
28
29
2A
2B
2C

Decimal

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

APPENDIX

Binary

00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001

Hexa-
decimal

2D
oF
oF
30
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41

42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57
58
59

Decimal

© 90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Binary

01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001

01110010
01110011

01110100
01110101

01110110
01110111

01111000
01111001

01111010
01111011

01111100
01111101

01111110
01111111

10000000
10000001

10000010
10000011

10000100
10000101

10000110

Hexa-
decimal

5A
5B
5C
5D
5E
5F
60
61

62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80
81

82
83
84

85

86

APPENDIX

201

Decimal

202

135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
158
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175

Binary

10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111

Hexa-
decimal

87

88

89

8A
8B
8C
8D
8E
8F
90
91

92

93
94

95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
Al

A2
A3
Ad
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

Decimal

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215

HOW TO USE YOUR RADIO SHACK PRINTER

Binary

10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111

Hexa-
decimal

BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
C1
Cc2
C3
C4
C5
ce
c7
C8
C9
CA
CB
CC
CD
CE
CF
DO
D1
D2
D3
D4
D5
D8
D7

Decimal

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Binary

11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

Hexa-
decimal

D8
D9
DA
DB
DC
DD
DE
DF
EO
E1

E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
F1

F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

ASCII codes, 33-36
Assembly language use in graphics, 179

BASIC,
interpreter, 30
print commands, 42-46
programs for printing, general, 44-49
subroutines, 87

Backspace subroutine for proportional
printing, 104-105

Backspace subroutine for proportional
printing, 100,104

Backspace subroutine, non-proportional,
90-91

Backspacing, 88-91

Basics of printing, 8

BEL code, 55

Block graphics, 38, 39, 40, 123-134

Block graphics screen dump program,
Color Computer and MC-10, 155-156

Boilerplate printing, 113-115

Bold printing, 52-563, 85-87

Boldface/proportional program, 104

Boxes and forms, drawing with block
graphics, 125-132

Buffers, print, 32

Business forms program, 128-132

(o}

Carriage return character, 19, 20, 34, 53-54
Centronics port, 23
CGP-115 actions, 55
CGP-220,
actions, 55
color printing, 196-200
color-scan mode, 197-200
dot pitch, 200
dot rows, 197-200
Character flow, basic, for printing, 30-32
Character position spacing, daisy-wheel
printers, 73-74
Character position spacing, dot-matrix
printers, 68-70
Character set definition, 189-196
Character spacing, 17
Character widths, 97, 100-101
CHRS$ values, for figures, calculating,
170-173
Color Computer,
lowercase, 49

printer parameters, 27
Column per inch spacing, 136
Column printing, 8-11, 136
Commas in print commands, 43-44
Constants in BASIC programs, 44
Control codes, 383, 37
Cowboy graphics program, 174, 175
CR vs. LF switch, 27

D

DIP switches in printers, 25-30
Daisy-wheel parameters, setting, 55
Daisy-wheel printers,
general, 6-7
type styles, 62-63
Daisy-wheel printing, 9, 13
Daisy-wheels, 9
Data processing printing, 13-14
Direct mode, 42-43
DMP-110,
high-resolution graphics, 183-188
italic and microfont characters, 64, 65
printing method, 184, 185
DMP-2100,
general, 9
high-resolution graphics, 178-183
Dot columns, 21, 89, 68-70, 136, 139
Dot-matrix printers,
general, 6
type styles, 63-65
Dot-matrix printing, 8-9
DP vs. WP switch, 30
Drawings, using block graphics for, 132-134

E

Editing BASIC lines, 45

Eliminating blanks in printing numeric
values, 44

Elongated printing, 53, 82-81

End of line, 18-19

European characters, 37-38, 80, 81

External mode for daisy-wheel printers,
105-109

External mode/proportional program,
107-109

F

Fan-fold paper, 14-15
Font selection, by switches, 66
Fonts,

designing your own, 192-196

INDEX

selecting, 62-64
Form feed, 44, 75-79
Form layout sheet, 131
Form letter printing, 113-115
Form letter program, 113-117
Forms, drawing with graphics, 166-169

G

Graph plotter program, 176-178

Graphic layout form for block characters,
133

Graphics capability, affecting printers, 5

Graphics characters,
Color Computer and MC-10, 149-155
Model 1, 1lI, 4, 142-145

Graphics mode, basics, 133-139

Graphics operations, 20-22

Graphics printing, 11-12, 14, 16, 38-41

Graphics,
Color Computer and MC-10, 162
on Model |, Ill, 4, 142-145

time in processing, 22
Green-bar paper, 14-15

H

High-resolution graphics, Color Computer
and MC-10, 153, 156-158
High-resolution line feeds, in DMP-2100, -
183
Horizontal lines,
printing with block graphics, 124
printing with graphics, 163-166
Hourgiass symbol, 80-82

Impact printers, 9

Impression level for daisy-wheel printers,
105-108

Ink-jet printing, 11-13

Intelligent devices, evolution of printers
into, 3-5

Intermixing text and graphics, 188-189

J

Japanese characters, 37-38, 80

Justification, 93-95, 97, 98, 101

Justification program, daisy-wheel, 103-104

Justification program, dot-matrix printers,
98-100

INDEX 203

K

Kana characters, 37-38, 80
Kana vs. European characters switch, 30

L

Layout sheet for printer graphics, 169-170

Line feed, 19, 20, 53-54

Line feed character, 34

Line positioning, daisy-wheel printers, 74-75

Line positioning, dot-matrix printers, 70-72

Line segments, in plotting, 15

Line spacing, 17, 18, 19, 53-54

Lines, printer, 16-17

Listing programs, 61-62

Low-resolution graphics, Color Computer
and MC-10, 151-156

M

Mailing label printing, 110-112

Master code table, 56-57

Memory map, Model I, Ill, 4, 143

Model I, Ill, 4 block graphics screen print
program, 146

Model I, Ill, 4 standard graphics screen
print program, 147-150

Modes, printer, 13, 14

Moving the paper, 19

N

New vs. old printer switch, 30

Page, typical, 18

Paper, standard, 14-16, 17

Paper, thermal, 16

Parallel connections, 23, 25, 26, 27

Parallel connector, 26

Pictures, printing in graphics mode,
168-174

Pitch, 54

Plotting, 12, 14, 15

Plotting points, 175-178

Point columns in DMP-2100, 180-182

Points, in printers, number adequate, 5

204

Points, time spent in processing, 179, 184
Positioning paper after backing up paper,
175-176
Positioning print head horizontally, 54
Positioning print on the paper, 66-79
Print head, in DMP-2100, 9
Printer controller, PTC-64, 32
Printer controllers, general, 4
Printer driver,
assembly language, 31
cautions, 49-50
general, 30-32
Printer parameters, Color Computer, 27
Printers,
capability of, 5-7
number of Radio Shack, 7
types of, 8-12
Printing, types, 13-14
Proportional spacing,
general, 17-18
for daisy-wheel printers, 100-109
for dot-matrix printers, 96-100

Repeat codes,
for text, 84-85
for graphics, 139-141

Repeat sequence, 55

Ribbon feed for daisy-wheel printers,
105-108

Screen print,
for TP-10 printer, Color Computer and

MC-10, 161
in block graphics, Model |, lll, 4, 146-147
in standard graphics, Model |, 11, 4,
147-149, 152

Screen print program for TP-10, 161,162
Screens, graphic, printing, 142-162
Selecting the print, 52
Semicolons in print commands, 43-44
Serial connections, 23-25
Serial connector, 26
Serial vs. parallel,

switch, 26-27

which is best, 25
Setting modes, 64-66

HOW TO USE YOUR RADIO SHACK PRINTER

Seven bits, use of in printer graphics, 135

Sheet feeding, 55

Shooting down printing, 195

Special symbols, 80, 81

Spooling, 32

STRINGS$ function for repeats, 85

Strikethroughs, 88-91

String variables in BASIC programs, 47-49

Superscripting and subscripting, 87-88

Symbols, defining your own for printing,
192-196

T

Tandy characters, 35-36
Tandy vs. ASCII characters switch, 27
Text screen printing,
general, 115-119
MC-10 and Color Computer, 116-119
Model I, Ill, 4, 115-116
Text, printing in graphics mode, 189-192
Thermal printing, 10
Top-of-form, 18, 31, 75-79
Top-of-form, hard, 76
Transistor graphics program, 174
Type face, 54
Types of printing, 13-14

U

Undefined codes, 80-82
Underlining, 53, 83-84
Unjustified lines, 93-94, 98

v

Variables in BASIC programs, 46-49
Vertical lines,
printing with block graphics, 124
printing with graphics, 166, 167

w

White space, 9, 12

Word processing printing, 13-14
Word processing, affecting printers, 5
Word wrap, 93-95

Word-wrap program, 94-95
Word-wrap/justification program, 95
Wrap around, 92-93

W10 uumn

‘...getting more out of your

' ead hlm step by step thrnugh ﬁ’arqetyf o =" P VGl ®

A : 1 L
< r - 1 e i W ELY Ty i ¥, i =
ign i Bt 8 - rSVA ST L LN DR A Lo oA
= . L B ! | | - .

1 7 o
. L ! .
L i = = o - L s L
i T g™ - P
. - ¢ = - k
- ’ a4 -|.. s
O Y . —
= e - L.k
i 4 B . - - i’ o -
- - L 4 - - = Loy =
o - w W - o l — " -:? a3 o 1= ["
' e d e .4 o - - 1 i | i L,
'-_— = i o }-] b - |) a
‘. 1 ll -\,. ;- ‘ 1 ¥ - -r“ : e - i
: = £ \ - -
rtA A # r PR S , z -7 b o
P 1 : | - . . =l . [N Ty L
! iy o y = - ") o - L
' x g . - = i - ;
- e : N L r t o A e e I
il - F _ - ’ : i - - -
i, (. ."', - : i L | .
1 e = -
\ J
.
-
. - xr -,
-0 #
1 1 - -

.,-, - s h..- -_ . | . g -.. I.-- I.- ..-' i .r' -;i | --- .7 -‘: ':_1.5:..11 *-;. o f:-"'I[- :- L. ; 5 g N : J— -
Radio Shack Prlnter - Il gL e ARSI L B G
N oS ’ y : " 7 I J 2 ', ,':' r - 2 7 e

S - . L r 3 " L1 s A M B ° . 1Y e - a B 0 —
. g) e X 14 LY - 7 e B e |
e aneratlun . R i . . ¥ 4 - i 4 L - - n x 7 e
- ’ : e T - [& o |:‘ B L = o o il .

. %
a
-
-
.
T \ .
-. | 1
___d—'. - _._,-ll"
y WL
o e =

ik - i .1 Y "
i 'il g - 1 ! =2 - i
- 1.! ..-:-‘:_:.h - E‘,___‘ﬁ_- \ > o Pl . 1 L Ly Y .] b \ ™
y L i i P P o L LA = _ L - = 1Y} L # I .S T A" \ e
B ' - r -\".h. -~ s T 1. - e - L l — . d h\. “a% iy J; - - . F * '!
. e - 4 . # - Y ~ Ef_ X > A P £ < T\ Ny 2 = - s’j_'.
.-' [s -‘-F_;-. - 2 11'-"__|__: - -i— 2 '_.-:‘ -_L-ﬁ _.a_ _.{ ._-_;E' =T i L N 1 1l \ S . = = - =, .‘-.-:
} ' . i I = 3 :%1'- A=~ E i~ . T ¥ o 2 - T
(- rms prl ntlng - 1"1‘-'1 : | L il - "':? ui—"\'-""" IL o5 --. d 1l RI..‘I"‘:. y =" \.1' 1"- - T ""__ = — i ol phels
55 e
— -

= - F - L Y e N . L = PEYE X ¢ .. .
: 1 rB nraatio" ,Ff‘-__l_..-l- _:._::1. :-. g At p L_ g s P - i‘ 't';_ TE : ﬂ__,:-': e = . :_.1_:\2. _- ; 1'5 ':% 3
portional spacing WAkt @R ase A 2 & T L3RI &Y

-~] _ 4 g %_‘E ‘: 3 !‘-:-.l_ F -# :
- dlution graphics NI a0Q) €S’ .Y ol
{ | ~AHO e Rl \ €Y AT LG Py : -

\ . 4 R Ll SIS oA " AP B o — — oy

- ur Hadio ShaCk Prlntar,’ covm B ; 4 - = i 1 g "ir TL':'- 'I:) “'-_' '---_: : s "i..___:_; ﬁ;. = |.I. o : - d‘__.} I - 1 - : < ™

5 . ¥ &) - - 1 i e /W i - | I P = o -_ - - . A | 2 rr P
ers through and including the - 3 \ “awz A =F 0D Hi“ 2" ; i
, { : 4L % L < A, B Ly N e P - el

ar model printers use a stani Y P A g DT (NEZ ARSLE
| - - - -,. - - - i i o 1 * Jp - L Y * .p—"r
omm nd codes, the book can be N 2P § 2 e AN e > 2 AN o2

5, as well as every other Radio -~ ¢~ A= eGRYY L gd3ST)

T - - .0 et - !

C vided into three sec- < 2 A O _ D R Zoh=
M . , W -~ x B % i "':i . _— i

%e high-resolution printing e e eI 280 Y e

. 4, 4P, Model WMWEDET W NT T 40 aTiie S

ABOUT THE AUTHOR: William Barden, Jr., is one of the

Shack books include “TRS-80 Assembly Language Programming,” “Programming Techniques for
Level Il BASIC,” “Business Applications Programming Guide,” “Color Computer Graphics,” “Color
Computer Assembly Language Programming,” and “TRS-80 Pocket BASIC Handbook.” In addi-
tion to the Radio Shack books, Barden has developed several software projects for Radio Shack,
including “Assembly Language Tutor for the Model I/llI” and “Assembly Language Tutor for the
Color Computer.” He has authored over 27 books in the computer area, including “Z-80 Microcom-

puter Handbook,” “How to Program Microcomputers,” “Z-80 Microcomputer Design Projects,”
“IBM PC Programs,” and “IBM PC and PCjr Encyclopedia.”

‘proportional spac- ' PR LRSI Ty 8 e e &
Xa u Shack Pnnter” offers _ N e i B

f 5 1 b 1 | = o -] .
. " w "L 1 ' ' . - " & - L
andy 2000, Tandy B q e - A

country’s most widely read computer book authors. His Radio

il
e
oy
W =
: |
- =
f E:
T .
- 0 -
=
~) - .
—— |
- ;
1 : N 8
5
%
!
i
n
;
] " r
r* . - =3 =
- =
-- 7 r-
3 - " _ﬂ- -'-
* - -
¥ -
ar = -
" - o
i
Y .
y Nt
- 1, LA - <
5
4 b
i] N ’ -
' 1 il
| £ d - o g
- - o = v
- -
i , e e L e
% - -
N _ -
= i
; ¥ s
T . T {
- & [-
-~ " -+ =
- - u“ .'. 1) Y
1 N
090 -7 "
o= K L g
.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf

