Villicom Barden, Jr.

HOW TO DO I'T’
on the TRS-SO

for the

Model L, 11, 111,
Color Compuder,
and Model 100

QTN

P_IIIEIIII III __I__lﬂiﬂlﬂ

William Barden, Jr.

HOWTO DO IT

for the
Model L, IT, 11,
Color Compuder,
and Model 100

Editor-in-Chief: David Moore — Spiritual Direction

Managing Editor: Charles Trapp — Gunslinger

Cover Design and Graphics: D. J. Smith — Bass Guitar & Vocals
Technical Editor: Paul Wiener — Unique humor

Production & “Re-production”: Cindy Hall — Energy Supply

First Edition

First Printing April 1983

Printed in the United States of America
Copyright©1983 by IJG Inc.

ISBN 0 936200 08 1

B Published by

IJG Inc

1953 West
11th Street
Upland,CA
91786 (714!
946-5805

All rights reserved. No Part of this book may be reproduced by any §&

means without the express written permission of the publisher. ‘
Example programs are for personal use only. Every reasonable effort)
has been made to ensure accuracy througheut this book, but neither St
the author or publisher can assume responsibility for any errors or g
omissions. No liability is assumed for any direct, or indirect,
damages resulting from the use of information contained herein.

Radio Shack, TRSDOS, TRS-80 and Color Computer are registered trademarks of the
Tandy Corporation. LDOS is a registered trademark of Logical Systems, Inc.

Any software or computer hardware modifications are done at your own risk.
Neither the PUBLISHER nor the AUTHOR assumes any responsibility or liability
for loss or damages caused or alleged to be caused directly or indirectly by applying
any modification or alteration to software or hardware described in this book,

including but not limited to any interruption of service, loss of business, anticipatory
profits or consequential damages resulting from the use or operation of such
modified or altered computer hardware or software. Also, no patent liability is

assumed with respect to the use of the information contained herein.

While every precaution has been taken in the preparation of this book, the
PUBLISHER and the AUTHOR assume no responsibility for errors or omissions.

The reader is the sole judge of his or her skill and ability to perform the
modifications and/or alterations contained in this book.

How to do it on the TRS-80

Why are computers so hard to use? I remember spending the better part of a day trying to figure out what
keyboard character was required to terminate a line of input. The character wasn’t detailed in the
manufacturer’s documentation, nobody who had worked with the machine knew, and by gosh, nobody at the
factory knew when I called them, either. (Sorry about the gosh, but we’re trying to appeal to middle America with
this book).

The incident above took place on a minicomputer system, but things haven’t changed much since then. Iown a
Radio Shack TRS-80 Model I, Model II, Model III,and Color Computer, among others, and I am constantly
running into small problems in operation, hardware questions, and software problems. Oh sure, some of the
problems are documented, but many are not, or they’re buried in the depths of some incomprehensible manual.

How about you? Have you éver wanted to set the RS-232-C switches on your Model I, but couldn’t remember
the sequence? Did you ever want to speed up and compact your BASIC code, but couldn’t remember what to do?
Have you ever wanted to connect the Color Computer and a modem, but didn’t really know how? Did you ever
want to hook up your Model I or ITI to a burglar alarm, but just didn’t know how to implement it? Did you ever see
a great program in assembly language in 80-MACRO magazine, but couldn’t figure out how to use it on your 3 2K
system? Did you ever want to solder a printer cable connection, but didn’t know how to approach it? Is that
what’s troubling you, bub? '

They’re here. The answers. You can use this book and it'll tell you how to do all of the above and much, much,
more. I've tried to write the book to provide as many answers as possible to common problems: hardware,
software, and procedural, on the Model I, II, III,and Color Computer.

Furthermore, I've tried to make the answers idiot-proof. Now don’t get riled up by that term (y’hear?). I'm one
of computing’s biggest idiots; I'm continually forgetting common, step-by-step procedures that I've done before.
This book doesn’t try to be impressive or pompous. It is written simply — listing clear concise instructions on
how to do things, in step-by-step form.

Let me explain how it’s organized. It can’t be read through from beginning to end. It is meant as a reference
book that can be kept next to your computer system.

The first thing you'll see after this preface is not a table of contents, but an index. The index is the road map
that points out the locations of the answers. This index is not a typical index. Typical indexes (indices?) are
compiled by orangutans after the book is edited. They’re only marginally usable as all references to the subject
are listed, in page number order. Our index lists the most important reference first, followed by other references
in decreasing importance. Also, the subject is listed in many forms. If you want to know how to check out
continuity of a printer cable, for example, you’ll find it under “Buzzing out a cable BOCH,” “Cable, buzzing out
BOCH,” “Cable, continuity test BOCH,” and other references. The reason? To reduce your search time.

How to do it on the TRS-80

The 4-letter code after each reference (such as “BOCH?”) is the “key” to the procedure. It helps in your visual
search and is close to the initials of the procedure heading. All procedures are listed in alphabetical order, by this
4-letter code.

To pack as much information as possible into these pages, we've used the “pyramid” approach.
“CompuServe, Using,” for example, references a subordinate entry called “Modem, How To Use,” which
references further subordinate entries such as “Modems, What Are They?” and “RS-232-C, What Is It?” Each entry
clearly indicates other entries that are referenced by key word, so you’ll have no trouble following the entries
down to the last instruction. You won’t see the pyramid in the structure of the book, but you will notice the
subordinate references as you follow the instructions.

About humor...Thope you don’t mind. I've included some humor in the book when appropriate. If this offends
you, you are not emotionally equipped to use a microcomputer system, and you’ll probably go mad, anyway.
After all, what’s funnier than trying to accomplish something useful on a microcomputer (or any computer) and
not being able to find that terminating character?

Thanks to my wife Janet for her help in proofing and technical corrections.

To Murphy, the maintenance man at One Tandy Center. Thanks for the inside information.

William Barden jr. — 1983

How to do it on the TRS-80

Index

! editor/assembler, Color Computer
assembler/editor, Color Computer
assembler/editor, Model I/IILottt

2 BASIC ottt e

B BASTC ettt et e

G BASIC .« o ottt e e e IVHU
&H BASIC ‘
&0 BASIC
()BASIC

* gssembler/editor, Color Computer
* gssembler/editor, Model I/IITttt
SN (O R

HOL, A0 LDOS .ottt ettt e
FD0, 0 LDOS .ottt ettt e e e e
HGET, in EDAS Lttt et

HJL, 0 LDOS .« ittt e
FKE 30 LDOS ot ottt ettt e et et e
*LIST OFF, assembly, Model I/11/111
*LIST ON, assembly, Model I/II/II

FPR, 0 LS oottt ittt e LDIS
 BASIC e e e AOIB / LOHT
s BASTC e e

B T T 1 R R KRR R ‘

S BASIC & vttt e

F IS) S R R R

/AO command, Color Computer EDTASM it

JBLD, WHat G5 17 « .ottt ettt e et

JCIM, What 38 167 vttt e ettt et SCOF / DMTT
/CMD file format, Models Tand IILo out et e CFFT
/IM command, Color Computer EDTASM- ... e EAIM
JICL, WHAt 18 167 .ottt ettt et ettt e JCLW
/MO Command, Color Computer EDTASM+ ... e EAIM
JTXT, WHA 38 167 .« o vttt et ettt et e e e e STWD
O0DH character, in sequential filesoouiirennii i SDFB
392-character mode, setting, Model I/IIL BASICot TCMH
5-Volt SuUppPly, What t0 USEvutentiit ettt et PSWU

How to do it on the TRS-80

500 baud vs. 1500 baud, Model III, settingcooveuuureeni FHBF

500 baud vs. 1500 baud, Model III, which to useoooooo FBWT
PBASIC .o MSLH
Absolute origin, Color Computer EDTASM+ooooooi o EAIM
Ac plug, WIring ACPR
Ac power, conditioning oo CPWR
Access level, of adisk fileoo T ADFC
Access passwordii e PWDS / ADFC / ADFL / ADCL / ADCT / ADC2
Access, disk files, speeding up ... DFAH
Accessing characters within stringso T SACW
Accuracy, of real-time-clocko RTCN
Acoustic coupler, how to useooiiiiiiiii ACHT
Acoustic coupler, whatitis ... MWAT
Adding and subtracting, BASICoooiiiiiiiii T AOIB
Allocating a disk file, TRSDOS, Model I/IITcooine CDFH / DSHL
Allocating space ona diskoocciiiii DSHL
Alphabetizing a string array, Model Icooooouoi oo SSA3
Analog-to-digital conversion, Color Computeroovuiuiuiii ADIC
AND gates, description ... DLSC
AND, BASIC commandooooiiiiiiiii i LOHT
ANDing, in assembler, Model /II/IIc.ooiiuiiiiiiennisni AEU1
Animation, BASIC, Color Computeroouueeuiunennisni GAPC
Animation, Model Tand IIToooouiiiiiiiiii i AN13
ANSWer MmOdem ..o i MWAT
AO command, Color Computer EDTASM+oooviieenoni EAIM
Appending data to a disk ... SDFB
Appending data to random BASIC filesccoooiuenni oo RDFB
Appending source files, assembler, Color Computeroooiiiiiii EDCE
Appending source files, assembler, Model I/IIT """ S1EA
Architecture, graphics, Color CompUterc.ouvueenunnen o GRAR
Arcs, drawing in BASIC, Color Computero DSBC
Arguments, passing to machine language subroutines, Model Tor ITI PVM1
Arguments, passing to machine language subroutines, Model II or Color Computer PVMC
Arithmetic operations, BASICcooiiiiiii AOIB
Arithmetic operations, Color Computer EDTASM~+ " ECCE
Array format ... HASA
Array, deallocating, Model T1c.ooouiiiuuiinnn o DDER
Array, doubly-dimensioned o DDER
Array, string sorting in BASICoooiiiiiii SSA3
Array, when to DIMenSiono.ouiuiiiiianei e DDER
Arrays, amount of SE0rage ino.iiiiiiii T HASA
Arrays, BASIC, usingoooiiiiii T AGTU
Arrays, initializingo INAR
ATTAYS, USINE ... AGTU / INAR
ASC, BASIC commandooiuiiiiiiii i CFCS
ASCII characters, what they areccoouueie oo ADFW
ASCII comparisons, in BASIC Stringscccooueireeenn CSHT
ASCH DUMP, LDOS, Model I/IILot DMTL
ASCIL files, random, in BASICooooiuiiiiinieei T RDFB
ASCII files, what they areccooouuoiiiii AFWA / ADFW / STWD
ASCII to Baudot translationcccvviii LWD1 / LWD3
Assembler, Color Computer, loadingo EDCE
Assembler, Color Computer, USING oo EDCE
Assembler, diagnostics, Color Computer EDTASM+ AECE
Assembler, diagnostics, Model /II/IITcooouuinonno AEDI
Assembler, EDAS system EDAN

How to do it on the TRS-80

Assembler, error messages, Color Computer ED T ASMA oottt ettt AECE

Assembler, error messages, Model I/II/IIL oot AEDI
Assembler, expressions, Color Computer EDTASM+ ... ECCE
Assembler, expressions, Model /II/IIL PP AEU1
Assembler, messages, Model I/ITLiiiietiniii e AEDI
Assembler, Model I/ITL 10adingouonutnronenn ettt S1EA
Assembler, Model I/ITL, USING vvvntintin et S1EA
Assembler, object file in MEMOIY?\t tiine e AIOF
Assembler, operators, Model I/II/ITL oouiniiiiiii e AEU1
Assembler, pseudo ops, Model I/II/IIL onenoiieiiei e e POZA
Assembling into memory, Color Computer EDTASMt ottt e e EAIM / AOIF
Assembling into memory, EDAS assemblerot EDAN / AOIF
Assembling, Color COMPULETot tttnten et ettt ettt EDCE
Assembling, conditionally in EDAS assemblerc.oooiiiiiiiiiiiiiiiiiiiiiiae EDAN
Assembling, Model I/IITo tn ittt S1EA
Assembly language, descriptionoeiiiiiiiiiii e ALWI
Assembly language, generating perfect codeo ALCW
Assembly language, interfacing to Color BASIC, Color Computeroooveeeneenees CMLC
Assembly language, interfacing to Disk BASIC, Model 1or 1 1 AU O AP CMD1
Assembly language, interfacing to Extended Color BASIC, Color Computeroceeonnn CMEC
Assembly language, interfacing to non-Disk BASIC, Model I or 1§ PP CML1
Assembly language, what s it? ououinin it ALWI
Assembly options, Color COMPULETuuueeenentniiiiaian e EDCE
Assembly options, Model I/IIL ittt S1EA
Assembly switches, Color COMPULETvtutntntnentnnit et EDCE
Assembly switches, Model I/TILoiiniune i S1EA
Assembly-language printer driver for Model I ..o LWD1
Assembly-language printer driver for Model TILoooiiiiiiiniiiiiniiiieeeeeenns L.WD3
Asterisk in KILL, Model ILttt ittt a et ee DFDA
Asterisks, assembler/editor, Color COMPULETcoeiuiiiiiianiieie e EDCE
Asterisks, assembler/editor, Model I/IILoioie i e S1EA
Asterisks, BASIC ..ottt et e ettt e AOIB
Asterisks, in 10gic SIgNAl NAMESvutueae ettt LDHT
ASterisks, PIANTINE ..\t v ettt ettt ettt PRUU
Asynchronous tranSMiSSION uuueuenvret vttt RSWI
ATTRIB command, TRSDOS/LDOS PP AP ADFC / ADFL / PWDS
Attributes, of a disk file, changing, LDOS, Model I/IILcooviiiiiiiiiieiiieenees ADFL
Attributes, of a disk file, changing, TRSDOS Model I/II/IIL oviienieniniieeeees ADFC
Attributes, of a disk file, copying, LDOS, Model 1745 1 P DSID
Attributes, of a diskette, changing LDOS, Model /IILottt ADCL
Attributes, of a diskette, changing TRSDOS, Model I/ITLoovniiiiiiiiiniiiinneeees ADCT
Attributes, of a diskette, changing TRSDOS, Model IIot ADC2
AUTO disk, regaining controloeeiuiumneneneiiiitauen e RCAD
AUTO, BASIC COMIMANG ..t tttttettittanesanae ettt eae ettt LNAT
AUTO, TRSDOS/LDOS comMAanduueueuenenenenenenmaranaunneneneesitananansnceses AEDP
AUto-answer, What 1658 ..o outet ettt MWAT
Auto-dial, What It 1S ... ovt ettt e e MWAT
Automatic execution of @ PrOGTAMotuunreerrrnneeeeranneeeaaannrescasnaranesesnseens AEDP
Automatic line numbering, BASICt LNAT
Back to TRSDOS/LDOS from BASIC, Models I/TIT viiiiiii e RTDB
Back to TRSDOS from BASIC, Model II TGBB
BACKSDACE .+« v vttt ettt e e ettt et e BSEC
BACKUP commandveeuttriaee et itiaaeeeeetnurianaaseseetsaaarasasansanses BPSP / BDSM
Backup diskette, makingo.uuininiiraretane i BDSM / BPSP
Bad file data @ITOT . ..ottt ettt ettt ee e iaia et s FDER
BAD LABEL, assembler message, Color Computer EDTASM+oooiiiiiiiinninnnens AECE

How to do it on the TRS-80

BAD MEMORY, assembler message, Color Computer EDTASM+ ..o, AECE
BAD OPCODE, assembler message, Color Computer EDTASM~+ ..o AECE
BAD OPERAND, assembler message, Color Computer EDTASM~+0oooooonn. .. AECE
Bad subscript error ... BSER
BASIC €rTor trapping .«uuuettt e ETIB
BASIC evaluationooo i PHTU
BASIC program deletingo EYBP
BASIC program editing EMBH
BASIC programs, chaininguuuiiiiiiiiiiiie e SBPD
BASIC programs, compressing, Model TITcooivieieeeeeeennnnnn CPM3
BASIC programs, saving on disk e e e e e e e SBPD
BASIC programs, speeding upc.uuuuiiiiiii i SUBP
BASIC, &H ... HNIB
BASIC, ANDo LOHT
BASIC, arithmetico i AOIB
BASIC, arrays HASA
BASIC, ASC CFCS
BASIC, AUTO ... e LNAT
BASIC, breakpointinguiiiiiiiiii i BPIB
BASIC, CIRCLE, Color COMPUETuuuettsesine e DSBC
BASIC, CLEAR ... e e e OSSH / PROT(CC)
BASIC, clearing displayooiiiiiiiiiiiiiii CLTD
BASIC, CLOAD ... e SBPT
BASIC, CLOAD? ... e e SBPT
BASIC, CLOADM, Color COmPULeToiiui e LEMC
BASIC, CLOSE RDFB / SDFB
BASIC, CLS . CLTD
BASIC, CMD*“B”, Model I/III DSkcuuuuitieee ettt e BKHT
BASIC, CMD “C”, Model I/ITE DiSK uuuuiee e e e e CPM3
BASIC, CMD “D”, Model I/III Diskouuniiiee e DFBH / DLDB
BASIC, CMD “J”, Model IIITRSDOSuuuiei i DCJS
BASIC, CMD “N”, Model I/IITLDOSoooiiiiiiiiite e RNBM
BASIC, CMD “R”, Model /III DiSk ..ottt RTCT
BASIC, CMD “S” . RTDB
BASIC, CMD “T”, Model /IIE Diskeuutttittta e RTCT
BASIC, CMD “Z”, Model II DiSKuuueeeeeee et DSPR
BASIC, COLOR ...\ttt SUCG
BASIC, CONT ... BPIB
BASIC, CSAVE ... SBPT
BASIC, cursor positionouiuuuiiiii i CFOW
BASIC, CVD o RDFB
BASIC, CVI .. RDFB
BASIC, GV e RDFB
BASIC, DATA ..o DSRC
BASIC, DATES, Model ITottt DIBP
BASIC, DEF FN ..o e FBDF
BASIC, DEFDBL ...ttt DPHU
BASIC, DEFINT ... IVHU
BASIC, DEFSNG ... SPHU
BASIC, DEFSTRttt e e SHTU
BASIC, deleting a linecoouiiiiiiiiiiiiie e DLIB
BASIC, DRAW, Color COmMPULETuuuuurtitiiieieeeae e DSBC
BASIC, Edit mOdeuittie ittt EMBH
BASIC, END ... EPHT

How to do it on the TRS-80

BASIC, EOF ittt tuae ettt e aae et ettt e sttt ettt SDFB
BASIC, ERASE Model ITouiiuiiniinie it DDER
BASIC, ERL ..ttt e teeetaetaenae ettt et ittt et ETIB
BASIC, ERR ...\ttt eeeinetnnetae ettt as sttt ettt aaa sttt ETIB
BASIC, ERR$, Model Iouuiinetteeiienit ettt ETIB
BASIC, ERROR ... \uituitnttniinttaainet et etiaase e taata sttt ETIB
BASIC, EXEC, Color COMPUEETvueunenrnernereruarnseseraeesutittnmnaer it esess LEMC
BASIC, eXPONENtIALION . .« .« evtuttnsuneneeneeneaetnaasaeete ettt st AQOIB
BASIC, expression evaluationoouiiiiiiiiiiniiiiiiii e PHTU
BASIC, ©XPIeSSIONS . <« ot vvvutrnrneneneessesnsuenssasaseatanasaeuentessareseeees AOIB / PHTU
BASIC, FIELD .. \tttnttennttntenaeneseeeneiaetnesaatseene ot aanianasteteesntnne RDFB
127N (O 2 . S R IPNF
BASIC, FIN . otittetre e et ene e s saa e e etn e ataasaa st ettt et FBDF
BASIC, FOR..TO..STEPttt FTST
BASIC, FRE ... titttttnetnetn et eiaesaasts e et ataean ettt sttt SSFA
BASIC, FUNCEONS . v\t vevvetetaneeesseteeneteaatiaaiase sttt aaa sttt FBDF
BASIC, GET (graphics), Color COmMPULerouutrmiienreiinrinanerrn e s GAPC
BASIC, GET (NONn-graphiCs)ueeueeeunenneinmiuimrineen it iuannaen e RDFB
BASIC, GOSUB ...\t tttne it titeetae ettt et ettt SUBB
BASIC, GOTO . vttteea e et ete et esa e aaa st e ta st BPIB
BASIC, hoW £0 8L 60«1\ vveeneeneunenesau e ettt aaaaaass st it BHTG
BASIC, IF.. THEN..ELSEuiiuittiiteniiitiaiiin it ITEL
BASIC, INKEYS$..\ uttttetne et etnaaaee ettt tanaaaes ettt INHU
YN (O 1.1 > R IOHT
BASIC, INPUT . ttttitettetenetaetie s e et aaaa ettt s IDFK
BASIC, INPUTHE ..ttt ettt ettt enneaas s et aaaasse sttt ittt SDFB
BASIC, inserting @ HNeooueeueuereuneiniuniae et ALIB
BASIC, INT ..ttt tettie et e et e e st s e e e e s s st s s ettt IPNF
BASIC, JOYSTK, Color COMPULET ... ovvvnenernenneuirnasneeeeree ot ADIC
BASIC, KILL, Disk BASICucuuiinitnnei ettt DFDA
BASIC, LEF TS .\ ttittneteeneiaetaneeen ettt et aa et ettt st SACW
BASIC, LEN . itutttttnetne et eteaas e ettt asatsacs et amaatanatetosssntstes SFLO
BASIC, LET ..t tuttteete e eneetne et ennetes e tiaaae st et st tnes e LBWT
BASIC, 1ine fOIMA vvuevnentuneunenennsnereerserasnesatnattutnasesteretecransssse LFBA
BASIC, line too long to print or displayc.ocieiiiiiiiiiiiiii e BLTL
BASIC, LINE INPUTH ttttttitinttaeee it enasc ettt SDFB
BASIC, LINE, Color COMPULETt vevuereeeninetensrerette it seens DSBC
127N (O 15 (< A R R LBAP
BASIC, HSLINE .+« v e vvvnerneeeuneaannenne et e tanaa et ettt sttt LBAP
12Nc) (O 11 71 < A L R R L R LBAP
BASIC, LOAD ... tttttei ettt ttia et e ettt a sttt sttt SBPD
127 N<) (O 70 R RDFB
BASIC, LPRINT USING commandcocuoeueuerarnrneeacnenetnananrrcnceees PRUU / ROOF
BASIC, LSET ..t ttt ettt ettt sanaaeesen et e sttt sttt RDFB
BASIC, MEM .. .tinititneinentn et enaenataenea ettt sttt MFAL
BASIC, MERGE ... \uititnettniininatneteeata i ettt ettt aa et MTPB
BASIC, MIDS ... oereerneeneennennennasnaeeeenaeanetnaasesen et san sttt SACW
BASIC, MEDS$.. .vtttuneunennetneenaanaaaeeetsnaaansaseen e suatanstoassetettees RDFB
BASIC, MKIS ... ovutrnteeenetntinaenaenetaaa ettt aaees sttt srnns RDFB
BASIC, MK SS ..o vottetetete ittt onaans e etsa e ettt et ta sttt RDFB
BASIC, Model II, reverse slashuvoieiiiiiiiiiiiiiiiiiiii e IPNF
BASIC, multiple statements inone linecoiiiiiiiiiiiiiiii e MSLH
BASIC, NAME COMMANAouvutuinnrneenenesaratnenasatetetasuenananasecs e irirssntess RNBL
BASIC, NEW .. 0itnttnttneeneeunttnianaaiaenses et eanataeeestotanmanstessosesesess EYBP
BASIC, ON ERROR GOTO commandcoeeuerninirnaruaeeeauiinnrnteetntesne ETIB
BASIC, ON...GOSUB\ttuiiiiniititeraera ettt OGHU

How to do it on the TRS-80

BASIC, ON..GOTOoooii i OGHU

BASIC, OPEN RDFB
BASIC, OPEN, Diskc.ooiiiiiiiiii i SDFB
BASIC, OR ... LOHT
BASIC, OUT ... IOHT
BASIC, PAINT, Color Computer ..»m PCCC
BASIC, PCLEAR, Color Computer ..""" SUCG / GMPC
BASIC, PCLS, Color Computero.oooiviuinain o SUCG
BASIC, PCOPY, Color Computerc...........=v SUCG
BASIC, PEEK ... PPKU
BASIC, PMODE, Color Computer ...o SUCG
BASIC, POKE ... PPKU
BASIC, POS ... CFOW
BASIC, PPOINT, Color Computer PSBC
BASIC, PRESET, Color Computer ... v PSBC
BASIC, PRINT AT commandc.oooioiiien HTDS
BASIC, PRINT @ ... HTDS
BASIC, PRINT USING command ... " PRUU / ROOF
BASIC, PRINT# ... SDFB
BASIC, programs, loading from cassette SBPT
BASIC, programs, loading from disk SBPD
BASIC, programs, mergingo T MTPB
BASIC, programs, saving on cassette SBPT
BASIC, programs, saving on disk Ty SBPD
BASIC, programs, speeding up SUBP
BASIC, PSET, Color Computer ..w PSBC
BASIC, PUT (graphics), Color Computeroooiiiii GAPC
BASIC, PUT (non-graphics)oooooiiii RDFB
BASIC, RANDOM ... RDHT
BASIC, READ ... DSRC
BASIC, RENUM R - Y N 2 9
BASIC, renumbering in LDOSo o RNBM
BASIC, renumbering ... RNBL
BASIC, RESET ... SRBH
BASIC, RESTORE ... DSRC
BASIC, RESUME i ETIB
BASIC, RETURN ... SUBB
BASIC, RIGHTS ... SACW
BASIC, RND ... RDHT
BASIC, ROW, Model I1o. e CFOW
BASIC, RSET ... RDFB
BASIC, RUN ... RUTP / SBPD
BASIC, SAVE ... SBPD
BASIC, SCREEN, Color Computer ... SUCG / GMIC
BASIC, sequential disk files SDFB
BASIC, SET ... SRBH
BASIC, shortening line BLTL
BASIC, STEP ... FTST
BASIC, STOP ... BPIB
BASIC, stopping program e TSTP
BASIC, STR$... CSNV / ROOF
BASIC, STRINGS ... STRD
BASIC, SYSTEM mode, Model I/IIT0 LMFN
BASIC, SYSTEM, Model I1ooo TGBB
BASIC, tables of datao DSRC
BASIC, TIMES ... TIBP

How to do it on the TRS-80

BASIC, tokens, Color COMPULETvueerneeunersuneeeenserunttunmerearen et TBCC

BASIC, tokens, Model I/ITL ouuunertii ettt e st TM13
BASIC, tokens, Model L «ouuunertunnneeruinaeraii et ree TMTW
BASIC, tLACINE .« .« v v e v v e e ee e eaasane e s e e ettt TRHT
BASIC, trigonometric funCtionsevuvunernnerniriiriiarinr UTFB
BASIC, TROFF ..\ttt ettt e et e e e ettt r e TRHT
BASIC, TRON ...ttt ttt et eeta e et s et e s s sttt e e TRHT
BASIC, USR, Color COMPULETorvnernnerrnseeeneesnnnernseeneresterstrs s srenoses CMLC
BASIC, USR, Model I/TTLt outttaeenn et esii e ettt n e CML1
BASIC, USRn, Color COMPULET . .. tvvvvvnsinirnatiern it CMEC
BASIC, USRn, Model I/ITLouuetiiin ettt eeniii e n e CMD1
BASIC, VAL vttt e ettt e et e et s a s s st CSNV
BASIC, WP, Model IIT . ..o vueetitinaeenne et eann e ettt en e DWPR
BASIC2, TRSDOS Model Tiinitiietiiiiiia ettt HTGB
Batteries, USINE « « + .+« v v e e neneena e e naesn e e asas st aa st te s PSWU
Battery LI ..o vvn ettt et e et e PSWU
BAUA TALE & v v o v e e e e e e et et e e RSWI / RHS1
Baud rate, cassette, Model TIL, Settingcuvvniuiriieineniniirnarnreneer e FHBF
Baudot translation, for line Printereeeveieireienener ity LWD1
BEGTMP, Color Computer EDTASMovviuiiiiiiiii i acre e EAIM
BiNary NUMDETS ..« .. evneuirnereenen e rnenaen s CFBD / CFDB / CBBH / TCNU
Binary to decimal CONVErSIONceuuttrrunneereunenirreuu e e CFBD
Binary to hexadecimal CONVEISIONc.uuerunrrrnernunerunarenare e CBBH
B LIINIES, © + « e v e vv e e e e e et e e et RSWI
Blanks, in PRINTS ... vuue et erannneeeeeseaaaassenai ettt st SIPS
Blanks, in sequential disk filesoouiiiiiiiiiii e SDFB
Block of memory, copying, Color Computer ZBUG PrOramcoeeevevencanensneecesensns ZUEC
Block of memory, displaying, Color Computer ZBUG PrOramceovencnvanssnenssnoesns ZUEC
Boxes, drawing in BASIC, Color COMPUEETovrunerrenirnnaenerrrernnerre e DSBC
Braid, desoldering, USINEeueeeuneeeneernnnstnseesiimannnnrne it st ssrrrts SHTO
BRANCH OUT OF RANGE, assembler message, Model VIVIIL . v iiiiiie e eeinees AEDI
Branching out in BASICuuuietiinniiia et OGHU
BREAK key, disabling, Model I/IILoouiiiniiniiiennnnnimmn e BKHT
BREAK, continuing in BASIC fromc.nvunirinmrnnereirernnnrnere e CNER
Breaking out of FOR..TO J00PS .. .uevuneerneetrnnetnniruaaunn e et ee e FTLO
Breakpointing machine language programs, Model I/IIT ... DT1U / BPFM
Breakpointing machine language programs, philosSophyovviriiiiii e BPFM / DT1U
Breakpointing, Color Computer ZBUG PrOgramocovueearrrenererrnaeerrrnerterstssss ZUEC
Breakpoints, Color Computer ZBUG Programc..oeoeeereeerennmerrressssrsots ZUEC
BS FEITOT « .« v vt e e e e e e e e et et et e ettt a e BSER
Buffer, disk fIle ..o vuerneen e ettt SDFB
Buffers, digital J0ZIC vvnevnerrneee i DLSC / LDHT
Buffers, disk file, Model I/IIL ooiuieen i HMF1
Buffers, multiple disk fllesvueeueeenerunemerereatii SDFB
Build files, Model II/IIL TRSDOS\uitneiiiniiatin et JCLW
BUILD, TRSDOS/LDOS commandcc.oeeneenaenneceesrnntnntraineerens e . JCLW / ECIS
Bulletin board system, Usingooeeeenneriiiaans BBUS/RHS1(Mod I)/ACHT / MHTU / CPSU
Burglar alarm input to Color COMPULETuunerrrnnnerrunneereen e DICC
Burglar alarm input to Model I or 1 1 (A LR DI13
BUITAN PETIOM .+« v e vve vttt ee e e e et e a e FHOF
Buzzing out @ CADLE ...« ..ttt et BOCH
BYTE OVERFLOW, assembler message, Color Computer EDTASMA ottt iiiiaenns AECE
Cable, DUZZING OUL .o\ttt ee e een et e e e eaeae st aaaa s s s an sttt BOCH
Cable, CONLIMUILY TESE .+ v e v v ee e e vensen s e s s e eaasast et a st BOCH
Cable, printer, Model I/TITouuiuntrne ettt eiaai ettt CPCA
Calender, Teal-tiINe\ oueuen ettt e ettt aas e DSDS

How to do it on the TRS-80

Calling a machine language program, Color Computer CMLC / CMEC

Calling a machine language program, Model Tor Il CML1 / CMD1
Calls to ROM ... RCWA
Can’t continue error o CNER
Capacitors, description ... LDHT
Carrier, modem MWAT
Cartridge connector, ROM, Color Computer RCCN / BSCC
Cassette comnector ... CCAM
Cassette data error e FDER
Cassette DEBUG, for Model /Ioooiii CD13
Cassette files, bad FDER
Cassette files, BASIC SBPT
Cassette port, Color Computer, discrete outputs from MTOC
Cassette port, connecting discrete inputs to, Color Computer DICC
Cassette port, connecting discrete inputs to, Model Tor III e DI13
Cassette port, relay output from CCAM
Cassette recorder plugs, insertion of .. " CRPI
Cassette tape files, machine language, Color Computer o i LEMC
Cassette tape files, using, Color Computer ZBUG program ZUEC
Cassette tape loading problems CTLC
Cassette, setting baud rate, Model TIT =% FHBF
Cassette, speed, Model IIT, which to use ... "7 FBWT
Centronics cables CPCA
Certified cassette tapesooo i CTLC
Chaining BASIC programsooo i SBPD
Chaining source files, assembler, Color Computer EDCE
Chaining source files, assembler, Model I/IIT~ S1EA
Changing attributes of a disk file, LDOS, Model /IIToooiiiue ADCL
Changing attributes of a disk file, TRSDOS~—~ ADFC
Changing attributes of a diskette, LDOS, Model U/IIT " ADCL
Changing attributes of a diskette, TRSDOS, Model UIIT " ADCT
Changing attributes of a diskette, TRSDOS, Model ITooo i ADC2
Changing memory locations PPKU
Changing name of a disk file RADF
Character editing, in BASIC EMBH
Character positions GC13
Character size, changing for Line Printer Il ~~'" LP3S
Character, reading a keyboard T INHU
Characters within strings, how to access T SACW
Characters, graphics, Model U/IIT~ GC13
Characters, in ASCIL.......................oo ADFW
Cheap diskettes DEHM
Checks, printing ... PRUU
CHR$, BASIC commando..o CUSE
CIRCLE, BASIC command, Color Computer DSBC
Circles, drawing in BASIC, Color Computer DSBC
Cleaning connectors CLCN
CLEAR (command)oo OSSH/ SHTU / OSER / SSFA
CLEAR (key)oooiiiiiiiii i CLTD / TCMH
CLEAR command, TRSDOS, Model I/IIT 7 CMHT
Clearing displayoooooo CLTD / SCM1
Clearing memory Model IVIIL TRSDOS~—~ "~ CMHT
Clearing screen from TRSDOS, Model I/IL .. """ CSFT
Clearing your BASIC program EYBP
CLOAD, BASIC commandooo.. SBPT
CLOAD?, BASIC commandoo. . SBPT

How to do it on the TRS-80

CLOADM, BASIC command, Color Computerc.oeherurnmenrrnrrremrmrererns LEMC

CLOCK command, TRSDOS/LDOS ...ttt CDHT
Clock display, disk SYSEEINSovuneernerenamrueeereeennnmaunree et CDHT
Clock SPEed UP MOMS .o vuuvvrn e eeneeeeatar e et sttt CSUM
Clock, real-time, Model I/IILiuneenitiii et RTCT / TSRT
Clock, setting, Model TIL oiuiine ettt CDHT
CLOSE, BASIC COMMANM ... evueternaeeneensnasssese et RDFB
CLOSE, disk files, BASICuutttnetinaiiia ettt SDFB
Closing disk files, BASICoirinnteiimiaanii i SDFB
CLS, BASIC COMIMANM -+« « v evueetaeeneetaean sttt TCMH / SCM1
CLS, TRSDOS command, Model II/ITLooouiiiiniiiiniiiiiiere e CSFT
CMD“B”, BASIC command, Model I/IILooiunaiiniirnnirinnnn e BKHT
CMD“C”, BASIC command, Model TILooiiiirieiniininerr e CPM3
CMD“D”, BASIC command, Model I TRSDOS, Model /III LDOSooiiiiiiiiiineennn DLDB
CMD“D”, BASIC command, Model TILTRSDOS ottt iiiiiae e eeraaiaan e DFBH
CMD“J”, BASIC command, Model IIl TRSDOScovuiieniiinnrenreneerrerreeeees DCJS
CMD“L”, BASIC command, Model I/IILooiiiirinieinnriunnrrnnenenrrrnmraneeres LMLB
CMD“N”, BASIC command, LDOSoouniiuiimiiiiiiiiiia e RNBM
CMD*0”, BASIC command, Model TILooouiiiiiiieiiieee e SSA3
CMD“R”, BASIC command, Model I/TITooiiiiimiinirieriminmrerernnrereeeees RTCT
CMD“S”, BASIC command, Model I/ITLiuiniiiiniienniiiii e RTDB
CMD*“T”, BASIC command, Model I/IILoouuuieririnnirmnnaannnnneeenn s RTCT
CMD¥“X”, BASIC COMMANGt evetterteee e e et sttt e PLPB
CMD*Z”. BASIC COMMANG ..o\ ttenvttanaeanen s sttt DSPR
L TS e A R R CNER
COLOT COE, TESISTOT vt vttt e ee et e e a e e ie ettt RHTU
Color codes, graphics, Color COMPULET ... «.cuuuniutiarrner it GMIC
Color sets, Color COMPUEET «.cuntntueurenenenarneaesssaestesaaneumeetecn e GMIC
COLOR, BASIC command, Color COMPUELETournieerirnrarnnnareeerr s SUCG
Colors, selecting in BASIC, Color COmMPULETouiriinentrierarannanenneretaerees:: SUCG
Column, how to put things inc..oeeeeniiiiiii e CHTP / PRUU / SIPS
COMM/TERM switch, RS-232-C, Model I, settingoooeieviiniinininnennernenene: RHS1
Comma, using for tabbingouiueu e CHTP
Command file format, Models Tand TITcoueinneainiiianiai i CFFT
Commands, LDOS, HSEINE ..o vvnttiint et CWTC
Commands, TRSDOS, formats ofcueeeneninerarauarni e CHON
Commands, TRSDOS, help 0N ... ouiuirinteit it e CHON
Commands, TRSDOS, HStINgouvnre ittt CWTC
Commas, in sequential disk filesc.veuieiiniiiieriii i SDFB
COMPATAtOr, IOZIC .+ .+t v e vttt ettt e et LDHT
COMPLEX SEEINES .+ 1+t v v vttt e e et e et e et e sttt STER
Compressing BASIC programs, Model TIToovviiiiiiiiiiiieee e CPM3
CompuServe, using, Model Tiiuiiiiii i CPSU
Computed GOSUB, BASIC commandooueeemernerernimunenerern et e OGHU
Computed GOTO, BASIC commandoovumiinmrinereinnnuaerreeennrnaereress OGHU
Concatenation of strings in BASICouuinutitii i SCIB
Conditional assembly in EDASttt EDAN
CoNAItional OPETALOLS ..\t vtue it tneas e e et et as e e s et ITEL
Conditionally executing a statement, BASICottt ITEL
CONAItIONINE POWET . v et ettt et e e e et e e s a sttt ettt CPWR
ConNections, SOIAETIIE ...\ tutn ettt it e ae ettt aan e SHTO
CONNECTOT, CASSELEE o o\ vt et e e ee e ettt e e et e et e as e et st CCAM
Connectors, cleaningc.oeeeereeeeeeeeeeeens T R LR CLCN
Connectors, Color COMPULETvirrenrenerntiinreiemneeneeee. BSCC / RCCC / JPPO / CCAM
Connectors, on cable, LESTINE « vuvtvr et e BOCH
CONSEANES, SETIIE © .+ v e\ et e v et e e et et et et e e et e s e sttt s sttt SHTU

How to do it on the TRS-80

CONT, BASIC commandoooo BPIB

Continuing from BASIC STOP e BPIB
Continuing from a BREAK BPIB / CNER
Continuity test, for cable BOCH
Continuity tester BOCH
Continuous update, Model UIIL oo DT1U
Control codes ADFW
Controlling external devices, Color Computer MTOC
CONVERT, Model II'TRSDOSc.ooooiiii i C1T3
Converting from binary to decimal T CFBD
Converting from binary to hexadecimal["""tt CBBH
Converting from decimal to binary ... CFDB
Converting from decimal to hexadecimal~ CFDH
Converting from decimal to octal, Model I7w ONIB
Converting from hexadecimal to binary ... CBBH
Converting from hexadecimal to decimal ow CFHD
Converting from octal to decimal 00T ONIB
Converting Model I files to Model III files, TRSDOS CiT3
Converting numeric to strings .. . CSNV
Converting strings to numeric T CSNV / CFCS
Converting two’s complement numbers TCNU
Copies of files with the same extension, Model TIT WCCD
Copies, wild card, of disk files, TRSDOS, Model I WCCD
COPY, LDOS command, Model I/IIT """ CDFL / WCCD
COPY, TRSDOS commandoooooi CFSD / CFAD
COPY, TRSDOS command, Model I~~~ CFAD / CFSD
Copying a block of memory, Color Computer ZBUG program ZUEC
Copying a file to another diskette, Model IIT """ CFAD / CDFL
Copying a file to same diskette " CFSD / CDFL
Core image, saving, Color Computer EDTASM+ ZUEC
Counters, digital, deseription e DLSC
Coupler, acoustic, how to use e ACHT
Coupler, acoustic, what it is e MWAT
Cpu registers, displaying, Color Computer ZBUG program ZUEC
CREATE, TRSDOS/LDOS command, Model I/ oo CDFH
Creating a disk file, TRSDOS, Model IVIIL 7" CDFH
CSAVE, BASIC ... SBPT
Current line, assembler/editor, Color Computer EDCE
Current line, assembler/editor, Model UIL oo S1EA
Current line, BASIC Edit mode0 PIEM
Cursor control characters, Model VI_. ..o GHS1
Cursor, finding where it is e CFOW
CVD, BASIC commandooooo RDFB
CVL BASIC commando RDFB
CVS, BASIC commando o RDFB
D, BASIC ... DPHU
Data bits, RS-232-C, ... RSWI
Data communications systems, USING oo BBUS / CPSU
Data diskettes ... DDWA / DADF
Data separator, disk T e DEHM
DATA statements in BASIC DSRC / ODER
Data values in BASIC ... DSRC
Data values, assembly, Color Computer EDTASM+ ECCE
Data, formatting PRUU
Data, generating random in BASIC00 RDHT
Data, in BASIC arrays ... AGTU

How to do it on the TRS-80

DATE command, TRSDOS/LDOS, Model VII/IILoovvivnininiiiiieeieeenes DSDS / DFOT

DATES, BASIC command, Model IL oo iiiiiiiiiiiii e DIBP
Date, conversion to Julian, Model I TRSDOS .ottt DCJS
Date, entering, Model IIT oneiiiniiiiiiii e CDHT / THT3 / DSDS
Date, FINANE LOAAY'S +xv v v vvvnnnennnnnaas s aaaaaas et s e e te s DFOT
Date, in BASIC program, Model I/IILooouiiiiiiiii e TIBP
Date, in BASIC program, Model Il ooiiiiiiiiiiiiiii e DIBP
DD EITOT .+ v o v et et ee e ettt e e et e DDER
Deallocating an array, Model ILooieiiiiiiiii s DDER
DEBUG, cassette-based for Model I/IIL oooiiniiiiiiiiiiiaii i e CD13
DEBUG, Keep eNteringc.uuntnrnenenaunrneuaeaenseareraeisotetnte st ens DWDK
DEBUG, loading from Disk BASIC, Model 1 TRSDOS, Model VIIILDOS ...t DLDB
DEBUG, loading, Model T/ITTot otiu et DT1U
DEBUG, Model I/IIL, hOW £0 US@ .. vvuevnevnerntretnarieee ettt DT1U
DEBUG, TEENTETING .« vt e vneveeeetntaene e ettt e e ettt sttt DWDK
Debugging machine language PrOgramsoceeerenrrreerrneescrrsaronoes DT1U / BPFM
Decimal t0 DINAry CONVETSIONvututne et an et aa st CFDB
Decimal to hexadecimal CONVETrSIONuutenueeanee e ees CFDH
Decoders, digital, descriptioneeeuauiiinie i DLSC
DEF FN, BASIC cOmMMANA ... vtuttatatnatneeeaen ettt sres FBDF
DEFB, negative values, assembler, Model II/TIL ..ttt et enes AEU1
DEFB, pseudo-op, assembly, Model I/II/IIL AU UP POZA
DEFDBL, BASIC cOMMANG .« .vuttttateeenettnnnst sttt DPHU
Defining character sets, in BASIC, Color COmputeroouiruerereeerrernrrreeeesss DSBC
DEFINT, BASIC COMIMANA .ot vttuetataneienaiaeaas sttt eee IVHU
DEFL, pseudo-op, assembly, Model I/II/IILooniiiiinieninniei e e POZA
DEFM, pseudo-op, assembly, Model | 1721 74 1 1 S R POZA
DEFS, pseudo-op, assembly, Model I/II/IILooiineiiniierniarn e POZA
DEFSNG, BASIC COMMANG . .. tttrnatenenneneeeas et nee sttt sne e SPHU
DEFSTR, BASIC COMMANM .« ttetenatneten et asas ettt SHTU
DEFUSR use, Color COMPULET ... vvnvrarenenen et ee e e s CMEC
DEFUSR use, Model Tor IILo vt e CMD1
DEFW, pseudo-op, assembly, Model /II/IILoooviiiiinienininnerererrn e POZA
Degrees, and radian CONVETSIONutuunartnerreire e UTFB
DEL, BASIC COMIMANA .+ .t tuetteteneeria et sa sttt DLIB
DELETE, BASIC COMMANG ...« .vvnettnetnennenann et as ettt e DLIB
Deleting disk fIles vuvttntt et DFDA / DADF
Deleting lines in BASIC &ttt e e DLIB
Deleting remarks in BASIC programs, Model TILc.ovuiiniiininnrnnrrnernrreereres CPM3
Deleting source lines, assembler, Color COMPULETcvunavenarrnrreerenrrnrer e EDCE
Deleting source lines, assembler, JLY FoYe =) B 72 1 1 SN R R R R R S1EA
Deleting spaces in BASIC programs, Model [£ 1 S S I R CPM3
Deleting your BASIC Programc.eeuiinmrnnernaentnnmuaunaree s ns it PIEM
Delimiters, sequential disk filesouenaiiiii e SDFB
Desoldering an integrated CIPCUILvuveevinararner i ICRS
Desoldering t00l, USINE ..o v veunrnrune ettt SHTO
Device drivers, Model I/IIT LDOS SyStem « -« «««vxevnernernarnnennenssramuseenarecrtescs SDTD
Devices, changing, in Model I/IIl LDOS Systemc.ocueurnirnnererrnremrereereeses RDLD
DEVICE, TRSDOS command, Model Iot D1ITW
Diagnostic, assembler, Color Computer 10} D3 VN3 & SRR R AECE
Diagnostic, assembler, Model 1741721 1 S R R R R AEDI
DIAGROSHIC, AISK . .« « e et et ee ettt DEHM
Differences, Model T vs. IILo oiuin ittt M13H
Digital logic, desCriptionoeeeuentrennnnerri i DLSC
Digital VOIMEEr, USINE ..o vvunetenee ettt st VMHT
DIM, BASIC COMIMANG .+t tveuinenenaene et an sttt AGTU / DDER

How to do it on the TRS-80

DIN plug, RS-232-C, Color Computerc.......... . RCCC
DIN plug, joystick, Color Computer ... JPPO
Diodes, description ... LDHT
Diodes, zener................... LDHT
Dip switches, on RS-232-C boardooo T RHS1
DIR from Disk BASIC, Model Iooo oo DFBH
DIR, TRSDOS command, Model Ioooo oo DLM1
DIR, TRSDOS command, Model IToo DLM2
DIR, TRSDOS command, Model ITTcoooii o DLMS3
Direct page register, setting, in assemblies, Color Computer EDTASM+ POCE
Directory from Disk BASIC, Model TINLDOSoovoeeeon DFBH
Directory listing, TRSDOS, Model Iocooiii DLM1
Directory, TRSDOS/LDOScoiiiiiiiiiiiiniianinn DIDI
Disassembling memory, Color Computero ZUEC
Discrete inputs, Color Computer DICC
Discrete inputs, Model Tor Ioooo oo DI13
Discrete output, Model I/II/Color Computer~""" CCAM
Disk reboots ... CPWR
Disk BASIC only error ... L3ER
Disk buffers, in Disk BASIC, e RDFB
Disk diagnostic ... DEHM
Disk directory, listing, TRSDOS, Model I0moee DLM1
Disk directory, listing, TRSDOS, Model II0 DLM2
Disk directory, listing, TRSDOS, Model Il~=" DLMS3
Disk directory, what it is L DIDI
Disk drive, whichis 0 DZDO
Disk drives, 40 track mods T DEHM
Disk drives, aligning DEHM
Disk drives, double density mods DEHM
Disk drives, write protecting via BASIC WP, Model IILooovunenn DWPR
Disk errors, how many are excessive T DEHM
Disk errors, trapping ... ETIB
Disk file buffer ... SDFB
Disk file buffers, Model /I ...noee HMF1
Disk file not found ... FNFW
Disk file, deletingo. L DFDA
Disk file, examining DT1U
Disk file, killing without passwordo KDFW
Disk file, patching, Model 10To DT1U
Disk file, RENAMEINgoooiii i RADF
Disk files, access to ... PWDS
Disk files, appending to in BASIC 00T SDFB
Disk files, ASCIT ... AFWA
Disk files, closing BASIC, SDFB
Disk files, copying T CFSD / CFAD / CDFL
Disk files, deleting T DADF / KDFW
Disk files, how system finds el FHSF
Disk files, names ... FNMH
Disk files, opening BASICo.o SDFB
Disk files, protected ... FNMH
Disk files, sequential, BASIC oo SDFB
Disk files, speeding up access T DFAH / CDFH
Disk files, visible and invisible Rl VAIF
Disk light, when is it on? DLWS
Disk sectors ... RDFB

How to do it on the TRS-80

DiSK, GIAZNOSTIC + + v v v« vveeen e ae s e e s s s st e s DEHM
Disk, dumping, Model I/ITl LDOS Operationccoeereeenererrrmrrrsrmmsrrrrsssss DT1U
DISKELEE, DACKUD « « « v v e e e eveeeeesne e eeaee e s et ne s s BDSM
Diskettes, brand recommendationoeeeen i DEHM
DHSKELEES, QALA .« « v e e v ee e eeeeee e n e a e e e DDWA
Diskettes, flip Side, USINE . .o rvvrennneeereerenenn e DUFS
Diskettes, RANALNE . ..o v vveennerrnneee e DEHM
DiSKEEES, INSETLINE « « v v vv e evneenns e e ea e e s st DINS
DASKEEEES, SYSEEIM « .« « v v s e e eeune e e see e e s e s et SDWA
DiSKEttes, USINE CHEAD .+« « e e vvvneerrennneeea e e see e sttt DEHM
Diskettes, using flip SIA@ ... ervrnneeen e DUFS
Diskettes, Wite PrOLECHINE . - « v ..o vrvnnereenaaeense sttt DWPR
Display characters, Model J/IILoooniieinieanee e s GC13
Display mode, Color Computer ZBUG PrOZIaM . .o oouernrneenaenenasnsreseasnssnees e ZUEC
Display starting address, in COIOT COMPULET ..« v oevenanneeneann s ettt CDOC
DiSPlay, CLEAIINE vvveteeeeeeesn e ees sttt CLTD / SCM1
Display, Protecting Neseeeeresrreneeeeamnuuneeenmunrseerres s SHTC
Display, stopping in BASICovoiiiiiiiiiiiinni e TSPD
Displaying at any screen 0Cationooneeieuuneriaeeee s HTDS
Displaying block of memory, Color Computer ZBUG Programoeeeooenmenacrceeee: ZUEC
Displaying cpu registers, Color Computer ZBUG Programoeeeeeeurnrnerceerenss ZUEC
Displaying source lines, assembler, Color COMPULEToutnieiarneerenarmrrrre s EDCE
Displaying source lines, assembler, Model T/TIL .« oot iie e S1EA
Distributors, how to get parts fromoveieiierneen e EPWT
DIVIAE DY ZETO EITOT . ..« e e v e eeeesa e e eeae e s s s e s s et DZER
DAVIGINE DY ZETO « + v vt e e e ee e tie e e s s st s st DZER
DO files, Model II/IIL TRSDOS ... ooiviniiiiiiaaiiii et s et JCLW
DO, TRSDOS/LDOS COMMANG .+ .11 cvnueennanssesssssssse s e st sr e JCLW
Dollar amounts, PIANEINE . . .« ««eevnrrnrnaenneremeraeeneuamnaases e et PRUU
Dollar amounts, rounding offoieerner it ROOF / PRUU
Double quotes, in sequential disk filesoovveeiiiiiniiierireine SDFB
Double-precision variables, how 10 US€uuuneirrririnrenre DPHU
Doubly-dimensioned aITAY BITOT rrreesnnnnessrrunsnss s aseorssrs st DDER
Down arrow, in BASIC @ditsounvneenerrnnrnreane et BLTL
DP ERROR, assembler message, Color Computer EDTASMAt vttt iiiaeiaainaaaes AECE
DP register, setting, Color COMPULET .+« + e teeveeees e s s s e s s st POCE
DRAW, BASIC command, Color COMPULET .+« « e vevesneaeenae s as e sa st e DSBC
Drive 0, WHich 8 52 ..o v v v eeeun e e et e e e e DZDO
Drive specification, file NAMESovrririeinna FNMH
Driver, Line Printer, Modelocuniiiniiineerinr e LWD1
Driver, Line Printer, Model TILcouuiirnimineennrunnrreen s LWD3
Drivers, device, in Model I/III LDOS SYSLEIM .+ ot vvveeevenanae e SPHT
Drives, disk, how to insert disketteooiirinniiiiiiarernerrrnnrrre e DINS
Drives, disk, DUMDEIING ..o outnttre et DZDO
DUAL, Model III TRSDOS commandooeneerenrmnnareneermmrenmsrrssnes PTSC / RUOF
DUMP command, LDOS, Model I/IIIonininiiiiiiiiea e DMTL / LMLD
DUMP command, TRSDOS, Model Iooiuininiiiiiiii e DMTT / LMLD
DUMP command, TRSDOS, Model ITiuininiiiiiiiiie e DMT2 / LMLD
DUMP command, TRSDOS, Model IITcoiiiiiinmniiirnir e DMTS3 / LMLD
Dumping memory to disk, Model I TRSDOS .ottt raiin e enan e DMTT
Dumping memory to disk, Model ILLDOS oottt eititae et DMTL
Dumping memory to disk, Model I TRSDOS vttt DMT2
Dumping memory to disk, Model ILTRSDOS .« ottt it aa e DMT3
Dumping screen to line printer in BASIC, Model IITvntiiin i e DSPR
Dumping screen to printer, Model T TRSDOS oottt eaan e PTSC

How to do it on the TRS-80

Dumping to line printer, data communications CPSU

Duplicating screen to printer, Model Il TRSDOS 7" PTSC
E format, BASIC ... AOIB / SPHU
Echo-back, RS-232-C ... oo RSWI/ MHTU
EDAS, notes R EDAN
Edit buffer, Color Computer EDTASM~+ e e EAIM
Edit buffer, redefining location of, Color Computer EDTASM+........................... EAIM
Edit mode, assembler, Color Computer ... EDCE
Edit mode, assembler, Model /Il 0000000 S1EA
Edit mode, BASIC ... e EMBH
Edit range, editor/assembler, Color Computer EDCE
Edit subcommands, assembler, Color Computer " EDCE
Edit subcommands, assembler, Model I/IIT S1EA
Editing a line, in BASIC e EMBH
Editing source lines, assembler, Color Computer~ EDCE
Editing source lines, assembler, Model I/IIT S1EA
EDTASM+, Color Computer, arithmetic ECCE
EDTASM+, Color Computer, expressions 7" ECCE
EDTASM+, Color Computer, general B EDCE
EDTASM+, Color Computer, logical operators " ECCE
EDTASM+, Color Computer, modulus operations " ECCE
EDTASM+, Color Computer, negative numbers " ECCE
EDTASM+, Color Computer, relational operators " ECCE
EDTASM+, Color Computer, shift OPETators iiiiiiiiii ECCE
Electronics parts, where to BEL oo EPWT
ELSE, BASIC command 00 ITEL
End of file, in sequential files 000 SDFB
END, BASIC command 000 EPHT
END, pseudo-op, assembly, Color Computer EDTASM+ " POCE
END, pseudo-op, assembly, Model /II/IIT POZA
Ending a BASIC program e EPHT
Entering values in BASIC i IDFK
EOF, BASIC command, in sequential disk files SDFB
EQU, pseudo-op, assembly, Color Computer EDTASM+~""""" POCE
EQU, pseudo-op, assembly, Model VI/III e POZA
Equipment failure, how often e FHOF
EQV, BASIC command, Model IT00"0eseeeees LOHT
ERASE, BASIC command, Model IT DDER
Erasing a keyboard character00 T BSEC
Brasingaline ... BSEL
Erasing your BASIC program [EYBP
ERL, BASIC command 0000 ETIB
BRR, BASIC command ETIB
ERRS$, BASIC command ETIB
Brror codes ... UEER
ERROR R ETIB / UEER
Error messages, assembler, Model I/I/IIL~ % AEDI
Brror processing ... ETIB
Brror trapping in BASIC ETIB
Brror types, BASIC ETIB
Brrovs, Disk ... DEHM
Escape Sequences, in SCRIPSIT 0000000 ECIS
Escape Sequences, NEC Spinwriter ... NECS
Bven parity ... RSWI
Examining disk, Model VI LDOS DT1U
Examining memory, in ZBUG, Color Computer EDTASM+ ~""" ZUEC

How to do it on the TRS-80

Examining memory, Model /IIL DEBUGoiviiuiriinnrrnunnernrnnaenrennerresrsnes DT1U

Exclamation point suffix, what does it mean?c.ooieiiriarierirnirrinrraeneeny SPHU
Exponentiation, BASICiiieitiiiiiiineeetnii s AOIB
EXEC, BASIC command, Color COMPULETutuuvernernerrnrrnerrnernarnaernrsr et LEMC
EXPRESSION ERROR, assembler message, Color Computer EDTASMA+iiiiiiiiiianenes AECE
EXPRESSION ERROR, assembler message, Model 721 1 S R R AEDI
Expressions, BASICiiieet ettt AOIB
Expressions, BASICoiioieeeeetattneeiateeeeeai PHTU
Expressions, Color Computer EDTASMtoviiiiininiiiiirnnrnnnrerrerrrrr s ECCE
Extended DEBUG, Model /TIILDOS ... ttniiiniiiiiierae it DT1U
FEXtENSION, Ile NMAIIES . ..ot vereeetenenes e e ee e asa s et sa s asaseatescntsttnnteeecnses FNMH
Extension, object file, assembler, Model 172 1 1 S S1EA
Extension, source file, assembler, Model 174 1 1 R S1EA
Failure, how OFLEN?t vt et et e e e et s s e et st FHOF
Faster BASIC PIOGLAINS ... veenvnesneneenesasnasestnstasussasnaetetnssnitutetrreesss SUBP
Fatal errors, assembler, Model I/IIL ouvuinininiinii i e AEDI
OO) T R FCER
FCB, pseudo-op, assembly, Color Computer EDTASM+ooiiiiiiiiiieieiiinannn. POCE / ECCE
FCC, pseudo-op, assembly, Color Computer EDTASMt .ottt iiinenrrnneneasnaanes POCE
FD EITOT o v v o e e et et e et e e ettt e et a e s FDER
FDB, pseudo-op, assembly, Color Computer EDTASMA+ . iiiiiiiiiiiiieiae e POCE / ECCE
FIELD OVERFLOW, assembler message, Model I/II/IILovviveinininnininereneneenenes AED1
Field specifiers, in PRINT USINGcovuneatinnnerreeaeauunnrerann s ennreersss PRUU
FIELD, BASIC COMMANG .. o\ evtvnernenstestnenassaseseasuaau s tnssn st RDFB
Fielding random files in BASICcoiuuniiiuuiiimiinniriiiiiarree e RDFB
Fields within strings, NOW £0 USEevuereenenenruararneneesrnmnanmuecncesernrnnrrrses SACW
File DUFEET, QSK . . o v oveesee e et eeaeaa s e et a st ss e s SDFB
File buffers, Model I/ITILo .iu ittt aa ettt HMF1
File ALA EITOT « v e v v e e e e ettt e e e e e a e aaa et st et aaas st s st FDER
File NAINE FOFTALS « .« o\ s v e e e et ee e eeanenn s et e e e enaaaestasoananansasencrssnnsnsas st FNMH
File NAMES, NOW T0 USE « « e vt veenentunranenseae e e aaaeaessusasteatuesereretntrmrcetesss FNMH
File 110 FOUNA EITOT v v vttt et e e et i a e e e a s e e e st sas e ar s st FNFW
File size, sequential disk filesouuerneenniiriiariiii e SDFB
File, disk, AElEtilZ vuerneuneren ettt s i ettt DFDA
File, disk, examining, Model TIL vuueenniiiuiiii et DT1U
File, disk, killing without Passwordsoceeenrenernreirmnaareeernrnsrncrres e KDFW
File, disk, machine language, loadingooiieeeniiniriinreerennrnnnnereees LMLD / LMFI
File, disk, patching, Model TILouuerniuimrimrnaerniiniaunnraeeunrnnernereeneres DT1U
Files, ASCIL . ..ttt et et e e e e e e AFWA
Files, BUILD ...\ttt e ettt e e ean et a e aas sttt s sttt JCLW
Files, cassette tape, using, Color Computer ZBUG programooeeeerenenreree, e ZUEC
Files, cOPying 0N GiSK ... ovvuueeerrn e CFSD / CFAD
Files, disk, how system findsceeueeueerunaeeuaneenaernmnnnsereerrnnnrrretes s e FHSF
Files, disk, PIIEINE .« ..o v v e eeernnene e enaaaeaiaas s PDF1 / LDF2 / LDF3
Files, disk, ProteCtedc...oeuuneeeuneennerrnameeearanaranaaere et FNMH
Files, disk, SEQUENTIAL v v ettt ettt SDFB
Files, disk, SPEEAING UP « « v+ v v v vnevnernenaeneaenaanase et saatrasscasata e e DFAH / CDFH
Files, disk, visible and invisiblec.oeeneiniiioerernnrinirranr e VAIF
FlES, DO v oottt et e e et e e JCLW
Files, Model I/III Disk BASIC, how T 2 A R EEEETREREREREREE HMF1
Files, sequential, BASICuituneerueiiniiiaeti ittt SDFB
Filling in colors, in BASIC, Color COMPULETvvueerenerenerrnanrennenenrennnecees PCCC/ DSBC
Filtering, POWer LNuuunerrnneenn et et aee ettt CPWR
Finding text string, assembler, Color COmMPULETc...viuurrrnrrrerrnanrererenreses EDCE
Finding text string, assembler, Model 74 11 S R R R S1EA
First character of a String tO NUIMETICvererer e erenensnensesaetueuananererurrmsercrsss CFCS

How to do it on the TRS-80

Five-volt supply, what touseooo PSWU

FIX, BASIC functionoo oL IPNF
Flip Side of diskettes, USING « o DUFS
Flip-flops, description DLSC
FN, BASIC commandooo FBDF
FOR ... TO loops, breaking out00 FTLO
FOR ... TO, mesting ... NFER
FOR...TO...STEP, BASIC command FTST / FTLO / NFER
Foreground, background PrOCeSSINGuuiiiii ittt DT1U
FORMAT commandooo BPSP / BDSM
Format, /CMD files ... CFFT
Format, BASIC lineso.o LFBA
Format, file names L FNMH
Format, of PRINTed variables 000000 SIPS
Format, sequential files .. e SDFB
Formatting a diskette L BPSP
Formatting data......................... T PRUU / CHTP / SIPS
FRE, BASIC command .. T e SSFA
Free string space, finding .0 SSFA
FREE, TRSDOS command 000 neeeees DSHI.
Full-duplex, RS-232-C ... RSWI/ MWAT / ACHT
Funetion call error ... R FCER
Functions, BASIC, defining .. e FBDF
Getting back to Level II BASIC from DISK BASIC, TRSDOS, Model I HTGB
GET, BASIC command (graphics), Color Computer GAPC
GET, BASIC command (non-graphics) RDFB
Getting back to TRSDOS from BASIC~~"""" TGBB / RTDB
GOSUB, BASIC commandooooo o, e SUBB
GOSUBS, nesting in BASIC 0000 RGER
GOTO, BASIC commandoo.o BPIB
Grans, converting to bytes ... DSHI.
Granules, converting to bytes T DSHL
Granules, what are they? T DSHL
Graphics architecture, Color Computer GPAR
Graphics characters, Model VIIT00 GC13 / SRBH
Graphics color codes, Color Computer........................ GMIC
Graphics color sets, Color Computer S GMIC
Graphics logic, Color Computer 0000w GPAR
Graphics mapping, Color Computer ... GMPC
Graphics modes, Color Computer 07" GMIC / SUCG
Graphics modes, selecting, Color Computeroo SUCG / SVDG
Graphics pages, Color Computer ... T GMPC
Graphics screens, Color Computer~ GMPC
Graphics strings, Model VIIL -00000wceeeeeees GHS1
Graphics worksheet, Color Computer e FSGC
Graphics worksheet, Model I/IIL 00000 FSGW
Graphics worksheet, Model Io FSG2
Graphics, clearing screen ... SCM1
Graphics, high-speed, Model /I GHS1 / AN13 / SRBH / SUBP
Graphics, SET/RESET, Model VIIL~ 00 """ 0=%%% SRBH
Graphs, in BASIC, Color Computer ... PSBC
Greater than operator, BASIC 00000 rreeeeeeeeee ITEL
Green on black characters, Color Computer..................... RVCC
Half-duplex, RS-232-C................................. RSWI/ MWAT / ACHT
Hardware errors, disko L R RS DEHM
HELP command, TRSDOS, Model Il e CHON

How to do it on the TRS-80

HEXS$, BASIC COMIMANG .+ .t tvvtttetann et ettt ettt e st CFDH

Hexadecimal notation in BASICttt i HNIB / CFDH
Hexadecimal to binary CONVEISIONueeeeeenaeetenennueenannreeraineaae et s CBBH
Hexadecimal to decimal conversionooeeiieereiiniiiamneeiiaeananes CFHD / ZUEC
Hierarchy of BASIC evaluationeeuenuinuiumranant ettt e PHTU
High-speed graphics, Model I/IIToiniiniiii e GHS1 / AN13
Home position, Model I/IIL oouiiii e CLTD
How Many Files?urttt ettt et ettt e HMF1
HoW £0 INSEIt AiSKETEES -« v vttt et e e et e e et e e it e et e e e DINS
How to load TRSDOS, Model IILottt e THTS
HOW £0 SOLAET .« v v v vttt et ettt et e e e e e et e et et st SHTO
How t0 SEOP the PIOZIAM . ..o\ v vttt et sttt e ettt TSTP
HoW 0 tUIN ON COMPULET . .« o v e v e et vaeeneeans ettt e e s e ns e s e ss st as et st TOCH
How t0 use SIt and WIaD .« .vonntt ettt SWHU
HOW 0 WITE WEAD « v e vv e teee e eeeete et e e e m e a e s e e e s et sttt WWHT
I/ POTES .+ e v ettt et et et e e e et e e e IOHT
/O, BASIC ..ttt ettt et IOHT
IC, fINAING PIN 1 oottt et et ettt e e e e e e ICIG
IC, removing @ SOIAEreduuunrnrnt et ICRS
IC, removing from @ SOCKELvuoretete et ICSK
IS, WHETE £0 EE ot et e ettt et ettt e ettt e et e e EPWT
LD I Ce) T IDER
IF.. THEN, BASIC COMMANGvvnutttintenenee et aie ettt ITEL
IF.. THEN.. ELSE, BASIC commandoueenoneemreennneanneamreaneeaneemnereeneses ITEL
ILLEGAL ADDRESSING MODE, assembler message, Model | 2172 € 1 AEDI
Tllegal INAIreCt BITOT\ttt ettt ettt et ettt IDER
ILLEGAL OPCODE, assembler message, Model I/II/ITLoooviviiininiiiiiiiineeenn AEDI
IM command, Color Computer EDTASM+ ... oot EAIM
IMP, BASIC command, Model IIooiiiiiiiiiii e PN LOHT
IN instruction, Z-80 R IOHT
In-memory assembly, Color Computer EDTASM+covvininniinnns EDCE / ZUEC / AOIF
In-memory assembly, EDAS assemblero EDAN / AIOF
Inductances, deSCIiPtiOnvvu et ouue e e LDHT
TNIHALZING AITAYS .« .« ottt e et et e et ettt et et e e ettt et INAR
INKEY$, BASIC command, How to Useoouiiiiiiiii e INHU
INP, BASIC COMMANM . ..\ vteteeientetee e ettt et e ettt IOHT
Input mode, Color Computer ZBUG Programceoeiveieriiinrrrerneneene s ZUEC
INPUT#, BASIC cOmMANGdouvtnrtinteneaneetintataas ety SDFB
INPUT, BASIC COMMANA .« v et ttntenete ettt tne sttt IDFK
Input/output, BASIC ..ottt IOHT
Inputs, discrete, Color COMPULETtuentit ettt DICC
Inputs, discrete, Model I/TIL oiniinitee e DI13
Inputting values t0 BASICottt IDFK
Inserting a line, BASICttt ALIB
Inserting an integrated CITCUIL vuve vttt ICIG
Inserting source lines, assembler, Color COmMPULErhvniieiiieiernirr e EDCE
Inserting source lines, assembler, Model 1 74 1 1 R R R R S1EA
INT function, BASIC ...\ttt ittt IPNF
Integer function, BASICottt IPNF
Integer portion of a number, fiInding IPNF
Integer variables, NOW 10 USEoutneeen ot IVHU
Integer variables, SLOTAZEeeuntne ettt IVHU / SUBP
Integrated circuit, finding PIn 1 ouiuen ittt ICIG
Integrated circuit, INSETtINGoviunen et ICIG
Integrated circuit, removing a solderedo ICRS
Integrated circuit, removing from a SOCKEE © ottt e e e e ICSK

How to do it on the TRS-80

Integrated circuits, where to get T EPWT
Interfacing BASIC to machine language, Color BASIC, Color Computer CMLC
Interfacing BASIC to machine language, Disk BASIC, Model Tor IIT CMD1
Interfacing BASIC to machine language, Extended Color BASIC, Color Computer CMEC
Interfacing BASIC to machine language, non-Disk BASIC, Model Tor ITT CML1
Interfacing to real-world, Color Computer DICC
Interfacing to real-world, Model Tor Il07nmwes DI13
Inverter, digital logic T DLSC / LDHT
Invisible disk files VAIF / ADFC / ADFL
JCL files, Model I/IIL LDOS / JCLW
JCL, in LDOS Operating System .. JCLW / LDOS
Job control language, in Model V/IIL ... " LDOS / JCLW
Joystick plugs, Color Computer JPPO
Joystick port, connecting real-world inputs to, Color Computer DICC
JOYSTK command, Color Computer .. .o ADIC
Julian date conversion, Model IIT/ DCJS
Justifying columns ... CHTP
Keyboard line, erasing BSEL
Keyboard, entering data from e IDFK
Keyboard, reading a character e INHU
KILL, BASIC command DFDA
KILL commandooo DFDA / KDFW
KILLing disk files DFDA
L command, assembly, Color Computer ... EDCE
L3 error ..o L3ER
Large character mode in BASIC, Model V/III~'" TCMH
Large numbers, BASIC AOIB
Last BASIC program statemento EPHT
LDOS commands ... CWTC
LDOS, device independence LDIS
LDOS, how toloadoo Li13L
LDOS, JCL ... JCLW
LDOS, logical devicesoooooiiioiiii e LDIS
LDOS, Model I/II, ATTRIB command ADFL / ADCL / PWDS
LDOS, Model I/III, AUTO command .. 7 AEDP
LDOS, Model /I, BACKUP command BPSP
LDOS, Model I/II, BUILD command ..o"n JCLW
LDOS, Model I/Il, CLOCK command~ CDHT
LDOS, Model /I, COPY command 7o CDFL
LDOS, Model I/IIl, CREATE command"" CDFH
LDOS, Model I/Il, DEBUG command~ DT1U
LDOS, Model I/III, DOcommand R JCLW
LDOS, Model I/IIl, DUMP command07 DMTL
LDOS, Model I/ITl, FORMAT command BPSP
LDOS, Model /I, KILL command7 DFDA
LDOS, Model /I, LIB command -0 CWTC
LDOS, Model I/IIT, LINK command~"""" LDLD / PTSC
LDOS, Model I/II, LOAD command " LMLD / LMFI
LDOS, Model I/Il, MEMORY command "7 CMHT
LDOS, Model /I, PURGE command~ KDFW
LDOS, Model /I, RENAME command->"7 RADF
LDOS, Model I/IIT, RESET command RSLD / RDLD
LDOS, Model I/IIl, ROUTE command~ RDLD
LDOS, Model I/IIl, SET *CL command " RHS! / RHS3
LDOS, Model VI, SET command .._ = SDTD

How to do it on the TRS-80

LDOS, Model I/III, SPOOL commandc.eeouirtniurearnteinauan et SPHT

LDOS, Model I/III, SYSTEM cOMMANGuvvrunenmnenrneaemnmnee et BKHT
LDOS, Model I/III, TIME commandoeueneeenmmrnenenaramtean e TSRT
LDOS, Model I/IlI, TRACE command AP UPIPIPIPPUPS P S TRUS
LDOS, Model I/III, VERIFY commandc.cuiuirmrarneeararnentnananirareceeneee: VTTO
LDOS, What 18 12 ..o v te ettt et e e e et LDOS
Leading asterisks, Printingoououoeen ottt PRUU
Leading sign, PrANtINGot ttne ittt PRUU
Leading zeroes, deletingoouounenanen it PRUU
LLEFE ATTOW « « v v v e e ettt e e e e e e e ettt e et e e BSEC
LEFTS$, BASIC command, how t0 USeoueieiniiniiiiiiiii e SACW
Lemons, COMPULET SYSEEINS . ..o v vuvueneneaneeenentaeasasas ettt FHOF
LEN, BASIC COMMANG .. tntttntatttant et an et eiaat ettt aee et SFLO
Length of SEENE ..o .ttt SFLO / CHTP / LSER
Less than operator, BASICuiututnmnenntti i ITEL
LET, BASIC command, what to do about itc..cooiiiiiiiiiiieiiiiiieee LBWT
LIB command, LDOS ..ottt CWTC
LIB command, TRSDOSttt ittt it a et CWTC
Light on disk drive, when is it ON? ... ouiiiiii e DLWS
Line editing, in BASICo\ttt EMBH
Line format, BASICttt ittt it LFBA
Line numbering, automatic, BASIC, Models I/II/IILouiniriiinininiininiiiieeeees LNAT
Line printer drivers, Model Tooin it LWD1
Line printer drivers, Model IIIiuiuiuiiii e LWD3
Line printer IIL, FDDONSttt LP3S
Line printer ITL, SOftWare NOTESvuvvvrenentt i LP3S
Line printer, displaying screen, Model IITot DSPR
Line range, editor/assembler, Color COMPULEriuiiieninirieiniinnrnrneenrne s EDCE
Line spacing, changing for Line Printer IILooiiiiiiiiieiiiiiieeeeeee LP3S
Line t0o long in BASICttt BLTL
Line, BASIC command, Color COmputercoooeinieiineonneinnannnanes e DSBC
Line, BASIC, t00 long in Printingeeeeeoniriniiirnenninin e BLTL
Line, deleting, BASICttt DLIB
Line, erasing, BASICttt BSEL
Line, inserting, BASIC ttuin it ALIB
Line, replacing, BASICttt RLIB
LINEINPUT#, BASIC COMMAN . ..ottt itttaneeeee et ran et SDFB
Lines, BASIC, multiple Statementoeeureinintaeearareneinnanrarern s MSLH
Lines, BASIC, renumbering in LDOS ittt RNBM
Lines, BASIC, renumberingouuiutantnteneonetaataa i RNBL
Lines, drawing in BASIC, Color COMPULETv.veututuin et DSBC
LINK, Model I/III LDOS €omMMANd ouvunentneearanar st cat st LDLD
Linking 'devices, in Model I/IILoonieiuini e LDOS
LIST OFF, assembly, Model I/IILo innuii i POZA
LIST ON, assembly, Model I/IIL utnuinnrt et POZA
LIST, BASIC commando.vvvtennanneneeneannnneassns et et aa e s LBAP
LIST, TRSDOS, Model I ...ttt LDF1 / SDFB
LIST, TRSDOS, Model Iottt LDF2 / SDFB
LIST, TRSDOS, Model IITttt LDF3 / SDFB
Listing BASIC PrOGIAM e e uvntntitanenseae ettt a ettt sttt LBAP
Listing a disk file, TRSDOS, Model Iooiiiiriiiiiii e LDF1
Listing a disk file, TRSDOS, Model Io ieiiniiiii e LDF2
Listing a disk file, TRSDOS, Model IIIoiiuiiiiiiiiiiii e e LDF3
Listing the disk directoriesouiutenunntini i DLM1
Listing, assembly, Color COMPULETooutteniniiiitatai i EDCE
Listing, assembly, Model I/IIL \tuiutnet ettt e S1EA

How to do it on the TRS-80

Listing, assembly, surpressing, Model I/IITcccoouuuuiii POZA

LLIST, BASIC ... e LBAP
LOAD, BASIC ... SBPD
Loading a machine language file from diskooooiiniio LMLD / LMFI
Loading BASIC files from cassetteooiiiiuieneninnnn SBPT
Loading BASIC files from diskooiiiiiiiiiiii SBPD
Loading LDOSoo. i T L13L
Loading machine language file from Disk BASIC, Model TIT LMLB
Loading multiple files from disko T LMFI
Loading problems, cassettec.ooiiiiiiiiiiiiiiiiai CTLC
Loading source files, assembler, Color COmpPUtercooveoroone EDCE
Loading source files, assembler, Model I/IITcoouveeuiunnnnnnn S1EA
Loading TRSDOS i T THTS3
Loading ZBUG files, assembler, Color Computeroovuiuinininn EDCE
LOF, BASIC commandoooiuiiiiiiiiiiiiii i RDFB
Logic diagram, readingoo LDHT
Logic probe, using ... LPHT
Logic signal levels o DLSC / LDHT
Logic signal names ..o LDHT
Logic symbols LDHT
Logic, digital, description e e e e DLSC
Logical devices, in operating systemcoooiuueiiiiisiii T LDIS
Logical operations, BASICccooiuiiiiiiiiiiii i LOHT
Logical operators, assembly, Color Computer EDTASM+ ... ECCE
Logical record length, changing, LDOS, Model V/IILoooooo CDFH
Loops in BASIC FTST
Loops, breaking out ofcooiiiii FTLO
LP option, assembly, Color Computerc.oouuiiuunneennne EDCE
LP option, assembly, Model I/IILooiiiiiui i S1EA
LPRINT USING, BASIC commandc.ooviuiiiiianinnni PRUU
LPRINTS t0 PRINTS0viiiiiiiiiiii i PLPB
LSError ... e e e e e LSER
LSET, BASIC commandcuuiuiuuiiiiiiiiiisiiiii T RDFB
Machine language, what it is? .. e e e e e e e MLWI
Machine language files, loading from cassette, Color Computer LEMC
Machine language files, loading from cassette, Models I/IIL LMFN
Machine language files, loading from diskcoovveeeeieooo LMLD / LMFI
Machine language instructions ... MLWI
Machine language programs, checking out, Model I/IIT DT1U
Machine language programs, debugging, Model I/IIL_ DT1U
Machine language programs, generating perfect_ ALCW
Machine language programs, interfacing to for Color BASIC, Color Computer CMLC
Machine language programs, interfacing for Disk BASIC,Models I/IIT CMD1
Machine language programs, interfacing for Extended Color BASIC, Color Computer CMEC
Machine language programs, interfacing for non-Disk BASIC,Models VIIT CML1
Machine language programs, loading from Disk BASIC Model III LMLB
Machine language programs, memory for PROT
Machine language programs, stepping through DT1U
Machine language programs, transferring control to from BASIC, Model I/III non-disk TCML
Machine language protected areaoooiiiiiiii i PROT
Macros, in EDAS IV e e EDAN
Magazines, using programs fromciiiiiiii MUPF
Making a backup diskette ... BDSM
Manual origin, Color Computer EDTASM+oooooeuiiioo T EAIM
Map, memory Color Computerooviiuuuieinniiinnnnen MMCC
Map, memory, Model I/IITccooiuiiiiiiiiiii i MMM1

How to do it on the TRS-80

Map, memory, Model ILu i e MMM2

Mapping, graphics, Color COmMPULErouuiinent ettt ae e GMPC
Master PASSWOIrd . ..o .voueenntrntiineenuernrenneaneaneaseeroeeanens PWDS / ADC2 / ADCL / ADCT
Measuring voltage, current, resiStanceoueeeueeeenntriiiiaariiiiieiiiaa . VMHT
MEM, BASIC fUnctionutueeerniiietiiiieeeesnanantaessannnnesesasaeusteannnen., MFAL
Memory map, Color COMPULETiiiiiuieriiniiieeeanseniet it eaaiiittanennoe, MMCC
Memory map, Model I/IILot i it aaee MMM1
Memory map, Model II oo i e MMM2
MEMORY SIZE I'@SPOMSE .+t vtvvttee et eteesteanesssnenaseoneesaseananessasssniseiiiiineesesss PROT
Memory to disk, dumping, Model I TRSDOScoiiiiiiiiiiiiiiin, DMTT / DMTL
Memory to disk, dumping, Model I/IIL v LDOS
Memory to disk, dumping, Model IITRSDOSot DMT2
Memory to disk, dumping, Model IIl TRSDOScoiiiiiiiii i DMT3
Memory, changing in DEBUG, Model I/IITo DT1U
Memory, clearing, Model II/IIL TRSDOSottt CMHT
Memory, copying a block, Color Computer ZBUG programooiiiiiiiiiiieenis ZUEC
Memory, displaying a block, Color Computer ZBUG programc.coiiiiiiiieaenn.. ZUEC
Memory, examining, in ZBUG, Color Computer EDTASM+ ...t ZUEC
Memory, examining, in DEBUG, Model I/IILo DT1U
Memory, finding amount leftt MFAL
MemoOry, ProteCtNEt vttt ittt enneesiaeaaasssaeesaneeeauaseanneennsesaneensscns PROT
MERGE, BASIC commandcueueutttitetietearrinesrasnaanaaasssossaaiianaanneseees MTPB
Merging BASIC PIOGramsuueiiiueeennsearesaneesenseianeseainesanneanesemontenn: MTPB
Messages, assembler, Model I/ITLo e AEDI
Microprocessor, which type in your system?l MLWI
MID$, BASIC command, howW t0 USE cvvttttttttrenereeaesssstttieseiiaaanaananennns SACW
Minus sign, BASICttt i i i e AOIB
MISO S Y S ittt ettt et ettt e ettt et e e e i i e e EDAS / EDAN
MISSING END, assembler message, Color Computer EDTASM+t AECE
MISSING INFORMATION, assembler message, Color Computer EDTASM+ AECE
MISSING INFORMATION, assembler message, Model I/II/IIL ..., AEDI
MiSSINg OPErand @ITOrurttttinuueeeennnneeesaaneeessssnsaatoesonoaioaaesennessse MOER
MISSING OPERAND, assembler message, Color Computer EDTASM+ AECE
MiSSING OPETaNnd EITOTt .uvttinueetnneeenneeanaessessensessnuesennseeanseeneeneusssos MOER
MKDS$, BASIC cOmMmMaAndouutetrnnnetetetttunnnneteeataiinasssessnaseteeensannnanns RDFB
MEKIS$, BASIC commandoiiurintttteterniaiatsseesonnnnasseessannsstsreninannssss RDFB
MEKSS, BASIC cOmmMANA . ..\vtteeeiteeeetsintetinnetaersanneeeeseaaananneeserinnsnnanns RDFB
Mnemonic mode, Color Computer ZBUG programcooiiiinieieiriiinerianae, ZUEC
MO Command, Color Computer EDTASM e EAIM
A (0 T) S R MOER
MOD, BASIC command, Model I ot MOB2
Mode, 32-character, setting, Model I/III ...t TCMH
Model I files to Model I1I files, cONVErtingcvtiuiniirrinrerineeneeeeniersreiinanenenss C1T3
Model I/TIL differences vv e eruneenneeesuneeeeanssannsesoseseanasnnsssenssrisseenanns Mi13H
Modem I, 0perating NOtESveveeiutrerteereeeeeeeaeesaaeasassansosooassananssnnnnnnins M10ON
Modem, how £0 USE ... vvvtriite et iiiraen it erteernnnneeoesnasnnosssocans MHTU / ACHT / M1ON
Modems, connecting, Model Ittt RHS1 / MHTU
Modems, What they areouuieitittiiiiiiin i itriniaeraeessnnaeseseanaanesaaosnens MWAT
Modes, graphics, Color COmPUteroouttiiueenieeninierenetennnreeaiineanneene. SVDG / SUCG
Modulator/demodulator (IMOdem)c.ueinueeinterreeinueeanneeenreeraeesaaiueaneens MWAT
Modulus operations, Color Computer EDTASM+ oo ECCE
Modulus operations, Model IIBASIC it MOB2
Motor on disk, when is it On? ... it i i i e et e DLWS
MOTOR ON/OFF, BASIC command, Color Computerccoottuiiiiiiiiiennianenns MTOC
Moving figures, Model I/IILoinnii i it AN13
MULTIPLE DEFINITION, assembler message, Model /II/IIIo, AEDI

How to do it on the TRS-80

Multiple serial devices on Color COmpPuUterouiiiiiniiii i, MSDC

Multiple-statement lines, how t0 US€o ittt e MSLH
MULTIPLY DEFINED SYMBOL, assembler message, Color Computer EDTASM+ AECE
MULTIPLY DEFINED SYMBOL, assembler message, Model I/II/IIT AEDI
“My Dear Aunt Sally” PHTU
Name, disk file, changing LDOS Model I/IITttt e, ADCL
NAND gates, descriptionoouuiiiii ittt e DLSC
NEC Spinwriter, OPeration MOESutunn ettt et e e e e e NECS
Negative numbers, assembly, Color Computer EDTASM+t ECCE
Negative numbers, in binary TCNU
Nesting FOR...TO...STEP 100DS . ..ottt et e NFER
Nesting IF.. THEN.. . ELSE e ITEL
Nesting subroutines in BASIC o SUBB
NEW, BASIC command e EYBP
NE X T U8 it e e FTST
Next without FOR error NFER
LA) o o) NFER
NL option, assembly, Model I/IILo ittt e e S1EA
NO END STATEMENT, assembler message, Model VIVIL ..o e AEDI
No object file, assembling, Color CompPULeru'uuitnet et e e e EDCE
No object file, assembling, Model I/IILo oot S1EA
NO option, assembly, Color Computer e EDCE
NO option, assembly, Model I/TIL e e, S1EA
NO RESUME €ITOTottt ettt e e e e e NRER
“No System”, what does it mean?ttt NSWD
NOR gates, descriptionttt e e e e DLSC
NOT, BASIC commanduunniiee e e LOHT
N R EIOr oot e NRER
NS option, assembly, Color Computerourrureee e EDCE
NS option, assembly, Model I/ITT e S1EA
Null Strings ..o SFLO / INHU
Number conversionsoiiiiiiieinnnniannn... CFDB / CFDH / CFBD / CFHD / CBBH
Number of Disk BASIC files to specify, Model I/IITcoueuineii e, HMF1
Numeric data, in sequential disk files oottt SDFB
Numeric mode, Color Computer ZBUG Programoueuueeneeneein ... ZUEC
Numeric to String cOnversionouuiurireeo e CHTP / CSNV
Numeric to strings, how to convert iiiiieinennnni .. e CSNV / CHTP
Object code, redefining location of, Color Computer EDTASM~+ot EAIM
Object file extension, assembly, Model I/IIIoouuuime e, S1EA
Object file, after assembly, In MeMOTY? iiuii e e AIOF
Object files, assembler, Color Computerc.iuueunuueo e, EDCE
Object files, assembler, Model I/IILo\ oe e S1EA
Object files, assembling with, Color Computeroouuinein e, EDCE
Object files, assembling with, Model I/ITT oo . e S1EA
Object files, assembling without, Color COmPULerovnnr e EDCE
Object files, assembling without, Model I/IIT oo S1EA
Object program, assembler, Color ComPUteruuunet et e EDCE
Object program, assembler, Model I/IIL i, S1EA
Octal notation in BASICttt e ONIB
OD ErrOr . ODER
Odd parity ... RSWI
Offset, display, in Color Computerc.uuuruiiie e e, CDOC
OM Eror oo OMER
ON ERROR, BASIC command, GOTO ETIB
ON GOSUB, BASIC commandouuuuinnn OGHU
ON GOTO, BASIC commandouuuuminneti e e OGHU

How to do it on the TRS-80

One-dimensional arrays, in BASIC i i AGTU

One-shots, digital logic, descriptionttt DLSC
OPEN, BASIC commanduututtuetuneenaetne et aeaeeiaaanasanennneaes RDFB
OPEN, disk file, BASIC ...ttt et et it ettt i i SDFB
Operating notes, Line Printer TILo i e LP3S
Operating notes, Modem T et M1ON
Operational amplifiers, descriptionttt LDHT
OR gates, deSCriDUiONo\ttt ettt ettt e e e DLSC
OR, BASIC commanduutttnettnan it iiiaa e eian e nie i LOHT
Ordering a string array, Model IIL i e SSA3
ORG pseudo-op, assembly, Color Computer EDTASM+ oot POCE / EAIM
ORG pseudo-op, assembly, Model I/II/TILo e POZA
ORGs, multiple in assembly, Color Computer, EDTASM+ ...t POCE
ORGs, multiple in assembly, Model I/IIL POZA
Origin, assembly, setting Color Computer EDTASM+t POCE / EAIM
Origin, assembly, setting Model I/TIT o et e e POZA
Originate MOAEIMttt ettt et e et e MWAT
O BolTOr o v oot e e e e e e OSER / OSSH
OUT INStrUCEON, Z-80 ..\ttt it ettt ittt ee e e e it ettt iis e an e IOHT
L oYl - 7 N =3 o« < P P ODER
OUL Of INBINIOTY EITOT .« ot vttt ettt a e e e e et et e et a e tae et e ae et a e aa e anaeeneennn OMER
OUL Of SETITIE SPACE oo et ettt ettt et e et ettt st et OSER / OSSH
OUT, BASIC commandouuutte ettt et ee e tiee ettt ettt iae i iaaaa et IOHT
Output mode, Color Computer ZBUG programuiiiiniiiiiiiinnnnenenaeenean, ZUEC
L A/ D0 o PR OVER
L T3 (oL =) 5 oY (S OVER
Pages, graphics, Color Computerouuuniniiii i i GMPC
PAINT, BASIC command, Color COmMPULETuiuniiniii it iieiaiiaieeenneeens PCCC
Painting colors, Color COmMPULErttt ittt iiiiian e PCCC
Parallel data transmisSIONt tture et ie ettt ettt e e RSWI
Parallel printer cablest e CPCA
Parameters, passing to machine language subroutines, Model Tor IIIttt PVM1
Parameters, passing to machine language subroutines, Model II or Color Computer PVMC
Parentheses, HOW 10 USE ittt it ittt e et ettt et ia et i PHTU
Parity bit, RS-282-C ittt e RSWI
Parity enable, RS-232-Cttt i RHS1
Parity select, RS-232-Ct RSWI / RHS1
Parts, electronics, Where t0 eto ettt ettt it e e EPWT
Passing variables to machine language programs, Model Tor It PVMI1
Passing variables to machine language programs, Model II or Color Computer PVMC
Password, diskette, changing LDOS Model I/III i ADCL
Password, flle Mameso ottt e e FNMH
Passwords, diskettet e e e e PWDS / ADFC / ADFL
Patching, a disk file, Model I/ITL oot DT1U
Patching, memory, Model I/TIL o i i i i DT1U
PAUSE, TRSDOS commanduvttuee et ttee e etaee et rianaeninenennns PWII
PC counter, displaying on screen, TRSDOS, Model It TRUS
PCLEAR, BASIC command, Color Computercoiiiiiiiiiiiiiin., SUCG/ GMPC
PCLS, BASIC command, Color Computercouuiiuniiuiiniieriannaerneenaeenenn.. SUCG
PCOPY, BASIC commanduuintiitttt et ettt innaenereananaeeaaennss SUCG
PEEK, BASIC command, Models I/III/Color Computeroviiiiiiiiiiiiii. . PPKU
Percent suffix, What 18 187 ... ottt i i e it it it e i e e e IVHU
Period, in Edit Ode ... oottt e e e e e e e PIEM
Physical devices, In operating SySteIm cuiittiunn it eenanaeeneeeeanreetoneenans LDIS
PIAS, Color COMPULEE .. o\ttt e et ettt ae ettt ettt iaae e iiiaan e e s GPAR
Pin-out, ROM cartridge connector, Color Computerc.oiiiiiiiiiiieniinerinnenn RCCN

How to do it on the TRS-80

Pixels, in Color Computerttt e, e CCPA

Plug, ac, Wirlng s ACPR
Plug, power line, Wiringot ACPR
Plugs, cassette recorder, insertionof e e e e e e CRPI
Plugs, cassette recorder, pin outouuuiuitiiii it CCAM / CRPI
Plugs, joystick, Color Computert e JPPO
Plugs, RS-232-C connector, Color COmpPuUtert RCCC
Plus sign, BASIC ... AOIB / SCIB
PMODE, BASIC command, Color Computeruuuuuuuueei SUCG
POINT, how to use, Model I/TIT e SRBH
Points, setting in BASIC, Color Computeruuiuuuiiiinn e, PSBC
POKE, BASIC command, Models I/III/Color Computer PPKU / PVM1 / PVMC
POKE, for graphics, Model I/TIT i i GHS1
Ports, Input/output IOHT
POS, BASIC commandiiiiiiti e CFOW
Potentiometer, description LDHT
Pound sign suffix, what does it mean? i DPHU
Pound sign, assembler editor, Color Computer EDCE
Power, available from Color Computercoouuiiiiit et e PSWU
Pound sign, assembler editor, Model I/IIT i i e S1EA
Power glitches, what to do CPWR
Power line problems, what to do o CPWR
Power supplies, building PSWU
Power supplies, What to Use i PSWU
Power switch, where 1s 12 TOCH
POWeTINg UD .o ... TOCH
Powers, BASIC AOIB
PPOINT, BASIC command, Color Computeruuuun et e e PSBC
Pregnant cable, Model I o i CPWR
PRESET, BASIC command, Color COMPULETt e e e PSBC
PRINT @, BASIC commanduuiiintt ittt HTDS / SHTC
PRINT AT, BASIC commandouuuiiiieiii it e HTDS
Print driver, writing your own, Model I LWD1
Print driver, writing your own, Model TII it LWD3
PRINT USING, BASIC commandc.c.oiiiiiniiiiiiiii e, PRUU / ROOF
Print zomeso CHTP
PRINT#, BASIC commanduiiiiit it SDFB
PRINT, TRSDOS, Model I e PDF1
PRINTS t0 LPRINTS ..ot e e e e e e PLPB
Printer cables, Model I/TIL o e e e e CPCA
Printer operation, Line Printer IIT i LP3S
Printer, displaying SCreenoiiiiiiii i DSPR
Printer, serial, connecting, Model I i RHS1
Printing a disk file, TRSDOS, Model It e e i, PDF1
Printing a disk file, TRSDOS, Model II i, LDF2
Printing a disk file, TRSDOS, Model IIIt e i LDF3
Printing BASIC Programsouuutoriii et e LBAP
Printing screen, Model I/II/III TRSDOS/LDOS . . oot e PTSC
Printing source lines, assembler, Color Computeroouueuii o EDCE
Printing source lines, assembler, Model /TIT S1EA
Probe, logic, USINGt LPHT
Program counter, displaying on screen, TRSDOS, Model I/HI TRUS
Programs, BASIC, chaining o .. e SBPD
Programs, BASIC, stopping [e TSTP
Programs, BASIC, tracingt TRHT
Programs, from magazines, USINGttt MUPF

How to do it on the TRS-80

E

s

Programs, relocating using DUMP command, Model I TRSDOSc.oiiiuniiii.... DMT?2

Programs, relocating using DUMP command, Model IIl TRSDOSooviiriiinnnn.. DMTS3
PROT command, TRSDOS, Model I/IILttt e ADCT
PROT command, TRSDOS, Model IIttt ADC2
Protected screen area, Model IIL i i e SHTC
Protecting disk files i FNMH
Protecting diskettesottt e e e e e DWPR
Protecting memory i PROT
Protecting screen lines, Model IIIottt e i PTL3
PSET, BASIC command, Color COomputerc.ouiuuineiuine e, PSBC
Pseudo-ops, assembly, Color Computer EDTASM+, POCE
Pseudo-ops, assembly, Model /II/IILttt e e POZA
Pseudo-random numbers, BASICttt RDHT
Pulses, testing for i LPHT
PURGE, TRSDOS . i i e e e i DADF / KDFW
PUSHes and POPSo e e e e STAC
PUT, BASIC command (graphics)uuuiimume e e GAPC
PUT, BASIC command (non-graphics)cuuunnminne e RDFB
Quote, BASIC, What it i8vuet ittt et e e e e e e e QWII
Quotes, double, iIn BASIC i SHTU
Quotes, double, in sequential disk filesoouiiiirr i SDFB
Radians, conversion between degreest UTFB
Random disk files, in BASICot e RDFB
Random numbers, BASIC ittt e RDHT
RANDOM, BASIC commandc.uuiininnetiitt e e e e e RDHT
Range, edit mode, editor/assembler, Color Computerouuuuurreeeeemennannnnn.. EDCE
RD, RS-232-C signal ...t e RSWI/ RHS1
Read data (RD) signal, RS-232-Cttt e RSWI/ RHS1
READ statementsuuuttiit ittt e e e e DSRC / ODER
Reading a keyboard character in BASICouuiinuiti et e INHU
Reading from sequential disk files i i SDFB
Reading memory locationst PPKU
Reading random BASIC filesoutiiiiiii et e e RDFB
Reading remote inputs, Color COmMPULETuoennet ettt e e DICC
Reading remote inputs, Model T or IIIottt e DI13
READSs, out of data erTorottt et e e e e ODER
Real time clocko i e CDHT / RTCN / TSRT / RTCT
‘Real Time Clock No Longer AcCUrate’uuiuinuinenn e RTCN
Real time clock, settingoiiiiiiii i TSRT
Real-time clock, turning on from Disk BASIC, Model I/IIL RTCT
Real-world inputs, Color Computerouiti e e e ADIC / DICC
Reboots on disk oo e CPWR
Receive data (RD) signal, RS-232-Couiiutitti et e RSWI/ RHS1
Record lengths, Disk BASIC files, Model I/TITuuunrnree i, HMF1
Recorder plugs, INSertingo.uiiiuiiiiiiiit e CRPI
Records, in random BASIC filesc.ununnn e RDFB
Records, sequential disk files, BASICuiiiuitnnten e SDFB
Rectangles, drawing in BASIC, Color Computercuuureenin et DSBC
Red light on disk, when is it on? i DLWS
Redimensioned array erroreiiinieee oo DDER
REGISTER ERROR, assembler message, Color Computer EDTASM~+ccvuviunion... AECE
Register, digital logic, descriptionttt DLSC
Registers, cpu, displaying, Color Computer ZBUG programoeuueuennenennon.. ZUEC
Relational operators, assembly, Color Computer EDTASM+ovoiinn e, ECCE
Relational operators, BASICottt e ITEL
Relational operators, in BASIC string cOMPariSONSueouree e, CSHT

How to do it on the TRS-80

Relay, Cassetteottt it e e e e e e CCAM

Relocating programs using DUMP command, Model I TRSDOS DMT3
REM, BASIC commanduuiiiiiituinuinnnneeteenennaaee ettt QWII
REMark, DY QUOTEttt ittt ittt ettt ettt e e e e QWII
Remarks, deleting in BASIC programs, Model III oL, CPM3
Removing a soldered ICttt e e ICRS
Removing an integrated circuit fromasocket ICSK
RENAME, TRSDOS/ LD ittt ittt ettt e e e e e RADF
Renaming a disk file, TRSDOS i e e et RADF
Renumbering BASIC lnes uutuinini ittt et e RNBL
Renumbering BASIC lines, LDOS ... o i e RNBM
Renumbering source lines, assembler, Color Computercooiiuunnnnnnn... S1EA / EDCE
Renumbering source lines, assembler, Model I/IILo S1EA
Replacing a line, in BASICo it e RLIB
Replacing source lines, assembler, Color Computerooo i ... EDCE
Replacing source lines, assembler, Model I/III i S1IEA
Reseeding random number generator, BASIC i RDHT
Reserving memory space, assembly, Color Computer EDTASM+ POCE
Reserving memory space, assembly, Model I/IIT o ... POZA
Reset button, Where 18 187ueeein ettt e et et e e e e e e e RBWI
RESET, BASIC command, how touse, Model I/IIT i, SRBH
RESET, Model I/IIT LDOS commandooiiuirininireeeeinnneennnnnnn... RSLD / RDLD
Resetting Model I/IIL LDOS ...ttt e et ettt e e e e e e e e e e e e RSLD
Resistors, descriptionuuiiiiieiiii ettt ee et RHTU / LDHT
Resistors, BOW £0 USEottt e e e RHTU
Resolution, graphics, in Color Computerouuttiiniiiiiiiit et e CCPA
RESTORE Statementsueeuuueuneeueeeeeereereseeeeeanemennenananeanannnns DSRC / ODER
RESUME, BASIC commandoouuiiittmnteennneeeuneeenanee e, ETIB / NRER
Return without GOSUBttt e e RGER / EPHT
RETURN, BASIC ittt ittt et ettt e e e SUBB
Returning to TRSDOS/LDOS from BASIC, Model I/IIT RTDB
Reverse slash, Model II BASIC ..ottt e e e e e IPNF
Reverse video, Color Computeruuuurireetetttttniiiee e e e e e RVCC
L 1 v e RGER
Ribbon, Line Printer ITIttt et e e e e e e e LP30O
RIGHTS, how £0 USe ..ottt ettt ettt SACW
RMB, pseudo-op, assembly, Color Computer EDTASM+ i, POCE
RND, BASIC functioniiiiiiniiriiiie ettt ettt e e RDHT
ROM calls, what are they?ooiururitt ittt e RCWA
ROM cartridge connector, Color Computeroouviviiuneeeeiiinnenneennnnn.. RCCN / BSCC
ROM SUBIOULINES .o oottt ittt ittt ittt ettt e et e e e et e e e RCWA
Rotation, of shapes in BASIC, Color Computerooiuuiiiiiiniiieeeaaaannnn.. DSBC
Rounding offo i e ROOF
ROUTE, Model /TIL LDOSttt ettt e e e RDLD
ROUTE, Model IIL TRSDOS ...ttt ittt et et e e RUOF
Routing devices, Model I/TIL oot LDOS
ROW, BASIC command, Model Iot e CFOW
RS-232-C board, Model I, how t0 S€toouiineiii i i RHS1
RS-232-C connector, Color COmMPULErutnuttiieteie it it e e RCCC
RS-232-C formatttt it e e e RSWI
RS-232-C interface, setting, Model Ioouunniiinnt et RHS1
RS-232-C interface, setting, Model TITc.iiinuntiiiii i RHS3
RS-232-C interface, What it 18iuuuerivni it e e RSWI
RS-232-C port, connecting discrete inputs to, Model Tor IIT DI13
RS-232-C port, connecting modem t0c.ouuiintiinitiint i MWAT
RS-232-C ROM calls, Model IIIoiiinntiitiiit et e e e RHS3

How to do it on the TRS-80

RS-232-C sense switches, setting, Model I i e RHS1

RS-232-C, signal CONVENTIONS\ vt ittt ettt ittt i ia it iaaaanaa s enananen RSWI
RS-232-C, What G608 + vttt ettt it e it e e e e RSWI
RSET, BASIC commanduiiittit ittt et et ie et eii ey RDFB
RUN, BASIC commandc.uuiiiiiieneenenaenennns D S RUTP
RUN “file”, BASIC COmmMANd\ttt ettt et e et ettt i SBPD
Running a BASIC Programuuuuuiiitttniiiiinaeteiiiaeeniiananeneereennons RUTP
SAM, Color ComMPULETottt ettt ettt e e et ittt iiae e GPAR
SAVE, BASIC .ot e e P SBPD
Saving BASIC programs 01 Cassetteooiiuuiniineeeeeruiineeeeruninnaeeeeeeeenneas SBPT
Saving BASIC programs on disk ... SBPD
Schematic diagram, readingciriiin i [LDHT
Scientific notation, BASICt i e e e e AOIB
Screen to line printer in BASIC, Model III DSPR
Screen to printer in TRSDOCS, Model III TRSDOS e PTSC
SCREEN , BASIC command, Color Computerooiiiiiiiiiiiiiiiiiiiin.. GMIC
Screen, clearing from TRSDOS, Model II/IIT i CSFT
Screen, graphics, Color Computer JE R PP GMPC
Screen, printing, Model I/II/III TRSDOS/LDOS JR TP PTSC
Screen, text, Color ComPULErttt ittt et it ie it e e GMPC
SCRIPSIT, embedded codescviiiiiinniiinneenni o e e ECIS
Scrolling, controlling, Model TIL i e SHTC
SECtOrs, AISK .+ttt ittt e e e RDFB / DSHL
Seed, random MU DETo it e e RDHT
Seeding random number generator, BASIC e RDHT
Semicolons, N PRINTS ...ttt e e O SIPS
Semicolons, in sequential disk files i e SDFB
Semigraphics, graphics mode, Color Computer iiiiiiiiiiiiiiiinnnn.. GMIC / SVDG
Sense switches, RS-232-C board, Model Io i i e i e ee RHS1
Sequential disk file format it i e SDFB
Sequential disk files, BASIC o i R SDFB
Serial board, RS-232-C, Model I, how to set oot i RHS1
Serial board, RS-232-C, Model III, how to setcouininirni it e RHS3
Serial data . ..ottt e e e e e e RSWI
Serial devices, multiple, on Color Computer ciiiiiiiiininann. e MSDC
Serial Port, desCriPtiON\ttt ettt et e e e RSWI
Series I Editor/Assembler, Model I/IIT ‘SIEA / ALWI/ POZA / AED1 / AEU1
SET *CL, LDOS command, Model I/IIT i i RHS1 / RHS3
SET, BASIC command, How to Use Model I/III it i SRBH
SET, Model I/IIT LDOS commandoouuntita e tie ettt enneninaanns SDTD
SET, pseudo-op, assembly, Color Computer EDTASM+ i POCE
SETCOM, TRSDOS command, Model IIT e P RHS3
SETDP, pseudo-op, assembly, Color Computer EDTASMA+ it POCE
Setting up graphics, in BASIC, Color Computeroiiiiiiiiiieiiii i, SUCG
Shapes, drawing in BASIC, Color COmputerooeuniiiiiniineriniineeeineeeianeenns DSBC
Shift operators, assembly, Color Computer EDTASM+ e, ECCE
Shifting data, assembler, Model I/II/IIL i i iaeas AEU1
SN DIt .o e U TCNU
S Tq s W o) 5 o+ V= P PRUU
Signal LeVels, IOZIC . . oot v ettt i DLSC / LDHT
Signal levels, RS-232-C P RSWI
Signal names, IN CIFCUILS\ttt ettt et et ettt eea ettt e e e e eens LDHT
Simulate BASIC €ITOTttt e et et e e e e DU ETIB / UEER
Simulations, BASIC\ttt ettt et e RDHT
Single quote, BASIC,o e QWII
Single stepping through machine language, Model I/IILot iiiiiririneiiaiennns DT1U

How to do it on the TRS-80

Single-precision variables, how t0 USeottt e e SPHU

Size of tables, assembly language i e TSAL
Slash, reverse, Model II BASIC i i e e e e e e et IPNF
Slash, BASIC .o e e e e AQIB
Slit and Wrap, How t0 TS itt ittt e it ettt ettt e et e e e SWHU
Small numbers, BASICottt e e e e e AOQOIB
S TN)5 o OO SNER
Software, from magazines, USINgo.iiuitiit ittt it it ittt et et ettt MUPF
Soldering, How t0o e SHTO
Sorting a string array, BASIC Models I/IITt i SSA3
Source file extension, assembly, Model I/TIT it iiiiean S1EA
Source files, assembler, Color Computer ittt ittt EDCE
Source files, assembler, Model I/IIT it S1EA
Source files, constructing, Color Computerouiiiiiieiiiiee e iiiieeeiiiinnnnnn. EDCE
Source files, constructing, Model I/TIL i e e S1EA
Source files, loading, assembler, Color Computerooiiiiiiiiineeeiiiiineeinnnn. EDCE
Source files, loading, assembler, Model I/III i i e S1EA
Source files, writing, assembler, Color Computeriiuiiiinii i EDCE
Source files, writing, assembler, Model I/IIT i i S1EA
Source programs, assembler, Color Computeroiiiiiiiiiiiine ittt iinnn. EDCE
Source programs, assembler, Model I/TIT i e S1IEA
SOUTCE, NOW T0 TS . ittt ittt it i it it e et e e e e e e e ACHT
Space, disk, how much left? e DSHIL
Space, string, finding amount left i e SSFA
Spaces, deleting in BASIC programs, Model TII i, CPMs3
Spaces, on PRIN T e e SIPS
Specifiers, field, in PRINT USINGttt et e e e e PRUU
Speed, cassette, Model III, Settingvottiiiieiiinn i i i FHBF
Speed, cassette, Model III, which to Uuse?ottt e e FBWT
Speed-up mods, Clocko CSUM
Speeding up BASTC Programsttt ittt ettt e SUBP
Speeding up disk file ACCESS ... vit it DFAH / CDFH
SpInwWriter, NE C, NOtES ..ottt ittt et et et et e e e e e e e e e e e NECS
SPOOL, Model I/IIT LDOS commandi ittt i SPHT
Spooling, in LDOS Operating Systemc.ouinitiriint ittt SPHT / LDOS
ST EITOr oot e e STER
Stack POINteT ... e STAC
Stack, What 18 17 . ..ottt e e e e e STAC
Start bits, RS-282-C .. i RSWI
Starting address of display, Color Computerciiiiiiitiii i, CDOC
Statements, multiple iIn BASICo i MSLH
ST E P, BASIC .o e e FTST
Stepping through machine language, Model I/ITL i DT1U
Stop bits, RS-232-C ..ot i i i i RSWI / RHS1
STOP, BASIC commanduiiiiiiiate e i BPIB / CNER
Stopping the displayco ot TSPD
StoppIng the Programttt e TSTP
STOTAZE 1N AITAYS .+ . vttt ettt ettt et et e ettt ettt e e e e e e e e e e HASA
STRE, BASIC commandt CSNV / CHTP
String array, sorting, in BASIC, Models VIIL ... i SSA3
String array, StOrage amoOUNDottt tt ettt ettt et et et e HASA
String comparison, in BASIC CSHT
String concatenation in BASIC e SCIB
SN COMSEANTS . . ottt e et e e SHTU
String formula t00 COMPLEX . ..ottt STER
String length ... SFLO / CHTP / LSER

How to do it on the TRS-80

String space, finding amount left SSFA

String space, how to allocate i OSSH / SHTU / PROT / OSER
String SLOTAZE AIEA . ..ot vttt ettt it e e s e PROT
String t0 ASCIL COAE ..ot int ittt e e CFCS
String 100 lONE @ITOT . . .ttt ettt ettt i LSER
String variableset i e SHTU / SACW
STRINGS, BASIC commandouuutttnntt e aa s STRD
String, one character NUMETICttt iuttantn ettt ans CUSE
Strings to numeric, how 0 Converto CSNV
Strings with the same character, how to generate i STRD
Strings, accessing characters within i i i i SACW
Strings, comparing in BASIC i CSHT
Strings, for Graphics e GHS1
Strings, NOW t0 USE ...\ttt et SHTU / SACW
Strings, in sequential disk files i i SDFB
StrNgs, LeNGEN . ot SFLO
Strings, NULL o s SFLO
Subroutines, BASIC ... e SUBB / SUBP
SUDLOULINES, MESEIIE -« o v ettt ettt et et e SUBB
SUbroutines, ROM ...ttt e e RCWA
Subscript, array, too large o i il PN BSER
Substrings, in BASIC graphics, Color Computero DSBC
Surpressing assembly listing, Model I/IIT o i POZA
Switch, reading remote, Color COmPULETt DICC
Switches and connectors, Color Computeroouuniiuinriiiirmiiaeeiiniinaeennn. BSCC
Symbol table, assembly listing, Color Computer oo, EDCE / ZUEC
Symbol table, assembly listing, Model I/IIT i S1EA
Symbolic locations, Color Computer EDTASM+ ... o o e ZUEC
Symbolic mode, Color Computer ZBUG programciiiiiiiiiiiiinimeeeieeneens. ZUEC
Symbolic source code, using, Color Computerciiiiiiiiiiiiiiiiiiniiiinn, EDCE
Symbolic source code, using, Model I/IIL S1EA
SYMDOLS, JOZIC .« ottt e e e e e LDHT
SYNEAX FoITOr ..ottt et e SNER
System diskettes, deSCriptionu ittt SDWA
SYSTEM files, loading, Model I/IILottt i e e LMFN
SYSTEM mode, Model I/IIL oo i ettt aaaas LMFN / TCML
SYSTEM, BASIC command, Model I it i TGBB
SYSTEM, LDOS COMMANA . .« o vttt et ttie et ttiee et et ettt ettt nanens BKHT
T command, editor/assembler, Color Computert EDCE
TAB, BASIC commandttt ettt ettt it i et e CHTP
1Y 03 CHTP
Table size, assembly languagecouutttttrtinie e e TSAL
Tables, building, assembly language, Color Computer EDTASM+t ECCE
Tape files, BASICttt i i it e SBPT
Tape files, using, Color Computer ZBUG programc.coiiiiiiiiiiieeeeenaenaaan, ZUEC
Tape loading problems, Color COmMPULEYttt CTLC
Tape recorder plugs, insertion of i e CRPI
TD, RS-232-C signalttt i e RSWI/ RHS1
TERM/COMM switch, RS-232-C, Model I, setting ..., RHSI1
Testing Cables . ..ottt e e BOCH
Testing logic CITCUILS ... vt vttt ettt ettt e e LPHT
Text screen, Color ComPULErttt it i ittt eenns GMPC
TIME command, TRSDOS/ LD O ...ttt it et e i i e TSRT
TIMES$, BASIC commanduununi ittt ettt iia it ettt TIBP
Time, displaying, Model I/IIL o i e e RTCT
Time, entering, Model IITiviiiiiiiiiiiiieneananenanenenen ... TSRT/THT3 / DSDS

How to do it on the TRS-80

Time, in BASIC program TIBP

Tinning of soldering iron SHTO
M EITOr TMER
To stop the display i TSPD
To stop the program TSTP
Token searcher for BASIC PLPB
Tokens, BASIC, Color Computeruuuuuuraneaan TBCC / PLPB / LFBA
Tokens, BASIC, Model I/TIT TM13 / PLPB / LFBA
Tokens, BASIC, Model ILo TMTW / PLPB / LFBA
Tolerance, Tesistor RHTU
TRACE command, TRSDOS/LDOS, Model I/IITo TRUS
Tracing program, TRSDOS, Model I ..o TRUS
Tracing, BASIC ... TRHT
Tracks, disk e e e e e e e DSHL
Transferring control to machine language program, Model I/III non-disk TCML
Transferring control, Color Computer ZBUG programoooononieee ZUEC
Transistors, description LDHT
Transmit data (TD) signal, RS-232-Co RSWI / RHS1
Trapping eIrors ETIB
Trigonometric functions UTFB
RO TRHT
RO TRHT
TRSDOS commands, Model TI/IIL oo e CHON
TRSDOS, getting back to from BASICo. oo . RTDB / TGBB
TRSDOS, how to load, all SYystemsoouuininie THTS3
TRSDOS, JCL .. JCLW
TRSDOS, Model I, ATTRIB commandouuuuoueno ADFC / PWDS
TRSDOS, Model I, AUTO commandoouuuenenemni AEDP
TRSDOS, Model I, BACKUP commandouuuininmn BPSP
TRSDOS, Model I, BASIC2 commando.uuuummamem HTGB
TRSDOS, Model I, CLOCK commandouuuuuenanan CDHT
TRSDOS, Model I, COPY commandcoouuurunine CFAD / CFSD
TRSDOS, Model I, DATE commandoouuiuuiiee DSDS
TRSDOS, Model I, DEBUG commandcouuuninenmne o DT1U
TRSDOS, Model I, DEVICE commandouuuueenen DITW
TRSDOS, Model I, DIR commandoouuunmunee DLMI1
TRSDOS, Model I, DUMP commandouuuuemne e DMTT
TRSDOS, Model I, FORMAT commandouuurneeeme BPSP
TRSDOS, Model I, FREE commando.ooiiiuui DSHL
TRSDOS, Model I, KILL commandoouuuuueeemn DFDA
TRSDOS, Model I, LIB commandouuuuuune e CWTC
TRSDOS, Model I, LIST commandc.uuuinmeee LDF1
TRSDOS, Model I, LOAD commandoououureenme LMLD / LMFI
TRSDOS, Model I, LOADM command, Color Computeroo i . LMLD / LMFI
TRSDOS, Model I, PRINT commandoouuuiummmne PDF1
TRSDOS, Model I, PROT commandouuuuenmean ADCT
TRSDOS, Model I, RENAME commandooouuiuuueeea RADF
TRSDOS, Model I, TIME commandoouuurermnen e TSRT
TRSDOS, Model I, TRACE commandooiiuinmmo TRUS
TRSDOS, Model I, VERIFY commandouiuuninmnmn i VTTO
TRSDOS, Model I, ATTRIB commandoouuuueuene ADFC / PWDS
TRSDOS, Model I, AUTO commandoououinniea e AEDP
TRSDOS, Model II, BACKUP commandooouuuuiunmnea BPSP
TRSDOS, Model II, BUILD commandoouuenemnene JCLW
TRSDOS, Model I, CLEAR commandooouuimuino CMHT
TRSDOS, Model II, CLOCK commando.ouuiiniee CDHT

How to do it on the TRS-80

TRSDOS, Model II, CLS commandouiuiiiiiermanmmeanaannniiiiiereeaeaeenns CSFT

TRSDOS, Model II, COPY commandccuiriiimmmnnieeneereinuennnanaeenonnns CFAD / CFSD
TRSDOS, Model II, CREATE commandoouuuuuuiiiiinnnnneeeeennenens CDFH
TRSDOS, Model II, DIR cOmmMAanduueeuueennnteinueeaineeaaeeenneeaeeeaeeeinens DLM2
TRSDOS, Model I, DO commanduurnnneeiitiitneeeee et iiiiiiiinns JCLW
TRSDOS, Model II, DUAL commandutiuiuuureteeamiireenanieeeieiinieeaniues, PTSC
TRSDOS, Model II, DUMP commanduiiinuininnnminiiiiiiiiiieaeaeeinaennn DMT2
TRSDOS, Model I, FORMAT commandoouiiiiiiiitinnnnmnaniiiiinaeeens BPSP
TRSDOS, Model I, FREE commandcouiitirittereneaeaenaeennnniniiiiiiienens DSHL
TRSDOS, Model II, HELP commanduuututrtuurrertaeeeeeeeeeeanaaiiiiiaiiinnnns CHON
TRSDOS, Model II, KILL commandcoouiiiiiitmemammennaannnnniiiieeeeeenenss DFDA
TRSDOS, Model II, LIB commandouuuinniiiiiiieeeeeeeennainaaaanns CWTC
TRSDOS, Model IT, LIST commandoiuuunnntiiiiiinnia et inneaanas LDF2
TRSDOS, Model I, LOAD commandc..uuuunniiiiniiiianneeneenenananens. LMLD / LMFI
TRSDOS, Model II, minimum configuration diskettec.ooooiiiiiiiiiiiiiiin, DADF
TRSDOS, Model II, PAUSE commanduiuruinimmtiiiinnereeeeeenineneaeinnns PWII
TRSDOS, Model I, PROT commanduuueetiiiiiettrmeneeneneemannnaneisameeenneos ADC2
TRSDOS, Model II, PURGE commandcooimiiiiieiiiiiiianneeneneeeennns DADF / KDFW
TRSDOS, Model II, RENAME commandooiiiiiiiitinannnnnnniiiieneens RADF
TRSDOS, Model II, TIME commandc.uuuuuuurutunnnnunneeeeeeeeeeeneiiiiinaananns TSRT
TRSDOS, Model II, VERIFY commandcooitumminiiititiriiinaneeeeeeeaimiaaneaens VTTT
TRSDOS, Model III, ATTRIB commandooiuiiiniiiemmririnnareeneeeennns ADFC / PWDS
TRSDOS, Model III, AUTO commandouuuiiiiiiiiiiiimaniinaiii s AEDP
TRSDOS, Model III, BACKUP commandcouuiiiiiiemeeeenammennnnneeiiiioene. BPSP
TRSDOS, Model III, BUILD commandcouttuuunneememnrinnaeeeeneeeeennnianeeenns JCLW
TRSDOS, Model III, CLEAR commandcouiiiiiiinitiiemanemannnneeneaaenen. CMHT
TRSDOS, Model ITI, CLOCK commanduuuuuuniiuiiiiiiieeenetiiinneeenns CDHT
TRSDOS, Model IIT, CLS commandeueumuninttttinuiianeeeaereeenenoaenaaeeeenns CSFT
TRSDOS, Model ITI, COPY commandoviiiiiiininnneenrennianenns WCCD / CFAD / CFSD
TRSDOS, Model III, CONVERT commandc.uuiuuumiinmnemieieetnniiiiinannanns C1T3
TRSDOS, Model ITII, CREATE commanduuuuuruurriereeeeeeneneanananiiannns CDFH
TRSDOS, Model III, DEBUG commanduuerunnn i itiiiiiianeneeranieeaaaaseeeeens DT1U
TRSDOS, Model III, DIR commanduuuuunntiimuuinenereeeeuennnnneneeeeeiannss DLM3
TRSDOS, Model III, DO commanduuettittttmniin et iiiiaanneee et JCLW
TRSDOS, Model III, DUAL commanduuuuiniiimmiiiinnneeeeeeeeniiananeeeeonen PTSC
TRSDOS, Model III, DUMP commandccoooeiiiiiiieeeeeneennnmnnnnearureeiennens DMT3
TRSDOS, Model III, FORMAT commandoeuuunniiiiuniianeaeneereneennnaaneneonns BPSP
TRSDOS, Model III, FREE commandoeetmiitimiiemtnttreeemannnnnieanens DSHL
TRSDOS, Model III, KILL commanduunnnnnnuniiiiniiiinniiaeeeeeneeeneeenns DFDA
TRSDOS, Model III, LIB commanduuunuunnttriininteeretuiranaaaeaeecninens CWTC
TRSDOS, Model III, LIST commanduuuuuuiuuiiriiininiineeeeeereeeeennns LDF1 / LDF3
TRSDOS, Model III, LOAD commandc..uuunnnitteinmnneeeeererinannnsees LMLD / LMFI
TRSDOS, Model III, PAUSE commandcceumuuuinineimmiiiiaaaeeeereereiinnnneeenenns PWII
TRSDOS, Model III, PROT commanduuuuunttiiiiinneneeeenniinaaneeeereannns ADCT
TRSDOS, Model III, PURGE commandc.c.coiiniiiiiiiiineeertneeeennennnn. DADF / KDFW
TRSDOS, Model III, RENAME commandccouuuuniiiiiiiiinnanerereeeinnnn e RADF
TRSDOS, Model III, SETCOM commandeuuunniiimuniinneeeneenennenaneneeeenon RHS3
TRSDOS, Model III, TIME commandcuuueremntiiinitiiaeinaneeaan i TSRT
TRSDOS, Model III, VERIFY commandouiuiuuuniiiiiiiiiaiiiiiiieetneeneneennn VTTO
Turning on cassette motor, Color Computer oot MTOC
Turning on computer, how t0t i e TOCH
Two’s complement nUMDErs, USINGt i TCNU
Two-dimensional arrays, in BASIC i e AGTU
Type mismatch @ITOTouttt ittt ettt ittt a et aaaeannns TMER
L] D0 G e) AU P UEER
L 203 o) U ULER

How to do it on the TRS-80

Undefined line erTort et e e e e e e e e e e ULER

UNDEFINED SYMBOL, assembler message, Color Computer EDTASM+ AECE
UNDEFINED SYMBOL, assembler message, Model I/TI/TIT00 oo AEDI
Unprintable error o UEER
UD AITOW o AOIB
Update passwordcoviiiinennennnnnnnn, PWDS / ADFC / ADFL / ADCL / ADCT / ADC2
Update, continuous, Model I/TIT ittt DT1U
User origin, Color Computer EDTASMT i e EAIM
User origin, redefining location of, Color Computer EDTASM+ oo, EAIM
USR call address formatiiiiii i Z8AF
USR call, Color Computerooin e, CMLC / PVYMC
USR call, Model Tor III o e CML1 / RCWA / PVM1
USRn call, Color COmpPutercouiiuuiiint et CMEC / PVMC
USRn call, Model Tor HI e e e CMD1 / RCWA / PVM1
V option, Disk BASIC, for number of files, Model 7 1 1 HMF1
VAL, BASIC commanduuiiiniiiiit ittt e e e CSNV
Variables, passing to machine language programsc.cueiiiiiii i, PVM1 / PVMC
Variable record lengths, Disk BASIC filesouunreeeee e HMF1
Variable, string SHTU / SACW
Variable-length records, sequential disk files, BASICooueiinieini i, SDFB
Variables, BASIC, how to usecooiiiiinnnnnnann. .. IVHU / SPHU / DPHU / SHTU
Variables, BASIC, PRINT formatsouuttett it SIPS
VDG modes, setting, Color Computerot SVDG
VDG, Color Computerouuntt it e e e e GPAR / SVDG
Verify operations on disk VWDI
VERIFY, turning on and off TRSDOS, Model I, LDOS, Model I/IIT, Color DOS VTTO
VERIFY, turning on and off TRSDOS, Model IIoo oo VTTT
VERIFY, what it does e e VWDI
Vertical line spacing, changing, for Line Printer IIIo 0 uiur i, LP3S
Video characters, Model I/TITt e e GC13
Video display generator (VDG), Color COmMPULerueee et GPAR
Video lines, protecting, Model TIT it SHTC
Video, reverse, Color Computero.uiiinm e e RVCC
Videotext, COMPUSEIVEottt et e e CPSU
Visible/invisible disk files i VAIF / ADFC / ADFL
Voltages, available from Color COmMpPUerouuint e e PSWU
Voltages, RS-232-C . . e e RSWI
Voltmeter, how t0 USettt e e e e e VMHT
Waiting on error, assembly, Model I/TITt S1EA
Warnings, assembler, Model I/IIL e AEDI
WE option, assembly, Color Computerc.ouiuriuinn e EDCE
WE option, assembly, Model I/IIT e S1EA
“Wild card” copies of disk files, Model IIl TRSDOS WCCD
Wire-wrapping, how t0 i WWHT
Word length, RS-232-C i RHS1
Word mode, Color Computer ZBUG Programeueeeoneen e ZUEC
Worksheet, graphics, Color Computerouiuimuuneenn e FSGC
Worksheet, graphics, Model I/IIT FSGW
Worksheet, graphics, Model II FSG2
WP, BASIC command, Model TIT DWPR
Wrapping: wire-wrapping, howtoo ov.... e e e e WWHT
Write protecting diskettes i DWPR
Writing random BASIC files i RDFB
Writing source files, assembler, Color COMPULEruuurronne e EDCE
Writing source files, assembler, Model I/IIT oo S1EA
Writing to sequential disk files SDFB

How to do it on the TRS-80

Z,-80 2ddress FOTIMAE . .o vttt ettt e ettt e ettt e n et e e Z8AF

ZBUG expressions, Color Computer EDTASMA- ECCE
ZBUG files, Color Computer EDTASM-+ ... i e EDCE
ZBUG, Color Computer EDTASM . ..ottt e e ZUEC
A ey oY TS 41T o A R CMHT
ZETOING OUL AITAYS ...t e v ottt et ettt ettt ettt e st e et e et s st e e et ettt INAR
s TN) ¢ v+ R R R EEEEEEEE RS CHTP

How to do it on the TRS-80

notes

How to do it on the TRS-80

List of Procedures by Keywor

ACH T . e e e e Acoustic Coupler, How to Use
AP R . e e e e e AC Plug, Rewiring
ADC2 .. e Attributes of a Diskette, Changing TRSDOS, Model II
ADCL .. e Attributes of a Diskette, Changing LDOS, Model /111
ADCT .. e Attributes of a Diskette, Changing TRSDOS, Model I/IIL
ADFC e Attributes of a Disk File, Changing, TRSDOS Model I/1I/II1
ADFL .. Attributes of a Disk File, Changing, LDOS, Model I/III
AW e ASCII Characters, What Are They?
AD I . e e e Analog-to-Digital Inputs, Color Computer
AECE ... Assembler Error Diagnostics, Color Computer EDTASM+
AEDI .. e Assembler Error Diagnostics, Model I/II/III Assemblers
AEDP .. Automatic Execution of a Disk Program on Power Up
ARUL . Assembler Expressions, Using, Models I/1I/III Assemblers
AW A e e e e ASCII Files, What Are They?
AGTU . e e Arrays in BASIC, Using
ALOF .. e Assembling, Is Object File in Memory After Assembling?
ALCW .. Assembly-Language Coding, Ways to Generate Perfect Code
AL . e Inserting a Line in BASIC, All Systems
AL L e Assembly Language, What Is It?
AN L L e Animation, Models I and III
AOIB .. e e e Arithmetic Operations in BASIC, All Systems
BB U S L e e e Bulletin Boards, Using
B S M .o e e Backup Diskette, General
BH T G . BASIC, How to Get To
BERHT ..o e BREAK Key, How to Disable Model I/I11
BLTL ... BASIC Line Too Long To Print or Display, Most Systems
BOCH .. e e Buzzing Out Cables, How to
BPFM ... Breakpointing for Machine-Language Debugging, All Systems
BB . e e e Breakpointing in BASIC
B S P . e e e Backup Procedure, Specific
BSCC . e e Switches and Connectors, Color Computer
BSEC .. e To Backspace and Erase Character
B L o e e e e Backspace and Erase Line
B R L e e e BS Error
CIT3 .. e Converting Model I TRSDOS Files to Model III TRSDOS Files
CBBH ... Converting Between Binary and Hexadecimal
CCAM ... e Cassette Connector, Models I/III/Color Computer

How to do it on the TRS-80

GO P A Color Computer Pixel Addressing

D Cassette DEBUG, Models I and III
CDFH .. CREATEIing a Disk File, Model I/1I/I11
CDFL Copying Disk Files, Model I/III LDOS
CDHT Clock Display, How to Use, TRSDOS/LDOS, Models I/TI/TI
CD O Changing the Display Offset
CFAD Copying a File to Another Diskette, Model I/1I/III/Color Computer TRSDOS
CE B . Converting from Binary to Decimal
CFCS Converting the First Character of a String to Numeric in BASIC, Most Systems
CE DB Converting from Decimal to Binary
CEDH . e Converting from Decimal to Hexadecimal
G T /CMD File Format, Model I/1I/I11
CEFHD .. Converting from Hexadecimal to Decimal
CROW . Cursor, Finding Out Where It Is In BASIC
CFSD Copying a File to Same Diskette, Model I/1I/III/Color Computer TRSDOS
CHON . Commands, Help On, Model II/TII TRSDOS
CH P . Columns, How to Put Things In, in BASIC
7 70 Cleaning Connectors
CL D e Clearing the Display in BASIC, All Systems
CMD1..... Calling a Machine Language Program in Disk BASIC, Model I or Model III TRSDOS/LDOS
CMEC Calling a Machine Language Program in Extended Color BASIC, Color Computer
CMHT ... i Clearing Memory, Model II/III TRSDOS, Model I/III LDOS
CMLY Calling a Machine Language Program in Non-Disk BASIC, Model I or Model III
CMLC Calling a Machine Language Program in Color BASIC, Color Computer
CN R e CN Error
CP A e Centronics (Printer) Cables, Model I/II/1I1
CPM . Compressing Programs, Model III TRSDOS
P U CompuServe, Using
CPW R L Conditioning Power
ORI Cassette Recorder Plugs, Insertion of
CSFT . Clearing the Screen from TRSDOS, Model II/1II
CH T Comparing Strings in BASIC
CSNV Converting BASIC Strings to Numeric and Vice Versa
OO UM . o Clock Speed Up Modifications
CTLC ..., Cassette Tape Loading Difficulties, Model I/III/Color Computer
CUSE . CHR$ Use, BASIC, Most Systems
CWTC Commands, What TRSDOS/LDOS Commands Are There?, Model I/II/III
DLW e DEVICE, Model II TRSDOS, What is It?
DADF .. Deleting Many Disk Files, How to, Model II/III TRSDOS
DCJS ... Date Conversion in BASIC, Julian/Standard Format, Model III TRSDOS
DD R . DD Error
W A Data Diskettes, What Are They?
DEHM . Disk Errors, How Many are Too Many?
DEF AH . Disk File Access, How to Speed Up
DFBH ... DIR from Inside Disk BASIC, Model III TRSDOS
D D A . Disk File, Deleting, All Systems
DEFOT ... Date, Finding Out Today’s, Model I/II/1II Disk Systems
D13 Discrete Inputs for the Model T or I
DB . Date, in BASIC Program, Model II
IO C Discrete Inputs for the Color Computer
DD Directory, TRSDOS/LDOS, All Systems
DN S Diskettes, Inserting
DILDB..................... DEBUG, Loading from Disk BASIC, Model I TRSDOS, Model I/III LDOS
DLIB .. Deleting Lines in BASIC, All Systems
DM Directory Listing, Model I, TRSDOS
DLMZ Directory Listing, Model II, TRSDOS

How to do it on the TRS-80

5] 1\ 1 S S Directory Listing, Model III, TRSDOS

| 5) 07T o T R Digital Logic, A Short Course
DLW S oottt e e e Disk Light, When Should It Come On?
DMT 2 e Dumping Memory to a Disk File, How to, Model II TRSDOS
DMTS .ottt i Dumping Memory to a Disk File, How to, Model 1II TRSDOS
DML .ottt et Dumping Memory to a Disk File, How to, Model I/II1 LDOS
DM . e Dumping Memory to a Disk File, How to, Model I TRSDOS
DPHU . e e e Double-Precision Variables in BASIC, How to Use
DS B ot e e Drawing Shapes in BASIC, Color Computer
DD oottt Date, Setting, Model I/II/I1I, TRSDOS/LDOS
DSHL ..ot e s Disk Space, How Much Left?, TRSDOS, All Systems
DS PR ..t e Dumping the Screen to the Printer in BASIC, Model I/II
DSRC ... DATA Statements and Related Commands, BASIC, All Systems
DT AU it e DEBUG, TRSDOS/LDOS, Model I/1I, Using
£ 0) 0 < TR R R Diskettes, Using Flip Side
DWDKcoonnnn. DEBUG, Why Do I Keep Entering, Model I/Il TRSDOS, Model I/III LDGS
DWW P R .ottt e e e e Diskette, Write Protecting
| DYA D 16 NPT R Drive 0, Drive 1, Which Is It?
Dz R ... e Divide by 0 Error
EAIM .o EDTASM+, Color Computer, Assembling Into Memory
j 07 0] 6] O R Expressions, Color Computer EDTASM-+
| D03 (< T P S R Embedded Codes in SCRIPSIT
ED AN ottt e e EDAS, Notes
EDCE .. ittt et EDTASM+, Color Computer, Using Editor and Assembler
EMBH ot e e e i s Edit Mode, BASIC, Most Systems
EPH T ..t Ending a BASIC Program, How to, All Systems
1 D4 2,41 O R Electronic Parts, Where to Get
| 04 i 1 - S AP S P Error Trapping in BASIC, Some Systems
EY B ..ottt e e e Erasing Your BASIC Program
FBDF oo e e e s Functions, BASIC, Defining, Some Systems
FBWT .. 500-Baud and 1500-Baud, For Model III Cassette, BASIC When to Use
FOE R . oot e e e FC Error
FDE R ..ottt e e e FD Error
FHBE ... et 500-Baud or 1500-Baud for Model III Cassette, BASIC, Selecting
FHOF . e e Failures, How Often?
FHSTE .t e et e Files, How System Finds
FINEW i et e File Not Found When the Directory Says It’s There!
LY 1 & (A R File Names, How to Use
FSG e .ot e et e Video/Graphics Worksheet, Model II
FSGOC oottt e e e Video/Graphics Worksheet, Color Computer
P GW oot et e e Video/Graphics Worksheet, Model I/I1I
520 N 70 TN FOR ... TO Loops, BASIC, Ok to Break Out? All Systems
| 25 N 3 A T FOR ... TO...STEP, BASIC, All Systems
GAPC .o e GET and PUT Use in BASIC Graphics, Color Computer
GOL . Graphics Characters, Model I/1lI
GH S .o e e s Graphics, High-Speed, Model I/I11
€311, 1 (O LR EEE TR R Graphics Modes in the Color Computer
G P . o e e i e Graphics Mapping in the Color Computer
GP AR ..t e e e Graphics Architecture, Color Computer
HAS A Amount of Storage in a BASIC Array, How to Find
L= 00Y.0 O AP R How Many Files, Model I/1II
HINIB ..ot e et i Hexadecimal Notation in BASIC Some Systems
HD S ottt et Displaying at any Screen Location in BASIC, All Systems
HTGB ..ot eiiiiiiiiiane Back to Level II BASIC from Disk BASIC, Model I TRSDOS
TOIG o .o e e e Integrated Circuit, Inserting
TO RS .ottt e Integrated Circuit, Removing a Soldered

How to do it on the TRS-80

ICSK . Integrated Circuit, Removing from a Socket

DD R ID Error
IDFK ... INPUTting Data From the Keyboard, BASIC, All Systems
INAR . Initializing Arrays, BASIC, Most Systems
INBHU e, INKEY$, How to Use, BASIC, Most Systems
FOH T . INP, OUT, in BASIC, How to Use
IPNF .o Integer Portion of a Number, Finding, BASIC, Most Systems
ITEL .. IF ... THEN. .. ELSE, BASIC, All Systems
IVHU o Integer Variables in BASIC, How to Use
JOLW JCL, What is It? — How to Use It
JPPO Joystick Plugs, Color Computer, Pinout
KDFW KILLing a Disk File Without a Password, Model II/III TRSDOS, Model I/III LDOS
0 Model I/TIT LDOS, How to Load
LB R L3 Error
LBAP . Listing BASIC Programs, All Systems
LBWT LET, in BASIC, What to Do About It, All Systems
LD L . LISTing a Disk File, Model I TRSDOS
LDFZ . LISTing a Disk File, Model II TRSDOS
LS LISTing a Disk File, Model IIl TRSDOS
LDH T . Logic Diagram, How to Read
LIS LDOS Device Independence and System Devices
LDLD . LINKing Devices, Model I/II1 LDOS
LD O LDOS - What is It?
LEMC Loading and Executing a Machine Language Program, Color Computer
LB A Line Format, BASIC, All Systems
LMFIL ... Loading Multiple Machine Language Files from Disk, All Systems
LMFN ..., Loading Machine Language Files from Cassette, Models I and III
LMLB ... Loading a Machine Language File from Disk BASIC, Model III
LMLD Loading a Machine Language Program or Data File from Disk, All Systems
LNAT Line Numbering, Automatic, BASIC, Models I, II, III
LOH T . Logical Operations, in BASIC, All Systems
P8 Line Printer III, Operation Notes
LPH T Logic Probe, How to Use
B R LS Error
LWDL Line Printer, Writing Your Own Driver, Model I
LWD3 . Line Printer, Writing Your Own Driver, Model 111
MABH . Model I/IIT Hardware Differences
MION Modem I, Operation Notes
MEAL .. Memory, Finding Amount Left
MH T U Modem, How to Use
MW . Machine Language, What is It?
MMOCC .. Memory Map, Color Computer
MMM . Memory Map, Model I/111
MMMZ . Memory Map, Model II
MOB2Z .. MOD Operator in BASIC, Model 1T
MOER . . MO Error
MSDC Multiple Serial Devices, Color Computer
MSLH Multiple Statement Lines in BASIC, How to Use, All Systems
MTOC .. Motor, Turning On in BASIC, Color Computer
M PB . Merging Programs, Disk BASIC
MUPE Magazines, Using Programs from
MW AT Modems, What Are They?
NECS Spinwriter, Operation Notes
NEE R NF Error
NRE R . NR Error
NSWD . No System, What Does it Mean?

How to do it on the TRS-80

L8] 5) 4 R R R EE R OD Error

OGHU ..ot e e ettt ON ... GOSUB, ON... GOTO, BASIC, All Systems
OME R ..ot e e e e OM Error
(03011 § - J P Octal Notation in BASIC, Some Systems
OSE R ..o e OS Error
OSSH ...ttt i Out Of String Space, What to Do About It
[0)%) . S R R OV Error
PO e ettt PAINT Command, Extended BASIC, Color Computer
23 5 Dl P PRINTing a Disk File, Model I TRSDOS
|23 & i O R R R RN REE. Parentheses, How to Use
PIEDM .ttt it e et i e Period, in BASIC Edit Mode, Most Systems
| 24) 2 & 20 PRINTS to LPRINT's and Back Again
POCE ... ittt iiiaanaens Pseudo-Ops, Using, Color Computer EDTASM+ Assembler
POZA ..ot i i e e Pseudo-Ops, Using, Z-80 Assemblers, Models I, 1L, 111
PPEKU ..o it PEEK and POKE, Using, Model I/I1I/Color Computer
PROT ..ttt Protecting Memory in BASIC, Models I/II/IIT and Color Computer
23 22 61 5 A R PRINT USING, BASIC, Using
PSBC ..ottt PSET, PRESET, and PPOINT in BASIC, Color Computer
12253, U A S Power Supplies, What to Use
PSS C oottt et i e Printing the Screen, Model I/II/IIl TRSDOS/LDOS
PVMI ..o iiiiians Passing Variables to Machine Language Programs, Model I or ITI
PVMC Passing Variables to Machine Language Programs, Model II or Color Computer
1 22174 1 1< I S R R Passwords, Diskette Model I/II/III
PWIL .ttt e PAUSE, What is 1t? TRSDOS/LDOS
QWL e Quote in BASIC, What Is It?
RADF ..ot RENAMEing a Disk File, TRSDOS/LDOS, All Systems
| 2353,V [) Reset Button, Where Is It?
RCAD . o i ettt ii i Regaining Control of an AUTO Disk, TRSDOS/LDOS
ROCC ottt e et s sttt e RS-232-C Connector, Color Computer
| 2700 6}, (O ROM Cartridge Connector, Color Computer
ROW A ottt ettt it cia s ROM Calls, What Are They?, All Systems
230) O = S PR Random Disk Files, BASIC, Using
23) = L4 A T Random Data, How to Generate
1230) 5 1 1A Routing Devices, Model I/III LDOS
23 0 - J A R R EERERERERE RG Error
RHSI ... it it eniniaans s RS-232-C Interface, How to Set, Model 1
RH S oottt ettt et RS-232-C Interface, How to Set, Model 111
235 4 A P R R Resistors, How to Use
| 23 01 1 > SR R R R R Replacing a Line in BASIC
2911 23 7 S Renumbering BASIC Lines, Non-LDOS Systems
RINBM ..ottt ittt ettt Renumbering BASIC Lines, Model I/III LDOS
1230 10) A I Rounding Off in BASIC, Most Systems
RS ..o e e i RESETting the System, Model I/III LDOS
123212 (A R R RS-232-C, What Is It?
24 \ 6) . [Real Time Clock No Longer Accurate — Why
RTICT ..t er e iieiaens Real-Time Clock, T'o Turn On, Model I/III Disk BASIC
334 N 1) 2 O Return to TRSDOS/LDOS from BASIC, Model I/III
£ 50) X ROUTE, Use of, Model III TRSDOS
23 2 PP Running a BASIC Program, All Systems
227 01 & U Reverse Video, Color Computer
SIE A oot e e e Using the Series I Editor Assembler, Model I/II1
SACW e e e e Strings, BASIC, Accessing Characters Within
SB DD ... e e e Saving BASIC Programs on Disk
SBP T ..o i e Saving BASIC Programs on Cassette, All Systems
SOOI ..ot String Concatenation in BASIC
SOM .ottt e e i Screen Clear in BASIC, Model I/1II -~ What's Used?

How to do it on the TRS-80

SCOF /CIM on Files, What Does It Mean?

SDFB . Sequential Disk Files, Using
SDW A System Diskettes, What Are They?
SDTD ..o SETting a Device to a Driver, Model I/III LDOS
SFLO ... Strings, Finding Length of, BASIC, Most Systems
SHTC .. Scrolling, How to Control, Model III
SHTO . Soldering, How to
SHTU .. Strings, BASIC, How to Use
T 0 o Semicolon, in BASIC PRINTSs
SNER SN Error
SPHT Spooling, How to Use, Model I/IIT LDOS
SPHU Single-Precision Variables in BASIC, How to Use
SRBH ... SET/RESET in BASIC, How to Use, Model I/I1I
SSA3 ..., Sorting a String Array in BASIC, Model III TRSDOS, Model I/III LDOS
SO A String Space, Finding Amount Left
STAC Stack, Description
STER . . ST Error
STRD ... STRING$ Command BASIC, Most Systems
STWD /TXT on Files, What Does It Mean?
SUBB ... Subroutines, BASIC, All Systems
SUBP .. Speeding Up Your BASIC Programs
SUCG ..o Setting up for Color Computer Graphics in BASIC
SVDG ... Setting the VDG Modes in the Color Computer
SWHU .. Slit and Wrap, How to Use
TBCC .. Tokens in BASIC, Color Computer
TCMH 32-Character Mode, How to Switch to in BASIC, Model I/III
TCML........ Transferring Control to a Machine Language Program from BASIC, Model I/III Non-Disk
TCNU .. Two’s Complement Numbers, Using
TGBB ... TRSDOS, Getting Back to From BASIC, Model II
THTS TRSDOS, How to Load, All Systems
TIBP ... Time, in BASIC Program, Most Systems
TMI3 . Tokens in BASIC, Model I/1I1
TMER .. TM Error
T TW . Tokens in BASIC, Model II
TOCH ... Turning on the Computer, How to
TRHT .. Tracing, BASIC Programs
TRUS ... TRACE, Using, Model 1 TRSDOS, Model, I/TII LDOS
TS AL Table Size in Assembly Language
TSPD .. To Stop the Display in BASIC, All Systems
TSRT ... TIME, Setting the Real-Time-Clock TRSDOS/LDOS, Models I/TI/III
TS TP To Stop the Program
UEER UE Error
ULER UL Error
UTFB .. Using Trigonometric Functions in BASIC
VAIF Visible and Invisible Files, What Are They?
VMHT . Voltmeter, How to Use
VTTO VERIFY, to Turn On and Off, Model I TRSDOS, Model I/III LDOS, Color Computer DOS
VT VERIFY, to Turn On and Off, Model II TRSDOS
VWL VERIFY —~ What Does it Do?
WCCD ... “ Wild-Card” Copies of Disk Files, Model III TRSDOS
WWHT Wire-Wrapping, How to
ZBAF . Z-80 Address Format
ZUEC .. o ZBUG, Using, EDTASM++, Color Computer

How to do it on the TRS-80¢

ACHT

Acoustic Coupler, How to Use

1. Read procedure MWAT if you know nothing about
modems.

2. Are you sure you have an acoustic coupler (with two
cups for the telephone headset)? If so, continue. If not, go
to procedure MHTU.

3. Connect a standard 25-conductor ribbon cable between
the 25-pin R8-232-C connector on the modem and the 25-
pin RS-232-C connector of the Model 1, II (B), or ModelIIL
This cable is available from Radio Shack (26-1408) and
other electronics or computer stores. Connect a special
cable (RS 26-3014) between the Color Computer RS-232-
C port (4-pin DIN, see BSCC) and the 25-pin RS-232-C
connector of the modem; some Radio Shack modems will
have special 4-pin DIN plugs, and you can use RS cable 26-
3020.

4. Model I setup your COMM/TERM and Sense
Switches as described in procedure RHS1. Model II: setup
the RS-232-C interface as described in the RS manual.
Model IIL: setup the RS-232-C interface as described in
procedure RHS3. Color Computer: setup the RS-232-C
interface as described in the RS manual

5. You're now ready to dial a Bulletin Board system,
CompuServe, or other data communications system. Setup
your modem this way:

® Ifyou are originating the call, set the modem switch for
Originate/Answer to “Originate.” Sometimes this switch
will be labeled “O/A.”

® Set the modem switch for “Full/Half” to “Full” if your
program uses full duplex (see RSWI) or “Half” if your
program uses half duplex. Typical use is full duplex to
“acho-back” characters transmitted.

6. Load and start your data communications program.
Simple programs will now be waiting with a blank screen,
ready to receive data and display it, and to transmit data
from the keyboard.

7. Dial up the number of the Bulletin Board or network
while listening on the phone. After the phone is answered,
you hear a pause followed by a high-pitched whine of the
“carrier” frequency. Take your time (you have a minute or
s0), and carefully place the telephone handset in the cups
of the acoustic coupler, making certain that they are
securely encased in the rubber cups to blanket room noise.
Note the proper position of the handset. If you turn it
around, the coupler will simply not work.

8. You should now see the prompt message of the
Bulletin Board or network on the screen. If you do not, try
typing ENTER a few times. If you still See nothing, check
the “carrier” light on the modem. If it is off, the other
system has “disconnected” you. (It will “time out” if it does
not get the proper response in time). Review the steps
above, and try again with another system (preferably). If
you still have trouble, refer to procedure RSH1 or RSH3. If
you do see data on the screen, but it’s garbled, go to
procedure RSH1 or RSH3 to check the word length, stop
bit, and baud rate settings. If you see meaningful data,
continue with the procedure for Bulletin Boards (BBUS) or
CompuServe (CPSU).

ACPR
AC Plug, Rewiring

Want to cut off that long cord from your TRS-80 to get a
neater computer room appearance? You can do it easily,
and it won’t void your warranty.

1. You'll need a 3-connector AC male plug, available
from any hardware store. Do not use a 2-connector plug!

2. Refer to Figure ACPR-1. Most AC power cords have
three wires inside, colored white, green, and black. The
green wire is always ground. The white and black wires are
“polarized” and go to definite sides of the plug that goes
into the wall as shown.

3. Cut the cord at a convenient length using diagonal
pliers or even scissors.

4. Strip the outer covering on the cord (the rubber part)
so that about 1 inch of the 3 wires are exposed. You’ll find
some fiber material present, and you can cut this off,
leaving only the 3 wires. Make certain that you don’t cutthe
outer covering too deeply —just enough to allow you to pull
off the covering without exposing bare wire on the three
internal wires.

5. Strip about 1/2 inch off each of the three wires. Roll
the strands of each wire together so that they form a

compact wire without loose ends. Form each of the three
wires into a “U” shape. If you're a perfectionist, you can
solder each wire into a permanent “U” shape (see SHTO)
although this isn’t really necessary.

6. Disassemble the 3-connector plug. Here’s a description
of a typical plug: there are 3 screws on the face of the plug.
Unscrew these and pull the two parts of the plug apart. The
“hood” of the plug has two screws that clamp around the
“line cord.” Loosen these screws and slide the hood up the
cut line cord that attaches to the computer equipment.

7. Connect the 3 wires to the three-connector male AC
plug as shown. The plug may have a white connector,
indicating the proper connection for the white wire. The
green wire should always go to the round ground connector.
You may have to unscrew the screw connections completely
off the plug to connect each wire. The “U” shape should
follow the direction of screw rotation when the screw is
screwed in, to avoid “splaying” the wires.

8. Reconnect the “hood” and body of the plug, and
tighten the hood screws to clamp around the line cord. This
will provide “strain relief” so that there is no stress onthe 3
wires that would act to pull them loose.

How to do it on the TRS-80

ACHT

ACPR

Figure ACPR-1 - AC Plug Wiring

AC MALE
PLUG

LOOKING IN
WHITE LEAD CONNECTED

LEAD ggmémen/ ‘\ TOTHIS PIN (MAY BE
TO THIS PIN ;

A SILVER PiN)
GREEN LEAD

CONNECTED TO
THIS PIN (GROUND
PIN)
WHITE

GREEN

BLACK

cut
\ STRIP AWAY OUTER SHEATH

CUT OFF FIBROUS
™~ MATERIAL

SHAPE (MAY
BE SOLDERED
TO RETAIN SHAPE

STRIP EACH OF
THREE WIRES

ADC2
Attributes of a Diskette, Changing TRSDOS, Model IT

See ADFC if you want to change the attributes of a disk
file. This section is for changing the diskette master
password, and a “blanket” LOCK, UNLOCK of disk files.
(See PWDS for a description of passwords).

To change "the master password:
PROT :n OLD=oldpass, NEW=newpass

The :n parameter is a drive specification denoting the
disk drive (:0 — :3). The colon is optional. The OLD
parameter is the current master password of the diskette
(the standard password on most diskettes is PASSWORD).
The new parameter is the new master password to be used
on the diskette. From 1 to 8 alphanumeric characters can
be used for the new password.

To remove all access and update passwords from user
visible, non-system files, use:

PROT :n OLD=oldpass, UNLOCK

If the OLD password is correct, TRSDOS will “unlock”
all visible, non-system files, a powerful command. To force
all access and update passwords to the current disk master
password, use:

PROT :n OLD=oldpass, LOCK

If the OLD password is correct, TRSDOS will use the
master password for all user file access and update
passwords. The NEW option and LOCK or UNLOCK can
be used at the same time. If LOCK or UNLOCK is omitted,
the file protection on the diskette is left unchanged.

ADCL

Attributes of a Diskette, Changing LDOS, Model I/111
See ADFL if you want to change the attributes of a disk

file. This section is for changing the diskette name, master

password, and a “blanket” LOCK, UNLOCK of disk files.

(See PWDS for a description of passwords).

To change the diskette name, use the following format:

ATTRIB :n (NAME="newname",MPW = "pasgword")

The :nis the drive specification (:0~:3) and is optional; if
none is used, :0 is assumed. The NAME parameter is the
new name of the disk and the MPW, or Master Password, is
the current master password. The MPW parameter is not
required if PASSWORD is the current master password.
To change the master password:

ATTRIB :n (PW="newpass",MPW="password")

How to do it on the TRS-80

The name and password can be changed in the same
command. To remove all access and update passwords
from user visible, non-system files, use:

ATTRIB :n (UNLOCK,MPW="password")

The MPW parameter is not necessary if the master
password is PASSWORD. This command “unlocks” all
visible, non-system files, a powerful command.

To force all access and update passwords to the current
disk master password, use:

ATTRIB :n (LOCK)

ADCT
Attributes of a Diskette, Changing TRSDOS Model
/11l

See ADFC if you want to change the attributes of a disk
file. This section is for changing the diskette master
password, and a “blanket” LOCK, UNLOCK of disk files.
(See PWDS for a description of passwords.) To change the
master password:

PROT :n (PW)

The :n parameter is a drive specification denoting the
disk drive (:0 - :3). TRSDOS will prompt you for the old
password (PASSWORD initially on most diskettes) and
then for the new password that will replace it.

Model I users only: To remove all access and update
passwords from user visible, non-system files, use:

PROT :n (UNLOCK)

TRSDOS will prompt you for the master disk password,
and, if you've entered it correctly, will “unlock” all visible,
non-system files, a powerful command. To force all access
and update passwords to the current disk master password,
use:

PROT :n (LOCK)

TRSDOS will prompt you for the master disk password,
and, if you've entered it correctly, will use the password for
all user file access and update passwords. The PW option
and LOCK or UNLOCK can be used at the same time.

ADFC
Attributes of aDisk File, Changing TRSDOS Model
I/11/11T

The ATTRIB command lets you change the visible/
invisible status of a file (see VAIF), change the access/
update passwords (see PWDS), and change the access
level. To change a visible file to invisible, do

ATTRIB name (I) (Model I/III)
ATTRIB name I (Model II)

where “name” is a file name (see FNMH). To change back
to visible status, use N in place of I, except for Model I. For
TRSDOS Model I do a COPY to a new file (deucedly
inconvenient).

To assign a new access or update password, do

ATTRIB name (ACC=password)
ATTRIB name ACC=password

(Model I/III)
(Model II)

or

(Model I/III)

ATTRIB name (UPD=password)
(Model II)

ATTRIB name UPD=password

or use both options at once. The “password” may be 1to 8
characters.

To remove access and/or update passwords, use the
(ACC =)) or (UPD =) form of ATTRIB. The access or

update password will be set to blanks (no password). To
change the access level do

(Model I/ILI)
(Model II)

ATTRIB name (PROT=level)
ATTRIB name PROT=level

where “level” is KILL, RENAME, WRITE, READ, or
EXEC. (Or NONE for Model II). The access level is
defined as follows:

FULL (I1I) Full access, no protection
KILL Total access

RENAME (I) Rename, write, read and execute

NAME (II) Rename, write, read, and execute

WRITE Write, read, and execute

READ Read the file and execute, may be
listed

EXEC Execute the file only, impossible to
obtain a listing

NONE (I) ultimate paranoia — no access

You can use one or more parameters in each ATTRIB
command.

ADFL
Attributes of a Disk File, Changing LDOS Model I/I11

The ATTRIB command lets you change the visible/
invisible status of a file (see VAIF), change the access/
update passwords (see PWDS), and change the access
level. To change a visible file to invisible or vice versa, do

ATTRIB name (VIS)

or

ATTRIB name (INV)

How to do it on the TRS-80

ADC2
ADCL

ADCT
ADFC
ADFL

where “name” is a file name (see FNMH). To assign a new
access or update password, do

ATTRIB name (ACC=password)
or
ATTRIB name (UPD=password)

or use both options at once. The “password” may be 1 to 8
characters.

To remove access and/or update passwords, use a “null”
password (no characters after the equals sign).

ATTRIB name (UPD=,ACG=)

To change the access level do

ATTRIB name (PROT=level)

where “level” is ALL, FULL, KILL, NAME, WRITE,
READ, or EXEC. The access level is defined as follows:

ALL Total access

FULL Total access

KILL Total access except resetting attributes
NAME Rename, write, read, and execute
WRITE Write, read, and execute

READ Read the file and execute, may be listed
EXEC Execute the file only, impossible to

obtain a listing

Notes: You can use any combination of the above
parameters; there are no defaults and nothing will change
in the file attributes if you do not specify a parameter.
Abbreviations are U, A, P, V, I and AL, FU, KI, RE, WR,
NA, and EX.

ADFW
ASCII Characters, What Are They?

ASCII refers to the code used to represent alphabetic,
numeric, or special characters, It is a “7-bit” code, with the
upper, or most significant bit not used. This means that
values of 0 through 127 are valid ASCII characters. ASCII
code is shown in Table ADFW-1.

The ASCII codes lower than 32 decimal (20H) are called
“control codes” because they are set aside for special

Table ADFW-1 - ASCII Codes used on the TRS-80s

CC* I/I1/111

Code Code Character
]
1 BREAK
2
3
4
5
6
7
8 LEFT ARROW
9 RIGHT ARROW
10 DOWN ARROW
11
12
13 ENTER
14
15
16
17

How to do it on the TRS-80

functions such as “line feeds” (ejecting paper from a
printer), “carriage returns” (start at beginning of line) or
“move cursor.*

All the TRS-80 systems use ASCII in BASIC and other
applications to represent alphabetic, numeric, and special
characters.

CC* I/II/III
Code Code Character

18

19

20

21

22

23

24

25

26

27

28

29

36

31 CLEAR
32/96 32 blank
33/97 33 !
34/98 34 "
35/99 35 #

cc* I/II/III CC* 1/11/111

Code Code Character Code Code Character
36/109 36 $ 19/83 83 S

37;131 37 % 20/84 84 T

38/1¢2 38 & 21/85 85 U :
39/1¢3 39 - 22/86 86 v ADFW
4¢§134 40 g 23;87 87 W —_—
41/105 41 24/88 88 X

L2 /106 42 * 95/89 89 Y ADFW
43/107 43 + 26/99 90 z
44198 44 , 27/91 91 }

45/109 45 - 28/9) }

46/119 46 . 29/93 93 -
47/111 47 / 30/94 9 -
48/112 48) 31/95 95 _

49/113 49 1 96 @

5¢/114 50 2 97 a

51/115 51 3 98 b

52/116 52 4 99 c

53/117 53 5 199 d

54/118 54 6 101 e

55/119 55 7 192 £

56/126 56 8 193 g

57/121 57 9 164 h

58/122 58 : 105 i

59/123 59 ; 196 j

60/124 60 < 197 k

61/125 61 = 108 1

62/126 62 > 19 m

63/127 63 ? 11 n

0/64 64 @ 111 0

1/65 65 A 112 p

2/66 66 B 113 q

3/67 67 C 114 r

4/68 68 D 115 s

5/69 69 E 116 ¢t

6/79¢ 70 F 117w

7/71 71 c 118 v

8/72 72 H 119w

9/73 73 1 120 x

18/74 74 J 121y

11/75 75 K 122 z

12/76 76 L 123 A

13/77 77 M 124 |

14/78 78 N 125 '}

15/79 79 0 126 -

16/80 89 P 127

17/81 81 Q

18/8) R

*Color Computer code shown is "Lom inverted" followed by "inverted" code.
Inverted is black on green and non-inverted is green on black.

How to do it on the TRS-80

ADIC
Analog-to-Digital Inputs, Color Computer

The joystick inputs of the Color Computer may be used
for four channels of an analog-to-digital converter. The
inputs would represent a voltage analog of a real-world
quantity, such as temperature. A simple temperature
sensor is shown in Figure ADIC-1.

The temperature sensor is a thermistor, a device whose
resistance changes with temperature. The thermistor and
15K ohm resistor form a “voltage divider.” The voltage at
the junction of the two is read into the right joystick X
channel by the JOYSTK(0) command. The statement

169 A=JOYSTR(P)

for example, sets variable A to a value of 0-63 depending
upon the voltage of the junction, which will be close to 0

Figure ADIC-1 - Simple Temperature Sensor

THESE TWO COMPONENTS
MAY BE AT A REMOTE
LOCATION

T
1
i
i
1
1
!
!
H

volts (A = 0) through close to +5 volts (A = 63),
depending upon the resistance of the thermistor, which is
dependent upon temperature.

You can use this same scheme to read in the other three
channels by using JOYSTK(1), JOYSTK(2) and JOY-
STK(3), with the devices attached to the proper pins.
Remember that JOYSTK(0) must first be executed before
reading any of the other channels.

The voltage input to the X or Y channel may be derived
from other types of circuits, such as “op-amps,” and may
represent a variety of other “transducer” inputs, such as
pressure, light intensity and position. For more information
onreading real-world inputs, see my book TRS-80 Model I,
I, and Color Computer Interfacing Projects, Howard W.
Sams, Publisher.

: : F3 TO RIGHT
i T ; t — JOYSTICK
i ! P PIN 6 (+5V)
! T : FENWAL GA45P1 i !
1 1 50K OHM i
. ! P TO RIGHT,
| | THERMISTOR P JOYSTICK,) SEE JPPO
| | b T PIN1(X
| | 15K OHM, hwT | | CHANNEL
! ! RESISTOR N
! ! ' TO RIGHT
I________,' :__J - JOYSTICK,
PIN 3
/ (GROUND)
THIS MAY
BE 3-WIRE
CABLE, ANY
COMMON TYPE
AECE BYTE
Assembler Error Diagnostics, Color Computer OVERFLOW: Operand too large for field, as in
EDTASM+ TABLE FCB ADDRESS generate address
BAD LABEL: Invalid label characters. Redo label. DP ERROR: The high order byte of an operand does
not match the value set by the last
BAD SETDP command (see POCE).
MEMORY: You did an in-memory assembly that
attempted to overwrite system memory, EXPRESSION
the edit buffer or symbol table, the ERROR: ; fom i
protected area set by USRORG, or was Invalid expression in operand,
over the top of RAM. See EAIM. MISSING
BAD END: No END statement. You'd think the
OPCODE: Use only valid 6809E opcode or pseudo- assembler would be smart enough . . .
opcode mnemonics. MISING
BAD INFOR-
OPERAND: Illegal operand, for example, MATION: (There’s a little joke here . . .)

LDX ,,X Missing delimiter in an FCC, ornolabelona SET or EQU.

How to do it on the TRS-80

MISSING
OPERAND: One or more operands missing.

MULTIPLY
DEFINED
SYMBOL: Label of line was used somewhere else.

First definition is used.

Figure AECE-1 - Assembler Error Diagnostics, 6809E

BAD LABEL

¢p1p9 DIVIDZ PSHS X,A

BAD OPCODE

9119 CLRX

BAD OPERAND

99129 LDB +1,8S
UNDEFINED SYMBOL

gppp 8D FE 99130 BSR
gp92 E7 61 po149 STB
pPP4 E6 62 ¢915¢ DIV9PY LDB

MULTIPLY DEFINED SYMBOL
UNDEFINED SYMBOL

¢p96 8D F8 ¢@lep DIVIPP BSR
o998 E7 62 99179 STB
REGISTER ERROR

BAD OPERAND

09189 PULS

gooc 39 99199 RTS

MISSING END
p99P9 TOTAL ERRORS

DIV9gY 0004 M
DIVIDE @9@¢ U
DO LT U

REGISTER

ERROR: No register in a PSH/PUL or a register
specified more than onceina PSH/PUL,
or improper registers inan EXG or TFR
instruction.
ADIC
UNDEFINED
SYMBOL: Operand symbol has not been defined. AECE

Define by new label.

Figure AECE-1 illustrates a catastrophic assembly AEDI
containing these types of errors.

DIVIDEND, DIVISOR
CLEAR 1/2 OF DIVIDEND

GET MSB OF DIVIDEND

DO 8 DIVIDES
+1,8 REPLACE FIRST HALF
42,8 GET LSB OF DIVIDEND

DIVIDE DO 8 DIVIDES
+2,8 REPLACE 2ND 1/2

DISCARD DIVISOR

RETURN

AEDI
Assembler Error Diagnostics, Model I/I/I1I
Assemblers

Fatal Errors: No object code generated for line:
BAD LABEL: Invalid label characters. Redo label.

EXPRESSION

ERROR: Invalid expression in operand.

ILLEGAL
ADDRESSING
MODE: Tllegal operand, for example,
JR P,START ;jump on positive
JLLEGAL
OPCODE: Use only valid Z-80 opcode mnemonics.

MISSING

INFOR-

MATION: Operand missing as in
JP ;g0 to start

Warnings: Object code generated but may not be
correct:

BRANCH

OuUT OF

RANGE: JR type branch was more than 129 bytes
forward or 126 bytes back. Make a JP or
move branch point closer.

FIELD

OVERFLOW: Operand too large for field, as in
TABLE DEFB ADDRESS ;generate address

How to do it on the TRS-80

MULTIPLY NO END

DEFINED STATEMENT: Put one in.
SYMBOL: Label of line was used somewhere else.
First definition is used.

UNDEFINED
SYMBOL: Operand symbol has not been defined.
MULTIPLE Define by new label.
DEFINITION: Reference ofa multiply-defined symbol.
Figure AEDI-1 illustrates a catastrophic assembly

.) containing these types of errors.
Figure AEDI-1 — Assembler Error Diagnostics, Z-80

8009 901900 ORG 8¢pgH
Bad label

$911p #TRT LD A,QFFFQH

8009 B7 pp129 OR A
Illegal opcode

¢p139 CMP A,B

Illegal addressing mode

#0149 JR P,START

Branch out of range

80@1 18FE 99150 JR 90 @gH

Multiple definition
Undefined symbol

8003 3E@P fPl6p RESET 1D A, TABLE
Field overflow
8005.g66C Pe170 LD B, TABLEL+3

Multiple definition
Undefined symbol
Branch out of range

8097 18FE pP18¢ RESET JR FINISH
Field overflow

8009 E8 98190 TABLEl DEFB 1000
8¢PA 7011 po2 09 DEFW 70000

No end statement

AEDP the place of command lines input from the keyboard. The
Automatic Execution of a Disk Program on Power U p format of AUTO for this operation is

Use the AUTO command. This command lets you AUTO DO name
specify a DOS command that will be executed on power up
or reset. The command will be recorded permanently on
diskette. The action is just as if you had loaded the system To reset the AUTO capability: Perform an
and then typed in the corresponding command.

where “name” is a DO file name.

AUTO
The usual use of AUTOQ is to specify a program that will . .
be executed after “booting.” If you had a SCRIPSIT alone. This will reset the AUTO command on disk.
diskette, for example, and wanted to automatically go into To reboot a disk and disable the AUTO function: Hold
SCRIPSIT after booting, you could say down the ENTER key as you reboot. This will bring you

AUTO SCRIPSIT into the DOS prompt, but will not remove the AUTQ
command from the disk.

However, you could also specify any other TRSDOS or LDOS users only: A special form of AUTO disables the
LDOS command, such as ENTER disable and also disables the BREAK key. The
form is:
AUTO DIR

Model I TRSDOS users skip this section: The most

powerful feature of AUTO allows you to execute a DO You can re-enable the BREAK key by SYSTEM (BREAK
(JCL) file. This will start a sequence of commands that take =ON) after the AUTO sequence.

AUTO *command

How to do it on the TRS-80

AEU1
Assembler Expressions, Using, Models I/II/1I1
Assemblers

Expressions are used to define operands in assembler
source lines. Limited arithmetic processing can be used.

The plus (+) and minus (-) signs are used in BASIC, for
adding two terms or for the sign of the value:

TABLE DEFW START+2@@PH ;start + 512 bytes
DEFW END-56 ;end = 56 bytes
DEFW +111 3111 value in 16 bits
DEFW -45 ;=45 value in 8 bits

The result of the expression must be small enough to fit
in the data type. The result for DEFB must be 0 to 255; a
quirk of the RS EDTASM assemblers is that negative
values are not allowed for DEFB. Use the hex equivalent
instead:
TABLE

DEFB QFFH -1

Figure AEUL-1 - Assembler Expressions

9109 ; ASSEMBLER EXPRESSIONS

Logical ANDs are defined by the ampersand (&). They

work the same way as a logical AND in BASIC:

TABLE DEFW START&PFFFPH ;drop 8 1ls bits

A shift operator is defined by a less than sign (<). If the
value following the less than is negative, a logical right shift
of n bits is done (zeroes fill on left). If the value following
the less than is positive, a logical right shift is done (zeroes
fill on left):

;if ABCDH, now CD@PH
;if ABCDH, now @PABH

START<8
START<-8

TABLE DEFW

DEFW

Again, the result must be small enough to be held in the
data type involved.

Figure AEU1-1 shows examples of operations.

See EDAS notes for extended operations on the EDAS
assembler (EDAN).

8123 pP119 ORG 8123H

$p9D p912¢ CR EQU 13

8123 Cl 9139 TABLE DEFB 128+7A° ;ADDITION

8124 57 p0140 DEFB 19¢-CR ; SUBTRACTION
8125 E8¢3 $9159 DEFW +1909 ;POSITIVE SIGN
8127 18FC pp1ed DEFW -1000¢ ;NEGATIVE SIGN
8129 FF po17¢ DEFB -1 ;ERROR HERE
8124A 2681 9918¢ DEFW TABLE&PFFFOH sLOGICAL AND
812C 9923 p@19¢ DEFW TABLE<8 3SHIFT LEFT
812E 810¢ 992 60 DEFW TABLE<-8 ;SHIFT RIGHT

No end statement
0P0P9P Total errors

AFWA
ASCII Files, What Are They?

Read ADFW if you don’t know what ASCII characters
are.

ASCII files are made up of ASCII characters from 32
decimal (20H) through 127 decimal (7FH), in addition to
special control codes such as carriage return (0DH). No
other codes are used. This means that the file is
“displayable” on the video screen or “printable” on the
system line printer. ASCII files take up more space than an
“encoded” type of file, but can easily be examined by
display or printing.

BASIC, SCRIPSIT, and other programs work with a
specially encoded type of file that saves space. One BASIC
“token” byte (see TM13, TMTW,TBCC for I/11], 11, and
Color Computer respectively), for example, may repiace
six bytes or more of a command name.) These programs,
however, sometimes also offer the option of writing ASCII
files. The ASCII files use only ASCII characters, and no
special codes.

ASCII files are a “standard” format, and for this reason,
certain TRSDOS or LDOS commands, such as APPEND,
will only work with ASCII files.

How to do it on the TRS-80

AEDP

AEU1
AFWA

AGTU
Arrays in BASIC, Using

Arrays are collections of data called by the same name.
Suppose that you wanted to record 100 names. You could
call the first A$, the second B$, and so forth, up to DA$, or
some other unique name. It would be much easier, though,
to establish an array called NM$ and allocate 100 spaces
for the names. This is done by

166 DIM NM$(99)

This command sets aside 100 entries in a string array
called NMS$, for name. The first entry is referenced by
NMS§(0), the second by NM$(1), and so forth, up to
NM3$(99). Note that the last entry “index” is one less then
the size of the array - 100 entries, but the last is NM$(99).

You could also use a numeric array, such as
169 DIM AG(99)
which would set up a 100-entry numeric array called AG,
holding 100 age values and referenced by AG(0) through
AG(99).

The above arrays were “one-dimensional” arrays, or
simply lists of data.

‘Two-dimensional” arrays are like a checkerboard — the
entries are referenced by x and y coordinates. A two-
dimensional array holding points of a graph might be

160 DIM GR(49,49)

In this case there are 50 times 50 entries, or 2500 entries
in the array. The first is referenced by GR(0,0), and the last
by GR(49,49).

Can you have more than two dimensions? Yes, 3 or more,
if the need arises, and the need is not uncommon in
mathematical processing.

What about the data in arrays? The DIM(ension)
statement just allocates the space for the array — you have
to initialize it with data (see INAR). If the data you put in is
not in order, that’s the way it'll stay. Here’s an example of
the way an array would be filled with 100 names:

166 DIM NM$(99)

11¢ FOR 1=¢ TO 99

12¢ INPUT NM$(I)

13¢ IF NM$(I)="ZEGLOVITZ" THEN GOTO 16
14¢ I=I+1

15¢ NEXT I

168 PRINT "DONE OR ZEGLOVITZ AGAIK"

AIQOF
Assembling, Is Object File In Memory After

Assembling?

Usually not. You must assemble the object to a disk or
cassette file and then load it from TRSDOS/LDOS or from
cassette by SYSTEM or CLOADM.

Exception: Using an in-memory assembler such as
EDAS or the Color Computer EDTASM+ with an in-
memory assembly specified. See SIEA for Model I/I11,
EDAN for EDAS, and EDCE for Color Computer
EDTASM+.

ALCW
Assembly-Language Coding, Ways to Generate

Perfect Code

There are two standard ways to generate flawless
assembly-language code:

1. Carefully design in detail by design specifications,
flowcharts, careful coding, and structured programming
techniques. Debugging should be minimal.

2. Go to a wastebasket and pick up any assembly-
language listing. Use this listing and debug and modify it
until it works the way the program is supposed to.
Debugging will probably be no longer than method 1.

ALIB
Inserting a Line in BASIC, All Systems

BASIC will insert a new line in numerical order in a
BASIC program in RAM if you simply type a new line with
a line number that corresponds to the insertion point. For
example, to insert a line between BASIC program line 100
and 112, simply type a new line with line number 111.

How to do it on the TRS-80

ALWI
Assembly Language, What is It?

language instructions. The text for the assembler is written
in “assembly language.”

Read MLWI, “Machine Language, What is It?

Figure ALWI-1 shows a typical assembly language

program “listing” or printed output of the assembler AGTU
An assembler program translates text representing program for the Model I/III. Model II and Color Computer
machine language instructions into the actual machine listings are similar. AIOF
Figure ALWI-1 - Typical Assembly-Language Listing ALCW
5 Kfkdhkkdikkiikikkickkiikikkkdkifdikkikdihkfikiikiihiihik ALIB
$279¢ ;* PROCESS COMMAND LINE SUBROUTINE *
@2809 ;* ENTRY: (IX)=>FIRST CHAR OF COMMAND STRING * ALWI
g2819 ;* EXIT: (MARGN)=# OF ARGUMENTS FOUND, MAY BE § *
&g ;* (MARG1)=>FIRST ARG STRING, TERM BY NULL *
#2839 ;* (MARG1L)=LENGTH OF ARG *
92849 ;* (MARG1D)=DELIMITER IN ASCII *
92850 ;* (MARG2)=>SECOND ARG STRING, TERM BY NULL *
p2860 ;* (MARG2 L)=LENGTH OF ARG *
92879 ;* (MARG2D)=DELIMITER IN ASCII *
¢2 8 8¢ H dkdekkikdkikikikiohiRdohiohiikikkikifhkkhikiokikikihivkikiik
A545 0625 $289¢ PCOMX LD B,37 ;37 BYTES TO CLEAR
A547 2143AD 29090 LD HL ,MARGN $AREA START
A54A AF 92919 XOR A 3ZERO FOR FILL
A54B CD3FAS @299 CALL FILLCH ;ZERO ARGUMENTS
AS4E 060A 02939 LD B,1¢ sFIND IN 19
A559 CDP6AS 92940 CALL FNBSTR ;FIND NON-BLANK
A553 285F #2959 JR Z,PC0@ 99 ;G0 IF NOT FOUND
A555 DDE5 92969 PUSH IX 3SAVE START
A557 P6PA 92979 LD B,19 ;FIND IN 10
A559 CD@P3A5 @2980 CALL FNDSTR ;FIND TERMINATOR
A55C El 92 99¢ POP HL sRESTORE START
A55D 2§52 93909 JR NZ,PCO@ 8¢ ;GO IF INVALID
A55F 3255AD @3919 LD (MARG1D) ,A ;STORE DELIMITER
A562 78 93020 LD A,B ;# OF CHARS BEFORE DELIM
A563 3254AD $3939 LD (MARG1L) ,A ;SAVE LENGTH
A566 48 093049 LD C,B 3# OF CHARS
A567 P6pP $3950 LD B,9 ;sNOW IN BC
A569 1144AD 93069 LD DE,MARG1 ;DESTINATION
A56C B7 93979 OR A sTEST FOR § BYTES
A56D 2804 93980 JR Z,PC0@g29 ;GO IF § BYTES
A56F EDB§ P3990 LDIR ;sMOVE TO ARGUMENT VAR
A571 3E@1 93199 LD A,l
A573 3243AD $3119 Pcog2§ LD (MARGN) ,A ;ONE ARG TO THIS POINT
A576 3A55AD @3129 LD A, (MARG1D) ;GET DELIMITER
A579 FE@D 93139 cP ENTER ;IS IT END?
A57B 2837 93149 JR Z ,PCO¢ 99 ;DONE IF SO
A57D DD23 93150 INC IX sNOW DELIM+1
ASTF P6QA g3169 LD B,19 ;FIND IN 19
A581 CDP6AS @317¢ CALL FNBSTR ;FIND NON-BLANK
A584 282 B 9318¢ JR Z,PCo@8g ;GO IF ERROR

The text entered to the assembler is on the right and
consists of four sections, usually in neat columns.

The second column of this section is the “op-code”

mnemonic, an abbreviation for the machine language

How te do it on the TRS-80

instruction. It’s much easier to say “ADD,” for example,
then “Add Two 8-Bit Operands.”

The third column contains the “operands” associated
with the “op-code.” The number and type of operands vary
according to the machine-language instruction.

The first column is the optional “symbolic label” for the
instruction and is equivalent to a BASIC line number.
Symbolic labels are used so that a programmer doesn’t
have to keep recalculating memory addresses for the
instruction ~ the assembler does this for him.

The last column contains optional comments.

The listing portion on the left is what the assembler
program generates from the assembly language text. The
extreme left column is the location at which each
instruction resides, in hexadecimal The next column
contains the machine language code for the instruction, in
hexadecimal. The next column is the edit line number for
the assembly language text.

To use assembly language on the Model I and 111, see
S1EA or EDAN ; for the Color Computer, see EDCE.

AN13
Animation, Model I and III

Read GHSI for explanations of high-speed graphics.
Normal SET/RESET graphics are not fast enough for
effective animation.

The fastest graphics are done by assembly language and
it may benefit you to learn assembly language, if you have
more than a casual interest in graphics. (In fact, if you are
very interested in graphics, get a Color Computer!) The

Figure AN13-1 ~ Animation Technique

CHARACTER
POSITION 20

PRINT@ —__ [
532

POSITION 1

Code for the fish figure (thanks again to James Garon) is:

166 ~ FISH FIGURE

11¢ CLEAR 209

129 B$=CHR$(26)+STRINGS(1#,24)

139 A$=" "+CHR$(130)+CHR$(173)+CHRS(188)+CHRS(184)
+CHR$(188)+STRINGS(2 ,191)+CHR$(156)+CHR$(18¢)
+B$+" "+CHR$(166) +CHR$(158)+CHRS$(135)+CHRS(139)
+CHR$(143)+STRINGS(2 ,191)+CHRS(143)+CHRS(135)

14¢ CLS

15¢ FOR P=64¢ TO 692

16§ PRINT@P,A$:IF RND(2)=1 PRINT@P-54,"0";

17¢ FOR I=1 TO 3@:NEXT I

18¢ PRINT@P,CHR$(31)

194 PRINT@96#, :NEXT P

208 GOTO 150

POKE method explained in GHS1 can be used in
assembly language for highest-speed graphics.

If you are working in BASIC, use either the POKE or
string methods explained in GHS1 to move predefined
figures. The best method is GHS1, Method 2, where a
single string defines an entire figure. The figure can easily
be moved around by using a moving starting position for
the string and drawing the string at a series of locations,
erasing any old pattern, as shown in Figure AN13-1.

PRINT @
533 \
e,

POSITION 2

“LEADING"
BLANKS MUST
BE OUTPUT
HERE

AOIB
Arithmetic Operations in BASIC, All Systems

BASIC performs arithmetic (say air-ith-MATIC if you
don’t want to be shunned by Computer Science professors

How to do it on the TRS-80

at TRS-80 cocktail parties) operations in about the same
way you’d write down algebraic expressions,

Oh, oh . .. never written an algebraic expression, eh?
BASIC uses variables named A, AA, GT, XC, BN, C1 or
any two-character name, the first of which is an alphabetic
character. You can actually use more than two characters,
but BASIC will only look at the first two and it will get
confused between variables such as ACCTSPAY and
ACCTSRC.

Simplest operation:

109 AA=3.4
11¢ CX=56789
120 XX=34567.89999

sets variable AA equal to the value 3.4, variable CX to
56789, and variable XX to 34567.9. You can generally use
any numeric value — integer, fraction, or mixed number.
BASIC will take care of it automatically. There are special
variables that you can use, but these are discussed in other
topics. Use any variable names that follow the rules. You
can use names as you think of them — they don’t have to be
predefined in general cases.

Addition and subtraction: Add or subtract by using a
plus (+) or minus sign (-). You can generally make any
number of additions and subtractions with impunity:

109 A=56.78-6~5.55-X+CV

Note that variables can be added and subtracted along
with “constant” values. BASIC keeps a record of all
variable values and simply uses the current value in the
operations.

Multiplication and division: Use an asterisk (*) for
multiplication and a slash(/) for division. Use them as often
as you like. You may multiply constants or variables as
before:

109 A=56%45.6%1
119 B=456/(56.6+JJ)

56 times 45.6 times I
“456 divided by 56.6 plus JJ

Note in the above case that parentheses were used.
Parentheses make certain that the addition of 56.6 plus

variable JJ was done first, before the divide. See PHTU for AN13
a discussion of parentheses in expressions.

- AOIB
Exponentiation: To take a number to a power, use the up
arrow. This is sometimes printed as a left bracket,
depending upon the system.

AOIB

100 A=Bt2 “variable B squared
119 A=Bt2.5 “oh yes, fractional powers are fine

Expressing Very Large or Very Small Numbers: Use
the E format. In this format, a number is expressed
similarly to “scientific notation” with a mixed number and
power of 10. The power of 10 may be negative:

189 A=4.566E3
114 A=9,99E24
12¢ B=.¢978E-12

‘4,566 times 1G99
“9.99 times 1¢¥ to the 24th
“.0978 times 10 to the -12th

Want to flex your programming muscles and try some of
these operations? While in BASIC command mode, enter
PRINT, followed by any expression, such as

PRINT 23.45%45.6478

and BASIC will compute the value. You can’t hurt anything,
and BASIC will tell you if you exceed a number range or
make an error. Sometimes you won’t be able to decipher
the error code, but it’s all in this book.

See also “double-precision” formats in DPHU.

How to do it on the TRS-80

notes

How to do it on the TRS-80

BBUS
Bulletin Boards, Using

Data communication Bulletin Boards are message
centers that you can dial up with your Model I, II, III or
Color Computer system if you have an RS-232-C driver,
the necessary hardware, and a modem (see MWAT,
MHTU). At the current time I have a list of about 600
separate bulletin board systems. Although they started
out being related to a specific type of computer, such as
the TRS-80 Model I or Apple, most now service any type of
computer. They all operate about the same way; most are
free. They are located in every part of the country and all
over the world, with the possible exception of North
Dakota.

Most systems offer: capability of leaving any message
(in good taste), reading messages, quick scanning of
messages, and display of topical bulletins. Subject matter
varies — requests for help, items for sale, software and

Figure BBUS-1 - Bulletin Board Dialogue

AT DT 5377913
CONNECT

hardware promotions, philosophical discussions, and
sexual liasons. To “get on” a BBS, do the following:

1. Using the first part of procedure MHTU for a modem,
or ACHT for a coupler, hook up your system to a modem.

2. Set your RS-232-C interface to word length of 8, 1
stop bits, no parity, 300 baud, full duplex.

3. Load adata terminal program. This can be a separate
“stand alone” program or a program such as “LCOMM”
in LDOS, Model I/IIL.

4. Complete procedure MHTU or ACHT to dial the
BBS number and get a screen display.

5. At this point the BBS is usually very generous in
prompting you about its operation. A typical dialogue is
given in Figure BBUS-1. If you forget the commands,
type H for “Help” or simply enter an invalid command;
most systems will reply with a menu of valid commands.

2?2222C/R ?2SHL.B.DO YOU NEED NULL’S (Y/N) ? N

CAN YOU RECEIVE LOWER CASE (Y/N) ? Y

Good Aftermoon |

Welcome to the
Orange County TRS-8@ Data System

What is your — FULL - name ? WILLIAM BARDEN

Your

Name: WILLIAM BARDEN
from: MISSION VIEJO, CA

Is this correct, WILLIAM? Y

Last message number in system is 1773

location (city,state) ? MISSION VIEJO, CA

Logging WILLIAM BARDEN from MISSION VIEJO, CA to disk

You are caller No. 23243

Enter “S87 to skip!

dkkkkkikdk B UL L E T I N S *dkdkivikks

THE SYSTEM IS NOW RUNNING ON A TRS-8§ MODEL III.

#% DOWNLOAD AND UPLOAD IS NOW AVAILABLE *¥

CHECK THE PROGRAM MENU!

vosssscsescccssesse END sececnsnercsccnnne

Main System Menu

(S)ummary of messages in system
(Q)uick summary of messages
(H)elp with system operation
(1)nformation about system
(P)rotected message retrieval
(B)ulletins

(E)nter a message
(K)ill a message

(L)og on again

(0)ther system numbers
(R)etrieve messages

How to do it on the TRS-80

BBUS

(A)SCII TEST

(C)LOCK (Time on line)
(T)ERMINATE CONNECTION

(M)ENU (transfer to programs)

<< SELECT >> 17§

Message summary
Do you wish selective summary ? N

BDSM
Backup Diskette, General

A backup diskette is generally a carbon copy of an
original diskette. The original diskette must be a
TRSDOS, LDOS, or other diskette that is capable of
being backed up. Certain diskettes are in “non-standard”
formats and cannot be backed up at all, or can be backed
up only once or twice. Backups should be used in place of
the original; the original should be used only to make
backup copies for “working diskettes.”

If you have a non-standard diskette that cannot be
backed up or can be backed up only once or twice, refer to
the software documentation for obtaining a backup or
copy. This might involve ordering a second diskette from
the software supplier. (Gee, I hope that the company who
supplied your accounts receivable package is still around
when your diskette is clobbered and you need a second
copy. But then again, small businesses do not fail that
often...).

If you have a standard operating system diskette —
TRSDOS or LDOS, follow this procedure:

1. FORMAT the diskette. This involves writing a
“gkeleton” set of tracks and sectors on the diskette. The
diskette comes from the factory essentially blank. The
command for all standard operating systems is
“FORMAT.” Follow the procedure for the FORMAT
command in the operating system documentation. In
most cases, this will simply be entering “FORMAT” after
the prompt, and answering the prompting questions
about the drive number, password, etc. The FORMAT
process takes about a minute.

2. BACKUP the diskette by the BACKUP command.
This command makes an identical copy of the diskette,
with the exception of the diskette name. The backup
procedure takes about 2 minutes.

The backup copy can now be used the same way the
original diskette was to be used.

BHTG
BASIC, How to Get to

Model I, non-disk: Power on (see TOCH) and RESET
(RBWI). You should now see the message

MEMORY SIZE?
The MEMORY SIZE prompt asks whether you want to

“protect” high memory (see PROT) for special
applications. You don’t need it at this point.

Press ENTER and you’ll see

RADIO SHACK LEVEL II BASIC
READY
>

You’re now ready to start entering BASIC commands.

Model ITI, non-disk: Power on (TOCH) and RESET
(RBWI). You should see the message

Cass?

This prompt lets you select a low or high cassette data
rate (sée FHBF). You don’t need the low rate unless
you’re loading Mode! I compatible tapes or are just a
masochist.

Press ENTER (selects high rate).

How to do it on the TRS-80

You’ll now see the message

Memory Size?

Press ENTER and you’ll see

Radio Shack Model III BASIC
(c) 89 Tandy

READY

>

You’re now ready to start entering BASIC lines.

Model I/TIT TRSDOS: Load TRSDOS by THT3. Now
enter

BASIC

BASIC will load from disk (you’ll hear it go “tink,” and
the red light will come on). You should then see

HOW MANY FILES?

Press ENTER. (Entering a value of 1 through 15 selects
1 to 15 file buffers, but simply ENTER gives you 3).

BASIC will then ask the question

MEMORY SIZE?

Press ENTER (no memory protected, see above or
PROT).

BASIC will then print out a copyright message and end
with

>

You can now enter BASIC commands.

Model II TRSDOS: Power up by TOCH. After
TRSDOS loads, you should see the impressive TRSDOS
logo, followed by a prompt message for date. Enter the
date by DSDS.

You should now see

TRSDOS READY

Set the CAPS key on the keyboard and enter

BASIC

in upper case. BASIC will load from disk (you’ll hear it go
“tink,” and the red light will come on). You should then
see the title BASIC message, ended by

>

You’re now ready to start entering BASIC commands.
(To set more than 0 file buffers use

BASIC ~F:n

where n is 1 through 15. You won’t need disk buffers if you
won’t be writing your own data to disk, and that’s unlikely
if you’re reading this).

Model I/III LDOS: Load LDOS by procedure L13L. Now
enter

L BASIC

LBASIC (LDOS’s BASIC) will load from disk (you’ll
hear it go “tink,” and the red light will come on). You
should then see the copyright message and

>

You have not protected any memory and have 3 file
buffers, but that’s probably fine if you’re reading this
preliminary procedure. You’re now ready to start entering
BASIC commands.

BKHT
BREAK Key, How to Disable, Model I/III

Model I/III LDOS and Model IIT TRSDOS users, are
you tired of your program operator stopping crucial
bean-counting programs by inadvertently hitting
BREAK? If you are, send $5 (no stamps) please, to
TRS-80, Box CMD”B”, Ripoff, TX for this ancient
Egyptian secret.

Actually, save your money. Simply type
CMD"B", "OFF"
to disable the BREAK key and
cMp "B","ON"
to enable the BREAK key.

When the BREAK key is disabled, it will only be active
during cassette, printer or serial input/output, thus

preventing the system from locking up completely. At the
same time it’ll be disabled during normal program
execution.

The BREAK key is located off by itself at the right
corner of the keyboard, but perhaps this command is
useful for nearsighted users with negative thoughts or
equal opportunity employers. (Think about it ...).

Model I/IIT LDOS users: use the LDOS command

SYSTEM (BREAK=0FF)
and

SYSTEM (BREAK=0N)

to enable and disable the BREAK key outside of LBASIC
programs.

BLTL
BASIC Line Too Long to Print or Display, Most
Systems

(Not applicable to Model I/III, Level I or Color
Computer).

Easy. Go to Edit mode (see EMBH). Find 50th
character by entering 50 (space bar). Go to insert mode in
Edit mode (see EMBH). Insert a down arrow. End insert
mode (by SHIFT, up arrow). Find 50 more characters by

50 (space bar). If at end of line, you’re done. If not, repeat
the insert of the down arrow. Repeat until end of line. The
BASIC listing will now not run “over the stops” on
printing. Use other than the 50 spacing for screens
or printers with fewer columns. Use spacing of other than
50 as applicable.

How to do it on the TRS-80

BDSM
BHTG

BKHT
BLTL

Here’s an example:

The BASIC line before editing:

1869 DA=31:IF (MO=8) AND (YR=1981) THEN DA=35
ELSE IF MO=5 THEN DA=3@$ ELSE IF MO=7 THEN DA=3§
ELSE IF MO=1¢ THEN DA=3¢ ELSE IF MO=12 THEN DA=3§
ELSE IF MO=3 THEN DA=2 8+L

The BASIC line after editing:

1009 DA=31:1IF (MO=8) AND (YR=1981) THEN DA=35 ELSE
IF MO=5 THEN DA=3@ ELSE IF MO=7 THEN DA=3§ ELSE
IF MO=1¢ THEN DA=3¢ ELSE IF MO=12 THEN DA=3§ ELSE
IF MO=3 THEN DA=2 8+L

The down arrows won’t display, but will cause a
“carriage return” so that the line restarts.

BOCH
Buzzing Out Cables, How to

The term “buzzing out” cables means that the cable
connections from one end to the other are verified by
completing an electrical circuit. The term undoubtedly
comes from a buzzer being used as a continuity device,
and not, as many think, from Milton J. Buzzinski, an early
electrical technician.

The basic scheme is shown in Figure BOCH-1. It helps
to have two people for this, although one person can do it
with the help of electrical clips. Here’s the procedure:

Figure BOCH-1 - Buzz-Out Procedure

CONTINUITY
TESTER
{LOW VOLTAGE)

CLIP
LEADS

MATCHING PIN
FOR CABLE PIN

CONNECTOR CONNECTOR,
1 2

CABLE TO
BE TESTED

1. You must have a complete cable wiring table that
defines which pin on one connector goes to a defined pin
on the other connector. Some cables, such as RS-232-C
cables, may also have pins that go to the same connector,
as shown in Figure BOCH-2.

2. Go to your local Radio Shack store and pick up the
following items:

A. Continuity tester. This is an inexpensive
device (under $10) that indicates
completion of an electrical circuit by a red
LED (light emitting diode). There is
absolutely no shock hazard and you can use
the device with impunity.

How to do it on the TRS-80

An alternative to this device.is a
do-it-yourself continuity tester. This may
be an LED/resistor combination, or simply
a buzzer, as shown in Figure BOCH-3.

Figure BOCH-2 - Typical RS-232-C Cable

RS-232-C RS-232-C

CONNECTOR CONNECTOR
1 2
™ 2 2 ™
RD 3 3 RD
.
THESE PINS 5
ARE “STUBBED" 6
8
10
SGND 7 7 SGND
PIN LIST
CONNECTOR 1 GONNECTOR 2
PIN PIN
2 2
3

- -

- 4,5 CONNECTED
- 6,8,10 CONNECTED

Another alternative is a “voltmeter” (see

VMHT). This is a versatile test instrument

that will be invaluable for microcomputer

use and also for household use.

B. Set of test leads with insulated clips on
either end.

C. Now the hard-to-get part. If one or both
of the plugs is a female (you know, the male
has the protruding pins and the female - uh
... you know what I mean, I’'m sure. ..),
then you’ll need a pin to insert into each
connector hole. This can be simply a piece
of wire about the same size as the
corresponding male pin, or an actual pin,
“cannibalized” from a similar connector.

If one or both of the plugs is a male, then
you’ll need a corresponding female pin.
These might be hard to find. One solution:
Get a connector with matching female pins
and break it apart.

3. You’re now set to buzz out the cable. With the cable
wiring table in front of you, methodically go down each
row of pins, one at a time. Insert the wire or pin so that it

is solidly attached. Now find the corresponding pin on the
other connector in the table or diagram and attach the
other lead to the pin. You should hear a buzz, see the LED
light, or see the multimeter scale show close to zero chms
to indicate continuity.

4. If you are using a multimeter, typical resistance
readings should be a fraction of an ohm to 4 ohms,
depending upon the cable length (see VMHT).

5. If you are unsure of the wiring job you did on the
cable, also test continuity on both connectors for adjacent

Figure BOCH-3 — Simple Continuity Tester

PIEZO BUZZER
(RS 273-060)

CLIP LEADS
WITH PINS

sv
e TRANSISTOR
BATTERY

pins. For example, test between pins 1 and 2 and between
pins 2 and 3 on the same cable; there should be no
continuity, of course.

Don’t hurry on this procedure, and be certain that you
have the proper pins. If you suspect an “intermittent”
cable, jiggle the cable slightly to see if you can break the
continuity. Breaks will usually occur near the connector,
unless the cable is unusually stressed.

ANY “LED"
(RS 276-041
TYPICAL)

300-0OHM
Ya WT RESISTOR
(RS 271-1315)

CLIP LEADS
WITH PINS

=

i

av
~+———TRANSISTOR
BATTERY

@ INDICATES SOLDER OR
CONNECTON POINT

BPFM

Breakpointing for Machine-Language
Debugging, All Systems

Model I/III and Color Computer users: Read the
procedure on the use of Model I/II1 DEBUG (DT1U) or
Color Computer ZBUG (ZUEC) if you’re unfamiliar with
machine language debug packages.

The technique of breakpointing is a subset of the
philosophy of debugging in general — bracket a problem
area by a binary search. The bracketing procedure goes
like this: Put a breakpoint at the furthest point in the code
that you'll think you’ll reach without a program “bomb”.
You may require several breakpoints, as there may be several
divergent paths.

Execute from the last “good” instruction.

See which breakpoint, if any, you've reached. If you
have reached a breakpoint, check the contents of
registers, memory locations, and results for accuracy.

Repeat this technique for successive code. Eventually,
you’ll find a section of code in which the breakpoints are
never reached. At this point, reload the code (things may
be radically altered), put in new breakpoints halfway
through the code, and try again. If the breakpoints are
reached and results seem valid, breakpoint the last half
and try again. If the breakpoints are not reached,
breakpoint the first half.

Repeat the procedure until the point at which the blowup
occurs has been found.

Isn’t this too tedious? Yes, but common for
assembly language debugging unless you’re one of those
gifted programmers who can generate code that runs the
first time from your desk (and there are such people).

BPIB
Breakpointing in BASIC, All Systems

You can use the STOP command to break at any point
in your BASIC program. Simply insert a STOP line at the
point at which you wish to stop. If you want to STOP after
line 300, for example, you’d have

“get array value
“this was inserted
‘print

3¢9 A=B: C=IX(A,B)
3¢1 sToP
31¢ PRINT "VALUE=";C

At the STOP line, BASIC would display

BREAK IN 3¢1

How to do it on the TRS-80

BOCH

BPFM
BPIB

and you could then print out any variables by using a
PRINT command in the command mode. (However, if
you do any editing, those variables will be reset!).

STOP, then, is a handy way to check your progress
through a BASIC program and see that things are going the
way you expect them to.

After you’ve reached the STOP, enter a CONT
command to continue from the point of the STOP. Pull
out all the STOPs for the final program version.

Want to continue from another point with all variables
intact? Enter GOTO nnnn to continue from line nnnn.

BPSP

Backup Procedure, Specific

Read BDSM for a general description of backups on
diskettes, and then follow these procedures:

Model I, TRSDOS: Backup is in two steps, formatting
the diskette and using the BACKUP command.

1. Format the diskette by entering
FORMAT

The FORMAT program will be loaded, and it will
prompt you about the format. If you have a single drive
system, you can backup from drive 0 by entering
FORMAT and inserting the diskette to be formatted
after the FORMAT program loads (disk light goes out).

Drive to be used: 0 or others. Diskette name: enter up to
8-character name. Creation date: today’s date in date
format. Master password: enter a 1 to 8 character name as
“master password” (see PWDS). You don’t want to lock
out any tracks unless you have the ability to access the
diskette directly, without TRSDOS. This involves using
your own assembly-language driver, and few of us would
use this option.

If the FORMAT procedure results in “locked-out”
tracks, it means that the FORMAT process was
unsuccessful in setting up these tracks. In this case try the
FORMAT again. If the FORMAT fails again, throw away
the diskette, rather than using locked-out tracks.

2. Backup the diskette by entering
BACKUP

After the BACKUP program loads (red light goes out),
you can backup from a single disk drive (drive number 0),
or from one drive to another. If using a single drive,
answer 0O for source drive and 0 for destination drive.
BACKUP will prompt you with messages about when to
insert the source and destination diskettes. If you're using
two drives, you won’t have to swap diskettes.

Enter backup date as a standard system date.

3. Youdon’t have to FORMAT the diskette if it is blank,
but you do have to format it if it is not blank. If the disk
is blank BACKUP will format automatically.

4. Believe it or not, you may have to erase a diskette
using a “bulk tape eraser” (RS 44-232) to prepare it for
formatting — what Harv Pennington calls a “pagan

How to do it on the TRS-80

ritual.” Follow the instructions on the eraser, you can’t go
wrong.

Model III, TRSDOS: It’s not necessary to format the
diskette before the backup.

1. Backup the diskette by entering
BACKUP

After the BACKUP program loads (red light goes out),
you can backup from a single disk drive (drive number 0),
or from one drive to another. If using a single drive,
answer 0 for source drive and 0 for destination drive.
BACKUP will prompt you with messages about when to
insert the source and destination diskettes. If you're using
two drives, you won’t have to swap diskettes.

The diskette “master password” controls access to the
diskette. Enter a 1-to 8-character name, and make certain
you remember it (see FNMH).

If the diskette has been previously used, BACKUP will
ask you if you want to use the diskette. This is a good
check on whether you really want to destroy the diskette
contents.

BACKUP will then ask if you want to reformat the
diskette. This is usually a good idea, as the FORMAT
“certifies” that the diskette can be written to and read
from.

Formatting takes about 2 minutes, and the message
“BACKUP COMPLETE” will terminate the process.
There should be no “flawed” tracks; if there are, reformat
and backup. You can use a diskette with flawed tracks,
but I’d advise against it.

2. You can use the TRSDOS FORMAT program to
prepare a data diskette (see DDWA). The procedure is
identical to the FORMAT in BACKUP — you’re asked
for a name and master password, and a check is made on
whether the diskette contains data.

Model II, TRSDOS: It’s not necessary to format the
diskette before the backup.

1. The simplest form of BACKUP is:

BACKUP

After the BACKUP program loads (red light goes out),
you can backup from a single disk drive (drive number 0),
or from one drive to another. If using a single drive,

answer 0 for source drive and 0 for destination drive.
BACKUP will prompt you with messages about when to
insert the source and destination diskettes. If you're using
two drives, you won’t have to swap diskettes.

The diskette “master password” controls access to the
diskette. Enter a 1- to 8-character name, and make certain

you remember it (see FNMH).

If the diskette has been previously used, BACKUP will
ask you if you want to use the diskette. This is a good
check on whether you really want to destroy the diskette
contents.

BACKUP will then ask if you want to reformat the
diskette. This is usually a good idea, as the FORMAT
“certifies” that the diskette can be written to and read
from.

Formatting takes about 2 minutes, and the message
“BACKUP COMPLETE” will terminate the process.
There should be no “flawed” tracks; if there are, reformat
and backup. You can use a diskette with flawed tracks,
but I'd advise against it.

2. You can use the TRSDOS FORMAT program to
prepare a data diskette (see DDWA). The procedure is
identical to the FORMAT in BACKUP — you’re asked
for a name and master password, and a check is made on
whether the diskette contains data.

3. There are a number of options that can be used with
BACKUP. If no options are used, BACKUP asks you for
information by “prompt messages.” The source and
destination master passwords and name of the new disk
can be specified in the BACKUP command line by:

BACKUP @ TO 1 PW=oldpassword NEW=newpassword ID=name

To copy system files only (and delete any user files), use
the SYS option, along with any of the above:

BACKUP 1 TO # SYS

If you don’t like to chat, the ABS option causes
BACKUP to simply go ahead and make the backup, taking
all of the information (password, name) from the source
diskette.

BACKUP @ TO 1 ABS

To copy selective files only, use the PROMPT option.
BACKUP will ask you whether you want a file copied
before the copy, and you can easily delete files by
answering Y(es) or stop after a certain point by S(top).
Note that user files, not system files, are involved.

NOAUTO does not copy any AUTO command (see
AEDP). This is the same as backing up the diskette and
then typing AUTO to stop the AUTO startup procedure.

4. The easiest FORMAT is with no options. To specify
the disk name and password, use

FORMAT @ ID=name PW=password

The ABS option specifies that no warning message
will be displayed if the diskette contains data. It’s a nicety
to eliminate an annoying message for each format session:

FORMAT 1 ID=ACCOUNTS PASSWORD=BROKE ABS

TRSDOS generally has two directories (see DIDI), a
primary and alternate directory. The alternate directory is
used in lieu of the primary directory if there are disk errors
associated with the primary. Try to avoid overused
diskettes by doing periodic BACKUPs on a rotating basis.
You’ll find out how long you can use a diskette without
errors primarily by experience (see DEHM). You can
specify no alternate directory by

FORMAT 1 ALT=06

but it’s not advisable. You can also specify the location of
the primary and alternate directory tracks (see DIDI).
Normally the directories are at tracks 44 and 52, but you
can move them based on your system requirements (you
might have one large file and put the directories at the
beginning of the diskette, for example). These options
shouldn’t be specified by the casual user. If you want to
move the directories, keep a spread of § tracks between
them and do something like

FORMAT 1 DIR=1 ALT 9

Model I/111, LDOS: Backup is in two steps, formatting
the diskette and using the BACKUP command.

1. Format the diskette by entering

FORMAT

The FORMAT program will be loaded, and it will
prompt you about the format. If you have a single-drive
system, you can format from drive 0 by entering
FORMAT and inserting the diskette to be formatted
after the FORMAT program loads (disk light goes out).

Drive to be used: 0 or others. Diskette name: enter up to
8-character name. Master password: enter a 1-to 8-
character name as “master password” (see PWDS).

For the remaining options (single or double density,
sides, cylinders, bootstrap) simply hit ENTER if you
aren’t familiar with the options. This will invoke the
“defaults” for your Radio Shack system, Model I or IIL
Defaults for the Model I are: single density, 1 side, 35
cylinders (tracks), and 40 millisecond stepping rate.
Defaults for the Model III are: double density, 1 side, 40
cylinders (tracks), and 6 milliseconds stepping rate.

Non-standard disk drives: Use the SYSTEM command
to reset the standard options for your drives before doing
backups. You can specify 40 track and double-sided
drives, 8-inch drives, or other configurations.

If the FORMAT procedure results in “locked out”
tracks, it means that the FORMAT process was
unsuccessful in setting up these tracks. In this case try the
FORMAT again. If the FORMAT fails again, throw away
the diskette, rather than using locked out tracks.

BPSP

BPSP

How to do it on the TRS-80

2. Backup the diskette in the simplest case by entering

BACKUP

After the BACKUP program loads (red light goes out),
you can backup from a single disk drive (drive number 0),
or from one drive to another. If using a single drive,
answer 0 for source drive and 0O for destination drive.
BACKUP will prompt you with messages about when to
insert the source and destination diskettes. If you're using
two drives, you won’t have to swap diskettes.

3. Like many LDOS commands, there are a huge
number of options for both FORMAT and BACKUP.

For FORMAT, specify NAME and MPW (master
password) similarly to

FORMAT :1 (NAME=ACCOUNTS, MPW=BROKE)

The information relating to the disk drive configuration
can be entered in a single FORMAT line by using SDEN or
DDEN, SIDES=, CYL=, and STEP=.

Use QUERY =N and ABS to avoid prompt messages.
This is useful for doing a FORMAT from JCL, although I
can’t visualize too many operations where a delayed
format would be useful (how does the system insert the
diskette? A hand comes out . . .).

For BACKUP, specify the source and destination
drives in a single line by

BACKUP :0 :1

You can copy VIS (visible files), SYS (system files),
and/or INV (invisible) files by intermixing combinations
of these options
BACKUP :1 :§ (SYS,INV)

You can use the QUERY option to selectively copy files,
answering Y(es) only to those files you want copied.

BACKUP :0 :1 (QUERY)

You can use the OLD and NEW options to copy either
only those files that already exist on the destination
diskette, or those which do not exist:

BACKUP :0 :1 (OLD)
BACKUP :4 :1 (NEW)

(existing)
(only new)

You can use the DATE option to copy only files that fall
between two dates. Dates recorded with the files are the
dates of last modification of the file:

BACKUP :0 :1 (DATE="11/91/&-11/15/%")

You can use the MOD option to transfer only those files
that have been modified since the last backup:

BACKUP :@ :1 (MOD)

The X option allows you to backup a data diskette
without having a system disk in a single-drive system.
BACKUP will prompt you to insert the source,
destination, or system diskettes, and you’ll need at least
three hands, but it’s better than some other DOSes I could
mention.

You can use a “wild card” character to backup only
those files that meet the requirements. The wild card
character takes the place of a string of characters. To back
up only those files with the file extension /FEB, for
example, use:

BACKUP $/FEB:§ :1

Using /FEB:0 :1 has the same effect.

To backup all 6-character file names that start with the
the characters “ACCT”, do:

BACKUP ACCT$$/$:0 :1

Generally, you can use the options above in any
combination. You can also abbreviate by Q,I, M, S,V, and
D.

More than you ever wanted to know about BACKUP . . .

BSCC

Switches, and Connectors, Color Computer

Refer to Figure BSCC-1. All of the switches and
connectors are on the rear of the CC except for the ROM

Figure BSCC-1 - Color Computer Switches and Connectors

cartridge connector, which is in a spring-loaded door on
the right-hand side of the eabinet. The “pin-outs” of the
connectors are detailed as indicated in the figure. The

pin-out of the ROM cartridge connector is given in
RCCN.

RS-232-C JACK RIGHT JOYSTICK | gr7 jovsTICK
(SEE RCCG) JACK lSEIE JPPO) JACK (SEE JPPO)
\

TV SWITCH CHANNEL
RESET BOX
BUTTON
MOMENTARY
PRESS TO
RESET

How to do it on the TRS-80

SELECTOR POWER
SWITGH SWITCH
CASSETTE INIS ON.
TAPE JACK OUT IS OFF
(SEE CCAM) AC

LINE CORD

BSEC

To Backspace and Erase Character

All systems except Model II: Left arrow.
Model II: BACKSPACE.

BSCC
BSEL
To Backspace and Erase Line
Models I/III and Color Computer: SHIFT, left arrow BSEC
pressed simultaneously. BSEL
BSER

BSER
BS Error

Bad subscript. You've made a reference to an array
with a subscript that was less than 0 or beyond the
maximum you used in the DIMension statement, as in

109 DIM IX(106,2) ‘141 by 3 array

1000 A=1X(56,3) “2nd subscript must be @, 1, or 2

How to do it on the TRS-80

notes

How to do it on the TRS-80

CiT3
Converting Model I TRSDOS Files to Model 111
TRSDOS Files

If you have a Model IIl and want to convert Model I
disk files, you’ll have to “convert” the Model I files to
Model III files by using the Model III CONVERT utility
program. You’ll need two disk drives. This program can
read a Model I diskette, find a file, and then copy the file
to the Model III diskette; Model III TRSDOS by itself
can’t read a Model I diskette because of disk format
differences.

To convert the files from the Model I diskette to files on
a Model I1I diskette, do the following:

1. (Optional). Remove all passwords from the Model I
diskette by using the ATTRIB command on the Model 1
system (ADFC). Don’t have a Model I system? No
problem, continue.

2. Prepare a Model Il system diskette with enough
room to receive the Model I files by deleting user files (see
DFDA). Check the file space available by DSHI..

3. “Boot up” the Model III diskette to get TRSDOS
READY. You now have the Model III diskette in drive 0.

4, Load CONVERT by entering

CONVERT

5. Load the Model I diskette in another drive, and
answer the “SOURCE DRIVE?” prompt with the drive
number — 1, 2 or 3.

6. Answerthe “DESTINATION DRIVE” question with
0.

7. CONVERT will now look at each non-system file and
copy it from the Model I diskette to the Model III
diskette. If the same file name is on the Model III
diskette, CONVERT will ask “FILE EXISTS, USE I'T?”.
Answer Y or N. As each file is converted, the file name will
be displayed on the screen.

8. If the Model I file is protected by a password,
CONVERT will ask for the password. Enter the
password.

Don’t know the password? If you don’t know the
individual file passwords but do know the disk master
password (try “PASSWORD”), see step 1 above. Don’t
know the master or individual passwords? Sorry, you
can’t convert the file on TRSDOS.

9. CONVERT will stop if it runs out of room on the
Model I1I disk with a disk full error. In this case, all of the
files copied up to this point on the Model III diskette are
all right. Repeat the procedure with a new Model III
diskette.

Be aware that the copied files may not necessarily run
properly on the Model III because of “architectural”
differences between the two machines. You probably
won’t be able to run Model I Visischlock on the Model I1I,
for example, but Model I BASIC files that don’t do
anything fancy with “embedded” assembly language will
probably be all right. See Radio Shack’s ‘“Instructions for
Converting Specified Model I Programs for Use on
TRS-80 Model IIL.”

CBBH

Converting Between Binary and Hexadecimal

Easy. To convert from binary to hexadecimal, group
the binary number into groups of 4 binary digits, starting
from the right. Convert each group to a single
hexadecimal digit (0000 is 0, 0001 is 1, 0010 is 2, 0011 is
3,01001is 4, 0101 is 5,0110is 6, 0111 is 7, 1000 is 8, 1001

Figure CBBH-1 - Converting from Binary to Hexadecimal

is9,1010is A,1011is B,1100is C,1101is D, 1110is E and
1111 is F).

See example in Figure CBBH-1.

To convert from hexadecimal to binary, convert each
hexadecimal digit to its binary equivalent of 4 bits as in
the paragraph above. See example in CBBH-2.

CONVERTING FROM BINARY TO HEXADECIMAL

STEP l: GROUP BITS

0010,0111,1011,0101

STEP 2: CONVERT EACH GROUP TO A HEX DIGIT

@ﬂiﬂ 111
2 7

o 10 01 11 16 11 01 01, =

1011 9101
} b
B 5

27B51¢ = 10165;

How to do it on the TRS-80

C17T3
CBBH

Figure CBBH-2 - Converting from Hexadecimal to Binary

CONVERTING FROM HEXADECIMAL TO BINARY

STEP 1: CONVERT EACH HEX DIGIT TO A 4-BIT BINARY GROUP

5F29

S%F

b
m%m. 1111 610 1001

2 9

STEP 2: MERGE GROUPS

g1 61 11 11 09 10 10 ﬂlz = 5F2916 = 24361lg

CCAM Figure CCAM-1 - Cassette Connector Pins
Cassette Connector, Model I/111/Color Computer

THIN METAL WALL
(RS 274-063)

The cassette connector on the Model I, III, and Color
Computer has the same pin numbering and functions.
Use the “thin-wall” (metal) version of a standard 5-pin
DIN male audio plug to fit any cassette connector (Radio
Shack 274-003).

PIN
SPACING
FOR CASSETTE
CONNECTOR

Refer to Figure CCAM-1. Pins 1 and 3 connect to an
internal relay and can be used as a programmable switch
for low voltage, low current applications. Do not use for
over 12 volts dc and 1/2 ampere or so. If you connect a
milling machine to these pins, you will be responsible for
the results. These pins normally control the cassette
REMote input to turn the recorder on and off.

KEY

(LOOKING IN
FEMALE JACK)

e TO EAR ON
RECORDER

Pin 2 is signal ground. Pin 4 is the input to the computer
from the EARphone jack of the recorder. Pin 5 is the
output from the computer to the AUXiliary input of the

=~ TO AUX ON RECORDER

recorder. See CRPI for a description of cassette recorder > } To REMOTE
plugs. RECORDER
OR OTHER

DEVICE

. . Fi CCPA-1 - Display N lat
Color Computer Pixel Addressing lgure 1opiay Nomenclature

P

All graphics commands in Extended Color BASIC use ‘s,.-%\ 1 roTune cLewenr
the highest resolution mode to specify the x,y coordinates. ——
In this mode (256 by 192), x may be 0 through 255 or y may R
be 0 through 191. These values define the smallest SRt ——
graphics element that may be displayed, one pixel, named b
after Herman Pixel, who did early work in PICture]
ELements. (Each character position is 8 pixels by 12 /
pixels). Each element may be 1 by 1 pixel to 4 by 6 pixels, dimens (i voeo

usuaLLY caLLeD v | B SCAEEN

depending upon the mode. See Figure CCPA-1.

Don’t worry about the fact that the resolution may be s RE—
too coarse to pinpoint element 128,96, just use those v von oOoPLAY
values with impunity. N

OF HORIZONTAL # OF VERTICAL
ELEMENTS ELEMENTS

How to do it on the TRS-80

CD13
Cassette DEBUG, Models I and II1

TBUG was an early cassette-based DEBUG package
for the Model I and III. I would strongly advise putting
TBUG in the trash compacter and buying a copy of
cassette-based DEBUG for the Model I/I11. This DEBUG
package is similar to Model IIl DEBUG (see DT1U) and
will work in Level I or Level II/IIL.

The D, X, S, semicolon, minus, M, R, J, I, C, U and Q
commands work identically to Model III DEBUG, and
you can read the material in DT1U to see how they
function. (I, C, the breakpoint option of J, and the T entry
point and name options of W do not work on Level I,
however).

Additional commands are T (Load a SYSTEM tape)
and W (Write a SYSTEM tape).

The W command allows you to dump memory to

cassette tape as a SYSTEM file (see LMFN). The
resulting file can be loaded in a a BASIC SYSTEM
command or by DEBUG using the L. command.

Entering W will cause DEBUG to ask for the S(tart)
address, the E(nd) address, the T(ransfer) address and
the N(ame) of the file. Addresses should be in
hexadecimal (see CFDH). Press BREAK to cancel on
name entry or ENTER with no address for S, E or T, (but
only if the moon is in half phase).

Entering T will load the next file from cassette. If you’re
using a Model I11, location 4211 H should be set to a 0 for
500 baud, or 1 for 1500 baud. My recommendation: always
use 1500 baud. DEBUG can be used to M(odify) location
4211H to the proper value.

Restart point for DEBUG: 4809H

Load DEBUG as a SYSTEM tape with file name
DEBUG. See LMFN for loading instructions.

CDFH
CREATEing a Disk File, How to Model I/II/III

The TRSDOS CREATE command can be used to
create a “preallocated” file. The file space that you
specify is set aside and it is “tagged” with the file name
that you’ve specified in the CREATE command.
Normally, TRSDOS allocates the space as it requires it,
one segment at a time. Why use CREATE?

One very good reason is that the CREATEJ file space,
if done on a close-to-empty diskette, will be a
“contiguous” area, and that will speed up disk accesses
(see DFAH). Another reason is that you may know exactly
how much space is required, and simply want to set aside
that space to make certain you don’t run out of room when
you start using the disk.

To CREATE file space, you must know about how
many records you’ll be using and how large the records
will be. Try to approximate the space required. If you do go
over that amount, TRSDOS will allocate a new area on the
disk, but it may not be contiguous.

Model IIT TRSDOS: Now use the CREATE command
as follows:

CREATE name (REC=nnn,LRL=mmm)

where name is a standard disk file name (see FNMH), the
REC value is the number of records required, and the LRL
value is the Logical Record Length (0=256 bytes). Both
the REC and LRL values are decimal values. The REC
times the LRL is the number of bytes allocated, although
this figure may be modified to the next largest granule (see
DSHL).

Model II TRSDOS: The simplest form of CREATE is
CREATE name NREC=nnn, LRL=mmm

where name is a standard disk file name (see FNMH), the

NREC value is the number of records required, and the
LRL value is the Logical Record Length (0=256 bytes).
Both the NREC and LRL values are decimal values. The
NREC times the LRL is the number of bytes allocated,
although this figure may be modified to the next largest
granule (see DSHL).

An alternative way to allocate is to use the number of
granules required. One granule on the Model II is 1280
bytes. Use

CREATE name NGRANS=nnn

where nnn is a decimal value representing the number of
granules required. (Divide the number of bytes required
by 1280).

Use the TYPE option of CREATE to indicate whether
the file is going to be a fixed-length type or variable-length
type. The “default” is fixed length:

CREATE ACCTS/FEB GRAN=25,TYPE=V
CREATE ACCTS/FEB GRAN=25,TYPE=F

Model I/11I LDOS: Use the same format as Model III
TRSDOS:

CREATE name (REC=nnn,LRL=mmm)

or use an alternative format that specifies the size in K byte
blocks required

CREATE name (SIZE=nnn)
where nnn is the number of blocks of 1024 bytes required.

For example, if you required 50,000 bytes for 500 records
of 100 bytes logical record length, you’d have:

CREATE name (SIZE=49)

giving you 50,176 bytes in the file.

CCAM
CCPA

CD13
CDFH

How to do it on the TRS-80

CDFL
Copying Disk Files, Model I/III LDOS

Tch, tch! These people at LDOS have stayed up nights
thinking of options for their commands . . . (thank
goodness).

To copy one disk file to another diskette, two or
more drives:

COPY filel TO file2

The “filel” and “file2” names are standard file names
(see FNMH). If the file name exists on the destination
disk, the file will be overwritten.

The TO is optional.

To copy one disk file to another diskette, single
drive systems:

COPY filel:@ TO file2:9

The “file1” and “file2” names are standard file names
(see FNMH). If the file name exists on the destination
disk, it will be overwritten.

Both diskettes should be LDOS system diskettes.

This copy can also be used to replicate a file on the same
diskette. LDOS will prompt you to swap diskettes, but
simply hit ENTER for each prompt.

To copy a disk file to another diskette without an
LDOS system on either diskette (data diskette file
to data diskette file or other Operating System to other
Operating System diskette):

COPY filel:n (X)

The :n parameter here is the disk drive number, which
may be any drive on your system. LDOS will prompt you
to switch diskettes. There are three diskettes involved,
and you must not get them mixed up! There’s the source
diskette and destination diskette, and the third is the
“system” diskette containing the LDOS system. Doing
the copy involves juggling the three diskettes and
inserting the proper one when prompted.

Specifying a new logical record length for the
destination file:

The optional LRL parameter lets you change the
logical record length of the destination file. Without the
LRL parameter, the LRL in the destination directory will
be set to the same length as in the source directory. The
LRL may need to be changed to make the file compatible
with a program that expects a certain LRL.

To change the LRL, use one of the above formats and
do:

COPY filel TO file2 (LRL=nnn)

where nnn is the new logical record length of 0 (256)
through 255.

Duplicating the attributes of the file when COPYing:

The optional CLONE parameter allows you to do a copy
and also copy the visibility (see VAIF), the access and
update passwords (FNMH), the protection level (ADFC,
ADFL), and the LDOS “create” and “modified” status
flags.

Without CLONE, the attributes of the destination file
remain unchanged if it was “copied over,” except for date.
If the file is a new file, the attributes are changed to visible
and both passwords are changed to the source file update
password. With CLONE, the source file attributes are
carried over. Use any of the above formats and CLONE:

COPY filel TO fileZ (CLONE)
Notes:

1. The LRL, CLONE, and X options may
be used in any combination.

2. Partial file specifications can be used as
in COPY ACCTS:0:1 and COPY
ACCTS/DAT:1 TO /DAT:0.

3. An extension of “/” as in COPY
ACCTS/DAT:0 TO ACCTS/:1 signifies no
extension.

CDHT
Clock Display, How to Use, TRSDOS/LDOS,
Model I/II/I11

To turn the screen display of the real-time clock on or
off, enter

CLOCK (ON) (Model I/III)
CLOCK ON (Model 1IT)
or

CLOCK (OFF) (Model I/III)
CLOCK OFF (Model II)

The real-time-clock is always running, except during
cassette and disk I/0 (see RTCN); the TRSDOS or LDOS

How to do it on the TRS-80

CLOCK command simply enables or disables the display.
To set the clock, see the TIME command (TSRT).

Model III, Level III: RAM locations 16919-16924
contain 6 values that define the date and time:

16919 = seconds
20 = minutes
21 = hours
22 = years
23 = days
24 = months

These locations are set to 0 on computer start up, and are
updated continuously. POKE the proper values to set the
time and date and you can use the TIME$ BASIC
command to get the current time in BASIC (see TIBP).

CDOC
Changing the Display Offset in the Color
Computer

The display offset in the SAM in the Color Computer
(see GPAR) determines which part of RAM will be
displayed on the screen. If an alphanumeric mode is in
force (by V2=V1=V0=0), then the display will be the
512 bytes of a text page. Ifa graphics mode is in force, then
the display will be the appropriate number of bytes of the
graphic page. The BASIC interpreter stores the proper
address in the SAM depending upon the SCREEN
command, the graphics page selected by PMODE and the
PMODE (see SUCG).

You can select any memory starting address on 512-byte
boundaries ($0000, $0200, $0400, etc) by POKEing
into locations $FFC6 through $FFD3, as shown in
Figure CDOC-1. If you do this in the text mode, you can
see any area of RAM or ROM displayed in color. The most
interesting area is in page 0 ($0000), which shows the
changing working variables in BASIC. Color debugging!

This starting address can be changed dynamically to
display different graphics areas even if you do not have
Extended Color BASIC.

Figure CDOC-1 - Video RAM Starting Address

POKE ADDRESSES

M eRO<doo
B N
SEE2EERR
Pog o B B P P B STARTING DISPLAY ADDRESS
000000 $0900 #
popoPPB1 $P200 512
poopo1P $P400 1824
popoP1l $960¢ 1536
g0 1 1909 59800 2948
1111111 SFEGP 65024

CFAD
Copying a File To Another Diskette, Model
I/I1/II1 TRSDOS, Color Computer

If you have more than one drive, use the COPY
command to copy the file as follows:

COPY FILEl:§ TO FILE2:1
or
COPY FILEL:§ :1

The filenames can have the standard format described
in FNMH. TRSDOS will copy the file without any human

interaction. The “source” and “destination” drives may
be any drive numbers, 0 through 3. They may even be the
same drive number (see CFSD).

(Not applicable to Model I): If you have a single drive,
use the COPY command as follows:

COPY FILEL:$ TO FILE2 :0

The file names can have the standard format described
in FNMH. TRSDOS will prompt you to insert
“SOURCE” disk and insert “DESTINATION” disk at
the appropriate times.

CFBD

Converting From Binary to Decimal

If you have a binary number that you would like to
convert to decimal, do the following:

1. If the binary number is 0 through 1111111111 use
Table CFDB-1.

9. If the number is greater than 1111111111, do the
following:

A. Starting with the leftmost binary digit,
multiply by 2. Add the 0 or 1 of the next
binary digit.

B. Multiply this result by 2 and add to the
next binary digit.

C. Repeat step B until the rightmost binary
digit has been added. The result is the
equivalent decimal number.

As an example: Convert 01100100 to decimal. See
Figure CFBD-1.

CDFL
CDHT

CDOC
CFAD
C¥FBD

How to do it on the TRS-80

Figure CFBD-1 - Converting from Binary to Decimal
ORIGINAL NUMBER = (110¢14¢ <

P1100100 EQUIVALENT

Q¢x2=¢+}=1x2=2+%=3x2=6+&=6
1 |

1
¢
8x2=12+?=12 X2 =24+1 =25
’ |
1 ; e !
25X2=5¢+?=5¢X2 =l¢¢+¢=1¢¢1¢
9
¢
CFCSs the result in numeric variable NM is a decimal 65 (41H),
Converiing the First Character of a String to which represents the ASCII code of A (see ADFW for
Numeric in BASIC, Most Systems ASCII codes).
(Not applicable to Model 1/III Level I). Why have this function? Why not? ASCII codes,

fortunately, have the same “ascending sequence” order as

The ASC function converts the first character of a A through Z, a through z, and 0 through 9, making this
string to numeric. In this code: command useful in alphabetizing and other processing.
ASC is the “inverse” of CHR$ (CUSE).
169 A$="A WOMAN IS A WOMAN BUT A TRS-8@,.."
110 NM=ASC(A$)

CFDB B. Divide the result of step A by 2 again.
Converting from Decimal to Binary Save the remainder as R2.
If you have a decimal number you want to convert to a C. Re_pgat step B until the amount
binary value, do the following: remaining is 0.
1. Ifthe decimal numberis0to 1023, use Table CFDB-1. D. Arrange the remainders in reverse order.

The result is the equivalent binary number.

2. If the number is greater than 1023 (or equal to or less
than 1023 and you feel like some math) do this: As an example: Convert 100 decimal to binary. See
Figure CFDB-1 for the process.

A. Divide the number by 2. Save the
remainder as R1.

Figure CFDB-1 - Converting from Decimal to Binary
ORIGINAL NUMBER = 10§ =

160/2 = 5¢ REMAINDER ¢

§¢/2 =25 REMAINDER @

ot EQUIVALENT

25/2 = 12 REMAINDER 1

12/2 = ? REMAINDER @ $ ARRANGE IN REVERSE
/2 = ? REMAINDER @

3/2 =1 REMAINDER 1
f__n__J
1/2 = ¢ REMAINDER 1
STOPf
WHEN 1198196, = 1199190, <—
QUOTIENT
=@

How to do it on the TRS-80

Table CFDB-1 - Binary, Decimal, Hexadecimal

DEC BINARY HEX DEC BINARY HEX DEC BINARY HEX
9 0000000000 @00 53 ¢PPP119161 935 106 99pL101010 @6A
1 0900000001 @01 54 ¢pPPL1PL1P 936 197 0091191611 P6B
2 0000000019 092 55 ¢PP@L1p111l @37 108 ¢p0119110¢ @6cC
3 0000000011 @93 56 PP9PLL1000 @38 109 @99L101161 @6D
4 GO00000100 004 57 ¢9PPL11991 939 11¢ 0091161110 @6E
5 ¢090000101 985 58 ¢P@PPLL1P10 ©O3A 111 9991191111 @6F
6 0900000119 P06 59 ¢PPPL11P1ll @3B 112 0991110000 070
7 0000000111 997 60 9099111109 @3C 113 ¢p@l1lpepl @71
8 0000001000 0P8 61 PPPPL111H1 @3D 114 ¢0p91110016 @72
9 0000001001 P09 62 Q999111119 @3E 115 ¢g@1119611 973

19 9000001010 GOA 63 PPP@P111111 @3F 116 001119100 074 CFCS
11 0000001011 99B 64 GPOLO00000 040 117 pp@1110161 @75
12 0900091106 ©O6C 65 0001000001 041 118 ¢@@1119119 @76 CFDB
13 00909991161 @@D 66 0001000010 @42 119 ¢9@1119111 @77
14 0090091119 @GOE 67 0001000911 P43 120 0p91111006 978
15 ¢909P91111 @PF 68 GPPLPP0109 DLk 121 9901111961 @79 CFDB
16 9000010000 010 69 0091000101 045 122 ¢9@1111016 @7A
17 9090010001 @11 70 0001000119 046 123 ¢P@P1111611 @7B
18 ¢P00PLPPLY 012 71 9091000111 047 124 @pPL1111p06 @7C
19 ¢P00P1P0911 P13 72 0001001000 P48 125 ¢9@L111191 @7D
20 0009010100 @14 73 0001001001 049 126 @0@91111110 @G7E

21 ¢9PP019191 @15 74 001091010 Q4A 127 @@P1111111 @7F

22 0009019110 ©Hlé 75 9901901611 P4B 128 0910000000 080

23 990919111 @17 76 POPLOPL1IGH Q4C 129 ¢¢10000001 @81

24 ¢O09P11000 018 77 9091991161 94D 130 0910000010 P&

25 ¢P9P@e11P91 919 78 9PPLO01L119 Q4LE 131 9010000011 @83

26 ¢P00P11919 Q1A 79 9001091111 Q4F 132 0p10000100 084

27 0P0PeL1PL1 @1B 80 0901010000 950 133 9010000101 085

28 9909911100 P1cC 8l P9P1P1PPPL @51 134 9@LO00G11H ©86

29 ¢PPPPL1191 91D 82 (091910919 052 135 9919009111 @87

30 ¢0PPP11119 @LE 83 PPP1A1PG1L @53 136 0919001000 088
31 p999P11111 PLF 84 POPLOLOLHH P54 137 09100010601 089
32 9000100000 029 85 @PP1P1P1HL 055 138 0919091010 @8A
33 0000100001 @21 86 9PP1P1PL1H 056 139 ¢010001911 08B
34 G900100019 @22 87 P9P1P1PL111 @57 140 0010001109 ©08C
35 ¢P0P100011 @23 88 ¢P01911000 §58 141 0910001101 ©8D
36 $0P0100100 @24 89 0991911901 ©59 142 9910601116 @8E
37 0900190191 @25 9f 9PP1P11010 B5A 143 9910901111 P8F
38 ¢0PPLO0110 @26 91 ¢PP1911911 @5B 144 ¢O10010000 999
39 ¢PPP1PP111 @27 92 ¢091911160 @5C 145 ¢010010001 @91
49 9000101000 028 93 ¢PPLP111Pl @5D 146 90190010010 092
41 9099191091 929 94 ¢PP1P11119 @5E 147 ¢910910611 993
42 9909191019 @2A 95 ¢@P@P1P11111l @5F 148 0910010100 094
43 ¢PPPLO1H11 @2B 9 PP91190000 Pod 149 ¢@10010161 695
44 GOPPLOLIPG g2C 97 9991100001 P61 150 9919010116 096
45 9PPP1PL1P1 $2D 98 ¢P@1100019 P62 151 ¢@199106111 @97
46 9099191119 @M2E 99 ¢P@1190P11 063 152 991p011000 @98
47 P@PP1PLILl @2F 100 0001190100 064 153 ¢@LPP11691 099
48 99PP110000 930 101 9991199191 @65 154 ¢PLPPL1910 @9A
49 9009110001 931 102 ¢9@L100119 P66 155 ¢9LPPL1P11 @9B
50 9990119010 932 193 9991169111 @67 156 ¢9LPP11106 B9C
51 ¢P9@L1PPL1 933 104 ¢001191000 068 157 9919911191 @9D .
52 @O@PL1PLO0 @34 195 ¢09L101001 69 158 09190611119 @9E

How to do it on the TRS-80

DEC BINARY HEX DEC BINARY HEX DEC BINARY HEX

159 0916911111 @9F 212 ¢911019100 @D4& 265 Q1p0001001 109
160 0010100000 PAG 213 9011919191 @D5 266 0190001019 1pA
161 0919100001 @Al 214 ¢911019110 @D6 267 PlP90@1011 19B
162 ¢P10100010 pA2 215 9911916111 ¢D7 268 Q100001100 1¢cC
163 PP19160011 @A3 216 0@11011909 @DS 269 0199001191 1¢D
164 0910100100 Qa4 217 9911011961 @D9 279 9199091119 10E
165 9019190101 @A5 218 ¢@11611910 @DA 271 9190991111 19F
166 9910109119 @A6 219 ¢p11911911 ¢@DB 272 Q190010000 110
167 0910109111 @Aa7 220 0911911196 @DC 273 9100010061 111
168 0010101000 9AS 221 ¢911911191 ¢@DD 274 100010019 112
169 0919191901 @A9 222 ¢@11911119 ¢DE 275 01000106011 113
17¢ 0010191910 QAA 223 $@§11911111 @DF 276 Q10010100 114
171 99101919011 @AB 224 Q9111900009 PEG 277 91900101061 115
172 9910191106 @PAC 225 ¢@11100001 @E1L 278 91p0010119 116
173 ¢p19191101 @AD 226 PPL1190010 PE2 279 ¢140010111 117
174 9919101110 QAE 227 p@111900611 PE3 280 9100011009 118
175 9919191111 QAF 228 9911100100 QE4 281 $199911901 119
176 0p19110000 @BY 229 P@11199101 @E5 28 ¢199011019 11A
177 0010110001 ¢B1 230 00111901106 ¢E6 283 9199911911 11B
178 9919119019 QR 231 9411199111 QE7 284 9100911190 1lcC
179 9916119611 @B3 232 ¢911101000 PES 285 @100011161 11D
180 9010119109 @84 233 ¢0111061001 @PE9 286 P1p9@11119 11E
181 ¢P1P119161 @B5 234 §911191016 @PEA 287 9190911111 11F
182 ¢919119119 @B6 235 ¢P11191911 @PEB 288 ¢1l00100000 129
183 9919116111 @B7 236 99111911909 @PEC 289 glp0100001 121
184 0010111009 @BS 237 #911191161 QED 29¢ 0100100019 122
185 (910111991 @B9 238 ¢P1119111¢ QEE 291 91909100011 123
186 0P1011191¢0 @OBA 239 ¢P11161111 @EF 292 9100100100 124
187 9919111611 @BB 240 PP11110000 OFg 293 9190100191 125
188 ¢P1911119¢ @BC 241 §P11119091 @F1 294 9109100110 126
189 ¢P19111191 @BD 242 PP11119019 PF2 295 ¢100109111 127
19¢ ¢@1¢611111¢9 @BE 243 PP11119011 @F3 296 Q19101000 128
191 ¢916111111 @BF 244 GP11110100 PF4 297 9190191001 129
192 0011000000 HCP 245 @@11119191 @F5 298 9190101919 12A
193 0911900001 pCl 246 PP11110110 @F6 299 91901919611 12B
194 0011000010 ¢c2 247 911110111 @F7 300 0100101160 12C
195 ¢p11pPPP11 pc3 248 ¢P11111900 @Fs 301 9169161191 12D
196 90110001006 @ca 249 ¢P11111001 @F9 302 9199101119 12E
197 90110006161 @cC5 250 $P11111919 @PFA 303 P1PP161111 12F
198 09110091106 ¢co6 251 @P11111911 @FB 304 9100110009 130
199 9911006111 @c7 252 @@11111199 @FC 305 9190119901 131
200 0911001000 oC8 253 $@11111161 @FD 306 GlPP119019 132
201 0B11091601 @c9 254 GP11111119 @FE 307 9199119611 133
202 9911901019 @ca 255 @@11111111 @FF 308 91pP119109 134
203 Pp11001611 @CB 256 01900000000 100 309 9190119191 135
204 9PL1001100 OCC 257 P10000001 191 319 9199110119 136
205 pP11PP1161 @CD 258 Q100000010 1¢2 311 §19@119111 137
206 9911901110 @CE 259 9190000011 193 312 §10P111009 138
207 0611091111 @CF 260 100000100 104 313 P1pP111¢6P1 139
208 9PL1910000 9DP 261 P1p0P001H1 145 314 ¢199111919 13A
209 9011919001 ¢D1 262 P1PpP00119 106 315 ¢16@111911 13B
210 9911910016 ¢D2 263 P190000111 197 316 169111199 13C
211 ¢911919911 ¢D3 264 9190001000 198 317 9160111191 13D

How to do it on the TRS-80

DEC

318
319
320
321
322
323
324
325
326
327
328
329
339
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
37¢

BINARY

P1eP111119
¢g1p@111111
101000000
P191000001
9101000010
9191900011
9191000109
101009101
PLPLOPPL1Y
P1P1009111
PLO1PPLOGP
191991901
0191961919
9191991911
$191691109
9191991101
$191001119
$1p1991111
P191010009
P191010001
P1O1010010
$191916911
191910100
0101910191
9191010119
$101010111
9191011000
9191911961
01910119190
191011011
$191911109
9191611141
$191011119
9191911111
$191100000
$101100001
9191100019
0191100011
9101100100
9191190191
9191100110
g191190111
$101101000
Plo1191001
9191191919
Pp191191011
9191191100
9191191101
191161119
101191111
$191110000
$191110901
$191110019

HEX

13E
13F
149
141
142

143
144
145
146
147
148
149
14A
14B
14C
14D
14E
14F
159
151
152
153
154
155
156
157
158
159
15A
158
15C
15D
15E
15F
160
161
162

163
164
165
166
167
168
169
16A
16B
16C
16D
16E
16F
179
171
172

DEC

371
372

373
374
375
376
377
378
379
380
381
38

383
384
385
386
387
388
389
39¢
391
392

393
394
395
396
397
398
399
490
401
402
493
4@4
405
406
497
498
499
419
411
412
413
414
415
416
417
418
419
InY)
421
422
423

BINARY

P1P1119911
$191119100
9191110101
9191116119
9191119111
P191111000
9191111601
191111919
191111911
$191111109
$191111191
191111119
P191111111
9110000000
$119000001
119000019
9110000011
9110000100
9110090101
¢L10000119
9110000111
@119001000
9110001001
¢119901019
¢119001011
9119901109
9119001101
9110091119
9119901111
$110010000
0110010001
¢1L10010010
9110010011
9110010100
9110919101
0110010119
119010111
91100119000
9119911001
9119011919
110011011
@119011100
9119911191
¢lL109111190
9119911111
PpL10100000
$110100001
$119100019
$119100011
9110100100
9119100101
9119100119
9119100111

HEX

173
174
175
176
177
178
179
17A
178
17¢
17D
17E
17F
18¢
181
182
183
184
185
186
187
188
189
18A
18B
18C
18D
18E
18F
19¢
191
192
193
194
195
196
197
198
199
19A
198
19C
19D
19E
19F
1A9
1Al
1A2
1A3
1A4
1A5
146
1A7

DEC

424
425
426
67
428
429
439
431
432
433
434
435
436
437
438
439
449
441
4l
443
A
445

446
447

448
449
459
451
452
453
454
455
456
457
458
459
460
461
462

463
464
465
466
467
468
469
47¢
471
472

473
474
475
476

BINARY

9119191000
9119101001
119191919
P110191911
¢119191100
9119191101
9119191119
P119191111
9110119000
9119110001
¢119110019
gl19110911
9119119109
P119119101
¢l1911011¢
9119116111
9119111009
119111901
¢119111919
P119111011
9119111100
¢119111191

$119111119
$11¢111111

¢$111000000
¢111000001
9111900010
9111900011
$111900100
9111900101
111000119
¢111p0@111
9111001000
9111991901
$111901019
¢111901011
$1119¢1109
9111901191
¢1119061119
9111991111
9111010000
9111910001
9111910010
9111910911
P111910100
g111919101
111910119
P111919111
9111911900
pl11911901
$111911919
g111911911
$111911160

HEX

1A8
1A9
1AA
1AB
1AC
1AD
1AE
1AF
1B¢
1Bl
1R

1B3
1B4
1B5
1B6
1B7
1B8
1B9
1BA
1BB
1BC
1BD

1BE
1BF

1cH
icl
1c2
1c3
1C4
1C5
1¢6
1c7
1c8
1¢9
1ca
1cB
1cc
1¢D
1CE
1CF
1D¢
1p1
1D2
1D3
1D4
1D5
1D6
1D7
1D8
1D9
1pA
1DB
1DC

CFDB

CFDB

How to do it on the TRS-80

DEC

4717

BINARY

9111911191

478 9111911119

479
480
481
48
483
484
485
486
487
488
489
499
491
49
493
494
495
496
497
498
499
506
5¢1
5@2
503
564
565
506
507
508
59
519
511
512
513
514
515
516
517
518
519
520
521
522
523
52 4
525
526
527
528
529

How to do it on the TRS-80

$111p11111
P111190¢000
111100001
$111100019
Pl111p9@11
¢111100100
g11119¢101
$111106119
$111190111
9111101009
9111191001
9111101919
Pl111p1611
$111191109
$111191191
9111161119
$111191111
9111119900
111119001
111110019
9111119911
9111119109
111116101
111119119
111119111
111111909
P111111991
1111110190
$111111011
$111111190
111111101
$11111111¢
$111111111
1000000000
1000000001
1000000010
1000009011
1090000100
1900008101
1900000119
1000009111
1900001000
1900001091
1000001010
1000001011
1000001190
1000001191
10000061119
1000601111
10000610000
1900010901

HEX

1DD
1DE
1DF
1E@
1E1
1R
1E3
1E4
1E5
1E6
1E7
1E8
1E9
1EA
1EB
1EC
1ED
1EE
1EF
1F9
1F1
1F2
1F3
1F4
1F5
1F6
1F7
1F8
1F9
1FA
1FB
1FC
1FD
1FE
1FF
209
261
202
263
204
205
206
207
208
209
20A
208
204C
20D
20E
20F
219
211

DEC

539
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
569
561
562
563
564
565
566
567
568
569
57¢
571
572
573
574
575
576
577
578
579
580
581
58

BINARY

1000010010
1000010011
1000010100
1990019191
1000010110
1090916111
1900011990
1900011091
19000011019
1999011011
10000111909
1999911141
19909011110
1009611111
1900109000
1090100001
1000100010
1909190911
1999100100
190900100101
1090109119
1000106111
1900191900
1000191091
1000101019
1996191911
1000101109
1900191191
1000161119
19000191111
1990110900
1990119991
1000110010
1996110911
19001101900
1096110191
1000110119
1999110111
1000111000
1099111901
1909111916
1999111911
1900111190
1990111191
1000111119
19909111111
1901000000
1991000001
1091000010
19001000011
1901000100
1991000101
1901000119

HEX

212
213

214
215

216

217

218
219
21A
21B
21C
21D
21E
21F
229
221
222

223
224
225
226
227
228
229
22A
22B
22¢C
22D
22E
22F
239
231
232

233
234
235
236
237
238
239
23A
23B
23¢C
23D
23E
23F
240
241
242

243
244
245
246

DEC

583
584
585
586
587
588
589
59¢
591
592
593
594
595
596
597
598
599
609
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
62 4
625
626
627
628
629
639
631
632
633
634
635

BINARY

1901000111
1901901900
1991001001
1091991919
1991001011
1991001100
1991901101
1901001119
1901061111
1901910000
19091010001
1001910910
1991010911
1001019190
1001919101
1991919110
1991916111
1001911009
1091011001
1001911919
1991911611
1001011100
1991011101
1961011119
1991911111
1901100000
1001190691
1901190010
1901100011
1001100109
1991190101
1901100110
1991106111
1601191000
1991161061
1001191910
1091191911
1091191190
1001191191
1001191119
1991191111
1991119909
1991119001
1991119010
1991119911
1901110100
1091119101
1991119119
1991110111
1091111909
19091111991
1991111919
1061111911

HEX

247
248
249
24A
24B
24C
24D
24E
24F
259
251
252

253
254
255
256

257
258
259
25A
25B
25C
25D
25E
25F
260
261
262

263
264
265
266
267
268
269
26A
26B
26C
26D
26E
26F
279
271
272

273
274
275
276
277
278
279
274
27B

DEC BINARY HEX DEC BINARY HEX DEC BINARY HEX

636 1991111199 27C 689 1919119001 2Bl 742 1911100119 2E6
637 19@1111191 27D 69¢ 1919110919 2R 743 1911199111 2E7
638 1991111119 27E 691 1919119911 2B3 744 1911191909 2E8
639 1991111111 27F 692 igigiigig? ng 745 1911191091 2E9
640 1910000000 280 69 B 746 1911191919 2EA
641 1919000991 281 694 1010119119 2B6 747 1911191911 2EB
642 1910000919 282 695 1919119111 2B7 748 1911191109 2EC
643 191900911 283 696 191011100 2388 749 111101191 2ED
645 1010909101 285 698 1019111019 2BA 751 1911191111 2EF
646 1010009119 286 699 1010111911 2BB 752 1911110009 2F9 CFDB
647 191999P111 287 709 1910111199 2BC 753 1911119991 2F1
648 10100019009 288 7¢1 1¢1¢1111¢1 2BD 754 1911119919 272
649 1019091001 289 792 1919111119 2BE 755 1911119911 2F3 CFDB
650 1910991019 28A 7¢3 1919111111 2BF 756 1911119100 2F4
651 1919991911 28B 704 1911000000 2CP 757 1§111191¢1 2F5
652 1919991199 28C 705 1911990091 2Cl 758 1911119119 2F6
653 191¢¢@1191 28D 706 1911900010 2C2 759 1911119111 2F7
654 lﬂlﬂﬁﬂlllﬂ 2 8E 7¢7 lﬂllﬂ¢¢¢ll 2C3 76¢ 1¢11111¢¢¢ 2F8
655 1019991111 28F 708 1011900190 2C4 761 1911111961 2F9
656 1910910000 299 709 1011900191 2C5 762 1911111919 2FA
657 1919919091 291 719 1911999119 2C6 763 1911111911 2FB
658 1019910919 2% 711 1911609111 2C7 764 1911111199 2FC
659 1¢l¢¢l¢¢ll 293 712 l¢110¢1ﬁ¢¢ 208 765 l¢111111¢1 ZFD
669 1010019100 294 713 1911001061 2C9 766 191111111¢ 2FE
661 1919910191 295 714 1911991919 2CA 767 1911111111 2FF
662 1919010110 296 715 1911901011 2CB 768 ll¢¢¢¢¢¢¢¢ 300
663 1919919111 297 716 1911991199 2cCC 769 1100000001 301
664 1019011900 298 717 19119¢1161 2CD 770 1100000019 3f2
665 1919911081 299 718 19119¢1119 2CE 771 1100000611 303
666 1910911919 29A 719 1911¢¢1111 2CF 772 1100000190 304
667 l¢1¢¢11¢11 293 72¢ 1¢11ﬂ1¢¢¢¢ 2D¢ 773 11¢¢¢¢¢1¢1 3@5
668 1919911199 29C 721 1911919991 2D1 774 1190000110 306
669 1919911191 29D 722 1911919919 2D2 775 1100000111 307
67¢ 1919911119 29E 723 1911919911 2D3 776 1100001008 308
671 1019911111 29F 724 1911910100 2D4 777 1100001991 309
672 1910100000 29 725 1911919191 2D5 778 1100001019 30A
673 1019100991 2A1 726 1911919119 2D6 779 1109001011 308
674 1910190919 242 727 1911919111 2D7 789 1100001190 36C
675 1019100011 2A3 728 1911911909 2D8

781 1199091191 30D

676 1910190109 244 729 1911911961 2D9 30K
677 1919199191 2A5 730 1911911919 2DA 32@ iiggggiii? 3gF
678 1910109119 246 731 1911911911 2DB 784 1100010000 310
679 1019199111 2A7 732 1911911196 2DC 785 1100010001 311
680 1910101009 2A8 733 1911911161 2DD 786 1100010019 312
681 1910101901 2A9 734 1¢11¢11110 2DE 787 1100919011 313
682 1019101019 2AA 735 1911911111 2DF 788 11000191900 314
683 1919191011 2AB 736 1911109000 2E@ 789 1109919161 315
684 1019101199 2AC 737 1911199001 2El 79¢ 1199919119 316
685 1019191141 2AD 738 1911190919 2E2 791 1199919111 317
686 1919101119 2AE 739 1911100011 2E3 792 1190911909 318
687 1919191111 2AF 749 1911190100 2E4 793 1199911961 319
688 1019119000 2B¢ 741 1911169101 2E5 794 1199911919 31A

How to do it on the TRS-80

DEC BINARY HEX DEC BINARY HEX DEC BINARY HEX

795 1100611611 31B 848 1101010000 350 991 1110000191 385
796 11p691116¢6 31C 849 1191010661 351 992 1110000119 386
797 1109911191 31D 850 1191010619 352 993 111909111 387
798 119¢p11114 31E 851 1191619611 353 994 1110001009 388
799 1166011111 31F 852 1101010106 354 995 1119001091 389
800 1100100000 320 853 11419019161 355 996 1119091019 38A
801 1160100061 321 854 1101010119 356 997 1110001611 38B
802 1100100019 322 855 1141919111 357 998 1110001109 38C
803 1100160p11 323 856 1101011066 358 9¢9 1119001191 38D
804 11001006100 324 857 11919116061 359 91¢ 11199@¢1119¢ 38E
8¢5 1100109161 325 858 1191911419 354 911 1116661111 38F
806 1160106110 326 859 1161611411 35B 912 1110010000 39¢
807 1100100111 327 860 1101011160 35C 913 1119010091 391
808 11001016066 328 861 1161011141 35D 914 1119019019 3%
800 1106101061 329 862 1141011119 35E 915 11104619611 393
810 1100101010 32A 863 1141411111 35F 916 1110010100 394
811 11p¢¢1pipll 32B 864 1101100000 360 917 1114910191 395
812 11491011606 32¢C 865 1101100001 361 918 1119919119 396
813 114¢1p1161 32D 866 1101100010 362 919 11199416111 397
814 1100101116 32E 867 1101100611 363 20 1116011000 398
815 11p6161111 32F 868 1101100100 364 21 11160119081 399
816 114¢110000 330 869 1141100161 365 22 1116911619 394
817 1160119001 331 870 11011061106 366 23 1119911011 39B
818 1196110616 332 871 1101190111 367 R4 11106011100 39C
819 119¢119¢11 333 872 1101101000 368 925 1119611191 39D
&0 11061101060 334 873 1101101061 369 26 1119611119 39E
&1 1169116161 335 874 1161101019 36A 927 1119611111 39F
&2 1146116116 336 875 1141191911 36B 928 1119100000 3A0
823 1106116111 337 876 1101191100 36C 29 11101906061 3Al
84 11091110006 338 877 1141161161 36D 939 1119100010 342
&5 119111661 339 878 1161101119 36E 931 1114160011 3A3
6 1100111916 334 879 1141161111 36F 932 1119190109 3A4
87 1160111611 33B 880 1191110000 370 933 1119190161 3A5
£8 1160111199 33C 881 11¢111¢601 371 934 1119199119 346
29 116@111191 33D 882 11911196186 372 935 1114199111 3A7
830 1160111119 33E 883 1161119611 373 936 1110101000 3A8
831 116111111 33F 884 11911191906 374 937 1110191691 3A9
832 1101900060 340 885 11p1119161 375 938 1119101919 3AA
833 1101900061 341 886 1161119116 376 939 11101919611 3AB
834 1191006610 342 887 1141119111 377 940 1119101109 3AC
835 1161060011 343 888 11911110006 378 941 1110161191 3AD
836 1101000108 344 889 1141111461 379 942 1119101119 3AE
837 1101006161 345 89¢ 1141111919 37A 943 1119191111 3AF
838 1101008110 346 891 1191111911 37B 944 1110119009 3B
839 1191606111 347 8% 1101111196 37cC 945 1119119991 3Bl
840 1191001000 348 893 1161111191 37D 946 11190119010 3R
841 1141001861 349 894 1141111119 37E 947 1119119911 3B3
842 1101001010 34A 895 11§1111111 37F 948 1119119109 3B4
843 1101001011 34B 896 1110000006 38¢ 949 1119119161 3B5
844 1191001106 34C 897 1110000061 381 95¢ 1114119119 3B6
845 1191901161 34D 898 1110000019 38 951 1114119111 3B7
846 1101001119 34E 899 1114000011 383 952 1119111¢9¢ 3B8
847 1101061111 34F 900 1110000106 384 953 1114111991 3B9

How to do it on the TRS-80

DEC BINARY HEX DEC BINARY HEX DEC BINARY HEX

954 1119111919 3BA 977 1111919091 3D1 1099 1111191999 3ES8
955 111¢111¢11 3BB 978 1111919919 3D2 1991 1111191991 3E9
956 1119111169 3BC 979 1111919611 3D3 19¢2 1111191916 3EA
957 1119111141 3BD 98¢ 1111910109 3D4 1993 1111191911 3EB
958 1119111119 3BE 981 1111919191 3D5 1094 1111191169 3EC
959 1119111111 3BF 9 1111919119 3D6 19¢5 1111191191 3ED
969 1111900000 3CP 983 1111414111 3D7 1096 11111$111¢ 3EE
961 1111409001 3Cl 984 1111911999 3D8 1997 1111191111 3EF
962 1111900019 3C2 985 1111911991 3D9 1908 1111110009 3FP
963 1111909911 3C3 986 1111¢1191¢ 3DA 1699 1111119991 3F1
94 1111909199 3C4 987 1111911611 3DB 1919 1111119619 3F2
965 1111990191 3C5 988 1111911199 3DC 1¢11 111111¢¢11 3F3 CFDB
966 1111999119 3C6 989 1111411191 3DD 1912 1111119199 3F4
967 1111999111 3C7 99¢ 1111¢1111¢ 3DE 1913 1111114191 3F5
968 1111091998 3C8 991 1111$11111 3DF 1914 1111119119 3F6 CFDH
969 1111991961 3C9 992 1111199009 3E¢ 1615 1111119111 3F7
97¢ 1111991919 3CA 993 1111106901 3El 1916 11111119¢¢ 3F8
971 1111¢¢1611 3CB 994 1111100919 3R 1917 1111111961 3F9
972 1111991199 3CC 995 1111199911 3E3 1918 1111111919 3FA
973 1111991191 3CD 996 1111190199 3E4 1919 1111111911 3FB
974 1111961119 3CE 997 1111199191 3E5 192¢ 1111111199 3FC
975.1111¢91111 3CF 998 1111199119 3E6 1¢21 1111111161 3FD
976 11119010009 3D9 999 1111199111 3E7 1¢22 111111111¢ 3FE
1¢23 1111111111 3FF
CFDH B. Divide the result of step A by 2 again.
Converting from Decimal to Hexadecimal Save the remainder as R2.
If you have a decimal number you want to convert to a C. Repeat step B until the amount

hexadecimal value, do the following: remaining is 0.

1. If you are a Model II or Color Computer Extended D. Arrange the remainders in reverse order.

BASIC or Disk user, use the HEX$ command to convert.

PRINT HEX$(1000), for example, displays the E. Convert any remainder over 9 to the

hexadecimal equivalent of 1000. hexadecimal digits A through F (101is A, 11

is B, 12is C,13is D, 14 is E and 15 is F).
9. Ifthe decimal number is 0 to 1023, use Table CFDB-1.
F. The result is the equivalent binary number.
3. If the number is greater than 1023 do this:

A. Divide the number by 16. Save the As an example: Convert 100 decimal to hexadecimal.
remainder as R1. See Figure CFDH-1 for the process.

Figure CFDH-1-- Converting from Decimal to Hexadecimal

ORIGINAL NUMBER = 1088,5

1000/16 = 62 REMAINDER 8

62/16 = 3 REMAINDER 14 = E EQUIVALENT
3/16 = 0 REMAINDER 3 ‘
ARRANGE IN REVERSE
\

3E8

How to do it on the TRS-80

CKFFT
/CMD File Format, TRSDOS, Models I/II/ITI

Figure CFFT-1 shows the /CMD file format for
TRSDOS. You can see this format by using the F function
in Model III Disk DEBUG (see DT1U) or by LISTing the
file in hexadecimal.

The first portion is present on some /CMD files, such as
the /CMD files created by the TRSDOS DUMP
command but not on other /CMD files, such as the /CMD
files created by the Series I Editor/Assembler. It is an
18-byte “header” of hex 05 (5 decimal), followed by a byte
containing a byte count of hex 10 (16 decimal), followed
by descriptive text and creation date.

The following portions are “01” load items. These are a
hex 01 (1 decimal) byte, followed by a byte containing a
byte count, followed by two bytes containing a “load
address”, followed by data. The byte count defines how
many bytes of data will be present. A value of 00 is 256
bytes of data, while values of 01 through FF represent 1

Figure CFFT-1 — /CMD File Format, Models I/III

"HEADER"
LOAD ITEM

6 BYTES
"FGCFFT"

0000:00 = [D5][6] 46 47 43 46 46 54
= 45 45 4B 28 31 36

P000:10

OP00:ED = 30 20 45 4C 53 45 20 49
POPP:FP = 50 29 3D 53 54 20 54 48
P001:00 = 57 5¢ 2C 4E 54 8D 32 31
P0#1:10 = 3D 57 50 2B 31 3A 28 47
PO01:E0 = 20 20 26 20 20 20 20 20
@PPL:FP = 41 52 52 4F 57 2E 8D 8D
9002 :00 =20 20 34 46 20 35 37 20
0902 :10 =20 20 20 20 20 20 20 29

° LOAD AT

: 82 FA
9002 :¥@ = 8D|2¢ 30 3¢ 39 3¢ 3A 42
#003:00 = 30129 32 30 20 32 39 20
#p@3:1¢ = 33 32 2¢ 33 33 2¢

°LOAD 59 LOAD AT

: ITEM BYTES, 83F8
9004:09 =PE 2EALE 2E/2F 2E 2E 2E
P904:10 = [@] 36 30 20 90
0004:20 = 20 46 46 20 20 46 46 20
PPP4:30 = 20 20 46 46 20 46 46 29
POP4:40 = 46 20 46 46 20 46 46 20
P004:5¢ =_8g|

How to do it on the TRS-80

:]I'R.ANSFER TO 8¢@9PH

through 255 bytes of data (see CFHD for hexadecimal to
decimal conversions). The “load address” is in standard
Z-80 address format, least significant byte followed by
most significant byte (see Z8AF). The first byte of data
will be loaded at this address in RAM.

The “01” load items continue until the end of the data.
After the last “01” portion, there is a “02” byte, followed
by two bytes of a transfer address, in Z-80 address format.
The “02” transfer address marks the end of the /CMD
file.

A typical file might have “01” load items with a byte
count of 00, representing 256 bytes of data. Each “01”
load item would be 258 bytes long, 256 bytes of data, plus
the two bytes containing the “01” and length. Accessing
the file by the DEBUG F command (see DT1U) or by a
LIST would mean that the “01” load items would move
slightly on the display. You can actually find the “01”
load items fairly easily by using the F command. LDOS
users: See DT1U, Extended Debug commands, N
command.

LOAD
ITEM

256

BYTES
i

21 [9¢] #¢ 8@ 35 34 38 29
3

LOAD AT
8p@dH

\

35 34 3929 24 32 35 36
LOAD 256 LOAD AT
ITEM BYTES 8¢FE

46 20\2505 Ias 45 4]1;/28 57
45 4E\28 150 4F 4Bl 45 29
39 29 57 5¢
4F 54 4F 29 32 39 3¢ 8D

LOAD 256 LOAD AT
ITEM BYTES 81FC

20 20 20 44\4F 57 4E/ZE
60 31 20 35\32 bo 35/ 32
30 44 20 29
20 20 20 20 20 20 29 20

LOAD 256
ITEM BYTES
3p\20 32/
29

30 29 32

30 26 3D 24 32
32 3020 32 39
20 32 30 20 32

2E 2E 2E 2E 2E
46 46 29 46 46
46 46 20 46 46
46 46 20 46 46
46 46 20 29 2E

¢D 38 37
20 46 46
29 46 46
20 20 46

62 (62 B8

TRANSFER
ADDRESS
LOAD ITEM

CFHD

Converting from Hexadecimal to Decimal

If you have a hexadecimal number that you would like
to convert to decimal, do the following:

1. If the hexadecimal number is O through 3FF use
Table CFDB-1.

9. If the number is greater than 3FF do the following:

A. Starting with the leftmost hex digit,
multiply by 16. Add the next hex digit. Use

Figure CFHD-1 - Converting from Hexadecimal to Decimal

10, 11, 12, 13, 14, or 15 for hex digits of A,
B,C,D,EandF.

B. Multiply this result by 16 and add to the
next hex digit.

C. Repeat step B until the rightmost hex
digit has been added. The result is the
equivalent decimal number.

As an example: Convert OFE to decimal. See Figure
CFHD-1.

ORIGINAL NUMBER = (FE <%

$FE
|

EQUIVALENT-————————-l

X16 =0 + }‘(15) = 15.X 16 = 240 + E(14) = 25439

CFOW
Cursor, Finding Out Where It Is In BASIC

All systems except Model I/III Level I and Color
Computer Color BASIC:

Suppose you’re doing a general input operation in
BASIC and want to find out the current cursor position.
The POS function will tell you where that blinkin’ light is
on the row:

199 A=POS(@)
stores the current cursor position along the row in variable

A. The “(0)” isa “dummy” argument that really doesn’t do
anything.

The position will correspond to the character position
along the row and will be 0 through 63 for the Model I/111,
0 through 79 for the Model IL, or 0 through 31 for the Color
Computer.

POS is handy for columnating data (see CHTP) or for
word processing applications.

Model I1 users only: ROW does the same for the cursor
row position.

109 B=ROW(9)

will store the current cursor row of 0 (top) through 23
(bottom) in variable B.

CFSD
Copying a File To Same Diskette, Model I/II/II1
TRSDOS, Color Computer

Use the COPY command to copy the file as follows:

COPY FILEl:$ TO FILEZ:@

Model I TRSDOS will make the copy.

Other TRSDOS will prompt you to switch the source
and destination diskettes. Since the “source” and
“destination” diskette are the same, simply leave the
diskette in the drive and keep hitting ENTER. Dumb
machine . ..

You can use the same technique on any other drive.

CHON
Commands, Help On, Model II/III TRSDOS

After TRSDOS READY, type HELP. TRSDOS will
respond with the commands on which help is available.
The help is somewhat parsimonious — a brief description
and the “syntax” (format) of the command.

Now enter
HELP command

where “command” is the command from the list, for
example,

HELP FREE

Enter

HELP SYNTAX

to get a description of the format “notation.”

CFFT

CFHD
CFOW
CFSD

CHON

How to do it on the TRS-80

CHTP
Columns, How to Put Things In, in BASIC

What to columnate . .. uh... columerize. .. uh... make
nice, neat columns, eh? Here are 37 ways (well, maybe a few
less):

1. Most obvious: Use the comma symbol on PRINT
or LPRINTS, as in

1¢9 PRINT A,B,C,D

The comma means “tab to the next print zone.” The
print zones are predefined positions. On the Model I/I11,
they are at 0, 16, 32 and 48. On the Model II, they are at 0,
14, 28, 42 and 56. On the Color Computer, they are at 0
and 186.

When the data to be printed in each column is of
various widths, the column will be printed with a
“ragged” right edge and a “justified” left edge, as in

1234.5
10900.78
12

1234

See below for ways to justify the right edge.

2. Use TAB(XX) command. The TAB command moves
the printing (or LPRINTing) to the specified character
position. Character positions are numbered from 0 to 63
(Model I/III) or 79 (Model II) or 31 (Color Computer).
The following would print items at columns, 10, 20, 30 and
40, with a “ragged right:”

1¢9 PRINT TAB(1§);A;TAB(20);B;TAB(30);C;TAB(4$);D

3. Change numeric to string by the STR$ command, test
the length and columnate. The trouble with printing
numeric variables is that you don’t know how many
characters will be printed. On numbers with decimal
points, trailing zeroes are suppressed, and leading zeroes
are not used. It’s almost impossible to predict, therefore,
where to tab for a numeric variable.

You can get around this by using STR$ to change a
numeric variable to a string, as in:

190 A=1234.567
119 A$=STRS$(A)
12¢ B=LEN(AS)

The numeric variable A is converted to a 9-byte string
with intermediate decimal point and a leading blank. The
leading blank is used because the number could be a
negative number, in which case a minus sign would lead.

The string length can now be measured by the LEN
command (see SFLO), and the string can be otherwise
manipulated (for example, a dollars and cents value can be
made up by adding trailing zero characters). The LEN
function can be used in a TAB command to tab to the
proper position and to justify the right edge:

199 PRINT TAB(2@-LEN(A$));A$;TAB(40-LEN(BS));BS

4. Use a PRINT USING command to define how many
characters should be displayed or printed (not applicable
on Level I or Color Computer BASIC). There is more on
this in PRUU.

CLCN

Cleaning Connectors

A tried and true method for cleaning “edge connectors”
such as you’ll find on the Model I/III printer and I/O bus
ports: take alarge moderately hard eraser, such as a “Pink
Pearl” type, and rub it vigorously across the pins of the

edge connector. This is fairly effective in removing
oxidation from the connector, and doesn’t hurt the
connector in any way. (Well, possibly after 10,000 passes
there might be a modicum of wear ...)It may be necessary
to use a pencil eraser to fit through the opening to reach

the connectors.

CLTD
Clearing the Display in BASIC, All Systems

To clear the display while in BASIC, enter CLS (Model
I/II) or press CLEAR (Model III, Color Computer).

This action clears the display, deletes any current line,
converts to 64 characters per line (Model I/III), and
positions the cursor to the upper-left corner (the
“HOME” position).

CMD1
Calling a Machine Language Program in Disk
BASIC, Model I/II1 TRSDOS/LDOS

If you have a Model I or Model ITI with Disk BASIC and
want to interface to a machine language program, follow
these steps:

How to do it on the TRS-80

L. Assemble or translate the machine language code to
be loaded so that it will run properly at the location in
RAM memory you desire (see SIEA or EDAN).

2. Protect the memory into which the machine language
program is to be loaded by the procedure given in PROT.

3. Put the machine language code into the area of RAM
memory required. This can be done by loading the
machine language object program with a LOAD
command (see LMLD), by POKEing the
machine language code (see PPKU), by loading the
machine language program by DEBUG (see DT1U) or by
other means.

4. Write your BASIC program so that it includes a
DEFUSR statement. The format of this is
DEFUSRn=XXXXX, where n is a digit of 0 through 9
and XXXXX is the address of the start of the
machine language program. Since there are 9 different
DEFUSRs, DEFUSRO through DEFUSRSY, you can have
10 separate entry points in the machine language program,
10 separate machine language programs, or a
combination of entry points and programs. If one entry
point was 8000H and another 8010H, for example, you
might have:

1¢9 DEFUSR@=32768-65536 “entry point 1
11¢ DEFUSR3=32774-65536 “second entry point

Note that the special form in BASIC for addresses over
32767 was used here.

5. Transfer control to the machine language program by
performing a USRn call. The format of USRn is
A=USRn(B), where n is 0 through 9 (and corresponds to
the DEFUSR n digit), A is a “return” variable, and Bis an
integer variable that can be passed to the
machine language routine. The USRn call will take the
machine language address defined in the DEFUSRn

command and “call” that location, saving the return point
of the next BASIC statement after the USR call. If the
machine language program requires “‘arguments,” pass
them by procedure PVMI1. If the machine language
program does not require arguments, you may usea USRn
function call with a “dummy” argument of 0 - USRn(0) —
and a “return” variable that is also a dummy, such as
variable A as in 100 A=USRn(0).

Here’s an example: We have a simple
assembly language program to clear the screen shown in
Figure CML1-1. This has been translated to machine code
decimal values as given in procedure CFHD, and
incorporated into BASIC DATA statements as shown
below. The BASIC code to relocate the machine code and
to call the machine language program is shown below.

199 REM MACHINE CODE IN DATA STATEMENTS

11¢ DATA 62,32 ,50,$,60,33,4,60,17,1,60,1,255,3,
237,176,291

12¢ REM MOVE THE CODE TO 33909

139 FOR I=33099 TO 330PP+16

14¢ READ A:POKE I-65536,A

15¢ NEXT I

16¢ REM ESTABLISH THE START ADDRESS OF 33009

17¢ DEFUSR@=330pP-65536

18¢ REM NOW CALL THE CODE BY A USR CALL

199 A=USR@(H)

2¢9 REM RETURN AT THIS POINT

Note that the special form of XXXXX-65536 was
used in the POKE and DEFUSR above.

CMEC

Calling a Machine Language Program in
Extended Color BASIC, Color Computer

If you have a Color Computer with Extended Color
BASIC and want to interface to a machine language
program, follow these steps:

1. Assemble or translate the machine language code to
be loaded so that it will run properly at the location in
RAM memory you desire (see EDCE).

2. Protect the memory into which the machine language
program is to be loaded by the procedure given in PROT.

3. Put the machine language code into the area of RAM
memory required. This can be done by loading a
machine language program with a CLOADM command
(see LEMC), by POKEing the machine language code
(see PPKU) or by the Z-BUG portion of EDTASM+.

4. Write your BASIC program so that it includes a
DEFUSR statement. The format of this is
DEFUSRn=XXXXX, where n is a digit of 0 through 9
and XXXXX is the address of the start of the
machine language program. Since there are 9 different
DEFUSRs, DEFUSRO through DEFUSRSY, you can have
10 separate entry points in the machine language program,
10 separate machine language programs, or a

corpbination of entry points and programs. If one entry
point was $3E00 and another $3F00, for example, you
might have:

10§ DEFUSR@=GH3E@P

“entry point 1
11¢ DEFUSR3=&H3F@9

“second entry point

5. Transfer control to the machine language program by
performing a USRn call. The format of USRn is
A=USRn(B), where n is 0 through 9 (and corresponds to
the DEFUSR n digit), A is a “return” variable and B is an
integer variable that can be passed to the
machine language routine. The USRn call will take the
machine language address defined in the DEFUSRn
command and “call” that location, saving the return point
of the next BASIC statement after the USR call. If the
machine language program requires “arguments,” pass
them by procedure PVMC. If the machine language
program does not require arguments, you may usea USRn
function call with a “dummy”’ argument of 0 - USRn(0) —
and a “return” variable that is also a dummy, such as
variable A as in 100 A=USR(0).

Here’s an example: We have a simple
assembly language program to clear the screen as shownin
Figure CMLC-1. This has been translated to machine code
decimal values as given in procedure CFHD, and

CHTP
CLCN
CLTD
CMD1

CMEC

How to do it on the TRS-80

incorporated into BASIC DATA statements as shown
below. The BASIC code to relocate the machine code and
to call the machine language program is shown below.

199 REM MACHINE CODE IN DATA STATEMENTS

11¢ DATA 142 ,4,9,16,142,2,0,134,32,167,128,49,
63,38,250,57

12¢ REM MOVE THE CODE TO $3E@®

130 FOR I=&H3E@P TO &H3IEQF

140 READ A:POKE I,A

15¢ NEXT I

16¢ REM ESTABLISH THE START ADDRESS OF $3E@@
17¢ DEFUSR@=SH3E@H

18§ REM NOW CALL THE CODE BY A USR CALL

199 A=USR@(P)

269 REM RETURN AT THIS POINT

CMHT
Clearing Memory, Model II/III TRSDOS, Model
/111 LDOS

Model IT:Use the CLEAR command in TRSDOS to zero
user memory (see MMM2) and return to TRSDOS:

CLEAR

Model ITI: Use the CLEAR command to clear all of user
memory from 6000H (MMM1), set memory protect to
the end of memory, clear the display and reset all I/Q
drivers:

CLEAR

To clear a selected block of user memory, use the
following form of the CLEAR command:

CLEAR (START=ssss,END=ceee)

In this command, ssss is a start address and eeee is an
end address, both in 4-digit hexadecimal form (CFDH)
with leading zeroes for values greater than 9FFFH. The
end address must be larger than the start, of course, and
the start address must be greater than 6000H.

To set memory protect to a selected address, use:

CLEAR (MEM=pppp)

where pppp is a 4-digit hexadecimal address (CFDH)
without leading zeroes.

Why would you want to use this? This could be used to
zero out an area used for a machine language table or other
data that must be initialized. CLEAR isn’t a necessary
prerequisite for BASIC or other system programs,
however, and it’s somewhat of a cheap frill.

Model I/III LDOS: Use the MEMORY command as
follows:

MEMORY (CLEAR)

This will zero all memory from 5200H through top of
memory or “HIGH$” location. HIGHS is defined by:

MEMORY (HIGH=aaaa)

where aaaa is a hexadecimal (see CFDH) memory
location.

CML1

Calling a Machine Language Program in
Non-Disk BASIC, Model I or Model III

If you have a Model I or Model III without disk BASIC
and want to interface to a machine language program,
follow these steps:

1. Assemble or translate the machine language code to
be loaded so that it will run properly at the location in
RAM memory you desire (see SIEA or EDAN).

2. Protect the memory into which the machine language
program is to be loaded by the procedure given in PROT.

3. Put the machine language code into the area of RAM
memory required. This can be done by loading a
machine language program with a SYSTEM command
(see LMFN), by POKEing the machine language code
(see PPKU), by loading the machine language program
by cassette DEBUG or by other means.

4. Write your BASIC program so that it includes the
following statements:

How to do it on the TRS-80

189 AA=XXXXX
11¢ POKE 16527,INT(AA/256)
12¢ POKE 16526 ,AA-INT(AA/256)%256

In the statements above, variable AA is the address of
the start of the machine language code. Use the actual
numeric value in the POKEs instead if you desire. You
may have something like INT(32000/256), for example.

5. Transfer control to the machine language program by
performing a USR call. The USR call will take the
machine language address in 16526, 16527 and “call” that
location, saving the return point of the next BASIC
statement after the USR call. If the machine language
program requires “arguments,” pass them by procedure
PVML1. If the machine language program does not require
arguments, you may use a USR function call with a
“dummy” argument of 0 - USR(0) — and a “return”
variable that is also a dummy, such as variable A as in 100
A=USR(0).

15¢ NEXT 1

16¢ REM ESTABLISH THE START ADDRESS OF 3308¢
179 POKE 16527,INT(33999/256)

189 POKE 16526,330@@-INT(33000/256)%256

19¢ REM NOW CALL THE CODE BY A USR CALL

2¢9 A=USR($)

21¢ REM RETURN AT THIS POINT

Here’s an example: We have a simple
assembly language program to clear the screen shown in
Figure CMLI1-1. This has been translated to machine code
decimal values as given in procedure CFHD, and
incorporated into BASIC DATA statements as shown
below. The BASIC code to relocate the machine code and
to call the machine language program is shown below.

109 REM MACHINE CODE IN DATA STATEMENTS

119 DATA 62 ,32,5¢,9,60,33,0,66,17,1,60,1,
255,3,237,176,2¢1

12¢ REM MOVE THE CODE TO 33¢¢9

139 FOR I=33¢¢9 TO 33¢PP+16

14§ READ A:POKE I-65536,A

Note that the special form in BASIC for addresses over
32767 (XXXXX -65536) was used in the POKE above.

Figure CML1-1 ~ Clear Screen Program

CMHT
¢9199 ; CLEAR SCREEN PROGRAM
@00 | 3829 ¢P119 CLRSCN LD A" 7 ;blank CML1
go@2 | 329¢3C | 09129 LD (3CogH) ,A ;zero first char
¢9@5(21993C | ¢@130 LD HL, 3C@QH ;source CMLC
¢go@8|11613Cc | 60140 LD DE,3C@1H ;destination
¢p0B| 91FF@3 | 00159 LD BC,1023 ;1st byte filled
$OPE| EDBY 901690 LDIR ;chain move
g@g16|C9 0917¢ RET sreturn
0900 pp180 END

@999 Total\errors

THESE FIGURES IN DECIMAL ARE:
62,32 ,50,0,60,33,0,60,17,1,60,1,255,3,

237,176,201

CMLC
Calling a Machine Language Program in Color
BASIC, Color Computer

If you have a Color Computer with Color BASIC and

want to interface it to a machine language program, follow
these steps:

1. Assemble or translate the machine language code to
be loaded so that it will run properly at the location in
RAM memory you desire (see EDCE).

2. Protect the memory into which the machine language
program is to be loaded by the procedure given in PROT.

3. Putthe machine language code into the area of RAM
memory required. This can be done by loading a
machine language program with a CLOADM command
(see LEMC), by POKEing the machine language code
(see PPKU) or by other means.

4. Write your BASIC program so that it includes the
following statements:

109 AA=XXXXX
11¢ POKE 275,INT(AA/256)
12¢ POKE 276 ,AA~INT(AA/256) %256

In the statements above, variable AA is the address of
the start of the machine language code. Use the actual
numeric value instead if you desire. You may have
something like INT(32000/256), for example.

5. Transfer control to the machine language program by
performing a USR call. The USR call will take the
machine language address in 275, 276 and “call” that
location, saving the return point of the next BASIC
statement after the USR call. If the machine language
program requires “arguments,” pass them by procedure
PVMC. If the machine language program does not require
arguments, you may use a USR function call with a
“dummy” argument of 0 - USR(0) — and a “return”
variable that is also a dummy, such as variable A as in 100
A=USR(0).

Here’s an example. We have a simple
assembly language program to clear the screen as shown in
Figure CMLC-1. This has been translated to machine code
decimal values as given in procedure CFHD and
incorporated into BASIC DATA statements as shown
below. The BASIC code to relocate the machine code and
to call the machine language program is shown below.

How to do it on the TRS-80

Figure CMLC-1 — Clear Screen Program
$PP99 * CLEAR SCREEN

9009 S8E Pagp 9199 CLRSCN LDX #3409 START OF SCREEN
993 1P8E @209 pP119 LDY #512 FULL SCREEN
pPp7 86 29 pp129 LDA #3529 BLANK CHAR
9p09 A7 8¢ #9130 CLR@LP STA JX+ STORE BLANK
p99B 31 3F 99149 LEAY -1,Y COUNT -1

90PD 26 FA pp159 BNE CLR@19 GO IF NOT 512

PPPF 39 gpl60 RTS RETURN
poo9 po17¢ END
PPPPP TOTAL ERRORS

CLRO1lp @999
CLRSCN ¢p@9

169 REM MACHINE CODE IN DATA STATEMENTS 16¢ REM ESTABLISH THE START ADDRESS OF 16¢¢9
11¢ DATA 142 ,4,8,16,142,2 ,0,134,32 ,167,128,49,63, 17¢ POKE 275,INT(16496/256)
38,25¢,57 180 POKE 276,16@9#- INT(16008/256)*256
12¢ REM MOVE THE CODE TO 16$0¢ 19¢ REM NOW CALL THE CODE BY A USR CALL
139 FOR I=16@¢98 TO 16@PP+15 209 A=USR(P)
140 READ A:POKE I,A 21¢ REM RETURN AT THIS POINT
15¢ NEXT I
/
CNER Edit re-shuffles program lines and clobbers variables;
CN Error, BASIC hence, you cannot restart with variables intact).

Can’t continue error. You can only continue from a
STOP or a BREAK, and not from an END or Edit. (The

CPCA thinner cable thgt is ;nuch eassie}zx,'ltof string. Iailave usesdtfl
i i “minimum number of wires” cable for several years wi
Centronics (Printer) Cables, Model II/IIT no problems on any machine: Model I, IT or ITI. The wiring
The “standard” Radio Shack Centronics cable for diagram is shown in Figure CPCA-2.

connecting to a parallel (see RSWI for description of

parallel) printer is shown in Figure CPCA-1. The

“Centronics” refers to a printer manufacturer that

established a cabling and logic signal structure that

became a de facto standard for connections to printers.

All Radio Shack parallel and serial/parallel printers use

this cable arrangement for parallel data transfer.

You can buy the Radio Shack cables for connecting
your Model I, II, or III to a parallel printer (26-1401 or
26-4401), or you can make your own for the Models I and
III. The “Centronics” type 36-pin connector is available
from electronics parts stores and is usually called a
“Centronics” connector (Ampenol 57-30360). The 34-pin
“edge card” connector is also available from parts stores
or from the Shack (276-1564). Use any “ribbon cable” and
strip it down to 36 conductors. See SHT'O for information
on soldering.

Another alternative: For long cable runs use a “stripped
down” version of the cable. The cable connectors
ntersperse ground wires with “signal” wires for electrical
noise immunity. In fact, about half of these ground wires
can be eliminated without noise problems, making for a

How to do it on the TRS-80

Figure CPCA-1 — Parallel Printer Cable

CENTRONICS 34-PIN EDGE CENTRONICS 34~PIN EDGE
CONNECTOR CONNECTOR PIN CONNECTOR CONNECTOR PIN
PIN PIN
1 1 19% 2
2 3 2¢ 4
3 5 21 6
4 7 22 8
5 9 23 19
6 11 24 12
7 13 25 14
8 15 26 16
9 17 27 18
19 19 28 29
11 21 29 22
12 23 39 24
13 25 31 26
14 27 2 28
15 29 33 30
16 31 34 32
17 33 35 34
18% NONE 36 NONE

* CONNECT PINS 18,19 TOGETHER FOR MODEL II

33]31j2942
34]32}30}28)2

sp32ipizispishiigegzisjapy
4f22]20]18]16{14J1210] 8 | 6] 4 |2

TRS-80
CONNECTORS

ONE FOR ONE CORRESPONDENCE
(EXCEPT PIN 18,36)

17 sfistiafiafiziitiolor 8 7j6fsjagaj 2! CENTRONICS
36]3s [34] 33} 32| 31 [0 2928] 27]26 |25]24] 23}22] 21{ 20|19 CONNECTOR

CHECK PIN NUMBERINC ON
o ALL CONNECTORS!

Figure CPCA-2 - ‘Stripped-Down’ Printer Cable

34-PIN MODEL
/1l EDGE

2 34
: 33| CONNECTOR-
IRNRNRAR NI NE RN 1L LOOKING INTO
J TR T
GND STB D1 D2 D3 D4 D! out
5 D6 D7 D8 BUSY PAPER

- CONNECT THESE PINS

- T r T 34-PIN MODEL
4 | EDGE CONNECTOR- 4

JARANNAAARR TR | 33

A

GND STB D1 D2 D3 D4 D5 D6 D7 D8 Busy _OUT
S0 S B A0 DR DT DB BUSY bR

w

LOOKING INTO CPU

12-CONDUCTOR “RIBBON" CABLE
out

//_—\./\A
GND ST8 D1 D2 D3 D4 D5 D6 D7 D8 BUSY PAPER
[oA
117 T CENTRONICS
B RN L LB L T 18 CONNECTOR-
" m LOOKING IN
TO CONNECTOR

ON END OF CABLE

CHECK PIN NUMBERING ON
ALL CONNECTORS!

CPM3
Compressing Programs, Medel III TRSDOS

The CMD“C” command in the Model III “compresses”
BASIC programs by deleting remarks, and or spaces.
Compression will make programs run faster in less
memory. On the other hand, they will be more difficult to
read. Best bet: completely debug your programs first,
then compress for speed and compactness. Keep a copy in
the uncompressed form for those inevitable changes or
bugs that come up months later.

CMD“C” will compress by deleting remarks
(CMD“C”,R) , by deleting spaces (CMD“C”,S), or by
deleting both (CMD“C”).

When the REMarks option is used, text from REMarks
and single-quote type REMarks (see QWII) is deleted.
The line number and REM remain, however.

When the Spaces option is used, all non-string spaces
are deleted from BASIC statements. Any string properly
used (double quotes at the beginning and end) will be
unchanged.

CPSU

CompuServe, Using

CompuServe is the large Data Base in the Sky. It is a
data communications system that you can dial up with
your Model I, I, ITI or Color Computer system if you have

an RS-232-C driver, the necessary hardware and a modem
(see MWAT, MHTU). CompuServe offers hundreds of
services — display of news from Associated Press,
international, national, and local weather, computer
language processors, games such as Space War,
programmed instruction, stock market and commodities

How to do it on the TRS-80

CNER
CPCA

CPM3
CPSU

quotes and a CB radio simulator with which you can talk
to other users! If you have never used your RS-232-C and
modem, I suggest calling up a local Bulletin Board System
first (see BBUS) to gain some experience in data
communications and to guarantee that your system is
working properly.

To access CompuServe:

1. Get the Radio Shack Videotext software package for
your Model LILII, or color computer. If you have LDOS
or a similar operating system that already has a flexible
RS-232-C “driver” and data communications utility, you
may only require the “dumb terminal” package. You
could use your own simple data communication program
except for one small detail — the RS package comes with
an application blank for CompuServe, and one hour of
free “time.” Unfortunately (at this time of writing) you
cannot simply sign up without getting the package. In
addition, the package contains a rudimentary instruction
book for CompuServe.

2. Using the first part of procedure MHTU for a modem,
or ACHT for a coupler, hook up your system to a modem.

3. Set your RS-232-C interface to word length of 8, 1
stop bits, no parity, 300 baud, full duplex.

4. Load the Videotext or dumb terminal program.

5. Call the (800) toll-free number in the CompuServe
instruction book to find a local number (toll-free) that
you can dial up to connect to the central facility.

6. Complete procedure MHTU or ACHT to dial the
local number and get a screen display.

7. At this point, you’ll see the display shown in Figure
CPSU-1. Enter “CIS” or “CPS” to the “Host Name”
prompt. Utter the magic words, “the winner for the best
marketing effort for a data communication package is...”
and enter your user number from the sealed packet. If
you have entered your ID correctly, the system will then
ask you for your password. Enter the password from the
sealed envelope exactly as given. The system will now go
on...andon...andon...

8. The options from this point are voluminous. Here are
some hints:

A. If you have a system that allows you to
dump the display to the line printer (as the
LCOMM driver does in LDOS), do so
immediately. You’ll have a permanent
record of instructions, menus and indices.
An alternative would be dumping to disk.

B. Get a listing of the CompuServe Index.
The Index lists all major functions that can
be accessed (but there are many, many
subfunctions that you do not see). A typical
index is shown in Figure CPSU-2.

C. Use the GO XXX-XX function to go
directly to a “page” from the index. This

How to do it on the TRS-80

saves time and telephone charges. The GO
command can be entered after any “!”
prompt, as shown in Figure CPSU-3.

D. To stop at most times, entering a
“control C” will take you back to the last
“menu,” as shown in Figure CPSU-4.

E. Entering a “T” after a “!” prompt will
bring you back to the very first menu, as
shown in the figure.

9. You have 1 hour of “free” time. Before that hour runs
out, sign up by finding the index entry. You may charge to
Visa or Mastercharge or be billed directly. (Frankly, I
don’t trust computers and prefer direct billing to getting
a charge bill for $3003.89 . . .). If you sign up before your
hour runs out, you will immediately be given an
additional 2 hours that you must pay for. The basic cost at
this time of writing is $5.00 per hour — not bad for a local
call.

Some negative aspects: I was surprised to learn in first
using the system that only the hours from 6:00 pm
through 5:00 am are available at the $5 rate. This fact was
not in any documentation. Prime hours cost $22 per hour.
Another peeve: sometimes you’ll go from one menu to the
next to the next, and finally get down to the topic you're
looking for, only to find out there isn’t any significant
data available (other than sales promotions). Of course,
you should expect this from some (ahem!) of the larger
microcomputer manufacturers.

By and large, however, the service is excellent, and I
hate to use that word.

Figure CPSU-1 — CompuServe Display

AT DT 9918¢6¢

CONNECT

2 ANA ENTER THIS OR "CPS"
Host Name: @
ENTER THIS FROM YOUR SEALED ENVELOPE

User ID: 7¢¢$7,1133,”
==

Password:

CompuServe Information Service
23:35 PST Monday 15=Nov-8&
CompuServe Page CIS~1
CompuServe Information Service
1 Home Services

2 Business & Financial

3 Personal Computing

4 Services for Professionals

5 User Information

6 Index

Enter your selection number,
or H for more information,

!

ENTER YOUR PASSWORD
(WILL NOT DISPLAY)

Figure CPSU-2 — CompuServe Index

CompuServe Page CIS-1
CompuServe Information Service

1 Home Services

2 Business & Financial

3 Personal Computing

4 Services for Professionals

5 User Information

6 Index

Enter your selection number,

or H for more information.

16 SELECTS INDEX

CompuServe

CIS Subject Index

1 To Search Index

2 Complete Index List
Last menu page. Key digit
or M for previous menu.

Page IND-1

12 < SELECTS INDEX LISTING
CompuServe Page IND-4
Skl ok R kdokk ki dokdokdokodiokiok

INDEX

COMPUSERVE INFORMATION SERVICE

(Go 54 for quick access to
page numbers in this index.)
AAMSI Medical Forum:,,.Go SFP-5
AID calculations:i:,....Go PCS~72
AMEX prices (MQUOTE):.Go FIN-20
ASCMD S5IG:ecececcesssesGO SFP-7
AS.L. MORItOr:icesess oGO HOM-2(
Key 8 or <ENTER> to continue

!

CompuServe Page IND-5
ACCEB5 ccaasnsscssaasa0 PCS~30
Access phone numbers:.,...CIS~4
Adult educationi......Go HOM-70
Adventure game:..oes..Go GAM-11
Advertising:

FOr Sal€eeeccsesesossGo HOM-30
NoticeScceeseeaceseeeGo HOM-30
Want adS.eeecssesscssGO HOM-30
Advertising, classified:

S.L. Post-Dispatch.Go SPD-1§¢@2
Advice:

Aunt Netti€eseocecscossesGO NET

Key S or <ENTER> to continue
!

CompuServe Page IND-6
African weather:i......Go CNS~17
Agricultural news:....Go CNS-14
AircrafticeecvececcceseseaGo ASI
Ajrcraft (5IG)i.seeeeesGo SFP~6
Air Travel:ieeeescescsecs oGO PAN

Figure CPSU-3 - CompuServe ‘Go’ Prompt

Boston, Shawmut Bank:,...Go SHW
Bridge game:..seceees.G0o GAM-18
BroadcastingieeesesssasssGo NPR
Brokerage:ieeescecesesesssGo UMC
Budgeting, home:
Gov“t publications....Go GPO-4
CIS calculations.....Go HOM- 8§
Bulletin board:.......Go HOM-3{
Business “C

Key S8 or <ENTER> to continue

lg pes—5¢

"GOES" TO "PAGE"
PCs-50

CompuServe Page PCS-5@
COMPUTER GROUPS AND CLUBS

CP/M Group 9 MNET8¢ TRS8¢
HUG (Heath) 1§ LDOS TRS8¢
MAUG (Apple) 11 VIOS ST8¢
MNET-11(HL1) 12 TeleComm Now
MUSUS=PASCAL 13 CLUBIG

RCA Group 14 AUTHOR’S SIG
TRS8¢ Color 15 Commodore
Panasonic 16 Atari Forum
17 Instructions 18 Descriptions
Last menu page., Key digit

or M for previous menu,

!

O~NSOUVEWN =

How to do it on the TRS-80

CPSU

CPSU

Figure CPSU-4 — CompuServe Control C

#: 10663 Sec, 1 - CC Hardware
Sb: POKE 65495,0
$9-Nov-& 18:29:07
Fm: CHARLES 79999,999
To: Wayne Night 78888,8888 (X)
NO. FORGOT BOUT THAT. TNX. WILL DO.
#: 10665 Sec. 1 - CC Hardware
Sb: #Reverse Screen Mod
P9-Nov-8& 18:33:24
Fm: CHARLES 79999,999
To: STEVE SMITH 77777,777 (X)
HAVE A 32K W/VIDEOTEX ROMPAK. UNABLE TO FIGURE WHICH BOARD IT
IS “CAUSE ALL I CAN SEE THRU THE VENTS IS THE NUMBER ON THE
FEMALE SIDE OF THE ROM PLUG AND THERE”S NO “E” OR “D” OR
NOTHING. HAVEN"T TRIED DEBUGGING THE THING YET - JUST SAW 2
VARIATIONS ON A THEME AND TRIED BOTH. THE GRNSCN WORKED AND THE REVERSE DIDN”T.
#: 10666 Sec, 2 - CC Software
Sb: #DATABASE
#9-Nov—-& 18:35:01
Fm: CHARLES 79999,9999
To: STEVE SMITH 77777,777 (X)
SURE WOULD APPRECIATE THAT KIND OF PGM. IF U HAVE IT ALREADY
PUT TOGETHER, WUD SAVE A LOT OF TIME. TNX

#: 10667 S
Enter blank line to continue: "CONTROL" C INTERRUPTS
* The Color SIG * AT ANY TIME

Function menu:

(L) Leave a message

(R) Read messages

(RN) Read new messages

(B) Read bulletins

(CO) Online conference

(OP) Change your SIG options

(E) Exit from this SIG ENTERING "T" SELECTS
Enter selection or H for help:(:)"———’——'nToPu MENU
Exiting at 15-Nov-& 23:41:33

Last message on system: 11120

High message retrieved: 10667

Thank you for visiting * The Color SIG ¥
CompuServe Page CIS-1

CompuServe Information Service

1 Home Services

2 Business & Financial

3 Personal Computing

4 Services for Professionals TOP MENU
5.User Information

6 Index

Enter your selection number,

or H for more information,

!

SOV OV WD =

How to do it on the TRS-80

CPWR

Conditioning Power

If you live in a “noisy” power line environment and
share power circuits with heavy equipment or other
dwellings, as in a condominium or apartment complex,
you may have some problems with power line “glitches”
that zap your system. Try these remedies:

1. If you have a Model I, make certain that all of the
engineering changes have been installed relating to the
expansion interface dynamic memories. Early Model I’s
should have the so-called “pregnant cable,” a cable with
an integral electronics box connecting the CPU and
expansion interface. Symptoms of noisy environments
and dynamic memory problems are “disk reboots” when
other equipment on the line switches on, or even at
unpredictable times. (My Model I, for example, reboots
every time I turn on a fluorescent light on the computer
table — my Model III, on the same circuit, is unaffected.
Such is progress . ..)

2. Try to isolate your equipment as much as possible
from circuits that carry heavy loads, especially large ac
motors.

3. Make certain that all of your equipment is properly
grounded with a standard three-conductor plug (see
ACPR). If certain peripherals have only two plugs, you
can buy a special two-conductor to three-conductor
grounding plug at any hardware store. Connect the
ground wire to a metal screw that connects to the chassis
of the equipment, which is usually both a signal and
power ground.

4. Getan ac outlet box with three-conductor outlets and
power line filtering (RS 26-1451 or various models from
Electronic Specialists, Natick, MA).

If the above suggestions do not help, consider model
railroading.

CRPI

Cassette Recorder Plug, Insertion Of

Figure CRPI-1 shows the correct insertion of cassette
recorder plugs on the typical cassette recorders for the I,
II, III and CC.

Figure CRPI-1 - Cassette Recorder Plugs
(CCR-81 SHOWN, OTHER SIMILAR)

NOT USED

GRAY

A good tip: Remember the mnemonic device “black is
back”; the large black plug goes into the jack farthest to
the rear of most recorders.

DC6V' EAR

©@®

NOT USED

GRAY
(SMALL
PLUG)

BLACK
CSFT
Clearing the Screen From TRSDOS, Model 11/111
Use the CLS command
cLS

How to do it on the TRS-80

CPSU

CPWR
CRPI
CSFT

CSHT
Comparing Strings in BASIC

How do you compare strings in BASIC? Use the
conditional operators <, <=, <>, >=, > and = (less
than, less than or equal, not equal, greater than or equal,
greater than and equal) and the IF.. . THEN.. . statement,
as in

190 IF A$<=B$ THEN BS=A$

The meaning of A$=B$ or A$<>BS$ is clear enough,
but what about the other relationships? What is a string
that is “less than” another? Comparisions of strings are
done on a character by character basis, based on their
actual numeric value. Character data is normally in ASCII
(see ADFW), but the string values may be any value from
0 to 255 (see CHRS use in CUSE).

If any character in the first string is less than the
character in the same position in the second string, then
the entire first string is “less than” the second string. If any
character in the first string is “greater than” the character
in the same position in the second string, then the entire
first string is “greater than” the second string. If the strings
are of unequal length but contain the same characters up to
the length of the smaller, the shorter string is “less than™
the other. Examples:

" " " " " " ”n 1]

AA" compared to "AAA AAY < MAAA
YAAA" compared to "AAB" "AAA" < "AAB"
"AAA" compared to "aaa" "AAA" < "aaa" 11

"THE QUICK BROWN ARMADILLO LEAPT" compared to "TI"
"THE QU..." < "TI"

"AAA" compared to "aaa' "AAA" <> "aaa"

CSNV
Converting BASIC Strings to Numeric and Vice
Versa

There are a number of BASIC commands that enable
you to convert string variables to numeric variables and
vice versa. These are applicable to all systems except
Model I/III Level I systems.

One good reason you might want to convert a numeric
value to a string is to make it easier to columnate the value
when it’s printed or displayed (see CHTP). After a
conversion of numeric to string you can use the LEN
command to find out how many characters are in the
value, and you can even delete or add additional
characters by string processing commands (see SACW).

Sometimes it’s convenient to do the reverse, to change
strings to numeric. A good example of this is changing a
date in MM/DD/YY format or a YYYY value into a
numeric value for processing. See also “PRINT USING”
in PRUU for a convenient way to format numeric displays
or “LPRINT USING” to format printouts.

To change a numeric value to a string, use the STR$
function in BASIC. This command converts any numeric
variable to a string. Suppose that variable X was equal to
-56.789. You could convert to a string by

169 A$=STR$(X)

The resulting string is shown in Figure CSNV-1. The
string would consist of seven bytes (LEN=7) — the first
byte would be a sign (2DH), followed by 5 (35H), 6
(86H), decimal point (2EH), 7 (37H), 8 (38H), and 9
(839H). If the numeric value had been positive, the first
byte would have been a blank (20H). Here are some rules
for numeric to string conversions:

1. There is aleading minus sign in the result string if the
numeric value is negative.

2. There is a leading blank in the result string if the
numeric value is positive.

How to do it on the TRS-80

Figure CSNV-1 — Numeric to String Example

90 X=-56.789
100 A$=S8TR$(X)

=g« NUMERIC VARIABLE wg=
-56.789

U

BYTEO 2DH
35H

4 BYTES (6 IN
COLOR COMPUTER)

o

()]

36H

7 BYTES IN
2EH STRING A$

37H
38H
39H

~

A A W

o

3. There are no trailing blanks.

4. Decimal points appear as an ASCII decimal point in
the proper place.

5. Trailing zeroes for a fraction are not present in the
result string.

6. Leading zeros are not present in the result string.

To sum it all up, the result is exactly the way the
numeric value would appear on a display, with the
exception that no trailing blank is generated.

To change a string to a numeric value, use the VAL
function in BASIC. This function is the reverse of STRS$.
It takes a string variable value and converts it to a
numeric variable. The strings “999.98”, “1000E20” and
“.1” would be converted to the corresponding three
numeric values shown in Figure CSNV-2.

Figure CSNV-2 - String to Numeric Example

Here are some rules for VAL:

1. Ifthestring contains no numeric digits, or if the string
is “” (null, no length), a zero is returned.

2. If the string contains no decimal point, the result can
be set equal to an integer variable if the string is between
-32768 and +32767, except for the Color Computer,
which has only one data type.

3. If the string contains a decimal point, the result must
be a single-precision or double-precision number,
depending upon the number of digits in the string, except
for the Color Computer, which has only one data type.

4. Ifthe string has non-digit characters (for example, $ or
%), they are ignored and do not affect the result.

A$
9 A=VAL(AS) | 4
J 1 VARIABLEA L
999.98
-+ 4
9
8
BS 1
0
0 B=VAL(BS) . L
0 VARIABLE B
T 1E423 T
E
-+ 4
2
o]
Z1=VAL(Z18)
718 -
+ 4
1 VARIABLE Z1
4 . 4
«4 BYTES IN 1/1l/11,
6 BYTES IN COLOR
COMPUTER

Clock Speed Up Modifications

If you add one of the available clock speed-up
modifications to your Model I, III or Color Computer will
you get twice the speed? Yes. BASIC programs will
operate twice as fast if the clock speed-up modifications
double the basic CPU clock speed.

Do I recommend them? No, for a number of reasons.
First, they void your warranty. Secondly, the new
computer speed may be too fast for critical system timing
such as disk operation, or it may be incompatible with

system timing such as software cassette timing or the
real-time-clock. Thirdly, the new speed may be too fast
for proper chip operation -— not so much the cpu chip,
which will probably run at higher speeds, but certain
types of memories. Fourthly, they require some
“hardware” experience for installation.

The opposite side: some users that I know of have made
the modifications and have experienced little trouble.
Do the mods only if you have hardware construction
experience and are prepared to live without Radio Shack
service.

CTLC

Cassette Tape Loading Difficulties, Models
I/111/Color Computer

If you have difficulties loading a cassette tape file, try
these cures:

1. Make certain the tape is positioned properly by
removing the EAR output plug and REM plug and
listening to the file. Position the tape right before the file
and try again.

2. Temporarily remove the AUX input from the
cassette recorder and try again.

3. Check the volume control setting. T'ry various levels.

4. Physically relocate the cassette recorder away from
the television or monitor as far as possible. Try either side
of the television or monitor; there may be interference
from the flyback transformer or other electronics.

5. Are you using a high-quality tape? It may pay to get a
“certified” cassette tape such as Radio Shack’s 26-301 or
26-302. Certified tapes have been tested to ensure that
there are no “dropouts” - points on the tape where the
magnetic material is thin or non-existent.

Recommended volume setting for Model 1/111/Color
Computer: 7 on scale of 10.

Model I users only: If you have an early Model I, you
may require a modification called the “XRX-III mod”.
This was an electronic modification to the cassette
circuitry making the cassette input more reliable. Check
with your closest service center to see if they are still
installing it (Service Information Bulletin #1130).

How to do it on the TRS-80

CSHT
CSNV

CSUM
CTLC

CUSE
CHRS$ Use, BASIC, Most Systems

The CHRS$ function creates a one-character string from
a numeric value. Unlike generating a literal string
(A$=“HELP!”), this string may consist of “non-ASCII”
(see ADFW) characters. CHRS is a way of incorporating
“control codes,” graphics codes, and other non-ASCII
characters into strings.

The result string from

109 A$="LINE 1"+CHR$(13)+"LINE 2"

would be a 13-character string of “LINE 1,” a carriage
return, and “LINE 2.”

The value within the CHR$() may be any value from 0
through 255. See GHS!1 for use of CHRS$ in Model I/I1I
graphics.

CWTC
Commands, What TRSDOS/LDOS Commands
Are There?, Model 1I/II/ITI

After TRSDOS READY, type LIB. This action will
display all LIBrary commands.

Library commands are simply the repertoire of
commands available on the system. Model I/III LDOS
divides the commands into Library “A” (generally
essential) and Library “B” (may be PURGEd if not
required) commands.

How to do it on the TRS-80

DITW
DEVICE, Model I TRSDOS, What Is It?

DEVICE lists currently defined system devices - KI
for keyboard, DO for video display and PR for line

printer. As it stands it is a “hook” that was never
embellished. DEVICE should show the current status of
each system device and other system configuration
information.

DADF
Deleting Many Disk Files, How to, Model II/IT
TRSDOS

Want to delete all user disk files, or many user disk
files? Use the PURGE command in TRSDOS. Using
PURGE or PURGE :n, where n is the disk drive number
0, 1, 2 or 3, will delete all user files.

Model II: After PURGE is entered, TRSDOS will ask
for the master password of the diskette (see PWDS).
TRSDOS will then find each user file and ask

PURGE FILE Y OR N?

This dialog will continue until every user file has been
purged from the diskette. You can delete all user files or as
many as you require by answering Y or N.

If you want to delete “invisible” files (see VAIF), you
can enter

PURGE :n (INV)

and go through the same dialogue.To delete both “visible”
and “invisible” files enter

PURGE :n (INV,VIS)

To delete all files, including System files (see DDWA),
you can use

PURGE :n (ALL)

This command will create a Data Diskette (see DDWA)
without any dialogue. A better way to do this is to
FORMAT the diskette, as you'll get the advantage of
some “certification” of the diskette — flawed areas of the
diskette will be found, at the expense of a longer time.

Model II: There are three classes of files that can be
purged, SYS (TRSDOS system files), PROG (user
machine language files), DATA (user data files). The
easiest PURGE is

PURGE :n

where :n is the drive number (optional for drive 0).
PURGE will ask for the disk master password and then
display user file names one at a time; you can kill any
number by answering Y to the prompt.

Use the other options in any combination.

PURGE :1 PROG,DATA

will enable you to kill all user files.
A special option, ALL, lets you PURGE all files

PURGE :2 ALL

By selectively PURGEing SYS files, you can create a
minimum configuration diskette. PURGE all files except
SYSTEM/SYS and SYSTEMS32 or SYSTEM64
(depending on your memory option). Note that this is not
a data diskette, but is a minimum function diskette that
may be used in drive 0.

DCJS
Date Conversion in BASIC, Julian/Standard
Format, Model III TRSDOS

The CMD*J” function (boy, these Model III
commands never stop, do they — let’s see, where’s the one
for amortizing a loan for a Model I . ..) converts between
two date formats.

The first format is the standard MM/DD/YY format
that we all use and love so well.

The second format is one useful to programmers that
are calculating elapsed time. The “Julian” day is the
“elapsed” day of the year, from 0 through 365 or 366. The
format used here is YY/DDD, where YY is the last two
digits of the year, and JJJ is the Julian number.

To convert from MM/DD/YY format to Julian format,
execute

CMD"J","MM/DD/YY",string

where “MM/DD/YY” is the standard date format, either
as a “literal” with quotes around it, or as a string variable.
The second string is the result after the conversion.

The command
CMD"JI","10/24/82" ,AS
results in A$=“297""; note that the year is not present.

To convert from Julian format to standard format,
execute the command

CMD"J","-YY/DDD",string

where “-YY/DDD?” is a literal string with a leading minus
sign, two year digits, and the Julian day number. This

How to do it on the TRS-80

CUSE
CWTC

D1TW
DADF
DCJS

string can also be a string variable without the quotes. The
result is a string variable.

cMD"J","-82 /297" ,A$ produces A$="18/24/82".

Julian, by the way, was not Caesar, as many would
erroneously say, but Seymour Julian, an early buyer at One
Tandy.

DDER
DD Error

Doubly-dimensioned array. You can only establish an
array once, and cannot do a DIM statement more than
one time. Put all of your DIM statements at the beginning
of the program as good programming practice.

Model IT owners: Use ERASE to deallocate one or more
arrays.

ERASE A$,BS

releases the A$ and B$ arrays back to the available user
RAM space.

DDWA
Data Diskettes, What are They?

Data diskettes do not contain any operating system
software (see SDWA). They are effectively blank and
contain only a disk directory and “bootstrap” loader. A
data diskette can never be used in drive 0 — a “system”

diskette must be used instead. Data diskettes can be used
in any other drive, however, as long as there is a system
diskette in drive 0. (LDOS allows exceptions to this for
certain short “utility” functions). Data diskettes have
almost all of the disk space available for user programs
and data. Data diskettes are created by “formatting.”

DEHM

Disk Errors, How Many are Too Many?

This is a toughie. It’s one thing to read in disk drive or
diskette manufacturer’s literature about “number of hard
errors” per millions or billions of bits and translate that
into pragmatic terms. However, never fearing to tread, let
me take a stab at it:

For properly calibrated disk drives, hardware with no
bugs, and reasonable handling of reliable diskettes, you
may experience a “non-recoverable”, or “hard” error
every 10 diskettes full of data or so. By this I mean that in
normal storage of programs and data you’ve used up 10
diskettes and that no diskette has been subjected to
hundreds of reads and writes.

Things that will influence the number of disk errors:

1. If disk drives are not properly aligned, you may find
that you cannot switch a diskette from one drive to
another without “parity errors,” or that you cannot load
diskettes generated on other machines. Solution: take the
drives into Radio Shack or an independent repair facility
to have them aligned. Typical cost about $30-$40 per
drive.

2. If there are hardware errors in the disk drive
controller, you may have occasional disk errors. The
hardware malfunction may be related to heat (or cold).
Try to observe whether the errors occur more frequently
during temperature extremes or immediately upon power
up.

3. Improper handling of diskettes. It’s not just diskette
manufacturer’s propaganda, grease from fingers (sorry, I
don’t mean to use an argumentum ad hominem) or other
substances can effect disk errors. Very important: keep

How to do it on the TRS-80

diskettes away from dust by covering your system with a
cover and by storing diskettes in a plastic envelope that
covers most of the diskette. And of course, avoid
blowtorches, solar energy concentrators, Tesla coils and
the like.

4. Don’t buy cheap diskettes. When your computer club
sells those 50 diskettes for $50, are you truly getting a
bargain? Not if you lose hours’ worth of programs or data.
You can get good, reliable diskettes for about $35 or less
for ten 5 1/4” diskettes and $50 for ten 8” diskettes. Isn’t
that inexpensive enough?

5. Brand of diskettes: I'm not going to recommend
Verbatim diskettes, or 3M or Dysan. Computer users are
very chauvinistic about which diskettes work for them,
and as soon as I say Albatross diskettes, I'll get thousands
of users that hate them! My recommendation: try several
reliable brands and stick with the brand that works best
for you. But I like Maxells. . .

6. Using more stringent hardware on single-density
machines. If you have a Model I and are using a “foreign”
disk drive with 40 tracks, you may be getting disk errors of
tracks 35 through 39. Data is packed tighter there (a track
has a smaller circumference, but the number of “bit
times” is the same), and the “data separator” that
separates the clock pulse from data pulses has a tougher
job. You may want to add an “external data separator”
sold by several “foreign” manufacturers. You may also
experience problems using some of the foreign
“double-density” add-ons for the Model I; some of these
problems are insoluble. What’s that about a sow’s ear . . .

To resolve disk problems, get a good disk diagnostic.
One of the best is Stambaugh’s “Floppy Doctor”, which
includes every disk test imaginable, including
interchangeability of diskettes.

DFAH
Disk File Access, How to Speed Up

If your files have been created on a relatively “full”
diskette, the files may be “segmented” throughout the

disk instead of being in one contiguous area. This makes
for longer file accesses. Copy the appropriate files onto a
new “clean” diskette, and you’ll get faster access times.

See also CREATE (CDFH).

DFBH
DIR from Inside Disk BASIC, How to Do It,
Model ITI TRSDOS

Execute

CMD'"D:d"

where d is the drive number, 0 through 3. Only
unprotected, visible files (see FNMH and VAIF) will be
displayed.

DFDA
Disk File, Deleting, All Systems

Use the bellicose KILL command. The format is:

KILL name

where “name” is a standard filename (see FNMH) with
extension, if any.

Not applicable to Color Computer: You may need to
know the password. If you don’t know the password, try a
PURGE, on some systems.

Model IT users only: You can KILL multiple files that
have similar names or extensions. To kill all files with the
same extension, use:

KILL */ext

where “ext” is the extension of the files that you want to
KILL. You might have

KILL */FEB

for example, to KILL all files that have the /FEB
extension.

To KILL all files with similar names, use the asterisk to
replace a string of one or more letters. To kill all files
starting with ACCTS (ACCTS10, ACCTS11, ACCTS12)
and with any extension, for example, use:

KILL ACCTS*/%

Inside Disk BASIC: Use the Disk' BASIC command

KILL "name"

to kill a file from within Disk BASIC where “name” is a
valid file name. This command is handy for creating space
on a disk without losing a BASIC program in RAM.

DFOT
Date, Finding Out Today’s, Model I/II/II1 Disk
Systems

Method One: use a Calendar.

Method Two: use the TRSDOS or LDOS DATE
command (DSDS) to display the date you put in earlier in

the day (don’t rely on the system as an accurate
timekeeper).

Enter DATE without any arguments, and the current
date will be displayed on the screen.

Model II: Use the DATE$ command (see DIBP).

DIi13
Discrete Inputs for the Model I or Il

You can use the Model I or IIl to read remote
“real-world” inputs quite easily. Real-world inputs are
any inputs that are external to the computer system, such
as burglar alarms, fire detectors, and even such things as
magnetic “reed” switches closed by magnets. In the
following schemes, we're talking about remote switches
with slowly changing inputs; the length of the “run” may

be 50 feet or more. The cable used can be any garden
variety cable from Radio Shack; since the currents are
low, you may use speaker cable, “intercom” (3-wire) cable
or a similar type of cable.

Method 1: see DICC, Method 1 for schematic and
connections for cassette input for one “channel.” Read
the channel by

1¢$ A=PEER(INP(255) AND 1)

How to do it on the TRS-80

DDER
DDWA
DEHM

DFAH

DFBH
DFDA
DFOT
DI13

Variable A will be a 1 if the switch is on and a O if the
switch is off.

Method 2: connect two 6-volt batteries and a “single-
pole double-throw” switch as shown in Figure DI13-1.
Duplicate the connections for up to four switches as shown
in the figure. The voltage of the batteries does not have to
be exact, but try for around 6 volts. Wire an RS-232-C male
plug as shown in the figure (see also RSWI). Read the state
of the four switches by

1696 OUT 232 ,0

11¢ A=INP(232) AND 128
12¢ B=INP(232) AND 64

139 C=INP(232) AND 32

140 D=INP(232) AND 16

Figure DI13-1 — Model I/IIl Discrete Inputs

The switch will be on if the variable is a 1, or off if a
variable is a 0. Of course, this method will not work if you
also require the RS-232-C port for your printer or modem.

There are several other methods of reading “discrete”
inputs on the Model I and III, but these are the easiest.
See my Howard W. Sams book “TRS-80 Model I, ITI, and
Color Computer Interfacing Projects” for further
information.

CONNECTION AND VALUE
CTS 128
DSR 64
CD 32
RI 16 CONNECT
ONE
LINE
3\
-] Hl"'
II]
SPDT
6V I
+1 1= '
|1 |—
GROUND
7

NOTE: MALE RS-232-C
CONNECTOR SHOWN

DIBP
Date, in BASIC Program, Model 11

The DATES$ function gets the date in the format
WWWMMMDDYYYYJJJXXY, where WWW is the day
of the week (MON, TUE, WED, THU, FRI, SAT, SUN),
MMM is the month (JAN, FEB, MAR, APR, MAY, JUN,
JLY, AUG, SEP, OCT, NOV, DEC), DD is the day of the
month (1-31), YYYY is the year (19YY), JJJ is the Julian

Figure DIBP-1 - DATES$ Function Format
18- CHARACTER STRING

fwlwlwmuulo o]y [¥[y[y[s[aa]x]x]¥|

Thu Nov 1119
Tue Jan 119

315113
1

82
g1 11 (1/1/1961)

How to do it on the TRS-80

(11/11/19&)

day (see DCJS), XX is the numeric month of the year
(1-12) and Y is the numeric day of the week. Monday is
day 0. Typical responses are shown in Figure DIBP-1.

Of course, Model II BASIC is not clairvoyant; the
correct date and time must have been entered on system
start up or the time input by the TRSDOS TIME
command (see TSRT).

DICC

Discrete Inputs for the Color Computer

You can use the Color Computer to read remote
“real-world” inputs quite easily. Real-world inputs are
any inputs that are external to the computer system, such
as burglar alarms, fire detectors, and even such things as
magnetic “reed” switches closed by magnets. In the
following schemes, we’re talking about remote switches
with slowly changing inputs (slower than a dozen times per
second or so); the length of the “run” may be 50 feet or
more. The cable used can be any garden variety from Radio
Shack; since the currents are low, you may use speaker
cable, “intercom” (3-wire) cable or a similar type of cable.

Method 1: connect a ‘“single-pole, double-throw”
(SPDT) switch and two three-volt battery supplies as
shown in Figure DICC-1. The battery supply may be
located at either end of the cable. The Color Computer
end of the cable connects to pins 2 and 4 of a cassette plug
(see CCAM). You can read the state (on or off) of the
switch by doing

1¢¢ A=PEEK(&HFF2$) AND 1

Variable A will be a 1 when the switch is on and a 0 when
the switch is off.

Method 2: connect one or two ‘“‘single-pole, single-
throw”’ (SPST) switches and two resistors to each joystick
plug, as shown in Figure DICC-2 (see also JPPO). The
resistors are plain 10% carbon resistors available from
Radio Shack. You can now read each joystick channel (see
ADIC) by a JOYSTK command. If the switch associated

Figure DICC-1 - Color Computer Discrete Inputs I

SPDT
4+ SWITCH

CASSETTE

(RS-274-003)
Lo SEE CCAM

50'OR MORE
OF UNSHIELDED
CABLE

CONNECTOR

with the channel is open, the value read will be about 32;
if the switch is closed, the value read will be about 0. Do
this

1¢p IF JOYSTK(P)<2¢ THEN PRINT "ON" ELSE PRINT "OFF"

Of course, do JOYSTK(1), (2), or (3), depending upon
the channel, and make certain that you do a JOYSTK(0)
before any of the other JOYSTK commands.

There are several other methods that you can use, but I
don’t recommend them. One reads the RS-232-C “RD”
input in a scheme similar to 1) above, but requires two
6-volt batteries. Another simulates the joystick switch
inputs; as the joystick switch inputs are also keyboard
inputs, this gets somewhat confusing if you’re trying to
use the keyboard and monitor remote inputs at the same
time. For further information, see my Howard W. Sams
book “TRS-80 Model I, III, and Color Computer
Interfacing Projects.”

Figure DICC-2 - Color Computer Discrete Inputs II

JOYSTK(0)
RIGHT

JOYSTK (1)

LEFT

JovsSTK 2 f

JOYSTK(3)

{SEE JPPO)

NOTE: CABLE RUNS
MAY BE 50'OR MORE

DIDI
Directory, TRSDOS/LDOS, All Systems

DIR is used to display directory files on one or more
diskettes. Each diskette has a directory on it; the
directory is a record of all disk files, the file type and
attributes, the file location on disk, file length and other

parameters (see ADFC, ADFL).

In the Model I and III, user files are either “visible” or
“invisible” (see VAIF). Visible files will list in a simple
directory listing. In the Model II and Color Computer, all
user files are “visible”.

How to do it on the TRS-80

;] JOYSTK

JOYSTK

DIBP

DICC
DIDI

There are also “system” files on the diskette, unless the The directory is usually physically located near the
diskette is a “data” diskette (see DDWA). System files are center of the diskette, to minimize disk “search time,” as
the modules that make up either TRSDOS or utility the directory is frequently accessed.
programs. System files are also “invisible,” but can be
listed by a special DIR option.

DINS Label is always on top or right side. If there is no label,
Diskettes, Inserting sector index hole should be towards left or top. We’re
speaking of single-sided drives only here, of course. Some

Figure DINS-1 shows the orientation for the Model I, non-Radio Shack drives are double-sided, in which case
11, IIT and CC. Cutout is always inserted into the drive. either side will work.

Figure DINS-1 - Inserting Diskettes

WRITE
PROTECT

INDEX
NOTCH
HOLE

WRITE

MODEL 1/, ; PROTECT
COLOR COMPUTER, | NOTCH
INDIVIDUAL DRIVES }

LABEL INDEX
TO HOLE

mag\ | & MODEL Il
RIGHT OFF SET e /

TOWARDS
TOP

LABEL TO
RIGHT

MODEL I

WRITE
PROTECT
NOTCH

How to do it on the TRS-80

DLDB
DEBUG, Loading from Disk BASIC, Model 1
TRSDOS, Model I/III LDOS

Execute

CMD "D"

to load DEBUG from disk. After DEBUG has been
loaded, pressing BREAK will transfer control to DEBUG.

DEBUG can be used to examine memory data and
machine language programs. Loading DEBUG will
clobber BASIC, so it's one of those weird, marginally
useful commands.

CMD”D” in Model III TRSDOS displays the directory
from inside BASIC. Nothing like consistency.

DLIB
Deleting Lines in BASIC, All Systems

For a single line: type in line number alone. Line will be
deleted.

For multiple lines: use DELETE in Model I/II/III
(except Level I) and DEL for Color Computer (except
Color BASIC). The usual format is

DELETE 1¢¢-500

which deletes lines 100 through 500, unless the starting
line number doesn’t exist.

Use also “-” for start or end line number as in

DEL 1¢¢-

which deletes lines 100 through end in Color Computer
(DELETE line # - not valid on I/III).

DLM1
Directory Listing, Model I, TRSDOS

Read DIDI if you are not familiar with directory files.

To get a directory listing of all visible (user) files, do:
DIR :n
where :n is the disk drive number (:0-:4). The drive

number is optional. If the drive number is omitted, drive
0is assumed. A “P” opposite a file name indicates that the

file has a non-blank password (see FNMH).

To get a directory listing of all visible and invisible user

files, do:

Figure DLM1-1 - Directory Listing, Model I TRSDOS

FILE DIRECTORY DRIVE @ TRSDOS 19/29/89
BOOT/SYS SIP LRL= 256 / EOF= 5 / SIZE= 2 GRANS
DIR/SYS SIP LRL= 256 / EOF= 1§ / SIZE= 3 GRANS
SYs@¢/sYs sSIP LRL= 256 / EOF= 15 / SIZE= 1 GRANS
SYS1/sYS SIP LRL= 256 / EOF= 5 /| SIZE= 1 GRANS
SYS2 /SYS SIP LRL= 256 / EOF= 5 / SIZE= 1 GRANS
SYs3/sYs SIP LRL= 256 / EOF= 5 | SIZE= 1 GRANS
SYS4/SYS SIP LRL= 256 / EOF= 5 / SI1ZE= 1 GRANS
SYS5/SYS SIP LRL= 256 / EOF= 5 / SIZE= 3 GRANS
$YS6/SYS SIP LRL= 256 / EOF= 15 / SIZE= 3 GRANS
FORMAT/CMD IP LRL= 256 / EOF= 15 / SIZE= 3 GRANS
BACKUP/CMD IP LRL= 256 / EOF= 15 / SIZE= 3 GRANS
TEST1/CMD LRL= 256 / EOF= 6 / SI1ZE= T GRANS
DESIGNATORS MOST sxz/E’ SIZE IN
ARE "I" FOR STANDARD IN GRANULES
INVISIBLE, "s" FILES SECTORS (SEE DSHL)
FOR SYSTEM, "P" HAVE
FOR PROTECTED 256-BYTE

RECORDS

DIR :d (I)

To get a directory listing of all visible and invisible user
files and system files, do:

DIR :d (I,S)

To get a listing of how much space is used for user files,
do:

DIR :d (A)

The resulting listing is shown in Figure DLMi-1. To
convert “GRANS” to bytes, see DSHL.

How to do it on the TRS-80

DINS

DLDB
DLIB
DLM1

DLM2
Directory Listing, Model II, TRSDOS

Read DIDI if you are not familiar with directory files.

To get a directory listing of all user files, do:
DIR :n

where :n is the disk drive number (:0-:4). The drive
number is optional. If the drive number is omitted, drive
0 is assumed.

To get a directory listing of all user files and system
files, do:

DIR :d4 (SYS)

To get a listing of the directory on the system line
printer, use the PRT option, either with or without the
SYS option:

DIR :1 (SYS,PRT)

The format of the listing is shown in Figure DLM2-1.

The first column of the listing is the file name and
extension. A question mark following the file name
indicates the file is still open or was improperly closed.

The second column is the creation date of the file.

The third column is the date of the last update.

Figure DLM2-1 - Directory Listing, Model II TRSDOS

The fourth column is a 4-character field defining the
file attributes (see ADFC). The first character of this field
is either P (program) or D (data). The second character is
S (system) or * (user). The third character is the password
status (X=unprotected, A=access password but no
update, U=update password but no access, B=update
and access passwords). The fourth character is the access
level (0,1 =kill, 2=rename, 3=unused, 4=write, 5=read,
6=execute, 7=none); see ADFC.

The fifth column is the record type, F for fixed length, and
V for variable length.

The sixth column is the LRL, or logical record length.

The seventh column is the number of logical records in
the file. Multiply the LRL by the # Rec to getthe number
of bytes in the file. A “+ sign here indicates no records
have been written or the file has variable-length records.

The eighth column is the number of extents that are
allocated to the file. An extent is a contiguous block of disk
space.

The ninth column is the number of granules allocated
for the file (see DSHL).

The tenth column is the number of sectors allocated for
the file.

The file name is on the first line of the listing, and the last
line has the number of free granules and extents.

GRANULES ALLOCATED,
SECTORS ALLOCATED,

OF RECORDS SECTORS USED

DATA FILE,
USER, UNPROTECTED IN FILE (SEE DSHL)
DISK NAME:TRSDOS DRIVE:§ 11/29/& " p0.94.01 o
FILE NAME CREATED UPDATED ATRB FILE REC NMBR# NMBR GRAN SECT SECT
MM DD YY MM DD YY TYPE LEN RECS EXTS ALOC ALOC USED
TSTFLE 1115 & 11 15 81 Vo oeee ees 1 14 78 66
ASM/SRC 1 18 1 1& D*xp Vo oee. 1 2 19 9
ASM 1 18 1 18& D¢ F 256 1 1 1 5 1
SORTPGML/SRC 8 30 & 8 3p & D*x§ V o oees 1 3 15 11
SORTPGML 83 & 83p& F 25? 1 1\ 1 5 1
*% 273 FREE GRANULES IN 2 EXTENTS ¥%
2 PROGRAM’ LOGICAL RECORD # OF CONTIGUOUS
SEGMENTS
FILE, USER, LENGTH

UNPROTECTED RECORD TYPE

V = VARIABLE LENGTH
F = FIXED LENGTH

DLM3
Directory Listing, Model III, TRSDOS

Read DIDLI if you are not familiar with directory files.

To get a directory listing of all visible (user) files, do:
DIR :n

where n is the disk drive number (:0-:4). The drive
number is optional. If the drive number is omitted, drive
0 is assumed.

To get a directory listing of all visible and invisible user
files, do:
DIR :d (INV)

How to do it on the TRS-80

To get a directory listing of all visible and invisible user
files and system files, do:

DIR :d (INV,SYS)
To get a listing of the directory on the system line
printer, use the PRT option, and any of the other two

options:

DIR :1 (INV,SYS,PRT)

The resulting listing is shown in Figure DLM3-1.

The first column of the listing is the file name and
extension.

The second column is a 4-character field defining the
file attributes (see ADFC). The first character of this field
is either I (invisible) or N (visible). The second character
is S (system) or U (user). The third character is the
password status (X=unprotected, A=access password
but no update, U=update password but no access,
B=update and access passwords). The fourth character is
the access level (O=total, 1=kill, 2=rename, 3=unused,
4=write, 5=read, 6=execute, 7=none); see ADFC.

The third column is the LRL, or logical record length.

Figure DLM3-1 - Directory Listing, Model III TRSDOS

The fourth column is the number of logical records in
the file. Multiply the LRL by the # Rec to get the number
of bytes in the file.

The fifth column is the number of granules allocated for
the file (see DSHL).

The sixth column is the number of extents allocated
to the file. An extent is a contiguous block of disk space.

The seventh column is the number of the last byte of the
file.

The eighth column is the creation date of the file.

INVISIBLE, SYSTEM FILE CREATION

UPDATE PASSWORD, DATE

ACCESS LEVEL = EXECUTE
Disk Name: TRSDOS Drive: § $8/05/81 l
Filename Attrb LRL #Rec #Grn #Ext EOF Date
BASIC/CMD 1SU6 256 29 7 1 p @5/81
CONVERT/CMD ISU6] 256 19 4 1 p 95/81
XFERSYS/CMD 1SU6 256 4 2 1 $ 95/81
LPC/CMD N*X@ 256 1 1 1 § p5/81
MEMTEST/CMD N*X¢ 256 8 3 1 g P5/81
HERZ5§/BLD N*X¢ 256 2 1 1 49 P5/81
TEST N*X§ 256 46 16 2 171 p4/®&
PENCIL/CMD N*X§ 256 29 7 1 p P4/
PENCILOl/CMD N=X@ 256 15 5 1 p P4/
PENCIL@2/SYS N*X@ 256 5 2 1 9 94/
PENCIL@3/SYS N*X¢ 256 11 4 1 9 pa/x
%%]132 Free Granules¥¥ o Aix X+ OF LAST
REMAINING | STANDARD orZE IN ofor IN FILE BYTE
FREE SPACE FILES HAVE ~CCTORS GRANULES NUMBER OF
(SEE DSHL) 256~BYTE (SEE DSHL) CONTIGUOUS

RECORDS SEGMENTS
DLSC Purpose of digital logic: The purpose of digital logic is

Digital Logic, A Short Course

Confused by microprocessor chips, gates, and
flip-flops? They’re easy — they’re only ones and zeroes
compared to the black magic that goes on in your
television set . . .

Signal levels: Digital circuits are either “on” or “off.” If
they are “ON” they are near + 35 volts; this usually means
from -+ 3 volts to +4.95 volts. If the devices are off, they
are near 0 volts, or ground. This usually means 0 volts to
+0.5 volts.

A logic 1 is usually a high level or +5 volts. A logic 0 is
usually a low level or 0 volts. Sometimes signals are
“active low,” which means they function when they go to
zero volts instead of +5 volts. Many signals are “active
high,” which means they function when they go to +35
volts.

to string together high and low levels and have them
define precise intervals at which things happen. If the
right things happen at the same time and in the proper
sequence, magic is evident, as in a functional digital
computer.

Timing of digital signals: You can look at digital
signals generally as being on and off and going between
these states instantaneously. Even though it does take
some “rise” or “fall” time to swing from high to low or
from low to high, it can be ignored in a properly designed
circuit.

Types of digital circuits:

A. AND gates: AND gates take two or more signals and
produce a 1 output when both inputs are high. Big deal,
you’ve been through that in ANDs in BASIC, right? See
Figure DLSC-1.

How to do it on the TRS-80

DLM2
DLM3

DLSC

Figure DLSC-1A — Simple Logic Devices

AND GATES

Vee C1 Y1 C3

[

L] P) Led L] Led]

A 81 A2 B2 c2 yz2 GRD

OR GATES

Tl s
|5
H
=
z} 8
o Y
HE
=
=] =
s} 8
]38
<
=] &

WP
-

2]
=
w
-
<
™

-8 I
2 I3
=3 I
z =
8~
s 1e
gl
E
FRee

BUFFERS

w—>

B. OR gates: OR gates take two or more signals and
produce a 1 output when either one signal or another is
high. See the figure.

C. Buffers: Buffers do not change the state, but simply
“beef up” or isolate the electrical signal. A 0 is stilla 0, a
1stilla 1.

D. Inverters: Inverters changealtoa0and aOtoa 1.

E. NAND Gates: NAND gates are like AND gates, but
output a 0 if all inputs are high (true).

F. NOR gates: NOR gates are like OR gates, but output
a 0 if an input is high (true).

Okay, time to assimilate what you’ve learned . . .
Suppose we have a combination lock that will activate a
door latch every time the right combination is input. We
can do it a number of different ways with the circuits
shown in Figure DLSC-2. The combination code is
10101111.

So far we’ve talked about gates. These are devices that
cannot remember anything. Let’s discuss some memory
devices:

How to do it on the TRS-80

B3 A3 Y3
M EL MR A
JEST e
) c1

| Y1

Figure DLSC-1B - Simple Logic Devices

EE l l:[‘ l [:[I I Al D& ¥1
) NOTE /

r!>:l r‘D: ,"‘DI:] "INVERTING CIRCLE"

: al el

INVERTERS

A YT A2 y2 A3 Y3 GND 4 1
1 %]
NAND GATES
vee Cf Y1 C3 B3 A Y3 L —|
[0 [[G 5] [F) 81 1
iy [MESN] [i—
) (COMPARE WITH AND)
. Al Bl Ccl Y1
[N NEROREND NG]) 1
A B1 A2 B2 €2 Y2 GND P 2 1 1
2 1 2 1
%] 1 1 1
1 /] /] 1
1 /] 1 1
1 1 "] 1
1 1 1 /]
NOR GATES
Ve YA B4 A4 Y3 B3 A3 Al
IDEEEnEOECEoND)| Bl Y1
) Al Bl Yl
. 8 0 1
] 1
LT CT CT G CT LT I
Y A BT Y2 A2 B2 GND h 7 :

G. Flip-flops: A flip-flop will store a single bit — a 0 or
a 1. There are various types of flip-flops, but generally the
input signal is “clocked” or “strobed in” on the “rising
edge” or “falling edge” of some clock signal, as shown in
Figure DLSC-3. Once the signal is clocked in, it will stay
there until a new signal is clocked in or until a master
CLEAR signal (0 or a 1, depending upon flip-flop) is
clocked in or until a master CLEAR signal (0 or a 1) is
given.

The purpose of a flip-flop is generally to remember
data; a subordinate function is to record a high-speed
pulse from microprocessor circuitry that occurs very
rapidly. The flip-flop can match the high speed of the
microprocessor to a slower-speed device.

H. Registers: What do you get when you assemble a
batch of flip-flops? A register. A register is nothing more
than 4 or 8 flip-flops arranged in one convenient package
to remember 4 or 8 bits. Again, the bits are clocked in on
the rising or falling edge of a clock signal.

L. Counters: Counters are special cases of registers. The
input of each flip-flop in a counter is the output from the
previous flip-flop. A 4-bit counter would count up from
0000, to 0001, to 0010, and so forth, on to 1111, at which
point it would reset to 0000. Counters come in 4, 6,0r 8
bits or more, count up or down, or in “decades” (tens), and

generally have one output for each bit. They’re used to K. Multiplexers: These are essentially gates that pass 1

define precise times by counting system clock pulses, or of 4 or 1 of 8 signals to an output based on the states of 2
for counting any digital events. or 3 “select” lines. See Figure DLSC-4.

J. One-shots: One shots are flip-flops with failing
memory. When activated by a pulse, they stay at a1 (or 0) L. Decoders: Again, these are gates that activate 1 of 4
for a predefined period of time from microseconds to or 8 outputs, based on the state of 2 or 3 select input
milliseconds or longer, at which point they go low again signals. Widely used to decode “enable” signals based on

until activated by another pulse. They’re used for “time- memory or 1/0 address bits. See Figure DLSC-5.
outs” when the time does not have to be as accurately
defined as by a counter.
See LDHT for a description of how to “read” computer

Believe it or not, most of everything else is built upon logic diagrams, now that you know something about the

these basic building blocks. components.
Figure DLSC-2 - Sample Logic Design
1
1
0 DCINV 1] "8-INPUT NAND GATE" DLSC
)
DESIGN 1
#1 o ;{:>‘§NV 1 0 {:>t£
) :)3 DLSC
' T] NAND
! 1
1
1 1
UNUSED

| , AND
- \1
0 ! J DESIGN
] #2
INV -

0])
INV AND 1
1 1 1
. 1
AND .
TO
1 : J” L DOOR
! LATCH
AND
¢ = LOCKED
1 = UNLOCKED
| e mm—]
1 DESIGN
#3
AND

0 2 j

1 ol

NOR 1

4] 1 2 (; \

1 " NAND NOR

] Do e —— 1

AND " }]
1 ____/
AND |
1 NAND

How to do it on the TRS-80

Figure DLSC-3 - Flip-flop

Vec CLR2 D2 CLR2 PRE2 02
1

M F [F GG

e ey R

|
!

) _F e >
Y se— g c— 6
.= I_"_l. |
HNBRERDORHREDRR
CLR1 D1 CLK1 PRE1 G1 [*d GND
CLK CLR
IF PR = @, THEN FLIP-FLOP IS "SET."
IF CLR = @, THEN FLIP-FLOP IS "RESET."
THESE INPUTS ARE USUALLY INFREQUENT,
CLK D | 0 0
FROM 0 TO 1 g 1
FROM 0 TO 1 1 1 g
NO CHANGE - NO CHANGE
1
CLK
£ "STROBE"
T —— 1
D 0 DATA
1
0 FLIP-FLOP OUTPUT
E— o REMEMBERS DATA = 1
Figure DLSC-4 — Multiplexer Figure DLSC-5 — Decoder
DATA INPUTS DATA SELECT DATA OQUTPUTS
Vee DZ D5 D6 D7 ‘A B [Vec'YB Y1 Y2 Y3 Y4 Y5 Y6
)’— -J D
DEEEDEUEOEOEERD nEEREROEEREOEOED
D3 D2 Dl DB Y W STROBE GND L_B_C. G2 626l Y7 6N
DATA INPUTS OUTPUTS SELECT ENABLE OUTPUT
"STROBE" IS NORMALLY LOW (9)
"W" IS INVERSE OF "Y" OUTPUT
"ENABLE" SIGNALS ARE GENERAL
— SIGNALS TO PUT CHIP "ACTIVE"
SELECT OUTPUT
C B A Y SELECT OUTPUT
——— ——cr— A B C
2 []] DB
RN TR
1 D3 GhASe> N SELper Somecrs? B0 2=0 0o
1 2 1 D5 1]] Y4 =9, " "
1 1] D6 1] 1 Y5 =8, " "
1 1 1 D7 1 1 [’} Y6 = @, " "
1 1 1 Y7 =48, " "

How to do it on the TRS-80

DLWS
Disk Light, When Should It Come On?

The red LED (light emitting diode) on the front of
standard Radio Shack disk drives and many other drives
should come on whenever data is being read from the disk
or written to the disk. The disk drive motor on the I, ITI

and Color Computer stays on a few seconds after the read
or write operation, however, when really nothing is being
done as far as transferring data. The II disk drive motor
stays on continuously. Every time the red light on the disk
of any system comes on, you know that data is being read
or written to the disk.

DMT2
Dumping Memory to a Disk File, How to, Model
I1 TRSDOS

The DUMP command in TRSDOS allows you to save a
“memory image,” This means that you can define a block
of memory anywhere in the user area of memory and
simply copy it to disk under a specified file name. Later,
you can LOAD (see LMLD) the file from disk.

The block of memory can be either a machine-language
program or data.

Use the DUMP command as follows:
DUMP name START=ssss,END=eceee

or

DUMP name START=ssss,END=eeee,TRA=tttt

The “name” parameter is a legitimate file name (see
FNMH). The “ssss,” “eeee” and “tttt” parameters are the
start, end and transfer locations in memory in
hexadecimal. Leading zeroes should not be used for hex
addresses.

There is no default file extension. If you want to execute
the dumped area as a machine language program, use
/CMD.

The START address must be greater than 6 FFFH.

The TRAnsfer address is optional. Use it if you want to
execute the dumped file as a /CMD program. If you
haven’t specified a transfer address, TRSDOS will use the
start address.

See CFFT for file format of the dumped file.

To DUMP from one area and LOAD at another: use
this form:

DUMP name START=ssss,END=eeee,TRA=tttt,RELO=rrrr
Example:

DUMP name START=8@@@,END=8FFF,TRA=A@P,RELO=AQPH

This example will dump the area from 8COOH through
8FFFH. A subsequent LOAD, though, will load the file
into the area starting at AQOOH. The transfer address
will be AOCOH.

The RELO option is useful for relocating some
programs.

An optional parameter, RORT, can be used to
designate that the DUMP file cannot be directly executed
from TRSDOS. Use this form:

DUMP name
START=809@ , END=8FFF , TRA=AGO@ ,RELO=ABHP ,RORT=R

DMT3

Dumping Memory to a Disk File, How to, Model
III TRSDOS

The DUMP command in TRSDOS allows you tosave a
“memory image.” This means that you can define a block
of memory anywhere in the user area of memory and
simply copy it to disk under a specified file name. Later,
you can LOAD (see LMLD) the file from disk.

The block of memory can be either a machine language
program or data.

Use the DUMP command as follows:
DUMP name (START=gsss,END=eeee)
or

DUMP name (START=ssss,END=eecee,TRA=tttt)

The “name” parameter is a legitimate file name (see
FNMH). The “ssss,” “eeee” and “tttt” parameters are the
start, end and transfer locations in memory in
hexadecimal. Leading zeroes are required for hex
addresses over 9FFFH.

The default file extension is “/CMD”. If you want to
execute the dumped area as a machine language program,
you won’t need to RENAME (RADF).

The START address must be greater than 6 FFFH.

The TRAnsfer address is optional. Use it if you want to
execute the dumped file as a /CMD program (see LMLD).
If you haven’t specified a transfer address, TRSDOS will
use a default that goes back to the system.

How to do it on the TRS-80

DLSC

DLWS
DMT2
DMT3

See CFFT for file format of the dumped file.

To DUMP from one area and LOAD at another: use
this form:
DUMP name (START=ssss,END=eeee,TRA=tttt,RELO=rrrr)
EXAMPLE:
DUMP name (START=8@#@,END=8FFF , TRA=AGHP ,RELO=0AGHH)

This example will dump the area from 8000H through
8FFFH. A subsequent LOAD, though, will load the file
into the area starting at 0AOOOH. The transfer address
will be 0AOQOH.

The RELO option is useful for relocating
machine language programs.

DMTL
Dumping Memory to a Disk File, How to, Model

III 1.DOS

The DUMP command in LDOS allows you to save a
“memory image.” This means that you can define a block
of memory anywhere in the user area of memory and
simply copy it to disk under a specified file name. Later,
you can LLOAD (see LMLD) the file from disk. You can
also create a pure ASCII file.

The block of memory can be either a machine language
program or data.

Simple DUMPs: the simplest form of the DUMP
command is:

DUMP name (START=X"ssss”,END=X"eeee”)

or

DUMP name (START=X"ssss”,END=X"eecee”,TRA=X"tttt")

The “name” parameter is a legitimate file name (see
FNMH). The “ssss,” “eeee” and “tttt” parameters are the
start, end and transfer locations in memory in
hexadecimal. Leading zeroes aren’t required.

The default file extension is “/CIM”. You might want to
use “/CMD?” if you want to execute the dumped area as a
machine language program.

The START address must be greater than 5500H.

The TRAnsfer address is optional. Use it if you want to
execute the dumped file as a /CMD program (see LMLD).
If not specified, LDOS will put in a default address back
to the system.

See CFFT for file format of the dumped file.

Dumps in ASCII: use the ASCII option to dump an area
of memory that contains ASCII data to create an ASCII
file (see ADFW). This file will not contain any load
information. The last character will be an “end of text”
(ETX) character of X’03’, unless you specify another
character with the ETX option. Remember that the
“end-of-file” is recorded in the directory, and that you
don’t strictly need the end-of-text; some programs, such
as SCRIPSIT, however, look for a specific end-of-text
marker.

To DUMP in ASCIL

DUMP name (START=X'ssss’,END=X’eeee’,TRA=X’tttt’,ASCII)

or

DUMP name (START=X"ssss”,END=X’eceee;TRA=X"tttt”;
ASCII,EXT=X"FF")

The defauit extension is /TXT for ASCIT dumps.

Other notes: Use S, E, T, A for abbreviations. Use the
format S=ddddd for decimal addresses.

DMTT
Dumping Memory to a Disk File, How to, Model I
TRSDOS

The DUMP command in TRSDOS allows you to save a
“memory image.” This means that you can define a block
of memory anywhere in the user area of memory and
simply copy it to disk under a specified file name. Later,
you can LOAD (see LMLD) the file from disk.

"The block of memory can be either a machine language
program or data.

Use the DUMP command as follows:

DUMP name (START=X"ssss”,END=X‘ceee”)
or
DUMP name (START=X"ssss”,END=X"eeee”,TRA=X"tttt”)

How to do it on the TRS-80

The “name” parameter is a legitimate file name (see
FNMH). The “ssss,” “eeee” and “tttt” parameters are the
start, end and transfer locations in memory in
hexadecimal. Leading zeroes aren’t required.

The default file extension is “/CIM”. You might want to
use “/CMD?” if you want to execute the dumped area as a
machine language program.

The START address must be greater than 6FFFH.

The TRAnsfer address is optional. Use it if you want to
execute the dumped file as a /CMD program (see LMLD).
If you haven’t specified a transfer address, TRSDOS will
use a default that goes back to the system.

See CFFT for file format of the dumped file.

DPHU
Double-Precision Variables in BASIC, How to
Use

(Does not apply to Model I/III, Level I or Color
Computer).

Double-precision variables may be used to extend the
accuracy of results. They use a similar floating-point
representation as single-precision variables (SPHU), but
extend the number of decimal digits to 17.
Double-precision variables take up 8 bytes of storage and
should be used only when great accuracy is required as
storage and processing time is greater than other types of
variables.

Specify a double-precision variable by the suffix “# .
In the following code, A # and XX 4 are double-precision
variables:

100 A#=1234 .44444456
11¢ xx#=234/.09888

A range of double-precision variables may also be
specified by the DEFDBL command. DEFDBL A-G, for
example, specifies all variables starting with an A through
G as double-precision; AS, FD and GG would be
double-precision in this case.

Using a suffix of “D” also denotes a double-precision
number, in this case with scientific notation (see AOIB).
The number must have been previously defined as a
double-precision number by a # suffix or DEFDBL.

100 A#=123456,.789D+5 “double precision

DSBC
Drawing Shapes in BASIC, Color Computer

See GHS1 for information on high-speed graphics
using POKEs and strings. The same techniques can be
used on the Color Computer in Color or Extended Color
BASIC. See also GMIC.

LINE: LINE is somewhat of a misnomer — it should be
called, in a rush of breath, “LINEBOXFILLEDINBOX.”
(Microsoft originally wanted to use this as the command,
but cooler heads prevailed).

LINE will draw a line between any two points, as in

196 LINE (X1,Y1)-(X2,¥2),PSET

which draws the line in the foreground color.

The average line is drawn in about 96 milliseconds, and
the worst case is about 192 milliseconds, about 20 times
faster than the fastest BASIC line drawing routine.

LINE will also draw a box (rectangle) outline. In this
case the two coordinates specify the opposing corners of
the box.

199 (5¢,50)-(6¢,60) ,PSET,B “B specifies box

A third use is in drawing a “filled-in” box. The box is
drawn at speeds comparable to drawing four lines. The
filled in box (foreground color is used) is, of course, a lot
slower (the time may go over one second for large boxes),
but still excellent for such a powerful command:

109 (50,5¢)-(60,68) ,pset,BF “BF is filled-in box

CIRCLE: Again, CIRCLE was originally named
CIRCLEELLIPSEARC, as it draws circles, ellipses, and
arcs of circles or ellipses, as shown in Figure DSBC-1.

When CIRCLE is used for any of the three types of
figures, the center must be within screen boundaries; this

prevents all arcs from being drawn; an arc close to the
edge of the screen, for example, is not possible, as the
center of the circle or ellipse on which it lies is outside of
screen boundaries, as shown in Figure DSBC-2.

Figure DSBC-1 - CIRCLE Action

ELLIPSE OF
VARYING HEIGHT/
WIDTH RATIO

ARCS OF VARYING

CURVATURE,
INCLUDING PORTIONS
OF ELLIPSES

CIRCLE
OF VARYING
DIAMETERS

169 CIRCLE (50,50),10

draws a circle of radius 10 at 50,50, while

11¢ CIRCLE (56,50),10,c

specifies a color ¢ (see GMIC), while

12¢ CIRCLE (5¢,50),10,c,hw

How to do it on the TRS-80

draws an ellipse, with hw defining the height/width ratio
(0 through large values), while

13 CIRCLE (50,5¢),10,c,hw,st,en

draws a circle or ellipse from a start (st) to end (en) value.
Start and end must be 0 through 1 and define the starting
and ending points on an arc; three o’clock is 0 and going
clockwise back to three o’clock is 1.

Figure DSBC-2 —~ Arc Which Cannot be Drawn

CENTER OF

ASSOCIATED
CIRCLE OUT
OF SCREEN
BOUNDARIES

DESIRED
ARC

DRAW draws a series of line segments in multiplies of 45
degrees, as shown in Figure DSBC-3. The line segments
may be of any length. In addition to drawing line
segments, DRAW will position the cursor to a specific
spot on the screen, change the color of the line segment,
rotate a figure in 90 degree increments, execute a
substring, and change the scale of the lines to be drawn.

Figure DSBC-3 — DRAW Line Segment Action

ster=(1)

90° @

(MOVE
WITHOUT
DRAW)

How to do it on the TRS-80

Suppose that we want to draw the letter “M.” We can
easily draw it by the code in Figure DSBC-4. In the code,
the color is changed for different line segments with the C
subcommand.

Figure DSBC-4 - Use of the DRAW Command

A$ = DRAW"BM128,96;

YELLOW == C2;E15;R10;
GREEN e C1;D30;L12;
YELLOW w=g C2;U18;G13;
BLUE == C3;H13;D18;
RED ==#» C4;L12;U30;

YELLOW == C2;R10;F15"

R10 R10
F15
u3p 2 & D30
D18 u18
112 112

To rotate the M through 90 degrees, we’d simply add an
“A” (angle) subcommand as part of the string before the
DRAW string, as shown in Figure DSBC-5.

To change the size of the “M,” we’d add an “S” (scale)
subcommand before the DRAW string, as shown in
Figure DSBC-6. The scale factor can be changed from 1/4
to 62/4 of the original size of the figure. You can see how
this could be a great advantage in generating all types of
figures that change size.

Probably the most powerful feature of DRAW is the
ability to execute “substrings.” We could define figure 1
as string A$, figure 2 as string B$, and figure 3 as string C$.
A fourth string could then ‘“‘execute” (by the X
subcommand) the other strings to build up composite
figures, as shown in Figure DSBC-7.

DRAW can be used for many applications. One that Figure DSBC-6 — Scaling of Figure with the DRAW command
comes immediately to mind is defining different
character sets for the Color Computer. There are 256
pixels across the screen and 192 down, and you can see
how characters representing Greek, Kata-Kana or others
could be defined by working with matrices of 8 by 12 pixels
(32 characters by 16 lines) or larger matrices.

100 A$=“BM128,96;. .. ."
110 DRAW “84"+A$

120 DRAW “S16"+A$

130 DRAW “848"+A$

Figure DSBC-5 — Rotation of Figures Using DRAW

100 A$="BM12896;. ... > 4UNITS —-——g.l !4___
110 DRAW “A0"+A$
120 DRAW “A1"+A$
130 DRAW “A2"+A$
140 DRAW “A3"+ A8

“A0" M 0 DEGREE ROTATION
DSBC

=~ 16UNITS

“S4"=4/4 SIZE

i W DSBC
‘A1 90 DEGREE ROTATION %
“S$16”=16/4 SIZE
“A2" W 180 DEGREE ROTATION
|<——‘=48 UNITS —-—-»I
“A3" 270 DEGREE ROTATION

Figure DSBC-7 - Substring Use in DRAW “848"=48/4 SIZE

C$=DRAW STRING FOR B8$=DRAW STRING FOR
CLOUD FIGURES, SMALLER
PLUS SCALING WINDOWS

D$=DRAW STRING FOR
BIRD FIGURES
PLUS SCALING

=)
=:1=:]

ELLIPTICAL
ARCS

< 0O Z > -

STRAIGHT
LINE
ELEMENTS

AS=DRAW STRING FOR
WINDOWS

How to do it on the TRS-80

DSDS
Date, Setting, Model I/II/III TRSDOS/LDOS

To reset the date on the Models I and III (it is
mandatory on TRSDOS/LDOS load), enter the current
date in this format:

DATE MM/DD/YY

where MM, DD, and YY are the month, day, and year,
each in two digits (use a leading 0 if necessary, as in
01/02/82).

Model I users: enter

DATE MM/DD/YYYY

where YYYY is the 4-digit year.

Depending upon the system, the date will be updated at
midnight, assuming the TIME has been properly set (see
TSRT). However, none of the Radio Shack systems
should be used as accurate clocks (see RTCN), even
though the software designers did include
“real-time-calenders.” DATE is used primarily to update
directory file entries, and although it’s a nuisance to enter
each time you power up the system, it is valuable to have
dated directory entries.

Enter DATE without any arguments to find out the
current date (see DFOT).

DSHL
Disk Space, How Much Left? TRSDOS, All
Systems

On the Model I, enter Free. TRSDOS will reply with
something like

30 GRANS
4@ GRANS

11/11/&
12/12/8

23 FILES,
17 FILES,

DRIVE @ ~~ TRSDOS
DRIVE 1 —— TRSDOS

See below for GRAN conversion.
On the Model II or III, enter FREE, followed by colon,

followed by drive number (example: FREE :2) or simply
FREE for drive 0 after the TRSDOS READY prompt, or

Figure DSHL-1 - Disk Space Map

1 GRANULE (3 SECTORS
ON MODEL III)

FREE :n(PRT)for listing on system line printer (use
FREE :n PRT in Model II).

TRSDOS will display or print a “map” of the disk
space, as shown in Figure DSHL-1. In this map, a period
represents an unused “granule”, a X is an allocated
granule, “Direct” is the location of the diskette directory,
and “Flawed” marks a flawed, or unusable sector.

TOP LINE =
30 GRANULES =

3¢*3 SECTORS = 9¢ SECTORS
IN 5.TRACKS(MODEL III)

Free Space Map

Trk # Drive: §
Po-04: ¢ XXXXXX : XXXXXX : XXXXXX : XXXXXX
95-99: XXXXXX : XXXXXX : XXXXXX : XXXXXX : XXXXXX
19-14: XXXXXX : XXeeeo © covess i cecoss : eseeces
15-19: XXXXXX : XXXXXX : [Direct]: XXXXXX : XXXXXX
2¢—24: XXX-XXX : XXXX.Q : ®e G000 : LR Y : L W)
25_29: e 6000 : o000 : L N N W} : o0 0000 : L I)
3%34: eaoc0Cce0e : ®0 0000 : oo ece : L] : LA NN N
35-39: e 00 : LU NN N : L I YN) o0 0000 : @000 e
TRSDOS Ready

Color Computer: Enter

PRINT FREE(n)

How to do it on the TRS-80

DIRECTORY LOCATION

where n is the drive number. The number of free granules
for the diskette in the drive will be printed.

Granules: A granule is simply an arbitrary number of
sectors used in allocating disk files. The smallest
workable division on a disk is a sector, due to the way data
is stored on a disk. It’s reasonable, then, to allocate space
on a sector basis, or a sector “multiple” basis, and that’s
what’s done in dividing a disk into granules, or sector

Sec— Sec— Max Max
Tracks/ tors/ Bytes/ tors/ Bytes/ Disk Disk
System Diskette Trk Sector* Gran Gran Bytes Grans
1 35 19 256 5 1280 89,60¢ 79
11 77 26 256 5 128¢ 5¢9,184% 395
111 49 18 256 3 768 184,328 240
cc 35 18 256 3 768 161,28¢ 219

*Track § has 128 bytes/sector

multiples. One granule on the Model Lis 5 sectors, on the
Model 11 is 5 sectors, on the Model 111 is 3 sectors, and on
the Color Computer is 3 sectors. A sector is 256 bytes. To
find the number of free bytes, multiply the number of free
granules by the number of sectors per granule, and that
result by the number of bytes per sector.

DSPR

Dumping the Screen to the Printer in BASIC,
Model I/1TX

Model III only:

Method 1: at any time in BASIC (except when using
cassette, printer or serial input/output), press SHIFT,
down arrow and asterisk at the same time. This prints the
screen contents onto the system line printer.

Method 2: during BASIC program execution, call
location 473 in ROM by a USR call (see CML1 or CMD1);
no arguments are necessary. Sample for Model III,
non-disk BASIC:

199 POKE 16526,217
11¢ POKE 16527,1
126 A=USR(H)

139 ...

“1ls byte of address
‘ms byte of address
‘print screen contents
“back here

Sample for TRSDOS Disk BASIC:

109 DEFUSR@=473
11¢ A=USRE(H)
120 ...

“define address
“print screen contents
“back here

The format output to the line printer will be
64-character lines, 16 lines total, to reproduce the entire
screen. Non-displaying or graphics characters will be
printed as periods.

Method 3 (Disk BASIC but not LDOS LBASIC):
execute

CMD"Zn R lIoNu

This will duplicate output to the screen on the line
printer. The current screen will not be printed, but all
screen lines after the CMD“Z” will also be sent to the
printer. (See “DUAL” in PTSC.) Turn off the screen
routing by
le)llzll R "OFF"

Model /III LDOS:

Execute CMD“*” while in LBASIC. This operates
similarly to method 1, above.

See also “LINK” under PT'SC.

DSRC

DATA Statements and Related Commands,
BASIC, All Systems

DATA statements are used to establish tables of data,
either numeric or string. The lines

169 DATA 19¢,4.5,APPLE
11¢ DATA 2$9,9.3,PEAR

establish a table of six data items, arranged in the
sequence that they appear in the DATA statements.

Numeric data and string data can be intermixed at,will.
String data can be enclosed by double quotes as in other
strings (see SHTU), or can be without the double quotes
as shown in the examples. If the strings have leading
blanks or embedded commas or colons, then the double
quotes are mandatory.

You can access the data in the DATA statements by a
READ command. The READ command “reads” the data
one item at a time in the order in which it appears in the
DATA statements.

5¢9 READ A,B,A$,C,D,BS

for example, reads the data items above into numeric
variables A, B, string variable A$, numeric variables C, D
and string variable B$. You must READ the data in the
same order and with the same data “type” (numeric or
string) as the data is ordered in the DATA statements.

Look on all DATA statements as forming one huge
table. DATA statements don’t have to be “contiguous,”
that is, you can have two DATA statements, followed by
other BASIC lines, followed by two more DATA
statements, and so forth. You also don’t have to place the

How to do it on the TRS-80

DSDS
DSHL

DSPR
DSRC

DATA statements in any special area of the program or
“jump” around them; you can place them right in the
middle of BASIC code.

When you start reading the data from DATA
statements, subsequent READs will read the next entry
from the DATA “table” until the last entry is read.
Naturally, you have to have the same number of READs
as there are data values, otherwise you’ll get an “Qut of
Data” error (see ODER).

To reset the imaginary “pointer” to the next item in the
DATA table, execute a RESTORE command. The
RESTORE “resets” the DATA table pointer to the
beginning of the DATA list:

169 DATA 2,3,7,67,8.9
114 READ A,B,C

129 RESTORE

13§ READ D

‘reads 2, 3, 7
“reset
“reads 2

DT1U
DEBUG, TRSDOS/LDOS, Model I/II1, Using

DEBUG is a “monitor” program to:

Allow you to exainine the contents of all memory
Examine and change the contents of Disk Files
Help you debug machine language programs

DEBUG is loaded from TRSDOS

TRSDOS READY
DEBUG

On the Model III, this loads and executes DEBUG; on
the Model I, press BREAK after the DEBUG entry to
execute.

Model I and IIT DEBUG are almost identical, but there
are slight differences. I'll point them out as we go along.

1. To examine memory:
A. Load and execute DEBUG.

B. You'll see a display of memory and Z-80
cpu registers as shown in Figure DT1U-1
(Model I) or DT'1U-2 (Model III).

C. On TRSDOS Model I and LDOS
DEBUG, enter DXXXX, where XXXX is
the hexadecimal starting address of the
memory you want displayed (see MMM1
for memory map and CFDH for
hexadecimal).

On the Model III TRSDOS DEBUG, enter
D; DEBUG will respond with “D
ADDRESS="; enter the hexadecimal
address of the memory area you want
displayed, XXXX.

D. DEBUG will now display the memory
area in the same format as in Figure
DT1U-1 or DT1U-2.

2. To get a full screen display: The display above is
“half-screen.” Memory and cpu registers are displayed.
To get a full-screen display of memory only:

A. Type S.

How to do it on the TRS-80

3. To get back to half-screen display:
A. Type X to display registers and memory.

4. To“scroll” forward and back to display previous
or following memory locations:

A. Press semicolon (;) to “scroll” ahead to
the next half-screen or full screen worth of
memory data.

B. Press minus (-) to “scroll” back to the
last half-screen or full screen worth of
memory data.

C. You can continue pressing the semicolon
or minus key to get a continuous display of
memory until you find the area you are
looking for.

5. To change the contents of a memory location:

A. Before changing the contents, make
certain you know what you are changing!
It’s much easier to clobber the system with
DEBUG than with BASIC!

B. On TRSDOS Model I and LDOS
DEBUG, type MXXXX (space bar), where
XXXX is the hexadecimal value of the
location to modify.

On TRSDOS Model ITII DEBUG, type M,
and reply to the “M ADDRESS” with the
value of the location to modify, XXXX.

Note that DEBUG expects 4 hexadecimal
digits (see CFDH) and will not do anything
until those 4 digits are typed.

C. DEBUG responds with the contents of
the memory location, as indicated in Figure
DT1U-3 or DT1U-4. Note also that if the
location is being displayed in the memory
area (it may or may not be, depending upon
whether you are displaying the memory
area which you’re about to modify), vertical
bars surround the location of the data.

D. Up to this point, nothing has been
changed. To go to the next location without
changing anything, type SPACE BAR. To

change the current data, type in 1 to 4
hexadecimal digits for the change and type
SPACE BAR. To get back to the DEBUG
command mode (and stop the Modify),
press ENTER.

E. You can change consecutive data rapidly
by typing in new data, interspersed with
blanks for “no change.”

Figure DT1U-1 — Model I DEBUG Display

REGISTER FLAGS
CONTENTS (MNEMONIC)
af = p@ P4 ————-P—-1
bc = ¢§1 CD => 3 3E 1F C3 3A @¥3 ED 5F 32 AB 40 C9 21 ¢@ 3C 7E
de = 3D F3 => 20 20 20 20 20 20 206 20 20 20 20 20 29 4C 44 4F
hl = 3E 33 => 20 20 20 20 20 20 20 29 20 20 20 29 29 4C 49 4E
af’= @@ 54 -Z~H-P--1 ’
be’= @9 5¢ => 11 E5 41 18 BE 11 ED 41 18 Cl 11 F5 41 18 BC @9
de”= 47 99 => C3 85 45 4P 41 19 27 11 45 14 C3 85 45 44 42 1E
hl“= 41 52 => C3 A5 5B 5F 45 SF 45 SF 45 SF 45 S5F 45 5F 45 91 DT1U
ix = 49 1D => @7 C2 FE 18 3E 20 B 09 06 ES5 41 43 91 P@ FF 52
iy = 7C 2F => ¢ 1E @9 20 00 09 90 8F @5 99 3C 50 09 09 @9 1D
sp = 41 C5 => @D 2 CP 3F 8E 4 B9 4D C9 FE @D §2 42 02 94 96 DT1U
pc = $5.A9 => ED B§ Cl1 EB 18 17 CD B2 @4 E5 CD P4 @5 7C FE 4§
CBIA => 20 20 20 39 2E 20 54 68 65 20 4D 6F 64 65 6C 2§
CB2A => 49 49 4929 70 72 6F 76 69 64 65 73 20 6D 6F 72
CB3A => 65 2@ 73 79 73 74 65 6D 2§ 69 6E 74 65 72 72 75
CB4A =?‘ 76 74 73 20 74 68 61 6E 20 74 68 65 20 4D 6F 6F
THIS ARROW MEANS "POINTS TO " - CURRENT
THE DATA TO THE RIGHT IS THE MEMORY
DATA FOUND AT THE MEMORY "DISPLAY"
LOCATION POINTED TO AREA

Figure DT1U-2 - Model III DEBUG Display
CURRENT
DISPLAY AREA

|

3A9F 42CD 4260 @FD8 oo e*)|e:eBeB.e
2760 2660 CD46 6PB7 ecoeee os” & F .

8919
8¢29

CD@C 69DP 2429 7CE9
AFC9 ¢@CD pc6d DSC3

8039
8040
8950
8¢60
8079
8080

D9C9 C9D5 E5CD 2BPP
28¢6 2323 1D2¢ F821
9F42 E6F8 3/9F 42F1
12B9 ¢@Bl 13B3 9439
1613 9E91 8E84 9D9%4
1C99 1FPD 1EQL P@oP

2811 1E17 214D 690BE
237E B7El D1C9 F53A
C9B5 11B6 17B7 $5B8
9P6B4 1AB2 18BA @3AD
8D82 9B92 1B88 9ClA

......+.(...!M\.
(.4##. .!#~.....:
B.IZ .B.‘.....'.

" 0000006 OEOSISOESTTE

Po08 9900 DOPP POBD oeceeessccccccns

PC

AF

C3 96 42 3E Al EF C3 B§ 44 00 09 00 09 09 90 01

BC DE HL AF’

BC” DEY HL® IX

IY 8P

PC

@P44 5100 440D 422 A BDFF 9524 FFFF @1A@ 5DDA 52DD 4@9F 492D

pN—

p—

e

Z-8@% REGISTER
CONTENTS

INSTRUCTIONS
AT "PC" ADDRESS

How to do it on the TRS-80

6. To change the contents of a CPU register:

A. This is normally done prior to
transferring control to a machine language
program, otherwise it has no effect.

B. TRSDOS Model I and LDOS DEBUG:
Type RYYbXXXX SPACE BAR, where

YY is a register pair “mnemonic” (see
below), b is a blank (space bar), and XXXX
is 1- to 4-digit hexadecimal value (see CFDH).

TRSDOS Model III DEBUG: Type
RYY,XXXX (space bar), where YY is a
register pair “mnemonic” (see below) and
XXXX is a 4-digit hexadecimal value.

“reverse notation” as is normally done in
POKE:s to two locations representing 16
bits of data. If the register specified is BC
and the value entered is 1A3F, 1AH will
be put into the B register, and 3FH will be
put into the C register.

D. Repeat these steps to change other
register pairs, as required.

7. To transfer control to a machine language
program:

A. Change the register contents as required
by step 6 above. Most machine-language
code requires the CPU registers to be set up

to certain values.
Register Pair Mnemonics:
B. In TRSDOS Model T and LDOS

AF DEBUG: Type GXXXX ENTER to

BC transfer control to location XXXX. This

DE will cause a Jump to location XXXX,

HL without “breakpoints” (see BPFM). If you

IX want breakpoints, type in as many

Iy breakpoints as you require (except 2 for LDOS),
Sp with a comma between the transfer address and
PC each breakpoint:

C. You should see the register pair contents
change if you are in the half-screen mode.
By the way, the XXXX value is not in

G8¢PP,8010,802¢9 ENTER

Figure DT1U-8 ~ Model I ‘M’ Action

af = 0@ 94 ————v P--1

bc = @1 CD => @3 3E 1F C3 3A @3 ED 5F 32 AB 4@ C9 21 99 3C 7JE
de = 3D F3 => 20 20 20 20 20 20 20 20 20 20 20 20 20 4C 44 4F
hl = 3E 33 => 202020 20 20 20 20 29 20 20 20 20 20 4C 49 4E
af’= ¢p 54 -7Z-H-P--1

bc”= @p 5¢ => 11 E5 41 18 BE 11 ED 41 18 Cl 11 F5 41 18 BC p¢
de”= 47 PP => C3 85 45 4@ 41 19 27 11 45 14 C3 85 45 44 42 1E
hl®= 41 52 => C3 A5 5B 5F 45 5F 45 5F 45 5F 45 5F 45 SF 45 91
ix = 40 1D => @7 G FE 18 3E 20 B @0 06 E5 41 43 Pl P9 FF 52
iy = 7C 2F => (¢ 1E 00 20 00 00 09 SF 95 09 3C 50 09 P9 ¢¢ 1D
sp =41 C5 => ¢D §2 CP 3F 8E @4 B9 4D C9 FE @D §2 42 @2 9% @6
pc = @5 A9 => ED Bp Cl EB 18 17 CD B2 @4 E5 CD P4 $5 7C FE 40

CBLA => 20 28 20 39 2E 2¢|54|68 65 29 4D 6F 64 65 6C 20
CB2§=| CB2A -> 49 49 49 2 79 72 6F476 69 64 65 73 2 6D 6F 72
54~ |CB3A => 6520 73 79 73 74 65]6D 2 69 6E 74 65 72 72 75
CB4A => 70 74 73 2§ 74 68 61|6E 2§ 74 68 65 20 4D 6F 6F

THIS IS THE MEMORY
LOCATION AND CONTENTS

IF MEMORY LOCATION IS IN
THE DISPLAY AREA IT IS
"HIGHLIGHTED"

How to do it on the TRS-80

Figure DT1U-4 — Model III ‘M’ Action

8¢10: cD@cC
8029: AFCY
8030: DICY
8040 : 28@6
8059 : 9F42
8¢6p: 12B9
807¢9: 1613
808P: 1CH9
809¢: PPFE
80AQ: DP6P
8¢BpH: CD97
8¢Cp: D5CD
8¢DP: 21D9
80E@: 4PEE
8¢Fp: 750C
8199: 18F7

60DP 2A29 7CE9

99CcD
C9D5
2323
E6F8
g9B1
9E91
1FPD
2 ACA
2 8EF
76CD
2809
6035
49C8
TA07
FD71

$Cc69 D8C3
E5CD 2 B@9
D29 FR1
3/9F 42F1
13B3 9439
8E84 9D9%%4
1EQ1 P009
7188 FE23
13D5XAEBB7
FE53 |20EC
D1FE |7FCA
CD85 |7421
3EQ1 |B7C9
9797 |57¢E
PD3A |8038

3A9F 42CD
2760 2669
2811 1E17
237E B7El
C9B5 11B6
P6B4 1AB2
8D& 9B
po09 P00
281 FR24
CD4C 6C7D
13B7 €9CD
7175 B7C4
D969 34C9
CD86 61C1
$179 A329

477A ¢1¢¢ FEG“ C64¢ '.Qq.:OBGZOOQ@O@

4260 QFDS
CD46 6PB7
214D 6@BE
D1C9 F53A
17B7 9588
18BA @3AD
1B88 9ClA
000 0009
€276 75CD
CD@2 52Dl
DP6PH 28D3
$252 18F@
FD7E 34E6
PAA3 C8FD
9514 CB@1

CURSOR POSITIONED
OVER BYTE TO BE
CHANGED. MOVE BY

-

4 ¥ KEYs

for example, will cause a jump to RAM

ee o¥)|oieBoB .,
...'.\."‘&‘.F\O
......+‘(...!M‘.
(e 1# ceness
B..z .B...'.".‘

..e.qu.#(!.s.vu.
.~(cooauaLl}o.Ro
‘.v..s‘(‘
..+.....qu...R..
1o35.etletdec™4,
@'@.>.....a.....
u.z...w..y. eeos

DT1U

DT1U

location 8000H with breakpoints at
locations 8010H and 8020H.

In TRSDOS Model IIT DEBUG: Type J.
Answer the DEBUG response J
ADDRESS?= with the same format as in
the Model I case, specifying breakpoints or
no breakpoint, for example:

J ADDRESS? = 8()@¢,80¢1¢,8#2¢ ENTER.

In the TRSDOS Model III case, you may
leave off the transfer address; in this case the
jump will be made to the current address in
the PC register. This is nice because it allows
rapidly tooling through a program from one

9. Tooling Through a Program (even more):
Executing an entire CALL, RETURN:

A. Make certain the PC counter holds the
proper location for the single step. If it
does not, change it by altering PC in step 6
above.

B. Enter C. DEBUG will execute a single
step if the PC points to other than a CALL
or RETURN instruction. If the PC points
to a CALL, the CALL will be made, the
subroutine executed (whatever it is), and a
breakpoint will be made on the RETURN
(wherever it is). Use this when you’re
certain the subroutine CALLed will not
bomb.

breakpointed location to another. (Sorry
about the slang; it’s from my Beach Boys

3) 10. Looking at execution of a foreground task.
ays...

What in Sam Hill is a foreground task? A foreground task
is a time-critical function or program that interrupts a
“background” or low-priority task periodically or when
required. The classic foreground task in the Model I/II is
the real-time clock.

8. Tooling Through a Program (continued).
Single Stepping:

A. Another way to go through a
machine language program under control of

lang) 4) A. Display the memory area associated with
DEBUG is with the Single Step instruction.

the foreground task, say the real-time-clock

. data buffer in locations 4040H through
B. Make certain the PC counter holds the

) { S 4046H.
proper location for the single step. If it does
not, change it by altering PC in step 6 B. Press U.
above.
C. You'll see a continuous Update of the
C. Enter L.

memory area. (You’ll see the RTC values

.))) incrementing up.)
D. DEBUG will execute a single instruction

and effectively breakpoint. However, you
cannot do this in ROM.

How to do it on the TRS-80

11. TRSDOS Model III only: To Patch a TRSDOS B. DEBUG responds with FILESPEC?
Disk File. This function allows you to examine and

change the contents of a disk file, to “patch” a file directly C. Enter the name of the file to be patched.
on disk. One word of warning: It is very easy to patch a
disk file incorrectly, so proceed with caution. D. DEBUG will now load in the first 256
bytes of the file, as shown in Figure
A. Load DEBUG and press F. DT1U-5.

Figure DT1U-5 - DEBUG Patch Action

DISPLACEMENT CURSOR SIMILAR TO

FROM THE FILE MEMORY MODIFY MODE
START IN HEX

e er——

@0p100: CcDPC 60DP 2A29 7CE9 3A9F 42CD 4260 @FDS ..@.*)|.:.B.B@..
@PP110: AFC9 PPCD PC6Q D8C3 2760 2668 CD46 6PB7@..” @&E.FQ@.
$9012¢: DICY CID5 E5SCH 2B@EP 2811 1EL7 214D 6PBE ceeeooto(oee M@,
@P0130: 2806 2323 1D2@\ F& 1 237E B7ELl D1C9 F53A (##. o1 eeveos
PP014@: 9F42 E6F8 3/9F\42F1 C9B5 11B6 17B7 $5B8 Bue? cBeveseoeos
@0015¢: 12B9 @PB1 13B3 |P430 P6B4 1AB2 18BA P3AD coeeeccecccecnceoe
0PP16Q: 1613 9E91 8E84YID94 8D82 9BI2 1B88 9ClA ceveevecescocces
@pP17¢: 1cP9 1FPD 1EGL EHOO 0000 0000 PPPD PPPP «.ceeeeeeecocann
000180 : PPFE 2ACA 7175 FE23 281 FE24 C276 75CDqu.#(!.$.vu.
#99190: DP6O 28EF 13D5 EBB7 CD4C 6C7D CDP2 52D1 . (eeceooLl}..R.
@@P1AG: CD97 76CD FE53 2PEC 13B7 CICD DP6G 28D3 .oVeoS eovess@(.
@@@1B@: D5CD 2BPP DIFE 7FCA 7175 B7C4 $252 18FP .ete.eo.que..Re.
@Pp1CH: 21D9 6635 CD85 7421 D96@ 34C9 FD7E 34E6 !. 5..t!. h.. 4.
@@P1DP: 4PEE 4¢C8 3EGL B7CY9 CD86 61C1 PAA3 C8FD @e@.>cceeeBeovoees
GOPLEG: 750C 7A07 P77 570E G179 A320 514 CBOL u.zuee.WeoVe eose
@PP1FP: 18F7 FD71 (PD3A 838 477A $10P FE6H €640 ...q.:.8Gz...Q.@

<

256 BYTES
OF FILE
E. You can now scroll back and forth f. When you've changed all the data on a
through the file contents by using the «;” page, press ENTER. At this point, the data
and “-” keys in the same way as you can w1ll_be entered into the file.-(If you’ve made
scroll through memory in Step 4 above. a mistake, it is now in the disk file!).
F. To change any location in the file: g. To c:}nqel changes at any point, press
BREAK in lieu of ENTER for step f above.
a. Scroll through the file until you find At this point t!"e page displayed may still be
the area to be changed. changed from its original contents. Scroll
back (-) and then forward (;) to restore the
b. Press M to enter the Modify mode. screen (and memory) to the original
contents. (What you’ve done is to simply
c. Use the arrow keys to position the reread the data from disk.)
cursor to the hexadecimal digits to be .
changed. G. To change another file, press BREAK.
This will bring you back to the F command
d. With the cursor positioned over the mode, and y ou can load and C,hange another
digit to be changed, type in the new value. file. When youre dqne changing flles,’type
The digit will be changed, and the cursor ENTER without a file name, and you’ll be
will move to the next digit. returned to TRSDOS READY.

e. Repeat step d, or steps c through d to
change additional data.

How to do it on the TRS-80

12. To get back to TRSDOS from DEBUG: For
TRSDOS Model I or LDOS DEBUG, enter GO ENTER.
For the Model 111, type Q for Quit. Once you’ve returned
to TRSDOS on the Model I, you can turn DEBUG off to
avoid inadvertent entry by

DEBUG (OFF)

13. Other niceties: Use H or A to set the display to
H(exadecimal) or A(SCII) on TRSDOS Model I or LDOS
DEBUG. TRSDOS Model III DEBUG displays in both
hexadecimal and ASCIIL.

14. LDOS users: DEBUG (E) turns on the extended
DEBUG with a whole host of additional commands in
addition to those above. To briefly summarize:

Move Block Baaaa,bbbb,nnnn

ENTER

Moves block starting
at aaaa to bbbb. Num
ber of bytes in nnnn.
Enter Data Eaaaa SPACE BAR Similar to Modify.
Continue by SPACE BAR,
exit by ENTER.

Fill Memory Faaaa,bbbb,cc Fill aaaa through bbbb
ENTER with cc (hex).

Jump Over J Jump over next byte
(an I with no instruc—
tion execution).

Locate Byte Laaaa,dd Finds dd (hex).

ENTER Searches from aaaa.

Next Load Block Naaaa

Type ASCII Taaaa SPACE BAR Enter ASCII characters
starting at aaaa. One

keyboard character at

a time is converted to
ASCII and entered into
memory. Continue by

SPACE BAR, exit by

ENTER,
Compare Block Vaaaa,bbbb,nn Compare block at aaaa
ENTER with block at bbbb for
nn (hex) bytes.
Word Search Waaaa,dddd Search memory for dddd
ENTER (hex), a 16-bit word

value starting at
aaaa, Memory display
will show address
where dddd is found.

15. LDOS users (use with care to avoid
obliterating diskettes): To read or write a sector
anywhere on disk, do

a,b,c,d,eeee,f

where a is the disk drive number, b is the track number, ¢
is the sector number to read or write, d is “R” for Read,
“W?” for Write, or “*” for Directory Write, eeee is the
RAM memory address (destination for Read, source for
Write), and f is the number of sectors to read or write.

This is a very powerful function. Use it with care to
examine not only disk files, but directories, bootstrap
loaders, or any disk data. Use the Write portion only if you
know exactly what you are doing, as changing even 1 bit

ENTER on a diskette erroneously is usually disastrous.
Ohmigosh 0 ENTER Return to LDOS. 6.20.0.R, 8009
> sV ity
Print Block Paaaa,bbbb Print a block of mem
ENTER ory im hex and ASCII . . .

frzm aaaa through reads track 0 sector 0 from drive 0 into memory starting at
bbbb. 8000H.

Display Port Qii ENTER Display byte at port The N command is a special command to increment the
ii (hex). display by load blocks.

Write Port Qoo,dd Write dd (hex) to port
00

DUFS measurements to make the template or use the

Diskettes, Using Flip Side

You can use the “flip side” of single-sided diskettes if
you’re adventurous and like to “do-it-yourself.” I have
used the flip side for Model I single-density type storage
with few problems, but I would caution against using the
flip side for Model II1 or other double-density
applications without some testing of the diskettes,
preferably with a good disk diagnostic (Stambaugh’s
“Floppy Doctor”). Remember, even though the flip side
may look finished, it is not guaranteed.

Also, as one diskette manufacturer illustrates with a
pie-charted diskette, the money spent for the “media” is
a minute fraction of the total time you have invested in
programs or data on the disk! Okay, so you'’re cheap . . .

Make a template from heavy cardboard as shown in
Figure DUFS-1. Use an existing diskette and precise

dimensions on the figure.

1. Using a soft-lead pencil, mark the sector index hole
and protect notch on side A of the diskette.

2. Flip the disk over and mark the mirror image on side

3. Take a single hole punch and clip out the write
protect notch. Try to get a semi-circle.

4. Insert a small, dust-free piece of plastic with
overlaying paper between the diskette jacket and diskette
surface. Be careful not to scratch the surface. “Bow” the
jacket to slide the two pieces in easily.

5. Using the plastic as a protective shield, slide in the
hole punch so that it is positioned around the paper strip

DT1U

DUFS

How to do it on the TRS-80

and jacket. Punch out the sector index hole precisely
centered on the pencil mark you made previously. See
Figure DUFS-2.

Figure DUFS-1 - Diskette Template

! 5%"

229/32"

PUSH PIN «— S5/32"

THROUGH,
THEN ENLARGE
SUFFICIENT FOR

LS

e 1 21/32" s |

5%

319/32"

[P—

6. Turn the diskette over and perform the same
operation on the other side. When you get done, you
should have two clean holes that overlap each other. Try
manually moving the diskette inside the surface until you
can see daylight through one of the holes, through the
sector index hole, and out the other hole. You should see
light from one edge of the hole to the other if the two holes
are positioned properly.

With a little practice, you’ll be punching these out at a
rate of one a minute . . .

Figure DUFS-2 — Punching Diskette for Flip Side Use

WRITE PROTECT
NOTCH PUNCHED OUT

IN STEP 3 SINGLE

HOLE
PUNCH

MARKED
HOLE TO
BE PUNCHED

EXISTING
INDEX
HOLE

PROTECTIVE
PLASTIC
INSERT

REPEAT FOR OPPOSITE
SIDE

DWDK
DEBUG, Why Do I Keep Entering?, Model I/I1
TRSDOS, Model I/ITI LDOS

If you have loaded DEBUG (see DT1U) and have not
entered

you will keep re-entering DEBUG every time BREAK is
pressed (Model I), after a program is loaded, and upon
detection of a disk-related error. Turn DEBUG OFF to
avoid re-entry.

DEBUG (OFF) (Model I)
DEBUG OFF (Model II)
DWPR

Diskette, Write Protecting

Model I, III, Color Computer: Put a tab of opaque
(solid, non-light transmitting) sticky material over the write
protect hole, as shown in Figure DWPR-1.

Model III only: Also use the WP command to
“software” write protect a disk drive.

WP (DRIVE=n)

How to do it on the TRS-80

write protects drive 0, 1, 2, or 3 (one drive at a time).
Entering

WP

“unprotects” the drive. The write protect tab always is
operative, however, and unprotecting a drive by a WP
alone will not enable writing to a tab-protected diskette.

Model II: Remove any tab from the write protect hole, as
shown in Figure DWPR-1.

Figure DWPR-1 — Write Protecting Diskette

MODEL Ll
COLOR COMPUTER

\ PUT ON
. TO WRITE

PROTECT

MODEL HI

TAKE OFF
TO WRITE
PROTECT

DZDO
Drive 0, Drive 1, Which Is It?

Model I: The drive that is closest to the computer on the
cable if a standard Radio Shack cable is used.

Model II: The drive in the main unit.

Model III: The bottom drive.

Color Computer: The drive that is closest to the
computer if a standard Radio Shack cable is used.

Don’t feel bad, dummy, I've forgotten myself.

DZER

Divide by Zero Error

Didn’t you learn anything in Algebra? If you divide a
constant by successively smaller numbers, what do you
get? 5/.01 = 500; 5/.00001 = 500,000; 5/.00000000001 =

500,000,000,000 ; and so forth ad infinitum. Dividing a
variable by 0 is “indeterminant.” (Dividing a constant by
0 produces an infinite result, math teachers please correct
me if 'm wrong).

DWDK
DWPR

DZDO
DZER

How to do it on the TRS-80

notes

How to do it on the TRS-80

EAIM
EDTASM +, Color Computer, Asembling Into Memory

General Philosophy of in-Memory Assembly: See
EDCE for general information on using EDTASM+ for
editing and assembling. Here we’ll discuss how to
assemble directly “into memory.”

In this mode the assembler translates the source code,
prepared by the Edit portion of EDTASM +, into object
code, but instead of saving it on cassette tape (see EDCE),
it puts it directly into the Color Computer RAM. This
mode is normally used as a convenience in debugging. The
program is assembled directly into memory, debugged
with ZBUG, and then assembled to cassette tape after a
final version is hacked out. (A programmer’s axiom,
originated by Babbage: There are no final versions).

The in-memory assemble is done when an A/IM command
is input. Associated with the /IM “switch” are two other
switches, /AQO, Absolute Origin, and /MO, Manual Origin.
We'll get to/AO and /MO in a minute. (This whole write-up
on assemblies, by the way, is kind of a sourceobject with me

)

After you do an A/IM assembly, EDTASM+ will
assemble the source lines and store the object after the edit
buffer and “symbol table.” See Figure EAIM-1. The edit
buffer starts at $0800, and the source code is stored
directly after the source lines in the edit buffer as shown
in the figure. A typical starting point for a small program
of 40 lines might be about $08EOQ.

Figure EAIM-1 - EDTASM+ Edit Buffer/Symbol
Table

LOW RAM
$0800
EDIT
BUFFER
A P ABOUT 1 BYTE/
T T GHARACTER OF
TEXT
SYMBOL. |
- TABLE ~ ABOUT 6 BYTES/
] T LABEL
ASSEMBLED
" PROGRAM i
~_ (OBJECTGODE) 1 BYTE/INSTRUCTION
BYTE + BUFFERS,
ETC.
S4FFF]‘
(16K
$7FFF
(32K

Assembling in Memory With Floating Origin: In
many cases your source program won’t have any Origin
statements, and you’ll want to let EDTASM+ store the
object code right after the Edit Buffer. Why? Maximum
use of memory, and you won’t have to worry about the
origin. But how will you know where the program is? Easy.
Use a symbol for the first statement of your program.
Suppose that the first line of your program is

START LDX

#$123E load buffer address

After you do the A/IM, you’ll see a symbol table
printout with an entry for START, such as

START (8E@

You’ll know that the program starts at $08E0. You can
then use the “symbolic addressing” mode of ZBUG to
access the program by symbols such as START, any other
program symbols, or their absolute location. ZBUG refers
to an assembler “symbol table” to find labels in the
program and match them to their absolute locations.
More on this in the ZBUG procedure ZUEC.

Assembling in Memory with Absclute Origin:
After you’ve done a few assemblies, you’ll know what
areas of RAM are available. In fact, all of RAM from the
end of the Edit buffer to top of memory (16K, 32K, or
more, if you have one of those 64K systems) is available
for your program. You can assemble at any available area
by using the /AQ, Absolute Origin switch. You’d have
something like:

*A/IM/AO
In addition to the /AO switch, you’d need an ORG

pseudo-op (see POCE) in your source code, usually at the
very beginning. You might have something like:

ORG $gAg0
START LDX #$123A

set ORG
start of buffer

After the assembly, you’d see that EDTASM + loaded
the object starting at location $0A00, the location
defined by the ORG. Why use /AO and ORG? I like to
start programs or sections of programs at ‘‘even
boundaries” like $1000. It makes finding the locations of
things so much easier Even though you can still use ZBUG
to find the location of a buffer by referencing “BUFFER,”
it’s reassuring for a paranoid like myself to be able to find
it in the same location as is on the assembly listing. If you
ORG a program at $1000 and then use the /AO switch,
the program listing will start at $1000, and you can find
program locations directly from the listing without using
symbolic references.

What happens If You Have an ORG without /A0?:
If you have an ORG in your program and assemble
without /AQ, you’ll see a strange result. The location of
the program will become the ORG value + the
EDTASM+ object code location. As an example, if you

How to do it on the TRS-80

EAIM

have ORGed
ORG $1¢99 set ORG
START LDX #S5123A set buffer loc

and you do not set /AO, EDTASM+ would add $1000
and the normal program location of, say $0800, to give a
location of $1800 for START. Why? Basically this is
because EDTASM+ thinks that you don’t know what
you're doing. If EDTASM+ did not do this, then ORGs
that allocate buffers and space (in lieu of RMB, see POCE)
such as

buffer
209 bytes

BUFFER EQU *
ORG *42 09

would not assemble correctly. Therefore, use /AO if you
have an initial ORG for program location, but not for
“space allocation” ORGs.

What the Heck is /MO?: The /MO switch is used to
give you even more control over in-memory assemblies.
/AO lets you assemble anywhere in “user RAM” between
the Edit Buffer/Symbol Table and top of memory.
(Remember that EDTASM + itself is in the $CCG00 area
— see MMCC).

/AO does not let you move the Edit Buffer/Symbol
Table around, however. /MO lets you set the address of
the Edit Buffer/Symbol Table as well as letting you set
the location of the Origin of the assembled program.
Why? Why not? EDTASM+ is an offshoot of
EDTASM + for the Z-80 (Model I), and it gave you these
controls. Although normally you would not want to do
this, the capability is there. (As soon as I say that this is not
too useful, someone will write in telling me what an idiot
1 am; therefore, I will be as vague about /MO use as the
EDTASM+ manual is. But seriously, you may have
variable storage in the memory area occupied by the

EB/ST — no, that doesn’t sound realistic — you may have
graphics page data in that area — no, you can reset the
graphics page pointer — well, anyway, it’s a damn good
idea ...)

In any event, to use /MO:

A. Set the location of Edit Buffer/Symbol Table by
changing an EDTASM+ location called BEGTMP at
location $OOFF. This location contains the most
significant byte of the Edit Buffer/Symbol Table address
minus about $0200. Initially it is a $06, which puts the
EB/ST at about location $0800. Put in any value from
$06 up, and you will define the EB/ST starting location
minus about $0200. Note that changing the ms byte
changes USRORG by “page boundaries” or multiples of
256 — $0600, $0700, $0800, etc).

B. Set the location of the assembled object code by
changing an EDTASM+ location called USRORG in
locations $00FD, E. Changing this variable will set the
upper limit that EDTASM+ can use for the EB/ST and
will force EDTASM + to start assembling object code at
that location.

C. Delete any ORG commands that define program
locations at absolute locations, otherwise you’ll have the
same difficulties as in /AO above. You can leave ORGs
that “reserve space” as in

BUFFER EQU *
ORG *+20p

D. Assemble using A/MQ. Voila, Monsieur! Zee
manuelle oreegan . ..

ECCE
Expressions, Color Computer EDTASM +

There are many arithmetic operators that can be used
in source code or in ZBUG; both sections of EDTASM+
use the same format and expression evaluation. ZBUG
also has a calculator mode that lets you use it to display the
results of expressions like

109P+SIZE+10T=

Typing in the above example would cause ZBUG to
print out the result; it would evaluate any symbol from the
symbol table as it did so.

How to find the value of a symbol: If you've entered
ZBUG and don’t know where your program object is,
enter a known symbol from the program listing; ZBUG
will respond with the value, which is the current location:

#START=88A

Addition and subtraection: Use plus and minus in any
combination

How to do it on the TRS-80

START+2 §T+190H=1A4D
TABLE FDB DATA+23%-SIZE

(2ZBUG)
(Assembler)

Multiplication and division: Use asterisk and .DIV.
(.DIV. used as slash means “open a location” in ZBUG).

#255T#2 55 T=¢FEP1
F1PPT*109PT=42 40
#1000T.DIV.10=3E

TABLE FDB DATA*4§
TABLE FDB 1¢#@.DIV.19

(2BUG)

(ZBUG 16960 decimal)
(ZBUG 1008/16=62)
(Assembler)
(Assembler)

Note that multiplication and division are unsigned
integer operations. Multiplying 1000 by 1000, for
example, yields the portion of the product which can be
held in 16 bits, 16960. Dividing 1000/16 yields the integer
portion of 62.5.

Modulus operations: Use the .MOD. operator. A
modulus operation finds the “remainder” of a divide.

#1¢09T.MOD.16T=8
TABLE FDB 1999.MOD.16

(ZBUG 1009/16=62Q, R8)
(Assembler)

Positive and negative numbers: Use the plus and
minus sign as you might expect. These are “unary”
operators that require one operand, as opposed to
“binary” operators that require two operands. Just
thought you might like to know — I’m not trying to sound
impressive . . .

The assembler assembles negative data as two’s
complement numbers (see TCNU):

TABLE FCB -67

for example, assembles as $BD), the two’s complement
form of -67.

Relational operators: EDTASM+ has two relational
operators, equals (.EQU.) and not equal (NEQ.). The
resuit is either $FFFF (true) or 0 (false). Not too many
applications here, although the operators could be used to
set flags:

TABLE FCB PRNTR.EQU.YES -1 if pratr, ¢ if not

This is one of those gray areas where a writer says,
“Shall I be vague about the description and not let on that

I’m not sure why they included this operator?” Okay, I'll
take a stand. Cheap to throw in, but not very useful . . .

Shift operators: The less than sign (<) is used to
represent a shift. If the less than sign is followed by a
positive value, the shift is to the left; if by a negative value,
the shift is to the right:

TABLE FDB 1009<-8
FDB 1999<8

get ls byte
get ms byte

The two values produced above would be $0003 and
$E800. These are handy operators for finding address
bytes or aligning data. The shifts are “logical” shifts
which shift in zeros rather than recirculating data.

Logical operators: Logical AND (.AND.), logical OR
(.OR.), exclusive OR (.XOR.), and complement (NOT.)
work the way they do in BASIC:

#5.AND. 1=1
#5.0R.2=7

#5 .XO0R.4=1
#.NOT.5=@FFFA

Notice that .NOT. is a unary operator that requires one
operand.

All in all, an excellent assembler/ZBUG package that
allows a great deal of flexibility in examining data and
constructing assembly-language data structures and
addresses.

ECIS
Embedded Codes in SCRIPSIT

If you’re an LDOS user, you can also use the KSM
function and BUILD to build a file of HEX data (use the

BUILD HEX option) to insert non-printable characters at
a single keystroke.

EDAN
EDAS, Notes

EDAS is an Editor/Assembler package for the Model
I/III by MISOSYS. It contains similar commands to the
Series I Editor/Assembler by Radio Shack. Read S1EA as
an introduction, and I'll note the differences. In general,
EDAS offers more expression operators (see AEU1),
move block and more editing options, in-memory
assembly, and macro-like *GET files. The latest EDAS
also provides true “Macro” capability, a way of generating
in-line source code.

Loading EDAS: Use the DOS command
EDAS (MEM=nnnn, PROMPT,JCL)

where MEM=nnnn protects high memory; nnnn is a
decimal value, while X’nnnn’ is hexadecimal. Use
PROMPT for an EDAS prompt before printer page
ejection. Use JCL to enable input of EDAS commands for

JCL on LDOS and other systems (no source text can be
entered from JCL).

Command Syntax: Use dashes for the switches instead
of commas. For example, assemble by A-NO-LP. Use a
comma to specify a range of lines (P300,500).

Additional Operators: In addition to addition (+),

subtraction and negation (-), logical AND (&), and shift
left or write (<), you can multiply (*), divide (/), find the
modulus (%), logical OR (!), and logical XOR (#). Use of
these is shown in Figure EDAN-1.

Additional Pseudo-Ops: In addition to ORG, EQU,
DEFL, END, DEFB, DEFW, DEFS, DEFM, *LIST ON,
and *LIST OFF, EDAS adds these pseudo-ops:

TITLE: titles the listing with up to 28 characters. One
TITLE is accepted.

How to do it on the TRS-80

SUBTTL: subtitles the page with up to 80 characters.
Use any time. Subtitle appears on next page after SUBTTL.

PAGE: forces new page.

COM: generates an ASCII comment string of up to 128
characters within the object code. Format is COM
<comment string>>.

SPACE: spaces n lines. SPACE 5 inserts 5 blank lines in
listing.

ERR: forces error message. Format is ERR message.
Use in a conditional assembly block (if conditional block
is assembled when it shouldn’t be, an error message is
listed).

DEFB or DB: same use, but you can now have a string of
items separated by commas.

DEFW or DW: same use, but you can now have a string
of items separated by commas.

DEFS or DS: DS permitted.

DEFM or DM: same use, but you can now have a string
of items separated by commas.

IF, ENDIF: you can conditionally assemble blocks of
code by surrounding the block of source code with an IF
and ENDIF:

MODI EQU @ ;1 if Mod I, # if Mod III

IF MODI ;start of Mod I IF

LD A,5 sbody of code

ENDIF send of Mod I IF

IF 1-MODI ;§ if Mod I, 1 if Mod III
LD A,6 sbody of code

ENDIF ;end of Mod III IF

Figure EDAN-1 — EDAS Operators
¢9109 ; EDAS OPERATORS

In the above example, Mod I code assembles if MODI is

non-zero while Mod III code assembles if MODI is zero
value. You can also have IFEQ, IFGT, IFLT where you
can compare two parameters, as in

IFLT $,80PPH “assemble if $ < 8@@PH

*GET: The *GET file command gets a source code file
from disk and inserts it into the *GET point in the source
code file. Use *GET to bring in predefined “code
segments” (similar to macros) that will be inserted into
source code.

Editor Commands: D(elete), E(dit), F(ind), H(ardcopy),
I(nsert), L(oad), (re)N(umber), P(rint), R(eplace), W(rite)
are similar, except for line ranges using commas in place of
colons. Up arrow and down arrow scroll the source code
display.

B now branches to DOS or to address in B nnnn.

C(hange) does a global replace of string 1 with string 2
(very handy!). Format is

C/stringl/string2 /line#l,line#2

where line #1 is the first line to change and line #2 is the
last line to change.

K(ill) does a file KILL from within EDAS.
KILL KLUDGE
kills file KLUDGE/ASM.

M(ove) moves a block of source lines from one area of
the source buffer to another. The format is

M line#l,line#2,line#3

8123 poL1P ORG 8123H

po63 P@12¢ SWITCH EQU 3

9093 pP13p oPl EQU +3

FFFC pP149 OR2 EQU -4

8123 7E ¢@15¢ TABLE DEFB 199+23+SWITCH ;ADD/SUB

8124 E8@3 polep DEFW +1000 ; SIGN

8126 18FC pP179 DEFW -1009 ;SIGN

8128 2981 p9180 DEFW TABLE&PFFFPH ;LOGICAL AND
812A 9§23 99190 DEFW TABLE<8 ;LEFT SHIFT
812¢C 8196 99209 DEFW TABLE<~-8 ;RIGHT SHIFT
812E 8403 pP219 DEFW 10@*SWITCH*3 ;MULTIPLICATION
8139 PR B g922 0 DEFW TABLE/3 ;DIVISION
8132 23¢9 p@e230 DEFW TABLE.MOD.64 ;MODULO

8134 2381 902 49 DEFW TABLE!32768 ;OR

8136 FFFF pg2 50 DEFW OP1.XOR,0P2 ;EXCLUSIVE OR
pope po260 END

PPOPP Total errors

How to do it on the TRS-80

where line 1 is the first line in the block to be moved,
line ##2 is the last line in the block to be moved, and line #3
is the line that the block should follow.

M 35¢,378,99¢

moves lines 350 through 370 after line 990.

Q(uery) is a Disk DIR from within EDAS. The format is
either Q or Qn, where n is the optional drive number.

S(witch) switches from upper case to upper/lower case.

T(ype) is identical to H except that line numbers are not
printed.

Ul(sage) displays the number of bytes of text buffer in
use, the number available and the first address available
for in-memory assembly.

V(iew) is a LIST file command from within EDAS. The
file will be listed but not loaded into the buffer area. Use to
view a file before loading.

(e)X(tend) extends the text buffer area by destroying the
assembler in memory. Use with large source files.

1: Entering nl n2 sets the number of lines to print per
page to nl and the page length in lines to n2.

Assembler Commands: -NL, -LP, -WE work as in the
Series 1 EDTASM.

-WS (with symbol) enables symbol table display and
printing. Default is no symbol table.

-NE surpresses DEFM/DM, DEFB/DB, and
DEFW/DW expansions on listings (prints only one line).

-XR generates a cross reference listing file on disk.

-IM assembles code directly to memory on the basis of
your ORG pseudo-ops.

-WO assembles object code to a disk file.
The format of A is

A filespecl,filespec2-XX-XX...

where filespec] is the object file (if necessary) and filespec2
is the optional cross reference file.

Special format files: W-writes the source file without
a 6-character file name header. W # writes the source file
without line numbers. W- # deletes both. L-, L4, and
L-# operate in the same manner on loading the source
file.

Macro capability: Macros are a way of generating from
one to dozens of lines (or more) of source code with a
single macro “call.”” The newest EDAS, EDAS 1V,
provides macro capability, and even nested macros. If you
are or want to be a serious assembly language
programmer, I would heartily recommend EDAS IV.
Even without macro capability it is an order of magnitude
better than the RS Series I editor/assembler, and with
macro capability it is terrific. (You should hear me when
I'm really enthusiastic)

EDCE
EDTASM+, Color Computer, Using Editor and
Assembler

EDTASM+ is a 6809E Editor/Assembler/Debug
package available as a ROM program for 16K machines
with cassette. You can edit and assemble 6809E
assembly language programs with EDTASM+ (see
ALWI for a description of assembly language) and it also
has a comprehensive debug capability.

To Load EDTASM +:
1. Turn off the Color Computer.

2. Load the ROM pack by inserting it right
side up into the right-hand side of the Color
Computer. You should hear a definite
“tonk” as the ROM pack snaps into place.

3. You should see the title message and
prompt:

EDTASM+ 1.X
COPYRIGHT c¢ 1981 BY MICROSOFT

General Description:

The EDTASM + package consists of three parts, the
Editor, the Assembler and a debug package called ZBUG.

The Editor is used to construct or modify “source” files
that are largely ASCII files (see AFWA) with the
exception of some non-standard characters for line
numbers. The source files are resident in RAM while
they’re being edited but can be stored on cassette for later
use.

The Assembler is used to “assemble” (see ALWI) the
source files in RAM. This consists of translating the
symbolic source code representing 6809E
machine language instructions into an “object file”. The
object file is largely machine language codes (see MLWI)
with minor “header information” that indicates the area
of RAM to be loaded and other data.

The object file, when properly assembled, represents a
machine language program that can be loaded from
cassette (see LEMC) and executed. The object “code”
may be anywhere from several instructions to thousands
of instructions long and is dependent upon the
application. The object code can also be assembled in

How to do it on the TRS-80

EDAN

EDCE

RAM for immediate execution. Normally this is part of
the debug process before writing out a final version as a
cassette file.

Before proceding, you must know something about
6809 assembly language. See ALWI.

To Create a New Source Program:

1. While in the Command Mode, as indicated by the
“*»_type 1. This puts you into the Line Insert Mode, as

shown in Figure EDCE-1, starting with line number 00100.

00100.

Figure EDCE-1 — Editor/Assembler Display

EDTASM+ 1.0
COPYRIGHT (C) 1981 BY MICROSOFT

*1
po100

CURSOR AT FIRST CHARACTER
POSITION FOR LINE 00100

2. Enter your source lines one at a time. While entering
your lines, you can use the Edit Mode subcommands.
These are virtually identical to the BASIC Edit Mode
subcommands described in EMBH and allow you to edit
characters within a line. Each line is terminated with an
ENTER.

Note: A range of lines can be specified in the Editing
commands by using an exclamation mark. 100! 5 means
the same as the 5 lines starting at line 100.

3. When you have entered the last line, type BREAK to
get back to the Command Mode. You can now list and
correct the source lines, save the lines as a source file, or
perform other Edit actions. We’ll describe each in turn.

To List and Correct Lines and Perform Other
Line Edit Actions:

Besides the Edit Mode subcommands that operate on
characters within lines, you can also delete, modify, or
add lines to the source file. All of these commands work
while in the Command Mode, as indicated by the asterisk
(*) prompt.

1. To Edit any line on a character basis, enter En
ENTER, where n is the line number. To Edit line 1100,
for example, you’d enter

E1100

to get back into the Edit Mode described above.

2. To Print (display) the source lines, enter Pn:m,
where n is the starting line number and m is the ending
line number. To display lines 300 through 1060, for
example, you’d enter

How to do it on the TRS-80

P30P:1060

Display one line by a Pn. Display the first line by P# .
Display the last line by P*. Display the current line by
P(period).

3. To get a hardcopy listing use the H(ardcopy)
command for your system line printer in the same formats
as 2. To print lines 400 through 450, for example, you’d
enter

H400:450

To get a hardcopy without line numbers (text only) use
a T in place of the H.

4. Todelete a line or range of lines, enter Dn or Dn:m,
where n is the starting line to be deleted and m is the
ending line. The starting line must exist, otherwise you’ll
get an error message.

5. Toinsert a line, use the In command, where n is the
line number of the insert line. The line number generally
follows the line number immediately before the insert
point. To insert a source line directly after line 1010 and
before the following line 1020, you’d enter

11911

To insert a series of lines, use the I command.
EDTASM will automatically renumber the lines as new
lines are added. All lines will be inserted at the same
point. If you’d like to avoid the renumbering, use the In,m
form of the insert, where m is a line increment. If the
existing lines increment by 10, for example, you’d be able
to insert 9 lines between lines 1010 and 1020 without
renumbering by

11¢11,1

6. To renumber the lines, use the Nn,m command,
where n is the starting line number (often 100) for
renumbering, and m is the increment (often 10).

7. To replace a line and continue in the line insert
mode, use the Rn command, where n is the line number of
the line to be replaced. The line will be replaced with the
next entered line, and from that point the operation will
be identical to the line insert mode described in 5 above.

8. To find a text string. Use the Fxxxx command,
where xxxx is a text string to be found. Handy for locating
lines by looking for “labels.” If you want to look for a
series of labels, enter Fxxxx and follow with F alone. The
command will use the previous search string.

9. To copy a block of lines, use the C command. The
format is C,newline#, startline#, endline#, increment. To
copy lines 300 through 400 to a new area starting with line
number 1000 and with increment of 10, for example, you’d
have:

C1009,300:400,18

At the end of the Copy, lines 300 through 400 would be
reproduced in totality at the 1000 area. Lines 300 through
400 would remain unchanged.

10. To Move a block of lines, use the M command.
Move operates similarly to Copy, except that the original
block of lines is deleted. T'o move lines 300 through 400 to
a new area at 1000 with increment of 10, for example,
you’d have:

M1000,300:409,10

11. TogotoZBUG, type Z.For ZBUG commands and
operation, see ZUEC.

12. To return to BASIC, enter Q. Type EXEC 49152
to return to the Editor from BASIC.

13. To scroll up or down one edit line, press up or
down arrow.

To Write a Source File:

After you have edited your source lines by the Line Edit
and Character Edit commands above, you can either
assemble the file (see below) or write out the source file to
cassette. To write to cassette:

1. Enter W name, where name is the name of the file. If
no name is specified, the name NONAME will be used.

2. Youll now see a READY CASSETTE message.
Prepare the cassette and press any key. A cassette write
operation will proceed until the entire source is written.

3. After the write, the asterisk (*) prompt will be
displayed.

4. Verify the source file on cassette by using the V
command. V operates identically to the BASIC SKIPF
command, simply comparing the data on the file with the
data in memory to make certain it is valid. Enter V name
to verify the cassette file just written.

To Load an Old Source File:

An old source file can be loaded for assembly or
modification by this procedure:

1. Delete any source file in memory by D #:*. If you do
not do this, the load will append the new file from cassette
onto the old source lines.

2. While in the command mode (asterisk prompt), enter
Lname, or simply L if the next file is the one desired.

3. If you are loading from cassette, EDTASM+ will
prompt you to prepare the cassette. If you do not enter a
name, NONAME will be used.

To Assemble:

Once you have a good source file in proper format, you
can assemble. Assembling translates the source code lines
into equivalent machine language code (see ALWI). You
can assemble with the following commands and options:

1. To assemble without an object file to
cassette:

A. While in Command Mode (*), enter

A/NO.

B. You’ll see a listing rapidly displayed on
the screen.

C. At the end of the listing you’ll see XX
TOTAL ERRORS, but it may go by too fast
too observe.

D. You'll then see a “Symbol Table”
display.

9. To assemble without an object file and with
no symbol table listing:

A. Enter A/NO/NS.
B. You’ll see a listing and error indication

with no symbol table. Any errors will have
been displayed too fast to catch.

3. To assemble without an object file and to
“wait on errors”:

A. Enter A/NO/WE or A/NO/NS/WE, EDCE

depending upon whether you want a symbol

table listing (NS is No Symbol Table). ‘
EDCE

B. The display will stop as each assembly
error comes up. Press any key to continue.

C. You'll get the error message at the end.
4. 'To assemble to line printer without object:

A. Use any of the commands above, but add
JLP to the end of the command line.

B. You’'ll get a simultaneous display and
line printer listing.

5. To get object output on cassette:

A. If you use any of the above command
sequences without the /NO option, you'll
get “object” output to cassette, with a
NONAME name. If you use the format A
name/XX/XX/XX, where XX are options
(switches), you’ll get an object output to
cassette.

6. To load the object file and execute, see LEMC.

7. To assemble directly into memory, use any of
the above options, do not use a file name, and specify the
option /IM, for in-memory assembly:

A. Use either /AO or /MO, absolute or
manual origin options for in-memory
assembly. Since in-memory assembly is
normally associated with ZBUG and
debugging, we’ll explain the ORiGin
problem in EAIM.

How to do it on the TRS-80

For more information on assembler operations, see:

ALWI for general information on assembly language

POCE for information on assembler pseudo-ops

AECE for assembler errors
ECCE for assembler expressions

ZUEC for ZBUG operations and in-memory assembly

EMBH
Edit Mode, BASIC, Most Systems

(Does not apply to Model I/III, Level I or Color
Computer Color BASIC. Edit by replacing lines on these
machines. See RLIB).

The Edit mode in BASIC allows you to change, insert,
or delete characters from a BASIC line. It is not too handy
in BASIC statements such as “100 A=0”, but is terrific for
BASICstatements such as

"1009 A=(1~3)*(A(1)-B(1))/256.7: IF (A<7 OR A>19)
THEN GOTO 2@¢¢@ ELSE IF A=1¢) THEN PRINT "SELL TANDY
STOCK"."

To enter the Edit mode, type
EDIT line#

while in the command mode. You may also type “EDIT.”
to edit the “current line” (except for Color Computer).

Once you’re in the Edit mode, you can move the cursor
back and forth by the space bar and left arrow (or
backspace) keys. The cursor is always over the character
on the line to be edited.

To move multiple spaces right, enter one or two
digits followed by space bar. The cursor will move right
the number entered. Entering 5 space bar, for example,
moves 5 character positions right.

To move multiple spaces left do the same with the
left arrow or backspace. Entering 5 left arrow moves 5
character positions left.

To delete the current character (at the cursor
position), type “D”. To delete multiple characters, enter
one or two digits followed by “D”.

To change a single character, type “C” followed by
the character to replace the one at the cursor position. To
change multiple characters, type one or two digits,
followed by “C”, followed by the new text.

To insert characters, type “I”. Youre now in the
Insert mode. To get out at any time, type SHIFT, up
arrow (ESC on Model IT). All characters typed before a
SHIFT, up arrow will be inserted before the cursor
position. There are certain other commands that also
place you in the Insert mode after performing other
actions:

A. Entering “H” “hacks off” the remainder
of the line from the cursor position and puts
you into Insert at the hack point. (Here’s
your chance to be a hack writer).

B. Entering “X” displays the remainder of
the line and puts you into Insert at the end
of the line.

To search for a given character, type “S”, followed
by the character. Edit mode will find the character and
position the cursor at the character position. Typing one
or two digits followed by “S” will find the “nth”
occurrence of the following character. Entering 5SX, for
example, finds the 5th X from the current cursor position.
“K?” is like S, except that it “kills,” or deletes, the entire
line up to the point at which the character is found.
(“Hack,” “Kill,” — sounds like a Jamie Lee Curtis
movie).

To redisplay the entire line: Type “L”.

To ENTER the line after all changes have been made
and end the Edit, type “E” or ENTER.

To cancel all changes that have been made and restart
the Edit, type ‘A"

To cancel changes and guit the Edit, type “Q”.

EPHT
Ending a BASIC Program, How to, All Systems

Your last BASIC statement should be an END, as in

19996 END

However, you really don’t need an END, provided that
the program ends with the last statement. For an example
of trouble:

1¢¢¢ PRINT "TH..TH..TH...THATS ALL FOLKS!"™ “end
19999 PRINT I,J
14160 RETURN

should end at line 1000, which is the last program
statement you want executed. However, when the BASIC
interpreter gets to 1000, it continues on to the subroutine
at line 10000 which will give a “Return Without Gosub”
error. In this case you need an END at line 1010.

How to do it on the TRS-80

EPWT
Electronic Parts, Where to Get

Let’s face it, I want this book to be sold to Radio Shack.
In spite of that, however, Radio Shack remains one of the
best places to get common electronic parts of all types.
Try Radio Shack first for some integrated circuits (not a
great selection), all electronic tools, multimeters,
continuity testers, connectors (including RS-232-C),
wire, cable, resistors, capacitors and the like.

For less common electronic parts, you’ll have to leave
the resonant echo of “How May I Help You?” and goto a
store where they don’t demand a mailing list address at
the top of the sales slip. If you know a radio amateur or
electronics experimenter, ask him where a good
electronics parts store is. Almost every town over 30,000
or so has a good electronics store where they carry every
conceivable type of component; although, again, they’ll be
light on integrated circuits. Expect to pay slightly more
than at Radio Shack.

For integrated circuits, find one of the places that
specializes in ICs, and not the other components. This
should not be a problem if you live in a major
metropolitan area, but will definitely be a problem in
smaller towns. If you can’t find such a place, look in the

back pages of Computers and Electronics, Radio Electronics,
or BYTE magazines. You'll find plenty of IC parts houses
that, in some cases, will deliver in a few days. Prices will be
as good or better than Radio Shack’s.

Another alternative: For hard-to-get electronic parts,
go directly to a ‘“distributor.” Distributors are
representatives of the integrated circuit manufacturers
(such as Motorola or Zilog) — again, in major
metropolitan areas. If you know the name of the actual
parts manufacturer, call a local sales office and ask for the
name of a distributor for the parts. Call them up and ask
for the order desk. Pretend you’re an electronics
consultant, and put the parts you need on “will call,” a
buzz word that means that you will walk in and pick them
up.

They’ll ask for your purchase order for the parts. Give
them a dummy number, such as “V030233,” or simply tell
them that it is “verbal,” a buzz word for “no purchase
order and I'm trying to pretend I'm an electronics
consultant, but I know you don’t believe me.” Unless you
have a state tax resale number, tell them the parts are
“not for resale” when they ask.

You’ll pay more for the parts through a distributor, but
at least you’ll be able to get them without delay.

ETIB
Error Trapping in BASIC, Some Systems

Model I Level II and Disk, Model II, and Model III
Level III and Disk BASIC have error-trapping capability,
represented by the “ON ERROR GOTO,” “RESUME,”
“ERROR,” “ERR,” and “ERL” BASIC commands. The
Model II also has a sixth command, ERR$. What is error
trapping? How do you use it? Why am I asking all of these
rhetorical questions?

Error trapping gives your program complete control
over error conditions. Suppose you have invested a good
deal of time in generating an “idiot-proof” pork bellies
commodity program to be run by your niece. Now, your
niece knows nothing about pork bellies and even less
about your TRS-80. Without error trapping, she’ll get a
“Write Protected Disk” error message, and the program
will stop. With error trapping, you can build in a “Take
the tab off the diskette, dummy!” message, she can take
the corrective action, and the program can proceed.

The basic steps in incorporating “error processing” in
your program are these:

1. Code up an error-processing subroutine. This
error-processing subroutine can be anywhere in your
BASIC program. If you have enabled error trapping (by
the “ON ERROR GOTO” command we’ll discuss later),
this subroutine will be automatically entered.

2. In the subroutine, you can find the type of error by
using the ERL and ERR functions. ERL returns the line
number in which the error occurred, and ERR returns the
error code. Use ERR/2+1 to find the true error code for

the Models I and I1I. The error codes can be found in the
back of your BASIC or Disk BASIC manual.

3. Youll want to use ERR (or ERR/2+ 1) to find the type
of error code. Some of these error codes will be conditions
about which you can do nothing in your program. For
example, if you get an “Undefined Error,” throw up your
hands and give up to BASIC (which we’ll show you how to
do in RESUME). Other error codes can be handled, such
as “Write Protected Disk,” or “Disk Full.” In the latter
cases, print a prompt message or take a corrective action
within your program. ERL will return the line in which the
error occurred, so you can make certain it is an expected
condition. Use ERL and ERR just as you would other
functions, such as 10000 CD=ERR/2+1: LN=ERL.

4. When you want the program to enable error trapping,
execute an “ON ERROR GOTO XXXXX” command,
where XX XXX is the line number of the error processing
routine. Any error that occurs after error trapping has been
enabled will cause your error processing routine at
XXXXX to be entered.

5. During certain parts of your program, you may not
want error trapping. If your error processing subroutine
handles only disk errors, for example, there’s no need for
error trapping during heavy string manipulations. In this
case, incorporate an “ON ERROR GOTO 0” command to
disable error trapping. In this case any error will cause a
return to the BASIC interpreter and a stop.

6. The last command in your error trapping subroutine
should be a “RESUME” command. There are three types
of RESUME. RESUME NEXT resumes execution of the
program at the line following the error line; presumably

EMBH
EPHT

EPWT
ETIB

How to do it on the TRS-80

your error processing subroutine has handled the error
condition. RESUME with a line number, such as
“RESUME 13000,” resumes execution at the specified
line number. In this case you may have branched to
another action because of the error and/or corrective
action. RESUME without a line number or with a line
number of 0 causes re-execution of the line in which the
error occurred. In this last case, unless you’ve disabled the
error trapping by an “ON ERROR GOTO 0”, you’ll be
right back at the error processing again; presumably, in
this case you’re throwing up your hands.

7. Model II users only: ERR$ returns a descriptive
message about the error type. This function is a way of
further defining a TRSDOS error occurring in BASIC.

Ok, got it? Code up an error processing subroutine
terminated by a RESTORE. Enable and disable this error
trapping by ON ERROR GOTO XXXXX or ON ERROR
GOTO 0. Check for recoverable conditions within the
error processing by ERL and ERR.

One final word, use the ERROR function to “simulate”
the error. This function allows you to test the error
trapping code without having to wait for an actual
program or operator error. A

1¢¢ ERROR 19

for example, simulates a redimensioned array error and
causes a transfer to your error-processing logic.

Good luck with the pork bellies.

EYBP
Erasing Your BASIC Program, All Systems

Enter NEW. Voila! Your program, she is fini! NEW
“reinitializes” the BASIC interpreter “pointers,” in effect
erasing your program.

How to do it on the TRS-80

FBDF
Functions, BASIC, Defining, Some Systems

Model I/III Disk BASIC, Model II, Color Computer
Extended and Disk BASIC only: The DEF FN command
is ured to define functions. What is a function? A function
is a commonly used operation in BASIC that is not part of
the BASIC set of commands. BASIC has many built-in
functions (generally a command that requires
parentheses around its argument), such as SQR(),
POKE(), and INP(). You can also define your own
functions with DEF FN.

Suppose you found that in your BASIC program you
used the formula for finding the future amount of an
investment P left in an interest account at interest I per
annum for N years:

S=P*(1+(1/12)) % (N*12)

Suppose also that you used this formula 103 times
throughout your program. You could define a function
FNS that would perform that calculation by

169 DEF FNS(P,I,N)=P*(1+(1/12)) t (N*12)

You could now replace every occurrence of the formula
with
1009 S=FNS(P,I,N)

where P, I, and N would change according to the current
values. For example, you might have

1099 s=FNS(1999,.18,12) “$10PP at 18% for 12 mos

2009 S=FNS(5009,.12,13) “$588¢ at 12% for 13 mos

3¢pP S=FNS(WZ,C,14) “$WZ at C for 14 mos

A function helps you define commonly used operations
as another command in BASIC; it saves entering the
formula each time.

Up to 26 functions can be defined by using DEF FNA
through DEF FNZ. The “arguments” for the function are
defined in the DEF FN statement as in the example above.
You can use a number of arguments in the Model LII or
I11, but only 1 in the Color Computer. The arguments are
defined in the DEF FN statement as dummies; the
variables used in the DEF FN are only “place markers” for
the subsequent definition, and are not related to any actual
variable names. The arguments used in the function “call”
(the FNX()) can be constants, variables, or expressions.

FBWT
500-Baud and 1500-Baud, for Model III
Cassette, BASIC, When to Use

Use 1500-baud for all operations except reading in
Model I tapes. The 1500-baud rate is inherently more
reliable than the 500-baud rate. The 1500-baud rate is in

force when you press ENTER or H followed by ENTER
to the power up or reset prompt question:
Cass?

The 500-baud speed is selected by

Cass? L
See FHBF.

FCER
FC Error

Function Call error.

General catch-all for illegal parameter in a function, as
n

169 A=SQR(-234.56)
119 A=II(2 ,-8)
12¢ A=USR(100890)

“i(j?) can’t do this!
“hyperspace, anyone?
“system has a lot of RAM!

FDER
FD Error

File Data error.

Bad file data from cassette. This error refers to data
values being read from a data file on cassette. Check your

PRINT # statements to see that data has been written in
the proper sequence to correspond to the INPUT #
statements. Also refer to CTLC for cassette tape loading
hints.

EYBP

FBDF
FBWT
FCER
FDER

How to do it on the TRS-80

FHBF
500-Baud or 1500-Baud for Model III Cassette,
BASIC, Selecting

On power up for a non-Disk system, the system asks

Cass?

If you press ENTER or H followed by ENTER,
1500-baud will be selected. If you enter L followed by
ENTER, 500-baud will be selected. The 500-baud rate is
about a 50 characters per second rate, while the
1500-baud rate is about 150 characters per second.

To change the cassette speed under BASIC program
control , use

1¢9 POKE 16913,0

to select 500-baud and
109 POKE 16913,1

to select 1500-baud.

Another way to change the cassette speed under BASIC
program control: In this method, a USR call is made to the
“prompt” that sets the baud rate. Calling ROM location
12354 (304 2H) initiates the prompt message

Cass?

The user can now reply with the baud rate response, at
which time a return is made to BASIC (or to another
assembly language routine). Sample for Model III,
non-disk BASIC:

189 POKE 16526 ,66
116 POKE 16527,48
120 A=USR{9)

136 ...

“1s byte of address
“ms byte of address
“print screen contents
“back here

Sample for TRSDOS/LDOS Disk BASIC:

100 DEFUSR$=12354
118 A=USRO(P)
120 ...

“define address

“print screen contents
.

back here

FHOF

Failures, How Often?

How often will your computer system fail? Expect one
or two service calls in the first six months. Once you get
past the critical “burn-in” period of several dozen hours,
you’'ll be in pretty good shape. Your disk drives may need
realignment every six months or so if used often. Your
printer may need some mechanical adjustments once a
year.

Are there lemons, computers made on a Friday or a
Monday (after a long weekend in The Cattleman or the
Taipai Bar?). You bet. Half a dozen service calls in six
months are too many, if there are legitimate hardware
(and not operator) problems. Keep a record of the service
calls, dates, and corrective action. Don’t be afraid to
demand a new piece of equipment if the same errors
reappear after the warranty period that appeared within
the warranty period. You bought a computer to help you,
not to hinder you!

FHSF

Files, How System Finds

When you specify a disk file name (see FNMH), the
Operating System will generally search all disk drives for

that file name. It'll start at drive 0, and then go on to
drives 1, 2 and 3, if you have that many. You don’t really
need the drive spec for disk reads, therefore, as the system
will search all drives anyway.

FNEFW
File Not Found When the Directory Says It’s
There!

Some software assumes an extension (see FNMH). The
Series I Editor/Assembler, for example, looks for the
extension /SRC if you try to load

*L NAME

Try the extension shown in the directory, or in some

How to do it on the TRS-80

cases (as in LDOS), use a slash after the file name so that
the software will not tack on its “default” extension

L ARTICLE/

(loads ARTICLE rather than ARTICLE/SCR in
LSCRIPT, the LDOS version of Scripsit).

FNMH

File Names, How to Use

TRSDOS and LDOS on the Models I, IT and 111, all use
the same file name format. The Color DOS for the Color
Computer is the same except for “password.” The
simplest format is:

FILENAME

where “FILENAME” is a 1 to 8-character file name. The
first character of this name must be an alphabetic
character, while the remaining characters may be
alphabetic or numeric. Typical names might be A,
ACCNTS, SPACEWAR or H001, any 8 characters you
wish. (The TRS-80s have been programmed to reject
profanity, however — such file names as “APPLE” and
“IBM?” are not accepted).

You can add an “extension” to this name if you want.
An extension has the format:

FILENAME /EXT

where EXT is one to 3-characters, starting with an
alphabetic character. Typical names with extensions
might be ACCNTS/FEB or H123/BAS. There are certain
“default” extensions that various programs “tack on” to
the file name automatically, however. Editor assemblers
usually append “/SRC” for “source” and “/CMD” for
“command”’, LDOS Scripsit uses “/SCR,” BASIC uses

“/BAS,” and so forth. Use extensions at will to help you
identify certain common types of files — all files for
“February,” for example, might have the extension
113 /FEB.”

Not Applicable to Color Computer: The next form of
filenames adds a “password.” A password is just what it
implies — a secret word that only you and your designees
know that must be used to utilize the file. The format of this
file specification is

FILENAME.PASSWORD

or
FILENAME/EXT,.PASSWORD

The password is 1 to 8 characters, starting with an
alphabetic character. Typical passwords might be
.A234567, SECRET, or .MINDY. When a file has a
password, it is called a “protected” file, as a user must
know this password to access the file.

The next, and last item in a disk file name is a “drive
specification.” The drive spec has the form :0, :1, :2, or :3,
depending upon which disk drive you are accessing. A file
name with a drive spec might be ACCNTS:0,
ACCNTS/FEB:0, or ACCNTS/FEB.MINDY:0. Drive
specs are most useful for disk writing to tell the system
which drive to use for the file. On disk reads the system
will search all disk drive directories to find a specified file
and no drive spec is really needed.

FSG2
Video/Graphics Worksheet, Model II

Figure FSG2-1 is a full size graphics worksheet for the
Model II. IJG and William Barden, Jr. hereby grant
permission to copy it for your own use only as many times
as is necessary, as long as the number of copies is kept
under 250,000.

Figure FSG2-1 — Graphics Worksheet, Model 11

(See next page).

FSGC
Video/Graphics Worksheet, Color Computer

Figure FSGC-1 is a full-size graphics worksheet for the
Color Computer. IJG and William Barden, Jr. hereby
grant permission to copy it for your own use only as many

times as is necessary, as long as the number of copies is
kept under 250,000.

Figure FSGC-1 — Graphics Worksheet, Color Computer

(See following pages).

FSGW
Video/Graphics Worksheet, Model I/I1E

Figure FSGW-1 is a full size graphics worksheet for the
Model I/I11. 1JG and William Barden, Jr. hereby grant
permission to copy it for your own use only as many times
as is necessary, as long as the number of copies is kept
under 250,000.

Figure FSGW-1 - Graphics Worksheet, Model I/II

(See following pages).

FHBF
FHOF
FHSF

FNFW

FNMH
FSG2
FSGC
FSGW

How to do it on the TRS-80

Figure FSG2-1 — Graphics Worksheet, Model II

LINE
NUMBER
0
29
31

g HBERE A HEBHEBRHE AEE
e ICE R R B ™ o| | @ () CEIERERERES - | =)
— . - = - 8
~ e nkd
~r~ ko
—
= == 5
e ~n A
= ~= EE
= =
=
- [~}
= = &e
=
== == &=
o=
o v
- =v N2
== —
X :: 2 zs
om \
s
2o ow | ar
oo il :
== ™ Le
o i N
e
= = | &*
W " w %
o o | 82
wo e
o .
L — ‘ &0
il : <
= o= I R
- @ il 7‘
Zlse =] = eo
o= e i
Men e g 2
<< o B 1
H - o - - H
2] - hE
QI S8 9
<o hall Iy = Vit 29
s = o
X]
B 22 e 0%
=] B4 § :
3Ire <
o2 =1 O 1 2¥
—) 2 A
o o< o
e =F =g
= o
s - O &8
o - o ¢
) Rl
== ==
== <=
L e
~ il
~Ne g
o~ e bl
o~ - R
~No hadhal
- ~e
= =
] =
-o b
-o hothed
- hadhoid
- hadhad
- hathid
——— halad
- hal
- =
l -
= =
- =
= 5
M = =
M [= =
= M < =
zZs [=
- D = -
W= e[~ ~1w - =[] e s leleclelel=l=sle = | 8| & =
~—>.j2|8|2[8]8 3|E|8 #|2|8|B|B|B|2|8 B3

PRINT @

How to do it on the TRS-80

Figure FSGC-1 — Graphics Worksheet, Color Computer

@Immmzbz INI'T

FSGC
FSGC

JIgWAN INIT

NOILISOd 8 IN Hmm@

st

o

8

vet

st

oo

Y8l

L

('3

£33

i

-1

|44

€l

ol

094

>3

oty

Tl

o8

o

Tl

"

88¢

o

1

ol

=

ot

"

ot

oz

¥ze

T6T

09

h444

ol

0o9L

8Z1

96

¥9

R 3 % n 38 8 3 33 3 8 3 8 PR BB 3B Y B

(4>

it

NOILISOd
YALOVIVHD

THT 0%C T O BEZ ISZ ST WX OTT 1T TIT SOT ¥0Z OGZ $8) ZSi §65 veL 0L AL £ZL OSL voL 095 O5L 284 VL veL OFL $CI ZTH SZL KCL OCL SAL ZULL SOL YOL OOL %8 23 98 M9 OO BL ZL €3 VO O 90 IV 6 v O & & & T € O U O 3

_.n_On~0N_cﬂ_kﬂ_0ﬂ_mﬂ_'u_nu_uﬂ_—N_ou_o—_w——n—_on_’m—_!—m——ﬂ—__——O——o_ m_k_o_m_vv_n_ N_ 3 _ o_

YILOVIVHD

NOILISOd

How to do it on the TRS-80

Figure FSGW-1 — Graphics Worksheet, Model I/11]

8 Tej9tL
9 T ¢ T
L Z v 8 1 €9 1 sl
LIT T TTTT]
o lLzZT¢e v s 9 ¢ Til
09 55 o5 | for] £ Joe] sz} ez| | Tor] 11 o
i i i % fe il i : il e 8 i Jo
29] chd HEOTE
£2zoljss] 94] 096 87E971
cy) 896
] d HP83E
656 i£ sl co| 968 92591
20] : o 968
i ' HEYIE
568 fos) oo 2E8 26191
" (431
@ ¢
82 & HPB3E
158 28 Lel8as mMMMH
&3 9 £
e e Heoag
YR Vel boc v989T
< £} H voL
kad e HpgaE
£0s f1g] fEjery 08091
os [ox ov9
4 5] Havas
69 82| EEr 9E6ST
B = 9LS
92| 92
H@eac
bl ki 2 T
& & T8
£ F2 1623¢
118 22 22| 8r e 80885T
12 1Z] 8v¥
o) & HE8DE
2oy 61 c1lpEs FrLST
o1] a1 v8e
4! et HOYAE
£95 {91 9t oz€ 8895T
aze
S 1] ¢ 1}
»1 ¥ 1 HBoaE
9T98T
L1133
£ 5] £1j952 5oz
21 141
i i HOOE
282 jor ot] 261 Z5SST
§ 3 61
] L HBBOE
16t 2 <8t 88¥ST
s 5 8zt
£ s HBYOE
e DKL 124434
T . v9
z z HB80E
e 11 1] e somma
u T 4
0
H H “ s &3 113 B ife il HH BH HHi i WYY
X (%) S5 os s¢ [[vef g2 oz c¢ o1 s]

? INI¥d

NOILISOd
YALOWIVHD

How to do it on the TRS-80

FTLO
FOR ... TO Loops, BASIC, Okay to Break Out? All
Systems

Sure. If you have

1¢9 FOR I=¢ TO 1009
11¢ IF A=5 GOTO 2¢¢
120 A=A+22(1)

13¢ NEXT I

it’s perfectly fine to break out when A=35. The program
will not lose control, and nothing catastrophic will happen.
Variable I in this example will be set to the value it had at
the “breakout” point; the remaining variables will also
hold legitimate values.

See FTST for more on FOR ... TO ... STEP.

FTST
FOR TO...... STEP, BASIC, All Systems

The FOR ... TO ... STEP command is used together
with NEXT to set up a “loop”. Here's a simple case:

9¢ A=0

169 FOR I=1 TO 149
110 A=A+I1

12¢ NEXT I

The variable A is first set to 0. Line 100 is then executed,
setting I to 1. Line 110 adds the value of I, now 1, to the
value of A. The sum is put back into variable A.

Line 120 finds the next value of I by adding 1 to I; L is
now equal to 2. If I is not the end value of 100, lines 100,
110, and 120 repeat again. This “loop” repeats until I
finally reaches 100. During the process, we’ve got
something like:

PWN
c WP

100 5050 Done!

Youw'll notice that no STEP was specified. STEP
determines how much is added to the “loop variable.” If
line 100 had stated 100 FOR I=1 TO 100 STEP 3, the
increment value would have been 3, and I would have
been 1, 3,6,9, ...

We also could have started with any starting value and
ended with any ending value, as long as the values were 0
through 32,767, or -1 through -32,768. We could have had
100 FOR I=100 TO 30000 STEP 6, for example, or 100
FOR I=10000 to 100 STEP -10. Note that the STEP must
be a negative value if we are STEPping in reverse.

The values used inthe FOR... TO... STEP statement
can be constants, variables, or expressions. You could have
100 FOR Z = (Y*2) TO (D/100), for example.

Also, though not generally done, the start, end and STEP FSGC

values may be “mixed” numbers, such as 45.67. The
variable used in the loop as the “control” variable may be

any variable type. Also, the end value does not have to be FTLO
FTST

a “multiple” of the step value; ending at 100 and STEPping
by 30 is all right, for example.

The NEXT value can be located any number of lines
forward in the program.

See NFER for information on “nesting” FOR ... TO...
STEP loops and FTLO for “breaking out” of these loops.

How to do it on the TRS-80

notes

How to do it on the TRS-80

GAPC
GET and PUT use in BASIC Graphics, Color
Computer

GET and PUT are not complicated in what they do, but
how they do it. Basically, PUT takes a portion of a
graphics screen and stores it into a two-dimensional
array. At alater time, GET retrieves the information from
the array and reconstructs the screen segment somewhere
else on the screen. This can be done fairly rapidly.
(Rapidly enough for moving large figures for animation).
The whole process is shown in Figure GAPC-1.

GET and PUT are ideal for animation or for saving
blocks of graphics which can later be called up to
construct composite figures. Since the number of arrays
that can be used is limited only by RAM, you can have
many different graphics blocks stored and available for

Figure GAPC-1 - GET/PUT Action

TWO=-DIMENSIONAL
ARRAY

AW Y

PUT2
PUT 1

display. The blocks could represent characters or a set of
predefined figures. A logic diagram could be drawn by
using one PUT array as an AND gate, one as an OR gate,
one as a NAND gate, and so forth.

One word to the wise here. Although Radio Shack
documentation implies that the array must be the same
size as the graphics block, eating up huge chunks of RAM,
in fact, the array may be made considerably smaller. A
“one by n” array in the form AR(O,N), where N is
determined by the method in Figure GAPC-2, can be used
to create much larger GET/PUT areas in less space.
Thanks to James Garon for this one.

Figure GAPC-2 - Calculating GET/PUT Array Size

1¢¢ PMODE 3,1
11¢ GET (42 ,42) - (196,106)

STEPS:
1. FIND ELEMENTS IN GET:
106 196
-4 ey
64 64
1 L
65 * 65 = 4225 ELEMENTS

2. FIND DIVISOR D:

PMODE "G" QR _NOT “G" DIVISOR
¢ NG" 32
1 OR 2 el 16
3 OR & el 8<-THIS
] NOT "G" 32 EXAMPLE
1 O0R 2 NOT "G" 8
3 OR &4 NOT "G" 16

3. DIVIDE # OF ELEMENTS BY DIVISOR D:
4225/8 = 528 1/8

4, ROUND UP RESULT:
528 1/8 ROUNDED UP = 529

5, FIND DIM BY DIVIDING RESULT BY 5, ROUNDING UP
(5 IS # OF BYTES IN ARRAY ENTRY):
529/5 = 1¢5 4/5, ROUNDED UP IS 106

6. ESTABLISH ARRAY:

| R
——te - DIM AR($,166)
1
' 1
imm = :]
' X . o THIS THIS DIMENSION
'—:}—- SR DIMENSION FROM RESULT
. ' R 4 ALWAYS
e i ¢
GC13 Each character position is a byte in video memory (see

Graphics Characters, Model I/I1I

There are 1024 character positions on the screen of the
Models I and III, divided up into 16 lines of 64 characters
each.

MMM1). To find the location of a particular line and
character position in video memory, multiply the line
number (0-15) by 64, add the character position on the
line (0-63), and add 15360. Line 8, character position 32,

GAPC
GC13

How to do it on the TRS-80

for example, would be located at location
8*%64+32+15360 = 512+32+15360 = 15904.

You can POKE (see PPKU) any value into the video
memory locations. Values corresponding to ASCII
characters (see ADFW) will result in a display of text
characters, values corresponding to “control codes” will
cause certain display actions, or will be ignored. Values
from 128 through 255 will be treated as graphics characters
and will set or reset the six subdivisions of the character
position. You can intermix graphics characters and text
characters on a character position basis.

The graphics subdivisions of a character position are
shown in Figure GC13-1. There are 6, each defined by one
of 6 bits in the byte stored in the video display memory.
The first bit of each byte is always a 1, as the value is
128-255 (see CFDB). The next bit is ignored. The “lower”
6 bits define the graphics character, as shown in the figure.

Figure GC13-1 - Graphics Character Representation

64 CHARACTER POSITIONS

. : et
ROWS POSITIONS
i
1
ALWAYS
A1
\A 7 [5 4 3 2 1
GBR\;LE?IIQS ! HEN |
MEMORY

ONE
GRAPHICS
ELEMENT
{ONE CHARACTER
POSITION)

POKE ADDRESS, 128+32+16+8+4+2+1

———
MUST \USE
ALWAYS ANY COMBINATION

HAVE THIS

POKE 15904, 159 SETS [[] IN LINE 8, CP32

To set any graphics subdivision, set the corresponding
bit to a 1; the subdivision will be white. To reset any
graphics subdivision, set the corresponding bit to a 0; the
subdivision will be black.

There are 64 different graphics characters that can be
displayed. They and their corresponding codes are shown
in Figure GC13-2.

The SET/RESET command (see SRBH) works
through BASIC to set each graphics subdivision. For
faster methods, see GHS1.

Figure GC13-2 - Graphics Character Codes

128

GHS1
Graphics, High-Speed, Model I/I11

If you don’t know where video memory is located, what
a graphics character is, or if you have plenty of free time,
read over GC13.

There are 3 methods for high-speed graphics. (Don’t

How to do it on the TRS-80

you just hate statements like that? You k