Computer

Literacy
Skills

GRAPHICS AND
ANIMATION

ON THE

TRS-80

MODELS |,llIlLAND 4

- CHRISTOPHER LAMPTON

BY CHRISTOPHER LAMPTON

A COMPUTER
LITERACY SKILLS BOOK

The words computer graphics and ani-
mation conjure up magical images of
arcade games, bright colors, flashing
lights, and wonderful shapes.

This book shows you how to create
graphics using a TRS-80 Model |, lll, or 4
microcomputer. Some knowledge of the
BASIC language is needed, but you
needn’t be an expert programmer.

You will learn all the ins and outs of
TRS-80 graphics, so that you can make
the most of your machine’s capabilities.
Step-by-step techniques are blended with
careful explanations of the internal work-
ings and architecture of the TRS-80.

Numerous activities give you a chance
to try nearly every technique presented.
Suggested projects are given at the end of
most chapters, and a graphics editing pro-
gram will help you to channel your
creativity more effectively.

So why depend on commercial pro-
grams to make your life more graphic and
animated? Let Chris Lampton help you
learn how to create your own games, de-
signs, and charts.

FRANKLIN WATTS
387 PARK AVENUE SOUTH
NEW YORK, NEW YORK 10016

I

GRAPHICS AND
ANIMATION
ON THE TRS-80

Models I, Ill, and 4

By Christopher
Lampton

ouren cownant

A Computer Literacy Skills Book
FRANKLIN WATTS 1985
New York London Toronto Sydney

HOUSTON puBLIC LIBRARY

RE154739978
SMI

Diagrams by Vantage Art

Photographs courtesy oft

Daisy Taylor: p. 7 (top and bottom),

58 (top, left and right, and bottom);

Radio Shack/Tandy Corporation: pp. 30, 69, 89, 93, 66.

Computer graphics created by Sasha Petraske

Library of Congress Cataloging in Publication Data

Lampton, Christopher.
Graphics and animation on the TRS-80.

(A Computer literacy skills book)

Includes index.

Summary: Explains how to create and animate visual
displays on models I, 1], and 4 of the TRS-80 computer.
1. TRS-80 computers—Programming—Juvenile literature.
2. Computer graphics—-Juvenile literature. 1. Title.

I1. Series.

QA76.8.TI8L36 1985 001.64'43 85-8978
ISBN 0-531-10059-6

Copyright © 1985 by Christopher Lampton
All rights reserved

Printed in the United States of America

6 5 4 3 21

CONTENTS

INTRODUCTION
The Picture Window 1

CHAPTER ONE
Ready, SET, Go! 5

CHAPTER TWO
A Moving Experience 24

CHAPTER THREE
PRINTing a Picture 38

CHAPTER FOUR
The Graphics Editor 54

CHAPTER FIVE
Strings and DATA Statements 64

CHAPTER SIX
Animation Arrays 78

CHAPTER SEVEN
The Business of Graphics 88

Index 99

OTHER BOOKS BY
CHRISTOPHER LAMPTON

Advanced BASIC
BASIC for Beginners
Black Holes and Other Secrets

of the Universe
COBOL for Beginners
Computer Languages
Dinosaurs and the Age of Reptiles
FORTH for Beginners
FORTRAN for Beginners
Fusion: The Eternal Flame
Graphics and Animation

on the Commodore 64
Meteorology: An Introduction
PASCAL for Beginners
PILOT for Beginners
Planet Earth
Prehistoric Animals
Programming in BASIC
6502 Assembly-Language Programming
Space Sciences
The Sun
280 Assembly-Language Programming

1

GRAPHICS AND
ANIMATION
ON THE TRS-80

M“Mll

i

INTRODUCTION

THE PICTURE
WINDOW

There is a world inside the computer where anything can
happen—and nearly everything does, sooner or later. Itis a
world of bits and bytes, circuits and switches, but it is also a
world of symbols and ideas, words and thoughts. As pro-
grammers, we control that world. We design the landscape
and dictate the laws that govern the events that take place
there.

Sometimes we want to open a window on that world—a
picture window, as it were—so that we can see it with our
own eyes. Computer graphics—visual images “drawn” on
the video display of the computer—are the tool we use to
build such a window. Graphics make the world inside the
computer visible and real, whether it be the world of Pac-
Man or of statistical formulas. They allow us to render
scenes that no human eye has ever glimpsed—and to have
a lot of fun in the process.

In the chapters that follow, we will learn how to create
graphics on the video display of the TRS-80 Models I, III,
and 4 microcomputers—and how to animate these images,
make them move. We will create these images through the
medium of TRS-80 Level II BASIC, the dialect of BASIC
built into all of the computers just listed.

The TRS-80 features a low-resolution, black-and-white
graphics display. The TRS-80 is not, to put it gently, the
ideal graphics computer. But this should only inspire us to

[2]

greater heights as graphics programmers. The low-resolu-
tion graphics capabilities of the TRS-80 may seem unim-
pressive at first, but with a little imagination (and some
advanced programming techniques), we can create some
impressive displays.

TRS-80 Level II BASIC offers two methods of creating
graphics: PRINT graphics and SET graphics. Each of these
techniques has its strengths and its weaknesses, but both
are important to the graphics programmer and will be dis-
cussed in this book.

All of our discussions will apply equally to the model I
and model III computers. If you own a model 4, you will
need to run it in model III mode. And if you have a model
4P, load the model III emulator from disk.

From here on, I'll assume you are familiar with the
BASIC programming language and have some grasp of ele-
mentary programming techniques. (The BASIC course that
comes with your TRS-80 computer should provide suffi-
cient background.) If you are familiar with BASIC but not
with the specific brand of BASIC found on the TRS-80,
don’t worry. You’ll learn all features that are unique to this
version, as well as obscure BASIC conventions you might
not have encountered yet.

The key to graphics programming is the pixel (short for
“pictorial element”), the basic unit from which all graphic
images are created on the computer display. This is true
whether the computer in question features high-resolution
or low-resolution graphics, and whether the graphics are
programmed in BASIC or machine language or any other
programming language. The pixel usually appears on the
computer’s display as a tiny dot, or rectangle, of color. The
difference between a high-resolution and a low-resolution
computer is in the size of this pixel. A high-resolution com-
puter has a small, dotlike pixel, a large number of which
can fit onto the display. A low-resolution computer has a
larger pixel, so fewer can fit onto the display.

Obviously, a small pixel is more desirable for creating
graphics than a large pixel. A small pixel can be used to
create shading and detail in a picture. A large pixel, on the
other hand, will create blocky, chunky-looking images.

Unfortunately, the TRS-80 is a low-resolution comput-

[3]

er and supports only large pixels. No matter. Even within
these limitations we can do a great deal with TRS-80 graph-
ics.

On a black-and-white computer like the TRS-80, every
pixel on the screen can have two states: black and white, on
and off. Either the pixel is white, and therefore “on,” or it is
black, and therefore “off.” (On a color computer, each pixel
may take any of several colors.) We program graphic
images on a computer by specifying which pixels we wish to
turn on and which pixels we wish to turn off. However, we
can use several different methods to specify which pixels
should be on and off. Learning to program graphics is a
matter of learning these methods.

Most computers have two primary methods of speci-
tying pixels: bit mapping and character graphics. When
using bit mapping, the programmer specifies every pixel
individually, using a system of coordinates, as though the
screen were a sheet of electronic graph paper. When using
character graphics, on the other hand, the programmer is
given a series of building blocks, each representing a prede-
fined pattern of pixels. Graphic images are then put
together from these building blocks, as a jigsaw puzzle is
put together from precut pieces.

Each method has its own unique advantages. Bit map-
ping is the more flexible method, because it gives the pro-
grammer control over each individual pixel on the display.
However, this flexibility is bought at a cost of more pro-
gramming effort and slower program execution. Character
graphics, on the other hand, are much easier to use, and
take up far less of the computer’s calculating time.

The method a programmer chooses will vary from situ-
ation to situation, from program to program (and some-
times computer to computer). Some programming prob-
lems lend themselves more to bit mapping, others to char-
acter graphics.

From here on, we will refer to bit mapping as SET
graphics, because TRS-80 BASIC uses the SET command to
create its own particular brand of bit mapping. We will re-
fer to character graphics as PRINT graphics, because the
PRINT command is primarily used to create this form of
graphics in BASIC.

We will begin, in the next chapter, with SET graphics.

— READY,
— SET, GO!

Only three commands in Level II BASIC are used purely
for graphics: SET, RESET, and POINT. The SET command,
which we’ll discuss now, turns on a selected pixel on the
TRS-80 display.

For a demonstration, prepare your computer for pro-
gramming in BASIC. If you are running a cassette-based
TRS-80, simply turn it on and press ENTER in response to
the opening prompts. If you are using a disk system, turn it
on, insert a formatted system disk, press RESET, type the
date and time when requested, type BASIC, and press
ENTER-—and then press ENTER in response to the open-
ing prompts.

To have the maximum amount of work space on your
screen, press the key marked CLEAR. Everything on the
screen will be erased, and a flashing cursor will appear in
the upper left-hand corner of the display. Now, type the
following:

SET(110,20)

and press ENTER. A white rectangle of light, a fraction of
an inch on each side, will appear toward the right edge of
the screen, about halfway between top and bottom. This
pixel is the smallest piece of detail you will be able to
include in a graphic image created on this computer. It may

(6]

seem rather large, when viewed in isolation like this, but
think of it as a piece of plastic, or glass, from which you can
construct elaborate mosaics.

How does the SET command work? How do we specify
where on the TRS-80 screen we wish for a pixel to
appear?

The two numbers in parentheses after the SET com-
mand are the coordinates of the pixel we want to turn on.
The first is called the X coordinate, and represents the
horizontal position of the pixel. The second, called the Y
coordinate, represents the vertical position of the pixel.

THE PIXEL MATRIX

There are 6,144 pixels on the TRS-80 screen. When you
enter BASIC, all of these pixels are off—that is, black. They
remain off until you do something to turn them on. The
chart on pages 8 and 9 shows where all of these pixels are.
There are 128 pixels horizontally—that is, from left to
right—and 48 pixels vertically—that is, from top to bot-
tom. The horizontal pixels are numbered from 0 to 127, the
vertical pixels from 0 to 47. Numbering begins at the upper
left-hand corner of the screen. Therefore, to turn on the
pixel in the upper left-hand corner, we would specify an X
coordinate of 0 and a Y coordinate of 0, like this:

SET(0,0)

For every pixel that we move horizontally from this posi-
tion, we add 1 to the first coordinate. For every pixel that
we wish to move vertically from this position, we add 1 to
the second coordinate. To turn on a pixel in the center of
the screen, we would write:

SET(64,24)

Naturally, these commands can be included within a
BASIC program; we need not restrict ourselves to the

SET graphics were used
to construct these designs.

Screen Coordinates
for SET, RESET, and
POINT Instructions.

Vertical (Y) Coordinates

iy
6171819

~

20

2

22

23

24

26

27

30

n

32

33

-]

42

43

45

46

47

Horizontal (X) Coordinates

9
10

1
12

13
14

]
16

7
18

19
20

2
22

23
24

27
28

3t
k-]

33
34

37

39
a0

a
42

a3
44

45
a6

a1

9(9|9|

B]9101112{314/516]7{8i916] 1{2: 3§ 4.

N7 7737
01112314,

ARARARAAARREAN
1213ajs|s]78]9jol1]2l5]a sls 7alol

[10]

immediate mode. (In fact, we will not use them in the
immediate mode again in this book.) Usually, we will want
to turn on several pixels at a time, in a pattern. Complex
designs are fairly easy to accomplish with the SET com-
mand, and can often be created with a few simple program
loops.

Suppose, for instance, that we wish to draw a horizontal
line across the screen using the SET command. How would
we do this?

Well, one characteristic of a horizontal line made up of
a single row of pixels is that every pixel in the line has the
same vertical coordinate but a different horizontal coordi-
nate. We can SET the pixels on a line by placing the SET
command in a program loop and continually incrementing
the X coordinate, leaving the Y coordinate unchanged, like
this:

1 REM *** HORIZONTAL LINE
5 CLS

10 FOR X = 0 TO 127

20 SET(X,24)

30 NEXT X

40 GOTO 40

Type this program and RUN it. It will draw a line across
the entire horizontal width of the screen, cutting the display
in half. We have, you may note, used the variables X and Y
in this program to represent the X and Y coordinates of the
pixel. Although we have chosen these variable names
because they clarify the purpose of the variables, you need
not restrict yourself to these variable names in the SET
command.

(For those of you not already familiar with the TRS-80
dialect of BASIC, note that the command CLS in the first
line clears the video display, just as though you had pressed
the CLEAR key.)

What we have done in this program is to establish a
FOR-NEXT loop that steps variable X through all possible
whole numbers from 0 to 127—that is, all the possible val-
ues that the X coordinate of a SET command may take. On
each pass through the loop, the SET command in line 20
turns on a pixel at a different X coordinate. However, the Y

[11]

coordinate remains fixed at 24, so all of these pixels are in
the vertical center of the screen—in a straight line. The
final line of the program, line 40, creates an infinite loop
that holds the graphic image on the screen long enough for
us to admire it. To terminate the program, press the key
marked BREAK.

To create a vertical line, we increment the value of the Y
coordinate while letting the X coordinate remain the same,
like this:

1 REM ™ VERTICAL LINE
5CLS

10FORY = 0TO 47

20 SET(64,Y)

30 NEXT Y

40 GOTO 40

This program, when RUN, will draw a line from the top of
the screen to the bottom, in the same manner that the last
program drew a line from one side to the other. Compare
this program with the last, and notice how few alterations
were necessary to make this change.

To draw a diagonal line, we must simultaneously incre-
ment the values of the X and Y coordinates. This is trickier,
since the FOR-NEXT loop will increment only one of these
values at a time. Thus, we must increment the second one
independently. Here is one way to do this:

1 REM *** DIAGONAL LINE
5CLS:X =0

10 FOR Y = 0 TO 47

20 SET(X,Y)

30X =Y + 1

40 NEXT Y

50 GOTO 50

Now the value of the X coordinate is increased by the
instruction in line 30, which adds 1 to the value of variable
X on each pass through the loop. The value of Y, as before,
1s incremented by the FOR-NEXT loop. When RUN, this
program will draw a line beginning at the upper left-hand
corner of the screen and terminating at the bottom, about

[12]

one-third of the way across. By changing the values at
which we begin and end the incrementing of each variable,
we can place the line at any point on the screen we wish. Be
careful that neither variable exceeds the allowed range of
coordinate values, or the program will be interrupted by an
error message. For instance, if we had placed X in the FOR-
NEXT loop instead of Y, and had stepped X through the full
range of values from 0 to 127, we would have received an
error message as soon as Y had exceeded 47.

It is possible to draw diagonal lines that slope at any
angle (within the resolution of the TRS-80 screen). To
change the angle, we must change the amount by which we
increment the X or the Y coordinate. Ideally, in order to
maintain an even line with no gaps, one of these coordi-
nates should be incremented by 1 (generally through a FOR-
NEXT loop), the other by a fractional value smaller than 1.
(Note that any fractional value in a screen coordinate will
be ignored by the SET command, though the value of the
variable, if any, that represents that coordinate will be
unchanged.)

For example, the following variation on the last pro-
gram changes the angle of the line by incrementing the val-
ue of X by 0.5 rather than 1. The Y coordinate is still incre-
mented by a FOR-NEXT loop.

1 REM *** DIAGONAL LINE
5CLS:X =0

10 FORY = 0 TO 47

20 SET(X,Y)

30X =X+ 5

40 NEXT Y

50 GOTO 50

For certain graphics applications, it is useful to have a sub-
routine that will draw a line between any two specified
points on the screen. (Some versions of BASIC feature a
command, such as LINE or DRAW, that performs this task,
but TRS-80 BASIC does not.) Such a subroutine would
need to decide whether to increment the X coordinate or the
Y coordinate by a FOR-NEXT loop and by what value to
increment the other coordinate. The subroutine would then
set the actual pixels in the line.

[13]

Here is a subroutine that will perform all of these tasks
on the TRS-80:

10 REM ** DRAW A LINE BETWEEN 2 POINTS
20 REM This subroutine draws a line between
30 REM coordinates (X1,Y1) and (X2,Y2).

40 REM

10000 DX = X2 — X1:DY = Y2 — Y1
10010 IF ABS(DX) << ABS(DY) THEN 10080
10020 YI = DY/ABS(DX)

10030 FOR X = X1 TO X2 STEP SGN(DX)
10040 SET(X,Y1)

10050 Y1 = Y1 4+ YI

10060 NEXT

10070 RETURN

10080 X1 = DX/ABS(DY)

10090 FOR Y = Y1 TO Y2 STEP SGN(DY)
10100 SET(X1,Y)

10110 X1 = X1 + Xl

10120 NEXT

10130 RETURN

(Lines 10 through 40 may be safely removed from this rou-
tine before you use it in a program.)

No detailed explanation of this routine will be given
here, but you can use it in your own programs exactly as it
is given. When calling this subroutine, place the X,Y coor-
dinates of the start of the line in variables X1 and Y1, and
the coordinates of the end of the line in variables X2 and Y2.
For instance, to draw a line between (100,30) and (2,41), you
would use a calling routine like this:

10 CLS

20X1 =100:Y1 =30:X2=2:Y2 =41
30 GOSUB 10000

40 GOTO 40

This subroutine has many practical (and impractical) uses.
Chapter Seven shows how to use it in a program that draws
graphs based on numerical values. Here, however, is a rela-
tively frivolous calling routine that uses the subroutine to
scribble random lines on the screen:

[14]

10 CLS

20 X1 = 64: Y1 = 24

30 X2 = RND(127) : Y2 = RND(47)
40 GOSUB 10000

50 X1 = X2: Y1 = Y2

60 GOTO 30

Hit BREAK when you get tired of watching the random
drawing (or when the screen gets too cluttered for you to see
the new lines being drawn).

GEOMETRIC SHAPES

You may want to use the SET command to draw simple
geometric shapes on the computer screen. Although you
could use the sophisticated line-drawing routine above for
such a purpose, the routine really provides more drawing
power than we may need. A simple FOR-NEXT loop—or
group of several loops—will usually accomplish the task.

The following program, for instance, draws a rectangle
in the center of the display, using two sequential FOR-NEXT
loops:

1 REM *** RECTANGLE

5 CLS

10 FOR X = 58 TO 70

20 SET(X,20) : SET(X,28)
30 NEXT X

40 FORY = 20 TO 28

50 SET (58,Y) : SET (70,Y)
60 NEXT Y

70 GOTO 70

One of the loops draws the horizontal lines; one draws the
vertical lines. Notice that each loop draws two lines simul-
taneously, for a total of four lines. By enlarging our rectan-
gle to its absolute limit, we can draw a decorative border
around the entire video display, like this:

1 REM *** DECORATIVE BORDER
5 CLS
10 FOR X = 0 TO 127

[15]

20 SET(X,0) : SET(X,47)
30 NEXT X

40 FOR Y = 0 TO 47

50 SET (0,Y) : SET(127,Y)
60 NEXT Y

70 GOTO 70

Once again, by adjusting the starting and ending values of
the loops, we can draw the rectangle in any size we wish,
with any ratio of height to width, within reasonable lim-
its.

SET graphics are a good way to decorate an otherwise
dull program display. You can put borders around the dis-
play, as just demonstrated, or even divide the screen into
several rectangular “windows,” each containing a unique
portion of the information being displayed.

An even more practical use of SET graphics is the cre-
ation of bar charts, pictorial representations of large masses
of numbers. A computerized sales report, for instance,
might be accompanied by an on-screen chart using pixel-
generated bars to compare the sales of two different items,
or the total sales for two different years.

Here is a short program that will draw such a bar on the
display of the TRS-80:

1 REM *** RECTANGULAR BAR
10 CLS

20 FOR Y = 47 TO 20 STEP —1
30 FOR X = 60 TO 70

40 SET(X,Y)

50 NEXT X

60 NEXT Y

70 GOTO 70

The bar is drawn from the bottom of the screen upward by
a pair of nested FOR-NEXT loops. The vertical dimension of
the bar is drawn by the outer (Y) loop; the horizontal
dimension is drawn by the inner (X) loop. The bar is 28
pixels tall, from Y coordinate 47 at the bottom to Y coordi-
nate 20 at the top.

Few bar charts feature a single bar, however; at least
two bars are necessary, so that the size of the bars can be

[16]

visually compared. Here is a variation on the above pro-
gram that draws a pair of bars on the display:

5 REM *** TWO RECTANGULAR BARS

10 CLS

20 FOR 1 =0TO 1

30 FORY = 47 TO 20 STEP —1

40FORX =35+ 1*45TO35 + 145 + 10
50 SET(X.Y)

60 NEXT X

70 NEXT Y

80 NEXT |

90 GOTO 90

The bars themselves are still drawn by a pair of nested
FOR-NEXT loops. However, we have now nested those
two loops inside a third loop, which will execute twice, once
for each bar to be drawn. The index variable of this new
loop is I, and we have used it in line 40 to calculate the X
coordinates of each bar. The horizontal width of the bar
extends from X coordinate 35 + | * 45 to X coordinate 35 + |
* 45 + 10. The first time the loop executes, | will be equal to
0. Thus, the first bar will extend horizontally from X coor-
dinate 35 to X coordinate 45, a width of eleven pixels. The
second time the loop executes, | will be equal to 1. Thus, the
second bar will extend horizontally from X coordinate 80 to
X coordinate 90, also a width of eleven pixels.

Both of these bars, however, will have the same vertical
dimensions; that is, they will be the same height. For a bar
chart to be useful, we must be able to draw bars of varying
heights, to visually represent varying quantities. Here is a
variation on the above program that prompts the user to
type in a pair of numbers from the keyboard, then draws
two bars visually comparing these numbers. The first bar
will have a height in pixels equal to the first number typed;
the second bar will have a height in pixels equal to the sec-
ond number typed:

1 REM *** SIMPLE BAR CHART

10 CLS

20 INPUT “TYPE TWO NUMBERS BETWEEN 1 AND 47";
B(0), B(1)

[17]

30 IF B(0) < 1 OR B(0) > 47 OR B(1) < 1 OR B(1) > 47
THEN 20

40 FOR | =0 TO 1

50 FOR Y = 47 TO 47—B(1) STEP —1

60 FORX = 35 + | *45TO 35 + | * 45 + 10

70 SET(X,Y)

80 NEXT X

90 NEXT Y

100 NEXT |

110 GOTO 110

The INPUT statement in line 20 places the two typed values
in variables B(0) and B(1), respectively. Line 30 checks to
make sure these values are in the allowed range; if they are
not, the user is prompted for two more numbers. The FOR-
NEXT loop in line 50 has been rewritten to step the value of
coordinate Y through a range of pixels equal to the value of
variable B(1). On the first pass through the outer loop, when
the first bar is drawn, this will represent variable B(0),
which is equal to the first number typed. On the second
pass through the outer loop, when the second bar is drawn,
this will represent variable B(1), which is equal to the sec-
ond number typed. Thus, the first bar will be drawn to the
height specified by the first number typed, and the second
bar will be drawn to the height specified by the second
number typed.

Type the program and RUN it. Experiment with vari-
ous values. In Chapter Seven, we will see how this program
can be dressed up and turned into a full-fledged business
chart program, with several bells and whistles.

DRAWING WITH
THE KEYBOARD

Another way that we can put SET graphics to use is in the
creation of a program that allows us to draw pictures on the
computer screen by pressing certain keys on the keyboard.
Such a program can be useful in the creation of graphic
designs; it can also be a lot of fun to play with.

In order to draw from the keyboard, we need a way to
interact with the program while it is in progress, in order to
direct the creation of the drawing. The INPUT command is

[18]

not appropriate for this purpose, because it will cause the
program to stop executing unless you press the ENTER
key. Worse, a question mark will be printed on the screen,
destroying your graphics display. Therefore, we need a way
to detect the pressing of a single key without otherwise
interrupting the flow of the program.

In TRS-80 BASIC, this is done with the INKEY$ func-
tion. Like a string variable, INKEY$ is always equal to a
string of characters and thus can be used in a program in
much the same way we normally use string variables (that
is, variables that are set equal to strings of characters).
Unlike an ordinary string variable, however, INKEY$ can-
not be assigned string values in an assignment statement.
Rather, Level II BASIC automatically assigns a string to
INKEY$ that represents the last key pressed on the key-
board.

If we press the A key, for instance, INKEY$ will be set
equal to the single character string A. If we then press the 5
key, the value of INKEY$ will become 5. On the other hand,
if no key has been pressed INKEY$ will be equal to the nul/
string, or empty string, the string that contains no charac-
ters at all.

The null string is represented within a BASIC program
by a pair of quotation marks (*’). Note that there is no
blank space between these marks, since the blank space is
an actual character that can be typed at the computer key-
board by pressing the space bar.

The following short demonstration program will read
the TRS-80 keyboard with INKEY$ and echo each key to the
screen as it is typed:

10 A$ = INKEY$

20 IF A$ = " THEN 10
30 PRINT A$;

40 GOTO 10

Line 10 sets string variable A$ equal to the current value of
INKEY$. Line 20 checks for a null string value, which would
indicate that no key has been pressed yet. If found, the pro-
gram will loop back to look again. If a key has been
pressed—that is, if the value of A$ is not null—the string
represented by that key is printed on the screen by line 30

[19]

and the GOTO statement in line 40 leaps back to 10 to repeat
the process.

CONTROL CHARACTERS

Not every key on the keyboard produces what we think of
as a ““character.” Some keys cause actions to take place on
the video display. For example, press the key marked
ENTER while running the above program. No character
will be printed on the display. Nonetheless, something does
happen when this key is pressed. Ordinarily, this program
will print each character in the position immediately fol-
lowing the previous character. After pressing ENTER, how-
ever, you will find that subsequent characters are printed
on the following line of the display, beginning at the left-
hand margin.

The ENTER key produces a carriage return; that is, it
moves the position at which new characters are printed
down one line and back to the left margin, in the same way
the carriage return key on a typewriter moves the printhead
to a new line and back to the margin. Although no visible
character is printed when we press ENTER, we can say that
it produces a control character, an imaginary character that
causes an action to take place on the screen. The INKEY$
function will be set equal to this control character in the
same way that it becomes equal to any other character on
the keyboard.

The four arrow keys on the TRS-80 keyboard—the
right arrow, left arrow, up arrow, and down arrow—also
produce control characters. In normal BASIC program-
ming mode, the left arrow backspaces and deletes the pre-
viously typed character, the right arrow tabs forward eight
spaces, the down arrow produces a line feed (a control char-
acter similar to a carriage return), and so forth. For our
sketch program, it would be useful if we could detect the
pressing of these arrow keys, since they could be used to
direct the drawing of an image on the computer’s screen.
Here is a short program that demonstrates how INKEY$ can
be used to detect the pressing of the arrow keys:

10 A$ = INKEY$
20 IF A$ = " THEN 10

[20]

30 IF A$ = CHR$(8) THEN PRINT “YOU PRESSED THE LEFT
ARROW"

50 IF A$ = CHR$(9) THEN PRINT “YOU PRESSED THE RIGHT
ARROW”

60 IF A$ = CHR$(10) THEN PRINT “YOU PRESSED THE DOWN
ARROW”

70 IF A$ = CHR$(91) THEN PRINT “YOU PRESSED THE UP
ARROW”

80 GOTO 10

RUN this program and press various keys on the TRS-80
keyboard. Nothing should happen, unless one of the arrow
keys is pressed, in which event the program will identify the
key that is pressed and continue waiting for you to press a
key.

This program identifies the pressing of an arrow key by
the ASCII code number that it produces. ASCII (a term you
may have encountered before now) is short for American
Standard Code for Information Interchange. ASCII is a
coding system that assigns numbers to characters, such as
letters of the alphabet and control characters. Every charac-
ter that we can produce on the TRS-80 keyboard, including
control characters such as carriage returns, backspaces, and
so on, has a corresponding ASCII code.

THE CHR$ FUNCTION

The BASIC function CHR$ converts a number (always in
the range 0 to 255) into the ASCII character it represents.
CHR$(65), for instance, is the letter “A”, because 65 is the
code number for “A”. CHR$(13) is a carriage return. And so
on. When we press the keys that produce these characters,
the appropriate ASCII code number is stored at a special
memory location within the TRS-80 called the key latch. It
is the character value in the key latch that is assigned to the
INKEY$ function.

We can use the CHR$ function to detect whether INKEY$
has been set equal to one of the characters produced by the
arrow keys. CHR$(8) is the control character produced by
the left arrow key, CHR$(9) is the control character pro-
duced by the right arrow key, CHR$(10) is the control char-
acter produced by the down arrow key, and CHR$(91) is the
control character produced by the up arrow key.

[21]

These figures are important enough for us to incorpo-
rate them into a little chart:

KEY CHR$ VALUE
Left Arrow 8
Right Arrow 9
Down Arrow 10
Up Arrow 91

With this information, it is possible to write our first, crude
sketch program, like this:

1 REM *** SKETCH

5 CLS

10X = 64:Y = 24

20 SET(X,Y)

30 A$ = INKEY$

40 IF A$ = CHR$(8) THEN X = X—1
50 IF A$ = CHR$(9) THEN X = X + 1
60 IF A$ = CHR$(10) THEN Y = Y + 1
70 IF A$ = CHR$(91) THEN Y = Y—1
80 GOTO 20

RUN this program. The screen will clear, and a single pixel
will appear in the center of the display. Tap the up arrow
key. Another pixel will appear directly above the first one.
Tap the up arrow key a second time. Yet another pixel will
appear, immediately above the first two. Tap the up arrow
key yet again. A line of pixels has begun to form.

Now tap the left arrow key. The next pixel will appear
to the left of the line. Tap the left arrow key a few more
times. A new line will begin to extend at right angles to the
first.

Tap any of the arrow keys and the line will extend in the
direction pointed to by the arrow. By manipulating these
lines, you can actually draw a picture on the video dis-
play.

As you can see, this is quite a simple program, and it
has its limitations. For instance, if you extend a line too far
in any one direction, you will run right off the edge of the
screen—and the program will be interrupted by an error
message (obliterating the beautiful picture that you have

[22]

drawn). Later, you will learn how to trap out such errors,
along with some useful ways to extend the program, turning
it into a valuable graphics utility.

First, however, let’s look at a slightly different aspect of
TRS-80 SET graphics: animation.

Suggested
Projects

1. Write a program that will draw a line from the
upper left-hand corner of the display to the lower
right-hand corner. :

2. Write a program that turns the display of the
TRS-80 completely white.

3. Expand the bar chart program in this chapter.
Allow the user to input the number of bars desired
(within a reasonable range) and the length of each
bar; then have the program draw the chart on the
display. (For one solution to this problem, see
Chapter Seven.)

4. ADVANCED PROJECT: Write a program that
draws a curve or a circle on the display. (Don’t
become frustrated if you can’t make this program
work. It’s a difficult task, and a knowledge of trigo-
nometry is helpful.)

(il

A MOVING
EXPERIENCE

lllll

Although most of the animation in this book will be per-
formed using other techniques, it is possible to create a
crude sort of animation using pixel graphics. Type this pro-
gram:

10 CLS

20 FOR X = 0 TO 127

30 SET(X,24) : RESET(X,24)
40 NEXT X

50 GOTO 50

The sharp-eyed among you will notice that this is identical
to our first line-drawing program, with the addition of a
single statement: RESET(X,24).

The RESET command, as the name implies, is the
reverse of the SET command. It turns off the pixel at a spec-
ified coordinate position on the display. The coordinate
system for the RESET command is identical to that for the
SET command. Thus, the RESET statement in the above
program simply turns off the pixel turned on by the SET
statement.

What good does this do us? RUN the program. Instead
of seeing a line drawn across the video display, we see a
lone (rather flickery) pixel racing across the screen, from

[25]

the left to the right, looking somewhat like a projectile fired
by a spaceship in an arcade game such as Defender.
Although the animation created here is crude, it is effective.
The pixel actually seems to move.

How is this effect accomplished? As in a motion picture
or animated cartoon, we are essentially creating a sequence
of frames on the computer screen and displaying each in
turn. In the first frame, the pixel is on the far left side of the
display, turned on by the SET command in line 30. Then it
is turned off by the RESET command, effectively blanking
the frame. The loop repeats, creating a second frame with
the pixel in the next horizontal position, and so forth.

Thus the pixel is animated. As unsophisticated as this
animation may seem, it demonstrates the procedure that
underlies all of the graphic animation that we will study in
this book: draw an image on the screen, erase the image,
and redraw it in a new position.

GETTING RID OF FLICKER

This program could stand improvement. Because the pixel
is turned off almost immediately after it is turned on, and
because it remains dark for the greater part of the loop, it
actually spends more time off than on, which makes it seem
dim and flickery, difficult to see. We can reduce this flicker
effect by increasing the amount of time between the execu-
tion of the SET and RESET instructions.
Consider this version of the program:

10 CLS

20 FOR X = 0 TO 127
25 IF X = 0 THEN 35
30 RESET(X—1,24)
35 SET(X,24)

40 NEXT X

50 GOTO 50

We have now reversed the positions of the SET and RESET
commands. RESET turns off the previous pixel (at horizon-
tal coordinate X —1) immediately before the current pixel is
turned on, allowing the pixel to remain visible for the max-
imum amount of time. The IF statement in line 25 causes

[26]

this RESET statement to be skipped during the first execu-
tion of the loop, when there is no previous pixel to turn
off.

RUN this version of the program. The moving pixel is
now clear and distinct, with only a slight flicker.

To change the direction in which the pixel moves, we
need only change the way we increment the X,Y coordi-
nates, just as we changed the direction of the lines we drew
in the previous chapter. In fact, any of the line-drawing pro-
grams in Chapter One can be changed into an animation
program, simply by adding a statement that erases the pre-
vious pixel before or after a new pixel is drawn.

Our sketch program, for instance, can be changed into a
program that allows us to move a pixel about the screen by
pressing the arrow keys. There is no practical use for such a
program—no picture is created on the display—but it illus-
trates techniques that could be used in an arcade game,
where the motion of a spaceship or other on-screen object
can be controlled by pressing keys on the keyboard.

Here is such a version of the sketch program:

10 CLS

20X =64:Y =24

30 SET(X,Y)

A0LX = X:LY =Y

50 A$ = INKEY$

60 IF A$ = CHR$(8) THEN X = X —1
70 IF A3 = CHR$(9) THEN X = X + 1
80 IF A$ = CHR$(10) THEN Y = Y + 1
90 IF A$ = CHR$(91) THEN Y = Y —1
100 RESET(LX,LY)

110 GOTO 30

Now, when you RUN the program, a flickering pixel will
appear in the middle of the screen. When an arrow key is
pressed, the pixel will move in the direction indicated by
the arrow.

As before, the variables X and Y contain the X,Y coordi-
nates of the pixel. The two variables LX and LY contain the
previous (or “last”) values of X and Y. This allows us to reset
the previous pixel image in line 100, after the values of X
and Y have been altered by lines 60 through 90.

[27]
STOP THAT ERROR

This program suffers from the same problem inherent to
the original sketch program: it is possible to move the pixel
off the edge of the screen, causing an error message. Before
going on, we must find a way to prevent this from happen-
ing, so that the problem will not afflict future programs pre-
sented in this book.

The easiest way to forestall such an occurrence is to
have the program test the next value of the X and Y coordi-
nates, before we actually change these values, to see if either
will be off the edge of the screen. Several methods could be
used to do this; the one we will explore now involves creat-
ing a pair of “direction” variables—variables that contain
values representing the next direction, left or right, up or
down, in which the X and Y coordinates will be changed.

We will call these variables DX and DY (for “direction of
X’ and “direction of Y”’). Each can assume one of three
different values: —1, 0, or 1. A value of 0 means that the
coordinate, X or Y, will not be changed during the current
loop; a value of —1 means that the number 1 will be sub-
tracted from the coordinate (moving the X coordinate to
the left or the Y coordinate up); and a value of 1 means that
the number 1 will be added to the coordinate (moving the X
coordinate to the right or the Y coordinate down).

We then test the values of X + DX and Y 4- DY to see if
they are off the edge of the screen. If they are, we don’t
move the pixel during that loop. If they aren’t, then we add
DX to X and DY to Y. Here’s the program itself:

10 CLS

20X =64:Y =24

30DX=0:DY =0

40 SET(X,Y)

50X =X:LY =Y

60 A$ = INKEY$

70 IF A$ = CHR$(8) THEN DX = —1
80 IF A$ = CHR$(9) THEN DX = 1

90 IF A$ = CHR$(10) THEN DY = 1
100 IF A$ = CHR$(91) THEN DY = —1
1M0IFX + DX<OORX + DX > 127 ORY + DY < 0 OR
Y + DY > 47 THEN 30

[28]

120X = X + DX:Y = Y + DY
130 RESET(LX,LY)
140 GOTO 30

REPEATING KEYS

Another way to improve this program is to give it a repeat-
key capability. You’ll notice that the pixel only moves once
every time you press an arrow key. You must raise your
finger from the key and press it again to repeat the move-
ment. It would be much nicer if the pixel continued moving
as long as you held down the key, the way a spaceship in an
arcade game might. Alas, this cannot be done with the
INKEY$ function. Every time we read the value of INKEY$ in
a program (as we do in line 60 of this program), INKEY$ is
automatically set equal to the null string again until another
key is pressed (or until the same key is pressed again). Thus,
the pixel will move one position every time we press an
arrow key; then it will stop.

The best way around this problem is to avoid INKEY$
altogether and use the keyboard matrix. The keyboard
matrix is a portion of the TRS-80’s memory that contains
information about which keys are currently being pressed.
(For those of you not familiar with the terminology, mem-
ory is a series of electronic circuits inside the computer,
each of which holds information in the form of a number
between 0 and 255. All information processed by the com-
puter, including programs, is contained in these circuits.
Each of these circuits is assigned an identifying number
called an address. Certain memory addresses are used for
special purposes, such as the keyboard matrix. We describe
some of these purposes below. You should realize, how-
ever, that the memory addresses we describe here are used
for these purposes on/y on the TRS-80 models I, 111, and 4.
Other machines will use their memory differently.)

We can use the BASIC function PEEK to look at the
keyboard matrix. The PEEK function is always equal to the
value stored at a specified memory address. For instance,
PEEK(12345) is equal to the value stored at memory address
12345,

The keyboard matrix resides in the TRS-80’s memory
between addresses 14337 and 14464, For the moment, we

[29]

are interested only in address 14400. By PEEKing this loca-
tion, we can get information about the current status of the
space bar, ENTER, CLEAR, BREAK, up arrow, down
arrow, left arrow, and right arrow keys. ;

The value of PEEK(14400) tells us which of these keys is
being pressed, according to this chart:

KEY VALUE OF PEEK(14400)
ENTER 1
CLEAR 2
BREAK 4
Up Arrow 8
Down Arrow 16
Left Arrow 32
Right Arrow 64
Space Bar 128

We can easily change our program so that it reads the key-
board by PEEKing the keyboard matrix, like this:

10 CLS
20X =64:Y =24

30DX=0:DY =0

40 SET(X,Y)

50LX =X:LY =Y

60 A = PEEK(14400)

70 IF A = 8 THEN DY = —1

80 IF A = 16 THEN DY = 1

90 IF A = 32 THEN DX = —1

100 IF A = 64 THEN DX = 1

110IF X + DX < 0OR X + DX > 127 OR Y + DY < 0 OR
Y + DY > 47 THEN 30

120X = X + DX:Y = Y + DY

130 RESET(LX,LY)

140 GOTO 30

Now the pixel will move continuously across the screen as
you hold down an arrow key. If you remove lines 50 and
130, which are concerned with resetting the previous image
of the pixel, you can turn this into a more advanced version
of the sketch program described in the last chapter.

Pong-type game

FUN AND GAMES

We now know enough about the graphics and animation
capabilities of the TRS-80 to create a complete arcadelike
game program, somewhat along the lines of the inexpensive
Pong games that used to be sold as attachments for home
televisions. In the following program, you are given control
of a graphic “paddle” on the left-hand side of the display,
with which you must hit a moving pixel that bounces ran-
domly off the white “walls” that border the remainder of
the screen. The paddle is controlled with the two arrow
keys on the left-hand side of the keyboard. You will gain a
point every time you hit the ball successfully. Miss the ball
and the game will be terminated.

10 CLS

20 SC = 0: REM INITIALIZE SCORE

30 FOR X = 9 TO 110 : REM DRAW TOP AND BOTTOM
BORDERS

40 SET(X,3) : SET(X,47)

50 NEXT X

[31]

60 FOR Y = 3 TO 47 : REM DRAW RIGHT BORDER
70 SET(110,Y)

80 NEXT Y

90 FOR Y = 22 TO 26 : REM DRAW PADDLE

100 SET(9,Y)

110 NEXT Y

120 PRINT@4, 'SCORE = 0";

130 PY = 22 : REM Y COORDINATE FOR TOP OF PADDLE
140 X = 15 : Y = 20 : REM STARTING X,Y COORDINATES FOR
BALL

150 LX = X : LY = Y

160 DY = 1 : REM Y DIRECTION

170 DX = 1 : REM X DIRECTION

180 A = PEEK(14400) : REM SCAN KEYBOARD MATRIX

190 IF A = 16 AND PY < 42 THEN RESET(9,PY) : SET(9,PY + 5)
:PY = PY + 1

200 IF A = 8 AND PY > 4 THEN RESET(9,PY + 4) : SET(9,PY
—1): PY = PY —1

210 RESET(LX,LY) : REM ERASE OLD PIXEL

220 SET(X,Y) : REM SET NEW PIXEL

230 LX = X:LY = Y

240 IF POINT(X+DX,Y) =—1 THEN DX = —DX : REM WALL
COMING UP?

250 IF POINT(X,Y +DY) = —1 THEN DY = —DY

260 X = X + DX:Y = Y + DY : REM MOVE PIXEL

270 IF X = 11 AND DX = 1 THEN SC = SC + 1 : PRINT@4,
“SCORE =";SC;

280 IF X < 9 THEN PRINT@534, “GAME OVER!”; :

PRINT @594, “PLAY AGAIN (Y/N)": : INPUT A$: IF A$ = “Y"
THEN RUN ELSE CLS : END

290 GOTO 180

Admittedly, this is far from the most exciting game pro-
gram ever written. The action of the ball is dull and predict-
able, always rebounding at right angles, following essential-
ly the same path every time the game is played. And the
game itself is so slow that even the most determined player
will be bored by the end of the second game. Nonetheless,
the program illustrates many of the principles of graphics
animation discussed in this book.

This program uses one new command: POINT. Actually,
POINT is not a command but a numeric function, like
PEEK. (A numeric function is a BASIC keyword that has a

[32]

numeric value and may be used in a numerical expression
along with numbers and numeric variables.) When we use
the POINT function in a program, it must be followed by
two numbers, in parentheses, representing the X,Y coordi-
nates of a pixel position on the TRS-80 screen. If the pixel
in that position has been turned on, POINT(X,)Y) will be
equal to —1. If the pixel in that position has not been
turned on, or has been turned off, POINT(X,Y) will be equal
to 0. Thus, by testing the value of POINT(X,Y), we can deter-
mine whether a pixel has been illuminated in a given posi-
tion on the display.
Let’s analyze this program in detail, line by line:

LINE 10: The CLS statement clears the screen, as before.
LINE 20: The player’s score will be held in numeric variable
SC. The value of this variable is initialized to 0 in this line.
(Yes, TRS-80 BASIC will automatically set all numeric
variables equal to 0 when we RUN a program, but it is good
practice to initialize such variables explicitly at the begin-
ning of the program.)

LINES 30-50: These operations draw the borders at the top
and bottom of the screen.

LINES 60-80: Draw the border at the right-hand side of the
display.

LINES 90-110: Draw the paddle, which extends initially
from coordinates 9,22 to coordinates 9,26.

LINE 120: Prints an initial score of 0 at the top of the dis-
play. (See the section starting on page 41 for an explanation
of the PRINT @ command.)

LINE 130: Initializes variable PY to a value of 22. PY holds
the Y coordinate of the top of our paddle. This coordinate
will be changed as we move the paddle up and down with
the arrow keys.

LINE 140: Initializes variables X and Y, which contain the
X,Y coordinates of the “ball” (that is, the pixel that we will
be hitting across the playfield).

LINE 150: Initializes variables LX and LY, which contain the
previous (“last”) X,Y coordinates of the ball and which will
be used to reset the pixel image between “frames.”

LINES 160-170: Initialize variables DX and DY, which con-
tain the “directions” that the X and Y coordinates of the ball
will be incremented by the animation loop.

LINE 180: PEEKs the keyboard matrix to see if the arrow
keys are being pressed.

[33]

LINE 190: Checks to see if the down arrow key is being
pressed (A = 16). If so, it also checks to see that the paddle
hasn’t gone all the way to the bottom of the playfield (PY <
42). If both of these conditions are met, it erases the top
pixel of the paddle image (at coordinates 9,PY), draws a new
bottom pixel (at coordinates 9,PY + 5), and adds 1 to the Y
coordinate of the paddle image (PY = PY + 1). The net
effect of all this is to move the paddle image down one pixel
when the down arrow key is pressed.

LINE 200: Checks to see if the up arrow key is being pressed
(A = 8). If so, and if the paddle hasn’t gone all the way to
the top of the playfield (PY < 4), the paddle image is moved
up one pixel, in the same fashion that the previous line
moved it down one pixel.

LINE 210: Erases the previous image of the ball, at coordi-
nates LX,LY. The first time through the loop, this will have
no effect, because the ball will not have been drawn yet.
LINE 220: Draws the ball, by setting a single pixel at coordi-
nates X,Y.

LINE 230: Sets the values of LX and LY to the current X and Y
coordinates, before they are altered in line 260.

LINES 240-250: These lines check ahead to the next X and Y
coordinates at which the ball will be drawn, to see if the
pixels in these positions have been turned on. (This check
is performed by the POINT function, as described above.) If
80, it is assumed that the ball is about to collide with.a wall,
or with the paddle. In order to make the ball seem to
bounce, one of the two “direction” variables (DX and DY) is
negated—that is, given a value that is precisely negative to
its current value—Ilike this: DX = —DX or DY = —DY. This
reverses the direction in which that coordinate is being
incremented, and makes the ball seem to move off in
another direction, that is, to “bounce.”

LINE 260: The ball is moved, by adding the value of DX to
the X coordinate and DY to the Y coordinate. If the value of
DX is 1, then the ball will move to the right; if DX is —1, it
will move to the left. If the value of DY is 1, then the ball
will move down; if DY is —1, it will move up. Since the ball
will always be moving in two directions at one time—Ieft
and up, left and down, right and up, or right and down—it
will always move on a diagonal.

LINE 270: Checks to see if the ball is at X coordinate 11 (X =
11) and moving to the right (DX = 1). This is a condition
that will only be true if the ball has just bounced off the

[34]

paddle; if it is detected, 1 is added to the score (SC = SC +
1) and the revised score is printed at the top of the
screen.

LINE 280: Checks to see if the ball is at X coordinate 9. If so,
the ball has gone past the paddle and the game is over. A
message to that effect is printed and the user is asked if he
or she wishes to play another round.

LINE 290: Loops back and does it all again.

SPEEDING UP
THE ACTION

Why is this game so slow? Mostly because it’s written in
BASIC. Considering everything that actually goes on while
this program is being executed, it’s remarkable that it runs
as fast as it does.

BASIC is an interpreted language. This means that a
BASIC program must first be translated into a form that
the computer can understand. This translation is per-
formed by a program called the BASIC interpreter. As each
BASIC statement is encountered, the interpreter painstak-
ingly deciphers the specific instructions in that statement
and tells the computer how to execute them. This is a time-
consuming process. The interpreter spends the great major-
ity of its time just figuring out what you want it to do, and
only a very small amount of time actually doing it.

The SET and RESET commands are especially time-
consuming. Not only must the interpreter figure out that
you are asking it to turn on (or off) a specific pixel on the
screen, but it must figure out where that pixel is on the basis
of the coordinates that you have given it. This requires a
great many calculations for each pixel. Programs that use
SET and RESET tend to be slow, much too slow for arcade-
style action.

Of course, we can use some tricks to speed up this pro-
gram. One of them is to add a DEFINT statement. The
DEFINT statement tells the computer to treat certain numer-
ic variables within the program as integer variables. An
integer variable is a variable that can only be set equal to an
integer numeric value—that is, a whole number in the
range — 32768 to 32767. Ordinarily, numeric variables in a
Level II BASIC program are assumed to be single precision
variables—that is, variables that can be set equal to a much

[35]

wider range of values, with fractional values. Note that this
is a TRS-80 BASIC command and will not necessarily be
available in other versions of the language.

Add this line to the program:

15 DEFINT A-Z

This tells the BASIC interpreter to treat every numeric
variable beginning with the letters A through Z (which is to
say, every numeric variable) as an integer variable. Because
the BASIC interpreter uses much faster arithmetic routines
when it deals with integer variables, this will cause a notice-
able speedup in the execution of the program. The ball
won’t suddenly shoot across the screen like a bullet, but it
will move faster. We’ll use this trick in many of the anima-
tion programs discussed later in this book. Note, however,
that you had best not use this statement in a program that
requires very large, very small, or fractional values. (Fortu-
nately, this program does not, although some other pro-
grams in this book, such as the line-drawing routine
described earlier in this chapter, do.)

We could also speed up this program with the aid of a
compiler. A compiler is a program that translates a program
written in a high-level language (like BASIC) into a special
language called machine language, which the computer
finds much easier to execute. Because a machine language
program does not have to be translated by an interpreter,
the result will be a program that executes many, many
times faster than a BASIC program. Several compilers
available commercially will translate a Level II BASIC pro-
gram into machine language. If you do a lot of BASIC pro-
gramming on a TRS-80, you may want to buy one. After
compilation, this program will run so quickly that you may
have to insert extra instructions just to slow it down!

In this book, however, we are primarily interested in
programs that run in ordinary, interpreted BASIC. And the
best way to speed up an animation program written in
BASIC is, alas, to avoid slow commands like SET and
RESET. There are much faster ways to create animation in
Level II BASIC. Although we will return to the SET and
RESET commands in later chapters, we are going to turn
now to a much faster method of animating graphics on the
TRS-80: using the PRINT command.

Suggestec
Projects

1. The BASIC function ASC is used to convert a
character into the ASCII code for that character.
For instance, ASC("'A") is equal to 65—the ASCII
code for the letter “A”. ASC(D$) is equal to the
ASCII code of the character represented by string
variable D$. (If the string represented by D$ contains
more than one character, the ASC function will be
equal to the ASCII code of the first character in the
string.) Write a short program that uses the ASC
function in conjunction with the INKEY$ function to
determine the ASCII codes produced by every key
on the TRS-80 keyboard. Create a chart based on
this information.

2. Notice that the SHIFT key does not produce a
code number when pressed. Notice also that most
keys will produce a different code number when
pressed simultaneously with the SHIFT key than
when pressed without the SHIFT key. Add these
SHIFTed values to your chart.

3. Notice that if you press the left SHIFT key and
down arrow key together, then press a third key at
the same time, the third key will produce yet anoth-

er code number, completely different from the code
it produces normally or when pressed with SHIFT
alone. The SHIFT-down arrow combination on the
TRS-80 is referred to as the CONTROL key (and
has the same effect as the key marked CTRL on cer-
tain other computers), because it causes keys on the
keyboard to produce the codes for control charac-
ters. These codes are always in the range 0 to 31 and
are often identical to those produced by control
keys such as ENTER and the arrow keys. For
instance, CTRL-M (that is, the SHIFT-down arrow
combination) pressed simultaneously with the M
key produces the code 13. Add these CTRL key val-
ues to your chart.

4. Write a program, using the PEEK function, that
will explore the keyboard matrix of the TRS-80.
Create a chart showing which numbers appear at
which locations in the TRS-80’s memory when dif-
ferent keys are pressed. (The keyboard matrix lies
between memory addresses 14331 and 14464.)

5. Rewrite the arcade game program in this chapter
so that it can be played simultaneously by two
people. One player could control a paddle at one
side of the screen, and the other could control a pad-
dle at the other side of the screen. The object would
be to bat the ball back and forth, as in Ping-Pong.
When one player misses the ball, the other player
scores. A new ball should appear every time a ball is
missed, until one player reaches a score of 21.

6. Write a two-player game where both players draw
lines on the screen simultaneously, using four keys
on the keyboard. (These keys need not be the arrow
keys.) The lines should grow continuously in length,
with the player controlling the direction of growth
from the keyboard. The first player who collides
with the border of the screen, the other player’s line,
or the player’s own line loses.

A

PRINTING
A PICTURE

Il | lll

When you learned to program in BASIC, the first com-
mand you probably learned was PRINT. And, indeed, PRINT
is the most versatile, most obviously useful of BASIC com-
mands. The PRINT command is the method by which the
BASIC programmer gets information out of the computer.
It is the way a BASIC program speaks to the world. It can
be used to output words, sentences, numbers-——even the
results of equations. But did you know that the PRINT com-
mand could be used to create graphics?
Type this command in the immediate mode:

CLEAR 1000
and press ENTER. Then type this:
PRINT@448, STRING$(64,134)

and press ENTER again. Instead of printing words or num-
bers on the display of the computer, this command draws a
horizontal line from the left side of the screen to the right.
The horizontal line is identical to the one we drew with the
SET command in the last chapter, except for two details: it
is drawn almost instantaneously, and only one command is
required to draw it.

[39]

The advantages of the PRINT command over the SET
command should be immediately obvious. PRINT is both
faster and more efficient than SET. Of course, the SET com-
mand can do things the PRINT comumand cannot, but the
reverse is also true. On the whole, the PRINT command is
the superior method of creating graphics on the TRS-80,
especially in situations where speed and efficiency are para-
mount.

THE CHARACTER SET

In the last chapter, we spoke about the ASCII code, the
system your computer uses for storing characters internally
as numbers. Here is a program that will display all of the
printable characters (as opposed to control characters) in
the ASCII character set, along with their code numbers:

10 CLS

20FOR 1 =32 TO 127

30 PRINT I; “(""; CHR$(I); *)";
40 NEXT |

The numbers 32 through 127 will be displayed on the
screen, each followed (in parentheses) by the character rep-
resented by that number in the ASCII code. We have
printed these characters with the aid of the CHR$ function.
We have not included the code numbers 0 through 31
because they represent control characters.

Although the ASCII code uses only the numbers 0
through 127, the designers of the TRS-80 elected to use the
numbers 128 through 255 to represent additional characters
not taken into account by the ASCII code. The numbers
128 through 191 were specifically put aside for graphics
characters.

Change line 20 of the above program to read:

20FOR | = 128 TO 191

and RUN it. This time, next to each number, you will see a
small block made up of six pixels, some turned on and
some turned off. These are the TRS-80 graphics characters.
Imagine them, if you will, as the pieces of a computerized

[40]

Pixel arrangement for
graphics characters

jigsaw puzzle. We will be using these characters to build
pictures, just as the pieces of a jigsaw puzzle are used to
build pictures. Every picture that we display using the
PRINT command will be made up of some combination of
these characters.

By using the CHR$ function, we can induce the PRINT
command to display any of these graphic characters, or
combinations thereof, on the screen. By combining these
characters in imaginative ways, we can create graphic
images that look like identifiable figures: spaceships, aliens,
flowers, animals, even human beings. And, by adding a few
additional instructions to the PRINT command that dis-
plays these images, we can even animate them.

To see one simple image that can be created out of these
graphic characters, type the following in the immediate
mode:

PRINT CHR$(154); CHR$(144)

A tiny image, constructed of five pixels, will appear at the
left-hand edge of the screen, directly below the command
itself. Although the image is small and lacking in detail (we
will be creating more ambitious images later), you can eas-
ily imagine that it represents a miniature spaceship that
might be part of a computer arcade game. It is made up of
only two of the TRS-80 graphics characters (154 and 144),
displayed one after another on the screen, just as two letters
of the alphabet might be displayed by the PRINT com-
mand.

Using techniques similar to those discussed in the last
chapter, we can animate this image. All we need is some

[41]

method of placing the image at a specified location on the
TRS-80 display and a method of changing this location and
redrawing the image, just as we redrew the animated pixel
in the last chapter.

PRINTING IN
THE RIGHT PLACE

Precise location of the image is accomplished with the
PRINT@ (pronounced “PRINT AT”) command. The @
symbol in this command must be followed by a number in
the range 0 to 1023, representing the position on the screen
where you wish the next character or line of text to be
printed. The first position on the screen, in the upper left-
hand corner, is given a PRINT@ number of 0; the second
position, to the immediate right of this one, is given a num-
ber of 1; the last position on the screen, in the lower right-
hand corner, is given a number of 1023. The chart on pages
42 and 43 shows all of the PRINT@ numbers for the TRS-80
display.

For a quick demonstration of how PRINT@ works, type
the following program:

10 CLS

20 INPUT “PRINT WHERE"';A
30 PRINT@A, “PRINT HERE!"
40 GOTO 20

and RUN it. The screen will clear and you will be prompted
to input a PRINT@ position. Type a number between 0 and
1023 and press ENTER. The program will print the words
“PRINT HERE!" at the position represented by the number
you typed. You will then be prompted, on the following
screen line, for another number. Experiment with a wide
range of numbers. Large numbers, those close to 1023, will
cause printing to occur at the very bottom of the screen.
Small numbers, those close to 0, will cause printing to occur
near the top. Note that printing on the very bottom line of
the screen (positions 960 to 1023) will cause the screen to
scroll up one line. Note also that numbers outside of the
range 0 to 1023—negative numbers, for instance, or num-
bers larger than 1023—will cause the program to terminate
with an “ILLEGAL FUNCTION CALL ERROR.” It’s up

PRINT@ chart.

Radio Shack sells
“video display
worksheets” similar

to this.

128

192

256

320

384

512

576

640

704

768

960

20

45

55

63

63

127

3

383

447

51

575

639

703

767

898

958

1023

30

40

a5

50

55

60

83

[44]

to you as the programmer to make sure that you don’t use
numbers outside of this range with the PRINT@ command.
We can take such precautions in the above program by
adding this line:

25 IF A << 0 OR A > 1023 THEN CLS : PRINT “"NUMBER OUT
OF RANGE'": GOTO 20

Now there is no chance of the program being interrupted by
an unsightly and irritating error message.

We can combine the PRINT@ command with our
spaceship graphic to produce a program that prints the
spaceship smack in the middle of the display, like this:

10 CLS : A = 540
20 PRINT@A, CHR$(154) ; CHR$(144);

Note that we have placed a semicolon at the very end of
this PRINT statement. You may recall from your previous
programming experience that the semicolon tells the
BASIC interpreter not to print a carriage return when the
PRINT command is finished. When printing graphics char-
acters on the screen of the TRS-80, it is usually important
to include this semicolon, since the TRS-80 carriage return
has the added effect of erasing all characters from the cur-
rent print position to the right-hand edge of the screen,
which could have the unfortunate side effect of destroying
carefully constructed graphics displays. Although the semi-
colon is not strictly necessary in this program, it is a good
idea to get into the habit of using it, since the absence of the
semicolon can often produce subtle but destructive bugs in
graphics programs.

RUN the above program. As promised, the spaceship
image will appear at PRINT@ position 540, which is directly
in the center of the video display.

ANIMATION WITH PRINT@

You may not be terribly impressed by this program, but
we’re just beginning. Now we can animate the spaceship
image, in the same way that we animated the pixel in the
previous chapter. Add the following lines to the above pro-
gram:

[45]

30PA =A

40 K$ = INKEYS$: IF K$ = “” THEN 40
50 IF K$ = CHR$(8) THEN A = A —1
60 IF K$ = CHR$(9) THEN A = A + 1
70 PRINT@PA," ;

80 GOTO 20

You should recognize the familiar INKEY$ routine that we
developed in the last chapter. K$ is set equal to the charac-
ter produced by the last key pressed on the keyboard. If this
is CHR$(8) (the left arrow key), the value of A is reduced by
1, effectively moving the PRINT(@ position one space to the
left. If the last key pressed produced CHR$(9) (the right
arrow key), the value of A is increased by 1, moving the
PRINT@ position one space to the right. Variable PA con-
tains the previous value of A, so that we can erase the last
image of the spaceship at that position by printing two
blank spaces (““ ™) after it. Line 20 redraws the ship at the
new position.

RUN the program. Tap the left and right arrow keys to
move the spaceship across the screen. Take special note of
what happens when the spaceship reaches the far edge of
the screen: it “wraps around” to the opposite edge. For
instance, if you move the spaceship all the way to the right-
hand side of the screen, it will vanish and reappear at the
left-hand side—unlike the animated pixel in the last chap-
ter, which refused to go farther than the edge of the screen
(on penalty of an error message). This wrap-around effect is
a result of the way the PRINT@ positions are numbered.
Unlike the SET coordinates, the PRINT@ positions only
reach their maximum and minimum values (0 and 1023) at
the upper left-hand and bottom right-hand corners of the
screen. Thus, you will only receive an error message if you
try to move the spaceship beyond the first or last line of the
video display.

Moving the spaceship all the way to the top or bottom
of the screen would be a fairly difficult task, anyway. Once
again, the INKEY$ function forces us to press the appro-
priate arrow key every time we wish to move the spaceship
one position to the right or left; there is no repeat key func-
tion. As before, we can remedy this by scanning the key-
board matrix. Change lines 40 through 60 to read as fol-
lows:

[46]

40 K = PEEK(14400) : {F K = 0 THEN 40
50 IFK=32THEN A = A —1
60IFK=64THENA = A + 1

MOVING UP AND DOWN

Now the ship will move smoothly and continuously when
the left or right arrow key is held down.

We can also add a feature that allows us to move the
ship up and down by pressing the up or down arrow keys.
As in the pixel-moving program, this is done by changing
the position of the spaceship by an appropriate amount
when the up or down arrow key is pressed. However, it is
not immediately obvious what the “appropriate amount”
is.

To move the pixel up or down in the previous chapter,
we changed the value of the Y coordinate by 1. To move the
spaceship up or down, we must change the value of the
PRINT@ position, represented by variable A. However, if
we only change this amount by 1, it will move left or right.
If we change it by 2 or 3, it will still move left or right, but
by a greater amount. How much must we change the posi-
tion to move it up or down? Look at the PRINT@ chart on
page 00. Compare a position on one line with the position
directly above or below that position. What is the numeri-
cal difference between the two positions?

The answer, of course, is 64, since there are 64 PRINT@
positions on a single line of the TRS-80 screen. Adding or
subtracting 64 from variable A will move our spaceship to
the equivalent position on the line below or above. Thus,
we can add the following lines to our program:

64IFK=8THENA = A —64
68IFK =16 THENA = A + 64

and the ship will move up and down in response to pressing
the up and down arrow keys.

You will find that it is now very easy to move the ship
past the top and bottom lines of the screen—and thus
receive an error message for attempting to print the image
in an illegal position. Therefore, we must rewrite the pro-
gram so that such moves will be intercepted, as we did with
the pixel-moving program. Here is the rewritten version:

[47]

10 CLS : A = 540

20 PRINT@A, CHR$(154); CHR$(144);
30PA = A

40 K = PEEK(14400) : IF K = 0 THEN 40
50 IF K = 32 THEN DA = —1

60 IF K = 64 THEN DA = 1

70 IF K = 8 THEN DA = —64

80 IF K = 16 THEN DA = 64
90A=A+DA:IFA<OORA> 1021 THEN A = A —DA
100 DA = 0

110 PRINT@PA, " "';

120 GOTO 20

Now the image of the ship will simply freeze in place if you
try to move it past the top or bottom line. The direction in
which we are going to move the PRINT@ position is con-
tained in variable DA. This value is added to variable A in
line 90. We don’t check for an out-of-range value of A until
we have actually altered its value; if the value is out of
range, we can easily correct that by subtracting the value of
DA once again, restoring the original value of A.

LOTS AND LOTS
OF CHARACTERS

By increasing the number of graphics characters that we
print, we can create larger and more complex images. The
following program, for instance, produces a picture of the
space shuttle:

10 CLS : CLEAR 1000

20 PRINT CHR$(191) + CHR$(189) + CHR$(144)

30 PRINT STRING$(3,191) + CHR$(180)

40 PRINT STRING$(4,191) + CHR$(189) + STRING$(31,176)
+ CHR$(144)

50 PRINT STRING$(9,191) + CHR$(168) + CHR$(138) +
CHR$(149) + CHR$(191) + CHR$(136) + CHR$(140) +
CHR$(132) + CHR$(191) + CHR$(136) + CHR$(140) +
CHR$(174) + CHR$(149) + STRING$(2,140) + CHR$(170) +
STRING$(12,191) + CHR$(179) + CHR$(187) + CHR$(191) +
STRING$(2,188) + CHR$(176)

60 PRINT STRING$(9,191) + CHR$(186) + CHR$(181) +
CHR$(177) + CHR$(191) + CHR$(186) + CHR$(191) +

[48]

CHR$(181) + CHR$(191) + STRING$(2,179) + CHR$(186) +
CHR$(181) + STRING$(2,191) + CHR$(186) + STRING$(17,191)
+ CHR$(159)

70 PRINT CHR$(130) + CHR$(175) + STRING$(18,191) +
CHR$(143) + CHR$(131)

80 PRINT

The image is too large to animate, but it could be used as
part of a larger graphics display, or even in the title
sequence of a program somehow relating to the space shut-
tle. (Save this program to tape or disk before moving on,
since we will be using variations on it later.)

This program introduces a new BASIC function:
STRINGS$. We use STRING$ when we wish to repeat the
same character several times in a single string. It works
with any ASCII characters, not just graphics characters.
STRING$ must be followed by two numbers, in parentheses.
The first represents the number of times we wish to repeat
the character, and the second is the character itself, or the
code number of that character.

For a couple of quick examples, type the following in
the immediate mode:

CLEAR 1000
PRINT STRING$(64,"A")
PRINT STRING$(40,191)

The CLEAR 1000 statement, which you may have noticed in
earlier sample programs (including the shuttle program), is
a peculiar convention required in TRS-80 BASIC programs
that make extensive use of strings. It reserves space in the
memory of the computer for the storage of strings. Because
the STRING$ function creates a string of characters and
temporarily stores it in the computer’s memory, we must
reserve space for that string. BASIC will automatically
reserve space for 50 characters, but we require slightly more
than that. Actually, CLEAR 1000 reserves space for one
thousand characters, which is far more than we need, but
it’s usually a good idea to reserve more space than you will
actually use, unless memory is at a premium in your com-
puter. (Note that the CLEAR statement also has the effect of
“clearing” the value of all program variables, so always use
it at the beginning of the program, before any variables
have been initialized.)

[49]

The statement PRINT STRING$(64,‘A”") creates a string
of sixty-four “A” ’s and prints them on the display. Simi-
larly, the statement PRINT STRING$(40,191) constructs a
string made up of forty copies of graphics character 191 and
prints it on the display. You may recognize this as the same
method we used at the beginning of this chapter to draw a
line.

In the shuttle program, STRING$ is used to define long
strings of repetitious graphics characters, usually character
191. This is the graphics character for which all six pixels
are turned on. It is generally used to define large white areas
on the screen. In this case, we are using it to shade in the
major part of the body of the shuttle.

REFINING
THE TECHNIQUE

Upon typing and running the shuttle program, you may
notice that it suffers from several deficiencies. One of them
is speed, or the lack thereof. Instead of seeing the shuttle
appear all at once on the screen, we actually see it being
drawn, with the top part appearing first, the middle part
second, and the bottom part last. While this may be suffi-
cient for certain kinds of graphics displays, it would hardly
be adequate for an animated program, or for a program that
needed to display a large number of images in rapid succes-
sion. (You may note, however, that these PRINT graphics
are, as promised earlier, a great deal faster than the SET
graphics of the previous chapter.)

The second problem is in the program itself. It is large,
cumbersome, and awkward to type. Printing long sequenc-
es of CHR$ and STRING$ characters seems like an awfully
inefficient way to produce graphics.

A third problem is that images made up of multiple
graphics creations are difficult (and tedious) to design. Is
there an easy method by which a programmer can go about
creating a picture suitable for a low-resolution TRS-80
graphics display, and then translate that image into a
sequence of code numbers?

Probably the most common method of creating TRS-80
graphics is to build up the image block by block on a piece
of graph paper. Radio Shack, manufacturer of the TRS-80,
sells pads of graph paper specially designed to match the
proportions of the TRS-80 display. A reproduction (re-

[l 0~
8 rX=) o
o bl g -
~) =18
o Gl o - "y
X =
) o I Y
=) No LT
=)
L) -c 19

40— 39vd YINWYYI0Yd 1111
Norys oipey Jeaysyiop Aejdsig oopip 08-Sul

S

EXad

ﬁ [X=) o0 O

25 =5
85 =E8
F] W MM 8

[52]

duced in size) of one of these sheets is shown on page 50
and 51.

Notice that this graph paper is divided into pixel-
shaped rectangles that in turn make up larger rectangles.
These larger rectangles, made of six pixels apiece, represent
the graphics characters. You can draw a picture on the
graph paper by shading in individual pixels with a pencil.
You can then use the larger rectangles to determine which
graphics characters are necessary to re-create the drawing
on the computer.

Around the edges of the graph paper you’ll notice a
series of numbers. These are the pixel coordinates used
with the SET command and the print position numbers
used with PRINT@. Once you have designed your picture,
you can use these numbers to help determine where on the
screen you want to place it.

Graph paper is useful in designing small pictures for use
in your programs. However, you may quickly find yourself
tiring of this method of graphics creation. Is there a faster,
easier way to design graphics?

Yes, there is. In the next chapter, we will see solutions
to all of the problems suggested here.

Suggested
Projects

1. Write a program that uses the PRINT or PRINT@
command to draw a rectangle in the center of the
display.

2. Rewrite the Ping-Pong program from Chapter
Two using PRINT graphics rather than SET graphics.
See if you can create a substantial increase in the
speed with which the program executes.

3. Using graph paper, determine the graphics char-
acters necessary to create a drawing of:

a. a house

b. a car

C. a person

d. any object ordinarily found around a house

Write a program that will draw these images on the
display.

T

THE
GRAPHICS
EDITOR

Designing graphics on the TRS-80 or on any other micro-
computer can be a tedious occupation. Breaking a picture
into a series of character codes, even with the aid of graph
paper, can take time and considerable trial and error.

Fortunately, we have at our disposal a device designed
for performing tedious and repetitive operations: a com-
puter. We can automate the process of designing graph-
ics.

Of course, graphics design is a creative process, and no
creative process can be automated completely—a human
being must still be involved. However, the computer can be
used for the more mechanical aspects of graphics design, to
ease the burden of the programmer.

As promised earlier, here then is a graphics design pro-
gram, expanded considerably from the sketch program
introduced in Chapter One. The internal workings of this
program won’t be explained—it uses several sophisticated
programming techniques that are well beyond the scope of
this book, including a machine language routine for saving
graphics in memory—but we will discuss in some detail
how the program is used. It is not absolutely essential that
you use this program in order to appreciate the rest of this
book, but it will certainly make it easier for you to experi-
ment with the graphics techniques discussed.

[55]
GRAPHICS EDITOR

10 CLS

20 DEFINT A—2Z : CLEAR 1000 : DIMA%(520), NS, F$, V, G$, J
30X =64:Y=24:SF=0:PF =0

40 A$ = STRING$(33,32)

50 V = PEEK(VARPTR(A$) + 1) + 256 * PEEK(VARPTR(A$) + 2)
60 FORI =V TOV + 33

7014 = [:IF 11 > 32767 THEN I1 = 11 —65536

80 READ A : POKE I1, A : NEXT

90 V1 =V + 18:IFV > 32767 THEN V = V —65536

100 IF V1 > 32767 THEN V1 = V1 —65536

110 DEFUSR1 = V : DEFUSR2 = V1

120 CLS : PRINT TAB(25) “MENU OF OPTIONS”

130 PRINT : PRINT TAB(20) ‘1. DRAW NEW PICTURE”

140 PRINT TAB(20) “'2. RESUME CURRENT PICTURE"

150 PRINT TAB(20) “‘3. PRINT DATA TO SCREEN"

160 PRINT TAB(20) “'4. PRINT DATA TO PRINTER"

170 PRINT TAB(20) "'5. SAVE PICTURE TO DISK”

180 PRINT TAB(20) "'6. LOAD PICTURE FROM DISK"”

190 PRINT TAB(20) *'7. RETURN TO BASIC”

200 K$ = INKEY$: IF K$ < 1" OR K$ > “7" THEN 200
210 ON VAL(K$) GOTO 230, 220, 390, 600, 610, 660, 720

220 V = USR2(0) : GOTO 240

230 CLS

240 SF = 0 : PRINT@980, “PRESS <CLEAR> FOR MENU"’;
250 DX = 0:DY = 0

260 P = POINT(X,Y)

270 SET(X,Y)

280 IF (SF = 0 AND P = 0) OR SF = 2 THEN RESET(X,Y)
290 K = PEEK(14400) : IF K = 0 THEN 260 : REM GET LAST
KEY PRESSED. IF NONE, BLINK CURSOR

300 IF K AND 2 THEN V = USR1(0) : GOTO 120

310 IF PEEK(14464) <> 0 THEN SF = 0 ELSE IF K AND 128
THEN SF = 2 ELSE SF = 1 : REM IF SHIFT PRESSED THEN
ENTER CURSOR MOVE MODE ELSE IF SPACEBAR PRESSED
ENTER ERASE MODE ELSE ENTER DRAW MODE

320 IF K AND 8 THEN DY = —1

330 IF K AND 16 THEN DY = 1

340 IF K AND 32 THEN DX = —1

350 IF K AND 64 THEN DX = 1

360 X = X + DX :IF X < 0 OR X > 127 THEN X = X —DX

[56]

370Y =Y + DY:IFY <OORY > 44 THENY = Y —DY
380 GOTO 250

390 CLS

400 PRINT “GRAPHICS CHARACTERS:” : IF PF = 1 THEN
LPRINT*GRAPHICS CHARACTERS:"

410 V = VARPTR(A%(0))

420 NS = 0

430 FOR1 =0TO 14

440 PRINT “LINE #";14+1;":";: IF PF = 1 THEN LPRINT"LINE
#5110

450 FORJ =V + 1*64TOV + | * 64 + 63

460 P = PEEK(J)

470 IF (P = 32) OR (P = 128) THEN NS = NS + 1: GOTO 500
480 IF NS <> 0 THEN GOSUB 570

490 PRINT ** — ";P; : IF PF = 1 THEN LPRINT * — ";P;
500 IF INKEY$ = "’ THEN 520
510 IF INKEY$ = " THEN 510

520 NEXT : GOSUB 570 : PRINT : IF PF = 1 THEN LPRINT
530 NEXT

540 PF = 0 : PRINT “PRESS <CLEAR> TO RETURN TO MENU"
550 IF INKEY$ <> CHR$(31) THEN 550

560 GOTO 120

570 PRINT “ —":NS;"SPACE”;: IF NS > 1 THEN PRINT “S";
580 IF PF = 1 THEN LPRINT" —";NS;“SPACE"; : IF NS > 1
THEN LPRINT"'S”;

590 NS = 0 : RETURN

600 POKE 16427, 62 : PF = 1 : GOTO 390

610 V = VARPTR(A%(0))

620 CLS : LINEINPUT “FILENAME? ";F$: IF F$ = ** THEN 120
630 OPEN “0”, 1, F$

640 FOR | = V TO V+959 : PRINT#1, CHR$(PEEK(!)); : NEXT
650 CLOSE#1 : GOTO 120

660 V = VARPTR(A% (0))

670 CLS : LINEINPUT “FILENAME? ";F$: IF F$=""" THEN 120
680 OPEN “I", 1, F$

690 FOR | = 0 TO 3 : LINEINPUT#1, G$

700 FOR J = 1 TO LEN(G$) : POKE V + (J — 1) + | * 255,
ASC(MID$(G$,J,1)) : NEXT : NEXT

710 CLOSE#1 : GOTO 120

720 CLS : END

730 DATA 237, 91, 251, 64, 33, 8, 0, 25, 235, 33, 0, 60, 1, 0, 4,
237, 1786, 201

740 DATA 42, 251, 64, 1, 8, 0, 9, 17, 0, 60, 1, 0, 4, 237, 176, 201

[57]

After you have typed (and carefully proofread) this pro-
gram, RUN it. The screen will clear and you will see this
menu appear on the display:

MENU OF OPTIONS

. DRAW NEW PICTURE

. RESUME CURRENT PICTURE
. PRINT DATA TO SCREEN

. PRINT DATA TO PRINTER

. SAVE PICTURE TO DISK

. LOAD PICTURE FROM DISK

. RETURN TO BASIC

NO O WN -

(If the program doesn’t behave as we describe here, go back
and check for typing errors once again.) Each of the options
in the menu is available at the touch of keys 1 through 7.
Touch the 1 key. (There is no need to press ENTER.) The
screen will clear again, a flashing cursor will appear in the
middle of the display, and the legend “PRESS <CLEAR>
TO RETURN TO MENU" will appear at the bottom of the
screen.

CREATING PICTURES

You can create pictures with the graphics editor by moving
the cursor around the screen. There are three ways to move
the cursor, depending on the graphic effect you wish to pro-
duce. All involve the use of the arrow keys. If you press an
arrow key by itself, the cursor will move in the direction
indicated, and will draw a line as it moves, as in the original
sketch program. (If you press a vertical key and a horizontal
key simultaneously, the cursor will produce a horizontal
line.)

If you wish to move the cursor without drawing a line,
press an arrow key or keys while simultaneously pressing
one of the SHIFT keys. (This maneuver will probably be
easiest to perform if you use your thumbs to hold the
SHIFT keys and two of your remaining fingers to control
the arrow keys.) Finally, if you wish to erase a portion of
your drawing, press an arrow key or keys while holding
down the space bar (also with your thumbs) and move the
cursor over the section you wish to erase.

These pictures were [

designed using
the graphics
editing program

in this chapter. S

[59]

In this manner, it is fairly simple to create a drawing on
the screen. The size of the drawing doesn’t really matter;
you can use the graphics editor to create a small drawing,
made up of only two or three graphics characters, or a full-
screen picture. The bottom line of the screen is unavailable
for drawing.

Once you have created a satisfactory image, press the
CLEAR key. The screen will be cleared again and the menu
will reappear.

Don’t worry about your picture. The graphics editor has
tucked it away safe and sound in the computer’s memory.
If you should decide to return to your drawing and do some
more work on it, press the 2 key (the “RESUME CURRENT
PICTURE"” option) and the picture will reappear. On the
other hand, if you decide to scrap the drawing and start
again, press the 1 key and you will return to a blank graph-
ics screen.

GETTING THE DATA

Assuming that you are satisfied with your drawing as it is,
you have several more options. Option number 3 is “PRINT
DATA TO SCREEN.” Press the 3 key for a demonstration.
The computer will display a list of the graphics characters
necessary to reproduce the image that you created in the
Draw mode. The list is displayed line by line, for all fifteen
lines of the picture, with the line number shown at the
beginning of each line. A typical data display might look
like this:

GRAPHICS CHARACTERS:

LINE # 1 : - 64 SPACES

LINE # 2 : - 64 SPACES

LINE # 3: - 64 SPACES

LINE # 4 : — 10 SPACES - 191 - 189 - 144 - 51 SPACES

LINE # 5: - 10 SPACES - 191 - 191 - 191 - 180 - 50 SPACES
LINE # 6 : - 10 SPACES - 191 - 191 - 191 - 191 - 189 - 176 -
176 - 176 - 176 - 176 - 176 - 176 - 176 - 176 - 176 - 176 —
176 - 176 - 176 - 176 - 176 - 176 - 176 - 176 - 176 - 176 ~
176 - 176 - 176 -~ 176 - 176 — 176 - 176 - 176 - 176 - 176 -
144 - 17 SPACES

[60]

LINE # 7 : - 10 SPACES ~ 191 -~ 191 -~ 191 - 191 - 191 - 191 -
191 - 191 - 191 - 168 - 138 - 149 -~ 191 - 136 ~ 140 - 132 -
191 - 136 - 140 - 174 - 149 - 140 - 140 - 170 - 191 - 191 ~
191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 ~
179 - 187 - 191 - 188 - 188 - 176 - 12 SPACES

LINE # 8 : - 10 SPACES - 191 - 191 - 191 - 191 - 191 - 191 -
191 - 191 - 191 - 186 - 181 - 177 - 191 -~ 186 - 191 - 181 -
191 - 179 - 179 - 186 - 181 - 191 - 191 - 186 - 191 - 191 ~
191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 -
191 - 191 - 191 - 191 - 191 - 159 - 12 SPACES

LINE # 9: - 10 SPACES - 130 - 175 ~ 191 - 191 - 191 - 191 -
191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 -
191 - 191 - 191 - 191 - 143 - 131 - 32 SPACES

LINE # 10 : - 64 SPACES

LINE # 11 : - 64 SPACES

LINE # 12 : - 64 SPACES

LINE # 13 : - 64 SPACES

LINE # 14 : - 64 SPACES

LINE # 15 : - 64 SPACES

PRESS <CLEAR> TO RETURN TO MENU

If you press CLEAR, as requested, at the end of the display,
you will be returned to the menu.

What can you do with all this information? Well, that
depends on what you intend to do with the picture that you
have drawn. If you’ll look back at the space shuttle program
in the last chapter, you’ll see that the above printout repre-
sents the graphics characters in the space shuttle picture.
That picture was designed with the aid of this graphics edi-
tor. By studying the earlier program, you can see how the
characters printed out above were transcribed into the
PRINT statements of the space shuttle program.

Notice that the graphics utility prints out spaces in a
special manner. Instead of listing the graphics characters
for a blank space (either an ASCII 32 or 128), it simply
prints the word SPACES, preceded by the number of spaces.
This makes it easier to pass over large blank areas when
transcribing this information into a program. Only if the
spaces appear directly in the middle of our drawing is it
necessary for us to consider them. Thus we may dismiss the
first three lines and last six lines of this picture, which con-
tain only spaces, and concentrate on the six lines between

[61]

them. These are the six lines that make up the shuttle pic-
ture. Notice also that each of these lines begins with 10
SPACES. We may pass over these spaces as well; they are
not part of the drawing proper. Neither are the spaces at the
end of each line.

The remaining characters must be transcribed into the
program in order to reproduce the picture. If you don’t
wish to copy all of these numbers onto a sheet of paper, and
you have a printer attached to your computer, you may
choose option number 4 from the main menu: “PRINT
DATA TO PRINTER.” This will print out exactly the same
information on your printer as option number 3 prints on
the display.

SAVING THE PICTURE

If at any time you should wish to return to your drawing
and make additions or changes, you can still resume draw-
ing with option number 2, even after you have printed out
the graphics data with options 3 and 4. Should you wish to
preserve your drawing for further work or viewing at a later
time, option 5 (“SAVE PICTURE TO DISK") allows you to
save the picture to your disk drive. When this option is
selected, you will be prompted to supply a filename. This is
the name under which the picture will be stored on the disk.
Filenames on the TRS-80 can be any length up to eight
characters and must contain only letters of the alphabet and
numerals (though the first character must be alphabetic).
You can also add an extension to the filename, if you wish,
by typing a slash (/) at the end of the name and adding up to
three more characters. Extensions are typically used for
identifying the type of information in a file; for a saved
graphic image, you might use an extension such as /GRA or
/IMG or /PIC. Once you have input the filename, the file will
be saved to the disk in drive #0 and you will be returned to
the menu. If you wish to save to a disk in a different drive,
add a colon followed by the desired drive number at the
end of the filename.

For example, if you wished to call your picture XMAS-
TREE/PIC and save it to drive #1, you would type the fol-
lowing when prompted for the filename:

XMASTREE/PIC:1

[62]

Once you have saved a picture to the disk, it can be re-
loaded into memory with option number 6, “LOAD PIC-
TURE FROM DISK.” Be aware, however, that this will oblit-
erate any picture currently in the program’s memory.

Finally, option number 7 (“RETURN TO BASIC”) ends
the program and puts the user back in the BASIC interpret-
er. If you should accidentally choose this option before sav-
ing your picture (or if you should hit the BREAK key at an
inopportune moment, producing roughly the same effect),
you can reenter the graphics utility with your picture intact
by typing GOTO 120.

A graphics utility such as this provides the programmer
with two great advantages: you can see what a picture looks
like on the screen of your computer (as opposed to a sheet
of graph paper), and you can find out immediately what
graphics characters are necessary to re-create the picture in
a program, instead of tediously calculating the list of graph-
ics characters from a list of code numbers.

Now that you have such a utility at your disposal, try it
out. Sit down at your computer, with the graphics editor
running, and design a few pictures. Save them on your disk,
or print out a list of the characters on your printer. Incor-
porate the graphics characters for a small picture into a
series of PRINT statements, as we have already done with
the shuttle picture, and incorporate those PRINT statements
into a program. In time, you will develop a feel for what can
be done within the limited resolution of TRS-80 graphics,
and for what cannot be done.

Now that you have built up a library of pictures, we will
look at ways of using them in your programs.

Suggested
Projects

Use the graphics editor to create pictures of:

a. a house

b. acar

C. a person

d. any object commonly found around a house

Compare these to the pictures you created with
graph paper in the previous chapter. Are the pic-
tures better? Worse? Was it easier to create them on
graph paper or with the graphics editor?

|ll[|l|l]l

lllll

STRINGS
AND DATA
STATEMENTS

In programming, a string is a series of characters—Ietters of
the alphabet, numerals, punctuation marks, and so on—
treated by the computer as a single unit. You can print a
string to the graphics display, extract portions of it with
BASIC commands such as RIGHT$ and MID$, and so forth.
If you have been programming long in BASIC, you proba-
bly have a good idea of what can be done with strings of
characters. Strings are very important in programming, and
TRS-80 BASIC offers excellent string-handling facilities.
Generally, we think of strings as representing words and
sentences. The following are examples of such strings:

“HELLO”

“THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.”
“TOMORROW AND TOMORROW AND TOMORROW, CREEPS
IN THIS PETTY PACE FROM DAY TO DAY.”

We can use string variables to store and manipulate these
variables. For instance, the statement

A$ = "AARDVARK"

stores the string “"AARDVARK" in the computer’s memory at
the location represented by the string variable A$.

[65]

However, we need not restrict the contents of our
strings to letters of the alphabet, numerals, and punctuation
marks. TRS-80 BASIC allows us to include any kind of
character in a string, as long as the TRS-80 provides a code
number for that character.

Thus, it is possible to create a string made up of graph-
ics characters. In fact, it is not only possible but extremely
useful. Once we have created such a string, we can do the
same things with it that we would do with an ordinary
string. We can print it on the video display, slice out por-
tions of it with MID$, save it on the disk, and so on.

As an example, type the following statement in the
immediate mode:

C$ = CHR$(183) + CHR$(179)

This sets string variable C$ equal to a two-character string
made up of the two graphics characters 183 and 179. (The
plus sign [+] links two strings or characters together into a
longer string.) Now type the following, in the immediate
mode:

PRINT C$

This prints the string itself on the video display. You
should see a small graphic-image, resembling a somewhat
enlarged letter “C”. Not a particularly spectacular graphic,
but perhaps it could be used to represent the main character
in a maze game. This “picture” is made up of the two
graphics characters concatenated together by the assign-
ment statement above. (When using the plus sign to link
strings together, bear in mind that TRS-80 BASIC will not
allow you to create a string longer than 255 characters.)

Now press the CLEAR key to clean off the screen, and
type the following in the immediate mode:

PRINT@540,C$

This PRINT@ command places an enlarged “C” right in the
middle of the screen. It doesn’t take much thought to see
that we can use this technique to create an animated
sequence.

[66]
Type the following program and RUN it:

10 CLS

20 C$ = CHR$(183) + CHR$(179)
30 FOR | = 512 TO 575

40 PRINT@!,C$

50 PRINT@I,"

60 NEXT

70 GOTO 30

Now the enlarged “C” races from one side of the screen to
the other, repeatedly. The image is flickery, but we’ve seen
how to remedy such problems in earlier chapters. In fact,
this program produces no effect that we haven’t been able
to produce through other methods in earlier chapters. How-
ever, we are now storing the graphic image in a string vari-
able, and this will greatly enlarge the range of effects that we
can achieve, particularly in the area of animation.

SHUTTLE IN A STRING

For instance, you will recall one of the problems we expe-
rienced with the space shuttle program in Chapter Three.
The image was printed rather slowly, a line at a time. There
is a reason for this slowness: every time BASIC encounters
the CHR$ function, it must perform a short calculation to
decide precisely which character you are asking it to print.
Before each line of the shuttle picture was printed, BASIC
performed this calculation on every CHR$ in the entire line,
assembling all of the necessary graphics characters within
the TRS-80’s memory, and only then printed the line on
the screen. This slowed down the printing of the picture.

However, if we store each line of the drawing in a string
variable, these calculations are performed during the
assignment statement, rather than the print statement; the
print statement therefore executes a great deal faster.

We can rewrite the space shuttle program with the aid
of string variables. Modify your copy of this program as
follows:

10 CLS : CLEAR 1000
20 A$ = CHR$(191) + CHR$(189) + CHR$(144)
30 B$ = STRING$(3,191) + CHR$(180)

[67]

40 C$ = STRING$(4,191) + CHR$(189) + STRING$(31,176) +
CHR$(144)

50 D$ = STRING$(9,191) + CHR$(168) + CHR$(138) +
CHR$(149) + CHR$(191) + CHR$(136) + CHR$(140) +
CHR$(132) + CHR$(191) + CHR$(136) + CHR$(140) +
CHR$(174) + CHR$(149) + STRING$(2,140) + CHR$(170) +
STRING$(12,191) + CHR$(179) + CHR$(187) + CHR$(191) +
STRING$(2,188) + CHR$(176)

60 E$ = STRING$(9,191) + CHR$(186) + CHR$(181) +
CHR$(177) + CHR$(191) + CHR$(186) + CHR$(191) +
CHR$(181) + CHR$(191) + STRING$(2,179) + CHR$(186) +
CHR$(181) + STRING$(2,191) + CHR$(186) + STRING$(17,191)
+ CHR$(159)

70 F$ = CHR$(130) + CHR$(175) + STRING$(18,191) +
CHR$(143) + CHR$(131)

80 PRINT A$: PRINT B$: PRINT C$: PRINT D$: PRINT E$:
PRINT F$

RUN the program. Notice that the shuttle is now drawn
almost twice as fast as before.

However, the six PRINT statements in line 80 take up a
lot of space. Is there any way to reduce them to something
more compact? The solution is to reduce the six string vari-
ables that contain the shuttle image into a single string
variable.

It’s not hard to envision how to connect all of these
strings into a single string variable: we can simply string
them together with our old friend, the plus sign (+). How-
ever, remember that it’s necessary for the cursor to move
all the way back to the left-hand side of the screen after
drawing each line of the picture. In the current version of
the program, this task is performed automatically by the
carriage return at the end of each PRINT statement. Howev-
er, if we were to link the six strings together into a single,
long string, we would lose this free carriage return and the
shuttle would become a long, meaningless line of graphics
characters, stretching all the way across the display. To see
this, change line 80 to read:

80 S$ = A% + B$ + C$ + D$ + E$ + F$: PRINT S$

We can avoid this problem by actually embedding the car-
riage returns within the string. How can we do this? It is

[68]

possible, you will recall, to place any characters at all in a
string, as long as the computer supplies a code number for
that character. This includes control characters, such as car-
riage returns, which cause cursor movements on the TRS-
80 display. The ASCII code for a carriage return is
CHR$(13). We can embed carriage returns in our string like
this:

80 S$ = A$ + CHR$(13) + B$ + CHR$(13) + C$ + CHR$(13)
+ D$ + CHR$(13) + E$ + CHR$(13) + F$: PRINT S$

Now RUN the program. The entire picture of the shuttle
will be printed when the PRINT S$ command is executed.
All of the graphics characters in the picture, plus the car-
riage returns necessary to separate the six lines of the
image, are stored in string variable S$.

STRINGS AND
DATA STATEMENTS

The ability to store an entire picture in a single string vari-
able gives us a flexible tool for manipulating graphic images
in our programs, particularly when we need to animate
those images. However, the lengthy assignment statements
necessary to create those string variables are still awkward.
They take up a geat deal of space in the program and
require much typing on the part of the programmer (or the
poor aspirant who types the programs from the pages of a
book such as this). Seven separate assignment statements,
two of them covering four lines apiece on the computer
screen, are necessary to store the shuttle image in S$. Is
there a more efficient way of storing graphics data in a pro-
gram?

Yes: with the DATA statement. BASIC programmers
should immediately recall that the DATA statement is a
method of storing string and numeric data within a pro-
gram, like this:

1000 DATA 1, 5, 800, 3129
This DATA statement contains four items of data: the num-

bers 1, 5, 800, and 3129. We can extract this data with the
READ statement. When the BASIC interpreter encounters a

TRS-80 video game

READ statement in a program, it searches through all of the
program lines until it finds the first DATA statement and
stores the first item of data in that statement in the variable
following the word READ. For instance, if you wrote a pro-
gram consisting of these two lines:

10 READ A
20 DATA 7, 19

the variable A, which follows the word READ, would be set
equal to 7, which is the first item in the DATA statement.

If a second READ statement is encountered—or if a sec-
ond variable is referenced in the first READ statement—
that variable will be used to store the second item in the
DATA statement. For instance, if we expanded the above
program to read:

10 READ A, B
20 DATA 7,19

[70]

variable A would be set equal to 7 and B would be set equal
to 19. We would also get the same effect if we wrote:

10 READ A
20 DATA 7,19
30 READ B

The position of the DATA statements in the program rela-
tive to the READ statements is irrelevant; only the order is
significant. If the computer runs out of data in the first
DATA statement and requires more data, it will search for
more DATA statements. Thus, we could also write:

10 READ A,B
20 DATA 7
30 DATA 19

If there aren’t enough DATA statements to match all of our
READ statements, the interpreter will interrupt the program
for an error message.

SHUTTLE IN
A DATA STATEMENT

DATA statements are an ideal method of wedging large
amounts of graphics information into our programs. Lists
of graphics character codes can be contained in DATA state-
ments, and we can put them into string variables with
READ statements. Here is our shuttle program one more
time, with the shuttle image contained in DATA state-
ments:

10 CLS : CLEAR 1000

20 8% = "

30 FOR | = 1to 56 : READ A

40 IF A > 127 THEN S$ = S$ + CHR$(A) : NEXT : GOTO 70
50 IF A = 0 THEN READ B : S$ = S$ + CHR$(B) : NEXT :
GOTO 70

60 READ B : S$ = S$ + STRING$(A,B) : NEXT

70 PRINT S$

80 END

90 DATA 191, 189, 144, 0, 13, 3, 191, 180, 0, 13, 4, 191, 189, 31,
176, 144, 0, 13, 9, 191, 168, 138, 149, 191, 136, 140, 132, 191,

[71]

136, 140, 174, 149, 2, 140, 170, 12, 191, 179, 187, 191, 2, 188,
176

100 DATA 0, 13, 9, 191, 186, 181, 177, 191, 186, 191, 181, 191, 2,
179, 186, 181, 2, 191, 186, 17, 191, 159, 0, 13, 130, 175, 18, 191,
143, 131

It may be hard to believe all of the graphics characters in
the shuttle picture could be squeezed into two DATA state-
ments, but there they are. Actually, we’ve used a fairly fan-
cy method of squeezing the characters into these DATA
statements, which may look a little confusing at first glance.
This isn’t the only method of storing graphics characters in
DATA statements—you may in fact wish to come up with a
method of your own—but it works, so we’ll take a detailed
look at how this method works.

The READ statement has been placed inside a FOR-
NEXT loop, so that it will be executed 56 times, once for
each item of data read from the DATA statements. Line 40
checks to see if the last value read (which is contained in
variable A) is greater than 127. If so, it assumes this to be
the code for a graphics character and adds it to string S$,
which was initialized in line 20 as a null string (*). If the
character isn’t a graphics character, line 50 checks to see if it
is a 0. The 0 indicates that the next character is a control
character. If the character is a 0, the rest of the IF statement
in line 50 reads the next character from the DATA state-
ment, which is the actual control character, and adds that
character (rather than the 0) to S$. If the character is neither
a 0 nor a number greater than 127, the character is assumed
to be the multiplier portion of a STRING$ statement. The
next character (the actual graphics character) is READ into
variable B, and the two values are used to create the string
STRING$(A,B), which is added to S$. This saves us from
having to repeat the same character code over and over
again in the DATA statement.

When you RUN the program, you’ll experience a slight
delay while the data is read. This is the price we pay for
using DATA statements: a longer period of program initiali-
zation. Once the initialization is complete, the picture is
drawn at the same speed as before.

The long initialization period is not much of a problem
on a program such as this, but on a longer program, with a
lot of graphics, reading all of the information from the

[72]

DATA statements may take as long as a minute. And, of
course, it is in these longer programs with extensive graph-
ics requirements that the DATA statements become cru-
cial.

Ironically, the DATA statement is no longer necessary
after the initialization period. It becomes a kind of excess
baggage. Is there any way to dispose of the DATA statements
after we have run the program for the first time?

STRING PACKING

As a matter of fact, there is. We can use a technique called
string packing. This is a fairly complex and even slightly
dangerous technique—it can destroy your entire program if
used incorrectly—Dbut it is the most efficient method possi-
ble for storing graphics data within a TRS-80 BASIC pro-
gram. Whether you choose to use string packing or not is up
to you, but it is a powerful programming technique.

String packing makes use of the BASIC POKE com-
mand. This command is used to alter the contents of the
computer’s memory; we can use it to place a string of
graphics characters directly into a quoted string within the
program. We’re not going to go into a lengthy explanation
of how this works; rather, you’ll be handed an all-purpose
string-packing subroutine that will do the job for you. How-
ever, you'll be able to see the results of string packing
directly in your program, and you may be a little startled
when you do.

Here is the shuttle program, back for one last encore,
rewritten with a string-packing routine. Before you run this
program, proofread it carefully and save a copy on disk or
tape! An error in the wrong place could cause disastrous
results.

5 CLS : CLEAR 1000

7 REM THE STRING IN THE FOLLOWING LINE MUST CONTAIN
EXACTLY 155 CHARACTERS.

10 S$ = 12345678901234567890123456789012345678901234
56789012345678901234567890123456789012345678901234567
89012345678901234567890123456789012345678901234567890
12345"

20 V = VARPTR(S$) : M = PEEK (V + 1) + 256 * PEEK(V + 2)
30 FOR | = 1 TO 56 : READ A

[73]

40 IF A > 127 THEN POKE MJ(A: M =M + 1 : NEXT : GOTO 70
50 IF A= 0THEN READ B: POKEM,B: M = M + 1 : NEXT :
GOTO 70

60 READ B: FORJ = M TO M+ (A —1): POKE J,B : NEXT :
M=M+ A:NEXT

70 PRINT S$

80 END

90 DATA 191, 189, 144, 0, 13, 3, 191, 180, 0, 13, 4, 191, 189, 31,
176, 144, 0, 13, 9, 191, 168, 138, 149, 191, 136, 140, 132, 191,
136, 140, 174, 149, 2, 140, 170, 12, 191, 179, 187, 191, 2, 188
176

100 DATA 0, 13, 9, 191, 186, 181, 177, 191, 186, 191, 181, 191, 2
179, 186, 181, 2, 191, 186, 17, 191, 159, 0, 13, 130, 175, 18, 191,
143, 131

Once you’re certain that everything’s okay, RUN the pro-
gram. There should be a brief pause as the graphics charac-
ters are read from the DATA statement, and then the picture
of the shuttle will be printed, just as before.

When you LIST the program after running it, however,
you might receive a bit of a shock. Moments earlier, line 10
looked like this:

10 S$ = “1234567890123456789012345678901234567890123456
789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345™

Now, however, it has been mysteriously transformed. The
string of 155 numbers that you typed between the quota-
tion marks has been replaced by . . . the picture of the
space shuttle!

What exactly has happened here? With the aid of the
BASIC POKE command, we have moved the graphics char-
acters from the DATA statements to line 10, where they have
been inserted inside the 155-character string that you typed
there. Now, in fact, the DATA statements are no longer
needed in the program.

To prove this, delete lines 10 through 60 and lines 90
and 100, then RUN the program again. It should work just
as before, but with no time-consuming initialization period
before the picture is printed. And the program is now only
four lines long!

[74]

String packing, then, is the most efficient method of
storing graphics in a program. Once the string has been
packed with the graphics characters, an initialization peri-
od is no longer required, and relatively little space is taken
up in the program by the graphics.

HOW IT WORKS

Although you needn’t understand how string packing
works in order to utilize the technique, some readers may
be interested in a few of the details. Look back at the origi-
nal program listing. Notice that in line 20 we use the rather
mysterious sounding BASIC function VARPTR. The name
of this function is short for “variable pointer”’-—it points to
the place in the computer’s memory where the value of a
variable is stored. (Actually, in the case of a string variable,
it points to another pointer that tells us where the string is
stored, but the statement M = PEEK(V+1) + 256 *
PEEK(V+2) gives us the address of the actual string.) In the
case of our dummy string in line 10, the string is stored
within the program itself. The instructions on lines 40
through 60 use the POKE command to place the graphics
characters inside this string, so that they become a perma-
nent part of the program. Once stored there, the DATA state-
ments become irrelevant. And because they are now stored
in a more efficient form than they were in the DATA state-
ments, the program becomes considerably shorter when the
DATA statements are eliminated.

Here is an all-purpose string-packing subroutine that
you can use in your programs:

1 000 REM e e e e & e e e de e e e e ek ek e e ek Kok ok T v vk v o e ke ok ok ke e e e Ak ek Aok ok ke

1010 REM * STRING PACKING ROUTINE:
1020 REM * V must contain the 'VARPTR’
1030 REM * address of the string to
1040 REM * be packed.

1050 REM * NC must contain the number
1060 REM * of characters in the string,
1065 REM * not counting multipliers.
1070 REM * The next DATA statement in
1080 REM * the program must contain
1090 REM * the graphics characters to
1100 REM * be packed.

*
*
*
*
*
*

*
*
d
*

1 1 1 0 REM ARKARTAKAKAREKARIAANFRARKAARRA AR ARk dhhdhhhhhdkd

[75]

1120 REM

1130 V = PEEK(V + 1) + 256 * PEEK(V + 2)

1140 FOR | = 1 TO NC : READ A

1150 IF A > 127 THEN POKE M,A: M = M + 1 : NEXT :
RETURN

1160 IF A = 0 THEN READ B : POKEM,B: M = M + 1: NEXT
: RETURN

1170 READB: FORJ = MTO M + (A —1) : POKE J,B : NEXT
‘M =M + A:NEXT

1180 RETURN

You can call this routine from any point within a program
with the GOSUB command. Instructions for calling the rou-
tine are in the REM statements at the beginning: variable V
should equal the VARPTR address of the string to be packed.
(This is calculated through the simple statement V =
VARPTR(A$), where A$ is the string to be packed.) The string
itself should be placed elsewhere in the program, in an
assignment statement, followed by a dummy string in quo-
tation marks, like this:

A$ = “THIS IS A DUMMY STRING"

The dummy string should contain exactly as many charac-
ters as there are graphics characters to be packed into it.
The number of graphics characters should be in variable
NC, where characters to be multiplied (see next paragraph)
count as a single character.

The next DATA statement to be READ from should con-
tain the graphics characters, in the same format used in our
program that demonstrated the use of DATA statements—
that is, all numbers greater than 127 should be graphics
characters. Numbers less than 128 (except for 0 and control
characters) should be multipliers, that is, they should indi-
cate that the following number is a graphics character to be
repeated a certain number of times. For instance, the num-
ber sequence

100 DATA 5, 143

would indicate that the graphics character 143 is to be
repeated five consecutive times. As noted above, characters
to be multiplied only count as a single character in calculat-
ing the value of NC. (However, this character would count

[76]

five times when calculating the length of the dummy string.)

Finally, the number 0 indicates that the number follow-
ing it is a control character. You can use this to insert a
carriage return into a graphic, although other control char-
acters can be inserted as well.

If you use the string-packing technique in any of your
programs, it is important that you save a copy of the pro-
gram before you run it. Because string packing tampers
with the contents of your computer’s memory, you run the
risk of accidentally destroying important information con-
tained in the computer’s memory, such as the program
itself. This will not harm your computer in any way, but
you may be forced to press the RESET key to regain control
of the computer. In this event, you will want to have a safe
copy of the program tucked away, so that you can reload it
into the computer and proofread it carefully to see what
went wrong.

WARNING: Once you have created a packed string in a
TRS-80 BASIC program, you should not attempt to edit
the program line containing the packed string, or bizarre
results may ensue.

Suggested
Projects

Take the programs that you created to draw the
house, the car, the person, and the household
object, and rewrite them using DATA statements.
Then rewrite them using string packing.

ll“)’llll

i

ANIMATION
ARRAYS

Now that you know how to insert graphics into your pro-
grams, and have a tool to facilitate graphics design, let’s
talk about some of the things that you can do with those
graphics. Let’s talk about making them move.

Oh, we’ve talked about animation in earlier chapters,
which is to say that we’ve made a pixel or a picture move
from one side of the screen to the other, sometimes in
response to a push of one of the arrow keys.

But that’s not all there is to animation. When a living
creature moves, it doesn’t just glide stiffly across your field
of vision. Rather, it moves in a symphony of carefully coor-
dinated motions. A human being, for instance, walks across
a room with legs and arms swinging, eyes darting, head
moving from side to side. A bird soars across the sky with
wings flapping, beak opening and closing. Even PacMan
(not quite a living creature) opens and closes his mouth as
he darts about his maze, eating blue dots.

We can add this sort of complex animation to our
BASIC programs, at the expense of slightly more compli-
cated graphics techniques. The expense is worth it. Here,
for instance, is a short program that shows a PacMan-like
creature (actually the enlarged “C” from Chapter Five)
chewing its way through a line of dots.

[79]

10 CLS

20X =0

30 C$(0) = CHR$(183) + CHR$(179)
40 C$(1) = CHR$(157) + CHR$(140)
50 FOR | = 512 TO 575 : PRINT@I, “.”"; : NEXT
60 FOR | = 512 TO 575

70X =X+ 1:1FX>1THENX =0
80 PRINT@! —1," "

90 PRINT@! ,C$(X)

100 FOR J = 1 TO 40 : NEXT

110 NEXT

120 PRINT@I—1, * "

130 GOTO 50

And here, in a more elaborate variation on the same theme,
a small spaceship glides slowly across the screen:

10 CLS

20X = 0

30 C$(0) = CHR$(174) + CHR$(179) + CHR$(179) + CHR$(132)
40 C$(1) = CHR$(166) + CHR$(183) + CHR$(179) + CHR$(132)
50 C$(2) = CHR$(166) + CHR$(187) + CHR$(179) + CHR$(132)
60 C$(3) = CHR$(166) + CHR$(179) + CHR$(183) + CHR$(132)
70 C$(4) = CHR$(166) + CHR$(179) + CHR$(187) + CHR$(132)

80 FOR | = 512 TO 572

WX =X+1:IFX>4THENX =0
100 PRINT@I —1, "

110 PRINT@I, C$(X)

120 FOR J = 1 TO 50 : NEXT

130 NEXT

140 PRINT@I —1, "

150 CLS : GOTO 80

In both cases, there 1s more to the animation than the sim-
ple movement of an image from one side of the display to
the other. The PacMan-like creature opens and closes his
mouth as he chomps on the dots; a large “eye” on the front
of the spaceship rotates ominously from side to side. This
animation is more realistic, and more complex, than the
animation we created earlier.

The secret is in our use of variable arrays. You should
recall, from your earlier programming experiences, that an

[80]

array is a method of storing lists of information in a pro-
gram, in a meaningful order. An array variable is identified
by the subscript that follows it in parentheses. The presence
of the subscript tells us that the variable is only one in an
array of variables; the number in the parentheses tells us
which element within the array this variable represents. If
the subscript is itself a variable or an arithmetic expression
rather than a number, then the variable may represent any
of the elements in the array, depending on the current value
of the variable or expression.

In the two programs above, instead of storing a single
image in a single variable, we have stored several different
images in an array of variables. The image in each element
of the array represents a different stage in the animation. In
the first of the two programs, for instance, variable C$(0)
contains the image of the creature with his mouth open,
while variable C$(1) holds the image of the creature with his
mouth closed.

Line 90 of this program prints string variable C$(X) on
the display. Because the subscript of this variable is itself a
variable, C$(X) may represent either C$(0) or C$(1), depend-
ing on the current value of X. Line 70 causes the value of X
to alternate between 0 and 1, on consecutive executions of
the loop. Thus, as the program executes, we see the image
alternate rapidly between the picture of the creature with
his mouth open and the picture of the creature with his
mouth closed.

Similarly, in the second program, we store the images of
the spaceship in variables C$(0), C$(1), C$(2), C$(3), and
C$(4). In each, the rotating eye has moved to a new posi-
tion. Lines 90 and 110 cycle through the five images, dis-
playing each in turn, producing the rotation effect.

And that’s the whole trick of complex animation: create
as many different images as you need, place them in an
array, and move them around the screen with a program
loop, shuffling through the elements of the array as
required. If you wish to have your animated character vary
its movements in different situations, then create several
different arrays, or move through the elements of the one
array in a different order. For instance, if we wish to reverse
the rotation of the spaceship’s “eye,” we need merely
reverse our progress through the array. The only change
necessary is in line 90, which would be rewritten like this:

[81]
90X = X — 1:IFX < O THEN X = 4

It shouldn’t be hard to think up nearly endless possibilities
for games, written in BASIC, that would utilize these graph-
ic techniques. And the use of such animation need not be
restricted to games. The title screen of any program could
be enhanced by animated characters, and you may even
wish to produce animation for its own sake—comic strips
on the computer display, complete with captions and dia-
logue balloons.

For instance, add these two lines to the spaceship pro-
gram:

75 A$ = “GALACTIC INVADERS”
105 IF | > 536 AND | < 554 PRINT@I —1, MID$(A$,l —536,1);

and RUN it. Now, the spaceship drifting from left to right
across the screen magically writes the words “GALACTIC
INVADERS" in the center of the display. This sequence
would make a diverting title screen for an arcade game of
that name.

BATTLE IN OUTER SPACE

As an example, here is a listing for a simple arcade game
that makes use of almost all of the animation techniques
discussed so far:

10 REM

20 REM **** COSMIC WAR: A GAME ****

30 REM

40 CLS : DEFINT A-Z

50 C$(0) = CHR$(168) + CHR$(137) + CHR$(134) + CHR$(148)
60 C$(1) = CHR$(160) + CHR$(134) + CHR$(140) + CHR$(137)
+ CHR$(144)

70 S$ = CHR$(168) + CHR$(189)

75 REM *** TITLE SEQUENCE ***

80 N$ = “COSMIC WAR"

80C =0

100 FOR | = 512 TO 572: PRINT@! —1,“ ";: PRINT@!I,
C$(C);

110C=C+1:IFC>1THENC =0

120 FOR J = 1 TO 30 : NEXT

[82]

130 IF | > 539 AND | < 556 THEN PRINT@! —1,

MID$(N$,I—539,1);

140 NEXT

150 FOR | = 1 TO 1000 : NEXT : CLS

155 REM *** THE GAME ***

160 P = 990

170 1 = 512 + RND(55)

180C=C -+ 1:IFC>1THENC =0

190 PRINT@I—1, **

200 PRINT@!I, C$(C)

210 PRINT@P, * "

220 P = P + DP: PRINT@P, S$;: DP = 0

230 K = PEEK(14400) : IF K = 0 THEN 270

240 IF K AND 128 THEN X = (P — 959) *2: FOR Y = 44 TO 24

STEP —1 : IF POINT(X,Y) = —1 THEN Z = | : GOTO 310 ELSE

SET(X,Y) : RESET(X,Y) : NEXT

250 IF K AND 32 THEN DP = —1:IF P + DP < 940 THEN DP

=0

260 IF K AND 64 THEN DP = 1: IF P + DP > 1021 THEN

DP =0

270 IF RND(3) = 1 THEN X = (| — 512) * 2 + RND(4) —1 : FOR
= 30 TO 47 : IF POINT(X,Y) = —1 THEN Z = P : GOTO 310

ELSE SET(X,Y) : RESET(X,Y) : NEXT

280 IF RND(5) = 1 THEN 180 ELSE | = | +1: IF | < 572 THEN

180

290 PRINT@I—1, “

300 | = 512: GOTO 180

310 FOR K = 1 TO 30 : PRINT@2Z,CHR$(RND(64)+127);

CHR$(RND(64)-+127); CHR$(RND(64)+ 127); CHR$(RND(64)

+127); NEXT

320 CLS : IF Z = | THEN PRINT@537, “CONGRATULATIONS!”

ELSE IF Z = P THEN PRINT@540, "WHOOPS!"

330 PRINT@600, '“PLAY AGAIN (Y/N) ?"

340 K$ = INKEY$: IF K$ = *’ THEN 340

350 IF K$ = "Y” THEN 160

360 IF K$ = “N” THEN END

370 GOTO 340

The game play is simple: you control a tiny missile base at
the bottom of the screen. Pressing the left and right arrow
keys moves the base left and right. Pressing the space bar
fires a missile (actually, a single pixel) toward the middle of
the screen, where an animated alien spacecraft is moving

[83]

from left to right. The spacecraft is dropping bombs at ran-
dom. If one hits you, you will be destroyed; the game will
end with the message “WHOOPS!" and you will be given a
chance to play again. If you hit the spacecraft, it will be
destroyed. The game will end with a message of congratu-
lations and you will also be given a chance to play again.

Before this action begins, you will see a title sequence
similar to the one demonstrated.

If you examine the program listing, you will see that
this program uses almost every animation technique dis-
cussed in this book. You should be able to puzzle out most
of the program’s operation based on what you’ve learned so
far. Nonetheless, here is a line-by-line explanation of how
the program works:

LINE 40: Clears the screen and declares all variables as
integers to speed up the action.

LINES 50-70: Defines the two animated images—the space-
craft (in variables C$(0) and C$(1)) and the missile base (in
variable S$).

LINE 80: Initializes title to be displayed during title se-
quence.

LINE 90: Initializes the subscript for the spacecraft array.
LINE 100: Moves the image of the spacecraft from the left
side of the display to the right, for title sequence.

LINE 110: Alternates the subscript (variable C) of the space-
craft array between 0 and 1, to display the two images of the
spacecraft.

LINE 120: Delay loop. Prevents animation from proceeding
too quickly. (Delete this line and see what happens.)

LINE 130: Prints the title characters as the spaceship crosses
the center of the screen.

LINE 140: End of loop.

LINE 150: Delay loop to hold title on screen for a few sec-
onds.

LINE 160: Starting position (in variable P) for missile
base.

LINE 170: Starting position (in variable I) for spacecraft; 512
is the PRINT@ position at the beginning of the line on
which the spacecraft is positioned. The BASIC function
RND(55) returns a random number between 1 and 55. This
is added to 512 to give the spacecraft a random starting
position on that line.

[84]

LINE 180: Alternates the two elements of the spacecraft
array.

LINE 190: Clears the previous image of the spacecraft.
LINE 200: Prints the image of the spacecraft in its current
position.

LINE 210: Clears the previous image of the missile base.
LINE 220: Calculates the next position of the missile base
using variable DP (“direction of P”), prints the base at this
position and clears DP to 0.

LINE 230: Scans the keyboard matrix to see if a control key
is being pressed. If none is found, skips to line 270.

LINE 240: Checks to see if the space bar is being pressed. If
so, it fires a missile upward. The expression X = (P —959) *
2 translates the PRINT@ position (P) of the spacecraft into
an X coordinate of the type used by the SET command. The
FOR-NEXT loop then SETs and RESETs a succession of pix-
els from the top of the missile base to the middle of the
screen (Y coordinates 24-44). The POINT function checks to
see if the coordinates where the missile is to be drawn are
currently occupied by a pixel. If so—that is, if POINT(X,Y) =
—1—it 1s assumed that the “missile” has collided with the
spacecraft and branches to the explosion routine in line
310.

LINES 250-260: Check for left and right arrow keys. If one is
pressed, DP (the value added to the position of the missile
before it is drawn) is set to 1 or —1 (for right and left,
respectively). The value is checked for out of bounds, and
DP is cleared to 0 if necessary.

LINE 270: Drops a bomb from the spacecraft. Because the
bomb is a random event, it is only executed if the value of
RND(3) is 1. This gives the bomb a one-out-of-three chance
of being dropped on any pass through the loop. The routine
that draws the falling bomb is similar to the routine that
draws the missile in line 240: it calculates the X coordinate
based on the | position of the spacecraft (but this time it
also adds in the value of RND(4)—1, adding an element of
surprise to the precise position of the bomb relative to the
body of the spacecraft). If the POINT function detects a col-
lision, the program branches to the explosion routine in
line 310.

LINE 280: On most executions of the loop, this line will add
1 to the position of the spacecraft, moving it to the right,
and will then branch back to line 180 to continue the main

[85]

loop of the game if the spacecraft has not moved off the
right side of the screen. If RND(5) = 1, however, the position
of the spacecraft is not incremented, though the loop is
repeated. This slows the speed of the craft ever so slightly,
allowing your missile base to catch up with it if you are
pursuing it from the left. Otherwise, you would only be able
to attack the spacecraft from the right.

LINE 290: Erases the final image of the spacecraft at the
right-hand side of the screen.

LINE 300: Moves the spacecraft back to the left side of the
screen and continues the main loop.

LINE 310: Draws an explosion on the screen. This is the
routine called when a missile strikes the spacecraft or a
bomb strikes the missile base. It prints an animated explo-
sion at position Z on the display. If this routine is called
when a missile strikes the spacecraft, Z will equal the cur-
rent position of the spacecraft. If this routine is called when
a bomb strikes the missile base, then Z will equal the
current position of the missile base. The explosion 1is
generated by drawing a sequence of randomly chosen
graphics characters on the screen in a FOR-NEXT loop. (A
random-graphics character is chosen with the function
CHR$(RND(64)+127).

LINE 320: Clears the screen and prints “CONGRATULA-
TIONS!" if the spacecraft is destroyed and “WHOOPS!" if
your missile base is destroyed.

LINE 330: Offers the player a chance to play again.

LINES 340-370: Checks the keyboard for a keypress. If Y is
pressed, restarts the game. If N is pressed, ENDs the pro-
gram. If neither is pressed, checks again.

CUSTOMIZING THE GAME

Cosmic War is not a full-featured game—it is not intended
to be—but it could be expanded. Readers are encouraged to
do so. For instance, you might wish to add a score routine,
such as the one included in the earlier Ping-Pong game. The
score could be printed at the top of the screen or at any
other location you might choose. Instead of ending the
game when a missile hits the spaceship, you could add 1 (or
10 or 100) to the player’s score and introduce another space-
craft. (The second spacecraft could be identical to the first,
or completely different. Figuring out how a different space-

[86]

craft graphic could be introduced into the game without
unnecessarily expanding the size of the main program loop
is a problem left to the reader. Several solutions are possi-
ble.) You could allot the player a certain number of missile
bases—three or four, perhaps—and terminate the game
only when they are all used up. The number of bases
remaining could be displayed alongside the score. Perhaps
you could even include an option whereby the user could
select the number of bases desired.

Finally, you could tinker with the graphics. If you don’t
like the way the spacecraft and the missile base are
designed, change them. Use the graphics editor program to
create new ones. Insert your own graphics characters into
the assignment statements in lines 50 through 70. If you feel
particularly ambitious, increase the number of images used
to depict the spacecraft and the muissile base. Increase the
number of “frames” in the spacecraft animation from two
to three or four or even five. Give the missile base a chang-
ing sequence of images.

Nothing in the program as currently written is sacred.
Use it as a springboard for any graphics ideas that you
might wish to play around with. Customize it. Turn it into
your own game.

Or, better yet, start a game of your own design from
scratch.

Suggested
Projects

1. Write a program that depicts a person walking
from one side of the screen to the other.

2. Add an option to the program described in the
first project that allows you to guide the person
around the display with the arrow keys.

3. Invent your own comic strip, complete with char-
acters, situations, and dialogue balloons or cap-
tions.

4. Make up your own arcade or video game. Try a
simple game, so that the BASIC program will have
only a small number of moving objects to control.

it

THE BUSINESS
OF GRAPHICS

There is more to computer graphics, of course, than arcade
games and pretty pictures. There are a number of very prac-
tical reasons for putting drawings on the screen of your
computer.

A picture, they say, is worth a thousand words. On the
computer, at least, a picture can be worth a thousand num-
bers. We can make numbers, and the relationships among
numbers, far more meaningful by translating those num-
bers into a graphic representation.

In Chapter One we saw how the SET command could
be used to create bar charts. Such charts can be used to
compare numerical values on the display, in a very imme-
diate, visual sort of way. For instance, a company that sells
vacuum cleaners might use such a chart to compare its sales
figures (expressed in dollars or in numbers of vacuum
cleaners) from one year to the next. By displaying ten bars,
each representing the number of vacuum cleaners in a giv-
en year, it will be immediately apparent which years were
best for vacuum cleaner sales, and whether there is an
upward or downward trend in these sales. Similarly, if the
company sells several different types of vacuum cleaners,
each bar could represent the dollar volume of sales for a
single type. The relative sales for each type would then be
visually obvious.

Gross Earnings and Expenses
: : For 1989

Total !x:!ms -

Bar chart on a TRS-80

THE BAR CHART PROGRAM

Here is a program that will create bar charts to order. You
need merely type in how many bars you wish to display
(from 2 to 15), what unit of measure you intend to use (dol-
lars, inches, tons, and so on) and how many units each bar
should represent. The program will create and display an
appropriate chart on the screen:

10 CLEAR 1000

20 DIM L(15): HB = 0

30 CLS : INPUT “TITLE OF CHART";T$

40 INPUT “NUMBER OF BARS DESIRED (2-15)";NB : IF NB <
2 OR NB > 15 THEN 40

50 INPUT “NAME OF STANDARD UNIT (PLURAL; 10 CHARS
OR LESS)";SU$: IF LEN(SU$) > 58 THEN 50

60 FOR | = 0 TO NB —1 : PRINT “LENGTH OF BAR NUMBER";|
+ 1;“IN STANDARD UNITS"; : INPUT L(l) : IF L(l) < 1 THEN 60
70 IF HB < L(l) THEN HB = L())

80 NEXT

[90]

90 CLS : W = 128/NB : SU = 34/HB

100 PRINT@32 — LEN(T$)/2, T$

110 PRINT@96 — (7 + LEN(SU$))/2, “(UNIT = ";SU$;")";
120 FOR | = 0 TO NB —1

130 FOR Y = 44 TO 44 —SU * L(l) STEP —1

140 FORX =1*WTOI*W + W —2

150 SET(X,Y)

160 NEXT : NEXT : NEXT

170 PW = 64/NB

180 FOR| = 0 TONB —1

190 1$ = STR$ (I + 1) : 1$ = RIGHT$(I$,LEN(I$)—1)

200 PRINT@960 + | * PW + PW/2 —1,I$;

210 NEXT

220 FOR1 = 0 TONB —1

230 L$ = STRH(L() : L$ = RIGHT$(LS,LEN(LS)—1)

240 PRINT@832—INT(L(1)*SU/3) * 64 + | * PW + PW/2 —
LEN(L$)/2,L$;

250 NEXT

260 K$ = INKEY$: IF K$ = “"THEN 260

270 GOTO 30

RUN the program. When you are prompted for the name
of the chart, type “SALES FIGURES". For number of bars,
type “12". When you are prompted for a standard unit, type
“MILLIONS OF DOLLARS". Input a number between 0 and
100 for each bar as prompted, then sit back and watch.

The bars will be drawn, one after another, from the left
side of the screen to the right, with the individual bars
growing upward from the bottom of the screen to the top.
After the bars have been drawn, they will be numbered
sequentially, on the bottom line of the screen. Then the
number of standard units represented by each bar will be
printed just above the top of each bar.

When you have tired of looking at the chart created
from your information, press any key and the program will
prompt you for data to create another chart. Make up any
kind of data that you wish: base a chart on your most recent
report card (with 5 units representing an “A,” 4 units a “B,”
1 unit an “F,” and so on) or on the amount of money you
have earned shoveling snow or mowing lawns in the last
three months.

Here is a line-by-line explanation of how the program
works:

[91]

LINE 10: Opens up space for the strings used by the pro-
gram.

LINE 20: Dimensions an array called L, which will contain
the lengths of the bars in the chart. Initializes the value of
HB (“highest bar”), which will contain the length of the
largest bar in the chart. (This is used later for establishing
the number of units represented by each pixel.)

LINE 30: Clears the screen and prompts for the title to be
given the chart. (Title is stored in T$.)

LINE 40: Establishes the number of bars to be included in
the chart and checks to make sure that the value is in range.
(The number of bars is stored in NB.)

LINE 50: Inputs the name of the unit of measure to be used
in the bars. (The name is stored in SU$.) Checks to make
sure that the unit name will fit on the display when the
chart is drawn. If not, it prompts for another name.

LINE 60: Inputs the lengths of the bars and stores them in
L(1). Because the input loop is based on the value of NB, this
will prompt only for the number of bars input by line 40.

LINE 70: Establishes the value of HB. If HB is smaller than
the value of the current bar, then it is assigned the value of
the current bar. This assures that HB is always equal to the
length of the largest bar yet assigned a length.

LINE 80: End of loop.

LINE 90: Clears the screen. Establishes the width (W) of each
bar in pixels. Since the entire horizontal dimension of the
screen (128 pixels) is available for the width of the bars, the
width of the individual bars can be calculated by dividing
128 by the total number of bars (NB). Naturally, the more
bars on the screen, the fewer pixels in the width of each bar.
Also establishes the number of pixels that will represent the
standard unit; this value is stored in variable SU. It is
assumed in this line that the longest bar on the screen will
stretch across the entire vertical area allotted for bars.
Thus, the pixel size of the standard unit equals the size of
this vertical area (34 pixels) divided by the number of units
in the longest bar (HB).

LINE 100: Prints the title (T$) in the center of the top screen
line. The statement PRINT @ 32 —LEN(T$)/2, T$ centers the
title by subtracting half the length of T$ from 32 (which is
the halfway point on the first line) and printing T$ at the
resulting position.

LINE 110: Prints the name of the standard unit in the center

[92]

of the second line of the display. The method used for cen-
tering the text is similar to that in line 100, but slightly more
complicated because of the patchwork nature of this
string.

LINE 120: Start of the loop that will draw NB bars on the
display.

LINE 130: Begins the loop that draws the vertical dimension
of each bar.

LINE 140: Begins the loop that draws the horizontal dimen-
sion of each bar.

LINE 150; Sets the actual pixels in the bars.

LINE 160: Terminates all three loops.

LINE 170: Calculates the width of each bar in PRINT posi-
tions. Stores this value in PW, for reference by later pro-
gram lines.

LINE 180: Begins the loop that prints a number (from 1 to
NB) underneath each bar.

LINE 190: Converts the number for each bar into a string,
then removes the trailing blank from the string. BASIC
automatically adds a blank space after each number, and a
blank space in front of all positive numbers (to occupy the
position taken by the minus sign in a negative number).
These extra spaces tend to crowd the bottom line of the
display, so the leading space is removed by this line.

LINE 200: Centers each number under the appropriate
bar.

LINE 210: Terminates the loop.

LINE 220: Begins the loop that prints the unit number at the
top of each bar.

LINE 230: Removes the trailing blank from the unit num-
ber.

LINE 240: Centers each unit number directly over the appro-
priate bar.

LINE 250: Terminates the loop.

LINES 260-270: Waits for you to press a key, then loops
back to input data for another chart.

In a sense, this program makes a diverting little game; it’s
fun to input numbers and watch the computer create bar
charts based on them. But this program also represents an
extremely useful utility. The routine in lines 100 through
250, which actually draws the chart, could be used in other
programs.

[93]

<
.
-t
3
—y
=
-

P S LN P

152.8
151.8
151.6
151.4
151
154.
150
158
159
158
158.

123478911

sNrTDON

Bar chart on a TRS-80

CUSTOMIZING THE PROGRAM

One useful application would be a program that reads data
from a disk or cassette tape and creates a bar chart or charts
based on that data. You would need, of course, to write a
second program to place that data on the disk. The data for
each chart would need to include the program name, the
number of bars, the name of the standard unit, the number
of units for each bar, and the length of the longest bar. Data
read from the disk would need to be assigned to variables
like this:

NB = Number of bars

T$ = Title
SU$ = Name of standard unit
L) . . . LNB —1) = Length of bars 1 o NB

HB = Length of longest bar

The chart-drawing routine could then be called to create the
chart. By placing a special separator symbol between

[94]

groups of data on the disk, you could have the program
print out several charts in sequence, displaying each until a
key is pressed, then drawing the next. Such a program
would be ideal for business presentations (for example,
graphing the amount you earn each week on a paper route,
or mowing the lawn), or simply for impressing your
friends.

You may also wish to make a few changes in the chart-
drawing routine itself. For instance, it would be useful if the
user could give a name to each bar, so that the significance
of the individual bars would be apparent. If the bars repre-
sent sales figures for consecutive years, the first bar could
be labeled 1979, the second bar 1980, and so forth. The
name could be placed underneath the bar, where the bar
numbers are placed in the current version. Of course, when
a large number of very narrow bars are displayed, the name
might not fit underneath each bar; hence, you might want
to redesign the way the bars are displayed. One possible
rearrangement would be for the bars to grow horizontally
rather than vertically, with the individual bars stacked one
over top of the other. The names of the bars could be placed
in a vertical column on the right-hand side of the display.
Of course, this would reduce the number of bars that could
be shown, since there are fewer pixels vertically on the dis-
play.

If you have access to a plotter—a printer capable of
reproducing graphics on paper—it would be valuable to
add an option that would produce a hard copy of the chart,
rendering the chart on paper with the same procedures (ap-
propriately modified) that we have used here to draw the
charts on the video display.

THE GRAPH PROGRAM

Bar charts are not the only visual form in which numeric
information can be displayed. Useful, in addition, is the
ability to graph data on a computer screen, that is, to dis-
play the data as a series of points, all of which are connected
by lines.

Here, for instance, is a variation on our bar chart pro-
gram that uses the line-drawing subroutine from Chapter
Two to display a graph on the TRS-80 display:

[95]

10 DIM H(30)
20CLS: MH = 0

30 INPUT ""NUMBER OF POINTS';NP

40 FOR| = 0 TO NP —1

50 PRINT “HEIGHT OF POINT";l + 1; : INPUT H(l)
60 IF MH < H(l) THEN MH = H(l)

70 NEXT

80CLS:X =0:FORY = 3 TO 46 : SET(X,Y) : NEXT : FOR X
= 0 TO 124 : SET(X,47) : NEXT

100 W = 121/(NP —1): SU = 41/MH

110 FOR | = 1 TONP —1: SET(I * W,46) : NEXT
130 X1 = 0: Y1 = 41—(H(0) * SU)

140 FOR | = 1 TO NP —1

150 X2 = W * 1: Y2 = 41 —(H(l) * SU)

160 GOSUB 10000 : X1= X2: Y1 = Y2

170 NEXT

180 K$ = INKEY$: IF K$ = ' THEN 180

190 GOTO 20

10000 DX = X2 —X1: DY = Y2 —Y1

10010 IF ABS(DX) < ABS(DY) THEN 10080
10020 YI = DY/ABS(DX)

10030 FOR X = X1 TO X2 STEP SGN(DX)

10040 SET(X,Y1)

10050 Y1 = Y1 + YI

10060 NEXT

10070 RETURN

10080 XI = DX/ABS(DY)

10090 FOR Y = Y1 TO Y2 STEP SGN(DY)

10100 SET(X1,Y)

10110 X1 = X1 + XI

10120 NEXT

10130 RETURN

RUN the program. Instead of being prompted for the num-
ber of bars, you are prompted for the number of points you
wish to graph, and the height of each point, that is, the
number of units from the bottom of the screen to the point.
However, you may use any coordinate system you wish
when inputting this value; you need not restrict yourself to
the forty-eight-pixel, Y-coordinate limit of the TRS-80
screen. The program automatically converts your number
to TRS-80 coordinates.

TRS-80 graphics plotter with pie chart

Once you have input a height for all points, the points
will be drawn from left to right and connected with lines.
The internal workings of this program are similar to those
of the bar chart program; we will not explain in detail how
it works. (Recall that the subroutine in line 10000 is the
same subroutine introduced in Chapter Two for drawing
lines between specified points on the screen.)

You may wish to dress up this program with a number
of useful options or alter the way in which data is input.
The program could be used, for instance, to graph a data
trend over a period of time, or to chart the grades earned by
your classmates in an exam.

Ambitious programmers may want to dream up still
other ways of displaying information graphically on the
TRS-80 display. The pie chart, for instance, is a popular
method of illustrating the percentages of a given amount (of
money, for instance, or supplies) apportioned for a specific
purpose. To create a pie chart, you would need to draw a
circle, then draw angled lines from the center of the circle to
the perimeter to delineate the “slices” of the pie. You are

[97]

warned, however, that this is a fairly advanced program-
ming project, and requires at least a nodding acquaintance
with trigonometry.

Needless to say, these are only a few of the ways in
which you can display information graphically, given the
assistance of a powerful calculating and information pro-
cessing engine like the TRS-80. If you can think of methods
not suggested here, by all means try them out. If you should
come up with a method that no one has thought of before,
it may turn out to be your ticket to fame and fortune.

Or you might only discover that playing with computer
graphics is a heck of a lot of fun.

And that’s almost as nice.

INDEX

Address, 28, 75
American Standard Code
for Information Inter-
change, 20
Animation, 65-66, 82, 86
arrays, 78-80
image, 68
techniques, 81, 83
Arcade game, 26, 28, 30,
34, 37, 40, 81
Arithmetic routines, 35
Arrays, 78-80
Arrow keys, 19-21, 26, 28-
29, 32-33, 36-37, 45-46,
57, 78, 82
ASC, 36
ASCII, 20, 36, 39, 48, 60,
68
Assignment statement, 18,
65, 68, 75, 86

Backspaces, 19-20
Bar chart, 15-16, 23, 88-
90, 93-94, 96

Bits, 1

bit mapping, 3
Border, 15, 32, 37
BREAK, 11, 14, 29
Bugs, 44
Building blocks, 3
Build pictures, 40
Bytes, 1

Calling routine, 13-14
Carriage return, 19-20, 67-
68, 76
Character graphics, 3, 86
Charts
bar charts, 15-16,
23, 88-90, 93-94,
96
pie chart, 96
CHRS, 20, 39-40, 44-45,
47-49, 56, 65-68, 81-82,
85
CLEAR, 5, 10, 29, 38, 48,
55-57, 59-60, 65, 89
CLOSE, 56

[100]

CLS, 10-16, 20, 24-27, 29~
30, 32, 39, 41, 44, 47,
55-56, 66, 70, 72, 79,
81-82, 89-90, 95

Color computer, 3

Comic strips, 81, 87

Compiler, 35, 78

Computers calculating
time, 3

Control characters, 19, 37,
68, 76

Control key, 37

Cosmic War, 81-86

CTRL, 37

Cursor, 57

DATA, 56, 68-75, 77

Deciphers, 34

DEFINT, 34, 55

DIM, 89, 95

Direction variables, 27,
33

Disk, 61, 72, 93

DRAW, 12

Dummy string, 74-76

DX, 13, 27-29, 31-32, 55,
59, 95

DY, 13, 27-29, 31-32, 95

Editor, 86

Electronic circuits, 28

Electronic graph paper, 3

Empty string, 18

Emulator, 2

END, 70, 73

ENTER, 5, 18-19, 29, 37-
38, 41, 55, 57

Error message, 27, 70

Extensions, 61

Filename, 61
Flicker effect, 25

FOR, 10-17, 24-25, 30-31,
39, 55-56, 66, 70, 72-73,
79, 81-82, 89-90, 95

FOR-NEXT loop, 10-12,
14-17, 71, 84-85

Frames, 25, 32, 86

Full-screen picture, 59

GOSUB, 13-14, 56, 75, 95
GOTO, 11-20, 24-26, 28-
29, 31, 41, 44-45, 47,
55-56, 62, 66, 70, 79, 82,
90, 95
Graph paper, 53-54, 62-63
Graphics, 1-3, 5, 7-9, 12,
24-27, 30-31, 35, 38,
42-44, 48, 54, 64, 72, 78,
86, 88, 94, 97
characters, 39-40, 47,
49, 52-53, 60, 62,
65, 67-68, 71, 73-75
commands used, 5
editor, 54-59, 63
images, 3, 40, 66
pixel graphics, 24-26
plotter, 94, 96
PRINT graphics, 2-3
SET graphics, 1-3, 15,
17, 22, 53
techniques, 81
utility, 62

High-level Language, 35
High-resolution graphics,
2

IF, 13, 17-21, 25-27, 29,
31, 44-47, 55-56, 70,
72-73, 75, 81-82, 89, 95

Information, 61, 70, 76, 80,
94

Initialization period, 72, 74

INKEYS$, 18-20, 28, 36,
45, 55-56, 82, 90, 95

INPUT, 16-17, 89, 95

Integer variables, 34

Interpreted language, 34

Interpreter, 34-35, 44, 68,
70

Jigsaw puzzle, 40

Key latch, 20
Keyboard matrix, 28-29,
32, 34, 37, 45

Line, 12

Line drawing, 13-14, 35
Line feed, 19

LIST, 73, 80

Loop, 10-11, 25, 34, 80, 86

Machine language, 2, 35

Memory, 28, 37, 48, 59, 62,
66, 72, 74, 76

MIDS$, 64-65, 82

Mode, 10

Mosaics, 6

NEXT, 10-17, 24-25, 30~
31, 39, 55-56, 66, 72-73,
75, 79, 81-82, 89-90, 95

Null string, 18, 28

OPEN, 56
OUTPUT, 38

PAC-MAN, 1, 78-79

Paddle, 30, 32-34, 37

PEEK, 28-29, 31-32, 37,
55-56, 72, 74-75, 82

Pictorial element, 2

Pie chart, 96

Ping-Pong, 37, 53, 85

[101]

Pixel, 2-3, 5-6, 10-11, 15~
16, 21, 24-30, 32-34, 40,
45-46, 52, 78

erase, 33
flickering, 26
pattern, 10
reset, 32

Playfield, 33

Plotter, 94, 96

POINT, 5§, 8-9, 31-33, 55,
82, 84

POKE, 55-56, 72-75

PRINT, 3, 18, 35, 38-41,
44, 47-49, 53, 55-56, 62,
67-68, 70, 72-73, 89, 92,
95

PRINT graphics, 2-3

PRINT S$, 68

PRINT@, 18, 31-32, 38,
41-47, 52-53, 55, 65-66,
79, 81-84, 90, 91

Programmers, 2, 62, 68

Radio Shack, 49

Random drawing, 13-14

READ, 55, 68-73, 75

Reload a program, 76

REM, 10-16, 20, 31, 55,
72, 74-75, 81-82

Repeat-key capability, 28

RESET, 5, 8-9, 24-26, 28—
29, 31, 34-35, 76, 82, 84

RETURN, 13, 56, 75, 95

RIGHTS, 64

RND, 83-85

RUN, 10-11, 13, 17, 20~
21, 24, 26, 31-32, 39, 41,
44-45, 56, 67-68, 71, 73,
81, 90, 95

Save a copy of program, 76
SC, 30-31, 34

[102]

SET, 3, 5-6, 8-17, 21, 24~
27, 29-31, 34-35, 38-39,
45, 52-53, 55, 82, 84, 88,
90, 95

Set graphics, 1-3, 15, 17,
22,53

SF, 55

SHIFT keys, 36-37, 57

Space bar, 29

SPACES, 59-61

String packing, 72, 74-76

STRINGS, 38, 47-49, 55,
66-67, 70, 71

S$, 67-68, 70-73, 81, 82

Trigonometry, 23, 97

Utility, 62

VARPTR, 55-56, 72, 74-75

Windows, 15

ABOUT
THE
AUTHOR

Christopher Lampton is the author of more than twenty
books for Franklin Watts, including a number of popu-
lar First Book and Impact titles. Of late he has turned
his attention to the world of computers, writing on a
variety of programming languages and teaching the
basics to beginners. He has written all the books on
computer languages and graphics in Watts’ Computer
Literacy Skills series.

Chris first became a computer enthusiast when he pur-
chased a Radio Shack computer to use for word pro-
cessing. He has since acquired eight more computers.

Chris lives in Maryland, right outside Washington,
D.C., and has a degree in broadcast journalism. In addi-
tion to his books in the areas of science and technology,
he has written four science-fiction novels.

ABOUT THE AUTHOR

Christopher Lampton is the author of
more than twenty books for Franklin
Watts, including a number of popular First
Book and Impact titles. He has written all
the books on computer languages and
graphics in Watts’ Computer Literacy
Skills series.

Chris first became a computer enthusi-
ast when he purchased a Radio Shack
computer to use for word processing. He
now owns a total of eight computers.

Chris lives in Maryland, right outside
Washington, D.C., and has a degree in
radio and television broadcasting. In addi-
tion to his books in the area of science and
technology, he has written four science-
fiction novels.

PRINTED IN THE UNITED STATES OF
AMERICA BY MOFFA PRESS, INC.

FRANKLINWATTS®

COMPUTER LITERACY
SKILLS SERIES

ADVANCED BASIC
BASIC FOR BEGINNERS
COBOL FOR BEGINNERS
FORTH FOR BEGINNERS
FORTRAN FOR BEGINNERS

GRAPHICS AND ANIMATION
ON THE COMMODORE 64

GRAPHICS AND ANIMATION
ON THE TRS-80

PASCAL FOR BEGINNERS
PILOT FOR BEGINNERS

6502 ASSEMBLY-LANGUAGE
PROGRAMMING

Z80 ASSEMBLY-LANGUAGE
PROGRAMMING

531-10059-6
4009

