EXPLORE COMPUTING
‘'with the TRS-80

e

RICHARD V. ANDREE & JOSEPHINE P ANDREE
University of Oklahoma

with programming in BASIC

PRENTICE-HALL, INC,, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
ANDREE, RICHARD VERNON, 1919-
Explore computing with the TRS-80 (and common sense)

Includes index.

1. TRS-80 (Computer)—Programming. 2. Basic (Com-
puter program language) 1. Andree, Josephine P. 1L. Title.
QA76.8.T18AS53 001.64'2 81-5938
ISBN 0-13-296145-8 AACR2
ISBN 0-13-296137-7 (pbk.)

Cover design by Mark A. Binn

Cover photograph courtesy of Radio Shack, a division of Tandy Corp.

© 1982 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

10 987 65 43 2

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

CONTENTS

TO THE READER vii
TO THE INSTRUCTOR viii

ACKNOWLEDGMENTS X

PART I
INTRODUCTION FOR THE NOVICE 3

If you have never used a computer before, this introduction was written
especially to help you gain familiarity with the keyboard. the screen
and the use of [BREAK] , [CLEAR] , and keys. Your comput-
er will do arithmetic and display messages. The main purpose of the
introduction is to 1ift you from neophyte to beginner.

IESSON 1 MAKE YOUR TRS-80 WORK 8

Beginners start here. A four-step program shows off your computer's
speed as well as its versatility. Program instructions, PRINT varia-
tions, and additional keyboard commands are introduced.

LESSON 2 CREATING TABLES 19

Learn by programming the computer to create tables of squares, cubes,
etc., for varying ranges and different step sizes. You are still not
an expert, but you are well started.

LESSON 3 COMPUTER-ASSISTED SOLUTIONS 35

You and your computer will solve problems that would be difficult, if
not impossible, to solve without a computer. Nasty equations are easy
to understand and to solve with the help of a simple computer program.

iii

LESSON 4 ART & GRAPHICS 49

Although this lesson is mostly fun, the ideas developed help design
computer games and present graphical material in a dynamic format that
is easy to understant. Lots of room for fun and self-expression here.

LESSON 5 MICRO-RESEARCH PROBLEMS 77

Surprising as it may seem, you already have enough computing-know-how
to solve problems that would be too difficult to consider without com—
puter assistance. A bit of eighth-grade mathematics, common sense, and
your computer are all that isneeded toinvestigate problems that would
intimidate a college student who did not have access to a computer or
calculator.

PART I1I 103

A review of the contents of the rest of the book~-which may be taken up
in any order desired, or ignored, whichever serves your needs best.

LESSON 6 TAPE CASSETTES 107

As you develop longer programs you will wish to save the program on
magnetic tape using the cassette player that came with your computer.
Tape cassettes are a standard way of trading programs with other com-
puter owners. Cassettes are used for storing data and results as well
as programs.

LESSON 7 GAMES & PLAYTOYS 113

Everyone loves to play computer games. Use your own ingenuity to create
new game programs and to improve programs written by others.

LESSON 8 EDIT INSTRUCTIONS 127

A serious programmer needs to know more about the powerful EDIT instruc—
tions available in your computer. This is where you will find answers.

LESSON 9 SIMULATION 133

College courses are given on SIMULATION, but the basic philosophy
involved is easy to understand and not difficult to program. This
introduction removes much of the mystery and enables you to program
your own simulations and computer games.

iv

LESSON 10 TYPES OF VARIABLES 147

Single precision floating point Double precision floating point
Integer variables (uses and limita- String variables
tions)
Subscripted variables Arrays and matrices
LESSON 11 TIPS AND ERROR MESSAGES 154

Experience may be the best teacher, but you might as well profit from
the experience of others.

Tips on using TRS-80 BASIC: Saving memory, Speeding up program execution,
Error messages and what they tell you

LESSON 12 EXTENDED PRINT INSTRUCTIONS 163

You may never need more PRINT instructions than those introduced in
Lesson 1, 3, 4. However, your microcomputer has several extra goodies
ready to meet your needs if and when they arise.

LESSON 13 MORE GRAPHICS 169

Lesson 4 introduced the most commonly used graphics, but your TRS-80
has a nurber of convenient extras you may wish to investigate.

IESSON 14 STRING AND LOGICAL OPERATORS 173

If "word processing" interests you, you should investigate the TRS-80
STRING and LOGICAL operations more carefully. Two SENTENCE GENERATORS,
A BUZZ-WORD PROGRAM, A ROBOT COUNSELOR and a fairly secure CIPHER PRO-
GRAM, are included, as well as more detailed examination of the
LOGICAL OPERATORS: AND, OR, NOT.

LESSON 15 WHERE TO I1OOK FOR ADDITIONAL INFORMATION - 184

Tell "Great Aunt Martha' you would much rather have a subscription to
one of these magazines than a box of hankerchiefs for your next birth-
day. You may get both.

LESSON 16 ADDITIONAL BASIC 188

Additional BASIC instructions are available if and when you need them.
Turn here if you need to do something we haven't discussed.

LESSON 17 MORE MICRO-RESEARCH PROBLEMS 192

Lesson 5 presented 17 micro-RESEARCH PROBLEMS you could explore with
the computing expertise available then. Here we discuss programming
practice, design and improvement of programs using easy-to-follow
examples. Lesson 17 then completes our collection of seventy-five (75)
choice micro-RESEARCH problems, each worthy of exploration, expansion,
and investigation. This collection contains a wide variety of proposals
including several arithmetical explorations, Haiku poetry, logical
decisions, calendar problems, dart and target games, loan and interest
programs, treasure hunt games, caricatures, a speech timer, puzzles,
recursive functions, polygonal maps, medical emergency prompter, num-
ber theory, lattice problems, magic prime squares, graphs, monkeys at
typewriters, amicable and sociable numbers, dance partners, and the
notorious eight queens problem. They are here for your entertainment
and education. ZEnjoy them.

A FINAL WOBRD from your authors 218
APPENDIX 219
INDEX 227

vi

PART 1 TO THE READER

The first 100 pages carefully lead you from "watching the computer
count fast" to where you have enough skill and confidence to write your
own computer programs for creating random art, solving equations, or
exploring microRESEARCH problems that interest you.

If you are a complete novice, start with the introduction.

If you are a beginner, start with lesson 1. Work as many
practice problems as you need.

If you are a bit more sophisticated, read the summary at
the end of Lesson 1, work a few problems from Practice
Session 1. Then continue with Lesson 2.

If you can already program in BASIC, read the summaries at
the end of lessons 1 & 2, work a few problems, and continue
with Lesson 3. '

Lesson 4 introduces graphics, computer assisted art and some
of the special goodies available on the TRS-80.

lesson 5 is devoted to solving problems that are easy to
understand, but which would be very hard to solve with-
out the assistance of a computer.

PART II

The first five Lessons will teach you most of what you need to know
to use your computer in solving real problems.

The nature of Lessons 6 to 17 is different. These lessons are
devoted to special topics you may or may not need to learn asbout, de-
pending upon your own particular interests. Lessons 6 to 17 may be
read in any order, or ignored entirely until needed. Consult the
table of contents for topics covered.

The important thing is to HAVE FUN with your TRS-80. Remember,
today's micro-computers are more versatile and more powerful than
computers which cost 100 times as much, 20 years ago. Whether you
purchased-your TRS-80 as a playtoy or a serious tool, we hope you will
soon be using it for both.

* * E S *

There are many different micro-computers, each with its own
slightly different version of the BASIC computer language. Most of
the instructions used in this book work on all versions of BASIC.
The most frequent differences occur in the graphic display instructions
(chapters 4 and 13) and in the string handling instructions (chapter 14).
A chart is presented on pages 212 to 222 that displays the availability
of various BASIC language instructions in the eight most common versions
of the TRS-80, each of which is available with several different memory
sizes and with different accessories.

vii

TO THE INSTRUCTOR

This book is designed to be used by students for self-instruction
(with or without a teacher's assistance). It has been successfully used
by junior and senior high school students, secretaries, college students,
6th grade math classes, as well as a group of busy doctors and business
people. Numerous examples are developed step by step to demonstrate the
thinking involved. Since computing is a skill that must be learned by
practice, a variety of problems are included. As with any acquired skill,
a good coach can keep the neophyte interested and help develop good hab-
its. Computing can and should be FUN. Students are fascinated by com-
puters and will be responsive to your teaching.

Most readers are familiar with whole-number arithmetic, but may not
have investigated the many tantalizing arithmetic puzzles that are easy
to understand but hard to solve, unless a computer is available. A num-
ber of our problems come from the area of Number Theory. Problems like

1. Find squares like (11)2 = 121 or (264)2 = 69696 whose digits
read the same forward as backward (palindromic squares),

2. Find squares such as (35853)2 = 1285437609 in which all ten
digits are present in the square.

are not difficult to program once the rudiments are learned (Lessons 1,
2,3). Each reader is encouraged to use common sense to write more effec—
tive programs. Lessons 4,5,7,9,13,14, and 17 provide numerous interest-
catching problems from non-mathematical areas. We hope each reader will
discover new interests and power as his programming skills develop.

Readers are encouraged to develop orderly (top~down, structured) pro-
gramming habits without being preached at. Your assistance is sought
in helping students develop this vital skill. .

lessons 5 and 17 present 75 micro-research problems that are easy to
understand. Micro-research problems demand thoughtful program design to
produce results with a reasonable investment of computer time. All have
been successfully programmed by students with no more than 9th grade
mathematical skill. In many cases, the programs ''develop' as do the ex-
amples given in the text, starting first with a brute-force attack which
could require weeks of computer time, and then gradually, as the early
results are available for examination, refinements in program design
(early trimming of logic trees) suggest themselves. Eventually, many
students devise programs that produce more results in 5 minutes than the
original program could produce in five days.

Appreciation and understanding of the value of skillful computing
techniques are developed as needed, through experience.

viii

The material has been used with Models I, II, & IIT TRS-80 micro-
computers to teach introductory computing concepts to several different
groups, including students in grades 5 through 14, adult neophytes having
no experience on computers and little math beyond the 8th grade, secretar-
ies and secretaries-in-training, a group of busy doctors, bankers and
business people, and casual adult and child visitors at a museum. Each
contributed to the presentation contained herein. Every vital concept is
presented more than once, in different environments, to aid the student's
comprehension. The important thing is to be sure readers also actively
program conputers, not passively read the text. Passive reading, like a
spectator sport, does not develop skills. Encourage students to really
program various kinds of problems.

With the exception of lLesson 4 ART & GRAPHICS and a few special
goodies available only on the TRS-80 level II BASIC, most of the material
presented here is applicable to any computer using BASIC.

The first five lessons form a unit. Lessons 6 through 17 may be
taken up in any order or ignored, as individual interests suggest.

Our experience suggests having two or three students per computer
produces better results than one person per computer—-particularly in
the early stages.

Your authors welcome criticism, suggestions and correspondence.

Richard V. Andree & Josephine P. Andree
The University of Oklahoma

Norman, Oklahoma 73019

ix

ACKNOWLEDGMENTS

This book has evolved gradually over a three-year period of constant
use, revision and modification. Hundreds of teachers and students from
all over Oklahoma used the preliminary versions. Their suggestions and
reactions helped us improve and revise the material. We express our
gratitude to each teacher and to each student who participated.

Our very special thanks to:

Andrew L. Strout
Gary Capps
C. David Beatty

who did the photographic work for illustrations, cartoons, and
chapter headings.

It is impossible to express individual appreciation to all involved,
but it would be churlish to omit naming a few of those whose devoted
assistance brought it all together.

Our sincere appreciation to:

Doug Mitchell
Carolyn Thomson
Mary Roland
Nancy Dixon
Patty Porter
Tim Scovill
Rosemary Dorman
Bob Yarbrough
Richard Odendahl
Alice Shelton
Anthony Tipton
Karen Henry
Michael Briggs
Lana Pierce

each of whom has contributed far above and beyond the call of duty.
We sincerely hope you will share their enthusiasm.

The material presented in our appendix and back cover is adapted

from material copyrighted by the Radio Shack Division of Tandy Corporation
and is used with their kind permission.

The first five Lessons (100 pages) lead you from "watching the computer
count fast" to enough skill to write your own programs to create com-

puter art, solve messy equations or explore micro-research problems of
your own choice.

If you are a complete novice
start with the introduction

If you have used a computer keyboard but never written a program
start with lLesson 1

If you are a bit more knowledgeable
start with lesson 2

If you can already program in BASIC
start with Lesson 3

If you understand BASIC, except for graphics
start with Lesson 4

If you are a competent BASIC user)
work a few problems from lessons 3 and 4 and start with Lesson 5
which contains micro-research problems for your enjoyment.
Lessons 6 to 16 take up specialized topics discussed on page 103.

Lesson 17 continues with the micro-research problems begun in lesson 5.

We assume you have no knowledge of computing, but are interested in
learning. The way to learn computing is to corpute!

Just as in golf or bowling, it is more helpful to read about comput-
ing after you have tried your hand at the game enough to have a feel for
its rudimentary swing. So let's begin.

Let's start by using the computer as if it were a pocket calculator.
It is a waste of the computer's power, but it will help you become famil-
iar with the keyboard. Have someone turn it on for you. Depress the
white key a couple of times.

The keyboard is similar to a typewriter. If you wish to use a_symbol
like = or + E‘l from the top row of the key, depress the ﬂSHIPT

key. The computer automatically types capital letters, as shown on the
keys, so do not use the shift key unless you wish a symbol from the top
half of a key.

Don't try to 'read" this introduction—the way to learn computing
is to compute, so wait until you have a TRS-80 at your fingertips before
continuing.

Depress the following keys:

1. (This interrupts the computer in
case it was doing something.)

2. (This 46 the key you will use to
send your typed message to the
computesn.)

3. Now type: DPRINT 3+540-2 |[ENTER =

0, HELLO
- DID YOU WANT
The computer should respond with the sum 15. \TO TALKTO ME?

Your CRT-display will now show:

'READY
SPRINT 3+5+9-2
15

The > symbol indicates the computer
s neady to hecedlve Youwt typed

READY (’

Ansthuetion.

>

The - shows where the next typed
charactern will appear.

Should you wish to clear the screen, depress the |CLEAR| button, but there
is no need to do so unless you wish it cleared. You may also type
CLS to ClLear the Screen.

What will the answer be if you type

PRINT 4*9 - 2 Most computers use the symbols
* gon multiply and / for divide.
Try it and see.

Forecast the result of each of the following, and then try them out
on your TRS-80.

PRINT 4/3 Note § is zero on the Lop row.

N 0 4is the Letter "oh" which 4is on
PRINT 95 the second row. Yowr computer will

PRINT 360*18]ENTERi be unhappy if you confuse them.
PRINT 1/2 + 0.6 Thy it once and see for yoursels.

Let's try some hard problems
14 you type 774%817 |[ENTER without

PRINT 774*817 PRINT, the computer will do the
PRINT 79276/511917 |ENTER arithmetic but will not print on

DRINT 317%1.41421 — 246+3.14159 stone The rebult.

The [t_j key is another important key for those of us who occasion-
ally mistype. It will backspace and erase one character at a time. If
you hold down the key while you depress | == the entire line
you typed will be erased. Try it and see for yourself.

Type

T 1" NO/tQ /tha n " ma)dzA.
PRINT '"HELLO What happened?
Type

PRINT "'SALUTATIONS " ENTER
PRINT "MY NAME IS youwr name™ | ENTER

Now let's try something different. This time we shall put a '"line
number" in front of each statement. First type NEW |ENTER

Then type:

1¢¢ PRINT "HELLO " | ENTER
119 PRINT ''SALUTATIONS "' ENTER|
12¢ COTO 199 [ENTER)

That isn't progress, or is it? Well, nothing happened. Did it? Yes, it
did, but it happened inside the computer, where we can't see it, not on
the screen.

Type The computer should List the three
ey statements you typed im. Check them
LIST | ENTER , 1o be swie they were properly entered
with a space after each number
and " " An the propern places.
Next type
RUN

After a bit, depress the | BREAK | key to get control again.
Depress the | CLEAR| button.

Type LIST
and the computer should respond by displaying:

1¢¢ PRINT "'HELLO '

119 PRINT "SALUTATIONS "
120 GOTO 199

READY

>

It is perfectly reasonable to change these instructions by retyping them.

Type

19 PRINT "HELIO your name''; [ENTER[Note the " " and the ;.
11¢ [ENTER] This erases the instruction in 110
as you will see when you type LIST | ENTER]| .
Now type
LIST

The screen should show
199 PRINT "HELLO your name';

12¢ GOTO 199

Note that instruction 1@@ was changed and instruction 11@ was deleted,
but instruction 12¢ is unchanged.

Now type
RUN

Let us write another program. Begin by depressing to get the
computer's attention. Then type:

NEW [ENIER]

109 X = 198p [ENTER]
110 Y = 365 [ENIER]
120 7 = X¥Y ﬁj
139 PRINT X; Y, Z
149 GOTO 1p¢ [ENIER]
RN [ENTER|

The above program sets X=1980, then sets Y=365, then forms the product of
the values of X and Y and stores it in a location called Z. Instruction
13Q then prints out the values of the nunbers stored in locations X, Y,
and 7Z. Instruction 140 then sends the computer back to instruction 1§09,
which repeats the entire process.

Depress the key to stop the computer.

SUMMARY OF INTRODUCTION

Iet's see what you have learmed thus far...

To get the computer's attention, depress m key.

Once you get the computer's attention, which it indicates by
displaying

on the CRT (TV screen), you can work arithmetic problems involving +, -,

¥, / (add, subtract, multiply, divide) by typing PRINT followed by the
arithmetic problem,

When the problem is displayed the way you wish it, depress | ENTER

to send it to_the computer. Remember, nothing goes to the computer until
you depress | ENTER | .

Oh, yes. If you make an error in typing, Jjust depress the key

to backspace and erase. You can do it anytime before you depress the
key.

To clear the screen, depress the | CLEAR| key, followed by | ENTER] if
the >_ symbol is absent, or type CLS .

You need to be careful about confusing zero, @, and the letter oh, O.
Also, 1 and L are distinct.

You have written a set of instructions to the computer, and the computer
has followed these instructions.

Now that you no longer fear the TRS-80, let's begin our lessons.

LESSON 1 @
Make Your TRS-80 Work 1|

So you don't know anything about computers or computing. Well, this
won't make you an expert, but let's see what we can do.

Someone has connected and assembled the TRS~-80 and turned it on for
you. The screen says something on it. I don't know what because I don't
know what was done last.

If your TRS-80 has just been turned on, the screen may display

The TRS-80 can set aside memory
*lENORY SIZE? fon programs wiitten in Languages
othen than BASIC, but we shall not
do 0.

If so, just depress the white [ENIER] key. The screen will then display
an addltlonal message, which should end with

The word READY is your clue that the computer is ready to accept
instructions from you.

To clear up everything...

Depress the key (upper right).
The computer will add

READY
>

below whatever was on the screen. Now you have its attention. The >-
symbol below READY means the TRS-80 is waiting for you to type in an
instruction.

Type NEW and depress the white key.

Everything on the screen disappears—also any program inside disap-
pears too—the slate is wiped clean for you, and the computer displays

> : to the computer until you depress
- the [ENTER] key.

Now type 14 you mistype, fjust use ﬂw,
button to backspace and erase--or

219 X =1 | ENIER | depress [BREAK] and stant the en-

The screen should now show tine Line over.

READY
> 210 X=1 p

>.—-
The syrrbél '>_ indicates the TRS-80 is ready to accept another instruction,
S0 type

22¢ PRINT X; [ENTER] Don't forget the ;

The screen now shows

READY
> 310 X=1
>322p PRINT X;
>

Continuing, type

230 X = X + 1 [ENIER
24p COTO 22¢ [ENIER Note that GOTO is one word.

To make sure the program you typed is really there, type

LIST

Your program will then be listed below whatever is already on the screen.

>21@ X=1 .| TO sHow
>2ef PRINT X; YouU
>030 X=X+1 .
>4 GOTO 22p
>LIST
21} X=1
22@ PRINT X;
230 X=X+1
24l GOTO 220
>

Note the absence of the > symbols on the LISTed program, indicating the
camputer typed it to you.

Now you_are ready to run your first numerical program.
Type RUN and watch what happens.

You probably have a Level ITI BASIC, but if not, read the right-hand
colum instead of the left-hand colum below.

level II BASIC Level I BASIC

If you hold down and If you depress the i key on
depress , the program will halt left edge of the keyboard, the
until you depress another key (with- program will halt whatever it is
out). Try it a few times doing, as long as you keep the
and see. r__f—:]key depressed, but will con-

tinue whenever you let it up. Try
it a few times and see.

In either case, if you wish an extended halt, depress the key.

(Do so now.) Not only does the TRS-80 stop, but it even tells you which
instruction it was executing when you depressed . If you want

the program to continue, simply type: CONT and it will continue.

Note that in Level I BASIC, if the program is typing a number, say
425 or 438, and runs out of line, it prints part of the nurber at the end
of one line and the rest of the number at the beginning of the next line.
The output is difficult to read, but the data is printed quickly and the
screen displays a lot of data at once.

10

Level II BASIC is a bit more sophisticated and will leave the end of
the line blank, rather than break a number, but it still changes the
colum spacing as the number of digits in the number changes in order to
get as much output on a line as is convenient. The ; at the end of

22¢) PRINT X;

is what controls the 'packed spacing' of this output.
Depress
Type RUN

to see what is meant.
let's look at our program again.
Depress the key and the key.
Then type LIST

The computer should respond.

NOW | MUST ADD 1 TO
WHATEVER NUMBER 1§ IN
STORAGE LOCATION X,
AND STORE THE NEW

BIGGER NUMBER BACK
IN X LOCATION

>LIST
210 X=1
22Q PRINT X ;
23R X=X+1 o
24p GOTO 22p 6 |
READY

>

Instruction 23Q X=X+1 looks odd.
If it were a mathematical equation, it
would have no solution. It is not a
mathematical equation; it is an in-
struction to a computer.

X=X+1 This instructs the computer to '""Take the number in the storage
location called X, add 1 to it, store the new result back into
the storage location called X."

X=X+1 could be more reasonably written as X«X+1l. However, it is almost
universal computer practice to use = rather than <« , probably
because old fashioned typewriter keyboards contain = not <«

Ilet's change instruction 22¢ PRINT X; by changing the semicolon to a
comma, To do this, we sinmply type

22¢ PRINT X,

If you now type

LIST

the new program will be displayed below the LIST instruction. Please do
so before continuing. Then type RUN

11

Note that now our program prints out its values in-four nice colums.
Isn't it impressive?

You may wonder what would happen if you did not have either the comma or
the semicolon after PRINT X. If so, experiment a bit and find out.

Depress to get the computer's attention.
Type LIST

Type 229 PRINT X

Type LIST

Type RUN

Depress | BREAK | to get the computer's attention.

Do some other experiments on your own. For example, change 23Q X=X+l to
230 X=X+.5 or 23¢ X=X+2 and see what happens when you type

RUN |ENTER > —
' KEEP YOUR COKES

l AWAY! SPILLS ARE
HAZARDOUS TO
MY HEALTH.

Remember, about the only thing you
might do that would hurt the TRS-80
would be to drop part of it or spill
a beverage over it. Otherwise, it is
pretty rugged, as long as you don't - g
open the case. i

A Yord of Warning:

It is always well to check that you have typed what you think you
have typed before depressing the key... In most cases it is
easy to correct an error by simply retyping that statement number and
instruction, but if you should happen to have typed LLIST
instead of LIST you may have a problem you will need to call
your instructor to fix. LLIST is also a perfectly valid instruction—-—
it tells the TRS-80 to list your program on the attached line printer—-
but if your TRS-80 has no line printer attached (and turned on), the
computer will not accept another instruction until it executes the im-
possible instruction LLIST . To all appearances your computer
will "lock-up.'" Your instructor can get you out of this difficulty
without having to turn off the computer. If you are without an instruc-
tor, open the small door on the back left top side of the keyboard, and
press the button inside.

12

If your TRS-80 has 'keyboard bounce'" (printing multiple letters on one
keystroke), it means the contacts are dirty and no one inserted the "key-
board fix' program when the TRS-80 was turned on. Ask for help if you
have excessive troubles with keyboard bounce. Each TRS-80 has a keyboard-
fix tape and manual packed with it. If you do not have an instructor,
consult the manual that accompanies the keyboard fix tape.

HAVE FUN ! 1!

SUMMARY OF LESSON 1

Let's see what you have learmed thus far...
Depress key to get computer's attention if it is busy.
Type NEW to clear out everything and start over.

Nunber each instruction and put a space between the number and its in—
struction.

(I§ you gail to number an <instruction the TRS-§0 will perform that in-
struction night then, but not store it fon Later use. Tay typdng
PRINT X, V, T, L [ENTER].)

You can erase errors by using the| «g= key as a "backspace" if you have
not depressed .

If you have depressed it's easy to change instructions, merely
Tetype the number and new instruction. You may insert additional in-
structions between those already in use by using statement numbers

that fall between those already used.

Holding down m while you depress l <= | erases the entire line.

13

The symbol >-— indicates the computer is ready to receive typed in-
structions from you.

If the > symbol is not there, depress [ENIER| or [BREAK | [ENTER | .

In the PRINT instruction, the use of a semicolon ; between or after
variables will give a "packed format", while the use of a comma,
produces four colums. No symbol gives one output per line (wasteful).

You may halt the output (temporarily) by depressing the ; l if you
have a Level I. If you have a Level II, hold down SHIFI‘I and depress
[@]. Depress any key except [SHIFT] or [BREAK] to continue.

LIST produces a listing of the program currently in storage.

Among your output you may discover some strange-looking numbers, such as
1.23456E+08 or 2.22222E-05. The computer displays only six significant
decimal digits, and shows the magnitude by appending an E+nn or F-nn to
indicate the power of ten by which the preceding fraction should be
multiplied.

Thus
1.23456E+H08 = 1.23456%19108 = 123456p00. (But recall this may be in
ernon by x5 in the seventh
place, that is, by +500.)
2.00000F-(5 = 2.22222x1070 = .pEP@222222 (+.00000000005)
3.45678E+11 = 345678000000
-4.68p24E-07 = -.PPPPP458p24

This convenient notation, a cousin of the so-called 'scientific notation !
is used on most modern computing systems, including many hand-held cal-
culators.

PRINT X,Y:;Z;T will print values of X Y Z T, spaced as shown.

or will clear the screen.

[==] will produce double size letters on the screen (see
problem 13).

Usually is depressed just before using |SHIFT .

14

PRACTICE SESSION 1

Problems 1 to 6 make use of the program discussed in the text. Start by
typing it in, LISTing the program and RUNning it to check that it is
functioning properly before you start the problem set.
depress key, then type:

B

21p X=1

22¢ PRINT X;

230 X=X+ 1

24¢ GOTO 229

LIST
RUN
CONT

BREAK

Now you are ready to start the practice set.

1. Type in the program (using 22¢ PRINT X;) first given in this lesson.
Run it a few times with 23¢ X=X+1 replaced by each of the following
in turn.

239 X=X+.5 |ENTER
or 230 X=X+ 5 ENIER
or 230 X=X+ 2 ENTER
or 23¢ X=X+.1 |ENTER,
Type LIST [ENTER

RUN [ENIER

each time you change instruction 23¢. Note any peculiar behavior and
think about it a bit. Discuss it with your instructor or a fellow
computer buff.

15

In the program above, replace 21¢ X=1 with “21¢ X=7 and rerun
the program.

Forecast the output of the program.

219 X=1

220 PRINT X,
230 X=X+X
249 GOTO 220

Try it out and test your forecast. What about colum spacing?
The error message YOV ERROR IN 239 indicates that the arithmetic
operation in instruction 23Q produced a result too large for the
computer to handle--namely larger than 1038 --which is a number
larger than the total number of atoms in the solar system.

What output would you expect the program of problem 3 to produce if
249 GOTO 229 were replaced with 24¢ GOTO 2107

Try it out and verify your forecast, or explain why the computer did
not do as you forecast.

What would happen if you used 24¢ GOTO 23¢°?
Be sure you understand these points.

Let's try another program. Depress [BREAK| if needed. Then type
NEW

If you know that most computing systems use * to indicate multipli-
cation, you should be able to forecast what the following program
will produce.

210 X=2
220 PRINT X,
230 X=X*X

240 GOTO 220

Make a forecast. Then run the program. If the results are unexpect-—
ed, reread problem 3.

Replace instruction 22¢ PRINT X, in problem 5 with 22@ PRINT X, X+5
and see what happens. Before running the program, try to forecast
the output of the first 5 lines.

Try some experiments on your own. Don't be afraid--you are not apt
to harm the TRS-80 computer providing you don't eat or drink in the
computer room and don't move or bump it while it is connected. Be
sure to depress [BREAK] and type NEW [ENTER]before you start a new
program.

The new instructions used An problems §,9,10 will be discussed

Ln detadll Latern., Now all you need to know L5 that ,

IF RND(@)<.@5 THEN CLS 4 pronounced "I '"random numbet

s kess than @5 then clean the screen.”

16

10.

11.

12.

13.

let's try another program. Depress if ‘needed. Then type
NEW |ENTER|.

ILevel II BASIC

Level T BASIC
19 PRINT @ RND(10@), "HI type yowr name'; [ENTER] [-~ =
15 IF RND(()<.p5 THEN CLS L5 U BASIC ne-
20 GOTO 19 cve :
place le] with
RUN [A][T] and it
will behave
similanty .

Experiment a bit by changing instruction 15 IF RND(®) < .§5 THEN
CIS to one of those suggested below.

15 IF RND(@) <.@l THEN CLS
or 15 IF END(@) <.1 THEN CLS [Don't forget to depress [ENTER]
or 15 IF RND(®) <.5 THEN CLS each time you change an Ain-
or 15 (S stretion.]

Try combining the program in the text with that of problem 8, with
instruction 20 omitted, giving:

19 PRINT @ RND(I1QP@), "HI type your name';

2%8 }IglRND@) < .05 THEN CLS (Type 20 [ENTER] to delete instr. 24.)
22(PRINT X;

239 X=X+1

249 GOTO 229

Change the instruction 24 GOIO 229 to 249 GOTO 1¢ in problem
10. Forecast the output before you RUN the program. If your fore-
cast was not valid, try to find a why before reading problem 12.

Delete instruction 21¢ X=1 by typing 219 [ENTER. Whenf >

appears, insert 5 X=1. Type LIST to check your new pro—
gram, Before you RUN the program, try to forecast the result. Why
is it different than that of problem 11 which used the same in-
structions, but placed differently in the program?

If you have a Level II BASIC, please try the following sometime
when you have a program that does not contain CIS in the computer.

Depress [BREAKl if needed.

Depress [CLEAR]

Hold down [SHIFT] and depress
Type LIST [ENTER]

Notice that your program is listed in characters twice as large as
before.

Now type RUN

The output is also double size. This is handy if you are using the
computer with a class or group. Double size will last until m

17

14.

15.

16.

17,

key is depressed or until you execute a CLS instruction. To set the
regular size back, depress| BREAK | and then | CLEAR].
If you fail to clear the screen before you depress [SHIFT| | s===b P

your double-size letters and numbers obliterate half of the material
on the screen to make room for the larger letters, but any material

printed after that will be complete.

Have fun. Make your own variations.
Forecast the result before you run each program.
Try NEW [ENIER]

210 X = 5

220 PRINT X; X+5; X+1f); X+15;
23p X = X+29

249 GOTO 220 [ENTER |

Now investigate what happens if you omit the final ; in line 220.
What happens if you change the semicolons to commas in line 220
(with and without the final comma)?

Can you write a program that will start with X = 1 and count by
threes, with exactly four numbers on each line? There are several
correct ways to write such a program, so when you are finished,
compare your program with that of a friend who also has a computer.

Try the following program.
NEW | ENTER
1pp X = 2 | ENIER
119 PRINT X, X«X, X#X*X, XRX¥XKkX ENTER
129 X = X+1 | ENTER
139 GOTO 119 | ENTER
HON

The fqllow;ng floating-point numbers are expressed in regular decimal
notation with the possible error indicated:

FLOATING~POINT DECIMAL. POSSIBLE
NUMBER VALUE ERROR

1.23456E+(6 = 1234560 * 1p
2.13145E-03 = .@¢213145i.¢®¢¢¢¢@¢5
Do the same for:
9.87654E+(7 —2.34567E-Q7
-1.23456E+()8 5.67898E+15
4. 56789E-(4 4,32198E+11

18

In our first lesson, we learned to make the computer
count, using various step sizes

to print in different formats, depending upon whether we used

PRINT X
or PRINT X;
or PRINT X,

We also learned the essential handling of the computer using ,
[ENTER] and [=== |''backspace'' keys

and to type NEW to clear out old program and data, ready to
accept new ones.

We rewrite the counting program using a slightly different philosophy
below (for reasons you will soon appreciate.) We shall use B = begin-
ning value, S = stepsize by which X will be increased, and F = final
value, after which we wish the computer to stop.

NEW

2 Bl

4 S=1 [ENTER]

6 F=1¢p [ENTER]
199 X = B [ENTER] .
11¢ PRINT X; [BNIE
120 X = X+S [ENTER]

13p IF X < F THEN 119 [ENITER|

Instruction 13¢ examines the current value of X and if X is less than
¥, sends the program back to instruction 11¢. If you feel at all in-

secure about this program, put it on the computer and RUN it before
continuing.

19

The real advantage of this technique is that we can easily change
the step size by changing instruction 4 to 4 8S=.5

Indeed, we may rewrite the program slightly to input values of B,
S, and F from the keyboard instead of assigning them in instructions 2,
4 and 6.

We do so next, using the instruction INPUT B,S,F . When the computer
executes this instruction it will display a question mark on the TV
screen and wait for you to type in three values, separated by commas.

The values will be assigned, in the order typed, to variables B,S, and F.
These letters were used as they are the initial letters of the phrases
Beginning value, Step size, and Final value.

The revised program is:

11¢ PRINT X;

120 X=X+S

13¢ IF X<F THEN 110

14¢ PRINT [ENTER]

15% PRINT "END OF TABLE WITH B,S,F=";B;S;F
160 PRINT : PRINT

179 GOTO 99

RUN

Again, note the use of instruction
13p IF X<F THEN 119.

As long as X is less than F, the program loops back to 119 PRINT X
but when X 2F, the program continues with statements 140, 150, 169, and
17¢ which upspaces the printed matter, prints an END OF TABLE message,
and then sends the computer back to 99 for a new set of input values.

Instruction 15¢ PRINT "END OF TABLE WITH B,S,F =":B;S;F is particularl
interesting. It combines the printing of a message in quotes, " "
with the printing of the values of the variables B,S and F, which must
not be included within the quotes.

Try this program on your TRS-80 before continuing. Begin by typing
RUN When a ? appears on the screen, type 1, 1, 109 [ENIER].
Watch the output. When a ? appears at the bottom of the screen, type
2, .5, 10 or same B, S, F values of your own choice.

Let's write a program to create a table of values of

X X2 x3 x4

20

When our program is run, it will accept values B, S, F from the keyboard.
It will set X=B and print out values of X, Xz, XS, X4 for that value of X.
Then the instruction X=X+S will add S to the current value of X and
print another set of X, X2, XS, X% for the new value before adding

another S +to the current X.

This loop will continue until X exceeds the value of F (X>F) in which
case the program will PRINT a blank line (16¢) followed by (17¢) an
END OF TABLE message.

One way to do it is:

NEW [ENTER|

1¢¢ PRINT "PLEASE TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE ';[ENTER]
195 INPUT B,S,F

11¢ X=B [ENTER
12 Y=X*X [ENTER]

139 PRINT X, Y, XkKY, Y*Y
149 X=X+S

150 IF X< =F THEN 12¢ [ENIER]
16¢) PRINT

179 PRINT "END OF TABLE"

RUN [ENTER]
let us examine the program in detail.

The instruction

1¢5 INPUT B,S,F
causes the computer to type a ? and wait for the user to type
three values separated by commas and depress the [ENIER]key.

Instructions 109 and 105 can be combined into a single statement, but we
shall not do so yet.

Instructions

119 X=B

129 Y=X*X

139 PRINT X, Y, X*¥Y, Y*Y
do just what you learned to expect in lesson one. Note that by
using commas between output, we obtain four neat columms. Also note
that the use of Y=X*X saves half of the multiplications that,would

be required by 3 4
PRINT X, X*¥X, X¥KXKX, XKX*KX*KX since Y¥X = X and Y*Y = X~

The instruction

149 X=X+8
merely increases the current value of X by the amount in S.

21

Next
150

169
179

we use the branch instruction

IF X<=F THEN 120

This instruction compares the values stored in X and in F. If the
value in X is less than or equal to (<=) the value in F, the pro-
gram loops back to instruction 12¢. Otherwise the instruction which
follows instruction 15 (namely 16@ PRINT) is executed next.

PRINT
PRINT "END OF TABLE"

Instruction 16 merely prints a blank line, while instruction 179
prints the message indicated in quotes. If after entering the pro-

gram, you depress [CLEAR| type LIST , the computer display
will show

e

109
105
119
120
130
14
150
16(
179

kﬂ.

READY

LIST \
PRINT ""TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE';

INPUT B,S,F

X=B

Y=X*X

PRINT X, Y, X*¥Y, Y*Y
X=X+S

IF X<= F THEN 120
PRINT

DRINT "END OF TABLE"

J

If you now type RUN [ENTER| , the computer will respond

> RUN
TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE?

If you respond with 1,1,5 , the table of X, Xz, XS, x* gives the
below results:

1[1 1 1 h
2 4 8 16

3 9 27 81

4 16 64 256

5 25 125 625

END OF TABLE

READY

>

— /

If you type RUN again, the computer will again respond with
TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE?

and if you type 1,.5,8 , the screen will fill up and "'scroll out
the top' displaying

22

1l 1 1 il N
1.5 2.25 3.375 5. 625

2 4 8 16

2.5 6.25 15.625 39. (625

3 9 27 81

3.5 12.25 42.875 150.063

4 16 64 256

4.5 20.25 91.125 410.963

5 25 125 625

5.5 3p.25 166.375 915.063

6 36 216 1296

6.5 42.25 274.625 1785.06

7 49 343 2401

7.5 56.25 421.875 3164.06

8 64 512 4096

END OF TABLE

READY

K=)

o
65 s
150, 0625
BUT I CAN

ONLY SHOV YOV
o\ 150,003

So, you see our computer works with fraction values as well as with

whole nunbers.

Note that (2.5)4 = 30.0625 which is correct, while for (3.5)4 the
conmputer prints 150.063 instead of the correct value 150.0625. This is
because, although the computer actually contains more than six digits of
accuracy internally, it only displays six digits of accuracy. This will
prove to be both a blessing and a curse, as we shall see.

If you are using a TRS-80 with Level II BASIC, it is quite feasible
to obtain additional accuracy on it by declaring X and Y as DOUBLE PRE-
CISION variables, but to do so now would only distract our learning pro-
cedure. Problems in "limited precision and "rounding' also occur in
double precision arithmetic——although not as frequently.

Let us tyy
depress [CLEAR
type 0,.1,1 [E

9
.01
.4
.99
.16
.25
.36
.49
.64
.81

PN Uk wN S

NTER].

¢
1E-03
8E-03
027
064
.125
.216
.343
.512
729

and type RUN [ENTER].

You should obtain:

9

1 E-p4

1.6E-03

8. 1E-03
.(0256
0625
.1296
.2401
.4(96
.6561

23

oe another set of values into our table. First, of course,
When the computer prompts you,

Let's modify our program slightly by adding another instruction,
196 CLS.
To do so

Depress [BREAK] and [ENIER] (if necessary) to
READY
obtain | > on your screen and then type

108 CLS [ENTER]

Next, depress and type LIST to view the current program,
which should start

1¢¢ PRINT "TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE";
105 INPUT B,S,F

106 CLS

11¢ X=B

with the new instruction 1$6 tucked properly between instruction 1¢5 and
119.
Isn't that neat?

The instruction CLS is called clear screen. It clears the screen
for you whenever it is executed. Try several B, S, F values of your own
choice. Note that if you use B, S, F=§, .1, 5, the table scrolls off
the top before you can read it. You can stop this at any time you wish.

In Level II BASIC In Level I BASIC
Hold down {SHIFT | and depress Depress and hold down the mkey
to stop the program. To continue To continue the program, release
the program, depress without the ’ key.

shift (or most any other key).

If you prefer, depress [BREAK to stop the program. Type CONT | ENTER
to continue.

It would be nice to have headings at the top of the colum of X,
Xz, XS, X4 we are printing. It is not hard. We add:

1¢8 PRINT "X SQUARE CUBE 4-TH POWER'
So now our program reads:

199 PRINT '"IYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE'";

1¢5 INPUT B,S,F

106 CLS

1¢8 PRINT "X SQUARE CUBE 4-TH POWER'
110 X =B

129 Y = XK

130 PRINT X, Y, X*Y, Y*Y

140 X=X+ S

15 IF X<=F THEN 120

16¢ DPRINT
17¢ DRINT' END OF TABLE'
Type LIST

to list your program and see if it agrees.

Then type RUN [ENTER]

and observe the output when you enter B, S, F= 2, 1, 9
It should be

X SQUARE CUBE A-TH POWER
22,1, 9

2 4 8 16

3 9 27 81

7 49 343 2491

8 64 512 4996

9 81 729 6561

If your headings do not seem to be lining up properly, change the spacing
inside the quotation marks in the instruction

18 PRINT "X SQUARE CUBE 4-TH POWER'"
until it pleases you.

Note that the instruction

159 IF X <= F THEN 129

makes a decision by comparing the values of X and F. (IF X <= F THEN
12¢) The IF instruction produces a branching in the path of the in-
structions, and takes the branch path (loop) instead of continuing
on if the given condition is satisfied. This is indeed a powerful
idea.

25

Try it again with B, S, F = 2, .5, 7.

As an experiment to test your understanding, let us insert another in-
struction.

(Note: The 148 ENTER] deletes instruction 108, which

125 Y = Y*y . . .
198 [ENTER] would have printed erroneous headings as previously

entered.)
You should forecast the output of the new program and insert new
headings in instruction 1¢8 before running the program.

1¢p PRINT "TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE':
105 INPUT B,S,F

106 CLS

108 (Insent new headings here.)
119 X =B

120 ¥ = XK

125 Y = Y*Y

139 PRINT X,Y,X*Y,V#Y
149 X=X+ S

15¢ IF X< = F THEN 120
169 PRINT

179 PRINT'' END OF TABLE'

The actual output for B,S,F = 2, .5, 10 is:

2 16 32 256
2.5 39.0625 97.6563 1525.88
3 81 243 6561
3.5 150. 062 525.219 22518.7
4

256 1924 65536

As you experiment a bit, you will find the computer occasionally
switching to an odd-looking number format, perhaps

1.23456E+08

This is called the "exponential'' or 'scientific' notation. The E+08
means to multiply 1.23456 by 1@8 (i.e., move the decimal point 8 places
to the right).

Similarly 1.23456E-¢4 would mean to multiply by 1@‘4 (i.e., move decimal
point 4 places to the left).

4.21653E+12 = 4216530000¢0¢ (with a possible error of +5 in the 7th place)

7.65432E-08

.QPPOPPPTE5432 (with a possible error of +5 inthe 4th place)

20

If you are familiar with trigonometry and have Tevel II BASIC, you
may wish to substitute.

198 PRINT "X, USIN(X)', "COS(X)', "EXP(X)"
13¢ PRINT X, SIN(X), C0S(X), EXP(X)
There .is no need to retype the entire program; Jjust get

READY

>

and type in

198 PRINT "X', "SIN(X)", "COS(X)", "EXPCO" [ENTER]
13¢ PRINT X, SIN(X), COS(X), EXP(X) [ENIER]

Run the revised program.

Note: we obtained the spacing desired in statement 1¢8 by enclosing
each colum heading in quotation marks and separating the colums with
commas, just as we did in statement 130 which prints the values. This is
easier than using just one pair of gquotation marks.

27

SUMMARY OF LESSON 2

What have you learned in lLesson 27
Our new program extended your knowledge of the PRINT instruction to in-
clude the possibility of printing several different values from the same
instruction, and of doing computation inside of the PRINT instruction
itself.

You really do have a lot of computing power at your fingertips now.
KEYBOARD COMMANDS
Enter line from screen to computer.

Clear the screen

TRS-80, stop what you are doing and pay attention. Type
CONT to continue.

[E} Backspace and erase.

[SHIFT| | <tmm | Erase entire line.
[I] (for Level 1) {ReLease the ’Lf key, to continue.)
1 , .
[GaF[@] (for Level 1) [7! (Depress any key, without using
SHIFT] *to continue.)
NEW ENI’ER] Erase current program and data, clear screen and
pay attention.
RUN iENTER Run the program now in memory.
LIST List the program now in memory.

LSHIFI‘} {—)' l to get double-sized output ; [CLEAR| to return to single size
BASIC INSTRUCTIONS DISCUSSED THUS FAR
X=B]r Computes value on right and stores

Lt Ain the Location named at Legt

Y of equals sign.

it

AXX¥X + 4.6%X - 3.172

PRINT X,Y;Z; T,X*Y Prints values of varniables on
PRINT N; "VALUES OF X TOTAL;"; Y | @Presstons indicated. Also prints

any message gliven inside of quota-
tion manks. Semicolon is fon
nawow spacing, comma forn wide
spacing.

28

INPUT "TYPE X VALUE"; X

IF X <=F THEN 120

~ % | +

add
subtract
multiply
divide

29

Types message in quotes, followed
by a question mark and then accepts
values 4rom keyboand and stores
them in Location indicated.

Compares values of variables X and
F. 14 X value i Less than on
equal to F value, then instruction
12¢ 45 executed next. Othemwise,
the instruction following the TF
insthuction 48 executed next.

PRACTICE SESSION 2

As in Lesson 1, you should begin by typing in, listing, checking and
running the main program under discussion in this Lesson, namely:

10¢ PRINT "'TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE'";
105 INPUT B,S,F

106 CLS

1¢8 PRINT " X SQUARE CUBE 4-TH POWER"
119 X =B

120 Y = X*X

13p PRINT X,Y, X*Y, Y*Y

1490 X=X+ 8

159 IF X <= F THEN 120

16¢ PRINT

179 PRINT " END OF TABLE'"

la. Run the textbook program given above.
1b. Change instruction 140 X=X+3
to 140 X=X*S
and run the program. (Do you need to also change instruction 1787)

2. What happens if the program in the text is given B,S,F as D, 2,7
so that the step misses F = 7? Does it stop at 6 or at 87

3. a. Write a program of your own to create a table of values of
X X+3 (X+3)2
for X=1,2, 3, ..., 1§
b. Modify your program so it will accept input values B,S,F and
print out 9
X ,X+3) (X+3)7

for X values from B to F in steps of S.

4. Write some programs of your own choice using the instructions we have
discussed.

5. Write a program to INPUT the radius R, of a sphere, and print
out on one line the radius, volume and surface area of the sphere
using

Volume = 4 __3 Surface Area = 4nR2
§WR
(Where = = 3,74159...)

30

10.

11.

12.

13.

Modify your program of problem 5 to INPUT values: B, S, F

(for Beginning value, Step size and Final value) and PRINT a
table of values of the radius, volume and surface area of spheres
of radius B, B+S, B+2S, B+BS,... F.

. Write a program to convert Fahrenheit temperature to Celsius.

=5
C=g (F-32)

. Write a program to convert temperature in degrees Celsius to

Fahrenheit temperature.

Uﬂ@

(c) + 32

Rewrite instruction 1$8 in the program that produces powers of
numbers, so that the headings are valid after instruction 125 Y = Y*Y
is also inserted. Check it by using B, S, F=2, 1, 4

If you have ILEVEL II BASIC, try adding the following statement to the

program that makes tables of x, x2, XB, x4

5 DEFDBL X, Y
and RUN the program with B, S, F= 2, .5, 6

Note that we no longer have problems with 4.54 = 410.0625 being
rounded to 419.063 since we are no longer restricted to 6 decimal
digits in our arithmetic. The DEFDBL X,Y instruction permits
the TRS-80 to compute with and display up to sixteen decimal digits
of accuracy when needed. We shall discuss this further when the
additional accuracy is really needed. (What happens to the four
colums of output?)

Write a program to create tables of values of

3 6 .9
X, X, X, X

with proper headings for various values of B, S, F typed in by the
user.

What output occurs in the program to produce a table of x, x2, XS, x4

if some or all of B, S, F are negative? Try B, S, F=2, -.5, -3 and
B,S, F=-2,1,5 and B, 8, F=-1, -1, -6.

What happens when some of B, S, F are negative in the table of powers
program that includes 125 Y = Y*Y ?

31

14a.

15.

If your BASIC includes a square root function SQR(Yy try
using

120 Y = SQR(X)

139 PRINT X,Y,SQR(Y),SQR(SQR(Y))

in the text program.

If you don't have a SQR()y function, try

120 Y = XXX

13¢ PRINT X,Y,X*Y,Y*Y

Be sure to alter instruction 1§8 to print a correct heading for the
current table colums in either (a) or (b).

What would happen to the program if the instruction that prints the
heading were changed to

123 PRINT''X SQUARE CUBE 4-TH POWER"

Try it out and see. After you understand what happened, and why,
delete instruction 123 by typing

123 [ENTER]

Notice: If mathematics frightens you, you can laugh at your fears now.

16.

With a computer to do the arithmetic, all you need to do is
type in the formula and the computer will do the arithmetic for
you. It really is easy to do problems that used to stump you.
Try it; you'll like it!

If you like mathematics, you may wish to start by proving that the
area of a rhombus (a "stepped-on' square) is given by 3CD where
C and D are the lengths of its diagonals. If you don't like math-
ematics, just believe us that the area of a rhombus is half the
product of its diagonals. (0K?)

Write a program that will accept input values of C and D and
print out the message

THF, ARFA OF A RHOMBUS HAVING DIAGONALS AND IS .
with the blanks filled in with the proper values. After your
program is running properly, put in some extra instructions that
will print out the message ,

THE VALUES OF C AND D MUST BOTH BE POSITIVE.
if anyone uses negative or zero values as input.

Hint:
1¢¢ INPUT "PLEASE TYPE VAIUES OF DIACONALS C,D='"; C,D

119 IF C < O GOTO 500

129 IF D < 0 GOTO 500

130 A = .5%C*D

15¢ DPRINT "THE AREA OF A RHOMBUS HAVING DIAGONALS ';C;"AND';
D, nTgn ,A

169 PRINT

179 GOTO 1¢¢

(eontinued on next page)

32

17.

18.

19.

20.

5p¢ PRINT '"THE VALUES OF C AND D MUST BOTH BE POSITIVE."
51¢ PRINT

520 PRINT

539 GOTO 109

If N is the nunber of sides in a regular polygon and L is the length
of each side, then the radius of the inscribed circle is

L cos K here K = &
2 sink " N
The radius of the circumscribed circle is
— where K = &
2 sin K N
The area of any circle is given by ﬂrz where r is its radius and
m = 3.14159... You should be able to create a program that would
list
Number of Sides/ Area of Inscribed Circle/ Area of Circumscribed

Circle
for polygons having 3 or more sides each of length 1 unit. Do so.
Examine the output and explain what is happening. If you don't know
any trigonometry, do not let it disturb you. You can still write
this program. Use

K = 3.14159/N
I = .5%00S(K)/SIN(K)
C = .5/SIN(K)

where I stands for the radius of the inscribed circle and
C stands for the radius of the circumscribed circle, then
Area = 712,

A tetrahedron (triangular pyramid) has four faces each of which is an

equilateral triangle whose sides are each of length L.

The surface area = 1.73205L2

The volume = 0.11785L°
At L = 1, the surface area is larger than the volume.
At L = 20, the surface area is smaller than the volume.
Find the value of L that makes the nunber of square units in the
surface as nearly as possible equal to the number of cubic units in
the volume.

For what radius does a sphere have the same surface area (in square

units) as volume (in cubic units)?
Vol =<%1 RS

If (X1,Y1) and (X2,Y2) are the coordinates of two points, the dis-

tance between the two points is given by the formula

D= J?XI—XZ)Z + (Yl—Y2)2 Write a program to accept the coor-
dinates of two points and print out the distance between the points.
Does the formula work if some of the values are negative?

Surface = 4nR2

33

22.

23.

24,

25,

CHALLENGE PROBLEM: A job pays you $1 for the first 8-hour day's
work, $2 for the second day's work, $4 for the next day's work, $8
for the next day's work, etc., doubling your day's wages each day,
if you continue to work without being tardy or absent. It starts
over at $1 any day you are late or missing.

Find how many days you will have to work, without a tardy or absence
to earn a total of a million dollars. How much would you earn the
next day, if you were still on time?

You may write your own program if you prefer, or you may use the
program below:

1¢ PRINT "DAY#'', "PAY ON THAT DAY",6"TOTAL PAY THUS FAR"

100 8 =90

119 D=1

120 P=1

139 S = S+P
149 PRINT D,P,S
150 D = D+l

169 P = P+P
179 GOTO 13p

After you run your program, modify it so that you can INPUT a value
of T for the number of minutes tardy in step 17¢ and then send the
program to 13¢ if T = O but to 120 otherwise. Use T = 480 if absent.

179 INPUT T
189 IF T =@ THEN 13¢ ELSE 120

What effect does this have?

CHALLENGE PROBLEM: It is easy to observe that the sum of the first

four natural numbers is 1+2+3+4 = 10 or that the sum of the first
seven integers is 1+2+3+4+5+6+7 = 28. How many successive natural
numbers beginning with 1 would you have to add together to reach
or just exceed 10007

CHALLENGE PROBLEM: Bob drops a superball from a 4th floor window
492 feet above the parking lot below. If on each bounce the ball
ascends to half the height it fell on that bounce, how far will
the ball travel (both up and down) when it hits the ground for the
10th time? The 50th time? The 100th time?

Display all the perfect squares, S = N*N, where N and S are positive
integers (whole numbers) such that each S contains exactly six digits.

34

A1l right--it is now time to learn to do something you can't find in
a set of tables and can't do without a computer--at least not conveniently.

Now, let's introduce a new instruction by reprogramming a ''Table
Maker" of lesson 2.

A very useful instruction is the FOR...NEXT instruction. Try the
following program on your computer.

1¢p FOR K = 3 TO 10

119 S = K¥K

120 PRINT K,S,K*S,S*S
139 NEXT K

149 PRINT "END OF TABLE'"

The FOR...NEXT instruction sets K = 3 and executes whatever in-
structions lie between FOR and NEXT; then K is advanced to K = 4 and
the instructions between FOR and NEXT are again executed; then simi-
larly for K = 5,6,7,8,9,10. When K = 10, the instructions between FOR
and NEXT are again executed with K = 10. After reaching 139 NEXT K
with K = 10, the program continues to instruction 140. '

After you have run the above program, modify it to

8¢ DPRINT "TYPE BEGINNING VALUE, END VALUE';
99 INPUT B,E

10p FORK =B TO E

119 S = KX

120 PRINT K,S,K*S,S*S

139 NEXT K

14¢ PRINT "END OF TABLE"

15¢ PRINT

169 GOTO 8p

RUN the program for several different values of B and E. Now we are
ready to write a more sophisticated program.

35

Let's write a program to help us solve messy equations.

Notice that no one said the program would solve equations. It

won't. But it will do all the hard work and messy arithmetic for you.
All you'll need to do is to tell it where to hunt for the roots, and it
will do the hunting. Does that sound fair? Ilet's try it. If math-
ematics bores you, just hang in there for now. We'll be doing computer
assisted art in lLesson 4 but for now I want you to realize how easy it
really is to do mathematics with the help of a computer. If you can do
6th grade arithmetic, you can do this. Keep on reading, please.

It may not have occurred to you that computer programs have to be
"puilt." They do not spring full grown from the mind, but develop
slowly-—and are modified as they develop--until a final program you
would be willing to share with a colleague eventually results. One of
the primary rules for good programs is

geMREeAEREEMEEANEERENEEEEE RS RSN MEmA A

Make your program run first,

then make it fancy.

P L LT T T T Y e P L TP T

This is good advice. Let's use it.

Our problem is to write a program to help solve the equation
5%° + 3%° - 2X - 5 = 0.

We shall first write a program that accepts a value of X as input, and
displays the value of X along with the corresponding values of

Y = 5%° + 3%° - 2X - 5.

To solve the equation, we must make Y = 0 (or as close as we can get).

The following preliminary program seems to provide the required
evaluation.

219 PRINT ""TYPE X-VALUE PLEASE";
215 INPUT X ;
24 Y = SKXKXKX + 3KX*X - 2%X - 5 [ENTER|
25 PRINT X,Y

28(¢ PRINT

200 GOTO 21¢ [ENTER]
Don't forget to type LIST to
check your program.

Then type RUN @
The program will print

TYPE X-VALUE PLEASE ?
If you type ¢ [ENIER]

It will respond
¢ -5

SHOW ME WHERE

ILL FIND ROOTS

\ OF AN EQUATION
TN FOR YOU.

36

TYPE X-VALUE PLEASE?
If you type 1
It will respond
1 1
TYPE X~VALUE PLEASE?

The change of sign in Y from -5 to +1 shows, since Y is a continuous
function, that there is a root somewhere between X = @ and X = 1 —
possibly nearer X = 1.

If we were to graph Y = 5X3 + 3x2 - 2x = 5 we would know that for
x| 9|1
Yl—5 I 1l

Y

—2-—1] 12 3

-2
-3
-4
-5

Our observation suggests that for some X-value between X = @ and
X = 1, the value of Y must be zero. It is this X-value that corresponds
to Y = @ that we seek. Y

Let's try 0.8 IENTER I y

The computer responds 1 a1
.8 -2.12 l
TYPE X-VALUE PLEASE?

So we now know there is a root between = ; X
X=0.8 and X =1 (Why?)
so we type 9.9 I ENTER I (.9.,-.725)
and obtain -t
.9 -.725
so the sign change (and root) comes
between X = .9 and X = 1 -2 (.8,-2.12)

We can now enter .95

and if the corresponding Y is positive, tollow this with .94 etc.
Between .944 and .945 we eventually obtain the root accurate to 5
or 6 significant digits. Try a few values yourself.

37

We can devise an even better helper program to solve equations.

Let's modify our program so it accepts two values B and S (for
Beginning value and Step size) and then prints out 11 pairs of values
of X and Y before looping back to get another pair of starting values.

If you aren't sure why this will be a convenient change, just wait
until you try the program given below.

We shall use our new FOR.... NEXT dnstruction. It is really a
pair of instructions

FOR K=1 TO 11
NEXT K

The instruction FOR K=1 TO 11 sets K=1 and performs the instructions
between FOR and NEXT (which may or may not inwvolve K).

The NEXT K instruction then adds 1 to K (making K=2) and again performs
the instructions between FOR and NEXT. Then 1 is again added to K,
producing K=3, and the instructions between FOR and NEXT are executed
again, and again, and again until finally K=11. The instructions between
FOR and NEXT are performed once more, but this time whatever instruc-
tion directly follows the NEXT is executed.

The wee program
109 TFOR K=1 TO 2¢
119 PRINT K,K*K
129 NEXT K

will produce a table of integral values of K and K2 for K between 1 and
20 inclusive.

The following program produces rather different results in Level I and
level II BASIC. ;
Try it on your computer.

16 FOR K= TO 20 STEP .5

119 PRINT K,K*K

129 NEXT K

On Level I BASIC, it produces a table whose entries are ¢é. This is
because in Level 1 BASIC, STEP size must be an integer and STEP .5 is
truncated to STEP @.

level II produces a table of K, K2 for K between ¢ and 20 with values
changing by .5.

Try it if you are unsure, The best way to learn about your computer is to
conpute.

38

210
215
249
250
280
290

let us return to our first version of

PRINT ""TYPE X-VALUE PLEASE';
INPUT X

Y = SECKXKX + B¥XFX — 2FX - 5
PRINT X,Y

PRINT

QOTO 219

Let us combine some of the tricks we learned in Lesson 2 to produce

a table of eleven values of X and Y = S5¥X¥X¥X + 3*¥X*X - 2*X - 5 starting
with X = B and increasing the X value by S on each line.
Second try:
21¢ PRINT "PLEASE TYPE BEGINNING VALUE, STEP SIZE';
215 INPUT B,S
220 X=B
23p FOR K=1 TO 11
240 Y = BRCKKRX + 3FKFX — 2%X - 5
250 PRINT X,Y
260 X=X+S
27¢ NEXT K
280 PRINT
290 GOIO 21¢
LIST and check your program.
Then type RN
The program will print
PLEASE TYPE BEGINNING VALUE, STEP SIZE?
and you type 0,1 [ENTER
The output will be: @ -5 (Note sign change!l)
1 e
2 43
3 151
4 355
5 635
6 1171
7 1843
8 2731
9 3865
17 5275

39

Since there is a sign change between X = @ and X = 1, you next type
@, .1 which produces

-5
~5.165
-5.24
-5.195

-5
-4.625
-4.04
-3.215
-2.12

- 724999
1 1 «—— (Note sign change!)

DU WD S

A sign change between .9 and 1.9 indicates a root there,

so you type .9, .01 [ENTER] .

Then later you type .94, .0¢1 which shows a root between
.944 and .945.

.94 - 762806
.941 - .P5937P5
.942 - 0424247
.943 - 254455
.944 -8.43143E-03
.945 8.61549E-03 <«—— (Note sign
.946 . 0256987 change')
.o47 . 0428152
,948 . 9599666
.949 Q771518
.95 0943718
So now we know that the equation 5x3+3x2—2x~5=0 has a root between
x= ,944 and x = .945., You can easily obtain 5 or 6 places of accuracy,
if needed, but 3-place accuracy is frequently enough.

To solve 7X4 + 4X3 + 2x2 ~ 9x - 10, you need only to change line
249 to
240 Y = THKOKKKX + PROKKX + 2%X*FX - OFX -~ 100

Starting values @, 1 (and also @, -1) will each be helpful in solving
this problem.

40

Computer experts will prefer to write line 240 as
240 Y = (((7*X + 4)*¥X + 2)*X ~ 9)*X - 19¢

which saves both typing and, more important, computing time, since it
uses only four multiplications instead of 10, each time Y is evaluated.
If you have had a course in algebra, please multiply out the expression
to see that the same results are obtained. You can solve many different
equations by changing line 249.

What about solving X3 - 4.9X2 + 6.6x - 2.6 = 0 by changing line
240 to

249 Y= ((X - 4.9)X + 6.6)¥X - 2.6

Note that input B, S = @, 1 produces three changes in sign. Find all
three roots accurate to 4 or 5 significant digits.

. 2
If you have lLevel II BASIC, you may wish to try Y = e* cosx® - 2.6
249 Y = EXP(X)*COS(X*X) - 2.6

This program is really quite a valuable tool. It will help you to solve
almost any continuous (e.g., no factor in the denominator that might

be zeno- for X inside the interval in which you are seeking a root)
function set equal to zero.

Polynomials come under this classification—-even polynomials in sin(x),

cos(x), eX, as well as polynomials in X. So do many other functions, but
not equations like

3 -0 wsince y=-—=— is disconti = 1/2
e 0 since y 51 1S discontinuous at x /

Y
x

.

Remember: to change the equation being solved, you only need to
change instruction 249 to

249 Y = (whatever continuous function you are trying to make Zero).

41

OORRECTING ERRORS discovered at RUN time.

You may have noticed that the TRS-80 will frequently detect errors
in spelling or punctuation of instructions and will warn you of these
errors by printing an ERROR nmessage? consider the following erroneous
program:

1¢p FOT K=1 TO 1¢
110 PRINT K,K*K
129 NEXT K

in which FOR is misspelled FOT in line 1@¢. If you type

RUN - [ENTER]

the computer responds

2SN ERROR IN 109
READY

109 _

The first line tells you that there is an ERROR in statement 100.
We shall talk more about ERROR types later on - for now you can usually
spot the error by looking at statement 100.

For certain (but not all) errors, the computer will shift automatically
into EDIT mode. This is indicated by displaying the line number where
the ERROR has been detected just below the ERROR IN 100 message.

If you depress the key (without ENTER), the entire line will be
displayed, and the line number repeated

199 FOT K=1 TO 1¢
109

If you tap the the line will appear character by character
until the underline marks where the ERROR is:

19p FOT XK=1 TO 1¢
109 FO_

Now depress (which stands for change); nothing visible will happen,
but if you now depress the desired character it will appear. If
there are other errors, correct them too. Then depress

Type LIST and you will find the correction was made.

If you should need to delete a character depress @ instead of s

the deleted character will appear between ! | symbols. To insert a
character depress instead of [C] and then depress the desired

42

character. If you wish to change, delete or insert several characters
depress the nunber key before depressing the [Z?j s @ R [ﬂ key.
Thus will enable you to insert 3 characters. This is only
part of a set of powerful EDIT instructions available in Level IT BASIC.
We shall discuss them in Lesson 8, but you may peek now if you wish.

In many cases it is much simpler to merely retype the line, rather
than using the EDIT instructions. In such a case if you type

RUN and get

2SN ERROR IN 1¢¢
READY

109 —

Simply depress

This will displas} line 19p, and display the >_ which you must have
to enter an instruction. Depresssing will display

2SN ERROR IN 199
READY

199 FOT K=1 TO 1¢
>

Then you merely retype the instruction

>1¢p FOR K=1 TO 19

The critical things to remember are:

The computer indicates it is ready to accept data by displaying 7
Do not type anything but data if you have a ? displayed.

The computer indicates it is ready to accept an instruction by
displaying »>__
Do not type an instruction unless you have a > displayed.

If in doubt depress |BREAK | followed by to get

READY
>

WO 0 RSN

43

AssucERAAGARSEETAIRRER MRS EEERERAN .S T smpmeassueEnman AN KUY REAREA AN AR A NGO AN SN OIS RN N RANAARB RS

SUMMARY OF LESSON 3
We learned about the

FOR K = 3 TO 1¢

NEXT K
and

FORK = ¢ TO 29 STEP .5

NEXT K
instructions, and used them to develop a powerful program that can be
used to help solve continuous equations.

We also learned how to correct errors that are detected by the computer
at RUN time.

Perhaps the most important thing we learned in lesson 3 is that mathe-
matical problems are not inherently difficult. Even if mathematics
troubled you in the past, with the able assistance of a microcomputer
YOU CAN use plain old comon sense to solve problems that would cause

a college mathematics major difficulty if he tried to solve them without
a computer.

Note that remarks by the programmer, which are not printed by the
program may be included by proceedlng them by REM.
See page 44, problem 17,

PRACTICE SET 3

In problems 1 to 10, use the second equation solver program to help
you find solutions of the problems given below.

1. ® +33 4+ 23 +58 +3x - 25=0
2. X -31=0

3. 7<% +6x3 + 10x2 - 5x- 1= 0

4, 4x3 - 8x% -20x - 13 = 0 (Find three roots between -10 and
5. x* - 32 -4=0 Ho-]
6. a. ¥ -x3-5%2-x-6=0
b. o x3_-o5x2 -x-5=0
7. 2t +x3 82 - x+6=0
8. 6xt +5x3 - 14x2 +x+2=0

9. 3 +4xf - 12x - 16 =0

10, 4x% - 132 +3=0
11, a. 2t -x3 - 15x2 +6x+17=0
b, 20 - x% - 6x°0 + 32 +4x -2 =0
12. Change the constant terms in some of the above equations and try again.
13. If you have a Level II BASIC, try some trigonometric equations like
XFSIN(X) ~ 2 =0
XEEXP(X)*¥O0S(X) + X¥X - 4.5 =0

The fascinating thing is you don't really need to understand trigonometry
to solve the given (rather carefully selected) equations.

14. Forecast the output of the following program, then RUN it to cneck
your forecast.

19 FOR X=1 TO 19 STEP .2 Be sure to think about whether
110 PRINT X,X*X, X*X*X your computer has Level 1 BASIC
12¢ NEXT X on Level 1T BASIC,

45

15.

16.

17.

Use the program

99 INPUT "PLEASE TYPE BEGINNING VALUE, END VALUE, STEP SIZE="B,E,S
109 FOR X = B TO E STEP S

105 Y=X*X

119 PRINT X,Y,X*Y, VY

120 NEXT X

13p PRINT

14¢ GOTO 9¢

The following program is supposed to accept a positive integer value
N and print out the values of N and N! = 1¥2%3k, *N.

It seems to work the first time through, but then prints out non-
sense values for NI Try it and see. Then debug and repair the pro-

gram.

19¢p PRINT "N", "N-FACTORIAL'"
11¢ PRINT

129 F=1

15¢ INPUT ""TYPE INTEGER WHOSE FACTORIAL YOU WISH" : N
155 IF N<¢ THEN 150

16¢ IF N=f PRINT N, F These test the input data...

17¢ IF N<>INT(N) THEN 159 NOTE : INT(N) produces the integer
200 FORK=1TON portion of N, so0

210 F = K 17¢ TF N <> INT{N) THEN 150

22¢) NEXT K Looks at N and 4§ N L8 not an

250 PRINT N, F integen, the progrnam goes back to

260 GOTO 15¢ 150, Similarly, i N is negative,

Ansthuction 155 IF N < @ THEN 150
sends the program back fo instruc-
Lion 150,

The following program is supposed to accept two integers N, D and
determine whether or not D is a factor of N. Does it work? If so,
why? If not, fix it. The heart of the program is lines 13@, 14¢.

1¢¢ INPUT "TYPE IN TWO POSITIVE INTEGERS': N, D
11¢ IF N<D THEN 5¢¢

12¢ IF N=D THEN 60¢

13¢ Q=INT(N/D)

149 IF D*Q <> N THEN 490

2¢¢ REM PROGRAM COMES HERE ONLY IF D IS A FACIOR OF N

21¢ PRINT D; "IS A FACIOR OF':N

220 PRINT

23) GOTO 199

400 REM PROGRAM COMES HERE ONLY IF D IS NOT A FACTOR OF N
419 PRINT D; "IS NOT A FACIOR OF " ; N

420 PRINT

43¢ GOTO 1¢9

(continued on next page)

46

17.

18.

19.

20.
21.

22,

23.

24.

(continued)

50¢ PRINT N;"=N IS SMALLER THAN D=";D;"HENCE D CAN'T BE A FACTOR OF'N"
510 X=N

52¢ N=D

53p D=X

54p GOTO 130

6p¢ PRINT "THE VALUES BOTH EQUAL'; N, "HENCE FACH DIVIDES THE OTHER"
619 PRINT
620 GOTO 109

In Lesson 2 you wrote programs to change temperature in Fahrenheit to
temperature in Celsius and vice versa. Combine the ideas of your two
programs into a single program that accepts B, S, E as Beginning
value, Step size, and End value for T and then writes out two sets of
tables side by side (four columms) using ,
PRINT T;C,T;F —————(Note use of ; , ; An output here.)
where T runs from B to E in steps of S and where

C = (the Celsius temperature corresponding to T degrees in Fahrenheit)
F = (the Fahrenheit temperature corresponding to T degrees Celsius)

Write a program to INPUT the hourly rate, R, and the number of hours, H,
worked in a given week and print out the employee's gross wages

for that week, assuming (s)he is paid time and a half for all time
over forty hours in a given week.

The output statement might be:

PRINT "'$"';W;"FOR" ;H;""HOURS AT BASIC HOURLY RATE OF'';R

but you'll have to scratch your head a bit to compute the total for W,
including the overtime payments, if any. Don't make the error of
subtracting ten hours of "undertime" for an employee who only works
30 hours. It does not work that way.

Write X4 - 7X3 + 5X2 + 3X + 71 as a series of nested parentheses.

Express (((3*X — 7)*¥X +5)*X +2)*X + 13 in a form without parentheses.

CHALIENGE PROBLEM: The sequence 1,1,2,3,5,8,13,21,...1is created by
writing 1,1 and then each succeeding term is the sum of the preced-
ing two terms, 1+1=2, 1+2=3, 2+3=5, etc.

Write a program to compute the first 100 or so terms of this
"Fibonnaccli sequence."

CHALLENGE PROBLEM: Solve X2 - cos X=0

2
CHALIENGE PROBLEM: 4X8 - 2X7 + x6 - 3x4 +x -x+1=20
presents an interesting purzle for the mathematically-oriented.

reader.

47

25.

26.

27.

28.

CHALIENGE PROBLEM: A dog is chasing a rabbit., The rabbit takes
three jumps in the same length of time the dog takes two jumps, but
each rabbit jump covers only half of the distance of a dog jump.
The rabbit was 13 rabbit jumps shead of the dog when the dog first
spotted the rabbit and started after it. If both go in a straight
line, how many more jumps will the rabbit take before the dog
catches it?

CHALLENGE PROBIFM: How much must you invest now in an account pay-
ing 9% interest compounded quarterly to have $100,000 when you are
70 years old? (If you don't want to give your age away, figure it
out for S. Marguerite who is 22 years old.)

CHALILENGE PROBLEM: Legend states that in 1626 Manhattan Island was
purchased from the Indians for $24. If that $24 had been invested
at 12% interest (a modest interest rate at that time) what would the
$24 be worth today?

(How does this compare with the value of the land in Manhattan
Island today?)

Here are two small ''research'' problems for you.

CHALLENGE PROBLEM: The four-digit number 9801 has the unusual
property that if you take the two-digit number formed by the first
two digits, 98, and add it to the number represented by the last

two digits, 01, then 98 + 01 = 99 and (99)2 = 9801, Find all four-
digit numbers that have this property.

29.a) CHALLENGE PROBLEM: A 4 by 4 rectangle (square) has the unusual

property that its perimeter (distance around it) is the same as its
area (both are 16). Your problem is to find another rectangle that
also has the property that its length and width are both integers
and its perimeter (2*(L+W)) is equal to its area (L*W).

b) CHALLENGE PROBLEM: If you like mathematical thinking, see if you

can prove that the two rectangles you found above are the only two
such rectangles that exist.

CHALIENGE PROBLEM: The song "Twelve Days of Christmas' mentions
various gifts that 'my true love gave to me." Let's interpret the
song so that '"on the third day of Christmas, my true love gave to me

three French hens, two turtle doves and a partridge in a pear tree."
My true love gave me six presents (3 French hens, 2 turtle doves, and
a partridge, if we don't count the pear tree as a gift). How many
gifts in total did my true love give to me during the twelve days of
Christmas? Write a program to determine the sum.

Answer: 364, if you do not count the pear tree as a gift.

48

Computers are fun. They meke great adult toys. As my daughter says,
"The main difference between men and boys is the price of their toys."
Well, a modern computer costs less than many adult toys — a Jaguar XKE,
a sailboat, a motor boat, a golf cart or even a set of clubs can cost
more than a computer. Of course, the computer is a very useful device
(but so is an XKE) so let's just look at how to have fun with it.

If you are curious, you may have doped out how the little surprise
program of Problem 8, lesson 1, worked. Iet's look at it.

(Rememben to depress [ENTER| at the end o4 each Line.)

Ievel IT BASIC Level I BASIC

NEW ENTER NEUW ENTER .
12 PRINT @ RND(1P@@) - "HI SUZANNE" 1 PRINT AT RND(17@@),"HI SUZANNE"

15 IF RND(@) < .@5 THEN CLS 15 IF RND(@)<.@5 THEN CLS
2@ GOTO 17 20 GOTO 1@
RUN RUN

Line 1§ contains two new ideas. One of these is the idea of a random
nunber generator. TRS-80 contains two types of random number generators:

One is called BND(@). RND(®) produces a random decimal number between
@ and 1.

The other is EBEND(n), where n is a positive integer. RND(n) produces
a random integer between 1 and n inclusive.

To see how they work, use the programs on the following page.

49

10PP PRINT RND(R);
1010 GOTO 1Ry

RUN 1ppp |ENTER]
After you have a screen full of that, try

7

1APP PRINT RND(1PP);
1017 GOTO 1Py
RUN 1Ppp [ENTER

Later, change instruction 1009 to

PRINT R :
1709 NDQUDYS oo this stitl wses instauction 1910 GOTO 1090,)

and type RUN 1000 again.

Each time you call BND(7) a random nurber is produced that is differ-
ent from the random nunber produced last time, even though the same n
is in the parentheses.

The second new idea in the instruction
1@ PRINT @ RND(1PPR), 'HI SUZANNE"
is the PRINT AT _, " " instruction.

Tor purposes of the PRINT AT , " " the screen is divided
into 1024 cells, sixteen rows of 64 elements each. Each cell exactly
fits one letter plus the space between rows for that letter. The cells
are numbered from @ to 63 in the first row, 64 to 127 in the second
row, etc. (See illustration on the following page.)

RND (4) TELLS ME
.| TO GIVE YOU DIFFERENT
RANDOM DECIMALS

LIKE .73948%2,
\ 109b54, oR 512703,

T This uses RUN 1000 [ENTERl én place of RUN [ENTER| to make the
computer skip any progham in 1§, 15, 28,...,999, and start RUNning at
statement 1400. A neat trick.

50

LI L T PR T T T T T LI LI P e T T Tl TT Y BT T T Fol T

}
t
i
A
=
-
b
1
7
:
1
1
+

l ' I i | il |
; : : i i

.
%] N - ; my
T o N T . . : %3
e ‘ ! . 511
= L . -

575

51

Try the program

1PPP INPUT N §

1PP5 LS |

1@1@ PRINT @ N, ' MARKS LOCATION'"; N; | (Use AT .in place of € on
1P2R GOTO 1PPR | Level T BASIC.)

RUN 100

i
The instruction

AT AT in Level 1 BASIC.
PRINT (@) " Use <6 iy Levet 1T BASIC.

will start printing at location » and print whatever is called for. It
prints any symbols it finds inside of quotes as symbols and the values
of any variables it finds outside of quotes, providing the proper commas
and/or semicolons are included.

For example, instruction 1@ of the program in Problem 8 of Lesson 1

10 PRINT(Aga RND(19¢®), "HI SUZANNE"

conbines these two instructions. RND(10@@) generates a random integer
between 1 and 1000,

Aﬁﬁ RND(10/g@), "HI SUZANNE'

PRINT (
then prints whatever is in the quotes, starting at whatever random loca-
tion RND(1@¢@) generated. The next time, a different random integer is
generated. The result is the statement in quotes is flashed all over the
screen.

52

If you wish a snow storm, try
NEW | ENTER |
@

1098 PRINT [,~
1P2P GOTO 1ppD

RND(1@2p), ", To keep the screen grom scrholling
use ; at the end of Line 104¢.

To occasionally wipe the screen clear, add
1PLP IF RND(@)<.RL THEN (LS

The instruction RND(®) generates a random decimal number between § and
1. If the random number generated is less than .01 (which it will be
about once in 100 numbers on the average), the 'clear screen' instruction

CLS is executed. Otherwise, (LS is ignored. In either case, the in-
struction 1020 GOIO 1999 is executed next.

Here are some interesting programs. Try them on your TRS-80.

S
NEW ENTER
5 (LS

1@ FORL = TO 9@ STEP kY

15 FORK = 1 TO bl

2p PRINT @ K + L, "HI your name'
25 NEXT K

IP NEXT L

up GOTO 1

After you try that with several different names, change instruction 15 to
15 FOR K = k2 T0 5 STEP-L

and RUON it again.

Here is another FUN program. Please try it, then analyze what happens
and why. The CHR$() instruction, discussed later in this lesson, dis-
plays the character corresponding to the value in the parenthesis.

/WEu [ENTER]
©1pp as

110 N-1 (Note: CHR$() <s
P N= " not available in
1200 PRINT @ 970, " MOBILE ART FORM = "; N ; Level I BASIC.)

130 FOR K = 129 TO 191
. 14@ PRINT @ RND(959),CHR$(K) ;
| 15@ NEXT K

16Q N = N+1
170 FOR @ = P TO RND(N) : NEXT @
180 IF N < 5@ THEN 12@ ELSE 1P

53

Your TRS-80 has much finer graphic capabilities than we have been

using in PRINT‘céa , "' Actually, each letter-

sized cell is broken up into six smaller rectangular cells, or pigzels,
counting the space between lines, and each cell is individually address—
able. The system of numbering from 9 to 1023 is too coarse for this use.
The individual spots are addressed by giving an X, and Y-coordinate with
@ <X <127 and Q<Y <47, The (,0) point is in the upper left edge
of the screen. X increases to the right. Y increases downward.

X -
SpEEEREEREREEE TR L L] LT L PP B DL e LD Do e T]
| 14 s 1] ; !
. i, R T T
. ; L . . i T
i 1 il LTI
i I | il
! : | | 11 ‘ i e
} ‘4
- H ! : [N
g Hoif | N L " L
i f !
! T i
T + H ! i
‘ V‘ 7
lH : I IR GEE)
Y I
. Ea
e . .
434 [EERS] i i
e x
‘ ; -(
; z
HREi JH
L P L e L AHHH
CEEEECEEEETIEE O

So, (3@, 17) is 30 spaces to the right and 17 spaces down from (p,0), as
shown above.

54

Try

PR INPUT X, Y=" ; X,Y
1010 SET(X,Y)

12p GOTO 1ppp

RUN

There are three instructions used with these spots:

SET(X,Y) This lights point (X,Y).
RESET (X,Y) This darkens point (X,Y).

POINT(X,Y) This is used to determine whether or not point(X,Y) is
lighted. If lighted, it returns ''logical yes', otherwise,
"logical no", as used in an IF,..,.THEN instruction.

o

/10 CLS
110 FOR K = 0 TO 4?
1120 SET(K,K) : SET(K+k@,K)
| 139 NEXT K
i,RUN

After you have RUN the above program, and understand why it produces
two wiggly diagonal lines, try adding

125 SET(12¢-K,K) : SET(6¢-K,K)

Before you run the new program

(1pp LS

lllm FORK = @ TO 47
120 SET(K,K) : SET(K+h@,K)
125 SET(12P-K,K) : SET(bP-K,K)
130 NEXT K

see if you can forecast the pattern that will be produced. Then (and only
then) type RUN to check your forecast. This is one of the
best ways to learn about computers.

IF POINT(X,Y) THEN BRESET(X,Y) will test (X,Y) and turn it off, if it is
on. However, RESET(X,Y) also turns off point (X,Y) and takes less time.

Later, you will find uses for POINI(X,Y) in programs in which you will
need to test whether or not a given pixel is lighted.

The following program will help you become familiar with the loca-
tion of the various (X,Y) rectangles (pixels). It lights a rectangle
chosen at random, and then permits you to input your estimate of the co-
ordinates (X,Y) of that rectangle. If you miss, a rectangle will blink
at the coordinates you chose to show you its location with respect to
the unblinking target. You may then input another guess.

55

y

18 R = 1@ + RND(3])

113 C = 2@ + RND(L@)

120 S

13@ SET(C,R)

14@ INPUT "PLEASE TYPE YOUR ESTIMATE OF (X,Y) AS X,Y ="; X,Y
15p IF(X=C) AND (Y=R) THEN upp

2PP FOR K=1 TO 2pp
210 SET(X,Y)
220 RESET(X,Y)
230 NEXT K

24P GOTO 120

4R REM HERE IF ESTIMATE IS CORRECT.

YL@ PRINT @ 7@, 'YOU ARE CORRECT. CONGRATULATIONS.'

42P FOR @=1 TO &pp : NEXT @

43P FOR @=1 TO 5@ : PRINT @ RND(IPPP), ''YOU WIN" : NEXT @ : CLS
44 PRINT @ 128, "HERE IS ANOTHER POINT FOR You'

45P FOR @=1 TO SPP : NEXT @

4P GOTO 1P

It is a game...put it on your computer and play it. This is guaranteed
to improve your visualization of what is where on the pixel screen.

Here is another possibly useful technique.

Let us use our knowledge of graphics to create a bar graph or histo-
gram for the number of students attending The University of Oklahoma.

56

b, "GRAPH OF ENROLLMENTS AT THE UNIVERSITY OF OKLAHOMA™

(109 LS

11 PRINT @

120 REM LABEL THE LINES FOR THE BAR GRAPHS
130 PRINT @ 128, "1Aug"
149 PRINT @ 182, 'Asp"
150 PRINT @ 256, '"18a["
6@ PRINT @ 320, "47p"
170 PRINT @ 384, '19ap"
SO REM DRAUS THE ACTUAL GRAPHS
220 FOR X=12 TO 42

230 SET(X,b) : SET(X,?)
24P NEXT X

320 FOR X=12 TO 5k

I SET(X,9) : SET(X,1M)
349 NEXT X

42@ FOR X=12 TO bY

43 SET(X,12) : SET(X,13)
4up NEXT X

520 FOR X=12 TO 12

53 SET(X,15) : SET(X,1b)
sS4 NEXT X

L3P FOR X=12 TO 12y

£30 SET(X,18) : SET(X,1d)
L4P NEXT X

A shorter and more powerful graph generator can be written using

instructions we have not yet studied (see Lesson 13).

In this version, the

years and the values to be plotted are stored in DATA statements and enter-

ed into the computer using a READ instruction.

5 CLEAR 200

1¢ CLS

(Not available in Level I.)

109 PRINT @ 6, "GRAPH OF ENROLLMENTS AT THE UNIVERSITY OF OKLAHOMA "
119 READ Y, D

115 IF Y <@ THEN 115
12¢ DATA 1049, 21, 1950, 28, 196p, 32, 197p, 51, 198p, 62, -1, -1

13p PRINT Y;
149 QOTO 119

STRING$(D, 143)

However, it is better to learn to walk steadily before one tries to run or
to fly—We invite you to use the above program either with the given data
or by changing instructions 100 and 129 to produce another histogram of
you. The end of your data should be indicated by -1,-1
as above. If the data values for D lie between 1 and 59, the program will
graph the data on a single line; otherwise more than one output line may
be required in which case you may wish to insert 135 PRINT in the above
program. Experiment a bit.

more interest to

57

Try the small-flake snowstorm programs below.

/?imw SET(RND(127), RND(47))
1119 IF RND(@)<.PPL THEN CLS
| 120 GOTO 1P

/;/%m s

| 1@P X=RND(127)

11@ FOR Y=1 TO 43 + RND(3)
11120 RESET(X,Y) : SET(X,Y+1)
- 113@ NEXT Y
fjlqw GOTO 1
!

Here is another interesting program. The students claim it is a
"'campus planning program'.

/5 N=1
" oap cLs

I L@@ PRINT " CAMPUS PLANNING PROGRAM ''; N
19@ FOR K=1 TO 3+RND(17?)

| 2PR SX=RND(7R)
PS5 SY=3+RND(23)
| 21 L=RND(55)
215 W=RND(PR)
2P FOR X=SX TO SX+L

’ EE; SET(X,SY) : SET(X,SY+lW) T4 you'd Like o have yown N-S
c3 NEXT X u e to hav -

E c35 FOR Y=SY TO SY+U ?aéﬂé the Aaz& width as the
24 SET(SX,Y) : SET(SX+L,Y) -W walts, add:

. 245 NEXT Y 243 SET(SX+1,V) :SET{SX+L+1,V)

| 250 FOR @=1 TO 1PP+RND(3@P) : NEXT @

- B55 NEXT K .

| = . 14§ you want a Longen Look at a Aspec-

% gtg ;2§+§ 1 TO &P NEXT d Alal design on the scheen, depress

Then depress any key, without[SHIFT]
fo continue.

Note instruction 260 FOR Q = 1 TO 8¢ : NEXT Q. This forces the
program to count to 800 before it goes to instruction 8@ and clears the

screen. Separate instructions are separated by colons in lines 225, 249,
250 and 260.

The following program contains several instructions we have not
discussed yet. If you are particularly interested in learning about them,

58

consult Iessons 12 and 14. However, you can use the programs with-
out having to understand LEN(Z$) or MID$(Z$,K,1).

p

/19p CLS

11 7%= "YOU HAVE ALREADY LEARNED LOTS- BUT STILL HAVE OTHER GOODIES
TO INVESTIGATE. T0O."

120 K=p

130 E=INT((LEN(Z%)+1)/2)

14 FOR A= TO E STEP .5

150 X=1G%SIN(A)

0 K=K+l

170 PRINT TAB(X+3@) : MIDS(Z%,K,1)

180 FOR @=1 TO 5@ : NEXT @

190 NEXT A

200 FOR @=1 TO 3@P : NEXT @

210 GoTo 1@p

Run the program. Then, change line 11§ to
110 Zs = "

where you type any message you wish between the quotes.

59

let us write a program to create a rectangle on the video screen.
Select as vertices the following points:
A(25,10) B(45,10)
C(25,30) D(45,3p)

We might believe that the result will be a square, since the dis-
tances AB,BD,DC,CA each appear to be twenty units in length, i.e.

X~-distances are each 45-25=20 units
Y-distances are each 30-10=20 units.

However, this is not valid. Let us write the program and then examine
the output.

f //im s
" 1pp REM DRAW LINE FROM (25,1@) TO (45,1@)
110 Y=1p
12P FOR X=25 TO 45
1130 SET(X,Y)
14P NEXT X

2pp REM DRAW LINE FROM (25,3@) TO (45,3%)
219 Y=37

22Q FOR X=25 TO U5

23p SET(X,Y)

2up NEXT X

3PP REM DRAW LINE FROM (25,1@) TO (25,31)
310 X=25

32Q FOR Y=1@ TO 30

330 SET(X,Y)

34P NEXT Y

4pp REM DRAU LINE FROM (u45,1@) TO (u5,3@)
41P X=u5

42@ FOR Y=1(TO 3P

43P SETCX,Y)

44@ NEXT Y

RUN the above program.
OUTPUT

60

The rectangle was not a square. Indeed, it is about twice as tall
as it is wide, since the "spots' (pixels) located at (X,Y) are actually
rectangles (as you can see by typing SET(199,30)). In other
words, the X-direction units are only half as large as the Y-direction
units.

To obtain a better approximation of a square, you could change each
of the 45's to 65's (in instructions 12@¢, 22¢ and 410). Change the steps
as suggested and RUN the program again. It still isn't a perfect
square, but it is much improved. What about lines 100, 20@, and 40@¢?

It is possible to make the lines of this square of equal weight by
changing instructions 33¢ and 430 to

3P SET(X,Y) @ SET(X-1,Y)
43 SET(X,Y) @ SET(X+L,Y)

Try these alterations and see how the new program behaves.

It still does not produce a perfect square...perhaps because the
rectangular '"pixels' are really not exactly twice as high as they are
wide.

Depress and and type
LIST

This will display your current program which should be:

/7 1 LS

10 REM DRAW LINE FROM (25,1@) T0 (b5,10)
119 Y=1¢

120 FOR X=25 TO b5

139 SET(X,Y)

14P NEXT X

2pp REM DRAU LINE FROM (25,3@) To (k5,3Q)
210 Y=3p

22Q FOR X=25 TO k5

230 SET(X,Y)

24P NEXT X

PP REM DRAU LINE FROM (25,1@) To (25,3p)
31P X=25

32Q FOR Y=1@ TO 37

339 SET(X,Y) : SET(X-1,Y)

34p NEXT Y

uypp REM DRAW LINE FROM (k5,1) TO (b5,3)
41P X=k5

42@ FOR Y=1@ TO 3P

43P SET(X,Y) : SET(X+1,Y)

Y4P NEXT Y

61

Your task is to adjust the width of the rectangle to produce the
best square you can. Increasing the 65's in instructions 129, 229 and
419 slightly (say, to 75) may be all that is needed. Play with it a bit
yourself.

Actually, the program can be shortened considerably by drawing the
two parallel lines in the same FOR..... NEXT loop, as illustrated below.

/;iﬁb

18 CLS

1PP FOR X=24 TO 73

1@ SET(X,1@) : SET(X,3@)
12@ NEXT X

2pP FOR Y=11 TO 29
210 SET(R4,Y) : SET(25,Y)
22p SET(72,Y) : SET(?3,Y)
230 NEXT Y

25 PRINT @ 4@5, "SQUARE" ;
PP GOTO 3PP

Instruction 25¢ prints the word SQUARE in the drawn square. The
; at the end of instruction 250 prevents that instruction from clearing
the following line and thus disrupting your square.

Instruction

309 GOTO 3¢9
puts theprogram in a''tightloop" that prevents the TRS-80 from displaying

ST

(=
|

which could disrupt the display. To get the computer out of this tight-
loop, depress the key.

62

CHRS()

Each screen character or action (including scroll, space, backspace,
carriage return, and convert to double-size letters) has a numeric code
that corresponds to it.

In Level II BASIC (but not in lLevel 1) it is possible to use the
instruction CHR$(n) (where n is an integer or a variable that has value
between O and 255) to obtain the screen character or action correspond-
ing to the nunber =.

1@ INPUT K
11@ PRINT K;
130 PRINT CHRS(K)
2pp GOTO 1P

will permit you to test this out.

Use the following input values, among others, to obtain a variety
of synbols: (type and [ENLFR] them one at a time.)

33, 36, 42, 6p, 88, 91, 92, 109, 134, 148, 191

The following program will print the character number along with a
row of that particular character. This may be useful as a border on a
graphic display.

//'Lw LS

//gm PRINT "PLEASE TYPE A NUMBER BETUEEN 33 AND 191"
1pR INPUT K

11@ PRINT K,

12Q FOR L=1 TO 45

130 PRINT CHR&(K);

148 NEXT L

15@ PRINT

2pp GOTO 1Pp

- Try 33, 36, 38, 42, 47, ep, 62, 72, 838, 91, 92, 199, 125, 126, 134, 135,
141, 148, 152, 187 and 191 to obtain a variety.

To see the entire array of useful display synbols, change instruction 100
and add instruction 17¢ as suggested below:

1@ FOR K=33 TO 191
170 NEXT K

After you have run the program a few cycles, you may wish to permit

K to range from O to 255 in instruction 1¢@. But the effect of CHR$()
values outside of the range 33 to 191 is harder to visualize from the

63

program. For example: CHR$(8) backspaces and erases character.

The effect of CHR$(W) for several W-values is given below:

25

27
28
29

31
32

8BRS

W-value Effect or Character Printed
8 Backspaces and erases one character
10-13 Linefeed / Carriage Return
14 Turns on Cursor
15 Turns off Cursor
23 Converts to double-size letters

WANT T0 SHOW YoUR
PROGRAM To A CROWD ?
PRINT CHR$(23) WitL MAKE

ovrrur TWICE AS,

This 45 handy Ain yowr proghams!
Just include

108 PRINT CHR$(23)

and your output will be double~
sdzed until the next CLS.

Backspace Cursor (+)

Advance Cursor (=)

Downward Cursor (Linefeed or +)

Upward Cursor (Linefeed or 1)

"HOME', Returns Cursor to (@,) position
Moves Cursor to beginning of Current Line
Erase to End of Line

Clear to End of Frame

Space

W-value Effect or Character

W-value

Effect or Character

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 3
60 <
61 =
62

63

64

65-90
o1

92

93

94 -

% e o~ ~ o

-

W 00 N Oy G B W N e O

-V

b+ > > @
1
~

95
96-127

128
129-191

192-255

— (Underscore)

lowercase a-z
(but TRS-80 does not dis-|

play lowercase)
Space

Various combinations of
Rectangles for fast SET()

Tabs for ¢ to 63 spaces

65

GRAPHING FUNCTIONS

COMPUTE
20+20SIN (X
AND EVEN MAKE

THE GRAPH.

Just so you won't feel
this chapter is entirely friv-
olous, let's write a program
to graph the function

Y =20+20 sinx for P<x<3.2

(radians, of course). If

you don't know what that

means, don't let it bother

you. The point is that the

computer knows what it means.

If you just realize that for each value of x between @ and 3.2 that you
think of, the computer will supply you with a corresponding value of

Yy =20+20 sinx, that's all you need to know. It doesn't really make any
difference that sinx is frequently used in trigonometry and you don't
know any trigonometry...just hang on and have faith.

Let's write a short program to see that the computer really can supply the
desired value.

ILevel II BASIC

//f 9@ PRINT X', "y"
1PP FOR X=p TO 3.2 STEP @.1
110 Y=2p+2PxSIN(X)
1@ PRINT X,Y
13 NEXT X
RUN

Your computer should produce:

”

=l

2. 9967
23.9734
25. 914
27.7884
29. 5885

s L WUe®E X

66

Now, what we want to do is to graph this function instead of making a
table of values.

Recall that the X,Y coordinates on the screen are (,9) at the top left
and Y increases downward. This is inverted from the usual graph.

[o,0
X >

We shall create a new variable Y1 = 40 - Y so that

Y Y1
? 40
20 20

49 9
This will invert our graph. (Think about that a bit if it bothers you.)

We'll also introduce a new variable X1 = 10xX to spread the function out
on the screen. The program

/?}ﬁm (LS

1P@ FOR X=P TO 12.5 STEP @.1
120 Y=2@+2@*xSIN(X)

130 X1=1@xX

1P Y1=up-y

15@ SET(XL,Y1)

bR NEXT X

170 GOTO 17@

will produce an acceptable graph of the function
y=20 + 20 x SIN(x)

67

The last instruction 179 GOTO 170 is inserted to keep the TRS-80
from displaying

READY
>

which would spoil the graph. To get out of this "tight loop',
depress .

later, you can learn to make even fancier graphs that show the axes
and units as well as the shape, but here we only introduce the basic idea.

The following program displays a series of interesting graphs.

/7imm cLs

11Q A=1+RND(S)

12P B=1+RND(5)

13Q C=1+RND(S5)

14p PRINT A,B,C

15@ FOR X=p TO 12.7 STEP .1
1L@ Y=25-5x(SIN(A*X) - SIN(B¥X) + COS(C¥X))
170 SET(1@xX,Y)

1?5 FOR @=1 T0 2@ : NEXT @
180 NEXT X

190 FOR @=1 TO 5PP : NEXT @
2gp GOTO 1P

/?Em REM ANOTHER "RANDOM ART" PROGRAM
9P CLS

95 FOR L=1 TO 3P

PP FOR K=p TO 15

105 P=KxLl4 + RND(bY) -1

11 PRINT @ P, CHRS(1L28+RND(L3));

120 NEXT K

125 NEXT L

130 FOR @=1 TO 9P@ : NEXT @

4P GOTO [P

After you have RUN the program a few times, add
115 PRINT @ END(1¢23), CHR$(128+RND(63));

and RUN it again.

68

A ninth-grade student, Anthony Tipton, from Millwood High School,
Oklahoma City, Oklahoma, produced the following rather interesting pro-
gram after reading a preliminary version of this chapter.

/:%é REM ANTHONY D. TIPTON
5 REM 1717 NE SOTH

7 REM OKC,0K 73111

9 REM 427-(137

99 (LS

10 FOR Z=1 TO 3 : (LS
L FOR X=f TO 127

12 y=23

173 SET(X,Y)

14 NEXT X

W5 FOR Y=P TO 47

1k X=h3

17 SET(X,Y)

8 NEXT Y

178 FOR X= -bk.2 TO k.2 STEP .p5
175 ON Z GOSUB 39p, 4pp, Spp
180 Y= -y

19p X1=X¥10 : Y1=YX5

2pp A=X1+k3 : B=Y1+23

215 IF B<@ THEN 220

2Pk IF B>4? THEN 22p

2p? IF A>127 THEN 22

2pa IF A<Q THEN 22p

212 SET(A,B)

220 NEXT X

23@ NEXT Z

250 GOTO 99

3PP Y=SIN(X)
3L PRINT @ 896, "SINE':
P2 RETURN

4@ Y=TAN(X)
Y@L PRINT @ 89k, '"TANGENT';
42 RETURN

5PR Y=XxX -4
503 PRINT @ &9L, '"PARABOLA";
5P2 RETURN :

Sophisticated readers will see ways to speed up the program. However, it
serves rather nicely at its current speed as a classroom demonstration
illustrating how flat the sine curve is at max and min points, and how
nearly linear where it crosses the x-axis, allowing for instructor com-
ment on each curve.

69

SUMMARY OF LESSON 4

Let’s see what you have learned thus far...
RND(9) Produces a random decimal value between O and 1, not includ-
ing endpoints.

RND(n) Produces a random integer between 1 and #, including end-
points.

PRINT @ 96¢, '"NEXT VALUE IS"; N Prints at the bottom of the screen
(location 960).

RUN 1400 Begins running a program at statement 1400.

SET(X,Y) Turns on rectangle at point (X,Y).
RESET(X,Y) Turns off rectangle at point (X,Y).
POINT(X,Y) Tests point (X,Y) to see if it is lighted or not (very

useful in some games).

FOR Q = 1 TO 4¢¢ : NEXT Q The : separates different instructions
on the same line. This particular line is
a ""time waster' to slow down the computer.

PRINT CHR$(n) Obtains the character or screen action de-
signated by n.

ON N GOIO a, b, ¢,...,z When N takes on the value k, then pro-
gram branches to Rth statement number in
the list a, b, c,...,z. (See Problem 11,
lesson 4.)

Mostly, we have learned to use some different "graphic' capabilities of
the computer for fun and for work.

70

PRACTICE SESSION 4

1. If you haven't tried a variation of the PRINT AT RND(10@@),"HI____"

program suggested, do so now., That is how you increase your under-
standing of the BASIC language you are using. Try this one, too.

NEW

5PP X=RND(125)

S1R Y=RND(47)

520 SET(X,Y) : SET(127-X,Y)
53@ IF RND(B)<.@@2 THEN (LS
54p GOTO SPpp

2. Try the "snowflake" program given in the text.

9@ (LS

1P X=RND(127?)

11P FOR Y=1 TO 43+RND(3)

120 RESET(X,Y) : SET(X,Y+l)
130 NEXT Y

4P GOTO 1PP

Then add

1A5 T=RND(127)
125 RESET(T,Y-1) : SET(T,Y)

Type LIST [ENTER to see the new program.
Then, type RUN |ENTER| to rumn it.

3. Add a third snowflake to the extended program of Problem 2 by adding
appropriate instructions in 16 and 126. Try your program out.

4. Run the following program:

NEW

170 X=p

110 Y=(

12@ SET(X,Y) : SET(127-X,Y)
130 X=X+1

4P Y=Y+l

170 GOTO 12

If you are using Level I BASIC, it should fill the screen with dia-

monds,
If you are using Level II BASIC, the program will ''bomb off™ whenever
Y>47 or X>127. This can be avoided by inserting:

150 IF Y > 45 THEN Y=RND(1@)
L@ IF X > 125 THEN X=RND(15) Try it again!

71

5. Try the following program on your TRS-80.

6.

NEW [ENTER

9@ LS

PP X=4+RND(12@)
11@ Y=3+RND(4P)

12@ SET(X+L,Y+2) : SET(X,Y+2) :

13p SET(X-1,Y) : SET(X-2,Y)
4P SET(X+2,Y) : SET(X+3,Y)
145 SET(X,Y-1) : SET(X+1,Y-1)
160 IF RND(P)<-P2 THEN CLS
2pp GOTO 1P

After it runs, try changing 160:

1L@ IF RND(@)<.2 THEN CLS
and then to
1b@ IF RND(@)<.PB5 THEN LS

SET(X+L,Y+1) @ SET(X,Y+Ll)
'Note The proghams of ProblLems 5
.to 13 arne somewhat related and may
ibe placed on the TRS-80 without
fusing NEW [ENTER] to save he-

i typing.

s--.--u---------nu----a------------u.------.------.l

Extend and modify the program of Problem 5 by adding:

170 IF RND(@)<.? THEN 1@
2pp X=p

21p Y=p

220 SET(X,Y) : SET(127-X,Y)
230 X=X+1

235 IF X>12@ THEN X=RND(k)
2up Y=Y+l

245 IF Y>US THEN Y=RND(5)
2090 IF RND(P)<.-P1 THEN 5@
PP GOTO 22P

. Run the following program:

11PP FOR X=32 TO 255
111p PRINT X,
1120 FOR L=1 TO 45

1139 PRINT CHR&(X);
114p NEXT L

1150 PRINT

116 NEXT X

AL LT Py P e T T P L L L R LR R S S R I LR L Y Y

Type RUN 20¢ [ENTER]. This will
aun the program from 200 on, fo
check (t out., Aftern it is checked
out type RUN .

Run the program a couple of times. Then change statement 1109 to:

11PpE FOR X=5 TO 35

and RUN the new program.

72

8.

10.

Try this program:

BPR CLS

b1Q K=32+RND(15P)

L2@ PRINT @ RND(1PE3), CHRS(K);
B3P GOTO L1P

After you have RUN the above program a few times, delete the semi-
colon at the end of line 620 and RUN it again. Can you detect any
difference? Why?

After RUNning the revised program (without the ;) add:
15 IF RND(@) < -PL THEN PRINT @ RND(1PER), "HI your name ' ;
and RUN it.

. Wasn't that fun! Now, try this one:

SPP X=RND(125)

51P Y=RND(47)

520 SET(X,Y) : SET(127-X,Y) : SET(X,4&-Y) : SET(127-X,u48-Y)
53 IF RND(P)<.002 THEN CLS

535 GOTO 5P (Compare this with Problem 1.)

Here's another goodie.

TOR IEVEL II

PP FOR @=L TO 2@P : NEXT @ : CLS
71@ FOR X=153k@ TO 1b3a3

720 POKE X,191

73 NEXT X

7b@ RESET(RND(124)+1, RND(4P)+2)

778 IF RND(P)<.@P1l THEN 2P

780 GOTO 7h@

FOR LEVEL I

W0 FOR @=1 TO 2@ : NEXT @ : S
713 FOR Y= TO 47
712 FOR X=@ TO 125 STEP 2

720 SET(X,Y) @ SET(X+1,Y)
73D NEXT X
4B NEXT Y

7b@ RESET(RND(124)+L, RND(uP)+2)
7?0 IF RND(@)<-P@l THEN 7pp
78Q GOTO 7Lp

73

11, The following knits together the four separate programs which we
tested in Problems 5, 6, 9, and 10, In each case, the individual
programs have been modified to send control to instruction 80¢ every
once in a while. Instruction 8@@ then sends control, at random, to
one of the subprograms beginning at instruction 99, 100, 209, 509,

00, 200, 500, 199.

5 T=.0%
1@ DEFINT X,Y (Omit this instruction on Level T BASIC.)
A0 FOR Q=% TO 2P : NEXT @ : (LS

PP X=u+RND(12@)

11P Y=3+RND(4@)

120 SET(X+L,Y+2) : SET(X,Y+2) : SET(X+1l,Y+1) : SET(X,Y+l)
13p SET(X-1,Y) : SET(X-2,Y)

4P SET(X+2,Y) : SET(X+3,Y)

145 SET(X,Y-1) : SET(X+l,Y-1)

1kP IF RND(@)<.P2 THEN CLS

17p IF RND(P)<.? THEN 1@

180 IF RND(@)<T THEN &pQ

2pp x=p

210 Y=p

2ol SET(X,Y) @ SET(127-X,Y)
23R X=X+1

235 IF X>120 THEN X=RND(k)
24P Y=Y+1

245 IF Y>45 THEN Y=RND(5)
295 IF RND(R)<T THEN &0

3PP GOTO 221

SPP X=RND(125)

51@ Y=RND(4?)

5@ SET(X,Y) : SET(L27-X,Y) : SET(X,48-Y) : SET(127-X,48-Y)
53§ IF RND(P)<.P@2 THEN CLS

535 IF RND(R)<T THEN app on Lever 1 BASIC wbes
0P FOR @=L TO 2@p : NEXT @ : CLS

71@ FOR X=153L@ TO 16383 710 FOR V=0 TO 47

720 POKE X,191 j>. 712 FOR X=¢ TO 125 STEP 2
730 NEXT X 720 SET(X,Y) : SET(X+1,¥)
7L RESET(RND(124)+1, RND(4P)+2) 730 NEXT X

27¢ IF RND(P)<-P@PL THEN 9 749 NEXT Y

275 IF RND(@)<.1*T THEN CLS : GOTO &P
280 GOTO 7

8PP ON RND(8) GOTO 9@,1p@,20@, 5PR, 7p@, 200, 5p0, 199

Instruction
899 ON RND(8) GOTO 9¢, 100, 200, 509, 709, 200, 509, 199

sends the program to the nth instruction in the list 99, 109, 2¢¢,
500, 709, 209, 500, 100, depending upon the value of RND(8) which
must be one of n = 1,2,3,4,5,6,7,8.

74

13.

14.
15.

16.

17.

3P CLS
4PP X=3P+RND(LS) : Y=1@+RND(28)

41P SET(X,Y) : SET(13k-X,Y)

411 SET(X,UYb-Y) : SET(12b-X,4Yb-Y)

415 X=X+RND(3)-2

42P X=X+RND(3)-2

43p IF X>125 THEN X= 125

435 IF X<l THEN X=1

44P Y=Y+RND(3)-2

445 IF Y<1 THEN Y=1

45@ IF Y>45 THEN Y=u5

451 IF RND(P)<-@PP9 THEN FOR @=1 TO 5PP : NEXT @ : CLS : GOTO 4ip
453 IF RND(P@)<-P1 THEN upp

455 IF POINT(X,Y) THEN RESET(X,Y) : RESET(12b-X,Y) : GOTO 415

YL@ GOTO uld

Try the above program on your TRS-80. After you have enjoyed it a
bit, undertake the following modifications. Is the design symmetric
right to left? Is it symmetric top to bottom?

Add the following instruction:
413 FOR @=1 TO 2P@ : NEXT @

which does nothing but slow down the action by forcing the computer
to count to 200 each time it passes instruction 413. Run the above a
bit before continuing...so you can follow the action in slow motion.

Try changing the .01 in instruction 453 to .05 and see how the pat-
tern is affected.

Can you conbine the result of instructions 415 and 420 into one in-
struction? Do so. (Note: Although the instructions appear identi-
cal, the values of X on which they work are not, so be careful.)

Modify the program of Problem 11 to also include the "Art' program of
Problem 12, or your modification thereof.

Write an ART program of your own.
Write a program using the PRINT CHR$() instruction in some way.

Write a program to display an 8 by 8 chessboard (with black and
white squares).

Write some programs of your own choice. You really do have the in-
structions needed for most programs.

75

18. Write a program that begins

20.

21.

22.

23.

24.

L@@ X=RND(S@) : Y=RND(2@) : L=RND(L5)

and will then draw a square having upper left-hand corner (X,Y) and
length of side I, y-units. When your program 1is running well,
enclose it in a FOR___NEXT loop so the program draws from 6 to 10
squares. A possible over-program might be:

W CLS
20 Z=RND(5)
30 FOR K=1 TO (5+Z)

PP X=RND(S@) : Y=RND(2@) : L=RND(15)
Yowr square-drawing program hexre.
SPP NEXT K

51 FOR @=1 TO 8@P : NEXT @
520 GOTO 1P

. Write a program to draw a design of your choice: stairstep, circle,

tree, box, face, robot, or whatever turns you on. However, choose
your design first, then try to approximate it on the computer.

Meke a bar graph showing data of your choice for several years.
Note: scale your data so the longest bar ends before X = 125.

Make a cartoon of a dog that wags its tail on the display screen.

Moke a smiling clown face on the display screen. Then expand your
program so the clown winks or cries or talks or something that in-
volves picture movement.

Create an animated "stick person' who walks across the screen, bows,
and then continues walking offscreen. '

Investigate some commercially available program that uses animation.
Some possibilities are:

Dancing Demon

Life (Conway's simulation of cell growth)
Android Nim

Star Wars

Chess programs

See almost any of the magazines listed in Lesson 15 or consult your
local computer store or Radio Shack.

76

LESSON 5

Micro-Research | - |
Problems

MICRO RESEARCH PROBLEMS

In lesson 3, the number 30 Challenge Problem asks:

"The song 'Twelve Days of Christmas' mentions various gifts that
'my true love gave to me.' Let's interpret the song so that
'on the third day of Christmas, my true love gave to me

Three French hens
Two turtle doves
And a partridge in a pear tree.'

My true love gave me six presents (3 French hens, 2 turtle doves,
and 1 partridge, if we don't count the pear tree as a gift). How
many gifts in total did my true love give to me during the twelve
days of Christmas? Write a program to determine the sum.

Answer: 364, if you do not count the pear tree as a gift."

A student submitted the following program in response to Challenge Pro-
blem 30. It does not produce the correct answer because the student

has violated a very fundamental programming rule. Can you find the error
and correct it?

5 CLS
10 S=
20 FOR K= 1 TO 12
S=S+K
40 PRINT K;
50 IF K=1 THEN 99
60 K=K-1
79 GOIO 3¢
99 PRINT" ;S
199 NEXT K
11 PRINT " TOTAL="; S

Before you continue, see what you can do to help our slipshod student.

77

The basic principle our slipshod student violated is.

AN AUREA AU AN GNP IAG AT EOS RIS ARG AR R AR RN AT

Do NOT change a FOR...NEXT variable

inside of the FOR...NEXT loop.

FELTTET T YT
awmEsRERENARAR

If you look at the output from the program on the previous page

1 1

2 1 4

2 1 7

2 1 10

2 1 13

2 1 16

etc.

since the first colum in each line (separated by ; spacing) presumably
contains the K values and the right most values (separated by , spacing)

give the current S values, it is apparent that K is not taking on the
values from 1 to 12 as might be expected in FOR K= 1 TO 12,

Indeed, the program blunder (changing the value of K inside the
FOR...NEXT loop) forces K back to K=1 by the end of each loop, so the
new K value, namely K+1, is always K=2. ILive and learn.

If you haven't worked on this Challenge Problem, you should before
continuing. It is possible to make the '"blunder' into a valid running
program merely by changing instructions 2¢ and 1¢0@ and addlng an in-
struction 25. See if you can do so before continuing.

78

Here is our new program, with new instructions at 2@, 25, and 100

as indicated.
5

19

> 2
>

» 100
119

CLS
5=

FOR L=1T0 12
K=1L

S = S+K

PRINT K;
IFK=1 THEN 99

K = K-1

GOTO 39
PRINT " ':S
NEXT L
PRINT " TOTAL=";S

This produces the reasonably understandable output

RUN

N

e
NSO 0300w
SO0 0D W N
0010 U LN

b
H

19
35

O 00 =3Cy U WIN b
00 =30 Uk W
=10 O L DD

O U W=

TOTAL = 364

READY

>

120
1 165
2 1 220
3 2 1 28
4 3 2 1 364

Mathematicians might use the Greek symbol sigma, I, to indicate the
sum and express this problem as

12

2.

I=1

L

ZK

K=1

Would the program listed on the following page achieve the same result?

79

200 SL =0 Don't type NEW. Just start this

21¢p FOR L = 1 TO 12 progham beyond where the §inst
220 3K = 0 proghram ended, 50 you can run

230 FORK=1TO L elthen one by using:

3@3 e K+ K RUN [ENTER

260 NEXT K BREAK

270 PRINT " '"; K o

280 SL = SL + SK

200 NEXT L RUN 2¢¢ [ENTER

3¢p¢ PRINT " TOTAL="; SL on get both, by merely typing

RUN [ENTER

The final total is the same in each case (TOTAL =364) but the in-
termediate sums (at the extreme right of each line) are quite different.

Hrmm? How would you change the second program to get it to mimic the
output of the first program? Well, we want line

27¢p PRINT " "s SK to print the value of SL instead of SK.
Let's change 279 to
27¢ PRINT " . SL

and rerun it.

At first, that may look better, but a little more careful examination
shows that this revision of the second program produces a running
(cummilative) sum that is always one line late. Hmm?

FOLLOW YOUR
INSTRUCTIONS
NOT YOUR
INTENTIONS.

If we interchange instructions
279 and 280, giving

200 SL = ¢

21¢ FORL =1 TO 12
220 SK = ¢

230 FORK=1T0 L
240 PRINT K;
250 SK = SK + K

260 NEXT K

270 SL = SL + K

280 PRINT ' " SL
299 NEXT L

3¢p PRINT " TOTAL="; SL

This program should now produce the same result as the program on the
previous page. Does it? Yes, it does. Frankly, I prefer the program at

80

the top of the previous page that lists the number of gifts each day on
the right edge, rather than the running total.

Actually, that problem is simple enough so that we could have com-
puted the result without using a computer...but since a computer was read-—
ily available, it may have been easier to use the computer. Or it would
have been, if we hadn't made so many foolish blunders in our program.
However, correcting blunders is one way to learn to write blunder-free
programs.

let us turn our attention to some problems that are not easy to
solve without a computer. The term micro-research problems seems approp-
riate for problems that are not to be found in most text books. The
easiest way to find the answer to a micro-research problem may well be
to solve it for yourself. Interestingly, you do have enough mathematical
and computer programming ability, so that with the help of a TRS-80 micro
computer, you can solve many problems that would have been beyond your
ability and/or patience five lessons ago.

let's get going!

Now that you can use your computer to solve a really difficult
problem (obtaining roots of messy equations, Lesson 3) and have fun
using the graphics capability of your TRS-80 (Lesson 4), it is time to
think about some interesting micro-research problems on which you can
expect to make reasonable progress using your computer. We shall walk
through the solution of one quite difficult micro-research problem in
detail - but you may wish to solve it yourself before reading on.

Problem:

Find perfect square integers like 5776 which have
the property that they end in their square roots. v 5776 = 76

Admittedly, this problem is not earthshaking, but it would not be very

easy to solve without a computer. Try it yourself before continuing,
with or without a computer.

81

STEPS FOR COMPUTER-ASSISTED PROBLEM SOLVING

Successful problem solving is apt to involve several quite different
stages. Here is a series of steps that is sincerely recommended.

1. Be sure you understand the problem. Try to restate it in
several ways. Then try to find a general method (algorithm) for
solving the problem.

2. Examine a simple special case first.

3. Then, if it seems appropriate, program a computer to examine
another special case.

4. MNodify your computer program to examine a different special
case.

5. Modify and generalize your conputer program. Include tests to
be sure the program is working as expected.

6. Run the new program and examine the output.

7. Now re—-examine the output. Use your common sense and mathemat-—
ical acumen to see if you can devise a better (faster and/or safer)
algorithm or prove a theorem that will help solve the problem, unless

it is already solved.

8. Go back to step 5, if the original problem has not yet been
solved to your satisfaction.

This seems rather round-about at first, but experienced computer
problem—-solvers have found it is a much better technique than the usual
technique of the amateur, who tries to start by writing the final pro-

gram, or at least with the program of steps 5 and 6 right away. This

is fine on trivial problems, but on more difficult problems it is really

better to start easy and work up gradually, testing each stage.

82

Try it on our problem.

1. Be sure you understand the problem. Try to restate it.

Original Problem

Find perfect square integers like 5776 which have the property
that they end in their square roots. v 5776 = 76

Restated Problem (same problem, but from another viewpoint)

Find non-negative integers N such that N2 ends in N.
Find integers N20 such that their squares S = N2 end in the
digits of N.

The first technique (glgorithm) that suggests itself may well be
just to examine S = N° for each N and determine whether or not
S = N2 ends in N. Later you may be able to devise a better
algorithm.

2. Examine a simple special case first.

In attempting to solve any problem, it is well to examine
several special cases before plunging in.

N 9 1 2 3 4 5 6 7 8 9

M 9 1 4 9 18 25 3B 49 64 81
So the one-digit numbers N whose squares end in N are N = 9,1,5,6.

3. Write a computer program to examine another special case.

Let us write a program that will find the three-digit numbers
N whose squares end in N. The last sentence displays two rather
inportant problem-solving techniques:

1. In computing, it frequently pays to rephrase a question by
turning it around a bit.

2. It is often helpful to examine a special case (here the 3-digit
case) of a more general problem.

You may wish to try writing such a program yourself before
continuing.

If you wish to examine the last 3 digits of a number S, then you

need to devise a technique of finding the last 3 digits of a longer
nurber. There is an easy way to do it using the INT () function.
INT () produces the integer portion of the value inside of the
parentheses. Thus, INT (34.761) = 34.

83

The instruction
T =S - 1Pp@*INT (S/19000)

will produce the last three digits of S and store them as T. If this
is not obvious, try it for 2 or 3 integral values of S.

For example: S = 123456
S/100p = 123.456
INT(S/1¢099) = 123
1Q@ INT(S/1909) = 12300
S - 1PP@*INT(S/100@) = 123456 - 1230p¢ = 456

Using this instruction, see if you can devise the desired program your—
self.

A program to examine the 3-digit numbers N such that S = N*N ends
in N:

199 FOR N = 191 TO 999

119 S = NN

120 T =S - 1PPPFINT(S/10p9)
130 IF N<T THEN 20¢

149 PRINT S;N

209 NEXT N

You may wish to run the above program before continuing.
The results are:

141376 376

390625 625

4, Modify your program to examine other special cases.

Can you change the program to also obtain the 1-digit values
of N whose squares end in N? — namely, ¢,1,5,6 as we saw when
we worked the problem by hand?

Of course, you can. Merely change instruction,

100 FOR N = 1¢1 To 999 10¢ FOR N = ¢ TO 9
and to
120 T = S - 1¢Q@*INT(S/1900) 12¢ T = S - 1@*INT(S/10)

and RUN the program.
Try it yourself.

What changes would you _make in the program to obtain the 2-digit

values of N such that S = N2 ends in the digits of N?
Please do so before continuing.

84

Although our current attack is clumsy, even a clumsy attack is
often better than no attack at all. ILet us now try to produce a
program which will do the modifications for us. This is unnecessary in
this particular problem, since the modifications are easily done, but
we may learn some useful tricks along the way. Examine the following
program and be sure you see how it works before running it.

5. Generalize your computer program to examine several cases using
the same program.
Our new fundamental program:

(where P 48 the integern 1, followed

19 INPUT P by as many zeros as there are digits
199 FOR N = 1+P/1¢ TO P-1 in N
119 S=NHN

120 T=S-P*INT(S/P)
13p IF N<>T THEN 209
149 PRINT S;N

20¢ NEXT N

The program seems to work well. If there is a way to change P from 10 to
199 to 199¢ etc. as the program goes along, you could then use a slight
modification of the old program. Try it yourself before continuing.

In any event, the modified program given below sounds as if it
would work:

190 P=1p
199 FOR N = 1 + P/1¢ TO P-1
110 S=N*N
120 T=S-PXINT(S/P)

130 IF N<T THEN 209
140 PRINT S;N

200 NEXT N

219 P = P*lp

220 GOIO 1¢¢

Try it...it works! Well, it works for a while anyway.

It really does need two more instructions

9¢ PRINT "NOW WORKING ON N<'' ; P Also change 229 QOTO 90.
This will tell you the general range of N-values on which the program

is working. If it gets stuck, you at least know where. It will also
give you estimates on how long it takes for each set of k-digit N values,
for k=1,2,3,.... Common sense suggests 3-digit numbers should take

about 10 times as long as 2-digit numbers, since there are 10 times as
many of them.

85

Remerber to include another important check.
Any computer has numbers S so large it can-
not tell S from S+1. If a computer carries
only six digits of accuracy, for example,
and S is a 7-digit number, say

(True 8) = 7654321
The conputer shows this as 7.65432E+06,
which is read 7.65432 *106 or
7654320. Now (True S+1) = 7654322,
However, if yourcomputer stores only
six decimal digits of accuracy, then

S+l = 7.654322 *106
which is chopped off (or possibly rounded)
to six significant digits, giving

7.65432E + 06
which is precisely what you had for S.
Thus, the computer cannot distinguish
between S and S+1.

In this case, the final digit of S is no longer known. The computer
substitutes zero for it, and cannot tell if S ends in the same digits as
does N. Surely, you wish your program to STOP automatically if such a
crisis should arise (and it does, inevitably).

Do this by inserting the instruction
115 1IF S=S+1 THEN PRINT "OVERFLOW ERROR ON S,N="; S;N : STOP

If the computer cannot distinguish between S and S+1, it will print
the requested message and then STCOP. Otherwise, the program will ignore
instruction 115 and pass on to the next instruction.

The expanded program now reads:

19 P =19

99 PRINT " NOW WORKING ON N< ' ; P
190 FOR N = 1 + P/1¢ TO P-1

119 S = NKN

115 IF S = S+1 THEN PRINT "OVERFLOW ERROR ON S,N="'; S;N : STOP
120 T = S-P¥INT(S/P)

130 IF NoT THEN 200

140 PRINT §;N

200 NEXT N

210 P=px1p
220 COTO 9¢

let's return to ""Steps for Computer-Assisted Problem Solving'.

86

6. BRun the general program and examine the output. -

Give it a try on your own computer before continuing,

The output is:

LEVEL II BASIC LEVEL I BASIC
NOW WORKING ON N<1¢ NOW WORKING ON N<1¢
25 5 25 5
36 6 36 6
NOW WORKING ON N<1¢p NOW WORKING ON N<1¢@
625 25 625 25
5776 76 5776 76
NOW WORKING ON N<1¢@p NOW WORKING ON N<1p@gp
141376 376 141376 376
390625 625 390625 625
NOW WORKING ON N<19¢@p NOW WORKING ON N<1p@pp

OVERFLOW ERROR ON S,N = 3, 35588E+p7 OVERFLOW ERROR ON S,N = 1.87772E+Hp7
5793 4096

BREAK IN 115

Notice, cun progham "bombed off" at Notice, our progham "bombed of4" at .
P=10000 with S,N= 3.35588E+07, 5793 P=10000 with S,N = 1.67772E+07,
as a resuwlt of the test in instruc-~ 4096 as a nesult of the ftest in
lon 115, Ainstruction 115,

This seems to reach the limits of exploration using LEVEL I BASIC

unless we are willing to construct our own special '"multiple precision"
routines.

87

It is time to consider a new concept in computing:
DOUBLE PRECISION ARITHMETIC.

If you have LEVEL II BASIC on your TRS-80, you can also investigate
the problem for 4-digit and 5-digit values on N (which produce 8 and 10-
digit values of S) by including the instruction

5 DEFDBL S,P (which is8 nead "Defdine Double'.)
which produces double length (16-digit) values for any variable beginning
with S or P. (Maybe we can even run the program for 6,7, and 8-digit
N-values which have 12,14, and 16-digit squares -— wait and see.)
However, troubles appear:

The TRS-80 does not produce a double length product if single length
numbers are multiplied together. Thus S = N*N will not produce a valid
8-digit square, if N is a single precision 4-digit number

For N = 9376 (TRUE S) = N2 = 87909376
However, the computer rounds this to six digits and produces
N*N = 8,79094E + @7

which is stored in S as 879¢940@, rather than the correct value,
87909376

The "obvious' solution is to make all three of S,P, and N double
precision by using

o DEFDBL. S,P,N
However, the
FOR N = 1 + P/1§ TO P-1

instruction will not accept a double precision variable for N.

This is easily fixed by using

190 N = 1+P/19 1pp FOR N = 1+P/1p TO P-1
139 IF N<>T THEN 150 in place of 13p IF N<>T THEN 200

150 N = N+1 T

209 IF N<P THEN 110 20¢ NEXT N

88

The program now reads:

5 DEFDBL S,P,N
19 P = 1¢

9p PRINT " NOW WORKING ON N<";P
199 N =1+ P/19

119 S = NN

115 IF S = S+1 THEN PRINT "OVERFLOW 90

ERROR ON S,N="; S; N:STOP
1290 T = S - PXINT(S/P)
139 IF N<T THEN 150
149 PRINT S;N
150 N=N+1
209 IF N<P THEN 11¢
219 P = P¥1g
215 PRINT
2209 GOTO 99

The output is:

Level II BASIC

NOW WORKING ON N <1p

25 5
36 6

NOW WORKING ON N <140

625 25
5776 76

NOW WORKING ON N <1¢pp

141376 376
390625 625

NOW WORKING ON N <1p¢9d
87909376 9376

NOW WORKING ON N <19pppp

8212890625 90625

NOW WORKING ON N <1000060

11963199376 199376
793212899625 890625 etc.

{Note -] COMMENTS

5 Omit instruction 5 if you are
using LEVEL 1 BASIC.

10 The nurber of zeros in the

current value of P is the num-

ber of digits in N.

It is good practice in a pro-

gram whose output may be scarce

to include a statement display-

ing what the program is doing.

115 This is a necessary precaution,
when the computer cannot tell
the difference between S and
S+1, the program will STOP and
so indicate on the screen.

21¢ Changes P to the next higher
power of 10.

22¢ Repeats program with new P
value.

Level I BASIC
(omitting instruction 5)
NOW WORKING ON N< 16

25 5
36 6

NOW WORKING ON N <1¢p

625 25
5776 76

NOW WORKING ON N <19p9

141376 376
390625 625

NOW WORKING ON N <1990p

OVERFLOW ERROR ON S,N 1.67772E+)7

4096

89

You will notice that for each new P value, it requires ten times
as much computer time as for the previous P value.
Run the program again and time it.

Level II BASIC ILevel I BASIC
Your program did not '"bomb out' You were stopped during
like Level I did. But it sure can P=10000
use up lots and lots of computing at which time the instruction
time.
To get from 115 IF S=S+1 THEN PRINT "'OVERFLOW

ERROR ON S,N=";S;N:STOP
P=199 to P=19p0 took about 1.5
minutes halted the run. You may wish to
P=100¢ ' P=10000 "t 15 minutes delete instruction 115 and rerun
P=10@09 ' P=190¢pp "' 2.5 hours the program to see what happens.

If you let your TRS-80 run another Remember you can always stop the
24 or 48 hours, from P=1000p9 to P= program by depressing
19¢0p@e, you will also find You may then learn the values it
was working on by typing
11963199376 1909376
793212890625 890625 PRINT P,N,S,S+1

and who knows what else???

NOW IS THE TIME FOR US TO GET SMART.

This program really works the problem in a very crude brute-force way.
We are just examining every nunber, N. The number of numbers to be exam-
ined increases sharply as P increases,

No. of cases Approximate time
1 <P <19 8 Less than 1 second
19 < P <199 88 9 sec
100 < P <1000 898 90 sec = 1.5 min.
1000 < P <10000 8998 15 min.
10000 < P <100000 89998 150 min = 2.5hr.
100000 < P <1000000 899998 24 hr.
1900009 < P <19pPP000 8999998 9 or 10 days

Clearly we can reasonably expect to examine P < 10, 100, 1000, 10009,
and even 190000, but after that, the computer time involved becornes
exorbitant. Of course, you may reason that the TRS-80 might just as well
be working on your problem as be sitting idle. It takes very little
power. (It uses about as much power as a small light bulb, if you turn off
the CRT display tube, which you might as well do if you are not watching
it. You can turn it on and recapture whatever would have been on the
screen at that moment. The computer continues to compute even when the
display tube is turned off.)

90

Returning to our ''Steps for Computer-Assisted Problem Solving',

7. Re-examine the output. Use your common sense and mathematical
knowledge to devise a better (faster) algorithm to help solve the
problem.

We really should have recognized at the beginning that N2 must end
in 0, 1, 5, or 6 if N2 ends in N. This would have saved almost 60% of
our computing time. Actually if N>9, then N cannot end in O since then
N2 would end in 00, etc. Similarily if N>9, N cannot end in k1 since
then N2 would end in (2k) 1 since (10k+1)2= 100k2 + 20k+1. Similar math-
ematical arguments show that if N>9 and if N% ends in N, then N ends in
5 or 6. So instead of increasing N by 1 each time we can jump by 1¢ and
test both N and (N+1) to see if either has the desired property. The
following program will cut 80% of our running time--doing an hour's

testing in 12 minutes.
(0V ARE CLEVER/
THIS Witk CUT
LMY WORKLOAD,

5 DEFDBL S,P,N
190 P=10

99 PRINT "NOW WORKING ON N<';P
100 N = 5 + INT(P/199)*10

110 S = N*N

115 IF S = S + 1 THEN PRINT "OVERFLOW ERROR ON S, N =" S;N:STOP
120 T = S - PXINT(S/P)

139 IF N <T THEN 150
149 PRINT S;N

159 NI = N+l

152 S1 = NDKN1

154 T1 = S1 - P*INT(S1/P)
156 IF N1 <> Tl THEN 160
158 PRINT S1;N1

16¢ N=N+10

209 IF N <P THEN 119
219 P = 1g+p

215 PRINT

220 GOTO 99

Try it. It Works, and we really might have been smart enough to have
thought of discarding 80% of our unsuccessful cases in the beginning.

a1

However--now that we have some output to look at, it may be possible
to find an even more clever way to speed up our program. Look at the
output. Do you notice anything special? '

N2 N
25 5
36 6
625 25
5776 76
141376 376
390625 625
87909376 9376
8212890625 90625
11963109376 109376
793212890625 890625

Two items demand our attention:

I. When we investigated the one-digit N's by hand and onthe first pro-
gram (modified to numbers from ¢ to 9), we found

N

9
1

25
36

oS =

but our current conputer program missed the first two values 9, 1.
Just why did that happen, and do you think that it missed any
other values between P = 10 and P = 10¢0@p@? Are You Sure?

1909999, et

or N =1,

We did obtain all the values between P = 10 and P =
did miss N = @ and 1 because this program did not test N
gince it started at N = P/1¢ + 1 for P = 10 which is 2.

If you didn't notice that earlier, you need more computing experience
before you can be considered a qualified amateur.

II. ©Notice: The only large values of N such that N2 ended in N were
values of N that themselves ended in those exact digits for which
we found some previous satisfactory N. Now that may be a real
clue!

92

Consider the case starting at P=1¢@@. We found

N N
141376 376
390625 625

It seems reasonable to believe that any 4-digit value of N whose square
ends in, N will have the value of N itself ending in either 376 or
625 since otherwise, N? would not end in N. Hmm. Well, yes -- that
seems reasonable.

However, some things that "seem reasonable' turn out not to be
true. For example, one of my students extended the above conjecture

by asserting, 'Since there is only one 4-digit value of N such that N2
ends in N, there can be only one such N having k digits for any k>4."

However,
N = 109376 N2 = 11963109376
N = 890625 N = 793212890625

blows that "reasonable conjecture'.

(Why?) Well, because the student didn't recognize that the six-digit
109376 was a suitable extension of the four-digit N = 9376 under our
original guess, with @ as the fifth digit. Hmm.

Well, how about the original guess? If we could show that
Conjecture

If a given N° ends in the digits N >1, then N itself must
end in the same digits as some smaller such N,

Not yet proved.

LTt TR TR RS L e L T Lt e e L R R T T T P T R R LR S Ll L bl

Would it be helpful in our search?
Well, you just bet it would be!

For example, in examining the 5-digit N values instead of examining 89998
cases, we would only need to examine the 20 cases X9376, X0625 (and
possibly the 10 more cases X0376 unless we can show that is also impos-
sible.... which we can).

I'm not going to prove the conjecture--but it is true.

93

To cut down from 89998 cases to 20
cases for the 5-digit N values is a
savings of 99.98% of the nuitbers to be
tested. The 6-digit values produce
even greater savings. What would for-
merly have taken twenty-five hours
should now run in less than a minute,
even if each number evaluated took
several times as long to test (since
the program may be messier than before).
That is indeed a worthwhile savings.

For now let us assume the slightly stronger result:

------ RN N NN RN ORI E NN AN ARG AN A SN RN SR NI US AR A RANR AN AN R AN

If N2 ends in N, then N ends in the digits of some smaller K
such that K2 ends in K. Furthermore, the previous K will be
a K with one fewer digit than N, with the possibility of lead-

ing zeros on a smaller K such as 90625 being the N for K =

0625, K> = 39025.

let's start our program with 3-digit N values. This will enable us to
test the program and see if it is running as we believe it should.

Store the ''last two successful values of N" that we are trying to extend
in locations A and B. Starting with the 3-digit values of N, there will
be

25:§:

to properly "seed' our program with the successful 2-digit values to be
extended.

1009
25 (since when N
76 (since when N

woni

P
A
B

Ll
3

Continuing with 'Steps for Computer-Assisted Problem Solving," we find:
8. Go back to step 5.

5. Modify and generalize your computer program. Include tests to be
sure the program is working as expected.

6. Run the new program and examine the output.

The following program seems to produce the desired results in

moderate time. Study it until you understand it well enough to

explain it to one of your classmates who needs help.

5 DEFDBL S,P,N,A,B (Omit 5 if using LEVEL 1 BASIC.)

19 P=100
20 A=25
30 B=76

99 PRINT " WORKING ONN < " ; P
95 Q=p/1¢

99 REM THIS BLOCK EXTENDS A VALUE
109 FOR K=1 TO 9

105 N = K*¥Q + A

119 S = NN

115 IF S=S+1 THEN PRINT "OVERFLOW ERROR ON S,N = '";S;N:

12¢ T = 8 - PxINT(S/P)

13¢ IF N<>T THEN 20¢

149 PRINT S;N

150 A=

169 GOTO 3¢9

200 NEXT K

219 REM END OF BLOCK THAT EXTENDS A VALUE

299 REM THIS BLOCK EXTENDS B VALUE
309 TFOR K=1 T0 9

3¢5 N=KxQ + B

319 S = N*N

3290 T = S - P*XINT(S/P)

339 IF N<>T THEN 400

349 PRINT S;N

350 B=N

36¢ GOTO 500

400 NEXT K

491 REM END OF BLOCK THAT EXTENDS B VALUE

450 REM

509 P = P*1p
520 GOTO 99

Put it on your computer and see how it runs.

95

STOP

Output from Level II BASIC
WORKING ON N < 19¢¢

390625 625
141376 376
WORKING ON N < 100@¢
87909376 9376
WORKING ON N < 100000
8212890625 9P625
WORKING ON N < 10@00pp
793212890625 890625
11963109376 109376
WORKING ON N < 10000pp0
8355712890625 2890625
5(0543227109376 7109376
WORKING ON N < 100000000
166168212890625 12890625
7588043387109376 87109376
WORKING ON N < 1000000000
OVERFLOW ERROR ON S,N =1.704786682128906D+17 412890625
BREAK IN 115
READY

>——

Output from Level I BASIC

WORKING ON N < 100
390625 625
141376 376

WORKING ON N < 10909
OVERFLOW ERROR ON S,N = 2.13906E + @7 4625

Now we need to ask if the original problem has been Solved

If it was to find all perfect squares N2 such that N2 ends in the N,
then it is only partially solved. The program found all such N<:41289¢625
but there is no reason to suspect that is all there are. There is also
the possibility our program may be defective and may have overlooked some
N values less than 1@9 (After all - we did overlook 9 and 1 - remember?).

This is one way Tresearch is done. First, investigate a few special
cases. Next, use a simple program to investigate a few more cases. If
the results seem worthwhile, automate your program and let it run a bit.
Next, examine the output, make some conjectures and prove or disprove

96

their validity.

out the investigation and implement it.

results that were previously unknown.

Then, devise a new technique (algorithm) for carrying

Now you are ready to try to prove the most general case. It may or
may not yield to your effort - but in any case, you have a pocketful of

We shall not attempt to go further

here, but strongly suspect some able student will do so.
There is one additional check that should be made.

Did our last two programs produce the same results as far as they
overlapped? If not, why not? This is important.

1

199
119
115

129
13p
140
150
200
219
215
220

RON

The two programs are:

Program from page 89
DEFDBL: S,P,N

P =1¢

PRINT ""NOW WORKING ON N<'';P
N=1+P/1p

S = N*N

5
10
20
3P

IF S8 = S+1 THEN PRINT "OVERFLOW 90

ERROR ON S,N='"";S;N:STOP
T = S - PXINT(S/P)

IF N<>T THEN 150
PRINT S;N

N=N+1

IF N<P THEN 11¢

P = Px1p

PRINT

GOTO 99

95

29
109
105
119
115

120
130
140
150
160

200
210

250
209
309
305
319
320
330
340
350
360
400
401

450
500
520
RUN

97

Faster program from page 95

DEFDBL. _ S,P,N,A B
P = 1009
25

A
B=176

W

PRINT " WORKING ON N<'';P
Q=P/19 |
REM THIS BLOCK EXTENDS A VALUE
FOR K=1 TO 9
£ K*Q + A
S = N*N
IF S=S+1 THEN PRINT "'OVERFLOW
ERROR ON S,N="';S;N:STOP
T = S - PXINT(S/P)
IF N<>T THEN 20¢
PRINT S;N
A=N
GOTO 3¢9
NEXT K
REM END OF BLOCK THAT EXTENDS
A VALUE
REM
REM THIS BLOCK EXTENDS B VALUE
FOR K=1 TO 9
N=KQ + B
S = NN
T = 8 ~ PXINT(S/P)
IF N<>T THEN 400
PRINT S;N
B=N
GOTO 599
NEXT K
REM END OF BLOCK THAT EXTENDS
B VALUE
REM
P = p*19
GOTO 9¢

The two rather different programs seem to agree as far as they go,
but the longer program produces more results in two minutes, than the old
program did in 48 hours or even a week. That is what is meant by effec-
tive programming.

Actually all values of N such that N2 ends in N for N of 100 or
fewer digits are known, but their investigation uses more mathematical
sophistication than we are willing to impose here.

ITH YOUR BRAIN
AND

MY SPEED
WE CAN
DO RESEARCH,

ot

WHAT WE HAVE LEABNED IN LESSON 5.

The most important thing in Lesson 5 is the realization that you do
already have enough computer adroitness to successfully undertake the
investigation (and at least partial solution) of problems so diffi-
cult that a month ago you wouldn't even have tried them. You should
also have discovered that it is frequently a nontrivial (but perfectly

possible) task to program a computer to help solve research level
problems.

Most important of all - you have discovered one of the fundamental
truths of computer programming.

When you have a program written and it is debugged
and running properly, then if you reflect on the
problem you will frequently find a better way to
do it. If the problem is major, this is the time
to think hard, then scrap your earlier effort and
start over.

URGEEANECEHOZUDBUBEBOENBY
NN ENRENACEEEESTERNT RN

Of course if the problem is a 'one time only'" problem and if your
existing program produces the desired results while you are thinking,
you can forget the reprogramming unless you want to show the program
to someone else or to use it again later.

98

SOME_MICRO-RESEARCH PROBLEMS
YOU MAY UNDERTAKE

Don't expect all of these problems to be easy, or even solvable
with your present knowledge. They are micro-research problems for your
consideration. If you do more than two problems, you are to be congrat-
ulated. After working on a problem as stated, see what extensions and
modifications you can devise; work on them.

1. If the 6's are cancelled in 16/64 -+ 1$/#4 = 1/4 the result is correct.
(26/65+28/¢5 = 2/5 is another example,) Find all examples of proper
fractions such that AB/BC = A/C with A # B where A,B,C are digits
between ¢ and 9 inclusive.

2, If N! = 1x2%3+,, *(N-1)*N for N> 1 K

and S(K) = 1! + 2! + 31 +41 + .., +K! = g (N1)

Ne=1

for what values of K > 1 is S(K) a perfect square?
(This requires some easy mathematical thinking after you have writ-
ten and run a conputer program,)

‘3. Write a program to accept an integer N > 2 as input and then type
out N and the factors of N.

4. Iet your input be three positive nurbers A,B,C (not necessarily

integers).

a) Determine whether or not A,B,C can be the sides of a triangle.
(Note: If A,B,C = 1,5,3, the answer is ™o".)

b) If A,B,C are acceptable as sides of a triangle, extend your pro-
gram to also print the area of the triangle.

c) If A,B,C do determine a triangle, extend your program to also
compute the angles of the triangle.

5. a) Write a program that will accept a positive integer N as input

and determine whether or not N is a prime. (Note: 1 is not
a prime. An integer N > 1 is prime 1f 1ts only positive factors
are 1 and N.) Compare your program with those written by your
classmates. Test it for several values of N > 60¢Q. See whose
runs fastest, and why.

b) Make a table of primes < 500Q.

¢) Extend your program to print out all the prime factors of N.

6. Write a program to accept two positive integers M and N and to print
out M, N and also the largest positive integer which divides both
M and N. Such an integer is called the greatest common divisor
and may be found using a technique called Euclid's Algorithm or
by simply trying all positive integers from the smaller of M and N
down to 1 wuntil you find a value which will divide both.

99

7.

8.

9.

10.

11.

If you use the latter (inefficient, but effective) technique, your
program could begin:

1¢p INPUT '"M,N =" M,N

106 IF M<=p THEN 100

108 IF N<=0 THEN 100

109 REM: INSTRUCTION 11¢ SETS S = SMALLER OF (M,N) FOR USE IN 2¢¢
119 IF M>N THEN S = N ELSE S = M

20¢ FOR D=S TO 1 STEP -1

Find two consecutive integers whose squares each use exactly the same
digits (in a different order, of course). Thirteen and fourteen are
such a pair; 132 = 169 uses the same digits as 142 = 196. Similarly,
1572 =24649 and 1582 =24964. Find other pairs of consecutive inte-

gers whose squares are composed of the same digits.

a) Write a computer program to accept three values M,D,Y and deter-
mine whether or not they are acceptable values for Month, Day,
Year in that order. If Y < 1590 you may prefer to state the
date is unacceptable rather than consider the various calendar
reforms that took place prior to 1590.

b) Extend the above program to accept two sets of three numbers and
if both are acceptable as Month, Date, Year values, determine
the number of days between them including both dates in your
count.

Example: 2,20,1978 to 2,22,1978 is 3 days.

For the distinct digits A, B, C, D, E, ¥, G, H, I, J the product

Ax(BCDE) = FGHIJ
has solution 4%(7039)=28156 and a dozen other solutions. Find them.

Write a program to accept a positive integer K and print it out and
also print out the integer obtained by reversing the digits of K.
Exanmple: If K = 12345,

print out: 12345 54321

The sequence
12 3 4 6 8 9 12 16 18 24 27 32 ...

is made by listing numbers of the form N = 2k L3t

(with k and m integers k2@, m2@) in order of increasing size.

It is not easy to devise an algorithm to generate and print them in
increasing order, but that is only part of your task. The even more
difficult problem is to find the 19@Pth term of the sequence, or more
generally, given an integer T, find the T-th term of the sequence.
(Thanks to Fred Gruenberger for suggesting this problem.)

100

13.

14.

. Write a program that will draw a random maze on ﬁhe screen such that

it is possible to reach every cell of the maze, but there is only one
"pest" path (i.e. without retracing) through the maze. Then, extend
your program so that the computer will 'solve'' the maze it created.

a) Determine the sum of the N-digit nunbers that can be formed
using N specified digits for each possible set of 2,3,4 and 5

digits.
Examples:
N =2 Digits = 3,8 Then sum= 38 + 83 = 121
Digits = 4,1 'Then sum = 14 + 41 = 55 (Yes, we count
Digits = 2,2 Then sum = 22 + 22 = 44 22 both ways.)
N=3 Digits=1,2,3 Then sumn=
123 + 231 + 312 + 132 + 321 + 213 = 1332
Digits = 3,8,9 Then sum =
389 + 893 + 938 + 983 + 839 + 389 = 4440

b) Notice that the sum geems always to be divisible by 11. Can you
prove this in general? What other factors will the sum have?

¢) Can you show that an N-digit number will have N! different
permutations, (N-1)! of which start with each digit, and (N=-1)!
of which have each digit in the second place, etc.?

d) 1If you prove each of the above, you may also be able to show
that the sum of the N! numbers obtained as permutations of the
N digits will always be (N-1)! * (sum of the original digits) *
(the integer consisting of N ones). For N = 8, Digits =
1,2,3,4,5,6,7,8 there are 49329 integers and their sum is
2015999979840 .

e) What happens if a number containing repeated digits is counted
only once? Thus N = 2, Digits = 2,2 Sum = 22 (not 22 + 22 = 443 .
[This is a rough problem.]

A palindrome is a phrase or sentence which reads the same forward as
backward.

"Too Hot To Hoot"

"Ma Is As Selfless As 1 Am"”

"Retracting, I Sign It, Carter"

"Marge Lets Norah See Sharon's Telegram'

There are also numbers which are palindromes. It is fairly easy to
find perfect squares which are also palindromes.

(111)° = 12321
(202)% = 40804
(264)° = 69696

101

15.

16.

17.

It is possible to prove that there exist infinitely many perfect
squares that are palindromes. However, perfect squares that are
palindromes having an even number of digits such as (836)2= 698896
are fairly rare.

Investigate the subject of perfect squares that are also
palindromes.

For what values of N > 1 does W = 2N -1 contain a factor > 1 which
is a perfect square?

tN=6WwW=20_1=63=32.7

IEN=7 W=2 -1

IfN=8 w=251

127 which does not contain a square factor > 1

255 which does not contain a square factor > 1

a) It is easy to find Pythagorean rectangles having integral sides
and integral diagonals (1,w,d) = (83,4,5) or (5,12,13). But can
you find a box (rectangular parallelepiped) having three
distinct integers as dimensions, each of whose face diagonals
is also an integer?

b) If so, can you also find one whose body diagonal as well as face
diagonals are integers?

s I

Use your TRS-80 to design some personal greeting or Christmas cards.
Take photographs of the TRS-80 showing the design on the screen and
enough of the keyboard to be recognizable. Send one to your authors.

102

You are ready to proceed on your own now. No one is expected to
work all of the research problems in Lesson 5, but you should work several
and at least read and consider the others. The way to learn computing is
to compute, and then reflect.

The remainder of this book discusses useful techniques and additional
BASIC instructions you may or may not need to know about. Iessons 6 to 17
may be read in any order desired, or ignored. Read about these techniques
when you are " ready to use them. You already have skill enough to solve
many problems using ~the computer as a tool. We suggest you glance briefly
at the summary below to ascertain the general content of the lessons be-
yond 5. Then read them when the need for such sp601allzedA1nformatlon is
felt. Read whatever interests you most, and continue with the micro-
Tesearch problems presented in Lessons 5 and 17.

Lesson 6 is devoted to the use of the TAPE CASSETTE for storage of
programs and data.

Lesson 7 is devoted to GAMES and TAPED PROGRAMS you may enjoy.

Lesson 8 discusses the EDIT instruction in greater detail.
103

lesson 9 is an introduction to simulation, one of the most important
uses of computers in today's world.

lesson 10 discusses double precision variables (introduced in Lesson
5) before introducing subscripted variables and the fascinating (and
vital) string variables (more details in Lesson 14). The lesson closes
with arrays (matrices) and how to use them.

Lesson 11 is a collection of tips that may help you overcome or avoid
difficulties. Remarks on saving memory space and computing time as well
as a listing of the meanings of major error codes are presented in this
lesson.

Lesson 12 Although the PRINT instructions already at your disposal
are sufficient for most users, your TRS-80 Level II BASIC has a variety of
other PRINT instructions and special commands that are frequently useful:

PRINT TAB() PRINT STRINGS(K,"#")
PRINT USING A$,K PRINT CHR$(n)

Lesson 13 Lesson 4 may meet all your graphic needs, but Lesson 13
explains the pixel notation and introduces several time-saving techniques
and instructions.

Lesson 14 extends your knowledge of string variables, and introduces
elementary conversational programs in which the computer simulates con—
versation. The ROBOT COUNSELOR program and the CIPHER program may also
interest you.

Lesson 15 explains how and where to look for additional information
on computing with particular emphasis on the TRS-80 Level II BASIC.
Several computer related journals are listed with brief annotations.

Lesson 16 discusses several BASIC instructions not used earlier in

in this book.

Lesson 17 extends the collection of seventy-five microRESEARCH
PROBLEMS. The way to learn computing is to compute and then to examine
your programs and results to see if you could have devised a better pro-
gram.

The discussions presented Lessons 5 and 17 are planned to help you
develop efficient as well as effective programs and to whet your problem
solving ability. Many of the problems presented are readily extended.
Their solutions frequently suggest further explorations worthy of your
talent. This is why they merit the adjective "RESEARCH'". The wide var-—
lety of problems includes something for every taste: several arithmetic
explorations, greeting card graphics, Haiku poetry, logical decisions,
calendar problems, dart and target games, loan and finance programs, trea-

104

sure hunt games, caricatures, speech timer, puzzles, recursive functions,
polygonal maps, a medical emergency prompter, number theory problems,
lattice problems, magic prime squares, graphs, monkeys at typewriters,
amicable and sociable numbers, dance partners and the eight queens pro-

blem.

105

LESSON 6
Tape Casseties —

TAPE CASSETTE for programs and data storage.

Occasionally you have a special program worth saving for future use or to
show off to a friend. Put it on tape. Tape is also handy for storing data.

Fach TRS-80 comes with a tape recorder for storing programs and data
that you wish to save. It uses regular (high quality) tape cassettes. 1
personally prefer the short 30 minute (15 minutes per side) tapes rather
than the 45 minute, 60 wminute or 90 minute tapes since the tape recorder
starts, stops and operates more uniformly when the reel contains less
tape. Try it and suit yourself. Radio Shack sells a special 10-minute
tape for use on TRS-80 which has no '"leader" on it--but any high quality
30 minute (15 minutes per side) tape will serve--just so you don't try to
record on the leader.

Fon neadens who have ofder CTR-40 and CTR-41 fape recorders:

The original tape recorders supplied with TRS-80s were CIR-41's on
which the BEM jack had to be unplugged before the tape was repositioned.
The CIR-41 also requires the use of a "dummy plug' in the MIC jack at
all times. The CTR-80 now furnished should not have a dummy plug inserted
at any time.

Instead of unplugging the REM jack on the CIR41 you can use a short
program,

90@@ OUT 255,4
9019 INPUT "REPOSITION TAPE, PRESS (ENTER) WHEN READY" ; A$
9029 END '
Then type RUN 900¢ when you wish to reposition the tape.
Forn neadens with pre-1980 CTR-80 tape recoiders:
The more recent CIR-80's can use "'fTast—forward' or 'rewind'' without
unplugging the connection between TRS-80 and the cassette at the REM jack.

107

This is much nicer.

In either case the volume control was critical in getting usable
programs and data back into the TRS-80 —- on early (pre-July, 1979) TRS-
80s.

The following may be helpful:

Radio Shack announced (Spring, 1979) a "fix" that they will install free
to make the recording level less sensitive on existing TRS-80's. Current
TRS-80's already have it installed. Your TRS-80 Level II keyboard has a
catalogue number on the underside of the case. If the catalogue number
ends -1 (example 26-1006-1), the modification has already been made.
If not, it will be worthwhile to take the keyboard umit to Radioc Shack
to have the free "fix'" made. Cassette storage is much easier to use
thereafter.

If your CTR-80 cassette player was manufactured before February, 1979
(see date stamped on cassette box—-Feb., 1979 = 249) take the cassette
player to your Radio Shack store, too. They will install a small capaci-
tor in the innards of the electronics to avoid a possible 'noise spike"
on your recorded tape if you push the stop button while it is reading
tape, an infrequent but annoying happening. If the date of manufacture
is Feb., 1979 or later (say 6A9 or 1A0) this extra protection has already
been installed at the factory. We recommend setting modified CIR-80
cassette recording level at 4 both for recording and playback. Once you
find the best volume for your system, a drop of white correction fluid
(Snopake, Liquid Paper, etc.) or paint will mark the location for future
reference.

In any case, the usual tape care is essential.

1. Don't leave cassettes near a magnetic flux source like your power
Supply or near a magnet as in a motor or a speaker. Also, don't ex-
pose cassettes to extreme heat or cold.

2. Keep your cassette capstan and rollers clean. Dirty heads cause lots
of troubles. If you don't know how to clean them, your nearby Radio
Shack or tape recorder store will be glad to show you, and sell you a
cleaning kit (<$2).

108

To load a tape that already contains a program

Plug in everything carefully.
110 wvolt (Don't expect to use the batteries.) black power

cord
DIN plug to TRS-80 keyboard hole labeled TAPE with

pip.on plug in slot on socket s

3 plugs on other end of cable connect to cassette player
BLACK plug into EAR hole
TLARGE GREY plug into AUX hole

SMALIL: GREY plug into small MIC hole (CTR-80)
or EEM hole (CiR-41)

If you are using CIR-41 put dumy plug into MIC and leave it
there.

If you are using CIR-80 do not use dumy plug——just leave big
MIC hole empty.

NEXT:

Adjust the position counter back to zero, (They register differently on
CIR-41 and CIR-80, so be a bit suspicious.)

Check the volume adjustment. (This is fussy, experiment a bit.)
CTR-41 5to8
CTR~-80 3.5 to 4.5 (user—generated); 4 to 5 (oonmercial tape)
Push key on cassette.

Type CLOAD or CLOAD "£" and on Keyboard (where £ is letter
identifying your program).

The cassette should be turning now.

Soon the TRS-80 video screen will show two asterisks.

109

Level I —/’75** *k Level II

N

If all is going properly, one asterisk will blink irregularly.

When it finishes loading, the cassette will halt the tape and the display
screen will show

READY

>

Depress the button on the cassette (even though the tape
has halted). po 20 Leave the |PLAY| key depressed when not in use,

Type LIST)
If the program seems OK, type RUN [ENTER].

If no program is present (or if the asterisks appeared but did not wink)
lower the volume slightly; rewind the tape and try again.

If something loaded, but the last part seems all jumble and gibberish,
increase the volume slightly; rewind the tape and try again.

110

To SAVE a program currently in the computer

Set up the cassette recorder as described before; be sure plugs are
set firmly in the proper holes.

Check the volume setting.

CIR 41 4-6
(Try mid-range first.)
CIR 80 3.54.5

Rewind the tape.(Unplug REM jack only if on CIR-41 or use program fix.)
Reset the tape counter to 000.

Advance the tape to get past the "leader" if you are using standard tape-—
or to a blank place if the tape already contains some programs or data.
(I usually begin programs at 10 on the tape and leave between 10 and
19 "counts" of blank tape between programs. This may be overly cau—
tious, but it sure makes it a lot easier to find things.)

Note the program name and where it begins on the index card with your
cassette or on the cassette label.

Depress both and [PLAY] keys on the cassette recorder (surprise——
yes both should be down to record--so the TRS-80 can control things
properly).

Type CSAVE " " (with a letter to identify the program between tne
1t 1).

The tape should begin to advance and the TRS-80 will record your program
on the tape.

READY
>_
When the program is recorded, the video screen will display
as usual.

Depress the [STOP] button on your recorder. This is important.

Note where the program ended on your index card or the cassette label.

Rewind the tape to the beginning of the program (see index card and count-
er).

Depress |PLAY| only on cassette player.
Type CLOAD ? to check the tape against the program in the TRS-80 memory.

If the tape checks properly, the screen will display READY, otherwise
screen will display BAD and you should CSAVE " ' it again.

111

I record each program twice, just in case anything bhappens. You'll have
more space than you can use on a 15-minute per side tape. (Use both
sides, of course.)

Sound and Music

Some TRS-80 programs include sound or music as part of their output.
Higher quality musical reproduction is obtained by using a separate ampli-
fier and speaker. If you are interested in medium fidelity sound rather
than high fidelity music production, quite satisfactory results may be
obtained using the amplifier present in the cassette player furnished
with your TRS-80.

First get the program in your TRS-80 in the usual fashion. Then
unplug the black plug from the ear hole in the cassette recorder (leaving
the two grey plugs in place), Plug the earphone that came with the tape
recorder into the ear hole (or better vet plug a speaker in there--you
can get a suitable jackplug or converterplug from Radio Shack) .

Now you need to fool the tape recorder. Remove any tape cassette
from the recorder. Push in the little lever at the back left side of the
opening where the cassette would go. VWhile you are depressing it, depress
both the [RECORD] and buttons on the front of the recorder. These
should stay down when you release the lever. Now RUN your program.

The following instructions are used to place data onto tape and to
retrieve data from tape:

PRINT #-1, PRINT #-1,X,Y,B$,A$

Output to cassette #1 from computer

INPUT #-1 INPUT #1,X,7,B$
Input from cassette #1 to computer.

If you are having trouble with keyboard bounce (double letters from

a single key stroke), use the debounce tape. More recent keyboards seem

not to have as much trouble with this as did those level II's delivered
before 1980,

112

LESSON 7

Games
and Piaytoys

GAMES AND PLAYTOYS

Computers are magnificient game players. It isn't hard to play games

which someone else has programmed - if they have done a good job of writ-
ing the program, but writing quality game-playing programs is difficult.

Here is a not very well written game. Put it on your computer; play

it two or three times and then come back to the text and together we shall

improve it.
5 EREM TREASURE HUNT - FIRST TRY
19 s
20 X1 = RND(5Q) : Y1 = BRND(50)

PRINT A TREASURE IS BURIED IN A 50 FOOT BY 50 FOOT SQUARE. IF YOU
CAN LOCATE THE GRID POINT NEAREST IT, YOU WILL FIND THE TREASURE."
PRINT

INPUT ""PLEASE TYPE COORDINATES X, Y = ';X,Y

IF X = X1 AND Y = Y1 THEN 500

A=X-Xl:B=Y-7Y1L

D = SQR(A*A+B*B)

PRINT "'SORRY YOU MISSED IT BY';D;"FEET.'
COTO 49

REM TO HERE ONLY IF TREASURE IS FOUND
FOR Q = 1 TO 8

PRINT @ RND(1¢¢@), "WHEEEE YOU GOT IT."
NEXT Q
QIO 19

Well - it's a game - and the program works if you typed it in correct-

ly.

But it isn't much fun. You really need more information than just

the distance to the treasure.

~

113

It would help if the program told you whether X and Y are too big
or too small. Do you want to try to revise the program on your own be-
fore you continue?

One of the most common games computer programmers play is ''one-up-man-
ship". Modifying existing programs is one form of the sport. An impor-
tant way to gain programming skill is to adapt and improve a working pro-
gram written by someone else. There is an axiom among computer program-
mers that says

Any program you have written,
I can improve upon.

It has as its converse

Any program I have written,
you can improve upon.

and together they have a corollary

Any program I have written,
I can improve upon.

Each of these is probably true. In some cases the real question is
whether or not it is worthwhile to improve on a program even if you can
do so.

The answer depends upon how frequently the program will be run, and
how much of your time will be required to improve the program.

Some ways it is frequently possible to improve programs are:

Make them use less conputer time,

Provide output better suited to the user's needs.
Make the program easier to understand (and hence
easier to modify and maintain).

4. Generalize the program so it is useful in solving
other problems without sacrificing speed.

.DJ[\’H—‘

Programs designed to play games or solve puzzles somehow seem partic-—
ularly subject to improvement, even by beginners. We shall look at sever—
al commercially available programs and how they can be inproved. This is

one of the most satisfying ways to improve your own ability as a program—
mer,

114

Let's go back and improve the treasure hunt program. The "heart"
of the original program is

5¢ INPUT "PLEASE TYPE COORDINATES X,Y =';X,Y
69 IF X = XL AND Y = Y1 THEN 50¢

M A=X-XL : B=Y-Y1

80 D = SQR(AXA+B¥B)

9¢ PRINT "'SORRY YOU MISSED IT BY";D;"FEET."
15¢ GOTO 40

5¢¢ REM TO HERE ONLY IF TREASURE IS FOUND

549 GOTO 19

It would be nice to print another line of type right after 9¢ that
tells us which way to go. Let's insert the following:

1¢¢ IF A> ¢ THEN A$="TOO BIG" ELSE A$=""TOO SMALL'"

11¢ PRINT "YOUR X VALUE IS '';A$,

12¢ IF B> @ THEN A$ = '"IOO BIG" ELSE A3 = "TOO SMALL"
13¢ PRINT "YOUR Y VALUE IS ";A$

Insert these instructions and run the program again. It is more fun
this way, isn't it? Play it several times.

HEY - DID YOU NOTICE THAT THE PROGRAM CHEATS? YES IT DOES.

If you get either X or Y correct, but not both correct, it tells you
to change them both.

Insert temporary debugging instruction
21 PRINT X1, Y1
and run it again. The correct treasure location will now be printed at
the top of the screen so you can test it. Try putting in two wrong
values - Seems OK. Next put in the correct value for one coordinate and
the wrong one for the other coordinate. Hmmm - The program still claims
both values are either TOO BIG or TOO SMALL. That won't do, will it?
K OK 0K

We'll fix that too. Try
199 IF A>@ THEN A$ = ""IOO BIG" ELSE IF A = { THEN AS = "OK'' ELSE

A$ = "TOO SMALL"

12¢ IF B> THEN A$= "TOO BIG' ELSE IF B = @ THEN A$ = "OK" ELSE
A$ = "TOO SMALL"

115

Try it - it works now. Remember to delete instruction 21 before you
show it off to someone else.

There is really no reason we need always work on a 50 by 50 foot
square. How about letting the player select the size of the square?
We'll need an instruction to INPUT the size of the square.

15 INPUT "PLEASE TYPE LENGTH OF SIDE OF SEARCH SQUARE.'";S

Remenber to thwart the person who puts in 4.73 or -2 or some such
joke.

16 S = INT(ABS(S))

Before continuing you should look through the program and see what
other instructions need to be modified.

Instructions 20 and 30 need to be changed; our new program (still
not perfect) is

5 REM TREASURE HUNT - SECOND TRY
19 s
15 INPUT "PLEASE TYPE LENGTH OF SIIE OF SEARCH SQUARE.";S
16 S = INT(ABS(S))
20 XL = RND(S) : Y1 = RND(S)
3¢ PRINT "A TREASURE IS BURIED IN A";S;" BY ";S;"FOOT SQUARE. IF YOU
CAN LOCATE THE GRID POINT NEAREST IT, YOU WILL FIND THE TREASURE."
49 PRINT
59 INPUT "PLEASE TYPE COORDINATES X,Y =";X,Y
60 IF X=Xl AND Y = Y1 THEN 50¢
7 A=X-Xl:B=Y-Y1l
8) D = SQR(A*A+B*B)
9¢ PRINT "SORRY YOU MISSED IT BY";D;"FEET."
1¢p IF A> 0 THEN A$ = '"TOO BIG" ELSE IF A = @ THEN A$ = "K' ELSE
A$ = '"TO0 SMALL"
11¢ PRINT "YOUR X VALUE IS ";A$
129 IF B> ¢ THEN A$ = "TOO BIG' ELSE IF B = ¢ THEN A$ = "OK" ELSE
A$ = "TOO SMALL'
139 PRINT "YOUR Y VALUE IS ';A$
15¢ GOTO 4¢
5¢p REM TO HERE ONLY IF TREASURE IS FOUND
51 FORQ = 1 TO 8p
520 PRINT @ RND (1¢¢@), "WHEEE YOU GOT IT."
539 NEXT Q
549 GOIO 19

Play the game a few times and then, after correcting the spacing on
instructions 30, 190 and 120 if needed, show it to a friend.

What happens if someone inserts .5 or §) as the value for S? Maybe
we need another smart aleck guard at 17.

116

17 IF ABS(S) = @ THEN S = 5@¢ : PRINT "ALL RIGHT, SMARTY, I'LL FIX YOU.
TRY THIS."

Modifications of this treasure hunt program can provide the first
approximation of a number of much more interesting games.

How about adding Depth at which the treasure is buried as well as
X,Y locations?

Could you modify the coordinate game to play the child's game
"BATTLESHIP" in which the computer selects positions for several targets
which you must locate?

Can you insert graphics which will show you where your choices have
been and the corresponding D value rather than telling you which way to
move?

Try a few modifications of your own.

Here are some games programmed (or adapted) by secondary school
students in Oklahoma in Spring, 1979. If you find unfamiliar instructions,
see Lesson 16 or your TRS-80 LEVEL II BASIC Reference Manual.

5 (S
7 PRINT "THIS IS A GUESSING PROGRAM. YOU ARE TO GUESS A FRACTION N/D
WITH 1<=N<=10, 1<=D<=10."
9 PRINT
199 G = END(19)/RND(19)
119 PRINT "I HAVE A NEW FRACTION FOR YOU TO GUESS. PLEASE TYPE YOUR
GUESS IN DECIMAL FORM."
12¢ INPUT X
139 IF X = G THEN PRINT "WHEEE...YOU GOT IT!'": GOTO 190
149 IF X> G THEN 179
15¢ PRINT ""YOUR GUESS IS TOO SMALL. TRY AGAIN PLEASE."
160 GOTO 12¢
179 PRINT 'YOUR GUESS IS TOO BIG. PLEASE TYPE IN ANOTHER GUESS."
189 @QOTO 129

Play the game; then consider any desirable changes. One student suggest-—
ed adding the following: [(However, it did not work as anticipated. Can
you help?)
1$ ON ERROR GOTO 9¢@
g%) gg%ONI‘ "PLEASE TYPE THE FRACTION USING DECIMAL FORM, NOT N/D FORM."
9

117

THIS IS A HANGMAN GAME ADAPTED BY

L=

ok
= O

REM KAREN JEANNE HENRY

REM Rl BX 580 MCLOUD, CK 74851

REM (4¢5) 273-1133

REM THE HANGMAN PROGRAM IS SELF EXPLAINED. THE PERSON PLAYING
WILL INPUT A LETTER AND THE COMPUTER WILL TELL YOU IF YOU
ARE CORRECT OR NOT.

REM AS YOU INPUT EACH LETTER THE COMPUTER MAY OR MAY NOT CHANGE
GRAPHICS

REM WHEN YOU FINISH THE GAME THE COMPUTER WILL VERIFY YOUR WIN OR
10SS BY CHANGING GRAPHICS AND/OR WORDS

REM X + Y ARE USED IN SET STATEMENTS IN FOR-NEXT LOOPS

REM D$() ARE THE WORDS, F$() ARE THE LETTERS OF THE WORDS

REM WD IS THE TOTAL NUMBER OF WORDS IN THE MAIN PROGRAM

REM W$ IS THE INPUTED LETTER L(N) + F1 ARE COUNTING DEVICES

REM K IS A VARIABLE OF HOW MANY WRONG LETTERS

CLEAR 109

REM

CIS

WD = 10

K=(: FOR N=1 TO 8: L(N)=p: NEXT N

PRINT 'FHEANGMANH*"

FOR X = 9 TO 51 STEP 6

SET(X,15): SET(X + 1,15) : SET (X + 3,15) : SET(X + 2,15): NEXT X
FOR X = 7¢ TO 79: SET(X,44): NEXT X

FOR Y = 4 TO 44: SET(74,Y): SET(75,Y): NEXT Y

FOR X = 76 TO 1¢1: SET(X,4): NEXT X

FOR Y = 5 TO 7: SET(101,Y): NEXT ¥

IF FG = 1 THEN 160 ELSE D$(1) = "APPLE": D$(2) = "HEART": D$(3) =
"STUDENT" : D$(4) = "TEACHER': D$(5) = "PENCIL"' :D$(6) = ""PAPER" :
D$(7) = "PEN" : D$(8) = "WORK': D$(9) = "TIRED": D$(1p) = "HARD"
DD = ID + 1: IF DD> WD THEN 205¢ ELSE Z$ = D$(DD)

N = LEN(Z$)

F$(1) = MID$(Z$,1,1)

F$(2) = MID$(Z$,2,1)

F$(3) = MID$(Z$,3,1)

F$(4) = MID$(Z$,4,1)

F$(5) = MID$(Z$,5,1)

F$(6) = MID$(Z$,6,1)

F$(7) = MID$(Z$,7,1)

F$(8) = MID$(Z$,8,1)

IF F$(3)<>""" THEN 200

RESET (21,15) : RESET (22,15) : RESET (23,15) : RESET (24,15)

IF F$(4)<>""" THEN 310

RESET (27,15) : RESET (28,15) : RESET (29,15) : RESET (3(,15)

IF F$(5)<>""" THEN 330

ol

ton

118

320
330
349
350
360
379
380
399
49p
419
415
420
425
427
43
449

450
460
479
480
500
510
520
530

550
580
610
620
630

640

650
660
670
700
710
720
750
760
8pQ
810
820
850
860
opp

RESET (33,15) : RESET (34,15) : RESET (35,15)
IF F$ (6) <> " ' THEN 350

RESET (39,15) : RESET (4@,15) : RESET (41,15)
IF F$ (7) <> " ' THEN 37¢

RESET (45,15) : RESET (46,15) : RESET (47,15)
IF F$ (8) <> ' ' THEN 39¢

RESET (51,15) : RESET (52,15) : RESET (53,15)
PRINT @ 388, "THIS WORD HAS '; N; "LETTERS",;
PRINT @ 452, "TYPE EACH LETTER' ;

PRINT @ 516, "PRESSING ENTER EACH TIME' ;

Z = 644

PRINT @ 896, " " ;

INPUT W$

DRINT @ 98¢, " ' ;
FORN =1 TO 8

IF W$ = F$(N) THEN PRINT @ (258 +(3*N)), W$;
GOTO 450

NEXT N

IF FL = ¢ THEN PRINT @ Z, W$; : Z =2 + 2

P =9

FORN=1TO8 : IFL(N) = 1 THENP = P + 1

NEXT N

IF P = LEN(Z$) THEN 2000

IF FL = 1 THEN FL = ¢ : GOTO 420

ON K + 1 GOTO 540, 660, 71¢, 819, 919, 930

K=1

FOR X = 95 TO 197 : SET (X,8): SET (X,16) : NEXT X

FOR Y = 1¢ TO 14 : SET (1¢9,Y) : SET (93,Y) : NEXT Y

SET (94,9) : SET (1¢8,9) : SET (108,15) : SET (94,15)

SET (97,10) : SET (1¢5,1¢) : SET (1¢1,11) : SET (191,12)
SET (95,12) : SET (96,13) : SET (97,14) : SET (98,14) : SET (99,14) :
SET (199,14)

SET (1¢1,14) : SET (1¢2,14) : SET (1¢3,14) : SET (1¢4,14) :
SET (1¢5,14) : SET (1¢6,13) : SET (1¢7,12)

GOTO 420

K=2

FOR Y = 17 TO 33 : SET (1¢9,Y) : SET (1¢1,Y)
GOTO 420

. RESET (36,15)
. RESET (42,15)
: RESET (48,15)

: RESET (54,15)

: LN) =1 : FLAG = 1 :

. SET (1¢2,Y) : NEXT Y

Y =Y-1: NEXT X

K=3

FOR X = 103 TO 112 : SET (X,2¢) : NEXT X

Y = 19 : SET (117,14)

FOR X = 112 TO 116 : SET (X,Y) : SET (X+1,Y)

GOTO 420

K=4

FOR X = 99 TO 99 : SET (X,2¢) : NEXT X

Y =26

FOR X = 85 TO 99 : SET (X,Y) : SET (X,Y-1) : Y = Y-1 : NEXT X
GOTO 429

119

919 K=5:Y=233 ,
92% FOR X = 1¢3 TO 112 : SET (X,Y) : SET (X+1,Y) : Y =Y+l : NEXT X
96 SET (113,43) : SET (114,43) : SET (115,43) : SET (116,43) :
SET (117,43)
979 GOTO 420
980 Y = 42
999 FOR X = 89 TO 98 : SET (X,Y) : SET (X+1,Y) : Y = ¥-1 : NEXT X
13p SET (85,43) : SET (86,43) : SET (87,43) : SET (88,43) : SET (89,43)
1049 RESET (1¢1,12) : RESET (95,12) : RESET (96,13) : RESET (1¢6,13) :
RESET (107,12)
1069 FOR X = 97 TO 1¢4 : RESET (X,14) : NEXT X '
11¢¢ SET (97,14) : SET (98,13) : SET (99,13) : SET (199,13) :
SET (1¢1,13) : SET (1¢2,13) : SET (1¢3,13) : SET (1¢4,13) :
SET (1¢5,14)
111¢ PRINT @ 772, " AHHH! THAT'S TOO BAD"'; : GOTO 2019
2009 PRINT @ 772, "CONGRATULATIONS! YOU WON!!!'"';
2019 FOR N = 1 TO20¢¢ : NEXT N : CLS : GOTO 1¢¢
2050 REM THIS CHANGES WORDS
2055 ON F+1 GOTO 206(, 2079) .
2069 DS(1) = "GEOMETRY" : D$(2)="ALGEBRA" : D3(3)= "TRIANGLE" :
D$(4)= "FORMULA" : D$(5)= "SOLUTION" : D$(6)= "SUBTRACT' :
D$(7)= "NEGATIVE" : D$(8)= "REDUCE" : D$(9)= "INVERSE' :
D$(1p)= "FRACTION' : K=1 : F=1 : GOIO 179
2065 DD=@ : FG=1 : GOTO 1¢¢
2079 REM THE PERSON USING THIS PROGRAM CAN ADD MORE WORDS IN THIS SAME
WAY, USING THE D$(SUBS), OR HE CAN USE DATA FILES AND STORE WORDS ON
A TAPE RECORDER CONTROLLED BY THE COMPUTER. USE FOR N=1 TO 19 :
INPUT #-1, D$(N) : NEXT N : GOTO 2065

This program will fit on a 4-K Level II TRS-80, but you may need to
"squeeze out" most of the spaces as suggested in Lesson 11.

1¢6(FORX=97TO1(4 :RESET(X,14): NEXTX

is hard to read, but requires less computer memory. Lines 3 to 34
may be ommitted, if necessary.

After it is up and working, you may wish to try to improve it by
including additional words from a cassette file. See Lesson 6.

120

REM * REVERSE *

I=3

REVERSE

BOB YARBROUGH 4-78

REM RANDOM DIGITS ARE FLASHED. OPERATOR MUST ENTER NUMBER
REM FORMED BY WRITING DIGITS IN REVERSE ORDER

REM L IS INITIAL LENGTH OF STRING OF DIGITS

REM A IS LENGTH OF COUNTER

A=1000
REM

G=3

REM STRING IS SHORTENED WHENEVER AN ERROR IS MADE.

CLS

PRINT ''YOU MUST ENTER DIGITS SHOWN IN REVERSE ORDER."

PRINT
=9

PRINT "NEXT STRING WILL BE '";L;" LONG."

=)
GOSUB 200
s

FOR X=57 TO 68
SET(X,21)
SET(X,29)

NEXT X

FOR Y=21 TO 29
SET(57,Y)
SET(68,Y)

NEXT Y

FOR N=1 TO L
A(N)=RND(9)
7=10%7 + A(N)

NEXT N

FOR N=L TO 1 STEP -1
PRINT @ 542,A(N);
GOSUB 200
SET(60,25)
SET(61,25)

NEXT N

(LS

PRINT

INPUT P

IF P <> 7 THEN 18(

DRINT "'CORRECT"

C=C+1

IF C < G THEN 102

I~L+1

GOTO 199

G IS NUMBER OF CORRECT RESPONSES BEFORE STRING
REM IS LENGTHENED

121

REVERSE (Continued)

189 PRINT '"WRONG %bk1;7; kkr
183 GOSUB 200

186 I=I-1

199 GOTO 199

209 FOR M=1 TO A

202 NEXT M

204 RETURN

219 END

Note: If you wish the digits to be displayed for a shorter period of
time, change line 41 to:

41 A = 500 or some smaller value,

122

1
2

13p
140
15
160
179
180
199
200

235
240
250
260
265
268
270

ASTEROIDS

REM *ASTEROIDS* MICHAEL BRIGGS 1-79

CLS : PRINT " MANEUVER THE SHIP THROUGH THE ASTEROIDS BY USING THE
UP-ARROW KEY TO GO UP, THE DOWN ARROW TO GO DOWN, AND THE < AND >
KEYS FOR LEFT AND RIGHT."

Z =15
DIMA(Z,15)
PRINT
INPUT '""PRESS ENTER TO START" ; D
1L = 150
CLS
X =63 : = 44
TI = ¢
SET (X,Y) : SET (X,Y+1) : SET (X-1,Y+2) : SET (X+1,Y+2)
FOR G = § TO 127
SET (G,47)
NEXT Note: NEXT wonks as well as NEXT X,
FOR L = 3T0 15 but the practice of omitting the
FORP =1 T0 Z variable can cause a problem in
A(P,L) = RND(128)-1 nested FOR...NEXT Loops.
SET(A(P,L),2*L)
NEXT : NEXT

PRINT @ 32, "Gotr
FOR L = 3 TO 13
R = RND(3)+2
FORP =110 2
S$ = INKEY$
TI =TI + 1
IF S§= """ THEN 240
RESET (X,Y) : RESET (X,Y+l) : RESET (X-1,Y+2) : RESET (X+1,Y+2)
IF S$ = "4'" THEN Y = Y-1 : GOIO 17¢
IF S$ = """ THEN Y = Y+1 : GOTO 179 Nete: The + won't show on

i

IF S§ = "." THEN X = X+2 : GOTO 170 the screen, but it is
iF S$ — n,n THEN X = X-2 /(’,VL /tl’l?JlQ' T
IF X = 127 OR X = 1 GOTO 509

IF Y = 45 THEN GOSUB 1990

IF Y = 1 THEN 2000

IF POINT(X,Y) OR POINT(X,Y+l) OR POINT(X-1,Y+2) OR
POINT(X+1,Y+2) THEN 1505

SET (X,Y) : SET (X,Y+l) : SET (X-1,Y+2) : SET (X+1,Y+2)
RESET (A(P,L), 2*L)

A(P,L) = A(P,L)+R

IF A(P,L) >=128 THEN A(P,L) = A(P,L) -128

IF ABS(A(P,L)-X) < 2 THEN 9¢@

SET(A(P,L),2 x L)

IF TI =1L THEN 2500

280 NEXT : NEXT
309 GOTO 99

123

ASTEROIDS (Continued)
500 CLS
51¢ PRINT "'YOU HAVE JUST RUN INTO A BLACK HOLE, SORRY!"

520 GOTO 2020
9pp IF 2%, >= Y AND 2% <= Y+3 THEN 1505

9190 GOTO 268

1009 CLS

1¢1¢ PRINT ' YOU HAVE CRASH-LANDED, BUT IT'S NOT TOO FAR TO THE BASE."

192¢ GOTO 2029

1505 FOR BL= 1 TO 4@ : RESET (X,Y) : RESET (X,Y+l) : RESET (X-1,Y+2) :
RESET (X+1,Y+2) : SET (X,Y) : SET (X,Y+1) : SET (X-1,Y+2) :
SET (X+1,Y+2) : NEXT : CIS

151¢p PRINT ''(AP) HOUSTON - NASA MISSICON CONTROL REPORTS THE LOSS OF AN
INTER-PLANETARY SHUTTLE IN ROUTE TO SATURN. THE VESSEL APPARENTLY
SUFFERED SERIOUS ASTEROID DAMAGE AND WAS UNABLE TO RETURN TO EARTH!.'

152¢ GOTO 2020

2009 CLS

2019 PRINT "EXCELLENT NAVIGATION! CONGRATULATIONS ARE IN ORDER."

2015 PRINT "YOU STILL HAVE" ; (LI~-TI)*1§ ; "GALLONS OF FUEL LEFT."

2¢2¢ PRINT : INPUT' "PRESS ENTER TO TRY AGAIN" ; D

293¢ GOTO 9

25@¢¢ CLS : PRINT ''YOU HAVE RUN OUT OF FUEL. YOU WILL CRASH-LAND IN
APPROXIMATELY 15 MINUTES. WE MIGHT EVEN SEND A SEARCH PARTY TO
PICK UP THE PIECES." : GOIO 2¢2¢

Here is a brief program that clutters up the screen in an interesting
fashion. Try it. You might like it.

109 POKE 16396,23

11¢ CLS

12¢ FOR N=14336 TO 15360

130 PRINT CHR$(PEEK(N)) ; "' ' Don't overlfock the final ; henre.
14Q NEXT N

150 GOTO 10

Then type RUN '[ENIER]and hit several keys at once without using .
Try (@] and then try various other keys with some or all of the

above. <] s
L7z 1 LS
LW]

To terminate the program, open the little door on the back left-hand side
of your keyboard unit and depress the button on the extreme left side.
You may need to turn your computer off and then back on again to assure
proper functioning of all keys.

124

You will find dozens of game programs in Softside, Computronics,
Creative Computing, TRS-80 Computing (San Luis Rey, CA), PROG-80
(Milford, NH) and many other journals mentioned in Lesson 15,

Some commercial games are rather expensive, costing $25 and more.

Such games are still cheaper than ones you design, write and debug, if
your time is valuable. Other tapes are available at a cost so low that
you can hardly afford the time to type in the program and correct your
typing errors. People's Software will send you a list of available pro-
gram tapes (1981 price $10.95 plus postage in U.S. for some tapes).

They add more to the list all the time and will swap you free tapes for
good original programs which you have written.

Tape 1($11) contains a whole collection of games, some trivial, some
excellent. Other programs deal with business, banking, bio-rhythms,
speed-reading, math refresher, etc. Tape 2 ($11) contains some slightly
more sophisticated banking and business programs, math programs, statist-
ical programs, etc. Tape 5 ($11) is more of the same. Tape 6 is
People's Pascal, Version II, and the cost is $23.50. You may or may not
be ready for the Pascal language.

You can learn a lotby ordering one of these tapes and then examining,
adapting and improving the programs to suit your whim. BE SURE TO SPECI-
FY WHETHER YOU HAVE LEVEL I OR LEVEL II BASIC. The address is:

People's Software

Computer Information Exchange

Box 158

San ILuis Rey, CA 92066

Telephone: (714) 757-4849 (VISA or MASTERCHARGE accepted for phone
orders)

125

PRACTICE SESSION 7

Improve the treasure hunt program introduced in this lesson.

Either devise a number guessing game of your own or improve the game
written by a secondary school student in this lesson.

Play Karen Henry's modified Hangman program and then modify it to use
your cassette tape recorder to provide additional words.

FEither write a game-playing program of your own or improve a game-
playing program written by someone else. Almost any game-playing
program can be modified and improved. Try out your own ideas.

See if you can determine where the 'fuel supply" is stored in the
ASTEROIDS program. Change the fuel allotment. Also, determine
whether fuel is used up by "time elapsed" or by "number of keystrokes!
and plan your playing strategy to take advantage of this knowledge.

Modify Bob's program to play REVERSE so the player can INPUT a value
to determine the amount of time the numbers are displayed (the dif-
ficulty level).

Iook in one of the journals listed in Lesson 15 and find a computer
game. Put the game on your computer, debug and play it. Then, see
if you can improve it.

126

EDIT INSTRUCTIONS

The simplest way to change short lines in a program is certainly
Just to retype it, as we have been doing.

If you mistyped a program as

109 FORK =1BO 17 {ernon)
1019 PPRINT K; (ernon)
1029 NEXT K

(]

The computer will display

? SN ERROR IN 10¢¢
READY
1900

By depressing key the computer will list line 100@ and again display
the line number, to facilitate correction.

2SN ERROR IN 1090
READY

10p¢ FOR K = 1 BO 17
1900

You may now either space over to just under the error using the space bar,

or you may depress [S] and the [B] (the character in error). In either
case, you will now have

127

2SN ERROR IN 1p0Q
READY

19p¢ FOR K =1 BO 17
1099 FOR K =1 _

Next, depress @ for ''change' and depress followed by
to correct the line.

Type LIST to see that the change was made.

1909 FOR K = 1 TO 17
1¢1¢ PPRINT K;
1029 NEXT K

If you type RIN @F_E—__ﬁ[you can go through a similar error detection
and error correction routine for line 191, but if you notice the '"PP"
when you LIST it, it is easier just to retype it as

119 PRINT K;

If you didn't note the error and type RUN , you will obtain

2SN ERFOR IN 1§19
READY

1919
Upon depressing the last line will show:

1¢1¢ PPRINT K;
1919 _

If you space the underline (cursor) over to directly under either of the
letter P's

1¢1¢ PPRINT K;
1916 P_

and depress key @ , the computer will display:

PR
ip1p PPRINT X;
(1¢1¢ PIP!

The !! indicates the portion that will be deleted when you depress
[ENTER] -
Depress ‘ENTER]

Type LIST and, sure enough, it shows:

128

[
A¢gpp FOR K = 1 TO 17
1919 PRINT K;
1029 NEXT K

and RUN produces the expected result.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
READY

>

You can always go into the EDIT mode to change a line by typing
EDIT fZine number. For exanple, to change the 17 in line 1¢0@ to a 37,
one merely types:

EDIT 1099

The computer responds

1900 _
Depress Dlj , and you will have

1000 FORK = 1 TO 17

Note that the "1 of 17 is the second "1" in line 10@@, so depress

[2] and then [S]| and then [1] (Literally, "Seek the 2nd
charactern 1".)

The computer displays

AEDIT 1000

1009 FOR K = 1 TO 17
19pp FOR K = 1 TO _

I

Now, depress }:C:] followed by which gives
1909 FORK =1 TO 3_

Depressing will complete the line and enter the changes
into the program, as LIST [ENTER] will then show, and RUN |ENTER |

will demonstrate.

Chapter 9 in your TRS-80 Level II BASIC Reference Manual gives additional
details, which are summarized here.

129

EDIT MODE SUBCOMMANDS AND FUNCTION KEYS

Subcommand/Function Key

Function

EDIT ALine no.

[Space-Bar]
(-]

O[] s

El] FE

B &

where Line no. is a valid line nurber con-
taining an instruction. This sends the com-
puter to EDIT that line.

End editing and return to Command Mode.

Escape from subcommand and remain in Edit
Mode.
Move cursor u spaces to right.

Move cursor n spaces to left.

List remainder of program line and return to
beginning of line.

List remainder of program line, move cursor
to end of line, and start Insert subcommand.

Insert the following sequence of characters
at current cursor position; use
to get out of insert subcommand.

Cancel changes and return cursor to beginning
of line.

End editing, save all changes and return to
Command Mode. Same as IENTER{

End editing, cancel all changes made and re-
turn to Command Mode.

Delete remainder of line and insert following
sequence of characters; use [flto
get out of this insert subcommand.

Delete specified number of characters nbegin-
ning at current cursor position.

Change (or replace) the specified number of
characters n using the next n characters en-
tered.

Move cursor to nth occurrence of character c,
counting from current cursor position.

130

n a Delete all characters from current cursor
position up to nth occurrence of character ¢
counting from current cursor position.

Let us try to use some of these EDIT instructions. Type along on
your TRS-80 to help.you follow what is taking place.

If you have the program line:
1¢¢ PLEASE PRINT THIS LINE.

and type
RUN

your screen will show

RUN
?SN ERROR IN 199
READY
199 _

If you depress the screen will show

RUN

?SN ERFOR IN 199

READY

1¢¢p PLEASE PRINT THIS LINE.
109

By now you realize that you need a PRINT instruction and that the message
needs to be in quotes if it is to be printed.

Depress key (Nothing seems to happen, but it has put the
editor into the insert mode.)

Type

PRINT " (which will appear on the screen)

Depress (Again nothing seems to happen, but this
releases you from the insert mode,)

Depress (This moves to the end of the line and puts

the editor back into insert mode.)

131

Your TRS-80 will now show

?SN ERROR IN 10¢

READY

10 PLEASE PRINT THIS LINE

10¢ PRINT "PLEASE PRINT THIS LINE._

Note that the underscore at the end of the line shows you where the next
character will appear. It is right where you need to insert another quote.
To do so, type

"
Your correction is now complete.
If you type
oy [EVTER]
the program will print the desired message.

Note: If, back at the beginning when you ran 1¢¢9 PLEASE PRINT THIS LINE
and your screen showed

>HIN

78N EREOR IN 100
HEADY

199

you forgot to give the EDITOR a comnand by depressing E (or some other
command key) and just started to type PRINT, an unexpected action would
have taken place,

The editor would ignore El_)] as unacceptable commands. It would then
use [I] as the "insert" command and would have inserted N T.

This is not at all what you wanted.

EDIT takes a bit of care, but it is well worth the effort.

132

LESSON 9
Simulation

SIMULATION

A SIMULATION is a charade that uses a mathematical model to repre-
sent life-like experiments. The quality of the simulation is highly
dependent upon how well the mathematical model represents the actual phys—
ical or social situation under study.

Many times it is difficult to compute a result of an actual experi-
ment, either because the computation itself is too difficult to perform,
or because the theory is not yet sufficiently developed. Even if the
theory isn't well developed, it may still be ®easible to use simulation
to study the situation.

Simulation is one of the most inportant uses of modern computers. A
simulation is a caricature. As in any caricature, it emphasizes the most
prominent features under consideration and ignores the others.

We shall not attempt to simulate complex processes here. Instead,
we shall simulate several rather simple situations - problems which you
quite possibly could solve without resorting to simulation, but which will,
nonetheless, illustrate the spirit of the game.

The heart of most simulation processes is some sort of random number
generator.

The TRS-80 has an easy-to-use random number generator which you al-
ready investigated and used in Lesson 4.

END(@) produces a random decimal between O and 1, not including
either endpoint. -

BND(K) produces a random integer between 1 and K, including both
endpoints.

RANDOM is sometimes used once at the very beginning of programs that
will be used frequently. It reseeds the random number gen—
erator so that the same sequence of BND () values is not
produced on each run.

133

let's begin with a simple program to simulate five rolls of two dice.

Fach die will produce one of the values 1, 2, 3, 4, 5, 6 at random. - We
wish to display the value shown on each die as well as their sum. For
convenience, the individual dice are represented by R and G (for Red and
Green, to tell them apart).

199
11¢
120
130
140
150
190

REM DICE THROWING PROGRAM
FORK=1TO5

R = RND(6)

G = RND(6)

S=R+G

PRINT "DICE SHOW' ; R ; G, "SIM =" ; S
NEXT K

Get this up and running before you go further.

Now imbed the above in a program that will collect statistics on how

frequently each sum occurs in 100 rolls.

DIM T(12)
REM ZEROS T(2) TO T(12) FOR FUTURE RECORDS OF TOTALS
FOR S = 2 TO 12
T(S) =9
NEXT S

REM DICE THROWING PROGRAM
FOR K = 1 TO 100

R = RND(6)

G = RND(6)

S=R+G ,

PRINT '"DICE SHOW" ; R ; G, "SUM =" ; S

T(S) = T(S)+1 : REM THIS ACCUMULATES TOTALS IN T()
NEXT K
REM PRINTING OF TOTALS
PRINT

FOR S = 2 TO 12

PRINT S ; "WAS ROLLED" ; T(S) ; "TIMES IN 1¢¢ ROLLS OF TWO DICE.
NEXT S
PRINT

Once the program is running properly, you may change instruction 119 to

11¢ FOR K = 1 TO 100

to obtain a larger sample size. You will wish to change 199 to 1909 in
instruction 33¢ as well. Additional speed may be obtained by deleting
instruction 15(once you are sure the program is functioning as desired.

134

A BIOLOGICAL SIMULATION
Example 9-1

Suppose a biologist takes 100, equal-sized drops of liquid from a
liter flask containing bacteria which are randomly distributed (i.e.,
no tendency to cluster). Upon testing, it is discovered that 50 of the
samples are bacteria-free, while the other 50 contain 1 or more bacteria
per sample.* Assuming that the bacteria are distributed at random among
the samples, approximately what is the total nunber of bacteria in the
100-drop sample?

The exact answer cannot be determined. However, it is possible to
obtain a statistical estimate of the desired number. You may or may not
have sufficient mathematical sophistication to solve this problem
directly, but it is an easy matter to simulate it.

Number 100 locations V(0) to V(99), and store zero in each. See
Lesson 10 for additional information on subscripted variables. Then
generate a sequence of random two-digit numbers. Each time the nunber N
is generated (0 < N = 99) we add one to location V(N). This is con-
tinued until exactly 50 of the locations contain non-zero numbers and 50
still contain zeros. At this stage, we have an estimate of the total
number of bacteria in the 100 samples, either by having kept track, or
by summing the V(N)'s.

Of course, the estimate may not be very good if we perform the
experiment only once. By running it several times, using different ran-
dom nurber sequences, we can obtain an average estimate that may be
reasonably close. The "proper'" number of runs is a mathematical problem
of greater difficulty than we shall discuss here.

Do you see that this technique might be helpful? Actually, the
mathematics needed to justify and analyze techniques of this type is
highly sophisticated, but fortunately for many users, the techniques
themselves are comparatively simple to use. A flow-chart of a computer
program to simulate this experiment is given on the following page.

* The testing consists of adding a drop of reagent to the sample drop.

If it is bacteria-free, it will remain clear, but if the sample contains

one or more bacteria, it turns purple. However, the sample does not turn
twice as purple if two or more bacteria are present, so our test gives

no idea of the total number of bacteria present.

135

Initialize

Y

Set starting
value of
each sample
V(i) =9

Set

and
T =

Yy
]

DIM V(99) sets aside 100
locations V(0), V(1),...,
V(99) to represent the
100 samples.

C is used to keep track
of how many cells now
contain one or more
bacteria.

T = total number of
bacteria to date.

Generate
a random two~-digit
integer

¢ SN 599

Does

i y the Nth

No sample contain

bacteria
now?

Increment

' Yes

C > ’ o}

by one.
Add one bacteria

to the Nth sample

1

Increment T
by one

Do

5¢ samples

contain bacteria?
i.e.

C=259
?

136

Sumarize results
of this test and
print it.

Y

Possibly
go back to START

and RUN it again

1909 DIM V(99)
11¢ FORK = @ TO 99
120 V) = 0

139 NEXT K
150 C =9 C=Number 0§ Cells containing bacteria.
16p T=¢ T=Total number of bacteria.

209 REM GENERATE N: § <= N <= 99; INCREMENT V(N),
TOTAL, AND IF APPROPRIATE COUNT.

219 N = RND(1¢9)-1

220 IF V(N) > @ THEN 230

225 C = C+l

230 V(N) = V(N) + 1

24p T=T+1

25¢ IFC < 5p THEN 210

3p¢ PRINT '""THE 1¢@ DROPS CONTAIN A TOTAL OF' ; T ; "BACTERIA."
Before expanding this experiment, run it a few times. If it shows the
same result each time, you may need to add the instruction

5 RANDOM or 5 RANDOMIZE

to prevent the program from resetting the random number generator to the
same place at the start of each run. After the program is debugged and
running, you could imbed it in a FOR....NEXT loop to run it, say, 100
times and give information on the 100 trials. You might even run it 1000
or 5000 times and compute mean and standard deviation of the total number
of bacteria to be expected in the 100-drop sample. You might also con-
sider how to change the program if the number of contaminated drops found
in the 100-drop sample were 35 or 70 instead of 50.

For now merely add:
99 G=9: REM G WILL BE USED TO ACCUMULATE THE GRAND TOTAIL OR
CUMULATIVE TOTAL OF BACTERIA IN 109 RUNS

195 FOR S = 1 TO 109

300 PRINT "SAMPLE";S;""CONTAINS A TOTAL OF'; T :"BACTERIA.'"
319 G=G+T

320 NEXT S

409 PRINT

41¢ PRINT ' THE HUNDRED RUNS PRODUCED AN AVERAGE OF "; G/19¢ ; ' TOTAL
BACTERIA PER RUN "

In Practice Set 9 you will modify this program so that the number
of runs can be specified by the user. You may wish to think a bit about
which instruction will need to be changed. Actually, the simulated
average of 100 runs should be expected to agree quite closely with the
answer of 69 bacteria obtained using statistical theory.

137

ISNT THIS
MORE FUN THAN
REAL
BACTERIA ?

A SECOND BIOLOGICAL SIMULATION

EXAMPLE 9-2

Consider a superficially related, but actually different example.
This time our biologist has a liquid which he knows contains exactly 200
amoebas (or fish) which again are distributed at random throughout the
liquid. If he separates the liquid into 50 equal size samples V(1), V(2),
..., V(50), how many samples will be amoeba-free? (Also, how many will
contain 1, 2, 3, 4, 5, 6, more than 6 amoebas?)

The computation on this is well within your understanding, but that
is not really the purpose of this example. Ilet's simulate the problem
by creating 50 storage cells, each of which initially contains zero
amoebas. This time generate exactly 200 pseudo-random numbers N, with
12N=<50. Each time the number N appears, add 1 to the number in location
V(N). :

10¢ DIM V(5@), M(8) Sets aside space for samples V()
11 FOR K = 1 TO 5¢ and final data collection M{).
120 V(K) = @ This zeros 50 samples V(K).

13¢ NEXT K

200 FOR B = 1 TO 200 This distrnibutes the 200 amoebas.
21¢ N = RND(50) into the 50 samples.

220 V(N) = V(N) + 1

23) NEXT B

3¢ REM ZERO THE M'S TO COLLECT DATA FOR FINAL REPORT
310 FORL =0 TO 8
329 M(L) = @
330 NEXT L
(Continued on next page)

138

499 REM COLLECT DATA ON HOW MANY V-SAMPLES CONTAIN L AMOEBAS
41¢ FOR B = 1 TO 50

420 N = V(B)

425 IF N<7 THEN 430

428 N=38

430 M(N) = M(N) + 1

440 NEXT B

500 REM PRINT OUT SUMMARY
51 FORL = ¢ TO 6

520 PRINT " THERE ARE " ; M(L) ; " SAMPLES WITH EXACTLY " ; L ;
" AMOEBAS "'
53¢ NEXT L
54¢ PRINT " THERE ARE " ; M(8) ; " SAMPLES CONTAINING 7 OR MORE AMOEBAS "

Once you have the program up and debugged and feel it is running
well, you may wish to include it in a FOR ... NEXT loop to run the
experiment several times and to tabulate the data in a more useful form.
This is left for you to do. Once again it will be discovered that the
average of, say 100, runs of such a simulation will agree quite closely
with the forecast obtained using statistical theory, in which the number
of amoeba~free samples is

1,200 _ -4 .200 . .. -4 _ ~
50(1- =5 = 50(1+ o5 X 506" = 50%.0183 = .9

The results of our simulation program correspond very closely to the
theoretical results.

A simulation of this type can also produce convincing evidence that
certain phenomena are not random. Let us assume that in your area P
persons died during D days of this year. If we assume that deaths occur
at random, then we are placing P markers into D cells Jjust as we were in
the previous example, except P = 200, and D = 50. In this case, the
agreement between the outcome of the simulation and actual data is not
good. Indeed, further analysis shows that deaths are not usually distrib-
uted at random, but rather that a high "'successive-day-dependence'’ seems
to exist with alternate high and low death periods. This too can be
similated, but the model is more sophisticated.

EXAMPLE 9-3

Now examine another simulation. This is essentially an Ehrenfest
model with three molecules (see your physics or chemistry teacher). For
simplicity it is posed as a "Guppy' problem.

Assume your aquarium contains 3 pregnant guppies. Because of their
gravid condition you prefer not to net the guppies, but instead to place
a "transfer cage' in the aquarium. At the start there are no guppies in
the transfer cage and three in the aquarium. As time goes on the guppies
swim into or out of the transfer cage at random. When all three are in

139

the transfer cage, the door is closed and no further exchange is possible.
The guppies are then transferred to a maternity aquarium. The number of
guppies in the transfer cage at various times might be

0+1+2+1+2+1->0+1-+2+1+2-+3 end.
If you were unusually lucky, it might even be
0+1-+2-+3 end.

The problem is to determine the average number of arrows in the chain
pefore all three fish are in the transfer cage.

Again there exist statistical techniques (for exanple Markov Chain tech~
niques) which could be used to determine the desired result, but we pre-
fer to simulate the process.

Before examining the solution proposed by your author, at least try your
hand at flow charting the heart of this problem,

Here is one possible model. Use a random number generator to
determine whether the next guppy goes into or out of the cage: If
RND(@) =.5 put a fish into the transfer cage. If RND(@) >.5 move out
one, if possible. When all three fish are in the cage, stop the simu-
lation.

19 REM FIRST GUPPY MODEL SIMULATION

20 C=0: REM C = # OF GUPPIES IN CAGE
= ¢: REM A = # OF ARROWS

9¢ PRINT "HISTORY=";

100 R = RD (9)

119 IF R >5 THEN 200

1290 REM HERE IF FISH ENTERS CAGE R< = .5

W
S
=g

o+ +
ol

18 GOTO 10

op¢ REM HERE IF FISH DOES NOT ENTER CAGE R> .5
IF C= ¢ THEN 10

220 A=A+1
c=Cc-1

240 PRINT C;

250 GOIO 100

500 REM HERE IF ALL 3 GUPPIES ARE IN CAGE

51 PRINT ''SUCCESS AT LAST"

520 DRINT A; '"ARROWS OR 'SWIM THROUGHS' TOOK PLACE"

53) PRINT

After debugging the above model you may enclose it in a program to run

95 times and give the average number of arrows for the 25 runs at the
end of the history.

140

The preceding model may or may not represent this situation. Iet
us leave that for a chemist or physicist or guppy breeder to decide.

Before we show our model to an expert, it might be well to consider
possible objections he could reasonably be expected to raise. Hmm—
well, it does seem that the probability of a guppy leaving the cage
should be greater when there are two guppies in the cage and only one
outside than when the situation is reversed-doesn't it? Consider
another possible model.

ANOTHER MODEL

You may easily discover a better simulation technique than the one
suggested above. Be sure your next simulation takes into account that
when the cage contains two guppies, then the next movement is twice as
apt to be from the cage to the aquarium, as from the aquarium to the
cage.

If you have trouble setting up your simulation model, here is an
idea. Use three counters, one to represent each fish. If a given fish
is in the cage, the corresponding counter will contain a 1, otherwise
it will contain a zero. Two possible histories are:

(1) Fish #1+0+1-+1+0-+1->1 end
Fish #2>0-+0-+0-0+0~>1 end
Fish #3+0-+0->1-+1~+1+1 end
which could be represented more compactly as
000 - 100 -+ 101 - 001 - 101 -~ 111 end.
Another possible history could be
(2) Fish #1 0+0+1+1 end
Fish #2 0-+1-1-»1 end
Fish #3 0~+0-0-+1 end
which could be represented as
000 - 010 -+ 110 - 111 end.

Before you continue, write a program or flowchart to simulate this model.

141

In this simulation all three fish start outside of the transfer cage,
i.e., F(1) = 0, F(2) = 0, F(3) = 0, THEN the computer generates a random
nunber to determine which of the three guppies shall be the next one to
change places (swim in if out, swim out if in cage). All three are in
the cage when T = F(1) + F(2) + F(3) = 3.

The following flowchart summarizes the proposed program

Initialize

F(1)=F(2)=F(3)=p

Y
\lfRINT out digits /

\

Select random
number 1,2,3 to
A determine which of the
three digits to change

Change selected digit
¢ ~1
1 >p

Y

\ PRINT out current digits /

142

Here is one possible program for the previous flowchart - but yours may
be just as good, or even better than this one, so don't change yours -
not yet, at least.

GUPPY ~ SECOND MODEL
19 REM GUPPY SECOND MODEL SIMULATION
20 DIM F(3)
50 REM SET F1 = F2 = F3 = ¢ AS ALL GUPPIES ARE OUTSIDE CAGE
60 F(1) = ¢
79 F(2)
83 F(3)
99 PRINT F(1) ; F(2) ; F(3) ; " -»n R
199 R = RND(Q)
119 IF R > .667 THEN 300
120 IF R > .333 THEN 200
13p REM HERE ONLY IF F1 IS TO MOVE

o

149 N=1

15¢ GOTO 5@

20¢ REM HERE ONLY IF F2 IS TO MOVE
210 N =2

230 GOTO 5@

3¢9 REM HERE ONLY IF F3 IS TO MOVE
310 N=3

5¢¢ REM NOW READY TO MOVE FISH #N

519 IF F(N) = ¢ THEN 550

520 IF F(N) = 1 THEN 60@

53p DPRINT "SOMETHING IS WRONG. F('' ; N ;") EQUALS"; F(N)

540 STOP
550 REM MOVE F(N) INTO CAGE
560 F(N) = 1

579 IF F(1) + F(2) + F(3) < 3 THEN 99

58¢ PRINT F(1) ; F(2) ; F(3) ; "END--ALL IN CAGE NOW,"
599 PRINT : PRINT

595 GOTO 69

609 REM MOVE F(N) OUT OF CAGE

6190 F(N) = ¢

620 GOTO 99

Try it out. Debug the program and when it is running smoothly include it
in a program to run the similation 25 times and print out the average
nunber of arrows for the 25 runs, at the end of the histories.

PRACTICE SET 9

1. Simulate the roll of a pair of dice. After your simulation is up and
running, enclose it in an over-program that will roll the pair of dice
1000 times and keep track of how many times the sum shown is 2, 3, 4,...,
12, Compare the output of your simulation with the theoretical outcome,
which you may either compute or discover in a book on probability, dice
or gambling.

143

2. Modify the program of Problem 1 so it assumes dishonest dice have been
used in which the [::] is replaced with a second [:] .

3. Modify the program of Example 9-1, so the number of runs can be
specified by the user.

4. Enclose the program of Example 9-2 in a FOR,, NEXT loop that will per-
mit you to run the experiment 500 times and tabulate a summary of the data
obtained.

5. Explain the purpose of instructions 425 and 428 in the program of
Example 9-2. Did the given program ever use M(7)? Why do you think
the author left it so?

6. Create a flow chart for your final revised version of Example 9-2
(Problem 4) and use it to explain what your program does to a friend.

7. A batch of 80 ounces of plastic contains 100 small metallic impurities.
Assume that the plastic is well mixed and that the impurities are distrib-
uted at random throughout the plastic when it is molded into 160 half-
ounce replacement heart valves. If a valve contains one or more impur-
ities it must be discarded. It is quite possible that anywhere from 60

to 159 metal-free valves may be obtained from the given batch. Write

a computer program to simulate one hundred 80-ounce runs and determine
the average number of metal-free heart valves you would expect on the
basis of your simulation.

8. Extend the program of Problem 7 slightly so that in addition to giv-
ing you the average of the hundred rumns, it will also keep track of the
largest and the smallest nunber of metal-free valves that were manu-
factured from a single batch of the hundred runs.

9. Assume that in Shire approximately 100 Hobbits die in a given 30-day
period. Write a computer simulation that will print out a table of
twenty lines of output data, each line representing a 30-day period with
100 random deaths distributed among the 30 days. Print a reasonably
clear header before the 20 lines of output data, since the Shire Health
Department wishes to use your data for comparison with actual-death rates.

10. A well-known and interesting problem asks the question, "In a set of
thirty persons selected at random, what is the probability that at least
two of the thirty persons have the same birthday (anniversary date) (i.e.,
same month and date of birth, but not necessarily born in the same yean?"
How would you simulate this problem?

11. Write a program to simulate Problem 10 assuming 365 days per year.
After debugging your central program, expand it so you run your simula-
tion for 50 sets of 30 persons before you print out the approximate
similated experimental probability. Compare your simulated result with
that computed. (See ''the birthday problem' in a text on probability, if
you need help.) Open Who's Who to some page and take the first 30 birth-
days you find for a similar experiment.

144

12. Simulate some simple game of your own choosing and have the computer
sumarize the results. Suitable games might be "matching pennies'", 'put

and take'', or some very simple dice game but not anything as complicated

as '""Yahtzee" or "craps'.

13. Expand your program for Example 9-1 or Example 9-2 to run 1000 times
and compute standard deviation as well as mean of the numbers involved.

14. Debug the first guppy model. After it is debugged and running,
include it in an "over-program'' that will run the model 25 times, print-
ing a history each time and give the average number of arrows per run at
the end of 25 runs. If your runs all produce the same history, there is
apt to be something wrong with the way you invoked the random number
generator. Fix it up and rerun the program.

15. Debug the second guppy model. After it is debugged (and checked
that it doesn't always give the same history) incorporate your debugged
program into a program that will run the model 25 times, print a history
each time and give the average number of arrows per run. Compare the
results of model 1 and model 2. Which do you feel is a better represen-
tation of the problem? Why?

16. Write a program to simulate a penny toss between two persons if the
first person starts with Pl pennies and the second with P2 pennies, where
Pl and P2 are input for the program. Your program should print out the
nunber of pennies each person has after each toss and stop as soon as
either person has lost all his pennies.

17. Write a program to simulate a ping-pong game with the initial input
being two numbers (Pl and P2) which represent the probability of player 1
and player 2 returning a given shot successfully. Change your model a
bit to make it more realistic if you can.

18. Same as Problem 17, but for the game of tennis.

19. If you were to write a simulation of a baseball game, what variables
would you wish to be able to read in and thus vary from run to run?
Discuss a possible simulation with a colleague. Make a rough flow chart
of your proposed simulation.

20. The dice game known as ''craps'' is played by noting the total number
of points, when two dice are rolled, as follows:

1. If, on the first roll, you roll 7 or 11, you win.

2. If, on the first roll, you roll 2, 3, or 12, you lose.

3. If, on the first roll, you roll a 4, 5, 6, 8, 9, or 10,
this nurber becomes your '"point' and you continue rolling
the dice until you either roll your 'point' again or you
roll a 7. If you roll your point again before you roll a 7,
you win., If a total of 7 turns up first, you lose.

Use the computer to simulate a craps game. Have the output show, on one
line, the actual history as well as the first win or loss of the game.

145

21. Rearrange your program of Problem 20 so that ydu can simulate the
game of ''craps' under the assumption that each die carries the spots
1-5-3-4-5-6, instead of the usual arrangement.

22, Write a program to simulate the deal of 52 playing cards with NC
cards per player and NP players. Your program should read in the
values for NC and NP and check that NCHNP <52 before starting to
deal. One way to deal using RANDU is to assume there are 52 cards
numbered from 1 to 52 inclusive. You may wish to use DIMENSION C(52)
and set the value of each C(I)=0 at the start, then once that "card
I'' is dealt, change the value of C(I) to +1 so that you do not deal
the same card twice. (This causes hard feelings!) You may wish to
store the hands in an array DEAL(NC,NP) by storing the numbers I, but
in printing out the results, you should translate the stored integers
into the usual suit and value designation. Use your program to deal
S5—card poker hands to 8 players and also to deal 13-card bridge hands
to four players.

146

LESSON 10
Types of Variables

VARTIABLE TYPES

BASIC uses four distinct data types for its variables. Each variable
may be forced to be any of the four types, either by using DEF statements
or by the use of special type designators described below. The four
types are:

Single Precision Floating-point (6 digits of accuracy)
Double Precision Floating-point (16 digits of accuracy)
Integer (between -32768 and +32767)

String (up to 255 alphabetic or numeric characters)

The first three types are used for nuwerical computation and storage.
String variables are never used in arithmetic. They permit the storage,
examination and comparison of sequences of letters, numbers, blanks and
special characters.

a) Single Precision Floating-point Variables DEFSNG A.B.W-7Z

Single precision floating-point nurbers are the type we have been
using for most of our computation. It is the option which the TRS-80
automatically elects for you unless you instruct it to do differently.
Such computation is carried out to (the binary equivalent of) 7 decimal
digits of precision inside of the computer, but only 6 digits of preci-
sion are printed on the CRT screen.

Since single precision is the automatic default condition, it is not
necessary to use DEFSNG unless you need to change the precision of vari-
ables previously defined as INTEGER or DOUBLE PRECISION.

b) Double Precision Variables

You are already aware (See Lesson 5.) that it is possible to

147

obtain variables of greater accuracy (16 digits instead of 6 digits) for a
variable by inserting

DEFDBL X,Y

near the beginning of the program. This causes every variable beginning
with the letter X or the letter Y to be double precision (17 digits inter-
nally, 16 digits displayed). It is also possible to indicate a range of
initial letters in a DEFDBL statement. For example, DEFDBL A,C,S-W

will cause every variable beginning with any of the variables A,C,S,T,U,V,
W to be double precision unless it carries a special designator such as

! or % (see below).

¢) Integer Variables

It is also possible to specify that some variables are of integer
form rather than the usual floating-point numbers. On short programs it
is not worth the effort to do so, but long-running programs frequently
can be speeded up noticeably by inserting

DEFINT K,L,B-E

early in the program for those variables you know will always be integers
in the range from -32768 to +32767. The DEFINT statement given above
forces every variable beginning with X,L,B,C,D,E to be integer form. One
of the most important savings is to make integers of the variables used
in FOR...NEXT loops when appropriate. (Obviously, they must not take on
fractional values in the step size.)

d) String Variables

It is also possible on your TRS-80 LEVEL II BASIC to define a string
variable (indicated by annexing a $ to any variable name) used to store
strings (sequences) of letters and other characters up to 255 characters
per string.

Examples A3, C$, (B3, P1$, P2$

You may also define regular varisbles as string variables by using DEFSTR
but be careful in doing this because if you designate DEFSTR A,D-G then
every variable beginning with A,D,E,F,G will be a string variable and as
such may not be used in arithmetic, Your authors usually prefer to use
the annexed $ to indicate a string variable. =

Try this little program:

$ TELLS ME TOKEEP A SEQUENCE
NEW (STRING) THAT WONT BE USED

190 s FOR ARITHMETIC.
10p INPUT "PLEASE TYPE YOUR NAME'
119 PRINT : PRINT : PRINT : PRINT

; N$

continued on next page
148

12¢ PRINT "HELIO"; N$; "." : PRINT "I HOPE YOU ARE.ENJOYING THIS COURSE."
139 GOTO 119

RO
Try it out on your camputer. Depress to stop the program.

The output is a bit fast to read isn't it? To slow down the pro-
gram, make it count from 1 to 500 after it prints by inserting

125 FOR Q = 1 TO 5¢¢ : NEXT Q

RN it again.

Try several different versions of your name.

Try inserting your social security number or phone number instead of your

name.
String variables and string instruction are discussed further in Lesson 14.

e) Individual Variable Type Designators

It is also possible to make particular variables into integer
variables by annexing a % sign after it — without changing other vari-
ables that begin with the sanme letter. For exanple

199 FOR X% = 1 T0 50
119 FOR K%=1 TO 100

120 PRINT K%;
139 NEXT K%
149 NEXT X%

will run faster than

199 FOR X = 1 TO 5¢
11¢ FOR K = 1 TO 1¢¢

120 PRINT K;
130 NEXT K
14p NEXT X

The first program runs in about half the time of the second program.

It is possible to have particular variables as regular single preci-
sion floating-point variables (6 digit precision) by annexing a ! to
double precisionfloating-point variables (16 digit precision). Likewise,
it is possible to have particular variables as double precision floating-
point variables by annexing a # to any standard variable name. The type
designator (% = integer, ! = single precision, # = double precision) takes
precedence over an earlier DEF statement.

149

Annexed Typical Variables

Variable Type Character Examples To Be Stored
Integer Variable % A%, X%, K%, N1% -2746,-5,0,1,17,3000
Single precision ! Al ,BX! ,XI! 4,-50.73,.1276,1.23456E+09

(6 digit) variable
Double precision # A# XI#,C#,BV# 1.234567887654321D+15
(16 digit) variable

Note: If you wish to enter or use double precision constants, you can
save a lot of trouble by placing a D at the end of it. Thus A# = 1234.7D.
Also, use D in place of E to indicate the exponent of 10. Thus:

A = 6,02486E+23
A# = 6,024859316852145D+23

Note that B, B%, B!, B# and B$ may all be used in the same program and
each is a name for a different variable.

SUBSCRIPTED VARIABLES

The statement

DIM X(15), Y(15)

permits you to have sixteen different X-values
X(0), X(1), X(2), X(3), X(4),..., X(14), X(15)
and sixteen different (associated?) Y-values
Y(0), Y(1), Y(2),...,Y(14), Y(15)

in the computer at the same time.

Note that
X(3) and X3 are different variables, and each is different from X.

Such "subscripted variables' are important in statistics, where it is
common to have sets of related data, say 25 temperatures and the 25 re-
lated product yields. The following program permits you to input 25 sets
(T,Y) of temperature-~yield data.

1¢ DIM T(25), Y(25)
10¢ FOR K = 1 TO 25

110 INPUT T(K), Y(K)
150 NEXT K

Note that we have not used location T(@) nor Y(@), but we could have.

150

The program might be expanded to also compute the average T value and the
average Y value by accunulating the sum of the T's and the sum of the Y's.
After the sums are conputed, divide each by the number of data pairs
(here 25) and store the result in T(P) and Y(P)

19 DIM T(25), Y(25)

9 T=0:Y=0 [Note: This 45 only a fragment of «
1pp FOR K = 1 TO 25 program. 1t permits you to enten
11¢ INPUT T(K), Y(K) data into T{) and Y{], bbf/t does
120 T=T + T(K) not produce or PRINT anything.)
130 Y=Y + Y(K)

150 NEXT K
169 T(P) = T/25
170 Y(§) = Y/25

Note that T and Y were used inside the FOR...NEXT loop rather than using
T(@) and Y(@). This saves computer time. Most expert programers consid-
er it gauche to use a subscripted variable whose subscript does not change
inside of a FOR...NEXT loop.

If desired, the program could be extended to compute standard devia-
tion, correlation, mode, median, and other statistical measures. If you
are familiar with statistics, you can extend the program yourself. You
can even conpute a ''line of regression' or a 'curve of regression' for the
given data.

Our purpose was to introduce subscripted variables, a very handy tool
for solving many problems.

ARRAYS

It is also possible, in lLevel II BASIC to store arrays (matrices)
of numbers (or letters or symbols). Consider a set of class grades for
20 students on each of six tests. Although it is possible to store stu-
dent names, it is simpler to use student numbers instead.
The 20 by 7 array is:

Col O Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

Student Test Test Test Test Test Test
ID no. 1 2 3 4 5 6
Row 1|12516 86 74 92 71 77 64
Row 212617 57 62 71 69 79 85
Row 3|77969 94 98 . .
contlnued on next page

151

Row 438491

Row 2021201 87 93 91 . . 92

We represent it in the computer by
DIM G(24,6)

This gives an array with 21 rows and 7 colums, for storage. We shall
not use row O for the storage data in this problem, but shall use colum
0 to store the student's ID Nunber.

The 94 grade on test 1 of student number 3(ID = 77969) is located in po-
sition (3,1). Position (2,4) contains the grade of 69 for the 2nd student
(ID = 12617) on the 4th test.

The following program will read in the grades for the C-th test, to be
supplied by the teacher. For C = 0, the student ID# may be typed in, if
desired.

1 REM PROGRAM TO INPUT QUIZ GRADES FOR CLASS OF 20 STUDENTS
1p DIM G(29,6)

199 INPUT "TYPE TEST NUMBER PLEASE"; C

11p FORR = 1 TO 20

120 PRINT ""TYPE GRADE ON TEST'' ;C; "FOR STUDENT #'; G(R,0),
139 INPUT G(R,C)

149 NEXT R

The following program will display the entire array of scores, as
well as computing and printing the average grade on the six tests for all
20 students. It assumes the data is already stored in the computer(from
tape, or by hand, or ??). This program may be combined with that above.
If no grades are entered, the computer will print zeros.

2 REM PROGRAM TO DISPLAY AND AVERAGE STUDENT GRADES ALREADY IN THE

COMPUTER
10 DIM G(20,6)
20¢ FORR=1TO 2¢
21¢ T=¢
220 PRINT "STUDENT #'" ;R, "I.D.#" ; G(R,Q),

230 FORC=1T06
24¢ PRINT G(R,C);
250 T =T + G(R,C)
260 NEXT C

27¢ PRINT "->"; T/6
28¢ NEXT R

152

Examine the program to understand how it works., If you have any
questions, ask your instructor.

Note the use of indented instruction inside each FOR...NEXT loop. This is
not important as far as the computer is concerned, but is a very helpful
practice to help humans to perceive the structure of your programs. Your
author sincerely recommends the practice.

I USE
_(SINGLE PRECISION
FLOATING POINT
UNLESS YOU GIVE
ME SPECIAL
INSTRUCTIONS.

153

LESSON 11
Tips
and Error Messages

We have collected a few tips and cautions that you may never need,
but that you still may find helpful.

TIPS

Don't let anyone spill beverage on or near your TRS-80. The only
way to do this may be to forbid beverages near the computer. It is up
to you, but a spilled Coke portends real grief forever afterward.

If you are plagued by double letters in your typing, it is because
dust and dirt are forcing your TRS-80 to get multiple signals on a single
key stroke. LEVEL II BASIC will have this problem more frequently than
LEVEL I, since LEVEL II stores key strokes internally (great for fast
typists). Keyboards manufactured in the 1980's seem to be less plagued
with keyboard bounce than earlier TRS-80's. It is possible to remove the
key tops and gently clean the contacts, but it is a lot easier to use the
KEYBOARD DEBOUNCE (KBFIX) program furnished with IEVEL II TRS-80. It is
a good idea to use a dust cover on the keyboard providing it is turned off
(else heat may build up).

Begin your programs in line 10p. Use lines 1 to 99 to identify your-
self and program rather completely, as well as giving credit to any source
you used before modifying your program.

If you would like your REM to stand out even more than it does by
inserting 5 blanks after the REM, try depressing D] after typing REM
and then type six or eight spaces before your REMark.

FRROR OS (out of string space) can frequently be remedied by insert-
ing CLEAR n with a larger n value (say 199, 500, or MEM/4). The default
value is CLEAR 50 whenever you turn on the TRS-80 or type NEW

If you use a BASIC program from a book or magazine, watch for RND(1)

statements. Some BASIC's use BND(1) where the TRS-80 uses RND(®), namely,
to generate a random decimal between @ and 1.

154

If you type LLIST instead of LIST and do not have a line printer
turned on, the TRS-80 will lock up. Open the small door at the back left
of the keyboard unit and push the small round reset button.

The TRS-80 is designed for most room temperatures, but if you have
clutter around it, that prevents air circulation. If you must use it in
a hot place, put a couple of 1x1x5-inch blocks under the feet to permit
extra air circulation.

Programs that produce a full screen of output can be ended with
a tight loop (such as 9999 GOTO 9999) to prevent having READY
break into the screen. Use to get out of a >
tight loop. -

If your program seems allright, but you get an SN ERROR that you
can't identify, you may have depressed the key while typing that
line. (I tend to do this on .) Retype the line in guestion, watch-
ing your key carefully.

If you are an electronics buff, by all means get the TRS~-80 Micro-
computer Technical Reference Handbook (1980, $9.95, Radio Shack). It
has wiring diagrams you'll want to have. Remember, if you open the
TRS-80 case, your guarantee is void.

Use CLOAD? to verify your Level II BASIC programs.

Double precision variables are not acceptable in FOR. . .NEXT loops.

If you have experienced problems with double precision variables not
converting correctly (TRS-80 does not use decimal notation internally),
it may be because you have not entered them correctly. If a double pre-
cision variable has fewer than 7 digits when typed, follow it with the
letter D.
Run this to see what is meant.
199 S=.1
1190 D# = .1
12¢ PRINT S,D#
Your output will look something like

1 . 100000pPp14901161

If you change 119 to
119 D# = .1D

all will be well. Try it and see.

155

Static electricity can play havoc with your TRS-80 and cas-
settes. If low humidity and carpet friction produce static electricity
shocks in your computer roam, do something about it. Remove the carpets
or put down a non-static-producing rubber or plastic pad and increase
the humidity in the room, if possible.

Don't force the 110V-plug on your video display into a socket or ex-
tension cord that is not designed to preserve polarity. One blade on the
video 110V-plug is larger than the other-—in this way, the video display
chasis is grounded through the power cord. If you use an extension cord
or multiple~outlet plug that does not pbreserve this polarity, you can get
into trouble.

No doubt you have already discovered the HORIZONTAL HOID and VERTI-
CAL HOLD controls located on the rear of your video display. Once set,
it should not be necessary to readjust them very often.

The BRIGHINESS (B) and CONTRAST (C) controls are located on the front
bottom right of your video display. Keep each in about the middle of the
range. To lengthen tube life, DO NOT ADJUST TO MAXIMUM BRIGHINESS OR
CONTRAST. It may burn your tube if the display remains fixed,

Turn OFF the video display whenever you leave the computer, even if
you leave the computer running.

Electrical interference from an elevator or other motor, a faulty
flourescent light or even the switch in a typewriter are not apt to inter-
fere with your TRS-80 unless you have added disk to your system. If you
are considering disk or other expansion interface items, you should add a
couple of line filters at your power source as well.

156

SAVING MEMORY SPACE

If you have only 4K of menory, you may find that unwelcome OM ERROR
message signifying all of the available memory has been used or reserved.
There are several things you can do to conserve memory space.

Cut down on the size of any arrays used.

Use multiple statements per program line with a colon between state-
ments.

Use integer variables whenever possible——in FOR K% = 3 TO 3¢9,
for example. Use the same variable in all FOR...NEXT loops that
are not nested.

Delete unnecessary parentheses in arithmetic statements.

Cut down on both the number and length of string variables.

Delete unnecessary spaces in all statements.

Fliminate extra variables, reuse variables no longer needed, keep
variable names short.

If necessary, also delete REM statements.

ERROR OM can sometimes be cured providing you are using no string
variables by inserting CLEAR (b at the beginning of your program.

0S ERROR frequently seems to be the result of a missing CIEAR n
staterent, where n is greater than 5@. Try CLEAR 2¢0¢ or
CLEAR MEM/4.

157

SPEEDING UP PROGRAMS

Although computers are fast, they do run into time difficulties on
long programs. Usually the solution is to think hard about the algorithm
being used. It is frequently possible to devise a much faster algorithm
once the problem is fully understood. There are also programming tech-
niques, known to most experienced computists, that save considerable time.

Don't use subscripted variables inside of a FOR...NEXT loop unless
the subscript is changing.

Combine several statements per line (separated by colons).

Use integer variables in FOR...NEXT loops that have integer step
sizes.

Define the most commonly used variables first--this puts them near
the top of the variable table and saves look-up time if many
variables are involved.

Don't recompute values needed repeatedly; store them instead.
(This is particularly vital inside of nested FOR...NEXT loops.)

Use small data sets and short FOR...NEXT loops in debugging long
programs.

Use faster forms whenever possible.
B + B is faster than 2 * B.
.2 * C is faster than C/5. (Avoid division when possible.)
D*D*D* D is much faster than D+4.

Don't recompute trigonometric or log functions for the same value.

4 3 2

To evaluate Y =5 sin” X + 8 sin® X - 2 sin“ X

use S = SIN(X)
Y=((5*3+8)*3-2) %8 *g3,

Use PCKE graphics. This can cut graphics time to 1/5 of SET(X,Y).

Use stored constants (a letter like B or P) rather than numeric
constants in the statements that are executed frequently.

Probably the most important thing you can do to make programs run
faster is to analyze which subpart of your program uses the greatest
amount of time and then rewrite that portion as a subroutine in Z-80
machine language. Call the subroutine using the USR(X) routine. However,
that requires learning another language. See Chapter 8 of your TRS-80
lLevel II BASIC Reference Manual under USR(X) and a text on 7Z-80 machine
language. Radio Shack has a book, TRS-80 Assembly Language Programming
by Wn. Barden, Jr., (Cat. #62-2006) which will be helpful if you are suf-
ficiently interested to wish to learn Z-80 chip language.

158

ERROR MESSAGES

We have discussed, under EDITING, Lesson 8, the appearance on the screen
of the message

2SN ERROR IN 100@

LEVEL II BASIC also has other messages that help you discover errors in
a program. The following FRROR messages are among those you may encoun-
ter. (If you have a disk on your system-—consult the appropriate refer—
ence manual for additional messages.)

EXPLANATION OF ERROR MESSAGES

BS Subscript out of Range: An attempt was made to assign a subscripted
variable or a matrix element with a subscript beyond the DIMensioned
range.

CN Can't Continue: A CONT was ed at a point where no continuable
program exists, e.g., after program was ENDed or EDITed.

DD Redimensioned Array: An attempt was made to DIMension a matrix which
had previously been dimensioned by DIM or by default statements. It
is a good idea to put all dimension statements at the beginning of

a program,

FC Illegal Function Call: An attempt was made to execute an operation
using an illegal parameter. Examples: square root of a negative
argument, negative matrix dimension, negative or zero LOG arguments,
SET (X,Y) with one value out of pbounds, etc. Or USR call without
first POKEing the entry point.

¥D Bad File Data: Data input from an external source (i.e., tape) was
not correct or was in improper sequence, etc.

ID Illegal Direct: The use of INPUT as a direct command, without a
statement number.

13 DISK BASIC only: An attempt was made to use a statement or function
which is available only when the TRS-80 Mini Disk is connected via
the Expansion Interface.

1S String Too Long: A string variable was assigned a string value which
exceeded 255 characters in length. Break it into two or more strings.

MO Missing Operand: An operation was attempted without providing one of
the required operands.

NF NEXT without FOR: NEXT is used without a matching FOR statement.

This error may also occur if NEXT variable statements are reversed
in a nested loop.

159

8

ov

RW

ST

/9

No RESUME. End of program reached in error-trapping mode.

Out of Data. A READ or INPUT # statement was executed with insuffi-
cient data available. DATA statement may have been left out or all
data may have been read from tape or DATA,

Out of Memory. All available memory has been used or reserved. This
may occur with very large matrix dimensions, nested branches such as
GOTO, GOSUB, and FOR...NEXT loops, or with large strings. Usually the
program can be rewritten so that it uses less memory. See separate
suggestions.

Out of String Space. The amount of string space allocated was ex-
ceeded. Usually this can be fixed by starting program with CLEAR n
for some n > 50 or by using CLEAR MEM/2.

Overflow. A value input or derived is too large or small for the
computer to handle.

RETUBRN without GOSUB. A REIURN statement was encountered before a
matching GOSUB was executed. -

RESUME without ERROR. A RESUME was encountered before ON FRROR GOTO
was executed.

Syntax Error. This usually is the result of incorrect punctuation,
open parenthesis, an illegal character or a misspelled command.

String Formula Too Complex. A string operation was too complex to
handle. Break up operation into shorter steps.

Type Mismatch. An attempt was made to assign a non-string variable
to a string or vice-versa.

Unprintable Error. An attempt was made to generate an error using an
ERROR statement with an invalid code.

Undefined Line. An attempt was made to refer or branch to a nonexis-
tent line.

Division by Zero. An attempt was made to use a value of zero in the
denominator.

160

USING KEYBOARD COMMANDS IN YOUR PROGRAMS

TRS-80 Level II BASIC has an unusual extra ''goodie" you may find
handy. Commands such as RUN, NEW, LIST, DELETE 19@-499, and similar
keyboard commands can be inserted into and executed from a program.
Try the following programs to get the feel of the idea.

109 CLS

11¢ FOR K=1 TO 3p
120 PRINT K;
13¢ NEXT K

14¢ PRINT

RUN

Then add

150 RUN
and RUN it again.
Now, change 15¢ to
15¢ LIST
and RUN it again.

Depress BREAK and change 159 to
15¢ DELETE 1¢9

LIST the program. RUN it, then LIST it again. DNote that 109 has dis~
appeared. Change 150 to 150 NEW
and RUN it again.

It seems rather straightforward until you discover that if you re-
enter the program 109 to 14¢ and add

159 LIST
169 RUN

the program never gets to 16¢. Most commands (RUN is an exception) send
the computer back to READY mode instead of continuing the program. You
can overcome this by using

PRINT @ 979, "PLEASE TYPE RUN (ENTER)."
just before the DELETE or LIST command.

Try the program on the following page.

161

109 CLS
11¢ FOR K=1 TO 3¢

120 PRINT K;

13p NEXT K

14¢) PRINT : PRINT

150 PRINT "PLEASE TYPE RUN (ENTER)"

16 DELETE 1¢9-160

165 PRINT : PRINT : PRINT

17¢ PRINT "WHEN THIS IS LISTED NOW, LINES 1¢9 TO 169 WILL BE MISSING.'
18p PRINT : PRINT

199 LIST

RUN [ENTER]

Advanced programmers use this technique to get extra space when
OS ERRORS plague them, FEarly parts of the program can be deleted before
the string variables are used. A sanple might be:

19

199

499

54 REM TRANSITION TO GET MORE STRING SPACE
505 CLS

51¢ PRINT : PRINT

515 PRINI "PLEASE TYPE RUN(ENTER)'"

52¢ DELETE 10-499

6p¢ REM MAIN PROGRAM USING STRINGS STARTS HERE
619 CLEAR 5009 : DIM B$(40), M$(50)

620 PRINT ''THIS IS THE MAIN STRING PROGRAM.'
709 LIST

162

LESSON 12

Extended
Print Instructions

You are already familiar with the instruction
PRINT
which gives a blank line and
PRINT A,B,C,D

which gives wide (4 column) spacing where a comma is used and close-packed
spacing where a semicolon is used.

PRINT A; B,C,D
is also familiar (see Lesson 2).

BASIC has several other useful instructions including
PRINT TAB()

PRINT USING A3,K
PRINT STRINGS(K,"#'")

163

EXTENDED PRINT INSTRUCTIONS

PRINT TAB (expression)

The "expression" may be a constant or a variable or a computed
expression which is an integer between ¢ and 255. This '"tabs' the cursor
to the indicated position. It is not possible to move the cursor to the
left by tabbing. If the cursor is already to the right of the TAB ex-~
pression, the TAB is ignored. Any indicated printing occurs at the place
where the cursor is.

Try the following:
100 A
119 B

3

5

12¢ PRINT TAB(A) A; TAB(B) B; TAB(A+B) "A+B'"; TAB(35) 135",
TAB(1Q*B+A) "zZ"

on your TRS-80.

The TAB() function is particularly useful in graphing and the
creation of special tables and forms.

_/7PRINT TAB ()
HELPS ME MAKE

Y NEAT COLUMNS.

=TABA)_ REMEMBER, [

(TAB BACKWARD.

164

PRINT USING 4tring;value

It is possible to format the output in a more precise manner than
is available on the ordinary PRINT instruction employing ; , and " "
or even the PRINT @ instruction.

The PRINT USING instruction makes this possible. Try the following
program,

1% as
ofp PRINT "PLEASE TYPE YOUR NAME, INCLUDING MIDDLE INITIAL'
910 INPUT N$

1600 FOR K = 917 TO 1130 STEP 13.25

1010 PRINT '"PAY TO THE ORDER OF '; N$; " '';
1020 PRINT USING 'ok$### . ## DOLLARS"; K

1050 NEXT K

In instruction 1020, the '"*«$###, ## DOLLARS' gives the format in
which the material is to be printed. The **$ says to fill up any space
before the first digit with asterisks and then a $. The decimal point
followed by two #-signs (.##) indicates exactly two places beyond the
decimal point are to be printed. Note the change in nunber of * where
the amount changes from $996.50 to $1009.75 in the output when you run
this program. Consult your TRS-80 Level II BASIC Reference Manual, Chap-
ter 3 for additional information.

PRINT USING statements may use any of the following field specifiers:

Numeric Character Function Example

Numeric field (one digit
per #).

Decimal point it
position.

+ Print leading or i B
trailing sign (plus # . HAAT
for positive num- ~# HH
bers, minus for # o HHH -

negative numbers).

- Print trailing sign HHH -
only if value print-
ed is negative.

*k Fill leading blanks Rkt
with asterisk.

{Continued next page)

165

Numeric Character

Function

$$

**$

P44t

String Character

Place dollar sign
immediately to left
of leading digit.

Dollar sign to left
of leading digit and
fill leading blanks
with asterisks.

Exponential format,
with one significant
digit to left of
decimal.

Function

!

Tspacesh

Single Character

String with length
equal to 2 plus
number of spaces
between % symbols.

166

Example (continued)
SHtdY #H

KPR | H

7 ARERSE A A A4

Example

% %

PRINT STRINGS (K,"'(HARACTER" or NUMBER)

This is very useful in graphing since it returns a string of K
characters each of which is the character enclosed in quotation marks. It
is also possible to use the ACSII number associated with a given charac-
ter. The value K must be between 0 and 255, as must any number used for
ASCII characters. See lesson 4 for list of ASCII equivalents.

PRINT STRING$ (25, "#") produces

e ool ol ol oo ol ool ool ol o o LL L 25 f h
T i e rrrr iy e T er e ir e 1y (O. t em

on your screen,

The following program plots the number K followed by a string of K2 sSym—
bols:

1 s
110 FORK =1 TO 1¢

120 L = K¥K

130 PRINT K; STRING$(L,"%'")
135 PRINT

14¢ NEXT K

150 GOTO 150

Try it on your screen and see what happens. Then change the symbol in-
side the " " to some other symbol of your choice.

Lesson 4 included a program to generate a bar graph (histogram).

5 CLEAR 209
1y CIS

199 PRINT @ 6, "GRAPH OF ENROLIMENTS AT THE UNIVERSITY OF OKLAHOMA'
110 READ Y,D

115 IF Y <@ THEN 115

12¢ DATA 1940,21,1950,28,1960,32,1970,51,1980,59,-1,-1

13¢ PRINT Y; STRING$(D,143)

14¢ GOTO 119

The instruction
5 CLEAR 2¢@ clears all variables and sets aside 200 bytes for string
variable use. This is maybe more than we need.

119 BEAD Y,D reads two values from the DATA string.
Instruction
13¢p PRINT Y; STRING$(D,143) prints the current value of Y (read in 11¢

from DATA) and follows this with a D-long string of the symbol
having ASCII equivalent of 143 which is

167

The same bar graph results as in the Lesson 4 program using SET (X,Y):
SET (X,Y+1), but in much less time and with a shorter program. The DATA
statement is also easy to change in the new program.

Note that if your D value is greater than 59, the bar will be continued
on a second line. However, D may be as great as 256 if desired, but
you'll need to use CLEAR 25¢ if D is that large.

Here is another program that may interest you. Try it out your-
self.

1¢¢ CLEAR 63

11¢ CLS

129 FORY = ¢ TO 96p STEP 64

13p PRINT @ Y, STRINGSH(63,191)
149 NEXT Y

15¢ GOTO 150

After you see what it does, run the same program with 19@ changed to

199 CLEAR 60 (Why did you get 0S ERROR, if you did?)

You may also wish to change to 10 CLEAR 109 and then change STRING$
(63,191) to STRING$(64,191). See if you can explain the unexpected
dark band at the bottom of the screen when you RUN it.

Sometimes it is handy to be able to clear only a portion of the
screen. Try this:

109 CLS

11¢ FOR K=1 TO 205

120 PRINT K;

13p NEXT K

14¢ PRINT

209 PRINT @ 256, CHR$(3p); "THIS IS THE NEW LINE FROM SIMT 200.";
3¢9 PRINT @ 512, CHR$(3p); "THIS CAME FROM STATEMENT 3¢@.'";

%% GOTO 500

Depress | BREAK | to regain control.

After you have RUN this program a couple of time with the semi-

colon at the ends of lines 20@ and 30@, remove one of the semicolons and
RUN the revised program.

Investigate what happens if you insert:
299 PRINT CHR$(23);

You may also wish to use CHR$(31) in statement 3PP to see what happens.

168

More Graphics

Iesson 4 provided an introduction to graphics that may be adequate
for your needs. However, you should know that the TRS-80 has many graphic
abilities in addition to the

CLS clears screen

SET (X,Y) turns on rectangular spot at (X,Y)

RESET (X,Y) turns off rectangular spot at (X,Y)

POINT (X,Y) tests to see if point (X,Y) is turned on, if so it re-

turns a logical TRUE (-1), otherwise a logical FALSE (9).
Can be used in IF instructions (See Lesson 14, for details.)
on logical operators,
CHR3B(N) produces actions, letter or synbol that corresponds to
code N where 0<N <255

For example: the operator ASC(symbol) is the inverse of CHR$(N). It
produces the numeric (ASCII) code corresponding to the symbol in paren-
theses (the first symbol in the string, if the parentheses contain a
string of more than one synbol). This is used in an excellent cipher pro-
gram considered in Iesson 14 of this text.

In Lesson 4 you ran the following program:

19 CS 1§ your TRS-80 shows both wpper and
1¢p FOR K = 33 to 191 Lowen case Lettens (a modiflcation
110 PRINT K, you may obtain, if needed) CHRS$(K)
120 FOR L = 1 to 45 fon K=65 to 90 wikl display upper
130 PRINT CHR$(K); case Lettens A to 7 while K=96 %o
149 NEXT L 127 displays the corresponding Lower
150 PRINT case (SHIFT) symbols conresponding
179 NEXT K to @,Atol,4,v, <, >, — . Most TRS-
2pp GOTO 199 80's display only upper case Letiens

fon both ranges.

169

Run it again now. Change instruction 199 to
10¢ FOR K = 2¢ TO 255

and run it again, after turning to the table given in Lesson 4 that
discusses the effect of CHR$(N) for various N values.

The pixel-blocks that appear corresponding to

PRINT CHR3(K)

for K between 129 and 191 are particularly useful in speeding up graphics.
At first glance they may seem haphazard, but actually the choice of num~
bers associated with the graphic you wish to light up is both logical and
easy to use, once it is explained. Each large block (letter & space be-
tween lines) is divided into six small rectangles (pixels)

The individual pixels are numbered. 4| s

16132

To light up the pixels numbered 1,2,8 and 16,

' add the sum of pixels used: 1 + 2 + 8 + 16 = 27

and add that sum to 128 giving
128 + (1 + 2 + 8 + 18) = 155,

The instruction :
PRINT CHR$ (155)

will light up the desired pixels much faster than

will SET (X,Y).

170

Much time can be saved in graphics by using CHR$().
You may use the instruction

POKE address, pixel number

where address is 15360 plus the number between @ and 1023 which locates.
the position (see lLesson Four) of the 6-block under consideration.
The pixel number is the number (128 + (sum of desired pixels)).

For example:

The entire 6-block 1|2 has sum 63 so 128 + 63 = 191 is

16 B2

the pixel number to turn on the entire 6-block.
The program

1¢¢ CLS

11¢ TFOR X = 15360 TO 16383)
129 POKE X, 191 (See Lesson 16 for POKE instruction.)
130 NEXT X

149 GOTO 149

RUN

will "white out' the entire screen in record time. It can be conbined
with:

149 X = 2 + RND(121) : Y = 1 + BND(43)
150 RESET (X,Y) : RESET(125-X,Y)

16¢ RESET (X,46-Y) : RESET(125-X,46-Y)
179 GOTO 149

to produce a reverse art pattern, if desired.

Try some additional experiments with the above 1(¢-14¢ program such
as combining it with

149 PRINT @ RND(1¢¢@), "HI your name';
15¢0 IF RND (@) >.(¢1 THEN 14¢ ELSE 10

or some other experiments of your own design. Remember as long as you
keep beverages away from the TRS-80 and do not abuse it, you probably will
not harm it by your programming experiments -— and the best way to learn
corputing is to compute and then to think about the resultis before
continuing.

If you need to insert a variable number of blanks in a line

171

PRINT CHR$ (192+k)
will insert k blanks for k = 0, 1, 2,...,63.
This may be used to good effect in graphing by using
PRINT CHR$ (192 + X); "+"

as in the following program to graph a portion of X = .062Y2 which lies
in the first quadrant.

14 PRINT "GRAPH OF X = .@62¥Y*y"
11¢ Y = 3¢

12¢ X = INT(.(@62*%Y*Y)

13¢ PRINT X; CHR$(192 + X); "+
150 Y=Y -2

16¢ IF X >2 THEN 12¢ ELSE 16¢

Note that it will be necessary to depress to get the computer's
attention after the graph is plotted. (WHY)?

If we had not created the '"tight loop'" by using ELSE 16¢, then when X
got to be < = 2 the display screen would have inserted

READY

- —

onto the screen and scrolled the top off the screen. If you are not sure
of this,

change 160 to 16¢ IF X >2 THEN 12¢

and reRUN the revised program.

The second edition of the LEVEL IT BASIC Reference Manual (appendix C/6)
shows a map of the graphic pixel blocks and their corresponding nunbers. Both
the character spacing (16 lines of 64 characters)nunbered from 0 to 1023
and the pixel locations for use with SET (X,Y) (48 lines with 0 <Y <47 of
128 pixels with 0 X £127) are shown mapped onto the grid. In each case
the numbering starts in the upper left corner with ¢ or (@,).

If you remember the diagram on the right 1} 2

and use 128 + (pixels to be lighted), you 4] 8
will not need the reference.

16 |32

172

oo

LESSON 14 [

o i

Stingand Logial | |
Operstors

STRING FUNCTIONS

let's re-examine the program of Lesson 4.

19 CLS

1pp INPUT "PLEASE TYPE YOUR NAME'; N$

116 PRINT:PRINT:PRINT

12 PRINT "HELLO ";N$;". ": PRINT" I HOPE YOU ARE ENJOYING THIS

125 FOR Q = 1 to 50f:NEXT Q
127 PRINT CHR$(23)
139 GOTO 119

Line 10 clears the screen.

Line 100 prints what is in quotes and then awaits your input to string

variable N$.

Line 11¢ prints 3 blank lines (i.e., moves the next output line down
3 rTows),

Line 120 prints HELLO, followed by whatever you typed into N$, and then

on the next line prints

I HOPE YOU ARE ENJOYING THIS COURSE. with a nine-space indentation,
if you allowed nine spaces.
Line 125 is a "timewaster'. It forces the computer to count from 1 to
500 by ones before continuing.
Line 127 changes all output to double-size until the next CIS instruction
is executed. This eliminates half of the material currently on the
screen, but new material will be printed in double-wide characters.
Line 130 sends the program back to line 110 to print three more blank
lines followed by HELLO your name (double-size this time) etec., etc.,.....
mtil you depress the BREAK key to stop it.

173

That wasn't too hard was it?

Play around a bit with the messages in line 12¢ and change them to suit
your whim—-be sure to include N$ as part of your output—-note that N$ is
a variable and must be outside of the quotes, separated from the quotes
by semicolons.

String variables use up quite a lot of memory space--not as much as
on many camputers, since the TRS-80 LEVEL II string variable uses only
as much space as it needs—i.e. short strings use less memory than long
strings. On many computers, string variables require the same (maximum)
space even if not all is needed. If you have a 4-K Level II, you may run
out of memory if you use many variable strings. The following program
is designed to create very simplistic sentences and runs on 4-K. Note
that string variables may be dimensioned like floating-point variables.

5 CLS

1¢ DIM N$(7), V$(2)

1¢9p PRINT '"PLEASE TYPE 8 NOUNS."

11 FOR K = @ to 7

12¢ PRINT K + 1, :INPUT N$(K)

139 NEXT K

20¢ PRINT "TYPE 3 VERBS. PLEASE USE DIFFERENT TENSES."

219 INPUT "1 ";V$(9)

92¢ INPUT "2 '".V$(1)

23¢9 INPUT "3 ";V$(2)

5¢¢ PRINT "THAT IS FINE. NOW I'LL CREATE SOME SIMPLE SENTENCES."
6(¢) PRINT NS(BND(8)~1);" ' : VS(RND(3)-1);" '";N$(RND(8)-1); " . "
620 GOTO 6¢¢

Put it on your computer and RUN it. If you should run out of memory
(indicated by OM ERROR or OS FRROR) see if you can figure out what to do
about it (see Lesson 11).

It is also feasible to store the words in DATA statements. In this
case they are read into the program using a READ statement as the follow-
ing program, designed with tongue-in-cheek to generate inmpressive
phrases for use in reports and grant requests.

READ W$(I) is like INPUT W$(I), except that it obtains the string value
for W$(I) from a DATA statement instead of from the keyboard.

The individual string entries in the data statement are each enclosed
in quotes and entries are separated by commas. The computer will go to
the next DATA statement if the DATA statement on which it is working is
exhausted. DATA may also read from tape—bput not here.

174

DATA statements may also be used to store numerical data. In this case
numerical variables (no $) are used -in the READ statement and quotes are
not used in the DATA statement.

19 DIM WH(35)

29 FOR I = ¢ T0 35

3p READ W$(I)

49 NEXT I

5¢ DATA "FUNDAMENTAL', "BASIC'', "INTUITIVE', '"STUDENT-CENTERED',
"HOMOGENEOUS"', ''MODULAR''

51 DATA "PARALLEL', "CENTRAL', "EQUAL', "SUPERIOR", "COLLECTIVE',

52 DATA '"ACCOUNTABLE', '"UNGRADED' , "NON-SEXIST", "BEHAVORIAL',
"SCIENTIFIC', "HUMANITARIAN'

53 DATA "INTRINSIC', "FOUNDATION", "SUPPORTIVE', "LIMITED', "UNTFORM',
"'DISADVANTAGED"

54 DATA "STRUCTURE', "PERFORMANCE', "REINFORCEMENT'', "GROUPING',
"CURRICULUM", "ENVIRONMENT"'

55 DATA "OBJECTIVE', "BOARD', "EXPERIMENT", "POLICY", "TEACHING'",
"EXAGGERATION"

1pp PRINT WH(RND (12)-1);" '';

11¢ DPRINT WS(RND(12)+11);" ';

12p PRINT W$(RND(12)+23)

13p DPRINT

149 FOR Q = 1 TO 6¢9 : NEXT Q

15 GOTO 199

It is easy to substitute words of the reader's choice by changing
the DATA statements (5¢,51,52,53,54,55). The program chooses its first
word from the first 12 words of the data list, the second word from words
13-24 and the third word from words 25-36 in the DATA list. You may be
interested in seeing what happens if you replace one of the words between
quotes with a blank space between quotes.

ME.TALK " PLAIN
DR FANCY,
THEN TRY

CONVERSATION,

175

A SECOND SENTENCE GENERATOR

Let's write a program to generate more sentences. Consider the sentence:
HELEN QUICKLY SAW THE RED FOX.

The parts of speech are
NOUN ADVERB VERB ARTICLE ADJECTIVE NOUN

Another sentence having the same pattern is:
JOHN SADLY SWEPT THE DIRTY FLOOR.

let's write a program that will accept 10 nouns, 5 adverbs, 6 verbs and
7 adjectives. We shall start by setting aside the needed space by using
CLEAR and DIMension statements.

2 CLEAR 1009

5 CILS

1¢ DIM N$(9), A$(4), V3(5), J$(6)
2¢ S$ - 11N

Next, we shall write a portion of the program to permit us to type in the
words of our choice.

1¢¢ PRINT '""TYPE TEN NOUNS. DEPRESS (ENTER) AFTER EACH WORD."
110 FORK = @ TO 9

12¢ PRINT K+1;

13¢ INPUT N$(K)

14¢ NEXT K

15¢ PRINT

That wasn't so hard was it? The computer numbers the stored words ¢ to 9,
but humans seem to prefer 1 to 1§, so that is what we used for each.
let's continue.

2¢0¢ PRINT "PLEASE TYPE 5 ADVERBS. DEPRESS (ENTER) AFTER EACH WORD."

2¢5 PRINT "ADVERBS USUALLY END IN -LY."

21¢ FORK = ¢ TO 4

220 PRINT K + 1;

230 INPUT A$(K)

24¢ NEXT K

25¢ PRINT

3¢9 PRINT '"PLEASE TYPE 6 VERBS (PAST TENSE). DEPRESS (ENTER) AFTER
EACH WORD."

31 FORK= @ TO 5

32¢ PRINT K + 1;

330 INPUT V$(K)

340 NEXT K

35¢ PRINT continued on next page

176

409 PRINT "PLEASE ALSO TYPE 7 ADJECTIVES. DEPRESS (ENTER) AFTER
EACH WORD. "

419 FORK = @ TO 6

420 PRINT K+1

430 INPUT J$(K)

440 NEXT K

45 PRINT

5@¢ PRINT "THAT IS FINE . NOW, I'LL CREATE SOME SENTENCES FOR YOU.'

6p¢ FOR Q = 1TO 19¢9 : NEXT Q

610 PRINT

629 PRINT N$(RND(19)-1); S$; AS(RND(5)-1); S$; V$(RND(6)-1); S$; "THE"
; S$; JB(RND(7)-1); S$; N(RND(1¢)-1); " . "

639 GOTO 60

RUN [ENTEE]

A list of the major STRING instructions follows:

Function Operation Examples

ASC(st1ning) Returns ASCII code of first ASC(B$)
character in string argument. ASC('H')

CHR$(code exp) Returns a one-character string CHR$(34)

defined by code. If code spec- CHR$(K)
ifies a control function, that

function is activated. (See

Lesson 4 for equivalent list)

FRE(s taing) Returns amount of memory avail- FRE(AS)
able for string storage. Argu-
ment is a dummy variable.

INKEYS Strobes keyboard and returns a INKEY$
' one-character string corres-
ponding to key pressed during
strobe (null string if no key
is pressed). Usually used as

300 A$ = INKEYS : IF A$=""" THEN 3p¢ ELSE PRINT A$;

NOTE: There is no space between the quote
marks. Thus IF A3 is the null
string, the program loops back to
strobe the keyboard again. ELSE
it prints the value typed and con-
tinues with the next instruction.

LEN(s£1ing) Returns length of staing(zero LEN(A$+B$)
for null string). LEN("HOURS™)

177

Function Operation Examples
IEFT$(strning,n) Returns first n characters LEFT$(A$,1)
of stning. LEFT$(L1$+CS, 8)
LEFTS(AS, MHL)
MID$(strning, p,n) Returns substring of sfning MID$(M$,5,2)
starting at position p in MID$(M$+B$,P,1~1)
string and containing the
next n characters.
RIGHT$(s41ing,n) Returns last n characters RIGHT$(NAS,7)
of stning. RIGHT$(ABS,M2)
STR$(numeric exp) Returns a string representa~ STR$(1.2345)
tion of the evaluated argu- STRE(A+B*2)

STRING$(n, "char)

VAL(s£1ing)

ment. This converts numeric
variables to string variables.

Returns a sequence of n "char"
synbols using first character
of char. Useful in creating
borders or divisions of the

output.

Returns a numeric value cor-
responding to a numeric-
valued string. This is the
inverse of STR$().

STRING$(30,".")
STRING$(25,"A")
STRING$(5,C3$)

VAL(”1”+A$+” .”'*‘C$)
VAL(A$+BS$)
VAL(G1$)

(4tning may be a string variable, expression, or constant.)

To concatenate strings (put them together), use the + operator as in

"N 4+ YOUM + 76" = 2YOUTS

Note that it is important to include desired leading and trailing spaces
inside the quotes if you wish them to appear both in concatenation and

in PRINT 'YOUR NAME IS

H.N$. \al 1t
2 > *

178

A CIPHER PROGRAM

The following program creates a simple, but reasonably secure cipher
by first changing each character into its numerical ASCII equivalent,
using the ASC() instruction, adding a computer-generated random num—
ber to the ASCII code, moving the result to the desired range 48 SN 290,
and then changing the modified ASCII code into an appropriate symbol us-
ing CHR$(). Decipherment is done using the reverse process. You may
change the basic key by changing instruction 135 to R = Q*R for some
other appropriate Q-value. But don't make the change unless you under—
stand random-number generators. The choice of Q is critical and depends
upon the number system used.

1¢ DIM C(509)
9 L=29

5@ INPUT "'PLEASE TYPE YOUR KEY--POSITIVE TO ENCIPHER, NEGATIVE TO DE-

CIPHER.';K

690 R=ABS(K) : RL =R

7¢ PRINT "PLEASE TYPE COMPLETE MESSAGE FOLLOWED BY THE SYMBOL 4.

1pp P$ = INKEY$: IF P$ = """ THEN 1@ ELSE PRINT P$;

1p5 IF P$ <= '/" THEN 1¢¢

112 IF P$ = "+ THEN 200

115 L = I+l

117 IF K< ¢ THEN RL = -1*Rl

129 C(L) = ASC(P$)+R1
125 IF C(L)> 9¢ THEN C(L)
139 IF C(L)< 48 THEN C(L)
135 R = 197*R

137 R = R—1¢¢¢¢*IW(R/1¢¢¢¢>
139 RI1 = INT(.(p4*R

15¢ GOTO 199

209 PRINT
2¢5 IF K <@ THEN 309
219 FOR M = ¢ TO 11 STEP 5
215 FORN = 110 5
220 PRINT CHR$(C(M+N));
230 NEXT N

240 PRINT " ";
250 NEXT M

260 END

30p FORM =170 L

319 PRINT CHR$(C(M));

320 NEXT M
499 END

Note, that instruction 1¢¢ uses the INKEY instruction which strobes the
keyboard once. If a key is depressed during the strobe, that value is

stored in variable P$, otherwise P$ contains a null (not a blank, just

nothing at all). The instruction

IF P$ = "" THEN 10¢ ELSE PRINT P$

C(L) - 43
C(L) + 43

[N

179

sends the computer back to 1900 P$ = INKEY$ if P$ is blank, otherwise it
prints the value of P$ (the key just depressed) on the screen and con-
tinues to the next instruction

195 IF P$ <="/" THEN 19¢

which essentially refuses any symbols before /. (= 47 in ASCII-see Lesson
4).

112 IF P$ = "+'' THEN 200

sends the computer to 209 when the message is complete, as indicated by
typing

Lines 115 to 15(encipher or decipher the message depending upon whether
the key K is positive (encipher) or negative(decipher). Each user will
presunably have a different numerical key.

205 IF K<@ THEN 309

sends the computer to 3¢9 if it is deciphering the message, and prints
the entire message as one string (blanks between words were not enciph-—
ered-—they could have been, but weren't).

IF K >= O then the computer continues with instruction 210 to 26 which
displays the enciphered message in blocks of five symbols (a standard
cipher practice).

ROBOT OOUNSELOR

The following program, which runs on any 4K TRS-80, gives a brief in-
sight into what programs that have more nenory available can be expected
to do.

1 REM ROBOT COUNSELOR
2 RANDOM
5 CLS

7 CLEAR 1¢¢

1¢ DIM G$(9)

11 G$(P) = "HMM...MWM...,VERY INTERESTING'

12 G$(1) = "'STRANGE. NOT ABNORMAL, YOU UNDERSTAND, JUST STRANGE"

13 G$(2) = "FASCINATING"

14 G$(3) = ""UNUSUAL, BUT PERFECTLY REASONABLE UNDER THE CIRCUMSTANCES'
15 G$(4) = "IHERE MAY EASILY BE MORE TO IT THAN THAT"

16 G$(5) = "THAT MAY BE AN EXAGGERATION"

17 G3$(6) = "VERY COMMCN IN TODAY'S WORLD!

18 G$(7) = "BEWILDERING. I DO NOT UNDERSTAND IT"

19 G$(8) = "I HOPE TOMORROW WILL BE BETTER"

2¢ G$(9) = "SURPRISING IN THE LIGHT OF YOUR BACKGROUND'"

5¢ PRINT "I'D LIKE TO HELP YOU. MAYBE TOGETHER WE CAN WORK OUT YOUR

PROBLEMS. PLEASE ANSWER ME WHEN I ASK YOU QUESTIONS." .
continued. .

180

199

11¢
115
120
13¢
139
149
150
155
156
157
169
163
165
179
189
199
200

219
220
225
228
229
230
235
249

TOR Q = 1 TO 4¢¢ : NEXT Q

PRINT

PRINT "JUST TYPE YOUR ANSWERS, THEN DEPRESS THE WHITE (ENTER) KEY."
FOR Q = 1 TO 3¢¢ : NEXT Q

PRINT

INPUT "'PLEASE TYPE YOUR FIRST NAME AND DEPRESS (ENTER) KEY.'';N$
PRINT : PRINT : PRINT "HI "; N$

PRINT : PRINT

FOR Q = 1 TO 999 : NEXT Q

PRINT : PRINT "HOW DO YOU FEEL, ";N$;"? PLEASE ANSWER IN ONE OR TWO
WORDS., "

INPUT E$

FOR ¢ = 1 TO 5¢¢

PRINT:PRINT:PRINT "OH, I SEE. THAT IS ";G$(RND(19)-1);"."
FOR Q = 1 TO 8p@ + RND(1¢pp) : NEXT Q

PRINT

PRINT "WHO DO YOU THINK MAKES YOU FEEL '';R$;"?"

INPUT R2$

IF R2$ = "ME" THEN R2$ = ""YOU ALONE"

IF R2$ = "MYSELF"' THEN R2$ = "YOU YOURSELF"

IF R2$ = "'YOU" THEN R2$ = "'THE TRS-8¢'"

PRINT : PRINT

FOR Q = 1 TO 1¢p + RND(5¢¢) :NEXT Q

PRINT "WELL NOW, ';N$; ", THAT IS CERTAINLY "; G$(RND(1@)-1);"."
FOR Q = 1 TO 5¢¢ + RND(6@¢) :NEXT Q

PRINT:PRINT "DO YOU REALLY BELIEVE '';R2%;''MAKES YOU FEEL '';R$:"'?"

I 0

INPUT A$

IF A$ = "NO" THEN PRINT "WELL ';N$;", PLEASE BE FRANK WITH ME. IT
SEEMS "; G$(RND(1¢)-1);":": GOTO 14¢

PRINT :PRINT':

FOR Q = 1 TO 1¢ + RND(1¢p@) :NEXT Q

PRINT "'THAT IS ";G$(RND(10)-1);". IT IS ";G$(RND(1¢)-1);"."
PRINT "'THINK ABOUT IT A BIT."

PRINT:PRINT "IT IS INDEED ";GS(RND(1@)-1);"." ;PRINT:PRINT
PRINT "REALLY NOW, TELL THE TRUTH. PLEASE BE FRANK WITH ME."
PRINT "IT SEEMS ";G3(END(1@)-1);"."

GOTO 19¢

After you have run the program a few times, change some of the phrases
stored in G3() in lines 11 to 2p. See if you can produce a more inter-
esting ROBOT COUNSELOR program.

181

LOGICAL OPERATORS

Have you wondered how the computer handles IF instructions?
The instruction

IF X »13 THEN 420 ELSE 3p
examines the number stored in location X and if X is greater than 13,
sends the computer to statement 42¢ for its next instruction but if X is
less than or equal to 13 sends the computer to statement 3¢ for its next
instruction.
The instruction

IF X »>125 THEN X = 125
examines the variable X and if X is greater than 125, sets X = 125.

Actually the expression X >125 is evaluated as a logical expression.

If the current value of X makes X >125 a TRUE statement, then the value of
the logical expression

(X>125) is -1,

If the current value of X makes X > 125 a FALSE statement, then the value
of the logical expression (X >125) is 0.

You can examine this by running the program

100 Y =25

119 FORK = 1 TO 8
120 X=K*Y

13p PRINT K,X, (X > 125)
149 NEXT K

which produces the output

1 25 0
2 50 9
3 75 ¢
4 109)
5 125 9
6 159 -1
715 -1
8 209 -1

The actual values (TRUE = -1, FALSE = @) used are unimportant at this
stage, and may vary on different computers. (LEVEL I TRS-80's use
TRUE = 1, FAISE = ¢ .)

182

If the value produced represents TRUE (i.e., -1) then the remaining
statements on the IF line are carried out (possibly several statements
separated by colons).

If the value produced represents FALSE (i.e.,) then the conputer
skips the rest of the instructions in that statement line (possibly sev-
eral instructions) and goes to the next line or the EISE statement for
its next instruction.

It is possible to combine statements using logical operators:
AND If both expressions are true TRUE (=-1) otherwise FALSE (=()
OR IF either expression is true TRUE (=-1) otherwise FALSE (=@})
NOT Interchanges TRUE (-1) and FALSE ().
EXAMPLE:

1¢¢ INPUT A,B

11¢ PRINT "A=";A, "B='"';B

12¢ IF A> B THEN PRINT "A IS GREATER THAN B"

139 IF <A¢> @) AND (A<1¢) THEN PRINT " @ <A <10." ELSE PRINT "A<= @ or
A>=19."

149 IF (B>2¢) OR (B<-2p) THEN PRINT "ABS (B)> 20."

150 IF ((A> @) AND (B>0)) OR ((A<@) AND (B< ¢)) THEN PRINT "A*B> §."
ELSE PRINT "A*B <= (."

169 COTO 199

Actually the AND, OR, NOT logical operations also may be used to test
individual bits in the binary storage of TRS-80 words since the opera-
tions perform Boolean operations on the bits of numbers as well as on
logical statenents. Readers interested in such masking operations should
first consult chapter 8 of the TRS-80 Level II BASIC REFERENCE MANUAL
and then a text on Boolean (logical) algebra.

PRACTICE SET 14

1. Change the DATA words in the Buzz Phrase Generator program on page
175 to generate buzz phrases for an area with which you are familiar.
Show it to a friend.

2. Change the G$() statements in the ROBOT COUNSELOR program pages
180-81 to phrases you like better. Improve the logic (flow) of the
program as well if you can. Demonstrate the resulting program to
a friend.

183

LESSON 15 —

Where 1o Look
for Additional
Information

WHERE TO LOOK FOR ADDITIONAL INFORMATION

Your first source of additional information is the LEVEL I or
LEVEL II BASIC REFERENCE MANUAL that came with your TRS-80. You should
also be receiving (free) the Radio Shack Micro Computer Newletter if you
filled out the card requesting it that came with your TRS-80.

Fellow computer buffs are another excellent source of information.
If you are in real difficulty, don't hesitate to telephone or write to
The Radio Shack Computer Services Center in Ft. Worth. They maintain a
staff of knowledgeable people who seem both willing and able to help TRS-
80 owners. The address is

Conmputer Services
900 Two Tandy Center Telephone:
Ft. Worth, TX 76102 1-(800)-433-1679

They do not assist in debugging or writing programs, but will glad-
ly assist you if you have questions about what a given BASIC or Z-80
instruction does or about the TRS-80 hardware.

Most computer programmers, either hobbyists or professionals, learn
most about computing by burning midnight oil at the computer. One learns
to compute by computing, and then by analyzing the results.

There seem to be clubs, conventions and magazines devoted to almost
any hobby that interests you, and computers are no exception. There are
even special clubs, conventions and magazines devoted exclusively to
microcomputers. Some are so highly specialized that they concentrate on
the TRS-80 microconputer. Ask around your own area and see what micro-

184

computer clubs and/or conventions are available. If no microcomputer club
exists in your area, organize one yourself.

No list of microcomputer magazines (journals) can ever be complete—
new ones seem to start up almost monthly; others drop into oblivion.
Some are excellent; others are a waste of funds. Most will send you a
sample copy if you ask for one, then you can judge how well it fits your
particular interests.

Here are some that we take, with our favorites indicated by a star*.
Prices were current at time of printing.

Micro Computer Conference Proceedings

The Best of the West Coast Computer Faires, 333 Swett Road, Woodside,
CA, 94062. Set of 4 $53; Vols I (1976) & III (1978) $13.72 ea.;
Vols II (1977) & IV (1979) $14.78 ea.

* Show & Tell microCOMPUTER Conference Proceedings, Department of Math-—
ematics, University of Oklahoma, Norman, OK, 73019. (1978) $7.50;
(1979) $10; (1980) $10; (1981) $10. Conference held in May each year.

Micro Computer Periodicals

3 Byte, Byte Subscriptions, P.0O. Box 590, Martinsville, NJ, 08836,
monthly, $15 per year. Both hardware and programs. Some technical
material.

Computronics, TRS-80 Monthly News Magazine, P.0. Box 149, New York
City, NY, 10956, monthly, $24 per year. Not worth the cost in my
Jjudgment—request an examination copy and judge for yourself. Mag-
azines change.

The Computing Teacher, Computing Center, Eastern Oregon State College,
La Grande, OR, 97850, bi-monthly, $8 per year.

¥ 3¢ Creative Computing, P.O. Box 789-M, Morristown, NJ, 07960, monthly,
$15 per year. DProbably the best buy available. Something for every-
one. Well written and authoritative articles.

Data General News, Data General Corporation, Southboro, MA, 01772
(free—devoted to their computers).

Dr. Dobbs Journal of Computer Calisthenics & Orthodontia, The Peoples
Computer Co., Box E, Menlo Park, CA, 94025, monthly, $12 per year.
Advanced and excellent.

¥ Games, Games Productions, Inc., 515 Madison Ave., New York City, NY,
10022, bi-monthly, $5.97 per year. Not computer oriented, but lots
of good ideas you can use.

Games & Puzzles, Edu-Games (U.K.) Ltd., P.O. Box 4, London, England,
N64DF

185

* Journal of Recreational Mathematics, Baywood Publishing, 120 Marine,
Farmingdale, NY, 11735. Interesting oroblems, some corputer related.
Quarterly, $25. (%10 to individuals, home address, personal check.)
Personal Computing, Circulation, Personal Computing, 1050 Common-
wealth Ave., Boston, MA, 02215, monthly, $14 per year.

¥ Computer Music Journal, ISSN 0148-9276, MIT Press Journals, 28 Carle-
ton St., Cambridge, MA, 02142 Price $5 per issue, $20 per year.

¥ PROG 80, Softside Publications, 17 Briar Cliff Dr., Milford, NH,
02055, monthly, $15 per year. lLots of goodies for the serious TRS-80
programer.

Radio Shack Microcomputer Newsletter, Radio Shack, One Tandy Center,

Fort Worth, TX, 76102. TRS-80 owners receive free for 6 months, then
$12/year.

Recreational Computing, People's Computer Company, 1263 E1 Camino
Real, Box E, Menlo Park, CA, 04025, 6 issues per year, $10.00.

The Recreational Programmer, Computer Software, P.O. Box 2571,
Kalamazoo, MI, 49003, bi-monthly, $12 per year.

Softside, Softside Publications, 17 Briar Cliff Dr., Milford, NH,
02055, monthly, $15 per year. Lots of BASIC games in this one.

T-PAL, The Mail Mart, Box 11102, San Francisco, CA, 94101, monthly,
$24 per year. Seems expensive for what you get. Ask for a sample
copy, it should have inmproved.

¥ TRS-80 Computing, Computer Information Exchange, P.O. Box 158, San
Luis Rey, CA, 92068, monthly, $15 per year. Lots of goodies here.

80-US, 80-NW Publishing, 3220 N. 32nd St., Tacoma, WA, 98407, sample
copy, $3, $16 per year. Six issues annually.

PAGE, Bulletin of the Computer Arts Society, John Lansdown, 50151
Russell Square, London, WCIB4JX, England, quarterly, $51 per year
(students, half-price). Or write Kurt Lauckner, Math. Dept., Eastern
Michigan University, Ypsilanti, MI, 48917, Devoted to computer
assisted art.

TRS-80 Users Group, 7554 Southgate Rd., Fayetteville, NC, 28304,
monthly, $12 per year. An informal publication for amateurs that is
well worth the price.

* 80 Microcomputing, Subscription Dept., PO Box 281 Farmingdale, NY
11737. Started in January 1980 and well worth the $25/year. This
monthly slick magazine devoted to TRS-80 does not pull punches and
keeps you informed on the latest updates, changes and evaluations of
hardware and software related to the TRS-80.

Popular Computing, PO Box 307, Martinsville, NJ, 08836

186

Where to Buy Programs

We don't purchase many programs; we write our own because it is more
fun. Most of the microcomputer magazines and conference proceedings carry
programs. Some, you can obtain on tape at a modest cost. Most carry ads
for programs that will run on your TRS-80. Some sell programs that are
definite "rip-offs'. Others are bargains. Few have adequate docurenta-
tion with them. Still, you will almost certainly be tempted to buy some,
Just to try them out. Read the ads. Go to your local Radio Shack (or
Radio Shack Computer Center, if you have one...many middle-to-large cities
do). Go to any other computer stores in your area and ask to see the pro-
grams in action. (Don't let your local computer store disparage the TRS-
80. Some will because they do not sell them.) Attend a microcomputer
club in your area. Ask about available software.

If you haven't seen Leo Christopherson's Android Nim (with sound) ,
you should. Nim isn't much of a game, but the animation is superb (1980
price, $14.95, runs on 16K Level II TRS-80). If you wish a TRS-80 chess
or checker playing program, look over the results from the most recent
national microcomputer chess or checkers tournament. There are a dozen
programs available for under $20 each, and the quality varies considerab-
ly. Read the coments and the ads in whatever microcomputer periodicals
you and/or your libaray take.

You should probably write to:

People's Software

Computer Information Exchange
Box 158

San Luis Rey, CA 92066

They put a couple of dozen programs on a tape and sell it for $10.95
(see Lesson 7). They also sell more expensive programs, like People's
Pascal ($ 23.50). New programs are added frequently. Drop them a card
asking for a current price list.

HAVE FUN! GROW WITH YOUR NEW HOBBY. READ, EXPERIMENT, DISCUSS YOUR
EXPERIENCES. HAVE FUN!

187

LESSON 16

Additional Basic

Your TRS-80 Level II BASIC Reference Manual contains details of the
available lLevel II BASIC instructions. If you have an expansion inter-
face, line printer, or disk you will find additional instructions defined
in the accompanying reference manuals. Here are several additional level
II BASIC instructions you may find convenient.

Additional Keyboard Commnands Examples
AUTO mm, an AUTO 199 [ENTER]
Turns on automatic line nunbering AUTO 1¢9,5

beginning with mm and in steps of
wn., If ,nn is omitted, the default AUTO 390, 20
step size is 10.

DELETE mm-nn DELETE 410
Deletes program steps from line DELETE 8(3-23¢ [ENTER]

mm to line mn inclusive. Roth
mm and nn should be actual statement
nurbers in the program.

LIST mm-nn LIST 27¢-40p [ENTER]

Lists program from line mm to LIST 14¢- ENTER

line nn. LIST -27¢ ENTER
LIST

RUN mm RUN

Executes program beginning at linemm, RUN 450 EI\ITEB]

SYSTEM SYSTEM ENTER

Enter monitor mode for loading Z-80
language program from cassette tape.
Frequently used with advanced com-
mercial programming.

188

Additional Program Instructions
TRON

Turns on TRACE program in which
variable values are shown on screen
to help you debug program. TRACE
program is always in the TRS-80, as
part of your level IT BASIC ROM.

TROFF

Turns TRACE program off. The TRACE
program is still in the computer.

USR(n)

Branches to a Z~80 machine language
subroutine already entered by the
user, You'll need to use POKE first.

RESTORE

Resets the DATA pointer to the first
DATA statement to permit program to
reuse the same data.

GOSUB nn

Branch to the subroutine beginning
at line nunber nn.

RETURN

Each subroutine must contain at
least one RETURN statement. This
sends the program back to the line
following the GOSUB that branched
to the subroutine.

T

N o GOTO mm, nn, pp, qq,

If the value of INT(a), where o is a

variable or expression is one of the
nurbers 1,2,3,4,''',k then go to the
statement number in that position on
the list of statement numbers mm, nn,

rp, aq,'"’.
N o GOSUB mm, mn, pp, qq, '"’

Same as ON a GOTO except the RETURN
pointer is set so program will return
to statement following ON o GOSUB....
when RETURN is encountered.

189

Exanples

TROFF

USR(9)

RESTORE

GOSUB 460
GOSUB 370¢

ON % GOTO 209, 309, 409
ON K+2 GOTO 700,709,400, 309,500

ON K GOSUB 33¢0, 2000, 409

Arithmetic Functions

Function Operation(unless noted otherwise,
—1.7E+38<=¢xp<=1, TE+38)

Examples

ABS(exp) Returns absolute value.
ATN(exp) Returns arctangent in radians.

CDBL(exp) Returns double-precision represen-—
tative of exp.

CINT(exp) Returns largest integer not greater
than exp. Limits:
~32768<=¢xp<+32768.

QOS(exp) Returns the cosine of exp;assumes
exp is in radians.

CSNG(exp) Returns single-precision represen—
tation, with 5/4 rounding in least
significant decimal when exp is
double-precision.

EXP(exp) Returns the natural exponential,
eeXp=EXP(exp).

FIX(exp) Returns the integer equivalent to
truncated exp (fractional part of
exp is chopped off).

INT(exp) Returns largest integer not greater
than exp.

10G(exp) Returns natural logarithm (base e)

of exp., Limits: exp must be positive.

SAN(exp) Returns -1 for negative exp; O for
Zero exp; +1 for positive exp,

SIN(exp) Returns the sine of eXp; assumes
exp is in radians.

SQR(expP) Returns square root of exp, Limits:
exp must be non-negative.

TAN(exp) Returns the tangent of exp; assumes
exp is in radians.

ABS(1*.7)
ABS(SIN(X))

ATN(2.7)
ATN(A*3)

CDBL(A)
CDBL(A+1/3#)

CINT(A#+B)

COS(2*A)
COS(A/57.29578)

CSNG(A#)
CSNG(. 33*B#)

EXP(34.5)
EXP(A*B*C-1)
FIX(A-B)

INT(A+B*C)

10G(12.33)
LOG(A+B+B)

SGN(A*B+3)
SAN(COS(X))

SIN(A/B)
SIN(90/57.29578)

SQR(A*A - B*B)

TAN(X)
TAN(X*.01745329)

exp may be any numeric variable, constant on computed expression.

190

There are a number of other lLevel II BASIC instructions available for

special use on your TRS-80.

If your programming is advanced enough to

need these extra instructions see the TRS-80 Level II BASIC Reference
Manual and the reference manuals accompanying any additional equipment

you may have (Disk, Lineprinter) etc.
Three examples are:

PCKE Location, value
Loads value into memory Location. The

arguments must be decimal numeric vari-

ables, constants or functions with

0 <value <225. Used in advanced pro-
gramming to change memory content or
display screen and with USR()func-
tion. See Chapter 8 of lLevel II
BASIC Reference Manual.

PEEK (address)

Returns the (decimal) value stored in
the memory address specified. Also,
mokes values of Z-80 machine language

variables available to BASIC programs.
See Chapter 8 of Level II BASIC Refer-

ence Manual.

RANDOM

is frequently executed once near the
beginning of a program to reseed

the BND() instruction. Do not use

RANDOM inside of a loop or where it will

be used repeatedly in your program.

191

POKE 16396,23

will disable the key.

This is sometimes used to pre-

vent unsophisticated users from
-ing into a program.

1 FOR K = ¢ TO 12288

2Q PRINT K;PEEK(K),

3¢ NEXT X

will display the location and
contents of your Level II BASIC

ROM. It won't mean much to you,
but it will do it.

REM prROGAAm NAme
RANDOM

DD =t

LESSON 17

More Micro-Research | - |
Problems B

EXAMPLE 17-1

Iet us examine a program designed to determine the factors of a given
integer. TForms of this program have appeared in several magazines, books
and even in tape form. The given program works. It produces the desired
factors for any positive integer Z. However, it is easy to improve upon
the program, as we shall see.

First examine the original program to see why it works.

1¢ REM TFIRST WORKING ATTEMPT TO FACIOR A NUMBER
1¢¢ INPUT "TYPE NUMBER TO BE FACTORED"; Z
11¢ PRINT "THE PRIME FACTORS OF';Z;"ARE";
1290 N=72
1390 F=2
149 1IF N/F < > INT (N/F) THEN 200
150 PRINT F;
16¢ N = N/F
179 IF N = 1 THEN STOP ELSE 140
200 F=F +1
219 IF F < = Z THEN 14¢

The heart of the program is instruction 14¢

IF N/F < > INT(N/F) THEN 200

which uses the integer function INT() to determine whether or not N/F is
an integer (i.e., whether or not F is a factor of N). If F is not a fac-
tor of N, the program jumps to instruction 209 which increases F by 1.

If new F < =7 the program loops back to instruction 149 to determine
whether or not the new F is a factor of N. If F is a factor of N, the
value of F is printed, N is replaced by N/F and if the new N = N/F <> 1,
the test is repeated. When either of the conditions N=1or F > Z
occurs, the original number Z is completely factored.

192

The program also uses an axiom many experienced programrers have
found worthwhile

Don't alter the value of

an INPUT variable inside your program

T LT}

Note that the program inputs the value of Z but then sets N = Z and works
with N. We could have ignored this motto here, but many experienced pro-

grammers will tell you they stick to it in their own work. It avoids
trouble.

The program produces the prime factors of any positive integer of

six or fewer digits you put in. Try it and see. Then examine the pro-
gram to see exactly how it works.

If you have any trouble following the program, make a chart of
variables in the program and step the program through. If your INPUT
value is Z = 12, your chart will contain

Z N F PRINTED OUT
12 The prime factors of 12 are
12 2 2
6 2 2
3 3 3
1 STOP

After you understand how the program works, you may wish to create a flow—
chart of the logic involved. Flowcharts are frequently used to express
the logic involved in more complicated problems. This particular program
is probably not involved enough to require a flowchart, but it is easy to
"'see" the flowchart of a simple problem.

Input Print F

set N=<N/F

- N<Z
F=2

set F=F+1 @ @

Your flow chart should look something like this:

NO

STOP

INPUT Z

.

PRINT MESSAGE

SET
F=F+1

N/F = INT(N/F)?

N

PRINT F
SET N = N/F
YES
\ 4
STOP
;

Note how easy it is to explain what the program is doing using a flow

chart.

194

Actually, although the program in question has been published in
several versions, it is an example of deplorably poor programming prac-
tice. It works fairly well on small values, but note the difference be-
tween Z = 1847 and Z = 1848 in the time required. Try it yourself before
continuing.

Furthermore, Z = 1950 takes :01 second to factor and
Z = 1951 takes 1:01 seconds to factor. This seems a long time for a
powerful computer. Of course, it does do a lot of arithmetic in that
time. In fact, that is just the trouble —- it does too much arithmetic.
The program tests F= 2, 3, 4, 5, 6, 7, 8, 9,..., Z repeatedly. However,
if we factor out all the 2's at the beginning, then there is no reason to
also try 4, 6, 8, 10, etc. This should enable us to almost cut the time
by half.

This can be done by making the following changes:

OLD PROGRAM FIRST REVISION
19 REM FIRST WORKING ATTEMPT TO 1¢ REM FIRST WORKING ATTEMPT TO
FACTOR A NUMBER FACTOR A NUMBER
1¢p INPUT "TYPE NUMBER TO EE 10 INPUT "TYPE NUMBER TO BE
FACTORED "' ; Z FACTORED "' ; Z
119 PRINT "THE PRIME FACTORS 119 PRINT "IHE PRIME FACTORS
OF H; Z; HARE H; OF H; Z; IVAIE H;
120 N = 7 120 N = 7
B 125 IF N/2 <> INT(N/2) THEN 135
130 F =2 » 130 PRINT " 2v:
B 132 N = N/2
P 134 GOTO 125
P 135 F = 3
14¢ IF N/F <> INT(N/F) THEN 20 149 IF N/F <> INT(N/F) THEN 209
150 PRINT F; 159 PRINT F;
160 N = N/F 16 N = N/F
17¢ IF N = 1 THEN STOP ELSE 14¢ 17¢ IF N = 1 THEN STOP ELSE 140
200 F=F + 1 B 200 F=F + 2
210 IF F <= 7 THEN 149 B 210 IF F <= N THEN 140

In instruction
21¢ IF F <= Z THEN 140

there is really no reason to try F values that are larger than the current
value of N (instead of the eriginal Z), so we replace instruction 219 with

219 IF F <= N THEN 149
This should cut our time even further. Make the above changes in 125,

195

13¢, 132, 134, 135, 209, and 21p. Then, try the program again.

N 0Old Program Time New Program Time
12 :01 1005

1847 158 130

1848 :01 :01

12345 126 114

-6 :01 Agnones sign 1005

8.2 Runs through 210 and stops.

Even the above program would not satisfy most professional program-
mers. The biggest complaints would probably be that the program mal-
functions if negative values are used, and that the data was not tested
to be sure the input value was an integer.

The problem of fractional values is readily overcome by inserting:
195 IF Z <> INT(Z) THEN PRINT "PLEASE USE INTEGER VALUES" : GOTO 109

Negative values could also be handled as improper input, but since
they can be factored, we prefer another solution.

115 PRINT "'(" ; SGN(Z); "MD" ,
120 N = ABS(Z)

This will produce either -1 or 1 in parentheses as a first factor.
We include the parentheses since mathematically, neither -1, nor 1, is a
prine. By ending instruction 115 with a comma, instead of a semicolon,
we also provided extra space between the unit and the prime factors.

As long as we are improving our program, we might as well make full
use of the TRS-80's arithmetic ability by requesting it to use DOUBLE
PRECISION arithmetic, which permits us to work with numbers as large as
16 digits, instead of 6. We can do this by adding:

10 DEFDBL %, N, F

However, if we do this, we will be using the much slower double pre-—
cision arithmetic, even when our number to be factored has 6 or fewer
digits. To avoid this, insert:

19 DEFDBL Z
196 IF Z> 999999 THEN DEFIBL N, F

Many programmers would prefer to print a blank line or two and loop
the program back to the beginning rather than stopping it once the number
is factored. This is easily done by changing instruction 179 to

17¢ IF N=1 THEN 90 ELSE 140
and adding:

196

9¢ PRINT : PRINT
3p@ GOIO 99

Our revised program now reads:

19 DEFDBL Z

9@ PRINT : PRINT

199 INPUT "IYPE NUMBER TO BE FACIORED ''; 7
195 IF Z <> INT(Z) THEN PRINT 'PLEASE USE INTEGER VALUES" : GOTO 1¢¢
196 IF Z > 999999 THEN DEFDBL N, F

11¢ PRINT " THE PRIME FACTIORS OF ''; Z ; "ARE " ;
115 PRINT "("" ; SQN(Z); ™),

120 N = ABS(Z)

125 IF N/2 <> INT(N/2) THEN 135

13@ PRINT "2';

132 N = N/2

134 (OI0 125

135 F=3

149 IF N/F <> INT(N/F) THEN 200

150 PRINT F;

160 N = N/F

179 IF N = 1 THEN 99 ELSE 149
200 F = F + 2
21¢ IF F <= N THEN 149

3p9 GOTO 9¢

Although our new program takes more lines to write than the original
program, actually it produces results in less than half the time, and
works for many additional input values.

There are still three important cases to be considered. What happens
if Z = @? Try it and see. If the output does not satisfy you, change the
program further by adding:

IF 7 = ¢ THEN PRINT ' some appropiiate message."

Mathematically oriented readers may prefer to make the program even
faster by using only prime values for F instead of 2, 3, 5, 7, 9, 11,
13, 15, ...Z. This will indeed save considerable time on factoring larger
nurbers, but requires that a list of prime nuvbers be stored or generated.
We leave this as an exercise for those desiring additional speed. The
critical statements are

READ F
DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
DATA 53, 59, 61, 67, ..., etc.

DATA

where the DATA statements contain a list of all primes
that are < v9999999999999999 or < 100000000 if 16-digit arithme-
tic is being used.

197

The point of this exercise is not to illustrate how to write a fact-
oring program, but rather to show you that it is very easy to improve most
programs, including commerical programs written in books (even this one).
Just because a program ''works'' does not mean it is a good, or even an
acceptable, program. The critical questions are:

1. Does it do the job for which it was designed? (Does it work?)
If not, it is useless.

2. Can I improve it noticeably without much effort? If so, improve it
and test the new program.

3. If it requires much effort to improve the program, will the results
be worth the effort? (If the program will seldom be used again, and
if it does not take an unreasonable amount of computer time as it
is, it probably is not worth the effort to inmprove it unless you
want to use it to brag a bit.)

4. You should always ask yourself if the method (algorithm) used by
the original programmer is the best one you can think of.

Experienced programmers have a saying that contains much truth.

LEEL LT LI Y P PP R 2t ey L P P LT LT PR P L L S L L L L~

Only after you have written, debugged, and tested
a program, do you understand it well enough to
program it. If it is a major program, after you
get the program all up and running smoothly, scrap
the entire program and THINK carefully about it.
Then start over from scratch and write a better
program.

fasuunanassERERRANI ST TS RER

T T T L L L L L e L T e T L S e L LR R R B L L Y L

198

MORE microRESEARCH PROBLEMS

We examine another example in detail before trying new micro-
Research Problems. We consider the four-digit case first, then after
that is investigated, ask you to expand it in micro-research Problem 18,
as suggested in the STEPS FOR COMPUTER ASSISTED PROBLEM SOLVING.

EXAMPLE 17-2

let ABCD be a 4-digit nunber such as 4721

100 IET X = A EXAMPLE
A = ABS |A-BI
B = ABS |B-C| ABCD = 4721
C = ABS |C-DI X =4
D = ABS ID-X| A=14-71 = 3
PRINTA; B; C;D B=17-21 =5
IF A+B+C+D <> @ THEN 1¢9 ELSE STOP C=1l2-11 =1
D= {1-4] = 3
NEW ABCD = 3513
Your first problem is to write a BASIC X=3 |
program that will show that each 4-digit A= 1351 =2
starting-~value nurber will converge to E i %?';; i Z
PPPP in 9 or fewer steps. D= 133 - ¢
NEW ABCD = 242(
Write your own program before X = 7
continuing. A= l9-2l =2
B = 14-2] =2
C=j2-9l =2
D= 1¢-21 =2
NEW ABCD = 2222
X =12
A= l2-21 = ¢
B=12-21 = ¢
C=12-21 = ¢
D=12-21 = ¢
NEW ABCD = §44¢
ST0P

199

There are several ways this could be done. One of-the more obvious is:

2 FORM=1T0 9
220 FORH=¢ TO 9

225 PRINT "WORKING ON M, H="; M; H
230 FORT = ¢ TO 9

240 FORU =9 TO 9

250 A=M

260 B=H

279 C=T

280 D=U

200 PRINT "STARTING WITH A, B, C, D=" A; B; C; D
309 N=9

310 X=A

32¢ N = N+1

33p A = ABS(A-B)

340 B = ABS(B-C)

350 C = ABS(C-D)

360 D = ABS(D-X)

379 PRINT A; B; C; D

380 IFA+B+C+D > ¢ THEN 319
399 PRINT M;H;T;U; "TAKES ";N; "STEPS TO CONVERGE TO @@@Q."
409 NEXT U

41¢ NEXT T

429 NEXT H

43¢ NEXT M

5p¢ PRINT

51 PRINT "FINISHED WITH 4-DIGIT TESTS."

This program runs through all of the four-digit starting-values,
printing out new values as they are developed, and printing out the num-
ber N of steps each starting-value requires to converge to PP@@ before
going to a new starting-value whenever ABCD = @@0Q.

Put it on your computer and run it. It is interesting to watch, but
it sure takes a long time to test 9000 cases!

Of course, you don't really need to watch, since, if a given starting
value ever fails to produce @P@@, the program will continue trying, and
the change in pattern will be clear.

However, if we are not going to watch the program, it can be speeded
up a lot by eliminating statements 29¢ and 37). Try it and see. Be sure
you also recognize how to tell if this revised program ever finds a start-
ing value which does not converge to @@pQ.

It is still a long program, and besides, it doesn't really do what we
set out to do (to show that every 4-digit starting-value converges to

200

2009 in nine or fewer steps).

Hmomm, . . let's store the largest N-value in another variable called L.
(Why not in B for biggest?) We can do that by inserting:

205 L = @
385 IF L >= N THEN 4¢¢
395 L =N

515 PRINT' "LARGEST N VALUE IS " ; L
let's see how that works.
205 L =

210 FORM = 1 TO 9
220 TFORH=@ T09

225 PRINT '"WORKING ON M, H= '": M; H
230 FORT =0 TO 9

240 FORU =@ TO 9

250 A=M

260 B=H

279 C=T

280 D=0

3¢9 N=2¢

31¢ X = A

320 N = N+1

33¢ A = ABS(A-B)

340 B = ABS(B-C)

350 C = ABS(C-D)

360 D = ABS(D-X)

370 PRINT A;B;C;D;

380 IFA+B+C+D>@¢ THEN 31¢
385 IF L >= N THEN 400

39¢ PRINT M;H;T;U; "TAKES ';N; "STEPS TO CONVERGE TO (¢@@@."
395 L =N

400 NEXT U

419 NEXT T

429 NEXT H

43p NEXT M

5@ PRINT

51¢p PRINT "FINISHED WITH 4-DIGIT TESTS."
515 PRINT "LARGEST N VALUE IS " ; L

When we ran the above program, we discovered L = 8. You can modify the
program to determine all 4-digit starting-values that require 8 steps to
converge to 0Q0P.

201

18.

19,

20.

21.

microRESEARCH PROBLEMS
(continued from Lesson 5)
a. Extend Example 17-2 to 5-digit starting-values ABCDE

A=X
A = ABS(A-B)
B = ABS(B-C)
C = ABS(C-D)
D = ABS(D-E)
E = ABS(E-X)

etc. Let's print out each set (like we did in 299 and 37Q) to see
what is going on at the early stages of our investigation.

It may come as a shock to you that not all values converge to (0Q0@.
Indeed, apparently quite a few converge to @@@XX (where the digits XX
are alike, but not necessarily @), and then enter a long loop which
eventually returns to @@@XX.

b. Modify the program or write a new one to investigate what really
does happen to 5-digit starting-values.

C. Extend your investigations to include 6, 7, and 8-digit starting-
values and 2 and 3-digit starting-values, as well as the 4 and 5-digit
values already investigated.

Would you like to conjecture that all starting-values converge to
@p...XX, but that we can guarantee XX = ¢ only if the number of
digits in the starting-value is a power of 27 Why, or why not?

Write a program that will shuffle 52 cards in the computer and deal
out 4 bridge hands, and then bid one of the hands, with human input
for bids on the other three hands.

Write a program to create Haiku poetry.

Write a program that will accept seven subscripted variables V(0),
V(1),...,V(6) and will test to determine whether or not any of the
variables contain equal values. If all seven variables are different,
print "ALL VARIABLES ARE DISTINCT." Otherwise, print the subscripts
and the common value of those variables containing the same value. If
there is more than one set of subscripted variables with the same val-
ues, the program should also indicate the subscripts and common values
of other sets.

202

22.

23.

24,

|
-\]w
&)
o1

|
w

Lo ononououw
I

N

v(8)

The output should be

SUBSCRIPTS
SUBSCRIPTS

4
-3

036 VALUE
15 VALUE

Write a program to accept one of the three symbols from the key-
board - @ + . The program should then examine a string of
DATA (from DATA statements or from tape) and if

~ was depressed at the keyboard, display the number and sum of
the negative DATA values.

+ was depressed at the keyboard, display the number and sum of
the positive DATA values.

@ was depressed at the keyboard, display the number of zeros
in the DATA,

A theorem from number theory states that every integer N is
expressible in the form

N=3X +Y2 - 72 where X, Y, and Z are integers.

a. Write a program that will accept values of N between -100
and +100 and print out N (as the sum of two integer squares
minus another integer square) before returning to accept an-
other value N.

b. Enclose your program in a FOR...NEXT loop to test all
-100 < N <100.

c. Can you speed your program up so it could feasibly work for
-5000 < N < 50007

Euclid's proof that there exist infinitely many prime integers uses
the expression

th 1+ (2*3*5*7*11*"'*Ph)

where the product in the parentheses is the product of the first
k positive primes.

Write a computer program to determine the first 20 values of Nh’

203

Extend your program to determine which of these - N, values are

prime and what the factors of the non~prime N, are. (Note: not all
N& are prime, but all of Nh's prime factors dre larger than Ph and
less than (1 + v Nk).

25. Knowing that our calendar repeats on a 400~year cycle, determine on
which day of the week the 13th day of the month is nost apt to occur.
(Is it really Friday?)

26. Write a program to make a table showing the values of

N N2 R
(Where R is the remainder when N2 is divided by 12.)
for N=1, 2, 3, ..., 20. Then jump to a conclusion (call it a

conjecture, if anyone asks you) and then either prove or disprove
your conjecture,
27. Determine the sum of the firsf k terms in the series
1+ 22 + 333 + 4444 + .,

For a solution, consult page 807 (E 1405), American Mathematical
Monthly Vol 67 (1960).

28. Determine all of the 4-digit integers which are perfect squares and
in which all four of the digits are even. Your final program should
produce the results in less than 3 seconds of TRS-80 Level II BASIC
RN time. If it takes much more than that, please do some additional
analysis and try again.

29. Devise a program that will draw a dart target on the TRS-80 screen '
(squares are much easier to draw than circles), with numbers showp in
each area (including negative numbers outside the target if you wish).
Then permit a player to toss 5 darts by typing coordina?es X, Y of a
point. Add a little "wobble'" to the point chosen py using X =‘X +
(BND(9) - 5): Y =Y + (RND(5) -3) or some such dev1c§ before display-—
ing SET(X,Y) as a (first blinking, then permanent) pixel on the screen.
Your program should also keep a running total of the number of points
the player made.

After the program is up and running--rewrite it so that the cen-
ter of the target is not at the center of the screen. Also, permit
the gamemaster to assign the values to each target area before the
game starts.

204

30. The reverse of an integer (whole nurmber) is the number obtained by
writing its digits in reverse order——that is, the reverse of N=1089
is R=0801 and the reverse of N=13 is R=31.

a) Your project is to find values of N such that N does not equal
its reverse, N#R, but the product N*R is a perfect square. Since
1089*9801 = 10673289 = (3267)2 such numbers clearly exist. How many
can you find?

31. The numbers 12 and 21 are reverses of one another, as are 144 and
441, since they_contain the same digits, but in reverse order. In-
terestingly, 122 = 144 and 212 = 441. Find other pairs N and N”
such that N and N” are reverses with N#N”, and such that N2 and N~)2
are also reverses.

32. You borrow an amount P dollars at I percent per annum interest rate
on the unpaid balance. You agree to pay off M dollars per month.
Write a program that will print out a table showing at the end of
each month:

Amount of interest Amount of principal Remaining Total Interest Total

paid that month paid that month principal paid to date paid
to
date

Note that if in the last month (principal + interest) < M you should
not have to pay the full $M.

33. Lesson 4 contained a program designed to help you learn where the
various pixel blocks were located on the screen. Extend the idea
by first having the player type a difficulty number N where 1 is
hard and 9 is easy, perhaps using

INPUT "PLEASE TYPE DIFFICULTY NUMBER BETWEEN 1 (HARD) AND 9 (EASY); N

Then give the player 1+RND(N) chances to locate the lighted block
with blinking pixel, before clearing the screen and choosing another
randomly positioned lighted block.

34. Write a program to accept a positive integer K and then type out K

primes of the form N2 + 1.
Example: If K= 3
the primes are 2, 17, 37
each of which is prime and of the form (N2 + 1)

205

35.

37.

38.

39.

Write a program containing 20 or fewer BASIC instructions without us-
ing a PRINT" (PRINT {followed by quotes) instruction to moke a
caricature of a face or person or animal.

Design a program which will serve as a timer for a series of 10-min-
ute speeches. When the time keeper types RUN [ENTER | your program
should display 10 MINUTES LEFT on the screen in normal size letters.
The nunber of minutes should change every minute. When the speaker
gets to 1 minute left the program should display some attention
getting device on the screen and the switch to double size letters
and display

O MINUTES 59 SECONDS
58 SECONDS

etc. until O SECONDS is reached, whereupon the screen should g0
wild (possibly including an audio blast if you are equipped for
audio output).

Prove or disprove that, for N a positive integer,
3
N' 42N + o + 1 s

never a perfect square. (Don't expect the computer to do this for
you.)

Your local Utopia Society decides to replace their weekly Bingo
session with a Numbers Betting Game tc be available in gas stations
and grocery stores. People can place bets on any three digit number
from 000 to 999. The winning number is the three digits in the
thousands places of the nurber of shares sold on the New York Stock
Exchange that day. The payoff is 500 times the amount bet for bets
up to $20. For bets above $20 the payoff is $10,000 plus 100 times
the amount bet.

Your first task is to write a program to simulate the betting system
and come up with estimates of likely profits or losses. You should
also discover (with or without using a computer)what amount of bet
will produce the greatest payoff for the bettor. If all bettors wag-
ered this amount (best possible for them, worst for the Utopians),
how much would you expect the Utopia Society to make or lose on each
approximately $10,000 that was bet? Assume that 10¢ of each dollar
bet goes to the person taking the bet, and 15¢ of each dollar bet is
other overhead.

Compute and print the nunber 275exact1y.

206

40.

41.

42.

43.

Find all positive integers X,Y,Z such that

X’ + Y* = 7% with Z<1000.

Compare the speed of your program with the speed of programs written
by your friends.

a) Two rods of equal length are divided into 250 and 243 equal
parts respectively. Their ends are coincident. Find the divisions
which are nearest together.

b) Same problem but divide the two equal rods into M and N equal
parts. Write a program to accept positive integer input M and N
and display the two values which are nearest together.

Consider the recursive relation defined by:

Let B = The biggest number that can be made by rearranging the
digits of Ny.

S = The smallest number that can be made by rearranging
the digits of Ny.

Ng+1 =B -8
a) If Np is a four-digit starting value, one of two things happen:

i) If all the digits of NO are identical, the Nyp+1 = O for all
K >0.

ii) If Ny has at least two distinct digits, then the relation con~
verges to Ng4q = 6174 which then repeats forever. Investigate
this phenomenon.

b) If Ng is a six-digit integer, there are 384 non-zero possible
values of N1, some of which lead to the repeater 631764, but
some of which do not. Investigate other starting values Ny
having 6 digits.

c) Investigate the Nyg.q = BIG — SMALL phenomenon for starting
values of other sizes.

It is well-known that the reciprocals of integers form repeating
decimals of period p (we say, p = 0 if the expansion terminates as
on 1/2 = ,500; p = 1 for 1/3 = .33; etc.) Our problem is to create
a table which will give the smallest positive integer N(K) such
that its reciprocal has a repeating decimal expansion of length K.

207

45.

47.

48.

If Ny is a positive integer, it can be shown that the recursive
relation Ng+1 = (The sum of the squares of the digits of Ng) will
either converge to 1 or will reduce to a self-repeating cycle 37,
58, 89, 145, 42, 20, 4, 16, 37,

a) Do so. Can you prove that every positive starting value No

will eventually either converge to 1,1,1, or to the cycle
20, 4, 16, 37,

b) The related problem for the sum of other powers of the digits
also merits investigation. Do so.

It is a common practice in mapping to approximate the area of a
lake or island or other irregular shape by using an irregular poly-
gon, whose area is easier to compute than is the area inside a
curved boundary.

Write a program into which the number N of vertices and the X and
Y coordinates of the vertices (Xi, Y;) of the polygon in consecu-
tive order may be input and the program will then compute the poly-
gonal area. It will be necessary to either find or devise a suit-
able formula. Remember this polygon is not a regular polygon since
its sides may be of unequal length.

Given two values A and B, determine values X, ¥, and Z such that

X Y 7

_A_z__ — T2 —
X Y T Z B

What will your program do if A and B have different signs?

Liouville discovered an interesting procedure for producing
sets of positive integers with the property that the sum of their
cubes is equal to the square of their sum. One such set is

13 + 2% + 33 + 43 =(1+2+3+4)2, Abit of induction
will show that for all N, 1% + 23 + 33 + ...+ N3= (1+2+3+...4N)2.
However, it is not known whether or not Liouville's method will
produce all such sets. Write a program to produce such sets in a
given range. Investigate the problem.

Write a program that will compute how much an investment of P
dollars will be worth Y years from now if it is invested at I
percent per annum interest, compounded N times per year.

A useful formula is:

V= Px(1 + I/(100>!<N))N*Y (Where V is the value after Y years.)

208

49. Design a program to coach emergency first-aid treatment at the "Boy
Scout'" level. The program should ask questions answerable by YES or
NO and prescribe action based on the response.

Is
patient bleeding
_Severely?

Bind wounds to stop
flow of blood. Do
- not use a tourniquet
unless life is
threatened.

Is
patient conscious?

Is
there any evidence that
patient has taken poison
or excessive medi-
cations?

Type number to indicate likely
material ingested:
1 Prescription medicine
v 2 Other medicine
3 Soaps, detergents, cleansers
4 Insecticides, bugkillers
S5 Caustics: 1lye, Drano, bowl
cleaner, Liquid Plunber
- 6 Gasoline-like products
7 Paints, stains, enamels
8 Heavy olils or grease
ONP QIO ...

OOOOOEO®

209

50. Either find a ten-digit positive integer N with each digit different,
and such that N is also a perfect 10th power of an integer, or show
that no such N exists.

51. Consider a large lattice of points (100 x 100 would be large in this
case and a big sheet of graph paper will do nicely) with equal spac-—
ing in the x and y directions. Our real problem is to place as
many points as possible on the lattice subject to the restriction that
no subset of three points shall form a right triangle. Before tack-
ling the real problem, consider the much simpler problem of a program
to find and print out 6 or 8 patterns of points on the lattice which
have the property that no three points form a right triangle and that
the set is maximum in the sense that if one more point were added to
the given arrangement, a right triangle would be formed. Possibly
placing points down the diagonal has this property. Then try to ans-
wer (with proofs) the questions:

a) What is the largest number of points which may be so placed?
b) What is the smallest nunber of points in a maximum set?

¢) Restate the problem so that using every point of two adjacent
sides of the square excepting the corner point is not a solution
and solve the new problem.

52. Write a program to sort a set of 25 names alphabetically. Ponder this
one. Sorting represents one of the most time-consuming uses of modern
computers. Consider sorting and entering the approximately 100,000
grades received by 20,000 students each term at a major uiversity.

53. J. Maxfield has shown (Math Magazine, Vol. 43, #2 March, 1970, pp.64-
67) that given a sequence of digits K = d.d.d_.. .dn, there exists an
integer N such that N! begins with the sequénce of digits K. Write
a program to create a table such that the smallest such positive inte-
ger N(K) is determined for each K < 100. ~You may also wish to print
out the floating point value of N! if it will be available at no addi-
tional cost. Eventually, we would like a formula for N(K) = smallest
positive integer N such that N! begins with the sequence of digits
K, but that may be too much to hope for. Your table might well re-
semble the one below:

K N(K) N!

il 1 T

2 2 2

3 9 362880
4 8 40320
5 7 5040

6 3 6

7 6

210

54.

55.

Mathematicians have proved that there exist arbitrarily long strings of

consecutive positive integers such that each of the consecutive inte-

gers has as a factor, a perfect square greater than one (probably
different squares for different integers). This may be restated as
follows:

Given a positive integer N, there exist strings of N consecutive
positive integers each of which contains a factor which is a per-
fect square greater than one.

If N =23 48, 49, 50 contain 4, 75, 5°, as factors.
98, 99, 100 contain 77, 37, 10° as factors.
IfN=4 242, 243, 244, 245 contain 11°, 32, 2°, 7° factors.

If N=7 217070, 217071, 217072, 217073, 217074, 217075, 217076
contain as

factors 7 3° 22 1132 11? 5° 42
Your problem is to find the first (i.e., involving smallest integers)
string of N consecutive integers each of which contains a square >1

as a factor for N=2, 3, ..., 10.

This one is tough! Mathematicians have shown a similar theorem to
that given in Problem 54 holds with "perfect square" replaced by

"perfect cube'' or even ''perfect Kth power''. Investigate this for
K=3,4,5,and N=2, 3, ..., 10. (Oreven N= 2, 3, 4, 5, 6, for
starters.)
Examples: 3rd Powers (K = 3) 4th Powers (K = 4)
N2 g a1 N=2 sp 81
8 27 16 81
N=3 1375 1376 1377 N=3 33514 33615 33616
125 8 27 2491 - 81 16

N=4 ' oopo4 20695 22626 22627

& 125 27 1331

56. Find a set of distinct positive integers, each of which is less than

100, such that it satisfies both of the following conditions.
a) No combination (or subset) of them added together will total 100.

b) The set contains as many distinct, positive integers as possible.

Hint: You may be able to solve this without using a computer.

211

57. The square of the nurber 36363636364 has the unusual property (in
base 10) that the second half of the square is an exact duplicate of
the digits in the first half

(36363636364)2 = 13223140496,13223140496
as shown by the central comma above,

Such periodic squares also exist in bases other than 10. For exanmple,
in base 4,

(212134) 11301’113014 37822510 (61510)

Your problem is to write a program that will examine perfect squares,
expressed in some base B > 1, (use base B = 10, if you wish) and
find perfect squares whose expression in base B is periodic (period
2 or more). See Mathematics Magazine, March 1975, p. 97.

58. An integer (whole number) greater than 1 is said to be prime if its
only positive factors are itself and one. There are many 4 x 4
arrays of digits such that each row and each colum is a 4-digit

prime.
Example: 6 1 8 9 Where 6189 6359
3023 1921
3 9 2 3 5273 8273
5 2 7 3 9137 9337 are each prime.
9 1 3 7

a) Find some additional such arrays. Then, hunt for arrays whose
main (upper left to lower right) diagonal also contains a prime.

b) What happens if you try to find 5 x 5 arrays containing 5-digit
primes in each row, each column and main diagonal?

59. Write a program to plot a graph Y = £(X).

Your program may request the user to put the function in a certain
statement. It should ask the user for what range of X-values he
wishes the graph plotted and then compute (or ask the user) for the
largest and smallest Y-value that will be used. It should then scale
the function suitably for display on the CRT screen. Your program
should also display for the user (perhaps using PRINT @ 960, " ")
the X-range and the Y-range covered by the graph.

60. Find the smallest positive integer M such that

N = 7x10M + 1 is not prime.

212

61.

62.

63.

Find and print all the five-digit positive integers which contain
exactly the same digits as their trebles. The leading digit must
not be zero.

Example: 19¢35 * 3 = 30105

Please also record the computer time used on your final run. Compare
with that of other TRS-80 users you know.

Many people from Archbishop John Tillotson (c. 1650) through Kurt
Vonnegut (1950) and beyond have toyed with the idea that if enough
monkeys were permitted to pound typewriters for long enough, all the
great classics of literature would eventually be reproduced. We can
easily improve the chances of something legible being produced by
picking keys in the approximate order of their frequency in normal
English rather than at random. Write a program that will print out
the following symbols, with the given approximate frequency per 1000.
To simplify the problem we restrict our selection of punctuation to
"'space', and have omitted V, K, Q, X, J, and 7, which have very low
frequency in English.

KEY space E T A 0 N I R S H
FREQUENCY/1000 223 100 77 62 62 54 54 54 46 38
KEY D L F C M U G Y p B

FREQUENCY/1000 31 23 23 23 23 15 15 15 15 15

You may be able to further improve the likelihood of obtaining at
least occasional words by including digraphs (two-letter groups) as
well as single letters. English digraph frequencies are approxi-
mately

DIGRAPH TH HE ER AN IN ON RE AT ED ST ND ES
FREQUENCY/1000 38 31 18 17 17 16 14 14 13 12 12 12

Additional frequency data for English, French, Spanish, German, and
Ttalian are available in Sophisticated Ciphers, available from Mu
Alpha Theta Math Club, Room 423, 601 Elm street, Norman, OK, 73019,
or at your library.

Find all n-digit positive integers in which the n-digit number is an
exact n-th power of an integer.

Examples: 81 = 92 125 = 53

213

65.

67.

Two positive integers are amicable (friendly) if the proper (includ-
ing one, but not including the number itself) divisors of each add up
to the other. 220 has divisors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55,
110, whose sum is 284. 284 has divisors 1, 2, 4, 71, 142, whose sum
is 220, thus 220 and 284 are said to be amicable. Some other ami-
cable pairs are (17296, 18416) and (1184, 1210). Write a program
that will find all amicable pairs between two given bounds S and B
and which will also keep track of any number which has a divisor sum
greater than B, so these can be used in a future run with

(new 8) = (old B) and a larger B. Your final program should also
account for any '"carry over'" values from previous runs.

Amicable pairs (problem 64) have been generalized to amicable chains
(sociable chains) in which the sum of the proper divisors of each
nunber in the chain is the next number and the last member of the
chain has the first member as the sum of its divisors. The only
chains generally known are the two four-link chains (found in 1965):

(2115324, 3317740, 3649556, 2797612) and
(1264460, 1547860, 1727636, 1305184),

the five~link chain:
(12496, 14288, 15472, 14536, 14264),

and a stupendous 28-link chain which contains the number 14316.
However, there are others.

a) Write a program to investigate amicable chains containing 50 or
fewer links.

b) What happens to chains that do not loop back to the starting
value?

Write a program that will match up 50 men and 50 women as dance
partners. Your first attempt can use numbers, if you wish, but the
final result should be two lists; one with the men's names in alpha~
betical order and showing the randomly matched partner's name, the
other with the womens' names in alphabetical order and showing the
name of each woman's partner (hopefully, the same matching as above).
Each person should be matched with one and only one partner and that
partner should be of the opposite sex.

a) Write a computer program to accept three values M, D, Y and
determine whether or not they are acceptable values for Month,
Day, Year, in that order.

b) Extend the above program to accept two sets of three numbers and
if both are acceptable as Month, Day, Year values, determine the
number of days between them, including both dates in your count.
Example: 2, 29, 1978 to 2, 22, 1978 is 3 days.

214

68.

69,

70.

A computer is apt to obtain different values for

F(N) = 1x2%3%, | (N-1)¥N and for G(N) = N¥(N-1)*,,,K 3*%2%1,
Furthermore, the difference is apt to be non-trivial. For N = 30,
the difference can be greater than a quintillion (and that's more
than the number of cents in the national debt). Investigate this
phenomenon, using a program of your own devising, or using:

19p FOR N = 1¢ TO 5@

110 F=1

120 G=N

130 FORK = 2 TO N
140 F = FXK

150 G = G*(N-K+1)

169 NEXT K
179 PRINT N, F; G, ABS(F-G)
18p NEXT N

Mathematicians have shown that given a sequence of digits

S = djdy,ds...d, there exists an integer N such that 2N begins with
the sequence S. (As a matter of fact, for 2 we may substitute any
positive integer which is not a power of 1, i.e., not 1¢0=1, 1¢l=1¢,
102=109, etc.)

Your problem is to produce a table giving S, N, 2N for S = 1 to 100
such that N(S) is the smallest positive integer such that 2N(8)
begins with S. I think the first few values are:

S Smallest N>@ oN
T 7) 16
2 1 2
3 5 32
4 2 4
5 9 512
6 6 64
7 46 70368744177664
8 3 8
9 53 etc.

10 10

11 50

Problem 11 (lesson 5) asks you to generate and print out in increas—
ing order of size, the positive integers of the form N = 25.3m

where k=@ andmz @. Generalize this to integers of the form
AR .B" where A and B are read using an INPUT statement.

Note that A and B need not be prime. Your program should work if
A =6 and B = 10,

215

71.

72.

Use an array containing the proper fractions in lowest terms to
establish a' position nunber" for each entry.” In the array each
entry in row k shall have (k+l) as denominator and the numerators
in a given row shall be in increasing order.

1/2
1/3 2/3
1/4 3/4
1/5 2/5 3/5 4/5
1/6 5/6

1/7 2/7 3/7 4/7 5/7 6/7
1/8 3/8 5/8 7/8

1/9 ete.

1/1¢ ete.

Since only those proper fractions in lowest terms are included, the
rows are not of easily predictable length.

Establish a position number N(a) for each fraction o in the array
by simply counting the entries, row after row, from left to right
until o dis reached.

Thus N(1/2) =1
N(1/3) = 2
N(1/4) = 4
N(2/3) = 3
N(3/4) =5
and so forth., In this fashion one establishes that
N(1/13) = 46
N(15/18) = 79
N(1/100) = 3004
N(3/500) = 75917
N(7/1240) = 467048 (or do they?)

The challenge is to determine formulae or an algorithm that will
enable you to do either (or both) of the following

1. Given a proper fraction o in lowest temms, determine N(o).

2. Given an integer K, determine the corresponding proper
fraction o such that K = N(a). Use a computer to help if
you can.

Program a game of your own choice on the computer.

216

73.

2

4

6

8
10
12
14
16
20
50
109
200
30
400
500
510
520
600
605
610
620
650
660
690
700
719
720
730
740

74.

75.

The problem of placing eight queens on an 8x8 chess board so that no

queen can attack any other queen (queens attack any piece they can
reach by moving in a straight line horizontally, vertically, or on
either diagonal) is an old one. You may have considered the problem
before, You will find it discussed on p. 161-2 of W. W. Rouse Ball's
interesting book, Mathematical Recreations & Essays or in Chapter 10
of M. Kraitchik's admirable book, Mathematical Recreations, both of
which should be available at your local library.

You may write a program to solve the problem if you wish, but the
problem proposed here is to examine the following program and see if
you can Tigure out how it works and why it produces all 92 possible
solutions to the eight queens program.

CLS

PRINT EIGHT QUEENS PROBLEM (RUNNING TIME ABOUT 4¢ MINUTES)"
PRINT

PRINT " 1 5] 8 6 3 7 2 4 MEANS"

PRINT " THE QUEEN IN THE FIRST COLUMN IS ON ROW 1;"
PRINT " THE QUEEN IN THE SECOND COLUMN IS ON ROW 5;"
PRINT " THE QUEEN IN THE THIRD COLUMN IS ON ROW 8;ETC."
PRINT
DIM R(8)

=9

C=C+1
R(C)=0
IF R(C) < 8 THEN 60¢
c=C -1
IF C = ¢ THEN PRINT"END OF SEARCH':STOP
GOTO 400
R(C) = R(C) + 1
IF C < 2 THEN 660
FOR Cl=1T0C -1
IF R(C)=R(C1) OR C+R(C)=C1+R(Cl) OR R(C)-C=R(C1)-C1 THEN 4¢Q
NEXT C1
IF C < 8 THEN 200
N=N+1: PRINT"'SOLUTTON#'" ; N; '="" ,
FOR C1=1 TO 8
PRINT R(C1);" ;
NEXT C1
PRINT
GOTO 5¢0

If you are seriously interested in more advanced computing, investi-
gate one of the following languages for your TRS-80.

HCH or H-tinyCH

""PASCAL!!

"Z~80" chip language (enter from BASIC II through USR() function)
PIIOT (a language designed for Computer Assisted Instruction)

Study a program written by someone else, and then improve it.

217

A FINAL WORD from your authors

Good Programming Practices

There is no such thing as the correct programming style. Entire
books have been written on the subject, but even the most skillful prac-
titioners of the programing art disagree on what is best. However, there
are several comnon sense principles that merit consideration. Even these
are not immutable rules, but it is prudent to follow the suggestions un-
less you have a good reason for not doing so on a given program, Here
goes:

1. Your program should, in general, read from top to bottom in a logical
fashion, except for subroutines which usually are listed after the
completed program. Block the various fragments into different 100's
in statement numbers. Don't feel compelled to use every tenth state-
ment number.

2. Use occasional REM statements to explain what is happening, If you
must use a GOIO statement in the heart of your program, include a REM
statement explaining why.

Your programs will have a neater appearance, and be easier to debug
if you place five blank spaces between REM and the start of your
remark., Try it, you'll like it,

3. Whenever you use a FOR-NEXT loop, indent the instructions between
FOR and NEXT three spaces. If you use nested FOR-NEXT loops, stair-
step them. It makes programs much easier to understand.

4. Use the faster forms whenever feasible.
(See lesson 11.)

5. Get to know your computer. Become thoroughly familiar with the quirks
and excentricities of your computer and of the BASIC (or other) lan-
guage you are using.

Above all:

Don't let these or any other rules spoil your fun--but do remember
that well-written, easy-to-follow programs are no harder to think or
write than sloppy kluges and are much more profitable in use and main-
tenance, Think of a computer program as a living, growing, ever—changing
thing, not as a finished, static object.

218

APPEN DlX Copyright © 1981 Tandy Corporation,

| Mod! ™Il {Mod | | Fort Worth, Texas 76102, U.S.A.

q)\ & OCO O"o < O‘o »
W S “%
Assignment Statements
CLEAR /| CLEARSs all data variables.
CLEARN VAR WE N e Reserves N bytes string memory, reset variables.
DEG /| Converts to decimal notation.
DiM /Y RNENEE Dimension one or more arrays. * 1 dimension only.
DMS /| Converts to sexagesimal notation.
ERASE J Deletes an array.
LET JiV/ V1 v/ 1+ | /| Optional DO NOT use with Cotor Computer.
MID$ - J J Replace old portion of string with new portion.
SWAP J Exchanges the values of two variables.
Other Commands, Functions and Operations
ELSE YAWENANENE N Secondary action clause in IF-THEN statement.
IF AV LAV 1/ 1/ /| Tests conditional expression in IF-THEN-ELSE
THEN V707 1/ |/ |/ |/ | Primary action to be taken in IF-THEN statement
AUDIO v Connects cassette audio to television speaker.
DEBUG /| Direct program execution under the DEBUG mode.
MERGE J 1Y/ / Merges ASCI! disk program with resident program.
MOTOR / Turns cassette motor on or off
POKE J1Y/ i/ / Puts a value into a RAM memory location
RANDOM VAR VR NEWV Reseeds random number generator
REM EREVE N J 1/ 1/ 1/ | REMark: instructs computer to ignore rest of fine.
SKIPF v Positions cassette tape at end of next file.
DATES / Gets current date as 18 character string.
ERL ENANEVEANK Returns the line number in which an error occurred.
ERR J / JI1Y Y Returns a value related to most recent error.
FRE(STR) VAN WA IV Returns amount of unused string space.
FRE(X) VANA WA NE W, Finds amount of free memory space.
INP J1/ R Gets a value from specified port.
MEM J / J1 /17171 /1 /1 Finds the amount of free memory.
PEEK S/ 71/ Gets value in specified memory location.
POS SIS Returns column position of cursor.
ROW J Gets row number where cursor is positioned.
TIMES VANAN / Returns time (24 hour format) as a string.
USR J S/ AWA WV Calls a machine language subroutine.
USRn Ji/ / Calls one of ten machine language routines.
VARPTR AN Na WV Gets address where variable contents are stored.
EOF \/ / /1 End-of-file detector.
LOC / Determines current record number of disk file
LOF \/ J V4 Determines highest numbered record in disk file.
VARPTR(#b) J Returns address of data buffer b.
AND LAV IS WV IV IV IV * USE (*) IN LI BASIC
CONCATE- VAW IE WEWE N JOIN STRINGS

NATION
EQV / 0 IF 1ST 1 AND 2ND 0
EXPONEN- EINA WA Wa v /1 RAISE TO POWER

TIATION
IMP / OPPOSITE OF XOR
MOD J MODULUS CALCULATIONS
NOT VERANWAVANE N NEGATE
OR AN VA NEINE W “USE (+) IN LI BASIC
XOR J/ EXCLUSIVE OR

Mod i

[Mmii]

Mod il

Definition Commands

DEF FN 1/ / Defines a user-created function.

DEFDBL RWAWENANY Define variables as double precision type.
DEFINT VWA V4 \,/ J Defines variables as integer type.

DEFSNG VRN WA AN Defines variables as single precision type.
DEFSTR YEWE Vi / N Defines variables as string type.

DEFUSR YA J ,| Defines entry point for mach. lang. subroutines.
DEGREE v | Setangle mode to degree.

GRAD /1 Setangle mode to gradians.

RADIAN v/ | Setangle mode to radians.

Math Functions

ABS Ayl lvb v /] /] Computes absolute value of X.

ACS /| Computes Arc cosine.

ATN NAWAVANEW /1 Computes arctangent; value returned in radians.
cos ARA VA WAN /| Computes cosine: angle must be in radians.

EXP VEIVE VA VAV / | Computes the natural antilog.

FIX VR R AN Truncates all digits to right of decimal point.

HEX$ JI/I Ve Computes hexadecimal vaiue and returns in string.
INT JI7 /117 /] /1 Largestinteger not greater than X.

LN /| Natural logarithm in Pocket Computer.

LOG VEIVE W RV IV » | Natural Logarithm *Common Logarithm in PC.
OCT$ J Computes octal value and returns it as a string.
RND ANANENEWANE N RND(N) — Pseudorandom number between 1 and N.
RND(0) VAP NIWANWE W Generates a pseudorandom number between 0 and 1.
SGN JUZV/ /1 /171 /| Returns sign component of a number.

SIN JI/VAV /1 /] /] v | Computes sine; angle must be in radians.

SQR AR WA J = | Computes single-precision square root. *Keyboard
TAN SIS / | Computes tangent: angle must be in radians.

VAL VANENAWEWE N, Evaluates a string as a number.

String Commands and Functions

ASC
CDBL
CHR$
CINT
CSNG
CvD
Cv!
Cvs
INKEY$
INSTR
LEFTS
LEN
MID$
MKD$
MKI$
MKS$
RIGHTS
SPACES
STR$
STRINGS

AN

NN N

“

SN

e N N N OGN

NG

NN NE N S N

N N NN N

SN

U

“~

AN

B L N

SNENCE

<

Returns ASCII code of first character in string.
Converts to double precision.

Returns character for ASCII or other code.
Returns largest integer not greater than n.
Converts to single precision.

Converts to double-precision after GET.
Converts to integer after GET.

Converts to single-precision after GET.

Gets keyboard character if available.
Returns starting position of substring.
Returns left portion of string.

Returns the number of characters in a string.
Returns a substring of a string.

Makes double-precision number a string.
Makes Integer a string.

Makes single-precision number a string
Returns right portion of string.

Returns a string of n spaces

Converts a numeric expression to a string
Returns a string of n identical characters

220

| Modi [Mit] Modin |

Input/Output Commands

AREAD ; /| Contents of display read into variable.

AT J Print beginning at specified screen location.

BEEP /1 Sound buzzer n times.

CLOAD / AW, /17171 /| Loads BASIC program file from cassette.

CLOAD? J1Y/ awi /| Compares program on tape with resident program.

CLOADM J Loads a machine language program from cassette.

CLOSE J1Y J1/ CLOSE all open file-butfers or specified buffer b.

CSAVE JSS J1 /v /| Stores resident program on tape.

DATA S / VARE W) Stores data to be accessed by a READ statement.

FIELD 1Y J Organizes a random file buffer into fields.

GETbr S/ J Gets specified record from random disk file.

INPUT sl 7171717171/] INPUTS data from the keyboard.

INPUT # -b YaW VARVE W Inputs data from specified cassette unit.

INPUT #b /1Y J Inputs data from disk file (sequential access).

INPUT" VAR WA WA, /| PRINTs the "PROMPT" and INPUTS data from
PROMPT" keyboard.

INPUT# /| Get data from tape and place in memory.

INPUTS(N) / Inputs n characters from the keyboard.

INPUTS(N,b) / Inputs n characters from sequential disk file.

LINE INPUT JY J Line inputs from keyboard; <ENTER>> ends input.

LINE INPUT #b VA WA J Line inputs from disk into buffer.

LLIST VAN NANANE W List program to line printer. *MIII Level I only.

LPRINT I VA BV IV BV BV Prints iterns to line printer. *Yes in MIII Lev [.

LPRINT TAB VANA Y VAN Moves printer carriage to specified position.

LPRINT USING J / VAWAW, Prints formatted data to line printer.

LSET J1/ / Left-justifies data into a random access field.

OPEN AN J 1/ Opens file; assigns mode and buffer.

ouT J1/ / J Sends value to specified port.

PAUSE / Hold display 0.85 seconds and continue.

PRINT J / / / J1 /171 /1 PRINTs anitem or list at current cursor position.

PRINT #-b / / VANAES Writes data to cassette. *# — 2 Qutputs to printer.

PRINT J/ / VANE W Begin printing at specified screen position.

PRINT AT V4 PRINT AT specified screen location in Leve! L.

PRINT TAB / VANANIWANE W Moves cursor right to specified TAB position.

PRINT USING J/ / J 7/ /| Formats strings and numbers for display.

PRINT# / /| Contents of data memory is recorded on tape.

PRINT# USING J1/ J/ Formatted sequential write to disk.

PRINT#b YW / Writes data to sequential file-buffer.

PUT / J / Moves data from file-buffer to random disk-file.

READ VANAWE VAW, / READs a value from a DATA statement.

RESTORE S/ / VAWANA W, Resets pointer to first item of first data line.

RSET VR WA J Right-justifies data into random access field.

SOUND J Sounds the frequency and duration specified.

SPC / Prints a line of n blanks.

TAB / / J / VANA W, Moves cursor to specified TAB position.

USING VaVANWAVANAW, /| Defines format for PRINT and LPRINT.

Graphic Commands

CLS v VAN NANAWAY; Clears the display.

CLS(C) / Clears display and sets background color.

JOYSTK , J Returns value related to joystick positions.

POINT S AAR Test graphic block *Return color if SET.

RESET 1/ / I/ / Turn off specified graphics block.

SET Ji/ Y VAR R Turn on graphic block. *SET(x,y,2) = -~ COLOR.

221

Mod | [Mit] Mog i |

| 1

WS i) & SO/5
SIS, o
NS S LS G

System Commands

AUTO VANA A WNAW; Numbers lines automatically.
CHAIN J | Load and execute specified program.
CMD"A" J Return to TRSDOS, printing message.
CMD"C” J Compress program by removing spaces and REMs.
CMD"'D” / Loads and executes DEBUG.
CMD"D:d” J Display disk directory in BASIC.
CMDE"” / Display most recent disk error.
CMD'T" J J Returns to TRSDOS, execute specified command.
CMD"J" / Performs Julian calendar calculations.
CMD"L" J Load specified disk file from BASIC.
CMD"O” / Sort specified number of strings in an array.
CMD"P" / Returns printer status as a string.
CMD"R” J/ J MOD I: Start clock MOD III: Display clock.
CMD"'S™ J J Returns control to TRSDOS
CMD'T" / J MOD I: Stops clock/Mod III: Turn off clock display.
CMD"'X" J BASIC cross-reference facility.
CMD"Z" J Toggle "DUAL" routing.
CONT / / J1/1 7171/ |/] Continues execution of program after BREAK/STOP.
DELETE VARV WA W Erases program lines from memory.
EDIT / Jis Puts computer into edit mode for specified line.
KILL S/ / Deletes a disk file.
LIST VANWARA WE WE WA WA WA T program lines to the Video Display.
LST#### |/ 1/ v1i/1 /1717171 USTtromprogram line ####
LOAD SV J Loads program file from disk.
NAME o J Renumbers resident program. *BASICR oniy.
NEW J1IJ Y J 1/ 1/ | Eraseprogram from memory; initialize variables.
RENUM ; J Renumbers resident BASIC program.
RUN JoJ sl v b /1 1/ Execute resident program.
RUN s/ / Loads and executes specified disk program.
"FILESPEC”
RUN ###+# S/ / / J 1/ 1/ | RUNfromline specified by ####.
SAVE J/ N Saves BASIC program on disk.
SYSTEM S/ Ly Puts computer in monitor mode.
TROFF J1/ / VAN Turns off the program trace function.
TRON VARV IV IVA IV Turns on the program trace function.
Sequencing Commands and Functions
END S/ J1/1 /1 /| /| ENDs program execution.
ERROR(N) VARV VA IVE IV Simulates the specified error.
EXEC J Transfers control to machine language program.
FORNEXT /1 /{ /s /] v 7]/ | Program ioop. ,
GosuB JisI vl /| /1 /| Transters program control to specified subroutine.
GOTO i/ /1 /1 /| Transters program control to the specified line.
NEXT JI/U /AN /) /] /| Ends FOR-NEXT ioop.
ON VENVARVE VA IVEIVA IV Multi-way branch used with GOTO and GOSUB.
ON ERROR VARVA IV VA W) Sets up an error-handling routine
GOTO
ON ERROR VARNE VA IVE BV Disables an error handling-routine.
GOTO 0
RESUME VARA WA AW, Ends an error-handling routine.
RETURN / / JIAL Y/ /1 /] Returns from subroutine to statement after GOSUB
STEP YRWANN / JU /L /1 /] Increments or decrements FOR-NEXT loop index.
STOP JIV YNy /L /LS| Stops execution of a program.
SYSTEM J Executes TRSDOS command, returns to BASIC.
TO JIZU v/ 7] 7L/] usedto specify index range in FOR-NEXT statement.

222

These BASIC instructions are typical.
this set.
sheet.

Instructions

AUTO start, increment Numbers lines automaticaily.
AUTO AUTO 150, 20 AUTO .5

CLEARn Reserves n bytes of string storage space;
initializes all variables.
CLEAR CLEAR 75 CLEAR O

CLOAD Loads BASIC program file from cassette. Only
the first character of the file name is used.

CLOAD CLOAD “MIXIT”

CLOAD? Compares program on tape byte-for-byte
with resident program.
CLOAD? CLOAD? “MIXIT”

CLS Clears the display.
CLS

CONT Continues execution of program after BREAK
or STOP.
CONT

CSAVE Stores resident program on cassette tape. Afile

name is required. Only the first character of the file nameis
used.

CSAVE “MIXIT”

DATA Stores data to be accessed by a READ state-
ment.
DATA “LINCOLN, A.”, 1861, ILLINOIS

DEFDBL Defines variables as double-precision.
DEFDBL V, X2

DEFINT Defines variables as integer type.
DEFINT A, N

DEFSNG Defines variables as single-precision.
DEFSNG |, W-Z

DEFSTR Defines variables as string type.
DEFSTR C, L-Z

DELETE Erases program lines from memory.
DELETE 1205 DELETE — 80 DELETE.

DIM Dimensions one or more arays.

DIM R(75), W(40)
DIM L%(3, 18, 5)

EDIT Puts computer into edit mode for specified line.
See Edit Commands.
EDIT 100 EDIT.

END Ends program execution.
END

DIM ARS(8 25)

The BASIC you use may differ from

If so, mark the necessary changes directly on this reference

ERROR(n) Simulates the specified, erorn = 1 — 23.

ERROR(1)

FOR...TO... STEP/NEXT
FORI = 1708 (...)NEXTI
FOR C! = 0 TO 5 STEP .2 (...) NEXT C!

GOSUB
subroutine.
GOSUB 750

GOTO
GOT0 180

IF...THEN ... ELSE
IF P = Q THEN 200
IFN% < O THEN 150 ELSE N% = N% — 1

Opens program loop.

Transfers program control to the specified

Transfers program control to the specified line.

Tests conditional expression.

INPUT Inputs data from keyboard.
INPUT X* INPUT L, M, N INPUT "NEXT";N
INPUT #-— 1 Inputs data from cassette.
INPUT # — 1, A
LET Assigns value to variable (optionat).
LETX = 7.05 LET R2= R1 LET C$ = “RED”
LIST Lists program lines to the video display.
LIST LIST 50-85
LLIST Lists program lines to the video display.
LLIST LLIST 50—
LPRINT Prints an item or list of items on the printer.

LPRINT CAPS; “IS THE CAPITAL OF"; ST$

LPRINT TAB Moves printer carriage to specified posi-
fion
LPRINT TAB(25) “"NAME”

LPRINT USING Prints formatted numbers and strings

on the printer. See PRINT USING for list of field specifiers.
LPRINT USING ™# #* # # 7, 1234

NEW Erases program from memoty; initializes all
variables.
NEW

ON ERROR GOTO
ON ERROR GOTO 2100

ON ERROR GOTO 0
routine.
ON ERROR GOTO 0

Setfs up an error-handling routine.

Disables an error-handling

223

ON...GOSUB Multi-way branch to specified subrou-

tines.
ON Y GOSUB 50, 100, 150, 200
ON...GOTO Multi-way branch to specified lines.
ON X 6OTO 190, 200, 210
OUTp, v Sends value to specified port. p and v =
0 — 255,
OUT 255, 0
POKEn, v, Puts value v (0 — 255) into location n (15360

to end of memory). See POKE Addresses.
POKE 15872, 255

PRINT Prints an item or list of items on the display at
current cursor position.
PRINT X} + ¥ PRINT “U.S A"

PRINT @n Prints beginning atn, n = 0 — 1023.
PRINT @ 477, “CENTER”

PRINT #-— 1 Writes data to cassette.
PRINT # — 1, A

PRINT TAB Moves cursor right to specified tab posi-
fion.
PRINT TAB(20) “NAME"

PRINT USING Formats strings and numbers:

Formats numbers.
PRINT USING “# # # # #, 66,2
Decimal point,
PRINT USING “# * #“; 58.76
, Displays comma to left of every third digit.
PRINT USING “# # # # “- 1234
Fills leading spaces with asterisks.
PRINT USING “™**# # # #7, 440
Floating dollar sign.
PRINT USING “$8* #.# #”; 118.6735
"$ Foating doliar sign; fills leading spaces with asterisks,
PRINT USING “**$*.* *#”; 8.333
(Exponential format. Press [f]; to generate this character.
PRINT USING “#* # # #(((("; 8527100
+ Infirst position, causes sign to be printed; inlast position
causes sign fo be printed affer the number.
PRINT USING “+#* # #*; 216
- Minus sign after negative numbers, space after positive.
PRINT USING ™# # # # #_". _8124.420
! Returns first string character.
PRINT USING ™1”; “YELLOW”

$8

%spaces® String field; length of field is number of spaces
plus 2. :
PRINT USING “% %"; “BLUE”

RANDOM Reseeds random number generator,
RANDOM

READ Reads value(s) from a DATA statement.
READ T READ S$ READ NMS, AGE

REM Remark; instructs computerto ignore rest of line. Is

an abbreviation for :REM.
REM PLACE COMMENTS HERE 'HERE TOO

RESET (x, y) Tumns off graphics block at specified
location. x (horizontal) = 0 — 127; y (vertical) = 0 — 47.
RESET (21, 40) RESET (L1, L2)

RESTORE Resets data pointer to first item in first data
line.
RESTORE

RESUME Ends an error-handling routine by specifying
where normal execution is to resume.
RESUME RESUME 40 RESUME NEXT

RETURN Returns from subroutine to next statement
after GOSUB.
RETURN

RUN Executes resident program or portion of it.
RUN RUN 150

SET (x, y) Tums on graphics block at specified loca-

tion. x (horizontal) = 0 — 127; y (verdical) = 0 — 47.

SET (10, 0) SET (L1, 12)

STOP Stops execution of a program.
STOP

SYSTEM Puts computer in monitor mode, allows
loading of object files. in response to *?, type filename or
/address.
SYSTEM

TROFF Turns off the trace,
TROFF

TRON Turns on the frace.

TRON

224

Error Messages Control Keys

Abbreviation Explanation = Cancels last character
typed; moves cursor back one space.
NF NEXT without FOR
SN Syniax error SHIF! Erases current line.
RG RETURN without GOSUB
ob Out of data Inferrupts anything in progress and
FC lilegal function call returns to command level.
ov Overflow
OM Out of memory CLEAR Clears the screen.
uL Undefined line
BS Subscript out of range ENTER Signifies end of current line.
DD Redimensioned array
/0 Division by zero Enters a space (blank) character and
1D llegal direct moves cursor one space forward.
™ Type mismatch
(o} Out of string space Advances cursor fo next tab position.
LS String too long
ST String formula too complex Puis display in 32-character mode.
CN Can'’t continue
NR No RESUME [ﬂ Line feed and carriage return.
RW RESUME without error
UE Undefined error M “Control” key—hold down these
MO Missing operand two and press any key A-Z for control A-
FD Bad file data confrol Z.
L3 Disk BASIC feature
¥ Copies the display contents fo the
printer.
@] Causes cutrently executing program fo
pause (press any key to continue).
- -
Edit Commands Special Characters
Al Cancels changes and starts again. ’ Abbreviation for :REM
n Changes n characters % Makes variable integer-precision.
n[Dl Deletes n characters. ! Makes variable single-precision.
[E Ends editing and saves all changes. # Makes variable double-precision.
Hacks line and insers at end. $ Makes variable string type.
il Inserts characters. : Separates statements on the same line.
nkK c Kills all characters up to nth occurrence of c. ? Same as PRINT (but L? can’t be substituted for LPRINT).
Lists the line. ! PRINT punctuation: spaces over
Quits edit mode and cancels all changes. to the next 16-column PRINT zone.
niSlc Searches for nth occurrence of ¢. H PRINT punctuation: separates items in a
X Extends line (inserts at end). PRINT list but does not add spaces when they are outpu
EFI] & Causes escape from command.
ENTER Records all changes and exits edit mode.
n Moves cursor n spaces fo the right.
n Moves cursor n spaces fo the left.

225

Functions

Argument ranges are indicated below by special iefters:
X: (—1 X 10E 38, — 1 X 10E — 38),
(1 X 10E — 38,1 x 10E 38)
(0,255)
(—32768, 32767)
sting argument
variable name

c
n:
sir:
var:

ABS(x)
Y = ABS(X)

ASC(str)
A = ASC(1$)

ATN(x)
radians.
Y = ATN(X/3)

CDBL(x) Converts to double-precision.
X#* = CDBL(N*3)

CHRS$(c) Returns character for ASCII, control, or
graphics code.
P$ = CHRS(D)

CINT(n) Returns largest integer not greater than n.
PRINT CINT (15.0075)

COS(x)
Y = COS(X)

CSNG(x) Converts fo single-precision.
FC = CSNG(TM*)

ERL Returns the line number in which an error has
occurred.
PRINT ERL

ERR If an error occurs, retumns a value related to the
error code: value refurned = (error code — 1) -2.
IF ERR = 12 THEN 650 ELSE 800

EXP(x)
Y = EXP(X)

FiX(x)
Y = FIX(X)

FRE (numeric)
F = FRE(X) PRINT FRE(10)

FRE(str) Retumns amount of unused sfring space. sir
is any string constant or sting variabie.
FRE("C”) FRE(CS)

INKEYS$ Gets keyboard character if available.
AS = INKEYS

INP(p) Gets value from specified port. p = 0— 255,
V = INP(255)

INT(x)
than x.
Y = INT(X)

LEFTS(str, c)
P$ = LEFTS(MS, 7)

LEN(str)
a string.
X = LEN(SENS)

Computes absolute value.
Returns ASCIl code offirst character of string.

Computes arctangent; vailue returned in

Computes cosine; angle must be in radians.

Computes natural antilog.
Truncates all digits to right of decimal point.

Find amount of free memory.

Retumns largest whole number not greater

Retums left portion of siring.

Returns the number of characters in

LOG(x)
Y = LOG(X)

MEM Finds amount of free memory.
PRINT MEM

MIDS$ (string, pos, len) Retumns a substring of
another string. If length option is omitted, the entire string
right of pos is retumned.
PRINT MIDS(AS, 3, 2)

Computes natural logarithm.

FS = MID$ (AS, 3)

PEEK (n) Gets value in location n (n = 0 fo end of
memory).
V = PEEK (18520)

POINT(x, v) Tests whether specified graphics block

is on or off. x (horizontal) = 0 — 127; y (vertical) = 0 — 47,
IF POINT {13, 35) THEN PRINT “ON"’ ELSE PRINT “OFF"

POS(x) Returns column position of cursor (0 — 63).
X is a dummy argument.
PRINT TAB(40) POS(0)

RIGHTS(str, c)
ZIPS = RIGHT(ADS, 5)

Returns right portion of string.

RND(n) Generates a “random” number between 1
andnifn > 1,orbetween1ifn = 0.
Y = RND(100) PRINT RND(0) R = RND(X)

SGN(x) Returns sign component: - 1,0, 1 if x is
negative, zero, positive.
X = SGN (A«B)

SIN(x) Computes sine; angle must be in radians.
Y = SIN(X)

SQR(x) Computes square root,
Y = SQR (A + B)

STR$(x) Converts a numeric expression fo a string.
S$ = SIRS(X)

STRINGS$(I, c) Returns string of characters of
tength . Character c can be specified as an ASCH code or
as a string.

BS = (125, ™)

TAN(x)
Y = TAN(X)

TIME$ Returns the time (in 24-hour format) and the
data as a 17-character string.
AS = TIMES

USR(x) Calis a machine-language subroutine whose
address is stored at 16526 —~ 16527.
PRINTUSR(— 1) X = USR(Y)

VAL(str) Evaluates a string as a number.
V% = VAL("100 DOLLARS")

VARPTR(var)
are stored.
Y = USR (VARPTR (X))

BS = STRINGS (125, 63)

Computes tangent; angle must be in radians.

Gets address where variable contents

226

INDEX

ABS(exp), 190

Algorithm, 97

AND, 183

Arithmetic Functions, 190

ABS(e¥p), AIN(exp), CDBL(e&xp),
CINT(ext), COS(exp), CSNG(exr),

EXP(exp), FIX(exp), INT(exp),
10G(exp), SIN(exp), SGN(exp),
SQR(exp), TAN(€xp)

Arrays, 151

"Art", Random, 68

ASC(string), 177

Asteroids, Game Program, 123

ATN(exp), 190

AUTO mm, nn, 188

B

Backspace Key, 7, 28

Bar Graph, 56, 57

Biological Simulations, 135, 138
Bounce, Keyboard, 13, 112
Branching, 25

Key, 4, 7, 9, 13, 28

C

Campus Planning Program, 58
Cassette Program Loading, 109
Cautions, 154

CDBL(exp), 190

Challenge Problems, 34, 47, 48
Changes, 129

Changing Instructions, 13
CHRS:

(), 63, 64, 65, 169, 173, 177
(), PRINT, 170
(), Effects of, 63-65
CINT(exp), 190
Cipher Program, 179
Key, 4,7, 14, 28
CLOAD, 109
CLS, Clear Screen, 24
Code Message Program, 179
Comma,, 11, 14
Commands in Your Programs,
Keyboard, 161
Computer—-Assisted Problem Solving,
Steps For, 82
Concatenate Strings, 178
Conference Proceedings, 185
Continuous Function, 41
Correction, Error, 42

COS(exp), 190

Counselor, Robot, 180
CSAVE, Saving a Program on Tape, 111
CSNG(exp), 190

D

DEF, 147

DEFDBL:, 88, 148 .

DEFINT, Variables, 148

DELETE mm-nn, 190

Deleted, 128

Designators, Variable type, 149

Dice Throwing Program, 134

Display, Truncated, 23

Double Letters, 112, 154

Double Precision Arithmetic, 88

Double Precision Variables, 147
In FOR,..NEXT Loops, 155

Double Size letters, 14, 18, 28

E

EDIT, 127-133

Editing, 42

Edit Mode Subcommands, 130

Ehrenfest Model, Three Molecules,
"Guppy"' Problems, 139

Key, 4, 7, 28
LIST, 10, 28
NEW, 28
RUN, 28
E+p8, 14
Equation Solver, 36, 41
Erase, 7, 28
ERROR:

Correction, 42
Messages, 159, 160
EXP(exp), 190
Extended Print Instructions, 163

F

Factorial, 46

Factor Program, 195

FALSE, 183

Faster Forms, 158

Fast N Such That N2 Ends in N, 94
Field Specifiers, PRINT USING, 165
Fix, Keyboard, 13

FIX(exp), 190

Floating-Point Variables, 14, 147

227

Double Precision, 88, 147
Flow Chart, 141, 142, 194
FOR K = § TO 2¢ STEP .5...NEXT K, 44
Forms, Faster, 158
FOR. ..NEXT, 35
FOR Q = 1 T0 4¢p: NEXT @, 70
FRE(string), 177
Free Improvements for Cassette

Use, 107
Functions, Continucus, 41
Functions, Graphing, 66

G

Game Program, 125
Asteroids, 123
Guessing Game, 117
Hangman, 118
Pixel Hunt, 56
Reverse Memory Test, 121
Treasure Hunt, 116
GOSUB nn, 189
GOIO nn, 10
Graph, 172
Graph, Bar, 56, 57
Graphics, 169
Graphing, 167
Graphing Functions, 66, 69
"Guppy" Problem, Three Molecules,
Ehrenfest Mode, 139

H

Hangman, Game Program, 118
Headings, 25, 27
Histogram, 57

Hunt, Pixel Hunt Game, 55

I

Improving Programs, 114, 198
Information, Additional, 184
INKEYS, 177, 179
Instructions, 223

J

Jargon Phrase Maker, 175
Journals, 185

K

Key

[=—1, 5, 7, 28

BREAK], 4, 9, 13, 28
CLEARi 4, 7, 14, 28

[ENIER], 4, 6, 7, 28
ISHIFI‘L 3
Keyboard, 3
Keyboard Bounce, 13, 111
Keyboard Commands, 161
Keyboard Fix, 13
Keyboard Instructions, 20

L

lLarge Numbers, 86

Last 3 Digits, 33
left(string,n), 178
LEN(string), 177

L5 &), 5, 10, 23, 1
YD mm-nn |, 133

L¥H exp), 100

Loriczl Operators, 133

"Loop, Tight', 64

Ty
P

Malfunctions, 196

Map, Video Screen, 51, 54

MEMORY SIZE, 8

Message, 59

Micro Research Problems, 77, 99,
192, 202

MID$(string p,n), 178

Music, Sound and, 112

N

NEW, 9, 13, 28

NOT, 183

Numbers, Random, RND(®), RND(), 49
Numeric Character, 165

0
ON N GOSUB mm, nn, pp, gq, ., 189
ON N GOIO 4, », c,...,z, 70
ON N GOIO mm, nn, pp, gg,..., 189

Operators, Logical, 182
OR, 183

b

PEFK, 191

Periodicals, 185

Pixel Hunt Game, 56

Pixels, 56, 170

POINT(x,y), 57

POKE, 191

POKE Address, Pixel Number
Instruction, 171

228

Precision Variables, Double, 147
PRINT, 4

@,50, 70

CHR%(n), 70, 170

STRINGS, 167, 168

USING Field Specifiers, 165
Problem: N Such That N2 Ends in N,

81
Problems, Challenge, 34, 47, 48
Proceedings, Conference, 185
Program,

Factor, 203

Game, 116, 117, 118, 121, 123, 125

Ioad From Cassette, 109

Q
Question Mark ?, 43
R

Radio Shack Computer Center, 184
RANDOM, 133, 191
Random "Art', 68
Pandom Numbers, 49, 133
READY, 8
Research (micro) Problems You May
Undertake, 99, 202
RESET(x,vy), 55
RESTORE, 189
RETURN, 189
Reverse Memory Test Game, 122
RIGHT$(string,n), 178
RND:
(K), 133
(»), 70
(@), 70, 133
Robot Counselor, 180
RUN, 5, 70
] 28
mm, 186

S

Saving Computer Time, 21, 91, 94,
158, 200ff

Saving Memory Space, 157

Saving Program On Tape, CSAVE, 111

Screen Video Map, 51, 54

Serolling, 53

Semicolon, 14

Sentence Generator, 174

SET(x.,y), 55

SGN(e), 190

ISHIFT|, 3, 14, 28

Simulate, 143

Simulation, 133, 135

SIN(exp), 190

Snowflake, 71

Solver, Equation, 36-41

Sound and Music, 112

Space, Out of String, 154

Speeding Up Programs, 158

SQR(exp), 190

Static Electricity, 156

Statistics, 150

Steps for Computer-Assisted
Problem Solving, 82

Store the Words in DATA
Statements, 174

String Concatenation, 178

String Instructions, 177, 178

Strings, 173-183

STRINGS(K, character" or number.),
167, 178

STR8(exp), 178

Subcommands, Edit Mode, 130

Subscripted Variables, 150

Symbol >~ , 7, 14, 43

SYSTEM, 188

T

TAB(exp), PRINT, 164
Tables, 21
TAN(exp), 190
Tape:
Care, 108
Cassette, 107
Three molecules, Ehrenfest Model,
"Guppy" Problem, 139
"Tight Loop', 62
Time, 90
Tips, 154
TRACE, 189 .
Treasure Hunt, Game Program, 116
TROFF, 189)
TRON, 189
TRUE, 183
Truncated Display, 23
Twelve Days of Christmas, 48, 77

U
USR(n), 189
v

VAL(string), 178
Value, PRINT USING String, 165
Variable:

DEFDEL, 148

DEFINT, 148

Double Precision, 147

229

Floating-Point Single
Precision, 147
Integer, 148
String, 148
Subscripted, 150
Type Designators, 149
Types, 147
Video Screen Map, 51, 54
Volume, 109

W

Wages, 47
Wild Screen, 124
Word Generator, 175

230

Instructions

AUTO start, increment Numbers lines automatically.

AUTO AUTO 1850, 20 AUTO 5

CLEARn Reserves n bytes of string storage spoce,
initializes all variables.
CLEAR CLEAR 75 CLEAR O

CLOAD Loads BASIC progrom file rom cassette. Only
the first character of the file name is used
CLOAD CLOAD "MIXIT"

CLOAD? Compares program on tape byte-for-byte
with resident program
CLOAD? CLOAD? “MIXIT”

CLS Cleors the display
CLS

CONT Continues executfion of program after BREAK
o1 STOP
CONT

CSAVE Stores resident program on cassefie fape, Afile

name is required. Only the first character ofthe file name is

used
CSAVE “MIXT”

DATA Stores data to be accessed by a READ state-
ment
DATA "LINCOLN, A", 1861, ILLINCIS

DEFDBL Defines variables as double-precision.
DEFDBL V, X2

DEFINT Defines variables as integer ype.
DEFINT A, N

DEFSNG Defines variables os single-precision,
DEFSNG | W-Z

DEFSTR Defines variables as sting fype
DEFSTR C, L-Z

DELETE Erases program lines from memary.
DELETE 1205 DELETE - 80 DELETE

DIM Dimensions one of More arays.
DIM R(75), W(40) DIM ARS(8 25)
DIM L%(3, 18, 5)

EDIT Puts computer into edit mode for specified line.
See Edit Commands.
EDIT 100 EDIT
D Ends program exacution
END

ERROR(n) Simuiates the specified, enorn 1 23
ERROR(1)

FOR ... TO ... STEP/NEXT Opens program loop

FORI 1T08(..JNEXTI
FORC' OTOSSIEP.2(...) NEXTC!

GOSUB Transters program control to the specified
subroutine
GOSUB 750

GOTO Transters program control to the specified line
GOTO 180

IF... THEN ... ELSE Tests conditional expression
IFP @ THEN 200
IFN% < QTHEN 150 ELSE N% N% 1

INPUT Inputs data from keyboard
INPUT X = INPUT L, M, N INPUT “"NEXT" .M
INPUT # 1 Inputs data from cassette
INPUT = 1 A
LET Assigns value to variable (optional)
LETX 705 LETRZ ™1 LET CS ‘RED
LIST Lists program lines ta the video display
LisT LIST 50-85
LLIST Lists program lines to the video display
LLIST LLIST 50—
LPRINT Prints an itern or list of iterns on the printer
LPRINT CAPS: IS THE CAPITAL OF", STS
LPRINT TAB Moves printer camage to specified pos
tion

LPRINT TAB(25) "NAME'

LPRINT USING Prints formatted numbers and sfrings
on the printer. See PRINT USING for list of field speciliers
LPRINT USING "= # = #1234

NEW Erases program from memary; initializes all
vanables
NEW

ON ERROR GOTO Sefs up an error-handling routine
ON ERROR GOTO 2100

ON ERROR GOTO 0 Disables an errcr-handiing
routine.
OM ERROR GOTO O

ON...GOSUB Multi-way branch to specified subrou-
fines
OM Y GOSUB 50, 100, 150, 200
ON ... GOTO Multi-way branch to specified lines.
ON X GOTO 190, 200, 210
OUT p. v Sends value to specified port. p and v
0 255
our 255, 0
POKEn, ¢, Putsvaluev (0 255)into location n (15360

to and of memory). See POKE Addresses.
POKE 15872, 255

PRINT Prints an item or list of items on the display at
current cursor position
PRINT X! - Y! PRINT "USA"

PRINT i« n Prints beginning atn,n - 0 1023
PRINT ¢ 477, "CENTER”

PRINT # 1 Writes data to cassette.
PRINT * 1, A

PRINT TAB Moves cursor right fo specified tab posi-
tion
PRINT TAB(2Q) "NAME"

PRINT USING Formats stings and numbers:

Formats numbaers.

PRINT USING "= = = = = 6.2
Decimal point.
PRINT USING “* = #"; 58.76
. Displays comma ta left ot every third digil.
PRINT USING " * # * #1234
Fills leading spaces with asterisks.
PRINT USING “"** = * #*. 440
$8 Fleating dollar sign
PRINT USING "$5# # = #, 1186735
-1 Floating doliar sign; fills leading spaces with asferisks,
PRINT USING **§= = =" 8.333
(Exponential format. Press], to generate this character.
PRINT USING "# = = =({([", 8527100
+ In first position, causes sign to be printed; in last position
causes sign fo be printed after the number,
PRINT USING "+ * # **; ~216
Minus sign affer negative numbers, space affer positive
PRINT USING "= = # * * " 8]
! Returns first string character.
PRINT USING "1, "YELLOW"

Fspaces® String field; length of field is number of spaces

plus
PRINT USING "% % "BLUE"

RANDOM Reseeds random number generator
RANDOM

READ Reads value(s) from a DATA statement.
READ T READ S$ READ NMS, AGE

REM Remark; instructs computer toignaore rest of line. Is
an abbreviation for :REM
REM PLACE COMMENTS HERE 'HERE TGO

RESET (x, v) Tums off graphics block at specified
location. x (horizontal) -~ 0 - 127,y (verfical) - 0 - 47.
RESET (21, 40) RESET (L1, L2}

RESTORE Resets data pointer to first item in first data
line
RESTORE

RESUME Ends an eror-handling routine by specifying
where normal execution Is to resume.
RESUME RESUME 40 RESUME NEXT

RETURN Returns from subroutine to next siatement
after GOSUB
RETURN

RUN Executes resident program or portion of il
RUN RUN 150

SET (x, v) Turns on graphics block ot specified loca-
tion. x (horizontal) - 0 127,y (vertical) - 0
SET (10, 0) SET (L1, L2)

STOP Stops execution of a program
STOP

SYSTEM Puts computer in monitor mode, allows
loading of object files. In response to "7, type filename or
faddress
SYSTEM

TROFF Tums off the trace.
TROFF

TRON Tumns on the trace
TRON

Error Messages Control Keys

Edit Commands Special Characters

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632 /

[
/

0-13-296137:7

	01.pdf
	02.pdf
	03.pdf
	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	72b.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf
	p2.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf

	p2.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	161.pdf
	163.pdf
	164.pdf
	165.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	172.pdf
	173.pdf
	175.pdf
	176.pdf
	177.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf

	p2.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	194.pdf

	p2.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf

	p2.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf

	p2.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf

