EXPLORE
COMPUTING

with the

TRS-80

and COMMON SENSE

ot - AR]
o Sl
....

by Richard V. Andree & Josephine P. Andree

THIS 1S A DUPLICATED COPY OF A MANUSCRIPT TO BE PUB-
LISHED IN 1981 BY PrRENTICE-HALL PuBLISHING ComPANY. IT 1S
FULLY COVERED BY U.S. AND FOREIGN COPYRIGHTS AND SHOULD NOT
BE REPRODUCED IN WHOLE OR PART WITHOUT THE EXPRESS WRITTEN
PERMISSION OF THE AUTHORS AND THE COPYRIGHT HOLDER.

(©) 1980 BY RicHARD V. ANDREE
DupLicATED IN NormMAN, OkLAHOMA, U, S, A,

YOUR AUTHORS WISH TO EXPRESS OUR SINCERE THANKS TO THE
MANY TEACHERS WHO HAVE HELPED IN THE DEVELOPMENT OF THIS BOOK,
AND TO ENCOURAGE YOU TO CORRESPOND WITH US CONCERNING YOUR
CORRECTIONS AND SUGGESTIONS ON WHAT YOU WOULD CONSIDER PARTIC-
' *m1Y HELPFUL IN AN INSTRucTOR'S MANUAL.

OurR “coVvER GIRL"” 1S SuzANNE M. ANDREE, AN ELEMENTARY
MATHEMATICS-SCIENCE TEACHER WHO USES COMPUTERS IN HER

PART I TO THE READER

The first 100 pages carefully lead you from 'watching the computer
count fast'' to where you have enough skill and confidence to write your
own computer programs for creating random art, solving equations, or
exploring microRESEARCH prcblems that interest you.

If you are a complete novice, start with the introduction.

1f you are a beginner, start with Lesson 1. Work as many
practice problems as you need.

If you are a bit more sophisticated, read the summary at
the end of Lesson 1, work a few problems from Practice
Session 1. Then continue with Lesson 2.

If you can already program in BASIC, read the summaries at
the end of Lessons 1 & 2, work a few problerms, and continue
with lesson 3.

Lesson 4 introduces graphics, computer assisted art and some
of the special goodies available on the TRS-80.

lesson 5 is devoted to solving problems that are easy to
understand, but which would be very hard to solve with-
out the assistance of a computer.

JDPART 11

The first five Lessons will teach you most of what you need to know
to use your camputer in solving real problems.

The nature of Lessons 6 to 17 is different. These lessons are .
devoted to special topics you may or may not need to learn about, de-
pending upon your own particular interests. Lessons 6 to 17 may be
read in any order, or ignored entirely until needed. Consult the
table of contents for topics covered.

The important thing is to HAVE FUN with your TRS-80. Remember,
today's micro-computers are more versatile and more powerful than
computers which cost 100 times as much, 20 years ago. Whether you
purchased your TRS-80 as a playtoy or a serious tool, we hope you will
soon be using it for both.

-~

TO THE | NSTRUCTOR

This book is designed to be used by students for self-instruction
(with or without a teacher's assistance). It has been successfully used
by junior and senior high school students, secretaries, college students,
6th grade math classes, as well as a group of busy doctors and business
people. MNumerous examples are developed step by step to demonstrate the
thinking involved. Since computing is a skill that must be learned by
practice, a variety of problems are included. As with any acquired skill,
a @nnd rrach can keen the neoohvte interested and help develop good hab-
its. Computing can and should be FUN. Students are fascinated by com-
puters and will be responsive to your teaching.

Most readers are familiar with whole-number arithmetic, but mmy not
have investigated the many tantalizing arithmetic puzzles that are easy
to understand but hard to solve, unless a computer is available. A num-
ber of our problems come from the area of Mumber Theory. Problems like

1. Find squares like (11)2 = 121 or (264)2 = 69696 whose digits
read the same forward as backward (palindromic squares),

2. Find squares such as (35853)2 = 1285437609 in which all ten
digits are present in the sguare.

are not difficult to program once the rudiments are learned (Lessons 1,
2,3). Each reader is encouraged to use common sense to write more effec~
tive programs. Lessons 4,5,7,9,13,14, and 17 provide nurerous interest-
catching problems from non-mathematical areas. We hope each reader will
discover new interests and power as his programming skills develop.

Readers are encouraged to develop orderly (top-down, structured) pro-
gramming habits without being preached at. Your assistance is sought
in helping students develop this vital skill.

Lessons 5 and 17 present 75 micro-research problems that are easv to
understand. Micro~research problems demand thoughtful program design to
produce results with a reasonable investment of computer time. All have
been successfully programmed by students with no more than 9th grade
mathematical Skill. in many cases, the programs ''develop'' as do the ex-
amples given in the text, starting first with a brute-force attack which
could require weeks of computer time, and then gradually, as the early
results are available for examination, refinements in program design
(early trimming of logic trees) suggest themselves. Eventually, many
students devise programs that produce more results in 5 minutes than the
original program could produce in five days.

Appreciation and understanding of the value of skillful computing
techniques are developed as needed, through experience.

vi

The material has been used with Models I, II, & III TRS-80 micro-
caomputers to teach introductory computing concepts to several different
groups, including students in grades 5 through 14, adult neophytes having
no experience on computers and little math beyond the 8th grade, secretar-
ies and secretaries-in-training, a group of busy doctors, bankers and
business people, and casual adult and child visitors at a museum. Each
contributed to the presentation contained herein. Every vital concept is
presented more than once, in different environments, to aid the student’'s
comprehension. The important thing is to be sure readers also actively
program computers, not passively read the text. Passive reading, like a
spectator sport, does not develop skills. Encourage students to really
program various kinds of problems.

With the exception of Lesson 4 ART & GRAPHICS and a few special
goodies available only on the TRS-80 Level II BASIC, most of the material
presented here is applicable to any computer using BASIC.

The first five lessons form a unit. Lessons 6 through 17 may be
taken up in any order or ignored, as individual interests suggest.

Our experience suggests having two or three students per computer
produces better results than one person per computer--particularly in
the early stages.

Your authors welcome criticism, suggestions and correspondence.

Richard V. Andree & Josephine P. Andree
The University of Oklahoma

Norman, Oklahoma 73019

vii

ACKNOWLEDGEMENTS

This book has ewolved gradually over a three-year period of constant
use, revision and modification. Hundreds of teachers and students from
all over Cklahoma used the preliminary versions. Their suggestions and
reactions helped us improve and revise the material. We express our
gratitude to each teacher and to each student who participated.

Our very special thanks to:
Andrew L. Stout

Gary Capps
C. David Beatty

who :did the photographic work for illustrations, cartoons, and
chapter headings.

Suzanne M. Andree, our cover girl,
is an elementary school teacher who uses TRS-80's in her teaching.

It is impossible to express individual appreciation to all involved,
but it would be churlish to omit naming a few of those whose devoted
assistance brought it all together.

Our sincere appreciation to:

Doug Mitchell
Carolyn Thomson
Mary Roland
Nancy Dixon
Patty Porter
Tim Scovill
Rosemary Dorman
Bob Yarbrough
Richard Odendahl
Alice Shelton
Anthony Tipton
Karen Henry .
Michael Briggs
lana Pierce

each of whom has contributed far and above the call of duty.

We sincerely hope you will share their enthusiasm.

viit

EXPLORE COMPUTING with the TRS-80 and Common Sense

CONTENTS

To the READER
To the INSTRUCIOR
ACKNOWLEDGEMENTS

PART I
INTRODUCTION FOR THE NOVICE 1

If you have never used a camputer before, this introduction was written
especially to help you gain familiarity with the keyboard, the screen
and the use of , , and keys. Your camputer
will do arithmetic and display messages. The main purpose of the intro-
duction is to lift you from neophyte to beginner.

LESSON 1 MAKE YOUR TRS-80 WORK 6

Beginners start here. A four-step program shows off your computer's
speed as well as its versatility. Program instructions, PRINT varia-
tions, and additional keyboard commands are introduced.

LESSON 2 CREATING TABLES 17

Learn by programming the camputer to create tables of squares, cubes,
etc., for varying ranges and different step sizes. You are still not
an expert, but you are well started.

LESSON 3 COMPUTER-ASSISTED SOLUTIONS 33

You and your computer will solve problems that would be difficult, if
not impossible, to solve without a camputer. Nasty equations are easy
to understand and to solve with the help of a simple camputer program.

LESSQN 4 ART & GRAPHICS 47

Although this lesson is mostly fun, the ideas developed help design
camputer games and present graphical material in a dynamic format that
is easy to understand. Lots of room for fun and self-expression here.

LESSON 5 micro-RESEARCH PROBLEMS 75

Surprising as it may seem, you already have enough computing-know-how
+n enlve r\rn'h'lcme that w1l ha A~ Ad P4 M1t Fn Anneddan i dhand aam
puter assistance. A bit of eighth-grade mathematics, common sense, and
your computer are all that is needed to investigate problems that would
intimidate a college student who did not have access to a computer or

calculator.

PART I1 101

A review of the contents of the rest of the book--which may be taken up
in any order desired, or ignored, whichever serves your needs best.

IESSON 6 TAPE CASSETTES 103

As you develop longer programs you will wish to save the program on
magnetic tape using the cassette player that came with your camputer.
Tape cassettes are a standard way of trading programs with other com-
puter owners. Cassettes are used for storing data and results as well
as programs.

LESSON 7 GAMES & PLAYTOYS 109

Everyone loves to play computer games. Use your own ingenuity to create
new game programs and to improve programs written by others.

LESSON 8 EDIT INSTRUCTIONS 123

A sericus programmer needs to know more about the powerful EDIT instruc-
tions available on your computer. This is where you will find answers.

LESSON 9 SIMULATICN 129

College courses are given on SIMULATION, but the basic philosophy
involved is easy to understand and not difficult to program. This
introduction removes much of the mystery and enables you to program
your own similations and computer games.

LESSON 10 TYPES OF VARIABLES 143

Single precision floating point Double pregision floating point
Integer variables (uses and limita- String variables
tions))
Subscripted variables Arrays and matrices
LESSON 11 TIPS AND ERROR MESSAGES 150

Experience may be the best teacher, but you might as well profit fram
the experience of others.
Tips on using TRS-80 BASIC:

Saving memory

Speeding up program execution
Error messages and what they tell you

LESSON 12 EXTENDED PRINT INSTRUCTIONS 159

You may never need more PRINT instructions than those introduced in
Lessons 1, 3, 4. However, your microcomputer has several extra goodies
ready to meet your needs if and when they arise.

LESSON 13 MORE GRAPHICS 165

Lesson 4 introduced the most commonly used graphics, but your TRS-80
has a number of convenient extras you may wish to JAinvestigate.

LESSON 14 STRING AND LOGICAL QOPERATORS 169

If "word processing' interests you, you should investigate the TRS-80
STRING and LOGICAL operations more carefully. Two SENTENCE GENERATORS,
A BUZZ-WORD PROGRAM, A ROBOT OOUNSELOR and a fairly secure CIPHER PRO-
GRAM, are included, as well as a more detailed examination of the
LOGICAL OPERATORS: AND, OR, NOT.

LESSON 15 WHERE TO IOOK FOR ADDITIONAL INFORMATION 180

Tell "Greataunt Martha" you would much rather have a subscription to
one of these magazines than a box of handkerchiefs for your next birth-
day. You may get both.

xi

LESSON 16 ADDITIONAL BASIC 184

Additional BASIC instructions are available if and when you need them.
Turn here if you need to do something we haven't discussed.

LESSON 17 MORE micro-RESEARCH PROBLEMS 188

Lesson 5 presented 17 micro-RESEARCH PROBLEMS you could explore with
the computing expertise available then. Here we discuss programming
practice, design and improvement of programs using easy-to-follow
exampiles. Lesson LY then completes our collection ot seventy-tive (75)
choice micro-RESEARCH problems, each worthy of exploration, expansion,
and investigation. This collection contains a wide variety of proposals
including several arithmetical explorations, Haiku poetry, logical
decisions, calendar problems, dart and target games, loan and interest
programs, treasure hunt games, caricatures, a speech timer, puzzles,
recursive functions, polygonal maps, medical emergency prampter, num—
ber theory, lattice problems, magic prime squares, graphs, monkeys at
typewriters, amicable and sociable numbers, dance partners, and the
notorious eight queens problem. They are here for your entertainment
and education. Enjoy them.

A FINAL WOHD from your authors 214
INDEX 215

Page 0-1

INTRODUCTION

FOR THE
NOVICE

We assume you have no knowledge of computing, but are interested in
learning. The way to learn computing is to compute!

Just as in golf or bowling, it is more helpful to read about comput-
ing after you have tried your hand at the game enough to have a feel for
its rudimentary swing. So let's begin.

Let's start by using the computer as if it were a pocket calculator.
It is a waste of the computer's power, but it will help you become famil-
iar with the keyboard. Have someone turn it on for you. Depress the

white key a couple of times.

The keyboard is similar to a typewriter. If you wish to use 1
like = or + from the top row of the key, depress the

key. The computer automatically types capital letters, as shown on the
keys, so do not use the shift key unless you wish a symbol from the top
half of a key.

Don't try to "read'" this introduction-—the way to 1e_earn ‘cquutil;g
is to compute, so wait until you have a TRS-80 at your fingertips beiore

continuing.

Page 0-2

Depress the following keys:

1. [BREAR [This {ntoenn runts the computen
case LT was douzg something.)

{m
L

2. [ENIER (This is the key you will use to
send your typed message to the
computen.)

3. Now type: PRINT 3+5+9-2 |ENIER]

TUE CuupULEl SHUULU LESPULU WILH LOE Sum 1O,

Your CRT-display will now show:

READY

>PRINT 3+5+%-2

15 The > ngbo‘_ indicates the comp(.felr.

READY is neady to receive your typed
insthuction.

\ / The - shows where the next typed

charnacter will appear.

Should you wish to clear the screen, depress the - button, but there
is no need to do so wmless you wish it cleared. You may also type
s to Clear the Screen.

What will the answer be if you type ?

PRINT 4+9 - 2 [ENTER] " Most computerns use the symbols
* forn multiply and / for divide.
Try it and see.

Forecast the result of each of the following, and then try them out
on your TRS-80.

PRINT 4/3 Note § is zero on the top now.

0 {5 the Letter "oh" which s on
PRINT 9%5 the second now. Your computer will
PRINT 36p%18 m*m[be unhappy if you confuse them.
PRINT 1/2 + 0.6 Thy 4L once and see for yournself.
Let's try some hard problems :

1§ you type 774%817 |ENTER| without
PRINT 774*817 PRINT, the computer will do the
PRINT 79276/511017 [ENTER] arithmetic but will not print on
PRINT 317+1.41421 - 246+3.14159 siore he nesult.

Page 0-3

The <:==1=_j key is another important key for those of us who occasion-
ally mistype. It will backspace and erase one character at a time. If
you hold down the key while you depress|<&==| the entire line
you typed will be erased. Try it and see for yourself.

Tope Note the " " marks.
PRINT "HELLIO ™ @] What happened?
Type

DPRINT "'SALUTATIONS ' | ENTER:
PRINT "MY NAME IS your name' | ENTER

Now let's try something different. This time we shall put a ''line

number" in front of each statement. First type NEW ENTE
Then type:
199 PRINT "HELIO" ENTER

.
119 PRINT "SALUTATIONS ' "ENTER
12¢ GOTO 1¢p [ENTER|

That isn't progress, or is it? Well, nothing happened. Did it? Yes, it
did, but it happened inside the computer, where we can't see it, not on
the screen.

Type The computer should List the three
ey statements you typed in. Check them
LIST | ENIER | 1o be sure they were properly entered
with a space afler each numben
and " " in the proper places.
Next type
RUN

After a bit, depress the | BREAK key to get control again.
Depress the button.
Type LIST [ENTER]
and the computer should respond by displaying:
109 PRINT "HELIO"
119 PRINT “'SALUTATIONS *'
12¢ GOTO 199
READY

>

It is perfectly reasonable to change these instructions by retyping them.

Page 0-4

Type
1pp PRINT "HELLO your name'; Note the " " and the ;.
110 [ENTER] This eohates the instruction n 118
as you will see when you type LIST | ENTER] .
Now type
LIST

The screen should show
109 PRINT "HELIO your name'';
120 O 166

Note that instruction 109 was changed and instruction 119 was deleted,
but instruction 129 is umchanged.

Now type

RN [ENIER]

Let us write another program. Begin by depressing [BREAK] tn get the
computer's attention. Then type:

NEW l@@
1¢¢ X'= 1980
119 Y = 365
120 Z = X#Y

139 PRINT X; %
e

The above program sets X=1980, then sets Y¥=365, then forms the product of
the values of X and Y and stores it in a location called Z. Instruction
13p then prints out the values of the numbers stored in locations X, Y,
and Z. Instruction 149 then sends the computer back to instruction 109,
which repeats the entire process.

Depress the EF.EAK! key to stop the computer.

Page -5

SUMMARY OF INTRODUCTION

Let's see what you have learmed thus far...

To get the computer's attention, depress key.

Once you get the computer's attention, which it indicates by
displaying

READY

>

on the CRT (TV screen), you can work arithmetic problems involving +, -,
*, / (add, subtract, multiply, divide) by typing PRINT followed by the
arithmetic problem. .

When the problem is displayed the way you wish it, depress
to send it to_the computer. Remember, nothing goes to the computer until
you depress [ENTER] .

Oh, yes. If you make an error in typing, just depress the { <== f key
to backspace and erase. You can do it anytime before you depress the
[ENTER key.

To clear the screen, depress the key, followed by [ENIER] if
the >_ symbol is absent, or type CLS .

You need to be careful about confusing zero, 9, and the letter oh, O.
Also, 1 and L are distinct.

You have written a set of instructions to the computer, and the computer
has followed these instructions.)

Now that you no longer fear the TRS-80, let's begin our lessons.

Page 1-1

So you don't know anything about computers or computing. Well, this
won't make you an expert, but let's see what we can do.

Someone has connected and assembled the TRS-80 and turmed it on for
you. The screen says something on it. I don't know what because I don't
know what was done last.

If your TRS-80 has just been turned on, the screen may display
- — The TRS-80 can set aside memory
MEMORY SIZE? gorn proghams wrnitten {in Languages
other than BASIC, but we shallf not
do s0.

If so, just depress the white key. The screen will then display
an additional message, which should end with

READY
>

The word READY is your clue that the computer is ready to accept
instructions from you.

rage i~z

To clear up everything...

Depress the key (upper right).
The computer will add
/

below whatever was on the screen. Now you have its attention. The »>-
symbol below READY means the TRS-80 is waiting for you to type in an
instruction.

Type NEW and depress the white key.

Everything on the screen disappears—also any program inside disap-
pears too—the slate is wiped clean for you, and the computer displays

NOTE: Nothing goes from the screen
fo the computern until you depress
the m key.

Now type 1§ you mistype, just use ﬂte
button to_backspace and erase--on
21 X =1 depness [BREAK] and stant the en-

The screen should now show tire Line over.

READY
>21p X=1
>——

The symbol >_ indicates the TRS-80 is ready to accept another instruction,
so type '

22p PRINT X; [ENIEH Ton't fonget the ;
The screen now shows

(—~__—:.""""_____
READY

> 2P X=1
>22@ PRINT X;
>

Page 1-3

Continuing, type
23 X=X +1

249 Q01O 220 “’T’ Note that GOTO is one word.
To make sure the program you typed is really there, type
LIST

Your program will then be listed below whatever is already on the screen.

READY
>210 %=1
>22@ PRINT X;

e3P A=A+L
>24@ GOTO 228
>LIST

218 ¥=1

22@ PRINT X;
238 X=X+1
2u@ GoTo 22¢
>

Note the absence of the > symbols on the LISTed program, indicating the
camputer typed it to you.

Now you are ready to run your first numerical program.

Type RN and watch what happens.

You probably have a Level II BASIC, but if not, read the right-hand
colum instéad of the left-hand colum below.

Level II BASIC : Level I BASIC

If you hold down and If you depress the i [key on
depress , the program will halt left edge of the keyboard, the
until you depress another key (with~- program will halt whatever it is
out). Try it a few times doing, as long as you keep the
and see. []key depressed, but will con-

tinue whenever you let it up. Try
it a few times and see.

In either case, if you wish an exteaded halt, depress the key.

(Do so now.) Not only does the TRS-80 stop, but_it even tells you which

instruction it was exscuting when you depressed . If you want

the program to continue, simply type: CONT [ENIER] and it will continue.
ote that in Level I BASIC, if the program is typing a number, say

425 or 438, and runs out of line, it prints part of the number at the end

of one line and the rest of the number at the beginning of the next line.

The output is difficult to read, but the data is printed quickly and the
screen displays a lot of data at once.

Page 1-4

Level II BASIC is a bit more sophisticated and will leave the end of
the line blank, rather than break a number, but it still changes the
colum spacing as the number of digits in the number changes in order to
get as much output on a line as is convenient. The ; at the end of

220 PRINT X;
is what controls the ''packed spacing'' of this output.

Depress

Type RN

to see what is meant.
let's look at our program again.
Depress the [BREAK| key and the key.
Then type LIST

The computer should respond.

NOow I Mysrt
ADD 1 7D \WHATEVER
NMUMBER IS N

STORAGE LocATION X
AND STORE THE

FSLIST
219 X=1
2@ PRINT X ;
230 X=X+1

| 2up GoTo 2zp
i READY ?

>

Instruction 239 X=X+1 looks odd.
If it were a mathematical equation, it
would have no solution. It is not a
mathematical equation; it is an in~-
struction to a computer.

X=X+1 This instructs the computer to '"Take the number in the storage
location called X, add 1 to it, store the new result back into
the storage location called X."

X=%+1 could be more reasonably written as X«X+l. However, it is almost
universal computer practice to use = rather than <+ , probably
because old fashioned typewriter keyboards contain = not +

let's change instruction 22¢ PRINT X; by changing the semicolon to a
comm. To do this, we simply type

220 PRINT X, N
If you now type

LIST [ENTER]

the new program will be displayed below_the LIST instruction. Please do
s0 before continuing. Then type RUN .

Page 1-5

Note that now our program prints out its values in four nice columms.
Isn't it impressive?

You may wonder what would happen ke ither the comma or
the semicolon after PRINT X. If so, experiment a bit and find out.
Depress to get the computer's attention.

Type LIST

Type 22§ PRINT X

Type LIST [ENTER]

e T D1
et

3Ff v
ek

-~ A 4 T v
Cu GAG noT

Depress | BREAK to get the computer's attention.

Do some other exmeriments on your ocwn, For eyammle change QBQ X=X+1 to

=0 SO LS oxperlrienl 2 your Owir, Mapae, Chall AT

1=
23p X=X+.5 or 23p X=X+2 and see what happens when you type

RUN [ENTER]. KEEP YOUR ™5
) COKES AWAY?

Rememmber, about the only thing you SPILLS ARE
might do that would hurt the TRS-80 \\ HAZARDOVS]
would be to drop part of it or spill N\ To My HEALTH,
a beverage over it. Otherwise, it is
pretty rugged, as long as you don't
open the case.

A Word of Warning:

It is always well to check that you have typed what you think you
have typed before depressing the key... In most cases it is
easy to correct an error by simply retyping that statement number and
instruction, but if you should happen to have typed LLIST
instead of LIST [ENTER] you may have a problem you will need to call
your instructor to fix. LLIST is also a perfectly valid instruction—
it tells the TRS-80 to list your program on the attached line printer—
but if your TRS-80 has nc line printer attached (and turned on), the
commrter will not accept another instruction until it executes the im-
possible instruction LLIST . To all appearances your computer
will "lock-up." Your instructor can get you out of this difficulty
without having to turn off the computer. If you are without an instruc-
tor, open the small door on the back left top side of the keyboard, and
press the button inside.

10

Page 1-6

I1f your TRS-80 has "keyboard bounce' (printing multiple letters on one
keystroke), it means the contacts are dirty and no one inserted the "key-
board fix" program when the TRS-80 was turned on. Ask for help if you
have excessive troubles with keyboard bounce. Each TRS-80 has a keyboard-
fix tape and manual packed with it. If you do not have an instructor,
consult the manual that accompanies the keyboard fix tape.

HAVE FUN ! DI

SUMMARY OF LESSON 1

Let's see what you have learmed thus far...
Depress key to get computer's attention if it is busy.
Type NEW |ENTER| to clear out everything and start over.

Number each instruction and put a space between the number and its in-
struction.

(217.3; you fail thj: ghumbmban Anstrhuction the TRS-80 will perform that in-
struetion rnig en, but not stone it for Latern use. T 3

PRINT X, ¥, T, L LENTER].) : Y pe

You can erase errors by using the <= | key as a 'backspace'" if you hawve
not depressed . . g

If you have depressed | ENTER| it's easy to change instructions, merely
retype the number and new instruction. You may insert additional in-
structions between those already in use by using statement numbers

that fall between those already used.

Holding down | SHIFT | while you depress | <s= | erases the entire line.

11

Page 1-7

The symbol >- indicates the computer is ready to receive typed in-
structions from you.

If the »>. symbol is not there, depress ENIER| or [BREAK | [ENTER] .

In the PRINT instruction, the use of a semicolon ; between or after
variables will give a 'packed format', while the use of a comma,
produces four colums. No symbol gives one output per line (wasteful).

You may halt the output (temporarily) by depressing them if you
have a Level I. If you have a level II, hold down and depress

e eima Powerreni o
1 WL‘*VW any “"J il e L J.u_::.ux D WL LIS .

LIST - produces a listing of the program currently in storage.

Among your output you may discover some strange-looking numbers, such as

1.23456E+Hp8 or 2.22222E-¢5. The computer displays only six significant

decimal digits, and shows the magnitude by appending an E+nn or E-nn to

indicate the power of ten by which the preceding fraction should be

maltiplied.

Thus

1.23456E+08 = 1.23456%10708 = 123456p00. (But nrecall this may be in
ernon by £5 in the seventh
place, that is, by £5¢§.)

2.292005-(05 = 2.22222+197° = .QQPQ222222 (+.00000000005)

3.45678E+11 = 345673000000

-4 . 68(24E~-Q7 = -, pPPpPp468024 »

This convenient notation, a cousin of the so-called ''scientific notation)'

is used on most modern computing systems, including many hand-neld cal-

culators.

PRINT X,Y;Z;T will print values of X Y Z T, spaced as shown.

[CLEAR] or [C][L][S][ENTER] will clear the screen.

[SHIFT] [==-] will produce double size letters on the screen (see
problem 13).

Usually is depressed just before using [SHIFT] [==>] .

12

Page 1-8

PRACTICE SESSION 1

Probiems 1 to 6 make use of the program discussed in the text. Start by
typing it in, LISTing the program and RUNning it to check that it is
functioning properly before you start the problem set.

depress !EREAK[key, then type:

NEW [ENTER]

21p X=1
220 PRINT X; [ENIER]
23) X=X+ 1 [ENIER]
240 COTO 229

[ENTER]
LIST [ENTER|
RUN [ENTER]
CONT [ENTER)

Now you are ready to start the practice set.

1. Type in the program (using 229 PRINT X;) first given in this lesson.
Run it a few times with 23p X=X+l replaced by each of the following
in turn.

230 ¥X=X+.5 [ENTER]
or 23p XX+ 5 [ENTER
or 230 X=X+ 2 ENTER]
or 230 X=X+.1 ENTER

each time you change instruction 23@. Note any peculiar behavior and
think about it a bit. Discuss it with your instructor or a fellow
computer buff.

13

3]

Page 1-9

In the program above, replace 219 X=1 with 21§ X=7 and rerun
the program.

Yorecast the output of the program.

219 X=1

22 PRINT X,
230 X=X+X
249 GOTO 220

Try it out and test your forecast. What about colum spacing?
The error message 7?0V ERROR IN 239 indicates that the arithmetic
operation in instruction 239 produced a rg§ult too large for the

B e e T Lo TR S L, [- e - . . -
e e e aavimanaws AeAA) AGAL BGA LLGL LU TTWLIIGLL LD A WWILASL

larger than the total number of atoms in the solar system.

What output would you expect the program of problem 3 to produce if
249 GOTO 22¢ were replaced with 249 GOTO 2107

Try it out and verify your forecast, or explain why the computer did
not do as you forecast.

What would happen if you used 249 GOTO 23p?
Be sure you understand these points.

Let's try another program. Depress [BREAR] if needed. Then type
If you know that most computing systems use * to indicate multipli-
cation, you should be able to forecast what the following program
will produce.

219 X=2
220 PRINT X,
23) X=X*X

249 GOTO 220

Make a forecast. Then run the program. If the results are unexpect-
ed, reread problem 3.

Replace instruction 22¢ PRINT X, in problem 5 with 22¢ PRINT X, X+5
and see what happens. Before running the program, iry to forecast
the output of the first 5 lines.

Try some experiments on your own. Don't be afraid--you are not apt
to harm the TRS-80 computer providing you don't eat or drink in the
computer room and don't move or bump it while it is connected. Be
sure to depress and type NEW [ENTER|before you start a new
program.

The new {nsivwctions used in problems §,9,10 will be discussed

in detail Raten. Now all you need to know is that ,

IF RND(@)<.@5 THEN CLS <4 pronounced "I1§ 'nandom number

i8 Less than .05 then clearn the screen.”

14

10,

11.

12,

13.

Page 1-10

let's try another program. Depress [BREAK| if needed. Then type
NEW [ENIER.

Level 11 BASIC Level T BASIC
19 PRINT @ RND(19@@), "HI type youwr name';
15 TIF RND(@)<.p5 THEN CLS [ENTER] {gugg“{‘g‘;gl% o~
2¢ GOTIO 19 M Lace with
RUN h[ﬂ and it
wilL behave
sdmilarly.

Experiment a bit by changing instruction 15 IF RND(@) < .P5 THEN
CIS to one of those suggested below.

15 IF RND(@) <.¢l THEN CLS
or 15 IF BND(@) <.1 THEN CLS [Don't forget to depress
or 15 IF BRND(@) <.5 THEN CLS each time you change an Ain-
or 15 (LS struetion.]

Try combining the program in the text with that of problem 8, with
instruction 20 omitted, giving:

19 PRINT @ RND(1¢99@), "HI Zype your name';

o1 }IglRND«D) < .05 THEN CLS (7ype 7¢ [ENTER| to delete insitn. 2§.)
229 PRINT X;

230 X=X+1

249 QOT0 220

Change the instruction 249 GOTO 22¢ to 249 GOIO 19 in problem
10. Forecast the output before you RUN the program. If your fore-
cast was not valid, try to find a why before reading problem 12.

Delete instruction 21¢ X=1 by typing 21¢ [ERTER. When| >_
appears, insert 5 X=1. Type LIST [ENIER) to check your new pro-
gram. Before you RUN the program, try to forecast the result. Why
is it different than that of problem 11 which used the same in-
structions, but placed differently in the program?

If you have a level II BASIC, please try the following sometime
when you have a program that does not contain CLS in the computer.

Depress REA if needed.

Depress [CLEAR

Hold down and depress

Type LIST {ENTER)

Notice that your program is listed in characters twice as large as
before.

Now type RUN [(ENTER!

The output is also double size. This is handy if you are using the
computer with a class or group. Double size will last until h

15

14.

16,

Page 1-11

key is depressed or wntil you execute a (instrction. To get the
regular size back, depress| BREAK | and then | CLEAR].

If you fail to clear the screen before you depress | SHIFT] ,
your double-size letters and numbers obliterate hall of the material
on the screen to make room for the larger letters, but any material
printed after that will be complete.

Have fun. Make your own variations.
Forecast the result before you run each program.
Try NEW [ENTER |

210 X = 5 ENTER
220 PRINT X; %+5; X+1p; X+15; | ENIER
230 X = X+20
240 GOTO 220 | ENIER
Now investigate what happens if you omit the final ; in line 229.

Wh;t happens if you change the semicolons to commas in line 229
(with and without the final comma)?

Can you write a program that will start with X = 1 and count by
threes, with exactly four numbers on each line? There are several
correct ways to write such a program, so when you are finished,
compare your program with that of a friend who also has a computer.

Try the following program.
NEW |[ENIER
19p X = 2
11§ PRINT X, R«X, X#X*X, X*X*kX*X -l:ﬁi:;'
120 X = X+1
139 GOTO 119 | ENTER
RUN tEN'IER

16

Page 2-1

In our first lesson, we learned to make the computer
count, using various step sizes

to print in different formats, depending upon whether we used
PRINT X

or PRINT X;

or PRINT X,

We also learned the essential handling of the computer using ,
[ENTER] and [<s==]''backspace" keys

and to type NEW [ENTER| to clear out old program and data, ready to
accept new ones. .

We rewrite the counting program using a slightly different philosophy
below (for reasons you will soon appreciate.) We shall use B = begin-
ning value, S = stepsize by which X will be increased, and F = final
value, after which we wish the computer to stop.

NEW [ENTER]
2 b=l [ENTER)
4 s=1 [ENIER]

6 F=100 [ENIER]
190 X =B

11¢ PRINT X;

129 X = X+8

139 IF X < F THEN 119

Instruction 139 examines the current value of X and if X is less than
¥, sends the program back to instruction 11¢. If you feel at all in-
secure about this program, put it on the computer and RUN it before
continuing.

17

Page 2-2

The real advantage of this technique is that we can easily change
the step size by changing instruction 4 to 4 8= .5 [ENIER]

indeed, we may rewrite the program slightly to input values of B,
S, and F from the keyboard instead of assigning them in instructions 2,
4 and 6.

We do so next, using the instruction INPUT B,S,F . When the computer
executes this instruction it will display a question mark on the TV
screen and wait for you to type in three values, separated by commas.

The values will be assigned, in the order typed, to variables B,S, and F.

Theae latterae wore nead ac +har awa +hna fwisbial Tabdbamn ~f dlon olocn—ae

Beginning value, Step size, and Final value. o e

The revised program is:

NEW

99 INPUT B,S,F

100 x=B [ENTER]

11¢ PRINT X; [ENIIR

120 ¥=X+5 [ENTER]

130 TIF X<F THEN 110 [ENTER]
149 PRINT [ENTER]

159 DPRINT "END OF TABLE WITH B,S,F="';B;S;F
169 PRINT : PRINT
179 GOTO 9¢

Again, note the use of instruction
13p IF X<F THEN 119,

As long as X is less than F, the program loops back to 11¢ PRINT X;
but when X 2F, the program continues with statements 14, 15¢, 16¢, and
179 which upspaces the printed matter, prints an END OF TABLE message,
and then sends the computer back to 99 for a new set of input values.

Instruction 15@ PRINT '"END OF TABLE WITH B,S,F =';B;S;F is particularl
interesting. It combines the printing of a message in quotes, " "
with the printing of the values of the variables B,S and F, which must
not be included within the quotes.

Try this program on your TRS-80 before continuing., Begin by typing
RON [ENTER] . When a ? appears on the screen, type 1, 1, 109 [ENIER].
Watch the output. VWhen a ? appears at the bottom of the screen, type
2, .5, 19 |ENIER] or same B, S, F values of your own choice.

Let's write a program to create a table of values of
X %2 x3 xt

18

Page 2-3

When our program is run, it will accept values B, S, F from the keyboard.
It will set %B and print out values of X, X2, X3, X4 for that value of X.
Then the instruction X=X+S will add S to the current value of X and
print another set of X, Xz , XB, X4 for the new value before adding
another S to the current X.

This loop will continue until X exceeds the value of F (X>F) in which
case the program will PRINT a blank line (169) followed by (17¢) an
END QF TABLE message.

One way to do it is:

NEW [ENTER]

1¢@ PRINT "PLEASE TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE ";[ENTER]
1¢5 INPUT B,S,F

119 X=B [ENTER]

129 Y=X*X

13¢ DPRINT X, ¥, XY, Y*Y

149 X=X+S

159 IF X< = F THEN 12p |[ENTER]

16¢ PRINT

17¢ PRINT "END OF TABLE'

RUN [ENTER
Let us examine the program in detail.

The instruction

15 INPUT B,S,F
causes the computer to type a ? and wait for the user to type
three values separated by commas and depress the [ENTER]key.

Instructions 109 and 195 can be combined into a single statement, but we
shall not do so yet.

Instructions

119 X=B

129 Y=X¥X

13p PRINT X, Y, X¥Y, Y*Y
do just what you learned to expect in lesson one. Note that by
using commas between output, we obtain four neat colums. Also note
that the use of Y=X*X saves half of the multiplications that would
be required by a
PRINT X, X*X, X*#X*X, X*X¥X*X since Y*X = X3 and Y*Y = X°.

The instruction

149 X=X+S
merely increases the current value of X by the amount in S.

19

Page 2-4

Next we use the branch instruction

159 IF X<=F THEN 120
This instruction compares the values stored in X and in F. If the
value in X is less than or equal to (<=) the value in T, the pro-
gram loops back to instruction 12¢. Otherwise the instruction which
follows instruction 150 (namely 160 PRINT) is executed next.

16p PRINT
179 PRINT "END OF TABLE'

Instruction 160 merely prints a blank line, while instruction 179
prints the message indicated in quotes. If after entering the pro-
gram. vou depress [CLEAR| tvpe LIST [ENTER] , the computer display
will show

A LIST \

1¢¢ PRINT "'TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE";
1¢5 INPUT B,S,F

119 X=B

120 Y=K*X

13 PRINT X, Y, X*Y, VY

4P ¥=¥4S

150 IF X<= F THEN 120

16 PRINT

179 PRINT "END OF TABLE"

¢ _
1f you now type RUN , the computer will respond

> RUN
TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE?

If you respond with 1,1,5 , the table of X, Xz, XB, <& gives the
below results:

[1 1 1 h
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
END OF TABLE
READY
>
= /

1f you type RIN again, the computer will again respond with
TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE?
the screen will fill up and ''scroll out

and if you type 1,.5,8
the top'' displaying

y

20

Page 2-5

i.5 2.25 3.375 5.0625)
2 4 8 1

2.5 6.25 15.625 39.0625

3 9 27 81

3.5 12.25 42.875 150.963

4 16 64 256

4.5 20.25 91.125 410.963

5 25 125 625

5.5 39.25 166.375 915.963

6 36 216 1296

6.5 42.25 274.625 1785.96

7 49 343 2401

7.5 56.25 421.875 3164.06

8 64 512 4096

END OF TABLE

READY

> _

So, you see our computer works with fraction values as well as with
whole numbers.

Note that (2.5)4 = 39.0625 which is correct, while for (3.5)4 the
computer prints 150.0683 instead of the correct value 150.0625. This is
because, although the computer actually contains more than six digits of
accuracy internally, it only displays six digits of accuracy. This will
prove to be both a blessing and a curse, as we shall see.

If you are using a TRS-80 with Level II BASIC, it is quite feasible
to obtain additional accuracy on it by declaring X and Y as DOUBLE PRE-
CISION variables, but to do so now would only distract our learning pro-
cedure. Problems in "limited precision" and "rounding” also occur in
double precision arithmetic--although not as frequently.

Let us type another set of values into our table. First, of course,
depress [CLEAR! and type RUN [ENTER]. When the computer prompts you,
type @,.1,1 [ENTER|. You should obtain:

?) @ 9

1 .91 1E-¢3 1 E-p4
2 .4 8E-03 1.6E~93
.3 .99 .27 8.1E-03
.4 .16 .64 0256
5 .25 125 . 9625
.6 .36 .216 .1296
7 .49 .343 .2491
.8 .64 .512 . 4096
.9 .81 729 .6561

21

Page 2-6

Let's modify our program slightly by adding another instruction,
1p6 CLS.
To do so

Depress [DREAR] and {ENIER] (if necessary) to

obtain | >_ on your screen and then type
108 CLS

Next, depress [CLEAR] and type LIST [ENIER] to view the current program,
which should start

1¢¢ PRINT "TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE";

e TAVENT W v v e
- P Iy

196 CLS
119 X=B

with the new instruction 1¢6 tucked properly between instruction 15 and
110,
Isn't that neat?

The instruction CIS is called clear screen. It clears the screen
for you whenever it is executed. Try several B, S, T values of your own
choice. Note that if you use B, 8§ F=¢, .1, 5, the table scrolls off
the top before you can read it. You can stop this at any time you wish.

In Level II BASIC In Ievel I BASIC
Hold down and depress Depress and hold down the key
to stop the program. To continue To continue the program, release

the program, depress witbout the key.

shift (or most any other key).

If you prefer, depress |BHEAK| to stop the program. Type CONT

to continue.

22

Fage a—{

It would be nice to have headings at the top of the colum of X,
Xz, XB, X4 we are printing. It is not hard. We add:

198 PRINT "X SQUARE CUBE 4-TH POWER"
So now our program reads:

1¢9 PRINT "TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE'";

195 INPUT B,S,F

106 CLS

108 PRINT "X SQUARE CUBE 4-TH POWER'
119 X=B

120 Y = X*X

139 PRINT X, ¥, XAY, Yy

149 X=X+8

159 IF X<=F THEN 120

169 PRINT
179 PRINT" END OF TABLE"
Type LIST

to list your program and see if it agrees.

Then type RUN

and observe the output when you enter B, S, F=2, 1, 9
It should be

X SQUARE CUEE 4-TH POWER
2 4 8 16
3 9 27 81
7 49 343 2481
8 64 512 4096
9 81 729 6561

If your headings do not seem to be lining up properly, change the spacing
inside the quotation marks in the instruction

198 PRINT "X SQUARE CUBE 4-TH POWER'
until it pleases you.

Note that the instruction

159 IF X <= F THEN 120

makes a decision by comparing the values of X and F. (IF X <= F THEN
129) The IF instruction produces a branching in the path of the in-
structions, and takes the branch path (loop) instead of continuing
on if the given condition is satisfied. This is indeed a powerful
idea.

Try it again with B, S, F = 2, .5, 7.

23

Page 2-8

As an experiment to test your understanding, let us insert another in-
struction.

195V = Vv (Note: The 148 |ENTER| deletes instruction 108, which
PO =1 would have printed erroneous headings as previously
1p8 entered.)

You should forecast the output of the new program and insert new
headings in instruction 1§8 before running the program.

1p9 PRINT "TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE';
1p5 INPUT B,S,F

196 CLS

190 {inoe/L new nenaings nene. |
119 X=8B

120 Y = X*X

125 V = VxY

139 PRINT X,Y,XHY,Y*Y

1490 X=X+8

159 IF X<= F THEN 12

160 PRINT

17¢ PRINT' END OF TABLE"
The actual output for B,S,F = 2, .5, 1§ is:

2 16 32 256
2.5 39.0625 97.6563 1525.88
3 81 243 6561
3.5 150.962 525.2192 22518.7
4 256

1024 65536

As you experiment a bit, you will find the computer occasionally
switching to an odd-looking number format, perhaps

1.23456E+8

This is called the "exponential"' or "scientific'' notation. The E+08
means to multiply 1.23456 by 1¢° (i.e., move the decimal point 8 places
to the right).

Similarly 1.23456E-04 would mean to multiply by 1¢’4 (i.e., move deciml
point 4 places to the left).

1B653E+12

"

Ny

4, 421653p0@p@PP (with a possible error of +5 in the 7thplace)

7.65432E-08 =.000pP@@T65432 (with a possible error of +5 inthe 14th place)

24

fagte S7Jv

If you are familiar with trigonometry and have Level II BASIC, you
may wish to substitute.

1g8 PRINT "X, "SIN(X)", "COS(X)", "EXP(X)"
13¢ PRINT X, SIN(X), COS(X), EXP(X)
There is no need to retype the entire program; Jjust get

READY

>

and type in

198 PRINT "X', "SIN(X)", "COS(X)", "EXP(X)"

139 PRINT X, SIN(X), 00S(X), EXP(X)

Run the revised program.

Note: we obtained the spacing desired in statement 108 by enclosing
each column heading in quotation marks and separating the colums with

comras, just as we did in statement 13@ which prints the values. This is
easier than using just one pair of quotation marks.

23

Page 2-10

SUMMARY OF LESSON 2

What have you learned in Lesson 27?
Our new program extended your knowledge of the PRINT instruction to in-
clude the possibility of printing several different values from the same
instruction, and of doing computation inside of the PRINT instruction
itself.

You really do have a lot of computing power at your fingertips now.
KEYBOARD COMMANDS
Enter line from screen to computer.
CMear the screen

TRS-80, stop what you are doing and pay attention. Type
OONT to continue.

Backspace and erase.

Erase entire line.
[I] (for Level I)} (Release the m key, to continue.)
) STCPR!

SHIFT|[@] (for level II (Depress any key, without using

VSHITT] o condinue.)
NEW Erase current program and data, clear screen and
pay attention.
RN [ENTER] Run the program now in memory.
LIST E:: List the program now in memory.
SHIFI‘! s <l To get double-sized output ; [CLEAR] to return to

single size.
BASIC INSTRUCTIONS DISCUSSED THUS FAR

X=B } Computes value on night and stones

it in the Location named at Left

Y = A¥X¥X + 4.6%X - 3,172 0f equals sign.

PRINT X,Y;Z; T,X*Y Prints values of variabfes on
PRINT N: "VALUES OF X TOTAL": ¥ exp/teéé»&)nA LﬂdeQarted Also p/u.n.té
’ ’ any message given {nside of quota-
tion maiks. Semicolon is for
nvow spacing, comma for wide

J spacing.

26

Page 2-11

Types message in quotes, gollowed
by a question mark and then accepts
values from keyboard and sztones
them 4in Location indicated.

INPUT "TYPE X VALUE"; X

Compares values of variables X and

IF X <=F THEN 120 F. pz(g X vakue is Less than o
equal to F value, then {nstruction
12¢ 48 executed next. Otherwise,
the instruction folLlowing the IF
s thuction L4 executed next.

add
subtract
multiply
divide

~ ¥ 1 +

27

Page 2-12

PRACTICE SESSION 2

As in Lesson 1, you should begin by typing in, listing, checking and

running the main program under discussion in this Lesson, namely:

1900
105
196
108
119

PRINT "TYPE BEGINNING VALUE, STEP SIZE, FINAL VALUE";

INPUT B,S,F

CLs

PRINT " X SQUARE CUBE 4-TH POWER"
X =B

Y = X*X

PRINT X,Y, X*Y, Y*Y

X=X+8

IF X <= F THEN 12p

PRINT

PRINT END OF TABLE"

Run the textbook program given above.
Change instruction 149 X=X+S
to 14p Z=XK+S
and run the program. (Do you need to also change instruction 1487)

What happens if the program in the text is given B,S,Fas @, 2, 7
so0 that the step misses F = 7? Does it stop at 6 or at 8?

a’. Write a program of your own to create a table of values of
X X3 (X+3)2
for X=1,2, 3, ..., 1p
b. Modify your program so it will accept input values B,S,F and
print out 9
X ,X+3 |, (X+3

for X values from B to F in steps of S.

Write some programs of your own choice using the instructions we have
discussed.

Write a program to INPUT the radius R, of a sphere, and print
out on one line the radius, volume and surface area of the sphere
using

Volume = 3 Surface Area = 411R2

(Where = = 3.74159...)

28

10.

11.

13.

Page 2-13

. Modify your program of problem 5 to INPUT values: B, S, F

{for Beginning value, Step size and Final value) and PRINT a
table of values of the radius, volume and surface area of spheres
of radius B, B+S, B+2S, B+3S,...,F.

. Write a program to convert Fahrenheit temperature to Celsius.

=3
=g (F-32)

. Write a program to convert temperature in degrees Celsius to

Fahrenheit temperature.

F=%(C) + 32

uj©

. Rewrite instruction 198 in the program that produces powers of

nunbers, so that the headings are valid after instruction 125 Y = Y*Y
is also inserted. Check it by using B, S, F=2, 1, 4

If you have LEVEL II BASIC, try adding the following statement to the

program that makes tables of x, X2, xB, x4

5 DEFDBL X, Y
and RUN the program with B, S, F =2, .5, 6

Note that we no longer have problems with 4.54 = 410.0625 being
rounded to 419.063 since we are no longer restricted to 6 decimal
digits in our arithmetic. The DEFDBL X,Y instruction permits
the TRS-80 to compute with and display up to sixteen decimal digits
of accuracy when needed. We shall discuss this further when the
additional accuracy is really needed. (What happens to the four
colums of output?)

Write a program to create tables of values of

X, x3, x6, x9

with proper headings for various values of B, S, F typed in by the
user.

3 4

. What output occurs in the program to produce a table of X, x2, X7, X

if some or all of B, S, F are negative? Try B, S, F =2, -.5, -3 and
B, S, F=-2 1,5 and B, S, F= -1, -1, -6.

What happens when some of B, S, F are negative in the table of powers
program that includes 125 Y = Y*Y ?

29

14a.

15.

If your BASIC includes a square root function SQR()y try
using

120 Y = SQR(X)

13p PRINT X,Y,SQR(Y),SQR(SQR(Y))

in the text program.

If you don't have a SQR() function, try

120 Y = X*¥X¥X

13¢ DPRINT X,Y,X*Y,V*Y

Be sure to alter instruction 1$8 to print a correct heading for the
current. tahle eolimns in either (2) or (h),

What would happen to the program if the instruction that prints the
heading were changed to

123 PRINI"X SQUARE CUBE 4-TH POWER"

Try it out and see. After you understand what happened, and why,
delete instruction 123 by typing

123 [ENIER]

Notice: If mathematics frightens you, you can laugh at your fears now.

16.

With a computer to do the arithmetic, all you need to do is
type in the formmla and the computer will do the arithmetic for
you. It really is easy to do problems that used to stump you.
Try it ; you'll like it!

If you like mathematics, you may wish to start by proving that the
area of a rhombus (a 'stepped-on'' square) is given by 3CD where
C and D are the lengths of its diagonals. If you don't like math-
ematics, just believe us that the area of a rhombus is half the
product of its diagonals. (OK?)
Write a program that will accept input values of C and D and
print out the message
THE AREA OF A RHOMBUS HAVING DIAGONALS __ AND IS .
with the blanks filled in with the proper values. After your
program is rumning properly, put in some extra instructions that
will print out the message
THE VALUES OF C AND D MUST BOTH BE POSITIVE.
if anyone uses negative or zero values as input.
Hint:
109 INPUT '"PLEASE TYPE VALUES OF DIAGONALS C,D="; C,D
11¢ IF C < O GOTO 590
12¢ IF D < O GOTO 500
1390 A = .5%CHD

15¢ PRINT "“THE AREA OF A RHOMBUS HAVING DIAGONALS ';C;"AND";
D;"IS";A

160 PRINT

179 GOTO 1¢9

{continued on next page)

30

17.

18.

19.

Page 2-15

5¢p PRINT "THE VALUES OF C AND D MUST BOTH BE POSITIVE."
51p PRINT

520 PRINT

53p GOTO 1¢¢

If N is the nunber of sides in a regular polygon and L is the length
of each side, then the radius of the inscribed circle is

L cosK where K = =

2 sin K N

The radius of the circumscribed circle is
——— [0wl IT_.
Ssin k. "ere K =g

The area of any circle is given by 1rr2 where r is its radius and

m = 3.14159... You should be able to create a program that would

list

Number of Sides/ Area of Inscribed Circle/ Area of Circumscribed
Circle

for polygons having 3 or more sides each of length 1 unit. Do so.

Examine the output and explain what is happening. If you don't know

any trigonometry, do not let it disturb you. You can still write

this program. Use

K = 3.14159/N
I = .5%00S(K)/SIN(K)
C = .5/SIN(K)

where I stands for the area of the inscribed circle and
C stands for the area of the circumscribed circle.

A tetrabedron (triangular pyramid) has four faces each of which is an
equilateral triangle whose sides are each of length L.

The surface area = 1.73205L2

The volume = 0.11785L°

At L = 1, the surface area is larger than the volume.

At L = 20, the surface area is smaller than the volume.

Find the value of L that makes the number of square units in the
surface as nearly as possible equal to the number of cubic units in
the volume.

i

For what radius does a sphere have the same surface area (in square
units) as volume (in cubic units)?

Vol = ?’- g3 Surface = 47R°

If (X1,Y1l) and (X2,Y2) are the coordinates of two points, the dis-
tance between the two points is given by the formula

D= /(Xl—-XZ)z + (Y'l—YZ)2 Write a program to accept the coor-
dinates of two points and print out the distance between the points.
Does the formula work if some of the values are negative?

31

22.

23.

Page 2-16

CHALLENGE PROBLEM: A job pays you $1 for the first 8-hour day's
work, $2 for the second day's work, $4 for the next day's work, $8
for the next day's work, etc., doubling your day's wages each day,
if you continue to work without being tardy or absent. It starts
over at $1 any day you are late or missing.

Find how many days you will have to work, without a tardy or absence
to earn a total of a million dollars. How much would you earn the
next day, if you were still on time?

You may write your own program if you prefer, or you may use the
nrogram helow:

19 PRINT "DAY#', ""PAY ON THAT DAY",''TOTAL PAY THUS FAR'"

100 S=29

11 D=1

120 P=1

13p S = S+
149 PRINT D,P,S
150 D = D+l

16p P = P+P

17 GOTO 139

After you run your program, modify it so that you can INPUT a value
of T for the number of minutes tardy in step 17¢ and then send the
program to 13@ if T = O but to 12¢ otherwise. Use T = 480 if absent.

179 INPUT T
189 IF T =@ THEN 13p ELSE 120

What effect does this have?

CHALLENGE PROBLEM: It is easy to observe that the sum of the first
Tour natural mumbers is 1+2+3+4 = 10 or that the sum of the first
seven integers is 1+2+3+4+5+6+7 = 28. How many successive natural
murbers beginning with 1 would you have to add together to reach
or just exceed 10007

CHALLENGE PROBLEM: Bob drops a superball from a 4th floor window
42 feet above the parking lot below. If on each bounce the ball
ascends to half the height it fell on that bounce, how far will
the ball travel (both up and down) when it hits the ground for the
10th time? The 50th time? The 100th time?

32

Page 3-1

A1l right-—it is now time to learn to do something you can't find in
a set of tables and can't do without a computer-—at least not conveniently.

Now, let's introduce a new instruction by reprogramming a '"Table
Maker'" of lLesson 2.

A very useful instruction is the FOR...NEXT instruction. Try the
following program on your computer.

100 FORK = 3 TO 19

119 S = K*K

129 PRINT K,S,K*S,S*S
139 NEXT K

149 PRINT "END OF TABLE"

The FOR...NEXT instruction sets K = 3 and executes whatever in-
structions lie between FOR and NEXT; then K is advanced to K = 4 and
the instructions between FOR and NEXT are again executed; then simi-
larly for K = 5,6,7,8,9,10. When K = 10, the instructions between FOR
and NEXT are again executed with K = 10. After reaching 139 NEXT K
with K = 10, the program continues to instruction 140.

After you have run the above program, modify it to

89 PRINT "TYPE BEGINNING VALUE, END VALUE";

99 INPUT B,E

190 FORK =B TOE

110 S = K*K

12¢ PRINT K,S,K*S,8*S

13¢ NEXT K

149 PRINT "END OF TABLE"

15¢ PRINT

169 GOIO 8p

RUN the program for several different values of B and E. Now we are

ready to write a more sophisticated program.

33

Page 3-2

Let's write a program to help us solve messy equations.

Notice that no one said the program would solve equations. It
won't. But it will do all the hard work and messy arithmetic for you.
All you'll need to do is to tell it where to hunt for the roots, and it
will do the hunting. Does that sound fair? Let's try it. If math-
ematics bores you, just hang in theve for now. We'll be doing computer
assisted art in lLesson 4 but for now I want you to realize how easy it
really is to do mathematics with the help of a computer. If you can do
6th grade arithmetic, you can do this. Keep on reading, please.

It may not have occurred to vou that computer programs have to he
"built.” They do not spring full grown from the mind, but develop
slowly--and are modified as they develop——until a final program you
would be willing to share with a colleague eventually results. One of
the primary rules for good programs is

Make your program run first,

then meke it fancy.

Sunannesen

This is good advice. Let's use it.

Our problem is to write a program to help solve the equation

BXS + 3X2 - 2X - 5 = 0.

We shall first write a program that accepts a value of X as input, and
displays the value of X along with the corresponding values of

Y = 585 + 3%% - 2X - 5.

To solve the equation, we must make Y = O (or as close as we can get).

The following preliminary program seems to provide the required
evaluation.

219 PRINT "TYPE X~-VALUE PLEASE'";
215 INPUT X
24) Y = S¥XEXEX + 3*X*X - 2%X - 5 [ENIER]
250 PRINT X,Y [ENTER]
280 PRINT [ENIER]
290 GOTO 219 [ENTER]

Don't forget to type LIST [ENTER] to

check your program.

Then type RUN [ENTER]
The program will print

TYPE X-VALUE PLEASE ?

If you type @
It will respond
p -5

34

Page 3-3

TYPE X-VALUE PLEASE?
If you type 1
It will respond
1 1
TYPE X-VALUE PLEASE?

The change of sign in Y from -5 to +1 shows, since Y is a continuous
function, that there is a root somewhere between X=QPandX=1—
possibly nearer X = 1. ;

If we were to graph Y = x5 + 3%% - 2x - 5 we would know that for

X|p | 1] ..
Y | -5 1 Y
1

>
-2
-3
-l
-5

Our observation suggests that for some X-value between X = @ and
X =1, the value of Y must be zero. It is this X-value that corresponds

to Y = 0 that we seek. Y
Let's try p.8 [ENmER] A
The computer responds . L 1.1)
.8 -2.12
TYPE X-VALUE PLEASE?
Sc we now know there is a root between " T >X
X=@,8 and X=1 (Why?)
so we type 0.9 I ENTER I (.9,-.725)
and obtain i -
.9 -.728
s0 the sign change (and root) comes ,
between X = .9 and X = 1) .8,-2.12)

¥e can now enter .95 E@

and if the corresponding Y is positive, follow this with .94 etc.
Between .944 and .945 we eventually obtain the root accurate to 5
or 6 significant digits. Try a few values yourself.

35

Page 34

We can devise an even better helper program to solve equations.

Let's modify our program so it accepts two values B and S (for
Beginning value and Step size) and then prints out 11 pairs of values
of X and Y before looping back to get another pair of starting values.

If you aren't sure why this will be a convenient change, just wait
until you try the program given below.

We shall use our new FOR.... NEXT instruction. It is really a
pair of instructions

FOR k=1 TO 11
NEXT K

The instruction TFOR K=1 TO 11 sets K=1 and performs the instructions
between FOR and NEXT (which may or may not inwolve K).

The NEXT K instruction then adds 1 to K (making K=2) and again performs
the instructions between FOR and NEXT. Then 1 is again added to K,
producing K=3, and the instructions between FOR and NEXT are executed
again, and again, and again until finally K=11. The instructions between
FOR and NEXT are performed once more, but this time whatever instruc-
tion directly follows the NEXT is executed.

The wee program

199 TFOR K=1 TO 20

11p PRINT K,K*K

120 NEXT K
will produce a table of integral values of K and Kz for K between 1 and
20 inclusive.

The fcllowing program produces rather different results in Level I and
Level II BASIC.
Try it on your computer.

10 FOR K=p TO 29 STEP .5

119 PRINT K,K*K

12¢ NEXT K
On lLevel I BASIC, it produces a table whose entries are ¢s. This is
because in Level I BASIC, STEP size must be an integer and STEP .5 is
truncated to STEP §.
Level II produces a table of K, K2 for K between ¢ and 20 with values
changing by .5.
Try it if you are unsure, The best way to learn about your computer is to
compute.

36

Page 3-5

Let us return to our first version of

219 PRINT "TYPE X-VALUE PLEASE";

215
249

INPUT X
Y = S¥X¥X¥X + 3FX*FX - 2%X - 5

250 PRINT X,Y

280
299

PRINT
GOTO 219

Let us combine some of the tricks we learned in Lesson 2 to produce

a table of eleven values of X and Y = S¥X*X*¥X + 3¥X*X - 2*X - 5 starting
with X = B and increasing the X value by S on each line.
Second try:
219 PRINT ""PLEASE TYPE BEGINNING VALUE, STEP SIZE'";
215 INPUT B,S
220 X=B
239 FOR K=1 TO 11
249 Y = 5FX*X*X + JFXFX - 2%K - 5
250 PRINT X,Y
269 X=X+S
279 NEXT K
280 PRINT
299 GOIO 219
LIST and check your program.
Then type RIN EI\I'I’ERI
The program will print
PLEASE TYPE BEGINNING VALUE, STEP SIZE?
and you type g, 1
The output will be: ? ~5 (NoZe s4ign change!)
1 16
2 43
3 151
4 355
5 685
6 1171
7 1843
8 2731
9 3865
19 5275

37

Page 3-6

Since there is a sign change between X = @ and X = 1, you next type
@, .1 [ENTER| which produces
R A § -~

-5
~5.165
-5.24
-5.195

-5

-4.625
-4 .04
-3.215
-2.12

- .724999

1 +—— (Note sign change!)

WBUAD WS

= .

A sign change between .9 and 1.9 indicates a root there,

so you type .9, .¢1 [ENIER].

Then later you type .94, .¢¢1 which shows a root between
.944 and . 945, :

.94 ~ 0762806

.941 - .P5937p5

.42 - 0424247

.943 - .0254455

.944 ~8.43143E-03

.945 8.61549E-03 «——— (Note sign
.946 . 9256987 change!)
.947 .428152

.948 . 9599666

.949 .P771518

.95 .$943718

So now we know that the equation 5x3+3x2-2x—5=0 has a root between

x= .944 and x = .945. You can easily obtain 5 or 6 places of accuracy,
if needed, but 3-place accuracy is frequently enough.
To solve 7x4 + 4x3 + 2x2 - 9x - 1¢p, you need only to change line
249 to
249 Y = THXAXHKHK 4+ LFXFKFAK + 2¥X*X - O¥X - 10p

Starting values ¢, 1 (and also @, -1) will each be helpful in solving
this problem.

38

Page 3-7

Computer experts will prefer to write line 240 as
24p Y = (((7T*K + 4)*X + 2)*¥X - 9)*X ~ 100

which saves both typing and, more important, computing time, since it
uses only four multiplications instead of 10, each time Y is evaluated.
If you have had a course in algebra, please multiply out the expression
to see that the same results are obtained. You can solve many different
equations by changing line 24¢.

What about solving x3 - 4.9x2 + 6.6x - 2.6 = 0 by changing line
249 to
249 Y= ((X - 4.9)¥X + 6.6)*X ~ 2.6

Note that input B, S = @, 1 produces three changes in sign. Find all
three roots accurate to 4 or 5 significant digits. o

If you have Level II BASIC, you may wish to try Y = X cosx® - 2.6
249 Y = EXP(X)+C0S(X+X) - 2.6

This program is really quite a valuable tool. It will help you to solve
almost any continuous (e.g., no factorn in the denominaton that mig

be zeno for X insdde the .interval in which you are seeking a hoot)
function set equal to zero.

Polynomials come under this classification--even polynomials in sin(x),
cos(x), ex, as well as polynomials in X. So do many other functions, but

not equations like

3 =0 since y = 2x3:- 1 is discontinuous at x = 1/2

2x -1
Y
A
3
2
1

Remember: to change the equation being solved, you only need to
change instruction 249 to

249 Y = (whatever continuous function you are trying to make zero).

39

Page 3-8

CORRECTING ERRORS discovered at RUN time.

You may have noticed that the TRS-80 will frequently detect errors
in spelling or punctuation of instructions and will warn you of these
errors by printing an ERROR message; consider the following erroneous
program:

109 FOT K=1 TO 19

110 PRINT K,K+K
129 NEXT K

in which FOR is misspelled FOT in line 1¢¢9. If you type
RN [ENTER]

..... ENTER
the computer responds

?SN ERROR IN 100
READY

198 _
The first line tells you that there is an ERROR in statement 1@P.

We shall talk more about ERROR types later on - for now you can usually
spot the error by looking at statement 100.

For certain (but not all) errors, the computer will shift automatically
into EDIT mode. This is indicated by displaying the line number where
the ERROR has been detected just below the ERROR IN 100 message.

If you depress the key (without ENTER), the entire line will be
displayed, and the line number repeated

19¢ FOT E=1 TO 19
99

1f you tap the [Space bar] the line will appear character by character
until the underline marks where the ERROR is:

169 FOT K=1 TO 19
199 FO_

Now depress (which stands for change); nothing visible will happen,
but if you now depress the desired character [R] it will appear. If
there are other errors, correct them too. Then depress |[ENIER)

Type LIST and you will find the correction was made.

If you should need to delete a character depress E)] instead of @ ,

the deleted character will appear between ! ! symbols. To insert a
character depress [1] instead of [C] and then depress the desired

40

Page 3-9

character. If you wish to change, delete or insert several characters
depress the number key before depressing the , D] , key.
Thus [:I:I will enable you to insert 3 characters. This is only
part of a set of powerful EDIT instructions available in Level IT BASIC.
We shall discuss them in Lesson 8, but you may peek now if you wish.

In many cases it is much simpler to merely retype the line, rather
than using the EDIT instructions. In such a case if you type

RUN and get

?SN ERROR IN 199
READY

180
Simply depress

This will display line 1¢@, and display the >_ which you must have
to enter an instruction. Depresssing [ENIER| will display

2SN ERROR IN 109
READY

109 FOT K=1 TO 19
>

Then you merely retype the instruction

>1¢p FOR K=1 TO 10

The critical things to remember are:

The computer indicates it is ready to accept data by displaying ?
Do not type anything but data if you have a ? displayed.

The computer indicates it is ready to accept an instruction by
displaying »>_
Do not type an instruction unless you have a >_ displayed.

If in doubt depress followed by to get

READY
>

41

Page 3-10

SUMMARY OF LESSON 3
We learned about the

FOR K = 3 TO 19

NEXT K
and

FORK = ¢ TO 29 SIEP .5

NEXT K
instructions, and used them to develop a poweriul program that can be
used to help solve continuous equations.

We also learned how to correct errors that are detected by the computer
at RUN time.

Perhaps the most important thing we learned in Lesson 3 is that mathe-
matical problems are not inberently difficult. Even if mathematics
troubled you in the past, with the able assistance of a microcomputer
YOU CAN use plain old common sense to solve problems that would cause

a college mathematics major difficulty if he tried to solve them without
a camputer.

42

Page 3-11

PRACTICE SET 3

In problems 1 to 10, use the second equation solver program to help

you find solutions of the problems given below.

1.
2.

10.

13.

43 +ox3 + 582 +3x - 25=0

x - 31 =0

7%% + 6x3 + 10x2 - Bx- 1 =0

4x3 - 8x2 29x - 13 =0 (Find three roots between -10 and
A _32-4=0 1o

a, x4 -x3 -5%2 -x -6

[
(@]

b. x4-x3—5x2—x_5

It
o

2x4+x3—8x2—-x+6

0
6x% + 553 - 14x2 + x + 2= 0

35 + A

-12x-16 =0

axt 132 +3=0

a. 2x% - x3 - 15x2 +6x + 17=0

b, 2x5 - x4 -6x° +3x2 +4x -2 =0

Change the constant terms in some of the above equations and try again.
If you have a Level 1I BASIC, try some trigonometric equations like
X*SIN(X) - 2 = 0

X¥EXP(X)*0S(X) + X*X - 4.5 =0

The fascinating thing is you don't really need to understand trigonometry
to solve the given (rather carefully selected) equations.

14.

Forecast the output of the following program, then RN it to check

your forecast.

10¢p FOR X=1TO 1¢ STEP .2 Be sure to think about whethen
119 PRINT X,X*X, X¥X*X your computen has Level 1 BASIC
129 NEXT X on Level 11 BASIC.

43

15.

16.

17.

Page 3-12

Use the program
of TINPUT "PLEASE TYPE BEGINNING VALUE, END VALIE, STEP STZE='-B E S

1pp FOR X = BTOE STEP S
105 Y=X*X

119 PRINT X,Y,X*Y,¥*Y
12¢ NEXT X

13 PRINT

149 GOTO 99

The following program is supposed to accept a positive integer value
N and prigt out the values of N and NI ~ I¥2%3%,, %N,

It seems to work the first time through, but then prints out non-
sense values for N! Try it and see. Then debug and repair the pro-
oram

149 PRINT "N, 'N-FACTORIAL"

11¢ PRINT

12 F=1

15¢ 1INPUT "TYPE INTEGER WHOSE FACTORIAL YOU WISH" ; N

e TIP NTA MMOTAT Y e
100 A NS LILY Loy

16p IF N=ff PRINI' N, F These test the input data...

176 IF Ne INT(I) THEN 150 NOTE : INT{N} produces the integen
206 FORK =1 TON porZion of N, s0)

219 F = F*K 1786 IF N <> INT(N) THEN 150

22¢ NEXT K Looks at N and 4§ N {8 not an
25)0 PRINT N, F integer, the progham goes back %o
269 GOTO 150 150. Similarly, if N is8 negative,

instrumetion 155 TF N < § THEN 150
sends the program back to instruc-
tion 159.

The following program is supposed to accept two integers N, D and
determine whether or not D is a factor of N. Does it work? If so,
why? 1If not, fix it. The heart of the program is lines 130, 149.

19¢ INPUT "IYPE IN TWO POSITIVE INTEGERS'; N, D
110 IF N<D THEN 500

120 IF N=D THEN 6@

130 Q=INT(N/D)

140 1IF D*Q <> N THEN 409

2¢¢ RIM PROGRAM COMES HERE ONLY IF D IS A FACIOR OF N
21¢ PRINT D; "IS A FACTOR OF"';N

290 PRINT

230 GOTO 1¢¢

409 REM PROGRAM COMES HERE ONLY IF D IS NOT A FACTOR OF N
41¢ PRINT D; "IS NOT A FACTOR OF " ; N

420 PRINT

43¢ GOTO 199

(r-rmi")nnnd on next mm\

44

17.

18.

19.

21.
22.

23.
24.

Page 3-13

(continued)

50¢ PRINT N;"=N IS SMALLER THAN D='';D;"HENCE D CAN'T BE A FACTOR OF N
510 X=N

520 N=D

539 D=X

540 GOTO 13p

6@@ PRINT "THE VALUES BOTH BEQUAL'; N, "HENCE EACH DIVIDES THE OTHER"
61¢ PRINT
629 GOTIO 109

In Lesson 2 you wrote programs to change temperature in Fahrenheit to
temperature in Celsius and vice versa. Combine the ideas of your two
programs into a single program that accepts B, S, E as Beginning
value, Step size, and End value for T and then writes out two sets of
tables side by side (four colums) using

PRINT T;C,T;F e (NoZe wse of ; , ; 4in output here.)
where T runs from B to E in steps of S and where

C = (the Celsius temperature corresponding to T degrees in Fahrenheit)
F = (the Fahrenheit temperature corresponding to T degrees Celsius)

L]

Write a program to INPUT the hourly rate, R, and the number of hours, H,
worked in a given week and print out the employee's gross wages

for that week, assuming (s)he is paid time and a half for all time
over forty hours in a given week.

The output statement might be:

PRINT "$";W;"FOR";H;""HOURS AT BASIC HOURLY RATE OF';R

but you'll have to scratch your head a bit to compute the total for W,
including the overtime payments, if any. Don't make the error of
subtracting ten hours of "undertime'" for an emplovee who only works
30 hours. It does not work that way.

. Write X4 - "/'X:3 + 5X2 + 3X + 71 as a series of nested parentheses.

Express (((3*X ~ 7)*X +5)*X +2)*X + 13 in a form without parentheses.

CHALLENGE PROBLEM: The sequence 1,1,2,3,5,8,13,21,...is created by
writing 1,1 and then each succeeding term is the sum of the preceed-
ing two temrms, 1+1=2, 1+2=3, 2+3=5, etc.

Write a program to compute the first 100 or so terms of this
"Fibonnacci sequence."

CHALLENGE PROBLEM: Solve X2 - cos X = 0

2
CHALLENGE PROBLEM: 4x° - 2x' +x® - 3 + xX° =x + 1 = 0
presents an interesting puzzle for the mathematically-oriented.
reader.

435

Page 3-14

25, CHALLENGE PROBLEM: A dog is chasing a rabbit. The rabbit takes
three jumps in the same length of time the dog takes two jumps, but
each rabbit jump covers only half of the distance of a dog jum.
The rabbit was 13 rabbit jumps ahead of the dog when the dog first
spotted the rabbit and started after it. If both go in a straight
line, how many more jumps will the rabbit take before the dog
catches it?

26. (CHALLENGE PROBLEM: How much must you invest now in an account pay-
ing 9% interest compounded quarterly to have $100,000 when you are
70 years old? (If you don't want to give your age away, figure it
out for S. Marguerite who is 22 years oid.)

27. CHALLENGE PROBLEM: Iegend states that in 1626 Manhatten Island was
purchased from the Indians for $24. 1If that $24 bhad been invested
at 12% interest (a modest interest rate at that time) what would the
$24 be worth today?

(How does this compare with the value of the land in Manhattan

Island today?)

28. Here are two small 'research'' problems for you.

CHAILTENGE PROBLEM: The four-digit number 9801 has the unusual
property that if you take the two-digit number formed by the first
two digits, 98, and add it to the number represented by the last

two digits, Ol, then 98 + 01 = 99 and (99)2 = 9801. Find all four-
digit numbers that have this property.

29.a) CHALLENGE PROBLEM: A 4 by 4 rectangle (square) has the unusual
property that its perimeter (distance around it) is the same as its
area (both are 16) . Your problem is to find another rectangle that
also has the property that its length and width are both integers
and its perimeter (2%(I4W)) is equal to its area (L*W).

b) CHALLENGE PROBLEM: If you like mathematical thinking, see if you
can prove that the two rectangles you found above are the only two
such rectangles that exist.

30. CHALLENGE PRCBLEM: The song ""Twelve Days of Christmas'' mentions
various giics that '"my true love gave to me.”" let's interpret the
song so that "on the third day of Christmas, my true love gave to me
three French hens, two turtle doves and a partridge in a pear tree.”
My true love gave me six presents (3 French hens, 2 turtle doves, and
a partridge, if we don't count the pear tree as a gift). How many
gifts in total did my true love give to me during the twelve days of
Christmas? Write a program to determine the sum.

Answer: 364, if you do not count the pear tree as a gift.

46

Page 4-1

LESSON 4

ART & GRAFHICS

Computers are fun. They make great adult toys. As my daughter says,
"The main difference between men and boys is the price of their toys."
Well, a modern computer costs less than many adult toys — a Jaguar XKE,
a sailboat, a motor boat, a golf cart or even a set of clubs can cost
more than a computer. Of course, the computer is a very useful device
(but so is an XKE) so let's just look at how to have fun with it.

1f you are curious, you may have doped out how the little surprise
program of Problem 8, Lesson 1, worked. Let's look at it.

(Remember to depness [ENTER| at the end of eacn Line.)

level II BASIC Level 1 BASIC
(EW NEU
1 PRINT @ RND(L0P%) . "HI SUZANNE" 18 PRINT AT RND(1¢dd),""HI SUZANNE"
15 IF RND(@) < -B5 THEN (LS 15 IF RND(B)<.05 THEN CLS
20 GoTo 1@ 20 G0TO 18
RUN RUN

Line 10 contains two new ideas. One of these is the idea of a random
nutber generator. TRS-80 contains two types of random number generators:

One is called RND(P). RND(§) produces a random decimal number between
9 and 1.

The other is BRND(n), where »n 1is a positive integer. RND(n) produces
a random integer between 1 and n inclusive.

To see how they work, use the programs on the following page.

47

Page 4-2

101p GOTO 1PPD

RUN 19Pp |ENTER]

After you have a screen full of that, try
p

-~
LAR PRINT RND(1PM);
1413 GOTO 1

RUN 1ppp [ENTER

Later, change instruction 1999 to

1AAA PRINT RND(1A); . . , . P T
(NoZe: this ATLLE uses Anstruction 1§i¢ GOTO 1¢¢9.)

and type RUN 10@p [ENTER| again.

Each time you call RND(7) a random mumber is produced that is differ-
ent from the random number produced last time, even though the same n
is in the parentheses.

The second new idea in the instruction

1@ PRINT @ RND(1PP@), "HI SUZANNE"
is the PRINT AT __, " '* instruction.

For purposes of the PRINT AT __ , " " the screen is divided
into 1024 cells, sixteen rows of 64 elements each. Each cell exactly
fits one letter plus the space between rows for that letter. The cells
are nurbered from ¢ to 63 in the first row, 64 to 127 in the second
row, etc. (See illustration on the following page.)

P 2
?ﬁND(ﬁ) TELLS Me
O GiVE Yow DIPFFREFT
@ RAMDOA DEEGIRALS
AkIkE 7396902,
09568, oR JE5IRT63

t This uses RUN 1904 [ENTER] 4n place of RUN [ENTER| <o make the
computen Akip any program in 14, 15, 26,..,999, and start RUNning at

¢ Emdnmnndt 1644 A pat Fef
stotoment 1808, A neat trich.

48

A A

B

ORABRORACUOWIRIIOBL AT Iy ;énunwnnnun

i

49

Page 4-4

Try the program

G,rm INPUT N Y
1Wp5 (LS |
101@ PRINT @ N, '™ MARKS LOCATION"; N; || (Use AT in place of @ on
1920 GOTO LOPA Level T BASIC.)
RUN 1f@@
The instruction
{AT\ (AT in Level T BASIC.
PRINT (@) " use 'L@ in Level 1T BASIC.

will start printing at location n and print whatever is called for. It
prints any symbols it finds inside of quotes as symbols and the values
of any variables it finds outside of quotes, providing the proper commas
and/or semicolons = are included.

Tor example, instruction 1@ of the program in Prcblem 8 of Lesson 1
]

19 pmm‘(ﬁ) RD(10¢P), "HI SUZANNE'

combines these two instructions. RND(lW) generates a random integer
between 1 and 1000.

PRINT (Ag) RND(19¢@), "HI SUZANNE"

then prints whatever is in the quotes, starting at whatever random loca-
tion FND(1¢¢@) generated. The next time, a different random integer is
generated. The result is the statement in quotes is flashed all over the
screen.

50

Page 4-5

If you wish a spow storm, try
NEW | ENTER

19PP PRINT (ﬁ) RND(1E2R), "*'; | To keep the screen grom scnolling

2P GOTO 10p@ use ; at the end of Line 1064.

To occasionally wipe the screen clear, add
191 IF RND(@)<.@L THEN (LS

The instruction RND(@) generates a random decimal number between @ and
1. If the random number generated is less than .91 (which it will be
about once in 100 numbers on the average), the 'clear screen'' instruction
(IS is executed. Otherwise, CLS is ignored. In either case, the in-
struction 1929 GOTO 199Q is executed next.

Here are some interesting programs. Try them on your TRS-80.

NEU ENTER

5 CLS

1 FORL =@ TO 9@ STEP k4

15 FORK =1 TO bl

2p PRINT @ K + L, "HI yowr name"
25 NEXT K :

I NEXT L

yp GOTO 1P

After you try that with several different names, change instruction 15 to
15 FOR K = k& TO 5 STEP-L

and RUN it again.
Here is another FUN program. Please try it, then analyze what happens

and why. The CHR$() instruction, discussed later in this lesson, dis~
plays the character corresponding to the value in the parenthesis.

/

NEU
PP a.s
110 N=1
! 12@ PRINT @ 971, " MOBILE ART FORM = "; N ;
© 13p FOR K = 129 TO 1%
toup PRINT @ RND(959),HR%(K) ;
158 NEXT K
168 N = N+l
170 FOR @ = @ TO RND(N) : NEXT @
140 IF N < 50 THEN 1.2Q ELSE 100

;.

Page 4-6

Your TRS-80 has much finer graphic capabilities than we have been

using in PP.INI‘lg , " ", Actually, each letter-

sized cell is broken up into six smaller rectangular cells, or pizels,
counting the space bhetween lines, and each cell is individually address-
able. The system of numbering from § to 1023 is too coarse for this use.
The individual spots are addressed by giving an X, and Y-coordinate with
@ <X<127 and Q<Y <47. The (P,0) point is in the upper left edge
of the screen. X increases to the right. Y increases downward.

X -

. T TR T T 1T
T QA H T TR TR T AT B H H RN

Ilu"“ " “. la

[N TN

Dy IR

fdan:

M

o EEk!

ChEd

-
Tt wta 0 B Rl as

i3 5
| - o
>} ¥

a ,
““ﬂ Fo
b g

abﬁhb‘ﬁﬁi}u
" nonooen

L

EE-1-T-3a)2 L1

So, (38, 17) is 30 spaces to the right and 17 spaces down from (f,9), as
'shown above.

52

Page 4-7

TI'y v N

[/ 1399 INPUT "X,Y=" 5 X,Y
}\ 1210 SET(X,Y)

1820 GOTO 1.9p@
RUN

There are three instructions used with these spots:

SET(X,Y) This lights point (X,Y).
RESET (X,Y) This darkens point (X,Y).

POINT(X,Y) This is used to determine whether or not point(X,Y) is

lighted. If lighted, it returns ''logical yes'', otherwise,
"logical no", as used in an IF....THEN instruction.

120 CLs

|' 138 FOR K = @ TO 4?

=) SET(K,K) : SET(K+:{,K)

. L3 NEXT K

" RUN

!

After you have RUN the above program, and understand why it produces
two wiggly diagonal lines, try adding

125 SET(12¢-K,K) : SET(6¢-K,K)
Before you run the new program

19p LS

11p FOR K = @ TO 47

120 SET(K,K) : SET(K+k{,K)

125 SET(12P-K,K) : SET(L@-K,K)
130 NEXT K

see if you can forecast the pattern that will be produced. Then (and only
then) type RUN to check your forecast. This is one of the
best ways to learn about computers.

IF POINT(X,Y) THEN RESET(X,Y) will test (X,Y) and turn it off, if it is
on. However, RESEI(X,Y) also turns off point (X,Y) and takes less time.

later, you will find uses for POINT(X,Y) in programs in which you will
need to test whether or not a given pixel is lighted.

The following program will help you become familiar with the loca-
rion of the various (X,Y) rectangles (pixels). It lights a rectangle
chosen at random, and then permits you to input your estimate of the co-
ordinates (X,Y) of that rectangle. If you miss, a rectangle will blink
at the coordinates you chose to show you its location with respect to
the unblinking target. You may then input another guess.

53

Page 4-8

£ /m
L1
120
130
| lup
L 150

R = 10 + RND(30)

C = 2@ + RND(ER)

as

SET(C,R)

INPUT "PLEASE TYPE YOUR ESTIMATE OF (X,Y) AS X,Y =""; X,Y
IF(X=C) AND (Y=R) THEN upp

FOR K=1 TO 2p@
SET(X,Y)
RESET(X,Y)

NEXT K

GOTO 129

REM HERE TF ESTIMATE IS CORRECT.

PRINT @ 7@, 'YOU ARE CORRECT. CONGRATULATIONS."

FOR @=L TO ap@ : NEXT @

FOR @=1 TO SP : PRINT @ RND(I@PR), "YOU WIN" : NEXT @ : (LS
PRINT @ 128, "HERE IS ANOTHER POINT FOR YOU"

FOR @=1 TO SPB : NEXT @

AT A

m
QW LV IV e

It is a game...put it on your computer and play it. This is guaranteed
to improve your visualization of what is where on the pixel screen.

Here is another possibly useful technique.

Let us use our knowledge of graphics to create a bar graph or histo-
gram for the number of students attending The University of Oklahoma.

54

Page 4-9

‘ zfmw cLs

. 11@ PRINT @ &L, "GRAPH OF ENROLLMENTS AT THE UNIVERSITY OF OKLAHOMA'
120 REM LABEL THE LINES FOR THE BAR GRAPHS
133 PRINT @ 128, "19u4g"

4@ PRINT @ 152, "19sp"
L5@ PRINT @ 25k, '"19e@"
P PRINT @ 32¢, "197g"
173 PRINT @ 384, '19a8p"

2@ REM DRAWS THE ACTUAL GRAPHS
22Q FOR X=12 TO 42

23p SET(X,k) : SET(X,7?)

24 NEXT X

32@ FOR X=12 TO 5B
33p SET(X,%) : SET(X,1{)
4P NEXT X

42@ FOR X=12 TO b4
432 SET(X,12) : SET(X,13)
uup@ NEXT X

520 FOR X=12 TO 112
{539 SET(X,15) : SET(X,1b)
| S4P NEXT X

© k2P FOR X=12 TO 12y
. |30 SET(X,18) SET(X,19)
i B4R NEXT X

A shorter and more powerful graph generator can be written using
instructions we have not yet studied (see Lesson 13). In this version, the
years and the values to be plotted are stored in DATA statements and enter-
ed into the computer using a READ instruction.

5 CLEAR 209

19 CIS
19 DRINT @ 6, ""GRAPH OF ENROLLMENTS AT THE UNIVERSITY OF OKLAHOMA "
119 READ Y, D
115 IF Y <@ THEN 115
120 DATA 1949, 21, 1959, 28, 1969, 32, 197p, 51, 1989, 62, -1, -1
13 PRINT Y; STRING$(D,143)
149 GQOTO 119

However, it is better to learn to walk steadily before one tries to run or
to fly--We invite you to use the above program either with the given data
or by changing instructions 109 and 129 to produce another histogram of
more interest to you. The end of your data should be indicated by -1,-1
as above. If the data values for D lie between 1 and 59, the program will
graph the data on a single line; otherwise more than one output line may
be required in which case you may wish to insert 135 PRINT in the above
program. Experiment a bit.

55

Try the small-flake snowstorm programs below.

f%imn SET(RND(127?), RND(4?))
| . 11@ IF RND(P)<.PRL THEN CLS
112p GoTO 10P

*/5g s
1P X=RND(12?)
11P FOR Y=L TO 43 + RND(3)

130 RESETI(Y YY) - SETIY Val)
Bred 4 Rttt I QO I = R AT

. 133 NEXT Y
140 GOTO 1P

Page 4-10

i
i
H

Here is another interesting program. The students claim it is a

'

‘canpus planning prograit’.,

: 5@ N=1
' 1@@ PRINT ™ CAMPUS PLANNING PROGRAM ''; N
199 FOR K=1 TO 3+RND(1?)
g SX=RND(7?@)
2@s SY=3+RND(23)
" 21p L=RND(55)
215 W=RND(2@) .
22 FOR X=SX TO SX+L
c¢es SET(X,SY) : SET(X,SY+W) .
230 NEXT X 14 you'd Like to have yowr N-S
235 FOR Y=SY TO SY+U walls the same width as the
2up SET(SX,Y) : SET(SX+L,Y) E-W walls, add:
ye EXT Y 243 SET(SX+1,V) :SET(SX+L+1,V])
i 251 FOR @=1 TO L@AP+RND(3@P) : NEXT @
255 NEXT K

| 26@ FOR @=1 TO &8P : NEXT @

14 you want a Longen Look at a spec-
{al design on the screen, depress

{1 2hE N=N+
: SHIFT)[@] 2o halt the program.
I j 279 GOTO &p Then depress any hey, without|SHIFT
to contiaue.

Note instruction 260 FOR Q = 1 TO 830 : NEXT Q, This forces the
program to count to 800 before it goes to instruction 8@ and clears the
screen. Separate instructions are separated by colons in lines 225, 249
259 and 26Q.

The following program contains several instructions we have not

discussed vet.

If vou are particularly interested in learning about them,

56

Page 4-11

consult Lessons 12 and 14. However, you can use the programs with-
out having to understand LEN(Z3) or MID$(Z3,K,1).
// " .

1R LS

11{ Z$= ''YOU HAVE ALREADY LEARNED LOTS. BUT STILL HAVE OTHER GOODIES
T0 INVESTIGATE. TOO."
12@ K=Q
. 138 E=INT((LEN(Z$)+1)/2)
. 14fd FOR A=p TO E STEP .5
158 X=L5*SIN(A)
P K=K+l
17 PRINT TAB(X+3@) ; MIDS(Z%,K,1)
| 188 FOR @=1 TO S : NEXT @
| 1@ NEXT A
| 2P FOR @=1 TO 3PP : NEXT @
' 210 GOTO 1P

Run the program. Then, change line 119 to

110 7% = " "
where you type any message you wish between the quotes.

57

Page 4-12

Let us write a program to create a rectangle on the video screen.
Select as vertices the following points:
A(25,12) B(45,19)
C(25,3p) D(45,3D)

We might believe that the result will be a square, since the dis-
tances AB,BD,DC,CA each appear to be twenty units in length, i.e.

I-distances are cach 45-25=20 units

Y-distances are each 30-10=20 units.

However, this is not valid. Iet us write the program and then examine
the output.

P

| PR REM DRAW LINE FROM (25,1§) TO (u45,11)
. 12 FOR X=25 TO 45

330 SET(X,Y)

4P NEXT X

2pp REM DRAY LINE FROM (25,39) TO (u5,3@)
219 Y=3p
. 22P FOR X=25 TO 45

238 SET(X,Y)

2uP NEXT X

3PP REM DRAU LINE FROM (25,1@) TO (25,3R)
31@ X=25

32P FOR Y=1p TO 3@

330 SET(X,Y)

34@ NEXT Y

YEE REN DRAU LINE FROF (45,1F) TO (45,3@)
. 4P X=45§
' 42@ FOR Y=1§ TO 3p

43 SET(X,Y)
| uy@ NEXT Y

RUN the above program.

Page 4-13

The rectangle was not a square. Indeed, it is about twice as tall
as it is wide, since the ''spots' (pixels) located at (X,Y) are actually
rectangles (as you can see by typing SET(109,33) ENTER]|). In other
words, the X-direction units are only half as large as the Y-direction
umnits.

To obtain a better approximation of a square, you could change each
of the 45's to 65's (in instructions 12¢, 220 and 410). Change the steps
as suggested and RUN the program again. It still isn't a perfect
square, but it is much improved. What about lines 100, 2¢@, and 4¢¢?

It is possible to make the lines of this square of equal weight by
changing instructions 33¢ and 43 to

33@ SET(X,Y) : SET(X-1,Y)
3@ SET(X,Y) : SET(X+1,Y)

Try these alterations and see how the new program behaves.
It still does not produce a perfect square...perhaps because the

rectangular "'pixels" are really not exactly twice as high as they are
wide.

Depress [BEEAK| and [CLEAR] and type

LIST

This will display your current program which should be:

/
718 LS
10 REM DRAU LINE FROM (25,1@) TO (bS,1@)
118 =10
120 FOR X=25 TO k5
139 SET(X,Y)
4P NEXT X

cpp REM DRAU LINE FROM (25,3@) TO (kS,30)
21 Y=30

22@ FOR X=25 TO b5

239 SET(X,Y)

24P NEXT X

3PP REN DRAW LINE FROM (25,1@) TO (25,3@)
3P X=25

32@ FOR Y=1@ TO 3@

330 SET(X,Y) : SET(X-1,Y)

3u@ NEXT Y

4@@ REM DRAU LINE FROM (b5,1F) TO (bS,30)
41P X=h5

42@ FOR Y=1@ TO 3@

y3p SET(X,Y) : SET(X+1,Y)

4u@ NEXT Y

59

Page 4-14

Your task is to adjust the width of the rectangle to produce the

hest sqguare you can. Increasing the 65's in instructions 120, 220 and

419 slightly (say, to 75) may be all that is needed. Play with it a bit
yourself.

Actually, the program can be shortened considerably by drawing the

two parallel lines in the same FOR..... NEXT loop, as illustrated below.
// NEW

B as

13 FOR X=24 TO 73

110 SET(X.13) : SET(Y 0)

o AR NAT IS P] R RINAB R, V)

2@ NEXT X

2p@ FOR Y=11 TO 29
21 SET(3u4,Y) : SET(S,Y)
22 SET(TR,Y) : SET(73,V)
238 NEXT Y

250 PRINT @ 4P5, "SQUARE" ;
| 3P GOTO MM

Instruction 25@ prints the word SQUARE in the drawn square. The
; at the end of instruction 250 prevents that instruction from clearing
the following line and thus disrupting your square.

Instruction

399 GOTO 30
puts theprogram in a''tightloop'" that prevents the TRS-80 from displaying

which could disrupt the display. To get the computer out of this tight-
loop, depress the key.

60

Page 4-15

CHRS()

Fach screen character or action (including scroll, backspace, car-
riage return, and convert to double-size letters) has a numeric code
that corresponds to it.

In Level II1 BASIC (but not in level I) it is possible to use the
instruction CHR$(n) (where n is an integer or a variable that has value
between O and 255) to obtain the screen character or action correspond-
ing to the number n.

1P@ INPUT K
113 PRINT K;
133 PRINT CHRS(K)
209 GoTO 9P

will permit you to test this out.

Use the following input values, among others, to obtain a variety
of symbols:
33, 36, 42, 6p, 88, 91, 92, 199, 134, 148, 191

The following program will print the character number along with a
row of that particular character. This may be useful as a border on a

graphic display.

//Vlm s
9@ PRINT "PLEASE TYPE NUMBERS BETWEEN 33 AND 191"
1PP INPUT K
11@ PRINT K,
12@ FOR L=l TO 45
139 PRINT CHR$(K);
149 NEXT L
150 PRINT
20 GOTO 1P

Try 33, 36, 38, 42, 47, 6p, 62, 72, 88, 91, 92, 199, 125, 126, 134, 135,
141, 148, 152, 187 and 191 to obtain a variety.

To see the entire array of useful display symbols, change instruction 10@
and add instruction 17¢ as suggested below:

1P@ FOR K=33 TO 141
170 NEXT K

After you have run the program a few cycles, you may wish to permit

K to range from O to 255 in instruction 10@. But the effect of CHR$()
values outside of the range 33 to 191 is harder to visualize from the

61

Page 4-16

program. For example: CHR$(8) backspaces and erases character.

The effect of CHR$(W) for several W-values is given below:

2=

YERRIBREEIIIZHER

&

W-value Effect or Character Printed
8 Backspaces and erases one character
10-13 Linefeed / Carriage Return
14 Turns on Cursor
15 Turns oif Cuisor
23 Converts to double-size letters

This is handy in yowr proghams!

Ecmeﬂu) ‘ﬁ_ : Just include
WANT T0 §H0OV YOUR
PROCRAN To A CROWER 108 PRINT CHR$(23)

PRI#T cHEY(23Z) Wil

MAKE OVTE: T\ ICE and yourn output will be double-

5 ‘m sdzed until the next CLS.

Backspace Cursor (+)

Advance Cursor (-r)‘

Downward Cursor (Linefeed or +)

Upward Cursor (Linefeed or +)

"HOME'', Returns Cursor to (§,$) position
Moves Cursor to beginning of Current Line
Erase to End of Line

Clear to End of Frame

Space
i

a

3R 4 i

62

Page 4-17

W-value Effect or Character W-value Effect or Character

38 & 95 —— (Underscore)

39 / 96-127 lowercase a~z

40 ((but TRS-80 does not dis-
play lowercase)

41) 128 Space

42 * 129-191 Various combinations of

43 - Rectangles for fast SET()

44 R 192-255 Tabs for @ to 63 spaces

45 -

46

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58

59 5

(58] <

61 =

62 >

63 ?

64 @

65-90 A-1

91 +

92 '

93 -

94 -

63

Page 4-18

GRAPHING FUNCTIONS

VES | LAN
COMPYTE
20+20 s1nv(x)
AND EVEN Apks
JTHE_GRAPH,

Juat on onn wan 't Fanl |
k£ ICCa [PV

this chapter is entirely friv-
olous, let's write a program
to graph the function

Y =20+20 sinx for Psx<3.2

(radians, of course). If

you don't know what that

means, don't let it bother

you. The point is that the

computer knows what it means.

If you just realize that for each value of x between @ and 3.2 that you
think of, the computer will supply you with a corresponding value of

Yy =20+20 sinx, that's all you need to know. It doesn't really make any
difference that sinx 1is frequently used in trigonometry and you don't
know any trigonometry...Jjust hang on and have faith.

Let's write a short program to see that the computer really can supply the
desired value.

Level II BASIC

/ 9@ PRINT "X, "Y"
1fp FOR X=@ TO 3.2 STEP P.1
1 Y=2P+2PSIN(X)
12 PRINT X,
133 NEXT X
RUN

Your computer should produce:

%

cp

2. 997
23.973y
25.91p4
£7.7884
2. 5885

s oW ®E X

64

Page 4-19

Now, what we want to do is to graph this function instead of making a
table of values.

Recall that the X,Y coordinates on the screen are (§,p) at the top left
and Y increases downward. This is inverted from the usual graph.

X >
0,07

fo,0l
X >

We shall create a new variable Y1 = 40 - Y so that

Y Y1
9 40
20 20

49 9
This will invert our graph. (Think about that a bit if it bothers you.)

We'll also introduce a new variable X1 = 10xX to spread the function out
on the screen. The program

(/9@ as
1Lp@ FOR X=@ TO 12.5 STEP @.1
12p Y=C@+2@xSIN(X)

g e
L4 Yleup-y
sp sET(XL, Y1)
H16p NEXT X

will produce an acceptable graph of the function
y=20 + 20 x SIN(x)

17@ GOTO 17@

65

Page 4-20

The last instruction 179 GOTO 17¢ is inserted to keep the TRS-80
from displaying
READY

>

which would spoil the graph. To get out of this '"tight loop",
depress .

Iater, you can learn to make even fancier graphs that show the axes
and units as well as the sbape, LDul bere we only iniruduce ihe basic ldea.

The following program displays a series of interesting graphs.

/(1@ cLs

110 A=1+RND(5)

120 B=1+RND(S)

130 C=1+RND(5)

14P PRINT A,B,C

153 TOR X=§ TO 12.7 STEP -1
16Q Y=25-5¢(SIN(A%X) - SIN(BXX) + COS(C%X))
L7 SET(Lf*X,Y)

175 FOR @=1 T0 2@ : NEXT @

180 NEXT X

199 FOR @=1 TO SPP : NEXT @

app GoTo 14p

(1@ REM ANOTHER “RANDOM ART'" PROGRAM
9@ CLS

95 FOR L=1 T0 3@

PP FOR K=p TO 15

195 P=Kxb4 + RND(LY) -1

11 PRINT @ P, CHR$(128+RND(L3));
120 NEXT K

125 NEXT L

130 FOR @=1 T0 9@@ : NEXT @

14P GOTO 9

After you have RN the program a few times, add
115 PRINT @ RND(1$23), CHRB(128+RND(63)) ;

and N it again.

66

Page 4-21

A ninth-grade student, Anthony Tipton, from Millwood High School,
Oklahoma City, Oklahoma, produced the following rather interesting pro-
gram after reading a preliminary version of this chapter.

/f>s REM ANTHONY D. TIPTON
5 REM 1717 NE SOTH
7?7 REM OKC,0K 73111

9 REM 427-0137

99 LS

198 FOR Z=1 TO 3 : (LS
141 FOR X=f@ TO 127

@2 Y=23

143 SET(X,Y)

P4 NEXT X

145 FOR Y= TO 47

b1 X=h3

197 SET(X,Y)

e NEXT ¥

17 FOR X= -b.2 TO L.2 STEP .p5
175 ON Z GOSUB 3p@, ug@, Spp
180 Y= -y

19 X1=X%1@ : Yl=Yx5

2¢p A=X1+h3 : B=Y1l+23

2ps IF B<P THEN 22p

2Pk IF B>4? THEN 22p

2p7 IF A>127 THEN 22

2Be IF A<@ THEN 22@

214 SET(A,B)

220 NEXT X

230 NEXT Z

250 GOTO 99

PP Y=SIN(X)
3L PRINT @ &%k, "SINE":
3P2 RETURN

4PE Y=TAN(X)
4Pl PRINT @ 89k, "TANGENT";
4P2 RETURN

SEP Y=X%X -y
S@1 PRINT @ &%k, "PARABOLA":
SP2 RETURN

Sophisticated readers will see ways to speed up the program. However, it
serves rather nicely at its current speed as a classroom demonstration
illustrating how flat the sine curve is at max and min points, and how
nearly linear where it crosses the x-axis, allowing for instructor com-
ment on each curve.

67

Page 4-22

SUMMARY OF LESSON 4

Let's see what you have learmed thus far...

RND(®) Produces a random decimal value between O and 1, not includ-
ing endpoints.

RND(n) Produces a random integer between 1 and n»n, including end-
points.

PRINT @ 960, "NEXT VALUE IS'; N Prints at the bottom of the screen
(location 96@).

Run 1400 Begins running a program at statement 1400.

SET(X,Y) Turns on rectangle at point (X,Y).
RESET(X,Y) Turns off rectangle at point (X,Y).
POINT(X,Y) Tests point (X,Y) to see if it is lighted or not (very

useful in some games).

FOR Q = 1 TO 4¢Q : NEXT Q The : separates different instructions
on the same line. This particular line is
a '"time waster" to slow down the computer.

PRINT CHR$(n) Optains the character or screen action de-
signated by n.

ON N GOI0 a, b, c,...,z When N takes on the value k, then pro-
gram branches to ktH statement number in
the list a, b, ¢,...,2. (See Problem 11,
lesson 4.)

Mostly, we have learned to use some different ''graphic'’ capabilities of
the computer for fun and for work.

68

Page 4-23

PRACTICE SESSIQN 4

1. If you haven't tried a variation of the PRINT AT RND(1¢¢@),"HI____"
program suggested, do so now. That is how you increase your under-
standing of the BASIC language you are using. Try this one, too.

NEW [ENTER

SPR X=RND(125)

518 Y=RND(4?)

52@ SET(X,Y) : SET(127-X,Y)
53p IF RND({)<.P@2 THEN (LS
S4p GOTO 5PP

2. Try the 'snowflake' program given in the text.

9@ LS

PP X=RND(127)

11P FOR Y=1 TO 43+RND(3)

129 RESET(X,Y) : SET(X,Y+1)
137 NEXT Y

4P GOTO 1@]

Then add

1@5 T=RND(127)
125 RESET(T,Y-1) : SET(T,Y)

Type LIST [ENTER| to see the new program.
Then, type RUN |ENTER| to run it.

3. Add a third snowflake to the extended program of Problem 2 by adding
appropriate instructions in 106 and 126. Try your program out.

4. Run the following program:

NEW

109 x=p

118 y=0

123 SET(X,Y) : SET(127-X,Y)
138 X=X+l

14@ Y=Y+1

17p GOTO 12@

If you are using level I BASIC, it should fill the screen with dia-
monds.

1f you are using Level II BASIC, the program will 'bomb off" whenever
Y>47 or X>127. This can be avoided by inserting:

158 IF Y > 45 THEN Y=RND(1@)
1L IF X > 125 THEN X=RND(15) Try it again!

69

5.

6.

Page 4-24

Try the following program on your TRS-80.

NEW ENTER

9@ Q.S

1PP X=u+RND(120)
11p Y=3+RND(4@)
12@ SET(X+1,Y+2) : SET(X,Y+28) @ SET(X+1L,Y+l) : SET(X,Y+1)
139 SET(X-1,Y) : SET(X-2,Y)

4@ SET(X+2,Y) @ SET(X+3,Y) Note: The proghams of Problems 5
45 SET(X,Y=-1) : SET(X+1,Y-1) 1o 13 are somewhat related and may
1LP IF RND(@)<-P2 THEN LS be placed on_the TRS-8§0 without
2PQ GOTO 1Pp using NEW [ENTER] %o save ne-
After it rums, try changing 160: Lyping.

1@ IF RND(@)<.2 THEN (LS
and then to
1L IF RND(B)<.BBS THEN QS

Extend and modify the program of Problem 5 by adding:

173 IF RND(B)<.? THEN 100

2pg X=p : Type RUN 20¢ [ENTER|. This will
2L v=@ ! nun the program from 20§ on, to
22 SET(X,Y) : SET(127-X,Y) i check it out. Aften it is checked
23P X=X+1 ! out type RUN [ENTER

235 IF X>12@ THEN X=RND(k) .

24P Y=Y+l

245 IF Y>45 THEN Y=RND(S)
29@ IF RND(@)<.@L THEN 5@
PP GOTO 22P

7. Run the following program:

1208 FOR X=32 TO 255
1118 PRINT X,
11280 FOR L=1 TO Y5

11.3p PRINT CHR$(X);
1W4f NEXT L
115 PRINT

11LE NEXT X
Run the program a couple of times. Then change statement 1199 to:

11pg FOR X=5 TO 35
and RUN the new program.

70

8.

10.

FOR LEVEL IT

Page 4-25

Try this program:

bPP CLS

b1@ K=32+RND(150)

b2 PRINT @ RND(1P23), CHRS(K);
630 GOTO L1

After you have RUN the above program a few times, delete the semi-
colon at the end of line 62¢ and RUN it again. Can you detect any
difference? Why?

After RUNning the revised program (without the ;) add:
L15 IF RND(@) < .1 THEN PRINT @ RND(1@@P), '"HI youwr name ' ;
and RUN it.

. Wasn't that fun! Now, try this one:

SP@ X=RND(125)

S1P Y=RND(47)

5@ SET(X,Y) : SET(127-X,Y) : SET(X,u8-Y) : SET(1L27-X,4&-Y)
53@ IF RND(@)<.002 THEN CLS

535 GOTO 5Pp {Compare this with Problem 1.)

Here's another goodie.

7PP FOR @=1 TO 28Pp : NEXT @ : (LS
718 FOR X=1535@ TO 16343

7P POKE X,19L

738 NEXT X

7@ RESET(RND(124)+L, RND(UP)+2)

270 IF RND(P)<.P@l THEN 2pp

780 GOTO 7k

FOR LEVEL I

M0 FOR @=L TO 2@@ : NEXT @ : (LS
713 FOR Y=@ TO u?
2 FOR X=f TO 125 STEP &

72 SET(X,Y) : SET(X+1,Y)
733 NEXT X
4B NEXT Y

7u@ RESET(RND(124)+1, RND(4@)+2)
770 IF RND(B)<.@@L THEN 7@@
83 GOTO 7P

71

Page 4-26

11. The following knits together the four separate programs which we
tested in Prohlems 5, 6, 9, and 10, Tn each case, the individual
programs have been modified to send control to instruction 809 every
once in a while. Instruction 8@9 then sends control, at random, to
one of the subprograms beginning at instruction 99, 190, 200, 500,
%0, 20p, 500, 19.

5 T=.f1
1@ DEFINT X,Y (Omit this insthuction on Level I BASIC.)
90 FOR @=1 T0 2@@ : NEXT @ : CLS

@B X=y+RND(12@)

11 Y=3+RND(4P)

1@ SET(X+1,Y+2) : SET(X,Y+2) : SET(X+1,Y+l) : SET(X,Y+L)
13@ SET(X-1,Y) : SET(X-2,Y)

4P SET(X+2,Y) : SET(X+3,Y)

145 SET(X,Y-1) : SET(X+1,Y-1)

152 IF RND(@)<.p2 THEN CLS

173 IF RND(@)<.? THEN 127

188 IF RND(R)<T THEN &pp

2pp X=p

21§ Y=

220 SET(X,Y) @ SET(1L27-X,Y)
23@ X=X+1

235 IF X>120 THEN X=RND(k)
BuP Y=Y+1

245 IF Y>u5 THEN Y=RND(S)
295 IF RND(B)<T THEN &pa
383 GOTO 220

5P X=RND(125)

513 Y=RND(u?)

52@ SET(X,Y) : SET(L27-X,Y) : SET(X,4&-Y) : SET(12?-X,u48-Y)
537 IF RND(P)<-@@2 THEN CLS

535 IF RND(P)<T THEN app on Levet T BASIC wse:
PP FOR @=1 TO 2Pp : NEXT @ : (LS

710 FOR X=153bQ TO 1383 719 FOR Y=¢ TO 47

786 POKE X,149% :>. 712 FOR X=¢ TO 125 STEP 2
?I NEXT X 72¢ SET(X,Y) : SET(X+1,V)
7@ RESET(RND(124)+L, RND(4@)+2) 73 NEXT X

770 TF RND(R)<.@B@1 THEN 90 749 NEXT V

775 IF RND(@)<.2*T THEN (LS : GOTO &P

2808 GOTO 7L

8PP ON RND(8) GOTC 9P, 1@@,=AR,SER, 0@, 208, SPR, 19

Instruction

8¢ ON RND(8) GOTO 9@, 109, 209, 500, 709, 209, 509, 100

sends the program to the nth instruction in the list 99, 1¢¢, 209,
S0p, 709, 209, 509, 1¢$, depending upon the value of RND(8) which
must be one of n = 1,2,3,4,5,6,7,8.

72

13.

17.

Page 4-27

P CLS

YAP X=3@+RND(LS) : Y=1F+RND(28)

41@ SET(X,Y) : SET(12k-X,Y)

411 SET(X,Ye-Y) : SET(12h~X,4b-Y)

Y15 X=X+RND(3)-2

42@ X=X+RND(3)-2

43P IF X>125 THEN X= 125

435 IF X<l THEN X=1

Yyug Y=Y+RND(3)-2

Yu5 IF Y<l THEN Y=1

45@ IF Y>4S THEN Y=45

451 IF RND(D)<-@P9 THEN FOR @=1 TO SP@ : NEXT @ : CLS : GOTO ulf
453 IF RND(P)<-@1 THEN 4pp

4S5 TF POINT(X,Y) THEN RESET(X,Y) : RESET(13k-X,Y) : GOTO 4lS
4E@ GOTO 1@

Try the above program on your TRS-80. After you have enjoyed it a
bit, undertake the following modifications. Is the design symmetric
right to left? Is it symmetric top to bottom?

Add the following instruction:
413 FOR @=1 TO 2P@ : NEXT @

which does nothing but slow down the action by forcing the computer
to count to 200 each time it passes instruction 413. Run the above a
bit before continuing...so you can follow the action in slow motion.

Try changing the .0l in instruction 453 to .05 and see how the pat-
tern is affected.

Can you combine the result of instructions 415 and 420 into one in-
struction? Do so. (Note: Although the instructions appear identi-
cal, the values of X on which they work are not, so be careful.)

Modify the program of Problem 11 to also include the "Art" program of
Problem 12, or your modification thereof.

. Write an ART program of your own.
. Write a program using the PRINT CHR$() instruction in some way.

. Write a program to display an 8 by 8 chessboard (with black and

white squares).

Write some programs of your own choice. You really do have the in-
structions needed for most programs.

73

18.

20.

21.

22.

Page 4-28

Write a program that begins
1A@ X=RND(5@) : Y=RND(2@) : L=RND(1S)

and will then draw a square having upper left-hand corner (X,Y) and
length of side L y-units. When your program is running well,
enclose it in a FOR___NEXT loop so the program draws from 6 to 10
squares. A possible over-program might be:

14 CLS

an z=rRND(E)

38 FOR K=1 TO (5+2)

1P@ X=BND(5@) : Y=RND(2@) : L=RND(15)

Your square-drnaing program here.
5@ NEXT K

51 FOR @=1 TO 8@@ : NEXT @
520 OTO 19

. Write a program to draw a design of your choice: stairstep, circle,

tree, box, face, robot, or whatever turns you on. However, choose
your design first, then try to approximate it on the computer.

Make a bar graph showing data of your choice for several years.
Note: scale your data so the longest bar ends before X = 125.

Make a cartoon of a dog that wags its tail on the display screen.

Make a smiling clown face on the display screen. Then expand your
program so the clown winks or cries or talks or something that in-
volves picture movement.

. Create an animated "stick person' who walks across the screen, bows,

and then continues walking offscreen.

. Investigate some commercially available program that uses animation.

Some possibilities are:

Dancing Demon

Life (Conway's simulation of cell growth)
Android Nim

Star Wars

Chess programs

See almost any of the magazines listed in Lesson 15 or consult your
local computer store or Radio Shack.

74

Page 5-1

g

LESSON

MICRO-RESFEARCH PROSLEMS

MICRO RESEARCH PROBLEMS

In Lesson 3, the number 30 Challenge Problem asks:

"The song 'Twelve Days of Christmas'" mentions various gifts that
'my true love gave to me.’' Let's interpret the song so that
'on the third day of Christmas, my true love gave to me

Three French hens
Two turtle doves
And a partridge in a pear tree.'’

My true love gave me six presents (3 French hens, 2 turtle doves,
and 1 partridge, if we don't count the pear tree as a gift). How
many gifts in total did my true love give to me during the twelve
days of Christmas? Write a program to determine the sum.

Answer: 364, if you do not count the pear tree as a gift."

A student submitted the following program in response to Challenge Pro-
blem 30. It does not produce the correct answer because the student

has violated a very fundamental programming rule. Can you find the error
and correct it?

5 CLS

A

i

FOR &= 110 12
S=8+K
PRINT K;
IF K=1 THEN 99
K=K-1
GOTO 39
PRINT " n; s
100 NEXT K
119 PRINT " TOTAL="; S

Before you continue, see what you can do to help our slipshod student.

833LEEY

75

Page 5-2

The basic principle our slipshod student violated is.

Do NOT change a FOR...NEXT variable
inside of the FOR...NEXT loop.

1t you look at the output from the program on the previcus page

1 1

2 1 4

2 1 7

2 1 10

2 1 13

2 1 16
ete

since the first colum in each line (separated by ; Spacing) presumably
contains the K values and the right most values (separated by , spacing)
give the current S values, it is apparent that K is not taking on the
values from 1 to 12 as might be expected in FOR K= 1 TO 12.

Indeed, the program blunder (changing the value of K inside the
FOR. . .NEXT loop) forces K back to K=1 by the end of each loop, so the
new K value, namely K+1, is always K=2. Live and learn.

If you haven't worked on this Challenge Problem, you should before
continuing. It is possible to make the "blunder' into a valid running
program merely by changing instructions 2§ and 199 and adding an in-
struction 25. See if you can do so before continuing.

76

Page 5-3

Here is our new program, with new instructions at 20, 25, and 10@

as indicated.
5

19
29

Al

{

119

This produces
RUN

s
5=
FOR L= 1 T0 12
K=1L
S = S+
PRINT K;
IFK=1 THEN 99
= K-1
GOTO 3¢
PRINT "
NEXT L

PRINT "

"
;S

TOTAL=";S

the reasonably understandable output

1 1
2 1 4

3 2 1 19

4 3 2 1 2

5 4 3 2 1 35

6 5 4 3 2 1 56

7 6 5 4 3 2 1 84

8 7 6 5 4 3 2 1 120

9 8 7 6 5 4 3 2 1 165

9 9 8 7 6 5 4 3 2 1 220
1 1p 9 8 7 6 5 4 3 2 1 286
12 11 19 9 8 7 6 5 4 3 2 1 364
TOTAL = 364

READY

Mathematicians might use the Greek symbol sigma, I, to indicate the

sum and expres

s this problem as

12 L
2 | 2
1=1 K=1

Would the program listed on the following page achieve the same result?

77

Page 5-4

209 SL =9 Don't type NEW. Just start this
21¢ FORL =1 T0 12 progham beyond whene the finst
220 SK =0 progham ended, s0 you can hun
23p FORK =1 TO L elther one by using:
T .
S Sascex run_[ERTER
269 NEXT K BREAK
279 PRINT " '; &K on
280 SL = SL + SK
290 NEXT L B RUN .ZW‘ .ENTER
3pp. PRINT " TOTAL="; SL on get boxh, by merely Typing

RUN [ENTER

The final total is the same in each case (TOTAL =364) but the in-
termediate suns (at the extreme right of each line) are quite different.

Hmm? How would you change the second program to get it to mimic the
output of the first program? Well, we want line

27¢ PRINT " ", 8K to print the value of SL instead of SK.
Let's change 279 to
27¢ PRINT " ", SL

and rerun it.
At first, that may look better, but a little more careful examination

shows that this revision of the second program produces a running
(cummilative) sum that is always one line late. Hmmmn?

If we interchange instructions

279 and 280, giving e
C\stEveriony

20p SL = p E

21 FORL=11T0 12 »\ PR L4y

220 K = ¢) nﬂm

23p FORK=1T0 L Bk

240 DRINT K:

25 SK = SK + K

260 NEXT K .

27p SL = SL + SK

289 DRINT " "SI

299 NEXT L

3gp PRINT " TOTAL="; SL

This program should now produce the same result as the program on the
previous nage. Thes it? Yes, it does. Frankly. T prefer the program at

78

Page 5-5

the top of the previous page that lists the number of gifts each day on
the right edge, rather than the running total.

Actually, that problem is simple enough so that we could have com-
puted the result without using a computer...but since a computer was read-
ily available, it may have been easier to use the computer. Or it would
have been, if we hadn't made so many foolish blunders in our program.
However, correcting blunders is one way to learn to write blunder-free
progranms.

Iet us turn our attention to some problems that are not easy to
solve without a computer. The term micro-research problems seems approp-—
riate for problems that are not to be found in most text books. The
easiest way to find the answer to a micro-research problem may well be
to solve it for yourself. Interestingly, you do have enough mathematical
and computer programming ability, so that with the help of a TRS-80 micro
computer, you can solve many problems that would have been beyond your
ability and/or patience five lessons ago.

Let's get going!

Now that you can use your computer to solve a really difficult
problem {obtaining roots of messy equations, Lesson 3) and have fun
using the graphics capability of your TRS-80 (lesson 4), it is time to
tivink about some interesting micro-research problems on which you can
expect to make reasonable progress using your computer. We shall walk
through the solution of one quite difficult micro-researcn problem in
detail - but you may wish to solve it yourself before reading on.

Problem:

Find perfect square mtegers like 5776 which have
the property that they end in their square roots. v 5776

Admi ttedly, this problem is not earthshaking, but it would not be very

easy to solve without a computer, Try it yourself before continuing,
with or without a computer.

79

Page 5-5

STEPS FOR COMPUTER-ASSISTED PROBLEM SOLVING

Successful problem sbiving is apt to inwolve several quite different
stages. Here is a series of steps that is sincerely recommended.

1. Be sure you understand the problem. Try to restate it in
several ways. Then trv to find a general methnd (algnrithm) for
solving the problem.

2. Examine a simple special case first.

3. Then, if it seems appropriate, program a computer to examine
another special case.

4. MNodify your computer program to examine a different special
case.

5. Modify and generalize your computer program. Include tests to
be sure the program is working as expected.

6. Run the new program and examine the output.

7. Now re-examine the output. Use your common sense and mathemat-
ical acumen to see if you can devise a better (faster and/or safer)
algorithm or prove a theorem that will help solve the problem, unless
it is already solved.

8. Go back to step 5, if the original problem has not yet been
solved to your satisfaction.

This seems rather round-about at first, but experienced computer
problem-solvers have found it is a much better technique than the usual
technique of the amateur, who tries to start by writing the final pro-
gram, or at least with the program of steps 5 and 6 right away. This

is fine on trivial problems, but on more difficult problems it is really

better to start easy and work up gradually, testing each stage.

80

Page 5-7

Try it on our problem.

1. Be sure you understand the problem. Try to restate it.

Original Problem

Find perfect square integers like 5776 which have the property
that they end in their square roots. v 5776 = 76

Restated Problem (same problem, but from another viewpoint)

Find non-negative integers N such that M ends in N.
Find integers N20 such that their squares S = N end in the
digits of N.

The first technique (algorithm) that suggests itself may well be
just to examine S = N for each N and determine whether or not
S = N ends in N. Later you may be able to devise a better
algorithm.

2. Examine a simple special case first.

In attempting to solve any problem, it is well to examine
several special cases before plunging in. ’

N ? i 2 3 4 5 6 7 8 9

¥ 9 1 4 9 16 25 3B 49 64 81
So the one-digit numbers N whose squares end in N are N = ¢,1,5,8.

3. Write a computer program to exanine another special case.

let us write a program that will find the three-digit numbers
N whose squares end in N. The last sentence displays two rather
important problem-solving techniques:

1. In computing, it frequently pays to rephrase a question by
turning it around a bit.

2. It is often helpful to examine a special case (here the 3-digit
case) of a more general problem.

You may wish to try writing such a program yourself before
continuing.

If you wish to examine the last 3 digits of a number S, then you

need to devise a technique of finding the last 3 digits of a longer
nunber. There is an easy way to do it using the INT () function.
INT () produces the integer portion of the value inside of the
parentheses. Thus, INT (34.761) = 34.

81

Page 5-8

The instruction
T =8 - 10@p*INT (S/1909)

will produce the last thres digits of S and store them as T. If this
is not obvious, try it for 2 or 3 integral values of S.

For examle: S = 123456
S/100p = 123,456
INT(S/19¢9) = 123
100p*INT(S/1000) = 123p0Q
S - 1PPP*INT(S/1000) = 123456 - 123009 = 456

Using this instruction, see if you can devise the desired program your-
self.

A program to examine the git numbers N such that S = ¥ ends
in N:

1¢p FOR N = 1p1 TO 999
119 = N

129 T = 8 - 1PPP*INT(S/1099)
130 IF NoT THEN 209

149 PRINT S;N

209 NEXT N

You may wish to run the above program before continuing.
The results are:

141376 376

390625 625

4. Modify your program to examine other special cases.

Can you change the program to also obtain the 1-digit values
of N whose squares end in N? - namely, 9,1,5,6 as we saw when
we worked the problem by hand?

Of course, you can. Merely change instruction,
16¢ FOR N = 141 To 999 10§ FORN = ¢ TO 9
and 0

126 T = S -~ 1Q0¢*INT(S/1000) 129 T = S - 1P*INT(S/19)

and RUN the program.
Try it yourself.

What changes would you_make in the program to obtain the 2-digit

vaiues of N such that S = N2 ends in the digits of N?
Please do so before continuing.

82

Page 5-9

Although our current attack is clumsy, even a clumsy attack is
oftren better than no attack at all. Let us now try to produce a
program which will do the modifications for us. This is unnecessary in
this particular problem, since the modifications are easily done, but
we may learn some useful tricks along the way. Examine the following
program and be sure you see how it works before running it.

5. Generalize your computer program to examine several cases using
the same program.
Our new fundamental program:

(where P 44 the integen 1, §ollowed

1p INPUT P by as many zeros as there are digits
1pp TFOR N = 1+P/1¢ TO P-1 in N
19 S=N*N

120 T=S-P¥INT(S/P)
139 IF N<>T THEN 200
149 PRINT S;N

200 NEXT N

The program seems to work well. If there is a way to change P from 1@ to
100 to 1¢PP etc. as the program goes along, you could then use a slight
modification of the old program. Try it yourself before continuing.

In any event, the modified program given below sounds as if it
would work:

19 P=1¢p
199 FOR N = 1 + P/1¢ TO P-1
119 S=NHN
120 T=S-P*INT(S/P)
139 IF N<>T THEN 209
149 PRINT S;N
209 NEXT N
210 P = P¥1Q
22¢ GOTO 199

Try it...it works! Well, it works for a while anyway.

It really does need two more instructions

9@ PRINT "NOW WORKING ON N<" ; P Also change 229 GOTO 99.
This will tell you the general range of N-values on which the program

is working. If it gets stuck, you at least know where. It will also
give you estimates on how long it takes for each set of k-digit N values,
for k= 1,2,3,.... Comon sense suggests 3-digit numbers should take

about 10 times as long as 2-digit numbers, since there are 10 times as
many of them.

82

Page 5-10

Remenber to include another important check.

ey ey QO T nvaes S A
Any computer has nurbers S so large it can-

not tell S from S+1, If a computer carries
only six digits of accuracy, for example, !
and S is a 7-digit number, say
(True 8) = 7654321
The computer shows this as 7.635432E+06,
which is read 7.65432 *106 or
7654320. Now (True S+1) = 7654322.
However, if yourcomputer stores only
six decimal digits of accuracy, then
S+1 = 7.654322 *106
which is chopped off (or poss:Lbly rounded)

avder med e d B amade 22 ot

W six Sighnliidanv u.Lgs..Ll,a, 5J.VJ.L15
7.65432E + 06

which is precisely what you had for S.

Thus, the computer cannot distinguish

between S and S+1.

In this case, the final digit of S is no longer known. The computer
substitutes zero for it, and cannot tell if S ends in the same digits as
does N. Surely, you wish your program to STOP automatically if such a
crisis should arise (and it does, inevitably).

Do this by inserting the instruction
115 IF S=S+1 THEN PRINT "OVERFLOW ERROR ON S,N=""; S;N : STQP

If the computer cannot distinguish between S and S+1, it will print
the requested message and then STOP. Otherwise, the program will ignore
instruction 115 and pass on to the next instruction.

The expanded program now reads:
19 P =10
99 PRINT " NOW WORKING QN N< ' ; P

100 FOR N = 1 + P/1¢ TO P-1
119 S = NWN

115 IF S = S+l THEN PRINT "OVERFLOW ERROR ON S,N="; S;N : SIQP
129 T = S-P¥INT(S/P)

133 IF NoT THEN 2¢¢

149 PRINT S;N

oP9 NEXT N

21¢ P=p*1p

220 COTO 99

let's return to ''Steps for Computer-Assisted Problem Solving”.

84

Page 5-11

6. Run the general program and examine the output.

Give it a try on your own camputer before continuing.

The output is:

LEVEL 1I BASIC LEVEL I BASIC
NOW WORKING ON N<1¢ NOW WORKING ON N<1¢
25 5 25 5
36 6 36 6
NOW WORKING ON N<1¢9 NOW WORKING ON N<1¢¢
625 25 625 25
5776 6 5776 76
NOW WORKING ON N<19p@ NOW WORKING ON N<1pgp
141376 376 141376 376
390625 625 300625 625
NOW WORKING ON N<19g@p NOW WORKING ON N<1¢0pp

OVERFLOW ERROR ON S,N = 3.35588E+p7 OVERFLOW ERROR ON S,N = 1.67772E+)7
5793 4096

BREAK IN 115 ‘

Netice, ouwt program "bombed of4" at Notice, ouwr program "bombed ¢ §§" at

P=10000 with S,N= 3.35588E+07, 5793 P=10000 with S,N = 1.67772E+07,

as a result of the test in instuwe- 4096 as a result of the test in
tion 115. Ansthuetion 115,

This seems to reach the limits of exploration using LEVEL I BASIC

unless we are willing to construct our own special '"multiple precision"
routines.

85

Page 5-12

It is time to consider a new concept in computing:
F DRECTISION ARTTHMETTC

N’y L e A Ad ok e N

If you have LEVEL II BASIC on your TRS-80, you can also investigate
the problem for 4-digit and 5-digit values on N (which produce 8 and 10-
digit values of S) by including the instruction

5 IEFIBL. S,P (which is nead "Define Double!.)

which produces double length (16-digit) values for any variable beginning
with S or P. (Maybe we can even run the program for 6,7, and 8-digit
N-values which have 12,14, and 16-digit squares — wait and see.)

T mws o v v e b e o o]
DS ve L, Ll

P

The TRS-80 does not produce a double length product if single length
nurbers are miltiplied together. Thus S = N*N will not produce a valid
8-digit square, if N is a single precision 4-digit number

= 9376 (‘fRUE S8) = N2 = 87909376

4

For
However, the computer rounds this to six digits and produces
N¥N = 8.79094E + @7

which is stored in S as 879¢94¢p, rather than the correct value,
87999376,

The "'obvious" solution is to make all three of S,P, and N double
precision by using

5 DEFIBL S,P,N
However, the
FORN = 1 + P/1§ TO P-1

instruction will not accept a double precision variable for N,

This is easily fixed by using

199 N = 14P/19 19 FOR N = 1+P/19 TO P-1
13¢ IF N<>T THEN 150 in place of 133 TF N<>T THEN 200

150 N = N+1 T

20 IF N<P THEN 119 20¢ NEXT N

86

°

The program now reads:

(Note~)

Page 5-13

COMMENTS

5 TIEFDBEL S,P,N 5 Omit instruction 5 if you are
19 P=19 using LEVEL I BASIC.
9¢ PRINT '* NOW WORKING ON N<'';P 1¢ The number of zeros in the
10¢ N =1+ P/1p current value of P is the num-
11¢ S = N*N ber of digits in N.
115 IF S = S+1 THEN PRINT "OVERFLOW 9¢ It is good practice in a pro-
ERROR ON S,N="; S; N:STOP gram whose output may be scarce
12¢ T = S - P¥INT(S/P) to include a statement display-
13p IF NoT THEN 150 ing what the program is doing.
14¢ PRINT S;N 115 This is a necessary precaution,
150 N=N+ 1 when the computer cannot tell
200 IF N<P THEN 119 the difference between S and
219 P = P¥1¢) S+1, the program will STOP and
215 PRINT so indicate on the screen.
22¢ GOTO 99 21¢ Changes P to the next higher
power of 10.
22¢ Repeats program with new P
value.
The output is: Level I BASIC
) (ommitting instruction 5)
lLevel II BASIC
NOW WORKING ON N <18 NOW WORKING ON N< 1¢
25 5 25 5
3B 6 36 6
NOW WORKING ON N <1fp NOW WORKING ON N <1¢p
625 25 625 25
5776 76 5776 76
NOW WORKING ON N <1p¢p NOW WORKING ON N <1909
141376 376 141376 376
390625 625 390625 625
NOW WORKING ON N <1f/9pd NOW WORKING ON N <1/p99
87909376 9376 OVERFLOW ERROR ON S,N 1.67772EH)7
4096
NOW WORKING ON N <1p0pop

8212890625 90625

NOW
11
793

WORKING ON N <1090000
963109376 109376
212800625 890625 ete.

87

Page 5-14

You will notice that for each new P value, it requires ten times

as much commuter time as for the previocus P value.

Run the program again and time it.

Level II BASIC ILevel I BASIC
Your program did not "bomb out" You were stopped during
like Level I did. But it sure can P=10000
use up lots and lots of computing at which time the instruction
time.
To get Irom 110 1¥ S=5+1 THEN PRINT "OQVERFLOW

ERROR ON S,N="';S;N:STOP
P=1pp to P=19Pp took about 1.5

minutes halted the run. You may wish to
P=1000 " P=1000p """ 15 minutes delete instruction 115 and rerun
P=1000p " P=10pPpP '™ 2.5 bhours the program to see what happens.

If you let your TRS-80 run another Remesmber you can always stop the
24 or 48 hours, from P=10@p@p to P= program by depressing
1Pp@PPe, you will also find You may then learn the values it
was working on by typing
11963199376 199376
793212890625 890625 PRINT P,N,S,S+1

and who knows what else???

NOW IS THE TIME FOR US TO GET SMART.

This program really works the problem in a very crude brute-force way.
We are just examining every nunber, N. The number of nunbers to be exam—
ined increases sharply as P increases.

No. of cases Approximate time
1 <P <1p 8 Less than 1 second
19 < P <199 88 9 sec
1090 < P <1099 898 90 sec = 1.5 min.
11¢¢¢ < g <}¢¢¢¢ 89988 15 min. 5
10000 < P <100000 8229 150 min = 2.5hr.
p! < P <1000000 899998 24 hr.
1000000 < P <10000000 2000008 2 or 1C days

Clearly we can reasonably expect to examine P < 19, 109, 1009, 10009,
and even 1P@@@p, but after that, the computer time involved becomes
exorbitant. Of course, you may reason that the TRS-80 might just as well
be working on your problem as be sitting idle. It takes very little
power. (It uses about as much power as a small light bulb, if you turn off
the CRI' display tube, which you mght as well do if you are not watching
it. You can turn it on and recapture whatever would have been on the

sScreen at that moment. The camputer continues o compute even when the
. \

AiemT oy +ubha $o 4
cazplay tTule o Tt

88

Page 5-15

Returning to our ''Steps for Computer-Assisted Problem Solving',

7. PRe-examine the output. Use your common sense and mathematical
knowledge to devise a better (faster) algorithm to help solve the
problem.

We really should have recognized at the beginning that N2 nust end
in 0, 1, 5, or 6 if N ends in N. This would have saved almost 60% of
our computing time. Actually if N>9, then N cannot end in O since then
N2 would end in 00, etc. Similarily if N>9, N cannot end in kl since
then N2 would end in (2k) 1 since (10k+l)2= 100k2 + 20k+1. Similar math-
ematical arguments show that if N>9 and if N? ends in N, then N ends in
5 or 6. So instead of increasing N by 1 each time we can jump by 19 and
test both N and (N+1) to see if either has the desired property. The
following program will cut 80% of our running time--doing an hour's
testing in 12 minutes.

You Ara ercveg!

.;éi&d THIS wiLL cur

5 IDEFDBL S,P,N
19 P=10
99 PRINT '"NOW WORKING ON N<'';P
1990 N =5 + INT(P/190)*10
1190 S = NN
115 IF S = S + 1 THEN PRINT "OVERFLOW ERROR ON S, N ='"" 3;N:STOP
12¢ T =S - PXINT(S/P)
139 IF N T THEN 150
149 PRINT S;N
159 N1 = N+1
152 S1 = NI*N1
154 TL = S1 - P*INT(S1/P)
156 IF N1 < T1 THEN 160
158 PRINT SI1;NL
160 N=N+1¢
2¢p IF N <P THEN 119
21¢ P = 1g*p
215 PRINT
22¢ GOTO 99

Try it. It vyorks, and we really might have been smart enough to have
thought of discarding 80% of our unsuccessful cases in the beginning.

89

Page 5--16

However--now that we have some output to look at, it may be possible
to find an even more clever way to speed up our program. Look at the
output. Do you notice anything special?

N2 N
25 5
36 6
625 25
5776 76
141376 376
390625 625
87909376 9376
8212890625 99625
11963109376 109376
793212890625 290625

Two items demand ouwr attention:

I. VWhen we investigated the one-digit N's by hand and on the first pro-
gram (rmdi_fied to numbers from § to 9), we found

N2

14
1

25
%6

avHe =2

but our current computer program missed the first two values 9, 1.
Just why did that happen, and do you think that it missed any
other values between P = 1) and P = 10922997 Are You Sure?

We did obtain all the values between P = 1 and P = 10p00p@, but
did miss N = ¢ and 1 because this program did not test N=@ or N = 1,
since it started at N = P/1¢ + 1 for P = 19 which is 2.

If you didn't notice that earlier, you need more computing experience

before you can ke censidered a qualified amntewr.

II. DNotice: The only large values of N such that N2 ended in N were
values of N that themselves ended in those exact digits for which
we_found same previous satisfactory N. Now that may be a real
clue!

20

Page 5-17

Consider the case starting at P=100@. We found

N2 N
141376 376
39625 625

It seems reasonable to believe that any 4-digit value of N whose square
ends in N will have the value of N itself ending in either 376 or
625 since otherwise, N2 would not end in N. Hmmm. Well, yes -- that
seems reasonable.

However, some things that ''seem reasonable! turn out not to be
trie. For example, one of my students extended the above conjecture
by asserting, 'Since there is only one 4-digit value of N such that N2
ends in N, there can be only one such N having k digits for any k>4."
However,

N = 109376 w2
N = 899625 N
blows that '"reasonable conjecture'.

11963199376
793212890625

i

(Why?) Well, because the student didn't recognize that the six-digit
199376 was a suitable extension of the four-digit N = 2376 under our
original guess, with @ as the fifth digit. Hum.

Well, how about the original guess? If we could show that

a
8
»
2
»
H
2
H
B
»
.
B
H
a
8
a
N
.
I
H
°
v
1
s
.
H
H
»
1
H
3
3
H
*
a
s

Con jecture

1f a given N2 ends in the digits N >1¥, then N itself must
end in the same digits as some smaller such N.

Not yet proved.

maeRREsARORRNDESIC RN

fould it be helpful in our search?
Well, you just bet it would be!

For example, in examining the 5-digit N values instead of examining 89998
cases, we would only need to examine the 20 cases X9376, X0625 (and
possibly the 10 more cases X0375 unless we can show that is also impos—
sible.... which we can).

I'm not going to prove the conjecture--but it is true.

21

Page 5-18

To cut down from 89998 cases to 20
cases for the 5-digit N values is a
savings of 99.98% of the numbers to be
tested. The 6-digit values produce
even greater savings. What would for-
merly have taken twenty-five hours
should now run in less than a minute,
even if each nunber evaluated took
several times as long to test (since
the program may be messier than before).
That is indeed a worthwhile savings.

! CAMY 32
QUICK WHAN
i YOV THROW ouT
T H OUSANDS
OF USALASS

For now let us assupe the slightly stronger result:

If N ends in N, then N ends in the digits of some sumller K

such that K2 ends in K. TFurthermore, the previous K will be
a K with one fewer digit than N, with the possibility of lead-
ing zeros on a smaller K such as 90625 being the N for K = -
pe25, K2 = 39425,

let's start our program with 3-digit N values. This will enable us to
test the program and see if it is running as we believe it should.,

Store the 'last two successful values of N that we are trying to extend
in locations A and B. Starting with the 3-digit values of N, there will
be

P = 1000 o
A= 25 (since when N = 25, N2 = 625)
B= 76 (since when N = 76, N° = 5776)

to properly "'seed'" our program with the successful 2-digit values to be
extended.

Continuing with "Steps for Computer-Assisted Problem Solving," we find:
8. Go back to step 5.

5. Modify and gemeralize your computer program. Include tests to be
sure the program is working as expected.

92

6.

Run the new program and examine the output.

Page 5-19

The following program seems to produce the desired results in
moderate time. Study it until you understand it well enough to

explain it to one of your classmates who needs help.

5 DEFDBL S,P,N,A,B (Omit 5 if using LEVEL 1 BASIC.)

19 P=100p
20 A=25
30 B=76

99 PRINT " WORKING ON N < " ; P
95 Q=P/1¢

99 REM THIS BLOCK EXTENDS A VALUE
199 TFOR K=1 T0 9

195 N=K+}Q + A

119 S = NAN

115 1IF S=S+1 THEN PRINT "OVERFLOW ERROR ON S,N = ';S;N:

120 T = S - P&INT(S/P)

139 IF N<>T THEN 209

149 PRINT S;N

159 A=N

169 GOTO 3¢9

200 NEXT K

21¢ REM END OF BLOCK THAT EXTENDS A VALUE

250 REM

209 REM THIS BLOCK EXTENDS B VALUE
309 FOR K=1 TO 9

305 N = K+xQ + B

310 S = NN

320 T =S - PXINT(S/P)

339 IF N<>T THEN 400

349 PRINT S;N

350 B=N

360 COTO 509

499 NEXT K

491 REM END OF BLOCK THAT EXTENDS B VALUE

450 REM

509 P = P19
520 GOTO 99

Put it on your computer and see how it runs.

23

STOP

Page 5-20

Output from Level II BASIC

TYNTVEreATeY Jeete)

WORKING ON N < 196

390625 625
141376 376
WORKING ON N < 1000¢
87999376 9376
WORKING ON N < 10pg0Qp
8212890625 op625
WORKING ON N < 1000000
793212890625 890625
11963109376 19376

WORKING ON N < 10p000g0

8355712890625 2890625
505432271 09376 7109376
WORKING ON N < 1
166168212890625 12890625
7588043387109376 87109376
WORKING ON N < 1000000000
OVERFLOW ERROR ON S,N =1.7@4786682128906D+17 412899625
BREAK IN 115
READY

>
Output from level I BASIC

WORKING ON N < 1009
300625 625
141376 376

WORKING ON N < 1000@
OVERFLOW ERROR ON S,N = 2.13906E + 07 4625

Now we need to ask if the original problem has been solved.

If it was to find all perfect squarss N2 such that N2 ends in the N,
then it is only partially solved. The program found all such N < 412890625
but there is no reason to suspect that is all there are. There is also
the possibility our program may be defective and may have overlooked some
N values less than 107 (After all - we did overlook @ and 1 - remember?).

This is one way research is done. First, investigate a few special
cases. Next, use a simple program to investigate a few more cases. If
the results seem worthwhile, automate your program and let it run a bit.
Next, exanine the output, make some conjectures and prove or disprove

94

Page 5-21

their validity. Then, devise a new technique (algorithm) for carrying
out the investigation and implement it.

Now you are ready to try to prove the most general case. It may or
may not yield to your effort - but in any case, you have a pocketful of
results that were previously unknown. We shall not attempt to go further
here, but strongly suspect some able student will do so.

There is one additional check that should be made.

Did our last two programs produce the same results as far as they
overlapped? If not, why not? This is important.

The two programs are:

Program from page 89 Faster program from page 93
5 DEFDBL S,P,N 5 DEFDBL S,P,N,AB
19 P=19 19 P = 1000
99 PRINT ""NOW WORKING ON N<'';P 20 A =25
90 N =1+ P/19 3 B=176
119 S = N*N
118 1IF S = S+1 THEN PRINT "OVERFIOW 99 PRINT " WORKING ON N<';P
ERROR ON S,N='"";S;N:STOP 95 Q=P/19
120 T = 8 - P*INT(S/P) 99 REM THIS BLOCK EXTENDS A VALUE
139 IF N<>T THEN 150 199 FOR K=1 TO 9
149 PRINT S;N 195 N=K+¥ + A
150 N=N+ 1 11¢ S = N*N
20 IF N<P THEN 119 115 IF S=S+1 THEN PRINT "OVERFLOW
219 P = P¥1) ERROR ON S,N='";S;N:STOP
215 PRINT 129 T = S - P*INT(S/P)
220 GOTO 99 13¢p 1IF N<>T THEN 20¢
149 PRINT S;N
RUN 15¢ A=N
160 GOTO 3¢9
209 NEXT K
219 REM END OF BLOCK THAT EXTENDS
A VALUE
259 REM

299 REM THIS BLOCK EXTENDS B VALUE
309 FOR K=1 TO 9

305 N =K+Q + B
310 S = N*N
320 T =S - PXINT(S/P)

33¢ IF N<>T THEN 409
349 PRINT S;N
3¢ B=N
360 GOTO 5¢9
NEXT K

491 REM END OF BLOCK THAT EXTENDS
B VALUE

450 REM

509 P = P*1p

520 GOTO 99

Page 5-22

The two rather different programs seem to agree as far as they go,
but the longer program produces more results in two minutes, than the old
program did in 48 hours or even a week. That is what is meant by effec-

tive programming.

Actually all values of N such that N2 ends in N for N of 100 or
fewer digits are known, but their investigation uses more mathematical
sophistication than we are willing to impose here.

“WITH Y9UR BRAW
AND
. MY SPRED
4 WE CAN
A po RESEARCH.
[N il

5. aa ‘

The most important thing in Lesson 5 is the realization that you do
already have enough computer adroitness to successfully undertake the
investigation (and at least partial solution) of problems so diffi--
cult that a month ago you wouldn't even have tried them. You should
also have discovered that it is frequently a nontrivial (but perfectly
possible) task to program a computer to help solve research level
problems.

Most important of all - you have discovered one of the fundamental
truths of computer programming.

ano cwsoe

When you have a program written and it is debugged
and running properly, then if you reflect on the
problem you will frequently find a better way to

do it, If the prcblem is major, this is the time
to think hard, then scrap your earlier effort and
start over.

fonosonamesRoaNanIREBne

azan

Of course if the problem is a 'one time only" problem and if your
existing program produces the desired results while you are thinking,
you can forget the reprogranming unless you want to show the program
to someone else or to use it again later.

96

Page 5-23

SOME MICRO-RESEARCH PROBLEMS
YOU MAY UNDERTAKE

Don't expect all of these problems to be easy, or even solvable

with your present knowledge. They are micro-research problems for your
consideration. If you do more than two problems, you are to be congrat-
ulated. After working on a problem as stated, see what extensions and
modifications you can devise; work on them.

1.

If the 6's are cancelled in 16/64 + 1$/¢4 = 1/4 the result is correct.
(26/65+28/85 = 2/5 is another example.) Find all examples of proper
fractions such that AB/BC = A/C with A # B where A,B,C are digits
between @ and 9 inclusive.

If N! = 132%3%,, *(N-1)*N for N>1 K

and S(K) = 1! + 2! + 31 + 41 + .., +K! = E Y,
N=1

for what values of K > 1 is S(K) a perfect square?
(This requires some easy mathematical thinking after you have writ-
ten and run a computer program,)

Write a program to accept an integer N > 2 as input and then type
out N and the factors of N.

Let your imput be three positive numbers A,B,C (not necessarily

integers).

a) Determine whether or not A,B,C can be the sides of a triangle.
(Note: If A,B,C = 1,5,3, the answer is "mo".)

b) If A,B,C are acceptable as sides of a triangle, extend your pro-
gram to also print the area of the triangle.

c¢) If A,B,C do determine a triangle, extend your program to also
compute the angles of the triangle.

a) Write a program that will accept a positive integer N as input
and determine whether or not N is a prime. (Note: 1 <s not
a prime. An integer N > 1 is prime 1f its only positive factors
are 1 and N.) Compare your program with those written by your
classmtes. Test it for several values of N > 60¢@. See whose
runs fastest, and why.

b) Make a table of primes < 50¢0.

¢) Extend your program to print out all the prime factors of N.

Write a program to accept two positive integers M and N and to print
out M, N and also the largest positive integer which divides both

M and N. Such an integer is called the greatest common divisor

and may be found using a technique called Euclid's Algorithm or

by simply trying all positive integers from the smaller of M and N
down to 1 until you find a value which will divide both.

97

ird

8.

9.

10.

11.

T A A e 3 5 e ik e ca
7. Find two consecutive integers whose sguares each use

Page 5-24

If you use the latter (inefficient, but effective) technique, your
program could begin:

199 INPUT "M,N =" M,N

106 IF M<=p THEN 109

108 IF N<=p THEN 1¢p

109 EEM: INSTRUCTION 119 SETS S = SMALLER OF (M,N) FOR USE IN 200
119 IF M>N THEN S= NELSE S = M

2¢¢ FOR D=S TO 1 STEP -1

o+

e, he same
digits (in a different order, of course). Thirteen and fourteen are
such a pair; 132 = 169 uses the same digits as 142 = 196. Similarly,

1572 =24849 and 1582 =24964. Find other pairs of consecutive inte-

OSe SQUATES ©

f

yactly
ACTLY

gers whose squares are composed of the same digits.

a) Write a computer program to accept three values M,D,Y and deter-
mine whether or not they are acceptable values for Month, Day,
Vear in that order. If Y < 1590 you may prefer to state the
date is unacceptable rather than consider the various calendar
reforms that took place prior to 1590.

b) Extend the above program to accept two sets of three numbers and
if both are acceptable as Month, Date, Year values, determine
the number of days between them including both dates in your
count.

Example: 2,29,1978 to 2,22,1978 is 3 days.

For the distinct digits A, B, C, D, E, F, G, H, I, J the product

Ax(BCIE) = FGHIJ

has solution 4x(7039)=28156 and a dozen other solutions. Find them.

Write a program to accept a positive integer K and print it out and
also print out the integer obtained by reversing the digits of K.
Example: If K = 12345,

print out: 12345 54321

The sequence
1 2 3 4 6 8 9 12 16 18 24 27 32...

is made by listing numbers of the form N = 2k .3

(with k and m integers k2@, m2p) in order of increasing size.

It is not easy to devise an algorithm to generate and print them in
increasing order, but that is only part of your task. The even more
difficult problem is to find the 1¢@@th term of the sequence, Or more
generally, given an integer T, find the T-th term of the sequence.
(Thanltre to Fred Gruenherger for suggesting this problem.)

98

13.

14.

Page 5-25

. Write a program that will draw a random maze on the screen such that

it is possible to reach every cell of the maze, but there is only one
'"best' path (i.e. without retracing) through the maze. Then, extend
your program so that the computer will "solwve' the maze it created.

a) Determine the sum of the N-digit nunbers that can be formed
using N specified digits for each possible set of 2,3,4 and 5

digits.
Examples:
N=2 Digits = 3,8 Then sun= 38 + 83 = 121
Digits = 4,1 Then sum= 14 + 41 = 55 (Yes, we count
Digits = 2,2 Then sum = 22 + 22 = 44 22 both ways.)
N=3 Digits =1,2,3 Then sum =
123 + 231 + 312 + 132 + 321 + 213 = 1332
Digits = 3,8,9 Then sum =
389 + 893 + 938 + 983 + 839 + 389 = 4440

b) Notice that the sum seems always to be divisible by 11. Can you
prove this in general? What other factors will the sum have?

c¢) Can you show that an N-digit number will have N! different
permutations, (N-1)! of which start with each digit, and (N-1)!
of which have €ach digit in the second place, etc.?

d) If you prove each of the above, you may also be able to show
that the sum of the N! nunbers obtained as permutations of the
N digits will always be (N-1)! * (sum of the original digits) *
(the integer consisting of N ones). For N = 8, Digits =
1,2,3,4,5,6,7,8 there are 40320 integers and their sum is
215999979840,

e) What happens if a number containing repeated digits is counted
only once? Thus N = 2, Digits = 2,2 Sun = 22 (not 22 + 22 = 44).
[This is a rough problem.]

A palindrome is a phrase or sentence which reads the same forward as
backward.

"Too Hot To Hoot'"

"Ma Is As Selfless As 1 Am'

"Retracting, I Sign It, Carter"

"Marge Lets Norah See Sharon's Telegram'

There are also nunmbers which are palindromes. It is fairly easy to
find perfect squares which are also palindromes.

(111)2 = 12321
(202)2 = 40804
(264)° = 69696

99

15.

18.

17.

Page 5-26

It is possible to prove that there exist infinitely many perfect
squarés that are palindromes. However, perfect squares that are

palindromes having an even number of digits such as (836)2= 698896
are fairly rare.

Investigate the subject of perfect squares that are also
palindromes.

For what values of N > 1 does W = 2N -1 contain a factor > 1 which
is a perfect square?

IfN=6 W=2°-1=63=23%-7

It N=7, W= 9¢ -1 = 127 which does not contain a square factor > 1

IfN=8,W=28—l

255 which does not contain a square factor > 1

a) It is easy to find Pythagorean rectangles having integral sides
and integral diagonals (1,w,d) = (3,4,5) or (5,12,13). But can
you find a box (rectangular parallelepiped) having three
distinct integers as dimensions, each of whose face diagonals
is also an integer?

b) If so, can you also find one wi
diagonals are integers?

Ame hede Adasan
105€ OO0y d.Lasuu?a.l as well

i
B
8
6

Ny // e

Use your TRS-80 to design some personal greeting or Christmas cards.
Take photographs of the TRS-80 showing the design on the screen and

enough of the keyboard to be recognizable. Send one to your authors.

100

Part II-Page 1

You are ready to proceed on your own now. No one is expected to
work all of the research problems in lLesson 5, but you should work several
and at least read and consider the others. The way to learn computing is
to campute, and then reflect.

The remainder of this book discusses useful techniques and additional
BASIC instructions you may or may not need to know about. Lessons 6 to 17
may be read in any order desired, or ignored. Read about these techniques

many problems using the computer as a tool. We suggest you glance briefly
at the sumary below to ascertain the general content of the lessons be-
yond 5. Then read them when the need for such specialized information is
felt. Read whatever interests you most, and continue with the micro-
research problems presented in Lessons S and 17.

Iesson 6 is devoted to the use of the TAPE CASSETTE for storage of
programs and data.

lesson 7 is devoted to GAMES and TAPED PROGRAMS you may enjoy.

Lesson 8 discusses the EDIT instruction in greater detail.

lesson 9 is an introduction to simulation, one of the most important
uses of computers in today's world.

Lesson 10 discusses double precision variables (introduced in Lesson
3) before L mtroducmg subscripted variables and the fascinating (and
vital) string variables (more details in Lesson 14). The lesson closes
with arrays (matrices) and how to use them.

ILesson }‘l_ is a collection of tips that may help you overcame or avoid
difficulties. Remarks on saving memory space and computing time as well
as a listing of the meanings of major error codes are presented in this
lesson.

Lesson 12 Although the PRINT instructions already at your disposal
are sufficient for most users, your TRS-80 Level II BASIC has a variety of
other PRINT instructions and special commands that are frequently useful:

PRINT TAB() PRINT STRING3(K,"#'")
PRINT USING A$,K PRINT CHR$(n)

Lesson 13 lesson 4 may meet all your graphic needs, but Lesson 13
explains the pixel notation and introduces several tlme—savmg techniques
and instructions,

101

Part 1I- Page 2

Lesson 14 extends your knowledge of string variables, and introduces
elementary conversationzl progrems in which the computer simmlates con-
versation. The ROBOT COUNSELOR program and the CIPHER program may also
interest you.

Iesson 15 explains how and where to look for additional information
on computing with particular emphasis on the TRS-80 Level IT BASIC.
Several computer related journals are listed with brief annotations.

Lesson 16 discusses several BASIC instructions not used earlier in
in this book.

Lesson 17 extends the collection of seventy-five microRESEARCH
PROBLEMS. The way to learn computing is to compute and then to examine
your programs and results to see if you could have devised a better pro-
gram.

The discussions presented Lessons 5 and 17 are planned to help you
develop efficient as well as effective programs and to whet your problem
solving ability. Many of the problems presented are readily extended.
Their solutions frequently suggest further ezplorations worthy of your
talent. This is why they merit the adjective "RESEARCH". The wide var-
iety of problems includes something for every taste: several arithmetic
explorations, greeting card graphics, Haiku poetry, logical decisions,
calendar problems, dart and target games, loan and finance programs, trea-
sure hunt games, caricatures, speech timer, puzzles, recursive functions,
polygonal maps, a medical emergency prompter, number theory problems,
lattice problems, magic prime squares, graphs, monkeys at typewriters,
amicable and sociable numbers, dance partners and the eight queens pro-
blem.

wuen menausnonssERAscoCpoEBONCHENRaREn cosanesens mesumanenn -

THE IMPORTANT THING IS TO HAVE FUN WITH YOUR micro COMPUTER

P T TR,

102

Page G-1

TAPE CASSETTE for programns and data storage.

Occasionally you have i special vrogram worth saving for future use or to
show oft to a friend. Put it on tape. Tape is also handy for storing data.

Bach TRS-80 camnes with a tape recorder for storing programs and data
that you wish to save. It uses regular (high quality) tape cassettes. 1
personally prefer the short 30 minute (15 minutes per side) tapes rather
than the 45 minute, GO minute or 90 minute tapes since the tape recorder
starts, stops and operates wore uniformly when the reel contains less
tape. Try it and suit yowrsell. Radio Shack sells a special 10-minute
tape for use on TRS-80 which has no ''leader'" on it--but any high quality
30 minute (15 minutes per side) tape will serve--just so you don't try to
record on the leader.

For meadens who have olden CTR-40 and CTR-41 tape necordens:

The original tape recorders supplied with TRS-80s were CTR41l's on
which the REM jack had to be unplugged before the tape was repositioned. .
The CTR-41 also requires the use of a "dummy plug' in the MIC jack at
all times. The CTR-80 now furnished should not have a dummy plug inserted
at any time.

Instead of unplugging the REM jack on the CTR-41 you can use a short
program,

9003 OUT 255.4
901¢ INPUT '"REPOSITION TAPE, PRESS (ENTER) WHEN READY" ; A$
9020 END
Then type RUN 9099 when you wish to reposition the tape.
Fon neadens with pne-1980 CTR-80 tape hecordens:
The more recent CTR-80's can use "fast-forward" or 'rewind" without
unplugging the connection between TRS-80 and the cassette at the REM jack.

103

Page 6-2

This is much nicer.

ume control was eritical in pgetting usable

voly
into the TRS-80 -—- on early (pre-July, 1979) TRS-

In either case the v

programs and daEa l;ack.
80s.

The following may be helpful:

Radio Shack announced (Spring, 1979) a "fix" that they will install free
to make the recording level less sensitive on existing TRS-80's. Current
TRS-80's already have it installed. Your TRS-80 Level II keyboard has a
catalogue nuiber on the underside of the case. If the catalogue number
ends -1 (example 26-1006-1),the modification has already been made.

If not, it will be worthwhlle to take the keyboard unit to Radio Shack
to have the free "fix'' made. Cassetie storage is much easier to use
thereafter.

If your CIR-80 cassette player was manufactured before February, 1979
(see date stamped on cassette box—Feb., 1978 = 2A0) take the cassette
player to your Radio Shack store, too. 'Ihey will install a small capaci-
tor in the innards of the electronics to avoid a possible '"noise spike"
on your recorded tape if you push the stop button while it is reading
tape, an infrequent but annoying happening. If the date of manufacture
is Feb., 1979 or later (say 6A9 or 1A0) this extra protection has already
been installed at the factory. We recommend setting modified CTR-80
cassette recording lewvel at 4 both for recording and playback. Once you
find the best volume for your system, a drop of white correction fluid
(Snopake, Liquid Paper, etc.) or paint will mark the location for future
reference.

In any case, the usual tape care is essential.

1. Don't leave cassettes near a magnetic flux source like your power
supply or near a magnet as in a motor or a speaker. Also, don't ex—
pose cassettes to extreme heat or cold.

2. Keep your cassette capstan and rollers clean. Dirty heads cause lots
of troubles. If you don't know how to clean them, your nearby Radio
Shack or tape recorder store will be glad to show you, and sell you a
cleaning kit (<$2).

104

Page 6-3

To load a tape that already contains a program

Plug in everything carefully.
110 volt (Don't expect to use the batteries.) black power
DIN plug tgo ‘;"gS—BO keyboard hole labeled TAPE with
pip on plug in slot on socket %% ,
3 plugs on other end of cable connect to cassette player
BLACK plug into EAR hole
LARGE GHEY plug into AUX hole

SMALL GREY plug into small MIC hole (CTR-80)
or EREM hole (CIR-41)

If you are using CTR-41 put dumy plug into MIC and leave it
there.

Lf you are using CIR-80 do not use dumy plug--just leave big
MIC hole empty.

NEXT:

Adjust the position counter back to zero, (They register differently on
CTR-41 and CIR-80, so be a bit suspicious,)

Check the volume adjustment. (This is fussy, experiment a bit.)
CTR-41 5to8
CTIR--80 3.5 to 4.5 (user-generated); 4 to 5 (commercial tape)
Push key on cassette.

Type CLOAD or CIOAD "£" and on Keyboard (where £ is letter
identifying your program).

The cassette should be turning now.

Soon the TRS-80 video screen will show two asterisks.

105

L s f

Lovel 17 *% *k ~Level 11

If all is going properly, one asterisk will blink irregularly.

When it finishes loading, the cassette will halt the tape and the display
screen will show

READY

>

Depress the button on ihe cassette (even though the tape
has halted). Do not Leave the [PLAY key depressed when not in use.

Type LIST :
I{ the program seems (K, type RUN .

If no program is present (or if the asterisks appeared but did not wink)
lower the volume slightly; rewind the tape and try again.

If something loaded, but the last part seems all jumble and gibberish,
increase the volume slightly; rewind the tape and try again.

106

Page 6-5

To SAVE

oY
e 43V o a O Lol

Set up the cassette recorder as described before; be sure plugs are
set firmly in the proper holes.

Check the volume setting.

CR 41 -6
(Try mid-range lirst.)
CIR 80 3.5-4.5

Rewind the tape. (Unplug REM jack only if on CIR-41 or use program fix.)
Reset the tape counter to 000.

dvance the tape to get past the '"leader" if you are using standard tape—
Oor to a blank place if the tape already contains some programs or data.
(I usually begin programs at 10 on the tape and leave between 10 and

19 "counts" of blank tape between programs. This may be overly cau-
tious, but it sure makes it a lot easier to find things.)

Note the program nane and where it begins on the index card with your
cassette or on the cassette label.

Depress both [REOORD and keys on the cassette recorder (surprisc—
yos both should be down to record--so the TRS-80 can conirol things
properly).

Type CSAVE " "' (with a letter to identify the program between toe
" ")‘

The tape should begin to advance and the TRS-80 will record your program
on the tape.

i READY
>
when the program is recorded, the video screen will display

Depress the button on your recorder. This is important.

Note where the program ended on your index card or the cassette label.

Rewind the tape to the beginning of the program (see index card and count-
er).

Depress only on cassette player.
iype CLOAD 7 to check the tape against the program in tize TRS-80 memory.

If the tape checks properly, the screen will display READY, otherwise
screen will display BAD and you should CSAVE " ™ it again.

107

Page 6-6

I record cach program twice, just in case anything happens. You'!l have
nore space than you can use on a 15-minute per side tape. (Use both
sides, of course.)

Sound and Music

Some TRS-80 programs include sound or music as part of their output.
Higher quality musical reproduction is obtained by using a separate ampli-
fier and speaker. If you are interested in medium fidelity sound rather
than high fidelity music production, quite satisfactory results may be
obtained using the amplifier present in the cassette player furnished
with your TRS-80.

First get the program in your TRS-80 in the usual fashion. Then
unplug the black plug from the ear hole in the cassette recorder (leaving
the two grey plugs in place), Plug the earphone that came with the tape
recorder into the ear hole (or better yet plug a speaker in there--you
can get a suitable jackplug or converterplug from Radio Shack) .

Now you need to fool the tape recorder. Remove any tape cassette
from the recorder. Push in the little lever at the back left side of the
opening where the cassette would go. While you are depressing it, depress
both the | RECORD | and [PLAY] buttons on the front of the recorder. These

should stay down when you release the lever. Now RUN your program.

The following instructions are used to place data onto tape and to
rotrieve data from tape:

PRINI =1, PRINT #-1 X,Y,B$%,A$

Output to cassette #1 from conputer

INPUT #-1 INPUT #1,X,7,B$

Input from cassette #1 to computer.

.If you are having trouble with keyboard bounce (double letters from
a single key stroke), use the debounce tape. More recent keyboards seem

not to have as much trouble with this as did those Level II's delivered
before 1980.

i¢c8

Page 7-1

GAMES AND PLAYTOYS

Qomputers are magnificient game players. It isn't hard to play ganmes

which someone else has programmed - if they have done a good job of writ-
ing the program, but writing quality game-playing programs is difficult.

Here is a not very well written game. Put it on your computer; play

it two or three times and then come back to the text and together we shall

improve it.
5 REM TREASURE HUNT - FIRST TRY
19 Cas
20 X1 = RND(59) : Y1 = RND(5Q)
3p PRINT "A TREASURE IS BURIED IN A 50 FOOT BY 50 FOOT SQUARE. IF YOU

ot ¥y
DAy

52
539
540

CAN LOCATE THE GRID POINT NEAREST IT, YOU WILL FIND THE THEASURE."
INPUT "PLEASE TYPE COORDINATES X, Y = ";X,Y

IF X = X1 AND Y = Y1 THEN 500

A=X-X1:B=Y-Y1

D = SQR(A*A+BXB)

PRINT "SORRY YOU MISSED IT BY";D;"FEET."

GOTO 49
REM TO HERE ONLY IF TREASURE IS FOUND
TRQ=1T0 8

PRINT @ RND(1¢¢¢), "WHEEEE YOU GOT IT."
NEXT Q
Q1O 19

Well - it's a game - and the program works if you typed it in correct-

ly.

But it isn't much fim. You really need more information than just

the Aiotansn +a tho Fwaaociies

109

Page -2

It would help if the program told you whether X and Y are too big
or too small. Do you want to try to revise the program on your own be-
fore you continue?

One of the most common games computer programmers play is ''one-up-man-
ship". Modifying existing programs is one form of the sport. An impor-
tant way to gain programming skill is to adapt and improve a working pro-
gram written by sameone else. There is an axiom among computer program-—
mers that says

Any program you have written,
I can improve upon.

It has as its converse

Any program I have written,
you can improve upon.

and together they have a corollary

Any program I have written,
I can improve upon.

Each of these is probably true. In some cases the real question is
whether or not it is worthwhile to improve on a program even if you can
do so.

The answer depends upon how frequently the program will be run, and
how much of your time will be required to improve the program.

Some ways it is frequently possible to improve programs are:

1. Make them use less computer time.

2. Provide output better suited to the user's needs.

3. Make the program easier to understand (and hence
easier to modify and maintain).

4. Generalize the program so it is useful in solving
other problems without sacrificing speed.

Programs designed to play games or solve puzzles somehow seem partic-
ularly subject to inmprovement, even by beginners. We shall look at sever-
al commercially available programs and how they can be improved. This is
one of the most satisfying ways to improve your own ability as a program-
mer.

110

Page 7-3

3 rron ey VAN A ey tma s S vam e s e s ~ -
let's go back and Improve the treasure hunt Prograin, 11 ncaic

of the original program is

5¢ INPUT ''PLEASE TYPE COORDINATES X,Y =":X,Y
69 IF X = XL AND Y = Y1 THEN 509

M A=X-X : B=Y-Yl

8 D = SQR(A*A+B*B)

99 PRINT "'SORRY YOU MISSED IT BY":D;"FEET."
15¢ GOTO 49

5¢p REM TO HERE ONLY IF TREASURE IS FOUND

519 GOTO 19

It would be nice to print another line of type right after 00 that

tells us which way to go. Let's insert the following:
1g¢ IF A~ @ THEN A$="TOO BIG" ELSE A$}="TOO SWALL'
119 PRINT "YOUR X VALUE IS ";A$,

129 IF B> THEN A$ = "T0O BIG" ELSE A$ = '""TOO SMALL"
139 PRINT "YOUR Y VALUE IS ";A$

Insert these instructions and run the program again. It is more fun
this way, isn't it? Play it several times.

HEY - DID YOU NOTICE THAT THE PROGRAM CHEATS? YES IT DOES.

If you get either X or Y correct, but not both correct, it tells you
to change them both.

Insert temporary debugging instruction
21 PRINT Xx1, Y1
and run it again. The correct treasure location will now be printed at
the top of the screen so you can test it. Try putting in two wiong
values - Seems OK. Next put in the correct value for one coordinate and
the wrong one for the other coordinate. Hmm - The progrom still claims
both values are either TOO BIG or TOO SMALL. That won't do, will it?
X oK (0:¢

We'll fix that too. Try

ipp IF A>@ THEN A$ = "I0O BIG' ELSE IF A = 0 THEN A% = "K' FISE
A% = "TOO SMALL'

129 IF B> THEN A$= "T0O BIG" ELSE IF B = § THEN A$ = "OK" ELSE
A$ = "TOO SMALL"

Page 74

Try it - it works now. Remember to delete instruction 21 before you
show it off to someone else.

There is really no reason we need always work on a 50 by 50 foot
square. How about letting the player select the size of the square?
We'll need an instruction to INPUT the size of the square,

15 INPUT "PLEASE TYPE LENGTH OF SIIE OF SEARCH SQUARE.';S

Rememmber to thwart the person who puts in 4.73 or -2 or some such
Jjoke.

16 S = INT(ABS(S))

Before continuing you should look through the program and see what
other instructions need to be modified.

Instructions 2¢ and 3p need to be changed; our new program (still
not perfect) is

5 REM TREASURE HUNT — SECOND TRY

19 s

15 INPUT "PLEASE TYPE LENGTH OF SIIE OF SEARCH SQUARE.':S

16 S = INT(ABS(S))

20 X1 = RND(S) : Y1 = RND(S)

3p PRINT ""A TREASURE IS BURIED IN A";S;" BY ";S;"FOOT SQUARE. IF YOU
CAN LOCATE THE GRID POINT NEAREST IT, YOU WILL FIND THE TREASURE."

49 PRINT

50 INPUT "PLEASE TYPE COORDINATES X,Y =';X,Y

60 IFX = XL AND Y = Y1 THEN 5pp

7 A=X-XL:B=Y-VYlL

80 D = SQR(A*A+B*B)

99 PRINT "SORRY YOU MISSED IT BY";D;'FEET."

199 IF A> O THEN A$ = "T00 BIG' ELSE IF A = ¢ THEN A$ = "(K" ELSE
A$ = "TOO SMALL"

119 PRINT "YOUR X VALUE IS ";A$

12p IF B> @ THEN A$ = "TOO BIG' ELSE IF B = ¢ THEN A$ = "(K" ELSE
A$ = '"TOO SMALL"

139 PRINT "YOUR Y VALUE IS ';A$

159 QOTO 49

50p REM TO HERE ONLY IF TREASURE IS FOUND

510 FORQ = 1 TO 8p

520 PRINT @ FND (1¢99), 'WHEEE YOU GOT IT."

53) NEXT Q

540 QOIO 19

Play the game a few times and then, after correcting the spacing on
instructions 3¢, 199 and 12p if needed, show it to a friend.

What happens if someone inserts .5 or § as the value for S? Maybe
we need another smart aleck guard at 17.

132

Page 7-5

17 IF ABS(S) = 0 THEN S = 50 : DRINT "ArI, RIGIT, SMARTY, I'LL FIX YOU.

TRY THIS."

Modifications of this treasure hunt program can provide the first
approximation of a number of much more interesting games.

How about adding Depth at which the treasure is buried as well as
X,Y locations?

Would you modify the coordinate game to play the child’'s game
"BATTLESHIP" in which the computer selects positions for several targets
which you must locate?

Can you insert graphics which will show you where your choices have
been and the corresponding D value rather than telling you which way to
move?

Try a few modifications of vonr com

Here are some games programred (or adapted) by secondary school
students in Oklahoma in Spring, 1879. If you find unfamiliar instructions,
see Lesson 16 or your TRS-80 IEVEL II BASIC Reference Manual.

5 s
7 PRINT "THIS IS A GUESSING PROGRAM. YOU ARE T0 GUESS A FRACTION N/D
WITH 1<=N<=10, 1<=D<=10,"
9 PRINT
109 G = RND(1p)/RND(19)
119 PRINT "I HAVE A NEW FRACTION FOR YOU TO GUESS. PLEASE TYPE YOUR
GUESS IN DECIMAL FORM."
129 INPUT X
13p IF X = G THEN PRINT 'WHEEE...YOU GOT IT!": GOTO 109
149 IF XD G THEN 179
159 PRINT "YOUR GUESS IS TOO SMALL. TRY AGAIN PLEASE."
16¢ GOTO 12¢
179 PRINT "YOUR GUESS IS TOO BIG. PLEASE TYPE IN ANOTHER GUESS."
189 GOTO 129

Play the game; then consider any desirshle changss., Coe student suggest-
ed adding the following: {However, it did not work as anticipated. Can
you help?)
i ON ERHOR GUTO 99p
ggg PRINI‘Q"PIEASE TYPE THE FRACTION USING DECIMAL FORM, NOT N/D FORM."

Page 7-6

THIS IS A HANGMAN GAME ADAPTED BY

—
S Us W

REM KAREN JEANNE HENRY

REM Rl BX 580 MCLOUD, (K 74851

REM (4¢5) 273-1133

REM THE HANGMAN PROGRAM IS SELF EXPLAINED. THE PERSON PLAYING
WILL INPUT A LETTER AND THE OOMPUTER WILL TELL YOU IF YOU
ARE CORRECT OR NOT.

REM AS YOU INPUT EACH LETTER THE OOMPUTER MAY OR MAY NOT CHANGE
GRAPHICS

REM WHEN YOU FINISH THE GAME THE OCMPUTER WILL VERIFY YOUR WIN OR
LOSS BY CHANGING GRAPHICS AND/OR WORDS

REM X + Y ARE USED IN SET STATEMENTS IN FOR-NEXT 1OCPS
REM D$() ARE THE WOHDS, F$() ARE THE LETTERS OF THE WORDS
REM WD IS THE TOTAL NUMBER OF WORDS IN THE MAIN PROGRAM
REM W$ IS THE INPUTED LETTER L(N) + F1 ARE OOUNTING DEVICES
REM K IS A VARIABLE OF HOW MANY WRONG LETTERS

CLEAR 199 '

REM

Cis

WD = 19

K=p: FOR N=1 TO 8: L(N)=p: NEXT N

PRINT '"**HANGMAN**'"

FOR X = 9 TO 51 STEP 6

SET(X,15): SET(X + 1,15) : SET (X + 3,15) : SEI(X + 2,15): NEXT X
FOR X = 7p TO 79: SET(X,44): NEXT X

FOR Y = 4 TO 44: SET(74,Y): SET(75,Y): NEXT Y

FOR X = 76 TO 1¢1: SEI(X,4): NEXT X

FOR Y = 5 TO 7: SET(191,Y): NEXT Y

IF FG = 1 THEN 16p ELSE D$(1) = "APPLE": D$(2) = "HEART": D$(3) =
"STUDENT" : D$(4) = '"TEACHER': D$(5) = "PENCIL"' :D$(6) = "PAPER"
D$(7) = "PEN" : D$(8) = '"WORK'": D$(9) = "TIRED": D$(10) = "HARD"
ID = ID + 1: IF DD> WD THEN 2950 ELSE Z$ = D$(ID)

N = LEN(Z$)

F$(1) = MID$(Z$,1,1)

F$(2) = MID$(Z$,2,1)

F$(3) = MID$(Z$,3,1)

F$(4) = MID$(Z2$,4,1)

F$(5) = MID$(Z$,5,1)

F$(6) = MID$(Z$,6,1)

F$(7) = MID$(Z$,7,1)

F$(8) = MID$(Z$,8,1)

IF F$(3)<>'"" THEN 299

RESET (21,15) : RESET (22,15) : RESET (23,15) : RESET (24,15)

IF F$(4)<>'""" THEN 310

RESET (27,15) : RESET (28,15) : RESET (29,15) : RESET (39,15)

IF F$(5)<>'"" THEN 33p '

#

[t}

114

RESET (33,15) : RESET (34,15) : RESET (35,15)
I_ F‘S (B) <> ' " THEN s

SET (39,15) : RESET (4¢ 15) : RESET (41,15)
F$ (7) <> " " THEN 37¢

R.ESET (45,15) : RESET (46,15) : RESET (47,15)
IF F$ (8) <> " " THEN 390

RESET (51,15) : RESET (52,15) : RESET (53,15) :

PRINT @ 388, ''THIS WORD HAS ''; N; "LETTERS'", :
PRINT @ 452, "IYPE EACH LETTER" ;

PRINT @ 516, "PRESSING ENTER EACH TIME" :

7 = 644

Page 7-7

: RESET (36,15)
: RESET (42,15)
: RESET (48,15)

RESET (54,15)

:L(N) =1 : FLAG =1 :

: NEXT Y

PRINT @ 896, "' " ;

INPUT W$

PRINT @ 98p, " " ;

FORN = 170 8

IF W$ = FB(N) THEN PRINT @ (258 +(3%N)), W$;

QOTO 450

NEXT N

IFFL=Q THENPRINT @ Z. W$: : Z = Z + 2

P=29

FORN=1TO8 : IFL(N) =1 THENP =D + 1

NEXT N

IF P = LEN(7,$) THEN 2009

IF FL = 1 THEN FI, = @ : GOTO 429

ON K + 1 GOTO 540, 669, 719, 81p, 91p, 989

K=1

FOR X = 95 TO 17 : SET (X,8): SET (X,16) : NEXT X
FOR Y = 19 TO 14 : SET (1¢)9,Y) : SET (93,Y)

SET (94,9) : SET (1¢8,9) : SET (108,15) : SET (94,15)

SET (97,19) : SET (195, l¢) : SET (191, 1]) ¢ SET (1¢1,12)
SET (95,12) : SET (96,13) : SET (97,14) : SET (98,14) : SET (99,14) :

SET (101,14) : SET (1¢2,14) : SET (1¢3,14)
SET (1¢5,14) : SET (1¢6,13) : SET (197,12)

GO0 42¢

K=2

FOR Y = 17 TO 33 : SET (149,Y) : SET (1¢1,Y)
GOTO 420

K=3

FOR X = 103 TO 112 : SET (X,20) : NEXT X

Y = 19 : SET (117,14)

FOR X = 112 TO 116 : SET (X,Y) : SET (X+1,Y) :
GOTO 429

K=4

FOR X = 99 TO 99 : SET (X,20) : NEXT X

Y = 26

FOR X = 85 TO 99 : SET (X,Y) : SET (X,Y-1)
GOTO 429

118

: SET (1p4,14) :

: SET (1¢2,Y) : NEXT Y

Y = Y-1 : NEXT X

Y =Y-1: NEXT X

Page 7-8

19 K=5:Y=33
323 FOR X = 193 TO0 112 : SET (X,Y) : SET (%+1,Y) : ¥ =¥+l : NEXT X
96 SET (113,43) : SET (114,43) : SET (115,43) : SET (116,43) :

SET (117,43)

979 GOTO 420

Y = 42

?'9;3 FOR X = 89 TO 98 : SET (X,Y) : SET (X+1,Y) : Y = Y-1 : NEXT X
1939 SET (85,43) : SET (86,43) : SET (87,43) : SET (88,43) : SET (89,43)
1949 RESET (1¢1,12) : RESET (95,12) : RESET (96,13) : RESET (106,13) :

4 RESET (X,14) : NEXT X
1 FOR X = 97 TO 194 : s : ‘
1?% SET (97,14) : SET (98,13) : SET (99,13) : SET (109,13) :
SET (191,13) : SET (1¢2,13) : SET (1¢3,13) : SET (1p4,13) :
SET (195,14)
111¢ PRINT @ 772, " AHHH! THAT'S TOO BAD"; : GOTO 2019
2009 PRINT @ 772, "CONGRATULATIONS! YOU WON!!I":
2019 FOR N =1 TO 2¢@@ : NEXT N : CLS : GOIO 199
2050 REM THIS (}{AI\KEE'S2¢6¢ mzqm
2055 ON F+1 GOT0 ,
2§69 DS(1) = "GIOMETRY" : DS(2)="ALGHERA" : D$(3)= "TRIANGLE' :
D$(4)= "FORMULA" : D$(5)= "SOLUTION" : D$(6)= "SUBTRACT' :
D$(7)= "NEGATIVE" : D$(8)= "REDUCE" : DB(9)= "INVERSE" :
D$(1p)= "FRACTION' : K=1 : F=1 : GOTO 179
2065 ID=9 : FG=1 : GOTO 1¢¢
207p REM THE PERSON USING THIS PROGRAM CAN ATD MOEE WORDS IN THIS SAME
WAY, USING THE D$(SUBS), OR HE CAN USE DATA FILES AND STCRE WORDS ON
A TAPE RECORLER OONTROLLED BY THE COMPUTER. USE TOR N=1 TO 10 :
INPUT #-1, D§(N) : NEXT N : GOTO 2065

This program will fit on a 4-K Level II TRS-80, but you may need to
"squeeze out' most of the spaces as suggested in Lesson 11.

1969 FORX=97TO1¢4 : RESET(X, 14) : NEXTX

is hard to read, but requires less camputer memory. Lines 3 to 34
may be oomitted, if necessary.

After it is up and working, you may wish to try to improve it by
including additional words from a cassette file. See Lesson 6.

116

REM * REVERSE *

REVERSE
BOB YARBROUGH 4-78

Page 7-9

REM RANDOM DIGITS ARE FLASHED. OPERATOR MUST ENTER NUMBER

REM TORMFD BY WRITING DIGITS IN REVERSE CRDER
REM L IS INITTAL LENGTH OF STRING OF DIGITS

REM A IS LENGTH OF COUNTER

A=1000

REM G TS NIMBER OF (NRRECT RESPONSES REFORE. STRING
REM IS LENGTHENED

G=3

REM STRING IS SHORTENED WHENEVER AN ERROR IS MADE.

CLS

PRINT '"YOU MUST ENTER DIGITS SHOWN IN REVERSE ORDER.'

PRINT

C=p
PRINT "NEXT STRING WILL BE ';L;'" LONG."

g

GOSUB 209

CLS

FOR %=57 10 68
SET(X,21)
SET(X.29)

NEXT X

FOR Y=21 T0 29
SET(57.Y)
SET(68,Y)

NEXT Y

FOR N=1 TO L
A(N)=RND(9)
Z=10*Z + A(N)

NEXT N

FOR N=L, TO 1 STEP --1
PRINT @ 542,A(N);
GOSUB 209
SET(6(,25)
SET(61,25)

NEXT N

as

PRINT

INPUT P

IF P <> Z THEN 18¢

PRINT "CQORRECT"'

C=C+1

IF C < G THEN 192

L=L+1

GOTO 109

Page 7-10

RE VERSE (Continued)

18¢ PRINI\ IIWH-‘NG ***H;Z;"***ll
183 GOSUB 209

186 L=L-1

199 GOTO 1¢9

209 FOR M=l TO A

202 NEXT M

204 RETURN

219 END

Note: If you wish the digits to be displayed for a shorter period of
time, change line 41 to:

41 A = 500 or some smaller value.

[\l

CIJUd W

19
15

2

4N

26

§§§§§§ 838588585 EREES sy

Page 7-11

ASTEROIDS

REM *ASTEROIDS* MICHAEL BRIGGS 1-79

CLS : PRINT " MANEUVER THE SHIP THROUGH THE ASTEROIDS BY USING THE
UP-ARROW KEY TO GO UP, THE DOWN ARROW TO GO DOWN, AND THE < AND >
KEYS FOR LEFT AND RIGHT."

7 =15

DIMA(Z,15)

PRINT

INPUT "PRESS ENTER TO START' ; D

1L = 159

X=63:Y=44

TI =

SET (X,Y) : SET (X,¥+1) : SET (X-1,Y+2) : SET (X+1,Y+2)

FOR G = ¢ TO 127

SET (G.47)
NEXT Note: NEXT works as well as NEXT X,
PR L = 3 'IO 15 but the practice of omitting the
WRPr=1T 2 vaiiable can cause a problem in

A(P,L) = RND(128)~1 nested FOR...NEXT Loops.
SET(A(P,L),2%L)
NEXT : NEXT
PRINT @ 32, nGot
FOR L =3 1T0 13
R = RND(3)+2
FORP=1T02
S$ = INKEY$
TI =TI + 1
IF S$= "" THEN 249
RESET (X,Y) : RESET (X,Y+1) : RESET (X-1,Y+2) : RESET (X+1,Y+2)
IF S = "4 THEN Y = Y-1 : GOTO 179
IF S$ = "¢'"" THEN Y = Y+1 : GOTO 179 Note: The + won't show on

IF S§ = '." THEN X = X+2 : GOTO 179 the screen, but it 4is
IF 8§ = "," THEN X = X-2 in thene. -
IF X = 127 OR X = 1 GOTO 5¢2

IF Y = 45 THEN GOSUB 10¢Q

TF V = 1 THEN 2

IF POINT(X,Y) OR POINT(X,Y+l) OR POINT(X-1,Y+2) OR
POINT(X+l ,Y+2) THEN 1505

SET (X,Y) : SET (X,Y+#1) : SET (%-1,Y+2) : SET (X+1,Y+2)
RESET (A(P,L), 2*L)

A(P,L) = A(P,L)+R

IF A(P,L) >=128 THEN A(P,L) = A(P,L) -128

IF ABS(A(P,L)-X) < 2 THEN 90@

SET(A(P,L),2 % L)

IF Ti=1L THEN 250

28p NEXD @ NEXT
3¢9 COTO 9p

Page 7-12

ASTEROIDS (Continued)

599 CS

51¢ PRINT '"YOU HAVE JUST RUN INTO A BLACK HOLE, SORRY!"
520 GOTO 2020

opp IF 2%L >= Y AND 2L <= Y+3 THEN 1505

919 GOTO 268

1009 CLS

1919 PRINT " YOU HAVE CRASH-IANDED, BUT IT'S NOT TOO FAR TO THE BASE."

102¢ GOTO 2029

1505 FOR BL= 1 TO 49 : RESET (X,Y) : RESET (X,Y+1) : HESET (X-1,Y+2) :
RESET (X+1,Y+2) : SET (X,Y) : SET (X,Y+1) : SET (X-1,7+2) :
SET (X+1,Y+2) : NEXT : (IS

1519 PRINT ''(AP) HOUSTON - NASA MISSION CONTROL REPORTS THE LOSS OF AN
INTER-PLANETARY SHUTTLE IN ROUTE TO SATURN. THE VESSEL APPARENTLY
SUFFERED SERIOUS ASTEROID DAMAGE AND WAS UNABLE TO RETURN TO EARTH.!'

1529 GOTO 2029

2000 (IS

2019 PRINT “EXCELLENT NAVIGATION! CONGRATULATIONS ARE IN ORDER."

2¢15 PRINT ''YOU STILL HAVE" ; (LL-TI)*1¢ ; "GALLONS OF FUEL LEFT."

2029 PRINT : INPUT '"PRESS ENTER TO TRY AGAIN" ; D

2039 GOTO 9

25@9 CLS : PRINT "YOU HAVE RUN OUT OF FUEL. YOU WILL CRASH-LAND IN
APPROXIMATELY 15 MINUTES. WE MIGHT EVEN SEND A SEARCH PARTY TO
PICK UP THE PIECES." : GOIO 2020

Here is a brief program that clutters up the screen in an interesting
fashion. Try it. You might like it.

109 POKE 16396,23

11¢ CLS
120 FOR N=14336 TO 15360
139 PRINT CHR$(PEEK(N)) ; " '; Don't overlook the §inal ; henre.
149 NEXT N
150 GOTO 199
Then type RUN [ENTER]and hit several keys at once without using .
Try [Q] (][] and then try various other keys with some or all of the
above. Le] S |

71 S

To terminate the program, open the little door on the back left-hand side
of your keyboard unit and depress the button on the extreme left side.
You may need to twrn your computer off and then back on again to assure
proper functioning of all keys.

120

Page 7-13

You will find dozens of game programs in Softside, Computronics,
Creative Computing, TRS-80 Computing (San Luis Rey, Ca), PROG-80
(Milford, NH) and many other journals mentioned in Lesson 15.

Some commercial games are rather expensive, costing $25 and more.

Such games are still cheaper than ones you design, write and debug, if
your time is valuable. Other tapes are available at a cost so low that
you can hardly afford the time to type in the program and correct your
typing errors. People's Software will send you a list of available pro-
gram tapes (1980 price $7.50 for tape + 50¢ postage in U.S. for some
tapes). 'lhey add more to the list all the time and will swap you Iree
tapes for good original programs which you have written.

Tape 1 ($8) contains a whole colieciion of ganes, some trivial, soime
excellent. Other programs deal with business, banking, bio-rhythns,
speed-reading, math refresher, etc. Tape 2 ($8) contains some slightly
more sophisticated banking and business programs, math programs, statist-
ical programs, etc. Tape 5 ($8) is more of the same. Tape 6 is
People's Pascal, Version II, and the cost is $23.50. You may or may not
be ready for the Pascal language.

You can learn a lot by ordering one of these tapes and then examining,
adapting and improving the programs to suit your whim, BE SURE TO SPECI-
FY WHETHER YOU HAVE LEVEL I OR IEVEL II BASIC. The address is:

People's Software

Computer Information Exchange

Box 158

San Luis Rey, CA 92066

Telephone: (714) 757-4849 (VISA or MASTERCHARGE accepted for phone
orders)

123

Page 7-14

PRACTICE SESSION 7

Improve the treasure hunt program introduced in this lesson.

Either devise a nuwber guessing game of your own or inprove the game
written by a secondary school student in this lesson.

Play Karen Henry's modified Hangman program and then mpodify it to use
your cassette tape recorder to provide additional words.

Either write a game-playing program of your own or improve a game-
playing program written by someone else. Almost any game-playing
program can be modified and improved. Try out your own ideas.

See if you can determine where the ''fuel supply" is stored in the
ASTEROIDS program. Change the fuel allotment. Also, determine
whether fuel is used up by ''time elapsed" or by "mumber of keystrokes!
and plan your playing strategy to take advantage of this knowledge.

Modify Bob's program to play REVERSE so the player can INPUT a value
to determine the amount of time the numbers are displayed (the dif-
ficulty level).

Look in one of the journals listed in lesson 15 and find a computer

game. Put the game on your camputer, debug and play it. Then, see
if you can improve it.

122

Page 8-1

EDIT INSTRUCTIONS

The simplest way to change short lines in a program is certainly
Just to retype 1t, as we have been doing.

If you mistyped a program as

109 FORK = 1 BO 17 {ernon)
1919 PPRINT K; (evon)
1029 NEXT K

RN [ENTER]

The computer will display .

? SN ERROR IN 19¢@
READY

1009

By depressing key the computer will list line 1¢¢@ and again display
the line number, to facilitate correction.

?SN ERROR IN 10¢@
READY

1909 FOR K = 1 BO 17
1000

You may now either space over to just under the error using the space bar,

or you may depress and the (the character in error). In
either case, you will now have

123

rage o<

?SN ERROR IN 10¢9
READY

1999 FOR K =1 BO 17
10pP FOR K =1 _

Next, depress [C| for "change" and depress followed by
to correct the line.

Type LIST to see that the change was made.

1¢0p FORK = 1 TO 17

1919 PPRINT K;

1920 NEXT K

If you type HIN you can go through a similar error detection

and error correction routine for line 1619, but if you notice the "PP"
when you LIST it, it is easier just to retype it as

' 1919 PRINT K;

If you didn't note the error and type RN , you will obtain

2SN ERIOR IN 1919
READY
1919 _

Upon depressing the last line will show:

1¢1¢ PPRINT K;
9P

If you space the underline (cursor) over to directly under either of the
letter P's

1019 PPRINT K;
1619 P_

and depress key @ , the computer will display:

$1¢ PPRINT X;
1¢1¢g Pip!

The !! indicates the portion that will be deleted when you depress

[ENER] -
Depress IENI‘ERI

Type LIST and, sure enough, it shows:

124

Page 8-3

1019 PRINT K;

@9 FORK = 1 TO 17
f;azc) NEXT K

and RIN produces the expected result.

2 345 6 7 8 9 10 11 12 13 14 15 16 17
READY

|z

You can always go into the EDIT mode to change a line by typing
EDIT Line number. For example, to change the 17 in line 1¢¢@ to a 37,
one merely types:

EDIT 1000 {ENIER]
‘ihe computer responds
1000 _

Depress , and you will have

EDIT 1909

1099 FORK = 1 TO 17

1000

Note that the "1" of 17 is the second '1" in line 19, so depress
and then [S]| and then (Literatly, "Seek the Ind

chanacten 1".)

The camputer displays

£EDIT 1p3p

1999 FOR K = 1 T0 17

1000 FORK = 1 T0 _

Now, depress @ followed by E which gives

e - 5

Ppp FORK = 1 T0 3_

Depressing will complete the line and enter the ch S
into the program, as LIST [ENTER] will then show, and HON
will demonstrate.

I WP

Chapter 9 in your TRS-80 Iavel II BASIC Reference Manual gives additional
.

125

Page 8-4

EDIT WODE SUBCOMMANIS AND FUNCTION KEYS

Subcommand/Function Key

Function

EDIT {Line no.

[swrr] [1]

n ’ iaoe—Bar
(-]

Y G

El B B &

B &

where ALine no. is a valid line number con-
taining an instruction. This sends the com-
puter to EDIT that line.

End editing and return to Command Mode.

Escape from subcommand and remain in Edit
Mode.
Move cursor n spaces to right.

Move cursor n spaces to left.

List remainder of program line and return to
beginning of line.

List remainder of program line, move cursor
to end of line, and start Insert subcommand.

Insert the following sequence of characters
at current cursor position; use [SHIFT] [1]
to get out of insert subcommand.

Cancel changes and return cursor to beginning
of line.

End editing, save all changes and return to
Command Mode. Same as

End editing, cancel all changes made and re-
turn to Command Mode.

Delete remainder of line and insert following
sequence of characters; use [Flto
get out of this insert subcommand.

Delete specified nuber of characters 7 begin-
ning at current cursor position.

Change (or replace) the specified number of

characters n using the next n characters en-
tered.

Move cursor to nth occurrence of character c,
counting from current cursor position.

126

Page 8-5

e Lelete all characters from current cursor
position up to nth occurrence of character ¢ ,
counting from current cursor position.

Let us try to use some of these EDIT instructions. Type along on
your TRS-80 to help you follow what is taking place.

If you have the program line:
149 PLEASE PRINT THIS LINE.

and type

RUN [ENTER]
your screen will show
v

{’ TWIN

?SN ERROR IN 109
READY
199

If you depress the screen will show

ARUN

7SN ERFOR IN 1¢¢

READY

1% PLEASE PRINT THIS LINE.
1

By now you realize that you need a PRINT instruction and that the message
needs to be in quotes if it is to be printed.

Depress m key (Nothing seems to happen, but it has put the
editor intc the insert mode.)
1
PRINT (which will appear on the screen)
Depress [SHIFT] (Again nothing seems to happen, but this
releases you froim the insert mode.)
Depress @ (This moves to the end of the line and puts

the editor back into insert mode.)

127

Page 86

Your TRS-80 will now show

?SN ERROR IN 199

READY

199 PLEASE PRINT THIS LINE

1¢@ PRINT "PLEASE PRINT THIS LINE._.

Note that the underscore at the end of the line shows you where the next
character will appear. It is right where you need to insert another quote.
To do so, type

‘
Your correction is now complete.
If you type
v (TR
the program will print the desired message.

Note: If, back at the beginning when you ran 199 PLEASE PRINT THIS LINE
and your screen showed

> RUN
?SN ERROR IN 1¢@
READY

109

you forgot to give the EDITOR a command by depressing (or some other
command key) and just started to type PRINT, an umexpected action would
have taken place.

The editor would ignore E_Ie;] [I?l__] as unacceptable commands. It would then
use as the "insert" command and would have inserted N T.

This is not at all what you wanted.

EDIT takes a bit of care, but it is well worth the effort.

128

Page 9-1

SIMULATION

IMULATION is @ charade Tnat uses a mathematical model to repre-
sent life-like experiments. The quality of the simulation is highly
dependent upon how well the mathematical model represents the actual phys-—
ical or social situation under study.

Many times it is difficult to compute a result of an actual experi-
ment, either because the computation itself is too difficult to perform,
or because the theory is not yet sufficiently developed. Even if the
theory isn't well developed, it may still be feasible to use similation
to study the situation.

Simulation is one of the most important uses of modern computers. A
simulation is a caricature. As in any caricature, it emphasizes the most
prominent features under consideration and ignores the others.

We shall not attempt to simulate complex processes here. Instead,
we shall simulate several rather simple situations — problems which you
quite possibly could solve without resorting to simulation, but which will,
nonetheless, illustrate the spirit of the gane.

The heart of most simulation processes is some sort of random number
generalor,

The TRS-8C has an easy—~to-use random nulber generator winica you al-
ready investigated and used in Lesson 4.

RND(@) produces a random decimal betwsen O and 1, not including
either endpoint.

RD(K) produces a random integer between 1 and K, including both
endpoints,

AT 1#- mi— imoe noe ~ —~ e aTe by, s n v, e i
RAROM o0 imes veed cnee ot precapcrer E}Cc_.lha of PICETSNE that

will be used frequently. It reseeds the random nimber gen-
erator so that the same sequence of RND () values is not
produced on each run.

129

Page 9-2

Let's begin with a simple program to simulate five rolls of two dice.
Fach die will produce one of the values 1, 2, 3, 4, 5, 6 at random. We
wish to display the value shown on each die as well as their sum. For
convenience, the individual dice are represented by R and G (for Red and
Green, to tell them apart).

199 REM DICE THROWING PROGRAM

119 FORK=11T05

129 R = RND(6)

139 G = RND(6)

149 S=R+G

150 PRINT "DICE SHOW' ; R; G, "SUM =" ; S
199 NEXT K

Get this up and running before you go further.

Now imbed the above in a program that will collect statistics on how
frequently each sum occurs in 100 rolls,

19 DIM T(12)
20 EEM ZEROS T(2) TO T(12) FOR FUTURE RECORDS OF TOTALS
30 FOR S = 2 TO 12
40 T(S) =@
NEXT S

109 REM DICE THROWING PROGRAM

119 FORK = 1 TO 199

120 R = RND(6)

13p G = RND(6)

149 S=R+G

150 PRINT "DICE SHOW" ; R ; G, "SIM =" ; S

169 T(S) = T(S) +1 : REM THIS ACCUMULATES TOTALS IN T()
NEXT K

309 REM PRINTING OF TOTALS

319 PRINT

320 FOR S = 2 TO 12

330 PRINT S ; "'WAS ROLLED" ; T(S) ; "TIMES IN 1¢¢ ROLLS OF TWO DICE."
349 NEXT S

350 PRINT

Once the program is running properly, you may change instruction 11¢ to
11p FOR K = 1 TO 1¢¢p

to obtain a larger sample size. You will wish to change 1¢9 to 1099 in

instruction 33p as well. Additional speed may be obtained by deleting

instruction 150 once you are sure the program is functioning as desired.

130

Page 9-3

Example -1

Suppose a biologist takes 100, equal-sized drops of liquid from a
liter flask containing bacteria which are randomly distributed (i.e.,
no tendency to cluster). Upon testing, it is discovered that 50 of the
samples are bacteria-free, while the other 50 contain 1 or more bacteria
per sample.* Assuming that the bacteria are distributed at random among

+ha cnmnloo arnnavimndtale nwhnt i tha Fadkal saevdaan AF hantania in tho
vl SAOPLT0, QpPPpICRINATCLY Whadt 10 U4l Tolaa NUmSTY O Sallillia 81 UAS

100-drop sample?

The exact answer cannot be determined. However, it is possible to
obtain a statistical estimate of the desired number. You may or may not
have sufficient mathematical sophistication to solve this problem
directly, but it is an easy matter to simulate it.

Number 100 locations V(0) to V(99), and store zero in each. See
Lesson 10 {ur addi bional lnformmilon on subscripied variables. Tien
generate a sequence of random two-digit numbers. Each time the number N
is generated (0 < N < 99) we add one to location V(N). This is con-
tinued until exactly 50 of the locations contain non-zero numbers and 50
still contain zeros. At this stage, we have an estimate of the total
number of bacteria in the 100 samples, either by having kept track, or
by summing the V(N)'s.

Of course, the estimate may not be very good if we perform the
experiment only once. By running it several times, using different ran-
dom number sequences, we can obtain an average estimate that may be
reasonably close. The "proper'" nunber of runs is a mathematical problem
of greater difficulty than we shall discuss here.

Do you see that this technique might be helpful? Actually, the
mathematics needed to justify and analyze techniques of this type is
highly sophisticated, but fortunately for many users, the techniques
themselves are comparatively simple to use. A flow—chart of a computer
program to simulate this experiment is given on the following page.

* The testing consists of adding a drop of reagent to the sample drop.

If it is bacteria-free, it will remain clear, but if the sample contains

one or more bacteria, it turns purple. However, the sample does not turn
twice as purnle if two or more hacterin are present, so our tect gives

po idea of the total number of bacteria present. T

131

Page 9-4

———o Initialize DIM V(99) sets aside 100
. locations V(0), V(1),...,
Set starting V(99) to represent the
value of 100 samples.
each sample
V(1) =9
Y C is used to keep track
Set of how many cells now
c=9 contain one or more
%ng 0 bacteria.
: T = total number of
. . bacteria to date.
/
Generate
a random two-digit
integer
P SNZo99

Increment

(o
by one.

Does
the Nth
sample contain
bacteria
now?

Add one bacteria
to the Nth sample

v

Increment T

by one

Do
56 samples
contain bacteria?
i.e.

132

Summarize results
of this test and
print it.

Page 9-5

100 DIM V(99)
11p FORK = 8 TO 99

12 VK) =9

130 NEXT K

15 C =0 C=Number 0§ Cells containing bacteria.
169 T=29 T=Total numben of bacteria.

209 REM GENERATE N: @ <= N <= 99; INCHEMENT V(N),
TOTAL, AND TF APPROPRIATE COUNT.

21p N = HND(1gp)-1

22¢ IF V(N) > @ THEN 239

225 C = C+1

23 V(N) = V(N) + 1

24¢p T=T+1

259 IF C < 5p THEN 219

330 PRINT "THE 1(¢ DROPS CONTAIN A TOTAL OF"' ; T ; "BACTERIA.'
Before expanding this experiment, run it a few times. If it shows the
same result each time, you may need to add the instruction
5 RANDOM or 5 RANDOMIZE

41

to prevent the program irom reseiting the rancom number generator to ine
same place at the start of each run. After the program is debugged and
running, you could imbed it in a FOR....NEXT loop to run it, say, 100
times and give information on the 100 trials. You might even run it 1000
or 5000 times and compute mean and standard deviation of the total number
of bacteria to be expected in the 100-drop sample. You might also con-
sider how to change the program if the number of contaminated drops found
in the 100-drop sample were 35 or 70 instead of 50.

— For now merely add:

5 G=9:@ REM G WILL BE USED TO ACCUMULATE THE GRAND TOTAL OR
CUMULATIVE TOTAL OF BACTERIA IN 1(§ RUNS

15 FOR S =1 TO 199

3¢9 PRINT "'SAMPLE";S;''CCNTAINS A TOTAL OF'; T ;"BACTERIA."

319 G=G+T

320 NEXT S

PRINT

419 PRINT ' THE HUNDRED RUNS PRODUCED AN AVERAGE OF “: G/109 : " TOTAL
BACTERIA PER RIN " A B

In Practice Set 9 you will modify this program so that the number
of _Tuns can be specified by the user. You may wish to think a bit about
which instruction will need to be changed. Actually, the simlated
average of 100 runs should be expected to agree quite closely with the
answer of 69 bacteria obtained using statistical theory.

133

Page 9-6

A SECOND BIOLOGICAL SIMULATION

EXAMPLE 9-2

Consider a superficially related, but actually different example.
This time our biologist has a liquid which he knows contains exactly 200
amoebas (or fish) which again are distributed at random throughout the
liquid. If he separates the liquid into 50 equal size samples V(1), V(2),
..., ¥(50), how many samples will be amoeba~free? (Also, how many will
contain 1, 2, 3, 4, 5, 6, more than 6 amoebas?)

The computation on this is well within your understanding, but that
is not really the purpose of this example. Iet's simulate the problem
by creating 50 storage cells, each of which initially contains zero
amoebas, This time generate exactly 200 pseudo-random numbers N, with
13N£50. Each time the number N appears, add 1 to the number in location
V(N).

199 DIM V(5p), M(8) Sets aside space for samples V()
11¢ FORK =1 TO 5¢ and §inal data collection M{).
129 V(K) = @ This zenos 50 samples V(K).

139 NEXT K

2090 FOR B =1 TO 2¢¢p This distnibutes the 200 amoebas
219 N = RND(5@) into the 50 samples.

229 V(N) = V(N) + 1

230 NEXT B

3p¢ REM ZERO THE M'S TO QOLLECT DATA FOR FINAL REPORT

319 FORL=0 10 8

320 M) =9 .

339 NEXT L

(Continued on next page)

134

Page 9-7

400 REM COLLECT DATA ON HOW MANY V-SAMPLES CONTAIN L AMOLBAS
410 FOR B = 1 TO 50

120 N = V(D)

125 IF N<7 'THEN 430

428 N=8

43p M(N) = M(N) + 1

440 NEXT B

509 REM PRINT OUT SUMMARY
519 FORL =@ TO 6
A2 PRINT ' THERE ARE " ; M(L) ; " SAMPIES WITH EXACTLY " ; L ;
" Al‘m ;ﬂf T
53 NEXT L
549 PRINT " THERE ARE ' ; M(8) ; ' SAMPLES CONTAINING 7 OR MORE AMOEBAS "

Once you have the program up and debugged and feel it is running
well, you may wish to include it in a FOR ... NEXT loop to run the
experiment several times and to tabulate the data in a more useful form.
This is left for you to do. Once again it will be discovered that the
AVTTRge GF, say 100, ruuws of such a simuiation will agree quite closely
with the forecast obtained using statistical theory, in which the number
of ampeba-free sanples is

1)200 1

50(1 - 45 vhich is approximately 50% = 18.4

The results of our similation program correspond very closely to the
theoretical results.

A similation of this type can also produce convincing evidence that
certain phenomena are not random. Let us assume that in your area P
persons died during D days of this year. If we assume that deaths occur
at random, then we are placing P markers into D cells just as we were in
the previous exanple, except . P = 200, and D = 580. 1In this case, the
agreement between the outcome of the simulation and actual data is not
good. Indeed, further analysis shows that deaths are not usually distrib-
uted at random, but rather that a high ""successive-day-dependence' seems
to exist with alternate high and low death periods. This too can be
simulated, but the model is more sophisticated.

EXAMPLE 9-3

Now examine another simulation. This is essentially an Ehrenfest
moder with three molecules (see your physics or chemistry teacher). TFor
simplicity it is posed as a "Guppy'' problem.

Assume your aguarium contains 3 pregnant guppies. Because of their
gravid condition you prefer not to net the guopies, but instead to place
a "transfer cage'' in the aguarium. At the ctovt there are no guppd =
the transfer cage and three in the aquarium. .As time goes on the guppies
swim into or out of the transfer cage at random. When all three are in

135

Page 9-8

the transfer cage, the door is closed and no further exchange is possible.
The guppies are then transferred to a maternity aquarium. The number of
guppies in the transfer cage at various times might be

0+1+2+1+2+1+0+1+2+1+2~+3 end.
It you were unusunlly lucky, it might even be
0+1+2+3 end,

The problem is to determine the average number of arrows in the chain
before all three fish are in the transfer cage.

Again there exist statistical techniques (for example Markov Chain tech-
niques) which could be used to determine the desired result, but we pre-
fer to similate the process.

Before examining the solution proposed by your author, at least try your
hand at flow charting the heart of this problem.

Here is one possible model. Use a random number generator to
determine whether the next guppy goes into or out of the cage: If
RND(@) £.5 put a fish into the transfer cage. If RND(@) >.5 move out
one, if possible. When all three fish are in the cage, stop the simu-
lation.

10 REM FIRST GUPPY MODEL SIMULATION

20 C=0: REM C = # OF GUPPIES IN CAGE
3 A=0: REM A = # OF ARROWS

99 PRINT "HISTORY='"';

109 R = RND (Q)

110 IF R >5 THEN 20§

12¢ REM HERE IF FISH ENTERS CAGE R< = .5

50 REM HERE IF ALL 3 GUPPIES ARE IN CAGE

519 PRINT "'SUCCESS AT LAST"

52¢ PRINT A; 'ARROWS OR 'SWIM THROUGHS' TOOK PLACE"
539 PRINT

After debugging the above model you may enclose it in a program to run

25 times and give the average number of arrows for the 25 runs at the
end of the history.

136

Page 9-9

The preceding model may or may not represent this situation. Let
us leave that for a chemist or physicist or guppy breeder to decide.

Before we show our model to an expert, it might be well to consider
possible objections he could reasonably be expected to raise. Hmmn—
well, it does seem that the probability of a guppy leaving the cage
should be greater when there are two guppies in the cage and only one
outside than when the situation is reversed-doesn't it? Consider
another possible model.

ANOTHER MODEL

You may easily discover a better simulation technique than the one
suggested above. Be sure your next simulation takes into account that
wvhen the cage contains two guppies, then the next movement is twice as
apt to be from the cage to the aquarium, as from the aquarium to the
cage.

If vou have trouble setting mp vonr similation mial | here is an
idea. Use three counters, one to represent each fish. If a given fish
is in the cage, the corresponding counter will contain a 1, otherwise
it will contain a zerc., Two possible histories axve:

(1) Fish #1+0+1+1+0+1-+1 end

Fish #2+0+0+0+0+0-+1 end
Fish #3+0-+0+1+1~+1>1 end
which could be represented more compactly as
000 +~ 100 -~ 101 - 001 » 101 + 111 end.
Another possible history could be
(2) Fish #1 0+0-+1+1 end
Fish #2 0~+1+1+1 end
Fish #3 0+0+0+1 end
which could be represented as
000 +~ 010 » 110 » 111 end.

Before you continue, write a program or flowchart to simuilate this model.

137

Page 9-10

In this simulation all three fish start outside of the transfer cage,
i.e., F(1) = 0, F(2) = 0, F(3) = 0, THEN the computer generates a random
nunber to determine which of the three guppies shall be the next one to
change places (swim in if out, swim out if in cage). All three are in
the cage when T = F(1) + F(2) + F(3) = 3.

The following flowchart summarizes the proposed program

Initialize

F(1)=F(2)=F(3)=)

7
\ PRINT out digits /

Y

Select random
nunber 1,2,3 to
A determine which of the
three digits to change

Change selected digit
¢ ~1
1 +p

\‘PRINI‘ out current digits /

138

Page 9-11

Here is one possible program for the previous flowchart - but yours may
be just as good, or even better than this one, so don't change yours -
not yet, at least.

GUPPY - SEOOND MODEL
19 REM GUPPY SECOND MODEL SIMULATION
20 DIM F(3)
50 REM SET Fl = F2 = F3 = ¢ AS ALL GUPPIES ARE OUTSIDE CAGE
60 F(1 @
0
8p
99

Houon

)

F(2) =20

F(3)

PRINT F(1) ; F(2) ; F(3) ; " ->n .
109 R = RND(@)

11¢ IF R > .667 THEN 300

1290 IF R > .333 THEN 20@

133 REM HERE ONLY IF F1 IS TO MOVE

40 N =1

158 GOTO 589

200 REM HERE ONLY TF F2 TS TO MWR
21¢ =2

23p Q010 500

3P HEM HERE QIY IF 3 IS TO KOVE
319 N=3

5pp REM NOW READY TO MOVE FISH #N

519 IF F(N) = ¢ THEN 550

529 IF F(N) = 1 THEN 60@

539 PRINT "SOMETHING IS WRONG. F(" ; N ;") BEQUALS"; F(N)

549 STOP
550 REM MOVE F(N) INTO CAGE
56@ F(N) = 1

57¢ IF F(1) + F(2) + F(3) < 3 THEN 99

58p PRINT F(1) ; F(2) ; F(3) ; "END--ALL TN CAGE NOW."
599 PRINT : PRINT

595 GOTO 69

669 REM MOVE F(N) OUT OF CAGE

610 F(N) = 9

620 GOTO 9§

Try it out. Debug the program and when it is running smoothly include it

in a program to run the simmlation 25 times and print out the averace
nutber of arrows for the 25 runs, at the end of the histories.

PRACTICE SET 9

1. Simlate the roll of a pair of dice. After your simulation is up and
running, enclose it in an over-program that will roll the pair of dice
1000 times and keep track of how many times the sum shown is 2, 3, 4,...,
12, Compare the output of your simulation with the theoretical outcome,
which you may either compute or discover in a book on probability, dice
or gamoliing.

139

Page 9-12

2. Modify the program of Problem 1 so it assumes dishonest dice have been
used in which the l l is replaced with a second [{_T] .

3. Modify the program of Example 9-1, so the number of runs can be
specified by the user.

4. Enclose the program of Example 9-2 in a FOR, , \NEXT loop that will per-
mit you to run the experiment 500 times and tabulate a summary of the data
obtained.

5. Explain the purpose of instructions 425 and 428 in the program of
Example 9-2. Did the given program ever use M(7)? Why do you think
the author left it so?

6. Create a flow chart for your final revised version of Example 9-2
(Problem 4) and use it to explain what your program does to a friend.

7. A batch of 80 ounces of plastic contains 100 small metallic impurities.
Assure that the plastic is well mixed and that the impurities are distrib-
uted at random throughout the plastic when it is molded into 160 half-
ounce replacement heart valves. If a valve contains one or more impur-
ities it must be discarded. It is quite possible that anywhere from 60

to 159 metal-free valves may be obtained from the given batch. Write

a computer program to simulate one hundred 80-ounce runs and determine
the average number of metal-free heart valves you would expect on the
basis of your simulation.

8. Extend the program of Problem 7 slightly so that in addition to giv-
ing you the average of the hundred runs, it will also keep track of the
largest and the smallest mmber of metal-free valves that were manu-
factured from a single batch on the hundred rums.

9. Assume that in Shire approximately 100 Hobbits die in a given 30-day
period. Write a computer simulation that will print out a table of
twenty lines of output data, each line representing a 30-day period with
100 random deaths distributed among the 30 days. Print a reasonably
clear header before the 20 lines of output data, since the Shire Health
Department wishes to use your data for comparison with actual death rates.

10. A well-known and interesting problem asks the question, "In a set of
thirty persons selected at random, what is the probability that at least
two of the thirty persons have the same birthday (anniversary date) (i.e.,
same month and date of birth, but not necessarily born in the same year)?"
How would you simulate this problem?

11. Write a program to simulate Problem 10 assuming 365 days per year.
After debugging your central program, expand it so you run your simila-
tion for 50 sets of 30 persons before you print out the approximate
similated experimental probability. Compare your simulated result with
that computed. (See ''the birthday problem" in a text on probability, if
you need help.) Open Who's Who to some page and take the first 30 birth-
days you find for a similar experiment.

140

Page 9-13

12. Simulate some simple game of your own choosing and have the conputer
summarize the results. Suitable games might be "matching pennies', 'put
and take', or some very simple dice game but not anything as complicated
as "Yahtzee'" or "craps'.

13. Expand your program for Example 9-1 or Example 9-2 to run 1000 times
and compute standard deviation as well as mean of the numbers involved.

14. Debug the first guppy model. After it is debugged and running,
include it in an "over-program'' that will run the model 25 times; print-
ing u history each time and give the average number of arrows per run at
the end of 25 runs. If your runs all produce the same history, there is
apt to be something wrong with the way you invoked the random number
generator. Tix it up and rerun the program.

15. Debug the second guppy model. After it is debugged (and checked
that it doesn't always give the same history) incorporate your debugged
program into a program that will run the model 25 times, print a history
each time and give the average nutber of arrows per run. Compare the
reculte of medel 1 and sodel 2. Which do you feel is a betler represen—

tation of the problem? Why?

16. Write a program to simulate o penny toss between two persons if the
first person starts with P1 pennies and the second with P2 pennies, where
Pl and P2 are input for the program. Your program should print out the
nurber of pennies euch person has after each toss and stop as soon as
either person has lost all his pennies.

17. Write a program to simulate a ping-pong game with the initial input
being two numbers (Pl and P2) which represent the probability of player 1
and player 2 returning a given shot successfully. Change your model a
bit to make it more realistic if you can.

18. Same as Problem 17, but for the game of tennis.

19. If you were to write a simulation of a baseball game, what variables
would you wish to be able to read in and thus vary from run to run?
Discuss a possible simulation with a colleague. Make a rough flow chart
of your proposed simulation.

20. The dice game known as '"craps'" is played by noting the total number
of points, when two dice are rolled, as follows:
1. If, on the first roll, you roll 7 or 11, you win.
2. If, on the first roll, you roll 2, 3, or 12, you lose.
3. If, on the first roll, you o1l 2.4, 5, 6, 8, 9, or 10,
this number becomes your "point” and you continue rolling
the dice until you either roll your "point' again or you
roll a 7. 1If you roll your point again before you roll a 7,
you win. If a total of 7 turns up first, you lose.
Use the computer to simulate a craps game. Have the output show, on one

£oav

line, the actual history as well as the first win or loss of the gane,

141

21.

Page v-14

Rearrange your program of Problem 20 so that you can simulate the
game of ''craps' under the assumption that each die carries the spots
1-5-3-4-5-6, instead of the usual arrangement.

. Write a program to simulate the deal of 52 playing cards with NC

cards per player and NP players. Your program should read in the
values for NC and NP and check that NCANP < 52 before starting to
deal. One way to deal using RANDU is to assume there are 52 cards
nunbered from 1 to 52 inclusive. You may wish to use DIMENSION C(52)
and set the value of each C(I)=0 at the start, then once that ''card
I" is dealt, change the value of C(I) to +1 so that you do not deal
the sane card twice. (This causes hard feelings!) You may wish to
store the hands in an array DEAL(NC,NP) by storing the numbers I, but
in printing out the results, you should translate the stored integers
into the usual suit and value designation. Use your program to deal
S5-card poker hands to 8 players and also to deal 13-card bridge hands
to four players.

142

Page 10-1

VARIARLE TVDLS

BASIC uses four distinct data types for its variables. Each variable
my be forced to be any of the four types, either by using DEF statements
or by the use of special type designators described below. The four
types are:

Single Precision Floating-point (6 digits of accuracy)
Double Precision Floating-point (16 digits of accuracy)
Integer (between -32768 and +32767)

String (up to 255 alphabetic or numeric characters)

The first three types are used for numerical computation and storage.
String variables are never used in arithmetic. They pemmit the storage,
examination and comparison of sequences of letters, numbers, blanks and
special characters.

a) Single Precision Floating-point Variables DEFSNG A,B,W-Z

Single precision floating-point numbers are the type we have been
using for most of our computation. It is the cption which the TRS-20
automatically elects for you unless you instruct it to do differently.
Such computation is carried out to (the binary equivalent of) 7 decimal
digits of precision inside of the computer, but only 6 digits of preci-
sion are printed on the CRT screen.

Since single precision is the automatic default condition, it is not
necessary to use DEFSNG unless you need to change the precision of vari-
ables previously defined as INTEGER or DOUBLE PRECISION.

D) Double Precision Variables

You are already aware (See Lesson 5.) that it is possible to

143

Page 10-2

obtain viwriables of greater accuracy (16 digits instead of 6 digits) for a
variable by inserting

DEFDBL X,Y

near the beginning of the program. This causes every variable beginning
with the letter X or the letter Y to be double precision (17 digits inter—
nally, 16 digits displayed). It is also possible to indicate a range of
initial letters in a DEFDBL statement. For example, DEFDBL A,C,S-W

will cause every variable beginning with any of the variables A,C,S,T,U,V,
W to be double precision unless it carries a special designator such as

! or % (see below).

c) Integer Variables

It is also possible to specify that some variables are of integer
form rather than the usual floating-point nunbers. On short programs it
is not worth the effort to do so, but long-running programs frequently
can be speeded up noticeably by inserting

DEFINT K,L,B-E

carly in the program for those variables you know will always be integers
in the range from -32768 to +32767. The DEFINT statement given above
forces every variable beginning with K,L,B,C,D,E to be integer form. One
of the most inportant savings is to make integers of the variables used
in FOR...NEXT loops when appropriate. (Obviously, they must not take on
fractional values in the step size.)

d) String Variables

It is also possible on your TRS-80 LEVEL II BASIC to define a string
variable (indicated by annexing a $ to any variable name) used to store
strings (sequences) of letters and other characters up to 255 characters
per string.

Examples A$, C$, GR$, P1$, P2$

You may also define regular variables as string variables by using DEFSTR
but be careful in doing this because if you designate DEFSTR A,D-G then
every variable beginning with A,D,E,F,G will be a string variable and as
such may not be used in arithmetic. Your authors usually prefer to use
the annexed $ to indicate a string variable.

Try this little program:

N [ENTER)
19 s
1990 INPUT “PLEASE TYPE YOUR NAME" ; N$,
119 PRINT : PRINT : PRINT : PRINT continued on next page

144

Page 10-3

oA N,

o ETAPE P Tyt N R N T 1 [RN CCTRIYOY ST o
e PRIN ARSI r"-'. . P A0 UUY PANeN T AV L300 VASUS W,

......

14
130 GO Ty
CINEEY
Try it out on your camputer. Depress |BREAK| to stop the program.

The output is a bit fast to read isn't it? To slow down the pro-
gram, make it count from 1 to 500 after it prints by inserting

125 FOR Q = 1 TO 5@¢ : NEXT Q

RUN it again.

Try several different versions of your name.

Try inserting your social security number or phone nurber instead of your

name.
String variables and string instruction are discussed further in Iesson 14.

¢y Individuul Variable Type Designators

It is also possible to make particular variables into integer
variables by annexing a % sign after it — without changing other vari-
ables that begin with the same letter. For example

199 FOR X% = 1 TO 5¢
11¢ FOR K%=1 TO 109

129 PRINT K%;
139 NEXT K%
149 NEXT X%

will run faster than

P FOR X = 1 TO 50
119 FORK = 1 TO 1¢¢
120 PRINT X;

It is possible to have particular variables as regular single preci-
sion floating-point variables (6 digit precision) by amnexing a ! to
double precison {loating-point variables (16 digit precision). Likewise,
it is possible to have particular variables as double precision floating-
point variables by annexing a # to any standard variable name. The type
designator (v = integer. ! = single precision, # = dovble nracigion) takes
precedence over an earlier IEF statement.

145

Page 1041

Annexed Typical Variables
Variable Type Character Examples To Be Stored
Integer Variable % Ap, X% ,K%,N1% -2746,-5,0,1,17,3000
Single precision ! Al,BX! XI! 4,-50.73,.1276,1.23456E+09
(6 digit) variable
Double precision # A#, X1#,CH# ,BV# 1.234567887654321D+15

(16 digit) variable

Note: If you wish to enter or use double precision constants, you can
save a lot of trouble by placing a D at the end of it. Thus A# = 1234.7D.
Also, use D in place of E to indicate the exponent of 10. Thus:

A = 6.02486E+23
A# = 6.024859316852145D+23

Note that B, B%, B!, B# and B$ may all be used in the same program and
each is a name for a different variable.

SUBSCRIPTED VARIARIES

The statement

DIM X(15), Y(15)

pemits you to have sixteen different X-values
X(0), X(1), X(2), X(3), X(4),..., X(14), X(15)
and sixteen different (associated?) Y-values
Y(0), Y(1), Y(2),...,Y(14), Y(15)

in the computer at the same time.

Note that
X(3) and X3 are different variables, and each is different from X.

Such 'subscripted variables' are important in statistics, where it is
common to have sets of related data, say 25 temperatures and the 25 re-
lated product yields. The following program permits you to input 25 sets
(T,Y) of temperature-yield data.

19 DIMT(25), Y(25)
10 FORK = 1 TO 25

119 INPUT T(K), Y(K)
150 NEXT K

Note that we have not used location T(@) mor Y(@), but we could have.

146

Page 10-5

The program might be expanded to also compute the average T value and the
average Y value by accumulating the sum of the T's and the sum of the Y's.
After the sums are computed, divide each by the number of data pairs
(here 25) and store the result in T(P) and Y(P)

19 DIM T(25), Y(25)

M T=0:Y=0 (Note: This is only a fragment of a
19 FORK = 1 TO 25 p/wglzqm. 1t peumits you to enten
11¢ INPUT T(K), Y(X) data into T) and Y{), bu,t does
125 T =T+) not produce on PRINT angthing.)
13p Y =Y + Y(K)

15¢ NEXT K

169 T(P) = T/25

179 Y(Q) = Y/25

Note that T and Y were used inside the FOR...NEXT loop rather than using
T(P) and Y(@). This saves computer time. Most expert programers consid-

or it gnnr‘ho to nan a cnhcnripforl variahla whace cihaerint dooae nnt chanoe
er 1T ganche {0 e a cubserintad variable whose SUDSCoYInt anos not o

inside of a IOR...NEXT loop. T

If desired, the program could be extended to compute standard devia-
tion, correlation, mode, median, and other statistical measures. If you
are familiar with statistics, you can extend the program yourself. You

can even compute a ''line of regression" or a ''curve of regression" for the
given data.

Our purpose was to introduce subscripted variables, a very handy tool
for solving many problems.

ARRAYS

It is also possible, in Level II BASIC to store arrays (matrices)
of numbers (or letters or symbols). Consider a set of class grades for
20 students on each of six tests, Although it is possible to store stu-
dent names, it is simpler to use student numbers instead.

The 20 by 7 array is:

Col 0 Col 1l Col 2 Col 3 Col 4 Col 5 Col 6

Student Test Test Test Test Test Test

ID no. 1 2 3 4 8 [}
Row 1]12516 86 74 92 71 77 64
Row 2, 12617 57 62 71 69 e 85
Row 3| 77969 4 98 . . .

continued on next page

147

Page 10-6

Row 1138491

Row 2021201 87 93 91 . . 92

We represent it in the computer by
DIM G(24,6)

This gives an array with 21 rows and 7 colums, for storage. We shall
not use row O for the storage data in this problem, but shall use colum
0 to store the student's ID Number.

The 94 grade on test 1 of student number 3(ID = 77969) is iac;ated in po-
sition (3,1). Position (2,4) contains the grade of 69 for the 2nd student
(ID = 12617) on the 4th test.

The following program will read in the grades for the C-th test, to be
supplied by the teacher. For C = 0, the student ID¥ may be typed in, if
desired.

1 REM PROGRAM TO INPUT QUIZ GRADES FOR CLASS OF 20 STUDENTS
19 DIM G(29,6)

109 INPUT "TYPE TEST NUMBER PLEASE'; C

11p FORR = 1 TO 29

120 PRINT "TYPE GRADE ON TEST" ;C; "FOR STUDENT #'; G(R,9),
13p INPUT G(R,C)

149 NEXT R

The following program will display the entire array of scores, as
well as computing and printing the average grade on the six tests for all
20 students. It assumes the data is already stored in the computer(from
tape, or by hand, or ??). This program may be combined with that above.
If no grades are entered, the computer will print zeros.

2 REM PROGRAM TO DISPLAY AND AVERAGE STUDENT GRADES ALREADY IN THE

OOMPUTER
19 DIM G(29,6)

200 FORR =1 TO 2¢

219 T=9

220 PRINT "STULENT #' ;R, "I.D.#" ; G(R,®),
239 FORC=1T06

249 PRINT G(R,C);
250 T =T + GR,C)
260 NEXT C

279 PRINT "->"; T/6
28 NEXT R

148

Page 10-7

Examine the program to understand how it works. II you have auy
questions, ask your instructor.

Note the use of indented instruction inside each FOR...NEXT loop. This is
not important as far as the computer is concerned, but is a very helpful
practice to help humans to perceive the structure of your programs. Your
author sincerely recommends the practice.

149

Page 1l-1

LESSON ||

, T\PS AND
ERROR

MESSAGES

We have collected a few tips and cautions that you may never need,
but that you still may find helpful.

TIPS

Don't let anyone spill beverage on or near your TRS-80. The only
way to do this may be to forbid beverages near the computer. It is up
to you, but a spilled Coke portends real grief forever afterward.

If you are plagued by double letters in your typing, it is because
dust and dirt are forcing your TRS-80 to get multiple signals on a single
key stroke. LEVEL 11 BASIC will have this problem more frequently than
LEVEL I, since LEVEL II stores key strokes internally (great for fast
typists). Keyboards manufactured in the 1980's seem to be less plagued
with keyboard bounce than earlier TRS-80's. It is possible to remove the
key tops and gently clean the contacts, but it is a lot easier to use the
KEYBOARD DEBOUNCE (KBFIX) program furnished with IEVEL II TRS-80. It is
a good idea to use a dust cover on the keybroad providing it is turned off
(else heat may build up).

Begin your programs in line 1¢p. Use lines 1 to 99 to identify your-
self and program rather completely, as well as giving credit to any source
you used before modifying your program.

If you would like your HREM to stand out even more than it does by
inserting 5 blanks after the REM, try depressing []] after typing REM
and then type six or eight spaces before your REMark.

ERROR OS (out of string space) can frequently be remedied by insert-
ing CLEAR n with a larger n value (say 199, 5@@, or MEM/4). The default
value is CLEAR 50 whenever you turn on the TRS-80 or type NEW .

If you use a BASIC program fram a book or magazine, watch for BND(1)

statements. Some BASIC's use RND(1) where the TRS-80 uses RND(@), namely,
to generate a randam decimal between @ and 1.

180

Page 11-2

Il you type LLIST instead of LIST and do not have a line printer
turned on, the TRS-80 will lock up. Open the small door at the back left
of the keyboard unit and push the small round reset button.

The TRS-80 is designed for most room temperatures, but if you have
clutter around it, that prevents air circulation. If you must use it in
a hot place, put a couple of Ixlx5-inch blocks under the feet to permit
extra air circulation.

Progiains thal produce a full screen of output can be ended with
a tight loop (such as 9899 GOTO 9999) to prevent having READY
break into the screen. Use to get out of a N
tight loop. -

If your program seems allright, but you get an SN ERROR that you
can't identify, you may have depressed the [SHIFT] key while typing that
line. (I tend_to do this on .) Retype the line in question, watch-
ing your key carefully.

If you are an electronics buff, by all means get the TRS-80 Micro-
computer Technical Reference Handbook (1080, $0.05, Radio Shack). It
has wiring diagrams you'll want to have. Remember, if you open the
TRS-80 case, your guarantee is void.

Use CLOAD? to verify your Level ITI BASIC programs.

Double precision variables are not acceptable in FOR...NEXT loops.

If you have experienced problems with double precision variables not
converting correctly (TRS-80 does not use decimal notation internally),
it may be because you have not entered them correctly. If a double pre-
cision variable has fewer than 7 digits when typed, follow it with the
letter D.
Run this to see what is meant.
199 S=.1
119 D¢ = .1
129 PRINT S,D#
Your output will look something like

.1 . 1909p000014991161

If you change 119 to
11¢ D# = .1D

217 22TV Lo ean S P
211 will > well. le v ans SeE.

151

Page 11-3

Static electricity can play havoc with your TRS-80 and cas-
settes. If low humidity and carpet friction produce static electricity
shocks in your camputer roam, do samething about it. Remove the carpets
or put down a non-static-producing rubber or plastic pad and increase
the humidity in the roam, if possible.

Don't force the 110V-plug on your video display into a socket or ex-
tension cord that is not designed to preserve polarity. One blade on the
video 110V-plug is larger than the other—--in this way, the video display
chasis is grounded through the power cord. If you use an extension cord
or multiple-outlet plug that does not preserve this polarity, you can get
into trouble.

No doubt you have already discovered the HORIZONTAL HOLD and VERTI-
CAL HOID controls located on the rear of your video display. Once set,
it should not be necessary to readjust them very often.

The BRIGHINESS (B) and OONTRAST (C) controls are located on the front
bottam right of your video display. Keep each in about the middle of the
range. To lengthen tube life, DO NOT ADJUST TO MAXIMUM BRIGHTNESS CR
CONTRAST. It may burn your tube if the display remains fixed.

Turn COFF the video display whenever you leave the computer, even if
you leave the camputer running.

Electrical interference from an elevator or other motor, a faulty
flourescent light or even the switch in a typewriter are not apt to inter—
fere with your TRS-80 unless you have added disk to your system. If you
are considering disk or other expansion interface items, you should add a
couple of line filters at your power source as well.

i52

Page 11-4

SAVING MEMORY SPACE

1f you have only 4K of memory, you may find that unwelcome OM ERROR
message signifying all of the available memory has been used or reserved.
There are several things you can do to conserve menmory space.

Cut down on the size of any arrays used.

bty v e emanm Tina uridh a2 Aanlan hotuman otatoo
QLTRSS POT PYOETAn .inC With & CC.Ch OOUWTTh ===

Use integer variables whenever possible—in FOR K% = 3 TO 300,
for example. Use the same variable in all FOR...NEXT loops that
are not nested.

Delete unnecessary parentheses in arithmetic statements.

Cut down on both the number and lengih of string variablios.
Delete unnecessary spaces in all statements.

Eliminate extra variables, reuse variables no longer needed, keep
variable names short.

If necessary, also delete REM statements.

ERROR OM can sometimes be cured providing you are using no string
variables by inserting CLEAR @ at the beginning of your program.

OS ERROR frequently seems to be the result of a missing CLEAR n
statement, where n is greater than 5@. Try CLEAR 209 or
or CLEAR MEM/4.

Page 11-5

SPEEDING UP PROGRAMS

Although computers are fast, they do run into time difficulties on
long programs. Usually the solution is to think hard about the algorithm
being used. It is frequently possible to devise a much faster algorithm
once the problem is fully understood. There are also programning tech-
niques, known to most experienced computists, that save considerable time.

Don't use subscripted variables inside of a FOR...NEXT loop unless
the subscript is changing.

Combine several statements per line (separated by colons).

Use integer variables in FOR...NEXT loops that have integer step
sizes,

Define the most commonly used variables first-—this puts them near
the top of the variable table and saves look-up time if many
variables are involved.

Don't recompute values needed repeatedly; store them instead.
(This is particularly vital inside of nested FOR. . .NEXT loops.)

Use small data sets and short FOR. ..NEXT loops in debugging long
programs.

Use faster forms whenever possible.
B + B is faster than 2 * B.
.2 * C is faster than C/5. (Avoid division when possible.)
D*D*D*DismuchfasterthanD'r4.

Don't recompute trigonometric or log functions for the same value.
To evaluate Y = 5 sin? X + 8 sin3 X - 2 sin? X
use S = SIN(X)
Y=((5*S+8)*8-2) %8 x*§g,

Use POKE graphics. This can cut graphics time to 1/5 of SET(X,Y).

Use stored constants (a letter like B or P) rather than numeric
constants in the statements that are executed frequently.

Probably the most important thing you can do to make programs run
faster is to analyze which subpart of your program uses the greatest
amount of time and then rewrite that portion as a subroutine in Z-80
machine language. Call the subroutine using the USR(X) routine. However,
that requires learning another language. See Chapter 8 of your TRS-80
Level 11 BASIC Reference Manual under USR(X) and a text on Z-80 machine
language. Radio Shack has a book, TRS-80 Assembl: e Pr i
by Wm. Barden, Jr., (Cat. #62-2006) which will be helpful if you are suf-
ficiently interested to wish to learn Z-80 chip language.

184

Page 11-6

FRROR MESSAGES

We have discussed, under EDITING, Lesson 8, the appearance on the screen
of the message

?SN ERROR IN 190@

LEVEL IT BASIC also has other messages that help you discover errors in
a program. The following ERROR messages are among those you may encoun-
ter. (If you have a disk on your system—consult the appropriate refer-
ence manual for additional messages.)

EXPLANATION OF ERROR MESSAGES

BS Subscript out of Range: An attempt was made to assign a subscripted
variable or a matrix element with a subscript beyond the DIMensioned
range.

N Can't Continue: A COONT was |EN'I’ER|ed at a point where no continuable
program exists., e.g., after program was ENDed or EDITed.

DD Redimensioned Array: An attampt was made to DIMension a matrix which
had previously been dimensioned by DIM or by default statements. It
is a good idea to put all dimension statements at the beginning of

a_program.

FC Illegal Function Call: An attempt was made to execute an operation
using an illegal parameter. Examples: square root of a negative
argument, negative matrix dimension, negative or zero LOG arguments,
SET (X,Y) with one value out of bounds, etc. Or USR call without
first POKEing the entry point.

FD Bad File Data: Data input fram an external source (i.e., tape) was
not correct or was in improper sequence, etc.

ID 1Illegal Direct: The use of INPUT as a direct cammand, without a
statement number,

L3 DISK BASIC only: An attempt was made to use a statement or function
which is available only when the TRS-80 Mini Disk is connected via
the Expansion Interface.

IS String Too ILong: A string variable was assigned a string value which
exceeded 255 characters in length. Break it into two or more strings.

M0 Missing Operand: An operation was attempted without providing one of
the required operands.

NF NEAT without FOR: NEXT is used without a matching FOR statement.

This error may also occur if NEXT variabfe statements are reversed
in a nested loop.

155

/9

Page 11-7

No RESUME. End of program reached in error-trapping mode.

Out of Data. A READ or INPUT # statement was executed with insuffi-
cient data available. DATA statement may have been left out or all
data may have been read from tape or DATA.

Out of Memory. All available memory has been used or reserved. This
may occur with very large matrix dimensions, nested branches such as
GUTO, GOSUB, and FOR...NEXT loops, or with large strings. Usually the
program can be rewritten so that it uses less memory. See separate
suggestions.

Out of String Space. The amount of string space allocated was ex-
ceeded. Usually this can be fixed by starting program with CLEAR n
for some n > 50 or by using CLEAR MEM/2.

Overflow. A value input or derived is too large or small for the
camputer to handle.

RETURN without GOSUB. A RETURN statement was encountered before a
matching GOSUB was executed.

RESUME without ERROR. A HESUME was encountered before ON ERROR GOTO
was executed.

Syntax Error. This usually is the result of incorrect punctuation,
open parenthesis, an illegal character or a misspelled command.

String Formula Too Complex. A string operation was too camplex to
handle. Break up operation into shorter steps.

Type Mismatch. An attempt was made to assign a non-string variable
to a string or vice-versa.

Unprintable Error. An attempt was made to generate an error using an
ERROR statement with an invalid code.

Undefined Line. An attempt was made to refer or branch to a nonexis-
tent line.

Division by Zero. An attempt was made to use a value of zero in the
denominator.

186

Page 11-8

USING BEYBCARD COMMANDS IN YOUR PROGRAN

TRS-80 Level II BASIC has an unusual extra '"goodie' you may find

handy. Commands such as RUN, NEW, LIST, DELETE 1¢@-499, and similar
keyboard commands can be inserted into and executed from a program.
Try the following programs to get the feel of the idea.

o CLS

119 FOR K=1 TO 3p

120 PRINT K;

13¢ NEXT K

149 PRINT

RUN

Then add

15@ RIN
and RN it again.
Now, change 15@ to
15 LIST
and RUN it again.
Depress BREAK and change 159 to
150 DELETE 19
LIST the program. RUN it, then LIST it again. Note that 1¢9 has dis-
appeared. Change 15@ to 15¢ NEW,
and RUN it again.

It seems rather stra.ightfowa:r_q until you discovered that if you re-
enter the program 109 to 149 and add

15¢ LIST

16¢ RN
the program never gets to 16¢. Most commands (RUN is an exception.) send

the computer back to READY node instead of continuing the program. You
cin overcome this by using

PRINT @ 97¢, "PLEASE TYPE RUN (ENTER)."
Jjust before the DELETE or LIST command.

Trv the nrooram nn the follmyine nams
Try 2 program on the following pags,

157

Puge 11-9

109 CLS
11¢ FOR K=1 TO 39

1290 PRINT K;

13p NEXT K

149 PRINT : PRINT

15¢ PRINT "PLEASE TYPE RUN (ENTER)"

169 DELETE 199160

165 PRINT : PRINT : PRINT

17¢ PRINT "WHEN THIS IS LISTED NOW, LINES 1¢9 TO 169 WILL BE MISSING."
189 PRINT : PRINT

199 LIST

RIN

Advanced programmers use this technique to get extra space when
OS ERRORS plague them. Early parts of the program can be deleted before
the string variables are used. A sample might be:

19

199

499

5p4 REM TRANSITION TO GET MORE STRING SPACE
505 CLS

519 PRINT : PRINT

515 PRINT "PLEASE TYPE RUN(ENTER)"

520 DELETE 19499

609 REM MAIN PROGRAM USING STRINGS STARTS HERE
619 CLEAR 5000 : DIM BH(49), MB(50)

62p PRINT "THIS IS THE MAIN STRING PROGRAM.'
709 LIST

158

Page 12-1

LESSON |
EYTENDED
PRINT

TNSTRUCTIONS

You are aiready familiar wiih ilie inStreciion
PRINT
which gives a blank line and
PRINT A,B,C,D

which gives wide (4 colum) spacing where a comma is used and close-packed
spacing where a semicolon is used.

PRINT A; B,C,D
is also familiar (see lesson 2).

BASIC has several other useful imstructions including
PRINT TaB()

PRINT USING A$,K
PRINT STRING$(K,''#')

ragtc i4a-«

EXTENDED PRINT INSTRUCTIONS

PRINT TAB {expression)

The "expression” may be a constant or a variable or a computed
expression which is an integer between ¢ and 255. This '"tabs" the cursor
to the indicated position. It is not possible to move the cursor to the
left by tabbing. If the cursor is already to the right of the TAB ex-
pression, the TAB is ignored. Any indicated printing occurs at the place
where the cursor is.

Try the following:
1990 A=3

119 B

5

129 PRINT TAB(A) A; TAB(B) B; TAB(A+B) "A+B"; TAB(35) "'35";
TAB(1Q*B+A) "Z""

on your TRS--80.

The TAB() function is particularly useful in graphing and the
creation of special tables and forms.

160

Page 12-3

PRINT USING 3 tauig; vabue

It is possible to format the output in a more precise manner than
is available on the ordinary PRINT instruction employing ; , and e
or even the PRINT @ instruction.

The PRINT USING instruction makes this possible. Try the following
program.

1 s
o) PRINT "PLEASE TYPE YOUR NAME, INCLUDING MIDDLE INITIAL'"
91H INPUT N$

1000 TFOR K = 917 TO 1130 STEP 13.25

1610 PRINT 'PAY TO THE ORDER OF '; N$; " '
1020 PRINT USING '**$###.## DOLLARS"; X

150 NEXT K

In instruction 1020, the '"®&<$###.## DOLLARS" gives the format in
which the material is to be printed. The *¥$ says to fill up any space
before the first digit with asterisks and then a $. The decimal point
followed by two #-signs (.##) indicates exactly two places beyond the
decimal point are to be printed. Note the change in nunber of * where
the amount changes from $996.50 to $1009.75 in the output when you run
this program., Consult your TRS-80 Level II BASIC Reference Manual, Chap-
ter 3 for additional information.

PRINT USING statements may use any of the following field specifiers:

Numeric Character Function Example

Numeric field (one digit
per #).

Decimal point #it .
position.

+ Print leading or L
trailing sign (plus #. i+
for positive num— ~#
bers, minus for # . HHH -

negative numbers).

- Print trailing sign FHH -
only if value print-
ed is negative.

s Fill leading blanks ERHH A
with asterisk.

{Continued next page)

161

Numeric Character

Function

B$

**$

IRX2)

String Character

Place dollar sign
immediately to left
of leading digit.

Dollar sign to left

of leading digit and
fill leading blanks

with asterisks.

Exponential format,
with one significant
digit to left of
decimal.

Function

1

%A pacessh

Single Character

String with length
equal to 2 plus
number of spaces
between % symbols,

162

Page 12-4

Example (continued)
SEuaatn ##t

WG

. R A 44

Example

This is very useful in graphing since it returns a string of K
charactors cach of which is the character enclosed in quotation marks. It
is also possible to use the ACSII number associated with a given charac-
ter. The vadue K must be between P and 255, as must any number used for
ASCII characters. See Lesson 4 for list of ASCII equivalents.

PRINT STRING$ (25, "#") produces
R T s (25 of them)
on your screen.

The following program plots the number K followed by a string of K2 Sym-
bols:

100 s
110 FORK =1 TO 19
120 L =KX

130 PRINT K; STRINGS(L,"%")
135 PRINT

149 NEXT K

150 GOTO 150

Try it on your screen and see what happens. Then change the symbol in-
side the " " to some other symbol of your choice.

Iesson 4 included a program to generate a bar graph (histogram).

5 CLEAR 209

19 as

199 PRINT @ 6, "GRAPH OF ENROLIMENTS AT THE UNIVERSITY OF OKLAHOMA"
11¢ READ Y,D

115 IF Y <@ THEN 115

12p DATA 1940,21,1950,28,1960,32,1970,51,1980,59,-1,-1

133 DPRINT ¥; STRINGS(D,143)

149 GOTO 119

The instruction
5 CLEAR 200 clears all variables and sets aside 200 bytes for string
variable use. This is maybe more than we need.
119 READ Y,D reads two values from the DATA string.
Instruction
13§ PRINT Y; STRINGB(D,143) prints the current value of Y (read in 1

from DATA) and follows this with a D-long string of the symbol
having ASCII equivalent of 143 which is

1613

The same bar graph results as in the Lesson 4 program using SET (X,Y):
SET (X,Y+1), but in much less time and with a shorter program. The DATA
statement is also easy to change in the new program.

Note that if your D value is greater than 59, the bar will be continued
on a second line. However, D may be as great as 256 if desired, but
you'll need to use CLEAR 25¢ if D is that large.

Here is another program that may interest you. Try it out your-
self.

1¢¢ CLEAR 63

11¢ CIS

12¢ FOR Y = ¢ TO 96¢ STEP 64

133 PRINT @ Y, STRING$(63,191)
149 NEXT Y

15¢ COTO 150

After you see what it does, run the same program with 1¢¢ changed to

109 CLEAR 69 {Why did you get 0S ERROR, if you did?)

You may also wish to change to 1¢¢ CLEAR 1¢¢ and then change STRING$
(63,191) to STRING$H(64,191). See if you can explain the unexpected
dark band at the bottom of the screen when you RUN it.

Sonetimes it is handy to be able to clear only a portion of the
screen. Try this:

1¢9 CLS

119 FOR K=1 TO 2¢5

1290 PRINT K;

139 NEXT K

149 PRINT

209 PRINT @ 256, CHR$(3p); "THIS IS THE NEW LINE FROM STMT 209.'";
3¢90 PRINT @ 512, CHR$(30); "THIS CAME FROM STATEMENT 3¢9.";

5@ GOTO 509

RIN

Depress to regain control.

After you have RUN this program a couple of time with the semi-
colon at the ends of lines 209 and 3P, remove one of the semicolons and
RUN the revised program.

Investigate what happens if you insert:

_ 299 PRINT (HR$(23);
You may also wish to use CHR$(31) in statement 3p@ to see what happens.

164

Page 13-1

More Graphics

Lesson 4 provided an introduction to graphics that may be adequate
for your needs. However, you should lmow that the TRS-80 has many graphic
abilities in addition to the

as clears screen

SET (X,Y) turns on rectangular spot at (X,Y)

RESET (X,Y) tums off rectangular spot at (X,Y)

POINT (X,Y) tests to see if point (X,Y) is turned on, if so it re-

turns a logical TRUE (-1), otherwise a logical FALSE ().
Can be used in IF instructions (See Lesson 14, far details.)
on logical operators.

CHR$(N) produces actions, letter or symbol that corresponds to
code N where O<N <255

For example: the operator ASC(symbol) is the inverse of CHR$(N). It
produces the numeric (ASCII) code corresponding to the symbol in paren-
theses (the first symbol in the string, if the parentheses contain a

string of more than one symbol). This is used in an excellent cipher pro-
gram considered in Lesson 14 of this text.

In Iesson 4 you ran the following program:

10 as T4 youn TRS-80 shows both uppen and
1¢¢ FORK = 33 TO 191 Lowen case Letterns (a modification
11¢ PRINT K, you may obtain, if needed) CHR${K)
120 FORL =1 to 45 for K=65 to 90 will display upper
130 PRINT CHR$(K): case Lettens A to 7 while K=96 to
149 NEXT L 127 displays the connesponding Lowen
150 PRINT case [SHIFT) symbols corresponding
17¢ NEXT K {0 @,Af0Z 4.4 .« .+ — . Maost TRS-
2p9 GOTO 19 80's display only upper case fLetters

fon both nanges.

165

rage lo-o

Run it again now. Change instruction 109 to
109 TOR K = 29 TO 255

and run it again, after turning to the table given in lesson 4 that
discusses the effect of CHR$(N) for various N values.

The pixel-blocks that appear corresponding to

PRINT CHR$(K) .

for K between 129 and 191 are particularly useful in speeding up graphics.
At first glance they may seem haphazard, but actually the choice of num-
bers associated with the graphic you wish to light up is both logical and
easy to use, once it is explained. Each large block (letter & space be-
tween lines) is divided into six small rectangles (pixels)

The individual pixels are numbered. al 8

16132

To light up the pixels numbered 1,2,8 and 16,

add the sum of pixels used: 1 + 2 + 8 + 16 = 27

and add that sum to 128 giving
128+ (1 +2 + 8 + 16) = 155,

The instruction
PRINT CHR$ (155)

will light up the desired pixels much faster than

will SET (X,Y).

166

Page 13-3

. IR R T S e L e e
Much Lime can be saved in Blapuils 0y using

You may use the instruction

o

POKE address, pixel numben

where address is 15360 plus the number between @ and 1(2)@3‘"‘;!}:—11&1 Jocates.
the position (see Lesson Four) of the 6-block under consideration.
The pixel numben is the number (128 + (sum of desired pixels)).

For exanple:

The entire 6-block 112 has sum 63 so 128 + 63 = 191 is
4|8
16 B2

the pixel nuber to turn on the entire 6-block.
The program

igp CLS
11¢ FOR X = 1536 TO 16383

129 POKE X, 191 [See Lesson 16 fon POKE instruction.)

130 NEXT X
149 GOTO 149

RUN

will "white out'' the entire screen in record time. It can be combined
with:

149 X = 2 + RND(121) : Y = 1 + RND(43)
15¢ RESET (X,Y) : RESET(125-X,Y)

169 RESET (X,46-Y) : RESET(125-X,46-Y)
179 GOTO 149

to produce a reverse art pattern, if desired.

Try some additional experiments with the asbove 1£§-14% program such

iditi
as cambining it with

149 PRINT @ RND(1¢9@), "HI your name";
15¢ IF RND (@) >.p1 THEN 149 ELSE 199

or same other experiments of your own design. Remember as long as you
keep beverages away from the TRS-80 and do not abuse it, you probably will
not harm it by your programming experiments -- and the best way to learn
corputing is to conpute and then to think about the results before

continuing.

If you need to insert a variable number of blanks in a line

167

Poyre 13-4

PRINT CHR$ (192+k)
will insert k blanks for k = 0, 1, 2,...,63.
This may be used to good effect in graphing by using
PRINT CHR$ (192 + X); "+"

as in the following program to graph a portion of X = .062Y2 which lies
in the first quadrant.

1¢4 PRINT "GRAPH OF X = ,(B2%Y*y"
11 Y= 3¢

12¢ X = INT(.P62*Y*Y)

13¢ PRINT X; CHR$(192 + X); "+"
150 Y=Y -2

16¢ IF X >2 THEN 12¢ ELSE 16¢

Note that it will be necessary to depress to get the camputer's
attention after the graph is plotted. (WHY)?

If we had not created the ''tight loop'" by using ELSE 16¢, then when X
got to be < = 2 the display screen would have inserted

READY

Po—

onto the screen and scrolled the top off the screen. If you are not sure
of this,

change 16¢ to 160 IF X >2 THEN 12¢

and TeRUN the revised program. o o

The second edition of the LEVEL IT BASIC Reference Manual (appendix C/6)
shows a map of the graphic pixel blocks and their corresponding numbers. Both
the character spacing (16 lipes of 64 characters)numbered from 0 to 1023
and the pixel locations for use with SET (X,Y) (48 lines with O <Y <47 of
128 pixels with 0 X <127) are shown mapped onto the grid. In each case
the mmbering starts in the upper left corner with ¢ or (9,%).

Ifyoummrrberthediagramontheright 1] 2
and use 128 + (pixels to be lighted), you
will not nced the reference.

'~y
[o.2]

168

Page 14-1

STRING FUNCTIONS

Iet's re-examine the program of Lesson 4.

19 S

1pp INPUT "PLEASE TYPE YOUR NAME": N$

116 PRINT:PRINT:PRINT

129 PRINT "HELLO ";N$;". ": PRINT" T HOPL YOU ARE ENJOYING THIS
OOURSE. "

125 FOR Q = 1 to 5Pf:NEXT Q
127 PRINT CHR$(23)
139 GOTO 119

Line 19 clears the screen.

Line 1fP prints what is in guotes and then awaits your input to string

variable N$.

Line 11# prints 3 blank lines (i.e., moves the next cutput line dowm
3 rows)

Line 12§ prints HELLO, followed by whatever you typed into N$, and then

on the next line prints

I HOPE YOU ARE ENJOYING THIS COURSE. with a nine-space indentation,
if you alliowed nine spaces.
Line 125 is a "timewaster". It forces the computer to count from 1 to
50f) by ones before continuing.
Line 127 changes all output to double-size until the next CLS instruction
is executed. This eliminates half of the material currently on the
screen, but new material will be printed in double-wide characters.
Line 120 sends the program back to line 118 to print three more blank

cnes e TOZTAl 400 LAITT S

FRSE K SN P A

L TP P T DNTONpS B SV & s 1 08 o SN S T 2 P A el
S RURCD LU L AAES Y 1aab i A waL FRANC (UGDULC~DALS Liidd LA) TLve) Tl pn e

until you depress the BREAK key to stop it.

169

rage 1l9—a

That wasn't too hard was it?

Play :aruund o bit with the messages in line 12¢ and change them to suit
your whim--be sure to include N$ as part of your output—-note that N$ is
a variable and must be outside of the quotes, separated from the quotes
by semicolons.

String variables use up quite a lot of memory space--not as much as
on many computers, since the TRS-80 LEVEL II string variable uses only
as much space as it needs—i.e. short strings use less memory than long
strings. On many computers, string variables require the same (maximum)
space even if not all is needed. If you have a 4-K Level II, you may run
out of memory if you use many variable strings. The following program
is designed to create very simplistic sentences and runs on 4-K. Note
that string variables may be dimensioned like floating-point variables.

2 CLEAR 1000

5 s

19 DIM N$(7), V$(2)

199 PRINT "“PLEASE TYPE 8 NOUNS."

11p TOR K = @ to 7

129 PRINT K + 1, :INPUT N$(K)

139 NEXT K

209 PRINT "TYPE 3 VERDS. PLEASE USE DIFFERENT TENSES."

219 INPUT "1 ";V$(Q)

229 INPUT "2 ";V$(1)

239 INPUT "3 ";V$(2)

5¢¢ PRINT "THAT IS FINE. NOW I'LL CREATE SOME SIMPLE SENTENCES. "'
6pp PRINT NS(RND(8)-1);" ' ; VS(RND(3)-1);" ";N$(RND(8)-1); " . ™
620 GOTO 69P

Put it on your computer and RUN it. If you should run out of memory
(indicated by OM ERROR or OS ERROR) see if you can figure out what to do
about it (see Lesson 11).

It is also feasible to store the words in DATA statements. In this
case they are read into the program using a READ statement as the follow-
ing program, designed with tongue-in-cheek to generate impressive
phrases for use in reports and grant requests.

READ W$(1) is like INPUT W$(I), except that it obtains the string value
for W$(I) from a DATA statement instead of from the keyboard.

The individual string entries in the data statement are each enclosed
in quotes and entries are separated by commas. The computer will go to
the next DATA statement if the DATA statement on which it is working is
exhausted. DATA may also read from tape—but not here.

170

Page 14-3

DATA statements may also be used to store numerical data. In this case
nunerical variables (no $) are used in the READ statement and quotes are
not used in the DATA statement.

19 DIM W$(35)

20 FORI =@ 70 35
30 READ W$(I)
49 NEXT I

a4 NATA "mNnAmmw‘Ar” "DI\QT{‘” IITT\‘F‘I"HT"PTV‘E’H QT INENT mmmn’

o] poo Bt alvaw 2, 0% & TNSAAY £ Ak VRS

VHOMOGENEOUS'', "MODULAR"

51 DATA "PARALLEL", "CENIRAL', "EQUAL', "SUPERIOR", "COLLECTIVE',
"' JUDGMENTAL"

52 DATA "ACOOUNTAELE" "UNGRADED'', '"NON-SEXIST", "BEHAVORIAL',
"SCIENTIFIC'', "HUMANITARIAN"

53 DATA "INTRINSIC", "FOUNDATION'', "SUPPORTIVE', “LIMITED", "UNIFORM',

"DISADVANTAGED"

54 DATA "STRUCTURE', ''PERFORMANCE", 'REINFORCEMENT', "GROUPING",
"CORRICULOM™, "ENVIRCIMENT

55 DATA "OBJECTIVE'", "BOARD', "EXPERIMENT'', "POLICY", 'TEACHING",
"EXAGGERATION"

19 PRINT W(RND(12)-1);" "
11¢ PRINT W$(RND(12)+11) AL
129 PRINT W$(RND(12)+23)

139 PRINT

149 FOR Q = 1 TO G@p : NEXT Q
159 GOTO 199

It is easy 1o substitute words of the reader's choice by changing
the DATA statements (59,51,52,53,54,55). The program chooses its first
word from the [irst 12 words of the data list, the second word from words
13-24 and the third word from words 25-36 in the DATA list. You may be
interested in seeing what happens if you replace one of the words between

quotes with a blanlkt snace bhetweon auntaes

oles aAtn Spale CEUWESH Quotes.

171

A SECOND SENTENCE GENERATOR

let's write a program to generate more sentences. Consider the sentence:
HELEN QUICKLY SAW THE RED FOX.

The parts of speech are
NOUN ADVERB VERB ARTICLE ADJECTIVE NOUN

Another sentence having the same pattern is:
JOHN SADLY SWEPT THE DIRTY FLOOR.

Let's write a program that will accept 10 nouns, 5 adverbs, 6 verbs and
7 adjectives. We shall start by setting aside the needed space by using
CLEAR and DIMension statements.

2 CLEAR 1¢¢9

5 CLS

1¢ DIM N3(9), A$(4), VB(5), I$(6)
2¢ ss m— T 1

Next, we shall write a portion of the program to permit us to type in the
words of our choice.

1¢¢ PRINT "TYPE TEN NOUNS. DEPRESS (ENTER) AFTER EACH WORD."
11¢ FORK=¢ TO9

129 PRINT K+1;

139 INPUT N$(K)

14¢ NEXT K

15¢ PRINT

That wasn't so hard was it? The computer numbers the stored words @ to 9,
but humans seem to prefer 1 to 10, so that is what we used for each.
let's continue.

2p¢ PRINT “PLEASE TYPE 5 ADVERBS. DEPRESS (ENTER) AFTER EACH WORD."
2¢5 PRINT "ADVERBS USUALLY END IN -LY."

219 FORK =9 T0 4

220 PRINT K + 1;

23¢9 INPUT A$(K)

24¢ NEXT K

25¢ PRINT

3p¢ PRINT ''PLEASE TYPE 6 VERBS (PAST TENSE). DEPRESS (ENTER) AFTER

359 PRINT continued on next page

172

Page 14-5

4pp PRINT "PLEASE ALSO TYPE 7 ADJECTIVES. DEPRESS (ENTER) AFTIR
FACH WORD."

419 FORK= 9 T06

429 PRINT K+1

439 INPUT J$(K)
NEXT K

449

45¢ PRINT

5¢9 PRINT "THAT IS FINE . NOW, I'LL CREATE SOME SENTENCES FOR YOU."
QA TYYD N e TV tTrAAA ATTTOUTRY A

Upp Aval W T oaaw appyw |oubnl W

619 PRINT

62p PRINT N$(RND(1$)-1); S$; AS(RND(5)- -1); 5%; VS(RD(6)-1); S$; "THE"
; S5%; JB(RND(7)-1); S$; NS(RND(1p)-1); " .
639 GOTO 6P

RUN [ENTER]

A lisi of ihe major STRING instructions tollows:

Function Operation Examoles

ASC(s1ring) Returns ASCII code of first ASC(B$)
character in string argument. ASC('H'"")

CHR$(code expr) Returns a one-character string CHR$(34)

defined by code. If code spec- CHR$(K)
ifies a control function, that

function is activated. (See

ILesson 4 for equivalent list)

FRE(s tring) Returns amount of memory avail- FRE(A$)
able for string storage. Argu-

o Gy variaoslie.

INKEY$ Strobes keyboard and returns a INKEVE
one-character string corres—
ponding o key pressed during
strobe (null string if no key
is pressed). Usually used as
300 A$ = IIKEY$: IF A$=""* THEN 3¢9 ELSE PRINT A$;

NOTE: There is no space between the quote
marks. ‘Thus IF A% is the null
string, the program loops back to
strobe the keyboard again. ELSE
it prints the value typed and con-
tinues with the next instruction,

LEN(s tning) Returns length of stning(zero LEN(A$+B$)
for null string). LEN(*"HOURS")

173

Page 14-6

Function Operation Examples
LEFT(strning,n) Returns first n characters LEFT$(AS,1)
of stning. LEFT$(L13+C$, 8)
LEFT$(AS, ML)
MID$(string,p,n) Returns substring of stnuing MID$(M$,5,2)
starting at position p in MID$(M$+B$,P,1~1)

stning and containing the
next n characters.

RIGHTS$ (s tring,n) Returns last n characters RIGHT$(NAS,7)
of atning. RIGHT$(ABS,M2)

STR$(numenic exp) Returns a string representa- STR$(1.2345)
tion of the evaluated argu- STR$(A+B*2)
ment. This converts numeric
variables to string variables.

STRING$(n, "char™) Returns a sequence of n "chan" STRING$H(30,".'")
synbols using first character STRINGH(25,"A")
of chan. Useful in creating STRINGH(5,C$)
borders or divisions of the

output.
VAL(8 tning) Returns a numeric value cor- VAL('"1'+A$+'."+C$)
responding to a numeric- VAL(A$+B$)

valued string. This is the VAL(GL$)
inverse of STR$().

(strning may be a string va.riabler expression, or constant.)

To concatenate strings (put them together), use the + operator as in
"2+ YOU! 4+ V76" = 2YOUT6

Note that it is important to include desired leading and trailing spaces

inside the quotes if you wish them to appear both in cancatenation and
in PRINT '“YOUR NAME IS NG, LM

174

Page 14-7

A CIPHER PROGRAM

The following program creates a simple, but reascnably secure cipher
by first changing each character into its numerical ASCII equivalent,
using the ASC() instruction, adding a computer-generated random num-
ber to the ASCILI code, moving the result to the desired range 48 <N =90,
and then changing the modified ASCII code into an appropriate symbol us-
ing GIR$(). Decipherment is done using the reverse process. You may
change the basic key by changing instruction 135 to R = Q%R for some
other appropriate Q-value. But don't make the change unless you under-
stand random-number generators. The choice of Q is critical and depends
upon the number system used.

19 DIM C(5p@)

449 L=9
50 INPUT "PLEASE TYPE YOUR KEY-~POSITIVE TO ENCIPHER, NEGATIVE TO DE-
CIPHER." ;K

60 R= ABS(K) : RL =R

7¢ PRINT "PLEASE TYPE COMPLETE MESSAGE FOLLOWED BY THE SYMBOL +."
100 P$ = INKEY$: IF P$ = " THEN 109 ELSE PRINT P$;

105 1P Pg .= /' THEN 189

112 IF P$ = "+" TUEN 200

115 L = L+1

117 IF K< @ TUEN Rl = -1*R1

129 C(L) = ASC(P$)+RL
125 IF C(L)> 9p THEN C(L)
13p IF C(L)< 48 THEN C(L)
135 R = 197*R

137 R = R-1pPP@+INT(R/10000)
139 Rl = INT(.(@4*R)

159 GOTO 199

209 PRINT

295 1IF K <@ THEN 3p¢

21 FORM = ¢ 10 1-1 STEP 5
215 FORN = 1T0 5

C(L) - 43
C(L) + 43

220 PRINT CHR$(C(M+N));
230 NEXT N

240 PRINT " '';

250 NEXT M

260

END
39 FORM=1TOL

319 PRINT CHR$(C(M));
329 NEXT M

499 END

Note, that instruction 10f uses the INKEY instruction which strobes the
keyboard once. If a key is cbpr&esed during the strobe, that value is
stored in variable P$, otherwise P$ contains a null (not a blank, Just
nothing at ail). 7The instruction

IF P$ = """ THEN 1) ELSE PRINT P$

178

Page 14-8

sends the computer back to 199 P$ = INKEY$ if P$ is blank, otherwise it
prints the value of P$ (the key just depressed) on the screen and con-
tinues to the next instruction

195 IF P$ <="/" THEN 199

which essentially refuses any synbols before / (= 47 in ASCII-see Lesson
4).

112 IF P$ = "+ THEN 209

sends the conputer to 209 when the message is complete, as indicated by
typing

Lines 115 to 15¢ encipher or decipher the message depending upon whether

the key K is positive (encipher) or negative(decipher). Each user will
presumably have a different numerical key.

25 IF K<O THEN 3pp
sends the camputer to 3¢¢ if it is deciphering the message, and prints
the entire message as one string (blanks between words were not enciph-
ered-~they could have been, but weren't).
IF K >= 0 then the computer continues with instruction 219 to 269 which
displays the enciphered message in blocks of five symbols (a standard
cipher practice).
ROBOT COUNSELOR

The following program, which runs on any 4K TRS-80, gives a brief in-
sight into what programs that have more menory available can be expected
to do.

REM ROBOT QOUNSELOR

11 GB(9) = "HMM...MMM...,VERY INTERESTING"

12 GP(1) = "STRANGE. NOT ABNORMAL,, YOU UNDERSTAND, JUST STRANGE'

13 G$(2) = "FASCINATING"

14 G$(3) = "UNUSUAL, BUT PERFECTLY REASONABLE UNDER THE CIRCUMSTANCES"
15 G§(4) = "THERE MAY EASILY BE MORE TO IT THAN THAT"

16 G3(5) = "THAT MAY BE AN EXAGGERATION"

17 G$(6) = "VERY COMMON IN TODAY'S WORLD'

18 G§(7) = "BEWILDERING. I DO NOT UNLERSTAND IT"

19 G3(8) = "I HOPE TOMORROW WILL BE BETTER"

20 GP(9) = "SURPRISING IN THE LIGHT OF YOUR BACKGROUND'
50 PRINT "I'D LIKE TO HELP YOU. MAYBE TOGETHER WE CAN WORK OUT YOUR
PROBLEMS. PLEASE ANSWER ME WHEN I ASK YOU QUESTIONS." continued

176

163

179
18p
199
209

219
22
225
228
229

23p

235

249

Page 14-9

FOR Q= 1 10 4@¢ : NEXT Q

PRINT

PRINT "JUST TYPE YOUR ANSWERS, THIN DEPRESS 'ME WIITE (ENTER) KEY."
TORQ = 1 TO 3¢ : NEXT Q

PRINT

INPUT "PLEASE TYPE YOUR FIRST NAME AND DEPRESS (ENTER) KEY.';N$

PRINT : PRINT : PRINT "HI "; N$

PRINT : PRINT

FOR Q = 1 TO 9¢¢ : NEXT Q

PRINT : PRINT "HOW DC YOU BEEL, ",N$'7 PLEASE ANGWER IN CNE OR TWO
INPUT R$

FOR @ = 1 TO 500
PRINT:PRINT:PRINT "OH, I SEE. THAT IS ";G$(RND(1p)~-1);"."
FOR Q = 1 TO 8p¢ + RND(1¢@@) : NEXT Q

PRINT

PRINT "WHO DO YOU THINK MAKES YOU FEEL '';R$;"?"
INPUT R2$

IF H2p = VMET TIEN RZ$ = “YOU ALUNE

IF R2$ = "MYSELF"' THEN R2$ = '"YOU YOURSELF"

IF R2% = "YOU' THEN R2$ = ""THE TRS-8p"

PRINT :PRINT

FOR Q = 1 1O 1¢p + RND(5@p):NEXT Q

PRINT "WELL NOW, '';N$; ", THAT IS CERTAINLY "; G$(RND(1¢)-1);"."
FOR Q = 1 TO 5¢p + RND(6¢p) :NEXT Q

PRINT: PRINT "DO YOU REALLY BELIEVE' '';R2$;"MAKES YOU FEEL '';R$;''?"
INPUT A$

IF A} = "NO" THEN PRINT "WELL ";N$;", PLEASE BE FRANK WITH ME. IT
SEEMS '';GS(RND(19)-1) ;7" GOTO 149

PRINT:PRINT

FOR Q = 1 TO 1¢ + RND(1¢gp) :NEXT Q

PRINT "THAT IS ";GH(RND(1p)-1);". IT IS ";GS(END(1@)-1);"."
PRINT "THINK ABOUT IT A BIT."

PRINT:PRINT "IT IS INIEED "‘;G$(‘ D(1¢)-1);"," :PRINT;PRINT

SRLNDTUR a0 avaalnlns DL b9 SEIVAANE sLAVRINL

PRINT "REALLY NOW, TELL THE TRUTH. PLEASE'BE FRANK WITH ME."
DRINT "IT SEEMS ';CS(END(10)-1);"."
QUTO 199

After you have run the program a few times, change some of the phrases
stored in GS() in lines 11 to 2p. See if you can produce a more inter-
esting ROBOT COUNSELOR program.

Poyre 14-10

LOGICAL OPERATORS

Have you wondered how the computer handles IF instructions?
The instruction

IF X >13 THEN 42¢ ELSE 3§
examines the number stored in location X and if X is greater than 13,
sends the computer to statement 42¢ for its next instruction but if X is
less than or equal to 13 sends the computer to statement 3¢ for its next
instruction.
The instruction

IF X >125 THEN X = 125
examines the variable X and if X is greater than 125, sets X = 125.

Actually the expression X >125 is evaluated as a logical expression.

I the current value of X makes X >125 a TRUE statement, then the value of
the logical expression

(X>125) is -1.

If the current value of X makes X >125 a FAISE statement, then the value
of the logical expression (X >125) is ¢.

You can examine this by running the program

99 Y =25

110 FORK =1 T0 8
120 X =K *Y

139 PRINT K, X, (X > 125)
149 NEXT K

which produces the output

1 25)
2 59 ?
3 v @
4 1¢p)
5 125 9
6 150 -1
7 1B -1
8 20p -1

The actual values (TRUE = -1, FALSE = @) used are unimportant at this

stage, and may vary on different computers. (LEVEL I TRS-80's use
TRUE = 1, FAISE = 0 .)

178

Page 14-11

I the value produced represenis THUE (i.e. , —1) ihen the remaining
statements on the IF line are carried out (possibly severul statements
separated by colons).

If the value produced represents FALSE (i.e., @) then the computer
skips the rest of the instructions in that statement line (possibly sev-
eral instructions) and goes to the next line or the FISE statement for
its next instruction.

It is possible to combine statements using logical operators:

AND If both expressions are true TRUE (=-1) otherwise FALSE (=0)

OR IF either expression is true TRUE (=1) otherwise FALSE (=)
NOT Interchanges TRUE (-1) and FALSE (§).
EXAMPI T -

199 INPUT A,B

11§ PRINT “a=";4, "B=".B

12p IF A> B THEN PRINT "A IS GREATER THAN B" .

13p g “}59) AND (A<1@) THEN PRINT " @ <A <10," ELSE PRINT "A<= § or

149 IF (B>2@) OR (B <-2p) THEN PRINT "ABS (B)> 2@."

159 IF ((A> @) AND (B>$)) OR ((A<@) AND (B< @)) THEN PRINT "A*B> @."
ELSE PRINT "A*B <= @,

169 QOTO 1P

Actually the AND, OR, NOT logical operations also may be used to test
individual bits in the binary storage of TRS-80 words since the opera-
tions perform Boolean operations on the bits of numbers as well as on
logical statements. Readers interested in such masking operations should
first consult chapter 8 of the TRS-80 Level 11 BASIC REFERENCE MANUAL
and then a text on Boolean (logical) algebra,

179

Page 15-1

WHERE TO LOOK FOR ADDITIONAL INFORMATION

Your first source of additional information is the LEVEL I or
LEVEL II BASIC REFERENCE MANUAL that came with your TRS-80. You should
also be receiving ({ree) the Radio Shack Micro Computer Newletter if you
filled out the card requesting it that came with your TR9-80.

Fellow computer buffs are another excellent source of information.
If you are in real difficulty, don't hesitate to telephone or write to
The Radio Shack Conputer Services Center in Ft. Worth. They maintain a
staff of knowledgable people who seem both willing and able to help TRS-
80 owners. The address is

Computer Services
900 Two Tandy Center Telephone:
Ft. Worth, TX 76102 1-(800)-433-1679

They do not assist in debugging or writing programs, but will glad-
ly assist you if you have questions about what a given BASIC or Z-80
instruction does or about the TRS-80 hardware.

Most computer programmers, either hobbyists or professionals, learn
most about computing by burning midnight oil at the computer. One learns
to campute by computing, and then by analyzing the results.

There seem to be clubs, conventions and magazines devoted to almost
any hobby that interests you, and computers are no exception. There are
even special clubs, conventions and magazines devoted exclusively to
microcamputers. Some are so highly specialized that they concentrate on
the TRS-80 microcomputer. Ask around your own area and see what micro-

180

Page 15-2

cumputer clubs and/or conventions are available. If no microcomouter club
exists in your arci, organize one yourself.

No list of microconputer magazines (journals) can ever be complete—
new ones seein to start up almost monthly; others drop into cblivion.
Some are excellent; others are a waste of funds. Most will send you a
sample copy if you ask for one, then you can judge how well it fits your
particular interests.

veridlh mvvie Poavemand b T3 o3 Lo -L,,,g
Here are some that we talie, with cur favorites indicated Uy a star .

Viala u

Prices were current at time of printing.

Micro Computer Conference Proceedings

The Best of the West Coast Computer Faires, 333 Swett Road, Woodside,
CA, 94062. Set of 4 $53; Vois I (1976) & 111 (1978) $13.72 ea.;
Vols IT (1977) & IV (1979) $14.78 ca.

Show & Tell microQOMPUTER Conference Proceedings, Department of Math-
giatics, Universily of Okianoma, Nomman, UK, /3U19. (1978) $7.50;
(1979) $10; (1980) $10; (1981) $10. C(onference held in May each year.

Micro Computer Periodicals

% Byte, Byte Subscriptions, P.O. Box 590, Martinsville, NJ, 08836,
monthly, $15 per year. Both hardware and programs. Some technical
material.

Computronics, TRS-80 Monthly News Magazine, P.O. Box 149, New York
City, NY, 10956, monthly, $24 per year. Not worth the cost in my
Judgment—request an examination copy and Jjudge for yourself. Mag-
azines change.

The Computing Teacher, Computing Center, Eastern Oregon State College,
La Grande, OR, 97850, bi-monthly, $8 per year.

i i e e Bt ire] ——— o R, PN
Creative Computing, D.0O, Box 782-M, Morristown, NJ, 07960, mouthly,

$15 per year. DProbably the best buy available. Something for every-
one. Well written and authoritative articles.

i
It

Data General News, Data Ceneral Corporation, Scuthboro, MA, 01772

(free—devoted to their computers).

Dr. Dobbs Journal of Computer Calisthenics & Orthodontia, The Peoples
Computer Co., Box E, Menlo Park, CA, 94025, monthly, $12 per year.

1 ad and meen v
Advanced and excelilent.

Games, Games Productions, Inc., 515 Madison Ave., New York City, NY,
10022, bi-monthly, $5.97 per year. Not conputer oriented, but lots
of good ideas you can use.

Games & Puzzles, Edu-Games (U.K.) Ltd., P.0O. Box 4, London, England,
N64DF

| X:R

Page 15-3

B33 11_(_)13_‘_““:\”]_ ol »Rp_u_}_\:_*i_x_t'mx_l’:\ulu_t_h_«ﬂn_@iﬁ, Baywood Publishing, 120 Marine,
F’umin;:;t1|v, NY, 11735. Interesting problems, oo computer related,
Quarterly, $25. (310 to individuals, home address, personal check.,)
Personal Conputing, Circulation, Perwonal Conputing, 1030 Connon-
wealth Ave., Boston, MA, 02215, nonthly, $14 per year.

{"} Computer Music Journal, ISSN 0148-9276 MIT Press Tournals, 28 Carleton
St., Conbridge, MA 02142. Price %4 per issue, $20 vearly.

3% PROG 80, Softside Publications, 17 Briar Cliff Dr, , Milford, NH,
02055, monthly, $15 per year. Iots of goodies for the serious TRS-80
programer.
Radio Shack Miciuconputer Newsletter, Radio Shack, One Tandy Center,

Fort Worth, TX, 76102, TRS-80 owners receive free for 6 months, then

ear.
(mgational Computing, People's Computer Conpany, 1263 E1 Camino

Real, Box E, Menlo Park, CA, 04025, 6 issues per vear, $10.00.

The Recreational Progranner, Computer Software, P.O. Box 2571,
Kalamezoo, MI, 49003, bi-monthly, $12 per year.

Softside, Softside Publications, 17 Briar Cliff Dr., Milford, NH,
02085, monthly, $15 per year. Lots of BASIC ganes in this one.

T-PAL, The Mail Murt, Box 11102, San Trancisco, CA, 94101, nonthly,
$24 per year. Scoms expensive for what you get. Ask for a sample
copy, it should have improved.

TRS-80 Camputing, Conputer Information Exchange, P.O. Box 158, San
Luis Rey, CA, 92068, monthly, $15 per year. lLots of goodies here.

80-US, 80-NW Publishing, 3220 N. 32nd St., Tacoma, WA, 98407, sanple
copy, $3, $16 per year. Six issues annually.

PAGE, Bulletin of the Conputer Arts Society, John Lansdown, 50151
Russell Square, London, WCIB4JX, England, quarterly, $51 per year
(students, half-price). Or write Kurt Lauckner, Math. Dept., Eastern
Michigan University, Ypsilanti, MI, 48917. Devoted to computer
assisted art.

TRS-80 Users Group, 7554 Southgate Rd., Fayetteville, NC, 28304,
monthly, $12 per year. An informal publication for amateurs that is
well worth the price.

80 Microcomputing, Started in January 1980 and so far looks to be
well worth the $12/year. This monthly slick magazine devoted to
TRS-80 does not pull punches and keeps you informed on the latest
updates and changes and evaluations of hardware and software related
to the TRS-80. M

182

Page 15-4

Where to Buy Programs

We don't purchase many programs; we write our own because it is more
fun. Most of the microcomputer magazines and conference proceedings carry
programs. Some, you can obtain on tape at a modest cost. Most carry ads
for programs that will run on your TRS-80. Some sell programs that are
definite '"rip-offs". Others are bargains. Few bhave adequate documenta-
tion with them. B5iiil, you will almost certainiy be tempted to buy sarme,
Just to try them out. Read the ads. Go to your local Radio Shack (or
Radio Shack Computer Center, if you have one...many middle-to-large cities
do). Go to any other computer stores in your area and ask to see the pro-
grams in action. (Don't let your local computer store disparage the TRS-
BO. Some will because they do not sell them.) Attend a microcomputer
club in your area. Ask about available software.

If you haven't seen Leo Christopherson's Android Nim (with sound),
you should. Nim isn‘t much of a game, but the animation is superb (1980
price, $14.95, runs on 16K Level II TRS-80). If you wish a TRS-80 chess
or checker playing program, lock over the results from the most recent
national microcomputer chess or checkers tournament. There are a dozen
programs available for under $20 each, and the quality varies considerab-
ly. Read the comments and the ads in whatever microcomputer periodicals
you and/or your libaray take.

You should probably write to:

People's Software

Computer Information Exchange

Box 158

San Luis Rey, CA 92066

They put a couple of dozen programs on a tape and sell it for $8.00

(see lesson 7). They also sell more expensive programs, like Pecple's
Pascal ($ 23.80). New programs are added frequently. Drop them a card
asking for a current price list.

HAVE FUN! GROW WITH YOUR NEW HOBBY. READ, EXPERIMENT, DISCUSS YOUR

i83

Page 16-1

Your TRS-80 Level II BASIC Reference Manual contains details of the
available Level IT BASIC instructions. If you have an expansion inter-
face, line printer, or disk you will find additional instructions defined
in the accampanying reference manuals. Here are several additional Ievel
I1 BASIC instructions you may find convenient.

Additional Kevboard Commands Examples
AUTO rm, nn AUTO 109
Turns on automatic line numbering AUTO 109,5

beginning with mm and in steps of
nn. If ,nn is omitted, the default AUTO 30¢, 20
step size is 19.

DELETE mn-nn DELETE 41¢

Deletes program steps from line DELETE 8¢-230
mm to line nn inclusive. Both

mm and nn should be actual statement

numbers in the program.

LIST mm-nn LIST 279409

Lists program from line mm to LIST 14¢-

line nn. LIST -279
LIST

RUN mm RUN

Executes program beginning at linemm. BUN 450 [ENIER]

SYSTEM SYSTEM [ENTER|

Enter monitor mode for loading Z-80
language program from cassette tape.
Frequently used with advanced cam-
mercial programming.

124

Additional Program Instructions
TRON

Turns on TRACE program in which
variable values are shown on screen
to help you debug program. TRACE

program is always in the TRS-80, as
part of your ILevel 11 BASIC ROM.

TN
YTy

Turns TRACE program off. The TRACE
program is still in the computer.

USR(n)

Branches to a Z-80 machine language
subroutine already entered by the
user. You'll need to use POKE first.

RESTORE

Resets the DATA pointer to the first
DATA statement to permit program to
reuse the same data.

GOSUB nn

Branch to the subroutine beginning
at line number nn.

RETURN

Each subroutine must contain at
least one RETURN statement. This
sends the program back to the line
following the GOSUB that branched
to the subroutine.

&M« CCOIO i, A, pp, qq, re

If the value of INT(a), where a is a

variable or expression, is one of the
nurbers 1,2,3,4,''',k then go to the
statement number in that position on
the list of statement numbers mm, nn,

pp, qq,'"'’.
N o GOSUB mm, nn, pp, qq, ''’

Same as ON o GUID except the BETURN

ter Iz =et sC Program will return
to sta.teuent following ON « GOSUB..
when RETURN is encountered.

165

Dage 16-2

Examples

TROFT

USR(9)

GOSUB 46¢
GOSUB 37¢p

N 2 GOTIO 298, 3¢p, 46%
ON K+2 GOTO 7¢9,7¢0,409,309, 509

N K GOSUB 33¢p, 2000, 4¢p

Arithmetic Functions

Page 16-3

Function Operation(unless noted otherwise, Lxamples
~-1,7TE+38<=exp<=1, TE+38)
ABS(exp) Returns absolute value. ABS(L*.7)
ABS(SIN(X))
ATN(exp) Returns arctangent in radians. ATN(2.7)
ATN(A*3)
CIBL(exp) Returns double-precision represen- CDBL(A)
tative of exp. CDBL(A+1/3#) !
CINT(exp) Returns largest integer not greater CINT(A#+B)
than exp. Limits:
-32768<=exp <+32768.
QOS(exp) Returns the cosine of exp;assumes 00S(2*4)
exp is in radians. COS(A/57.29578)
CSNG(exp) Returns single-precision represen— CSNG(A#)
tation, with 5/4 rounding in least CSNG(. 33*B#)
significant decimal when exp is
double~precision.
EXP(exp) Returns the natural exponential, EXP(34.5)
e P=Exp (exp). EXP(A¥B*C-1)
FIX(exp) Returns the integer equivalent to FIX(A-B)
truncated exp (fractional part of
exp is chopped off).
INT(exp) Returns largest integer not greater INT(A+B*C)
than exp.
10G(exp) Returns natural logarithm (base e) LOG(12.33)
of exp. Limits: exp must be positive. LOG(A4B+B)
SGN(exp) Returns =1 for negative exp; O for SAN(A*B+3)
zero exp; +1 for positive exp. SGN(00S(X))
SIN(exp) Returns the sine of eXxp; assumes SIN(A/B)
exp is in radians. SIN(90/57.29578)
SQR(exp) Returns square root of exp, Limits: SQR(A*A-B*B)
exp must be non-negative.
TAN(exp) Returns the tangent of exp; assumes TAN(X)

exp may be any numeric variable, constant on computed expression.

exp is in radians.

186

TAN(X*.01745329)

Page 164

There are a number of other Level II BASIC instructions available [or
special use on your TRS-80. If your programming is advanced enough to
need these extra instructions see the TRS-80 Level II BASIC Reference
Manual and the reference manuals accompanying any additional equipment
you may have (Disk, Lineprinter) etc.

Three examples are:

PCKE Location, value

lwads value into beory fvendion. The FXE 16355,23

arguments must be decimal numeric vari- will disable the [BEEAK] key.
ables, constants or functions with This is sometimes used to pre-
0 svalue <225. Used in advanced pro- vent_unsophisticated users from
gramming to change memory content or —ing into a program.

display screen and with USR()func-
tion. See Chapter 8 of level II
BASIC Reference Manual.

1y FUR K = § 10 12288
PEEK (addnress) 20 PRINT K;PEEK(K),
Returns the (decimal) value stored in 33 NEXT X
the memory address specified. Also,
nmekes values of Z-80 machine language
variables available to BASIC programs.
See Chapter 8 of Level 11 BASIC Refer-
ence Manual.

will display the location and

contents of your Level II BASIC
ROM. It won't mean much to you,
but it will do it.

RANDOM

is frequently executed once near the
beginning of a program to reseed

the RND() instruction. Do not use
RANDOM inside of a loop or where it will

be used repeatedly in your prograin,

1 REM progham name
2 RANDOM

187

Page 17-1

EXAMPLE 17-1

Let us examine a program designed to determine the factors of a given
integer. Forms of this program have appeared in several magazines, books
and even in tape form. The given program works. It produces the desired
factors for any positive integer Z. However, it is easy to improve upon
the program, as we shall see.

First examine the original program to see why it works.

1¢ REM FIRST WORKING ATTEMPT TO FACTOR A NUMBER
1¢¢ INPUT "TYPE NUMBIR TO BE FACTORED"; 7
119 PRINT "THE PRIMF FACTORS OF':Z;"ARE";
120 N= 72
130 F=2
149 IF N/F < > INT (N/F) THEN 20¢
150 PRINT T;
1690 N = N/F
179 IF N = 1 THEN STOP ELSE 149
200 F=7F + 1
219 IFF < = Z THEN 149

The heart of the program is instruction 140

IF N/F < > INT(N/F) THEN 200

vhich uses the integer function INT() to determine whether or not N/F is
an integer (i.e., whether or not F is a factor of N). If F is not a fac-
tor of N, the program jumps to instruction 209 which increases F by 1.

If new F < =7 the program loops back to instruction 149 to determine
whether or not the new F is a factor of N. If F is a factor of N, the
value of F is printed, N is replaced by N/F and if the new N = N/F <> 1,

Page 17-2

the test is repeated. When either of the conditions N= lor F > Z
occurs, the original number Z is completely factored.

The program also uses an axiom many experienced programmers have
found worthwhile

Don't alter the value of

|oacanssoess
)

an INPUT variable inside your program

with N. We could have ignored this motto here, but many experienced pro-
grammers will tell you they stick to it in their own work. It avoids
trouble.

The program produces the prime factors of any positive integer of
six or fewer digits you put in. Try it and see. Then examine the pro-
gram to see exactly how it works.

If you have any trouble following the program, make a chart of
variables in the program and step the program through. If your INPUT
value is 72 = 12, your chart will contain

Z N F PRINTED OUT
12 The prime factors of 12 are
12 2 2
6 2 2
3 3 3
1 STOP

After you understand how the program works, you may wish to create a flow-
chart of the logic involved. Flowcharts are frequently used to express
the logic involved in more complicated problems. This particular program
is probably not involved enough to require a flowchart, but it is easy to
"see' the flowchart of a simple problem.

PRINT F

INPUT b3 SET N*N/F

is

189,

Page 17-3

Your flow chart should look something like this:

'

N/F = INT(N/F)?
PRINT F
} A
SET N = N/F
STOP
£

Note how easy it is to explain what the program is doing using a flow
chart.

190

Page 174

Actually, although the program in question nas been published in
several versions, it is an example of deplorably poor programming prac-
tice. It works fairly well on small values, but note the difference be-
tween Z = 1847 and Z = 1848 in the time required. Try it yourself before
continuing.

Furthermore, Z = 1950 takes :01 second to factor and
Z = 1951 takes 1:01 seconds to factor. This seems a long time for a
nowerful comuter. Of course | it doeg do a Iot of arithmetic in that
time. In fact, that is just the trouble — it does too much arithmetic.
The program tests F= 2, 3, 4, 5, 6, 7, 8, 9,..., Z repeatedly. However,
if we factor out all the 2's at the beginning, then there is no reason to
also try 4, 6, 8, 10, etc. This should enable us to almost cut the time
by half.

This can be done by making the following changes:

OT N NMROYDAM TITTCYN TIM7TOITANY
Nikid A AR W LAI60L LWLV LOINAY

19 B FIRST WORKING ATTEMOT TO 1% FEM FIRST WORKING ATTEMPT TO

FACIOR A NUMBER FACTOR A NUMBER
1¢p INPUT "TYPE NUMBER TO BE 1¢¢p INPUT "TYPE NUMEER TO BE
FACIORED "' ; Z FACIORED " ; Z
11¢ PRINT ’I'HE PRIME FACTORS 119 PRINT '"THE PRIME FACTORS
OF ' Z; "ARE u OF n; Z; "ARE n;
12PpN=12 120 N= 2
B> 125 IF N/2 <> INT(N/2) THEN 135
13p F = 2 B 13p PRINT » 2",
B 132 N= N/2
B~ 134 QUTO 125
B 135 F=3
149 IF N/F <> INT(N/F) THEN 2¢0p 149 IF N/F <> INT(N/F) THEN 209
159 PRINT 7, 15¢ PRINT F;
160 N = N/F 160 N = N/F
17¢ IF N = 1 TIEN STCP ELSE 149 17 IF N = 1 THEN STOP EISE 149
200 F=F + 1 B 200 F=F + 2
219 IF F <= Z THEN 149 B 2109 IF F <= N THEN 149

In instruction
21§ IF F <= Z TIEN 149

there is really no reason to try F values that are ger than the current
value of N (instead of the eriginal Z), so we replace instruction 210 with

|
1

219 IF F <= N THEN 149
This should cut our time even further. Make the above changes in 125,

191

Page 17-5

13¢, 132, 131, 135, 209, and 219. Then, iry the program again.,

N 0ld Program Time New Program Time
12 :01 :005

1847 :58 :30

1848 101 101

12345 126) 114

=6 :01 {gnores sign -005

8.2 Runs through 21¢ and stops.

Even the above program would not satisfy most professional program—
mers. The biggest complaints would probably be that the program mal-
functions if negative values are used, and that the data was not tested
to be sure the input value was an integer.

The problem of fractional values is readily overcome by inserting:
195 IF 2 <> INT(Z) THEN PRINT '"PLEASE USE INTEGER VALUES'" : GOTIO 199

Negative vilues could also be handled as improper input, but since
they can be factored, we prefer another solution.

115 PRINT "'(" ; SGN(Z); ™)',
12p N = ABS(Z)

This will produce either -1 or 1 in parentheses as a first factor.
We include the parentheses since mathematically, neither -1, nor 1, is a
prime. By ending instruction 115 with a comma, instead of a semicolon,
we also provided extra space between the wnit and the prime factors.

As long as we are improving our program, we might as well make full
use of the TRS-80's arithmetic ability by requesting it to use DOUBLE
PRECISION arithmetic, which permits us to work with numbers as large as
16 digits, instead of 6. We can do this by adding:

10 DEFDBL Z, N, F

However, if we do this, we will be using the much slower double pre-
cision arithmetic, even when our number to be factored has 6 or fewer
digits. To awid this, insert:

19 IEFDBL 2
106 IF 7> 999999 THEN DEFIBL N, F

Many programmers would prefer to print a blank line or two and loop
the program back to the beginning rather than stopping it once the number
is factored. This is easily done by changing instruction 179 to

179 IF N=1 THEN 90 ELSE 14¢
and adding:

192

Page 17-6

Our revised program now reads:

19 DEFDBL Z

99 PRINT : PRINT

19¢ INPUT "TYPE NUMBER TO BE FACIORED '"; Z
105 IF Z <> INT(Z) THEN PRINT "PLEASE USE INTEGER VALUES" : GOIO 109
186 TF 7. > 999999 THFEN DEFDRL. N, P

11¢ PRINT " THE PRIME FACTORS OF "; Z ; "ARE " ;
115 PRINT "'(" ; SQ&N(Z);)",

120 N = ABS(Z)

125 IF N/2 <> INT(N/2) THEN 135

13@ PRINT ''2";

132 N = N/2

134 QOT0 125

135 F = 3

‘1/1¢ IF I\I/F s I\W‘(T\T/F) FITLITOAY 2m

150 PRINT F;

16p N = N/F

17p IF N = 1 THEN 90 ELSE 14
2 F=F +2
219 IF F <= N THEN 149

3PP QOTO 9P

Although our new program takes more lines to write than the original
program, actually it produces results in less than half the time, and
works for many additional input values.

There are still three important cases to be considered. What happens
if Z = @? Try it and see. If the output does not satisfy you, change the
program further by adding:

IF Z = @ THEN PRINT " some appropriate message.'

Mathematically oriented readers may prefer to make the program even
faster by using only prime values for F instead of 2, 3, 5, 7, 9, 1ii,
13, 15, ...Z. This will indeed save considerable time on factoring larger
nwbers, but requires that a list of prime numbers be stored or generated.
We leave this as an exercise for those desiring additional speed. The
criticel statements are

READ F
DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
DATA 53, 59, 61, 67, ..., etc.

DATA

where the DATA statements contain a list of 211 nrimes

that are < /G999099099099999 or < 100000000 if 16-digit arithme—
tic is being used.

ry

193

rage 1i-{

The point of this exercise is not to illustrate how to write a fact~
oring program, but rather to show you that it is very easy to improve most
programs, including commerical programs written in books (even this one).
Just because a program 'works' does not mean it is a good, or even an
acceptable, program. The critical questions are:

1. Does it do the job for which it was designed? (Does it work?)
If not, it is useless.

2. Can I improve it noticeably without much effort? If so, improve it
and test the new program.

3. If it requires much effort to improve the program, will the results
be worth the effort? (If the program will seldom be used again, and
if it does not take an unreasonable amownt of computer time as it
is, it probably is not worth the effort to improve it wunless you
want to use it to brag a bit.)

4. You should always ask yourself if the method (algorithm) used by
the original programmer is the best one you can think of.

Experienced programmers have a saying that contains much truth.

Only after you have written, debugged, and tested
a program, do you understand it well enough to
program it. If it is a major program, after you
get the program all up and running smoothly, scrap
the entire program and THINK carefully about it.
Then start over from scratch and write a better
program.

fnac e

194

Page 17-8

WOTVIUNN i i TYTRCITN N TUOTY S i s pms,
AU LG CUEAGANLL & TUDERD

We exemine another example in detail before trying new micro-
Research Problems. We consider the four-digit case first, then after

that is investigated, ask you to expand it in micro-research Problem 18,
as suggested in the STEPS FOR COMPUTER ASSISTED PROBLEM SOLVING.

EXAMPLE 17-2

Iet. ABCD he a 4-digit mwmber such as 4721

100 LET X = A EXAMPLE
A = ABS |A-BI
B = ABS |B-C| ABCD = 4721
C = ABS |C-DI X =4
D = ABS ID-XI A=14-71 = 3
PRINTA ;B; C;D B=17-21 =5
IF A+B+C+D <> @ THEN 199 ELSE STOP C=1l2-11 =1
D=11-4l = 3
NEW ABCD = 3513
Your first problem is to write a BASIC X=3
program that will show that each 4-digit A=135l=2
starting-value number will converge to B =511 =4
2002 in 9 or fewer steps. C=11-31 = 2
D=133=¢
NEW ABCD = 2424
Write your own program before X =72
continuing. A= l2-4l =2
B=14-2] =2
C=|2-§l =2
D= ig-21 = 2
NEW ABCD = 2222
X =12
A=l2-21 = 4
B=12-21 = ¢
C=12-21 = ¢
D=12-21 = ¢
NEW ABCD = #0dd
SToP

195

Page-17-9

There are scveril ways this could be done. One of the more obvious is:

219 FORM = 1T0 9
229 FORH= ¢ T0 9

225 PRINT "WORKING ON M, H="; M; H
239 FORT =@ TO 9

240 FORU=¢ T0 9

25 A=M

260 B=H

27¢ C=T

280 D=1U

200 PRINT "STARTING WITH A, B, C, D="A; B; C; D
300 N=¢

31¢ X=A

320 N = N+1

33 A = ABS(A-B)

34¢ B = ABS(B-C)

350 C = ABS(C-D)

360 D = ABS(D-X)

37¢ PRINT A; B; C; D

38p IFA+B+C+D>@ THEN 31p
300 PRINT M;H;T;U; "TAKES ";N; "STEPS TO CONVERGE TO 0@g@."
1) NEXT U

41¢ NEXT T

429 NEXT I

43¢ NEXT M

5@¢ PRINT

519 PRINT "FINISHED WITH 4-DIGIT TESTS."

This program runs through all of the four-digit starting-values,
printing out new values as they are developed, and printing out the num-
ber N of steps each starting-value requires to converge to @PP@ before
going to a new starting-value whenever ABCD = @@@Q.

Put it on your computer and rum it. It is interesting to watch, but
it sure takes a long time to test 9000 cases!

Of course, you don't really need to watch, since, if a given starting
value ever fails to produce @@@0, the program will continue trying, and
the change in pattern will be clear.

However, if we are not going to watch the program, it can be speeded
up a lot by eliminating statements 29¢ and 379. Try it and see. Be sure
you also recognize how to tell if this revised program ever finds a start-
ing value which does not converge to @@gp.

It is still a long program, and besides, it doesn't really do what we
set out to do (to show that every 4-digit starting-value converges to

196

Page 17-10

293P in nine or fewer steps).

Hrmm. . .let's store the largest N-value in another variable called L.
(Why not in B for biggest?) We can do that by inserting:

205 L = ¢

385 IF L >= N THEN 409

395 L =N

515 PRINT "TARGEST N VAIIE IS " ;L

let's see how that works.

205 L= ¢

21 PRM=1T09

220 TORH=@TO9

225 PRINT ''WORKIN

23¢ FORT = ¢ TO 9
™Yy Yr:\,rm

o YTy T —_ [a)
21¢ FROAR RS L

250
o0
270
28¢

)
>
=
=
]
&
m

wWeZXzE gaows
owonon
pPE oW

360 D = ABS(D-X)

379 PRINT A;B;C;D;

389 IFA+B+C+D>¢ THEN 319

385 IF L >= N THEN 4¢9

399 PRINT M;H;T;U; "TAKES ";N; "STEPS TO OONVERGE TO ¢@pp."
395 L=N

app NEXT U

419 NEXT T

429 NEXT H

43 NEXT M

509 PRINT

51p PRINT ''FINISHED WITH 4-DIGIT TESTS."
515 PRINT ''LARGEST N VALIE IS " : L

When we ran the above program, we discovered L = 8. You can modify the
program to detemine all 4-digit starting-values that require 8 steps to

converge to GEEp.

197

18,

20.

21.

Page 17-11

microRESEARCH PROBLEMS
(continued from Lesson 5)
4. Extend Example 17-2 to 5-digit starting-values ABCDE

X
ABS(A-B)
ABS(B-C)
ABS(C-D)
ABS(D-E)
ABS(E-X)

etc. Let's print out each set (like we did in 299 and 37@) to see
what is going on at the early stages of our investigation.

oo

HOoOOE > >

It may come as a shock to you that not all values converge to 90@00.
Indeed, apparently quite a few converge to @@@XX (where the digits XX
are alike, but not necessarily 99), and then enter a long loop which
eventually returns to @@@xX.

b. Modify the program or write a new one to investigate what really
does happen to 5-digit starting-values.

C. Extend your investigations to include 6, 7, and 8-digit starting-
values and 2 and 3-digit starting-values, as well as the 4 and 5-digit
vitlues already inwestigated.

Would you Like to conjecture that all starting-values converge to
?9...XX, but that we can guarantee XX = @0 only il the number of
digits in the starting-value is a power of 2?7 Why, or why not?

. Write a program that will shuffle 52 cards in the computer and deal

out 4 bridge hands, and then bid one of the hands, with human input
for bids on the other three hands.

Write a program to create Haiku poetry.

Write a program that will accept seven subscripted variables V(0),
V(1),...,V(6) and will test to determine whether or not any of the
variables contain equal values. If all seven variables are different,
print "ALL VARIABLES ARE DISTINCT." Otherwise, print the subscripts
and the comon value of those variables containing the same value. If
there is more than one set of subscripted variables with the same val-
ues, the program should also indicate the subscripts and common values
of other sets.

198

N
[

Page 17-12

V(0) = 4
V(1) = -3
V(2) = 1.765
V(3) = 4
v4) = -2
vV(5) = -3
V() = 4
The output should be
SUBSCRIPTS = 0 3 b VALUE = 4
SUBSCRIPTS = 1 & VALLE = -3

Write a program to accept one of the three symbols [rom the key-
board - @ + . The program should then examine a string of
DA A

TAMA £ Lenny TIA ndrmammd e A Favarn Enma) and 4 F
AARAEE \ AAASIL AAALOR QICICOUG O IXCh LOEC) I

2

- was depressed at the keyboard, display the number and sum of
the negative DATA values.

+ was depressed at the keyboard, display the number and sum of
the positive DATA values.

® was depressed at the keyboard, display the number of zeros
in the DATA.

. A theorem from number theory states that every integer N is
expressible in the form

N=X +Y2-22 where X, Y, and Z are integers.

a. Write a program that will accept values of N between -100
and +100 and print out N (as the sum of two integer squares
minus another integer square) before returning to accept an-—
other value N.

b. Enclose your program in a FOR...NEXT loop to test all
-i00 < N <100.

c. Can you speed your Iimgram up so it could feasibly work for
-5000 < N < 50007

. Buclid's proof that there exist infinitely many prime integers uses
the expression

Nk= 1 + (2%3x5%x7x11x, . .ka)

where the pmduct in the parenthesesg ic the product of the first

k positive primes.

Write a computer program to determine the first 20 values of Nk'

199

25.

n
~1

28.

29.

Page 17-13

Extend your program to detemine which of these N!z vadlues are

prime and what the factors of the non-prime N, aré. (Note: not all
N, are prime, but all of N,'s prime factors dre larger than P, and
16ss than (1 + ’/_NI:). N

Knowing that our calendar repeats on a 400-year cycle, determine on
which day of the week the 13th day of the month is most apt to occur.
(Is it really Friday?)

. Write a program to make a table showing the values of

N N2 R

(Where R is the remainder when N? is divided by 12.)
for N=1, 2, 3, ..., 20. Then jump to a conclusion (call it a
oonjecture, if anyone asks you) and then either prove or disprove
your conjecture.

. Determine the sum of the first & terms in the series

1+ 22 + 333+ 4444 + ...

For a solution, consult page 807 (E 1405), American Mathematical
Monthly Vol 67 (1960).
Determine all of the 4-digit integers which are perfect squares and
in which all four of the digits are even. Your final program should
produce the results in less than 3 seconds of TRS-80 Level II BASIC
RUN time. If it takes much more than that, please do some additional
analysis and try again.

Devise a program that will draw a dart target on the TRS-80 screen

(squares are much easier to draw than circles), with numbers shown in
each area (including negative numbers outside the target if you wish).
Then permit a player to toss 5 darts by typing coordinates X,Y of a
point. Add a little "wobble'' to the point chosen by using X = X +
(RD(9) - 5): Y=Y + (RND(5) -3) or some such device before display-
ing SET(X,Y) as a (first blinking, then permanent) pixel on the screen.
Your program should also keep a running total of the number of points
the player made.

After the program is up and running--rewrite it so that the cen-
ter of the target is not at the center of the screen. Also, permit
the gamemaster to assign the values to each target area before the
game starts.

200

31.

rage Li(-14

The reverse of integer (ul

reverse of an integer (whole number) is the nwiber obtadned Dy
writing its digits in reverse order—that is, the reverse of N=1089
is R=9801 and the reverse of N=13 is R=31.

a) Your project is to find values of N such that N does not equal
its reverse, N#R, but the product N*R is a perfect square. Since
1089+9801 = 10673289 = (3267)2 such numbers clearly exist. How many
can you find?

The numbers 12 and 21 are reverses of one another, as are 144 and
441, since they _contain the same digits, but in reverse order. In-
terestingly, 12¢ = 144 and 212 = 441. Find other pairs N and N*

such that N and N* are reverses with N#N”, and such that N2 and (N°)2
are also reverses.

You borrow an amoint P dollare ot T norcont nor onmmm intorost roto

________ percent por annum interost rate
on the unpaid balance. You agree to pay off M dollars per month.
Write a program that will print out a table showing at the end of
each month:

Amount of interest Amount of principal Remaining Total Interest Total
paid that month paid that month principal paid to date paid

33.

to
date

Note that if in the last month (principal + interest) < M you should
not have to pay the full $M.

Lesson 4 contained a program designed to help you learn where the
various pixel blocks were located on the screen. Extend the idea
by first having the player type a difficulty mmber N where 1 is
hard and 9 is easy, perhaps using

INPUT "PLEASE TYPE DIFFICULTY NUMBER BETWEEN 1 (HARD) AND & (EASY); N

Then give the player 1+RND(N) chances to locate the lighted block
with blinking pixel, before clearing the screen and choosing another

randomly positioned lighted block.

Write a program to agcept a positive integer K and then type out K
primes of the form Nﬁ + 1.
Example: If K= 3

the primes are 2, 17, 37 -

each of which is prime and of the form (N2 + 1),

201

35,

317.

38.

Page 17-15

Write g program containing 20 or fewer BASIC instructions withoul us-
ing & PRINT" (PRINT {o¢Clowed by quozes) instruction to mhke a
caricature of a face or person or animal.

Design a program which will serve as a timer for a series of 10-min-
ute speeches. When the time keeper types RON your program
should display 10 MINUTES LEFT on the screen in normal size letters.
The number of minutes should change every minute. When the speaker
gets to 1 mimite left the program should display some attention
getting device on the screen and the switch to double size letters
and display

O MINUTES 59 SECONDS
58 SEOONDS

etc. until 0 SECONDS is reached, whereupon the screen should go
wild (possibly including an audio blast if you are equipped for
audio output).

Prove or disprove that, for N a positive integer,
3
N' + 2N+ o + 1 is

never a perfect square. (Don't expect the computer to do this for
you.)

Your local Utopia Society decides to replace their weekly Bingo
session with a Numbers Betting Game to be available in gas stations
and grocery stores. People can place bets on any three digit number
from 000 to ©99. The winning number is the three digits in the
thousands places of the number of shares sold on the New York Stock
Exchange that day. The payoff is 500 times the amount bet for bets
uwp to $20. TFor bets above $20 the payoff is $10,000 plus 100 times
the amount bet.

Your first task is to write a program to simulate the betting system
and come up with estimates of likely profits or losses. You should
also discover (with or without using a computer)what amount of bet
will produce the greatest payoff for the bettor. If all bettors wag-
ered this amount (best possible for them, worst for the Utopians),
how much would you expect the Utopia Society to make or lose on each
approximately $10,000 that was bet? Assume that 10¢ of each dollar
bet goes to the person taking the bet, and 15¢ of each dollar bet is
other overhead.

Campute and print the number 275exact1y.

202

40.

Y
[y

43.

rage Li-1o

Find all positive integers X,Y,Z such that
X+ Y2 = 2% with Z<1000.

Conpare the speed of your program with the speed of programs written
by your friends.

a) TWo 1oas of equal lengih are divided iunio 250 and 243 equal
parts respectively. Their ends are coincident. Find the divisions
which are nearest together.

b) Same problem but divide the two equal rods into M and N equal
parts. Write a program to accept positive integer input M and N
and display the two values which are nearest together.

Consider the recursive reiation detfined by:

Iest B = The higgest mumbher that can be made by rearranging the
digits of Ng.

w
]

The smallest number that can be made by rearranging
the digits of Ny.

Nty =B -8
a) If Np is a four-digit starting value, one of two things happen:

i) If all the digits of Ny are identical, the Ng+1 = O for all
K >0.

T o . X, PRI

If Ny has at Jeast two distinct digits, then the relation con-
verges to Nig4+q = 6174 which then repeats forever. Investigate
this phencwenon.

PR

o
oie
~s

b) If Ng is a six-digit integer, there are 384 non-zero possible
values of N1, some of which lead to the repeater 631764, but
some of which do not. Investigate other starting values Ng
having 6 digits.

¢) Investigate the Nyyq = BIG — SMALL phencmenon for starting
values of other sizes.

It is well-known that the reciprocals of integers form repeating
decimals of period p (we say, p = 0 if the expansion terminates as
cn 1/2 = .500; p =1 for 1/3 = .33; etc.) OCur problem is to create
& table wiiich will give the sumilesi positive integer N(®) such
that its reciprocal has a repeating decimal expansion of length K.

sve msaniaT e 3

203

45.

47.

fagt Li-Li{

If Ny is a positive integer, 1t can be shown that the recursive
rela(t)ion Nk+1 = (The sum of the squares of the digits of M) will
either converge to 1 or will reduce to & self-repeating cycle 37,
58, 89, 145, 42, 20, 4, 16, 37,

a) Do so. Can you prove that every positive starting value No
will eventually either converge to 0,0,0, or to the cycle
20, 4, 16, 37,

b) The related problem for the sum of other powers of the digits
also merits investigation. Do so.

It is a common practice in mapping to approximate the area of a
lake or island or other irregular shape by using an irregular poly-
gon, whose area is easier to compute than is the area inside a
curved boundary.

Write a program into which the number N of vertices and the X and
Y coordinates of the vertices (Xi, Y;) of the polygon in consecu-
tive order may be input and the program will then compute the poly-
gonal area. It will be necessary to either find or devise a suit-
able formila. Remember this polygon is not a regular polygon since
its sides may be of unequal length.

Given two values A and B, determine values X, Y, and Z such that

4. X _ Y _z
X YT Z B

What will your program do if A and B have different signs?

Liouville discovered an interesting procedure for producing
sets of positive integers with the property that the sum of their
cubes is equal to the square of their sum. One such set is

13 + 2% + 33 4+ 43 = (1+2+3+4)2, Abit of induction
will show that for all N, 13 + 23 + 33 + ||+ N3= (1+243+...4N)2,
However, it is not known whether or not Liouville's method will
produce all such sets. Write a program to produce such sets in a
given range. Investigate the problem.

Write a program that will compute how much an investment of P
dollars will be worth Y years from now if it is invested at I
percent per annum interest, compounded N times per year.

A useful formula is:

V= Px(1+ I/(1(_’»O=°=X\I))K\L°=Y (Where V is the value after Y years.)

204

Page 17-18

1i
©

. Degigm a program to coach emergency first—aid treatment at the '"Boy

Scout" level. The program should ask questions answerable by YES or
NO and prescribe action based on the response.

Is
patient bleeding
_Severely?

N

Bind wounds to stop
flow of blood. Do
L A2 ~& not use a tourniquet
unless life is
threatened.

—~ ~ A~

is
(No j & < patient conscious? Yes)

y
<
4

Is
there any evidence that
patient has taken poison
or excessive medi-
cations?

Y
Type mumber to indicate likely
material ingested:

Prescription medicine

Other medicine

Soaps, detergents, cleansers

Insecticides, bugkillers

Caustics: 1lye, Drano, bowl
cleaner, Liquid Plumber

Gasoline-like products

Paints, stains, enamels

Heavy oils or grease

| 00666606

208

€3O QU W N

50,

51.

52.

53.

Page 17-19

Lither lind a ten-digit positive integer N with each digit different,
and such that N is also a perfect 10th power of an integer, or show
that no such N exists.

Consider a large lattice of points (100 x 100 would be large in this
case and a big sheet of graph paper will do nicely) with equal spac-
ing in the x and y directions. Our real problem is to place as
many points as possible on the lattice subject to the restriction that
no subset of three points shall form a right triangle. Before tack-
ling the real problem, consider the much simpler problem of a program
to find and print out 6 or 8 patterns of points on the lattice which
have the property that no three points form a right triangle and that
the set is maximum in the sense that if one more point were added to
the given arrangement, a right triangle would be formed. Possibly
placing points down the diagonal has this property. Then try to ans-
wer (with proofs) the questions:

a) What is the largest number of points which may be so placed?
b) What is the smallest number of points in a maximm set?

¢) Restate the problem so that using every point of two adjacent
sides of the square excepting the corner point is not a solution
and solve the new problem.

Write a program to sort a set of 25 names alphabetically. Ponder this
one. Sorting represents one of the nost time-consuming uses of modern
computers. Consider sorting and entering the approximately 100,000
grades received by 20,000 students each term at a major university.

J. Maxfield has shown (Math Magazine, Vol. 43, #2 March, 1970, pp.64-
67) that given a sequence of di gits =d dzda" 'dn’ there exists an
integer N such that N! begins with the sequence of digits K. Write
a program to create a table such that the smallest such positive inte-
ger N(K) is determined for each K < 100. ~You may also wish to print
out the floating point value of N! if it will be available at no addi-
tional cost. Eventually, we would like a formila for N(K) = smallest
positive integer N such that N! begins with the sequence of digits
K, but that may be too much to hope for. Your table might well re-
semble the one below:

K N(K) N!

1 1 1

2 2 2

3 9 362880
4 8 49329
5 7 5049

6 3 6

7 6

29

206

55.

Page 17-20

Mathematicians have proved that there exist arbitrarily long strings of

consecutive positive integers such that each of the consecutive inte-

gers has as a factor, a perfect square greater than one (probably
different squares for different integers). This may be restated as
follows:

Given a positive integer N, there exist strings of N consecutive
positive integers each of which contains a factor which is a per-
fect square greater than one.

2 e 2

It N =3 48, 49, 50 contain 42, 75, 5 , s factors.
98, 99, 100 contain 7°, 3°, 10° as factors.
IfN =4 242, 243, 244, 245 contain 112, 32, 22, 7% factors.

If N=7 217070, 217071, 217072, 217073, 217074, 217075, 217076
contain as 2 2 2 o 2 2 2
factors 7 3 2 113~ 11 5 4
Your problem is to find the first (i e, involving smallest integers)
string of N consecutive integers each of which contains a square >1
as a factor for N =2, 3, ..., 10.

This one is tough! Mathematicians have shown a similar theorem to
that given in Problem 54 holds with "perfect square" replaced by
"perfect cube" or even '"perfect Kth power". Investigate this for
K=3, 4,5 and N=2, 3, ..., 10, (Oreven N=2, 3, 4, 5, 6, for
starters.)

Examples: 3rd Powers (K = 3) 4th Powers (K = 4)
N=2 8 sl N=2 8 81
8 27 16 81
J="2 “r_~
N=3 ' 1375 1376 1377 9 33614 33615 33616
125 8 27 2491 81 16
N4 90804 20805 20825 20827
8 125 27 1331
. Find a set of distinct positive integers, each of wnich is less than

100, such that it satisfies both of the following conditions.
a) No combination (or subset) of them added together will total 100.
b) The set contains as many distinct, positive integers as possible.

Hint: You may be able to solve this without using a computer.

207

Page 17-21

57. The square of the number 36363636364 has the unusunl property (in
base 10) that the second half of the square is an exact duplicate of
the digits in the first half

(36363636364)2 = 13223140496, 13223140496
as shown by the central comma above.

Such periodic squares also exist in bases other than 10. For example,
in base 4,
2 = X = = 2

(21213u) 11301’11301u 3782251 o (61510)
Your problem is to write a program that will examine perfect squares
expressed in some base B > 1, (use base B = 10, if you wish) and
find perfect squares whose expression in base B is periodic (period
2 or nore). See Mathematics Magazine, March 1975, p. 97.

)

58. An integer (whole number) greater than 1 is said to be prime if its
only positive factors are itself and one. There are many 4 x 4
arrays of digits such that each row and each colum is a 4-digit

prime.
Example: 6 1 8 9 Where 6189 6359
. 3p23 1p21
3¢ 2 3 5273 8273
5 2 7 3 9137 9337 are each prime.
9 1 3 7

a) Find some additional such arrays. Then, hunt for arrays whose
main (upper left to lower right) diagonal also contains a prime.

b) What happens if you try to find 5 x 5 arrays containing 5-digit
primes in each row, each colum and main diagonal?

59. Write a program to plot a graph Y = £(X).

Your program may request the user to put the function in a certain
statement. It should ask the user for what range of X-values he
wishes the graph plotted and then campute (or ask the user) for the
largest and smallest Y-value that will be used. It should then scale
the function suitably for display on the CRT screen. Your program
should also display for the user (perhaps using PRINT @ 960, " ")
the X-range and the Y-range covered by the graph.

60. Find the smallest positive integer M such that

N =7s10M + 1 is not_prime.

208

62.

Page 17-22

Find and print all the five-digit positive integers which contain
exactly the same digits as their trebles. The leading digit must
not be zero.

Example: 1¢@35 * 3 = 3pip5

Please also record the computer time used on your final run. Compare
with that of other TRS-80 users you know.

Many people fram Archbishop John Tillotson (c. 1650) through Kurt
Vonnegut (1950) and beyond have toyed with the idea that if enough
monkeys were permitted to pound typewriters for long enough, all the
great classics of literature would eventually be reproduced. We can
easily improve the chances of samething legible being produced by
picking keys in the approximate order of their frequency in normal
English rather than at random. Write a program that will print out
the following symbols, with the given approximate frequency per 1000.
To sinplify the probidn we Tesirici our seleciion oOf punctualticia To
"gspace", and have amitted V, K, Q, X, J, and Z, which have very low
frequency in English.

KEY space E T A O N I R S H
FREQUENCY/1000 223 100 77 62 62 54 54 54 46 38
KEY D L F ¢ M U G Y P B

FREQUENCY/1000 31 23 23 23 23 15 15 15 15 15

You may be able to further improve the likelihood of obtaining at
least occasional words by including digraphs (two-letter groups) as

well ag single letters Fnolich dicvanh freocuencies are annproxi-
vel. le . bknglish digraph Irequencies ar DY

as Sing ~2LLeT

mately
DIGRAFH TH HE ER AN IN OGN HE AT ED ST W ES
FREQUENCY/1000 38 31 18 17 17 16 14 14 13 12 12 12

Additional frequency data for English, French, Spanish, German, and
Italian are available in Sophisticated Ciphers, available from Mu
Alpha Theta Math Club, Room 423, 601 Elm street, Norman, X, 73019,
or at your library.

T g

Find all n-digit positive integers in which the n-digit
exact n-th power of an integer.

Examples: 81 = 92 125 = 53

209

Gt

67.

Page 17-23

Two positive integers are amicable (friendly) il Lhe proper (includ-

ing one, but not including the number itsell) divisors of each :wuld up
to the other. 220 has divisors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55,
110, whose sum is 284, 284 has divisors 1, 2, 4, 71, 142, whose sum
is 220, thus 220 and 284 are said to be amicable. Same other ami-
cable pairs are (17296, 18416) and (1184, 1210). Write a program
that will find all amicable pairs between two given bounds S and B
and which will also keep track of any number which has a divisor sum
greater than B, so these can be used in a future run with

(new S) = (old B) and a larger B. Your final program should also
account for any ''carry over' values fram previous runs.

Amicable pairs (problem 64) have been generalized to amicable chains
(sociable chains) in which the sum of the proper divisors of each
number in the chain is the next number and the last member of the
chain has the first member as the sum of its divisors. The only
chains generally known are the two four-link chains (found in 1965):

(2115324, 3317740, 3649556, 2797612) and
(1264460, 1547860, 1727636, 1305184),

the live-link chain:
(12496, 11288, 15472, 14536, 14264),

and a stupendous 28-1link chain which contains the number 14316.
However, there are others.

a) Write a program to investigate amicable chains containing 50 or
fewer links.

b) What happens to chains that do not loop back to the starting
value?

Write a program that will match up 50 men and 50 women as dance
partners. Your first attempt can use numbers, if you wish, but the
final result should be two lists; one with the men's names in alpha-
betical order and showing the randomly matched partner's name, the
other with the wamens' names in alphabetical order and showing the
name of each woman's partner (hopefully, the same matching as above).
Each person should be matched with one and only one partner and that
partner should be of the opposite sex.

a) Write a computer program to accept three values M, D, Y and
determine whether or not they are acceptable values for Month,
Day, Year, in that order.

b) Extend the above program to accept two sets of three numbers and
if both are acceptable as Month, Day, Year values, determine the
nunber of days between them, including both dates in your count.
Example: 2, 2¢, 1978 to 2, 22, 1978 is 3 days.

2190

an
0o.

69,

70.

Page 17-24

A computer is apt to obtain different values for

F(N) = 1¥2%3%,, (N-1)*N and for G(N) = Nk(N-1)*...3%2%¥1.
Furthermore, the difference is apt to be non-trivial. For N = 30,
the difference can be greater than a quintillion (and that's more
than the number of cents in the national debt). Investigate this
phencmenon, using a program of your own devising, or using:

199 FOR N = 19 TO 5¢

119 F=1

120 G=N

13p FORK = 2 TON
149 F = F¥K

150 G = G(N-K+1)

160 NEXT K
179 PRINT N, F; G, ABS(F-G)
180 NEXT N

Mathematicians have shown that given a sequence of digits

S = dyd,dj...dp there exists an integer N such that 2N begins with
the sequence S. (As a2 matter of fact, for 2 we may substitute any
positive integer which is not a power of 1§, i.e., not 19%=1, 1p!=10,
192=1¢9, etc.)

Your problem is to produce a table giving S, N, 2N for S =1 to 149
such that N(S) is the smallest positive integer such that 2N(S)
begins with S. I think the first few values are:

S Smallest N>@ oN
1 2 16
2 1 2
3 5 32
4 2 4
5 9 512
6 6 64
7 46 70368744 177664
8 3 8
9 53 ete.

19 19

11 58

Problem 11 (lesson 5) asks you to generate and print out in increas-
ing order of size, the positive integers of the form N = 2R.37
where k2@ andmZ @, Generalize this to integers of the form

AR . B" where A and B are read using an INPUT statement.

Note that A and B need not be prime. Your program should work if

A e 2 e = 1N
n—uauuB—.x.u.

71.

72.

Page 17-25

Use an arrav containing the proper fractions in lowest terms to
establish a' position number" for each entry.” In the array cach
entry in row k shall have (k+1) as denominator and the numerators
in a given row shall be in increasing order.

1/2
1/3 2/3
1/4 3/4
1/5 2/5 3/5 4/5
1/6 5/6

1/7 2/7 3/7 4/7 5/7 6/7
1/8 3/8 5/8 7/8

1/9 etc,

1/19 etc.

Since only those proper fractions in lowest temms are included, the
rows are not of easily predictable length.

Establish a position number N(a) for each fraction o in the array
by simply counting the entries, row after row, from left to right
until o 1is reached.

Thus N(1/2) = 1
N(1/3) = 2
N(1/4) = 4
N(2/3) = 3
N(3/4) = 5
and so forth. In this fashion one establishes that
N(1/13) = 46
N(15/16) = 79
N(1/100) = 3004
N(3/500) = 75917
N(7/1240) = 467048 (or do they?)

The challenge is to determine formulae or an algorithm that will
enable you to do either (or both) of the following

1. Given a proper fraction o in lowest temms, determine N(a).

2. Given an integer K, determine the corresponding proper
fraction o such that K = N(a). Use a computer to help if
you can,

Program a game of your own choice on the camputer.

212

73.

75.

Page 17-26

The problem of placing eight queens on an 8x8 chess board so that no
queen can attack any other queen (queens attack any piece they can
reach by moving in a straight line horizontally, vertically, or on
either diagonal) is an old one. You may have considered the problem
before. You will find it discussed on p. 161-2 of W. W. Rouse Ball's
interesting book, Mathematical Recreations & Essays or in Chapter 10
of M. Kraitchik's admirable book, Mathematical Recreations, both of
which should be available at your local 1library.

You may write a program LO SOIvVE the problom if you wich, but the
problan proposed here is to examine the following program and see if
you can figure out how it works and why it produces all 92 possible

solutions to the eight queens program.

LS
ggmll: " EIGHT QUEENS PROBLEM (RUNNING TIME ABOUT 4@ MINUTES)"
PRINT " 1 5 8 6 3 7 2 4 MEANS"
PRINT ©* THE GUEEN IN THE FIRST COLUMN IS ON ROW 1;"

PRINT " THE QUEEN IN THE SBOOND COLUMN IS ON ROW 5;"

PRINT * THE QUEEN IN THE THIRD COLUMN IS ON ROW 8;EIC."

PRINT

DIM R(8)

N=9

C=0

C=C+1

R(C)=p

IF R(C) < 8 THEN 609

c=C -1

IF C
GOTO

R(C)

¢ THEN PRINT"END OF SEARCH':STOP

4

= R(C) + 1
< 2 THEN 660
Cl=1T0C -1

ENEP AV Y

IF C

FOR
IF R(C)=R(Cl) OR C+R(C)=Cl+R(C1l) OR R(C)-C=R(C1)-C1 THEN 4¢Q

NEXT C1

IF C < 8 THEN 200

N=N+1: PRINT"'SOLUTION# "} N; ''=""

FOR Cl=1 TO 8
PRINT R(C1);" '

NEXT C1

FRINT

GOTO 599

If you are seriously interested in more advanced computing, investi-

gate one of the following languages for your TRS-80.

HC\' Or Htinycll

""PASCAL"

"7-80" chip language {enter from BASIC T1 through TISR() function)

PILOT (a language designed for Computer Assisted Instruction)

Study a program written by someone else, and then improve it.

213

A FINAL WORD fram your authors

Good Programming Practices

There is no such thing as the correct programming style. Entire
books have been written on the subject, but even the most skillful prac-
titioners of the programming art disagree on what is best. However, there
are several common sense principles that merit consideration. Even these
are not immutable rules, but it is prudent to follow the suggestions un-
less you have a good reason for not doing so on a given program. Here
goes:

1. Your program should, in general, read fram top to bottom in a logical
fashion, except for subroutines which usually are listed after the
corpleted program. Block the various fragments into different 100's
in statement numbers. Don't feel compelled to use every tenth state-
ment number.

2. Use occasional REM statements to explain what is happening. If you
must use a GOIO statement in the heart of your program, include a REM
statement explaining why.

Your programs will have a neater appearance, and be easier to debug
if you place five blank spaces between REM and the start of your
remark. Try it, you'll like it.

3. VWhenever you use a FOR-NEXT loop, indent the instructions between
FOR and NEXT three spaces. If you use nested FOR-NEXT loops, stair-
step them. It makes programs much easier to understand.

4. Use the faster forms whenever feasible.
(See Lesson 11.)

5. Get to know your computer. Become thoroughly familiar with the quirks
and excentricities of your computer and of the BASIC (or other) lan-
guage you are using.

Above all:

Don't let these or any other rules spoil your fun--but do remember
that well-written, easy-to-follow programs are no harder to think or
write than sloppy kluges and are much more profitable in use and main-

tenance. Think of a computer program as a living, growing, ever-changing
thing, not as a finished, static object.

ABS(exp), 186

Algorithm, 95

AND, 179

Arithnetic Functions, 186
ABS(exp), ATN(exp), CDBL(exp),
CINT(exp), O0OS(exp), CSNG(exp),
EXP(exp), FIX(exp), INT(exp),
10G(exp), SIN(exp), SGN(exp),
SQR(exp), TAN(exp)

Arrays, 147

"Art'", Random, 66

ASC(string), 173

Asteroids, Game Program, 119

ATN(exp), 186

AUTO mm, nn, 184

B

Backspace Key, 5, 26

Bar Graph, 54, 55

Blological Simulations, 131, 124
Bounce, Keyboard, 11, 108
Branching, 23

Key, 2, 5, 7, 11, 26

c

Campus Planning Program, 56
Cassette Program Loading, 105
Cautions, 150
CIBL(exp), 186
Challenge Problems, 32, 45, 46
Changes, 125
Changing Instructions, 11
CHR$
(), 61, 62, 63, 165, 169, 173
(), DRINT, 185
(), Effects of, 61-63
CINT(exp), 186
Cipher Program, 175
ﬁw@] Key, 2, 5, 12, 26
CIOAD, 105
as, Clear Screen, 22
Code Message Program, 175
Comma, 9, 12
Commands in Your Programs,
Keyboard, 157
Campuier-Assisted Probiem Solving,
Steps for, 80

Concatenate Strings, 174

Conference Proceedings, 181
Continuwus Function, 39

Correction, Error, 40

QOS(exp), 186

Counselor, Robot, 176

CSAVE, Saving a Program On Tape, 107
CSNG(exp), 186

IEF, 143

DEFDBL, 86, 144

DEFINT, Variables, 144

DELETE mm-nn, 184

Deleted, 124

Designators, Variable Type, 145

Dice Throwing Program, 130

Display, Truncated, 21

Double Letters, 108, 150

Double Precision Avithmetic, 88

Double Precision Variables, 143
In FOR...NEXT Loops, 151

Double Size letters, 12, 16, 26

E
EDIT, 123-129
Edit Mode Subcommands, 126
Editing, 40

Ehrenfest Model, Three Molecules,
""Guppy'' Problems, 135

Key, 2, 5, 26
LIST, 8, 26
NEW, 26
RIN, 26
E+P8, 12
Equation Solver, 34-39
Erase, 5, 26
ERROR
Correction, 40
Messages, 155, 156
EXP(exp), 185
Extended Print Instructions, 159

2158

F I

Factor Program, 191 Improving Programs, 110, 194
Factorial, 44 Information, Additional, 180
FALSE, 179 INKEY$, 173, 175

Fast N Such That N° Ends in N, 92 Instructions: See Instruction Index
Faster Forms, 154

Field Specifiers, PRINT USING, 161 J
Fix, Keyboard, 11
FIX(exp), 186 Jargon Phrase Maker, 171

Floating-Point Variables, 12,143 Journals, 181
Double Precision, 86, 143

Flow Chart, 137, 138, 190 K
FOR K = ¢ TO 29 STEP .5...NEXT K, 42
FOR Q = 1 TO 4¢9: NEXT Q, 68 Key
FOR...NEXT, 33 , 3, 5, 26
Forms, Faster, 154 IBEEAK), 2, 7, 11, 26
FRE(s2ning), 173 \ICLEAR], 2, 5, 12, 26
Free Improvements For Cassette [ENIER], 2, 4, 5, 26
Use, 103 [(SHIF, 1
Functions, Continuous, 39 Keyboard, 1
Functions, Graphing, 64 Keyboard Bounce, 11, 108
Keyboard Commands, 157
G Keyboard Fix, 11
Game Program, 121 Keyboard Instructions, 18
Asteroids, 119 L
Guessing Game, 113
Hangman, 114 Large Numbers, 84
Pixel Hunt, 54 Last 3 Digits 81
Reverse Memory Test, 117 LELLS,
LEFT(stning, n), 174
Treasure Hunt, 112 LEN(A#in
QOSUB nn, 185 (ﬂ 173
GOTO nn. 8 LIST , 3, 8, 26, 184
3 LIST mm-nn, 184
Graph, 168 :
Graph, Bar, 54, 55 LOG(exp), 186
; las Logical Operators, 178
Graphics, 165 "Loop, Tight", 60
Graphing, 163 D, ,
Graphing Functions, 64, 67 M

"Guppy" Problem, Three Molecules,

Ehrenfest Mode, 135 Malfunctions, 192

Map, Video Screen, 49, 52

H MEMORY SIZE, 6
Hangn G . Message, 57
Headingé 23 Pzgog » 14 Micro Research Problems, 75, 97,
R 188, 198

Histogram, 55

Hunt, Pixel Hunt Came, 54 MID$(stning, p,n), 174

Music, Sound and, 108

216

NEW, 7, 11, 28
NOT, 179
Numbers, Random, RND(§), RD(n), 47
Mmeric Character, 161

0
ON N GOSUB mm, un, pp, q,..., 185
GNN®IOa, b, e, ...,z, 68
N N Q01O mm, nn, pp, qq, ..., 185
Operators, logical, 178
OR, 179

PLEK, 187
Periodicals, 181
Pixal Hint Game 54
Pixels, 52, 166
DDINT(x,y), 53
FORE, 187
POKE Address, Pixel Number
Instruction, 167
Precision Variables, Double, 143
PRINT, 2
@, 48, 68
CHR$(n), 68, 166
STRING$, 163, 164
USING Field Specifieﬁs, 161
Problem: N Such That N° Ends in
N, 7
Problems, Challenge, 32, 45, 46
Proceedings, (onference, 181

Research (micro) Problems You May
Undertake, 97, 198
RESET(x,¢), 53
RESTORE, 185
RETURN, 185
Reverse Memory Test Game, 117
RIGHT$(stning, n), 174
RND
(K), 129
(n), 68
(9), 68, 129
Robot Counselor, 176
RUN_3, 68

(ENER], 26

mm, 184
S

Saving Computer Time, 19, 89, 92,
Saving Memory Spate, 153

Saving Program On Tape, CSAVE, 107
Screen, Video Map, 49, 52
Scrolling, 51

Semicolon, 12

Sentence Generator, 170
SET(x,y), 53

SGN(exp), 185

(SHIFT], 1, 12, 26

Simulate, 139

Simulation, 129, 131

SIN(exp), 186

Snowflake, 69

Solver, Equation, 34-39

Sound and Music, 108

Space, Out of String, 150
Speeding Up Programs, 154

2 ~ e o < - o
Static Electricity, 152

Statistics, 146

Program,
Factor, 191
Game, 112, 113, 114, 117, 119, 121 SQR(exp), 186
Ioad Trom Cassette, 105
Q

Question Mark 7, 41
R

Radio Shack Computer Center, 180
RANDOM, 129, 187

Random "Art", 66

Random Nunmbers, 47. 129

READY, 6

Steps TFor Computer-Assisted
Problem Solving, 80

Store the Words in DATA
Statements, 170

String Concatenation, 174

String Instructions, 173, 174

Strings, 1689-179

STRING$(K, "characten” on number),
163, 174

STRS(exp), 174

Subcommands, Edit Mode, 126

217

Subscripted Variables, 146 W
Symbol >- , 5, 12, 41

SYSTEM, 184 Wages, 45
Wild Screen, 120
T Word Generator, 171

TAB(c¢x)), PRINT, 160
Tables, 19
TAN(exp), 186
Tape

Care, 104

Cassette, 103

Three Molecules, Ehrenfest Model,
"Guppy' Problem, 135

"Tight Loop", 60

Time, 88

Tips, 150

TRACE, 185

Treasure Hunt, Game Program, 112

TROFF, 185

TRON, 185

TRUE, 179

Truncated Display, 21

Twelve Days of Christmas, 46, 75

U
USR(n), 185
\

VAL(suing), 174
Value, PRINT USING String, 161
Variable
DEFDBL, 144
DEFINT, 144
Double Precision, 143
Floating-Point Single
Precision, 143
Integer, 144
String, 144
Subscripted, 146
Type Designators, 145
Types, 143
Video Screen Map, 49, 52
Volume, 105

218

Special Characters Edit Commands

EDIT e .
: Abbreviation for :REM Edit Cn:ii:E;T?uter g oce Diapectice
% Makes variable integer-precision. EDIT 100 EDIT.

| Makes variable single-precision.

& Makes variable double-precision. -

$ Makes variable string type. ':l:?' Cancels changes and starts again.

: m (. Changes n characters.

: Separates statements on the same kne.
? Same as PRINT (but L? can't be substituted for LPRINT).

. PRINT punctuation: spaces over
to the next 16-column PRINT zone.

PRINT punctuation: separates items in a
PRINT list but does not add spaces when they are
output.

Deletes n characters.

Ends editing and saves all changes.
Hacks line and inserts at end.

Inserts charactess.

Kills ail characters up to nth occurrence of (
Lists the line.

Quits edit mode and canceis all changes.
Searches for nth occumence of c.
Extends line (inserts at end).

Causes escape from comsmand.

Records all changes and exits edit mode.
Moves cursor n spaces 0 the nght.
Moves cursor n spaces to the left.

Error Messages

Abbreviation Explanation

NF NEXT without FOR
SN S ot e Control Keys
RG RETURN without GOSUB
oD Qut of data
£C lllegal function cal S Cancels last character
oV Overflow typed; moves cursor back one space.
OM Out of memory GHIFD &8 Erases current line.
UL Undefined hine -
BS Subscriot out of range (BREAK) Interrupts anything in progiess and
§ =

0D Redimensioned array returns to command !avel.
0 Division by zero (CLEAR) Clears the screen.
1D lllegal direct S
M T /e mismatch ENTER Signifies end of current line.
0S Out of stnng space SPACEBAR) Enters a space (blank) character and
LS String too long moves cursor one space forward.
ST String formuia too complex = Aty »
CN e 3, ances cursor to next tab position.
NR No RESUME SHIFD & Puts display in 32-character mode.
RW RESUME wiathout efror : |
E jeemeni ® Line feed and carnage retum. |
MO Missing operand SHIFD @ “Control” key—hoid down these
FD Bad file data two and press any key A-Z for control A
&% Disk BASIC teature control Z.

SHIFTY (O (- Copies the display contents to the

printer.
@ Causes currently executing program to

pause (press any key to continue).

