ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

VOLUME10

— *Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80%*

VOLUME 10

wayne

T I TR
el

T B
AN I
PETERBOROUGH NH 03458

*TRS-80 is a trademark of Radio Shack division of Tandy Corp.

The LDOS disk operating system, a product of Logical Systems, was used in the technical produc-
tion of this book.

FIRST EDITION
FIRST PRINTING SEPTEMBER 1982
Copyright © 1982 by Wayne Green Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey and Katherine Lindquist
Proofread by Ann Winsor
Production: Margaret Baker, Gary Ciocgi,
Linda Drew, Thomas Villeneuve, Robert M. Villeneuve,
Sandra Dukette, Elizabeth Libby, Karen Stewart
Technical Editor: Jim Heid
IHustrations by Howard Happ

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and '
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green. v
BUSINESS
Check Storage Program
Dan Keen and Dave Dischert. 3
Looan Amortization
Dan Keen and Dave Dischert. 9
Plan Ahead—A Program for Project Planning
James N. Devlin. 12
EDUCATION
Physics in Motion—Exploring the Projectile Problem
Linda Huetinck and Debra Lelewer. 29
GAMES
Satan’s Square
James Wood. 37
Card Playing
Louis Zeppa..... 4]
Another Magic Trick
DavidD.Busch........ 49
GRAPHICS
Graphics and ZBASIC
John Corbani
Part I o 55
Part IL. ..o 60
Part TXX. ... 64
Unlocking the Color Computer Graphics Character Code
David R. Barr. 68
SBLOCK
Jeff Collins....... 74

vii

contents

HARDWARE
HEART/BAS HEART/CIM
Alan Sehmer. 85

HOME APPLICATIONS
Low Resolution Voice for the Color Computer

Dr. Edward Kimble. 93
Planning Your Retirement

R. L. Conhaim. 98

INTERFACE
Atari Joystick to TRS-80 Interface
Carl Van Wormer.............. .. e 105

TUTORIAL
TRS-80 Cryptographer

Allan S. Joffe W3KBM 117
Lazy Logic Trainer

Archie P. Kelley. e 121
Screen Status Byte

Arthur R. Jackman. B 129

UTILITY
Modifying Scripsit to Send Control Characters to Printers

Albert Davis......... e 137
Shortstuff

Roger Schrag. 145

APPENDICES
Appendix A... e 151
Appendix B. 152
Appendix C.. 176

Contents, Volumes 1-10.178
Indexto Volume10. 183
Index, Volumes 1-10. 186

wiit

The editors of Wayne Green Books want to help you maximize your mi-
crocomputing time, so they created the Encyclopedia Loader™.

The Encyclopedia Loader is a special series of cassettes that offer the
longer programs in the Encyclopedia for the TRS-80* in ready-to-load form.
Each of the ten volumes of the Encyclopedia provides the essential docu-
mentation for the programs on the Loader.

With the Encyclopedia Loader, you’ll save hours of keyboard time and
eliminate the aggravating search for typos. The Encyclopedia Loader for
Volume 10 will contain the programs for the following articles:

Check Storage

Loan Amortization

Plan Ahead

Physics in Motion

SBLOCK

Planning Your Retirement

Lazy Logic Trainer

Modifying Scripsit to Send
Control Characters to Printers

Shortstuff
Encyclopedia Loader™ for Volume 1 EL8001 $14.95
Encyclopedia Loader™ for Volume 2 EL8002 $14.95
Encyclopedia Loader™ for Volume 3 EL8003 $14.95
Encyclopedia Loader™ for Volume 4 EL8004 $14.95
Encyclopedia Loader™ for Volume 5 EL8005 $14.95
Encyclopedia Loader™ for Volume 6 EL8006 $14.95
Encyclopedia Loader™ for Volume 7 EL8007 $14.95
Encyclopedia Loader™ for Volume 8 EL8008 $14.95
Encyclopedia Loader™ for Volume 9 EL8009 $14.95
Encyclopedia Loader™ for Volume 10 EL8010 $14.95

(Please add $1 50 per package for postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call (1-800-258-5473).

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp

BUSINESS

Check Storage Program
Loan Amortization
Plan Ahead—A Program for Project Planning

BUSINESS

Check Storage Program

by Dan Keen and Dave Dischert

his program will create and maintain a file of checks. The information
stored on each check is:
1) Check number (up to five digits are allowed).
2) Date (up to eight digits. Use the format MM/DD/YY).
3) Payee, that is, pay to the order of . . . (up to 30 characters can be entered).
4) Amount of check (the limit is $99,999.99).
5) Remarks, reminders, or other notes, 30 characters can be stored.
This program will run on the TRS-80 Model I or III with no changes
necessary. It will store about 1000 checks on the Model III computer. Only
one disk drive and a minimum of 32K of RAM are required.

Menu Options

The main menu displays the options as shown in Figure 1.

CHECK STORAGE PROGRAM

<A>DD A CHECK

<S>EARCH / DELETE / MODIFY

<T>OTALS FOR THE MONTH

<P>RINT LIST OF ALL CHECKS IN STORAGE
<Q>UIT

Figure 1. Menu options

Adding a Check to the File

Select the <A>DD A CHECK option by pressing the A key. Next, you will
be asked to enter the check number, the date, whom the check was made out
to, the amount, and any remarks or comments you may wish to include. The
date must be in the form of two digits for the month, two for the day, and

3

business

Printing out all of the Checks on File

The <P>RINT LIST OF ALL CHECKS IN STORAGE option will show
you, either on the video display or on a printer, every check currently on file.
You must answer Y or N to the question:

DO YOU WANT A PAPER PRINTOUT? (Y/N).

This gives you a chance to type the entry in again if you made a mistake.
Simply press the Y or N keys. It isn’t necessary to press the ENTER key
following your selection. Even if you were to answer <Y>ES and the check
was stored on the diskette, you could still change any parameter later by us-
ing the <S>EARCH / <D>ELETE / <M>ODIFY option from the main
menu.

After you have typed in the check and indicated that the information is
correct, you will again be asked to enter the number of the next check. In
this way you can continue adding checks until you have entered all that you
care to store. To return to the main menu, simply respond to the ENTER
CHECK NUMBER question by pressing the ENTER key. This option is
displayed on top of the screen to remind you.

Search, Delete, or Modify

By choosing the <S>EARCH function, you can look up a check by identi-
fying either the check number or the name of the payee. Once you have
found the check you are looking for, the computer will display all of the
parameters associated with that check and ask what you want to do next:

<D>ELETE
<M>ODIFY
<R>ETURN TO MAIN MENU

At this point you could delete that check from the list by pressing the D key. To
change either the check number, date, payee, amount, or remarks, select M.
You will be asked to enter the correct check number, date, payee, amount,
and remarks. If there is no change on a particular item, simply respond by
pressing the ENTER key and the old information for that category will be re-
tained. This procedure is explained on the screen as you go through it.

Getting Totals for a Particular Month

You can find out the total of all checks written for any particular month
instantly, simply by selecting the <T>OTALS FOR THE MONTH option.
You will be asked:

WHAT MONTH DO YOU WANT THE TOTAL OF (ENTER 2 DIGITS — MM)?
January would be 01, February would be 02, December would be 12, and so
on. Then you are asked whether or not you would like a paper printout of
the checks and the total. Select Y for yes, N for no.

4

business

two for the year. For example, January 18, 1982 would be entered as

01/18/82.
When you have entered this information, the bottom of the screen will

prompt you with:
<Y>ES THIS INFORMATION IS CORRECT
<N>0O—I WANT TO RETYPE THIS ENTRY

Ending the Program

When you are done, press Q to quit. At that point all files are closed, and
it is safe to remove the diskette,

L i
<
57
7>
0<><.><><>O<><><>o
TS
-
<>

business

Program Listing, Check storage

0 ' CHECK STORAGE PROGRAM

2 CLS:CLEARLOOD:M$="$$#4, ###. ##":L=15617 :PRINT@21, "CHECK STORAGE PROGR
AM" :PRINTSTRINGS {64, "=")

4 PRINT@384, "<A>DD A CHECK":PRINT"<SMEARCH / DELETE / MODIFY":PRINT"<T
>OTALS FOR THE MONTH®:PRINT"<P>RINT LIST OF ALL CHECKS IN STORAGE
" PRINT"<QXUIT"

5 IK$=INKEY$: IFIK$="A"THENIOELSEIFIK$="C"THENZOOOEL SE IF IK$="S"THEN300O
ELSEIFIK$="T"THENBOOOEL SEIFIK$="P"THENOOOOEL SE IF IK$="Q" THENEND

6 A=PEEK(L):POKEL,32:FORX=1T040:NEXT:POKEL,A:L=L+64:IFL>16128THENL=156

7

7 GOT05

10 GOSUB10000

34 GETL,1

36 RE=VAL(RE$):SR%=VAL(SU$): IFR%=0THENRY=1

40 GET1,R%

80 CL?:PRINT@S,“JUST HIT <ENTER> IN RESPONSE TO 'CHECK NUMBER' TO QUIT

8

pe

PRINT@192, "ENTER"; :PRINT@198, "> CHECK NUMBER "5 :LINEINPUTAS
:PRINT@192," "

90 IFA$=""ANDSR%>OTHENFORDE=0T02:LSETCHS (SR%+DE)=STRING$(5,32) :LSETDAS
(SR%+DE) =STRING$(8,32) : LSETPAS (SRZ+DE) =STRING$ (30,32) : LSETAMS (SR%
+DE)=STRING$(7,32) :LSETRES (SR%+DE) =STRING$ (30,23) : NEXTDE : PUT1,RY

95 IFA$=""THENPUT1,R%:GET1,1:LSETRE$=STRS (R%):LSETSU$=STRS (SRY):PUT1,1
TA$="":B§="":C="":D$="":E$="": CLOSE :RUN

100 PRINT@256, "ENTER"; :PRINT@262,™> DATE (MM/DD/YY) 5 :LINEINPUTB
$:PRINTE256, " ‘5

120 PRINT@320, "ENTER"; :PRINT@326, "> PAY TO THE ORDER OF ";:LINEINPUTC
$:PRINT@320," "5

140 PRINT@384, "ENTER"; :PRINT@390, "> AMOUNT (NO COMMAS) $"; :LINEINPUTD
$:PRINT@384," i

160 PRINTR448,"ENTER"; :PRINT@454,"> REMARKS "3 :LINEINPUTE
$:PRINT@448," '

190 PRINT@840,"<Y>ES THIS INFORMATION IS CORRECT

<N>Q - 1 WANT TO RETYPE THIS ENTRY"

195 IK$=INKEY$:IFIK$="Y"THENZOOELSEIFIK$="N"THENAS="":B$="":C$="":D$="
":E$="":GOTOBOELSE195

200 LSETCHS$(SR%)=A$:L SETDAS (SR%)=B$: LSETPAS(SR%)=C$:LSETAMS (SR%)=D$:1$
ETRE$(SR%)=E$

300 SR%=SR%+1:IFSR%>2THENSR%=0:GOTO350ELSE360

350 PUTL,R%:R%=RE%+1:FORXX=0T02:LSETCH${XX)=STRING$(5,32) :LSETDAS(XX)="
":LSETPAS(XX)="":LSETAM$ (XX)="":LSETRE$ (XX }="":NEXT

360 A$="":B$="":CF="":E$="":D$="":1=0:60T080

3000 '

*x% SEARCH / DELETE / MODIFY

3030 GOSUB10000:CLS:PRINT®20, "SEARCH / DELETE / CHANGE":PRINT:PRINT:PR
INT*WHAT DO YOU WANT TO SEARCH BY?

<COHECK NUMBER

<PYAYEE"

3032 IK$=INKEYS$: IFIK$="C"THEN3038ELSEIFIK$="P"THEN3034EL SE3032

3034 GET1,1:RK%=VAL(RE$): INPUT"WHAT IS THE PAYEE NAME ";Z$

3035 FORR%=1TORK%:GET1,R%: FORSRE=0T02: TFZ§=LEFT$(PA$(SR%), LEN(Z$))THEN
3100

3036 NEXTSR%,R%:PRINT"** NAME NOT FOUND **+":FORDE=1T01000:NEXT:CLOSE:
RUN

3038 GET1,1:RK%=VAL(RES$): INPUT"WHAT IS THE NUMBER OF THE CHECK YOU WAN
T TO SEARCH FOR ";7$%

3040 FORR%=1TORK%:GET1,R%:FORSRE=0TO2: IFZ$=LEFT§(CH$(SRE), LEN(Z$))THEN

3100

3050 NEXTSR%,R%:PRINT"** CHECK NUMBER NOT FOUND **":FORDE=1T01000:NEXT
: CLOSE :RUN

3100 CLS:PRINT@26, "LOCATED CHECK":PRINT@128, "CHECK # "3 CH$ (SR%)

3110 PRINT@192, "DATE " DA$ (SR%): PRINTR256, "PAYEE ";PAS (SR
)

3120 PRINTR320, "AMOUNT " AM$ (SR%) : PRINT@384, "REMARKS "sRE$(SR
%)

Encyclfpedca_

3130
3140

3150
3170

3180
4000
4010

4011
4012
4013
4014
4017
4020

4030
6000

6010
8000

8010
8020

8030
8040
8041

8050

8060
8070
8080
8090

8100

8500
8510

8520

8530
9000

9010
9020
9030
9100
9105

9110
9120
9130

9140
9200
9210
9220
9230

9235
9240

business

PRINT@832, "<DOELETE" :PRINT"<M>ODIFY" :PRINT"ROETURN TO MENU";
A$=INKEY$: IFA$="D"THEN3150EL SETFA$="M"THEN4OOOEL SEIFAS="R"THENCLO
SE:RUNELSE3140
! DELETE SUBROUTINE

LSETCH$ (SRR) ="*****":] SETDAG (SR%) =STRING$(8,32):LSETPAS(SR%)=5TRI
NG$(30,32):LSETAMS (SR%)=STRING$(7,32):LSETRE$(SR%)=STRING$ (30,128

)
PUT1,R%: CLOSE :RUN
' MODIFY SUBROUTINE
PRINT@512,CHR$(31);:PRINT@512, “(JUST HIT <ENTER> IF THERE IS NO C
HANGE ON ANY ITEM)"
LINEINPUT"ENTER CORRECT CHECK # “;A$:IFA$=""THENAS=CH$(SR%)
LINEINPUT"ENTER CORRECT DATE ";B§:IFB$=""THENB$=DA$ (SR%)
LINEINPUT"ENTER CORRECT PAYEE “;C$:1FC$="“THENCS=PAS$ (SR¥)
LINEINPUTYENTER CORRECT AMOUNT *;D$:IFD$=""THEND$=AMS (SR%)
LINEINPUT“ENTER CORRECT REMARKS ";E$:IFE$=""THENE$=RE$(SR%)
LSETCH$ (SR%) =A% : LSETDAS (SR%)=B$: LSETPAS (SR%)=C$: LSETAMS (SRE) =D$:L
SETRE$(SR%)=E$
PUTI,R%: CLOSE :RUN
REM

INKEY SUBROUTINE

IK$=INKEY$: IFIK$=""THENG6O1OELSERETURN
REM
TOTALS FOR THE MONTH

CLS:TL=0
INEUT“WHAT MONTH DO YOU WANT THE TOTAL OF (ENTER 2 DIGITS - MM)";
MO
PRINT"DO YOU WANT PRINTER OUTPUT? <YDES OR <N>O"
GOSUB6000: IFIK$="Y"THENSW=1ELSEIFIK$="N"THENSK=0ELSE8040
[FSW=1THENLPRINT"CHECK # DATE TO WHOM

AMOUNT REMARKS" : LPRINTSTRING$(77,"-")
CLS:GOSUB10000:GET1,1:RE=VAL(RES): IFR%=0THENPRINT"NO CHECKS HAVE
BEEN STORED":FORDE=1TO1000:NEXT:CLOSE:RUN
FORX%=1TOR%:GET1,X%:FORSR%=0T02
[FMO$=LEFT$(DAS(SR%),2) THENGOSUBB500
NEXTSR%,X%:PRINT"TOTAL FOR THIS MONTH =";USINGM$;TL
IFSW=1THENLPRINT" *:LPRINT"TOTAL FOR THIS MONTH =";USINGM$;TL:FOR
DE=1TO10:LPRINT" ":NEXT
PRINT:LINEINPUT"HIT THE <ENTER> KEY TO RETURN TO MENU";1K$:CLOSE:
RUN
IFLEFT$(CH$(SR%),5)="*****"THENRETURN

TL=TL+VAL (AMS (SR%)) : PU=VAL (AM§ (SR%)) :PRINTCHS (SR%) ;" ";DA$ (SR%)
3" Y;PAS(SR%);" “;USINGM$;PU
IFSH=1THENLPRINTCH$(SR%) ;" ";DA$(SRE);" “;PAS(SR%);" ";U
SINGMS$;PU; :LPRINT" “JRE$(SR%)
RETURN
REM
PRINT LIST OF ALL CHECKS ON DISKETTE
GOSUB10000:CLS:C=0

PRINT'DO YOU WANT PRINTER OUTPUT? <Y>ES OR <N>Q"
GOSUB6000: IFIK$="Y"THENGOTO9100ELSEIFIK$="N"THEN9200ELSES030

GET1,1:R%=VAL(RES)
LPRINT"CHECK # DATE TO WHOM
AMOUNT REMARKS": LPRINTSTRING$(74,"-")

FORX%=1TOR%: GET1,X%: FORSR%=0T02
TFLEFTS(CHE(SRE),5) =" ****+"THENGOT09140
PU=YAL(AM$(SR%)):LPRINTCH$(SRZ);" ";DA$(SR%);" ";PAS(SR¥);"
“USINGM$;PU; (LPRINT® ";RE$(SR%)
NEXTSR, X%: FORDE=1TOL0:LPRINT" *:NEXT:CLOSE :RUN
GET1,1:R%=VAL(RE$):CLS:COUNTER=0
FORXZ=1TOR%:GET1,X%: FORSR%=0T02
IFLEFT${CH$(SRE),5)="*****"THENGOT09240
PU=VAL(AM$(SRZ)):PRINTCH$(SR%);" ";DAS(SR%);" “;PAS(SR¥);" *
s USINGMS ; PU: COUNTER=COUNTER+1
IFCOUNTER> 10THENPRINT@900, "HIT THE <ENTER> KEY TO SEE MORE":GOSUB
6000:CLS :COUNTER=0
NEXTSR%, X%:PRINT"HIT THE <ENTER> KEY TO RETURN TO MENU":CLOSE:GOS
UB6000:RUN

Program continued

business

10000 *
OPEN/FIELD SUBROUTINE

10010 CLOSE :OPEN"R", 1, "CHECK/LST" : FORSR%=0T02

10020 FIELDL,SR%*8B0AS PH$(SR%), 5AS CH$(5R%) 8AS DA$(SR%),30AS PA$(SR%)
,7AS AMS(SR%),30AS RE$(SR%):N

10030 F IELD1, 250ASDUMNYS, 2AS SUS, 3AS RE$ RETURN

BUSINESS

Loan Amortization

by Dan Keen and Dave Dischert

Loan amortization is needed by many types of businesses. Until the ad-
vent of microcomputers, many businesses had to send away to big firms
with large computers in order to get a printout of a loan amortization
schedule.

This short program will allow you to rapidly create a schedule in your
own office. It differs from other loan amortization programs in that it is ex-
tremely user oriented. If you can read the screen, you can run the program.
The program will work on a Model I or a Model III TRS-80 with any
amount of memory. A printer is optional.

Each payment shows the amount that is being paid toward the principal
and the amount which is paid as interest. The new outstanding balance is
shown also. At the end of each year an itemized summary is given. The com-
puter will show the amount of interest paid during that year, the amount of
interest paid since the loan began, the amount of principal paid during the
year, and the amount of principal paid since the loan began.

How to Use the Program

When you run the program, you will first be asked to enter the amount of
the loan. Do not use comimnas or dollar signs in your response. A loan for
$30,000 would be entered as 30000. Next, you are prompted to enter the
number of years you will take to pay off the loan. Finally, you must enter the
annual interest rate. If the interest rate is 15 percent, enter the number 15,
and if the rate is nine and a half percent enter 9.5.

The computer will calculate the total number of payments, assuming one
payment each month, and the amount of each monthly payment.

You are given the option of hard copy, that is, a paper printout, with the
question DO YOU WANT A PAPER PRINTOUT? <Y>ES OR <N>O.
Simply press the Y or N key on the computer. It isn’t necessary to press the
ENTER key after this entry is made.

If the print routine is selected, the printer will immediately create the en-
tire amortization schedule. If that option is not selected, the video display
will show only one year at a time. This gives you time to study the results
before moving on to the next year. Simply press the ENTER key to see the
next year. The yearly totals are given on both types of printouts. Figure 1
shows a sample run.

business

ENTER AMOUNT OF LOAN $? 25000

ENTER NUMBER OF YEARS LOAN IS FOR? 20

ENTER ANNUAL INTEREST RATE (IN DECIMAL FORM) ? 9.75
DO YOU WANT PRINTER OUTPUT? <Y>ES OR <N>O N

PAYMENT INTEREST PRINCIPAL OUTSTANDING

NUMBER PAID REPAID PRINCIPAL
1 203.13 34.01 24966.00
2 202.85 34.28 24931.70
3 202.57 34.56 24897.20
4 202.29 34.84 24862.30
5 202.01 35.12 24827.20
6 201.72 35.41 24791.80
7 201.43 35.70 24756.10
8 201.14 35.99 24720.10
9 200.85 36.28 24683.80
10 200.56 36.57 24647.20
11 200.26 36.87 24610.40
12 199.96 37.17 24573.20

TOTAL INTEREST PAID SINCE LOAN BEGAN $ 2,418.76
TOTAL INTEREST PAID THIS YEAR $ 2,418.76

TOTAL PRINCIPAL PAID SINCE LOAN BEGAN $ 426.80
TOTAL PRINCIPAL PAID THIS YEAR $ 426.80

Figure 1. Sample run

10

0R
10

20
30
40

130

140
150
160
170
180
190
200
210
220

240
250
260
270

280

290
300
310

320
325
330
340
350
360
370
380

400
410

420
430

business

Program Listing. Loan Amortization

Encyclopedia
EM MODEL I/II1 VERSION UPDATED 05/10/82 Loader”
CLEAR100:CLS:PRINTTAB(20)"HOME LOAN AMORTIZATION":PRINTTAB(26)"VERS
ION 3.0":PRINTSTRINGS(64,"=")
INPUTUENTER AMOUNT OF LOAN (NO COMMAS, PLEASE) $";P
INPUT"ENTER NUMBER OF YEARS LOAN IS FOR";Y
INPUT"ENTER ANNUAL INTEREST RATE (15% WOULD BE ENTERED 15)";I1:
11=11/100
N=12*Y:1=11/12 :N1=N/2:Q= (1~ (1+1) [-N1)/L:V=(1+1)[-N1
S=Q*V:H=Q+S: M=P /W
PRINT:PRINT*DO YOU WANT PRINTER OUTPUT? <Y>ES OR <N>0"
IK$=INKEY$: IFIKS="Y"THENSH=1ELSEIF IK$="N"THENSH=0ELSE0
PRINT:PRINT"TOTAL NUMBER OF PAYMENTS=";N
A$=VSS#, fHE. 44" ME=" 55444, 44 . 4" I PRINT"MONTHLY PAYMENT=";USINGAS;
M

IFSH=1THENLPRINT“LOAN AMORTIZATION FOR";USINGM$;P
IFSW=1THENLPRINT“TOTAL NUMBER OF PAYMENTS=";N
IFSW=1THENLPRINT"MONTHLY PAYMENT=";USINGA$;M

IFSW=1THENLPRINTY;" YEARS AT ANNUAL INTEREST RATE OF";I1*100;"%":L
PRINT" *

PRINT:PRINT"HIT ANY KEY TO SEE AMORTIZATION SCHEDULE":GOSUB430

CLS

F="4#4 [# 4 A B BEE AT

GOSUB380

FP=0:5=0

FORZ=1TON

T=P*]:U=M-T:P=P-Y

S=S+T:TI=TI+T:PY=PY+U:PB=PB+U

PRINTUSINGF$;Z,T,U,P: IFSW=1THENLPRINTUSINGF$;Z,T,U,P

FP=FP+1

IF FP=12THEN GOSUB270

NEXTZ

END

PRINT"INTEREST TO DATE “;USINGM$;S;:PRINT" INTEREST THIS YEAR “;
USINGM$ 3 TL

PRINT"PRINCIPAL TO DATE";USINGM$;PB;:PRINT® PRINCIPAL THIS YEAR®
sUSINGMS ;PY

IFSW=1THENLPRINT"TOTAL INTEREST PAID SINCE LOAN BEGAN ";USINGMS;S
IFSW=1THENLPRINT"TOTAL INTEREST PAID THIS YEAR ";USINGM$;TI

IFSW=1THENLPRINT"TOTAL PRINCIPAL PAID SINCE LOAN BEGAN “;USINGMS;P
B8

IFSW=1THENLPRINT"TOTAL PRINCIPAL PAID THIS YEAR ";USINGMS$;PY
PY=0:TI=0

IFSW=1THENLPRINT" ":LPRINT" “:GOT0360

PY=0:TI=0

PRINTTAB(16)"HIT ANY KEY TO SEE THE NEXT YEAR";:GOSUB430
FP=0:CLS:GOSUB380

RETURN

PRINT"PAYMENT # INTEREST PRINCIPAL BALANCE DUE
IFSH=1THENLPRINT"PAYMENT INTEREST PRINCIPAL ouT
STANDING"

[FSH=1THENLPRINT"NUMBER PAID REPAID PR
INCIPAL"

RETURN

IK$=INKEY$: IFIK$=""THENA30ELSERETURN

11

BUSINESS

Plan Ahead—A Program for Project Planning

by James N. Devlin

One of the tools used in large industries to aid in the administration of
complex projects that involve considerable resources in terms of per-
sonnel, machines, and time is a method of planning called PERT. The letters
stand for project evaluation and review technique.

This technique was developed for the Navy by the Western Electric Cor-
poration on the Polaris program nearly two decades ago. The original pro-
ject involved 57 branches with approximately 28,000 individual activities.
Even with only a few dozen activities, the use of PERT methods can be of
great aid in day-to-day work.

Two major advantages make the use of PERT on a small scale a useful ad-
dition to management techniques. The first is improved control over a
development or production program. The second is the capacity to distill a
large amount of data in a brief, orderly fashion.

PERT gives you, the manager, a useful tool to plan the best possible
strategy for applying limited resources to achieve your goal within the
available time and cost commitments. Before you can apply PERT, you
must have an overall idea of the total project. You must visualize all of the
individual tasks necessary to complete the project clearly enough to put
them into structured form.

The basic structure of PERT is the network. A network is a flow diagram
of a plan of action, which displays all the significant events and activities re-
quired to complete the given task. The graphic nature of PERT makes it so
useful. A brief discussion of the PERT technique itself will enable you to put
this program to use immediately to solve your problems of planning. T will
then use a real problem to demonstrate its use.

A network is composed of blocks connected by arrows. The blocks are
events, and the arrows are activities. The event is a point in time where a
new activity begins and the previous activity ends. The activity is the work
done in moving from one event to another. An event number is assigned to
each event.

A network is the diagram that links all the parts of a job. Each line in the
network represents work (an activity) that must be accomplished. A sketch
of the network should be generated as an aid to define all of the work
segments. Such a preliminary drawing is shown in Figure 1.

12

business

Activity Start | Finish | Duration

1 | Pre. des. Rel. 1 2 0 days
2 | Des. test set 2 3 4
3 | Build test set 3 32 15
4 | Pre. des. Rel. 1 4 0
5 | Build mem proto | 4 5 10
6 | Des. rel. mem 5 6 0
7 | Layoutmembd. | 6 7 5
8 | Build mem bd. 7 10 8
9 | Des. rel. mem 5 8 0
10 | Order mem pts 8 9 1
11 | Rec. mem pts 9 160 14
12 | Assemn. mem bds | 10 25 5
13 | Pre. des. rel. 1 11 0
14 | Build cpu proto 11 12 15
15 | Des. rel. cpu 12 13 0
16 | Layout cpu bd. 13 14 5
17 | Build cpu bd. 14 17 8
18 | Des.rel. cpu 12 15 0
19 | Order cpu pts 15 16 1
20 | Rec. cpu pts 6 |17 14
21 | Assem. cpu bds 17 25 5
22 | Pre. des. rel. 1 18 0
23 | Build I/O proto 18 19 8
24 | Des. rel. /O 19 20 0
25 | Layout I/O bd. 20 21 5
26 | Build I/O bd. 21 24 8
27 | Des. rel 'O 19 29 0
28 | Order 1/O pts 22 | 23 1
29 | Rec I/O pts 23 24 14
30 | Assem. /O bds 24 25 5
31 | Pre, software spc | 1 26 0
32 | Des. op sys. 26 27 12
33 | Debug op sys 27 30 10
34 | 1/O software rel 1 28 0
35 | /O & cale 28 29 10
36 | Debug /O & cale | 29 30 8
37 | Merge software 30 31 10
38 | Burn proms 31 32 2
39 | Assem. processor | 25 32 5
40 | Test processor 32 33 10

Table 1. Activity list

Using the sketch as a guide, prepare a list of all the tasks that make up the
job. They should be arranged in the approximate order or time sequence in
which they will occur. This usually takes the form of a laundry list, as shown
in Table 1. Naturally, the more detail, the more complex the network. Even

13

business

with only a dozen or so tasks, the critical path (the one that holds you up the
most) may be hidden,

Each bubble in the network is an event. The event is the completion of
each activity arrow. Events and activities must be sequenced on a network.
No event can be considered complete until all preceding events have been
completed.

EARLY LATE
TIME~__, 7 /T < TIME

4
@ K OURATION
s

SLACK

ASSEMBLE
BOARD

B8OARD
LAYQUT

PRE-
DESIGN
RELEASE

DESIGN
RELEASE

ASSEMBLE
BOARDS

o RECEIVE
PARTS

Figure 1. Preliminary drawing

Activities (arrows) that have the same predecessor branch out, and ac-
tivities that have more than one predecessor branch in. The predecessors are
those activities which must be finished before a new activity can begin.

After you have listed the activities in some sort of sequential order in the
table, you must assign your best estimates of the time it takes to complete
each task. This time is called the duration. These estimates range from a very
careful consideration of previous experience to a carefully thrown dart on a
wall calendar. Nevertheless, since the computer has no concept of time, you
must assign them the best you can.

Large computers in industry use three estimates of time, usually called op-
timistic, pessimistic, and normal times. The statistical mean is then
calculated. I decided to bypass this complication in favor of being able to
change any duration as better estimates become available. It is then a simple
matter to rerun the program to obtain an updated output.

14

business

The final network is prepared from the information in the table. Begin by
drawing the blocks representing the completion of each activity with a line
which represents the task between them.

All the events can now be numbered. You should do this in ascending
order, from the starting block to the finish block, moving from the top path
to the bottom path. Make sure that all branches which terminate in a given
bubble have been numbered before you proceed to the next event. This en-
sures that later events do not occur before the inside branches are completed.
The activity time (duration) can be written beneath each arrow. The com-
pleted network should resemble the one in Figure 2.

A Sample Application

A typical development project in the computer industry might be the
development of a microprocessor board to be used as a controller in some
marketable device. Although boards can be purchased, management may
decide that for proprietary, cost, or end use reasons to make their own. They
ask you to prepare a schedule and estimate the time to complete the project.
They may even give you the time to complete and tell you to fit the develop-
ment into that time frame. Could you do it? Is the time reasonable? Do you
have the resources?

0rz1 428
2 pES 3 BUILD
TEST 4 TEST
SET 1017 15722 SET
2 6 MEM 7 BURD 2l
80ARD [~3™] MEM
/5 10/15 LAYOUT BOARD 25730
) 7 7 8
4 MEM 5 MEM 10 Assm | A
PRoTO [T5—] DES MEM
REL 10415 /16 B0ARD
5 5 o\[e oroer 9 mEc 1a >
MEM i MEM
PARTS PARTS
o 5 3 5
15717 20722
3 cpy 14 BUILD
BOARD bz CPU
or0 ' 15 Lavout 80ARD 30030
]
11 epU 12 cpu (4 2 B\|17 assm
P o =t DES cPU
15 REL 15715 16716 BOARD
o o o o\|is onper 16 REC R
cPu cPy
s Shrs 35/35 40/490 5050
! ggg () G 25 ASSM 32 TEST 33 REL
bes an7 13/22 PROC PROC 70 PROC
20 1/0 2 suiLo) Q))
o BOARD |—— = 1/0
07 8/15 LAYOUT BOARD 23/30 5
19 1/0 o 9 2 8\j 24 assM
18 10
° PROTO [8 DES A
REL asis o6 BOARD
’ 7 o\l 22 oroER 23 REC 14 7
170 b 110
0/6 12418 PARTS | ! PARTS
26 DES 27 DEBUG i i
op bt op
sYs sYs§ 22/28 32/38
o 6 s 10\| 30 MERGE 31 BURN
S PROM
010 10/20 TEST
B
28 DES 29 DEBUG | /8 s
10 el 1/0
caLe caLc

Figure 2. Completed network

10 10

15

business

Referring back to your model, sketch in the major pathways that you
know are going to be needed. There is a design phase, a build phase, and a
test phase. You know there will be hardware and software efforts. Both
hardware and software can be broken down into smaller portions. These
portions can be further broken down into easily estimated individual tasks.

Once you have an idea of the overall tasks and the flow of work, you
should set down in the table each activity that is involved. If you think of
something else that you know will take time or that affects the project, you
should put it into the table and find a home for it in your network sketch.,
When you are satisfied that you have everything under control, you can start
to compile the data and assign it to the table and the network. I like to work
with the network first.

Place all the names of the activities in the appropriate blocks, in the order
in which they will be accomplished. Where certain events require preceding
events to be completed first, make sure that the arrows show this. For exam-
ple, an assembly operation obviously cannot occur before a circuit board is
complete and the parts are received. Therefore, the paths must join before
any assembly operation can begin. Board layout and an ordering activity,
however, can begin as soon as a design prototype is complete. The arrows
diverge from the preceding block.

Proceed through the entire network in this manner. When all of the ac-
tivities have been assigned to a block, you can begin numbering them. Start
by numbering each block from the left to the right and from the top to the
bottom. Where several arrows merge, do not number that block until all the
paths that enter it have been numbered. Where paths diverge, continue to
number the uppermost paths first.

When all the numbers have been completed, you can fill in the data table.
List all the activities by name in numerical order. Referring to the network,
fill in the start and stop events for each activity. The activity name is always
the start block, and the termination of the activity is always the start of the
next activity. List these start/stop numbers after each activity on the table.
Notice that the total number of activities is not the same as the number of
start/stop times.

For each activity, you must have a duration, or time in which to complete
that activity. Observe that when an activity branches out into a number of
new activities, it is assigned zero time. There could be a time assigned to
these branching activities, but usually this is just a decision to start, hence no
time elapses. If there is a delay before the start of the next activity, then it
must, of course, have a duration assigned to it. Using your best information,
you can now assign durations to all of the activities in the list and add them
to your network beneath each appropriate arrow.

The network now links all of the activities in sequential order. These steps
provide the data input for the PERT program. The computer uses this raw

16

business

data to develop the early and late times and to search out the critical path.

Once the critical path is revealed, the clever manager can investigate
methods of changing the activity duration times by rearranging resources
(such as rescheduling people and machines or using premium time) to make
sure the project stays on track. He or she can also specify the total project
time. The program is set up to make these schedule adjustments easily. Let’s
see now how the computer uses this data and what kind of results you can
hope to get.

The program (see Program Listing) is about 7K long, and when run, uses
about 10.5K. It can easily be run with as many as 100 activities on a Level II
16K machine. It will also run on a Model I11. The variables used in the pro-
gram and their definitions are shown in Table 2.

E$(5) labels

E(100) activity start times
F(100) activity finish times
D(100) durations

TE(100) early completion times
TL(100) late completion times
S(100) slack times

S$(100) critical path tag
$S(100) rank slack times

SR(30) numerical slack times
SC(100) slack order activity numbers
A$,B3,C$ print formats
Y$,N$,U$,08 string variables

N number of activities

M number of paths
L],K,A,B, X, X1,L array and loop counters

$S,SW, DO, TT,LL,JF temporary variables
MP,GK,PK,MC,ID
JLI2,L1,L2,LN print format counters

Table 2. Program variables

The program first asks for the name of your project. It then asks for the
total number of activities. Enter this from the prepared list. Units are also
requested; they can be days, hours, or even weeks or months. The actual
units don’t matter to the computer as long as you are consistent.

Taking the event numbers and the activity durations from your list, enter
the start, finish, and duration for each activity as the computer asks for it,
until all the activities have been entered. If the event times are put into the
computer out of sequence, the program asks you to reenter the data for that
activity. The input routine is located between lines 100 and 210. When all

17

business

the data is entered, you are asked if you want to make a data tape. It is not
necessary at this time; the program, upon completion of the calculations,
reverts to a menu where this option is presented again.

The PERT computations consist of an early event time and a late event
time. Both are obtained by accumulating the durations of each activity
along their respective branches. All the computations are done in the two
subroutines in the 800 and 900 blocks. The early time is the sum in the for-
ward direction; télat is, from the front of the network to the back. It is ex-
pressed as TE = 2 de where dg is the duration of each activity. The late time
isTL = 2 - de, the accumulated subtraction of all of the durations from the
end of the network to the beginning.

When the branches merge in the forward direction, the highest TE is used
to continue. When the TLs are computed in the backward direction, the
lowest TL is used when the branches merge.

The float or slack time is computed in the subroutine from 1000 to 1290. It
is the difference TL — TE at each event time. It can be positive or negative,
depending on whether you run out of time. The most negative (or least
positive) value is the critical path, that path which will be the roadblock to
the successful completion of the project.

Once these paths are identified, you can study the network for ways to
eliminate the roadblocks and shorten the overall time. Many times,
resources that are assigned to less critical activities can be reallocated along
the critical path and possibly result in a significant reduction of the project
time. Conversely, imagine your embarrassment (to say nothing of your cost)
if you were to mistakenly assign critical resources to a path that actually had
plenty of slop in it. Believe me, it has been done before and done often.
Many a manager has gone out of his or her way to schedule costly overtime
on a slack operation, while failing to rescue a key activity as the project slipped
slowly down the proverbial drain.

The outputs of this program provide the information needed to avoid such
costly mistakes and make the correct decisions to ensure success. The first
document is the tabular output of all the computations, as shown in Figure
3. Itis arranged in activity number order. The early time, TE, and the late
time, TL, are followed by the duration and the slack time. If one of these ac-
tivities lies on a critical path, it is marked by an asterisk. This routine is
located in lines 500 through 670. A printer routine is included in lines 3500 to
3830. These times are normally transferred to your network. Write the early
and late times above the appropriate event bubble and write the slack time
underneath.

The second output, shown in Figure 4, is a display of all the events in a
given path. Each path is presented in the order of the most critical first. This
is one of the most important documents in the PERT analysis. It tells at a
glance which path is the most critical. Using this output, you can trace each

18

business

* % % DROGRAM EVALUATION AND REVIEW (PERT) * * *
ANALYSIS OF COMPUTER PROJECT

ACTIVITY EVENT TE TL DURATION SLACK
1 1 T0 2 0.8 21.90 0.0 21.0
2 2 0 3 4.0 25.9 4.0 21.9
3 3 10 32 19.0 40.8 15.8 21.8
4 1 10 4 0.8 5.9 2.8 5.8
5 4 T0 5 16.9 15.0 10.0 5.0
6 5 T0 6 18.8 17.8 0.0 7.8
7 6 T0 7 15.8 22.0 5.8 7.0
8 7 10 10 23.9 30.8 8.0 7.8
9 5 T0 8 6.8 15.0 0.8 5.0
19 8 T0 9 11.8 16.0 1.0 5.8
11 9 T0 18 25.0 30.0 14.0 5.8
12 8 10 25 30.0 35.8 5.0 5.9
13 1 0 1 0.0 2.8 8.0 0.8 *
14 11 10 12 15.8 15.9 15.8 8.0 *
15 12 70 13 158 17.9 0.0 2.0
16 13 10 14 20.0 22.0 5.0 2.0
17 14 10 17 28.0 30.0 8.8 2.8
18 12 ™ 15 15.8 15.8 0.8 0.6 *
19 15 T0 16 16.8 16.9 1.0 8.2 *
20 16 170 17 308.08 30.0 4.0 2.0 *
21 17 TO 25 35.8 35.9 5.9 8.0 *
22 1 170 18 0.8 7.0 6.8 7.0
23 18 10 19 8.0 15.8 8.0 7.0
24 19 10 20 8.0 17.0 0.8 9.0
25 28 T0 21 13.8 22.0 5.0 9.8
26 21 TO 24 218 30.8 8.0 9.6
27 19 10 22 8.0 15.9 0.0 7.0
28 22 T0 23 9.0 16.0 1.0 7.0
29 23 T0 24 23.0 30.9 14.0 7.0
3¢ 24 TO 25 28.8 35.0 5.8 7.8
31 1 T0 26 2.8 6.0 0.2 6.0
32 26 T0 27 1248 18.6 12.0 6.9
33 21 TO 3¢ 224 28.0 18.8 6.8
34 1 T0 28 0.0 10.8 8.0 19.0
35 28 T0 29 12.8 0.8 10.0 16.0
36 29 TO 3@ 18.0 28.8 8.0 10.0
37 3 10 31 320 38.9 10.0 6.0
38 31 10 32 34.0 49 .9 2.8 6.0
39 25 TO 32 40.8 48.9 5.9 0.8 *
49 32 0 33 50.@ 50.9 8.9 2.8 *

THE CRITICAL PATH LENGIH IS 5@8.8 DAYS

Figure 3

path on the network diagram and label all of the appropriate slack times.

Paths with identical slack times occasionally occur. These may be missed
by the program. A small change in their length that makes them unequal
forces them to be identified. The change routine in the program can be used
to do this.

The third document is the activity/time plot, shown in Figure 5. A time
scale is printed across the top of the page. Its length is from the beginning of
the project to the last event and is scaled to occupy the top of the screen or

printer. The computations for this segment are done in the subroutine in
lines 6000 to 6990.

19

business

PATHS IN CRITICAL ORDER FOR COMPUTER PROJECT ARE :

PATH 1 : ———m——mmmm SLACK=> @ DAYS
1 ~-11-12-15~-16 - 17 - 25 - 32 - 33
PATH 2 : ~——=--—————-SLACK=> 2 DAYS
12 -13 ~ 14 - 17
PATH 3 : ---———————-SLACK=> 5 DAYS
1-4~-5-8-9-18-25
PATH 4 : -—-—ww———-—-SLACK=> 6 DAYS
1-26~-27~-30-31~-32
PATH 5 : ——-—-—-——---SLACK=> 7 DAYS
5-6~-7~-108~18~-19~ 22~ 23 - 24 ~ 25
PATH 6 : ~—mmmremeee] SLACK=> 9 DAYS
19 - 28 - 21 - 24
PATH 7 : ———————————--SLACK=> 1@ DAYS
1~ 28 ~29 - 38
PATH 8 : -————--————-5LACK=> 21 DAYS
1-2-3-32

Figure 4

CLLCCLLLLKACTIVITY-TIME PLOT>>>555555>

PROJECT COMPUTER PROJECT

B 3 7 18 13 17 20 23 27 38 33 37 40 43 47 5B

Jomw 1 1lmmeee 12 15 16mmmmmmee 17=== 25-= 32mm—mmmmem 33

i ———————————— 12 13-- 14=wwmem 171 + 2D

¥~~~~ 1 g 5 B G 18--- 251+ 5D

%—«- 126 27 38 31 321 + 6D

%—-~-—-»~~-——- R 18 18 19 22 23 24 25!+ 7D

§ ————————————— 19 20— 21---=— 241 + 9D

%——-— 1o 2B 29w 301 +18D

i-—-— - . 321421D
Figure 5

The events of each path appear in a row beneath the scale. The last event
in each path is terminated with an exclamation point. If you were to extend
a line from this last event upward to the time scale, you could read off the
approximate time of completion of that path. If the first entry of that path is
dependent upon the completion of another activity, then it appears at its ap-
propriate start time, and a line drawn upward to the time scale gives the ap-
proximate start time. All of these times can be assigned calendar days or
weeks consistent with the units chosen. The critical path, of course, con-
sumes all of the time and is the end of the scale.

All earlier paths have slack, and the plot displays the amount of slack in
the space following the last event in that path. Projects that consist of large
numbers of paths or branches are paged on the screen. At the end of each of

20

business

the three outputs the program can be returned to the menu where several
more options are presented. Two of these options allow the program to be
recomputed with different times. The first permits a change in any given ac-
tivity duration. This would occur if you wished to reallocate either people or
machines from a slack path to the critical path. The path would shorten
(have less slack), and the critical path would then pick up the slack. A new
path might then become critical, and the total project time would change,
for the better, you hope.

With the second option, it is possible to change and thus specify the total
project time. If this time is less than possible, the critical paths become
negative. The project manager now faces the task of allocating resources un-
til all of the negative paths are cleared and the project time is molded to fit
the required time. This changed data can be stored on tape for future use
through the tape output and input routines. These routines are located at
lines 4000 and 5000 in the program. They can be selected from the menu as
needed.

I have used this program in actual business situations. The information
obtained was impressive and it was easy to sell others on the need for
reallocation of valuable resources. With these three documents, the
manager of the small business has a powerful tool with which to plan a pro-
ject and make intelligent decisions based on a knowledgeable appreciation
of the impact of a variety of tasks and their complex interaction on the pro-
ject as a whole. Using your microcomputer, you can now finish the job with
the least cost and finish it on time,

21

business

Program Listing. PERT

10 REM PROGRAM EVALUATION AND REVIEW TECHNIQUE (PERT) Encyc{?&ed(g?_
12 REM JAMES DEVLIN,LAKEVIEW,N.Y.14085 DEC.1981

15 FOR I=1 TO 3:0UT 1,0:NEXT:0UT 1,64:0UT 1,250:0UT 1,51

20 CLEAR 200:DEFINT E,F,I1,J,M,K,X

30 DIM E(100),F(100),D(100),TE(100),TL(100),M1(30),M2(30)

40 DIM S{100),SR{30),E$(5),5$(100),55(100},SC(100)}

50 TT=0:A$="F###. 4" B="###": CE="44"

60 FOR I=1 TO 5:READ E$(I):NEXT

70 CLS:PRINT:PRINT"* * * PERT ANALYS
80 Y$="N":INPUT"DATA FILE FROM TAPE: (Y/N)";V$
90 IF Y$="Y" THEN 5000

100 REM DATA INPUT ROUTINES

105 INPUT"ENTER NAME OF PROJECT";N$

110 PRINT:INPUT"ENTER THE TOTAL NUMBER OF ACTIVITIES";N

120 INPUT"WHAT UNITS WILL BE USED...DAYS/HRS";U$

130 INPUT"IS THERE A SPECIFIED COMPLETION TIME (Y/N)";Y$

140 IF Y$="Y" THEN INPUTUENTER TOTAL DURATION";TD:TT=1

150 PRINT:FOR I=1 TO N:PRINT E$(1);1

170 PRINT £$(2);:INPUT E(1):PRINT E$(3);:INPUT F(I)

180 IF F(I)<=E(I) OR F(I1)>N THEN PRINT"SEQUENCE ERROR":GOTO 170
200 PRINTE$(4);: INPUTD(I)

210 NEXTI

300 Y$="N":INPUT"STORE THIS DATA ON TAPE-Y/N";Y$

310 IF Y$="Y" THEN GOSUB 4000

320 GOSUB 800

330 GOSUB 900

340 GOSUB 1000

470 CLS:PRINT:PRINT"WOULD YOU LIKE :“:PRINT

475 0$="NONE":PRINT"1. FULL OUTPUT TABLE":PRINT"2. CRITICAL PATHS"
480 PRINT"3. ACTIVITY-TIME PLOT":PRINT"4. CHANGE ACTIVITY TIMES"
485 PRINT"5. CHANGE PROJECT COMPLETION TIME":PRINT"6. WRITE TAPE"
490 INPUT"ENTER OPTION DESIRED";X1:IF X1<1 OR X1>6 THEN 470

495 ON X1 GOSUB 500,1300,6000,2300,2400,4000:G0T0 470

500 REM PRINT ROUTINE

510 INPUT"FOR HARDCOPY PRINTOUT,TYPE ‘TTY'";0%

520 IF 0$="TTY" GOSUB 3500

530 GOSUB 2500

540 K=10:FOR I=1 TO N:K=K-1

550 PRINTTAB(2)I;TAB(9)E(I);" TO “;F(I);

560 TE=TE(E(1))+D(1):TL=TL{F(I))

570 PRINTTAB(21)USINGA$;TE ; :PRINTTAB(29)USINGAS;TL;

580 PRINTTAB(BQ)USINGA$;D(I);

590 PRINTTAB(50)USINGA$;S(1);:PRINTS$(I)

595 IF 0$="TTY" GOSUB 3600

600 IF K <= O THEN INPUT"HIT ENTER TO CONTINUE";X:K=10:GOSUB 2500
610 NEXT I

620 PRINT:PRINT “THE CRITICAL PATH LENGTH IS ";

630 PRINTUSINGAS; TL(F(N));:PRINT" ";U$

650 IF 0$="TTY" GOSUB 3700

660 INPUT"HIT INPUT FOR OPTIONS";X

670 RETURN

800 REM SUM FORWARDS -(TE(I))

810 FOR I=1 TO N:TE(1)=0:TL({I)=0:NEXT I

820 PRINT “* CALCULATING *":FOR I=1 TO N

830 IF TE(F(I))>=TE(E(I))+D(1) THEN 860

840 TE(F(I))=TE(E(I))+D(I)

860 NEXT I

870 IF TT>0 THEN TL{F(N))=TD ELSE TL(F(N))=TE(F(N))

880 NE=TE(F(N))

890 RETURN

900 REM SUM REVERSE FOR TL(I)

910 FOR I=N TO 1 STEP-1

920 IF TL(E(I))=0 OR TL(E(I))>TL(F(I))-D(I) THEN 940

930 GOTO 960

IS***"

940 TL(E(1))=TL{F(1))-D(1)
960 S(I)=TL{F(1))~(TE(E(1))+D(1)
970 IF S(1)<=0 THEN S$(I)=" % ELSE S$(1)=""

22

business

980 NEXT I
990 RETURN

1000
1020
1040
1050
1060
1070
1080
1090
1100
1110
1120
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1305
1310
1315
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1480
1490
2300
2310
2320
2330
2370
2380
2400
2410
2420
2430
2500
2510
2520
2530
2540
2550
3500
3510
3520
3530
3540
3550
3560
3570
3580
3600
3610
3620
3630

REM SLACK SORT
FOR 1=1 TO N:SS{I)=S({I):NEXT I

SW=0

FOR I=1 T0 N-1

IF SS(I)¢=SS(I+1) THEN 1110

$5=55(1)

SS(1)=58(1+1)

SS(1+1)=SS

Shi=1

NEXT 1

IF SW=1 THEN 1040

$5=55(1):J=1:5R(J)=SS:REM DELETE REDUNDANT ROWS
FOR 1=1 TO N

IF $S(1)<=5$ THEN 1240
J=J+1:SR(J)=SS{1):55=85(1)

NEXT 1:M=J

K=1:FOR I=1 TO M

M1(1)=K:FOR J=1 TO N

IF S(J)=SR(1) THEN SC(K)=J:M2(1)=K:K=K+1

NEXT J:NEXT I

RETURN

REM PRINT PATHS

INPUT"FOR HARDCOPY,TYPE ‘TTY'";0%
CLS:PRINT:PRINT"PATHS IN 'CRITICAL' ORDER FOR ";N$;" ARE:""
IF 0$="TTY" GOSUB 3800

K=5:FOR I=1 TO M:K=K-1

PRINT:PRINT®PATH ;15" wecommmncoo-n “SE$(5);"=> "3SR(I);U$
IF 0$="TTY" GOSUB 3820

11=0:L2=0:L=M1(1)

GOSUB 7400

PRINT TF;:IF 0$="TTY" THEN LPRINT TF;

IF TF>=F(SC(M2{1))) THEN 1410

PRINT"-";:IF 0$="TTY" THEN LPRINT".";

GOTO 1360

Kl=K1+1

[F K<=0 THEN PRINT:INPUT"HIT ENTER TO CONTINUE";X:CLS:K=5
NEXT I

PRINT:IF 0$="TTY" THEN LPRINT

INPUT"HIT ENTER FOR OPTIONS";X:RETURN

Y$="N": INPUT"SELECT ACTIVITY FOR CHANGE";I

PRINT E$(1);1;" "IES(2)3E(1)" "E$(3);F(1)
PRINT"OLD “;E$(4);" IS *;D(I):D0=D(I)

PRINT*NEW “;E$(4);:INPUT" WILL BE *;D(I)

PRINT: INPUT"ANOTHER CHANGE (Y/N)";Y$

IF Y$="Y" THEN 2300 ELSE IF D(1)<>D0 THEN 320 ELSE 470
CLS:T2=TL(F(N)):PRINT"THE LATEST POSSIBLE DATE FOR PROJECT"
PRINT"COMPLETION IS :";TL(F(N));U$

PRINT: INPUT"DESIRED TIME IS ";TD:TT=1

IF TD<>T2 THEN 320 ELSE RETURN

CLS:PRINT"ANALYSIS OF ";N$:PRINT STRING$(54,"-")

PRINT E$(1);TAB(12)"EVENT";

PRINTTAB(24)"TE"; TAB(32)"TL";

PRINTTAB(37)E$(4);

PRINTTAB(52)E$(5)

RETURN

REM TTY OUTPUT ROUTINES

LPRINT"* * x PROGRAM EVALUATION AND REVIEW (PERT) * %
LPRINT:LPRINT"ANALYSIS OF ";N$:LPRINT

LPRINT STRING$(54,"-")

LPRINT"ACTIVITY"; TAB(12)"EVENT";

LPRINTTAB(24)"TE"; TAB(32)"TL";

LPRINTTAB(37)"DURATION";

LPRINTTAB(52)"SLACK"

RETURN

REM TTY PRINT DATA

LPRINTTAB(2)I;TAB(9)E(I);" TO ";F(1);
LPRINTTAB(21)USINGAS ; TE; :LPRINTTAB(29)USINGAS ; TL ; .
LPRINTTAB{39)USINGAS;D(1); Program continued

23

3640
3650
3700
3710
3730
3800
3810
3820
3830
4000
4010
4020
4030
4040
4050
4060
4070
4080
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
6000
6010
6100
6110
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6245
6250
6260
6265
6270
6280
6290
6300
6310
6320
6350
6990
7200
7210
7230
7240
7300
7310
7315
7320
7325
7330
7340
7400
7410
7420
7440
7450

business

LPRINTTAB(50)USINGAS;S(1); :LPRINTS$(I)

RETURN

LPRINT:LPRINT “THE CRITICAL PATH LENGTH IS ";
LPRINTUSINGAS ; TL(F(N));:LPRINT" “;U$

RETURN

LPRINT:LPRINT"PATHS IN CRITICAL ORDER ";
LPRINT"FOR “;N$;" ARE :":RETURN

LPRINT:LPRINT"PATH ";1;": cecermmmmmmns “SE$(5);"=> ";SR(I);U$

RETURN

PRINT"PUT DATA FILE TAPE IN RECORDER"
INPUT"ARE RECORD & PLAY SET (Y/N)";Y$

IF Y$OUY" THEN 4000

PRINT@650, "RECORDING DATA FILE ";N$
PRINT#-1,N$,N,U$

FOR I=1 TO N

PRINT#-1,E{1),F(I),D(I)

NEXT I

RETURN

PRINT"PLACE DESIRED TAPE FILE IN RECORDER"
INPUT"ENTER FILE NAME";NN$

INPUTYHIT ENTER WHEN READY";X
INPUT#-1,N$,N,U$

IF N$<ONN$ PRINT “WRONG FILE":GOTO 5000
PRINT@650, "READING FILE “;N$

FOR I=1 TO N

INPUT#-1,E(L),F({1),D(I)

NEXT 1

GOTO 320

REM ACTIVITY-TIME DIAGRAM

INPUT"FOR HARDCOPY TYPE 'TTY'";0%:01=0
MP=M/6:GK=NE/15:PK=56/NE

GOSUB 7200

MC=0:FOR I=1 TO M

FT=F{SC(M2(1)))

PRINT:PRINT"I™:PRINT"I";

IF 0$="TTY" THEN LPRINT:LPRINT"I":LPRINT"I";
JF=0:L1=0:L2=0:L=M1(1)

FOR J=1 10 60

IF JF=1 THEN 6230

GOSUB 7400

J1=TL{TF)*PK

IF J»=J1 THEN PRINTUSINGB$;TF;:J2=J1:JF=0:G0T0 6260
IF 0$="TTY" THEN LPRINTTAB(J};"~";
PRINTTAB(J);"-";:GOTO 6280

IF 0$="TTY" THEN LPRINTUSINGBS$;TF;

J=J+LN-1

IF TF>=FT THEN GOSUB 7300:G0T0 6290

NEXT J

M2=M2+1

IF M2<=6 THEN 6350

IF MC>=MP THEN 6990
PRINTB1016, "ENTER" ; : INPUTX :MC=MC+1:GOSUB 7200
NEXT I

PRINT@1016, "ENTER"; : INPUTX:GOTO 470
CLS:M2=1:FOR K=0TO15:PRINTTAB{K*4)USINGBS; (K*GK); :NEXT K
PRINT:PRINT STRING$(63,"-");

IF 0$="TTY" GOSUB 7500

RETURN

1D=58-01:12=1D/2:1F SR(1)<1 OR ID<4 THEN 7340
PRINT" 1", :PRINTTAB(J1+12);"+";
PRINTUSINGC$;SR(1) ; :PRINTLEFT$(US,1);

IF 0$O"TTY" THEN 7340

LPRINT" 1" :LPRINTTAB(J1+12)"+";
LPRINTUSINGCS ;SR(1); :LPRINTLEFT$(US,1);
RETURN

REM ACTIVITY # SUB
IF L1=1 AND L2=1 THEN TF=F(SC(L
IF L2=1 AND L1=0 THEN TF=F(SC(L
TF=E{SC{L}}:L2=1:GOTO 7470
L=l+]

)):GOTO 7450
)):L1=1:G0TO 7450

24

business

7470 TF$=STR$(TF):LN=LEN(TF$):JF=1:RETURN

7500 REM ACTIVITY-TIME PRINT OUT

7510 IF 01=1 THEN 7600

7520 01=1

7540 LPRINT:LPRINTTAB(10)STRING$(10,"<"};

7550 LPRINT"ACTIVITY-TIME PLOT"; :LPRINTSTRING$(10,">")
7560 LPRINT:LPRINT" PROJECT *;N$

7570 LPRINT:LPRINT

7580 FOR K=0 TQ 15:LPRINTTAB(K*4)USINGB$;(K*GK); :NEXT K:LPRINT
7590 LPRINTSTRING$(63,"-")

7600 RETURN

8000 DATA ACTIVITY,START,FINISH,DURATION,SLACK

9999 END

25

EDUCATION

Physics in Motion—
Exploring the Projectile Problem

27

EDUCATION

Physics in Motion—
Exploring the Projectile Problem

by Linda Huetinck and Debra Lelewer

Computers are used in education both to perform administrative tasks
and to increase students’ interest in such subjects as math and spelling
by providing drill. The immediate feedback provided by a computer ex-
perience along with the fascination a student feels for the machine itself can
be a strong motivational tool. The ultimate computer exercise, however, is
one in which the student learns new concepts rather than simply practicing
old ones. We've written the Space Shuttle Pilot (Program Listing 1) and
Human Cannonball (Program Listing 2) programs to help students under-
stand the physics/mathematics concepts of projectile motion.

To enhance the student’s interest in the programs, we used a little imagi-
nation in creating exciting tasks. In the first program, the student is a space
shuttle pilot making a practice landing; in the second program he or she is
training to be a human cannonball in a circus. The first program deals with
the simplified equations of motion that are a result of firing a projectile hori-
zontally (that is, angle 8 is zero). As a human cannonball fired up at an angle
6, the student must use the more generalized equations that includessin 8 and
cos 6.

Operation

The first exercise in the space shuttle program emphasizes the importance
of taking projectile motion apart into horizontal and vertical components.
The computer displays the path of a ball tossed horizontally, using graphics
blocks to form a parabolic path. The student graphs the x- and y-coordinates
separately to observe the components of motion. The computer then sup-
plies the general equations for horizontal distance (x) and vertical distance
(y) in terms of time (t). Given a distance y, the student uses these equations
to calculate t and x. The student is then asked to apply the equations to the
space shuttle.

The cannonball program gives the angle and the speed at which the stu-
dent will be fired from a cannon. The student is then asked to calculate ver-
tical and horizontal components of velocity using basic trigonometric func-
tions. When he or she has done this correctly, the program supplies equa-
tions governing motion as a projectile (distance and velocity equations in
both the horizontal and vertical directions). The student sees the path of the
projectile in two ways. First, a parabolic path formed by graphics blocks ap-
pears on the screen. Then, the same path is shown a second time, with the

29

education

graphics blocks appearing slowly, one after another. This time, the student
is instructed to stop the projectile motion at any point. When he or she
stops the projectile, the horizontal distance for that point is given. The stu-
dent is asked to calculate the vertical distance and the velocity components
at this time.

As afinal exercise, the problem is expanded so that the student is finding
final and maximum distances. We give the height and width of the circus
tent and ask whether the human cannonball will hit the top of the tent and
how far away a net should be placed so that it catches him or her. The
answers to these questions would be submitted to the teacher as the lab
write-up.

Techniques

These programs are written in TRS-80 Level 11 Disk BASIC. Extensive use
of the INKEY$ function allows the student to move through the program at
his or her own pace. After every set of instructions, the program loops,
waiting for the student to enter a C to indicate that he or she is ready to go
on. A loop was also used to slow down the graphics display of the parabola
the second time it occurs. The subroutine contains a timing loop and an IN-
KEYS$ function which allows the student to stop the motion of the projectile.
Early in the program, when the student makes a sample calculation, the
answers are checked. If the student’s answer is within two-tenths of the ac-
tual answer, the computer gives praise and instructions to continue. When
the answer is incorrect, the computer response gives a hint as to the problem
and then gives the student the option of trying again or terminating the pro-
gram and seeing the teacher for help.

The programs are short, each requiring only 20 to 30 minutes. To save
time, not all answers are checked by the computer. Since these machines are
in the back of a classroom that might be disturbed by printer noise, we have
the students copy the data from the video screen.

The reaction of our students to the Space Shuttle Pilot and Human Can-
nonball programs has been very positive. The humor and visual aspect of
this labexperience combine to make a difficult concept less threatening. The
students showed much better understanding of these concepts after going
through these programs than was demonstrated in previous years after the
typicaltextbook approach. We plan to expand the cannonball program for
use with more advanced calculus students. These students could derive the
equations in lines 290-300 and enter them as input, rather tlian having the
program supply these equations.

30

§0REM PROJECTILE PILOT TRAINING BY HUETINCK/LELEWER (PROJPT/BAS)
CLS

education

Program Listing 1. Space Shuttle
Encyclopedia
Loader"

20 PRINT"WELCOME TO THE PHASCINATING WORLD OF PHYSICS."

30 PRINT

40 PRINT"TODAY IS THE FIRST DAY OF YOUR PHYSICS PHLIGHT TRAINING"

50 PRINT"TO BECOME A SPACE SHUTTLE PILOT FOR NASA."

60 PRINT"THE RE-ENTERING VECHICLE SHUTS OFF ITS ENGINES AND BECOMES"
70 PRINT"A FREE FALL PROJECTILE, SO FIRST ALL ABOUT PROJECTILES--*

80 PRINT

90 PRINT"TO START THE STUDY OF PROJECTILES, TOSS A BALL HORIZONTALLY®

100
110

130
140
145
150
160
170
180
190
200
210
220
230
240
250
255
260

270
280
285
290
300

310
315
320
330
340
345
348
350

360
365
368

PRINT“AT 5 M/SEC AND TAKE A STROBE PICTURE "
PRINT"I WILL INDICATE THE COORDINATES. COPY THE DATA AND GRAPH IT.

PRINT

PRINT*PRESS THE LETTER ‘C' WHEN YOU ARE READY TO CONTINUE."
PRINT'AFTER YOU ARE THROUGH COPYING THE DATA, PRESS 'C' AGAIN."
IFINKEY$="C" THEN GOTO 160 ELSE 150

cLs

PRINT@34, "COORDINATES OF POSITIONS SHOWN"
PRINT@181,"(0,10)": PRINTG245,"(.7,9.9)": PRINT@309,"(1.4,9.6
PRINTGI73."(2.1,9.1)": PRINT@437, *(2.8,8.4)": PRINT@SOl (3,5
PRINT®@565, ¥ (4.2,6.4)": PRINT@629, “(4.9,5.1)": PRINT@6Y3, " (5.6
PRINT@7S57,"(6.3,1.9)": PRINTE821 " (7,0)"

SET (0,1):SET{5.2):56T(10,4):SET(15,7)
SET(20,11):SET(25,16):SET(30,22):SET(35,29)

SET (40,37):SET(45,45)

IFINKEY$="C" THEN GOTO 255 ELSE 250

LS

PRINT*NOW GRAPH THE HORIZONTAL COMPONENTS ONLY, ON A HORIZONTAL LI
NE."

PRINT" (LET Y=0 AND PLOT THE X VALUES)"

PRINT“I'LL WAIT UNTIL YOU ARE THROUGH. PRESS ‘C' TO CONTINUE"
TFINKEY$="C" THEN GOTO 290 ELSE 285

PRINT

PRINT"THEY ARE EVENLY SPACED!!! JUST LIKE A HORIZONTAL DRY ICE PUC
N

PRINT'THE VELOCITY IS CONSTANT AND THE ACCELERATION IS 0."

PRINT

PRINT"NOW GRAPH THE VERTICAL COMPONENTS ONLY ON A VERTICAL LINE"

PRINT"(LET X=0 AND PLOT THE Y VALUES)."

PRINT*ILL WAIT UNTIL YOU ARE THROUGH. PRESS ‘C’ TO CONTINUE."
IFINKEY$="C" THEN GOTO 348 ELSE 345

PRINT

PRINT'THEY ARE INCREASING REGULARLY!! JUST LIKE A FREELY FALLING B
oDY. "

PRINT'THE VELOCITY IS O AND THE ACCELERATION IS G."

PRINT"PRESS 'C' TO CONTINUE®

IFINKEY$="C" THEN GOTO 370 FLSE 368

)II
,7.5
,3.6

370 CLS

380
390
400
410
450
460

470
480
490
500
505
510
515
520
525
530

540

PRINT"THE GENERAL DISTANCE EQUATION IS B = VI*T + 1/2 * A*T[2"
PRINT

PRINT "IN THE X DIRECTION, VI = 5, A = O WHICH GIVES X = VI*T"
PRINT"REMEMBER THE GRAVITY IS ONLY ACCELERATING THE OBJECT DOWN."
PRINT

PRINTIN THE Y DIRECTION, VI = O, A = G WHICH GIVES Y = 1/2%G*T[2"

PRINT*REMEMBER THE VI = O BECAUSE IT WAS FIRED HORIZONTALLY."

PRINT

PRINT"THE POINT IS THAT WE HAVE TAKEN THE MOTION APART INTO ITS

PRINT"HORIZONTAL AND VERTICAL COMPONENTS."

PRINT'TYPE 'C' WHEN READY TO CONTINUE."

IFINKEY$= “"C" THEN 515 ELSE 510

CLS

PRINT“NOW USING THESE TWO EQUATIONS X = VI*T AND Y=1/2*A*T[2"

PRINT"SOLVE THIS PROBLEM:"

PRINT"A CANNONBALL IS FIRED HORIZONTALLY WITH VELOCITY OF 88 M/SEC
H

PRINT"FROM THE TOP OF A CLIFF 56 M HIGH." Program continued

31

education

550 INPUT "IN WHAT TIME WILL IT STRIKE THE PLAIN AT THE CLIFF'S BASE";
T

560 IF T 5>3.2 AND T < 3.5 THEN 590 ELSE 570

570 PRINT“TRY AGAIN. DID YOU USE A = 9.8 M/SEC[2 2"

580 GOTO 550

590 PRINT"YOU DID IT!I®

600 INPUT “AT WHAT DISTANCE X FROM THE FOOT OF THE CLIFF WILL IT STRIK
E";X

610 IF X>289 AND X<300 THEN 640 ELSE 620

620 PRINT"TRY AGAIN, IT'S NOT THAT HARD."

630 GOTO 600

635 PRINT

640 PRINT"NOW YOU'RE READY FOR THE FINAL EXAM. TYPE 'C' WHEN READY."

650 IFINKEY$="C" THEN GOTO 660 ELSE 650

660 CLS

670 PRINT"THE SPACE SHUTTLE IS ON THE 747 BOMBER FOR A TEST LANDING."

675 PRINT"IT WILL NOT USE ITS MOTORS BUT COME IN BY FREE FALL."

690 PRINT"THE SHUTTLE CARRIER AIRCRAFT IS FLYING HORIZONTALLY"

700 PRINT"1200 M ABOVE THE GROUND AT 400 M/SEC."

705 PRINT"HOW FAR HORIZONTALLY FROM THE TARGET SHOULD THE PILOT SEPARA
TE"

707 PRINT"THE SPACE SHUTTLE TO HAVE IT COME IN RIGHT IN FRONT OF THE"

708 PRINT“BULL'S EYE TV CAMERAS?"

730 PRINT

736 PRINT"TURN THIS PROBLEM IN WITH YOUR LAB."

738 PRINT

740 PRINT"GOOD LUCK. I HOPE YOU GET YOUR FLIGHT WINGS FOR OUTER SPACE.
"

750 PRINT"COME BACK AND SEE ME AGAIN."
760 END

Program Listing 2. Human Cannonball

10 CLS:REM PROJECTILE MOTION PROGRAM AT AN ANGLE BY HUETINCK/LELEWER
(CANNON/BAS)

20 PRINT"WELCOME BACK TO THE PHASCINATING WORLD OF PHYSICS."

30 PRINT"YOU HAVE LANDED A SUMMER JOB WITH THE RINGLING BROTHERS CIRCU
s,"

4Q PRINT"WHERE YOU WILL BECOME A PHYSICS PHENOMENON.

SO PRINT"YOUR ASSIGNMENT IS TO BE A HUMAN CANNONBALL IN THE"

55 PRINT" ** GRANDE FINALE **":PRINT:PRINT:PRINT

70 PRINT"BEFORE REPORTING TO SARASOTA, FLORIDA FOR TRAINING®

8O0 PRINT"YOU SHOULD OVERCOME YOUR FEAR OF FLYING"

9O PRINT"BY LEARNING A LITTLE ABOUT PROJECTILE MOTION.":PRINT

100 PRINT"PRESS 'C' WHEN YOU'RE READY FOR YOUR LESSON."

110 IF INKEY$="C" THEN 120 ELSE 110

120 CLS:PRINT"YOU WILL BE FIRED FROM THE CANNON"

140 PRINT"AT AN ANGLE OF 50 DEGREES AND WITH A VELOCITY OF 25 M/S.*

150 PRINT@768, "USE BASIC TRIG FUNCTION DEFINITIONS TO SOLVE FOR VX AND
vy."

172 PRINT@339," 25":PRINT@535, “50": PRINT@G65, "VX" : PRINT@360, "VY*

180 FOR I=9 TO 27:SET{2*(59-1)-30,1):NEXT I

186 FOR J=34 T0 70:SET(J,27):NEXT J

192F0R J=9 TO 27 STEP 2:SET(70,J):NEXT J

198 PRINT@903, "VX"; : INPUT VX

200 PRINT@967, "VY"; 1 INPUT VY

210 IF VX>=15.9 AND VX<=16.2 THEN K=1 ELSE K=2

220 [F VY>=18.9 AND VY<=19.3 THEN N=1 ELSE N=2

230 IF K=1 AND N=1 THEN 245

2326070 320

245 CLS:PRINT"RIGHT! YOU'VE PASSED THE AUDITION.®

260 PRINT"NOW USE THESE EQUATIONS TO CONTINUE TRAINING.®

270 PRINT"WRITE DOWN THE EQUATIONS SO THAT YOU'LL HAVE THEM.":PRINT:PR

INT
290 PRINT"VX = 16,07 VY = -9.8*T + 19,15 ":PRINT
3Q0PRINT"X = 16,07*T Y oo= -4.9*%T[2 + 19.15%T

32

31

[

315
320
360
370
380
384
386
388
390
392
394

396
400
420
430

440
500
510

515
520
522
524
526
528
530
532
534
536
538
540
542

546
550
575
600

605
610
612
614
620
622
650
670
680

690
710
715
720
730

750

education

PRINT:PRINT:PRINT"WHEN YOU HAVE THE EQUATIONS, TYPE ‘C' TO CONTINU
E.n

IF INKEY$="C" THEN 400 ELSE 315

CLS:PRINT“HWRONG -- NO CIGAR!"

PRINT"TRY AGAIN - GET HELP - DON'T LOSE OUT ON THIS"

PRINT"GOLDEN OPPORTUNITY FOR A HIGH-PAYING JOB"

PRINT"WITH A CHANCE TO SEE THE WORLD!":PRINT:PRINT

IF K=1 AND N=2 PRINT"VX WAS RIGHT, BUT VY WAS WRONG."

IF K=2 AND N=1 PRINT"VY WAS RIGHT, BUT VX WAS WRONG."

[F K=2 AND N=2 PRINT"VX AND VY WERE BOTH WRONG."

INPUT"ARE YOU READY TO TRY AGAIN (Y OR N)";A$

[F A$="Y" THEN 120

IF A$="N" PRINT"COME BACK AFTER YOU GET HELP FROM YOUR TEACHER.":E
ND

GOTO 390

CLS:PRINT"HERE'S A PREVIEW OF THE PATH YOU'LL TAKE"

PRINT'AS YOU'RE FIRED FROM THE CANNON."
SET(?2,33)3SET(39,27):SET(46,22):SET(53,18):SET(GO,IS):5ET(67,13):
SET(74,12

SET(81,13):SET(BS,IS):SET(?S,lﬂ):SET(IOZ,ZZ):SET(109,27):SET(116,3
3

PRINT@832, "WE'LL LOOK AT THE PATH IN A DIFFERENT WAY. TYPE 'C' WH
EN READY."

PRINT@896, "THIS TIME, STOP YOUR MOTION AT ANY POINT BY TYPING 'S'.

[F INKEY$="C" THEN 520 ELSE 515

cLS

SET(32,33):P=0:G0SUB 1000
SET(39,27):P=1:GOSUB 1000
SET(46,22):P=2:G0SUB 1000
SET(53,18):P=3:G0SUB 1000
SET(60,15):P=4:G0SUB 1000
SET(67,13):P=5:GOSUB 1000
SET(74,12):P=6:G0SUB 1000
SET(81,13):P=7:G0SUB 1000
SET(88,15):P=8:G0SUB 1000
SET(95,18):P=9:GOSUB 1000
SET(102,22):P=10:GOSUB1000
SET(109,27):P=11:GOSUB 1000
SET(116,33):P=12:G0SUB 1000
GOTO 500

T=.326*P:X=16.07*T:PRINT@652,"X = “; :PRINT USING"##.#";X
PRINT"NOW WE HAVE SOME QUESTIONS FOR YOU. WRITE DOWN THE X VALUE"

PRINT"AND WRITE DOWN THE FOLLOWING QUESTIONS. YOU'LL TURN IN"
PRINT"THE ANSWERS AT THE END OF YOUR TRAINING."

PRINT" 1) WHAT IS THE VALUE OF Y AT THIS POINT?"

PRINT" 2) WHAT ARE VX AND VY NOW?":PRINT

PRINT"TYPE 'C' WHEN YOU'RE READY TG CONTINUE."

IF INKEY$="C" THEN 650 ELSE 622

CLS:PRINT"YOU MAY HAVE A FEW ADDITIONAL PRACTICAL CONCERNS"
PRINT"ABOUT THIS NEW OCCUPATION OF YOURS.":PRINT:PRINT

PRINF'THE TENT IN WHICH YOU PERFORM IS 25 M HIGH AND 80 M ACROSS.

PRINT"IF YOU'RE SHOT ACROSS THE TENT TOWARD A NET,"

PRINT@466,"1) WILL YOU HIT THE TOP OF THE TENT?"

PRINT@530,"2) HOW FAR AWAY SHOULD THE NET BE PLACED?"

PRINT@704, "TURN IN YOUR ANSWERS FOR THESE TWO QUESTIONS."
PRINT@768, "YOUR TRAINING IS NOW COMPLETE. GOOD LUCK ON OPENING NI
GHT!"

END

1000 FOR N=1 TO 50:IF INKEY$<>“" THEN 575
1020 NEXT N
1030 RETURN

33

GAMES

Satan’s Square
Card Playing
Another Magic Trick

35

GAMES

Satan’s Square

by James Wood

Satan’s Square is the TRS-80’s answer to Rubik’s CubeTM, It contains all
the fun and challenge of a real Rubik’s Cube, with the exception that you
cannot throw it against a wall when the frustration level becomes too great.
The game requires a 16K Color Computer with Extended Color BASIC.

When you run the game, you are first asked to enter your skill level, a
number from 3 to 8. Each row of the cube will be made up of the number of
cells that you enter. For example, if you enter 3, the cube will have three
cells per side; if you enter 8, the cube will have eight cells per side. Next, you
are asked whether you would like the rows to be differentiated by color or by
a different letter in each row. If you select C (for color), the rows of cells will
be of different colors, very much like an actual Rubik’s Cube. If you answer
L (for letter), all cells will be of the same color, but each row will have a dif-
ferent letter in each cell. This option allows you to play the game on a black
and white television (or with color-blind players!).

When the game begins, a pattern of cells arranged in a square is dis-
played. The cells in each row are the same color, or letter, depending on
what you selected. You are then asked if you would like the cube to be
shuffled. Respond by striking Y if you want the computer to mix the cells, or
N if you want to begin the game with an orderly cube. If you select Y (yes,
shuffle), the cells will be shuffled first vertically, then horizontally.

Moves are made by typing a number corresponding to the row or column,
then an arrow for the direction desired. All the cells will be moved in the
direction indicated by the arrow, with the last cell wrapping around to the
first position (see Figure 1). The computer keeps track of the number of moves
you have made and displays them in the lower right corner of the screen. If
the pressure becomes too much for you, hit the Z key. This causes the com-
puter to ask if you wish to play again. Respond with Y for yes, N for no.

How the Program Works

Table 1 lists program lines and descriptions. Lines 4-26 display the in-
structions and input the information needed to set up the cube. Error traps
are provided in lines 20 and 26 to guard against illegal answers.

Lines 28-30 clear the screen to black and draw the cube. Lines 40 and 41
ask if the cube is to be shuffled. If you respond with Y (shuffle), execution
progresses to line 50; an N response causes a jump to line 160. Any other

37

games

response is an illegal one, causing a loop back to the INKEY$ function in line
41. Lines 51-85 make up the vertical shuffle, and lines 99-150 comprise the
horizontal shuffle. Lines 165-171 maintain a count of the moves in variable
X and display the number of moves on the screen.

Line 190 is a common INKEY$ keystroke input routine, with B$ receiving
the value, if any, of INKEY$. The ASCII value of B$ is tested in lines
211-214. Depending on which arrow key is struck, execution jumps to the
needed move routine. Line 215 is reached only if the key that was struck was
not an arrow key. Lines 230-490 make up four separate move routines.
These routines move the required row (variable I) in the required direction,
depending on which arrow key was struck. Lines 500 and 510 ask if you wish
to play again, and are reached only if you hit the Z key.

~— o ™
c c c
E E E
3 3 5
© © ©
O O o
Row 1 | A B A A B
: Entering: 1, right
Row2 [C | |B C arrow results in c
Row3 |C| | A B ClIA

Figure 1. Explanation of moves

Lines Purpose

1-26 rules

28 prints colored blocks
30 prints letter blocks

40-150 shuffle

160-210 input moves
230-280 moves row right
300-350 moves column down
360-420 moves row left
430-490 moves column up

Table 1. Line descriptions

games

Program Listing, Satan’s Square

1 REM JAMES WOOD, 424 N.MISSOURI, ATWOOD, ILL, 61513, SEPT 1981
3 CLS:PRINT:PRINTTAB(8)"WOOD'S SQUARE"

4 PRINT:PRINT" I WILL GIVE YOU A SQUARE":PRINT"PATTERN WITH ROWS
OF IDENTICAL":PRINT"ITEMS. I CAN SHUFFLE THE":PRINT"PATTERN OR
YOU MAY SHUFFLE.":PRINT"THE OBJECT OF THE GAME IS TO":PRINT"RETU
RN THE PATTERN TO ROWS OF":PRINT"IDENTICAL OBJECTS,"

5 PRINT" TO MOVE USE 1,2,3, ETC FOR THE":PRINT"ROW OR COLUMN YQOU
WANT MOVED":PRINT"AND THE ARROWS FOR THE":PRINT"DIRECTION QF MO

VEMENT . "

19 PRINT:PRINT"DIFFICULTY 3 TO 8";

15 AS=INKEY$:IFAS=""THEN15ELSEA=VAL(AS)

20 IFA<3 ORA>8 THEN1®

25/PRINT:PRINT"COLOR BLOCKS OR LETTER BLOCKS™:PRINT"
(C/L)";

26 D$=INKEYS$:IFD$="C"THEN2BELSEIFDS$="L"THEN3GELSE26
28 CLS@:FORB=1TOA:FORC=1TOA:PRINT@C*2+(B~1)*64,CHRS(143+(B~1) *16
) 1 : NEXTC, B: GOTO408

3¢ CLS#:FORB=1TOA:FORC=1TOA: PRINT@C*2+(B-1)*64 ,CHRS (64+B) ; : NEXTC
/B

40 PRINT@20,"SHUFFLE(Y/N)";

41 A$=INKEY$:IFAS="Y"THENS@ELSEIFA$="N"THEN16@ELSE41l
5@ PRINT@20,STRINGS$(12,128);

51 REM VERTICAL SHUFFLE

55 FORE=1TOA:FORF=1TORND (A)

60 H=PEEK(960+64*A+2%E)

65 FORD=A-1TO1STEP~-1

7¢ G=PEEK(960+2*E+64*D)

75 POKElG24+2%E+64*D,G:NEXTD

80 POKE1@24+2*E,H

85 NEXTF,E

99 REM HORIZONTAL SHUFFLE

1¢8 FORD=1TOA:FORF=1TORND (A)

1¢5 H=PEEK(A*2+64*D+960)

168 FORE=A-1TOl1STEP~1

118 G=PEEK(968+E*2+64*D)

126 POKE962+E*2+64*D,G:NEXTE

148 POKE962+64*D,H

158 NEXTF,D

160 PRINT@2#,STRING$(12,128);

165 PRINT@411,"MOVES"™;

169 REM MOVES

176 PRINT@565," ";

171 PRINT@406 ,X;:X=X+1

19¢ B$=INKEYS$:IFBS$=""THEN190

195 IFBS$="Z"THEN5088

208 I=VAL(BS):IF I<1 OR I>A THEN198

201 PRINT@504,I;

210 C$S=INKEY$:IFCS=""THEN218

211 IFASC{CS$)=9THEN230

212 IFASC(C$)=BTHEN360

213 IFASC(C$)=94THEN438

214 IFASC(C$)=10THEN300

215 GcoTo218

230 H=PEEK(A*2+64*I+960)

248 FORE=A-1TOl1STEP~1

25@ G=PEEK(960+E*2+64*1)

268 POKE962+E*2+64*I,G:NEXTE

278 POKE962+64*1,H

280 GoTOl74

300 H=PEEK(64*A+2*1+960)

319 FORD=A~1TOlSTEP-1

320 G=PEEK(960+2*I1+64*D)

330 POKE1024+2*I+64*D,G:NEXTD

340 POKE1@24+2*I,H

358 GOTO174

3680 H=PEEK(962+64*I) ;
370 FORE=1TOA-1 Program continued

39

games

388 G=PEEK(962+E*2+64*1)

398 POKE960+E*2+64*1,G:NEXTE
400 POKE968+A*2+64*1,H

428 GOTOL78

430 H=PEEK(1824+2%1)

448 FORD=1TOA-1

450 G=PEEK(1824+2*I+64%D)

468 POKE960+2*I+64*D,G:NEXTD
478 POKE968+64*A+I*2,H

499 GOTO170

588 CLS:PRINT"PLAY AGAIN (Y/N)"
51@ A$=INKEY$:IFA$="Y"THENRUNELSEIFA$="N"THENBNDELSESIB

40

GAMES

Card Playing

by Louis Zeppa

y interest in programming card games led me to read Scarne on Cards.
This book by the acclaimed card mastermind discusses rules,
strategies, and tactics for various games.

Two of the aspects Scarne emphasizes for games such as rummy, stud
poker, blackjack, and pinochle are memory and awareness. According to
Scarne, a player should try to remember cards as they are played during
each hand. Scarne claims that, through all the shuffles, cuts, and play, he is
aware of where cards sit in the deck.

Program Listing 1 begins with a well-managed deck by initializing a full
deck (lines 60-80) and randomly disordering it (lines 90-150). You can ob-
tain a presorted deck by removing the remark in line 61.

For shuffling, the deck is split into two equal packs (lines 160-210) and
mixed so that the top card moves down to the second position and the bot-
tom card moves up one spot. You can choose any number of shuffles.

Cutting the cards depends on which player is the dealer. The computer
does it randomly in its turn (lines 220-280). The player enters the number of
cards to be removed from the top of the deck and placed at the bottom. The
smaller pile must have at least five cards. Line 225 provides a 20-card cut
that may be used with the presorted deck for debugging. Remembering the
relative position of specific cards lets you cut the deck to your advantage.

After the two piles are rearranged into a single deck, the hands are dealt.
During and after play, the cards are gathered according to the way they are
played. After initialization, the only RANDOM function used is for the cut
after shuffling.

To demonstrate deck management, I’ve used two elementary card games.
In the first one (see Program Listing 1), known to children as war or jacks
(depending on whether aces or jacks are high), all the cards are dealt into
piles face down in front of each player (lines 300-330). The GOSUB 5000 in
line 330 displays the hands after the deal. Play commences when the players
turn over their top cards (line 370). High card takes the trick (lines 430-520),
and the winner adds the cards to the bottom of his or her stack (lines 460 and
510). Break ties by drawing two cards (lines 570-580) from each player’s
stock and matching a third card as described for regular play. The winner is
the player who captures all the cards.

The game has no skill element at all, so the program plays both sides
without intervention. If this program were for children, not demonstration,
there would be graphics cards and player entries. Using MID$ of TRS-80
Disk BASIC would reduce the number of string exchanges and eliminate the

41

games

string garbage collection routine but would be incompatible as a demonstra-
tion for non-disk computers.

To keep array pointers simple, as top cards are played to tricks, they are
put into temporary array MX$() in lines 370 and 570-580 and removed
from each player’s stack. The stack arrays are rearranged so the next card is
element 1 of the array (lines 680-690). The game is written as an infinite
loop. When one side wins all the cards, the deck is shuffled and cut, and a
new game is dealt.

The second game (see Program Listing 2) adds a small tactical element.
Each player is dealt four cards (lines 820-860); the rest of the deck is reserved
as a stock. Changing variable NP in line 800 allows you to experiment with
other sized hands. The designated player (variable C%) leads with a card
(lines 1220-1260); the other player must respond with a higher card to win
the trick (lines 1270-1330). The winner of the previous trick fills his hand by
drawing the top card from the stock (line 1400 or 1420) and leads with a card
from his hand. The second player draws the next card and plays to the lead
card. The goal of the game is to take one more than half of the tricks—14
tricks for this 52-card deck.

Because this is a demonstration of deck management, the card tactics and
strategy used are simple. It takes a higher ranked card to take the trick, so
the lead plays the highest ranked card in hand (lines 1200-1260). The
response is either the lowest ranked card that will take the trick or the lowest
card in the hand (lines 1270-1330).

Cards are taken up in the order played. Unplayed cards are gathered in
this order: remainder in winner’s hand, remainder in loser’s hand, any left
in the stock (lines 1470-1490 called from lines 960 and 970). Again, the com-
puter plays both hands. When there is a winner, the computer shuffles, cuts,
and deals for another game.

Shuffling Along

I used to wonder how many shuffles would return a deck to the original
order. Thinking it would take forever, I've never done it with real cards but
decided to try it on the computer: Program Listing 3 creates a new deck
(lines 40-50) and shuffles it (lines 80-90) until the original order returns.
Counting the number of shuffles (line 100), it saves the top card after each
shuffle in array D(H) and counts how many times any card returns to its
original position regardless of order (lines 120-140).

In the perfect-mix-shuffle, 52 shuffles restore the deck to its original
order. Needless to say, I was surprised. When setting up the experiment, H
was set as a double-precision variable, and there was no array of first cards.
No card returns toits original position until they all do, but each card goes to
each of the other 52 positions along the way. The array of top cards after
each shuffle is itself a shuffled deck.

42

games

A magazine article I read had another theory of card shuffling. According
to “The Mathematics of Card Tricks” (SCIENCES82, August 1982, pp. 7 +),
eight perfect shuffles will return a deck to its original order. I tested my idea
and theirs and found both to be correct. Eight shuffles will restore the order
of the deck if the top card remains on top; that is, 51 cards are shuffled in-
stead of 52. This method provides the basis for many card tricks. To modify
my program to perform the eight-card shuffle, switch the loop indices of
lines 80 and 90 (or 81 and 91) as follows:

80 W=0: FORX=1TOM - 1STEP 2: W =W + 1: BX) = A(W): NEXT
90 FOR X =2 TO M STEP 2: W =W + 1: B(X) = A(W): NEXT

I derived from observation a method for finding the position of a card
after a shuffle. If M is the number of cards in the deck and X is the position of
the card, then two times X will be its position after one shuffle. If two times
X is greater than the number of cards in the deck, then its position will equal
two times X less the size of the deck plus one or (2+X) — (M + 1). Assuming a
52 card deck, a card’s position will move from 1 to 2 to 4 to 8 to 16 to 32. Us-
ing the above equation, its next position will move then to 11, (2+32) -
(52 + 1), then to 22 to 44 to 35, (44+2) — (52 + 1), and so on.

The preceding example has two important implications for card-playing
programs. First, the following programmed equation will enable the com-
puter, or a person, to estimate the location of a card:

10 X = (initial location)

20 X =2+«X

30 IF X > (size of deck) THEN X =X — (size of deck + 1)
40 TF (another shuffle) THEN GOTO 20

If a program, as player, contains some such routine, as the game progresses
it will develop a complete picture of the deck, independent of the computer
as deck manipulator.

Second, an array of pointers may be used to reduce or even eliminate ac-
tually shuffling a deck’s string array. Alternate lines 71, 81, 91, and so on
show the use of pointers to manipulate the deck; that is, instead of
manipulating strings, the program will manipulate integer arrays which are
faster and take up less space. The simplest implementation of that idea
would be to specify the number of shuffles:

10 INPUT “HOW MANY TIMES SHOULD I SHUFFLE THE DECK”; NS
followed by this routine (M equals the size of the deck):

90 FORZ=1TOM: X=Z
30 FORY=1TO NS

40 X =X+2

50 IFX >M THEN X =X - (M +1)
60 NEXT Y

70 Z(Z) =X

80 NEXT Z

43

games

Whenever a shuffle is needed, the array pointer Z(Z) is used:
90 FOR Z = 1 TO M: A(Z) = B(Z(Z)): NEXT Z
Because having the computer remember the deck complicates things, I
haven’t programmed any complicated card games. I am now developing a
winning strategy, and I need a compact method of storing the deck, but such
refinements do not belong in a discussion of shuffling.

44

games

Program Listing 1

10 CLS:CLEAR5000:DEFINTA-Z:DEFSTRA-G: Y$="CDHS" : A="12"
20 7$="23456789TJQKA" :M=LEN(Y$)*LEN(Z$):DIMT{LEN(YS),LEN(ZS))
30 DIMB(M),A(M), I(M),C(M),D(M),MX$(M),J(M)

40 NS=4: ' NUMBER OF SHUFFLES BETWEEN HANDS

50 DEFFNXY(X$,Y$)=INSTR(X$,RIGHT$(¥$,1))

60 PRINT" CREATE THE DECK"

61 * GOSUBS5130:GOT0290: ' TO USE PRESORTED DECK

70 W=0: FORY=1TOLEN(Y$): FORZ=ITOLEN(ZS$): W=h+1

80 B(W)=MID$(Y$,Y,1)+MID$(2$,Z,1): A(W)=B(W): NEXTZ,Y
90 PRINT" DISORDER THE DECK"

100 FORX=1TOM: I(X)=0: NEXT

110 FORX=1TOM

120 1=RND(M)

130 IFI(I) OTHENJ(X)=I: I(I}=1 ELSE120

140 NEXTX
150 FORX=1TOM: A{X)=B(J(X)): NEXT
160 PRINT" SHUFFLING “;

161 'GOSUBS150

170 FORZ=1TONS: W=0: PRINTZ;
180 FORX=2TOMSTEP2: W=W+l: B(X)=
190 FORX=1TOM-1STEPZ2: W=W+1: B(X
200 FORX=1TOM: A{X)=B(X): NEXT
210 NEXTZ: PRINT

220 PRINT" CUTTING

225 'CU%=20:60T0240: ' PRESET CUT POSITION

230 CUZ=RND(M-10)+5

240 PRINT“CUT IS BETWEEN"CU%" AND"TU%+1

250 FORX=1TOM: Y=X+CU%

260 IFYOMTHENCU%=CU%-M: Y=1

270 B(X)=A(Y): NEXT

280 A="":FORK=1TOM: A(X)=B{X): A=A+A(X): NEXT

290 ' CONTINUE POINT FOR THE TWO DIFFERENT GAMES

300 PRINT" DEALING JACKS"

310 Y=0: FORX=1TOMSTEP2: Y=Y+l

320 C(Y)=A{X): D(Y)=A(X+1)

330 NEXTX: GOSUB5000: ' TO DISPLAY HANDS

340 ' PLAYING

350 R=1: Il=Y: Jl=Y: [2=1: J2=1

360 PRINT"C HAS"I1" CARDS; D HAS"J1" CARDS ";

370 MX$(R)=C(1): MX${R+1)=D(1)

380 I1=11-1:J1=J1-1:G0SUB680:GOSUB6I0

390 LC=FNXY(Z$,MX$(R)): LD=FNXY(Z$,MX${R+1))

400 ' LC=INSTR(Z$,RIGHT$(MXS$(R),1

410 ' LD=INSTR$(Z$,RIGHTS(MX$(R+1),1))

420 PRINT"

C o “MX$(R)" >><< "MX$(R+1)" : D"

430 ' FIRST EVALUATION

440 IFLC=>LDTHENA9OELSEIFI1<1THEN640

450 ' D HAS HIGHER CARD

460 1=0: FORX=J1+1TOJ1+(R+1):I=1+1:D(X)=MX$(I):NEXT

470 J1=g1+1: R=1: GOT0360

480 ' SECOND EVALUATION

490 IFLC LDTHENS40ELSEIFJ1<1THENGS0

500 ' C HAS HIGHEST CARD

510 1=0:FORX=11+1TOI1+(R+1):I=I+1:C(X)=MX$(I) :NEXT

520 I1=11+I: R=1: GOTO360

530 ' THIRD EVALUATION

540 IFI1<1ANDJ1<1THENGGO

550 ' FOURTH EVALUATION

560 IFI1<1THENG40ELSEIFJ1<1THENGS0

570 R=R+2:MX$(R)=C(1):MX$(R+1)=C(2)

580 R=R+2:MX${R)=D(1):MX$(R+1)=D(2)

590 I1=11-2

600 IFI1<1THENG4OELSE12=2:GOSUB68O

610 J1=91-2

620 IFJ1<1THENGAOELSEJ2=2:G0SUB6I0

630 R=R+2: 12=1: J2=1: GOT0360 Program continued

A(W): NEXT
)=A{W): NEXT

45

games

640 PRINT“'D' WINS":GOT0670

650 PRINT"'C' WINS":GOT0670

660 PRINT" TIE"

670 GOT0160

680 FORX=1TOI1:C(X)=C(X+12):NEXT:RETURN

690 FORX=1T0J1:D(X)=D(X+J2):NEXT:RETURN

4990 END

5000 PRINT" DISPLAYING HANDS"

5010 FORX=1TOY:PRINTC(X)" *;:NEXT:PRINT

5020 FORX=1TOY:PRINTD(X)" " :NEXT :PRINT

5030 RETURN

5040 ' VERIFYING NO DUPLICATE CARDS IN DECK
5050 FORX=1TOM:FORY=XTOM: IFX=YTHEN5070

5060 IFA(X)=A(Y)THENPRINTX" “A(X);Y" “"A(Y):STOP
5070 PRINTCHR$(145);CHR$(8);:NEXTY,X: RETURN
5080 ' PRESORTED DECK

5090 DATA D8, SK,CJ,H2,(5,(8,D9,(K,53,5J,C3,H8,S6
5100 DATA H6,HJ,ST,H9,HT,S$9,D4,CT,D2,DT,C9,D3,H5
5110 DATA S7,HK,DQ,CQ,D7,C6,54,55,D6,DK,SQ, S8, HA
5120 DATA DA,DJ,H4,C7,H3,C4,52,D5,H7,CA,HQ,SA,C2
5130 POKE16553,255: FORX=1TOM: READA(X): NEXT:RETURN
5140 ' VERIFY NO DUPLICATE CARDS

5150 A="": FORX=1TOM:A=A+A(X):NEXT:B=A

5160 PRINT:PRINTA

5170 'AY="":AY=INKEY$:[FAY=""THEN10152

5180 RR=0:FORX=1TO2*MSTEP2: K0=0: D=MID${A,X,2)
5190 IFRIGHT$(D,1)=" "THEN5230ELSEKA=1

5200 KA=INSTR(KA,A,D): IFKA=0THEN5230

5210 MID§(A,KA,2)="A *

5220 KO=KO+1:IFKO>1THENPRINTX;KA" "D:PRINTA:PRINTB:RR=1ELSE5200
5230 NEXTX:IFRR<>1THENRETURN

5240 PRINT"10215";

5250 GO105250

Program Listing 2

10 CLS:(LEARSQ00:DEFINTA-2: DEFSTRA-G: Y$="COHS" : A="12"
20 7$="73456789TIQKA" : M= LEN(Y$)*LEN(Z$) DIMT(LEN(YS$),LEN(Z$))
30 DIMB(M),A(M),1{M),C(M),D(M},MX$(M),J (M)

40 NS=4: ' NUMBER OF SHUFFLES BETWEEN HANDS

50 DEFFNXY(X$,Y$)=INSTR(X$,RIGHT$(Y$,1))

60 PRIN™ CREATE THE DECK"

61 GOSUB5130:G0TO290: ' TO USE PRESORTED DECK

70 W=0: FORY=1TOLEN(Y$): FORZ=1TOLEN(Z$): W=W+1

80 B(W)=MID$(YS,Y,1)+MID$(2$,2,1): A(W)=B(W): NEXTZ,Y
90 PRINI" DISORDER THE DECK"

100 FORI=1TOM: I1(X)=0: NEXT

110 FORI=1TOM

120 I=RID(M)

130 IFI{1)=0THENJ(X)=1: I{I)=] ELSE120

140 NEXIX
150 FORX=1TOM: A(X)=B(J(X)): NEXT
160 PRINT" SHUFFLING "3

161 GOSIB5150
170 FORZ=1TONS: W=0: PRINTZ;

180 FOWX=2TOMSTEPZ: W=W+1: () A(NEXT
190 FORX=1TOM-1STEP2: W=W+1: B{X)=A{W): NEXT
200 FOK=1TOM: A{X)=B(X): NEXT

210 NEXTZ: PRINT

220 PRIN" CUTTING *

225 'CUS=20:G0T0240: ° PRESET CUT POSITION
230 CUZAND(M-10)+5

240 PRINT"CUT IS BETWEEN"CUZ" AND"CU%+1

250 FOR¥=1TOM: Y=X+CUZ

260 IFDMTHENCU%=CUL-M: Y=1

270 B(X)=A(Y): NEXT

46

games

280 A="":FORX=1TOM: A(X)=B(X): A=A+A(X): NEXT

290 ' CONTINUE POINT FOR THE TWO DIFFERENT GAMES

800 SF=1:NP=4:NN=1:Y=0:N=2*NP: [FZZ=0THENZZ=1:C%=RND(2)
810 FORX=1TOLEN(Y$):FORR=1TOLEN(Z$):T(X,R)=0:NEXTR,X
820 PRINT" DEAL"

830 FORX=1TONSTEP2: Y=Y+1

840 IFCZ=1THENC(Y)=A(X):D(Y¥)=A(X+1)
850 IFCYL=2THEND(Y)=A{X):C{Y)=A(X+1)
860 NEXT

870 PRINT" PLAY"

880 NN=N:5(=0:5D=0

890 FORX=1TONP:PRINTC(X)" *;:NEXT:PRINT

900 FORX=1TONP:PRINTD(X)" *;:NEXT:PRINT

910 TFC%=1THENGOSUB1010ELSEGOSUB1120

920 PRINT" SCORE C:"SC" D:"SD

930 IF(SC<14)AND(SD<14)AND((SD+SC)<M/2)THENBIO

940 PRINT"C'S SCORE :"SC,"D'S SCORE :"

950 IFSCY>SDTHENC%=1ELSEIFSD>SCTHENC%=2ELSECE=RND(2)

960 IFNP>OTHENIFC%=1G0SUB1470:G0SUB1480:ELSEGOSUBL480:GOSUB1470
970 IFNN<MTHENGOSUB1490

980 FORX=1TOM:A(X)=B(X):NEXT:G0T0160

990 END

1000 ' € LEADS

1010 GOSUB1440: GOSUB1230

1020 GOSUB 1450: GOSUB1280

1030 PRINT"C PLAYS “C(YM);

1040 IFYP>=YGORYS=0THENPRINT" D PLAYS "D(YT);ELSEPRINT" D PLAYS “D(YS)

1050 IFYP>=YGORYS=0THENGOSUB1070:C%=1:RETURN

1060 GOSUB1090:C%=2:RETURN

1070 W$=C(YM):L$=D(YT):GOSUB1350

1080 X=YM:GOSUB1370:X=YT:GOSUB1380:G0SUB1390:RETURN
1090 W$=D(YS):L$=C(YM):GOSUB1350

1100 X=YS:G0SUB1380:X=YM:GOSUB1370:GOSUB141G:RETURN
1110 ' D LEADS

1120 GOSUB 1450: GOSUB1230

1130 GOSUB 1440: GOSUB1280

1140 PRINT"D PLAYS "D(YM);

1150 IFYP>=YGORYS=QTHENPRINT" C PLAYS “C(YT);ELSEPRINT" C PLAYS “C(YS)

1160 IFYP>=YGORYS=0THENGOSUB1180:C%=2:RETURN

1170 GOSUB1200:C%=1:RETURN

1180 W$=D(YM):L$=C(YT):GOSUB1350

1190 X=YM:GOSUB1380:X=YT:GOSUB1370:GOSUB1410:RETURN

1200 W§=C(YS):L$=D(YM):GOSUB1350

1210 X=YS:GOSUB1370:X=YMN:GOSUB1380:G0SUB1390:RETURN
1220 ' FIRST PLAY

1230 YP=0:YR=14:FORX=1TONP

1240 Y=FNXY(Z$,MX$(x))

1250 IFYD>YPTHENYP=Y:YM=X

1260 NEXT: RETURN

1270 ' RESPONSE

1280 YS=0: YG=14: YH=14

1290 FORX=1TONP

1300 Y=FNXY(Z$,MX$(X))

1310 [FY>YPANDY<YGTHENYG=Y:YS=
1320 TFY<=YPANDY<YHTHENYH=Y:YT
1330 NEXT: RETURN

1340 * ADD USED CARDS TO TAKE-UP STOCK

1350 B(SF)=W$:B(SF+1)=L$:SF=SF+2:RETURN

1360 ' REARRANGE HANDS AFTER PLAY

1370 FORX=XTONP-1:C(X)=C(X+1):NEXT:RETURN

1380 FORX=XTONP-1:D(X)=D(X+1):NEXT:RETURN

1390 IFNN>=MTHENNP=NP-1:5C=SC+1:RETURN

1400 C(NP)=A{NN+1):D(NP)=A(NN+2):NN=NN+2:5C=SC+1 :RETURN

1410 IFNN>=MTHENNP=NP-1:SD=SD+1:RETURN

1420 D(NP)=A(NN+1}:C(NP)=A(NN+2): NN=NN+2:SD=SD+1 :RETURN

1430 ' PUT HANDS IN TEMPORARY ARRAY

1440 FORX=1TONP :MX$(X)=C(X) :NEXT:RETURN Program continued

X
=X

47

games

1450 FORX=1TONP :MX$(X)=D(X) :NEXT:RETURN

1460 ' FILL DECK WITH UNPLAYED CARDS

1470 FORX=1TONP:B(SF)=C(X):SF=SF+1:NEXT:RETURN
1480 FORX=1TONP:B(SF)=D(X):SF=SF+1:NEXT:RETURN
1490 FORX=SFTOM:B(X)=A(NN+1):NN=NN+1:NEXT:RETURN
5000 PRINT" DISPLAYING HANDS"

5010 FORX=1TOY:PRINTC(X)" “;:NEXT:PRINT

5020 FORX=1TOY:PRINTD(X)" " :NEXT:PRINT

5030 RETURN

5040 ' VERIFYING NO DUPLICATE CARDS IN DECK
5050 FORX=1TOM:FORY=XTOM: IFX=YTHEN5070

5060 [FA(X)=A(Y)THENPRINTX" "A(X);Y" “A{Y):STOP
5070 PRINTCHR$(145) ;CHR$(8) ; :NEXTY,X: RETURN
5080 ' PRESORTED DECK

5090 DATA D8, sK,(J,H2,(5,(8,D9,CK,53,5J,C3,H8,56
5100 DATA H6,HJ,ST,H9,HT,S9,D4,CT,D2,DT,C9,D3,H5
5110 DATA S7,HK,DQ,CQ,D7,C6,54,55,06,DK,SQ,S8,HA
5120 DATA DA,DJ,H4,C7,H3,C4,52,D5,H7,CA,HQ,SA,C2
5130 POKE16553,255: FORX=1TOM: READA(X): NEXT:RETURN
5140 ' VERIFY NO DUPLICATE CARDS

5150 A="": FORX=1TOM:A=A+A(X):NEXT:B=A

5160 PRINT:PRINTA

5170 "AY="":AY=INKEY$:IFAY=""THEN10152

5180 RR=0:FORX=1TO2*MSTEP2: KO=0: D=MID$(A,X,2)
5190 IFRIGHT$(D,1)=" "THENS5230ELSEKA=1

5200 KA=INSTR(KA,A,D): IFKA=0THEN5230

5210 MID$(A,KA,2)="A "

5220 KO=K0+1:IFKO>1THENPRINTX;KA" "D:PRINTA:PRINTB:RR=1ELSE5200
5230 NEXTX:IFRR<O>ITHENRETURN

5240 PRINT"10215";

5250 GOT05250

10
20
30

50
60
70
71
80
81
90
9l
100
101
110
111
120
130
131
140
150
160
161
170
171

Program Listing 3

CLS:CLEARS000: DEF INTA-2: DEFSTRA-G: Y$="CDHS" : A="12"

2= "23456789TJQKA":M=LEN(Y$)*LEN(Z$):DIMZ M), K(M), X (M), Y (M)

DIMA(M),B(M),C(M),D(M):FORZ=1TOM: A(Z)=A:B(Z)=A:C(Z)=A:NEXT

0 W=0: FORY=1TOLEN(Y$): FORZ=1TOLEN(Z$): W-W+1
B(W)=MID$(Y$,Y,1)+MID$(Z$,2,1): A(W)=B(W): NEXTZ,Y

FORZ=1TOM: C{2)=B(Z): X(Z)=Z: ¥(Z)=Z: NEXT

FORZ=1TOM: A{Z)=B(Z): NEXT

*FORZ=1TOM: Z(Z)=Y(Z): NEXT

w=0:FORX=2TOMSTEP2:w=w+1:B(X)=A(w) NEXT
*W=0:FORK=2TOMSTEP2 :W=W+1:Y(X)=Z (W) : NEXT

FORX=1TOM-1STEP2:W=W+1:B(X)=A(W) : NEXT :GOSUB170
‘FORX=1TOM-1STEP2:W=W+1:Y(X)=Z (W) :NEXT :GOSUB171
H=H+1:D(H)=B(1):FORZ=1TOM: PRINTB(Z)" "C(Z),
"HeH+1:K(H)=Y(1):FORZ=1TOM:PRINTA(Y(2))" *A{Z(Z)),

1FB(2)=C(Z)THENNEXTZ GOTO150ELSEPRINTH;L
IFA(Y(Z))=A(X(Z)) THENNEXTZ:GOTO150EL SEPRINTH; L
FORZ=1TOM

IFB(Z)=C(Z)THENL=L+1:PRINTL:H" "8(Z)"/"C(Z)

CIFA(Y(Z))=A(X(Z))THENL=L+1:PRINTL;H" “A(Y(Z))"/"A(X(Z))
NEXT:GOTO70

PRINT"IT TOOK"H" SHUFFLES AND THERE WERE"L" RETURNS."
FORZ=1TOM:PRINTZ" “D(Z), :NEXT: END

'FORZ=1TOM:PRINTZ" "A(K(Z)), :NEXT: END
FORZ=1TOM:PRINTZ;B(Z)"-"C{Z}, :NEXT:RETURN

'FORZ=1TOM: PRINTZ;A(Z(Z))"-"A(X(Z)), :NEXT:RETURN

48

GAMES

Another Magic Trick

by David D. Busch

his magic trick uses a subtle communications technique that is unlikely

to be spotted by anyone but another amateur magician. In other
words, you may safely repeat this trick without fear of exposure by
spoilsports in your crowd.

The trick works as follows: The Wizard explains that mental communica-
tion between humans is amplified by the mere presence of a computer in the
room. To demonstrate, he runs Computer ESP (see Program Listing). Those
in the room can operate the program themselves, while the Wizard either
turns his back or leaves the room entirely.

First, the computer asks the participants to enter the names of eight com-
mon objects found in the room. These can be entered in any order. Next, the
players are offered the choice of choosing one of the objects for the magi-
cian to locate, or of having the computer do the selecting. In the latter
case, the TRS-80 keeps the choice secret until the Wizard has revealed his
own prediction.

At this point, the Wizard returns to the room to see the selection of eight
objects on the screen. He should make a point of never touching the com-
puter and comment to the audience that mere proximity to the computer is
contact enough to amplify his innate ESP powers. The Wizard then writes
down a prediction on a piece of paper, seals it in an envelope, and hands it to
an onlooker. Someone who knows what the choice is announces the name of
the object, or, if the computer has chosen, someone presses a key to reveal
the verdict. When the Wizard’s sealed envelope is opened, the prediction is
shown to be 100 percent correct.

The audience is sure to be baffled, even if the trick is run several times.
There are no obvious ways for the computer to have communicated to the
Wizard. The only thing that appears on the screen is the message, Okay,
Wizard, See if you can find the right object!, and a list of the objects
themselves. The wording of the message remains the same each time,
precluding any secret codes. The objects are listed in the same manner every
time the program is run. Unless a very astute observer comes along, the
magician’s secret is safe.

The Secret

The secret is in the seemingly unchanging message at the top of the
screen, Each time it is printed, there is one space after each word of the

49

games

message, except one word, which is followed by two spaces. The extra
space is unnoticeable to anyone not looking for it but sticks out like a sore
thumb to someone in the know. The position of the space points to which
object has been chosen, either by the computer, or by the players; that is, if
the space follows the first word, object number one has been chosen.

Most good magic tricks have a very simple premise, and this one is no dif-
ferent. What transforms it into something special is the patter you develop to
make the effect seem very mysterious. To enhance the program, delete the
listing on the screen that is visible to the magician. Instead, have each object
placed under a bowl or hat marked with numbers. By glancing only casually
at the message on the screen, the prestidigitator can determine which hat the
selected object is under, without even knowing which object has been
chosen.

How the Program Works

In lines 10-40, the individual parts of the message are read into a string
array, SE$(n), and stored for later use as sentence segments. After the in-
structions are displayed, a FOR-NEXT loop of 1 to 8 asks for the names of
eight objects, which are stored in OB$(n). These objects are listed on the
screen by lines 200--230, and the players offered the choice of selecting one or
of having the computer do the job. They may input a number (stored in
variable NU), or the computer will choose NU through the RND function
(line 330).

The screen clears, and the seemingly innocent message appears on the
screen, from a subroutine at lines 390-460. The FOR-NEXT loop prints
each word of the sentence with only one space following, except if the loop
counter (N3) equals NU. In that case, an extra space is added.

The names of the objects are listed to the screen next. If you want to use
my suggested enhancement, delete lines 480-500. For sessions in which the
computer has chosen the target object (CH = 2), a message, Only the com-
puter knows for sure! appears. Nothing happens on the screen until the
magician reveals his choice. Then, OB$(NU) is unveiled, and much ac-
clamation and applause result from the appreciative onlookers.

50

games

Program Listing. Computer ESP

5 CLEAR 400
10 DATA "Okay,", "Wizard,”,"See”, "1f", "you®, "can",
“find", "the","right","object "
20 : FOR N=1 TO 10
30 : READ SE${N)
40 : NEXT N
50 CLS:PRINT TAB{20) * COMPUTER ESP"
60 PRINT
70 PRINT " Wnile the Wizard is not looking, you may"
80 PRINT " enter the names of eight common objects "
90 PRINT * contained within this room., One may then"
100 PRINT ¥ be selected as the object which the Wizard"
110 PRINT " will attempt to Jocate by extra-sensory means.”
120 PRINT
130 PRINT Hit any key when ready to select objects :"
140 IF INKEY$="" GOTO 140
150 : FOR N1=1 70 8

160 : CLS:PRINT:PRINT

170 : PRINT “Enter the name of object #";N1;", contained in this ro
om, "

180 : INPUT 0B$(N1)

190 : NEXT N1

200 CLS:PRINT
210 : FOR N2=1 70 8

220 @ PRINT TAB(10) N2;".) ";08$(N2)

230 : NEXT N2

240 PRINT

250 PRINT " Would you like to :"

260 PRINT 1.) Select object yourself"

270 PRINT " 2.) Have computer select object”
280 PRINT {and keep choice to itself)"
290 PRINT

300 CH$=INKEY$: IF CH$="" GOTO 300

310 CH=VAL(CH$)

320 IF CH<1 OR CH>2 GOTO 300

330 IF CH=2 THEN NU=RND(8): GOTO 380

340 PRINT * Enter number of object to be located :";NU$
350 NU$=INKEY$:IF Nu$="" GOTO 350

360 NuU=VAL(NU$)

370 1F Nu<l OR NU>8 GOTO 350

380 CLS:PRINT:PRINT

390 : FOR N3=1 70 10

400 IF N3<>NU GOTO 430
410 : SE$=SE$(N3)+" "
420 : GOTO 440

430 : SE$=SE$(N3)

440 PRINT SE$;

450 PRINT CHR$(32);
460 : NEXT N3

470 PRINT:PRINT
480 : FOR N4=1 70 8

490 : PRINT N4;".) “;0B$(N4)

500 : NEXT N4

510 PRINT

520 IF CH=2 PRINT “"Only the computer knows for sure !
530 PRINT

540 PRINT " After Wizard has revealed choice, hit any key."
550 IF INKEY$="" GOTO 550

560 CLS:PRINT:PRINT:PRINT " The chosen object is :"

570 PRINT:PRINT OBS(NU);" ¢

580 GOTO 580

51

GRAPHICS

Graphics and ZBASIC
Part 1

Part II

Part III

Unlocking the Color Computer
Graphics Character Code
SBLOCK

53

GRAPHICS

Graphics and ZBASIC
Part I

by John Corbani

ooner or later, anyone who gets hooked on programming has to try a
graphics package. I've been the proud owner of a TRS-80 Model I for
almost two years now and finally have the graphics in fair shape. Unfor-
tunately, the combination of low resolution and slow speed made patience
the first requirement to do anything interesting. Then the ZBASIC compiler
was developed. It is a solid, interactive piece of software. Integer arithmetic
and strings are supported along with most of the BASIC commands. It im-
proves the speed, and, if you move things fast enough, the resolution isn’t so
bad after all.

These articles cover a set of graphics primitives, data base handling,
dimensional transforms, and real-time operator interaction from the
keyboard. The programs are developed first as BASIC routines and then
modified to be compatible with ZBASIC. All programs are based on a Level
II 16K TRS-80 Model I and 16K ZBASIC. The programs will also run on a
16K Model III.

Two graphics modes are possible with the TRS-80: the character mode
and the point mode. The character mode uses the standard alphanumeric
screen layout with 1024 locations. This mode can be used to create high-
speed movement of quite complex characters and is best used to handle
predefined images.

The point mode breaks each character position on the screen into six in-
dividually addressable points. The total number of points then becomes
6144. This is enough to demonstrate a wide variety of arbitrarily defined
graphics figures.

The display screen is arranged as 128 horizontal (x-axis) by 48 vertical
(y-axis) points. The x-axis points are numbered from 0 on the left to 127 on
the right. The y-axis points are numbered from 0 at the top to 47 at the bot-
tom. The aspect ratio of each point is roughly 2 to 1. That is, each point is
twice as high as it is wide.

The BASIC commands that apply to these points are SET(X,Y),
RESET(X,Y), and POINT(X,Y). SET turns the selected point white.
RESET turns the selected point black. POINT is a variable with a value of 0
if the selected point is black, and a value of — 1 if the point is white. The x-
and y-coordinates must be limited to displayable points, or the interpreter
returns an error message and halts operation.

55

graphics

Three primitive functions are required of any graphics package:

1) Clear the screen.
2) Move to a point.
3) Draw a line to a second point.

The first is a BASIC function; the second can be implemented by setting
variables; the third is best handled as a subroutine. Define all variables as in-
tegers before use. I chose variables that are easily remembered mnemonics
that are compatible with ZBASIC.

Clearing the Screen

The BASIC command CLS turns the screen black. It is possible to clear
the screen to white and plot using black on white. The finished picture looks
fine, but black streaks cover the screen during plotting. This series of articles
will lead to interactive graphics that allows continuous plotting. White on
black is the best choice.

Moving to a Point

The Draw subroutine uses X1 and Y1 as the starting point for all plotting.
The calling program must set X1 and Y1 before calling the Draw subroutine
if the new line must start anywhere other than the end of the previous line.

Drawing a Line

The Draw subroutine uses X2 and Y2 as the ending point for all lines. The
Draw function includes a clipping routine to check for lines outside the
screen boundaries. Once a line is determined to be plottable, each point is
checked so that only legal points are SET. All lines are drawn with a maxi-
mum error of 1/2 point with no rounding off error at the end points. Once a
line is complete, X1,Y1 is made equal to X2,Y2, and control returns to the
calling program,

Let’s review the ground rules for drawing a line between two points on a
grid. Lines and corners should be smooth. Lines should start and end on the
exact x- and y-coordinates called for. Lines should be symmetrical, within
one point, end for end. Lines should be continuous. Coordinates must be
easy to use. Transforming coordinates from system to system and clipping
are generally eased by defining the center of the screen as X0, Y0. X values to
the left of center are minus, to the right, plus. Y values below center are
minus, above center, plus. Plotting must be fast. A graphics package is never
fast enough.

The Draw subroutine is written at line 950 and starts by checking for lines
that are unplottable. The center of the screen is 0,0. Plottable positions are
plus or minus 63 points horizontally, by plus or minus 23 points vertically.

950 IF X1>63 AND X2>63 THEN 1070
960 If X1<-63 AND X2<-63 THEN 1070

56

graphics

970 IF Y1>23 AND Y2>23 THEN 1070
980 IF Y1<-23 AND Y2<-23 THEN 1070
1070 X1=X2: Y1=Y2: RETURN

Line 1070 is the last line of the routine. X1 and Y1 are set up to allow the
drawing of contiguous vectors by resetting X2,Y2 and calling 950 again. If
the program makes it past line 980, at least some part of the line will prob-
ably be visible on the screen and must be plotted. To get smooth lines, the
program must decide whether the distance between endpoints is greater
along the x-axis or the y-axis. It must then single step along the longer axis
from the starting to the ending point. At each step it determines the value of
the other axis and plots the point. Speed requirements argue against the use
of floating point math, multiplication, or division. The following algorithm
is not commonly known, but performs the function using only addition and
subtraction.

1000 D1=X2-X1: D2=Y2-Y1: S1=SGN(D1): S2=SGN(D2): DI=ABS(DL):
D2=ABS(D2): E=0: E1=D1+D1: E2=D2+D2: IF D1<D2 THEN 1050
1010 FOR D=0 TO D1: GOSUB 1080: X1=X1+S1: E=E+E2:
IF E>=D1 THEN Y1=Y1+S2: E=E-E1
1020 NEXT D: GOTO 1070
1050 FOR D=0 TO D2: GOSUB 1080: Y1=Y1+S2: E=E+El:
IF E>=D2 THEN X1=X1+S1: E=E-E2
1060 NEXT D

Line 1000 determines Delta X and Delta Y and which is bigger. 51 and S2
are the sign and size of the steps to be taken along the two axes. E1 and E2
are used to determine when to step the shorter axis. E keeps track of how
things are going. Now all there is to do is to check if the point is on the screen,
transform the coordinates, and plot the point.

1080 IF ABS(X1)<64 AND ABS(Y1)<24 THEN SET(63+X1,23-Y1)
1090 RETURN

The subroutine above can be demonstrated by entering and running Pro-
gram Listing 1, which draws a star on the screen. The demonstration pro-
gram in BASIC runs in 15.5 seconds, and almost all of the time is used to
draw lines. This is very slow. Save the program as G.

On to ZBASIC

The first order of business is to compile the Draw subroutine. The end-
points of the lines can be determined in BASIC and POKEd into memory.
The BASIC program can then call the compiled plot routine with USR(0).
16K ZBASIC uses the memory locations shown in Table 1 to store the
variables.

ZBASIC allows the AND function only in the arithmetic sense. In lines
950 to 980 and line 1080, you must change the AND to THEN IF.

950 IF X1>63 THEN IF X2>63 THEN 1070

57

graphics

960 IF X1<-63 THEN IF X2<-63 THEN 1070
970 IF Y1>23 THEN IF Y2>23 THEN 1070
980 IF Y1<-23 THEN IF Y2<-23 THEN 1070

1080 IF ABS(X1)<64 THEN IF ABS(Y1)<24 SET(63+X1,23-Y1)
Change line 10 to show the name GRAPHICS Z1 Z.

10 REM GRAPHICS 71 "Z" 7/6/81 JC

Delete lines 20 through 80 and save the BASIC program as Z. Now com-
pile and remember that you cannot use line feeds in a program that will be
compiled. Use spaces for formatting. If there are no compile errors, save the
compiled program as Z1 using the ZBASIC SAVE. If a mistake is made later,
reloading is faster than retyping. Return to BASIC.

All ZBASIC compiled programs start at 25165. This converts to a low-
byte value of 37 and a high-byte value of 98. BASIC stores the USR(0) calling
address at 16526 and 16527. The VARPTR function is used to aid in passing
variables. VARPTR(A1) gives the address of the low byte of the BASIC
variable (A1l). The high byte follows. Variables Al and A2 are used to
transfer data from place to place. This demonstration program is shown in
Program Listing 2.

Save the program as G. Now run it. It takes less than one second per star.

Variable Low Byte High Byte

X1 32686 32687
Y1 32688 32689
X2 32750 32751
Y2 32752 32753

Table 1. Variables and memory addresses

58

graphics

Program Listing 1

10 REM GRAPHICS 1 "G" 7/6/81 JC
20 DEFINT A,D,E,S,X,Y
50 DATA -30,-17, 0,23, 30,-17, -45,8, 45,8, -30,-17
60 CLS: RESTORE: READ X1,Y1
70 FOR A=1 TO 5: READ X2,Y2: GOSUB 950: NEXT
80 FOR A=1 TO 1000: NEXT: GOTO 60
950 IF X1>63 AND X2>63 THEN 1070
960 IF X1<-63 AND X2<-63 THEN 1070
970 IF Y1>23 AND Y2>23 THEN 1070
980 IF Y1<-23 AND Y2<-23 THEN 1070
1000 D1=X2-X1: D2=Y2-Yl: S1=SGN(D1): S2=SGN(D2): D1=ABS(D1):
D2=ABS(D2): E=0: E1=D1+Dl: E2=D2+D2: IF D1<D2 THEN 1050
1010 FOR D=0 TO D1: GOSUB 1080: X1=X1+Sl: E=E+E2:
IF E>=D1 THEN Y1l=Y14S2: E=E-El
1020 NEXT D: GOTO 1070
1050 FOR D=0 TO D2: GOSUB 1080: Y1=Y1+S2: E=E+El:
IF E>=D2 THEN X1=X1+Sl: E=E-E2
1060 NEXT D
1070 X1=X2: Y1=Y2: RETURN
1080 IF ABS(X1)<64 AND ABS{Y1)<24 THEN SET(63+X1,23-Y1)
1090 RETURN

Program Listing 2

10 REM GRAPHICS 2 "G" 7/6/81
20 DEFINT A,X,Y: Al=0: A2=0: AA=VARPTR(AL):
AB=AA+1: AC=VARPTR(A2): AD=AC+1: POKE 16526,37:
POKE 16527,98
30 XA=32686: XB=XA+1: YA=32688: YB=YA+l:
XC=32750: XD=XC+1: YC=32752: YD=YC+1
50 DATA -30,-17, 0,23, 30,-17, -45,8, 45,8, -30,-17
60 CLS: RESTORE: READ Al,A2: GOSUB 210
70 FOR A=1 TO 5: READ Al,A2: GOSUB 220: NEXT
80 FOR A=1 TO 1000: NEXT: GOTO 60
210 POKE XA,PEEK(AA): POKE XB,PEEK(AB):
POKE YA,PEEK(AC): POKE YB,PEEK{AD):
RETURN
220 POKE XC,PEEK(AA): POKE XD,PEEK(AB):
POKE YC,PEEK(AC): POKE YD,PEEK{AD):
X=USR(0): RETURN

59

GRAPHICS

Graphics and ZBASIC
Part 11

by John Corbani

he first part of this series brought a TRS-80 to the point at which lines,

defined by their X,Y endpoints, could be plotted at a reasonable speed.
This part will cover objects, an object world, and a viewer looking at that
world.

Obijects to be manipulated by a graphics package may be described by a
series of lines defining the object’s outlines and features. The endpoints of
these lines form a graphics data base which describes objects existing in a
world coordinate system.

The ability to manipulate data is limited by the integer math of ZBASIC.
No number can exceed an absolute value of 32767. The requirements of
multiplying two numbers reduce the practical limits of a graphics world to
absolute values of 250 or less. The world may be defined as a cube 500 units
per side. The cube has a front, back, top, bottom, left side, and right side.
The x-axis goes from — 250 on the left to + 250 on the right. The y-axis goes
from - 250 on the front to + 250 on the back. The z-axis goes from - 250 on
the bottom to + 250 on the top. X(0), Y(0), Z(0) is the center of the world.

A viewer can look at the world from anywhere inside the world. The
viewer’s position can be defined as an X,Y,Z point. The viewing direction
must be defined in pitch, yaw, and roll. Pitch is the viewing angle above or
below theX,Y plane. Straight up is + 90 degrees. Level is 0 degrees. Straight
down is —90 degrees. Yaw is the angle to the left or right of the Z,Y plane.
The yaw angle is 0 degrees, when looking from front to back of the world.
The angle can be either minus (left) or plus (right). The roll axis is not varied
in this series of programs. The viewer’s head is assumed to have no tilt to the
left or right.

This program (see Program Listing) sets up a data base describing a small
house. The house comes complete with a picture window, front door, and
flagpole in the side yard. The viewer’s position and viewing angles are ob-
tained from the operator. The house and flagpole are then transformed into
two-dimensional space and displayed on the TRS-80 screen.

The objects to be worked with are described by lines, and a line requires a
beginning and an end. Even lines of zero length each require two X,Y,Z
coordinates. Lines with bends in them require an additional X,Y,Z coor-
dinate for each bending point. The data base must contain a flag that in-
dicates the end of a line. The program must also know when the entire data

60

graphics

base has been processed. Since the largest value allowed in the data base is
250, 254 is used to indicate the end of a line, and 255 indicates the end of the
data base.

A demonstration program may be written now to illustrate the use of a
simple data base holding three-dimensional data. The program uses the
Graphic 2 G (Part 1) subroutines at lines 210 and 220 to pass variables to the
ZBASIC line drawing routines and call them. If ZBASIC is not available,
add (D,E,S) to the DEFINT statement in line 20. Change (GOSUB 210:) in
line 70 to (X1 = Al: Y1 = A2). Change (GOSUB 220:) in line 80 to (X2 = Al:
Y2 = A2: GOSUB 950:). Delete the (XY = USR(0)) in line 220. Use the plot
subroutine starting at line 950 in the Graphics 1 G (Part 1) program.
Everything will work, but it takes a while.

10 REM GRAPHICS 5 "G" 7/13/81
20 DEFINT A,B,C,J,K,X,Y,Z: DIM D(150): Al=0: A2=0: A3=0:
JA=16: KA=0: X=-20: Y=-100: Z=10:
AA=VARPTR(A1): AB=AA+1: AC=VARPTR({A2): AD=AC+1:
POKE 16526,37: POKE 16527,98
30 XA=32686: XB=XA+1l: YA=32688: YB=YA+1:
XC=32750: XD=XC+1: Y(C=32752: YD=YC+1
40 DATA
-12,-8,0, -12,8,0, -12,8,12, -12,0,18, -12,-8,12, -12,-8,0,
12,-8,0, 12,8,0, 12,8,12, 12,0,18, 12,-8,12, 12,-8,0,
254,
-12,-8,12, 12,-8,12, 254,
-12,0,18, 12,0,18, 254,
-12,8,12, 12,8,12, 254,
-12,8,0, 12,8,0, 254
42 DATA
-7,-8,3, -7,-8,7, 0,-8,7, 0,-8,3, -7,-8,3, 254,
4,-8,0, 4,-8,7, 7,-8,7, 7,-8,0, 254
45 DATA
25,-10,0, 25,-10,25, 26,-14,24, 25,-10,23, 254, 255
50 READ D(A): IF D(A)<>255 THEN A=A+1: GOTO 50 ELSE CLS: A=0

All integer variables have been defined and the compiled routine’s calling
address has been entered. The array D(n) has been filled with the object
data. The viewer’s data must now be obtained.

60 PRINT @ 0, "DIR" JA TAB(12) "PITCH" KA TAB(24) "X POS" X
TAB(36) "Y POS" Y TAB(48) “Z POS" Z;:
PRINT @ 66,;: INPUT JA: PRINT @ 80,;: INPUT KA:
PRINT @ 92,;: INPUT X: PRINT @ 104,;: INPUT Y:
PRINT @ 116,;: INPUT Z
65 L=JA*,01745: J1=SIN(L)*50+.5: J2=COS(L)*50+.5:
L=-KA*,01745: K1=SIN(L)*50+.5: K2=COS{L)*50+.5:
CLS: A=0
No checking of operator input is performed in this program. Numbers
above 250 may cause unpredictable results, but no permanent damage. JA

61

graphics

and KA are converted from degrees to radians immediately. The sine and
the cosine of the angles are required to handle rotation of the image. This
forces the use of floating point arithmetic and slows things down, but there is
little alternative when using BASIC. Multiplying by 50 turns the sines and
cosines to integers with two percent accuracy. This is good enough for most
objects to be transformed properly.
The next lines of code scan through the data base, have the data
transformed and plotted, and then look for operator input.
70 A1=D§A; : Bl=D§A+1 ;: Cl=D§A+2g: GOSUB 110: GOSUB 210: A=A+3
80 Al=D(A): B1=D(A+1): Cl=D(A+2
IF B1<>255 THEN
IF A1=254 THEN A=A+1: GOTO 70 ELSE
GOSUB 110: GOSUB 220: A=A+3: GOTO 80
90 GOTO 60
The Transform Routine calculates the difference in distance between the
viewing and object points in all planes. The x- and y-coordinate values are
individually corrected for rotation. The values are then divided by the
distance to obtain the correct image size. Note that a correction is made to
adjust perspective to a reasonable level. A correction is also made for the 2 to
1 aspect ratio of the TRS-80 graphics points. This allows the screen image to
remain the same size no matter what the viewer’s orientation.
110 U=Al-X: Ul=Bl-Y: U2=Cl*-1+Z:
T=U*J2-U1*J1: T1=U1*J2*K1/50+U*J1*K1/50-U2*K2:
T2=U1*J2*K2/50+U*J1*K2/50+U2*K1:
A1=T/T2*300: A2=T1/T2*150: RETURN
Al and A2 are now plottable x- and y-coordinates. They must be passed to
the plotting routine as either X1,Y1 or X2,Y2. Save the program as G. Now
run it. Enter data on request or hit ENTER to pass over coordinates that do
not need changing. Plotting the whole data base takes about 10.5 seconds.
Tooslow! There are a few things that will speed up the BASIC part of the
program. Pulling out all the stops (and spaces) can get the time down to
eight seconds. It's not enough, and the code is unreadable.

.

62

graphics

Program Listing

10 REM GRAPHICS 5 "G" 7/13/81
20 DEFINT A,B8,C,d,K,X,Y,Z: DIM D(150): Al=0: A2=0: A3=0:

JA=16: KA=0: X=-20: Y=-100: Z=10:

AA=VARPTR(AL): AB=AA+1: AC=VARPTR(AZ): AD=AC+1:

POKE 16526,37: POKE 16527,98
30 XA=32686: XB=XA+l: YA=32688: YB=YA+l:

XC=32750: XD=XC+1: YC=32752: YD=YC+l
40 DATA

-12,-8,0, -12,8,0, -12,8,12, -12,0,18, -12,-8,12, -12,-8,0,

12,-8,0, 12,8,0, 12,8,12, 12,0,18, 12,-8,12, 12,-8,0,

2514,

-12,-8,12, 12,-8,12, 254,

-12,0,18, 12,0,18, 254,

-12,8,12, 12,8,12, 254,

-12,8,0, 12,8,0, 254
42 DATA

-7,-8,3, -7,-8,7, 0,-8,7, 0,-8,3, -7,-8,3, 254,

4,-8,0, 4,-8,7, 7,-8,7, 7,-8,0, 254
45 DATA

25,-10,0, 25,-10,25, 26,-14,24, 25,-10,23, 254, 255
50 READ D(A}: IF D(A)<>255 THEN A=A+1: GOTO 50 ELSE CLS: A=0
60 PRINT @ 0, “DIR" JA TAB(12) "PITCH" KA TAB{24) "X POS" X

TAB(36) "Y POS" Y TAB(48) "Z POS" Z;:

PRINT @ 66,;: INPUT JA: PRINT @ 80,;: INPUT KA:

PRINT @ 92,;: INPUT X: PRINT @ 104,;: INPUT Y:

PRINT @ 116,;: INPUT Z
65 L=JA*.01745: J1=SIN{L)*50+.5: J2=C0OS(L)*50+.5:
L=-KA*.01745: K1=SIN(L)*50+.5: K2=COS(L)*50+.5:

CLS: A<O
70 A1=D(A): BLl=D(A+1): C1=D{A+2): GOSUB 110: GOSUB 210: A=A+3
80 A1=D(A}: B1=D(A+1): C1=D(A+2):
IF B1<>255 THEN
IF Al=254 THEN A=A+1: GOTO 70 ELSE
GOSUB 110: GOSUB 220: A=A+3: GOTO 80
90 GOTO 60
110 U=Al-X: Ul=Bl-Y: U2=C1*-1+1:
T=U*J2-Ul*d1: T1=U1*J2*K1/50+U*J1*K1/50-U2*K2:
T2=U1*d2%K2/50+U*J1%K2/ 50+4U2*K1 :
Al=T/T2*300: A2=T1/T2*150: RETURN
210 POKE XA,PEEK(AA): POKE XB,PEEK(AB):
POKE YA,PEEK(AC): POKE YB,PEEK(AD):
RETURN
220 POKE XC,PEEK(AA): POKE XD,PEEK(AB):
POKE YC,PEEK{AC): POKE YD,PEEK{AD):
XY=USR(0): RETURN

63

GRAPI

ICS

Graphics and ZBASIC
Part II1

by John Corbani

'he second part of this series got a TRS-80 to the point where you could
. pretend you were a helicopter pilot. The helicopter could be positioned
and oriented to look at any part of a graphics world. Operator input was ac-
complished by typing numeric values in response to system prompts for the
X, Y, and Z positions, direction, and pitch. Plotting the picture took over 10
seconds. This is too slow to easily introduce direct operator interaction, such
as joysticks or customized key functions. This final section shows how to
compile the transform routines and get the plot time to under two seconds. A
keyboard driver is also added to allow interaction.

The BASIC program spends a large amount of time processing the data
base as well as transforming each point. The POKE command is especially
slow. The first thing you must do is get the data base available to a compiled
routine. ZBASIC does not support arrays directly, but it is easy to make your
own. ZBASIC has 800 bytes set aside for strings. This is more than enough to
handle the data base. The data can be in a BASIC program, POKEd into
memory once, and then used as required. The array consists of two-byte in-
tegers starting at 31750. About 300 bytes are required by the demonstration
program.

The viewing position, as well as the sine and cosine of the viewing angles,
is determined in BASIC. Only 14 bytes of data must be passed to plot a new
picture. This is reasonable, and besides, ZBASIC has no trigonometric func-
tions. 1 tried using a look-up table for sine and cosine, but this method was
no faster than passing data from BASIC.

The transform routine is severely hampered by the limitations of integer
arithmetic. The use of brackets to define what happens when, and adding
four extra divisions, minimizes overflows. The multiplier of 50 on the angles
is used to advantage. The test in line 115 prevents division by zero and
removes all lines that extend behind the viewer. Add the following lines to
the Graphics Z1 Z program from Part 1.

10 REM GRAPHICS 23 "Z" 7/24/81 JC

20 B=31750

70 FOR A=0 T0 5: POKE 32640+A,PEEX(B+A): NEXT A:
IF B1=255 THEN 90 ELSE IF Al=254 THEN B=B+2: GOTO 70 ELSE
B=B+6: GOSUB 110: IF P=0 THEN 70 ELSE X1=Al: Y1=A2

80 FOR A=0 TO 5: POKE 32640+A,PEEK(B+A): NEXT A:IF B1<>255 THEN
[F Al=254 THEN B=B+2: GOTO 70 ELSE B=B+6: GOSUB 110:

64

graphics

IF P=0 THEN 70 ELSE X2=Al: Y2=A2: GOSUB 950: GOTO 80
90 RETURN
110 U=Al-X: U1l=Bl-Y: U2=Cl*-1+Z:
T=U*J2-U1*J1: T1=UT*((J2#K1)/50)+U* ((J1*K1)/50)-U2*K2:
T2=((U1*J2)/50%K2)/50+((U*J1)/50*%K2)/50+(U2*K1) /50
115 T2=T2/2: IF T2<1 THEN P=0: RETURN ELSE
P=1: Al=(T*2)/T2: A2=T1/T2: RETURN
The original lines from 950 to 1090 plot the line after the endpoints have
been calculated. Remember that the line formatting is done with spaces. No
line feeds are allowed in ZBASIC. CSAVE the program as Z. Compile the
program. If no errors are reported, save the compiled program as Z3 using
the ZBASIC SAVE command. Return to BASIC.
You must modify the Graphics 5 G program from Part 2 to load the data
base and pass the viewer’s data to the compiled display program. Lines 40 to
65 should be saved. Delete everything else and add the following lines:

10 REM GRAPHICS 6 "G" 7/11/81
20 DEFINT A,J,K,X,Y,Z: DIM D(150): J1=0: J2=0: K1=0: K2=0:
JA=16: KA=0: X=-20: Y=-100: Z=10:
AA=VARPTR(J1): AB=VARPTR(J2):
AC=VARPTR(K1): AD=VARPTR(K2):
AE=VARPTR(X): AF=VARPTR(Y): AG=VARPTR(Z)
30 JM=32658: JN=32722: KM=32660: KN=32724:
XA=32622: YA=32624: ZA=32626: B=31750:
POKE 16526,37: POKE 16527,98
50 READ J1: POKE B, PEEK(AA): POKE B+1, PEEK(AA+l):
IF J1<>255 THEN B=B+2 : GOTO 50 ELSE CLS
230 POKE JM,PEEK(AA): POKE JM+1,PEEK(AA+1):
POKE JN,PEEK(AB): POKE JN+1,PEEK(AB+1):
POKE KM,PEEK(AC): POKE KM+1,PEEK(AC+1):
POKE KN,PEEK(AD): POKE KN+1,PEEK(AD+1)
240 POKE XA,PEEK(AE): POKE XA+1,PEEK(AE+1):
POKE YA,PEEK(AF): POKE YA+1,PEEK(AF+1):
POKE ZA,PEEK(AG): POKE ZA+1,PEEK(AG+1)
250 XY=USR(0): GOTO 60
CSAVE the program as G and run it. If there have been no errors, the
house should plot in about 1.7 seconds. There have been a lot of changes,
and if an error occurs, first try to find out if it is in the BASIC program or the
ZBASIC program. Edit BASIC as required. If the problem appears to be in
the compiled routines, run Graphics 6 G to load all the memory locations
with known data. Load Graphics Z3 Z and check for errors there. Edit,
save, and recompile using SYSTEM (ENTER) /22528 (ENTER) to call the
compiler. Once this is complete, save the compiled program and return to
BASIC. Test the program by using XY = USR(0) in the immediate mode.
When all is well, reload Graphics 6 G.
A response time of less than two seconds is fast enough to allow interactive

manipulation of the graphics data base. Eight of the TRS-80 keys can be

65

graphics

modified to simulate the action of a helicopter’s controls. Two others can be
used to tilt the viewing angle up and down. The control stick is simulated
with E for forward, X for back, S for left, and D for right. Collective pitch is
simulated with T for up and B for down. The rudder (tail rotor) pedals are
simulated by K for left and L for right. Pressing I tilts the viewing angle up,
and a comma (,) tilts the viewing angle down.

The subroutine which handles the keyboard input uses the INKEY$ func-
tion to check for key activity. Once a key is detected, five of the keyboard
memory bytes are stored. Tests are made in turn for each key. The viewer
variables are updated, a picture is plotted, and the keyboard is scanned
again. Any number of keys can be held down simultaneously, and the im-
aginary helicopter will respond accordingly. Acceleration is infinite since all
motion stops when all keys are released.

Load Graphics 6 G, delete line 65, and enter the following new lines:

10 REM GRAPHICS 7 "G" 7/12/81

260 Z1=0: KI=0

270 JI=0: XI=0: YI=0

280 I$=INKEY$: IF I$="" THEN 280

290 I1=PEEK(14337): 12=PEEK(14338): I3=PEEK(14340):
14=PEEK(14344): I5=PEEK(14368)

300 IF (I1 AND 16)=16 THEN XI=XI+1

310 IF (I3 AND 8)=8 THEN XI=XI-1

320 IF (I1 AND 32)=32 THEN YI=YI+1

330 IF (I4 AND 1)=1 THEN YI=YI-1

340 IF (I3 AND 16)=16 THEN ZI=ZI+10

350 IF (I1 AND 4)=4 THEN ZI=ZI-10

360 IF (I2 AND 2)=2 THEN KI=KI+10

370 IF (I5 AND 16)=16 THEN KI=KI-10

380 IF (I2 AND 16)=16 THEN JI=J1+10

390 IF (I2 AND 8)=8 THEN JI=JI-10

400 IF XI<>Q THEN X=X+XI*J2/5: Y=Y-XI*J1/5

410 IF YIK>0 THEN Y=Y+YI*J2/5: X=X+YI*J1/5

420 JA=JA+J1: Z=1+11

430 IF ABS(KA+KI)<91 THEN KA=KA+KI

450 GOTO 65

CSAVE the program and then run it. The keyboard routine only added a
tenth of a second to the time, so updates are still less than two seconds each.
Practice with the program until you are comfortable with the controls and
then delete line 280. The program will now update the picture continuously.
Remove line 270. The helicopter is now in free flight. There is momentum
forward and back, left and right, and in rotation. Try flying around the
house about 150 feet out. Establish some velocity to the right and start rota-
tion to the left. A nice orbit can be established. When you get good with
these axes, delete line 260.

This program is a good base for a lot of simulations. Add instrumentation

66

graphics

if you wish. Altimeter reads Z, rate of climb reads ZI, airspeed reads XI, and
so on. Just print the numbers wherever you wish on the screen. You could
change the helicopter to a space ship and create worlds to explore.
Everything is not taken care of in such a short program. The math can
overrun, and there is no true clipping of the data. Lines extending behind
your back are not plotted, even though a portion of them should be visible.
Even so, the program always returns for new input. The next step is yours.

67

GRAPHICS

Unlocking the Color Computer
Graphics Character Code

by David R. Barr

n a recent article in 80 Microcomputing (“Unlocking the Graphic Code,”

June 1981, page 147), Jerome Weintraub showed how a simple binary
code was the basis of the ASCII character codes for the graphics characters
on the TRS-80 Model I computer. I was inspired to do the same for the
TRS-80 Color Computer.

First, I looked at the graphics character codes on the reference card that
comes with the Color Computer. There I found the pattern shown in
Figure 1.

:sm

Figure 1. Graphics character codes

Following Mr. Weintraub’s suggestion, I tried adding pattern 1 and pat-
tern 2 to obtain pattern 3 and noted that the non-black parts of the pat-
terns for 1 and 2 combined to form the non-black part of the pattern for 3;
a check of the patterns for 4, 9, and 13 showed that the conjecture held (see
Figure 2). I then checked each pattern that had only one non-black sector,
and noted that these were patterns 1, 2, 4, and 8—the powers of 2. Now
the Color Computer graphics character code was broken; using Figure 3,
add the sector numbers corresponding to the non-black sectors of the
graphics character.

l-2

Figure 2. Adding patterns !

I

-8-1-a

|
-

!

Figure 3. Breaking the code—add the sector numbers corresponding to the non-black sectors of
the graphics character.

Now that I had broken the code for the pattern number, the rest was
easy. The reference card even had a formula:

code = 128 + 16+ (color — 1) + pattern
I thought that it would be awkward to have to subtract one from the color

68

graphics

number every time, and since this formula could be written as:
code = 128 + 16+color — 16 + pattern
1 decided to use the equivalent formula:

code = 112 + 16=xcolor + pattern.

Next, I sought an application for my discovery. A friend let me play with
his Space Invaders game by Spectral Associates of Tacoma, Washington,
and I noticed that the words “Space Invaders” appear in large, colored let-
ters that look like dot matrix printing using graphics characters. This in-
spired me to use my discovery to print dot matrix symbols on the screen us-
ing the graphics characters.

1 decided to use a 5x7 dot matrix of sectors. Since the graphics
characters are all 2 x 2 sectors, this meant that I had to use a 6 x 8 matrix of
sectors, which is a 3 x 4 matrix of graphics characters. The extra row and
column of sectors serve as a space between symbols and between rows.

Figure 4 shows the dot matrix for the letter A. Adding up the values for the
sector numbers for the 12 graphics characters resulted in the following
calculations:

2+4+8=14 4= 4 1+2+4+8=15
1+8=29 1 +2+8=11 1 +4+8=13
1=1 1+2=23 1+4=25
1+2+4=17 1+2+4+8=15 1+2+4=17

To print out the letter A, you print patterns 14, 4, and 15 on one line, pat-
terns 9, 11, and 13 below them, patterns 1, 3, and 5 on the next line down,
and patterns 7, 15, and 7 on the last line.

Figure 4. Dot matrix for the letter A

I have written a short program (see Program Listing) which illustrates
some of the possibilities for this dot matrix printing using graphics
characters. The program prints out a copyright statement in a fancy form.
Line 20 is a DATA statement, with numbers 14, 4, 15, 9, 11, 13, 1, 3, 5, 7,
15, and 7 as data. You should recognize these as the numbers of the patterns
for the letter A. Lines 30 through 60 contain the pattern numbers for some
other symbols. In lines 80 through 140, these five symbols are read into an
array A which is dimensioned (5,3,4). The first dimension of array A denotes
the symbol, the second dimension of array A denotes the row, and the third

69

graphics

dimension of array A denotes the column. When you write your own pro-
gram, the first number in the dimension statement of array A would be the
number of symbols you are using, while the other two numbers would be
unchanged.

Line 70 is a DATA statement specifying which symbols are to be printed
(symbol 4 first, then symbol 3, symbol 5 next, etc.). This data is read into an
array B, dimensioned (8), in lines 150 through 170. You can fit only 10 sym-
bols per line using this size dot matrix. When you write your own program,
you might find it convenient to give this array a second dimension to keep
track of which line is being printed.

The program cycles through the eight colors in lines 180 and 450, and
there are two printings per color—one in black characters against a colored
background, and the second in colored characters against a black
background. Line 190 clears the screen, leaving a colored background, and
lines 240 through 300 print black letters on this colored background. Line
330 clears the screen to black, and lines 340 through 420 print the colored
letters on the black background. Only one line is printed in black against a
colored background, while a maximum of three lines can be printed in color
against a black background. The index Q is used to cycle through these three
lines of print.

Lines 270 and 380 contain the PRINT @ instructions which are the heart
of each algorithm. There are two parts to consider: the calculation of the
ASCII code of the graphics character to be printed, and the calculation of
the location at which to print it.

Let us consider first the easier of the two calculations, that of the ASCII
code of the graphics character to be printed. We know that it can be
calculated using the formula 112 + 16+color + pattern. Since C is the color
number, it follows that all but the pattern number is given by 112 + C*186,
and that the pattern number is given by A(B(T),R,S) in line 270 and by
15 - A(B(T),R,S) in line 380, where T is the symbol order number, R is the
row number, and S is the column number. Since array B contains the
numbers of the symbols in the order that they are to be printed, it follows
that B(1) is the first symbol number (here symbol 4), B(2) is the second sym-
bol number (here symbol 3), and so on. Thus, A(B(T),R,S) is the pattern
number stored in row R and column S of the array for the symbol B(T), and
use of the pattern number given by A(B(T),R,S) will give a black letter on a
colored background. Since subtracting a pattern number from 15 gives the
number of the pattern with black and non-black sectors reversed, line 380
contains 15 - A(B(T),R,S) to give a colored symbol on a black background.

The order of the three FOR-NEXT loops using T, R, and S can be setup in
six different ways. Two are illustrated in the program. For black symbols on
a colored background, the order R-T-S from outer loop to inner loop prints
out the top quarter of all the symbols in the line first, then prints out the sec-

70

graphics

ond quarter of all of the symbols, followed by the third and fourth quarters;
no symbol is complete until the printing of the last cycle on R. For colored
symbols on a black background, the order T-S-R from outer loop to inner
loop prints out each symbol completely before starting the next symbol.
When you write your own program, you will have to choose which order
you wish to use.

Next, we consider the more complicated of the calculations in the
PRINT @ statements—the calculation of the location at which to print the
graphics character. Since each row is of length 32, adding 32 to a previous
location places a character directly below the previous location in the next
row. For this reason, we multiply the row number, R, by 32, to obtain the
R*32 part of the calculation. Characters in the same row are in successive
locations; therefore we use the column number, S, to assign these successive
locations. Symbols on the same line are three locations apart, so we multiply
the symbol order number, T, by 3.

We now have R*32 + S+ T*3 as the basis for calculating the location.
When R, S, and T are all equal to 1, this places the first character in location
32 + 1 + 3 = 36, and the first symbol printed will occupy locations 36, 37, 38,
68, 69, 70, 100, 101, 102, 132, 133, and 134 if nothing else is done to shift the
locations. In line 270, this is where the first symbol printed is located. In line
380, another starting location is used, and three lines are printed rather than
just one. The index of the lines is Q, which goes from 0 to 2 for lines 1 to 3.
Since each line uses four rows on the screen, each of length 32, adding 128 to
a previous location places a character in the same relative position in the
next line. For this reason, we multiply the line number by 128 to obtain
Q*128.

All that remains to be explained is the calculation of the starting location
for each line. The program was written so as to have the three lines stag-
gered. Each is eight symbols long in a line of length 10. First the two blanks
are on the right, then there is one at each end, and finally they are both on
the left. Since Q starts at 0, the starting values of Q, R, S, and T will still
place the first character in location 36. To place the first character in loca-
tion 32, we must subtract 3, which is done by subtracting 1 from T before
multiplying by 3. The final feature of the calculation in line 380 staggers the
starting position in each line. This is accomplished by adding Q to T -1
prior to multiplication by 3. When you write your own program, you can
use the basic R*32 + S + T*3 augmented by the calculation to place the start
of the symbol where you want it.

The restriction to using no more than three lines of at most 10 symbols
does limit the applications to things like printing out “Klingons Destroy
Enterprise” in emphatic letters at the end of an unsuccessful game of Star
Trek. These large size symbols can be intermingled with ordinary size ASCII
symbols by using PRINT @ or other print commands, as is done at the start

71

graphics

of the program. This cannot be done with symbols generated in one of the
graphics modes described in “Do-it-yourself #7-5” of Radio Shack’s Going
Ahead With Extended Color Basic.

The unlocking of the color computer graphics character code opens up a
new frontier, and I hope that this sample program will inspire you to use this
potential in a creative way.

72

graphics

Program Listing

18 DIM A(5,4,3),B(8)

28 DATA 14,4,15,9,11,13,1,3,5,7,15,7
3¢ DATA 1,3,13,4,12,7,5,15,5,3,3,15
4¢ pATA 15,15,15,15,15,15,12,15,15,3,15,15
5g DATA 1,6,15,5,15,5,5,14,7,3,7,15
60 DATA 1,3,13,4,12,7,1,13,15,7,11,15

78 DATA 4,3,5,3,2,1,5,5

80 FOR X=1 TO 5

9¢ FOR ¥=1 TO 4

188 FOR Z=1 TO 3

119 READ A(X,Y,Z)

128 NEXT 2%

130 NEXT Y

148 NEXT X

15¢ FOR BN=1 TO 8

160 READ B(BN)

17¢ NEXT BN

186 FOR C=1 TO 8

198 CLS(C)

200 IF C<>1 GOTO 248

21¢ PRINT@7,"COPYRIGHT 1981 BY"

228 FOR U=l TO 188

230 NEXT U

24¢ FOR R=1 TO 4

258 FOR T=1 TO 8

260 FOR S=1 TO 3

270 PRINT@R*32+S+T*3,CHRS(A(B(T),R,5)+112+C*16);

280 NEXT §

296 NEXT T

368 NEXT R

318 FOR Tl=1 TO 500

320 NEXT T1

338 CLS(9)

340 FOR Q=8 TO 2

354 FOR T=1 TO 8

360 FOR S=1 TO 3

378 FOR R=1 TO 4

380 PRINT@R*32+8+(T-1+Q) *3+0Q*128,CHR$(15~A(B(T) ,R,5)+112+C*16);
399 NEXT R

400 NEXT 8

410 NEXT T

428 NEXT Q

439 FOR Tl=1 TO 569

448 NEXT T1

450 NEXT C

468 GOTO 180

73

GRAPHICS

SBLOCK

by Jeff Collins

Programs using good graphics are fun to use, but looking up the codes for
each graphics block usually puts us off from writing them ourselves. In
addition, the large number of decimal graphics values needed in data
statements strains limited memory space.

Before running either of the following BASIC programs, assemble and
load the program SBLOCK (Program Listing 1) into protected memory by
answering the memory size prompt, then using the SYSTEM command.
When prompted for an execution address, type /ENTER.

This executes the initialization part of the code, causing the USR () vector
to be loaded with the start address of the program as computed during
assembly,

The first two programs give you the following capabilities:

1) To create graphics with a bare minimum of hassle.

2) To print screen images faster than POKEing loops and more simply
than the packed string.

3) To store more graphics images within the same amount of program
memory.

4) To erase alpha/graphics without clearing the entire screen, without
complex control code formulas, and without a computed string of spaces.

5) To print sophisticated images without assembly-language program-
ming knowledge.

The program uses only BASIC statements to create screen displays, re-
quiring only that the short assembly program SBLOCK be resident in pro-
tected memory. Use the PRINT @ statement to draw any alpha/graphics im-
ages, rather than POKE addresses or time-consuming SET/RESET opera-
tions. All other BASIC functions are unchanged and available for use at the
same time. SBLOCK can be used while debounce or other utilities are in use.

Block-Oriented Strings

The usual way a string is printed is from left to right, from the first byte of
the string to the last, printed in contiguous screen memory locations. Using
SBLOCK, you can use strings for graphics which are block-oriented, de-
fining the number of columns to print the string bytes across, then con-
tinuing on the next line for the same number of columns, and so on, until the
last byte. It’s like choosing the screen line length for each string you print,
rather than always using the built-in screen length of 64 characters per line.

74

graphics

The assembly program knows how many columns to use for the string
because the first byte of the string contains this value. The BASIC graphics
builder program generates this and the rest of the string’s bytes automat-
ically (see Program Listing 2). It lets you change graphics as you go along.
But it also keeps you updated on the current column and row location (x and
y positions on the graphics layout sheet) at all times, enabling you to enter
precise images from the layout sheet.

The other BASIC program (Program Listing 3) is a demonstration of the
screen-printing characteristics of the SBLOCK program, which must be
resident in protected memory when either of the BASIC programs are run.
It is designed not to dazzle you, but rather to show the characteristics of
SBLOCK and give you ideas for its use in your own programs. The program
presents 13 graphics images as you call for them from the keyboard. By mov-
ing the cursor around and flashing the images on and off, you get an idea of
how you can use overlapping images to create interesting screen effects.

When you create a graphics block using the builder program, you are
asked whether you want the all-blank code spaces to be destructive or
nondestructive of those character positions. This, in effect, is asking if you
want the spaces within your graphic to erase what is already on the screen in
those positions. The answer you give to the prompt depends on your plans
for presenting other screen information. If the implications of this seem a lit-
tle hazy, try playing with the demonstration program. An idea for using
such nondestructive spaces in a program should come rather quickly. Try us-
ing all the various key commands with each image.

Operation of the Builder Program

Both BASIC programs contain instructions, but it should be noted that
the program which builds graphics has two basic modes, graphics and
alphanumeric. The graphics mode is the pivotal mode from which all other
commands are executed, such as processing an image on the screen into a
string, saving the string to tape, or reading one in. The program starts off in
the graphics mode and returns there after each function is completed (or
alpha mode line is entered) . While in the graphics mode, if you press the up-
arrow key and choose the graphics mode from the resulting prompt words,
the program will leave whatever row and column it was in and return to
pointing to row and column zero.

The program begins in the upper left-hand corner, the point from which
all your graphics should be created, in order to avoid adding unnecessary
space codes to the graphics block string,

Should you choose the alpha mode after hitting the up arrow, simply press
any printable character key, including the arrow keys. When done entering
alpha information on that line, push the ENTER key. Note that you cannot
back space to erase a mistake while in the alpha mode. If you need to erase,

75

graphics

return to the graphics mode by hitting the ENTER key, then back space
twice to erase the error. Now that the character is erased, while in the
graphics mode, tap the up-arrow key to get the mode prompt, choose the
alpha mode, and resume alpha input where you left off. It seems a little
strange at first, but it becomes almost automatic after you do it a few times,
being similar to getting into and out of an edit mode subcommand in
BASIC. This information and that on the screen, combined with a little
practice, will keep you from having any trouble at all. Just don’t press the
BREAK key while there is a graphic on the screen.

How to Use SBLOCK in Your Own Programs

SBLOCK has two printing modes, draw and erase, which are called from
a BASIC program. To draw a string block, get into that mode by passing the
value 1 from the BASIC program to the assembly routine, as in X = USR(1).
To print the string, pass the VARPTR address of the string to be printed, as
in X = USR(VARPTR(A$)). To erase the printed string block, pass the erase
mode value of zero through the USR argument, again followed by passing
the string’s VARPTR address. The SBLOCK routine remains in either the
draw or the erase mode until the other mode is selected. Take a look at the
BASIC program listings to see examples of their use.

A Closer Look at Printing Strings

When you print a regular string of bytes containing control codes, as with
printing a CHR$ statement, BASIC interprets each byte of the string. If a
control code is encountered, it does a little machine-language routine, such
as clearing to the end of the line or screen. If it is a printable character code
for that particular machine, it places that value onto the screen.

The program SBLOCK does its own interpreting and printing of a string.
It assumes finding printable character codes, except for:

1) The first string byte, always containing the column count.

2) A string-byte value of zero, meaning to skip a video location (nondestruc-
tive space) rather than print an actual space there (destructive), whether in
the draw or the erase mode.

3) A string-byte value of 128, signaling that the next string byte contains the
number of times to repeat printing the following byte value.

An example would be a string of four bytes, with values of 5, 128, 10, and
65. The first byte indicates that the column length should be five. The byte
value 128 indicates that byte value 65 should be printed 10 times on the
screen, within the column length constraint of five columns. If the fourth
byte had a value of zero, then 10 character locations on the video would
have been passed over, leaving two screen lines of column length five just
as they were before. Fortunately, the graphics string-builder program does
all this.

76

graphics

If you wanted, you could change the repeat byte code by changing every
statement in the build program which contains CHR$(128) to a different
value, one whose graphic you can do without.

The build program does not put code 128 into a string anyway (it
becomes space code 32), so I thought it was a good choice to use, leaving all
of the Model 111 non-blank special graphics character codes available for
manually inserting within string block DATA statements.

The only disadvantage to using code 128 is that it uses three character
spaces within DATA statement lines, whereas the code 1, for example, on-
ly uses up one character space each time it is used.

If you decide to change the repeat code in the build program, you must
change lines 430, 440, 510, 515, and 810. In the SBLOCK assembly pro-
gram, change line 420. Having made those changes, if you still want the
demonstration program to work, you must change all DATA statement
values of 128 to whatever code you decided was expendable. On the Model
1, this may be any value from 1 through 31, and the program otherwise
works the same as before.

The listings work as is for both the Model I and Model 1I1. Disk BASIC
programs have to have a DEFUSR statement added near the beginning;
USRO-9 statements must be used in place of the Level I1 USR statement for-
mat, wherever it is used. Also, note in the assembly listing that the in-
itialization code is not needed when Disk BASIC is used to run the BASIC
programs.

Note that the cursor is actually left at the same screen position when it is
done printing the block graphic image as it was before printing it. At this
point in the program, you might want to overlay another graphics string
image on the top of the one just printed. You might want to erase it immedi-
ately or even save the value of the PRINT @ position in a simple (scalar)
variable (or even several consecutive ones in an array) for later exact
reference for reprinting or erasing.

I feel that the safest way to plot out any graphics, by whatever method, is
by starting with a PRINT@ statement, followed by a null string and a
sernicolon in the case of printing a block graphic string. That way you can
always be certain that your printing will follow your screen layout sheet as
closely as possible.

Using SBLOCK is certainly not a cure-all for writing programs with
graphics but it does give you the ability to easily print out and erase a specific
graphics area. In most cases, it will save you program bytes. Some un-
necessary graphics statements will not take up valuable program space. It’s
also much easier to conceptualize and organize what is to be printed and
where it will go on the screen, using unambiguous statements. In any event,
it’s nice to have another option for displaying appealing graphics.

77

graphics

- Encyclopedia
Program Listing 1. SBL.OCK Loader”

00010 ; *** SBLOCK #*** STRING BLOCK VIDEQ PRINT ROUTINE
7530 00020 ORG 30000 sMAY BE CHANGED TO ANY UNUSED PROTECTED MEM
1A19 00030 READY EQu 1A19H 5 'READY' PROMPT ADDRESS
7530 213975 00040 INIT LD HL, START 3 IF DISK BASIC USE STAT'S
7533 228E40 00050 LD (USRVEC), HL ;DEFUSRO-9 AND USRO-9'S
7536 C3191A 00060 JP READY ; IN BASIC PROGR'S INSTEAD
7539 CD7FOA 00070 START CALL USRARG 3USR{) ARG. INTO HL SUBR
7530 7C 00080 LD AH 3MSB OF USR{) ARGUMENT
753D FEQO 00090 cP 0 SIS IT 02
753F 2019 00100 JR NZ,STRADR ;NO. VARPTR STRING ADDR.
7541 7D 00110 LD A,L ;SIGNAL PASSED, NOT ADDR.
7542 FEQO 00120 cP 0 ;THE ‘ERASE' SIGNAL?
7544 200A 00130 JR NZ,DRAW 3NO. MUST BE 'DRAW'
7546 213E20 00140 LD HL,LDSPAC ;LABEL VALUE=LD A,' '
7549 227F75 00150 LD (ERASE), HL ;DISPLACES NOP'S IN CODE
754C 22975 00160 LD (ERAS2),HL ;DISPLACE MORE NOP'S
754F (9 00170 RET ;BACK TO BASIC
7550 210000 00180 DRAW LD HL,0 ;EQUALS TWO NOP'S
7553 227F75 00190 LD (ERASE), HL ;DRAW NOP'S BACK IN CODE
7556 229C75 00200 LD (ERAS2),HL ;DRAW NOP'S HERE TOO
7559 (9 00210 RET ;BACK TO BASIC
755A 4F 00220 STRADR LD C,(HL) 3GET ACTUAL STRING LENGTH
7558 00 00230 DEC C 3MINUS COLUMN LENGTH BYTE
755C 23 00240 INC HL ;POINT TO LSB OF ADDR.
755D 5 00250 LD E, (HL) ;LSB OF STRING ADDR.
755€ 23 00260 INC HL ;POINT TO MSB OF ADDR.
755F 56 00270 LD D, (HL) ;MSB OF STRING ADDR.
7560 1A 00280 LD A, (DE) ;COLUMN BYTE FIRST
7561 320575 00290 LD (COLMCT),A ; SAVE COLUMN COUNT
7564 13 00300 INC DE 3PT TO 1ST PRINTABLE BYTE
7565 DD2A2040 00310 LD IX, {CURSOR) ;CURRENT CURSOR LOCATION
7569 DDES 00320 PUSH IX ;ONTO STACK,
7568 FDE1 00330 POP 1y 3 INTO IY AS SCREEN PTR.
756D D5 00340 PUSH DE 3STRING PTR TO STACK,
756E £l 00350 pop HL 3 INTO HL REG PR.
756F CDCO75 00360 CALL COLUMN 3GET COLUMN COUNT INTO B
7572 COC775 00370 INNER CALL SCRTST sTEST SCREEN LIMITS
7575 D8 00380 RET C ;70 BASIC IF CARRY
7576 7t 00390 STRBYT LD A, (HL) sGET BYTE FROM STRING
7577 FEOO 00400 cP 0 s NON-DESTRUCTIVE SPACE?**
7579 280D 00410 JR Z,NOLOAD 3SKIP. NO VIDEO LOAD
7578 FL80 00420 cp 128 sREPEAT CODE ?
757D 2815 00430 JR Z,REPEAT 5YES
757F 0000 00440 ERASE DEFW 0 ;IS LD A, ' FOR 'ERASE'
7581 CDC775 00450 CALL SCRTST ;CHECK SCREEN LIMITS
7584 D8 00460 RET C ;7O BASIC IF QUTSIDE
7585 FD7700 00470 LD (IY+0),A 3 INTO VIDED DISPLAY
7588 23 00480 NOLOAD INC HL sPT TO NEXT STRING BYTE
7589 FD23 00490 INC 1Y sPT TO NEXT VIDEO LOC'N
758B 0D 00500 DEC C ;STRING BYTE COUNT
758C C8 00510 RET z ;RETURN 7O BASIC IF DONE
758D 10E3 00520 DJINZ INNER ;DECREMENT COLUMN COUNT
758F CDB575 00530 CALL ADD64 5SCREEN PTR. DOWN A LINE
7592 18DE 00540 JR INNER ;GO TEST FOR SCREEN LIMIT
7594 23 00550 REPEAT INC HL 3PT TO REPEAT COUNT BYTE
7595 56 00560 LD D, (HL) ;COUNT INTO REG D
7596 23 00570 INC HL ;PT TO BYTE TO REPEAT
7597 7¢ 00580 LD A, (HL) ;LOOK AT REPEAT BYTE
7598 FEOO 00590 AGAIN CP 0 ;NON-DESTRUCTIVE CODE?#***
759A 2809 00600 JR Z,ADVANC ;YES, NO SCREEN QUTPUT
759C 0000 00610 ERASZ DEFW 0 ;LD A,' ' IF ERASE MODE
759E COC775 00620 CALL SCRTST 3 TEST VIDEO LIMITS
75A1 D8 00630 RET C ;TO BASIC IF QUTSIDE.
75A2 FD7700 00640 LD (IY+0),A 3NO. PRINTABLE CHARACTER
75A5 FD23 00650 ADVANC INC Iy 3PT TO NEXT SCREEN LOC'N
75A7 05 00660 DEC B ;COLUMN COUNT
75A8 C(B575 00670 CALL Z,ADD64 ;DROP DOWN A LINE
75AB 15 00680 DEC D sREPEAT COUNT

78

graphics

75AC 20EA 00690 JR NZ,AGAIN ;NOT DONE REPEATING

75AE 0D 00700 DEC C 3 STRING COUNT REFLECTED
75AF 0D 00710 DEC C sBY REPEAT BYTE, # TO
7580 0D 00720 DEC C sREPEAT, THE BYTE ITSELF.
7581 C8 00730 RET z ;TO BASIC, NO MORE BYTES
7582 23 00740 INC HL 3PT TO NEXT STRING BYTE
75B3 18C1 00750 JR STRBYT ;G0 PROCESS IT

7585 D5 00760 ADD64 PUSH DE 3 SAVE

7586 114000 00770 LD DE,64 3ONE LINE OF COLUMNS
7589 DD19 00780 ADD IX,DE 3SCREEN PTR DOWN A LINE
7588 D1 00790 pop DE ;RESTORE

75BC DDES 00800 PUSH X JNEW SCREEN PTR ADDRESS
75BE FDE1 00810 POP 1y ; INTO PROPER REG PR.
75C0 E5 00820 COLUMN PUSH HL 3 SAVE

75C1 210575 00830 LD HL, COLMCT 3PT TO COLUMN COUNT BYTE
75C4 46 00840 LD 8, (HL) ;COLUMN COUNT INTO REG B
75C5 E1 00850 POP HL 3RESTORE

75C6 C9 00860 RET 3BACK TO CALLER

75C7 E5 00870 SCRTST PUSH HL 3SUBR. TESTS VIDEQ RANGE
75C8 D5 00880 PUSH DE 3 SAVE

75C9 FDES 00890 PUSH Iy sVIDEO PTR

75CB D1 00900 POpP DE sINTO DE FOR TEST.

75CC 21FF3F 00910 LD HL,16383 JHIGHEST VIDEQ POSSIBLE
75CF B7 00920 OR A ;CLEAR CARRY FLAG

7500 ED52 00930 SBC HL,DE JHIGHEST - CURRENT PTR
75D2 D1 00940 POP DE SRESTORE

7503 E1 00950 pop HL ;RESTORE

75D4 C9 00960 RET ;TO CALLER WITH FLAGS
7505 00 00970 COLMCT DEFB 0 ;HOLDS COLUMN COUNT BYTE
4020 00980 CURSOR EQU 4020H ;ADDR. HOLDS CURSOR ADDR.
0A7F 00990 USRARG EQU OA7FH ;ADDR OF USR() ARG SUBR.
408E 01000 USRVEC EQU 408EH ;USR() VECTOR ADDR.

203€ 01010 LDSPAC EQU 203EH ;CODE FOR LD A,*' !

7530 01020 END INIT 3 IF NOT DISK BASICH***xwi*

00000 TOTAL ERRORS

Program Listing 2. BASIC graphics builder

10 REM **** PROGRAM TO BUILD STRING BLOCK ***x

20 REM *** CREATES OPTIMIZED CODE FOR 'SBLOCK' PROGRAM ***

30 CLS:PRINTTAB(11)“STRING BLOCK BUILDER PROGRAM":PRINTTAB(17)"BY J
EFF W. COLLINS":PRINT"ASSEMBLY PROGRAM 'SBLOCK' MUST BE RESIDENT.
“:INPUT"WHEN READY FOR INSTRUCTIONS, HIT <ENTER>";I

40 CLS:CLEARIQO0O:DEFINT C,1,J,5,Z

50 PRINT"IF THE STRING BLOCK TO BE CREATED IS TO BE PRINTED OVER SOME-
“:PRINT"THING ELSE, DO YOU WANT IT TO HAVE: 0) NON-DESTRUCTIVE S
PACES"

60 PRINTTAB(37)"1) DESTRUCTIVE SPACES"

70 INPUT"CHOOSE (0 OR 1)";SP:IFSP>1 OR SP<O THEN 70

80 CLS:1F SP <> 0 THEN SP=32

90 PRINTTAB(4)"KEY"; :PRINTTAB(25) "ACTION":PRINT"RIGHT ARROW -- SET
COLUMN X AT ROW Y."

100 PRINT"UP ARROW -- CHOICE OF ALPHANUMERICS (AT CURRENT LOC'N)“:
PRINTTAB(16)"0R GRAPHICS STARTING AT ROW O, COLUMN O."

110 PRINT"KENTER> ~-";:PRINTTAB(16)"FINISH ALPHA OR GRAPHIC LINE. IF
GRAPHIC LINE,":PRINTTAB(16)"RESUME AT NEXT HIGHER LINE, IF FROM
ALPHA LINE":PRINTTAB(16)"RESUME GRAPHIC MODE AT CURRENT LOCATION.

130 PRINTULEFT ARROW --";:PRINTTAB(16)“FROM GRAPHICS MODE ONLY. BACKS
PACE ONCE TO":PRINTTAB(16)“DELETE A GRAPHICS CHARACTER, TWICE TO
DELETE AN":PRINTTAB(16)"“ALPHA CHARACTER, RESUMING AT DELETED CHAR
ACTER'S"; :PRINTTAB(16)"LOCATION. "
140 PRINT'AMPERSAND --";:PRINTTAB(16)“FROM GRAPHICS MODE ONLY. PROCES
S THE BLOCK":PRINTTAB(16)"STRING, SHOW ITS BYTES, OFFER TO RECORD
ON TAPE.";
150 PRINT"SPACE BAR --“;:PRINTTAB(16)"SKIP ONE GRAPHICS OR ONE CHARAC
TER SPACE.":PRINT“T --";:PRINTTAB(16)"READ IN TAPE BLOCK STRING." i
(INPUTUHIT 'ENTER' TO START.";I:CLS Program continued

79

160
170
180

185

190
200
210

220
230
240
250
260

270
280
290
300

310
320
330
340
350
360
370
380
390
400
410
420
430

440

450
460
470
480
490
500
510

515

520
530
540
550

560

570
580
590
600
610
620

630

graphics

P=805:BL$=STRING$(19,32):G$="* GRAPHICS MODE *"

PRINT®P,G$;:GOSUB 250

KP§="":KP$=INKEY$: IF KP$="" THEN 180 ELSE K=ASC(KP$):IF K=8 AND X
<> 0 THEN X=X-1:RESET(X,Y):GOSUB 250:G0TO 180

IF K=84 THEN PRINTGP,BLS;:PRINTGP,"* TAPE READY <EN> *";:B$="":B
$=INKEY$: IFBS=""THEN 185 ELSE IF B$ <> CHR$(13) THEN 170 ELSE INP
UT#-1,A$:CC=0:GOSUB 800:PRINT@O, "*;: Z=USR(1):Z=USR(VARPTR(AS)): A
="":G0TO 170

IF K=32 THEN X=X+1:G0SUB 320:GOTO 180

IF K=13 THEN X=0:Y=Y+1:G0SUB 320:GOTO 180

IF K=9 AND X < 128 AND Y < 48 THEN SET(X,Y):X=X+1:GOSUB 320:GOTO 1
80

IF K=38 THEN 350

IF K=91 THEN 260

GOSUB 250:60T0 180

PRINT@B75,"Y ROW=";Y;" ";:PRINT®939, "X COLUMN=";X;" ";:RETURN

PRINT@P,BLS; :PRINTGP, " (G)RAPHICS (A)LPHA?"; :B$="":B$=INKEY$: IF B$=
" THEN 260 ELSE IF NOT (B$="G" OR B§="A") THEN 260 ELSE PRINTGP,
BL$;:IF B$="G" THEN X=0:Y=0:PRINT@P,G$:GOSUS 250:GOTO 180 ELSE IF
85="A" THEN PRINTGP," * ALPHA MODE *";

TY=Y/3:TY=INT(TY)

TX=X/2:1F TX <> INT(TX) THEN TX=TX+1

J=0

B$="":B$=INKEY$: IF B$="" THEN 300 ELSE B=ASC(B$):IF B=8 THEN B=93
ELSE IF B=9 THEN B=94 ELSE IF B=10 THEN B=92 ELSE IF B=13 THEN PR
INTGP,G$; :GOSUB 250:GOTO 180

PRINT@(64*TY)+TX+J ,CHRS (B) ; :0=d+1:X=X+2:G0SUB 320:GOT0300

IF X > 127 THEN X=0 ELSE IF X > HX THEN HX=X

IF Y > 47 THEN Y=0:X=0 ELSE IF Y > HY THEN HY=Y

GOSUB 250 :RETURN

PRINT@P,BL§;:PRINTGP,"* PROCESSING ...";:FOR J=1 TO 100:NEXT J

CA=15360:1=0

X=HX/2:IF X < INT(X) THEN X=X+1

Y=HY/3: Y=INT(Y)

T1=-1:T2=1

FOR J=0 TO X-1

CP=PEEK (CA+J)

IF CP=32 OR (P=128 THEN CP=SP

IF CP=T1 THEN T2=T2+1:IF T2=256 THEN A$=A$+CHR$(128)+CHR$(255)+CHR
$(CP):T2=1:60T0 450 ELSE 450

IF T1<>-1 THEN IF T2=2 THEN A$=A$+CHRS({T1)+CHR$(T1):T2=1 ELSE If T
2;2 THEN A$=A$+CHR${128)+CHRS (T2)+CHRS (T1):T2=1 ELSE A$=A§+CHR$(T
1

T1=CP

NEXT J

CA=CA+64

I=1+1

IF I>Y THEN 510

GOTO 400

IF T2>1 THEN A$=A$+CHRS (128)+CHRS (T2)4CHRS(T1) ELSE A$=A$+CHR$(CP)

IF LEN(A$) > 2 THEN IF MID$(A$,LEN(A$)-2,1%=CHR$(128) AND MID$(AS,
LEN(A$),1)=CHR$(0) THEN A$=LEFT$(A$,LEN(A$)-3) ELSE IF MID$(A$,LE
N(A$),1)=CHR$(0) THEN A$=LEFT${AS,LEN(A$)-1)

7=LEN({A$)+1

A$=CHR$ (X)+A$:IF X=0 THEN A$="":GOTO 170

CLS:PRINT"THE LENGTH OF THIS BLOCK STRING IS";STR$(Z);"."

IF Z >248 THEN PRINT"**%* WARNING **** THIS STRING IS TOO LONG":PR
INT'TO GO TO TAPE AS IS. REWORK THE GRAPHIC."

B$="":1F Z < 249 THEN PRINTTAB(5);"DO YOU WANT TO SAVE THE STRING
ON TAPE (Y/N)";:INPUT B$:IF LEFT$(B$,1)="Y" THEN INPUT"HIT 'ENTER
' WHEN TAPE IS READY.";B$:PRINT#-1,A$

PRINT"THE STRING'S DECIMAL BYTES WILL FOLLOW."

INPUT"HIT 'ENTER' WHEN READY.";I

FOR I=1 TO LEN(A$)

PRINT ASC(MID$(A$,1,1));:FOR J=1 TO 25:NEXT J

NEXT 1

PRINT:PRINT"THERE ARE";Z;"BYTES (INCLUDES COLUMN COUNT) IN THIS ST
RING."

T1=HY:PRINT"TO CHANGE HIGHEST ROW Y,";STRE(HY);", ";:INPUT"ENTER O

80

graphics

-47 ELSE HIT <ENTER>";HY

640 T2=HX:PRINT“TO CHANGE HIGHEST COLUMN X,";STR$(HX):", *;:INPUT"ENTE
R 0-127 ELSE HIT <ENTER>";HX:IF TL <> HY OR T2 <> HX THEN CLS:Z=U
SR(VARPTR{A$)}: A$="":GOTO 350

650 INPUT"HIT 'ENTER' TO DISPLAY STRING AND CONTINUE®;Z

650 CLS

670 Z=USR(1)

680 Z=USR(VARPTR(A$))

690 X=0:Y=0:A$=""

700 GOTO 170

800 FOR Z=2 TO LEN(A$)

810 IF MID$(A$,Z,1)=CHR$(128) THEN CC=CC+ASC(MID$(A$,Z+1,1))-3

820 CC=CC+1:NEXT Z

830 HY=CC/ASC(A$):IF HY=INT(HY) THEN HY=HY-1 ELSE HY=INT(HY)

840 HY=(HY*2)+HY+2:HX=(ASC(A$)*2)~1:X=HX: Y=HY :RETURN

Program Listing 3. Demonstration of screen printing

10 GOTO 30

20 X=USR(US) : X=USR{VARPTR(A$(SL)}):RETURN

30 CLS:PRINT"PROGRAM TO DEMONSTRATE ‘SBLOCK' ASSEMBLY PROGRAM,"

40 PRINT"SHOWING THE EFFECT OF OVERLAYING IMAGES USING"

50 PRINT“DESTRUCTIVE AND NON-DESTRUCTIVE SPACES."

60 PRINT:PRINT"IF A/L 'SBLOCK' IS IN PROTECTED MEMORY,"

70 PRINT"PRESS ‘ENTER' FOR INSTRUCTIONS.":GOSUB 550

80 CLS:PRINTKEY";TAB(16)"ACTION": PRINT

90 PRINT'D --";TAB({16)"DISPLAY CURRENT STRING BLOCK AT CURSOR"

100 PRINT"N --";TAB(16)“DISPLAY NEXT STRING BLOCK"

110 PRINT“E --";TAB(16)"ERASE CURRENT STRING BLOCK"

120 PRINT"SPACE BAR --";TAB(16)"ADVANCE CURSOR"

130 PRINT'LEFT ARROW --";TAB(16)"BACKSPACE CURSOR"

140 PRINT'RIGHT ARROW --";TAB(16)"ADVANCE CURSOR 8 SPACES"

150 PRINT"DOWN ARROW --";TAB(16)"SKIP CURSOR DOWN A LINE"

160 PRINT"UP ARROW --";TAB(16)"SKIP CURSOR UP A LINE®

170 PRINT"C --";TAB(16)"CLEARS SCREEN, KEEPS SAME CURSOR LOCATION®

180 CLEAR 1000

190 DEFINT 8-1

200 DEFSTR A,C,K

210 K$(1)="GOODBYE":K${2)="BLUB...BLUB..."

220 B=13:55=15360:DIM A$(B)

230 FOR I=0 TO B

240 READ NB:FOR J=1 TO NB:READ SB:A$(I)=A$(I)+CHR$(SB):NEXT J

250 NEXT 1

260 PRINT:PRINT"WHEN READY TO START HIT 'ENTER'.":GOSUB 550

270 CLS:PRINT@452,"THE CURSOR COMING UP IS YOUR PROMPT.®

280 FOR 1=0 TO 1023 STEP 12

290 PRINT®I,"";:US=1:S1=9:GOSUB 20 :PRINT@1023-1,"";:GOSUB 20

300 PRINT@1023-1,"";:US=0:GOSUB 20:PRINT@I,"";:G0SUB 20

310 NEXT I:CLS

320 CU$=CHR${1)+CHR$(95)

330 VI=0:1X=0

340 PA=SS .

350 PV=PEEK(PA)

360 PRINT @ VI,"";:X=USR(1):X=USR(VARPTR(CU$))

370 KP$=INKEY$: IF KP$="“THEN 370

380 IF KP$="D" THEN PRINT@PA-SS,CHR$(PV);:US=1:SI=IX:G0SUB 20:PV=PEEK(
VI+SS):GOTO 370

390 IF KP$="E" THEN PRINT@PA-SS,CHRS (PV);:US=0:SI=1X:G0SUB 20:PV=PEEK(
VI+SS):GOTO 370

400 IF KP$="N" THEN IX=IX+1:KP$="D":1F IX > B THEN 560 ELSE 380

410 IF KP$="C" THEN PV=32:CLS:GOTO 360

420 IF KP$=CHR$(9) THEN NA=VI+8:GOTO 470

430 IF KP$=CHR$(8) THEN NA=VI-1:GOTO 470

440 IF KP$=CHR$(10) THEN NA=VI+64:GOTO 470

450 IF KP$=CHR${32) THEN NA=VI+1:GOTO 470

460 IF KP$=CHR$(91) THEN NA=VI-64 ELSE GOTO 370

470 IF NA > 1023 THEN NA=1023 Program continued

81

480
490
500
510
520
530
540
550
560

570

580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

730
740
750
760
770
780
790
800
810
820
830
840

graphics

IF NA < O THEN NA=0

PRINT@VI, “*; : X=USR{0): X=USR(VARPTR(CU$))

PRINTEPASS,CHRS (PV)

PA=NA+SS

PV=PEEK (PA)

VI=NA

GOTO 360

KP$="":KP$="":KP$=INKEY$: IF KP$="" THEN 550 ELSE RETURN

CLS:FOR I=0 TO 20:PRINT@I,"";:US=1:SI=12:G0SUB 20:FOR Z=1 TO 50:NE

XT 2:US=0:GOSUB 20:NEXT 1

FOR [=1 TO 14:J=J+64:PRINT@J,"";:US=1:G0SUB 20:FOR Z=1 TO 500:NEXT
7:US=0:GOSUB 20:PRINT®J+30,K$ (RND(2));

FOR Z=1 TO 39:NEXT Z

NEXT 1:FOR I=1 TO 1000:NEXT I:END

X=USR(US) : X=USR (VARPTR (A$ (SU))) :RETURN

DATA 4,1,191,143,131

DATA 4,3.191,0,191

DATA 15,5,176,191,176,191,176,140,191,140,191,140,0,131,0,131

DATA 14.5.176.140,191,140,140,176,179.191,179,140,0,0,131

DATA 17.5.0,143,143,176,140,176,140,131,176,176,128,3,0,128,2,131

DATA 16,5,188,131, 188 0,0,188,131, 140 176 140 0,131, 131 0,131

DATA 5,3,0,191, 143 131

DATA 10,3,176,140, 131 143,176,128,3,0,131

DATA 8,3,131,140, 176 0 176 143 131

DATA 14,5,140, 176 191 176 140 179 143,191,143,179,0,0,131

DATA 9,5,176,176,191, 176 176 0 0, 143

DATA 20,11,131,140, 179 140 179 140 179,140,179,140,131,128,3,0,131
,140,179,140,131

DATA 100,29,128,12,0,176,184,188,191,188,180,176,144,128,10

DATA 0,128,4,176, 128 5,0,136,128,10, 191 189 188 180 176
DATA 176,144,0,0,131, 128 5, 191 189 188 188 128 12 151

DATA 176,176,191,191,128,3,143,133,139,128,3, 143 131 131
DATA 128,3,0,143,175,128, 11 191 143 135 128 4 131 129 78
DATA 79,78,0,68,69,83,84, 128 3, 0 139 175 159 128 4 143
DATA 191 ,159,143, 129 128 19, 0 130 128 5, 0 130

DATA 76, 20,143 143, 128 4,32, 143 143 128,4,32,143,143,128,4,32
DATA 143 143,68, 69,83,84,82,85,67,84,73,85,69,32,83

DATA 80,65,67,69,83,32,32,128,20,140,176,176,128,4,32

DATA 176,176,128,4,32,176,176,128,4,32,176,176,131,131,128
DATA 4,32,131,131,128,4,32,131,131,128,4,32,128,2,131

82

HARDWARE

HEART/BAS HEART/CIM

83

HARDWARE

HEART/BAS HEART/CIM

by Alan Sehmer

\ /il y doctor recommended that I peddle an exercycle for a total of 30
A V B minutes. During the first five minutes, I have to bring my heart rate
up to 150 beats per minute. I must hold that rate for 20 minutes. The last five
minutes are used to cool off and bring the rate back down to normal. After
the first week of this exercise, I learned that the combination of riding the ex-
ercycle and monitoring my heart rate was a boring form of torture.

With my TRS-80 Model I, I can monitor my heart rate. The data can be
handled and displayed in many ways. The first is to display the heart rate on
the CRT. I can also get a hard-copy record which enables me to look for any
trends over time. With a Line Printer II, the heart rate and time can be
printed in one of two forms—as a table or, with a little more programming,
as a graph. If you don’t have a printer, you can send the data to the CRT as a
table or graph or store it on a tape or disk. The two main parts of this project
are the EKG hardware and the machine-language driver program. Once
you have these, what you do with the data is up to you.

4
220
m={==—=
t i
t 1 +
i [: i
VY[TRS
i
|
y =
+3v bfmmad +9v
+Y
InF
InF
10K L
RIGHT 5 s \T il rlen
T 4.7uF
Ll
l(‘f 10K 4)
LEFT o s 3
15M toK 8 18uF
™
™ -9v oK VOL fim3se >2—)
GND o SEN 2 7
10K

-9 o om—ifi}—se
+9—0’L5——{1|}—~—

Figure 1, EKG

85

hardware

For this project, you need about $25.00, two evenings, a Model I TRS-80
with one bit of input port, and the Expansion Interface with disk (the pro-
gram uses the clock). The schematic for the EKG is given in Figure 1. The
unmarked diode and transistor can be almost anything in your junk box. All
parts are from Radio Shack. The only construction caution is to be sure not
to connect the EKG ground to TRS ground (opto-isolator negative). If
grounds are connected, the TRS digital noise interferes with the EKG. The
opto-isolator also electrically disconnects you from the computer; connect-
ing grounds would defeat this. For the electrodes, I used the metal caps from
the cans that 35mm photographic film comes in. Photos 1 and 2 show the in-
ternal layout of my EKG; photo 3 is the completed unit with its film can
electrodes.

Photo 1. Internal layout of EKG

To use the EKG, place the left and right electrodes on the chest about two
inches above each nipple and place the ground electrode on the waist
toward the right. The ground electrode is held in place by the waistband of
my slacks, and the chest electrodes are held by an ace bandage. I have found

86

hardware

teooesee

iscicee

¢ 8 8 1

.
-
¢ 0
6 e
6 o
%9
s 0
s &
5 v
5o
o5
foe

¥

Photo 2. Internal layout of EKG

it easier to wrap my chest with the bandage first and then position the elec-
trodes. Some sort of conductive cream should be used between the skin and
electrode. You can obtain this from any surgical supply house. Once you are
wired for sound, plug yourself in and turn on the EKG. Turn the volume up
about half way and then slowly turn up the sensitivity. About half way up
you should hear your heart beat; if you turn it up more the heart beat will be
lost in noise. The EKG does not listen for the sound of the heart but is sen-
sitive to the electrical signal of the heart muscle. It is also sensitive to any
other electrical signal in the chest area. Place the palms of your hands
together and push. You should hear the signals of the chest muscles. The
EKG is safe to use because it is battery powered and the computer output
goes through an opto-isolator. To stay on the safe side, do not replace the
batteries with battery eliminators.

When the machine-language driver program (see Program Listing 1) is
called, it first sets the heart beat counter to zero, then keeps checking the
clock, waiting for the seconds to change. When they do, the program starts

87

hardware

checking for the EKG (I used port #4) and clock signals. When the clock has
advanced 20 seconds, the program returns with the number of heart beats in
those 20 seconds.

Photo 3. The completed unit with its film can electrodes

Once the numbers are in the computer, the BASIC program (see Program
Listing 2) outputs the data. Every 20 seconds, this program displays the
elapsed time and current heart rate. It also stores the heart data in array Y. I
decided to monitor my heart for 40 minutes instead of only 30 minutes. Dur-
ing the last 10 minutes, I get off the exercycle and sit quietly. This allows my
heart to come down completely to its resting rate. The doctor didn’t request
this, but I thought it was a nice touch. After 40 minutes, the program plots
heart rate versus time. (See Figure 2.) The plot section of the program is for
the Line Printer II, but you can modify it for use with another printer.

88

10

30

40

it-yourself project. Go to your doctor and get your own numbers.

hardware

50 70 99 110 130 150 178 196
Lk S o e o e e B T s S T o Bt At +
I b3

| X

I X

| x

I x

I x

| E

| X

| X

| x

| X

1 3
I X
| x
+ X
t *
! X
{ X
{ x
l X
! X
l x
! ®
| x

| x

H 3

l X

1 x

i x

+ x

i x

i x

i %

i x

i x

i x

I X

| x

i *

| x

| X

I %

I x

] x

+ ®

| x

| x

| x

| x

| x

| x

| x

1 x

1 x

1 x

] x

1 *

| X

| X

B St S oo + + B e e s +

DATE 12/29/81
Figure 2. Plot of heart rate versus time

One last word of caution: The numbers for heart rates and times were
given to me by my doctor. This type of exercise program should not be a do-

89

hardware

Program Listing 1. Assembly-language program

00100 ; HEART BEAT CLOCK MUST BE ENABLED
A000 00110 ORG 0ADOOH
AQ00 110000 00120 LD DE ,0000H 5 INIT BEAT COUNT
A003 0614 00130 LD 8,20 JINIT # OF SECONDS
A005 214140 00140 LD HL,4041H ;PT. TO TRS CLOCK
A008 7E 00150 LD A, (HL) ;WAIT FOR SEC. TO CHANGE
A009 BE 00160 WAIT cp (HL)
AODA 28FD 00170 JR L, WAIT
A0OC 7E 00180 STIME LD A, (HL) ;STORE NEW TIME
AOOD 323CAC 00190 LD (TIME),A
A010 DBO4 00200 INPUT IN A,(4) sUSES PORT #4
AQ12 FEFF 00210 cp OFFH
A014 2008 00220 JR NZ,PULSE
A016 3A3CA0 00230 CTIME LD A, (TIME) JHAVE SECONDS CHANGED ?
A019 BE 00240 CP (HL)
AO1A 201A 00250 JR NZ,TEST sNZ=HAVE CHANGED.
AO1C 18F2 00260 JR INPUT
AOIE 13 00270 PULSE INC DE ;BUMP BEAT COUNT
AOIF 3E2A 00280 LD A,2AH
A021 320A3C 00290 LD (3C0AH) ,A
A024 210040 00300 LD HL ,4000H ;100MS DELAY FOR PULSE
A027 2B 00310 DELAY DEC HL 3 TO GO AWAY
A028 7C 00320 LD AH
A029 BS 00330 O0R L
AO2ZA 20FB 00340 JR NZ,DELAY
A02C 3E20 00350 LD A,20H
AQ2E 320A3C 00360 LD (3COAR) ,A
AQ31 214140 00370 LD HL,4041H ;RESTORE CLOCK POINTER
A034 18E0 00380 JR CTIME ;GO CHECK TIME
A036 10D4 00390 TEST DJNZ STIME ;DEC SECONDS COUNT
A038 EB 00400 EX DE,HL 4BEAT CT. TO HL FOR BASIC
A039 C39A0A 00410 JP O0A9AH ;BACK 7O BASIC
AQ3C 00 00420 TIME DEFB 00
0000 00430 END
00000 TOTAL ERRORS
Program Listing 2. BASIC program
10 DEFUSR 3=(&HA000) : CLEAR 100 : DIM Y(120)
20 INPUT "PRESS ENTER TO START";A$: CLS
30 PRINT'TEST" : Z=USR 3{0) : CLS : PRINT CHR$(23)
40 FOR Z=1 TO 120 : Y=USR 3(0)*3 : PRINT@ O,Y
50 PRINT@ 64,INT{Z/3);"MINUTES"; : Y(Z)=Y-50
60 NEXT : CLS : PRINT@ 128, "DONE"
70 PRINT "BACKUP PRINTER PAPER TWO LINES FROM CUTTER BAR"
80 LINEINPUT "ENTER DATE ";D$
90 LPRINT TAB(5)"50"TAB(15)"70"TAB(25)"90 *;
160 FOR X=110 TO 190 STEP 20 : LPRINT STRING$(5," ");X; : NEXT
110 LPRINT 0 +"; : FOR X=1 TO 7 : LPRINT "-meetemeast"y © NEXT :
LPRINT "
120 FOR Z=2 TO 118 STEP 2
130 IF Z/30=INT(Z/30) LPRINT " ";Z/3;"+"; : GOTO 150
140 LPRINT TAB(5)CHR$(124);
150 IF Y(Z)<0 OR Y(Z)>140 LPRINT "* : GOTO 170
160 LPRINT STRING$(Y(Z)/2-1," “);"*"
170 NEXT
180 LPRINT " 40 +"; : FOR X=1 TO 7 : LPRINT "emevtwnwot"; @ NEXT : LP
RINT “°
190 LPRINT TAB(34)"DATE ";D$: END
200 DEFUSR 3={&HADQO) : CLS
210 PRINT@ O,USR 3{(0)*3 : GOTO 210
220 0=USR 1(Y) : 0=USR 2(X) : RETURN

90

HOME APPLICATIONS

Low Resolution Voice for the Color Computer
Planning Your Retirement

91

—HOME APPLICATIONS

Low Resolution Voice for the Color Computer

by Dr. Edward Kimble

With a host of articles available concerning voice synthesis and record-
ing using more expensive systems, it is pleasing to find that Radio
Shack’s Color Computer is capable of both low and high resolution speech
manipulation.

While it may be somewhat crude, the simplest method for entering speech
into the Color Computer is to use the cassette input to measure the zero
crossing of the audio signal. When you work with this type of input, you'll
find that the electrical signal is not capacitively coupled to the input. This
means that the bias and impedances can be externally adjusted, which
minimizes the noise that might result from spurious zero crossings. With
cassette input, you may also hook up different tape recorders to the input to
generate different sound characteristics. Using the six Program Listings, you
can feed audio information into the computer by either using the cassette
recorder in the play mode or by speaking into the microphone while the
recorder is in the record mode. This method can be dangerous if you ac-
cidentally leave a valuable recording in the slot. In either case you would be
wise to adjust your recorder to reduce the noise level before you start. Do this
by adjusting the record level, treble, and bass. If you have a choice of
recorders, try them all, because one may work better than another.

There are hundreds of ways to encode speech and place it in memory. I
have chosen two techniques. One method feeds the waveform into memory
while displaying the impulses directly on the high-resolution screen. (See
Program Listings 1-3.) My daughter has found this to be useful when prac-
ticing her music lessons, since small changes in frequency or accent show up
as large changes on the display.

The audio quality can be improved somewhat in these programs if you in-
crease the sampling rate. Quality is limited when the smoothly-varying
waveform is converted into a square wave by the zero crossing detector cir-
cuitry. Despite these problems, when the data is played back through the
single-bit sound output, individual voices are clearly recognized and
understood. At the end of the first driver program (Program Listing 3) is a
graphics routine that you can gain access to by typing GOTO 89 (ENTER).
Since the data is stored as spatial relationships on the screen, unusual figures
plotted on the screen often come out as unusual sounds when the playback
routine is executed.

93

home applications

An alternate technique that is often used to record sound stores the pulse
widths of the incoming waves in memory as discrete numbers. This method
can be inefficient in that it requires a single byte of memory for each half
wave of audio information. On the other hand, it is efficient in storing
pauses and periods of low frequency. For example, the letter s contains
enough high-frequency variations that memory may be filled by a word like
Mississippi. Program Listings 4-6 use this method. As you run the programs,
note that it is much more difficult to determine from the display screen
whether you have recorded information or noise. One advantage this
technique offers is that a crude voice print, similar to those used in forensic
science, can be quickly prepared. The pulse widths are plotted versus time.

If you run the second series of programs (Program Listings 4-6), you will
see why I plotted the dependent variable on the horizontal axis. In preparing
the voice print, the pulse width data is erased starting at the beginning of the
data in the upper right-hand corner of the screen. Replacing this data are
dots whose distance from the right-hand edge of the screen is determined by
the magnitude of the pulse widths. You can examine the plot and determine
how many waves of a given pulse width were present at a given time.

Program set 1 Program set 2
Recording speed 3025 MSB & 3026 LSB 3215 & 3216
Playback speed 321C & 321D 3033 & 3034
Start of record 3010 & 3011 3205 & 3206
storage 3201 & 3202 3010 & 3011
End of record 3042 & 3043 3234 & 3235
3236 & 3237 3027 & 3028

Page address 3015, 3204 3201

Table 1. Some useful addresses (hexadecimal)

To enter the machine-language programs, you must have a monitor or a
short BASIC program that POKEs the instructions into memory. I've in-
cluded a short program in BASIC which acts as a driver program, turning on
and off the machine-language routines. For wave plotting program number
one, the storage routine for recording your voice begins at hexadecimal loca-
tion 3000 (decimal location 12288). Each of the routines begins execution
with the first byte. You can EXEC these routines without the use of the
driver program; it is merely added as a convenience. The machine-language
programs are listed here in blocks of eight bytes with the address of the first
byte in each block given at the left. These programs are relocatable;
however, there is a memory location used for temporary storage at address
3250 in hexadecimal. The first two most significant digits of this address can

94

home applications

be changed so as to store the information on a different page of memory by
going to the Page Address as listed in Table 1 and changing the numbers at
these addresses to some number other than 32. Be sure you have RAM
storage at the new location. To decrease recording speed, you can increase
the numbers for the recording speed and playback speed locations given in
Table 1. Filtering and frequency shifting is done, as indicated at the end of
driver program number two, by using IF-THEN statements to sample the
data and render a new frequency or response.

Although the tone quality of this system is not remarkable, the abilities ex-
hibited by these two methods are quite remarkable. Up to 15 seconds of
speech can be recorded in as little as five kilobytes. You can do frequency
analysis studies that were previously limited to the more sophisticated col-
lege labs. Deaf students can utilize this technique to see the vibrations in
their voices as well as such properties as frequency and attack without the
aid of a storage oscilloscope.

95

home applications

Program Listing 1. Wave recording program

WAVE RECORDING PROGRAM

30ed 86 38 B7 FF 21 86 FE P7
308 FF 20 86 3C B7 FF 21 BE
JB10 06 BB Cs 0B 86 32 1E 8B
3018 OF 5@ 86 01 B4 FF 20 94
3828 50 ?7 50 5C CE 00 B2 33
30=z8 S5F 11 83 00 @0 27 0z 20
3830 F6 C: @8 27 04 @8 50 2

3@38 E1 A7 84 C6& Q0 OF 50 30
3040 ©1 8C 1D PO 27 @2 20 D2
w48 86 @B 1E 8P 39 DO FF 0@

Program Listing 2. Playback program

PLAYBACK PROGRAM

31E5 C6 0B B& 33 B7 FF 23 86
31ED FF B7 FF 22 86 37 B7? FF
31F5S 23 86 35 B7 FF 03 86 P4
3IFD B7 FF @1 BE @& Q0 B& 32
32@5 1E BB A4 B4 97 50 B9 50
320D 25 Q@7 86 FF BY FF 22 =

3215 @5 86 FD B7 FF 22 CE 0@
321D 02 33 5F 11 83 00 00 27
3225 @2 2@ F6 5C C1 @8 27 @2
322D 20 DC C6 0@ 12 12 30 01
3235 8C 1D BQ 27 02 20 CP B&
323D @@ 1E 8P 3% 00 FF Q0 FF

Program Listing 3. Driver program

DRIVER PROGRAM

5 CLS

1@ INPUT "CHOOBE PLAY'P® OR RECORD’R’"3iD$:IF D$="P" THEN 60
20 PMODE 4,1:PCLS:SCREENL, 1

32 EXEC12288

48 IF INKEY$="" THEN 40

i@ GO TO S5

6@ PMODE 4, 1:SCREEN1, 1:EXEC12773

7@ PRINT "DONE™"

80 GO TO 5

89 PMODE 4, 1:PCLS:SCREEN1,1

9@ FOR A=@ TO 162 STEP 2

91 LINE (B:A)-(COS(A/ID) #A%L. 2+16D, A+26) s PSETINEXT

Program Listing 4. Pulse width encoding program

PULSE WIDTH ENCODING PROGRAM

3200 B4 32 IE BR 8E 06 DO C6
3ZP8 0@ B6 FF 20 84 O1 D7 50
321@ 91 50 24 1B CE 0B 01 33
3218 5F 11 83 00 00 27 22 0
3220 F& 6C B4 97 S50 BS FF Al
3228 84 27 @b 96 S50 20 DA IE
3230 B89 30 @1 BC 1D PQ 27 @7
3Z38 20 CF B6 Q0 1E 8B 19 0@

96

home applications

Program Listing 5. Pulse width playback program

PULSE WIDTH PLAYBACK PROGRAM

1000 86 33 B7 FF 23 86 FF B7
Ip@8 FF 22 86 37 B7 FF 23 8E
1010 @6 @D 86 FF 20 @02 84 FD
amig P7 3E 80 E& B4 C1 FF 27
Jpz@ @3 B7 FF 22 30 @1 8C 1D
1928 PO 27 IF A6 B4 81 0@ 27
P30 10 4A CE 0@ 83 33 5F 11
ap38 B3 00 00 27 02 20 F6 20
ap4@ EC B IE 80 B1 FD 27 CA
3048 20 CC 39 00 FF 00 FF 00

Program Listing 6. Pulse width driver program

PULSE WIDTH DRIVER PROGRAM

1@ DIM D(35)

20 CLS:INPUT“RECORD=’R"PLAY=’P’,SPECTRUM=’S’";Sﬁ:IF S$="R" THEN 5@ ELSE IF S$="
p* THEN 30 ELSE 60

3@ PMODE 4.1:SCREEN1, 1:EXEC(12288)

4@ IF INKEY$="" THEN 4@ ELSE 20

5@ PMODE 491=SCREEN1a1=FCLS=EXEC(128QE)=GO TO 20
6@ PMODE 44 1:SCREENL, 13K=-1

7@ FOR A=1536 TO 7600 STEP 32

80 K=K+1

90 FOR B=0@ TO 31

10@ D(B)=PEEK(A+E)

110 NEXT B

120 FOR W=1 TO 255:PRESET (W.K)INEXT W

13@ FOR C=0 TO 31

140 PSET(D(C),K)

150 NEXTC

160 NEXT

170 GO TO 20

180 FOR A=1536 TO 7600

199 F=PEEK(A)

200 IF F<3 THEN POKE AsQ@

21@ PRINT PEEK(A)

220 NEXT

97

-~ HOME APPLICATIONS

Planning Your Retirement

by R. L. Conhaim

With all the talk of Social Security cutbacks, and with the many un-
knowns about job retirement plans, young people today look to their
retirement as an unknown quantity. There are so many variables that no
young person can say with any degree of accuracy how much retirement in-
come will be available. To rely totally on Social Security and job retirement
income may be dangerous. About the only sensible thing to do is to establish
a supplemental retirement plan, putting aside a sum each year. The govern-
ment has encouraged such supplementary savings through Individual
Retirement Accounts (IRA) and Keogh plans for the self-employed. How
much to put aside, and how much retirement income it will produce is
usually a matter of guesswork. By using well known annuity formulas, it is
possible to forecast accurately how much will be available and how much
income that principal will produce.

The Retirement program (see Program Listing) shows how far savings
will go, or establishes a savings goal if a monthly supplemental retirement
income is specified. Assuming you know how much supplemental retire-
ment income you want, for how long, and at what interest rate, the pro-
gram will show how much annual savings are needed now. It does this in
two steps. First, it computes the total principal needed at retirement, using
the annuity formula:

= 4 UL -1
(1 +Iefp)® x Iogf

P

where:

P = Principal required

A = Amount of monthly annuity

Ieff = Effective annual interest rate

n = Total number of years annuity is to run

S = Amount of annuity savings required
The program then computes the annual savings needed to provide the re-
quired principal, using the Sinking Fund formula:

PxIgff
(1 +Iegpnl -1
The variable nl is the number of years to retirement.

If you would rather specify how much you can set aside each year for your
retirement, the program will compute how much monthly retirement you

S =

98

home applications

will receive, and for how long. It does this with two additional formulas.
First, it computes the principal your savings will generate, using the formula:

p o g Ltlem™ ~1
Tegs
Then, it computes the monthly annuity that the principal will provide for
the specified number of years, using the formula:

P x Iggf X (1 + Leg)®
(1 +iegp)® —1
Since you are computing annual savings, but monthly retirement income,
adjust the number of periods accordingly.

In most published annuity formulas, the annual interest rate, compound-
ed annually, is assumed. But since interest these days is usually compounded
daily, the program uses effective interest rates. These are the rates that exist,
assuming compounding is done more often than annually. The effective in-
terest rate for daily compounding is supplied by the formula:

I 360 _
Teff = [o 1] 1

Where Ipom is the stated annual interest rate.

For example, a 10 percent nominal rate provides an effective rate of
10.5156 percent when compounded daily. In some cases, such as some
passbook accounts, interest may be compounded quarterly. In such cases,
the two values of 360 in the formula are changed to 4. For monthly com-
pounding, change each 360 to 12.

The power of compound interest is a source of amazement to people un-
familiar with its workings. As an example, suppose you are 30 years old and
plan to establish your own IRA to which you will deposit $2,000 annually
for 38 years. If you just put the money in a coffee can, at the end of 38 years
you would have $76,000—a tidy sum. But at 10 percent compound interest,
your savings will grow to $831,599 during the same 38 years. And that could
give you a retirement of $8,313.53 per month, assuming 10 percent interest,
for 20 years.

For another example, suppose you decide you will need to supplement
your retirement by an additional $1,000 per month for 20 years from retire-
ment age. Assuming you are 30 years old, and assuming you will retire at 68,
and further assuming you will earn 10 percent interest both on savings and
retirement annuity, you would need to save only $240.57 per year. With an-
nual savings that low, you probably could not earn 10 percent interest. Let’s
assume you can only earn 51/4 percent in a passbook account. Plugging that
into the program, you find you will need to save $850.00 per year.

Of course, smart savers will watch their savings closely, transferring funds

99

home applications

from passbook accounts to savings certificates, or to high yield money
market funds as the principal increases.

The program lets you experiment with variables as often as you like. You
may choose between having a known monthly retirement or a known an-
nual savings. Once you make this choice, you are asked five questions. When
your answers are complete, the program computes and displays the desired
data. By entering 1 at the end of the computation, you can repeat the
calculation using different variables. If you want to change only one
variable, press ENTER in response to questions whose answers are to remain
the same. By entering 2, you return to the main menu. This lets you choose
between program functions. Entering a 3 ends the program run.

You can test the accuracy of the formulas you have typed by running the
program both ways, using the same data. For example, suppose you know
you want to have a monthly supplementary retirement income of $200. You
select 1 from the menu. Let’s assume you want your retirement annuity to
last 15 years, earning 12 percent interest, and that you have 25 years to go
until retirement, during which time your savings will earn 8 percent. Enter-
ing these variables, you find that you will need to save $208.96 per year,
earning a total principal of $16,015.30. To see if you have entered the for-
mulas accurately in your program first return to the main menu (option 2),
then select option 2 (“What monthly retirement can I expect?”). Then, in
answer to the first question, enter $208.96, the amount you calculated when
you chose 1 from the menu. Plug in the same variables as you entered before
for times and interest rates. You should come up with $200.00 per month an-
nuity and $16,015.30 principal. Because of rounding, you may not come up
with these figures to the penny, but, if you entered the formulas carefully
paying close attention to the parentheses, you will be quite close.

The program is particularly valuable to persons with IRA and Keogh
plans who anticipate a fixed annual savings. It shows the power of com-
pound interest and the advantage of starting your savings program early in
life.

100

home applications

Program Listing. Retirement program

: Encyclopedia
10 'RETIREMENT PROGRAM Loada
20 'BY R. L. CONHAIM
30 E5 = "WTSEE, BEE, BEELAE
40 ON ERROR GOT0650
50 CLS:PRINT@192,"** PLANNING YOUR RETIREMENT ***
60 PRINT:PRINT"1. WHAT WILL I NEED TO SAVE EACH YEAR?
(IF YOU HAVE DETERMINED MONTHLY RETIREMENT)"
70 PRINT:PRINT"2. WHAT MONTHLY RETIREMENT CAN I EXPECT?
(IF YOU HAVE DETERMINED ANNUAL SAVINGS)"
80 PRINT:PRINT:PRINT:INPUT "ENTER A CHOICE {1 OR 2)";D1
9¢ IF DI = 1 GOTO110
100 If D1 = 2 GOTO330ELSEGOTO50
110 CLS:PRINT@256,;
120 INPUT"HOW MUCH MONTHLY RETIREMENT INCOME DO YOU WANT";Al
130 IF A1=0 GOSUB590: GOTO120
140 INPUT "FOR HOW MANY YEARS AFTER RETIREMENT" ;N1
150 IF N1=0 GOSUB590: GOT0140
160 INPUT “AT WHAT ANNUAL INTEREST RATE (WHOLE NUMBER)";13
170 IF 13=0 GOSUB590: GOTO160
180 INPUT "HOW MANY YEARS TO RETIREMENT" ;N2
190 IF N2=0 GOSUB590: GOT0180
200 INPUT “WHAT ANNUAL INTEREST RATE DO YOU EXPECT ON YOUR SAVINGS
(WHOLE NUMBER)";11
210 IF 11=0 GOSUB590: GOT0200
220 GOSUBS50
230 P1 =((({1 + T14)[(NL * 12))-1)/(({1 + I4)[(NL * 12)) * 14)) * Al
240 S1 = (P1 *12)/(({1 + I2)[N2)-1)
250 CLS:PRINT@256,"Y0U WILL NEED TO SAVE ";USING E$;S1:PRINT"PER YEAR
FOR";NZ;“YEARS.":PRINT:PRINT"YOUR TOTAL SAVINGS WITH INTEREST WIL
L BE “;USING E$;P1
260 D2=0 : PRINT@640,"1. DO ANOTHER CALCULATION"
270 PRINT"2. RETURN TO MAIN MENY"
280 PRINT"3. END PROGRAM RUN"
290 PRINT:INPUT"ENTER A CHOICE (1, 2, OR 3)"; D2
300 IF D2=0 OR D2>3 GOT0260
310 ON D2 GOT0110,50,630
320 '
330 CLS:PRINT@256,;
340 INPUT"HOW MUCH WILL YOU SAVE EACH YEAR (NO COMMAS)"; S1
350 IF S1=0 GOSUB590: GOTO0340
360 INPUT “AT WHAT ANNUAL INTEREST RATE (WHOLE NUMBER)";I1
370 IF 11=0 GOSUB590: GOTO360
380 INPUT "HOW MANY YEARS TO RETIREMENT" ;N2
390 IF N2=0 GOSUB590: GOTO0380
400 INPUT “FOR HOW MANY YEARS AFTER RETIREMENT ARE BENEFITS TO LAST";N

1

410 IF N1=0 GOSUB590: GOTQ400

420 INPUT "WHAT ANNUAL INTEREST RATE DO YOU EXPECT DURING RETIREMENT

(WHOLE NUMBER)";13

430 IF 13=0 GOSUB590: GOT0420

440 GOSUB550

450 P1 = (({(1 + I2)[N2)}-1)/12) * Sl

460 Al = ((P1 * 14) * (1 + 14)[(N1 * 12))/¢((1 + T14)[(N1 * 12)) -1)

470 CLS:PRINT@256,"AT RETIREMENT YOU WILL RECEIVE ";USING E$;AL:PRINT
"pER MONTH FOR™;N1;“"YEARS.":PRINT:PRINT “YOUR TOTAL SAVINGS WILL
BE ";USING E$;P1

480 D3=0 : PRINT@640,"1. DO ANOTHER CALCULATION"

490 PRINT"2. RETURN TO MAIN MENU®

500 PRINT"3. END PROGRAM RUN"

510 PRINT:INPUTYENTER A CHOICE (1, 2, OR 3)"; D3

520 IF D3=0 OR D3>3 THENA48O

530 ON D3 GOT0330,50,630

540 END

550 12 = ((

560 14 = {{

570 RETURN

580 ' Program continued

(11/36000)+1)[360)-1
{(13/36000)+1)[360)-1)/12

<o on

101

home applications

590 REM ERROR MESSAGE SUBROUTINE

600 PRINT"** TRY AGAIN! VALUE MUST BE GREATER THAN ZERQ! ***
610 RETURN

620

630 CLEAR 50:CLS:PRINTRUN ENDED":ON ERROR GOTO O:PRINT : END
640

650 REM ERROR TRAP

660 IF ERR/2+1=6 PRINT:PRINT"**** CAN'T PROCESS -- VALUES ENTERED ARE
TOO HIGH **xx

PRESS <ENTER> TO RE-START PROGRAM": INPUT XX:RESUME1OQ

670 RESUME1D

102

INTERFACE

Atari Joystick to TRS-80 Interface

103

INTERFACE

Atari Joystick to TRS-80 Interface

by Carl Van Wormer

his article will show you how to build an interface to connect the Atari
joystick to your Model I TRS-80. It also includes a short checkout pro-
gram (Program Listing 1) and a BASIC program that uses an Atari joystick
to simulate the doodling of Skedoodle or Etch-a-Sketch (Program Listing 2).
A joystick provides an alternative means of input for people who cannot
use the keyboard, including pre-alphabet children and the handicapped. It
gives a more responsive interface for certain game programs that makes
them easier to operate. There are several excellent arcade games available that
work very well with this joystick interface. It also keeps excitable gamesters
from beating brutally on your keyboard when the enemy gets close.

Background

This interface attaches to the expansion port on either the CPU or the ex-
pansion interface (on the expansion interface, the expansion port is called
the bus extension or screen printer port). It is a minimum hardware inter-
face and has the advantage of being very simple and inexpensive. The
switches inside the joystick are connected to the IN* (port input, low true)
line and, through data lines, on the expansion port connector. When the
BASIC INP(0) function or any of the machine-code port input instructions
are used, the IN* line goes low, and the data bus is read by the CPU. Nor-
mally the data lines are at a logic high state when no device is addressed on
the bus, but if switch contact is made in the joystick, the logic low on the IN*
line is connected (through the diodes) to the data bus and is read as valid
data input (see Figure 1).

This simple interface has two possible disadvantages. You may encounter
difficulties if other port-mapped inputs on this bus are addressed while the
joystick is used. This means you shouldn’t use the joystick while you are try-
ing to load a cassette program or use the RS-232 port, unless you are ex-
perimenting with arbitrary program/data manipulation. In most cases you
will not encounter this problem, since the joystick is mainly used to play
games that make no other use of the input ports. The joystick interface does
not work with some non-TRS-80 expansion interfaces. If you have any non-
TRS-80 equipment connected to your system and want to see if you will be
able to use this interface, try this test. Turn on your computer, and while in

105

interface

BASIC, type PRINT INP(0) and press ENTER. If the screen shows 255,
everything should work. If the screen shows some other value, it indicates
that the data bus has been terminated for better noise immunity. Unfor-
tunately, this also means that my low budget interface won’t work. To inter-
face to a properly terminated data bus requires tri-state buffers and decode
logic along with a power supply, which is beyond the scope of this project.

bo

TRS-80
DATA
LINES

04
up DOWN LEFT RIGHT RED
i A R 7
'y w ¥ ¥ ygoooss |
{ !
| JOYSTICK'S |
TRS - 80 i SWITCHES |
PORT N) !
INPUT -]

LINE

Figure 1. Schematic diagram showing the Atari joystick interface

Construction Methods

The goal of this project is to make the proper connections between the
joystick and your computer. Three ways of doing this will be presented. For
those of you who haven’t violated your warranty by opening up the
keyboard box, 1 suggest either of the first two methods. The first method
consists of making a junction box for terminating the cable and mounting
the DB-9 connector and diodes. The second method places the diodes inside
a standard connector shell. The third approach is to mount the DB-9 con-
nector on the TRS-80 case and connect the diodes directly to the data and
control lines on the TRS-80 printed circuit board.

Construction Method 1

All parts except the DB-9 connector, the cable clamp, and the Atari
joystick can be bought at Radio Shack for $18 to $24 (see Table 1). Make a
cable clamp from a small piece of scrap aluminum or steel with two holes 5.5
centimeters (2 1/4”) apart. Prepare the box lid by drilling and filing holes to
mount the DB-9 connector and the cable clamp asshown in Figure 2. Mount
the DB-9 connector in the box lid with #4 screws and nuts.

Press the 40-pin edge connector onto the ribbon cable, after being sure of
proper alignment, by gently crushing the two halves between two blocks in a
vise as shown in Figure 3. Prepare the wires as shown in Figure 4 and clamp
the cable to the box as shown in Figure 5. Solder the diodes between the
cable and the DB-9 connector as shown in Figure 6, then slide the heat

106

interface

shrink tubing over the diode-wire joint and heat shrink it. After filing a
notch in the top side of the plastic box for the cable entry, put the lid on the
box, connect the 40-pin edge connector to the expansion port, and plugin an
Atari joystick. Run the checkout program to verify proper operation (see
Program Listing 1).

Figure 2. Mounting DB-9 connector and cable clamp to box lid

-BIG BLOCK
{WIDER THAN CONNECTOR)

.CONNECTOR CAP

SMALL BLOCK
({SAME WIDTH AS
CONNECTOR CAF)

CABLE END
{PIN #1 END OF
CONNECTOR)

Figure 3. Carefully crushing connector cap onto cable

107

interface

NOTE:
CUT WIRES 4cm {1 5in) FOR
METHOD #!, OR 2cm (75in)

FOR METHOD #2 PIN #1 END OF CONNECTOR

30-40 cm {12-15in}

WIRE #1
.__.\—

SEE NOTE

5mm I/;in)g\x

RED- WIRE #17
IN*- WIRE #20

DOWN - WIRE #21 =

RIGHT ~ WIRE #25

UP - WIRE #29

LEFT - WIRE #31

" /
\———MARK WIRES FOR

IRE
LATER NTIFICATION
fem LONG INSULATING TUBING -—-—~/ oE o

Figure 4. Cable preparation

NOTCH FOR
CABLE ENTRY

Figure 5. Connecting cable to box lid with strain relief bar

108

interface

B IN¥
RIGHT
LEFT
RED
DOWN

EAT SHRINK
BING

- X
<

PLASTIC
SHELL

STRAIN RELIEF

m %;ET SCREW

Figure 7. Attaching the DB-9 connector with shell to the ribbon cable

Construction Method 2

A kit containing the parts used in construction method 2, except the Atari
joystick, is available for $16 (see Table 2). This method is similar to the
previous method but requires less work. Instead of building a box to hold the
connector and diodes, you connect the DB-9 connector directly to the ribbon
cable. The cable must be prepared as in Figure 4, then folded in half three
times to make a round bundle small enough to fit through the DB-9 shell
(Figure 7). It is important to mark the cable as shown in Figure 4 since it is

109

interface

very hard to determine which wire goes where in this tight bundle. After the
cable is carefully pushed through the shell, solder the diodes to the DB-9
connector and the ribbon cable as shown in Figure 6, then slide the heat
shrink tubing over the diode-wire joint and heat shrink it. Carefully pull
back on the cable while pushing the DB-9 into place on the shell, then insert
the two screws and tighten them until the connector is secured to the shell.
Plug the Atari joystick into the DB-9 and connect the 40-pin edge connector
to the expansion port on the computer and verify proper operation (see Pro-
gram Listing 1). If everything works properly, insert the plastic strain relief
and tighten the set-screw until the cable is secured.

Quantity Part Comments

1 foot 40-conductor ribbon cable R/S #278-T71 (5 ft)

1 40-pin connector R/S #276-1558

5 Schottky diodes or R/S #276-1124 (2/pack)
Germanium diodes R/S #276-1123 (10/pack)

1 Box R/S #270-230

1 Heat shrink tubing R/S #278-1627 (package)

4 #4/40 screws R/S #64-3011 (box).

4 #4/40 nuts R/S #64-3018 (box)

1 DB-9 male connector

Total cost of Radio Shack parts—$18 to $24 (with parts left over)
Cost of DB-9 connector—$2 at an electronics parts store
Atari joystick—$10 at any Atari repair center or most Atari retail outlets

Table 1. List of components needed when using construction method 1

Construction Method 3

For those of you who don’t want wires and boxes around your computer,
this method is more appropriate and cheaper. You simply attach the DB-9
connector to the side of your expansion interface or your CPU box. The
diodes then go from the DB-9 connector to the signal lines on the printed cir-
cuit board (see your Hardware Technical Manual, Radio Shack #26-2103).
Make holes in your plastic box (either the keyboard or the expansion inter-
face) of the correct size to mount the DB-9 connector. Carefully connect
wires from the diodes to the signal lines as shown in Figures 1 and 6. Re-
assemble the box and verify operation using Program Listing 1.

Troubleshooting

If you connect this device to the computer and the computer goes crazy
every time you move the joystick or press the red button, you probably have
one or more diodes in backward. This causes the data lines to go to logic high
whenever the INP(0) function is not used and a switch contact is made. The

110

interface

cure is to put all the diodes in the right way-—check Figure 6 for diode banded
end direction,

Quantity Part

1 foot 40-conductor ribbon cable

1 40-pin connector

5 Schottky diodes or
Germanium diodes

1 DB-9 male connector

1 DB-9 plastic shell

Note: A complete kit of the above parts is available from Norvac Electronics, 12905 SW Beaver-
dam Rd., Beaverton, OR 97005. The price is $15.95, which includes postage for shipping in the
continental United States. This package is for construction method 2 and has the 40-pin edge con-
nector already connected to the cable. It does not include the Atari joystick.

Table 2. List of components needed for construction method 2

If one direction of the joystick does not work, this indicates an open circuit
in that line. You should trace that particular line from one end to the other,
looking for the bad connection. If two control actions have the same effect,
this is most likely caused by a short between the two lines. Check for solder
blobs at the connections to the DB-9. If you made your own connection be-
tween the cable and the 40-pin edge connector, and you can’t find any ob-
vious errors at the other end, the cable may be crooked or the connector may
not be crimped onto the cable properly. A careful examination should find
the problem and indicate the proper solution. If it still doesn’t work, use an
ohmmeter to help locate the problem. One final possibility is that the Atari
joystick may be defective. This happens most often on old ones that have
seen many hours of combat.

111

interface

Program Listing 1. Atari joystick checkout program

1001 REM Tk kR hhkk kR AE AR RER AR AN RR AL F R Ak kdhhddkkh bk khk
1101 REM **dsaamkekknrrsx | [STING # 1 *orssdankrsnhiksnhdds
1201 REM #x*sxxwanxrsrsn JOYTEST/BAS *Hewshikttskkksashshs
1301 REM FhhkAAERREARRRERARAFRAR R E AR ARk T dk kA Rk ok ddddohdkkhdk
1401 REM ATARI JOYSTICK CHECKOUT PROGRAM
CARL B. VAN WORMER
359 NE HILLWOOD DR
HILLSBORO,0R 97123
01/15/82
1501 DEFINT A-Z
1601 A = INP(O) : REM READ PORT DATA
1701 B = NOT A : REM INVERT BITS FOR POSITIVE LOGIC (HI TRUE)
1801 C = B AND 31 : REM MASK OFF UNWANTED BITS
1901 CLS
2001 PRINT@O, "JOYSTICK CONTACT TEST:";
2101 IF C AND 1 THEN PRINT@351, "UP";
2201 [F C AND 2 THEN PRINT@862, "DOWN";
2301 IF C AND 4 THEN PRINT@593, “LEFT";
2401 IF C AND 8 THEN PRINT@619, "RIGHT";
2501 IF C AND 16 THEN PRINT@337, “RED";
2601 G0T01601

wouou

Program Listing 2. Using Atari joystick to simulate doodling of Skedoodle or Etch-a-Sketch

10 REM P Rt T e S R T e 2R TR S S XA 2R TSR 2 s S8
20 REM dedededr ok de e ok ke ol ke ke bk LIST[NG # 2 de ek ok dededededededeodr de ke ke e ke ke ke
30 REM dkdkkkkkbkkhkkkhkkd ATARK/BAS dhkhhdhkdhdhdokiok ok kdkd
40 REM Adkkkhkhkhkdkdhdhhhhhbkhihdhdhbkhkhkhhkhhdrkdhhikhkk ik

50 REM ROUTINE TO ACCEPT INPUT FROM ATARI JOYSTICK (PORT DO-D4)
AND FROM KEYBOARD ARROWS AND SPACE BAR THEN DRAW WITH IT
8Y CARL B. VAN WORMER
359 NE HILLWOOD DR.
HILLSBORO, OR 97123
01/04/82

60 REM DATA WORD READ IN FROM INP(0) IS SEEN AS LOW TRUE (0)
FOR BIT POSITION OF THAT SWITCH
70 REM DATA WORD READ IN FROM KEYBOARD 'MEMORY' IS SEEN AS
HI TRUE (1) FOR BIT POSITION OF THAT KEY. KEYBOARD
IS ADJUSTED TO MATCH JOYSTICK WITH DIVISION BY 8
80 REM BIT POSITIONS [N DATA WORD ARE AS FOLLOWS:
DO=UP, D1=DOWN, D2=LEFT, D3=RIGHT, D4=RED BUTTON (SPACE)}

90 DEFINT A-Z
100 CLS : PRINT CHR$(23);" USE ARROW KEYS AND SPACE BAR" :
PRINT@204," OR ATARI JOYSTICK" :
PRINT@963, “SPACE AND CLEAR CLEARS SCREEN";CHR$(28)

110 PRT = 31 AND NOT INP(O) : REM REMOVE TOP BITS OF INVERTED

PORT INPUT TO MAKE IT LOOK LIKE KEYBOARD INPUT
120 KEYBD = PEEK(14400) : REM ARROWS AND SPACE BAR ROW
130 IF POINT (X,Y) THEN RESET {X,Y) ELSE SET (X,Y) : REM INVERT
140 FOR Q=1 TO & : NEXT Q : REM DOT FLASH BRITENESS TIME DELAY
150 IF POINT (X,Y) THEN RESET (X,Y) ELSE SET (X,Y) : REM INVERT
160 IF PRT=0 AND KEYBD<8 THEN GOTO 110 : REM NO PUSH-TRY AGAIN
170 IF KEYBD=130 THEN CLS : KEYBD = 0 :

REM IF SPACE AND CLEAR ARE PRESSED

180 KEYBD = KEYBD/8 : REM MOVE D3-7 TO D0-4 TO MATCH JOYSTICK
190 BITS = PRT OR KEYBD : REM EITHER JOYSTICK OR KEYBOARD
200 IF BITS >= 16 THEN PSHBTN=1 : BITS = BITS-16
210 ON BITS GOSus 1010,1020,1090,1030,1050,1070,1030,1040, 1060,

1080,1040,1090,1010,1020,1090
220 IF X<O THEN X = 0 ELSE IF X>127 THEN X = 127
230 IF Y<O THEN Y = O ELSE IF Y>47 THEN Y = 47 :

REM CHECK FOR X,Y LIMITS

112

interface

240 IF PSHBTN=1 THEN SET {X,Y)

250 IF PSHBTN=0 THEN RESET (X,Y)

260 PSHBTN = 0

270 GOTO 110 : REM GO BACK AND DO IT AGAIN

1000 REM e e g e ke ke ke ke ok ke ek ok ok ok dede ke TURN DATA INTO MOTION & ke
1010 Y = Y-1 : RETURN : REM UP

1020 Y = Y+1 : RETURN : REM DOWN

1030 X = X-1 : RETURN : REM LEFT

1040 X = X+1 : RETURN : REM RIGHT

1050 GOSUB 1010 : GOSUB 103G : RETURN :REM UP-LEFT

1060 GOSUB 1010 : GOSUB 1040 : RETURN : REM UP-RIGHT

1070 GOSUB 1020 : GOSUB 1030 : RETURN : REM DOWN-LEFT
1080 GOSUB 1020 : GOSUB 1040 : RETURN : REM DOWN-RIGHT
1090 RETURN : REM CONTRADICTION...UP+DOWN OR RIGHT+LEFT
1100 REM dkdkdekhkkhkkhkkkkkkkikkkk END OF SUBROUTINE kel ke

TR

113

TUTORIAL

TRS-80 Cryptographer
Lazy Logic Trainer
Screen Status Byte

115

TUTORIAL

TRS-80—Cryptographer

by Allan S. Joffe W3KBM

he problem in getting the TRS-80 to produce cryptograms is to take a
message in English and turn it into a form that is encoded so that it must
be decoded to regain the original intelligence.
Consider the following example.
1 REM UNIVERSAL ENCODE AND DECODE PROGRAM
3 CLEAR 300
5 CLS
10 INPUT "MESSAGE TO ENCODE OR DECODE™;A$
15 CLS
20 PRINT A$
30 FOR X = 15360 TO 15680
35 REM LINE 30 GIVES SWEEP OF 5 LINES OF SCREEN SO ENTIREMESSAGE
IS SCANNED. IT AVOIDS NEED TO FILL BLANKS TO ENDOF LINE, WITHO
UT WHICH YOU CAN MISS CHARACTERS.
40 POKE X,91 - PEEK(X)
50 IF PEEK(X) = 59
THEN
POKE X,32:
GOTO 60
60 NEXT X
70 END

Line 10 asks for a message, which is then assigned to string variable A$.
You must remember to enclose the message in quotation marks if it contains
any commas or colons.

Line 30 could also be written as:

30 FOR A = 15360 TO 15360 + LEN(AS)
However, this would cause the program to fail if you used the down-arrow
key to obtain a line feed in your message. This is further described in the
REMark in line 35.

Line 40 POKE:s the encoded character back into video memory. Line 50
deletes any unwanted semicolons that would otherwise appear in the
display.

After typing in the program, type RUN and press ENTER. You are
prompted to enter a message. The program then encodes the message and
displays it at the top of the screen. For example, if you type in THE
QUICK BROWN FOX, the program returns the message as: GSV JFRXP
YILDM ULC. If you run the program again and type in the scrambled or
encoded message, it returns: THE QUICK BROWN FOX.

117

tutorial

This method of encryption is not very sophisticated. You can observe
this by running the program and typing in the alphabet. The encoded
message appears as the alphabet reversed: A=Z, B=Y, C=X, and so
forth. Manually decoding such a message is easy to do by applying letter
frequency methods. “Letter frequency of occurrence” simply means how
often a given letter appears in a block of text. The letter frequency of oc-
currence in the English language follows this general sequence:

ETRINOASDLCHFUPMYGWVBXKQ]JZ

By studying the encoded message, character by character, you can decode
it by determining how often each letter appears.
The following program overcomes the deficiencies of the first program.

5 REM LISTING # TWO

7 CLS

8 CLEAR 255

10 INPUT “SECRET MESSAGE";A$

20 FOR X = 1 TO LEN(A$)

30 B$ = MID$(A$,X,1)

40 IF (ASC(B$) > 35) - (X < LEN{A$)) PRINT BS;:

ELSE
NE;?INT CHR$(ASC(B$) - INT(SQR(X / .59)));

55 END
95 REM THIS IS THE DECODING SECTION
100 INPUT “TYPE IN SCRAMBLED MESSAGE";A$
105 CLS
110 FOR X = 1 TO LEN(A$)
120 B$ = MID$(A$,X,1)
130 IF (ASC(B$) > 35) - (X < LEN(A$)) PRINT B$;:
ELSE
PRINT CHR$(ASC(B$) + INT(SQR(X / .59)));
140 NEXT X

Lines 7-50 encode, and lines 100-140 decode. The encoding line 40 differs
from line 130 in that the final arithmetic expression is subtracted to encode
and added back to decode. It is the calculated value of this expression
INT(SQR(X/.59)) that determines the character set of the scrambled
message. With the values shown in the program, some of the alphanumeric
data in the message to be scrambled will be turned into characters other
than alphanumerics, for example #,*,? and so forth. This makes it harder to
decode the message manually.

Before examining how this listing treats a message such as “Now is the
time for all good men to come to the aid of their party,” study line 40. Notice
the minus sign between the first and second parenthetic expressions. This is
to emphasize that the minus sign under discussion does not indicate the sub-
traction of one expression from another, but is actually the proper use of an
undocumented capability of the TRS-80.

Below is an example of the typical scrambling of the test phrase.

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID
MNU GP QEA PEI@ AJM <FF AII> F>G MH <GE= LG L@= 8@D

Immediately below the test phrase is the scrambled text produced by the en-

118

tutorial

coding line of Program Listing 2. To run the decode section of the program,
type RUN 100 (ENTER), and type this scrambled text into the computer.
The message will be decoded and displayed.

Notice that in addition to introducing confusing symbols, it also
eliminates the possibility of solving the phrase by the use of letter frequency
counting. As an example, the letter O appears in the original text in the
words now, good, come, and to. If you examine the encoded text you will see
that the letter O in these positions has taken the value of N,J,I,H, and G,
making letter frequency counting impossible.

The success of Program Listing 3 depends on the unique quality of the
TRS-80 graphics symbols. This program converts the alphanumeric infor-
mation of a secret message into graphics characters.

1 REM ENCODING,DECODING PROGRAM BY A.S.JOFFE W3KBM
2 REM DECODING PORTION OF PGM STARTS AT LINE 180
3 REM MESSAGE ENCODED INTO GRAPHICS CHARACTERS

4 REM THIS IS LISTING # THREE

5 (LS

10 CLEAR 1000

15 DIM R(255)

20 INPUT "MESSAGE";A$

25 CLS

30 PRINT A$

35 PRINT

40 FOR X= 15360 TO 15360+LEN(A$)

50 POKE X,218-PEEK(X)

70 NEXT X

90 FOR J= 15360 TO X

95 L=L+1

100 R= PEEK(J)

110 R(L)=R

120 NEXT

130 FOR D=1 TO L

140 PRINT CHR$(R(D));

145 B$=B$+CHR$(R(D)}

150 NEXT

155 REM PUTTING DATA ONTO TAPE

160 PRINT#-1,L

170 PRINT#-1,B%

172 END

175 REM START OF DECODING PROGRAM FROM TAPE INPUT
180 CLS:INPUT"REWIND CASSETTE WITH MESSAGE ON IT.
PRESS <ENTER> WHEN READY"; X : CLS

200 INPUT#-1,L

210 INPUT #-1,B%

220 PRINT B$

230 FOR X= 15360 TO 15360+L

250 POKE X,218-PEEK(X)

270 NEXT X

The key to your success in transmitting secret messages using all graphics
characters is shown in Program Listing 3. Lines 5-120 change the text string
or message into graphics characters. To minimize tape loading time,
130-150 pack the data into an array and form B$. This puts all of the
text—now converted to graphics—into B$. Lines 160 and 170 do the actual
work of putting the data onto your tape. When the tape stops, your encoded
message is on tape. Type RUN 180 (ENTER), and the program prompts you
to rewind the tape. Rewind your tape and press ENTER. The computer

119

tutorial

reads the encoded tape, then decodes the message. You then see your
original message come to life on the screen as the computer converts the
graphics characters back into English.

120

TUTORIAL

Lazy Logic Trainer

by Archie P. Kelley Jr.

he purchase of my Model I TRS-80 years ago caused me to want to learn

what goes on inside those gray plastic boxes. After taking a course in
microcomputer design and experimenting with assembling and testing logic
circuits, I created the Lazy Logic Trainer program (see Program Listing) to
do with software what I should have been doing with the hardware on my
breadboard.

Logic Model Creation

The first step in the implementation of the software model of the logic cir-
cuit is to prepare the logic circuit diagram and add appropriate identifiers to
the logic gates and signals compatible with computer input. To illustrate
this process, I've selected as an example the three-bit equality and relative
magnitude detector circuit shown in Figure 1.

20 D—E‘——? 7 ’ 8

so [>-= o0 &

S=CERIIr e D>

o > B @ sauauirs

a2 > r) i ’ X 2

Bz [> 4 8] &) [5] 6ATE NUMBER

13 SIGNAL NUMBER

&l

GREATER
@ THAN
QUTPUT

Figure 1. Equality and relative magnitude detector logic diagram

The circuit involves two major parts. The upper part of the circuit, which
includes three EXCLUSIVE OR gates, three inverters, and an AND gate,
compares the two three-bit binary numbers (A0-A2 and B0-B2 in Figure 1)
for equality. A logical 1 output from the topmost AND gate signifies that the
two three-bit input numbers are equal. The lower part of the circuit, which

121

tutorial

includes three more inverters, four AND gates, and one OR gate, checks if
the three-bit number A is greater than B. If so, a logical 1 is output from the
bottom OR gate.

To prepare the circuit diagram for input, each of the 15 logic gates and 21
input and output signals must be numbered in succession, progressing from
the input conditions to output conditions. An output from a gate cannot be
developed until all of its input signals have been developed. One such
numbering scheme is shown in Figure 1, although others are possible. Signal
numbers 1 through 6 are reserved for the independent inputs to the circuit
which represent the two three-bit numbers. Signal numbers 13 and 21 repre-
sent the desired outputs, giving the equality and greater-than conditions
detected by the circuit.

The next step is to input the circuit model for computer simulation. After
entering the total number of gates and signals (15 and 21 respectively), the
program prompts you in sequence for the gate type, input signal numbers,
and output signal numbers as shown in Figure 2.

MODEL INPUT—GATE NUMBER 1

AVAILABLE GATES:

1-AND 2-OR 3-NOR 4-NAND

5-XOR 6-INV 7-GND 8-J-KFF

9 -FADD

WHICH ONE (ENTER GATE NUMBER)? 5

INPUT SIGNAL NUMBERS (ENTER 0 IF NO SIGNAL):
INPUT 173
INPUT 276

OUTPUT SIGNAL NUMBERS (ENTER 0 IF NO SIGNAL):
OUTPUT 1P 7__

Figure 2. Screen display during model input

Once you enter the signal numbers and gate types for all gates, the pro-
gram performs an error check of the model, which results in the screen out-
put shown in Figure 3. The error check displays the number of gates and
signals input and identifies independent input and output signals, that is,
those signals which are not both an input and output to any gate. A search is
then made for any unused signals, input or output signal numbers beyond
the input range, outputs developed before inputs, or outputs from different
gates which have the same signal number. Any of these errors indicates an
improper model and prevents execution of the simulation, sending you to an
input correction routine. In the example shown in Figure 3, the signals at
gate 6 were entered incorrectly, causing an output to be developed before in-
put and creating redundant output signal numbers.

122

tutorial

MODEL ERROR CHECK

NUMBER OF GATES: 15

NUMBER OF SIGNALS: 21

INDEPENDENT OUTPUT NUMBERS: 13 21

INDEPENDENT INPUT NUMBERS: 1 2 3 4 5 6 12

UNUSED SIGNAL NUMBERS:

INPUT BEYOND SIGNAL RANGE:

OUTPUT BEYOND SIGNAL RANGE:

GATES AT WHICH OUTPUT DEVELOPED BEFORE INPUT: 6

OUTPUTS WHICH ARE DEVELOPED TWICE: 11
**FATAL ERROR DISCOVERED"*

PRESS ENTER WHEN READY TO MAKE CORRECTIONS?__

Figure 3. Screen display after error check

Figure 4 displays the screen output provided by the model correction and
review routine for the first 10 gates. Compare this with the schematic in
Figure 1. For each logic gate, the logic type is displayed, along with input
and output signal numbers. As detected by the error-trapping routine, the
output signal number to gate 6 has been mislabeled upon entry and must be
changed from 11 to 12. After the last page of the model review display, the
program asks for any gate corrections. In this case, you must correct gate 6.
The model is then checked again for errors. If there are none, the model goes
to the input/output simulation routine.

Logic Model Output

The final product of all these labors is shown in Figure 5. The program
asks you to enter each of the input signal states (either a logical 0 or 1) and

MODEL CORRECTION/REVIEW

GATE TYPE INPUTS OUTPUTS
1 XOR 3 6 7

2 XOR 2 5 9

3 XOR 1 4 11

4 INV 7 8

5 INV 9 10

6 INV 11 11 .
7 AND 8 10 12 13

8 AND 10 12 14

9 INV 6 15

10 AND 3 4 15 16

PRESS ENTER FOR NEXT PAGE?__

Figure 4. Screen display during model correction

123

tutorial

then simulates the circuit to generate the logical output conditions. In the
example in Figure 5, signals 1 through 3 represent bits 2 to 0 of binary input
A, and signals 4 through 6 represent bits 2 to 0 of binary input B. In the first
row, binary 000 (decimal 0) has been entered for both A and B, resulting in
an output of 1 for signal 13 (indicating equality of A and B) and 0 for signal
21. In the fourth row, binary 011 (decimal 3) for A and 010 (decimal 2) for B
have been entered. The circuit simulation responds correctly with a logical 1
as signal 21, indicating that A has been decoded as greater than B. The cir-
cuit also responds correctly to other input conditions.

INPUT//OUTPUT

1 2 3 4 5 6 /I 13 21
0 06 00 00 > 1 0
001 000 => 0 1
001 01 0 => 20 0
01 1 010 =>0 1
01 1011 =>1 0
1 00011 =>10 1
1 00111 =>20 0
111 1 11 > 1 0
>

TYPE 0 OR 1 FOR EACH INPUT SIGNAL (HIT X TO CHANGE MODEL)

Figure 5. Screen display during circuit simulation

Program Description

The listing for the Lazy Logic Trainer program is broken into four major
parts. First, a listing of key variables is provided. This is followed by the
main program and two subprograms. Last are the logic module sub-
programs, one for each logic gate type.

Line 120 of the main program asks for the total number of gates and
signals. This information is used to set up the major variable dimensions in
line 130, followed by reading of the names of the available gate types and
number of allowable inputs and outputs. The data for these read statements
is contained in the logic gate modules described later.

The program asks you to enter information for each gate via the FOR-
NEXT loop in line 190. The input model is then checked for errors by the
FOR-NEXT loop routines in lines 200 through 390. If there are errors, the
variable FLAG is set equal to one, signifying that the model must be corrected
before execution.

If errors are detected, or if you want to review the model, the program
branches to lines 400 through 490, which send to the screen the model which

124

tutorial

has been input. The program prompts you for any changes in line 480. If
changes are made, FLAG is again set to 1, forcing a return to the error check
routine starting at line 200.

Lines 500-680 generate the model simulation and input and output con-
ditions. You are told what input signals must be provided and what output
signals by default will be displayed. You can specify additional outputs if
you wish. Lines 560-590 prepare the screen display for input and output.
Lines 600620 prompt and receive input signal values via the INKEY$ func-
tion. Once a row of all independent input signals has been input, lines
630-680 march through the model gate-by-gate, setting input conditions
and calculating the logical output via the logic module subprograms. Once
all signal values have been calculated, the output signals are displayed, and
the program loops back to get the next row of input. Each input signal con-
dition is negated in lines 620 and 670 to be compatible with the bit comple-
ment logic of Level II BASIC, which uses - 1 and 0 rather than +1 and 0.

The subprogram at line 900 displays a screen header, using the informa-
tion stored in variable Al$. The second subprogram starting at line 1500
asks for information on the gate number stored in I and is called from lines
190 and 490 as required.

The logic modules, starting at line 2000, form the basis for simulating the
output from each logic gate, based upon given input. Each subprogram
starts with a data statement which defines the gate name and number of
possible inputs and outputs. Next, the subprogram provides the logical
BASIC statements necessary to convert the input conditions to the desired
output conditions, returning to the main program with the output states
stored in the variable S(O(I,1)).

Logic Gate Additions

There are nine different types of logic gates in the Program Listing, and
there are provisions in the main program to add an additional six. You can
use more complex gates in addition to those used in the example described
above. For example, gate type 8 simulates a J-K flip-flop.] and K are
represented by the first two inputs, and the flip-flop is clocked by inputting a
one as the third gate input. The first and second outputs to the gate simulate
the Q and NOT Q outputs of the real IC chip. Other clocked devices may
similarly be hooked up to the same input signal to simulate clocked circuits.
Gate type 9 simulates a full adder, with the two bits to be added input as the
first two signals, and the carry bit input as the third. The first output signal
then represents the sum output; the second represents the carry.

Other more sophisticated gate types are left to your invention. The pro-
gram currently limits you to no more than three input and three output
signals per gate, although it could be modified to handle more.

125

tutorial

Program Listing. Lazy Logic Trainer

10 R T L L Lt LU T T T T Ty peppupe e
1 LOGIC TRAINER

12 L T T T T T T T T T T T T ropepey
13

20 ' PREPARED BY: ARCHIE P. KELLEY, JR.

25 ¢ 10020 CONNELL ROAD

30 SAN DIEGO, CA. 92131

31 JANUARY 1982

35

40 ' VARIABLES:

45 ¢ 1(1,J) = JTH INPUT SIGNAL TO GATE I

50 0(I,d) = JTH OUTPUT SIGNAL FROM GATE I

51 &(1) = ITH GATE TYPE

52 s(1) = ITH SIGNAL VALUE (0 OR 1)

53 A$(I) = DESCRIPTOR FOR GATE 1

54 ¢ NI(I) = NUMBER OF INPUTS ALLOWED TO GATE [
56 NO(I} = NUMBER OF OUTPUTS ALLOWED TO GATE 1
60 11{I) = ITH SIGNAL TO BE INPUT

61 ' 0L(I}) = ITH SIGNAL TO BE OUTPUT

70 ¢ NG = NUMBER OF GATES IN MODEL

71 NS = NUMBER OF SIGNALS IN MODEL

72" I = NUMBER OF SIGNALS TO BE INPUT

;g : oL = NUMBER OF SIGNALS TO BE OUTPUT

97 B L L T L E T b L b E LT Uor T ey
98 MAIN PROGRAM

g9 T L L L L Lt L C L T D T T T pepegegupuprpupupuppupuyugups e oo
100 CLEAR(500):DEFINTB-Y

109 ° - SET MODEL SIZE ---

110 Al§=" - LOGIC TRAINER -":GOSUB90C

120 INPUT"NUMBER OF GATES";NG:INPUT"NUMBER ‘OF SIGNALS";NS
130 DIM 1(NG,3),0(NG,3),G(NG),S(NS)

140 DIM A$(15),NI({15),N0(15),11(10),01(5)

150 1=

160 READ A$(I):IFA$(I)="END"THEN180

170 READ NI{I},NO(1}:1=1+1:G0T0160

180 GN=I-1

189 ' -~~ INPUT MODEL BY GATE ---

190 FORI=1TONG:A1$="MODEL INPUT - GATE NUMBER “+STR$(I):GOSUB900:GOSUB
1500:NEXTI

199 ~-~ CHECK MODEL FOR ERRORS ---

200 Al$="MODEL ERROR CHECK":GOSUB90O

210 PRINT'NUMBER OF GATES: ";NG:PRINT"NUMBER OF SIGNALS: ";NS

220 OL=1:PRINT"INDEPENDENT OUTPUT NUMBERS:";:FORI=1TONS:FORJ=1TONG:FOR
K=1T03:IFI=I{J,K)THEN240

230 NEXT K,J:PRINT I;:01(0L)=1:0L=0L+1

240 NEXTI:PRINT:0L=0L-1

250 1L=1:PRINT"INDEPENDENT INPUT NUMBERS: “;:FORI=1TONS:FORJ=1TONG:FOR
K=1T03:IF1=0(J,K)THEN270

260 NEXT K,J:PRINT I;:I1(IL)=I:IL=IL+1

270 NEXTI:PRINT:PRINT:IL=1L-1

280 FLAG=0:PRINT"UNUSED SIGNAL NUMBERS: “;:FORI=1TONS:FORJ=1TONG:FORK=
1T03:1F1(J,K)=1 OR 0(dJ,K)=1 THEN300

290 NEATK,J:PRINT I;:FLAG=1

300 NEXTI:PRINT

302 PRINT"INPUT BEYOND SIGNAL RANGE: ;:FORI=1TONG:FORJ=1T03:IFI(I,J)>
NSTHENPRINT 1(I,J);:FLAG=1

304 NEXTJ,1:PRINT

306 PRINT®OUTPUT BEYOND SIGNAL RANGE: “;:FORI=1TONG:FORJ=1T03:1F0(I,J)
SNSTHENPRINT 0(I,J);:FLAG=1

308 NEXTJ,I:PRINT

310 PRINT"GATES AT WHICH OUTPUT DEVELOPED BEFORE INPUT: “;:FORI=1TONG:
FORJ=1T03:FORK=1T03

320 1FO{1,d)=0 OR I(I,K)<O(I,J) THEN 340

330 PRINT I;:FLAG=1

340 NEXT K,d,1:PRINT

345 IFNG=1THEN380

350 PRINT"OUTPUTS WHICH ARE DEVELOPED TWICE: “;:FORI=1TONG-1:FORJ=1T03

lopedi
Encyclopedia

126

tutorial

{FORK=I+1TONG: FORL=1T03:1FO{1,J)=0(K,L) AND O(I,J)>0 THEN360 ELSE
370
360 PRINT 0O(1,J);:FLAG=1
370 NEXT K,Jd,1:PRINT
380 IFFLAG>OTHENPRINT:PRINT,"** FATAL ERROR DISCOVERED **":INPUT"PRESS
ENTER WHEN READY TO MAKE CORRECTIONS®;A2$:GOT0400
390 PRINT:PRINT,"** NO ERRORS DISCOVERED **%: INPUT'DO YOU WISH TO REVI
(EW MODEL OR MAKE CHANGES (YES/NO) "; A2$: TFLEFT$ (A28, 1)="N"THENS00
399 -~~~ CORRECT OR REVIEW MODEL ---
400 A1$=“MODEL CORRECTTON/REVIEW":GOSUBS00
410 PRINTGATE", "TYPE", "INPUTS", "OUTPUTS"
420 FORI=1TONG:PRINTI,A$(G(I)), :FORJ=1T03:IFI{1,J)=0THEN440
430 PRINT I(I,J);
44D NEXTJ:PRINT,:FORJ=1T03:1FO(I,J)=0THEN460
450 PRINT O(1,d);
460 NEXTJ :PRINT:TFINT(INT(I/10)*10)=TTHENINPUT"PRESS ENTER FOR NEXT PA
GE";A2%
470 NEXTI
480 PRINT:INPUT"DO YOU WISH TO MAKE CORRECTIONS(YES/NO)";A2$:IFLEFT$(A
2%,1)="Y"THEN490
485 IFFLAG=1THEN200 ELSE 500
490 FLAG=1:INPUT"WHICH GATE";1:A1$="CORRECTION - GATE “+STR$(I):GOSUBY
00:GOSUB1500:G0T0400
499 --~ QUTPUT PREPARATION/DISPLAY ---
500 A1$="INPUT // OUTPUT":GOSUBI0O
510 PRINTTHE FOLLOWING INPUT SIGNALS WILL BE PRINTED:":FORI=1TOIL:PRI
NT I1(1);:NEXTI:PRINT
540 PRINT:PRINT*THE FOLLOWING OUTPUT SIGNALS WILL BE PRINTED:":FORI=1T
OOL:PRINT 01(I);:NEXTI:PRINT
550 INPUT*HOW MANY WOULD YOU LIKE TO ADD(MAX=5)"3NA:IFNA=OTHENS70
560 FORI=1TONA:OL=0L+1:INPUT“SIGNAL NUMBER";01(OL):NEXTI
570 GOSUB900:Z$="## “:FORI=1TOIL:PRINT USING Z$;11(I);:NEXTI
580 PRINT"// “;:FORI=1TOOL:PRINT USING Z$;01(1);:NEXTI:PRINT
590 PRINT@896,STRINGS(63, “="):PRINT"TYPE 0 OR 1 FOR EACH INPUT SIGNAL(
HIT X TO CHANGE MODEL)“;:PRINT@192,"";
600 PRINT">";CHR$(24);:FORI=1TOIL
610 A$=INKEY$: IFA$=""THENG10
612 IFA$="X"THEN40O
615 NN=VAL(A$):IFABS(NN)>1THEN610
620 S(I1(I))=NN*-1:PRINT USING Z$;NN;:NEXTI
630 PRINT"=>
640 FORI=1TONG:I1=S({I(1,1)):12=S(1(!,2)):13=5(I(1,3))
650 ON G(I) GOSUB 2000,2100,2200,2300,2400,2500,2600,2700,2800,2900,30
01,3100, 3200,3300, 3400
660 NEXTI
670 FORI=1TOOL:PRINT USING Z$;-S{01(1))};:NEXTI:PRINT
680 GOT0600

890 '

891

892 ' SUBPROGRAMS

893 'socmmssemsssszsSSciiiSINESESSSISSSIIESSSSSSSSSAREESSSiiiic

394 '

899 ' ---~ DISPLAY SCREEN HEADER IN Al§ ---

900 C%S:PRINT,A1$:PRINTSTRING$(63,“="):RETURN

1498

1499 ! -~~~ INPUT MODEL BY GATE I ~---

1500 PRINT“AVAILABLE GATES:":FORJ=1TOGN:PRINTJ;" - “;A$(J), :NEXTJ:PRIN
T:PRINT

1510 INPUT"WHICH ONE(ENTER GATE NUMBER)®;G(1):IFG(I)>GNPRINT"NO SUCH G
ATE - TRY AGAIN":GOT01510

1520 J=G(1):NI=NI{J):NO=NO(J)

1530 GOSUB900:PRINTHGATE TYPE: ";A%(J):PRINT

1540 IFNI=0THEN1570

1550 PRINT"INPUT SIGNAL NUMBERS(ENTER O IF NO SIGNAL):"

1560 FORJ=1TONI :PRINT, “INPUT";J;: INPUTI(I,J}:NEXTJ:PRINT

1570 PRINT"QUTPUT SIGNAL NUMBERS(ENTER O IF NO SIGNAL):"

1580 FORJ=1TONO:PRINT, YOUTPUT";J; : INPUTO(I,J) :NEXTJ

1590 RETURN

1990 ‘s==sssssssssssouasssssssssSSSSSSssSssEESsssassssssssssss

1991 * LOGIC MODULES Program continued

127

tutorial

1999 ~-~ AND GATE ---
DATA AND,3,1

IF 1{I,3)=0 THEN 2030

01=I1 AND 12 AND 13:G0T02040

01=I1 AND 2

$(0(1,1))=01:RETURN

2830
2840
2850
2898
2899
2900

' === OR GATE ---
DATA OR,3,1

IF 1(1,3)=0 THEN 2130
01=I1 OR' 12 OR 13:G0T02140
01=11 OR 12
S(0(1,1))=01:RETURN

' <= NOR GATE «w-
DATA NOR,3,1
GOSUB2110:S(0(1,1))=NOT(01):RETURN

~w= NAND GATE ---

DATA NAND,3,1
GOSUB2000:S(0(1,1))=NOT(01):RETURN

<= EXCLUSIVE OR GATE -~
DATA XOR,2,1

01=-1

IF11=-1ANDI2=~1THENO1=0

IFI1=0ANDI 2=0THENO1=0
S(0(L,1))=01:RETURN

| --- INVERTER GATE -~
DATA INV,1,1
S(O(1,1})=NOT(I1):RETURN

-~~~ GROUND GATE ---
DATA GND,O,1
S{0(1,1))=0:RETURN

~ee J-K FLIP-FLOP GATE ---
DATA J-KFF,3,2

01=5(0(1,1)): IF13=0THEN2750
IF11=-1ANDI2=-1THENOL=NOT(01)
IFI1=-1ANDIZ2=0THENO1=-1
IF11=0ANDI2=-1THEND1=0
$(0{1,1))=01:S(0(1,2))=NOT(01):RETURN

== FULL ADDER GATE ~--
DATA FADD,3,2

01=0:02=0:SUM=11+12+13
IFSUM=~1THENO1=-1

IFSUM=-2THENO2=-1
IFSUM=~3THENO1=-1:02=-1
S(0(1,1))=01:5(0(1,2))=02:RETURN

~-- DATA END MARKER ---
DATA END

128

TUTORIAL

Screen Status Byte

by Arthur R. Jackman

he screen status byte is located at memory location 16445 decimal, or
403D hexadecimal. You can read the value of the status byte in BASIC
by using the statement:

PRINT PEEK(16445)
To read the value in any assembly-language program, use:

STATUS EQU 403DH
LD A,(STATUS)

The screen status byte usually contains a zero value. When the command
PRINT CHR$(23) is executed, and the screen is put into the 32-character
format, the status byte contains a value of 8. This might not seem like much
at first, but there are several occasions when this information can be very
useful.

When I was developing a screen graphics print dump routine for my Ax-
jom printer, I developed two calling sequences, one for standard
64-character mode and another for the wide 32-character mode. After
discovering the status byte, I was able to build in a test for the wide
character mode and automatically output the screen to the printer in the
correct format.

Another time, I added a sound routine USR call to a game that used the
wide character screen format. When the sound routine was called, however,
the screen display changed to the 64-character format, resulting in widely-
spaced, normal-sized letters and graphics.

How to Use the Status Byte

Look at Program Listing 1, which demonstrates the effects of the usual
sound routine on the screen format. The screen is put into the 32-character
format. During the sound output routine, the screen is forced into the
64-character format. The screen stays in this mode until a STOP or END
statement is executed. See Figures 1, 2, and 3, which are screen dumps
printed on the Axiom printer.

Program Listing 2 corrects the problem by setting bit 3 (adding 8) in the
value output to port 255. The screen, after being put into the 32-character
format, stays in that mode during the sound output.

Program Listing 3 shows the opposite problem. The screen is initially in
the 64-character mode and the sound routine from Program Listing 2 sets
the output to 32-character format.

129

tutorial

In Program Listing 4, the operator chooses the screen format, and the
sound routine must sense it and output accordingly. The status byte (16445)
has its bit 3 set according to the screen format just as we set bit 3 of port 255
for the proper output. Simply add the status byte value to the desired output
value. This is shown in line 190 of Program Listing 4.

Control of Screen Format

If you try to force the status byte to the opposite value you have a conve-
nient way to switch from one format to the other. We have always had
PRINT CHR$(23) to set the 32-character format. Now, instead of using CLS
to get back to the 64-character format, when you need to save screen data,
you can get back to 64 characters by using:

POKE 16445,0
You can force the 32-character format with:
POKE 16445,8

The status byte at 16445 (403DH) contains 0 for the 64-character format and
8 for the 32-character format. You can use this to get the current screen
status with PEEK(16445). You can also change the screen format by using
POKE 16445,0 for the 64-character format and POKE 164458 for the
32-character format.

This is a demonstration of
wide character Format. Plug
an amplifier and speaker to
the tape out connector For
the sound output.

Figure 1
This is a demonstration of
vide character format. Plug
an anplifier and speaker to
the tape out connector for
the sound output.

Notice what happens during
the sound output. The screen
is put into the 64 character
format by the OUT command.

Figure 2

130

tutorial

an amplifier and speaker to
the tape out connector For
the sound output .

Hotice what happens during
the sound output. The screen
is put into the 64 character
Format by the OUT command .

fis long as the program runs
the screen stays in the 64
character Format. When STOP or
EHD is executed the screen
returns to the 32 character

Format .
Figure 3

131

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

tutorial

Program Listing 1

'PROGRAM #1

‘demonstrates the incompatibiity of wide character format
'with the usual sound routine

|

CLS: PRINT CHR$(23)

PRINT "This is a demonstration of
PRINT "wide character format. Plug
PRINT "an amplifier and speaker to
PRINT "the tape out connector for
fRINT "the sound output.

'delay to read screen
FOR I=1 TO 600: NEXT
'output sound routine
FOR I=1 TO 100
0UT(255),1: 0UT{255),2

NEXT I: OUT(255),1
PRINT
PRINT "Notice what happens during

PRINT “the sound output. The screen
PRINT "is put into the 64 character
PRINT "format by the OUT command.
‘delay to read screen

FOR I=1 TO 600: NEXT

PRINT

PRINT "As long as the program runs
PRINT "the screen stays in the 64
PRINT “character format. When STOP or

390 PRINT "END 1s executed the screen
400 PRINT "returns to the 32 character
410 PRINT “"format.
420 END
Program Listing 2
100 'PROGRAM #2
110 'demonstrates how to make sound routines
120 'compatibie with 32 character format
130 !
140 CLS: PRINT CHR$({23)

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

PRINT "The screen is put into the
PRINT "32 character format and
PRINT "some sample text placed on
PRINT "the screen for demonstration.
L3

'delay to read screen

FOR I=1 TO 600: NEXT

Ll

PRINT: PRINT “To retain the 32
PRINT “character format we need
PRINT "to add 8 to each OUT value
PRINT "from the previous example.
Ll

'delay to read screen
FOR I=1 TO 600: NEXT

'compatible sound routine
FOR 1=1 TO 100
0UT(255),9: OUT(255),10
NEXT

i3

PRINT
PRINT "Notice now that the screen
PRINT "stays in the 32 character

132

390
400

tutorial

PRINT "format during the sound.
END

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
270
280
290
300
310
320
330
340
350
360
370
380
390
400

Program Listing 3

'PROGRAM #3

‘demonstrates reverse incompatibility
‘with 32 character format

t

CLS

PRINT “The screen is left in the 64
PRINT “character format and

PRINT "some sample text placed on
?RINT “the screen for demonstration.

‘delay to read screen
FOR 1=1 TO 600: NEXT

PRINT: PRINT “"The 32 character format
PRINT “sound routine from program #2
PRINT "is used.

'

‘delay to read screen
FOR I=1 TO 600: NEXT

‘reverse incompatible sound routine
FOR I=1 TO 100

0UT(255),9: 0UT{255),10

NEXT

PRINT

PRINT "Notice now that the screen
PRINT "is put into the 32 character
PRINT "format during the sound.

END

Program Listing 4

:PROGRAM #4

*demonstrates using the status byte to key which sound
‘routine output bytes to use
1

GOTO 300

‘combined sound routine

FOR I=1 TO 100

0UT(255),1+PEEK(16445): QUT(255),2+PEEK(16445)

NEXT I

RETURN

'control program

CLS: PRINT "press a letter key for 64 character format
PRINT “or a shifted letter key for 32 character format.
2$=INKEY$: IF Z$="" GOTO 330

IF 2§ » “I* PRINT CHR$(23)

PRINT@O,CHR$(31)

PRINT "This message 1s now in the

PRINT "screen format chosen by the

PRINT “operator. Now the sound

PRINT “routine will output a tone

PRINT "and not affect the screen

PRINT "format.

GOSuB 180

GOTO 300

133

UTILITY

Modifying Scripsit to Send
Control Characters to Printers

Shortstuff

135

UTILITY

Modifying Scripsit to Send
Control Characters to Printers

by Albert Davis

It is common knowledge that Scripsit lacks the ability to support the spe-
cial features of some printers. This article describes a simple modification
which allows you to send all control codes to the printer. Table 1 shows the
control codes. After adding the modification, you can change type fonts,
print graphics, underline, print subscripts and superscripts, do reverse in-
dentation, and even print in Japanese if your printer has these capabilities.
There are two limitations: First, you must give up one character, such as &.
Second, any lines that contain control characters will not justify properly.
When a line containing a control code is encountered, Scripsit counts the
control code as it would a normal character. However, when that line goes
to the printer, the control code is not printed, and the right margin fails to
justify. If you must have justified text and control characters in the same
document, you must format a few lines by hand.

The process is a simple matter of intercepting the print routine, which
Radio Shack tells you how to do. The modification tells Scripsit to sense this
special character but not print it. Then, modify the following character and
print the modified character. The modification 1 use adds 96 (60H) to the
ASCII code and sets the most significant bit. The only purpose of this is to
make modified Scripsit boundary markers print as no-ops instead of lower-
case letters. With the Epson MX-80 printer, this gives access to the entire set
of control characters and graphics (Table 2). Another modification is to
change all carriage returns to line feeds. This means you can switch the
printers’ auto line feed off. Then when you send a special carriage return
through the modification, the printer will double print a line.

Scripsit is easy to modify because the print routine is at the end of the pro-
gram, and there is some spare memory present between the end of the pro-
gram and the work space. This is more than enough room for this simple
modification. The space from TAASH to 7C28H appears to be available; so
it is not necessary to protect any memory. Since the type of printer Scripsit
was designed for is still being used, the printer ready test does not need mod-
ification. The initialization routine sends a string of characters to the printer
to set it back to normal so that every printout starts from the same setting.

According to Radio Shack in a sheet that accompanies Scripsit, there are
five areas that need to be modified:

1) 5267H-5298H: Patch Scripsit to protect this driver. This is not necessary if
you use the spare memory.

137

utility

2) 5F63H-5F64H: Skip the printer ready test. This change is not necessary
since the printer ready test is still used.
3) 663FH-6641H: Execute your initial routine. This is done by overwriting
these locations with the modification.
4) TA97TH-TA99H: Execute your driver routine. This location prints only
spaces, so you do not have to change it.
5) TA9EH-7AAOH: Execute your driver routine. This is at the end of Scripsit
and is overwritten by the modification.

SCRIPSIT PATCH
MODIFIED PRINT

WAS
LAST
CHR THE KEY
{4-6}

MODIFY CURRENT
CHR.

{ADD 6OH, MASKMSB}
{2r-22)

PRINT IT
23

RESET “LAST CHR®
FLAG

LA
TO 26RO
{24-25)

'

ARETURN
{27

15 17
CARRIAGE
RETURN

-

SET "LAST CHR"
FLAG TO NON-ZERO
un

RETURN
[1:3}

CHANGE TO
LINE FEED
us

l PRINT T]
{14)

RETURN
($13]

S

SCRIPSIT PATCH
INITIALIZATION

SAVE ALL
REGISTERS
(28-31)

l

PRESET REGISTERS

HL —= PRINTER PORT
DE ~——» CHR. STRING
B : NO OF CHRS

(32 -34)

LOOP UNTIL
PRINTER READY
-37)

135

QUTPUT BYTE
TO PRINTER
{38-39)

I

BUMP COUNTERS
(INC DE. DEC B}
140,41}

}

CLEAR “LAST CHR"
FLAG
14243}

RESTORE ALL
REGISTERS
t44-an)

Figure 1. Scripsit modification flowcharts

'

RETURN
{48}

138

utility

&. double-width on
&4 double-width off
&/ compressed on
&2 compressed off
&E emphasized on

&;F emphasized off
&;G double-strike on
&:H double-strike off

& buzzer

&8 cancel unprinted data (reverse indent)
&) horizontal tab

& + vertical tab

&* line feed

& ~ carriage return

&, form feed

&1 select printer

&3 de-select printer

&;0 set line spacing to 1/8 inch (nine dots)

&;1 set line spacing to 7/72 inch (seven dots)

&;2 set line spacing as set by &;A (1/6 inch, 12 dots)
&;A preset line spacing

&;B set vertical tabs

&;D set horizontal tabs

&;C set form length

&space end tab set

Table 1. Scripsit/Epson control codes

&@ &B = &C

= &A = = = =
& =. &E =1 &F =, &G =vr
&H =, &I = . & =1 &K =4
&L = &M = & &N = a1 &0 ==
&P =. &Q = : &R = & =T
&T =1 &U =1 &V =y &W =
&X =¢ &Y = 5 &Z =3 & =13
& =r & = p &\ =g &_ =gp
& = » &b =1 & ==

&d == &e~t&f=.: &g =g
& =, & =4 & =3 &k =1
& =9 &m = § &n =4 &o =9§
&p = &G = R & =2 & =3
& =, &u =L & =4 &w =¢
&x =, &y =1 & =3 & =1
&: s &} B &v =g &8 =48

Table 2. Scripsit/Epson control characters and graphics

139

utility

Assemble the new driver with an origin of TA9EH. This causes it to over-
write the last few bytes of Scripsit which contain the print routine and a
jump back to the rest of the program. The new print routine, therefore,
must end with a JP 5F74H instruction. The initialization routine can be
located anywhere in the empty space, but Scripsit must be modified to call
it. In this case, we want to keep most of the existing routine, because it prints
the not ready message and gives you a chance to stop the printout if the
printer is not ready. The old routine sends a carriage return to the printer.
This one line must be replaced by the new routine. We must change 665EH
to CALL INIT by setting a second origin in the modification program at
665EH and putting the new instruction there. This must be done with either
Radio Shack’s tape assembler or Apparat’s disk assembler. Radio Shack’s
disk assembler does not work for this because it fills all the memory in be-
tween with zeros, wiping out Scripsit.

Modifying Scripsit

Type in Program Listing 1, using a tape-based editor/assembler or the
Apparat-modified editor/assembler, which is supplied on NEWDOS system
disks. If you do not have a suitable editor/ assembler, you can enter the
machine code directly, using the TRSDOS DEBUG utility,

The following instructions pertain to users of Apparat’s NEWDOS. If you
use TRSDOS, follow the instructions in the next section. After you have
entered the program listing, assemble it and save it in a disk file called
SCRMOD/CMD. Then follow these steps to modify Scripsit: 1) Return the
computer to the DOS command mode (DOS Ready). 2) Type LOAD
SCRIPSIT/CMD and press ENTER. This loads Scripsit into memory, but
does not execute it. 3) Type LOAD SCRMOD/CMD and press ENTER. This
loads the modification machine code into memory. 4) Type DUMP
SCRM/CMD 5200H 7AFFH 5200H and press ENTER. This dumps the
newly-modified Scripsit into a file called SCRM/CMD. 5) SCRM/CMD is
now the modified Scripsit, which runs normally.

If you don’t have NEWDOS and if you don’t mind loading two programs
each time you wish to use Scripsit, follow these instructions: 1) Assemble the
program and save the machine code in a disk file called SCRMOD/CMD. 2)
Return to the DOS command mode (DOS Ready). 3) Type LOAD SCRIP-
SIT/CMD and press ENTER. 4) Type SCRMOD and press ENTER. This
loads the modifying code into memory and begins execution of Scripsit.

If your disk operating system has the capability of executing DO or
CHAIN files, you could set up a file that would load the above programs
automatically upon booting.

Modifying with TRSDOS
There is a problem with the double loading procedure when using

140

utility

TRSDOS. The TRSDOS LOAD command wipes out part of the program
previously loaded, making multiple LOADs impossible. Follow this pro-
cedure, pressing ENTER after each command: 1) Assemble and save the
modifying code as explained above. 2) Return to the DOS command mode
(DOS Ready). 3) Type DEBUG. The computer responds with DOS Ready.
4) Type SCRIPSIT. This loads Scripsit and enters the debug utility. 5) Type
G402D. This returns you to DOS Ready. 6) Type SCRM. This loads the
modifying code and again enters the debug utility. 7) Type G. This executes
the now-modified Scripsit.

Some Tricks

Now that Scripsit is modified to respond to control characters, there are a
few tricks you can use. A carriage return (& —) returns the carriage to the
stop, not to the point at which Seripsit sets the margins. This can be used for
reverse indentation. Do a carriage return, then insert spaces, or tab to put
the start of the text where you want it.

To do underlining, put a carriage return (& —) after the line to be
underlined. Add spaces, or tab from the edge of the paper to the point to be
underlined, then print the underline character.

The cancel (&8) character can be used for reverse indenting, but not for
underlining or overprinting, since the printer forgets all that precedes the
control code on the current line, including the spaces that Scripsit added.
This works even if your printer does not overprint. The tabs can be used for
formatting, or in place of spaces to set the position of the reverse indent.

With the MX-80 printer, the type changes, except double width, apply to
the entire line, but this can be overcome by using a carriage return and then
overprinting. Print the normal type on the first pass and the special type on
the second.

If you want to cancel the carriage return and line feed from one of Scrip-
sit's boundary markers, prefix it with &. This changes it to a character which
has no effect. This is helpful when the modified characters result in a line too
long for Scripsit. To get a long line, use &, then the line-boundary marker.
Scripsit thinks it is a new line, so it resets the counter. The printer, however,
keeps going. Be careful when you do this. It throws off Scripsit’s line
counter. Insert a special line feed (&*) somewhere else on the page to put the
paper back where Scripsit thinks it is.

If you want superscripts, subscripts, or unusual line spacing, use the
printer’s control codes. If you want the printer to wake you up when it gets
to a certain part, use the buzzer (&’). You are limited only by the printer.
With a little imagination, you can overcome some of the printer’s limita-
tions. Almost all printers have provisions for boldface, overprinting, and
more than one type font. The details here apply to the Epson MX-80 printer,
but the same principles and probably the same program should work with
most other printers.

141

utility

Phantom Keys

There is a trick you can use to print the extra characters, such as brackets
and underlining, that are not on the keyboard. The way the keyboard works
allows you to do this without modifying Scripsit. If you press several keys at
a time, the computer is tricked into thinking different keys were pressed,
such as the ones that are not there. This, of course, produces a few spurious
characters which you can delete. There are empty positions in the XYZ row.
If there were keys there, they would make up the missing characters.

To get the extra characters, you must first connect the XYZ row to another
row, such as HIJ. Do this by pushing the Y and I keys simultaneously. Press-
ing H and X also works, but is less convenient. Then, whenever another key
in the HIJ row (KLMNO) is pressed, two characters are generated: the one
on the key and the phantom one. If you hold them down, one character
repeats. The odds of getting the phantom character to repeat are about 80
percent. Try it a few times until you get the right one. Be sure to press Y and
I first, then the other key. After you have done this, delete the extra
characters. This is a nuisance, but for the few times these characters are
needed, it works. You can get nine extra characters this way, including
underlining (YIO). Table 3 shows the phantom characters available from
the MX-80. These may print different from what shows on the screen; for
example, up arrow on the screen (YIK) usually prints as a left bracket.

yik

{ yil =) yim =} yin =~ yio
YIK = =

[YIL \ YIM =] YIN = A YIO =_
Table 3. Scripsit phantom characters

o

Other Improvements

There are two other improvements you can make. The first is to return to
DOS Ready instead of rebooting. This makes Scripsit more compatible with
double density systems. The other is to use the system’s top of memory in-
stead of having Seripsit find its own.

To return to DOS ready, change a JP 0000 instruction at 6594H to JP
402DH. I have taken this one step further to clear the screen. It now
becomes JP EXIT, and the EXIT is CALL 01C9H (clear screen from ROM),
then JP 402DH.

To use the system’s top of memory, I have copied Apparat’s zap. This
wipes out Scripsit’s routine at 5260H to find the top of memory, and replaces
it with LD HL, (4049H) and a bunch of no-ops. This protects anything you
have stashed at the top of memory.

142

TA9E
TA9E
TA9F
TAA2
7AA3
7AAS
7AAE
TAA8
TAAA
TAAB
7AAD
1AAF
7AB1
7AB4
7ABS
7AB8
7ABB
7ABE
7ABF
TACO
7AC2
71AC4
7ACT7
7AC8
7ACB
7ACC
7ACF
TADO
7ADL
7TAD2
7AD3
1AD6
7AD9
7ADB
7ADC
7ADE
TAEQ
TAE1
TAE2
TAE3
TAES
TAE6
7AEQ
TAEA
TAEB
TAEC
TAED
TAEE
TAEF
TAFO
TAF1
TAF2
TAF3
1AF4
TAFS
TAF6
T1AF7
TAF8
TAF9
TAFC
TAFF
665E
665E
6594
6594
5260

C3745F
32EET7A
C3745F
F1

F5
€660
F680
32837
AF

1B
32
€DC301
C32D40
00

CDCF7A
C3F97A

00001 ; Scripsit patch .. Albert Davis .. 1981
ORG 7A9EH

00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058

00059

00070
00071
00072
00073
00074
00075
00076
00077

DRIV

NORMAL

SPEC

INIT

NOTRDY

LAST
STRING

EXIT

utility

Program Listing. Scripsit patch

PUSH
LD
OR

POP
RET
NOP
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
CALL
J

NOP
ORG
CALL
ORG

ORG

A
A
A
NZ,SPEC
AF

I&I

Z,1GN

AF

ODH

NZ, NORMAL
A,0AH
(37E8H), A
AF

5F74H
(LAST), A
SF74H

AF

AF

A,60H

80H
(3768H), A
A
(LAST), A
AF

5F74H

AF

HL

DE

BC
HL,37€8H
DE,STRING
8,0AH
C,(HL)
7,C
NZ,NOTRDY
(HL),A
DE

NOTRDY

F
, (LAST)

A
(LAST), A
BC

DE
HL
AF

12H
18H
o
1BH
e
18H
IA|
8CH
1BH
12(
01C9H
40204

665EH
INIT
6594H
EXIT
5260H

or wn e e e e W e e e we e we we e e we we wh LE WA Wl M WY Ul W W We we WS WS Wh WL WS WS UL WE W e ue Ul MC Wc Wl we

e W e M W e we e wr e M v we we we we we Wb ws

143

Encyclopedia
LGader

save chr in A
get last chr flag
set flags
Jjump 1f last chr was the key
get back current chr to print
is 1t the key?
1f so, jump
save chr again
is 1t carriage return?
jump if no
change to line feed
output chr to printer
restore current character
return to Scripsit
store chr (not zero) as flag
don't print it, return
get back current chr
save 1t again
move it up to control/graphics
make sure it is > 80H
print it (it's special now)
store zero as "last" flag

“

restore current chr
return to Scripsit
printer initialization routine
save all registers
W

location of printer port
string of chrs to "print"
there are 10 of them
check printer status

W

loop until ready
get chr to “print"
Torint” it
bump chr counter
loop, print the next one
clear "last" flag

“

restore registers
"

"

place to store flag

turn off compressed mode
"escape”

turn off emphasized mode
“escape"

turn off double strike mode
"escape”

preset line spacing

preset it to 1/6"

"escape"

set line space to 1/6"

clear screen, home cursor

go back to DOS

dummy byte

patch Scripsit to call new INIT
by overwriting one instruction
patch scripsit to return to DOS
instead of rebooting

patch Scripsit to use top of

Program continued

utility

5260 2A4940 00078 LD HL, (4049H) ; memory from DOS instaed of
5263 00 00079 NOP 3 figuring its own

5264 00 00080 NOP ; wipe out old routine

5265 00 00081 NOP

5266 00 00082 NOP

5267 00 00083 NOP

5268 00 00084 NOP

5269 00 00085 NOP

5200 00086 END 5200H 3 Scripsit entry address

00000 TOTAL ERRORS

144

UTILITY

Shortstuff

by Roger Schrag

he Level 11 BASIC manual states that Level II has cassette data file ca-

pabilities built in. All you have to do is type PRINT# — 1 and a list of
variables to save them on tape. To get them back, you just need to IN-
PUT# ~ 1 them. However, there is a serious problem: speed.

Suppose you have a personal finance program that uses cassette data files.
Also suppose that all important data is held in the array A(X) and when you
are through entering your financial information, the entire contents of this
array will be written onto cassette. A routine to do that might look like this:

FOR X =1 TO 100:PRINT§# — 1, AX):NEXT X
The lack of speed in cassette data files becomes apparent when, seven
minutes later, this routine is still writing data to tape.

Shortstuff is a program to allow faster data files. Program Listing 1 is the
BASIC version, and Program Listing 2 is the assembly-language source
code. To make a program use faster data files, you CLOAD the program,
add four short lines of text, and CSAVE the new copy. You now have a
stand-alone BASIC program which supports faster data files. By stand-alone
I mean that every time you CLLOAD the program, it will use faster data files.
You will not have to load in any driver routines, or even set the memory size.

To speed up Level IT’s data files, first find out what slows down the pro-
cess. In the example above, it takes about seven minutes and five seconds to
put all the data on tape. Here is another example:

FOR X+ 1 TO 100:PRINT# - 1, :NEXT X
This turns on the tape recorder, writes a leader and sync byte, then turns off
the recorder. It does this 100 times. It takes about six minutes and 50 seconds
to execute. The first example also turns on the recorder, writes a leader and
sync byte, writes the value of a variable, then shuts off the recorder, It also
does this 100 times. It takes about seven minutes and five seconds to execute.

As much as 97 percent of the time required to write a data file may be
spent writing the leader, with as little as three percent of the time spent
writing the actual value of the variable on tape. Of the seven minutes and
five seconds required to execute the first example, only 15 seconds are spent
actually writing the data.

145

utility

A leader is a string of 256 zeros written to tape before the actual data.
When you CSAVE a program, you write a leader first. When you
PRINT# — 1 data, you also write a leader first. The string of 256 zeros is ab-
solutely useless to the computer. When you load a program, Level IT ignores
all of the leader and waits for the sync byte. The sync byte synchronizes
everything so that information is read from the tape exactly as it was written
on the tape in the first place.

Shortstuff creates cassette data files more quickly by writing shorter
leaders. When Shortstuff writes a leader, it writes 20 zeros instead of 256.
Thus, 236 bytes less are written to tape for each data file. Therefore, it takes
less time to write the files, less tape to store them, and less time to load them
back into the computer.

When Shortstuff is initialized, it patches into the PRINT command.
Whenever you type PRINT, whether it is PRINT@, PRINTTAB,
PRINT# — 1, or anything else with PRINT, ROM does a call to memory
location 16842. Usually an RET instruction is stored here, and control goes
back into the ROM where the statement is processed further. However,
Shortstuff changes this RET to a JP to the Shortstuff routine. Whenever you
type in PRINT, Shortstuff gains control. It checks the character directly
after the word PRINT. If this character is anything except an asterisk, con-
trol is returned to ROM and continues as usual. However, if the character
after the PRINT is an asterisk, the program turns the tape recorder on,
writes a short leader and sync byte, and returns control to ROM at the point
where ROM processes the normal PRINT# — 1 instruction.

With Shortstuff initialized, you have a new command: PRINT*. If you
type in PRINT*A$, the program will write the contents of A$ onto tape with
a short leader. This also works with numeric variables, constants, and
anything else that is valid with PRINT# — 1. You can also use device
numbers; PRINT*#~1, “THIS WORKS” is acceptable, and so is
PRINT*# — 2, “SHORTSTUFF”. Note that PRINT# —1 and PRINT# -2
will work normally with Shortstuff in memory.

It is simple to modify a program in BASIC to use short leaders on the data
files. First CLOAD the program, then key in the program shown in the first
listing, then look through the listing of your program for every location in
which PRINT# — 1 is used. Add an asterisk between the PRINT and the
pound sign in every case. When you have all of the PRINT# ~ 1 statements
changed, CSAVE the new version of your program. From now on, every
time you CLOAD this program, it will write out short leaders, improving
the overall speed of the data files. Look at this example:

FOR X =1 to 100:PRINT*# ~ 1, A(X):NEXT X
Notice that it is the same as the first example, except that it will write short

leaders if Shortstuff is in memory and only takes about 51 seconds to execute.
See Table 1 to adapt Shortstuff to different memory sizes.

146

utility

Memory Change M1to Change M2 to

4K 20455 79
32K - 16409 191
48K -~ 25 255

Table 1. Changes for different memory sizes

Shortstuff is a very simple modification which can be performed on just
about any BASIC program to improve its data file efficiency considerably.

147

utility

Program Listing 1. Shoristuff, BASIC version

5 CLEAR 50 : POKE 16561,231 : CLEAR 50 'SET MEM SIZE E a.O&ddel?
10 M1=127 : M2=32743 'FOR 16K MACHINE

20 FOR X=M2 TO M2+24 : READ Y : POKE X,Y : NEXT X 'POKE IN CODE

30 POKE 16842,195 : POKE 16843,231 : POKE 16844,M1 'CHANGE PRINT POINTER

40 DATA 254, 207, 192, 51, 51, 35, 205, 254, 1, 6, 25 :'"MACHINE CODE TO BE

50 DATA 175, 205, 100, 2, 16, 251, 62, 165, 205, 100 :' POKED INTO HIGH

60 DATA 2, 195, 150, 32 :' MEMORY

Program Listing 2. Shoristuff, assembly-language source code

7FD9 00100 ORG 32729

7FD9 3EC3 00110 START LD A,0C3H ;CODE FOR JP OPCODE

JFDB 32CA41 00120 LD (41CAH),A ;STORE AT PRINT ADDRESS

J7EDE 21E77F 00130 LD HL, SHORT 3ADDRESS OF SHORTSTUFF

JFE1 22(B41 00140 LD (41CBH),HL ;JUMP TO SHORTSTUFF FOR PRINT

JFE4 C3CC06 00150 JP 6CCH 3RETURN TO BASIC

JFET7 FECF 00160 SHORT CP OCFH 3 IS NEXT CHARACTER AN ASTERISK?

TFE9 CO 00170 RET NZ JRETURN IF NOT

JFEA 33 00180 INC N 3MAKE UP FOR CALL TO 41CAH

TFEB 33 00190 INC SpP

TFEC 23 00200 INC HL 3POINT TO CHARACTER AFTER ASTERISK

JFED CDFEO1 00210 CALL 1IFEH ;CALL ROM ROUTINE TO SELECT RECORDER
00220 ;=========== WRITE A SHORTER LEADER =====s==s=======

7FFO 0614 00230 LD B,14H JHRITE 20 ZEROS INSTEAD OF 256

JFF2 AF 00240 XOR A ;ZERO A REGISTER

JFF3 (D6402 00250 LOOP CALL 264H JWRITE BYTE TO TAPE

7FF6 10FB 00260 DINZ Loop ;GO BACK 20 TIMES

7FF8 3EAS 00270 LD A,0A5H 3SYNC BYTE

JFFA CD6402 00280 CALL 264H SWRITE IT

JFFD (39620 00290 JP 2096H SRETURN TO ROM

0000 00300 END

00000 TOTAL ERRORS

148

APPENDIX

Appendix A
Appendix B
Appendix C

149

APPENDIX A

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose . ”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level II. To run in Level I, follow this procedure:
® Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
® Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent code
made to agree.
® Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model III Users

For the Model I, OUT255,0 and QUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
OUT236,0 and OUT236,2.

151

APPENDIX B

Glossary

A

access time--the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator— the main register(s) in a microprocessor used for arithmetic,
shifting, logical, and other operations.

accuracy— generally, the quality or freedom from mistake or error; the ex-
tent to which the results of a calculation or a measurement approach the
true value of the actual quantities.

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

A/D converter—analog to digital converter. See D/A converter.

address—a code that specifies a register, memory location, or other data
source or destination.

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications, generally on large-scale computers.

algorithm —a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—the process of adjusting components of a system for proper
interrelationships, including adjustments and synchronization for the com-
ponents in a system. For the TRS-80, this usually applies to cassette heads
and disk drives.

alphanumerics—refer to the letters of the alphabet and digits of the number
system, specifically omitting the characters of punctuation and syntax.

alternating current— ac. Electric current that reverses direction periodical-
ly, usually many times per second.

152

appendix

ALU— Arithmetic Logic Unit.

analog—the representation of a physical variable by another variable in-
sofar as the proportional relationships are the same over some specified
range.

AND—a Boolean logic function. Two operators are tested and, if both are
true, the answer is true. Truth is indicated by a high bit, or 1 in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately. A bit-by-bit logical operation which pro-
duces a one in the result bit only if both operand bits are ones.

anode—in a semiconductor diode, the terminal toward which electrons flow
from an external circuit; the positive terminal,

APL—A Programming Language; a popular and powerful high-level
mathematical language with extensive symbol manipulation.

argument—any of the independent variables accompanying a command.

Arithmetic Logic Unit— ALU. The section of a microprocessor which per-
forms arithmetic functions such as addition or subtraction and logic func-
tions such as ANDing.

array—a collection of data items arranged in a meaningful pattern such as
rows and columns which allow the collection and retrieval of data.

ASCII— American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—software that translates operational codes into their binary
equivalents on a statement-for-statement basis.

assembly language—a symbolic computer language that is translated by an
assembler program into machine language, the numeric codes that are
equivalent to microprocessor instructions.

B

backup—1) refers to making copies of all software and data stored external-
ly; 2) having duplicate hardware available.

153

appendix

base— the starting point for representation of a number in written form,
where numbers are expressed as multiples of powers of the base value.

BASIC— an acronym for Beginner’s All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing— a method of computing in which many of the same types
of jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the com-
puter operator. All the cards are put into the card reader, and the results of
each person’s program are returned later. This is contrasted with interactive
computing.

baud—1) a unit of data transmission speed equal to the number of code
elements (bits) per second; 2) a unit of signaling speed equal to the number
of discrete conditions or signal events per second.

baud rate—a measure of the speed at which serial data is transmitted elec-
tronically. The equivalent of bits per second (bps) in microcomputing.

benchmark— to test performance against a known standard.

BCD— binary coded decimal. The 4-bit binary notation in which individual
decimal digits (0 through 9) are represented by 4-bit binary numerals; e.g.,
the number 23 is represented by 0010 0011 in the BCD notation.

bias—a dc voltage applied to a transistor control electrode to establish the
desired operating point.

bidirectional bus—a bus structure used for the two-way transmission of
signals, that is, both input and output.

bidirectional printer—a printer capable of printing both left-to-right and
right-to-left. Data is prestored in a fixed-size buffer.

binary—a number system which uses only 0 and 1 as digits. It is the
equivalent of base 2. Used in microcomputing because it is easy to represent
1s and Os by high and low electrical signals.

binary digit—the two digits, 0 and 1, used in binary notation. Often
shortened to bit.

bi-stable— two-state

154

appendix

bit—an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

bit position— the position of a binary digit within a byte or larger group of
binary digits. Bit positions in the Model I, II, I1I, and Color Computer are
numbered from right to left, zero through N. This number corresponds to
the power of two represented.

Boolean algebra— a mathematical system of logic first identified by George
Boole, a 19th century English mathematician. Routines are described by
combinations of ANDs, ORs, XORs, NOTs, and IF-THENs. All computer
functions are based upon these operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. On some machines it is keyed in, and
on others it is in read only memory (ROM). Using this program is called
booting or cold-starting the system.

bps-—bits per second.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug—an error in software or hardware.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.,

byte—eight bits that are read simultaneously as a single code.
C
CAI—an acronym for Computer Aided Instruction.

card— a specially designed sheet of cardboard with holes punched in specific
columns. The placement of the holes represents machine-readable data.
Also a term referring to a printed circuit board.

card reader—a device for reading information from punched cards.

cassette recorder— a magnetic tape recording and playback device for enter-
ing or storing programs.

155

appendix

cathode— in a semiconductor diode, the terminal from which electrons flow
to an external circuit; the negative terminal.

character—a single symbol that is represented inside the computer by a
specific code.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a
predetermined result for the block of data.

chip— the shaped and processed semiconductor die mounted on a substrate
to form a transistor or other semiconductor device.

circuit— a conductor or system of conductors through which an electric cur-
rent may flow.

circuit card—a printed circuit board containing electronic components.

clear—to return a memory to a non-programmed state, usually represented
as 0 or OFF (empty).

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL—COmmon Business-Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

compiler—software that will convert a program written in a high-level
language to binary code, on a many-for-one basis.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

computer interface—a device designed for data communication between a
central computer and another unit such as a programmable controller pro-
Ccessor.

concatenate— to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

156

appendix

conductor—a substance, body, or other medium that is suitable to carry an
electric current.

constant—a value that doesn’t change.

CPU—central processing unit. The circuitry that actually performs the
functions of the instruction set.

CRT—cathode ray tube. In computing this is just the screen the data ap-
pears on. A TV has a CRT.

cue—refers to positioning the tape on a cassette unit so that it is set up to a
read/write section of tape.

cursor— a visual movable pointer used on a CRT by the programmer to in-
dicate where an instruction is to be added to the program. The cursor is also

used during editing functions.

cycle—a specific period of time, marked in the computer by the clock.

D

D/A converter— digital to analog converter. Common in interfacing com-
puters to the outside world.

daisy wheel—a printer type which has a splined character wheel.

data—general term for numbers, letters, symbols, and analog quantities
that serve as information for computer processing.

data base—refers to a series of programs each having a different function,
but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a
storage device. Knowledge of operating or programming a computer is not
necessary for a data entry operator.

debug—to remove bugs from a program.

decrement— to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

157

appendix

dedicated—in computer terminology, a system set up to perform a single
task.

default—that which is assumed if no specific information is given.

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

diagnostic program— a test program to help isolate hardware malfunctions
in the programmable controller and application equipment.

digital —the representation of data in binary code. In microcomputers, a
high electrical signal is a 1 and a low signal is a 0.

digital circuit—an electronic network designed to respond at input voltages
at one level, and similarly, to produce output voltages at one level.

diode— a device with an anode and a cathode which permits current flow in
one direction and inhibits current flow in the other direction.

direct current—dc. Electric current which flows in only one direction; the
term designates a practically non-pulsating current.

disassembly—remaking an assembly source program from a machine-code
program,

disk—an oxide-coated, circular, flat object, in a variety of sizes and con-
tainers, on which computer data can be stored.

disk controller— an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—DOS. The system software that manipulates the
data to be sent to the disk controller.

dividend— the number that is divided by the divisor. In A/B, A is the divi-
dend.

divisor— the number that “goes into” the dividend in a divide operation. In
A/B, B is the divisor.

DMA—direct memory access. A process where the CPU is disabled or

158

appendix

bypassed temporarily and memory is read or written to directly.

documentation—a collection of written instructions necessary to use a piece
of hardware, software, or a system.

dot-matrix printer—instead of each letter having a separate type head (like
a typewriter), a single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
manufacture.

downtime—the time when a system is not available for production due to
required maintenance.

driver—a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex— refers to two-way communications taking place independently,
but simultaneously.

dynamic memory— circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

E
EAROM—an acronym for Electrical Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if

necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editors.

EOF—End Of File.

EOL-—End Of Line (of text).

EPROM-—Erasable Programmable Read Only Memory. A read only
memory in which stored data can be erased by ultraviolet light or other

means and reprogrammed bit-by-bit with appropriate voltage pulses.

Exclusive OR— a bit-by-bit logical operation which produces a one bit in the

159

appendix

result only if one or the other (but not both) operand bits is a one.

execution— the performance of a specific operation such as would be ac-
complished through processing one instruction, a series of instructions, or a
complete program.

execution cycle—a cycle during which a single instruction of one specific
operation is performed.

execution time— the total time required for the execution to actually occur.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

exponent— the power to which a floating-point number is raised.

F

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

field-effect transistor— FET. A transistor in which the resistance of the cur-
rent path from the source to drain is modulated by applying a transverse
electric field between grid or gate electrodes; the electric field varies the
thickness of depletion layers between the gates, thereby reducing the con-
ductance.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flip-flop—a bi-stable device that assumes either of two possible states such
that the transition between the states must be accomplished by electronic
switching.

floating-point number— a standard way of representing any size number in
computers. Floating-point numbers contain a fractional portion (mantissa)
and power of two (exponent) in a form similar to scientific notation.

160

appendix

flowcharting—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN—FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.

full duplex—a mode of data transmission that is the equivalent of two
paths—one in each direction simultaneously.

G
game theory-—see von Neumann.
garbage—computer term for useless data.
gate-—a circuit that performs a single Boolean function. A circuit having an
output and a multiplicity of inputs, so designed that the output is energized

only when a certain combination of pulses is present at the inputs.

GIGO—Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics— information displayed pictorially as opposed to alphanumerically.
ground— a conducting path, intentional or accidental, between an electric

circuit or equipment and the earth, or some conducting body serving in
place of the earth.

H
H-—a suffix for hexadecimal, e.g., 4FFFH.

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Handshaking requires clocking pulses on both ends of the
communications line. Contrast with buffer.

hard copy—a printout; any form of printed document such as a ladder
diagram, program listing, paper tape, or punched cards.

161

appendix

hardware—refers to any physical piece of equipment in a computer system.
hex—hexadecimal.

hexadecimal—representation of numbers in base sixteen by use of the hexa-
decimal digits 0, 1, 2, 3,4, 5,6,7,8,9, A,B,C, D, E, andF.

high— a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming language which is CPU-independent
and closely resembles English.

high order—see most significant bit.

HIT-—acronym for Hash Index Table. A section of the directory on a
TRS-80 disk.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

IC—integrated circuit.

immediate-—addressing mode in which the address of the information that
an operation is supposed to act upon immediately follows the operation
code.

increment—to increase, usually by one. See decrement.

indexed—addressing mode where the information is addressed by a
specified value, or by the value in a specified register.

indirect—addressing mode in which the address given points to another ad-
dress, and the second address is where the information actually is.

input devices—devices such as limit switches, pressure switches, push but-
tons, etc., that supply data to a programmable controller. These discrete in-
puts are two types: those with common return, and those with individual re-
turns (referred to as isolated inputs). Other inputs include analog devices
and digital encoders.

162

appendix

instruction—a command or order that will cause a computer to perform one
particular operation.

integer variable—a BASIC variable type. It can hold values of - 32,768
through + 32,767 in two-byte two’s complement notation.

integrated circuit—IC. An interconnected array of active and passive
elements integrated with a single semiconductor substrate or deposited on
the substrate and capable of performing at least one electronic circuit func-
tion. See chip.

intelligent terminal-a terminal with a CPU and a certain amount of
memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of systern software that executes a program written in a
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compiler.

interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the
main program continues.

1/O--acronym for input/output. Refers to the transfer of data.

iteration—one pass through a given set of instructions.

J

jack—a socket, usually mounted on a device, which will receive a plug
(generally mounted on a wire).

163

appendix

K

K—abbreviation for kilo. In computer terms 1024, in loose terms 1000.

L

language—a set of symbols and rules for representing and communicating
information (data) among people, or between people and machines.

large scale integration-—LSI. Any integrated circuit which has more than
100 equivalent gates manufactured simultaneously on a single slice of
semiconductor material.

least significant bit—the rightmost bit in a binary value, representing 2°.

least significant byte—refers to the lowest position digit of a number. The
rightmost byte of a number or character string.

LIFO—acronym for Last In First Out. Most CPUs maintain a “stack” of
memory. The last data pushed onto the stack is the first popped out.

light emitting diode—LED. A semiconductor diode that displays
alphanumeric characters when supplied with a specified voltage.

light pen—a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

line—in communications, describes cables, telephone lines, etc., over which
data is transmitted to and received from the terminal.

line printer—a high-speed printing device that prints an entire line at one
time.

location—a storage position in memory.
logic—a means of solving complex problems through the repeated use of
simple functions which define basic concepts. Three basic logic functions are

AND, OR, and NOT.

logic diagram—a drawing which represents the logic functions AND, OR,
NOT, etc.

logic level—the voltage magnitude associated with signal pulses represent-
ing ones and zeroes (1s and Os) in binary computation.

164

appendix

logical shift—a type of shift in which an operand is shifted right or left, with
a zero filling the vacated bit position.

loop—a set of instructions that executes itself continuously. If the program-
mer has the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value, the loop is ter-
minated.

low—a logic signal voltage. The computer senses this as a binary 0.
Isb—see least significant bit.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—-a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

mainframe—refers to the CPU of a computer. This term is usually confined
to larger computers.

mantissa—the fractional portion of a floating-point number.

matrix-—a two-dimensional array of circuit elements, such as wires, diodes,
etc., which can transform a digital code from one type to another.

memory— the hardware that stores data for use by the CPU. Each piece of

165

appendix

data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each cap-
able of storing a tiny electrical charge.

metal oxide semiconductor—MOS. A metal insulator semiconductor struc-
ture in which the insulating layer is an oxide of the substrate material; for a
silicon substrate the insulator is silicon oxide.

micro electronics—refers to circuits built from miniaturized components
and includes integrated circuits.

microprocessor—an electronic computer processor section implemented in
relatively few IC chips (typically LSI) which contain arithmetic, logic,
register, control, and memory functions.

microsecond—-us. One millionth of a second: 1 x 10— ¢ or 0.000001 second.

millisecond—ms. One thousandth of a second: 10 —3 or 0.001 second.

minuend—the number from which the subtrahend is subtracted.

mixed number—a number consisting of an integer and fraction as, for ex-
ample, 4.35 or (binary) 1010.1011.

mnemonic—a short, alphanumeric abbreviation used to represent a
machine-language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

modem-—MOdulator/DEModulator. An I/Q device that allows com-
munication over telephone lines.

module—an interchangeable plug-in item containing electronic com-
ponents which may be combined with other interchangeable items to form a
complete unit.

monitor—1) a CRT; 2) a short program that displays the contents of
registers and memory locations and allows them to be changed. Monitors
can also allow another program to execute one instruction at a time, saving
programs and disassembling them.

MOS—see metal oxide semiconductor.

166

appendix

MOSFET—metal oxide semiconductor field effect transistor.

most significant bit—the leftmost bit in a binary value, representing the
highest-order power of two. In two’s complement notation, this bit is the
sign bit.

most significant byte—the highest-order byte. In the multiple-precision
number A13EF122H, A1H is the most significant byte.

msh— see most significant byte.

multiplexing— a method allowing several sets of data to be sent at different
times over the same communication lines, yet all of the data can be used
simultaneously after the final set is received. For example, several LED
displays, each requiring four data lines, can all be written to with only one

group of four data lines. The same concept is used with communication
lines.

multiplicand— the number to be multiplied by the multiplier.

multiplier— the number that is multiplied against the multiplicand. The
number “on the bottom.”

N

NAND—an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

nanosecond— one billionth of a second.

nesting— putting one loop inside another. Some computers limit the number
of loops that can be nested.

noise— extraneous signals; any disturbance which causes interference with
the desired signal or operation.

non-volatile memory— a memory that does not lose its information while its
power supply is turned off.

NOT— a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
This is the one’s complement.

167

appendix

O

object code—all of the machine code that is generated by a compiler or
assembler. Once object code is loaded into memory it is called machine
code,

octal—refers to the base 8 number system, using digits 0-7.
OEM— Original Equipment Manufacturer.

off-line— describes equipment or devices which are not connected to the
communications line.

off-the-shelf—a term referring to software. A generalized program that can

be used by many computer owners. It is mass produced and can be bought
off-the-shelf.

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

operands— the numeric values used in the add, subtract, or other operation.

OR—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

output—the current, voltage, power, driving force, or information which a
circuit or a device delivers. The terminals or other places where a circuit or
device can deliver energy.

output devices— devices such as solenoids, motor starters, etc., that receive
data from the programmable controller.

overflow— a condition that exists when the result of an add, subtract, or other
arithmetic operation is too large to be held in the number of bits allotted.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide—an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

168

appendix

P

page— refers to a 256 (2 to the 8th power) word block of memory. How large
a word depends on the computer. Most micros are eight-bit word machines.
Many chips do special indexed and offset addressing on the page where the
program counter is pointing and/or on the first page of memory.

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously. Contrast with
serial.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even, the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

parity bit— an additional bit added to a memory word to make the sum of
the number of 1s in a word always even or odd as required.

parity check—a check that tests whether the number of 1s in an array of
binary digits is odd or even.

PC board-—see printed circuit board.

peripheral devices—a generic term for equipment attached to a computer,
such as keyboards, disk drives, cassette tapes, printers, plotters, speech syn-
thesizers.

permutation— arrangements of things in definite order. Two binary digits
have four permutations: 00, 01, 10, and 11.

PILOT-—a simple language for handling English sentences and strings of
alphanumeric characters. Generally used for CAIL

PL/1—an acronym for Programming Language 1. A programming
language used by very large computers. It incorporates most of the better
features from other programming languages. Its power comes from the fact
that bits can be manipulated from the high-level language.

plotter—a device that can draw graphs and curves and is controlled by the
computer through an interface.

169

appendix

port— a single addressable channel used for communications.

positional notation—representation of a number where each digit position
represents an increasingly higher power of the base.

precision—the number of significant digits that a variable or number format
may contain.

printed circuit board-—a piece of plastic board with lines of a conductive
material deposited on it to connect the components. The lines act like wires.
These can be manufactured quickly and are easy to assemble the com-
porents on,

processor— a unit in the programmable controller which scans all the inputs
and outputs in a predetermined order. The processor monitors the status of
the inputs and outputs in response to the user-programmed instructions in
memory, and it energizes or de-energizes outputs as a result of the logical
comparisons made through these instructions.

product— the result of a multiply.

program— a sequence of instructions to be executed by the processor to con-
trol a machine or process.

PROM-—Programmable Read Only Memory. A memory device that is writ-
ten to once and from then on acts like a ROM.

pseudo code— a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself.

punched-card equipment— peripheral devices that enable punching or
reading paper punched cards that hold character or binary data.

Q

quotient—the result of a divide operation.

R

RAM—acronym for Random Access Memory. An addressable LSI device
used to store information in microscopic flip-flops or capacitors. Each may
be set to an ON or OFF state, representing logical 1 or 0. This type of

170

appendix

memory is volatile, that is to say, memory is lost while power is off, unless
battery backup is used.

read— to sense the presence of information in some type of storage, which
includes RAM memory, magnetic tape, punched tape, etc.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a fast-access memory location in the microprocessor. Used for
holding intermediate results and for computation in machine language.

relative addressing—an address that is dependent upon where the program
counter is presently pointing.

remainder— the amount of dividend remaining after a divide has been com-
pleted.

ROM—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

rounding— the process of truncating bits to the right of a bit position and
adding zero or one to the next higher bit position based on the value to the
right. Rounding the binary fraction 1011.1011 to two fractional bits, for ex-
ample, results in 1011.11.

RPG-—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

RS-232—an interface that converts paralle] data to serial data for com-
munications purposes. The output is universally standard.

S

scaling—multiplying a number by a fixed amount so that a fraction can be
processed as an integer value.

scientific notation—a standard form for representing any size number by a
mantissa and power of ten.

171

appendix

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and are called semiconductors.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. Contrast with parallel.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (—) and 0 is positive (+).

signed numbers—numbers that may be either positive or negative.

significant bits—the number of bits in a binary value after leading zeros
have been removed.

significant digit—a digit that contributes to the precision of a number. The
number of significant digits is counted beginning with the digit contributing
the most value, called the most significant digit, and ending with one con-
tributing the least value, called the least significant digit.

simulator-—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer
simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

software—refers to the programs that can be run on a computer.

solid state devices (semiconductors)—electronic components that control
electron flow through solid materials such as crystals; e.g., transistors,
diodes, integrated circuits.

source program—the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

SPOOL—acronym for Simultaneous Peripheral Output, On-Line. Used to
overlap processing, typically, with printing.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

172

appendix

stepper motor—a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines
the tracks on a disk.

storage-—see memory.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once. Similar to
a macro.

subtrahend— the number that is subtracted from the minuend.

syntax—the term is used exactly as it is used in English composition. Every
language has its own syntax.

system—a collection of units combined to work as a larger integrated unit
having the capabilities of all the separate units.

system software—software that the computer must have loaded and run-
ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

tape reader—a unit which is capable of sensing data from punched tape.

TeletypeTM-—a peripheral electromechanical device for entering or output-
ting a program or data in either a punched paper tape or printed format.

text editor—see word processor.

time sharing—refers to systems which allow several people to use the com-
puter at the same time.

track—a concentric area on a disk where data is stored in microscopic mag-
netized areas.

transistor—an active component of an electronic circuit consisting of a small

173

appendix

block of semiconducting material to which at least three electrical contacts
are made, usually two closely spaced rectifying contacts and one chmic
(non-rectifying) contact; it may be used as an amplifier, detector, or switch.

transistor-transistor logic—TTL. A logic circuit containing two transistors,
for driving large output capacitances at high speed. A family of integrated
circuit logic. (Usually 5 volts is high or 1, and 0 volts is low or 0; 5V =1,
0V =0).

truncation—the process of dropping bits to the right of a bit position. Trun-
cating the binary fraction 1011.1011 to a number with fraction of two bits,
for example, results in 1011.10.

truth table—a table defining the results for several different variables and
containing all possible states of the variables.

TTL~—see transistor-transistor logic.
TTY—an abbreviation for Teletype.

two’s complement—a standard way of representing positive and negative
numbers in microcomputers.

U
unsigned numbers—numbers that may be only positive; absolute numbers.

utility—a program designed to aid the programmer in developing other soft-
ware.

UV erasable PROM—an ultraviolet erasable PROM is a programmable

read-only memory which can be cleared (set to 0) by exposure to intense
ultraviolet light. After being cleared, it may be reprogrammed.

A%

variable—a labeled entity that can take on any value.

volatile memory—a memory that loses its information if the power is re-
moved from it.

174

appendix

von Neumann, John (1903-1957)—mathemetician. He put the concept of
games, winning strategy, and different types of games into mathematical
formulae. He also advanced the concept of storing the program in memory
as opposed to having it on tape.

w

weighted value—the numerical value assigned to any single bit as a function
of its position in the code word.

word—a grouping or a number of bits in a sequence that is treated as a unit
and is stored in one memory location. If the CPU works with 8 bits, then the
word length is 8 bits. Common word sizes are 4, 8, 12, 16, and 32. Some are
as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X
XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but
answer is high (1) if and only if one line is high.

Z

zero flag—a bit in the microprocessor used to record the zero/non-zero
status of the result of a machine-language instruction.

zero page—refers to the first page of memory.

175

APPENDIX C

Since the beginning of the Encyclopedia for the TRS-80 series, we have
realized a few problems with some of the articles.

Volume 1

Page 167. Line 140 should read:

M0CLS:U=-1:V=704: W=64: FORN=1TO11:U=U+1:
V=V-64:PRINT@V, U;: NEXT N

Line 145 should read:

145 H=69:1=123 : FORN=1TO9: FORX=HTOI:
PRINT@X,"-";i NEXTX: H=H+64 : [=1+64: NEXTN

Page 182. The five lines of BASIC listing which appear at the end of the Pro-
gram Listing are not a part of that program and should not be there.

Volume 2

Page 126. Table 2, three lines from the bottom. The line should read: Some
TRS-80s require Shift J Z.

Page 136. Line 460 should read: IFP > LL. .. (not L).
Page 143. In line 1560, remove the — 128.

Page 145. Line 1800 should read:
1800 FOR K = 1 TO X : X$(J) = X$(J) + CHR$(ASC(MID$(A$(1). K, 1)) + 128) : NEXT K

Page 171. Line 1070 should read:

1070 FOR G =F TO A —1:IF AS$(G) OR CS$ = C$(G)
CLS:GOSUB 1250:ELSE NEXT G:GOTO 1090
Line 1080 should read:

1080 FOR F =G TO A - 1:IF AS$(F) OR CS$ = C$(F) GOSUB
1270:NEXT F:GOTO 1100:ELSE NEXT F:GOTO 1100

v

vt “! \\
: .]

176

appendix

Volume 3
Page 63. Line 420 is missing. It should read:
420 IF Q =0 THEN 440

Volume 4

Page 172. Text is missing at the top of the page. It should read:

First you open a sequential file, DISKDATA, for output onto the disk, us-
ing buffer number 1. Since there is no point in having a listing for this disk
directory, it's made invisible.

60 OPEN “0”,1,“DISKDATA:X”
70 CMD“ATTRIB DISKDATA:X (I)”

In the above lines, X is the designated disk drive. Note: This may not be
possible. . .

Volume 8

Page 17. Line 1520 should read:
1520 PRINT:PRINT:PRINT“TO ADD OR DELETE STOCKS: 1) LIST
LINES 160-290, *** 2) INSERT (IN ALPHABETICAL ORDER, IF
DESIRED) OR DELETE, DATA LINES.***”

Line 1525 should read:

1525 PRINT“3) REVISE CORRESPONDING DATA IN LINES 390 AND
400. *** 4) CHANGE ‘NUM’ IN LINE 100 TO EQUAL NEW NUMBER
OF STOCKS.”

Page 19. Line 3330 should read:
3330 IF H< > 1 THEN 90

Page 20. Line 3450 should read:
3450 GOTO 90

177

VOLUME 1

*Down the Road
*After the Goldrush
*Business Forms: The Invoice
*How Much Interest?—The Rule of 78
Computer Education
*Measuring Instructional Effectiveness
With the TRS-80
*Using a TRS-80 to Tabulate
Student Ratings
*Swords and Sorcery 11
*The President Decides
*Babe Ruth Is Alive and Well
And Hitting Home Runs on My TRS-80
*Four Graphics Methods
*TRSpirograph
*Adventures in Roseland
Punch Out Your Disks
Build a Snooper/Snubber
*Car Pool
Doctor Your Records
Computacar
*Bio-Bars: Biorhythms in Bar Graph Form
*TTY Interface
Why Bother to Interface?
Into the 80s, Part I, Part 11, Part 111
Printer Calibration
Delay Loop

VOLUME 2

*The Name and Address File
*Expense Report
*Story Math
*Smile—TRS-80 Loves You
*Keno
*Tie Attack
*Worksheet
*Curve Plotter
*Chip Tester
*Build a Light Pen
*BASIC Word Processor
States Worked:
A Program for Radio Amateurs
*Personal Property Inventory
Testing 1,2,3
*Decode CW Directly from

CONTENTS

Volumes 1-10

The Cassette Earplug
Into the 80s, Part IV, Part V
*EDTASM for Model 111
Put Some Flash into Your Menus
*FILEX: A Communication Package
for File Exchange

VOLUME 3

*Flex/Form
Inventory
*Algebra Tutor
*Supermaze
*Micro Basketball
Images
Regulate Your Video Monitor
CTR-80 Modifications
*The Great Girl Scout Cookie Caper
*Two Energy Savers
Listen to Your Keyboard
A Deluxe Expansion Interface
Interfacing the TRS-80 to
The Heath H14 Printer
Saving Machine Language Routines
Below BASIC
*CISAB—Backwards BASIC
Into the 80s, Part VI, Part VII
*Spool and Despool
Renumbering Made Easy

VOLUME 4

*Mailing List for a Small Business
*Business Forms—The Statement
*Grade Calculator
*Classroom Doodles
* Asteroid Adventure
*Compukala
Puzzler
*On Your Mark, Get Set, and Go
*Program an EPROM
*Pari-Mutuel
*Income Tax Withholding
An Automatic Cassette Tape Interface
*Send and Receive RTTY in BASIC
A Better Way
*Don’t Be a Slow POKE, Take a
PEEK at Your Computer

178

contents

Hairy Bi-Nary and Hexy-Decimal
*Instant Indexer: Programming in
Disk BASIC
Uni-Key for the Model 1
BREAK Disable
Z-80 Disassembler

VOLUME 5
*Hi Ho Silver!
*Accountant’s Aid
*Vocabulary Builder
*Numerical Expression Input in Level 11
*Pre-School Math

A Day at the Races
*Star Dreck
*Slide Show

Graphs, Plus
“Interrupt Mode 1.5

Reverse Video Hardware Modification
*Team Stats
*Loans—Do You Really Know

The Cost of Yours?
*A Home-Brew Interface
*A Handle on Programming;
Store and Recall

*Prime Up Your 80
*The Z-80's Hidden Abilities
*KBFIX Your BASIC Programs
*File Name
*Macros: Let Your Micro Do the Work

VOLUME 6

Exponential Smoothing
*Voter Registration
*Keeping Track—
Student Scheduling and Attendance Part 1
*Keeping Track—
Student Scheduling and Attendance Part 11
*Space Mission
Slot Machine
Level 1 Graphics Code
New Compu-Sketch
As You Like It
*Add PROM Capability to Your TRS-80
With the PR-80
Magazine Index
*Money Minder
Groupies: A Strategy to Group Like Objects
Stick With It
*Easy Selectrict™ Qutput for the TRS-80:
Take Me to Your Solenoids

On Towards Better Sorts of Things
Random Distribution Graphics
Using LMOFFSET

Extractor: An Ace in the Hole!
Page Print Your Listings

Let Your TRS-80 Do the Typing

VOLUME 7

*Point And Figure Charting for
Stocks and Commodities
Dividend Reinvestment Plan
*Keeping Track—
Student Scheduling and Attendance Part 111
*Keeping Track—
Student Scheduling and Attendance Part IV
Roulette
Five Short Games
Rubik’s Cube™ Manipulator
Easy CHR$ Graphics and Animation
Memory Size— 20K
*Disk BASIC Word Processor
The Big Game
Using the Useful UART
String Problems in the TRS-80
Hex, Octal, and Binary to
Decimal Conversions
*EMOD-—EDTASM Modifications
For the Model 111
*Renumber One
*Command

VOLUME 8

*Business Predictions from the TRS-80
*Stock Valuation
*Practical Applications of
Classroom Programs
*Super Curve Fit
*Queen Rama’s Cave
*TRS-80 Jukebox
*Instant Graphics for Everyone
*Screen Editor for Graphics Creations
Lowercase Driver for the TRS-80
Minor Monitor Maintenance
Can You Find that Slide?
Controlling Your Home with Your TRS-80
Speak for Yourself:
A Speech Synthesizer for the TRS-80
Computer Number Systems
And Arithmetic Operations—Part [
Down in the Dumps: Examining Memory
New Disk Owner’s Delight

179

contents

*Generate
Professional Looking Listings
With a Teletype™
*More Patches to EDTASM

VOLUME 9
*Layaway
*Your Fair Share
*Do-It-Yourself Maze Package
Getting Your Bearings
Left/Right for the Color Computer
*Munch
Dynamic Graphics with Pool Ball
Recreating Graphics
Super Fast Graphics in BASIC
EPROM Programmer
* Autocost
Celestial Software
*Your Personal Expense Account
Model III I/O Port
A Bit of Precision
Computer Number Systems
And Arithmetic Operations—Part 11
*TRSDOS Multiple Command Processor
*Dandyzap
Slow Seroll

VOLUME 10

*Check Storage Program
*Loan Amortization
*Plan Ahead—A Program for
Project Planning
*Physics in Motion— Exploring the
Projectile Problem
Satan’s Square
Card Playing
Another Magic Trick
Graphics and ZBASIC
Unlocking the Color Computer
Graphics Character Code
*SBLOCK
HEART/BAS HEART/CIM
Low Resolution Voice for
The Color Computer
*Planning Your Retirement
Atari Joystick to TRS-80 Interface
TRS-80 Cryptographer
*Lazy Logic Trainer
Screen Status Byte
*Modifying Scripsit to Send Control
Characters to Printers
*Shortstuff

*Programs on Encyclopedia Loader™

180

INDEX

Volume 10
Volumes 1-10

181

Algorithm, 57, 70
Alphanumeric screen layout, 55
AND function, 57
AND gate(s), 121, 122
Apparat’s disk assembler, 140
Apparat's NEWDOS, 140
Arithmetic,
floating point, 62
integer, 55, 64
Array(s), 64, 69, 70, 88, 145
integer, 43
stack, 42
string, 43
Array of pointers, 43
Array pointer(s), 42, 43
ASCII character codes, 68
ASCII code, 70, 137
ASCIHI symbols, 71
ASCII value, 38
Assemnbler,
Apparat’s disk, 140
Radio Shack's tape, 140
Assembly-language program, 129
Assembly-language source code, 145
Atari joystick, 105, 107, 109, 110, 111
interfacing to TRS-80, 105-107, 109-111
program listings, 112-113
Axiom printer, 128
BASIC, 57, 58, 62, 64, 65, 76, 106
Extended Color, 37
Level 11, 125
BASIC commands, 55
BASIC function(s), 56, 74
BASIC INP(0) function, 105
BASIC program(s), 58, 64, 74, 75, 76, 77, 88, 94, 105, 145
BASIC routines, 55
BASIC statements, 74, 125
Binary code, 68
Binary numbers, 121
Bit, most significant, 137
BREAK key, 76
Buffers, tri-state, 106
Bytes, 64, 74, 75, 76, 94, 140, 146
leader, 145
screen status, 129
status, 130
string, 74
sync, 145, 146
Card games, 41
blackjack, 41
jacks, 41
pinochle, 41
playing on computer, 41-44
program listings, 45-48
rummy, 41
stud poker, 41
war, 41
Cassette data files, accelerating, 145-147

INDEX

program listings, 148
Cassette input, 93
Cassette recorder, 83
Checks, creating and maintaining file of, 3-5
program listing, 6-8
Chip, IC, 125
CHRS$ statement, 76
CLOAD, 145, 146
CLS, 56, 130
Code(s),
ASCII, 70, 137
ASCII character, 68
assembly-language source, 145
binary, 68
control, 76, 137
machine, 140
Color Computer,
Radio Shack’s, 93
16K, 37
TRS-80, 68
Color Computer, low resolution speech for, 93-95
program listings, 96-97
Color Computer graphies codes, unlocking, 68-72
program listing, 73
Compiler, ZBASIC, 55
Control characters, 141
Control codes, 76, 137
Cosine, 62, 64
CPU, 105
Critical path, using PERT to determine, 14
CRT, 85
Cryptograms, 117-120
program listings, 117, 118, 119
CSAVE, 65, 66, 145, 146
Data base, 60, 61, 62, 64, 65
Data base handling, 55
Data bus, 105
Data files, cassette, accelerating, 145-147
program listings, 148
Data input, 105
Data lines, 105, 110
DATA statement(s), 69, 70, 77
DEBUG, 141
DEBUG utility, TRSDOS, 140
DEFINT, 60
DEFUSR, 77
Dimensional transforms, 55
Diode(s), 86, 106, 110, 111
Disk BASIC, 77
Disk BASIC, TRS-80, 41
Disk BASIC, TRS-80 Level 11, 30
DOS command mode, 140, 141
DOS Ready, 141, 142
Dot matrix, 69, 70
Double-precision variable, 42
Edge connector, 40-pin, 106, 107, 110, 111
80 Microcomputing, 68
EKG, 86, 87, 88

183

index

Electrodes, 86 Level 11 BASIC manual, 145
Epson MX-80 printer, 137, 141, 142 Level 11 16K machine, 17
Error traps, 37 Level IT 16K TRS-80 Model I, 55
ESP trick, 49-50 Level I USR statement, 77
progam listing, 51 Line Printer 1, 85, 88
Etch-asketch, 105 Loan amortization, 9
EXCLUSIVE OR gates, 121 program listing, 11
Expansion interface, 86, 105, 110 Logic circuit, software model of, 121-125
Expansion port, 107, 110 program listing, 126-128
Extended Color BASIC, 37 Logic gates, 122
Files, cassette data, accelerating, 145-147 Loop(s), FOR-NEXT, 50, 70, 124
program listings, 148 Low resclution speech manipulation, 93
Flip-flop, J-K, 125 Low resolution voice for Color Computer, 3-95
Floating point arithmetic, 62 program listings, 96-97
FOR-NEXT loop, 50, 70, 124 Lowercase letters, 137
Gate(s), Machine code, 140
AND, 121, 122 Machine-language driver program, 85, 87
EXCLUSIVE OR, 121 Machine-language programs, 94
logic, 122 Machine-language routine, 76
OR, 122 Magic trick, ESP, 49-50
Going Ahead With Extended Color Basic, Radio Shack’s, * program listing, 51
Graphics, creating, 74-77 Memory, 64
program listings, 78-82 video, 117
Graphics, interactive, 56 MID$, 41
Graphics and ZBASIC, 55-58, 60-62, 64-67 Model I, 77
program listings, 59, 63 TRS-80, 3, 9, 55, 68, 85
Graphics block, 75 Model I TRS-80, 86, 105, 121
Graphics points, TRS-80, 62 Model I, 17,77
Haxd copy, 9 16K, 55
Heart rate, monitoring, 85-89 TRS-80, 3,9
program listings, 90 NEWDOS, Apparat’s, 140
High-resolution screen, 93 NEWDOS system disks, 140
High resolution speech manipulation, 93 Opto-isolator, 86, 87
IC chip, 125 OR gate, 122
1IF-"THEN statements, 95 Oscilloscope, 95
Individual Retirement Accounts (IRA), 98, 100 PERT, description of, 12-21
INKEY$ function, 30, 38, 66, 125 activities, 12
IN* line, 105 critical path, 14
INP(0) function, 110 duration, 14
BASIC, 105 events, 12
Inputis), network, 12
cassette, 93 program listing, 22-25
data, 105 Pitch, 60
port-mapped, 105 POINT, 55
INPUT# ~ 1, 145 Pointer(s),
Input port, 86 array, 42, 44
integers, 64 array of, 43
Integer arithmetic, 55, 64 POKE(s), 57, 64, 74, 94, 117
Integer arrays, 43 Port,
Integer math, 60 expansion, 107
Interface, input, 86
expansion, 86, 105, 110 RS-232, 105
jovstick, 105 Port-mapped inputs, 105
Interfacing Atari joystick to TRS-80, 105-107, 109-111 PRINT@, 70, 71, 74, 71, 146
program listings, 112-113 PRINT CHR$(23), 129, 130
Inverters, 121, 122 PRINT command, 146
J-K flip-flop, 125 Printed circuit board, TRS-80, 106
Joystick, Atari, 105, 107, 109, 110, 111 Printer,
interfacing to TRS-80, 105-107, 109-111 Axiom, 129
program listings, 112-113 Epson MX-80, 137, 141, 142
Junk box, 86 PRINT§ — 1, 145, 146
Keogh plans for the self-employed, 98, 100 PRINTTAB, 146
Level I1, 145, 146 Program(s),
Level 11 BASIC, 125 assembly-language, 129

184

index

BASIC, 58, 84, 74, 75, 76, 77, 88, 94, 105, 145
machine-language, 94
machine-language driver, 85, 87
Project evaluation and review technique, see PERT
Projectile motion, 28-30
horizontal component of, 29-30
program listings, 31-33
vertical component of, 29-30
Radio Shack, 86, 137
Radio Shack Color Computer, 93
Radio Shack Gaing Ahead With Extended Color Basic, 72
Radio Shack tape assembler, 140
Radio Shack TRS-80, see TRS-80
RAM, 3
RAM storage, 95
RANDOM function, 41
Real-time operator interaction, 55
Recorder,
cassette, 93
tape, 145
REMark, 117
RESET, 55, 74
RET, 146
Retirement, planning, 98-100
program listing, 101-102
Ribbon cable, 106, 109, 110
RND function, 50
Roll, 60
ROM, 146
Rubik's CubeT™, 37
Satan's Square game, 37-38
program listing, 39-40
Scarne on Cards, 41
SCIENCES2, 43
Screen status byte, 129
description of program, 129-130
program listings, 131-132
Scripsit, modifying, 137-138, 140-142
program listing, 143-144
Semicolon(s), as used in programming, 77, 117
SET, 55, 56, 74
Sine, 62, 64
64-character format, 130
64-character mode, 129
Skedoodle, 105
Software model of logic circuit, 121-125
program listing, 126-128
Source code, assembly-language, 145
Space Invaders (Spectral Associates), 69
Spectral Associates, 69
Stack arrays, 42
String(s), 55, 64, 74, 75, 76
aull, 77
packed, 74
String array, 43
String variable, 117
Subroutine, 56
SYSTEM command, 74
Tape recorder, 145
32-character format, 130
32-character mode, 129
Transforms, dimensional, 55
Transistor, 86
Tri-state buffers, 106

185

TRSDOS, 140, 141

TRSDOS DEBUG utility, 140

TRS-80, 49, 55, 60, 64, 117, 118
Model 1, 86, 103, 121

TRS-80 Color Computer, 68

TRS-80 Disk BASIC, 41

TRS-80 Level 11 Disk BASIC, 30

TRS-80 Model 1, 3, 9, 55, 68, 85
Level 11 16X, 35

TRS-80 Model 111, 3, 9

TRS-80 printed circuit board, 106

TRS-80 screen, 60

USR, 74

USR argument, 76

USR cali, 129

USR statement, Level I, 77

Value, ASCII, 38

Variable(s), 61, 145
defined as integers, 56
double-precision, 42
string, 117

VARPTR, 58

VARPTR address, 76

Video memory, 117

Voice, low resolution, for Color Computer, 93-95
program listings, 96-87

Voice synthesis, 93

X-axis, 55, 57, 60

X-coordinate(s), 29, 56, 62

Yaw, 60

Y-axis, 55, 57, 60

Y-coordinate(s), 29, 56, 62

Z-axis, 60

ZBASIC, 56, 58, 61, 64, 65
integer math of, 60

16K, 55, 57

ZBASIC compiler, 55

INDEX COMPILED BY NAN MCCARTHY

INDEX

Aaron, Hank, 1:88, 94
AC ling, 8:115
AC line voltage, 8:119
AC signal, 2:108
Accountants,
program for, 5:10-11
program listing, 5:12
Accounts payable record, 1:17
Accounts receivable record, 1:17
Action games, using reverse video with, 5:92
Addition, 2:298-229; 3:179; 8:28; 9:183-184
binary, 9:184-185
decimal, 9:184
hexadecimal, 9:186
octal, 9:185
programs {or children, 2:35, 41-44, 46, 53-54: 5:28-33:
8:29-35, 42-49
Address{es),
DCB driver, 9:195, 201
dynamic memory, 7:114
memory, 4:150; 8:86, 88, 89, 90
memony-mapped. 7:164
POKE, $:200
port, 5:130; 6:198
ROM driver, 9:195
VARPTR, 10:76
Address buffers, 3:145, 146, 154
Address bus(es), 2:99; 3:145, 146: 4:82, 84, 85; 5:128,
130; 6:198: 7:108, 110
Address decoder, 3:146, 151, 154; 6:142; 7:108, 110, 113
Address decoding, 4:86
Address line(s), 2:189; 4:83, 89; 5:130; 7:113: 8:135:
9:168, 169, 172
multiplexed, 7:114
Address map, 3:146
Address multiplexing, 3:150
Address pins, 6:132
Advanced Micro, 7:161
Adventure game, maze, description of, 9:21-31
program listing, 9:32-34
Adventure game, Queen Rama’s Cave, deseription of, 8:61-64
program listing, 8:65-70
Air conditioner. 3:118
Algebra, 3:25-31
program listings, 3:32-54
Algorithm, 2:79: 8:157, 158; 10:57, 70
Alloy, 1:7, 8
Alphabet, 2:78
program for children, 2:45, 50-51
Alphanumeric characters, 3:155; 9:51
Alphanumeric data, 2:82
Alphanumieric screen layout, 10:55
Amateur radio, programs for, 2:146-149, 197-199
program listings, 2:152-161, 202, 207
American League, 1:88, 91
American League All Stars, 1:88, 89
American Motors stock, 8:3, 5-6
Amplifier(s), 8:137

186

Volumes 1-10

audio, 4:119
Analog-to-digital (A/D) converters, 2:186, 192
Analysis, investment, 1:3
market, 1:7, 11
Analysts,
program for, 5:10-11
program listing, 5:12
AND(s), 2:191, 257; 4:82; 6:180; 10:57
AND gate(s), 2:191; 6:198; 10:121, 122
AND statement, 6:86
Animal (or Name My Animal) program description, 2:82
Animation, 2:234-235
of Tie fighters, 2:67, 69
simple, 6:113
simple, program listing for, 6:114-122
using CHR$, 7:93-97
using CHRS$, program listing for, 7:98-103
Annual Percentage Rate (APR), 1:23
Annual interest rate, effective, tracking, 9:12-15
program listing, 9:16-18
Anti-log(s), 9:180, 181
Apparat's disk assembler, 10:140
Apparat’s NEWDOS, 10:140
Apparat’s NEWDOS/80, Version 1.0, 9:117
Applied Business Statistics (McElroy), 8:3
Arctangent, 9:37
Area of strength in biorhythm cycle, 1:162
Arithmetic,
floating point, 10:62
integer, 10:55, 64
Arithmetic, review of, 3:25
decimal, 3:26
program listing, 3:32-35
Arithmetic operations, 3:179
Arithmetic progression formula, 1:24
Arrayls), 2:82, 116, 211, 212, 215; 3:17, 58-89, 70-71,
150, 21); 5:3, 101, 102; 6:10, 11, 85, 211, 254,
255; 7:85, 176; 8:52, 62, 98, 160; 9:14, 30, 53, 73,
82, 84, 127: 10:64. 69, 70, 88, 145
chip’s memory, 6:132
DiMensioning, 7:66: 9:123
clements of, 2:16
integer, 10:43
multi-dimensional, 6:184
numeric, 9:21
stack, 10:42
string, 2:36, 217: 4:170, 171; 7:173, 177; 9:51, 82,
124; 10:43
three-dimensional, 8:61, 63
variable numerie, 9:31
Array characters, :53
Array dimension, 2:38, 116
Array of pointers, 10:43
Array pointer(s), 10:42, 44
Arrow keys, 4:147, 155; 9:51, 52, 53, 71, 84. 206, 223
ASC, 3:193
ASC(32), 5:16
ASCII, 1:106; 2:166, 257; 3:201-202: 4:123: 6:191; 8:176

index

ASCII character(s), 3:172: 5:66; 6:192, 195, 196; 7:196;
8:96, 97
ASCII character codes, 10:68
lowercase, 4:185
ASCII character set, 6:191, 196
ASCII code(s), 2:216, 218, 219, 222, 235, 246: 3:165, 193,
194, 195, 198, 213, 214: 4:63, 124, 148, 154, 185;
5:15, 16; 6:195; 7:94, 127, 9:71, 74; 10:70, 137
ASCII code number(s), 4:149, 151, 152; 7:93
ASCII control characters, 2:132
ASCII dump, 4:199
ASCII file(s), 2:256, 259: 3:226; 4:175
ASCII format, 5:182; 6:245
ASCII letters, 8:96
ASCII number(s), 3:236; 9:73, 74
ASCII symbols, 10:71
ASCII text, 4:171
ASCH value(s), 4:186, 190; 6:195; 8:157, 158; 10:38
Assembler, 3:135, 228; 4:199: 5:1534, 165; 6:143, 9:183
Apparat's disk, 10:140
Radio Shack's tape, 10:140
Assembler listing, 8:110
Assembler program, 8:109, 112; 9:200
Assembly code, T:164, 166
Assembly language, 1:105, 107, 108 2:99, 116, 258: 5:154.
174; 9:100, 195, 197
Assembly-language eode, 9:174
Assembly-language command, 6:86
Assembly-language INKEYS routine, 4:186
Assembly-language listing, 6:139
Assembly-language listing of EDTASM, 7:191
Assembly-language mnemonics, 4:189, 199
Assembly language program, 2:199: 4:199; 5:155; 7:195:
8:91, 183: 10:129
Assembly-language programming, 8:71
Assembly-language routine, 3:26; 4:186: 5:63, 64, 153, 155,
166: 8:72, 74. 98
Assembly-language source code, 10:145
Assembly-language utilities, 7:212
Asterisk(s), as part of program loading, 1:218, 219, 220,
221
Asteroid adventure game, description, 4:49-50
program listing, 4:51-53
Astroid, 2:92
program to generate, 2:95
Atari joystick, 10:105, 107, 109, 110, 111
interfacing to TRS-80, 10:105-107, 109-111
program listings, 10:112-113
ATN, 9:37
Attendance data on students,
program description, 6:35-39, 52-55; 7:21-23, 44-47
program listings, 6:40-51, 56-81: 7:24-43, 48-61
Audio tape, quality of, 1:219
AUTO command, 1:26; 7:226
Automated house, 2:108
Automobile operating expenses, 1:133: 9:117-128
program listing, 9:129-135
Averages, computing, 4:21
Avoirdupois ounces, 1:7
Axiom printer, 10:128
Backgammon, compared to Kala, 4:55
Backup cassette, 3:202
Backup copy, 2:108; 3:103
SYSTEM tape. how to make, 8:175-176

SYSTEM tape, program listing to make, 8:177-182
Balls and strikes formula, 1:90
Banks, Ernie, 1:88
Barden, William, Jr.,
Programming Techniques for Lecel 11 BASIC, 6:111
TRS-80 Assembly Language Programming, 2:151; 5:154
Bar graph, 6:218
horizontal, 5:76, 77
horizontal, program listings for, 5:81
vertical, 5:75
vertical, program listings for, 5:80, 81
Baseball game, 1:88
deseription of program, 1:88-96
program listing, 1:97-101
statistics, 1:94
Baseball Hall of Fame, 1:84
Baseball statistics program, deseription, 5:99-102
program listing, 5:103-107
Base conversions, 7:180-182
program listing, 7:183-187
BASIC, 1:35, 39, 105, 106, 107, 108, 109, 206, 209, 220, 233;
2:99, 101, 112, 192, 198, 217, 218, 222, 230: 3:17, 154,
174, 177, 179, 186, 192, 201, 209, 214, 216, 228, 4:71,
72,73, 166, 168, 171, 172, 173, 185, 186, 188, 191; 5:16,
87, 88, 89, 147, 149, 153, 154, 153, 170: 6:111, 197, 203,
234, 247, 255, 260; 7:3, 4, 84, 119, 130, 166, 191, 194,
195, 200, 226, 228; 8:64, 73, 85, 86, 87, 88, 89, 91, 97,
110, 111, 112, 128, 129, 184, 186: 9:51, 79, 80, 81, 82,
100, 101, 102, 174, 196, 197, 199, 200; 10:57, 58, 62, 64,
65. 76, 106
computer course in, 1:39
Extended, 9:44
Extended Color, 10:37
high school course in, 8:27
interpreted, 3:212
Level 1, 1:88: 4:140; 7:214
Level 11, 1:105, 108, 144, 173: 2:80, 186, 232; 3:155,
166, 236: 4:71, 72, 187, 191, 199; 5:21, 154; 6:140,
192; 7:161: 8:9, 73, 123, 169, 171: 9:61, 149 10:125
memory sort in, 6:12
Microsoft, 4:4; 8:9, 11, 62
Model I, 7:194
ROM, 6:105
transtating formulae into, 2:231-232
‘TRS-80, 2:216, 235, 258: 3:193: 8:10, 11, 15
with machine language, 3:171, 174, 218-219
with macros, 5:175
BASIC code, 9:174
BASIC commands, 4:147: 6:140: 10:55
BASIC editor, 9:51
BASIC expressions, $:21
BASIC file format, 2:80
BASIC function(s), 4:168; 10:56, 74
BASIC functions on TRS-80, 2:236
BASIC games, 9:53
BASIC graphies displays, 7:94
BASIC INP(0) function, 10:105
BASIC interpreter, 3:236; 4:185; 5:23, 64, 138; 9:94
BASIC keywords, as an aid in typing programs, 4:185-191
program listing, 4:192-196
BASIC loader, 7:164
BASIC program(s), 2:2, 5, 198, 199, 245: 3:26, 137, 144, 171,
172, 173, 175, 176, 177, 209, 213, 220, 226; 4:83, 122,
155, 185, 186, 184, 197: 5:3, 21, 89, 138, 139, 149, 153,

187

index

154, 155, 165, 166; 6:143, 190, 212, 227, 245, 247, 253,
255, 260; 7:116, 193, 194, 210, 212, 218, 219, 226; 8:72,
75, 90, 98, 108, 110, 128;9:71, 79, 81, 101, 103, 173, 174,
175, 197, 198, 224; 10:58, 64, 74, 75, 76, 77, 88, 94,
105, 145
recording, 1:222
BASIC programming, 1:38, 201; 6:140; 8:71
BASIC programming language,
clearing screen, 1:206
correcting mistakes in, 1:203
deleting lines, 1:206, 207
learning, 1:201-208
PRINT USING command, 1:208
BASIC ROM, 4:79, 83; 5:138; 7:196, 210; 8:155
BASIC routines, 8:159; 10:55
BASIC source code, 9:100
BASIC statement(s), 6:255; 7:214; 10:74, 125
BASIC strings, 2:131, 249
BASIC SYSTEM utility, 6:131
BASIC variables, 7:210
BASIC workspace, 3:171, 173, 176, 177
Basketball game program, description, 3:67-72
program listing, 3:73-87
Battery, 2:111, 117; 4:88
internal resistance of, 2:230
Baudot, 4:123, 124; 7:161
Baud rate, 2:257
low, 2:245
BCD, see binary coded decimal
Bearings, calculating, description of, 9:35-38
program listing, 9:39
Beginners All-purpose Symbolic Instruction Code, 1:201;
see also BASIC
Betting,
horse race, 4:93-95
in a horse race, 5:37-38
program listing, 4:96-98
Billing machine, 1:17
Binary, 2:190, 257; 3:180; 4:162-163, 164; 8:85
Binary approach to successive approximation, 5:111, 114
Binary arithmetic system, 5:155
Binary code, 2:185; 10:68
Binary coded decimal (BCD), 2:185-186, 189
Binary math, 4:162-163
Binary number(s), 2:189, 232; 10:121
Binary number systern, 8:143, 144
Binary to decimal conversion, 7:180-182; 8:147-148
program listing, 7:183-187
Binary to hexadecimal conversion, 8:153-154
Binary to octal conversion, 8:153
Biorhythm cycles, 1:162
patterns, 1:162
program graph description, 1:163
program instructions, 1:164-166
program listing, 1:167-170
theory, 1:162
Bit(s), 2:101, 185, 186, 189, 190, 191, 257; 4:162, 163, 164,
165, 199; 6:190, 198, 253; 7:113, 161, 177; 8:96, 108
address, 6:138
address line, 7:108
ASCII, 7:161
high order, 6:136-137
input, 8:133
least significant, 2:190; 8:156-157

lowest significant, 6:202
most significant, 2:190; 5:160; 8:156, 157; 10:137
output enable, 9:98
parity, 7:161
programmable, 9:93
reset, 7:164
BIT (assembly-language command), 6:86
Bit position, 2:191
Bit set/reset capability, 6:137
Bit set/reset feature, 6:141-142
Blinking cursor subroutine, 6:112
Block(s) (in basketball), 3:71
B.O.M. (beginning of month) inventory, 1:4
Bond portfolio, evaluating, 8:9-15
program listing, 8:16-23
Book indexing,
program description, 6:184-185
program listing, 6:186
Bookkeepers,
program for, 5:10-11
program listing, 5:12
Book of Curves, A, (Lockwood), 2:93
Bowditch curves, 2:91
program to generate, 2:94
Boxes, how to draw on screen, 3:197
program listing, 3:205
Branching, 4:64
BREAK, 7:97, 131, 194
BREAK key, 2:87, 223, 228, 234, 237, 246; 3:138, 155, 192,
213; 4:147, 191; 6:12, 197; 7:65, 97, 130, 173, 212; 8:97,
184; 9:103, 122, 124, 138, 199, 223; 10:76
how to disable, 4:197-198; 7:44
Breakout game, 7:74
program listing, 7:77-79
Buffer(s), 2:189, 256, 258; 3:175, 176, 177, 225, 227; 4:172;
6:138, 237, 238; 7:109, 110, 175, 226; 8:97, 98, 187;
9:167, 196
address, 3:145, 146, 154
bus, 6:142
data, 3:145, 154; 9:82
data bus, 3:145, 146, 154
Tri-state, 2:189; 5:87; 10:106
Bugs, 1:208, 209, 210
Bullion market, 1:10
Business(es), 1:4, 17
accounting, 1:17
large, 1:3, 17
neighborhood, 4:3
retail, 1:17
section of newspapers, 1:10
small, 1:3, 17
Business applications,
for flashing cursor, 2:249
for light pen, 2:108
Business form,
description of, 4:15-16
program listing, 4:17-18
Byte(s), 1:213; 2:80, 102, 103, 189, 190, 191, 218, 222, 233;
3:172, 173, 174, 176, 199, 200, 213, 214, 217, 226, 228,
236, 238; 4:5, 64, 72, 79, 80, 83, 140, 141, 188, 189, 190,
109; 5:23, 64, 65, 85, 89, 147, 149, 160, 165; 6:86, 143,
227, 230, 235, 236, 239, 240; 7:161, 173, 174, 175, 196,
212, 214, 217; 8:74, 88, 96, 97, 98, 110, 143, 169, 184;
9:72, 74,79, 80, 81, 85, 103, 123, 124, 199, 200, 205, 206;

188

index

10:64, 74, 75, 76, 94, 140, 146 CTR-80, 1:216, 217, 218; 3:100, 103; 5:171
address, 4:85 loud speaker of, 1:221
data, 3:220; 4:85; 7:196 modifications of, 3:100-103, 133, 140-142
double-precision numbers, storage needed for, 3:218 modifications of, program listing, 3:143
graphics, 2:77, 78, 79, 81 motor of, 1:222
high-order, 5:86; 9:199, 200 required features of, 1:217
leader, 10:145 Cassette tape(s), 1:19
least significant (LSB), 2:249; 5:159; 7:196; 9:79 users, 1:11
low-order, 5:86 Cassette tapes, indexing,
most significant (MSB), 2:249-250; 5:159; 6:255; 7:196; program description, 6:235-241
9:79 program listing, 6:242-244
related to bits, 4:163, 164, 165 Cassette tape interface, how to construct, 4:119~121
sereen status, 10:129 Catalog, coin, 1:9
single-precision numbers, storage needed for, 3:218 Catalog of Special Plane Curves, A (Lawrence), 2:93
status, 10:130 Cayley's sextic, 2:88
string, 10:74 program to generate, 2:94
syne, 10:145, 146 Celestial objects, locating, 9:136-139
synchronization, 5:170 program listing, 9:142-148
Caleulation of loan finance charge, 1:24 Central Florida Community College, 1:39
Calculation of rebates of loan interest charges, 1:25 Centronics 779 with tractor feed, 1:243
Canada, 1:7 Chained-command processor, 9:195
Canal Zone, 1:78 assembly-language listing, 9:202
Capacitor(s), 2:108, 109, 110; 4:88 BASIC listing, 9:202-204
disk, 3:156 TRSDOS, 9:195-201
Capital (uppercase} letters, 2:128, 146 Character codes, 4:149
Card file, 3:14 ASCII, 10:68
Card games, 10:41 lowercase, 4:185
blackjuck, 10:41 Character generator,
jacks, 10:41 lowercase, 4:79
pinochle, 10:41 uppercase, 4:79
playing on computer, 10:41-44 Charaeter string replacement, 5:174
program listings, 10:45-48 Charge card, 2:164
rummy, 10:41 Charts, point and figure, 7:3
stud poker, 10:41 Cheeks, creating and maintaining file of, 10:3-5
war, 10:41 program listing, 10:6-8
Cardioid, 2:87, 92 Checksum, 6:86, 236, 238, 239, 240; 8:169, 175
programs to generate, 2:94, 95 Chessboard, 1:107, 108, 109
Car pool, plan of action to form, 1:133, 134, 135 POKE, 1:108, 107
questionnaire, 1:134 SET, 1:106, 107
zone grid map, 1:135 Chessboard graphics characters, 1:88
Car pool program, description of, 1:136-138 Chip(s), 2:192: 3:152: 6:136, 137, 138, 142, 143, 203; 7:161;
program listing, 1:139-143 8:106, 108: 9:167, 170
use by companies,, 1:135 clock, 2:186; 7:162
Cartesian plane, plotting in, 2:89-92 CMOS programmable clock, 7:161
program listings, 2:94-95 controller, 3:148
Cartesian vector (x,y), $9:61 dynamic, 7:108
Cartesian (x,y) coordinates, 9:60 4536, 7:162
Cash register, computer system acting as a, 3:13 I1C, 10:125
Casinos, 2:60 Intel 8255 programmable interface, 9:168
Cassette, 10, 9:173
backup, 3:202 memory, 2:90, 100; 7:108, 109, 110, 112; 8:105
preparing blank for recording, 1:222 RAM, 9:81
recording BASIC programs on, 1:222 ROM, 8:133
saving programs on, 1:216 ‘T4LS138, 9:97
Cassette-control relay, 3:136 741.5145, 9:173
Cassette data files, accelerating, 10:145-147 static RAM, 6:131
program listings, 10:148 Z-8C, 5:154
Cassette input, 10:93 Chip select line, 6:138
Cassette [/O, 6:167; 7:192 Chip select pin, 6:131, 132
Cassette 1/O routines, 7:196 CHRS(s), 2:219, 222; 3:165, 217; 4:64, 124, 149, 150, 151,
Cassette Load, 1:216 152, 153; 7:5, 93, 94, 95, 96, 97; 8:86, 87, 157, 158;
Cassette loading, instructions for, 1:216-221 9:71; 10:76
Cassette recorder, 1:221; 7:164; 8:73, 127; 9:21: 10:93 CHRS blocks, 7:94
CTR-41, 1:218, 217; 3:140, 141 CHR$ codes, 9:157

189

index

CHR$ command, 6:105
CHRS$ graphics, 7:93-97
program listing, 7:98-103
CHR$ graphics blocks, 7:93
CHRS$ numbers, 6:108; 7:95
CHR$(8), 5:15, 16
CHR$(23), 32-character-per-line mode, 2:37, 219, 231; 3:192
CHR$(27), 5:15
CHR$(28), 84-character-per-line mode, 2:221; 3:192, 202
CHR$(30), 5:15
CHR$(32), 5:16, 149
CHR$(45), 5:76
CHR$(46), 5:76
CHR$(58), 5:76
Circle(s), 1:113, 115: 2:87, 89, 90, 92
Circuit card, 2:108, 109. 110, 111, 117
Circulars, advertising. 4:3
CLEAR command, 2:131, 132, 219: 3:200, 218: 4:064, 87:
8:112
to reserve space in memory, 1:213
CLEAR key, 2:78, 219; 4:147, 151, 155. 166, 167, 190 5:63,
65, 67: 6:113, 237; 7:95; 8:72, 75, 175
CLEAR statement, 7:131, 173, 227; 9:124
Climate control system, 5:127, 136-137
CLOAD(s). 2:78, 80. 81, 223: 3:133. 141, 172. 177, 198, 199:
4:27, 121, 197: 5:65, 165; 6:227, 246, 253, 258, 260:
7:191, 210, 218: §:32; $:29: 10:145, 146
CLOAD? verify option. 2:82: 9:29
Clock, 5:85
digital, 5:137
Real-Time, 3:240
Clock chip(s), 2:186: 7:162
CMOS programmable, 7:161
Clock circuit, 7:161
Clack pulse(s), 5:88, 134
CLS, 2:82, 219; 3:192: 4:74, 75: 10:56, 130
CMD, 4:164; 7:44
CMD programs, 4:173
CMOS, 4:120
CMOS gate, 7:162, 164
CMOS IC, 8:119
Cochrane, Mickey. 1:88
Code(s), 1:212
ASCI, 2:216. 218, 219, 222. 235, 246: 3:165, 193, 194, 195,
198, 213. 214: 4:63, 124. 148, 1534, 185; 5:15, 16; 6:195:
7:94, 127: 9:71: 10:70, 137
ASCHI character. 10:68
assembly, 7:164, 166
assembly-language, 9:174
assembly-language source. 10:145
BASIC, 9:174
BASIC source. $:100
binary, 2:185; 10:68
CHRS$, 9:157
command, 3:213; 4:72
control, 2:77. 79: 10:76, 137
data, 3:202
error, 6:227
graphics, 6:108, 111
hexadecimal, 3:212
1BM, 6:192, 195
machine, 1:201: 2:247: 3:165, 171, 173, 174, 175, 212, 217,
218; 6:230; 7:192: 10:140
machine-language, 3:173; 7:215: 8:90; 9:200

numeric, 9:51
abject, 1:201; 4:199; 7:212; 9:224
op {operation), 3:179, 180, 181, 187. 4:199
Selectric, 6:195, 196, 200
Selectric correspondence. 6:191
source, 3:228; 8:186; 9:224
space compression (SCCs), 2:162
TRS-80, 3:212, 213
Z-80, 7:166
Coin dealer(s), 1:8. 9
Coins, 1:7, 8,9
copper clad, 1:9
domestic gold, 1:8
foreign, 1:8. 9
percentage of silver in, 1.8
table of fineness of, 1:8
Color computer, 8:127, 128: 9:43
Radio Shack’s. 10:93
16K, 10:37
TRS-80, 10:68
Color Computer, low resolution speech for, 10:93-95
program listings. 10:96-97
Color Computer graphics codes. unlocking, 10:68-72
program listing, 10:73
Command code(s), 3:213: 4:72
Commadity Futures Game: Who Wins? Who Loses? Why?,
The (Teweles, Harlow. Stone), 7:3
Common weights, conversion to troy ounces, 1:12
table of 1:10
Communication between TRS-80s, 2:256-259
program listings, 2:260-263
Company, 1:3
consumer products, 1:3
Comparison and decision in computer program, 1:226, 227
Compiler, 3:212; 9:183
Microsoft's BASIC, 4:5
ZBASIC, 10:55
Compukala game, description, 4:55-56
program listing, 4:57-61
Compu-Sketeh, deseription of, 6:111-113
propram listings, 6:114-122
Computations, making more efficient. 4:139-140
program listings, 4:144-145
Computer,
as basis for improving instruction, 1:40
as tool to measure effectiveness of instruction, 1:40
color, 8:127, 128: 9:43
compared to calculator, 2:228-231
Computer education course, 1:35, 36, 39
grading of, 1:36
teaching methods of , 1:36. 37, 38
Computer lab, in middle school, 1:35. 38
building of, 1:36
Computer math. using graphics to teach, 4:27-28
program listings, 4:29-45
Computer program {ringe benefits, 1:49
Computer used as part of a measurement system, 2:185
hardware, 2:186-187, 189
masking, 2:191-192
software, 2:190
Concept, financial planning, 1:3
Connector(s), 2:111, 117; 3:140, 141, 145, 152, 154, 157
cassette, 3:199
Constant, for exponential smoothing, 6:3-4

190

index

Consumer, 1;3
Content,
gold, of item, 1:7
sitver, of item, 1:7, 9
troy ounce, of item, 1:8, 11
Control character(s), 2:256-257; 10:141
ASCII, 2:132
Control codes, 2:77, 79; 10:76, 137
Control commands, 3:164
Control keys, 4:147
program listing, 4:157
Controller, home, 8:127-129
program listing, 8:130
Controller chip, 3:148
Conversion,
binary to decimal, 7:180-187; 8:147-148
binany to hesadecimal, 8:153-154
binaf to octal, 8:153
decimal to binary, 7:180-182
decimal to hexadecimal, 7:180-182
decimal to octal, 7:180-182
hexadecimal to binary, 8:183-154
hexadecimal to decimal, 7:180-182; 8:148-149
Level I to Level {1, 2:67
octal to decimal, 7:180-182; 8:148
parallel to serial data, 7:161-168
Conversion between number bases, 7:180-182; 8:143-154
program listing, 7:183-187
Converting programs to even steps, 1:26
Cookies, Girl Scout, deseription of pragram to keep track of
sales of, 3:107-110
program listing, 3:112-117
Cooling fuel, cost of, 3:118
Copper, 1:11
Correlation, in statistics, 8:3-4
Corruption in listed program, 1:220
Cosine, 9:36; 10:62, 64
Counter, 4:63, 134, 170
Counting programs for children, 2:45, 48-49
CPU(s), 1:173, 174; 3:135, 148: 4:80, 82, 86, 87: 5:85, 86. 87,
88, 130, 159; 6:126: 8:98: 10:105
8080/8085, 3:134
Z-80.2:186
CPU bus, 2:186
CPU registers, 6:195
Crash-proof programs, 1:235
Creativity, 4;27
Credit card numbers, 2:162
Credit plans, 9:3
Cribbage, compared to Kala, 4:55
Critical path, using PERT to determine, 10:14
Crosetti, Frank, 1:95
CRT, 1:88, 92, 173, 178; 4:94; 5:87, 89: 6:189, 227; 8115,
116, 117, 118, 119; 10:85
displays, 1:9
Cryptograms, 10:117-120
program listings, 10:117, 118, 119
CSAVE, 2:80, 81, 223; 3:133, 141, 198, 199; 4:27, 121: 5:63,
64, 65; 6:246, 253, 258, 260, 261; 7:194, 210; 9:29; 10:65,
66, 145, 146
CSAVE instruction, notes, 1:223, 224
C-30 tapes, 6:167
CTR-41 cassette recorder, 1:216, 217; 3:140, 141
CTR-80 cassette recorder, 1:216, 217; 3:100, 103; 5:171

moaning noise in, 1:218
Cube root, 2:231
Cursor, flashing, in menus, 2:249-252
in business software, 2:249
program listing, 2:253-255
Curve fitting, 8:50-53
program listing, 8:55-58
Curve gencration, 2:87-93
program listings, 2:94-96
CW, 2:198-199
CW audio, 2:197
CW/RTTY station, 2:199
CW station, 2:198
Daguerrotypes, 1:89
Daily compounding of interest, 9:12
Dancing Demon program, Radio Shack, 4:119, 121
Darlington pair, 6:134
Data, 9:85
alphanumeric, 2:82
dot, 5:92
EPROM, 8:104
input of, 9:106, 124, 125
INPUT, 5:15
numerical, 5:10
output of, 9:106
parallel, 2:186
serial, 5:134: 7:161
string, 2:166
DATA, 4:64: 6:185: 8:90: 9:21, 24
Data bank, 4:62, 63, 64
Data base, 7:153: 10:60, 61, 62, 64, 65
Data base handling, 10:55
Data base management programs, 2:82
Data block, 7:196
Data buffers, 3:145, 154; 9:82
Data bus(es), 2:99, 100, 189; 4:84, 85, 86: 5:128, 130, 131,
134: 6:196, 200, 201, 202; 7:107, 110, 161, 164; 9:98,
167: 10:105
Data bus buffers, 3:145, 146, 154
Data code, 3:202
Data field, 4:3
Data files, 2:5; 3:199: 4:3; 6:253: 9:123, 124, 125, 127
Data files, cassette, accelerating, 10:145-147
program listings, 10:148
Data files, generating and typing,
program description, 6:253-261
program listing, 6:262-264
Data input, 4:86; 5:105: 10:105
Data lines, 2:186: 3:4, 135, 186; 4:85, 88; 5:130; 6:131, 132,
184: 8:123, 135, 136; 9:167. 168, 169; 10:105, 110
DATA lines, T:96, 153; 8:9, 11, 12, 14, 15, 85, 86, 87. 48, 89,
139
DATA line manipulation, 8:15
DATA line manipulation subroutine, 8:12, 14
DATA line modification, 8:11
DATA list, 9:12
Data management, 1:10
Data pins, 6:131
DATA READ statement(s), 3:107: 6:111
Data statement(s), 3:25, 26, 31, 165, 172, 173, 174, 175, 176,
186, 188; 5:63, 139; 6:125. 253, 254, 255, 260
DATA statements, 7:166: 8:5, 74, 75, 98, 139, 155: 9:29, 30:
10:69, 70, 77
Data storage, 6:229

191

index

Data tape(s), 3:4, 109; 6:167, 169, 172
DCB driver address, 9:195, 201
Debounce program, 3:133-138, 140-142; 4:197-198
program listing, 3:143
DEBUG, 3:225; 5:159; 7:228; 9:80, 103; 10:141
DEBUG utility, TRSDOS, 10:140
Decimal to binary conversion, 7:180-182
program listing, 7:183-187
Decimal to hexadecimal conversion, 7:180-182
program listing, 7:183-187
Decimal to octal conversion, 7:180-182
program listing, 7:183-187
Declaration of Estimated Tax for Individuals, 4:101
Defense(s) (in basketball), 3:68, 69, 70, 72
DEFINT, 2:232, 233; 3:214; 9:122; 10:60
DEFSTR, 2:79; 9:122
DEFUSR, 10:77
Degree-day, 3:120
Degrees/radians conversion factor, 9:37
Delaying a program, directions for, 1:246-249
Delay loop(s), 1:191, 246; 3:211
program listings, 1:249, 250
DELETE, 3:197; 4:27; 8:27
Delimiters, 4:172
DELRIN™ plastic, 2:108
Deluxe Expansion Interface, instructions for building,
3:144-146, 148, 150-152, 154-157
Demultiplexing hardware, 2:192
Department stores, 1:3
Device control block (DCB), 4:187, 190; 6:192; 7:192, 226;
8:187; 9:126, 195
Dice-like distribution, 6:219
Digital clock, 5:137
Digital-te-analog converter circuit, 5:137
Digit position, 2:192
DiMaggio, Joe, 1:95
DIM (DIM) stat
155; 6:168; 9:149
Dimensional transforms, 10:55
DIMensioned statements, 6:10
DIM value, 7:227
DIN plug, 4:120
Diodes, 4:88; 6:136; 10:86, 106, 110, 111
zener, 1;127; 3:98; 6:135, 136; 7:113
DIP, 7:107
DIP switches, 3:152, 164; 6:198, 200
DIR, 4:188
Disassembler, 4:199-200
program listing, 4:201-213; 7:191
Z-80, 4:199-213
Discrete logic, 6:138
Disk(s),
doublesided, 1:126
saving data to, 4:107
SYSTEM, 3:155
tracingof, 1:123
Disk BASIC, 1:108; 2:81, 249; 3:148, 155, 171-172; 4:55, 71,
72, 166, 171; 6:140, 245, 7:74, 84, 119, 176; 8:73, 98; 9:3,
99, 105, 122; 10:77
TRS-80, 10:41
TRS-80Level 11, 10:30
Disk BASIC manual, 2:252
Disk BASIC program, 8:115; 9:117
Disk commands, 4:72

(s}, 2:116, 212, 213; 4:63, 64,

Disk controller, 5:85; 6:138
Disk directory, 4:166-172
program listings, 4:176-178
Disk menu, 4:172-174
program listing, 4:180-181
Disk operating system (DOS), 2:166; 3:199, 225, 226; 4:72,
79, 80, 166, 167, 168: 5:102; 6:228, 229, 230, 231; 7:119,
131, 132: 8:110, 112, 169, 170, 171; 9:3, 102, 103, 104,
122
Disk sleeve, instructions for punching second hole in,
1:123, 126
Disk storage, doubling of, 1:123
Disk system with NEWDOS, 1:10
Display characters, 4:149
alphanumeric, 4:149
graphic, 4:149
program listing, 4:157-158
Displays, 1:9, 10
of metal inventory program, 1:12
Distribution analysis, 7:153
Dividend Reinvestment Plan (DRIP), 7:13-15
program listing, 7:16-18
Division, 2:229; 3:179; 5:153
in Level 11, 5:155
programs for children, 2:35, 37, 41-44; 5:28-33
simulated by successive subtraction, 4:72
Division by zero error, 9:37
Dollar amount, 1:19
Dollar sign ($) signifying string, 1:212, 213, 214, 216, 226,
227, 228, 229, 231, 236, 245; 2:79
Domestic gold coins, 1:8
Daodle routine, 2:78, 79, 81, 82
DOS, see disk operating system
DOS command(s), 3:195
DOS command mode, 10:140, 141
DOS manual, 9:79, 102, 103
DOS Ready, 10:141, 142
DOS READY prompt, 3:155; 9:205
Dot graphics, 9:69
Dot matrix, 10:69, 70
Double-precision variable, 9:180; 10:42
Down-arrow key, 6:189
Downloading, 2:256
DPDT switch, 1:127, 128, 129
diagram of, 1:129
Dragons, 1:58, 53
Dribbling (in basketball), 3:71
subroutine for, in program, 3:70
Driver’s license numbers, 2:162
Dryad, 1:57
Dungeon, 1:57, 60
Early payoff (of loan) tables, 1:27
Earplug (for cassette recorder), 2:197, 198
Edge card connectors, 5:128
Edge connector, 2:186, 189; 9:99
40-pin, 10:106, 107, 110, 111
EDIT, 4:27
Editor/Assembler (EDTASM), 2:199, 245, 246, 247; 3:220,
236; 4:120; 5:154; 6:140, 143, 144; 7:209, 210, 212, 226,
228; 8:85, 184; 9:102, 224
assembly-language listing, 7:191
modifications for the Model 111, 7:191-196
modifications for the Model 111, program listings,
7:197-208

192

index

patches to, 8:186-187
patches to, program listing, 8:188-192
Radio Shack's, 1:108
TRS-80, 3:135
Editor/assembler, disk based, 9:205
Editor/ Assembler format, 7:65
Editor/Assembler manual, 2:151
EDTASM, sce Editor/Assembler
EDTASM-PLUS, 5:154
Education, computer, 1:35, 39
Educational pioneers, 1:38
Educational programs for children, general description of,
2:35, 45-46
addition, 2:35, 41-44, 46, 53-54; 5:28-33; 8:29-35, 42~49
alphabet, 2:45, 50--51
counting, 2:45, 48-49
days of the week, 2:46, 52-53
division, 2:35, 37, 41-44; 5:28-33
months of the year, 2:46, 51-52
multiplication, 2:35, 41-44, 46, 55-56; 5:28-33; 8:29-35
number series, 2:45, 49-50
prograin listings, 2:41-44, 48-56; 5:31-33; 8:29-49
shapes, finding the odd, 2:45, 51
subtraction, 2:35, 41-44, 46, 54; 5:28-33; 8:29-40, 42-49
Educational programs for eighth graders, 3:25-31
program listing, 3:32-54
8080, 5:159
80808085 CPUs, 3:134
8080/8085 Software Design (Titus, Rony, Larsen, and Titus),
3:133
8080 microprocessor, 9:95
80 Microcomputing, 2:151; 3:3, 164, 220; 4:119, 191; 5:24,
63, 155; 6:111, 140, 141, 157, 191, 253, 260: 7:176, 191
8:9, 71, 186; 10:68
programs printed in, 1:201
8255, 9:95, 98
8255 PPI, 9:95
8955A Programmable Peripheral Interface Applications,
9:168
EKG, 10:86, 87, 88
Electrical energy, amount used, 3:119
Electric bills, 3:120
Electricity,
cost of, 3:118
total dollars spent for, 3:119
Electricity usage, 3:120
Electric Pencil, 6:192, 227, 229; 8:105, 106, 109
RS-232, 6:191
Electrodes, 10:86
Ellipses, used to generate astroid, 2:92
program listing, 2:95
ELSE, 3:193, 210; 9:62
ELSE-IF statements, 3:213
Employee’s Withholding Allowance Certificate, 4:100
Enchanted sword, 1:58
Encyclopedia for the TRS-80, 2:119
Encyclopedia of Bascball, 1:94
END, 3:195, 237; 9:38
Energy bills, saving on, 3:118-120
program listings, 3:121-130
E.O.M. (end of month) inventory, 1:4
Epicycloid(s), 1:113, 115; 2:90-81
programs to generate, 2:94, 95-96
EPROM(s), 9:94, 95, 97, 99, 103, 104, 105

how to build and program, 4:79-89
program listing, 4:90
2708, 6:131
2716, 9:93, 98, 101, 104
2732, 9:93, 98, 101, 104
EPROM data, 9:104
EPROM memory board, 4:88
EPROM programmer, 4:88; 9:93-95, 97-99, 103-106
hardware, 9:99-100
program listings, 9:107-114
software, 9:100-103
Epson MX-80 printer, 6:246; 7:127-128; 10:137, 141, 142
Equality sign, 1:227
Equations, solving, 3:28
program listing, 3:42-46
Equivalency of weights to troy ounces, 1:4
Error checking, methods of, 9:21
Error codes, 6:227
Error message, 1:213; 2:164, 212, 234; 3:172, 194, 200, 225;
8:175; 9:125
TM (type mismatch), 9:180
Error routine, 4:64
Error statement, 4:64
Error trap(s), 1:235; 4:4, 6, 55; 5:113, 114; 10:37
Error trap(ping), 3:192, 211
subroutines for, 3:219
Error trapping routine, 5:24
Errors, 11O, 1:11; 5:99
ESP trick, 10:49-50
program listing, 10:51
Etch-A-Screen, 5:63
Etch-a-sketch, 10:105
Exatron Stringy FloppyTM, 3:199; 4:79
EXCLUSIVE OR gates, 10:121
Expansion bus, TRS-80, 9:98
Expansion interface(s), 2:164, 189; 3:199; 4:79, 5:85, 89, 127;
6:126, 189; 8:129; 9:99; 10:86, 105, 110
instructions for building, 3:144-146, 148, 150152, 154157
LNW, 9:99
parallel port of, 2:21, 37
Radio Shack, 3:144, 146, 151, 156; 6:131; 9:99
technical manual for, 3:156
‘TRS-80, 4:88
Expansion port, 4:79, 88; 9:99; 10:107, 110
‘TRS-80, 2:100
Expansion system, TRS-80, 3:157
Expense accounts, 2:18
Expense report(s), 2:21
directions for program use, 2:16-21
printing, 2:18, 19
program listing, 2:22-31
Expenses, keeping track of,
program description, 6:165-172
program listings, 6:173-183
Exponential smoothing, 1:3; 6:3
program description, 6:3-5
program listing, 6:6-9
variables required, 6:3
Exponentiation, 2:230-231; 3:179; 9:181
Extended BASIC, 9:44
Extended Color BASIC, 10:37
EXTRA IGNORED message, 2:166; 3:4; 5:148
Faces, drawn with graphic blocks, 2:45
listing of subroutine, 2:47-48

193

Fairy tale, 1:57, 60
FDC board, 3:145, 148, 150, 155
FDC card, 3:155
File(s), 2:3, 82: 3:199, 225, 227; 4:172
ASCII, 2:256, 259: 3:226: 4:175
BASIC, 2:259
card, 3:14
data, 2:5; 3:199; 4:3; 6:253; 9:123, 124, 195, 127
disk. 3:226; 4:171
disk, creating, 4:3
exchange of, 2:258
10, 6:254
loading from disk, 4:5
master, 4:175
name and address, 2:3
object, 9:102
random, 1:11
random access, 9:127
sequential, 2:78; 4:171, 172, 173; 9:127
serial, 3:199
sorting of, 2:3, 5
source, 5:174
system, 9:203
updating of, 2:5
Files, cassette data, accelerating, 10:145-147
progeam listings, 10:148
File namef(s), 3:225, 226, 228
BASIC program listing, 5:173
description of program, 5:170-171
importance in recording, 1:223, 224
machine-language program listing, 5:172
Filenames, 9:123
Filespec, 8:171
Finance charge, 1:23, 24
Financial planning concept, 1:3
program listng, 1:5, 6
Fineness, amounts of, in gold and silver coins, 1:8
as being part of metal alloy, 1:7
First derivative, 8:51
Fiscal year, 1:4
355 timer circuit, 5:134, 137
FIX, 8:161: 9:181
Flashing displays, 9:30
Flashing pixel, 9:71
Flashing sereen displays, 9:30
Fliess, 1:162
Flip-flop(s), 6:202
D-type, 4:87
J-K, 10:125
octal D, 4:88
quad D, 4:86
Floating point arithmetic, 10:62
Floating-point numbers, 4:72
Flowchart(s), 2:199; 3:182, 183-184, 185, 186, 210
Folia, 2:88
Folium of Descartes, 2:88
program to generate, 2:94
FOR, 3:213, 214
Forecasting,
definition, 6:3
moving-average, 6:3
program description, 6:3-5
program listing, 6:6-9
Forecasting sales, 1:3

index

Foreign coins,
gold, 1:8
silver, 1:8
table of, 1:8
FOR loop, 4:170, 173; 7:84, 176
Format for metals inventory program, 1:9
Form-letter writing, 3:3-6
program listing, 3:7-12
Form 1040, 9:154
Form 1040-ES, 4:101
Form W4, 4:100
Formulas for finding loan interest charges, 1:25
FOR-NEXT, 4:27; 8:27, 87, 90: 9:21
FOR-NEXT loop{s), 2:192, 211, 213, 215, 229, 230, 251; 3:91,
173, 174. 197, 198, 200, 201, 21 1: 4:138, 140, 141;
5:137; 6:92, 222; 7:166; 9:15, 127, 149, 180; 10:50, 70,
124
FOR statements, 5:21
Fort King Middle School, 1:35, 30
enrollment, 1:36
FOR-TO-NEXT loop, 3:214
Fort Worth, 1:200
Fort Worth Perfboard Medal of Honor, 1:219
48K machine, 7:173
48K RAM machine, 9:197
48K system, $:206
Foul(s) (in basketball), 3:71, 72
subroutine for, in program, 3:70
Fourier transforms, 8:71
FREE, 4:167
Freeth's nephroid, 2:88
program to generate, 2:94
Frequency response in recorders, 1:217
Frisch, Frank, 1:88
Fuel cost, annual increase in, 3:118
FUNCTION CALL error, 2:129
Fund raising projects, 1:35, 51
Game(s),
action, using reverse video with, 5:92
adventure, 8:61: 9:21
BASIC, 9:53
card, 10:41-48
casino, 2:60
Chinese, 2:59
gambling, 2:59
Hight pen, use of, in, 2:108, 114
machine-language, 9:79
maze, 9:21, 51
played on a card, 2:59
shooting gallery, 2:67
Star Trek, 2:114
Garbage collection routine, 2:131; 4:4, 7
"Garbage” on video screen, 1:200
Gate(s), 6:200, 201
AND, 2:191; 6:198; 10:121, 122
CMQOS, 7:162, 164
EXCLUSIVE OR, 10:121
logic, 10:122
NAND, 2:187: 4:80, 87; 8:135
OR, 4:87; 10:122
Tri-State, 2:189
TTL output, 5:8%
Gehringer, Charlie, 1:89, 90
Gelder, Allen, & Co , TSTEP module, 5:159

194

index

Gems, investing in_ 5:3 Graphics byte(s), 2:77, 78, 79, 81
General ledger, 1:17 Graphics capabilities on the Model 111, 6:92
Geometric progression, 6:3 Graphics cells, 2:233
Girl Scout caokies, description of program to keep track Graphic(s) character(s), 2:77, 116, 222 3:155; 6:111, 112
of sales of, 3:107-110 T7:93; 8:87, 97 9:127
program listing, 3:112-117 ASCII representation of, 9:72
Goblins, 1:58 TRS-80, 7:128, 131: 8:86: 9:137
Gaing Ahcad With Extended Color Basie {Radio Shack), Graphics code(s), 6:108, 111
10:72 built into Level 11, 6:105
GCold, 1:7, 9, 10,58 program deseription, 6:105-108
coins, 1:58 program listings, 6:109-110
content of metal alloy, 1:7 relationship to binany code, 6:105-106
evaluating stock items in, 5:6 Graphics code number, TRS-80, 6:106
investing in, 5:3 Graphics codes, Color Computer, untocking, 10:68-72
plated, 1:8 program listing, 10:73
pure, 1:8 Graphics commands, 9:79
solid alloy, 1:8 Graphics displays, 6:218: 8:117
weight of coins, table, 1:8 BASIC, 7:94
GOSUB(s), 2:82, 112, 116: 3:4, 194, 195, 236, 240: 4:27, 64; how to produce on sereen, 8:96-94
7:85, 209, 213, 216; 8:90: 9:61 how to produce on sereen, program listing, 8:100-102
GOTO(s), 2:131: 3:184, 187, 193, 209, 236, 240; 4:5; 5:64, Graphies dots, 5:37; 9:60
115; 7:130, 209, 213, 216: 8:52; 9:21, 80, 138, 200 Graphices methods program, 1:105
Grade Book program, 1:149 program listing, 1:110-112
Grade caleulating, deseription of, 4:21-22 Graphices points, TRS-80, 10:62
program listing, 4:23-26 Graphics program(s), 9:71, 82
Graftrax-80, 7:127-128 computer generated, $:71-82
Grandpa's pocket watch, 1:7 descriptions of, 2:78-79, 87-93; 3:91-92; 6:184-185
Grans, disk. 4:175 program listings, 2:83-86, 94-96; 3:93: 6:186: 9:75-78
Graphics, 2:77, 81: 3:70, 71: 5:63, 92: 9:22, 30, 71 Graphics strings, 1:106: 2:80, 82; 9:82
CHRS$, 7:93-97 Graphs,
CHRS$, program listings, 9:98-103 bar, 5:75-77: 6:218
creating, 6:111-113: 10:74-77 deseription of program to generate, 5:74-79
creating, program listings, 6:114-122; 10:78-82 drawing. on computer, 2:235-237
dot, 9:69 program listing, 2:240-241
how to store and recall, 5:147-149 program listings, to generate, 5:80-81
how to store and recall. program listings, 5:150-152 Great Oracle, 1:57, 38
in bar graphs, 4:28 Griffin, Holley, 1:35, 36, 38, 39
in games, 4:28 Gross weight, 1:7
interactive, 10:56 Ground loops, 3:141
Level I, 4:73 Grouping program, description of, 6:184-185
LSET, 9:82, 84 program listing. 6:186
machine-language, 3:60 Hammurabi, 1:50
random distribution, description of, 6:218-224 Hams (radio amateurs), 2:198
random distribution, program listing, 6:225-226 Handshaking, 2:256-259: 6:191
RSET, 9:82 Hangman, 3:210
string, 2:162; 9:71 Hard copy, 1:10; 2:35, 125, 162, 164, 198: 3:108; 5:138; 7:7,
to display data, 4:28 15: 8:11; 10:9
to draw or erase a line, 4:71-76 Hard-copy output, 7:161; 8:186
to teach computer math, 4:27, 45 Hard copy printout capability for TRS-80, 6:191-203
‘TRS-80, 5: 1128, 131 program listings, 6:204~-207
used with POKE, 3:217-219 Hardware, 2:99-100, 186-187, 189
using CHRS$, 7:93-97 demultiplexing, 2:192
using CHRS, program listing, 7:98-103 1/0, 2:256
video sereen, 8:85 Hardware interlace, 6:198
writing machine code, in BASIC, 8:85-91 Hardware modification(s), 3:97-99, 100-103
writing machine code, in BASIC, program listing, 8:92-95 for reverse video, 5:92-95
Graphics, description of program to generate, 9:59-69 Headings, printing of, 3:196-197
program listing, 9:70 program listing, 3:205
Graphics, super fast BASIC, description of program, 9:79-85 Heart rate, monitoring, 10:85-89
program listings, 9:86-89 program listings, 10:90
Graphics and ZBASIC, 10:55-58, 60-62, 64-67 Heath H14 Operator’s Manual, 3:164
program listings, 10:59, 63 Heath H14 printer, interfacing to TRS-80, 3:164-166
Graphices block(s), 2:45, 234: 8:96; 9:84, 205, 206; 10:75 program listing, 3:205
CHR$, 7:93 Heating fuel, cost of, 3:118

195

index

Heat shrink tubing, 2:111
Heat sink(s), 7:113; 9:99
Hexadecimal, 4:164-165
Hexadecimal codes, 3:212
Hexadecimal numbers, 3:212
Hexadecimal number system, 8:144-145
Hexadecimal to binary conversion, 8:153-154
Hexadecimal to decimal conversion, 7:180-182; 8:148-149
program listing, 7:183-187
Hex code format, 6:141
Hex number, 6:141
High-level language programs, 6:227
High-resolution screen, 10:93
High resolution speech manipulation, 10:93
High school computer math, using graphics to teach, 4:27-28
program listings, 4:29-45
Historic Baseball program, 1:88, 94, 95
program listing, 1:97-101
Historic re-creation program, 1:78, 79
changes in students as a result of, 1:79
program listing, 1:80-87
HONESS program language, 3:179-188
program listing, 3:189-191
Hong Kong, 1:7
Horse racefs),
betting on, description of, 4:93-95
description of game, 5:37-38
program listing, 4:96--99
program listing for game, 5:39-45
Hot dog salesman, 1:58
Howe, Hubert S., Jr., Machine L
the Ground Up, 3:220
How to Program the Z80 (Zaks), 2:151
Hyperbolic spiral, 2:88
program to generate, 2:04
Hypoeyeloid(s), 1:113, 115; 2:88-80, 92
programs to generate, 2:94, 95-96
Hypotenuse of right triangle,
calculation of, 2:231
program listing to calculate, 2:239
program listing to find square root, 4:144
using length to find square root, 4:137-138
1BM, 6:191
IBM code, 6:192, 195
IBM Selectric, 6:196
IBM Selectric drive program, 6:203
IBM stock, 8:3, 5
IC(s), 2:99, 100, 189, 192; 3:150, 154; 4:85, 88; 5:128, 130;
7:112
CMOS, 8:119
D fiip-flop, 4:85
IC chip, 10:125
IDS Paper Tiger, 5:10
IF statement(s), 1:11; 3:214; 5:21, 30, 64
nested, 9:62
IF-NEXT-ELSE decision, 2:213
IF-THEN, 2:234; 3:187; 4:64; 8:27; 9:21; 10:95
IF-THEN-ELSE, 4:27; 8:27
Imaginary restaurant, directions for use with light pen,
2:114-115
program listing, 2:118-119
Income ledger program, description of, 1:147
directions for using, 1:144--146
program listing, 1:149-156

ge Progre ing from

Income tax deduction, 1:23, 24, 25
Income tax withholding, 4:100-105, 107
program listing, 4:108-115
Indexing,
program descriptions, 6:157-158, 184-185, 235-241
program listings, 6:159-164, 186, 242-244
Individual Retirement Accounts (IRA), 10:98, 100
Information, entering into computer, 1:215
INKEY function, 4:16, 147
INKEY routine, 5:63, 65
INKEY$, 2:82, 162, 222, 223, 250; 3:29, 193, 194, 195, 196,
210, 211; 4:64, 174; 5:16; 6:86, 112, 7:84: 8:74, 98, 159;
9:71, 127, 138, 198; 10:30, 38, 66, 125
INKEYS$ loop, 9:43, 44
INKEYS$ routine, assembly-language, 4:186
INKEY$ subroutine, 9:124, 125, 128
IN*® line, 10:105
INP statement, 6:189
INP(0) function, 10:110
Input(s), 2:192; 3:3; 4:82, 85, 95, 119, 120, 134, 186, 190;
5:131; 6:136, 138, 169, 171, 190, 198, 200, 201, 260;
7:164; 8:135
address, 4:86
BASIC command, 3:175
cassette, 10:93
cassette audio, 2:197
clock, 4:85
data, 4:86; 5:105; 10:105
joystick, 9:43
keyboard, 4:187, 190, 191; 9:124
lowercase, 4:22
port-mapped, 10:105
sequential, 4:172
uppercase, 4:22
INPUT, 2:211, 217: 3:4, 196, 197, 200; 4:27, 173; 7:131; §:9,
11, 15, 27, 159; 9:12, 21
Iriput commands, 4:147
Input devices, 4:121
INPUT ERROR messages, 2:166
Input mode, 3:108; 9:84, 98
INPUTY, 4:172; 6:253
INPUT#I, 4:107
INPUTY - 1, 3:199-200; 4:107, 121; 10:145
Input parameters, 9:59, 62
INPUT process, 4:174
Input routine, 9:84
INPUT statement(s), 2:213; 5:16, 21, 148; 6:86; 9:38, 223
Installment(s), 1:23, 24
Instaliment loans, 1:23, 26
Instant Software, 3:3
Instant Software’s Renumber program, 1:26
INSTR, 4:168, 169; 7:84
Insulation,, 3:119
R-value of, 3:119
Insurance policy numbers, 2:119
INT, 2:231, 233; 4:27, 8:161
INTeger function, 7:154
Integer(s), 1:233, 236; 2:232; 4:72; 9:53, 82; 10:64
Integer arithmetic, 10:55, 64
Integer arrays, 10:43
Integer math, 10:60
Integrated circuits, 1:186; 4:79, 80, 82, 83; 9:169, 173
Intel component data catalog, 6:137
Intel Data Catalog, 3:157

196

index

Intel 80 series of microprocessors, 5:159 manual, writing of, 1:17
Intel 8251 UART, 7:161 numbering in consecutive order, 1:17
Intel 8255 programmable interface chip, 9:168 program, 1:17
Interest, 1:23, 24, 25 program listing, 1:20-22
percent of, paid in year, 1:25, 26 sample of, 1:18
Interest payments, 1:26 window envelope, 1:17
program directions, 1:26-28 Invoicing function {taken over by computer), 1:17
program listing, 1:30-31 10, 2:257
Interface(s), 2:189: 4:120; 6:196; 9:173 cassette, 6:167; 7:192
cassette recorder, 4:119 Level 11 tape, 2:79
cassette tape, 4:119-121 parallel, 4:126
expansion, 2:164, 189; 3:199; 4:79: 5:85, 89, 127: 6:126, serial, 2:256; 4:128
189: 8:129; 9:99; 10:86, 105, 110 tape, 2:78, 79
hardware, 6:198 1/0 boards, 3:144
110, 4:119: 9:167 /O bus, Model 111, 9:167
joystick, 10:105 [/O chip, 9:173
Model I, 9:170 1O data files, generating and typing,
serial, adding to TRS-80, 7:161-169 program description, 6:253-261
§SS ‘TRS232, 3:166 program listing, 6:262-264
to send RTTY, 4:122-130 1/0 device(s), 5:183; 9:169
Interface unit for TRS-80, 5:127-140 memory mapped, 9:167
program listings, 5:141-143 programmable, 9:95
uses for, 5:127, 140 110 errors, 1:11; 5:99
Interfacing, 1:185 10 files, 6:254
Teletype ™ to TRS-80, methods of, 1:173-178 1/0 functions, 6:138
Teletype ™ to TRS-80, program listing, 1:180 /O interface, 4:119; 9:167
Interfacing Atari joystick to TRS-80, 10:105-107, 109-111 1/0 operations, 2:99; 3:146
program listings, 10:112-113 17O port(s), 2:99, 100, 186, 189; 3:146: 4:88; 5:89; 6:138;
Internal logic cireuits, 6:191 9:104, 105, 167
Interpreter, 2:3, 80; 3:179, 214 Model 111, 9:167-170, 172-175
BASIC, 3:236; 4:185; 5:23, 64, 138; 9:94 11O port addressing, 7:164
Level 11, 5:21, 22 170 routines, 2:166; 6:140
Interrupt, manual, 5:85, 86, 88, 89 cassette, 7:196
Interrupt circuit, 1/0 Selectrics, 6:191
manual, 5:87 Tola, Wisconsin, 1:9
software, 5:89 IPC board, 3:144, 145-146, 148, 152, 154, 155
Interrupt-handling board, 5:85, 87, 88, 89 Isopropyl aleohol, 1:220
Interrupt processor, 5:87, 88, 89 Jainist philosophy, 4:56
Interrupts of TRS-80, 5:85-89 Jeweler's scale, 1:9
program listing, 5:90-91 Jewelry, 1:8
Inventory, $:4; 3:13-17, 107-110 weighing of, 1:8
data statements, 1:9 J-K flip-flop, 10:125
flow of, 1:3 JKL keys, 1:11
gold and silver, 1:9 Johnson, Lyndon, 1:78
management, 1:17 Johnson, Walter, career statistics in baseball game
precious metals, 1:9 program, 1:91
program(s), 1:9, 17 Joystick, 9:44
program listings, 3:18-22, 112-117 use with TRS-80, 6:189-190
records, 1:17 Jovstick, Atari, 10:105, 107, 109, 110, 111
Inventory of personal property, 2:162 interfacing to TRS-80, 10:105-107, 109-111
cassette version, directions for use, 2:162, 165-166 program listings, 10:112-113
cassette version, program listing, 2:167-173 Jukebox, computerized,
disk version, directions for use, 2:165-166 program description, 8:71-75
disk version, program listing, 2:174-181 program listing, 8:76-81
making changes, 2:166 Junk box, 3:101: 5:137; 10:86
Inventory records, 3:13 Junk-box transformer, 7:113
Inverse trig functions, 9:35, 36 Justified copy, 2:125, 127, 129, 131, 132
on the TRS-80, 9:37 Kala, game of,
Inverters, 10:121, 122 description of, 4:54-55
Investment analysis, 1:3 program listing, 4:57-61
total dollar value of, 1:11 Karat gold jewelry, 1:10
Invoice(s), 1:17, 18, 19 Karats, 1:8
computer generated, 1:17 conversion of, to fineness, table, 1:8
forms (preprinted), 1:17 KBFIX, 1:209, 221; 3:218, 240; 4:79, 83; 5:165, 166

197

index

machine-code tape, 1:209
KBFIX code, Radio Shack’s, 8:187
Kennedy, silver clad half dollars, 1:8
Keno, 2:59-60
directions for program use, 2:61
program listing, 2:63-66
Keogh plans for the self-employed, 10:98, 100
Keyboard bounce, 4:64
how to eliminate, 3:133-138, 140-142
program listing, 3:143
Keyboard contacts, how to clean, 3:140
Keyboard debounce routine, 9:136, 195
Kevboard debouncing, 5:165~166
program listing, 5:167-169
Keyboard simulation program, 7:226-228
program listings, 7:229-238
Keybounce, 1:208, 210, 218
curing, 1:209, 221
KILL, 5:64
Kilobaud Microcomputing, 1:57; 2:151, 198; 3:164; 8:9, 15,
105; see also Microcomputing
Kilobytes, 1:199
Kilowatt-hours, 3:120
Klingon(s), 5:46, 47; 6:189, 218, 222, 224
Knife handles, 1:9
Knives, 1:9
weighing, 1:9, 10
Krause Publishers, 1:9
Labels, printing, 4:5
Lancaster, Don, TV Typewriter Cookbook, 3:157
LAST ITEM, 1:18
Latch(es), 4:85
data, 4:88
Law of sines and cosines, 4:28
Lawrence, J. Dennis, A Catalog of Special Plane Curves,
2:93
Layaway plan(s), 9:3
program description, 9:3-8
program listing. 9:9-11
Lazzeri, 1:95
LDIR, 1:105, 108
LDR (light dependent resistor), 5:137
Learning Level 11 (Lien), 1:32: 4:4
Least squares, 8:50, 51
Lecture notes, cross-referencing,
program description, 6:184-185
program listing, 6:186
LED(s), 1:157; 2:100, 103, 189; 4:89; 9:98, 100, 104
Left/Right game, 9:43-44
program listings, 9:45-50
LEFTS, 2:214-215, 217; 9:21, 30, 80, 125
Lemniscate of Bernoulli, 2:91
program to generate, 2:94
LEN, 1:18: 2:217; 3:198: 4:62
LET, 9:21
Letterhead, 3:4
Letters,
ASCII, 8:90
double sized, 3:196
Letter writing, 3:3-6
program listing, 3:7-12
Level 1, 7:209, 210; 9:223
Level I BASIC, 1:88; 4:140; 7:214
Level I 4K TRS-80, 1:88, 163

Level 1 manual, 2:186; 4:134; 5:130; 9:99
Level I ROM, 7:216
Level I to Level II conversion, 2:67
Level 11, 4:62; 7:74, 84, 209, 214; 8:110, 112; 9:224; 10:145,
146
TRS-80, 4:49; 5:10, 127
Level II BASIC, 1:105, 108, 144, 173; 2:80, 186, 232: 3:155,
166, 236; 4:71, 72, 187, 191, 199: 5:21, 154; 6:140, 192;
7:161; 8:9, 73, 123, 169, 171; 9:61, 149; 10:125
commands in, 2:115, 190
TRS-80, 4:199; 8:9
Level II BASIC handbook, 4:189
Level 11 BASIC manual, 4:186; 9:195; 10:145
Level I BASIC Reference Manual, 1:145, 207, 208; 2:4, 77,
186, 221, 222, 230, 231, 252; 4:79, 83
Level Il graphics, 4:73
Level 11 interpreter, 5:21, 22
Level IT machine(s), 1:212, 214; 4:22: 6:192
Level I manual, 3:201, 216-217; 6:185, 229
Level If program, 5:21; 6:184; 8:115
Level 11 Reference Manual, Radio Shack, 1:202
Level II ROM, 7:65; 8:110
Level 11 16K, 1:41, 57, 78
Level II 16K machines, 7:166; 10:17
Level 1T 16K TRS-80 Model I, 10:55
Level 11 SYSTEM tapes, 7:210
Level 11 tape 1/O, 2:79
Level IT USR statement, 10:77
Level 11 video driver, 9:223
Library, 1:9
Lien, David A | 1:38; 4:4
Lien, David A |, Learning Level 11, 1:32; 4:4
Light pen(s), 2:108; 4:119, 120
assembly-language program listing, 2:121
BASIC program listings, 2:118-121
construction of, 2:108-112
troubleshooting, 2:117
use with software, 2:112-116
Limacons of Pascal, 2:87-88
program to generate, 2:94
Linear regression, 1:3
LINEINPUT, 4:173
LINEINPUTE, 4:172; 6:248
Line printer, 9:126
132-column, 5:10
Radio Shack, 5:138
Line Printer 11, 10:85, 88
Radio Shack, 5:99
Lissajous figures, 2:91
program to generate, 2:94
LIST, 2:79, 81, 166; 3:209; 7:214; 8:27
LLIST(s), 2:223; 3:164; 5:138; 6:191, 192, 197: 7:168,
168; 8:184
LMOFFSET, how to use, 6:227-231
LOAD(s), 6:227, 229, 246; 7:131, 132
LOAD command, 6:231
Loan(s), 1:23, 24
APR (Annual Percentage Rate), 5:108, 111, 114
balloon payment(s), 5:109, 111, 114
consumer, 1:23
early payoff of, 1:24, 25, 26, 27
end of year interest, 5:112-113
errors in, 5:108
five basic parts of, 5:108-109

198

index

five-year early payoff example, 1:27
furniture, 1:23
installment, 1:23, 26
monthly payments, 5:108, 109-110
number of payments, 5:108, 111, 114
principal, 5:108, 112
program listing, 5:116-123
rebate of interest of, 1:25
Loan amortization, 10:9
program listing, 10:11
Loan interest (charges), 1:25
Loan interest program bibliography, 1:29
program listing, 1:30-32
Loan period(s), 1:23, 24, 25
Lockwood, E.H., A Book of Curves, 2:93
Logarithmic curve, 8:50
Logarithms, 9:180
Logic circuit, software model of, 10:121-125
program listing, 10:126-128
Logic gates, 10:122
London, 1:7
Loop{s), 1:215, 231, 232, 233; 4:63, 169
FOR-NEXT, 2:192, 211, 213, 215, 229, 230, 251; 3:91, 173,
174, 197, 198, 200, 201, 211; 4:138, 140, 141; 5:137:
6:92, 222; 7:166; 9:15, 127 149, 180; 10:50, 70, 124
INKEYS, 9:43, 44
nested, 2:61, 213
timing, 4:174; 9:83
Looping, 1:230
Lowercase, 2:128, 245, 246, 247; 8:111
Lowercase character(s), 3:174; 6:194, 202; 8:105, 109, 110
Lowercase display capability of Model 11, 7:130
Lowercase driver, 4:83; 9:127, 201
Lowercase driver program, 4:150
Lowercase keyhoard driver, 9:195
Lowercase letter(s), 4:149-150, 186, 189, 190; 7:132%; 10:137
using POKE, 4:150
Lowercase modification, 4:167
for the TRS-80, 8:105-106, 108-112
for the TRS-80, program listing, 8:113-114
Radio Shack, 8:109
Lowercase modifications for word processor, 7:131-132
Lowercase shifting, 6:192
Lowercase video driver for Model 1, 7:119
Low resolution speech manipulation, 10:93
Low resolution voice for Color Computer, 10:93-95
program listings, 10:96-97
LPRINT(s), 2:130, 198, 223; 3:108; 5:10, 115, 138; 6:185,
191, 192, 197, 246 7:15, 95, 97, 130, 166, 168: 9:4
for hard copy, 1:10
LPRINT CHRS, 7:7, 130
LPRINT USING, 5:10, 115
LSET, 2:249, 250; 4:71, 72; 7:175-176, 177 9:79, 80-81, 83,
85
LSET graphics, 9:82, 84
LSET strings, 9:84
L3 ERROR, 2:81; 4:71, 72
Machine code(s), 1:201; 2:247; 3:165, 171, 173, 174, 175, 212,
217, 218; 6:230; 7:192; 10:140
Machine-code program(s), 1:213, 221; 3:216-217, 218-219;
6:133; 8:85, 87, 88
Machine-code routine, 8:155
Machine code tapes, loading, 1:220, 221
Machine-code tape KBFIX, 1:209

Machine language, 3:179, 180, 220; 4:72, 197; 5:147, 160;
6:203, 227, 229; 8:86, 87
hexadecimal, 3:135
used with BASIC, 3:171-178, 218, 219
Machine-language case reversal, 7:119
Machine-language code(s), 3:173; 7:215; 8:90; 9:200
Machine-language driver program, 10:85, 87
Machine-language games, 9:79
Machine-language instructions, 6:231
Machine-language program(s), 1:107; 2:101-102, 192, 198,
199 3:173, 174, 175, 176, 177, 212, 216-217; 4:174, 197,
199; 5:89, 138, 148, 165, 170; 6:192, 227, 229; 7:115,
196, 226; 8:98; 9:183; 10:94
Machine-! ing, 7:210
Machine L from the Ground Up
(Howe), 3:220
Machine-language routine(s), 1:108, 109; 2:3, 81, 258; 3:171,
175, 177; 7:65, 119, 131; 8:89, 90, 99; 9:224; 10:76
Machine-language sort, 4:171-172
program listings, 4:179-180
Maclaurin Series approximation, 4:136
Macmillan Encyclopedia of Baseball, 1:89
Macro(s),
description, 5:174-191
history, 5:174
program listing, 5:192-199
use with computer languages, 5:174
Macro command, 5:179
Macro definition, 5:180
Macro-instruction, 5:174
Macro invocation, 5:179
Macro language, 5:175
Macro parameters, 5:174, 183
Macro processor, 5:174
Magazine index,
program description, 8:157-158
program listing, 6:159-164
Magic light pen subroutine, description of, 2:115-116
program listing, 2:120
Magic trick, ESP, 10:49-50
program listing, 10:51
Mailing list programs,
description, 4:3-7
for the TRS-80, 4:3, 7
“occupant,” 4:3
program listing, 4:9-14
Mainframe, 3:144, 145, 212
S-100, 3:156
Manager, sales, 1:3
Manual interrupt, 5:85, 86, 88, 89
Marker symbals, 1:9
Market(s), 1:7
bullion, 1:10
Market closing price, 1:10
Masking, 2:191-192
Mathematics programs for children, 2:35
addition, 2:35, 41-44, 46, 53-54; 5:28-30; 8:28
counting, 2:45, 4849
division, 2:35, 37, 41-44; 5:28-30
multiplication, 2:35, 41-44, 46, 55-56; 5:28-30; 8:28
number series, 2:45, 49-50
program listings, 2:41-44, 48-50, 53-56; 5:31-33;
8:29-40, 42-49
subtraction, 2:35, 41-44, 46, 54; 5:28-30; 8:28

ge prog

Progr

199

index

Mathemalics programs for eighth graders, 3:95-31
program listings, 3:32-54
Mathematies program for pre-school children, 5:28-30
program listing, 5:31-33
Mathewson's, Christy, career statisties in baseball game
program, 1:91
Matrix, 2:214; 3:59, 107, 110; 7:108; 8:51, 52
dot, 10:69, 70
Maze game(s), description of, 3:57-60; 9:21-31, 51-53
program listings, 3:63-67; 9:32-34, 54-55
McClellan, Jane, 1:35, 36, 39
McElroy, Elam, Applied Business Statistics, 8:3
Memory, 277, 102, 103, 131, 162, 211, 212, 216, 219, 229,
256; 315, 17, 26, 135, 151, 156, 175, 213, 217, 228; 4:5;
8:73, 1, 109; 9:79, 80, 81, 82, 183, 199; 10:64
adding to TRS-80, 7:107-115
dynamic, 3:150
exarmining, 8:155-156
for strings, reserving of, 1:213, 214
4K, 4:49
high, 8:88; 9:84, 101, 174
high protected, 3:219
in computer, 1:199, 213, 214, 220, 236
low, 3:171, 172, 173
16K, 4:62; 9:149
statie, 3:150, 151, 152
using POKE to change, 3:216
video, 2:246; 3:217; 4:166, 168, 169; 8:96; 9:72; 10:117
Memory address, 4:150; 8:86, 88, 89, 90
video, 4:152
Memory banks, TRS-80, 4:172
Memory card, 4:80
Memory chip(s), 2:90, 100; 7:108, 109, 110, 112; 8:105
Mostek 4118, 2:99, 100
Memory device(s), 2:99, 103
programs to test, 2:104-107
Memory index, 9:79
Memory location(s), 2:192, 247; 4:150; 8:86, 88
video, 4:167
Memory map, 3:175; 4:80
Level 11 BASIC Manual, 8:183
Memory printer, 6:195
Memory size, 4:73, 80, 89, 199; 8:85, 112
BASIC's, 9:196
MEMORY SIZE, 9:224
MEMORY SIZE?, 1:200, 201, 220, 221; 2:81; 3:135, 156, 171,
176, 216, 217, 218, 240; 4:186, 187, 188, 189, 191, 197;
8:87, %0, 108
as unwelcome sign in program, 1:201
Memory space, 2:212; 4:86, 88
Memory test{s), 2:101-103
Memos, 3:3
program listing, 3:7-12
Mental curiosity, 4:27
Menu(s), ina program, 2:3, 4, 19, 108, 114, 162, 249;
3:4, 5, 14, 108, 192, 193, 211; 4:4; 8:11, 85
alphabetically listed on each disk, 4:166, 172-174
disk, 4:172-174
flashing cursor in, 2:249-255
program listing, 4:180-181
Metal(s), alloy, 1:7
Method, sequential or random file, 1:10
Micro-Basketball game, description, 3:67-72
program listing, 3:73-87

Microcomputer(s),
as patient teaching aid, 1:39
equipment within budget limitations, 1:35
student enthusiasm for, 1:39
TRS-80, 5:3
Microcomputing, 3:97, 136; 5:127; see also Kilobaud
Microcomputing
Microprocessor, 8080, 9:95
Microprocessor-based devices, burning programs for, 6:131
Microprocessor units, 3:212
Microsoft, 5:154; 8:64
Microsoft BASIC, 4:4; 8:9, 11, 62
Microsoft's EDIT-80 program, 2:259
MIDS$, 2:214, 215, 216, 217 3:4, 197, 201; 4:63, 64, 168,
169; 7:8; 10:41
Mnemonics,
assembly language, 4:189, 199
Z-80, 3:135
Z-80 assembly language, 2:258
Zilog standard Z-80, 2:116
Model 1, 5:47; 6:36, 189; 7:129; 8:127, 128; 9:167: 10:77
EDTASM for, 7:192
48K, 6:35
lowercase video driver for, 7:119
16K, 8:186
TRS-80, 2:249; 8:73, 105; 10:3, 9, 55, 68, 85
Model I interfaces, 9:170
Modet I Level 11 manual, 6:246
Model 1 16K Level 11 Radio Shack computers, 9:21
Model I TRS-80, 10:86, 105, 121
Model I with 48K RAM, 9:80
Model railroad speed control, 5:127, 137-138
Model 111, 4:22; 5:46, 99: 6:36; 7:3, 44, 93, 119, 214;
8:73, 127, 128; 9:167; 10:17, 77
EDTASM for, 7:191-208
48K, 6:35
lowercase display capability of, 7:130
16K, 10:55
TRS-80, 2:249; 10:3, 9
Model II1 /O port, 9:167-170, 172175
Model 33 TeletypeT™, 5:131-132, 134
Model 33 TTY, 5:138
Modems, 4:119
Modulation envelope graph, 5:75
program listing, 5:80
Module routines {in programming), 5:3
Money, keeping track of,
program description, 6:165-172
program listings, 6:173-183
Money market fund, 9:15
Money market mutual funds, 9:12
Monitor maintenance, 8:115-119
Month-to-date summary, 1:19
Morse code, 1:183; 2:197, 199
MOS devices, 2:99
Mostek, 7:161
Mostek 4118 memory chips, 2:99, 100
Motherboard, 3:152
Motor control in cassette recorder, 1:217
Motor control relay sticking, 1:218
Motorola, 7:161
Motorola CMOS manual, 2:192
Moving-average forecast, 6:3
MSBs, 9:98

200

index

Multiple-command processor, TRSDOS, 9:195-201
assembly-language listing, 9:202
BASIC listing, 9:202-204

Multiplexer, 3:150
address, 7:109

Multiplexing, 2:186, 192; 7:108
address, 3:150

Multiplication, 2:229; 3:179; 8:28
programs for children, 2:35, 41-44, 46, 55-56; 5:28-33;

8:29-35
simulated by successive addition, 4:72

MX-80, 7:128, 131

MX-80 graphics, 7:124

Name and address program, 2:3
assembled program listing, 2:14-15
BASIC program listing, 2:9-13
directions for use, 2:3-5

NAND gate, 2:187; 4:80, 87; 8:135

Naperian log, 9:180

National Honor Society, 1:50
rating of candidates for, 1:50

Natjonal League, 1:88, 91

National Weather Bureau, 3:120

NEC, 7:161

Necromancer, The, 1:58

Nested IF statements, 9:62

Nested loops, 2:61, 213

NEW, 4:27

New Brunswick, NJ, 1:49

NEWDOS, 1:10, 126; 2:80; 3:227; 4:166, 172, 187; 8:169
Apparat’s, 10:140

NEWDOS Editor-Assembler, 3:228

NEWDOS EDTASM, 3:228

NEWDOS/80, 3:927; 4:3, 166, 172, 175; 6:36; T:44; 9:122,

195, 199

NEWDOS/80 lowercase driver, 9:123

NEWDOS/80, Version 1.0, 9:117

NEWDOS/80, Version 2, 9:117

NEWDOS +, 4:166, 167, 172, 173; 6:227; 9:80

NEWDOS system disks, 10:140

NEWDOS 2.1, 6:36; 7:44

New York, 1:7

NEXT command, 3:211, 214

NEXT without FOR, 3:209

Nontaxable income, 1:145

Normal distribution, 6:222

NPN silicon transistor, 3:98

Number system(s), 8:144-145
arithmetic operations of, 9:183-191
binary, 8:143, 144
conversion between, 8:145
conversion from decimal, 8:149-152
conversion to decimal, 8:144-145
hexadecimal, 8:144-145
octal, 8:144

Numerical expression, used as input, 5:21-24
program listing, 5:25-27

Numeric arrays, 9:21

Numeric codes, 9:51

Nurneric data statements, 9:51

Numeric keypad modification, 8:125-130

Numeric variables, 9:21

Numerator, 4:72

Nymph, 1:57, 58

201

Object code, 1:201; 4:199; T:212; 9:224

Object files, 9:102

Object program, 9:183

Qcala, Florida, 1:35, 39

Qctal number system, 8:144

Octal to decimal conversion, 7:180-182; 8:148
program listing, 7:183-187

Offense(s) (in basketball), 3:69, 70, 72

Okidata, 7:128

QOkidata Microline 80, 8:164

Okidata Microline-80 printer, 9:136

Old Forest, 1:57, 58

OM error signal, 3:213

ON ERROR GOTO, 3:219

ON ERROR statement(s), 2:17, 18, 21

One-shot, 5:36

ON GOSUB, 3:196; 7:209, 217; 9:21

ON.. GOTO, 3:187, 193, 196; 4:27; 7:209, 217; 8:27

Op (operation) code(s), 3:179, 180, 181, 187; 4:199
multiple-byte, 4:199, 200

Operands, 3:179

Operating system, 3:225, 226, 227

Optical isolators, 2:191

Opto-couplers, 7:163

Opto-isolator, 10:86, 87

OR, 2:191

OR gate, 4:87; 10:122

OR mode, 9:60

Order of operations, 2:229-230; 3:25, 27

Oscillator(s), 7:161
clock, 8:136
code practice, 2:198

Oscilloscope, 2:189; 3:154; 7:115; 10:95

0OS error, 4:123

O T R (open to receive), 1:4

Output(s), 2:192; 4:82, 85, 87, 101, 119: 6:136, 138, 194,

196, 198, 201, 202: 8:135, 137

hard-copy, 7:16}: 8:186
lowercase, 6:194
sequential, 4:172
three-state, 2:99
uppercase, 6:194

Output devices, 4:121; 7:161

Overhead, 1:4

Puc-ManTM game, 9:51

Page formatting BASIC program listings,
program description, 6:184-185
program listing, 6:249-252

Panama, 1;78

Paper punch, 1:123

Paperwork, 1:17

Parabolic curve, 8:50

Parallel data, 2:186

Parallel port, 2:20-21, 37, 185, 186, 189

Parallel to serial data conversion, 7:161-168
program listing, 7:169

Parameters, 3:71, 107; 9:60, 61, 137
input, 9:59, 62
macro, 5:174, 183
passing, 3:195, 196

Parametric equations, 2:87, 88, 89, 91
describing epicyeloid, 1:113, 114
describing hypocycloid, 1:114

Parentheses, as used in programs, 2:229, 230

index

Pari-mutuel system of wagering, 4:93-95
program listing, 4:96-99
Paris, 1:7
Parker, Tommy, 1:39
Pascal keywords, 4:189
Passing {in basketball}, 3;71
Pattern(s), 1:117
barbell weight, 1:118
circles, 1:118
dinosaur, 1:118
human eye, 1:118
rose petal, 1:117
running dog, 1:118
running horse, 1:119
Snoopy the dog, 1:118
stylized Darth Vadar, 1:118
stylized eagle, 1:118
Patterns program,
description of, 1:117, 118, 119; 3:91-92
program listing, 1:119: 3:93
PC board(s), 3:100, 101, 152; 8:118, 137; 9:95, 99
PEEK(s), 2:192, 256: 3:154, 156, 212-213, 214, 218; 4:49-50,
71, 147, 151-152, 153, 154, 155-156, 167, 168, 170, 199;
5:16: 6:86; 7:75, 97, 176, 177: 8:85, 96, 98, 155, 156, 157,
165; 9:53, 72, 81, 122, 126
PEEK function, 9:52
PEEK value, 6:52
Percent sign (%),
signifying integer, 3:214
used to space for strings, 8:10
Perfboard, 2:108
Peripheral, light-sensing, 2:108
Peripheral printer, 1:17
Personal expense account, 9:149-157
program listing, 9:158-163
PERT, description of, 10:12-21
activities, 10:12
critical path, 10:14
duration, 10:14
events, 10:12
network, 10:12
program listing, 10:22-25
Phoneme(s), 8:133, 134, 137, 139
PhotoDarlington, 2:108
Photodetector, 2:110
Photographic proof sheets, indexing,
program description, 6:184-185
program listing, 6:186
Photosensor, 2:112
Phototransistor, 2:108, 111
PlAs, 5:85
PIA ports, 9:97
Pinball game, 7:75
program listing, 7:81-83
Pitch, 10:60
Pixel(s), 1:105; 2:78; 4:147, 148, 149, 152, 153; 8:96
flashing, 9:71
Plan(s), 1:4
stock and sales, 1:3
Platinum, 1:11
evaluating stock items in, 5:6
PLAY option, §:44
Plugs, five-pin, 1:199
labeling of, 1:199

POINT, 4:152; 5:75; 10:55
POINT coordinates, 3:71
Pointer(s), 3:172, 177, 226, 236, 239; 9:80
array, 10:42, 44
array of, 10:43
BASIC, 3:174, 176
data, 3:175
memory, 3:173
stack, 6:194, 198
string, 8:112
POKE(s), 1:105, 106, 109; 2:77, 80, 81. 192, 222, 246, 247,
249, 251 3:26, 138, 154, 156, 165, 172, 173, 175, 176,
192, 214, 216-217; 4:63, 147, 148, 149, 150-15], 152,
153, 154, 197, 200; 5:22, 23, 63, 89, 147, 148, 165, 171
6:36, 52, 112, 192, 197, 260, 261; 7:65, 75, 93, 97, 119,
131, 166, 176, 177, 191, 193, 228: 8:74, 85, 90, 98, 108,
155, 184; 9:53, 81, 103, 123, 197, 199, 200; 10:57, 64, 74,
94, 117
compared to PEEK, 3:214, 216
compared to PRINT @xxxxx, CHR$(cec), 4:151
converting to PRINT, 4:152
use with graphics, 3:217-219
using with PRINT, 4:155
using with SET, 4:155
POKE address{es), 9:200
Polar coordinate curves, 2:87-88, 92-93
program listings, 2:94, 95-96
Polar coordinate system, 3:91
Poly-packs, 7:161
Port(s), 2:190, 191, 192: 6:136, 138; 9:98, 100, 173
cassette, 3:136, 145: 8:127
cassette output, 8:71, 73
cassette tape, 4:119
expansion, 4:79, 88; 9:99: 10:107, 110
input, 2:191: 4:119; 10:86
input and output, 1:183, 184, 186, 187, 188, 190, 191
170, 2:99, 100, 186, 189; 3:146; 4:88; 5:89; 6:138; 9:104
103, 167
memory mapped /0O, 5:138
Model ITI /0, 9:167-170, 172-175
output, 2:191: 5:136; 6:137, 138
parallel, 2:20-21, 37, 185, 186, 189
parallel input, 5:127. 131
parallel output, 5:127, 131
parallel printer, 3:144, 146
PIA, 9:97
RS-232, 6:138; 10:105
RS-232C, 3:154
RS-232C communications, 3:149
RS-232C serial, 3:144, 146
screen printer, 6:189
serial, 4:119
TRS-80 expansion, 2:100
two-bit output, 1:157
Port address, 5:130; 6:198
Port-mapped inputs, 10:105
Potentiometer, 4:125
Power series approximation, 4:136
used to calculate cosine, 4:136
used to calculate natural log, 4:136
used to ealculate sine, 4:136, 141-142
PPI, 8255, 9:95
Precious metal markets, 1:7
daily spot prices of, 1:7

202

index

inventory of, 1:9
Precious metals, 1:7; 5:3
buyers, 1:8
evaluating stock items in, 5:6
program listing, 1:13-16
weighing, 1.7
Precision,
using logarithms, 9:180-182
using SGN function, 8:179-180
Precision in caleulations, general discussion of,
2:232-233
double, 2:232, 233
single, 2:232, 233
President, 1:78
President’s advisors, 1:78
Price, retail, 3:15
Prime interest rate, 9:15
Prime number(s),
definition of, 5:153
how to caleulate, 5:153-155
program listings, 5:156-158
Princess, 1:57, 58, 59, 60
Principal, 1:23
PRINT, 1:105; 2:198, 213, 214, 222, 256; 3:192, 194, 195,
219: 4:147, 148, 150, 153, 189; 5:21, 76, 113, 115; 6:85,
185: 7:228; 8:27, 87, 88: 9:21, 25; 10:146
converting to POKE, 4:152
graphics, 1:109
PRINT@, 2:62, 77, 114, 115, 219, 221, 222; 3:70, 71; 4:148,
150, 151, 152, 153; 6:92, 108: 7:93, 94, 95, 96: 8:86;
9:71: 10:70, 71, 74, 77, 146
converting to POKE or PEEK, 4:153
PRINT@ position, $:73
PRINTCHRS, 4:148, 151, 152, 153, 154, 166, 167; 8:86, 88,
157; 9:223
PRINT CHR$(23), 10:129, 130
Printed circuit board, 3:141: 7:112; 9:167
‘TRS-80, 10:106
Printer(s), 4:11%; 6:138
Axiom, 10:129
Epson MX.80, 6:246; 7:127-128: 10:137, 141, 142
memory, 6:195
modification of, to facilitate using various types of
paper, 1:243-245
Okidata Microline-80, 9:136
parallel, 9:3
peripheral, 1:17
serial, 3:227
Printer driver routine, 8:183
PRINT ERL, 3:219
Printing professional looking forms, 1:243-245
PRINT location, 4:154
PRINT#1, 4:107, 172
PRINTY# - 1, 3:199-200; 4:107, 121; 10:145, 146
Printout(s), 1:9; 2:16, 215; 3:164, 196
Print routines, 3:196
Prints, 1:10
PRINT spaces, 7:95
PRINT statement, 7:93, 131; 9:21, 29, 38, 81, 83
PRINT STRING statements, 1:107
PRINTTAB, 2:62, 214, 218, 219, 222; 10:146
PRINT USING, 2:61, 62, 230; 5:115; 8:9, 13, 14; 9:182
formatting with, 8:15
Problem-solving, 4:27

Process, planning, 1:3
application, 1:3
Processor Technology SOL system, 3:152
Products company, consumer, 1:3
Profit(s), 1:3, 4
Program(s), 1:4, 7, 9, 10, 17; 2:81, 82, 103, 257; 3:181, 184
assembler, 8:109, 112; 9:200
assembly-language, 2:199; 4:199; 5:155; 7:195: 8:91, 183;
10:129
BASIC, 2:2, 5, 198, 199, 245; 3:26, 137, 144, 171, 172, 173,
175, 176, 177, 209, 213, 220, 226; 4:83, 122, 155, 185,
186, 189, 197: 5:3, 21, 89, 138, 139, 149, 153, 154, 155,
165, 166; 6:143, 190, 212, 227, 245, 247, 253, 255, 260;
7:116, 193, 194, 210, 212, 218, 219, 226; 8:72, 75, 90, 98,
108, 110, 128; 9:71, 79, 81, 101, 103, 173, 174, 175, 197,
198, 224; 10:58, 64, 75, 76, 77, 88, 94, 105, 145
BASIC interpreter, 4:185
BASIC real-time game, 4:147
BASIC with machine-language routine, 2:3
benchmark, 2:191
clearing, 1:277
CMD, 4:173
crash-proof, 1:235
debugging of, 2:21; 4:5
Disk BASIC, 8:115; 9:117
execution of, 2:3
expansion of, 2:38
FORTRAN, 3:179
graphics, :71, 82
high-level language, 6:227
HONESS, 3:182, 187
infinite loop, 3:182
information to be repeated in, 1:17
invoice, 1:17
Level 11, 5:21; 6:184; 8:115
loading BASIC instructions, 1:218
machine-code, 1:213, 221; 3:216-217, 218-21%; 6:133:
8:85, 87, 88
machine-language, 1:107; 2:101-102, 192, 198, 199; 3:173,
174, 175, 176, 177, 212, 216-217: 4:174, 197, 199: 5:89,
138, 148, 165, 170; 6:192, 227, 229; 7:115, 196, 226:
8:98; 9:183: 10:94
machine-language driver, 10:85, 87
menu, 4:172
modules in 2:78, 81
music, 3:26
object, 9:183
recording, 1:222
source, 9:100
SYSTEM, 3:176
TRCOPY, 4:79, 83
TRS-80, 9:71
writing sample, 1:201
Programming Techniques for Level 11 BASIC (Barden), 6:111
Program statements, 4:27
Program variables, 9:72
Project evaluation and review technique, se¢e PERT
Projectile motion, 10:29-30
horizontal component of, 10:29-30
program listings, 10:31-33
vertical component of, 10:29-30
PROM(s), 6:140, 141, 142, 143, 144, 191; 9:93, 94
program for storing TRS-80 utilities, 6:131-145
program listings, 6:146-153

203

index

PROM card, 6:131
PROM programmiers, 3:144
Property, personal, 2:162
directions for program use, 2:162-166
programs for keeping track of, 2:167-181
Pseudo-ops, 6:237
Puzzles, word [inder,
description of program, 4:62-65
program listing, 4:66-68
Pythagorean theorem, 4:28
Queen Rama's Cave game, description, 8:61-64
program listing, 8:65-70
Quest, 1:57
Question and answer game program.
directions for writing, 1:226-237
program listing, 1:238-239
Quick Printer 11, 1:51
Radio Shacks, 9:157
Rucing car, computer radio controlled, 1:157
program description, 1:159
program listing, 1:161
switching arrangement schematic, 1:158
switching arrangement to use two channels, 1:157
using two channel controller, 1:157
Radial line drawing, 3:92
Radians. converting degrees to, 2:231
Radian value, changing degree value to a, 3:91
Radio amateurs,
programs for. 2:146-149. 197-199
program listings, 2:152-161. 202-207
Radio controlled lawn mower, 1:160
Radio Shack, 1:127. 209, 217, 221; 3:97, 133: 4:185;
5:16, 89, 137: 6:93, 125, 191, 203, 218, 236, 239,
246; 7:161, 164, 192, 209; 8:105: 9:195: 10:86, 137
Radio Shack Blackjuck program, 1:218
Radio Shack calibrated dial knob, 1:243
Radio Shack Color Computer, 10:93
Radio Shack CTR-41 cassette recorder, 3:140, 141
Radio Shack Dancing Demon program, 4:119, 121
Radio Shack disk drive, 1:123
Radio Shack Editor/ Assembler (EDTASM), 2:245; 3:133, 228,
5:138, 154: 6:236
modified for the Model 111, 7:191-196
madified for the Model 111, program listings, 7:197-208
Radio Shack expansion interface(s), 3:144, 146, 151, 156;
6:131; 9:99
Radio Shack flyer, 4:3
Radio Shack Going Ahead With Extended Color Basic, 10:72
Radio Shack Host program. 2:256
Radio Shack KBFIX program, 3:218; 5:165
Radio Shack Level 1 Reference Manual, 1:202
Radio Shack line printer, 5:138
Radio Shack Line Printer 11, 5:99
Radio Shack lowercase modification, 8:109
Radio Shack manuals, 4:166; 9:195
Radio Shack Micracomputer Newsletter, 1:42
Radio Shack modification to cassette player, 5:171
Radio Shack perforated boards, 1:184
Radio Shack Quick Printer 11, 9:157
Radio Shack RENUM, 2:81
Radio Shack RS-232 board, 3:227
Radio Shack BS-232 Interface Manual, 2:957
Radio Shack store, 4:119; 6:135; 8:133
Radio Shack stores in Ocala, 1:39

Radio Shack tape assembler, 10:140
Radio Shack T-BUG monitor, 5:159
Radio Shack TRS-80, see TRS-80
Radio Shack TRS-80 Editor/Assembler Operation and
Reference Manual, 1:179
Radio Shack warranty, 3:100
RAM(s), 1:106, 107, 108, 178, 209: , 247, 256 3:15, 165;
4:55, 72, 166, 167, 199; 5:138: 6:140, 192: 7:107, 191,
194, 210, 214: 8:105, 106, 155, 169, 183, 184; 9:93, 103:
10:3
BASIC reserved, 4:186
dynamic, 3:152
memory address of, 4:150
reserved, 4:73
video, 9:81
RAM board, 3:152
S-100 16K, 3:151
static, 3:145
RAM card, 3:156
RAM chip(s), 9:81
static, 6:131
RAM storage, 10:95
Random access files, 9:127
Random code generator, 4:49
RANDOM distribution, 6:218
Random distribution graphics,
program description, 6:218-224
program listing, 6:225-226
Random file, 1:11
RANDOM function, 10:41
Random letter(s), 4:63
array of, 4:62
Random maze generator, 3:60
Random number(s), 2:35, 60, 61, 211. 3:68, 69, 70; 4:55,
63, 134
Random-number generator, 4:49
Ransom, 1:58
Rats, 1:58
RC filter networks, 3:97
READ, 3:4, 100, 172; 4:63; 6:253; 9:21
READ/DATA, 6:108; 8:27
READ flag, 8:89
READY message, 9:197, 223
READY prompt, 3:176, 240; 6:192; 8:27
Real-Time clock, 3:240
Real-time operator interaction, 10:55
Rebate of interest on loan, 1:25
Re-boot, 1:201
Receipts, printing of, 3:13
Record/play head. 1:220
Recorder, 1:216, 218: 4:120
cassette, 1:221; 7:164: 8:73, 127; 9:21: 10:93
reel-to-reel, 1:217
tape, 4:121; 10:145
Recorder motor, 1:217, 218
Records, deletion of, 2:5
Rectifier, 7:113
half-wave, 3:97
Rectifier circuit, 3:135
Reed relay, 2:100, 191
Reed switches, 6:191
Reel-to-reel recorder, 1:217
Reflex game, 7:74
program listing, 7:76-77

204

index

Registration of voters,
program description, 6:10-12
program listing, 6:13-32
Regression analysis, 8:3
Regulator circuit, 3:97, 98
Relative weakness in biorhythm cycles, 1:162
Relay,
cassette control, 3:136
recorder, 4:119, 121
reed, 2:100, 191
Relay module, 1:193
Relay program, description of, 1:188, 191, 195
REM(s), 1:9; 3:25; 5:67, 149: 7:214; 8:87, 91, 123; 9:21, 123
REMark(s), 2:82, 132: 3:186: 5:63, 64; 6:10, 86: 7:214:
9:122, 197: 10:117
Re-numbering, 1:235
Renumbering BASIC program lines, 3:236-240
program listing, 3:241-246
Renumbering program for Level 1, 7:209-219
program listing, 7:220-225
Reorders, 3:13
Repeat-key action, 2:78, 223
Replay volume, 1:219
Report printing, 2:18, 19
Reports, 1:3
RESET, 1:105; 2:77, 112, 233, 234; 4:27, 71, 87, 147, 148,
152-153: 5:75; 7:93: 8:27, 96, 97: 9:44, 71; 10:55, 74
RESET button, 2:223, 246: 3:138, 155, 176, 209, 216; 4:4, 7:
7:110, 191; 8:186
Resistor(s), 2:108, 109, 117 3:98, 100, 140, 141: 4:119
pull-up, 4:89; 9:170
RESTORE, 5:3; 9:12
RET, 10:146
Retail, 1:3
Retail business, 1:17
Retailer(s), 1:3, 4
Retirement, planning, 10:98-100
program listing, 10:101-102
Retrospective simulation, G:4
RETURN, 3:194, 195; 8:52; 9:21, 38, 1498
Reverse video hardware modification, 5:92-95
Rhodonea, 2:87, 92
programs to generate, 2:94, 95-96
Ribbon cable, 3:150, 152; 4:88. 124; 7:112: 9:99, 105: 10:106,
104, 110
Right triangle, caleulating the hypotenuse of, 2:231
program listing, 2:239
RIGHTS, 2:214, 215, 217, 218; 9:80
RND, 2:211; 5:76; 10:50
Roadrace game, 7:74
program listing, 7:76
Roll, 10:60
ROM(s), 1:174, 175, 177, 178, 202; 2:80, 81, 245; 3:133, 134,
135, 136, 138, 202, 216: 4:71, 151, 186; 5:155, 166,
170; 6:192; 7:107, 192, 195, 214; 8:103, 109, 110, 157,
183; 9:93, 94, 183; 10:146
BASIC, 4:79, 83; 5:138; 7:196, 210; 8:155
Level I, 7:216
Level 11, 7:65; 8:110
TRS-80, 3:202
ROM BASIC, 6:105
ROM chip, 8:133
ROM driver address, 9:195
ROM routines, 2:245, 247; 4:191; 5:138

ROM software, 3:133
Rose(s), 2:87, 92
programs to generate, 2:94, 95-96
Roulette, 7:65-66
program listings, 7:67-73
Rounding function, 2:37, 232-233
RSET, 2:251: 4:71, 72: 7:175-176, 177; 9:79, 80-81, 83, 85
RSET graphics, 9:82
RS-232 board, 3:227
RS-232 Electric Pencil, 6:191
RS-232 interface board, 2:256
RS-232 system, 2:257
RTTY, send and receive, in BASIC, 4:122-127
program listing, 4:128-130
Rubik's CubeT™, 10:37
Bubik's CubeTM manipulator, 7:84-87
program listing, 7:88-90
Rule of 78, 1:23, 24, 26, 28
defined, 1:24
RUN, 3:177, 214, 240: 4:62, 71, 122, 188; 8:12, 27, 52,
124; 9:21
Ruth, Babe, 1:88, 95
Revalue of insulation, 3:118
St. Peters High School, 1:49
Sales, 113, 4
deseription of program to keep track of, 3:107-110
program listing to keep track of, 3:112-117
Sales forecast, 1:3
Sales plan, 1:3, 4
Sales tax rate, 3:14, 17
Satan’s Square game, 10:37-38
program listing, 10:39-40
Satyrs, 1:58, 59
SAVE, 1:11; 6:227, 246, 248; 7:131, 132
“METAL/BAS,” changing to CSAVE "METAL" for
cassette users, 1:11
Savings bond numbers, 2:162
Seale, jewelers, 1:7
Scarne on Cards, 1041
SCIENCES2, 10:43
Scientific computational files, gencrating and typing,
progrram description, 6:253-261
program listing, 6:262-264
Scoreboard, 3:72
Sereen displays, 1:11
Sereen formatting, 2:62
Screen status byte, 10:129
deseription of program, 10:128-130
program listings, 10:131-132
Seripsit, 9:79
modifying, 10:137-138, 140-142
program listings to modify, 10:143-144
SCRIPSIT, 2:246: 4:175
Scrolling, 1:220; 5:16; 7:6: 3:81, 84
automatic, 1:12; 9:81, 83, 223
horizontal, $:83
prevention of, 8:11
vertical, 9:83
Serolling, how to control, 9:223-224
program listings, 9:225-226
Season (retailer's), 1:3, 4
Sectors, disk, 1:123
Selectric, 6:192, 194, 198, 200
interfucing to TRS-80, 6:191, 198, 200-203

205

index

program description, 6:192, 194-198
program listings, 6:204-207
Selectric code, 6:195, 196, 200
Selectric correspondence code, 6:191
Semicolon(s), as used in programming, 2:213, 214: 10:77, 117
Sequential file(s), 1:11; 4:171, 172, 173; 9:127
Sequential search, 4:190
Serial data, 5:134; 7:161
Serial interface,
adding to TRS-80, 7:161~168
program listing, 7:169
Serial number(s), 2:162, 165
SET, 1:105, 109; 2:77, 82, 112, 233, 234; 3:71, 91, 92,
197, 217; 4:27, 71, 147, 148, 152-153; 5:75, 76;
7:93, 94; 8:27, 96, 97; 9:44, 71: 10:55, 56, 74
converting to PRINT or POKE, 4:153-154
slowness of, 1:105, 106
73 Magaczine, 2:199
741585, 6:203
7418138 chip, 9:97
7415145 chip, 9:173
SGN function, 9:179
SHIFT @, 9:62, 223
SHIFT key, 9:84
Shift key, differences between Model 1 and Model 111, 2:246
Shocks, how to avoid, when working with high voltages,
8:119
Shooting (in basketball), 3:71
subroutine for, in program, 3:70
Shot (in basketball), 3:71
SlAs, 5:85
Silver, 1:7, 9, 10
coins, 1:8
computing the cost, 5:3, 6-9
content, 1:7, 9
foreign coins, 1:9
investing in, 5:3
pure, 1:7
sterling, 1:7
U S. coins, 1:8, 9
SIN function, 2:82, 234
Sine, 9:36; 10:62, 64
Sine funetion,
from Level I manual, 4:140-142
program listing, 4:145-146
Sines and cosines, law of, 4:28
Sine wave, graph of, 5:74
program listing, 5:80
16K Level 11 machine, 8:52
16K machine, 4:64, 187 9:224
6800 language, 2:199
64-character format, 10:130
64-character mode, 10:129
Skedoodle, 10:105
Slamdunks (in basketball), 3:71, 72
Slave girls, 1:58
Slides, program to keep track of, 8:123-124
program listing, 8:125-126
Slide show program, 5:63-67
program listing, 5:68-73
Slot machine, program description, 6:92-93
program listing, 6:94-102
Small Systems Software (SSS). 3:164
Small Systems Software RSM-1S, 3:136

Snakes, 1:58

SN error message, 3:209

Snooper/snubber, electronic circuit, 1:128, 129
description of, 1:127
testing of, 1:130

Social Security income, 1:144

Sockets, European DIN-type, 1:199
labeling of, 1:199

Softball statistics program, description of, 5:99-102
program listing, 5:103-107

Soft kev(s), 2:16, 19, 20

Software, as used with light pen, 2:112-113
operating system, 3:148

Software driver, 6:191

Software model of logic cireuit, 10:121-125
program listing, 10:126-128

Solenoid(s), 6:198, 200, 201, 202

$-100 board, 3:156

S-100 bus, 3:144, 145, 152, 157; 5:89

$-100 motherboard, 3:144, 145

S-100 16K RAM board, 3:151

Sort(s), 4:170-171
bubble, 4:171; 6:211, 212
exchange, 6:211, 212
machine-language, 4:171-172
machine-language, program listings, 4:179-180
program description, 6:211-212
Shell-Metzner, 4:171
string, 4:171
tree, 6:211-212
use with mailing list, 6:211

Sort algorithm, 4:4

Sort routine, 2:166

S.O.T.P. (seat of the pants) sules forecasting, 1:3

Source code, 3:228; 8:186: 9:224
assembly-language, 10:145
BASIC, 9:100

Source file, 5:174

Source programs, 9:100)

Space bar, 4:147, 155; 8:111

Space compression codes (SCCs), 2:162

Space Invaders (Spectral Associates), 10:69

Space mission game,
program deseription, 6:85-86
program listing, 6:87-91

Spectral Associates, 10:69

Speech synthesizer, adding to TRS-80, 8:133-139
program listings, 8:140

Spiders, 1:58, 59

Spirograph designs, values for, 1:115

Spirograph patterns, 1:113: 2:92-93
program deseription, 1:114, 115
program listings, 1:116; 2:95-96

Sporting News, 1:88

Sporting News Dope Book, 1:95

Spot prices, 1:10

SPST (single-pole single-throw) switch, 3:101

SQR, 2:231

Square root(s), 2:231, 236; 5:153, 154
in Level 1, 5:155

Square root function from Level I manual, 4:133-134, 140
program listing, 4:143-44

Square wave function, 8:51

SSS TRS232 interface, 3:166

206

index

Stack, 3:171; 4:73; 6:142, 196, 239
Stack arrays, 10:42
Stack pointer, 6:194, 198
Standard Catalog of World Coins, 1:9
Standard of Measurement, 1:7
Star Dreck game, deseription of, 5:46-47
program listing, 5:48-61
Star Trek game, as used with light pen, 2:114
Static RAM board, 3:145
Stein, Frank N., 3:209
STEP instruction, 2:230
Sterling silver, 1:7
weighing, 1:7
Stick-80, 6:189, 190
Stock, 1:3
levels of, 1:4
Stock market predictions, 8:3-6
program listing, 8:7-8
Stock number(s), 3:14, 15, 16, 17
Stock portfelio. evaluating, 8:9-15
program listing, 8:16-23
Stocks, trading, a technical approach, 7:3-7
program listing, 7:8-12
Stocks and bonds in income ledger program, 1:144
Store(s), 1:3
Story problems for children, 2:35, 37
directions for program use, 2:36-37
program listing, 2:41-44
STR$, 2:215, 216, 218; 3:200, 201
String(s), 1:215; 2:214, 215, 2186, 217, 218, 223, 258, 259;
3:199-200, 202, 211; 4:62, 169, 170, 172, 188, 189; 5:23;
6:85, 185, 246: 7:130, 176 9:51, 71, 73, 74, 80, 82, 84,
85, 122, 197, 199: 10:55, 64, 74, 75, 76
address of, 9:81
BASIC, 2:131, 249
concatenated, 2:217
concatenating, 3:200: 7:96
dollar sign ($) signifying, 1:212, 213, 214, 216, 227, 228,
229, 231, 232, 236, 245: 2:79
dummy, 6:112
graphics, 1:106; 2:80, 82; 9:82
input, 5:16
input line, 5:179
lowercase, 8:110
LSET, 9:84
null, 3:28; 9:82, 83; 10:77
packed, 10:74
packing, 3:200-201
String array(s), 2:36,217: 4:170, 171; 7:173, 177; 9:51. 82,
124; 10:43
String characters, 6:168
String commands, 7:180
String comparison, 6:184
String duta, 2:166
String functions, 9:53, 80
String graphics, 2:162; 9:71
String handling, 1:214
String input editing, 4:191
String manipulation, 4:62; 9:79
String packing, 2:77; 7:93
String pointers, 8:112
String problems, 7:173-177
program listing, 7:178-179
String space, 1:236; 2:114, 131; 4:123: 5:74; 6:184; 7:130, 173,

174, 175: 9:53, 79. 82, 123, 124
reserving in memory, 1:213
String storage, 2:162; 6:168
String storage space, 4:5, 64
STRINGS, 2:162, 218, 219; 3:193, 210: 7:96; 8:162, 163; 9:80,
125, 127
String variable(s), 1:212, 216, 229, 236: 2:36, 116, 232, 233:
3:193, 196, 200, 218; 5:21; 7:173, 176, 216: 8:71, 72,
73, 75: 9:21, 31, 53, 122, 125, 126, 151, 200: 10:117
Student class schedules,
program descriptions, 6:35-39, 52-55; 7:21-23, 44-47
program listings, 6:40-51, 56-81: 7:24-43, 48-61
Students’ rating program, goals of, 1:50
program listing, 1:52-54
summary form, 1:50
Subroutine(s), 3:194-196; 4:6, 62, 63, 140, 171: 10:56
importance of having a stock of, 3:211-212
INKEY$, 9:124, 125, 128
machine code, 3:212
square root, 4:134
to handle graphics, 3:70
Subscript(s), 3:196: 6:211: 9:124, 125
Subscript number, 3:202
Subseript variable, 9:125
Subtraction, 2:229; 3:179: 8:28; 9:187
binary, 9:188
decimal, 9:187-188
hexadecimal, 9:189
octal, 9:188-189
programs for children, 2:35, 41-44, 46, 54; 5:31-33:
8:29-40), 42-49
two's complement, 9:189-191
Successive approximation, binary approzch to, 5:111, 114
Supermaze game, description of, 3:57-60
program listing, 3:62-66
Switch(es),
CMOS quad bilateral, 4:119
DIP, 3:152, 164; 6:198, 200
DPDT, 1:127, 128, 129
kevhoard, 3:133, 134
normatly-open push-button, 4:89
reed, 6:191
SPST (single-pole single-throw), 3:101
Swaboda, 1:162
Swords and sorcery game, program listing, 1:61-77
Symbols,
multiplication (s}, 3:25
zevo (0), 3:25
Syntax error(s), 3:209, 219; 4:185
SYSTEM, 4:73, 82; 6:140: 7:164, 210; 8:112, 184
SYSTEM command, 4:80, 188, 191; 7:191, 193, 195; 8:186;
10:74
System commands, 4:27
System disk(s), NEWDOS, 10:140
SYSTEM disk, 3:155
TRSDOS, 3:156
System file, 9:205
SYSTEM format,
how to save BASIC programs in, 5:165-166
program listing, 5:167-169
SYSTEM-format tapes, 7:193, 194, 195
SYSTEM programs, 3:176
SYSTEM prompt, 3:176
SYSTEM tape(s), 3:171, 176, 216; 4:120; 6:235, 240; 7:196,

207

index

212; 8:85, 169; 9:224
Level 11, 7:210
making a backup copy, 8:175-176
making a backup copy, program listing, 8:177-182
Radio Shack's, 7:210
TAB instruction, 3:196, 197
Tabulating in BASIC programming, 1:204, 205
by using PRINT@ command, 1:207
Tabulation, 3:197-198, 212
program listings, 3:206
Tandy, 4:167
Tandy's word, 1:199
Tangent, $:37
Tape recorder, 4:121; 10:145
Tape-to-disk transfer routine, 8:169-171
program listing, 8:172-174
Target game, 7:74
program listing, 7:79-81
Taxable income, 1:144, 145
Taxes,
caleulation of, 3:13
deferral of, on dividend income, 7:13-15
deferral of, on dividend income, program listing, 7:16-18
Taylor Series approximation, 4:136
T-BUG, 1:108, 246, 248, 249: 2:198; 3:171, 176, 236; 5:149;
7:209, 210, 212: 8:98: 9:226
Team(s), 3:67, 68, 69, 72
Telephone exchange between TRS-80s, 2:256
directions for program use, 2:256-259
program listings, 2:260-263
Teletype ™, 1:173, 177, 178: 7:161, 167, 168
interface kits, 1:173
Teletype TM printer, how to get professional looking
listings with, 8:183-184
program listing, 8:165
Television,
creation of images on, 2:112
portable, 3:97
Templet, 1:123
Terminals, serial, 4:119
Terry, Bill, 1:88
Test, validity of, as predictor of on-the-job
effectivencss, 1:40
possible outcomes of, 1:41
to measure effectiveness of instruction, 1:40
Testing memory devices, 2:499
BASIC program listing, 2:104-105
BASIC/machine-language combined program listings,
2:105-107
directions for program use, 2:99-101
hardware, 2:99-100
Teweles, Richard], Harlow, Charles V., and Stone,
Herbert L., The Commaodity Futures Game: Who Wins?
Who Loss? Why?, 7:3
Text, how to store and recall, 5:147-149
program lisings, 5:150~152
THEN, 3:240.5:64; 7:209, 214, 216
Theorem, Pythagorean, 4:28
32-character format, 10:130
32-character mode, 10:129
32K machine, 9:206
32K RAM machine, 9:197
Three-pointers) (in busketball), 3:71, 72
Three-state outputs, 2:99

Tie Attack game, description, 2:67, 69
program listing, 2:70-74
Tie fighter(s), 2:67, 69
Time comparison of graphics methods, table, 1:109
Titus, Rony, Larsen, and Titus, 8080/8085 Software
Design, 3:133
TM (type mismatch) error message, 9:180
Transactions, tally of, 3:13
Transforms, dimensional, 10:55
Transistor(s), 2:100, 108; 3:97, 150: 4:120; 10:86
NPN silicon, 3:98
regulator, 3:98
Transistor circuits, 3:97
Traynor, Pie, 1:91, 92, 94, 95
TRCOPY program, 4:79, 83
Triac, 5:137
Trim pot, 8:118, 136
Trisectrix, 2:87
program to generate, 2:94
Tri-state buffer, 2:189: 5:87: 10:106
Tri-state driver, 5:88
Tri-state gates, 2:189
Trolls, 1:57, 58, 59
Troy ounce(s), 1:7, 8, 9, 10
Troy ounce content, 1:8, 12
TRSDOS, 4:166, 172, 187: 6:141, 247; 7:226; 8:128; 9:3,
117, 195, 186, 205; 10:140, 141
TRSDOS DEBUG wtility, 10:140
TRSDOS disk, 9:206
TRSDOS manual, 6:245
TRSDOS 2.1, 3:227
TRSDOS 2.2, 3:227-228
TRSDOS 2.2, 2.3, 1:126
TRSDOS 2.3, 6:36; 7:44: 9:195
TRS-80, 1:39, 50, 51, 95, 113, 117, 133, 134, 144, 157,
199, 204, 207, 208, 212, 216, 218, 219, 222, 243;
2:3, 112, 117, 186. 212, 213, 230, 232, 256; 3:25,
58, 67, 97, 133, 144, 152, 154, 156, 157, 164, 174,
193, 199, 213: 4:62. 79, 80, 82, 85, 87, 120, 121,
140, 149, 166, 167, 174, 185, 197: 5:67, 85, 89, 92,
128, 130, 131, 136, 138: 6:126, 136, 138, 142, 157,
185, 189, 194, 218, 227, 239, 246, 248, 253, 255,
258, 260: 7:84. 94, 107, 108, 131, 162, 164, 173,
181, 209: 8:3, 5, 6, 11, 27, 50, 51, 71, 127, 135,
155, 161: 9:51, 59, 69, 71, 72, 168, 197; 10:49, 55
60, 64, 117, 118
adding a serial interface to, 7:161-169
addition in, 9:183
cassette player relay, 1:127
characters to a line, 1:229
clock speed, 1:108
commands of, 3:210
detecting of errors, 3:209
division in, 9:183
entering a machine-language program into, 3:172
graphies, 1:57, 105
graphics capabilities, 1:105
high resolution mode, 1:105
in room temperatures, 1:199, 200
interface unit for, 5:127-140
interfacing to the 5-100 bus, 6:144
interrupts of, 4:133
Level I, 4:133
Level 1 4K, 1:88, 163

208

index

Level 11, 6:105, 235, 236

Level 1Y BASIC program, 1:26, 35, 36, 38
Level I 16K, 1:49

manuals, 1:38, 201

math capabilities of, 2:228-237
memory inside, 1:202

memory mapping of, 3:217

Model I, 6:111, 125, 245; 7:3, 119
Model I Level 11, 1:199; 7:93; 10:886, 105, 121
Meodel I, 7:119

Model ITI Level 11, 16K, 6:92, 125
Model 111 16K, 5:99
multiplication in, $:183

numeric keypad on, 6:125
powering-up directions, 1:200
reserving memory in, 3:171

SIN function of, 2:234

16K, 5:159; 6:4

16K Level 11, 4:100: 6:165: 9:136
16K to 48K, 6:157

spooler system for, 3:225-235
storing numbers three ways, 1:236
string problems of, 7:173-179
string variables with, 3:218
subtraction in, 9:183

Technical Manual, 1:179

32K Model I, lowercase, $:117
trigonometrical functions of, 2:231
use of machine code in, 3:212

TRS-80 Assembly Language Progranming (Barden), 2:151;

5:154
TRS-80 BASIC, 2:216, 235, 258: 3:193: 8:10, 11, 15
TRS-80 BASIC Computer Games, 2:82
‘TRS-80 clock control board, 2:131
TRS-80 code(s), 3:212, 213
TRS-80 Color Computer, 10:68
TRS-80 Disk BASIC, 10:41
‘TRS-80 Editor/Assembler, 3:135
TRS-80 expansion bus, 9:98
TRS-80 expansion edge connector, 5:89
‘TRS-80 expansion interface, 4:88
TRS-80 Expansion Interface Handbook, 3:157
TRS-80 expansion port, 2:100
TRS-80 expansion system, 3:157
‘TRS-80 graphics, 5:76; 7:128, 131
TRS-80 Level 11, 4:49: 5:10, 127
TRS-80 Level II BASIC, 4:199; 8:9
TRS-80 Level IT Disk BASIC, 10:30
‘TRS-80 manual, 2:218
TRS-80 microcomputer, 5:3

TRS-80 Microcomputer Technical Reference Handbook,

3:157
‘TRS-80 Microcomputing News, The, 6:246
‘TRS-80 microprocessors, 2:259
‘TRS-80 Model I, 2:249; 8:73, 105, 10:3, 9, 55, 68, 85
Level 11 16K, 10:55
TRS-80 Model 1 and Model 111,
BASIC workspace compared, 3:171
machine-language routines compared, 3:172
use of Editor/ Assembler compared, 2:245-247
TRS-80 Model 1 16K Level 1, 9:22, 31
‘TRS-80 Model 111, 2:249; 9:3; 10:3, 9

TRS-80 Model 111 Editor/Assembler conversion, 2:245-247

program listing, 2:248

TRS-80 Model 111 Service Manual, 9:167
TRS-80 Plug'n Power Controller, 8:127
TRS-80 printed circuit board, 10:106
‘TRS-80 program, 9:71
TRS-80 ROM, 3:202
TRS-80 screen, 10:60
TRS-80 screen display , 8:11
TRS-80's edit facilitics, 1:228
TRS-80 single disk system, 5:183
TRS-80 technical manual, 2:112; 5:92
TRS-80 Video Display Worksheet, 6:107
‘TRS-80 Video Worksheet, 4:27
TRS232 Printer Interface, 3:164
T-states (clock cyeles), 1:108
TSTEP module (Allen Gelder & Co), 5:159
TTL devices, 7:163
TTL output gate, 5:89
TTY, 5:134, 139; 7:166
TTY interface board, 5:127, 131-136, 138
program listings, 5:141-143
software for, 5:138-139
TTY kevboard, 7:167
Turnover (ratio of stock), 1:4
“Tutorial mode,” programs written in, 1:137
Tutorial program listings, 1:225
TV Typewriter Cookbook (Lancaster), 3:157
20-meter band, 4:126
2708, 6:136
Twa-bit output port, use in computer control of racing
car, 1:157

Twao-channel racing car, switching arrangement, 1:157, 159

Two's complement, 9:183
used with subtraction, 9:189-191
UART(s) (Universal Asynchronous Receiver/Transmitter),
1:173: 2:256; 3:146, 154; 4:123, 124, 126; 5:132,
133, 134, 135, 138
Intel 8251, 7:161
to convert parallel data to serial, 7:161-168
to convert parallel data to serial, program listing,
7:169
UART circuit, 5:138
Uncle Walter's Masonic ring, 1:7
United States, 1:7, 8,9
gold coins, table, 1:8
gold coins, table of fineness, 1:8
President of, 1:144, 145
silver coins of, 1:8
Universal Asynchronous Receiver/ Transmitter, sce UART
Unshifted (lowercase) letter, 7:119
Untaxable income, 1:144, 145
Uppercase, 4:185: 8:111
Uppercase character(s), 4:148, 150; 6:194, 196, 202;
8:105, 109, 110
Uppercase (capital) letters, 2:128, 246: 6:192; 7:132
Upper/lowercase typing, 2:125
Uppercase shifting, 6:192
“Ups and downs” in biorhythm patterns, 1:162
U.S. Ambassador, 1:78
U.S. Callbook, 2:146
User [riendly programs, writing, 1:235
USR, 1:108; 2:258; 3:176, 218-219; 5:147, 148, 171; 8:71,
72, 73, 98, 99, 129; 9:198; 10:74
USR argument, 10:76
USR call, 10:129

209

index

USR statement, Level 11, 10:77
Utility control statement, 5:174
Utility routine, 5:174
VAL, 2:216, 217: 3:193, 194, 20}
Validating test(s),
methods of, 1:40
program instructions, 1:41, 42
program listing, 1:43-48
Value{s), 1:7
ASCII, 4:186, 190: 6:195; 8:157, 158: 10:38
PEEK., 6:52
Variable(s), 1:212, 226, 230, 232, 234, 236; 2:36, 37, 78,
125, 190, 211, 212, 214, 229: 3:171, 174, 212: 6:112;
7:65, 1583, 175, 177, 215: 8:62, 63: 9:51, 53, 80, 82,
122, 197; 10:61, 145
array, 8:62; %:14
BASIC, 7:210
defined as integers, 10:56
dimension of, 2:212
double-precision, 9:180; 10:42
integer, 2:232; 3:214; 4:71, 73
list of, 3:25
memory-mapped, 8:97
number, 3:200
numeric, 9:21
numerical, 5:22
program, 9:72
string, 1:212, 216, 229, 236; 2:36, 116, 232, 233:
3:193, 196. 200, 218: 5:21; 7:173, 176, 216: 8:71,
72,73, 75: 9:21, 31, 53, 122, 125, 126, 151, 200;
10:117
subscript, 9:125
subseripted, 2:80, 212
Variable names, 2:211, 212; 3:200, 214
Variable numeric arrays, 9:31

VARPTR, 2:4, 80. 164, 165, 249; 3:217-218: 5:22, 23. 8:71:

9:79: 10:58
VARPTR address, 10:76
VCEO. 3:498
Vector magnitudes. 4:133
Vehicle identification number, 2:162
Vendors, 1:4
Vianello, Ken. 1:35, 36, 39
Video display(s), 4:147
editing on the, 2:125
fluctuation of, 3:97
hew to regulate fuctuation of, 3:97-99
how to save as strings, 4:154-155
program listing to save as strings, 4:158
TRS-80, 9:81
Video Displuy Worksheet, 2:77
Video map, 3:197; 4:155
program listings, 4:159-161
Video memory, 2:246: 3:217: 4:166, 168, 169; 8:96: 9:72:
10:117
Video memory locations, 4:167
Video screen, 2:117; 9:82, 85
VMOS Power FET, 7:164
Voebulary builder, 5:15-16
program listing, 5:17-20
Voice, low resolution, for Color Computer, 10:93-95
program listings, 10:96-97
Voice synthesis, 10:93
Voice synthesizer, adding to TRS-80, 8:133-139

210

program listings, 8:140
Voltage,
AC line, 8:119
supply, 3:98
Voltage regulation of monitor, 3:97
Voltage regulator(s), 2:108; 3:152
Voltmeter, 3:97: 9:99
Voltrax SC-01, 8:133
Volume control of cassette recorder, 1:222
VTOS, 4:166
VTOS 3.0, 3:227
Warter, Hansel Farbble, 1:57. 58
Weighing,
gold, 1:8
silver, 1:7
sterling knives, 1:10
Weight(s),
avoirdupois ounces to troy ounces, 1:7
common, to troy ounces, 1:12
conversion table, 1:10
Wheat, Zack, 1:88
Winning lottery numbers. how to select, 7:153-156
program listing, 7:157-158
Wire wrap, 8:108
Wire-wrap pins, 6:144; 9:95
Wire-wrap techniques, 6:144
Wisconsin, 1:9
Word-finder puzzles,
description of, 4:62, 65
program listing, 4:66-68
Word processor, 2:125
directions for use, 2:125-131
Disk BASIC, directions for use, 7:119-131
Disk BASIC. lowercase modifications for, 7:131-132
Disk BASIC, program listing, 7:133-152
modifications, 2:132
potential problems, 2:131
program listing, 2:134-145
Word matching program for children, 8:28
program listing, 8:41-42
X-axis, 2:92: 4:148, 153; 10:55, 57. 60
symmetry about, 2:236
X-coordinate(s), 2:78, 89: 3:71; 4:71, 72, 73, 133: 6:111;
9:35, 37, 38: 10:29, 56. 62
Xerox stock, 8:3, 4
XOR (exclusive OR) mode, 9:60. 65, 68
Yastrzemski, Carl, 1:95
Yaw, 10:60
Y-axis, 2:92; 4:148, 153; 10:55, 57, 60
Y-coordinate(s), 2:78. 82, 89; 3:71: 4:71, 72, 73, 133;
6:11: 9:35, 37, 38; 10:29, 56, 62
Yerb, Ezekiel, 1:57. 58
Young, Cy, 1:88
Zaks, Rodney, How to Program the Z80, 2:151
Z-axis, 10:60
ZBASIC, 8:97; 10:56, 58. 61, 64, 65
integer math of, 10:60
16K, 10:55, 57
ZBASIC compiler, 10:55
Z-80, 1:108; 3:145:; 5:85, 128, 154, 155, 175; 7:108; 8:98
capabilities of, 5:159, 161
Z-80 assembly language mnemonics, 2:258
Z-80 chip, 5:154
Z-80 code, 7:166

index

Z-80 CPU, 2:186
Z-80 disassembler, 4:199-200
program listing, 4:201-213
Z-80 instruction set, 4:199
Z-80 mnemonics, 3:135
Zener diode(s), 1:127; 3:98; 6:135, 1.36; 7:113
Zero element, 3:58
Zero flag, 1:246, 247, 248
Zilog, 1:108; 5:159
Zilog standard Z-80 mnemonics, 2:116
Zurich, 1:7

INDEX COMPILED BY NAN McCARTHY

211

Wayne Green Books

Put your BASIC knowledge to work for you with this 2-volume
set of TRS-80 Level II BASIC programs.

Gain a better understanding of the elements and techniques in-
volved in programming.

Annotated BASIC’s uniquely designed format breaks each pro-
gram down for you to include:

@ initial documentation and instruction

@ definitions of New BASIC Concepts

® flowchart

® annotations of sections, showing how each part fits into the
whole, and explaining why certain BASIC commands are chosen
over similar ones.

Using the programs as they are or modifying them to sharpen
your programming skills, Annotated Basic is a helpful tool for
any BASIC programmer.

Voiume 1 ISBN 0-88006-028-X 152 pages $10.95
Volume 2 ISBN 0-88006-037-9 136 pages $10.95

WAYNE GREEN BOOKS
Division of Wayne Green Inc. FOR TOLL FREE ORDERING:
[] Peterborough, NH 03458 1-800-258-5473

*TRS-80 is a trademark of Radio Shack division of Tandy Corp.

Wayne Green Books

Daisy wheel quality
without daisy wheel expense.

by
George
Young

You need the quality print that a daisy wheel printer provides but the thought of
buying one makes your wallet wilt. Selectric™ Interface, a step-by-step guide to in-
terfacing an IBM Selectric /O Writer to your microcomputer, will give you that
quality at a fraction of the price. George Young, co-author of Microcomputing
magazine’s popular “Kilobaud Klassroom” series, offers a low-cost alternative to
buying a daisy wheel printer.
Selectric Interface includes:

+ step-by-step instructions

¢ tips on purchasing a used Selectric

¢ information on various Selectric models, in-

cluding the 2740, 2980, and Dura 1041

o driver software for Z80, 8080, and 6502 chips

¢ tips on interfacing techniques
With Selectric Interface and some background in electronics, you can have a high-
quality, low-cost, letter-quality printer. Perals not included.

ISBN 0-88006-051-4 128 pages $ 1 2 . 9 7

WAYNE GREEN BOOKS

Division of Wayne Green Inc. FOR TOLL-FREE ORDERING:
l Peterborough, NH 03458 1-800-258-5473

“TRS-80 is a trademark of Radio Shack division of Tandy Corp.

The real value of your com-
puter liesinyour ability to use it.
The capabilities of the TRS-80*
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books.

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

