ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

VOLUME8

— *Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 8

T
- - - N
AN s s T =
PETERBOROUGH NH 03458

*Trademarks of Radio Shack Division of Tandy Corp.

FIRST EDITION
FIRST PRINTING MAY 1982
Copyright © 1982 by Wayne Green inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect 1o the use of the information herein.

Edited by Kate Comiskey and Katherine Putnam
Proofread by Ann Winsor
Production: Margaret Baker, Gary Ciocci,

Linda Drew, Thomas Villeneuve, Robert M. Villeneuve,
John R. Schweigert, Sandra Dukette, Karen Stewart
Technical Assistance by Jake Commander and Jim Heid
lilustrations by Howard Happ

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green. v

BUSINESS

Business Predictions from the TRS-80
Jerry W. ODell. 3

Stock Valuation
Charles B. Steele. 9
EDUCATION

Practical Applications of Classroom Programs
Ann Rosenberg. 27

Super Curve Fit
William L. Morgan. 50
GAMES

Queen Rama’s Cave
John Corbani. 61

TRS-80 Jukebox
Craig Lindley. 71
GRAPHICS

Instant Graphics for Everyone
Ralph Vickers. i 85

Screen Editor for Graphics Creations
Bruce Douglass. 96
HARDWARE

Lowercase Driver for the TRS-80
John A. Hassell. 105

Minor Monitor Maintenance

Nick Doble......... 115
HOME APPLICATIONS
Can You Find that Slide?

RobertE. Averill., 123
Controlling Your Home with Your TRS-80

Vardeman G. Moore. e, 127

vt

contents

INTERFACE
Speak for Yourself:
A Speech Synthesizer for the TRS-80
David Hucaby. 133
TUTORIAL

Computer Number Systems
And Arithmetic Operations—Part 1

GeneKovalcik. 143
Down in the Dumps: Examining Memory

Allan S. Joffe W3KBM. 155
UTILITY
New Disk Owners’ Delight

Gerald DeConto..........0 i ., 169
Generate

Jim Rastin.15
Professional Looking Listings with a TeletypeTM

Fred M. Conover. i, 183
More Patches to EDTASM

Warren A. Smethurst. 186
APPENDICES

Appendix A. 195

Appendix B. e 196
INDEX 223

viil

Encvclopedia
y Lo%der””

The editors of Wayne Green Books want to help you maximize your mi-
crocomputing time, so they created the Encyclopedia Loader™,

The Encyclopedia Loader is a special series of cassettes that offer the
longer programs in the Encyclopedia for the TRS-80" in ready-to-load form.
Each of the ten volumes of the Encyclopedia provides the essential docu-
mentation for the programs on the Loader.

With the Encyclopedia Loader, you'll save hours of keyboard time and
eliminate the aggravating search for typos. The Encyclopedia Loader for
Volume 8 will contain the programs for the following articles:

Business Predictions from the TRS-80

Stock Valuation

Practical Applications of Classroom Programs
Super Curve Fit

Queen Rama’s Cave

TRS-80 Jukebox

Instant Graphics for Everyone

Screen Editor for Graphics Creations
Generate

More Patches to EDTASM

Encyclopedia Loader™ for Volume 1 EL8001 $14.95
Encyclopedia Loader™ for Volume 2 FL8002 $14.95
Encyclopedia Loader™ for Volume 3 EL8003 $14.95
Encyclopedia Loader™ for Volume 4 EL8004 $14.95
Encyclopedia Loader™ for Volume 5 EL8005 $14.95
Encyclopedia Loader™ for Volume 6 EL8006 $14.95
Encyclopedia Loader™ for Volume 7 EL8007 $14.95
Encyclopedia Loader™ for Volume 8 EL8008 $14.95

(Please add $1.50 per package for postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call (1-800-258-5473).

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp.

BUSINESS

Business Predictions from the TRS-80
Stock Valuation

BUSINESS

Business Predictions from the TRS-80

by Jerry W. O'Dell

Vhere is a mathematical technique called regression analysis which
i allows you to make stock market predictions. On a TRS-80 microcom-
puter, working out the predictions is very simple.

Assume that we have data on three stocks: Xerox, IBM, and American
Motors, as shown in Table 1. I chose Xerox and IBM because they grew and
American Motors because of its poor performance. We will make our
predictions from information that is easily available from public
records—salaries of manufacturing workers in New York City. The question
now is whether we can predict future stock performance from past stock
performance. We'll take the 1958-1966 values and try to predict the 1968
value. The mathematics of regression analysis are complex; so I have not
gone into detail. If you want to look into the subject, see a text such as Elam
McElroy’s Applied Business Statistics (Holden-Day, 1971), Chapter 9.

Manufacturing Xerox IBM American
Date Wage Motors
1958 $2.13 $1.00 $45.00 $11.00
1960 $2.26 $2.00 $90.00 $25.00
1962 $2.38 $10.00 $100.00 $15.00
1964 $2.54 $35.00 $150.00 $15.00
1966 $2.69 $70.00 $170.00 $10.00
1968 $2.98 $95.00 $325.00 $12.00

Source: U.S. Bureau of Labor Statistics, Employment and Earnings Statistics for States and
Areas, 1939/72, and Moody’s Handbook, 1970. Splits were ignored.

Table 1. Basic data

You only have to worry about two things in the program, although it is
full of comments for the person who wants to delve into it. In line 10, you
have to put in the proper number of observations. In the listing, it is five. At
the end of the program, you have to enter the data as shown. When you run
the program, it develops a prediction formula from the first five values,
predicting Xerox stock prices from manufacturing wages. The output is
shown in Figure 1. The output is easy to interpret when you get used to it.
“Correlation” is a statistical term which refers to the similarity of the values

3

business

or how well you can predict from one thing to another. Correlations range
from O to 1, with higher values indicating greater similarity; a backward
relationship is indicated by negative values.

CORRELATION .939476
PREDICTED VALUE OF Y IS X TIMES 124.368 + —274.883
OBS X Y PREDICTED DIFF

1.0000 2.1300 1.0000 -9.9793 ~10.9793
2.0000 2.2600 2.0000 6.1885 4.1885
3.0000 2.3800 10.0000 21.1126 11.1126
4.0000 2.5400 35.0000 41.0115 6.0115
5.0000 2.6900 70.0000 59.6666 -10.3334

AVERAGE DIFFERENCE IS 8.99439

ENTER NEW VALUE FOR PREDICTION 2.98

NEW PREDICTED VALUE IS 95.7333

Figure 1. Xerox data

The value here is .939476, which is quite high. Manufacturing wages and
Xerox stock prices are closely related. The next line gives the formula for
predicting Xerox stock prices from manufacturing wages. Take the
manufacturing wage number, multiply by 124.368, and subtract 274.883.

The next section of the output actually makes predictions from the data of
the first five years. Look at the output. For the first observation, manufac-
turing wages (X) are $2.13 per hour. To predict the value of Xerox stock in
1958, take 2.13, multiply by 124.368, and subtract 274.833. You get an
answer of —9.9793. You didn’t get 1.0000, the original Xerox stock value,
because there is some error in the prediction. Remember that the correlation
is not 1.0000, but .939476.

The last column gives the difference between the actual Xerox values and
the predicted Xerox values. You can see how close the prediction is. By
themselves, the differences are hard to interpret; so an average is provided in
the line below the prediction table. Statisticians use an odd sort of average
for this. You can’t add the values in the DIFF column and divide by 5; so
more complicated means are used.

The average difference is 8.99439, or $8.99 per share. This means that we
can predict Xerox scores with an accuracy of about $9. Estimating stocks this
accurately could make you a lot of money.

Enter the sixth manufacturing wage value where it says ENTER NEW
VALUE FOR PREDICTION. Type in 2.98, the 1968 value. The computer
instantly says 95.7333, or $95.73. The predicted value of Xerox stock in 1968
is $95.73; the actual value from Moody’s was $95.00. You won’t have this

4

business

kind of luck all the time but you can prove mathematically that the sort of
prediction this program provides is the best that you can do with a simple
system of prediction.

If you put the IBM data in the DATA statements with the BASIC editor
and run the program, you get the output shown in Figure 2. With IBM, the
relationship is even higher. The correlation is .986161, based on the first five
values. This is just about as high as you can get. We should expect really
good prediction from the IBM data, using the formula shown in the second
line. But of course, the TRS-80 works out all the values for us in the third
part. Notice that the average difference is approximately 7.38902, or $7.39
per share. In other words, the IBM stock, which sells for at least twice as
much as the Xerox stock, can be predicted with even greater accuracy. The
computer predicts a 1966 value of $175.24, and the actual value was $170.

CORRELATION .986161
PREDICTED VALUE OF YIS X TIMES 221.523 + -420.654
OBS X Y PREDICTED DIFF

1.0000 2.1300 45.0000 51.1888 6.1888
2.0000 2.2600 90.0000 79.9868 ~10.0132
3.0000 2.3800 100.0000 106.5690 6.5695
4.0000 2.5400 150.0000 142.0130 -~ 7.9869
5.0000 2.6900 170.0000 175.2420 5.2415

AVERAGE DIFFERENCE IS 7.38802

ENTER NEW VALUE FOR PREDICTION 2.98

NEW PREDICTED VALUE IS 239.483

Figure 2. IBM data

The real test, of course, is the prediction of the 1968 value. If you enter 2.98
when the computer asks ENTER NEW VALUE FOR PREDICTION, the
TRS-80 answers with 239.483, or $239.48. We do not do as well here, for
IBM stock sold for $325 that year. Unfortunately for our simple linear pro-
gram, IBM stock took a huge jump in 1968. But I'll bet that a smart investor
would have bought IBM in 1966, knowing there would be a gain of $69.48
($239.48-$170) in two years.

Xerox and IBM are stocks which did exceptionally well. I've included data
in Table 1 for American Motors, a company which is seemingly always in
trouble. Put that data into the computer, and you get the results in Figure 3.

Prediction is much worse in this case. American Motors was going down
steadily. Remember that backward or falling relationships are shown by a
minus correlation. Note that the correlation for American Motors is

—.336423. The squared differences are 4.99729 on the average. This seems

5

business

better than the previous data, but remember that American Motors stock is
much less expensive than the others.

If we make a prediction for 1968 by entering 2.98 when the TRS-80 asks
for it, we find that the computer predicts $9.98. In reality, the stock was at
$12. A correlation of .336, positive or negative, is not much of a correlation,
and the prediction from such a value can only be rough. So you see, with
stocks providing high positive correlations, you can safely predict that they
are going to continue to rise as the computer shows. Stocks of questionable
character show up rapidly, and those with negative correlations are what
Moody calls speculative.

CORRELATION ~.336423
PREDICTED VALUE OF YIS X TIMES —9.00334 + 36.808
OBS X Y PREDICTED DIFF

1.0000 2.1300 11.0000 17.6309 6.6309
2.0000 2.2600 25.0000 16.4605 - 8.5395
3.0000 23800 15.0000 15.3801 0.3801
4.0000 2.5400 15.0000 13.9395 - 1.0605
5.0000 2.6800 10.0000 12.5880 2.5890

AVERAGE DIFFERENCE IS 4.99729

ENTER NEW VALUE FOR PREDICTION 2.98

NEW PREDICTED VALUE IS 9.97807

Figure 3. American Motors data

It is a good idea to plot the points, say for manufacturing wages and
Xerox. A plot gives you a chance to see unusual characteristics of the curve.
With correlations of the sort used in this program, the closer the curve is to a
straight line, the higher the correlation. Your choice of X, or as statisticians
call it, the independent variable, is extremely important. I used manufac-
turing wages in New York because the data was readily available. There are
probably much better predictors. Notice that inflation pushes up both
manufacturing wages and stock prices. You have to be careful that you are
not simply predicting the effects of inflation.

business

Program Listing. Stock prediction

CLS

N =5 :

' NUMBER OF PAIRS
FOR'1 = 1 TO N :

' MAIN LOOP
READ X,Y :
' READ DATA
XS = XS + X :
' SUM VARIABLES
YS = ¥YS + Y
XQ = Xq + X 42 :
' "SQUARE, THEN SUM VARIABLES
YQ = YQ + Y 2
XY = XY + X * ¥
* SUM OF CROSS PRODUCTS
NEXT I :
* END OF LOOP
XM = XS / N :
' GET AVERAGES
YM = YS / N
VX = XQ - XM * XS :
" GET SUMS OF SQUARES
VY = ¥Q - YM * Y¥S
DX = SQR(VX / N) :
' GET STANDARD DEVIATIONS
DY = SQR(VY / N)
R = (XY ~ XM * YS) / SQR(VX * VY)
* CALCULATE CORRELATION
PRINT "CORRELATION",R
PRINT
PY = R * (DY / DX) :
' GET REGRESSION COEFFICIENT
CY = YM - PY * XM :
* GET CONSTANT TERM

PRINT “PREDICTED VALUE OF Y IS X TIMES";PY;" + "3

PRINT

cY

PRINT TAB(6);"0BS"; TAB(17);"X"; TAB(27);"Y"; TAB(32);"PREDICTED

", TAB(45);"DIFF"
RESTORE :

' RESET DATA POINTER
FORT =1 T0 N :

" LOOP FOR PREDICTIONS

READ X,Y :

" REREAD DATA

YP = X * PY + CY :

* MAKE PREDICTION

DF = YP - Y :

* DIFF BETWEEN PRED AND REAL
SQ = DF § 2 :

" "SQUARE OF THAT

SM = SM + SQ :

' SUM OF SQUARED DIFFS

PRINT USING "#####.###4";1,X,Y,YP,DF :
* PRINT STUFF

NEXT T :

' END OF PREDICTION LOOP
PRINT
AV = SM / N :

' AVERAGE SQUARED VALUE

PRINT "AVERAGE DIFFERENCE IS", SQR{AV):
PRINT

INPUT "ENTER NEW VALUE FOR PREDICTION “;X
YPp = X * PY + CY :

' MAKE PREDICTION

PRINT “NEW PREDICTED VALUE IS ",YP

GOTO 350

DATA 2.13,1

Program continued

3010
3020
3030
3040

DATA 2.26,2

DATA 2.38,10
DATA 2.54,35
DATA 2.69,70

business

BUSINESS

Stock Valuation

by Charles B. Steele

he excellent stock portfolio programs by Dex Hart in the articles en-

titled “Put Your Micro on Wall Street” in Kilobaud Microcomputing,
July and August 1981, provide a great deal of information in a very concise
and useful manner. But, each time you want to update the portfolios with
current stock prices, you must list the program and edit the DATA lines to
enter the new prices.

In the September 1981 issue of 80 Microcomputing was an article “Slice
and Dice BASIC” by J. S. Schneider. This was a potential solution because
his article contains a brief utility which causes DATA lines to be modified by
the program itself. Better yet, a few minor changes, and DATA lines are
altered by means of INPUT statements.

After experimenting with the utility using DATA lines containing
numbers and strings as Mr. Hart’s program does, I was convinced the two
articles could be combined into one. The result is this program entitled Stock
Valuation. (See Program Listing.) It works for a bond portfolio or for a com-
bination of stocks and bonds, but I refer only to stocks in deseribing it.

Sample Runs

To see what the program does, refer to Figure 1 which shows sample runs
containing example stocks and information about them. Portval lists the
stocks and compares original cost with current value. Timegain compares
the current value with the value the last time you updated prices, whether it
was a few days ago or several months ago.

The DATA line modification utility in lines 10000 through 10140 of the
Program Listing serves two functions. First, when you update prices, it
automatically replaces the oldest prices with the newer ones already in the
program. Second, when you enter current prices in response to INPUT state-
ment questions, the program fills the new price DATA line with current
prices.

Conversion to TRS-80 BASIC

Mr. Hart’s program was written in Microsoft BASIC and requires some
changes to convert it to TRS-80 Level II BASIC. Mr. Hart’s program,
besides being a portfolio managing tool, also illustrates some programming
techniques, one of which is the PRINT USING statement. A slight modifica-

9

business

Bortval.. .. .Portfolio Valuation. Prices as of 21 Jan 81
Stock Date Shares Cost Price Value Diff % Gain
1 Carlisle 29Sep80 160 $9,991 85.0 $13,600 $3,609 36.1
2 Crown Cork 18Mar71 100 2,231 32.0 3,200 969 43.4
3 Humana T™ar77 900 4,900 74.8 67,320 62,420 1273.9
4 Kysor 18Dec69 200 2,758 10.4 2,080 - 678 ~24.6
5 Travelers 2Dec68 100 3,511 393 3,930 419 11.9
6 IBM 29jul7l 200 12,180 644 12,880 700 5.7
7 Amer Tel ™ar72 175 7,850 52.1 9,118 1,268 16.1
8 Texaco 12Feb80 300 11,700 334 10,020 1,680 -14.4
9 Squibb 8Sep79 150 4,200 27.5 4,125 -75 ~1.8
10 TRW 12May75 225 4,185 56.0 12,600 8,415 201.1
11 Sears 7Aug80 350 6,895 17.5 6,125 -770 -11.2
12 Emerson El 12Mar77 175 5,994 37.1 6,492 498 8.3
13 Thomas Ind 10Jun73 250 2,211 11.8 2,950 739 33.4
14 Amer El Pw 14Apr74 200 4,600 16.9 3,380 -1,220 -26.5
Totals $83,206 $157,820 $74,614 89.7

Timegain Stock Value Change Over Time—New prices as of 21 Jan 81

Old prices as of 30 Dec 80
Old Old New New
Stock Shares Price Value Price Value %Port Diff % Gain
1 Carlisle 160 84.0 $13,440 85.0 $13,600 8.6 $160 1.2
2 Crown Cork 100 28.4 2,840 32.0 3,200 2.0 360 12.7
3 Humana 900 71.4 64,260 74.8 67,320 42.7 3,060 4.8
4 Kysor 200 10.6 2,120 10.4 2,080 1.3 - 40 -1.9
5 Travelers 100 38.9 3,800 39.3 3,930 2.5 40 1.0
6 IBM 200 67.8 13,560 64.4 12,880 8.2 - 680 -5.0
7 Amer Tel 175 47.9 8,383 52.1 9,118 5.8 735 8.8
8 Texaco 300 27.5 8,250 33.4 10,020 6.3 1,770 21.5
9 Squibb 150 25.0 3,750 27.5 4,125 2.6 375 10.0
10 TRW 225 60.1 13,523 56.0 12,600 8.0 -923 -6.8
11 Sears 350 15.1 5,285 17.5 6,125 3.9 840 15.9
12 Emerson El 175 36.5 6,388 37.1 6,492 4,1 105 1.6
13 Thomas Ind 250 12.0 3,000 11.8 2,950 1.9 - 50 - 1.7
14 Amer El Pw 200 16.0 3,200 16.9 3,380 2.1 180 5.6

Totals $151,888 $157,820 100.0 $5,932 3.9

Figure 1. Sample runs

tion was needed here because TRS-80 BASIC uses percent signs to space for
strings, whereas his program uses backward slashes. His program uses

10

business

COMMON, CHAIN, and RENUMBER, commands which TRS-80 systems
without disk do not have. Rearrangement to a menu type of program
eliminates the need for these commands.

On INPUT statements under Microsoft BASIC, if you do not want the ? to
appear, you can use a comma instead of a semicolon at the end of the INPUT
statement. Try this in TRS-80 BASIC, and a syntax error is your response.
Accommodation had to be made in Timegain for the 64-character limit of
the TRS-80 screen display, but the hard-copy version is spread out like Mr.
Hart’s program. After a few other minor changes, my TRS-80 was able to
understand Portval and Timegain.

Program Description

In addition to the TRS-80 BASIC modifications, I added such features as
an introduction, a menu of choices, and a means of preventing the screen
from scrolling if the number of stocks is greater than the screen can display at
one time while maintaining column headings. I included brief reminder
programs so I could quickly determine what stocks and price dates the pro-
gram currently contains without listing. Mr. Schneider’s DATA line
modification program is brought into play under the menu choice UPDATE
STOCK PRICES.)

Copy and load the program, and you are ready to use it. The following ex-
ample is a program containing 14 stocks and information about them. Run it
a few times and try out the options, then substitute your portfolio informa-
tion. To do this, follow these steps:
® Change the 14 in line 100 to the number of stocks you are using.

@ Delete lines 160 through 290 and lines 390 and 400.

@ Enter data about each of your stocks, beginning in line 160. Do this in
alphabetical order if you wish. You need to enter, in this order, the name of
the stock (the program later limits this to 10 characters), date of purchase,
number of shares, and original cost. Use a separate DATA line for each
stock. Note that in order to keep the dates flush right on the screen or in hard
copy, you need to enclose in quotation marks any dates that have single
digits. Put a space between the first quotation mark and the date. See line
180 as an example. In this and other places at which you enter dates, keep
the abbreviation of the month name to three characters. When entering
bonds rather than stocks, instead of entering the number of shares, enter the
face value in hundreds of dollars. For example, enter 50 for a $5000 bond.
@ In line 390, enter the current price of each stock in the same sequence as
the stocks are listed, beginning with line 160. Round off prices to one place.
For example, enter 25 3/4 as 25.8. The final entry is the date of the prices.
Use a space between day, month, and year because space is not at a
premium as it is for the dates used in line 160 and those following it which
contain the initial stock information. In order for the data manipulation

11

business

subroutine to have enough room to do its job, leave a series of spaces after the
date. 15 or 20 spaces should be enough.

® In line 400, enter prices from a previous period and enter the date plus the
spaces. This is the last time you will need to make entries in lines 390 and
400. From this point, they are updated by the program.

Future program modifications may be necessary when you add or remove
stocks from your portfolio. If there is a stock dividend or split, change the
number of shares. If you buy more of the same stock, put it on a separate
DATA line as if it were an entirely new addition. If you have more than one
portfolio to monitor, imbed it in another copy of the program.

Running the Program

Be sure to save a copy of the modified program. You don’t want to do the
data entries again. After you type RUN, the title appears, followed by a brief
introductory description of the program. The menu appears as follows:
© Jtem 1 is a reminder. Enter 1, and immediately you see how many stocks
are now in the program and a list of them by name.
® Item 2 is another reminder. It gives the dates of the newest prices and the
older ones to which they were compared the last time you updated the pro-
gram.
® [tem 3 runs Mr. Hart’s Portval program which compares the original cost
of each stock with the latest price in the program. There is an option for hard
copy if you want a permanent record.

@ Item 4 runs Timegain, Mr. Hart’s means of keeping up with what has
happened to the investments between two periods of time. You also have the
option of hard copy.

@Item 5 is where Mr. Schneider’s DATA line manipulation subroutine
comes in. If you run items 3 and 4 first, you see stock comparisons based on
the last prices entered in the program. With item 5, you can update prices to
those of today or of any prior date you choose. The next time you run Portval
or Timegain, the comparisons are with the most current prices. Selection of
itemn 5 first displays a warning message that the oldest price information now
in the program will disappear. If you wish to proceed, each stock name is
displayed with a request for the current price. At this point, if you get the
message TOO MUCH DATA, you probably did not put enough spaces at the
end of DATA line 400. If the price is the same as the prior one, press
ENTER. When all prices have been entered, enter the date of the prices.
You have a chance to back off and start over if you see an incorrect entry. If
everything is correct, you get the message PRICES HAVE BEEN UP-
DATED. If you get a TOO MUCH DATA message, you probably did not
put enough spaces at the end of DATA line 390. When the prices are up-
dated, you can double-check by asking to see the revised DATA lines
displayed, or you can go directly back to the menu and run Portval and

12

business

Timegain with the current price and date information you have just
entered.
® Item 6 saves the updated program. You must add lines to complete this
portion, depending on whether you use cassette, stringy, or disk.
® [tem 7 exits the program.

It is easy to check the status of a portfolio at any time. Updating takes only
a few minutes with the financial page of the newspaper in front of you. Then
you will know exactly whether to smile or frown until the next update.

Program Listing

Some comments about the Program Listing are in order. I tried to retain
the variables and format of the programs as they were originally published.
Note that one of the principal variables in Mr. Hart’s programs is the letter 1.
Avoid using this letter in programs because of its similarity to the number 1
when listed by some printers. Watch for this when you copy the program.
Table 1 lists the program variables,

Some lines could be combined and condensed as Mr. Hart pointed out in
his article. He used two methods of presenting PRINT USING as illustra-
tions, and I retained both. In Timegain, the four lines of PRINT USING ac-
complish what Portval takes 11 lines to accomplish. Both ways are excellent
examples of PRINT USING.

In the screen display of Timegain, the columns are close together so that
they can display a great deal of information in the confines of the
64-character lines. For the hard-copy version, this display has been opened
out more and additional features of PRINT USING have been added for
commas at the 1000s and dollar signs for the first and total lines. This is the
version shown in Figure 1; so don’t be surprised when your screen display
looks a little different,

Mr. Schneider’'s DATA line manipulation subroutine is in lines
10000-10140. This is slightly different from his original version because the
DATA lines to be changed in the Stock Valuation program contain both
numbers and strings. I did this by redefining P1$ in line 10090 to con-
catenate the string variable, D1$, which is the date of the prices. This
change eliminated the need, as mentioned in Mr. Schneider’s.article, to
clean up the trailing comma in the revised DATA line. As a result, in line
10050, the — 1 is deleted from the original.

For complete flexibility on changing DATA lines, 1 used the variable LIN
in lines 10010 and 10020. In Mr. Schneider’s example program, he used a
specific line number. If you make this a variable, you can call the subroutine
to revise line 400, putting newer information from line 390 in the old DATA
line, then revise line 390, putting current information in the new DATA line.

You can adapt this subroutine for use in any program in which the DATA
lines require frequent change. Its significance as a valuable addition to the

13

business

Major Importance

A$ Stock name

C Cost

D Difference (value vs cost)

D$ Date of purchase
D1$ Date of new prices
D2% Date of old prices

G Gain percentage
I Array subscript
NUM Number of stocks
P New price

Pl Old price

R Total portfolio percentage

S Number of shares

T1 Total cost—Portval and Timegain

T2 Total value—Portval and Timegain

T3 Total difference-——Portval; total portfolio percentage— Timegain
T4 Total percentage gain—Portval; total difference—Timegain

T5 Total percentage gain-—Timegain

v Current value

Minor Importance and Housekeeping
C Continue (INKEY$)

C$ Correction of update

H Hard copy initiation

13 INKEY$ equivalent

K VAL(INKEY$)

LC Line count—stop scroll routine
LIN Line number to be changed
LL Print locator

M Menu recall (INKEY$)

P Print hard copy—start

U Update decision

w Want which choice

X Counter—FOR-NEXT loops
Y Counter—FOR-NEXT loops also Yes/No decisions
Z Print locator

Internal-—Data Manipulation
AV

E

L

LN

N

P$

P1$

Q

Table 1. Stock valuation variables

14

business

TRS-80 BASIC toolbox should not be overlooked. I could have used the
subroutine to revise the DATA lines containing stock names and costs, but
that seems unnecessarily complicated for the occasional addition of a new
stock or removal of an old one. I am sure this could be done with INPUT
statements, using a modification of the subroutine because of a different se-
quence of strings and numbers.

Final Notes

Thanks to Mr. Hart and Mr. Schneider, Stock Valuation gives a versatile
and uncomplicated portfolio record. It also illustrates DATA line manipula-
tion and formatting with PRINT USING to get a maximum amount of infor-
mation in a limited space.

In the October 1981 issue of Kilobaud Microcomputing Mr. Hart presents
a program called CPIndex in the third part of “Put Your Micro on Wall
Street.” It is a means of comparing how stocks in a portfolio have performed
when inflation, as measured by the consumer price index, is taken into ac-
count. CPIndex could easily be added to the Stock Valuation program
presented here and would make an interesting addition to the menu. If you
choose to do so, use the correct variable names to be consistent with those in
Stock Valuation.

Iitl\“I\Jz
LA B S O |

PRSI S T TS WO YOO TOOF OO N0 O O |
LA O T T I L L L

y
3
LIS SN S M N B

I T OO
LI)

: T T T T T

15

business

Program Listing. Stock Valuation

4 REM * * * Inptroduction Encyclopedia
5 CLS Loader”
10 PRINT CHR$(23): :
PRINT @320,"S T O CK VALUATTION"
15 FOR X = 0 TO 300:
NEXT X:
L = 26:
FOR Y = 452 TO 980 STEP 132
20 PRINT @Y, STRING$(Z,"$");
25 2 =172 - 4:
FOR X = 0 TO 300:
NEXT X
30 NEXT VY:
CLS
40 PRINT :
PRINT "THIS 1S A PROGRAM TO EVALUATE A STOCK PORTFOLIO COMPARING
ORIG- INAL COST WITH CURRENT VALUE OR COMPARING PRIOR PERIOD VA
LUE WITH CURRENT VALUE."
50 PRINT
PRINT "IT IS BASED ON A COMBINATION OF 'PORTVAL--TIMEGAIN' BY DE
X HART (KILOBAUD MICROCOMPUTING, JULY & AUGUST 1981) WITH A DATA
LINE MANIPULATION PROGRAM, 'SLICE AND DICE', BY J.S5. SCHNEIDER
(80 MICROCOMPUTING, SEPT. 1981).
60 PRINT :
PRINT "RUN THIS SAMPLE PROGRAM TO SEE HOW IT WORKS, THEN ENTER Y
OUR OWNPORTFOLIO [N PLACE OF THE DATA LINES IN THIS SAMPLE.
70 PRINT :
PRINT "PRESS 'C' TO CONTINUE"
80 IF INKEY$ < > "C"
THEN
80
88 :
89 REM * * * Data load
90 CLEAR 500:
DEFINT H,I,K,L,X:
REM * * * Tpo start program without title & intr
oduction, run from here
100 NUM = 14

110 IF NUM < = 10 GOTO 130

120 DIM AS(NUM),DS(NUM),S(NUM), C(NUM),P(NUM),P1{NUM),V(NUM),D(NUM),G
(NUM), R(NUH)

130 FOR I = 1 TO NUM

140 READ A$(I),D$(I),S(1),C(1)

150 NEXT I
160 DATA Carlisle, 295ep80,160,9991
170 DATA Crown Cork,18Mar71,100,2231
180 DATA Humana," 7Mar77",900,4900
190 DATA Kysor,18Dec69,200,2758
200 DATA Travelers," 2Dec68",100,3511
210 DATA IBM,29Jul71,200,12180
220 DATA Amer Tel," 7Mar72%,175,7850
230 DATA Texaco, 12Feb80,300,11700
240 DATA Squibb," 8Sep79",150,4200
250 DATA TRW,12May75,225,4185
260 DATA Sears," T7AugB0",350,6895
270 DATA Emerson Elect,12Mar77,175,5994
280 DATA Thomas Industries,10dun73,250,2211
290 DATA Amer E1 Pwr,14Apr74,200,4600
300 FOR I = 1 TO NUM
310 READ P(I)
320 NEXT I
330 READ D1§:

REM * * * Date of "NEW® prices
340 FOR I = 1 TO NUM
350 READ P1{(I)
360 NEXT I
370 READ D2%:

16

business

REM * * * Date of "OLD" prices

380 D1% LEFT$(D1$,9):
D2% LEFT$(D25,9)

390 DATA 85,32,74.8,10.4,39.3,64.4,52.1,33.4,27.5,56,17.5,37.1,11.8,
16.9,21 Jan 81

400 DATA 84,28.4,71.4,10.6,38.9,67.8,47.9,27.5,25,60.1,156.,1,36.5,12,
16,30 Dec 80

408 :
409 REM * * * Menu
410 CLS :

PRINT :

PRINT TAB(21);"PROGRAM SELECTIONS™

PRINT TAB(17); STRING$(27,".")
420 PRINT TAB(15)"1 REMINDER--LIST OF STOCKS IN PROGRAM"
425 PRINT TAB(15)"2 REMINDER~-DATES OF NEW AND OLD PRICES"
430 PRINT TAB(15)"3 RUN 'PORTVAL'"
440 PRINT TAB(15)"4 RUN 'TIMEGAIN'"
450 PRINT TAB(15)"5 UPDATE STOCK PRICES"®
460 PRINT TAB(15)"6 SAVE PROGRAM"
470 PRINT TAB(15)"7 END PROGRAM"
480 PRINT @720,"ENTER YQUR SELECTION"
490 K = VAL{ INKEYS$)
500 IF K < 1 OR K > 7

THEN

490
ELSE
8 ON K GOTO 1500,1700,2000,3000,4000,4600,4900

1498 :
1499 REM * * * Reminder-list of stocks in program
1500 CLS :

PRINT “THERE ARE“NUM"STOCKS NOW IN THE PROGRAM AS FOLLOWS:"
1510 FOR I = 1 TO NUM:
A$(I) = LEFT$(A$(I) 10):
PRINT I;A$(1),
NEXT I
1520 PRINT :
PRINT
PRINT :
PRINT "TO ADD OR DELETE STOCKS LIST LINES 160-230 AND INSERT OR
DELETE DATA LINES (IN ALPHABETICAL ORDER, IF DESIRED). THEN, REV
ISE VARIABLE ‘NUM' IN LINE 100 TO EQUAL NUMBER OF STOCKS."
1530 PRINT TAB(11)"PRESS 'M' TO RETURN TO MENU."
1540 IF INKEY$ = "M
THEN
410
ELSE
1540
1698 :
1699 REM * * * Reminder-dates of new and old prices
1700 CLS :
PRINT
PRINT :
PRINT TAB(13)"DATES OF PRICES NOW IN PROGRAM:"
1710 PRINT :
PRINT TAB{13)"OLDEST PRICES--AS OF "“D2%;
1720 PRINT :
PRINT TAB(lB)"NEWEST PRICES--AS OF "D1$%
1730 PRINT
PRINT
PRINT TAB(13)"PRESS ‘M' TO RETURN TO MENU."
1740 IF INKEY$ = "M"
THEN
410
ELSE
1740
1999 :
2000 REM * * * PORTVAL -. Courtesy of Dex Hart, KILOBAUD MICRO-
COMPUTING, July & August 1981
2010 CLS :
PRINT "*PORTVAL'......PORTFOLIO VALUATION......PRICES AS OF ";D1

Program continued

17

2020

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120

2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230

2240

2250
2260
2270
2280
2290
2300
2310
2320
2330

business

-t
N
Hon oo

@x
f
(=]
(=Rl =N aNalal

NUM
*p
- C

(

nowouon

_.4

0
)
)
*
C(I
V(1
T3 {1
100 * T3 / T1

1
HofH s

1
PRINT " STOCK DATE SHARES COST PRICE VALUE

FOR I = 1 TO NUM

PRINT USING “## ";I;

PRINT USING "% % "3AS(1);
PRINT USING "% % ";D8(1);
PRINT USING “#### ";S(1);

PRINT USING "##### ";C(1);
PRINT USING "##.4 “;P(1);
PRINT USING "####4¢ “";V(I);
PRINT USING "####4 "3D(1);
PRINT USING “##s#.£"3G(1);
LC = LC + 1:
REM * * * | ine count for stop scrolling
IF LC = 12

THEN

LC = - 1:

GOSUB 2900
NEXT 1

IF LC = 11 GOSUB 2900

2398 :

2399
2400

2410

2420

2430

2440
2450

PRINT STRING$(64,"-");
PRINT "TOTALS";
PRINT TAB(27) USING " g##pps #HHARE "3T1;T725
PRINT USING "g#a#ps FEFOE"T3;T4;
PRINT
GOSUB 5000
IFH <>1
THEN
410
REM * * * Printer start - PORTVAL
CLS
PRINT

PRINT “IF PRINTER IS ON AND READY WITH PAPER, PRESS ‘p'
(TO RETURN TO MENU PRESS 'M'.)"
I$ = INKEY$:
IF I$ = UM
THEN
410
1F I$ = NpH
THEN
2430 :
ELSE
2410
CLS
PRINT 6335,"'PORTVAL' SHOULD BE PRINTING NOW."

2898

2899
2900

2910

GOSUB 12010

GOTO 410

REM * * * Stop screen scrolling - PORTVAL

PRINT “NOTE- INFO IS GOING TO DISAPPEAR; PRESS ANY KEY TO CONTIN
UEII

IF INKEY$ = "" GOTO 2910

ELSE

DIFF

TO START

18

business

CLS
2920 PRINT " STOCK DATE SHARES COST PRICE VALUE DIFF
BGAIN"
2930 RETURN
2999
3000 REM * * * TIMEGAIN -- Courtesy of Dex Hart, KILOBAUD MICRO-
COMPUTING, August 1981
3010 CLS
PRINT * STOCK VALUE CHANGE OVER TIME--NEW PRICES AS OF ";D1$%
3020 PRINT TAB(31)"OLD PRICES AS OF ";D2%
3030 T1 =

—
w

o onon o

o0 OOC

3040 FOR
3050 C(1
3060 V(I
3070 D{1I
3080 G(1I
3090 TI
3100 T2
3110 T4
31120 15
3130 NEXT I
3140 FOR I =

3150 R(I) =

3160 T3 = T3 + R(1)

3170 NEXT 1

3180 PRINT " i) oLD NEW NEW"

3190 PRINT * STOCK SH PRICE VALUE PRICE VALUE %PORT DIFF

Do B M e
i o WM

3200 FOR I = 1 TO NUM
3210 ?R§NT(U§XNG AET oG HBBE BEE.F BEBEE "STA$(1)5S(1);P1
I);C{(1});
3220 §§Igzlg51ue CEEBLOE BRBEE REALH BRBEE BREGETPLI)V{D)R(I)5D(
3230 LC = LC + 1:
REM * * * | ipne count for stop scroiling
3240 IF LC = 10

THEN
LC = - 1:
GOSUB 3900
3250 NEXT I

3260 IF LC = 11 GOSUB 3900
3270 PRINT STRINGS(64,"-");
3280 PRINT “"TOTALS";

3290 PRINT TAB(25) USING “"##dsss BEEAES V5TL;T2,
3300 PRINT USING “###.¢# H#E#F FHEE.$"3T3;T4575;
3310 PRINT

3320 GOSUB 5000
3330 IF H < > 1

THEN

410

3398
3399 REM * * * Printer start - TIMEGAIN
3400 CLS :

PRINT :

PRINT "IF PRINTER IS ON AND READY WITH PAPER, PRESS 'P' TO START
(TO RETURN TO MENU PRESS 'M'.)"

3410 I§ = INKEY$
IF 1§ = "M"
THEN
410
3420 IF [$ = "p"
THEN
3430
ELSE Program continued

19

3430
3440
3450
3898
3899
3900

3910

3920
3930

3940
3999
4000

4010

4020

4030

4040

4050

4060

4065

4070

4080

4085

4088
4090

4100
4110

business

3410

CLS :

PRINT @©335,"'TIMEGAIN' SHOULD BE PRINTING NOW."®
GOSUB 13010

GOTO 410

REM * * * Srop screen scrolling - TIMEGAIN
PRINT "NOTE- INFO IS GOING TO DISAPPEAR; PRESS ANY KEY TO CONTIN
UE"
IF INKEY$ = "
THEN
3910
ELSE
CLS
PRINT * OLD oLD NEW NEW®
PRINT * STOCK SH PRICE VALUE PRICE VALUE %PORT DIFF
EGAIN";
RETURN

REM * * * Data Line Changes -- Courtesy of J. S. Schneider,
80-MICROCOMPUTING, September 1981
CLS
PRINT :
PRINT "'UPDATE STOCK PRICES' CAUSES OLDEST PRICES TO BE DELETED
AND REPLACED WITH NEWER PRICES ALREADY IN PROGRAM. THEN IT PR
OVIDES FOR ENTERING CURRENT PRICES.";
PRINT :
PRINT :
INPUT “D0O YOU WANT TO GO AHEAD WITH THIS(1) OR
WANT TO RETURN TO MENU(2)}";U

CLs
IF U<1O0RU>2Z
THEN
4020 :
ELSE
ON U GOTO 4040,410
cLS
PRINT
PRINT
PRINT "OLD PRICES ARE BEING REPLACED NOW."
LIN = 400:
G0SUB 10000:
REM * * * 400 is line # of oldest prices
(LS

PRINT "STOCK PRICES ARE TO BE BROUGHT UP-TO-DATE NOW. ENTER CUR
RENT PRICE OR PRESS 'ENTER® IF PRICE IS UNCHANGED.®

LL = 258:

PRINT :

PRINT “WHAT 1S THE PRICE OF:"

FOR I = 1 70 NUM:

A$(1) = LEFTE(AS$(1),10):

REM * * * Limits stock name to 10 characters

PRINT @LL,A$(1);:

PRINT @LL + 11,"";:

INPUT P(I):
REM * * * Tnig & next line cause stock names & price
inquries to be in 3 columns
LL = LL + 21:
M =M+ 1:
IF M =3

THEN

LL = LL + 1:

M=20
NEXT 1
INPUT "“WHAT 1S THE DATE OF THE NEW PRICES"; D1$
PRINT :

INPUT "ARE THESE PRICES AND THE DATE CORRECT";C$
IF LEFT$(C$,1) < > "y®
THEN

INPUT "PRESS ENTER TO RE-DO";:

20

business

GOTO 4060
4120 CLS
PRINT :
PRINT
PRINT
PRINT "NEW PRICES ARE BEING ENTERED NOW."
4130 LIN = 390:
P1g = 0.
GOSUB 10000:
REM * * * 390 is line # of newer prices
4140 CLS :
PRINT :
PRINT "PRICES HAVE BEEN UPDATED.®
4150 PRINT
4160 W = 0:
INPUT "WANT TO RETURN TO MENU (1) OR
WANT TO SEE PRICE DATA LINES (2)";u
4170 CLS :
IF W <1 O0RWD> 2
THEN
4160 :
ELSE
ON W GOTO 410,4180
4180 PRINT
PRINT "AFTER LISTING DATA LINES, TO RETURN TO MENU ENTER 'RUN 90
PRINT
4190 PRINT :
PRINT
LIST 390 - 400
4598
4599 REM * * * Save program
4600 CLS
PRINT
PRINT "AT THIS POINT PROGRAM LINES CAN BE ADDED TO SAVE YOUR UPD
ATED VERSION. ADD THE PROPER STATEMENTS TO CAUSE A 'SAVE' DEP
ENDING ON THE MEDIUM YOU USE (CASSETTE, STRINGY, OR DISK).
4610 PRINT :
PRINT "BE SURE TO INCLUDE WARNINGS SUCH AS 'SET UP RECORDER', 'I
NSERT CASSETTE', ETC.*"
4620 PRINT ;
PRINT "PRESS 'M' TO RETURN TO MENU."
4630 IF INKEY$ = “"M"
THEN
410
ELSE
4630
4898
4899 REM * * * Program end
4900 CLS :
PRINT
PRINT
PRINT "TO RETURN TO MENU ENTER ‘RUN 90°'."
4910 PRINT :
PRINT
END
4998 :
4999 REM * * * pPrinter decision
5000 INPUT "WANT HARD COPY?-~ - - YES, ENTER 1 (PRINTER ON?); OR TO RE
TURN TOMENU PRESS *ENTER'";H:
RETURN
9998
9999 REM * * * Data changes - utility
10000 N = PEEK{17130) * 256 + PEEK(17129)
10010 LN = PEEK(N + 3) * 256 + PEEK(N + 2):
IF LN > LIN
THEN

STOP
10020 IF LN < > LIN Program continued

21

10030
10040

10050
10060
10070

10080
10090

10100

10110
10120
10130
10140

12008 :

12009
12010

12020
12120

12125
12130
12140
12150
12160
12165

12170
12180
12190
12200
12210
12220
12250
12270
12280
12290
12300
12310
12570
12580
12590
12600
12610
12620

13008 :

13009
13010

13020
13030
13180

business

Price

Value

THEN
N = PEEK(N + 1) * 256 + PEEK(N):
GOTO 10010
E = PEEK(R) + 256 * PEEK(N + 1) - 2:
AV = E - N - 5
pg - nus
FOR I = 1 TO NUM:
P$ = P$ + STRE(P(I)) + ",":
NEXT
L = LEN(P$)
FOR X = 1 TO L
IF ASC(MID$(P$,X,1)) = 32
THEN
10090
P1$ = P1$ + MID$(PS$,X,1)
NEXT X:
P1$ = P1§ + D1§:
L = LEN(P1$):
IF L > AV
THEN
PRINT "TOO MUCH DATA":
ST0P
FOR X = N + 5 T0 E:
POKE X,32:
NEXT
FOR X = 1 70 L
Q = ASC(MID$(P1%,X,1))
POKE X + N + 5,
NEXT :
RETURN
REM * * * Hardcopy PORTVAL
LPRINT "'PORTVAL'......Portfolio Valuation....
1%
LPRINT
LPRINT " Stock Date Shares (ost
iff %Gain®
LPRINT
FOR I = 1 T0 NUM
LPRINT USING “#4 "1,
LPRINT USING "% % "5 AS(1);
LPRINT USING "% % ";D$(1);
IF1 =1
THEN
12570
LPRINT USING "###4 ";S(1);
LPRINT USING “##,#44 ";C(1);
LPRINT USING "##.# ";P(I);
LPRINT USING "##,#88 ";V(I);
LPRINT USING "##,### "3D(I);
LPRINT USING "####.#";6(1)
NEXT I
LPRINT STRING$(67,"-")
LPRINT "Totals";
LPRINT TAB(26) USING "$S###, #i4 SEas, HEE "3 T1 T2,
LPRINT USING "$$##, 54k HH#.4";T3;74
RETURN
LPRINT USING "####";S(1);
LPRINT USING "$$##, 488 “;0(1);
LPRINT USING “##.4 ";P(I>,
LPRINT USING "$$##,### ";V(1);
LPRINT USING "$$##,##¢ ";D(I);
GOTO 12220
REM * * * Hardcopy TIMEGAIN
LPRINT ; 'TIMEGAIN' Stock Value Change Over Time--New prices as
of ;D1
LPRINT TAB(42)"01d prices as of ";D2$%
LPRINT
LPRINT *

..Prices as of ";D

D

22

13190

13195
13200
13205

13210
13220

13250
13270
13280
13290
13300
13310
13510

13520
13530

business

01d 0id New New"

LPRINT * Stock Shares Price Vailue Price Value %Por
T Diff %Gain®
LPRINT
FOR I = 1 TO NUM

IF I =1

THEN

13510
LPRINT USING “## % OAEEE FEEE BELEEE "ST5AS(D)5S(D)

;PL(1);C(1);

LPRINT USING “"###.8 #4888 FHEF BEBEE BEEF"P(1);V(I
JR{D)3D(1);6G(1)

NEXT 1
LPRINT STRING§(74,°-")
LPRINT "Totals";

LPRINT TAB(24) USING "$$p#s,4sd SSHEH, Bk "T1;T72,

LPRINT USING “HH#. 4 SS##, 448 BEEE.$"3T3;T4,75

RETURN

kP?%?TC??iNG T b OBHEEE BEELE SSEEBEE USTAS(D) ST
1 5 H

LPRINT USING “###.# SSE#, HHF BEEE SSHEBBF BEFF"P(1)5V(D)
sR(I)D(1);56(1)

GOTO 13250

23

A

EDUCATION

Practical Applications of Classroom Programs
Super Curve Fit

25

EDUCATION

Practical Applications of
Classroom Programs

by Ann Rosenberg

eaching a high school course in beginning BASIC on the TRS-80 can be
fun, exciting, and at the same time challenging.

At first, everything is totally new to the students. Being able to turn on the
computer and see READY is a big accomplishment on the first day of class.
There are many things the students must learn during the first few months,
such as the various types of PRINT statements:

PRINT “HELLO”

PRINT A+B

PRINT* THE SUM OF ";A; “+";B; “="; A+B
PRINT@480,“USE OF THE VIDEO DISPLAY SHEETS”
PRINT TAB(20):“USE OF TABS”

PRINT CHR$(23);“OH BOY, BIG LETTERS”

They also study INPUT statements such as:

INPUT R

INPUT*WHAT IS THE RADIUS OF THE CIRCLE™;R
Assignment statements, READ-DATA, FOR-NEXT, IF-THEN, IF-THEN-
ELSE, and ON N GOTO statements soon follow. After discussing each type
of statement, the students are able to write different types of assigned pro-
grams to emphasize the proper use of each statement.

After the students have mastered not only the programming skills but also
the Editor and commands such as LIST, RUN, and DELETE, they are not
satisfied with writing plain formula oriented programs.

This is a crucial time in the course. How do you keep students interested
and motivated and expand their programming skills without boring them
with assigned programs? A graphics assignment is one solution to the prob-
lem. After studying SET and RESET, the students are able to use their im-
agination and creativity to write a program which draws a picture. Most of
the students really enjoy this project. Individual students are able to put
their personalities into a program and create something totally different
from the other students’ programs. After completing this project, the
students are ready to create programs of their own choosing.

Our school, Metairie Park Country Day, not only has computers in grades
9 through 12, but also utilizes them in kindergarten through grade 6 for drill
and enrichment. As part of the high school computer course, each student is
required to write a program which can be used in the lower school. This
year, the projects were written for the kindergarten, first, and second

27

education

grades. The older students talked to the lower school teachers to get ideas
and suggestions. When the students finished writing and debugging their
programs, we invited several of the children from the lower school to test the
programs. I included the following programs in the article.
® Program Listing 1—Dragon Arithmetic. The dragon asks simple addi-
tion, subtraction, and multiplication problems. If the student answers cor-
rectly, the man kills the dragon, but if he or she is wrong, the dragon kills
the man.
@ Program Listing 2-——Mean Clown. The mean clown starts out with 10
balloons but he pops a random number of balloons each time the program is
run. The student can either count the remaining balloons or use subtraction
to find the answer.
@ Program Listing 3—Compound Words. This program contains 60 com-
pound words. Each time the program is run, 10 words are selected randomly
to form a matching test.
@ Program Listing 4— Arithmetic for Kids. In this program, the students
are asked what level they want to try. Then, they are given 10 problems to
answer at that level. If most of their answers are correct, they are rewarded
with a smiling face, but if they missed most of the problems, the face cries.
These assignments are not only fun, rewarding, and educational for the
computer course students, but also enjoyable and exciting learning ex-
periences for the younger students,

10
20

25
26

27

32

33

1000
1010
1020
1030
1040
1050
1060

1070
1080
1100

1110
1200

1210

2000
2010
2020
2025

2026
2030
2031
2035
2040
2050
2060

2070
2080
2090

2100
2110

education

Program Listing 1. Dragon Arithmetic Encycll?pedsa

REM * k& ok ok DRAGON *kok kR

REM ***** YRITTEN BY COPEY PULITZER AND MIGUEL URIA **%ix

CLS

RANDOM

PRINT “YOQU ARE A SPACEMAN SENT ON A MISSION TO KILL THE DRAGON.
IF YOUCAN ANSWER THE MATH QUESTION GIVEN TO YOU, YOU WILL S

UCCEED IN YOUR MISSION . IF YOU FAIL, YOU DIE!!It!"

PRINT :

INPUT "HOW MANY PROBLEMS DO YOU WISH TO ANSWER";V

PRINT :

PRINT "WHAT TYPE OF PROBLEM DO YOU WISH TO ANSWER---we--u "y
INPUT "ADD,SUB, OR MULT.";A$

FOR Z = 1 TO V:

CLS :

PRINT “YOU ARE A SPACE MAN SENT ON A MISSION TO KILL THE DRAGON
. IF YOUCAN ANSWER THE MATH QUESTION GIVEN TO YOU, YOU WILL SUC
CEED IN YOUR MISSION. IF YOU FAIL, YOU DIE!!tL"

GOSUB 7000
IF A$ = "ADD"
THEN

GOTO 1000
IF A% = “SUB"
THEN

GOTO 2000
IF A$ = "MULT"
THEN

GOTO 3000
RANDOM
X = RND(9)
PRINT @296,X;
¢ = RND(9)

PRINT @360, C;
FOR I = 78 T0 89
SET(I,18):
NEXT 1
PRINT @355, "+";
P =X+ C
PRINT @487,;:
INPUT H
J = H
IF J = P
THEN
GOTO 9000
IF g ¢>P
THEN
GOTO 8000
GOTO 2010
X = RND{20)
¢ = RND(9)
IF € > X
THEN
GOTO 2000
IF X < 10 GOTO 2035
PRINT @296,X;
GOTO 2040
PRINT 8297,X;
PRINT @361,C;
FOR I = 78 TO 89
SET(1,18):
NEXT I
PRINT @355,"-";
P=X-20C
PRINT @488, ;:
INPUT H:
J = H
IF Jd =P
THEN Program continued

29

2120

3000
3010
3030
3035
3040
3050
3060

3070
3080
3090

3100
3110
3111

7000

7010

7020

7030
7040

7050

7060

7070

7080

7090

7100

7110

7120

7130

7140

7150

GOTO 9000
IFJ<>P
THEN

GOTO 8000
60TO 3010
X = RND(9)
PRINT @296,X;
C = RND(9)
PRINT ©360,C;

FOR I = 78 T0 89

SET(1,18):
NEXT I
PRINT @355,"x";
P=X*C
PRINT @487,;:
INPUT H:
J o= H
IFJ =P

THEN

GOTO 9000
IFJ <> P
THEN

GOTO 8000

FOR X = 0 T0 127:

SET(X,38):
NEXT X
SET(125,33):
SET(124,34):
SET(123,34):
SET(122,35)
FOR X = 118 T0
SET(X,36):
NEXT X
SET(119,37):
SET(120,37)
FOR X = 114 TO
SET(X,35
NEXT X

4 T0

170

)
1
)
1
)
11 70
)
07 T0
)
07 T0O
)
370

370

121:

117:

117:

114:

114:

110:

110:

106:

106:

FOR X = 99 T0 102:

SET(X,34):
NEXT X

FOR X = 99 T0 1
SET(X,35):
NEXT X

02:

FOR X = 63 TO 98:

SET(X,37):
NEXT X

FOR X = 62 TO 98:

SET(X,36):

education

30

7160

7170

7180

7190

7200
7210

7220

7230
7240

7250

7260

7270

7280

7290

7300
7310

7320

7330

7335

7340
7350

7360

7370

7380
7390

education

NEXT X

FOR % = 61 TO 94:
SET(X,35):

NEXT X

FOR X = 60 TO 93:
SET(X,34)

NEXT X

FOR X = 59 T0 92:
SET(X,33):

NEXT X

FOR X = 58 TO 91:
SET(X,32):

NEXT X
RESET(66,32):

RESET(67,32)

FOR X = 57 T0 90:
SET(X,31):

NEXT X
RESET
RESET

(65,31):
(6
RESET(6
(6

3,

6,31):
7,31):
8,31)

31)

46 T0 52:
2

RESET
SET(5
FOR X
SET(X,

T0 63:

3
6
SET(X,3
0 TO 88:
3

)

)

)

FOR X = 46 T0 62:
9

% T0 86:

6 T0 61:
28)

NEXT X
RESET(56,
RESET(57,
FOR X = 7

SET(X,28

NEXT X
FOR X = 55 T0 60:

7):

0 85:

SET({X,2
NEXT X
FOR X = 5
SET(X,27
NEXT X
FOR X = 5
SET(X,26
NEXT X
SET(57,25
):
):

6 T0 58:
):

TO 58:

SET(3,37
SET(7,37
SET(4,36):
SET(6,36)

FOR X = 4 TO 6:
SET({X,356):
NEXT X

FOR X = 4 TO 9:
SET(X,34):
NEXT X

SET(5,33)

FOR X = 4 TO 6:
SET(X,32):
NEXT X

31

Program continued

education

7400 RETURN
8000 FOR X = 52 TO 40 STEP - 1:
SET(X,31):
NEXT X
8010 FOR X = 45 TO 40 STEP - 1:
SET(X,30):
NEXT X
8020 FOR X = 45 TO 40 STEP - 1:
SET(X,32):
NEXT X
8030 FOR X = 43 TO 40 STEP - 1:
SET(X,33):
NEXT X
8040 SET{40,34):
SET(41,34):
SET{42,35):
SET(43,35):
SET(44,36):
SET(45,36):
SET(38,29):
SET(39,29):
SET(36,28):
SET(37,28)
8050 SET(38,27):
SET(39,27)
8060 FOR X = 39 TO 14 STEP - 1:
SET(X,30):
NEXT
8070 FOR X = 39 TO O STEP - 1:
SET(X,31):
NEXT X
8080 FOR X = 39 70 O STEP - 1:
SET(X,32):
NEXT X
8090 FOR X = 39 TO 0 STEP - 1:
SET(X,33):
NEXT X

8100 FOR X = 37 TO O STEP - 1:

8110 FOR X = 31 T0 O STEP - 1:
8120 FOR X = 27 T0 O STEP - 1:

8125 GOTO 8140
8130 FOR X = 13 TO 0 STEP - 1:
SET(X,37):
NEXT X
8140 FOR X = 30 TO 28 STEP - 1:
SET(X,29):
NEXT X
8150 SET(26,28):
SET(27,28):
SET(28,27):
SET(29,27):
SET(34,35):
SET(35,35):
SET(36,36):
SET(37,36):
SET(28,37):
SET(29,37):
SET(18,27):
SET({19,27):
SET(20,28):
SET(14,29):
SET(15,29):
SET(16,28):
SET(17,28)

32

8155

8158

8161

8164

8167

8170

8173

8176

8179

8182

8185

8188

8191

8194

8197

81998

8300

FOR X = 52 70
RESET(X,31):
NEXT X

FOR X = 45 TO
RESET(X,30):
NEXT X

FOR X = 45 TO
RESET(X,32)
NEXT X

FOR X = 43 TO
RESET{X,33):
NEXT X

RESET (40, 34)

RESET(41,34):

RESET(42,35)

RESET(43,35)

RESET(44 36)

RESET(45.36):

RESET(38,29):

RESET(39,29):

RESET(36,28):

RESET(37,28):

RESET(38,27)

RESET(39,27)

FOR X = 39 TO

X,30):

FOR X = 39 T0
RESET(X,32):
NEXT X

FOR X = 39 TO
RESET(X,33):

RESET(X,34)

NEXT X

FOR X = 31 70
RESET(X,35):
NEXT X

FOR X = 27 T0
RESET{X,36):
NEXT X

FOR X = 30 TO
RESET(X,29)

NEXT X

RESET(26,28):
RESET(27,28):
RESET(28,27):
RESET{29,27):
RESET(34,35)
RESET(35,35)
RESET(36 36)
RESET(37,36)
RESET(28,37)
RESET(29,37)
RESET(18,27):
RESET(lQ 27):
RESET(20,28):
RESET(ZI 28)

RESET(14,29)
RESET(15,29):
RESET(16,28):
RESET(17,28)
FOR I = 1 T0
NEXT 1:
RESET(52,30)
FOR I = 1 TO

education

40 STEP - 1:
40 STEP - 1:
40 STEP - 1:

40 STEP - 1:

14 STEP - 1:

0 STEP - 1:

¢ STEP - 1:

0 STEP - 1:

0 STEP - 1:

0 STEP - 1:

0 STEP - 1:

28 STEP - 1:

300:

1000:

33

Program continued

education

NEXT 1
8400 PRINT @832,;"y0U ARE KILLED BY THE DRAGON'S FLAMED L Y1

8410 FOR I = 1 TO 500
NEXT 1

8500 FOR I = 1 TO 1000:
NEXT I

8600 CLS

8700 GOTO 9600
9000 FOR X = 12 70 58:

SET{X,33):
NEXT X

9010 FOR X = 1 7O 20:
NEXT X

9020 FOR X = 12 T 58:
RESET(X, 33):
NEXT X

9030 FOR X = 12 TO 58:
SET(X,33):
NEXT X

9040 FOR X = 1 TO 20:
NEXT X

9050 FOR X = 12 TO 58:
RESET(X,33)
NEXT X

9060 RESET(57,25):
FOR X = 56 TO 58:

RESET(X,26):
NEXT X

9070 FOR X = 55 TO 60:
RESET(X,27):
NEXT X

9080 FOR X = 46 T0 61:
RESET(X,28):
NEXT X

9090 FOR X = 46 TO 62:
RESET(X,29)
NEXT X

9100 FOR X = 46 TO 63:
RESET(X,30):
NEXT X

9110 FOR X = 46 TO 64:
RESET(X,31):

9120 FOR X = 46 TO 65:

9130 FOR X 66 TO 56 STEP - 1:

%,33):

9140 FOR X 66 TO 52 STEP - 1:

9150 FOR X 62 T0 26 STEP - 1

9155 FOR X = 61 TO 26 STEP - 1:

9157 FOR X = 61 TO 26 STEP - 1:
5

9160 FOR X = 43 T0 37 STEP - I:
)

9165 FOR X =
SET(X,3
HEXT X

9170 SET(39,32)

9172 RESET(34,35)
RESET(35,35)

0 TO 38 STEP - 1:
)

34

education

9175 GOTO 9210
9180 FOR X = 99 TO 117 STEP - 1:
SET(X,36):
NEXT X
9190 FOR X = 99 70O 117 STEP - 1:
SET(X,37):
NEXT X
9200 SET(118,37)
SET(119,37)
SET(lZl 37)
SET(123,37)
SET(125,37):
SET(126,37)
SET(120,36)
SET{122,36)
SET(124,36)
9209 SET(127,37)
9210 FOR X = 99 T0 127:
RESET(X,30):
NEXT X
9211 FOR X = 99 70 127:
RESET(X,31):
NEXT X
9220 FOR X = 99 TO 127:
RESET(X,32)
NEXT X
9230 FOR X = 99 TO 127:
RESET(X,33)
NEXT X
9240 FOR X = 99 70 127:
RESET(X,34):
NEXT X
9250 FOR X = 99 TO 127:
RESET(X,35):
NEXT X
9285 FOR X = 99 70 102:
RESET(X,35):
NEXT X
9287 FOR X = 114 7O 117:
RESET(X,35):
NEXT X
9290 FOR X = 99 TO 127:
RESET(X,36):
NEXT X
9300 FOR X = 118 TO 124:
RESET(X,37):
NEXT X
9400 FOR X = 99 T0 117:
SET(X,36):
NEXT X
9459 FOR X = 99 70 127:
SET(X,37):
NEXT X
9500 FOR X = 1 T0 700
9555 PRINT ©832,;"Y0U HAVE SLAYED THE DRAGON!I!I!!"
9556 FOR X = 1 T0 1500:
NEXT X
9600 NEXT Z
9700 CLS
10000 INPUT “WOULD YOU LIKE TO PLAY AGAIN(YES OR NO)";F$
10090 IF F$ < > "YES" AND F$ < > "NO" GOTO 10000
11000 IF F$ = "YES" GOTO 10
Program Listing 2. Mean Clown
1 REM *xxx* MEAN CLOWN *¥x***
5 REM *#**»* WRITTEN BY CLAIRE LEAMAN AND NOAH SHAPIRA **¥**x
10 REM GAMES
20 CLS
RANDOM Program continued

35

education

30 PRINT CHR$(23);“HI! I AM YOUR FRIENDLY COMPUTER.":
INPUT "WHAT IS YOUR NAME";N§
35 PRINT
40 PRINT "HELLO " ;N§:
PRINT " WOULD YOU LIKE TO PLAY SOME GAMES WITH ME (ANSWER YE
5 OR NO AND THEN PRESS ENTER)";:
INPUT Q$
50 IF Q% = "NO"
THEN
PRINT CHR$(23);"0KAY "; N$;" SEE YOU LATER":
END
60 IF Q$ = "YES®
" THEN
GOTO 80
70 PRINT "YOU MUST ANSWER YES OR NO":
GOTO 40
80 GOTO 90
90 CLS
1000 FOR X = 6 TO 15:
SET (X,6):
NEXT K:
FOR Y
SET(1
NEXT
FOR Y
SET(1
NEXT
FOR X

-~
B
(=}
w

>

-~y
c =
o
V)

H

o B < on

5 70 6 STEP - 1:

—

FOR Y = 8 TO 6 STEP - 1:
)

1010 FOR ¥

FOR X = 25 TO 18 STEP - 1:
FOR Y = 6 TO 5 STEP - 1:
SET(18,Y):

FOR Y = 6 TO 5 STEP - 1:

1020 FOR Y =

SET(38,Y):
SET(39,Y):

36

1030

1040

1050

1060

1070

education

NEXT Y:
FOR X = 37 TO 30 STEP - I:
SET{X,9):

NEXT X

FOR Y = 8 TO 7 STEP - 1:

FOR Y = 10 T0 17:
SET(35,Y):

NEXT ¥

FOR X = 42 TO 51:

SET (X,8):

NEXT X:

FOR Y = 9 TO 11:
SET(50,Y):

NEXT Y:

FOR Y = 9 TO 11:
SET(51,Y):

NEXT Y:

FOR X = 49 TO 42 STEP - 1:
SET(X,11):

NEXT X:

FOR Y = 10 TO 9 STEP - 1:
SET(42,Y):

NEXT Y

FOR Y
SET(43,
NEXT
FOR ¥
SET(4
NEXT
FOR Y
SET(4
NEXT
FOR X
SET(X,6
NEXT X:

i -<\IH <O’\ll -<wll

~ o~
o Etn it >

FOR X 7
SET(X,7):
NEXT X:

FOR Y =7 TO 4 STEP - 1:
SET(66,Y):

TO 66 STEP - 1:

37

Program continued

education

SET(67,Y):
NEXT ¥
1080 FOR Y
SET(7
SET(7

70 15:

8
Y
Y

H o< b O 1

TO 78 STEP - 1:

TO 6 STEP - 1:

8
9
Y
1090 FOR Y =
2
3
Y

99 70 90 STEP - 1:
1):

TO 8 STEP - 1:

1100 FOR ¥

1110 FOR Y = 9 TO 6 STEP - 1:
SET(102,Y):
SET(103,Y):
NEXT ¥:
FOR Y = 10 TO 17:
SET(106,Y):
SET(107,Y):
NEXT Y:
FOR X = 114 TO 123:
SET(X,4):
NEXT X:
FOR Y = 4 TO 7:
SET(123,Y):
SET (122,Y)
NEXT Y
1120 FOR X = 123 TO 114 STEP - 1:
SET(X,7):
NEXT X:

38

1130

1140

1150

1160

education

[RPRRSN NN NNIY NENN

SET(8,26):

SET(8,29):
SET(9,29):
FOR X = 12 TO 17:

SET(X,29):

NEXT X:
SET(20,29):
SET(21,29):
SET(8,30):
SET(9,30):
SET(12,30):
SET(17,30):
SET(20,30):
SET(21,30)

FOR X = 20 TO 23

SET(X,28):

NEXT X:
SET(14,3
SET(15,3
FOR X =

CSwo N N

39

Program continued

1170

1180

1190

1200

‘1210

1220
1230
1234

1235

1240

1250
1260

education

SET(27,Y):

NEXT Y:

FOR Y = 34 TO 36:
SET(3,Y):
SET(26,Y):

NEXT Y
SET(4,36):
SET(5,36):
SET(24,36):
SET(25,36):

FOR Y = 34 TO 40:
SET(6,Y):
SET(7,Y):
SET(22,Y):
SET(23,Y):

FOR Y = 41 TO 44:

2 TO 44:

)
43 10 44:
)

SET(24,Y):
NEXT Y:
FOR X = 6 TO 11:
SET(X,44):
NEXT X:
FOR X = 18 TO 23:
SET(X,44):
NEXT X
PRINT @8773,"MEAN";:
I = RND(9) + 1:
PRINT ©590,"IF THE MEAN CLOWN";
PRINT 8654,"POPS";Z;“BALLOONS,";:
FOR I = 1 TO 10:
NEXT I:
M= 127 - (3 + 7 * 12):
FOR X = 127 TO M STEP - 1:
FOR Y = 3 TO 20:
RESET(X,Y):
NEXT Y:
NEXT X:
INPUT "HOW MANY BALLOONS ARE LEFT":p

IF P <> 10 - 1

THEN
CLS :
PRINT "WRONG":
GOTO 1234
CLS

PRINT @450,N$ “, YOU ARE CORRECT!";
PRINT " WOULD YOU LIKE TO PLAY AGAIN";:
INPUT LS

IF L$ = "NO"
THEN
PRINT "BYE "; N§; " I HOPE YOU HAD FUN!":
END
IF L$ = "YES"
THEN
GOTO 90
PRINT “YQU MUST ANSWER YES OR NO":
GOTO 1210
END

40

education

Program Listing 3. Compound Words

1 REM ***** COMPQOUND WORDS ***x**
5 REM **#%%* WYRITTEN BY ROBYN PERRIN AND KEN COLOMES **#*x

10 CLS
RANDOM

12 CLEAR 600

15 DIM A$(60),B$(60),C$(10),D$(10),E$(10)

20 PRINT “THERE ARE 2 COLUMNS OF WORDS. EACH WORD FROM THE LEFT COL
UMN GOES WITH A WORD IN THE RIGHT COLUMN TO MAKE A COMPOUND
WORD."

30 FOR I = 1 TO 60

40 READ A$(I),B$(I)

D${1) = BS(N
90 FOR X = 2 TO 10
106 N = RND(60)
110 FORJ =1 T0 X - 1
120 IF C$(3) = AS(N)
THEN
N = RND{60)
Jd = 1:
GOTO 120
130 NEXT 4
140 C$(X) = AS(N)
D${X) = BH(N)
150 NEXT X
190 N = RND(10)
200 E$(1) = D$(M)
210 FOR X = 2 T0 10
220 N = RND(10)
230 FOR J =1 T0 X -1)
240 IF E$(J) = D(N) 8 00/00/00 00:08:07
THEN
N = RND(10)
J = 1:
GOTO 240

070
250 NEXT J
260 E$(X) = D$(N)
270 NEXT X
280 FOR I = 1 T0 10
290 PRINT I;C$(1),1;E$(I)
300 NEXT I
305 FOR J = 1 TO 10
310 PRINT 0896, "WHAT GOES WITH #";d;:
INPUT A:
PRINT @896," “
IF A > 10
THEN
G070 310
315 IF E$(A) = D$(J)
THEN

PRINT @290,C$(J);D$(J) " IS CORRECT";:
FOR T = 1 TO 1000:
NEXT I:
PRINT @290," R
GOTO 400
316 C = C + 1:
PRINT @896,"TRY AGAIN":
FOR Z = 1 TO 400:
NEXT Z:
GOTOQ 310
400 NEXT 4
405 PRINT ©896,"Y0U GOT ";10 - C;" OUT OF 10 RIGHT"
410 PRINT @960,"D0 YOU WANT TO DO ANY MORE <YES OR NO>";:
INPUT Z§
420 IF 7§ = "YES" Program continued

41

education

10000 DATA AFTER,NOON,WITH,OUT,EVERY,ONE,AIR,PLANE,CLUB,HOUSE,DOOR,WAY

» SOME, TIME, EVER, GREEN NEWS, CAST SHOE HORN WATER FALL UNDER DOG P
ASS PORT DRAN BRIDGE YOUR, SELF ANY THING,GENTLE MAN ; BATH ROOM BE
D, ROOM FIRE CRACKER BIRTH DAY, CAR PET BLACK,SMITH, FISHER MAN

10001 DATA FAIRY, LAND WORK BOOK, HOME NORK SHOT GUN FOOT,BALL, BASKET BA

LL,QUARTER,BACK,GOLD,FISH,FROG,MAN, FOUR TEEN FOX, HOLE FOR TUNE,F
ORE HEAD,FOOT, PRINT SUIT CASE, BED SPREAD NOTE BOOK OUT LINE OVER
COAT RAIN COAT SAIL, BOAT BREAK, FAST

10002 DATA NIGHT GOWN, NICK,NAME,PAD, LOCK PAPER,BACK,HIGH,HAY,0AT,MEAL,

SCREW, DRIVER OUT SIDE LAY,0UT,PACK, AGE, SUN BURN GRAND PARENTS GR
APE, VINE FORE SHADON PHOTO GRAPH

N
O D

30
31

32

40

51
60

70

90
100

101

Program Listing 4. Arithmetic for Kids

REM wxkkx ARTTHMETIC FOR KIDS *x*%*

REM *x*x%x WRITTEN BY MARY CYNTHIA DUPY AND

REM **¥**x MARY VIRGINIA WEINMANN *#*#%

CLS

PRINT "","ADDITION AND SUBTRACTION IN LEVELS"

PRINT :

PRINT * THIS PROGRAM HAS THREE DIFFERENT LEVELS OF DIFFICULTY.

THE FIRST LEVEL IS FOR BEGINNERS IN MATH. THE SECOND LEVEL !
S FOR PEOPLE WHO KNOW A LITTLE BIT OF MATH, BUT AREN'T EXPERTS
YET.THE THIRD LEVEL IS FOR THOSE LITTLE MATHEMATICAL ";

PRINT "GENIUSES THAT PLAN TO GO ON TO CALCULUS IN LATER LIFE."

PRINT “ THERE ARE TEN(10) PROBLEMS IN EACH LEVEL. WHEN YOU GET
MOST OF THE PROBLEMS RIGHT A SMILEY FACE WILL SHOW ON THE SCREEN

. WHEN YOU GET MOST OF THEM WRONG A FROWNEY FACE WILL SHOW."
PRINT " WHEN YOU ARE READY TO GO ON, JUST PRESS <ENTER>."
INPUT Z

CLs

PRINT

PRINT “","DIRECTIONS"

PRINT

PRINT
PRINT WHEN YOU DECIDE WHICH LEVEL YOU WANT TO TRY PRESS THAT

NUMBER "AND THAT PROGRAM WILL BEGIN. IF YOU WANT TO STOP THAT PR

OGRAM IN THE HIDDLE THEN PRESSKBREAK> (THEN YOU'LL HAVE TO START

ALL OVER AGAIN).

PRINT " IF YOU WANT T0O STOP THE WHOLE THING, PRESS #4."

PRINT

PRINT "LEVEL 1> SIMPLE ADDITION(VERTICAL PROBLEMS)":
PRINT “LEVEL 2> HARDER ADDITION AND SUBTRACTION(VERTICAL AND HOR

1ZONTAL PROBLEMS)":
PRINT "LEVEL 3> ADVANCED ADDITION AND SUBTRACTION(HORIZONTAL PRO
BLEMS)":
PRINT " 4> stop"
INPUT "WHICH LEVEL DO YOU WANT";L
IFL =1
THEN
GOTO 110
IFL =2
THEN
GOTO 210
IFL =3
THEN
GOTO 310
IFL =4
THEN
cLs

42

e eesesestmetnremre it

education

PRINT "™ ‘MARY CYNTHIA DUPY®":
PRINT "o o
PRINT :
PRINT "" "wppRY VIRGINIA WEINMANN":
FOR Z = 1 10 1000:
NEXT Z:
cLs :
END
104 PRINT "YOU MUST ANSWER<1,2,3,0R 4>11111%:
GOTO 90
110 CLS :
PRINT "",“THIS 1S THE EASIEST PROGRAM®
112 FOR Z =1 TQ 1000:
NEXT Z:
cLsS

s ND",:

120 N

121 A =N=+NM
130 PRINT 0220 N, :
PRINT 8283, 4"y
131 FOR X = 54 10 63:
SET(X,15)
NEXT X
132 PRINT
PRINT * .
INPUT @
140 IF Q = (N + M)
THEN
PRINT ®475, "RIGHT!"
1

C =+
141 IF Q <> (N + M)
THEN
PRINT @475, "WRONG, THE ANSWER IS "A".":
B =B+ 1
142 FOR Z = 1 TQ 10600:
NEXT 1:
cLs
NEXT T
143 PRINT :
PRINT
PRINT :
PRINT "YOU GOT *;C;" PROBLEMS RIGHT AND ";B;" PROBLEMS WRONG.":
FOR Z =1 Tg 750:
NEXT Z:
CLsS
145 [F C > = 6
THEN
GOSUB 100qg
147 IF C < 6
THEN
GOSUB 20 0g
148 INPUT "WOU LD yoUu LIKE TO TRY AGAIN";U$
150 IF W$ = “YEgw
THEN
GOTO 112
152 IF W$ = "NgQw
THEN
GOTO 51
155 PRINT “YOU MyUST ANSWER <YES> OR <NOS!iil":
GOTO 145
210 CLS :
PRINT """ THIS IS THE HARDER PROGRAM,")
215 PRINT : Program continued

43

education

= 170 10
FOR Z = 1 TO 1000:

M
221 A N + M
225 ON RND({4) GOTO 230,232,234,236
230 PRINT B220,N;:
PRINT 0283,"+"M:
FOR X = 54 T0 63:
SET(X,15):
NEXT X:
PRINT :
INPUT " "5 Qe
GOTO 240
232 PRINT B215,N"+"M"=";:
INPUT Q:
GOTO 240
234 IFN-M<CO
THEN
N = RND(10) - 1:
GOTO 234
235 PRINT @220,N;:
PRINT @283,"-"M:
FOR X = 54 TO 63:
SET(X,15):
NEXT X:
PRINT
INPUT " "SR
GOTO 252
236 IF N - M <O
THEN
N = RND(10) - 1:
GOTO 236
237 PRINT @215,N"-"M"=";:
INPUT R:
GOTO 252
240 IF Q = N+ M
THEN
PRINT @475, "RIGHT!":
C=C+ 1:
GOTO 256
250 IF Q ¢ > N + M
THEN
PRINT @467, "WRONG, THE ANSWER 1S "A".":
B =8 + 1:
GOTO 256
252 IF R =N - M
THEN
PRINT @475, "RIGHT!";:
C=0+1
254 IF R <> N - M
THEN
PRINT @467, "WRONG, THE ANSWER IS "N - M".":
B =8 +1
256 NEXT T
260 PRINT
PRINT
PRINT :
PRINT "YOU GOT "C" PROBLEMS RIGHT AND "B"“ PROBLEMS WRONG.":
FOR Z =1 TO 1000:
NEXT Z:
CLS
263 IF C > =6
THEN

44

265

270
271

340
350

360
365

370

380

430

450
460
470

480

education

0 TRY AGAIN";W$

PRINT "YOU MUST ANSWER <YES> OR <KNO>!Lt1":

GOSUB 1000
IF € <6
THEN
GOSUB 2000
INPUT “WOULD YOU LIKE T
IF W$ = "YES"
THEN
GOTO 210
IF W$ = "NO®
THEN
GOTO 51
GOTO 270
CLS :
PRINT *¥,

PRINT “THIS IS THE HARD
FOR Z = 1 TO 1000:

NEXT Z:
CLS
PRINT
C = 0:
B =20
FOR T = 1 TO 10
N = RND(20) - 1:
M = RND(20) - 1
ON RND(2) GOTO 370,380
IF N + M > 30
THEN
N = RND(20) - 1:
GOTO 365

PRINT @215,N"+"M"=":
INPUT P:
GOTO 400
IFN .- MCO
THEN
N = RND(20) - 1:
GOTO 380
PRINT @215,N"-"M"=";:
INPUT P:
GOTO 420
IF P =N+M
THEN
PRINT @475,"RIGHT!":
C =0+ 1:
GOTO 440
IFP CH>N+ M
THEN
PRINT 0467, "WRONG,
B =8B +1
GOTO 440
IFP=N-M
THEN
PRINT @475,"RIGHT!":
C=20C+1:
GOTO 440
IFP<C>N-M

THEN
PRINT @467, "WRONG, T
B =B + 1

FOR Z = 1 T0 750:

NEXT Z:

CLS

NEXT T

EST PROGRAM.™

THE ANSWER [S"N +

HE ANSWER IS"N

ML

- Mo,

PRINT "YOU GOT “C" PROBLEMS RIGHT AND "B" PROBLEMS WRONG."

IFC>=6
THEN

GOSuB 1000
IF C <6
THEN

GOSUB 2000

Program continued

45

education

490 INPUT “WOULD YOU LIKE TO TRY AGAIN"; W$
500 IF W$ = "YES"
THEN
GOTO 310
510 IF W$ = "NO"
THEN
GOTO 51
520 PRINT “YOU MUST ANSWER <YES> OR <NO>!Ei™:
GOTO 4990
999 END
1000 FOR X
SET
NEXT
FOR Y
SET
NEXT
1010 FOR Y TO 35:
SET(99,Y):
NEXT Y:
FOR X = 99 TO 28 STEP ~ 1:
SET (X,35):
NEXT X
1020 FOR Y = 35 TO 6 STEP - 1:
SET(29,Y):
NEXT Y:
FOR Y = 35 70 6 STEP - 1:
SET(28,Y):
NEXT Y
1030 FOR X = 44 TO 49:
SET(X,12):
NEXT X:
FOR X = 44 T0 49:
SET(X,13):
NEXT X:
FOR X = 44 TO 49:
SET(X,14):
NEXT X
1040 FOR X = 78 T0 83:
SET(X,12):
NEXT X:
FOR X = 78 T0 83:
SET(X,13):
NEXT X:
FOR X = 78 T0 83:
SET(X,14):
NEXT X
1050 FOR X = 62 TO 65:
SET(X,18):
NEXT X:
FOR X = 62 TO 65:
SET(X,19):
NEXT X:
FOR X = 62 TO 65:
SET(X,20):
NEXT X
1052 FOR 7T = 1 T0 3:
FOR Y 24 T0 27:
44,Y):

70 99:

[= N
~ 0

WO <D >
o

TO 35:
Y):

- o

—< o

{
Y
=24 T0 27:
(45,Y):
NEXT Y:
FOR Y = 24 TO 27:
RESET(46,Y):
Y:
= 24 T0 27:
(
NEXT Y
(

FOR X = 48 TO 81:
RESET(X,26):

46

1053

1055

1060

1065

1068
1069
1070
1071

1999
2000

2010

education

NEXT X:
FOR X 48 70 81:
RESET(X,27):
NEXT
FOR ¥
RESET
NEXT

{
X
= 27 TO 24 STEP - 1:
(82,
&
FOR Y =
(8
Y
(8
&

82,Y):
27 TO 24 STEP - 1:

RESET(83,Y):

NEXT
FOR Y = 2
RESET(84,Y):

NEXT

FOR ¥V = 27 TO 24 STEP - 1:
RESET(85,Y):

NEXT ¥
FOR Y = 24 TO 27:
SET(44,Y):

NEXT Y:
FOR Y = 24 TO 27:
SET(45,Y):

NEXT Y:
FOR Y = 24 TO 27:

7 TO 24 STEP - 1L:

FOR Y = 24 T0O 27:
Y)

8 T0 81:

)

FOR X = 48 TO 81:
7)

FOR Y = 27 TO 24 STEP - 1:
Y)

FOR Y = 27 T0 24 STEP - 1:

FOR Y = 27 TO 24 STEP - 1:
Y)

FOR Y = 27 70 24 STEP - 1:

PRINT ©849,"Y0U GOT MOST OF THEM RIGHT!!

RETURN

FOR Z = 1 TO 1000:
NEXT Z:

cLS

END

FOR % = 28 TO 99:
SET(X,6):

NEXT X:
FOR ¥
SET(9
NEXT

=6 T0 35:
8,
Y:

FOR ¥ =
9,
Y:

Y):

6 TO 35:
SET(99,Y):

NEXT

FOR X = 99 TO 28 STEP - 1:
SET(X,35):

FOR Y = 35 TO 6 STEP - 1:
SET(29,Y):

NEXT Y:

FOR Y = 35 TO 6 STEP - 1:
SET(28,Y):

47

Program continued

2020

2025

2030

2040

NEXT ¥:
FOR X = 44
SET(X,12):
NEXT X:
FOR X = 44
SET(X,13):
NEXT X:
FOR X = 44
SET{X,14):
NEXT X
FOR X = 78
SET(X,12):
NEXT X:
FOR X = 78
SET(X,13):
NEXT X:
FOR X = 7
SET(X,14
NEXT X:

FOR X = 62
SET(X,20):
NEXT X

FOR Y = 29
SET(44,Y):
NEXT Y:

FOR Y = 29
SET(45,Y):
NEXT Y:

FOR Y = 29
SET(46,Y):
NEXT Y:

FOR Y = 29
SET(47,Y):
NEXT Y

FOR X = 48
SET(X,26):

SET(X,27):
NEXT X:
FOR Y = 26
SET(82,Y):
NEXT Y:
FOR Y = 26
SET(83,Y):
NEXT ¥:
FOR Y = 26
SET(84,Y):
NEXT ¥:
FOR Y = 26
SET(85,Y):
NEXT ¥
SET(80,15):
SET(81,15):

T0

T0

T0

T0

T0

T0

T0

T0

T0

TO

T0

T0

T0

T0

10

T0

T0

TO

T0

49:

49:

49:

83:

83:

83:

65:

65:

65:

26

26

26

81:

81:

29:

29:

29:

29:

FOR Z = 1 T0 50:

NEXT Z:
RESET(80,15
RESET(81,15
SET(80,17):
SET(81,17):

B
IR

FOR Z =1 TO 50:

STEP

STEP

STEP

STEP

education

48

education

SET(80,19):
SET(81,19):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,19)
RESET(81,19)
2041 SET(80,21):
SET(81,21):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,21):
RESET(81,21):
SET(80,23):
SET(81,23):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,23)
RESET(81,23)
2050 SET(80,15):
SET(81,15):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,15)
RESET(81,15):
SET(80,17):
SET(81,17):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,17):
RESET(81,17):
SET(80,19):
SET(81,19):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,19):
RESET(81,19)
2051 SET(80,21):
SET(81,21):
FOR Z = 1 TO 50:
NEXT Z:
RESET{80,21):
RESET(81,21):
SET(80,23):
SET(81,23):
FOR Z = 1 TO 50:
NEXT Z:
RESET(80,23):
RESET(81,23)
2055 PRINT ©845,"YOU GOT MOST OF THEM WRONG. BOO HOOt(!"
2056 :
RETURN
2057 END

49

EDUCATION

Super Curve Fit

by William L. Morgan

Vurve fitting is a useful tool for scientists, science students, and statisti-

A4 cians. It is a method for calculating the closeness to which data con-
forms to a specified functional curve, such as a logarithmic or parabolic
curve, The Super Curve Fit program (see Program Listing) allows you to use
the TRS-80 for curve fitting.

Problem One

Many programmers try to solve a specific problem rather than looking for
a general solution. Least squares is a method of fitting a curve to a set of
points so that the sum of the squares of the distances of the points from the
curve is at a minimum. The following equations are used:

2Y, = apn + a;2x, + as2x* + ... + ap2x.n
SXY, = adx, + a;¥x? + agxx® 4+ ... + apZxatl
XY = agZy, + a3x® 4 aZxt 4+ ... + agixnt?
XY, =g,5x0 + a,Zn+t] + a,xn+2 4 4 g,.3x2n

If you replacex,, x2, x°, and x.» with f;(x), f2(x.), fs(x.), and f(x,), which is
a way of saying you perform a function with x, you have:

Y, = agn + a,2f, (x) + a,Xfp(x,) + ..+ ap2fy(x)
Y £i(x) = acZfi(x) + aZfi%(x) + agZhh(x)fi(x) + . .+ apZfp(x)fi(x)
ZYlfg(Xl) aOng(xL) -+ alzf,(x,)fg(x,) + aZngz(xl) +. ..+ anzfnb{‘)fz(xt)

SYfu(x) = acZfy(x) + aZfi(x)fn(x) + aZf(x)ia(x) + . .+ agZfA(x)

50

education

Using matrix notation, you have:

2Y, ay| |n Zf(x) Zf,(x.) oo ZE(x)
ZY‘fl(XJ a; Zf}(X,) Zflz(x‘) Efg(x‘)fl(xl) Ca. an(x‘)fl(x,)
° (xfa(x.)

ZYfg(Xl) =1 Qg ng(X,) Efx(x.)fg(xl) Zfzz(x‘) PR an

Y falk) | | an| |ZEalx) SE)Ea(x) Sha(x)falx) . SH(x)

n
If you look closely at the X and Y matrices, you will see: for Y, = Y£i(x.)
n j=1
and for X,k = fi(x)fi(x). I realized that these are just the cross products
=1

of the function list. If I give the computer a function list, it should be able to
find the value of a for each function using inversion of the X matrix and
multiplication of the Y matrix. That's simple, but how do I know if one list of
functions is better than another?

Problem Two

There is a problem when you use least squares, as illustrated in Figure 1.
Two functions are shown: y =2 and the square wave function, f(x). Least
squares for point P, for the square wave function is (4-0)2, or 16; for the y = 2
function, least squares is (4-2)?, or 4. Using least squares as a standard, y = 2
is a better fit for P, than the square wave function. You don’t agree; neither
do I. Another method must be found. In this example, it would be nice if the
x and y could be interchanged, but with some functions, finding the inverse
could take forever, or possibly not even be defined at some points.

An alternative to least squares uses normal distances. This involves find-
ing a formula by using the first derivative, however, the TRS-80 can per-
form differentiation by calculation, so it doesn’t need the first derivative. I
can make the computer calculate normal distances by moving along the
curve until it finds the shortest distance on the interval. This is most of the
theory behind Super Curve Fit,

Pl
°
Y=2

F(X)

Figure 1. Using least squares for point Py. The two functions shown are y = 2 and the square wave

function, f(x).

Program Operation

Program lines 10-80 contain the input routine, and lines 90-120 contain

o1

education

the input correction routine. See Table 1 for a complete outline of the pro-
gram. Table 2 lists the variables used in Super Curve Fit. Lines 130-160 set
up the cross products for the matrices and arrays; lines 200-350 find the in-
verse of the cross product matrix. Line 400 finds the coefficients for the func-
tion list, and lines 410-420 print out the coefficients of the functions. The
sum of the normal distances squared is calculated in lines 500-700 and
printed out point by point in alist showing experimental x,y, calculated x,y,
and the square of the distance between the experimental and the calculated
points. Finally, the total sum of the square of the normal distances is
printed out.

Lines 10001090 make up the function list. The functions must be entered
after the CLOAD and before RUN. If you want function 3 to be f3(x,) = COS
(X +SINX), you would enter this as: 1020 X = COS(X + SIN(X)): RETURN.
The routine to calculate f(x) uses ON I GOSUB 1000, 1010, . . .,1090, so you
have a maximum of 10 line numbers to define the function. If you need more
space, use a GOTO, then hit RETURN when finished. You don’t have to use
all 10 functions, but you must have one operation for each function you will
use, and you can have more that are not used. Run the program, entering
the information as the program asks for it. Occasionally, you will have a
singular matrix, and no solution is possible. If this happens, a new function
list is called for. Next press ENTER, and a point by point summary will be
printed on the screen, pausing after 10 lines. Pressing ENTER will restart
the summary. At the end of the program the sum of the normal distances will
be printed on the screen. Figure 2 shows the results as they would appear on
the screen for three sample runs of Super Curve Fit.

This program can handle any type of mathematical function. Because a
computer has a limited amount of memory, the number of functions is
limited to 10. The program as written uses about 10K of memory; so you
may be able to modify the program to handle 12 functions before memory

10-80 Input routine for X,, Y., NF, ND

90-120 Input correction routine for X,, Y,

130-160 Routine sets up XM, YC, and clears XI

200-350 Matrix inversion routine

400-420 Finds function coefficients, YK

500-580 Finds the nearest calculated point to the experimental point and the
sum of the normal distance squared

590-620 Print routine

700 Subroutine to find value of CY

1000~-1090 Function list. The functions must be entered before the program is
RUN. (Ex. 1020 X = SIN(X)* COS(X):RETURN)

Table 1. Outline of Super Curve Fit

52

education

becomes a problem in a 16K Level II machine. There is another method you
can use if you want the program to handle more than 10 functions. Run the
program using 10 functions and their coefficients. Next, use the first 10 func-
tions and their coefficients as one function in the next set of functions. You
will get a new coefficient which, multiplied by each of the first coefficients,
gives the new coefficients for each of the first 10 functions. It may not be as
accurate as, say, a 19 function fit, but it will be close enough for most
applications.

Matrices
XM(10,10) Matrix for cross product sum of EFy(X,)Fy(X))
XI(10,10) Matrix for inversion of XM

Arrays
X(100) Input data array for X,
Y(100) Input data array for Y,
A(10) Single precision value of YK array
YC(10) Array for cross product sum of XY,Fi(X))
YK(10) Array of coefficients for function list
Real Variables
CX Calculated value of X,
CY Calculated value of Y,
D2 Normal distance squared between calculated point and experimental point
DD Sum of normal distances squared
DL Lowest D2 value on the interval centered on X,
EX Experimental X,
EY Experimental Y,
\'2¢ The interval +.10X, + X,
VL Value of CX when D2=DL
VY Value of CY when D2 =DL
V2 Dummy variable for VL
XD Determinant of XM matrix
XH High value of X,
XL Low value of Y,
Integer Variables
H1JK Counter variables, mainly for matrix and array operations
N Counter for data points
ND Number of data points
NF Number of functions
LC Line counter
String Variables
A% Dummy for input

Table 2. Program variables

53

education

A(0) = 6.1347; A(l) =26.9155; A(2) = — 12.8618; D12 = 43.8786

X(1) X(C) Y(I) Y(C) D12

0.000E 00 -5.550E-02 OO000E 00 4.601E 00 2.117E 0l
2.000E -02 —3550E-02 5050E 00 5.163E 00 1.585E -0l
5000E-02 1055E-01 1080E 01 883IE 00 3.880E 00
1.000E 01 1.555E-01 1320E 01 L.00OIE 01 1.019E Ol
2.000E ~01 2.555£-01 1360E 01 1217E 01 2.042E 00
4.000E -01 3626E-01 1420E 01 1.420E Ol 1.408E - 03
6.000E -01 5445E-01 1550E 01 1698E Ol 2.184E 00
8.000E -01 7.445E-01 1.780E 01 1904E 0l 1551E 00
9 9.000E-01 8445E-01 1.940E 0l 1.969E 0l 8.840E - 02
10 9.500E 01 1.00BE 00 2080E 01 2.019E 01 3.696E ~ 01
11 1.000E 00 1.045E 00 2176GE Ol 2.022E 01 2.386E 00

y =6.135+26.92x —12.86x*

0 ~3 3 Ut A WP =

A(0) =3.8981; A(1) =78.3055; A(2) = ~ 154.9586; A(3) = 95.7672; D12 =5.32603
1 X X(©) Y(I) Y(C) D2

1 0.000E 00 —4.555E-02 O0.000E 00 6.822E-04 2.075E-03
2 2.000E-02 1515E-02 5050E 00 S5.049E 00 2.424E 05
3 5.000E-02 1.055E-01 1.080E 01 1.055E 01 6.708E -0l
4 1.000E-01 1.555E-01 1.320E 01 1.269E 01 2.655E -0l
5 2000E-01 1.822E-01 1360E 01 1.360E Ol 3.170E — 04
6 4.000E-01 3.445E-01 1420E 01 1.640E 01 4.840E 01
7 G000E-01 6.555E-01 1550E 01 1562E 01 1.701E —02
8 8.000E-01 8.555E-01 1780E 01 1744E 01 1.331E -0l
9 9.000E-01 9.212E-01 1940E 01 1.940E 01 4.511E -0l
10 9.500E —01 9.558E-01 2.080E 0l 2.080E 0l 3.453E —05
11 1.000E 01 9.762E-01 2.176E 0l 2.176E 01 5.666E —05

y =3.898 + 78 .31x - 155.0x% +95.77x*

AQ) = 12.7844; A(1) =7.4606; A(2) = — 11.8466; D12 = 4.90428

X(1) X(C) Y(1) Y(C) D12

0.000E 00 —3.700E—-03 0.000E 00 3.004E-04 1.378E —05
2.000E-02 2.035E-03 5.050E 00 5.051E 00 4.812E —07
5.000E -02 7.665E-02 1.080E 01 1.080E 01 7.119E —04
1.000E 01 1442E-01 1.320E 01 1.320E 01 1.958E —03
2.000E-01 1.665E-01 1360E 01 1.360E 01 1.129E 03
4.000E-01 3.445E-01 1420E 0l 1.534E 01 1.208E 00
6.000E -01 5.445E-01 1550E 01 1.685E 01 1816E 00
8.000E -01 7.445E-01 1780E 01 1834E 0l 2.933E —01
9.000E-01 8.870E-01 1.940E 0l 1940E 01 1.724E —04
10 9.500E~01 1.006E 00 2.080E Ol 2029E 01 2.674E —01
11 1.000E 00 1.056E 00 2176E 01 2.066E 01 1.215E 00

(o)

Figure 2. Sample runs

O 00 ~1] U A W

y=12.78 +7.461x ~11.85¢

54

education

Program Listing. Super Curve Fit

10 DEFINT H - N: Encyclopedia
DEFDBL X,Y: Lga%er"
XL = 1E38:

XH = - 1E38:
LC = 0:
IS = 0

20 DIM A(10),XxM({10,10),XI(10,10),YC(10),YK(10),X(100),Y(100)
30 INPUT "ENTER THE NUMBER OF FUNCTIONS";NF:

IF NF > 10
THEN
PRINT "MAX. OF 10 FUNCTIONS-REDO":
GOTO 30
40 INPUT "ENTER THE NUMBER OF DATA POINTS";ND:
IF ND > 100
THEN
PRINT "MAX. OF 100 DATA POINTS-REDO":
GOTO 40

50 FOR N = 0 TO ND - 1:
PRINT "DATA POINT “;N + 1;" X,v";
60 INPUT X(N),Y(N):
IF X(N) < XL

THEN
XL = X(N)
70 IF X{N)} > XH
THEN
XH = X{(N)
80 NEXT N
90 INPUT "DO YOU WISH TO MAKE CHANGES Y/N";A$:
IF A§ = "N"
THEN
GOTO 130
ELSE ’

INPUT "ENTER THE NUMBER OF THE DATA POINT TO BE CHANGED, THE
N OXL,Y"NL X, Y
X .

X(N - 1) = X:
Y(N -~ 1) = Y:
GOT0 90
100 XL = 1E38:
XH = - 1E38:
FOR N = 0 T0O ND - 1:
IF XL > X{(N)
THEN
XL.= X(N)
110 IF XH < X(N)
THEN
XH = X{(N)
120 NEXT N
130 XM(0,0) = ND:
FOR I = 0 TO NF
YC(I) = O:
NEXT I

FOR N = 0 TO ND - 1:

YC(0) = YC{0) + Y(N)
140 FOR I = 1 TO NF:
X = X(N):
ON I GOSUB 1000,1010,1020,1030,1040, 1050,1060,1070,1080,1090:
YC(I) = YC(I) + Y(N) * X:
XM(0,1) = XM(0,1) + X:
XM(1,0) = xM(0,1)
XF = X
150 FOR J = 1 TO NF:
X = X(N):
ON J GOSUB 1000,1010,1020,1030,1040, 1050,1060,1070,1080,1090
XM(I,d) = XM(I,d) + XF * X:
NEXT J,1,N
160 FOR I = 0 TO NF:
FOR J = 0 TQ NF: Program continued

55

200
210
220

230

240
250

270

280
290

420
500

520

education

IF XM(!,d) <> 0
THEN
GOTO 250
ELSE
[F 1 = NF AND J = NF
THEN
GOTO 240
ELSE
GOTO 220

PRINT "SINGULAR MATRIX,NO SOLUTION":

END
FOR H = 0 TO NF:
XT = XM{J,H)
XM(J,H) = XM({I,H):
KM{I,H) = XT

XI1(J,H) = XI(1,H)
XI(I,H) = XT:

NEXT H
XD = XM(J,J)
FOR H = 0 TO NF

XM(J,H) = %M(J,H) / XD:
X1(J,H) = XI(J,H) /7 XD:
NEXT H
FOR H = 0 TO NF

IF g = H

THEN

GOTO 340
XD = XM(H,J):

FOR K = 0 TO NF
XM(H,K) = XM(H,K) - XM(J,K) * XD

L1(H.K) = XI(H,K) - XI{J,K) * XD
NEXT K
NEXT H
IF I = < NF
THEN
GOTO 220
ELSE
NEXT J
FOR 1 = 0 TO NF:
YK{1) = O:
FOR J = 0 TO NF:
YK(I) = YK{I) + YC(J) * XI(i,d):
NEXT J,1

FOR I = 0 TO NF:

PRINT "A(";1;")= ";YK(I):

NEXT 1

INPUT "PRESS ENTER TO GET POINT 8Y
PRINT USING "% %";" ";"1";:

PRINT USING "% 550 K1)
2"

IF IS = 1

THEN
GOTO 600

VI = CSNG((XH - XL) / 20):
FOR I = 0 TO NF:

A(1) = CSNG(YK(I)):
NEXT 1

FOR N = 0 T0 ND - 1:
EX = CSNG(X(N)):

POINT RESULTS";AS$
WOXLE) T V(1) (e

D

o6

education

EY = CSNG(Y(N)):
VL = EX - VI
530 DL = 1E38:

FOR K = 0 TO 20:
CX = EX - VI + K * VI / 10
540 GOSUB 700:
D2 = (EX - CX) [2 + (EY - CY) 2:
IF D2 < DL
THEN
DL D2:
VL CX:
vy cyY:
NEXT K
ELSE
NEXT K:
DL = 1E38

wonon

FOR K = 0 TO 20:
CX = V2 - V1 / 10 + K * vI / 100
560 GOSUB 700:
D2 = (EX - CX) [2 + (EY - CY) [2:
IF D2 < DL
THEN
DL

FOR K = 0 TO 20:
CX = Vv2 - VI / 100 + K * VI / 1000
580 GOSuUB 700:
D2 = (EX - CX) 2+ (EY - CY) 2:
IF D2 < DL
THEN
DL D2:
VL cX:
vy Cy:
NEXT K
ELSE
NEXT X
590 [IF LC = 10
THEN
LC = 1:
INPUT "A PROGRAM HOLD PRESS ENTER TORESTART";AS$:
IS = 1:
GOTO 500
ELSE
LC = LC + 1
600 PRINT USING "###!";N + 1;:
PRINT " "y
610 PRINT USING "g#.44¢# "SEXSVLEY;VY;DL:
DD = DD + DL:
NEXT N
620 PRINT "SUM OF NORMAL DISTANCES SQUARED IS ";DD:
END
700 CY = A(0):
FOR I = 1 TO NF:
X o= CX:
ON I GOSUB 1000,1010,1020,1030, 1040,1050,1060,1070,1080,1090:
CY = CY + A{I) * CSNG(X):
NEXT I:
RETURN
1000 RETURN
1010 RETURN
1020 RETURN
1030 RETURN
1040 RETURN program continued

aonon

57

1050
1060
1070
1080
1090

RETURN
RETURN
RETURN
RETURN
RETURN

education

58

GAMES

Queen Rama’s Cave
TRS-80 Jukebox

59

GAMES

Queen Rama’s Cave
by John Corbani

dventure programs have been around almost as long as computers have
had CRT terminals. If you have ever wondered how they work or if you
could write one, read on. Queen Rama’s Cave is written as a demonstration
program to illustrate how easy it is to write this type of program in BASIC.
Most of the program, which fits within 16K, describes the various parts of
the cave and the objects and creatures who live there. The basic structure of
the program is separate from the descriptions; so you can customize the pro-
gram to any environment you wish. The cave could just as well be a ship,
space station, house, department store, or office building. Your imagination
is the only limit,

The starting point for writing an adventure program is to lay out a three-
dimensional view of the environment. This program uses a three-dimension-
al array to identify all points the player can visit. Each dimension in the ar-
ray contains three elements. This allows three levels, each with 3 x 3 or nine
stopping points. Twenty of the 27 possible points form the adventure’s starting
point, the cave entrance, and the bowels of the cave as shown in Figure 1.
Once you have defined the structure, you can determine the allowable paths
from point to point. These are corridors, stairways, and ladders. You now
have enough information to write a description of each point and to specify
the moves that can be made from that point. The program stores the descrip-
tions in string array DE$(n) and the possible moves in DI$(n).

An adventure needs a goal, and of course there must be some danger to
add spice. Overcoming danger requires weapons and/or some fancy talking.
The goal is a giant diamond. The diamond, weapons, and other treasures to
be found in the cave are identified as B1$ through B5$. Horrible creatures
who live in the cave are identified as A$(1) through A$(5). The fancy words
are listed in SL$. Using the fancy words to get out of a tight spot brings a
response specified in B$(1) through B$(5). There are other words you can
use, but you had better be armed or you will wish you had kept your mouth
shut. These words are stored in SK$. A random factor should exist; in this
case, it is the Greep. He prowls the cave, and anyone who spends too much
time underground is sure to run into him. He gives a warning on first contact
but vents his wrath on the second meeting.

You are given certain abilities and a genie to accompany you along the
way. Key words are GET, DROP, HELP, START, and the abbreviations of

61

games

the six possible directions of travel, N, S, E, and W (north, south, east, and
west) and U and D (up and down). You and your genie can move from point
to point in the cave by specifying one or a combination of two directions of
travel. If the specified direction is allowable, your position in the array
PO$(n,n,n) is updated. The array variable then points to the point descrip-
tion, possible directions, contents, and so on. This indirect addressing makes

program housekeeping and modification a simple chore.

WEST gt 3 atiom EAST

up -
? NORTH / -
/ Lgp - 1 CAVE ENTRANCE

xkniFe (3)

SOUTH I
DOWN START

8LACK CAT

CREATURE [’ " I
30
DIAMOND @ 18

002 012 022
12 13 14

—

Figure 1. Diagram of Queen Rama’s Cave

Determining what the player is saying, parsing the sentence, is where the
string features of Microsoft BASIC really shine. The program is not very
sophisticated but has enough sense to tell the player when it is stumped.
Player input starts at line 600 and is gradually digested. Flow jumps to the
key subroutines if the first word of the input sentence is a key word. If the in-
put is one or two characters, the program compares the characters to the
allowable moves from the present position (DI$(n)). If the move is not
allowed, the program gives you a wise remark and looks for new input.
The program checks to see if you ran into the Greep. The variable T con-
tains the number of moves you have made. At the tenth move, the Greep

62

games

gives a warning. At the seventeenth move the Greep transports you to a ran-
dom point in the cave. At the twenty-fifth move, you are stripped of your
possessions and thrown from the cave. All this happens in the subroutine
that starts at line 470.

After the Greep has been handled, the move is executed at 650 by going
through the subroutine at 740 and updating the terms of the three-dimen-
sional array. A description of the new location and of all items there is
printed at 1080, and the program jumps back to 650. The program then
checks the position for points 7 or 15 to see if the player ran into a creature.
The subroutine at 1280 takes care of all of the confrontations. You can talk
your way by the creature or commit mayhem on the creature if you are
armed. A suitable message is printed depending on the outcome of the en-
counter. Then the program goes back to line 600.

The key word START is a cop-out to use when you are hopelessly lost. It
just starts the program over again. The key word HELP prints all of the
commands on the screen and lists all of the objects the player is carrying. The
n =0 element of B1$(n) through B5$(n) indicates that an object belongs to
the player. Other values of n indicate the place where the object is resting.

The key word GET causes a jump to 1160 where the player’s objects are
counted. If you already have three, you can’t pick up another one without
dropping one. Detour to 1420 and then back. Now there is a jump to 1600
where the program determines the last word in the input sentence, then
back to 1180 to see if it is one of the portable objects. If itis, and if the object
the player wants is in the room, it is given to him by making its array element
equal 0. If not, a message is printed outlining the problem. The program
finally loops back to 600 for more input.

The key word DROP causes a jump to 1440. The last word in the sentence
is obtained in 1600 and checked against the names of all objects at 1450. If
the player has the object, the program drops it by changing its array number
to the number of the player’s position.

A list of all variables is printed at the end of the program. This is in-
valuable when you are writing or debugging, but you can drop it from the
final program to save memory space. The form of the program adds a lot to
the readability and understandability of the listing. I have taken full advan-
tage of multi-line statements and have added spaces freely for line format-
ting. All lines contain fewer than 64 characters, and I added a line feed
(down arrow) at the end of all upper lines of a multi-line statement. Text
that will be printed on the screen is not indented so the formatting is
visualized easily.

The simple approach to program formatting in which every statement has
its own line works fine when the problems are small, the programmer is a
beginner, and the language is inflexible. Using that approach on this pro-
gram would result in a program that would require 32K to run. As your skill

63

games

builds and your knowledge of BASIC increases, use every tool that Microsoft
provides. The form of a sentence or paragraph varies to suit the subject mat-
ter; not the other way around. Program the same way.

The program is a lot of fun for kids and is not a bad demonstration of the
computer to the uninitiated. Leave the computer on with the illustration
nearby, and most people will start to visualize in three dimensions.

64

games

Program Listing. Queen Rama’s Cave

Please note: This program listing has not been formatted to preserve the author’s spacing.

10 QUEEN RAMA'S CAVE 11/5/81)
BY Encyclopedia
JOHN CORBANI Loader
2455 CALLE LINARES
SANTA BARBARA CA, 93109
20 nQ" TAPE #6, 5-140

30 CLEAR 500: DIM A$(5), B$(5), D$(5), 90(,3), $(2o),
DI§(20), B1$(20), B2$(20), B3§(20), B4§(20), B5$(20
40 D$(l)—"YOU CANT GO THAT WAY":
(2) “NOT THAT WAY TODAY":
D${3)="NO WAY":
D$(4)="NO! NOT THIS TIME":
D${5)="THAT WAY WILL KILL YOU"
50 A${1)="SERPENT":
A${2)="SNIVELOPOGOUS" :
A$(3)="DRAGON" :
A$(4)="BERGRUMP"
A${5) = "BUSHHAUGH"
60 B$(1)=
“OE DECIDED TO LET YOU STAY FOR A MINUTE. BE QUICK BEFORE HE
CHANGES HIS MIND.":

B$(2)=
“IF YOU HURRY UP, YOU CAN SNEAK BY HIM.™:

B$(3)=

“HE APPEARS TO BE ASLEEP. MAYBE YOU CAN GET BY."

70 8$(4)=

" SOME %R%ATURES ARE DUMB. TRY TO GO AROUND HIM":
B$(5)=

“HE 1S LOOKING THE OTHER WAY RIGHT NOW"

80 B1$="A SHINY BRASS LAMP":

B2§="A VERY BLACK CAT":
B3$="A SHARP KNIFE":
B4$="A SMALL GOLD RING":
85%="A GIANT DIAMOND"
90 B1$(2)=B1$: B2$(RND(16)+4)=B2%: BI§(11)=B3$: BA$(17)=B4S:
B5$(16)=B5%
100 01§=" THERE 1S “: 02$=" ON THE FLOOR":
H2g=" YOU HAVE ©
110 SK$="KILLMAIMDROWNHITSTABMURDERGE TSMASH" :
SL$= "L OVEPATSNUGGLEFEEDCALLPETRUBY

120 DI$(1)="N-": DI$(2)="S-NDN":
DI$(3)="E-D-": DI$(4)="N-E-W-":
DI$(5)="N-W-": DI$(6)="E-NDN":
DI§(7)="S-W-EDE": DI$(8)="N-S-NWN":
DI$(9)="E-SDS"

130 DI$(10)="W-USU.SES": DI$(11)="S-D-":
DI§(12)="E-U-": DI$(13)="E-W-NUN":
DI$(14)="N-N-": DI$(15)="NUN.SES":
DI$(16)="N-": DI$(17)="S-NuN.UKU"

140 DI$(18)="E-USU": DI$(19)="S-W-ESE":

150 PO(0,1,

160 POE

It 4 = AD Y WD

How oBo#o#on

e et e e Nt

(
0
1
1
1
2
2
2

HoW oBoH oW
LULLIE LA I L I

et et e e et

170 DE$(1)=

" YOU ARE TWENTY YARDS SOUTH OF A LOW CAVE AT THE BASE OF

A TALL CLIFF."

180 DE$(2)=CHR$ (28)+CHR$(31)+

“YOU ARE IN THE MOUTH OF A CAVE. A STONE STAIRWAY LEADS DOWN

TO THE NORTH."

190 DE$(3)=)
“THIS ROOM HAS A HIGH DOMED CEILING. A LOW DOORWAY IS IN THE Program continued

65

games

EAST WALL. A STAIRWAY WINDS DOWN THE SIDE OF A ROUND HOLE IN
THE FLOOR."
200 DE$(4)=
"THE ROOF IS VERY LOW NOW AND YOU MUST BEND OVER TO CONTINUE.
YOU ARE IN AN EAST WEST PASSAGE THAT HAS AN OPENING TO THE
NORTH. "
210 DE$(5)=
“YOU A§E IN A TUNNEL THAT CURVES FROM THE WEST TO THE NORTH."
220 DE$(6)=
“THERE IS A SMALL WATERFALL TRICKLING DOWN THE SOUTH WALL OF
THE TUNNEL. A NARROW CORRIDOR DESCENDS INTO THE DARKNESS TO
THE NORTH. YOU CAN JUST SEE A WIDE CRACK TO THE EAST."
230 DE$(7)=
“THIS CORRIDOR COMES FROM THE WEST AND PITCHES STEEPLY
DOWNWARD TO THE EAST. ANOTHER PASSAGEWAY CURVES TO THE SOUTH."
240 DE$(8)=
"YOU ARE AT A POINT WHERE A NORTH SOUTH PATH BRANCHES TO THE
NORTH HEST.®
250 DE$(9)=
“THE TUNNEL WIDENS AS IT CURVES FROM THE EAST TO THE TOP OF A
MARBLE STAIRWAY LEADING DOWN TO THE SOUTH."
260 DE$(10)=
“YOU ARE IN A TRIANGULAR CHAMBER AT THE BOTTOM OF A STONE
STAIRWAY RISING TO THE SOUTH. A DOORWAY OPENS WEST AND A ROUGH
HOLE LEADS SOUTHEAST."
270 DE$(11)=
"YOU ARE AT THE TOP OF A VERTICAL SHAFT DROPPING AWAY INTO THE
GLOOM. AN OPENING IN THE WALL LEADS SOUTH. YOU CAN JUST SEE
THE TOP OF A LADDER AT THE EDGE OF THE SHAFT,®
280 DE$(12)=
“YOU ARE AT THE BOTTOM OF A VERY TALL ROUND SHAFT RISING INTO
THE GLOOM. YOU ARE STANDING ON A PATH LEADING FROM AN OPENING
IN THE EAST WALL TO THE FOOT OF A STAIRWAY CURVING UP INTO THE
DARK. "
290 DE$(13)=
“AT THIS POINT THE EAST WEST TUNNEL SHOWS A SMALL OPENING GOING
TO THE NORTHWEST.®
300 DE$(14)=
"YOUR TUNNEL CURVES AS IT GOES FROM THE NORTH TO THE WEST."
310 DE$(15)=
"YOU ARE IN A LARGE CHAMBER. A MARBLE STAIRWAY COMES DOWN FROM
THE NORTH. A TUNNEL CURVES AWAY TO THE SOUTHEAST."
320 DE$(16)=
"THIS IS THE TREASURE RODM OF QUEEN RAMA. ANCIENT TAPESTRIES
FRAME THE DOORWAY IN THE NORTH WALL. A STATUE OF THE QUEEN SITS
ON A GOLD THRONE AGAINST THE SOUTH WALL. CHESTS OF GOLD AND
JEWELS ARE PLACED TO EITHER SIDE.®
330 DE$(17)=
"YOU HAVE ENTERED A GREAT HALL WHERE A STONE GOD STANDS IN THE
MIDDLE OF THE FLOOR. HE IS FACING A RISING CORRIDOR IN THE WEST
WALL. PASSAGES OPEN TO THE SOUTH AND NORTHWEST. A DOOR WITH NO
HANDLE JUST CLOSED IN THE NORTH WALL."
340 DE$(18)=
"A NARROW CORRIDOR RISES STEEPLY TO THE SOUTH AND AN OPENING
CURVES TO THE EAST."
350 DE$(19)=
“THE ROOF OF THE CAVERN IS NOW ONLY TWO FEET HIGH. AS YOU CRAWL
ALONG; OPENINGS TO THE WEST, SOUTH AND SOUTH EAST ARE VISIBLE."
360 DE$(20)=
“YOU ARE NOW AT THE BUTTOM OF A VERTICAL SHAFT. A LADDER RISES
INTO THE DARKNESS. AN OPENING TO THE SOUTH IS NEARBY.®
370 S1$=CHR$(13)*
" YOU ARE AT THE ENTRANCE OF THE LONG LOST TREASURE CAVE OF
QUEEN RAMA THE GREAT. IT HAS TAKEN":

2= "MOVES TO GET HERE. I

WILL ACCOMPANY YOU IF YOU WISH TO EXPLORE THE CAVE."
380 S3%= " TRY TO FIND
THE QUEEN'S GREAT DIAMOND AND BRING IT BACK TO THIS POINT.

WATCH OUT FOR THE GREEP!

66

games

START PROGRAM

400 CLS: PRINT
" THE TREASURE CAVE OF QUEEN RAMA": PRINT: PRINT
“ DURING THIS EXPEDITION YOU ARE ALLOWED TO MOVE NORTH (N),
SOUTH (S), EAST (E), WEST (W), UP {U), DOWN (D) OR A COMBI-"
410 PRINT
"NATION OF ANY TWO. AFTER MAKING YOUR SELECTION, PRESS (ENTER)"
420 PRINT
“TIF YOU WISH TO PICK SOMETHING UP, TYPE (GET) AND THE
OBJECT'S NAME. IF YOU WISH TO PUT SOMETHING DOWN, TYPE (DROP)"
430 PRINT
“AND THE OBJECT'S NAME. IF YOU FORGET WHAT YOU HAVE, TYPE
(HELP) AND I, THE GENIE WILL HELP. (START) RESTARTS THE GAME."
440 PRINT: PRINT
" YQU ARE FACING NORTH AND A CAVE IS JUST VISIBLE AT THE
BASE OF A CLIFF IN FRONT OF YOU. AS YOU LOOK AROUND YOU SEE
NOTHING BUT ROLLING DUNES. YOU MUST CHOOSE A DIRECTION.":
PRINT
450 EW=1: ST=1: GOTO 600
460

GREEPS WARNING

470 CLS: FOR A%=1 TO 100: PRINT @ RND(1000), "*";: NEXT:
PRINT @ 145, “THE GREEP IS IN FRONT OF YOU.": FOR A=1
TO 800: NEXT

480 IF T=17 THEN PRINT

“THE GREEP HAS TRANSPORTED YOU SOMEWHERE ELSE IN THE CAVE.

CONSIDER YOURSELF LUCKY TO BE ALIVE.":

NS=RND(3)-1: EW=RND(3)-1: UD=RND(2): I$="-"

490 IF T>24 THEN GOSUB 520

500 RETURN

510 '
GREEPS WRATH

520 PRINT
N THIS IS THE FINAL TIME DUCK ": FOR A=1
TO 1000: NEXT: FOR A=1 TO 6: PRINT STRING$(192,191): CLS:
NEXT: PRINT
"YOU ARE LYING IN A BLOODY HEAP IN THE MIDDLE OF THE DESERT.
THE GREEP HAS STUFFED YOU STRAIGHT UP THROUGH THE ROCKS."
530 IF B1$(0)>"" THEN B1$(2)=B1$: B1$(0)=""
540 IF B2$(0)>"" THEN B2$(RN)=B2%: B2$(0)=""
550 IF B3$(0)}>"" THEN B3$(RN)=B3%: B3$(0)=""
560 IF B4$(0)>"" THEN B4$(RN)=B4s: B4$(0)=""
570 IF B5$(0)>"" THEN B5$(RN)=B5%: B85$(0)=""
%0”%0:EW1:U%0:”=MW P=0: S=0: T=0: RETURN

INPUT ROUTINE
600 INPUT "WHAT IS YOUR WISH *; I$:

IF 1$="START" THEN RUN ELSE

IF 1$="HELP" THEN GOSUB 720: GOTO 600ELSE

IF LEFT$(1$,3)="GET* THEN GOSUB 1160: GOTO 600ELSE

IF LEFT$(1$,4)="DROP" THEN GOSUB 1440: GOTO 600]
610 IF LEN(T$)=1 THEN I$=I1$+"-" ELSE IF LEN(I$)>2 THEN PRINT
"1 DONT UNDERSTAND YOU": GOTO 600
620 RN=PO(NS,EW,UD): FOR A=1 TO 10:

IF 1$=MID$(DI$(RN),A,2) THEN A=20
630 NEXT: IF A<15 THEN PRINT D$(RND(5)): GOTO 600
640 PRINT: T=T+1: S=S+1: IF T=10 OR T=17 OR T>24 THEN

GOSU8 470
650 GOSUB 740: GOSUB 1080:

IF RN=15 OR RN=7 THEN A$=A$(RND(5)): GOSUB 1280ELSE

IF RN=2 THEN GOSUB 690
660 IF RN=8 OR RN=9 THEN GOSUB 1050ELSE

IF RN=1 THEN ST=1
670 GOTO 600
680 *

Program continued

67

games

ENTRANCE TO THE CAVE

690 PRINT S1$; S; S2$ S3$: S=0: T=0: GOSUB 1530:
IF ST=1 THEN ST=0

700 RETURN

710 '
HELP ROUTINE

720 PRINT: PRINT

“THE FOLLOWING KEYS OR WORDS ARE VERY USEFUL. NS E W UD
GET DROP HELP START (ENTER). THERE ARE MORE BUT
YOU WILL HAVE TO FIND THEM YOURSELF.":

PRINT: GOSUB 1530: RETURN

MOVE TO NEW POSITION

730

780 IF

I$="N-" THEN NS=NS+1: RETURN
750 IF I$="NE" THEN NS=NS+1: EW=EW+1: RETURN
760 IF I$="NW" THEN NS=NS+1: EW=EW-1: RETURN
770 IF I$="NU" THEN NS=NS+1: UD=UD-1: RETURN
780 IF I$="ND" THEN NS=NS+1: UD=UD+1: RETURN
790 IF I$="S-" THEN NS=NS-1: RETURN
800 IF I$="SE" THEN NS=NS-1: EW=EW+1: RETURN
810 IF I$="SW" THEN NS=NS-1: EW=EW-1: RETURN
820 IF I$="SU" THEN NS=NS-1: UD=UD-1: RETURN
830 [F I$="SD" THEN NS=NS-1: UD=UD+1: RETURN
840 IF I$="E-" THEN EW=EW+1: RETURN
850 IF I$="EN" THEN EW=EW+1: NS=NS+1: RETURN
860 IF I$="ES" THEN EW=EW+1: NS=NS-1: RETURN
870 IF I$="EU" THEN EW=EW+1: UD=UD-1: RETURN
880 IF I$="ED" THEN EW=EW+1: UD=UD+l: RETURN
890 IF I$="W-" THEN EW=EW-1: RETURN
900 IF I$="WN" THEN EW=EW-1: NS=NS+1: RETURN
910 IF I$="WS" THEN EW=EW-1: NS=NS-1: RETURN
920 IF I$§="WU" THEN EW=EW-1: UD=UD-1: RETURN
930 IF I$="WD" THEN EW=EW-1: UD=UD+1: RETURN
940 IF I$="U-" THEN UD=UD-1: RETURN
950 IF I$="UN" THEN UD=UD-1: NS=NS+1: RETURN
960 IF I$="US" THEN UD=UD-1: NS=NS-1: RETURN
970 IF I$="UE" THEN UD=UD-1: EW=EW+1: RETURN
980 IF I$="UW" THEN UD=UD-1: EW=EW-1: RETURN
990 IF I$="D-" THEN UD=UD+1: RETURN

1000 IF I$="DN" THEN UD=UD+1: NS=NS+1: RETURN
1010 IF 1$="DS" THEN UD=UD+l: NS=NS-1: RETURN
1020 IF I1$="DE" THEN UD=UD+1: EW=EW+l: RETURN
1030 IF I$="DW" THEN UD=UD+l: EW=EW-1: RETURN
1040 RETURN
1050 IF B1$(0)>"* THEN RETURN ELSE PRINT
"IT IS VERY DANGEROUS TO CONTINUE WITHOUT SOME LIGHT":
IF T<14 THEN T=14
1060 RETURN
1070
DETERMINE ROOM NUMBER,
PRINT DESCRIPTION AND CONTENTS

1080 RN=P0§NS,EN,UD): PRINT DE$(RN)
1090 IF BI$(RN)>"“ THEN PRINT 01 B1$ 02¢
1100 IF B2$(RN)>"" THEN PRINT O1% B2$ 02§
1110 IF B3$(RN)>"* THEN PRINT 01§ B3$ 02§
1120 IF B4$(RN)>"“ THEN PRINT O1$ B4$ 02§
1130 IF B5$(RN)>"" THEN PRINT O1$ B5$ 02%
1140 RETURN
1150

GET OBJECTS

1160 IF P>2 THEN GOSUB 1420: GOTO 1090
1170 GOSUB 1600
1180 FOR A=7 TO 20:
IF MID$(BI$(RN),A,LI)=1$ THEN B1$(0)=B1$: B1$(RN)="":
GOTO 1250

68

games

1190 1F MID$({B2$(RN),A,L1)=1§ THEN B2${0)=B2$: B2§{RN)="":
GOTO 1250

1200 IF MID§(B3$(RN),A,LI)=1§ THEN B3$(0)=B35: B3S(RN)="":
GOTO 1250

1210 TF MID$(B4$(RN),A,L1)=1% THEN B4$(0)=B4$: BAG(RN)="":
GOTO 1250

1220 IF MID$(B5$(RN),A,L1)=I$ THEN 5$(0)=B5$: BS${RN)="":
GOTO 1250

1230 NEXT: IF A<30 THEN PRINT "I CANT GET THAT HERE."
ELSE PRINT "YOU HAVE THE * I§

1240 GOTO 1090

1250 P=p+1: A=35: GOTD 1230

1260 RETURN

1270
HANDLE CREATURES

1280 PRINT
A M A$ " IS BLOCKING YOUR WAY. WHAT DO YOU WANT TO 0O "
INPUT 1$: LI=LEN(I$): FOR A=1 TO 10: IF MID$(I$,A,1)=" "
THEN 1$=LEFT$(1$,A-1): LI=LEN(I$): A=20

1290 NEXT: IF B2$(0)>"* OR B3$(0)>"" THEN W=1 ELSE W=0

1300 FOR A=1 TO 40: T$=MID$(SK$,A,LI): IF T$=1$ THEN A=50: N=l:
GOTO 1320

1310 T$=MID$(SL$,A,L1): IF T$=I$ THEN A=50: N=2

1320 NEXT: IF A<45 THEN PRINT

"] CANT UNDERSTAND YOU AND IT'S GETTING HOT IN HERE.":
GOTO 1280

1330 IF W>0 AND N=1 THEN 1340ELSE ON N GOTO 1350,1390

1340 PRINT "THE “ A$ " JUST DISSAPEARED IN A CLOUD OF SMOKE.":
TS=TS+100: RETURN

1350 CLS: PRINT

“YOU SHOULDN'T HAVE FOOLED AROUND WITH THE * A$ “. YOU ARE

GOING TOBEE E E “.. FOR A=l TO 1500:

NEXT: PRINT "THROWN OUT"

1360 1F B4$(0)>"" THEN BA$(RN)=B4$: B4§(0)=""

1370 IF 85$(0)>"" THEN B5$(RN)=BSS: BS$(0)=""

1380 B1$(0)="": B1$(2)=B1$: NS=0: EW=1: UD=0: P=0: GOSUB 1080:

RETURN
1390 PRINT B$(RND(5)): IF B2$(0)>"" THEN B2$(RN)=B2$: B2$(0)=""
1400 RETURN
1410

TOO MANY OBJECTS

1420 GOSUB 1530: INPUT
sy0U CAN CARRY ONLY THREE THINGS AT A TIME. YOU WILL HAVE T0
GIVE SOMETHING UP. WHAT WILL IT BE “; I
1430 '
DROP 0BJECTS

1440 GOSUB 1600

1450 FOR A=8 TO 20:
IF MID3(B1$(0),A,L1)=1$ THEN BL$(RN)=B1$: B1$(0)="":
GOTO 1510

1460 IF MID$(B2${0),A,L1)=1$ THEN B2§(RN)=B2§: B2$(0)="":
GOTO 1510

1470 IF MID$(B3$(0),A,L1)=1$ THEN B3$(RN)=B3$: B3$(0)=""
GOTO 1510

1480 1F MIDS(B4$(0),A,L1)=I$ THEN BA$(RN)=BA4S: BA$(0)="":
GOTO 1510

1490 IF MID$(B5$(0),A,L1)=1$ THEN BS$(RN)=B5$: BE$(0)="":
GOTO 1510

1500 NEXT: IF A<30 THEN PRINT "YOU DONT HAVE A " I$:
RETURN ELSE PRINT "THE * I$ " IS ON THE FLOOR": RETURN

1510 P=P-1: A=40: GOTO 1500

1520 *
PRINT OBJECTS CARRIED

1530 IF P=0 THEN PRINT "YOUR HANDS ARE EMPTY.": ELSE
IF B1$(0)>"" THEN PRINT H2$ Bl$(0;

1540 IF B2$(0)>"" THEN PRINT H2$ 82%(0

1550 IF B3${0)>"" THEN PRINT H2$ B3$(0)

Program continued

69

games

1560 IF B4$(0)>"" THEN PRINT H2$ BA4$(0)
1570 IF B5$(0)>"" THEN PRINT H2$ B5${0)
1580 RETURN
1590

GET LAST WORD OF I$

1600 LI=LEN(I$): FOR A=LI TO 1 STEP -1: IF MID$(I$,A,1)=" ©
THEN 1$=MID$(I$,A+1,20): LI=LEN(I$): A=0

1610 NEXT: RETURN

1620
LIST OF VARIABLES

1630 'A = L0OOP VARIABLE
1640 'A% = FAST LOOP VARIABLE

1650 ‘A$ TEMPORARY STRING VARIABLE
1660 'A$(1)
$(5) = NAMES OF CREATURES TO BE MET IN CAVE
1670 '8$(1)
B$(5) = CREATURES' STATUS
1680 'B1$
85% = 0BJECT DESCRIPTIONS
1690 'B1$(0)
5$(0) = OBJECTS HELD BY PLAYER
1700 'B1$(1)
B5$(20) = “MAILBOXES" FOR B1$ THROUGH BS$ AT ROOMS 1-20
1710 'D$(1)
$(5) = ERROR MESSAGES. (DIRECTION)
1720 ‘DE$(1;
DE$(20) = DESCRIPTION OF ROOMS 1-20
1730 'D1$(1)
DI$(20) = POSSIBLE MOVE DIRECTIONS FROM PRESENT POSITION.
1740 ‘EW = EAST WEST VARIABLE (0-2)
1750 'H2$% = LEADER STRING FOR OBJECTS HELD BY PLAYER.
1760 'I$ = INPUT STRING
LI = LENGTH OF I$
1770 'NS = NORTH SOUTH VARIABLE (0-2)
1780 '01%
02% = LEADER AND TRAILER STRINGS FOR OBJECTS AT
POSITIONS.

1790 'PO(NS,EW,UD)= POSITION (ROOM) NUMBER (RN) (0-20)
1800 'RN = ROOM NUMBER

1810 'S = TOTAL NUMBER OF VALID MOVES.

ST = START. 1 AT POSITION 1. O AT POSITION 2
1820 ‘SL$ = LOVING WORDS TO CREATURE
1830 ‘SK$ = KILLING WORDS TO CREATURE
1840 "S1%

S2%

S3% = MESSAGE AT OPENING OF CAVE
1850 'T = NUMBER OF MOVES. (MODIFIED BY GREEP, LAMP)
1860 'UD = UP DOWN VARIABLE (0-2)

W = WEAPONS. 0=NO 1=YES

70

GAMES

TRS-80 Jukebox

by Craig A. Lindley

back issue of 80 Microcomputing had the phrase “All work and no

play. . .” printed on the front cover. After reading that issue from cover
to cover I decided that I had fallen into that dull category. After thinking a
while about writing more exciting programs, I came up with the idea of a
computerized jukebox. The idea seemed challenging because it would re-
quire both BASIC and assembly-language programming along with a little
music theory. I decided that I didn’t want to use any external hardware to
produce the music. I wanted to do it all through the single-bit cassette port. I
also wanted to be able to change easily the songs that the jukebox could play.
The program shown here is the result of my efforts.

Making Sounds with One Bit

I pulled out all my old computer magazines and looked for articles on the
generation of sound by a computer. All I could find were programs for pro-
ducing sounds for gun shots, race cars, tanks, and so on. You name a noise,
and there is an article somewhere on how to generate it. Music generation,
on the other hand, has had limited publication, and most of the articles I
found in my library were esoteric music production programs using fast
Fourier transforms and such, usually with some specialized hardware in-
volved. I felt that the jukebox should be a monotonic instrument, that is, one
that plays one note at a time rather than multiple-note harmony. I also liked
the idea of producing the music through the cassette output port without
any specialized hardware to add to the cost. By doing this, I could hook up a
small speaker or headphones to the cassette output jack from my TRS-80 and
listen to the music production in real time, or I could record the music on the
cassette deck for later playback.

Program Operation

The complete jukebox program is shown in the Program Listing. It con-
sists of two dependent parts. The BASIC part draws the jukebox on the dis-
play, handles all message output, and accepts the user inputs. The assembly-
language portion plays the actual songs, which are coded as string variables
in the BASIC portion of the program. The BASIC USR and VARPTR func-
tions communicate between the segments of the program. A song is played
by passing the address of the song string variable (provided by the VARPTR

71

games

function) to the assembly-language routine via the USR function. The
assembly-language music routine then plays the song coded into the string
variable until either the string ends or I press the CLEAR key. At that time,
control passes back to the BASIC program for additional user interface.

The program is fully commented to make it easy to understand how the
BASIC portion of the program operates. The assembly-language music
routine, however, is fairly complex, and for that reason, 1 have not
presented it. It would take a full article to completely explain its operation.
The following section explains everything you need to know to use the music
routine in the jukebox program.

Number Mnemonic Function
1 H Raises current octave by 1
1 Reinitializes the music routine to normal

initial conditions
triplets = off

tone quality = normal
stacatto = off

range = normal
octave = normal
tempo = fast

3 L Lowers current octave by 1
4 N Selects the normal fast tempo
5 Q Toggles the tone quality from normal to
quality 1 and from quality 1 to normal at
each occurrence
6 S Toggles stacatto on/off at each occurrence
7 T Toggles triplets on/off at each occurrence
8 U Selects normal range while in the bass
range
9 A% Selects bass range
10 w Selects slower tempo
11 X Marks alternate ending notes to be played

the last time through a repeat

12 < Marks the start of a repeat phrase. Must
be followed immediately by a single digit
number from 2-9 specifying the repeat
count

13 > Marks end of a repeated phrase

Each of these functions is activated by placing the mnemonic into
the string variable (song) at the position at which the function is re-
quired.

Table 1. Available music functions

72

games

The Assembly-Language Music Routine

The music routine can play any song that can be expressed in whole notes,
half notes, eighth notes, and rests. Currently, there are two tempos and two
voices available, along with the ability to repeat any phrase up to nine times
with an alternate ending available the last time through. This routine con-
verts songs written in pseudo music notation (which are expressed as string
variables in the BASIC program) into musical output which is available for
listening at the cassette port.

The program has a five-octave range, including sharps and flats, which is
broken up into a normal and a bass range (two octaves lower than the nor-
mal range). In both of these ranges, there are three octaves available which
make the highest bass range equal to the lowest normal range; hence, the
five-octave range. Each octave starts with C as the lowest note and B as the
highest. Table 1 shows all of the musical functions available from this
routine along with a brief explanation of what they do. Each of these func-
tions is activated by placing the mnemonic into the string variable (song) at
the position at which the function is required. Most of the functions listed
were used in coding the songs that are currently available from the jukebox
program,

Notes and rests are coded by placing the duration immediately after the
note or rest specification. The note duration can be followed by a dot to in-
crease the duration 1 1/2 times. The following examples illustrate coding of
note and rest durations:

A2 = ahalf note of A

C#4 = a quarter note of C sharp
D - = a whole note of D flat
R2 = ahalf rest

E2. = a dotted half note of E

Compare “On Top of Old Smokey,” shown in Figure 1, to the song string
$$(2,2) to get an idea of how the song coding process is performed. Given a
little practice, it becomes very easy to code any song that you might want.

Program Execution

The jukebox program runs on any TRS-80 Model I with a minimum 32K
of memory. It should also run on the Model III. You can modify the program
to run under Level II BASIC or Disk BASIC by changing two lines in the
program. The listing, as shown, is for Disk BASIC with the changes for a
cassette system in lines 3090 and 3500. The changes in the program handle
the differences in the way the USR function is set up and executed by the
two BASICs. This is the only difference in the two versions of the jukebox
program,

After you make the program resident, by typing it in or loading it from
tape or disk, connect the jack of the auxiliary input of your cassette recorder

73

games

o V|
° @ __
@ -
@

_— top of Old Smok -

Yy All cov - erd with

snow,

Figure 1. On Top of Old Smokey

to a pair of headphones, a small speaker, or an amplifier/speaker combina-
tion. When you run the program, the screen clears, and an image of a juke-
box appears on the screen along with an initialization message. During this
time, the assembly-language routine is being POKEd into memory one byte
at a time from the DATA statements in lines 3580-4370. This is a rather slow
process, so give it a minute or two. After the complete routine is POKEd into
memory, the jukebox buttons begin to blink in a random manner and the
program asks you to enter your quarter by hitting any key. At this time, the
titles of the first five songs appear in the upper portion of the jukebox with a
selection message on the bottom display line. Select a song by pressing a let-
ter (A or B) followed by a number (1-5) corresponding to the song title you
want. The INKEY$ function is used throughout so you do not have to press
ENTER. If you hit the R key, the song titles scroll upward to display the

74

games

other five songs that are available. The R key can be used whenever needed
to view the alternate titles. Table 2 shows the 10 song choices. These songs
are hardcoded as string variables into the BASIC program in lines
2760-3060.

Selection String Variable Song
Al S$(1,1) Yesterday
A2 S$(1,2) Scales Demo
A3 S$(1,3) Greensleeves Theme
Ad S$(1,4) Function Demo
A5 S$(1,5) Joy to the World
B1 S$(2,1) O Come All Ye Faithful
B2 S$(2,2) On Top of Old Smokey
B3 $$(2,3) Michelle
B4 S$(2,4) Girl from Ipanema
B5 5%(2,5) Aquarius

All songs are coded as two-dimensional string
variables, S$(X,Y). Songs are played by using the
BASIC VARPTR function to point the assembly-lan-
guage routine at the position in memory occupied by
the string variable of the song to be played.

Table 2. Song selections

Once you have made a valid selection, the bottom display line shows the
title of the song you selected and, after a short delay, the song plays. When
the song is over, the jukebox buttons start to blink and the screen asks for a
new selection. If you want to end a song prematurely, press the CLEAR key.

To change the songs that the jukebox can play, code the desired song using
the procedure given earlier, replace one of the string variables correspond-
ing to an existing song, and replace the title of the song in the DATA state-
ments at the end of the program.

This program, with minor modifications, could form the nucleus of a
musical education program for children. You can use it for just about any
application that requires musical output. Quite a few dull education and
game programs could be enhanced by the addition of fanfares and the like,
not just buzzes for wrong or right answers. The uses for this program are
almost unlimited.

75

1000 REM
1010 REM
1020 REM
1030 REM
1040 REM
1050 REM
1060 REM
1070 REM
1080 CLS

games

Program Listing

de 3o dede de ok de dode e dodode ke deode ok

*kk

-------- LR e T2

wekk TRS-80 JUKE BOX PROGRAM

ok de

*hk

Y
dek CRAIG A. LINDLEY

dkk

LESSE SR T LT 221 T

Kk gk kdhdokkok ok kok khkhk

1090 REM SET MEMORY SIZE TO PROTECT MUSIC ROUTINE

1100 POKE
POKE
1110 CLEAR

1120 REM JUMP TO MAIN PROGRAM - OVER THE SUBROUTINES

1130 GOTO
1140 REM
1150 REM
1160 REM
1170 REM
1180 REM

1190 REM SUBROUTINE #1 - CLEAR OFF BOTTOM DISPLAY LINE

16661,223 :
16562,188
100

1870

Fekdokkokkdokhdk heok kkokdok dok ko

PROGRAM SUBROUTINES

LR RS S a t R S T T T2 T PR R Ty S

1200 PRINT @960, CHR$(30);

1210 RETUR
1220 REM

1230 REM SUBROUTINE #2 - DISPLAY SONG TITLES AND TOGGLE FLAG

1240 GOSUB
1250 PRINT
1260 P% =

N

1340
G8l,"TRS -80
213:

JUKE BOX";

; FIRST LINE DISPLAY POSITION

1270 FOR 1
1280 PRIN
1290
1300 NEXT

% =
T @P% T$(F% 1%);

= PY + 64

1310 IF F% =

THEN

FE =

ELSE

Fg =

T

1320 RETURN
1330 REM

1340 REM SUBROUTINE #3 - CLEAR DISPLAY PORTION OF JUKE BOX

1350 Pg =
1360 FOR I

1370 PRINT @P%, STRING$(28,32);
64

1380 P% =
1390 NEXT
1400 RETUR
1410 REM

1420 REM SUBROUTINE #4 - LOAD MUSIC ROUTINE INTO MEMORY

2

1 .
0GGLE DISPLAY FLAG

213
% =17T05

1430 PRINT @960, "INITIALIZING - ONE MINUTE PLEASE";

1440 FOR I
1450 AD% =
1460 READ

POKE
1470 NEXT

% =17T0 791

-1 * (17185 - I%)
D% :
AD%,D%

1480 REM CLEAR OFF BOTTOM DISPLAY LINE

1490 GOSUB
1500 RETUR
1510 REM

1520 REM SUBROUTINE #5 - BLINK BUTTONS UNTIL KEY IS PRESSED

1530 IN§ =
IF IN
THEN
RET
1540 Y% =

1190
N

INKEYS:
$ < > ELRT

URN
RND(2)

' SELECT RANﬁOM BUTTONS TO BLINK

Encyclopedia
Lc?a%er"

76

1550
1560
1570
1580
1590

1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750

1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1300
1910
1920
1930
1940

1950
1960
1970
1980

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

games

X% = RND(5)

PL = A%(Y%,X%)

REM TURN BUTTON OFF

GOSUB 1700

FOR X% = 1 TO 200 :
* DELAY FOR VIEW
NEXT

REM TURN BUTTON BACK ON

GOSUB 1670

FOR X% = 1 TO 20
NEXT

GOTO 1530

REM

REM SUBROUTINE #6 - DRAW BUTTON AT SELECTED POINT

PRINT @P%, CHR$(191); CHR$(191); CHR${191);
RETURN

REM SUBROUTINE #7 - BLANK OUT BUTTON AT SELECTED POINT

PRINT @P%, CHR$(32); CHR$(32); CHR$(32);

RETURN
REM
REM SUBROUTINE #8 - DRAW DUAL WIDTH LINES ROUTINE
SET(A,Y):
SET(A + 1,Y):
SET(B,Y):
SET(B + 1,Y)
RETURN
REM
REM SUBROUTINE #9 - PLACE VERTICAL LABEL ROUTINE
FOR I% = 1 TO LEN(BT$)
CH$ = MID$(BTS$,I%,1)
PRINT @P%,CH$;
P% = Py + 64
NEXT
RETURN
REM
REM B e T T e R S s st s
REM START OF THE MAIN PROGRAM
REM *¥awawkasssmnns RAEERRERER B *
REM
REM INITIALIZE DISPLAY FLAG
Fg =1
DIM A%(2,5),5$(2,5),7$(2,5)

REM BUTTON POSITION ARRAY DATA

A%(1,1) = 711:

A%(2,1) = 839

A%(1,2) = 723:

A%(2,2) = 851

A%(1,3) = 735:

A%(2,3) = 863

A%(1,4) = 747:

A%(2,4) = 875

A%(1,5) = 759:

A%(2,5) = 887

REM

REM DRAW TOP OF JUKE BOX
FOR X = 26 T0O 101
SET(X,0)
NEXT

REM

REM DRAW SLOPING SIDES
X = 24

FOR Y = 0 70 12
A=X-(Y*2)
B=X+78+Y*2
GOSUB 1740
NEXT

A=20

FOR Y = 21 TO 27
B =126 - A
A=A=+2

Program continued

77

games

2160 GOSUB 1740
2170 NEXT
2180 REM
2190 REM DRAW VERTICAL SIDES
2200 FOR ¥ = 0 TO 28
2210 A = 24
2220 B = 102
2230 GOSUB 1740
2240 NEXT
2250 FOR Y = 12 TO 43
2260 A =0
2270 B = 126
2280 GOSUB 1740
2290 NEXT
2300 REM
2310 REM DRAW HORIZONTAL LINES
2320 FOR X = 2 T0 125
2330 SET(X,27):
SET(X,28):
SET(X,43)
2340 NEXT
2350 REM
2360 REM DRAW BUTTONS
2370 FOR 1% = 1 10 5
2380 P% = AZ(1,1%)
2390 GOSUB 1670
2400 P% = A%(2,1%)
2410 GOSUB 1670
2420 NEXT
2430 REM
2440 REM DRAW MONEY SLOT
2450 FOR Y = 34 T0 38
2460 SET(120,Y):
SET(121,Y}
2470 NEXT
2480 REM
2490 REM DRAW LABELS
2500 PRINT ©647,1; TAB(19)2; TAB(31)3; TAB(43)4; TAB(55)5; TAB(59)".2
B

»
2510 PRINT @707,"A";
2520 PRINT @835,"B";
2530 PRINT @892,"$";
2540 REM
2550 REM PRINT TITLES
2560 PRINT €219,"T R S - 8 0";
2570 PRINT ©284,"JUKE BOX";
2580 PRINT @415, "BY";
2590 PRINT @472,"CRAIG A. LINDLEY";
2600 REM
2610 REM PLACE VERTICAL LABELS
2620 BT$ = "TOP 40"
2630 P% = 199
2640 GOSUB 1780
2650 BT$ = "HITS"

2660 P% = 312
2670 GOSUB 1780
2680 REM

2690 REM POKE MUSIC ROUTINE INTO MEMORY
2700 GOSUB 1420
2710 REM

2720 REM dkkkkdkkhkrhh kbt hhdhhdrhrbrhddrdddhhhdir

2730 REM THESE STRINGS ARE THE CURRENT SONGS

2740 REM khkkkhkhkhkhkhhhhkkhkkkhkxhkhkkkhkhkhkkkhhkhkhkkk

2750 REM

2760 REM THIS SONG IS YESTERDAY

2770 $$(1,1) = "W<2L<2GBFBF2.RBA8BSHC#8DSESFBES. D2.REDBDECSLB- BABGSB-
4ABA4.GAF4ABG2DBF4ABAZ. >SQA2AZHDAEAFAEBDBES . DBCADBLAAZAZHDAEAF4E
8D8E4.DBCAEAFSG >"

2780 REM

2790 REM THIS IS A DEMO OF SCALES

78

games

2800 S$(1,2) = "<2V<2LCDEFGABHCRCDEFGABHCRCDEFGABB#1>Q>"

2810 REM

2820 REM THIS SONG IS GREENSLEEVES

2830 S$(1,3) = "WC2EA4G2A4B4.HCBLB4A2F#4D4 . E8F#4G2E4EADH#AEAF #2D#4LB2HE
4G2A4B4 . HCBLBAA2F#4D4 EBF #4GAF#AEAD#S . CHBDH4E2EAE2 . QSHD2. D4, CH8L
BAAZF#4D4 .EBF #4G2E4E4. DFBEAF#20 #4182 . HHD2 .D4 . C#BLBAAZF#4D4 . EBF#4
GAF#4E4D#4.CHBDH4E2.E2.Q>"

2840 REM

2850 REM THIS SONG IS A DEMO OF THE AVAILABLE FUNCTIONS

5860 S$(1,4) = "<2HC3TCDEF<BGBAB>GRQCDEFKBGBAB>GQRTLIHVY "

870 REM

2880 REM THIS SONG IS JOY TO THE WORLD

2890 S${1,5) = "L<2SHD2C#4.LBBA2.GAF#2E2D2.A4B2.B4HC#2.C#40D2.DADACKS
LBAA4AS .GBF#AHDADACHALBAAGAL . GBF #AFAF#4F #AF#4F #BGBAZ .GBF #8EAEAE
AEBF#8G2.F#BEBDAHD2LBAAL . GBF #4GAF#2E202D2>"

2900 REM

2910 REM THIS SONG IS O COME ALL YE FAITHFUL

2920 S$(2,1) = "HV<2A4A2E4A4B2E2HCHALBAHCHADACH2LBAAMARGHAF #AGHAAABAH
C#4LG#2F#4 . EBE2E2HE 2DACH4D2CH AL BAHC#ALAGBAGHS . F #BEAAGALGHAALBAAZ
E4HC#ACHALBAHCHADACH2LBAHCHADACHALBAALGH2A4HDACH2 .LBA L ABAZ >

2930 REM

2940 REM THIS SONG IS ON TOP OF OLD SMOKY

2950 S${2,2) = "VWS<3DBD8DAF#4A4HD2.LB2.B2GAGAA4BAAZ . A2.A208D8BDAF#4A
A2.E2.E2F#8F#8GBGBF#4E4D2.D2.D4RE>"

2960 REM

2970 REM THIS SONG IS MICHELLE

2980 S$(2,3) = "VWS<2<2A2A2R4B-4F2E4A4EAE-4D4F4A-AF4E2DAFAE> QAATHDACA
LAGHD4CALA4THE4D2 .RBLABB - 8A8B-4F4FRBABABABHDALA4GEFBES . EBGAAA4A
AAGAAAAAGAGAZGAFAEQ>"

2990 REM

3000 REM THIS SONG IS THE GIRL FROM IPANEMA

3010 S$(2,4) = "VW<25<2G4.EBE4DBGBGAEBEBEBEBDBGBGAEAEADBGBGEGBESEBESE
8D8FBF8D4DBDBDBCEEBEBCACBCBCBLB-4HRBC2.C2R2>SFTFAG-4F4E-4FAE-4TD
-4,E-8E-2E-2.RBGBGTGAA-4GAF4GAFATE-4.EBF2F2 .R8ABAZ. TAB-4A4GAASGA
TF4.G8G2G2TRGA4B-4HCALCADAE4F4GATGH2 . AATB-4LB-4HCADAEAFATF#2.R4>

3020 REM

3030 REM THIS SONG IS AQUARIUS

3060 $$(2,5) = "TVHC2A4B4HCCADACBLBBABGEAAZ .GAAGBAB2BAAGAAGAAR . BAHCC
4D4CBLRBASGBGAAZ . A2RAGAARABABABAHCACAQDACAE 4DACALB- 4B- 2B~ 4A4B-4H
CAD4CALB- 28- 4A4B- 4HCAD20D2 . CADAFAG26G2 . FAGAF4D20DLQ>”

3050 REM

3060 REM ****THIS IS THE END OF THE SONGS **+

3070 REM

3080 REM DEFINE USRO T0 BE THE MUSIC ROUTINE

3090 REM FOR NON DISK POKE 16526,224 : POKE 16527,188

3100 DEF USRO = &HBCEO

3110 REM

3120 REM ASSIGN SONG TITLES TO ARRAY

3130 FOR 1% = 1 70 5

3140 READ D$

3150 T$(1,1%) = D$

3160 NEXT

3170 FOR 1% = 1 70 5

3180 READ D%

3190 T$(2,1%) = D$

3200 NEXT

3210 REM

3220 REM SONG PLAYING LOOP

3230 REM

3240 REM CLEAR OFF BOTTOM DISPLAY LINE

3250 GOSUB 1190

3260 PRINT @960,"PLEASE ENTER YOUR QUARTER";

3270 GOSUB 1520

3280 REM DISPLAY SONG TITLES

3290 GOSUB 1230

3300 REM CLEAR OFF BOTTOM DISPLAY LINE

3310 GOSUB 1190

3320 PRINT @960,"SELECT SONG (R - ROLLS SONG TITLES) - EX. A3:";

3330 REM BLINK BUTTONS UNTIL SELECTION IS MADE . :
3340 GOSUB 1520 Program continued

79

games

3350 IF IN$ = “R"
THEN
GOTO 3280
3360 REM FIRST ENTRY MUST BE A OR B
3370 IF IN$ < > "A" AND IN$ < > “"B"
THEN
GOTO 3300
3380 PRINT @1007,IN$;
3390 JF IN$ = "A"
THEN
RE =1 :
ELSE

RY = 2
3400 IN$ = INKEY$:
1F IN$ = W
THEN
GOTO 3400
3410 PRINT @1009, IN$;
3420 C% = VAL(INS$)
3430 IF C¥ ¢ 1 ORCE > 5
THEN
GOTO 3300
3440 REM CLEAR OFF BOTTOM DISPLAY LINE
3450 GOSUB 1190
3460 PRINT @960, "NOW PLAYING SELECTION: “; MID$(T$(R%,C%),5);
3470 FOR % = 1 TO 1000
3480 NEXT
3490 REM NOW PLAY THE SELECTED SONG
3500 REM FOR NON DISK A=USR{VARPTR(S$(R%,C%)))
3510 A = USRO(VARPTR(S$(R%,(%)))
3520 GOTO 3300

3530 REM
3540 REM *hkdskbaksakssbhhin sk kd ko kdd ik f kb f kR nE K
3550 REM PROGRAM DATA

3560 REM KAEKRKKKAEKKRAKRERRRRRA R RR AR ANk hh bk hhkrd

3570 REM

3580 DATA 195,191,190, 12, 64, 16,106,188, 67, 0
3590 DATA 68, 2, 69, 4, 70, 5, 71, 7, 65, ¢

3600 DATA 66, 11, 82, 15, 32, 34, 36, 38, 40, 43
3610 DATA 45, 48, 51, 54, 57, 60, 64, 68, 72, 76
3620 DATA 81, 85, 90, 96,101,107,114,121,128,135
3630 DATA 143,152,161,171,181,192,203,215,228,241
3640 DATA 255, 21, 23, 24, 25, 27, 29, 30, 32, 34
3650 DATA 36, 38, 40, 43, 45, 48, 51, 54, 57, 60
3660 DATA 64, 67, 71, 76, 81, 85, 90, 95,101,107
3670 DATA 114,121,128,135,143,152,161,170,243,230
3680 DATA 217,205,193,182,172,162,153,145,137,129
3690 DATA 121,115,108,102, 96, 91, 86, 81, 76, 72
3700 DATA 68, 64, 60, 57, 54, 51, 48, 45, 43, 40
3710 DATA 38, 36, 34, 32, 30,245,231,218,206,195
3720 DATA 184,173,164,155,145,137,130,123,115,110
3730 DATA 103, 98, 92, 87, 82, 78, 73, 69, 65, 62
3740 DATA 58, 55, 52, 49, 46, 43, 41, 39, 37, 35
3750 DATA 33, 31,233,206,180,156,133,111, 90, 71
3760 DATA 53, 36, 34, 32, 30, 28, 27, 25, 24, 22
3770 DATA 21, 20, 19, 18, 17, 16, 15, 14, 13, 12
3780 DATA 12, 11, 10, 10, 9, 9, 8, 8, 7,255

3790 DATA 255,255,255, 255,255,255,255, 255,254,240
3800 DATA 227,214,202,191,180,170,161,152,142,135
3810 DATA 127,120,113,107,101, 96, 91, 85, 80, 76
3820 DATA 71, 68, 64, 61, 57, 54, 13, 72, 73, 76
3830 DATA 78, 81, 83, 84, 85, 86, 87, 88, 60, 62
3840 DATA 18,190,149,190, 4,190,157,190,254,189
3850 DATA 185,190,163,190,136,190,115,190, 82,190
3860 DATA 71,190, 47,190, 36,190, 33,229,188,203
3870 DATA 230,201,225,241,245, 61, 32, 5, 33,229
3880 DATA 188,203,214,195,229,190,225,241, 61, 40
3890 DATA 4,209,213,245,233, 33,229,188,203,150
3900 DATA 241,195,229,190, 33,227,188,126,254, 24
3910 DATA 200,198, 12,119,201,221, 33, 66,189,253

80

games

3920 DATA 33,248,188, 33,228,188, 54, 64, 33,227
3930 DATA 188, 54, 12, 33,229,188, 54, 0,201, 33
3940 DATA 227,188,126,254, 0,200,214, 12,119,201
3950 DATA 33,229,188,203,134,201,229, 78, 6, 0
3960 DATA 35,237,177,225,121, 40, 2,175,201, 78
3970 DATA 6, 0, 35, 9, 7, 79, 9,126, 35,102
3980 DATA 111,241,233, 33,229,188,203,126, 32, 7
3990 DATA 221, 33,140,189,203,254,201,221, 33, 66
4000 DATA 189,203,190,201, 33,229,188,203, 78, 32
4010 DATA 3,203,206,201,203,142,201,225, 26, 19
4020 DATA 213,230, 15,245,233, 33,229,188,203,198
4030 DATA 201, 33,228,188, 62, 64,190, 32, 7,253
4040 DATA 33, 29,189, 54, 43,201,253, 133,248,188
4050 DATA 54, 64,201, 33,229,188,203,166,201,205
4060 DATA 127, 10,237,115,230,188, 35, 94, 35, 86
4070 DATA 62, 4,211,255,221, 33, 66,189,253, 33
4080 DATA 248,188, 33,228,188, 54, 64, 33,227,188
4090 DATA 54, 12, 33,229,188, 54, 0,205, 91, 3
4100 DATA 33, 1, 0,254, 31, 40, 7, 26,183, 32
4110 DATA 10, 33, 0, 0,237,123,230,188,195,154
4120 DATA 10, 19, 33,229,190,229, 33,232,188, 1
4130 DATA 16, 0,237,177, 40, 7, 33,214,189,205
4140 DATA 88,190,201, 78, 26,254, 35, 32, 3, 12
4150 DATA 24, 5,254, 45, 32, 3, 13, 19, 26, 6
4160 DATA 16,254, 50, 32, 4, 6, 8, 24, 14,254
4170 DATA 52, 32, 4, 6, 4, 24, 6,254, 56, 32
4180 DATA 4, 6, 2, 19, 26,254, 46, 32, 6,120
4190 DATA 203, 47,128, 71, 19, 33,229,188,203, 86
4200 DATA 192, 62, 15,185,202,211,191, 33,227,188
4210 DATA 126,129, 33,160,191,119, 33,134,191,119
4220 DATA 198, 37, 33,186,191,119, 33,229,188,203
4230 DATA 70, 32, 2,203, 56,197,205,132,191,193
4240 DATA 16,249, 33,229,188,203, 78,200, 6, 8
4250 DATA 205,240,191, 16,251,201,253, 70, 0, 58
4260 DATA 229,188,203,103, 40, 4,203, 56,203, 56
4270 DATA 197,205,154,191,193, 16,249,201, 62, 5
4280 DATA 211,255,221, 70, 0, 58,229,188,203,103
4290 DATA 40, 10, 72, 16,254, 65, 16,254, 65, 16
4300 DATA 254, 65, 16,254, 62, 4,211,255,221, 70
4310 DATA 0, 58,229,188,203,103, 40, 10, 72, 16
4320 DATA 254, 65, 16,254, 65, 16,254, 65,120,214
4330 DATA 18, 71, 16,254,201,205,219,191, 16,251
4340 DATA 195,118,191,197, 33,228,188, 70, 58,229
4350 DATA 188,203, 71, 32, 2,203, 56,205,240,191
4360 DATA 16,251,193,201,197, 6,244, 16,254,193
4370 DATA 201
4380 REM
4390 REM SONG TITLE DATA
4400 DATA “"A-1 YESTERDAY","A-2 SCALES","A-3 GREENSLEEVES","A-4 DEMO",
“A-5 JOY TO THE WORLD"
4410 DATA "B-1 O COME ALL YE FAITHFUL","B-2 ON TOP OF OLD SMOKY","8-3
MICHELLE","B-4 GIRL FROM IPANEMA","B-5 AQUARIUS"

81

GRAPHICS

Instant Graphics for Everyone
Screen Editor for Graphics Creations

83

GRAPHICS

Instant Graphics for Everyone

by Ralph Vickers

Enstant Graphics for Everyone is a utility which helps you write machine-
code graphics in BASIC. It completely avoids the complications of
loading balky SYSTEM tapes and wrestling with the intricacies of EDTASM
and its weird numbering system. You can write in BASIC and still create in-
stant video screen graphics. If you know the difference between PEEK and
POKE, you know how to draw instant graphics on your screen in just about
any manner you want,

To begin, you need a copy of Instant Graphics for Everyone. (See Pro-
gram Listing.) Enter 30000 as the memory size. All references in the article
pertain to a 16K system. If you have a different memory size, you must scale
accordingly.

Via the menu, find your way to the Program Test routine. Once you have
chosen this routine, ignore the first display and follow the instructions of the
Caution display. The result is a horizontal graphics bar, stretching across
the screen, that appears in an instant. You could have done this just about as
fast with PRINT STRING$(60,140). But how would you like to bisect this
display with a vertical line from the top to the bottom of the screen?

First, you must understand two facts about your computer.

1) It has 32768 locations for storing information, numbered from 0 to 32767.
These numbers are called memory addresses.

2) There are a few temporary storage places called registers. When you pull
a bit of information out of a memory address, it goes into one of the registers.
These registers are called A,B,C,D,E, and there’s a double-decker register
named HL,.

When you look at machine-code programs you see annotations like 3E,
which is the hexadecimal representation of decimal 62. We'll use 62 for our
machine-code composition. To the computer, they both mean the binary
number 00111110.

Return to the program index and choose the Write Data routine. As the
display says, you are now in the Command Mode and you are looking at
DATA line 10000 which contains 13 ordinary numbers. That’s the machine
code you used to draw the horizontal bar. You are now going to write in the
vertical line. Start your first entry as:

10010 DATA 62,

85

graphics

There are about 700 numbers that your computer understands as specific
commands when you talk to it in machine language. Number 62 tells the
computer: Load A register with.

Here you have an opportunity to exercise your creative impulses. From a
display of the TRS-80 graphics characters, pick a CHR$(nnn) graphics
number that strikes your fancy. I'll use 191. Enter this or anything between
129 and 190 as the second number in your DATA line. At this point, you
have complete flexibility to draw any kind of line you want. If you're a little
confused, enter in Command Mode PRINT CHR$(191) and you’ll see what
I'm talking about.

You now have a DATA line with two numbers, 62 and 191. When the
computer gets a chance to read the numbers, it understands them as two
commands saying: Load A register with the equivalent of CHR$(191).

It is necessary to give the computer a position at which to print, and this is
a little more complicated to say in machine language than in BASIC. To
select the top center of the screen to start the display, in BASIC you would
say: PRINT @ 32. In machine language, you have to express the position as
a memory address. The number 33 loads this into the HL. register.

There are 1024 memory addresses reserved for storing information to be
displayed to your video screen. They are numbered from 15360 to 16383. To
find the address corresponding to position 32 on your video screen, add 32 to
15360. 15392 is the position number the computer needs, but it is a decimal
number. You must give it to the computer in machine code.

There’s an easy solution at hand. Run the program and go to the Screen
Location routine. Enter 32 as the decimal value of the memory location.
The readout says: Decimal Memory Location 15392, but it adds: Express as
32 60.

If you do the following sum, (60 x 256) + 32, the answer you get is
15392.

Go back to the Write Data routine and add 32 and 60 to your DATA line.
Now you have:

10010 DATA 62,191,33,32,60
This DATA line is saying in machine language: PRINT @ 32, CHR$(191).
Remember that the computer processes and executes 62,191,33,32,60 much
faster than it can carry out a CHR$ statement.

You see by now that, in regard to 62 and 33, you don’t have any option in
this system of machine language. You do, however, have some choice in re-
gard to the other three numbers. You can substitute any graphics character
from 129 to 190 for the 191 I chose. If you play around with the Screen Loca-
tion routine, you will discover 1023 other combinations of numbers for
which you can substitute those last two numbers in your DATA line.

You now have most of the basic tools needed to place any graphics
character anywhere on the screen using machine language.

86

graphics

Machine-language programmers place REM remarks at the end of each
program line. You, too, can have this accessory. Instead of the format you
have used, you could set up your program to look like this:

10010 DATA 62 : ‘Load A register

10020 DATA 191 : ‘CHR$(19]) @ 32
You now have a graphics character almost at the top of the screen, but the
deal was to run a line all the way down. The next magic number you need is
6, which is a machine-code instruction to tell the computer: Load the B
register with a number. The number is the number of times you want to
repeat the 191 graphics character. There are 16 positions down the screen.
There will be a prompt at the bottom of the screen, so let’s settle for 14. We -
now add 6 and 14 to the DATA line. Think of these two numbers as a piece
of a BASIC FOR-NEXT statement. What you have done is drop a note in the
B register saying: Perform 14 loops.

In reality, however, you are going to build with one more command yet to
be revealed, a set of instructions exactly equivalent to the statement FOR A =
14 TO 1 STEP - 1. You will do this FOR-NEXT statement the hard way be-
cause the computer has an automatic test for zero but doesn’t have one for 14.

If you were writing this program in BASIC, you would have to make some
provision for incrementing the @32 position by 64 each time you went
through one of the 14 loops. The same logic applies in machine language.
The number which initiates this procedure is 17. Number 17 tells the com-
puter: Load the DE register with a two-part number. The code you want is:

17,64,0
That isn’t as complicated as it looks. You know what the 17 means. If the
64,0 isn’t immediately clear, refresh your memory by reviewing how you
wrote 15392 into the program. The sum is (0 x 256) + 64 = 64.

To write graphics, you never need a number here larger than 255. The
number 256 is expressed as 0,1.

The program has now grown to:

62,191,33,32,60,6,14,17,64,0
You have arrived at the beginning of the one tricky part. Pay close attention
because if you get this part wrong your program will crash. When a
machine-code program crashes, you usually find yourself staring at
MEMORY SIZE?

The next instruction to put down is 119, which means: PRINT the con-
tents of A register at the screen position stored in the HL register. Remember
that the HL register can hold two pieces of information. Also keep in mind
that you loaded the A register with CHR$(191) and the HL register with
screen position 15392, expressed as 32,60. If this part of the program was
running, your video screen would light up at position 32 with the graphics
character you chose. At memory location 119, you begin a FOR-NEXT type

87

graphics

of loop. In other words, to PRINT CHR$(191) on the screen 14 times, repeat
the 119 instruction 14 times.

To write this routine in BASIC you would put in an instruction to incre-
ment the screen position by 64 to prepare for the next PRINT instruction.
You accomplish this feat by adding 25 to the DATA line. This number tells
the computer: Increase the screen position value in the HL register (which is
now 15392) by the value in the DE register (which is 64).

To whet your appetite for further exploration, I'll mention that the
number 9 would put the contents of a BC register (if you had one set up) into
the HL register.

The next detail you must attend to is to reduce the counter by 1. Number 5
takes care of that.

Finally, you must set up the part of the loop that returns to the 119 com-
mand. You also need to keep an eye on the decrementing loop value so that
when it is reduced to zero, the computer moves from the loop to the next
program instruction. 194 takes care of that chore. Your DATA line now
looks like this:

10010 DATA 62,191,33,32,60,6,14,17,64,0,119,25,5,194
Now comes the tricky part I warned you about. 194 tells the computer to
loop back, but the computer cannot figure out where to go. You want it to
return to memory address 119 and execute the instructions it finds there. To
direct the computer to 119, you must specify the memory address number.
Table 1 lists the machine codes and their functions.

If you were writing conventional machine-language code, when you
wrote the 119 line you would add LOOP1. On the line containing 194, you
would specify LOOPI again and the computer would find its own way
back. This is really no problem. It just means an extra step.

Add two zeros to the end of the DATA line. This is to provide spaces for
two numbers you must now insert. Run the program and go to the Program
Test. You should now have on your screen a display that starts off with: BS
= 30. BS means bytes. In other words, BS indicates the number of DATA
numbers you have in your program, assuming you didn’t kill off the 10000
DATA line I originally provided. If BS doesn’t equal 30, check your DATA
line for an entry error.

ML equals the starting memory location of your machine-code program.
It has already been POKEd into high memory. You can confirm this by
checking Table 1. The first item should be 32737 62 if you are using a 16K
system. This means that the number 62 is POKEd into memory address
32737.

Check the third row, third column on the displayed table. There should
be a194 there. It’s flagged with an asterisk to warn you that you must triple-
check the following two numbers which are now wrong. Go back to the
preceding 119. You should find it at 32744. Write that address down.

88

graphics

The last item on your screen should be a 119 at 32760. Jot that memory
address down too. That’s the location you want the next 194 instruction to
send the computer back to. Pull up the remainder of the memory location
table. There’s your 194 flagged, plus the two zeros behind it.

The 201 that has mysteriously appeared says: Return to BASIC. This 201
is tucked out of your way at program line 12990. There is also a — 1 there. It
has nothing to do with the machine code. It is just a READ flag.

You now have written down two memory addresses that you must trans-
late into two-part numbers that the computer can understand. Find your
way to the Memory Location routine. Get a readout on both 32744 and
32760 and return to your DATA statement.

Code Function

62 Load A register with

149 (Variable) . .CHR$(149)

33 Load HL register with

32 (Variable) . .screen location (first part)

60 (Variable) . . screen location (second part)

6 Load B register with increment of. . ..

14 (Variable) .. . number of loops

17 Load increment into DE register of . . .

64 (Variable) ... increment number (first part)

0increment number (second part)

119 PRINT contents of A register at screen position in HL register
25 Add DE value to screen location in HL

5 Reduce value in B register by one (loops)
194 Loop back to memory location of 119 .
228 (Variable) ... memory location number (first part)
123 (Variable) memory location number (second part)
201 Return to BASIC program

Table 1. Machine codes and functions

At line 10000, immediately after 194, delete the 248 and 127 and
substitute the new numbers you got, 232 and 127, in that order. The two
32760 numbers go into the slots you reserved with the two zeros at the end of.
your DATA line.

It is essential that you thoroughly understand what you’ve just done. The
two-part numbers immediately behind the 194s are the memory addresses
corresponding to the 194’s respective 119s. It is even more important to
remember that, if you add even one more DATA number to this machine-
language routine, you create a whole new ball game in regards to the rela-
tionship between the 194s and the 119s. In this case, all the return addresses
have to be recalculated because, when you add a new number, the whole

89

graphics

program is shunted down one memory address. If you were working up
from the bottom of memory, it would be no problem, but you are working
down from the top of memory.

In case you have made an error, make a tape of this program right now.
Now go to the Program Test menu option. Plunge recklessly through the
caution barrier. If all goes well, your video screen will light up instan-
taneously with a big cross. When you have admired this display long
enough, proceed to the next display. Your next task is to fit this machine-
language routine into a BASIC program.

The Set Memory At number displayed is the answer to give your com-
puter’s MEMORY SIZE? query when you use this routine in one of your pro-
grams. The number should be 32736, one less than the starting address of
this routine. You can answer MEMORY SIZE? with a number lower than
the one given, but not a higher number.

If you insert line 100 exactly as it appears, this tells the computer the
memory address at which your graphics routine starts.

The POKE statement numbers 16526 and 16527, which are also memory
addresses, never change. The other two numbers, which should be 255 and
127, vary according to the length of your machine-code routine. To make
this clearer, do the following sum:

(127 = 256) + 225 = 32737
Consider the UR = USR(0) statement a specialized GOSUB that branches
your program to the memory location specified by the POKE 16526 and
16527 statements. If you have two or more subroutines you want to access in
the same program, you can use the same or another USR(0) statement, but
immediately before it you must change the address to go to with new POKE
16526 and 16527 statements.

Finally, on the next display, you are given the FOR-NEXT numbers you
need to POKE your DATA into the right memory slots. To review the
powerful tool you now have, refer to Table 1.

You have learned eight versatile machine-language codes (just another
692 to go) which you can use to perform a variety of graphics wonders. Ex-
periment by shifting the locations of the lines around the screen, making
them shorter and longer.

Bit by bit, you will pick up other number codes you can use. For instance,
browse through machine-language programs. You will start spotting useful
lines that look like this:

7EBC 23 00310 INC HL ;INCREMENT HL REGISTER BY 1
This reveals a special code which increments the screen position in your HL
register by 1. Let’s analyze this line of machine code so you can learn how to
extract useful information from this type of code.
7EBC is the memory address at which the first piece of information con-

90

graphics

tained in this line is stored. Some lines of machine code have more than one
piece of information in them, but each one is counted. The next listed
memory address has taken everything into account. Otherwise, these
numbers run consecutively.,

To decipher this code, go to the Instant Graphics for Everyone, Hex
Translation routine. Key in 7E. Press C to continue the operation and key in
BC. The result is memory address 32444,

The next part is the interesting bit. See the 23? Translate it into decimal.
The answer is 35. That’s the number to use whenever you want to increment
your current screen position address, in your HL register, by 1.

The 00310 is the assembly-language program line number-—the same as
in BASIC. INC is the tipoff to what the line does. Some of these mnemonics
you can guess: INC for increment, DEC for decrement, ADD for add. But
you need a source book to figure out beauties like DJNZ. HL you know, and
this is followed by the programmer’s REM statement that you should read
carefully for clues to line functions. There are 16 different DEC codes. The
one written as 2B is 43 decimal. Put 43 into one of your machine-code
subroutines, and your HL register screen position drops one notch.

While you’re browsing through machine code (actually, it’s called assem-
bly-language source code) in magazines or wherever, if you see a column of
23-type annotations between the memory addresses (first column) and the
line numbers, you should easily be able to copy the program into decimal
DATA statements using the Instant Graphics for Everyone program.

A few hints: Note that those digits are always listed in pairs. An exampleis
CDDIES9, which I borrowed from an actual program listing, Read that as
CD D1 E9. Your Hex Translator can tell you that this means 205 209 233.

91

graphics

Program Listing. Instant Graphics for Everyone

10 (LS Encyclopedia
100 CLEAR 60 ycl_g:der-
140 POKE 16553,255
150 ON ERROR GOTO 400
160 A = 128:
Al = 16254
190 GOTO 900
200 INPUT “TO PROCEED, KEY » ENTER < ";AN:
RETURN
210 PRINT "ENTER INSTRUCTIONS ('T' TO TERMINATE) »>>>»“
215 AN = "":
AN = 0
220 AN$ = INKEYS$:
IF AN$ = "
THEN
220:
ELSE
AN = VAL{ANS):
IF ANS = “T"
THEN
800:
ELSE
RETURN
230 PRINT @A, CHR$(31);:
RETURN

' SUBROUTINE TO CONTROL LIST SCROLL
260 AC = PEEK(16417) * 256 + PEEK(16416):
IF AC > Al
THEN
GOSuUB 200:
GOSUB 230
270 RETURN
400 PRINT "SORRY, THERE HAS BEEN A #"; ERR / 2 + 1;" ERROR ON LINE";
ERL :
GOSUB 200:
RESUME 800
800 :
' THIS IS AN ABORT RETURN LINE TO RESET VARIABLES
900 CLS :
PRINT TAB(S5)"INSTANT GRAPHICS FOR EVERYONE":
PRINT STRINGS$(50,131)
910 PRINT "INDEX"
920 PRINT "HEX TRANSLATION........ve0unen #17
930 PRINT "MEMORY LOCATION...vvvvurvonnn #2"
940 PRINT "SCREEN LOCATION... .

950 PRINT "PROGRAM TEST.... Y X
960 PRINT "WRITE DATA.. v ivroennnnnnnns #5"
970 PRINT “"PRINTH#-1, DATA.....ovvevnnnen #6"
990 PRINT :

GOSUB 210:

ON AN GOTO 1090,1400,1500,2000,9990,5000
1090 GOSUB 230
1100 PRINT :
PRINT "ENTER DIGIT #1 »>>>> ";:
GOSUB 215:
PRINT ANS;:
E$ = ANS:
PRINT TAB{51)"H"; TAB(57)"D"
1110 D = ASC(ANS):
IF D < 58
THEN
M = (D - 48) * l6:
GOTO 1130
1120 M = (D - 55) * 16
1130 PRINT "ENTER DIGIT #2 >>>>> ";:
GOSUB 215:

92

1140

1150
1160

1200
1205

1210

12290

1230
1300

1310

1320
1400

1410

1420

1500

1510

1520
1530

2000

2010

2020

2030
2040
2050

graphics

PRINT ANS;
D = ASC{ANS):
[F D < 58
THEN
N = D - 48:
GOTO 1160
N =1D - 55
P =M + N:
PRINT TAB{S0)ES$ + AN$;" = “;P:
IF R =1
THEN
1300
PRINT “('C'=CONTINUE <> "ENTER'=RESTART <> 'M'=MEM)":
Gosug 210
IF ANS = "M"
THEN
1400
IF ANS = ("
THEN
R =1
IF R =1
THEN
Q = P:
GOTO 1100
GOTO 1090
S = {Q * 256) + P:
R =20
PRINT TAB(32)Q;" * 256 +";P;" = ";S:
PRINT
GOTO 1200
BS = 0:
GOSUB 230:
PRINT :
INPUT “ENTER DECIMAL VALUE OF MEMORY LOCATION" ML:
GOSUB 1410:
GOTO 1200
MS = INT(ML / 256):
LS = ML - (MS * 256):
IF BS > 0 RETURN
PRINT
PRINT TAB(20)"EXPRESS AS:",LS,MS:
PRINT :
RETURN
GOSUB 230:
PRINT "TO UTILIZE THIS ROUTINE YOU MUST":
PRINT "REFER TO THE TRS-80 VIDEO DISPLAY WORKSHEET":
GOSUB 200
GOSUB 230:
INPUT “ENTER @ POSITION REQUIRED";AP:
PRINT

PRINT “DECIMAL MEMORY LOCATION IS"; TAB(32)AP + 15360:

ML = AP + 15360
GOSUB 1410:
GOSUB 210:
GOTO 1510
GOSUB 230:
PRINT “PROGRAM TEST®:
BS = 0O
READ Y:
Py = -1
THEN
2030
BS = BS + 1:
GOTO 2010
RESTORE
FOR X = 32767 - BS 70 32766
READ Y:
POKE X,Y:
NEXT
RESTORE

Program continued

93

graphics

2060 ML = 32767 - BS:
GOSUB 1410

2070 POKE 16526,LS:
POKE 16527,MS

2080 GOSUB 3000:
CLS

2085 UR = USR(0)

2100 PRINT 8896,"";:

GOSUB 200
2110 GOSUB 230:
PRINT "SET MEMORY AT";32766 - BS;" NUMBER OF BYTES =";BS
2120 PRINT : ,
PRINT "BASIC PROGRAM REQUIRED TO RUN THIS GRAPHIC ROUTINE:":
PRINT
2130 PRINT “100 POKE 16526,";LS;" :POKE 16527,";MS;:
PRINT * :'(NEAR PROGRAM START)"
2140 PRINT "9000 UR=USR(O) :'(THIS LINE BRANCHES TO GRAPHICS SUBROU
TINE)"
2150 PRINT "9010 (MACHINE CODE SUBROUTINE RETURNS TO BASIC HERE)":
PRINT :
GOSUB 200

2160 GOSUB 230:
PRINT "ROUTINE TO LOAD MACHINE CODE DATA:":
PRINT

2170 PRINT “"110 FOR X =";ML;" TO";ML + BS

2180 PRINT "120 READ Y: POKE X,Y: NEXT"

2190 PRINT :
PRINT “NOTE: THE DATA CAN ALSO BE LOADED FROM CASSETTE TAPE":
PRINT
PRINT
GOSUB 200:
GOTO 900

3000 GOSUB 230
3010 PRINT "BS =";BS
3020 PRINT "LS =";LS,
PRINT “(MS * 256) + LS =";ML
3030 PRINT "MS =";MS
3035 PRINT "ML =“;32767 - BS
3040 L = PEEK(16526):
PRINT "16526 (LS) =";L
3050 M = PEEK(16527):
PRINT "16527 (MS) =";M
3070 FOR X = 32767 - BS TO 32766:
GOSUB 260
3080 M1 = PEEK(X):
PRINT X;Ml;:
IF M1 = 194
THEN
PRINT "*",
ELSE
PRINT ",
3090 NEXT :
PRINT
3100 GOSUB 200:
GOSUB 230:
PRINT ">>5>>>>>>>> CAUTION <<
PRINT "TO PROCEED BEYOND THIS POINT BEFORE YOU ARE READY":
PRINT "COULD RESULT IN PROGRAM CRASH.":
PRINT :
PRINT "TO PROCEED, ENTER 'P'":
PRINT "ANY OTHER KEY WILL RETURN YOU TO INDEX":
PRINT :
GOSUB 210
3105 IF AN$ = "P" RETURN
3110 GOTO 900
5000 GOSUB 230:
PRINT ">>>>> IS CASSETTE READY TO RECORD? <<<<<™:
PRINT :
GOSUB 200:
GOSUB 230

]

94

graphics

5005 IF B8S = 0 PRINT “SORRY, YOU MUST GO THROUGH 'PROGRAM TEST' ROUTI
NE":
PRINT "TO COUNT BYTES OF DATA":
PRINT :
GOSUB 200:
GOTO 2000
5010 PRINT “"PRINTING DATA"
5020 FOR X = 1 70 BS:
READ Y
5025 PRINT # - 1,Y
5030 NEXT :
RESTORE
PRINT :
PRINT “DATA PRINTED":
PRINT :
PRINT :
GOSUB 200:
GOTO 900
9990 GOSUB 230:
PRINT "YOU ARE IN COMMAND MODE":
PRINT "WRITE DATA ON NEXT AVAILABLE LINE....THEN 'RUN'":
LIST 10000 - 12980
10000 DATA 62,131,6,61,33,128,61,119,35,5,194,248,127
12990 DATA 201,-1
24999 END

95

GRAPI

HCS

Screen Editor for Graphics Creations

by Bruce Douglass

| any programs have been published which enable you to draw and
ven save your drawings on disk or tape. I have not seen one,
however that is useful for the production of graphics displays, such aslogos,
that add polish to a professional looking program. I developed SCRNEDIT
(see Program Listing) because I needed to develop quick, simple, and attrac-
tive graphics displays for my programs.

I felt that a screen editor should include the following:

@ Full screen movement of the cursor

@ The ability to draw or erase at will

@ The ability to link screens easily with machine-language or BASIC pro-
grams

@ The ability to erase to the end of the page

® The ability to erase and restart

® The use of ASCII characters as well as graphics blocks

@ The ability to do inverse graphics easily

SCRNEDIT has these attributes. The arrow keys control the flashing cur-
sor. The graphics are in bit resolution using SET and RESET, complete with
a repeating key. The only keys that repeat are the arrow keys. To draw,
simply hold down an arrow key. The function repeats if you hold down the
key. If you do not like a point or a line, the shifted arrow keys erase the
points and move the cursor in the same manner as the unshifted arrow. If
you enter an ASCII character, it is printed on the screen. The control
characters are all shifted ASCII characters. The control functions appear in
Table 1.

The SHIFT I command inverts the screen contents. That is, if a graphics
pixel is on, this command turns it off, and vice versa. One method of per-
forming this is to test each graphics bit with POINT(X.,Y). If a pixel is SET,
then it is RESET, otherwise it is SET. This SETs all points that contain
ASCII characters, and that can be a problem. Another approach, the one
taken here, uses byte rather than bit resolution, and so is more than six times
faster. It becomes a simple matter toleave ASCII letters alone when you test
the entire byte.

The graphics blocks are arranged in a certain fashion which allows SET
and RESET to work by ORing the current pixel position with the graphics
byte currently in video memory. The current byte is PEEKed at, and 128
(80H) is subtracted from this amount. If the byte contains a space (32) or an

96

graphics

ASCII character, this difference is less than zero. You can test for a space
and set it to a graphics space (128). Subtract this number from 191 to get the
inverse graphics character. POKE this character into the video memory and
get the next byte. This method is considerably faster than using SET and
RESET and allows you to keep ASCII characters on your screen throughout
the inversion process.

Up arrow Moves cursor up and draws

Down arrow Moves cursor down and draws

Left arrow Moves cursor left and draws

Right arrow Moves cursor right and draws

SHIFT X arrow Same as normal arrow except it erases
SHIFT S 1 Saves screen in buffer 1

SHIFT S 2 Saves screen in buffer 2

SHIFT R 1 Redraws screen from buffer 1

SHIFT R 2 Redraws screen from buffer 2
CLEAR Erases to the end of the screen
SHIFT C Erases screen and begins over

SHIFT B Breaks or leaves program

SHIFT I Reverses the video screen

CHR$ Prints ASCII CHR$ on screen at cursor position

Table 1. Control functions

After you draw two or more screens, you may clear the screen by pressing
SHIFT C, and the program redraws the screens. This part is fairly fast since
byte resolution is used to redraw them. If you compile this program, it is
very fast. After you get them the way you like them, break out of the pro-
gram by pressing SHIFT B and load your monitor. In BASIC, of course, you
can use the BREAK key, but if the program is compiled, the BREAK key
does not work.

1 have written this program in a slightly peculiar syntax so that it can be
directly compiled using ZBASIC for additional speed and will run in BASIC
as well. Be sure to change the locations of the buffers if you compile it so they
do not interfere with the memory mapped variables of ZBASIC.

All the variables are defined as integers for increased speed. When you use
the program, be sure to reserve high memory for the 1K screen buffers. I use
two buffers so that I can design a screen and save it, then invert the screen
using the SHIFT I command and save the inverted screen. I like being able
to use a logo and invert it for visual effects. It is difficult to redraw the screen
by hand to be the exact inverse of the previous screen; so I have the program
do it for me. If you decide to have more screen buffers, be sure that you have
1K (1024 bytes decimal or 400 bytes hex) reserved. In the program below,
the buffers are located for a 48K machine. Buffer 1 is located at FOOOH.

97

graphics

Remember that since PEEKs and POKEs require a 16-bit signed integer, if
the address is greater than 32767, you must use the rule ADDRESS2 = AD-
DRESS!1 — 65536. You can then use address 2 for the start of the buffer.
FOOOH is 15 x 4096 (61440), which is too large; so you must use the rule to
get the correct address (61440 — 65536 = —4096). If you use Disk BASIC,
and do not intend to compile the program, you may use hexadecimal con-

stants which are &HF000 and &HF400 in this case.
To save a screen, press SHIFT S, and the program goes into an INKEY$

loop, looking for the buffer number. It does not prompt you because this
would destroy the painstakingly drawn screen. Once the buffer is chosen,
the screen bytes are read, one at a time, using PEEK, and then are POKEd
into the buffer area. When control returns to you, OK appears in the upper
left-hand corner, and the cursor begins to flash. Redrawing a screen uses the
same INKEY$ loop to look for the buffer number and uses a similar strategy
to redraw the screen.

Once you have saved the screens, load a monitor such as T-BUG or
TASMON, and you can save the screen to disk or tape as a single block of
memory. This practice saves a fair amount of tape or disk space as compared
to using DATA statements or stored arrays, both of which require 4K of
memory to store 1K of information. This is because both data statements
(stored as ASCII numbers) and array data (stored as two-byte integers) take
a lot of space. With four bytes per screen byte for data (three for the three
digits, and one for the comma), or two bytes for each element of an integer
array, these methods require a lot of memory.

Once you have designed and saved your screens, you can use them in
BASIC or machine-language programs. With a BASIC program, copy the
REDRAW routine from the program. It reads in the numbers via PEEK and
then POKEs them into video memory, updating the counters by 1, until it
has PEEKed and POKEd all 1024 bytes. In machine language, it is even
easier. The Z-80 has block move commands not available on most other
CPUs. In this case, you use LDIR. See Table 2.

100 LD HL,BUFFER ;where the screen is stored
110 LD DE,3C00H ;the video memory

120 LD BC,400H ;1K byte to move
130 LDIR ;do it
140 RET ;from whence you came

Table 2. Display routine

You can store a specially designed screen efficiently in memory and, in less
than 1/40 of a second, zap it onto the screen for a flashy display. If you want
to we a BASIC driver program, use the short assembly-language routine to

98

graphics

put it on the screen quickly with USR(), and return to BASIC. For example,
if your screen buffer starts at TAO0H, put the machine-language routine at
7994 and end it with a RET. You can then save the screen and the machine-
language routine as a single unit and have lightning fast logos via USR.

99

SO N O

-

20

30

40 I

50

60

70

80

90

100

graphics

Program Listing. Screen editor (SCRNEDIT)

REM *#kknx SCRNEDIT

REM »exawns BY BRUCE DOUGLASS
REM *xx*%x DEPT. OF PHYSIOLOGY
REM ****x* SCHOOL OF MEDICINE

REM *xkxxk (JSp VERMILLION, S.D.

DEFINT A - Z:
CLS

S = 15360:

Fg = no.

X 64:

Y 24

GOSYB 30:
GOSUB 180:
POKE 16444,0:
GOTO 20

' POKE RESETS KEYSCAN
A$ = INKEYS:
IF A$ = F3
THEN

SET(X,Y):
RETURN
ELSE
RETURN
IF A =9
THEN
IF X <127
THEN
X = X + 1:
SET(X,Y):
RETURN :
ELSE
RETURN
IF A =10
THEN
[F Y < 47
THEN
Y =Y + 1:
SET(X,Y):
RETURN :
ELSE
RETURN
IF A = §1
THEN
IFY>»o
THEN
Y =Y - 1:
SET(X,Y):
RETURN
ELSE
RETURN
IF A = 115
THEN
220
' SAVE ROUTINE
IF A= 114
THEN
280
' REDRAW ROUTINE
IF A = 27
THEN

100

* ok ok ok ok ok
* Kk ke ok ok ke
* ok ok ok ok ok
* Kk kkokk
*kkkKkKk

Encvclfpedta

160

175
180
190

200

graphics

IFY >0
THEN
Y =Y - 1:
RESET(X,Y):
RETURN
ELSE
RETURN
IF A = 26
THEN
IF Y < 47
THEN
Y =Y - 1:
RESET(X,Y):
RETURN
ELSE
RETURN
IF A = 24
THEN
IF X >0
THEN
X=X - 1:
RESET(X,Y):
RETURN
ELSE
RETURN
iIF A = 25
THEN
IF X < 127
THEN
X o= X+ 1
RESET({X,Y):
RETURN
ELSE
RETURN
IF A = 98
THEN
STOP
' <s> B FOR "BREAK"
IF A = 99
THEN
10 :
' <S> C FOR CLEAR SCREEN
IF A = 105

VERSE VIDED
Y / 3) * 64:

—

REM k ok ok ok kR
IF POINT(X,Y) = -1
THEN

RESET(X,Y):

P = -1:

BLINK ROUTINE

ELSE
SET(X,Y):
P =0

GOSUB 390:

IFP=-1

101

kkkk kK

Program continued

210
220
230

250
260
270
280

290
300

330
340

350
360

390

graphics

THEN
SET(X,Y)

ELSE

RESET(X,Y)

RETURN

REM

GOSUB 300 :

* GET SCREEN BUFFER LOCALE

FOR I = 0 TO 1023:

POKE E + I, PEEK(S + 1}):
NEXT 1

PRINT @O0, "0K";

RETURN

REM % ko k dok

GOSUB 300:

FOR I = 0 TO 1023:
POKE T + S, PEEK(E + 1):
NEXT I

GOTO 20

A$ = INKEYS:

IF A = F$
THEN

300
ELSE
A = ASC(AS%)

IF A = 49

THEN

dk ok ok kok

SAVES SCREEN BYTES

REDRAWS SCREEN

S:
RETURN
' BUFFERS SET FOR OFQOOH AND OF400H
FOR I = S TO 16383
A = PEEK(I) - 128:
IFA<O
THEN
IF PEEK(1) = 32
THEN
A =0
ELSE
GOTO 360
POKE 1,191 - A
NEXT I:
GOTO 20
FIR I =
HEXT I:
RETURN

1 70 10:

* ok ok ok ok k

* Kk ok ok ok ok

102

HARDWARE

Lowercase Driver for the TRS-80
Minor Monitor Maintenance

103

HARDWARE

Lowercase Driver for the TRS-80

by John A. Hassell

nstalling a lowercase modification on a TRS-80 Model I costs less than

five dollars in parts and takes less than an hour. This article tells you how
to make your computer work right with very little expense.

The character generator ROM, a special memory chip for generating the
characters that appear on the screen, contains both the uppercase and
lowercase characters. Radio Shack, however, did not use the chip. Cracking
open the keyboard was a little too threatening at the time; so I delayed the
decision. When the text-processing software Electric Pencil became
available for the TRS-80 with its detailed instructions on installing a lower-
case modification, I consulted an electronics expert. We opened the case and
installed the lowercase modification, including the special key and a switch
to turn off the modification when not needed.

The modification worked beautifully but had to be turned off when not
being used with Electric Pencil. When it was on, instead of normal letters, a
set of circles, arrows, squares, and other characters appeared on the screen.
The computer could understand them, but I could not.

I wrote a software driver that provided both uppercase and lowercase let-
ters, including a SHIFT lock and the use of the special characters, but 1 still
had to turn the lowercase modification off until I loaded the driver. The ir-
ritation continued until I took a second look at Steven Wexler’s article,
“Lowercase for the TRS-80” in Kilobaud Microcomputing, April 1980, p.
132. This modification was simpler and did not require a switch to turn off
the funny characters and return to the normal uppercase letters. The com-
puter came up with normal characters when the computer was turned on.
Since I was used to using a switch, I thought the modification was wrong. A
quick look at the technical reference manual and a close look at Mr. Wexler’s
diagram in Figure 1 of his article revealed a new approach. He decodes bit 6,
the bit that would be displayed by the video chip that Radio Shack left out,
through a spare gate so that any time the special characters would be shown
on the screen the uppercase character appears instead. The Radio Shack
modification works the same way but replaces the character generator chip
which replaces the special characters with uppercase characters.

Mr. Wexler's modification does not require a switch and a special key as
the Electric Pencil modification does. The only problem with converting to
Mr. Wexler's modification was that the RAM in the Electric Pencil

105

hardware

modification is piggybacked on video chip Z45 and Mr. Wexlers' modifica-
tion is piggybacked on Z83. A careful look at the service manual, however,
reveals that all the lines, except pins 11 and 12, to all seven video chips are
the same. Consequently, you can put the piggyback RAM on any one of the
seven video chips. These are the chips numbered Z45 to Z48 and Z61 to Z63
in Figure 1 and Photo 1. The two enable lines, pins 11 and 12, must remain
separate.

Photo 1. Closeup of the video RAM chips. The video chips are on the second and third rows; the
chip identification number is to the upper left of the chip. On this board. the pigeyback is on chip
745, the third chip from the left in the second row

I had to decide if the circles, broken arrows, rectangles, and the like were
important. The driver I had written allowed the display of these characters
as part of the full character set. With the new modification, these characters
would no longer be available. The only time I used these characters was to
show how neat my driver was. I had yet to include these special characters in
serious programming; so I eliminated them.

Examination of the inside of the computer revealed that the one trace that
must be cut had already been made with the Electric Pencil modification,
The cut is the dark mark between the fifth and sixth chips in the top row
under the Z30 label shown in Photo 1. I removed the switch installed for
Electric Pencil and began to go through the instructions. A careful examina-
tion of the procedure revealed a few changes that can lead to a simpler and
safer technique to install the modification.

1) The extra chip can reside on any one of the existing video RAMs. If you

106

hardware

SANIT vivd
IYNOILD3YI0E

(0861 1Hdy *Bunnd WO pPnEqo[y wo.f) uonvorfipout S 13jxa A\ Puv WYY 03p1a fo wo.Borp pnos) *1 emBLy

YLISIPL SLISWL
82z 122
0 L8 1)
2l
ino L8 378VN3
viva N__ JIHJVHD
2 118
ino
vivag N__\
¢ 118 v0S1¥L
2012 ing 207
8%2 viva 2 - _!uln..lllliilu.;l::l.l‘lyi_
2012 100 H AMLINIHIT MIN .
N LvZ viva 2 c i
viv0 2012 1no pmy M H
m N ¥4 viva 2t L e i |
NG 110
g s 2oie viva _ viva _
oa H i (1% 2l H :
a yiva 2012 1no (3Lv9
) T " (o7 viva | Iuvds) |
2EST6L H
(] vivg 2012 ! 2012 €17
20 T NI 297 _ 0g97 |
1 ¥iva 2012 : H
€0 N1 €397 N1 _
7 vivg | viva _
vaq 1 1
Ni
H viva —|||!||l«(||lle|||»'.|||ctl|||l_
v 1
sa
k:1¢)
La
S
v osz
9 118
19€SbL bvZ=8 v Y -
L9E8TbL 09Z=V e 10 20STvL

107

hardware

have one of the other modifications in which the extra chip is on a chip other
than Z63, do not remove it. Only pins 11 and 12 are important.

2) Do not try to desolder pins 11, 12, and 13 of Z73 and bend them up. This
can damage the chip or break a pin. Turn the board over and cut the con-
necting traces between the three pins, 14, 13, and 12, by making a V-shaped
cut through the foil with a knife. If the solder is too thick to make the cut,
remove the excess with a solder wick and then make the cuts. The finished
cuts are shown in the center of Photo 2. If you ever want to restore this
modification, use a little excess solder to bridge the gap.

Photo 2. Closeup showing the bottom of chip 773 where the traces between pins 12 and 13 and
pins 13 and 14 have been cut

3) Rather than soldering posts onto the connections, solder wire-wrap wire
to the pins. This requires less solder and less heat stress on the chips. Wire
wrap is a small gauge insulated wire (see Photo 1) used to make wrap con-
nections on circuit boards.
4) In running the wires between connections, put them under the capacitors
laying in line with wires preventing them from getting caught or dangling
free. See Photo 3.
5) Before you close up the case, carefully check all connections, connect the
video and the power supply, and try the modification. MEMORY SIZE
should appear on the screen. If not, turn it off and recheck all connections.

Once the keyboard is reassembled, you cannot see the display of the
lowercase unless you POKE the values directly into the video memory. Use
the following one-line BASIC program to test this.

10 CLS: FORT = 32 TO 191 : POKE 15360 + Ix4, I: NEXT

108

hardware

Neither shifted nor unshifted keys produce the display of the lowercase even
though it is stored as lowercase in memory. This is a problem with Radio
Shack’s ROM. A patch to both the video and keyboard drivers produces a
keyboard function like those of larger computers.

Photo 3. The finished board with wire-wrap wire weaved under the capacitors to prevent them
from dangling

I must warn you of the consequences of installing this modification. The
Electric Pencil no longer works in the lowercase mode. This, along with the
scrolling problem, has been corrected by a commercial software patch. The
Radio Shack lowercase modification also does not work with the Electric
Pencil for the same reason. Any software that works with the Radio Shack
modification works with this modification as well.

Once you have corrected the hardware, a software change is necessary
before you can take advantage of it. Both the video and the keyboard must
be patched before you can obtain total use. The video patch is necessary to
distinguish uppercase characters from lowercase characters since ROM
treats both the same for display. The keyboard needs to be patched so that
the keyboard can have both unshifted lowercase with shifted uppercase, or a
SHIFT lock (all uppercase). All the new disk operating systems, except
Radio Shack’s, include such a driver.

The source listing of an assembler program to implement the capabilities

109

hardware

of the lowercase modification isshown in Program Listing 1. This driver uses
the keyboard decoding done by the Level Il ROM and requires only 55 bytes
of memory space to handle both the keyboard and the video correction
routines. I provided the assembler listing for those who would like to have a
fast, efficient loading program and a BASIC program for those who prefer
to run from BASIC. (See Program Listing 2.) Both of these programs deter-
mine the top of usable memory and move the program to the memory loca-
tion just below that value. Once the program has been moved, the top-of-
memory pointer address is recalculated and put into the top-of-memory ad-
dress pointers at 4049H and 40B1H. 4049H is the DOS pointer, and 40B1H is
the BASIC top-of-memory pointer. The addresses of the keyboard and video
are put into the appropriate driver blocks, and control returns to the sending
system, either DOS or BASIC.

The SHIFT-lock function is the key combination that causes the
alphabetic characters to display lowercase unshifted and uppercase shifted
characters, or in the locked position uppercase characters only, whether
shifted or not. This function is the control character U. The function is
generated by pressing the SHIFT, down-arrow, and the U keys at the same
time. No response is seen on the screen, but the effect is seen immediately
when you press an alphabetic key. When the SHIFT lock is in effect, only
uppercase characters are displayed, whether the SHIFT is pressed or not.
When the lock is not on, lowercase characters are produced for unshifted
characters and uppercase characters appear for shifted characters. This
feature does not affect any keys but alphabetic keys. In addition, BASIC uses
the case character that is shown on the screen or converts it if uppercase
characters are required. You no longer have to hold down the SHIFT key for
lowercase letters.

If you want to use a control character other than U, you can change it to
any character not used by Level I1. The values of the control characters and
the usable characters for this function are shown in Table 1. For example, if
control Z is more desirable than U, substitute the value of 1AH (26) for 15H
(21) in FLCHAR. In the BASIC program, use a value of 26 instead of 21 in
line 1002.

Type the BASIC program exactly as shown. You can generate the lower-
case string in quotation marks in line 40 before you execute the program by
holding down the SHIFT key for each character. When you run the pro-
gram, the response is in lowercase characters, confirming that the driver is
active. A more convenient method is to type the program, save it in case
something goes wrong, run it, and then edit line 40. After running the pro-
gram, push the SHIFT, down-arrow, and U keys at the same time to ac-
tivate the lowercase modification. Typing any alphabetic character pro-
duces the lowercase characters. Since the ROM automatically converts to
uppercase where required, you needn’t worry about typing the commands

110

hardware

in uppercase. Type EDIT 40 and you will be in the edit mode in line 40, in-
dicated by the 40 which shows up on the screen followed by a space and the
cursor. Step through the text by pressing the space bar until you reach the
first character inside the quotation marks. Now give the hack command (H),
retype the text in lowercase, and save it. From now on, when the program is
first loaded after the machine is turned on, the string inside the quotation
marks appears as uppercase characters, but when you run the program, the
screen shows “The Lowercase Driver is now working.” If you list the pro-
gram, you see both uppercase and lowercase text. The prompts from BASIC
appear in both cases, for example, Ready.

Character (1) Value Level II Use
Decimal Hex
A (2) 1 01H Break
B 2 02H None
C 3 03H None
D 4 04H None
E 5 05H None
F 6 06H None
G 7 07TH None
H (2) 8 08H Back space
1(2) 9 09H Tab
] (2) 10 0AH Line feed
K 11 0BH None

12 0CH None

13 0DH Enter key (I.LF/CR)
14 OEH None

15 OFH None

16 10H None

17 11H None

18 12H None

19 13H None

20 14H None

21 15H None

22 16H None

23 17H None

24 18H Erase line

25 19H 392-Character mode
26 1AH None

—~
o
~=

Z
B

NRMZE<CHORIOTOZELD
=

(1) Control characters are generated by pressing the
SHIFT, down arrow, and the key in column 1 at the same
time.

(2) Do not use these characters for SHIFT locks.

Table 1. Control characters and associated values

111

hardware

The CLEAR statements in the beginning and end of the program are
necessary for BASIC to realign the memory size and string pointers. The
value of 50 in line 40, however, is not critical. You can use any value, but the
system normally comes up with a value of 50. If the assembler program is ex-
ecuted from Level 11, a CLEAR 50 should be executed immediately after to
realign the pointers, or else BASIC might get lost.

Neither of these programs interferes with programs that are located or to
be located in high memory as long as you have set the HIMEM. You can set
the memory size, and the driver loads itself below the size you specify. Since
both listed programs use the current HIMEM value to load, then recalculate
the HIMEM value, multiple executions of either program cause the memory
to be reduced continuously. To avoid this problem, either reset the HIMEM
value, push the reset button for DOS, or type SYSTEM followed by /0 in
BASIC. This driver works in any program that uses the ROM video and
keyboard calls.

112

hardware

Program Listing 1. Lowercase driver. assembler listing

00100 ; KKK A KRRk A KA KR AAKRA R KA AR ARAAAA AR I AN AR AR AR AR R A AR R AR k& &

00110 ; Lowercase Driver for TRS-80 Model I

00120 ;

00130 John A. Hassell

00140 ;***********************************k**t*t**k*****k*****

00150 ; For use with etther Level Il Basic or DOS

00160 ; Hokkk K Hith Level II make RETURN = 1A19H *x*xx

00170 * and use BHIMEM for HIMEM in line 210 *

00180 ; bl With DOS make RETURN = 4020H ***xx

00190 H khkkhkkhkdkhkhkhhkhhkhhkhkhhkhhkhhkhhkXAAAkAA AT AR R AR A AR KRR R A&k kokokkhx
7500 00200 ORG 7500H ;LOAD AT A CONVIENT PLACE
7500 ED5B4940 00210 START LD DE, (HIMEM) ;GET THE HIMEM VALUE
7504 013800 00220 Lo BC,ENDING-KB+1 ;PUT THE SIZE IN BC
7507 218E75 00230 LD HL,ENDING ;END OF PROGRAM
750A EDBS8 00240 LDDR SMOVE IT TO THE TOP OF

00250 ; AVAILABLE MEMORY

00260 **k* The driver is now i1n high memory ***x*

00270 ; hhkhkhkhkhkhkkhhkhkhhkhAA R XAk Ak Ak kA A AR KA R RA TR AR A XA AR ARk Ak khk kK
750C ED534940 00280 LD {HIMEM),DE SRESET 005 HIMEM VALUE
7510 ED53B140 00290 LD (BHIMEM),DE sAND BASIC TOP OF MEMORY VALUE
7514 13 00300 INC DE s INC TO KB ROUTINE ADDRESS
7515 E0D531640 00310 LD (KBBLK),DE ;PUT ADDR IN KB BLOCK
7519 £ED534940 00320 Lo (HIMEM),DE SRESET THE HIMEM ADDRESS
751D 211900 00330 LD HL,VIDEG-KB ;CALCULATE THE VIDEOQ
7520 19 00340 ADD HL,DE yROUTINE ADDRESS POSITION
7521 221E40 00350 LD (VDBLK), HL ;PUT IN VD BLOCK ADDR
7524 C32040 00360 JP RETURN ;ALL DONE SO RETURN

00370 ; Ak ARk A AR AR A A AREARER A AR R A AR AR R T IR R Rk ok hkkkkdhd ko k ok bk ko

00380 ; **** Start of the Keyboard routine ****#*

00390 ; Kk hkhkkhk kAR A A XA AR A RA RN KA IR Ak kA kAR A A A A Ak kAR R AT AR A AR
7527 CDE303 00400 KB CALL ROMDVR ;GET KEY FROM ROM DVR
752A 57 00410 LD D,A 3 SAVE CHARACTER IN D
7528 FE15 00420 ce FLCHAR JTEST FOR THE CAPS LOCK CHAR
7520 3A1940 00430 LD A, (FLAG) AND GET THE CAPS LOCK FLAG
7530 2005 00440 JR NZ,NOTON ;JUMP TF NOT LOCK CHAR
7532 EEOL 00450 XOR 1 ;1F ON TOGGLE THE FLAG
7534 321940 00460 LD (FLAG),A SAND PUT IT BACK
7537 B7 00470 NOTON OR A ;TEST TF CAPS LOCK ON
7538 7A 00480 LD A,D ;PUT CHARACTER BACK
7539 (8 00490 RET A s [F OFF BYPASS LOCKS
753A FE4Q 00500 cp 40H JTEST IF ALPHABETIC
753C D8 00510 RET C ;QUIT TF NOT
7530 C8AF 00520 RES 5,A JHAKE CHAR A CAPITAL
753F €9 00530 RET JEND OF KB ROUTINE

00540 ; LR R R R R R RS R R R R R E R R R R EE RS R

005650 ; **x* Start of Video Routine R

00560 H Ak hhkkhk kKA Ak A A XXk ARXAERKRET AR A A A XA A KA AT A AR A A I A XA AR kAN Kk dk
7540 DDGED3 00570 VIDEQ LD L, (1X+03H) ;GET THE CURRENT SCREEN
7543 DD6604 00580 LD H, (IX+04H) sADDRESS INTO HL REG
7546 DASAQ4 00590 JP C,049AH ;TEST FROM ROM VALUE
7549 DD7EQS 00600 L0 A, {1X+05H) ;GET CHARACTER
754C B7 00610 OR A IS 1T NULL
754D 2801 00620 JR Z,BPASS s IF NOT NULL JUMP
754F 77 00630 LD (HL), A ;PUT CHAR TO SCREEN
7550 79 00640 BPASS LD A,C RESTORE CHARACTER
7551 FE20 00650 ce 20H ;1S IT CONTROL CHAR
7553 DAO6OS 00660 JP C,0506H ;G0 TO CONTROL AREA IN ROM
7556 FEBO 00670 ce 80H ;1S IT GRAPHIC
7558 D2A604 00680 Jp NC,04A6H ;G0 TO GRAPHIC AREA IN ROM
7558 €37D04 00690 JP 47DH ;G0 TO NORMAL CHAR RETURN
755€ 00 00700 ENDING DEFB 00
0015 00710 FLCHAR EQU 0015H ;CONTROL U CHARACTER
03E3 00720 ROMDVR EQU 03E3H ;ADDR OF ROM DVR
4016 00730 KBBLK EQU 4016H ;KB DRIVER BLOCK ADDRESS
4019 00740 FLAG EQu 4019H ;FLAG IN KB BLOCK
401E 00750 VDBLK EQu 401EH ;VD BLOCK ADDRESS
4049 00760 HIMEM EQu 40494 ;D0S HI MEMORY
4081 00770 BHIMEM EQU 40B1H 3BASIC HI MEMORY
4020 00780 RETURN EQU 402DH ;DISK RETURN

00790 ;RETURN EQU 1A19H 3 THE BASIC RETURN
7500 00800 END START

00000 TOTAL ERRORS .
Program continued

113

hardware

Program Listing. Lowercase driver, BASIC listing,

10 CLEAR 1000:DEFINT I,J

20 FORI=0TOB86:READI1:POKE&H7500+1,11:NEXT

30 DEFUSR=&H7500:1=USR(0)

40 CLEARSO:PRINT"Tne Lowercase Driver is now working"
1000 DATA237,91,177,64,1,56,0,33,87,117,237,184,19,237,83,22
1001 DATA64,27,237,83,177,64,33,26,0,25,34,30,64,201
1002 DATAOD,0,205,227,3,87,254,21,58,25,64,32,5,238,1
1003 DATA50,25,64,183,122,200,254,64,216,203,175,201
1004 DATA221,110,3,221,102,4,218,154,4,221,126,5,183
1005 DATA40,1,119,121,254,32,218,6,5,254,128,210,166
1006 DATA4,195,125,4,0

114

HARDWARE

Minor Monitor Maintenance

by Nick Doble

here have been a number of articles about making electronic modifica-
tions to the TRS-80 Model I monitor. This article may also apply to the
Model IIT monitor, but I am not familiar with it. Not everyone has the in-
terest, knowledge, or ability to make these modifications, yet there is some
minor monitor maintenance that is useful and that anyone can perform.
Everyone is familiar with vertical and horizontal hold and the other com-
mon monitor adjustments, but there are three other adjustments that can
readily be made to the display on the CRT (cathode ray tube) of the
monitor: tilt, centering, and vertical size.

When you work with the monitor, you must be careful not to touch the
chassis with your hand or a tool while making the adjustments because the
AC line is connected directly to the metal chassis of the monitor. The
possibility of getting a shock is discussed in more detail at the end of this arti-
cle. When you work with high voltages, it is a good idea to use only one hand
when making adjustments, so as not to provide a path for electricity through
the body.

To make the adjustments to your monitor, you need some kind of graphics
to help you align the display. The Program Listing is a short and simple
Level 11 or Disk BASIC program for drawing a series of “Chinese rectangles”
on the face of the CRT (see Photo 1)—this is a better test display than a sim-
ple white-out, because a white-out tends to distort the display. After you
have entered and saved the program, open the back of the monitor by
removing the four screws at the corners, and the fifth next to the power cord.
You need a 1/4 inch socket driver to remove these screws. You might want to
unplug the monitor to do this; you may also want to detach the back from
the line cord so that it doesn’t get in the way.

The most difficult aspect of this project is reinstalling the back of the
monitor when you are finished making the adjustments. The wells that hold
the screws for the back are not closed, and the screws don’t seem to have any
desire to go where they should. You will have to persevere.

Adjusting the Tilt of the Display

The tilt of the display on the face of the CRT is governed by the position of
the yoke on the neck of the CRT. As you look at the open back of the monitor
(see Photo 2), you see that the CRT is Y shaped. The upper part of the Y is the

115

hardware

face of the tube, and the bottom half is the neck. There is a device shaped
like a basket or a yoke on the tube where the neck begins to expand into the
face of the CRT. On my monitor this yoke is white. There should be a handle
on either side of the yoke. These handles are used to turn the yoke left or
right to adjust the tilt of the picture on the face of the tube.

Photo 1. “Chinese rectangles” to help you align the CRT display

There is also a metal band toward the back of the yoke, with a screw on it
to tighten or loosen the band (again, see Photo 2). In making the following
adjustments, if you are unable to move the yoke, loosen this screw. When
you've finished, tighten it again, but only as much as you loosened it, or you
may put too much strain on the neck of the CRT. If the yoke still refuses to
move after you have loosened the band, apply a little circular force to the
yoke—it may be stuck to the neck of the tube from heat and the pressure of
the band. Be careful, as the neck of the CRT is very fragile; do not grab the
neck with your hand or apply other than circular force to it.

With the Chinese rectangle program displayed on the CRT, adjust the
yoke to the left or right so that the display is parallel with the sides of the
CRT. Now retighten that screw if you loosened it. That completes the tilt
adjustment.

116

hardware

Photo 2. Open back of the monitor

How to Adjust the Centering

The spaces between the top and bottom of the graphics display and the
top and bottom of the CRT should be about the same; and the spaces be-
tween the sides of the display and the two sides of the CRT should also be
about the same, as shown in Photo 1. If they are not, you need to adjust the
centering of the display on the screen. Notice two rings with a tab on each at
the back of the yoke (see Photo 2). These rings are permanent magnets, and
their positions around the electron beam being generated in the neck of the
CRT influence where the beam is aimed on the face of the CRT, just as the
wind might move water from a hose. The tabs are there for you to hold on
to, so move the centering rings around the neck, individually and together,
and see what effect they have on the positioning of the graphics display.
After you have the hang of how they influence the display, center the display
so there are equal spaces top and bottom, and side to side.

The Vertical Height Adjustment

The remaining adjustment is for vertical height. Looking at the back of
the monitor, you see a circuit board standing on its side toward the left of the
monitor; slightly to the right of this board and near the front (actually the
back of the monitor) of the big board that the upright board is plugged into,

117

hardware

you see what is called a trim pot. On my monitor, this control is blue, and
VERT. SIZE is printed on the PC board in front of it (see Photo 3). Thereis a
slot in the front of the pot, and using a screwdriver in this slot, you can turn
the pot to the left or right while watching the face of the CRT. This is the
time to be careful of a shock, as you are near the chassis, with your eyes on
something else. Some people like to use a mirror to watch the CRT display.
You will see the picture expand and shrink vertically as you move the con-
trol. It will be obvious where the live part of the picture ends; adjust it so
that the edge of the picture is at the edge of the tube. You will probably find
that the two edges of the picture do not touch the top and bottom edges of
the tube at the same time, so adjust for whichever touches last. Now expand
the picture so it overlaps the edges of the CRT by about 1/2 inch; you will
have to guess about this because you can’t see it. This is necessary to make
sure that changes in line voltage, which affect the size of the picture, do not
shrink it so much that the picture’s edges become visible.

Photo 3. Vertical size adjustment

You have now finished the adjustments to your monitor, and you should
have a display that is parallel with the edges of the CRT and equally spaced
from side to side and from top to bottom, with perhaps an inch or so from
the corners of the graphics display to the top and bottom edges of the CRT,

118

hardware

as shown in Photo 1. The centering and height controls are somewhat in-
teractive, so you may want to check your adjustments by going through
them one more time. As your monitor ages, or the adjustments change for
any reason, you can provide this routine maintenance yourself.

Working with High Voltages

In making the adjustments described in this article, you will be exposed to
AC line voltage and the high voltage of the monitor picture tube. To the best
of my knowledge and in my experience, AC line voltage is not lethal, despite
popular belief. The severity of a shock depends on two things, current and
voltage. Current without sufficient voltage is harmless, as evidenced by your
12 volt automobile battery, which has hundreds of amps in store but can’t
give you a shock because of low voltage. Voltage without current is equally
harmless, at least to human beings, although your normal CMOS IC might
be alarmed. As evidence that voltage without current won’t hurt you, con-
sider the fact that the everyday electrostatic shock has a potential of tens of
thousands of volts but no current.

Despite its great current potential, under normal circumstances, 120 volts
of AC is not a high enough voltage potential to break through the high
resistance of the body to the extent that the current becomes harmful. Unless
you insist on standing in a well grounded metal tub of dirty water (it is the
impurities in water that are conductors; distilled water is an insulator) while
you work on your monitor with wet hands, you are not likely to be greatly
offended by any shock you may receive, if you receive any at all. Never-
theless, be careful; be sure to stand on an insulating surface such asarugora
wood floor.

As for the high voltage to the CRT or picture tube, this is deliberately
designed to be voltage without current. If you have ever cleaned the face of a
TV and received a shock, you have been shocked by the high voltage on your
picture tube, which is somewhere between 20 and 30 thousand volts. So you
can see that there is nothing to fear; nevertheless, be careful while working
with the yoke and centering rings of the monitor CRT—there is some mid-
dling high voltage at the base of the tube, and the very high voltage goes to
the right side of the tube, looking from the back, as shown in the background
in Photo 2.

It is probably just as well that popular belief holds that AC line voltage is
lethal. T am not an expert on the subject, and there maybe other factors such
as a weak heart to take into account, but I have been shocked by voltages
higher than those you are working with and have not been hurt. Neverthe-
less, to repeat for the third time, be careful. If you are still concerned, wear a
pair of rubber dishwashing gloves while working on the monitor; they are
easy to wear and should eliminate any possibility of a shock.

119

10

100

110

120

130

140

150

200
1000

hardware

Program Listing. Test pattern

E TEST PATTERN

E FOR MINOR MONITOR MAINTENANCE
; BY NICK DOBLE

f 9/10/80

CLS :
DEFINT A - Z:
X1 = 0:
X2 = 127:
Y1l = 0:
Y2 = 47
FOR X = X3 T0 X2:
SET(X,Y1):
NEXT
FOR Y = Y1 TO v2:
SET(X2,Y):
SET(X2 - 1,Y):
NEXT
FOR X = X2 TO X1 STEP - 1:
SET(X,Y2):
NEXT
FOR Y = Y2 TO Y1 STEP - 1:
SET(X1,Y):
SET(X1 + 1,Y):
NEXT
X1

wowou R

X1 + 4:
X2 - 4
X1
Y1l + 2:
Y2 = Y2 - 2:
IF Y1 > 23
THEN
1000
GOTO 100
K$ = INKEYS:
IF kg = ™"
THEN
1000 :
ELSE
RUN

><
L
oW oW ou o

120

HOME APPLICATIONS

Can You Find that Slide?
Controlling Your Home with Your TRS-80

121

- HOME APPLICATIONS

Can You Find that Slide?

by Robert E. Averill

fter a vacation, how do you find one particular slide out of the several

hundred you took on the trip? I have over 5000 slides in my collection. I
number them in the upper left-hand corner with no particular regard to the
contents of each slide. I number them by hand and when I get tired of
numbering, I start entering the information about the slides into the data
lines of the program. I can enter about 20 slides in a minute.

The program is written in Level II BASIC. You can change any slide in
the program at any time without affecting the rest of the slides. When you
want to remove a slide from your file for use, to send it off, or otherwise
make it temporarily unavailable, reenter the data statement for that slide
and add a REM statement, as in line 183, to indicate where the slide is.

Slides are coded and sorted on any or all of three vertical lines of informa-
tion with up to 98 conditions in each of those lines. (See Figure 1.) This gives
a total of approximately 941,192 possible combinations of descriptions for
slides if you choose to code them in this manner. The number 99 is reserved
in each line as a DO NOT SORT instruction to shorten search time if you
can find the slide or group of slides you want without some particular line
of sorting.

Where Shot Who/What Activity
1 OUR HOUSE OURSELVES
2 OTHERS HOUSE IMMED. FAM. BIRTHDAYS
3 OUTSIDE H. RELATIVES ANNIV.-OTHER
4 FRIENDS HOLIDAYS
5 LOCAL OUT GROUPS 1-3 MEETINGS
6 LOCAL WASH. CROWD 3 + HISTORY FAM.
7U.S. NOT WA. SCENIC
8 CANADA
9 HAWAIIL BOATING

Figure 1. Slide sort coding chart

1 enter some slides on more than one data line which allows sorting on
more than one kind of search. The slide described in lines 188 and 189 was
taken on a canoe trip on Bowron Lakes; therefore, coding is in line 31 col-
umn 1 which is the code for photographs taken on the Bowron trip. The
photograph is of a large cow moose and her calf close to the canoe; therefore,
coding for column 2 is from line 12 or 13, depending on whether I look for it

123

home applications

under large wild animals or small wild animals. Column 3 is coded 10 for
both slides because I took the photograph while canoeing. 1 can find the
same slide number by sorting on 31,12,10 or 31,13,10.

This slide also comes up under any sort coded 99,99,10 which brings up all
slides shot while canoeing; 99,12,99 which brings up all slides containing
large wild animals; 99,13,99 which is for all slides containing small wild
animals; and on 31,99,99 which covers all slides taken on the Bowron Lake
trip.

Set up your slide coding chart to fit your needs. Make several copies of the
chart and keep one with your tapes and another with your slides in case you
discover that you have a great number of slides coded, numbered, and filed
by number and cannot remember the coding. Load the program down to
and including line 170, then load lines 9999 and 10000. Add the data about
your slides starting with line 180. There must be four pieces of data on each
line. The data numbers must be separated by a comma, and the last data
number must always be your slide number. If you do not want to use all of
the columns in your coding, insert a 0 in its place so that there are always
four pieces of information. After entering 10 or 15 slides in your program,
check your work by entering RUN to be certain that you are entering the in-
formation as the program requires.

Fancier programming could make this program sort faster, but it would
be considerably more complicated. This program sorts 500 slides in approx-
imately 1 1/2 minutes. I have my slides filed in drawers of 500 with a
separate program for each drawer.

124

home applications

Program Listing

10 CLS

; * SEARCH PROGRAM *
20 1 LNPUT 4 DATA FIELDS, SEPARATED BY COMMAS, SORT ON FIRST THREE
Zz ' FIELDS & PRINTS NUMBERS OF 4 TH. - INPUT 99 IN FIELDS YOU DO

' NOT WANT SEARCHED.
50 CLS
60 INPUT "ENTER CODE FOR COLUMN #1, IF NO ENTRY TYPE 99";X
70 INPUT "ENTER CODE FOR COLUMN #2, IF NO ENTRY TYPE 99";Y
80 INPUT "ENTER CODE FOR COLUMN #3, IF NO ENTRY TYPE 99";Z
90 ON ERROR GOTO 9999
95 A = "o
100 READ A{1),B(
110 IF X = A(l)
THEN
150
ELSE
120
120 IF X = A(1l) AND Y = 99 AND Z = 99
THEN
150
ELSE
130
130 IF X = 99 AND Y = B(1) AND Z = 99
THEN
150
ELSE
140
140 IF X = 99 AND Y = 99 AND Z
THEN
150
ELSE
142
142 IF X = A{l) AND Y = B(1) AND Z = 99
THEN
150
ELSE
144
144 IF X = A{l) AND Y = 99 AND Z
THEN
150
ELSE
146
146 IF X = 99 AND Y
THEN
150
ELSE
100
150 PRINT D(1);A$;:
GOTO 100

1),0((1)
AND ¥ (1) AND 2 = C(1)

1
[}
-

—

[
o
fon

B(1) AND Z

1
«
—

s

160 :
' DATA ENTRY LINES #180 TO #9998 INCLUSIVE, SAMPLE BELOW
170 :
! SAMPLE DATA ENTRY >180 XX,XX,XX,XXXXX
180 DATA 2,3,5,26
181 DATA 3,19,7,27
182 DATA 2,3,5,28
183 DATA 26,21,7,29:
REM AT M.R. STUDIO - BACK 11/15/81
184 DATA 26,12,7,29
185 DATA 2,3,5,30
186 DATA 2,3,5,31
187 DATA 5,3,19,32 s
188 DATA 31,12,10,33 Program continued

125

home applications

189 DATA 31,13,10,33
190 DATA 7,3,5,34
191 DATA 6,2,13,35
192 DATA 6,1,11,36
193 DATA 6,28,7,37
9999 PRINT
10000 PRINT "SEARCH IS ENDED, IF YOU WANT ANOTHER SEARCH, TYPE ‘RUN' &
ENTER":
END

126

" HOME APPLICATIONS

Controlling Your Home with Your TRS-80

Vardeman G. Moore

he TRS-80 Plug’'n Power Controller is a device that allows you to con-

trol Radio Shack’s Plug'n Power or BSR’s System X-10 modules. These
modules are remote control devices which can turn on or turn off most
110-volt home appliances and can even dim incandescent lamps. The system
uses house wiring to carry control signals.

The Plug’'n Power Controller, catalog number 26-1182, costs $39.95. The
TRS-80 Model I1I and the Color Computer use the same controller as the
Model I. The Plug'n Power Controller consists of a 4 1/2-inch by 4 1/2-inch
by 2-inch gray box that connects to the cassette port of the TRS-80. I also
received software on cassette to operate the controller with any Model I,
Model III, or Color Computer. Although the controller connects to the
cassette port, you can use a cassette recorder, because the controller has a
socket for your recorder and a switch that allows you to change between
recorder and controller operations. The controller has its own power cord
which should not be plugged into your line filter if you are using one. The
signals will not pass through the filter.

To use the Plug'n Power Controller, connect it and load the appropriate
program for your computer following the step-by-step instructions in the
manual. Then run the program. You are asked for the current time in
24-hour, military format. If nothing happens when you enter the time,
make sure you have set the switch to control after using the cassette recorder.
Then enter the Direct Command Mode of the controller program which is
the less useful of the two modes available.

The Direct Command Mode allows you to give commands from the key-
board that are executed immediately by one of the control modules. The
first command you enter is a house code (one of the letters A through P),
which you can change at any time. For each house code, you get a Unit
Status screen. You can enter the whole house codes: CLR to turn off all
modules with the current house code, and ALL to turn on all the lamp dim-
mer and wall switch modules (but not appliance modules) with the current
house code. Note that all of the unit codes, including those for appliances, go
to ON with the command ALL. This reflects a major limitation of the BSR
controller—it is a one-way system. Signals are sent, but there is no way to
tell if they are received or executed. Thus, the Unit Status screen reflects the
last signal sent, not the true status of the unit. This lack of verification limits

127

home applications

the BSR system for use at home or for a business in which an unexecuted
signal does not cause a problem,

In addition to the whole-house commands, you can select an individual
module in the Direct Command Mode by entering a unit code between 1
and 16 (assuming that the current house code is appropriate), then entering
a command. The appropriate commands are ON and OFF. In addition, you
can control the dimmer function of the lamp dimmer and wall switch
modules connected to incandescent lights using the codes DIMn and BRn.
These codes dim or brighten a lamp by n units on a 10-unit scale.

If you enter an invalid command in the Direct Command Mode, both the
Model I and Model III generate a HELP list of the correct commands
(without any explanations). The command HELP does the same thing. On
Model I and Model III Level II computers, the command Q allows you to
exit to BASIC or TRSDOS. Entering @ on a Model 1, Model 111, or Color
Computer switches you from the Direct Command Mode to the Program-
ming Mode (or back to the Direct Command Mode if you are in the Pro-
gramming Mode).

The Programming Mode allows you to program a list of commands to run
in the future at predetermined times. Some possible business applications
are dimming the lights in a restaurant or turning on the lights and cash
registers in a store in the morning and turning them off at night. At home,
you can turn lights, televisions, and radios on and off in an arrangement
realistic enough to make any burglar think you are at home. My wife occa-
sionally leaves her iron on, so I have set up my system to turn the iron off late
every night,

The commands you use can be any of the unit commands available in the
Direct Command Mode. The Programming Mode includes a mini-editor
that allows you to insert, replace, and delete lines, and to designate aline as
the next one for the computer to execute. You can save programs on disk us-
ing the DUMP command.

The Programming Mode allows you to do different things on different
days as illustrated in Figure 1. This feature is great for fooling your local
burglar. Note in Figure 1 the order in which you must enter the data.

On the first day, light 1 turns on at 7 a.m. The television that is on ap-
pliance module 7 comes on at 5 p.m. At 10 p.m., the television goes off,
followed about a second later by light 1. Line 5 is next to be executed at
19:00 on the second day. Since I don’t have an A-1 module in my house, line
5 is a dummy command, and nothing happens on the second day. On the
third day, the program loops back and repeats the first day’s routine.

The Programming Mode allows programs of 45 lines for Model I or Model
ITI Level IT computers, 32 lines for Level I computers, and 30 lines for the
Color Computer. If that isn’t enough, on Model I or III Level II machines
you can run a BASIC program which sends control signals as a subroutine.

128

home applications

Time House Code Unit Code Command

01 07:00 M 01 ON

02 17:.00 M 07 ON

03 22:00 M 07 OFF

04 22:00 M 01 OFF

05 19:00 A 01 OFF
Figure 1

The manual gives two different styles ol sample programs that use BASIC
and USR calls. Unfortunately, the clock in the Plug'n Power Controller
doesn’t work when the computer is in BASIC; so you must get the time using
the TIME$ function if you have it, or use timing loops if you do not. The
program in the Program Listing performs the same operations as in Figure 1.
It is written for a 32K disk machine. To use this program, you must load the
Radio Shack controller program, reset the computer, then enter BASIC with
a memory size of 45055. Addresses for other Level II and disk machines are
given in the controller manual.

One limitation of the system is that, in homes with a divided circuit box,
the signals do not pass reliably from a controller on one side of the circuit box
to modules on the other. If most of the things that you want to control are
located on the opposite side of the circuit board from you computer, you can
plug the controller in using extension cords that go to an outlet on the correct
side. If you are worried about leaving the computer on for long periods to
run the controller, turn off the video display and disk drives. I have left the
controller, keyboard, and expansion interface on for long periods without
any problems. Remember that while the computer is running the controller
it cannot be used for other purposes. If you live in an apartment, your con-
troller may affect your neighbor’s circuits if a controller is in use in the next
apartment.

129

20

30

40
50

60
70

80

90

100
1000
1010

1020

1030
1040

1050
1060

1070
2000

2010
2020
2030
2040

2050
2060

home applications

Program Listing. Control program, 32K or 48K

REM CONTROL/BAS FOR 32K OR 48K RAM DISK

REM 1. LOAD RADIO SHACK CONTROL PROGRAM 2. RESET COMPUTE
R AND SET TIME 3. ENTER BASIC, SETTING MEMORY TO 45055

4. RUN THIS PROGRAM WITH YOUR DATA STATEMENTS
DEF USRI = &HB10O:

REM THIS DEFINES THE STARTING POINT OF THE
SECTION OF THE RADIO SHACK PROGRAM WE
WANT TO USE
READ T$:
IF T§ = "END®
THEN
RESTORE
GOTO 30
A$ = MID${ TIME$,10,5)
IF T3 ¢ > A$
THEN
40
READ HOUSES$, UNITS, TASKS
TRANSMITS = HOUSES:
GOSUB 1000
IF UNIT§ ¢ > "®
THEN
TRANSMITS = UNITS:
GOSUB 1000
TRANSMITS = TASKS:
GOSUB 1000
GOTO 30
REM TRANSMISSION SUBROUTINE
REM THIS SUBROUTINE POKES TRANSMIT$ INTO THE APPROPRIATE
PLACE IN MEMORY THEN CALLS THE RADIO SHACK CONTROLLER
PROGRAM AS A SUBROUTINE
X = - 17116:
POKE X, LEN(TRANSMITS)
FOR I = 1 TO LEN(TRANSMITS) i
X o= X + 1:
POKE X, ASC(MID$(TRANSMITS,I1,1))
NEXT 1
X = USRL(0):
REM THIS STATEMENT ACTIVATES THE RADIO SHACK
ROUTINE DECLARED AS USR1 AT BEGINNING OF
THE MAIN PROGRAM
RETURN
REM DATA STATEMENTS ~--- TIME SHOULD BE IN QUOTES, FORMAT
THH MMY

DATA "07:00",M,1,0N
DATA "17:00",M,7,0N
DATA "22:00",M,7,0FF
DATA "22:00",M,1,0FF
DATA "19:00",A,1,0FF
DATA END

130

INTERFACE

Speak for Yourself:
A Speech Synthesizer for the TRS-80

131

INTERFACE

Speak for Yourself:
A Speech Synthesizer for the TRS-80

by David Hucaby

f you've ever found yourself standing in a video arcade or in your local
Radio Shack store dumbfounded by those fascinating talking computers,
you're not alone. If you have looked into the prospect of having one of your
own, the price and complexity have probably cooled your excitement. I pa-
tiently waited until I saw the perfect chip introduced—the Votrax SC-01.
With the SC-01, you can build your own voice synthesizer for a little over $72!

Votrax designed the SC-01 to produce an infinite vocabulary with a small
amount of memory. Most speech synthesizers are based on the reproduction
of an actual digitized human voice. The SC-01, however, creates its own
sounds from within, freeing the user from great stockpiles of speech data
available only in ROM. To dispose of the data requirement (the ROM chip
sets), Votrax uses a technique called phoneme stringing.

Speech Basics

The SC-01 phoneme-stringing method connects individual sounds, or
phonemes, of the spoken word in sequence. Votrax uses a six-bit input ad-
dress to select one of 64 (2° = 64) standard phonemes, grouped as three silent
sounds, 45 spoken sounds, and 16 alternative sounds, differing only in their
time duration. Table 1 lists the standard Votrax phonemes by decimal code,
symbol, and duration, and gives an example of pronunciation. A word such
as cat requires only three basic sounds, and from the table can be converted
into the phonemes K-AE-T, codes 25, 46, and 42.

With several of the phonemes, transition problems result, making the
speech hard to understand. Votrax took care of this problem by using an
auto-inflection function at the ends of the sounds. As a result, abrupt end-
ings are built into p and ¢ sounds, while ones like sh and m are given gradual
transitions.

Most less expensive synthesizers feature only mechanical, monotone
speech. The SC-01, however, allows its pitch to be changed with software
over a short range, making it possible to give the computer personality. Us-
ing the pitch function, the synthesizer can give a command, ask a question,
and even sound as if it’s pouting. Two pitch input bits give a total of four dif-
ferent levels that you can select and change simultaneously with the
phoneme codes. Consequently, you can change the pitch with each separate
phoneme, allowing great versatility in expression.

133

interface

Phoneme Phoneme Duration Example Phoneme Phoneme Duration Example
Code Symbol (ms) Word Code Symbol (ms) Word
00 EH3 59 jacket 32 A 185 day

01 EH2 71 enlist 33 AY 65 day

02 EHI 121 heavy 34 Y1 80 yard
03 PAO 47 nosound | 35 UH3 47 mission
04 DT 71 butter 36 AH 250 mop

05 A2 71 made 37 P 103 past

06 Al 103 made 38 o) 185 cold

07 ZH 90 azure 39 I 185 pin

08 AH2 71 honest 40 1§) 185 move
09 13 55 inhibit 41 Y 103 any

10 12 121 inhibit 42 T 71 tap

11 1 80 inhibit 43 R 90 Ted

12 M 103 mat 44 E 185 meet
13 N 80 sun 45 w 80 win

14 B 71 bag 46 AE 185 dad
15 A 71 van 47 AE1 103 after
16 CH 71 chip 48 AW2 90 salty

17 SH 121 shop 49 UH2 71 about
18 Z 71 Z00 50 UH1 103 uncle
19 AW1 146 lawful 51 UH 185 cup

20 NG 121 thing 52 02 80 for

21 AHI 146 father 53 (@) 121 aboard
22 001 103 looking 54 1U 59 you

23 00 185 book 55 Ul 90 you

24 L 103 land 56 THV 80 the

25 K 80 trick 57 TH 71 thin

26] 47 judge 58 ER 146 bird
27 H 71 “hello 59 EH 185 get

28 G 71 get 60 El 121 be

29 F 103 Tast 61 AW 250 call

30 D 55 paid 62 PAl 185 no sound
31 S 90 pass 63 STOP 47 no sound

Table 1. Phoneme chart

Timing the phonemes is perhaps the most important part of obtaining
good speech. Even with one sound, time duration makes for a more human
quality. For example, the word inhibit uses three different lengths of the i
sound. From Table 1, the three Is, on the average, last 55,121, and 80
milliseconds respectively. Otherwise, the speech sounds dull and
monotonous and loses its personality.

The SC-01 contains a complete phoneme timing section which gives
foolproof advice on the time duration for any sound selected. A data
acknowledge/request line gives a receipt of the phoneme code sent and then
signalsthat it is ready for another code after the prescribed amount of time

134

interface

has elapsed. The sound itself, however, does not shut off; the computer must
send another data code to go on to the next phoneme.

Talking with an 80

By the time I received my SC-01, I had done most of the planning for the
interface to my TRS-80. When I breadboarded my first version, however, I
expected the built-in phoneme timer to turn off the sound after the duration
time was up. Instead, I panicked through several minutes of aaagaaah while
I tried to shut the thing up. Contrary to what I thought, the internal timer
only informs the host computer that the sound is done and that it should send
another phoneme.

In the schematic shown in Figure 1, the address lines are decoded by the
741.804 hex inverter and the 741530 NAND gate so that the synthesizer
responds to a port 3 address. This gives a simple address number and keeps
the chip count down. If a different port number is required, simply delete
the appropriate inverters in the 741.504 until the 741530 output goes low at
the correct address inputs. The NAND gate output is NORed with the OUT
data line from the computer so that the SC-01 accepts only outgoing data.
The 74L.S02 output triggers the synthesizer data strobe input, which starts
the timer with the audio output.

sienacs | [775 s0q

TRS-80
BUS 1.1 N, L
|

+5V

?I TRS-BO
BUS

SIGNALS

00

o1

12 b2

03

Da

05

06

D7

,}7—- GND

a7

AG

AS sc-01 a

A4

A3

LY

Al

AD

QuT

WALT

EXTERNAL
AMPLIFIER

 I——
Figure 1 OPTIONAL

To achieve smooth speech from the built-in timing, I decided to make use
of the RS-232 WAIT line from the TRS-80. To do this, the SC-01 simply has
to stop everything in the computer while the phoneme is voiced. Then, when
it is ready for another phoneme, its request line releases the WAIT hold, and

135

interface

normal operations resume. Of course, this prevents the computer from
operating while the SC-01 is talking, but I've found that there’s not much it
should have to do then anyway. Regardless, the longest timed phoneme only
lasts one fourth of a second until computing power is returned.

According to the Votrax spec sheet, the SC-01 is supposed to have a nor-
mal clock frequency of around 720 kHz. This is achieved either by using a re-
sistor/capacitor combination with its internal clock oscillator or by injecting
an external clock pulse. Adjusting the 5k trim pot at pins 15 and 16 of the
SC-01 gives a good range of voices by actually varying the total pitch range.
Voices range from the Addams Family’s Lurch to the little Martian of the
Bugs Bunny cartoons. (It helps to hear it in person.) Bevond my circuit’s
highest voice pitch, an external clock has to be used, especially if you want to
get the special effects of high-speed speech or high-frequency sounds. As you
guessed, the voice speed varies directly with the pitch with any type of clock.

In my synthesizer circuit, the first six data lines of the eight from the com-
puter board are used to select a phoneme code between 0 and 63. The most

s
*la
ww
v
%
[
£y
* i
L
Wi
. w

BIEEE AR e iR ey g
e UE e lavene il e ln ey e e VTR

Photo 1. The complete speech synthesizer board. At the upper left is the SC-01 speech chip, and at
the right are the three address decoder chips. The trim pot at the top center adjusts overall pitch of
the speech produced.

136

interface

significant two are used to provide pitch data, which in effect adds either 0,
64, 128, or 192 to the phoneme code. Thus, with one eight-bit output, a
phoneme can be voiced at one of four selectable pitches.

I built my circuit on a Radio Shack plug-in PC board (see Photo 1) with
enough room to add an external clock or other logic in the future. Since the
address decoding is done by the T4LS variety chips, the circuit can be con-
nected directly to the expansion port at the back of the keyboard with no ad-
ditional buffering (see Photo 2).

Photo 2. The speech board as a complete system. At the upper left, the external amplifier is housed
inside a speaker cabinet and beneath it is the 5-Volt power supply. The speech board is addressed
by a ribbon cable from the keyboard of the TRS-80 and connects to the board with two DIP
headers and two 16-pin IC sockets, allowing connection to a solderless breadboard.

For the SC-01’s audio output, I used an external amplifier to keep down
the size of the overall circuit. This works fine, except that the output from
the speech chip occasionally overdrives the amplifier input. If this happens,
simply add a 10k pot in series with the audio output, as shown in the box
marked Optional in the schematic. This measure prevents ear piercing E
and Z sounds and makes for better sounding speech.

137

interface

Software Interface

Though the Votrax data sheet doesn’t help very much with programming
ideas, the SC-01 is actually very easy to use. All you need to do is rewrite an
English word in phonetic symbols or sounds like a dictionary pronunciation.
Then the computer OUTs the specific phoneme codes in order, and the
SC-01 does the rest. Most of the phoneme symbols do represent only a single
written letter, but some have to be used in combination to get just one
phonetic sound. Table 2 lists the combinations that produce single sounds in
the order that they should be spoken.

To start talking, just convert the written message into what seem to be the
correct phonemes. The more guessing and experimenting you do, the better.
For example, the message I am a speech synthesizer becomes AH1-E1/
AE-UH2-M/A~AY/S-P-E-T-CH/S-11-N-TH-EH3-S-AH1-E1-Z-ER.
The / denotes a space at this stage, and should now be converted to a no
sound phoneme. I found that the PAO phoneme (number 3) gives a short
space good for separating words, while the PA1 (62) seems better suited for
long pauses between phrases.

Sound Phoneme Combination Example Word

ch T-CH church
i D-] judge
f F-H father
a A-AY day, A
i AHI1-E1l find, 1

Table 2. Complex sounds

For the SC-01 to produce these sounds, it needs to receive them in numeric
form, or phoneme codes. By translating the example to code numbers and
adding a PAO space between words, the message becornes 21-60-3-46-49—
12-3-32-33-3-31-37-44-42-16-3-31-11-13-57-0-31-21-60-18-58.
Remember, the phonemes don’t turn themselves off; so, it is necessary to
send another no sound phoneme at the end of the message. Instead of saying
I am a speech synthesizerrrrrr, the SC-01 voices the silence indefinitely until
it gets another phoneme code. I like the PA1 (62) best because it has a longer
length and can be told apart from the PA0 in a program.

Program Listing 1 gives the whole routine for the message just translated.
Phonemes are read as data and then OUTed, while the asterisk serves as an
end-of-data flag. The routine outputs the standard phoneme codes, not the
pitch data added. While a normal monotone message like the one demon-
strated sounds good, one with pitch variations has greater human quality
and expression. Besides, adding the pitch changes is no great task.

138

interface

Adding Emotions

By analyzing an average spoken message, you can more or less guess at
where emphasis is placed and where a voice would rise or fall. Using the
same example with this principle, each of the phonemes should eventually
fall into one of the four available pitch levels. The last program listing used
only monotone sounds and had no pitch level added, making the voice level 0.

By listening to how a person might say a phrase, you can assign each sylla-
ble a pitch level. Figure 2 shows a typical arrangement for the example I
have used so far. Since the speech must rise and fall in pitch, an average level
is needed. I generally put the unchanging phonemes at the + 128 level, leav-
ing one rise and two fall positions available. This makes pitch assignments
simple.

Referring to a chart such as Figure 2, just add the pitch level number to
each phoneme and insert it into a DATA statement. The example message
would then become the DATA lines 10-25 in Program Listing 2. Translation
is now complete with not only electronic speech, but also with expression.

The basic conversion is more or less a trial and error process when the best
possible speech is desired. Try different phoneme combinations to get the
sound you want—and be patient! Different time durations of the same basic
sound improve the flow and accent of the voice. Finally, try various pitch
levels to simulate emotions by adding inflections to the machine’s voice.

1 am a speech synthesizer-
Pitch level
+192 . . .
+128 e T C e e
+ 64
+ 0

Figure 2, Phoneme codes sent to the SC-01 equal the standard phoneme codes plus the pitch level
values, as in this example of varying pitch.

Since all of the speech produced by the SC-01 is built on basic phonemes
alone, your speech need not be limited to English. Any language with an
unlimited vocabulary can be voiced with the use of a pronouncing dic-
tionary. Accent marks in foreign pronunciations should help in placing pitch
changes within the speech. Though I'm no expert with foreign languages, 1
was able to get my 80 to speak in at least three different languages. Program
Listing 3 gives the data needed for a few salutations, providing the start fora
good demonstration program of the SC-01’s capabilities.

You can order the SC-01 from: The Micromint Inc., 917 Midway,
Woodmere, NY 11598.

139

w R

10
15
20

30

40

interface

Program Listing 1. Sample message. “I am a speech synthesizer.”

REM SPEAK FOR YOURSELF
REM DAVID HUCABY
REM * PROGRAM LISTING 1 *
DATA AH1,21,E1,60,/,3,AE,46,UH2,49,1,12,/,3
DATA A,32,AY,33,/,3,5,31,P,37,E,44,T,42,CH, 16, /, 3
DATA §,31,11,11,N,13,TH,57,E43,0,5,31,AH1,21,E1,60,Z,18,ER,58, .,
62,*
READ AS:
IF AS = nxn
THEN
END
READ A:
QuT 3,A:
GOTO 30

[FOR N

10
15
20

25
30

40

Program Listing 2. Program with pitch lecel changes

REM SPEAK FOR YOURSELF
REM DAVID HUCABY
REM * PROGRAM LISTING 2 *
DATA AH1,213,E1,188,/,3,AE,174,UH2,177,4,140,/,3
DATA A,160,AY,33,/,3,5,159,P,165,E,236,T,170,CH,144,/,3
DATA §,159,11,203,N,141,TH,185,EH3,128,5,159,AH1,149,F1,188,7,14
6,ER,58
DATA .,62,*
READ AS:
IF AS = wen
THEN
END
READ A:
OuT 3,A:
GOT0 30

Program Listing 3. Salutations

REM SPEAK FOR YOURSELF

REM DAVID HUCABY

REM * PROGRAM LISTING 3 *

REM --1 AM A SPEECH SYNTHESIZER--

10 DATA AH1,213,E1,188,/,3,AE,174,UH2,177,M,140,/,3

15 DATA A,160,AY,33,/,3,5,159,P,165,E,236,T,170,CH,144,/,3

20 DATA s,159,11,203,N,141,TH,185,EH3,128,5,159,AH1,149,E1,188,2,14
6,ER,58

25 DATA .,62

30 REM --BON JOUR...PARLEZ-VOUS FRANCAIS?--

35 DATA B,78,UH2,113,H,91,NG,84,J,90,H,91,U1,247,R,43,.,62

40 DATA P,101,AH2,136,R,171,L,88,A,96,AY,97,V,79,01,183,U1,183,/,3

45 DATA F,93,H,91,R,107,AW1,83,NG,84,5,95,A,160,AY,225,AY,225, . ,62

50 REM --BUENOS DIAS, SENOR--

55 DATA B,78,%,109,A,160,AY,225,N,77,0,102,5,95

60 DATA D,222,E,236,UH1,114,5,95,/,3

U N

00065 DATA s,95,AY,97,N,77,Y,105,01,181,R,107,R,107,.,62
00070 REM --HAVE.A NICE DAY--
00075 DATA H,219,At,238,V,207,A2,133,E1,188,N,77,AH1,85,E1,124,5,95, /,

3
00080 DATA D,222,A,224,E,44,.,62,*
00100 READ A$:

IF AS = “»v
THEN
END

00110 READ A:

0UuT 3,A:
GOTO 100

140

TUTORIAL

Computer Number Systems
And Arithmetic Operations—Part I
Down in the Dumps: Examining Memory

141

TUTORIAL

Computer Number Systems and
Arithmetic Operations—Part I

by Gene Kovalcik

Digital computers can do little more than move numbers and add.
Worst of all they handle and add only 0s and 1s, that is, binary digits or
bits. Manipulating characters and English words including decimal
numbers requires manipulating binary numbers.

Part I of this article covers the following subjects:
© Basic characteristics of the binary, octal, decimal, and hexadecimal
number systems.
® Procedures for converting binary, octal, or hexadecimal numbers to
decimal numbers.
® Procedures for converting decimal numbers to binary, octal, and hexa-
decimal numbers.
® How binary numbers can use octal and hexadecimal as shortcut nota-
tions.

The material in Part II includes the following:

@ How the principles of decimal arithmetic operations can be applied to any
number base.

® How to add and subtract binary, octal, and hexadecimal numbers.

© How to use the expanded form method to check the answers in adding and
subtracting numbers in any number system.

® How to do two’s complement for binary subtraction.

The decimal number system consists of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9, each of which has a specific value. When two or more decimal digits
are used together, the value of each digit depends upon its position as well as
its digit value.

Computers use the base 2, or binary, number system. An important part
of the computer machine is not arithmetical, but logical in nature. Logic,
being a yes/no action, is fundamentally binary, 1s and Os which involve elec-
trical circuitry to be turned on and off. Figure 1 illustrates these two states.

The binary number system is used to express numeric data and in
character-code schemes. Each character is a letter, symbol, punctuation
mark, or number represented in binary as a zone-and-digit combination of
1s and Os, binary digits, or bits for short. A fixed number of adjacent bits,
usually eight, that represent a meaningful English character is commonly
called a byte. A byte is also considered a unit of information. All computers
use coding schemes to hold data and programs in computer memory and to
input and output data to external devices.

143

tutorial

Light bulb off =0 on =1
Switch off =0 on =1
Transistor not conducting = 0 conducting = 1

Magnetic core clockwise magnetism = 0 counter-clockwise
magnetism = 1

Figure 1. Relationship between electrical devices (components) is “off” and “on” to binary
numbers 0 and 1.

Number Systemn Characteristics

A number system is a way to represent quantities of physical items. There
are two characteristics of all number systems that are suggested by the value
of the base. Regardless of the number system, the value of a base determines
the number of different digits, or number symbols, available in the number-
ing system. The second characteristic is that the maximum value of a single
digit is always equal to one less than the value of the base. In other words, if
you count zero as the first digit or number symbol, the total number of digits
must equal the value of the base.

Figure 2 shows that the base 10 number system has numbers 0 through 9,
that is, 10 digits. The largest digit is 9, which is one less than the base, 10.

The general number system characteristics, also apply to binary, octal,
and hexadecimal numbers. In the binary system, the digit choices are 0 and
1. The largest digit, 1, is one less than the value of the base. Any value
greater than 1 must be represented by more than 1 digit, just as in decimal,
any value over 9 requires more than one digit or number symbol. Refer to
Figure 2 for the characteristics of base 2.

The base 8, or octal, number system is also consistent with the general
number system characteristics. As indicated in Figure 2, a base of 8 shows
that there are eight digit choices in the number system. The eight digits are 0
through 7. The largest single symbol in base 8 is equal to 7, or one less than
the base, 8.

The hexadecimal number system, or base 16, is probably unfamiliar to
you. There are 16 single-character digits or symbols. The first 10 digit
choices are 0 through 9, similar to the decimal system, but an additional six
digits are required for hexadecimal numbers. For convenience, the addi-
tional six symbols had to be available on computer keyboards and printers
and have a commonly known sequence of single symbols. The letters A
through F fulfill these requirements. See Figure 2. For hexadecimal
numbers, therefore, the letters A through F are used as digits. The digit A
has a decimal equivalent value of 10, and the hexadecimal F equals 15
decimal. B, C, D, and E have respective decimal values of 11, 12, 13, and

144

tutorial

Base 10
10 digit or number symbol choices:
0,1,2,3,4,5,6,7,8,and 9
Digit 9 is one less than 10,
10 is equal to the base.

Base 2
Two digit or number symbol choices:
0and 1
Digit 1 is one less than 2.
2 is equal to the base.

Base 8
Eight digit or number symbol choices:
0,1,2,3,4,5,6,7
Digit 7 is one less than 8.
8 is equal to the base.

Base 16
16 digit or number symbol choices:
0,1,2,3,4,5,6,7,8,9,A(10), B(11), C(12), D(13), E(14), and F(15)
Digit F' (or 15 decimal) is one less than 16,
16 is equal to the base.

Figure 2. Characteristics of decimal, binary, octal, and hexadecimal numbers.

14. The largest single digit is number symbol F, or 15, which is one less than
the value of the base, 16.

Base 8 and base 16 are number systems commonly used as shortcut nota-
tions for binary. One byte can be represented by a pair of octal numbers or
by a pair of hexadecimal numbers. These shortcut notations are used
because a printout of computer memory in binary numbers would be un-
wieldy in length.

Converting Between Number Systemns

Any whole number (integer) value in one number system can be
represented in any other number system. The computer’s usual input and
final data output values are decimal values; therefore, conversion to and
from other systems is necessary. Other conditions also occur which make it
convenient to convert from a decimal system to another number system.
Many methods and techniques are available that can be utilized to convert
from one base to another.

Converting to Base 10

To convert numbers to decimal values, it is necessary to determine col-
umn values or place values. The value of a number symbol that corresponds

145

tutorial

to its position in a number is called its place value. The decimal number
system, for example, is a place-value or positional number system in that the
actual value of a specific digit is determined by:

1) The place or column the digit holds in the number.

2) The actual value of the digit.

Figure 3 shows the general rule for determining column values and the
specifics for base 10, base 2, base 8, and base 16.

The general rule for determining column values is that the first (or right-
hand) whole number column is equal to the value of the base to the zero
power. Any number taken to the zero power is equal to 1, as is indicated in
Figure 3 and the rightmost column. The second column is equal to the value
of the base to the first power which is, of course, always equal to the base.
The value of any number to the first power is equal to the same number.

Base ¢ Base? Base® Base! Base®

Base 10

10¢ 10° 10° 10! 100

(10,000) (1000) (100) (10) (1)
Base 2

24 23 22 2! 2()

(16) 8 4 2 (1
Base 8

8¢ 8 8 8! 8

(4096) (512) (64) (8) (1)
Base 16

164 16® 16* 16! 16°

(65,536) (4096) (256) (16) (1)

Figure 3. Column values for bases 10, 2, 8, and 16. The equivalent decimal values of bases taken
to powers (or exponents) are parenthesized for each column. Superscripted numbers show power
values. For example, 10* = 10x 10 x 10 x 10 =(10,000).

The values of the third and fourth columns, from right to left, continue to
increase by one or more powers for each column. For example, the third col-
umn is equal to the base value times itself, the fourth-column value is the
base to the third power, the fifth column is the base to the fourth power, and
SO on.

Let us return to decimal numbers to analyze the general rule for deter-
mining the column values, and to determine the actual meaning of the
decimal number 72,083 in terms of weighting or weights concept. Imagine
the string of decimal digits 7, 2, 0, 8, and 3 as representing weights accord-
ing to their correspondence as column values from right to left. (See Figure

146

tutorial

3.) The digit 7, for example, is in the fifth column and has a place value of
10,000 and an actual single digit value of 7. The 7 in the fifth place
represents 7 x 10,000 or 70,000.

The second digit from the left, the 2, has a place value of 1000. The total
valueis 2 x 1000 or 2000. The total value of the third column is 0 x 100 or
0. The digit 8, in the second place, represents a weight of 10. The total is 8 x
10 or 80. The digit 3, in the first place, represents a weight of 1. The total is 3

x 1 or 3. Notice that the weights in the decimal number system are the
powers of 10 as shown in Figure 3. Finally, the total value of any decimal
number can be determined by evaluating each number in expanded format.
This evaluation is applicable to any number system. The following example
shows decimal 83,205 in expanded form.

83,205 = (8 104) + (3% 10°) + (2 x 102) + (0 x 10%) + (5 x 109)
80,000 3,000 200 0 5
The binary number system consists of the digits 0 and 1 and based weights
which are derived from multiplication by 2. The system is based on powers
of 2 rather than 10.

Binary to Decimal Conversion

Figure 4 illustrates three steps used to convert the binary number 11011 to
a decimal number. This number is not to be read as a decimal number unless
the number is shown with a subscript of 10. Remember that a binary
number is a sequence of binary digits, 0 and 1. Let’s evaluate these digits
with respect to their place or column values as we did with the decimal
numbers.

l 101 12 = Nm
Step 1 Determine column (decimal) value of each digit.
24 2 22 2t 20
16 8 4 2 1
1 1 0 1 1
Step 2 Multiply column (decimal) values by digit in each
of the columns.

6 8 4 2 1
X1 x1 x0 x1 x1
6 8 0 2 1

Step 3 Add the products calculated in step 2. The total is
the equivalent value in decimal.
16 +8+0+2+1=27)

Figure 4. A binary-to-decimal conversion in detail. Subscripts indicate the base of the number;
superscripts indicate exponents.

147

tutorial

The first step is to determine the column values. The first column is
always 1. Two times the first-column value (1) is equal to the value of the
second column (2). Two times the second-column value (2) is equal to the
third-column value (4). Two times the third-column value (4) is equal to the
fourth-column value (8). Two times the fourth-column value (8) is equal to
the fifth-column value (16). The column values double because the base is 2.

The second step in our conversion procedure is to multiply the column
values by the column digits. The third step is to add the products from step
2. The total is 27, the decimal equivalent of binary 11011. You also can
determine the decimal equivalent of a binary number by writing out and
evaluating the number in expanded form as follows:

10110111, = Ny
= (IX 2+ (0x2% + (1% 25) + (1% 2 + (0% 2) + (1 x2) + (1 x2) + (1 x 2
= 128 0 32 16 0 4 2 1
= 183,

QOctal to Decimal Conversion

Now we convert octal 257 to its equivalent decimal value using the ex-

panded form. The solution is as follows:
257, = (28 +(5%8)+ (7 x8)

@x64) (5x8 (Tx1)

128 40 7
1750
The first step is to determine the column values. The second step is to multi-
ply each column value by its column digit. The final step is to add the pro-
ducts of step 2. The answer is the decimal number 175.

[N |

Hexadecimal to Decimal Conversion

We will now convert hexadecimal 2B3E to its equivalent decimal value. I
will go through the steps in detail, before using the expanded form, because
hexadecimals are unfamiliar to most readers.

The first step is to determine the column value, in decimal, of each digit.
The first column of any numbering system is equal to 1. Remember that
each column is worth the value of the column to its right, times the base.
Here the first-column value is 1, the second-column value equals 16 (16 x 1),
the third-column value is 256 (16 x 16), and the fourth-column value is 4096
(16 x 256). The second step is to multiply the column values determined in
step 1 by the digit in the column. Note that the hexadecimal digits A through
F must be converted to their equivalent decimal values of 10 through 15
before multiplying. In this case, B becomes 11 and E becomes 14. The third
step is to add the products from step 2. The sum of the products in this exam-
ple is decimal 11,070 which is equal to hexadecimal 2B3E.

148

tutorial

Powers of 2 Powers of 8

20 =1 8% =]
PAREA 8 =8

2 =4 8 = 64

2 =8 8 = 512

2% = 16 8 = 4,096

25 = 392 8% = 32,768

28 =64 8% = 262,144
27 = 128 8 = 2,097,152
25 = 256 8 = 16,777,216
2 = 512

210 = 1,024

Powers of 10 Powers of 16
100 = 1 160 = 1

100 = 10 16! = 16

10° = 100 16* = 256

10° = 1,000 16° = 4,096
10* = 10,000 16t = 65,536

10% = 100,000 16° = 1,048,576
10® = 1,000,000 16* = 16,777,216

Figure 5. Powers of 2, 8, 10, and 16 are shown. These powers or exponents of base numbers are
taken to a convenient value for use in this article.

Here is the solution using the expanded format:

9B3E,, = (2x 169 +(11x 162 + (3 16') + (14 x 169
(2x4096) (11x256) (3x16) (1dx1)

8192 2816 48 14
11,070
Taking powers of 16 is difficult. There are tables of the powers of numbers in
many mathematical books. Figure 5 illustrates powers of 2, 8, 10, and 16 to
provide a convenient list for use here.

[|

Converting from Base 10

Many times the computer technician or programmer needs to convert a
decimal number to binary, octal, or hexadecimal. There is a technique for
converting called the division-remainder technique. Several steps are in-
volved in this technique.

The first step is to divide the decimal number to be converted by the value
of the new base. If the conversion is to binary, divide by 2; if the conversion
is to octal, divide by 8; if the new base is 16, divide by 16. For step 2, record
the remainder from step 1 as the rightmost digit of the new base number.
This becomes the digit in the first column from the right. Remember that

149

tutorial

when you divide by 2, the remainder must be 0 or 1; when dividing by 8 for
octal conversion, the possible remainders range from 0 through 7; when
dividing by 16 for hexadecimal conversion, the possible remainders range
from 0 through 15 (F). In each case, the number of possible remainders is
equal to the number of digits in the new number system. The third step is to
divide the answer from the previous division by the new base.

For the fourth step, record the remainder from step 3 as the next digit (to
the left) of the new base number. Repeat the third and fourth steps, noting
remainders from right to left, until you get an answer of 0 in the third step.
Remember to write down the remainder when the division gives an answer
of 0. To obtain a better understanding of this technique, let us convert
decimal 36 to binary, decimal 316 to octal, and decimal 831 to hexadecimal.
The three problem solutions follow:

Problem 1
3610 = N'z

18
Stepl 2[36 Step2 36, = 0,
2
16
16
0 (remainder)

9
Step3 2[18 Stepd4 36, = 00,
18
0
4
Step3 219 Stepd 36, = 100,
8
1
2
Step3 2[4 Stepd 36, = 0100,
4
0
1
Step3 2[2 Step4 36, = 00100,
2
0
0 Final

Step3 2[T Stepd 36, = 100100,
0

1 (final remainder)

150

tutorial

Note that in this example, a total of six division steps are required. You can
check the answer using the expanded form to convert binary 100100 to
decimal. The technique is as follows:

100100, = Ny,
= (Ix2+ (0x2Y+(O0Ox2)+(1x2%)+(0x2) + (0x2
= 32 0 0 4 0 0
= 36!0
Problem 2
31610 = Ns
39
Step1 8[316 Step2 316, = 4,
24
6
72
4
4
Step3 8139 Step4 316, = 744
32
7
0 Final
Step 3 84 Step4 316,y =474,
0

4 (final remainder)
Check the answer by expanded form as follows:

474y = (4x8) + (Tx8') + (4 x 8
= (4x64) (Tx8 @dxD
= 256 56 4
= 316y,
Problem 3
83110 = Nm
51

Stepl 161831 Step2 831, = Fiy
80

31
_16
15 (F)

3
Step3 16151 Stepd 831y = 3F,
48

3

0 Final
Step3 163 Step4 831, =33F,
0

3 (final remainder)

151

tutorial

Here is the check of the answer by using expanded form:

33F, = (3% 169 + (3x 164 + (15 x 16%)
(3x256) (3x16) (I15x1)
768 48 15

83149

H

i

il

Shortcut Notations

It is very useful to have a shortcut notation for binary numbers when, for
example, you want to print out the contents of computer memory or to
analyze data representations. Printing the contents of memory in binary
would require pages of Os and 1s. To reduce the volume and printout time of
the memory dump, and to simplify the display and analysis of data, either
the octal or hexadecimal number system is utilized as a shortcut notation.
Computers use either octal or hexadecimal as shortcut notation, depending
upon the memory organization of the machine. If the basic unit of storage is
a group of eight-bit strings, or bytes, and is designed to be a multiple of three
bits, octal is used as the shortcut. If the basic unit of storage is a multiple of
four bits (a dual grouping per bytes), hexadecimal is used as the shortcut

Binary Octal Hexadecimal Decimal

Ny Ny Nig Nig
0 0 0 0
1 1 1 1
10 2 2 2
11 3 3 3
100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 A 10
1011 13 B 11
1100 14 C 12
1101 15 D 13
1110 16 E 14
1111 17 F 15
10000 20 10 16
10001 21 11 17

Table 1. Relationships of binary. octal, hexadecimal, and decimal numbers.

152

tutorial

notation. Hexadecimal is more efficient. Table 1 illustrates the relationships
of octal and hexadecimal to binary. For example, the maximum value of
three digits of binary is equal to the maximum octal value (7). If octal digits
are substituted for binary digits, the substitution is on a one-to-three basis.
As a result, if octal is used as the shortcut notation, the binary contents of
memory requires one third of the space and time that binary uses.

Refer to Table 1 and notice that the maximum value of one digit in hexa-
decimal is equal to the maximum of four bits in binary. Therefore, the value
range of one digit of hexadecimal is equivalent to the value range of four
binary digits. Thus, hexadecimal shortcut notation is a one-to-four reduc-
tion in space and time.

Octal Notation

In converting from binary to octal, the first step is to divide the binary
digits into groups of three, starting from the right. If the number of binary
digits is not a multiple of 3, zeros may be added on the left-hand side. The
second step is to convert each group of three binary digits into one octal
digit. Each group is treated as a separate entity. The rightmost bit of the
group has a column value of 1; the second column a value of 2; the third col-
umn a value of 4. As Table 1 shows, octal numbers up through 7 are equal to
decimal digits directly. The following example shows the conversion of
binary 11010110 to octal:

011]010]110 < Eight-bit number grouped
2 14 21]4 21 < Column (decimal) values
3 2 6 <« Octal number (three-digit)

A binary number that cannot be broken into three-bit groups is extended on
the left side with zeros as shown by the dotted boxes. Thus, binary 11010110
equals octal 326,

To convert from octal to binary, you first change each octal digit to a
three-digit binary number. Next combine the resulting groups into a single
binary number. The following example illustrates how to convert octal 437
to binary.

First write each octal digit as three binary digits:
4=100 3=011 7=111
Run binary groups together as:
100{011]111

41317
4375 = 100011111,

Hexadecimal Notation

To reduce binary to hexadecimal, first divide the bits into groups of four,
and count off the bit groups, starting from the right. The second step is to

153

tutorial

convert each group of four bits to one hexadecimal digit. The binary column
values from right to left are 1, 2, 4, and 8. For convenience, use the binary-
to-decimal technique explained earlier, but remember that resulting
decimal values 10 to 15 should be written as hexadecimal digits A to F. To
change from hexadecimal to binary, convert the decimal equivalent of each
hexadecimal digit to four binary digits. The following problems illustrate
the procedure.

Problem 1

Convert binary 110101110101 to hexadecimal.

Larger binary numbers are converted by separating the
numbers into groups of four bits each from right to left.
1101j01 110101 < 12-bit number groupings
84921184 2118421 =Column values

D 7 5 <« Hexadecimal number

Symbol D has a decimal value of 13.
110101110101, =D75,¢

Problem 2

Convert hexadecimal 6BF to binary.

The reverse process is simply a matter of taking each
hexadecimal digit and writing its equivalent four-digit
binary number.

6 | B [F < Hexadecimal
01160/1011J1111 < Binary
Putting the groups together produces binary 011010111111, the equivalent
of hexadecimal 6BF.
Part II of this article, published in Volume 9 of the Encyclopedia,
describes arithmetic operations.

154

TUTORIAL

Down in the Dumps:
Examining Memory

by Allan S. Joffe W3KBM

nce you have used your TRS-80 for a while, the fact that it has two dif-

ferent types of memory comes as no surprise. The existence of BASIC
in Read Only Memory (ROM) and the existence of Random Access Memory
(RAM), which is memory that can be written to and read out of, becomes an
accepted fact of life. The idea of the difference between volatile and non-
volatile memory becomes a fact of life the first time a power interruption
causes the RAM to lose its memory.

The PEEK function returns a value in a given memory location (ROM or
RAM) as a decimal number ranging from 0 to 255. Since each memory cell is
eight binary bits wide, the binary representation of these two extremes
ranges from 00000000 to 11111111. Since the memory cell is packed with
bits, the ROM must contain a translation routine so that the results of POKE
appear on the screen as a decimal presentation of the binary contents of the
memory cell.

Consider this programming fragment,

5 CLS

10 FOR X = 0 TO 15
20 J = PEEK(X)
30 PRINT J;

40 NEXT

If you run this program, the screen displays the following 16 values.

243 175 195 116 6 195 0 64 195 0 64 225 233 195

159 6
Note that there are 16 values because the computer sees 0 as a legitimate
state or number value so that the expression FOR X =0 TO 15 represents 16
different memory locations, specifically, the first 16 memory locations in
your BASIC ROM. The ability of the computer to access the contents of the
memory cells in this fashion permits you to dump the memory either to the
screen or to the printer, or to both the screen and the printer. This decimal
form of the memory dump has some value as a diagnostic aid for programs
which have a machine-code routine embedded in a DATA statement. Such
routines are generally POKEd into a section of memory. If you want to
check on the accuracy of the POKE procedure, the decimal form of.the
memory dump might be useful.

155

tutorial

A far more practical form of the memory dump presents the dump in hex-
adecimal or base 16, form. Let us examine the same 16 ROM locations and
see what they look like if you dump them in the hex format.

F3 AF C3 74 06 (3 00 40
€3 00 40 E1 E9 C3 9F 06

The information in the dumps is identical. Only the form of the presenta-
tions differs. The value lies in the fact that the hex format is the one you will
encounter most often in computer discussions, particularly when machine
code or assembler code is the topic. Converting the hex value in any location
to its equivalent decimal value is no great trick.

Both systems have positional weighting. For example, the decimal value
of 243 really says that the rightmost position has a value of 3 times 1. The
next position has a value of 4 times 10, and the last position has a value of 2
times 100. The values 1, 10, and 100 are the weighting values of the position,
and the absolute value of any digit in any position is the product of that digit
times the weighting value for the position. The total value of the sum of
these products is the value of the number as a whole.

The hex system weighting value for the rightmost digit is 1, the same as
the decimal system. The next digit weighting value, however, is 16 since hex
is a base 16 number system. Since an eight-bit memory cell cannot hold a
number greater than 255, and since 255 can be represented by two hex
digits, we can stop at the second digit for now.

Since we need 16 characters to represent the 16 states of value in base 16,
we use the numerals 0 through 9 to represent the first 10 states and the letters
A through F for values from 10 to 15.

Note that our two listings show that 243 decimal is equal to F3 hex. We
can convert from hex to decimal using our knowledge of the hex weighting
positional values. The rightmost digit has a total value of 3 times 1. The sec-
ond digit, F, has a value of 15 times its positional weight of 16, which equals
240. Add the value of 3 from the first digit, and you have converted the hex
value F3 to its decimal equivalent of 243.

Since PEEK does a good job of giving us a memory cell value in decimal,
all we need to turn the PEEK value into a hex value is an algorithm that the
computer can handle easily. An easy way to see the development of a possi-
ble algorithm is to explore how we might take a hex number from 0 to 255
decimal or from 00 to FF hex and convert the decimal value delivered by the
PEEK function into hex.

Staying with the value of 243 decimal, we must find out how many times
it is divisible by 16. This gives us the most significant bit (MSB) of the
number or that portion of the number which holds the greatest portion of
the total value of the entire number. For example, in the decimal value 92,
the 9 is the MSB and represents a value of 90, while the 2, which is the least

156

tutorial

significant bit (LSB), represents only a value of 2. If we perform the sug-
gested division on the value of 243 (243/16), our answer is 15.1875. We take
the integer value of this division which is 15, and this gives us the value of the
MSB of the hex value. Since the value of 15 decimal represents itself in hex as
the letter F, the MSB is F. The remainder of the division contains the infor-
mation needed to construct the LSB to finish the conversion. When we
multiply the decimal value .1875 by 16, the result is 3; thus the hex
equivalent of 243 decimal is F3.

Remember that our memory cell contains eight bits. In hex terms, the
values range from 0 to F for any single digit. In binary or bit terms, this
range of values can be represented by combinations of four bits, ranging
from 0000 to 1111; thus you can see that any eight-bit memory cell can hold
two of these four-bit digit representations whose hex representations range
from 00 to FF or from 0 to 255 decimal. Once again, this range is actually
256 different possible combinations since 0 is very real to a computer.

Consider this initial algorithm to convert the decimal value produced by
PEEXK to its equivalent hex value.,

5 CLS

10 INPUT 4

20 D = PEEK(J):' THIS GETS A VALUE FROM THE MEMORY
25 ! CELL SPECIFIED BY THE VALUE OF J
30 MSB INT(D/16)

40 LSB = D-16*MSB

50 PRINT MSB;LSB

60 GOTO 10

Run this and try to examine the first 16 locations in ROM by entering suc-
cessive values for] from 0 to 15. The following results.

1
1

3 10 15 12 3 74 0 6 12 3 0 0 4 0
3 0 6

2 00 4 0 14 1 14 9 12 3 9 15
The computer has followed its instructions faithfully, but it is obvious that
something has to be added. It works as long as a particular value is less than
10, but for values in excess of 9, we must program the computer to display
such values in terms of hex notation. This means that a value from 10 to 15
must be displayed as a letter in the range from A to F.

The computer recognizes certain ASCII values for the numerals 0 through
9 and the letters A through F. There are other letters and symbols that have
ASCII values, but the 16 symbols that make up the hex number set are those
of immediate interest. The ASCII values for 0 through 9 are values from 48
through 57. The corresponding values for the letters A through F are from 65
to 70. In the command mode, if we type PRINT CHR$(65) and press
ENTER, we see an A on the screen. If we had used the expression CHR$(48),
we would have seen a 0 printed on the screen. In order to get the proper
representation of the hex values we need to make our first algorithm work,
we have to add 48 to any value produced if that value is to represent a

157

tutorial

numeral from 0 to 9. Thus we produce the ASCII range of values from 48,
for 0, to 57, for 9. If the algorithm produces values from 10 to 15, we have to
add 55 to these values to produce the ASCII values of 65, for A, to 70, for F.

With the ASCII values and the CHR$ function of the computer, along
with fundamental relational operators, we can produce an algorithm that
gives us a printout of the desired memory dump in hex notation.

cLs

10 FOR J=0 TO 15

20 D= PEEK(J)

30 MSB= INT(D/16)

35 LSB=D-16*MSB

40 IF MSBCI0 THEN MSB=MSB+48:GOT0 60

50 IF MSB>9 THEN MSB=MSB+55

60 PRINT CHR$(MSB);

80 IF LSB<10 THEN LSB=LSB+48:60T0 100

90 IF LSB>9 THEN LSB=LSB+55

100 PRINT CHR$(LSB);

110 PRINT CHR$(32);

120 NEXT J

130 END
Notice that we are again looking at the contents of the first 16 ROM loca-
tions. We have included the generation of the ASCII values needed to work
in relation with the CHR$ function so that the computer can tell when a de-
veloped value is a numeral from 0 to 9 or a value that needs translation (10 to
15) into a letter (A to F) for proper presentation of a hex formatted dump.
We also have our relational expressions in lines 40 and 50 for the MSB and in
lines 80 and 90 for the LSB. Line 110 contains the ASCII value for a space so
that after the LLSB and MSB have been printed on the screen, we then have a
space before the next information appears on the screen. This raises an im-
portant issue in any program that offers a display, namely that of screen for-
matting. Raise the number of ROM memory cells to be examined by chang-

ing line 10 to read:

10 FOR J = 0 TO 31

This would have us examine a total of 32 ROM cells. The display which
results is anything but an object of either beauty or utility. If you run the
program with this revision, you see an entire line of print on the screen
which ends with a split pair hex number, and then the balance of the values
are printed on the next line. It is obvious that a fix is in order. Itis tohave 16
hex numerals per line. You must add a counter that tells the computer that
16 pairs of hex digits have been printed. At that point in the program, the
computer generates a carriage return and line feed so that the next 16 or so
digits are printed on the screen line. You can do this by adding:

115 ¢ = C + 1:1F € = 16 THEN € = O:PRINT CHR$(10);

Note that if you omit the final semicolon of this line, the lines of print on the
screen are double-spaced, but with the semicolon they are single-spaced. If

158

tutorial

you leave the semicolon in line 115 and beef up line 10 to examine the first
994 ROM memory locations, you get a total of 14 lines of digits on the
screen. The new version of line 10 is:
10 FOR J=0 TO 223
As the program is, it takes about 18 seconds to hex dump the 224 memory
locations to the screen.
Adding a line:
7 DEFINT J,0,C

shaves about one second from this time because the computer can handle in-
tegers faster than it can handle single-precision values. By examining what
seem to be minor differences, you can gain insight into increasing the speed
of your BASIC routines.

If we alter the input portion of the program slightly, we can examine con-
tiguous sections of memory at will rather than having to enter new values
each time we wish to examine another contiguous section of memory. Start
with a line like this:

INPUT“STARTING ADDRESS IN DECIMAL";J
Next we decide how many memory locations we wish to have printed on the
screen each time the program runs. Assume that this figure is 224, which
gives us 14 lines of printout. The line to do this would read as follows:
FOR J=J TO J+223

At the end of the first printout, enter a line which in its simplest form would
look like this:

INPUT “FOR ANOTHER SECTION OF MEMORY PRESS ENTER";Z:CLS:GOTO{ line number)

The line number in parentheses would be the line number that reads
FOR J=J TO J+223

You have a program that is easier to use if you intend to examine a large area
of contiguous memory blocks. You can also use the INKEY$ function as
follows:

130 A$ = INKEYS
140 IF A$ = "Y" GOTO 170 ELSE IF A$ = "N" THEN END ELSE GOTC 130
170 CLS:GOTO 10

I mention the alternative as there seems to be a large body of opinion that the
INKEY$ function is classier than the INPUT function to do the job.

The following listing incorporates the main points made so far. The only
new item is the INKEY$ routine, which tells you on the screen what letter to
enter to make the choice of continuing the listing dump or to terminate the
effort.

3 REM PROGRAN ILLUSTRATING IDEAS TG THIS POINT

L
7 INPUT “START ADDRESS IN DECIMAL";J Program continued

159

tutorial

10 FOR J=J TO J+223
20 D= PEEK(J)

30 MSB= INT(D/16)

35 LSB=D-16*MSB

40 IF MSBC10 THEN MSB=MSB+48:G0TO 60

50 IF MSB>9 THEN MSB=MSB+55

60 PRINT CHR$(MSB);

80 IF LSB<IO THEN LSB=LSB+48:G0T0 100

90 IF LSB>9 THEN LSB=LSB+55

100 PRINT CHR${LSB);

110 PRINT CHR${32);

115 C=C+1:IF C=16 THEN G=0:PRINT CHR$(10);

120 NEXT J

130 A$=INKEYS$

135 PRINT ®960,"ANOTHER DUMP (Y) OR (N)";

140 IF A$="Y* GOTO 170 ELSE IF A§="N" THEN END ELSE GOTO 130
170 CLS:60TO 10

The next listing contains many of the items discussed so far but differs in
its programming approach in one significant regard. The author, Wayne
Davis, chose to park the developing values of the hex dump in an array. The
program works very well and its only problem is speed. The array is used for
extra overhead for the computer. If you run this program and hex dump 224
locations, you find that the computer takes about 32 seconds to finish the
dump. This compares a bit unfavorably with a previous example where the
dump of 224 memory locations took about 18 seconds. For short dumps of
about 32 locations (two lines of screen), the time variance between the two
programs is not significant. It is only when you compare processing time for
a large number of locations to be dumped that the time efficiency of the two
programs makes the array approach the less desirable of the two.

400 LS

450 DEFINT S,E,J,N,Q,D

500 INPUT"DECIMAL START ADDRESS";S

510 INPUT"DECIMAL END ADDRESS";E

520 FOR J= S TO E

530 D= PEEK (dJ)

1020 FOR N = 1 TO 2:X=INT(D/16):Q=D-16*X
1030 IF Q < 10 THEN Q = Q + 48:G0TO 1050
1040 IF Q > 9 THEN Q = Q + 55

1050 A(N}=Q:D=X:NEXT N

1060 FOR'N = 2 TO 1 STEP -1:PRINT GHRS(A(N));:NEXT N
1062 PRINT CHR$(32);

1065 IF W = 16 THEN PRINT CHR$(10);:¥ = 0
1070 NEXT J

The symbols that represent 0 through 9, unlike the letter values, are
already in a form that the computer can print without the apparent need for
further processing. It is apparent that the program returns values for the let-
ters A through F that need converting so that the computer prints these
values as letters. The numbers 0 through 9 do not seem to need this extra
step, but there is a reason for converting them.

5 CLS
10 FOR J = 0 TO 15
15 A = PEEK(J)

20 B = A/16

30 C = FIX(B)

160

tutorial

35 G=A - 16 * C

40 IF C < 10 PRINT C;

45 IF C > 9 PRINT CHR$(C + 55);
50 IF G ¢ 10 PRINT G;

60 IF G > 9 PRINT CHR$(G + 55);
65 PRINT CHR$(32);

70 NEXT 4

This program dumps the first 16 ROM cells. You see that the printout is
peculiar. The spacing is fine when a hex digit is made up of two letters but is
messed up when the hex digit is other than two letters. This is a result of mix-
ing two different methods by which the TRS-80 handles its printout forms.
You can dance around the problem, but I recommend the straight approach
of uniform printout style in the program.

We are still missing at least two elements that you may want in this kind of
utility program. They are a printer routine and an indicator at the begin-
ning or end of each line of just which memory location, either the first hex
digit or the last hex digit of the line, is being shown. As for the memory loca-
tion problem, we have two choices in that the form of the digit that iden-
tifies either the first or last cell dump on the line may be either a decimal or a
hex number. Decimal is simpler, so let us tackle that one first.

5 CLS

6 INPUT "START ADDRESS IN DECIMAL";S

8 INPUT “END ADDRESS IN DECIMAL®;E

10 FOR X = S TO E

12 IF J= 16 PRINT STRING$(4,32);:PRINT X-1;:4=0

13 IF J=0 AND X>S PRINT CHR$(10);

15 A= PEEK(X)

20 G= A/16

30 B= G-INT(G)

40 IF G-B>9 PRINT CHRS((
50 If 16 *B>9 PRINT CHR$

55 PRINT CHR$(32);
60 J=J+1:NEXT X

%~B +5);E%SE PRINT CHR$((G

)+55 (G-8)
(16*B)+55);ELSE PRINT CHR$({

+48);
16*B

)3
}+48);

The program develops as before except that I have used INT instead of FIX
to develop the LSB value. The elements I added to print out the location of
the last hex digit on each line are the counter,], in line 60 and the elements
in line 12.

F3 AF C3 74 06 C3 00 40 C3 00 40 E1 E9 C3 9F 06 15
¢3 03 40 C5 06 01 18 2E C3 06 40 C5 06 02 18 26 31
€3 09 40 C5 06 04 18 1E C3 0C 40 11 15 40 18 E3 47
€3 OF 40 11 1D 40 18 E3 €3 12 40 11 25 40 18 DB 63
€3 D9 05 C9 00 00 C3 C2 03 CD 2B 00 B7 CO 18 F9 79
oD OD 1F 1F 01 01 5B 1B OA 00 08 18 09 19 20 20 95
0B 78 B1 20 FB €9 31 00 06 3A EC 37 3C FE 02 D2 111

Figure 1. Printout of first 112 ROM locations

The sample printout (in Figure 1) shows the contents of the first 112 ROM
locations with the end-of-line location identifier number. Remember that
the first location is 0 which helps explain that 111 is really location 112.

161

tutorial

When counter] increments to 16, four blanks are printed with the aid of
STRINGS$, and then the end-of-line number is printed. Counter J is set equal
to 0, and the next line of hex digits is ready to be printed out. Asin a previous
example, if you omit the semicolon in line 12 that appears after X-1, your
lines of hex numbers will be double-spaced. If you want your end-of-line
identifier in hex notation, our next stop is to examine this problem.

We need to consider printing four hex digits to get numbers large enough
to act as the end-of-line identifier. We know that two hex digits can repre-
sent 255 decimal but we need four hex digits to represent a number as large
as 65535. In hex, we will go from 0000 to FFFF. We know that the hex posi-
tional weights of the digits discussed so far are 1 and 16. The next two posi-
tional weights are 256 and 4096.

The maximum position values from left to right of the four digit hex
number FFF are as follows:

4096 times 15 = 61440
256 times 15 = 3840
16 times 15 = 240
1 times 15=15

This gives us our grand total of 65535, which gives us hex values large
enough to serve as memory location markers for the hex dump when we get
into high-memory locations.

The following program gives end-of-line location values in hex notation.

5 CLS
7 INPUT “START ADDRESS IN DECIMAL®;J
10 FOR J=J TO J+223

20 D= PEEK(J)

30 MSB= INT(D/16)

35 LSB=D-16*MSB

40 IF MSBC10 THEN MSB=MSB+48:G0TO 60
50 IF MSB>9 THEN MSB=MSB+55

60 PRINT CHR$(MSB);

80 IF LSBC10 THEN LSB=LSB+48:G0TO 100
90 IF LSB>9 THEN LSB=LSB+55

100 PRINT CHR$(LSB);

110 PRINT CHR${32);

115 C=C+1:1F C=16 GOSUB 490

120 NEXT ¢

130 A$=INKEV$

135 PRINT @960,"ANOTHER DUMP (Y) OR (N)";
140 IF A$="Y" GOTO 170 ELSE IF A$="N" THEN END ELSE GOTO 130
170 CLS:GOTO 10

180 END

490 PRINT STRINGS$(4,32);:R=J

500 FOR N= 1 TO 4

510 X=INT{R/16):Q=R-16*%X

520 IF Q<10 THEN Q=Q+48:G0TO 540

530 IF Q>9 THEN Q=0Q+55

540 A(N)=Q:R=X:NEXT N

550 FOR N= 4 TO 1 STEP -1

560 PRINT CHR$(A(N));

570 NEXT N

575 C=0

580 PRINT CHR$(10);

590 RETURN

162

tutorial

The bulk of the program should look familiar since it was demonstrated
earlier. The routine that does the hex conversion for the end-of-line location
marker is contained in the subroutine which starts at line 490. The
STRINGS$ expression, as in a prior example, spaces the end-of-line marker
away from the last printed memory cell dump on any given line. The con-
version routine is the one 1 used earlier and is the creation of Wayne Davis.
When I first used this routine, I pointed out that it was a bit slow compared
to another routine which was demonstrated to be considerably faster. The
first time I employed the routine, I used it some 224 times to dump out the
contents of 224 memory locations. In this use, the routine is used only once
per line, and the overhead it adds to the program’s running time is well
worth its simplicity. The point is that any routine has value if applied in the
right spot. Do not throw away any routine you come across, for sooner or
later the right spot will come up.

The following program is basically the same as the last one. Only the hex
conversion routine has been changed in the subroutine. It shows that the
positional weighting of the hex system of notation has been followed closely,
and why I would rather type in Wayne Davis’ version than this one. The
relative speeds are so close that the extra typing effort is pointless.

5 CLS

7 INPUT “START ADDRESS IN DECIMAL";J

10 FOR J=J TO J+223

20 D= PEEK(J)

30 MSB= INT(D/16)

35 LSB=D-16*MSB

40 IF MSB<10 THEN MSB=MSB+48:G0TO 60

50 [F MSB>9 THEN MSB=MSB+55

60 PRINT CHR$(MSB);

80 IF LSB<10 THEN LSB=LSB+48:G0T0 100

90 IF LSB>9 THEN LSB=LS$B+55

100 PRINT CHR$(LSB);

110 PRINT CHR$(32);

115 C=C+1:1F C=16 GOSUB 1000

120 NEXT J

130 A§=INKEYS

135 PRINT @960, "ANOTHER DUMP (Y) OR (N)“;

140 IF A$="Y" GOTO 170 ELSE IF A$="N" THEN END ELSE GOTO 130
170 CLS:GOTO 10

180 END

1000 PRINT STRING$(4,32);: R=J

1020 H4=INT(R/4096)

1030 H3=INT{(R-H4*4096)/256)

1040 HZ2=INT{(R-((H4*4096)+({H3*256)))/16)

1050 H1=R-{(H4%4096)+(H3*256)+(H2*16))

1060 IF H4<10 PRINT CHR$(H4+48); ELSE PRINT CHR$(H4+55);
1070 IF H3<10 PRINT CHR$(H3+48); ELSE PRINT CHR$(H3+55);
1080 IF H2<10 PRINT CHR§(H2+48); ELSE PRINT CHR§(H2+55);
1090 IF H1<10 PRINT CHR$(H1+48); ELSE PRINT CHR$(H1+55);
1100 €=0

1110 PRINT CHR$(10);

1120 RETURN

The last item we will tackle is putting a printer routine into the program.
The following listing does the job.

3 REM LINE PRINTER ROUTINE ADDED
5 CLS Program continued

163

71
10
20
30
35

180
100
102
103
104
105
106
107
108
109
110
111
112
200
201
202
203
204
205
205
206

By now most of the program is familiar to you. We have added the subrou-
g at line 2000. This line is a specific instruction for my printer
which is an Okidata Microline 80. It sets this particular printer to print 64

tine startin

characters
The follow

1990
1991
1992
1993
1994
2000
2010
2020
2030

2032
2033

tutorial

NPUT “START ADDRESS IN DECIMAL";J:CLS
FOR J=d TO J+223:W=W+4
D= PEEK(J)
MSB= INT(D/16)
LSB=D-16*MS8
IF MSBC10 THEN MSB=MSB+48:G0T0 60
IF MSB>9 THEN MSB=MSB+55
PRINT CHR$(MSB);
IF LSBC10 THEN LSB=LSB+48