ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

VOLUME 7

*Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 7

wayne

AN N
PETERBOROUGH NH 03458

bord
et

*Trademarks of Radio Shack Division of Tandy Corp.

FIRST EDITION
FIRST PRINTING MARCH 1982
Copyright © 1982 by Wayne Green Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey and Katherine Putnam
Proofread by Ann Winsor
Production: Margaret Baker, Gary Ciocgi, Linda Drew, Thomas Villeneuve,
Robert Villeneuve, Sandra Dukette, and Karen Stewart
Technical Assistance by Jake Commander
lustrations by Howard Happ

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer— and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green. v

BUSINESS
Point and Figure Charting for Stocks and Commaodities
Christopher C. Marvel 3
Dividend Reinvestment Plan
Max Rosenzweig. 13

EDUCATION
Keeping Track—
Student Scheduling and Attendance Part 111
Ulderic F. Racine. 21
Keeping Track—
Student Scheduling and Attendance Part IV
Ulderic F. Racine. 44

GAMES
Roulette
Paul G. Ramsteyn. 65
Five Short Games
Michielvan de Panne. 74
Rubik’s CubeT™ Manipulator
Chuck Baird. 84

GRAPHICS
Easy CHR$ Graphics and Animation
Kenneth Lee Gibbs. 93

HARDWARE
Memory Size—20K|
W.R. Stanley NATF. 107

HOME APPLICATIONS
Disk BASIC Word Processor
Delmer D. Hinrichs. 119
The Big Game
Ken Lord and Joe Boudreaw. 153

vii

INTERFACE
Using the Useful UART
James N. Devlin. 161

TUTORIAL
String Problems in the TRS-80
Arthur R. Jackman. 173
Hex, Octal, and Binary to Decimal Conversions
ClayLansdown. s 180

UTILITY
EMOD—EDTASM Moadifications for the Model 111
Winford Rister and Rick Steinberg.................. 191
Renumber One
Dr. Stephen Mills. 209
Command
Arthur B. Rosenberg. iuiieii i 226

APPENDICES
Appendix A. 241
Appendix B. 242

biti

Encyclopedia
y LoPader““

The editors of Wayne Green Books want to help you maximize your mi-
crocomputing time, so they created the Encyclopedia Loader™,

The Encyclopedia Loader is a special series of cassettes that offer the
longer programs in the Encyclopedia for the TRS-80* in ready-to-load form.
Each of the ten volumes of the Encyclopedia provides the essential docu-
mentation for the programs on the Loader.

With the Encyclopedia Loader, you'll save hours of keyboard time and
eliminate the aggravating search for typos. The Encyclopedia Loader for
Volume 7 will contain the programs for the following articles:

Point and Figure Charting for Stocks and Commodities
Keeping Track—Student Scheduling and Attendance Part III
Keeping Track—Student Scheduling and Attendance Part IV
Disk BASIC Word Processor

EMOD--EDTASM Modifications for the Model 111
Renumber One

Command

Encyclopedia Loader™ for Volume 1 EL8001 $14.95
Encyclopedia Loader™ for Volume 2 EL8002 $14.95
Encyclopedia Loader™ for Volume 3 ELS8003 $14.95
Encyclopedia Loader™ for Volume 4 FL8004 $14.95
Encyclopedia Loader™ for Volume 5 EL8005 $14.95
Encyclopedia Loader™ for Volume 6 EL8006 $14.95
Encyclopedia Loader™ for Volume 7 EL8007 $14.95

(Please add $1.50 per package for postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call 1-800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp.

BUSINESS

Point and Figure Charting
For Stocks and Commodities

Dividend Reinvestment Plan

BUSINESS

Point and Figure Charting for
Stocks and Commodities

by Christopher C. Marvel

Before I bought my computer, I had books of charts for the stock or com-
modity that I was interested in and a filing cabinet to store information
on those companies. Now, my computer is both a filing cabinet and a chart
book, and I spend my time analyzing data rather than entering it.

Technical approaches to trading stocks are many and are confusing to
most people. Point and figure charting is in this category but is among the
least confusing of these technical trading approaches. For more informa-
tion, see The Commodity Futures Game: Who Wins? Who Loses? Why? by
Richard J. Teweles, Charles V. Harlow, and Herbert L. Stone, McGraw-
Hill, 1974.

Point and figure chartists make two important assumptions. First, they
view the volume of trading as unimportant, a mere side effect of price ac-
tions with no predictive significance. Second, they dismiss the importance of
how much time has elapsed as prices move from one level to another. The
only thing that matters is the direction of the price change. Point and figure
charts are designed to show only the direction of the price change.

Each point (one box on a piece of graph paper) can indicate any number
of actual points, cents, or dollars that the chartist has decided on. I have in-
cluded an illustration of the program decision model I used to develop the
charting program. (See Figure 1.) This will be helpful if you wish to modify
the program for your own use.

Point and figure charts are records of price reversals with no reference to
time. The more reversals there are, the more columns show up on the chart.
PTFIG (see Program Listing) can store up to 62 price reversals (columns). In
other words, it can track three months or more of price information for a
stock or commodity. The decision model defines one price reversal as a
change of four points or more in the opposite direction from the previous
day’s move.

I tried to use the KISS concept in writing this program—Keep it Simple,
Stupid. The program is documented to show how you can modify it for your
own use. The program is written for a TRS-80 Model I with a disk drive and
a printer. Because it is in BASIC, it is compatible with the Model II1. Don’t
be deceived by the program’s small size. It packs a lot of practical punch in a
small amount of space. It maintains files on disk and adds a /PF extension
to the file to identify it as a PTFIG file. Figure 2 gives an overview of the
program.

business

1. Get high price for today
9. Is current field up or down

Up Down

Is price YES Enter new Is price YES Enter new
one point points one point points up
Higher Up Lower Down
NO NO

Is price NO 1s price NO DONE
three points three points

Lower Higher

Move right Move right

one column one column

Enter price Enter price

Down Up

DONE DONE

Figure 1. Point and Figure decision model

Using PTFIG

PTFIG is executed from BASIC. After DOS READY, type BASIC.
Answer 1 to the number of files, press ENTER for memory size, and type
RUN“PTFIG/BAS. The HELP menu is then displayed. Enter R after study-
ing the display. The screen clears, and the following appears at the bottom:

STOCK: LAST DATE: FIELD: COMMAND DEILNPS ??
This puts you in the PTFIG command mode, and you can enter any of the
command keys shown in Table 1.

1. Charts and holds data for three months or more

9. Automatically rolls out old data and rolls in new data, always keeping

your file current

Minimal hardware requirements. May be used with tape or disk

4. Provides easy scrolling for most recent entries for printing hard copy of
charts

5. Originally configured for an Okidata Printer and can provide standard
or reduced size hard copy. (10 characters per inch, 8 lines per inch or
16.5 characters per inch, 8 lines per inch)

6. Will run in Level 11 with 4K

w

Figute 2. Point and Figure overview

business

Command Key Description

D Displays stock or commodity chart currently stored in
memory on the screen video

E Ends the program

H Displays HELP menu

I Inputs new data to stock or commodity chart currently
stored in memory

L Loads stock or commaodity chart file from disk

N Enters a new stock or commodity. (This erases any previous
file in memory. Enter up to eight characters but not more.)

p Prints stock or commodity chart on line printer. (This uses a

video screen display routine; so the chart must be displayed
on the video screen.)

S Saves stock or commodity chart in memory to disk. (All
PTFIG files have a /PF extension added to their filename.)
1 Serolls chart up on screen
Space bar Serolls chart down on screen

Table 1. Command keys and descriptions

The program uses a screen print routine, and you can print three different
scales just by changing the CHRS$ value. It rolls out old information once the
screen is filled; so, if you want to track more than three months worth of
data, you should archive the file and start a new one once the screen is full.
The following is the procedure for using PTFIG.

1) Choose the stock or commodity that you wish to track.
2) Determine how much of a price change would be equivalent to a point
tracked by PTFIG/BAS.

Example: STOCK

IBM one point = a change of $.25. If the IBM stock were to go
up $.75 from $30.00 to $30.75, enter + 3 for the day’s change.

COMMODITY

HOGS one point = a change of $.02. If hogs lost $.14 on the

day, enter — 7 for the day’s change.
3) Run PTFIG/BAS. A HELP menu appears with a list of all available com-
mands for command mode. Enter R to return to command mode from the
HELP menu. If you wish to display the HELP menu again, press H.
4) To enter a new commodity or stock, type N. Enter the name, date, and
first day’s point change. (See step 2.) If you wish to enter more data, press I
after the initial display.
5) After data entry is complete, press S to store the information on disk. A
/PF extension is added to the file to differentiate it from other files in the disk
directory.

business

6) To enter the next day’s data, run PTFIG/BAS. Go to the command mode.
Press L (load). Enter the name of the stock or commodity stored on disk, and
the file is loaded. Enter the data and repeat step 5 to save it.
7) Because the price charts could be larger than the screen, I added a scroll-
ing provision to the program. To scroll the chart upward, press the up ar-
row. To scroll the chart down, press the space bar.
8) I added a filter provision to the program in order to screen whipsaw price
gyrations. The current filter is 3. This means that if the current field is U
(up), a price change of equal to or greater than 3 must be registered on the
downside for the chart to show any downside movement. The reverse is true
when the field is D (down).
Example: IBM has a $ — .50 for the day which

equates to — 2 points (see step 2) for

charting purposes. IBM has been in

a solid rally, and its field is U (up).

After you have entered the data,

NO CHANGE appears in the chart

because this is against the stock’s

major trend. This result is due en-
tirely to the action of the filter.

To change the current filter from 3 to another value, edit line 18 of the pro-
gram. The variable P is greater than 3 or less than 3 at two places in the line.
Replace 3 with the value you prefer to use.

Photo 1. Screen display

6

business

9) The current program is set up to produce a condensed printout (132
characters per line). Line 23 contains LPRINTCHR$(29). If you wish to
have regular size printing, change this value to LPRINTCHR$(30). If you
want larger type, change it to LPRINTCHR$(31).

10) To print hard copy, press P in the command mode, and the printer prints
the chart that is currently displayed on the screen. Photo 1 shows a sample
screen display.

business

Program Listing. Point and Figure

1 CLEAR 1000:
DEFINT A - Z:

DIM R{62),C(62),L(62),F(62):
FOR I = 1 70 61:

Fglg = 0:

R(1) = 0O:

(1) = 0:

L(I) = 0

NEXT I

N = 0:

CLS :

PRINT @400,°P 0 I NT & F I G URE";:
PRINT ©471,"C H AR T I N G";:
PRINT @540,"B Y";:
PRINT @596, "CHRISTOPHER C. MARVEL";
2 PRINT @663,"COPYRIGHT 1981";:
FOR 1 = 15824 T0 15829:
POKE I,149:
POKE 1 + 24,149:
POKE I + 64,149:
POKE | + 88,149:
NEXT I:
POKE 15952,149:
POKE 15981,149:
POKE 16016.,149+
POKE 16045,149:
FOR I = 1 TO 29:
POKE 16079 + 1,131:
NEXT I:
POKE 16109,129:
FOR I = 1 TO 3000:
NEXT :
60TO 35
3 (LS
4 IF F(N) = 1
THEN
F$ =
5 IF F(N) = - 1
THEN
F§ = p"
6 PRINT ©960,"STOCK: ";S%;:
PRINT ©975,"LAST DATE: ";D$;:
PRINT @995,"FIELD:";F$;
PRINT ©1004,"COMMAND DEILNPS 720,
7 A% = INKEYS$:
IF A$ = "L"
THEN

10

12

13

14

IF R(N) = O
THEN
7:
ELSE
FOR I = 1 TO N:
R(I) = R(I) - 10:
NEXT I:

GOTO 25
IF R(N) =
THEN

7
FOR I =1 TO N:
R(I) R(I) + 10:
NEXT I:

=0

CLS :

INPUT "STOCK";S%:
SA$ = S§ + "/PF":
OPEN “I",1,SA$:
INPUT #1,N,D$:
FOR T = 1 T0O N:

INPUT #1,F(1),R(1),C(1),L(I):

NEXT I:

CLOSE

CLS

PRINT @448,"FILE LOADED":
PRINT "ADD DATA (Y/N)";:

INPUT " “;A$:
IF LEFT$(AS,1) = “y*
THEN
17:
ELSE

IF LEFT$(AS,1) = “N"
THEN

T
INPUT “STOCK NAME";S$:
PRINT :

INPUT "“DATE: ";DS$:

PRINT :
INPUT “PTS. + OR - ";P:
IFP=>1
THEN
F(1) = 1:
R(1) = 22 - P:

business

Program continued

16
17

18

19

22

business

C{1) = 5:
L(1) = P
IF P =<-1
THEN
F(1) = - 1:
R(1) = 22:
c{1) = 5:
L{1) = ABS(P)
GOTO 25
CLS :
PRINT S§:
PRINT :

PRINT “DATA LAST ENTERED ON “;D$:
PRINT :
INPUT “NEW DATE: ";D$%:
PRINT :
INPUT "PTS. + OR -~ "“;P:
IFF(N) = 1 AND P = > 1
THEN
R{N) R(N) - P:
L{N) L{N) + P:
GOTO 19:
ELSE
IF F(N) = - 1 AND P = ¢ - 1
THEN
L{N) = L{N) + ABS(P):
GOTO 19
IF F(N) = 1 AND P = < - 3

0o

+

- 1) 2:
- 1) + L{N - 1) - P:

o ouou

L

PRINT
PRINT @512," ";:
INPUT “ENTER MORE INFO (Y/N)";A$:
IF LEFT$(A$,1) = "y"
THEN
17:
ELSE
IF LEFT$(A$,1) = "N"
THEN

SA$ = S§ + "/PF"
OPEN "0",1,5A$%:
PRINT #1,N,D$:
FOR I = 1 TO N:

10

23

24

25

26

27

28

29

30

31

business

PRINT #1,F(I),R(I),C(I),L(I):
NEXT I:
CLOSE
CLS :
PRINT @473," ";S$;" SAVED!I!l":
GOTO 6
LPRINT CHR$(29):
GOSUB 24:
GOTO0 6
FOR L = 0 TO 15:
FOR I = 15360 + 64 * L TO 15422 + 64 * L:
LPRINT CHR$(PEEK(I));:
NEXT I:
LPRINT CHR$(13);:
NEXT L:
RETURN
CLS :
FOR I = 0 TO 832 STEP 64:

L =

Y
IF Y > 41

FOR K = 0 TO L:

SET(X,Y + K):

NEXT K
IF F = 1 PRINT @897 + 1,"+"
IF F = - 1 PRINT @897 + I,"-"

CLS :
PRINT "adkkkkxkkhkhkhnhnhnakhkkhnrdx DOINT & FIGURE *xhdkaddwmsrsrhkuwns
*****‘k":
PRINT :
PRINT * HELPEELIL":
PRINT
PRINT "D =====> Display chart","N =====> Enter new commodity"
Program continued

11

36

37
38
39

40

business

PRINT “"E =====> End & Return to DOS","P =====> Print chart”:
PRINT "H = => Help ","S =====) Save to disk":
PRINT "1 =) Input data","[=====> Scroll up"
PRINT "L ==)> Load from Disk","Sp. Bar =====> Scroll down"
PRINT
PRINT "PRESS R to return main program"
A$ = INKEYS
IF A$ = MRY
THEN
3
GOTO 38

12

- BUSINESS

Dividend Reinvestment Plan

by Max Rosenzweig

he Economic Recovery Act of 1981 provides a way of paying less in

taxes. Commonly called DRIP, the Dividend Reinvestment Plan went
into effect January 1, 1982. It provides for deferral of taxes on dividend in-
come from qualified utility companies when the dividends are reinvested in
new shares of stock. The single taxpayer can defer taxes on up to $750 of
dividends a year. The married taxpayer filing jointly can defer taxes on up to
$1500. The deferral is valid until the stock is sold. If the stock is held for one
year or more, the gain is considered a capital gain and is taxed at the capital
gains rate; 40 percent of the gain is taxable. If you never sell the stock, you
never pay any taxes on the dividends.

The law, as presently enacted, expires in 1985. It will be up to Congress to
extend it at that time or let it die. In the meantime, you can build up a nest
egg for retirement or college for the kids. Deferring taxes until you retire,
when your income may be drastically reduced, putting you in a lower tax
bracket, can ease the tax bite.

This program calculates the number of shares bought by reinvesting the
dividend income, the new dividend payable at the end of the selected
period, and the capital gains, if the stock is sold.

If you are a single taxpayer in the 30 percent tax bracket and have $750 in
qualifying dividends, your taxes are $225. Under DRIP, if you hold the stock
for a year and reinvest the dividends, your taxes will be $90 when you sell the
stock, giving you savings of $135. As an example, suppose you own 500
shares of ABC Utility Company. You purchased them at $11.00 a share, and
each share pays $1.48 in dividends (37 cents quarterly). The dividend in-
come is $740 a year ($185 a quarter). Now refer to Figure 1. It compares in-
vestor 1, who does not reinvest the dividends, to investor 2 who has a DRIP
plan. Note that investor 2 received more dividend income at the end of one
year. This is due to compounding reinvestment each quarter. Note that the
tax on capital gain is $90 ($750 x .40 x .30). The balance of $94.70 is taxed
as ordinary income for $28.41 for total taxes on the dividends of $118.41.
This is $103.59 less in taxes than investor 1 paid on $750 of dividends. A
similar example shows the results for taxpayers filing a joint return. (See
Figure 2.)

Now look at Figure 3. It shows two-year results from reinvesting. Again,
investor 1 did not reinvest; so his dividend is still only $740.00, and his taxes
again are $222. But investor 2 now has $964.22 in dividends and a total of

13

business

STARTING YEAR 1982
ENDING YEAR 1982
NO. OF SHARES 500
DIVIDEND RATE 1.48
COST PER SHARE 11.00
TAX BRACKET 0.30
FILING STATUS S

INVESTOR #1 INVESTOR #2

DIVIDEND INCOME 740.00 844.70

CURRENT YEAR INCOME TAX 222.00 28.41

NEWLY ISSUED SHARES FROM DRIP 0 70.74

CAPITAL GAINS TAX — 90.00

TAX SAVINGS —_— 103.59

AFTER TAX PROCEEDS 518.00 726.29
Figure 1

151.5 new shares over a two-year period and a capital gains tax of $90 if
stock is sold this year. The tax on the balance of $214.22 is $64.26 in the sec-
ond year (remember it was $28.41 the first year), for total taxes the second
year of $154.26.

STARTING YEAR 1982
ENDING YEAR 1982
NO. OF SHARES 500
DIVIDEND RATE 1.48
COST PER SHARE 11.00
TAX BRACKET 0.30
FILING STATUS]

INVESTOR #1 INVESTOR #2

DIVIDEND INCOME 740.00 844.70

CURRENT YEAR INCOME TAX 222.00 0.00

NEWLY ISSUED SHARES FROM DRIP 0 70.74

CAPITAL GAINS TAX — 101.36

TAX SAVINGS — 120.64

AFTER TAX PROCEEDS 518.00 743.34
Figure 2

14

business

STARTING YEAR 1982
ENDING YEAR 1983
NO. OF SHARES 500
DIVIDEND RATE 1.48
COST PER SHARE 11.00
TAX BRACKET 0.30
FILING STATUS S

INVESTOR #1 INVESTOR #2

DIVIDEND INCOME 740.00 964.22

CURRBRENT YEAR INCOME TAX 222.00 64.26

NEWLY ISSUED SHARES FROM DRIP 0 151.50

CAPITAL GAINS TAX — 90.00

TAX SAVINGS - 67.74

AFTER TAX PROCEEDS 518.00 809.95
Figure 3

As you can see in these examples, the amount over $750 or $1500, as the
case may be, is taxable as ordinary income in the year it is earned. You have
a choice of selling your stock that yields more than the allowed dividends or
paying the taxes. It is still a good reduction in taxes while you build up your
investment in stock. If you never sell the stock, you keep deferring $750 or
$1500 each year. There are other fine points, such as discounts and return of
capital which are beyond the scope of this article. Consult your broker or
financial advisor for your particular situation.

The program through line 280 is an explanation of the plan and program.
This program takes less than 4K of memory, but if you are short of memory,
you can omit these lines. If you don’t want to view them each time you run
the program, enter RUN290.

Lines 300 to 560 perform the calculations for reinvesting the dividends
and compounding them quarterly. Lines 580 to 680 print out the results. If
you do not have a printer, omit the LPRINT statements and remove line 580
as well. The program does provide for use without a printer. Enter N when
asked if you want hard copy. Lines 800 to 930 print the results on the screen,
and the program asks if you want to run again. If you do, the program
bypasses the explanation at the beginning of the program.

15

150

160
170
180
190
200
210

220
230
240
250
260
270
271

272

273
274
275
276
280

290
300
305
310
320
330
335
340
355
356
357

358

360
370
390
400
410
420
430
440
450

business

Program Listing. Dividend reinvestment

cLs
PRINT 8132, CHR$(23), “DRIP"
PRINT ©256,"A DIVIDEND REINVESTMENT PROGRAM®
PRINT @408, "WRITTEN BY"
PRINT @532, "MAX ROSENZWEIG"
PRINT ©666,"0CT 1981"
FOR I = 1 TO 1500:

NEXT 1
cLS

PRINT "UNDER THE PROVISIONS OF THE ECONOMIC RECOVERY ACT OF
PRINT “1981 AN INDIVIDUAL MAY REINVEST THE DIVIDEND INCOME RECEI
VED"

PRINT "FROM STOCK OF A QUALIFYING UTILITY COMPANY AND DEFER"
PRINT “FEDERAL TAXES UNTIL THE STOCK IS SOLD. IF THE NEMW®
PRINT “SHARES ARE HELD ONE YEAR OR MORE, THE GAIN IS THEN"
PRINT "TREATED AS LONG TERM CAPITAL GAINS."

FOR I = 1 TO 4000:

NEXT I

cLs

PRINT "THIS PROGRAM WILL CALCULATE THE NUMBER OF SHARES BOUGHT"
PRINT "BY REINVESTING THE DIVIDEND INCOME, THE NEW DIVIDEND"
PRINT “PAYABLE AT THE END OF THE SELECTED PERIOD, AND THE"
PRINT “CAPITAL GAINS, IF THE STOCK IS SOLD."

FOR I = 1 TO 4000:

NEXT 1

cLs

PRINT "WHEN ASKED FOR, ENTER THE YEAR FROM WHICH YOU WANT T0"
PRINT "START THE CALCULATION; THE YEAR YOU WANT TO END THE"
PRINT "CALCULATIONS; THE NUMBER OF SHARES OF STOCK HELD AT THE"
PRINT “BEGINNING OF THE PERIOD; THE ANNUAL DIVIDEND RATE;"
PRINT “AND THE COST PER SHARE."

FOR I = 1 TO 4000:

NEXT I:

CLS

PRINT :

PRINT "TWO EXAMPLES WILL BE CALCULATED. THE FIRST IS"

PRINT "WHERE THE DIVIDEND INCOME"

PRINT “IS NOT REINVESTED IN THE DRIP. THE SECOND EXAMPLE"
PRINT "ELECTS TO PARTICIPATE IN DRIP. ASSUME NO CHANGE IN®
PRINT “STOCK PRICE, DIVIDEND AND NO DISCOUNT.

FOR I = 1 TO 4000:

NEXT I

cLs

CLEAR 100

E$ = “pgé. 44"

INPUT "STARTING YEAR";SY

INPUT "ENDING YEAR";EY

INPUT "NUMBER OF SHARES";S1

INPUT “COST PER SHARE®;CS

INPUT “ANNUAL DIVIDEND RATE*;DR

INPUT "TAX BRACKET (ENTER AS DECIMAL, I.E. .35)";TB
INPUT "FILING STATUS (<S>INGLE OR <J>OINT)";F$
IF F$ = "s*
THEN
MD = 750
IF F$ = "J"
THEN
MD = 1500
QR = DR / 4
SN = S1
FOR I = SY TO EY
FOR J = 1 TO 4
SN = (SN * QR) / CS + SN
Q1 = (SN * QR)
NEXT J
NEXT I

DI = S1 * DR

16

business

460 NS = SN - S1
510 ND = SN * DR
520 IT = DI * TB
540 GT = ND * TB * .4
560 AT = DI - IT
570 CLS
GOTO 800
580 INPUT "READY PRINTER, PRESS <ENTER>";A$
601 LPRINT :
LPRINT TAB(5)"STARTING YEAR "; TAB(40);SY
602 LPRINT :
LPRINT TAB(5)"ENDING YEAR "; TAB(40);EY
603 LPRINT :
LPRINT TAB(5)"NO. OF SHARES “; TAB{40);S1
604 LPRINT :
LPRINT TAB(5)"DIVIDEND RATE"; TAB(40) USING £$;DR
605 LPRINT :
LPRINT TAB(5)"“COST PER SHARE "; TAB(40) USING E$;CS
610 LPRINT :
LPRINT TAB(5)"TAX BRACKET "; TAB(40) USING E$;TB
611 LPRINT :
LPRINT TAB(5)“FILING STATUS"; TAB(43)F$
612 LPRINT :

LPRINT TAB(38)"INVESTOR #1"; TAB(54)"INVESTOR #2°
613 LPRINT TAB(38) STRING$(11,"-"); TAB(54) STRING$(11,"-")
620 LPRINT :
LPRINT TAB(5)“DIVIDEND INCOME"; TAB(40) USING E$;DI;:
LPRINT TAB(56) USING E$;ND

630 LPRINT :
LPRINT TAB(5)"CURRENT YEAR INCOME TAX"; TAB(40) USING E$;IT;:
LPRINT TAB(56) USING E$;0T
640 LPRINT :
LPRINT TAB(5)"NEWLY ISSUED SHARES FROM DRIP"; TAB(43)"0";:
LPRINT TAB(56) USING E$;NS
650 LPRINT :
LPRINT TAB(5)"CAPITAL GAINS TAX"; TAB(43);"-";:
LPRINT TAB(56) USING E$;GT
670 LPRINT :
LPRINT TAB(5)"TAX SAVINGS"; TAB(43)"-";:

LPRINT TAB(56) USING E$;TS
680 LPRINT :
LPRINT TAB(5)"AFTER TAX PROCEEDS"; TAB(40) USING E$;AT;:
LPRINT TAB(56) USING E$;AP
780 INPUT "DO YOU WANT ANOTHER RUN (Y/N)";A$
790 IF A$ = "y“
THEN
RUN 290 :
ELSE
END
800 $RI?T gAB(S)"STARTING YEAR"; TAB(25)SY; TAB(35)"ENDING YEAR";
AB(50)EY
810 PRINT "NO. SHARES="; TAB{11);S1; TAB(18)"COST PER SHARE=";
TAB(33) USING E$;CS;:
PRINT TAB(42)"DIV. RATE ="; TAB{53) USING E$;DR
820 PRINT TAB(S)"TAX BRACKET"; TAB(20)TB; TAB{30)"FILING STATUS";
TAB(45)F$
830 PRINT TAB(20)"INVESTOR #1"; TAB(40)"INVESTOR #2"
840 PRINT TAB(20) STRING$(1L,"-"); TAB(40) STRING$(11,"-")
850 PRINT "DIV. INCOME"; TAB(ZD) USING E$;DI;:
PRINT TAB(40) USING E$;ND
860 PRINT “CURRENT INCOME TAX"; TAB(20) USING E$;IT;:
PRINT TAB(44)"0"
870 PRINT “NEW SHARES"; TAB(24)"0"; TAB(40) USING E$;NS
875 IF ND = > MD
THEN
GT = 90:
GOTO 877
876 IF ND < = MD
THEN

GT = ND * TB * .4: Prograntconﬁnued

17

business

0T = 0:
GOTO 880
877 OT = (ND - MD) * TB
880 PRINT "CAP. GAINS TAX"; TAB(24)"-"; TAB(40) USING E$;GT
885 PRINT "ORD. INCOME TAX"; TAB(20);"";:
PRINT TAB(40) USING E$;0T7
886 TS = IT - (GT + OT)
890 PRINT "TAX SAVINGS™; TAB(24)"-"; TAB(40) USING E$;TS
895 AP = ND - (GT + OT)
900 PRINT “AFTER TAX PROCEEDS"; TAB{20) USING E§;AT;:
PRINT TAB(40) USING E$;AP
905 PRINT .
910 INPUT "DO YOU WANT A HARD COPY (Y/N) ";A$
920 IF A$ = “N" GOTO 780
930 IF A$ = “Y" GOTO 580

18

EDUCATION

Keeping Track—

Student Scheduling and Attendance
Part III

Keeping Track—

Student Scheduling and Attendance
Part IV

19

EDUCATION

Keeping Track—
Student Scheduling and Attendance
Part III

by Ulderic F. Racine

he first two parts of this series presented programs that allow you to en-

ter schedule data on students, change existing student schedules, and
print class rosters. Part III contains programs that allow you to enter atten-
dance data for up to a month at a time and to print out schedules by students
or a record of students/teacher/period by class name.

Program Listing 1 is the attendance initialization program (ATTENDIT).
This program functions in the same manner as the schedule initialization
program given in Part I. It allows you to specify the drive on which the in-
itial attendance data will be written, select the number of days of atten-
dance that will be entered, and to specify the method of input, either by
teacher or by student. Finally, you must specify the number of class periods
of attendance per day that count as a full day of attendance. If you select
four or more class periods as constituting a full day of attendance, a student
with three hours of class attendance is given a half-day of credit.

When you select option 5 of the master menu, Enter Attendance Data,
ATTENDIT is loaded and run. It searches the disks currently in the drives
for previously entered attendance data. If it finds no data, the program asks
if you have a disk with attendance data on it. If you have not previously
entered attendance data, the program asks a series of questions to initialize
the attendance files.

ON WHICH DRIVE SHALL I WRITE THE ATTENDANCE DATA? (1-2-3)
HOW MANY DAYS OF ATTENDANCE DO YOU WISH TO ENTER? (1-23)
DO YOU WANT TO ENTER DATA BY TEACHER OR STUDENT?

ENTER ‘T" FOR TEACHER OR 'S FOR STUDENT (T/S)

HOW MANY PERIODS WILL BE USED FOR FULL-TIME ATTENDANCE?

The program creates the files necessary to record attendance data. After the
initial designation of the drive number, it is not necessary to place that disk
in the same drive. Each time the attendance cycle is completed (the data for
all students or each class has been entered for the chosen number of days),
you need to enter the number of days in the new cycle and decide whether
you want to enter data by student or by teacher. You can enter attendance
data by student for one cycle and by teacher for the next cycle. The program
also displays the number of periods you select as equivalent to full-time at-
tendance. You have the option to change this at the beginning of any atten-
dance cycle.

21

education

Program Listing 2 is the attendance input by teacher program
(TEATTEND). When you first enter attendance data, the program begins
with the first teacher, first period, and first student. You must complete the
input for all the students in a class period. You then have the option to enter
another period. If you stop entering attendance data, the program records
where you stopped and begins with the next period or teacher. The input
display for attendance is shown below.

TEACHER: JONES CLASS: MATH I PERIOD 1

STUDENT: JOHNSON FRED

DAYS12345678910111213 1415

WAS JOHNSON FRED PRESENT IN THIS CLASS
FOR ALL 15 DAYS? (Y/N)

If the student was present for all 15 days, type Y and press ENTER. The pro-
gram displays the next student enrolled in that class. It may take a minute or
so for the program to display the name of the next student. During this time,
the machine rearranges the arrays it uses to store data. If the student was not
present for all 15 days, the program asks you to enter each day individually,
pressing P for present or A for absent. You do not have to press ENTER.
Remember that you must enter the attendance data on each student before
you can drop a student from a class. Once a student is dropped from a class,
the student does not show up as being scheduled for that class.

Program Listing 3 is the class schedule by student printout program
(PNTSTCHD). There are two options available. You can print all students
currently on the file, or you can print the schedule for a specific student. In
either case, you have the option to print hard copy or display the print on the
screen. The printout follows this format:

STUDENT: JOHNSON FRED

PERIOD CLASS TEACHER
1 MATH JONES

2 LITERATURE BURTON

3 HOMEROOM ADAMS

4 GEOGRAPHY WARTON
5 ENGLISH WEBSTER
6 SCIENCE I EVERSON

Program Listing 4 is the printout by class name program (PNTCLASS). It
gives you thesame options as the student schedule and class roster programs.

22

education

You can get a printout for a specific class name or for all class names. The
same options in regard to hard copy or video print are also available. A sam-
ple printout appears below.

CLASS: MATH I
STUDENT TEACHER PERIOD

JOHNSON FRED JONES
DELL CHARLES JONES
ABBOT THOMAS JONES
DEERING JOHN EVERSON

DO et b

23

education

Program Listing 1. Attendance initialization

10 : ATTENDANCE INITIALIZATION PROGRAM (ATTENDIT)
20 E COPYRIGHT OCTOBER 1, 1981

30 i ULDERIC F. RACINE

:2 s 2520 S.E. ALEXANDER DRIVE

' TOPEKA, KANSAS 66605
100 CLEAR 3000
110 OK ERROR GOTO 400
120 OPEN "R",1,"DATTEND":
RN = LOF (1):
IF RN = 0
THEN
130:
ELSE
320
130 CLOSE
KiLi
140 CLS
PRINT ©448,"1 HAVE READ THE DISKS CURRENTLY IN THE DRIVES.™:
PRINT "I CANNOT FIND A DISK WITH ATTENDANCE DATA.":
LINE INPUT "DO YOU HAVE A DISK WITH ATTENDANCE DATA 7 (Y/N) N

"BATTEND"

JANG:
GOSUB 390:
IF AN$ = "Y"
THEN

150:

ELSE
IF AN$ < > "N"
THEN
140:
ELSE
160
150 PRINT ©448, CHR$(31);:
LINE INPUT "PLEASE PUT THE DISK IN A DRIVE (1 - 2 - 3 } AND PRE
§S CENTER> ";ANS$:
0T0 120
160 PRINT @448, CHR$(31);:
PRINT "ON WHICH DRIVE SHALL I WRITE":
LINE INPUT "THE ATTENDANCE DATA ? (1 -2-3) ";DR$:
IF VAL(DR$) < 1 OR VAL(DR$) > 3
THEN
160
170 (LS :
PRINT @448,"HOW MANY DAYS OF ATTENDANCE":
LINE INPUT "DO YOU WISH TO ENTER ? (1 - 23) ", CA$:
(A = VAL(CAS$):
IF CA ¢ 1 0R CA > 23
THEN

170
180 PRINT @448, CHR$(31);
PRINT DO YOU WANT TO ENTER DATA BY TEACHER OR STUDENT ? ":
LINE INPUT "<ENTER> 'T*' FOR TEACHER OR '§' FOR STUDENT (T/S y !
JATS:
IF ATS = "T"
THEN
AT = 1:

ELSE
IF AT$ = "s*
THEN
AT = 2¢

education

PRINT @448, CHR$(31);"HOW MANY PERIODS OF ATTENDANCE PER DAY":

LINE INPUT "WILL BE CONSIDERED A FULL DAY 7 “;ANS$:

PRINT @448, CHR$(31);"THE CURRENT FULL DAY ATTENDANCE IS ";AvV;"

LINE INPUT “DO YOU WISH TO CHANGE IT ? (Y/N) ";ANS$:

FIELD 1,2ASXA$,2ASXB$,2ASXCS,2ASXDS, 2ASXES, 2ASXF$, 2ASXGS, 2ASXHS,

FIELD 1,2ASXA$,2ASXB$,2ASXCS$, 2ASXDS, 6ASDUMMY S, 2ASXHS, 4ASDVS, 2ASX

ELSE
GOTO 180
190 IF YR = 1
THEN
220
200
IF VAL(AN$) < 1 OR VAL(AN$) > 16
THEN
200:
ELSE
AV = VAL (ANS$)
210 GOTO 240
220
PERIODS MINIMUM.
230
1F AN$ = Myw
THEN
200:
ELSE
IF AN$ < > “NY
THEN
230:
ELSE
240
240 IF UR =1
THEN
360
250 TA = 0:
SO = 1:
SR = 0:
NS = 0:
CT = 1:
TF = 2:
PN = 0
260 IF AT = 1}
THEN
CR =1
ELSE
CR = 2
270 DS$ = "TATTEND:" + DRS$:
DR$ = "DATTEND:" + DR$:
OPEN “R",1,DR$:
OPEN “"R",2,DS$
280
2ASX1$, 2ASXJ$ 2ASXK
290 LSET XA$ = MKI$ h
LSET XB$ = MKI$ (A)
LSET XC$ = MKI$ éSDg
LSET XD$ = MKI$ (CR
LSET XE$ = MKI$ (SR)
LSET XF$ = MKI$ (NS):
LSET XG$ = MKI$ (CT):
LSET XH$ = MKI$ (AT;
LSET XI$ = MKI$ (TF
LSET Xd$ = MKI$ (PNg
LSET XK$ = MKI$ (AV
300 PUT 1,1:
CLOSE
310 IF AT =1
THEN
RUN “"TEATTEND":
ELSE
RUN "STDATEND"
320
K$
330 GET 1,1
340 AT = CVI (XH$)
AV = CVI (XK$)
CA = CVI (XBS$)

Program continued

25

350
360

380
390

400
410
420
430
440

education

IF CA =0
THEN
UR = 1:
GOTO 170
CLOSE :
GOTO 310
LSET XH$
LSET XB$
LSET XD$
LSET XK$
PUT 1,1:
CLOSE
GOTO 310
RUN "CLASMENU"
AN$ = LEFT$(ANS$,1):
RETURN
CLS
PRINT ©394,"AN ERROR HAS OCCURED IN THE EXECUTION OF THE PROGRAM
CALLED 'ATTENDANCE INITIALIZATION'."
PRINT TAB(5)"ERROR TYPE = "; ERR / 2 + 1
PRINT TAB{S5)"ERROR LINE "5 ERL
FOR V = 1 TO 5000:
NEXT V
sToP

B oo
=
>

O i

FLE

Program Listing 2. Attendance initialization by teacher

10 :

* ATTENDANCE INPUT BY TEACHER (TEATTEND)

20 :

' COPYRIGHT OCTOBER 1, 1981

30 :

' ULDERIC F. RACINE

40

' 2520 S.E. ALEXANDER DRIVE

50 :

100

110
120
130
140
150

160
170

180

200
210
220

' TOPEKA, KANSAS 66605

CLS :

PRINT CHR$(23):

PRINT @450,"ATTENDANCE INPUT BY TEACHER"

UR = 1:

GOT0 130

DEFINT A - Z

OPEN “"R",1,"DATTEND"

OPEN “R",2,"STDSCHED":

OPEN "R",3,"CLASSES"

FIELD Z,ZASFAS,2ASFB$,2ASFC$,2ASFD$,2ASFE$,2ASFG$,ZASFHS,ZASFI$,

2ASFJ$,2ASFKS

GET 2,1

CVI (FBS$):

cvl (FC$):

cvl (F

CVI (F
(F
F

=

(g
Hononouou
e et S

T = (X * FS) + (RO * 15) + (23 * X) + 4000:
CLOSE :
CLEAR T:
GOTO 120

UR = 0

ON ERROR GOTO 2060

DIM SN$(X),CN$(RO),SAS$(X + 3)

230 FIELD 1,2ASXA$,2ASXB

240
250

260

270
280
290
300

310
320
330

340
350

360
370
380
390

400
410
420

430
440
450

460
470

480

490

500

2ASXI$,2ASXJ%, 2ASXKS
GET 1,1
TA = CVI (XA$):
CA = CVI (XBS$):
SD = CVI §XC$:
CR = CVI (XD$):
SR = CVI (XE$):
CT = CVI (XG$):
AT = CVI {XH$):
TF = CVI (XI$):
PN = CVI (XJ$):
AV = CVI (XK$)
Nl = 0:
NS = 0:
Q= 0:
RN = 2
G=0Q*FS
FIELD 2, (G)ASDUMMYS$, (FS)ASDA$
GET 2,RN
IF DA$ = STRING$(FS,88)
THEN
NS = Ni:
GOTO 350
NI = N1 + 1
SN$(NL) = DAS
Q=0Q+1:
IF Q = UF
THEN
Q= 0:
RN = RN + 1
GOTO 270
Q= 0:
RN = 1:
N2 =0
G=Q* 25
FIELD 3, (G)ASDUMMY$, 25ASDBS
GET 3,RN
IF DB$ = STRING$(25,88)
THEN
NC = N2:
GOTO 470
N2 = N2 + 1

FOR K = 1 TO 25
IF MID$(DB$,Xx,2) = "
THEN

CN${N2) = LEFT$(DB$,K - 1):

GOTO 450
NEXT K
CN§(N2) =
Q=0+ 1:
IF ¢ = 10
THE
Q 0:
RN = RN + 1
GOTO 360
CLOSE :
CN =0
IF PN = O
THEN
PN =1

DB§

P$ = STRING$(63,45):
CN$(0) = "NO CLASS":

education

$,2ASXC$, 2ASXDS, 2ASXES, 2ASXF$, 2ASXGS, 2ASXHS,

P1$ = "1 23 4567 891011 12 13 14 15 16 17 18 19 20 21 22

23"
IF CA < 11
THEN

PT$ = LEFT${P1$,CA * 2):

ELSE

PT$ = LEFT${P1$,21) + MID$(P1$,22,(CA - 10) * 3)

27

Program continued

education

510 IF TF = 1
THEN
2110
520 OPEN "R",3,"TEACHER"
530 G = SR * 25
540 FIELD 3,(G)ASDUMMY$,25ASVNS
550 GET 3,CR
560 IF VN$ = STRING$(25,88)
THEN
CLOSE :
GOTO 1500
570 FOR X1 = 1 TO 25
580 IF MID$(VN$,X1,2) = "
THEN
TN$ = LEFT${VN$,X1 - 1):
GOTO 610
590 NEXT X1
600 TN$ = VN
610 IF LEFT$(VN$,7) = "DELETED"
THEN
620:
ELSE
650
620 SR = SR + 1:
IF SR = 10
THEN

630 CT = CT
640 GOTO 530
650 SR = SR + 1:

¢ CR + 1

660 TN$ = LEFT$(TN$,13)

670 CLOSE

680 Y = {(PN - 1) * 5) + 25:
I=Y+2

690 FOR X1 = 1 TO

700 IF VAL(MID$(SN$(X1) Y,2)) =

THE
cn = VAL(MID$(SN$(X1),Z,3)):
GOTO 720

710 GOTO 1250
720 C = C + 1:
IFC =1
THEN
730:
ELSE
760
730 CLS
740 PRINT "TEACHER : ";TN$ TAB(24)"CLASS : "; LEFT${CN$(CN),16)
TAB(50)"PERIOD : ";PN
750 PRINT P$
760 PRINT @128, CHR$(31);
770 PRINT "STUDENT "3 LEFT$(SN$(X1),24)
780 PRINT P$§
790 PRINT "DAYS “;PT$
800 AN$ = "":
PRINT 8640, "WAS "y LEFT$(SN$(X1),24):
PRINT "PRESENT IN THIS CLASS FOR ALL";CA;:
LINE INPUT “DAYS 2?2 (Y/N } ";ANS:
GOSUB 2050:
IF AN$ = "Y*
THEN
810:

ELSE
IF ANS < > "N"

28

820
830
840
850
860

870
880
890
900
910
320

930

940
950
960

1000

1010
1020

1030

1040

education

THEN
PRINT @640, CHR$(31);:
GOTO 800:

ELSE

920
IF LEN(SA$(X1)) =
THEN

SA$(X1) = STRING$(CA,"1"):
GOTO 1250

Spg = ue

FOR X2 = 1 TO CA

SB = VAL(MID$(SA$(X1),%x2,1))
SB = S8 + 1

= RIGHT$(STR$(SB) 1)
SD$ = SD$ +

SA$(X1) = SD$
GOTO 1250

K = 325:

PC = 1

PRINT @640, CHR$(31);

PRINT "PLEASE ENTER THE DAYS ABSENT OR PRESENT BY PRESSING THE

'A' KEY":
PRINT "FOR ABSENT OR THE ‘'P*
PRINT "YOU DO NOT HAVE TO PRESS ENTER."

PRINT “USE THE "; CHR$(93);" TO BACKSPACE."
PRINT @K, CHR$(95);
V$ = INKEYS
IF v$ = nu
THEN
950
IF ASC{V$) = 8 AND K = 325
THEN
940
IF ASC(VS$) = 8 AND K > 343
THEN
PC = PC - 1:
K=K - 3:
GOTO 940
IF ASC(V$) = 8 AND K < = 344
THEN
PC = PC - 1:
K=K - 2:
GOTO 940
IF V§ = “P" OR V$ = "“A"
THEN
POKE 15360 + K, ASC(V$):
GOTO 1010:
ELSE
GOTO 940
PC = PC + 1
IF K = > 343
THEN
K=K + 3:
ELSE
K=K+ 2
IF PC > CA
THEN
1040:
ELSE
940
PC = 1:

PRINT @640, CHR${31);:
LINE INPUT “IS THIS DATA CORRECT 2 { Y/N)

";ANS:

KEY FOR PRESENT FOR EACH DAY.":

Program continued

29

education

GOSUB 2050:
IF AN§ = "y
THEN

1110:

ELSE
IF ANS < > "N
THEN
1040:
ELSE
1050
1050 PRINT 8640, CHR$(31);"<ENTER> THE NUMBER OF THE DAY THAT IS INC
ORRECT (1 - ";CA;:
LINE INPUT ") ";IC$:
IC = VAL{IC$)
1060 IF IC < 1 OR IC > CA
THEN
1050
1070 K1 = 15685:
IF 1C < 11
THEN
K = (IC - 1) * 2:
K1 = K + K1t
GOTO 1090
1080 K = 21 + ((IC - 11) * 3):
K1 = KL + K
1090 IF PEEK(K1) = 80
THEN
POKE K1,65:
ELSE
POKE K1,80
1100 GOTO 1040
1110 sp$ = "*
1120 FOR X2 = 15685 TD 15703 STEP 2
1130 IF PEEK(XZ) = 80
THEN
SB = 1:
ELSE
S8 = 0
1140 SC = VAL({ MID$(SA${X1),PC,1)):
SC = SC + SB:
IF SC > ¢
THEN
St o= 9
1150 SD$ = SD$ + RIGHTS$(STR$(SC),1)
1160 PC = PC + 1:
IF PC > CA
THEN
1240
1170 NEXT X2
1180 FOR X2 = 15706 TO 15742 STEP 3
1190 IF PEEK(X2) = 80

THEN

SB = 1:
ELSE

SB = 0

1200 SC = VAL{ MID$(SA$(X1),PC,1)):
SC = SC + SB:
IF SC > 9
THEN
SC =9
1210 SD$ = SD$ + RIGHT$(STR$(SC),1)
1220 PC = PC + 1:
IF PC > CA
THEN
1240
1230 NEXT X2
1240 SA$(X1) = SD$
1250 NEXT X1
1260 IF CN = 0

30

1270

1280

1290
1300

1310

1320 Q

1330
1340
1350
1360
1370
1380

1390

1400
1410

1420

education

THEN
CLS

FOR X2 = 1 TO 500:
NEXT X2
C = 0:
CN = 0:
PN = PN + 1:
IF PN > NP
THEN
PN = 1:
GOTO 1290
CN = O:
AN$ = W,
CLS :
PRINT @448,"";:

PRINT @448,TN$;" HAS NO STUDENTS SCHEDULED FOR PERIOD";PN;".":

LINE INPUT “ARE YOU READY TO ENTER THE NEXT PERIOD ? (Y/N) *;

ANS:
GOSUB 2050:
IF AN$ = "y*
THEN
680:

ELSE
IF AN$ < > "N*
THEN
1280:
ELSE
1310
CT = CT + 1
AN$ = " ll:
CLS :
PRINT @448,"";:

LINE INPUT "ARE YOU READY TO ENTER DATA FOR THE NEXT TEACHER ? (

Y/N) ";ANS$:
GOSUB 2050:
IF AN$ = "Y*
THEN
520:

ELSE
IF AN§ < > “N*
THEN
1300:
ELSE
1310
NR = (256 / CA) -1
= 0:

o
=
o0
—_ =

OPEN "R",2,"TATTEND"
FOR X = 1 TO NS
G=Q *CA
FIELD 2,(G)ASDUMMYS$, (CA)ASDVS
LSET DV$ = SA$(X)
IF UR = 1
THEN
1420

SA$(X) = STRING$(CA,88):
UR = 1:

GOTO 1350
PUT 2,RN

Program continued

31

1430
1440

1450
1460

1470
1480
1490
1500

1510
1520
1530
1540
1550

1560

1570
1580
1590

1600 C

1610

1620
1630

1640

1650
1660
1670
1680
1690
1700

1710
1720
1730
1740

1750

1760
1770
1780
1790
1800
1810

education

OPEN “R",1,"DATTEND"
FIELD 1,2ASXA$,2ASXBS$,2ASXCS,2ASXDS, 2ASXES, 2ASXF$, 2ASXGS, 2ASXHS,
2ASX1$,2ASXJ$, 2ASKKS

GET 1,1

LSET XA$ = MKI$ (TA):
LSET XB$ = MKI$ (CA):
LSET XD$ = MKI$ (CR):
LSET XE$ = MKI$ (SR):
LSET XF$ = MKI$ (NS)
LSET XG$ = MKI$ (CT):
LSET XH$ = MKI$ (AT):
LSET XI$ = MKI$ (TF):
LSET XJ$ = MKI$ (PN)
LSET XK$ = MKI$ (AV)
PUT 1,1

CLOSE

RUN "CLASMENY"

CLS :

PRINT @448, "THAT COMPLETES THE TEACHER FILE.":
PRINT "I AM NOW COMPUTING THE ATTENDANCE DATA."
DIM SA(NS + 15)

FOR X = 1 TO N§

FOR Y = 1 TO CA
AC$ = MIDS$(SA$(X),
IF VAL{AC$) = > AV
THEN
AC = AC + 2:
GOTO 1570
IF VAL{ACS$) > 0 AND VAL(AC$) < AV
THEN
AC =
NEXT ¥
SA(X) =
NEXT X

Y,1):

AC + 1
AC

LS :
PRINT @448,"1 AM WRITING THE DATA TO DISK NOW."
IF TA = 0

THEN

X1 = NS:

GOTO 1800
OPEN “R",1,"DATTEND"
RN
X1 1
NX (LOF (1) - 1) * 64:
NX NX + 5
DIM SB(NX)
X =1

FIELD 1,128ASRVS${1),128ASRVS$(2)
GET 1,RN
FOR ¥ = 1 T0 128 STEP 4
IF VAL(MID$(RVS$(X),Y,4)) = 999
THEN
1760
SB(X1) = VAL(MID$(RV$(X),Y,4))
X1 = X1 + 1
NEXT Y
IF X =1
THEN
X = 2:
GOTO 1690
RN = RN + 1:
GOTO 1660
CLOSE
FOR X = 1 TO NS
SA(X) = SA(X) + SB(X)
NEXT X
OPEN "R",1,"DATTEND"
X = 1:
RN = 2

wononou

32

1820

1830
1840
1850
1860

1870

1880

1890
1900

1910

1920
1930
1940
1950

1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

2060

2070
2080
2090

2100
2110
2120

2130
2140
2150
2160

education

SA(XL + 1) = 999:
Cw$ =
FIELD 1,128ASRV$(1),128ASRVE(2)
GET 1,RN
FOR X2 = 1 70 X1 + 1
IF SA{X2) < 10

THEN
CH$ = CH$ + “00" + STR$(SA(X2)):
GOT0 1880

IF SA(X2) < 100

THEN
CH$ = CW$ + "0" + STR$(SA(X2)):
GOTO 1880:

ELSE

CHE = CW$ + STR$(SA(X2))
IF LEN(CW$) = 128
THEN
1890:
ELSE
1920
LSET RVS(X) = CW$:
Cw$ = "
IF X =1
THEN
X = 2:
GOTO 1920
X = 1:
PUT 1,RN:
RN = RN + 1:
GET 1,RN:

GOTO 1920

NEXT X2

LSET RVS(X) = CH$
PUT 1,RN

P
>
+
I
>

COCNO=OO00O

OPEN "R",2,"TATTEND"

LOF (2)

wn

)
-
Wowz=oH o oW oBowono#H

FOR X1 = 1 TO RN
FIELD 2,255ASDUMMY$
LSET DU$ = A$
PUT 2,X1
NEXT X1
GOTO 1440
AN$ = LEFT$(ANS,1):
RETURN
CLS
PRINT @394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
MCALLED 'TEACHER ATTENDANCE INPUT'."
PRINT TAB{S)"ERROR TYPE = “; ERR / 2 + 1
PRINT TAB({5)"ERROR LINE = "; ERL
FOR V = 1 TO 5000:

NEXT v

STOP

OPEN "R",2,"TATTEND"

RN = 1:

Q= 0:

NR = (256 / CA) - 1:

X =0

G =Q * CA

FIELD 2, (G)YASDUMMYS$, (CA)ASDWS

GET 2,RN)
IF DW$ = STRING$(CA,88) Program continued

33

education

THEN

CLOSE :

GOTO 2210
2170 X = X + 1
2180 SA$(X) = DHW$
2190 ¢ = Q + 1:

IF Q = NR
THEN

Q= 0:

RN = RN + 1

2200 GOTO 2130
2210 IF PN = 1

THEN
520
2220 IF SR = 0 AND CR = > 2
THEN
SR = 9:
CR = CR - 1:
GOTO 520
2230 SR = SR - 1:
GOTO 520

Program Listing 3. Class schedule by student printout

10 :
' STUDENT SCHEDULE PRINTOUT { PNTSTCHD)
20 :
' COPYRIGHT OCTOBER 1, 1981
30 :
' ULDERIC F. RACINE
40 :
' 2520 S.E. ALEXANDER DRIVE
50 :
' TOPEKA, KANSAS 66605
160 CLS :
PRINT CHR${23)
110 PRINT @446," STUDENT PRINTOUT"
120 PRINT :
PRINT " PERIOD / TEACHER / CLASS"
130 CLEAR 3000
140 OPEN "R",2,"TEACHER":
RO = LOF (2) * 10
150 OPEN “"R",3,"CLASSES"
RP = LOF (3) * 10
FUR =

160 I R =20
THEN
CLOSE :
GOTO 230

170 OPEN “"R",1,"STDSCHED"
180 FIELD 1§2ASX1$,2ASX2$,ZASX3$,2ASX4$,2ASX5$,2ASX6$,2ASX7$,2ASX8$,
240ASX9S:

190 T = CVI (

= ¢VI
200 DIM CN$(RP), TN$(RO), CN(NP),CT(NP)
210 TN$(0) = "NO TEACHER":

CN$(0) = “"NO CLASS"
220 IF UR = 1

THEN
260

34

230
250
260

270
280
290
300
310

320
330
340

350
360

370
380
390
400

410
420
430

440
450
460
470
480
490

500
510

520
530

540
550

560
570

580

590
600

610

education

T = (RO * 25) + (RP * 25) + 3000

=0

ON ERROR GOTO 1170

G =Ql * 25

FIELD 2,(G)ASDX$,25ASDY$
GET 2,R0

IF DY$ = STRING$(25,88)

THEN

360
X=X +1
TN$(X) = DY$
Ql = Q1 + 1:
IF Q1 = 10
THEN

Q1 = 0:

RO = RO + 1
GOTO0 280
Ql = 0:
RP = 1:
X =0
G = Q1 * 25
FIELD 3,(G)ASDX$,25ASDYS

GET 3,RP

IF DY$ = STRING$(25,88)
THEN

CLOSE :

GOTO 800

0:
RP + 1

=
o
0 oH

GOTO 370

OPEN “R",1,“STDSCHED"

G =FS5 *Q

FIELD 1,(G)ASDZ$, (FS)ASNSS
RN

IF NS$ = STRING$(FS,88)
E

= 1 T0 NP

VAL({ MID$(NS$,v,2))
gAL(MID$(NS$,2,3))
5

CLS -

PS$ = STRING$(60,45)
PRINT PS§$:

PRINT SN§$:

35

Program continued

education

PRINT PS§:
IF HC = 1
THEN
620:
ELSE
650
620 LPRINT PS$
630 LPRINT SN$
640 LPRINT PS$
650 PRINT "PERIOD" TAB(10)"TEACHER" TAB(35)"CLASSES":
PRINT PS$:
IF HC = 1
THEN
660:
ELSE
680
660 LPRINT "PERIOD" TAB(10)"TEACHER" TAB{35)"CLASSES"
670 LPRINT PS$
680 FOR X = 1 TO NP
690 ?R§§T T?B(Z)X TAB(10) LEFT$(TN$(CT(X)),20) TAB(35) LEFTS(CNS(CN
X)},20):
IF HC = 1
THEN
700:
ELSE
720
700 LPRINT TAB(2)X TAB({10) LEFT$(TN${CT(X)),20) TAB(35) LEFT$(CN$(C
N(X)),20)
710 GOTO 730
720 IF X = 7 AND NP > 7
THEN
PRINT :
LINE INPUT "PRESS <ENTER> TO CONTINUE ";AN$:
PRINT @320, CHR$(31);
730 NEXT X
740 PRINT PS$:
IfF HC = 1
THEN
750:
ELSE
760
750 LPRINT PS$:
LPRINT " ®
760 If UR = 3
THEN
UR = 0:
GOTO 1050
770 IF PX = 1
THEN
790
780 PRINT :
LINE INPUT “"PRESS <ENTER> TO CONTINUE";A$
790 GOTO 450

800 CLS
810 PRINT TAB(10)"STUDENT SCHEDULE PRINTOUT":
PRINT :
PRINT "OPTIONS : "
820 PRINT :
PRINT 1 - PRINT SCHEDULE FOR ALL STUDENTS"
830 PRINT " 2 - PRINT SCHEDULE FOR A SPECIFIC STUDENT"
840 PRINT " 3 - RETURN TO MASTER MENU"
850 PRINT :

LINE INPUT “"<CENTER> OPTION SELECTED : ";0P$:
0P = VAL(OPS)
860 If 0P < 1 OROP > 3
THEN
800
870 IF 0P = 3
THEN
1160

36

880

890
900

910

920
930

940
950
960
970
980

990

1000

1010
1020

1030

1040

1050

1060

1070
1080

education

RN = 2:
Q = 0:
UR 0:
0:
o}

HC

PX :

GOSUB 1090

ON OP GOTO 450,900,1160
CLS :

UR
RN

Howou

0:
2:
0

qQ =
PRINT @448, "PLEASE ENTER THE NAME OF THE STUDENT WHOSE SCHEDULE
YOU WISH TO PRINT. IT SHOULD BE EXACTLY AS ENTEREDON THE STUDENT

SCHEDULE FILE."
INPUT "<ENTER) STUDENT'S NAME : ";SN$
K = LEN(SN$):

IFK <=0
THEN
900
OPEN "R",1,"STDSCHED"
G =Q * FS
FIELD 1,{G)ASDZS$, (FS)ASNSS
GET 1,RN
IF NS$ = STRING$(FS,88)
THEN
CLOSE :
GOTO 1020
IF SN§ = LEFT$(NS$,K)
THEN
CLOSE
UR = 3:
GOTO 510

CLS
PRINT @448,"1 CAN NOT FIND A STUDENT NAMED “;SN$:

PRINT "IN MY STUDENT FILES. ARE YOU SURE THE NAME IS THE SAMEAS

IT WAS ENTERED 2"
PRINT :
LINE INPUT “SHALL WE TRY AGAIN (Y/N) “;AN$:
AN$ = LEFT$(ANS,1):
IF ANS = "y*
THEN
500
IF AN§ < > “N*"
THEN
1020:
ELSE
800
PRINT @704, CHR$(31);:
HC = 0:
PX = ¢
PRINT :

LINE INPUT "DO YOU HAVE ANOTHER STUDENT WHOSESCHEDULE YOU WISH T

0 PRINTOUT (Y/N) “;ANS$
ANS = LEFT$(ANS$,1)

IF AN$ = »Y*

THEN

GOSUB 1090:

GOTO 900:

ELSE
[F AN$ < > “N®
THEN
1050:
ELSE

Program continued

37

education

800
1090 CLS :
PRINT @448,"";:
LINE INPUT DO YOU WANT A HARDCOPY { Y/N) ";AN$:
AN$ = LEFT$(ANS,1):
IF AN$ = ®y*®
THEN
1100:

ELSE
IF AN$ < > "N
THEN
1090:
ELSE
RETURN
1100 HC = 1
1110 PRINT @448, CHR$(31);:
LII‘NE INPUT "SHALL I GENERATE A TEST LINE FOR THE PRINTER (Y/N)

JANS :
AN$ = LEFT$(ANS,1):
IF AN$ - "Yll
THEN
1120:

ELSE

IF AN§ < > "N
THEN
1110:

ELSE

1130
1120 LPRINT STRING$(60,88):
GOTO 1110
1130 IF OP =1
THEN
PRINT @448, CHR$(31);:
LINE INPUT "SHALL 1 PAUSE BETWEEN PRINTING SCHEDULES (Y/N) "

sANS
AN$ = LEFT$(ANS,1):
IF AN$ = "N"
THEN
1150:

ELSE
IF AN§ < > "y*
THEN
1130:
ELSE
RETURN
1140 RETURN
1150 PX = 1:
RETURN
1160 RUN "CLASMENU"
1170 CLS :
PRINT €394,"AN ERROR HAS OCCURRED IN THE EXEXCUTION OF THE PROGR
AM'STUDENT SCHEDULE PRINTOUT'.®
1190 PRINT TAB(5)"ERROR TYPE = "; ERR / 2 + 1
1200 PRINT TAB(5)"ERROR LINE = "; ERL
1210 FOR V =1 TO 5000:
NEXT V
1220 ST0P

Program Listing 4. Printout by class name

© PRINTOUT STUDENT/TEACHER/PERIOD BY CLASS { PNTCLASS)
20
' COPYRIGHT OCTOBER 1, 1981

38

30 :

education

" ULDERIC F. RACINE

40 :

' 2520 S.E. ALEXANDER DRIVE

50 :

100

110

120

130
140

150

160

180
190

200
210
220

230

240
250

260
270
280

290

300
310

' TOPEKA, KANSAS 66605
CLS :
PRINT CHR$(23):

PRINT * CLASS PRINT STUDENT / TEACHER / PERIOD "

OPEN “R",1,"STDSCHED":

FIELD 1,2ASX1%,2ASX2$,2ASX3$,2ASX45,2A5X5%,2ASX6%,2ASX7$,2A5X8%:

GET 1,1

T = CVI (X1$):
FS = CVI (X2§):
UF = CVI (X3$):
NX = CVI (X4$):
NY = CVI (X5%):
NP = CVI (X6%):
RN = CVI (X7%):
Q = CVI (X8%)

X = LOF (1) * UF

OPEN “"R"“,3,"TEACHER":
RO = LOF {3) * 10
IF UR = 1
THEN
170
T = (X *FS) + (RO * 25) + 3000:
CLOSE :
CLEAR T:
UR = 1:
GOTO 110
CLOSE :
UR = 0:
ON ERROR GOTO 1020

=
[
TR

1:
RP =1
OPEN “R",1,"STDSCHED"
G =Q *FS
FIELD 1,{G)ASDUS, (FS)ASDAS:
GET 1,RN
IF DA$ = STRING$(FS,88)
THEN

CLOSE :

G0TO 270
N2 = N2 + 1:
SN$(N2) = DA$
Q=0+ 1:
IF Q = UF

Q= 0:
RN = RN + 1
GOTO 210
OPEN “"R",3,"TEACHER"
G = Q1 * 25:
FIELD 3,(G)ASDV$,25ASDBS:
GET 3,R0
IF DB$ = STRING$(25,88)
THEN
CLOSE :
GOTO 620
N3 = N3 + 1:
TN$(N3) = DBS$
Ql = Q1 + 1:
IF Q1 = 10
THEN
Ql = 0:
RO = RO + 1
GOTO 280

DIM SN$(X), TNS(RO),NS(X + 10),PC(X + 10),NP(X + 10)
2:

Program continued

39

education

330 OPEN "R",2,"CLASSES"
340 G = Q2 * 25:
FIELD 2,{G)ASDV$,25ASDCS:
GET 2,RP
350 If DC$ = STRING$(25,88)
THEN
CLOSE :
GOTO 620
360 CN$ = DC$
370 g2 = Q2 + 1:
IF Q2 = 10

380 CLOSE
390 N1 = N1 + 1
400 Y = 25:

410 FOR X =1 TO N2
420 IF VAL{ MID$(SN$(X),Z,3)) = N1
THEN

430:
ELSE
440
430 SC = SC + 1:
NS(sC) = X:
NP(SC) = INT((Y - 24) / 5) + 1:
PC(SC) = VAL(MID$(SN$(X),Y,2))
440 IF 7 + 2 = FS

450 { = 25:

460 CLS
470 P} = STRING$(61,45)
480 PRINT P§:
PRINT “CLASS : ";CN$:
PRINT “STUDENT" TAB(27)"TEACHER" TAB(55)"PERIOD":
PRINT P§
490 IF HC =1
THEN
LPRINT P$:
LPRINT “CLASS : ";CN$:
LPRINT "STUDENT" TAB(27)"TEACHER" TAB(55)"PERIOD":
LPRINT P§:
IF SC =0
THEN
LPRINT “NO STUDENTS CURRENTLY ENROLLED":
GOTO 550
500 IfSC =0
THEN
PRINT “NO STUDENTS CURRENTLY ENROLLED":
60TO 550
510 FIR X = 1 TO SC
520 PRINT LEFT$(SN$(NS(X)),24) TAB(27)TN$(PC(X)) TAB({S57)NP(X)
530 IF HC = 1
THEN
LPRINT LEFT$(SN${NS(X)),24) TAB(27)TN$(PC(X)) TAB(57)NP(X)
540 JEXT X
550 PRINT P$
560 IfHC =1
THEN
LPRINT P$:
LPRINT "
570 IfPX =1

40

580
590
600

610
620
630

660
670
680

720
730

740

750
760

770

education

THEN
590

INPUT "PRESS <ENTER> TO CONTINUE";A$
SC = 0
IF UR =1
THEN
UR = 0:
GOTO 760
GOTO 330
CLS
PRINT "PRINT BY CLASS TITLE":
PRINT @128,"OPTIONS : “:

PRINT @256,"1 - PRINT STUDENTS BY CLASS NAME FOR ALL CLASSES":
PRINT "2 - PRINT STUDENTS BY CLASS NAME FOR A SPECIFIC CLASS*

PRINT "3 - EXIT THIS PROGRAM":
PRINT :
PRINT
LINE INPUT "CENTER> OPTION SELECTED : “;0P$:
0P = VAL(OPS$):
IF 0P ¢ 1 OR 0P » 3
THEN
640
IF 0P = 3
THEN
930
HC = 0:
PX = 0:
GOSUB 940
ON 0P GOTO 330,670
CLS
PRINT 0448,"";:

LINE INPUT "<EQTER> CLASS NAME YOU WISH TO PRINT :

K = LEN(CN$)
0PEN "R",3,"CLASSES"
0‘

1:

0
G = Q1 * 25:
FIELD 3,(G)ASDY$,25ASDAS:
GET 3,RO
IF DA$ STRING$(25,88)
THEN
CLOSE :
GOTO 790
Nl = N1 + 1
IF LEFT${DA$,K) = CN$
THEN
CLOSE
UR = 1:
GOTO 400
Q1 + 1:
IF Ql = 10
THEN
Q1 = 0:
RO = RO + 1
GOTO 700
AN$ " ll:
cLsS
PRINT ©448,"";:

P
[=]
[

";CN$:

LINE INPUT "DO YOU HAVE ANOTHER CLASS NAME YOU WISH TO PRINTOUT

? (Y/N) ";ANS
GOSUB 1010:
IF AN$ = "y*
THEN

670:

ELSE
IF AN$ < > “N"
THEN
760:

Program continued

41

education

ELSE
620
790 CLS :
PRINT ©448,"I CANNOT FIND A CLASS NAMED ";CN$:
PRINT "IN MY CLASS FILE. "
800 PRINT :
LINE INPUT “"SHALL WE TRY AGAIN ? (Y/N) ";ANS:
GOSUB 1010
810 IF AN§ = “Y*
THEN
820:

ELSE
IF AN$ < > "N"
THEN
790:
ELSE
620
820 AN$ = "":
CLS :
PRINT @448,"WOULD YOU LIKE TO SEE A LIST OF CLASSES":
LINE INPUT “"CURRENTLY ON FILE ? { Y/N) ";ANS:
GOSUB 1010
830 IF AN$ = "“y*
THEN
840:

ELSE
IF AN$ < > "N"
THEN
820:
ELSE
670
840 OPEN “"R",2,"CLASSE OPEN :RP = 1:Q1 = 0
850 CLS :
JX = 0
860 G = Q1 * 25:
FIELD 2,(G)ASDX$,25ASDGS:
GET 2,RP
870 IF DG$ = STRING$(25,88)
THEN
CLOSE :
GOTO 920
880 JX = JX + 1
890 PRINT DG$,
900 Q1 = Q1 + 1:

910 IF JX < 25

PRINT :
LINE INPUT "PRESS <ENTER> TO CONTINUE ";ANS$:
JX = 0:
CLS :
GOTO 860
920 PRINT :
LINE INPUT “PRESS <ENTER> TO CONTINUE ";ANS:
GOTO 670
330 RUN "CLASMENU"
940 CLS
PRINT @448,"";:
LINE INPUT °00 YoU WANT A HARDCOPY ? (Y/N)} ";AN$:
GOSUB 1010:
IF AN§ = "y*
THEN
950:

42

education

ELSE
IF AN$ < > "N
THEN
940:
ELSE
RETURN
950 HC = 1
960 PRINT @448, CHR$(31);:

LINE INPUT “SHALL I GENERATE A TEST LINE FOR THE PRINTER ? (Y/N
"ANS .
GOSUB 1010:
IF AN§ = "Y®
THEN
970:

ELSE
IF AN < > "N"
THEN
960:
ELSE

980
970 LPRINT STRING$(60,88):
GOTO 960
980 IF OP = 1
THEN
PRINT @448, CHR$(31);:
LINE INPUT “SHALL I STOP BETWEEN PRINTING CLASSES ? (Y/N)";A

N$:
GOSUB 1010:

ELSE
IF AN$ < > "y
THEN
980:
ELSE
RETURN
990 RETURN
1000 PX = 1:

RETURN
1010 AN$ = LEFT$(ANS,1):
RETURN

1020 CLS :
PRINT ©394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
M 'CLASS PRINTOUT'."
1030 PRINT TAB(S5)"ERROR TYPE = “; ERR / 2 + 1
1040 PRINT TAB(5)"ERROR LINE = "; ERL
1050 FOR V = 1 T0 5000:
NEXT V
1060 STOP

43

EDUCATION

Keeping Track—
Student Scheduling and Attendance
Part IV

by Ulderic F. Racine

Yhis part of the series contains the final three programs. Before proceed-
A. ing, I suggest that you consider disabling the BREAK key in the data in-
put programs. It is crucial to the operation of the programs that the only exit
is through option 0 on the master menu. Each of the files the programs create
is terminated by an end-of-file marker of Xs equal to the length of a record. If
you break the program before this marker has been set, a SUBSCRIPT OUT
OF RANGE error occurs the next time you run the program.

To disable the BREAK key on the Model 111, add a CMD “B” near the
beginning of the program. I use line 99 on the Model I. If you are running
under NEWDOS 80, use POKE 17257,0 instead of the CMD function. I am
not aware of any disables that work with TRSDOS 2.3 or NEWDOS 2.1. If
you use one of these operating systems, warn the operator to exit only
through the master menu. I also suggest that you try a test run once you have
entered all the programs to identify any bugs. There are error routines in
each program that identify the type of error and line number. You should
test all the functions and options before you go into production.

Program Listing 1 is the attendance input by student program (STD-
ATEND). It operates in the same manner as the input by teacher program in
Part ITI. The program displays each student as entered on the schedule file.
You enter data for each class period. The following is an example of the
display screen.

STUDENT: JOHNSON FRED

PERIOD TEACHER CLASS

1 JONES MATH

DAYS 1234567891011 12131415

WAS JOHNSON FRED PRESENT IN THIS CLASS
FOR ALL 15 DAYS (Y/N) ?

44

education

If the student was present for the number of attendance days you enter, type
Y and press ENTER. If the student was not present for the entire attendance
period, the program displays the cursor under the first day. If the student
was present, type P. If the student was absent, type A. There is no need to
press ENTER. If you make a mistake you can back space by using the left-
arrow key.

After you enter the data for each day, you have a final chance to correct
any errors. The program asks if the data is correct. Type N if there is a
mistake, and the program asks for the incorrect number. Type the number
that is incorrect and press ENTER. The correction is made on the screen
display, and the program again asks if the data is correct. If the data is cor-
rect, type Y and press ENTER. The next period appears, and when you have
entered the data for that student, the program asks if you have another stu-
dent to enter. You must respond with either a Y or an N.

Program Listing 2 is the teacher record change program (TEACHANG).
This program allows you to change the name of a teacher previously entered
in the teacher file through one of the scheduling options and replace it with
another name, delete it, or alter the spelling. The program asks you to select

CLASSES Contains all class names entered by schedule input.

10 class names per logical record.
End of file designated by a string of 25 Xs.

TEACHER Contains all teacher names entered through schedule input.
10 teacher names per logical record.

End of file designated by a string of 25 Xs,

STDSCHED Contains the names of all students. Each teacher/class entry is
contained in a five-byte string.

First logical record contains file management information.
Student data begins with the second logical record.

Number of students per logical record is determined by the
number of class periods. The range is 1~4 student records per
logical record.

End of file designated by a string of 25 Xs.

DATTEND Contains all full-time equivalent attendance data on students.
First logical record centains file management information.
Full-time equivalent attendance data begins with second
logical record.

64 subrecords per logical record.
End of file designated by 999.

TATTEND Contains temporary attendance data on students when data is
entered by teacher. This file is used until an attendance cycle is
completed. The size of each record is equal to the number of
days of attendance being entered in the current cycle.

Table 1. Files created by Keeping Track

45

education

T Data being entered by teacher (1) or student (2)
FS Number of bytes allocated to each student record
UF Number of subrecords per logical record
NT Number of teachers to be entered
NC Number of classes to be entered
NP Number of class periods per day
RN Current logical record position

Q Current position of subrecord
SN Estimated number of students to be entered
PN Current period being entered if input by teacher

Table 2. STDSCHED file structure

TA

SD

CR

SR
NS

CT

AT

TF

PN

AV

Total full-time attendance to date for all students. Data is stored
in half-day increments.

Current number of attendance days being entered in the present
attendance cycle.

Number of next student to be entered on the attendance file if the
input is by student.

Next logical record number to be used for attendance input. If the
input is by student, the record specified is the STDSCHED file. If
the input is by teacher, the record specified is in the TEACHER
file.

This is the subrecord multiplier for either type of input.

The number of students currently on file. This is used only when
input is by student.

The number of the teacher for whom attendance is currently be-
ing gathered. This is used only when input is by teacher.

The type of attendance being entered currently. 1 = teacher.
2 = student.

Indicates whether the temporary file TATTEND has been used.
1 = yes. 2 = no.

Indicates the current period number for which attendance data by
teacher is collected.

The number of class periods per day that constitute full-time at-
tendance per day.

Table 3. DATTEND file structure

one of the options. It displays the names of the first 20 teachers in the teacher
file on the screen and asks if the teacher whose name you wish to replace,
delete, or change is listed. If your response is YES, the program asks for the
number of the teacher. Type the number and press ENTER. If you have
entered a valid number, the program allows you to replace, delete, or

46

education

change the spelling of that teacher’s name. If you answer that the name of
the teacher is not displayed, the computer displays the next 20 teachers, and
so on, until it has displayed all the names or you have given a Y response.

Program Listing 3 is the year-to-date attendance printout program
(PNTATTEND) which prints year-to-date attendance data stored in the at-
tendance file. You can run this program at any time after one attendance cy-
cle has been completed. The program gives you three choices. First, you can
print out the attendance file for all students. The program prints the name of
the student and the number of full-time equivalent attendance days current-
ly on file. Each page of listing has a subtotal, and the final page shows the
total full-time attendance and the total number of students. You can print
just the totals, in which case the program prints only the total number of
days of attendance on file, the total number of students, and the total
number of full-time equivalent attendance days. The third option allows
you to print out the attendance total for a specific student.

Table 1 is a summary of the files the programs create. Tables 2 and 3 are
summaries of the program management variables stored in the first logical
record of the schedule and attendance files.

47

education

Program Listing 1. Attendance input by student

10 E ATTENDANCE INPUT BY STUDENT { STDATEND)
20 E COPYRIGHT OCTOBER 1, 1981

30 : ULDERIC F. RACINE

zz E 2520 S.E. ALEXANDER DRIVE

‘' TOPEKA, KANSAS 66605
100 CLS :
PRINT CHR$(23):
PRINT @452,"ATTENDANCE INPUT BY STUDENT"
110 OPEN "R",2,"TEACHER":
RO = LOF (2)
120 OPEN “R",3,"CLASSES":
RP = LOF (3)
130 IF UR = 0
THEN
CLOSE :
T = (RO * 25) +« (RP * 25) + 3000:
CLEAR T:
UR = 1:
GOTO 110
140 ON ERROR GOTO 1620
150 DIM TN$(RO * 10),CN$(RP * 10)

160 Q1 = O
RO = 1:
X =0
170 = Q1 * 25

G

180 FIELD 2,(G)ASDX$,25ASDVS

190 GET 2,R0O

200 IF DV = STRING$(25,88)
N

210 X = X + 1
220 TN$(X) = DV$
230 Q1 = Q1 1:

ql = 0:
RO = RO + 1
240 GOTO 170
250 Q1 = 0O:
RP = 1:
X =0
260 G = Q1 * 25
270 FIELD 3,(G)ASDX$,25ASDV$
280 GET 3,RP
290 IF DV$ = STRING$(25,88)
THEN
340
300 X = X + 1
310 CN$(X) = DV$
1)

320 Q1 = Q1 +
IF Q1 = 10
THEN
Ql = 0:
RP = RP + 1

330 GOTO 260
340 OPEN "R",1,"STDSCHED"
350 FIELD 1,2ASY1$,2ASY2%,2ASY3%,2ASY4%,2ASY58,2ASY6%,2ASY7$,2ASY8%

360 GET 1,1
370 FS = CVI (v2%):
UF = CVI (Y3%)
NP = CVI (Y63)
376 NS = (LOF (1) - 1) * UF

48

education

380 CLOSE

390 DIM SA{NS),SB(NS)

400 OPEN “R",2,"DATTEND"

410 FIELD 2,2ASXA$,2ASXBS$,2ASXCS, 2ASXDS, 2ASXES, 2ASXFS, 2ASXGS, 2ASXHS,
2ASX1$,2ASXJ%, 2ASXKS

420 GET 2,1
430 TA = CVI (XA$):
CA = CVI (XB$):
SD = CVI (XC§)
440 RQ = CVI (XD$):
QA = CVI (XE$):
NT = CVI (XG§):
AV = CVI (XK$)
450 IF TA = 0 AND RQ = 2 AND QA = 0
THEN
CLOSE
GOTO 550
460 Q1 = 0:
RS = 2:
X =0
470 G = Q1 * 4

480 FIELD 2,(G)ASDZ$,4ASZAS
490 GET 2,RS
500 IF VAL(ZA$) = 999
THEN

CLOSE :

GOTO 550
510 X = X + 1
520 SA(X) = VAL(ZAS$):

IA§ <
530 Q1 = Q1 + 1:
IF Q1 = 64
THEN
Q1 = 0:
RS = RS + 1

540 GOTO 470
550 IF NP > 10

THEN

DIM CT(NP),CN(NP)

560 DIM DP(CA)
570 PS$ = STRING$(60,45):

Y1 = 15420:
U$ = “NO TEACHER":
Ul$ = "NO CLASS"

0:
0
580 PT$ = "1 23 456789 101112 13 14 15 16 17 18 19 20 21 22

590 OPEN “R",1,"STDSCHED"
600 G = QA * FS
610 FIELD 1,(G)ASDZS, (FS)ASNSS
620 GET 1,RQ
630 IF NS$ = STRING$(FS,88)
THEN
CLOSE
UR = 1:
CLS :
PRINT @448, THAT IS ALL THE STUDENTS ON THE FILE.":
PRINT "I WILL NOW WRITE THE DATA TO DISK.™:
GOTO 1340
640 SN$ = LEFT$(NS$,24)
FOR X = 1 TO 23
650 IF ASC{ MID$(SN$,X,1)) < > 32
THEN

670
660 IF ASC{ MID$(SN$,X + 1,1)) = 32
THEN
SN$ = LEFTH(SN$,X):

GOTO 680
670 NEXT X Program continued

49

education

680 Y = 25:
7= 27
690 FOR X2 = 1 T0 NP
700 CT(X2) = VAL{ MID$(NS$,Y,2))
710 CN(X2} = VAL(MID$(NS$,Z.3))
720 Y = Y + 5
7=17+5
730 NEXT X2
780 CLOSE

750 FOR X2 = 1 10 NP
760 IF CT{X2) = 0 AND CN(X2) = 0
THEN
770:
ELSE
800
770 NEXT X2
780 SD = SD + 1:
QA = QA + 1:
IF QA = UF
THEN
QA = 0:
RQ = RQ + 1
790 GOTO 590
800 CLS :
PRINT “STUDENT : ";SN$
810 PRINT PS$
820 FOR X = 1 TO NP
830 PRINT "PERIOD : “;X; TAB(15)"TEACHER : "; LEFT$(TN$(CT(X)),15);
TAB(35)"CLASS : "; LEFT$(CNS(CN(X)),15)
840 PRINT PS$
850 PRINT “DAYS ",
860 IF CA < 11

THEN
PT$ = LEFT$(PT$,CA * 2):
GOTO 880

870 PT$ = LEFT$(PT$,21) + MID$(PT$,22,(CA - 10) * 3)
880 PRINT PT$
890 IF CT(X) = 0

PRINT TAB(10)U$;
900 IF CN(X) =0
THEN
PRINT TAB(31)Ul$:
FOR K = 1 TO 250:
NEXT K:
GOTO 1240
910 PRINT @640, "WAS ";SN$;"PRESENT IN THIS CLASS ":
PRINT “FOR ALL";CA;:
LINE INPUT "DAYS 2 (Y/N) ";AN$:
GOSUB 1670:
IF AN$ = "y"
THEN
930:

ELSE
IF AN$ < > "N®
THEN
PRINT @640, CHR$(31);:
GOTO 910 i
920 GOTO 970
930 FOR K = 1 TO CA
940 DP(K) = DP(K) + 1
950 NEXT K
960 GOTO 1230
970 PRINT @640, CHR$(31);
PﬁINT "PLEASE ENTER THE DAYS ABSENT OR PRESENT BY PRESSING THE
] 1 KEYII
PRINT "FOR ABSENT OF THE 'P' KEY FOR PRESENT FOR EACH DAY."
PRINT "YOU DO NOT HAVE TO PRESS <ENTER>.":
PRINT "USE THE *"; CHR$(93);" TO BACKSPACE."

50

980

990
1000
1010

1015

1020

1030

1040

1050
1060

1070

1080

1090

1100

1110

1120
1130

1140

K = 325:
PC = 0

education

PRINT @K, CHR$(95);

V$ = INKEYS
IF vs = no
THEN

1000
IF ASC(V$)
THEN

990
IF ASC(V$)
THEN

[}

n

PC = PC - 1:

K = K + 3:
GOTO 990
IF ASC(V$) =

THEN

8

PC = PC - 1:

THE
POKE 15360

PC = PC + 1
IF K = > 343
THEN

K=K + 3:
ELSE

K=K+ 2
IfF PC = CA
THEN

1080:

ELSE

990
pPC = 0:

+

AND K = 325

AND K > 343

AND K < =

Vg = "A"
K, ASC(V$)

PRINT @640, CHR$(31);:

LINE INPUT “IS THIS DATA CORRECT ? (Y/N) ";AN$:

GOSUB 1670:
IF AN§ = "Y"
THEN

1150:

ELSE
IF AN§ < >
THEN
1080:
ELSE

"N

1090
PRINT “ENTER THE NUMBER OF THE DAY THAT IS INCORRECT (1 - ";CA

{INE INPUT IC§:

IC = VAL(ICS)

IF IC < 1 OR IC > CA

THEN

PRINT @896, CHR$(31);:

GOTO 1090
Kl = 15685:
IF IC < 11

THEN

K = (IC - 1) * 2:

K = K + Kl:
GOTO 1130

]

POKE K,80
GOTO 1080

21 + ((IC - 11) * 3):

Program continued

o1

1150
1160

1170

1180
1190
1200

1210

1220
1230

1240

1250
1260

1270

1280
1290
1300

1305
1310

1320

1330
1340
1350
1360
1370

1380
1390

education

FOR K = 325 TO 343 STEP 2
PC = PC + 1:
IF PC > CA
THEN
1230
IF PEEK(15360 + K) = 80
THEN
DP(PC) = DP(PC) + 1
NEXT K
FOR K = 346 TO 379 STEP 3
PC = PC + 1:
IF PC > CA
THEN
1230
IF PEEK({15360 + K) = 80
THEN
DP(PC) = DP(PC) + 1
NEXT K
IF X + 15 NP
THEN
FTD = 0:
GOTO 1250
PRINT £128, CHR$(31);:
NEXT X
FOR X = 1 TO CA
IF DP(X) = > AV
THEN
FTD = FTD + 2:
GOTO 1280
IF DP(X) < AV AND DP(X) > 0
THEN
FTD = FTD + 1
DP(X) = O
NEXT X
SB{SD) = FTD:
SD = SD + 1
FTD = 0
Qh = QA + 1:

0:
RQ + 1

PRINT @448,"";:
LINE INPUT "ARE YOU READY FOR THE NEXT STUDENT ? (Y/N) ";ANS:
GOSUB 1670:
IF AN$ = "y*
THEN
GOTO 1330:

[}

ELSE
IF AN$ ¢ > "N
THEN
1320:
ELSE
1340
GOTO 590
FOR X = 1 TO NS
SA(X) = SA(X) + SB(X)
NEXT X
IF UR = 1
THEN
RQ 2:
QA
TA
CA
SD 1
OPEN "R",2,"DATTEND"
FIELD 2,2ASXA$,2ASXBS$,2ASXCS,2ASXDS, 2ASXES, 2ASXF$, 2ASXGS, 2ASXHS,
2ASX1%$,2ASXJd%,2ASXKS

now o

0:
TA + CA:
0:

on

52

education

PRINT @394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA

1400 GET 2,1
1410 LSET XA$ = MKI$ (TA)
LSET XB§ = MKI§ (CA)
1420 LSET XC$ = MKI$ (SD):
LSET XD$ = MKI$ (RQ)
1430 LSET XE$ = MKI$ (QA):
LSET XF$ = MKI$ (NS)
LSET XK$ = MKI§ (AV)
1440 PUT 2,1
1450 Q = O:
RB = 2
1460 FOR X = 1 TO NS
1470 G = Q * 4
1480 FIELD 2,(G)ASDX$,4ASDYS
1490 IF UR = 1
THEN
GET 2,RB
1500 IF uZ =1
THEN
1540
1610 IF SA(X) < 10
THEN
GH$ = "000" + RIGHTS$(STR$(SA(X)),1):
GOTO 1540
1520 IF SA(X) < 99
THEN
GH$ = "00" + RIGHTS(STR$(SA{X)),2)
GOTO 1540
1530 GH$ = "0" + RIGHT$(STR$(SA(X)),3)
1540 LSET DY$ = GH$
1550 PUT 2,RB
1560 IF UZ = 1
THEN
1600
1570 Q = Q + 1:
IF Q = 64
THEN
Q = 0:
RB = RB + 1
1580 NEXT X
1590 GH$ = "0999"
uz = 1:
GOTO 1470
1600 CLOSE
1610 RUN “CLASMENU"
1620 CLS :
MCALLED 'STUDENT ATTENDANCE INPUT'."

1630
1640
1650

1660
1670

PRINT TAB(5)"ERROR TYPE =
PRINT TAB(5)"ERROR LINE =

FOR V
NEXT
STOP

v

1 TO 5000:

ANS = LEFT$(ANS,1):

RETUR

N

",

; ERR /2 + 1

",

3

ERL

10 :
20
30
40

Program Listing 2. Teacher record change

TEACHER FILE NAME CHANGE (TEACHANG)

COPYRIGHT OCTOBER 1,

ULDERIC F. RACINE

2520 S.E.

1981

ALEXANDER DRIVE

Program continued

53

education

50 :
' TOPEKA, KANSAS 66605
100 CLEAR 5000
110 ON ERROR GOTO 690
120 OPEN "R",1,"TEACHER":
RN = LOF (1):
IF RN = 0
THEN
740
130 NR = RN * 10:
IF NR > 100
THEN
NR
N =

99

-

140

0:
NS(NR + 5)
150 * 25
160 FIELD 1,(G)ASDUMMMY$,25ASDAS
170 GET 1,RN
180 IF DA$ = STRING$(25,88)
THEN
CLOSE :
NT = X:
GOTO 270
190 X = X + 1
200 T$ = DAS:
K = LEN(T$)
210 FOR X1 = 1 T0O K
220 IF MID§(T$,x1,2) = "
THEN
T$ = LEFT$(TE, X1 - 1):
GOTO 240

T =
M

O E >0

0
0
T
Q

230
240

250

260 GOTO 150
270 CLS :
PRINT "TEACHER'S FILE NAME CHANGE OPTIONS :":
“REPLACE":
"CORRECT SPELLING":
"DELETE"
280 PRINT @128,"1 - REPLACE A TEACHER CURRENTLY ON THE FILE WITH A N
EW TEACHER"
290 PRINT "2 - CORRECT THE SPELLING OF AN EXISTING TEACHER'S NAME"
300 PRINT "3 - DELETE A TEACHER'S NAME FROM THE FILE"
310 PRINT "4 - RETURN TO THE MASTER MENU"
320 PRINT B448,"<ENTER> OPTION NUMBER (1 - 4) ";:
LINE INPUT OP$:
0P = VAL(OPS$):
IF OP <1 OR OP > 4
THEN
270
330 IF OP = 4
THEN

b=
el
—
n
e

nowou

340 CLS

350 FOR X = 1 TO NT
360 IF QU = 1

370

380

390

400

410

420

430
440

4590

460

education

IF X < 10
THEN
PRINT TAB(1)X;" - “;TN$(X);:
QU = 1:
GOTO 410
PRINT X3" - “;TN$(X);:
QU = 1:
GOTO 410
IF X < 10 PRINT TAB(31)X;" - “;TN$(X):
QU = 0:
GOTO0 410
PRINT TAB(30)X;" - ";TN$(X):
Qu = 0:
Qv = QV + 1
IF QV < 10
THEN
430
ELSE
PRINT :
PRINT "IS THE TEACH
PRINT "LISTED ABOVE
LINE INPUT " (Y/N
GOSUB 680 :
IF AN$ = "y"
THEN
450 :

HER.S NAME YOU WISH T0 “;A$(0P):
) FIANS:

ELSE
IF ANS < > "N
THEN
PRINT @640 CHR$(31);:
GOTO 410

ELSE
420
IF Qv = 10
THEN
Qv = 4
CLS
NEXT X
PRINT @704,"1S THE IEACHER S NAME YOU WISH T0 ";A${0P):
PRINT °LISTED ABOVE "
LINE INPUT " (Y/N) i ANS
GOSUB 680 :
IF AN$ = "y*"
THEN
450 :

ELSE
IF AN$ < > “"N*
THEN
PRINT @704, CHR$(31);:
GOTO 440 :

ELSE
GOTQ 270
A$(4) = "NEW TEACHER'S NAME":
A$(5) = "NEW SPELLING":
PRINT @640, CHR$(31);
PRINT :
PRINT “<ENTER> THE NUMBER OF THE TEACHER YOU WISH TO “;A$(0P):
LINE INPUT “TEACHER # “;NN$:
N = VAL{NN$):
IF N <1 ORND>NT
THEN
450
PRINT @640, CHR$(31);:
PRINT :
PRINT “TEACHER #";N;"IS "“;TN$(N):
PRINT “IS THIS THE NAME vOUu WISH TO * sA$(0P);: Program continued

55

470

480

490

500

510
520

540

education

LINE INPUT " 2 (Y/N) ";ANS:
GOSUB 680 :
IF AN = "Y"
THEN
470 :

ELSE
IF AN$ < > "N®
THEN
460 :
ELSE
340
1f 0P = 3
THEN
560 :
ELSE
CLS
PRINT @448, "TEACHER #";N;" @ ";TN$(N)
PRINT :
PRINT "PLEASE ENTER THE ";A$(0P + 3):
PRINT “LAST NAME <SPACE> FIRST NAME <SPACE> MIDDLE INITIAL (IF A
NY)H
IF 0P =2
THEN

510
LINE INPUT "NEW TEACHER'S NAME : “;T$:
GOTO 520
LINE INPUT “NEW SPELLING : “;T$
IF LEN(TS) =
THEN
PRINT @512, CHR$(31);:
GOTO 480
PRINT @512, CHR${31);
PRINT "YOU WISH TO REPLACE "STNG(N):
PRINT "WITH ";T$;" .";:
LINE INPUT " 1S THIS CORRECT 7 (Y/N) ";AN$:
GOSUB 680 :
IF AN$ = "Y"
THEN
540 :

ELSE
IF AN$ < > "N"
THEN
520 :
ELSE
470

TN$8N%76 T$

550 GOT

560
570
580

590
600
610
620
630

640
650
660
670
680

THE (N) = "DELETED":

GOTO 270

OPEN “R",1,"TEACHER":

4$ (NT + 1) = STRING$(25,88)

=1 TONT + 1
* 25
LD 1,(G)ASDUMMY$,25ASDAS
T DA$ = TN$(X)
+

PUT 1,RN

CLOSE

RUN "CLASMENU"

M$ = LEFT§(ANS,1):

56

education

RETURN
690 CLS :
PRINT @394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
MCALLED 'TEACHER NAME CHANGE',"
700 PRINT TAB(5)"ERROR TYPE = "; ERR / 2 + 1
710 PRINT TAB(S5)"ERROR LINE = "; ERL
720 FOR X = 1 TO 5000:
NEXT
730 RESUME 670
740 CLS :
PRINT @448, "THERE IS NO TEACHER FILE ON THE DISKS CURRENTLY":
PRINT "IN THE DRIVES. 1 AM RETURNING YOU TO THE MASTER MENU."
750 FOR X = 1 TO 1000:
NEXT X
760 GOTO 670

Program Listing 3. Year-to-date attendance printout

Y0 VEAR-TO-DATE ATTENDANCE PRINTOUT (PNTATEND)
201 CoPYRIGHT 0CTOBER 1, 1981

Y1 JLoERIc F. RACINE

Y01 2520 s.E. ALEXANDER DRIVE

20 TOPEKA, KANSAS 66605
100 CLS :

PRINT CHR$(23):

PRINT @454,"YEAR-TO-DATE ATTENDANCE"
110 UR = 1
120 OPEN "R",1,"STDSCHED"
130 FIELD 1,2ASFAS$,2ASFBS$,2ASFCS,14ASDUMMYS
140 GET 1,1
150 FS =
160 UF =
170 X = {
180 IF UR

- 1) * UF
T = (X * FS) + 1500:

GOTO 120
190 ON ERROR GOTO 970
200 DIM SN$(X + 10)
210 RN = 2:
X =0
220 G = (UF * FS) - 1
230 FIELD 1,(G)ASDSS
240 GET 1,RN
250 FOR Y = 1 TO G STEP FS
260 SS$ = MID$(DS$,Y,24)
270 IF SS$ = STRING$(24,88)
THEN
NS = X:
CLOSE :
60TO 320
280 X = X + 1
290 SN$(X) = SS$:
SS$

300 NEXT Y
310 RN = RN + 1:
GOTO 240
320 OPEN "R",2,"DATTEND":

XX = LOF (2): Program continued

57

education

GOTO 950
330 FIELD 2,2ASXAS$,20ASDUMMYS
340 GET 2,1
350 TA = CVI (XA$)
360 RN = 2:
DIM SN(NS + 10):
C = 1:
X 0
370 FIELD 2,128ASD$(1),128ASD$(2)
380 GET 2,RN
390 FOR ¥ = 1 TO 128 STEP 4
400 AC = VAL(MID$(D$(C),Y,4))
410 IF AC = 999
THEN
CA = X:
CLOSE :
GOTO 470
420 X = X + 1
430 SN(X) = AC
440 NEXT Y
450 IF € = 1

PRINT “YEAR-TO-DATE ATTENDANCE PROGRAM":

PRINT @128,"0PTIONS :":

PRINT ©256,"1 - PRINTOUT A LIST OF ALL STUDENTS ON THE FILE":
PRINT "2 - PRINTOUT TOTALS ONLY":

PRINT "3 - PRINTOUT ATTENDANCE FOR A SPECIFIC STUDENT":
PRINT "4 - RETURN TO MASTER MENU"

480 UR = O:
GT = 0:
ST = 0:
PO = 0

490 PRINT @640,"";:
LINE INPUT "CENTER> OPTION # (1 - 4) ";0%:
0 = VAL(0$):
IFOC10ROD>4
THEN
PRINT @640, CHR${31);:
GOTO 490
500 ON 0 GOTO 510,690,770,880

510 GOSUB
520 P1 STRING$(40 45):
P2% "YEAR-TO-DATE ATTENDANCE IN FULL-TIME EQUIVALENT DAYS":
P33 "TOTAL DAYS ENTERED :":
“STUDENT":
"DATE & ":
"NUMBER 0F "
"DAYS PRESENT"

o
-y

R s e s 4

[T T T [N)

540 CLS

THEN
LINE INPUT "PRESS <ENTER> WHEN YOU ARE READY TO PRINT ";ANS$:

POKE 16424,67:

POKE 16425,1:

CLS
550 C =
560 FOR X =1
570 PRINT SN$(X), TAB(25) USING "###.#" SN(X) / 2:

58

580

610
620
630

640
650
660

690

700
710
720
730
740

750

education

C=0C+ 1
IF PO < > 1 AND C = 15
THEN
LINE INPUT "PRESS <ENTER> TO CONTINUE ";ANS$:
C=1:
CLS :
GOTO 620
IF PO = 0
THEN
620
IF PO = 1 AND €2 = 1
THEN
LPRINT P2%:
LPRINT * *:
LPRINT P5%;D7$:
LPRINT P3%;TA:
LPRINT TAB(26)P6%:
LPRINT P4%; TAB(24)P7%:
LPRINT P1§:
C2 =20
LPRINT SN$(X); TAB(25) USING "###.4#";SN(X) / 2
ST = ST + SN(X} / 2
IF PO = 1 AND PEEK{16425) = > 60
THEN
LPRINT P1%:
LPRINT "SUBTOTAL"; TAB(24) USING "#####.4";ST:
GT = GT + ST:
LPRINT CHR$(12)
C2 = 1:
ST = 0
NEXT X
GT = GT + ST
IF PO = 1
THEN
LPRINT P1§:
LPRINT “SUBTOTAL"; TAB(24) USING “#####.4";ST:
LPRINT * .
LPRINT “TOTAL DAYS ENTERED"; TAB(24) USING "#4###.4";TA:
LPRINT “TOTAL NUMBER OF STUDENTS"; TAB(24) USING “####";NS
PRINT P15:
PRINT “"SUBTOTAL"; TAB(24) USING “####.4";ST:
PRINT :
PRINT "TOTAL DAYS ENTERED"; TAB(24) USING “####.4";TA:
PRINT “TOTAL NUMBER OF STUDENTS™; TAB(24) USING “HEHE" NS
PRINT :
LINE INPUT "PRESS <ENTER> TO CONTINUE “;AN$:
GOTO 470
GOSUB 890:
UR = 1:
GOSUB 520:
UR = 0:
GT = 0
FOR X = 1 TO NS
GT = GT + SN(X) / 2
NEXT X
CLS
PRINT P2%:
PRINT :
PRINT P3%;TA:
PRINT P1%:
PRINT “TOTAL ATTENDANCE"; TAB(24) USING THEESETGT:
PRINT “TOTAL NUMBER OF STUDENTS"; TAB({24) USING "####";NS
IF PO = O
THEN
680
LPRINT P2%:

LPRINT P5§;0T$:

LPRINT P3§;TA:

LPRINT P1§:

LPRINT "TOTAL ATTENDANCE"; TAB(24) USING "#####-#"36T: Program continued

59

education

LPRINT "TOTAL NUMBER OF STUDENT"; TAB(24) USING "####";NS:
LPRINT P1§:
GOTO 680
770 CLS
780 PRINT @448,"ENTER THE NAME OF THE STUDENT":
PRINT "LAST NAME <SPACE> FIRST NAME <SPACE> MIDDLE INITIAL (IF A

NY)":
LINE INPUT “STUDENT'S NAME : ";SU$
790 GOSUB 890

800 K = LEN(SU$)
810 FOR X = 1 TO NS
820 IF LEFT$(SN$(X),K) = SU$

THEN

850

830 NEXT X
840 CLS :
PRINT @448,"I CAN NOT FIND ";SU$;" IN THE FILE.":
FOR X = 1 TO 400:

NEXT X:
GOTO 470
850 CLS :

PRINT @448,SN$(X):
PRINT "TOTAL ATTENDANCE TO DATE"; USING "###.#";SN(X) / 2:
IF PO ¢ > 1
THEN
870
860 LPRINT P5$:DT$:
LPRINT SN${X):
LPRINT "TOTAL ATTENDANCE TO DATE - "; USING "###.#";SN(X)
/2
870 PRINT :
PRINT "DO YOU HAVE ANOTHER STUDENT WHOSE ATTENDANCE":
LINE INPUT “YOU WISH TO SEE ? (Y/N) ";ANS:
GOSUB 930:
1F AN$ = "Y*
THEN
770:

ELSE
IF AN$ < > "N"
THEN
870:
ELSE
470
880 RUN "CLASMENU"
890 CLS :
PRINT @448,"";:
LINE INPUT "DO YOU WANT A HARDCOPY OF THIS LIST (Y/N) ";ANS:
GOSUB 930:
IF AN$ = "Y*
THEN
PO = 1:
GOTO 900:
ELSE
IF AN$ < > "N"
THEN
890:
ELSE
RETURN
900 GOSUB 940:
€2 = 1:
LINE INPUT "PLEASE ENTER TODAY'S DATE (MM/DD/YY) ";DT$:
IF LEN(DTS$) < > 8
THEN
900
910 GOSUB 940:
LINE INPUT “SHALL I GENERATE A TEST LINE ? (Y/N) ";ANS:
GOSUB 930:
IF AN§ = "y©

60

education

THEN
920:

ELSE
IF AN§ < > “N"
THEN
910:
ELSE
RETURN
920 LPRINT “THIS IS A TEST LINE--vomcmmo i "
GOTO 910
930 AN$ = LEFT$(ANS,1)
940 PRINT @448, CHR$(31);:
RETURN
950 CLS :
PRINT ©@448,"Y0OU MUST COMPLETE ONE ATTENDANCE CYCLE BEFOREI CAN P
RINTOUT ANY ATTENDANCE DATA."
960 GOTO 880
970 CLS :
PRINT @394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
M*'YEAR-TO-DATE-ATTENDANCE'."
980 FOR X = 1 TO 5000:
NEXT X
990 STOP

61

GAMES

Roulette
Five Short Games
Rubik’s Cube™ Manipulator

63

GAMES

Roulette

by Paul G. Ramsteyn

To play roulette in a casino, you select a combination of odds and risk.
The ratio of the odds to the risk is fixed (36/37). You have a great chance
of winning a little money or a small chance of winning a lot.

The roulette table consists of a roulette wheel which contains alternate
red and black spaces numbered from 1 through 36. They are not in sequen-
tial order. The 0 space is green. On the green layout, the numbers are in
numerical order. There are also compartments for passe, manque, pair, im-
pair, noir, rouge, and dozens. The players can place their bets until the ball
is rolling and “rien ne vas plus” has been called out.

When the ball falls into one of the numbered compartments, one of the
croupiers rakes in the lost bets, which go into the bank, and pays the win-
ning players.

About the Program

This program offers a limited number of possible bets. It makes no dif-
ference whether you bet $180 on red or 18 times $10 on the single red
numbers. Any combination is acceptable. Every bet is broken down into
bets on single numbers (0-36) and placed in the array G(A0,36), where A0 is
the number of players. The players’ names are in X$(A0), and their balances
are in S(A0). In addition, some variables are used in loops and for the READ
statements. Program Listing 1 contains the Roulette program.

Break Disable

You can not use the BREAK key without losing your variables. In line
690, a routine is POKEd into memory area 32743-32767 decimal. The data
for this is in lines 130-140. Program Listing 2 shows you this routine in
Editor/Assembler format.

If you type a BREAK character, the keyboard driver in Level II ROM
ends in an RST 28. This jumps to 400CH and is normally sent back with a
return. In this case, my check routine is met before the return. If necessary,
the character is changed into 00. POKE 16384,201 enables the BREAK.

Graphics

A second machine-language routine (Program Listing 3) is POKEd into
memory area 31894-32738. The data is in lines 150-670. The routine is used

65

games

in line 700 to make up the roulette turntable. Because of these routines, you
must answer MEM SIZE?P with 31800 to reserve memory. When POKEing is
finished, the first lines are deleted, and you need to run the program again to
play the game.

The Flow of the Program

In lines 1110-1130, the program asks for the players’ names and DIMen-
sions the arrays. Then, every player gets a turn. You must type QUIT tostop
the game. This can only be done by the first player before any bets are made.

In placing bets, you have 10 possibilities which are explained in lines
1290-1520 (EXPLANATION) and in lines 1530-1620 (LAYOUT). If
necessary, you must give detailed information about the bet. G(A0,36) is
filled to conform to the amounts (lines 1370-1500). You can enter @ to exit
the betting mode, but this does not mean your turn is over. You can ask for
an explanation and place more bets.

When everyone has had a turn, the turntable appears on the screen, the
ball rolls to one of the numbers, and this number and its color are displayed
(lines 1820-2040). Then, the gains and losses are computed, the balances are
displayed (lines 1600-1720), G(A0,36) is cleaned, and the procedure starts
over.

Once you QUIT the roulette, you see your net results. The bank’s result is
divided, and the computer is blocked. You can then turn it off.

66

games

Program Listing 1. Roulette

100 :

' Tk kkkrhkkkhkn
110 :

! ROULETTE 1.4
120 :

; *okok kok ok okok ok ok k ok
130 DATA 33,12,64,54,195,33,243,127,34,13,64,201
140 DATA 71,123,254,4,32,2,175,201,120,201,0,0,0
150 DATA -67,63,24,-83,-100,-40,-99,-36,-97,137,76,101
160 DATA 28,28,28,28,44,76,44,28,76,44,76,44,28,76,44,28,76,44
170 DATA 76,44,28,44,76,44,28,76,44,76,44,28,76,44,28,76,44,76
180 DATA 44,28,76,44,76,44,28,44,76,44,28,44,76,44,28,44,44,28
190 DATA 76,44,44,28,76,44,28,28,28,28
200 DATA 28,28,28,28,49,57,49,28,56,33,41,49,28,40,49,28,56,33
210 DATA 57,49,28,49,56,33,28,40,49,41,48,28,40,49,28,56,33,57
220 DATA 48,28,40,49,56,33,28,49,41,48,28,49,41,49,28,41,49,28
230 DATA 56,33,49,28,56,33,28,28,28,28
240 DATA 76,44,76,44,29,31,29,28,31,29,31,29,28,28,29,28,31,29
250 DATA 31,29,28,29,31,29,28,31,29,31,29,28,31,29,28,31,29,31
260 DATA 29,28,31,29,31,29,28,29,31,29,28,29,31,29,28,28,29,28
270 DATA 31,29,29,28,31,29,60,76,60,76
280 DATA 56,33,56,33,28,28,28,28,28,28,28,28,28,28,28,28,28,28
290 DATA 28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28
300 DATA 28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28
310 DATA 28,28,28,28,28,28,68,42,38,72
320 DATA 31,29,79,45,28,28,28,28,28,43,31,31,31,31,31,31,31,31
330 DATA 31,79,79,79,79,79,79,79,79,79,79,79,31,91,76,28,28,28
340 DATA 51,49,28,28,60,91,31,79,79,79,79,79,79,79,79,79,79,31
350 DATA 91,28,28,28,28,28,62,63,78,31
360 DATA 28,28,41,49,28,28,28,28,28,91,91,43,43,43,43,91,28,28
370 DATA 28,28,28,28,28,28,28,28,28,28,28,31,28,28,28,28,28,28
380 DATA 41,33,28,28,28,28,28,28,28,28,28,28,40,40,88,28,91,28
390 DATA 91,28,28,28,28,28,70,36,74,28
400 DATA 28,76,47,45,28,28,28,28,28,91,91,28,28,28,28,91,28,28
410 DATA 28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28
420 DATA 28,28,28,28,28,28,28,28,28,28,28,28,28,28,31,28,91,28
430 DATA 91,28,28,28,28,28,62,76,62,60
440 DATA 28,40,49,49,28,28,28,28,28,91,91,31,31,91,31,31,68,56
450 DATA 72,28,88,28,48,68,48,28,88,40,36,72,56,36,72,56,68,56
460 DATA 32,28,28,28,28,28,28,28,28,28,28,28,28,40,43,28,91,28
470 DATA 91,28,28,28,28,28,36,74,38,74
480 DATA 28,47,45,45,28,28,28,28,28,91,91,28,28,91,76,28,70,81
490 DATA 86,28,91,76,49,70,81,44,91,77,28,70,49,28,70,49,70,83
500 DATA 44,28,60,76,76,76,76,76,76,76,79,79,79,79,79,79,79,76
510 DATA 91,28,28,28,28,28,62,79,28,30
520 DATA 28,49,41,49,28,28,28,28,28,28,28,28,28,28,28,28,28,28
530 DATA 28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28
540 DATA 28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28
550 DATA 28,28,28,28,28,28,70,72,28,28
560 DATA 28,29,28,61,76,60,76,28,60,28,60,76,60,76,28,60,60,76
570 DATA 28,60,76,60,60,28,60,76,28,60,60,76,28,60,76,60,76,28
580 DATA 60,76,28,60,76,60,76,28,60,60,28,60,76,60,76,28,60,60
590 DATA 76,28,60,76,60,76,30,31,28,28
600 DATA 28,28,28,68,42,70,70,28,70,28,36,74,36,74,28,70,70,72
610 DATA 28,68,42,38,74,28,38,72,28,70,70,70,28,68,42,36,74,28
620 DATA 70,74,28,36,74,70,70,28,70,70,28,36,74,70,72,28,70,36
630 DATA 74,28,68,42,36,74,28,28,28,28
640 DATA 28,28,28,30,31,30,31,28,30,28,30,31,30,31,28,30,30,31
650 DATA 28,30,31,28,30,28,30,31,28,30,30,31,28,30,31,30,31,28
660 DATA 30,31,28,30,31,30,31,28,30,30,28,30,31,30,31,28,30,30
670 DATA 31,28,30,31,28,30,28,28,28,28
680 CLS :

PRINT CHR$(23):

PRINT @524,"FRENCH ROULETTE"
690 FOR X = 32743 TO 32767:

READ A:
POKE X,A:
NEXT Program continued

67

710

720

740
750
760

800
810
820
830
840
850
860
870
880
890

920

930
940

970
980

990

games

POKE 16526,231:

POKE 16527,127:

X% = USR(0)

FOR I =1 TO 844:

READ J:

POKE I + 31894,J + 100:
NEXT

POKE 16526,151:

POKE 16527,124

CLS

PRINT @512,"NOW R U N THE PROGRAM. GOOD LUCK!®
DELETE 100 - 740

GOTO 1110
CLS :
X = USR{0):

PRINT @979, "NOW PRESS <ENTER> FOR ROLL";:

CRl

X$ =
X$ = INKEYS:
IF X$ ¢ » *®

THEN

890
PRINT €989, CHR$(199);:
FOR I = 1 T0 170:

NEXT
PRINT €989, "<ENTER>";:
FOR I = 1 TO 300:

NEXT :
GOTO 770
DATA 228,40,28,167,77,29,172,79,31,176,79,31,179,76,28,183
DATA 77,29,186,79,31,251,40,28,379,40,28,507,40,28,635,40
DATA 28,697,79,76,693,63,60,689,63,60,685,63,60,681,63.60
DATA 677,79,76,673,63,60,668,63,60,665,79,76,661,63,60,656
DATA 63,60,652,63,60,648,63,60,645,63,60,580,40,28,452,40
DATA 28,324,40,28,196,40,28,133,79,31,137,77,29,141,76,28
DATA 145,77,29,150,79,31,154,77,29,158,79,31,162,77,29
DATA 1,24,7,36,5,20,11,32,17,28,19,15,34,13,26,3,22,9,30
DATA 4,25,6,29,18,21,8,37,12,33,31,16,27,2,23,10,35,14
IF ASC(X$) ¢ > 13

THEN

770
PRINT 8979," RIEN NE VAS PLUS "y
FOR I = 1 TO 100:

NEXT
RANDOM :
DO = RND(37) - 1:
DI = RND(4) + 4:
+ 1

[]

A9 A9
RESTORE
FOR I =1 70 111:

READ J:

NEXT
PRINT @9 CHR$(220);
FOR I = 36:

I[F NOT I = DO, NEXT
FOR 1 =1 T0 DI1:

FOR K = 1 70 37:
READ I1,12,I3
POKE T1 + 15360,12 + 100:
FOR X =1 70 1 * 3:
NEXT :
POKE I1 + 15360,13 + 100
NEXT :
NEXT
RESTORE :
FOR I =1 70 J:
READ I1,12,13:
POKE 11 + 15360,12 + 100
FOR X = 1 T0 12 + 4 * [:

68

games

NEXT
1000 IF I < > J, POKE Il + 15360,13 + 100:
NEXT
1010 IF DO = 0,%X$ = "“.....":
GOTO 1030
1020 IF J / 2 = INT(J / 2),%$ = "ROUGE":
ELSE
X$ = “NOIR"
1030 PRINT @408,D0;": ";X$;:
GOSUB 1570

1040 FOR J = 1 TO AO:
FOR K = 0 TO 36:
G(J,K) = 0:
NEXT :
NEXT
1050 GOSUB 1060:
GOTO 1600
1060 PRINT ©979,“PRESS <SPACE-BAR> TO CONTINUE";:
X

1070 X$ = INKEYS:
IF X§ ¢ > &
THEN
1100:
ELSE
PRINT @985, CHR$(203
1080 FOR X = 1 TO 15
NEXT :
PRINT @985,"<SPACE-BAR>";
1090 FOR X = 1 TO 300:
NEXT :
GOTO 1070
1100 IF ASC(X$) < > 32
THEN
1070:
ELSE
RETURN
1110 CLS :
INPUT "THE NUMBER OF PLAYERS PLEASE";A0:
PRINT
1120 DIM X$(A0) S(AO) G(AO,36)
1130 FOR I =
PRINT “NAME OF PLAYER #"I;
INPUT X$(I):
NEXT
1140 PRINT “EACH PLAYER IS FREE TO BET AS MUCH AS HE WANTS,"
1150 PRINT "UNLESS THE GROUP WANTS TO OBSERVE LIMITATIONS.®
1160 GOSUB 1060
1170 FOR I = 1 TO AO
1180 CLS :
PRINT "YOUR TURN, “X$(I);:
PRINT @128, "MENY :*

1190 PRINT " = PLACE BETS":
PRINT "<X> = EXPLANATION"
1200 PRINT "<L> = LAYOUT":
PRINT "<E> = END OF YQUR TURN"
1210 PRINT “<QUIT> = END OF ROULETTE":
C§ =
1220 INPUT "ENTER YOUR CHOISE PLEASE ?";C$
1230 H =
FOR J = 0 70 36:
IF G(I,d) ¢ > O,H = 1:
NEXT :
ELSE
NEXT
1240 IF C$ = "B"
THEN
1270:
ELSE
iF cs = Y
THEN Program continued

69

1250

1260

1270
1280
1290

1300
1310
1320
1330

1340

1350
1360

1370

1380

1390

1400

1410

1420

games

1730

!F Cs = IlLIl
THEN

1820:
ELSE

IfF C$ = “"E", NEXT I:

GOTO 760
IF C$ = "QUIT" AND I = 1 AND H = 0
THEN

1660:

ELSE
GOTO 1180
CLS :
PRINT X${1)", PLACE BETS PLEASE™; CHR$(204);
PRINT :TO EXIT THIS MODE, ENTER <@>":

c$ - "

PRINT @192,"0PTION P
INPUT C$:

IF C$ "g*, GOSUB 1360

IF C$ = "R", GOSUB 1380:

IF C$ = "N", GOSUB 1400
IF C$ = "E", GOSUB 1420:

IF C$ = "“0", GOSUB 1430
IF C$ = "L", GOSUB 1450:

1IF €$ = "H", GOSUB 1440
[F C$ = "P", GOSUB 1460:

IF C$ = "S", GOSUB 1480
IF C$ = “v“, GOSUB 1510:
ELSE

IF cs = Il@ll

THEN

1180
GOTO 1270
INPUT “COLUMN #
K = INT{ ABS(K)):
IFK>30RK=0
THEN

1360
GOSUB 1560:

FOR J = K TO 33 + K STEP 3:
G(I,J) = G(I,J) + G / 12:
NEXT :

RETURN

GOSUB 1560:
RESTORE :

FOR 4 =1 TO 148:

"sK:

RETURN

GOSUB 1560:

RESTORE :

FOR ¢ = 1 TO 148:

READ K:

NEXT

FOR J =1 T0 18:

READ K1,K:

G(I,Kk) = G(I,K) + G / 18:
NEXT

RETURN

GOSUB 1560:

FOR J = 2 TO 36 STEP 2:
G(I,d) = G(I,d) + G / 18:

70

1430

1440

1450

1460

1470

1480
1490

1500

1510

1520

1530

1540

1550

1560

1570

1580
1590

NEXT
RETURN
GOSUB 1560:

games

FOR J = 1 TO 35 STEP 2:
G{1,J) = G(I,d) + G / 18:
NEXT :

RETURN

GOSUB 1560:

FOR J = 19 TO 36:
G(I,J

NEXT :

RETURN

GOSUB 1560:

FOR J = 1 TO 18:

) = G(I,J) + G / 18:

G(I,J) = G(I,d) + G / 18:

NEXT :
RETURN

INPUT "NUMBER

K = ABS(INT(K)):
IF K > 36

THEN

1460
GOSUB 1560:

;K

G(I,K) = G(I,K) + G:

RETURN

INPUT "BEGINNING ";J:

INPUT "LENGTH
INT(ABS(J)):
INT(ABS(K)):
FK+dJd > 37
THEN

1480
GOSUB 1560:
FOR K1 = J TO J +

J
K
I

;K

K - 1:

G(I,K1) = G(I,K1) + G / K:

NEXT
RETURN
INPUT “CENTRE

;K1:

K1 = INT(ABS(K1)):

IF K1 > 36
THEN
1510
RESTORE :
FOR 4 = 1 TO 150:
READ K:
NEXT
GOSUB 1560
FOR J = 1 710 41:
READ K:
IfF K < > K1, NEX
ELSE
K= Jd:
RESTORE

T

FOR J = 1 TO 147 + K:

READ K1:

NEXT :
FORJ = 1 T0 5
READ K1:

G(I,K1) = G(I,K1) + G / 5:

NEXT :
RETURN

INPUT "AMOUNT § “;G:

G = ABS(G):
RETURN
FOR I = 1 TO AO:
FOR d = 0 TO 36:
IF J = D0,S(I)
GOTO 1590

S(I) + 35 * G(I,d):

S(I) = s{1) - G(I,d)

NEXT :

Program continued

71

games

NEXT

RETURN
1600 CLS

PRINT "SITUATION AFTER"A9"ROLLS :":

PRINT
1610 FOR I = 1 TO AO:

PRINT X$(I),:

PRINT USING "§ ###8¢.#4"5S(1):

NEXT
1620 GOSUB 1060:

GOTO 1170
1630 DATA 32,15,19,4,21,2,25,17,34,6,27,13,36,11,30,8,23,10,5,24
1640 DATA 16,33.1,20,14,31,9,22,18,29,7,28,12,35,3,26.0,32,15
1650 DATA 19,4

1660 CLS
PRINT "FINAL RESULT :":
PRINT

1670 G = 0:

FOR I = 1 TO AO:
G =G + S{I):
NEXT

1680 FOR I = 1 TO AO:
PRINT X$(1),:
PRINT USING "$ ####s.#4";5(1);:
PRINT ,
1690 PRINT USING “$ ##### #4";(S(1) - G / AD)
NEXT
1700 PRINT :
PRINT "THE LAST COLUMN IS YOUR NET PROFIT OR LOSS :*
1710 PRINT “THE BANK'S RESULT IS DIVIDED."
1720 POKE 16413,8:

GOTO 1720
1730 CLS :
PRINT "OPTION : INFORMATION REQUIRED :":
PRINT
1740 PRINT "COLONNE <C> AND NUMBER OF COLUMN"
1750 PRINT "ROUGE <R>":
PRINT "NOIR <N
1760 PRINI "PAIR <E> (=EVEN)":
PRINT "IMPAIR <0> (=0DD)"
1770 PRINT "MANQUE <L> (=LOW)":
PRINT "PASSE <H> (=HIGH)"
1780 PRINT "PLEIN <P> AND NUMBER"

1790 PRINT "SERIES <S>, NUMBER OF BEGINNING AND LENGTH"
1800 PRINT "VOISINS <V¥> AND NUMBER"
1810 GOSUB 1060:
CLS ¢
GOTO 1180
1820 CLS
PRINT @14,"PLEIN <P> : 0 (=SINGLE NUMBER)";
1830 PRINT @91,"1 2 3"
1840 PRINT @129 "PAIR <E>""
PRINT @155,"4 5 6"'
1850 PRIN 8181,"<0> IMPAIR"'
1860 PRIN @193,"(=EVEN NUMBERS)";:
PRINT @219,"7 8 9",
1870 PRIN ©249,"(=0DD)";
1880 PRINT @283,". P
1890 PRINT €321, "PASSE <H>“"

PRINT @347, .
1900 PRINT @373, "<L> MANQUE"'
1910 PRINT @385,"(19 THROUGH 36) e e ey

1920 PRINT ©433,"(1 THROUGH 18)%;
1930 PRINI @474,"31 32 33";
1940 PRINT @513,"NOIR <N>";:
PRINI @538,"34 35 36%;
1950 PRINT @566,"<R> ROUGE"; ,
1960 PRIN {=BLACK NUMBERS)"; CHR$(201); CHR${91); CHR${91);
1970 PRINT " "5 CHR$(91); CHR$(91);" "; CHR$(91); CHR$(91);
1980 PRIN ©625,"(=RED NUMBERS)";

72

1990
2000

games

PRINT ©658,"COLONNE #1 ¢ #3 <>y
PRINT ®705,"SERIES <S> :";:
PRINT @754,"<V> VOISINS :";

2010 PRINT @769, "NUMBERS IN SEQUENCE";
2020 PRINT @815, "NUMBER AND ITS 4",
2030 PRINT @885, "NEIGHBOURS";
2040 GOSUB 1060:
GOTO 1180
2050 :
1 EEE R EE RS S SRR RS R R RN
2060 :
! PROGRAM BY PAUL G. RAMSTEYN,
2070 :
! RIJSWIJK, NL., DECEMBER 1980
2080
1 R EE SRS S S R RS RS R EE R SRR E RS
Program Listing 2. BREAK disable
00100 3USER OF LINE 700
00110 sSET JUMP INSTRUCTION
7FET7 00120 ORG TFETH sENTRY OF USER
TFE7 210040 00130 LD HL,400CH ;RST 28 JUMPS TO 400C
TFEA 36C3 00140 LD (HL),0C3H JMAKE 1T JUMP
TFEC 21F37F 00150 LD HL,7FF3H ;TO CHECK ROUTINE
7FEF 220040 00160 LD (400DH), HL AT TFF3
1FF2 €9 00170 RET JRETURN TO LINE 700
00180 ;400C IS JP 7FF3 NOW
00190 5
00200 sCHECK ROUTINE, MUST
00210 ;CHECK FOR BREAK FOR
00220 ;EVERY RST 28 COMES HERE
00230 ;ORG = TFF3
TFF3 47 00240 LD B,A 3 SAVE ACCUMULATOR
JFF4 78 00250 LD AVE ;IF BREAK, E HOLDS 4
7FF5 FEO4 00260 cp 04H JSEE IF SO
TFF7 2002 00270 JR NZ,RETURN sRETURN IF NO BREAK
TFF9 AF 00280 XOR A JELSE CLEAR ACCUMULATOR
TFFA C9 00290 RET 3AND RETURN
TFFB 78 00300 RETURN LD A,B JRESTORE ACCUMULATOR
7FFC €9 00310 RET 3AND RETURN
7FFD 00 00320 NOP JEND OF RAM
7FFE 00 00330 NOP s HAS NO
7FFF 00 00340 NOP ;OPERATIONS
1FFB 00350 END JEND OF 7FF3

00000 TOTAL ERRORS

7€96
7C96
7C99
7C9C
1C9F
T1CAL
0340

Program Listing 3. Graphics subroutine

00100 SROUTINE TO DISPLAY GRAPHIC
00110 JUSER OF LINE 760
00120 ORG 7C96H ;ORIGIN
21967C 00130 LD HL,7C96H ;POINT TO DATA
11003C 00140 LD DE,3CO0H ySTART OF DISPLAY
014003 00150 LD BC,0340H ;COUNTER
EDBO 00160 LDIR 3MOVE IT
C9 00170 RET ;RETURN TO LINE 760
00180 END ;END OF 7C96

00000 TOTAL ERRORS

GAMES

Five Short Games

by Michiel van de Panne

ave you ever typed in a game program, only to find out that you have
Lrun out of memory, or that the game falls short of your expectations?
These five programs are fast action, exciting games which will not wear out
your fingers when you type in the listings. All the programs run in Level IT or
Disk BASIC.

The first game, Roadrace, which is shown in Program Listing 1, is a short
version of a popular game. The game features various skill levels and a car
that moves in a particular direction as long as you are pressing the proper
key. At the end of the game, the computer shows your score, which is deter-
mined by the length of time you drive without crashing into another car or
driving off the road. Because the game is so short, modifying it is simple.

The second game is called Reflex (see Program Listing 2) and it tests your
reflexes. In this game, you are positioned in the center of the screen. Targets
appear one at a time, in random order, above you, below you, to the left, or
to the right. You shoot at them by using the four arrow keys, and the com-
puter keeps score. You are penalized for each shot you miss. The faster you
shoot the targets down, the higher your score will be. The program also
remembers your high score. I recommend starting out with a series of 10
targets. Modifications such as adding sound are easy to make.

The next game is the shortest version I know of a game known as Break-
out. (See Program Listing 3.) In this game the player tries to knock bricks out
of the wall above him with a ball. The object of the game is to knock out as
muany bricks as possible by keeping the ball in play with a paddle which is at
the bottom of the screen. The bricks in the first row are worth one point
each; those in the second row of bricks are worth three points each; those in
thethird row are worth five points; and so on. The paddle keeps moving in
thedirection of the key you have pressed until you let go of the key.

The fourth game is a short version of a game I call Target. (See Program
L.igting 4.) This game shows you a hill that you must shoot over to hit a ran-
domly placed target. After you specify the angle and power of your shot, the
computer traces the line of your shot. If your shot goes off the screen, the
computer does not show the part of your shot that is off the screen, but does
show it when it falls back onto the screen. When you do hit the target, the
program tells you how many shots you took and allows you to run the pro-
gram again with the target in a different position. The program contains no

74

games

exceptionally difficult trigonometry, making it easy for you to follow the
workings of the program.

Program Listing 5 is a computerized version of pinball. This pinball game
has letters which disappear when the ball rolls over them. At the end of the
game, you get 10 points for each letter you have knocked out. The ball does
not gain speed when it goes downhill or lose speed going uphill, but the ball
does move fast at all times. The flippers at the bottom close when you press
the space bar and remain closed until you release the space bar. The object
of the game is to keep the ball in play as long as you can to get as many points
as possible. In this version, you get two points every time the ball bounces off
anything and 10 points for each letter you knock out. Avoid using the flip-
pers because you lose points each time you do. As in real pinball, sometimes
you cannot stop the ball with the flippers because the ball slips between
them. The program contains POKE and PEEK statements for the video

screen memaory.

75

games

Program Listing 1. Roadrace

10 CLS
CLEAR 1000:
DEFINT A - 7
20 PRINT "HIT '" CHR$(93)"' TO TURN LEFT"
30 PRINT “"HIT '" CHR$(94)"' TO TURN RIGHT"
40 INPUT "RATE YOURSELF AS A DRIVER (1=EXPERT, 5=NOVICE)";A
50 CLS

S = 480:

A$ = CHR$(191):

B$ = CHR$(187) + CHR$(183)
60 C$ = CHR$(194):

M = 980:

N = 1002:

F = RND(3)

70 PRINT @M + R,AS$;:
PRINT @N + R,A$;:
R =R +F
80 IF R > RND(9) + 5
THEN
F = RND(3
90 IF R < RND(
THEN
F = RND{(3)
100 PRINT
D =0:
IF PEEK(14400) = 32
THEN
D= -2
110 IF PEEK(14400)
THEN
D=2
120 S = S + D:
IF PEEK(15360 + S) < > 32

y - 3
9) - 15

i

64

THEN
160
130 IF PEEK(15361 + S) < > 32
THEN
160
140 PRINT 8S,B$;:
E = RND(A):
IFE =1
THEN

PRINT @M + R + RND(21),8%;
150 PRINT 8S,C$;:

I =1+ 1:
GOTO 70
160 CLS

FOR A = 1 T0 10:
PRINT '"**kx* CRASH ***&x'.
NEXT
170 PRINT :
PRINT "YOUR SCORE IS";I:
INPUT "PLAY AGAIN (Y/N)}";A$
180 IF A$ = "Yy*
THEN
RUN

Program Listing 2. Reflex

10 CLS :
CLEAR 500:
DEFINT A -
20 C$ = CHR$(182) + CHR$(179) + CHR$(185)

76

games

30

non

B$ = CHR$(24) + CHR$(32):
D$ = CHR$(191)
40 FOR N = 1 TO 4:
READ L{N):
XT :

DATA 448,30,509,990
50 INPUT "HOW MARY TARGETS";P

60 7T = 0:
PRINT @478,D%;D$;D%;:
FOR 0 =1 T0 P
70 K = 200:
U = RND(4):

80 K =

90 K =K - 1:
A
1

= CHR$(91)

A= 2:
GOTO 140
110 IF A$ = CHR$(9)
THEN

A= 3
GOTO 140
120 IF A$ = CHR$(10)
THEN
A= 4:
GOTO0 140
130 IF A$ = CHR$(8)
THEN
A= 1:
GOTO 140 :

0
150 PRINT @L(U), CHR$(195);:
NEXT :
CLS :
IFTH>M
THEN
M=T
160 PRINT CHR$(23):
PRINT "YOUR SCORE WAS"T:
PRINT "HIGH SCORE IS"M
170 INPUT "PLAY AGAIN (Y/N)";A$:
IF A$ = "y°
THEN
CLS :
GOTO 60

Program Listing 3. Breakout

20 B$
C$
30 FOR N = 1T

®owon

(=]

-

=~

R4

—

—

Owh
—00

(RN

2: Program continued

77

40
50

60

70

80
90

110

games

D$ = D$ + A
E$ = E$ + BS
F$ = F$ + C$
NEXT :

CLS

PRINT "USE " CHR$(93)" AND " CHR$(94)" TO CONTROL PADDLE"
FOR N = 0 TO 200

2:
RND(3) - 2
N = 0 TO 448 STEP 128:
PRINT D$;E$;:
NEXT
L = 0:
PRINT @512,F%;:
G$ = STRINGS$(2,131)
PRINT @P + 959, STRING$(2, CHR$(131));
IF PEEK(14400) = 32

=S S TR TR O

(=]

THEN
= 1
IF PEEK(14400) =
THEN
=1

IF D > 42
THEN

U= 1:

ELSE

IF D ¢ 43

THEN

Uu=20

IF A =20
THEN

160
IFP+2*AC<1
THEN

P =3
IFP+2*A> 60
THEN

P = 60

PRINT @959 + P, CHR$(194);:
P =P +2*A:

A=0
PRINT @P + 959,G%;:
IF D > 42
THEN
GOSUB 260
RESET(F 2)
D = D + Y
IFC<=00RC> =127
THEN
X:
+

C
IFD =0

IFU =1
THEN
240
IF POINT(C,D)
THEN
I = 4 % INT(C / 4):
ELSE
250

78

games

220 FOR N = 0 T0 2:
RESET(I + N,D):
NEXT N:
L =1 + (25 - D)
230 PRINT @889,L;:
X = RND(0) * 3 - 1.5:
Y =
240 IF C < = 0 OR C > = 127
T

C
£

X

o= N

H
X X:
C +
250 SET(C,D):
GOTO 9
260 IF C > =2 *P - 2AND C <=2 *P +2
THEN
Y = - 2:
U= 1:
ELSE
280
270 X = RND(O) * 3 - 1.5:
RETURN
280 IF H > = 4
THEN
290 :
ELSE
H=H+ 1:
GOTO 300
290 IF H = 4 AND L > 400
THEN
H=H+1:
ELSE
340
300 PRINT @768,"THIS IS BALL NUMBER";H + 1;
310 PRINT @832,"PRESS 'ENTER' TO CONTINUE";:

[N Rl

INPUT A$:
C = 45:
D = 39
320 Y = - 1:
X = RND(3) - 2:

PRINT @832, CHR$(243):
PRINT @768, CHR$(240);
330 PRINT @P + 959, CHR$(194);:
P = 24:
PRINT @983,G$;:
RETURN
340 PRINT @705,"YOU GOT"L"POINTS";:
A$ = INKEYS$
350 PRINT @833,"PRESS ANY KEY TO PLAY AGAIN";:
FOR N = 1 TO 400:
NEXT
360 A$ = INKEYS:
1F A$ = Hn
THEN
360 :
ELSE
50

Program Listing 4. Target

10 CLS :
PRINT TAB(25)"TARGET"
20 PRINT "THE OBJECT OF THIS GAME IS TQ"
30 PRINT “DESTROY THE TARGET BY SHOOTING AT IT WITH A CANNON"
40 PRINT “WHICH IS LOCATED IN THE LOWER LEFT HAND CORNER OF THE"
Program continued

79

160
170
180

190

200

210

220

300

310
320

games

PRINT “SCREEN. THE TARGET IS A '*', THE AIMING IS DONE BY"
PRINT “CHANGING THE ANGLE & POWER OF THE CANNON. AFTER EACH"
PRINT “SHOT THE COMPUTER TELLS YOU BY HOW MUCH YOU MISSED."
PRINT “IF IT IS NEGATIVE IT MEANS YOU OVERSHOT. IF IT IS"
PRINT "POSITIVE THEN YOU UNDERSHOT THE TARGET. KEEP SHOOTING"
PRINT “AT THE SAME TARGET UNTIL YOU SUCCEED IN HITTING IT."
PRINT “YOU MUST SHOOT OVER THE HILL WHICH IS IN THE WAY"

HI = RND(10) + 962:

T = RND(28) '+ 978"

SH = 1

PRINT :

PRINT "PRESS ANY KEY TO CONTINUE®

S$ = INKEY$:

iF o

S =
THEN
140
CLS
PRINT @T,"*";:
PRINT @960 CHR$(191),
PRINT @HI, STRING$(6,191);:
PRINT BHI - 63, STRING$(4,191);
PRINT @HI - 126, STRING$(2,191);
PRINT 815,"";:
INPUT "POWER (1-2)" PO:
PRINT @15, CHR$(212);
PRINT @960, CHR$(19),
H = 0:
PRINT @15,"";:
INPUT "ANGLE";A
IFA> 90 0R A<
THEN
190
C=P0 * SIN(A * .01745329):
P = PO * COS(A * .01745329):
D = 47:
I = .005
D=0D- C:
H=H+ P:
IFD <O
THEN
320
IF D > 47 OR H > 127
THEN
330
IF D < 39
THEN
310
IF H > (HI - 960) * 2 AND H ¢ (HI - 954) * 2
THEN
260 :
ELSE
310
IfF D > 44
THEN
350
IFD > 41
THEN
280 :
ELSE
290
IF H > (HI - 959) * 2 AND H. < (HI - 955) * 2
THEN
350
IF D < 39
THEN
310
IF H > (HI - 958) * 2 AND H < {HI - 956) * 2
THEN
350
SET{H,D)
C=0C-~-1I:

80

games

I =1+ .001:
GOTO 220
330 IF T - 959 = INT(H) / 2 OR T - 959 = INT((H) + 1) / 2
THEN
340
ELSE
350
340 CLS :
PRINT "A HIT! YOU TOOK"SH" SHOTS TO GET ME!":
GOTO 360
350 SH = SH + 1:
PRINT @15,"MISSED BY"(T - 959) - INT(H) / 2;:
GOTO 130
360 INPUT "RUN PROGRAM AGAIN (Y/N)";N$:
IF N§ = "Y"

Program Listing 5. Pinball

10 CLEAR 2000:
DEFINT A - Z:
PRINT "PRESS 'ENTER' TO START":
INPUT A$

20 A$ = STRINGS$(3,191):

B$ = LEFT$(AS,2):
D$ = CHR$(191)
cLs

30 PRINT @13, STRING$(41,191);:
FOR N = 77 TO 973 STEP 64:
PRINT @N,B$;
40 PRINT @N + 39,B%;:
NEXT :
C$ = STRING${10,191)
50 FOR N = 192 TO 960 STEP 64:
PRINT @N + 49,B$;:
NEXT
60 PRINT @815,B%;:
PRINT @1011,0%;:
PRINT @114, CHR$(130); CHR$(175);
70 PRINT @783,B$;:
PRINT ©847,B$;B$;D$; CHR$(216);B$;B$;D%;
80 FOR N = 1 TO 4:
READ A:
PRINT @A,C$;:
NEXT :
DATA 911,935,975,999
90 FOR N = 1 TO 2:
READ A:
PRINT @A,B$;:
NEXT :
DATA 347,356
100 FOR N = 1 TO 2:
READ A:
PRINT @A,A$;:
NEXT
110 Bl = 1:
DATA 543,799:
PRINT @154,"SUPERPINBALL";
120 C$ TN

>
o
wono

IIO H ;
64:
947: s

NT @120,"SCORE"; Program continued

— g0

R

81

140

150

170
180
190

200

210

230

240

250

PRINT @N, B$

N =N - 6

PRINT @N A$,:

IF N = 179

THEN

150

FOR X = 1 TO

NEXT

GOTO 130

PRINT @N,BS$;:

No=N-1:

PRINT @N,A$;

F = 16333

PRINT en, B$,:

N N - 6

PRINT [ch A$,:

A 15472

E - 1:

C 63:

G 921

PRINT @113

PRINT @177
N
(

([]

A$ = STRI
B$ = CHR$
IF PEEK(A
THEN
210
RND(3) -
- B:

B +'E:
S+ 1:

wvowm

onouou

10:

2:

PRINT @185,5;:

GOTO 190

IF PEEK(14400) = 128
THEN

PRINT @G,A$;
S =95 - 1.
ELSE

PRINT @G,B$;

IFA+C>F

A=A+ C:
POKE A,79:
GOTO 190

POKE A + C,79:

FOR N = 1 TO 800:

NEXT :

PRINT @€113,C%;:
PRINT @177,C$%;

PRINT ©G,BS;:

PRINT 8503,"BALL";B1;

FOR N = 15514 T0 15525:
32

Bl = Bl + 1:
IF Bl = &
THEN
260 :
ELSE
A% = INKEYS:
iF A$ = M
THEN
250 :
ELSE
POKE A + C
GOTO 120
A$ INKEYS:
0:
IF PEEK(N) =
THEN

,32:

games

82

games

A=A+ 10
270 NEXT
FOR N = 1 TO A:
PRINT @185,5;:
S =5+ 1:
FOR T = 1 TO 30:
NEXT
NEXT
280 A$ = INKEYS$:
If A$ =
THEN
280 :
ELSE
CLS
RUN

83

GAMES

Rubik’s Cube™ Manipulator

by Chuck Baird

ost of you have probably seen a Rubik’s cubeTM, a puzzle made up of
L.27 small cubes arranged into one large cube. Each face of the large
cube consists of three rows by three columns of smaller cubes, which you can
rotate as a group, either clockwise or counterclockwise as you view the face.
Each exposed surface of the small cubes is one of six different colors. One
possible solution to the puzzle is to arrange the small cubes (through se-
quences of rotations of the faces) so that every side of the larger cube is a solid
color. As anyone who has held a Rubik’s cube knows, this is not an easy task.

My Rubik’s cube (see Program Listing) is a BASIC program which shows
you a Rubik’s cube and allows you to manipulate it on the screen of a
TRS-80. It starts with the cube solved, that is, with each face a solid color.
By specifying the face and direction of rotation, you can move the faces. The
computer executes your move and remembers it, giving you the option to
take back a move.

The program allows the manipulation of the cube but does not solve it or
attempt to solve it. Since it is written in BASIC, it runs quite slowly and
takes over a second to make a move. It does, however, illustrate one method
of representing a cube internally on a computer for anyone wishing to ex-
pand the program to solve the puzzle.

When you run the program, you see directions for operation and the six
faces of the cube, labelled front, top, right, bottom, left, and posterior. To
make a move, type the first letter of the desired face (F, T, R, B, L, P). The
program scans the keyboard for input using the INKEY$ function; there is
no need to press ENTER. This causes the middle cube of the face you select
to flash on and off. Now type a plus sign for clockwise rotation or a minus
sign for counterclockwise rotation. Any other character cancels the move.

You can recall any moves made one at a time by typing < instead of a let-
ter. Thus, you are able to go back one move at a time to recover a previous
arrangement.

Limitations

The program is written in Disk BASIC and uses the INSTR function to test
acceptable keystroke inputs. To operate in Level I1, use a FOR loop which
uses the MID$ function. This causes only a minor loss of efficiency. For ex-
ample, the BASIC statement:

] = INSTR(“string”,A$)

84

games

is equivalent to the following, assuming that the length of A$ is 1 and that
the length of “string” is L:

FORJ = ITOL

IF A$ = MID$(“string”,],1) THEN soccx
NEXT J

]=0

wox next BASIC statement

The Program

GOSUB 570 moves face N either clockwise (if MM = 1) or counterclock-
wise (MM<>1) and updates the display. Each face has nine positions within
it, but since the center never moves, only eight need to be numbered. One of
the corners of each face is called position 0, and the remaining positions are
numbered 1 through 7, going clockwise from position 0. The orientation of
position 0 is not the same for all faces. The face numbers (1-6) also are
assigned arbitrarily. The upper left-hand position of each face and face
number as displayed on the screen are numbered as follows:

Front face 1 0 is upper left-hand corner
Top face 2 6 is upper left-hand corner
Right face 3 6 is upper left-hand corner
Left face 4 4 is upper left-hand corner
Bottom face 5 4 is upper left-hand corner

Posterior face 6 6 is upper left-hand corner

As a result, the numbering is consistent, simplifying rotation of the cubes.

If you draw this arrangement on a piece of paper, you will notice that any
position on any face will always have fixed positions adjacent to it on the
respective faces. For example, arrange one of the faces so that position 0 is in
the upper left-hand corner. Now position number 6 will always be beside
position 4 on the face below it (the face that would be on bottom if the
chosen face were vertical) and it will be beside position 0 on the face to the
left. Likewise, all positions are related to other positions on adjacent cubes.

Table 1 shows the variables the program uses. The MO array gives the in-
formation to locate the face number and the lowest numbered of the three
positions that are closest (immediately adjacent) to the right, left, top, and
bottom of any face. The array has four numbers for each of the six faces.
These numbers show:

) face number and position 4 of the top face

) face number and position 2 of the right face
2) face number and position 6 of the bottom face
3) face number and position 0 of the left face

0
1

This information is packed as MO(I,Move) = Position*8 + Face, where I is
given as 0-3 above; Move is the face to be moved (1-6); Face is the face
number (1-6) of the adjacent face (top, right, bottom, or left depending on

85

games

I); and Position is the position number that is the smallest of the three posi-
tions that are adjacent to the Move face.

FA(position, face)—the color (1-6) of each small cube on a face. Faces are numbered 1-6,
and positions are numbered 0-7 around the edges. The center cube on any face remains
stationary and therefore is not represented in this array.

PA(position, face)—gives the number for the PRINT @ statement to display the color of this
small cube.

CN(face)—gives the PRINT@ number for the center cube on each face (for flashing it).

C$(color)—has the six three-character color strings.

MO(adjacent face, face)—gives the mapping to show which small cubes on other faces must
move when a face is rotated. The format is explained later,

P1(i),P2(i),P3(i)—used internally during a move to keep track of value, face, and position.
Since each side of every small cube to be moved is in effect in a“ring” with three others and
they will all jump to the next spot in the ring, all four are extracted prior to the move and
then placed back into the next slot in the ring. There are five such rings, two on the face to
be rotated, and three on the adjacent faces.

SV(move number)—used to save previous moves, up to 400 as originally written. Anyone
who would type in more than 400 moves in one sitting is beyond hope.

Table 1. Selected variables

)

M\
W

W
MW

A}
W

o<

NowARD HATP

This scheme might be confusing at first, but there is sufficient information
to make the rotations. Five of the six faces are affected by any move,
although only three positions on four of those faces change. Within the
rotated face, eight (all but the center) positions change.

86

games

Ideas for Expansion

A useful addition to the program would be to allow the user to blank out
all small cube faces except one. This would clearly show how the individual
cubes move when various faces are rotated. A simpler change would be to
allow a 2 as input in addition to — and + so that two rotations (for a total of
180 degrees) could be made at once.

87

games

Program Listing. Rubik’s Cube manipulator

10 CLS :

DEFINT A -

PRINT TAB(13) "RUBIK CUBE DIDDLE":

PRINT
20 PRINT “ANY OF THE SIX FACES OF THE CUBE MAY BE MOVED"
30 PRINT “CLOCKWISE (+) OR COUNTERCLOCKWISE (-).":

PRINT
40 PRINT “TO SPECIFY A MOVE, TYPE THE FIRST LETTER OF THE"
50 PRINT “NAME OF THE FACE (F,T,B,R,L, OR P). THE MIDDLE®
60 PRINT "SQUARE OF THAT FACE WILL THEN FLASH ON AND OFF."
70 PRINT "THEN TYPE EITHER + OR - TO COMPLETE THE MOVE.®
80 PRINT :

PRINT
90 PRINT "TO TAKE BACK THE MOST RECENT MOVE, TYPE <"
100 DIM MO(3,6),FA(7,6),P1(3),P2(3),P3(3)
110F0R [= 1 TO 6:

FOR J = 0 70 3:
READ MO(J,1):
NEXT 9
NEXT I

120 DATA 34,19,53,4, 35,17,52,6, 33,18,54,5
130 DATA 37,22,50,1, 38,20,49,3, 36,21,51,2
140 REM
150 DIM PA(7 6),CN(6),C3(6),0F(8),5V(400)
160 NN =
Mg = "FTRLBP 4
170 FOR I = 1 T0 8:
READ OF(I):
NEXT I
180 DATA 0,4,8,72,136,132,128,64
190 REM
200 PRINT :
PRINT :
LINE INPUT "CENTER> TO CONTINUE “;A$
210 CLS :
FOR I = 1 70 6:
READ CZ§,X,Y,H:
C$(I) =78
220 DATA WHT,36,18,0, GRN,36,3,6, RED,68,18,2
230 DATA BLU,4,18,4, ORN,36,36,4, YEL,100,18,6

240 REM
250 PZ = X / 2+ INT(Y / 3) * 64:
FORJ =170 8:

PU = PZ + OF(J)
260 PA(W,1) = PU:

FA(w 1) = I:

(W + 1) AND 7

270 PRINT oPY,CZ%;:

NEXT J
280 PU = PZ + 68:

CN(1) = PU:

PRINT @PU,CZ$;
290 REM
300 X1 3:
24
2:

)

™
onouou
e dake

PR

9:

FOR J = X1 TO X2
310 SET(J, Yl)
SET(J,YZ):

=¥Y1+170Y2 -1
320 SET(X1 Jg:
J

330 REM
340 FOR I =170 6:

88

games

READ PU,CZ§:
PRINT @PU,CZ$;:
NEXT I
350 DATA 140,T0P,646,LEFT,661,FRONT
360 DATA 677,RIGHT,691,POSTERIOR,841,B0TTOM
370 REM
380 A$ = INKEYS$:
IF Ag = °°
THEN
380
390 J = INSTR ("FTRLBP<",A$):
IF g =
THEN
380
400 IF J < 7
THEN

410

= INT(PU / 2):
MM = (PU + 1) AND 1
420 GOSUB 570 :
IF NN >0
THEN
540
430 PRINT €113, STRING$§13 " "g'
440 PRINT @177, STRING$(11," ");:
GOTO 380
450 REM
460 PRINT GCN(J)," “;:
FOR G = 1 TO 20:
NEXT G
470 PRINT @CN(J), C$(J),
FOR G = 1 TQ 2
NEXT G
A$ = INKEYS:
IF A§ = "*
THEN

48

o

49

<

460
PRINT BCN(J),C$(J);:
IF A$ - ll+ll

THEN
520
500 IF A$ ¢ > "."
THEN
380
510 MM = 0:
N = J:
JS = J:
GOSUB 570 :
GOTO 530
520 MM = 1:
N=2J:
dS = J:
GOSUB 570
530 IF NN < 400
THEN
= NN+ 1:
SV(NN)} = JS + JS + MM
540 PRINT @113, "LAST MOVE: * MID$(M$ JS,1); MIDS(M$, MM + 7,1);
580 PRINT @177, "NUMBER: “ NN "
GOTO 380
560 REM
570 M = MM:
FOR I = 0 T0 1:
P3(0) = I: Program continued

89

580

590

600

610

620

630

640

650

660

670

680

690

P:

PRINT OPA(PK,N},C$(P);

NEXT J

RETURN

) AND 7:

games

90

GRAPHICS

Easy CHRS Graphics and Animation

91

GRAPHICS

Easy CHRS Graphics and Animation

by Kenneth Lee Gibbs

uperior graphics help to stimulate interest in game and educational pro-

\J grams. Unfortunately, it is a difficult task to create involved graphics on
the TRS-80. This program should make that task easier. It is written on a
Model I Level II TRS-80 with 16K of memory. I believe it will work on the
Model I11.

Using SET and RESET statements to create graphics has major limita-
tions. Graphics done this way are very slow to appear on the video display,
making this method almost useless for any animation other than a single
pixel moving around the screen, such as a ball or puck in a game program.
Also, it is quite difficult to create complex graphics symbols using SET and
RESET statements.

In most cases where complex graphics or animated graphics are desired, it
is preferable to use the CHR$ graphics blocks which come as part of the
TRS-80 video display character set. These blocks have ASCII code numbers
from 128 to 191. Each of the graphics characters consists of six segments and
occupies the space of one PRINT@ position on the video display. These 64
characters have various combinations of the six segments, on (SET) or off
(RESET), ranging from all six being off, CHR$(128), to all six being on,
CHR$(191).

There are three major methods for making use of the CHR$ graphics
blocks. The first method is to use the PRINT statement. An example would
be PRINT @ 544, CHR$(191). This will cause a solid white block to occupy
a space in the middle of the video display.

The second method is to POKE the CHR$ onto the video display. TRS-80
CRT video memory addresses 15360 to 16383 correspond exactly to
PRINT @ positions 0 to 1023. This means that if you POKE 15904,191, you
accomplish the same thing as when you used PRINT @ 544, CHR$(191).

The third method, string packing, uses the PRINT statement but is an
enhancement. There are other sources from which you can learn string-
packing techniques. It is beyond the scope of this article to go into a detailed
explanation,

POKEing graphics is about six times faster than using the SET statement.
Using PRINT statements can be about 10 times faster than using POKE, if
the CHR$s are concatenated. Concatenation is a method of tying CHR$s
together with plus signs. String packing is the closest you can get to matching

93

graphics

machine-language speed for BASIC graphics displays and it has the unique
advantage of eliminating the need to clear string space in memory.

Any one of these three methods is much better than using SET statements
for creating complex graphics and animation. The main problem with
creating complex graphics with CHR$s is that it is a laborious process. First,
you draw the intended graphic representation on a video worksheet, then
you analyze each PRINT@ position to determine which CHR$ graphics
block occupies that space. The solution to the problem is your TRS-80. Your
computer is willing to assist you in your efforts to create CHRS$ graphics, if
only you ask it.

This program enables you to enlist the aid of your TRS-80. From now on,
it will be much easier for you to create complex graphics and even anima-
tion. As a side benefit, you will learn a method of sketching graphics which
your program can then use in any suitable manner. This program is most
useful if you have a printer, but is still very useful if you don’t. Using this
program, you can sketch your graphics directly onto the video display. The
computer then examines your sketch and tells you which CHRS$ blocks can
be used to duplicate it.

The routine contained in lines 420-580 is the real substance of the pro-
gram. By PEEKing at each of the appropriate spaces in the video memory,
you receive the ASCII code for the graphics character occupying that space.
This number is stored as a subscripted variable and is later used toddentify
the CHR$ numbers and to reproduce the sketch.

Sketching

Program lines 270-400 are a simple sketching routine which allows the
user to draw whatever is desired directly on the screen. This eliminates the

Figures From Display List

28 28 28 28 28
28 28 28 28 28
28 28 28 28 28
28 28 28] 84 88
28 28130 75 91

28} 57 72 76128 28 28
28] 49 28 30 73 76{ 28
28] 49 28 28 28 30 3l

80 49[28 28 28 28 28
59 29 28 28 31)28 28
For this example, I drew the figure in the upper left corner of the sketch area; therefore, all
numbers to the right of PRINT @ position 13 are 285 and are ignored. Notice how unnecessary 28s
are left out of the program lines, but that the necessary 28s are used. Also notice how the numbers

allow you to calculate easily the necessary quantity of back spaces, (CHR$(24)). Remember toin-
clude the missing 1 in these numbers. For example, 28 means CHR$(128).

cEBRE

Figure 1. Display list of CHR$(n)s for sample sketch

94

graphics

necessity of drawing in blocks on a video worksheet. I have limited the
sketch area to eight lines of 32 PRINT positions each. This represents one
quarter of the screen. You may alter this to suit your needs, but I find that
almost anything I want to draw on the screen which is larger than that is not
likely to be very complicated.

The box that surrounds the sketch area is there to help you determine the
dimensions of your sketch. When you are designing graphics symbols which
must fit into an area of specific size, it is best to use the upper left corner of
the sketch area. Using the marks on the box, count off the number of PRINT
spaces you want for the width of your sketch and the number of lines you
want for the height. Etch in the boundaries for the size of your graphics sym-
bol and erase the boundaries before requesting the list of CHR$ numbers.
Don’t worry about the box. It is not included in the display list.

Getting the CHR$(n)s

When your sketch is the way you want it, press the ENTER and CLEAR
keys at the same time. This freezes the sketch on the screen and program ex-
ecution goes to lines 420-580. These lines induce the computer to examine
each PRINT @ position in the sketch area and assign a CHR$(n) to it. This
takes about seven seconds.

Lines 600-710 produce the display list of the CHR$(n)s. I have the
numbers displayed without the leading 1 so that all of the numbers, except
the last one, can be displayed on the screen together. Remember to include
the missing 1 when using the numbers. For example, if the number 56 is on
the screen, it really means CHR$(156). The numbers are displayed con-
secutively from the top left of the sketch area. Each line of the sketch area is
represented by two lines in the display list. This format will seem simple
once you get used to it.

If you are fortunate enough to own a printer, you can have the numbers
LPRINTed for you. I have set up the LPRINT routine (lines 1000-1470) to
print out the numbers in a 32-column, eight-line matrix which corresponds
to the layout of the sketch area. Just turn the printout sideways so that all of
the leading 1s are facing the bottom of the page, and your list of numbers
will be in the exact sequence and similar in form to the sketch area. If you
don’t have a printer, the easiest way to copy the numbers is to draw an
8-by-32 grid on a sheet of legal-size tablet paper. Copy the numbers from the
display list, writing from left to right so that the first two rows of numbers
from the video display list become the first line on your paper. This gives you
the same type of layout as having the numbers LPRINTed.

Using the Numbers

Outline the numbers which are essential to your drawing. All of the
CHR$(128)s outside of your actual sketch can be ignored. Next, determine
how many CHR$(24)s are needed to back space the cursor to start the next

95

graphics

string with the first CHR$ in the next line. Insert a CHR$(26) at the end of
each line to drop the cursor. Any time you have the opportunity to turn con-
secutive CHR$(n)s into STRINGS, do so. For example, if you have 12 con-
secutive CHR$(191)s, convert them into one STRING$(12,191).

Concatenate all of the CHR$(n)s for each line into one string. Add a
CHR$(26) and the appropriate number (n) in a STRING$(n,24) to back
space and drop the cursor one line. Do the same for each following line.
Leave out the CHR$(26) and STRING$(n,24) on the bottom line. Con-
catenate all of those strings into one string if the total number of CHR$s used
is less than 256. Your entire sketch appears on the video display screen
almost instantly when you assign one PRINT @ position for the upper left
corner of the sketch. Study Figures 1 and 2 to better understand this process.
If you are using string-packing techniques, the numbers can be used exactly
as they are for the DATA lines.

10 CLS:CLEAR 200
20 A$=CHR$(157) + CHR$(172) + CHR$(176) + CHR$(26) + STRINGS$(3,24)
30 B$=CHR$(149) + CHR$(128) + CHR$(130) + CHR$(173) + CHR$(176) +

CHR$(26) + STRING$(5,24)

40 C$=CHR$(149) + STRING$(3,128) + CHR$(130) + CHR$(131) + CHR$(26) +
STRING$(10,24)

50 D$=CHR$(184) + STRING$(2,188) + CHR$(180) + CHR$(149) + CHR$(26) +
STRING$(6,24)

60 E$=CHR$(130) + CHR$(175) + STRING$(2,191) + CHR$(159) + CHR$(129) +
STRING#$(2,128) + CHR$(131)

70 X$=A$+B$+C$+D$+E$

80 PRINT@ 288, X$;

90 GOTO 90

Figure 2. Program to generate sample sketch from Figure 1.

Animation

Notice that the computer redraws your sketch after displaying the list of
CHR$(n)s. This gives you the opportunity to make changes in the sketch.
Making changes is how animation is done. To create animated graphics,
erase small portions of your first sketch and add a few more graphics blocks
in the appropriate places. Get the numbers for this new sketch. Do this until
your sketch reaches the final position desired in the animation sequence.
Compare the CHR$(n)s for each sketch in the sequence. Once your original
sketch is on the screen, you need only change the PRINT@ positions for the
CHR$(n)s that change during the sequence. Most of the numbers will re-
main the same unless you are creating a really complicated animation.

96

graphics

Using the Routine

With what you now know or can learn by studying the program, you can
write programs which allow you to create your own graphics symbols, These
user-created graphics could be personalized spaceships, buildings, mazes,
and so on—use your imagination|

By creating a space of known proportions and a sketch routine, you can
reproduce these user-created graphics in your program in the original space
in which they were sketched, draw them in another place, or even animate
them. When you have finished sketching, your program examines each of
the video memory addresses through the PEEK function. Store each PEEK
result as a subscripted variable. You can then reproduce the graphics sym-
bols any time.

There you have it—a program that tells you what CHR$(n)s you are using
instead of asking you what numbers you want to use. Notice line 60. This
POKE will prevent accidental BREAKing of the program which could result
in a sketch being disturbed. It also prevents intentional use of the BREAK
key; so you will have to reach around to the back of your CPU and press the
reset button in order to LIST the program.

There are several aspects of the program that can be changed. You can
alter the size of the sketch area to better suit your needs, or you might want
to change the format for displaying or LPRINTing the numbers. I hope this
program makes creating your graphics easier, and that you will use more
graphics in your programs to make them more interesting.

97

graphics

Program Listing. Easy CHR$ Graphics and Animation

10 :

20

30 :

40

50 :

60

70
80

90
100

110

130

150

160

170
180
190

200
210
220
230
240
250
260

270
280

e e EASY CHR$ GRAPHICS & ANIMATION....evueesovuns
L e 2ND VERSION..vvernsnnneanns 1278781 i,
e e vevee e o KENNETH LEE GIBBSuvevenvensovonsvns e
[e, 31 WILLOW STREET.vvvvvrn.. R e
e e HIGHSPIRE, PA 17038..uvrrneenrnnss .

REM ...POKE16396,22 TO ENABLE BREAK KEY
DEFINT A - Z

CLS :

DIM M(256)

GOTO 730

e i e SUBROUTINE TO SET UP SKETCH AREA..evuveveevananes
CLS :

X = 63:

Y = 24

FOR Z = 32 TO 96:

SET(Z,10):

SET(Z,37):

NEXT

FOR Z 34 TO 95 STEP 4:

0 35 STEP 2:

FOR Q = 14 TO 35 STEP 3:
SET(27,Q):

SET(100,Q):

NEXT

NU = 1

FOR L = 266 TO 714 STEP 64
PRINT @L,NU;:

PRINT €L + 41,NU;

NU = NU + 1:

NEXT L

PRINT ©80,"1 356791 357
PRINT @26,"1 1 1112222
FOR N = 144 TO 174 STEP 2:
PRINT @N, CHR$(92) + * ";:
NEXT

PRINT @838,"PRESS C<ENTER> AND <CLEAR> WHEN READY TO GET NUMBERS.

PRINT 8909,"<SPACE BAR> AND <CLEAR> TO START OVER."
e, +SUBROUTINE FOR USER SKETCHING.wuvaeeoeronrennnn

PK = PEEK(14400)
IF PK AND 8
THEN
Y =¥ -1
IF PK AND 16

98

350

360

370

380

390

420
430

450

460

THEN
Y =Y + 1
IF PK AND 32
THEN
X =X -1
IF PK AND 64
THEN
X =X +1
IF X > 95
THEN
X=X -1
IF X < 32
THEN
X = X + 1
IF Y > 35
THEN
Y =Y -1
IF ¥ < 12
THEN
Y = ¥ + 1
IF PX = 130
THEN
110
IF PK > 120
THEN
RESET({X,Y):
GOTO 270
IF PK = 3
THEN
400
RESET(X,Y):
FOR T =1 T0 9
NEXT :
SET(X,Y):
GOTO 270
SET(X,Y):
PRINT @0, CHR$(3
PRINT @64, CHR$(
PRINT @128, CHR$
PRINT @76,"GIVE
V=1
FOR P = 15632 TO
M(V) = PEEK(P):
V=V + 1:
NEXT
FOR P = 15696 TO
M(V) = PEEK(P):
V=V + 1:
NEXT
FOR P = 15760 TO
M(V) = PEEK(P):
V=Va+1:
NEXT
FOR P = 15824 TO
M(V) = PEEK(P):
V=V + 1:
NEXT
FOR P = 15888 TO
M(V) = PEEK(P):
Vo=V + 1:
NEXT
FOR P = 15952 TO
M{V) = PEEK(P):
V=V + 1:
NEXT
FOR P = 16016 TO
M(V) = PEEK(P):

graphics

%Ew SECONDS TO FIGURE THIS OUT...";

O P

.COMPUTER DETERMINES CHR$(#)'S....

15663:

15727:

15791:

158565:

15919:

15983:

16047: .
Program continued

99

500

510
520

530
540
550
560
570

580
590
600
610
620
630
640

650

670
680

700
710

720

730
740
750

760
770

780
790

graphics

Vo=V o+ I
NEXT
FOR P = 16080 TO 16111:
M(V) = PEEK(P):
Vo=Vo+ o1
NEXT
FOR V = 1 TO 256
IF M(V) = 32
THEN
M(v) = 128
NEXT
cLS

PRINT ©512,"REMEMBER TO ADD 100 TO THE FOLLOWING NUMBERS."

PRINT "I HAD TO LEAVE OFF THE 1 TO FIT THEM ALL IN..."

PRINT :

PRINT "PRESS <ENTER> TO SEE THE NUMBERS. THEY READ LIKE THIS -":
PRINT "THE FIRST TWO ROWS OF NUMBERS ARE THE CHR$(NUMBERS)-100 F
ORY:

PRINT "THE TOP LINE IN THE SKETCH BOX. THE 3RD AND 4TH ROWS ARE
THE":

PRINT "NUMBERS FOR THE 2ND SKETCH LINE...ETC."

INPUT DUS$:

CLS

FOR V = 1 TO 255
PRINT M(V) - 100;
NEXT V
PRINT @1019,"";:
INPUT DUS
cLs :
PRINT M(256)
PRINT :
PRINT ® [- THAT'S THE cHR$(NUMBER) FOR THE LOWER RIGHT GCORNER.

PRINT
PRINT
PRINT
PRINT :
PRINT "PRESS THE <D> KEY IF YOU WISH TO RESUME DRAWING.":
PRINT :
PRINT "PRESS THE <P> KEY IF YOU DESIRE TO HAVE THE NUMBERS LPRIN
TED.™
1$ = INKEY$
IF Z$ = an
THEN
880
1F Zs = nPu
THEN
1000
GOTO 670
CLS
GOTO 880

S i veeanrrnansereannwewa o INSTRUCTIONS ouvevevsnvnrocnnennvnenes
PRINT " THIS PROGRAM CONVERTS SKETCHES THAT YOU MAKE ON THE SCF
PRINT “INTO THE APPROPRIATE CHR$({NUMBERS) WHICH YOU CAN THEN USI
PRINT “WITH POKE, PRINT@®, OR STRING-PACKING TECHNIQUES TO REPROL
PRINT "THE SAME SKETCH WITHIN A PROGRAM."

PRINT * USE THE ARROW KEYS TO SKETCH UP, DOWN, OR DIAGONALLY."
PRINT "TO SKETCH DIAGONALLY, HOLD DOWN BOTH A L-R ARROW AND AN 1

PRINT "ARROW AT THE SAME TIME. TO ERASE, HOLD DOWN THE SPACE BAf

100

800

810
820

830
840
850

860
870

370
380

1000

1010

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110

PRINT
10N

PRINT
PRINT
PRINT
TCH"

PRINT
PRINT
PRINT
INPUT
CLS :

GOTO 1

FOR P
GOSUB
NEXT

FOR P
GOSuUB
NEXT

FOR P
GOSuUB
NEXT

FOR P
GOSUB
NEXT

FOR P
GOSUB
NEXT

FOR P
GOSUB
NEXT

FOR P
GOSUB
NEXT

FOR P
GOSUB
NEXT

GOT0 1

PRINT

V=V

RETURN

CLS :
INPUT

PRINT

PRINT
INPUT

cLs

IF PEE

PRINWT

PRINT
INPUT

GOTO0 1

PRINT

LPRINT

LPRINT

LPRINT

LPRINT

LPRINT

LPRINT

LPRINT

LPRINT

FOR V
LPRIN

graphics

"AND THE ARROW(S) WHICH WILL MOVE THE CURSOR IN THE DIRECT
“THAT YOU WISH TO ERASE."
" WHEN YOU ARE READY FOR THE COMPUTER TO CONVERT YOUR SKE

"INTO CHR$(NUMBERS), LEAVE THE BLINKING CURSOR IN A SPOT
“THAT YOU WANT TO BE SET."

"PRESS THE <ENTER> KEY WHEN READY TO START DRAWING";DUS
10

= 272 TO 303:
980:

= 336 70 367:
980:

= 400 TO 431:
980:

= 464 TO 495:
980:

= 528 T0 559:
980:

= 592 TO 623:
980:

= 656 TO 687:
980:

= 720 TO 751:
980:

20
@P, CHRE(M(V));:
+ 1:

"ENTER A NAME OR REFERENCE NUMBER FOR THIS SKETCH";DN$:

GENTER A SEQUENCE NUMBER FOR THIS SKETCH";DS$:
K(14312) > 127 PRINT "PRINTER NOT READY":

bU$:

010

"PRINTING..ovvvnnnen "

"REFERENCE NUMBER OR NAME: " DNS
"SEQUENCE NUMBER: *; DS

"LINE LINE LINE LINE LINE LINE LINE LINE"
" #8 #7 #6 #5 #4 #- #2 #1t

= 8 T0 1 STEP - 1: .

T M{V);: Program continued

101

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

graphics

NEXT

LPRINT " - COLUMN 1"

FOR V = 16 T0O 9 STEP - 1:
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 2"

FOR V = 24 TO 17 STEP - 1:
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 3"

FOR V = 32 TO 25 STEP - 1:
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 4"

FOR V = 40 T0 33 STEP - 1:
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 5"

FOR V = 48 TO 41 STEP - 1:
LPRINT M(V);:

NEXT :
LPRINT " - COLUMN 6"

FOR V = 56 TO 49 STEP - 1:
LPRINT M(V);:

NEXT
LPRINT " ~ COLUMN 7"

FOR V = 64 T0 57 STEP - 1:
LPRINT M(V);:

NEXT

LPRINT " - COLUMN 8"

FOR V = 72 TO 65 STEP - 1:
LPRINT M(V);:

NEXT

LPRINT " - COLUMN 9"

FOR V = 80 TO 73 STEP - 1:
LPRINT M(V);:

NEXT :
LPRINT " - COLUMN 10"

FOR V = 88 TO 81 STEP - 1:
LPRINT M(V);:

NEXT :
LPRINT " - COLUMN 11"

FOR V = 96 TO 89 STEP - 1:
LPRINT M(V);:
NEXT
LPRINT " - COLUMN 12"
FOR V = 104 TO 97 STEP - 1:
LPRINT M(V);:
NEXT :
LPRINT " - COLUMN 13"
FOR V = 112 TO 105 STEP ~ 1:
LPRINT M(V);:
NEXT :
LPRINT " - COLUMN 14"

FOR V = 120 70 113 STEP - 1:
LPRINT M(V);:

NEXT : ,

LPRINT " - COLUMN 157

FOR V = 128 70 121 STEP - 1:
LPRIRT M(V);:

NEXT :
LPRINT " - COLUMN 16"

FOR V = 136 T0 129 STEP - 1:
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 17"

FOR V = 144 T0 137 STEP - 1:
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 18"

102

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430
1440
1450
1460
1470

FOR V = 152 TO 145 STEP
LPRINT M(V);:

NEXT :

LPRINT " ~ COLUMN 19"
FOR V = 160 T0 153 STEP
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 20"
FOR V = 168 TO 161 STEP
LPRINT M(V);:

NEXT

LPRINT " - COLUMN 21"
FOR V = 176 TO 169 STEP
LPRINT M(V);:

NEXT :

LPRINT * - COLUMN 22"
FOR V = 184 TO 177 STEP
LPRINT M(V);:

NEXT :

LPRINT ™ - COLUMN 23"
FOR V = 192 TO 185 STEP
LPRINT M(V);:

NEXT :

LPRINT " . COLUMN 24"
FOR V = 200 TO 193 STEP
LPRINT M{V);:

NEXT :

LPRINT " . COLUMN 25"
FOR V = 208 T0 201 STEP
LPRINT M(V);:

NEXT

LPRINT " - COLUMN 26"
FOR V = 216 TO 209 STEP
LPRINT M(V);:

NEXT :

LPRINT " - COLUMN 27"
FOR V = 224 TO 217 STEP
LPRINT M(V);:

NEXT

LPRINT " - COLUMN 28"
FOR V = 232 TO 225 STEP
LPRINT M(V);:

NEXT

LPRINT " - COLUMN 29"
FOR V = 240 TO 233 STEP
LPRINT M(V);:

NEXT :

LPRINT " ~ COLUMN 30"
FOR V = 248 T0O 241 STEP
LPRINT M{V);:

NEXT :

LPRINT “ - COLUMN 31"

FOR V = 256 TO 249 STEP

LPRINT M(V);=:
NEXT :
LPRINT * - COLUMN 32"
LPRINT ™ *
LPRINT * ®
LPRINT * ¥

PRINT "FINISHED PRINTING..

PRINT :
INPUT DUS:
CLS :

GOTO 880

graphics

++«PRESS <ENTER>"

103

HARDWARE

Memory Size-20K!

105

HARDWARE

Memory Size—20K!

by W. R. Stanley N4TF

hen you upgrade your computer from 4K to 16K, you have a spare

v set of 4K memory chips. Since there are occasions when even the new

16K memory is not enough, this article provides information for putting that

spare 4K set of memory chips to good use. Here is a way to use the chips
without making internal changes to the keyboard unit.

Background

Correct operation of any external circuit connected to the keyboard will
depend upon appropriate address selection, your use of the data bus, and the
control signal you employ in an exact sequence. For example, an external
memory cell location must be addressed to the exclusion of all other cell loca-
tions in that memory if it is to share in data transfers to and from the
keyboard.

The parallel eight-bit data bus at the keyboard connector is an extension
of the data bus routed inside the keyboard to several discrete memory blocks:
ROM, RAM, video memory, and the keyboard itself. The external memory
circuit to be added to the computer must be brought onto the data bus only
when data is to be written to or read from that memory block. Address and
control signals from the keyboard ensure that this external memory block is
enabled only when called upon by the CPU. At all other times the external
memory block must appear non-existent to the main computer.

The 4K dynamic chip as used in the TRS-80 is packaged in the standard
16-pin DIP package. One pin serves as the data input point, while a second
one is used for data bit output. Three pins are used for power inputs, + 12,
+5, and -5 V. Asixth pin is grounded for signal and power path returns,
and a seventh pin is used for a Chip Select control signal to activate the
memory chip for a read or write operation. Still another pin receives a con-
trol signal telling the chip whether the current operation is a read or a write.

Eight of the 16 pins are now in use and eight pins are still available, but
we must apply 12 bits of addressing information to the chip designating the
exact memory cell locations to be affected by the chosen operation. To
understand why 12 bits of information are needed, consider the number of
address line bits necessary to address each of the 4,096 memory cell locations
on the chip, 0000 to OFFF hex. Two raised to the 12th power equals 4,096.

107

hardware

The Memory Matrix

The 16-pin memory chip addresses its memory as a matrix in rows and
columns. Picture a grid of 64 horizontal wires overlaid by 64 vertical wires
(64 x 64 = 4,096). Any intersecting point in the grid can be located by speci-
fying the row number and column number.

The memory chip is addressed by applying data that designates the row
number of the desired memory bit location, latching that row address into
the chip logic and control circuits, and then latching the column address
presented a short time later. This address method, called multiplexing, can
address any location on the 4K chip using only six address pins instead of 12.
Two additional pins on the chip are used for signal inputs to tell the chip’s in-
ternal circuits whether a row-address group or a column-address group is
being entered. All 16 pins are now accounted for.

Consider one more function. The value of a given data bit stored at a par-
ticular address on the dynamic memory chip is represented by the charge
level (high or low) of a capacitor at that memory matrix location. The level
of charge on a practical capacitor changes over a period of time. This charge
must be restored periodically at each capacitor cell location. This is known
as the refresh operation. In the TRS-80, the Z-80 CPU performs refresh
operations at the same time it decodes a machine instruction. A special
register on the CPU chip keeps track of the row address groups and ensures
that all memory matrix row addresses are accessed in the proper order.
Regardless of the amount of dynamic memory on line, all cells will be
refreshed approximately 500 times per second.

Block Diagram

Figure 1 is a block diagram of a 4K dynamic memory card that can be
directly connected to the keyboard. Its address decoder is the principle cir-
cuit that determines when external memory is brought on line.

Since all locations in a 4K memory block can be addressed using 12 ad-
dress lines (A¢-Ayy), and an additional four address line bits (Ajs-Ass) are
available, those four bits can be used to arbitrarily assign an address block
location to the external memory board. The logical place to locate the addi-
tional memory block is in the range of 8000-8FFF hex. This places the exter-
nal memory immediately above the internal 16K block, whose highest ad-
dress is 7FFF hex, without leaving a gap.

The address decoder constantly monitors the four highest-order address
lire bits. It outputs an enabling signal only when the computer address bus
contains addresses in the 8xxx hex range (when A is high, and Aj. through
A, are low). If the address decoder circuit senses any other combination of
signals on the address bus, it disconnects the remainder of the memory board
circuits.

108

hardware

The address multiplexer (Figure 1) performs as an electronic six-pole,
double-throw switch. In one position of the switch, address lines Ap-As con-
nect to the memory chips. In the other position, lines A¢-A,, are routed to the
same chips. The MUX (Multiplexer) signal, which is the output of a flip-flop
in the keyboard, determines the electrical position of the double-throw
switch. The MUX signal has a predetermined phase relationship to the RAS
(Row Address Strobe Not) and CAS (Column Address Strobe Not) signals
that are also generated inside the keyboard. When the RAS signal is present,
either during the early part of a memory read or write cycle, or during a re-
fresh operation, the phase of the MUX signal is such that the address multi-
plexer outputs the low-order address group (A¢-As) to the memory chips.

....... - +12Y 41 REGULATED

: +8V a1 POWER

: By ——] SUPPLY

}

] 3-STATE

<+ D0-07-» DATA BUS T oata

BUFFERS 4%

‘ — —

: Fovame DYNAMIC

' MEMORY -

H DATA QUT che -
CABLE TO 3-STATE (10F 8) €s
TRS-80 I «| oaTA BUS [] 7]

b P
KEYBOARD | BUFFERS Aas } TR
CONNECTOR |

! f enasLe

| RAS

! BUFFER

i

1

!

1 Cas 3~STATE

=1 Burrer

H

: ENABLE

|

[IO

Mz-at5 | ADDRESS CONTROL

DECODER LOGIC

T—

RD

7D f

{WR

i

|

L] ADDRESS

AO-All=—s| MULTI~ |-+ AG-AS OR AG-All

r————1 PLEXERS

i

Y MUX. f

i

i
______]

Figure 1. Block diagram of the 4K dynamic memory board

When the CAS signal is present, the MUX signal phase is reversed, and the
multiplexer outputs the high-order address group (Ag-Ay,) to the chips. Note
that the RAS signal is applied through a buffer to memory. Buffering this
signal causes the keyboard circuit that provides the RAS signal to see only
one additional load rather than eight more. Note that the CAS signal

109

hardware

is applied through a three-state buffer. This buffer is operational only when
the address decoder senses addresses in the 8xxx hex range. The CAS signal is
therefore applied to the external memory chips only when those chips are
written to or read from,

Two additional control signals from the keyboard connector tell the exter-
nal memory whether it is being written to or read from. These signals are,
respectively, WR (Write Not) and RD (Read Not). Note that these
signals are also combined with the address decoder output so that the mem-
ory chips are not placed in the read or write condition unless the proper ad-
dress range is on the computer address bus. The CS (Chip Select Not)
signal is present when the RD signal and the proper address decoder output
appear in the same time frame.

The eight-bit data bus connections at the memory board are buffered in
both directions. Three-state buffers are employed here so that the direction
of data flow can be controlled by the keyboard. One set of buffers activates
when the computer is writing to the external memory, and the other data
buffer set is enabled when the computer wishes to read data from that
memory section. When this particular block of memory is not being accessed
for memory transfer operations, both data bus buffers go to the high-impe-
dance state and, in effect, disconnect the memory chips from the data bus.

Construction

The schematic diagram of the 4K memory board is shown in Figure 2.
The layout is not critical but I suggest that you spend a little time trying dif-
ferent component arrangements before you start wiring.

I constructed my circuit on a Radio Shack (cat. #276-152) Plug-In Bread-
board. This card provides ample room for construction of the memory cir-
cuit. It also has 44 pins on its board edge, which means that its pin number
assignments can be directly correlated with those of the keyboard connector,
and still have four uncommitted pins available for connecting the card to an
external power supply.

The mating connector is also available at Radio Shack. The proper
mating connector for the keyboard is an AMP P/N 88103-1 or its equivalent.
You can get a 40-pin connector with 0.1-inch contact spacing at Priority
One Electronics.

Note that the pin number assignments on the keyboard connector do not
necessarily agree with the order indicated on your mating 40-pin connector.
With the keyboard in front of you, pin 1 will be on the top of the circuit
board at the connector end farthest removed from the RESET button. The
odd-numbered pins progress in ascending order to the left, with pin 39 on
the top left edge. All even-numbered pins are on the underside of the key-
board connector, with pin 2 directly underneath pin 1. Pin 40 is closest to the
RESET button.

110

32

26

28

24

20

hardware

pal
+5 74L8367

NC (2104 or as L0

EQUIV) py I

&
&

)
>
@
»
~

f

L
o [q LIJ? s)1 i z_],__.._u_._
5 4 I zz
o [s {J]> , :Hq z],“'_:—_"':__
7 6 14 3
03 10 IJ\ s w 2
[l/ 9 /L] 10 |4l 24
B4 12 N~ 1 ~ ats i 2
| Y o9,) 25
os ol pL b Hsaer | Y ——
|- st M L o] 6 l
26 0 & 2t NG \PI zL
[—[/r ? /l’1 5 |4] z7 l +H2 +5
o7 14 [\L 13 }] 2‘0_.‘—
L w T 9)" 10 12 ™ :
TS N i !
_ e E o] | |

=
.

El
8

:

1}

2
3
Al 3 214
27
7415187

36 AT ‘6 .
40)-A2 4 <
" : Ag 13 et
34343 1] e .5
17 Y42 L] —{ s NOTES

—— TALSI57 18

Y | N>~ DENOTES KEYBOARD CONNECTOR PIN

31)44 2 NUMBER
4 A0 3 2 WITH THE EXCEPTION OF PINS 2 AND 14, ALL
35548 s PINS OF THE SAME NUMBER ON Z) THROUGH
o SAll s 28 ARE CONNECTED TOGETHER
6 H-MUX voJis
8 D
29 pomg
37 Dy

Figure 2. Schematic diagram of the 4K dynamic memory board

111

hardware

Be sure to label the connector that plugs into the keyboard so that its posi-
tion is correct before insertion. Use dots of fingernail polish or some other
marking medium to indicate proper orientation between the memory card
and its mating connector. If either cable connection is reversed, you might
damage your system. You can use either ribbon cable or individual stranded
wires to join the two connectors. I suggest a maximum length of one foot for
either type. I urge you to employ sockets for all ICs. They are good insurance
against heat and static damage for the memory chips. They also make
troubleshooting and replacing components much easier. Incidentally, either
solder or wire-wrap techniques can be used. The more ambitious construc-
tor might consider fabricating a printed-circuit board.

Wiring Procedures

Make all necessary power and ground connections to all chip sockets.
Next, connect all indicated like-numbered pins in parallel on the eight
memory IC sockets. Make all connections between the memory chip sockets
and the remainder of the components on the board. Following this, wire the
address decoder and logic circuits. The last area to be wired is between the
card edge pins and the appropriate ICs. Work slowly, and take a break now
and then. Double-check your wiring. Unless printed-circuit techniques are
used, you will end up with several layers of wires placed on top of each
other. It becomes difficult to find and correct a wiring error that is buried.

If you arrange the memory sockets in parallel rows on the card, cross-
connect the power buses between adjacent chips if possible. This method
will lower the impedances of the power distribution leads. You are dealing
with digital waveforms containing frequencies in the VHF range, and a
short piece of wire at high frequencies appears to many circuit components
as much more than just a low resistance current path for direct current flow.

Power supply pins should be bypassed, especially around memory ICs. A
0.1-uF disk capacitor bypassing the + 12-V supply pin at every other chip
and a 0.1-uF disk at the +5-V pin on alternate memory chip sockets are
recommended. A 0.01-uF disk located at the —5-V supply pin on every
other memory socket is also advisable. Several 0.01 to 0.1-uF disk capacitors
Jocated at the +5-V supply pins on several of the remaining IC sockets
would help maintain smooth operation.

One reason for paying particular attention to supply pin bypassing
around the memory chips is that high peak currents occur during certain
portions of the memory IC operating cycle. Although the average current at
each IC is not excessive, those sudden high-current demands could not be
met by power supplies located several feet away. One solution to these
abrupt current increases is to connect large capacitors in the immediate
vicinity of the memory chips. The memory board doesn’t require much
power, but you will find that it costs only a little more to build a power sup-

112

hardware

ply that will operate with other circuits. In other words, overbuild the
power supply, unless you are interested in the smallest possible package.

Junk-box Transformer

I used a junk-box transformer with two low-voltage, center-tapped sec-
ondaries. The wires between the windings and the terminals on the
transformer appeared to be about the right size to handle at least one amp
each. A bridge rectifier across one winding, with the center-tap left discon-
nected, feeds a 7812 regulator. Both input and output of this regulator chip
are heavily bypassed with electrolytics. In addition, I placed a 0.1 uF disk at
both of its active terminals, very close to the package.

A ftull-wave rectifier is connected across the other secondary winding,
whose center-tap is grounded. This rectifier feeds a 7805 regulator whose in-
put and output are also heavily bypassed. Another full-wave rectifier, with
the diodes reversed from those for the + 5-V supply, is connected to another
regulator-filter combination. Here a 7905 negative voltage regulator is used.
Many parts suppliers stock the equivalent of the 7905, listing it as the
LM320K-5. A 5-V zener diode, bypass capacitor and series dropping resistor
can be used in lieu of the 7905 (or equivalent), the total cost is about the
same. However, this zener regulator does not provide the thermal and
overload current protection of the regulator package.

Mount the 7812 and 7805 on separate small heat sinks, or attach suitable
radiators to them. Both of these chips get rather warm. The 7905 does not
require heat-sinking because its load current is much lower.

16K Memory Board

You can modify the 4K memory board making it plug compatible to that
new set of 16K chips. You need change only the address decoder and address
multiplexer circuits to operate the added 16K set in the address range from
8xxx to Bxxx hex. Figure 3 shows a partial schematic diagram.

Compare the schematics in Figures 2 and 3. Seven address lines are con-
nected to the 16K chips. Only six lines went to the 4K set. This means that a
total of 14 addressing bits are applied to the 16K chips, in two groups of
seven. The row and column matrix in the 16K chip is a 128-by-128 grid;
therefore, seven bits per multiplexed group are necessary.

Adding one address bit per group means that you must add two additional
address lines to the multiplexer. This is shown in Figure 3.

Remember that all 16 pins on the 4K chip are used. What else must you
change when the seventh address line is added to the 16K chip? The 4K chip
has a CS pin which enables the chip. Note that the 16K chip has no such pin
designation. The manufacturer designed the 16K chip so that it is fully func-
tional when the RAS, CAS, and addressing signals are present at the correct
times.

113

hardware

| t
tp/o 212 i
1
7 phu 74L500 | TO Z11 (18)
'
: 8 A6

i3,
Al4 0 O 1l
g e
! i P)

L'—'—-'—'_-""'_'—w’"—_'—l 18K Ad L
————————————————————— ! DYNAMIC 43

-
1213 4 1 A
NC s MEMORY 2

}7‘“532 NC5D_NC ! a7 or A1 H

: NC' 2 0 !

i NcZ NC s |

13 SR 9 I+ TO 29(1,15), 210115},

! | Zi-z8(3)

]

]

i

EQUIV) A0 1=
13 > TO ZI0(D, Z8(D

*5

?IG 15{8 3

“>AB 6] 214

A2 14} 74LSIST |2

£s |1

5)42 s} 215
A 7418157
T . S— 1 12

|I5 8

Figure 3. Partial schematic diagram of the 16K dynamic memory board

Look at the address decoder circuits on the two schematics. The decoder
for the 16K memory circuit is simpler, because it responds to a wider range
of addresses than the one for the 4K board. The 4K board is accessed only
when Aj; is high, and A,, through A, are low. This represents an address
within the 8xxx hex range. The 16K board is addressed in the 8xxx-Bxxx hex
range. This particular range of addresses is present any time Ay; is high and
Ay is low. The address decoder on the 16K board, therefore, only has to
monitor two address lines, rather than four.

When you substitute that set of 16K chips in the keyboard for the original
4K set, you have to reconfigure several jumpers. You are actually rearrang-
ing the address decoder output to respond to a wider range of dynamic
memory addresses. You also change the CS signal line going to the 4K set to
an additional multiplexed address line going to the 16K set.

114

hardware

Closing Comments

I have tried to present enough background information to enable you to
substitute parts or rearrange logic and control circuits, There is always room
for improvement on someone’s ideas or techniques, and this construction ar-
ticle is no exception. You will find many instances when the external
memory is unnecessary. Instead of wearing out the keyboard connector,
merely turn off the power supplies feeding the board. One word of caution
in this area: If you initialize the computer with the external memory ener-
gized and, later, remove power to the external circuit, the computer will, in
some instances, use the external memory as if it were still available. The
result is incorrect operation and/or lost data.

A good way of reserving a block of upper memory for machine-language
prograims is to power on while the external memory is still off. After the com-
puter is initialized, turn on the external memory power supplies. The com-
puter won't find the added memory, unless it gets trapped in a loop that asks
you the MEMORY SIZE question (Level II).

Loss of Data

Concerning loss of data in the added memory block—especially the 16K
add-on, I experienced a problem when the circuits for both the 4K and 16K
blocks were built and under test. Difficulties with the 4K block disappeared
when additional filtering and bypassing were added onto the - 5-V line on
the memory board. The - 5-V supply is very lightly loaded by the Iermory
chip; as a result this supply line is very susceptible to noise. Two or three 50
or 100 microfarad electrolytics and a handful of .0l to .1 microfarads
distributed up and down the - 5-V distribution line should bypass the noise
picked up on this line.

If you connect an oscilloscope to a -~ 5-V line that isn’t properly bypassed,
you will probably see at least one-half volt of noise. Add large and small
bypass capacitors until the noise signal voltage is radically decreased.
Bypassing will cure many ailments with the 16K memory board. The major
cause of other difficulties is the addition of fast (200 or 250 ns) memory chips
external to the keyboard if the chips inside the keyboard are the standard 450
ns speed. If all else fails to settle down operations of the 16K add-on mermory
board, swap those fast chips with the ones inside the keyboard.

115

HOME APPLICATIONS

Disk BASIC Word Processor
The Big Game

117

- HOME APPLICATIONS

Disk BASIC Word Processor

by Delmer D. Hinrichs

his word processor program is written in BASIC for the TRS-80 Model I

and Model III computers. It is based on my program published in the
Encyclopedia for the TRS-80, Volume 2. I have revised it extensively for disk
operation and for greater speed and convenience. It requires the extra
enhancements of Disk BASIC. Reserve only one disk file when you load
BASIC from DOS. Otherwise, you may run out of memory when you run
the program.

The program checks to see if it is running on a Model I or a Model 111 and
sets itself accordingly. It has a built-in machine-language case reversal and a
lowercase video driver for the Model I. If your Model I does not have a
lowercase keyboard modification, or if your Model I DOS has its own case
reversal and lowercase video driver, check line 9 of the program for instruc-
tions before you run the program.

To use the program, load it and, if necessary, set the machine-language
routine in lines 0-9 for your use. Typing RUN POKEs this routine and
deletes lines 0-9. You can save a backup copy only before you run the pro-
gram. Entering RUN a second time starts the program. A title appears with
the prompt, Command? Respond by pressing one of the 18 single-letter com-
mands shown in Table 1. ,

Before you enter any text, only A, F, H, L, and X are acceptable com-
mands. The others do nothing or give an ENTRY ERROR message. After
leaving a command, you return to the Command? prompt. Except as noted,
all references to pressing a keyboard letter mean an unshifted (lowercase)
letter.

Description of the Commands

@ Add—This command adds material to the end of a current text file or, if
the file is empty, starts a new text file. A flashing block cursor shows the
place at which text will be added. This command turns on the line number
display option. You can type material continuously without pressing
ENTER for each line. The cursor position appears as a number at the bot-
tom of the screen. When the file is full, a FILE FULL message is given. The
capacity is 408 text lines, from line 0 through line 407. To reserve a spacer
line without text, you must enter at least one space. The program eliminates
trailing spaces from all text lines. Subcommands in the Add mode are shown
in Table 2.

119

home applications

A Add Adds text to existing file or starts a new file

B Blank Removes blank text lines and renumbers lines

C Compile Moves words between lines to get the best fit

D Delete Deletes a block of text lines and renumbers

E Edit Edits a text line with subcommands similar to BASIC commands
F Format Changes formats for text display or printing

H Help Lists all commands and tells you how to exit each mode
I Insert Inserts text line(s) into the middle of a text file

] Justify Right-justifies text lines by spacing words

K Kill Removes all text, resets format, and starts over

L Load Loads previously saved text from tape or disk

M Move Maoves a block of lines to a new place in the text file

O Overlay Searches for any word in text or replaces it

P Print Prints a text file on the printer

R Replace Replaces one existing text line with another

S Save Saves a text file on tape or disk

vV Video Displays a text file on the video display unit

X Exit Exits from the program, resets string space, and so on

Table 1. Program commands

® Blank—This command eliminates blank lines from the text file you are
working on and renumbers the lines. Blank lines are empty lines; this com-
mand does not affect lines containing only a space. During operation, the
screen displays Deleting Blank Lines. When it has finished the Video com-
mand displays the text file.

® Compile—After Editing lines or changing line length with Format, some
lines may be too long or too short to fit properly into the specified line
length. The Compile command shifts words between the lines of a selected
block to get the best possible fit. To abort (return to the Command? prompt
without any action on the text file), press ENTER in place of line numbers.
To Compile to the end of the text, enter a large number as the Last Line to
Compile.

The Compile command works in three phases. It first spaces all words
normally, inserting three spaces after a period, question mark, exclamation
point, or colon, two spaces after a semicolon, and one space otherwise. Then
it checks the line length and pushes any extra words in a line onto the follow-
ing line. Finally, it checks if a line can accept words from the line after it
and, if so, pulls words up to the preceding line. Compile can push words for-
ward any number of lines but can pull words back only one line. If a blank
line occurs between lines that have been Compiled, use the Blank command
to remove it. Then Compile again, or the words may be left on the wrong
line.

You should use the Compile command on one paragraph at a time, as it

120

home applications

Space bar Moves the cursor one position to the right and adds one space

- Moves cursor continuously to the right up to the length of
the line, adding spaces to the end of the line
- Moves the cursor continuously to the left, erasing characters

to the beginning of the line

SHIFT < Erases the entire current line of text

< Overstrike. Moves cursor one position to the left, over the
previously entered character, followed by a < symbol. Then
you must key in the overstrike character. A back spacing
printer is needed to use overstrike. Overstrike puts two in-
visible characters in the line, which can cause difficulty in
the Edit and Justify modes.

@ Caps lock. Pressing @ turns this function on or off. Only let-
ters are affected. CAPS LOCK appears at the lower right of
the screen when the function is on.

ENTER Ends the current line and goes to the next line before the
automatic end-of-line action

CLEAR Ends the line and holds it secure from the Justify command.
A < marker appears at the end of the line.

SHIFT t Ends the line, centers current line of text, and holds it secure
from Justify. It leaves a + marker at the end of the line.

SHIFT — Ends the line and moves the current text to the extreme right
end of the line

+ Ends the line and inserts a blank line between lines of text
by adding a line feed to the end of the line.

SHIFT { Ends the line and leaves an end-of-page marker (4) at the end
of the line. (SHIFT { Z for a Model 111 or a late Model 1.)

SHIFT @ Escapes from the Add mode and returns to the Comand?
prompt. (SHIFT @ usually must be keyed in twice.)

Table 2. Subcommands in the Add mode

left-justifies all lines except the first one within its range. It also buries any
end-of-page, hold-justify, or linefeed markers that are not on the last line
within its range. If buried, these markers do not work properly. During
operation, Compiling Line n m is displayed, where n and m are first/second
and third phase line numbers. When done, if the last line of the specified
block is still too long, a Line n has x Characters message is displayed. To cor-
rect this, Insert an empty line (or lines) and then Compile just the line that is
too long and the blank line or lines. After a satisfactory Compile operation,
the file is displayed by Video, starting with the first Compiled line.

® Delete—This command eliminates a specified block of lines. If you wish
to eliminate only one line, enter that line number as both the first and the
last line number. To Delete to the end of the text, enter a large number in
answer to the Last Line to Delete prompt. During operation, the screen
displays Deleting and Deleting Blank Lines messages. The modified text is

121

home applications

displayed by Video, starting with line 0. To abort, press ENTER in place of

the line number.
@ Edit—To edit a line, type the line number, then press E (defaults to line

0). If you give a nonexistent or empty line, you will get an ENTRY ERROR
message. The entire line is visible in Edit, even the character above the
smaller Edit cursor. The line number option is turned on by Edit, and the
cursor position is shown at the screen bottom. Subcommands in the Edit
mode are shown in Table 3. Variable n always defaults to one.

To see text lines that contain nonprinting characters, such as those in-
serted by overstrike, font changes, or U mode underlining, sweep the cursor
over the line from right to left in the Edit command. Nonprinting characters
show up as fixed cursor blocks, except for ASCII 14, which appears as an
underlining character.

If you enter nonprinting characters by mistake with Edit, you can remove
them using Delete or Again. After you exit from Edit, if the line is too long,
the Line n has x Characters message appears. If the line is equal to or shorter
than the specified line length, Video displays the text lines, starting with the

Space bar Moves cursor one position to the right (no space)

- Moves cursor continuously to the right (no spaces added)

- Moves cursor continuously to the left (without deleting)

A Again. Cancels previous editing changes and reenters Edit.
The List command makes all editing changes permanent.

nC Changes next n characters to next n keyed characters then

returns cursor to start (as completed signal) Note that @
and <, which are control characters you cannot enter in the
Add mode, can be entered using Change.

nD Deletes the next n characters and closes up the line

E Epson underlining for Epson MX-80 printers. Put the cursor
under the first character to be underlined and press E for
each character. Only one group per line can be underlined,
not including double-width characters. After Editing a line,
use List before using the E underline. Later, an underline,
two numbers, and a second underline are shown at the end
of the line. The first number is the space before the under-
line starts, and the second is the number of characters to be
underlined.

H Hacks the rest of the line and enters the Insert mode

Inserts characters into a line at the current cursor position

and moves the following characters to the right. While in

the Insert mode, you can move the cursor left or right with-

out changing the line by using the left arrow or right arrow.

You can use the < to insert overstrikes in Edit. See the “Font

Change” section for printer font changes. See the “TRS-80

Graphics Printing” section for information on inserting

graphics characters.

-

122

home applications

nKe The Kill command. It deletes all characters from the cur-
rent cursor position to the nth time that character ¢ oceurs.
L Lists the line and returns the cursor to the start of the line.
List makes editing changes immune to the Again command.
nSc Searches for the nth occurence of character ¢. Keeps upper-
case and lowercase separate (even with uppercase display).
U Underlining for backspacing printers. Used like E but it is

not restricted. Later, it shows only the underlines, not the
underlined characters.

X Extends a line. Enter the Insert mode at the end of the line.

SHIFT @ Leaves the C, H, I, or X modes and returns to Edit. SHIFT
@ usually must be pressed twice.

ENTER Exits from the Edit command (including exit from the C,

H, I, and X subcommands).

The following five subcommands are not performed if entered in the C, H,
I, or X subcommands:

CLEAR Holds a line secure from Justify (adds a left-arrow)
SHIFT ¢ Centers text line and holds it secure from Justify

SHIFT — Moves a line’s text to the extreme right of a line

SHIFT (Z) Adds an end-of-page marker () to the end of a text line
v Adds a line feed (ASCII 10) to the end of a line and exits

from the Edit command

Table 3. Subcommands in the Edit mode

line you just Edited. Edit also deletes extra trailing spaces.
® Format—This command resets the 14 variables that control the display or
printing of the text file. Each variable has a default value which is shown

first. If the default value is correct, press ENTER. The 14 variables are as
follows.

1) Line length: 60 characters, to fit with the line number on one video
display line. Limits: 20~122. Long lines may overwrite the cursor position
number.

2) Line spaces: None, for no extra spaces between lines. Enter the number of
blank lines between text lines.

3) Line numbers: Enter y for yes to show numbers for lines. Enter n (no) to
delete line numbers.

4) First print line: 0, to start printing from the initial line of text. To start
printing at a later line, enter the corresponding line number. Limits: 0 to the
last line in text file.

5) Last print line: Last line in file, to print to the end of the file. To end
printing at an earlier line, enter the line number. Limits: First print line (set
above) to the last line in the file.

6) Left margin: 10, to print the default 60-character line centered on an

123

home applications

80-character per line printer. This variable affects only the printer.

7) Page length: 15, to fill the video display. The number of lines per printed
page is usually between 56 and 58. You must reset this value to print. Lines
containing spaces are counted, but not line feeds (from item 2 above, or
from the use of the down arrow).

8) Page spacing: 8, to use with a page length of 58 lines for a 66-line page. If
page numbers are to be printed, use 6 for page spacing or 56 for page length.
9) Page numbers: n, for no page numbers. To show page numbers, enter y.
Note that you must show a page number to show page heading. (See item 14.)
10) First page: 1, to start numbering pages with page 1. If you wish, you
may enter a later initial page number.

11) Page 1 number: n, not to show a page number for page 1. To show page
numbers for all pages enter y only if item 9 is also set to y.

12) Page stop: n, to continue printing after each page. For printing on single
pages, enter y, and you will have time to insert a new page.

13) MX-80 graphics: n, if you do not want to shift graphics characters sent to
theprinter up by 32 to match the MX-80 printer’s graphics codes. Enter y to
print graphics on an MX-80. E mode underlining cannot be used.
14)Heading: “”, or null string. If you want to show a heading at the top left
of each page, you must enter it. The heading is shown only if the page
numbers are shown (items 9 and 11 above).

After going through these 14 Format variables, you return to the com-
mand mode. If there is nothing in the file, some variables may be skipped.
Out-of-range entries generate an Entry must be - - - message so you can try
again.

@ Help— This command displays all legal commands and their definitions
to refresh your memory. It also tells you how to return to the command
mode for those commands that do not return automatically.

® Insert—This command inserts a line (or lines) of text into the middle of
thecurrent file, using the Add command. Key in the line number before
which you want to insert lines, then press I (defaults to line 0). The follow-
inglines are moved down and renumbered. If you give a nonexistent line
numnber, you get an ENTRY ERROR message. To insert empty lines (for
Conpile), press ENTER. At any time, to keep text you have entered and
return to command mode, press SHIFT @ twice. If the text file gets full,
youreceive a FILE FULL message.

@ Justify—This command right justifies all lines of the current file. The
only exceptions are lines with a hold-justify, an end-of-page, or a linefeed
marker at the end, a line without any spaces between words, or a line
already longer than the specified line length (as you set in Format).

Extra spaces are inserted between words, starting at a random position,
butevenly distributed. Spaces may be inserted between adjacent words or
only every other word, depending on whether there is an odd or even

124

home applications

number of words in the line. Leading spaces are not affected to maintain
indentation. You should use Justify before underlining, changing fonts, or
overstriking, as these operations insert nonprinting characters into the
text. During operation, Justifying Line n is displayed, where n is the line
the program is working on. When it is done, the text is shown by Video.
® Kill—This command removes all text from the file and resets Formats to
their default values, leaving the program ready to start over. This com-
mand asks again if you really want to Xill, to prevent accidental loss of the
text file.

® Load—This command loads a saved text file from tape or disk. For tape
operation it shows the message Get cassette ready, press ENTER. For disk,
it shows the current filespec, if any, and asks if you want a different one.
To abort, press SHIFT @ twice for tape, or SHIFT @ ENTER for disk.

For disk operation, to leave the filespec unchanged, press ENTER. The
program loads the filespec you specified and displays Loading (Filespec).
For tape, Loading (Heading) appears. If there is already text in memory,
Load appends the new text onto the old text. If there is not room for both,
Text too long is shown, and no text is Loaded. In either case, the Format
variables become those of the new text.
® Move—This command transfers a specified block of lines either forward
or backward in the text file. A place to insert the block of lines is opened up
automatically and the place where the block of lines came from is closed up
automatically. The lines are then renumbered. Move cannot be used after a
FILE FULL message. Only one line at a time is Moved; so large blocks can
be handled even when the file is nearly full. While operating, Move shows
Moving, Deleting Blank Lines; when done, it uses Video. To abort, press
ENTER in place of line numbers.
® Overlay—This command gives a global search or replace function. You
are asked the question, Search or Replace (S/R)? The search mode looks
through the text file for any word you specify. If it finds the word, it enters
the Edit mode, placing the cursor under the word’s first letter. When you ex-
it from Edit, you may continue the search from the current cursor position
or return to the Command? prompt. If the word is not in the file, Word Not
Found is displayed.

The Replace mode replaces any old word in the file with a new word. This
is useful in correcting a misspelling, changing a name, and so on. The new
word may be longer or shorter than the old word, but the same spacing of
words is maintained. Overlaying is shown while operating; the file is
displayed by Video when done. Either mode may find a word that is part of
a longer word. To avoid this, put a space before and/or after the word. This
may miss a word followed by punctuation. A word also may be missed if let-
ters are capitalized.
® Print—This command prints the text file on the printer. Remember to

125

home applications

reset the Format variables before printing. To avoid a Function Call error,
the program removes blank lines using the Blank command before printing.
During operation, first Deleting Blank Lines, then Printing are displayed. If
you set the Page Stop variable to y, the message, Get new page ready, press
ENTER is displayed after each page is printed. If the program receives a
down-arrow end-of-page character (ASCII 2), it inserts blank lines to fill out
the page before printing the next page.

® Save— This command records the text file on tape or disk. For tape, it
shows Get cassette ready, press ENTER. For disk, it shows the current
filespec and asks if you want to use a different one. To abort, press SHIFT @
twice for tape or SHIFT @ ENTER for disk operation.

For disk operation, any legal filespec may be used. To leave a filespec un-
changed, press ENTER. To save the file on a specified disk, end the filespec
with :d where d is the desired disk drive number. To avoid possible disk er-
rors, blank lines are deleted. During operation, first Deleting Blank Lines,
then Saving (Filespec) are shown. For tape operation, Saving (Heading) is
shown.
® Video— This command displays the text file on the video display. To start
the display at a specific line, key in the line number before you press V
(defaults to line 0). If the line length is greater than 60 characters (64 if Line
Nos. was set n in the Format mode), the lines wrap around to the next dis-
play line.

After displaying each page, the program halts. To see the next page, press
ENTER. To scroll text forward, press the down arrow; the up arrow to go
backward. To return to the Command mode, press any letter. If you have
added any down-arrow (linefeed) characters, or have wraparound lines, the
top lines of the page may scroll off the top of the screen. To avoid this, reset
the page length in the Format mode.

Video may show one of three non-text characters at the end of a line: A
left arrow for hold-justify, a down arrow for end-of-page, or an underline
after the space in a spacer line. These markers help to specify the text’s for-
mat. In addition, a blank line with no line number follows any line that
ends with a linefeed marker or between all lines if line spaces are specified
in Format.
© Exit—This command allows a graceful end to the program. More impor-
tantly, it clears the string space to its normal value so that the next program
you run does not crash. It is easy to forget to CLEAR 50. The program again
asks if you really want to exit from the program to avoid accidental loss of
the text file.

Font Changes
Some printers print characters of different fonts. For printers which re-

126

home applications

quire imbedded control characters in the text to set different fonts, this pro-
gram can change fonts in the middle of the text. To do this, in the Insert sub-
command of the Edit command, press SHIFT down arrow(letter), where
letters A through Z insert ASCII codes 1 through 26 into the text. SHIFT up
arrow gives the Escape code, ASCII 27. Since inserting invisible characters
confuses the display, first move the cursor to the right end of the line, then
work towards the beginning of the line if you have more than one code to in-
sert. The Escape code is an upwards line feed on the video display. This
eliminates some portions of the display; so you must work without seeing the
whole line.

Since the Hack and Extend subcommands of Edit use the Insert subcom-
mand, they too may be used to change fonts. Some printers, such as the Cen-
tronics 737 (Radio Shack Line Printer IV), consider underlining as a font
change. For these, insert the appropriate codes for a font change.

The actual codes to use for different font changes for the Epson MX-80
printer are given in Table 4. Except for double-width characters, all font
changes for the MX-80 are for whole lines only. Thus the turn on and the
turn off codes must be in different lines so they do not cancel each other. You
can combine these four fonts (except for Compressed and Emphasized) to
get a total of 12 fonts.

Tumn On Turn Off
Emphasized Shift t E Shift t F
Double strike Shiftt G Shift 1 H
Compressed Shift O Shift { R
Double width Shift § N Shift $ T

Table 4. Font control codes for the Epson MX-80 printer. Insert these codes into the text with Edit
to change print fonts. See “Font Changes” section for details. Use uppercase letters only.

The font change codes for the MX-80 with the addition of Graftrax-80 are
given in Table 5. With this addition, you can change fonts for any portion of
a line, change line spacing within the text, and use italics. Counting italics as
a font, 24 different fonts can be set.

Note that for SHIFT down arrow(letter), the SHIFT down arrow acts as a
Control key and must be held down while the letter is keyed in. The same is
true for the SHIFT up arrow(letter). In these cases only, the letter being
keyed in is an uppercase letter. Where SHIFT up arrow is followed by a
number or some other non-letter character, release the SHIFT up arrow
before you key in the final character.

With the Graftrax-80 addition to the MX-80, the E mode underlining
does not work. (U underlining does work.) The Print routine is easily

127

home applications

Turn On Turn Off
Line spacing 8 lines/inch ~ Shiftt 0 —_——
Line spacing 7/72 inch Shift t 1 —_——
Line spacing 6 lines/inch ~ Shift t 2 R
Ttalics Shift 1 4 Shiftt 5
Emphasized Shiftt E Shift t F
Double strike Shiftt G Shift t H
Compressed Shift t P Shiftt Q

Shift § O Shift | R
Double width Shift t S Shift ¢ T

Shift § N Shift+ T
TRS-80 graphics Shift 4 : Shift 1 ;

(without setting Format)

Table 5. Font control codes for the Epson MX-80 printer with the Graftrax-80 addition. Insert
as above. Note that there are sometimes two ways to obtain the same font change. Use upper-
case letters.

changed so that E underlining will work (but then it won’t work on a normal
MX-80). To change for E mode underlining with the Graftrax-80:
Line 2530, Change CHR$(133) to CHR$(5) and delete the final E$;“2”; from the line.
Line 2550, Delete E$;"A”;CHR$(140); from the line.
When you use a Graftrax-80 addition to the MX-80, this change gives you
the advantage of using both TRS-80 graphics and E mode underlining in the
same text. For other printers, check the user’s manual to find out what fonts
can be used and which control codes are needed. This program should be
able to insert the required codes.

TRS-80 Graphics Printing

This program allows direct keyboard entry of the 64 TRS-80 graphics
characters, plusthe[,/,],A,__,",{.",}, and ~ special characters. The graphics
characters can be printed by the MX-80, Okidata, and some other printers.
Most printers should be able to print the special characters. The MX-80 re-
quires that the graphics characters be shifted up by 32 (ASCII 130 to ASCII
162, etc.). You can set this in the Format command, but as mentioned
above, E mode underlining is excluded. With the Graftrax-80 addition to
the MX-80, you can also follow the font changes in Table 5 to print TRS-80
graphics.

To enter either special characters or graphics, use the Edit command. In
the Hack, Insert, or Extend modes, press SHIFT left arrow for a low
graphics entry or SHIFT right arrow for a high graphics entry. The mode is
displayed at the lower right of the video screen. Repeated pressing of either
SHIFT left arrow or SHIFT right arrow toggles the graphics entry mode on
and off. Pressing the keys indicated in Table 6 (unshifted) inserts the special

128

home applications

characters or graphics characters into the text. The graphics characters ap-
pear normal on the screen, but print much wider than they are displayed
unless you use the compressed print font. Special characters may look dif-
ferent on the screen than when they are printed. On the Model I, [,/,], and A
are displayed as t,},«-, and —.

Low Graphics High Graphics
Key Chr ASCII Key Chr ASCIIX Key Chr ASCII Key Chr ASCII
o] L 91 H & 135 %)] 154 H & 173
1 \ 92 I M 136 1 :I 155 I .l 174
2 1 93 J " 137 2 r 156 J ‘ 175
3 -~ 94 K A 138 3 F 197 K - 176
4 - 95 L b | 139 4 ¢ 158 L pl 177
5 * 6 M - iag S B 159 M - 178
) { 123 N [8 141) . 160 N - 179
7 H 124 &) ot 142 7 " 161 0 & 180
8 > 125 P | 143 8 . 162 P L 181
9 ~ 126 Q - 144 9 - 163 (8] g 182
: nul 127 R : 145 H . 164 R E 183
H H 59 = - 144 H g 165 =] 4 184
A spc 128 T - 147 A < 166 T a2 185
B . 129 u 1 148 B g 167 u | 186
c " 130 Vv g 149 C 8 168 v b | 187
D - 131 W s 150 D % 169 W ™ 188
E - 132 X r 151 E] 179 X b 189
F [] 133 Y r 152 F 3 171 Y d 196
G - 134 z > 153 G 9 172 z | 191

TRS—-8¢ graphics should be compressed for proper proportions:

"= AP, LT T P A T L Dkl

Table 6. Keyboard entry of TRS-80 graphics and special characters into text. Insert these codes in-
to the text with Edit. See the “TRS-80 Graphics Printing” section. Do not use uppercase letters.

129

home applications

Possible Problems

A program halt accompanied by a BASIC error message or one caused by
accidentally touching the BREAK key usually does not mean that you have
lost the text file. In most cases, you can recover it by typing GOTO 60 and
pressing ENTER. This returns you to the Command? prompt.

Speed

Since this program is written in BASIC, its handling of each character is
not fast enough to keep up with a good touch typist. A touch typist must key
in text at a deliberate pace. This is especially important at the end of a line
because moving a word to the beginning of the next line takes a little extra
time.

The program occasionally pauses during operation due to the way BASIC
handles strings. Each time a string is changed, it is assigned a new location in
string space. As this quickly fills up all available string space, a garbage col-
lection routine in BASIC must clear out all of the old versions of eachstring.
As the text file fills up, these pauses become longer and more frequent. The
best solution to this problem is to save the text on tape or disk as separate
short files of about 150 lines, rather than trying to fill the text file to its max-
imum capacity. Use Load to combine the short text files for printing.

Tape saving or loading of text is relatively slow. This is because of the in-
herent slowness of the TRS-80 tape operations, plus having to “translate” the
text to avoid the improper operation that some punctuation marks would
cause.

The Archbold clock control board that I use speeds up the TRS-80's clock
by 50 percent. The OUT254,1 statement in the program speeds up the clock,
while the OUT254,0 statement slows it down again (for disk use, etc). If you
do not have this board, these statements have no effect.

Model IIT TRS-80s

The program automatically sets itself to allow for the lowercase display
capability of the Model IIT and allows for its slightly lower memory
availability. The arrows for video display markers listed as 4,{,<, and - for
the Model I appear as [,/,], and A on the Model I11.

Printer

The routines the program uses for printing text work correctly on my Ep-
son MX-80 printer, but may have to be changed for some other printers. If
the printer is not ready, the program does not hang up, but gives a Printer
Not Ready message and gives you a chance to get it ready. There is an
underlining routine for MX-80 E mode underlining that works even with the
standard Radio Shack printer cable. Some printers may require LPRINT-
CHR$(32) instead of LPRINT at the end of line 2450. There are many

130

home applications

variations; the printer manual should tell you how to set the program.
Either TRS-80 graphics or E mode underlining may be printed on the
MX-80, but not both in the same text. The special characters, [,/,],A,—,",{,
1.}, and ~, print either way.

Memory

To avoid an Out of Memory error, key in the program listing without the
extra spaces added for legibility. The program requires 12829 bytes of
memory before you run it. This program is designed to use essentially all of
the memory of the TRS-80. The six machine-language routines are POKEd
into high memory. If you use a machine-language printer driver, etc., you
have to relocate it and reduce the size of the program’s text file to avoid get-
ting the Out of Memory message. If you run the program and see Com-
mand? immediately, then press BREAK and PRINT MEM, you should have
at least 350 bytes of free memory. If not, you have to reduce the CLEAR in
line 30 and the value of NL, where NL equals the number of lines. CLEAR
should be set at least 300-400 bytes greater than the value of NL+LL, where
LL is the line length.

Line Length

If you set the line length in Format equal to the maximum print line
length of your printer, some printers insert blank lines between lines of text.
The easiest way to avoid this is to set the line length shorter, for example to
79 for an 80-character per line printer. Be sure to set the left margin in For-
mat to 0 also.

For saving lines of text on tape, if the lines are set to longer than 60
characters, it is necessary to modify the tape SAVE and LOAD routines.
These routines handle four lines (240 characters) at a time to save time and
tape. 240 is almost the maximum number the tape PRINT and INPUT
statements can handle at once. To handle 80-character lines, you have to use
only three lines at a time instead of four. Both the SAVE and LOAD routines
need to be changed (STEP4 to STEP3, delete “X$(3)”, and 0TO3 to 0TO2.
See lines 2070, 2080, 2740, 2750, and 2770).

Lowercase Modifications

There are a number of different keyboard modifications available for the
Model I TRS-80 that allow the display of lowercase letters on the screen.
This program has a built-in lowercase driver. If you do not have a lowercase
modification, delete the last two POKEs in line 5 of the program. If you use
a lowercase modification or DOS that contains its own driver, delete the
part of line 5 following NEXT I. See line 9 of the program for instructions.

If you do not have a lowercase modification on your Model I TRS-80, all
letters appear as uppercase letters on the video display. Both uppercase and

131

home applications

lowercase letters print; you can use the Search subcommand of Edit to check
the case.

With a lowercase modification on a Model I, or with a Model 111, the
filespec in disk LOAD and SAVE appears in lowercase letters unless you shift
the letters; this does no harm. The filespecs are interpreted as uppercase by
the DOS.

132

~

10
20
30

40

50

home applications

Program Listing. BASIC Word Processor

CLS :
PRINT @ 320, CHR$(23); "Poke Scroll, LC Patch & Shift"
' M/L Graphics Shiftu by Leo Christopherson, 80-US, Jan-F 1980

‘ #/L Scroli-Down by Bob Boothe, 80-Micro, Apri1l 1981, p. 116
: M/L Video Patch by Tim Mann, TRS~80 Computing, V1, N2 (CIE)

' M/L Case Shift by HMartin Hambel, 80-Micro, May 1981, p. 260
POKE 16561,149
POKE 16562,255
POKE 16409,0
CLEAR 50 :
DEF USRO = &HFFDC
RESTORE
FOR I = - 106 TO - 1
READ B
POKE 1,B
NEXT 1
IF PEEK(84) = 1 POKE - 23, PEEK({16406)
POKE - 22, PEEK(16407)
X = USRO(B)
POKE 16414,190
POKE 16415,255
' POKE in six M/L routines, Divert to Keyboard Case Snhift and
Video Patch (1f Model 1).
POKE - 95, PEEK(16422)
POKE - 94, PEEK{16423)
DEF USRO = &HFFA3
DATA 245,121,254,128,56,2,198,32,79,241,195,0,0, 217,17,255, 63,
33,191,63,1,192,3,237,184,33,0,60,17,1,60,1,63,0,54,32, 237,176,
217,201, 221,110,3,221,102,4,218,154,4,221,126,%, 183,40,1,119,1
21,254,32,218,6,5,254,128,210,166,4,195,125,4
DATA 33,227,255,34,22,64,201, 225,33,235,255,229,195,0,0, 254,65
,66,14,254,123,48,10,254,91,56,4,254,97,56,2,238,32, 195,221,3
CLS :
PRINT @ 520, CHR$(23); "Key 1n: RUN <ENTER>"
DELETE 0 - 9 :
" For Model I TRS-80s without an LC keyboard mod, put a ' 1n

Tine 5 before the ":POKE 16414,190 :POKE 16415,255". For TRS-8
Os witn an LC DOS, put ' 1n line 5 after "NEXT [".
CLS :

PRlNi TAB{10)"BASIC Word Processor, 48K Tape/Disk Version

' (C) by D.D.Hinricns 1981
CLEAR 24880:
DEFINT A - Z:

U = 32:

V = 64:

W = 992:

cMD MT™:

0uUT 254,1

NL = 408:

DIM AS(NL),X$(3),5(U),T(U)

B$ = CHRS$(30):

E$ = CHR$(27):

F§ = "hip "

M3 = "pt

NG = Myn

P$ = M§:

PNS = M§

P1§ = M$:

§g = o

U$ = CHR$(95):

FP = 1: ,
LA = - 1: Program continued

133

home applications

LL = 60:
LM = 10:
PL = 15:
PS = 8
60 CLOSE :
CL = 0:
H o= 1:
I = LA:
IT = 0:
N = 0:
R = 0:
PRIN

PRINT "Command? "
70 GOSUB 3160:
PRINT :
IF A > 96 ON A - 96 GOTO 90,570,610,890,940,1490,80, 1780,1820,1
860,1980,2000,2140,80,2210,2380,80,2620,2650,80,80, 2870,80,3200
80 PRINT "** ENTRY ERROR **"
GOTO 60
90 CLS

ERVRTIN

= CHR$(143):

1 <0 GOTO 130 :
ADD

100 IF NL = LA + 1

120 NEXT L
130

IF P ¢ 60 OR P < 62 AND B
THEN
150:
ELSE
IF H GOTO 160
150 PRINT
160 GOSUB 530
170 PRINT @C,BS$;:

GOSUB 3040
P= Y + 1:
C=0C+ P+ 3
K = L + 1:

H = 1:

GOSUB 550

180 PRINT @W,P;
190 PRINT @C,C$;:
A$ = INKEYS:
PRINT @C,S%;:
IF A$ = "" GOTO 190

134

home applications

200 B = O:
A = ASC(A$):
IF CL IF A > 96
THEN
A=A - U:
A$ = CHRS$(A)
210 IF A > V¥
THEN
260:
ELSE
IF A > = U GOTO 250
220 A$ = S§$:
IFA>7 ONA - 7 GOTO 400,440,470,80,80,280
230 IF A > 23 ON A - 23 GOTO 420,460,380,390,80,80,80,480
240 GOTO 80
250 IF A = 60 GOTO 490:

vV GOTO 360

270 PRINT @C,AS$;
AS(L) = AS(L) + AS:
IF P < = LL
THEN
P =P + 1:
C=0C+ 1:
GOTO 180
280 IF R GOTO 60:
ELSE
IF NL < = K PRINT "FILE FULL":
LA = NL - 1:
LP = LA:
GOTO 60
290 IF LEN(A$(K))
THEN

L = K:
GOSuUB 1830

310 IF A$
320 FOR M

A$(L) = LEFT
340 PRINT @C - L
L = K:
B = 1:
GOTO 140
350 PRINT BS$;:
A$(L) = LEFT$(A$(L),LL):
L K:

$
$
330 A$(K) = RIGHTS
E(

GOTO 140
360 IF CL

0: Program continued

135

home applications

GOTO 180
380 IF P > LL GOTO 280:
ELSE
GOSUB 1460:
GOTO 520
' S.D
390 IF P > LL GOTO 280:
ELSE
GOSUB 1440:
GOTO 520 :
toSey
400 IF P = 1 GOTO 180:
ELSE
c = 1:
1:
LEFTS(AS(L),P - 1)

410 PRINT @C,C5;S%;:
GOSUB 510:
IF PEEK(14400) = U
THEN
400:
ELSE
180
420 IF P =
tosaL
430 AS(L) = "":
H .

= 0:
PRINT 8960,8%;:
GOTO 160
440 IF P > = LL GOTO 180:

[T IS

C
P =P
A$(L)
'L

1 GOTO 180

PRINT @L,5%;0%;:
C =0+ 1:
P =P + 1
'R
450 A$(L) = A$(L) + S$:
GOSUB 510:

IF PEEK(14400) = V
THEN
440:
ELSE
180
460 IF P > LL GOTO 280:
ELSE
GOSUB 1480:
GOTO 520 :
' S-R
470 IF P > LL GOTO 280:
ELSE
GOSUB 1470:
D =D+ 1:
R = 0:
PRINT :
GOTO 280
' D-A
480 IF P > LL GOTO 280:
ELSE
GOSUB 1450:
GOTO 520
'CL
= 1 GOTQ 180 :

eC,"<";:

= A$(L) + CHR$(8):

-
GOTO 18

e 15);P;:

136

540
550

560
570

580

640

650

660

670

NEXT 1:
RETURN
0:
GOSUB 530:
PRINT @C,B§;:
GOSUB 3040:

H

GOTO 280
(L + D) * v:

IF C > 896
THEN

C

IF CL
ELSE
PRINT STRING$(9,U);
RETURN
IF LA < 0 GOTO 80 :

CL

BLANK

S :
PRINT
FOR J

IF A$() = ""FOR I =

AT

896:

IF H PRINT
RETURN
PRINT @1014,;:
1 PRINT “"CAPS-LOCK";:

home applications

"Deleting Blank Lines"

LA TO

AS(LA) = "
LA - 1
NEXT J:

L
IF

A
R

THEN
RETURN :
ELSE
2870
0:
INPUT “"First Line to Compile";F:

F

IF F <O

THEN

4

F

'

z

IF F >
THEN

0 :
COMPILE
0:
INPUT "Last Line to Compile";Z:
IF Z > LA
THEN

LA

z

0

STEP -

(I) = A$(L + 1):

1

J TO LA:

PRINT "Compiling Line":
J =1
FOR L

"

1:

F T0 Z:
PRINT @15,L:
GOSUB 3090:

IF Y < 2 GOTO0 710

.,

L+ 1
INSTR (P,A$(L),S$):
P

137

Program continued

680

700
710

720

730

740
750

800
810

820
830

home applications

0
= X$ + MIDS(A$(L),P,Q - P + J):
1

GOSUB 860:
GOTO 660:

LL OR L = Z GOTO 770

'Y TO 1 STEP - 1:
MIDS(A$(L),1,1)
IF A$ < > S§

= A$ + X$:

LEFT$(AS(L),I - 1):
IF LEN(AS(K)) = O
THEN

= X$ + S$ + AS(K):

GOTO 850
F ASC(A$(K)) =

RIGHTS(A$(K),X - 1):

Y=Y +R
g = INSTR (A$(K),S$):
F

= LEFT$(A$(X),Q - 1):

IFLL - Y < Q GOTO 850:

;+S$+Y$:
RIGHTS(A$(K),X)

860 A = AS((RIGHTS$(X$,1)):

870 IF

= 46 QR A = 58 OR A = 63

138

horne applications

880
890

900 INPUT "Last Line to Delete";Z:
IfF F>1
THEN
80:
ELSE
IF Z > LA
THEN
Z = LA
910 CLS :
PRINT "Deleting”:
J = 7
920 FOR I = F TO LA:
Jd o= Jd o+ 1
IF d > LA

THEN
A$(I) PR
ELSE
AS(1) = A$(J)
930 NEXT 1I:
LA =LA - 2 + F - 1:
R = 1:
GOSUB 570:
GOTO 2870
= 0:
= N:
CHR$(176):
< 0OR L > LA OR A$(L) = "" GOTO 80 :
pIT
vy

- 3 I
™y

o

wr

o

—
I s Rt

— e
=1

O 2
=}

™~
i
b

970
960
3970

OO ¢o

™ &5

wy [T T > M = B 4
"

>

“ +

—

™~ w

980

[=R]
<
[
o=
[=- X =T
w b
o ..
>
o

990

=
Ead
1
1t
—

1000 GOSUB 1100:

1010

IF 8 OR A = 9 GOSUB 1130
1020 IF
T

= 97
= 0%:
960 :

1030 I = LL GOTO 1050:

A = 10 GOSUB 1470
> 24 ON A - 24 GOSUB 1480,1460,1440,540,540,540,1450
> 98 ON A - 98 GOSUB 1160,1190,1210,540,540,1230,1240,540,1

Program continued

1040 IF
1050 IF

139

home applications

370
1060 IF A = 115 GOSUB 1380:
ELSE
IF A = 117 GOSUB 1410:
ELSE

IF A = 120 GOSUB 1430
1070 IF A = 108 GOTO 960:
ELSE
N =1L:
IF M
THEN
990:
ELSE
IF R PRINT ©320,;:
ELSE
980
1080 IF LL < X PRINT "Line";L;"has";X;"Characters":
IF IT = 0 GOTO 60
1090 IF IT
THEN
RETURN
ELSE
2870
1100 X$ = MID$(A$(L),P,1):
B = 1:

PRINT @W,P;
1110 PRINT @C,C$;:

A$ = INKEYS$:

PRINT @C,X$; CHR$(15);:

IF A$ = "" GOTO 1110
ASC(AS):
LEN(AS(L)):
A =13
THEN
R =1:
RETURN :
ELSE
RE TURN
1:
P+ A* 2 - 17:
¢ 1

1120

A
X
If

1130 M =
p =
IF
T
1:

Mmooz

E

o

P
E
S
FPr>X
T HEN
p=X
MY

1140 PRINT @OC,X$;:

C= P+ 3:

X$ = HID$(AS$(L),P,1):

PRINT @C,C$;:

GOSUB 510
1150 K = PEEK(14400):

IF K= U OR K =V

THEN
1130:
ELSE
RE TURN
1160 Q = P:
= (
FOR 1= 1 TO N:
GOSys 1100:
IF A< U OR A = 96 GOTO 1180 :
' 4
1170 PRIN @C,AS$;
MIDS(AS(L),P) = A$
P =P+ 1:
C ={ + 1:
IF P< = X NEXT I

140

1180

1190

1200

1210

1220
1230

1240

1250
1260

1270

1280

1290

1300

wowon

P
C
A U:
RETUR

Q:
D:

N

home applications

IFP+N-1)>1X

THEN
N =

X - P+ 1
D

GOSUB 1350:
Q=P
P =P + N:

GOSUB 1360:

A$()
Q:
RETUR

N

= L$ + RS$:

PRINT @C + V,U$:
C =0+ 1:

P
M
1

B

F D
THE
D
A$(L)
RETUR

A$ (L)

o=
m

N

P+ 1:
1:

-1
P -2

= 0% + U$ + STR$(D) + "," + STR$(P - D - 1) + US$:
GOSUB 1350:

= L§ + S§:

PRINT @C,B$
+

H

R = 0:
GOSUB 1100:

-0 = >
- W

ETU
I

IF A

Y:
U:
R

N

IF R OR A = 96 GOSUB 3090:

8 OR A = 9 GOSUB 1130:

GOTO 1240

IF A
THEN
F =

26 IF F =0
1:

GOTO 1240
IF A= 25 IF F < > 1 PRINT €1010,;:

IF F = 2 PRINT STRING$(13,U);:
F=20:
GOTO 1240:
ELSE
PRINT "H1gh Graphics";:
F o=
GOTO 1240
IF A= 24 IF F <> 1 PRI
IF F = 3 PRINT STRING$(13,U);:
F=20:
GOTO 1240:
ELSE
PRINT “Low Graphics ";:
F o=
GOTO 1240
IF F = 2 IF A > 47 AND A < 60
THEN
A=A + 106:
ELSE
IF A > 96
THEN
A= A + 69
IFF = 3 IF A D> 47 AND A < 54
THEN
A= A + 43:
ELSE

IF A > 53 AND A < 59

NT €1010,;:
3,

141

Program continued

home applications

1310 IF F =1

=0
1320 A$ = CHR§(A):
IFP>X
THEN
X =P
1330 GOSUB 1350:
GOSUB 1360:
IF A = 60
THEN
X$ CHR$(8):
= - 1:
ELSE

1340 L$ + X$ +
BA CHR$(15)R$

1350 L§ = "":
IF P < 2 RETURN
ELS
L$ LEFTS(A$(L),P - 1):
RETURN
1360 R$ = "":
IF P > X RETURN
ELSE
R$ = RIGHT$(A$(L),% - P + 1):
RETURN
1370 0 = P:
GOSUB 1380:
P -~ D:
D:
P+ 3:
G0TO 1190 :
L 4

P

1380 (0SUB 1100:

1390 D 1 70 N:
Q = INSTR {Q + 1,A$(L),AS$):
I TI:

o
+
© <
1
©

o0 oum
=.O O
=
e

= o o

1400

=
m
—
<
=
=

1410 P = P + 1:
GOSUB 1350:
GOSUB 1360:
A$(L) = L$ + CHR${(8) + U$ + RS :

1420 PRINT eC + V,U$:
C + 1.

1430

R e
R Sl
0o ~— 0o

1440 A$(L) = STRINGS((LL - LEN(A$(L))) / 2,U) + A${L)

142

1450

1460

1470

1480

1490

1500
1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

home applications

= A$(L) + CHR$(3)
= A${L) + CHR$(2)

= A$(L) + CHR$(10):

CLS :
PRINT ,"FORMAT:"
' FORMAT

PRINT “To leave Formats unchanged, press <ENTER>":

PRINT

PRINT "Line Length =";LL,:
X = LL:

GOSUB 1720:

LL = X

IF LL < 20 OR LL > 122 GOSUB 1770:
PRINT "20 to 122"

LL = 60:

GOTO 1510

PRINT "Line Spaces =";S,:

X = S:

GOSUB 1720:

S =X

PRINT "Line Nos. = ‘'";N§;"'",
X$ = N§:

GOSUB 1740:

N$ = X

IF LA < 0 GOTO 1690:
ELSE
IF LP > LA

THEN
LP = LA
PRINT "First Print Line =";FL,:
X = FL:
GOSuUB 1720;:
Fl = X
IF FL > LA GOSuUB 1770:
PRINT “0 to";LA:
FL = 0:
GOTO 1560
PRINT "Last Print Line =";LP,:

GOSUB 1720:

LP = X

IF LP ¢ FL OR LP > LA GOSUB 1770:
PRINT FL;"to";LA:

LP = LA:

GOTO 1580

PRINT "Left Margin =",LM,:

X = LM:

GOSUB 1720:

LM = X

PRINT "Page Length =";PL,:

X = PL:

GOSUB 1720:

PL = X

PRINT “"Page Spacing =";PS,:

X = PS:

GOSuUB 1720:

PS = X

PRINT "Page Nos. = ‘“;PN§;"'",
X$ = PN$:

143

= STRINGS(LL - LEN(AS$(L)),U) + A$(L)

Program continued

1640

1650

1660

1670

1680

1690
1700

1710
1720

1730

1740

1750

1760

1770
1780

1790

1800
1810

home applications

GOSUB 1740:

PN$ = X$

PRINT "First Page = ";FP,:

X = FP:

GOSUB 1720:

FP = X

PRINT npage 1 Ng. = IH;P1$;IIIII’:
Xt = P1§:

GOSUB 1740:

P1$ = X$

PRINT “Page Stop = '";P§;"*'",:
X$ = P$:

GOSUB 1740:
P$ = X$
PRINT "MX-80 Graphics = '";M§;"'",
X$ = M$:
GOSUB 1740:
M$ = X$
IF M$ = “y"
THEN
POKE 16422,150:
POKE 16423,255
ELSE
POKE 16422, PEEK(- 95)
POKE 16423, PEEK(- 94)
PRINT "Heading = '";H$;"! ", "New =17 "5
LINE INPUT x$%
IF X§ < > "
THEN
H$ = X$
GOTO 60
PRINT "New =7 ";:
N = - 1:
GOSUB 3160:
IF A =13 AND N > - 1
THEN
X = N:
RETURN
If A = 13 RETURN
ELSE
PRINT :
GOSuUB 1770:
PRINT "a number",:
GOTO 1720
PRINT “New (Y/N)? ";:
N=-1:
GOSUB 3160:
IF A = 13 AND N
IF A = 121 OR A
X5 = AS:
RETURN
ELSE
IF A < > 13 PRINT
GOSYB 1770:
PRINT "Y/N (Unshifred)",:
GOTO 1740
PRINT "Entry must be ";:
RETURN
CLsS
PRINT "Legal Commands are:":
PRINT :
' HELP
PRINT "A ADD","B BLANK","C COMPILE","D DELETE", “E EDIT","F
FORMAT”,"H HELP","I INSERT","J JUSTIFY", "K KILL","L LOAD
“,"M MOVE","0 OVERLAY","P PRINT", "R REPLACE","S SAVE","V
VIDEO","X EXIT":
PRINT
PRINT "Key 'Shift-@' twice to return from A,I,L,R,S to Command m
ode"
PRINT “From E & R only, press <ENTER> to return”

-~ 1 RETURN
110 PRINT

144

home applications

GOTO 6
1820 L = N:
IF L COORL > LA GOTO 80
' INSERT
1830 IF NL = LA + 1 PRINT “"FILE FULL":
GOTO 60:
ELSE
IF R GOTO 60
1840 FOR LA T0O L STEP - 1:
1) = A$(I):

1850

1860 CLS :
PRINT “"Justifying Line":
FOR L = 0 70 LA:
GOSUB 3090 :
' JQUSTIFY
1870 PRINT @16,L:
IF Y < 2O0RY
1880 IF A= 2 OR A
THEN
1970:
ELSE
Jd = 0:
FOR I =170 Y
1890 Q = INSTR (I,A$(L),S$):
IFQ=0
THEN
= Y:
TO 1910
>

070 1970

> =1L G
=3 0R A =10

1900 IF
T

~MO O

TI

H
I
G
H
N
J
I
1910 X
J

1920

— %
"
el

—t =0

(%3
~— M 22

2) =Jd /20RJ =1

1930 F

1940 I:
=dJ - 1T0 0 STEP - 1:
STRINGS(T(1),58):
= 0
1950); LEFTS(AS(L),S(I1)) + A$ + RIGHTS(A$(L), LEN(AS(L))
1960 E I
1970 NEXT L:
N = 0:
GOTO 2870
1980 CLS :
PRINT "Really Kill (Y/N)? “;:
GOSUB 3160 :
YOKILL Program continued

145

home applications

1990 IF A = 121
THEN
RUN
ELSE
60
2000 GOSUB 2800:
IF A = 96
THEN
60:
ELSE
PRINT "Loading ";
' LOAD
2010 Q = LA + 1:
IF DK
THEN
OPEN “I",1,FS%:
PRINT FS$;:
ELSE
2050
2020 INPUT #1,LA,LL,S,N$,FL,LP,LM,PL,PS,PN$,FP,P1$,P$,M5,HS
2030 GOSuUB 2110:
IF R GOTO 2790
2040 FOR L = Q TO LA:
LINE INPUT #1,A$(L):
GOSUB 3090:
NEXT L:
GOTO 2780
2050 INPUT # - 1,LA,LL,S,N$,FL,LP,LM,PL,PS,PN$,FP,P1§,PS,M$,HS
2060 GOSUB 2110:
IF R GOTO 2790
2070 PRINT H$;:
FOR I = Q TO LA ZTEP 4:
INPUT # - 1,X$(0),X$(1),X$(2),%8(3)
2080 FOR J = 0 TO 3:

2090

2100 NEXT J:
NEXT I:
GOTO 2780
2110 IF H$ < > " IF ASC(H$) =1
THEN
HE = "°
2120 IF LA + Q < NL
THEN
LA = LA + Q:
LP = LA:
RETURN
2130 CLS
PRINT "Text too long":

2140 F = 1:
INPUT "First Line to Move";F:
IFF <O
THEN
F=0:
' MOVE
2150 Z = 0:
INPUT "Last Line to Mpve";Z:
IF Z > LA
THEN
Z = LA
2160 IF F > Z

146

home applications

THEN

80:
ELSE

N = 0:

INPUT "Insert before Line";N:

IN = N

2170 IF N < O OR N> LAOR N> = F AND N < = 2

THEN

80:

FOR M = F TO Z:
CLS :
R =0
2180 PRINT “Moving":
GOSUB 1820:
IF IN < F
THEN
K=M+ 1:
ELSE
K = F
2190 A$(N) = A$(K):
A$(K) PR
IF IN <
THEN
N =N+ 1
2200 R = 1:
GOSUB 580:
NEXT M:
N = 0:
GOTO 2870
2210 CLS :
PRINT ,"OVERLAY:":
PRINT :
' OVERLAY
2220 PRINT "Search or Replace (S/R)? “;
2230 GOSUB 3160:
PRINT
PRINT :
IF A =114
THEN
2270:
ELSE
IF A <> 115 GOTO 80
2240 PRINT "Word to Searcn for? *;:
GOSUB 3110
2250 Y$ = X$:
IT = 1:
GOSUB 2310:
PRINT :
IF Z = 0 PRINT “"Word not found"
2260 GOTO 60

F

2270 CLS :
PRINT "01d Word to Overlay? “;:
GOSUB 3110
2280 PRINT "New Word to Replace old Word? ";:
Y = X:
Y$ = X$:
GOSUB 3110
2290 IF X * ¥ = 0
THEN
80:
ELSE
CLS :
PRINT "Overlaying":
7% = Xx$:
GOsuB 2310
2300 N = 0:
GOTO 2870
2310 FOR L = 0 TO LA: Program continued

147

home applications

Z=1
2320 Z = INSTR (Z,A$(L),Y$):
I

—m

NF‘NXI
miN

rc—(\!m (1
#

LEN(AS(L)):
Z+1:

m

—wwn
o

2330 0 GOTO 2360

IF
2340 A
N

0o

GOSUB 940:
PRINT :
PRINT "Continue Search (Y/N)? ";
2350 H = 1:
GOSUB 3160:
Z =P + 1:
IF A =121
THEN
2320:
ELSE
L = LA:
GOTO 2370
2360 A$(L) LEFT$(A$(L),Z ~ 2) + Z$ + RIGHTS$(AS(L),X - ¥ - Z

2):
GOTO 2320
2370 NEXT L:
RETURN
2380 X$ = “Printer":
IF PEEK(14312) < 128 X = FP:
M = FL:
GOTO 2410 :
' PRINT
2390 PRINT :
PRINT X$;" not ready. Abort {Y/N)? ";:
GOSUB 3160
2400 IF A = 121
THEN
60:
ELSE
PRINT :
GOSUB 3150:
GOTO 2380
2410 R 1:
GOSUB 580:
R = 0:
IF LP > LA
THEN
LP = LA
2420 CLS :
I =M+ PL - 1:
PRINT "Printing ";H$;
2430 IF PN$ = "n" OR P1$ = "“n" AND X = 1 GOTO 2460
2440 LPRINT TAB(LM)HS$; STRING$(LL - 7 - LEN(HS$),U);
2450 LPRINT "Page"; USING "###";X:

LPRINT
2460 FOR P = M TO I:
0% = A$(P):
IF P > LP GOTO 2570

2470 M = M + 1:

IF S LPRINT STRINGS$(S - 1,13)
2480 LPRINT TAB(LM);

éf N$ = "y® LPRINT USING F$;P;:

4
2490 X$ = "":
Y = LEN(O$) + 1:
GOSUB 2610:
IF Q§ < > U$ LPRINT 0%:
GOTO 2560

2500 GOSUB 2610:

148

2510
2520

2530

2540

2550
2560

2570
2580
2590

2600
2610

2620

home applications

IF Qs <> "
THEN
X$ = Q% + X§:
GOTO 2500
N = VAL(X$):
X = o
GOSUB 2610:
IF Q% < > U$
THEN
X$ = Q% + X§:
GOTO 2520
D = VAL(X$):
GOSUB 2610:
LPRINT E$;"A"; CHR$(133);E$;"2";
LPRINT 0%:
LPRINT E$;"1"; STRINGS(D + LM + R,U); STRING$(N,45)
LPRINT TAB(LM)ES$;"A“; CHR$(140);E$;"2";
IF ASC{Q$) < > 2 NEXT p:
ELSE
IF I > = M LPRINT STRING$(I - M,13)
IF PS LPRINT STRING$(PS - 1,13)
IF P > LP GOTO 2780
IF Pg = "y
THEN
X$ = "new page":
PRINT
GOSUB 3150
X =X+ 1:
GOTO 2420
Y=Y ~- 1:
0% = LEFT$({0%,Y):
Q$ = RIGHT$(0%,1):
RETURN
IFNCOORND> LA
THEN
80 :
' REPLACE

2630 CLS

2640

2650

2660

2670

2680
2690

PRINT "Really Replace Line";N;"(Y/N)? ";:
GOSUB 3160
IF A =121

GOSUB 2800:
IF A = 96
THEN
60:
ELSE
PRINT "Saving ";
' SAVE
IF H$ =
THEN
H$ = CHR$(1):
GOTO 2680
IF RIGHT$(H$,1) = S$
THEN

H$ = LEFT$(HS, LEN(HS) - 1):
GOTO 2660

IF DK = 0 PRINT H$;:

GOTO 2730

R = 1:

GOSUB 570:

OPEN "0",1,FS$:

CLS

PRINT "Saving ";FS$;

Program continued

149

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790
2800

2810

2820
2830

2840
2850

2860

2870

2880

2890
2900
2910

2920
2930

home applications

PRINT #1 LA;LL;SyNS ", "3 FLLP;LM;PL;PS; PN, "sFP3PIS ", "
$

;M$;", s
FOR L TO
IF ASC(RIGHT$(A$(L) 1)) = 10
THEN
AS(L) = A$(L) + S$
PRINT #1,A$(L):
NEXT L:
GOTO 2780
PRINT # - 1,LA,LL,S,N$,FL,LP,LM,PL,PS,PN$,FP,P1$,PS, M$, H$

FOR L = 0 70 LA STEP 4
FOR J = 0 70 3:

I + J:
N(A$(l))
= A$

1 GOTO 2770
=1 T0 X:
MIDS (X$(J),K) = CHR$(ASC(MID$(X$(J),K,1)) + V):
NEXT K

NEXT J:

PRINT # - 1,X$(0),X$(1),X$(2),%$(3):
NEXT L

PRINT " Completed"”

0UT 254,1:

GOTO 60

PRINT :

PRINT "Disk or Tape (D/T)? ";:
GOSUB 3160:

PRINT :

PRINT

IF A = 116

THEN

X$ = “"cassette”:

GOSUB 3150:

CLS :

DK = 0:

RETURN

IF A < > 100 GOTO 80

IF FS$ = "

FS$ = "TEXT/BWP"
PRINT "Current Filespec = *";F$$;"'",
LINE INPUT "New =7 ";A$
IF A$ <> ""

THEN
A = ASC(A$):
IF A = 96
THEN
RETURN
ELSE
FS$ = A%

=L
X = LE
X$(d)
IF X <
FOR K

DEO
FOR M = N TO LA STEP PL:
1:
IF PN$ = “n" OR P1$ = "n" AND X =1 GOTO 2900

P$s",

PRINT H$; STRING$(LL - 7 - LEN(H$),U);"Page”; USING THEET K

PRINT
FOR L = M TO M + PL = 1:
IF L » LA GOTO 2930
IF S PRINT STRING$(S - 1,10)
GOSUB 3040
NEXT L:
IF L > LA GOTO 2970

150

. -

2940
2950

2960

2970
2980

2990

3000

3010

3020

3030

3040
3050
3060

3070

3080
3090

3100

home applications

PRINT “#### COMMAND (LETTER):

NEXT PAGE <ENTER>";
GOSUB 3160:
IF A > 31 AND A < > 91
THEN
M = LA:
ELSE
PRINT E$
IF A = 91
THEN
L= M:
GOTO 2980:
ELSE
IF A = 10 GOTO 3020
NEXT M:
GOTO 60
NP = 0:
=0
IF L
THEN

<1

IF PEEK{14400) < > 8 OR 2
THEN
M= L:
L =L + 15:
PRINT @960, ;:
GOTO 2940
Z = USRO(B):
NP = 1:
L =L - 1:
IF LEN(A${L)) > 60
THEN

Z = USRO(B)
PRINT @0, ;:
GOSUB 3040:

FOR Z = 0 TO 50:
NEXT Z:
GOTO 2980

IF PEEK(14400) < > 16 OR L > LA

THEN

M=L - 15:

GOTO 2940
GOSuB 3040:
L =L+ 1:
FOR Z = 0 TO 50:

NEXT Z:
GOTO 3020
GOSUB 3090:
IF N$ = "y" PRINT USING F$;L;
PRINT A$(L); CHRS$(15
IF A = 2 PRINT CHR$(
IF A 3 PRINT CHR$(
ELSE

IF A = U PRINT U$;
IF NP = 0 PRINT B§;:

2);
3);:

1
)
9
9

IF N$ < > “y" OR Y < > 60 PRINT

RETURN
Y = LEN(A$(L)):
IF Y

THEN
A = ASC(RIGHTS$(A$(L),1)):
ELSE
A=0
IFYD>1AND A =U
THEN
A$(L) = LEFT$(AS(L),Y - 1):
GOTO 3090:
ELSE

L
RETURN

151

SCROLL ([OR “; CHR$(92); "):

Program continued

home applications

3110
3120

(X$):
13 RETURN
3130 8 IF X = 0 GOTO 3120:
LSE
X$ = LEFTS(X$,X - 1}):
GOTO 3120
3140 X$ = X$ + A$:
GOTO 3120
3150 PRINT "Get ";X$;" ready, press <ENTER>";
3160 Q% = "":
F H PRINT U$;B%; CHR$(24);
$ = INKEYS$:
F A$ = "" GOTO 3170
ASC(A$):
IF A = 13 PRINT B$:

3170
3180

$5
3190 IF A > 47 AND A < 58
THEN
Q% = Q% + A$:
N = VAL(Q$):
GOTO 3170:
.. ELSE
" RETURN
3200 CLS :
PRINT "Really Exit {Y/N)? ";:
GOSUB 3160 :
'OEXIT
3210 IF A < > 121
- THEN
60:
ELSE
CLS :
CLEAR 50:
0UT 254,0:
END

152

- HOME APPLICATIONS

The Big Game

by Ken Lord and Joe Boudreau

his program does not provide a crystal ball, but it takes the numbers

you give it and analyzes them to assist you in selecting a winning lottery
number. The program does a distribution analysis of previous winning
numbers. It takes the numbers as you enter them or allows you to add daily
to the list of numbers stored within the program. Using the program, you
can determine the number of times each digit of the number has appeared,
the percentage of the time each digit has occurred and the number of occur-
rerices in each position of a four-digit number which is what most lotteries use.

Examine the DATA lines in lines 920 to 1010 of the Program Listing. Note
that there are 16 numbers per line. There are actually four groups of four
numbers per line, and a total of 40 groups of four numbers. These represent
the actual numbers from a state lottery for a period of 40 days. To use this
program with an imbedded data base, you must add one group of four
numbers each day as the numbers are announced. As you add the four
numbers each day, you also must change the variables R and C in lines 840
and 850. Variable R indicates the number of sets of four numbers to be con-
tained in the DATA lines. Variable C indicates the columns for printing pur-
poses. Variable R is usually incremented by one for every four numbers you
add. You may wish to leave variable C unchanged.

When you run the program, you receive the following message:

WILL YOU INPUT THE DATA (I) OR

OBTAIN FROM DATA BASE (D)
Only the responses I and D are acceptable. If you select option D, the com-
puter processes the DATA lines, then presents the report.

If you wish to enter data directly and not use the DATA lines, the pro-
gram allows you to state how many rows and columns you will enter, then
provides this message:

ENTER NUMBERS IN SEQUENCE

LEFT-TO-RIGHT

FOLLOW EACH WITH <ENTER>
The program accepts the numbers which result from the product of the rows
and columns of figures you provide. Figure 1 shows four four-column
numbers given to the program in this manner.,

153

home applications

TATE LOTTERY TICKET NUMBER FREQUENCY REPORT

S
1
5
9
3

T o= =3 W
[=>30 Selie -

2
6
0
4

FINDS NR HITPCT NUMBER OF TIMES IN POSITION

1 0 6 % 0 1 0 0
2 1 12 % 1 0 1 0
2 2 12 % 0 1 0 1
2 3 12 % 1 0 1 0
2 4 12 % 0 1 0 1
2 5 12 % 1 0 1 0
2 6 12 % 0 1 0 1
1 7 6 % 0 0 1 0
1 8 6 % 0 0 0 1
1 9 6 % 1 0 0 0

Figure 1. Lottery number frequency report

Figure 2 is the printout after the DATA BASE (D) option has been
specified. It lists 40 numbers in sequence, then produces a report. The
reports are distribution reports. Note the four titles: FINDS, NR, HIT PCT,
and NUMBER OF TIMES IN POSITION. Under the NR column are 10
digits, 0 through 9. The FINDS column tells the number of times each was
found in the data. The HIT PCT tells what percentage of the time each par-
ticular number was found. If you add the numbers in the column, you find
that the total is not 100 percent. This is because the INTeger function in
statement 690 truncates all decimal places. If you require more precision,
you can change the INTeger function to a rounding function by adding .5.
The HIT PCT indicates a 13 percent incidence for the digits 1 and 7. Ex-
amining the 7 first, you see that the highest incidence occurs in the second
position of the number. Thus, the final number should include the number 7
in that position. Here’s the working number:

T

The number 1 also has a 13 percent incidence. Had the incidence of the
number 1 been higher than the incidence of the number 7 in that position,
you would have put a 1 in the second position. At this level of precision, the
number had equal usage in positions 3 and 4. Thus, there are now two work-
ing numbers:

Tl

71

The next highest percentage of incidence is 12 percent for the number 4. Its

154

home applications

greatest usage is in the fourth position for a value of 8, and its incidence is
higher than that of 1, the number previously placed in that position. Thus,
there is again one working number:

714

The number 2 has an 11 percent incidence and has the same number and
position as the number 4 placed in the fourth position. Thus, the number 2 is
rejected.

Two numbers, 5 and 9, have a 10 percent occurrence. The highest in-
cidence of each number falls in the first position. The values are identical.
Thus, there are again two working numbers:

5714

9714
To discriminate, look at the FINDS column. The number 5 occurred a total
of 17 times in the sample data, while the number 9 occurred 16 times. 5,
then, has the edge. If you require more precision, you must make the round-
ing change.

We have not found further precision necessary. This system picked the
correct number three times within a 40-day span, and the number 5714 was
a winning lottery number shortly after we derived it. Combinations of two-
digit and three-digit numbers are also valid as winners. This system has
picked several of those.,

STATE LOTTERY TICKET NUMBER FREQUENCY REPORT
2 5

Pt O U T AT e 3D O =10 W DO QO DN O UL O~
N U O et s O N O WA -0 WINNTI~Ih 1D
OO Ul ~1WWMNWOH~TITOM-TIr=OUWLWO WD
00 UL ~3I o OO 00 = 00 — bO BO DO = /b B O W

Figure continued

155

home applications

B T UL 0 @ O U o ~1W W 0N W— O~
D OTIDW M~ WOMNWO A OOD A 11
i D e B O DO U R DGO 00 e =] e U
DO M =1 RO D =10 DO W A UL R DN WO

FINDS NR HITPCT NUMBER OF TIMES IN POSITION

11 0 6 % 3 3 3 2
21 1 13 % 4 3 7 7
19 2 11 % 4 4 3 8
12 3 7 % 2 4 4 2
20 4 12 % 5 4 3 8
17 5 10 % 7 2 5 3
13 6 8 % 1 5 5 2
21 7 13 % 5 8 5 3
10 8 6 % 2 4 1 3
16 9 10 % 7 3 4 2

Figure 2. Frequency report after DATA BASE option

156

100
110
120
130
140
150
160
170
180
190

200

210
220
230

240
250
260
270
280
290
300
310

320

330
340
350
360
370
380
390
400
410
420

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

610
620
630

650
660

home applications

Program Listing. Lottery number frequency

CLS

CLEAR 2000

PRINT CHR$(23);" STATE LOTTERY"
PRINT TICKET NUMBER"

PRINT " FREQUENCY REPORT"

PRINT

PRINT "WILL YOU INPUT THE DATA (I) OR"

PRINT "OBTAIN FROM DATA BASE (D)"
R$ = INKEYS$
IF R$ = "I*
THEN
230
IF R$ = "p"
THEN
830
GOTO 180
GOTO 10
PRINT :
INPUT "ROWS "5R
INPUT “COLUMNS “;C

PRINT "ENTER NUMBERS IN SEQUENCE"

PRINT "LEFT - TO - RIGHT"

PRINT "FOLLOW EACH WITH <ENTER>"

DIM P(R,C),T(10),N(20,C)
FOR X = 1 TO R

1F R$ = npn
THEN
GOSUB 880
IF R$ = mpw
THEN
GOSUB 900
NEXT ¥
NEXT X
PRINT "PROCESSING DATA"
FOR X = 1 TO 10
T(X) = 0
NEXT X
FOR X = 1 TO 10
FOR Y = 1 T0O C
N (X,Y) =0
NEXT Y
NEXT X
FOR X = 1 TO R

FOR Y =1 TO C
T(P(X,Y)) = T(P(X,Y)) + 1
NEXT Y

NEXT X

FOR Y = 1 T0 C
FOR X = 1 TO R
= P(X,Y)
N(Z,Y) = N(Z,¥) + 1
NEXT X
NEXT Y
INPUT "HOW MANY COPIES: ";D

FORJ = 1 T0 D
LPRINT CHR$(12)

LPRINT “STATE LOTTERY TICKET NUMBER FREQUENCY REPORT"

LPRINT * *

LPRINT P(X,Y);

NEXT ¥

LPRINT " "

NEXT X
LPRINT " "
LPRINT * "
LPRINT *

Program continued

157

670

680
690
700
710
720
730
740
750
760
770
780
790
800

810

820
830

840

850

860
870
880
890
900
910
920
930

940-

950
960

980
990
1000
1010
1020

home applications

LPRINT "FINDS NR HIT PCT
LPRINT " "
FOR X = 0

(X) / (R *C) * 100)
)_u ";X"

T

X

LPRINT " ©

NEXT X
LPRINT " ©®
NEXT J
PRINT "WANT MORE COPIES (Y/N)*
PA$ = INKEYS
IF PA$ = "y*©
THEN

550
IF PA$ = "N
THEN

1020
G0TO 790

' ROWS

= 4:
COLUMNS

PRINT

“PROCESSING DATA"

6070 280
READ P{X,Y)
RETURN

" e ww ewew e
I DY OV W D
v wew e ww e e oW
NP GO OO N B
“ e e wwwwowow .
NOWW SN D
v v ww e ow oo
WrWO~NOoN~roOm
R
AN IAIW N O
* wwowowwowow v ow
LD O P e e b
¥ vewwewe www
HONN SO N O
DWW OO Wb
v e ww owww wowow
HOOEHNWONE WY

SNWODY ~N WO~~~

W oe e oeeeow oo

N BOr O M N

NUMBER OF TIMES IN POSITION"

"3PUSTE M5 TAB(30);

 THE FOLLOWING TWO CONSTANTS WILL CHANGE WITH EACH RUN
‘R = 40:

158

INTERFACE

Using the Useful UART

159

INTERFACE

Using the Useful UART

by James N. Devlin

here are a number of good reasons for adding a serial interface to your

TRS-80. Information is most economically sent long distances over a
single line, and it is difficult to imagine an eight-bit data bus being sent to-
distant parts of a building to communicate to a remote device. Many output
devices require serial data, and, with holding registers, individual bits or
sections of a byte can be stripped from a computer word as it goes flying by.
Dozens of signals can be sent out from or received by a central computer on a
single pair of wires. One of the most inexpensive and simplest devices for
converting the parallel data from your computer into serial messages is the
UART or Universal Asynchronous Receiver/Transmitter.

I was interested in obtaining hard-copy output from an old TeletypeT™.
Although a number of hardware and software methods exist to do this, I
thought that with the wide availability and low cost of UARTS it would be
worthwhile to explore their potential. The finished interface required only
four chips and I able was to activate it using only Level II BASIC com-
mands. The board is shown in Photo 1. The heart of the interface is an Intel
8251 UART which is also available from NEC, Mostek, Advanced Micro,
Motorola, Radio Shack, Poly-Packs, and others.

The special clock circuit is the key to the ease of implementing this inter-
face. One of the problems with most projects involving oscillators is that
they must be tuned to some exact frequency. In order to get the proper fre-
quency the circuit must be functioning, but in order to get the circuit work-
ing, the clock must be properly tuned—catch 22! The CMOS programmable
clock chip 4563 needs no tuning because it has a crystal to drive its on-board
oscillator. If the circuit is operating, you know the frequency is correct. The
clock chip never has to be tuned. In fact, there are no adjustments of any
kind in this interface. The 4536 chip allows you to program or select the
desired (or required) frequency. See Figure 1.

Two frequencies originate from the crystal oscillator for use by the
UART. The Teletype requires data to be input at the rate of 110 baud, and
the rate required for the serial conversion of the data in the UART is 1760
Hz, or 16 times the baud rate. 1760 Hz is the first frequency that you need.
The clock circuit allows the UART to compose the bits for the data and at-
tach a start bit, two stop bits, and a parity bit. Other codes, such as Baudot,
requiring more or less than the seven ASCII bits can also be assembled. The
assembled word is transmitted at 110 baud automatically, and, when the
UART is done, it informs you by dropping the transmit flag in the status word.

161

interface

Photo 1. Interface board

The UART itself needs a higher clock for its own internal operation; what
could be more convenient than to use the crystal frequency itself. The crystal
that I use is a 901 kHz radio type. This frequency divided by 2° (or 512)
yields 1760 Hz, within a few tenths of a cycle. The 4536 chip allows you to
divide by any power from 2° to 2% by simply grounding the appropriate in-
put pins. Any crystal that can be divided by a power of 2 to yield 1760 Hz
will be adequate. The high frequency for the UART is totally arbitrary. It just
needs to be greater than 4.5 times the frequency of the transmit data clock.

The 4536 chip oscillator is on-board, so it is unnecessary to construct a cir-
cuit. Plenty of gain is provided by the internal amplifiers, and any even
number of amplifiers will provide the required 360 degrees of phase shift.

In order not to load the oscillator, I ran the signal through a CMOS gate to
isolate it from the UART. I have found CMOS logic to be fast enough for any
of the signals encountered in these parts of the computer circuits. The clock
chip draws 5 microamps at 5 volts. The entire current drawn by the inter-
face is just the current used by the UART itself, which is approximately 45
milliamps. The small amount of current drawn allows you to derive all the
power directly from the TRS-80s internal 5-volt supply. The regulator chip
in the TRS-80 should be able to handle this additional amount of current, as

162

interface

it is adequately heat sunk. If the voltage drops slightly, you can readjust the
chip. There was no drop when I hooked up the interface, and I have been
running it for a year. I did find, however, that for some mysterious reason,
the 5-volt line had been disabled by cutting the trace and shorting the pin to
ground. If this is the case with yours, you will have to remove the short and
bridge the cut trace.

A small, external power supply can be added if needed. If you add any ad-
ditional circuitry, such as opto-couplers, or if you use TTL devices, you will
need the additional power.

36 oAl 2{
38008 3 , ADDRESS 00 = COMMAND
35 A5 4] 4022 01 = DATA
31082 5] .
! soil RESET 01000000+ 64
340 A3 2 MODE 11111010 = 2500
40002 COMMAND 0100011 = 515
Al
27
cs
A0 [e SILICON
25 P) c/b VNGBAF
20 D7
D6 7
24 . 06 19 G
D x
28 1 os e TTY
18 2 LooF
26022 2] 03 22K8
D2 | 825l
32 02
]
22 P 28 Dl
30 271 vo L
_ Ve
iN _
18 o 2R RXD g fmm
ouT -
12 S oUT I, 64
20.SYS. RES 21 ouT 1, 250
RESET ouT I, I
VCC TXC CLK GND QUT 0, DATA
PP P P INP (1)
+
39052
i6
914 vee DEC |13 1780H2
10 8 ouT
T 4536
c
12 o
INg ouT,
I {2 |7 |8 |9 {6 |15 3 5
270pF
!
12K
7t
370-8N0
” XTAL

901KHz fﬂ{‘ 0
LAl $9| out

Figure 1. Clock circuit

163

interface

Radio Shack decodes a single port (FF) for the cassette recorder. I used
1/O port addressing and selected the 0 and 1 address to send out the two
kinds of words required by the UART. This is an easy address to decode with
a 4002 dual-4-input NOR gate. The upper seven bits go to the 4002, and the
A0 bit (LSB) goes to the C/D input of the UART. This input determines
whether the word that is on the data bus is a command word or a data word.
The least significant bit, A0, facilitates the selection of the command word
and the data word.

The decoded address enables the UART on the chip select pin CS. A mem-
ory-mapped address could also be used, but would require decoding all 16
address lines. The rest of the lines of importance are the control signals.
These are the read and write strobes which are combined in the TRS-80 with
the I/O REQUEST line to produce the IN and OUT signals on the interface
output pins. SYSRES is also brought out to the UART’s external reset pin.
The UART has an internal software reset, but I chose to take the hardware
approach.

On the output side, I used a relatively new device that has such outstand-
ing features that it may someday dominate the computer interface field. The
device is a VMOS Power FET. It was originally introduced by Siliconix, but
is now produced by many other manufacturers. One of the unique proper-
ties of this device is that it will pass 2 amps while being driven by nothing
more than a CMOS gate. It operates to 100 MHz, has an excellent linear
region, and is just as effective as a switch. The output acts similar to a
variable resistance that goes aslow as 2 Ohms in my device. Other models go
to .02 Ohms and withstand 500 volts. The VMOS Power FET does not ex-
hibit secondary breakdown as transistors do, and it has a self-limiting
temperature coefficient that prevents thermal runaway. You can parallel
two Power FETs and have them share current. I used the VMOS Power FET
to short the Teletype loop directly from the UART. Be cautious when doing
this. A 20 mil loop is supplied by 110 volts, and you probably need a current-
limiting resistor. This particular device works for a 48-volt, 60-mil loop.

The driver required to activate the UART is written in assembly code,
however, a short BASIC loader is also given; so it is not necessary to use
SYSTEM. Look ahead to the first two lines of the BASIC driver program in
the Program Listing. These lines wake up the UART and start the communi-
cation with it. The first line, which must appear early in your program or at
least once as a direct output, is needed to set up the UART. The first com-
mand that you must give the UART is the internal reset, OUT 1,64. Port ad-
dress 1 tells the UART that this is a command word and that the decimal 64
is the reset bit. The specification sheet recommends that this reset be preced-
ed by three OUT 1,0 commands. The next word, decimal 250, sets up the
mode: It selects the baud rate, the character length, parity, and the number
of stop bits, as shown in Figure 2. After the mode instruction another com-

164

interface

% aandig

sige = + |}
SHa %L = 0 L
siaL= 1 0 sliq
9a Zd
UoJeas JuAs «
1esal [euiaul syqg dojs
pusas o} "bai ppojuaAs
1988l "119 ‘qua Ajed
3ealq puss w
‘que 23 yibus) “reyo
Apeei wis} o
AQHXL ‘que suel} alel pneq
QHOM SNLYLS | GHOM ONVINWOO | GHOM 3dON
q e

0O~ o

= Lt
=0 X9 = L I
=1 0 X9L = 0 b
=0 0 Xt= 1L 0
Za €a 0a ia
oa |a|zalealvaisaleal:a

165

interface

mand, OUT 1,51, sets the specific operation of the format selected by the
mode word, which in this case is to transmit. See Figure 2.

The driver assembly code is given in Table 1. In Level II 16K machines,
you must POKE the starting address into locations 16422 and 16423. When
this is done, the LLIST and LPRINT statements vector to the driver loca-
tion. The driver itself is placed in upper memory. In order to prevent in-
advertent destruction of the driver during subsequent programming, you
should answer the MEM SIZE? request with 32720. This protects the driver
program locations.

The assembly code shown in Table 1 shows the address, the Z-80 code, the
assembly code, and the decimal value of the code. A string of zeros is im-
bedded in the code. These are necessary because the computer is operating
about 10 times faster than the UART is running. The delay allows the two
systems to get together. The driver will return to BASIC when the TTY has
finished printing the designated character.

The BASIC program (see Program Listing) places the assembly code into
the desired locations and POKEs the starting address into locations 16422
and 16423. The decimal equivalents of the assembly code are incorporated
as DATA statements and read in via a FOR-NEXT loop. This section of the
program is executed with a RUN 5000. The lines from 100 to 200 are a short
printer test that asks for a number and requests how many times you wish to
print it. This routine helps to verify that the driver program is correctly

Address Hex Code Mnemonic Decimal
7FDO 79 MOV A,C 121

7FD1 FEOD CP CR 254,13
7FD3 C2ES87F JNZ E87F 194,232,127
7FD6 D300 OUT 0,A 211,0

TFD8 to TFDC 0 0 0,0,0,0,0
7FDD DB01 INA,1 219,1

7FDF E601 AND,1 230,1

7FE1 FEO1 CP1 254,1

7FE3 C2DD7F JNZ DD7F 194,221,127
TFE6 3E0A LDLF 62,10

TFE8 D300 OuUT 0,A 211,0
TFEAtoTFEE 0 0 0,0,0,0,0
7FEF DBO01 INA,1 219,1

7FF1 E601 AND 1 230,1

7FF3 FEO1 CP 1 254,1

7FF5 C2EFTF JNZ EFTF 194,239,127
7FF8 Cc9 RET 201

Table 1. Driver assembly code for Z-80 loader

166

loaded or to test the driver-printer operation when you hook things up. The
first two statements, 5 and 10, should be incorporated in any program that
you wish to have printer output from. They can, of course, be directly exe-
cuted from the keyboard at any time and need only be executed once during

a program session.

interface

Address Line

7FDO 00100
7FDO 79 00110
7FD1 FEOD 00120
7FD3 C2E87F 00130
7FD6 D300 00140
7FD8 00 00150
7FD9 00 00160
7FDA 00 00170
7FDB 00 00180
7FDC 00 00190
7FDD DBO1 00200
7FDF E601 00210
7FE1 FEO1 00220
TFE3 C2DD7F 00230
7FE6 3EOA 00240
7FE8 D300 00250
7FEA 00 00260
7FEB 00 00270
7FEC 00 00280
7FED 00 00290
7FEE 00 00300
7FEF DBO1 00310
7FF1 E601 00320
7FF3 FEO1 00330
7FF5 C2EFTF 00340
7FF8 C9 00350
0000 00360
(0000 TOTAL ERRORS

Mnemonic
Op Codes
ORG
LD
CP
JP
ouT
NOP
NOP
NOP
NOP
NOP
IN
AND
Ccp
P
LD
ouT
NOP
NOP
NOP
NOP
NOP
IN
AND
CP
JP
RET
END

Mnemonic
Operands
TFDOH
AC
ODH
NZ,7FE8H
(00H),A

A,(01H)
0lH

01H
NZ,7FDDH
A0AH
(00H),A

A,(01H)
01H
01H
NZ,7FEFH

Table 2. Disassembled version of the Z-80 loader

You can input from your TTY keyboard through the same UART by put-
ting a connection between the TTY send loop and the RxD input pin on the
UART. The UART mode has to be set and the INP(0) statement used. If you
have a punch or tape reader, they can also be accommodated by the UART.
My purpose was to print from the Teletype; so that is the only mode that I

have covered in detail.

167

interface

When using the Teletype, just load the driver tape, RUN 5000, then load
or write the desired program. By typing or by placing the UART set-up lines
into your program, LLIST and LPRINT are yours to command. A simple
serial interface opens up an entire world of communications possibilities and
control capabilities. T hope that this introduction to the UART and its
simplicity will add a new dimension to your home computing.

168

3
5

10

100
110
120
130
140
150
200

5000
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170

interface

Program Listing. BASIC loader

REM UART TTY SUBROUTINE J. DEVLIN
FOR J = 1 70 3:
0UT 1,0:
NEXT J
0uT 1,64:
0uT 1,250:
0yT 1.51
INPUT "VALUE";A
INPUT “CYCLES";N
FOR J =1 TO N
PRINT A
LPRINT A;
NEXT J
END

REM TTY DRIVER

POKE 16422,208

POKE 16423,127

FOR I =1 70 41

READ D

POKE 32719 + I,D

NEXT 1

DATA 121,254,13,194,232,127
DATA 211,0,0,0,0,0,0
DATA 219,1,230,1,254,1
DATA 194,221,127,62,10
DATA 211,0,0,0,0,0,0
DATA 219,1,230,1,254,1
DATA 194,239,127,201
END

169

TUTORIAL

String Problems in the TRS-80

Hex, Octal, and Binary
To Decimal Conversions

171

TUTORIAL

String Problems in the TRS-80

by Arthur R. Jackman

here is a string gremlin in the TRS-80 that occasionally raises its head

and causes problems. The problem is related to the use of the string
space allocated in the CLEAR statement. When it occurs, the computer
comes to a screeching halt, does not respond to the BREAK key, and after a
delay, suddenly continues as if nothing had happened.

The problem is that the string space has been used up but not filled and
must be cleaned up. During its lapse of consciousness, the computer repacks
all of the valid strings in the string space to free the unused space. When the
process is complete, operation continues. The problem is directly related to
string usage and string space allocation. It can occur under the following
conditions:

1) Extensive string processing, such as sorting large string arrays or reading
and/or writing large random access data files when string variables are used.
2) A large string array is held in memory.

3) A large string space has been allocated.

Each time a string variable is assigned a value, it is placed in the reserved
string space as expected. If that variable is assigned a new value, however,
even if it has the same length, it is allocated new string space.

Program Listing 1 demonstrates how the string space is allocated and
used. Line 110 sets aside a space of 500 bytes for strings. In line 140, you re-
peatedly assign A$ different values from B$ and the string equivalent of the
index loop 1. To see where the strings are placed, set the variable P equal to
the address at which A$ is stored. This is done in line 150. Next, print the val-
ues of P and A$ to see how they are changing. When you have finished, print
out the values of P and A$ one last time to see where they finally ended up.

Look at Figure 1 which shows the output of Program Listing 1. I run this
program in a 48K machine with a printer driver located at 64715 and above.
Notice that the strings are assigned places at the top end of the string space
first and progress downward in memory. The first string is at 64693, and the
second is at 64671. The difference is 22 bytes, but the string is only 20 bytes
long. The other two bytes are used in line 140 to convert I into a string to at-
tach to BS$.

Notice that as the strings are assigned different values the address gets
lower and lower until you reach string number 21. At this point, the 500
bytes are used up, even though about 24 bytes are actually used for valid

173

tutorial

strings. The next string, number 22, is placed at location 64670. This allows
21 bytes for A$ and three bytes for the string equivalent of I. At this point,
between strings number 21 and 22, there is a slight delay in program opera-
tion while the string space is cleaned up. All of the old strings are purged,
and the valid strings move to the top of the string space. The time the pro-
gram takes to do this is not noticeable because both the string space and the
number of strings to be moved are small.

Program Listing 2 expands the program shown in Program Listing 1 to
5000 bytes of string space and stores the strings in an array. Figure 2 shows
the output. The program works fine until string 200 is placed. There is a
delay of 8.7 seconds while the computer mops up the string area. It moves up
all of the strings in the array and packs them to free more string space. Pro-
cessing continues to string 227. There is a delay of 10.5 seconds for the mop-
up operation. The program proceeds to string 231 and a delay of 11.9
seconds, and then on to string 232 and a delay of 21.6 seconds before giving
the out of string space error message.

64693 THIS IS STRING NO.
64671 THIS IS STRING NO.
64649 THIS IS STRING NO.
64627 THIS IS STRING NO.
64605 THIS IS STRING NO.
64583 THIS IS STRING NO.
64561 THIS IS STRING NO.
64539 THIS IS STRING NO.
64517 THIS IS STRING NO.
64493 THIS IS STRING NO. 10
64469 THIS IS STRING NO. 11
64445 THIS IS STRING NO. 12
64421 THIS IS STRING NO. 13
64397 THIS IS STRING NO. 14
64373 THIS IS STRING NO. 15
64349 THIS IS STRING NO. 16
64325 THIS IS STRING NO. 17
64301 THIS IS STRING NO. 18
64277 THIS IS STRING NO. 19
64253 THIS IS STRING NO. 20
64229 THIS IS STRING NO. 21

(NOTE SHIFT IN STRING ALLOCATION ADDRESS)
64670 THIS IS STRING NO. 22
64646 THIS IS STRING NO. 23
64622 THIS IS STRING NO. 24
64598 THIS IS STRING NO. 25
64598 THIS IS STRING NO. 25

Figure 1. Program Listing 1 output

QO =1 O U W G B0

©

174

tutorial

64693 THIS IS STRING NO.
64671 THIS IS STRING NO.
64649 THIS IS STRING NO.
64627 THIS IS STRING NO.

Bl]

59809 THIS IS STRING NO. 197
59783 THIS IS STRING NO. 198
59757 THIS IS STRING NO. 199
59731 THIS IS STRING NO. 200
(DELAY QOF 8.7 SECONDS)
60397 THIS IS STRING NO. 201
60371 THIS IS STRING NO. 202
60345 THIS IS STRING NO. 203
60319 THIS IS STRING NO. 204

59799 THIS IS STRING NO. 224
59773 THIS IS STRING NO. 225
59747 THIS IS STRING NO. 226
59721 THIS IS STRING NO. 227

(DELAY OF 10.5 SECONDS)
59803 THIS IS STRING NO. 228
59777 THIS IS STRING NO. 229
59751 THIS IS STRING NO. 230
59725 THIS IS STRING NO. 231

(DELAY OF 11.9 SECONDS)
59715 THIS IS STRING NO. 232

(DELAY OF 21.6 SECONDS)
OUT OF STRING SPACE IN 160
READY

Figure 2. Program Listing 2 output

The larger the string space and the greater the number of valid strings in
the string space, the longer the delay. I have experienced delays of more
than two minutes with string space of 10000 bytes and 7000 to 8000 bytes of
valid strings. This becomes significant when you have two or three minutes
of delay after every 15 or 20 seconds of disk file processing.

One obvious solution is to avoid assigning strings. You have to assign new
values to the strings as you do in a sort subroutine or in processing a disk file.
If the new string will fit in the old string space, you can keep the computer
from using new string space for the same string name. For a random access
disk file, each time you read a record, you have to field a buffer.

100 FIELD 1,255 AS X$

200 FIELD 2,20 AS A$, 20 AS B$, 20 ASC$
In these examples X$, A$, B$, and C$ are all part of the file buffer area and
do not count as part of the string space. When you assign new values to these
variables, use LSET and RSET.

175

tutorial

300 LSET X$=Y$

310 LSET A%=DS$(l)
320 RSET B$ = STR$(B)
330 RSET C$=E$(E + 1)

One function of LSET and RSET is to force the computer to recognize and
use the current string location to hold the new string value. The new string
length must be equal to or smaller than the old string length. With random
access files and string file sorting this is usually the case.

64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO.
64693 THIS IS STRING NO. 10

Figure 3. Program Listings 3 and 4 output

o~ O U b GO DD

[ie)

The nice thing about Disk BASIC in this case is that you can use LSET and
RSET on any string variable to force the use of the same string location for
the new string value. In Program Listing 3, which is similar to Program
Listing 1 except for the use of LSET, A$ is always placed in the same
memory location. If you do not have Disk BASIC, consider Program Listing
4. Tn this example, pack the information from B$ into A$ manually. The
variable P tells you where A$ is located in memory, and R tells you where B$
is located. At line 180, assign N$ the string equivalent of the index I. Now Q
can indicate where N$ is actually located. The value of Q must be deter-
mined inside the FOR loop because N$ is always placed in a new area.
Figure 3 shows the output of Program Listings 3 and 4.

Beginning at line 200, manually construct A$ by POKEing into A$ the
charncters in B$ found by PEEKing. This is done through the length of B$
using the index J. You actually use zero to one less than the length, but the
character count is the same. After packing B$ into A$, add N$, also by pack-
ing. The variable | is used in this loop as an offset since it is pointing to the
nextcharacter in A$ after the FOR loop ends in line 220. After constructing
A$, print the address value and the string itself to verify the solution to the
problem of reassignment.

When the strings are in an array and must be moved around, it may be
advantageous to move the string pointer instead of the string itself. (See
Doug Walker's article “Beyond Shell Metzner” in 80 Microcomputing,

176

tutorial

September 1980.) In some special cases, you can convert the strings to
numeric data and then process them. An example of this is extracting a
record number and a sort key from a disk file to generate a string of the form:
‘key’-‘record#’. Now convert this to a double precision variable, sort the ar-
ray numerically, and convert back to strings to process the records into a
sorted order in a new file.

Extensive string processing can cause time delays. This happens with
large string space allocation, large string arrays, and repetitive string pro-
cessing. The delay becomes evident when a variable is printed as an in-
dicator during extensive operations. Careful program planning using LSET,
RSET, POKE, and PEEK eliminates most or all of the problem and keeps
the bits moving.

177

100

110
120
130
140
150
160
170
180
190
200

tutorial

Program Listing 1

* PROGRAM STRINGSI
CLEAR 500
B$ = "THIS IS STRING NO."
FOR I = 1 TO 25
A$ = B$ + STR$(I)
P = PEEK(VARPTR(A$) + 1) + 256 * PEEK(VARPTR(AS$) + 2)
PRINT P,A$
NEXT 1
P = PEEK(VARPTR(A$) + 1) + 256 * PEEK(VARPTR(AS) + 2)
PRINT P,A$
END

100 :

110
120
130
140
150
160

170
180
190
200

210
220
230

Program Listing 2

' PROGRAM: STRINGS?
GLEAR 5000
DIM A$(250)
B$ = "THIS 1S STRING NO."
R1=1T0 250
$(1 1)

(

-
(=

) = B$ + STR$(
PEEK(VARPTR(A$({1)) + 1) + 256 * PEEK(VARPTR(A$(I))

DC e N o~

)
NT P,A$(ID)
T

FOR I

R
4 1
R = 1 T0 200

= PEEK(VARPTR(A$(I)) + 1) + 256 * PEEK(VARPTR{A$(1))

WO Z U 4+ T

+ 2)
PRINT P,A$(1)
NEXT 1

Program Listing 3

100 :

110
120
130
140

" PROGRAM: STRINGS3
CLEAR 1000

A$ = STRING$(22,32)

BS = "THIS IS STRING NO."
FOR I = 1 TO 10

150 LSET A$ = B$ + STR$(I)
160 P = PEEK(VARPTR(A$) + 1) + 256 * PEEK(VARPTR(A$) + 2)
170 PRINT P,A$%
180 NEXT I
190 END
Program Listing 4

100 :

' PROGRAM: STRINGS4
110 CLEAR 1000
120 A$ = STRING$(22,32)
130 8% = "THIS IS STRING NO."

178

tutorial

140 N$ = STRING$(3,32)

150 P = PEEK(VARPTR(A$) + 1) + 256 * PEEK({ VARPTR(AS) + 2):
1€ P > 32767 P = - 1 * (65536 - P

160 R = PEEK(VARPTR(BS) + 1) + 256 * PEEK(VARPTR(BS$) + 2):
IF R > 32767 R = - 1 * (65536 - R)

170 FOR I = 1 T0 10

180 N$ = STR$(I)

190 P = PEEK(VARPTR(A§) + 1) + 256 * PEEK(VARPTR(AS$) + 2):
IF P > 32767 P = - 1 * (65536 - P)

200 Q = PEEK(VARPTR{N§) + 1) + 256 * PEEK(VARPTR(NS$) + 2):

IF Q> 32767 Q = -~ 1 * (65536 - Q)

210 FOR J = O TO LEN(BS) - 1

220 POKE P + J, PEEK(R + J)

230 NEXT J

240 FOR K = 0 TO LEN(NS) - 1

250 POKE P + J + K, PEEK(Q + K)

260 NEXT K

270 PRINT 65536 + P,A$

280 NEXT I

290 END

179

TUTORIAL

Hex, Octal, and Binary to Decimal Conversions

by Clay Lansdown

I v intent in writing this program was to learn something of the string
L VA commands I knew very little about. A program that would input the
hexadecimal numbers 0 through F and convert them to decimal values
seemed like a good way to practice using at least two or three string com-
mands. As it turned out, writing the program was a good learning ex-
perience, especially since I decided to add a decimal to hex conversion, an
octal to decimal conversion, a decimal to octal conversion, and then to
round it out, binary to decimal and decimal to binary.

To understand the program (see Program Listing), you must first under-
stand how the conversion between the various bases is done. Each digit of a
number has a weight based on its position. For example, the number 343
equals (3 x 100) + (4 x 10) + (3 x 1) or 300 +40 + 3. Notice that the 3 on the
far right has a weight of 3 x 1 or 3, while the 3 on the far left has a weight of
3 x 100 or 300. The weights for five digits can be written as follows: 10,000,
1,000, 100, 10, and 1. If the number 10,269 is broken apart and written
under the weights:

10,000] 1,000] 100 ‘ 10[1

1 I 0 | 2 l 6 l 9
a pattern is evident. Notice that each weight differs from the preceding weight
by a factor of 10. The number base our number system uses is base 10.

The pattern can be represented in the following manner: 10¢, 10°, 102,
10, 10°. Since 10¢ = 10,000, 10° = 1,000, 10% =100, 10' = 10, and 10° = 1, the
pattern can be seen to consist of the base raised to increasing powers. The
same system works for other bases as well.

The pattern for base 2 (binary) is as follows: 24, 2, 22, 2!, 2°, The weights
are 16, 8, 4, 2, and 1, and the binary number 10101 is (1 x 16) + (0 x 8) +
(1x4)+(0x2)+(1x1)or 16+4+1 or 21 decimal. This simple series of
multiplication and addition is a binary to decimal conversion.

Hexadecimal to decimal conversions are done in a similar fashion, using
16 as the base. The weights are 164, 16°, 162, 16?, 16° or 65536, 4096, 256,
16, and 1. The numbers get large quickly, but follow the same pattern as
base 10 and base 2. The hex number 24031 can be written under the ap-
propriate weights and handled like the other bases:

65536 4096 256 16 l 1

2 4 0 3|1

180

tutorial

This is (2 x 65536) + (4 x 4906) + (0 x 256) + (3 x 16) + (1 x 1) or 131,072 +
16,384 + 48 -+ 1; or 147,505 decimal. The TRS-80 can only address 64K
(65535) words of memory; so four hex digits, instead of the five used in the
example, are normally used. The letters A through F used in hex notation
represent the numbers 10 through 15. In base 10, the number after 9 is not a
new number. If you add 9 + 1, you get a 0 in the units column and carry a 1
to the tens column, the result is the number 10. 10 is made up of two old
numbers, 1 and 0.

In hex you don’t get a carry when you add 9+ 1; so you need a new
number. A is that number. Similarly, 9+2=B, 9+3=C, 9+4=D,
9+5=E,9+6=F. Toconvert the hex number BE3F, place the digits under
the weights:

4096 l 256 116 I 1

B | E |3]F
SinceB=9+20r1l,E=94+50r14, and F=9 + 6 or 15, the multiplication
and addition series look like this: (11 x4096) + (14 x 256) + (3 x 16) +
(15 x 1) or 45,056 + 3,584 + 48 + 15 or 48,703 decimal.

The base 8 or octal number system only uses the digits 0 through 7; so no
new numbers are needed. The conversion process is performed the same as
for the other bases. The octal weights are 8¢, 8%, 82, 8!, 8°, or 4096, 512, 64,
8, and 1.

To convert octal 72317 to decimal, write the number under the weights:

4096[512{64[8‘1

7 e sty
(7% 4096) + (2 X 512) + (3 x 64) + (1 x 8) + (7T x 1) equals 28,672+ 1,024 +
192 + 8 + 7 equals 29,903 decimal.

Notice that the conversion process is the same for both base 2 and base 16.
Only the weights change. There are programs which take advantage of this
and convert from base 10 to almost any other practical base. These universal
base conversion programs are difficult to use since they do not allow entry of
numbers larger than 9 as letters,

This program is simple since it is essentially self prompting. If you enter
a number that is out of range for the base being converted, the program
tells you. When you are doing binary to decimal conversions, you can puta
space between each group of four binary numbers. The binary number
1101001110111110 can be entered as 1101 0011 1011 1110. Since I tend to
get confused by a lot of 1s and Os, this feature is very helpful for me.

Converting from base 10 is even easier because this process involves suc-
cessive subtractions. To convert 535 from base 10 to hexadecimal, look at the
hex weights, 4096, 256, 16, and 1 and subtract the largest number possible
(leaving a positive result) from 535. 256 is the largest number that meets this

181

tutorial

requirement; 535 — 256 = 279. 256 can be subtracted from 279 leaving 23.
Since you subtracted 256 from 535 twice, put a 2 in the column three places
to the left of the decimal point. Now subtract the largest number possible
from the remainder 23. That is 23 — 16 = 7. You can only subtract 16 once; so
put a 1 in the second column. You can subtract 1 from 7 seven times. This
puts a 7 in the first column. The result is 217 hexadecimal. If you had been
able to subtract a hex weight 10 times, you would have put an A in the ap-
propriate column. For example, the decimal number 3,584 converts to EQ0
hexadecimal, since 256 is the largest number that can be subtracted from
3,584, and it can be subtracted fourteen times with no remainder. 14 is ex-
pressed as E in hex; so an E goes in the column three places to the left of the
decimal point, yielding E00.

A conversion from 742 decimal to octal is performed in the same way. The
octal weights are 4096, 512, 64, 8 and 1. 512 can be subtracted once leaving
930. 64 can be subtracted three times leaving 38. You can subtract 8 four
times leaving 6. One can be subtracted six times leaving 0. The result is 1346
octal.

Decimal to binary conversion follows the same scheme, but since the
binary system uses only two digits, 0 and 1, a given weight is subtracted only
once. To convert from 43 decimal to binary, look at the binary weights 32,
16, 8, 4, 2, and 1 and subtract the largest weight possible from 43;
43 - 32 = 11. Put a one in the sixth column, then subtract the largest weight
possible from 11. Subtracting 16 from 11 leaves a negative number; so you
put a 0 in the fifth column and subtract 8 from 11; 11 -8 =3. Putal in the
fourth column. A O goes in the third column because subtracting 4 from 3
gives a negative result. Subtract 2 from 3, leaving 1. Puta 1 in the second
column and subtract 1 from 1, leaving 0. Put a 1 in the first column. The
converted number is 101011.

If this seems confusing, a few practice sessions using the conversion pro-
gram to check your results should make it more clear. If you are not in-
terested in how the conversion process works, you can use the program just
to make conversions. There are numerous safeguards and prompts builtin to
keep you from going astray.

182

tutorial

Program Listing. Base conversion

* BASE CONVERSION - SEPTEMBER 1980 - N.C.L.
10 CLS
20 CLEAR
PRINT
30 PRINT “TO CONVERT FROM HEX TO DECIMAL,ENTER 1°":
PRINT
40 PRINT “TO CONVERT FROM DECIMAL TO HEX,ENTER 2“:
PRINT
50 PRINT "TO CONVERT FROM OCTAL TO DECIMAL,ENTER 3":
PRINT
60 PRINT "TO CONVERT FROM DECIMAL TO OCTAL,ENTER 4":
PRINT
70 PRINT "TO CONVERT FROM BINARY TO DECIMAL,ENTER 5:
PRINT
80 PRINT “TO CONVERT FROM DECIMAL TO BINARY,ENTER 6":
PRINT
90 PRINT "TO RETURN TO MENU,ENTER ANY NON HEX LETTER":
PRINT
100 INPUT “ENTER 1, 2, 3, 4, 5, OR 6";P
110 ON P GOTO 470,130,920,730,1410,1150
120 GOTO 10
130 CLS
140 CLEAR :
" BEGIN DECIMAL TO HEXADECIMAL CONVERSION
150 D(1) = 1:
p(2) = 16:
B(3) = 256:
D(4) = 4096
160 INPUT "INPUT DECIMAL NUMBER";DS$
170 IF ASC(DS$) > 70
THEN
10
180 D = VAL(DS$)
190 IF D > 65535
THEN
PRINT "NUMBER ENTERED [S TOO LARGE,IT MUST BE SMALLER THAN 655
369:
GOTO 140
200 DC = D
210 IF DC > = 4096
THEN
DC = DC - 4096:

Honouo

220 D1 = D1 + 1
230 GOTO 210
240 IF DC > = 256
THEN
DC = DC - 256:
ELSE
GOTO 270
250 C1 = C1 + 1
260 GOTO 240
270 IF DC > = 16
THEN
DC = DC - 16:
ELSE
GOTO 300
280 B1 = Bl + 1
290 GOTO 270
300 IF DC > =1
THEN
DC = DC - 1
ELSE

GO :
310 Al =T213301 Program continued

183

tutorial

320 GOTO 300
330 IF D1 < 10

THEN

D$(1) = STR$(D1):

= Dl:
Y = 1:
GOSUB 400
340 (F €1 < 10

0$(2) = STR$(C1):

Ci:

Y 2:

GOSUB 400

350 IF Bl < 10
THEN
D$(3) = STR$(B1):
ELSE

>
0o

X = Bl:
Y = 3:
GOSUB 400

360 IF Al < 10

D$(4) = STR${AL):

Y = 4:
GOSUB 400
370 PRINT :
PRINT "THE HEXADECIMAL EQUIVALENT IS :"
380 PRINT D$(1) + D$(2) + D$(3) + D§(4)
PRINT
390 GOTO 140
400 IF X = 10
THEN
D$(Y) =
410 IF X = 11
THEN
DS(Y) = "8
420 IF X = 12
THEN
D$(Y) = "¢
430 IF X = 13
THEN

wp

wpy

- mpw
450 IF X = 15

DS(Y) = "F"
460 RETURN
470 (LS

480 CLEAR :
* BEGIN
490 C(4) =

HEXADECIMAL TO DECIMAL CONVERSION
(N
¢

{

1
3 16:
2 256

(1 4096
500 [NPUT "ENTER HEX NUMBER";HS$
510 IF ASC(H$) > 70

THEN

10

520 V = LEN(H$)
530 IF V = 1

i

-

oo

e

184

540

550

560

570
580
590
600
610

620
630

640

650
660
670

680
690
700

710
720
730
740

750

760
770

780
790

800
810
820

830

840
850
860

tutorial

THEN
H$ = MM 4 QY 4 MO 4 H$
IFV =2
THEN
H$ = Hotl + |I06I + H$
IFV =3
THEN
H$ = I!Oll + H$
IF V> 4
THEN
PRINT "ENTER NO MORE THAN 4 DIGITS PLEASE":
60TO 500
FOR X = 4 TO 1 STEP - 1
H$(X) = MID$(HS$,X,1)
NEXT X
FOR X = 1 T0 4
IF ASC(H$(X)) < 58
THEN
S = S + VAL(H$(X)) * C(X):
ELSE
GOSUB 660
NEXT X
PRINT :
PRINT "THE DECIMAL EQUIVALENT [S :*
PRINT S:
PRINT
GOTO 480
H$(P) = H$(X)

IF ASC(HS$(X)) > 70
THEN

PRINT “A,8,C,D,AND E ARE THE ONLY LETTERS YOU CAN USE.":

GOTO 480
FOR L = 65 TO 70
K=1-55
ASC(HS$(P)) =L
EN

S + C(X) * K

If
TH
S =
NEXT L
RETURN
CLS
CLEAR :
' BEGIN DECIMAL TO OCTAL CONVERSION
8:
64:
512:
4096 :
32768
INPUT "ENTER DECIMAL NUMBER";0%
IF ASC{0%) > 70
THEN
10
0 = VAL(O$)
IF 0 > 65535
THEN
PRINT “NUMBER ENTERED IS TOO LARGE,IT MUST
5535":
GOTO 740

[SAR - WO N

#onowouou

Y =1
FOR X = 6 TO 1 STEP - 1
IF 0 > = 0(X)

THEN
0 - 0(X)

0 =

ELSE

GOTO 840
D{Y) = D(Y) + 1:
GOTO 820
Y=Y+ 1
NEXT X

FOR Y =1 T0 6

BE SMALLER THAN 6

Program continued

185

tutorial

870 D$(Y) = STR$(D(Y))
880 NEXT Y
890 PRINT :
PRINT “THE OCTAL EQUIVALENT IS :°
900 PRINT D$(1) + D$(2) + D$(3) + DE{4) + D$(5) + D$(6)

PRINT
910 GOTO 740
920 CLS
930 CLEAR :
* BEGIN OCTAL TO DECIMAL CONVERSION
940 C(6) = 1:
c{5) = 8:
c{4) = 64:
c(3) = 512:
c(2) = 4096:
C{1) = 32768
950 INPUT "ENTER OCTAL NUMBER";F$

960 IF ASC(F$) > 70
THEN

970 V = LEN(F$)
980 IF V > =6

990 FOR X = 1 T0O 6 - V

1000 FOR Y = 1 TO Y

1010 F$ = "0" + F$

1020 NEXT X

1030 IF VAL(F$) > 177777
THEN

PRINT "THE NUMBER ENTERED IS TOO LARGE,IT MUST BE SMALLER THA

N 200,000":
GOTO 930

1040 FOR X = 6 TO 1 STEP - 1

1050 F$(X) = MID$(F$,X,1)

1060 NEXT X

1070 FOR X =1 T0 6

1080 IF VAL(F$(X)) > 7

THEN

PRINT "OCTAL NUMBERS USE NO DIGITS LARGER THAN 7":
GOTO 930:

EL

SE
GOSUB 1130
1090 NEXT X
1100 PRINT :
PRINT "THE DECIMAL EQUIVALENT IS :"
1110 PRINT D:
PRINT
1120 GOTO 930
1130 D = D + (VAL(F$({X)) * C(X))
1140 RETURN
1150
" BEGIN DECIMAL TO BINARY CONVERSION
1160 CLS
1170 CLEAR 200:
DIM D(17),0%(17)
Y =1

1180
1190 FOR X = 1 TO 16
1200 D{X) = Y

1210 Y =2*Y
1220 NEXT X
1230 INPUT "ENTER DECIMAL NUMBER";B$
1240 IF ASC(BS$) > 70
THEN
10
1250 D = VAL(B}
1260 IF D > 655
THEN
PRINT "NUMBER ENTERED IS TOO LARGE, IT MUST BE SMALLER THAN 6
5636":

)
35

186

tutorial

GOTO 1230
1270 FOR X = 16 TO 1 STEP - 1
1280 IF D > = D(X)

THEN
D =D - D(X):
D(X) = 1 :

ELSE
D(X) = 0

1290 NEXT X

1300 FOR X = 1 TO 16

1310 D$(X) = STR$(D(X))

1320 NEXT X

1330 FOR X = 16 TO 1 STEP - 1

1340 D$ = D$ + D$(X)

1350 NEXT X

1360 PRINT :
PRINT “THE B

1370 A$

Y EQUIVALENT IS :"

1380 PRINT USIN
1390 PRINT

1400 GOTO 1170
1410

% % 3 “;A$;B$;CHES

' BEGIN BINARY TO DECIMAL CONVERSION
1420 CLEAR

1430 CLS

1440 DIM B(18)

1450 DEFDBL D

1460 Y =1
1470 FOR X
1480 B(X)
1490 Y = 2 * Y
1500 NEXT X
1510 0:

1 70 16
Y

L o=
Y = 0:
S = 0:
INPUT “ENTER BINARY NUMBER";BS
1520 IF ASC({BS$) > 70

THEN

1530 D = VAL

1540 L = LEN

1550 FOR X = 0 2 STEP - 1

1560 Y = Y + 1
1570 T$ = MID$(BS,X,1)

1580 T = VAL(TS$)

1890 IF T > 1 PRINT "1 AND O ARE THE ONLY DIGITS USED IN THE BINARY

NUMBER SYSTEM.":

GOTO 1510
1600 IFT =1
THEN

S =S+ T * B(Y)
1610 NEXT X
1620 PRINT "THE DECIMAL EQUIVALENT IS:"
1630 PRINT S:
PRINT
1640 GOTO 1510

187

UTILITY

EMOD-EDTASM Modifications
For the Model 111
Renumber One

Command

189

UTILITY

EMOD—EDTASM Modifications for the Model 111

by Winford Rister and Rick Steinberg

hat’s that? EDTASM was supposed to be available for your Model I1I

when? We ran into the same problem and fortunately were able to
do something about it. This chapter will show you how you can patch Radio
Shack’s Editor/Assembler to run on your Model III computer.

We tried to run EDTASM on the Model I1I. We loaded the tape at 500
baud, and it gave every indication of loading correctly, but when we tried to
execute the program, all we got were some strange characters printed at the
top of the screen.

The challenge issued by those Greek letters was too strong to ignore. Even
though we were told that EDTASM for the Model III would be out shortly,
we decided that we would try to modify the Editor/ Assembler we had. Our
copy of EDTASM was version 1.2. If you have a different version of
EDTASM, most of the specifics of this article do not apply to you.

Disassembling EDTASM

Armed with a copy of the article “Custom EDTASM” by John T. Blair
which appeared in the August 1980 issue of 80 Microcomputing, we planned
a course of action. First we needed a disassembled listing of EDTASM. We
were sure that once we got the source listing of EDTASM we would be able
to patch it to run on the Model III.

We had already written a disassembler program in BASIC, all we needed
to do was figure out how to load EDTASM and the disassembler into the
computer at the same time. (Both normally load into lower memory.) We
finally discovered a method of CLOADing the BASIC program anywhere
we wanted. We simply had to change the contents of locations 16548/9 to
point to the address where we wanted to start loading, then type CLOAD.

We were ready to disassemble EDTASM. First, we used the SYSTEM
command to load EDTASM on the Model III computer. We then pressed
RESET (to reinitialize system RAM), POKEd our CLOAD address into
locations 16548/9, and CLOADed the disassembler program into upper
memory (starting at location X’6000"). Everything worked fine, and within
a couple of hours we had our assembly-language listing of EDTASM.

Using the listing we had generated, along with the “Custom EDTASM”
article, we found out some very important information about memory usage

191

utility

within EDTASM. Let us caution you once more that the EDTASM we’re go-
ing to discuss is version 1.2. Although other versions are similar, they prob-
ably won’t be identical to this one. The Editor/ Assembler (version 1.2) uses
memory starting at location X’4100 as follows:

X'41000 Start of temporary storage and 1/0O buffers
X'42FF Start of stack (increases toward X’4100%)
X'4300° Start of device control blocks (DCB)
X4318 Start of cassette I/O driver software
X'43CE’ Start of general DCB handler routine
X'45F¢ Start of 1/0 linkage code

X4684° EDTASM cold start location

X'5CDC’ Start of user program buffer

Unfortunately, the Model III uses several memory locations between
X'4100°" and X'43EB’ for system functions (cassette I/0 status, time storage,
etc.). This, coupled with a difference in hardware, prevents the Model 1
EDTASM from running on the Model III computer. The I/O driver soft-
ware (cassette, keyboard, display, and line printer functions) is slightly dif-
ferentfor the two hardware configurations. It also means that the I/Q drivers
contained within EDTASM will not work on the Model ITI computer.

Changing the I/O driver addresses inside EDTASM was not hard, thanks
to the way Radio Shack had structured their program. All calls to the
keyboard, display, and line printer go to subroutines located at X’460%’,
X'4604°, and X’460F respectively. Each of these routines loads the address
of the appropriate device control block (DCB) into the DE register pair and
then jumps to a general DCB handler routine. We changed the code within
the I/0 linkage routines to load the DE pair with the addresses of the
systern's DCBs. Then we changed the jump address for the general DCB
handler routine to the one in ROM. Program Listing 1 is a disassembler
listing of the I/O linkage code from EDTASM. Program Listing 2 shows the
code for I/O linkage found in the ROM, and Program Listing 3 is the code in
EDTASM after the changes were made. Radio Shack has not formally
docurented the address of the general DCB handler routine in the ROM;
therefore, this address is subject to change without notice in later versions of
the ROM.

At this point, we had redirected the keyboard, display, and line printer
1/0 tothe corresponding ROM routines. Cassette 1/O was another matter
entirely. Radio Shack does not use the DCB concept for cassette control. We
had tosearch the EDTASM listing to find all jurnps and calls to the resident
cassette I/0 routines which start at location X’'4318’ and relink them to the
ROM routines. This was rather tedious, but we succeeded at last. By redirec-
ting allof the I/O to the ROM, we created a hole in EDTASM between loca-
tions X¥'4300" and X'45F6". The machine code in this area was no longer
necessary!

192

utility

Now another tedious task had to be performed—changing all references
to the temporary storage area starting at X’4100°. We searched out all ad-
dresses in the program listing that began with X’41” and changed them to
start at X’44’, and changed the stack start address to X’'45F5 (immediately
below the start of our program code). When we had made a list of all re-
quired corrections, we went back to the Model III computer and loaded
EDTASM along with a monitor program we had written. Use of the monitor
allowed us to insert all of our revisions and make a SYSTEM-format tape of
the resulting editor/assembler.

We were ready to start testing the revised program. We used the SYSTEM
command to load the new EDTASM, and it seemed to load correctly. With
great eagerness, we pressed / ENTER, and watched the screen. Lo and
behold, MODEL I1I ED/ASM (VER 1.2M) appeared in the upper left-hand
corner. We then checked out all of the EDTASM functions and found a few
problem areas. We quickly worked out patches for these, and before the
week was over, we had an editor/assembler that would run on a Model I11
computer! We then wrote an assembly-language program using EDTASM
on the Model III computer. The program is named EMOD, and its purpose
is to produce a tape of the editor/assembler that is compatible with a 16K
Model III computer. The final version of this program appears in Program
Listing 5, but before we discuss what it does, let’s look at the BASIC pro-
gram in Program Listing 4.

All this BASIC program does is POKE the EMOD program into memory
and execute it. It does have an important feature that you should be aware
of. Since typographical errors are a normal occurrence, and since EMOD
must be correct, we have installed a method for verification of all the data
statements in this program. The data statements are divided into groups of
64 elements, each with an associated checksum. As EMOD is POKEd into
memory, the checksum is developed. The sum is verified after each group of
data statements has been processed by comparing it to the proper element of
the C array. If any errors are detected, a message is printed which identifies
the group containing the error.

Running the BASIC Program

Before you run the program, you need to buy Radio Shack’s
Editor/Assembler, version 1.2. Have the salesperson verify the version
number before you buy the tape by loading the tape on a Model I computer
and executing it. The title is printed at the top of the screen along with the
version number. If you use someone else’s EDTASM, you will be violating
Tandy’s copyright (not to mention that you won’t have an instruction
manual for the program).Now that you have EDTASM, here’s what to do:
1) Press RESET on your Model III and answer the memory size question
with 28600.

193

utility

2) Type in the BASIC program from Program Listing 1 and run it,
3) If you get a CHECKSUM ERROR message, count the data statements in
groups of four until you get to the group with the error. Correct the error
and rerun the program.
4) If there are no errors the BASIC program will end. CSAVE the final copy
of the BASIC program, and then execute EMOD by typing:

X = USR(0) ENTER
5) EMOD will set the baud rate to 500 baud, destroy your BASIC program,
and ask you to insert EDTASM in the cassette unit.
6) Set the cassette recorder to PLAY and then press any key on the keyboard.
If you press BREAK, EMOD will return to Step 6.
7) When you press a key, EMOD will read the tape of EDTASM. The
familiar asterisks will flash in the upper right corner of the screen.
8) If you have inserted a tape other than EDTASM, or if any errors are
detected while EDTASM is being read, an E will be displayed in place of the
left asterisk, and EMOD will return to Step 6
9) When EDTASM has been read, EMOD will verify the version number. If
this is wrong, a message will be printed, and EMOD will return to Step 6.
10) If the version number of EDTASM is correct, EMOD will make the re-
quired changes and ask you to ready a tape to record the new version of
EDTASM.
11) Insert a fresh tape and set the cassette unit to RECORD.
19) Press any key on the keyboard to continue. If you press BREAK, EMOD
will return to Step 6.
13) When you press a key, EMOD will set the baud rate to 1500 baud and
wiite a SYSTEM-format tape of the new version of EDTASM. EMOD will
then go back to Step 12. To get out of this loop, press RESET.
You should now have an editor/assembler for your Model III computer!

Let's Talk About EDTASM

There are a few things you should know about the editor/assembler ver-
sion you have created. It will run only on a Model III computer with the
Model III’s BASIC. Along with the modifications required for machine com-
patibility, we have added some other features to make the editor/assembler
easier to use.

One command in your EDTASM manual is the Bcommand. Execution of
this command normally causes a jump to location 0 (reset). This is necessary
on the Model I computer because EDTASM uses some system RAM which
must be reinitialized before you can use BASIC again. On the Model III ver-
sion, however, we don’t use any reserved memory; so a reset is unnecessary.
Therefore, we have changed the jump address for the B command to the
BASIC warm start address (X’1A19’). In most instances, this will allow you
to get out of EDTASM and back in without disturbing text in your source

194

utility

code buffer. To get back to EDTASM, enter the SYSTEM command and
then type / ENTER. The editor/assembler will have changed the default
system execution address to its own warm start address (18138-X'46DA’).

The original Editor/Assembler had no provision for protecting any
memory at the top of RAM. If you had a machine-language routine loaded,
EDTASM might write over it. The Model 111 version corrects this problem
by using the memory size from BASIC to determine the top of usable
mermory.

Ancther feature of the Model II1 is its ability to operate at two different
cassette baud rates. There is no facility within the Editor/Assembler to
change the baud rates; so we added one. To do this, we had to delete a com-
mand from the original EDTASM. In looking over this list of EDTASM
commands, we decided that the most dispensable was the T command, so
we deleted it and installed a C command. The C command calls the ROM
routine $SETCAS which allows you to switch baud rates.

Using the high (1500) baud rate is acceptable for reading and writing
source tapes from EDTASM, but the low baud rate must always be used to
produce SYSTEM-format (machine-language) tapes. The Editor/Assembler
produces object code too slowly for the 1500-baud cassette speed; therefore,
to insure that the low baud rate is used, we have installed a patch in ED-
TASM that automatically sets the low baud rate whenever an object module
is being written to cassette. When the assembly is complete, the baud rate is
restored to its previous setting.

A Look at EMOD

Program Listing 5 contains the assembly-language program, EMOD.
Since you now have an editor/assembler for your Model I11, you may be in-
terested in some of the routines we have used in this program.

The first part of the program contains the variables and lookup tables re-
quired to modify EDTASM. The program actually begins execution at the
label START. The first section is a modified form of a routine that loads a
SYSTEM-format tape into memory. We have set it up to ignore anything
loaded below address X’45F6’, and we also ignore the execution address that
is read by the two calls at label LDEND.,

The middle sections of code perform the modifications to EDTASM based
on the tables at the start of the program. In several places we have used RST
18H, a call to a very handy ROM subroutine that performs a double-
precision compare on the HL and DE register pairs and alters the ac-
cumulator and the flags. On return to the caller, the carry flag is set if the
number in the HL register pair is less than the number in the DE pair. The
carry flag is reset if HL is greater than or equal to DE, and the zero flag is set
if HL equals DE. This call is especially handy because it uses only one byte of
memory in your program,

195

utility

The last section of the program writes the contents of memory to cassette
tape in SYSTEM tape format. The first byte of a SYSTEM-format tape must
be the ASCII character U (X’55’). This is followed by a six-character pro-
gram name. If the program name is less than six characters, it must be filled
with spaces on the end. Following the name are the DATA blocks and an
END block.

Each DATA block starts with an X’3C’, followed by a byte indicating the
block size. A block size of zero indicates that there are 256 bytes in the block.
The block size byte is followed by two bytes that give the starting load ad-
dress for the block. The least significant byte of the load address comes first,
and then the most significant byte. After the load address are the data bytes
to be loaded. The number of data bytes must equal the block size.

Following the last data byte in the block is a byte which represents the
checksum. The checksum is calculated by adding all of the bytes after the
block size (including the load address). Only the eight least significant bits of
the sum make up the checksum. The byte after the checksum byte starts
another DATA block or an END block. The first byte of an END block is an
X’78. The X178’ is followed by two bytes which represent the execution ad-
dress of the program. The execution address, like the load address, has its
least significant byte first.

We'll add a couple of don’ts about reading and writing cassette tapes at
1500 baud. In a machine-language program, there is very little time be-
tween calls to the cassette I/O routines. If you execute too many instructions
between calls to the $CSOUT routine, you'll produce a tape that gives data
errors when you try to read it back in. When reading a cassette tape, don’t
enable interrupts between calls to $CSIN. This gives very unpredictable
results. Also, don’t attempt to call any of the video display routines during a
cassette read. These routines enable interrupts before returning to your pro-
gram.

We hope this article has given you the capability to produce an
editor/assembler for your Model III computer. The revised EDTASM has
run successfully on two Model IlIs with different versions of the Model III
BASIC ROM: the earliest version which did not have keyboard accessible
control characters, and a later version which did. We have used a few un-
documented ROM routines and system RAM locations, however, so it’s
possible that the program will not work on your computer. If this happens, a
slight modification to EMOD may be necessary.

196

utility

Program Listing 1. EDTASM 1/0 linkage routine prior to modification

45F6 C5 PUSH BC

457 06 01 LD B,01

45F9 18 19 JR 4614H

45FB C5 PUSH BC

45FC 0602 LD B,02

45FE 18 14 JR 4614H

4600 C5 PUSH BC

4601 06 04 LD B,04

4603 18 OF JR 4614H

4605 11 00 43 LD DE,4300H ;GET ADR OF KBD DCB

4608 18 EC IR 45F6H

460A 11 08 43 LD DE,4308H ;GET ADR OF DSPL DCB

460D 18 EC JR 45FBH

460F 11 1043 LD DE 4310H ;GET ADR OF LP DCB

4612 18 E7 JR 45FBH

4614 C3 CE 43 JP 43CEH ;GO TO DCB HANDLER
Program Listing 2. I/O linkage routines from the Model I11I ROM

0013 G5 PUSH BC

0014 06 01 LD B,01

0016 18 2E JR 0046H

0018 C3 0640 JP 4006H

001B C5 PUSH BC

001C 06 02 LD B,02

001E 18 26 JR 0046H

002B 111540 LD DE.4015H ;GET KBD DCB ADR

002E 18 E3 JR 0013H

0030 C3 OF 40]JP 400FH

0033 11 1D 40 LD DE,401DH ;GET DSPL DCB ADR

0036 18 E3 JR 001BH

0038 C3 1240 JP 4012H

003B 11 2540 LD DE,4025H ;GET LP DCB ADR

003E 18 DB JR 001BH

0046 C3 7406 JP 0674H ;GO TO DCB HANDLER

197

utility

Program Listing 3. EDTASM 1/0 linkage routine after modification

45F6 G5 PUSH BC
45F7 06 01 LD B,01
45F9 18 19 JR 4614H
45FB G5 PUSH BC
45FC 0602 LD B,02
45FE 18 14 JR 4614H
4600 G5 PUSH BC
4601 06 04 1D B,04
4603 18 OF JR 4614H

4605 11 1540 LD DE,4015H ;GET ADR OF KBD DCB
4608 18 EC JR 45F6H

460A 11 1D 40 LD DE401DH ;GET ADR OF DSPL DCB
460D 18 EC JR 45FBH

460F 11 25 40 LD DE,4025H ;GET ADR OF LP DCB
4612 18 E7 JR 45FBH

4614 C3 7406 JP 0674H ;GO TO DCB HANDLER

Program Listing 4. EMOD BASIC listing

1 REM EMOD GENERATOR STEINBERG/RISTER 5/81
10 CLEAR 100
15 RESTORE :
DIM C(14)
20 CLS :
PRINT @128,"THIS PROGRAM WILL GENERATE AND EXECUTE 'EMOD'.
25 [NPUT "PRESS ENTER TO CONTINUE. READY";ZX$
30 IF PEEK(16561) = 184 IF PEEK(16562) = 111
THEN

100
35 PRINT “YOQU FORGOT TO SET MEMORY SIZE.":
PRINT

40 PRINT "I WILL SET IT FOR YOU BUT YOU WILL HAVE TO *
45 PRINT "TYPE RUN AGAIN.
50 POKE 16561,184:
POKE 16562,111:
END
100 GOSUB 200
130 FOR [= 1 TO 14:
READ C(I):
NEXT
140 N = 28672
150 GOTO 300
200 PRINT @256,"READING, CONVERTING, AND POKING DATA"
210 RETURN

300 FOR J = 1 TO 14

305 CS = 0

315 GOSlB 200

320 = N

325 PRINT “ 64 ELEMENT BLOCK BEGINNING AT";

330 B(1) = INT(M / 4096)

335 B(2) = INT((M - B(l) * 4096) / 256)

340 B(3g = INTEEM - (B(1) * 4096) - (B(2) * 256)) / 16)
345 B(4) = INT((M - B(1)) 4096 - B(2) * 256 - B(3) * 16))
350 Bl§ = ""

355 FOR I = 1 TO 4

360 B$(I) = STR${B(I))

198

370
375
380
390
395

420
440

460
480

500

510
520

530
540
550

600
700
1000

1200
7000

8000
8020

8030

8050
8100

9999
20000
20010
24999
25000
25010
25020
25030
25039
25040
25050
25060
25070
25079

IF
TH
B
B1§
NEX
PRIN
FOR
IF
TH
7
REA
P$

A$
IF

]
L s e of

P =
n

POK
PRI
cs
NEX
IF C
THE

10
cLS
NEXT

PRINT

PRINT

GOTO

IF CS

THEN
100

POKE

POKE

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

END

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

DATA

DATA

DATA

DATA

REM

utility

B(I) > 9
EN
${1) = CHR$(B(I) + 55)
= B1$ + RIGHT$(BS$(I),1)
T

T % UiB1§;% HEX"
K =1 T0 64

N > 29546

EN

000

D H$:

= H$:

= RIGHT$(H$,1)
A$ > = “A" AND A% < = "F"

ASC(AS$) - 55
VAL(A$)

LEFT$(H$,1)
> = "A" AND A$ < = “F"

A$) - 55

(%3 mr> g
ol SRR L - S J>um||z

AsC(
VAL(AS
* 16:
+ A
E N,H

N+ 1 :

NT P$;" u;
= CS + H
TK
S <> C(J)
N
00

" CHECKSUM ERROR - AT BLOCK ";J;" CHECK DATA"
9999
<> C(d)

0
16526,72:
16527 114

"THIS PROGRAM IS SELF DESTRUCTIVE"

"IF YOU HAVE NOT CSAVED THIS PROGRAM - DO IT N
“EMOD HAS BEEN LOADED - TO EXECUTE: °
“ TYPE X=USR(0) (ENTER)"

4432,7014,7277,8320,6372,5318,5524
4814,6338,5193,6203,5783,5796,4475
70004 BLOCK 1
00,78,8A,46,49,4€,53,45,52,54,20,45,44,54,41,53
40,20,46,4F,52,20,52,45,41,44,00,52,45,41,44,59
20,54,41,50,45,20,54,4F,20,57,52,49,54,45,20,45
44,54,41,53,4D0,00,57,52,4F,4E,47,20,56,45,52,53
BLOCK 2
49,4F,4E£,20,4F,46,20,45,44,54,41,53,4D,00,46,08
8F,Al,A7,AA,B6,B9,E7,F0,47,03,0F,1C,3D,49,0C,34
43,46,78,91,AF,C4,CF,D4,F7,FB,FE,4A,0D,0E,2E,49
gBagB,gE,97,AD,82,C0,DB,E1,FF,4B,OB,O4,18,59,6A
LOCK

owi

Program continued

199

utility

25080 DATA 99,AD,B5,CA,D8,DF,EC,4C,14,03,1E,32,3F,43,51,58B
25090 DATA 5£,80,80,92,96,9D,A8,CC,DD,E1,E4,ED,F0,4D,00,02
26000 DATA 05,0A,21,33,38,63,66,89,9D,AC,DA,E3,4E,01,44,4F
26010 DATA 0C,0D,22,2A,32,59,50,62,76,7E,9F,AA,E0,50,03,A8
26019 REM BLOCK 4
26020 DATA BC,DO,51,0A,23,38,43,50,C7,CB,CF,E9,EC,F1,52,16
26030 DATA 0F,30,33,3A,50,60,67,8D,A2,BD,C0,04,C8,CB,D0,D3
26040 DATA D6,DA,E3,E9,ED,F4,53,07,22,88,A8,AE,BA,BE,D3,54
26050 DATA 04,66,93,9£,BD,55,08,0A,17,1C,2C,2F,44,63,9A,B9
26059 REM BLOCK &
26060 DATA C0,E3,56,04,5C,91,96,82,57,05,03,26,57,80,F6,58
26070 DATA 04,17,4£,64,73,59,13,00,07,08,0F,28,31,34,3C,3F
26080 DATA 43,58,62,71,74,7E,98,A0,A7,C8,58,01,ED,5C,13,04
26090 DATA 1B,2C,5£,61,6€£,73,76,79,88,92,9A,9E,A9,AC,B2,BE
26099 REM BLOCK 6
27000 DATA C4,D8,06,46,15,40,08,46,10,40,10,46,25,40,15,46
27010 DATA 74,06,B1,46,00,45,08,46,00,45,DE,46,D8,45,43,47
27020 DATA 64,02,30,49,19,1A,00,4B,F0,45,46,4D,64,02,58,4D
27030 DATA 96,02,58,40,35,02,70,4D0,35,02,79,40,35,02,96,4D
27039 REM BLOCK 7
27040 DATA 35,02,84,40,35,02,88,40,35,02,35,4F,87,02,3A,4F
27050 DATA 64,02,40,4F,64,02,49,4F,64,02,98,52,E5,45,98,52
27060 DATA DO,45,AF,59,64,02,83,59,64,02,87,59,64,02,(D,5C
27070 DATA 64,02,03,5(,64,02,95,46,0A,00,21,DA,46,22,0DF,40.
27079 REM BLOCK 8
27080 DATA 2A,B1,40,BA,46,08,00,00,21,DA,46,22,04,42,1E,47
27090 DATA 02,FE,05,C9,48,18,4D,4F,44,45,4C,20,49,49,49,20
28000 DATA 45,44,2F,41,53,4D,20,28,56,45,52,20,31,2E,32,4D
28010 DATA A9,0B,49,1E,44,E7,4C,52,01,4C,4E,02,4A,41,E7,51
28019 REM BLOCK 9
28020 DATA 57,23,4D,46,C8,48,58,76,4C,0A,78,4(,45,(5,4D0,43
28030 DATA D1,45,A6,40,03,00,00,00,01,45,25,CD,42,30,3A,11
28040 DATA 42,32,EF,45,C9,CD,F8,01,3A,EF,45,32,11,42,C9,CD
28050 DATA D4,45,AF,32,11,42,03,25,4F,0D0,CD,F8,01,C3,28,47
28059 REM BLOCK 10
28060 DATA Cp,18,02,CD,49,00,3D,C0,31,00,70,21,48,72,22,04
28070 DATA 42,21,04,70,(D,40,72,11,76,45,21,00,44,36,00,23
28080 DATA 7C,FE,60,38,F8,AF,32,11,42,00,96,02,CD,35,02,FE
28090 DATA 55,20,3F,21,08,70,06,06,CD,35,02,BE,20,34,23,10
28099 REM BLOCK 11
29000 DATA F7,CD,35,02,FE,78,28,34,FE,3C,20,26,(D,35,02,47
29010 DATA (D,35,02,6F,CD,35,02,67,85,4F,(D,35,02,32,00,70
ggggg gﬁiﬁ gé,gE,gE,ig,gg,3A,00,70,77,23,10,EE,CD,35,02,89
,CF,3E,45,32,3€,3C,C0,F8,01,18,8C,(D, 35,
29039 REM . BLOCK 13 ,3€,CD0,F8,01,18,8C,(D,35,02,CD
29040 DATA 35,02,CD,F8,01,3A,E1,48,FE,31,20,07,3A,E3,48,FE
29050 DATA B2,28,09,21,36,70,C0,18,02,C3,48,72,21,4E£,70,3E
29060 DATA 44,56,23,46,23,5£,23,12,10,FB,11,42,71,0F,38,EF
29070 DATA 5€£,23,56,23,7£,23,12,13,7£,23,12,11,86,71,DF,38
29079 REM BLOCK 13
29080 DATA £F,5E,23,56,23,46,23,7£,23,12,13,10,FA,11,40,72
29090 DATA DF,38,E££,21,18,70,C0,40,72,11,F0,5C,32,11,42,CD
30000 DATA 87,02,3E,55,¢0,64,02,21,08,70,06,06,7E,23,CD,64
30010 DATA 02,10,F9,21,00,45,3E,3C,(D,64,02,AF,47,CD,64,02
30019 REM BLOCK 14 (SHORT)
30020 DATA 7D,CD,64,02,7C,CD,64,02,85,4F,7€,CD,64,02,81,4F
30030 DATA 23,10,F7,79,(D,64,02,0F,38,0C,21,01,70,06,03,7E
30040 DATA 23,CD,64,02,10,F9,(D,F8,01,18,A8

Program Listing 5. EMOD assembly-language listing

00010 ; EMOD - 4431/81 - R. STEINBERG
00020 ;PURPOSE: HIS PROGRAM LOADS EDTASM (V 1.2) INTO

00030 ; MEMORY, MODIFIES IT TO RUN ON A MODEL III
00040 ; COMPUTER, AND THEN PRODUCES A SYSTEM-FORMAT
00050 ; TAPE OF THE MODIFIED PROGRAM AT 1500 BAUD.
00060 ;

7000 00070 ORGN EQU 7000H

200

utility

00080 ;
00090 ;EQUATES
0218 00100 VDLINE EQU 0218H
0049 00110 KBWAIT EQU 0049H
3042 00120 SETCAS EQU 30424
0296 00130 CSHIN EQU 0296H
0235 00140 CSIN EQU 0235H
0287 00150 CSHWR EQU 0287H
0264 00160 CSOUT EQU 0264H
01F8 00170 CSOFF EQU 01F8H
4500 00180 STK EQU 45D0H
00190 ;
00200 ;PROGRAM START
7000 00210 ORG ORGN
7000 00 00220 CSAVE DEFB 0
7001 78 00230 ENDBLK DEFB 78H
7002 8A46 00240 DEFW 468AH
7004 49 00250 RDMSG DEFM CINSERT
7008 45 00260 EDNAME DEFM "EDTASM FOR READ'
701A 0D 00270 DEFB 0DH
7018 52 00280 WRMSG DEFM 'READY TAPE TO WRITE EDTASM'
7035 0D 00290 DEFB 0DH
7036 57 00300 VMSG DEFM "WRONG VERSION OF EDTASM'
704D 00 00310 DEFB 0DH
00320 ;

00330 ;T44 - THIS TABLE DESCRIBES REFERENCES TO THE EDTASM RAM
00340 ; STORAGE AREA.

00350 ;
704E 4608 00360 T44 DEFU 0846H
7050 8FAl 00370 DEFH OA18FH
7052 A7AA 00380 DEFW OAAATH
7054 B6B9 00390 DEFW 0B9B6H
7056 E7FO 00400 DEFW OFOE7H
00410
7058 4703 00420 DEFW 0347H
705A OF1C 00430 DEFW 1COFH
705C 3D 00440 DEFB 3DH
00450 ;
705D 490C 00460 DEFH 0C49H
705F 3443 00470 DEFU 4334H
7061 4678 00480 DEFW 7846H
7063 91AF 00490 DEFW OAF91H
7065 CACF 00500 DEFW OCFC4H
7067 DA4F7 00510 DEFW 0F7D4H
7069 FBFE 00520 DEFW OFEFBH
00530
7068 4A0D 00540 DEFW OD4AH
706D QEZE 00550 DEFW 2EQEH
706F 4963 00560 DEFW 6349H
7071 888E 00570 DEFW 8E88H
7073 97AD 00580 DEFW QAD9T7H
7075 B2CO 00590 DEFW 0COB2H
7077 DBE1 00600 DEFW OE1D8H
7079 FF 00610 DEFB OFFH
00620
707A 4BOB 00630 DEFW 0B4BH
707C 0418 00640 DEFW 1804H
707E 596A 00650 DEFW 6A59H
7080 99AD 00660 DEFW 0AD99H
7082 B5CA 00670 DEFW 0CABSH
7084 D8DF 00680 DEFW ODFD8H
7086 EC 00690 DEFB OECH
00700 ;
7087 4C14 00710 DEFW 144CH
7089 031E 00720 DEFW 1EQ3H
7088 323F 00730 DEFH 3F32H
708D 4351 00740 DEFW 5143H
708F 5BS5E 00750 DEFW S5E58H
7091 808D 00760 DEFH 8D80H
7093 9296 00770 DEFW 9692H Program continued

201

7095
7097
7099
7098

709D
709F
70A1
70A3
70A5
70A7
70A9
70AB

70AC
70AE

70AF
70B1
7083
7085
7087
7089
70BB

70BD
70BF
70C1

7002
70C4
70C6
70C8
70CA
70CC

70CE
7000
7002
7004
7006
7008
70DA
70DC
70DE
70E0
70E2
70E4

70E6
70E8
70EA
70EC
70EE

70EF
70F1
70F3

70F5
7OF7
70F9
70F8B
70FD
T0FF
7101

7102
7104
7106

9DAB
CChD
E1E4
EDFO

4D0D
0205
0A21
3338
6366
899D
ACDA
E3

4E01
44

4F0C
obzz
2A32
595D
6276
TE9F
AAEO

5003
ABBC
DO

510A
2338
4350
c7¢8
CFE9
ECF1

5216
0F30
333A
5060
678D
A2BD
coca
c8cs
DOD3
D6DA
E3E9
EDF4

5307
2288
ABAE
BABE
D3

5404
6693
9EBD

5508
0AL7
1c2¢
2F44
639A
B9CO
£3

5604
5C91
9682

00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010

01020 ;

01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFU
DEFW
DEFW
DEFW
DEFB

DEFYW
DEFB

DEFW
DEFW
DEFW
DEFW
DEFUW
DEFW
DEFW

DEFU
DEFW
DEFB

DEFW
DEFW
DEFW
DEFW
DEFW
DEFY

DEFW
DEFUH
DEFW
DEFW
DEFH
DEFW
DEFW
DEFW
DEFH
DEFW
DEFW
DEFY

DEFW
DEFW
DEFW
DEFW
DEFB

DEFW
DEFU
DEFW

DEFY
DEFW
DEFW
DEFHW
DEFW
DEFW
DEFB

DEFYW
DEFW
DEFW

utility

O0AB9DH
O0DDCCH
OE4ELH
OFQEDH

0D4DH
0502H
210AH
3B33H
6663H
9D89H
ODAACH
OE3H

014EH
44H

OC4FH
220DH
322AH
5D59H
7662H
9F7EH
OEOQAAH

0350H
OBCABH
0DOH

DAS1H
3B23H
5043H
OCBC7H
OEY9CFH
OF1ECH

1652H
300FH
3A33H
505DH
BD67H
0BDAZH
0C4COH
0CBCBH
OD3DOH
ODADGH
OE9E3H
OF4EDH

0753H
8B22H
DAEABH
OBEBAH
OD3H

0454H
9366H
OBDYEH

0B55H
170AH
2C1CH
442FH
9A63H
0COBYH
OE3H

0456H
915CH
0B296H

202

7108
710A
710C
710E

710F
7111
7113

7115
7117
7119
7118
7110
711F
7121
7123
7125
71127
7129

712A
712¢

7120
712F
7131
7133
7135
7137
7139
7138
713D
713F
7141

7142

5705
0326
5780
Fé

5804
174t
64F3

5913
0007
0BOF
2831
343C
3F43
5862
7174
7E98
AOA7
CB

5801
ED

5C13
0418
2C5E
616E
7376
7988
929A
9EAS
ACB2
BEC4
D8

0646
1540
0B46
1040
1046
2540
1546
7406
8146
D045
DB46
D045
DE46
DB45
4347
6402
3049
191A
C04B
F045
4640
6402
584D
9602
584D
3502

01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170

T44¢

DEFW
DEFW
DEFU
DEFB

DEFH
DEFW
DEFW

DEFW
DEFW
DEFY
DEFW
DEFW
DEFWH
DEFW
DEFW
DEFH
DEFW
DEFB

DEFW
DEFB

DEFW
DEFH
DEFW
DEFW
DEFW
DEFU
DEFU
DEFW
DEFU
DEFU
DEFB

EQU

utility

0557H
2603H
8057H
OF6H

0458H
4E17H
O0F364H

1359H
0700H
OFOBH
3128H
3C34H
433FH
6258H
7471H
987EH
OA7AQH
0CBH

015BH
OEDH

135CH
1BO4H
5E2CH
6E61H
7673H
8879H
9A92ZH
OA99EH
0B2ACH
0C4BEH
0D8H

$

sWDTBL - THIS TABLE DESCRIBES ALL FULL-WORDS WITHIN
; EDTASM THAT REQUIRE MODIFICATION. MOST OF THESE
; RELINK JUMP AND CALL ADDRESSES TO THE ASSOCIATED
; ROM FUNCTIONS.

HWDTBL

DEFU
DEFW
DEFW
DEFW
DEFW
DEFW
DEFH
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

_ _DEFU

DEFW
DEFU
DEFW
DEFH
DEFW
DEFW
DEFW
DEFW
DEFY
DEFW

4606H
4015H
460BH
4010DH
4610H
4025H
4615H
0674H
46B1H
STK
46DBH
STK
46DEH
45DBH
47434
CsouT
4930H
1A19H
4BCOH
45FQH
4D46H
CSOUT
4D58H
CSHIN
4D5BH
CSIN

;KBD DCB

;DSPL DCB

;LP DCB

;ADR OF ROM DCB HANDLER

Program continued

203

7176
7178
717A
717¢
717€
7180
7182
7184
7186
7188
718A
718C
718E
7190
7192
7194
7196
7198
719A
719¢C
719€
71A0
71A2
71A4
71A6
71A8°
71AA
71AC
71AE
7180
7182
7184

71B6

7186
7188
71B9
71BA
718D

71C0

71C3
71C5
71C6
71C7
71C8
71CB

71CE
7100
7101

71D3
71D5
7106
71F0

71F1
71F3
71F4
71F5
71F7
J71F8
71FA
71FB

704D
3502
794D
3502
964D
3502
B44D
3502
BB4D
3502
354F
8702
3A4F
6402
404F
6402
494F
6402
9862
£545
9B52
D045
AF 59
6402
B359
6402
B759
6402
CD5C
6402
D35C
6402

9546
0A

00
21DA46
22DF40

2AB140

BA46
08

00

00
210A46
220442

1E47
02
FEO5

€948
1B
4D
A9

0B49
1€
44
£74C
52
p14c
4E
024A

02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780

02790

02800
02810
02820
02830
02840
02850
02860
02870

WDTBLE

JVARTBL
. CODE

VARTBL

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFMW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

EQU

utility

4D70H
CSIN

4D79H
CSIN
4D96H
CSIN
4DB4H
CSIN
4DBBH
CSIN
4F35H
CSHWR
4F 3AH
CSouT
4F40H
CSouUT
4F49H
CsouT
5298H
45E5H
529BH
STK

59AFH
CSOUT
59B3H
CSouT
59B7H
csouT
5CCDH
CSoUT
5CD3H
csouT

$

- THIS TABLE DESCRIBES ALL SECTIONS OF PROGRAM
TO BE OVERLAID WITHIN EDTASM.

DEFW
DEFB
NOP
LD
LD

LD

DEFW
DEFB
NOP
NOP

LD

DEFW
DEFB
cp

DEFW
DEFB
DEFM
DEFB

DEFW
DEFB
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW

4695H
10

HL ,46DAH ;GET EDTASM WARM START ADR

(40DFH),HL ;STORE AT 'SYSTEM' DEFAULT
EXECUTION ADR { /<ENTER>)

HL,(40B1H) ;GET BASIC TOP OF MEMORY

46BAH
8

JDELETE MODEL I CASSETTE TAPE
INITIALIZATIONS.
HL,46DAH ; AND INSERT BREAK PROCESSING
(4204H) ,HL

471EH
2
05

48C9H

27 JINSTALL NEW PGM TITLE
'MODEL I1I ED/ASM (VER 1.2M'
')'+80H

490BH

30

g

4CET7H ;ALTER COMMAND TABLE T0
'R’ ; DELETE 'T' COMMAND AND
4CDI1H ; ADD 'C' COMMAND.

71FD
T1FE
7200
7201
7203
7204
7206
7207
7209
720A
720¢C
720D
720F
7210

7212
7214
7215
7216
7217

7218
721A
7218
721E
7221
7224
7225
7228
7228
722E
7122F
7232
7233
7236
7239
723A
723D

7240

7240
7243
7246
7247

7248
7248
724E

7251
7254
7257
725A
725D
7125F
7260
7261
7263

7265
7266
7269
726C
726F

41
E£751
57
234D
46
848
58
764C
0A
784C
45
C54D
43
D145

A64D
03
00
00
00

D145
25
CD4230
3A1142
32EF45
c9
CDF801
3AEF45
321142
C9
CDD445
AF
321142
C3254F
0D
CDF801
32847

CD1BO2
Ch4900
3D
co

310070
214872
220442

210470
cb4ao72
11F645
210044
3600
23

7C
FE60
38F8

AF
321142
CDh9602
€D3502
FESS

02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03210
03220
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570

DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW

DEFH
DEFB
NOP

CALL
XOR
LD
JpP
DEFB
CALL
Jp

VAREND EQU

utility

A
S1E7H
Ty
4D23H
IFI
4BC8H
58H
4C76H
OAH
4C78H
VES
4DC5H
|Cl
45D1H

4DAGH
3

;DELETE CALL TO ASTERISK
FLASH ROUTINE. (BUILT
INTO MODEL III ROM)

45D1H ;CASSETTE CONTROL PATCHES

37
SETCAS

'C' COMMAND

A,(4211H)
(45EFH),A ;SAVE NEW BAUD RATE

CSOFF ;WARM START INIT PATCH

A, (45EFH

) sRESTORE BAUD RATE

(4211H), A

4504H ;SAVE CURRENT BAUD
A

(4211H),A ;SET LOW BAUD FOR 0BJ TAPE

4F25H

O0DH ;BAUD RATE TEMP STORAGE
CSOFF ;PATCH TO GIVE FASTER CSOFF FOR

4728BH
$

1500 BAUD OPERATION.

;DISPLAY MSG AND WAIT FOR KBD ENTRY.
<BREAK> CAUSES RESTART.

HSGOUT CALL

START

3

LERO

CALL
DEC
RET

LD
LD
LD

VDLINE
KBWAIT
A

NZ

SP,ORGN
HL,START

(8204H),HL ;SET UP BREAK PROCESSING
;LOAD EDTASM AT 500 BAUD

HL ,RDMSG
MSGOUT
DE,45F6H
HL,4400H
(HL),0
HL

AH

60H
C,ZERO

A

sWON'T LOAD ANYTHING BELOW HERE
;ZERO QUT PROGRAM AREA

(4211H),A ;SET LOW BAUD RATE

CSHIN
CSIN
!Ul

Program continued

205

7271
7273
7276
7278
7278
727¢C
727€E
T27F

7281
7284
7286
7288
728A
728C
728F
7290
7293
7294
7297
7298
7299

729A
729D
72A0
72A1
72A2

72A3
72A5
72A8
72A9
72AA
72AC
72AF
72B0

72B2
72B4
7287
72BA

72BC
72BF
72¢C2

72C5
72C8
72CA
72CC
72CF
7201
7203
72D6
7209

72DC
72DF
72E1
72E2
72E3

203F
210870
0606
CD3502
BE
2034
23
10F7

CD3502
FE78
2834
FE3C
2026
CD3502

320070

CD3502
CD3502
CDF801

3AE148
FE31
2007
3AE348
FEB2
2809
213670
CD1BO2
£34872

214E70
3E44
56

23

46

03580
03590
03600
03610
03620
03630
03640
03650
03660
03670
03680
03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840
03850
03860
03870
03880
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270

NMCK

NXTBLK

AXTBYT

NOLOAD

{DERR

LDEND

cp
JR

LD
LD
CALL
JR

CALL
CALL
CALL

utility

NZ,LDERR

HL, EDNAME

B,6

CSIN ;CHECK PROGRAM NAME

(HL)

NZ,LDERR

HL

NMCK

CSIN

78H ;END RECORD?

7,LDEND

3CH ;DATA RECORD?

NZ,LDERR

CSIN

B,A ;BLOCK SIZE

CSIN

L,A ;LSB OF BLOCK START ADR

CSIN

K,A ;MSB OF BLOCK START ADR
L

C,A ;START CHECKSUM

CSIN

(CSAVE), A

A,C JUPDATE CHECKSUM

C,A

18H ;THIS ROM CALL COMPARES HL:DE.

CARRY SET IF HL<DE; ZERO SET IF HL=DE.

C,NOLOAD ;BELOW MIN LOAD ADDR.

A, {CSAVE)

(HL),A

HL

NXTBYT

CSIN {GET CHECKSUM

¢

7, NXTBLK

A,'E

(3C3EH),A REPLACE LEFT ASTERISK WITH 'E’

CSOFF

START

CSIN JREAD EX ADR & DISCARD

CSIN

CSOFF

;CHECK FOR CORRECT VERSION (MUST BE 1.2).

3

VERSER

>

A, (48E1H)
ll!

NZ,VERSER

A, {48E3H)

'2'+80H

7,M0D44 ;VERSION CORRECT
HL,VMSG ’
VDLINE

START

SSTART EDTASM MODIFICATIONS

;MOD44 - THIS ROUTINE INSERTS A 44H WHERE REQUIRED
; BASED ON TABLE 'T44'

MOD44
MD1

LD
LD
LD
INC
LD

HL,T44

A,44H

D,(HL) ;GET PAGE # FOR THIS SECTION
HL

B,{HL) ;GET # OF BYTES TO DO

206

utility

72e4 23 04280 INC HL
J2E5 5E 04290 MD2 LD E,(HL) ;GET ADDR ON PAGE
72E6 23 04300 INC HL
72E7 12 04310 LD (DE),A
72E8 10FB 04320 DJINZ MD2
72EA 114271 04330 LD DE,T44E
J2ED DF 04340 RST 18H sHL-DE TO FLAGS
72EE 38EF 04350 JR C,MD1 3HL < DE
04360
04370

04380 ;MODWDS - THIS ROUTINE INSERTS A SPECIFIED WORD AT A
04390 ; GIVEN ADDRESS. TABLE 'WDTBL' IS USED.

04400 ;
04410 ;
72F0 5E 04420 MODWDS LD E,(HL) GET LSB OF WORD ADDRESS
72F1 23 04430 INC HL
72F2 56 04440 LD D,(HL) ;GET MSB OF WORD ADDRESS
72F3 23 04450 INC HL
72F4 TJE 04460 LD A,(HL) GET LSB OF WORD TO BE INSERTED
72F5 23 04470 INC HL
72F6 12 04480 LD (DE),A ;STORE LSB OF WORD
72F7 13 04490 INC DE
72F8 7E 04500 LD A, (HL)
72F9 23 04510 INC HL
T2FA 12 04520 LD (DE),A
72FB 11B671 04530 LD DE,WDTBLE
72FE DF 04540 RST 18H
72FF 38EF 04550 JR C,MODHDS
04560

04570 ;MODVAR -~ THIS ROUTINE INSTALLS THE SPECIFIED PROGRAM
04580 ; CODE FROM TABLE 'VARTBL'.

04590 ;
7301 SE 04600 MODVAR LD £, (HL)
7302 23 04610 INC HL
7303 56 04620 LD D, (HL)
7304 23 04630 INC HL
7305 46 04640 LD B, (HL)
7306 23 04650 INC HL
7307 7E 04660 MDV1 LD A, (HL)
7308 23 04670 INC HL
7309 12 04680 LD (DE), A
7304 13 04690 INC DE
7308 10FA 04700 DJNZ MDV1
7300 114072 04710 LD DE,VAREND
7310 DF 04720 RST 18H
7311 38EE 04730 JR C,MODVAR

04740 ;

04750 ;WRITE EDTASM AT 1500 BAUD
7313 211870 04760 WRITE LD HL , WRMSG
7316 CD4072 04770 CALL MSGOUT
7319 11F05C 04780) DE,5CFOH ;END OF EDTASM
731C 321142 04790 LD (4211H),A
731F CD8702 04800 CALL CSHWR
7322 3E55 04810 LD A,'U"
7324 CD6402 04820 CALL cSouT
7327 210B70 04830 LD HL , EDNAME
7328 0606 04840 LD B,6
732C 7€ 04850 WRNM LD A, (HL)
7320 23 04860 INC HL
7326 CD6402 04870 CALL csouT
7331 10F9 04880 DINZ WRNM
7333 210045 04890 LD HL,45DOH ;START ADR
7336 3E3C 04900 WRBLK LD A,3CH ;DATA BLOCK
7338 CD6402 04910 CALL CSouT
7338 AF 04920 XOR A
733C 47 04930 LD B,A
7330 CD6402 04940 CALL cSouT
7340 7D 04950 LD A,L
7341 CD6402 04960 CALL csouT
7344 7¢C 04970 LD ALH Program continued

207

7345 CD6402
7348 85
7349 4F
734A 7E
7348 (D6402
734t 81
734F 4F
7350 23
7351 10F7
7353 79
7354 CD6402
7357 DF
7358 38DC
735A 210170
735D 0603
735F TE
7360 23
7361 €D6402
7364 10F9
7366 CDF801
7369 18A8

7248

04980
04990
05000
05010
05020
05030
05040
05050
05060
05070
05080
05090
05100
05110
05120
05130
05140
05150
05160
05170
05180
05190
06200

00000 TOTAL ERRORS

WRBYT

WREND

utility

CcsouT

Te v e .
> O O0~T
<@
e
—

COPEZXZOIOP>PO>
w

(oK)

o«

—

ot
fecl
puvg

C,WRBLK
HL, ENDBLK

208

UTILITY

Renumber One

by Dr. Stephen Mills

f you use a TRS-80 primarily for self-education and entertainment,

chances are you have a Level I system. If your expectations aren’t too de-
manding, and you can live without Level II's extra number-crunching,
string-untangling functions, you’re probably satisfied. But if you're honest,
you’ll have to admit that there are times when you envy the realm of the
classier systems. The one thing I envied most about Level II was its line-re-
numbering software. Radio Shack supplied it, and it seemed that every soft-
ware publisher who marketed a utility program had a line renumbering pro-
gram. But no one provided renumbering programs for Level 1.

For me, the main attraction of such a program was mostly aesthetic. My
raggedly numbered lines of BASIC were a bit embarrassing. Naturally, I felt
creative pride in my programs, but was a little ashamed of exposing their
secret workings. I felt as though I had dressed my creations in tuxedos with
tattered underwear and holey socks. But, I admit that there are better
reasons for wanting a renumbering utility in Level I. The processes of
debugging and amplifying programs sometimes fill the spaces between in-
itially well-separated lines of BASIC. A renumbering program gives you
more room. Also, a neatly arranged final version is desirable if you're con-
sidering publishing your work. It not only looks more professional, but also
aids typists and transcribers, because errors are easier to detect within a
regular and predictable pattern of line numbers. Finally, in combination
with other utilities, a renumbering program facilitates modular program-
ming. Tested and effective subroutines can be sorted and reintegrated into
other programs, increasing programming efficiency.

So, when I began expanding my Level I BASIC programming with assem-
bly-language flexibility, a renumbering utility was a high priority. This
utility should be of interest to Level I users with a penchant for neatness.
You will need a monitor such as the Editor/ Assembler or T-BUG to do this.
The program is written for 16K Level I, but a table of modifications for 4K
(Table 4) is included, and applications for Level II and Model III users are
discussed at the end of the article. NUMBR 1 is both simple to use and effec-
tive. It corrects all GOTO, GOSUB, and THEN addresses to the new num-
bers, and it also corrects multi-address ON-GOTO and ON-GOSUB state-
ments. Standard Level I abbreviations are accepted and processed, as are
unofficial, but functional, phrases like GOT. or TH. NUMBR 1 isn’t dis-
turbed by spacing between the statement and its address (as in GOTO 100),

209

utility

or by statements which address nonexistent lines (deleted lines). But, it does
not accept a numbering pattern which generates negative numbers or
numbers over 32767. Finally, it operates quickly on a BASIC program
already in memory without requiring an initial CSAVE, but it does permit
you to CLOAD the BASIC program while it is running.

Structure of NUMBR 1

The operation of NUMBR 1 can be more easily understood if you know
something of its development. Once I had the logic of the renumbering pro-
gram settled, there were two structural decisions to be made. First, NUMBR
1 could take either of two general tape formats:

1) NUMBR 1 could be operated via T-BUG (250 baud) or Radio Shack’s
SYSTEM tape (a tape supplied with EDTASM that allows the Level I to load
500 baud, Level I1 SYSTEM tapes). The BASIC program to be renumbered
would then have to be CLOADed after NUMBR 1 is loaded.

2) NUMBR 1 could be loaded and used on a BASIC program already in
memory.

Option 1 is the easiest to compose and to explain, but it is much more
cumbersome to execute. It requires four cassette operations for every
renumbering: CSAVE the BASIC program, CLOAD T-BUG or SYSTEM,
load NUMBR 1, and then CLOAD the BASIC program again. The first and
last of these operations are necessary because T-BUG and SYSTEM compete
with BASIC programming for specific regions of RAM. This fact makes it
imposible to operate NUMBR 1 under T-BUG or SYSTEM. Although
NUMBR 1 was originally designed this way, once it was debugged, I chose
option 2. This format is a breeze to use but, unfortunately, more difficult to
explain. You cannot produce NUMBR 1 directly with T-BUG or with Edi-
tor/ Asembler. As a result, the code presented for NUMBR 1 is actually a
parent program, containing the source code for the renumbering utility.
The purpose of the parent program is to beget lots of little renumber pro-
grams. Although the logic of NUMBR 1 can be understood from the listing,
some relocation and self-modification takes place when the parent pro-
grarmruns.

The second format question concerned what part of memory NUMBR 1
would occupy. In Level I, there is a section of memory below address 4200H
available for machine-language programming during the command mode.
Here NUMBR 1 would not interfere with BASIC variables, or with BASIC
prognm text. A second advantage is that a single version of NUMBR 1 can
be wiitten for any size RAM. Unfortunately, NUMBR 1 is too long to fit into
this small, protected area. This narrowed the possibilities to two:

1) L.oad part of NUMBR 1 outside the protected area
9) Successively load and execute different parts of NUMBR 1 in the same area
I tried option 2 but abandoned it. It is cumbersome and susceptible to

210

utility

110
120
120-150
160-220
230-270

280-300
410-420
430-450
780-1050
780
790-820
830-870
860

890-960
970
980-1050
1350-1370
24602560

2570-2740
2750-2800
2810-3020
3000-3010
3030

3040-3090
3180-3300

3310-3320
3330-3340
3350-3400
3410-3420
3430-3440
3450-3480
3490-3500
3520-3540
3550-3590
3600-3770

3780-3830

Checksum error test for part one of NUMBR 1

Determine top of available memory (same for 4K)

Load end-of-program in DE register, and make sure that a program is present
If no BASIC is present, execution pauses for CLOAD

The RSD routine insures that there is enough space available to load part two of
NUMBR 1.

If not enough memory, return to BASIC command mode

Load part two of NUMBRI and do checksum test

Print opening title and jump to entry point of part two of NUMBRI1

ZAP routine generates the Level I format cassette

Moves the stack to a safe place

Prepare to move part one into place and caleulate the checksum adjustment
Block move part one and insert checksum modifier

Subtract MSB of entry address to produce 40H checksum (CLOAD will auto-
matically insert this at address 41FFH)

250-baud output loop, leaves cassette running

Set up delay

PSE routine generates extra leader between dumps and looks for BREAK
Statement pointers to Level | ROM

Input for number of first line and increment (default procedure uses 100 and 10
respectively)

Make sure input values will work

Successive processing of three BASIC statements, THEN, GOTO and OSUB
Do actual line renumbering

(Program modifies itself here to load the contents of the IX register into the ad-
dress pointed to by HL)

The RNTHRU routine begins here; address pointer for statement being pro-
cessed is set in IX

BASIC source code is moved into high memory

Test to determine if all of program has been processed, by comparing HL to top
of memory

Shift bytes back to low memory while testing

Test for end of BASIC line (0DH)

If byte marks end of line, program line pointer is updated, and line number
bytes are shifted without further processing

Compare byte just moved to statement being processed; if no match proceed
to 3180

String comparison loop. Test BASIC statement pointer to determine if a full
string match has been made (for Level I ROM this is indicated by bit 7 in the
(IX + 1) location). If match, proceed to 3520

A test for double letters, e.g., IFS=TTHEN . . ., allowed in Level I

Test succeeding byte for period, indicating an abbreviation. If none, continue
string comparison

Test for blank spaces between statement and number

Decode address in old BASIC into hexadecimal

Find line number and determine its new value, convert value to ASCII and in-
sert in program

Test for comma (for ON GOTO and ON GOSUB})

Table 1. Summary of NUMBR 1 by line number

211

utility

problems. Even if the variables are sacrificed, 2 requires breaking the pro-
gram into at least four separately loaded segments. But using 1, with
NUMBR 1, as written, requires a 16K memory and at least 549 bytes of free
memory (PRINT MEM with the BASIC program in place must yield a num-
ber greater than 548). Table 4 lists the modifications needed for 4K opera-
tion, but the 549-byte requirement remains. With this format, part of
NUMBR 1 still loads into the safe area. This is necessary to make the pro-
gram automatic, and it also reduces the demand for free memory.

The Parent Program

The first-generation, or parent program, cannot do any renumbering,. Its
purpose is merely to output to the cassette a second-generation program
which will renumber. If the code is transcribed through an Editor/Assem-
bler, the object code is designed to start at the ZAP label (the Z-80 Assembly
Parent). The Editor/Assembler produces a 500-baud recording of the
parent, which is executed via the SYSTEM tape. You might want to write
out the listing for easy correction later on. If the code is entered through
T-BUG, it is necessary to transcribe it into two locations, the first beginning
at 44FOH and the second at 7TDDBH. Before running the parent program,
you should save what you have transcribed. Otherwise, an undetected bug
could gobble up your work, and you’ll have to start from scratch. To save
your transcription, you must do two Punches:

P 44F0 4642
P 7DDB 8000 [P 4DDB 5000 for 4K systems]
To run the program, prepare a fresh cassette and type:] 45FE.

My practice with this and other assembly-language utilities is to wind a
C-30 or C-45 cassette to the midway point, dumping the parent program
and the EDTASM listing. Then I rewind to the start of the tape for the
950-baud, second-generation dump. I allow as many dumps as possible, un-
til the recording approaches the middle of the tape. Because the utility is so
short, it is useful to have many recordings of it for quick execution. This also
avoids frequent rewinding which may wear out a small segment of tape.

The cassette-output segment of the parent program is written as a con-
tinuous loop to facilitate multiple recordings. After both parts of NUMBR 1
are dumped, the parent program runs the recorder for a moment, to provide
extra leader, and then starts outputting the program again. When you have
enough recordings, simply hold down the BREAK key. This terminates the
process as soon as the dump in progress is completed. Control returns to the
BASIC command mode.

The Logic of NUMBR 1

The Program Listing and Tables should suffice for those curious about the
details of NUMBR 1. Remember, though, that the working version of

212

utility

LABEL
BCOUNT

BUILD

CKSUM

DESAVE

DIF

FND

INCV

INDEX
INPUTC

MAINE
MAINLN
NEXT20

NPLACE

ouTCvV
PSE
STUMBL

TIDY
ZAP

LINE # #
1380-1470

3840-4040
670

1920

770
4050-4090
1980-2390

3170
1070-1290

3350
3180ff.
3520ff.

1480-1580

1590-1970
9801050
3360

2400-2450
7801050

Function

Loads active BC register pair with difference between HL and DE
Search source code for the line number stored in DE, while
renumbered value is calculated in IX register. When DE is
matched, FND is executed

Place where checksum adjustment will be stored before part one of
NUMBRI is dumped (41ECH in this program unless modified)
Address where contents of DE are temporarily stored during
renumbering

The value calculated by the Editor/Assembler used to modify direct
addresses of par one after relocation

Conclusion of BUILD, where matched line number is converted to
ASCII and stored in new object code

Converts ASCII string to two-byte hexadecimal in HL. Terminates
when nonnumeric symbol is met or overflow oceurs

Stores pointer address of BASIC statement being processed
Keyboard input routine using ROM calls but protecting program ex-
ecution from CLEAR key and excessive backspacing. Evaluates first
five non-blank characters input. INPUTC is destroyed during pro-
gram execution. The label is also used by part one calculations
because it is the first itern in part two.

Entry point for MAINLN loop

Loop in which renumbering algorithm is executed

A statement match has been found. Program ignores any blanks be-
tween statement and address, then converts address to hexadecimal,
Line number addressed is located, and its new number is calculated,
Value is converted back to ASCII and stored in new program code
Performs machine numbering into ASCII decimal by subtraction.
Stores result in buffer pointed to by BC. Used repeatedly by
ouTCV

Converts two-byte hexadecimal in HL to a decimal ASCII string,
1860-1880 skips leading zeros in setting buffer

During cassette output writes extra leader between separate pro-
grams, and awaits termination command

Location where current BASIC line number is stored

Test to insure proper input for line numbers and increments
Executed part of first-generation program, which generates the
second-generation renumbering utility. ZAP relocates part one of
program, adjusts the checksum value and makes multiple cassette
recordings of two-part NUMBR1

Table 2. Some important parts of NUMBR 1 by label name

NUMBR 1 involves only lines 100-660 (which are relocated first) and lines
1060-4090. The following discussion focuses on some of the more difficult
features of the program.

The touchy part of a renumbering program is not the actual line renum-
bering, but the correction of GOTOs and GOSUBs for the new numbering

system. The algorithm for this is the MAINLN loop (starting at line 3180)

k)

213

utility

which is initialized for each BASIC statement by RNTHRU (3030-3160).
MAINLN tests each byte of the BASIC code as it is shifted into place. This
procedure, flowcharted in Figure 1: (1) checks for the end of program and
(2) checks for the end of a line, while (3) shifting one byte, which (4) it com-
pares to the BASIC statement. This loop continues until there is a match at
(4), in which case a secondary loop is executed. Here, the BASIC statement
pointer advances to the next letter until (5) a complete match of the state-
ment is found, (6) a period, signalling an abbreviation, is found, or (7) a
mismatch occurs. If there is a mismatch, the BASIC statement pointer is
reset (0). Otherwise, the program proceeds to process any addresses which
follow the recognized BASIC statements.

If your entries generate numbers which are too high for Level I BASIC,
the program will restart. If you press ENTER in response to the input
queries, a default procedure sets the first line at 100 and the increment at 10.
Program execution time varies, depending on the length of the program and
the number of addresses to be converted. With short programs, it seems
almost instantaneous, but allow up to a minute for very long ones. Control
returns automatically to the command mode, and LIST reveals the renum-
bered program.

If for some reason (possibly deliberate, in incomplete or modular pro-
grams), a line is addressed which does not actually exist, the old address is
deleted. For example:

ONZ GOSUB 100, ,,

might result if the second, third, and fourth addresses could not be found in
the original program. Any spaces originally placed between the statement
and address remain. If an operation, rather than an address, follows an oc-
currence of THEN, it is not affected. Finally, note that NUMBR 1 takes no
heed of quotation marks or REMarks. I thought this preferable since, for ex-
ample, a REM statement might mention GOTO 253, and 1 would prefer
having that changed, too. Occasionally, this may require some modification
(e.g., PRINT“IF 2 OF US LEAVE THEN I WILL REMAIN”, which con-
tains a nonstatement occurrence of THEN, would be converted).

Parts of NUMBR 1 may hold some interest for programmers with systems
other than Level I. As a renumbering program, it is adaptable to Level II,
but it is probably not the most expedient technique, since Level IT does not
have to contend with string searches and abbreviations. But, the algorithm
for the Z-80 could be applied to other functions. To facilitate any adaptation
for the Model I11, T have included Table III, which contains every use of
ROM and dedicated RAM utilized by NUMBR 1. Modifications, or substitu-
tions of equivalent functions in other formats, may be required.

Level I programmers interested in successively loading and executing dif-
ferent parts of NUMBR 1 in the same memory area, should note the follow-
ing features of Level I dedicated RAM: video memory, the memory actually

214

utility

Address Function

OEEF Reentry point for Level 1 command mode, used by ROM after a bad CLOAD,
Displays WHAT? message automatically.

406C RAM location where end of BASIC program is indicated. It contains the address of
the carriage return of the last line + 1.

4200 This is (a) the RAM address where BASIC programs are stored, and (b) the value
assigned to the SP register. The first value placed on the stack by a CALL instruc-
tion goes into 41FE-41FF.

01C9 Reentry point for command mode of Level I ROM.

OEF4 ROM’s CLOAD function, inputs program or other data from cassette.

0010 Routine in ROM to display contents of A register on video.

3840 This actually addresses the keyboard. If ENTER, BREAK or CLEAR is pressed, a
value will be at this address.

41FE- Address, actually occurring in the stack area, which must receive CLOAD input in

41FF order to take control away from Level I ROM. After a CIL.OAD, program will con-
tinue at the address stored here.

OFE9 Turns on the cassette relay.

OF4B Level I ROM’s CSAVE function. Will record contents of memory between HL and
DE—1.

7FFF Last byte of memory with 16K. Value is 4FFF for 4K.

3801 Keyboard memory, addresses the C key.

4068 RAM location where position of video cursor is stored.

0B40 ROM routine which scans for keyboard input, and displays the result automatically
(including CLEAR and ENTER).

0020 Subroutine which compares the contents of DE and HL.

0028 Subroutine which checks the DE address for a blank (20H), and increments DE un-
til a non-blank character is found.

094F ROM subroutine which displays an extended message on video. DE points to the
message and terminates when a carriage return (13H) is met, or byte = contents of
B (which is 0).

0287 The word string GOTO occurs at this ROM location.

028E The string OSUB begins at this location. The first letter is skipped for reasons ex-
plained in the text,

0338 The word THEN occurs here.

406A RAM location where ROM stores the address of the highest byte of memory
available, i.e., 7FFF for a 16K TRS-80,

Table 3. Table of references to Level I ROM and dedicated RAM

represented on the CRT, occupies 3C00H to 3FFFH. No machine-language
code can be written here, since this memory is not a full eight-bit memory.
But it is possible to load text directly from cassette to screen, as the
Microchess program does. Following video memory, bytes 4000H to 4067H
are dedicated to the variables A through Z, available to the Level I user. Tt is
possible to pack programming into this area at the expense of the variables.
But, the Level I cassette input technique stores one more byte than output
normally writes. This means that your code only goes through address
4066H, because the block from 4068H to 406DH is vital to the Level I inter-
preter and cannot usually be written over (see Table 3). Addresses 406EH to

215

utility

408FH are dedicated to the string variables A$ and B$. They are expend-
able, but 4090H should be left alone, since this is the reference point for
ROM’s cassette input and output operations. After that, 4091H to about
41F5H are available; a few bytes between 41F5H and 41FFH should be left
open for stack operations. This leaves the Level I programmer with about
500 bytes available below BASIC storage, provided certain critical addresses

are avoided.
(STARI SELECT)
STATEMENT PTR

UPDATE
LINE #
POINTER

0}

MAINLN

RESET STATEMENT
POINTER

(3)
SHIFT BYTE

AND PREPARE
FOR TESTS

(4}

MATCH

17 N0 o svatenEnT

POINTER
»

(5}

COMPLETED

MATCH
H

CONVERSION YES
BLOCK

BUMP STATE -
MENT POINTER
TO HEXT LETTER

151
neewe\vyﬂi’—-
»

Figure 1. Flowchart of MAINLN subroutine. Numbers in parentheses refer to discussion in text,

The method used for step 1, which checks for the end of the program, is
comparatively slow and lengthy (19 bytes). This is to allow for simple
modification for hybrid programming. I don’t expect that the length or
speed will really trouble anyone.

The commands GOSUB, GOTO, and THEN do not actually occur in the
program itself. Instead, I have referred to their addresses in Level ROM.

216

utility

For 4K machines, the instruction addresses from line 01060 will be different. The encoding
must start at 4eDDBH instead of TDDBH. However, locations will be quite easy to read since only
the first numeral will be changed. The following are modifications in the instruction code itself
for LD, CALL and JP instructions:

Line number New code Line number New code

240 21DB4D 3030 22544F

520 C3AB4E 3060 CDOB4E

930 21DB4D 3070 11094E

940 11FF4F 3110 CD704F
1450 CDOB4E 3550 EDS53634E
1960 ED53634E 3560 CD6D4E
2480 CDDB4D 3620 DD2A124F
2490 CDA34E 3640 EDSB634E
2510 22124F 3650 CDOB4E
2530 CDDB4D 3680 CDDC4F
2540 CDA34E 3740 11094E
2560 220E4F 3750 CDOB4E
2570 EDS5B124F 3770 CDD74F
2620 CDOB4E 3790 CDS5B634E
2720 CDA34E 3820 C2524F
2760 CD334F 3910 22E84F
2780 CD334F 4010 ED4BOE4F
2790 CD334F 4070 CD254E

2830 CDOB4E
2940 229F4F

Table 4. List of instruction changes for 4K systems

The program recognizes a complete string match when a succeeding byte
has bit 7=1 (see line 3430). Furthermore, the GOSUB pointer actually
points to the O rather than the G. The reason for this is that, since the GOTO
string is processed first, any occurrence of G will already have been con-
verted by the MAINLN algorithm. If the GOSUB pointer addressed the in-
itial G, every occurrence of G would put the search into the string test
subloop. Then, the period-match at step 6 would cause NUMBR 1 to at-
tempt a reconversion of the addresses which follow, with erroneous results.

After an address conversion has been made (3810-3830), ON-GOTO and
ON-GOSUB are converted by checking the source code for a comma. De-
pending on the results, the program branches either to the MAINLN loop or to
the conversion section. If you have a long program, numbered with small
numbers, and you want to renumber it with higher numbers, the length of the
program will increase by renumbering. As the Level I manual tells us, the line
number itself always takes two bytes, whether it is 1 or 19999. But, GOTO
19999 does take more memory than GOTO 1. To allow for this without in-
creasing its own memory requirements, NUMBR 1 permits part of itself to be
obliterated during use (from 7DDBH to 7E09H, or 47 bytes in 16K).

217

utility

Execution of NUMBR 1

After the second-generation renumbering utility is produced, using it is
easy. When you have a program you want to renumber, simply insert the
NUMBR 1 cassette and type CLOAD. If there is a problem with loading
NUMBR 1, the monitor displays the message:

WHAT?

>READY__
Unlike a bad BASIC CLOAD, this will not cause the loss of your resident
program. Should a loading error occur, wind the tape to a good recording
and start over. If the load is okay, three things might happen:
1) If you have loaded NUMBR 1 without a BASIC program already in
memory, NUMBR 1 will note that fact and display:

INSERT BASIC PROGRAM CASSETTE & PRESS C TO LOAD
When you have done so, if everything is okay, the monitor will read:

LOAD REST OF LEVEL I BASIC LINE RENUMBER

PRESS C TO CLOAD
and part two, the high memory section of NUMBR 1, will be loaded.
2) Second, if there is already a BASIC program in memory, but one which is
too long to process, the monitor will display:

INSUFFICIENT MEMORY

\ T T
. e e @

T L

< —

218

utility

3) Third, if there is a BASIC program in memory of manageable size, both
parts of NUMBR 1 load and automatically start. The monitor displays:

LEVEL I LINE RENUMBER
FOR RESIDENT PROGRAM

FIRST LINE?
Here, type in the number to be assigned to the first line of code. When that is
entered, the program solicits:
INCREMENT?

for which the step between lines will be entered.

219

utility

Program Listing, NUMBR 1

00010 ;NUMBR1

00020 ;(C) 1981 STEPHEN MILLS

00030 ;LEVEL I LINE RENUMBER PROGRAM

00040 EDTASM VERSION PREPARES A MULTI-DUMP 2-PART
00050 ;250 BAUD TAPE FOR LEVEL I. PART 1 LOADS IN
00060 ;PROTECTED AREA BELOW LEVEL I BASIC. PART 2
00070 ;IS BOOTSTRAPPED INTO HIGH MEM (16K).

00080 ;
44F0 00090 ORG 44F0H
40F1 00100 HEAD DEFL $-DIF
44F0 C2EFOE 00110 JP NZ,OEEFH
44F3 ED5B6C40 00120 LD DE, (406CH)
44F7 210042 00130 LD HL,4200H
44FA EDS52 00140 SBC HL,DE
44FC 3814 00150 JR C,RSD
44FE 113841 00160 LD DE,LDP-DIF
4501 CD8A41 00170 CALL REIN-DIF
4504 CDF40E 00180 CALL OEF4H
4507 20F5 00190 JR NZ,$-9
4509 226C40 00200 LD (406CH) , HL
450C 119841 00210 LD DE,RSMS-DIF
450F CD8A41 00220 CALL REIN-DIF
4512 110042 00230 RSD LD DE,4200H
4515 21DB7D 00240 LD HL, INPUTC
4518 AF 00250 XOR A
4519 ED52 00260 SBC HL,DE
4518 3053 00270 JR NC,B800T
451D 112741 00280 LD DE,TOOMS-DIF
4520 CD4FO09 00290 CALL PRINT
4523 C3C901 00300 JP 01C9H
4526 49 00310 TOOMS DEFM "INSUFFICIENT MEMORY'
4539 0D 00320 DEFB 13
453A 49 00330 LDP DEFM *INSERT BASIC PROGRAM CASSETTE &
455A 00 00340 NOP
415C 00350 SETBSE DEFL $-DIF
4558 46 00360 DEFM 'FIRST LINE'
4565 00 00370 NOP
4167 00380 SETINC DEFL $-DIF
4566 49 00390 DEFM " INCREMENT'
456F 00 00400 NOP
4570 COF40E 00410 80OT CALL OEF4H
4573 C2EFOE 00420 Jp NZ,OEEFH
4576 3E0C 00430 LD A,12
4578 D7 00440 RST 10H
4579 3C 00450 INC A
457A D7 00460 RST 10H
4578 b7 00470 RST 10H
457C 11A841 00480 LD DE,TITLE-DIF
457F CD4FO9 00490 CALL PRINT
4582 CD4FOS 00500 CALL PRINT
4585 D7 00510 RST 10H
4586 C3ABT7E 00520 Jp ENTRY
4589 CD4FO09 00530 REIN CALL PRINT
458C 11D941 00540 LD DE,KYBM-DIF
458F CD4FO9 00550 CALL PRINT
4592 3A0138 00560 LD A, (3801H)
4595 £608 00570 AND 8
4597 28F9 00580 JR Z,%-5
4599 €9 00590 RET
459A 4C 00600 RSMS DEFM '"LOAD REST OF °*
45A7 4AC 00610 TITLE DEFM *LEVEL I BASIC LINE RENUMBER'
45C2 0D 00620 DEF8 13
45C3 46 00630 DEFM 'FOR RESIDENT PROGRAM'
4507 0D 00640 DEFB 13
45D8 50 00650 KYBM DEFM 'PRESS C TO CLOAD'
45EA 0D 00660 DEFB 13
45E8 0000 00670 CKSUM DEFW 0
45ED 0000 00680 DEFW 0

220

45EF
45F1
45F3
45F5
45F7
45F9
45F8
45FD
Q3FF
45FE
4601
4604
4607
460A
4608
460C
460E
4611
4613
4616
4619
461C
461F
4622
4625
4628
4628
462E
4631
4634
4635
4636
4637
4639
463C
463D
463F
7008
7DDB
7DDE
7DEO
7DE1
7DES
7DE8
7DEB
7DED
7DFO
7DF2
7DF4
7DFS
JDF7
7DF9
JDFA
7DFD
7DFE
71DFF
7802
7E04
7E05
7E06
7EQ7
7E09
7EQA
094F
40E9
0000
0287
028E
0338
7E£08

0000
0000
0000
0000
0000
0000
0000
Fl

310040
010E01
21FD45
11FE4L

CD4F09
3E3F
D7
ED5B6840
CD400B
2A6840
FEO3
CAC901
FEOQD
2805
E7
30EE
18E5

ES

00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380

DIF
ZAP

DuMP

PSE

INPUTC

WTZ1

PASSES

ToP

PRINT
QUTBUF
NN
GOTO
GOsuB
THEN
BCOUNT

PUSH

CODOoOOC

HEAD&OFFH
$-41FFH
SP,4DO0H
BC,ZAP-44FQH
HL,ZAP-1
DE,41FEH

A
(HL)

PE,$-3
40H
(CKSUM-DIF),A
OFE9H
HL,HEAD
DE,41FFH
OF4BH
OFE9H

HL, INPUTC
DE,7FFFH
OF4BH
OFE9H
HL, O

HL

AH

L
7,DUNP

A, (3840H)
A

Z,PSE
01C9H
7DDBH
PRINT ;PRINT WHAT DE POINTS TO
A2

10H ;DISPLAY ?
DE, {4068H) ;GET CURSOR
0B40H ;INPUT ROUTINE

HL, (4068H) ;CURRENT CURSOR
3 ;BREAK?

7,01C9H

13 JENTER?

1,PASSES

20H ;ROM'S HL/DE COMPARE
NC,HWTZ1

INPUTC+3

28H JHUNTS FOR NO-BLANK VIDEQ
HL,0UTBUF

DE,HL ;GET WORK OFF SCREEN
DE ;SAVE ADDRESS

BC,5

sMOVE INPUT TO BUFFER

HL ;PUT IN HL & DE TO
HL ;PREPARE FOR INCV

DE

INCV

1

094FH ;ROM PRINT SUB
HEAD-8 ;LOW 7-BYTE BUFFER
0 ;DUMMY ADDRESS
0287H 3 STRINGS

028EH IN LEVEL 1 ROM
0338H ;FOR COMPARISON

HL Program continued

221

01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080

NPLACE

ouTCV

DESAVE

INCV

DEASC

ADD
DEC
ADD
LD
INC
RET
PUSH
LD
PUSH
LD
LD
INC
DJINZ
LD
INC

J
sEXHAUSTED HL

utility

A ;CLEAR CARRY

HL,DE

(SP),HL

BC 3 PLACE COUNT

NC ;RETURN IF HL HIGHER

DE,HL ;EXCHANGE OTHERWISE
BCOUNT ;D0 IT THE OTHER WAY
DE,HL sRESTORE REGISTERS

A 3ZERQ ACCUM

A 3RAISE IT

HL,DE sCARRY CLEAR FROM ABOVE
NC,NPLACE+1

HL ,DE sRESTORE FROM NEGATIVE
A 3ADJUST DOWN 1

A,30H sMAKE ASCII

(BC),A ;BC HAS BUFFER POINTER

BC ;ADJUST TO NEXT PLACE
HL JSAVE # TO BE CONVERTED
Ht,OUTBUF JBUFFER ADDRESS
H

B,5 ;COUNT

(HL), 30H JINIT BUFFER
HL

$-3

(RL), 208

HL ;LOAD BLANK & STOP
(HL),0

BC ;RESTORE ADDRESS IN BC
HL JRESTORE #

BC JSAVE BUF ADR AGAIN
DE, 10000 +5TH PLACE
NPLACE

DE, 1000

NPLACE

DE, 100

NPLACE

DE,10

NPLACE

A,30H ;FOR UNIT PLAGE

AF :SAVE A BRIEFLY

A,L JMAKE ASCII

(BC),A

AF sRESTORE 30H

HL :RESTORE BUFFER ADDR

BC,5 sMAXIMUM MOVE
(HL% ;LOOK FOR NON-ZERO
NZ,$+6

HL

C 3ADJ MOVE COUNT
NZ,$-5

$+1

DE,NN ;WILL BE DESAVE LATER
z sRETURN IF ZERO CALC
;PUT AT DE'S ADDRESS
(DESAVE),DE

DE 3 SAVE DEST PTR

A sCLEARS THIS ACCUM
AF,AF' ;MAKE IT ALT COUNTER
AF,AF' ;COUNT LOOP

A JRAISE 1

AF,AF' RET TO INPUT ACCUM
A, 30H

(HL) 3DEASC TEXT

10 ;MUST BE LESS THAN 10
NC,PROCES

(HL),A ;DOES NOTHING FOR INPUTC

;REPEAT IF DE HASN'T

222

utility

JE7B EDAO 02090 LDI ;WHICH HAS DE=HL
7E7D 18F1 02100 JR DEASC ;KEEP GOING

JE7F 08 02110 PROCES EX AF,AF' ;SWITCH TO COUNTER
7E80 D1 02120 POP DE ;RESTORE POINTER

JE81 D9 02130 EXX sMAKE IT ALTERNATE

JE82 210000 02140 LD HL,O

7EB5 4F 02150 LD C,A ;BUT IT IN BC

7E86 0600 02160 LD B,0

7E88 D9 02170 BUMP EXX ;GO TO POINTER DE

7E89 1A 02180 LD A,(DE) ;GET DIGIT FROM BUFFER
JEBA 13 02190 INC DE ;BUMP POINTER

7JE8B DY 02200 EXX ;BACK TO OTHER REGS

JEBC 0D 02210 DEC o ;LOWER COUNT

JEBD C8 02220 RET z ;END IF ZERO

JEBE ES 02230 PUSH HL 3SAVE CURRENT SUM
JEBF 6F 02240 LD L,A ;BUT CURRENT DIGIT IN L
7E90 2600 02250 LD H,0

7€92 79 02260 LD A,C sGET PLACE COUNT

7€93 1806 02270 JR LAST1

7E95 29 02280 SHIFT ADD HL, HL

7E96 E5 02290 PUSH HL 3 SAVE DOUBLE

7E97 29 02300 ADD HL , HL

7E98 29 02310 ADD HL, HL

7E99 D1 02320 POP DE

JE9A 19 02330 ADD HL,DE ;NOW HL*10

7E98, 3D 02340 LAST1 DEC A JMORE?

7JE9C 20F7 02350 JR NZ,SHIFT

JE9E D1 02360 pop DE ;GETS FORMER SUM

JE9F 19 02370 ADD HL,DE

JEAO D8 02380 RET ¢ sRETURN IF OVERFLOW
JEA1 18E5 02390 JR BUMP

JEA3 3806 02400 TIDY JR C,ENTRY ;RESTART IF CARRY
JEAS 7C 02410 LD A H JGET H FOR

JEA6 07 02420 RLCA ;ROTATE

JEA7 3802 02430 JR C,ENTRY ;RESTART IF NEG

7JEAS BS 02440 OR L ;OR IF ZERO

JEAA C9 02450 RET

JEAB 31FF41 02460 ENTRY LD SP,41FFH

JEAE 115C41 02470 LD DE,SETBSE

JEB1 CDDB7D 02480 CALL INPUTC ;INPUT BASE #

7EB4 CDA37E 02490 CALL TIDY ;MAKE SURE GOOD INPUT
JEB7 2803 02500 JR 7,$+5 ;DEFAULT

JEB9 22127F 02510 LD (BASE),HL

JEBC 116741 02520 LD DE,SETINC

JEBF CDDB7D 02530 CALL INPUTC

7EC2 CDA37E 02540 CALL TIDY

7JEC5 2803 02550 JR 7,$+5

JEC7 220E7F 02560 LD (INCMNT),HL

JECA EDSB127F 02570 LD DE, (BASE) ;GET BASE AMT
JECE EB 02580 EX DE,HL ;SWITCH FOR TEST

JECF D9 02590 EXX sADD IN ALTERNATE REGS

JEDO 210242 02600 LD HL,4202H

7ED3 ED5B6C40 02610 LD DE, (406CH) ;TOP OF MEM
7ED7 CDOB7E 02620 CALL BCOUNT ;GET COUNT FOR TEST
JEDA 0B 02630 DEC BC sNO NEED TO COUNT
JEDB 0B 02640 DEC BC sLAST CAR RET

JEDC 3E0D 02650 TESTLP LD A,13

JEDE EDBI1 02660 CPIR JTEST MEM

JEEQ E2EF7E 02670 Jp PO,0KAY ;GO OUT IF OKAY

JEE3 EDAL 02680 CPI

JEES EDAL 02690 CPI sTAKES CARE OF LINE # LOCS
JEE7 D9 02700 EXX

JEE8 19 02710 ADD HL,DE ;MAKE SURE INPUTS
JEE9 CDA37E 02720 CALL TiDY sWILL FIT

JEEC D9 02730 EXX

JEED 18ED 02740 JR TESTLP

JEEF 218702 02750 OKAY LD HL,GOTO ;LO0K FOR THIS COMMAND
JEF2 CD337F 02760 CALL RNTHRU

JEFS 218E02 02770 LD HL,GOSUB

JEF8 CD337F 02780 CALL RNTHRU Program continued

223

JEFB
TEFE
7FO0L
7F04
7F08
7FOB
7FOC
7FOE
7F0D
TF12
7F10
7F14
7F18
TF1A
7F1C
T1F1F
TF22
1F24
71F26
7F28
7F2B
1F2F
1F2D
7F31
7F33
7F36
7F39
7F3C
T1F3F
T7F42
7F43
7F45
7F46
7F49
7F4B
7F4C
7F4D
7fF51
7F54
7F52
7F56
7F58
7F59
7F5B
TF5D
7FSF
7760
7F62
7F63
7764
7F66
7F68
7F69
7F6A
7F6C
TF6E
7F70
7F75
7F73
1F717
T7F79
7F78B
1F7D
7F80
JF82
1F86
7r88
7F89
7F88
TF8E

utility

213803 02790 LD HL, THEN
£D337F 02800 CALL RNTHRU
210242 02810 LD HL,4202H SSTART OF PROGRAM
ED5B6C40 02820 LD DE, (406CH) JEND OF PROGRAM
CDOB7E 02830 CALL BCOUNT ;GET COUNT
08 02840 DEC BC JSKIP LAST BYTE
08 02850 DEC BC
02860 INCMNT EQU $+1 JWILL BE LOADED LATER
110A00 02870 LD DE,10 ;RECOVER INCREMENT
02880 BASE EQU $4+2 ;LOADED ABOVE
DD216400 02890 LD 1%,100
DD220042 02900 LD (4200H),1X sSET FIRST LINE
3E0D 02910 LD A,13
EDB1 02920 NUMBR CPIR ,
€2C901 02930 Jp NZ;01C9H
222F7F 02940 LD (POKEPL),HL ;SET OUT ADDRESS
EDAL 02950 cPl
EDAL 02960 CPI ;SKIP TO START OF TEXT
878 02970 BIT 7,8 JSEE IF CARRIED
£2C901 02980 Jp NZ,01COH
D19 02990 ADD IX,0F ;MAKE NEW LINE #
03000 POKEPL EQU $+2
pD220000 03010 LD (NN),IX ;LOAD NEW LINE #
18E7 03020 IR NUMBR
22547F 03030 RNTHRU LD (INDEX), HL sSTORE CMD REF
110042 03040 LD DE,4200H
2A6C40 03050 LD HL, (406CH) JEND +1
CDOB7E 03060 CALL BCOUNT
110976 03070 LD BE,TOP
13 03080 INC DE sMOVE 1 BYTE BEYOND
EDBS 03090 LDDR :BLOCK MOVE IT
£B 03100 EX DE,HL ;REVERSE FOR MOVE BACK
CD707F 03110 CALL MAINE ;MAINLN ENTRY POINT
3E0D 03120 LD A,13 JCAR RET
12 03130 LD (DE),A ;MUST BE AT (DE)
13 03140 INC DE IMAKE 1 GREATER
ED536C40 03150 LD (406CH),DE
€9 03160 RET
03170 INDEX EQU §+2 JDEFINES INDEX LOC
DD210000 03180 MAINLN LD IX,NN :GET CMD ADDR IN IX
3E7E 03190 LD A,TOP<-8
BC 03200 cp H sTEST AGAINST H
3807 03210 JR c,cL2
200C 03220 JR NZ,CL3
3£09 03230 LD A,TOP&OFFH
BD 03240 cp L STEST AGAINST LOW
3006 03250 JR NC,CL3-1
18 03260 CL2 DEC DE JBACK UP DE PTR
1A 03270 LD A,(DE) ;IF MEM OVERSHOT
FEOD 03280 cP 13
20FA 03290 JR NZ,CL2
8 03300 RET 7
7E 03310 CL3 LD A, (HL) ;GET NEXT BYTE TRANSFERRED
EDAO 03320 LDI JFOR TEST
FEOD 03330 cp 13
200D 03340 IR NZ,NEXT10
22757F 03350 MAINE LD (STUMBL), HL
03360 STUMBL DEFL $+2 JGETS LINE # IN 1V
FD2A0042 03370 LD 1Y, (4200H)
EDAO 03380 LDI ;SKIPS LINE # BYTES
EDAO 03390 LDI
1805 03400 JR MAINLN
DDBEDO 03410 NEXT10 CP (1X) SCOMPARE WITH COMMAND LETTER
20D0 03420 JR NZ,MAINLN
DDCBO17E 03430 BIT 7,(1X+1) JSEE IF END OF CMD
200€ 03440 JR NZ,NEXT20
7E 03450 LD A,{(HL) GET BYTE
pD23 03460 INC IX JBUMP CMD PRT
DDBEO1 03470 cp (1Xx+1) ;AVOID DOUBLE LETTERS
28C2 03480 JR Z,MAINLN:WHICH THROW OFF LOOP

utility

7F90 FE2E 03490 ce 'Lt ;TEST FOR ABBR

7F92 20D6 03500 JR NZ,CL3+1

7F94 EDAO 03510 LDI ;MOVE PERIOD/BLANK/COMMA
7F96 7E 03520 NEXT20 LD A,{(HL) ;TEST FOR BLANK
TJF97 FE20 03530 cP 20H sMOVE & RETEST

7F99 28F9 03540 JR Z,NEXT20-2

7F9B ED53637E 03550 LD (DESAVE),DE ;SAVE DESTINATION
7F9F CD6D7E 03560 CALL INCV ;CONVERT THE #

TFA2 ES 03570 PUSH HL 3MOVE LINE

7FA3 D9 03580 EXX ;G0 TO ALT REGS

7FA4 D1 03590 POP DE

TFAS E5 03600 PUSH HL 3 SAVE SOURCE

7FA6 D5 03610 PUSH DE ;SAVE # AGAIN!

7FA7 DD2A127F 03620 LD IX,(BASE)

7FAB 210042 03630 LD HL,4200H

7JFAE ED5B637E 03640 LD DE, (DESAVE)

7FB2 CDOB7E 03650 CALL BCOUNT

7FB5 0B 03660 DEC BC

7FB6 D1 03670 POP DE

7FB7 CDDC7F 03680 CALL BILDLO ;SEE IF LOWER ADDR
7FBA A7 03690 AND A sRETURNS BLANK IF
7FBB 280D 03700 JR L,PUTIT ;L0C FOUND

JFBD E1l 03710 POP HL 3RECOVER PTR

7FBE E5 03720 PUSH HL ;FOR COUNT

7FBF D5 03730 PUSH DE 3 SAVE AGAIN

7FCO 11097€ 03740 LD DE,TOP

7FC3 CDOB7E 03750 CALL BCOUNT

7FC6 D1 03760 POP DE

7FC7 CDD77F 03770 CALL BUILD

7FCA E1 03780 PUTIT PQOP HL 3RESTORE HI POINTER
7FCB ED5B637E 03790 LD DE, (DESAVE)

7FCF 7E 03800 LD A, (HL)

7FDO FE2C 03810 cp ! 3 TEST FOR MULT ADDR
7FD2 C2527F 03820 Jp NZ,MAINLN

7FD5 188D 03830 JR NEXT20-2,MOVE COMMA & CONVT
7FD7 3EOD 03840 BUILD LD A,13

7FD9 EDB1 03850 CPIR ;CT IN BC & MATCH ADDR IN DE
7FDB CO 03860 RET NZ ;NO MATCH

7FDC 0B 03870 BILDLO DEC BC

7FDD 0B 03880 DEC BC

7FDE CB78 03890 BIT 7,8 ;CHECK COUNTER CARRY
7FEO CO 03900 RET NZ

7FE1 22E87F 03910 LD (CKPNT),HL

TFE4 23 03920 INC HL

7FE5 23 03930 INC HL 3SKIP LINE #

7FE6 ES 03940 PUSH HL

7FE8 03950 CKPNT EQU $41 ;HL HAS CONTENTS
7FE7 2A0000 03960 LD HL, (NN) ;0F ADDR IT PTS TO
TFEA E7 03970 RST 20H ;COMPARE THEM

7FEB El 03980 PQP HL ;RESTORE PTR

7FEC 280A 03990 JR Z,FND

JFEE CS 04000 PUSH BC 3 SAVE CT

JFEF ED4BOEJF 04010 LD BC, (INCMNT)

7FF3 DDOY 04020 ADD IX,BC ;ADJ NEW NO

7FF5 C1 04030 PoPpP BC sRESTORE CT

7FF6 18DF 04040 JR BUILD

J7FF8 DDES 04050 FND PUSH IX ;NOW IX HAS NEEDED #
TFFA E1 04060 POP HL

7FFB CD257E 04070 CALL ouTCY ;CONVERT IT

TFFE AF 04080 XO0R A

7FFF CS 04090 RET

45FE 04100 END ZAP

00000 TOTAL ERRORS

225

UTILITY

Command

by Arthur B. Rosenberg

RSDOS allows the execution of only one command or program through
the use of the AUTO command when powering up or resetting the
computer,

Shortly after getting my first disk, I found that before I could run my
BASIC program, I had to load BASIC and several machine-language pro-
grams, as well as specify the number of files, and set the memory size. I also
found that for a given disk I usually used the same start-up sequence, which
I did not always remember. As my disk collection grew, the problem became
worse, and I started to keep a written start-up procedure for each disk.

I wanted to do away with the need for entering commands from the
keyboard. The easiest way to accomplish this was to use a program which
replaced and simulated the keyboard when the computer requested an in-
put. Furthermore, I wanted to use the keyboard, if needed, to supply the
date, time, or other input. I also wanted the ability to use different com-
mands or to easily generate other versions for different disks.

COMMAND/CMD, shown in Program Listing 1, is a machine-language
program which contains the code necessary to simulate the keyboard, the
text to be used by the simulator, and a self-loader to place the program on a
particular disk with a given filespec. The second program, COM-
MANTD/BAS, shown in Program Listing 2, is a BASIC program. It is used to
rewrite the text in COMMAND/CMD, name the rewritten program, place
it on any disk, and, if you wish, make it invisible.

You can assemble COMMAND/CMD using the Editor/Assembler and
load itany place in memory. I located it starting at AAOOH, because that is
below the area in which I usually load machine-language programs and
above where COMMANDY/BAS resides. You will have to modify lines 530
through 560 and line 5030 in COMMAND/BAS if COMMAND/CMD is
assembled in another location. (See Table 1.)

COMMAND/CMD

Lines 360 through 380 of COMMAND/CMD load the address of the start
of the first command to be executed into the text pointer. The address of the
simulator is then placed into the keyboard device control block at 4016H,
and the program jumps to DOS READY. The computer would normally
wait for a keyboard input, but here it passes control to the simulator. The
simulator gets one character of text from the text buffer and passes control to

226

utility

the display routine. This continues until the program detects a carriage
return, ODH. The computer then executes the command, returns to DOS
READY, and the process starts again.

Line Number Change = To

530 XY (0) originate + 9CH
540 XY(1) originate + DBH
550 XX originate + D2H
560 PZ originate + 1EH
5030 DEFUSR 1 originate + 08H

Table 1. COMMAND/BAS line modifications

Lines 920 through 970 temporarily restore keyboard operation if user in-
teraction is required. This is necessary if you wish to set the time or enter
other data. The above processes continue until a OH is detected. This
signifies that the next character is the last one of the last command. Lines
820 through 870 restore normal keyboard operation and output the last
character. The text of commands is stored in memory starting at ABIEH and
can continue through ACFFH. Changing line 1570 from ACFFH to FFFFH
would allow text to continue to the end of memory.

The program is entered at AAO8H, line 450, when used with COM.-
MANDY/BAS. This loads the text pointer with the address of the self-load-
ing commands, loads the keyboard device control block with the simulator
address, and jumps to DOS READY, which causes the simulator to output
the command. (See lines 1490 through 1700.) DUMP filename/CMD:d
(START =X'AA00",END = X’ACFF’, TRA = X’AA00), and if the file is to be
invisible, ATTRIB filename/CMD:d (I) , which loads the program onto the
disk and gives the invisible attribute. The program then clears the screen,
displays two messages, and jumps to 0000H, which restarts the computer
and executes the new text,

COMMAND/BAS

COMMANDY/BAS generates new text for COMMAND/CMD to execute,
provides a filename for the program, and tells the computer which disk
drive to place the file on and whether it is to be visible or not.

The program is completely self-prompting. Lines 520 through 1000 in-
itialize the program. Note that the program allows for 20 lines of text to be
entered. Change the CLEAR and DIM values in line 520 and the FOR X =
1 TO nn in line 2030 if you need more text space. Lines 3520 through 3620
allow entry of text until a slash (/) is entered. The text is then displayed and

227

utility

you are asked if you wish to change the text. If you do, the computer shows
you each line of text separately. Pressing ENTER will leave that line un-
changed. Newly entered text will replace the existing line of text. Entering a #
will terminate the editing session. You can change the text again or proceed.

Lines 3020-3120 name the-eorhmand file. Any valid TRSDOS filename
may be used. The extention /CMD is automatically added to the filename.
The default filename is COMMAND. You are then asked to supply a drive
number and to indicate whether the program is to be visible or not. The
defaults are drive 0 and visible.

The program then POKE:s the text, filespec, and invisible attributes, if re-
quired, into memory and redisplays the text. Pressing ENTER causes the pro-
gram to pass control to the self-loader portion of COMMAND/CMD (line
5030), which then loads itself on the selected disk with the chosen filespec. It
then restarts the computer so that it can execute the new command file.

To use COMMAND/CMD, enter and save COMMAND/BAS. Then
enter, assemble, and save COMMAND/CMD using the Editor/Assembler.
The BASIC program, Poker (shown in Program Listing 3), which POKEs
the code into memory, may be used instead. Run Poker, enter DEBUG, and
type GAAO8. This will cause a jump to AAO8H which will cause COM-
MAND/CMD to load itself onto drive 0 with a filespec of COM-
MAND/CMD. Enter BASIC and run COMMANDY/BAS, enter a filename,
and you are ready to go. Don’t forget to load or execute COMMAND/CMD
immediately before you run COMMAND/BAS. You can’t modify the text if
itisn’t in memory.

Almost any command you can enter from the keyboard can be used. If you
enter a command which will result in a display on the screen, such as PRINT
TIME $, then the next line of text must be blank. In other words, after a
PRINT or similar command, skip the next line by entering a carriage return.

228

utility

Program Listing 1. COMMAND/CMD

L T 2 2R R R L T
08119 ;* *
88129 ;* *kkk%t COMMAND/CMD k**+* *
aﬂ13a ;* * ok kk ok 7.2 Khkk Kk *
26148 ;* KRk kA 94/11/81 *kok ok *
2815@ ;* *
26164 ;* *
98178 ;* *kkk K BY *akkk *
gglse ;* ARTHUR B. ROSENBERG *
86198 ;* 497 MADISON DRIVE *
2029¢ ;> EAST WINDSOR N.J. #8528 *
06218 ;* *
L R L e e e L]
68230 ;

86248 ;PROGRAM SIMULATES KEYBOARD INPUTS. TEXT CAN BE CHANGED
808258 ;USING "COMMAND/BAS". REWRITTEN TEXT AND THIS PROGRAM
68268 ; THEN BE LOADED ON THE DISK VIA A USR CALL TO THIS

08827¢ ;PROGRAM,

90288 ;ENTRY AT AAP# EXECUTES THE SIMULATED TEXT.

#0298 ;ENTRY AT AABB LOADES THIS PROGRAM ON THE DISK.

209308 ;
98310 ; * COMMAND *
26320 ;
ARGE #0338 ORG OAAGOH
80340 ;
28350 ;
20360 ; * START "COMMAND/CMD"™ *
#0376 ;
ARG 211EAB 96380 LD HL ,DATA . ;GET ADDRESS FIRST COMMAND
ARG3 2212AA 90398 LD (POINT) ,HL ;SAVE IT
AAB6 188C #6400 JR LOAD ;GO TO LOAD
804106 ;
20420 ;
20439 ; * START USR1-~"COMMAND/BAS"-- *
20440 ;
ARGS 2197AA 80450 LD HL,DATAL ;GET ADDRESS SAVE ROUTINE
AMGB 2212AA 00460 LD (POINT) ,HL i SAVE IT
ARBE 1804 80478 JR LOAD ;GO TO LOAD
20488 ;
80490 ;
20500 ;
4016 88519 KBADDR EQU 4016H ;KEYBOARD DRIVER ADDRESS
2602 89520 TRKBAD DEFS 2 ;SAVE SYS KB DVR HERE
2992 68530 POINT DEFS 2 ;PUT START OF DATA HERE
3ces #8540 VIDEO EQU 3ceeH ;START SCREEN ADDRESS
208550 ;
29560 ;
20576 ;
20580 ; * LOAD SIMULATOR ADDRESS INTO KB DVR ARDDRESS *
20598 ;
ARl4 2A1646 20680 LOAD LD HL, (KBADDR) ;GET SYS KB DVR ADDRESS
AAl7 221BAA B0618 LD (TRKBAD) ,HL ;SAVE IT
AAIA 2123AA 088620 LD HL, SIMUL ;GET SIMULATOR ADDRESS
AMID 221640 08638 LD (KBADDR) , HL $STORE IN KB BCD
AA20 C32D4@ @8640 Jp 402DH ;GO TO "DOS READY"
286508 ;
80660 ;
26678 ; * KB SIMULATOR *
20680 ;
AA23 2A12AA 69698 SIMUL LD HL, (POINT) ;POINT TO DATA
AA26 TE 20760 LD A, (HL) ;GET FIRST LETTER
AA27 23 #0710 INC HL ;POINT TO NEXT LETTER
AA28 2212AA #9728 LD (POINT) ,HL ; SAVE POINTER
AA2B FE@0 #0730 cp @ :IS LAST LETTER NEXT ?
AA2D 280B 80740 JR %, RESTOR ;GO IF DONE
AA2F FEB1 28758 cp 1 ;IS KB INPUT REQUIRED?
AA3l CC42AA 08768 CALL %, INPUT ;GO KB INPUT
AA34 FEB2 80770 cp 2 ;IS SAVE DONE ?
AA36 CASAAA 90780 Jp %, END ;G0 TO CLOSE
AR39 C9 80790 RET ;RETURN IF NOT
#6808 ;
#6810 ;
20820 ; * RESTORE SYSTEM TO NORMAL KB OPERATION *
20830 ;

Program continued

229

utility

AR3A TE #8848 RESTOR LD A, {HL) ;GET LAST LETTER
AA3B 2A10AA 00859 LD HL, {TRKBAD) ;GET SYS DVR ADDRESS
AA3E 221640 20860 LD (KBADDR) ,HL ;RESTORE SYS KB DVR
AA4l C9 vo878 RET 3 RETURN

0g8se ;

0p89e ;

eeseon ; * KB INPUT DURING SIMULATOR OPERATION *

28910 ;
AA42 2142AA 80920 INPUT LD HL,INPUT JGET INPUT DVR ADDRESS
AM4S 221640 22938 LD (KBADDR) ,BL ;STORE IN KB DCB
AAM48 CDDB843 00940 CALL 43D8H 5 SCAN KB
AAM4B B7 88950 OR A ;WAS THERE AN INPUT?
AR4C 28F4 0p960 JR 2, INPUT ;NO? THEN LOOK AGAIN
AA4E FEBD 20978 Cp 8DH ;IS IT CARRIAGE RTN?
AA5@ 2881 aps8e JR % yRETURN ;GO IF SO
AR52 C9 20992 RET ;RETURN IF NOT

sleee ;

21018 ;

21928 ; * RETURN TO SIMULATOR OPERATION *

21830 ;
AAB3 2123AA 21049 RETURN LD HL,SIMUL ;GET SIMULATOR ADDRESS
AAS6 221648 81850 LD (KBADDR) ,BL ;STORE IN KB DCB
AR59 CS glp6e RET

2167¢ ;

21080 ;

8189¢ ; * RESTART WITH NEW TEXT *

gliee ;
AASA 7E 61118 END LD A, (HL) ;GET LAST LETTER
AASB 2162AA 81120 LD HL,RUN ;GET RESTART
AASE 221648 21138 LD (KBADDR) ,BL ;STORE IN SYS KB ADDRESS
AA61 C9 21149 RET

81158 ;

81160 ;

21178 ; * RUN NEW "COMMAND/CMD" *

2118g ;
AR62 CDCYO1 81198 RUN CALL 1C9H ;CLEAR SCREEN
AA65 21EFAA 01208 LD HL,MESS]1 7GET ADDRESS OF MESSAGE
AA68 11173E g121e LD DE,VIDEO+535 ;SEND TC CENTER OF SCREEN
AA6B 0811780 81220 LD BC,MESSL1 7 LENGTH OF MESSAGE
AAGE EDB@ 61238 LDIR ;DISPLAY MESSAGE
AA78 CDBARA 01248 CALL DELAY ;KEEP MESSAGE ON SCREEN
AR73 CDCY98L 81250 CALL 1C9H ;CLEAR SCREEN
AA76 2186AB 81260 LD HL,MESS2 ;GET ADDRESS OF MESSAGE
AA79 11173E 01278 LD DE,VIDEQ+535 ;ySEND TO CENTER OF SCREEN
AA7C 0118008 01280 LD BC,MESSL2 ; LENGTH OF MESSAGE
AA7F EDBO 81299 LDIR ;DISPLAY MESSAGE
AAB1 CDBAAA 813089 CALL DELAY ;KEEP MESSAGE ON SCREEN
AA84 CDBAAA 81318 CALL DELAY ;FOR A WHILE LONGER
AAB7 C36080 1328 Jp 2 sRESTART WITH NEW "COMMAND/CMD"

21338 ;

g134e ;

8135@ ; * DELAY *

01360 ;
AABA 0602 81378 DELAY LD B,2 ; COUNTER 2
AABC 21FFFF 21380 LP1 LD HL,BFFFFH ;COUNTER 1
AABF 2B 91390 LP2 DEC HL ;DECREMENT COUNTER 1
AA98 7C 01408 LD A,H
AR91 B5 91410 OR L ;COUNTER 1=07
AA92 20FB 081420 JR NZ,LP2 ;IF NOT DECREMENT AGAIN
AA94 10F6 B1430 DJINZ LPl sDEC. COUNTER 2.158=8 ?
AA96 C9 8l440 RET

01450 ;

14608 ;

ﬂ§47ﬂ H * "SAVE" INPUT AND "MESSAGE" DATA *

s8l48e ;
AR97 44 81490 DATAL DEFM 'DUMP '
ARSC 43 1580 NAMEl DEFM 'COMMAND/CMD:8 ' $POKE FILE SPEC HERE
AAAA 20 al51¢ DEFM ' (START=X'
AAB3 27 01520 DEFB 27H
ARB4 41 61538 DEFM 'ARGD*
AABS 27 81540 DEFB 27H
ARBY 2C 81550 DEFM ' yEND=X'
AABF 27 1568 DEFB 2781
AACO 41 81578 DEFM 'ACFF*
AAC4 27 pl58@ DEFB 278
AACS5 2C 81599 DEFM ', TRA=X'
AACB 27 01608 DEFB 27H
AACC 41 01610 DEFM 'ARBB"

230

ABlE

AB23
AB24
AB29
AB2A
AB2F
AB30
AB35
AB36
AB37
AB38
AB48
AB4S
AAD9

27 21620
29 01630
82 gl64e
éD plées5a@
41 8l66¢
20 81678
20 @l68¢
82 81698
oD 2178¢
2A 8171¢

81720
25 81739

01749

21750

2176@

61770

0178¢
43 81790

[2%:1']']
] 218l¢@
54 @182¢
21 81839
44 281840
2 81850
42 01860
)] 21879
oD 21888
2D 81890
52 el9e¢
2o B819l@¢
D 91920

21930

90008 TOTAL ERRORS

Vis

NAME2

MESS1
MESSL1
MESS2
MESSL2

e D e we ne

DEFB
DEFB
DEFB
DEFB
DEFM
DEFM
DEFM
DEFB
DEFB
DEFM
EQU

DEFM
EQU

DEFM

DEFB
DEFM
DEFB
DEFM
DEFB
DEFHM
DEFB
DEFB
DEFB
DEFM
DEFB
DEFB
END

utility

27H

|)|

2 ;IF VISIBLE FILL WITH #28

8DH ; CARRAIGE RETURN

'ATTRIB '

! s+ POKE FILE SPEC HERE
1 (I)l

2 ; LAST LETTER NEXT

8DH ;CARRAIGE RETURN

'* TEXT STORED ON DISK *'

$~MESS1

'* EXCUTING NEW PROGRAM *'

$~MESS2

* INPUT "COMMAND” DATA *

'CLOCK'

ODH ; CARRIAGE RTN
'TIME '

1 ;KB INPUT REQUIRED
'DATE °'

1 ;KB INPUT REQUIRED
'BASIC’

9DH ; CARRAIGE RTN

8DH

BDH

fRUN"COMMAND/BAS"'

[;LAST LETTER NEXT
ODH

BAABOH

-~
=

it
=
=

519 :

Program Listing 2. COMMAND/BAS

KA RN AR R AR R AR RN R RN SR AR A kR ARk Ak kA Ak kA ks ke hk ok hhok

*

*

LA 2 234 CQM“AND/BAS K kkokk

L2221 2.2 L2222

*kkkk G8/24/88 wRRKK

2213 BY whkhk
ARTHUR B. ROSENBERG

497 MADISON DRIVE

EAST WINDSOR N.J. 08528

*

*

LR R T R R s R R s eSS 2R st

528 CLEAR 1000:
DEFSTR A:
DIM A(28):

ok kokk INITIQLIZE dkkokk

Program continued

231

DEFINT X,Y,P,I,B:
GOTO 5520

539 XY(8) = &HAASC:
' =NAME1

540 XY(1) = &HAADB:
' =NAME2

558 XX = &HAAD2:

5608 PZ = &HABIE:
578 :
iceg

1810

1028 CLS :
PRINT CHRS$(23):
PRINT @ 530,Al:
FOR X = 1 TO 1080:
NEXT
1438 PRINT € 688,"-2.2-":
FOR X = 1 TO 258:
NEXT
1048 CLS :
PRINT @ 27,Al
1850

1660 :

1568 :
' *k*** TNSTRUCTIONS **kk*
1514 :

1520 PRINT :
INPUT "DO YOU WISH INSTRUCTIONS™;A:
IF A > = "Y"
THEN
GOSUB 6828
15309 :

1548

2608 :
' Ak kkk WRITE TEXT ***%%
2019 :
1
2020 PRINT @ 27, Al:
PRINT :
PRINT AH
20838 FOR X = 1 TO 58
2846 LINE INPUT A(X)
2058 IF A(X) = "/" GOTO 2520
2068 NEXT
2078 :
)
2880
1

2589 :

*kk** DISPLAY COMPLETED TEXT *¥%**
2510

'
2528 ¥ = X - 1
2538 CLS :
PRINT @ 27,Al
2548 PRINT AI:
PRINT
2558 FOR X = 1 TO Y
2568 PRINT A(X);
2578 IF RIGHTS(A(X),1) = "I°"
THEN
PRINT TAB(24);"***** REQUIRES KEYBOARD INPUT ****%";
2588 PRINT
2598 NEXT
2600 PRINT :
PRINT "TYPE ";A2;"C";A2;" IF YOU WISH TO CHANGE THE TEXT: ELSE T
YPE ";A2;"OK";A2;:
INPUT A

232

2610 IF A = "C" GOTO 3528
2628 :
1
2638 :
1
3608 :
1 *kkkkx NAME FILE dokok k&
3018 :
1
3628 CLS :
PRINT @ 458,"ENTER COMMAND FILE NAME ===> ";
3038 LINE INPUT AZ
3646 IF AZ = "°
THEN
A% = "COMMAND"
365¢ AZ = AZ + "/CMD"
3868 PRINT @ 514,"WHICH DRIVE IS THIS FILE TO BE PLACED? ";
3978 LINE INPUT AX
3088 IF AX = ""
THEN
AX = ":0"
ELSE
AX = ":" + AX
3896 AZ = AZ + AX
3188 PRINT @ 578,"1S THIS FILE TO BE INVISIBLE";:
INPUT AY
3110 IF AY = > "¥"
THEN
POKE XX,32 :
ELSE
POKE XX,2
3128 GOTO 4820
3138 :
L
3140 :
3588 :
t *kkkkk ERIT TEXT AhREK*
3519 :
H
3528 GOSUB 6898
353 A = ""
3548 FOR X = 1 TO Y + 1
3550 IF X = Y + 1 PRINT "LAST ENTRY":
FOR Q = 1 TO 14@8:
NEXT :
GOTO 2538
3568 PRINT A(X)
3578 LINE INPUT A
3588 IF A = "#" GOTO 2538
3598 IF A = "
THEN
3628
3600 A(X) = A
3618 A = "1
3628 NEXT
3638 :
;
3648 :
1
4089 :
' ***%% STORE TEXT IN MEMORY ***x
40108
H
4620 P = P2
463 FOR X = 0 TO 13
4040 POKE XY(8) + X,32
40856 POKE XY(1) + X,32
40868 NEXT
4676 FOR X = 1 TO LEN(AZ)
4880 POKE XY(®8) + X - 1, ASC(MIDS(AZ,X,1)
409¢ POKE XY(l) + X - 1, ASC(MIDS(AZ,X,1)
4188 NEXT
4118 FOR X = 1 TO Y
4120 IF 2 = @ PRINT @ 978,"* STORING TEXT IN MEMORY *";:
72 = 1:
ELSE Program continued

233

utility

PRINT € 978, STRINGS$(26," ");:
2 =0
4138 FOR I = 1 TO LEN(A(X))
4140 IF (LEN(A(X)) = 8) AND (X = Y)
THEN
POKE P,0:
P =P + 1:
POKE P,13:
GOTO 4528

ELSE
IF LEN(A(X)) = 0
THEN

POKE P,13:
P=P+ 1:
NEXT X:
GOTO 4528
4158 B = ASC(MIDS(A(X),1,1))
4168 IF I = LEN(A(X)) AND B = 73
THEN
POKE P,1:
P=P+ 1:
IF X = Y GOTO 4528 :

ELSE
NEXT X:
GOTO 4528
4178 IF I = LEN(A(X)) AND B < > 73
THEN
POKE P,B:
P=F + 1:
IF (X = Y} AND I = LEN{A(X))
THEN
POKE P,08:
P=P + 1:
POKE P,13:
P =P + 1:
GOTO 4520 :

ELSE
POKE P,13
P=P+1
NEXT X:
GOTO 4528
4188 POKE P,B:
P=p+1
4198 NEXT I,X
4208 :

4219 :
L

4508
¥kx% DISPLAY TEXT IN MEMORY *#%#%x%

4519 :

r
4528 CLS :

PRINT @ 28,AM:

Pl = P:

P = PZ
45380 FOR X = P TO P1 ~ 1
4548 IF PEEK(X) =1

THEN
PRINT TAB(24) "***** REQUIRES KEYBOARD INPUT *¥k#%w,
GOTO 4568
4558 PRINT CHR${ PEEK(X));:
4568 NEXT
4579 PRINT
PRINT :
LINE INPUT "PRESS ENTER TO STORE ON DISK";A
4589 :
4598 :
'
5000 :
: *kx4k STORE ON DISK **#%x
5618

234

utility

5628 CLS :

PRINT @ 528,"**#*% SPORING TEXT ON DISK *#*#**"
5@3@ DEF USR1 = &HAADS
5840 X = USR1 (@)

5058 STOP
5060 :
b
5678 :
1
5568
' #h%k%%x INSTRUCTIONS ***#*
5518 :
1
552@ Al = "* COMMAND *"
5538 A2 = CHR$(34)
5548 A3 = "THIS PROGRAM WILL ALLOW YOU TO REWRITE THE MACHINE LANGUAG
EPROGRAM "
5558 A4 = "COMMAND/CMD"
5568 A5 = ", THE EXISTING "
5578 A6 = " PROGRAM WILL BE DESTROYED UNLESS YOU RENAME IT."
5580 A7 = "SIMPLY TYPE IN THE COMMANDS OR OPERATIONS IN THE ORDER YOU

WISHTHEM TQ BE EXECUTED WHEN YOU ARE PROMPTED, "
5598 A8 = "IF YOU WISH TO ENTER KEYBOARD DATA AS PART OF A COMMAND OR
OPERATION SIMPLY TYPE AN "
5688 A9 = " (FOR INPUT) AS THE LAST CHARACTER OF THAT COMMAND. TYPE "
5618 AB = "INSTEAD OF A COMMAND WHEN YOU HAVE COMPLETED YOUR TEXT.YOU
WILL THEN BE SHOWN THE COMPLETE TEXT.IF YOU WISH TO CHANGE THE
TEXT TYPE "

5620 AA = " FOR CHANGE,TYPE "

5639 AB = " IF THE TEXT IS OK."

5649 AC = " RESET THE COMPUTER AND EXECUTE THE PROGRAM."

5650 AD = "AN EXAMPLE OF TEXT FOLLOWS:NOTE: THE COMMENTS WHICH FOLLO

.

5660 AE = "xxsar

567@ AF = " ARE NOT PART OF THE TEXT."

5688 AG = "CLOCKDATE I **44+ REQUIRES KEYBOARD INPUT
TIME I #%»%+ REQUIRES KEYBOARD INPUTVERIFYBASIC
FILES 3MEMORY SIZE 33880RUN "

5690 AQ = "COMMAND/BAS"

5780 AH = "START ENTERING YOUR TEXT:"

5718 AL = "THIS IS THE COMPLETE TEXT:"

5720 AJ = "THE TEXT WILL BE DISPLAYED ONE LINE AT A TIME,ENTER NEW TE

XT IF YOU WISH TO CHANGE THAT LINE,PRESS ENTER IF YOU WISH TO LE
AVE THAT LINE AS IT IS, THE NEXTLINE OF TEXT WILL THEN BE DISPL
AYED."

5738 AK = " TYPE A "

5740 AL = " AS THE NEXTENTRY WHEN YOU HAVE CHANGED THE LAST LINE OF T
EXT YOU WISH TOCHANGE."

5758 AM = "% TEXT STORED IN MEMORY *"

5760 AN = "* TEXT STORED ON DISK *"

5778 AO = "* EXCUTING PROGRAM *"

5780 AP = "YOU WILL THEN BE ASKED TO SUPPLY A NAME FOR THE FILE. ANY

NAME UP TO 8 CHARACTERS BEGINNING WITH A LETTER MAY BE USED.THE
DEFAULT NAME IS "

5790 AQ = "COMMAND"

5888 AR = ", THE EXTENSION "

5816 AS = "/CMD"

5828 AT = " IS ADDED TOALL FILE NAMES."

5838 AU = " YOU WILL THEN BE ASKED TO SPECIFY IF THE FILE IS TO

BE INVISIBLE. THE DEFAULT 1S VISIBLE.”

5848 AV = "NOTE: IF A FILE ALREADY EXISTS WITH THE SAME NAME AND 15
INVISIBLE THE NEW FILE WILL ALSO BE INVISIBLE. SEE TRDOS &DISK
BASIC MANUAL, PAGE 4-12."

5858 AW = "THE COMPUTER WILL THEN PLACE THE TEXT IN MEMORY, DUMP THE
NEW FILE TO THE DISK, WITH THE SPECIFIED FILE NAME,"

5868 AX = " NEXT YOU WILL SPECIFY THE DRIVE NUMBER ON WHICHTHE FILE
1S TO BE PLACED. THE DEFAULT IS DRIVE 8."

5876 GOTO 538

5888 :

5898

6069

6010 #k%x* INSTRUCTION PRINT SUBROUTINE ***x#%

682¢ PRINT : : ,
PRINT : Program continued

235

6830
6840

6850

6060

6078

6088

6098

6100
6118

utility

PRINT :
PRINT :

PRINT A3;A2 + A4 + A2;A5;A2 + A4 + A2;A6
PRINT STRINGS (4, CHRS{13)):

GOSUB 6189

PRINT € 27,Al:

PRINT :

PRINT

PRINT A7:A8;" ";A2;"I™;A2;A9;A2;"/";A2;" ";A0;A2;"C";A2;AA;A2;:"0

K";A2;AB:
PRINT :
PRINT
PRINT
GOSUB 61060

PRINT € 27,Al:

PRINT :

PRINT AP;A2 + AQ + AZ2;AR;A2 + AS + A2;AT;AX;AU:
PRINT :

PRINT AV:

PRINT :

GOSUB 6108

PRINT & 27,Al:

PRINT STRINGS$ (4, CHR$(13)):

PRINT AW;AC:

PRINT STRINGS(S5, CHRS(13)):

GOSUB 6108

PRINT @ 27,Al:

PRINT :

PRINT AD;AZ + AE + A2;AF

PRINT :

PRINT AG;A2 + AQ + A2:

PRINT :

GOSUB 6100

RETURN

CLS :

PRINT @ 27,Al:

PRINT :

PRINT AJ;AK;A2;"#";A2;AL:

PRINT :

GOSUB 6169 :

RETURN

LINE INPUT "PRESS ENTER TO CONTINUE";A:

CLS

RETURN

18
15
29
25
30
35
40
45
58
55
60
65
180

Program Listing 3. Poker

L e e Y S R LR R R R I R 22T

*

* kok ok ko POKER/BAS kkkkk
* LS 223 2'1 *kkkk
* Kk kok ok 04/11/81 kkk kK
*

* Ak hkk RY khkkkk
* ARTHUR B. ROSENBERG

* 497 MADISON DRIVE

* EAST WINDSOR N.J. #8528

*

*

*

LA R R s b e e Y R R R R RS S S s

236

110
120
138

148
158

198

229

utility

CMD "
DEFINT A,X
FOR X = ~ 22816 TO - 21687:

READ A:

POKE X,A:

PRINT X;:

NEXT

END
DATA 33, 3¢, 171, 34, 18, 179, 24, 12, 33, 151, 174, 34, 18, 178

, 24, 4, 71, 78, 69, 68, 42, 22, 64, 34, 16, 176, 33, 35, 179, 3
4, 22, 64, 195, 45, 64, 42, 18, 178, 126, 35, 34, 18, 178, 254,
8, 49

DATA 11, 254, 1, 284, 66, 178, 254, 2, 282, 96, 178, 201, 126, 4
2, 16, 178, 34, 22, 64, 201, 33, 66, 170, 34, 22, 64, 285, 216,
67, 183, 48, 244, 254, 13, 48, 1, 281, 33, 35, 170, 34, 22, 64,
2081

DATA 126, 33, 98, 178, 34, 22, 64, 201, 285, 281, 1, 3%, 239, 17
@, 17, 23, 62, 1, 23, @, 237, 176, 285, 138, 178, 205, 281, 1, 3
3, 6, 171, 17, 23, 62, 1, 24, @, 237, 176, 205, 138, 178, 205, 1
38, 176

DATA 195, 8, @, 6, 2, 33, 255, 255, 43, 124, 181, 32, 251, 16, 2
46, 281, 68, 85, 77, 88, 32, 67, 719, 77, 77, 65, 78, 68, 47, 67,

gg, 68, 58, 48, 32, 32, 46, 83, 84, 65, 82, 84, 61, 88, 39, €5,
DATA 48, 48, 39, 44, 69, 78, 68, 61, 88, 39, 65, 67, 78, 78, 39,
44, 84, B2, 65, 61, 88, 39, 65, 65, 48, 48, 39, 41, 2, 13, &5,
gg, gg, 82, 73, 66, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
’
DATA 32, 32, 32, 4¢, 73, 41, 2, 13, 42, 32, 84, 69, 88, 84, 32,
83, 84, 79, 82, 69, 68, 32, 79, 78, 32, 68, 73, 83, 75, 32, 42,
gg, 33, 69, 88, 67, 85, 84, 73, 78, 71, 32, 78, 69, 87, 32, 84,
i4
DATA 71, B2, 65, 77, 32, 42, 67, 76, 79, 67, 15, 13, 84, 73, 77,
69, 32, 1, 68, 65, 84, 69, 32, 1, 66, 65, 83, 73, 67, 13, 13, 1
2, 32, 85, 78, 34, 67, 79, 77, 71, 65, 78, 68, 47, 66, 65, 83, 3
’
DATA 13

237

APPENDIX

Appendix A
Appendix B

239

APPENDIX A

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose.”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level 1I. To run in Level I, follow this procedure:
® Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
@ Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent
code made to agree.
® Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model III Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
0UT236,0 and OUT236,2.

241

APPENDIX B

Glossary

A

access time— the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator— the main register(s) in a microprocessor used for arithmetic,
shifting, logical, and other operations.

accuracy—generally, the quality or freedom from mistake or error; the ex-
tent to which the results of a calculation or a measurement approach the
true value of the actual quantities.

acoustic coupler— a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

A/D converter—analog to digital converter. See D/A converter.

address—a code that specifies a register, memory location, or other data
source or destination.

ALGOIL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications, generally on large-scale computers.

algorithhim—a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—the process of adjusting components of a system for proper
interrelationships, including adjustments and synchronization for the com-
ponents in a system. For the TRS-80, this usually applies to cassette heads
and diskdrives.

alphanumerics—refer to the letters of the alphabet and digits of the number
system, specifically omitting the characters of punctuation and syntax.

alternating current—ac. Electric current that reverses direction periodical-
ly, usually many times per second.

242

appendix

ALU— Arithmetic Logic Unit.

analog—the representation of a physical variable by another variable in-
sofar as the proportional relationships are the same over some specified
range.

AND— a Boolean logic function. Two operators are tested and, if both are
true, the answer is true. Truth is indicated by a high bit, or 1 in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately. A bit-by-bit logical operation which pro-
duces a one in the result bit only if both operand bits are ones.

anode——in a semiconductor diode, the terminal toward which electrons flow
from an external circuit; the positive terminal.

APL—A Programming Language; a popular and powerful high-level
mathematical language with extensive symbol manipulation.

argument— any of the independent variables accompanying a command.

Arithmetic Logic Unit—ALU. The section of a microprocessor which per-
forms arithmetic functions such as addition or subtraction and logic func-
tions such as ANDing.

array—a collection of data items arranged in a meaningful pattern such as
rows and columns which allow the collection and retrieval of data.

ASCII— American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—software that translates operational codes into their binary
equivalents on a statement-for-statement basis.

assembly language— a symbolic computer language that is translated by an

assembler program into machine language, the numeric codes that are
equivalent to microprocessor instructions.

B

backup—1) refers to making copies of all software and data stored external-
ly; 2) having duplicate hardware available.

243

appendix

base—the starting point for representation of a number in written form,
where numbers are expressed as multiples of powers of the base value.

BASIC— an acronym for Beginner’s All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN, The standard,
high-level, interactive language for microcomputers.

batch processing— a method of computing in which many of the same types
of jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the com-
puter operator. All the cards are put into the card reader, and the results of
each person’s program are returned later. This is contrasted with interactive
computing.

baud—1) a unit of data transmission speed equal to the number of code
elements (bits) per second; 2) a unit of signaling speed equal to the number
of discrete conditions or signal events per second.

baud rate—a measure of the speed at which serial data is transmitted elec-
tronically. The equivalent of bits per second (bps) in microcomputing.

benchmark-—to test performance against a known standard.

BCD— binary coded decimal. The 4-bit binary notation in which individual
decimal digits (0 through 9) are represented by 4-bit binary numerals; e.g.,
the number 23 is represented by 0010 0011 in the BCD notation.

bias—a dc voltage applied to a transistor control electrode to establish the
desited operating point.

bidirectional bus—a bus structure used for the two-way transmission of
signals, that is, both input and output.

bidirectional printer—a printer capable of printing both left-to-right and
right-to-left. Data is prestored in a fixed-size buffer.

bimary—a number system which uses only 0 and 1 as digits. It is the
equivalent of base 2. Used in microcomputing because it is easy to represent
1s and Os by high and low electrical signals.

bimary digit—the two digits, 0 and 1, used in binary notation. Often
shorened to bit,

bi~stable— two-state

244

appendix

bit— an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

bit position— the position of a binary digit within a byte or larger group of
binary digits. Bit positions in the Model I, II, III, and Color Computer are
numbered from right to left, zero through N. This number corresponds to
the power of two represented.

Boolean algebra—a mathematical system of logic first identified by George
Boole, a 19th century English mathematician. Routines are described by
combinations of ANDs, ORs, XORs, NOTs, and IF-THENs. All computer
functions are based upon these operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. On some machines it is keyed in, and
on others it is in read only memory (ROM). Using this program is called
booting or cold-starting the system.

bps— bits per second.
buffer— memory set aside temporarily for use by the program. Particularly

refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug—an error in software or hardware.

bus— an ordered collection of all address, data, timing, and status lines in
the computer.

byte—eight bits that are read simultaneously as a single code.

C

CAI—an acronym for Computer Aided Instruction.

card-—a specially designed sheet of cardboard with holes punched in specific
columns. The placement of the holes represents machine-readable data.
Also a term referring to a printed circuit board.

card reader-—a device for reading information from punched cards.

cassette recorder— a magnetic tape recording and playback device for enter-
ing or storing programs.

245

appendix

cathode— in a semiconductor diode, the terminal from which electrons flow
to an external circuit; the negative terminal.

character—a single symbol that is represented inside the computer by a
specific code.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a
predetermined result for the block of data.

chip— the shaped and processed semiconductor die mounted on a substrate
to form a transistor or other semiconductor device.

circuit—a conductor or system of conductors through which an electric cur-
rent may flow,

circuit card—a printed circuit board containing electronic components.

clear—to return a memory to a non-programmed state, usually represented
as 0 or OFF (empty).

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL~—~COmmon Business-Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

compiler—software that will convert a program written in a high-level
language to binary code, on a many-for-one basis.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

computer interface—a device designed for data communication between a
central computer and another unit such as a programmable controller pro-
cessor.

concatenate— to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.)

246

appendix

conductor—a substance, body, or other medium that is suitable to carry an
electric current.

constant—a value that doesn’t change.

CPU—central processing unit. The circuitry that actually performs the
functions of the instruction set.

CRT—cathode ray tube. In computing this is just the screen the data ap-
pears on. A TV has a CRT.

cue—refers to positioning the tape on a cassette unit so that it is set up to a
read/write section of tape.

cursor—a visual movable pointer used on a CRT by the programmer to in-
dicate where an instruction is to be added to the program. The cursor is also

used during editing functions.

cycle— a specific period of time, marked in the computer by the clock.

D

D/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

daisy wheel—a printer type which has a splined character wheel.

data—general term for numbers, letters, symbols, and analog quantities
that serve as information for computer processing.

data base—refers to a series of programs each having a different function,
but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a
storage device. Knowledge of operating or programming a computer is not
necessary for a data entry operator.

debug—to remove bugs from a program.

decrement— to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

247

appendix

dedicated—in computer terminology, a system set up to perform a single
task.

default— that which is assumed if no specific information is given.

degauss— to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

diagnostic program—a test program to help isolate hardware malfunctions
in the programmable controller and application equipment.

digital— the representation of data in binary code. In microcomputers, a
high electrical signal is a 1 and a low signal is a 0.

digital circuit— an electronic network designed to respond at input voltages
at one level, and similarly, to produce output voltages at one level.

diode— a device with an anode and a cathode which permits current flow in
one direction and inhibits current flow in the other direction.

direct current—dc. Electric current which flows in only one direction; the
term designates a practically non-pulsating current.

disassembly— remaking an assembly source program from a machine-code
program.

disk— an oxide-coated, circular, flat object, in a variety of sizes and con-
tainers, on which computer data can be stored.

disk controller— an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—DOS. The system software that manipulates the
data to be sent to the disk controller.

dividend— the number that is divided by the divisor. In A/B, A is the divi-
dend.

divisor— the number that “goes into” the dividend in a divide operation. In
A/B, B is the divisor.

DMA—direct memory access. A process where the CPU is disabled or

248

appendix

bypassed temporarily and memory is read or written to directly.

documentation— a collection of written instructions necessary to use a piece
of hardware, software, or a system.

dot-matrix printer—instead of each letter having a separate type head (like
atypewriter), a single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to

manufacture.

downtime—the time when a system is not available for production due to
required maintenance.

driver— a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex—refers to two-way communications taking place independently,
but simultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

E

EAROM~—an acronym for Electrical Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if
necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editors.

EOF-—End Of File.

EOL—End Of Line (of text).

EPROM—Erasable Programmable Read Only Memory. A read only
memory in which stored data can be erased by ultraviolet light or other

means and reprogrammed bit-by-bit with appropriate voltage pulses.

Exclusive OR— a bit-by-bit logical operation which produces a one bit in the

249

appendix

result only if one or the other (but not both) operand bits is a one.

execution— the performance of a specific operation such as would be ac-
complished through processing one instruction, a series of instructions, or a
complete program.

execution cycle—a cycle during which a single instruction of one specific
operation is performed.

execution time— the total time required for the execution to actually occur.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

exponent— the power to which a floating-point number is raised.

F

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

field-effect transistor— FET. A transistor in which the resistance of the cur-
rent path from the source to drain is modulated by applying a transverse
electric field between grid or gate electrodes; the electric field varies the
thickness of depletion layers between the gates, thereby reducing the con-
ductance.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flip-flop—a bi-stable device that assumes either of two possible states such
that the transition between the states must be accomplished by electronic
switching.

floating-point number—a standard way of representing any size number in
computers. Floating-point numbers contain a fractional portion (mantissa)
and power of two (exponent) in a form similar to scientific notation.

250

appendix

flowcharting—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN-—FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.

full duplex—a mode of data transmission that is the equivalent of two
paths—one in each direction simultaneously.

G
game theory—see von Neumann.
garbage— computer term for useless data.
gate— a circuit that performs a single Boolean function. A circuit having an
output and a multiplicity of inputs, so designed that the output is energized

only when a certain combination of pulses is present at the inputs.

GIGO— Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics— information displayed pictorially as opposed to alphanumerically.
ground—a conducting path, intentional or accidental, between an electric

circuit or equipment and the earth, or some conducting body serving in
place of the earth.

H
H—a suffix for hexadecimal, e.g., 4FFFH.

half duplex-—data can flow in both directions, but not simultaneously. See
duplex.

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Handshaking requires clocking pulses on both ends of the
communications line. Contrast with buffer.

hard copy—a printout; any form of printed document such as a ladder
diagram, program listing, paper tape, or punched cards.

251

appendix

hardware—refers to any physical piece of equipment in a computer system.
hex—hexadecimal.

hexadecimal—representation of numbers in base sixteen by use of the hexa-
decimal digits 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D, E, and F.

high— a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming language which is CPU-independent
and closely resembles English.

high order—see most significant bit.

HIT—acronym for Hash Index Table. A section of the directory on a
TRS-80 disk.

human engineering— usually refers to designing hardware and software
with ease of use in mind.

IC—integrated circuit.

immediate—addressing mode in which the address of the information that
an operation is supposed to act upon immediately follows the operation
code.

increment—to increase, usually by one. See decrement.

indexed—addressing mode where the information is addressed by a
specified value, or by the value in a specified register.

indirect—addressing mode in which the address given points to another ad-
dress, and the second address is where the information actually is.

input devices— devices such as limit switches, pressure switches, push but-
tons, etc., that supply data to a programmable controller. These discrete in-
puts are two types: those with common return, and those with individual re-
turns (referred to as isolated inputs). Other inputs include analog devices
and digital encoders.

252

appendix

instruction—a command or order that will cause a computer to perform one
particular operation.

integer variable—a BASIC variable type. It can hold values of — 32,768
through + 32,767 in two-byte two’s complement notation.

integrated circuit—IC. An interconnected array of active and passive
elements integrated with a single semiconductor substrate or deposited on
the substrate and capable of performing at least one electronic circuit func-
tion. See chip.

intelligent terminal—a terminal with a CPU and a certain amount of
memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program written in a
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compiler.
interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the
main program continues.

I/O—acronym for input/output. Refers to the transfer of data.

iteration—one pass through a given set of instructions.

J

jack—a socket, usually mounted on a device, which will receive a plug
(generally mounted on a wire).

253

appendix

K

K— abbreviation for kilo. In computer terms 1024, in loose terms 1000.

L

language—a set of symbols and rules for representing and communicating
information (data) among people, or between people and machines.

large scale integration—LSIL. Any integrated circuit which has more than
100 equivalent gates manufactured simultaneously on a single slice of
semiconductor material.

least significant bit—the rightmost bit in a binary value, representing 2°.

least significant byte—refers to the lowest position digit of a number. The
rightmost byte of a number or character string.

LIFO—acronym for Last In First Out. Most CPUs maintain a “stack” of
memory. The last data pushed onto the stack is the first popped out.

light emitting diode—LED. A semiconductor diode that displays
alphanumeric characters when supplied with a specified voltage.

light pen— a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

line— in communications, describes cables, telephone lines, etc., over which
data is transmitted to and received from the terminal.

line printer—a high-speed printing device that prints an entire line at one
time.

location—a storage position in memory.
logic—a means of solving complex problems through the repeated use of
simple functions which define basic concepts. Three basic logic functions are

AND, OR, and NOT.

logic diagram—a drawing which represents the logic functions AND, OR,
NOT, etc.

logic level—the voltage magnitude associated with signal pulses represent-
ing ones and zeroes (1s and 0s) in binary computation.

254

appendix

logical shift—a type of shift in which an operand is shifted right or left, with
a zero filling the vacated bit position.

loop—a set of instructions that executes itself continuously. If the program-
mer has the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value, the loop is ter-
minated.

low—a logic signal voltage. The computer senses this as a binary 0.
Ish-—see least significant bit.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and

then return control to the calling program.

mainframe—refers to the CPU of a computer. This term is usually confined
to larger computers.

mantissa—the fractional portion of a floating-point number.

matrix-—a two-dimensional array of circuit elements, such as wires, diodes,
ete., which can transform a digital code from one type to another.

memory—the hardware that stores data for use by the CPU. Each piece of

255

appendix

data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each cap-
able of storing a tiny electrical charge.

metal oxide semiconductor—MOS. A metal insulator semiconductor struc-
ture in which the insulating layer is an oxide of the substrate material; for a
silicon substrate the insulator is silicon oxide.

micro electronics—refers to circuits built from miniaturized components
and includes integrated circuits.

microprocessor—an electronic computer processor section implemented in
relatively few IC chips (typically LSI) which contain arithmetic, logic,
register, control, and memory functions.

microsecond—us. One millionth of a second: 1 x 10— ¢ or 0.000001 second.
millisecond—ms. One thousandth of a second: 10~ 3 or 0.001 second.
minuend— the number from which the subtrahend is subtracted.

mixed number—a number consisting of an integer and fraction as, for ex-
ample, 4.35 or (binary) 1010.1011.

mnemonic—a short, alphanumeric abbreviation used to represent a
machine-language code. An assembler will take a program written in these
mmnemonics and convert it to machine code.

modem— MOdulator/DEModulator. An I/O device that allows com-
munication over telephone lines.

module—an interchangeable plug-in item containing electronic com-
ponents which may be combined with other interchangeable items to form a
complete unit.

monitor—1) a CRT; 2) a short program that displays the contents of
registers and memory locations and allows them to be changed. Monitors
can also allow another program to execute one instruction at a time, saving
programs and disassembling them.

MOS—see metal oxide semiconductor.

256

appendix

MOSFET — metal oxide semiconductor field effect transistor.

most significant bit—the leftmost bit in a binary value, representing the
highest-order power of two. In two’s complement notation, this bit is the
sign bit.

most significant byte—the highest-order byte. In the multiple-precision
nurber A13EF122H, A1H is the most significant byte.

msb—see most significant byte.

multiplexing— a method allowing several sets of data to be sent at different
times over the same communication lines, yet all of the data can be used
simultaneously after the final set is received. For example, several LED
displays, each requiring four data lines, can all be written to with only one

group of four data lines. The same concept is used with communication
lines.

multiplicand—the number to be multiplied by the multiplier.

multiplier— the number that is multiplied against the multiplicand. The
number “on the bottom.”

N

NAND—an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

nanosecond— one billionth of a second.

nesting— putting one loop inside another. Some computers limit the number
of loops that can be nested.

noise—extraneous signals; any disturbance which causes interference with
the desired signal or operation.

non-volatile memory—a memory that does not lose its information while its
power supply is turned off.

NOT—a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
This is the one’s complement.

257

appendix

O

object code—all of the machine code that is generated by a compiler or
assembler. Once object code is loaded into memory it is called machine
code.

octal—refers to the base 8 number system, using digits 0-7.
OEM— Original Equipment Manufacturer.

off-line—describes equipment or devices which are not connected to the
communications line.

off-the-shelf—a term referring to software. A generalized program that can
be used by many computer owners. It is mass produced and can be bought
off-the-shelf.

on-line— a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

operands— the numeric values used in the add, subtract, or other operation.

OR~—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

output— the current, voltage, power, driving force, or information which a
circuit or a device delivers. The terminals or other places where a circuit or
device can deliver energy.

output devices— devices such as solenoids, motor starters, etc., that receive
data from the programmable controller.

overflow—a condition that exists when the result of an add, subtract, or other
arithmetic operation is too large to be held in the number of bits allotted.

overlay— a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide— an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

258

appendix

P

page—refers to a 256 (2 to the 8th power) word block of memory. How large
a word depends on the computer. Most micros are eight-bit word machines.
Many chips do special indexed and offset addressing on the page where the
program counter is pointing and/or on the first page of memory.

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously. Contrast with
serial.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even, the parity is O or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

parity bit—an additional bit added to a memory word to make the sum of
the number of 1s in a word always even or odd as required.

parity check—a check that tests whether the number of s in an array of
binary digits is odd or even.

PC board—see printed circuit board.

peripheral devices-—a generic term for equipment attached to a computer,
such as keyboards, disk drives, cassette tapes, printers, plotters, speech syn-
thesizers.

permutation— arrangements of things in definite order. Two binary digits
have four permutations: 00, 01, 10, and 11.

PILOT-—a simple language for handling English sentences and strings of
alphanumeric characters. Generally used for CAL

PL/1—an acronym for Programming Language 1. A programming
language used by very large computers. It incorporates most of the better
features from other programming languages. Its power comes from the fact
that bits can be manipulated from the high-level language.

plotter—a device that can draw graphs and curves and is controlled by the
computer through an interface.

259

appendix

port—a single addressable channel used for communications.

positional notation—representation of a number where each digit position
represents an increasingly higher power of the base.

precision— the number of significant digits that a variable or number format
may contain.

printed circuit board-—a piece of plastic board with lines of a conductive
material deposited on it to connect the components. The lines act like wires.
These can be manufactured quickly and are easy to assemble the com-
ponents on.

processor—a unit in the programmable controller which scans all the inputs
and outputs in a predetermined order. The processor monitors the status of
the inputs and outputs in response to the user-programmed instructions in
memory, and it energizes or de-energizes outputs as a result of the logical
comparisons made through these instructions.

product— the result of a multiply.

program— a sequence of instructions to be executed by the processor to con-
trol a machine or process.

PROM—Programmable Read Only Memory. A memory device that is writ-
ten toonce and from then on acts like a ROM.

pseudo code—a mnemonic used by assemblers that is not a command to the
CPU., but a command to the assembler itself.

punched-card equipment—peripheral devices that enable punching or
reading paper punched cards that hold character or binary data.

Q

quotient—the result of a divide operation.

R

RAM—acronym for Random Access Memory. An addressable LSI device
used to store information in microscopic flip-flops or capacitors. Each may
be set to an ON or OFF state, representing logical 1 or 0. This type of

260

appendix

memory is volatile, that is to say, memory is lost while power is off, unless
battery backup is used.

read—to sense the presence of information in some type of storage, which
includes RAM memory, magnetic tape, punched tape, etc.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner,

register—a fast-access memory location in the microprocessor. Used for
holding intermediate results and for computation in machine language.

relative addressing—an address that is dependent upon where the program
counter is presently pointing.

remainder—the amount of dividend remaining after a divide has been com-
pleted.

ROM-—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

rounding—the process of truncating bits to the right of a bit position and
adding zero or one to the next higher bit position based on the value to the
right. Rounding the binary fraction 1011.1011 to two fractional bits, for ex-
ample, results in 1011.11.

RPG—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

RS-232—an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

S

scaling—multiplying a number by a fixed amount so that a fraction can be
processed as an integer value.

scientific notation—a standard form for representing any size number by a
mantissa and power of ten.

261

appendix

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and are called semiconductors.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. Contrast with parallel.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (~) and 0 is positive (+).

signed numbers—numbers that may be either positive or negative.

significant bits—the number of bits in a binary value after leading zeros
have been removed.

significant digit—a digit that contributes to the precision of a number. The
number of significant digits is counted beginning with the digit contributing
the most value, called the most significant digit, and ending with one con-
tributing the least value, called the least significant digit.

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer
simulate these actions than to use the real thing. Airplane and power plant
trniners are excellent examples.

software—refers to the programs that can be run on a computer.

sdid state devices (semiconductors)—electronic components that control
elctron flow through solid materials such as crystals; e.g., transistors,
diodes, integrated circuits.

sowrce program—the program written in a language or mnemonics that is
cmverted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

SPOOL—acronym for Simultaneous Peripheral Output, On-Line. Used to
overlap processing, typically, with printing.

stick—an area of memory used by the CPU and the programmer particular-
Iyfor storage of register values during interrupt routines. See LIFO.

262

appendix

stepper motor—a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines
the tracks on a disk.

storage—see memory.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once. Similar to
a macro.

subtrahend—the number that is subtracted from the minuend.

syntax—the term is used exactly as it is used in English composition. Every
language has its own syntax.

system—a collection of units combined to work as a larger integrated unit
having the capabilities of all the separate units.

system software—software that the computer must have loaded and run-
ning to work properly.
PI‘

table-—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

tape reader-—a unit which is capable of sensing data from punched tape.

TeletypeTM_—a peripheral electromechanical device for entering or output-
ting a program or data in either a punched paper tape or printed format.

text editor—see word processor.

time sharing—refers to systems which allow several people to use the com-
puter at the same time.

track—a concentric area on a disk where data is stored in microscopic mag-
netized areas.

transistor—an active component of an electronic circuit consisting of a small

263

appendix

block of semiconducting material to which at least three electrical contacts
are made, usually two closely spaced rectifying contacts and one ohmic
(non-rectifying) contact; it may be used as an amplifier, detector, or switch.

transistor-transistor logic—TTL. A logic circuit containing two transistors,
for driving large output capacitances at high speed. A family of integrated

circuit logic. (Usually 5 volts is high or 1, and 0 volts is low or 0; 5V =1,
0V =0).

truncation—the process of dropping bits to the right of a bit position. Trun-
cating the binary fraction 1011.1011 to a number with fraction of two bits,
for example, results in 1011.10.

truth table—a table defining the results for several different variables and
containing all possible states of the variables.

TTL—see transistor-transistor logic.

TTY-—an abbreviation for Teletype.

two’s complement—a standard way of representing positive and negative
numbers in microcomputers.

U
unsigned numbers—numbers that may be only positive; absolute numbers.

utility—a program designed to aid the programmer in developing other soft-
ware.

UV erasable PROM—an ultraviolet erasable PROM is a programmable

read-only memory which can be cleared (set to 0) by exposure to intense
ultraviolet light. After being cleared, it may be reprogrammed.

A%

variable—a labeled entity that can take on any value.

volatile memory—a memory that loses its information if the power is re-
moved from it

264

appendix

von Neumann, John (1903-1957)—mathemetician. He put the concept of
games, winning strategy, and different types of games into mathematical
formulae. He also advanced the concept of storing the program in memory
as opposed to having it on tape.

W

weighted value—the numerical value assigned to any single bit as a function
of its position in the code word.

word—a grouping or a number of bits in a sequence that is treated as a unit
and is stored in one memory location. If the CPU works with 8 bits, then the
word length is 8 bits. Common word sizes are 4, 8, 12, 16, and 32. Some are
as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X

XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but
answer is high (1) if and only if one line is high.

Z

zero flag—a bit in the microprocessor used to record the zero/non-zero
status of the result of a machine-language instruction.

zero page—refers to the first page of memory.

265

Address(es),
dynamic memory, 114
memory-mapped, 164
Address bus, 108, 110
Address decoder, 108, 110, 113
Address line, 113
multiplexed, 114
Advanced Micro, 161
Animation, using CHR$, 93-97
program listing, 98-103
Array(s), 85, 176
DIMensioning, 66
string, 173, 177
ASCII character, 196
ASCII code(s), 94, 127
ASCII code numbers, 93
Assembly code, 164, 166
Assembly-language listing of EDTASM, 191
Assembly-language program, 195
Assembly-language utilities, 212
Attendance data on students,
program descriptions, 2123, 44-47
program listings, 24-43, 48-61
AUTO command, 226
Base conversions, 180-182
program listing, 183-187
BASIC, 3, 4, 84, 119, 130, 1686, 191, 194, 195, 209, 226, 228
Level [, 214
Level 11, 161
Model 111, 194
BASIC graphics displays, 94
BASIC loader, 164
BASIC program, 116, 193, 194, 210, 212, 218, 219, 228
BASIC ROM, 1986, 210
BASIC statement, 214
BASIC variables, 210
Baudot, 161
Binary to decimal conversion, 180-182
program listing, 183-187
Bit(s), 113, 161, 177
address line, 108
ASCII, 161
parity, 161
reset, 164
BREAK, 97, 131, 194
BREAK key, 65, 97, 130, 173, 212
how to disable, 44
Breakout game, 74
program listing, 77-79
Buffer, 109, 110, 175, 226
Byte(s), 161, 173, 174, 175, 196, 212, 214, 217
data, 196
least significant, 196
most significant, 196
Cassette /O, 192
Cassette /O routines, 196
Cassette recorder, 164
Charts, point and figure, 3

INDEX

Chip(s), 181
dynamic memory, 108
4536, 162
memory, 108, 109, 110, 112

CHRS$(s), 5, 93, 94, 95, 96, 97

CHRS$ blocks, 94

CHR$ graphics, 93-97
program listing, 98-103

CHR$ graphics blocks, 93

CHR$ numbers, 95

CLEAR key, 95

CLEAR statement, 131, 173, 227

CLOAD, 191, 210, 218

Clock chip, 162
CMOS programmable, 161

Clock circuit, 161

CMD function, 44

CMOS gate, 162, 164

Commodity Futures Game: Who Wins? Who Loses? Why,

The (Teweles, Harlow, Stone), 3

Conversion between number bases, 180-182
program listing, 183-187

CSAVE, 194, 210

Data, serial, 161

Data base, 153

DATA block, 196

Data bus, 107, 110, 161, 164

DATA lines, 96, 153

DATA statements, 166

DEBUG, 228

Decimal to binary conversion, 180-182
program listing, 183187

Decimal to hexadecimal conversion, 180182
program listing, 183-187

Decimal to octal conversion, 180-182
program listing, 183-187

Device control block (DCB), 192, 226

DIM value, 227

DIP, 107

Disassembler program, 191

Disk BASIC, 74, 84, 119, 176

Distribution analysis, 153

Dividend Reinvestment Plan (DRIP), 13-15
program listing, 16-18

DOS, 119, 131, 132

Editor/Assembler, 209, 210, 212, 226, 228

Editor/Assembler format, 65

EDTASM, 210

EDTASM, maodifications for the Model 111, 181198
program listings, 197-208

80 Microcomputing, 176, 191

Encyclopedia for the TRS-80, Volume 2, 119

Epsom MX-80 printer, 127128

FOR loop, 84, 176

FOR-NEXT loop, 166

48K machine, 173

GOSUB(s), 85, 209, 213, 216

GOTO(s), 130, 209, 213, 216

267

Graftrax-80, 127-128

Graphics, using CHRS$, 93-97
program listing, 98-103

Graphices blocks, 96

Graphics characters, 93
TRS-80, 128, 131

Hard copy, 7, 15

Hard-copy, output, 161

Heat sinks, 113

Hexadecimal to decimal conversion, 180-182
program listing, 183-187

1Cs, 112

INKEYS$ function, 84

Input, 164

INPUT, 131

INSTR function, 84

INTeger function, 154

Intel 8251 UART, 161

VO port addressing, 164

Junk-box transformer, 113

Keyboard simulation program, 226-228
program listings, 229-238

Level I, 209, 210

Level 1 BASIC, 214

Level I ROM, 216

Level 11, 74, 84, 209, 214

Level 11 BASIC, 161

Level I ROM, 65

Level II 16K machines, 166

Level 11 SYSTEM tapes, 210

LIST, 214

LLIST, 166, 168

LOAD, 131, 132

Lowercase display capability of Model 111, 130

Lowercase letters, 132

Lowercase modifications for word processor, 131132

Lowercase video driver for Model 1, 119

LPRINT, 15, 95, 97, 130, 166, 168

LPRINTCHRS, 7, 130

LSET, 175-176, 177
Machine code, 192

Machine-language case reversal, 119
Machine-language code, 215
Machine-language program(s), 115, 196, 226
Machine-language programming, 210
Machine-language routine(s), 65, 119, 131
Matrix, 108
Memory, adding to TRS-80, 107-115
MIDS$ function, 84
Model 1, 129
EDTASM for, 192
lowercase video driver for, 119
Model HI, 3, 44, 93, 119, 214
EDTASM for, 191-208
lowercase display capability, 130
Mostek, 161
Motorola, 161
Multiplexer, address, 109
Multiplexing, 108
MX-80, 128, 131
MX.-80 graphics, 124
NEC, 161
NEWDOS 80, 44
NEWDOS 2 1, 44

index

Object code, 212

Octal to decimal conversion, 180182
program listing, 183-187

Okidata, 128

ON-GOSUB, 209, 217

ON-GOTO, 209, 217

Opto-couplers, 163

Oscillators, 161

Oscilloscope, 115

Qutput devices, 161

Parallel to serial data conversion, 161-168
program listing, 169

PEEK, 75, 97, 176, 177

Pinball game, 75
program listing, 81-83

POKE(s), 65, 75, 93, 97, 119, 131, 166, 176, 177, 191, 193,

228
Poly-packs, 161
PRINT@, 93, 94, 95, 96
PRINT command, 228
PRINT spaces, 95
PRINT statement, 93, 131
Printed-circuit board, 112
Radio Shack, 161, 164, 192, 209

Radio Shack’s Editor/Assembler, modified for the Model 111,

191-198
program listings, 197-208
Radio Shack TRS-80, see TRS-80
RAM, 107, 191, 194, 210, 214
Rectifier, 113
Reflex game, 74
program listing, 76-77
REM statement, 214
REMarks, 214
Renumbering program for Level I, 209-219
program listing, 220-225
RESET, 93
RESET, button, 110, 191
Ribbon cable, 112
Roadrace game, 74
program listing, 76
ROM, 107, 192, 195, 214
BASIC, 196, 210
Level I, 216
Level 11, 65
Roulette, 65-66
program listings, 67-73
RSET, 175-176, 177
Rubik's Cube '™ Manipulator, 84-87
program listing, 88-90
SAVE, 131, 132
Serolling, 6
Serial interface, adding to TRS-80, 161-168
program listing, 169
SET, 93
SET statements, 94
Stocks, trading, a technical approach, 3-7
program listing, 8-12
Strings, 130, 176
concatenating, 96
String commands, 180
String packing, 93
String problems, 173-177
program listings, 178-179

268

String space, 130, 173, 174, 175
STRINGS. 96
Student class schedules,
program descriptions, 21-23, 44-47
program listings, 24-43, 48-61
SYSTEM, 164, 210
SYSTEM command, 191, 193, 195
SYSTEM-format tape(s), 193, 194, 195
SYSTEM tape, 196, 212
Radio Shacek’s, 210
Target game, 74
program listing, 79-81

Taxes, deferral of, on dividend income, 13-15

program listing, 16-18
T-BUG, 209, 210, 212
Teletype ™, 161, 167, 168

index

Teweles, Richard J., Harlow, Charles V., and Stone, Her-
bert L., The Commodity Futures Game: Who WinsP

Who LosesP Why?, 3
THEN, 209, 214, 216

TRS-80, 84, 94, 107, 108, 131, 162, 164, 173, 181, 209

adding a serial interface to, 161-169
Model 1, 3, 119
Model I Level II, 93
Model 111, 119
string problems of, 173-179
TRS-80 graphics, 128, 131
TRSDOS, 226
TRSDOS, 2.3, 44
TTL devices, 163
TTY, 166
TTY keyboard, 167

UART (Universal Asynchronous Receiver/ Transmitter), to

convert parallel data to serial, 161-168

program listing, 169
Unshifted (lowercase) letter, 119
Uppercase letters, 132
Variable(s), 63, 153, 175, 177, 215
BASIC, 210
string, 173, 176, 216
VMOS Power FET, 164

Winning lottery numbers, how to select, 153-156

program listing, 157-158

Word processor, Disk BASIC,
directions for use, 119-131
lowercase modifications for, 131-132
program listing, 133-152

Zener diode, 113

Z-80, 108

Z-80 code, 166

INDEX COMPILED BY NAN McCARTHY

269

Wayne Green

—
1op gyl

o
o ¥ourTRe ;:Iul Wl o

Biiig,
Etusann

Srapy
M
e
n

A 10-VOLUME SERIES |

What's the key to getting the most from your
TRS-80*? No, it isn't disk drives or printers or
joysticks. It’s information. Without a continual
supply of information and ideas, you cannot
realize ‘he full potential of your TRS-80.

The Encyclopedia for the TRS-80* is a
10-volume reference work of programs and ar-
ticles that have been carefully selected to help you
make the most of your microcomputer. You can
think of the Encyclopedia as an extension of the
documentation that came with your TRS-80.
Each book contains material on programming
techniques, business, hardware, games, tutorials,
education, utilities, interfacing, graphics and
home applications.

HARDCOVER EDITION $19.95 pervotume
SOFTCOVER EDTEON $'ﬁ 095 per velume

The editors at Wayne Green Books created the Encyclopedia Loader™ to help you
maximize the use of your microcomputing time. By a special arrangement with Instant
Software™, vou can purchase selected programs from each volume of the Encyclopedia
for the TRS-80* in cassette form. Your Encyclopedia provides the essential documentation,

but now you'll be able to load the programs instantly. With the Encyclopedia Loader™,
you'll save hours of keyboard time and eliminate the aggravating search for typos.

$1 4.,95 per cassette
WAYNE GREEN BOOKS

| — Division of Wayne Green Inc. FORTOLL FREE ORDERING:

Peterborough, NH 03458 1-800-258-5473

*TRS-80 is a trademark of Radio Shack division of Tandy Corp

Vayne Green Books

THE NEW
EATHER
SATELLITE
HANDBOOK

by Dr. Raiph E. Taggart WB8DQT

The New Weather Satellite Handbook is a completely updated and
revised edition of the best-selling Weather Satellite Handbook, con-
taining all the information on the most sophisticated and effective
spacecraft now in orbit. Dr. Taggart has written this book to serve
both the experienced amateur satellite enthusiast and the newcomer.
The New Weather Satellite Handbook is an introduction to satellite
watching, providing all the information required to construct a com-
plete and highly effective ground station. Not just ideas, but solid
hardware designs and all the instructions necessary to operate the
equipment are included. For the thousands of experimenters who are
operating stations, the book details all procedures necessary to
modify their equipment for the new series of spacecraft. An entire
chapter is devoted to microcomputers and their use in the weather
satellite station, focussing particularly on the Radio Shack TRS-80*
microcomputers.

ISBN 0-88006-015-8 136 pages $8.95

WAYNE GREEN BOOKS

T Division of Wayne Green Inc. FOR TOLL FREE ORDERING:

Peterborough, NH 03458 1-800-258-5473

*TRS-80 is a trademark of Radio Shack division of Tandy Corp.

by Irwin Rappaport

Word processing systems can cost hundreds of dollars and, even when you’vebought
one, it probably won'’t do everything you want.

TEXTEDIT is an inexpensive word processor that you can adapt to suit your needs,
from writing form letters to large texts. It is written in modules, so you can load and
use only those portions that you need. Included are modules that perform:

@ right justification

@ ASCII upper/lowercase conversion
® one-key phrasge entering

® complete editorial functions

@ and much more!

TEXTEDIT is written in TRS-80* Disk BASIC, and the modules are documented in the
author’s clear writing style. Not only does Irwin Rappaport explain how to use
TEXTEDIT; he also explains programming techniques implemented in the system.

TEXTEDIT is an inexpensive word processor that helps you learn about BASIC pro-
gramming. It is written for TRS-80 Models I and III with TRSDOS 28.2/2.3 and 32K.

.97

ISBN 0-88006-050-6 90 pages

WAYNE GREEN BOOKS

Division of Wayne Green Inc. FOR TOLL FREE ORDERING:

1 Peterborough, NH 03458 1-800-258-5473

*TRS-80 and TRSDOS are trademarks of Radio Shack division of Tandy Corp.

The real value of your com-
puter lies in your ability to use it.
The capabilities of the TRS-80*
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books.

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

