A library of useful information
for your TRS-80
Business
Education
Games
Graphics
Hardware
Home Applications
Interface
Tutorial
Utility
~ VOLUME 6
- *Trademark of Radio Shack Division of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 6

wayne

N
N |
PETERBOROUGH NH 03458

]
=

*Trademarks of Radio Shack Division of Tandy Corp.

FIRST EDITION
FIRST PRINTING FEBRUARY 1982
Copyright © 1982 by Wayne Green inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey and Katherine Putnam
Production: Margaret Baker, Gary Ciocci,
Linda Drew, Tom Villeneuve, Bob Villeneuve,
Sandra Dukette, Karen Stewart
Technical Assistance by Jake Commander
and Kenniston W. Lord Jr., CDP
illustrations by Howard Happ

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green.......... i v

BUSINESS

Exponential Smoothing
LeonardGorney............. i, 3

Voter Registration
Kenniston W. Lord Jr., CDP. 10

EDUCATION
Keeping Track—
Student Scheduling and Attendance Part I

UldericF. Racine. coiuiiiiiinniinnin., 35
Keeping Track-—
Student Scheduling and Attendance Part II

Ulderic F. Racine

GAMES
Space Mission

Ron Goodman.........00 ciiiiuuiiii.. 85
Slot Machine

Kerry Rasmussen.00 iiiiiiiiiinnnni. .. 92

GRAPHICS

Level II Graphics Code
Fred Blechman. 0 ' . 105

New Compu-Sketch
PRILBUTION. 111

HARDWARE
As You Like It
Nick Doble. i, 125
Add PROM Capability to Your TRS-80
with the PR-80
Frank Delfine. 131

vil

contents

HOME APPLICATIONS

Magazine Index
John Cominio. i 157

Money Minder
Bill LOVEYS.\ i i e 165

Groupies: A Strategy to Group Like Objects
Richard Ramella. i i 184

INTERFACE
Stick With It
John Warren. e 189

Easy SelectricTM Qutput for the TRS-80:
Take Me to Your Solenoids

Morton Leifer. 191
TUTORIAL
On Towards Better Sorts of Things

William R. Patterson. ..o, 211
Random Distribution Graphics

Todd L. Carpenter.c.ciiuimiieaaaainnaaain. 218
Using LMOFFSET

John T. Blairand Peter B. Hall 297
UTILITY
Extractor: An Ace in the Holel

J. Crutcher 235
Page Print Your Listings

AP, Gitt. . 245
Let Your TRS-80 Do the Typing

Susan R. Nelsomn. oo e 253
APPENDICES
AppendiX A. 267
Appendix B.... ... 268
052, < 307

viii

ncycloj

The editors of Wayne Green Books want to help you use the programs in
your Encyclopedia for the TRS-80*. So to help you maximize the use of your
microcomputing time, we created Encyclopedia Loader. ™

By a special arrangement with Instant Software™, Wayne Green Books
can now provide you with selected programs contained in each volume of
the Encyclopedia for the TRS-80 on a special series of cassettes called
Encyclopedia Loader™., Your encyclopedia provides the essential documen-
tation but now you’ll be able to load the programs instantly. Each of the ten
volumes of the Encyclopedia will have a loader available.

With Encyclopedia Loader™ you’ll save hours of keyboard time and
eliminate the aggravating search for typos. Encyclopedia Loader™ for
Volume 6 includes the following articles:

™

Voter Registration
Space Mission
Keeping Track—Student Scheduling and
Attendance Part I
Keeping Track—Student Scheduling and
Attendance Part 11
Add PROM Capability to Your TRS-80 with the PR-80
Money Minder
Easy SelectricT™ Qutput for the TRS-80:
Take Me Te Your Solenoids

Encyclopedia Loader™ for Volume 1 EL8001 $14.95
Encyclopedia Loader™ for Volume 2 ELS8002 $14.95
Encyclopedia Loader™ for Volume 3 EL8003 $14.95
Encyclopedia Loader™ for Volume 4 EL8004 $14.95
Encyclopedia Loader™ for Volume 5 EL8005 $14.95
Encyclopedia Loader™ for Volume 6 EL8006 $14.95

(Please add $1.50 per package for postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call 1-800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp

BUSINESS

Exponential Smoothing
Voter Registration

BUSINESS

Exponential Smoothing

by Leonard Gorney

"he eventual success of a business is based, in part, on its management’s
ability to forecast accurately the future demand for a product. Fore-
casting is the science of predicting future events based in whole or in part on
past performances. Many forecasting methods are available, running the
gamut from educated guesses to highly mathematical techniques.

The technique known as exponential smoothing is a variation on a
moving-average forecast. In particular, exponential smoothing is based on a
geometric progression which results in nonuniform weights being assigned
to the available historical data. Exponential smoothing and the moving-
average techniques effectively reduce fluctuations in demand and, at the
same time, remain sensitive to trends. In other words, the values calculated
for future demands are not subject to instantaneous, random peaks or drops,
nor is a resulting trend ignored before proper adjustments are made to the
forecast values.

Requirements

The required variables for exponential smoothing include historical data
which corresponds to previous actual demand figures, the number of time
periods to project into the future, and a constant known as the smoothing con-
stant. Historical data is usually obtained from sales figures for the product
during a particularly representative time period. Monthly sales figures, for ex-
ample, can be gathered and used as the basis for the historical data points.

A business which deals with a high-turnover product may want to
forecast only one to three time periods into the future. On the other hand, a
longer forecast period is logical for a product whose demand remains wide-
spread and steady, such as home heating oil.

The major problem with exponential smoothing lies in choosing an ap-
propriate smoothing value—the constant. The smoothing constant must be
a positive value between 0.00 and 1.00; 0.00 results in complete smoothing,
while a smoothing constant of 1.00 results in a forecast with no smoothing
ability. These extreme values are rarely used.

A smoothing constant between 0.01 and 0.03 generally yields reasonably
accurate results; that is, a prompt response to change without a larger
response to random fluctuations. The smaller the smoothing constant value,
the slower the response of the procedure to change. On the other hand, the

3

business

larger the value of the smoothing constant, the quicker the response to
change, as a much greater emphasis is placed on the most recent data.
. A product’s market history will usually give a clue as to the correct value
of the smoothing constant. If the historical data is relatively stable, a small
smoothing constant usually gives accurate forecasts. A seasonal pattern or
other trend usually requires a large smoothing constant. Experience in your
business is the prerequisite for forecasting future demand for a product.

One technique, known as retrospective simulation, is often used to deter-
mine the approximate values for the smoothing constant and the number of
projected time periods. Retrospective simulation (or Monday morning
quarterbacking) uses the most recent marketing figures as control data and
applies them to historical market information. Various smoothing constants
and projected time periods are applied to the historical data, until a rea-
sonably good fit results. These same values are then applied to future de-
mand predictions.

Operating Instructions

The initial response to the following program is either a Y or an N. Enter-
ing a Y will present the necessary background information and operating in-
structions for the program; entering N branches directly to the data input
phase. The program will then ask for the number of time periods for which
actual market demand information is available; that is, the number of time
periods for which historical data is present. Entering a zero for this question
ends the program, while entering any other positive integer value dimen-
sions the necessary arrays.

An OM ERROR may occur if the value for this variable is too large. Using
a 16K TRS-80, the maximum value for this variable may approach 250 with
no adverse effects. If no error occurs, the program asks for each actual de-
mand value. After all the actual demand values are entered, the program
asks for the smoothing constant value. It expects a positive value between
0.00 and 1.00.

The number of projected time periods is the next request. It must be a
positive integer, one or above. This value, as well as the value for the pre-
viously entered smoothing constant, determines the accuracy of the forecast.
Finally, a Y or an N answer is required if you want a tabular output of the
various forecast values during the execution of the program. These values are
important if you want to see the intermediate results of the procedure.

The program then commences its calculations. If your answer to the
tabular question is a Y, the program displays and freezes intermediate values
during each time period for the actual demand, exponential average, cur-
rent trend, smoothed trend, forecast demand, and forecast error. Eventual-
ly, the screen displays the final results of the program. These results include
the standard deviation of forecast errors.

4

business

The number of times the actual demand was greater than and less than
the forecast value is also listed. The cumulative forecast errors, the largest
positive forecast error, the largest negative forecast error, and the average
forecast error will also be listed. You can adjust the smoothing constant
and/or the number of time periods projected into the future without
reentering the historical data by following the instructions on the last
screen display.

leap
1618
1620
183p
1040
1950
leeo
1878
1089
1099
1100
1110
1128
1130
1148
1150
1168
117¢
1189
1190
1208
1210
1220
1238
1240
1258
1268
1270
1288
1298
1308
1310
1320
1338
1340

1358
1368
1378

1388
1398
14898

1418
1420
1430
l44g
1458
1460
1470
1480
1498

1500
1510
15208

business

Program Listing. Exponential Smoothing

REM EXPONENTIAL SMOOTHING

REM BY: LEN GORNEY

REM BOX 91 R.D. 5 SALISBURY ROAD

REM CLARKS SUMMIT PA 18411

REM VARIABLE DESCRIPTION

REM AD ACTUAL DEMANDS (HISTORICAL DATA)
REM AF AVERAGE FORECAST ERROR

REM BF LARGEST FORECAST ERROR

REM cT CURRENT TREND VALUES

REM DG ¢ OF TIMES DEMAND > FORECAST

REM DL # OF TIMES DEMAND < FORECAST

REM EA EXPONENTIAL AVERAGES

REM F FORECAST VALUES

REM FE FORECAST ERRORS

REM F2 FORECAST ERRORS SQUARED

REM I GENERAL LOOP COUNTER

REM LF SMALLEST FORECAST ERROR

REM N # OF ACTUAL DEMAND TIME PERIODS
REM NC § OF TIMES FORECAST >< ZERO

REM NL # OF LINES PRINTED FOR TABULAR OUTPUT
REM NP # OF PROJECTED TIME PERIODS

REM 0 ANSWER (Y OR N) TO QUESTION

REM QN PRINT USING PARAMETER

REM 01 PRINT USING PARAMETER

REM] SUM OF FORECAST ERRORS

REM sC SMOOTHING CONSTANT VALUE

REM SD STANDARD DEVIATION OF PORECAST

REM SE STANDARD DEVIATION OF FORECAST ERROR
REM sT SMOOTHED TRENDS

REM 81 1.6 LESS THE SMOOTHING CONSTANT VALUE
REM s2 SUM OF THE FORECAST ERRORS SQUARED
DEFINT D, I, N

DEFSNG A, B, C, E, F, L, §
DEFSTR Q
ON = "S85, 44"
Q1 = "HEE”
CLS
INPUT "ENTER > Y < FOR INSTRUCTIONS ELSE ENTER > N <";Q
IF Q = "y"
THEN
2568 :
ELSE
IF Q = "N®
THEN
1380 :
ELSE
1358
CLS
INPUT "ENTER NUMBER OF TIME PERIODS OF ACTUAL DEMAND®;N
IF N < = 8 OR N > < INT(N)
THEN
STOP
DIM AD(N), EA(N), CT(N), ST(N), F(N), FE(N), F2(N)
CLS
FORI =1 TON
PRINT ,"ACTUAL DEMAND #";I;
INPUT AD(I)
NEXT I
CLS
INPUT "ENTER SMOOTHING CONSTANT";SC
IF 8C < = @.08 OR SC > 1,00

THEN

GOSUB 2438 :

GOTO 1480
CLS

INPUT "ENTER NUMBER OF PROJECTED TIME PERIODS";NP
IF NP < = @ OR NP > < INT(NP)
THEN

15349
1540
1550

1560
1570

1588
1598
1668

1618

1620
1638
16490
1650
1660
1674
1680
16940

1769
1719
1720
1730

1748
1758
1768

177¢

1789
1790
1860
1818

1828
1830
1840

1850

1868

business

GOSUB 2478:

GOTO 1518
CLS
INPUT "ENTER > Y < FOR TABULAR OUTPUT ELSE ENTER > N <";Q
IF Q = "¥Y*

THEN

GOSUB 2368 :

ELSE

REM SET FIRST EXPONENTIAL AVERAGE TO FIRST ACTUAL DEMAND
NL =
EA(1) = AD(1)
I =1
IF Q = "Y"

THEN

GOSUB 2388
REM START OF MAIN LOOP
FORI = 2 TO N

REM CALCULATE EXPONENTIAL AVERAGE, CURRENT TREND
REM IF SMOOTHED TREND = ZERO
THEN SMOOTHED TREND = CURRENT TREND
ELSE CALCULATE SMOOTHED TREND

EA(I) = (SC * AD(I)) + (81 * EA(I -~ 1))
CT(I) = EA(I) - EA(I -~ 1)
IF ST(I -~ 1) = 0.0
THEN
ST(I) = CT(I) :
ELSE
ST(I) = (8C * CT(I)) + (SL * ST(I - 1))
IF NP +1 > =1
THEN
1928

REM CALCULATE FORECAST VALUE
F(I) = EA(I - NP) + ((S1 / SC + FIX(NP)) * ST(I ~ NP))
REM ACCUMULATE DEMAND > FORECAST OR DEMAND < FORECAST
IF AD(I) > F(I)
THEN
DG = DG + 1 :
ELSE
DL = DL + 1
REM CALCULATE FORECAST ERROR VALUE
FE(I) = F(I) - AD{I)
REM DETERMINE LARGEST FORECAST ERROR
AND SMALLEST FORECAST ERROR
IF FE(I) > BF
THEN
BF = FE(I)
IF FE(I) < LF)
THEN Program continued

1878

1888
1898
19689
1916

1928

1939

1940
1954
1968

1970
1980
1990
2000

2810
2020
20389
2040
2050
2060
2078
2088
2090
2169
2118
2120
2138
2140
2159
2160
2178
2180
2194
2200
2210
2220
2230
2240
2258
2260
2278
2280
2299

2300
2316
2329

business

LF = FE(I)
REM CALCULATE FORECAST ERRORS SQUARED,
SUM OF FORECAST ERRORS,
SUM OF FORECAST ERRORS SQUARED

F2(I) = FE(I) * PE(I)
§ = 8 + FE(I)
82 = 82 + F2(I)
IF F(I) > < 8.0
THEN

RC = NC + 1
IF Q = "y*

THEN

GOSUB 2388
IF NL = 13

THEN

GOSUB 2510:
GOSUB 2309
REM END OF MAIN LOOP
NEXT I
REM CALCULATE AVERAGE FORECAST ERROR,
STANDARD DEVIATION OF FORECAST,
STANDARD DEVIATION OF FORECAST ERRORS
FOR I =1 T0 N
AF = AF + FE(I)
NEXT I
AF = AF / N:
IFP NC = 8 OR NC = 1
THEN
SE = B
Sh = @:
GOTO 2838
SE = SQR(ABS({(S2 - (S * S) / (NC)) / (NC - 1)))
Sh = SQR(ABS(82 / (NC -
GOSUB 2518
REM OUTPUT RESULTS ROUTINE
PRINT @64, "SMOOTHING CONSTANT =";SC
PRINT @128 ,NP; "PROJECTED TIME PERIODS"
PRINT @256 ,"STANDARD DEVIATION OF FORECAST DISCREPANCY =0y
PRINT ,SD
PRINT @325,“STANDARD DEVIATION OF FORECAST ERROR ="
PRINT ,SE
PRINT @448,“DEMAND GREATER THAN FORECAST";DG; "TIMES”
PRINT @512, DEMAND LESS THAN FORECAST®;DL;“TIMES"
PRINT @640 ,"CUMULATIVE FORECAST ERRORS =%:8
PRINT @784 ,"LARGEST POSITIVE FORECAST ERROR ="+ BF
PRINT @768,"LARGEST NEGATIVE FORECAST ERROR =";LF
PRINT @832,"AVERAGE FORECAST ERRQR ="; AF
GOSUB 2518
CLS
PRINT €912,"ENTER APPROPRIATE OPTION NUMBER®
PRINT @328 ,"0PTION DESCRIPTION®
PRINT @389,"1 USE SAME ACTUAL DEMAND FIGURES BUT";
PRINT 7 DIFFERENT'
PRINT @457,"SMOOTHING CONSTANT AND/OR PROJECTED TIME®;
PRINT " PERIOD VALUES*®
PRINT @517,"2 USE DIFFERENT ACTUAL DEMANﬁ FIGURES"®
PRINT €@645,%3 STOP PROGRAM®
PRINT @768,"ENTER OPTION NUMBER";
INPUT I
IF I =1
THEN
1476
ELSE
IFI =2
THEN
RUN 1310 :
ELSE
STOP
REM TABULAR OUTPUT ROUTINE
CLS
NL = 1

business

233@ PRINT @65,"TIME ACTUAL EXPONENTIAL CURRENT SMOOTHED®;
234¢ PRINT @119,"FORECAST";

235@ PRINT @128,"PERIOD DEMAND AVERAGE TREND TREND";
2368 PRINT @173,"FORECAST ERROR"™

23780 RETURN

2380 NL = NL + 1

2398 PRINT USING Ql;I;

2408 PRINT USING QN;AD(I) ;EA(I);CT(I);ST(I);F(I);FE(I)

2418 RETURN

2428 REM ERROR MESSAGE ROUTINES

24348 CLS

2440 PRINT "@.61 <= SMOOTTHING CONSTANT <= 1.68"

2450 GOSUB 2519

2460 RETURN

247¢ CLS

2488 PRINT "NUMBER OF PROJECTED TIME PERIODS >= 1"

2498 GOSUB 2519

2508 RETURN

2518 PRINT @968,"PRESS > ENTER < TO CONTINUE";

2520 INPUT QE

2538 CLS

2548 RETURN

2558 REM INSTRUCTION OUTPUTT ROUTINE

2568 CLS

257@ PRINT @10,"FORECASTING BY EXPONENTIAL SMOOTHING™"

2588 PRINT

2598 PRINT " EXPONENTIAL SMOOTHING IS A VARIATION ON A MOVING®
2688 PRINT "AVERAGE FORECAST BASED ON A GEOMETRIC PROGRESSION "
2618 PRINT "RESULTING IN THE ASSIGNMENT OF NONUNIFORM WEIGHTS "
2628 PRINT "TO THE HISTORICAL DATA,"

2630 PRINT " THE REQUIRED INPUT PARAMETERS INCLUDE:"

2640 PRINT "1, THE HISTORICAL DATA; I.E. PAST ACTUAL DEMAND,"
2650 PRINT "2. A SMOOTHING CONSTANT,"

2668 PRINT "3, THE NUMBER OF PROJECTED TIME PERIODS."

2678 PRINT " THIS PROGRAM USES A TYPE OF RETROSPECTIVE "
2686 PRINT "SIMULATION TO EXHIBIT THE EXPONENTIAL SMOOTHING "
269@ PRINT "FORECAST TECHNIQUE,"

2788 GOSUB 2518

2718 PRINT "IINPUT PARAMETER # 1"

2728 PRINT * NUMBER OF ACTUAL DEMAND PERIODS; I.E. THE"
2730 PRINT " NUMBER OF PERIODS FOR WHICH HISTORICAL DATA "
2740 PRINT * IS AVAILABLE,"

2750 PRINT "INPUT PARAMETER " 2"

2768 PRINT " THE VALUES FOR EACH OF THE ACTUAL DEMAND *
2778 PRINT " FIGURES,"

2780 PRINT "INPUT PARAMETER 4 3"

2790 PRINT " SMOOTHING CONSTANT VALUE. THIS VALUE MUST BE "
2800 PRINT " BETWEEN +8.08]1 AND +1.00"

2810 PRINT "INPUT PARAMETER # 47

2828 PRINT " NUMBER OF PROJECTED TIME PERIODS IS THE "

2830 PRINT " FORECASTED FUTURE TIME PERIODS."

2848 GOSUB 2518

2858 PRINT "INPUT PARAMETER # 5°

2860 PRINT " INTERMEDIATE OUTPUT IS AVAILABLE BY ANSWERING "
2878 PRINT " 'Y' TO THIS QUESTION,"

2888 GOSUB 2518

2898 GOTO 1380

298¢ END

BUSINESS

Voter Registration

by Kenniston W. Lord Jr., CDP

he small municipality, like its larger counterparts, is responsible for the
registration of voters. This is usually the duty of the town clerk. When a
voter is registered, data is collected, such as the voter's address as of the
beginning of the current year, the address as of the beginning of last year,
occupation, location of employment, party of preference, citizenship infor-
mation, and whether or not the individual must register through the use of
‘an’ informant (generally in the case of a person who is unable to speak
English). Some states even gather data on the registrant’s dogs.
~This program (see Program Listing) is a data collection package for the
town clerk’s registration of voters. It fits in a 32K system; disk is not re-
quired. The program is well commented; so if you must compress for a 16K
system, you can use a compression utility to remove REMark statements.
The program is set up to accept one day’s business, but you can expand it by
changing the size of the DIMensioned statements in line 160 and by making
corresponding changes to the routines which manipulate the arrays
throughout the program.
When the program begins, you must gather some genera) information.
S ENTER YEAR—The range test is set up to cover the period from
1970-1999. It would be advisable to narrow that period by making the ap-
propriate changes in line 220.
© WILL REGISTRATIONS BE LISTED BY ONE PERSON (Y/N)?—The
response is usually Y, after which the program asks the name of the person
and inserts that person’s name into each record. If several persons are doing
the registrations, an N answer structures the program to request the name of
the person gathering the data with each individual registration.
® ENTER TODAY’S DATE WITH NO PUNCTUATION-—The limitations
of punctuation require care here. It would have been possible to use LINE-
INPUT, but that would have kept anyone without a disk system from using
the program. This date will be used on reports; so enter it as you would like it
to appear. You can enter the punctuation if you are careful to enclose the en-
tire expression in quotation marks. This entry, like all entries in this pro-
gram, is presented for verification and is accepted only when the user
verifies the entry.

10

business

Once this information is gathered, the main menu appears.

PROCESSING OPTIONS:
A. REGISTER A MALE
B. REGISTER A FEMALE
C. DISPLAY REGISTRATIONS
D. PRINT REGISTRATONS
E. END THE PROGRAM

While each of these appears to be straightforward, I will explain each of
them separately. Concentrate first on option E. This terminates the program
by offering:

DO YOU WISH TO PREPARE A TRANSACTION TAPE (Y/N)

If you answer Y, you are asked to set up the tape recorder to record. The pro-
gram simply writes a data tape with all registrants for the period. To pro-
duce periodic reports, you must input this tape to a transaction-combining
program. Since the records are fixed in length (20 fields), reading the tape or
tapes and combining the data is a simple matter. After the tape is written, or
if you specify N, the program ends. If you have used a tape, the program
generates the appropriate messages.

Options A and B are similar in function. Each requests the same data, but
the program keeps separate arrays for males and females to facilitate report-
ing. If you request a combined report, those arrays are combined and sorted
on request. Each request for information must be corroborated by the user
before proceeding. If there is still an error after you have made all the en-
tries, the program provides a reentry capability. In sequence, options A and
B request the following data:

NAME
AGE
PARTY AFFILIATION
(Program allows Democrat, Republican, Independent, and another category
which allows specification.)
WARD OR PRECINCT
RESIDENCE THIS YEAR
RESIDENCE LAST YEAR
OCCUPATION
WHERE EMPLOYED
CITIZENSHIP
(If not United States, then origin is requested.)
INFORMANT
(If necessary)
LISTED BY
(If not entered at the beginning)
DOGS
(If the voter has dogs, distribution by sex. Females are taxed higher.)

11

business

Options C and D are similar in that one displays the registrants on the
screen and the other prints it. The menu options appear as follows:

DISPLAY/PRINT OPTIONS:
<F>EMALE REGISTRANTS
<M>ALE REGISTRANTS
<A>LL REGISTRANTS

Once you select an option, the program asks
SORT THE DATA (Y/N)?

These options give you many opportunities to sort the data. Once the sort is
complete, you cannot resort; so you should reserve sorting until you have run
the final daily reports. For a half dozen registrants, this does not require
much time, but the memory sort in BASIC is slow, and a single sort is
preferable. A sample of output is shown in Figure 1.

All selected options, once completed, return you to the main menu. This
program does not disable the BREAK key, but if that is anticipated to be a
problem, you may find it necessary to disable that key.

NAME: JOHN DOE AGE: 22 MALE
VOTERNO.: 111 WARD/PCT NO.: 2
RES.(LAST YR): 123 MAIN STREET
RES.(THIS YR): 456 ELM STREET
OCCUPATION: FACTORY WORKER
WHERE EMPLOYED: JONES BROTHERS MILL
CITIZEN: Y

NATIONALITY: U.S.A.

DATE OF REGISTRATION: JANUARY 1 1982
INFORMANT: HIMSELF

LISTED BY: JANE SMITH

PARTY AFFILIATION: DEMOCRAT

DOGS (NUMBER): 2 MALE: 1 FEMALE: 1

Figure 1. Sample output

12

business

Program Listing. Voter registration

140 : Encyclopedia
150 CLEAR 2000 Loader
160 DIM vmsgzzo :

DIM VF${220):

DIM VT$(20):

DIM AVS(440)
170 M = 1:

F =1
180 GOSUB 5330
190 FOR N = 1 TO 4:
PRINT :
NEXT N
200 gR%NT * VOTER REGISTRATION PROGRAM":
RINT
210 PRINT "PLEASE WAIT - DOING HOUSEWORK"
220 FY = 1970:
LY = 1999:
LS = 0:
M= 1:
F o= 1:
GOSUB 5380:
CLS
230 SM = 1:
SF = 1
240 GOSUB 5330
250 FOR N = 1 T0 4:
PRINT :
NEXT N
260 PRINT TAB(S5);"REGISTRAR OF VOTERS":
PRINT
270 PRINT TAB(S5);"TOWN OF XXXXXXXXXXX"
280 PRINT :
PRINT SB%
290 2$ = INKEY$
300 IF 2§ = " "
THEN
320
310 GOTO 290
320 GOSUB 5330:
PRINT "ENTER YEAR (4-NR. FORMAT)"
330 PRINT :
PRINT "EXAMPLE: 1982"
340 PRINT :
INPUT YR
350 IF (YR < FY) OR (YR > LY)
THEN
410
360 PRINT :
PRINT "YEAR ENTERED IS ACCEPTABLE"
370 PRINT :
PRINT SB$
380 Z$ = INKEY$
390 IF 2§ = " "
THEN
460
400 GOTO 380
410 PRINT “YEAR OUTSIDE RANGE OF “;FY;"TO ";LY
420 PRINT "RE-ENTER":
PRINT SB$
430 Z$ = INKEYS
440 IF 2§ = " "
THEN
320
450 GOTO 430
460 GOSUB 5330
470 PRINT “WILL REGISTRATIONS BE": Progranzcanﬁnued

13

480
490
500

510

520
530

540
550

560
570

580

590
600
610
620

630

640
650

660
670

680

690
700
710

720

730
740
750
760

770
780

790
800

810
820
830

business

PRINT

PRINT “LISTED BY ONE PERSON (Y/N)?"

Z$ = INKEY$
IF 2§ = "y*
THEN
530
IF 2§ = "N"
THEN
LS = 1:
GOTO 600
GOTO 490
PRINT :
PRINT "WHO IS THAT PERSON?®
INPUT NV$
PRINT "CONFIRM: ";NV§;" (Y/N)"
Z$ = INKEY$
IF Zs = uYu
THEN
600
iF Z$ = “N"
THEN

460
GOTO 560
GOSUB 5330
PRINT "ENTER TODAY'S DATE"
PRINT :
PRINT "WITH NO PUNCTUATION"
PRINT :

PRINT "EXAMPLE: JANUARY 1 1982":

PRINT
INPUT DTS$:
PRINT
PRINT "CONFIRM *;DT$;" (Y/N}*
2% = INKEYS
IF 2§ = "Y°
THEN
710
IF Z$ - uNn
THEN
600
GOTO 660
GOSUB 5330
CLS
GOSUB 5330:
PRINT EN$;VN$."TO BE USED"
PRINT :
INPUT VN:
VN = VN -1
PRINT
GOSUB 5350
Z$ = INKEY$
IF 2§ = "y"
THEN
180
IF 2§ = "N"
THEN
700
GOTO 740
GOSUB 5330:
PRINT :
PRINT :
PRINT "PROCESSING OPTIONS":
PRINT
GOSUB 7830

PRINT TAB(2);"A. REGISTER A MALE":

PRINT

PRINT TAB(2);"B. REGISTER A FEMALE":

PRINT

PRINT TAB(2);"C. DISPLAY REGISTRATIONS":

PRINT

PRINT TAB(2);"D. PRINT REGISTRATIONS":

14

840
850
860

870

880
890
900

920

930
940
950
960

980
9590
1000
1010
1020

1030

1040
1050
1060

business

PRINT

PRINT TAB(2);"E. END THE PROGRAM"
1§ = INKEY$

IF 2§ < > ""

THEN

850
GOTO 850
A = ASC(Z$) - 64
IFA <1
THEN
850
IFAS>S
THEN

850
ON A GOTO 930,990,5980,6770,7420:
GOTO 780

GOSUB 5330
PRINT "MALE REGISTRATION (Y/N)?"
7§ = INKEYS
IF Z$ = IINH
THEN

780
1F 2% = "Y*
THEN

S5 = UM

GOTO 1050
G0TO 950
GOSUB 5330
PRINT "FEMALE REGISTRATION (Y/N)?"
7% = INKEYS
IF Z$ = uNu
THEN

780
IF 2§ = “v"
THEN

5§ = "FUs

GOTO 1050
6070 1010
GOSUB 5330

1070

RS EEESEE SRR EE R

1080 :

| w% VOTER NAME %

1090 :

U okkkkkkhkh ke hkkdd

1100 :

1110
1120
1130
1140
1150

1160

1170
1180

1

PRINT EN§;"NAME OF VOTER"
INPUT VT$(1)

GOSUB 5350

Z$ = INKEY$

IF 7§ = "N

THEN

GOTO 1140

1190 :

T o dkkkkRrAhkhhokhdd

1200 :

1210 :

© » CAPTURE AGE *

PokkkkkkkkkhkhkkkhAhkKx

15

Program continued

1220 :

1230
1240
1250
1260
1270
1280

1290

1300
1310
1320

GOSUB 5330
PRINT EN$;AGS
INPUT VT$(2)
GOSUB 5350
Z$ = INKEYS
IF 7§ = "N
THEN
1230
IF 7§ = "y
THEN
1310
GOTO 1270
GOSUB 5330

1330 :

'okkkdekkkohk kb E A A A AL A kbR

1340 :
1350 :

Pokkkhkkhhdkhhkkk bk A bk bk hbbhkhd

1360
1370

1380
1390
1400
1410
1420
1430

1440

1450

1460

1470
1480

1490
1500
1510
1520

1530
1540
1550

1560
1570
1580

1590

LI 3.3

PRINT
PRINT
PRINT
PRINT
PRINT

ENS;PAS:

TAB§5;;"D.
TAB(5);"R.
TAB(5);"I.
PRINT TAB(5);"0.
PW$ = INKEY$
IF PW$ = "D
THEN
PHS = PD$:
GOTO 1480
IF PH$ = "R”
THEN
PW$ = PRS:
GOTO 1480
IF PH$ = "I"
THEN
PW$ = PI§:
GOTO 1480
IF PWE = “0"
THEN
PRINT EN$;PAS:
INPUT PW$:
GOTO 1480
GOTO 1420
GOSUB 5330:
PRINT PA$;"
PRINT PW$
VT$(19) PW$
VN = VN
VT$(20)
PRINT :
GOSUB 5350
Z$ = INKEYS$
IF Z$ = IIYII
THEN

EE]

1310
GOTO 1530
GOSUB 5330

IS ":

1
STR$(VN)

business

PARTY AFFILIATION **

ok h Ak kAR A A AL A AL R A A A AL A A AR A

16

business

1600

1610
1620
1630
1640
1650

1660
1670

1680

1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790

1800
1810

1820

1830
1840
1850
1860
1870
1880
1890
1500
1910
1920
1930

1940
1950

1960

1970
1980
1990
2000

2010

' %% WARD OR PRECINCT **
; FARRAKA KRR AR IR R KRR R AR KA

PRINT EN$;PC$:
PRINT
INPUT PC:
VT$(15) = STR$(PC)
GOSUB 5350
Z$ = INKEY$
IF Z$ = "Y"
THEN

1700
IF Z$ = UNY
THEN

1570
GOTO 1660
GOSUB 5330

1
I kkhkhkhkhkhkhkhkhkhhkkxh kIR AFA A kb kkohdx

Do CAPTURE RESIDENCE THIS YEAR **
D kAR ARk Rk kAR R AR AR KRR KR RR KRR AR A * AR
PRINT EN$;RAS$

PRINT J1$;TY$
INPUT VT$(3)

GOSUB 5350
2% = INKEYS$
IF 2% = "N¥
THEN

1310
IF 2§ = "y"
THEN

1840
GOTO 1800

GOSUB 5330

t
Vokkkhkhk kR kAR AA RN AT AR AR Ak h bk drdhdk

L oaw CAPTURE RESIDENCE LAST YEAR **
e
PRINT EN$;RAS

PRINT J1$;LY$
INPUT VT$(4)

GOSUB 5350
7% = INKEY$
IF 2§ = "N*
THEN

1840
IF 25 = “y"
THEN

1980
GOTO 1940

GOSUB 5330

PokkhkkkkkXkhkhkhk Ak Ak kA kkk

Program continued

17

2020 :

business

' ** CAPTURE OCCUPATION **

Vokkk Rk k Ak kkkhhkh kA kb hhkhkhh

2030 :

2040
2050
2060
2070
2080

2090

2100
2110
2120

PRINT EN$;0C$
INPUT VT$(5)
GOSUB 5350
Z$ = INKEYS$
If Z$ = NN
THEN

1980
IF Z$ = Myw
THEN

2110
GOTO 2070
GOSUB 5330

2130 :

Vohk A A A A X AR AR AR AR A A bR

2140 :

' ** CAPTURE WHERE EMPLOYED **

2150 :

Pokkkhkkrkkk kA hhh bk bk kb kkk kb h ok

2160 :

2170
2180
2190
2200
2210

2220

2230
2240
2250

PRINT EN$;WES
INPUT VT$(6)
GOSUB 5350

GOTO 2200
GOSUB 5330

:

2260 :

PokhkhhA Rk Ak kb hkh kv hkkkdk vk

2270 :

' %% CAPTURE CITIZENSHIP =*=

2280 :

U okkkkkhkhhkhbhkkhhdrkhdkkhkkkd ki

2290 :

2300
2310
2320

2330

2340
2350
2360
2370

2380 :
2390 :
2400 :

PRINT CZ$
7$ = INKEYS$
IF 2§ = "N*
THEN
VT$(7) = "N
GOTO 2420
IF 2§ = "Y°
THEN
VT§(7) = "Y'
GOTO 2350
GOTO 2310
VT$(8) = "U.S.A."
GOTO 2540

]
Pokkkdkhkhhkkkdhhdhbdhhhrbhkhhdd

i %% CAPTURE NATIONALITY #*

Vokkkhhkhkkkhkkkhkk kA kdkkhhkkhkhok

2410 :

18

2420
2430
2440
2450
2460

2470

2480
2490

business

PRINT EN$;NAS
INPUT VT$(8)

GOSUB 5350
7% = INKEYS
IF 2% = “N"
THEN

GOSUB 5330:

GOTO 2420
IF 7§ = "Y*
THEN

2540

GOTO 2450

2500 :

2510 :

2520
2530
2540

2550
2560

TokkhkAAARA kR I AR AR KA AN

' ** STORE THE DATE **
T kkkkk Rk ok ko k kR k
i

VT$(9) = DTS

GOSUB 5330

2570 :

U okkkkrbhkhhkhk Rk rhkrdhhhkhddk

2580 :

¥ CAPTURE INFORMANT *»

2590 :

2600 :

2610
2620
2630
2640
2650

2660

2670
2680
2690

; LRSS E LRSS RS SRS R RS SRR
;

PRINT ENS$;INS

INPUT VT$(10)

GOSUB 5350
Z$ = INKEY$
IF Z$ = "N"
THEN

2550
IF 2% = "Y"
THEN

2680
GOTO 2640

GOSUB 5330

2700 :

2710 :

Tk kAT A Ak h kv bbbk hhdk

" xx LISTED BY STANDARD **

2720 :

2730
2740

2750

T I s e Y R e R R R R s
h

IF LS <> 1

THEN

VT${11) = NV$:
GOTO 2870

2760 :

tokkkkhkkkAhkkhkhkhkhkhkkhkhkvkk

2770 :

2780 :

2790

' %% L ISTED BY ENTRY **

Vokkkkkhkhh kb hkkhhhkk Ak kkhk

Program continued

19

2800
2810
2820
2830
2840

2850

2860
2870
2880

2890 :

business

PRINT LBS
INPUT VTS$(11)
GOSUB 5350
7% = INKEY$
1E Z$ = upm
THEN

2680
iF Z$ = Hyw
THEN

2870
GOTO 2830
GOSUB 5330

U kkkhkhkhhhkhhhdhhdhhhkkdh

2900 :

' %% CAPTURE DOGS **

2910 :

T kkkkkhhkkhkhkkkhhkkhdhk

2920 :

2930
2940
2950

2960

2970
2980

2990
3000
3010
3020
3030
3040
3050

3060

3070
3080
3090
3100
3110
3120

3130
3140

3150

3160

3170

3180
3190

PRINT “DOGS (Y/N)?"
2§ = INKEYS

IF 7§ = "N°

THEN

LR
g,

GOSUB 5330
PRINT "HOW MANY DOGS?"
INPUT VT$(12)

GOSUB 5350
1% = INKEY$
IF 2% = "y*"
THEN

3080
IF 2§ = "N"
THEN

3000
GOTO 3040

PRINT “HOW MANY MALE DOGS?"
INPUT VT$(13)
PRINT "HOW MANY FEMALE DOGS?"
INPUT VT$(14)
IF VAL(VT$(12)) = VAL(VT$(13))
THEN

3150
PRINT "COUNT DOES NOT BALANCE"
FOR Z = 1 TO 1000:

NEXT Z:
GOTO 3000
VT$(15) = STR$(PC)
If S$ = nMn

THEN

VT$(18) = "MALE":

GOTO 3450
IF S$§ = "F"

THEN

VT$(18) = "FEMALE":

GOTO 3770
PRINT "ERROR CONDITION":
PRINT “RE-ENTER"
FOR Z = 1 TO 1000:

+ VAL{VT$(14))

20

3200 :

NEXT
GOTO 1

3210 :

Tk kRN RR KA TR AR AR AR AR Rk kAR R ARk Ak khkdhk &

3220 :

*

3230 :

L

3240 :

L

3250 :

3260 :

3270 :
3280 :

3290 :
3300 :

3310 :

3320 :

3330 :

3340 :

3350 :

3360 :

3370

3380 :
3390 :

3400 :

v

3410 :

LI 3

3420 :

POAKRRRARRARR AR ARRARFT AR IR AR Ahhkdhkh sk kk ke hk

3430

3440

1 kkkkhkhkhhkhkrkhkhkhhhkhihd

3450 :

LI 23

3460 :

T kkRhkk Kk kodkokok ko K okok ok ok ok ok ok

NM = NM + 1

3470
3480

3490
3500
3510
3520
35630
3540

VMS$ (M)
VM$ (M
VM (M
VMS$ (M
VMS$ (M
VHS (M
VM$ (M
VMS$ (M
VM$ (M
VMS (M
VMS (M
VHS$ (M
VM$ (M

Z:
050

VT$(1)
VT$(2)
VT$(3)
VT$(4)
VT$(5)
VT$(6)
vT$(7)
VT$(8)
VT$(9)
VT$(10)
vT$(11)
VT$(12)
VT$(13)
Vi$(14)
VT$(15)
VT$(16)
VT$(17)
VT$(18)
VT$(19)
VT${20)

LOAD MALE ARRAY

Tf(

LI SN L T L

b pd bt OO0 D TP WO N

v
)
)
)
)
)
)
3
0
1
2

P i I

)
)
)

HoHon

1):
VT$

- el e e
—
40 A

A Y G s S e e
i D OO SO U B W N

VT$
VT

-
—
L2

-l =l
]

ot) S N e e e e

PRy Oy St
PN

business

NAME

AGE

RESIDENCE THIS YEAR
RESIDENCE LAST YEAR
QCCUPATION

WHERE EMPLOYED
CITIZENSHIP
NATIONALITY

DATE OF REGISTRATION
INFORMANT

LISTED BY

TOTAL DOGS

MALE DOGS

FEMALE DOGS
PRECINCT/WARD
AVAILABLE

AVAILABLE

SEX

PARTY AFFILIATION
VOTER NUMBER

* %

*

*

Program continued

21

3550
3560
3570
3580
3590
3600
3610
3620

3630

3640
3650

3660

3670
3680
3690
3700
3710

3720
3730

business

3740 :

3750 :

3760 :

3770

3780
3790

3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910

3920
3930

3940

VM$ (M + 13) = VT$(14)
VM$ (M + 14) = STR$(PC)
VME (M + 15) = VT$(16)
VMS (M + 16) = VT$(17)
VMS (M + 17) = VT$(18)
VMS (M + 18) = VT$(19)
VYM$(M + 19) = VT$(20)
VM$ (M + 20) = "ZZ1Z1"
GOSUB 4420:
PRINT 8921,"CORRECT (Y/N)?";
FOR X =1 T0 127:

SET (X,45)

SET (X,40):

NEXT X
7% = INKEY$
IF 2$ = “N"

THEN

VN = VN - 1:

GOTO 3680
IF Z$ - uyu

THEN

M =M+ 20:

GOTO 780
GOTO 3640
FOR Z = M TO M + 19
VM$(Z) = W oW

NEXT Z
IF VN <1

THEN

VN = |
GOTO 1050
1 dhkhkKkhhkrhkhkrrARA AL Ak A A A hhkk
‘%% [OAD FEMALE ARRAY **
: I E 222222222282 L 5 & 5 &
NF = NF + 1
VES(F) = VT$(1):
VFS(F + 1) = vT§(2)
VF$(F + 2§ = VT$§3L
VFS(F + 3) = VT$(4)
VE$(F + 4) = VT$(5):
VF$(F + 5) = VT$(6)
VE$(F + 6) = VT$(7):
VF$(F + 7) = vT$(8)
VE$(F + 8) = VT$(9):
VF$(F + 9) = VT$(10)
VFS$(F + 10) = VT$(11):
VES(F + 11) = VT${12)
VES(F + 12) = vT$(13)
VF$(F + 13) = VT$(14)
VE$(F + 14) = STR$(PC)
VF$(F + 15) = VT$(16)
VF$(F + 16) = VT$(17)
VES(F + 17) = vT$(18)
VF$(F + 18) = VT${19)
VF$(F + 19) = VT$(20)
VE$ (F + 20) = “Z111Z1"
GOSUB 4880:
PRINT :
PRINT @921, "CORRECT (Y/N)?";
FOR X = 1 TO 127:

SET (X,45):

SET (X,40):

NEXT X

22

3950
3960

3970

3980
3990
4000
4010
4020

4030
4040

4050

business

Z% = INKEY$
IF Z$ = HNII
THEN
VN = VN - 1:
GOTO 3990
IF 2% = "y"
THEN
F=F + 20:
GOTO 780
GOTO 3950
FOR Z = F TO F + 19
VF§(z) = " v
NEXT Z
IF VN < 1
THEN
VN = 1
GOTO 1050

Vokkh kAR XA AR AR A AR KRk

4060 :

4070
4080
4090
4100

4110
4120

4130
4140

4150
4160

4170
4180
4190
4200
4210

4220
4230
4240

4250
4260
4270
4280
4290

4300
4310
4320
4330
4340

4350
4360

' * REVIEW ROUTINE *

T okkkkkhk bk dk kb h Ak hdd

SM o= M:
SF = F
M= 1:
F =1
GOSUB 5330
PRINT S8%:
PRINT "TO PAGE FORWARD"
Z$ = INKEY$
IF 2§ = » @
THEN
4160 -
GOTO 4130
IF NF = 0
THEN
4240
FOR N = 1 TO NF
GOSUB 4880
F=F+ 19
Z$ = INKEY$
IF 2§ = " "
THEN
4230
GOTO 4200
NEXT N
IF NM = 0
THEN
4320
FOR N = 1 TO NM
GOSYB 4420
M =M+ 19
Z$ = INKEYS
IF 2§ = © ¥
THEN
4310
GOTO 4280
NEXT N
IF NF = 0 PRINT “NO FEMALES"
IF NM = 0 PRINT "NO MALES"
FOR Z = 1 TO 1000:
NEXT Z
M = SM:
F = SF
GOTO 780

Program continued

23

business

4370 :

L}
4380 :

I kkkhkhhhkhhkhkhkhkh A A k%
4390 :

‘% DISPLAY MALES *
4400 :

I khkkkdkhkrkAhhkrk bk hhhhkk
4410 :
4420 CLS
4430 PRINT “NAME: ";VM$(M); TAB(30);"AGE: ";VM$(M + 1); TAB(40);VM$(M

+ 17)
4440 PRINT VUN$;": “";VMS(M + 19);
4450 PRINT TAB(30);PC$;": ";VME(M + 14)

4460 PRINT "RES.(LAST YR): "; TAB(30);VM$(M 2)
4470 PRINT “"RES.{THIS YR): "; TAB(30); VM$(+ 3)
4480 PRINT 0C$;": ™; TAB{30);VME(M + 4)
4490 PRINT WE$;": ", TAB(30),VM$(M + 5)
4500 PRINT “CITIZEN: ";VM$(M + 6);
4510 PRINT TAB(30) NAG;": ";yM$(M + 7)
4520 PRINT DR$;": '; TAB(30);VM$(M + 8)
4530 PRINT IN$;": ™; TAB(30);VM$(M + 9)
4540 PRINT LB$;": “; TAB(30);VM$(M + 10)
4550 PRINT PA$;": *; TAB(30);VM$(M + 18)
4560 PRINT DG$;": Yo TAB{15);VME(M + 11);
4570 PRINT TAB(30);DM$;": "; TAB(40);VME(M + 12);
4580 PRINT TAB(50); DF$,": "5 TAB{60);VYME(M + 13)
4590 RETURN
4600 :
Ll
4610 :
T khkkkAXRAkEkrAXA Nk kkk
4620 :
' % PRINT MALES ~*
4630 :
' hhkkkkdhkhhhkhhkkXAhk&
4640 :
4650 LPRINT)“NAME: "LVM$ (M) TAB(30);"AGE: “;VM$(M + 1); TAB(40);VM3(
Mo+ 17
4660 LPRINT VN§;": ";VME(M + 19);
4670 LPRINT TAB(0); PC$ e MLVME(M + 14)
4680 LPRINT "RES. (L/\QT Y“) T TAB({30);UME(M + 2)
4690 LPRINT "RES.{THIS YR): "; TAB{30);VM$(M + 3)
4700 LPRINT OC§;": "3 TAB(30) VMS (M + 4)
4710 LPRINT WE$;": "; TAB(30);VM$(M + 5)
4720 LPRINT "CITIZEN s TAB(BO) VM$ (M + 6)
4730 LPRINT NAS$;": “; TAB(30) VM$(M +7)
4740 LPRINT DR$;": “; TAB(30);VM$(M + 8)
4750 LPRINT IN§;": "; TAB(30);VM$(M + 9)
4760 LPRINT LB§;": " TAB§30§ VM$EM + 10;
4770 LPRINT PAS;": ", TAB(30);VvME(M + 18
4780 LPRINT DG$;": “; TAB(10);VME(M + 11);
4790 LPRINT TAB(30) DM$ Woots TAB(40);VME(M + 12);
4800 LPRINT TAB(50);DF$;": "; TAB(60);VM${M + 13)
4810 LPRINT ™ ":
LPRINT ™ "
4820 RETURN
4830
4840 :
1 okkkkkhkhrhkkk bk kA dkh bk k ok
4850 :
' * DISPLAY FEMALES *
4860 :
I kAR AEKRIEAA R ARk kA XA E R AL
48705
4880 CLS

24

business

4890 PRINT ;NAME: "SVES(F); TAB(30);3"AGE: “;VF$(F + 1); TAB(40);VF$(
F + 17
4900 PRINT VN$;": “;VF$(F + 19);
4910 PRINT TAB(30);PC$;": ";VF$(
4920 PRINT “RES.(LAST YR): “; TA
4930 PRINT “"RES.{THIS YR): "; TA
4940 PRINT 0C$;": “; TAB(
4950 PRINT WES$;": "; TAB(
4960 PRINT “"CITIZEN: “;VF
4970 PRINT TAB(BO) NA$ "
4980 PRINT DRS$;" 5 B(0
4990 PRINT IN$;": "5 TAB{30
5000 PRINT LB$;": “; TAB(30
5010 PRINT PA$;": "; TAB{30);VF
5020 PRINT DG$;": "; TAB(15);VF$
5030 PRINT TAB(30); DM$ "1 ", TAB
5040 PRINT TAB(50);DF3; o "; TAB
5050 RETURN
5060

5070 :

U o kkkkhhkkhrdhhkrhkhrk
5080 :

' * PRINT FEMALES *
5090 :

Pohkkkkkkk kAR h A A kAR AR

5100 :
5110 %PRINT ;NAME: “3VES(F); TAB(30);;"AGE: ";VF$(F + 1); TAB(40);VF$
F + 17

5120 LPRINT VN$;": ";VF$(F + 19);

5130 LPRINT TAB(30);PC$;": “;VF$({F + 14)

5140 LPRINT "RES.(LAST YR): ", TAB(30);VF$(F + 2)
5150 LPRINT "RES.(THIS YR): “; TAB(30):VF$(F + 3)
5160 LPRINT 0C$;": "; TAB(30);VF$(F + 4)

5170 LPRINT WE$;": "; TAB(30);VF$(F + 5)

5180 LPRINT "CITIZEN: “; TAB(30);VF$(F + 6)

5190 LPRINT NA$;": "; TAB(30):VF$(F + 7)

5200 LPRINT DR$;": "; TAB(30);VF$(F + 8)

5210 LPRINT IN§;“: “; TAB(30);VF$(F + 9)

5220 LPRINT LB§;": "; TAB(30);VF$(F + 10)

5230 LPRINT PA§;“: "; TAB(30);VF$(F + 18)

5240 LPRINT DG$-"' “y TAB{10);VF$(F + 11);

5250 LPRINT TAB(30);DM$;": ", TAB({40);VF§(F + 12);
5260 LPRINT TAB{50);DF$;": “; TAB{60);VF$(F + 13)

5270 LPRINT :

LPRINT " "
5280 RETURN
5290 :

5300 :
+ FRARAKKRTARR AR A A RA A A A A A AR A A A A AR KRR A KK Kok &k &k
5310 :
© *% CLEAR SCREEN AND SHIFT PRINT SIZE **
5320 :
5330 CLS :
PRINT CHR$(23):
RETURN
5340 :

! LR EEE R R R R R R R R R RS R R R R R R R R R R R U RO Sty

5350 PRINT "CORRECT (Y/N)?":

RETURN
5360 :
R R RS SRR R e R R TRy L R PR R R R R g e
5370 :
5380 EN$ = “ENTER "
5390 AG$ = “AGE "
5400 RA$ = "RESIDENCE ADDRESS AS OF * Program continued

25

business

5410 J1$ = “JANUARY 1, "

5420 TY$ = “THIS YEAR (NO COMMAS)
5430 LY$ = "LAST YEAR (NO COMMAS)
5440 0C$ = "OCCUPATION "

5450 WES$ = "WHERE EMPLOYED "

5460 CZ$ = "CITIZEN OF U.S. (Y/N)?2"
5470 NA$ = "NATIONALITY "

5480 DR$ = "DATE OF REGISTRATION "
5490 IN$ = "INFORMANT "

5500 LB$ = “LISTED BY "

5510 DG$ = "DOGS (NUMBER) "

5520 DM$ = "MALE "

5530 DF$ = "FEMALE "

5540 PA$ = "PARTY AFFILIATION"
5550 PD$ = "DEMOCRAT"

5560 PR$ = “REPUBLICAN"

5570 PI$ = "INDEPENDENT"

5580 PO$ = "OTHER"

5590 PW$ = "

5600 SB$ = "PRESS THE SPACE BAR "
5610 VNi = "VOTER NO. "

5620 =0

5630 PC$ = "WARD/PCT NO. "

5640

=0
5650 25$ = "Z27Z11"
5660 RETURN
5670 :
t Ak kAR AR AR AR AR AAA R A RN ARk Ak kR kR k ARk hrhhh bk ke khk
5680 :
* %% THIS IS THE MENU RETURN TEST
5690 IF MR$ = "99"
THEN
780
5700 RETURN
5710 :

5720 :

T R R T Y
5730 :
' *kx SORT COMBINED ARRAY SUBROUTINE **

5740 :
R L Ll g S T

5750 :
5760 GOSUB 5330:

GOSUB 7830:

SS = 0:

W = 0:

TL = 0
5770 PRINT “SORTING THE ARRAY"
5780 FOR N = 1 TO 440 STEP 20
5790 TL = TL + 1
5800 IF AV$(N) < = AVE(N + 20)

THEN
5910
5810 IF 5S = 0 AND TL = NM + NF
THEN
5960
5820 SS =1
5830 FOR Z = N TO N + 19
5840 VT$(W) = AV$(Z)
5850 PRINT ©128,"
5860 PRINT @128,VT$(W)
5870 AV$(Z) = AVS(Z + 20)
5880 AVS$(Z + 20) = VT$(W)

5890 W=HW=+1
5900 NEXT Z
5910 IF TL = NM + NF
THEN
AVS((TL * 20) + 1) = Z5%:

26

§920
5930
5940

5950
5960
5970

5980
5990

6000

6010
6020

6030

6040
6050

6060

6070

6080
6090
6100
6110
6120
6130
6140
6150
6160
6170

6180

6190

6200
6210

6220 :

6230
6240
6250
6260
6270
6280

6290

business

GOTO 5940

W =20

NEXT N
IF §§ =1
THEN

5760
SD =1
RETURN

b okkkkhkkhkhhkhkkkhkkkhhkkhkhhhhhkhhhkkhhkkhkkhkkhhhkkkdhhhdh

GOSUB 7880
IF SD =1

THEN

6060
GOSUB 5330:
PRINT “SORT THE DATA (Y/N)?"
Z$ = INKEYS
IF Zs = NYN

THEN

GOSUB 5760:

GOTO 6050
IF Zs = WNM

THEN

6060
GOTO 6010
PRINT :
PRINT “DATA SORTED"
M 1:
F 1:
4 1
GOSUB 5330:
PRINT :
PRINT “DISPLAY OPTIONS:"
PRINT
PRINT “<F>EMALE REGISTRANTS"
PRINT
PRINT “"<M>ALE REGISTRANTS"
PRINT
PRINT “<A>LL REGISTRANTS"
PRINT
PRINT ®“SELECT: “;
2% = INKEYS
IF 2% = "A" PRINT Z%:
GOSUB 6250:
GOTO 780
IF Z$ = "F" PRINT 2$:
GOSUB 6460:
GOT0 780
IF Z$ = "M" PRINT 2%:
GOSUB 6610:
GOTO 780
GOTO 6160

#ono#

Pokkkkkkhkkkhhk kA hokkk

| % DISPLAY ALL *

Pokkkk kAR AARRR AR Ak

FOR N = 1 TO 440 STEP 20
F

M

IF AVS(N) = 15%
THEN

6400

IF AVE(N + 17) = “MALE"
THEN

6340
FOR Z = N TO N + 19

Program continued

27

6300
6310
6320
6330

6340
6350
6360
6370
6380

6390
6400
6410
6420
6430

6440

business

VF$(F) = AVS(Z)
F=F+1
NEXT Z
GOSUB 4880:
GOSUB 7760:
GOTO 6390
FOR Z = N TO N + 19
VM$ (M) = AVS$(Z)
M= M+ 1
NEXT Z
GOSUB 4420:
GOSUB 7760
NEXT N
RETURN

'
Vokkkkkkkhkkhhkokkkhkdokk

| % DISPLAY FEMALE *

I odhkkkddkrhhbhhkkkhrkhk

6450 :

6460
6470
6480

6490

6500
6510
6520
6530
6540

6550
6560
6570
6580
6590
6600
6610

66120
6630

6640

6650
6660
6670
6680
6690

6700
6710
6720
6730

6740

FOR N = 1 TO 440 STEP 20

F=1
IF AVS(N) = Z5%
THEN
6560
IF AVS(N + 17) = "MALE"
THEN

NEXT Z
GOSUB 4880:
GOSUB 7760
NEXT N
RETURN

Pokkkkkodkok ok ok kokok ko ok ko ok

" % DISPLAY MALE *

I kkhkkkhkkkkhkhhkhhrihd

FOR N = 1 TO 440 STEP 20
M= 1
IF AVS(N) = 75%
THEN
6710
IF AVS(N + 17) = "FEMALE"
THEN
6700
FOR Z = N
VME (M) =
Moo= M+l
NEXT I
GOSUB 4420:
GOSUB 7760
NEXT N
RETURN

TO N + 19
AV$(Z)

)
I kwkkkhkhhdhbhhkdrhd

© % PRINT OPTIONS *

28

business

6750 :

Pokk kR AARAE R A Rk h &

6760 :

6770
6780

6790

6800
6810

6820

6830
6840

6850

6860
6870
6880
6890
6900
6910
6920
6930
6940
6950

6960
6970

6980
6990

7000
7010

7020

7030
7040
7050
7060
7070
7080

7090
7100
7110
7120
7130
7140
7150
7160

7170

7180 :

7190
7200

GOSUB 7880
IF SD =1
THEN
6840
GOSUB 5330:
PRINT "SORT THE DATA (Y/N)?2"
Z$ = INKEY$

IF 72§ = "Y*
THEN
GOSUB 5760:
GOTO 6840
IF 72§ = "N
THEN
6840
GOTO 6800
M= 1:
F=1:
P =1
PRINT :
PRINT "PRINT OPTIONS:"
PRINT

PRINT "<F>EMALE REGISTRANTS"
PRINT

PRINT “<M>ALE REGISTRANTS"
PRINT

PRINT “<A>LL REGISTRANTS"
PRINT

PRINT "SELECT: ";

1% = INKEY$

IF 7% = “A" PRINT Z%:

GOTO 7000

IF 71§ = "F" PRINT Z%:

GOTO 7190

IF 2§ = “"M" PRINT 1$:

GOTO 7310

GOTO 6940

SR E SRR L s EE L NS

FOR N = 1 TO 440 STEP 20
IF AV$(N) = Z5%
THEN
780
IF AVS(N + 17) = "MALE"
THEN

7110
We=1
FOR Z =
VF$ (W)
W= W+
NEXT Z
F=1:
GOSUB 5110
NEXT N

N TO N + 19
= AVS$(I)
1

M= 1:
GOSUB 4650
GOTO 7090

I o dkkkkdbhhhddoAhh kb hkid

FOR N = 1 TO 440 STEP 20
IF AVS(N) = Z5%

Program continued

29

business

THEN
780
7210 IF AVS(N + 17) = "MALE"
THEN
7280
7220 W = 1
7230 FOR Z = N TO N + 19
7240 VF$(W) = AV$(Z)
7250 W o= W + 1
7260 NEXT Z
7270 F = 1:
GOSUB 5110

7280 NEXT N
7290 GOTO 780
7300 :

R A R
7310 FOR N = 1 TO 440 STEP 20
7320 IF AV$(N) = Z5%

THEN
780
7330 IF AVS(N + 17) = "FEMALE®
THEN
7400
THEN
7980
7340 W =1
7350 FOR Z = N TO N + 19
7360 VMS(W) = AV$(Z)
7370 W= W + 1
7380 NEXT 2
7390 # = 1:
GOSUB 4650
7400 NEXT N
7410 GOTO 780
7420 :

Pokhk Rk ok kR Ak khk kA kI A Ak K

7430 GOSUB 5330
7440 PRINT "DO YOU WISH TO"
7450 PRINT "PREPARE A TRANSACTION"
7460 PRINT "TAPE (Y/N)?"
7470 Z$ = INKEYS
7480 IF 7% = "Y" PRINT "WRITING TRANSACTION TAPE":
GOTO 7570
7490 IF 2% = "N"
THEN
7560
7500 GOTO 7470
7510 :

7520

LR 22 RS R SR A TR T RS R R o
7530

' * PREPARE TRANSACTION TAPE *
7540

Tokhkkkkhkdk Ak Ak Ak Ak I Ak kb khkkkk ok ok
7550 :
7560 END
7570 PRINT @256, "PREPARE TAPE - PRESS SPACE"
7580 Z$ = INKEY$
7590 IF 2§ = " "

THEN

7610

7600 GOTO 7580
7610 FOR N = 1 TO 440 STEP 20
7620 PRINT @256,"
7630 FOR Z = N TO N + 19
7640 PRINT # - 1, AV$(Z)
7650 PRINT @256, AVS$(Z)
7660 NEXT Z

30

7670
7680
7690

7700
7710

7720
7730

business

If AV$(Z) = 15%

PRINT :
PRINT "TRANSACTION TAPE COMPLETE"

7740 :

7750
7760

7770
7780

7790

END
i P R R R R EEEEEEE ST 2
© » STEP THE SCREEN *
’ P EEEEEETE R E X 5 & 8
:
PRINT @915,"SPACE BAR TO CONTINUE"
7$ = INKEYS
IF Z$ = 1 "
THEN

RETURN
GOTO 7770

7800 :

b ok kkhkkk Rk ARR A A kA A AR XA A Ak AXH AN

7810 :

' % CLEAR TRANSACTION ARRAY *

7820 :

7830
7840

T okkkkkhk Ak Ak hkhk kA A Ak kA AR R AR AT XK

FOR N =1 TO 20
VT$(N) PO

Program continued

31

business

7850 NEXT N
7860 RETURN
7870 :
Vokddekk ok kR R R A Rk ok ok Rk kR kK ke ke ok ke ok ke ok ok
7880 If CL = 1
THEN
8070
7890 IF SD = 1
THEN
8070
7900 GOSUB 5330:
PRINT "COMBINING THE LIST":

PRINT
7910 IF NF = 0 PRINT “NO FEMALES"
7920 IF NM = 0 PRINT "NO MALES"
7930 IF NF = 0 AND NM = 0
THEN
780

7940 FOR N = 1 TO 220
7950 IF VM$(N) = Z5%
7960 AVS(N) = VM$(N)
7970 NEXT N

7980 W = N
7990 FOR N = 1
8000 AVS(W) =
8010 IF VES(N)

8020 W = W + 1

8030 NEXT N

8040 PRINT "LIST COMBINED"

8050 FOR Z = 1 TO 500:
NEXT Z

8060 CL = 1

8070 RETURN

32

EDUCATION

Keeping Track—
Student Scheduling and Attendance
Part I

Keeping Track—
Student Scheduling and Attendance
Part II

33

EDUCATION

Keeping Track—
Student Scheduling and Attendance
Part 1

by Ulderic F. Racine

eeping Track is a series of 13 programs that perform two primary func-

tions. First, they allow you to create student class schedules. The class
schedules can be entered by student, or by teacher and period as a class
roster. Second, you can keep attendance data on students. The data can be
entered by student or by teacher and period. I developed the series as part of
an educational management information system that includes enrollment
records, class attendance, and individual education plan management and
review.

The programs were designed to provide you with maximum flexibility.
The method of schedule input, attendance input, the number of class
periods per student, the number of teachers, and the number of class periods
for a full day’s attendance credit are all user-defined. The minimum system
requirements for running the programs are a 48K Model I with two drives or
a 48K Model III with one drive. The number of students it can handle is
theoretically limited to 999. I would suggest, however, that if you plan to
keep schedule and attendance data on more than 330 students with eight or
more class periods per day, you should consider creating two or more
separate data files by grade or other natural division of the data.

Part I of the series explains how the individual programs work. The pro-
grams presented in each part are:

Part1

Master menu (CLASMENU)
Schedule initialization (SCHEDINT)
Schedule input by teacher (TEASCHED)

Part 11

Schedule input by student (STDSCHD)
Schedule change program (STDCHANG)
Printout of class roster by teacher (PNTTEACH)

Part IX

Attendance initialization (ATTENDIT)

Attendance input by teacher (TEATTEND)
Printout of class schedules by student (PNTSTCHD)
Printout by class name (PNTCLASS)

35

education

Part IV

Attendance input by student (STDATEND)

Printout of year-to-date attendance (PNTATEND)

Teacher name change (TEACHANG)
The programs are menu driven. Individual programs will not fit on a reg-
ular DOS disk. If you plan to use all the programs with a Model I with
TRSDOS 2.3, you should eliminate BACKUP, COPY, and FORMAT. If you
are using NEWDOS 2.1 or NEWDOS 80, you must create a minimum sys-
tem disk. To use a Model II1, you do not need to eliminate any programs.

You may wish to configure the DOS disk to boot the master menu auto-
matically. To do this on the Model I11, enter the following code from DOS
Ready: AUTO BASIC CLASMENU. This allocates three files and boots to
the master menu after you enter the date and time. For NEWDOS 2.1 or
NEWDOS 80, enter: AUTO BASIC RUN “CLASMENU”. With TRSDOS
2.3, you must go through the initialization sequence and run CLASMENU
manually unless you have a utility that will run a BASIC program on
power-up.

Program Listing 1 is the master menu (CLASMENU). It allows you to
load and run any of the options of the program. If you decide to change the
name of any or all of the programs, be sure to change the names in this pro-
gram. The POKE:s in the listing are used with the student record change
program (STDCHANG).

CLASSROOM MASTER MENU

OPTIONS:

0—EXIT THIS PROGRAM

1—ENTER CLASS SCHEDULE RY STUDENT

2—ENTER CLASS ROSTER BY TEACHER

3—CHANGE AN EXISTING STUDENT'S SCHEDULE

4—ADD A NEW STUDENT TO A CLASS ROSTER

5—ENTER ATTENDANCE DATA

6—PRINT SCHEDULE DATA BY STUDENT, TEACHER, OR CLASS
NAME

7——PRINT LISTS OF STUDENTS, TEACHERS, OR CLASS NAMES

8—REPLACE, DELETE, OR CHANGE THE SPELLING OF A
TEACHER'S NAME

9—PRINT YEAR-TO-DATE ATTENDANCE DATA

ENTER OPTION NUMBER? (0-9)

Select the option you wish, type the number, and press ENTER. The
CLASMENU program loads the program to execute the option you select
and begins execution of that program.

Each time you select the scheduling function, options 1 and 2 on the
master menu, the program called Schedule Initialization (SCHEDINT) in

36

education

Program Listing 2 is run. This program first checks the drives for the
schedule data file. If no file is found on any of the drives, or if you have
neglected to put the schedule data disk in a drive, the program displays the
message:

1 HAVE READ THE DISKS CURRENTLY IN THE DRIVES.
THERE IS NO SCHEDULE DATA ON THESE DISKS.
DO YOU HAVE A DISK WITH SCHEDULE DATA? (Y/N)

If you have a disk with data already entered, place it in one of the drives,
type Y and press ENTER. The program responds:

PLEASE PUT THE DISK IN ONE OF THE DRIVES AND PRESS
ENTER.

When you are ready, press the ENTER key. If you have already entered
schedule data, the program reads the management record in the file and
runs the proper program for schedule input.

The second function of the schedule initialization program is to allow you
to configure the scheduling function based on your specific needs. If you
have not previously entered schedule data, enter N when asked if you have a
disk with schedule data. The program then asks you seven questions regard-
ing scheduling. The first three concern which drive will be used to store the
three data files you must create before scheduling can begin.

ON WHICH DRIVE SHALL [WRITE THE STUDENT DATA? (1-2-3)
ON WHICH DRIVE SHALL I WRITE THE TEACHER DATA? (1-2-3)

ON WHICH DRIVE SHALL I WRITE CLASS DATA ? (1-2-3)

Type the drive number on which you wish the computer to store the data
you are entering. Generally, you will want to store the student, teacher, and
class data on the same disk since these files will not fill a disk. Use a blank for-
matted disk for data storage. After the data files have been initialized, it is
no longer necessary to place the data disk(s) in the drive specified above.

The remaining four questions concern the estimated size of the data files.

HOW MANY TEACHERS DO YOU WISH TO ENTER ON
THIS SCHEDULE PROGRAM? (99 MAXIMUM)
ENTER NUMBER

Enter the number of teachers who will be a part of the schedule program.
You should be as accurate as possible, but the program does allow for several
extra names autornatically.

37

education

HOW MANY CLASSES PER STUDENT
DO YOU WANT TO SCHEDULE? (16 MAX)

Enter the number of class periods per day you wish to enter. For example, if
you have seven class periods per day, enter 7 in response to this question.

HOW MANY STUDENTS DO YOU WISH TO
ENTER IN THIS SCHEDULE PROGRAM?

Enter the approximate number of students to be scheduled based on the time
frame you wish to use. If you plan to reenter the data on a semester or
quarterly basis, then the number of students should reflect the number you
expect for the time period. You can base the estimate on the number of
students per grade if you plan to enter them by grade.

DO YOU WANT TO ENTER THE DATA
BY TEACHER AS A CLASS ROSTER

OR
BY STUDENT AS A SCHEDULE

ENTER ‘T" FOR TEACHER OR ‘S’ FOR STUDENT

Data can be entered by teacher or by student. The type of entry you select
has no effect on subsequent programs. If you choose to enter data by teacher
in a class roster format, you can enter attendance by student or by teacher.
The choice of a scheduling format affects only the method of entering the
schedule data. After you answer this last question, the program initializes
the data files on the drives you selected and runs the appropriate scheduling
program.

Program Listing 3 is the class roster input program (TEASCHED). The
scheduling input is by teacher. The program displays each period, and you
enter the name of the class and all students in the class for that period. If you
have entered schedule data, the program first reads the data already
entered. It might take several minutes to respond. If you ended a previous
entry session before entering all the periods for a particular teacher, the pro-
gram begins with the next period to be entered. If you have not entered any
schedule data or you ended a previous session after completing all the
periods for a teacher, the program asks for the next teacher’s name. There is
no limit on the number of students that can be entered in a class. When you
have entered all the students for a class, type FULL and press ENTER when
the program asks for the next student’s name. Before the class roster is ac-
cepted, the program asks you if the roster is correct. At this time, you can
delete a student or change the spelling of a student’s name. The screen for
the input appears as follows:

38

education

TEACHER: CARLSON FRED PERIOD 3
AMERICAN HISTORY

1—BELL MIKE
2—JAMES MARY
3—BARNES JON

ENTER THE FOURTH STUDENT'S NAME OR ‘FULL’ IF DONE
LAST NAME (SPACE) FIRST NAME (SPACE) MIDDLE INITIAL (IF ANY)
(ENTER) STUDENT’S NAME: FULL

39

10
20
30
40
50
100

110

120

130
140

150

160
170

180
190
200

205
210
220
230

240

250
260
270
280
290

education

Program Listing 1. Master menu

© MASTER MENU FOR CLASSROOM II (CLASMENU)
© COPYRIGHT DCTOBER 1, 1981

" ULDERIC F. RACINE

" 2520 S.E. ALEXANDER DRIVE

" TOPEKA, KANSAS 66605

CLEAR 1000:

ON ERROR GOTO 370:

CLS

PRINT TAB(20)"CLASSROOM MASTER MENU":

PRINT :

PRINT "0 EXIT THIS PROGRAM"

PRINT "1 ENTER CLASS SCHEDULE BY STUDENT":
PRINT "2 ENTER CLASS ROSTER BY TEACHER":

PRINT "3 - CHANGE A EXISTING STUDENT'S SCHEDULE"

PRINT "4 ADD A NEW STUDENT TO A CLASS ROSTER":
PRINT "5 ENTER ATTENDANCE DATA"

PRINT "6 PRINT SCHEDULE DATA BY STUDENT, TEACHER,
E":

Encyclopedia
L'Sader

CLASS NAM

PRINT "7 - PRINT LISTS OF STUDENTS, TEACHERS, OR CLASS NAMES"
PRINT "8 - REPLACE, DELETE OR CHANGE THE SPELLING OF A TEACHER'S

NAME "
PRINT "9 - PRINT YEAR-TO-DATE ATTENDANCE DATA":
PRINT
LINE INPUT “<CENTER> OPTION # (0 - 9) ";0P$:
0P = VAL(OP$):
IF OP < 0 OR OP > 9
THEN
PRINT @832, CHR$(31);:
GOTO 140
IF 0P =0
THEN

170
ON OP GOTO 190,190,200,205,220,230,290,350,360
CLS :
CLOSE :
PRINT @448,"YOU MAY REMOVE YOUR DATA DISKS NOW."
END
RUN "SCHEDINT"
POKE 16424,1:
GOTO 210
POKE 16424,5
RUN “STDCHANG"
RUN “ATTENDIT"
CLS :
PRINT ©128,"PRINTOUT OPTIONS :":
PRINT @256,"1 - PRINT STUDENTS BY SCHEDULE":
PRINT "2 - PRINT CLASS ROSTER BY TEACHER":
PRINT "3 - PRINT CLASSES BY STUDENT/TEACHER/PERIOD"
PRINT :
LINE INPUT "CENTER> OPTION # (1 - 3) ";0Q%:
0Q = VAL(0Q$):
IF 0Q <1 OR 0Q > 3
THEN
230
ON 0Q GOTO 260,270,280
RUN “PNTSTCHD"
RUN "PNTTEACH"
RUN “PNTCLASS"
CLS
PRINT @128,"LIST OPTIONS :":

PRINT @256,"1 - LIST ALL TEACHERS CURRENTLY ON FILE":

PRINT "2 - LIST ALL CLASSES CURRENTLY ON FILE":

40

300

310
320

330
340
350

360
370

education

PRINT "3 - LIST ALL STUDENTS CURRENTLY ON FILE":
PRINT

LINE INPUT "CENTER> OPTION # (1 - 3) ";0S%:
0S = VAL(0S$):

IF 0S < 1 OR 05 > 3

THEN

290
ON 0S5 GOTO 320,330,340

POKE 16424,2:
GOTO 210

POKE 16424,3:
GOTO 210

POKE 16424,4:
GOTO 210

RUN "TEACHANG"
RUN "PNTATEND"
RESUME 100

Program Listing 2. Schedule initialization

10

' SCHEDULE INITIALIZATION PROGRAM (SCHEDINT)

20 :

' COPYRIGHT OCTOBER 1, 1981

30 :

' ULDERIC F. RACINE

40 :

' 2520 S.E. ALEXANDER DRIVE

50 :

100

120
130

150

' TOPEKA, KANSAS 66605
CLS :
CLEAR 5000:
ON ERROR GOTO 430:
1% = CHR$(31)
OPEN "R",1,"STDSCHED"
RN = LOF (1):
IF R = 0
THEN
CLOSE
KILL “"STDSCHED":
GOTO 130
UR = 1:
GOTO 420
CLS :
ANG = "'
PRINT @448,"1 HAVE READ THE DISKS CURRENTLY IN THE DRIVES.":
PRINT “THERE IS NO SCHEDULE DATA ON THESE DISKS.":
LINE INPUT "DO YOU HAVE A DISK WITH SCHEDULE DATA ? { Y/N) ";A
N§:

GOSUB 480
IF ANS = "Y"
THEN
150:
ELSE
IF AN$ < > "N
THEN
130:
ELSE
160
CLS ¢
PRINT ©448,"PLEASE PUT THE DISK IN A DRIVE OTHER THAN ZERO.":
LINE INPUT "PRESS <ENTER> ";ANS:
GOT0 100
PRINT @448,7%:
LINE INPUT "ON WHICH DRIVE SHALL I WRITE STUDENT DATA 2?2 (1 - 2
-3) ";DR§: Program continued

41

170

180

240

250

270

300

education

IF VAL{DR$) ¢ 1 OR VAL{DR$) > 3
THEN
CLS :
DR$ = H
GOTO 160
LINE)INPUT ;ON WHICH DRIVE SHALL 1 WRITE TEACHER DATA ? (1 - 2
-3 ";DS$:
IF VAL(DS$) < 1 OR VAL{DS$)} > 3
THEN

wa,

CLS :
Dss = I!H:
GOTO 170
LI?E INPU; "ON WHICH DRIVE SHALL 1 WRITE CLASS DATA ? (1 - 2 -
3 " DTS
1F VAL{DT$) < 1 OR VAL(DTS$) > 3
THEN

GOTO 180
DR$ = "STDSCHED:" + DR$:
DS$ = "TEACHER:" + DS$:
DT$ = "CLASSES:" + DT$
PRINT ?448,Z$;"HON MANY TEACHERS DO YOU WISH TO SCHEDULE ? (99 M
AXIMUMY ":
LINE INPUT "TYPE NUMBER. PRESS <ENTER> ";NT$:
NT = VAL(NT$):
IF NT ¢ 1
THEN
250:
ELSE
IF NT > 99
THEN
250:
ELSE
IF NT + 10 < 99
THEN
NT = NT + 10:
ELSE
NT = 99
PRINT @448,7%;:
LINE INPUT "HOW MANY CLASSES PER STUDENTDO YOU WANT TO SCHEDULE
? {16 MAX) ";NP§:
NP = VAL{NP$):
IF NP ¢ 1 OR NP > 16
THEN
260
PRINT @448,725%;:
LINE INPUT "HOW MANY STUDENTS DO YOU WISH TO ENTER IN THIS SCHED
ULE PROGRAM ? ";NS$:
NS = VAL(NSS$):

IF NS <1
THEN
270:
ELSE
NS = NS + 15

PRINT ©448,1%;:
PRINT "DO YOU WANT TO ENTER THE DATABY TEACHER AS A CLASS ROSTER
ORBY STUDENT AS A SCHEDULE ?°
PRINT :
PRINT “TYPE 'T' FOR TEACHER OR 'S' FOR STUDENT *
LINE INPUT "PRESS <ENTER> ";ANS$:
AN$ = LEFT$(AN$,1):
IF AN§ = "T" OR AN$ = “s"
THEN

42

310

320

330

340

350
370
380
390

400
410

420

430

440
450
4690

470
480

education

IF AN$ = "s°
THEN

sTQoP

OPEN “R",1,DR$§:
OPEN "R",2,DS$:
OPEN “R"“,3,DT$

FIELD 1,2ASFA$, 2ASFBS$,2ASFCS, 2ASFDS, 2ASFES, 2ASFGS, 2ASFHS, 2ASF1S,
2ASFJ$, 2ASFKS
LSET FA$ = MKI$ (T):
LSET FB$ = MKI§ (FS
LSET Fci = MKIi UF
LSET FD$ = MKI$ (NT
LSET FE$ = MKIS énc;
LSET FG$ = MKI$ (NP
LSET FH$ = MKIS$ (RN)
LSET FI$ = MKI$ (Q)
LSET FJ$ = MKI$ (NS)
LSET FK$ = MKI$ (PN)
PUT 1,1
CLOSE :
IFT =1
THEN

RUN "TEASCHED":
ELSE

RUN "STDSCHD"
FIELD 1,2ASFAS$:
GET 1,1:
T = CVI {FAS$):
GOTO 410
CLS
PRINT @394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
MCALLED ‘'SCHEDULE INITIALIZATION'."
PRINT TAB(5)"ERROR TYPE = "; ERR / 2 + 1
PRINT TAB(5)}"ERROR LINE = "; ERL
FOR V = 1 TO 5000:
NEXT V
RESUME 350
AN$ = LEFTH(AN$,1):
RETURN

Program Listing 3. Schedule input by teacher

10 :
0 ' SCHEDULE INPUT BY TEACHER (TEASCHED)

© COPYRIGHT OCTOBER 1, 1981 Program continued

43

30

education

" ULDERIC F. RACINE

40 :

50
100

120
130
140

150
160
170

190
200
210

220

230
240
250
260

270
280
290

300
310
320

330
340

350
360

' 2520 S.E. ALEXANDER DRIVE

' TOPEKA, KANSAS 66605

CLS :

PRINT CHR$(23):

PRINT TAB(2)“SCHEDULE INPUT BY TEACHER'

CLEAR 2000:

UR = 1:

GOTO 130

CLEAR T

OPEN "R",1,"STDSCHED"

FIELD 1,2ASFA$,2ASFBS$,2ASFCS, 2ASFDS, 2ASFES, 2ASFGS, 2ASFHS, 2ASFIS,

2ASFJ$, 2ASFKS

GET 1,1
= LOF (1)
= CVI (F8%)
= CVI (FC$)

NT = CVI {FD$):
= (VI (FE$):
= CVI (FG$):
= (FJs)
= (FK$)

T = (NT * 15) + (NC * 15) + (NS * FS) + 1000:
GOTO 120

DIM TN$(NT),CNS(NC),SNS(NS),ST$(30)

ON ERROR GOTO 1660

IF TX < 2

THEN
NT
PN
NC
NS =
CLOSE
GOTO 560

OPEN "R",2,"TEACHER":

RA = 1:

Q1 = 0:

nowon

OO0

5
(G)ASDUMMY$, 25ASALS
STRING$(25,88)

X =X + 1
FOR Y = 1 T0 25
IF MID$(ALS,Y,2) = " "
THEN
TNS(X) = LEFT$(ALS,Y - 1):
GOTO 320

(]

GOTO 230
OPEN "R",3,"CLASSES":

0
Q1 * 25
D 3,{G)ASDUMMY$,25ASA2$

44

education

370 GET 3,RA
380 IF A2% = STRING$(25,88)
THEN
NC = X:
GOTO 460
390 X = X + 1
400 FOR Y = 1 T0O 25
410 IF MID$(A2%,Y,2) =" v
THEN

CN$(X) = LEFT$(A2S,Y - 1):
GOTO 440

420 NEXT Y

430 CN$(X) = A2$

440 Q1 = Q1

450 GOTO 350
460 IF TX > 1

470

480 G = Q1 * FS
490 FIELD 1,(G)ASDUMMYS, (FS)ASA3S
500 GET 1,RA
510 IF A3% = STRING$(FS,88)

THEN

NS = X:

CLOSE :

GOTO 560
520 X = X + 1
530 SN$(X) = A3$
540 Q1 -

550 GOTO 480
560 CLS :
PRINT “CLASS ROSTER INPUT PROGRAM BY TEACHER":
PRINT ©128,"0PTIONS :":
PRINT €256,“1 - ENTER CLASS ROSTERS BY TEACHER":
PRINT "2 - EXIT THIS PROGRAM AND RETURN TO MASTER MENU"
570 PRINT 8512,%";:
LINE INPUT "CENTER> OPTION NUMBER ";0P§:
0P = VAL(OPS):
IF 0P < 1 OR OP > 2
THEN
PRINT @512, CHR$(31);:
GOTO 570
580 ON OP GOTO 590,1550
590 IF PN < > 0
THEN
630
600 PN = 1:
CLS
PRINT @448,"<ENTER> TEACHER'S NAME":
PRINT "LAST NAME <SPACE> FIRST NAME <SPACE> MIDDLE INITIAL (IF A

NY)"“:
NT = NT + 1
610 LINE INPUT "<ENTER> NAME : ";TN$(NT):
vl = 1:
GOSUB 1560:
gFiNH B Program continued

45

education

620 PRINT @448, CHR$(31);:
PRINT “TEACHER'S NAME : “;TN§(NT):
PRINT :
LINE INPUT "IS THIS NAME CORRECT ? (Y/N) ";ANS$:
GOSUB 1710:
IF AN$ = "Y"
THEN
630:

ELSE
IF AN$ < > "N
THEN
620:
ELSE
NT = NT - 1:
GOTO 600
630 CLS :
PRINT TN$(NT) TAB(35)"PERIOD";PN:
81 = NT
640 PRINT @448,"";:
LINE INPUT “<ENTER> CLASS NAME : ";CS$
650 PRINT @448, CHR$(31);:
PRINT "CLASS NAME : ";CS$:
PRINT :
LINE INPUT "IS THIS NAME CORRECT ? (Y/N) ";ANS:
GOSUB 1710:
1F AN = "Y"
THEN
660:

ELSE
IF AN$ < > "N"
THEN
650:
ELSE
PRINT @448, CHR$(31);:
GOTO 640
660 K = LEN(CS$)
670 IF NC = O

THEN
NC = 1:
CN${NC) = CS$:
B2 = NC:
GOTO 710

680 FOR X = 1 TO NC
690 IF LEFTH(CN$(X),K) = CS$
THEN

700 NEXT X:

THEN
D§ = "0" + RIGHT$(STR$(B1),1):
ELSE
D§ = RIGHTS(STR$(B1),2)

720 IF B2 < 10

THEN
D1$ = "00" + RIGHTS$(STR§(B2),1):
GOTO 740

730 IF B2 < 100
THEN
D1$ = "0" + RIGHT$(STR$(B2),2):
ELSE

D1$ = RIGHT$(STR$(B2),3)
740 02% = D§ + D1§
750 CLS

46

education

PRINT TN$(NT) TAB(35)"PERIOD";PN:
PRINT CN$(B2):
PRINT STRING$(62,45):
ST = 0:
Z =192
760 ST = ST + 1
770 PRINT @768, "<ENTER>";ST;"STUDENT'S NAME OR 'FULL' IF DONE"
780 PRINT "LAST NAME <SPACE> FIRST NAME <SPACE> MIDDLE INITIAL (IF A
NY)N
790 LINE INPUT “<ENTER> STUDENT'S NAME : ";ST$(ST)
800 IF ST$(ST) = "FULL"
THEN
ST = ST
1F ST =
THEN
1120:
ELSE
860
810 V1 = 2:
GOSUB 1560:
ST$(ST) = TS$
820 PRINT @768, CHR$(31);:
IF Ug = 1
THEN
840
830 PRINT @Z,ST;" - ";ST$(ST);:
ug = 1:
Z =1 + 35:
GOTO 850
840 PRINT @Z,ST;" - ";ST$(ST):
ugq = 0:
=171+ 29
850 GOTO 760
860 CLS :
uq = 0:
FOR X = 1 TO ST
870 IF UQ = 0
THEN
880:
ELSE
890
880 PRINT X;" -~ ";ST$(X);:
ugQ = 1:
GOTO 900
890 PRINT TAB(35)X;" ~ ";ST$(X):
ug = 0
900 NEXT X
910 IF Ug = 0
THEN
PRINT
ELSE
PRINT
PRINT
920 LINE INPUT "IS THIS CLASS ROSTER CORRECT ? (Y/N) “;AN§:
GOSYB 1710:
IF AN§ = "Y©
THEN
1030:

- 1:
0

ELSE
IF AN$ ¢ > "N"
THEN
860:
ELSE
930
930 GOSUB 1640
940 PRINT :
LINE INPUT “DO YOU WISH TO DELETE ANY OF THE STUDENTS ? (Y/N)
" 3ANS .
GOSuB 1710: Program continued

47

education

IF ANS = "Y'
THEN
950:

ELSE
IF AN§ < > "N
THEN
930:
ELSE
980
950 GOSUB 1640
960 PRINT :
LINE IN;UT "CENTER> THE NUMBER OF THE STUDENT YOU WISH TO DELETE
";ND%:
ND = VAL(ND$):
IF ND < 1 OR ND > ST
THEN
GOSUB 1650:
GOSUB 1640:
GOTO 960
970 ST$(ND) = "":
GOTO 860
980 GOSUB 1640
990 PRINT :
LINE INPUT "DO YOU WISH TO CHANGE THE SPELLINGOF A STUDENT'S NAM
E 2 (Y/N) ";ANS:
GOSUB 1710:
IF AN$ = "Y*
THEN
1000:

ELSE
IF AN§ < > "N"
THEN
980:
ELSE
860
1000 GOSUB 1640
1010 PRINT :
LINE INPUT “<ENTER> THE STUDENT'S NUMBER # ";ND$:
ND = VAL{NDS$):
IF ND <1 OR ND > ST
THEN
GOSUB 1650:
GOSUB 1640:
GOTO 1010
1020 GOSUB 1640:
PRINT :
LINE INPUT "<ENTER> NEW SPELLING : “;TS$:
GOSYUB 1590:
ST$(ND) = TS$:
1030 = 25 + ((PN - 1) * 5):
2:
0 1 70 ST
1040 K N(S T$(X))
1050 FO =1
1060 IF LEFT$(SN$(X1) K} = ST$(X)
THEN
1070:
ELSE
1080
1070 SN$(X1) = LEFTS(SN${X1),Y - 1) + D2§ + RIGHT$(SN$(X1),FS
- (2 + 2)):
ST$(X) = W,
G070 1110
1080 NEXT X1
1090 NS = NS + 1
1100 SN$(NS) = ST$(X) + STRING$(24 - K,32) + STRING$(Y - 25,32)
+ D2% + STRI G$(FS - (Z + 2),32):

=
>~
- mn +

48

education

ST$(X) L W
1110 NEXT X
1120 PN = PN + 1:
IF PN > NP
THEN
PN = 0
1130 AN§ = "":
CLS
1140 IF PN = 0
THEN
PRINT @448,"";:
LINE INPUT "ARE YOU READY TO ENTER ANOTHER TEACHER 2?2 { Y/N) "
3 ANS:
GOSUB 1710:
IF ANS = "Y¥
THEN
590:

ELSE
IF AN$ < > "N"
THEN
1130:
ELSE
1160
1150 PRINT @448,"ARE YOU READY TO ENTER THEY;PN;"PERIOD":
PRINT "FOR ";TN$(NT);:
LINE INPUT ™ 2 (Y/N) ";ANS:
GOSUB 1710:
IF AN$ = "y»
THEN
630:

ELSE
IF ANS < > "N
THEN

1130:
ELSE
1160
1160 OPEN "R",1,"STDSCHED"
1170 FIELD 1,18ASDUMMY$,2ASB1%
1180 GET 1,1
1190 LSET B1$ = MKIS (PN)
1200 PUT 1,1
1210 RA = 2:
Q=0
1220 FOR X = 1 TO NS
1230 G = ¢ * FS
1240 FIELD 1,{G)ASDUMMYS$, (FS)ASSDS
1250 LSET SD$ = SN$(X)
1260 IF UR = 1
THEN
1280
1270 Q@ = Q + 1:
1F Q = UF
THEN
1280:
ELSE
1300
1280 PUT 1,RA:
Q = 0:
RA = RA + 1
1290 IF UR =1
THEN
1320
1300 NEXT X
1310 SN$(X) = STRING$(FS,88):
UR = 1:
GOTO 1230
1320 OPEN "R",2,"TEACHER":
RA = 1: Program continued

49

education

Q = 0:

UR = 0
1330 FOR X = 1 TO NT
1340 G = Q * 25
1350 FIELD 2,{G)ASDUMMY$, 25ASSES
1360 LSET SE$ = TN$(X)
1370 IF UR =1
THEN
1399
1380 Q =Q + 1:
IF Q=10
THEN
1390:
ELSE

1410
1390 PUT 2,RA:
-0-

Q = 0:
RA = RA + 1
1400 IF UR =1
THEN
1430
1410 NEXT X
1420 TN$(X) = STRING$(25,88):
UR = 1:
GOTO 1340
1430 OPEN “R",3,"CLASSES":
RA = 1:
qQ = 0:
UR = 0
1440 FOR X = 1 TO NC
1450 G = Q * 25
1460 FIELD 3,(G)ASDUMMY$,25ASSF$
1470 LSET SF$ = CN$(X)
1480 IF UR =1
THEN
1500
1490 Q = Q + 1:
IF Q = 10
THEN
1500:
ELSE
1520
1500 PUT 3,RA:
qQ = 0:
RA = RA + 1
1510 IF UR = 1
THEN
1540
1520 NEXT X
1530 CN$(X) = STRING$(25,88):
UR = 1:
GOTO 1450
1540 CLOSE
1550 RUN "CLASMENU"
1560 ON VY1 GOTO 1570,1580
1570 TS$ = TN$(NT):
GOTO 1590
1580 TS$ = ST$(ST)
1590 K = LEN(TS$)
1600 FOR X = 1 TO K

1610 IF ({ MID$(TS$,X,1) = ",") OR (MID$(TS$,X,1) = ".")) AND
MID$(TS$,.X + 1,1) = CHR$(32)
THEN . .

TS$ = LEFT${TS$,X - 1) + RIGHT$(TS$,K - X):

GOTO 1630
1620 IgHéNMID$(TS$,X,1) = ",U) OR { MID$(TSS$,X,1) = “.%)

TS$ = LEFTH(TS$,X - 1) + " " + RIGHTS(TS$, (K - X))
1630 NEXT X:

RETURN

50

education

1640 PRINT @ INT(X / 2) * 64, CHR$(31);:
RETURN
1650 PRINT @ INT{X / 2) * 64, CHR$(31);:
PRINT "THERE IS NO STUDENT # ";ND:
FOR Y = 1 TO 400:
NEXT :
RETURN
1660 CLS :
PRINT @394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
MCALLED 'SCHEDULE INPUT BY TEACHER'."
1670 PRINT TAB(5)"ERROR TYPE = ", ERR / 2 + 1
1680 PRINT TAB(5)"ERROR LINE = "; ERL
1690 FOR V = 1 TO 5000:
NEXT V
1700 STOP
1710 AN$ = LEFT$(ANS,1):
RETURN

51

EDUCATION

Keeping Track—
Student Scheduling and Attendance
Part II

by Ulderic F. Racine

art I of Keeping Track gave the program listings for the master menu,
attendance initialization, and schedule input by teacher. Part II con-
tains the listings for schedule input by student, changing student records,
and printing schedules by teacher.

Program Listing 1 is the schedule input by student program (STDSCHD).
It allows you to enter the data as a schedule by student. The program asks for
the name of the teacher and the class name for each class period. If the name
of the teacher or the class is the same as the previous period, you do not have
to reenter the name. Type S when asked for the teacher or class name and it
will be duplicated on the screen. If a student has no class and no teacher for a
period, enter NT for the teacher’s name and NC for the class name. If you
have previously entered schedule data, the program first reads the teacher
and class names already entered. It may take several minutes to make a re-
sponse. An example of the video display for this program appears below.

STUDENT: JAMES MARY

PERIOD TEACHER CLASS

1 JONES MATH 1

2 BURTON GEOGRAPHY

3 CARLSON AMERICAN HISTORY

ENTER ‘NT” FOR ‘NO TEACHER'

ENTER ‘S IF THE TEACHER IS THE SAME AS THE THIRD PERIOD
LAST NAME (SPACE) FIRST NAME (SPACE) MIDDLE INITIAL (IF ANY)
(ENTER) FOURTH PERIOD TEACHER'S NAME:

Program Listing 2 is the student schedule change program
(STDCHANG). In addition to performing the change function, this pro-
gram also produces listings of students, teachers, and classes. The function
called from the master menu is POKEd into the printer control block and
read by this program. The program then jumps to the appropriate part of
the program based on the PEEK value. The student schedule change pro-
gram allows you to change an existing student’s schedule whether the
schedule was input by teacher or by student. It also allows you to add a new
student to an existing class roster if the data was input by teacher. A new stu-
dent is defined as one whose schedule you have not entered previously. If the

52

education

schedule for the named student already exists, the program automatically
switches to the change function. If you select option 3 to change a student’s
schedule, the screen displays the following:

ENTER THE NAME OF THE STUDENT WHOSE SCHEDULE
YOU WISH TO CHANGE,

LAST NAME (SPACE) FIRST NAME (SPACE) MIDDLE INITIAL (IF ANY)
NAME: JOHNSON FRED

The program searches the student schedule file for the name of the student.
If the student whose name you entered is not on the file, or you entered the
name incorrectly, the program displays the following message:

I CANNOT FIND A STUDENT NAMED JOHNSON FRED
IN MY STUDENT FILE

WHAT SHALL I DO NOW?

1-TRY ANOTHER STUDENT
2-LIST ALL STUDENTS IN THE FILE
3-EXIT THIS PROGRAM

ENTER OPTION NUMBER

If you choose option 1, the program returns you to the previous display. If
you typed the name incorrectly or have another student whose schedule you
wish to see, type the name and press ENTER. If you choose option 2, the
program lists all the students currently on the student schedule file. You
have the option of printing a hard-copy report of the students on file. When
the listing is finished, the program returns to the three options shown above.,
If you select option 3, the program returns to the master menu.

If the program finds the name of the student on the file, it displays the
schedule on the screen. If you have entered more than 10 periods, it displays
the first 10, followed by the remaining periods.

STUDENT: JOHNSON FRED

PERIOD TEACHER CLASS

1 JONES MATH I

2 CARLSON LITERATURE

3 NO TEACHER NO CLASS

4 BURTON HISTORY

5 MORTON SOCIAL STUDIES

6 ADAMS GYM

THIS IS THE CURRENT SCHEDULE INFORMATION I HAVE ON
JOHNSON FRED

IS THIS INFORMATION CORRECT? (Y/N)

1f the information is incorrect, type N and press ENTER. The program asks

53

education

for the number of the period you wish to change, then displays the name of
the teacher currently listed for that period.

THE TEACHER CURRENTLY LISTED FOR PERIOD 4 IS BURTON.
DO YOU WISH TO CHANGE THE TEACHER'S NAME? (Y/N) Y

NEW TEACHER'S NAME

LAST NAME (SPACE) FIRST NAME (SPACE) MIDDLE INITIAL (IF ANY)
ENTER ‘NT’ IF YOU WISH TO DROP THIS STUDENT FROM THIS CLASS
ENTER NAME:

If you wish to drop the student from the class, type NT and press ENTER.
The entry for the teacher for that period will read NO TEACHER. If the
student is changing teachers, type the name of the new teacher and press
ENTER. If the student currently has no class, as Fred Johnson has no class
for period 3 in the above example, the name of the current teacher is
displayed as NO TEACHER. You can enter the name of the teacher in
whose class the student is enrolling.

The program tries to match the name of the teacher with the names of the
teachers already on file. If it does not find a match, it displays all the
teachers on file whose names begin with the first character of the last name
of the teacher entered above. It then asks if you want to add the name of the
new teacher (the name it is unable to match) to the file. If you have typed
the name wrong, type N and press ENTER. The program returns you to the
schedule display of the student and starts over.

The same format is followed for the class name. The program displays the
current class name for the period you select. If there is no class scheduled,
the class name appears as NO CLASS. You can drop a student from a class,
change classes, or add a new class. If the name you enter does not match one
of the classes on file, the program displays all classes beginning with the first
letter of the class you entered. It then asks if you wish to add the new class to
the class file. The program displays the schedule with the changes incor-
porated and asks if the information is correct. If you respond with Y, the
program asks for permission to file the changes made. After it has filed the
changes, the program returns to the menu for the student schedule change
program. If you have no more changes to make, select option 2, and the pro-
gram returns you to the master menu.

Option 4 from the master menu allows you to add a student to an existing
class roster. The program asks you for the name of the student to be added
and then checks the student file to confirm that the student is not currently
enrolled. The program displays the name of the student and the student’s
schedule as in option 3 above. The first time, the program shows NO
TEACHER and NO CLASS for all class periods. The procedure is the same
as changing an existing student schedule. You must select the period and
enter the data.

54

education

Program Listing 3 is used for the teacher roster printout (PNTTEACH).
You can print schedule data by teacher, class, and period for all teachers or
select a specific teacher and any or all of the class periods. As a result, you
can send an update to a specific teacher for a specific period or periods
without printing all the teachers’ rosters. With either choice, you have the
option of printing hard copy. If you choose to print hard copy, the program
offers to generate a test line so you can determine the correct printer setting.
If you generate a test line, the computer continues to ask if you want a line
generated until you type N and press ENTER. The following is an example
of the printout.

TEACHER: JONES
PERIOD: 1 CLASS: MATH I

ABBOT THOMAS
DELL CHARLES
RANGLE JOSEPH

N
TRS-80 HINIIHIIHNI

55

10
20
30
40
50
100
110
120
130
140
150
160

170

200

210
220
230

240
250
260
270

280

290

" STUDENT SCHEDULE INPUT PROGRAM (STDSCHD)

Program Listing 1. Schedule input by student

" COPYRIGHT OCTOBER 1, 1981

" ULDERIC F. RACINE

" 2520 S.E. ALEXANDER DRIVE

CLS

© TOPEKA,

KANSAS 66605

PRINT CHR$(23)

PRINT ©448,"STUDENT SCHEDULE INPUT PROGRAM"
CLASSROOM 11"

PRINT

CLEAR 5000

UR = 1

OPEN “"R",1,"STDSCHED"
FIELD 1,2ASFAS$,2ASFBS,2ASFC$,2ASFDS,2ASFES, 2ASFGS, 2ASFHS, 2ASF IS,
2ASFJ$, 2ASFKS
GET 1,1:

X

DIM TNG(NX),CNG{NY),N$(NP),NTS(NP),NCE(NP)

=
><
[TR VI I T}
[}
=3

LOF (

ON ERROR GOTO 1870

C= 0:
FOR X
READ
NEXT
IF TX
THEN
1440

N
X
>

1
$(x)

1

C=20C+1

CLS :
PRINT
PRINT

ANY)"

PRINT

TO NP:

"STUDENT NAME FORMAT"
"LAST NAME <SPACE> FIRST NAME <SPACE> MIDDLE INITIAL (IF

education

) + (NY * 25) + 2000:

LINE INPUT "CENTER> STUDENT'S NAME
vl o= 1:
GOSUB 1750:

= TX$

IF LEN(SN$(C)) > 24

SNE(C)

THEN

SNS(
IF LEN
THEN

CLS
PRINT
PRINT

LINE INPUT "IS THE NAME CORRECT ? (Y/N

C
{

"THE STUDENT'S NAME IS

)y =
SN$

SN$(C) =

LEFT$(SN$(C),24)
(C)) < 24

SN$(C) + STRING$(24 - LEN(SN$(C)),32)

GOSuUB 1860:
IF AN§ = "

ye

"3SNS(C):

56

Encyclopedia
Xﬂ:Lxggikar“

350

360
370

380
390

400

450
460

480

490

education

THEN
340:

ELSE
IF AN§ < > "“N"
THEN
310:
ELSE
330
LINE INPUT “PLEASE <ENTER> CORRECT NAME. ";SN$(C):
V1 = 1:
GOSUB 1750:
SN§{C) = TX$:
GOTO 290
CLS :
PRINT "STUDENT : ";SN$(C):
Yl = 128
PRINT :
PRINT "PERIOD™; TAB(10)“"TEACHER"; TAB(30)"CLASS":
PRINT
FOR X = 1 TO NP
PRINT @704,"ENTER 'NT' FOR 'NO TEACHER'":
IF X = 1
THEN
390:
ELSE
380
PRINT "ENTER 'S' IF THE TEACHER IS THE SAME AS THE ";N$(X
- 1);" PERIOD."
PRINT)"LAST NAME <SPACE> FIRST NAME <SPACE> MIDDLE INITIAL (IF
ANY)"

PRINT "<CENTER> ";N$(X);
LINE INPUT * PERIOD TEACHER S NAME : “";NT$(X)
Vi = 2:

GOSUB 1750:

NT$(X) = TX$

IF NT$(X) = “NT"

THEN

IF NT$(X) = "S" AND X = 1

PRINT @704, CHR$(31);:
GO0T0 370
IF NT$(X) = "s"
THEN
NTS(X) = NTS(X - 1):
GOTO 450
IF LEN(NT$(X)) > 25
THEN
NT$(X) = LEFT$(NT$(X),25)
PRINT @704, CHR$(31);
IF X =1
THEN
480:
ELSE
470
PRINT "ENTER 'S' IF THE CLASS IS THE SAME AS THE ";N$(X
- 1);" PERIOD.®
PRINT "ENTER 'NC' FOR NO CLASS.":
PRINT "“<ENTER> ";N$(X
LINE INPUT °® LLASS NAME ¢ "SNCE(X)
Vi = 3:
GOSUB 1750:
NCS(X) =
IF NC$(X
THEN
NC$(X) = “NO CLASS"
GOTO 520 Program continued

TX$
= UNC©

57

education

500 IF X = 1 AND NC$(X) = "S*
THEN
450
510 IF NC$(X) = “S*
THEN
NCS (X) = ch(x - 1)
520 IF Y1 + 64 > = 640

THEN
PRINT @192, CHR$(31);:
Yi = 128

530 Yl = Y1 + 64:

PRINT @Y1,X; TAB{1O)NT$(X); TAB(30)NCS(X)
540 PRINT @704, CHR$(31);:

NEXT X
550 IF NP > 8

THEN

Yy = 1:

PN = 8:

ELSE
PN = NP:
Yy =1
560 CLS :
ANG = U
1C = "
570 PRINT “PERIOD"; TAB(10)"TEACHER"; TAB(30)"CLASS NAME":
PRINT STRING$(63,45)
580 FOR X =Y TO PN
590 PRINT TAB(3);X; TAB(10)NT$(X); TAB(30)NCH(X)
600 NEXT X
610 PRINT :
PRINT "THIS IS THE INFORMATION THAT WILL BE RECORDEDON THE RECOR
D FOR PERIODS (";Y;" - ";PN;"
620 LINE INPUT "IS THIS INFORMATION CORRECT 2 (Y/N) ";ANS:
GOSUB 1860
630 IF AN$ = "¥*"
THEN
720:

ELSE
IF AN$ < > "N"
THEN
560:
ELSE
640
§40 PRINT "WHICH PERIOD IS INCORRECT (";¥;" - ";PN;
LINE INPUT ") ";IC$:
NC = VAL(ICS)
§50 IF NC < Y OR NC > PN
THEN

§60 CLS
PRINT 0448, "THE "INS(NC);" PERIOD TEACHER IS - ";NT$(NC)
670 AN = "°:
LINE INPUT "IS THIS NAME CORRECT 2 (Y/N) “;AN$:
GOSUS 1860:
IF AN$ = "y"
THEN
690:
ELSE
IF AN$ < > "N"
THEN
660:
ELSE
680
680 X = NC:
LINE INPUT "<ENTER> CORRECT NAME : ";NT$(NC):
V1 = 2:
GOSUB 1750:

58

710

725

730
735
740

780
790
800

810

820

840
850

education

NTS(NC) = TX$

PR INT 6704, "THE ";N$(NC);" CLASS IS - ";NC$(NC)
X =

ANS =

u ",

LINE INPUT "IS THIS THE CORRECT CLASS NAME ? (Y/N) “;ANS$:
GOSUB 1860:
IF AN§ = "yY"
THEN
560:

ELSE
IF AN$ < > "N
THEN
690:
ELSE
710
LINE INPUT "<CENTER> THE CORRECT CLASS NAME : “;NC$(NC)
Vi = 3:
GOSuUB 1750:
NCS(NC) = TX$:
GOTO 560
IF PN = NP
THEN
730:
ELSE
Y = PN + 1
IF PN + 8 < NP
THEN
PN = PN + 8:
GOTO 560:
ELSE
PN = NP:
GOTO 560
SC =0
SC = SC
IF C1 =
THEN
750:

ELSE
770
IF NT$(1) = "NO TEACHER"
THEN
SN$(C) =
GOTO 850
SN$(C) = SN$(C) + "01":
TN${1) = NT$(1):
€1 = 1:
GOTO 850
IF NT$(SC) = "NO TEACHER"
THEN
SNS(C) = SNE(C) + "00":
GOTO 850
FOR Y =1 T0 C1
YA = LEN(NT$(SC))
IF NT$(SC) = LEFT$(TNS(Y),YA)
THEN
€3 = Y:
GOTO 830
NEXT Y
€l = C1 + 1:
TN$(CL1) = NT$(SC)
€3 = C1
IF €3 < 10

+1
0

SN$(C) + "00":

SN$(C) + "0" + RIGHT$({ STR$(C3),1):
$(C) + RIGHT$(STR$(C3),2):

THEN Program continued

59

education

860:
ELSE
880
860 IF NC$(1) = "NO CLASS"
THEN
= SN$(C) + "000":
70
SN$(C) + "001“:
NCH(1):

870 SN$(C

o D~

G0TO 970
880 IF NC$(SC) = "NO CLASS"

890 FOR Y = 1 TO C2
900 YB = LEN(NC$(SC))

910 IF NC$H(SC) = LEFT$(CNS(Y),YB)
THEN

€3 = Y:
GOTO 940
920 NEXT Y
930 ¢C2 = €2 + 1:
CN$(CZ) = NC$(SC)
£3 =
940 IF c3 < 10
THEN
SN$(C) = SN$(C) + 00" + RIGHTS(STR$(C3),1):
GOTO 970
950 IF €3 ¢ 100
EN
SN$(C) = SN§(C) + "0 + RIGHT$(STR$(C3),2):
GOTO 970
960 SN$(C) = SN$(C) + RIGHT$(STR$(C3),3)
GOTO 970
970 YA = 0:
YB = 0
975 IF SC < NP
THEN
735
980 (LS :
ANG -
990 FOR f

1000 PRINT @448,"";:
LINE INPUT "DO YOU HAVE ANOTHER STUDENT TO ENTER ? (Y/N) "3A
N§:
GOSUB 1860
1010 IF AN$ = "Y" AND C = 10
THEN
CLS
PRINT @448,"PARDON ME FOR A MINUTE WHILE I WRITE SOME DATA. ™:
UR = 1:
GOTO 1040
1020 IF AN$ = "Y"
THEN
250:

ELSE
IF AN$ < > "N"
THEN
980:
ELSE
1030
1030 UR = 2
1040 OPEN "R",1,"STDSCHED"
1050 FOR X = 1 T0 C
1060 G = Q * FS

60

education

1070 FIELD 1,(G)ASDUMMYS$, (FS)ASPS
1072 IF Q=0

THEN

1080

1075 GET 1,RN
1080 LSET P$ = SN$(X)
1090 SN$(X) = "*
1100 PUT 1,RN
1110 IF UR = 3

THEN
UR = 0O:
GOTO 1160
1120 g = Q + 1:
IF Q = UF
THEN
Q = 0:
RN = RN + 1
1130 NEXT X
1140 ¢ = 0:
IF UR = 1
THEN
UR = 0:
CLOSE :
GOTO 250
1150 IF UR = 2
THEN
UR = 3:
SN$(X) = STRING$(FS,88):
GOTO 1060

1160 FIELD 1,2ASX1$,2ASX2%,2ASX3$,2ASK4%,2A5X5%,2ASX6%,2A5K7%,2ASX8%,
2ASX9%,2ASXAS
1170 GET 1,1

1180 LSET X2$ = MKI§ (FS)
LSET X3§% = MKI$ (UF):
LSET X4$ = MKI$ (NX):
LSET X5% = MKI$ (NY):
LSET X6% = MKI$ (NP):
LSET X7$ = MKI$ (RN):
LSET X8% = MKI$ (Q)

1190 PUT 1,1:

CLOSE
1200 OPEN "R",2,"TEACHER"
1210 RO = 1:

q
1220 FOR X = 1 TO C1

1230 G = Q * 25
1240 FIELD 2,(G)

1250 LSET B$ = TN$(X)
1260 PUT 2,R0

1270 Q = Q + 1:

1280 IF UR =1

UR = O0:
G0TO 1310

1290 NEXT X
1300 UR = 1:

TN$(X) = STRING$(25,88):

GOTO 1230
1310 OPEN “R",3,"CLASSES"
1320 RP = 1:

qQ =0
1330 FOR X = 1 T0 €2
1340 G = q * 25
1350 FIELD 3,(G)ASDVS,25ASXCS
1360 LSET XC$ = CN${X)
1370 PUT 3 , RP Pragram continued

61

1380

1390

1400
1410

1420
1430
1440
1450

1460
1470
1480
1490

1500
1510
1520
1530

1540
1650
1560

1570
1580
1590

1600
1610
1620
1630
1640

1650
1660
1670
1680

1690
1700
1710

1720
1730

1740
1750

education

IF UR = 1
THEN
UR = 0:
GOTO 1420
¢ =Q+ 1
IF Q = 10
THEN
Q = 0:
RP = RP + 1
NEXT X
UR = 1:
CN$(X) = STRING$(25,88):
GOT0 1340
CLOSE
RUN “CLASMENU"

OPEN "R",2,"TEACHER"
X = 0:

RO

Q1
G = QL * 25

FIELD 2,({G)ASDUMMYS$, 25ASA1$
GET 2,R0O

IF Al$ = STRING$(25,88)
THEN

1580
X=X+ 1
K = LEN(AL$)
FOR Y = 1 TO K
IF MID$(A1$,Y,2) = " "
THEN
TN$(X) = LEFT$(ALS,Y - 1):
GOTO 1560

#ton

1:
0
1

GOTO 14
€l = X
X = 0:
Q1 0:
RP 1
OPEN "R",3,"CLASSES"
G = 25 * Q1
FIELD 3,(G)ASDUMMYS,25ASA2%
GET 3,RP
IF A2$ = STRING$(25,88)
THEN
1730
X =X + 1
K = LEN(A2$)
FOR Y = 1 TO K
IF MID$(A28,Y,2) = " "
THEN
CN$(X) = LEFT$(A2$,Y - 1):
GOTO 1710

wou

GOTO 1610
cz2 = X:
CLOSE
GOTO 250
TX$ = "

62

1760

1770
1780
1790

1800
1810

1820

1830
1840
1850
1860
1870

1880
1890

education

ON V1 GOTO 1760,1770,1780
TX$ = SN$(C):
GOTO 1790

TX$ = NT$(X):
GOTO 1790
TXS = NCH{X):
GOTO 1790
K = LEN(TX$)
FOR IL = 1 TO K
TF ((MID${TX$,IL,1) = ",") OR (MID$(TX$,IL,1) = "."))
AND MID$(TX$,IL + 1,1) = CHR$(32)
THEN
TX$ = LEFT$(TX$,IL - 1) + RIGHT$(TX$,K - IL):
GOTO 1830
IF (MID$(TXS,IL,1) = “,") OR (MID$(TX$,IL,1) = ".")

TX$ = LEFTS$(TX$,IL - 1) + ™ * + RIGHT$(TXS$, LEN(TXS$)

RETURN

DATA FIRST,SECOND,THIRD,FOURTH,FIFTH,SIXTH,SEVENTH,EIGHTH,NINTH,
TENTH,ELEVENTH, TWELFTH, THIRTEENTH, FOURTEENTH,FIFTEENTH, SIXTEENTH
AN$ = LEFT$(ANS,1):

RETURN

CLS :

PRINT ®394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
MCALLED ‘'STUDENT SCHEDULE INPUT'.™

PRINT TAB(5)"ERROR TYPE = "; ERR / 2 + 1

PRINT TAB{S5)"ERROR LINE = "; ERL

1900 FOR V = 1 TO 5000:
NEXT V
1910 STOP
Program Listing 2. Schedule change program
10
' SCHEDULE CHANGE PROGRAM (STDCHANG)
20 :
' COPYRIGHT OCTOBER 1, 1981
30
' ULDERIC F. RACINE
40 :
' 2520 S.E. ALEXANDER DRIVE
50 :
' TOPEKA, KANSAS 66605
100 CLS :
PRINT ©458,"1 WILL BE WITH YOU IN A MOMENT.":
CLEAR 5000
110 OPEN “R",1,"STDSCHED":

120
130

RN = LOF (1):
IF RN = O
THEN
CLOSE :
KILL “STDSCHED":
GOTO 130
UR = 1:
GOTO 180
CLS
AN$ = M.
PRINT ©448,"I HAVE READ THE DISKS CURRENTLY IN THE DRIVES.":
PRINT "THERE IS NO SCHEDULE DATA ON THESE DISKS.":
LINE INPUT "DO YOU HAVE A DISK WITH SCHEDULE DATA 2 (Y/N) ";AN

$:
GOSUB 3030: Program continued

63

140
150

160
170
180
190

200

220

230
240
250

260
270
280
290

300

320
330

340
350
360
370

380
390

education

IF AN§ = "y*
THEN
150:
ELSE
IF ANS < > "N®
THEN
130:
ELSE
140
RUN "CLASMENU"
CLS :
PRINT @8448,"";:
LINE INPUT “PLEASE PUT THE DISK IN ONE OF THE DRIVES (1 -2-3
) AND PRESS <ENTER> ";ANS:
GOTO 110
CLEAR T
OPEN "R",1,"STDSCHED"
£é$LD i, 2ASFA$,2ASFB$,2ASFC$,2ASFD$,2ASFE$,2ASFG$,2ASFH$,2ASFI$
1,1:
Fs CVl (FB$
UF CVI (FC$
NP CVI (FG$
A$)
424

nouon

T = CVI (F
IF PEEK(16
THEN
CLOSE
UR = 2:
GOTO 1800
OPEN "R",2,"TEACHER":
OPEN "R",3,"CLASSES"
NT = LOF (2) * 10:
NC = LOF (3} * 10:
RN = (LOF (1) - 1) * UF
=1

=5 AND T = 2

CLOSE
T = (NC * 15) + (NT * 15) + (RN * FS) + 2000:
GOTO 160

ON ERROR GOTO 2980

DIM TNS(NT + 10),CN$(NC + 10),SNS(RN + 20)

g = 0:

FS
(G)ASDUMMY$, (FS)ASAS
STRINGS (FS,88)

SN = X:

GOTO 330
X=X+ 1:
SN$(X) = AS$

=Q + 1:
IF Q = UF

5
G)ASDUMMY$, 25ASALS
STRING$(25,88)

NT = X:
GOTO 450
X =X + 1
FOR Y = 1 TO0 25

64

400

410
420
430

440
450

460
470
480
490

500
510
520

530
540
550

560
570
580

590
600

620
630

640

650

660

670
680

education

IF MID§(A1S,Y,2) = " "
THEN
TNS(X)

= LEFT$(A1S,Y - 1):
GOTO 430

YASDUMMY S, 25ASA2S
TRING$(25,88)

(Y2 <> &]

X = X +1

FOR Y = 1 T0 25
IF MID$(A2%,Y,2) = * "
THEN

CN$(X) =
GOTO 550

NEXT Y

CNS(X) = A2%

Q= Q-+ 1:

IF 0 = 10
THEN
Q= 0:
RN = RN + 1

GOTO 460

CLOSE

TN$(O) “NO TEACHER"

CN${0) = "NO CLASS"

W = PEEK(16424):

POKE 16424,67

ON W GOTO 600,1990,2250,2450,1800

LEFT$(A2%,Y - 1):

Y

CLS :
PRINT "STUDENT SCHEDULE CHANGE PROGRAM®:
PRINT @128, "0PTIONS :“:
PRINT €256,"1 - CHANGE A STUDENT'S SCHEDULE":
PRINT "2 - ADD A STUDENT TO AN EXISTING CLASS ROSTER":
PRINT "3 - EXIT THIS PROGRAM"
PRINT @512,"";:
LINE INPUT "<ENTER> OPTION NUMBER ";0P$:
0P = VAL{OP$)
IF OP < 1 OR OP > 3

THEN

600
ON 0P GOTO 630,1800,140
CLS :
PRINT "OPTION # 1 - CHANGE A STUDENT'S SCHEDULE®
PRINT ©448,"<ENTER> THE NAME OF THE STUDENT WHOSESCHEDULE YOU WI
SH TO CHANGE."
P?XNT “LAST NAME <SPAGCE> FIRST NAME <SPACE> MIDDLE INTIAL (IF AN
y
PRINT :
LINE INPUT "NAME :";50%:
K = LEN(S0%)
FOR X = 1 TO SN

IF LEFT$(SN$(X),K) = SO%

THEN

800

NEXT X:

IF XF = 1

Program continued

65

education

THEN
RETURN
700 CLS :
PRINT ©128,"1 CANNOT FIND A STUDENT NAMED °;S0%
710 PRINT "IN MY STUDENT FILE. ™
720 PRINT
PRINT "WHAT SHALL I DO NOW ?°
730 PRINT :
PRINT "1 - TRY ANOTHER STUDENT"
740 PRINT "2 - LIST ALL STUDENTS IN THE FILE"
750 PRINT "3 - EXIT THIS PROGRAM "
760 PRINT
LINE INPUT " <ENTERS OPTION NUMBER ";0P%:
OP = VAL{0P$)
770 OP < 1 OR OP » 3
THEN
700
780 IF 0P = 2
THEN
FG = 1
790 ON 0P GOTO 630,2450,140
800 IF XF = 1
THEN
XF = 9:
RETURN
Y = 25:
7= 27:
IF NP > 10 AND DS = 0
THEN
DIM HT(NP), HN(NP):
DS = 1

810

820 CM -
830 FOR
840 HT(
850 HN{

=1 7O NP
= VAL MID$(SN$(X),Y,2))
= AL(MID$ (SN$(X),Z,3))

> > >
N et =]
e

860 Y

870 NEXT X
880 CLS

890 PRINT “STUDENT :"; LEFT$((SN$(X)
900 PRINT "PERIOD " TAB(10)"TEACHER"
910 PRINT STRINGS$(62,45)

B(35)"CLASSES”

920 TN$(0) = °“NO TEACHER":
CN${0) = "NO CLASS*
930 FOR X1 = 1 TO WP

940 PRINT TAB(3)X1 TAB(IO)TN$(HT(X1)) TAB(30)CNS$ (HN(X1))
950 IF X1 + 1 = 10 AND NP >
THEN
PRINT
LINE INPUT "PRESS <ENTER> TO CONTINUE " JANS
PRINT €192, CHR$(31);
960 NEXT X1
970 IF XF = 2
THEN
XF = 3
980 PRINT ©768,"THIS IS THE CURRENT SCHEDULE INFORMATION I HAVEON "
S0$
990 LINE INPUT "IS THIS INFORMATION CORRECT ? { Y/N) ";ANS:
AN$ = LEFT$(ANS,1):
IF LEFT$(ANS,1) = "y"
THEN
CLS :
GOTO 2680
1000 IF AN$ < > "N“
THEN
880:
ELSE
1010
1010 PR%NT @768 CHR$(31);:
ANS =

66

1020

1030
1040

1050

1060

1070
1080

1090
1100
1110

1120
1130

1140

1150

1160

1170

1180

1190
1200
1210

education

PRINT "WHICH PERIOD DO YOU WISH TO CHANGE ? (1 - ";X1 - 13
LINE INPUT ") “;NCS$:
NC = VAL(NCS)
IF NC < 1 OR NC > X1 - 1
THEN
1010
CLS
PR;NT @448, "THE TEACHER LISTED FOR PERIOD";NC;"IS “;TN$(HT(NC))
ANS = “u.
LINE INPUT DO YOU WISH TO CHANGE THE TEACHER'S NAME (Y/N) 7"
;ANS .
AN$ = LEFT$(ANS,1):
IF AN§ = "Y*
THEN
1050:

ELSE
IF ANS < > "N
THEN
1030:
ELSE
1440
CLS :
PRINT ©448,"NEW TEACHER'S NAMELAST NAME <SPACE> FIRST NAME <SPAC
E> MIDDLE INITIAL {IF ANY)"
PRINT “<ENTER> 'NT' IF YOU WISH TO DROP THIS STUDENT FROM THIS C
LASS."
LINE INPUT "<CENTER> NAME : ";V§$
IF V§ = "NT"
THEN
X1 = 0:
GOTO 1430
K = LEN(V$)
FOR X1 = 1 TO NT
IF LEFTS(TN$(X1),K) = V$
THEN
1430
NEXT X1
CLS :
PRINT "I DO NOT FIND A TEACHER NAMED ";V$:
PRINT "IN MY TEACHER FILE."
FOR X1 = 1 70 500:
NEXT X1:
CLS :
PRINT "THE TEACHER'S NAMES BEGINNING WITH *; LEFT$(VS$,1);" ARE:"

TLS = LEFT$(V$,1):
PRINT
FOR X1 = 1 7O NT
IF LEFTS{TN$(X1),1) = TLS
THEN
1170:
ELSE
1200
IFUQ = 1
THEN
1190
PRINT TN$(X1);:
uQ = 1:

GOTO 1200

PRINT TAB({30)TN$(X1):

ugq = 0

NEXT X1:

PRINT

ANG = "t

PRINT "SHALL I ADD “;V$;"'S":

LINE INPUT "NAME TO THE FILE (Y/N) 7 “;AN$:
AN$ = LEFT$(ANS$,1):

IF AN§ = "y*

THEN Program continued

67

education

1280:

ELSE
IF AN$ < > “N"
THEN
1210:
ELSE
1220
1220 1F XF = 2
THEN
880:
ELSE
CLS
PRINT @128, "WHAT SHALL 1 DO NOW ? “:
0P = 0
1230 PRINT “1 - TRY AGAIN - DISPLAY ";S0%;"'S SCHEDULE AGAIN®
1240 PRINT "2 - TRY ANOTHER STUDENT"
1250 PRINT "3 - EXIT THIS PROGRAM"
1260 PRINT :
LINE INPUT "CENTER> OPTION NUMBER ";0P$:
0P = VAL(OP$)
IF OP <1 O0ROP > 3
THEN
1220
1270 ON OP GOTO 880,630,140
1280 OPEN “R",2,"TEACHER":
RA = LOF (2)
QL = 0
1290 G = Q1 * 25
1300 FIELD 2,{G)ASDUMMY$,25ASVTS
1310 GET 2,RA
1320 IF VT$ = STRING$(25,88)
THEN
1350
1330 Q1 = Q1 + 1:
IF Q1 = 10
THEN
CLOSE :
PRINT "ERROR IN FILE MARKER.":
STOP
1340 GOTO 1290
1350 FIELD 2,(G)ASDUMMY$,25ASVTS
1360 LSET VT$ = V$
1370 PUT 2,RA
1380 IF UR = 1

o

THEN
1420
1390 NT = NT + 1:
TNS(NT) = V§
1400 Q1 = Q1 + 1:
IF Q1 = 10
THEN
Ql = 0:
RA = RA + 1
1410 G = Q1 * 25:
FIELD 2,(G)ASDUMMY$,25ASVTS:
GET 2,RA
VS = STRING$(25,88):
UR = 1:
GOTO 1360
1420 HT(NC) = NT:
GOTO 1440
1430 HT{NC) = X1:
cH = 1
1440 CLS :

PRINT ©448,"THE CLASS LISTED FOR PERIOD";NC;"IS “;CN$(HN(NC))
1450 AN$ = "'
LINE INPUT “DO YOU WISH TO CHANGE THE CLASS NAME (Y/N) ? ";ANS

ANS = LEFTH(AN$,1):

68

education

1F ANS = “y*
THEN
1460:

ELSE
IF AN$ < > "N
THEN
1440:
ELSE
880
1460 CLS :
PRINT ©448,"ENTER 'NC' IS YOU WISH TO DROP THE STUDENT FROM THIS
CLASS™:
LINE INPUT "<ENTER> NEW CLASS NAME :";V$
1470 IF V§ = “"NC"

THEN
XL = 0:
GOTO 1780

1480 K = LEN(VS$)
1490 FOR X1 = 1 TO CN
1500 IF LEFT${CNS{X1),K) = V§

THEN
1780
1510 NEXT X1
1520 CLS

PRINT "I CANNOT FIND A CLASS NAMED “;V$;" IN THE FILE."
1530 PRINT “THE CLASSES BEGINNING WITH "; LEFT$(V$,1);" ARE:"
TLS = LEFT$(VS,1):
PRINT
1540 UQ = 0
1550 FOR X1 = 1 TO CN
1560 If LEFT$(CNS(X1),1) = TLS
THEN

1570:
ELSE
1600
1570 IF UQ = 1
THEN
1590
1580 PRINT CN§(X1);:
uqQ = 1:
GOTO 1600
1590 PRINT TAB(30)CN$(X1):
uqQ = 0
1600 NEXT X1
1610 PRINT

ANs = ww,
PRINT "SHALL I ADD ";V3$:
LINE INPUT "TO THE CLASS FILE (Y/N) ? “;ANS:
ANS = LEFTH(ANS,1):
IF AN§ = “Y"
THEN
1620:

ELSE
IF AN$ < > “N"
THEN
1610:
ELSE
1220
1620 OPEN "R",3,"CLASSES":

LOF (3):
0:

0:

0

1630 G = Q1 * 25

1640 FIELD 3, (G)ASDUMMY$,25ASVTS

1650 GET 3,RA

1660 IF VT$ = STRING$(25,88) Prognunconﬁnued

L
o
[[J T I H

69

1670
1680

1680
1700
1710
1720
1730

1740

1750

1760

1770
1780

1790
1800

1810

1815

1820
1830

education

CLOSE :
PRINT "END OF FILE MARKER ERROR.":
STOP
GOTO 1630
FIELD 3,(G)ASDUMMY$,25ASVTS
LSET VT$ = V§
PUT 3,RA
IF UR = 1
THEN
1760
Ql = Q1 + 1:
IF Q1 = 10
THEN
Q1 =
RA =
G=Ql * 25:
FIELD 3,(G)ASDUMMYS$, 25ASVTS:
GET 3,RA:

0:
RA + 1
*

HN(NC) = CN:

V$§ = STRING$(25,88):
UR = 1:

GOTO 1710

CLOSE

GOTO 880
IFT =1
THEN
1830:
ELSE
CLS
PRINT ©448,"THE FILE INDICATES THAT THE SCHEDULEDATA WAS NOT E
NTERED BY TEACHER.IF YOU WISH TO ADD A STUDENT YOU MUST USE 0P
TION # 1 ON THE MASTER MENU."
PRINT :
LINE INPUT "SHALL I RUN THAT PROGRAM FOR YOU (Y/N) ";ANS:
ANS = LEFT$(ANS,1):
IF AN$ = "y*
THEN
1820:
ELSE
[F AN ¢ > "N"
THEN
1810
IF UR = 2
THEN
RUN "CLASMENU®
[LSE
600
RUN “STDSCHD"
CLS :
PRINT "OPTION # 2 -~ ADD A NEW STUDENT TO AN EXISTING CLASS ROSTE
R":
PRINT @448, "<ENTER> THE NAME OF THE STUDENT YOU WISH TO ADD®

70

education

1840 PR%NT YLAST NAME <SPACE> FIRST NAME <SPACE> MIDOLE INITIAL (IF A
NY)"
1850 LINE INPUT "<ENTER> NAME : “;S0%:
Vv = 1:
GOSUB 1890
1860 XF = 1:
K = LEN(SO$):
GOSUB 670:
IF XF = 9
THEN
1880
1870 XF = 2:
SN$(X) = SO% + STRING$(24 - K,32) + STRINGH(FS - 24,"0"):
G = 1:
GOTO 810
1880 CLS :
PRINT ©448,50%;" IS CURRENTLY ON THE FILE.":
FOR Z = 1 T0 300:
NEXT Z:
XF = 0:
GOTO 810
1890 ON V GOTO 1900,1910
1900 TS$ = SO0%:
GOTO 1920
1910 TS$ = V$

1920 K = LEN(TS$)
1930 FOR Y = 1 TO K
1940 IF (({ MID$(TS$,Y,1) = “,") OR (MID$(TS$,Y,1) = “.")) AND
MID$(TSS,Y + 1,1) = » °
THEN
TS$ = LEFT$(TS$,Y - 1) + RIGHT$(TSS,K - Y):
GOTO 1960
1950 IF ({ MID$(TS$,Y,1) = ",") OR { MID$(TS$,Y,1) = "."))
THEN
TS$ = LEFT$(TS$,Y - 1) + " * + RIGHTS(TSS,K - Y)
1960 NEXT ¥
1970 IF V = 1
THEN
S0$ = TS$
ELSE
V$ = TS$
1980 RETURN
1990 CLS :
PRINT “LISTING OF TEACHERS CURRENTLY ON FILE":
PRINT
2000 PW$ = " ",
PX$ = "##4% %%" + STRING$(22,32) + "%"
3 S
PZ$ = PXS + "% %"+ PXS:
IF UK = 1
THEN
RETURN
2010 UR = O:
GOSUB 2220:
ugQ = 0
2020 [F UR = 0
THEN
G =1
2030 IF UR = 1
THEN

LPRINT "LISTING OF TEACHERS CURRENTLY ON FILE":
LPRINT STRING$(66,45)
2040 FOR X1 = 1 TO NT
2050 IF UQ = 0
THEN
2060:
ELSE

B

2070
2060 PRINT USING PX$;X1,PY$,TNS(X1);:
ug = 1: Program continued

71

education

GOTO 2090
2070 PRINT TAB{30) USING PX$;X1,PV$,TN$(X1):
uQ = 0
2080 IF UR = 1
THEN
LPRINT USING PZ$5X1 - 1,PY$,TN$(X1 - 1),PW$, X1,PY$, TN (X1)
2090 IF UR = 0 AND X1 = G * 22
THEN
PRINT "'
L INE INPUT "PRESS <ENTER> TO CONTINUE";ANS:
PRINT @64, CHR$(31);:
G =G+ 1
2100 NEXT (1
2110 IF UQ = 1 AND UR = 1
THEN
LPRINT USING PX$;X1 - 1,PY$,TN$(X1 - 1):
ug =0
2120 UR = 0
2130 PRINT :
LINE INPUT "PRESS <ENTER> TO CONTINUE ";AL$
2140 CLS
2150 PRINT 8128,"WHAT SHALL I DO NOW ?"
2160 PRINT :
PRINT "1 - LISTING OF STUDENTS“
2170 PRINT "2 - LISTING OF CLASSES"
2180 PRINT "3 - EXIT THIS PROGRAM AND RETURN TO MASTER MENU"
2190 PRINT :
LINE INPUT “"<ENTER> OPTION NUMBER “;0P$:
0P = VAL(OP$)
2200 IF OP ¢ 1 OR OP > 3
THEN
2140
2210 ON OP GOTO 2450,2250,140
2220 AN§ = "":
LINE INPUT "DO YOU WANT A PRINTED LISTING (Y/N) ? ";ANS:
AN$ = LEFT$(ANS,1):
IF AN$ = “y*"
THEN
UR = 1:
GOTO 2230:
ELSE
IF AN§ < > “N®
THEN
2220:
ELSE
PRINT @64, CHR$(31);:
RETURN
2230 PRINT :
ANG = "0
LINE INPUT "SHALL I GENERATE A TEST LINE FOR THE PRINTER (Y/N)
? " ANS:
AN$ = LEFT$(AN$,1):
IF ANS$ = "y*
THEN
2240:

ELSE

IF AN§ < > "N®

THEN
2230:

ELSE
PRINT @64, CHR$(31);:
RETURN

2240 LPRINT "THIS IS A TEST LINEw-wwmomom e oo e e

GOTO 2230

2250 CLS :
PRINT "LISTING OF CLASSES CURRENTLY ON FILE":
PRINT

2260 UR = O:

72

education

GOSys 2220:
ug = 0:
IF UR = 0
THEN
G =1
2270 UK = 1:
GOSUB 2000:
UK = 0
2280 IF UR = 1
THEN

LPRINT “LISTING OF CLASSES CURRENTLY ON FILE":
LPRINT STRING$(66,45)

2290 FOR X1 = 1 70 CN
2300 IF UQ = 0
THEN
2310:
ELSE
2320
2310 PRINT USING PX$;X1,PY$§,CNS(X1);:
ugq = 1:
GOTO 2340
2320 PRINT TAB(30) USING PX$;XL,PY$,CNS(X1):
ug = 0
2330 IF UR =1
THEN
LPRINT USING PZ$;X1 - 1,PY$,CNS(X1 - 1),PW$§,X1,PY$,CNS(X1)
2340 IF UR = 0 AND X1 = G * 22
THEN
PRINT "";:

LINE INPUT "PRESS <ENTER> TO CONTINUE ";ANS:
PRINT @64, CHR$(31);:
G =6+ 1

2350 NEXT X1

2360 IF UQ = 1 AND UR =1

THEN
LPRINT USING PX$;X1 - 1,PY$,CN$(X1 - 1):
uqQ = 0:
UR = 0
2370 LINE INPUT "PRESS <ENTER> TO CONTINUE";ANS:
CLS
2380 PRINT @128, "WHAT SHALL I DO NOW ?"
2390 PRINT

PRINT "1 - LISTING OF TEACHERS"
2400 PRINT "2 - LISTING OF STUDENTS"
2410 PRINT "3 - EXIT THIS PROGRAM AND RETURN TO MASTER MENU®
2420 PRINT :
LINE INPUT “<CENTER> OPTION NUMBER ";0P$:
0P = VAL{OP$)
2430 IF 0P < 1 OR QP > 3
THEN
CLS :
GOTO 2380
2440 ON OP GOTO 1990,2450,140
2450 CLS :
PRINT “LISTING OF STUDENTS CURRENTLY ON FILE":
PRINT
2460 UR = 0:
GOSUB 2220:
uQ = 0:
QP = 0:
IF UR = 0
THEN
G =1
2470 UK = 1:
GOSYB 2000:
UK = 0
2480 IF UR =1
THEN
LPRINT “LISTING OF STUDENTS CURRENTLY ON FILE":
LPRINT STRING$(66,45) Program continued

73

education

249 0 FOR X1 = 1 TO SN
2500 IF UQ = 0
THEN
2510:
ELSE
2520
2510 PRINT USING PX$;X1,PY$, LEFT$(SN$(X1),24);:
ug = 1:
GOTO 2540
2520 PRINT TAB(30) USING PX$;X1,PY$, LEFT$(SN$(X1),24):
ug = 0
2530 IF UR =1
THEN

LPRINT USING PZ§;X1 - 1,PY§, LEFT$(SN$ (XL - 1),24),PH$,X1,PY¥$
, LEFT${SN$(X1),24)
2540 IF UR = O AND X1 = G * 22
THEN
PRINT “*,:
LINE INPUT "PRESS <ENTER> TO CONTINUE ";AN$:
PRINT @64, CHR$(31);:
G =G + 1
2550 NEXT X1
2560 IF UQ = 1 AND UR = 1

LPRINT USING PX$;X1 - 1,PY$, LEFTS(SN$(X1 - 1),24):
g = 0
2570 R = 0:
PRINT
2580 LINE INPUT "PRESS <ENTER> TO CONTINUE “;AN$
2590 (LS
2600 IF FG = 1
THEN
FG = 0:
GOTO 720
2610 PRINT @128, "WHAT SHALL I DO NOW 2"
2620 PRINT :

PRINT "1 - LISTING OF TEACHERS"
2630 PRINT "2 - LISTING OF CLASSES”
2640 PRINT "3 - EXIT THIS PROGRAM AND RETURN TO MASTER MENU®
2650 PRINT :
LINE INPUT "<ENTER> OPTION NUMBER ";0P$:
0P = VAL(0PS)
2660 IF 0P < 1 OR 0P > 3
THEN
2590
2670 ON OP GOTO 1990,2250,140
2680 IF CM = 1
THEN
2700
2690 G0TO 600
2700 CLS :
Mg - ne
2710 IF XF = 3
THEN
PRINT 8448,"SHALL I FILE ";50$;"'S":
60TO 2730
2720 PRINT ©448,"SHALL I FILE THE CHANGES MADE TO ";S0%;"'S"
2730 LINE INPUT "SCHEDULE ? (Y/N) ";AN$:
AN$ = LEFT$(ANS$,1):
IF ANS = »Y°
THEN
2740:

ELSE
IF AN$ < > "N
THEN
2700:
ELSE
CHM = 0:
GOTO 2680

74

education

2740 S1§ = "°
2750 FOR Y = 1 TO NP
2760 IF HT(Y) < 10

THEN
SI$ = SI$ + "0" + RIGHT$({ STRE(HT(Y)),1):
GOTO 2780

2770 SI$ = SI$ + RIGHT$(STR$(HT(Y)),2)
2780 HT(Y) = 0
2790 IF HN(Y) < 10
THEN
SI1$ = SIS + “00" + RIGHT$(STRE(HN(Y)),1):
GOTO 2820
2800 IF HN{Y) < 100
THEN
SI$ = SI$ + "0 + RIGHTS(STRE(HN(Y)),2):
GOTO 2820
; SI$ + RIGHTS(STRS(HN(Y)),3)
=0

2810 SI
2820 HN
2830 NE
2840 SN$(X) = LEFTS(SN$(X),24) + SI$
2850 FR X / Ur:
IF FR - INT(FR) =0
THEN
RN = FR + 1:
Q = UF - 1:
GOTO 2880
2860 IF FR < 1
THEN
RN = 2:
Q=X - 1:
GOTO 2880
2870 Q = X - (INT(FR) * UF) - 1:
RN = INT(FR) + 2
2880 OPEN "R",1,"STDSCHED"
2890 6 = Q * FS
2900 FIELD 1,(G)ASDUMMYS$, (FS)AS C1$%
2910 GET 1,RN
2920 LSET C1$ = SN§(X)
2930 PUT 1,RN
2940 IF XF = 3
THEN
2950:
ELSE
2970
2950 Q = Q + 1:
IF Q = UF

1 D<o

0

2960 X = X + 1

SN$(X)

XF = 0:

GOTO 2920
2970 CLOSE

= STRINGS(FS,88):

0:
0:
SN + 1:
GOTO 600
2980 CLS :
PRINT ©394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE PROGRA
MCALLED 'SCHEDULE CHANGE'."
2990 PRINT TAB(S)"ERROR TYPE = "; ERR / 2 + 1
3000 PRINT TAB(5)"ERROR LINE = "; ERL
3010 FOR V = 1 T0 5000:
NEXT V
3020 STOP
3030 AN$ = LEFT$(ANS,1):
RETURN

I
=
oo

75

education

Program Listing 3. Printout of class roster by teacher

0 5 PRINTOUT CLASS ROSTER (PNTTEACH)
0 E COPYRIGHT OCTOBER 1, 1981

0 i ULDERIC F. RACINE

:Z f 2520 S.E. ALEXANDER DRIVE

' TOPEKA, KANSAS 66605
100 CLS
110 PRINT CHR$(23)
120 PRINT TAB(6)" TEACHER PRINT"
PRINT
130 PRINT TAB(4)"BY STUDENT AND CLASS"
140 OPEN "R",1,"STDSCHED"
150 FIELD 1,2ASX1$,2ASX2%,2ASX3%,2ASX4%,2ASX5%,2ASX6%,2AS5X7$,2A5X8%
160 GET 1,1

170 T = CVI (X1$):

FS = CVI (X2$):

UF = CVI (X3%):

NX = CVI (X4%)

NY = CVI (X5%):

NP = CVI (X6%):

RN = CVI {X7$):

Q = CVI (X8%)
180 X = LOF (1) * UF
190 OPEN "R",2,"CLASSES"

RO = LOF (2) * 10
200 IF UR = 1

THEN
250

210 T = (X * FS) + (RO * 25) + 3000
220 CLOSE
230 CLEAR T
200 UR = 1:

GOTO 140
250 UR = 0

260 ON ERROR GOTO 1300

270 DIM SN$(X),CN$(RO),CS(35),PC(NP)

280 N1
N2 0:
N3 0:
Q = 0:
RN
Ql
RP
RO
Q2
X =0

SC =
290 G = Q *
300 FIELD 1
310 GET 1,R
320 IF DAS
THEN
CLOSE :
GOTO 370
330 N2 = N2 + 1
340 SN$(N2) = DAS
350 @ = Q@ + 1:
IF Q = UF
THEN
G = 0:
RN = RN + 1
360 GOTO 290
370 OPEN "R",2,"CLASSES"
380 G = QL * 25

[T]

wouononow

OCOom-onN

Fs
&(G)ASDU$,(FS)ASDA$
= STRINGS(FS,88)

76

390
400
410

420
430
440

450
460
470
480
490
500

510
520

530

540
550

600
6510

620
630

640
650
660
670

education

FIELD 2, (G)ASDV$,25ASDBS

GET 2,R0O
IF DB$ = STRING$(25,88)
THEN
CLOSE -
6070 880
N1 = N1 + 1
CN$(N1) = DBS
Ql = Q1 + 1:
IF Q1 = 10
THEN
Q1 = 0:
RO = RO + 1
GOTO 380
OPEN "R™,3,"TEACHER"
G = Q2 * 25
FIELD 3, (G)ASDVS$,25ASDCS
GET 3,RP
IF DC$ = STRINGS$(25,88)
THEN
CLOSE
GOTO 880
TS = DCS
Q2 = Q2 + 1
IF Q2 = 10
THEN
Q2 = 0:
RP = RP + 1
CLOSE
N3 = N3 + 1
cp = 0
SC = 0
CN = 0
IF UR = 0
THEN
590
IF UR = 1 AND PC{CP + 1) =1
THEN
600
CP = CP + 1:
Y = Y + 5:
Z =7 + 5:
IF CP + 1 < = NP
THEN
570
ELSE
850
Y = 25:
L= 217

FOR X = 1 TO N2
IF VAL{ MID$(SN$(X),Y,2)) = N3
THEN
620:
ELSE
640
SC = SC + 1:
CS(sS¢C) = X
IF SC = 1
THEN
CN = VAL{ MID$(SN$(X),Z,3))
NEXT X
CLS
P$ = STRING$(60,45)
PRINT P§:
PRINT "TEACHER : ";TN$:
IF SC = 0
THEN
PRINT "PERIOD : ";CP + 1; TAB(20)"CLASS
PRINT :
PRINT

NO CLASS":

Program continued

77

education

680 IF HC = 1
THEN
690:

ELSE
IF SC =0
THEN
810:
ELSE
720
690 LPRINT P$
700 LPRINT “TEACHER : “;TN$
710 1IF SC = 0
THEN
LPRINT "PERIOD : ";CP + 1; TAB{20)"CLASS : NO CLASS"
PRINT P$:
GOT0 810
720 PRINT “"PERIOD : ";CP + 1; TAB(20)"CLASS : ";CN${CN)
PRINT P$:
IF HC = 0
THEN
760
730 LPRINT "PERIOD : ";CP + 1; TAB(20)"CLASS : ";CN$(CN)
740 LPRINT P$
750 CX = 0
760 FOR X = 1 T0 SC
770 PRINT LEFT${SNS(CS(X)),24):
IF HC = 1
THEN
780:
ELSE
790
780 LPRINT LEFT$(SNS(CS(X)),24)
790 CS(X) = 0:
CX = CX + 1:
= 0 AND CX = 10
THEN
LINE INPUT "PRESS <ENTER> TO CONTINUE ";AN$:
PRINT @256, CHR$(31);:
CX = 0
800 NEXT X:
tx =0
810 PRINT P$:
IF HC = 1
THEN
820:
ELSE
830
820 LPRINT P$:
LPRINT * *:
LPRINT ™ *
830 PRINT :
IF PX = 1
THEN
840:
ELSE
LINE INPUT "PRESS <ENTER> TO CONTINUE ";A$
840 IF UR = 1 AND CP + 1 < NP

THEN
CP = CP + 1:
Y = Y + 5:
1 =1 +5:
SC =0
GOTO 570
850 IF UR = 1
THEN
UR = 0:
GOTO 1170
860 IF CP + 1 < NP
THEN

78

education

870 GOTO 460
880 CLS
890 RO

=z O
w o
i
[T N 1)
<O
D e b D

uou

SC
900 PRINT "TEACHER PRINT"
910 PRINT @128,"0PTIONS : "
920 PRINT @©256,"1 - PRINT CLASS ROSTERS FOR ALL TEACHERS"
930 PRINT "2 - PRINT CLASS ROSTER FOR A SPECIFIC TEACHER"
940 PRINT "3 - EXIT THIS PROGRAM"
950 PRINT :
PRINT
960 LINE INPUT "“CENTER> OPTION SELECTED : "“;0P$:
0P = VAL(OPS$):
IF OP < 1 OR OP > 3
THEN
880
970 IF 0P = 3
THEN
990
980 PX = 0:
HC = 0:
GOSUB 1210
990 ON OP GOTO 460,1000,1200
1000 CLS :
AN$ = e
1010 PRINT @448,"";:
LINE INPUT "<ENTER> TEACHER'S NAME : ";TN$:
K = LEN{TNS$)
1020 INPUT “DO YOU WANT A PRINT FOR ALL PERIODS ";AN$:
GOSUB 1270:
IF AN$ = "Y"
THEN
FOR X = 1 TO NP:
PC(X) = 1:
NEXT X:
GOTO 1080
1030 IF AN$ < > "N
THEN
CLS :
ANG = "V
PRINT 0448,"";:
GOTO 1020
1040 FOR X = 1 TO NP
1050 PRINT "DO YOU WANT A PRINTOUT OF PERIOD";X;:
LINE INPUT "2 (Y/N) ";ANS:
GOSUB 1270:
IF AN§ = "y®
THEN
PC(X) = 1:
GOTO 1070
1060 IF AN$ < > "N"
THEN
1050:
ELSE
PC{X) = 0
1070 AN§ = *":
NEXT X

1080 OPEN "R",3,"TEACHER": Program continued

79

education

Ql = 0:
RO = 1:
N3 = 0:
SC = 0:
CN = 0
1090 6 = Q1 * 25

1100 FIELD 3,(G)ASDY$,25ASDAS
1110 GET 3,R0
1120 IF DA$ = STRING$(25,88)
THEN
CLOSE :
GOTO 1280
1130 N3 = N3 + 1
1140 IF LEFT$(DAS,K) = TN$
HE

THEN
cLose
UR = 1:
CP = 0:
Y = 25:
= 27:
GOTO 570
1150 Q1 = Q1 + 1:
IF Q1 = 10
THEN
Q1 = 0:
RO = RO + 1
1160 GOTO 1090
1170 ANE = ¥":
CLS

1180 PRINT @448,"";:
LI?E INPgT "DO YOU WANT TO PRINT ANOTHER TEACHER'S ROSTER ? (Y/
N "3 AN
1190 GOSUB 1270:
IF AN$ = "Y"
THEN
1000:

ELSE
IF ANS < > "N
THEN
1170:
ELSE
880
1200 RUN "CLASMENU"
1210 CLS :
PRINT @448,"";:
LINE INPUT "DO YOU WANT A HARDCOPY ? (Y/N) ";AN§:
GOSUB 1270:
IF AN = "y"
THEH
1220:

ELSE
IF ANS < > “N"
THEN
1210:
ELSE
RETURN
1220 HC =1
1230 PRINT €448, CHR$(31);:
LINE IN;UT "SHALL I GENERATE A TEST LINE FOR THE PRINTER 7 (Y/N
"LANS
GOSUB 1270:
IF Al$ = "y"
THEN
1240:

ELSE
IF ANS < > "N
THEN
1230:

80

education

ELSE
1250
1240 LPRINT STRING$(60,88):
GOTO 1230
1250 IF OP =1
THEN
PRINT @448, CHR$(31);:
LINE INPUT “SHALL I STOP BETWEEN PRINTING CLASS PERIODS ? (Y/
N) ";ANS$:
GOSus 1270:
IF AN$ = °N"
THEN
1260:

ELSE
IF ANS < > *y"
THEN
1250:
ELSE
RETURN
1260 PX = 1:
RETURN
1270 AN$ = LEFTS$(ANS,1):
RETURN
1280 CLS :
PRINT 0448,"1 CANNOT FIND A TEACHER NAMED ";TN$
1290 FOR Q = 1 TO 1500:

NEXT Q:
GOTO 880
1300 CLS :

PRINT ©394,"AN ERROR HAS OCCURRED IN THE EXECUTION OF THE 'CLASS
ROSTER PRINTOUT'."

1310 PRINT TAB{S5)"ERROR TYPE = "; ERR / 2 + 1

1320 PRINT TAB(5)"ERROR LINE = "; ERL

1330 FOR V = 1 TO 5000:
NEXT V

1340 STOP

81

GAMES

Space Mission
Slot Machine

83

GAMES

Space Mission

by Ron Goodman

fleet of alien ships appears behind you. It seems they can't fire at you,
4 B but they can go much faster than you can. If you let them pass you, they
will fly to your home planet to steal and kill and then run off into endless
space. Suddenly one of the alien ships appears on your spaceship’s viewing
screen. As it moves away it gets smaller. You must move your laser sight
quickly to point at the ship and shoot. You got it this time, but there’s
another and another. Can you protect the people of your planet? Their lives
depend on you.

Playing the Game

In Space Mission, you control a laser sight which you must aim at the alien
ships that are quickly flying away from you. The faster you hit an alien, the
more points you get. The level of difficulty you choose before the game be-
gins determines the speed of the alien ships. Level 1 is the slowest speed, and
level 4 is the fastest. You begin the game with 200 time units. Each shot you
take at the aliens uses up five time units. Time units are constantly being
used up, and when you run out of time units, the game is over. The four ar-
row keys control the laser sight. If you press the left arrow, the alien moves
right. Since the laser sight never leaves the center of the screen, and the ar-
rows are used to move the sight, right is the direction the alien should go. The
alien will occasionally move up, down, to the left, or to the right as well.

How the Program Works

Line 40 of the Program Listing sets up nine variables. These are common-
ly used variables, and by placing them in the beginning of the simple
variable list in program memory, the computer doesn’t have to look very far
to find them, thus speeding up execution.

The subroutine in lines 550 through 560 loads up the A$ array with text
strings (also called packed strings or compressed graphics). Text strings are
generally used for only one line of graphics, but you can put more than one
line in a single string. In this program, an entire spaceship is displayed with
a single PRINT statement; whereas the big spaceship normally would re-
quire three PRINT statements. A CHR$(26) shifts down to the next line, and
an appropriate number of CHR$(24)s back space to the start of the next line.
This may seem like a waste of memory, but it eliminates a lot of PRINT

85

games

statements, as well as the confusion that goes along with printing a text
string that is separated into individual lines.

Lines 290 through 330 sense if any arrows are being pressed. You can’t use
the INPUT statement because it would require the computer to stop the
game to see which direction you want to go. Using INKEY$ would necessi-
tate pressing the arrow key over and over. The answer seemed to be in the
PEEK command. The only problem with using PEEK is that when more
than one key at a time is pressed, it can get hairy. You can use the AND state-
ment to check individual bits of a byte. This lets you press more than one key
at a time, adding the ability to move the sight diagonally. The AND state-
ment is the easiest way to simulate the assembly-language command BIT.

The routine from line 360 to line 530 causes a laser to come from the four
corners of the screen when you press the space bar. The laser warps to the
center of the screen and then checks to see if it hit an alien. I used a checksum
method to add together the contents of the memory locations on the screen
that store the picture of the laser sight. Their total is normally 2018. If any
part of the alien ship is in your sight, the checksum will equal something
other than 2018, and the computer will assume that you hit the alien.

Lines 620 through 810 provide an alternative to the common, boring end
of game statement, DO YOU WANT TO PLAY AGAIN (Y/N). Though the
program is already a short 5K, you can leave out the REM statements to save
space and typing time. They are never called or referred to, and are
therefore unnecessary.

86

40
50

60
70

80

90

100
110

160
170

Program Listing. Space Mission

games

REM *** WRITTEN BY RON GOODMAN

CLS

PRIN% @469, "<< INITIALIZING >>":

CLEAR 300
FOR X = 0 TO
READ SC(X):
NEXT

E = 0:

GOSUB 550:

R2% = CHRS$
+ CHR$(143
CLS :

PRINT CHR$(23

FOR X = 2 TO 476 STEP 66:

PRINT @X,"SP

PRINT @1008 - X,"MISSION";:

FOR T =1 T0O
NEXT T:
PRINT @Xx,"
PRINT @1008
NEXT X:

PRINT @X,"SPACE MISSION";

FOR T = 1 70O

X = RND(1024) + 15359

IF PEEK(X) =
THEN
POKE X,129
NEXT :

PRINT ©832," DO YOU WANT DIRECTIONS (Y/N)";:

20:
2:
1000

980:
= 964:
= INKEYS

X = ATO

INT @x, ="
A$ = INKEY$:
IF A§ = "y"
THEN

830
IF A$ < > "N

NKEY$

t
bt ot

1%
bt
0w
=
T
o

8:

}:
ACE™;
150:
oy
150:
32

B STEP C:

Encycll?pedla

+ CHR$(188) + STRING$(4,191)

HR$ (191

+ CHR$(143) + STRING$(4,191)
)

INT @VV,"ENTER DESIRED LEVEL (1-4)";:

Program continued

87

180
190

200
210
220

230
240

280
290
300

340

350
360

games

SC =0
PRINT @VV,"PRESS ENTER TO START GAME";
IF INKEY$ < > CHR$(13)
THEN

190:
ELSE

CLS :

SP = { RND(12) + 1) * 64 + RND(43) + 8
FOR TZ = 200 TO O STEP - 1:
ST = ST + SI

REM *+* PRINT LATEST SCORE AND TIME LEFT AND CLEAR LOWER

PORTION OF SCREEN

PRINT @0,"SCORE";SC; STRING$(26,32);"TIME";TZ; CHR$(31);
REM *** REDRAW SHIP AT NEW POSITION, AND REDRAW SIGHT

GOSUB 500:
IFF =0 AND FF = O
THEN
PRINT @SP,A$(9 - ST);
A$ = INKEYS:
IFAg o non
THEN
360
IF ST - INT(ST) < .1
THEN
SA = ((RND(3) - 2) * 64) + RND(7) - 4:
IF SA + SP > 0 AND SA + SP < 895
THEN
SP = SP + SA
LF ST > 8.8
THEN

ST = 0:

SP = (RNDB(12) + 1) * 64 + RND(43) + 8:
F = 0:

FF = 0:

CLS

REM *** DOES PLAYER WANT TO MOVE SIGHT ?27
A = PEEK(14400)
IF (A AND 8) = 8 AND F = O
THEN
Sp = SP + 64:
F=0:
FF o= 0:
IF SP > 895
THEN

n
ferl

F=1
IF (A AND 16) = 16 AND FF
THEN
Sp = SP - 64:
F = 0:
FF = 0:
IF SP < 0
THEN
FF =1

IF (A AND 64) = 64 AND SP - INT(SP / 64) * 64 > 2

THEN
Sp = SP - 2

IF (A AND 32) = 32 AND SP - INT(SP / 64) * 64 < 53

THEN
Sp = SP + 2
NEXT
GOTO 620

REM *** ROUTINE TO SHOOT LASER WHERE SIGHT IS POINTING

>
woN o
oo

RESET(X,Y)

88

390

420
430
440

490
500
510
520
530

540
550

570
580

590

600
610

620

games

RESET(X,47 - Y)
RESET{127 - X,Y)
RESET(127 - X,47 - Y)
X = X + 6
IF % < 64
THEN
Y = Yo+ 2.14
GOTO 370:
ELSE
X = 15836
I = 1 + PEEK(X) + PEEK(X + 64)
X = X + 1:
IF X ¢ 15844
THEN
400
IF [<> 2018
THEN
440
ELSE
SP = (RND(12) + 1) * 64 + RND(43) + 8:
ST = 0:

0:

GOTO 270
REM *** DATA FOR SCORES FOR DIFFERENT SIZE SHIPS
DATA 200,100,80,70,60,50,40,30,10
SC = SC + SC(ST)
ST = 0:
FOR D =1 T0 3:

PRINT @411, STRING$(10,191);

PRINT @475,R1%;:

PRINT 8539,R2%;:

PRINT @603, STRING$(10,191);

PRINT @411, STRINGS${10,128);:

PRINT @475, STRING$(10,128);

PRINT ©539, STRING$(10,128);:

PRINT @603, STRING$(10,128);

GOSUB 500:

NEXT D:
ST = 9:
GOTO 270
REM *** DRAW SIGHT IN CENTER OF SCREEN

PRINT @476, CHR$(191); LHR$§131;

PRINT @482, CHR$ 131) CHR$(191);
PRINT @540, CHR$(191); CHR$(176);
PRINT @546, CHR$(176); CHR$(191);:

RETURN
REM *** | INES 480 & 490 LOAD GRAPHIC STRINGS IN THE A$ ARRAY
READ A:
IF A > 5
THEN
AS(E) = AS(E) + CHR$(A):
GOTO 550
IF A =0
THEN
E = + 1:
GOTO 550:
ELSE
RETURN
REM *** DATA FOR ALIEN SPACESHIP
DATA 131,0,143,0,170,174,0,189,169,149,26,24,24,24,129,129,129,0
,181,166,164,149,26,24,24,24,24,133,137,129,133,0,181,166,153,18
6,26,24,24,24,24,151,166,153,171,0,151,152,179,164,171,26,24,24,
24,24,24,151,164,143,152,171,26,24,24,24,24,24,131,128,131
DATA 128,131,0,149,176,140,179,140,176,170,26,24,24,24,24,24,24,
24,159,176,138,191,133,176,175,26,24,24,24,24,24,24,24,133,128,1
31,140,131,128,138,0,149,176,140,179,179,140,176,170,26,24,24,24
,24,24,24,24,24,191,128,191,191,191,191,128,191,26
DATA 24,24,24,24,24,24,24,24,149,131,140,179,179,140,131,170,1
REM *** AT END OF GAME. SHOW HIGH SCORE, SCORE AND ASK IF YOU
WANT TO PLAY AGAIN
CLS :
FOR T = 1 TO 200: Program continued

89

games

NEXT T:
A$ = INKEYS:
IF SC > HS
THEN
HS = SC
630 CLS :
PRINT @477, STRING$(3,191);:
GOSUB 810
640 PRINT 8538, STRING$(10,166);:
PRINT @474, STRING$(10,166);
650 PRINT @410, STRING$(10,166);:
GOSUB 810:
FOR X = 272 TO 656 STEP 64
660 PRINT @X, STRING$(30,162);:
NEXT X:
GOSUB 810
670 FOR X = 836 TO 132 STEP - 64:
PRINT 8X, STRING$(56,140);:
NEXT X
680 A$ = INKEYS:
PRINT @473,"HIGH SCORE";HS;:
Vv = 724
690 PRINT ©220,"SCORE";SC;
700 PRINT @723,"PRESS ANY KEY TO PLAY AGAIN";
710 FOR X = 0 TO 60:
PRINT @X,A$(5);:
PRINT @8X," ";:
PRINT @X + 64 ey
720 A$ = INKEY$:
IF A = ¥
THEN
NEXT X:
ELSE

800
730 FOR X = 60 TO 891 STEP 64:
PRINT @X,A$(5);
PRINT @X," ";:

740 IF A$ = "¢

800
750 PRINT ©892," "y
PRINT 0959," ";:
FOR X = 954 T0O 896 STEP - 1
760 PRINT @X,A$(5);:
PRINT @X + 4,°" ";:
PRINT @X + 68," ";:
A$ = INKEY$
770 IF A$ = "¢
THEN
NEXT :
ELSE
800
780 FOR X = B96 TO 64 STEP - 64:
PRINT @X,A$(5);:
PRINT @X + 64," "
790 A$ = INKEYS:
1F A$ = onn
THEN
NEXT X:
GOTO 710:
ELSE

800
800 PRINT B723, CHR$(219);:
GOTO 160
810 FOR T = 1 TO 500:
NEXT T:
RETURN
820 REM *** INSTRUCTIONS

90

830
840

850

870
880

890
%00

910

920
930

940

950
960

970

games

gk?NT STRING$(18,42)" S P ACE MISSITON®"™STRING$(18,42
PRINT "" YOU CONTROL A LASER'S SIGHT WITH THE FOUR ARROW KEYS

Eg?n%AﬁﬁéLD DOWN 1 OR 2 ARROWS AT A TIME. WHEN THE SHIP YOU ARE
PRINT "FOCUSING ON APPEARS TO BE IN THE SIGHT, PRESS THE SPACE B

AR TO"

PRINT "FIRE. THE ALIEN WILL GET SMALLER AND SMALLER. THE SOONE

R YoU"

PRINT “HIT HIM THE MORE POINTS YOU WILL GET."

Pgégf * IT IS HARD TO USE THE LASER SIGHT CONTROLS, AS THEY HAY
Mll

PRINT "BACKWARD, BUT IN TIME YOU WILL MASTER THEM AND DESTROY MA

NY OF"

PRINT "“THE TERRIBLE ENEMY SHIPS."

PRINT " IF YOU MOVE YOUR SIGHT TOO FAR FROM THE ALIEN SHIP, IT

WILL"

ﬁRINT "DISAPPEAR FROM YOUR VIEWING SCREEN. BE CAREFUL, WHEN YOU

PRINT "THINK YOUR SIGHT IS MOVING LEFT, IT MAY BE MOVING RIGHT."
PRINT * YOU HAVE 200 TIME UNITS BEFORE YOU MUST REFUEL FOR A NE
W GAME."
vV = 979:
GOTQ 160

91

GAMES

Slot Machine

by Kerry Rasmussen

In the following program, I have utilized the special graphics capabilities
on the Model I1I to simulate a slot machine. I wrote the Slot Machine pro-
gram for a Model IIT Level IT TRS-80 with 16K. Answer the memory size
prompt with 32000.

When you turn on the Model I11, it is set in the space compression mode.
To change this to the special graphics mode, you would normally use the
command:

PRINT CHR$(21)
If this statement is located within the program, however, every time the
computer reads the statement, it switches itself from the special graphics
mode to the space compression mode, and vice versa. In order to prevent this
from happening, line 4 (see Program Listing) stores a non-zero in memory
location 16420 so the computer will stay in the special graphics mode.

The program keeps track of the number of times you have played, and
uses this to determine the amount of the jackpot. The longer you play, the
more the jackpot increases.

To play Slot Machine, you are given $10.00. This amount is displayed in
the upper right portion of the video screen. When you push the spacebar,
$1.00 is subtracted from the pot, and the handle of the slot machine goes
down. It’s just like the ones in Las Vegas! If you lose, it waits for you to put
another dollar in. If you win, depending on the sequence of the reels (as per
the win chart displayed to the left side of the screen), it begins to pay off.
Coins fall out of the machine, complete with a clinking sound (if you are so
equipped)! The FOR-NEXT loop in lines 1021011065 keeps track of this.
When the coins stop falling, the total amount you won flashes at the bottomn
of the screen and rolls to the top right to be added to the total. You can stop
playing at any time, and the total amount won or lost will be displayed. The
$10.00 you started with is subtracted.

Because the computer is in the special graphics mode for this program it
does not use space compression characters. The program contains PRINT @
statements such as: PRINT@ 1000,“ ”; which erases the video starting at
PRINT position 1000. The number of spaces between the quotation marks is
critical, since the spaces erase what is printed there.

I have added sound to this game, to add a little pizazz. Lines 20000
through 60440 contain the data for the sound. To utilize the sound effects,

92

games

plug the large gray plug that normally goes to the auxiliary port of your tape
player into an amplifier. The Telephone Listener sold by Radio Shack is ex-
cellent for this purpose and costs about $10.00.

ggzN<HvOo-""momws

Random number (1 to 5) determines value of the first reel
Random number (1 to 5) determines value of the second reel
FOR-NEXT loop for sound subroutine

Random number (1 to 5) determines value of the third reel
Amount of win or loss

Used for a time delay

Amount to add to jackpot (is equal to random 0)

Play counter

The amount of money you start play with

Your present money total

Current amount won

Counter for FOR-NEXT loop for payoff

String value field for print using amount won

INKEY$

INKEY$

Table 1. Program variables

93

games

Program Listing. Slot Machine

REM * SLOTS *

REM * Copyright 1981 by KERRY RASMUSSEN, all rights reserved *
POKE 16420,1

RANDOM

POKE 16527,125:

POKE 16526,1:

GOSUB 30000

[O e

9 S5 = 0:
H = 0:
T =0:
P =20
10 CLS
15 PRINT €29,"SL0OTS"
16 § = 10
17 T =S + H
18T =T+ H

19 N§ = "$$#4#.00"
20 PRINT @120, USING N$;S
50 GOSUB 4000
100 REM * DRAWS SLOT MACHINE *
111 FOR X = 79 TO 82:
Y = 9:
SET(X,Y):
NEXT X

35 T0 85.

< e

%
m
—
D

[

by

135 FOR X T0 85:

< e
[B
i

TO 36:

s
P e
—_ e

TO 36:

Il =S 1 DK TVl D b ([e e

220 FOR X 55 T0 65:
13 70 18:
13 70 18:

300 FOR Y = 13 TO 18:

94

380

420

485

510
515

550
551
560
570
799
800
802
804

FOR X = 39
Y = 18:
SET(X,Y):
NEXT X

FOR X = 55
Y = 18:
SET(X,Y):
NEXT X

FOR X = 72
Y = 18:
SET(X,Y):
NEXT X

FOR Y = 13
X = 82:
SET(X,Y):
NEXT Y

FOR X = 45
Y = 30:
SET(X,Y):
NEXT X

FOR X =
Y = 31
SET(X,
NEXT X

FOR X =
Y = 31:
SET(X,Y):
NEXT X

FOR X
Y

44

Y):
75

45

> et |
e~ DK
>< W
00 ><w ~I N B<e PO
AN < .
— O o~
=

et
RO 2L
m R mm
> —

> et

'n
<
Pl
>
oo
<«

FOR X = 86
Y = 26:
SET(X,Y):
NEXT X:

FOR X = 86
Y = 27:
SET(X,Y):
NEXT X

PRINT @476,"SLOT";
PRINT @539, "MACHINE";

GOTO 979
GOTO 7500

REM * PICKS RANDOM NUMBER FOR EACH WINDOW *

RANDOM
A = RND(5)
B = RND(5)

T0

TO

T0

T0

70

T0

TO

T0

T0

T0

T0

TO

T0

T0

T0

18:

18:

48:

65:

82:

18:

74:

44:

75

74:

90:

90:

28:

88:

88:

games

Program continued

95

games

806 ¢ = RND(5)

810 REM * CLEARS EACH WINDOW *

811 PRINT ©340," *;

812 PRINT 0349," '3

813 PRINT 0357, u

815 REM * GIVES WINDOWS AN APPEARANCE OF SPINNING REELS *

816 FOR 1 = 192 TO 255:
PRINT €341, CHR$(I);@350, CHR${I);@358, CHR$(I)
NEXT 1

818 GOSUB 60200

819 REM * GIVES RANDOM NUMBERS AN EQUIVALENT CHARACTER *

820 IF A =1 PRINT @340, "BAR";

825 IF A = 2 PRINT @341, CHR$({193);
830 IF A =3 PRINT @341, CHR$(214);
835 IF A =4 PRINT @341, CHR$(234);
840 IF A =5 PRINT @341, CHR${192);

842 FOR 1 = 192 TO 255:
PRINT @350, CHR$(I1);0358, CHR$(I);:

NEXT I:

GOSUB 60200
845 IF B = 1 PRINT 8349, "BAR";
850 IF B = 2 PRINT @350, CHR$(193);
855 I[F B = 3 PRINT @350, CHR$(214);
860 IF B = 4 PRINT B350, CHR$(234);
865 IF B = 5 PRINT @350, CHR$(192);

866 FOR 1 = 192 TO 255:
PRINT @358, CHR$(I);:
NEXT I:
GOSUB 60200

870 IF C =1 PRINT @357, "BAR";

875 IF C = 2 PRINT @358, CHR$(193);
880 IF C = 3 PRINT @358, CHR$(214);
885 IF C = 4 PRINT @358, CHR$(234);:
890 IF C = 5 PRINT @358, CHR$(192);
900 FOR 1 =1 TO 25

910 NEXT I

920 GOSUB 9000
922 IF H <2

H

1 70 3:

0 PRINT ©29," LOSE ";:
B 60100:

926 T =
927 F

o o+ e

RINT 829," WIN ";:
FORIT =1 T0 25:
NEXT I:
PRINT @29," "y
G OSUB 60500:
NEXT B:
PRINT @29," WIN ";:
GOSUB 10210
935 PRINT €120, USING N$;T;
950 IF T = 0 GOTO 10000
979 C$ = INKEY$:
IF C$ = "g"
THEN
12000
980 PRINT @930, "<SPACEBAR TO PLAY / Q TO QUIT>";:
IF C$ <> B
THEN

981

P
P
985 H
986 P
987 P
988 T
990 PRINT €1
991 RESTORE

96

1000
3900
4000
4005
4010
4015
4020
4025
4030
4035
4040
4060
7500

7900
8000

8005

8006
8020

8025

8030

8035

8040

8045

8046

games

GOTO 8000
REM *
PRINT @128,"BAR/BAR/BAR=$20+ “;

PRINT @192, CHR$(234) CHR$(234) CHR$(234)"=518";
PRINT @256, CHR$(234) CHR$(234)"BAR=318";
PRINT @320, CHR$(192) CHR$(192) CHR$(192
PRINT @384, CHR$(192) CHR$(192)"BAR=$14",

PRINT @448, CHR$(214) CHR$(214) CHR$(214)"=510";
PRINT ©512, CHR$(214) CHR$(214)"BAR=$10";

PRINT @576, CHR$(193) CHR$(193)"-=$5";

PRINT @640, CHR$(193)"--=$2";
RETURN

FOR I = 1 TO 500:

NEXT I

REM * GRAPHICS FOR HANDLE MOVEMENT *

GOSUB 60200:
FOR X = 88 T0 90:

Y = 17:
RESET(X,Y):
NEXT X:

GOSUB 60200:

FOR X = 88 TO 90:
Y = 18:
RESET(X,Y):

NEXT X

GOSUB 60200:

FOR Y = 19 TO 24:
X = 89:
RESET(X,Y):

NEXT ¥

GOSUB 60200

GOSUB 60200:

FOR Y = 28 TO 37:
X = 89:
SET(X,Y):

NEXT ¥:

GOSUB 60200:

FOR X = 88 10 90:
Y = 36:
SET(X,Y):

NEXT X

GOSUB 60200:

FOR X = 88 T0 90:
Y = 37:
SET(X,Y):

NEXT X

GOSUB 60200:

FOR I =1 TO 100:
NEXT I

FOR X = 88 TO 90:
Y = 37:
RESET(X,Y):

NEXT X:

GOSUB 60200:

FOR X = 88 TO 90:
Y = 36:
RESET(X,Y):

NEXT X

GOSUB 60200:

FOR Y = 35 TO 28 STEP - 1:
X = 89:
RESET(X,Y):

NEXT Y

GOSUB 60200:

FOR Y = 28 TO 17 STEP - 1:
= 89:

SET(X,Y):

NEXT Y

GOSUB 60200:

FOR Y = 18 TO 17 STEP - 1:
X = 88:

DRAWS WINNING COMBINATIONS AT LEFT SIDE OF SCREEN *

Program continued

97

games

SET(X,Y):
NEXT ¥
8047 GOSUB 60200:
FOR ¥ = 18 TO 17 STEP -~ 1:
X = 90:
SET(X,Y):
NEXT ¥
8050 GOTO 800
8900 REM * DETERMINES IF CHOSEN NUMBERS WIN OR LOSE *
9000 RANDOM
J = RND(P):
IF A =1 AND B =1 AND C = 1
THEN
H =20+ 4
900! IF H > = 20 PRINT €27 ,"JACKPOT *;:
FOR I =1 T0 150:
NEXT I:
GOSUB 20000:
PRINT @27," Yyt
FOR I = 1 TO 100:
NEXT I
9002 IF H > = 20 GOSUB 50000:
PRINT @27,"JACKPOT ";:
FOR I =1 TO 150:
NEXT I:
PRINT @27," S
FOR I = 1 TO 100:
NEXT I
9003 IF H > = 20 GOSUB 50000:
PRINT @27,"JACKPOT “;:
FOR I = 1 TO 150:

NEXT I:
PRINT @27," s
FOR I = 1 TO 100:
NEXT 1
9005 IF A = 1 AND B = 1 AND C < > 1
THEN
H= -
9010IF A =1 AND B <> 1 AND C < 5 1
THEN
H= -1
9015 IF A = 1 AND B < > 1 AND C = 1
THEN
H= -1
9025 IF A = 2 AND B = 2 AND C > 0
THEN
H=5
9030 IF A =2 AND B < > 2 AND € > 0
THEN
H=2
9040 IF A = 3 AND B = 3 AND C = 3
THEN
H = 10
9045 1F A = 3 AND B = 3 AND C < > 3
THEN
GOSUB 9500
9050 IF A = 3 AND B < > 3 AND C < > 3
THEN
H= -1

9055 IF A = 3 AND B < > 3 AND C = 3
THEN

H= «1
9060 IF A = 4 AND B = 4 AND C = 4

THEN
H =18
S0651IF A = 4 AND B = 4 AND C < > 4
THEN
GOSUB 9600
9070 1IF A = 4 AND B < > 4 AND C < > 4
THEN
H= -1

98

9075

9085

9090

9095

9100

9200
9500

9600

9700

10000
10001

10002

10003

10005

10200

10210
11000

11008

11010

110156

IF A = 4 AND B <
THEN

H=-1
IF A=5 AND B =
THEN

H = 14
IF A =5 AND B =
THEN

GOSUB 9700
IF A =5 AND B <
THEN

H= -1
IF A = 5 AND B <
THEN

H=-1
RETURN
IF C=1

THEN

H = 10:

RETURN :

ELSE
H = - 1:
RETURN
IF C =1
THEN
H = 18:
RETURN :

ELSE
H= - 1:
RETURN
IFC=1
THEN
H = 14:
RETURN :

ELSE
H=-1:
RETURN

M$ = INKEY$

PRINT @ 151,"WANT TO TRY AGAIN? (Y OR N}";:

l F M‘ = na
THEN
10000
IF M§ = “N"
THEN
CLS :
END
IF M$ = “y"
THEN

> 4 AND

5 AND C

5 AND C

> 5 AND

> 5 AND

games

C=14

[}
o

1
IF M$ < > "Y" OR M§ < > “"N"

THEN

10000
REM * GRAPHICS FOR COINS FALLING..ALSO FOR NEXT LOOP TO DETERMIN
E HOW MANY TIMES TO REPEAT *

FOR Z = 1 TO H
PRINT €670,"0";:
FOR I = 1 T0 2:

NEXT I:
PRINT @670," “;
FOR X =
Y = 30:
SET{X,Y):
NEXT X
PRINT @734,"-";:
FOR I = 1 TO 2:
NEXT 1:
PRINT @734," “;

60 TO 61:

FOR X = 60 TO 61:

Program continued

99

games

Y = 32:
SET(X,Y):
NEXT X
11020 PRINT 8798,"0";:
FOR I =1 T0 2:
NEXT I:
PRINT 8798," ";
11025 FOR X = 60 TO 61:
Y = 36:
SET(X,Y):
NEXT X
11030 PRINT @862,"-";:
FOR I = 1 TO 2;
NEXT I:
PRINT 8862," ";
11040 PRINT 8926,"0";:
FOR I = 1 TO 2:
NEXT 1:
PRINT ©926," ";
11050 PRINT @990,"-";:
FOR I = 1 TJ0 2:
NEXT I:
PRINT 8990," “;:
FOR I =1 T0 10:
NEXT |
11051 GOSUB 60200
11060 PRINT 8990,"x";:
FOR I = 1 TO 10:

NEXT I:
PRINT 8990," ",
FOR I =1 70 10
NEXT I
11061 GOSUB 60200 PRINT ©990,"-"
FOR I = 1 T0 10:
NEXT I:
PRINT €990," ";:
FOR I = 1 70 10:
NEXT I
11062 PRINT @990,"x";:
FOR I =1 TO 10:
NEXT I:
PRINT 8990," ";
FOR I =1 T0 10
NEXT I
11063 PRINT 8990,"-"
FOR I = 1 70 10

NEXT I:
PRINT @99%0," ";
11065 NEXT Z
11069 REM * ROUTINE FOR LISTING AMOUNT WON AND MOVING IT TO THE BALANC
E AT TOP RIGHT OF SCREEN *
11070 V = H:
PRINT ©993,"="; USING N§;V;
11080 FOR I = 1 T0 100:
NEXT I:
PRINT ©993," "3
11085 PRINT @1000, USING N$;V;:
FOR I =1 T0 60:
NEXT I:
PRINT ©1000," "y
11086 GOSUB 60000
11090 PRINT @1010, USING N$;V;:
FOR I =1 T0 2:
NEXT I:
PRINT @1010," !
11100 PRINT @888, USING N§;V;:
FOR I =1 70 2:
NEXT I:
PRINT @888," "
11101 GOSUB 600060
11105 PRINT @760, USING N$;V;:

100

20000
20010
20020

20030
20040
30000
30010

30020
30030
30040
30050
30060
50000
50010
50020
50030

50040
50050
60000
60010
60020
60100
60110
60115
60120
60130
60200

games

FOR I =1 TO 2:

NEXT I:
PRINT @760," "
GOSUB 60000
PRINT @6 32, USING N$;V;:
FOR I = TO 2:

NEXT I:
PRINT @6
GOSUB 60000
PRINT @504, USING N$;V;:
FOR I =1 T0 2:

NEXT I:
PRINT @504," "5
GOSUB 60000
PRINT @376, USING N$;V;:
FOR I =1 T0 2:

NEXT 1:
PRINT @376," oy
GOSUB 60000
PRINT @248, USING N$;V;:
FOR I =1 TO 2:

NEXT
PRINT @248 Y "
GOSUB 50000
RETURN
END
CLS :
PRINT @29, USING N§;T - S;:
IF T < 10 PRINT @128 "YOU CAME OUT A LOSER, "
GOSUB 60400:
GOT0 10000
IF T > 10 PRINT @128,"YOU CAME QUT A WINNER, “;:
GOSU8 20000:
GOTC 10000
IF T = 10 PRINT @128,"YOU BROKE EVEN, “;:
GOSUB 20000:
GOSYB 60400:
GOTO 10000
POKE 32004,255:
POKE 32020,150
FOR B1 = 1 TO 25:

X = Bl

X = USR(O):

FOR W = 1 TO 10:

NEXT W

NEXT Bl
RETURN
FOR Y = 32001 TO 32026

READ D:

POKE Y,D

NEXT ¥
RETURN
DATA 14,255,33,0,20,58,61,64,230,253,198,2,211
DATA 255 214 2, 211 255 6, 150 16, 254 37, 32 241 201
DATA 85, 80 75 70 65 60, 55 50
FOR Y = 100 TO 50 STEP - 10

POKE 32020,Y

X = USR(O)

FOR W = 1 TO 1:

NEXT W

NEXT ¥
RETURN
POKE 32020,255
X = USR(0)
RETURN
FOR Y = 1 T0 30

POKE 32020,15

X = USR(O)

NEXT ¥
RETURN
FOR Y =1 T0 1 Program continued

32," "y

101

games

60210 POKE 32020,30
60220 X = USR(0)

60230 NEXT Y

60240 RETURN

60400 FOR Y = 10 TO 100
60410 POKE 32020,V
60420 X = USR(0)

60430 NEXT Y

60440 RETURN

60500 FOR Y = 200 TO 150 STEP - 4
60505 POKE 32020,
60510 X = USR({0)

60515 NEXT Y

60520 RETURN

102

GRAPHICS

Level Il Graphics Code
New Compusketch

GRAPHICS

Level II Graphics Code

by Fred Blechman

Some TRS-80 Level 11 programs run with unusual graphics figures, such
as racing horses. This can be done in Level I to some degree, with SET
commands, but Level II has a graphics code built into the ROM BASIC that
is much faster in both operation and programming. This article describes a
simple way to break the code and use it, and three short programs that il-
lustrate the technique.

The TRS-80 display screen is divided into 1024 printing locations, O to
1023 (64 across by 16 down). Normally, each of these locations is occupied
by a character, whether it be a letter, number, symbol, or blank. Each loca-
tion is a rectangular area divided into six segments (two columns of three
rows each), as shown in Figure 1. By proper use of the CHR$ command, you
can light any single segment or combination of segments on your display. By
putting these combinations together, you can form symbols, shapes, large
letters, simulated playing fields, or other displays.

l i OF 1024

gLt CO‘—-ZI'/'PRWTWG LOCATIONS
s ROW | ~—~SEGMENT
&1

—= ROW 2 L ~—~—ROW 2, COLUMN 2
/) SEGMENT
L

~— ROW 3

Figure 1. Printing location division

Figure 2 shows the graphics code for each of the possible 64 segment “on”
combinations, from “all segments off” (128) to “all segments on” (191).
These are used in a program as CHR$(number). For example, if you used
CHR$(157) in a program after a print instruction, you'd light all column 1
segments as well as the column 2 segment of row 2 at the current printing
location. As another example, CHR$(140) lights both columns of row 2 at
the current printing location.

This graphics code is based on a binary code and is easy to remember if
you crack the code. In Figure 3, notice that each of the six segments in a
printing location is assigned a decimal number representing the powers of 2.
Going from left to right, and from top to bottom, starting with 1, each

105

graphics

number is exactly twice the value of the previous number. This is the basis of
binary counting.

To determine the TRS-80 graphics code number, add the numbers of each
lighted segment and then add 128. Figure 3 shows some examples. Now you

(] o=

el <
¥ @

136 =
163
{72 =
184
190+

= | [=

35
144
153
162 =
171
80
1899

.
¢ L o - bod Id ©
] g & 8 2 g 8

i | B Bl [= B F B S

Q.

g

o - (=3 [

w om L4 i © 3 [-4

w B s & R

3

-4

ﬁ[:;j

[:N

< " - "
N — (1) fad w -

g = F 8 8 8 £ 2]

-3

[«]

[<]

¢l

X

P

] "

-z o o o wy

g & g 2 8 & 2]

3

-4

L el

gn)

o ~ w w <

s B 8 kS & & g -3

"

w

S

&

(=}

.

@«

® . .

i~ o 0 o ”m

g& 8 g 8 & £ 3

l

128
137
146
155 =
164
173
182

Figure 2. TRS-80 graphics code (B = lighted segment)

106

graphics

won’t need to have Figure 2 handy all the time, since you'll be able to deter-
mine quickly the number you want for every one of the 64 possible combina-
tions. Remember, 128 is a totally blank space, and 63 (total of all segments)
plus 128 is equal to 191, a fully lighted space.

To design your own symbol or large letters, use the TRS-80 Video Display
Worksheet in your manual (page E/1). Simply draw lightly in pencil
whatever shape you want, noting that the heavier lines on the worksheet
form the 1024 printing location rectangles, and the lighter lines subdivide
these rectangles into six segments each. Now, convert your design to the
proper combination of CHR$ numbers to “draw” this shape on your
display screen.

SEGMENT CHR$ (157)
VALUES

| 2 L.

i+r4+8+16=229
29+128+157

7

CHR $ (140) CHR § (172) CHR § (131} CHR$ (129}

; ;
wgn uge uge g
- e —lp -—

. L.
' / “32°
' —
:

448 =12 4+8+32= a4 142= 3
12 +128 = 140 A4 +128=172 3 + 128 = 13} I+128 =129

‘_
4
i
N

I

Figure 3. Cracking the code

Figure 4. Graphic horse or dog using five printing locations

107

graphics

Figure 4 is a symbolic horse or dog composed of five CHR$ numbers on a
single display line. You can place this animal anywhere on your screen with
a PRINT @ instruction. How about a racing dog? Try the short program
which I call Run, Spot, Run in Program Listing 1.

Line 40 stops the program to allow Spot to remain at one location long
enough to be visually stable. Line 50 blanks out the space for the next image.
(Try running without line 50 and watch what happens!) Line 70 and the
semicolons at the end of lines 30 and 50 keep Spot from being chopped into
small pieces that scroll up the screen.

Perhaps you'd like to see your name in huge letters on the screen. Just fol-
low the same procedure as above, but remember that you’ll need several
screen lines. Since you'll be commanding a relatively large number of loca-
tions on the screen, use READ/DATA statements. If you'd like to see my name
in big letters (over 2 inches high), try the program in Program Listing 2.

This by no means exhausts the possibilities of using the graphics code. You
are limited only by your imagination, patience, and the size of the computer
memory. Program Listing 3 shows a listing of a five-dog race, with graphic
dogs, a finish line, and winner announcement.

108

graphics

Program Listing 1. Run, Spot, Run

10 CLS
20X = 0
30 PRINT @X, CHR$(157), CHR$(140); CHR${172); CHR$(131); CHR$(129);
40 FR ¥ = 1 TO 40:
NEXT ¥

50 PRINT @X, " "5
60 X =X +1
70 IF X = 1018 CLS :

X=0
80 GOTO 30

Program Listing 2. Printing of author’s name

10 CLS
20 PRINT @ 266, CHR$(191);:
GOSUB 500
30 PRINT @ 330, CHR$(191);:
GOSUB 500
40 PRINT @ 394, CHR$(191);:
GOSUB 500
PRINT @ 458, CHR$(191);:
GOSUB 500
60 PRINT @ 522, CHR$(191);:
GOSUB 500
65 GOTO 65
70 DATA 191,191,191,191,191,191,191,191,128,128
75 DATA 191,191,191,191,191,191,191,191,180
80 DATA 128,128,128,191,191,191,191,191,191,191
86 DATA 191,191,128,128,191,191,191,191,191,191,191,189,144
90 DATA 191,191,128,128,128,128,128,128,128,128
95 DATA 191,191,191,128,128,128,179,191,191,157,128,128
100 DATA 191,191,191,128,128,128,128,128,128
105 DATA 128,128,191,191,191,128,128,139,191,191,191
110 DATA 191,191,191,191,191,128,128,128,128
115 DATA 128,191,191,191,191,191,191,191,191,135,128,128,128
120 DATA 191,191,191,191,191,191,128,128,128
125 DATA 128,128,191,191,191,128,128,128,191,191,191
130 DATA 191,191,128,128,128,128,128,128,128
135 DATA 128,191,191,191,128,139,191,191,180,128,128,128,128
140 DATA 191,191,191,128,128,128,128,128,128
145 DATA 128,128,191,191,191,128,128,184,191,191,191
150 DATA 191,191,128,128,128,128,128,128,128
155 DATA 128,191,191,191,128,128,130,191,191,189,176,128,128
160 DATA 191,191,191,191,191,191,191,191,191
165 DATA 128,128,191,191,191,191,191,191,191,159,129
500 FOR R = 1 TO 42
510 READ X
520 PRINT CHR$(X);
530 NEXT R
540 RETURN

o
o

Program Listing 3. Five-dog race

5 REM * DOG RACE WITH GRAPHIC DOGS - LEVEL II
7 REM * SET SPEED AT LINES 60 - 100 (A = A + 2, ETC.)
10 CLS
15 FOR Y = 3 T0 29:
SET (123,Y):
NEXT
20 A = 64:
B = 192: Program continued

109

21
22
23
24
25
26
30

3

—

3

~

3

2

34
50

5

—

52
5

w

5

B

55
56
60

7

<

8

L)

9

(=

100

graphics

€= %0:

D = 48:

E= 76

PRINT @A, CHR$(157);"1"; CHR$(172);

PRINT @B, CHR$({157);"2"; CHR$(172);
PRINT GC, CHR${157};"3"; CHR$(172});
PRINT @D, CHR$(157);"4"; CHR$(172);
PRINT@E, CHR$(157);"5"; CHR$(172);
GOTO 55

PRINT @A, CHR$(157);"1"; CHR$(172);
GOTO 50

PRINT @B, CHR$(157);"2"; CHR$(172);
GOTO 50

PRINT GC, CHR$(157);"3"; CHR$(172);
GOTO 50

PRINT @D, CHR$(157);"4"; CHR$(172);
GOTO 50

PRINT@E, CHR$(157);"5"; CHR$(172);
IF A > 120 PRINT @730,"#1 WINSt!I":
END

IF B> 248 PRINT 8730,"#2 WINS!!IY:
END

IF C > 376 PRINT ©730,"#3 WINS!!i":
END

IF D> 504 PRINT @730, "#4 WINS!it™:
END

IF E > 632 PRINT @730,"#5 WINSIII":
END

X = RID(5)

ON X G0TO 60, 70, 80, 90, 100
PRINTGA," Yyt

A= A+ 1:

GOTO 30

PRINT®@B," Yt

B= B+ 1:

GOTO 31

PRINTGC," "ot

C= C+1:

GOTO 2

PRINTGD," Yat

D= D+ 1:

GOTO 33

PRINTGE," "yt

E= E+1:

GOTO

CHR$ (131);
CHR$(131);
CHR$(131);
CHR$(131);
CHR$(131);
CHR$(131);
CHR$(131);
CHR$ (131);
CHR$(131);

CHR$(131);

CHR$(129);
CHR$(129);
CHR$(129);
CHR$ (129);
CHR$(129);
CHR$ (129);:
CHR$(129);:
CHR$ (129);:
CHR$(129);:

CHR$(129);

110

GRAPHICS

New Compu-Sketch

by Phil Burton

n the December 1980 issue of 80 Microcomputing was a fascinating article

by Merl J. Hendricks called “Compu-Sketch.” The 14-line program,
written in BASIC for the Model I TRS-80, made it possible for a TRS-80
computer operator to draw pictures on the screen using only the left, right,
up, and down arrows, and the space bar.

You can create animation by taking a picture and moving one part of it in
a sequence of pictures. As an example, picture an arrow going around the
outside of the screen. You can make the arrow spin around the outside of the
picture by first drawing an arrow at the bottom middle of the screen. Next,
draw a blank where the arrow was. Follow this with the picture with the ar-
row moved to the right. Then draw a blank where the arrow was. Again
draw the picture with the arrow moved up one side, and so on. The number
of pictures you can use depends on how much internal memory your com-
puter has. Each picture is stored and drawn on the screen, alternating be-
tween the picture with the arrow blanked and one with it moved left, right,
up, or down. If you do not want animation but do want graphics in your
program, you can use this program to draw the graphics you want, then call
up your picture for use in a particular program.

A Straight Line Between Two Points

The low resolution graphics on the TRS-80, make it difficult to draw a
straight line between two points on the screen if they are anything but
horizontal or vertical points, or 45 degrees away from each other. William
Barden Jr., in his book, Programming Techniques for Level 11 BASIC, ex-
plains how to draw a straight line between any two points. By storing any
x-and y-coordinates at position 1 (or point 1) and moving to a second posi-
tion on the screen and storing those coordinates, the computer can draw a
straight line between the two points (at least as straight as the TRS-80 will
allow). Armed with this knowledge, all I had to do was combine that idea
with the Compu-Sketch program, and I was in business.

Saving Screen Graphics

It is time-consuming to look in the reference manual at the graphics codes
and try to come up with the right code and put it in the right sequence. Do-
ing it this way requires a series of DATA-READ statements for each graphics
character in each position of the screen display.

111

graphics

One place you can store information in the computer is on the screen
display. By setting up dummy strings, you can let the computer pack codes
into them that come from the screen itself. When you print the string, the
screen displays graphics instead of alphanumeric characters.

Diress It up with a Blinking Cursor

To keep from destroying the picture when I name a program or give load
and save instruction for cassette, I created a blinking cursor subroutine
which I use in nearly all my programs requiring keyboard input. The new
version of Compu-Sketch prints messages on the bottom line of the screen.

In the subroutine I call Blinking Cursor, the cursor is first turned on and
the INKEY$ function is activated. Next the cursor is turned off, and the IN-
KEY$ function is activated again. If you enter any value greater than a null,
the subroutine branches to the section that looks for special control
characters (such as back space, enter, return to head of line, etc.). If a back
space is involved, one character is removed from the right end of the string,
and a graphics character (131 decimal) is POKEd into that position on the
screen display.

To get to the subroutine, define the number of characters you want in
your field using the variable FL.. If you press ENTER, or if the value of FL is
1, you return to the main program. Upon return, you must transfer the
value stored in IN$ to a permanent variable. If it is a numeric variable, use
VAL(INS).

If you want to use this subroutine in any of your programs or if you decide
toadd more arguments to it, be sure to turn the cursor off (CHR$(15)) before
returning to the main program. If you don’t, strange cursor marks will ap-
pear on the screen.

Ihad a reason for not using the bottom line (starting at print position 960)
forgraphics: When the bottom line (all 64 positions) is printed, there is an
automatic carriage return/line feed that causes the picture to scroll up one
line, and you lose the top line of your picture. There is a way around it, but
that involves drawing in the lower right corner of the picture every time you
load it.

Hiow the Program QOperates

Program Listing 1 is the disk version of Compu-Sketch; Program Listing 2
is the tape version. You can draw pictures by using only the direction ar-
rovws. Line 70 loads a value into variable C from the keyboard position that
controls the arrows, PEEK(14400). By looking at these codes, the computer
can tell which key you have pressed and returns a value of 2, 4, 8, 16, 32, 64,
or 128. All you have to do is tell the computer to do something for you based
onwhich key you pressed. For example, lines 80-110 test for one of the four

112

graphics)

direction arrows (up, down, left, or right). Line 160 looks to see if you
pressed the CLEAR key. Line 170 checks for the combination of codes that
indicates the space bar is being held down.

Lines 180 and 190 are the special function keys. In addition to being able
to draw a picture, you can start over by pressing the letter C to clear the
screen. When you are ready to save your picture, press the letter S. Press the
letter L to load a previously saved file, and press the letter E to end the pro-
gram. Table 1 lists the keys you need to become a great cartoonist.

Up arrow Moves cursor up

Down arrow Moves cursor down

Left arrow Moves cursor left

Right arrow Moves cursor right

Space bar Hold it down while pressing one of the arrows to draw a solid line.

Combination Hold down two arrows and the space bar to draw a horizontal line.

CLEAR key Press once for the x-coordinate. Move the cursor to another position
and press it again for the y-coordinate. A straight line will be drawn
between the two coordinates.

C key Clears the screen for a new picture

E key Clears the screen and ends the program

L key Load. Asks for the file name of a previously saved picture and loads it
from disk. On the tape version, it asks you to prepare the tape recorder.

S key Save. Asks for a file name to save the current picture to disk. On the

tape version, it asks you to prepare the tape recorder.

Table 1. Keys used in New Compu-Sketch

Applications

The program I wrote can be used to create simple animation as well as
more complex drawings in a shorter span of time. This concept works well in
other areas too if you want to put alphanumeric characters in the middle of
the screen and point out special items with graphics.

The next time you use graphics in a program, try animation. It is very easy
with this program. With some experimentation, you will find that you need
to change only small portions of your original picture to achieve motion. By
printing only the lines with changes in them, you can have a fast moving mo-
tion picture.

113

graphics

Program Listing 1. New Compu-Sketch, disk version

1
l LA R R A AL A R AR Y s R R A I T,
2 :
LI *
3
v NEW COMPU-SKETCH -*
4 :
ok PHIL BURTON . *
5 :
o 1251 WAVERLY DRIVE *
6 :
P DAYTONA BEACH, FLORIDA 32018 *
7 :
to* (904) 252-6911 *
8 :
L 2 *
9 :
t LR A SRR 22 E s Y S R R R
10 CLEAR 100:
ON ERROR GOTO 370
20 CLS :
X = 0:
Y = 0:
GOSUB 380:
PRINT @960,"D0 YOU WANT TO LOAD AN EXISTING FILE? “;:
FL = 1:
GOSYB 690:
IF IN§ = “Y*©
THEN
GOSUB 380:
GOTO 290
30 CLS :
GOSuUB 380
40 GOSUB 70:
X1 = X:
Yi =Y

' SAVE FIRST X,Y COORDINATES
50 GOSUB 70:
X2 = X:
Y2 = Yy :
' SAVE SECOND X,Y COORDINATES
60 GOSUB 400:
GOTO 40
70 C = PEEK(14400)
80 IF C AND 8
THEN
Y=Y -~ 1:
' UP ARROW
90 IF C AND 16
THEN

Y=Y+ 1.
' DOWN ARROW
100 IF C AND 32
THEN
X=X «-1:
' LEFT ARROW
110 IF C AND 64
THEN
X=X +1:
' RIGHT ARROW
120 IF X > 127
THEN
X=X -1":
' OFF SCREEN TO RIGHT
130 IF X < O
THEN
X =X +1

114

140

155
160

170

graphics

' OFF SCREEN 70 LEFT

IF Y > 44
THEN

Y=Y-1:

' OFF SCREEN AT BOTTOM
IF Y <O
THEN

Y=Y+ 1:

' OFF SCREEN AT TOP
' ** IF CLEAR KEY PRESSED, SAVE POSITION **
SET(X,Y):
IF C =2
THEN

C = 0:

FOR T = 1 TO 100:

NEXT :

RETURN
IF € < 120 RESET(X,Y)

' **]F SPACE BAR NOT DéwN, RESET X,Y**

175 :

180

185
190

200
210

215

220

230

240

245
250

255
260

' ** LETTER *S* OR LETTER "“L" PRESSED **
IF PEEK(14340) = 8
THEN
220:
ELSE
IF PEEK(14338) = 16 GOTO 290

Poxx LETTER "C" OR LETTER "E" PRESSED **
IF PEEK(14337) = 8 CLS :

GOSUB 380:

X = 0:

Y = 0:
GOTO 40 :

ELSE

IF PEEK(14337) = 32 GOTO 210

G070 70

CLEAR 50:

CLS :

END

" #x STORE SCREEN DISPLAY IN A$ ARRAY **
CLEAR 5000:
ON ERROR GOTO 340:
DIM A$(15):
L = 15360
FOR R = 0 TO 14:
A$(R) = STRING$(64,32):
NEXT :
* SET UP DUMMY STRING

' %% GET LSB AND MSB OF A$ ARRAY *=*
FOR R = 0 TO 14:

8 0:

0:
VARPTR(AS
PEEK(B +

Wouwonon

D
8 (R)):
D z) *

256 + PEEK(B + 1)

' %% CONVERT NUMBER TO NEGATIVE FOR MEMORY GREATER THAN 16K
IF D > 32767
THEN
D =D - 65536

' ** PACK SCREEN VALUES INTO DUMMY STRING **
FOR I =D TO D + 63;

POKE 1, PEEK(L):

L =1 + 1:

NEXT I:
NEXT R

: Program continued

115

graphics

** NAME FILE FOR SAVE **
270 PRINT @960,"ENTER FILESPEC: ";:

FL = 22:
GOSUB 690:
F$ = I(H:
F$ = IN$

280 PRINT @896,A$(14);:
OPEN "0",1,F$:
FOR R = 0 TO 14:
PRINT #1,A$(R):
NEXT :
CLOSE :
X 0:

i

0:
ow ERROR GOTO 370:
GOSUB 380:

GOTO 40
290 CLEAR 5000:
DIM A$(15):
ON ERROR GOTC 340
CLOAD

295 :

' %% NAME FILE FOR LOAD #*

300 PRINT @960, "ENTER FILESPEC: *;:

FL = 22:
GOSUB 690:
F§ = "n:
F$ = INS

310 OPEN “I",1,F$:
ON ERROR GOTO 340:
R = 0:
CLS
GOSUB 380:
PRINT 60,"";
320 IF EOF (l) CLOSE
X O.
Y

o

ON ERROR GOTO 370:
GOSUB 380:
GOTO 40
330 LINE INPUT 41, A$(R)
PRINT A$(R
R = R+ 1:
GOTO 320
340 IF ERR / 2 = 63 OR ERR / 2 + 1 = 53 PRINT @976,"FILE NOT FOUND";

GOTO 360
350 PRINT @976,"DISK I1/0 ERROR"™ ERR / 2"IN LINE" ERL ;
360 CLOSE

FOR T = 1 TO 1000:

NEXT
370 GOSUB 380:

RESUME 40
380 PRINT @960, STRING$(63,131);:

FOR Z = 125 TO 127:

SET(Z,45):

NEXT :

RETURN
390 :

' *% DRAW A STRAIGHT LINE BETWEEN TWO COORDINATES =**
400 IF ABS{X2 - X1) < ABS(Y2 - Y1) GOTO 550
410 DY = (Y2 - Y1) / ABS(X2 - X1)
420 IF X2 > X1 GOTO 490
430 FOR I = X1 TQ X2 STEP - 1
440 SET(I,¥1)
450 Y1 = Y1 + DY
460 IF Y1 <C 0

THEN

116

graphics

Yl =
470 NEXT I
480 RETUR
490 FOR I = X
500 SET(I,Y1
510 Y1 = Y1
520 IF Y1 <

TO X2

530 NEXT I
540 RETURN
550 DX = (X2 - X1) / ABS(Y2 - Y1)
560 [F Y2 > Y1 GOTO 630

570 FOR 1 = Y1 TO Y2 STEP - 1

580 SET(X1,
590 X1 = X1
600 IF X1 <

610 NEXT I
620 RETURN
630 FOR I =
640 SET(X1
650 X1 = X
660 IF X1

670 NEXT I
680 RETURN
690
*BL&ﬁKING CURSOR**

700 :
= INKEY$:

FFL = W
FL = 1

710 PRINT CHR$(14);:
FOR T = 1 T0 25:
FL$ = INKEYS:
IF FLS < > "®
THEN
730:
ELSE
NEXT
720 PRINT CHR$(15);:
FOR T =1 TO 25:

FL$ = INKEYS:
IF FL$ < > "
THEN

730:
ELSE

NEXT =
GOTO 710

730 IF W = FL AND FL$ < > CHR$(8) AND FL$ < > CHR$(13) AND FL$
< > CHR$(24) PRINT CHR$(15);:
GOTO 710

¢ «% "ENTER" PRESSED BEFORE END OF FIELD **
750 IF FL$ = CHR$(13) AND W < FL

THEN
PRINT STRING$(FL - W,131); CHR$(15);:
RETURN
760 :
' *% TRIED TO BACKSPACE BEYOND START OF FIELD POSITION **
770 IF FL$ = CHR$(8) AND W < = 0 PRINT CHR$(15):
; GOTO0 710
80 :

% BACKSPACE **
790 IF FL$ = CHR$(8) AND W > OIN$ = LEFT$(INS, LEN(IN$) - 1):

Program continued

117

80

graphics

We=HW - 1:
PRINT FLS$;:
POKE 16418,131:
GOTO 710
0 :
' %% SHIFT-LEFT ARROW =**

810 IF FL$ = CHR${24) PRINT STRING$(W,8); STRING$(W,131); STRINGS (W,
24) ;.
GOTO 700
820 IN$ = IN$ + FL$:
W=HW+ 1:
PRINT FL$;
830 IF FL = 1 OR FL$ = CHR$(13) PRINT CHR$(15);:
RETURN
ELSE
710
Program Listing 2. New Compu-Sketch, tape version
1
! **
2
- .
3
box NEW COMPU-SKETCH *
4
b PHIL BURTON *
5 :
v 1251 WAVERLY DRIVE *
6
P DAYTONA BEACH, FLORIDA 32018 *
7
b (904) 252-6911 *
8 :
L' *
9
R R R R R N R R R R s
10 CLEAR 100:
ON ERROR GOTO 370
20 CLS :
X = 0:
Y = 0:
GOSUB 380:

30
40

50

60

70
80

PRINT ©@960,"DO YOU WANT T0 LOAD AN EXISTING FILE? ";:
FL. = 1:
GOSUB 690:
IF IN§ = ®y©

THEN

GOSUB 380:

GOTO 290
LS
GOSUB 380
GOSUB 70:
1= X:
Y1 = Y :
' SAVE FIRST X,Y COORDINATES
GOSUB 70:
X2 = X:
Y2 = Y
' SAVE SECOND X,Y COORDINATES
GOSUB 400:
GOTO 40
C = PEEK(14400)
IF C AND 8

THEN

118

90

100

120

170

180

190

200
210

215
220

graphics

=Y - 1:
UP ARROW
IF C AND 16
THEN

Y =Y + 1 :

' DOWN ARROW
IF C AND 32
THEN

XK =X - 1":

' LEFT ARROW
IF C AND 64
THEN

X =%+ 1

' RIGHT ARROW
IF X > 127
THE

Y

X - 1:
F SCREEN TO RIGHT
IF X <0
THEN
X =X+ 1.
' OFF SCREEN TO LEFT
IF Y > 44
THEN
Y =Y - 1:
' OFF SCREEN AT BOTTOM
IFY <O
THEN
Y =Y+ 1
' OFF SCREEN AT ToOP

HEN
X =
' OF

' **% IF CLEAR KEY PRESSED, SAVE POSITION =**
SET(X,Y):
IF C =2
THEN
C = 0:
FOR T = 1 TO 100:
NEXT :

RETURN
IF € < 120 RESET(X,Y) :
' **IF SPACE BAR NOT DOWN, RESET X,Yy**

* %% LETTER "S" OR LETTER “L" PRESSED **
IF PEEK({14340) = 8
THEN
220:
ELSE
IF PEEK(14338) = 16 GOTO 290

' ** LETTER "C" OR LETTER “E" PRESSED **
IF PEEK(14337) = 8 CLS
GOSUB 380:
X = 0:
Y = 0:
GOTO 40

ELSE

IF PEEK(14337) = 32 GOTO 210

GOTO 70

CLEAR 50:
cLsS
END

! %% STORE SCREEN DISPLAY IN A% ARRAY =**

CLEAR 5000:

ON ERROR GOTO 370:

DIM A$(15):

L = 15360

FOR R = 0 TO 14:

A$(R) = STRING$(64,32): Program continued

119

graphics

NEXT :
' SET UP DUMMY STRING
235 :
' %% GET LSB AND MSB OF A$ ARRAY **
240 FOR R = 0 70 14:
8 0:

DzO:
B = VARPTR(A$(R)):
D = PEEK(B + 2) * 256 + PEEK(B + 1)

245
' *% CONVERT NUMBER TO NEGATIVE FOR MEMORY GREATER THAN 16K
250 IF D > 32767
THEN
D =D - 65536
255
' %% PACK SCREEN VALUES INTO DUMMY STRING **
260 FOR I =D TO D + 63:
POKE I, PEEK(L):
L =L+ 1:
NEXT I:
NEXT R
265 :
' *% NAME FILE FOR SAVE **
270 PRINT ©960,"PREPARE TAPE RECORDER, THEN PRESS ENTER ";:
FL = 1:
GOSUB 690 :
' SAVE
280 GOSUB 380:
FOR R = 0 TO 14:
PRINT # - 1,A$(R):
NEXT
GOTO 40
290 CLEAR 1000:
DIM A$(15):
ON ERROR GOTO 370 :
' LOAD
300 PRINT @960,"PREPARE TAPE FOR PLAYBACK, THEN PRESS ENTER ";:
FL = 1:
GOSUB 690:
GOSUB 380
310 FOR R = 0 TO 14:
INPUT # - 1,A$(R):
NEXT R
320 CLS -
GOSUB 380:
PRINT @0,;:
FOR R = 0 TO 14:
IF LEN{AS(R)) ¢ b4
THEN

T = 64 - LEN{A$
PRINT TAB(T)AS$(
NEXT
ELSE
PRINT A$(R);:
NEXT
GOTO 40
370 GOSUB 380:
X = 0:
Y = O:
RESUME 40
380 PRINT 0960, STRING$(63,131);:
FOR Z = 125 TO 127:
SET(Z,45):

R)}):
)5

{
R

390
' +% DRAW A STRAIGHT LINE BETWEEN THO COORDINATES =%

400 IF ABS(X2 - X1) < ABS(Y2 - Y1) GOTO 550

410 DY = (Y2 - Y1) / ABS(XZ - X1)

420 IF X2 > X1 GOTO 490

120

430

450
460

470
480
490
500
510
520

530
540
550
560
570
580
590
600

610
620
630
640
650
660

670
680
690

700

720

730

740
750

graphics

FOR I = X1 7O X2 STEP - 1
SET{1,Y1)
Yl = Y1 +
IF Yi <o

THEN
Y1 =0
NEXT I

RETURN

FOR I = X1 TO X2
SET(I,¥1)

Yl = Y1 + DY
IF Y1 <0
THEN

Y1 =0
NEXT I

RETURN

DX = (X2 - X1) / ABS(Y2 - Y1)

IF Y2 > Y1 GOTO 630

FOR I = Y1 TO Y2 STEP - 1

DY

SET(X1,1)
£1 = X1 + DX
IF X1 < 0
THEN
X1 = 0
NEXT I
RETURN
FOR I = Y1 TO Y2
SET(X1,I)
X1 = X1 + DX
IF X1 < 0
THEN
X1 =0
NEXT 1
RETURN
' **BLINKING CURSOR**
ING = ",
FL$ = INKEYS$:
W= 0:
IF FL = W
THEN
FL =1
PRINT CHR$(14),;
FOR T = 1 TO 25:
FL$ = INKEYS$:
IF FL$ ¢ > "®
THEN
730:
ELSE
NEXT

PRINT CHR$(15);:
FOR T = 1 70 25:
FL$ = INKEYS$:
IF FL$ < > "

THEN
730:
ELSE
NEXT :
GOTO 710
IF W = FL AND FL$ < > CHR$(8) AND FL$ < > CHR$(13) AND FLS$
< > CHR$(24) PRINT CHR$(15);
GOTO 710

Coew "ENTER" PRESSED BEFORE END OF FIELD **
IF FL$ = CHR$(13) AND W < FL
THEN

PRINT STRING$(FL - W,131); CHR$(15);:
RETURN

T TRIED TO BACKSPACE BEYOND START OF FIELD POSITION **
Program continued

121

770
780
790

800
810

820

graphics

IF FL$ = CHR$(8) AND W ¢ = O PRINT CHR$(15):
GOTO 710

i %% BACKSPACE **

IF FL$ = CHR$(B) AND W > OINS = LEFTH(IN§, LEN(ING) - 1):
=W - 1:

PRINT FL$;:

POKE 16418,131:

GOTO 710

tok*x SHIFT-LEFT ARROW **
IF FL$ = CHR$(24) PRINT STRINGH(W,8); STRING$(W,131); STRINGS (W,
24%);:
GOTO 700
IN$ = INS$ + FLS:
=W+ 1
PRINT FLS;
IF FL = 1 OR FL$ = CHR$(13) PRINT CHR$(15);:
RETURN :
ELSE
710

122

HARDWARE

As You Like It
Add PROM Capability to Your TRS-80
with the PR-80

123

HARDWARE

As You Like It

by Nick Doble

Yhe DATA statement allows you to store almost any type of information,
just by entering it. If you enter a lot of data for your own programs or
from published programs, however, you are well aware of the trials and
tribulations of data entry.

The numeric keypad on the TRS-80 makes numerical data entry much
easier, but unfortunately does not provide the comma needed for DATA
statements. You must use the comma on the regular keyboard; any aspira-
tions of touch typing do not survive the extended journey from the numeric
keypad to the comma on the letter keyboard.

It is a simple process to cut the traces to the period key on the numeric
keypad and attach a pair of wires to each side of the severed traces, attach a
third pair of wires to the comma key on the regular keypad, and finally, at-
tach the ends of these pairs of wires to a DPDT (double pole/double throw)
switch. By throwing the switch, you can have the period key on the numeric
keypad represent either a comma or a period, as you like it.

The following instructions for this modification are more complete than
seasoned hardware enthusiasts will need, but the novice will find them
useful. While the instructions are for the Model I TRS-80, they should work
for the Model II1I as well, although the physical layout will be somewhat dif-
ferent., You will need the items listed in Table 1. Using separate wire pairs
makes installation difficult. I recommend that your six-wire cable use solid
wire to simplify installation. Strip six wires from the cable you order if it has
more than six wires, then separate and strip the cable as shown in Figure 1.

12 inches of six-wire flat cable (RS part # 278-771)

One DPDT (double pole/double throw) switch (RS part # 275-1546)
Matte (utility) knife

95-40 watt soldering iron (preferably battery powered), and solder
Drill and 1/4 inch bit

Towel or soft cloth

Table 1. Material needed for comma/period modification

125

hardware

TO SWITCH

N1V

5" 3'\3'
TO CUT
TO PERIOD TRACES
KEY PADS

TO COMMA

Figure 1. Six-wire flat cable construction

To begin, turn off all the components of your computer and unplug the ac
lines to the CPU (keyboard) and the expansion interface if you have one.
Disconnect all plugs from the CPU. Place a towel or soft cloth on the table in
front of the CPU and turn the CPU over on top of it. Remove the six screws
on the bottom of the CPU case. Each pair of screws is a different length since
the CPU case is sloped. The longer screws will later go back in the longer sec-
tion of the case, and so on. You will find a warning label over one of the
screws. If your TRS-80 is still within its limited 90-day warranty, you should
heed the warning and wait to make this modification.

Turn the CPU over again and lift off the top of the case. Holding the
board at the edges, slowly pull up on the circuit board holding the two
keypads. Carefully fold it over toward you and lay it face down on the
towel, being very careful not to pull on the multi-wire connector on the left
of the board. Under the keypad board you have just removed you will find
another PCB (printed circuit board). We will not make any connections to
it, and you should be very careful not to damage it or splash solder on it.
Cover it with a piece of paper or another towel.

You will notice a period symbol on the right back of the key PCB above
two printed circuit pads. ENTER and 0 will be printed to either side of the
period symbol, each, again, near two PC pads (see Photo 1). You are looking
at the traces to the bottom keys of the numeric keypad. The traces to the
period key are shown in Photo 1 and Figure 2. Cut the traces where the Xs
are indicated in Figure 2; do not cut the middle trace passing between the
two pads. Cut the traces straight across using a matte (utility) knife and do
not try to make the cut on the first try—instead, make several lighter cuts.
Check that the cut has gone through the trace and that no pieces of the

126

hardware

Figure 2. The period key area. X marks the spot to cut.

severed traces are touching each other or anything else. Now, with the tip of
your matte knife, lightly scrape about one eighth of an inch of the edges of
the two severed traces until they are shiny. Wet these areas with a little
solder and then solder the two short wires from the outside edge of your six-
wire cable to the two traces cut from the pads. Solder the two inner wires of
this cable to the two pads of the period key. Use as little heat as possible for a
good connection. (A good connection is a shiny connection.)

If you look to the left, you will notice at the top of the PCB as you are look-
ing at it (actually the bottom of the board when it is in the case) the various
symbols for the keys attached to the other side of the board. Locate the< and
, symbols (which will be upside down) and attach the remaining pair of
wires to the two pads below these symbols. Photo 2 and Figure 3 show how
this area will look. Carefully check all the connections you have made to be
sure that the wires and their connections touch only what they are sup-
posed to touch.

Now you must connect the other end of the six-wire cable to the DPDT

127

hardware

{
<

Figure 3. The comma key area

switch. As the period key only serves to short two traces (or wires) together,
there is no need to observe any polarities. Wire the three wire pairs to the
switch as indicated in Figure 4. It is a good idea to keep the period and com-
ma wires as far from each other as possible, as I have done by putting the key
wire pair between the other two pairs. Figure 5 is a schematic of this process.

Looking at Photo 3 you will see that I have mounted the switch on the case
keyboard top in the space between the letter and numeric keypads. (The
other switch in the photo is my upper/lowercase switch.) Avoid locating the
switch at the bottom of the keyboard as it will get in the way during typing.
Drill a 1/4 inch hole for the switch in the case top at the location you choose

and install the switch.
Carefully fold the keyboard PCB back into the case, removing the paper

or towel you placed over the main PCB. The six-wire cable should come out
from under the bottom of the board as shown in Photo 4. Put the PCB on top

128

hardware

SWITCH WIRING

FROM COMMA FROM CUT TRACES
FROM PERIOD
KEY PADS

Figure 4. DPDT (double pole/double throw) switch wiring

DPDT SWITCH CUT TRACES
0___74}
COMMA PADS r
PERIOD
L i] t £ _TJ KEY PADS

Figure 5. Schematic

Photo 3. The period/comma switch mounted on the CPU. (The upper switch is an upper/lower-

of the supports and spacers. Finally, fold the case top up and over this whole
assembly and fit it into the bottom of the case, making sure that the cable to
the switch does not interfere with the keys on either side of it or get caught

129

hardware

between the case top and bottom in front. Turn the case over on the towel
and install the three pairs of screws.

Photo 4. Wiring from the keyboard to the period/comma switch

When you have done this, reconnect the CPU and plug in any ac lines you
disconnected. Turn on your computer and make sure it is operating normal-
ly. If it is, switch the period/comma switch back and forth while pressing the
period key on the numeric keypad. This key should print either a comma or
a period depending on the position of the switch. There should be no other
effects from this wiring change, such as signs of instability or extraneous
characters. If there are, you should check your connections and the routing
of your six-wire cable to keep it away from other components. I have oriented
my period/comma switch so that it is OFF, or in the period mode, when it is
down.

130

HARDWARE

Add PROM Capability to Your TRS-80
with the PR-80

by Frank Delfine

Vhe project presented here describes the hardware and software required
to place any block of memory (up to 8K) into 2708 EPROMs to be called
via the BASIC SYSTEM utility. This PROM card, dubbed the PR-80, is
designed to be constructed on an S-100 type plugboard so that it is compati-
ble with the Deluxe Expansion Interface described in Volume 3 of the En-
cyclopedia for the TRS-80. To maintain compatibility with Radio Shack
Els, as well as the standard keyboard connections, I have included the data
needed to interface to these as well. In addition to programming PROM:s for
storing TRS-80 utilities, you will now have the capability of burning pro-
grams for microprocessor-based devices.

Board Architecture

The PR-80 is divided into two sections: the 2708 programmer, and the 8K
of PROM sockets along with their associated address decoding circuitry. (See
Figures 1 and 2.) The PROMs reside in 8K of high memory at addresses
EOO0H to FFFFH. A PROM programmed with the PR-80 may be placed in
any of these sockets and accessed by entering the SYSTEM mode in BASIC
and typing:

/ DECIMAL START ADDRESS
Typing / 57344, for example, will transfer program control to EOOOH where a
user program can reside and execute. Use Table 1 to locate a starting address
for a particular socket. The programmer consists of the following sections:
1) + 26-volt power supply
92) Program pulse switching circuitry
3) 24 line 1/O port
4) 1/O port decoding circuitry

EPROM Operation

The 2708 (see Figure 3) is organized as a block of 1024 x 8 bit words of
memory. Accessing this data requires 10 address bits (A0-A9). To allow the
chip to sit directly on a system data bus, place the data lines into a high im-
pedance state via the chip select pin (pin 20). During a read operation, the
device functions much like a read from a static RAM chip. An address is put
out to pins AO-A9; the chip select is brought low (TTL 0); and, after the
specified access time (450 ns maximum from valid address for the standard
part), the data appears at the data pins DO-D7. (See the timing diagram in
Figure 4.)

131

hardware

RS

/3
+12V. 23q AP 2200
+5v 5w T 14 ZX
p o o
" Es Tk
H
8 Al Iasv RS
. 15K 02-D5
icl , (248V
555 |g R2
22K Q4
! n 2Naz22 2N3906
(2)
5 j\ 005uF 06,07
== ci oe,
b iuF 7 Nae
b R4
680
+5V

Tuav
} -5v ic2
Z“?‘*’ 2., PROGRAMMING
SOCKET

p K
0 o}
" o1ke PROGRAM
It
3 re
14 ic4
| v

IcS
741520

A2 bz
A3 D3
A4 ba
AS 05
AB [+1:3

18
6
17

o fro for]n fon for {0

a7 o7
a8 a9 CS
i3 [23 ez [eoTin
Rit TQ S-100
2700 ADDR BUS
Riz2 77 TE/WE w
1K
2]
2
Q6
2N2222
zsle

Figure 1. 2708 programmer

A blank, unprogrammed 2708 has all its data bits set to a logical 1. (All
bytes = FFH.) Logical 0 must be programmed into the desired bit locations
in order to make the PROM useful to us. The only way to return the bit pat-
tern to all 1s (erased condition) is to expose the chip’s memory array to a
strong, ultraviolet light source with a wavelength in the 2537 angstrom
region. This is done through a small quartz window on the surface of the
chip package. You can obtain the UV PROM eraser from the distributors
listed in Table 3.

Prepare the chip for the programming operation by bringing the chip
select pin to + 12 volts. (This now serves as the write enable.) An address is
presented to the address pins AO-A9 just as it was for a read operation. A
parallel eight-bit data word to be programmed is applied to data lines
DO0-D7 at TTL levels. A program pulse of about + 26 volts is then applied to

132

hardware

Cl6-c27
X ca-ce7
A LT L 1171 1711 1 1L e
cwr =ce TR f‘\cs closR | ARcie CI3FR | FReIs
cs| /\ lce ¢l cia .
S S = P~ 10 1C10-1C13
-5V
+HRV &
+5V
24
20 8 8 8ao WIRE ICI0~IC13
Al T 4 Ll AS SHOWN FOR
AZ 8 & 11 P IC6-1C3 EXCEPT
A3 3 5 S1as PIN 20
FYID) 4 (SEE 1C16) *
Ad
AS 3 3 3 AS
AE 2 2 2 a6
AT 1 q 1 A7
AL 23 3 EEY W8
2 22
A9 22 2 a9 5

—3T0 1CI10-1CI3

—>T0 ICI0~ICI3
$-100
BUS P
114
A0 79 i D0 2}7aLs241)8
81 F g0 (o1 1] 3
ﬁi a1 ,;m
855 ;.:m s o3 =
200 ﬁﬂﬂ TR 2
2 > >
A8 ;2 (o5 8l 12__26_C>Z§ 22 2 22 ALl 27
7 9 X 3
:a a3 m 87 ~=Ss0 - X ¢ zuo AIZD 33
Ao 29 e PiN 20 59 13
34 /;l; 1610e——q ic16
1611 - 74154 +5V $100
1612 @]
1613 <—Fa N

Figure 2. 8K PROM sockets

the PROGRAM pin (pin 18). You must repeat this operation many times, se-
quencing through all 1024 addresses each time. The exact number of loops
through the 1K bytes depends on the program pulse width used. The
number may be calculated from the following relationship:

N(# of passes) X Tpw >= 100 ms

The PR-80 uses a pulse width (Tpw) of approximately .5 ms; therefore, N
> = 100/.5, or at least 200 passes.

To program the PROM successfully, we must somehow sequence through
the 1024 addresses, presenting the data that we wish to program at each ad-
dress at least 200 times. The machine-code program PROM/CMD that
controls the PR-80 takes approximately four minutes to burn all 1K bytes
of a 2708.

133

hardware

PROM Socket Hex Address Decimal Address
Start End Start End

I1C6 E000 E3FF 57344 58367
1C7 E400 E7FF 58368 59391
IC8 E800 EBFF 59392 60415
1C9 ECO0 EFFF 60416 61439
1C10 F000 F3FF 61440 62463
IC11 F400 FTFF 62464 63487
IC12 F800 FBFF 63488 64511
IC13 FCO0 FFFF 64512 65535

Table 1. Socket starting address

T
a7 h 2afjvee
Asf]z 23[} A8
A5([]3 2708 22[] As
A4 [la 21[] vea
asfls 20[1 €5/ wE
az2fls {iﬁ' ’ 19f] vDD
AlL{f7 ~— 18] PROGRAM
A0{]e i7liov
00 {]e B106
ot [Jio 157} 05
D2 gu 1af}pa

vss[ji2 13{103

AC-AS ADDRESS INPUTS
DO-D7 DATA QUTPUTS /INPUTS
€S/ we CHIP SELECT/WRITE ENABLE INPUT

VSS | PROGRAM | ES/WE | vDD | vBB | vCC

READ GND | GND GND +2V | -5V | +8V

PROGRAM | 6D | PUESED | hpv | siav] -y | sy

Figure 3. 2708 pinout definitions

Circuit Description

The + 26-volt supply generates the voltage for the programming pulse to
pin 18 of the 2708. Itis a de/dc converter which usesa + 12-volt supply as its
input. The + 12 volts are taken from the on-board regulator in the S-100
version and from the 12-volt supply shown in Figure 5 in the stand-alone
version. ICl in Figure 1, a 555, is connected as a gated oscillator. It
generates a 5.7 kHz square wave that is used to switch Q1 and Q2. This
oscillator is gated on or off by controlling pin 4. When this signal is low, the
oscillator is inhibited. A high on this pin lets the oscillator run. The switch-
ing of Darlington pair Q1 and Q2 causes a series of current pulses approxi-
mately 500 mA in amplitude to flow through T1’s primary. This induces a

134

hardware

ADDRESS
(A0-A9)

ADDRESS VALID ><

i
= ; —
5 /wE :
(PIN 20) | e
: DESELECT
ACCESS TIME : el 12005 }o
| sasons L MAX
I
i
DATA OUT / ‘ pp——
IS DATA INVALID >< DATA VALID paTA OUT
!

Figure 4. Timing diagram

voltage into the secondary circuit which is approximately 60 volts under no-
load conditions. This occurs due to the turns ratio of the transformer which
is approximately 100 to 1. Since the exact voltage you will get out of the cir-
cuit is dependent on the transformer you use, I have chosen a component
that is available at your local Radio Shack store.

Diode D1 rectifies the pulses from T1’s secondary and charges the filter
capacitor C3 to the peak voltage. Since C3 charges to well over 26 volts and
will vary with the load that it must supply (the 2708), we must provide a
means for regulating the voltage to 26 volts under varying load conditions.
That is the function of D2-D7 and R5. D2-D5 are 6.2-volt zener diodes
whose drops are added together to give us 24.8 volts. Since this is below the

+5v
300mA
. MAX
IN40
T2 04 8 €
1o VRI
0s {——3” ey 7805
.
VAC Zcas cas

<
AT04F nL 2.2uF
35V 16V

L]
T3 IN40D4 s

~N<
o]
N
m

D
i 0 VR3 2
\L 7905
c32 ¢33 c34 N
4704F X 2204F 2uF 5V
35V 5

NOTE: HEAT SINK ALL REGULATORS
SEE FIG 8 FOR VR PINQUTS

Figure 5. Stand-alone power supply

135

hardware

lower end of the allowed programming voltage tolerance band, two stan-
dard general purpose diodes, D6 and D7, are added in series with the Zeners
to give an extra 1.2 volts for a total of 26.0 volts. Other combinations of
Zener diodes may be used if they are on hand. Be sure to watch the power
dissipation and keep the output voltage between 25 and 27 volts.

There are four critical components/parameters which should not be mod-
ified. First, you must use the specified transformer for T1. The oscillator fre-
quency is also somewhat critical and shouid be kept close to 5.7 kHz. R3 is
critical in both value and power rating. This resistor gets quite hot when the
oscillator is running. It should be mounted so that it is supported off of the
circuit board. The last component that should not be changed is R5. This
value has been selected to provide the proper bias to the Zener string as well
as allowing the proper current to flow to the 2708 during programming.

Since the circuit does have a few components which dissipate quite a bit of
power when running, the oscillator shuts down when there are no program-
ming operations going on. This is done via pin 4 on IC1. The software regu-
lates this pin to turn the supply on when it wants to program and off when it
has finished. The 1k resistor from pin 4 to ground ensures that the oscillator
will power up in an OFF state when the computer is first turned on.

Program Pulse Switching Circuitry

You must control the 26-volt power source so that you can apply a pulse of
26 volts to the program pin on the 2708. The actual pulse width that is used
is .5 ms, which is a value we derived earlier. The pulse is generated by a soft-
ware loop which sets and resets pin 14 on the 8255. IC2-c inverts this signal
so that there is a complementary set of TTL level program pulses available.
The positive-going pulse turns on Q3 which causes Q4 to turn on. The 26
volts are now applied to the 2708 by Q4. Since the cutput of 1C2-¢ is now
low, Q5 is off and has no effect on the 2708. When the input to IC2-c goes
low, Q3 and Q4 turn off (R6 helps Q4 to turn off quickly), removing the pro-
gramming voltage from the 2708. Q5 now turns on and sinks any current
provided by the 2708. Since there is some current being sourced by the 2708,
this sort of active pull-down is necessary and should not be replaced by a
passive pull-down scheme.

24-Line I/O Port

The actual interface between the programming hardware and the
TRS-80 involves a single chip. The 8255 (see Figure 6) is a 40-pin device
which contains three-eight bit ports which may be configured as input or
output in any combination. The ports are called out as PORT A, PORT B,
and PORT C. A and B are identical ports and may be configured as an eight-
bit input port or an eight-bit output port. PORT C is split into two four-bit
ports. The four high-order bits may be set as input bits or output bits, while

136

hardware

the four low-order bits have the same option independent of the high-order
bits. In addition, if PORT C serves as an output port, you have a bit set/reset
capability available which allows you to set or reset one bit of the port
her bits of that port. This feature saves some
software when you write control routines. There are several other modes
and options available in this chip that I will not go into here. If you would
like to know more about the device, see the Intel component data catalog for

without affecting any of the ot

spec sheets and some applications information.

PA3 (] a0l Pas
paz {J2 38{] PAS
Pal (13 3s[] Pae
PAQ [j4 37[] PA7
RD (s 36 (] WR
cs (s 35[] RESET
GND (7 34[]00
Al {]s 33(101
a0 s CEERE 32{]n2
pct Oio 8299 31§13
pCe [t 30 D4
Pes [z 290105
pca {3 28l D6
Pco [Jis 2r o7
pct s sy vee
pc2 Jis 25[] Pa7
pc3 i 24[] PBE
pao {8 23{] Pas
eat (Jio 221} PB4
PB2 [j20 21{1 P83

BI-DIRECTIONAL DATA BUS
RESET INPUT

CHIP SELECT INPUT

READ STROBE INPUT
WRITE STROBE INPUT
PORT SELECT ADDRESS (INPUT)
PORT A {1/0)

PORT B {1/0)

PORT C {1/0)

+5VOLTS

0 VOLTS

Figure 6

A review of the 2708 pinout and the programming hardware described to
llowing 1/O requirements for programming
and reading (we will want to read back the programmed PROM to verify it

this point leaves us with the fo

as a proper burn) the 2708:

. 8255 pinout definitions

1) 10 bits of address information

92) eight bits of data to be written or read

3) one bit to turn the programming voltage on and off
)
)

4) one bit to turn chip select on or off {(choose read or write mode)

5) one bit to turn the 26-volt supply on and off

137

hardware

The following I/O assignments are then made to the 8255 ports:

Port A: A0 through A7 ! Output Port
Port B: DO through D7 / Output for program
Input for a read
Upper Port C: PC4 = A8 / Output Port
PC5 = A9
PC6 = Not used
PC7 = Not used
Lower Port C: PCO = Programming pulse / Output Port
PC1 = Chip select/write
PC2 = PRGM volt on/off
PC3 = Not used

Note that all the ports but Port B are configured as output ports.

Since port configuration is software programmable in the 8255, this port
can be switched from output to input simply by writing a word to the con-
trol register of the device. This feature saves buffers and associated control
chips that would be necessary if you used discrete logic.

PC1 is the signal that controls the chip select pin (pin 20) of the 2708. I
mentioned earlier that the chip select line must be brought to + 12 volts for a
programming operation. Since the PC1 signal is a TTL level, Q6 and R11
serve to accomplish the level shifting.

I/0 Port Decoding Circuitry

Most of the I/O functions in the TRS-80, such as the disk controller and
the printer, are memory mapped. There are one or two devices which are
arranged as I/O devices, and we must be careful not to conflict with them.
The serial RS-232 port utilizes port addresses from E8 to EB. The cassette is
also an I/0 device at FF. I chose the ports from F0 to F3 as the slot for the
PR-80. Table 4 lists the function of each port.

You must decode only the lower eight bits of the address bus for an 1/0
port. The upper eight address bits contain the data in the A register during
an I/O transfer; so you can ignore that information. The A0 and Al bits go
directly into the 8255 and are decoded inside the chip to select one of four
registers. The first three registers are ports A, B, and C, and the fourth is the
control register. You must, therefore, decode only one word;

1111 00XX

for the four ports from FO to F3. This is done by 1C4-c, 1C4-d, and IC5-a
which generate a chip select signal any time a word between F0 and F3 ap-
pears on the lower half of the addrress bus. Since reading or writing to the
PR-80 are not the only situations that will trigger this, an additional piece of
data is supplied to the 8255 in the form of the IN*+ and OUT* control signals
from the TRS-80 which make the device selection unique.

138

hardware

Designation Description RS P/N When Applies

IC1 555 Timer 276-1723

1C2,15 74L.S00 276-1900

IC3 8255

1C4 741.832 276-1915

1C5 741.820

1C6-13 2708

IC14 7415241

IC16 74154 276-1834

VRI1 7805 +5V Reg 276-1770

VR2 7812 + 12V REG 276-1771

VR3 7905 -5V REG 276-1773

Rl 6.8K 1/14 W 271-1333

R2 22K 1/4 W 271-1339

R3 22-Ohm 5W (or two 10-Ohm 2W in series—271-080)

R4 68-Ohm 1/4 W 271-010

R5 220-Ohm 1/2 W 271-015

R6 47K 1/4 W 271-1330

R7 47K 1/4 W 271-1342

R8,9,12 1K 174 W 271-1321

R1l 270-Ohm IW (or two 470-Ohm 1/2 W in parallel
271-091)

Cl 1 uF/s50vV 272-1069

Cc2 .005uF/50V 272-126

C3 47 uF/35V 272-1015

C4-C27 01uF/50V 272-131

28,32 470uF/35V 272-1018

C29,31,34 2.2uF/16V 272-1420

C30 4700 uF/35V 272-1022

C33 220uF/35V 272-1017

Q1,2,3,5,6 2N2222 276-1617

Q4 2N3906 276-1604

D1,6,7 IN4148 276-1103

D2,3,4,5 IN4735 (6.2V Zener) 276-561

D8,9,10 IN4004 276-1103

T1 Mini Audio Transformer (1K to 8-Ohm) 273-1380

T2 12V 300 mA 273-1385

T3 25.2V 2A 273-1512

Table 2. Parts list for PR-80

139

hardware

the code using a modified version of EDTASM. (See “Assemble It Yourself”
by Richard Koch in 80 Microcomputing, December 1980, p. 212.) This ver-
sion of EDTASM is a perfect adjunct for the PR-80 since it allows you to
assemble your program directly into R/W memory, run and debug it, and
leave a working version in RAM. You can then call PROM/CMD and burn
your code directly into a PROM. This program can be run from the disk or
besaved in PROM. I did this with PROM/CMD. Anytime I want to run the
programmer all T have to do is enter either Disk BASIC or Level II BASIC,
type SYSTEM, and answer the prompt with / 57344, and the PR-80 pro-
gram prompt appears on the screen,

I made extensive use of the Level II screen and keyboard I/0O routines to
keep the code down to a minimum but still provide the same type of user
prompting and input flexibility that is common with BASIC programming.
I have tried to provide some information as to what parameters must be

Programming Socket 40-pin Zero Insertion Force
Available from:
1) Priority One Electronics
9161 Deering Ave.
Chatsworth, CA. 91311 1-800-423-5922

2) Jameco Electronics
1355 Shoreway Rd.
Belmont, CA. 94002 415-592-8097

PROM Eraser
Available from:

1) Advanced Computer Products
P.O. Box 17329

Irvine, CA. 92713 800-854-8230
2) Jameco Electronies

1355 Shoreway Rd.

Belmont, CA. 94002 415-592-8097

3) Logical Devices, Inc.
781 W. QOakland Park Blvd
Ft. Lauderdale, FL 33311 305-565-8103

4) Quest Electronics
P.O. Box 4430X
Santa Clara, CA. 95054 408-988-1640

Table 3. Distributors

140

hardware

passed to the various routines in the comments. For a more detailed explana-
tion of how these routines work and what registers are effected, see “Inside
the ROMs” by Bruce E. Stock in 80 Microcomputing, March 1980, p. 94.

Port Address Function

FO PORT A - A0-A7

F1 PORTB - D0 =D7

F2 PORT C- PC4 = A8
PC5 = A9
PCO = PROGRAM PULSE
PCl = CS/WE
PC2 = 26 V SUPPLY

ON/OFF

F3 CONTROL PORT - SETS I/O MODE &

USED FOR BIT SET/RESET

Table 4. Port functions

The program starts by clearing the screen, placing the program I.D.
header up on the screen, and prompting the user to plug in a blank PROM.
it then asks for the start address of the segment of code to be copied. The ad-
dress should be entered as a four-character hex number. After the program
has checked the entered address to make sure that the entries fall between the
0 and F characters for hex code format, the PROM is read to verify that itis a
blank PROM before atternpting a program operation. If it detects an invalid
entry, the program jumps back to START to allow you to try again. It gets
back to START via ERR, which pops two addresses off the stack before
jumping to START. This is necessary since the program is down twolevels in
subroutines at that point. If this was not done, and a few entry errors were
made, the stack would keep growing, and some of the return addresses from
the subroutine calls would be incorrect.

If data other than FFH is read from the PROM, the programming opera-
tion is aborted, and a FAIL message appears. The computer then prompts
you to make a decision to run the program again or to return to TRSDOS.
You can return to a program other than DOS if you change the jump address
in line 1540 of Program Listing 1.

If all the tests to this point are successful, the 8255 is ready for program-
ming. By writing an 80H to the 8255 control register, the A, B, and C ports
become output ports. Notice that the chip select, program pulse, and the
926-volt supply are also controlled by writing to the control register. This is
because they are on PORT C and can be controlled by the bit set/reset

141

hardware

feature of the chip. A list of the commands for the control register is given in
Table 5. Since the 26-volt power supply filter capacitor C3 is rather large,
and the supply does not provide a high charge current, C3 requires several
hundred milliseconds to reach a full charge. The delay loops labeled DLY1
and DLY2 form the delay for this purpose.

Once the supply is running, the PROGRAMMING message appears, and
the actual programming gets underway. The code start address is loaded in-
to HL from the stack. This address was pushed onto the stack when it was
read in from the keyboard previously. Itis also saved in a temporary register
called TEMP so that it will be available for future passes. (Remember that
you must make 200 passes of the 1024 addresses to complete the burn.) DE is
the address pointer to the PROM; so you must initialize it to zero. BC is the
byte counter which is set to 1024. A value stored in a memory register called
DELAY determines the program pulse width. The IX register (X Index
Register) is set to point to this location. From this point on, the program
loops through the 1024 addresses, outputting the data from memory to the
PROM, then generating a program pulse. The subroutine PROMPT handles
the conversion of the PROM address in the DE register to the B and C ports
in the 8255. The routine PULSE generates the program pulse of .5 ms on and
.5 ms off. After 1024 addresses have been sequenced, the pass counter is
decremented and tested. If the sequence has been repeated 200 times, the
programiming operation is complete.

At this point, the 26-volt supply switches off and the 8255 is placed in a read
mode. This time you are going to compare the contents of the PROM to the
data in memory. PORTIN is the routine which handles the 8255 setup for an
input operation. A VERIFYING message is displayed while the compare
operation is going on. If a match is achieved, a PASS message is shown; if
not, FAIL appears. At this point, the operation is complete, and you can
remove the PROM and place it in one of the eight PROM sockets for use by
the TRS-80.

8K PROM Section

The PROM area of the board consists of the eight PROMS (IC6-1C13),
IC15, IC16, and IC4-a which make up the address decoder, and IC14 which
is the bus buffer. The output of IC4-a goes low whenever a memory read is
requested in the address range of EOOOH to FFFFH. This is used to control
the buffer IC14. IC16 is arranged so that it splits the 8K block into eight 1K
segments where each output is used as a chip select to one of the PROMs.
(See Table 1.)

The bus buffer IC14 is especially important if you use the S-100 version of
the board, since the output drivers in the PROM are not sufficient to pull the
bus terminators on the motherboard down to ground. It also helps in the

142

hardware

stand-alone version by providing increased drive capability for the connect-
ing cable to the keyboard or EI. (See Figure 7.)

TRS - 80
EDGE CONNECTOR

TRS - 80 a9 17 <
EDGE CONNECTOR a8 11 <}
. e a7 36 <7}
P e A1 as 38 <}
i) TO ADDRESS
[P n "L — a5 35 <} BUS
c2 5 a4 31 <} 1C6-13
2 ¢ RESET A3 34 <3 {SEE FIG 2}
30<7} Ead J Az a0 <}
22<) 210 Al 27 <3
32K 321 e 3 A0 25 <l
Ell
26 03
<z ” 5255 | s
18 < D4
a
28<} :9 (L]
24 <} 23 06 Ica
20 <} o7 3
25 <} 21 a0
27 <7} 8 a AIS
—————————— Alg
‘e A3
3 RD*
L&
i icia I a
‘7 745240 PYTI an — 16
3 a2 5 ot ¢ (74154)
1]

Figure 7. Modifications for stand-alone version

General Comments and Hints

The most accurate and most expedient way to enter the PROM/CMD pro-
gram is to use an assembler such as EDTASM. You can also enter the pro-
gram using the BASIC program shown in Program Listing 3. The code from
8FF1H to 8FFFH in Program Listings 1 and 3 can be eliminated if the pro-
gram is only to be run from disk or tape. This code is provided to relocate the
program from PROM down to R/W memory where it can be run. This
scheme can be used for any program that was written for an absolute ad-
dress in R/W memory, but that you would like to store in PROM. You can do
this with programs like EDTASM and T-BUG. HL should be loaded with
the start of the PROM code while DE should get the destination address in
R/W memory. Place the number of bytes to be transferred into the BC
register pair then execute an LDIR. This will cause a block transfer of code
from PROM to R/W memory for the length specified in BC. A jump to the
start address in R/W memory will now run the program as though it were
loaded from a tape or disk. While this method provides a quick, easy means
for transferring existing routines from tape or disk directly to PROM, you

143

hardware

should avoid using it on new routines that you write, since it occupies double
memory space. It is much more efficient to have the code execute directly in
the PROM rather than make a second copy in R/W.

You can use wire-wrap techniques to construct the board. Locate the
bypass capacitors specified in the schematics as close to the chips as you can.
I solder them directly to the wire-wrap pins of the chip. Keep the cable be-
tween the keyboard and the PR-80 as short as possible in the stand-alone ver-
sion to minimize inductive/capacitive effects that can cause strange program
crashes for no apparent reason. I recommend that you use a ZIF (zero inser-
tion force) socket for the programming socket. This type of socket allows you
to insert the PROM without any force on the pins. A small handle on the side
of the socket locks the chip into place. You will never bend a chip lead this
way. If you build the S-100 version, you will probably want to mount the
ZIF socket in a separate enclosure outside of the mainframe and connect it to
the board with a length of 40-conductor ribbon cable (or a DIP jumper).
The enclosure can be a small, plastic minibox.

The S-100 boards are VECTOR type 8801 plugboards. They are supplied
with a heat sink for the 5-volt regulator and a paper layout guide which
helps you to locate the pin numbers. (See Figure 8.) More information on in-
terfacing the TRS-80 to the S-100 bus may be found in Volume 3 of the En-
cyclopedia for the TRS-80.1 have split PROM/CMD into two parts to accom-
modate the buffer size of the version of EDTASM I was using at the time. If
you have more buffer space, you can run both listings together and remove
some of the redundant EQU statements.

\ +8Y R c I R
s~|oo<j' _L 7805 'S 7805, 7812
+ + '
2.2uF "L 2.2uF
23 T A {TOP VIEW}
8 C E
Veid IN —\l l/—ou'r
VR2 t
“16V
s ¢ GND
2100 < J_ 7812 wt2v
. .
4.7uF 3 EU
;|\ 35V ,,17 35V o) ~—IN {DO NOT GND!)
77 7905
VR3 132
52 ~16V 2 R I I |
. ~ GND -~ ~—0uT
5<100 \L 7905 SV
4.7uF LM
1, 35V il =, 35V ,L

Vedd NOTE. USE HEAY SINKS ON ALl REGULATORS

Figure 8. S-100 power supply

144

hardware

This table describes the basic commands that may be written to the control register (PORT F3H)
of the 8255. The MODE 0,1, and 2 nomenclature refers to the following definitions:

MODE 0 : BASIC INPUT / OUTPUT

MODE 1 : STROBED INPUT / OUTPUT

MODE 2 : BI-DIRECTIONAL BUS
Note that D7 indicates whether the word is to be interpreted as a mode definition or as a bit
SET/RESET command.
A read of the control port is not permitted in this device.

Mode Definition Format

D7 MODE SET FLAG 1 =ACTIVE
D6,5 MODE SELECTION FOR GROUP A (GROUP A = UPPER C
AND PORT A)
D6 D5

0 0 MODE 0
01 MODE 1
1 X MODE 2
D4 PORT A 1=INPUT/0=OUTPUT
D3 UPPER C 1=INPUT/0=O0OUTPUT
D2 MODE SELECTION FOR GROUP B (GROUP B = LOWER
C AND PORT B) 0=MODE 0/ 1=MODE 1
Di PORTB 1=INPUT/0=OUTPUT
DO LOWER C1=INPUT/0=0UTPUT

Bit SET/RESET Format
D7 BIT SET / RESET FLAG 0=ACTIVE
D6,5,4 DON'T CARE
D3,2,1 BIT SELECT
D3 D2 DIl BIT selected
0 0 o DO
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
i 1 0 D6
1 1 1 D7
DO BIT SET/RESET SET =1/ RESET =0

Table 5. Control register commands

145

0080
0082
00F0
00F1
00F3
0001
0000
0002
0003
0005
0004
91E4
9229
923D
9243
9249
9264
9276
928B
9150
9171
91B2
9178
91C3
8FF1
8FF1
8FF2
8FF5
8FF8
8FFB
8FFD
9000
9003
9006
9009
900C
900F
9010
9013
9014
9015
9018
9019
901C
901D
901E
901F
9022
9025
9028
9028
902E
9031
9032
9034
9036
9039
903A
9038

F3
210FEQ
110090
01ABO2
EDBO
€30090
(DC901
21E491
CDA728
(DB31B
CD5091
57
Cb7191
82

57
(D5091
5F
(D7191
83

5F

D5
212992
(DA728
(DB291
110000
010004
CD7891
00
DBF1
FEFF
C2E190

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00412
00414
00416
00418
00420
00422
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00635
00640
00650
00660
00670
00680
00690

hardware

Program Listing 1. PROM/CMD

Encyclopedia
L.oader
s TITLE PROM/CMD 8/17/81 VER 1.0

3THIS UTILITY, WHEN USED IN CONJUNCTION WITH THE PR-80
;PROM/ROM CARD IN A TRS-80 SYSTEM, WILL ALLOW THE
;PROGRAMMING OF 2708 TYPE EPROMS FROM R/W MEMORY OR
;FROM A MASTER PROM.

;
dutsz EQU BOH JINIT 8255 FOR WRITE
IN82 EQU 82H ;INIT 8255 FOR READ
A8255 EQU OFOH ;PORT A - LOW ADDRESS
B8255 EQU OFLH ;PORT B - DATA LINES
CNTRL EQU OF 3H ;8255 CONTROL PORT
PLSON EQU 1 ;PROG PULSE ON
PLSOFF EQU 0 iPROG PULSE OFF
WRON EQU 2 SURITE SELECTED (CS=+12)
WROFF EQU 3 READ SELECTED (CS=0)
PGHON EQU 5 ;PRGM VOLTAGE ON {25 V)
PGHOFF EQU 4 ;PRGM VOLTAGE OFF
MSG1 EQU 91E4H ;MESSAGE START ADDRESSES
MsG2 EQU 9229H
MSG3 EQU 9230H
MSG4 EQU 9243H
MSG5 EQU 9249H
MSGs EQU 9264H
MSG7 EQU 9276H
MSG8 EQU 928BH
SHFTL EQU 9150H ;SUBROUTINE ADRS
LOWNIB EQU 9171H
PORTIN EQU 91B2H
PROMPT EQU 9178H
PULSE EQU 91C3H
ORG 8FF1H
ol SRELOCATE PROM/CMD & RUN
LD HL,OEDOFH SET START ADR IN PROM
LD DE,9000H ;SET RELOCATE ADR IN RAM
LD BC,02ABH ;SET TRANSFER LENGTH
LDIR ;TRANSFER TO RAM
Jp 9000H ;EXECUTE PRGM IN RAM
START CALL 1COH sLYL I1 SCREEN CLR ROUT
Ld HL,MSG1 SSET POINTER TO HESSAGE
CALL 28ATH sLVL 11 ROUT TO DISPLAY
CALL 1BB3H SGET KEY DATA (LVL I1)
CALL SHFT1 PUT START ADDRESS
LD D,A ;TOGETHER FROM ASCII
CALL LOWNIB ;KEYBOARD DATA
ADD AD ;PUT NIBBLES TOGETHER
LD D,A SAVE HIGH ORDER BYTE
CALL SHFTI ;D0 SAME FOR LOW ORDER
LD E,A
CALL LOWNIB
ADD ALE
LD E,A ;DE NOW CONTAIN START ADR
PUSH DE iSAVE START ADDRESS
LD HL,MSG2 ;DISPLY "VERIFYING BLAKK"
CALL 2B8A7H
CALL PORTIN ;SETUP 8255 FOR READ
LD DE,0 ;SET PROM START ADR
LD BC,1024 ;SET BYTE COUNTER
VERIF CALL PROMPT ;0UTPUT DE ADR TO PROM
NOP ;DELAY FOR 8255
IN A, (BB255) ;READ BYTE
cp OFFH STEST IF = FFH
Jp NZ,BAD iN.G. - ABORT
INC DE ;BUMP POINTER
DEC BC ;DEC AND TEST BYTE CNTR
LD AsC

903C
903E
3041
9042
9044
9047
904A
904D
904F
3051
9063
9055
9057
9059
9058
9050
905F
9061
5062
3063
9066
9067
906A
906D
9070
9071
9074
9076
9077
907A

907E
9081
9084
9085
9087
908A
9088
908C

908D

908F
9090
9093
9094
9097
9098
5099
909¢C
309D
90A0
90A3
90A6
90A8
S0AA
90AD
9080
9083
90B6
9089
908C
90BF
90C1
90C2
90C5
90C6
90C7
90C8
90CA
30C8
90CE

010004
DD21FF90

110000
CD7891
7E
D3F1
CDC391
23

010004
CD7891
DBF1
BE
C2E190
23

13

08B
3E00
B9
C2BC90
B8

00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00980
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390

DLy2
oLyl

AGN
PRGM

PASS

CHECK

AGAIN

hardware

0
NZ,VERIF
A,8

0
NZ,VERIF
HL ,MSG3
2BATH
A,0UT82
(CNTRL), A
A,WRON
(CNTRL), A

NZ,DLY2Z
HL,HSG5
28A7H

HL
(TEMP), HL
€,200

BC
BC,1024
IX,DELAY

DE,O
PROMPT
A, (HL)
(B8255),A
PULSE

7,CHECK
BC
BC,1024
HL, (TEMP)
AGN
A,PGMOFF
(CNTRL), A
PORTIN
HL,MSG6
28A7H

HL, (TEMP)
DE,O
BC,1024
PROMPT
A,(B8255)
(HL)
NZ,BAD

HL

DE

BC

A,0

¢
NZ,AGAIN
B

3NOT DONE YET.....

SNOT YET 1M
;DISPLAY "PASS" MESSAGE

3;BLANK OK - NOW PROGRAM!
;SET 8255 TO PROGRAM MODE
sTURN ON WR LINE (+12 V)

;TURN PRGM PULSE OFF
;TURN +25 V SUPPLY ON

;DELAY FOR +25 V SUPPLY
;CAP TO REACH FULL CHARGE

;DISPLAY "PROGRAMMING"

;LOAD START ADR INTO HL
;SAVE FOR NEXT PASS
;SET PASS COUNTER
3SAVE IT

;SET BYTE COUNT

3SET POINTER TO PULSE
;DELAY WORD

3 INIT ADDRESS TO PROM
;0UT ADR TO PROM

;GET DATA BYTE

sPUT IT OUT TO PROM
;GENERATE PRGM PULSE
;BUMP POINTERS

;DEC AND TEST BYTE CNTR

;STILL MORE TO GO.....

;NOT DONE YET....
;CHECK FOR PASS 4

;PROGRAM COMPLETE- VERIFY
;MORE PASSES LEFT..SAVE
SRESET BYTE COUNTER

sMVE ADR PTR TO MEM START
;D0 IT AGAIN f1If!

3 TURN 25V SUPPLY OFF

;SET 8255 TO READ
sDISPLAY “VERIFYING" MSG

;RESET MEMORY POINTER
;RESET PROM ADR POINTER
3SET BYTE COUNTER

;0UT ADR TO PROM

;READ BYTE FROM PROM
;EQUAL MEMORY ?
sNO. . ABORT

;BUMP POINTERS
;DEC AND TEST BYTE CNTR

;KEEP GOING.....
Program continued

147

hardware

91FA 2E 01220 DEFB Lt
91FB 30 01230 DEFB ‘0’
91FC 0D 01240 DEFB 13
91FD 2A 01250 DEFB P
91FE 54 01260 DEFB T
91FF 59 01270 DEFB Yy
9200 50 01280 DEFB ‘P
9201 45 01290 DEFB 'E!
9202 3A 01300 DEFB Yt
9203 20 01310 DEFB !
9204 32 01320 DEFB re!
9205 37 01330 DEFB ‘7!
9206 30 01340 DEFB ‘0!
9207 38 01350 DEFB '8’
9208 0D 01360 DEFB 13
9209 0D 01370 DEFB 13
920A 2A 01380 DEFB tHt
9208 49 01390 DEFB "1t
920C 4E 01400 DEFB N
920D 53 01410 DEFB 'St
920E 45 01420 DEFB 'E!
920F 52 01430 DEFB 'R*
9210 54 01440 DEFB ‘T
9211 20 01450 DEFB !
9212 50 01460 DEFB p!
9213 52 01470 DEFB 'R'
9214 4F 01480 DEFB 0
9215 4D 01490 DEFB 'M!
9216 0D 01500 DEFB 13
9217 2A 01510 DEFB Pkt
9218 45 01520 DEF8B 'E!
9219 4E 01530 DEFB "N
921A 54 01540 DEFB ‘T
921B 45 01550 DEFB 'E'
921C 52 01560 DEFB ‘R
9210 20 01570 DEFB !
921E 53 01580 DEFB 's!
921F 54 01590 DEFSB T
9220 41 01600 DEFB ‘A
9221 52 01610 DEFB 'R’
9222 54 01620 DEFB T
9223 20 01630 DEFB !
9224 41 01640 DEFB At
9225 44 01650 DEFB ‘D’
9226 52 01660 DEFB 'R'
9227 3A 01670 DEFB vt
9228 00 01680 DEFB 0
9229 0D 01690 MSG2 DEFB 13
922A 2A 01700 DEFB TH!
9228 56 01710 DEFB Ve
922C 45 01720 DEFB 'E!
922D 52 01730 DEFB 'R’
922E 49 01740 DEFB ‘1
922F 46 01750 DEFB 'F!
9230 59 01760 DEFB Y
9231 49 01770 DEFB "1
9232 4t 01780 DEFB 'N'
9233 47 01790 DEFB ‘G’
9234 20 01800 DEFB !
9235 42 01810 DEFB '8!
9236 4C 01820 DEFB Lt
9237 41 01830 DEFB Al
9238 4E 01840 DEFB "N
9239 48 01850 DEFB 'K!
923A 3A 01860 DEFB i
9238 20 01870 DEFB !
923C 00 01880 DEFB 0
923D 50 01890 MSG3 DEFB ‘Pt
923E 41 01900 DEFB At
923F 53 01910 DEFB 'St

9240
9241
9242
9243
9244
9245
9246
9247
9248
§249
G924A
9248
§24¢C
924D
924E
924F
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
925A
9258
925C
925D
925E
925F
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
926A
9268
926C
926D
926E
926F
9270
9271
9272

9273

9274
9275
9276
9277
9278
9279
927A
9278
927¢C
927D
927E
g27F
9280
9281
9282
9283
9284
9285

01920
01930
01940
01950
01960
01870
01980
01990
02000
02010
02020
02030
02040
02080
02060
02070
02080
02090
02100
0211n
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
042590
02600
02610

HMSG4

MSG5

MSG6

MSG7

hardware

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFDB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
NDEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFSB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

L

Wi =T

1ok w

'

MZXX>OOO0O I

= T T T T S e VI
W

R TOCU LR e T O < ¥

ZO——>0mMTO %

Program continued

90CF
90D2
90D5
9008
90DB
90DE
90f1
90E4
90E7
90EA
SOED
90F0
90F2
90F5
90F7
90FA
90FD
90FE
90FF
0000

C2BCY0
213D92
CDA728
217692
CDA728
C3E790
214392
CDA728
218892
CDA728
CD4900
FE41
CADO9%0
FE53
CA2D40
C3EDIO
00

00

00

00000 TOTAL

01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
ERRORS

BAD
EXIT
KEYLK

TEMP
DELAY

hardware

DEFB
DEFB
DEFB
END

NZ,AGAIN

NOT YET....
;PASSED . .PROM PROGRAMMED
Y

;DISPLAY "PASSE
;DISPLAY "COMPLETE"
;DISPLAY "FAIL"™ MSG
;DISPLAY RESTART PROMPT
;GET CHAR FROM KEYBD

i= "ATO?

;YES..RUN AGAIN
)

:REBOOT TRSDOS

3 TEMP HL ADR STORAGE

00F3
00F0
0082
0003
0000
0001
90FF
9001
0004
9150

9150 D

9151
9164
9156
9158
915A
916C
915E
915F
9161
9164
9166
9169
9168
916C
916D
916E
9171
9172
8175
9177
9178
9179
9178
917D
917F
9181
9183
9185
9187
9189

Program Listing 2. PROM/CMD (subroutines/messages)
PROM/CMD {SUBROUTINES/MESSAGES)

00100
00110

00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

JTITLE

3

CNTRL
AB255
IN82
WROFF
PLSOFF
PLSON
DELAY
START
PGMOFF

SHFT1

ALPHA

ERR

LOWNIB

PROMPT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
ORG
RST
CALL
Sus
SLA
SLA
SLA
SLA
RET
cp
Jp
cP
ae
suB
RET
pOP
pPoP
JP
RST
CALL
sus
RET
LD
cp
JR
Cp
IR
cp
JR
LD
ouT
LD

O0F3H
OFOH
82H

3

0

1
90FFH
9001H
4
9150H
10H
NC,ALPHA
30H

A

A
A
A

41H
C,ERR
47H
NC,ERR
7

HL

HL

START
10H
NC,ALPHA
30H

A,D

0

7 ,SHRTAD
3

7,80TH

1

7,AD8
A,OBH
(CNTRL), A
A,8

;8255 CONTROL PORT
;PORT A - LOW ADDRESS
;INIT 8255 FOR READ
;READ SELECTED (CS=0)
;PRGM PULSE OFF

;PRGM PULSE ON

;DELAY COUNTER

;PRGM VOLTAGE OFF

;GET KEYBOARD DATA

;IF CY=0 CHAR = ALPHA
JNUMERIC, CNVRT FRM ASCII
JSHIFT INTO HIGH NIBBLE

;CHECK A-F LIMITS

yNG. .. ABORT

JCONVERT 7O NUMERIC FORM
;(SUB 41H & ADD 3AH=SUB 7)
;DISCARD BAD RETURN ADRS

;START OVER

JCONVERT ADR FOR 8255
SCHK IF UPPER TWO BITS =0
IYES..RESET A8 & A9
JEVALUATE UPPER TWO BITS
JBOTH SET ?

INO..JUST A8 ?

YES, TAKE CARE OF IT...
SJUST LEAVES A91!

150

9188
918D
918E
9190
9191
9193
9195
9197
9199
9198
919D
919F
9141
91A3
9145
91A7
9149
9148
91AD
91AF
9180
9181

9182 :

9184
9186
9188
91BA
91BC
91BE
91C0
91¢C2
91¢C3
91¢5
91C7
919
91cC
91CF
9100
9101
9103
9105
9107
9109
91nC
91DF
91E0
91E1
91E3
91E4
91E5
91E6
91E7
91E8
91E9
91EA
91EB
91EC
91ED
91EE
91EF
91F0
91F1
91F2
91F3
91F4
91F5
91F$§
91F7
91F8
91F9

00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00725
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
60890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210

EXI

BOTH

AD8

SHRTAD

PORTIN

PULSE

LP1

LP2

MSG1

hardware

(CNTRL), A
ALE
(AB255), A

A9
(CNTRL),A
A,0BH

A, IN82
(CNTRL), A
A, WROFF
(CNTRL), A
A,PLSOFF
(CNTRL), A
A,PGMOFF
(CNTRL), A

A,PLSON
(CNTRL),A
A,24
(DELAY),A
(I1X+0)

NZ,LP1
A,PLSOFF
(CNTRL), A
A,24
(DELAY),A
(1X+0)

;QUTPUT LOWER 8 BITS

;SET PC4 & PCS

SET PCA
;ZERO PCS

;ZERQ PC4 & PCS

;SETUP 8255 FOR READ
sENABLE CS

; TURN OFF PRGM PULSE
;TURN OFF +25 V SUPPLY

;TURN ON PRGM PULSE
;DELAY ABOUT .5 MS

;TURN OFF PRGM PULSE

;DELAY AGAIN

Program continued

hardware

9286 45 02620 DEFB 'E'
9287 54 02630 DEFB T
9288 45 02640 DEFB 'E!
9289 0D 02650 DEFB 13
928A 00 02660 DEFB

9288 2A 02670 MSG8 DEFB P!
928C 20 02680 DEFB !
928D 41 02690 DEFB 'A!
928E 20 02700 DEFB :
928F 20 02710 DEFB !
9290 54 02720 DEFB ‘T
9291 4F 02730 DEFB ‘0!
9292 20 02740 DEFB !
9293 52 02750 DEFB 'R!
9294 55 02760 DEFB ‘U
9295 4E 02770 DEFB "N
9296 20 02780 DEFB !
9297 41 02790 DEFB "AY
9298 47 02800 DEFB G’
9299 41 02810 DEFB A
929A 49 02820 DEFB ‘1
9298 4E 02830 DEFB 'N'
929C 20 02840 DEFB !
9290 2F 02850 DEFB A
929t 20 02860 DEFB !
929f 20 02870 DEFB !
92A0 53 02880 DEFB 'S
9241 20 02890 DEFB !
g2h2 20 02900 DEFB !
92A3 46 02910 DEFB 'F!
92A4 4F 02920 DEFB ‘0’
92A5 52 02930 DEFB ‘Rt
926 20 02940 DEFB !
92A7 44 02950 DEFB ‘D’
92A8 4F 02960 DEFB ‘0’
92A9 53 02970 DEFB 'S’
92AA 00 02980 DEFB 0

0000 02990 END
00000 TOTAL ERRORS

Program Listing 3. PROM/CMD loader

10 CLS
PRINT "% % * % * PROM/CMD LOADER * * * * *"
20 DEFINT A,B:
C =20
30 FOR = - 28687 T0 - 27990
40 READ B:
POKE A,B:
C =C + B:
NEXT
45 IF C < > 74568
THEN
PRINT "CHECKSUM ERROR IN DATA STATEMENT(S)":

END

50 PRINT "OPERATION COMPLETE"

90 DATA 243, 33, 15,224, 17, 0,144, 1,1
100 DATA 237,176,195, 0,144,205,201, 1,
110 DATA 145,205,167, 40,205,179, 27,205,

120 DATA 87,205,113,145,130, 87,205, 80,145, 95
130 DATA 205,113,145,131, 95,213, 33, 4 ,146,205
140 DATA 167, 40,205,178,145, 17, 0, 0, 1, 0
150 DATA 4,205,120,145, 0,219,241,254,255,194
160 DATA 225,144, 19, 11,121,254, 0,194, 46,144
170 DATA 120,254, 0,194, 46,144, 33, 61,146,205
180 DATA 167, 40, 62,128,211,243, 62, 2,211,243
190 DATA 62, 0,211,243, 62, 5,211,243, 62,255

5
1

152

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
170
780

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA 82

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

hardware

6,255, 0, 5,194, 97,144, 61,194, 95
144, 33, 73,146,205,167, 40,225, 34,253
144, 14,200,197, 1, 0, 4,221, 33,255
144, 17, 0, 0,205,120,145,126,211,241
205,195,145, 35, 19, 11, 62, 0,185,194
129,144,184,194,129,144,193, 13,202,166
144,197, 1, 0, 4, 42,253,144,195,126
144, 62, 4,211,243,205,178,145, 33,100
146,205,167, 40, 42,253,144, 17, 0, 0
i, 0, 4,205,120,145,219,241,190,194
225,144, 35, 19, 11, 62, 0,185,194,188
144,184,194,188,144, 33, 61,146,205,167
40, 33,118,146,205,167, 40,195,231,144
33, 67,146,205,167, 40, 33,139,146,205
167, 40,205, 73, 0,254, 65,202, 0,144
254, 83,202, 45, 64,195,237,144,241,143
0,128,255,255,255,255, 0, 0, 64, 0
255,127,255,255,128, 0, 0, 64,255,255
255,239, 0, 64, 0, 0,255,255,111,255

0, 64, 48,128,255,255,255,255, 0, 0

0, 0,255,255,255,255, 0, 0, 0, O
127,255,255,127, 32, 0, 0, 32,255,255
255,127, 0,160, 16,128,215,212, 95,145
214, 48,203, 39,203, 39,203, 39,203, 39
201,215,212, 95,145,214, 48,203, 39,203
39,203, 39,203, 39,201,254, 65,218,108
145,264, 71,210,108,145,214, 7,201,225
225,195, 1,144,215,212, 95,145,214, 48
201,122,254, 0, 40, 40,254, 3, 40, 16
150, 1, 40, 22, 62, 11,211,243, 62, 8
211,243,123,211,240,201, 62, 9,211,243
62, 11,211,243, 24,242, 62, 9,211,243
62, 10,211,243, 24,232, 62, 8,211,243
62, 10,211,243, 24,222, 0, 0, 0, 62
130,211,243, 62, 3,211,243, 62, 0,211
243, 62, 4,211,243,201, 62, 1,211,243
62, 24, 50,255,144,221, 53, 0, 0, 0
32,249, 62, 0,211,243, 62, 24, 50,255
144,221, 53, 0, 0, 0, 32,249,201, 80

» 45, 56, 48, 32, 80, 82, 79, 71, 82
65, 77, 77, 69, 82, 32, 86, 69, 82, 32
49, 46, 48, 13, 42, 84, 89, 80, 69, 58
32, 50, 55, 48, 56, 13, 13, 42, 73, 78
83, 69, 82, 84, 32, 80, 82, 79, 77, 13
42, 69, 78, 84, 69, 82, 32, 83, 84, 65
82, 84, 32, 65, 68, 82, 58, 0, 13, 42
86, 69, 82, 73, 70, 89, 73, 78, 71, 32
66, 76, 65, 78, 75, 58, 32, 0, 80, 65
83, 83, 13, 0, 70, 65, 73, 76, 13, 0
13, 42, 45, 32, 45, 32, 45, 32, 80, 82
79, 71, 82, 65, 77, 77, 73, 78, 71, 32
45, 32, 45, 32, 45, 13, 0, 42, 86, 69
82, 73, 70, 89, 73, 78, 71, 32, 66, 85
82, 78, 58, 32, 0, 42, 79, 80, 69, 82
65, 84, 73, 79, 78, 32, 67, 79, 77, 80
76, 69, 84, 69, 13, 0, 42, 32, 65, 32
32, 84, 79, 32, 82, 85, 78, 32, 65, 71
65, 73, 78, 32, 47, 32, 32, 83, 32, 32
70, 79, 82, 32, 68, 79, 83, 0

153

HOME APPLICATIONS

Magazine Index

Money Minder
Groupies:
A Strategy to Group Like Objects

155

- HOME APPLICATIONS

Magazine Index

by John Cominio

Iused toread a magazine article and then forget where I had read it. When
I noticed that my magazines were becoming a mess (due to my thumbing
through their indexes), I wrote a program for my TRS-80 which would
allow me to find different articles quickly. The program (see Program
Listing) is set to run on a 16K to 48K machine with disk. If you are running
without disks, you can easily modify this program to support cassette files.
See lines 2510 through 2630.

When you run the program, a menu appears showing all the options open
to the user. These options are listed in Table 1. ENTER MAGAZINE DATA
allows you to store data pertaining to your magazines. Enter the magazine’s
name, title of the article, month and year of publication (year is optional),
page on which the article begins, and keyword(s) applying to that article.
The keywords index the article by subject. If an article is entitled “RAM”
you might enter randomaccessmemory as a keyword. Notice that spaces are
not needed between the words. When you search by subject, the words
memory, random, and access will all produce a match. All entries are limit-
ed to 20 characters, except the keyword, which is 30. The variables the pro-
gram uses are shown in Table 2.

(1) -~ ENTER MAGAZINE DATA
(2) ~ REVIEW STORED DATA
(3) = SEARCH THROUGH DATA
(4) > SAVE DATA ONTO DISK
(5) = LOAD DATA FROM DISK
(6) = KILL FILE ON DISK

(7) ~ EDIT STORED DATA

(8) ~ CLEAR STORED DATA

COMMAND -? __

Table 1. Menu of options

REVIEW STORED DATA displays all entries that are currently in
memory. Before saving entries, you can double-check to see if you acciden-
tally entered any wrong data and then edit that file if necessary.

157

home applications

A$%(x) = Magazine's name
B$(x) = Article title

C$(x) = Month (year)

D$(x) = Page number

E$(x) = Keyword

X = Current file number

Table 2. List of variables

SEARCH THROUGH DATA has four sub-options—search by
magazine’s name, search by article title, search by month (year), and search
by subject. When you perform a search, you can abbreviate your entry. For
example, suppose one of the magazines was 80 Microcomputing. For a
search by title, you could enter 80, 80 Micro, Microcomputing, or 80
Microcomputing, and all would match. This also applies to the other types
of searches. If a match is found, it is displayed, and the search continues un-
til all entries have been checked. If you wish to return to the menu before the
search is completed, enter a #.

SAVE DATA ONTO DISK dumps all entries in memory to disk under the
filespec you enter.

KILL FILE ON DISK erases a file which you have saved. If you use
cassette, you have to delete this option (lines 1720 through 1780).

EDIT STORED DATA corrects any error made while you entered the
data. When you enter the number of the file to be corrected, the screen
displays the file’s information and prompts you to enter the correct data.

CLEAR STORED DATA erases all files in memory. Be sure to save your
data before you type this command. When you enter this command, you
will be asked if you are sure you want this option. If you enter N, you return
to the menu.

Lines 50 through 70 automatically determine memory size and dimension
and clear enough space to hold the maximum number of files allowed in
your system.

158

10
20
30

40
50

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

270
280
290
300
310
320
330
340
350
360
370
380

390

400
410
420
430
440

450
460
470
480
490

500
510
520
530

home applications

Program Listing. Magazine Index

*okkxxxx MAGAZINE INDEX VERSION 1.2
*okxxxxx BY JOHN COMINIO

*okkxwxx MAY 29, 1981 MODEL 1 OR IT1
DEFINT A - Z

CLEAR INT(MEM * .75)

X = INT(MEM / 17.6)

DIM AS(X), BS(X), C8(X), D(X), ES(X)

X =0

ON ERROR GOTO 2440

cLS

PRINT TAB{20)"---- MAGAZINE INDEX ----"
PRINT

PRINT TAB(5)"(1) --> ENTER MAGAZINE DATA"
PRINT TAB{5)"{2) --> REVIEW STORED DATA"
PRINT TAB(5)"(3) --> SEARCH THROUGH DATA"
PRINT TAB(5)"{4) --> SAVE DATA ONTO DISK"
PRINT TAB(5)"(5) --> LOAD DATA FROM DISK"
PRINT TAB({5)"(6) --> KILL FILE ON DISK"
PRINT TAB(5)"(7) --> EDIT STORED DATA"
PRINT TAB(5)"(8) --> CLEAR STORED DATA"
PRINT

Ag = v

PRINT @ 704,"",

PRINT CHRS$(30);
INPUT "COMMAND -->";AS
[F VAL(AS) < 1 OR VAL(AS) > 8
THEN
220

ON VAL{AS$) GOTO 290, 620, 850, 1470, 1600, 1720, 1790
END
CLS
X = X + 1
PRINT TAB(15)"====== ENTER MAGAZINE DATA FILE #";X;"
PRINT TAB{19)"-~ 'END' TO RETURN TO MENU --"
PRINT
ASIX) = "°
PRINT @ 192,"";
PRINT CHR$(30);
INPUT "ENTER MAGAZINE'S NAME -->";A$(X)
[F LEN(AS(X)) > 20 OR AS(X) = ""
THEN

340
IF AS(X) = "END®
THEN

AS(X) = "":

X = X - 1:

GOTO 100
BE(X) = "
PRINT @ 256,"";
PRINT CHR${30);
INPUT "ENTER ARTICLE TITLE -->"iBS(X)
[F LEN(BS$(X)) > 20 OR B§(X) = "*
THEN

400
CH(X) = "
PRINT @ 320,"";

PRINT CHRS$(30);
INPUT "ENTER MONTH (YEAR) —3CB(X)
IF LEN(C$(X)) > 20 OR €$(x) = "*
THEN
450
D(X) = 0

PRINT @ 384,"";
PRINT CHRS$(30);
INPUT "ENTER PAGE NUMBER -->":R$

. 2370

Program continued

159

540
550

560
570
580
590
600

610
620

630
640
650
660

670

680
690
700

710
720
730
740
750
760
770
780

790

810
820
830
840
850

860
870
880
890
500
910
920
930
940
950
960

§70
980
990
1000

home applications

ERd

PRINT @ 448,"",
PRINT CHRS$(30);

INPUT "ENTER KEYWORD(S) SYULES(X)

TF LEN(ES(X)) > 30 OR E$(X) =
THEN
560
GOTO 290
IF X =0
THEN
100
Ag = v
FOR A = 1 TO X
R = A
IFR>9
THEN
Ag = o
IF R > 99
THEN
Ag = v
cLs

PRINT TAB(165)"====== REVIEW STORED FILES
PRINT TAB(15)"«=--~- '#' TO EXIT 'ENTER'

PRINT
PRINT "MAGAZINE'S NAME --> “;A$({
PRINT "ARTICLE TITLE --> ";B${
PRINT "MONTH (YEAR) - "SCH(
PRINT "“PAGE NUMBER -3 B(R)
PRINT "KEYWORD(S) - YES(
1$ = INKEYS
IF 1§ = o

THEN

770
IF 1§ = “p"

THEN

100
[F 1% = CHR$(13) AND (X < > 1)
THEN

810

ELSE

770
NEXT A

GOTO 100
IF X =0
THEN

100
CLS

PRINT TAB(15)"====== SEARCH THROUGH FILES

PRINT
PRINT "(1
PRINT *(2
PRINT "(3) --> SEARCH BY MONTH (YEAR)"
PRINT "(4) --> SEARCH BY SUBJECT"
PRINT @ 448,"";
PRINT CHR$(30);
INPUT “WHICH NUMBER";Z$
IF VAL(Z$) ¢ 1 OR VAL(Z$) > 4
THEN

930
ON VAL(Z$) GOTO 980, 1070, 1160, 1250
PRINT @ 512,"";
PRINT CHRS$(30);
INPUT “ENTER MAGAZINE'S NAME -->";A$

} --> SEARCH BY MAG. NAME"

2

)} --> SEARCH BY ARTICLE TITLE"

FILE #";R;"

TO CONT.";A$;" -eoeu-

160

home applications

1010 IF LEN(AS$) > 20

THEN

980
1020 FOR A = 1 TO X
1030 FOR R =1 TO 20
1040 IF A$ = MIDS(A$(A), R, LEN(AS$))

GOSUB 1340
ELSE
NEXT R

1050 NEXT A
1060 GOTO 100
1070 PRINT @ 512,"";
1080 PRINT CHR$(30);
1090 INPUT "ENTER ARTICLE TITLE -->";A$
1100 IF LEN(AS$) > 20

THEN

1070
1110 FOR A = 1 T0 X
1120 FOR R = 1 TO 20
1130 IF A$ = MID$(B$(A), R, LEN(a$))

GOSUB 1340
ELSE
NEXT R
1140 NEXT A
1150 GOTO 100
1160 PRINT @ 512,"";
1170 PRINT CHR$(30);
1180 INPUT "ENTER MONTH (YEAR) -->";AS$
1190 IF LEN(AS) > 20
THEN
1160
1200 FOR A = 1 TO X
1210 FOR R =1 TO 20
1220 IF A$ = MID$(C$(A), R, LEN(AS$))
THEN
GOSUB 1340
ELSE
NEXT R
1230 NEXT A
1240 GOTO 100
1250 PRINT @ 512,"";
1260 PRINT CHR$(30);
1270 INPUT "ENTER SUBJECT -->";A$
1280 IF LEN(A$) > 30
THEN
1250
1290 FOR A = 1 TO X
1300 FOR R =1 TO 30
1310 IF A% = MIDS(E$(A), R, LEN(A$))
THEN
GOSUB 1340
ELSE
NEXT R
1320 NEXT A
1330 GOTO 100
1340 CLS
1350 PRINT TAB(15)"====== FILE NUMBER";A;"======"
1360 PRINT
1370 PRINT “MAGAZINE'S NAME --> “;A$(A)
1380 PRINT "ARTICLE TITLE ~=> ";B$(A)
1390 PRINT “MONTH (YEAR) x> "3C$(A)
1400 PRINT "PAGE NUMBER —->";D(A)
1410 PRINT
1420 PRINT "HIT ENTER TO CONTINUE SEARCH t#OTO EXITY
1430 1§ = INKEYS
1440 IF 1§ = ""
THEN
1430 Program continued

161

1450

1460

1470

1480
1490
1500
1510
1520

1530
1540
1550
1560

1570
1580
1590
1600
1610
1620
1630
1640

1650
1660
1670
1680

1690
1700
1710
1720
1730
1740
1750
1760

1770
1780
1790

1800
1810
1820
1830
1840
1850
1860
1870
1880

1890

home applications

IF I$ = CHR$(13)
THEN

RETURN
IF 1§ = "§*
THEN
100 :
ELSE
1430
IF X = 0
THEN
100
Ag = n
PRINT @ 704,"";
PRINT CHR$(30);
INPUT "ENTER SAVE FILESPEC --> ";A$
IF LEN(AS$) > 21 OR A§ = "*
THEN
1470
OPEN "0",1, A$
PRINT #1, X
FOR R = 1 TO X + 3 STEP 4

PRINT #1, A$(R);",";AS(R + 1)5",";A8(R + 2);","sA$(R + 3);",";
s(R)'" " Bs(R + l) [Bs(+ 2) " "'B$(+ 3),:: M C$(R),',‘,CS
(R + 1)’ll'li C$(R + 2) " # Cs(R + 3)'"’" D(R).II’II D(R + 1);00’“;0
(R +2);",";D(R + 3),"."'E$(R)."." ES(R + 1)3",";E$(R + 2);%,";
ES(R + 3)
NEXT R

CLOSE

GOTO 100

As = "

PRINT @ 704,"";

PRINT CHR$(30)

INPUT "ENTER LOAD FILESPEC -->";A$
IF LEN(A$) > 21 OR A$ =
THEN

1600
OPEN "I",1, A$
INPUT #1,
FOR R = 1
B$(R), BS(R
+ 2), C$(R
$(R + 1), E$(

mx

PRINT @ 704,"";
PRINT CHR$(30);
INPUT “ENTER KILL FILESPEC -->";A$
IF LEN(AS) > 21 OR A$ = "
THEN
1720
KILL A$
GOTO 100
IF X =0
THEN
100
CcLS
PRINT TAB(15)"====== EDIT A FILE s====="
PRINT
Ag = n
PRINT @ 128,"";
PRINT CHR$(30):
INPUT “ENTER FILE NUMBER (-1 TO EXIT) -->";A$
R = VAL(A$)
IFR = -1
THEN

100
IFR=00RR >X

162

1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

2030
2040
2050
2060
2070
2080
2090

2100
2110
2120
2130
2140

2150
2160
2170
2180
2190

2200
2210
2220
2230
2240

2250
2260
2270
2280
2290

2300
2310
2320
2330
2340

2350

2360
2370
2380
2390

home applications

THEN

1830
GOSUB 1920
GOTO 1980
PRINT @ 128, C
PRINT @ 192,"(:
PRINT @ 256,"(:
PRINT @ 320,"(4) -->";D
PRINT @ 384,“(8) --> ",
RETURN
As - "
PRINT @ 832, CHR$(30);"WHICH NUMBER -.>";
INPUT AS$

R1 = VAL{A$)

IFRI <10RRL>S

THEN

1980

ON R1 GOSUB 2060, 2110, 2160, 2210, 2260
GOSUB 1920
GOTO 2310
AS(R) = v

PRINT @ 832, CHR$(30);

INPUT "NEW MAGAZINE NAME -->";A$(R)

1; LEN(AS$(R)) > 20 OR A$(R) = "*

HEN

2060
RETURN
B${R) = ""
PRINT @ 832, CHR$(30); '
INPUT “NEW ARTICLE TITLE -->";B$(R)
IF LEN{BS(R)) > 20 OR B§(R) = ""
THEN

2110
RETURN
C$(R) - o
PRINT @ 832, CHR$(30);
INPUT “NEW MONTH (YEAR) -->";C$(R)
IF LEN(C${R)) > 20 OR C$(R) = "*
THEN

2160
RETURN
D(R) = 0
PRINT @ 832, CHR$(30);
INPUT “NEW PAGE NUMBER -->";D(R)
IF D(R) > 32767 OR D(R) = O
THEN
2210
RETURN
Es(R) = Y
PRINT @ 832, CHR$(30);
INPUT "NEW KEYWORD{S) -->";E$(R)
IF LEN(E$S{R)) > 30 OR E$(R} = *¥
THEN

H -> ";A$(R)
2
3
4

2260
RETURN
PRINT @ 832, CHR$(30);
INPUT “MORE CORRECTION (Y/N) -->";A$
A$ = LEFT$(AS, 1)
IF A$ = “y"

GOTO 100

PRINT @ 768,"";

PRINT CHR$(30);

INPUT "ARE YOU SURE (Y/N)";A$ Program continued

163

2400
2410

2420

2430
2440

2450

2460

2470
2480
2490
2500
2510

2520

2540
2550
2560
2580
2610
2620
2630

2640
2650

home applications

A$ = LEFTS${AS, 1)
IF A$ = “Y°
THEN
2430
LFAS = “ne
THEN
100
ELSE
2370
RUN
IF ERR / 2+ 1 = 54
THEN
PRINT “FILE NOT FOUND"
IF ERR / 2+ 1 = 65
THEN
PRINT “BAD FILE NAME®
IF ERR / 2+ 1 = 62
THEN
PRINT "DISK FULL"
PRINT "*%% ERROR ***"
FOR R = 1 TO 1000
NEXT R
RESUME 100

d Kk k Kk Kk k¥ Kk Kk * Kk k Kk ¥k Kk ¥k k k % * & kA Kk * &k * K * &

* % x k% ¥ £ % % % % CHANGES FOR CAS SETTE * * * * * %

* Kk ok k k k k Kk k k Kk *k &k Kk k Kk Kk k *k *k * Xk Kk Kk * *

= LEFT$(AS$,1):
FAS = "N°

100:
ELSE
IF A$ = "y
THEN
1520:
ELSE
1510

LINE 1560 CHANGE PRINT #1,. . . TO PRINT # - 1,. . . LINE 1540
CHANGE PRINT #1, X TO PRINT # - 1, X
DELETE LINE 1580
LINE 1630:
INPUT "CASSETTE READY (Y/N) -->;A$:A$=LEFTS$(A$,1):IFAS$="Y"THEN]
640ELSETIFA$="N"THENIOOELSE1630
LINE 1680 CHANGE INPUT #1,. . . TO INPUT # - 1,. . . LINE 1660
CHANGE INPUT #1, X TO INPUT # - 1, X
DELETE LINE S 2440 - 2460
DELETE LINE S 1530 AND 1650 AND 1700 AND 1580
LINE 90:
ON ERROR GOTO 2470
DELETE LINE 1720 - 1780
LINE 1720:
GOTO 100

164

- HOME APPLICATIONS

Money Minder

by Bill Loveys

[v wife and I decided to keep better track of where our money was go-
h.ing. We agreed to track only our take-home pay. Money that went
directly into our savings account would not enter into the picture except
when withdrawn. We wanted to account only for the cash in our pockets
and checking accounts.

The Money Minder Program

With only cassette capability, I first thought that any program I
developed with data storage would be too slow to be of any practical use. As
it turned out, I can run the complete money-tracking process in as little as
two hours per month, including printing hard copy reports.

Money Minder is shown in Program Listing 1. The program can track 20
categories of your choice. Every day, you must jot down the money you
spend, dividing it among the selected categories. Once every week or two,
and at the end of the month, I run the program and enter our income (take-
home) and expenses from the notebook. The reports generated from the pro-
gram give the balance (left-over money) at that point. A check of your wallet
and checking account will confirm how honest you have been in listing your
expenses. You also see an income listing, a category list showing the day of
the month, check number, description, and amount spent in each of the 20
categories. A percentage chart lists by category the amounts you spent that
month and the percentage of income spent on that category. At month’send,
ashort Year-To-Date (YTD) program (Program Listing 2) lists the categories
giving YTD amount, YTD average, and YTD percentage that you can
compare to the monthly percentage chart to determine where you are
overspending.

The program requires a 16K Level II and gives you the option of hard
copy. You can modify the program format for use with different printers.
Money Minder accepts up to 20 income entries and 200 expense entries per
month. Itis menu driven and very easy to use. The only change you need to
make is to select your own categories by changing the data statements in
lines 2030 and 2040 of Program Listing 1 and lines 780-820 of Program
Listing 2.

The Menu and Its Features

Explanation of the menu functions and the special features of each are
shown below. The program opens with the following video display:

165

home applications

MONEY MINDER
1 ENTER EXPENSES 7 MEM & STRING STORAGE

2 LIST EXPENSES 8 BALANCE CHART
3 ENTER INCOME 9 LIST CATEGORY
4 LIST INCOME 10 PERCENTAGE CHART
5 RECORD DATA 11 CHANGE RECORD
6 VERIFY DATA TAPE 12 PRINT REPORT
13 READ DATA TAPE

ENTER DESIRED FUNCTION?__

Function 1-ENTER EXPENSES

This function displays the 20 categories you select in the data statements
in lines 2030 and 2040. If you choose category 1, the video screen displays:

EXPENSES
FOOD
ENTER CHECK NUMBER?__ (Press ENTER for a cash transaction, 7777 if charge card
is used, or enter check number if applicable.)
ENTER DESCRIPTION? (Short description, under 13 characters, to conserve
string storage space and for video and printer format.)
ENTER AMOUNT?._. (Enter dollar amount including decimal point. If there
are no significant digits after the decimal point, an in-
teger may be entered. For example, enter $12.00 as 12,
$12.10 as 12.1.)
ENTER DAY OF MONTH?... (Self explanatory. If the same day is used for other en-
tries, only the ENTER key need be pressed.)
RECORD # CHECK# DESCRIPTION AMOUNT DAY
1 9999 WEGMANS $ 3495 1

PRESS ENTER TO CONTINUE?__

Press ENTER for a check number to indicate a cash transaction. Enter 7777
to indicate a charge purchase. The amount you enter is not added during the
CATEGORY LISTING but is reflected as CHARGES on the report. In
category 1, food, and only in this category, an asterisk entered as the last
character in the description indicates EAT OUT on category list. EAT OUT
amounts are totaled with other food expenses.

Function 2—LIST EXPENSES

This is a listing of expenses as you enter them from the notebook. The
listing displays record number, category, check number, description,
amount, and day of the month. The purpose of this listing is to check for
mistakes in data entry. If you number your daily notebook entries to corre-
spond to record numbers, a missed entry is easier to find after an entry ses-
sion. You will also need record numbers when you use Function 11,
CHANGE RECORD.

166

home applications

Function 3—ENTER INCOME

The video display for this function is as follows:
* * INCOME ENTRIES * *

ENTER 99 FOR DATE TO END SESSION

ENTER DATE OF INCOME?__ (Format allows nine characters such as 01 SEP 81)
ENTER INCOME SOURCE?__ (Format allows up to nine characters)
ENTER INCOME AMOUNT?__ (Same as expense input)

The session continues until you enter 99 in place of the date, then the menu is
displayed. When you first use the program, enter the amount of money you
have on hand as the balance forward. When you go from one month to the
next, your first entry should be BAL FWD (balance) from the previous
month.
Function 4—LIST INCOME

Function 4 has the same format as Function 2 (LIST EXPENSES), show-
ing record numbers and other data you enter. See Figure 1.

DATE SOURCE AMOUNT
01 JUN 81 BALFWD $ 370.84
01 JUN 81 ARMY $ 600.00
01 JUN 81 CARRIER $ 43578
01 JUN 81 ARMY $ 154.32
01 JUN 81 CREDIT UN $ 90.00
15 JUN 81 CARRIER $ 450.50
16 JUN 81 MORSE $ 19312
21 JUN 81 ARMY $ 82.40
21 JUN 81 CREDIT UN $ 60.00
23 JUN 81 MORSE $ 186.74
29 JUN 81 CARRIER $ 450.44
30 JUN 81 MORSE $ 192.13

BALANCE CHART

------------------------- / TOTAL INCOME /---—

12 ENTRIES$ 3,266.27

------------------------- / TOTAL EXPENSES /--

20 ENTRIES$ 232.32

......................... PR :YN 0.\ () o A—
$ 3,033.95

Figure 1. Income list

Function 5—RECORD DATA

It is important that you use C-30 tapes, because maximum entries will not
fit on anything smaller. This is indicative of the maximum time of cassette
1/O of 15 minutes for reading or writing data tapes.

167

home applications

FOOD
2 111 BREAKFAST $ 5.00
5 112 WEGSW/E $ 23.44
5 113 WEGS $ 16.99
8 114 PIZZA $ 4.65
10 115 BURG KING $ 2.61
11 116 WIE $ 1185
15 117 PIZZA $ 4.40
16 118 BURGKING * $ 4.49
17 119 WIE $ 15.79
17 120 WEGS $ 2054
21 9999 PIZZA $ 4.65
21 121 WENDY'S $ 4.98
23 122 PIZZA $ 4.40
24 123 LOU & BONS $ 6.14
24 124 BURG KING $ 3.77
25 125 WEGS $ 5714
29 126 PIZZA $ 4.40
30 127 ERICS * $ 8.12
30 9999 MISC W/E $ 26.57
31 9999 CANDY $ 2.39

EATOUT § 1261
TOTAL $232.32
Figure 2. Category list

Function 6—VERIFY DATA TAPES

Atfter you write data to tape, rewind and perform Function 6. This time-
consuming procedure is useful if you do not keep backup tapes of previous
sessions,

Function 7—MEM & STRING STORAGE

This function allows you to change the DIM statements for income and
expense entries. As written, with 2000 string characters cleared for string
storage and 20 income and 200 expense entries, the program will work well
with 16K. Line 120 checks memory each time the menu is displayed and
prints a warning if memory drops under 200. You can limit expense entries
to the existing parameters of the program if you combine expenses as a week
ending (W/E) entry (for example, combining coffee and lunch expenses, and
daily paper purchases).

Function 8—BALANCE CHART

This function displays the number of income and expense entries and
amounts with a balance that should agree with the money you have on
hand.

168

home applications

Function 9—LIST CATEGORY

Like Function 1, this function displays the 20 categories. You must then
list each category to tabulate the totals for the month. You must do this
before you select any other report function. See Figure 2.

Function 10—PERCENTAGE CHART

This function lists the categories and the percentage of you income you
have spent on each category. You must perform options 8 and 9 before op-
tion 10 or it will not work. See Figure 3.

Function 11— CHANGE RECORD

This is used to change an expense or income record. You need to know the
record number. The display informs you to perform a list of expenses or in-
come to note the desired record to be changed. The display is as follows:

1- CHANGE INCOME RECORD
2- CHANGE EXPENSE RECORD
99- RETURN TO MENU

SELECT FUNCTION?

If you select mode 1 or mode 2, the program asks which record to change.
After your input, the program displays the current record to be changed. As
each question is displayed, you may reenter changes. If no change is to be
made, press the ENTER key. After all changes are made, the complete
changed record is displayed. Pressing ENTER returns you to the CHANGE
RECORD function. Enter 99 to return to the main menu.

Function 12—PRINT REPORT

Use this function to generate hard copy output using the RS Quick Printer
II. The program warns you to perform the category listing and percentage
chart in the video mode before you print the report. It then displays the
following menu:

1- INCOME LISTING

9- BALANCE CHART

3. CATEGORY LISTING

4. PERCENTAGE CHART

5- RETURN TO MAIN MENU

You can print these reports in any order.

Function 13—READ DATA TAPE

This reads in the previous data tape from which you can add more entries.
This function also maintains continuity of income and expense record
numbers.

169

home applications

CATEGORY AMOUNT PERCENTAGE
FOOD $ 232.32 7.11%
AUTO EXP $ 0.00 0.00%
RECREATION $ 0.00 0.00%
HOME EXP $ 0.00 0.00%
DOG EXP $ 0.00 0.00%
CHARGE ACCTS $ 0.00 0.00%
CHILD SPT $ 0.00 0.00%
CLOTHES $ 0.00 0.00%
UTILITIES $ 0.00 0.00%
MISC $ 0.00 0.00%
DOG SHOWS $ 0.00 0.00%
SALES TAX $ 0.00 0.00%
LUNCHES $ 0.00 0.00%
CIG $ 0.00 0.00%
MEDICAL $ 0.00 0.00%
GASOLINE $ 0.00 0.00%
COFFEE $ 0.00 0.00%
HOBBIES $ 0.00 0.00%
CLEANING MATS $ 0.00 0.00%
DRUG ITEMS $ 0.00 0.00%
TOTALS 7.11%

Figure 3. Percentage chart

The Year-To-Date Report

The most beneficial report in my estimation is the YTD report. See F igure
4. The monthly percentage chart is very informative, but you may see some
categories fluctuate by as much as 10 percent from one month to another.
After three or four months, the average shown by the YTD report is a better
guide as to the amounts you should watch in any particular category. The,
menu for this program is much the same as the menu for Money Minder:

1- INPUT CURRENT MONTH'S DATA
2- READ YTD DATA TAPE

3- LIST YTD REPORT

4- PRINT YTD REPORT

5- WRITE YTD DATA TO TAPE

6- VERIFY DATA TAPE

Function 1—INPUT CURRENT MONTH’S DATA

Input for this function is taken from the month end percentage chart. The
program prompts you to enter category amounts one at a time. These
amounts are added later to amounts from the previous YTD data tape to
produce the final report. When you initiate this program for the first month,
Function 2 is not performed. Upon initialization, do not enter BAL FWD

170

home applications

(balance forward) for the monthly report as prompted. Enter zero for this
amount on the first YTD report. Subsequent monthly entries should include
BAL FWD from the month end report as the program asks. If you make a
mistake in Function 1, it is best to reload the program and begin again;
otherwise, the internally stored totals will never balance.

CAT YIDTOT$ YTDAVG YTD%
FOOD $ 232.32 $ 3872 8.02%
AUTO $ 0.00 $ 0.00 0.00%
REC $ 0.00 % 0.00 0.00%
HOMEX $ 000 % 0.00 0.00%
DOGEX § 0.00 $ 0.00 0.00%
CHG AC § 0.00 $ 0.00 0.00%
CHDSP § 0.00 $ 0.00 0.00%
CLOTHS § 0.00 $ 0.00 0.00%
UTILIT § 000 $ 000 0.00%
MISC $ 0.00 § 0.00 0.00%
DOGSH § 0.00 $ 0.00 0.00%
STAX $ 0.00 $ 0.00 0.00%
LUNCH $ 0.00 % 0.00 0.00%
CIG $ 000 $ 0.00 0.00%
MEDCAL $ 0.00 $ 0.00 0.00%
GAS $ 0.00 § 0.00 0.00%
COFF $ 0.00 $ 0.00 0.00%
HOBBS § 000 % 0.00 0.00%
CLN $ 000 $% 000 0.00%
DRUGS % 0.00 % 0.00 0.00%
TOTAL INCOME $ 2,895.43
TOTAL EXPENSES $ 232.32
TOTALBALANCE $ 2,663.11
PERCENT FOR EXP 8.02%

Figure 4. Year-to-date report

Function 2—READ YTD DATA TAPE
The previous month end YTD data tape is read in at this time.

Function 3—LIST YID REPORT

A warning cautions you that you must perform Functions 1 and 2 before
listing the report. The next prompt is to enter the month of report in the
form JUN 81. The program then asks for the month number, such as 6 for
June or 3 for March. This input is the divisor in calculating the YTD report
averages. If you initiate the program in January the number will correspond
to the month. If started in some other month, be careful.

171

home applications

Function 4—PRINT YTD REPORT

This operates like Function 3. It asks for the month of report and month
number as a double input entry. A comma must separate the two, such as
JUN 81, 6. If you have performed Function 3, you need only press ENTER
in answer to the input prompt.

Function 5—WRITE YTD DATA TO TAPE

You should use a different tape for this function so you have the previous
month’s data tape as a backup.

Function 6—VERIFY DATA TAPE

Rewind the tape written with function 5 and perform this step. Any dif-
ference between tape and memory will be noted and displayed.

General Summary and Hints

1) Record your income and expenses daily in a notebook or ledger. The first
entry for income of the month should be your cash on hand noted as BAL
FWD. Consolidate frequently noted expenses such as sales tax and daily
paper purchases so you don’t exceed 200 entries per month.

2) Determine the frequency of your entry sessions. The more sessions you
have the more time it takes to make data tapes. I find that twice per month is
adequate.

3) At the end of each entry session, write data to tape and verify it. It is
helpful to write on the tape and in the notebook the number of income and
expense entries as noted on the video display.

5) At month’s end, perform menu functions 8, 9, and 10. Print a report if you
can. Check the monthly balance with the money you have on hand. If my
money on hand is less than the balance for the month, I note the difference
under category MISC as $$$ LOST.

6) As a final check for accuracy, the balance amount from the monthly
balance charge should equal the total balance shown on the YTD report.

172

130

140

160

170

180

190
200

220
230

horne applications

Program Listing 1. Money Minder

Encyclopedia
REM * PROGRAM: M O N E Y M I NDER BY BILL LOVEYS Loader
REM * 4812 JAMES ST., E. SYRACUSE, NY 13057
REM * REQUIREMENTS: 16K, LEVEL 11, OPTION: QUICK PRINTER II
CLEAR 2000:
D§ = “SHE, EEH. 44"
M§ = “SE,BEE.EFT:
PCS = "ap. B4

DEFINT C,I,N,T,

DIM XD$(200) XA(200) CA{200),¢€K(200),
go% ,XC(20), A$(20) XB(ZO)

LS ¢

X0(200),01$(20),S1$(20),AI(

PRINT TAB{16)"M O N E Y M INDER":

PRINT

PRINT "1 ENTER EXPENSES"; TAB(32)"7 MEM & STRING STORAGE"
PRINT "2 LIST EXPENSES"; TAB(32)"8 BALANCE CHART"

PRINT "3 ENTER INCOME™; TAB(32)"9 LIST CATEGORY"

PRINT "4 LIST INCOME"; TAB(32)"10 PERCENTAGE CHART"

PRINT “5 RECORD DATA"; TAB(3 2)"11 CHANGE RECORD"

PRINT "6 VERIFY DATA TAPE"; TAB(32)"12 PRINT REPORT"

PRINT TAB(16)"13 READ DATA TAPE"

IF MEM ¢ 200 PRINT “C AU T I O N ----MEMORY UNDER 200":

PRINT "PERFORM FUNCTION #7 THEN RECORD EXSISTING DATA":
PRINT "ADJUST STRING STORAGE SPACE AS NEEDED":

PRINT
PRINT :

INPUT “ENTER DESIRED FUNCTION";Z:
IF Z > 13

THEN

40
ON Z GOTO 150,310,400,500,570,730,910,960,1060,1220,1290,1540,19

40

CLS :

PRINT TAB(16)"* * EXPENSE CATAGORIES
PRINT

RESTORE :

FOR I = 1 70 10:

READ AS$:

PRINT I;"

NEXT
P = 160:
FOR I = 11 TO0 20:

READ A$:

PRINT @P,I;" ";A$;:

P =P + 64:

NEXT :
IF Z =
PRINT :
PRINT :
PRINT "TO RETURN TO MENU ENTER 99":
PRINT :

INPUT “ENTER CATAGORY NUMBER";Z:
RESTORE :
CLS
IF Z = 99 GOTO 40
PRINT TAB(20)"* * EXPENSES * *":
PRINT
PRINT
FOR I = 1 T0 Z:
READ A$:
NEXT :
TX = TX + 1:
PRINT TAB{20)A$
PRINT
CA(TX) 7
CK(TX) 9999:
INPUT “ENTER CHECK NUMBER";CK(TX)
INPUT "ENTER DESCRIPTION";XD$(TX)

“oAg:

9 GOTO 1070

Hon

173

* kU

Program continued

home applications

240 IF LEN(XD$(TX)) > 12 PRINT “"KEEP DESC UNDER 13 CHARACTERS®
GOTO 230

250 INPUT "ENTER EXPENSE AMOUNT™";XA(TX)

260 IF XA(TX) < .001 PRINT "REDO"
GOTO 250

270 XD(TX) = XD(TX - 1):
INPUT "ENTER DAY OF MONTH";XD(TX)

280 PRINT :
PRINT "RECORD #"; TAB(LO)"CHECK #"; TAB(20)"DESCRIPTION";
TAB(40)"AMOUNT"; TAB(50)"DAY"

290 PRINT TAB(1)TX; TAB(10)CK(TX); TAB{20)XD$(TX); TAB(40);:
PRINT USING M$;XA(TX);:
PRINT TAB(50)XD(TX)

300 PRINT :
INPUT "PRESS <ENTER> TO CONTINUE";Z:
GOTO 150

310 CLS :
PRINT TAB(20)"EXPENSE LISTING":
PRINT

320 PRINT "REC #"; TAB(6)"CATEGORY"; TAB(20)"CHECK #"; TAB(30)“DESCR
IPTION"; TAB(50)"AMOUNT"; TAB(60)"DAY":
PRINT STRING$(63,61)

330 CN = 0:
FOR I = 1 TO TX:
RESTORE
CN = CN + 1
340 FOR N = 1 TO CA(I)
READ A$:
NEXT

350 PRINT 1, TAB(6)A$; TAB(20)CK(I); TAB(30)XD$(1); TAB(50);
360 PRINT USING M$;XA(I);:
PRINT TAB(59)XD(I)
370 IF CN = 10 PRINT @896,
INPUT "PRESS <ENTER> 10 CONTINUE“ z
380 IF CN = 10 PA = 192:
FOR X = :
PRINT @PA,"*":
PA = PA + 64:
NEXT X:
PRINT @256, ;:
CN = 0
390 NEXT I:
PRINT 896, ;:
INPUT "PRESS <ENTER> FOR MENU";Z:
GOTO 40
400 CLS :
PRINT TAB(16)"* * INCOME ENTRIES * *":
PRINT STRING$(63,61):
PRINT
410 PRINT "ENTER <99> FOR DATE TO END SESSION®:
PRINT STRING$(63,45):
PRINT
420 TI = TI + 1
430 INPUT “ENTER DATE OF INCOME";DI$(TI)
440 IF DI$(TI) = "99% TI = TI - 1:
GOTC 40
450 INPUT "ENTER INCOME SOURCE";SI§(TI)
460 IF LEN(SI$(TI)) > 9 PRINT "KEEP SOURCE UNDER 10 CHARACTORS®:
GOTO 450
470 INPUT "ENTER INCOME AMOUNT";AI(TI)
480 N = 320
490 FOR I = 1 TO 10:
PRINT @N,"":
N =N+ 64:
NEXT :
PRINT @384, ;:
GOTO 420
500 CLS
PRINT TAB(21)"* * INCOME LISTING * **:
PRINT STRING§(63,61):
PRINT

174

home applications

510 PRINT "REC #"; TAB(10)"DATE",,"SOURCE™,"AMOUNT":
PRINT STRING$(63,45)
520 FOR I = 1 TO TI:
PRINT I; TAB{10)DI$
PRINT USING D$;AI(I
530 IF I = 9 GOSUB 550
540 NEXT I:
INPUT "PRESS <ENTER> TO RETURN TO MENU";Z:
GOTO 40
550 INPUT “PRESS <ENTER> TO CONTINUE";Z
560 N = 320:
FOR Z = 1 TO 10:
PRINT @N,"":
N = N+ 64:
NEXT :
PRINT €320,;:
RETURN
570 CLS :
PRINT "READY TAPE TO RECORD ({WRITE)"
580 INPUT “PRESS <ENTER> WHEN READY";Z
590 INPUT "ENTER MONTH OF REPORT (I.E. MAR 80)";M0$
600 CLS
PRINT TAB{20)"WRITTING TO TAPE":
PRINT STRING$(63,61)
610 PRINT “DATE OF RECORD"; TAB(40)"ENTRIES"
620 PRINT MO$; TAB(32)"INCOME"; TAB(43)TI:
PRINT TAB(32)"EXPENSES"; TAB(43)TX
630 PRINT # - 1,M0$,TI,TX:
PRINT STRING$(63,45)
640 PRINT “REF #-DATE-CHECK #-DESCRIPTION"; TAB(45)"AMOUNT REC #"
650 FOR N = 1 TO TX
660 PRINT CA(N); TAB(5)XD(N); TAB(1O0)CK(N); TAB(20)XD$(N);
TAB(45);
670 PRINT USING M$;XA(N);:
PRINT TAB(56)N
PRINT # - 1, CA(N) XD{N),CK(N)},XDS(N),XA(N)
PRINT @448, ;
680 NEXT N:
PRINT 8384, STRING$(63," ")
690 PRINT @384,"DATE OF INCOME","SOURCE","AMOUNT OF INCOME"
700 FOR N = 1 TO TI:

I),SI$(1),,

PRINT DIS(N),SIS(N),;:
PRINT USING D$;AI(N)
710 PRINT # - 1,DI$(N),SI$(N),AI(N)

720 NEXT N:
PRINT @960, ;:
INPUT "PRESS <ENTER> FOR MENU";Z:
GOTO 40
730 CLS :
PRINT "REWIND DATA TAPE - READY CASSETTE TO READ"
PRINT
740 INPUT "PRESS <ENTER> WHEN READY";Z:
cLs
750 PRINT TAB(20)"DATA TAPE VERIFICATION":
PRINT STRING$(63,61)
760 INPUT # - 1,A$,A,B:
PRINT "DATE OF RECORD:"; TAB(20)A$
770 PRINT "INCOME ENTRIES:"; TAB{20)A:
PRINT "EXPENSE ENTRIES:"; TAB(20)B
780 PRINT STRING$(63,45):
PRINT TAB(20)" IN MEMORY"
790 PRINT "REF#-DATE-CHECK#-DESCRIPTION"; TAB(40)“AMOUNT"
800 FOR I = 1 TO TX:
PRINT @512, CA(I); TAB(5)XD(I); TAB(10)CK(I); TAB(20)XD$(I);

TAB(40)XA(I)

810 PRINT TAB(20)"TAPE INPUT"

820 INPUT # - 1,A,B,C,ES$,F

830 PRINT A; TAB(5)B; TAB(10)C; TAB(20)E$; TAB(40)F

840 IF A < > CA(I) OR 8 < > XD(I) OR € < > CK(I) OR E$ < > XD${I)
OR F < > XA(I) PRINT @896, "BAD DATA INPUT - TRY AGAIN"
GOTO 900

Program continued

175

home applications

850 NEXT I:
PA = 384:
FOR N =1 T0 6:
PRINT @PA,:
PA = PA + 64:
NEXT N
860 FOR I = 1 710 TI:
PRINT ©448,"DATE","SOURCE", "AMOUNT"
870 INPUT # - 1,A$,E$,E:
PRINT DI$(1},S1$(1),AI{I):
PRINT TAB{20)"TAPE INPUT"
880 PRINT AS$,ES$,
IF DIS(I)
A INPUT":
GOTO 900
890 NEXT I
900 INPUT "PRESS <ENTER> FOR MENU";Z:
GOTO 40
910 CLS :
PRINT “MONTH OF RECORD “;MO$:
PRINT
920 PRINT “WITH";TI ;" INCOME ENTRIES AND";TX;"EXPENSE ENTRIES"
930 PRINT "REMAINING MEMORY IS"; MEM
940 PRINT "REMAINING STRING STORAGE SPACE IS "; FRE(S$):
PRINT
950 INPUT "PRESS <ENTER> FOR MENU":Z:
GOTO 40
960 CLS :
PRINT TAB(18)"B AL A N C E CHART"
PRINT TAB(29)MO$:
PRINT STRINGS(63,61):

I
20}
$,E:
< > A$ OR SI$(I) < > E$ OR AI(I) < > E PRINT "BAD DAT

=

>
B
c:oo

970 FOR I = 1 T0 TI:
MI = MI + AI(I):
NEXT
980 PRINT “I N C O M E"; TAB(18)TI;"ENTRIES"; TAB(42);:
PRINT USING D$;MI
PRINT STRING$(63 45)
990 FOR I = 1 TO TX:
IF CK(I) = 7777 GOTO 1010
1000 MX = MX + XA(I)
1010 NEXT I
1020 PRINT "E X P E N S E S"; TAB(18)TX;"ENTRIES"; TAB(42);:
PRINT USING D§;MX:
PRINT STRING$(63,45)
1030 MB = MI - MX
1040 PRINT "B AL AN CE"; TAB(42);:
PRINT USING D$;MB:
PRINT STRING$(63,61):
PRINT @896,;
1050 INPUT "PRESS <ENTER> FOR MENU";Z:
GOTO 40
1060 CN = 0:
XS = 0:
CLS :
PRINT TAB(15)"* * LISTING BY CATEGORY * *":
PRINT
GOTO 160
1070 PRINT :
PRINT
PRINT "ENTER 99 FOR MENU":
PRINT
1080 INPUT "ENTER CATEGORY TO BE LISTED";ZC:
IF ZC = 99 GOTO 40

1090 XB(ZC) = O:
xc(zc) = 0:
cLS
RESTORE

FOR I = 1 T0 ZC:

176

1100
1110
1120

1130

1140

1150

1160

1170
1175

1180
1190
1200
1210

1220

1225

1230

1240

1250
1260

1270

1280
1290

home applications

READ A$:

NEXT :
RESTORE

PRINT TAB((64 - LEN{A$)) / 2)AS:

PRINT STRING$(63,61)

PRINT "DAY CHECK # DESCRIPTION AMOUNT":
PRINT STRING$(63,45)

FOR I = 1 TO TX:

IF ZC = 1 AND CA(I) = 1 AND RIGHT$(XD$(I),1) = "*" XS
+ XA(1):
PS = XS
IF CA(I) = ZC PRINT XD(I); TAB(6)CK(I); TAB(13)XD$(I);
TAB(29);:
PRINT USING D$;XA(1):
CN = CN + 1
IF CK(I) = 7777 AND CA(I)
THEN
XB(ZC) = XB(ZC) + XA(I)
GOTO 1160
IF CA(I) =
THEN
XC(ZC) = XC(ZC) + XA(I)
IF CN > 9 INPUT "PRESS <ENTER> TO CONTINUE";Z:
PA = 192:
FOR N = 1 T0 11:
PRINT @PA,:
PA = PA + 64:
NEXT N:
CN = 0:
PRINT @256,
NEXT 1
PRINT :

IF ZC > 1 AND XR(ZC) > 0 PRINT “IRS"; TAB(10);:
PRINT USING M$;XR(ZC)

IF 2C = 1 PRINT “EAT OUT"; TAB(10);:

PRINT USING M$;XS

PRINT "TOTAL", TAB(10);:

PRINT USING D§; xc(zc)

PRINT "CHARGES®; TAB(10);

PRINT USING D$; XB(ZC)

PRINT

INPUT “PRESS <ENTER> TO CONTINUE";Z:
GOTO 1060

CLS :

PRINT "PERFORM FUNCTIONS 8 AND 9 IN VIDEO MODE BEFORE L
PERCENTAGE CHART":

PRINT

PRINT :

INPUT "PRESS <ENTER> TO CONTINUE";Z

cLS

PRINT CHR$(23):

PRINT " CATEGORY PERCENTAGE CHART":

CN = 0

PRINT STRING$({32,35):

PRINT “CATEGORY",; TAB(22)"%%%":

PRINT STRING$(32,45)

RESTORE :
FOR I = 1 TO 20:
CN = CN + 1:
IF CN = 10 INPUT “PRESS <ENTER>";Z:
CLS
PRINT CHR$(23)
READ A$(1)
PRINT A$(I); TAB(20);:
PRINT USING PC$;(XC{I) / MI) * 100
NEXT I:

PRINT "TOTALS"; TAB(20);:

PRINT USING PC§;(MX / MI) * 100
INPUT "PRESS CENTER>";Z:

GOTO 40

CLS :

= XS

ISTING

Program continued

177

home applications

zgéNT “PERFORM LIST OF INCOME OR EXPENSES TO DETERMINE RECORD NU
R.":
PRINT :
PRINT
1300 PRINT "1 - CHANGE INCOME RECORD":
PRINT "2 - CHANGE EXPENSE RECORD"
1310 PRINT “99. RETURN TO MENU":
PRINT :
PRINT :
INPUT "SELECT FUNCTION";Z
1320 ON Z GOTO 1330,1420:
IF Z ¢>1 0RZ <> 2
THEN
40
1330 INPUT "ENTER INCOME RECORD # TO BE CHANGED";IC:
CLS
IF IC > 71
THEN
40
1340 PRINT :
PRINT “REC #","DATE","SOURCE", "AMOUNT":
PRINT STRING$(64,45)
1350 PRINT IC,DI$(IC),SI$(IC),;:
PRINT USING H$;AI(IC):
PRINT :
PRINT
1360 INPUT "ENTER DATE CHANGE";DI$(IC)
1370 INPUT "ENTER SOURCE CHANGE";SI$(IC):
IF LEN{SI$(IC)) > 9 PRINT "KEEP SOURCE UNDER 10 CHARS.":
GOTO 1370
1380 INPUT "ENTER AMOUNT CHANGE";AI(IC)
1390 PRINT "RECORD #";IC;"NOW READS:":
PRINT
1400 PRINT IC,DIS$(IC),SI$(IC),;:
PRINT USING M$;AI(IC)
1410 PRINT :
INPUT "PRESS <ENTER> TO RETURN";Z:
GOTO 1290
1420 INPUT "ENTER EXPENSE RECORD TO BE CHANGED";IC:
CLS :
IF IC > TX
THEN
40
1430 PRINT "REC #--CAT#--CK #---DESCRIPTION~---AMOUNT-wvwn-~ DAY -2
PRINT STRING$(52,45)
1440 PRINT IC; TAB(8)CA(IC); TAB(13)CK(IC); TAB(21)XD$(IC); TAB(35);
1450 PRINT USING M$;XA(IC);:
PRINT TAB(47)XD(IC)
1460 PRINT :
INPUT "CATEGORY REFERENCE # CHANGE";CA(IC)
1470 INPUT "CHECK # CHANGE";CK(IC)
1480 INPUT "DESCRIPTION CHANGE";XD$(IC)
1490 INPUT “AMOUNT CHANGE";XA(IC)
1500 INPUT "DAY OF MONTH CHANGE";XD(IC):
PRINT
1510 PRINT "RECORD NOW READS:":
PRINT
1520 PRINT IC; TAB(8)CA{IC); TAB(13)CK(IC); TAB(21)XD$(IC); TAB(35);
1530 PRINT USING M$;XA(IC);:
PRINT TAB(47)XD{IC):
INPUT “PRESS <ENTER> TO RETURN";Z:
GOTO 1290
1540 CLS :
PRINT :
PRINT “BEFORE LISTING PRINTER OUTPUT FUNCTION 8 (BALANCE CHART)
AND FUNCTION 9 (LIST CATEGORY) MUST HAVE BEEN PERFORMED USING
THE VIDEO MODE."
1550 PRINT :
PRINT :
INPUT "PRESS <ENTER> TO CONTINUE";Z
1560 CLS

178

1570
1580
1590

1600
1610

1620
1630

1640
1650
1660

1670

1680

1690
1700

1710
1720

1730
1740

1750
1760

1770
1780
1785

1790

1800
1810

1820
1830
1840
1850

home applications

PRINT TAB(21)"LINE PRINTER OPTIONS":

PRINT :
PRINT
PRINT "1 - INCOME LISTING":
PRINT “2 - BALANCE CHART®
PRINT "3 - CATEGORY LISTING":
PRINT "4 - PERCENTAGE CHART"
PRINT "99. RETURN TO MAIN MENU“:
PRINT :
PRINT
INPUT "ENTER DESIRED FUNCTION";Z:
cLS
OGN Z GOTO 1620,1670,1750,1860:
IFZ)> 4
THEN

40
PRINT @468,"INCOME LISTING"
LPRINT STRING$(31,127):
LPRINT CHR$(15)" INCOME LIST":
LPRINT STRING$(31,127)

LPRINT CHR$(13)"—- DATE -- SOURCE ---- AMOUNT -" CHR$(13)

FOR I = 1T0

LPRINT st(r) TTAB(11)SI1$(1); TAB(22);

{PRINT USING M$;AI(1):
NEXT :
LPRINT CHR${13):
GOTO 1560
PRINT @468,"BALANCE CHART":
LPRINT STRING$(31,127):
LPRINT CHR$(15)" BALANCE CHART"
LPRINT TAB(13)MO$:
LPRINT STRINGS(31,127) CHR$(13)

LPRINT Mevcawmaaaann / TOTAL INCOME /----"

LPRINT TI;"ENTRIES"; TAB(15);:
LPRINT USING D$;MI

LPRINT Memwcomannnn / TOTAL EXPENSES /--"

LPRINT TX;"ENTRIES"; TAB(15
LPRINT USING D$;MX
LPRINT "ememmmmmmmnann / BALANCE /
LPRINT TAB(15);:
LPRINT USING D$;MI - MX:
LPRINT STRING$(31,45):
GOTO 1560
PRINT @468, "CATEGORY LISTING"
LPRINT STRING$(31,127):
LPRINT CHR$(15)" CATEGORY LIST"
LPRINT STRING$(31,127) CHR$(13)
RESTORE :
FOR N = 1 TO 20:

READ A$

IF XC(N) =

THEN

NEXT N
IF N > 20 GOTO 1560 :
ELSE

LPRINT STRING$(31,61

LPRINT TAB((32 - LEN%R$)) / 2)A%:

LPRINT STRING$(31,61)
FOR I =1 70 TX

IF CA(I)} = N LPRINT XD(I); TAB(3)CK(I);XD$(I);
LPRINT USING M$;XA(I)
NEXT I:

LPRINT

IF N = 1 LPRINT "EAT QUT"; TAB(10);:

LPRINT USING M$;PS

IF XB(N) > O LPRINT "CHARGES"; TAB(10);:

LPRINT USING M$;XB(N)
LPRINT “TOTAL"; TAB(10);:
LPRINT USING M§;XC(N):
LPRINT :

NEXT N:

179

TAB(22);:

Program continued

home applications

GOTO 1560
1860 PRINT 8468, "PERCENTAGE CHART"
1870 LPRINT STRING$(32,127) CHR$(15)" PERCENTAGE" :
LPRINT CHR$(15) TAB(6)"CHART"
1880 LPRINT STRING$(32,127):
LPRINT TAB(12)M0$; CHR$(13) STRING$(31,45)
1890 LPRINT "CATEGORY «onmwn AMOUNT--PERCENTAGE "
1900 RESTORE :
FOR I = 1 TO 20:
READ A$
1910 LPRINT A$; TAB(14);
LPRINT USING M§;XC 1),
LPRINT TAB(24);
LPRINT USING PC$;XC(X) / MI * 100
1920 NEXT :
LPRINT STRING$(31 1 7):
LPRINT "TOTALS"; TAB(20);
1930 LPRINT USING PC§; MX /Ml
GOTO 1560
1940 CLS :
PRINT "READY TAPE TO READ":
PRINT :
INPUT "PRESS <ENTER> WHEN READY";Z
1950 CLS :
PRINT TAB(20)"READING DATA TAPE":
PRINT STRINGS(63,61)
1960 INPUT ¢ - 1,M0%,TI,TX
1970 PRINT TAB(30)M0%:
PRINT TX;"EXPENSE ENTRIES":
PRINT TI;"INCOME ENTRIES"
1980 PRINT :
PRINT "EXPENSE RECORD #";:
FOR I = 1 TO TX:
INPUT # - 1,CA(1),XD(I),CK{I),XD$(I),XA(I)
1990 PRINT @401,1;
NEXT I:
PRINT
2000 PRINT "INCOME RECORD #";:
FOR I = 1 70O TI:
INPUT # - 1,DI$(1),ST$(1),AI(I)
2010 PRINT @465,1;:
NEXT It
PRINT :
PRINT
2020 INPUT "PRESS <ENTER> FOR MENU";Z:
G0TO 40
2030 DATA FOOD,AUTO EXP,RECREATION,HOME £XP,DOG EXP,CHARGE ACCTS,CHIL
D SPT,CLOTHES,UTILITIES,MISC
2040 DATA DOG SHOWS,SALES TAX,LUNCHES,CIG,MEDICAL,GASOLINE,COFFEE,HOB
BIES,CLEANING MATS,DRUG ITEMS

* 100:

Program Listing 2. Year-to-date report

1 REM ** MONEY MINDER/YEAR-TO-DATE REPORT **
2 REM ** BILL LOVEYS
3 REM ** 4812 JAMES STREET
4 REM ** EAST SYRACUSE, NY 13057
10 CLEAR 200:
DIM ME(19),YT(19),YD(19)
20 Y5 = USHER EBE.4T
M§ = USEREL AT
PS = "##. ##%"
RS = “Sf, bps. 44
30 LS

PRINT TAB(14)"MONEY MINDER YEAR-TO-DATE REPORT
40 PRINT :
PRINT TAB(26)"M E N U":

180

home applications

PRINT
50 PRINT "1-INPUT CURRENT MONTHS DATA"
60 PRINT "2-READ YTD DATA TAPE"
70 PRINT "3-LIST YTD REPORT"
80 PRINT "4-PRINT YTD REPORT"
90 PRINT "“S5-WRITE YTD DATA TO TAPE"
100 PRINT "6-VERIFY DATA TAPE":
PRINT ©960,;
110 INPUT “ENTER DESIRED FUNCTION";Z:
IF1>6
THEN

30
120 ON Z GOTO 130,220,280,520,450,700
130 CLS :

0
140 FOR X = 0 70 19:

PRINT AS$,:
INPUT YENTER MONTH END AMOUNT";ME(X)
150 IF X = 11 CLS
160 CK = CK + ME(X):
NEXT
PRINT
170 INPUT “ENTER MONTH END INCOME";MI:
INPUT “ENTER MONTH END EXPENSES";MX:
180 CK = CK * 100:
MX = MX * 100:
IF INT(CK) < > INT{MX) PRINT "DATA ERROR--REDO FUNCTION #1"
190 CK = CK / 100:
MX = MX / 100
200 INPUT "ENTER THE BALANCE FORWARD AMOUNT LISTED ON PRECEDING MONT
HS INCOME LISTING. (EXAMPLE: IF THIS IS APR Y-T-D REPORT THEN
ENTER BAL FWD FROM MARCH)";BF:
MI = MI - BF
210 PRINT @©960,;:
INPUT "PRESS <ENTER> TO RETURN TO MENU";Z%:
GOTO 30
220 CLS :
INPUT “READY TAPE TO READ - PRESS <ENTER> WHEN READY";Z$
230 CLS
PRINT "R EAD I NG":
PRINT :
INPUT # - 1,MYS$,TI,TX
240 PRINT "CATEGORY","YTD TOTALS":
PRINT STRING$(32,61)
250 FOR X = 0 TO 19:
INPUT # - 1,YT(X):
POKE 16553,255:
READ A$:
PRINT AS$,:
PRINT USING Y$;YT(X)
260 IF X = 10 PRINT €960,;:
INPUT "PRESS <ENTER> TO CONTINUE";Z$:
CLS
270 NEXT
GOTO 210
280 CLS :
RESTORE :
PRINT TAB(24)"C AU T I O N !":
PRINT
290 PRINT “"FUNCTIONS 1 AND 2 MUST HAVE BEEN PERFORMED BEFORE LISTING
REPORT":
PRINT
PRINT
300 YI = T1 + MI:
YX = TX + MX
310 INPUT "ENTER MONTH OF REPORT (IE FEB 80)";MY$
320 INPUT “ENTER THE MONTH NUMBER (IE 2 FOR FEB)";MN Program continued

181

330

340
350

360

370

380

390

400

410

420

430

440

450
460
470
480

490

500

510
520

530

home applications

PRINT :

INPUT “PRESS <ENTER> TO CONTINUE";Z$:
(LS

PRINT TAB(21)"M O NE Y M I NDE R"

PRINT TAB(26)"YEAR-TO-DATE":

PRINT TAB(29)MY$:
PRINT STRING$(63,61)

PRINT “"CATEGORY",; TAB

ERCENT":
PRINT STRING$(63,45):
RESTORE

(17)"YTD TOTAL--CURRENT---YTD AVG----YTD P

FOR X = 0 TO 19:
vo(x) = YT(X) + ME(X):
= YD(X) / YI:
= YD(X) / MN
READ AS:

PRINT A$,; TAB(15)"--

PRINT "--"y:
PRINT USING M$;ME
PRINT “--"; TAB(38
PRINT USING Y§;VA;:
PRINT "em--

)
PRINT USING Y$;YD(X
(

3
X)s
)s:

PRINT USING P$,PC * 100
IF X = 4 OR X = 9 OR X = 14 PRINT @896, ;:
INPUT "PRESS <ENTER> TO GONTINUE";Z$:

PRINT €384,
NEXT
PRINT @896

INPUT "PRESS CENTER> TO CONTINUE";Z$:

s
PRINT CHR$(23):

PRINT " YTD INCOME":

PRINT STRING$(31,61):
PRINT USING Y$;YI:
PRINT STRING$(31,61)
YX = TX + MX:

PRINT " YTD EXPENSES":

PRINT STRING$(31,61):
PRINT USING Y$;YX:
PRINT STRING$(31,61)

BA = YI - YX:
PRINT ™ BALANGE":

PRINT STRING$(31,61):

PRINT USING Y$;BA:

PRINT STRING$(31 61)

PRINT €96

INPUT "PRESS FOR MENU“;Z$:

GOTO 30

LS :

PRINT "READY TAPE TO WRITE CURRENT DATA"
PRINT :

ENPUT “PRESS <ENTER> WHEN READY";Z$

LS :

PRINT "WR ITING TAP

PRINT # - 1,MY$,YI,¥YX:

PRINT "YTD INCOME= ";:

PRINT USING Y$;YI:

PRINT "YTD EXPENSES= ";:

PRINT USING Y§$;YX:

PRINT

FOR X = 0 TO 19:

PRINT # - 1,YD(X):

PRINT X;:

NEXT

PRINT :

PRINT "PERFORM FUNCTION # 6 TO VERIFY THIS TAPE"
60TO 210

LS :

PRINT "READY PRINTER FOR REPORT"

PRINT :

182

560

570

580
590

630
640
650
660

670

680

690
700

750
760

770

780
790
800
810
820

home applications

INPUT "PRESS CENTER> WHEN READY';Z§:
cLS

RESTORE

PRINT

INPUT “ENTER MONTH OF REPORT, MONTH NUMBER";MYS$,MN:
cLS

PRINT TAB(21)"M O N E Y M I NDE R":

PRINT TAB(26)"YEAR-TO-DATE":

PRINT TAB(29)MY$

LPRINT CHR${15) TAB(5)"MONEY" CHRS$(13) CHR$(15) TAB(5)"MINDER"
CHR3(13) STRING$(31,127)

LPRINT CHR$(15)" YVEAR-TO-DATE"

LPRINT CHR$(15) TAB(6)MYS:

LPRINT STRING$(31,127)

LPRINT " CAT -YTD TOT $--YTD AVG--YTD%"

LPRINT STRING$(31,45):

Y1 = TI + MI:

-
=
won
—
>
+
=
b

READ A$

NEXT
FOR X = 0 TD 19:

YD(X) = YT(X) + ME(X)
PC = ¥YD(X) / YI:

YA = YD(X) / MN

READ A$:

LPRINT A$; TAB(6)"-";:
LPRINT USING R$;¥D(X];:
LPRINT "-";:

LPRINT USING M$;YA; :
LPRINT "-";:

LPRINT USING P$;PC * 100
NEXT

LPRINT STRING$(31,127)

LPRINT “TOTAL INCOME"; TAB(18);:
LPRINT USING Y$;VI

LPRINT "TOTAL EXPENSES"; TAB(18);:
LPRINT USING Y$;YX

LPRINT “TOTAL BALANCE"; TAB(18);:
BA = YI - YX:

LPRINT USING Y$;BA

PC =YX / YI * 100:

LPRINT “PERCENT FOR EXP“; TAB(18)
LPRINT USING P$;PC

LPRINT STRING$(31,127):

GOTO 210

CLS

PRINT “REWIND DATA TAPE - READY TAPE TO READ":
PRINT

INPUT “PRESS <ENTER> TO CONTINUE";Z$:

cLs

PRINT “TAPE VERIFY","IN MEMORY"“:
PRINT STRING$(32,45)

INPUT # - 1,X$,X,Y:

PRINT X$;" ";X;Y,MY$5" ";v1;vX
FOR X = 0 TO 19:

INPUT # - 1,A:
PRINT A,YT(X):

IF A < > YT(X) PRINT "BAD DATA TAPE":
GOTO 770

NEXT

PRINT :

PRINT "TAPE VERIFICATION COMPLETE":
60TO 210

PRINT "TRY AGAIN":
60TO 210

DATA FOOD,AUTO EXPENSES,RECREATION,HOME EXPENSES,DOG EXPENSES
DATA CHARGE ACCOUNTS, CHILD SUPPORT,CLOTHES, UTILITIES MISC

DATA DOG SHOWS,SALES TAX,LUNCHES, CIGARETTES MEDICAL

DATA GASOLINE, COFFEE HOBBIES CLEANING MATS, DRUG ITEMS

DATA FOOD, AUTO REC, HOME X, DOG EX,CHG AC, CHD SP,CLOTHS,UTILIT,MIS

(,D0G SH,S TAX,LUNCH,CIG,MEDCAL,GAS,COFF,HOBBS,CLN,DRUGS

183

" HOME APPLICATIONS

Groupies:
A Strategy to Group Like Objects

by Richard Ramella

Atoddler’s toy I saw in the waiting room of my physician provided the in-
spiration for this program. I have used this Level II program to index a
book’s subject matter, to match people of like interests for social purposes, to
cross-reference lecture notes in search of linked ideas, and as a file that iden-
tifies the numbers of all photographic proof sheets on which a specified per-
son, place, or event appears.

The toy that led to this was a plastic cube filled with beads of various sizes.
There were several full shelves with holes in them. The holes in each shelf
were smaller than those on the shelf above. When the toy was tipped, the
beads fell through the levels until they came to a hole too small for them to fit
through. It was a bright variation of an industrial grader in which a product
of many pieces—whether coal or walnuts—is shaken down through a series
of screens. Pieces of similar size are shunted laterally to a common bin.

My first association of the toy with a multi-dimensional array was a false
lead but did set me thinking about creating a grouping program. The il-
lustration of this article demonstrates both the mental model I envisioned
and the symbolic workings of the program. I realize the program is a string
comparison, but for conceptual purposes, I will describe it in terms that
make its workings more understandable. I decided to create a program
which simulates a cube with two shelves. The top shelf has a series of holes
with objects poised above them. On a string comparison command, all ob-
jects sharing a stated quality fall through and reassemble as a subgroup on
the shelf below. The version of the program given here (see Program Listing)
groups and lists names of people who share interests. It can produce several
lists, each identifying a specific interest, in one run.

Line 120 clears 255 bytes for string space. That’s all you need, because the
single-dimension status of the program deals with one data line at a time.
Line 130 dimensions B$ for a depth of five elements. You must dimension B$
to contain as many elements as there are data lines. Lines 140 through 180
are the data lines. Spacing is crucial if the program is to run correctly. In-
clude one space after DATA. The names in this program must be contained
in spaces 2 through 19 after the word DATA, with blank spaces filling any
leftover area. Space 20 must be blank. The three-letter codes must begin at
space 21. Each code but the last one in the data line has one space after it. If
you run out of space for data entry, make a new line starting with the same
name as the previous line and enter the rest of the codes.

184

home applications

It is important to create a code menu sheet and keep it consistent. The
program won’t group two people interested in computers if you give one
person the code COM and the other the code CPT. The code menu for this
program is as follows:

REA Reading
SEW Sewing

BEE Beekeeping
COM Computers

COO Cooking
SWI Swimming
HIK Hiking

DAN Dancing

There is a gap in the Program Listing between lines 180 and 2000. This
allows you to enter as many data lines as you need or as many as a system’s
memory allows. Line 2000 asks for entry of both the code and the full word
describing the quality sought, separated by a comma.

Lines 2040 through 2120 are the workhorses. Refer to the “Strings”
chapter in the Level Il manual for more information. The program searches
the rightward portion of the string for a code. If the computer finds the
code, it prints the leftward portion of the same string. You can use the left-
ward area of the string to hold a page number when you use the program as
an indexer. In complex indexing runs, I change all PRINT statements to
LPRINT to obtain hard copy.

Meanwhile, I have purchased a toy like the one I saw in my physician’s of-
fice. I keep it by my TRS-80 as a reminder that complex utilitarian ideas
often flow from a simple sense of playfulness.

185

home applications

Program Listing. Groupies

168 REM * GROUPIES BY RICHARD RAMELLA *
118 CLS
128 CLEAR (255)
130 DIM BS(5)
149 DATA ELISA SUNFLOWER REA SEW BEE COM COO
158 DATA HANORA RAMELLA REA SWI COM HIK
166 DATA NATHANAEL RAMELLA DAN BEE REA SWI
17¢ DATA ROGER AYLWORTH REA HIK COM
188 DATA BRUCE AIKIN REA SWI COO
20P8 INPUT "WHAT IS TO BE CHECKED (REA,READING)";AS,ES$
2818 CLS
202p PRINT "PEOPLE INTERESTED IN ";ES
2@38 PRINT
2048 FOR A = 1 TO 5
2058 READ BS$(A)
2868 CS$ = LEFTS$(BS(A),19)
2076 FOR I = 1 TO LEN(BS(A)) - LEN(AS) + 1
2080 BS = BS(A)
2898 BS = MIDS$(BS,15)
2168 IF A$ = MIDS$(BS$,I, LEN(AS)) PRINT C$
2110 NEXT I
2128 NEXT A
2138 PRINT
2143 PRINT
215@ PRINT "END OF LIST"
2168 INPUT "WANT ANOTHER LIST (YES/NO)";X$
2178 CLS
2188 IF X$ = “YES"
THEN
119
ELSE
PRINT "BYE"
2199 END

186

INTERFACE

Stick With It
Easy SelectricTM Output for the TRS-80:
Take Me to Your Solenoids

187

INTERFACE

Stick With It

by John Warren

he Klingon made a wide, sweeping turn to port, leaving himself wide
open for a spread of photon torpedoes. My finger mashed down the A
key and. . . nothing happened.

In my excitement, I had hit the down-arrow key by accident. For the
10E6th time, I cursed the absence of a joystick on the Model I. Joysticks
don’t help much with a general ledger and are useless when I'm keeping
track of student grades. But when all that is past, and Luke Skywalker needs
my help, a keyboard really doesn’t cut it.

Alpha Products of Woodhaven, NY has solved this problem with their
Stick-80, a modified Atari joystick. My starship, Enterprise, was still glow-
ing wreckage on the CRT when I called and placed my order for one. The
stick itself is relatively simple, a seemingly unmodified Atari joystick with a
40-inch cord. The stick’s base is held together by four substantial screws
which provide easy access to the contents for cleaning and tinkering.

Alpha Products of Woodhaven, NY has solved this problem with its
Stick-80, a modified Atari joystick. My starship, Enterprise, was still glow-
tor. The arrangement is sturdy enough for normal wear, but [recommend
careful handling. The edge connector is intended to mate with the expansion
port on the Model I keyboard or on the screen printer port of the interface.

Here I encountered a problem. The plug-in modification didn’t plug in. A
careful examination revealed that the male edge connector on my expansion
interface was about a tenth of an inch wider than the opening on the stick.
Not wanting to return the stick and wait for a replacement, I opened the in-
terface and carefully filed down the necessary edges. The connector slid on
without further protest.

Stick-80 is a ported device like the cassette recorder. The TRS-80 has 256
ports numbered 0 to 255. The stick is located at port 0. Its presence there has
no inherent effect on the computer’s running. When the command INP(0) is
encountered within a program, however, the computer returns a decimal
value between 0 and 255. The stick sends only 10 values which correspond to
eight directions of travel, a fire command, and a null for no movement.

Evidently, Alpha Products is planning to introduce a set of paired sticks
since the direction sheet contains instructions for the use of single and paired
Stick-80s. A simple form of bit masking permits the positions of two sticks to
be read with a single INP statement,

189

interface

Under normal conditions (no stick attached or no movement indicated),
port 0 returns a decirnal 255 (a binary 11111111) since all bits are normally
on. The designers of the Stick-80 have chosen to have the primary stick con-
trol the right four bits while the secondary stick changes the left four. For ex-
ample, if the primary stick was indicating an up, and the secondary stick
was indicating a down, the bit pattern would be 11011110, where 1101 is
the down signal, and 1110 is the up signal.

You can use the AND function to separate the two values. For example:

IN = 255 - INP(0)
S1 =240 S1 AND IN
§2 =15 81 AND IN

would give two values (€1 for the secondary stick, and S2 for the primary
stick) from the single input. An additional line:

F=IN AND 3
allows the fire command for the primary stick (value of 3 or 11 binary) to be
filtered out from other commands. In this manner, a player can send a move
command and a fire command simultaneously.

The four-page manual that comes with the Stick-80 contains complete in-
formation on the conversion of existing BASIC programs along with the
listing for Magic Artist, a demonstration program which illustrates how to
use input from the stick.

190

INTERFACE

Easy SelectricTM Output for the TRS-80:
Take Me to Your Solenoids

by Morton Leifer

omputer enthusiasts interested in hard-copy printout capability have a

boon in the large number of input/output (I/O) SelectricsT™ available
on the surplus market. There are several excellent articles on the subject of
interfacing specific Selectric models to the TRS-80. Most, however, require
considerable hardware, including complex circuitry for handshaking and a
PROM for converting ASCII to Selectric correspondence code. In many
cases, the 1/O Selectric may have incomplete or nonexistent documentation
and malfunctioning internal logic circuits, making it difficult to implement
a complicated interfacing scheme.

The information presented here can be easily implemented by the average
computerist, providing smooth and error free operation of most Selectrics
containing solenoids for printing and control. The Selectric will operate
close to its maximum speed of 14.9 characters per second. Because its inter-
nal logic is bypassed, none of the handshaking reed switches in the Selectric
are required for proper operation.

Flexibility is gained by using a software driver not found in an all hard-
ware interface. The software driver accommodates a wide range of standard
and nonstandard typing spheres, including one available from IBM called
Data 1. It has a full ASCII character set and is perfect for BASIC LLISTs
and LPRINTS.

The software is compatible with, and improves upon, the RS232 Electric
Pencil patch described in the August 1980 issue of 80 Microcomputing. A
major problem with the Pencil is that it does not stop typing at the end of
each page so that a new sheet of typing paper can be inserted. This software
waits for the six or more consecutive carriage returns that the Pencil pro-
duces at the end of each page, then goes into a wait loop within the driver
program. When the paper is changed a C (for continue) is entered on the
TRS-80 keyboard. Control is returned to the Pencil which prints the
next page.

The hardware, though standard and simple, has functioned reliably for
hundreds of hours without errors or failures. Most of the parts used in the
circuit are available at Radio Shack for less than $50 dollars. A complete
description of the software driver and hardware interface is given so that
those who wish to can improve, modify, or adapt them to meet other inter-
facing needs.

191

interface

Software

The software consists of a machine-language program in three separate
parts. The first part of the program is located between lines 210 and 320 and
is the initialization portion of the program. It loads the memory location of
the new print driver program (LPRT) into the printer device control block
(DCB). The printer DCB is located in reserved RAM from 4025H to 402CH
(16421 to 16428 decimal) and initially contains the address of the printer
driver program located in the TRS-80 ROM used by Level II BASIC for
LPRINTSs and LLISTs. After this part of the program is executed, the DCB
will contain the address of our new print driver, which will operate the
Selectric and respond to all LPRINTs and LLISTs in place of the original
ROM print driver.

The decimal value loaded into register A (line 240) determines the num-
ber of characters printed on each line before an automatic carriage return
occurs. A value of 72 prevents typing beyond the width of standard typing
paper. If your machine has an extra-wide carriage of fifteen inches, the
decimal value can be increased to 135. As your needs change, you can alter
the decimal value directly from BASIC by POKEing the desired decimal
value into memory location 16426. Lines 260 and 270 load the value of six
into DCB location 4028H. This value is the number of consecutive spaces
printed by the Electric Pencil before the drive program enters a wait loop.
POKEing any desired new value into decimal 16424 changes this value.

The computer controls any of a number of possible programs in lines
280-310. Implement only one of these four lines by removing the semicolon
preceding the code which contains the desired control address. In most
Level II machines, line 280 will take you to a READY. Line 290 will also
jump control to a warm start of Level II BASIC. Your disk operating system
is in line 300. If you want to concatenate this program to the Electric Pencil,
and go directly to the Pencil after initializing the printer DCB, use line 310.

The second part of the program converts the ASCII character you wish to
print to the proper IBM code (see Table 1). This code is sent to the parallel
port which connects the printing and control solenoids of the Selectric to the
data lines of the TRS-80. Correct timing intervals for printing and control
characters, allowing the Selectric to be operated near its maximum speed,
are inserted at this point. The program also tests the character to be printed
to determine if upper- or lowercase shifting is necessary and outputs the ap-
propriate shifting codes. This program is the equivalent of the CAPLOCK
operation, which is most desirable for BASIC LPRINTs and LLISTs.

Regardless of the shift position, the output will be in uppercase letters.
Numbers or punctuation will be output according to the shift position.
When the simple Electric Pencil lowercase modification is added to the
TRS-80, it will produce upper- and lowercase output on both the video and
the Selectric. If you do not wish to modify your keyboard for lowercase

192

interface

IBM
ACTER VALUE VALUE CONTROL SHIFT T2 Tl R5 R2A R2 Rl

ASCII

CHABR-

127

33
34

0

85
126
121

35
36
37

e G

117
125

%o

38
39
40
41

21
112
113
124

42
43
44
45
46
47

70

12

22

49

48
49
50

63
54

62

51

57

52
53
54
55

53
52
61

60

56
57
58
59
60
61

48
77

13
41

[sen e B e B e }
n ol
- == D
oy
o M i
66&6
gqr@A

96

66

108
109
101

67
68
69

(ONapc

78
79
97
84

70

71
72
73

= Om

71
100

74
75

105
95
102
89

76
77
78
79

Q2 Z o

69
68

80
81

o O

Table continued

193

interface

N*<><g<§:"‘"’”’>O’UO=S'_'7~"""""3‘OQ"“®Q.OO‘W

R 82 93 0 1 0 1 1 1 0 1
S 83 81 0 1 0 1 I 1 0 1
T 84 103 0 1 10 0 1 1 1
U 85 110 0 1 10 1 1 1 0
Vv 86 94 0 1 0 1 1 1 1 0
w 87 80 0 1 0o 1 0 0 0 o0
X 88 111 0 1 1 0 1 1 1 1
Y 89 65 0 1 6 0 0 0 0 1
Z 90 119 0 1 1 1 0 1 1 1
91 101 0 1 1 0 0 1 0 1

92 128 0 1 6 0 0 0 0 O

93 64 0 1 0 0 06 0 o0 o0

97 28 0 0 0 1 1 1 0 o0

98 32 0 0 1 6 0 0 0 o0

99 44 0 0 1 0 1 1 0 0

100 45 0 0 1 0 1 1 0 1

101 37 0 0 1 0 o0 1 o0 1

102 14 0 0 6 0 1 1 1 0

103 15 0 0 0 0 1 1 1 1

104 33 0 0 r 0o 0 0 0 1

105 20 0 0 6 1 0 1 0 O

106 7 0 0 0O o0 0 1 1 1

107 36 0 0 1 0 0 1 0 0

108 41 0 0 10 1 0 0 1

109 31 0 0 0 1 1 1 1 1

110 38 0 0 10 0 1 1 0

111 25 0 0 0 1 r 0o 0 1

112 5 0 0 O o0 0 1 0 1

113 4 0 0 6 0 0 1 0 0

114 29 0 0 0 1 1 1 0 1

115 17 0 0 O 1 0 0 0 1

116 39 0 0 1 06 0 1 1 1

117 46 0 0 10 1 1 1 0

118 30 0 0 0 1 1 1 1 0

119 16 0 0 6 1 0 o0 0 o0

120 47 0 0 10 1 1 1 1

121 1 0 0 6 0 0 0 0 1

122 55 0 0 1 1 0 1 1 1

SPACE 32 129 1 0 0 0 0 0 0 1
C.R. 13 130 1 0 0o o0 0 0 1 0
INDEX 10 132 1 0 o o0 0 1 0 0

Table 1

video, it is still possible to obtain standard upper- and lowercase output by
removing the semicolons in lines 900 to 970. Direct typewriter operation of
the TRS-80 will occur. Lowercase characters will be output to the Selectric
when the TRS-80 is unshifted, and uppercase characters will be output
when the keyboard is shifted.

194

interface

The second part of the program starts at line 330. The calling routine’s
stack pointer and all CPU registers are saved in lines 330 to 370, so that after
the desired character is output they can be restored, allowing the calling
program to continue its operation. Lines 390 to 410 check to see if there is a
character in register C to be printed. If so, the character is compared to the
value 33 decimal, the smallest ASCII code that produces a printable charac-
ter. An ASCII value of 33 decimal or greater is sent to ALPHA1 for further
processing before it is finally printed. ASCII values smaller than 33 decimal
are non-printing control characters and are tested in line 450 for a line feed,
in line 470 for a space character, and in line 480 for a carriage return. The
character is sent to a routine that outputs an IBM code that corresponds to
the ASCII value control function.

The carriage return routine includes a timing loop called DELAY2. This
permits the printing sphere to return and begin the next line. Printable
ASCII characters are in continuous numeric order starting from 33 decimal
up to 176 decimal. They can be converted into the Selectric code by using a
simple lookup table. The lookup table is the third part of the program and
starts at line 1480.

Once a printable ASCII character has been sent to ALPHA1 (line 990),
decimal 33 is subtracted from it and the result is left in register A. The first
printable character having the decimal value 33 and an exclamation point
produces a zero value in the A register when subtraction is accomplished. In
line 1010 the memory pointer (HL register) is adjusted so that it points to the
beginning of the lookup table. The contents of register A are then trans-
ferred to register L in lines 1020 and 1030, making the memory pointer (HL)
point to the beginning of the lookup table, including the A register. The
memory pointed to consists of decimal 127, the Selectric code for an ex-
clamation point. Conversion from ASCII to Selectric code has been made for
the exclamation point.

If the ASCII character sent to ALPHAL is decimal 65 (uppercase A), the
result left in the A register after subtraction is 32. When this is added to reg-
ister L it causes the HL register to point to the start of the lookup table plus
39. The start of the lookup table is located at memory 7F90 hex. Decimal 32
is equivalent to 20 hex. Adding 20 hex to 7F90 hex is 7FBO hex. The contents
of memory location 7FBO hex is decimal 92, which is the Selectric code for
uppercase A. The conversion cycle is complete.

Placing the Selectric code for a character into a memory location located
above the start of the lookup table by an amount equal to 32 less than the
numerical value of the ASCII of the character ensures a true conversion of
that character. Other characters similarly placed will also be converted.

The benefits of using a lookup table for code conversion are many. The
same simple routine, ALPHAL, is used to convert the entire printing charac-
ter set which conserves memory space. If each character had been in-

195

interface

dividually processed with its own routine, much more memory would have
been needed. Nonstandard spheres can be accommodated by changing only
the IBM Selectric numeric values in the lookup table to those appropriate for
the sphere being used. Typing spheres such as the IBM Data 1 having the
complete ASCII character set are very desirable for computer work. There is
a host of special-purpose typing spheres available that can be perfectly
tailored to your computer keyboard by altering the lookup table.

After the ASCII character has been converted into Selectric code, it is
tested to see if it is an uppercase character. Any converted character with a
value greater than decimal 64 requires a shift to uppercase. This test is ac-
complished in line 1050, and if a shift to uppercase is needed, the program
jumpsto the TEST1 routine at line 1090. This determines whether the Selec-
tric is already in the shifted position. Shift status is sent from the interface on
bit 6 of the data bus. Bit 6 is the seventh bit in an eight-bit word (D0-D7). If
the shift solenoid is being energized, which causes the typing sphere to rotate
180 degrees into its uppercase position, bit 6 will be low. All of the other bits
will be high, and the value input from port 13 will be 63 (X0111111). On a
typingsphere that isn’t rotated into its uppercase position, bit 6 will be high
and the value input from port 13 will be 127 (X1111111). An uppercase
character to be typed without a shift is sent to the CHOUT routine for fur-
ther processing. If an uppercase character is printed, and a shift is needed,
line 1140 loads decimal 64 (01000000) into the A register and outputs that
value to port 13. The high sixth bit’s (remember we start counting from zero)
output to port 13 causes the shift solenoid to energize and rotate the typing
sphere 180 degrees.

Thecharacter to be printed, which has been saved on the stack (line 1090
or 1170), is now sent to the CHOUT routine which starts at line 1230.
CHOUT takes the character off the stack and masks the two most significant
bits of the eight-bit number. They are not used in the Selectric code and
don’t need to be output to the machine. The character is again stored in the
stack (line 1250) while the number of characters typed on the line up to that
point is calculated and a decision made on whether or not a carriage return
is necessary.

Carriage return arbitration is accomplished as follows. Back in the intiali-
zation section of the program (lines 240 and 250), you set the character
count to the number of characters, including spaces, you wanted printed on
each line. This decimal value was stored in the printer DCB at location 402A
hex. In line 380 the IX register was initialized at 4025 hex, which is the
beginning of the printer DCB. In line 670, IX + 5, five memory locations
higher than where the DCB began, points to a memory location which is five
more than 4025. IX + 5 is pointing to 402A where the number of characters
per line is stored. That value is put into the A register, and in line 680 it is
transferred to a memory location called character count (CHCNT).

196

interface

This is all happening in a CRLF1 routine, which immediately prints a
carriage return in line 690. This resets the memory location (CHCNT) with
the number of characters you want printed on a line prior to sending a car-
riage return. During CHOUT, just prior to outputting the character to be
printed, save the character in line 1250, then point the HL register to the
memory location (CHCNT) where the number of characters per line value is
stored. In line 1270 decrement that value by one, because you're going to
print a character. Inline 1280 test to see if the value in CHCNT has reached
zero. After 72 characters are printed, the value in CHCNT will be
decremented by one 72 times. The value of CHCNT will be zero and line
1290 will call for a carriage return.

The CRLF routine resets the value in CHCNT to the value specified in the
DCB, as indicated above, and sends out a carriage return. Inline 590, IX + 4
is a carriage return counter and is incremented each time a carriage return is
sent. If six consecutive carriage returns are sent without an intervening
printed character, the value of IX + 4 will equal the value put into IX + 3
during the initialization of the program (line 260). If there is a true compare,
that is if IX + 4 equals six, then the program will go to the BREAK routine.
This is a wait loop that will continue until the letter C is depressed. This cor-
rects the problem that occurs when using the Electric Pencil. There is a
pause in printing while typing paper is changed between pages.

In line 1300 control is sent to line 760 where the necessary extra delay
(DELAYZ2) is inserted to permit the type sphere to return to the beginning of
the next line. The character is popped from the stack and printed. The print
routine starts at line 1340 by outputting the character to be printed to paral-
lel port 13. DELAY inserts the correct time delay to provide enough time for
the mechanics of the Selectric to settle down before the next character is
printed. The timing byte in line 1360 sets the exact delay between characters
which determines the characters per second. A value of 09FF hex produces
close to 15 characters per second. An O8FF produces a speed which may
slightly exceed the 14.9 characters per second the machine is designed for,
and an OAFF hex provides a very respectable speed, but slower than the
maximum permissible.

The desired value can be POKEd into the correct memory location direct-
ly from BASIC using decimal values. A check to see if the BREAK key is
pressed is carried out in lines 1390 to 1410. Line 1390 checks the contents of
memory location 3840 hex whose eight bits represent eight individual keys
on the TRS-80 keyboard. If the value of that memory location is four, then
the BREAK key has been pressed. Control is immediately sent back to the
calling program, and no additional characters will be printed until another
LLIST or LPRINT is initiated. This feature allows for instant stopping of
the printing process in the middle of an LLIST or LPRINT. After a charac-
ter is printed, the program jumps to a GOBACK routine, which restores the

197

interface

calling routine’s stack pointer and pops all registers, permitting the calling
program to continue.

Hardware

The hardware interface is a standard eight-bit parallel port configuration
with a small amount of additional circuitry. It uses a pair of 74L.S85 magni-
tude comparators, and an eight-bit DIP switch to accomplish port address-
ing. A pair of 74LS175 four-bit latches holds the required eight bits of data
for further processing. There are a minimum of 11 solenoids in the Selectric
that must be independently actuated. Most of the additional interface cir-
cuitry provides the necessary timing and multiplexing for their proper oper-
ation. A 741L.S367 provides a capability of up to six status signals from the in-
terface back into the computer, but only shift status is required for proper
operation. The circuit operates as follows.

The 741585 four-bit magnitude comparators (IC2 and IC3) compare the
voltage present on BO-B7 with that present on the address bus A0-A7. By ad-
justing the DIP switches, as shown on the circuit diagram (see Figure 1), a
binary bit pattern of 00001101 is created from B7-BO corresponding to a
value of 13 decimal. A voltage of +5 volts is represented by a one (switch
open) and a voltage of zero is represented by a zero (switch closed). When
data is output to port 13, the bit pattern on the address bus from A7-A0 will be
13 decimal (00001101 binary). This causes a one-to-one correspondence of
voltage between A7-A0 and B7-BO0; this is a true compare, and IC3 will re-
spond by outputting a high pulse on pin 6 aslong as the true compare remains.

The port address can be changed to any value from 0 to 255 by adjusting
the DIP switches to the desired bit pattern. The software output must con-
tain the same port number as that represented by the position of the DIP
switches in order for a true compare to occur. The high pulse output from
pin 6 of IC3 is inverted by IC1A, and becomes a low on one input of IC1B
and IC1C. At the same time as the port number appears on the address bus,
a NOT OUT pulse appears on the second input of IC1C causing a high pulse
on the output of IC1C. This results in a high pulse on pin 9 of IC4 and IC5,
causing the data appearing on the inputs of IC4 and IC5 to be latched on to
their outputs.

Only six bits of latched data (D0-D5) are necessary to produce alphanu-
meric characters or control functions on the Selectric. They are applied to
one input of their respective AND gates IC10, IC11, and IC12. Gates IC10,
IC11A, and IC11B carry data to the transistors that drive the print solenoids
Rl, R2, R2a, R5, T1, and T2. Different combinations of data-bit patterns
applied to the print solenoids through the drive transistors connected to
these gates cause closure of varjous combinations of print solenoids. The
energized solenoids become mechanically latched, determining the par-
ticular alphanumeric character to be printed (Program Listing 1). These

198

interface

ZNz2z2
TRS-80 ey SFACE
CPU 8 0 Al
00) 2 BITO | icio
3O] Q 3 SOLENOID

T SOLENOID
cR
R -4 A 141508
22 ; BT R2
q SOLENOID 4
02 ca I 5|‘C*2 SOLENOID
12
3) TALSITS 741508 § 9 74L508 INDE X
o BIT 2 '°| R2A
Q SOLENOID
D3 13
26 SOLENOID
i
) 15 BIT 3 RS SPARE
2 SOLENOID
16 9 [
w5y $22K
LATCH
2N2222
2218 9
' 2N2222 SPARE
Da z BIT 4 Tl 9
18 = Q { SOLENOID -
10
sp— D55 I
4 680 741508 SPARE
s 7 mr sl 7ausos licn T2
74151750 Ts SOLENOID
| &FE
s = opE ey SOLENOID
i BIT 6 3 5 6800
so_ D713 2 5 B
] IN4004
SHIFT STATUS
741508
[
12—]
1 IuF
cie
TRS~ 80 2] 555 @
cPy s i 3
a7 I , B7 DIP SW
36— 5V
50K
g NS 14 B8 e R 12
ic3 L., 8]]
As 12l 7aLses {iiles 7 3 3]icize
35— @#F] u
A4 10 ERED Ls] 74508
YT
2131 Yk +5V
£ ow A
SWITCHES <
I« PROGRAMMED
&S FOR PORT 13
A3 15 i |3
34 e
A2 13 14182
40— ic2
Al 741.585
Py 12 (IR] iy ‘
ac
s5__ AO_io 3 18O
DIP SW
2143 +5V
2.2K
TRE-80 - SELECTRIC INTERFACE

Figure 1. TRS-80—Selectric interface. Owners of the original TRS-80 (Model 1) might want to
install a current-limiting device.

199

interface

mechanically latched solenoids are released only after a separate enable
solenoid is energized, which prints the character and resets the solenoids for
receipt of the next bit pattern. The enable solenoid must be turned on for a
definite length of time once the print solenoids have been latched. If the
enable solenoid is energized for too short a time, the character will not print;
too long a time will cause the character to repeat. Two 55 timers, IC8 and
1C9, provide a suitably stable and adjustable time interval to accommodate
the needs of any Selectric,

Gates IC12, IC11B, and IC11D carry data to transistors driving the con-
trol solenoids. These solenoids produce space, carriage return, and indexing
as well as spare functions for implementing additional features. None of the
above gates will pass data until their second input goes high. This depends
upon whether a character is to be printed or whether a control function is re-
quired. Only one set of gates (print or control) will be turned on at any given
time. There are only a very few gates involved in this timing and arbitration
process. The operation of this circuit can easily be understood by following
through with the printing of a lowercase letter, an uppercase letter, and a
control function.

Suppose a lowercase a is to be printed. Program Listing 1 shows that the
Selectric code for a is decimal 28. The bit pattern on the data bus will
therefore be 00011100, the binary equivalent of 28. As the data is output on
the data bus, the address bus is given a value of 13 corresponding to the bit
pattern set on BO-B7 by the DIP switches. This true compare causes a high
output on pin 6 which is inverted by IC1A and applied to one input of ICIB
and IC1C. A NOT OUT which also appears during the outputting of data
causes the output of IC1C to go high, since there are now two low pulses on
the two inputs of IC1C. This high pulse is applied to pin 9 of the latches IC4
and IC5 causing the data on the data bus to be latched onto the Q outputs.
The bit pattern corresponding to a is applied to the print gate IC10 and the
control gate IC12.

The data does not pass through the gates until the second input of the
gates is made high. In this case, only the print gate, IC10, will be made to
pass data. This is accomplished as follows. The high output on ICIC is in-
verted by IC6B and sent to both 555 timers, IC8 and IC9. The low on pin 2
of the timers triggers them, causing a high pulse of adjustable length to ap-
pear on their outputs (pin 3). The high output of timer IC8 is applied to one
input of IC14A and IC14B, and the high output of timer IC9 is applied to
one input of IC13B. The second input of IC13B is connected to bit 7 of the
latched data. Referring back to the bit pattern for the letter a, we see that bit
7 is a low. IC13B will therefore have a low on its output and will inhibit all
the control and extra function gates from passing data to the control sole-
noids. IC6C inverts that low and applies a high to the second input of IC14A
and IC14B. The outputs of these gates are now high, allowing IC10, IC11A,

200

interface

and IC11B to pass data to the transistor switches energizing the appropriate
print solenoids.

In the case of printing a small a, the R2A, R5, and T1 (see Figure 1) sole-
noids are energized and mechanically latch. Note that the inputs of IC14A
and IC14B are wired in parallel so that the outputs of both gates always vary
in the same way. This was done to reduce the fan outload on these gates. The
character has not been printed yet, because we haven’t energized the enable
solenoid. The high output on IC6C is also applied to one input of IC14C.
Because it is connected to the negative of bit six of the data bus, the second
input of IC14C is also high. Pin 11 of IC5 is the NOT Q of bit six, and bit six
of our data is low (look at Program Listing 1 for the bit pattern for ana). The
output of IC14C and of IC14A are both high and are applied to the inputs of
IC13A. The high on the output of IC13A turns the 2N222 switching transistor
on, which energizes the Selectric enable solenoid and prints the character a.

The print solenoids are mechanically unlatched during this process and
are ready to be energized into a new bit pattern corresponding to the next
letter to be printed. Note that just prior to outputting the character, the shift
status on bit six of the data bus is examined to determine whether the print
ball is in the upper- or lowercase position. Port 13 is addressed again, and a
high pulse is output from pin 6 of IC3, which is inverted to a low and input
to IC1B. A NOT IN signal is applied to the second input of IC1B causing a
high at its output. This pulse is inverted in IC6A to a low which is applied to
the tri-state buffer and causes the signal condition on its input to be read into
bit six of the data bus and interpreted by software into shift status.

PRINTER TO INTERFACE BARRIER STRIFP

o oo oo o
Q * + o
zn o Z
(= (1<) < ©
ZRIBIILESSSSEZE
ko "’mg'>>>2;1> (276-20I4)xm
38333357 @ TRANSISTORS
B ™M m Mm m T~
o m
m
21 icia icls
741508 741574
ez 1c13 ico
741508 741508 555
ict 1c10 icit
74L502 74L508 741508
1c2 1c3 ic4 Ic5 ica
741585 741585 74L8175 74LSI75 555
oipswitc | [pipswiten] \c6 et
MSB LS8 741504 7418367

Figure 2. Parts layout

201

interface

IC15, a 741574 flip-flop, alternately energizes and de-energizes the shift
solenoid as each positive leading edge is clocked in at pin 3. If the Q output
of IC15 is high, the shift solenoid is energized, and the NOT Q output sends
a low back to the computer which is interpreted by software as an upper-
case, shifted condition. If shift status indicating an uppercase condition ex-
ists when a lowercase a is to be sent, the software will first output a high on
bit 6 of the data bus (decimal 64 or 01000000 binary). This causes the flip-
flop to flip and output a low to the shift solenoid creating a lowercase condi-
tion appropriate for the letter to be sent.

A high on bit 6 will produce a low on NOT 6 which keeps the enable
solenoid from being energized when it is applied to one input of IC14C. This
is necessary because outputting a shift command requires sending a decimal
64 (01000000 in binary). The five lowest significant bits represent the
character “-” (see Program Listing 1) which would be printed if the enable
solenoid was allowed to be energized during the shifting process. To send an
uppercase B, for instance, the software would look at shift status on data bit
six and output a decimal 64 if shift status had to be changed. Only the shift
solenoid would be energized because the low on NOT BIT 6, which is always
present while shifting, would keep the enable solenoid from being ener-
gized. After a short delay, the bit pattern (00100000) corresponding to B
would be output and passed through the print gates and to energize the
appropriate print solenoids. The enable solenoid would, of course, be
energized just as it was while printing the letter a.

Notice that the sixth bit of every character (see Program Listing 1) is used
only to tell the software whether an upper- or lowercase character is being
sent. The software checks the condition of the shift solenoid and adjusts it, if
necessary, to conform to what is required by the character being sent. The
interface, however, only responds to the lowest five significant bits of any
character. This means that an ¢ and an A produce the same print solenoid
pattern, even though the print ball is shifted to produce the correct case.

To send a control character, such as a space or carriage return, only the
control gate IC12 should be turned on. When any control function is sent,
bit seven (the most significant bit) is always high. This makes the second in-
put of IC13B high, causing the output of IC13B to be high. Under these con-
ditions, the control gates IC12 and IC11C and IC11D pass data. The high
on the output of IC13B is inverted by IC6C and applies a low on the second
inputs of IC14A and IC14B. The resulting low on their outputs inhibits data
from passing through IC10, IC11A, and IC11B, and no printing solenoids
are energized. The print enable solenoid isn’t energized either.

Conclusion

The parts layout suggested provides relatively short and direct signal
paths. However, construction of the interface can be accomplished in any of

202

interface

a number of ways. The parts layout or lead length is not critical. Several in-
terfaces were constructed by different people, and all worked well the very
first time.

The parts are all readily available at Radio Shack with the exception of
the 741.S85 which is a standard chip available at most electronics and com-
puter stores. I also found a very nice 40-pin header assembly (#1634-NI) that
fits well on a perforated circuit board and a matching female cable recep-
tacle (#1654-NI) from the catalog of INMAC Corporation of Norwood, NJ.

741502 IC1 276-1902
741.885 1C2, IC3, not available at Radio Shack

74LS175 IC4, IC5 276-1934
741504 1C6 276-1904
7418367 1C7 276-1835
555 IC8, 1C9 276-1723
74L.508 IC10, IC11, IC12, IC13, IC14 276-1908
741874 IC15 276-1919
2N2222 Switch transistors 276-2014
Transformer Power supply 273-1385
Rectifier Bridge type 276-1146
Regulator 5-volt regulator 216-1770
DIP switch To program port address 274-1301
50K potentiometers Adjust timer pulse width 271-219
1N4004 diode Needed only in shift circuit 276-1103
Barrier strips Counnect Selectric to interface 274-678

The IBM Selectric drive program is also presented in BASIC for those who
prefer to work with BASIC rather than with machine language (see Pro-
gram Listing 2). The program works just as well as the machine-language
version, and can be removed by typing NEW after it is run. All of the driver
code is safely stored above 32408 in protected memory.

Bibliography

Bickerton, Michael, M.D. “Selectric Hard Copy.” 80 Microcomputing,
September, 1980.

Morr, David. “Teleprinter Output for TRS-80.” Kilobaud Microcom-
puting, August, 1979.

203

7EQA
TE9A
7E9D
7EAQ
TEA2
TEAS
TEA7
TEAA

bDD212540
79

B7

285A
FEZ21
305F

FEQA
2810

bD360400
DD7EQS
32ECTF
3E82
CDSDT7F
CD5FTF
C9
3£84
CDS5D7F
CDSF7F
F5

00070
00080
00090

00100 ;
00102 ;

00104

00106 ;
00108

00110
00120
00130
00140
00150
00160
00170
00180
00180
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00610
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760

interface

Program Listing 1. Machine-language version

;IBM PRINT DRIVER PROGRAM 8/6/81 y Loamflma
; M LEIFER
: DEPARTMENT OF ELECTRICAL TECHNOLOGY
; ROCKLAND COMMUNITY COLLEGE
; 145 COLLEGE RD SUFFERN N.Y.10901
H
f REQUIREMENTS LEVEL 2 BASIC
B 16 K RAM
; PARALLEL INTERFACE
; TO SELECTRIC SOLENOIDS
; TO IMPLEMENT RESERVE MEM 32408
; LOAD PROGRAM...../32410
ORG TE9AH ;ORIGIN OF INIT PROGRAM
LOAD LD HL,LPRT sINITIALIZE DCB
LD {40264}, HL
LD A,72D ;SET CHAR COUNT TO 72
LD (402AH), A
L A,6D ;6 C.RETURNS IN A ROW
LD (4028H),A ;STOPS PRINTING (IX+3)
HALT ;GO TO BASIC
3 Jp 1A19H ;G0 TO BASIC
5 Jp 402DH ;G0 7O DOS
B JP 17232 ;60 TO ELECTRIC PENCIL
LPRT LD {SAVSTK), SP ;SAVE CALLING ROUTINES S.P,
PUSH AF ;SAVE ALL
PYSH BC sREGISTERS
PUSH DE H
PUSH HL H
Lo IX,4025H 3POINT IX TO START OF DCB
LD A,C ;1S THERE A
or A ;CHARACTER 7O BE PRINTED
JR 1,G0BACK 3IF NOT BACK TO CALLING PROG
o4 33D ;1S CHARACTER PRINT OR CONTROL
JR NC,ALPHAL ;GO TO CAPLOC PRINT ROUTINE
3 JR NC,ALPHAQ ;GO0 TO TYPEWRITER PRINT ROUTINE
cp 100 ;CHECK FOR LINE FEED
JR Z,LNFD ;IF YES OUTPUT A LINE FEED
cp 32 ;CHECK FOR SPACE CHARACTER
JR NZ,CHEKAR ;CHECK FOR CARRIAGE RETURN
JR SPCHR ;O0UTPUT A SPACE
CHEKAR CP 13D ;CHECK AGN FOR CARRIAGE RETURN
CALL Z,CRLF ;OUTPUT A CARRIAGE RETURN
CALL DELAY2 ;SPECIAL DELAY FOR CARRIAGE RETURN
JR GOBACK ;BACK TO CALLING PROGRAM
LNFD CALL LF ;OUTPUT A LINE FEED
JR GOBACK ;BACK TO CALLING PROGRAM
SPCHR LD A,129 ;OUTPUT A SPACE CODE
PUSH AF ;SAVE CHARACTER TO BE PRINTED
JR CONT ;ADJUST CHAR PER LINE COUNTER
CRLF INC (1X+4) s INCREMENT C.R. COUNTER
LD A, (1X+4) ;PUT VALUE IN A
cp (1X+3) ;COMPARE WITH VALUE IN DCB
JR NZ,CRLF1 ;IF NOT = DO A CARRIAGE RETURN
BREAK Lo A, (3801H) ;LOOK AT KEYBOARD
cp 8D ;HAS C BEEN PRESSED
JR NZ,BREAK SHAIT UNTIL IT HAS
Lo (1Xx+4),0 ;OTHERWISE RESET LINE COUNTER
CRLF1 LD A, (1X+5) sRESET CHAR PER LINE COUNTER
Lo {CHCNT), A ;TO INITIAL DCB VALUE
LD A, 130 ;LOAD A CARRIAGE RETURN INTO A
CALL PRINT SPRINT IT
CALL DELAY H
RET H
LF LD A,132 ;O0UTPUT A LINE FEED
CALL PRINT JPRINT T
CALL DELAY ;ONE CHARACTER DELAY NEEDED
DELAY2 PUSH AF 3NOW LONG DELAY FOR CARRIAGE RETURN

204

7F08B
7FOE
JFOF
7F10
7F11
7F13
7F14
7F15
7F16
1F17
7F18
JF19
7F1D

7F1E
7F20
7F24
1F27
7F28
7F29
7F2A
7F2C
7F2E

7F30
7F31
7F33

7F35
7F37
7E39
7F3C
7F3E
7F3F
7F41

7F43
7F45
7F47
7F48
TF4A
7F4B
7F4E
7F4F
7F51
7F54
7F57
7F58
7F5D

Q1FF8F

ED7BEATF
c9

D621
bDD360400
21907F

7F5F S

7F60
7F63

7F64
7F67
7F69
7F68
JE6C
7F60D
TF6F
7F70

7F90

7F90
7F91
7F92
7F93
7F94
7F95
7F96
7F97

00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
0107¢
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
0157¢

WAITL

GOBACK

ALPHAOD
JMINUS
IpLusS
ALPHAL

TEST1

SHIFT

TEST2

CHOUT

CONT

CONT!

PRINT
DELAY

DELAYY

3 TABLE
TABLE

interface

BC,BFFFH
BC

A,B

C
NZ,HAITL

$P, (SAVSTK)

970
NC,MINUS
65D
NC,PLUS
ALPHAL
20H
ALPHAL
A,20

33D
(Ix+4),0
HL, TABLE
AL

LA

A, (HL)
640
NC,TESTL
TEST2

AF
A, (13)
630

1,CHOUT
A,640
PRINT
CHOUT
AF

A, (13)
1270

Z,CHOUT
SHIFT

AF

3FH

AF

HL, CHCNT

HL
NZ,CONTL
CRLF
DELAY2

F

A
GOBACK
(13),A

AF
BC,09FFH
8C

3840H)

A, (

4
Z,GOBACK
A,B

C
NZ,DELAY1
AF

7F90H
23p
1270
85D
1260
1210
1170
125D
21D
1120

;TIMING BYTE FOR LONG CR DELAY
3STILL WAITING

3 FOR

;CARRIAGE

;TO RETURN

;DONE WAITING RESTORE A REGISTER
;BACK TO CALLING ROUTINE

JRESTORE ALL

JREGISTERS

»

;RESTORE CALLING PROGRAMS STACK
;0UT OF DRIVER TO CALLING PROGRAM

31

S CHARACTER UNSHIFTED

JMAKE LOWER CASE QUT OF UPPER CASE

31

S CHARACTER SHIFTED

JMAKE UPPER CASE OQUT OF LOWER CASE

3P

RINT CHARACTER AS IS

;ADJUST ASCI1 CHAR. TO START OF TABLY
SRESET CR COUNTER
;GET HL TO POINT 7O

3 S

TART OF TABLE PLUS

733 MINUS ASCIT VALUE
;GET SELECTRIC CHARACTER
sTEST IF SHIFT IS NECESSARY

;S
3N
35
N
31
i
;S
;S
)
35
3N
3T

EE IF SELECTRIC IS ALREADY SHIFTED
O SHIFT NECESSARY SEE IF
ELECTRIC IS SHIFTED

AVE CHARACTER IN STACK

NPUT SHIFT STATUS FROM PORT 13
X0111111) IF SEVENTH BITLOW
ELECTRIC ALREADY SHIFTED

HIFT NOT NEEDED OUTPUT CHAR.
END HIGH SEVENTH BIT TO

HIFT SELECTRIC

OW OQUTPUT CHARACTER

EST TO SEE IF SHIFTED

JALREADY

3 (

X1111111) SEVENTH BIT HIGH

sMEANS SELECTRIC NOT SHIFTED

;0

UTPUT CHAR AS IS

sTRIGGER FLIP FLOP AND QUTPUT CHAR.

3G

ET CHARACTER TO BE PRINTED

;MASK OUT 7,8 BIT NOT NEEDED

1
3P
3D
1

AVE CHAR BACK ON STACK

OINT AT CHAR COUNTER

EC SAME

F ZERO DO A CARRIAGE RETURN

;AND LINE FEED

3L

ONG DELAY AFTER CR

3PRINT_CHARACTER
3;BACK TO CALLING PROGRAM

;0

UTPUT CHAR TO PORT 13

3SAVE A REGISTER ON STACK

3
3D
;0

IMING BYTE FOR 14 CHAR. PER SECOND
ELAY FOR MECHANICS
F SELECTRIC TO SETTLE

;LO0K AT KEYBOARD FOR
;BREAK KEY DEPRESS
;STOP PRINTING IF BREAK KEY PRESSED

s
W
3R
]

;S

TILL

AITING

ESTORE A REGISTER FROM STACK
ACK TO CALLING PROGRAM

TART OF TABLE

FOR ASCI1 BALL
FOR STANDARD BALL

Program continued

205

7F98
7F99
TF9A
7F98
7F9C
7F9D
7F9E
TF9F
7FAD
TFA1
7FA2
7FA3
TFA4
7FAS
TFA6
TFA7
TFA8
7FA9
TFAA

7FAB
7FAC

7FAD
JFAE
TFAF
7FBO
7FB1
7£82
7FB3
7FB4

TFEZ
7FE3

01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02180
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370

interface

105D
102D

103D
110D

[

DN B W N O

H

FOR ASCII BALL
FOR STANDARD BALL

[

FOR ASCIL BALL
;G FOR STANDARD BALL
]

NS X E<CCANROTOZIrRU—IOMACOTR S

FOR ASCII BALL
;£ FOR STANDARD BALL

JVERTICAL LINE IN ASCHI

NV OVOZIFrXRLW—IOMMOODI

206

TFE4
TFES
1FEG
1FE7
1FE8
TFEQ
0002
0002

TE9A

02380
02390
02400
02410
02420
02430
02440 SAVSTK
02450 CHCNT
02460
02470

00000 TOTAL ERRORS

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFS
DEFS

END

interface

460
300
16D
47D

550

TEQAH

[

;STORAGE FOR CALLING RQUTINE
;CURRENT CHARACTER ON LINE
;BEING PRINTED

10
20
21
22
23
25
30
490
50
60
70
80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

FOR 1
READ
NEXT

FOR J
READ
NEXT

FOR I
POKE
NEXT

FOR 4
POKE
NEXT

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

END

Host et |G OO)

d
d

Program Listing 2. BASIC version

IBM PRINT DRIVER PRO
8/6/8

M LEIFER

GRAM
1

DEPARTMENT OF ELECTRICAL TECHNOLOGY
ROCKLAND COMMUNITY COLLEGE
145 COLLEGE RD SUFFERN N.Y. 10901

TO IMPLEMENT THIS PROGRAM
RESERVE MEM 32408 THEN LOAD AND RUN THIS PROGRAM
COMPUTER WILL RETURN WITH READY
AND YOU ARE READY TO LLIST AND LPRINT
DIM A(500),8(100)
POKE 16422,171:
POKE 16423,126
POKE 16424,6:
POKE 16426,72

32427 70 32624

JA(L - 32426)

32656 TO 32745

,B(J - 32655)

237,115,234,127,245,197,213,229,221,33,37,64,121
183,40,90,254,33,48,95,254,10,40,16,254,32,32,2
24,15,254,13,204,221,126,205,10,127,24,66,205,2,127
24,61,62,129,245,24,110,221,52,4,221,126,4,221,190
3,32,11,58,1,56,254,8,32,249,221,54,4,0,221
126,5,50,236,127,62,130,205,93,127,205,956,127,201,62
132,205,93,127,205,95,127,245,1,255,143,11,120,177,32
251,241,201,225,209,193,241,237,123,234,127,201,214,33,221
54,4,0,33,144,127,133,111,126,254,64,48,2,24,14
245,219,13,254,63,40,16,62,64,205,93,127,24,9,245
219,13,254,127,40,2,24,240,241,230,63,245,33,236,127
53,32,6,205,221,126,205,10,127,241,205,93,127,24,184
211,13,245,1,255,9,11,58,64,56,254,4,40,170,120
177,32,244,241,201
127,85,126,121,117,125,21,112,113,124,70,12,0,22,9,49
63,54,62,57,53,52,61,60,48,77,13,41,6,15,73
118,92,96,108,109,101,78,79,97,84,71,100,105,95,102,89
69,68,93,81,103,110,94,80,111,65,119,101,128
65,66,67,118,28,32,44,45,37,14,15,33,20,7,36,41,31,38
25,5,4,29,17,39,46,30,16,47,1,55

207

TUTORIAL

On Towards Better Sorts of Things
Randormm Distribution Graphics
Using LMOFFSET

209

TUTORIAL

On Towards Better Sorts of Things

by William R. Patterson

| Yhe last time you sorted your mailing list, you may have sat as the com-
& puter did its silent thing and wondered how so many nanoseconds
could be used for so simple a task. If your mailing list program’s sort routine
uses an exchange or bubble sort, that might be the reason it takes as long as it
does. This is not to disparage the programmer, as there is little in microcom-
puter literature to tell him or her that there is a better way. (For a discussion
in a slightly different direction, see How to Profit from Your Personal Com-
puter, by T. G. Lewis, published by Hayden Book Company, Inc., in 1978.)

For those of you who wonder what an exchange sort is, or what a bubble
sort is, a short digression is in order. The exchange sort requires the com-
puter to start at the beginning of the list of items, and, for each item, ex-
amine all of the items ahead of it and exchange items when they are out of
order. See lines 40000 to 40070 of the Program Listing for an example of an
exchange sort program. The bubble sort is slightly different; it reviews the
list of items as many times as there are items and swaps pairs of contiguous
itemns that are out of order. See lines 41000 to 41070 of the Program Listing
for an example of a bubble sort program. Note that N represents the number
of items, Z represents the items, and IX is a set of subscripts to Z which the
sort routines rearrange.

You may have noticed that the computer must make N times N divided by
2 comparisons to sort things using either of the above methods, which can
take a long time for a large number of items. The tree sort I am about to
describe will generally take much less time (as long as there are more than
ten items and they are very much out of order). In mathematical terms, the
number of comparisons made by the tree sort will approximate N times the
logarithm of N base 2 (N(log; N)).

The reason for the reduced number of comparisons (and hence, reduced
time requirements) can be seen if you observe what happens when the sort
uses a logical tree of numbers (which will be connected logically inside the
computer by means of subscripts, arrays RL, I.L, and UL). It sorts the
numbers4, 2,5, 3, 1, and 6. Take the first number, 4, and place it at the bot-

tom (or “root node” to tree lovers) of the tree:
4

For the next number, 2, as it is less than 4, draw a branch up and to the left,
and place the 2 there as though the tree had grown a piece of fruit:

2

e

211

tutorial

Since 5 is greater than 4, draw a branch up and to the right this time and put
the 5 at the end of that branch:

2\4 /5

Three is less than 4 and greater than 2, so place it above and to the right of
the 2:

3
2 é 5
N

One is less than 4 and 2, so it is placed all the way to the left:
NS
2 5
%
The last number is 6. It is greater than 4 and 5, so place it all the way to the
right:
N ’ /

%
The tree is grown. What you must do now is go over the tree, find the least
values, and take them off one by one:

N /7 SN A N e
2 5
N, N\ N,
® N © *
NSNS NS
N,/ N\ \
@ 4 @ e @ ./
You have now picked the tree clean of sorted items, which came off in order:
1,2,3,4,5, and 6.
The accompanying BASIC program sorts 100 numbers in less than a
minute. The exchange and bubble sorts take about two-and-a-half minutes.
This program gives you a choice of techniques. The tree sort itself is kept

above line 50000 so you will not have to retype it to use it. Just delete the
calling program and enter your own application program to call it.

212

Ut =

19

15
20

25

26

27

38

185
110
112
115
117
120
140

158
155
160
200
205

218
220
239
240
250
309
320
339
335
340
350
360
365
370

tutorial

Program Listing. On towards better sorts of things

GOSUB 1400
GOSUB 509090
N =g
BS = "v:
INPUT BS
RANDOM
IF B$ = "END" OR B$ = "/*"
THEN
140
IF LEFTS (B$,3) = "RAN"
THEN
200
IF NOT F2
THEN
F2 = - 1:

DIM Z(588),1IX(500)
IF LEFTS$(B$,3) = "ALP"

THEN

AL = ~ 1l:
GOSUB 300:
GOTO 198 :
ELSE

AL = @

AA = ASC(LEFT$(BS,1)):
IF AA < ASC("8") OR AA > ASC{"8")
THEN
GOSUB 500:
GOTO 16
N=DN+ 1
Z(N) = VAL(BS)
GOTO 18
FOR I = 1 TO N:
IX(I) = Xt
NEXT I

PRINT "BEGINNING SORT PROCESSING USING ";T$(Q)

ON @ GOSUB 48800 ,4100¢,50000
PRINT "SORT FINISHED"
GOSUB 120
END
FOR I =1 TO N
IF AL
THEN
PRINT Z(IX(I)) :
ELSE
PRINT Z(IX(I));
NEXT I
RETURN
END
INPUT "HOW MANY RANDOM NUMBERS":N
IF NOT F2
THEN
F2 = - 1 ¢
DIM 2 (N),IX(N)
INPUT "BETWEEN 1 AND WHAT";N1
FOR I =1 TO N
Z2(X) RND(N1)
NEXT
GOTO 100
PRINT "ENTER ALPHABETIC DATA"
DEFSTR 2
DIM 2(500)
1=
I=1I4+1
INPUT %(I)
IF LEPTS(Z2(I),2) < > "/*" GOTO 348
N=1I-1
RETURN

~

213

Program continued

500

519
1p00
1010
1020
1830
1040
1658

1068

1878
1080
1698

1695

1100

1165
1166
1110
1120
1138

1132
1158
1168

1165
1178
1186

1190
1200

1210
1220
2000

2010
2020
2038
2040
2858
20649
2078
2088
2090
2189
2110
2120
21380
2149
3000
3010

3820
3630

tutorial

PRINT "ONLY ALPHABETICS ALLOWED ARE 'END', '/*', 'RAN', 'ALP' IN
THE FIRST ENTRY, TRY AGAIN,
RETURN
CLS
PRINT "THIS PROGRAM DEMONSTRATES AN 'IN MEMORY' SORT TECHNIQUE
PRINT "KNOWN AS A ‘BINARY TREE SORT' (BECAUSE OF AN INTERNAL
PRINT "DATA STRUCTURE DESCRIBED IN THE ARTICLE) WHICH HAS"
PRINT "CONSIDERABLE SPEED EFFICIENCY OVER THE CONVENTIONAL"
PRINT "EXCHANGE OR BUBBLE SORT, IRONICALLY, AS LONG AS THE ELEME
NTS ¢
PRINT "BEING SORTED ARE NOT ALREADY IN ORDER, AND AS LONG AS THE
RE™
FRINT "ARE MORE THAT ABOUT 16 ELEMENTS IN ALL."
PRINT "7
INPUT "WOULD YOU LIKE TO KNOW MORE('Y','N', OR 'GO' TO GO PAST P
ROMPTS) ";BS
IF B$ = "GO"

THEN

Q= 3:

RETURN
IF (LEFT$(BS,1)) = "y"

THEN

GOSUB 2080
PRINT "
GOSUB 1158
PRINT "WOULD YOU LIKE TO HAVE DIRECTIONS FOR USING THE"
INPUT "EXAMPLE CALLING PROGRAM™;B$
IF (LEFT$(BS,1)) = "Y"

THEN

GOSUB 3009
GOTO 1170
INPUT "WOULD YOU PREFER A CHOICE OF OTHER SORT TECHNIQUES";BS
IF (LEFTS$(BS,1l)) = "Y"

THEN

GOSUB 4008 :

ELSE

Q=3
RETURN
INPUT " ARE YOU READY TO USE THE SORT";BS$
IF (LEFT$(BS$,1l)) = "Y"

THEN

RETURN
INPUT "DO YOU NEED TO LOOK AT THE DIRECTIONS AGAIN";BS
IF { LEFTS$(BS$,1)) = "y"

THEN

GOSUB 3000:

RETURN
PRINT "THEN I WILL TURN CONTROL BACK TO YOU."
END
CLS :
PRINT "THE TREE SORT ROUTINE IS LOCATED ABOVE LOCATION 50008"
PRINT "SO THAT YOU CAN CODE YOUR OWN ROUTINES TO USE IT AFTER"
PRINT "DELETING THE EXAMPLE CALLING PROGRAM. SPECIAL REMARKS"
PRINT "ARE INCLUDED TO (1) LET YOU KNOW HOW TO USE IT FROM YOUR"
PRINT "OWN PROGRAMS AND TO (2) LET YOU KNOW WHAT IS GOING ON AS
PRINT "IT WORKS."
PRINT ""
PRINT "THIS IS AN ORIGINAL ALGORITHM BY WILLIAM R. PATTERSON
PRINT 7 8 POPLAR TERRACE
PRINT " SOMERDALE, N.J. #8883
PRINT "ORIGINALLY CREATED IN PARTIAL FULFILLMENT OF THE
PRINT "REQUIREMENTS OF A MASTER OF BUSINESS ADMINISTRATION
PRINT "DEGREE FROM THE JAMES J. NANCE COLLEGE OF BUSINESS
PRINT "ADMINISTRATION OF THE CLEVELAND STATE UNIVERSITY.
RETURN

CLS

PRINT " THE EXAMPLE CALLING PROGRAM WILL LET YOQU USE THE SOR
Tll

PRINT "IN ANY OF THE FOLLOWING THREE WAYS:"

PRINT " 1. TO SORT KEYED-IN NUMERIC DATA."

214

3048
3058
3060
3080

36960
3148
3119
3128
3140

3158
3179
4000
40140
4028
40308
4040
4050
4060
4079
4p89
4098

41409

41190
5000
5819
50208
5638
40008
40810
40028
400349

400490
40058
40068

40070

40080
41808
418190
41829
41839

41049
41050
4108608

410679

41080
50000

tutorial

PRINT " 2. TO SORT KEYED-IN ALPHANUMERIC DATA,"

PRINT * 3. TO GENERATE AS MUCH RANDOM NUMERIC DATA
PRINT * AS YOU WANT AND THEN TO SORT IT."

PRI§T " IF YOU WANT TO ENTER NUMERIC DATA, SIMPLY ENTER IT W
HEN

PRINT "PROMPTED AND ENTER A '/*' OR AN 'END' WHEN DONE TO TELL T

HE
PRINT "COMPUTER TO START SORTING. IF YOU WANT TO ENTER ALPHANUM
ERIC
PRINT "DATA, ENTER 'ALP' WHEN PROMPTED, THEN ENTER THE DATA IN T
HE"
PRINT "SAME MANNER AS DESCRIBED FOR NUMERIC DATA (BUT USE '/*' p
O STARTTHE SORT)."
PRINT " IF YOU WANT THE NUMERIC DATA GENERATED RANDOMLY, ENT
ER"
PRINT "'RAN', THEN FOLLOW THE PROMPTS FOR HOW MUCH AND HOW BIG."
RETURN
CLS
PRINT “"YOU WILL BE ALLOWED TO CHOOSE THE SORT TECHNIQUE"
PRINT "FROM AMONG THE FOLLOWING:"

nn

PRINT

PRINT " 1. EXCHANGE SORT"
PRINT " 2. BUBBLE SORT"
PRINT " 3. TREE SORT"
PRINT "%

PRINT ""

INPUT "PLEASE ENTER THE NUMBER OF THE TECHNIQUE YOU WANT TO USE"
iQ

’

IFQ <10RQ >3

THEN
PRINT "IT MUST BE BETWEEN 1 AND 3,":
GOTO 4099

RETURN

T$(1l) = "EXCHANGE SORT"

T$(2) = "BUBBLE SORT"

T$(3) = "TREE SORT"

RETURN

REM THIS IS THE EXCHANGE SORT
REM IT WILL HAVE THE SAME TIMING AS THE BUBBLE SORT
REM AND WILL USE NO MORE VARIABLES THAT THE TREE SORT
IFN<C=1
THEN
RETURN
FOR I = 2 TO N
FORJ =1 T0 I
IF Z(IX(1)) < Z2(IX(J))
THEN

RETURN
REM THIS IS THE BUBBLE SORT
REM IT WILYL HAVE THE SAME TIMING AS THE EXCHANGE SORT
REM AND WILL USE NO MORE VARIABLES THAN THE TREE SORT
IFN <=1
THEN
RETURN
FOR I =1 TO N
FORJ =1 TON ~ I
IF Z(IX(J)) > Z2(IX(J + 1))
THEN
K = IX(J):
IX(J) = IX(J + 1):
IX(J + 1) = K
NEXT :
NEXT
RETURN ,
REM Program continued

215

50010
560620
50830
50040
50841
50042
50043
50044
50045
58046
500847
50848
58049
50058
50651
50052
58053
50854
500855
58056
50857
58058
56859
50060
50061
50062
50064

50865

500708
50088

50090
501008
50118
501208

50130
50149
581548
50166
56170
50186

501908
50208
50210
50220

50230
56240

58258
56260
562780

50288
50290
50300

tutorial

REM Z IS THE VECTOR TO BE SORTED
REM IX IS THE VECTOR OF SUBSCRIPTS TO Z
REM N IS THE NUMBER OF ELEMENTS
REM I,KK,UL,RL,LL,J,K,LK,EL,ER,KU ARE USED
REM Z AND IX MUST BE DIMENSIONED THE SAME
REM
REM THIS SUBROUTINE SORTS AN INTEGER VECTOR FROM
REM THE LOWEST TO THE HIGHEST IN ASCENDING ORDER
REM BY MANIPULATING A VECTOR OF SUBSCRIPTS TO THE
REM VECTOR: THIS MANIPULATION IS ACCOMPLISHED BY
REM MEANS OF A HIGHLY EFFICIENT MECHANISM KNOWN AS
REM A TREE-STRUCTURE. THREE BUFFER VECTORS ARE
REM REQUIRED TO HOLD RIGHT AND LEFT BRANCH LINKS
REM AS WELL AS BACK LINKS (RL, LL, UL). THE "TREE"
REM IS "GROWN" BY AN ARBITRARY ASSIGNMENT OF THE
REM FIRST INTEGER INDICATED BY THE VECTOR OF SUB-
REM SCRIPTS TO THE "TRUNK" AND THE SUBSEQUENT
REM ASSIGNMENT OF SUBSEQUENT NUMBERS TO RIGHT OR
REM LEFT BRANCHES DEPENDING ON WHETHER THE RESPEC-
REM TIVE SUBSEQUENT NUMBER IS EITHER LESS THAN (OR
REM EQUAL TO) OR GREATER THAN THE PRECEEDING
REM NUMBER, AFTER THE GROWING PROCESS IS COMPLETED
REM THE "FRUIT"™ MAY BE PICKED FROM THE TREE BY
REM SIMPLY RESPECTING THE RULES UNDER WHICH THE
REM TREE WAS GROWN.
REM
IFP N =1
THEN
RETURN
IF NOT Fl
THEN
Fl = - 1 :
DIM RL(N) ,LL{N) ,UL(N}
REM INITIALIZE COUNTER AND TREE TRUNK
I=1:
KK = IX(I):
UL(KK) = B:
RL(KK) = 8:
LL(KK) = 8
REM INCREMENT COUNTER
I =1I+1
REM END OF VECTOR? TREE WILL BE FULLY GROWN
IF I >N
THEN
58398
REM ESTABLISH SUBSCRIPT OF NEXT NUMBER
J = IX(I)
REM OBTAIN TREE TRUNK
K = KK
REM THIS IS THE SORT MECHANISM
IF (Z(K) < = 2(J))
THEN
50319
REM WE HAVE A LOWER NUMBER
LK = LL(K)
REM IS THERE A LEFT LINK?
IF (LK = 8}
THEN
50260
REM *YES* MOVE TO THE LEFT
K = LK:
GOTO 50188
REM *NO* LINK THIS NUMBER TO THE LEFT
LL(K) = J
UL(J) = K:
LL(J) = B:
RL(J) = @
REM GO GET NEXT NUMBER
GOTO 50188
REM WE HAVE A HIGHER NUMBER

216

tutorial

50318 LK = RL(K)

58320 REM IS THERE A RIGHT LINK
50330 IF LK = @
THEN
50378

50349 REM *YES* MOVE TO THE RIGHT
50350 K = LK:

GOTO 58188
50360 REM *NO* LINK THIS NUMBER TO THE RIGHT
50378 RL(K) = J:

GOTO 58279
50389 REM TREE IS FULLY GROWN AND THE FRUIT 1S READY TO BEPICKED

~= START CLIMBING AT THE TRUNK
58398 K = KK

50400 REM RESET VECTOR POSITION COUNTER
50418 1 = ¢
50429 REM LOOK TO THE LEPFT
50430 EL = LL(K):

IF BL < > @

THEN

50576

50440 REM *NO BRANCH* LOOK TO THE RIGHT

5845¢ ER = RL(K):
IF ER < > @

THEN
50599
58468 REM *NO BRANCH* PUT FRUIT IN HOPPER
50476 1 = I + 1:
IX(I) = K
50480 REM CLIMB DOWN ONE BRANCH
50490 KU = UL(K)
585008 REM REACH BOTTOM? IF SO: QUITTING TIME
58516 IF KU = @ RETURN
58528 REM DID WE COME DOWN FROM THE RIGHT OR THE LEFT?
56530 IF LL(KU) = K
THEN
50614
58540 REM *RIGHT* CONTINUE CLIMBING DOWN

58558 K = KU:
GOTO 58490

50560 REM CLIMB LEFT
58578 K = EL:

GOTO 59428
58580 REM PUT FRUIT IN HOPPER AND CLIMB RIGHT.
50590 I = I + 1:

IX(I) = K:

K = ER:

GOTO 58420
50600 REM SAW OFF LEFT BRANCH AND CLIMB DOWN
56618 LL{(KU) = @:

K = KU:

GOTO 58420

217

TUTORIAL

Random Distribution Graphics

by Todd L. Carpenter

t the heart of most game programs is a statement of chance, the RAN-
L JADOM statement. Having the ability to look at the shape of the RAN-
DOM distribution can give you the power of shaping the distribution to suit
your purposes.

Graphics displays on the TRS-80 certainly have their limitations, but
there is one type of display the TRS-80 handles rather nicely—the bar
graph. If you are interested in the statement Y = RND(X), it is important for
you to understand the distribution characteristics of Y over its range (1 to X).
A bar graph can display this with a touch of elegance.

Is RANDOM Really Random?

After several weeks of playing with the custom Star Trek program I
wrote, I noticed that the majority of the Klingons were always located near
the center of the galaxy. Rarely did I ever find a Klingon in any of the
perimeter quadrants. I thought I had used a simple Y = RND(X) statement
in distributing the Klingons, but it seemed that either my RANDOM state-
ment was not truly random or the Klingons had succeeded in outsmarting
Captain Carpenter. I chose to pursue the former suspicion because, after all,
the Klingons are the bad guys, and they could not outsmart me—could they?

I set out to write a simple program that would show me once and for all
whether or not the RANDOM statement really gave me a uniform random
distribution. The purpose of the program was to display in a single picture
the distribution of the RNID(X) statement. The ability to see the RANDOM
distribution would enable me to determine immediately the actual ran-
domness of the statement.

I was prepared to make a shattering discovery that Radio Shack had
goofed in their design of the RND(X) statement. But why had no one else dis-
covered this biased RANDOM statement? Perhaps, I thought, the bias was
slight, and T had discovered it only because my program used the RANDOM
statement over 4,000 times in distributing the elements of the galaxy. As you
will see, it was Captain Carpenter who had goofed, not Radio Shack.

Random Shaping

After a closer examination of my Star Trek Program, I discovered that I
had inadvertently used a combination of RANDOM statements. How could

218

tutorial

I test the distribution of this combination? After a few generalizations in my
program, I was ready to run an analysis on any combination of RANDOM
statements that could start with Y=. I proceeded to test my Klingon
distribution. Sure enough, they were doing just what I had been telling them
to do, concentrating in the middle. In separate parts of the program, I had
mistakenly used what amounted to the sum of two RANDOM statements
and gotten a dice-like distribution. (See Figure 1.) As all craps players should
know, when rolling two dice, more 7s turn up than 2s or 12s. In fact, six
times as many 7s turn up.

The advantage of seeing any RANDOM distribution before entering it is
that the shape of a distribution can be selected to fit an application. Once
you know how to generate some simple shapes, the next steps seem easier.

PROBABILITY

A4
12 T
t

123 4 5 6 7 8 9 10 11 12
Figure 1. Probability curve when rolling two dice

Program Inputs

The program (see Program Listing) starts by asking for the value of X in
the RND(X) statement. It can be any number greater than zero and pre-
ferably an integer (although the machine will accept a decimal value and
find the integer value itself). For the case of the simplest RANDOM state-
ment, Y = RND(X), the function Y is uniformly distributed from 1 to X. This
means that for a single trial, the probability is the same for getting any in-
teger value from 1 to X. For example, X = 6 is analogous to the case of rolling
one die. With six faces, the probability that any particular face comes up is
1/6. See Figure 2.

219

tutorial

PROBABILITY

-

o
3
P
-
.
i
b
-

1 2 3 4 5 6
Figure 2. Probability curve when rolling one die

Next, input the number of trials to be made. For our example, this would
be the number of rolls of the single die. The greater the number of trials per-
formed the more the graph will be delineated. The number of trials made
must be large compared to the entered value of X. As a rule of thumb, I
make the number of trials at least 20 times the maximum value that Y can
be. In this case, make Y equal to X or 6.

Photo 1. Graph of Y = RND(50), 1000 trials (Photo by Yuan Chang Lo)

220

tutorial

You are now ready to take a peek at Photo 1 which shows a graph of the
function, Y =RND(50). There were 1,000 trials, the minimum rule of
thumb value, used to determine this graph. (50 values times 20 trial out-
comes per value, equals 1,000 total trials.) As you can see, it yields quite an
uneven distribution.

Photo 2. Graph of Y = RND(50), 10000 trials (Photo by Yuan Chang Lo)

I chose to use the number of trial outcomes for the vertical axis rather than
probability in this case. But, either way, the shape of the graph is the same.

Now consider Photo 2. I ran the same distribution, but this time with
10,000 trials. As you would expect, the average number of values per “bin” is
now 10 times what it was in the previous example, or 200. I have coined the
word bin to refer to each bar of the graph. A bar getting larger can be
thought of as a bin being filled.

Changing the Distribution

There are two important statements in the program. They are the RAN-
DOM statement and the MAX VALUE statement. The RANDOM state-
ment is at line 810 and contains the expression which determines the shape of
the distribution. This statement must be edited manually whenever a new
expression is desired. The MAX VALUE statement is at line 730 and defines

221

tutorial

the variable M which must be set equal to the largest possible value Y can be
in the RANDOM statement. In this listing shown, Y = RND(X) + RND(X),
so M= X + X. For instance, if line 810 read Y = X — RND(X), line 730 would
read M =X - 1. (When a term is subtracted, use its minimum value.)

Photo 3 shows the distribution of the equation in the Program Listing. I
chose to enter X =6 so I would be able to extend the dice rolling analogy.
This time I rolled two dice and got a distribution such that the most likely
number to come up, 7, was in the center. This is essentially how my
Klingons were distributing themselves.

Photo 3. Graph of Y = RND(X) + RND(X), 20000 trials (Photo by Yuan Chang Lo)

Now, we move on to some more complicated distributions. Photo 4 shows
a graph of the distribution, Y = X + RND(RND(X)) ~ RND(RND(X)), where
M =X+ X~ 1. This was run with 30,000 trials, and quite a smooth graph
was obtained.

Photo 5 shows a normal distribution for those of you interested in
statistics. It can be approximated by using a large sum of simple RND(X)
statements. I used six terms here.

As more and more sophisticated functions are used, a definite limitation
crops up. A simple statement like Y = RND(X) takes about six times as long to
execute as a FOR-NEXT loop pair, and the statement Y = RND(RND(X))

222

tutorial

1

Photo 4. Graph of Y = X + RND(RND(X)) - RND(RND(X)), 30000 trials (Photo by Yuan Chang
Lo)

ph of noral distribution (oto b Yuar

223

tutorial

takes about 10 times as long. In other words, this program can take quite a
long time to run through 30,000 trials. With that in mind, it's wise to start
testing a new function with the minimum rule of thumb number of trials. If
Y = RND(RND(X)*2), M =X*2, and you enter X=>50, then you should
enter the number of trials as 2,000 (20 times M). This will not produce a very
smooth graph, but will take only about 1/15th as much time to run. Usually
this is about two to three minutes.

Auto Scaling

This brings up one last significant feature of the program. You have seen
how the vertical axis scales itself depending on the maximum number of trial
outcomes per bin. The same thing applies to the horizontal axis. You are not
limited to a maximum value of 50. It can be 51 or 135 or 1,000 or whatever
you like, If the graph shape is all that is desired, this can generally be ac-
complished with 50 as a maximum value.

If you decide that some larger number is more convenient, then the axis
will be automatically scaled. There will never be more than 50 bins in which
to accumulate trial points, but if the maximum value is 64, for example, the
axis will be scaled down by a factor of two. This makes each bin a two-value,
rather than single-value bin.

Now you have an elegantly simple program that lets you see what the
RANDOM statement can do. Thanks to this program, my Klingons have
been controlled, the galaxy has been saved, and Starfleet Command will not
have to give me a desk job.

224

180
190
300
310

320
330
340

400
410
420
430
440

450
500
510

520
530
540
560

780
790
800

805

810
820

830
840

850
860

tutorial

Program Listing

"\ %% RANDOM DISTRIBUTION GRAPHICS PROGRAM **

! * & * %

%+ TODD L. CARPENTER .
i xx 1p/21/81 *%
S * * * *
DEFINT A - Z

DIM A(50)

CLS

PRINT

PRINT “INPUT X FOR THE RND(X) STATEMENT."
PRINT *IT MUST BE A POSITIVE NUMBER:";
PRINT * 0 <= RND(X) <= X"

PRINT @ 330," ";:

INPUT X

cLs

PRINT "INPUT THE DESIRED NUMBER OF TRIALS."
PRINT "THE GREATER THE NUMBER OF TRIALS,
PRINT "THE SMOOTHER THE GRAPH,"

PRINT @ 330," ";:

INPUT C

PRINT @ 348,"THINKING";

© %% CALCULATE RND(X) VALUES **

© %% MAX VALUE STATEMENT ok
i AR kh KA KRR RKKR KKK A KRR K * kK Kok &k ok
M= X+ X
i FE TR AEE R EE R RS SR B A REREREEEE SRS
L=H
IF M < 50

THEN

M = 50
IF M > 50

THEN

M o= (INT((M - 1) / 50) + 1) * &0
N =M/ 50
FOR I = 1 TO €

' k% RND{X) STATEMENT *x
; Kk kR RK KK RRA KRR AR AR KKK KK
Y = RND(X) + RND{X)

Kk AKKKRRKKR AKX AR KA ERARK

B=y* 50 /M
I

FB<O

THEN

870
A(B) = A(B) +1
IF K ¢ A(B)
THEN

Program continued

225

tutorial

K = A(B)
870 NEXT I
1000
'o*% PLOT X-AXIS **
1010 CLS
1020 J = K / 32 + 1
1030 FOR I = 16 T0 123
1040 SET (1,38)
1050 IF INT(I / 10) =1 / 10
THEN
SET (1,39)

1060 NEXT 1
1100

%% LABEL X-AXIS **
1110 FOR I = 0 TO 10
1120 PRINT @ 905 + 5 * [,5 * [* N;
1130 NEXT I
1200 :

bk % LABEL Y-AXIS x¥
1210 FOR T = 0 70 &
1220 PRINT @ 770 - 1 * 128,J + J * 6 * I;
1230 NEXT I
1300 :

! *% PLOT Y-AXIS **
1310 FOR I = 6 T0 38
1320 IF INT{(I - 2) / 6) = (I -2)Y /6

THEN
I - 1)

(
1330 SET (16
7

1340 NEXT I
1400 :
' ** HEADING AND LABELS **
1410 PRINT @ 29, "RANDOM DISTRIBUTION"
1420 PRINT € 83,"X=";X;" "3C3"TRIALS MAX VALUE=";L;
1430 PRINT @ 64,"# OF TRIALS";
1440 PRINT @ 976,"EACH BAR IS A";N;"VALUE RND(X) BIN";
2000
‘%% PLOT GRAPH **

2010 FOR I = 0 TO 50
2020 IF A(I) < J
THEN
2060

2030 FOR H = 1 TO A(I)
2040 SET (20 + 2 * I,
2050 NEXT H
2060 NEXT I
5000 PRINT @ 960,"";
6000 INPUT I
7000 GOTO 300
9999 :

t * Kk END * Kk

/J
38 - H)

226

TUTORIAL

Using LMOFFSET

by John T. Blair and Peter B. Hall

hose readers who are getting started with their TRS-80s may not realize

that machine language is the only language the computer understands.
BASIC programs are high-level (English-like) language programs that need
to be interpreted into machine language for the computer. BASIC programs
are easy to understand and easy to write or modify. More efficient programs
are written in machine language so an interpreter is not needed. They re-
quire less memory and execute faster.

Although a BASIC program is easy to transfer from tape to disk using con-
ventional BASIC commands (CLOAD from tape and SAVE to disk), a utili-
ty program must be specially written to perform that function for machine-
language programs. LMOFFSET, one of the utilities supplied by Apparat
with their NEWDOS + disk operating system, stands for Load Module
OFFSET. Its simplest usage is to move a machine-language program from
tape to disk. It can also be used to copy a program from disk to disk. It can-
not be used for BASIC programs.

Figure 1 shows a screen display after a typical use of LMOFFSET to load
a program from tape, reassign the area of memory for it to occupy, and then
save it to disk.

When LMOFFSET is first executed, it displays the sign-on message:

APPARAT LOAD MODULE OFFSET PROGRAM, VERSION 1.1
SOURCE FROM DISK OR TAPE? REPLY “D” or “T".

Assume you have a machine-language program on tape which you want to
move over to your newly acquired disk. Two examples of this are SYSTEM
games tapes and the tape version of Electric Pencil. (Keep in mind that just
because the program has been moved to disk, it does not allow any disk
LOADs or SAVEs unless the program originally had that option. For the
Electric Pencil, you still have to save files to tape. The only thing you gain is
the decrease in loading time of the program itself.)

InFigure 1, a T (for tape) is entered. LMOFFSET then loads the program
from tape into a buffer area set aside in memory above LMOFFSET. Im-
mediately after the T is entered, an asterisk appears in the upper right corner
of the CRT. After the A5 sync byte (the code that the computer uses to deter-
mine the beginning of the program on tape) is found, two more asterisks ap-
pear. These blink unless the program contains an error. The error codes are
as follows:

227

tutorial

@ C = Bad checksum
®P = Leading extraneous bytes
@1 = Imbedded extraneous bytes

When the tape finishes loading, the designated memory area that it occupies
during execution is displayed on the third line. This memory area may or
may not be the same as that reserved for parts of the DOS. Next, LMOFF-
SET displays one of three possibilities.
1) If the program loads from 7000H (the H designates that the address is in
hexadecimal) or higher, the screen displays:

MODULE LOADS TO XXXX-XXXX

ENTRY POINT = YYYY
NEW LOAD BASE ADDRESS (HEX)?

Since this program does not conflict with DOS, all you have to do is press
ENTER and continue by specifying the destination filespec as described
later.
2) If the program loads from 4000-51FFH, the screen displays:

MODULE LOADS TO XXXX-XXXX

MODULE LOAD OVERLAPS DOS RAM 4000-51FF

MODULE LOAD WILL OVERLAP “CMD” PROGRAM AREA (5200-6FFF)

ENTRY POINT = YYYY
NEW LOAD BASE ADDRESS (HEX)?

In this case, if any or all of the new program loads into the DOS overlay
area, the new program and DOS collide and cause a reboot. You have to
specify a new load base address.
3) If the program loads above 51FFH, but below 7T000H, the screen displays:
MODULE LOADS TO XXXX-XXXX
MODULE LOAD WILL OVERLAP "CMD” PROGRAM AREA (5200-6FFF)

ENTRY POINT = YYYY
NEW LOAD BASE ADDRESS (HEX)?

If a program were to reside here, you would not be able to use some DOS
commands without destroying the program. You may want to specify a new
load base address. The new load base address is the area in memory where
the user wants the program to be stored. If the program read from tape loads
above 7000H, press ENTER. If it does not, enter 7000.

The program now asks SHALL APPENDAGE BE SUPPRESSED (Y OR
N)? If you entered any number in the previous step, you should answer N.
This appendage is a new loader which moves the program into the correct
area for execution. The program calculates the new storage area and entry
point and displays this in lines 9 and 10 of the printout. Again, a new load
base address is requested. If you made a mistake in entering it before, this is
your chance to correct it. If not, press the ENTER key. Now the interrupts
can be disabled. The answer to this question should be Y.

Finally, the file specification is requested. If you plan to use this program
and are moving the program from tape to disk, you must conform with the

228

tutorial

DOS requirements. The file name should have an extension /CMD. (If you
have more than one dirve, be sure to assign the drive number.) If you plan to
work on this copy, however, we suggest the extension /MOV to keep from
confusing it with the original. If the extension /CMD is not used, you have to
type RUN, plus the complete file name in order to load and execute the pro-
gram. Type LOAD and the file name to load the program and return to DOS.

Locking Deeper

What does LMOFFSET really do? To answer that let us just touch on
machine language. Most machine-language programs are not relocatable.
This means that when they were written, several instructions made
reference to a specific memory location. Using Electric Pencil as our exam-
ple, from the printout in Figure 1, the program loads from 4000H to 51FFH.
Many memory cells in this program are used for data storage, such as the
number of lines to be printed, the end-of-text area, et cetera. To get the data
from these areas, Electric Pencil loads the contents of the desired memory
cells. Suppose that 4400H contains the end-of-text pointer. If this program
were moved to 7000H, the data stored in 4400H might now be at 7400H.
When the program wants this information it addresses 4400H, not 7400H.
The data, therefore, will be wrong. This means the program is not
relocatable. Other instructions such as LDs, CALLs, and JPs, make a pro-
gram nonrelocatable.

APPARAT LOAD MODULE OFFSET PROGRAM, VERSION 1.1
SOURCE FROM DISK OR TAPE? REPLY “D” OR “T"? T
MODULE LOADS TO 4200-5500

MODULE LOAD OVERLAPS DOS RAM (4000-51FF)

MODULE LOAD WILL OVERLAP “CMD” PROGRAM AREA (5200-6FFF)
ENTRY POINT = 4350

NEW LOAD BASE ADDRESS (HEX)?7000

SHALL APPENDAGE BE SUPPRESSED (Y OR N)? N

MODULE LOADS TO 7000-830F

ENTRY POINT = 8301

NEW LOAD BASE ADDRESS (HEX)?

INTERRUPTS TO BE DISABLED (Y ORN)? Y

DESTINATION FILESPEC? PENCILT/CMD

Figure 1. LMOFFSET output for Electric Pencil

Why do we have to move a program anyway? The reason is simple. The
memory map in the back of the Level II manual shows that the memory
from 43E8H and up is used for program storage. When the disk is added,
memory from 43E8H to 5200H stores the Disk Operating System (DOS). If
Electric Pencil were not moved up in memory as it loaded from disk, it
would overwrite the DOS. The DOS would eventually crash, and you could
not load Pencil. This is why we moved it up to 7000H. But didn’t we just say

229

tutorial

that the program would not run in that memory area? That is the reason for
the Loader.

The Loader is nothing more than a block-move program. This appendage
consists of 15 bytes of machine code which are tail-ended to the original pro-
gram, The first byte is an F3 (to disable interrupts) or a 00 (NOP), depend-
ing on the answer you give to the DISABLE INTERRUPTS? question. The
next three bytes are 21 XX YY (LD HL,YYXX), which set where the program
is moved from. The next three bytes are 11 SS TT (LD DE,TTSS) which set
where the program is moved to. The next three bytes are 01 DD EE (LD
BC,EEDD) which set the number of bytes of program to move (the dif-
ference between the original starting address and the original ending ad-
dress without the appendage). The next two bytes are ED B0 (LDIR). This
instruction first takes the byte pointed to by the HL register pair and moves
it to the address pointed to by the DE register pair, subtracts one from the
BC register pair, and checks to see if the number in the BC equals 00. If it
does not, DE and HL are incremented, and the instruction is repeated until
BC does equal 00. Then the machine goes on to the next instruction. The
final three bytes are C3 FF GG (JP GGFF) which tell the computer to ex-
ecute the original program. That’s it] All 15 bytes, and the new program is
where it wanted to be.

New Load Base Address

The new base address is entered above 6FFFH to keep it out of the DOS
program area. This allows the system to load the program from disk to
memory. The entry point is changed to the Loader. After the program has
been loaded, execution is transferred to the Loader. Since the DQOS is no
longer required, the Loader moves the program down to the area where it
must run. The Loader then jumps to the original entry point, and you are off
and running.

What you choose for a new load base address depends on how much
memory you have and what you want to do with the new module. Assuming
you want to disassernble a program to modify it, you have to decide what
tool (utility) you will use to do the work. Once you have decided that, you
must know where this utility loads. Now, based on where the utility resides
in memory, you can determine if the new module will load above T000H
and below your utility or if you must load the new module above the utility.
The start of memory for the new module should be entered for the new load
base address.

Working on a Program

Figure 1 is a printout of the new block-move routine. After the question
SHOULD THE APPENDAGE BE SUPPRESSED?, LMOFFSET displays
the new storage area and the new entry point.

230

tutorial

To work on this program, you must load it into memory using the LOAD
command from the DOS (be sure to include the extension with the file
name), and execute the monitor or utility you wish to use.

There are two methods for working on a program once you have it in
memory. The first is to work on it in the new area. We do not recommend
this method since many of the machine-language instructions directly ad-
dress a memory location and all refer to the cells where the program was
designed to run. This makes deciphering the program difficult.

The second method is to load the moved version into memory and execute
the monitor. Then block move the program down to where it should run or
modify the Loader. To modify the Loader, disassemble it and change the
address of the JP instruction to that of your monitor. Now execute the pro-
gram with the new entry point. After the Loader moves the program to
where it will run, it returns control to your monitor. After you modify the
program, you must block move it back to where it was. Remember, you do
not have any disk functions if the program is to load below 5200H, and if it
loads below 6FFFH, many of the DOS utilities will write over it. To save
your modified program to disk, exit the utility and use the DOS command
DUMP or load your favorite disk I/0 utility.

Exceptions

Scott Adams’ Adventure programs may not load and run. It will be evi-
dent when the screen goes bonkers. To correct this, reboot while pressing the
shift and up arrow. When the DOS READY prompt comes up, let up on the
keys. You have now disabled the key debounce routine. This routine con-
flicts with other programs as well. You can now run and enjoy the Adven-
ture program. If the program has a loader that loads the program, you will
have to disassemble the loader and try to figure out what is going on, or find
a friend who has already broken the loader and has the program on disk.

UTILITY

Extractor: An Ace in the Hole!
Page Print Your Listings

Let Your TRS-80 Do the Typing

233

UTILITY

Extractor: An Ace in the Hole!

by J. Crutcher

bout a year ago, a notepad fell victim to a spring cleaning assault at

my house. Unfortunately, that pad contained the index to my library
of cassette tapes for my TRS-80 Level I1 computer. My first reaction was
panic, after which reason prevailed, and I started to reconstruct the list.
Several days later, I gave up, and from that experience, Extractor was
born. I needed a way to extract the necessary information from Radio
Shack’s SYSTEM formatted tapes. The Program Listing does that. Extrac-
tor reads the name, load address, and automatic start address of SYSTEM
tapes and displays them on the screen without loading the program into
memory. In addition, it computes and displays the end address. I have
divided the format into four sections for purposes of explanation: (1)
leader and sync, (2) name header and name, (3) data header, block
length, start address, data block, and checksum, (4) auto-start header and
auto-start address.

The leader consists of 255 bytes of zeros, each of which consists of eight
bits. These bits are separated by clock pulses which slice the leader into
time slots. This same division of time is used for the entire SYSTEM for-
matted tape with data contained within these time slots. The sync byte
(A5H) is the 256th byte on the tape, and in conjunction with the
preceding 255 bytes of 00Hs, it will synchronize the computer with the in-
coming data. Refer to Figure 1. The name header (55H) points to the six-
byte alphanumeric name which is used as a search key under the SYSTEM
command to select a particular file from the tape. These sections are
graphically depicted in Figure 2.

After the name comes a data header (3CH) which precedes three bytes
of very important information. The first byte following the data header is
the block length byte. This two-digit hex byte tells the computer how
many bytes of data are in the following data block (O0H represents 256
and is the maximum allowed per data block). This information tells the
computer when to expect the next data header (3CH) or the auto-start
header (78H). Without this, the computer would consider a 3CH code as
60 decimal or INC A. Immediately following the block length is the low
byte portion of a two-byte address which is the load/start address. During
a normal load, the first byte of data loads into memory at this address.
Next, the data block itself, which contains the program data, is loaded. It

235

utility

is one to 256 bytes long, with an additional byte at the end called the
checksum. This is a method Radio Shack uses to establish a measure of
data integrity or validity by a type of parity derived by adding the low
and high bytes of the load/start address to the absolute value of each byte
of data in that data block and discarding any carry that results. This sum
is then recorded on the tape for use during a cassette load to determine if
the data is good or bad. Cassette load problems (high or low amplitude)
can trigger a checksum error. Figure 3 details these divisions of the for-
mat. If another data block is present on the tape, another data header
(3CH) would be next, and another block length, load/start address, data
block, and checksum cycle would follow.

If the preceding data block was the last, the next byte would contain an
auto-start header (78H) to indicate to the computer that the next two
bytes contain the auto-start address or entry point for that program.
When you respond to the SYSTEM command prompt (*?) with a /
ENTER, the computer begins execution at the auto-start address. The
code (78H) also signals the computer firmware to terminate cassette
operation. Figure 4 shows this last section.

NAME HEADER
LLEADER SYNC BYTE NAME
Figure 1. Leader and sync byte Figure 2. Name header and name

DATA HEADER
BLOCK LENGTH
LOW BYTE LOAD/ETARYT
HI 8YTE LOAD/START
[rDATA BLOCK l— CHKSUM

| 3CH I [sle] ! 508] 43K | ; i Il TO 256 BYTES OF OATAI CSH l

Figure 3. Data header, block length, load/start address, data block, checksum

AUTO-START HEADER
LOW BYTE AUTO-START ADDRESS
Hi BYTE AUTO-START ADDRESS

Figure 4. Auto-start header, auto-start address

With the preceding information, you can now develop a method to ex-
tract the name, load/start address, end address, and auto-start address
from any SYSTEM format tape recorded from the TRS-80 Level II.
(Warning: This program will not decode commercial tapes such as Micro-
chess, Defender, and others which contain their own loaders.) I used
Radio Shack’s Editor Assembler to assemble the Program Listing at ad-
dress 4350H. I have used labels throughout so that you can relocate the

236

utility

code wherever it is convenient, simply by changing the ORG statement in
line 2530 and reassembling. You can change the message displayed by
using DEFM pseudo-ops and retyping your own messages. Since DEFMs
are limited to 63 bytes or less, you must use multiple DEFMs for messages
which exceed this limitation. Since the message print routine uses zeros as
end indicators, you must remove all such delimiters between multiple
DEFMs and insert at least one NOP at the end of the message. I made no
attempt to condense the program or to make it super efficient since it uses
less than 600 bytes of memory. Speed is not important, as the program
deals with a very slow medium——the cassette tape. Remember that during
its operation, the program being indexed does not load into memory, so
even a 4K system has adequate memory regardless of the length of the
program on the tape. I have included some suggestions on how to proceed
with a checksum check procedure and a single byte addition which will
load into memory the programs being indexed. Remember that a limit
does exist as to how much processing you can do between calls for data
from the tape. You must consider the time of execution for program steps
when you add significant amounts of code to the program in those areas
where the tape is read.

The first part of Extractor deals with the display of title, authorship,
and the entry prompt. It begins by clearing the screen and displaying
messages (lines 2810 through 2860). The entry prompt advises you to hit
ENTER to continue, and you may follow these instructions if you wish,
but any key will do the job. I got into a rut a few years ago and wore out
two ENTER switches before I finally changed the way 1 wrote program
entry prompts. If your ENTER key is overworked, use the CLEAR or any
other key for a while. Line 2870 establishes a buffer which is used later to
store the load/start address and the end address. Lines 2940 through 3000
are the keyboard loop which puts the computer into a posture of waiting
until the requested entry is made. Lines 3040 through 3060 then clear the
screen again and display the column headings for the data to be extracted.

The next part of the program does three things. First, it zeroes the buf-
fers established in line 2870 (lines 3212 through 3218). Then it turns on
the cassette recorder (line 3220) and searches for and recognizes the leader
and sync byte (line 3230). When it finds the name header (line 3250 and
3260), it displays the name on the screen under the column titled NAME
(lines 3270 through 3300). If not found, an error message appears, (line
3260) and the cassette recorder stops. Before leaving this section, I would
like to bring to your attention the NEXT label in line 3212. This is the
point of reentry for multiple program indexing from the same tape.

The next part of the program concerns the data and auto-start headers
and the information which follows them. Lines 3410 through 3430 test

237

utility

the header to determine if it is an auto-start header (78H) signifying that
all the data blocks have been processed. If it is, the program jumps over
the data block processing section and terminates the program (line 3430).
If it is not an auto-start header, the program tests to see if it is a data
header (line 3440). If it is not a data header, an error message appears
(line 3450). If the header is a data header (3CH), several things happen.
Line 3460 displays two asterisks in the upper right corner of the screen
and makes the rightmost one blink alternately as the program finds addi-
tional data headers (3CH). Line 3470 reads the block length from the
tape, and line 3480 stores it in the B register to be used later to count the
bytes of data. The next byte on the tape is the low byte part of the two-
byte load/start address which lines 3500 and 3510 read and load into the L.
register. This is followed by the high byte of the load/start address (lines
3540 and 3550) which processes into the H register. At this point the HL
register pair contains the load/start address. Lines 3572 and 3574 check
the contents of buffers 1 and 2 to make sure that this is the first data block
and, if so, stores this address in the buffers (lines 3580 and 3590). If buf-
fers 1 and 2 already hold an address, the computer assumes that the data
block was not the first and does not disturb the buffers (line 3576). The
HL register pair retains the value as the byte count to that point. (It is also
the load/start address for the next data block.) You are now ready to start
counting actual bytes of data from the data block (lines 3600 through
3650). This is a basic DJNZ loop which uses the value previously stored in
the B register to determine the number of bytes that will be counted. Dur-
ing the counting of these data bytes, the HL register pair is incremented
(line 3620) so that it contains a total of all the data bytes read from the
tape, plus the first load/start address. (This information will be used to
determine the end address of the program.) When this is finished, the pro-
gram reads and discards the checksum (line 3651) and goes back to process
the next data block or to recognize the auto-start header (line 3660).

If you now find the auto-start header (78H), the instruction in line 3430
will jump to line 3670 where buffers 3 and 4 save the total in the HL
register pair as the end address. The buffers now contain the load/start
address and the end address of the program. The program has already ex-
tracted the name and displayed it on the screen and must now read the
auto-start address from the tape and store it for display (lines 3670
through lines 3800). Lines 3760 through 3790 load the low byte of the
auto-start address into the L register and the high byte into the H register.
Line 3800 stores this information on top of the stack until it is time to
display it. Since you are now finished with the cassette recorder, line 3801
turns it off. Lines 3802 and 3804 get a C4H tab and print it immediately
following the name of the program (actually at the cursor location) so that
the data will be displayed directly under the column headings that are on

238

utility

the screen. Extractor now loads the contents of buffer 2 and buffer 1 (note
the order—high first) into the A register (lines 3802 through 3840),
changes the decimal data to hex, and displays it on the screen under the
1ST BYTE column. Lines 3850 and 3860 load and print a DOH tab. The
process repeats for the end address (lines 3870 through 3900) in buffers 4
and 3. Line 3910 gets another DOH tab, and line 3920 prints it. The end
address now appears on the screen under the LAST BYTE column, and
you are ready to retrieve the auto-start address from the stack (line 3930)
and display it in the same manner as the load/start and end addresses
(lines 3940 through 3970). Lines 3972 and 3974 load and print a carriage
return to return the cursor to the start of the next line.

I brought your attention to the label NEXT which appears in line 3212
and told you we would use it to process multiple files from the same
cassette tape. The time has arrived when Extractor will respond to a deci-
sion that you must make as to how many programs on the same tape you
wish to index. If you want to know about all the programs on a single
tape, do nothing, and Extractor will continue processing until the end of
the tape. If you are only interested in one or two programs on a tape,
simply hold the SHIFT key down during the processing of the program,
and the computer will return you to the control of the TRS-80 at the end
of the current program. Lines 4070 through 4110 contain the code for
these functions. Line 4070 checks the SHIFT key, and if it detects a true,
jumps to line 4100. If it does not detect a true, line 4090 will go to NEXT
at the end of each program until the end of the tape or until it senses a
SHIFT. Line 4100 controls the return to BASIC. If, after exiting to a
BASIC READY prompt, you decide to index additional programs, simply
type SYSTEM, hit ENTER, respond to the SYSTEM prompt (*?) with /,
the address in decimal of your assembly ORG statement, and press
ENTER. Extractor will reinitialize and will continue from the point on
the tape where it left off. (Note: previously displayed information is lost
when Extractor is reinitialized.)

The remainder of the program code is used for the messages and
subroutines for error printing, displaying to the screen, changing the
decimal data to hex, and displaying the messages and heading.

As indicated earlier, with a few changes to the program, a checksum
checking routine can be implemented which will allow the user to check
the validity of the data on the tape without reading the program into
memory. The formula that Radio Shack uses to compute the checksum is:
low byte plus high byte of load/start address (each data block computed
separately) plus the absolute hex value of each data byte contained in the
data block with any resulting carry discarded. To implement this in
assembly-language code, you must first zero the C register:

3490 LD C,OH

239

utility

To add the low and high bytes of the load/start address, ADD the con-
tents of the A register at the time that it contains the low byte to the C
register and load the resultant sum into the C register:

3520 ADD A,C
3530 LD C,A

When the high byte is in the A register, the sequence repeats, leaving the
sum of the low and high bytes of the load/start address in the C register:

3560 ADD AC
3570 LD C,A

To complete the formula, the program adds each data byte contained in
the data block to the sum in the C register:

3630 ADD AC
3640 LD C,A

The checksum is now in the C register and must be compared to the
checksum recorded at the end of each data block. Some type of indicator
is needed to give the results of the comparison:

3652 cp C
3654 JP NZ,ERR3
4552 ERR3 LD HL,MSG7
4554 CALL ERROR

5510 MSG7 DEFM ‘CHECKSUM ERROR’
5520 NOP
5530 END

You can make the above additions without disturbing the timing of the
program. They will process checksum errors without loading anything in-
to memory, and you can extract all the pertinent data from a SYSTEM
tape and check to see if the data is valid at the same time. There is a single
byte addition that you can make to the program that will allow it to load
data into memory as the program is being indexed.

3610 LD (HL),A

You must enter the above changes at the locations indicated by the pro-
gram step numbering sequence. If you use different line numbers when

240

utility

you type the program, you must integrate the numbers of the changes into
their proper places. Some other modifications that would enhance the
program are the addition of a print routine (both parallel and serial) to
make the permanent record of the information and an automatic conver-
sion from hex to decimal so that both would be printed.

241

288100
op2o@
08300
00408
68500
80648
28700
60868
82300
82400
82508
825148
82520
82530
82608
827880
828060
02810
02820
828382
826840
082850
02860
828760
02949
82950
82968
82976
02980
082990
03008
83040
93850
83068
83160

83178 ;
;TURN ON CASSETTE, READ LEADER AND FIRD SYNC ({AS).

93180
83198
a3208
83218
3212
03214
93216
83218
83220
832380
63240
83256
83268
83278
83286
83299
83380

93338 ;
83340 ;

93358
23360
83378
03380
63399
93460
03410
83420
93438
83448
03458
03468
83478
83488
83508
83518
93548
93558
#3572
83574
#3576
83588
#3590

utility

Program Listing. Extractor

;THIS IS THE EXTRACTOR -~IT'S PURPOSE IS TO READ
jDISPLAY THE START ADDRESS,

;ADDRESS FROM CASSETTE TAPES RECORDED WITH RADIO SHACK'S

;TRS~-80 LEVEL II SYSTEMS FORMAT.

AND
END ADDRESS AND AUTO-START

IT WILL NOT FUNCTION

;FOR THOSE CASSETTE TAPES HAVING THEIR OWN LOADERS. AN
;EXAMPLE OF THIS TYPE OF CASSETTE IS5 MICRO-CHESS.

ORG

LOOP1L CALL

i

435¢4

21CoH
HL,MSGL
PRTSTR
HL ,MSG2
PRTSTR
HL ,MS8G3
PRTSTR
IY,BUF1
AF

DE

2BH

A

HL,MSG4
PRTSTR

;NAME AND INSTRUCTIONS ARE LOADED AND DISPLAYED

;CLEAR SCREEN

;KEYBOARD SCAN

;CLEAR SCREEN
;COLUMN HEADING
JPRINT IT

;ALSO FIND NAME HEADER (55), DISPLAY NAME.

i

H
NEXT LD (IY+00H) ,B0H
LD (IY+01H),00H
LD (IY+B2H), 00H
LD (IY+B3H) ,68H
CALL 82121
CALL B6296H
CALL 82358
cp 558K
JP NZ,ERR1
LD B, #6H
LOOP2 CALL 02354
CALL PRINT
DJINZ LOOP2
i
B
;CHECK TO SEE IF NEXT HEADER IS
;OR A DATA HEADER (3C).

;ZERQ FOUR BUFFERS

}SELECT DRIVE
;FIND LDR AND SYNC
;READ ONE BYTE

;NO-~PRINT ERROR MESSAGE
;SIX.BYTES IN NAME

;READ ONE

3 PRINT IT

;GET ALL SIX CHARACTERS

AUTO-START HEADER (78)
IF AUTO~START, JUMP OUT OTHER-

;WISE READ AND STORE ADDRESS OF 1T BYTE AND START
;COUNTING BYTES UNTIL NEXT DATA HEADER.

1

LOOP4 CALL

#235H
78H

7, ESCAPE
3CH
NZ,ERR2
g22CH
#2354

H,A

A, (IY+BPH)
(IV+@1H)
NZ,LOOP3
(1Y+BBH) ,L
(IY+01H) ,H

;READ ONE BYTE
; IF AUTO-START GET OUT

;NO-~PRINT ERROR MESSAGE
3 BLINK ASTERICK

;GET BLOCK LENGTH

;STORE IT IN B

;GET LO-BYTE OF START ADD
}STORE IT IN L

;GET HI-BYTE OF START ADD
;STORE IT IN H

i GET BUF1

;SEE IF ITS EMPTY
;NO--LEAVE IT

;STORE IT IN BUF1

;STORE IT IN BUF2

242

036049
083626
03658
83651
083668
936780
03680
83698

LOOP3

ESCAPE

i

83788 ;
JGET START AND END ADDRESSES FROM BUFFERS AND AUTO-START
iFROM HL REGISTER, CHANGE TO HEX AND DISPLAY ON SCREEN,

83719
03728
83740
83758
03768
33776
837889
83790
23800
43801
63862
23884
3810
083820
43838
23840
83850
83860
23876
23889
03898
23908
23910
83920
33930
93940
03950
83969
63979
083972
83974
83980
83999
04080
94010
84020
04038
84048
240580
04878
24888
04090
04148
fg4110
84160
24178
04188
24190
84200
84210
34220
84230
84248
84258
84280
84290
84308
84319
84340
84350
4360
04388
24398
04400
84410
84448
84450
04488
84490
84520
04538
064548
84558
#4568

;

i

CALL
INC
DJINZ
CALL
Jp
LD
LD

CALL

@235H

HL

LOOP3
8235H
LOOP4
(IY+02H) ,L
(1Y+83H) ,H

9235H

L,A

B8235H

H,A

HL

B1F8H
A,00C4H
PRINT

A, (IY+061H)
HEXER

A, (IY+08H)
HEXER
A,0D@H
PRINT

A, (IY+03H)
HEXER

A, (IY+B2H)
HEXER
A,0DOH
PRINT
HL

A8
HEXER
AL
HEXER
A,9DH
PRINT

utility

+READ ONE BYTE

;BUMP BYTE COUNT

fUNTIL BLOCK LEN IS ZERQ
iREAD CHECKSUM

;GET NEXT DATA BLOCK
iSAVE LO-BYTE END ADDRESS
iSAVE HI-BYTE END ADDRESS

iREAD ONE BYTE

iLO-BYTE OF AUTO-START
;iREAD ONE BYTE

iHI-BYTE OF AUTO-START
;SAVE IT

;TURN OFF CASSETTE

iGET A FIVE SPACE TAB
:PRINT IT

;GET HI~-BYTE OF START ADD
;CHANGE FORM AND PRINT IT
;GET LO-BYTE OF START ADD
;CHANGE FORM AND PRINT IT
;GET 16 SPACE TAB

sPRINT IT

iGET HI-BYTE OF END ADD
;CHANGE FORM AND PRINT IT
;GET LO-BYTE OF END ADD
;CHANGE FORM AND PRINT IT
;GET 16 SPACE TAB

;PRINT IT

;RETRIEVE AUTO-START

;GET HI-BYTE AUTO-ST
;CHANGE FORM AND PRINT IT
;GET LO~BYTE AUTO-ST
;CHANGE FORM AND PRINT 1T
;GET A CARRIAGE RETURN

; PRINT IT

i

#IF SHIFT KEY 18 BEING HELD DOWN, THEN GO BACK TO

IF NOT THEN GO GET ANOTHER PROGRAM FROM THE
iSAME TAPE AND CONTINUE TO REPEAT INDEXING FUNCTION
;UNTIL END OF TAPE OR UNTIL SHIFT IS HELD DOWN.

iBASIC.

i
i
RESET
BASIC

i
i

LD
OR
Jp
LD
Jp

A, (3880H)
A

Z,NEXT
HL, (48E6H)
28724

;CHECK IF SHIFT IS DOWN
;SET FLAGS

;NO~-~GET NEXT PROGRAM
;RESTORE I/0 PTR.

3 JUMP TO BASIC

;THESE MESSAGES ARE ADDRESSED BY THE HL REGISTER PAIR
;AND WILL BE PRINTED BY A CALL TO 28A7H.

H

i
MSG1
MsSG2

MsG3

MSG4

M8G5
M5G6
ERR1
ERR2
ERROR

DEFM
DEFB
DEFB
NOP

DEFM
DEFB
DEFB
NOP

DEFM
DEFB
NOP

DEFM
DEFB
DEFB
NOP

DEFM
NOP

DEFM

Th ok k k% kK Kk k & % %k % *¥ EXTRACTOR * % % % % % % % % %X % % %!

épH
ODH

'WRITTEN BY
ODH
@DH

: J. CRUTCHER SCOTTSDALE, ARIZONA'

'TO READ A SYSTEMS FORMAT TAPE, LOAD TAPE AND HIT ENTER:'

@DH

'NAME 1ST-BYTE LAST~-BYTE

9DH
2Dy

'NAME HEADER ERROR'

'DATA HEADER ERROR'

HL, M8G5
ERROR
HL,MSG6
ERROR
AF

AUTO~START'

Program continued

243

utility

64570 PUSH BC

24580 PUSH DE

84590 PUSH HL

B46@0 CALL 28ATH ;PRINT ERROR MESSAGE
04610 POP HL

p4620 POP DE

84630 POP BC

94640 POP AF

04650 CALL B1FBH ;1 STOP CASSETTE
64660 JP BASIC

64670 NOP

4769 BUF1 NOP

84718 BUP2 NOP

#4726 BUF3 NOP

§4736 BUF4 NGP

24778 ;

64788 ;

§479¢ ;THE FOLLOWING SUBROUTINES WILL DISPLAY THE A REGISTER
@4800 ;AT THE CURSOR LOCATION AND CHANGE THE DECIMAL DATA
p4816 ;TO HEX FOR DISPLAY.

048208 ;

04830 ;

04846 PRINT PUSH AF
948590 PUSH DE
04860 PUSH IY
04878 CALL B32AH ;DISPLAY A REGISTER
4880 POP Iy
84890 POP DE
64308 POP AF
04910 RET

#4950 HEXER PUSH AF
84960 LD C,A
094970 SRL A
04988 SRL A
04990 SRL A
95000 SRL A
65610 CALL CoMP
05828 LD A,C
85038 AND Oru
05040 CALL CoMp
85058 POP AF
85660 RET

050768 COMP cp BAH
9508¢ JR C,LOOP
95069¢ ADD A,B7H
85108 LOOP ADD A,30H
85116 CALL PRINT
85120 RET

85280 ;

05290

P5380 ;THIS SUBROUTINE WILL DISPLAY THE MESSAGE POINTED TO BY
p531¢ ;THE HL REGISTER. MESSAGES MUST BE TERMINATED WITH ZERO.
95328 ;

85330

;

#5340 PRTSTR PUSH AF
85358 PUSH BC
65366 PUSH DE
65378 PUSH HL
95388 PUSH IX
05390 PUSH Iy
05400 CALL 28A7H ;PRINT MESSAGE
05416 POP Iy
05420 POP Ix
05436 POP HL
35449 POP DE
B5458 POP BC
85468 POP AF
05478 RET

#5510 END

244

UTILITY

Page Print Your Listings

by A. P. Gitt

f you have a TRS-80 Model I with at least one disk drive, printing out in-
formation formatted by page is relatively simple thanks to the TRSDOS
LINE INPUT # command. The Printer Paging program (see Program
Listing) does the following:
1) Prints the title of your choice at the top of each page
2) Provides a left-hand margin of any width while adding the line-
feed/carriage returns (LF/CR) which maintain the margin if a line has more
characters than a normal printer line
3) Automatically numbers the pages, starting with any page number you
choose
4) Counts and displays the number of program lines, as well as the actual
number of lines printed.

ASCII Saving

To use this program for page formatting of BASIC program listings,
before you run it, you must store the information to be printed on your disk
in ASCII format. This is done by appending ,A to your file name when you
save your BASIC program to disk. Two examples of how to do this are
shown below:

Example 1) SAVE“PAGEPRNT/TXT:1",A

Example 2) SAVE“PROCRAM/TXT",A
Example 1 saves the program Pageprnt in ASCII format (,A) with the exten-
sion TXT on disk drive number 1 (:1). The TRSDOS manual recommends
using the TXT extension when you save text or programs in ASCII. Example
2 saves Program with the extension TXT on disk drive zero in ASCI format.

Keep in mind that saving files in ASCII format uses more disk space on a
disk than saving the file in compressed format. Remember this if you are
working with a nearly full disk, in order to avoid the DISK FULL message
and the resulting time it takes to KILL space or slide in a new disk. Plan
ahead! You can check the number of granules available by using the FREE
command before you embark on an ASCII save effort.

Using the Program

To use the Printer Paging program, simply go into Disk BASIC and load the
program. The program will prompt you to enter the following information:

245

utility

) Name of program (as stored on disk) to be printed
) Title to be printed at the top of each page
) Number of the first page to be printed

) Number of spaces to tab for the left-hand margin.

If you enter the above information correctly, your printer will take off,
followed shortly by the whirl of your disk file. The resulting pages will pour
from your printer, neatly formatted and numbered. The TRS-80 and disk
drive are fast enough that there is no noticeable slowdown in printer
throughput, which is 80 characters per second for my Epson MX-80 printer.

1
2
3
4

How it Works

There have been several programs and articles written on page formatting
of BASIC listings. One of the most recent appeared in the December 1980
issue of The TRS-80 Microcomputer News, which is published monthly by
Radio Shack. The concept of my Printer Paging program is based on that
program by Richard Halloran.

The basic function of my Printer Paging program is to read ASCII re-
corded program lines from the disk and LPRINT them. The process gets
more complicated when you require the program to print page titles and
page numbers on each page, but doing this is still pretty straightforward.
What makes execution difficult is the need for the program to maintain the
left-hand margin, while printing lines which contain more characters than
the total number the printer can print on any line—in my case, 80 charac-
ters per line. This means that if an ASCII line read from the disk has more
than 80 characters, most line printers will add a line feed/carriage return
(LF/CR) after printing 80 characters on a line. But, the printer does not
know that you have tabbed the line to print the additional line flush with the
left-hand margin. When the printer adds the LF/CR, the tab or left-hand
margin is lost until the next program line is read from disk. .

You can avoid this problem by making the length of all your program lines
less than 80 characters, then subtracting the number of spaces you want as a
left-hand margin, or by setting the left-hand margin to zero. Neither of these
solutions has the flexibility needed for a complete page printer program. By
determining the length of each program line and testing to see if its length is
equal to or greater than 80 minus the number of spaces you want as the left-
hand margin, you can divide the original long program line into a series of
strings which equal 80 characters minus the number of spaces desired for the
left-hand margin (80 — TB).

The subject of long lines brings up one of the oddities of the TRS-80. The
Model I Level II manual tells you that a program line may have up to 255
characters. That is correct, but if you SAVE a program to disk or CSAVE it
to cassette, and then LOAD or CLOAD it back into the computer, you get
back only 248 characters. If you look on the disk by LISTing the program in

246

utility

TRSDOS, you can see all 255 characters but you can’t load them back into
BASIC. If you like long program lines, you can save time debugging pro-
grams by remembering that the useful limit is 248 characters.

The Printer Paging program consists of 60 lines of code. Table 1 lists the
program variables. Table 2 lists the various program routines by line
number. Line 50 of the program clears 1000 bytes of string storage space.
Lines 60 and 70 contain an opening title which will appear on the screen for
several seconds after you type RUN. I usually include this opening title with
all my BASIC programs. You can, of course, delete lines 60 and 70.

Variable Description

A Flag for long lines

N Number of lines printed

N$ Name of program read from disk

P Initial page number counter value

Q Starting page number

R Number of program lines printed

R$ Program line read from disk in ASCII

S$ Temporary long line string

S1$ Temporary long line string

S2% Temporary long line string

U$ Temporary long line string

Uls Temporary long line string

U2 Temporary long line string

X Number of program lines printed on last page

Z Number of line feeds before printing last
page number

7% Temporary working string variable

Table 1. Program variables

Line Number Description

10-90 Program initialization

100-130 Input parameters

140 Initializes printer line counter and lines per page

150-160 Print first page title

170 Opens Disk file

180 Tests flags for long lines

190 Checks number of lines printed on current page

200 Prints page number and form-feeds to end of page
210-220 Print title at top of next page

230-260 Test for return to long lines routines

270 Checks for end of file

280 Reads line from disk and increments program line counter
290-480 Test for long lines and divide them into 80-character strings

Table continued

247

utility

490 Increments lines printed counter and displays number of lines
printed

500 Displays number of program lines printed

510 Returns to start next line

520 Closes disk file

530-550 Line-feed to near bottom of page and print page number and
form-feed

560-600 Return to print another copy, start a new file listing, or end
program

Table 2. Line number description

Lines 80 and 90 remind you to append files SAVEd to disk with ,A if you
intend to use them with this program. Lines 100 through 130 input the
parameters required to recall the program to be printed from disk and set up
your page format. Line 140 sets the number of lines per page in the TRS-80
to 67 lines (POKE 16424,67), sets the printer line counter to zero (POKE
16425,0), and initializes the counter values.

Lines 150 and 160 determine the tab setting to center the title and print
the title on the first page. Line 170 opens the disk file that contains the pro-
gram to be printed. Line 180 and lines 230 through 260 test the status of the
A flag for long lines. Line 270 checks to see if the last line of data has been
read from the disk file. If it has, then the program jumps to line 520 and
closes the file. Line 190 counts the number of lines on the current page. If
fewer than 62 have been printed, it tells the program to continue and prints
the next line. If the printer has printed 62 lines, line 200 increments the page
counter, prints the page number at the bottom of the page, advances the
form to the beginning of the next page, and resets the line counter to zero.
Lines 210 and 220 print the title at the top of the next page. Line 280 uses the
LINE INPUT # command to read each line of the program from the disk.
Lines 290 through 470 test for lines longer than (80 — TB) characters. Line
510 returns to the start of the disk read/print loop to get another line.

Line 520 closes the disk file. Lines 490 and 500 display the number of lines
printed and the total program lines. Lines 530 through 560 determine the
amount of blank lines left on the last page, line-feed to near the end of the
last page, print the last page number, and form-feed to the end of the last
page. Lines 320 and 330 ask if you want to print another copy, print a new
file, or end the program.

If your printer has a line length other than 80 characters, change the 80 in
lines 290, 300, 330, 350, 360, 390, 420, and 430 to the number of characters
in astandard line for your printer. You must also change the 81 in lines 310,
380, and 450 to the length of your line plus one.

This program was written for a TRS-80 Model I. If you wish to run iton a

248

utility

Model III, change the POKE 14312,12 statements in lines 200 and 550 to
OUT 251,12. These changes are needed since the printer is a memory-
mapped I/O device in a Model I, and a PORT I/O device in a Model 111,

249

19
20
39
49

50
60

79
80
90

188

1190
12¢

130
140

150

168

176
180

196

200

219

228
230

258

utility

Program Listing. Printer Paging program

* ##x%kxxkx PRINTER PAGING PROGRAM **¥#ik+%

WRITTEN BY A.P. GITT
DISC FILE NAME: PAGEPRNT/BAS

° LAST REVISION: £4/15/81

CLEAR 1089

CLS

PRINT @454, CHR$(23);"PRINTER PAGING ROUTINE"
FOR X = 1 TO 480:

.

NEXT

CLS

PRINT :

PRINT "DISK FILES PRINTED WITH THIS PROGRAM MUST BE SAVED TO"
PRINT "DISK IN ASCII (APPEND ' /A ° TO FILE SPEC NAME)"
PRINT :

PRINT "ENTER DISK FILE SPEC NAME OF PROGRAM TO BE PRINTED":
INPUT N$

PRINT "ENTER PAGE TITLE TO BE PRINTED AT TOP OF EACH PAGE":
INPUT TS

INPUT "ENTER STARTING PAGE NUMBER";Q:

P=Q~1

INPUT "ENTER LEFT HAND MARGIN TAB (NO. OF SPACES)";TB
POKE 16424,67:
POKE 16425,8:
P = 0:
R = @:
N =8
LPRINT :
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
OPEN "I",1,N$
IF A=10RA=20RA-=3
THEN
GOTO 198
IF PEEK(16425) = 62
THEN
GOTO 208 :
ELSE
GOTO 238
P =P+ 1:
LPRINT :
LPRINT TAB(39);P:
POKE 14312,12:
POKE 16425,0
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
IF A = 1
THEN
GOTO 339
IF A = 2
THEN
GOTO 428
IF A = 3

AB(48 - (LEN(TS) / 2));T$

ve 1 ee 0s e we

AB(48 - (LEN(TS$) / 2));T$

v e e ee e e

250

268

389

318
320

358
368

378

389
399

490

420
439

450
460

488
499

500
510
520
530

utility

THEN
GOTO 478
IF A = 4
THEN
GOTO 420
IF EOF (1)
THEN
520
LINE INPUT #1,R$:
R=R4+ 1
IF LEN(R$) > (88 - TB)
THEN
GOTO 388 :
ELSE
480
A= 1:
8$ = LEFTS$(R$, (86 -~ TB))
U$ = MID$(R$, (81 ~ TB))
LPRINT TAB(TB)SS:
GOTO 499
IF LEN(US) > (88 - TB)
THEN
GOTO 358 :
ELSE
348
LPRINT TAB(TB)US:
A= @:
GOTO 498
1 = LEFTS (US, (88 - TB))
IF LEN(S1$) > = (88 - TB)
THEN
GOTO 388
LPRINT TAB(TB)S1$:
A= f:
GOTO 490
Ul$ = MID$(U$, (81 - TB))
IF LEN(UL$) > = (88 - TB)
THEN
GOTO 418 :
ELSE
400
LPRINT TAB(TB)S1$:
A = 4:
GOTO 499
A= 2:
LPRINT TAB(TB)S1$:
GOTO 498
2 = LEFT$(ULS, (88 - TB))
IF LEN(S2$) > = (88 - TB)
THEN
GOTO 450
LPRINT TAB(TB)S2S:
A= 0:
GOTO 490
U2 = MIDS$ (UlS, (81 - TB))
A= 3:
LPRINT TAB(TB)S52$:
GOTO 490
LPRINT TAB(TB)U2$:
A= @:
GOTO 498
LPRINT TAB(TB)RS
N =N + 1:
PRINT @768,"TOTAL NUMBER OF LINES PRINTED: ";N;
PRINT @832,"NUMBER OF PROGRAM LINES: ";R;
GOTO 188

[}

CLOSE
X = PEEK(16425):
2 = 62 - X:

FOR ¥ = 1 TO Z:
LPRINT CHR$(32):

Program continued

251

utility

NEXT
LPRINT :
LPRINT TAB(39);P + 1
POKE 14312,12
PRINT :
INPUT "DO YOU WANT TO PRINT ANOTHER COPY? (Y)ES OR (N)O";2$
IF Z$ = wyn
THEN
GOTO 14480
CLS :
PRINT :
INPUT "DO YOU WANT TO PRINT A NEW FILE? (Y)ES OR (N)O";Z$
IF Zs = ®y"
THEN
GOTO 68 :
ELSE
CLs

END

J

I _OTitle

Pt i G S B s Gl Vluiat Gaan S adt

Buo Gux Drasa Br Dt wads Dhiwas Ftanns Cunrcnt P Cone s Dt
Vor Qe Pos froe Duias, Gak R oar Coan 13a, Dun Dt
B (s Rake € s Btts Cotatis Tt a0 Bkt Ot oaa Xkt Btie bt L B
2 Lot P 4 ot hrbe Rt B W £ Baiits Xt oo bt

B i Coaen Coen e Can Cant s B Pt Wt

L @uiins Dhn L5k Lanr Rowans C e

FRVOINRE SPEPU v MW CUL - DI VRRY - PURIP." S LR S,

el e W Prons L b Rk ot

W FOUURE: VI WY, PUCTIDINE VAR ¢ PRI - DUV MV - OV i)
NIYFERVENIUS - SHENI w WUWNF U VAN TR LN

VU S U UV ARSI N ST TV

Phesia B Mo - Qaaan,

[SN A YN

Caven %2 Moacdtin w Qu Rocod
CENEN S0 A WIS AUPI . WPUU NG O

s Yrrn Bt B etz
[Pt Comt Nl e

252

UTILITY

Let Your TRS-80 Do the Typing

by Susan R. Nelson

Here is a utility to save cassette-based TRS-80 owners time, tape, and
typing when handling input/output (I/O) data files such as accounting
files, inventories, mailing lists, or scientific computational files resulting
from a lengthy Fourier or matrix calculation. This utility program generates
and types those data files for you via the DATA statement.

By using the DATA statement in your BASIC program to store data files,
you can save cassette I/O time as well as saving tape. Since DATA statements
are a part of the BASIC program, the data file is read from cassette when the
program is CLOADed. The DATA statements, now resident in memory, are
almost instantly available to the program via the READ command. Instead
of using the slow INPUT# to read the file from tape or rewinding the tape for
another lengthy read, the RESTORE command backs up the DATA point-
er. You also save cassette tape when you use DATA statements. To save new-
ly created DATA statements, just CSAVE at the end of the computer session.

This utility was written to generate and type DATA statements, and insert
them into your BASIC program. Let the TRS-80 figure out the line number,
type DATA, and type the data in the proper fields in the correct format.

I became interested in this problem after reading and doing some experi-
menting with the Household Accountant program written by David
Andersen (see the February 1980 issue of 80 Microcomputing). I compared
the use of DATA statements versus using a cassette file for the check file. Us-
ing the INPUT#/PRINTY# statement, the cassette file not only took longer to
do the I/O but also used a lot of tape; it took 10 minutes to INPUT#/PRINT#
the check file and used almost an entire side of a 20-minute cassette tape. In
addition, it took 3 1/2 minutes to CLOAD the INPUT#/OUTPUT# pro-
gram. Using the DATA statement file, a READ took 15 seconds while the
CLOAD/CSAVE took four minutes. The DATA statement program used
only one-third of a 20-minute cassette tape. This experiment convinced me
that when dealing with data on tape, DATA statements were the way to go,
especially for cassette users. There was only one problem. I didn’t par-

253

utility

ticularly like typing in all those DATA statements, with the line numbers,
the word DATA, and then all the numbers. The numbers were bad enough.
Occasionally, I would type an incorrect line number, or forget which
number went in what field, or I would leave DATA out. I decided to let the
computer do the typing. As a result, I wrote this utility to make it easier and
faster for cassette users who handle I/O files. Just answer an input prompt as
to what numbers are to be input, and then let the computer build the DATA
statements and type them in the program.

Building the DATA Statement

Building the DATA statement was the easiest part of the program (see the
Program Listing). Lines 3110-3194 and lines 3990-3994 in the Program
Listing generate the DATA statement into array Z(). The DATA statement
is Q bytes long. Figures 1, 2, and 3 show some sample DATA statements and
how they should look to a BASIC program. Figure 1 shows the memory
layout before the DATA statements are inserted. In DATA statement 10002
(see Figure 2), the next address comes first, followed by the least significant

Address BASIC Line

20496 10000 REM START OF DATA SECTION DO NOT REMOVE THIS
REMARK

20552 19999 DATA -1

20561 0 O (END-OF-BASIC PROGRAM)

20563 VARIABLE STORAGE AREA

20563 ARRAY STORAGE AREA

20563 FREE MEMORY

Address Decoded BASIC BASIC

20496 72 80 16 39 14732 83 84 65 82 84 32 79 70 32 68 10000 REM START OF

20512 65 84 65 32 83 69 67 84 73 79 78 32 32 32 68 79 DATA SECTION

20528 32 78 79 84 32 82 69 77 79 86 69 32 84 72 73 83 DO NOT RE-

20544 32 82 69 77 65 82 75 0 MOVE THIS
REMARK

20552 81 80 31 78 13632 45 49 0 19999 DATA -1

20561 0O O END-OF-BASIC

20563 VARIABLE STORAGE, ARRAY, FREE MEMORY

AREAS

Figure 1. Initial memory layout before DATA statements are inserted

254

utility

byte (90) and the most significant byte (80). The line number is next, also
followed by the least significant byte (18) and the most significant byte (39).
Now the data token (136) is listed, a blank (32) and then the numbers (in
ASCII) follow, each separated by a comma (44), and finally a 0 to end the
BASIC statement. In building the DATA statement I had to determine how
long the DATA statement was before figuring out the new next line
(NX = NP + Q), line 3192. The line number used (LN) is initialized in lines
3019-3050 and is put in the DATA statement in line 3130. Figure 3 shows
the memory layout after line 10004 is inserted.

Inserting the DATA Statement in the BASIC Program

Inserting the newly generated DATA statement into the BASIC program
was the next problem to be solved. Figure 4 summarizes how the utility does
this. Figures 1, 2, and 3 describe where new DATA statements are added to
the BASIC program. Originally the check file data was inserted based on
check number (line number = check number + 10000). This method did
not work out. As I added more checks, the utility became slower and slower.
To speed up the process, I made the line number arbitrary and always in-
serted the new DATA statement just before the last data line (19999 DATA
~1). Doing the insertion this way reduced the number of bytes that had to
be pushed down in memory, and required only one next address to be rede-
fined, in lines 3200-3230 of the Program Listing. The first time through sub-
routine 3000 is the slowest because the program is finding the last data line
(19999 — NP), and the end of BASIC (NE). It is also initializing the data line
count (LN) to the first number greater than 10000 but less than 19999, in
lines 3019-3050 of the Program Listing.

Problems and Solutions

When it came time to debug the program. I typed the code mentioned
above for building and inserting the DATA statement into the BASIC pro-
gram, and immediately tried it. It dido’t work. The program seemed to die.
What I finally figured out was that I had written over the variable storage
area with the new DATA statements. Figure 1 shows where the variable
storage, array storage, and free memory areas are usually located, following
the end of the BASIC program. The solution to this problem was the subrou-
tine at line 3700. This subroutine redefined where in memory the variable
storage, arrays, and free memory areas are. For this demonstration, the
pointers defining these areas, 16633 and 16634 for variable storage, 16635
and 16636 for arrays, and 16637 and 16638 for free memory, are bumped by
30+256 = 7680 memory locations. How much these areas have to be moved
down in memory depends on the size of your TRS-80 and the size of your
data file.

255

ility

DISVE-JO-ANI
- VLVA 66661
L'L9°T%00¥ Y1VA 3000T
JIYVINAY STHL
HAOWHY LON O
NOLLDHS v1vVd
A0 JHVYLS WIH 00001

oIsvd

JYVINEY
SIHL JAOWHY LON Od

parasu st 00T auy 4210 nofip Arowapy g aanBg

0 S5 ¥

€8
6L
89

qg

€L
89
[43

GL
[43
0L

44

78
[43
6L

6%

43
43
143

69
8L
¥8

49

98
6L
(43

AHOWHW HaHd

VHYY HOVHOLS AVHHY

HOVUO.LS TAVIHdVA

0 0

0 67y S 3¢ OET 8L It 08 66
8y 8Y 39 2¢ 981 6 BT 08 06
0 SL %8 S9 LL 69 38 B¢

6. LL 69 %8 B& ¥8 6L 8L BE
€L ¥8 L9 69 €8 B¢ S9 B <9
€9 P8 €8 BE LI 66 9T 08 3L
DISVd papoda(g

AJOWINW JHYA

VAUV FOVHOLS AVYHV

VHIV HOVHOLS H1dVIHVA
(WVYD04d DISYE-40-aNd) 0 0

I— VLVJ 66661
L'L9°T'%00¥ V.ILVA 30001

NOILLDJS VLVA 40 LHYLS WHYH 00001

8988
9¥£8%
£¥68%
61508
0L502
88506
¥¥50%
86502
21503
96¥08

SSIppY

8L98¢
9¥E82
£¥283
6L503
04503
38503

96¥0%

AU DISVA SseIppy

256

lity

L

pastasut st 5O00T auy Loy ofivy Arowapy ¢ 2ImB1g

AHOWHANW d34d

VIYY HOVHOIS AVHHV

AOVUOLS TT1dVIEVA

DISVE-40-ANd 0 0
- VLvVQ 66661 0 6V Sv B¢ 961 8L T¢ 08 131

£1°8L°98'T°6T0F VLVA $000T

0 16 6V FF 99 S5 Oy ¥S €9 PP 6 ¥F €S 6F 8y ©S TE 9ET 6 08 08 GIL
LL9°TP00F VILVA 30001 0 9 ¥ S ¥S PP 6V ¥¥ B9 8y 8y TS BE 9ET 6¢ 8T 08 06
NUVINTY SIHL 0 SL %8 S9 L. 69 B8 CE
HAOWHY LON Od €8 €L BL ¥8 BE 69 98 6L L. 69 B8 TE ¥B 6L BL CE
NOLLDJS V1Vd 6L, 89 7€ B TS SL 6L €L ¥8 L9 69 €8 G& S9 I8 99
A0 LYVLIS WAY 00001 89 7L OL 6L 3 ¥8 ©°8 S9 ¥8 €8 3B LI 6¢ 91 08 G
olIsvd DISvd pepooed
KHOWHN 4344
VA9V IOVHOLS AVHYY
VAYY AOVHOLS HTdVIHVA
(NVYD0Ud DISYE-A0-ANI) 0 0
I— VLV 66661
£1°8L'98°1°ST0¥ VY.LV $000T
L°19°T%00% V.LVA %0001

AUVINTY SIHL
AAOWHY LON Od NOLLDJS VLVA 40 LHV.LS WHY 00001

8L98%
9¥e8%
£¥e8e
10903
86508

0LS03
35506
¥¥50%
80505
31503
96¥03

ss2IppY

8L98%
9¥E86
£¥685
10903
36505
0L803
85506

96¥08

Ul DISVH SSIpPY

257

utility

. Push variable storage, array, and free memory areas down —RUN 3700 and press ENTER.
. Remind user to run 3700 first after CLOADing.

. Remind user to run 3800 before CSAVEing.

. First time initialize line count (LN), find last line 19999 (NP), and end-of-BASIC (NE).

. Generate new DATA statement Q bytes long into array Z.

. Push down last line to end of BASIC (NP-NE) plus Q bytes.

. Redefine NEXT address in last line and end to NEXT + Q.

. POKE new line,Z(1 - Q), in at NP to NP+ Q — Q.

. Bump NP by Q, NE by Q, and return for next input.

Figure 4. Program outline

© 0o -1 U Wk

2910 INPUT“CHECK NO.,MONTH, AMOUNT, CATEGORY”;C,M$,A,C1

2919 IFC<O0THENZ2950

2930 PRINT“CHECK NO.:*;C;” DATE:*;M$;” AMOUNT:*;A;” CATEGORY:*;C1
2940 GOSUB3000:REM BUILD DATA STATEMENT AND INSERT

3170 C$ = M$:GOSUB3990: GOSUB3992
Figure 5. String input sample

0 CLS:PRINT“TYPE IN AFTER MERGING-POKE16549,"PEEK(16549)":POKE16548"
PEEK(16548):E = 17129

1S =E:E = PEEK(S + 1)+256 + PEEK(S):IFE>0GOTO1

2 POKE 16549, INT(S/256): POKE16548,S — INT(S/256)+ 256:END

Figure 6. Append subroutine

Before RUN
10000 REM START OF DATA SECTION DO NOT REMOVE THIS REMARK
19999 DATA -1

>RUN (enter)

e O N R R U R g grauy ey

RUN 3700 FIRSTHIRUN 3700 FIRSTI!!
| IF INSERTING NEW DATA STATEMENTS FOR FIRST TIME SINCE CLOAD
HIT BREAK, RUN 3700, THEN RUN IF HAVEN'T ALREADY

258

utility

BEFORE CSAVE!! RUN 3800 AND POKE AS INSTRUCTED

ENTER DATAOR -1,-1,-1,-1TO STOP INPUT
CHECK NO.,DATE (1-12),AMOUNT,CATEGORY? (BREAK)

>RUN 3700 (enter)
>RUN (enter)

HOR R R o ko K R R R K HOR KK K K KR K R K KK K K K K KR R K K KR K K R KR R OHOR K R R R KKK K KR R R e

RUN 3700 FIRST!!! RUN 3700 FIRST!!!
! IF INSERTING NEW DATA STATEMENTS FOR FIRST TIME SINCE CLOAD
HIT BREAK, RUN 3700, THEN RUN IF HAVEN'T ALREADY

BEFORE CSAVE!! RUN 3800 AND POKE AS INSTRUCTED
Bk o R KKK koK R R R R R KR R K K R R R K K R R KK R RO R OR K K KRR R R R K KK R KRR R KR R R R K Kk

ENTER DATA OR -1,-1,-1,-1TO STOP INPUT

CHECK NO.,DATE (1-12),AMOUNT,CATEGORY? 4004,1,67,7 (enter)
ENTER DATA OR -1,-1,~1,-1TO STOP INPUT

CHECK NO.,DATE (1-12),AMOUNT,CATEGORY? 4015,1,56.78,13 (enter)
ENTER DATA OR -1,-1, -1, -1 TO STOP INPUT

CHECK NO.,DATE (1-12),AMOUNT,CATEGORY? - 1,~1,-1,~1 (enter)
IF YOU ARE READY TO CSAVE . FIRST RUN 3800 !!!!

ELSE EDIT OR CONTINUE RUNNING PROGRAM

>RUN 3800 (enter)
BEFORE CSAVE POKE 16633,123:POKE 16634,80

NOW CSAVE
AFTER CSAVE POKE 16633,83:POKE 16634,110

READY

>POKE 16633,123:POKE16634,80 (enter)
>CSAVE“l” (enter)

>READY

>POKE 16633,83:POKE16634,110 (enter)
>LIST 10000-19999

10000 REM START OF DATA SECTION DO NOT REMOVE THIS REMARK
10002 DATA 4004,1,67,7

10004 DATA 4015,1,56.78,13

19999 DATA -1

>RUN (enter)

Figure 7. Sample run

The only other problem occurred when I did a CSAVE of the file. The
program saved past the number of tape revolutions I had CLOADed it
before. I finally turned the TRS-80 off and on, and reloaded the program

259

utility

back in almost the same number of revolutions as the original CLOAD. The
subroutine at line 3800 solved this problem. The CSAVE procedure saves
from the beginning of BASIC (pointer 16648, 16649) to the variable storage
area (pointer 16633, 16634). Subroutine 3800 tells the user what to POKE
into the variable storage pointer before and after the CSAVE. Once the
CSAVE is done, if you are adding more data, POKE as directed by sub-
routine 3800. This moves the variable storage back down in memory, keep-
ing it safe from the new DATA statements,

Other Programming Considerations

The data in the DATA statements could have been edited for errors before
being put into DATA statements and inserted into the BASIC program. For
instance, the month could be tested to see that 0 < month < 12. If not, the
program could return to the input prompt. Figure 5 shows an example of us-
ing a string variable as the input for the month versus an integer. To do this
line 3170 has to be modified. Data going into the file does not have to be in-
put; instead the computer can generate it. If you want the program to do
some intermediate mathematical calculation that might be used some time
later, just send these numbers through the utility and CSAVE the file at the
end of the job. Repetitive data could be entered once, and the TRS-80 would
type those statements over and over,

This utility was written so it could be appended to any program or could
be used as a stand-alone program. If used as a stand-alone program, once the
data is generated and typed, it can be appended to any program needing
that particular data file. I have used the append procedure, Figure 6,
presented by Alan R. Moyer in “Super Graphics,” 80 Microcomputing, Oc-
tober 1980. Just type the BASIC lines in Figure 6 into the program to which
you are appending the data or utility. Type RUN and press ENTER.
CLOAD the appending file. Now POKE the beginning-of-BASIC pointer
(16648, 16649) with the original pointer as directed by the subroutine in
Figure 6.

Program Use

Initialization: If you are going to do DATA statement generation, type
RUN 3700 and press ENTER.

Data entry: Now type RUN and press ENTER. A question asking for in-
put, the input prompt, now comes up. Enter your data. The first time
through the program takes a little more time as the utility is looking for the
last line, line 19999 (NP), and the end (NE). The utility is also initializing the
starting line number. REMark 10000 and line 19999 must not be taken out
of the program as they tell the utility where the data begins and where it
ends. The program will not work without REMark 10000 and line 19999.

260

utility

CSAVE: Typing in —1,-1,-1,—1 and pressing ENTER tells the pro-
gram you are finished with data generation. A reminder to RUN 3800 before
the CSAVE will now come on the screen. Make a note of what to POKE
before and after CSAVE. RUN 3800 and press ENTER anytime before
CSAVE, and after running or editing. Figure 7 shows a sample run.

261

[}

1

2

3

18
19
20
30
2899
2908
2982

2903
2904

29685
2906

2987

2989
2918
2920

29349
2940

2945
2950
2960
2978
3008
3001
3018
3619
3020

3030

3049

3045
3046
3p47
3058
3100
3110
3120
3129
3138

3140
3158

3159
3160

3178

3180

utility

Program Listing. The DATA statement

REM **%*kkdkkkkdk DATA INSERT UTILITY #*#%%kkkhkhkhkhkkdhdhkd

REM SUSAN R. NELSON

REM 3114 KINGS DR.

REM PANAMA CITY,FLA. 32485

DIM Z(80)

REM GO GET INPUT AND UNPACK INTO DATA STATEMENTS

GOSUB 2908
END
REM *#%kkkk*****DATA INSERT SECTION***khhhhkkhhkhk hh k&

REM DATA INSERT SECTION SUSAN R. NELSON 6/17/81
PRINT "hkdkkkhkhhh Rk ko h ok kA ke ok hk ok kA ke k Ak kAR K Ak kAR KRR Kk R KK ARk
*n

PRINT "RUN 3768 FIRST!!! RUN 378@ FIRST!!!"

PRINT "! IF INSERTING NEW DATA STATEMENTS FOR FIRST TIME SINCE C
LOAD"

PRINT "HIT BREAK, RUN 3788, THEN RUN IF HAVEN'T ALREADY"

PRINT :
PRINT "BEFORE CSAVE!! RUN 3808 AND POKE AS INSTRUCTED"
PRINT U Ak h ok ki ki ok k kR Rk AR AR R AR A AR Ak Rk kA Ak Ak kA kR AR AR ARk KRRk K AR A &R
*0
PRINT "ENTER DATA OR -1,-1,~1,-1 TQO STOP INPUT"
INPUT "CHECK NO.,DATE(1-12),AMOUNT,CATEGORY";C,M,A,Cl
IFC <D
THEN
2959
PRINT "CHECK NO.:";C;" DATE:";M;" AMOUNT:";A;" CATEGORY:";Cl
GOSUB 3000:
REM BUILD DATA STATEMENT AND INSERT
GOTO 2989
PRINT "IFf YOU ARE READY TO CSAVE...FIRST RUN 38¢@ 11"
PRINT "ELSE EDIT OR CONTINUE RUNNING PROGRAM"

RETURN
REM ~ ¥****¥&*% DATA STATEMENT INSERT ROUTINE ¥ kkkkikiw
REM SUSAN R. NELSON 6/17/81

IF NP < > 8 GOTO 31648

REM INITIALIZE LINE COUNT,FIND LAST, AND END LN,NP,NE
NX = 17129:

LL = @

NP = NX:

LN = LL:

NX = PEEK(NP) + PEEK(NP + 1) * 256

LL = PEEK(NP + 2) + PEEK{(NP + 3) * 256:
IF LL < > 19999 GOTO 3938

REM NP-LAST LINE ADDRESS (19999 DATA -1)

REM LN-LAST LINE NUMBER BEFORE 19999 >=16088 <19999

REM NE-END OF BASIC PROGRAM

NE = NX + 1

REM START DATA INSERT HERE

REM **#*% GENERATE NEW DATA LINE Q BYTES LONG IN 7() ¥*¥*%
LN = LN + 2

REM LINE NUMBER-LN, LSB,MSB INTO 72(2),2Z2(4)

INT(LN / 256):

LN ~ INT(N * 256):

= L

= N

= 136:

REM DATA TOKEN

32:

REM BLANK

REM BUILD DATA FIELDS

o3
[=2]
i

C$ = STRS(C):
GOSUB 3998:
GOSUB 3992
C$ = STRS(M):
GOSUB 3996:
GOSUB 3992
C$ = STR$(A):

262

GOSUB 3998:

GOSUB 3992
3198 C$ = STRS(CL):

GOSUB 3998:

GOSUB 3994
3191 REM PUT NEXT ADDRESS INTO 7Z(1),%Z(2) =NP+Q
3192 NX = NP + Q:

N = INT(NX / 256):

L = NX - INT(N * 256):

Z{1l) = L:

Z{(2) = N
3194 REM **kx% Z2(1)~Z2(Q) CONTAINS NEW DATA LINE HhkkE
3200 REM kkkxx PUSH DOWN LAST LINE~END Q BYTES *okok k&

3219 FOR L = NE TO NP STEP - 1:
POKE (L + Q), PEEK(L):

NEXT L
3228 REM #**%k% REDEFINE NP,NE TO NP+Q, NE+Q bk
3222 NX = NP + Q
3224 NN = NX:
NX = PEEK(NN + 1) * 256 + PEEK(NN):

3238 IF NX > 0
THEN
NX = NX + Q:
N = INT(NX / 256):
L = NX - INT(N * 256):
POKE NN + 1,N:
POKE NN,L:
GOTO 3224
3250 REM POKE NEW DATA LINE Z() INTO NP TO NP+Q-1
3268 FOR L = 1 TO Q:
POKE NP + L - 1,Z(L):
NEXT L
3278 NP = NP + Q
32880 NE = NE + Q
3298 RETURN
3769 REM **%%*% POINTER PUSH DOWN *#***%
3718 REM RUN 3760 FIRST!!
3728 REM POKE VARIABLE PTR.,ARRAY PTR.,FREE MEM. PTR. DOWN
3738 POKE 16638, PEEK(16638) + 3¢
3740 POKE 16636, PEEK(16636) + 30
3750 POKE 16634, PEEK(16634) + 30
3768 END
3888 REM ***%x%* VAR, PTR PULL BACK,CSAVE!!,&PUSH BACK DOWN **¥*x¥
3862 REM SAVE VAR.PTR., PIND END OF BASIC PROGRAM
3864 REM TELL USER TO POKE 16633,16634 WITH END+2 BEFORE CSAVE!
3806 REM TELL USER TO POKE 16633,16634 WITH SAVED VAR.PTR.

3818 LS = PEEK(16633):
MS = PEEK(16634)
3828 NX = 17129
3838 NP = NX:
NX = PEEK{(NP) + PEEK(NP + 1) * 256:
IF NX > @
THEN
3830
3840 NP = NP + 2:

N
N = INT(NP / 256):
L = NP - INT(N * 256)
385@ PRINT "BEFORE CSAVE POKE 16633,";L;":POKE 16634,";N
3851 PRINT
3860 PRINT "NOW CSAVE"
3878 PRINT "AFTER CSAVE POKE 16633,";LS;":POKE 16634,";MS
3875 NP = @:
REM ZERO OUT FOR INITIALIZATION IN SUB3608
388¢ END
3989 { DATA CONVERSION ROUTINE TO ASCII CHARACTERS
3999 FOR L = 2 TO LEN(CS$):
Q=0+ 1:
TS = MIDS(C$,L,1):
Z(Q) = ASC(TS):
NEXT L: Program continued

263

utility

RETURN
3992 Q9 = Q + 1
2(Q) = 44
RETURN
1COMMA
3994 0 = Q + 1:
2(Q) = 8:
RETURN :
1’}
9998 REM DO NOT REMOVE LINE 10088 AND LINE 19999 USED BY SUB3688
9999 REM k*kkkkkkkhkhkkk k% *THANK YOUR k*hhkhhhh kh khkkhhkkkhhh k& k ke kk
16008 REM START OF DATA SECTION DO NOT REMOVE THIS REMARK
19999 DATA -1

264

APPENDIX

Appendix A
Appendix B

265

APPENDIX A

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose.”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level I1. To run in Level I, follow this procedure:
® Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
® Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent
code made to agree.
® Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model 11l Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
0UT236,0 and OUT236,2.

267

APPENDIX B

Glossary

A

ac input module—I/0O rack module which converts various ac signals origi-
nating in user switches to the appropriate logic level for use within the pro-
Cessor.

ac output module—I/O rack module which converts the logic levels of the
processor to a usable output signal to control a user’s ac load.

access time—the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator——the main register(s) in a microprocessor used for arithmetic,
shifting, logical, and other operations.

accuracy— generally, the quality or freedom from mistake or error; the ex-
tent to which the results of a calculation or a measurement approach the
true value of the actual quantities.

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

active elements—any generators of voltage or current in an impedance net-
work; also known as active components.

adaptor—a device for connecting parts that will not mate; a device designed
to provide a compatible connection between systems or subsystems.

A/D converter—analog to digital converter. See D/A converter.
add with carry—a machine-language instruction in which one operand is
added to another, along with a possible carry from the previous (lower-

order) add.

address—a code that specifies a register, memory location, or other data
source or destination.

268

appendix

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications, generally on large-scale computers.

algorithm—a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—the process of adjusting components of a system for proper
interrelationships, including adjustments and synchronization for the com-
ponents in a system. For the TRS-80, this usually applies to cassette heads
and disk drives.

alphanumerics— refer to the letters of the alphabet and digits of the number
system, specifically omitting the characters of punctuation and syntax.

alternating current—ac. Electric current that reverses direction periodical-
ly, usually many times per second.

ALU— Arithmetic Logic Unit.

Ampere— the unit of electric current in the meter-kilogram-second system of
units; defined in terms of the force of attraction between two parallel cur-
rent conductors; 1 coulomb/second.

Ampere-turn—a unit of magnetomotive force defined as the force of a
closed loop of one turn with a current of one ampere flowing through the
loop.

analog—the representation of a physical variable by another variable in-
sofar as the proportional relationships are the same over some specified
range.

analog input module—an /O rack module which converts an analog signal
from a user device to a digital signal which may be processed by the pro-
Cessor.

analog output module—an 1/O rack module which converts a digital signal
from the processor into an analog output signal for use by a user device.

AND—a Boolean logic function. Two operators are tested and, if both are
true, the answer is true. Truth is indicated by a high bit, or 1 in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately. A bit-by-bit logical operation which pro-
duces a one in the result bit only if both operand bits are ones.

269

appendix

anode——in a semiconductor diode, the terminal toward which electrons
flow from an external circuit; the positive terminal.

APL—-a programming language; a popular and powerful high-level
mathematical language with extensive symbol manipulation.

argumemnt—any of the independent variables accompanying a command.

Arithme tic Logic Unit—ALU. The section of a microprocessor which per-
forms arithmetic functions such as addition or subtraction and logic func-
tions such as ANDing.

arithmetic shift—a type of shift in which an operand is shifted right or left
with the sign bit being extended (right shift) or maintained (left shift).
array—a collection of data items arranged in a meaningful pattern such as
rows and columns which allow the collection and retrieval of data.

ASCII— American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—software that translates operational codes into their binary
equivalents on a statement-for-statement basis.

assembly language—a symbolic computer language that is translated by an
assembler program into machine language, the numeric codes that are
equivalent to microprocessor instructions.

asynchronous—not related through repeating time patterns.
asynchronous shift register—a shift register which does not require a clock.
Register segments are loaded and shifted only at data entry.

B

backup—1) refers to making copies of all software and data stored external-
ly 2) having duplicate hardware available.

base—the starting point for representation of a number in written form,
where numbers are expressed as multiples of powers of the base value.

270

appendix

BASIC—an acronym for Beginner’s All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing—a method of computing in which many of the same types
of jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the com-
puter operator, All the cards are put into the card reader, and the results of
each person’s program are returned later. This is contrasted with interactive
computing.

baud-—1) a unit of data transmission speed equal to the number of code
elements (bits) per second 2) a unit of signaling speed equal to the number of
discrete conditions or signal events per second.

baud rate—a measure of the speed at which serial data is transmitted elec-
tronically, The equivalent of bits per second (bps) in microcomputing,.

benchmark—to test performance against a known standard.

BCD—binary coded decimal. The 4-bit binary notation in which individual
decimal digits (0 through 9) are represented by 4-bit binary numerals; e.g.,
the number 23 is represented by 0010 0011 in the BCD notation.

bias—a dc voltage applied to a transistor control electrode to establish the
desired operating point.

bidirectional bus—a bus structure used for the two-way transmission of
signals, that is, both input and output.

bidirectional printer-—a printer capable of printing both left-to-right and
right-to-left, Data is prestored in a fixed-size buffer.

binary—a number system which uses only 0 and 1 as digits. It is the
equivalent of base 2. Used in microcomputing because it is easy to represent
Is and Os by high and low electrical signals.

binary digit—the two digits, zero and one, used in binary notation, Often
shortened to bit.

binary point—the point, analagous to a decimal point, that separates the in-
teger and fractional portions of a binary mixed number,

271

appendix

bipolar device—a device whose operation depends on the transport of holes
and electrons, usually made of layers of silicon with differing electrical
characteristics.

bi-stable—two-state

bit—an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

bit position—the position of a binary digit within a byte or larger group of
binary digits. Bit positions in the Model I, 11, III, and Color Computer are
numbered from right to left, zero through N. This number corresponds to
the power of two represented.

Boolean algebra—a mathematical system of logic first identified by George
Boole, a 19th century English mathematician. Routines are described by
combinations of ANDs, ORs, XORs, NOTs, and IF-THENs. All computer
functions are based upon these operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. On some machines it is keyed in, and
on others it is in read only memory (ROM). Using this program is called
booting or cold-starting the system.

borrow—one bit subtracted from the next higher bit position.
bps—bits per second.

breakdown—a large, abrupt rise in electric current due to decreased
resistance in a semiconductor device caused by a small increase in voltage.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug—an error in software or hardware.

bump contact—a large area contact used for alloying directly to the
substrate of a chip for mounting or interconnecting purposes.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.

272

appendix

byte—eight bits that are read simultaneously as a single code.

C
CAl—an acronym for Computer Aided Instruction.

card—a specially designed sheet of cardboard with holes punched in specific
columns. The placement of the holes represents machine-readable data.
Also a term referring to a printed circuit board.

card reader—a device for reading information from punched cards.

carrier—a steady signal that can be slightly modified (modulated) con-
tinuously. These modulations can be interpreted as data. In microcom-
puters the technique is used primarily in modern communications and tape
input/output (I/O).

carry—a one bit added to the next higher bit position or to the carry flag.y

carry flag-—a bit in the microprocessor used to record the carry “off the end”
as a result of a machine-language instruction. !

cassette recorder—a magnetic tape recording and playback device for enter-
ing or storing programs.

cathode—in a semiconductor diode, the terminal from which electrons flow
to an external circuit; the negative terminal.

character—a single symbol that is represented inside the computer by a
specific code.

charge—a basic property of elementary particles of matter. The charge,
measured in coulombs, is the algebraic sum of the electric charge of its con-
stituents.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a
predetermined result for the block of data.

chip—the shaped and processed semiconductor die mounted on a substrate
to form a transistor or other semiconductor device.

273

appendix

circuit—a conductor or system of conductors through which an electric cur-
rent may flow.

circuit card—a printed circuit board containing electronic components.

clear— to return a memory to a non-programmed state, usually represented
as 0 or OFF (empty).

clobber—to destroy the contents of memory or a register.

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL-—COmmon Business-Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

Colossus—a British computer used to crack German Enigma codes during
World War II.

common carrier—a communications transmission medium, such as the
Direct Distance Dialing (DDD) network of the Bell System.

compiler—software that will convert a program written in a high-level
language to binary code, on a many-for-one basis.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

complementary functions—two driving point functions whose sum is a
positive constant.

complementary metal oxide semiconductor—CMOS. A signal inverting
device formed by the combination of a p channel with an n channel device
usually connected in series across the power supply.

complementary transistors—two transistors of opposite conductivity (pnp
and npn) in the same functional unit.

274

appendix

computer interface—a device designed for data communication between a
central computer and another unit such as a programmable controller pro-
cessor.

concatenate—to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

conditional jump-—a machine-language instruction that jumps if a specified
flag (or flags) is set or reset.

conductor—a substance, body, or other medium that is suitable to carry an
electric current.

constant—a value that doesn’t change.

control block—a storage area of a microprocessor containing the informa-
tion required for control of a task, function, operation, or quantity of infor-
mation.

coulomb—the unit of electric charge in SI units (International System of
Units); the quantity of electric charge that passes any cross section of a con-
ductor in one second when current is maintained constant at one ampere.

counter—in relay-panel hardware, an electro-mechanical device which can
be wired and preset to control other devices according to the total cycles of
one ON and OFF function. A counter is internal to the processor; i.e., it is
controlled by a user-programmed instruction. A counter instruction has
greater capability than any hardware counter.

CPU-—central processing unit. The circuitry that actually performs the
functions of the instruction set.

CRT—cathode ray tube. In computing this is just the screen the data ap-
pears on. A TV has a CRT.

cue-—refers to positioning the tape on a cassette unit so that it is set up to a
read/write section of tape.

current—the net transfer or electric charge per unit of time by free elec-
trons; 1 ampere = 1 coulomb/second.

275

appendix

current mode logic—CML. Integrated circuit logic in which transistors are
paralleled so as to eliminate current hogging.

cursor—a visual movable pointer used on a CRT by the programmer to in-
dicate where an instruction is to be added to the program. The cursor is also

used during editing functions.

cycle—a specific period of time, marked in the computer by the clock.

D

D)/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

daisy chain—a bus line which interconnects devices for serial operation.
daisy wheel—a printer type which has a splined character wheel.

data—general term for numbers, letters, symbols, and analog quantities
that serve as information for computer processing.

data base—refers to a series of programs each having a different function,
but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a
storage device. Knowledge of operating or programming a computer is not

necessary for a data entry operator.

data link—equipment, especially transmission cables and interface
modules, which permits the transmission of information.

debug—to remove bugs from a program.

decrement—to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

dedicated—in computer terminology, a system set up to perform a single
task.

default—that which is assumed if no specific information is given.

276

appendix

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer,

diagnostic program—a test program to help isolate hardware malfunctions
in the programmable controller and application equipment.

die bond—a process in which chips are joined to a substrate.
differential discriminator—a circuit that passes only pulses whose
amplitudes are between two predetermined values, neither of which are

Zero.

digital —the representation of data in binary code. In microcomputers, a
high electrical signal is a 1 and a low signal is a 0.

digital circuit—an electronic network designed to respond at input voltages
at one level, and similarly, to produce output voltages at one level.

diode—a device with an anode and a cathode which permits current flow in
one direction and inhibits current flow in the other direction.

diode transistor logic—a circuit that uses diodes, transistors, and resistors to
provide logic functions.

direct current—dc. Electric current which flows in only one direction; the
term designates a practically non-pulsating current,

disassembly—remaking an assembly source program from a machine-code
program.

disk—an oxide-coated, circular, flat object, in a variety of sizes and con-
tainers, on which computer data can be stored.

disk controller—an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—DOS. The system software that manipulates the
data to be sent to the disk controller.

displacement—a signed value in machine language used in defining a
memory address.

277

appendix

dividend— the number that is divided by the divisor. In A/B, A is the divi-
dend.

divisor—the number that “goes into” the dividend in a divide operation. In
A/B, B is the divisor.

DMA—direct memory access. A process where the CPU is disabled or
bypassed temporarily and memory is read or written to directly.

documentation—a collection of written instructions necessary to use a piece
of hardware, software, or a system.

domain—a region in a solid within which elementary atomic, molecular,
magnetic, or electric moments are uniformly arrayed.

doping— the addition of impurities to a semiconductor to achieve a desired
characteristic.

dot-matrix printer—instead of each letter having a separate type head (like
a typewriter), a single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
manufacture,

double-dabble—a method of converting from binary to decimal representa-
tion by doubling the leftmost bit, adding the next bit, and continuing until
the rightmost bit has been processed.

downtime—the time when a system is not available for production due to
required maintenance.

driver—a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex—refers to two-way communications taking place independently,
but simultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

278

appendix

E

EAROM-—an acronym for Electrical Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if
necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editors.

electron—-a stable elementary particle with a negative electric charge of
about —1.602 x 10~ 18 coulomb.

emitter-coupled logic—a form of current mode logic in which the emitters
of two transistors are connected to a single current-carrying resistor in a way
that only one transistor conducts at a time.

enhancement mode—operation of a field effect transistor in which no cur-
rent flows when zero gate voltage is applied, and increasing the gate voltage
increases the current,

EQF-—End Of File.

EOL—End Of Line (of text).

EPROM—Erasable Programmable Read Only Memory. A read only
memory in which stored data can be erased by ultraviolet light or other

means and reprogrammed bit-by-bit with appropriate voltage pulses.

Exclusive OR—a bit-by-bit logical operation which produces a one bit in the
result only if one or the other (but not both) operand bits is a one.

execution—the performance of a specific operation such as would be ac-
complished through processing one instruction, a series of instructions, or a

complete program.

execution cycle-—a cycle during which a single instruction of one specific
operation.

execution time—the total time required for the execution to actually occur.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

279

appendix

exponent—the power of two of a floating-point number.

F

feedback—the signal or data fed back to the programmable controller from
a controlled machine or process to denote its response to the command
signal.

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

Fibonacci series—the sequence of number 1, 1, 2, 3, 5, 8, 13, 21, 34,. . . in
which each term is computed by addition of the two previous terms.

field-effect transistor—FET. A transistor in which the resistance of the cur-
rent path from the source to drain is modulated by applying a transverse
electric field between grid or gate electrodes; the electric field varies the
thickness of depletion layers between the gates, thereby reducing the con-
ductance.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

filter—electrical device used to suppress undesirable electrical noise.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flip chip—a tiny semiconductor die having terminations all on one side in
the form of solder pads or bump contacts; after the surface of the chip has
been passivated or otherwise treated, it is flipped over for attaching to a
matching substrate.

flip-flop—a bi-stable device that assumes either of two possible states such
that the transition between the states must be accomplished by electronic
switching.

floating-point number—a standard way of representing any size of number
in computers. Floating-point numbers contain a fractional portion (man-
tissa) and power of two (exponent) in a form similar to scientific notation.

280

appendix

flowcharting—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN—FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.

full duplex—a mode of data transmission that is the equivalent of two
paths—one in each direction simultaneously.

G
game theory—see von Neumann.
garbage-—computer term for useless data.
gate—a circuit that performs a single Boolean function. A circuit having an
output and a multiplicity of inputs, so designed that the output is energized

only when a certain combination of pulses is present at the inputs.

GIGO—Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics—information displayed pictorially as opposed to alphanumerically,
ground—a conducting path, intentional or accidental, between an electric

circuit or equipment and the earth, or some conducting body serving in
place of the earth.

H
H—a suffix for hexadecimal, e.g., 4FFFH.

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

Hall effect—the development of a transverse electric field in a current-
carrying conductor placed in a magnetic field; ordinarily the conductor is
positioned so that the magnetic field is perpendicular to the direction of cur-
rent flow and the electric field is perpendicular to both.

Hall generator—a generator using the Hall effect to give an output voltage
proportional to magnetic field strength.

281

appendix

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Handshaking requires clocking pulses on both ends of the
communications line. Contrast with buffer.

hangup—the computer has ceased processing inexplicably.

hard copy—a printout; any form of printed document such as a ladder
diagram, program listing, paper tape, or punched cards.

hard magnetic—a term describing a metal having a high coercive force
which gives a high magnetic hysteresis; usually a permanent magnetic
material.

hard wired—having a fixed wired program or control system built in by the
manufacturer and not subject to change by programming.

hardware—refers to any physical piece of equipment in a computer system.
hex—hexadecimal.

hexa-dabble— conversion from hexadecimal to decimal by multiplying each
hex digit by sixteen and adding the next hex digit until the last (rightmost)
hex digit has been reached.

hexadecimal—representation of numbers in base sixteen by use of the hex-
adecimal digits 0, 1, 2, 3,4, 5,6,7,8,9,A,B,C,D, E, and F.

high—a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming language which is CPU-independent
and closely resembles English.

high order—see most significant bit.

HIT—acronym for Hash Index Table. A section of the directory on a
TRS-80 disk.

hole—a mobile vacancy having an energy state near the top of the energy
band of a solid; behaves as though it were a positively charged particle.

282

appendix

host computer—the primary computer in a multi-computer or terminal
hookup.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

hysteresis—an oscillator effect wherein a given value of an operating
parameter may result in multiple values of output power or frequency.

IC—integrated circuit.

immediate——addressing mode in which the address of the information that
an operation is supposed to act upon immediately follows the operation
code.

inclusive OR—a bit-by-bit logical operation which produces a one-bit result
if one or the other operand bits, or both is a one.

increment—to increase, usually by one. See decrement.

indexed—addressing mode where the information is addressed by a
specified value, or by the value in a specified register.

indirect—addressing mode in which the address given points to another ad-
dress, and the second address is where the information actually is.

input devices—devices such as limit switches, pressure switches, push but-
tons, etc., that supply data to a programmable controller, These discrete in-
puts are two types: those with common return, and those with individual re-
turns (referred to as isolated inputs). Other inputs include analog devices
and digital encoders.

instruction—a command or order that will cause a computer to perform one
certain prescribed operation.

insulator—a nonconducting material used for supporting or separating con-
ductors to prevent undesired current flow to other objects.

integer variable—a BASIC variable type. It can hold values of — 32,768
through + 32,767 in two-byte two’s complement notation.

283

appendix

integrated circuit—IC. An interconnected array of active and passive
elements integrated with a single semiconductor substrate or deposited on
the substrate and capable of performing at least one electronic circuit func-
tion. See chip.

integrated injection logic—I2L. Integrated circuit logic which uses a simple
and compact bipolar transistor gate structure which makes possible large
scale integration on silicon for logic arrays and other analog and digital ap-
plications.

intelligent terminal-—a terminal with a CPU and a certain amount of
memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface-—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program written in a
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compiler.

interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the
main program continues.

I/O-—acronym for input/output. Refers to the transfer of data.

I/O module—the printed circuit board that is the termination for field wir-
ing of I/0O devices.

1/O rack—a chassis which contains I/O modules.

I/O scan—the time required for the programmable controller processor to
monitor all inputs and control all outputs. The I/0 scan repeats continuously.

isolated I/O module—a module which has each input or output electrically
isolated from every other input or output on that module. That is to say,

each input or output has a separate return wire.

iteration—one pass through a given set of instructions.

284

appendix

]

jack—a socket, usually mounted on a device, which will receive a plug
(generally mounted on a wire).

Josephson effect—the tunneling of electron pairs through a thin insulating
barrier between two superconducting materials.

K
K-—-abbreviation for kilo. In computer terms 1024, in loose terms 1000,
Karnaugh map--a truth table that shows a geometrical pattern of func-

tional relationships for gating configurations; with this map, essential gating
requirements can be recognized in their simplest form.

L

ladder diagrams—an industry standard for representing control logic relay
systerns.

language—a set of symbols and rules for representing and communicating
information (data) among people, or between people and machines.

large scale integration—LSI. Any integrated circuit which has more than
100 equivalent gates manufactured simultaneously on a single slice of

serniconductor material.

latching relay—a relay with 2 separate coils, one of which must be energized
to change the state of the relay; it will remain in either state without power.

leakage current—in general, the undesirable flow of current through or over
the surface of an insulating material or insulator; the alternating current
that passes through a rectifier without being rectified.

leakage flux—magnetic lines of force that go beyond their intended space.

least significant bit-—the rightmost bit in a binary value, representing 2°,

least significant byte—refers to the lowest position digit of a number. The
rightmost byte of a number or character string,.

285

appendix

LIFQ—acronym for Last In First Qut. Most CPUs maintain a “stack” of
memory. The last data pushed onto the stack is the first popped out.

light emitting diode—LED. A semiconductor diode that converts electric
energy efficiently into spontaneous and noncoherent electromagnetic radia-
tion at visible and near infrared wavelengths of electroluminescence at a for-
ward biased pn junction.

light pen—a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

line—in communications, describes cables, telephone lines, etc., over which
data is transmitted to and received from the terminal.

line driver—an integrated circuit specifically designed to transmit digital in-
formation over long lines—that is, extended distances.

line printer—a high-speed printing device that prints an entire line at one
time.

linear circuit— a network in which the parameters of resistance, inductance,
and capacitance are constant with respect to current or voltage, and in
which the voltage or current of sources is independent of or directly propor-
tional to the outputs.

linearity—the relationship that exists between two quantities when a
change in one of them produces a direct proportional change in the other.

location—a storage position in memory.

logic—a means of solving complex problems through the repeated use of
simple functions which define basic concepts. Three basic logic functions are
AND, OR, and NOT.

logic diagram—a drawing which represents the logic functions AND, OR,
NOT, etc.

logic level—the voltage magnitude associated with signal pulses represent-
ing ones and zeroes (1s and 0s) in binary computation.

logical shift—a type of shift in which an operand is shifted right or left, with
a zero filling the vacated bit position.

286

appendix

loop—a set of instructions that executes itself continuously. If the program-
mer has the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter-—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value, the loop is ter-
minated.

low—a logic signal voltage. The computer senses this as a binary 0.

Isb—see least significant bit.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code— refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

magnetoresistor--magnetic field controlled variable resistor.

magnitude—the absolute value, independent of direction.

mainframe— refers to the CPU of a computer. This term is usually confined
to larger computers.

mantissa— the fractional portion of a floating-point number.

matrix—a two-dimensional array of circuit elements, such as wires, diodes,
ete., which can transform a digital code from one type to another.

287

appendix

memory—the hardware that stores data for use by the CPU. Each piece of
data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each cap-
able of storing a tiny electrical charge.

memory module—a processor module consisting of memory storage and
capable of storing a finite number of words (e.g., 4096 words in a 4K
memory module). Storage capacity is usually rounded off and abbreviated
with K representing each 1024 words.

metal oxide semiconductor—MOS. A metal insulator semiconductor struc-
ture in which the insulating layer is an oxide of the substrate material; for a
silicon substrate the insulator is silicon oxide.

micro electronics—refers to circuits built from miniaturized components
and includes integrated circuits.

microprocessor—an electronic computer processor section implemented in
relatively few IC chips (typically LSI) which contain arithmetic, logic,
register, control, and memory functions.

microsecond—pus. One millionth of a second: 1 x 10 —® or 0.000001 second.
millisecond—ps. One thousandth of a second: 10 —2 or 0.001 second.
minuend-—the number from which the subtrahend is subtracted.

mixed number—a number consisting of an integer and fraction as, for ex-
ample, 4.35 or (binary) 1010.1011.

mnemonic—a short, alphanumeric abbreviation used to represent a
machine-language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

modem—MOdulator/DEModulator. An /O device that allows com-
munication over telephone lines,

module—an interchangeable plug-in item containing electronic com-
ponents which may be combined with other interchangeable items to form a
complete unit.

288

appendix

monitor—1) a CRT 2) a short program that displays the contents of registers
and memory locations and allows them to be changed. Monitors can also
allow another program to execute one instruction at a time, saving programs
and disassembling them.

MOS-—see metal oxide semiconductor.

MOSFET-—metal oxide semiconductor field effect transistor.

most significant bit—the leftmost bit in a binary value, representing the
highest-order power of two. In two’s complement notation, this bit is the

sign bit.

most significant byte—the highest-order byte. In the multiple-precision
number A13EF122H, A1H is the most significant byte.

msb—see most significant byte.

multiple-precision numbers—multiple-byte numbers that allow extended
precision.

multiplexing—a method allowing several sets of data to be sent at different
times over the same communication lines, yet all of the data can be used
simultaneously after the final set is received. For example, several LED
displays, each requiring four data lines, can all be written to with only one
group of four data lines. The same concept is used with communication
lines.

multiplicand—the number to be multiplied by the multiplier.

multiplicand register—the register used to hold the multiplicand in a
machine-language multiply.

multiplier—the number that is multiplied against the multiplicand. The
number “on the bottom.”

N

NAND--an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

n-channel—a conduction channel formed by electrons in an n-type semi-
conductor, as in an n-type field-effect transistor.

289

appendix

negation— changing a negative value to a positive value, or vice versa. Tak-
ing the two’s complement by changing all ones to zeros, all zeros to ones, and
adding one.

nesting— putting one loop inside another. Some computers limit the number
of loops that can be nested.

network—a collection of electric elements, such as resistors, coils, capaci-
tors, and sources of energy, connected together to form several interrelated
circuits. A collection of computer terminals interconnected to a host CPU.

noise—extraneous signals; any disturbance which causes interference with
the desired signal or operation.

non-volatile memory—a memory that does not lose its information while its
power supply is turned off.

normalization—converting data to a standard format for processing. In
floating-point format, converting a number so that a significant bit (or hex
digit) is the first bit (or four bits) of the fraction.

NOT—a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
This is the one’s complement,

NPN transistor—a junction transistor having a p-type base between an
n-type emitter and an n-type collector; the emitter should then be negative
with respect to the base and the collector should be positive with respect to
the base.

n-type semiconductor—an extrinsic semiconductor in which the conduction
electron density exceeds the hole density.

0

object code—all of the machine code that is generated by a compiler or
assembler. Once object code is loaded into memory it is called machine
code.

octal—refers to the base 8 number system, using digits 0-7.
octal-dabble—conversion of an octal number to decimal by multiplying by

eight and adding the next octal digit, continuing until the last (rightmost)
digit has been added.

290

appendix

OEM—Original Equipment Manufacturer.

off-line—describes equipment or devices which are not connected to the
communications line.

offset value—a value that can be added to an address. Most addressing
modes allow an offset value.

off-the-shelf-a term referring to software. A generalized program that can

be used by a greater number of computer owners, so that it can be mass pro-
duced and bought off-the-shelf.

Ohm— the unit of resistance of a conductor such that a constant current of
one ampere in it produces a voltage of one volt between its ends.

Ohm’s law—a fundamental rule of electricity; states that the current in an
electric circuit is inversely proportional to the resistance of the circuit and is
directly proportional to the electromotive force in the circuit. In its strictest
sense, Ohm’s law applies only to linear constant-current circuits.

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

on-line operation—operations where the programmable controller is direct-
ly controlling the machine or process.

operands— the numeric values used in the add, subtract, or other operation.

OR—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

oscillation—any effect that varies periodically back and forth between two
values, as in the amplitude of an alternating current.

output—the current, voltage, power, driving force, or information which a
circuit or a device delivers. The terminals or other places where a circuit or
device can deliver energy.

output devices—devices such as solenoids, motor starters, etc., that receive
data from the programmable controller.

overflow—a condition that exists when the result of an add, subtract, or other
arithmetic operation is too large to be held in the number of bits allotted.

291

appendix

overflow flag—a bit in the microprocessor used to record an overflow condi-
tion for machine-language operation.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide—an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

P

padding—filling bit positions to the left with zeros to make a total of eight or
sixteen bits.

page—refers to a 256 (2 to the 8th power) word block of memory. How large
a word depends on the computer. Most micros are eight-bit word machines.
Many chips do special indexed and offset addressing on the page where the
program counter is pointing and/or on the first page of memory.,

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously.

parallel circuit—an electric circuit in which the elements, branches (having
elements in series), or components are connected between two points, with
one of the two ends of each component connected to each point.

parallel operation—type of information transfer whereby all digits of a
word are handled simultaneously.

parallel output—simultaneous availability of two or more bits, channels, or
digits.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even, the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

292

appendix

parity bit—an additional bit added to a memory word to make the sum of
the number of 1s in a word always even or odd as required.

parity check—a check that tests whether the number of 1s in an array of
binary digits is odd or even.

partial product—-the intermediate results of a multiply. At the end, the par-
tial product becomes the whole product.

partial product register—the register used to hold the partial results of a
machine-language multiply.

passivation—growth of an oxide layer on the surface of a semiconductor to
provide electrical stability by isolating the transistor surface from electrical
and chemical conditions in the environment; this reduces reverse-current
leakage, increases breakdown voltage, and raises power dissipation rating.

passive element—an element of an electric circuit that is not the source of
energy, such as a resistor, inductor, or capacitor.

PC—see programmable controller.
PC board—see printed circuit board.

p-channel—a conduction channel formed by holes in a p-type semiconduc-
tor, as in a p-type field effect transistor.

peripheral devices—a generic term for equipment attached to a computer,
such as keyboards, disk drives, cassette tapes, printers, plotters, speech syn-
thesizers.

permeability—a factor, characteristic of a material, that is proportional to
the magnetic induction produced in a material divided by the magnetic field
strength given by the equation:

magnetic induction (gauss)
= magnetizing field (oersteds)

m

permutation—arrangements of things in definite order. Two binary digits
have four permutations: 00, 01, 10, and 11.

PILOT—a simple language for handling English sentences and strings of
alphanumeric characters. Generally used for CAL

293

appendix

PL/1—an acronym for programming language 1. A programming language
used by very large computers. It incorporates most of the better features
from other programming languages. Its power comes from the fact that bits
can be manipulated from the high-level language.

plotter—a device that can draw graphs and curves and is controlled by the
computer through an interface.

port—a single addressable channel used for communications.

P-N junction—a region of transition between p-type emitter and n-type
serniconducting regions in a semiconductor device.

PNP transistor—a junction type transistor having an n-type base between a
p-type emitter and a p-type collector,

positional notation—representation of a number where each digit position
represents an increasingly higher power of the base.

precision—the number of significant digits that a variable or number format
may contain.

print buffer—a portion of memory dedicated to holding the string of
characters to be printed.

printed circuit board—a piece of plastic board with lines of a conductive
material deposited on it to connect the components. The lines act like wires.
These can be manufactured quickly and are easy to assemble the com-
pornents on,

processor—a unit in the programmable controller which scans all the inputs
and outputs in a predetermined order. The processor monitors the status of
the inputs and outputs in response to the user-programmed instructions in
memory, and it energizes or de-energizes outputs as a result of the logical
comparisons made through these instructions.

product—the result of a multiply.

program—a sequence of instructions to be executed by the processor to con-
trol a machine or process.

program panel—a device for inserting, monitoring, and editing a program
in a programmable controller.

294

appendix

program scan—the time required for the programmable controller pro-
cessor to execute all instructions in the program once. The program scan
repeats continuously. The program monitors inputs and controls outputs
through the input and output image tables.

programmable controller—PC. A solid state control system which has a
user-programmable memory for storage of instructions to implement
specific functions such as I/O control logic, timing, counting, arithmetic,
and data manipulation. A PC consists of the central processor, input/output
interface, memory, and programming device which typically uses relay-
equivalent symbols. The PC is purposely designed as an industrial control
system which can perform functions equivalent to a relay panel or a wired
solid state logic control system.

PROM—Programmable Read Only Memory. A memory device that is writ-
ten to once and from then on acts like a ROM.

protocol—a defined means of establishing criteria for receiving and
transmitting data through communication channels.

pseudo code—a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself,

p-type semiconductor—an extrinsic semiconductor in which the hole densi-
ty exceeds the conduction electron density.

punched-card equipment—peripheral devices that enable punching or
reading paper punched cards that hold character or binary data.

Q

quotient—the result of a divide operation.

R

RAM-—acronym for Random Access Memory. An addressable LSI device
used to store information in microscopic flip-flops or capacitors. Each may
be set to an ON or OFF state, representing logical 1 or 0. This type of
memory is volatile, that is to say, memory is lost while power is off, unless
battery backup is used.

295

appendix

read—-to sense the presence of information in some type of storage, which
includes RAM memory, magnetic tape, punched tape, etc.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a fast-access memory location in the microprocessor. Used for
holding intermediate results and for computation in machine language.

relative addressing—an address that is dependent upon where the program
counter is presently pointing,

remainder— the amount of divident remaining after a divide has been com-
pleted.

residue—the amount of dividend remaining, part way through a divide.

resistor-transistor logic—RTL. One of the simplest logic circuits, having
several resistors, a transistor, and a diode.

resolution—a measure of the smallest possible increment of change in the
variable output of a device.

restoring divide-—a divide in which the divisor is restored if the divide “does
not go” for any iteration. A common microcomputer divide technique.

ROM—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

rotate—a type of shift in which data is recirculated right or left back into the
operand from the opposite end.

rounding—the process of truncating bits to the right of a bit position and
adding zero or one to the next higher bit position based on the value to the
right. rounding the binary fraction 1011.1011 to two fractional bits, for ex-
ample, results in 1011.11.

RPG—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

296

appendix

RS-232—an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

rung—a grouping of PC instructions which controls one output. This is
represented as one section of a logic ladder diagram.

S

scaled up—referring to a number which has been multiplied by a scale fac-
tor for processing.

scaling—multiplying a number by a fixed amount so that a fraction can be
processed as an integer value.

scan time—the time necessary to completely execute the entire program-
mable controller program one time.

scientific notation—a standard form for representing any size number by a
mantissa and power of ten.

self-diagnostic—the hardware and firmware within a controller which
allows it to continuously monitor its own status and indicate any fault which
might occur within.

semiconductor-—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and are called semiconductors.

semiconductor device—an electronic device in which the characteristic
distinguishing electronic conduction takes place within a semiconductor.

sensor—a sensing element, a device which senses either the absolute value or
the change in a physical quantity, and converts that change into a useful
signal for an information-gathering system.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. contrast with parallel.

serial operation— type of information transfer within a programmable con-
troller whereby the bits are handled sequentially rather than simultaneous-
ly, as they are in parallel operation. Serial operation is slower than parallel

297

appendix

operation for equivalent clock rates. However, only one channel is required
for serial operation.

series circuit——a circuit in which all parts are connected end to end to pro-
vide a single path for current.

shiftand add—a multiply method in which the multiply is achieved by shift-
ing of and addition of the multiplicand.

shift register—a program, entered by the user into the memory of a pro-
grammable controller, in which the information data (usually single bits) is
shifted one or more positions on a continual basis. There are two types of
shift registers: asynchronous and synchronous.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (—) and 0 is positive (+).

sign extension—extending the sign bit of a two’s complement number to the
left by a duplication.

sign flag—a bit in the microprocessor used to record the sign of the result of a
machine-language operation.

sign-magnitude—a nonstandard way of representing positive and negative
numbers in microcomputers.

signed numbers—numbers that may be either positive or negative.

significant bits—the number of bits in a binary value after leading zeros
have been removed.

significant digit—a digit that contributes to the precision of a number. The
number of significant digits is counted beginning with the digit contributing
the most value, called the most significant digit, and ending with one con-
tributing the least value, called the least significant digit.

silicon controlled rectifier—SCR. A semiconductor rectifier that canbe con-
trolled; it is a pnpn four-layer semiconductor device that normally acts as an
open circuit, but switches rapidly to a conducting state when an appropriate
gate signal is applied to the gate terminal.

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer

298

appendix

simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

sink—a device that drains energy off a system; a device that switches a load
to an absorbing material, such as a ground.

software—refers to the programs that can be run on a computer.

solid state devices (semiconductors)-—electronic components that control
electron flow through solid materials such as crystals; e.g., transistors,
diodes, integrated circuits.

SOS—silicon on sapphire. A semiconductor manufacturing technology in
which metal oxide semiconductor devices are constructed in a thin single-
crystal silicon film grown on an electrically insulating synthetic sapphire
substrate.

source program— the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

special purpose logic—proprietary features of a programmable controller
which allow it to perform logic not normally found in relay ladder logic.

SPOOL—acronym for Simultaneous Peripheral Output, On-Line. Used to
overlap processing, typically, with printing.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

start-up— the time between equipment installation and the full operation of
the system.

state—the logic 0 or 1 condition in programmable controller memory or ata
circuit’s input or output.

status register—the register that contains the status flags set and tested by
the CPU operations.

stepper motor——a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines

the tracks on a disk.

storage—see memory.

299

appendix

strip printer—a peripheral device used with a programmable controller to
provide a hard copy of process numbers, status, and functions.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once, Similar to
a macro.

substrate—the physical material on which a microcircuit is fabricated; used
primarily for mechanical support and insulating purposes; however, semicon-
ductor and ferrite substrates may also provide useful electric functions.

subtract with carry—a machine-language instruction in which one operand
is subtracted from another, along with a possible borrow from the next
lower byte.

subtrahend—the number that is subtracted from the minuend.

successive addition—a multiplication method in which the multiplicand is
added a number of times equal to the multiplier to find the product.

surge— a transient variation in the current and/or potential at a point in the
circuit.

synchronous shift register—shift register which uses a clock for timing of a
system operation and where only one state change per clock pulse occurs.

syntax—the term is used exactly as it is used in English composition. Every
language has its own syntax,

system—a collection of units combined to work as a larger integrated unit
having the capabilities of all the separate units,

system software—software that the computer must have loaded and run-
ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

300

appendix

tape reader—a unit which is capable of sensing data from punched tape.

TeletypeTM —a peripheral electromechanical device for entering or output-
ting a program or data in either a punched paper tape or printed format.

termination—1) the load connected to the output end of a transmission line
2) the provisions for ending a transmission line and connecting to a bus bar
or other terminating device.

text editor—see word processor.

thumbwheel switch—a rotating numeric switch used to input numeric in-
formation to a controller,

timer—in relay-panel hardware, an electromechanical device which can be
wired and preset to control the operating interval of other devices. In the
programmable controller a timer is internal to the processor, which is to say
it is controlled by a user-programmed instruction. A timer instruction has
greater capability than any hardware timer. Therefore, programmable con-
troller applications do not require hardware timers.

time sharing—refers to systems which allow several people to use the com-
puter at the same time.

track—a concentric area on a disk where data is stored in microscopic mag-
netized areas.

transducer—a device used to convert physical parameters, such as
temperature, pressure, and weight into electrical signals.

translator package—a computer program which allows a user program (in
binary) to be converted into a usable form for computer manipulation.

transistor—an active component of an electronic circuit consisting of a small
block of semiconducting material to which at least three electrical contacts
are made, usually two closely spaced rectifying contacts and one ohmic
(non-rectifying) contact; it may be used as an amplifier, detector, or switch.

transistor-transistor logic—TTL. A logic circuit containing two transistors,
for driving large output capacitances at high speed. A family of integrated
circuit logic. (Usually 5 volts is high or 1 and 0 volts is low or 0; 5V =1,
0V =0).

301

appendix

TriacTM—a General Electric trademark for a gate controlled semicondue-
tor switch designed for alternating current power control; with phase con-
trol of the gatesignal, load current can be varied over a range from 5 percent
to 95 percent of full power.

truncation—the process of dropping bits to the right of a bit position. Trun-
cating the binary fraction 1011.1011 to a number with fraction of two bits,

for example, results in 1011.10.

truth table—a table defining the results for several different variables and
containing all possible states of the variables.

TTL—see transistor-transistor logic.
TTY—an abbreviation for Teletype.

two’s complement—a standard way of representing positive and negative
numbers in microcomputers.

U

unsigned numbers—numbers that may be only positive; absolute numbers.

utility—a program designed to aid the programmer in developing other soft-
ware.

UV erasable PROM~—an ultraviolet erasable PROM is a programmable
read-only memory which can be cleared (set to 0) by exposure to intense
ultraviolet light. After being cleared, it may be reprogrammed.

v

variable—a labeled entity that can take on any value.

volatile memory—a memory that loses its information if the power is re-
moved from it,

volt—the unit of potential difference or electromotive force in the meter-
kilogram-second system, equal to the potential difference between two
points for which 1 coulomb of electricity will do 1 joule of work in going
from one point to the other.

302

appendix

voltage—potential difference or electromotive force capable of producing a
current; measured in volts.

voltage drop—the voltage developed across a component or a conductor by
the flow of current through the resistance or impedance of the component or
conductor.

von Neumann, John (1903-1957) —Mathemetician. He put the concept of
games, winning strategy, and different types of games into mathematical

formulae. He also advanced the concept of storing the program in memory
as opposed to having it on tape.

w

weighted value—the numerical value assigned to any single bit as a function
of its position in the code word.

word—a grouping or a number of bits in a sequence that is treated as a unit
and is stored in one memory location. If the CPU works with 8 bits, then the
word length is 8 bits. Common word sizes are 4, 8, 12, 16, and 32. Some are
as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X
XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but

answer is high (1) if and only if one line is high.

Z

zero flag—a bit in the microprocessor used to record the zero/non-zero
status of the result of a machine-language instruction.

zero page—refers to the first page of memory.

303

INDEX

305

Address bus, 198

Address decoder, 142

Address pins, 132

AND function, 190

AND gates, 198

AND statement, 86

Animation, simple, 113
program listings, 114~122

Array(s), 10, 11, 85, 211, 254, 255
chip's memory, 132
multi-dimensional, 184

ASCII, 191

ASCH character(s), 192, 195, 196

ASCII character set, 191, 196

ASCII code, 195

ASCII format, 245

ASCIH value, 195

Assembler, 143

Assemnbly-language command, 86

Assembly-language listing, 139

Attendance data on students,
program description, 35-39
program listing, 4051

INDEX

Barden, William, Jr., Programming Techniques for Level 1

BASIC, 111
Bar graph, 218
BASIC, 111, 197, 203, 239, 247, 255, 260
memory sort in, 12
BASIC commands, 227

BASIC program(s), 143, 190, 212, 227, 245, 247, 253, 255,

260
BASIC programming, 140
BASIC statemnent, 255
BASIC SYSTEM utility, 131
BIT (assembly-language command), 86
Bits, 190, 198, 253
address, 138
high-order, 136-137
lowest significant, 202
Bit set/reset capability, 137
RBit set/reset feature, 141-142
Blinking cursor subroutine, 112
Book indexing,
program deseription, 184185
program listing, 186
BREAK key, 12, 197
Buffer(s), 138, 237, 238
bus, 142
Byte(s), 86, 143, 227, 230, 235, 236, 239, 240
most significant, 255
Cassette 1/O, 167
Cassette tapes, indexing,
program deseription, 235-241
program listing, 242-244
Checksum, 86, 236, 238, 239, 240
Chip(s), 136, 137, 138, 142, 143, 203
Chip select line, 138

307

Chip select pin, 131, 132

CHR$ command, 105

CHRS$ numbers, 108

CLEAR key, 113, 237

CLOAD, 227, 246, 253, 258, 260

Compu-Sketch, description of, 111-113
program listings, 114-122

Constant, for exponential smoothing, 3-4

CPU, 126

CPU registers, 195

CRT, 189, 227

CSAVE, 246, 253, 258, 260, 261

C-30 tapes, 167

Darlington pair, 134

DATA, 184

Data bus, 196, 200, 201, 202

Data files, generating and typing,
program description, 253-261
prograrm listing, 262-264

Data line(s), 131, 132, 184

Data pins, 131

DATA-READ statements, 111

DATA statement(s), 125, 253, 254, 255, 260

Data storage, 229

Data tape(s), 167, 169, 172

Device control block (DCB), 192

Dice-like distribution, 219

DIM statements, 168

DIMensioned statements, 10

Diodes, 136

DIP switches, 198, 200

Discrete logic, 138

Disk BASIC, 140, 245

Disk controller, 138

Disk operating system, 102

Disk Operating System (DOS), 229

DOS, 228, 229, 230, 231

Down-arrow key, 189

EDTASM, 140, 143, 144

80 Microcomputing, 111, 140, 141, 157, 191, 253, 160

Electric Penecil, 192, 227, 229

EPROMSs, 2708, 131

Epsom MX-80 printer, 246

Error codes, 227

Expansion interface, 126, 189

Expenses, keeping track of,
program description, 165-172
program listings, 173-183

Exponential smoothing, 3
program description, 3-5
program listing, 6-9
variables required, 3

FOR-NEXT loop, 92, 222

Forecasting,
definition, 3
moving-average, 3
program description, 3-5

index

program listing, 6-9 Lowercase character(s), 194, 202
Flip-flop, 202 Lowercase output, 194
Gates, 200, 201 Lowercase shifting, 192
Geomelric progression, 3 LPRINT{(s), 185, 191, 192, 197, 246
Graphics, ereating, 111-113 Machine code, 230
program listings, 114-122 Machine-code program, 133
Graphics, random distribution, description of, 218-224 Machine language, 203, 227, 229
program listing, 225-226 Machine-language instructions, 231
Graphics capabilities on the Model 111, 92 Machine-language program, 192, 227, 229
Graphics character, 111, 112 Magazine index,
Graphics code(s), 108, 111 program description, 157-158
builtinto Level 11, 105 program listing, 159-164
program description, 105-108 Memory printer, 195
program listings, 109-110 Microprocessor-based devices, burning programs for, 131
relationship to binary code, 105-106 Model 1, 36, 189
Graphics code number, TRS-80, 106 48K, 35
Graphics displays, 218 Model 1 Level 1l manual, 246
Grouping program, description of, 184-185 Maodel 111, 36
program listing, 186 48K, 35
Handshaking, 191 Money, keeping track of,
Hard-copy printout capability for TRS-80, 191-203 program description, 165-172
program listings, 204-207 program listings, 173-183
Hardware interface, 198 Moving-average forecast, 3
Hex code format, 141 NEWDOS 80, 36
Hex number, 141 NEWDOS +, 227
High-level language programs, 227 NEWDOS 2 1, 36
IBM, 131 Normal distribution, 222
IBM code, 192, 195 Numeric keypad modification, 125-130
IBM Selectric, 196 Output, 136, 138, 194, 196, 198, 201, 202
IBM Selectric drive program, 203 lowercase, 194
Indexing, uppercase, 194
program descriptions, 157-158, 184-185, 235-241 Page formatting BASIC program listings,
program listings, 159-164, 186, 242-244 program description, 245-248
INKEYS, 86 program listing, 249-252
INKEYS function, 112 PEEK, 86
INP statement, 189 PEEK value, 52
Input, 136, 138, 169, 171, 190, 198, 200, 201, 260 Photographic proof sheets, indexing,
INPUTY, 253 program description, 184--185
INPUT statement, 86 program listing, 186
Intel component data catalog, 137 POKE(s), 36, 52, 112, 192, 197, 260, 261
Interface, 196 Port(s), 136, 138
Internal logic cireuits, 191 10, 138
1/O data files, generating and typing, output, 137. 138
program description, 253-261 RS-232, 138
program listing, 262-264 screen printer, 188
110 files, 254 Port address, 198
1O functions, 138 PRINT @, 92, 108
1/O routines, 140 PRINT statement(s), 85, 185
110 Selectrics, 181 Printer, 138
Joystick, use with TRS-80, 189-190 Programming Techniques for Level 11 BASIC (Barden), 111
Klingon(s), 189, 218, 222, 224 PROM(s), 140, 141, 142, 143, 144, 191
Level 11 BASIC, 140, 192 program for storing TRS-80 utilities, 131145
Level 1l machines, 192 program listings, 146-153
Level Il manual, 185, 229 PROM card, 131
Level Il program, 184 Pseudo-ops, 237
Lecture notes, cross-referencing, Radio Shack, 93, 125, 191, 203, 218, 236, 238, 246
program description, 184-185 Radio Shack’s Editor Assembler, 236
program listing, 186 Radio Shack Els, 131
LINE INPUT # command, 248 Radio Shack store, 135
LLIST(s), 191, 192, 197 Radio Shack TRS-80, see TRS-80
LMOFFSET, how to use, 227-231 RAM, 140, 192
LOAD(s), 227, 229, 246 RAM chip, statie, 131
LOAD command, 231 RANDOM distribution, 218

308

Random distribution graphics,
program description, 218-224
program listing, 225-226

RANDOM statement(s), 218, 219, 221, 222, 224

READ command, 253

READ/DATA statements, 108

READY, 192

Reed switches, 191

Registration of voters,
program description, 10-12
program listing, 13-32

REMark statements, 10, 86

Retrospective simulation, 4

ROM, 192

ROM BASIC, 105

RS$232 Electric Pencil, 191

SAVE, 227, 246, 248

Scientific computational files, generating and typing,

program description, 253-261
program listing, 262-264
Selectric, 192, 194, 198, 200
interfacing to TRS-80, 191, 198, 200-203
program deseription, 192, 194-198
program listings, 204-207
Selectric code, 195, 196, 200
Selectric correspondence code, 191
741.585, 208
Slot machine,
program description, 92-93
program listing, 94-102
Software driver, 191
Solenoid(s), 198, 200, 201, 202
Sort(s),
bubble, 211, 212
exchange, 211, 212
program description, 211-212
program listing, 213-217
tree, 211-212
use with mailing list, 211
Space mission game,
program description, 85-86
program listing, 87-91
Stack, 142, 196, 239
Stack pointer, 194, 198
Stick-80, 189, 190
String(s), 85, 185, 246
dummy, 112
String characters, 168
String comparison, 184
String space, 184
String storage, 168
Student class schedules,
program descriptions, 35-39, 52-55
program lsitings, 40-51, 56-81
Subscripts, 211
SYSTEM, 140
SYSTEM tape(s), 235, 240
T-BUG, 143

index

TRS-80(s), 126, 136, 138, 142, 157, 185, 189, 194, 218, 227,

239, 246, 248, 253, 255, 258, 260
interfacing to the S-100 bus, 144
Level 11, 105, 235, 236
Model I, 111, 125, 245

Model III Level 11, 16K, 92, 125
numeric keypad on, 125
16K, 4
16K Level 11, 165
16X to 48K, 157
TRS-80 Microcomputing News, The, 246
TRS-80 Video Display Worksheet, 107
TRSDOS, 141, 247
TRSDOS manual, 245
TRSDOS 2.3, 36
2708, 136
Uppercase character(s), 194, 196, 202
Uppercase letters, 192
Uppercase output, 194
Uppercase shifting, 192
Variable, 112
Wire-wrap pins, 144
Wire-wrap techniques, 144
X-coordinates, 111
Y-coordinates, 111
Zener diodes, 135, 136

INDEX COMPILED BY NAN MCCARTHY

309

— WAYNE GREEN BOOKS

PCIOOPH Encyclopedia for The TRS-80*—A ten-volume series to
R 5 be issued every two months starting July 1981. The
Encyclopedia contains the most up-to-date information
on how to use your TRS-80*.

40 Computer Games from Kilobaud Microcomputing-—
Games in nine different categories for large and small
systems, including a section on calculator games.

Understanding and Programming Microcomputers—
A well-structured introductory text on the hardware and
software aspects of microcomputing.

Some of the Best from Kilobaud Microcomputing—
A collection of articles focusing on programming tech-
niques and hardcore hardware construction projects.

How to Build a Microcomputer and Really Understand
It—A technical manual and programming guide that
takes the hobbyist step-by-step through the design, con-
struction, testing and debugging of a complete

oo e microcomputer system (6502 chip).

2LECTRONICS
FOR ELECTRO

Tools and Techniques for Electronics—Describes the
safe and correct ways to use basic and specialized tools
for electronic projects as well as specialized metal work-
~ ing tools and the chemical aids which are used in repair
.- shops.

Annotated BASIC—A New Technique for Neophytes—Two volumes ex-
plaining the complexities of modern BASIC, including complete TRS-80*
Level IT BASIC programs. Each program is annotated and flowcharted to
explain the workings of the program. By following the programs and an-
notation, you can develop new techniques to use in your own programs—or
in modifying commercial programs for your specific use.

Kilobaud Klassroom—A Practical Course in Digital Electronics.— This
popular series, first published in Kilobaud Microcomputing, combines
theory with practice. It starts out with very simple electronics projects and,
by the end of the course, you'll construct your own working microcomputer!

The New Weather Satellite Handbook—This handbook contains all the in-
formation on the most sophisticated spacecraft now in orbit. It is written to
serve both the experienced amateur satellite enthusiast and the newcomer.
The book is an introduction to satellite watching that tells you how to con-
struct a complete ground station. An entire chapter is devoted to microcom-
puters and the Weather Satellite Station.

To order call Toll Free 800-258-5473.

*TRS-80 is 2 trademark of Radio Shack Division of Tandy Corp.

The real value of your com-
puter lies in your ability to use it.
The capabilities of the TRS-80"
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books.

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

