ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80*

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

- VOLUME J

*Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

AN

——

—

N

PETERBOROUGH NH 03458

VOLUME 5

aaaaaaaaaaaaaaaaaaaaa

ENCYCLOPEDIA
for the TRS-80*

FIRST EDITION
FIRST PRINTING JANUARY 1982
Copyright © 1982 by Wayne Green Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey and Katherine Putnam
Production Manager Margaret Baker
Technical Assistance by Jake Commander
and Kenniston W. Lord Jr., CDP
Illustrations by Howard Happ
Typeset by Karen Stewart

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—-a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green............... it v

BUSINESS

Hi Ho Silver!

James]. Conroy.. i 3
Accountant’s Aid

James H. Sheats. i, 10

EDUCATION

Vocabulary Builder

Roger Zimmerman.t 15
Numerical Expression Input in Level 11

Rodney Schreiner. i, 21
Pre-School Math

Donald Hastings.o i, 28

GAMES

A Day at the Races

James A. Swarts. 37
Star Dreck

Delton T, HOrn. i 46

GRAPHICS

Slide Show
TomVanDanElzen........ 0., 63

Graphs, Plus
Allan S. Joffe W3KBM i 74

HARDWARE

Interrupt Mode 1.5
David Haan. i, 85

vil

contents

Reverse Video Hardware Modification

Dan Placido. 92
HOME APPLICATIONS
Team Stats

Robert J. Mot Jr. . oo e et 99
Loans—Do You Really Know the Cost of Yours?

TomVanDanElzen. neeaneen, 108
INTERFACE
A Home-Brew Interface

Co B Vinee o 127
TUTORIAL
A Handle on Programming: Store and Recall

Allan S. Joffe W3KBM. 147
Prime Up Your 80

Jim Mellander. 153
The Z-80’s Hidden Abilities

Joe Sewell. e 159
UTILITY
KBFIX Your BASIC Programs

John W. Blattner. 165
File Name

Theodore]. LeSarge. i, 170
Macros: Let Your Micro Do the Work

John R.Hind. 174

APPENDICES

Appendix A. 203
Appendix B. 204
INDEX . 243

vlii

Encyclopedia
Y Lc?ader””

The editors of Wayne Green Books want to help you use the programs in
your Encyclopedia for the TRS-80*. So to help you maximize the use of your
microcomputing time, we created Encyclopedia Loader.™

By a special arrangement with Instant Software™, Wayne Green Books
can now provide you with selected programs contained in each volume of
the Encyclopedia for the TRS-80 on a special series of cassettes called
Encyclopedia Loader™. Your encyclopedia provides the essential documen-
tation but now you’ll be able to load the programs instantly. Each of the ten
volumes of the Encyclopedia will have a loader available.

With Encyclopedia Loader™ you’ll save hours of keyboard time and
eliminate the aggravating search for typos. Encyclopedia Loader™ for
Volume 5 will contain the programs in the following articles:

Hi Ho Silver! Team Stats

Accountant’s Aid Loans—Do You Really Know the Cost of Yours?
Veocabulary Builder A Home-Brew Interface

Numerical Expression Input in Level II A Handle on Programming: Store and Recall
Pre-School Math Prime Up Your 80

Star Dreck The Z-80’s Hidden Abilities

Slide Show KBFIX Your BASIC Programs

Interrupt Mode 1.5 File Name

Reverse Video Hardware Modification Macros: Let Your Micro Do the Work
Encyclopedia Loader™ for Volume 1 FL8001 $14.95
Encyclopedia Loader™ for Volume 2 EL8002 $14.95
Encyclopedia Loader™ for Volume 3 EL8003 $14.95
Encyclopedia Loader™ for Volume 4 EL8004 $14.95
Encyclopedia Loader™ for Volume 5 EL8005 $14.95

(Please add $1.50 per package for postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call 1-800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp

BUSINESS

Hi Ho Silver!
Accountant’s Aid

BUSINESS

Hi Ho Silver!

by James J. Conroy

Our turbulent economy causes speculators around the world to invest
vast sums in gems, gold, and silver. This has resulted in a phenomenal
rise (and sometimes fall) in the prices of these commodities. How does a sup-
plier of precious metals keep his or her extensive stock priced to maintain a
profit margin? One solution is to use a microcomputer to calculate and print
up-to-date price sheets.

Worth It's Weight in Silver

When the price of silver hit an astounding 50 dollars an ounce, my
employer, who supplies silver stock to hobbyists, craftsmen, and silver-
smiths, was well prepared. While other jewelers and supply houses hesitated
to quote prices on itemns and even refused to sell their silver stock, we were
able to compute and print daily price sheets for our inventory by using our
TRS-80 microcomputer.

Before the price boom in silver hit, I had been shown a fragment of a
BASIC program which computed the cost of measured sheets of silver by
multiplying the weight of each sheet (in troy ounces) by the cost per ounce of
silver. (See Figure 1.) The program core did accomplish its intended pur-
pose. (See Program Listing 1.) It read a data statement of weights and
multiplied them by a dollar value which was input by the operator. It lacked
formatted output, however, and it became my task to finish the job. Not
wishing to redesign the program, I added the input and output formatting
needed to prompt the operator to input information and have the computer
print out the sheet size of the silver, its gauge (thickness), and its computed
cost. Then a small problem arose.

More and More

When it was clear that the program was effective, the suggestion was
made to include our silver wire stock in the computations. We decided that
what we really needed was a comprehensive price sheet to give to customers.
To accomplish this, I added more data statements, and soon we were calcu-
lating the prices of 53 different categories of silver. I found that by creating
module routines (lines 180-470, 610-660, 710-770, and 820-880) to handle
each category of silver, I had dispersed my data statements within the pro-
gram. Because of this, I could read the data statements as they were called
for. This eliminated the need for any RESTORE statements. You, however,
might elect to list all data at the end of the program and read it into an array
to be accessed when needed.

business

Wire is priced by the foot.
ROUND Available in the following sizes and shapes.

20ga. 12pa.
18ga. 10ga. L ‘ .
16ga. 8ga.

14ga.

1/2 ROUND
16ga. 10ga.

i4ga. 8ga. [' -
12ga

SQUARE WIRE

18ga. 12ga. -
16ga. 10ga. | i .

14ga.

Available in thres sizes,
Il iran

P T
GGG WONGWIIG DauGes.,

28ga. 26ga. 24ga.
22ga. 20ga. 18ga
16ga. 14ga. 12ga.

Figure 1. A section from a page in our catalog, Sterling silver stock is manufactured to standard
weights, gauges (thickness), and purity. The purity is called “fineness.” 99 % pure is 1000 fine.
Sterling silver is rated 925 (or 92.5% pure silver). Silver is measured in troy ounces.

GILMAN’'S LAPIDARY SUPPLY—CURRENT SILVER PRICE LIST

DATE: 2—1-—1880 CURRENT COST OF SILVER: $50.00 PER OUNCE
SHEET SILVER

Price Dimension Gauge
$20.40 1x6 28
$25.56 1x6 26
$31.98 1x86 24
$41.58 1x6 22
$51.75 1x6 20
$66.99 1x6 18
$83.07 1x6 16

$104.46 1x86 14

%199 78 1v¥R 19
$40.80 2x6 28
$51.12 2x6 26
$63.96 2% 6 24
$83.16 2x6 22

business

$103.50 2x6 20
$133.99 2x6 18
$166.14 2%x6 16
$208.92 2x6 14
$259.50 2%x8 12

$61.20 3x6 28

$76.68 3x6 26

$95.94 3x6 24
$124.74 3x6 22
$155.25 3x6 20
$200.97 3x6 18
$249.21 3x6 16
$313.38 3x6 14
$389.25 3x6 12

ROUND WIRE

Price per Foot Gauge

$107.00 4
$67.50 6
$42.60 8
$26.80 10
$16.85 12
$10.60 14

$6.65 16
$4.20 18
$2.65 20
$1.65 22
$1.05 24
HALF ROUND WIRE

Price per Foot Gauge

$82.50 2
$47.00 4
$34.00 6
$21.20 8
$14.00 10
$8.40 12
$5.30 14
$3.05 16
SQUARE WIRE

Price per Foot Gauge

$87.50 6
$54.50 8
$34.10 10 Example continued

5

business

$21.45 12
$13.45 14
$8.45 16
$5.35 18

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Example 1. Sample price sheet

This program allows you to modify your prices as quickly as the world
market fluctuates. In keeping with normal, prudent business practices, we
try to maintain some stability in our selling prices. But, if the precarious
metal market shifts, we are ready.

This program’s concept isn’t limited to silver. We have used a similar con-
cept to compute the retail and wholesale prices of some of our jewelry find-
ings. The same theory applies to evaluating any stock item in gold,
platinum, or other precious metal. For the investor, craftsman, or jeweler,
the microcomputer could be a silent watchdog ensuring an adequate return
on investments.

1@
28

30

business

Program Listing 1. The original program

INPUT P
FORA = 1 TO 9:
READ B(A):
NEXT A
FORA = 1 TO 9:
LET C(A) = B(A) * 6:
NEXT A
J =30
FORA =1 TO 9
J=4J -2
G(A) = C(a) * P
LPRINT J;G(A)
NEXT A

Encyclopedia

DATA .0680,.0852,.1066,,1386,.1725,.2233,.2769,.3482,.4325

END

Program Listing 2. Revised silver price sheet program

Y SILVER PRICE SHEET
29 BY JAMES J. CONROY
4 7 EAST GARRISON STREET
v BETHLEHEM PA LB8OLS
56 CLS

68 PRINT "INPUT THE CURRENT PRICE OF SILVER (PER 0Z.)":

INPUT P

7¢ PRINT "INPUT DATE (M,D,Y";:

INPUT M:
INPUT D:
INPUT Y:

80 PRINT "HOW MANY COPIES DO YOU WANT?";:

INPUT 2

99 FOR V = 1 TO 2

11¢ LPRINT "

LIST -"

LPRINT TAB(6) "~GILMANS LAPIDARY SUPPLY -~ CURRENT SILVER PRICE

126 LPRINT :

LPRINT :
LPRINT

139 LPRINT :DATE:";M;"*";D;”—";Y;:

LPRINT CURRENT COST OF SILVER:";:
LPRINT USING "$S##.44";P;:
LPRINT " PER OUNCE"

146 LPRINT :

LPRINT :

LPRINT
15¢ IF V > 1

THEN

GOTO 258

160

t THIS READS WEIGHTS {(ONE SQUARE INCH OF STERLING SILVER)
179

]

AND ASSIGNS VALUES FOR EACH SHEET SIZE

188 FOR A =1 TO 9 :

READ B(A):
NEXT A

198 FORA =1 1T0 9 :

LET C(A) = B(A) * 6:

Program continued

business

NEXT A
2868 FORA =1 TO 9 :
LET X(A) = B(A)
NEXT A
216 FORA =1 T09 :
LET D(A) = B(A) * 18:
NEXT A
2286 FORA =1 TO 9 :
LET E(A) = X(A) * P:
NEXT A
230 FORA =1 T0 9 :
LET F(A) = C(A) * p:
NEXT A
248 FOR A =1 T0 9 :
LET G(A) = D(A) * P:
NEXT A
258 GOSUB 530
268 H 1:
I 6:
J 38
278 FOR A =1 T0 9
LOY J bl J - 2
299 F(A) = INT(F(A) * 100 + .5) / 108
300 REM TEN SPACES BETWEEN DIMENSION AND GAUGE
310 LPRINT USING "$5&%.8%";F(A);:
LPRINT TAB(16)H;"X";I;" " J
320 NEXT A
338 GOSUB 5489
340 J 30
H 2:
I 6
356 FOR A =1 TO 9
360 J=J -2
378 E(A) = INT(E(A) * 188 + .5) / 100
380 LPRINT USING "$$#8,88";E(A);:
LPRINT TAB(16)H;"X%;I;* "
398 NEXT A
400 GOSUB 548
418 J = 38:

*
—
N
.

[)

[

420
436 J=J -2
440 G(A) = INT(G(A) * 166 + .5) / 160
458 LPRINT USING "$$##.$#";G(A)s:

LPRINT TAB(16) H;"X";I;" ";J
469 NEXT A
470 DATA .0680,.0852,.1086,.1396,.1725,.2233,,.2769,.3482,.4325
480 LPRINT
496 LPRINT

Trze
588 LPRINT CHRS
5180 LPRINT :
LPRINT
528 GOTO 560
538 LPRINT " COST"; TAB(16) "DIMENSION GAUGE"

L] - e e
840 LPRINT " o o e e e G e Ee e se e e e e e e e

558 RETURN
560

578 LpRINT
580 LPRINT
596 LPRINT
LPRINT :
LPRINT
LPRINT :
IFV>1
6

Fer we

PRICE PER FOOT GAUGE":

THEN

GOTO 610

608

610
620
630
640
650

660
676

680

690
700

710

720
738

748
758
768

77¢
786

798
809
81@

820

830
840
850

860
870
880
890
0@
91e
920
93¢

9490
950

business

FOR W = @ TO 10:

READ R(W):

NEXT W
G =2
FOR A = § TO 10

C =P * R(A):

G=G+ 2

LPRINT USING "SS##.#%";C;:
LPRINT TAB(25) G

NEXT A
DATA 2.14,1. 35,.825,.536,.337,.212,.133'.ﬂ84,.053,.033,.ﬂ21
LPRINT :
LPRINT
LPRINT 'HALF ROUND WIRE"
LPRINT Meeeommc oo oo o o o "
LPRINT :
LPRINT

LPRINT "PRICE PER FOOT GAUGE" :
LPRINT

IFV >1

THEN

GOTO 720
FOR W= 0 TO 7:

READ H(W):

NEXT W

FOR A =8 TO 7
C =P * H(A):
G=G+ 2
LPRINT USING "$S##.#¢";Cy:
LPRINT TAB(25) G
NEXT A
DATA 1.65,.940,.680,.424,.280,.168,.106,.061
LPRINT :
LPRINT
LPRINT "SQUARE WIRE"
LPRINT "=
LPRINT :
LPRINT
LPRINT "PRICE PER FOOT GAUGE":
LPRINT
IFVD>1
THEN
GOTO 838
FOR W= 0 TO 6:
READ S(W):
NEXT W
G =4
FOR A =0 TO 6
C =P * S(A):
G =G+ 2
LPRINT USING "$$##.##";Cs:
LPRINT TAB(25) G
NEXT A
pATA 1,75,1.69,.682,.429,.269,.169,.1087
LPRINT
LPRINT
LPRINT

Qee e

ssssses
HE R85

LPRINT :

LPRINT :

LPRINT "
LPRINT CHR$(12);
NEXT V

END

PRICES SUBJECT TO CHANGE WITHOUT NOTICE"

BUSINESS

Accountant’s Aid
by James H. Sheats

ccountants, bookkeepers, analysts, and the rest of the number-scrib-

bling fraternity spend much of their time with sheets of columnar work
paper, printing a report title and date at the top, printing columnar
headings across the page, and filling in lines and columns of figures. These
sheets usually have both line and column totals, which should be equal when
cross-footed. After considerable work with an adding machine and an
eraser, they usually are.

The Acconntant’s Write.un Aid ic decianed to eliminate come of the nain
associated with this process. You can adapt it to a number of purposes in its
present state and customize it to your own needs. I wrote the program for a
TRS-80 Level II, with a 132-column line printer (in my case, an IDS Paper
Tiger). 4K of memory is plenty, since the program is very short—about
874 bytes.

The Program

The program uses both screen and printer output, but users without
printers can eliminate all LPRINT statements and still have a useful pro-
gram. The command on line 55, LPRINT CHR$ (31), is a Paper Tiger con-
trol command that adjusts the line length to 132 characters; it may not be
necessary with other printers. Lines 65 and 68 allow you to input a report
name and date. Both of these lines are unnecessary if you don't use a printer.

Line 70 is the reference name. This can be Date, Check Number, In-
voice Number, or other suitable reference. This entry is not used for any
computations.

In line 75, enter the number of columns that you want for a particular
task. This version of the program is written with 10 characters per column
and will print the reference column, data columns, and a line total column.
(See Example 1.) You may customize your LPRINT USING statements for
more or fewer columns. Lines 80 through 125 form a routine which inputs
heading names for the columns.

In Lines 130 through 190, numerical data is entered. Each entry may be
positive, negative, or zero. After accepting an entry for each column, the
program prints a line total and repeats the routine for the next line. If you
make an input error, you can reenter the same reference number, enter zero
quantities for the the unchanged columns, and make corrections in the er-
roneous columns. The fourth day shown in Figure 1 illustrates this pro-
cedure. You can exit this program loop by entering a reference number of

10

business

999, or by establishing your own loop exit. Upon exit from the loop, the pro-
gram prints column totals and a grand total. At that point, the program ter-
minates. This routine is in lines 200 through 240.

NOVEMBER 1979

Date Breakfast Lunch Dinner Tips Laundry Postage Phone Supplies Taxi Plane Room Total

1 215 350 325 200 000 075 L2 325 250 350.00 4500 41360
2 215 275 275 LS50 350 060 060 1218 255 000 4500 7358
3 250 290 1895 500 000 060 120 350 675 000 4500 8640
4 20000 225 325 150 675 060 120 350 275 35000 .00 57180
4 -20000 000 000 000 000 000 000 000 000 000 000-20000
4 200 000 000 000 000 000 000 000 000 000 000 200
5 000 000 615 L2 000 000 000 000 000 000 060 740
Example 1. Travel expense sumnary
One Disadvantage

One disadvantage to this program is that an entry must be made in each
column, each time; however, typing a zero or ENTER will do. The program
also does not provide heading routines for second and subsequent pages.
Still, for the computer owner/businessperson, this simple program has a
great deal of flexibiltiy and should be in his library along with amortization,
checkbook balancing, depreciation, and other business programs.

11

19

30
40
52
53
55

68
65

68

144
145
158
155
160

165
178
188
185

190
208

204
285
208
210
220
238
240

business

Program Listing. Accountant’s Write-up Aid

REM ®"SPREAD SHEET"
REM PROGRAMMED BY JAMES H, SHEATS
REM 2936 HEADLAND DRIVE
REM EAST POINT, GA 38344
CLEAR 2088
DEFDBL C,T
CLS :
LPRINT CHR$(31):
LPRINT 3
LPRINT
PRINT "SPREAD SHEET PROGRAM®
INPUT "REPORT NAME®;RS:
LPRINT TAB(38)RS:
LPRINT :
LPRINT
INPUT "DATE";DS$:
LPRINT TAB(35)DS:
LPRINT :
LPRINT
INFUT TINPUY LINE NAME®;LS
INPUT " NUMBER OF COLUMNS WANTED "IN
DIM C$(N),C(N) ,CT(N)
LPRINT USING "% §%; L$;
FOR X = 1 TO N
INPUT "COLUMN NAME";C$ (X)
LPRINT USING %% 89;CS$(X) s
NEXT
LPRINT ®TOTAL"®
PRINT LS:
INPUT L
IF I = 999
THEN
2p0
LPRINT USING "&¢844884487;L;
T=8
FOR X = 1
C(X) =0
PRINT C$(X),:
INPUT C(X):
T =T + C(X)
LPRINT USING “#######,8#“;C(X);
CP(X) = CT(X) + C(X)
NEXT X
PRINT "TOTAL";T:
LPRINT USING "ERELEE.EE";T
GOTO 139
CLS :
LPRINT
PRINT "TOTALS™; LPRINT "TOTALS %
FORX =1 TO N
PRINT C$(X) ,CT(X)
TT = TT + CTF(X)
LPRINT USING CREREELELEETCT(X)
NEXT X
PRINT "CGRAND TQOTAL ® .17
LPRINT USING "$#88883.88";TT
END

TO N

12

EDUCATION

Vocabulary Builder
Numerical Expression Input
in Level 11

Pre-School Math

13

EDUCATION

Vocabulary Builder

by Roger Zimmerman

his program is designed primarily to help people build their knowledge

of a foreign vocabulary, but it has other uses too. It can teach you the
vocabulary of a specific discipline, as in biology or physics. It can even in-
crease your English vocabulary.

Building Vocabulary

The first time you use this vocabulary program you will need to answer
the keyboard-tape question with K, for keyboard. It will then ask you to
enter a word and its definition. (Use *** to terminate a word.) You may
enter either foreign words and English definitions or English words and
foreign definitions or mix them. The word will be the unknown, and the
definition will be the clue.

Allow the computer to quiz you until you are competent with your
vocabulary list. It is helpful to pronounce the words as you type them to
associate the pronunciation with the meaning. Look at the chart to see if
there are any words that are stumbling blocks. You may wish to make a
special tape of these difficult words. (The computer will ask you whether
you want to do this.) If you want to make a tape of the entire list, answer N
to the difficult words question and Y to the complete words question. Each
time you return to the program, add two or three words to the list.

When you add new words after a session, the computer will ask if you
wish to save the old list again. I have had no problem taping the new list
right over the old list by starting the tape in about the same place. (My stan-
dard procedure is to start all computer tapes at counter 005.) When the list
gets long, start a new one or weed out all of the easy words on the old lists for
periodic review.

This program gives you 10000 bytes of available string space and a
100-item list limit. Note the use of CHR$(27) in lines 2015 and 2035. This
ASCII code scrolls the cursor up one line. If you use CHR$(27) just before
the INPUT data is printed on the screen, the new data will print where the
prompt was. Then CHR$(30) must be used to remove the rest of the prompt.
Here, CHR$(8) is used to remove the space between the entry number and
the period.

Now look at line 1040. Note that the definition is printed on the screen
first at TAB(23) plus one space. The cursor then returns to the beginning of
the line and the word is printed. Sometimes the word is just long enough to

15

education

push the left margin of the definition into the next field on the screen, but
not long enough to cover it if it were to be left in the second field (assuming
you use PRINT W§(I), D$(I)). Doing it as in line 1040 ensures that the left
margin of the definition is always even, except when the word is really long.
Then, the definition will begin just one space past the word.

You may also wonder about line 131. This allows the INKEY$ input to
print in the right place. To have the computer turn on and off messages
while waiting for an INKEY$ input, look at line 132. Usually the INKEY$
function works in a sort of scanning loop (i.e., 10 A$ =INKEY$:IFA$ =
“’GOTOI10). This way, if no input is encountered, it starts searching again.
Suppose in between each scan we have the computer add 1 to a variable.
Before it goes back for the next scan, it can increase the variable, and after
the variable reaches a certain point, it can do whatever you’d like. (In this
case, it turns off two of the lines on the screen.) Be careful not to cram too
much in, or the computer might miss the input while doing the job.

How about getting the INKEY$ function to accept any length word?
Look at line 133. Anything that is not a printable character, but is less than
ASC$(32), will trigger a break from the search-for-another-letter routine.
The ENTER key functions as it normally does with an INPUT statement.
Otherwise the computer would look back and keep searching for another
letter to add to the current string. Why didn’t I just use an INPUT statement?
Because I couldn’t have turned off those lines while searching for an input.

One exception is that if the computer recognizes a CHR$(8), it goes to a
special routine (line 138), the back-space arrow. This line counts the number
of letters in the present input string and subtracts the last one. This doesn’t
work if there is just one character. The word would then become a “” (null
string), and you would have to start the answer again.

On that list of difficult words, how do you keep from scrolling right off the
screen when it is full? This sounds like a job for Super Machine Routine. Not
so. If Radio Shack could do it in BASIC in their Budget Management pro-
gram, I can do it in my Vocabulary Builder program. Radio Shack counts the
number of lines it prints, then goes to the press-enter-to-continue routine.

That is not the way in which I approached this program. I remembered
that the screen positions are treated as part of memory, and that PEEK
could look and see what ASCII code was in any position of memory. If you
PEEK at a spot where the bottom of the readout always changes the screen
and test it to see if it is still blank, you’ll know whether the screen is full,
Look at line 7070.

Fusition 16305 is the spot un the screen where ihe first ietter of the fourth
column (field) of the last line you want is located. If PEEK(16305) ever
becomes anything besides a blank space (CHR$(32)), then you'll know the
screen is full and can then go to the enter-to-continue routine.

16

134
135

136
137

138

education

Program Listing. Vocabulary Builder

CLEAR 10000: lopedia
DIM W§(100),D$(100),W(100),T(100) Encyclopedia
LS : Loader
I =1

PRINT "FOREIGN LANGUAGE VOCABULARY PRACTICE"

FOR X = 0 T0O 1000:

NEXT

CLS

PRINT "DO YOU WISH TO LOAD VOCABULARY BY TAPE OR BY KEYBOARD";
A$ = INKEYS:

IF A% "t GOTO 60

IF A§ < > “T" AND A$ < > "K" GOTO 40
IF A$ = “T" GOSUB 1000

I[F A$ = “K" GOSUB 2000

IT =1

CLS :

PRINT "I WILL NOW GIVE YOU SOME DEFINITIONS AND ASK YOU TO GIVE
ME THE CORRESPONDING VOCABULARY WORD. THE WORD MUST BE EXACT SPE
LLING AND MUST BE EXACT LEXICAL FORM."
PRINT :

INPUT “PRESS ENTER TO CONTINUE";A

CLS

RANDOM

1 = RND{II)

PRINT @0, CHR$({30):

PRINT @0,D$(1)

PRINT CHR$(30);:

PRINT "WHAT IS THE WORD?";:

PRINT CHR$(30)

PRINT @896,"T0O END TYPE 'E'"

PRINT @128,"":

T§ = "o

P =20

S$ = INKEYS:

P =P+ 1:

IF P = 250 PRINT @512, CHR$(30):

PRINT @768, CHR$(30):

GOTO 132:
ELSE
IF S§ = " GOTO 132
IF ASC(S$) < 32 AND ASC(S$) < > 8 GOTO 136:
ELSE
s = v
IF ASC{S$) = 8 GOTO 138:
ELSE
GOTO 134
T$ = T$ + S§

PRINT 8256, CHR$(30):
PRINT €256,T$:

GOTO 132

PRINT €256, CHR$(30):

IF T$ = "E" GOTO 190

ug = e

IF ASC(S$) = 8 GOTO 138:
ELSE

GOTO 140
PRINT CHR$(8):
IF LEN(T$) = 1T$ = "":
GOTO 135:
ELSE
PRINT @256, CHR$(30):
TT = LEN(T$):
FOR X = 1 TO TT - 1:
U$ = U$ + MIDS(TS,X,1):
NEXT :
T = U$:
GOTO 135
IF T$ = W$(I) GOSUB 3000 Program continued

17

education

150 IF T$ < > WS(I) GOSUB 4000
160 GOTO 110
190 GOSUB 7000
200 CLS :
IF A$ = "K” OR A$ = “Y" OR C = 1 PRINT "WOULD YOU LIKE TO SAVE T
HE COMPLETE LIST OF WORDS YOU WERE DRILLED ON PLUS YOUR ADDITION
S ON TAPE";
210 B$ = INKEYS$:
IF B$ = "" GOTO 210
220 1IF B$ < > "Y" AND B$ < > "N" GOTO 200
230 IF B% = "Y" GOSUB 6000
999 CLS :
PRINT "BYE FOR NOW FROM THE VOCABULARY TESTER":
FOR X = 0 70 1000:
NEXT :
CLS
CLEAR 50:
END
1000 CLS :
INPUT "LOAD TAPE (PLAY) AND PRESS ENTER";A
1005 CLS :
PRINT
1020 INPUT
1028 IF W$

“LOA DING VOCABULARY . . .PLEASE STAND BY"
4L
(1
1030 IF W$(1I
IN

W‘%{H Ny
) < wakkt GOTO 1040
) = "***" PRINT “WOULD YOU LIKE TO ADD TO THIS LIST?"
KEYS$:
'Y OGOTO 1031
NPT o= T - 1:

1031 AS$ =
IF A%

1032 IF A%
RETURN

1033 IF A$ = "Y"C = 1:
GOTO 50

1034 IF A$ < > "Y" AND A$ ¢ > “N" GOTO 1031

1040 PRINT TAB(23)" "D$(I) CHR$(29)I CHR$(8)". "WS(I):
I =1 +1

1050 GOTO 1020

2000 CLS

2010 INPUT “ENTER WORD ('***' TO END)" H$ 1)

2015 PRINT CHR$(27) CHR$(30)I CHR$(8) WS (1)

2020 IF W$(I) = “*x¥"] = | 1:
RETURN

2030 INPUT "ENTER DEFINITION";D$(I)

2033 IF PEEK(15384) = PRINT .

2035 P?INT 2?R$§27) CHR$(27) CHRS(27)1 CHR$(8)". “W$(I) TAB(23) D$(
1} CHR

2040 1 = 1 + 1

2050 PRINT :
GOTO 2010

3000 R = R + 1

3002 PRINT @768, CHR$(30)

3005 7T =T + 1

3007 T(I) = T{I) + 1

3010 RESTORE :
Q = RND(10)

3020 FOR X = 1 T0 Q:
READ Q3%
NEXT ‘

3030 PRINT @512,
PRINT CHR$(
PRINT ©640,"
J Timan
PRINT (HRS(0)

3040 IF TS < US(I) PRINT @768,D$(1)};" = “;W${1);:
PRINT CHRS(30)

2050 poTuny
SuUSY

4000 W = W + 1
4005 U(
4010 T
4015 T
4020 R

qQ

G

Q%;:
30):
"THAT'S";R;"CORRECT OUT OF";T;"OR";{(R * 100)

4030

18

education

5000 DATA "RIGHT","CORRECT","VERY GOOD","YQU GOT IT","GOOD","ABSOLUTE
LY RIGHT","THAT'S IT!","WHADDYA KNOW THAT'S RIGHT","NICE WORK -
THAT'S IT","GOOD GOIN' CHARLIE, YOU'RE RIGHT","WRONG","INCORRECT
“,"00PS","SORRY" ["STUDY THAT ONE SOME MORE"."“YOU GOOFED"

5010 DATA “NOPE","BITE YOUR TONGUE!","YOU SHOULD KNOW BETTER","DO YOU
WANT TO KICK YOURSELF NOW?"

PRINT "YOU WOULD LIKE TO SAVE ANY WORDS YOU ONLY GOT RIGHT --- %
OF THETIME OR LESS. FILL IN THE BLANK.";:
INPUT @
5999 END
6000 CLS :
INPUT “INSERT TAPE (RECORD) AND PRESS ENTER";Q
6001 CLS :
PRINT “WRITING ONTO TAPE NOW"
6010 FOR [= 1 TO I1:
PRINT # - 1,W$(1),08(1)
6012 PRINT I CHR$(8)". "W$(I), TAB(24)0$(I)
6015 NEXT
6020 PRINT # - 1,°*%*" taxwr
6030 RETURN
7000 CLS :
PRINT "NOW I WILL SHOW YOU WHICH WORDS NEED THE MOST WORK.*
7010 PRINT :
PRINT "FOLLOWING IS A LIST OF EACH WORD YOU MISSED AT LEAST ONCE
FOLLOWED BY THE NUMBER OF TIMES YOU MISSED [T AND OUT OF
HOW MANY TRIES."
7020 PRINT :
INPUT "PRESS ENTER TO CONTINUE";A
7030 GOSUB 9000

7040 PRINT :
FOR I = 1 TO II
7050 IF W(I} > 0 PRINT W${I),W(1),T(I),((T(1) - W{I1)) * 100)
I
7070 B = PEEK(16305):
IF B < > 32 AND B + 1 < > 32 PRINT "PRESS ENTER TO CONTINUE";:
INPUT A:
GOSUB 9000
7080 NEXT
7082 INPUT "+* END OF LIST * PRESS ENTER TO CONTINUE";X
7092 PRINT :

PRINT “NOW IF YOU WOULD LIKE TO SAVE ANY OR ALL OF THESE 'DIFFIC
ULT' WORDS ON TAPE FOR LATER 'SPECIAL' REVIEW, YOU WILL THEN BE
GIVEN A CHOICE OF THE LEVEL OF DIFFICULTY OF THOSE WORDS YOU WIS
H TO SAVE."
7093 PRINT :
PRINT "WOULD YOU LIKE TO SAVE ANY? (PRESS 'R' TO REVIEW LIST)"
7094 S$ = INKEYS:

IF S$ = "* GOTO 7094
7095 IF S$ = “R" GOTO 7030
7096 IF S$ = "N" GOTO 200
7097 IF S$ < > "Y" AND S$ < > "N" AND S$ ¢ > "R" GOTO 7094
7098 IF S$ = “"Y* GOSUB 10000
8000 RETURN
9000 CLS :
PRINT "WORD","TIMES MISSED","TIMES TRIED","% TIMES RIGHT":
RETURN
10000 PRINT :
PRINT “YOU WOULD LIKE TO SAVE ANY WORDS YOU ONLY GOT RIGHT --- %
OF THETIME OR LESS. FILL IN THE BLANK.";:
INPUT Q

10010 PRINT :
INPUT “PREPARE TAPE (RECORD) AND PRESS ENTER";X
10015 CLS :
PRINT "WRITING TAPE NOW"
10020 FOR I =1 TO II:
;?I;(I) > 0 IF ({T(I) -« W(I)) * 100) / T(I) < = Q PRINT W$(I),D
PRINT # - 1,W$(1),08(1)
10025 NEXT Program continued

19

education

10027 PRINT # - 1,"***n twkwd
10030 RETURN

20

EDUCATION

Nurnerical Expression Input in Level 11
by Rodney Schreiner

Anumerical expression is a combination of one or more constants,
variables, and operations. (3+ A)*2 and EXP ((7.2 - X)/T) are ex-
amples of numerical expressions. Numerical expressions can be used in con-
junction with several Level II BASIC statements, with all of the arithmetic
functions, in FOR and IF statements, and with PRINT statements. When
the Level II interpreter executes the statement PRINT 9 + 7, it evaluates the
nurerical expression 9 +7 and displays the result, 16, on the screen. The
Level II interpreter, however, does not accept a numerical expression as a
response to an INPUT statement. For example, when the Level 11 inter-
preter executes the statement:
INPUT*HOW MANY INCHES ARE IN FIVE AND A HALF YARDS”;A

a response of 5.5*3+12 will result in REDO? from the interpreter. Level 11
BASIC does not allow the use of a numerical expression as input.

The use of a numerical expression as input is helpful in educational science
and mathematics programs. The purpose of such programs is often not to
check the computational skills of students, but rather to test their com-
prehension of principles. When the testing of these basic principles involves
several computations, an error in arithmetic is indistinguishable from a con-
ceptual error to the computer. If the computer performs the calculation, any
error is probably a conceptual one on the part of the student. Many students,
when required to use a calculator while running an educational program,
wonder why a computer can’t tell that 2 + 2 is 4.

I have written a BASIC subroutine which permits the use of numerical ex-
pressions as input to a Level II program. The subroutine accomplishes this
by treating the numerical expression as a string input and then inserting it
into a line in the BASIC program where the interpreter translates it into the
proper value. The subroutine is displayed in Program Listing 1.

To use the subroutine, the main program places the numerical expression
input into the string variable A$. The subroutine is then called by GOSUB
65000. The subroutine returns with the value of the numerical expression in
the variable AV. Program Listing 2 gives a short demonstration program
which shows how the subroutine is used. Line 110 is the input statement
which accepts the numerical expression and places it in A$. Line 120 calls
the subroutine, which evaluates the numerical expression and returns its
value in AV. Line 160 prints the value of the expression. Line 180 loops back
for another input.

21

education

Lines 130 through 150 test error flags which the subroutine sets if there is a
problem with the input. The subroutine, as listed, will handle expressions of
up to 64 characters. If the input is longer than 64 characters, the subroutine
returns with A$ equal to ERRORI1. Line 130 checks for this condition. If A$
contains a character other than one which can be entered from the
keyboard, the subroutine returns with A$ equal to ERROR2. Line 140 tests
for this. If there is a syntax error in the input expression, the subroutine
returns with A$ equal to ERRORS3. This situation is assessed in line 150.

There are several restrictions in the use of the subroutine. The subroutine
uses several variables in addition to A$ and AV these are listed in line 65014.
The subroutine changes the values of these variables; therefore, they should
not be used in the main program. The variable QQ$ is of particular impor-
tance to the operation of the subroutine. It is essential that you not refer to
QQ$ anywhere in a program other than in line 65028 of the subroutine.
When you enter the subroutine intu ihe compuier, pay special atientioi o
the format of lines 65028 and 65030. These lines are the heart of the sub-
routine and must be entered exactly as listed. In particular, there must be no
spaces in line 65028; from the first Q to the final 8 there are exactly 18
characters followed by ENTER. Line 65030 must not have any spaces
either. The AV = is followed by exactly 64 zeros. An easy way to determine
when 64 zeros have been entered is to note that the last zero will be im-
mediately under the the equal sign on the video display. (See Figure 1 for the
formats of these lines.)

How it Works

The operation of the subroutine draws its power from a memory-saving
feature of the Tevel TT interpreter. The T,evel 11 interpreter stores a string
that is defined in a BASIC line in the same instruction, rather than in high
memory, so long as the value of the string is not changed. This allows you to
use the VARPTR function of Level II to locate a particular BASIC line in
memory. The subroutine does this then POKEs the input numerical expres-
sion into the program memory.

A line-by-line examination of the subroutine shows how it operates. Line
65020 defines the four numerical variables that the subroutine uses. If you
use these variables anywhere else in the main program, the subroutine
changes their values. This line also sets an error trap in case an error is
generated in the subroutine. Line 65024 checks that the input string A$ is
not too long. The length of the string is limited by the number of zeros you
enter in line 65030, If an expression of more than 64 characters is to be used.
you must insert more zeros in line 65030.

Line 65028 is the heart of the subroutine. This line contains the definition
of the string variable QQ$. This variable is used only to locate this line in
memory. Following the definition of QQ#$ is a call to an internal subroutine.

22

education

LINE 65028

LINE LINE GO~ LINE
POINTER NUMBER Q@ ¢ § = =~ & " i SUB 6 5 0 3 8 END
lxxixx' 4 :254ISIIBI l 36163 {34‘42’ 34|58{|45| 54!53[48[EIISG! o [
LINE 65030

LINE LINE

POINTER NUMBER A v

T 7
[vv VVIG 254{65|8616|]
1 1

Figure 1. Formats of lines 65028 and 65030

This subroutine is located in lines 65038 through 65106 and serves to POKE
the string A$ into program memory. It POKEs the string into program
memory immediately following the AV = in line 65030. The 64 digits that
follow the equal sign are merely a convenient way of reserving 64 bytes of
program memory. At the time of execution, line 65028 calls an internal
subroutine which changes the remainder of the line. Upon returning from
the internal subroutine, the BASIC interpreter evaluates the numerical ex-
pression which is now in line 65030.

Line 65038, the first line of the internal subroutine, uses the VARPTR
function to locate the byte which contains the asterisk in line 65028. The
statement LP = VARPTR(QQ#$) assigns the address of the byte which con-
tains the length of the string QQ#$ to the variable LP. Address LP + 1 con-
tains the least significant byte, and address LP + 2 the most significant byte
of the first character of the string QQ$; therefore, PEEK(LP+1) +
256*PEEK(LP + 2) is the address of the asterisk in line 65028. The 16 bytes
following the asterisk in line 65028 contain the codes for the characters up to
the equal sign in line 65030. These bytes are shown in Figure 1. Upon com-
pletion of line 65038, LP holds the address of the byte containing the equal
sign in line 65030. Line 65042 replaces the 64 digits in line 65030 with blank
spaces (character code 32). Remember to change the 64 in line 65042 if you
use other than 64 zeros in line 65030.

Lines 65046 through 65106 convert the string in A$ to character code and
POKE the code into line 65030. Line 65046 converts each character in A$ to
its character code. Line 65050 checks that the character code is that of a
character entered from the keyboard. If it is not, A$ is set equal to ERROR2.
Lines 65054 through 65062 convert character codes for arithmetic operation
symbols to their respective operation codes. Lines 65066 through 65094
check for arithmetic functions. Line 65066 checks whether the remaining
string is long enough to contain a function, and line 65068 checks whether
the third character after the current character is a left parenthesis, as is re-
quired by a function. Lines 65072 through 65094 convert the function
characters to the function code. Line 65102 skips the next two characters if a
function is found in the string.

23

education

The error trapping routine, which checks for errors resulting from im-
proper A$ input, is in line 65110. These input errors will result in a syntax er-
ror or a missing-operand error in line 65030. If such an error should occur in
this line, the subroutine sets A$ equal to ERRORS. I chose the high line
numbers of the subroutine so that they would not conflict with those of the
main program. Once you have entered the subroutine from the keyboard,
you can save it on tape. There are several ways to add the subroutine to the
end of the main program. (See “APPEND It!” by Curtis F. Gerald in 80
Microcomputing, February 1980, p.82.)

24

education

Program Listing 1. Subroutine for numerical expression input

AV,

CINT, AND CSNG

AS,

A9S%,

QQs

65000 :
' SUBROUTINE FOR NUMERICAL EXPRESSION INPUT
65002 :
! BY RODNEY SCHREINER
65004
i
65006 :
' ENTER WITH NUMERICAL EXPRESSION IN A$
65008 :
! RETURN WITH VALUE OF NUMERICAL EXPRESSION IN AV
65010 :
! SUPPORTS ALL LEVEL II ARITHMETIC FUNCTIONS EXCEPT
65012
! TYPE CONVERSIONS: CDBL,
65014 :
' USES VARIABLES: LP, IX, CH,
65016 :
65018 :
' CLEAR VARIABLES AND SET ERROR TRAP
65020 LP = 0:
IX = 0:
CH = 0:
AV = 0:
ON ERROR GOTO 65110
65022
' CHECK FOR MAXIMUM LENGTH OF A$ AS SET BY LINE 65030
65024 IF LEN(AS) > 64
THEN
A$ = "ERRORL"
RETURN
65026 :
' LOCATION FLAG AND CALL INTERNAL CONVERSION SUBROUTINE
65028 QQ$ = "*":
GOSUB 65038
65030 AV=000
000000000:* 64 ZEROES
65032 RETURN
65034
¢ INTERNAL CONVERSION SUBROUTINE ANALYZES A$
65036 :
! LOCATE AV
65038 LP = VARPTR(QQ$) :
LP = PEEK(LP + 1) + 256 * PEEK(LP + 2) + 16
65040 :
! BLANK OUT OLD EXPRESSION IN AV
65042 FOR IX = 1 TO 64
POKE LP + IX,32
NEXT IX
65044 :
! LINES 65046 TO 65106 ANALYZE A$
65046 FOR IX = 1 TO LEN(A$) :
A9% = MID$(A$,IX,1)
CH = ASC(A9S%)
65048
! CHECK FOR INPUT ERROR
65050 IF CH < 32 OR CH > 128
THEN
A$ = "ERROR2"
RETURN
65052

: CHANGE FROM CHARACTER CODE TO OPERATION CODE

25

Program continued

education

65054 IF A9§ = "w»
THEN
CH = 207 :
GOTO 65098
65056 IF A9% = "+
THEN
CH = 205 :
GOTO 65098
65058 IF A9% = "."
THEN
CH = 206 :
GOTO 65098
65060 IF A9$ = /"
THEN
CH = 208 :
GOTO 65098
65062 IF A9$ = “"["
THEN
CH = 209 :
GOTO 65098
65064
' CHECK FOR ARITHMETIC FUNCTION
65066 IF IX + 5 > LEN(AS)
65098
65068 IF MIDS(A$,1X + 3,1) < > "("
THEN
65098
65070 A9% = MID$(AS,I1X,3)
65072 IF A9% = "EXP"
THEN
CH = 224 :
GOTO 65098
65074 IF A9% = "LOG"
THEN
CH = 223 :
GOTO 65098
65076 IF A9$ = "SIN"
THEN
CH = 226 :
GOTO 65098
65078 IF A9% = "COS"
THEN
CH = 228
GOTO 65098
65080 IF A9% = "“TAN"
THEN
CH = 227 :
GOTO 65098
65082 IF A9% = "SQR"
THEN
CH = 221 :
GOTO 65098
65084 IF A9% = “ATN"
THEN
CH = 228 :
GOTO 65098
65086 IF A9% = “SGN*"
THEN
CH = 215 :
GOTO 65098
65088 IF A9% = "ABS"
THEN

oy
“vnoo-

Z2i7
GOTO 65098
65090 IF A9$% =

THEN
CH = 216 :
GOTO 65098
65092 IF A9% = "RND"

26

65094

65096

65098
65100

65102
65104
65106
65108
65110

65112
65114

education

THEN
CH = 222 :
GOTO 65098
IF A9% = "FIX"
THEN
CH = 242 :
GOTO 65098

i POKE CODE INTO AV
POKE LP + IX, CH

! SKIP REST OF ARITHMETIC FUNCTION CHARACTERS
IF CH > 210
THEN
IX = IX + 2
NEXT IX
RETURN

" ERROR TRAPPING
IF ERL = 65030

THEN

A$ = "ERROR3"
RESUME NEXT
END

Program Listing 2. Demonstration of subroutine use

100 CLEAR 500 :
CLS

110 INPUT “WHAT IS THE NUMERICAL EXPRESSION"; A$

120 GOSYUB 65000

130 IF A$ = “ERRORL1" PRINT "INPUT LONGER THAN 64 CHARACTERS."
GOTO 110

140 IF A$ = "ERRORZ" PRINT "ILLEGAL CHARACTER USED IN INPUT."
GOT0 110

150 IF A$ = "ERROR3"

GOTO 110
160 PRINT “"THE VALUE OF ";A$;" IS ";AV
170 PRINT
180 GOTO 110

PRINT “SYNTAX ERROR IN NUMERICAL EXPRESSION." :

27

EDUCATION

Pre-School Math

by Donald Hastings

Daddy, is that right?” My five-year old son showed real interest and ap-
titude in math, which I naturally wanted to encourage— but even-
tually that constant question can get to you—uh—me.

He was eager to know if his answer was right and just as eager to get some
recognition for his efforts. I was tiring. I needed someone or something that
did not tire vet still offered the recognition that he needed.

The following math program on the TRS-80 fulfilled that need ad-
mirably.

My son got the thrill of working Daddy’s computer, the recognition he
needed, and his math practice all at once. The program presses a youngster
to grow by gradually giving him increasingly hard problems. These are
mixed with easier ones. Also, the computer will back off if the operator is
missing too many answers.

Operation

When a correct answer is given, the computer responds with a flashing
“YES” and scores one point in the RIGHT column.

When an incorrect answer is given, the computer flashes a “NO,” erases
the response and gives the operator two more chances. If incorrect answers
are entered all three times, the correct answer is displayed on the screen and
one point is added to the WRONG column.

Every time the child gives five correct answers, the computer begins to in-
crease the difficulty just a hair. If six incorrect answers are given, the dif-
ficulty is reduced slightly.

In this way, the computer adjusts to the level of the person working the
problems while maintaining a slight upward pressure. After twenty prob-
lems the score is computed and flashed on the screen. If you haven’t been
watching and giving necessary encouragement to your youngster
throughout the series, this is the point where you are called upon to bestow
credit for achievement. You will also be able to see the level your math ex-
pert achieved and the final score.

If your child wishes to continue another series, the problems begin at a
slightly higher level than where the previous series began, unless it proved to
be too hard. By starting at a level below where the last series finished, the
upward pressure is maintained, but the child is still encouraged.

28

education

A nice touch for the younger operators is that they have to learn to spell
their name to play the game. Even though my five-year old son can’t read
the question, he knows his name must go there and promptly enters it to
begin the series. He also knows what the RIGHT and WRONG columns are
and can understand the flashing “YES” and “NO.” Selecting the proper pro-
gram and level from memory (ADDITION, LEVEL I—he hasn’t gotten in-
to subtraction yet) appears to give him no difficulty.

The degree of difficulty from one level to another is fairly subtle. If you
find a particular level too simple, you may have to increase by several levels
to find an appropriate one for your child.

Modifying the Program

It took a little experimenting to find out when to change levels and how
many problems to include in a series without discouraging my son. Experi-
ment with your child and modify the program to his needs. If you wish to in-
crease the difficulty at a faster pace, line 7140 adjusts the level of difficulty
down one when six incorrect answers are entered.

Note: this is six incorrect answers entered, not scored. To score six incor-
rect answers the person would have had to enter at least 18 incorrect ones.
Also, a correct answer does not erase the record keeping of incorrect entries.
If an operator consistently has to make several attempts at each problem, we
might be pressing too hard.

Line 7150 moves the level up one for each five correct answers scored.
This maintains the gradual degree of difficulty of the problems, but can be
adjusted for your student.

Line 7160 sets a series at 20 problems (T = 20) before the score is given.
Adjust this figure to match the attention span of your child. You may even
decide to make this a variable so that each series is different.

To adjust the number of times a problem can be missed before it is scored
as incorrect, change the value of N in lines 7050, 4040, 3030, 2040, and
1030. The value must be the same in each line.

More Difficult Problems

Just how difficult your problems are going to be is determined by line
8030. The two numbers (A and B) are directly related to the level of difficul-
ty (L) the operator has attained. To increase the average difficulty for each
level, increase the value of the number added to L. (Be careful you don’t go
too quickly.)

The IF statement of line 8030 prevents the same problem from being
presented twice in a row. If the problems involve division, line 8035 shunts
the program to line 8050 where a new number is obtained for A that will not
involve decimals when the division is performed. The answer to a division
problem will always be an integer.

29

education

AaBbCecDdEeFfGgHhliJiKk LIMmNnQoPp

~ . -
e /// /

If the operator elects to continue in the same area of problems, line 9220
sets the starting level at three below the level just finished. Change the value
subtracted from L if you want to vary this (the level cannot go below 1),
When completing a series of 20 problems with a high score, the level of dif-
ficulty will advance through four levels. If you began in Level 1 and
answered most of the problems correctly, on the next series you would begin
in Level 2.

The program holds the interest of children of all ages. (The multiplication
and division problems will be more to the liking of the advanced
youngsters.) The combination of working a computer and seeing instant
results prompts them to continue the series over and over. It would be an
ideal addition to any primary school classroom.

30

134

140

150
160

189
200

219
229

239
249

258
1008
1919
1820
1930
1440
2000

2018

education

Program Listing. Pre-School Math

REM *** WRITTEN BY dON hASTINGS 4/79 *** Encyclopedia
REM *** HEMINGWAY, s.c. 29554 *** -
REM *** VARIABLES

REM *** A = 15T # B = 2ND # C = CORRECT ANSWER
REM *** D = GUESS L = LEVEL M = CHOICE
REM *** N = NO'S T = TURNS S = SCORE
REM *** R = RIGHT W = WRONG U & V = CONTROL
CLS :
FOR X = 1 TO 127:
SET(X,1):
NEXT
PRINT :
PRINT :
PRINT " SELECTIONS:"
PRINT :
PRINT :
PRINT :
PRINT ,"(A) ADDITION":
PRINT ,"(B) SUBTRACTION":
PRINT ,"{(C) MULTIPLICATION":
PRINT ,"(D) DIVISION"
FOR X = 1 TO 127:
SET(X,32):
SET(%,12):
SET(X,44):
NEXT
PRINT @ 776," CHOICE:"
FOR Y = 1 TO 44:
SET(1,Y):
SET(127,Y):
NEXT
A$ = INKEYS:
IF A§ = "7
THEN
178
M = ASC(AS) - 64
CLS
FOR X = 18 TO 180:
SET(X,1):
SET(X,12):
NEXT

PRINT @ 138,"
PRINT @ 484,"
INPUT AS
PRINT @ 138,"
PRINT @ 484,"
INPUT L

ON M GOTO 169
CLS

PRINT TAB(20)
GOSUB 8060

C = A + B:

ENTER YOUR FIRST NAME:"

L
a3

ENTER STARTING LEVEL: "

LI
s

7,2000,3000,4000

"smD D I T I O N":

PRINT @ 537,A;"+";B;"= ";

INPUT D:
GOSuUB 7080

IF N < 3 GOTO 1610

N = f:
GOSUB 8028:
GOTO 18186
CLS :
PRINT TAB(16)
GOSUB 8008
IF B > A
THEN
C
A
B

aw>

fionu

"s U B T R A C T I 0 N':

Program continued

31

2029
2030
20490
2059
3000

3010
3828
3030
3040

4000

AG14
4015

4020
4030
40440
4850

7000

7010
7020
7030

7644

7658

7068
79789

7108
7118
7120
7130

7148

education

C = A ~ B:

PRINT @ 537,A;"~";B;"= ",
INPUT D:

GOSUB 7000

IF N < 3 GOTO 20820

N = 8:

GOSUB 8026:

GOTO 2018

CLS :

PRINT
GOSUB
C=aA
PRINT

TAB(1@8)"M U
8000
* B:
@ 537,A;"X";B;"= ";

L T I P L I C

INPUT D:

GOSUB 7008

IF N < 3 GOTO 3818

N = 0:

GOSUB 8028:

GOTO 3910

CLS :

PRINT TAB{19)"P I V I S I ©
GOSUB 80868

N":

C=nr /2
FOR X = 57 TO 66:
SET(X,23):
NEXT
PRINT @ 537,B;")";A;" = ";
INPUT D:
GOSUB 7000
IF N < 3 GOTO 4920
N = @:
GOSUB 8028:
GOTO 491¢
IFD=C
THEN
R =R + 1:
V=V +1:
GOTO 7188
FOR Z = 1 TO 5:
PRINT @ 678,"N O"
FOR Y = 1 TO 100:
NEXT Y
PRINT € 669," "
FOR ¥ = 1 90 1l09:
NEXT Y:
NEXT 2
N =N+ 1:
U=10+ 1:
IF N < 3 PRINT @ 547," "
RETURN
PRINT @ 670,C:
W=W+1
FOR 2 = 1 TO 2008:
NEXT :
PRINT @ 670," "
RETURN
FOR 2 = 1 70 3:
PRINT @ 669,"Y E 8"
FOR Y =1 TO 100:
NEXT Y
PRINT @ 669," "
FOR Y = 1 T0 190:
NEXT Y:
NEXT 2
IFU >S5
THEN
L=L~-1:
U= 0:
IFL <1
THEN
L =1

A

T

O N":

32

71580

7160

71789
8600

801@
8620

80380

8835

8640
8058

900608

9610

9628

9930

9100
9120

9138
9140
9150
9168
92080

9218
9220

9238

IFV =25
THEN
L =L+ 1:
V=28
N = 3:
T =T+ 1:
IF T = 28 GOTO 9420
RETURN
FOR X = 17 TO 164:
SET(X,3):
NEXT :
PRINT @ 153,"L EVEL "
PRINT @ 265,"R I G H T":
PRINT @ 360,"W R O N G"
PRINT @ 164,L:
PRINT @ 332,R:
PRINT @ 367,W:
PRINT @ 547," "

A = RND(L + 4):
B = RND(L + 3):
IF A + B = E GOTO 8638

E = A + B:
IF M = 4 GOTO 8658
RETURN
A =B * RND(L + 2):
RETURN
S=R/ (R + W:
S = INT(S * 188):
FOR X = 57 TO 66:
RESET(X,23):
NEXT

PRINT @332,R:
PRINT @367 ,W:
PRINT @ 537,"

FOR X

1 TO 127:

SET(X,18):
SET(X,18):
SET(X,40) :

NEXT
FOR Y

1 TO 18:

SET(63,Y):
NEXT :

FOR 2
NEXT

1 TO 2008:

PRINT €536," YOUR SCORE

FOR X

PRINT
FOR Y
NEXT
PRINT
FOR Y
NEXT

NEXT

X

1 TO 16:
668," "
1 TO 1086:

668,5
1 TO 160:

W<l ®

education

"

PRINT @ 784,"WANT TO PLAY AGAIN, ";AS$;:

INPUT

[(I (A)

i
=

X

$

X$) = 78 GOTO 168
3:

33

35

GAMES

A Day at the Races
Star Dreck

GAMES

A Day at the Races

by James A. Swarts

One of the first programs I saw executed on the TRS-80 was a horse race
program, similar to the one shown in Program Listing 1. As you can
see by running this program, the horse race was little more than graphic dots
moving across the video display.

Moving dots are okay for novice programmers, but they just aren’t impres-
sive to anyone else. This program needed a major face lift, and it got just that.

The first thing the program required was horses, and after several at-
tempts, I finally managed to produce a decent-looking horse. There are real-
ly three horses (see Figure 1). This makes it appear as if the horses’ legs move
as they gallop down the field.

Figure 1

To be a real horse race, the program needed a provision for betting. At
first, each player had a certain amount of money to bet and could only
watch the races after the money was bet. You could only bet on the horse you
thought would win the race; there were no payoffs for the second and third
place horses. In my final version of the program, players can have negative
earnings. I also allow for win, place, and show bets.

For those of you who haven't been to a race track, I'll explain the betting
process. If you make a win bet, you get paid if the horse you bet on comes in
first; if you make a place bet, you get paid if your horse finishes first or sec-
ond; and if you make a show bet, you get paid if your horse finishes first, sec-
ond, or third.

Payoffs are based on the odds of the horses, the number of bets made, the
amount of the bets, and other such things. For simplicity, my Super Horse
Race program uses randomly selected odds and other random factors to
calculate payoffs.

37

games

SUPER HORSE RACE RACE]
Number Name Odds
1 ASSEMBLY 51 :1
2 FORTRAN 61
3 ALGOL 10 : 1
4 COBOL 41
5 PASCAL 3:1

Table 1. Sample odds

As an example, suppose the odds for the horses were those shown in Table
i. Assumne that Pascal came in first, Assembiy came in second, and Algol
came in third. Payoffs would then be similar to those shown in Table 2. If
you made a two-dollar bet on Assembly to place, you would get $100.20; if
you made a two-dollar bet on Pascal to show, you would get $4.60; and so
on. If you don’t understand this, don’t worry. The computer knows how
much to pay you. All you need to do is type in the program in Program
Listing 2, run it, and enjoy a day at the races.

SCHEDULE OF PAYOFFS
BASED ON A $2 BET

BET => Win Place Show
Finished $ 600 $ 440 % 4.60
2 — $100.20 $ 102.00
3 S $ 18.20

Table 2. Payoffs based on sample odds

38

10

20

30

40

50

1

70

8@

90

1@

110

129

130

999

games

Program Listing 1. Original horse race program

CLEAR 108:
RANDOM :
C$ = STRINGS$(64,131)
CLS
FOR L = 1 TO 7:
PRINT CS$:
M(L) = @:
NEXT L
FOR L = # TO 35:
SET(124,L) s
NEXT L
FOR I, = 3 TO 33 STEP 6:
SET(0,L):
NEXT L
I = RND(18):
Q RND(6) :
v Q* 6 =
RESET(M(Q) ,
M(Q) = M(Q)
IF M(Q) > 12
THEN
M(Q) = 127
SET(M{Q) ,Y) :
IF M{Q) < 125
THEN
5¢
PRINT "HORSE";Q;"WINSI":
FOR L = 1 TO 15@0:
NEXT L
W(Q) = W(Q) + 1:
R=R + 1:
CLS
FOR L =1 TO 6:
PRINT "HORSE ";L;" HAS WON";W(L);"RACES OR";W(L) * 100
/ R;"PERCENT":
NEXT L
IF R = 14
THEN
130
FOR L = 258 TO 8 STEP ~ 1l:
PRINT @764,"THE NEXT RACE BEGINS IN"; INT(L / 25) + 1;"SECONDS
L

3:
Y)

+ Iz
7

NEXT L:
GOTO 29
FOR L = 1 TO 26¢8:
NEXT L:
CLS
END

18

29

36

40

Program Listing 2. Super Horse Race

CLS :

CLEAR 10@8:

RANDOM :

GOTO 81¢

FOR T = 1 TO 25:
NEXT T:

RETURN

FOR T = 1 TO 5068+
NEXT T:

RETURN

FOR T = 1 TO 16068:
NEXT T: Program continued

39

50

60

79

8@
90

109

110

120

130
148

158

games

RETURN
I$ = INKEYS:
IF 1§ = "
THEN

58:

ELSE
RETURN
CLS :
FOR L = @ TO 5:
PRINT @I * 192, STRINGS$(63,131);:
NEXT L
FOR Y = 8 TO 45:
SET(16,Y):
SET(126,Y):
NEXT Y
PRINT @530,"THE HORSES ARE ENTERING THE STARTING GATE";
FORL = 8 TO 4:
PRINT @L * 192,HS(1);:
GOSUB 38:
NEXT L
PRINT @53¢,". . . AND THEY'RE OFF [lI"; STRINGS(16,32);:
FOR T = 1 TO 300:

NEXT T:
PRINT @536, STRINGS$(25,32);
M = RND(5):
IF F(M) =1
THEN
110

P(M) = P(M) + 1:
PA =192 * (M - 1) + P(M)
PRINT @PA,HS(Q(P(M)));
IF P(M) < 55
THEN
110
FOR L = 1 TO 5:

games

PRINT @PA,HS(1);:

GOSUB 28
168 PRINT @PA,HS$(4);:
GOSUB 28:
NEXT L
170 PRINT @PA + 68,C + 1;
188 F(M) = 1:
C=C+ 1:
E(M) = C
196 IF C < 3
THEN
110:
ELSE
C=249
2¢0¢ GOSUB 38:
CLS :
PRINT @534,"CALCULATING WINNINGS"
219 FORL =1 TO 5:
A(L) = INT(RND(8) * 18) / 18:
NEXT L
220 FOR L = 1 TO G:
FOR LL = 1 TO 5:
P(LL) = @
2390 IF (HB(L) = LL) AND (PB(L) = 1)
THEN
GOSUB 458
240 IF (HB(L) = LL)} AND (PB(L) = 2)
THEN
GOSUB 478
250 1F (HB(L) = LL) AND (PB(L) = 3)
THEN
GOSUB 508
260 NEXT LL:
NEXT L
2768 CLS :

PRINT "SCHEDULE OF PAY-OFFS":
PRINT "BASED ON A §$2 BET":
PRINT
280 PRINT TAB(3);"BET =>"; TAB(13);"WIN"; TAB(28);"PLACE"; TAB(43);:"
SHOW"™ :
PRINT :
PRINT "FINISHED":
PRINT TAB(4);"1";

290 LL = @:
L =8:
E(L) = 1l:
W(L) = 2:
FOR KK = 1 TO 5:
IF E{(KK) = 1
THEN

308 NEXT KK
31 DC(L) = B:
GOSUB 458:
PRINT TAB{18); USING DS$;DC(L);
326 DC(L) = @:
GOSUB 478:
PRINT TAB(25); USING DS$;DC(L);
338 pC(L) = @:
GOSUB 508:
PRINT TAB(48); USING DS$;DC(L)
349 PRINT TAB(4);"2";:
E(L) = 2:
FOR KK = 1 TO 5:
IF E(KK) = 2
THEN
O(LL) = O{KK)
356 NEXT KK: R
PRINT TAB(18); STRINGS(10,45); I%ogNUN(wnnnued

41

games

368 DC(L) = B:
GOSUB 488:
PRINT TAB(25); USING DS$;DC(L);
3708 DC(L) = B:
GOSUB 518:
PRINT TAB(48); USING DS$;DC(L)
388 PRINT TAB(4);"3";:
E(L) = 3:
FOR KK = 1 TO 5:
IF E(KK) = 3
THEN
O(LL)
398 NEXT KK:
PRINT TAB(18); STRINGS(16,45);
480 PRINT TAB(25); STRINGS(10,45) ;
410 DC(L) = @:
GOSUB 528:
PRINT TAB(40); USING DS$;DC(L)
420 PRINT
PRINT
PRINT
GC30B
430 FOR L
F{L)
E(L)
NEXT
448 RETURN
450 IF E(LL) = 1
THEN
DC(L) = DC(L) + O(LL) * W(L):

= O(KK)

RESS ANY KEY TO CONTINUE)":

[N T Rl
1~
D@ Y
o e
=
O
e

ol

ELSE
DC(L) = DC{L) - W{(L)
460 RETURN
478 IF E(LL) = 1
THEN
DC{L) = DC{L) + (O(LL) - A(1l)) * W(L):
GOTO 498
488 IF E(LL) = 2
THEN
DC(L) = DC(L) + (O{LL) - A(2)) * W(L):

ELSE
DC(L) = DC(L) = W{L)
490 RETURN
588 IF E(LL) = 1
THEN
DC(L) = DC(L) + (O(LL) - A(3)) * W(L):
GOTO 5310
510 IF E(LL) = 2
THEN
DC(L) = DC(L) + {(O(LL) - A(4)) * W(L):
GOTO 538
526 IF E(LL) = 3
THEN
DC(L) = DC(L) + (O(LL) - A(5)) * W(L):

ELSE
DC(L) = DC(L) - W(L)
538 RETURN
548 RN = RN + 1:
IF RN > 1
THEN
778
550 CLS :
PRINT "S U P E R HORSE R A C E"; TAB(58);"RACE";RN:
PRINT STRINGS$(64,131);
560 PRINT "NO."; TAB(15); "NAME"; TAB(35);"0ODDS":
PRINT :
FORL =1 TO 5

42

578

580

590

600
610

620
630
640

658

660
670

680
698

700

720
730

games

IF RND(8) > .9
THEN
O(L) = RND(97) + 2:
ELSE
O(L) = RND(8) + 2
R = RND(18):
IF RF(R) = 1
THEN
580:
ELSE
RF(R) = 1
§$ = STR$(O(L)):
LN = LEN(SS):
IF LN = 2
THEN
§$ =" " 4+ 5%
PRINT L; TAB(15);HNS(R); TAB(33);8$;"
NEXT L:
PRINT :
FORL = 1 TO 18:
RF(L) = @:
NEXT L

.l"

PRINT "ENTER WAGER, HORSE NUMBER, AND FINISHING POSITION"

FORL =1 TO G
PRINT @832,NS(L);:
INPUT W(L) ,HB(L) ,PB(L)

IF ({W(L) < 2) OR (W(L) > 1668)) OR ((HB(L) < 1) OR (HB(L)

> 5)) OR ((PB(L) < 1) OR (PB(L) > 3})

THEN
PRINT €832, STRINGS$(32,32):
GOTO 648
PRINT @832, STRINGS$(32,32)
NEXT L:
PRINT €832, CHRS$(31):
GOSUB 38
GOSUB 60
CLS
PRINT "WINNINGS AND LOSSES":
PRINT :
PRINT
FOR L = 1 TO G:
PRINT N$(L); TAB(8);
IF DC(L) < @
THEN

PRINT "HAS LOST $"; USING "#,####4484.44%; ABS(DC(L)):

GOTO 738

PRINT "HAS WON $"; USING "#, ###488#4,.44";DC(L)

IF L / 18 = INT(L / 16)
THEN

PRINT @968," (PRESS ANY KEY TO CONTINUE)";:

ELSE
759
GOSUB 50:
CLS
NEXT L:

PRINT €966 ," (PRESS ANY KEY TO CONTINUE)";:

GOSUB 59

GOTO 549

CLS :

PRINT "PRESS 1 TO PLAY AGAIN"
PRINT TAB(7);"2 TO STOP GAME":
GOSUB 58

IF 1§ = "1"
THEN

RUN
IF IS = "2"
THEN

Program continued

43

games

CLS :
GOTO 9999:

ELSE
GOTO 7760
810 DS$ = "S#, fBEE. 48"
8$ = STRINGS(9,32):
PRINT @538,"H O R 8 E"
820 FOR L =1 TO 7:
D=1L%64 + 78:
PRINT @D,"S U P E R";
83¢ PRINT @1076 -~ D,"R A C E":
FOR T = 1 TO 108:
NEXT T
848 PRINT @D,SS$;:
PRINT @1876 - D,SS:
NEXT L
85¢ PRINT @,"S U P E R";:
PRINT @1876 - D,"R A C E":
GOSUB 4@
860 PRINT @588,"B Y JAMES A . SWARTS"
8783 DIM Q{55) .
FOR L = 1 TO 55:
READ Q(L):
NEXT L
880 DATA 1,2,1,
898 DATA 1,3,1,
990 DATA 1,2,1,
916 FORL =1 T
READ HNS(L):
NEXT L
920 DATA "FORTRAN", "COBOL","BASIC","RPG","ASSEMBLY"
93¢ DATA "ALGOL","PASCAL","PL/I","SNOBOL","JOVIAL"
940 FOR L = 1 TO 4
958 READ D:

3
2
3
0

970

9680 HS(L) = HS(L) + CHRS(D):
GOTO 958

978 NEXT L

980 DATA 131,131,131,131,163,179,26,24,24,24,24,24,24,32,152,188,188
191,191,131 26 ,24,24,24,24,24,24,26,32,129,191,32,170,149 ,~1

998 DATA 131,131,131,131,163,179,26,24,24,24,24,24,24,32,152,188,188
,191,191,131,26,24,24,24,24,24,24,24,32,185,135,32,138,173 ,144,-
1

1696 DATA 131,131,131,131,163,179,26,24,24,24,24,24,24,32,152,188,188
,191,191,131,26 ,24,24,24,24,24,24,24,32,129,139,18¢,158,129,~1
1810 DATA 131,131,131,131,131,131,26,24,24,24,24,24,24,32,32,32,32,32
,32,32,26,24,24,24,24,24,24,24,32,32,32,32,32,32,32,-1
1820 CLS :
PRINT @526 ,"DO YOU REQUIRE INSTRUCTIONS (Y OR N)?"
1838 GOSUB 58:
IF I$ = "N"
THEN
1120:

ELSE
IF I$ < > "¥"
THEN
1e39
1040 CLS
PRINT "S U P E R HORSE RACE"
1650 PRINT "I NS TRUCTTI ON S":

PRINT

1964 PRINT "THERE WILL BE 16 RACES WITH FIVE HORSES RUNNING IN EACH R
ACE."

1¢7¢ PRINT "WHEN YOU ARE PROMPTED TO PLACE YOUR BET, ENTER THE FOLLOW
ING:"

44

16889

1890

11089

1118

1120

1138

1140

1150

1160
9999

games

PRINT " (1) THE AMOUNT YOU WISH TO BET ($2 - $104@)":

PRINT " (2) THE HORSE YOU WISH TO BET ON (1 - 5)":

PRINT " (3) WIN, PLACE, OR SHOW (1 - 3)":

PRINT

PRINT "IF THE HORSE YOU BET ON WINS THE RACE, YOU WILL BE PAID I
F"s

PRINT "YOU MADE A WIN, PLACE, OR SHOW BET. IF YOUR HORSE COMES
IN®:

PRINT "SECOND, YOU WILL BE PAID IF YOU MADE A PLACE OR SHOW BET,
n

PRINT "IF YOUR HORSE FINISHES THIRD, YOU WILL BE PAID IF YOU MAD
E":
PRINT "A SHOW BET."
PRINT :
PRINT " (PRESS ANY KEY TO CONTINE)™;:
GOSUB 58
CLS
INPUT "HOW MANY PLAYERS (1 ~ 38) ;G
IF (G < 1) OR (G > 38)

THEN

1128:

ELSE

DIM N$(G) ,DC(G) ,HB(G) ,W(G) ,PB(G)
PRINT :
FOR L = 1 TO G:

PRINT "ENTER NAME OF PLAYER";L;:

INPUT NS$(L)

LN = LEN(NS$(L)):

IJF LN > 6

THEN

N$(L) = LEFT$(N$(L),6)

NEXT L:
GOTO 548
END

45

GAMES

Star Dreck

by Delton T. Horn

Ethink it'’s an unwritten law that every programmer must, at some time,
write a Star Trek program. My version, Star Dreck, is both an exciting
game and a spoof. The player is the captain of the starship Boobyprize.
Throughout the game, crew members kibitz the captain for his inept perfor-
mance against the rival Klingons.

The object of the game is to destroy a specific mumber of Klingon ships.
The computer determines the number depending on the game level you
enter in line 30. The computer will accept any number from 1 to 50, hat
since levels 1 through 10 would be too easy for you, the computer will reset
these levels to level 50.

On each turn you have nine command options. Engaging the warp en-
gines moves the ship through the galaxy. You must enter the speed and dis-
tance of travel you want. If your request is too large and would overload the
warp engines, the command is refused. The ship can move fore (away from
base) or aft (towards base), but must never leave the confines of the galaxy or
it will be destroyed. If the ship falls into a black hole, the computer relocates
it somewhere in the galaxy.

You can fire either phasers or photon torpedoes to destroy Klingons. If you
apply too little or too much power to the phasers or try to fire an empty
photon torpedo bank, your command is refused. Phaser power must be
quuu LUS ldllgb UL h) Lo LtlU units. mac ll time you return to Udbb‘ you inay
replace one torpedo, but you can never have more than 10.

Command number 4 returns the ship to base for repairs. The warp
engines require several star dates to recover, but other repairs are completed
within a single star date. The Klingons also repair their ships when you
return to base. If you use ordinary warp drive to dock at base, no repairs are
made. As long as a ship is docked at base it has an inexhaustible energy sup-
ply. The number of star dates available for play is determined by the
number of Klingons in your sector.

You can also choose to take a status report (see Figure 1) or a scan of the
nearest Klingon (distance and energy level). The Klingons slowly approach
the base, but the firing angle never changes. Additional commands include
disciplining crew members, the seif-destruct command, and ordering a
security report in case of a traitor on board. Just as in real life, your security
team occasionally makes a mistake.

The Star Dreck program (see Program Listing) was written for a 32K
Level II Model III, and is slightly too large for a 16K machine. If you

46

games

14:52:33
STATUS REPORT—STARSHIP BOOBYPRIZE—STAR DATE ** 12

CAPTAIN DELTON COMMANDING

CURRENT LOCATION 257

CREW 395 SPOCK IS DEAD
ENERGY LEVEL 9974

LIFE SUPPORT 94.2932 %

SHIELDS 82%

WARP ENGINES 98 %

PHOTON TORPEDOES 10

KLINGON SHIPS IN PATROL AREA 10

Figure 1. Sample status report

eliminate the line numbers shown in Table 1 and change line 25 to
CK =0:CX =0, it will fit. This deletes the traitor on board routine and the
security report. The program should also run on a Level II Model 1.

Even without the humorous comments from the crew, the game is fun to
play. There are a number of surprises hidden within the program, and you'll
learn the secrets of successful play as you play more games. But don’t worry
that you’ll get bored when you learn all the details. I wrote it and I still lose
to the Klingons occasionally.

Eliminate the following lines for a 16K machine,

27

217

240

305

527

1097
26002620
3330-3385
3420-3497
35703795
4000-4060
4200

4210

Table 1. Modifications for a 16K machine

47

O ~NL;

20

25

65
70

110
130

160

170

games

Program Listing. Star Dreck

REM * STAR DRECK *

REM * BY DELTON T. HORN *
REM * COPR. JUNE, 1981 *
DIM KD(100):

DIM KA(100)

TX =1
IF TX = 1 GOSUB 3330
INPUT "GAME LEVEL";GL
1IF GL > 50 GOTO 30
IF GL < 10
THEN

GL = 50
T = GL * 10 + 30 + RND(50)
SP :
SC
MC
CH
Su
Lu

owonomowouou

PRINT * “,“STAR DRECK":

INPUT “CAPTAIN'S NAME";N$

Encyclopedia
cycL(?ae}ler"

IF (N$ = "KIRK") OR (N§ = "JAMES KIRK") OR (N§ = "JAMES T. KIRK'

) OR (N§ = "JIM KIRK"™) GOTO 1500
CLS :

PRINT :

PRINT " ","STAR DRECK"

PRINT

PRINT "SPOCK: WELCOME ABOARD THE BOOBYPRIZE, CAPTAIN “;N$

PRINT
PRINT
PRINT
EN 10000:
10:
400:
100:
100:

0]

—
w
nowonou o0

48

180
185
190
195
200

201
202

213

300

305
310
320
330
340
350
360
370
380
390

IC =20
INPUT "INSTRUCTIONS";I%
IF LEFT$(I$,1) = “Y" GOSUB 2500
KK = KL
PRINT
INPUT
CLS :
PRINT :
PRINT " ","STAR DATE ** ",S5D:
GOSUB 1800
IF CR < 2 GOTO 1535
IF TR$ = "SCOTTY"

THEN

TR$ = "SCOTT"
IF WE ¢ 9.5

THEN

WE = WE + RND({5) / 100
FOR XX = 1 T0 222:

NEXT XX
GG = RND(30):
IF (GG > 20) AND (TX = 1) GOSUB 4200
IF SD > T GOTO 1200:

ELSE

PRINT * COMMAND CHOICES":

IF LC = 0

THEN
EN = 10000

NK = NK - RND(8):
IF NK = LC

THEN

NK = NK - 1
IF NK < 2 GOSUB 3300
IF NK < 1 GOTO 217
1IF LC =
IF TX = 1 GOSUB 3500
PRINT "1 --- Engage warp engines":
PRINT "2 -+~ Fire phasers"”
PRINT "3 --- Fire photon torpedo":
PRINT "4 ~-- Return to BASE"
PRINT "5 --- Status report":
PRINT "6 --- Scan Klingons"
PRINT "7 --- Enforce on board discipline”
PRINT "8 ~-. Self-destruct”
PRINT "9 --- Request security report"
PRINT
PRINT "WHAT 15 YOUR COMMAND,
INPUT C:
SD = SD + 1
IF ¢ = 9 GOTO 3570
IF ¢ = 1 GOTO 450
IF C = 2 GOTO 550
IF C = 3 GOTO 880
IF C = 4 GOTO 910
IF C = 5 GOTO 925
IF C = 6 GOTO 1020
IF C = 7 GOTO 1050
IF C = 8 GOTO 1700
IC = IC + 1:

“THERE ARE ";KL;" KLINGON SHIPS IN YOUR SECTOR!"
ES:

games

0 PRINT "The BOOBYPRIZE is docked at BASE"

PRINT "ILLOGICAL COMMAND!"“:
IF IC > 10 GOTO 400:

ELSE
GOTO
PRINT

2

PRINT :
PRINT :

PRINT

PRINT -
PRINT :

PRINT
PRINT
PRINT

00

CAPTAIN ";N$;

"MESSAGE FROM FEDERATION":

Program continued

49

410
415

420

460
470

475
477
480

490
495
500

520
525

527
530

535

540
550
560
565
567
570
575

580
585
590
595

597
600
610
615
620
630
635
640
645
650

655
660
665

670
675
680

685
690

games

PRINT “ “,"DISCIPLINARY BOARD TO CAPTAIN ";N§:

PRINT :

PRINT

PRINT "Your repeated illogical orders prove you to be unfit for"”
PRINT "command!":

PRINT :

GOSUB 1000:

PRINT "You are demoted to ensign and confined to quarters!!”
PRINT :

PRINT

PRINT

END

INPUT “WARP™ SPEED";S:

S = INT(S):

IF S > 10 GOTO 1570

IF § < 1 GOTO 390

INPUT “DISTANCE";D:

D = INT{D):

IF D > 30 * WE GOTO 1570

IF D < 1 GOTO 390

IF NV < 1 GOTO 3050

INPUT "FORE OR AFT";DRS:

D¢ - LEFTE(NDE 11

IF D$ = "F" GOTO 525

IF D$ = "A" GOTO 520

NV = NV - 0.5

PRINT “NOW, WHICH WAY DO YOU WANT TO GO, CAPTAIN ";N$;"?":
GOTO 480

D=0-0

LC = LC + D:

IF LC < 0 GOTO 1550

IF LC
NK =

EN =

= KD(NQ) GOTO 2600

ABS(LC - KD(NQ)):
IF LC > 11000 GOTO 1550

1

NT(EN - D * S / 10):

IF EN ¢ 1 GOTO 1530

GOTO 200

INPUT "POWER TO PHASER BANKS";P
IF P > 410 GOTO 1570

IF P < 15 GOTO 1680

EN = EN - P

INPUT “"FIRING ANGLE";A

A = INT(A):

I MmN U ouuviy ooy

IF A > 360 GOTO 1690

IF (A < 10) OR (A > 350) GOTO 700

IF (A < KA{NQ) + 7) AND (A > KA(NQ) - 7) GOTO 815

IF NK > 400 PRINT “WHY DID YOU FIRE INTO EMPTY SPACE?":

GOTO 610

IF ABS{A - KA(NQ)) > 75 PRINT * WAY OFF TARGET!",

PRINT " MISSI®

Z = RND(14)

IF (Z < 4) AND (SP = 0) GDTO 610

IF (Z > 3) AND (Z < 7) AND (SU = 0) GOTO 610

IF {(Z = 7) AND (MC = Q) GOTO 610

IF (Z > 9) AND (CH = 0) GOTO 610

IF Z = 1 PRINT "SPOCK:Tnat really stinks, Captain.”

{F Z = 2 PRINT "SPOCK:Is that the best you can do, Captain?”

IF Z = 3 PRINT "“SPOCK:I'11 bet that really scared the socks off
'em."

IF Z = & PRINT "SuULU:You blew it, sir."

IFf Z = &5 PRINT "SULU:May I nhave a transfer, Captain?®

IF Z = 6 PRINT "SULU:Have your eyes always been crossed, Captain
boY

IF Z = 7 PRINT “McCOY:1 think you need a long rest, Captain!®
If Z = 10 PRINT “CHEKOV:Mama mial"

IF Z = 11 PRINT "CHEKOV:Wny don't you try a squirt gun next time
, Captain?”

IF Z = 12 PRINT "CHEK(QV:Maybe 1 should've joined the Klingons."
IF Z = 13 PRINT “"CHEKOV:I want some vodkal"

50

games

695 IF Z = 14 PRINT "CHEKOV:Pretty bad, Captain!”
697 GOTO 200
700 PRINT “YOU JUST FIRED ON YOUR OWN SHIP!":

= 0

R :

DC = RND(9)

DX = RND{9) + 1:

CR = CR - DX
705 PRINT DX;" CREW MEMBERS HAVE BEEN KILLEDI"
710 IF (DC = 1) AND (SP = 1) GOTO 750
715 IF (DC = 2) AND (SC = 1} GOTO 755
720 IF {DC = 3) AND (MC = 1) GOTO 760
726 IF (DC = 4) AND {SU = 1) GOTO 765
730 IF (DC = 5) AND (CH = 1) GOTO 770
735 IF (DC = 6) AND (LU = 1} GOTO 775
740 IF R = 1 GOTO 2050
742 IF R = 2

THEN

RETURN

745 GOTO 200
750 SP = 0:

PRINT “SPOCK ";:

GOTO 780
755 SC = 0:

PRINT "SCOTTY “;:

G0TO 780
760 MC = 0:

PRINT "McCOY ®;:

GOTO 780
765 SU = 0:

PRINT "SULU “;:

GOTO 780
770 CH = 0O:

PRINT "CHEKOV “;:

GOTO 780
775 LU = O:

PRINT “LT. UHURA ";
780 PRINT “IS DEAD.":

IFR = 1 GOTO 2080
782 IF R = 2

THEN
RETURN

785 GOTO 200
815 PRINT " DIRECT HITIIL®

820 G = P - NK / 2
825 IF G < 5

5
830 KS = KS - RND(G):
GOSUB 1000
835 IF KS ¢ 0 GOTO 860
840 GOTO 200

860 KS = 0:
KD(NQ) = 0:
K =K-1

865 NK = 0:
KD(NQ) = 0:

IF CH = 0 GOTO 875
870 PRINT “CHEKOV REPORTS THE KLINGON SHIP IS DESTROYED “;:
VV = RND(3):
IF VV = 2 PRINT "THEN PASSES QUT":
ELSE
PRINT
872 GOTO 200
875 PRINT "KLINGON SHIP IS DESTROYED!":
GOTO 200
880 IF PT > 0 GOTO 900
885 PRINT "YOU HAVE USED UP ALL OF YOUR PHOTON TORPEDOES, CAPTAIN ";
NS$:
IF SP = 0 GOTO 200 X
887 CM = RND(4): Program continued

51

games

PRINT "SPOCK:You are really ";:

IF CM = 1 PRINT “stupid";
890 IF CM = 2 PRINT "a turkey";
894 IF CM = 3 PRINT “useless”;
896 IF CM = 4 PRINT "illogical";
898 PRINT ", CAPTAIN ";N$;".":

GOTO 200
900 PT = PT - 1

P = 500:

GOTO 570

910 IF WE < 5 GOTO 1300
911 IF NK < 1 GOTO 5000

912 LC = 0:
EN = 10000:
IF PT < 10
THEN
PT = PT + 1
915 LS = 100:
SH = 100:
BT = BT + 1
NK = 0:
N =10

972N NV“: NV o+ 10
IF BT > 10 GOTO 1010

PRINT * STATUS REPORT --- STARSHIP BOOBYPRIZE --- STAR DATE **

930 PRINT " ","CAPTAIN ";N3$;" COMMANDING"
935 IF LC = 0 PRINT "SHIP IS DOCKED AT BASE",
940 PRINT "CURRENT LOCATION "sLC:

PRINT “CREW",CR,:

If SP = 0 PRINT “SPOCK IS DEAD”,
942 IF SC = 0 PRINT “SCOTTY IS DEAD",
944 I1F CH = 0 PRINT “"CHEKOV IS DEAD",
946 IF SU = 0 PRINT "SULU IS DEAD",
948 IF MC = 0 PRINT "McCOY IS DEAD",
950 IF LU = 0 PRINT "UHURA IS DEAD",
955 PRINT

PRINT "ENERGY LEVEL",EN

960 PRINT "LIFE SUPPORT",LS;"%":
PRINT “SHIELDS",SH;"%"

965 PRINT "WARP ENGINES",WE * 10;"%":

PRINT "PHOTON TORPEDQES®™,PT
967 IF R = 4 GOTO 2700
968 IF R = 10 GOTO 2200
970 K = 0:

FOR X = 1 TO KL:
IF KD{X) > 0
THEN
K=K + 1
980 NEXT X:
PRINT "KLINGON SHIPS IN PATROL AREA™,K
990 GOTO 200
1000 FOR X = 1 TO 333:
NEXT X
1005 RETURN
1010 PRINT “YOU HAVE MADE TOO MANY TRIPS BACK TO BASE, ";N$:
GOTO 410
1020 IF (NK = 0) OR (NK > 500) GOTO 1035
1025 PRINT “NEAREST KLINGON VESSEL IS ";NK;" PARSECS AWAY":
PRINT "OPERATING AT ";KS;"% ENERGY LEVEL":

GOTO 200
LU3Y PRINT “NO KLINGONS WITHIN KANGE®:

GOTO 200
1050 INPUT "CREW MEMBER TO BE DISCIPLINED";C$:

CR = CR - 1
1060 IF (C$ = "SPOCK") OR {C$ = "MR SPOCK")

THEN

SP = 0

1070 IF (C$ = "MCCOY") OR (C$ = "DR MCCOY") OR (C$ = "BONES")

52

1080

1085

1090

1095

1097
1100
1105

1107
1110

1150

1200

1210
1220
1300
1500

1530
1535

1540
1545

1550

1560
1570

1580
1590
1600
1605
1610
1615
1620
1625

1630

1635
1640

games

THEN
MC = 0
IF (C$ = “SCOTTY") OR (C$ = "MR SCOTT")
THEN
SC =0
IF (C$ = “CHEKOV") OR (C$ = “MR CHEKOV")
THEN
CH =20
IF (C$ = "SuLU") OR (C$ = "MR SULU")
THEN
SU =0
IF (C$ = “UHURA") OR (C$ = "LT UHURA")
THEN
LY = 0
GOSUB 3420
IF C$ = N$ GOTO 1150
D% = "CAPTAIN":
E$ = uow.
F$ = D$ + E$ + N$
IF (C$ = D$) OR (C$ = F$) GOTO 1150
CK = CK + 1:

PRINT C$;" IS DEAD.":
IF CK > 10 GOTO 3810:
ELSE
GOTO 200
PRINT "WHY DID YOU COMMIT SUICIDE?":
FOR X = 1 TO 2000:
NEXT X:
NEW
PRINT “YOU HAVE FOOLED AROUND FOR ";SD;" STAR DATES, CAPTAIN ";N

$:

GOSUB 1000

PRINT "AFTER ALL THAT TIME, THE KLINGONS HAVE DEFEATED THE FEDER
ATION"

GOSUB 1000:

GOTO 1540

PRINT "YOUR WARP ENGINES ARE BADLY DAMAGED!":
GOTO 200

PRINT "DON'T GET CUTE, PALi{"“:

GOSUB 1000:

ES%BTIIEOU ARE MOST CERTAINLY NOT CAPTAIN KIRK!":
PRINT "THE BOOBYPRIZE HAS NO ENERGY IN RESERVE!"

PRINT “THE ENTIRE CREW IS DECEASED!":

GOSUB 1000

PRINT "THANKS A LUMP, 'CAPTAIN' "“;N$

R = 10:

GOTO 940

PRINT "THE BOOBYPRIZE JUST WANDERED OUT OF THE KNOWN GALAXY":

GOSUB 1000:
PRINT "ALL OF YOUR STAR MAPS ARE COMPLETELY USELESS HERE":

GOSUB 1000

GOTO 1535

IC = IC + 0.25:

Z = RND(15)

Y = 0:

IF (Z < 4) AND (SP = 0) GOTO 1570

IF (Z > 6) AND (Z < 10) AND {SC = Q) GOTO 1570

IF (Z > 9) AND (Z < 13) AND {SU = 0) GOTO 1570

IF (Z > 12) AND (CH = 0) GOTO 1570

IF Z = 1 PRINT "SPOCK:That is not a logical choice, Captain."

IF Z = 2 PRINT "SPOCK:You are not quite sane, Captain."

IF Z = 3 PRINT “"SPOCK:Whoo boy! Humans are such dips!"

IF (Z > 3) AND (Z < 7) GOTO 390

IF Z = 7 PRINT "SCOTTY:The engines couldn't stand the strain, si
r!n

IF Z = 8 PRINT "SCOTTY:Have you been getting into my scotch agai

n, Captain?”
IF Z = 9 PRINT “SCOTTY:0y vey!"
IF Z = 10 PRINT "SULU:Are you sure, Captain?" Program continued

53

1645
1650
1655
1660
16658
1670

1680
1685

1690
1700

1730

1800

1805
1810

1815

1817
1820
1830

1832
1835

1840

1850

1860

1875
1880

1885
1890
1892
1894
1896
1898
1900
1902
1910
2000

2005

games

[F Z = 11 PRINT “SULU:Have you flipped, Captain?"”

IF Z = 12 PRINT "SuLU:May I nave a transfer, Captain?”

IF 2 = 13 PRINT "CHEKOV:May I nave a transfer, Captain?"

IF Z = 14 PRINT "CHEKOV:Tee hee hee!"

IF Z = 15 PRINT “CHEKOV:You have a hole in your head, Captain!"
PRINT :

PRINT :

GOSuUB 1000:

GOTO 200

IF SP = § GOTO 550

PRINT “SPOCK:That ain't diddly-poo, Captain.”:
GOTO 1670

A = INT(A / 360):

GOTO 580
T = RND(100) + 50:
CLS :

FOR X = 1 70 T:
Y = RND(1010):
PRINT BY," * "4t
NEXT X
PRINT * KA-BOOMIILIE":
PRINT :
PRINT :
GUSUD 1000.
GOTO 1540
Jd = 0:
H = 1000000:
FOR X = 1 TO KL:
Jd = KD({X} + J:
IF SD > T GOTO 1200
G = ABS(KD(X) - LC):
IF G = LC GOTO 1815
IF G < H
THEN
H = G:
NG = X
NEXT X:
IfF J = 0 GOTO 2150
N = NQ
IF (NK = 0) OR {NK > H) GOTO 1840
QX = RND(222) + 222:
IF (NK > 0) AND (NK < QX) GOTO 1850
IF (NK > 0) AND (NK ¢ 425) PRINT “"KLINGON VESSEL
GOSUB 1000:
PRINT
RETURN
NK = H:
KS = 100:
GOTO 1830
PRINT "KLINGON VESSEL SIGHTED!":
GOSuUB 1000:
PRINT “THEY FIRE UPON THE BOOBYPRIZE!"
KF = RND(400) - NK:
GOSyB8 1000:
IF KF > 100 GOTO 2000
PRINT " THEY MISSt™
CM = RND(9):
IF (CH = 0) AND {(CM < 4) GOTO 1880
IF (SU = 0) AND (CM > 5) GOTO 1880

SIGHTED!"

QUIVERS"

IF CM = 1 PRINT "CHEKOV:Hallelujan!"

IF CM = 2 PRINT "CHEKOV:I need some vodka!"

IF CM = 3 PRINT "CHEKOV:Now what are you going to do, Captain
IF CM = 6 PRINT "SULU HIDES UNDER YOUR CHAIR AND

TF £M = 7 PRINT "SHlU:T WANT MY MOMMY!DIDD®

IF CM = 8 PRINT “SULU:May I nhave a transfer, Captain?"

IF CM = 9 PRINT "SULU:I don't think they like us, Captain"
RETURN

FOR X = 15360 TO 16380:

POKE X,42:

NEXT X

PRINT "THE BOOBYPRIZE HAS BEEN HIT!!"

54

games

2010 FR = ABS(NK - LC) / 3:
IF FR > 90
THEN
FR = 80
M = RND(100 - FR):
= RND(DM):

2015

2020 PRINT " YOU SUFFER DAMAGE!":

- X:
- 10 GOTO 2130
2025 LS = LS - ¥:
1 GOTO 2120
2030 CR = CR -~ Z:
IF CR < 2 GOTO 1535
2035 IF MC = 1 PRINT "McCOY:We lost ";Z;" crew members!"
2040 IF (SC = 1) AND (SH < 25) PRINT "SCOTTY:The shields are in very
bad shape, sir!"
2045 IF (LU = 1) AND (LS < 25) PRINT "LT UHURA:The 1life support syste
ms have been badly damaged!"

2047 R = 1:

DC = RND(15)

GOTO 710
2050 WE = WE - 0.1:

CM = RND(27):

IF CM = 8

THEN

WE = WE - RND(8) / 2

2051 IF (SU = 0) AND (CM = 27) GOTO 2050
2052 IF (CM < 4) AND (SP = 0) GOTO 2050
2053 IF (CM > 7) AND (CM ¢ 12) AND {SC = 0) GOTO 2050
2054 IF (CM = 12) AND (LU = 0) GOTO 2050

2056 IF (CM > 15) AND (CM < 22) AND (CH = 0) GOTO 2050
2057 1F CM = 16
THEN
CX = CX + (RND(300) / 100)
2058 IF CX > 10 GOTO 3800
2060 IF (CM > 23) AND (CM < 27) AND (MC = 0) GOTO 2050
2062 IF (CM = 3) OR (CM = 5)

THEN
CP = CP - (RND(3000) / 1000)

2063 IF CP < 1 GOTO 3000
2064 IF CM = 1 PRINT "SPOCK:My tummy is upset.”
2066 IF CM = 2 PRINT "SPOCK:"I BELIEVE WE ARE IN TROUBLE, CAPTAIN."
2068 1F CM = 3 PRINT “SPOCK:The computer has sustained damage!"
2070 IF CM = 8 PRINT "SCOTTY:The warp engines have been damaged!"
2072 IF CM = 9 PRINT "SCOTTY:It's looking bad, Captain!"
2074 IF CM = 10 PRINT "SCOTTY:My bottle of scotch is broken!"
2076 IF CM = 11 PRINT "SCOTTY:The engines are under a severe strain,

sirt®
2077 IF (CM = 11) OR (CM = 4)

THEN

EN = EN - INT(EN / 4)
2078 IF CM = 12 PRINT "LT UHURA:The communications system has been da
maged, sirl"
2080 IF CM = 13 PRINT "SULU:May I nhave a transfer, Captain?"
2082 IF CM = 14 PRINT "SULU:The navigation system has been damaged!"
2083 IF (CM = 14) OR (CM = 7)
THEN
NV = NV - RND(5)
2084 IF CM = 15 PRINT °“SULU:Just wait until I get my hands on that re
cruiting officer!”
2086 IF CM = 27 PRINT "SULU:I stubbed my toe!"

2088 IF CM = 16 PRINT "CHEKOV:The coffee maker was damaged!"
2090 IF CM = 17 PRINT "CHEKOV:I nit my funny bone!"
2092 IF CM = 19 PRINT "CHEKOV:May I have a transfer, Captain?®

Program continued

55

2094
2096
2100
2102
2104
2106

2110

2115

2120
2130

2135

2150
2160
2170
2180
2200
2210
2220
2500
2505

2510
2515

2520
2525
2530
2535
2540
2545
2550
2555
2560
2565

2570
2600

™o
o
R 1=
oD

2700

games

IF CM = 20 PRINT "CHEKOV:1 should've gone to dental school!"
IF CM = 21 PRINT “CHEKOV:My bottle of vodka is broken!"®
IF CM = 24 PRINT "McCOY:“;N$;"! You have to stop this!"
IF CM = 25 PRINT "McCOY:Nurse Chappel skinned her knee!"
IF CM = 26 PRINT "McCOY:I fell on a hypo and an overdose!"
IF CM = 26
THEN
MC = 0
R = 2:
DC = RND(27):
If DC < 7 GOTO 710
RETURN
PRINT “THE LIFE SUPPORT SYSTEM HAS BEEN COMPLETELY DESTROYED!":

GOTO 1535

;gim; "THE SHIELDS HAVE BEEN COMPLETELY DESTROYED!":

GOSUB 1000

PRINT "THE BOOBYPRIZE IS QUICK-FRIED TO A CRACKLY CRUNCH!":
GOSUB 1000:

GOTO 1535

?gé?I "YOU HAVE DESTROYED ALL OF THE KLINGONS IN YOUR PATROL SEC

GOSUB 1000:

PRINT "GOOD J0B, ";:
GuUsSUB 1UUU

PRINT "ADMIRAL ";N§;"!11"
R = 10:

GOTO 940

PRINT “STAR DATE *** ".5p

PRINT “YOUR MISSION WAS TO DESTROY ";KK;" KLINGONS®

PRINT “"Your mission is to destroy all of the Klingon ships in yo
PRINT :patrol sector. You may use either phasers or photon torp
gg?ﬁ%.“vou have only a limited number of torpedoes. Using the"
PRINT "phasers depletes your energy reserve. A}l damage to Kling
PRINT :(and to you!) is cumulative. You may refresh your energy
PRINT "support and shields by returning to base. Tnis will also
PRINT "the Klingons a chance to recover. Too many trips back to

PRINT "or invalid commands will result in vour immediate demotio

FOR X = 1 TO 333

NEXT X

PRINT "Incidentally, once you have located a Klingon ship, it wi
11 not"

PRINT "move. Press 'ENTER' after each command. A question mark

PRINT "flashing square will prompt you for a command., Your crew
will”

PRINT'"offer nelpful comments as you go along. Press 'ENTER' to
play"s

INPUT G$

RETURN

CLS

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT * yOU JUST RAMMED INTQ A KLINGOM SHIDIY

GOSUB 1000:

GOSUB 1000:

GOTO 1700

PRINT * “,"P.";:

GOSUB 1000:

PRINT "U."

o6

games

2710 END
2999 STOP
3000 GOSUB 1000:
CLS :
PRINT :
PRINT :
PRINT "THE COMPUTER IS DESTROYED!":
FOR X = 1 TO 2000:

NEXT X
3010 NEW
3050 PRINT "THE BADLY DAMAGED NAVIGATION SYSTEM FORCES YOU TO MOVE IN
AY:
PRINT “"RANDOM DIRECTION!":
DR = RND(2)

3055 IF DR = 1 GOTO 525
3060 GOTO 520

3300 PRINT "THE KLINGONS HAVE INVADED YOUR STARBASE!":

T =T - RND(10):
IF LC = 0 GOTO 3400
3310 RETURN
3330 TR = RND{11):
F -

IF TR = 1TR$ = "CLANCY"®
3335 IF TR = 2TR$ = “SuyLu"
3340 IF TR = 3TR§ = "SpoOCK"
3345 IF TR = 4TR$ = "McCOY"
3350 IF TR = 5TR$ = "CHEKOV"
3355 IF TR = 6TR$ = "WILSON"
3360 IF TR = 7TR$ = "BROWN"
3365 IF TR = 8TR$ = "UHURA®
3370 IF TR = 9TR$ = "SQUIBBLES"
3375 IF TR = 10TR$ = "KLAGSTORN"
3380 IF TR = 11TR$ = "scoTTy"
3385 CL = 1:
WL = 1:
BR = I:
SQ = 1:
KG = 1:
RETURN
3400 PRINT "THE BOOBYPRIZE IS OVERRUN WITH KLINGONS!":
GOSUB 1000
3410 PRINT "YOU ARE DEFEATED!":
R = 10:
GOTO 940
3420 IF C$ = "SCOTT"
THEN
SC =0
3422 IF C$ = “CLANCY"
THEN
CL = 0
3425 IF C$ = "WILSON"
THEN
WL = 0
3430 IF C$ = "BROWN"
THEN
BR = 0
3435 IF C$ = “SQUIBBLES"
THEN
SqQ =0
3440 IF C$ = "KLAGSTORN"
THEN
KG = 0
3445 IF (TR = 1) AND (CL = 0)
THEN
TX = 0
3450 IF (TR = 2) AND (SU = 0)
THEN
% = 0
3455 IF (TR = 3) AND (SP = 0)
THEN

T 0
3460 IF (TR = 4) AND (MC = 0)

Program continued

57

3465

3470

3475

3480

3485

3490

3495

3497

3500

3510
3520

3530

3540

3550

3560
3570

3575

3580
3585

3590
3595

3600

3610
3615

3620

games

IF (TR = 5) AND (CH

0)

IF (TR = 6) AND (WL

"
o
~—

U

IF (TR = 7) AND (BR = 0)
IF (TR = 8) AND (LU = 0)

IF (TR = 9) AND (SQ = 0)

£l

IF (TR = 10) AND (KG = 0)

IF (TR = 11) AND (SC = 0)

EN = fg - RND(500)
- RND(10)
- RND(10)

WE = WE - RND{4) / 2

PRINT :

PRINT " ","SECURITY REPORT":

PRINT “STARSHIP BOOBYPRIZE"," ","STAR DATE ** ";SD:
GOSUB 1000

PRINT :

GOSUB 1000:

TQ = RND(100):

IF {(TX = 1) AND (TQ < 98) GOTO 3590

IF (TX = 0) AND (TQ > 98) GOTO 3590

PRINT "ALL CLEAR, CAPTAIN":

GOTO 200
PRINT "SABATOGE SUSPECTED ~-.- A TRAITOR MAY BE ON BOARD!"“:
PRINT
PRINT " “,"COMMAND CHOICES":
PRINT "1 -~ Prepare suspect list {1 extra star date)":
PRINT "2 --- Individual security report (3 extra star dates)":
PRINT "3 -~- Cancel security alert"
INPUT "YOUR COMMAND";C:
If C = 1 GOTO 3620
IF C = 2 GOTO 3700
IF € = 3 GOTO 200:
ELSE
GOTO 390
PRINT :
PRINT :
GOSUB 1000:

PRINT "CREW MEMBERS SUSPECTED OF POSSIBLE TREASON":
PRINT :

GOSUB 1000:

SD = SD + 1

58

3625 QM =

3630

3635

3640

3645 Q

3650

3655 QM

3660 Q

3665 Q

3670

3675

3680

3700

3710

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

1:
GOSUB 4000:
IF (QT = 11)
QM = 2:
GOSUB 4000:
IF (QT = 11)

GOSUB 4000
IF (QT = 11)

QM
G B 4000
I = 11)

8 4000
= 11)

U
o

u

I

U8 4000
(= 11)
sy

a

su

(ol

U

O

G
I
QM
G
I

B8 4000
= 11)

B 4000:

= 11)
9.
GOSUB 4000:
IF (QT = 11)
qM = 10:
GOSUB 4000:
IF (QT = 11)
QM = 11:
GOSUB 4000:
IF (QT = 11)
PRINT :
PRINT :
GOSUB 1000:
GOTO 3595

0s
E
M
0S
E
0s
F
GOS
IF
M
GOS
1F
M
0

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

(BR

(CH

(cL

(KG

(MC

(s¢

(sp

(sQ

(su

(LU

1)

1)

1)

1)

1)

1)

1)

1)

1)

1)

1)

games

PRINT “BROWN",

PRINT “CHEKOV",

PRINT "“CLANCY",

PRINT "KLAGSTORN",

PRINT "MCCOY",

PRINT “scCOTT",

PRINT "SPOCK",

PRINT “SQUIGGLES",

PRINT “Sutu“,

PRINT "UHURA",

PRINT "WILSON",

PRINT "CREW MEMBER TO BE INVESTIGATED?
NO™:
INPUT "NICK-NAMES OR TITLES) ";SP$

GOSUB 1000:
GOSuUB 1000:
SD = SD + 3
1F SP$

GOsuB 1000

QT = RND{10):

= TR$ GOTO 3795
PRINT SP$;" DOES NOT APPEAR TO BE THE CULPRIT":

IF QT > 5 GOTO 200

PRINT "OFFENDED BY YQOUR DISTRUST,

IF SP$ = "BROWN"

THEN
BR =0

1F SP$ = “CHEKOV"

THEN
CH =20

IF SP$ = "CLANCY"

THEN

L =20
IF SP$ =
THEN

KG = 0

IF SP$ = "MCCOY"

THEN
MC = 0

IF SP$ = "scoTT"

THEN
sC =20

IF SP$ = “SPOCK"

THEN
SP =0

"KLAGSTORN"

IF SP$ = "SQUIBBLES"

(ENTER LAST NAME ONLY --

";SP$;" COMMITS SUICIDE"

Program continued

59

games

THEN
sQ = 0
3775 IF P = "SULU"
THEN
sU =0
3780 IF SP$ = "UHURA®
THEN
Ly =0
3785 IF SP$ = "WILSON®
THEN
WL = 0
3790 CR = CR - 1:
GOTO 200
3795 PRINT :
PRINT TR$;" IS A TRAITOR!!IL":
GOSUB 1000:
PRINT :
GOTO 200
3800 PRINT "THE COFFEE POT IS DESTROYED!!!":
GOSUB 1000
3810 PRINT "THE CREW MUTINIES!":
GOSUB 1000
3820 PRINT "YOU WILL BE PUT TO DEATH AT MIDNIGHT!":
GOSUB 1000
3830 R = 10:
GOTO 940
4000 QT = RND(10):
IF QT > 5
THEN
QT = 11
4005 IF (QM = 1) AND (TR$ = “BROWN")
THEN
QT = 11
4010 IF (QM = 2) AND (TR$ = “CHEKOV")
THEN
QT = 11
4015 IF (QM = 3) AND (TR$ = "CLANCY")
THEN
QT = 11
4020 IF (QM = 4) AND (TR$ = "KLAGSTORN")
THEN
QT = 11
4025 IF (QM = 5) AND (TR$ = "McCOY")
THEN
QT = 11
4030 IF (QM = 6) AND (TR$ = "SCOTT")
THEN
QT = 11
4035 IF (QM = 7) AND (TR$ = "SPOCK")
THEN
QT = 11
4040 IF (QM = 8) AND (TR$ = "SQUIGGLES")
THEN
QT = 11
4045 IF (QM = 9) AND (TR$ = "SULU")
THEN
QT = 11
4050 IF (QM = 10) AND (TR$ = "UHURA")
THEN
QT = 11
4055 IF (QM = 11) AND (TR$ = "WILSON®)
THEN
QT = 11

4060 RETURN
4200 PRINT "ONE OF YOUR CREW MEMBERS IS FOUND MURDERED!"
4210 CR = CR - 1:

RETURN
5000 PRINT "THE KLINGONS GAPTURE YOU ALONG WITH THE BASE!"
5010 R = 4 GOTO 940

60

GRAPHICS

Slide Show
Graphs, Plus

61

GRAPHICS

Slide Show

by Tom Van Dan Elzen

The Etch-A-Screen concept has simplified and created new possibil-
ities for computer graphics. But, for people who would like to use
graphics more creatively, Slide Show offers more. Slide Show has three
unique twists that give it expanded audiovisual capability:

1) Ten full-screen slides are CSAVEd as part of the program.

9) An assembly-language routine that is POKEd into place when the pro-
gram is RUN prints any one of the 10 slides, on command, in milliseconds.
3) A program that allows a time delay between slides. (If you select zero
time between slides, you can have up to a 10-frame “movie.”)

Credit where credit is due. The actual drawing routine and text routine
are taken from “Etch-A-Screen” (James K. Shrum, 80 Microcomputing,
May 1980).

The Program

The slides are stored in lines 1 through 50 which consist of “dummy”
REMark statements containing 204 characters per line. Each slide is
stored consecutively, with lines 1 through 5 storing slide one, 6 through 10
storing slide two, etc. For now, ignore line 51; we'll get to it later. But
remember that lines 1 through 50 must have exactly 204 characters per line.

Routine 1000 initializes the system and POKEs the assembly routine
(the DATA statement) into memory starting at 7C00 hex. The six com-
mands that the program uses are then printed on the CRT to refresh your
memory. Line 1260 is an INKEY routine (PEEK 16537) that is looking for
the CLEAR key to be pressed (31). If the key is pressed, the A from line 51
is POKEd into the lower right of the CRT, and the system is sent to
subroutine 4000 (TEXT).

The workings of subroutines 2000, 3000, and 4000 are adapted from
Etch-A-Screen, as mentioned above. The heart of the program, the
graphics, is accomplished in routine 2000. Routine 3000 directs the pro-
gram to the different subroutines you select. Routine 4000 writes the text
of the program. Slides are cleared from memory and replaced with
asterisks in routine 5000. Because we store the entire slide, you can store a
new slide over an old slide, if you wish, without clearing the old slide. If
you do this, you can delete all of the 5XXX lines and line 3140.

63

graphics

Routine 6000 stores the slide, byte by byte, into the proper lines (1
through 50) as designated by the slide number. If you store a slide in
memory and then list the program, don’t be shocked by what you see in
the first 50 lines. These strange appearances are byte codes for graphics
(128-196) that are transformed into words by the BASIC interpreter like
KILL, GOTO, IF, THEN, etc. If you CSAVE the program, it will all save.

Slides are redrawn on the CRT by subroutine 7000. The X = USR(V)
command passes the start location of the desired slide (variable V) up to
the assembly-language routine. For slide zero, the start location is
V = 17136; for slide one it is V = 17136 + 1060 (1060 = 5 x 204 + 40).
The slide is stored in five lines with 204 bytes per line. (This is only 1020
bytes because we don’t save the last four bytes in the lower right corner of
the CRT.) The added 40 bytes are the overhead created by the line numbers
and the REMark(’) in each line. I have not seen any other program that can
CSAVE data to tape with only 40 bytes of overhead per 1020 bytes of data.
In my opinion, that’s efficient. You might want to use this idea to save other
types of data as part of your programs. It sure beats using data tapes.

The Slide Show is activated in subroutine 8000. This routine allows you
to review the slides in any order, with whatever time delay you want be-
tween slides. You may even select a continuous Slide Show. (Note: This is
useful for presentations. A computer store might use it for a promotion.) You
can also make a ten-frame movie by simply setting the time between slides to

64

graphics

zero. Line 8240 determines whether or not the slides continue. It is an IN-
KEY routine that looks to see if the CLEAR key has been pressed. If the key
is pressed, it finishes to the last slide, then exits the continuous routine.

One last note of caution regarding programming. It takes a while to
type in all of those asterisks in the first 50 lines. If any of those lines has
one too many or one too few characters, the program will self-destruct.
Therefore, I suggest that you CSAVE the program before you RUN it.
That way, if it has an error, all you have to do is CLOAD it, find your
mistake, and fix it. One way to check your asterisks is to RUN the program
and go immediately to the Slide Show. Wait for all ten slides to be printed.
You should get ten identical screens full of asterisks with four bytes missing
in the lower right corner.

Al Number of slides to be viewed.

A2 Number of seconds between slides.

C Equals 191. This is the graphics code for the block cursor used in the text mode.

CQ$ Contains answer to “Endless Slide Show™ question.

L Equals 15360. Address for start of CRT RAM.

PN Slide number or print number.

TN Tape number or tape letter.

U Equals 16383. Address for end of CRT RAM.

\Y Contains the location of the first byte of the slide to be printed. The equation
X = USR(V) sends this address to the assembly program.

XM Equals 17136. This is the address of the first asterisk or graphics byte in program
line 1.

™ Equal to slide number multiplied by 1060.

A, B, CQ,

D, LS,

X, Y, Z These are all temporary variables used for delay loops, counters, etc.

Table 1. Variable list

How it Works

When you run the program you’ll get the list of the six key codes for go-
ing from one routine to the other. Once you've read the codes press the
CLEAR key. You'll get a clear screen with an A in the lower right follow-
ed by a blinking block cursor. Enter a number from 0 to 9 and press
ENTER. Now you can begin drawing. Press the space bar, and you'll see
the blinking dot in the upper left corner. You can move the dot using the
up, down, right, and left arrows. Moving the dot while pressing the space
bar moves it without drawing. Releasing the space bar while moving the
dot draws a line. To erase a dot or a line, simply go back over it while
holding the space bar.

The A above and the number you type are tape codes. If you make
several Slide Shows, you can permanently change the A to any other letter

65

graphics

by typing another letter over it on any one of the slides while in the text
mode. All the slides will be changed to the new letter. This is a handy
reference. Slide C7, for example, would be slide 7 on tape C.

If you would like to add text to your slide, press the letter D followed by
the letter T. The blinking block will show up again in the lower right of
the screen. You can move it by using the arrows. The block is non-
destructive. You can move it over the drawing without disturbing the
drawing. To enter text, move the block into position and start typing. You
can also change slide numbers and tape letters by typing over them with a
new number or letter. To exit the text mode, press ENTER. Now you can
add to or change the drawing, or enter a new command.

- To record a slide to memory, press D followed by R. An R will appear
in place of the slide number showing that it is recording. The recording

et onm b Bl [r .. . - IR IR IR *
takes approximately 25 seconds. When il's fiuished, the piinking biock

replaces the R and you are back in the text mode. If you fail to enter a slide
number before recording to memory, it will record as slide zero for an ASCII
character lower than 0, or as slide nine for an ASCII character of value
greater than nine.

14590 Returns the raw code for the arrows and space bar, or combinations of these
keys, as they are pressed.

15360 Start of CRT RAM.

16382 Location of tape number in CRT RAM.

16383 Location of slide number in CRT RAM. Lower right of CRT.

16526 Storage location for the LSB of the address for the start of the assembly
program.

16527 Storage location for the MSB of the address for the start of the assembly
program.

16537 Memory location where the TRS-80 stores the byte code of the last key
pressed.

17136 RAM location for the first asterisk or graphics byte in program line 1.

27736 RAM location for storing the tape letter in program line 51.

31744-31775 Location of assembly routine in high memory.
Table 2. Special address list

To print any slide, enter the slide number in the lower right while in
the text mode. Exit the text mode and press D followed by P. The slide
will be instantly printed and you will again be in the text mode. You can
wipe the screen clear by leaving the text mode and pressing D followed by
W. When the screen clears vou’ll be in text mode, To remaove a dide from
memory, enter the slide number in the lower right, and exit the text
mode. Press D followed by C. The letter C will appear where the slide
number was and remain until the slide is cleared (about 15 to 20 seconds).
The text mode will automatically return. It is necessary to clear all slides

66

graphics

if you wish to list the program. The slides saved in the REM statements
will not list properly.

For the Slide Show, exit the text mode and press D followed by S. The
screen will clear, and you’ll be asked how many slides you wish to see and
in what order. Enter the number for the first slide you want. Question
marks will continue coming until you’ve entered as many slide numbers as
you'd originally asked to see. The next question is for the delay, in
seconds, that you want between slides. At this point, you could transform
your slide program into an audiovisual show. With a little program
change the TRS-80 could turn on and off a tape recorder to accompany
the slides. The last question is for the continuous slide show. Answer Yes
or No or Y or N. If you enter Yes, it will show the slides in continuous
order. To break the loop, press the CLEAR key. The loop will continue to
the last slide and then stop back in the text mode. (Too bad there is no
easy way to get the computer to rewind the tape in the tape recorder. If it
could, you could have an automatic audiovisual presentation.)

67

graphics

Program Listing. Slide Show Encyclopedia
Loader"

1 ‘***
**
**
Fkeok Kok ok ok ok ok ke ok ok ok ok

2 ‘*******************ir***
***********************************'k****************************
************************'k***************************************
kkkhkhkhkhdhhkkhhkkk

3 '***i*****************
***********************************‘k****************************
**
Fkhkkkkhkhkhkdkhkhki

4 '***********'k***
**
***************‘k*******************************‘k****************
dkhkkkkhkhhkdhk ki

5 ‘********************i‘**‘k*********************************’k***
************************************‘k***************************
**

6 ‘***
************************‘k***************************************
*********************'A'**
khkkkhhkhkhhkdkdrxhx
7 '**‘k********
**
*1\'**********‘k***
HhAkhkhkA Rk Ak h ko kk
8 '************i’**'k***
i*****
**
Ihkhkkhkkhhkhhhk kdkk
9 '***'}:%‘*k
***********‘k**
********************’k***
dhkkkkhkkkhkhkhhkkhn
10 '**********‘k‘k**
*********'lr************************‘k******’k*‘k********************
***************************‘k**‘k*******************************‘k*
Ikhkkkkhkhhhkkdhkhkx
ll i vrrkrr’x*?\"fc‘A‘*.‘:****'f:**k‘k'k*'k'k**'ﬂ:\‘r***************'k************’k****
‘k**'k*******'k****
**
hkhkkkkkkkhkhhhkhxk
12 '*****‘k*******1‘:****'k*****************‘k***********************
‘k******'k**
*'k*******************'k**
Fhkkhhkkhkhkhrbhhkhxh
13 '***************************************‘k*******************
********************i"k**
**
kkkkkhhkdhhhkhkrk
14 '**
*****************‘k*************************************‘\'********
******************************;’v;‘:***‘k****************************
hkkhkhkkkhhkhhrkhhkt
15 '**
‘k*********'k*********
********************************'k**‘k****************************
e de ok e d ke e de e e ok ke ke b
16 '**************************k'k******************‘k**************
*************************7\'**********‘k*******************‘k*******
*****************'k**
s o Kk ok ok ek Rk e ek ke e ok
17 '************************lr‘k**********************************
**********************‘k**‘k*****'k********************************
***************'k***‘k******

68

graphics

hkkXkKK KKK kKKK Khk
18 Pk ke kAR AR R IAIRR A RN A AR KA AR KA RRARK KA AR AR AR AR AN DAk ko k kA Ak **
KAKARN TR AR I IR KA R IR A AR AR AR R AR KA AR AR AR AR R AR A A AT kb Ak kA hhh ok hdkhok ok
******************k*******f**************************************
ok ok ek ok ok ok ok ok dok ok ke ok
19 l**
**********************‘k***
‘k***
khkkkhhkkkkhkkkkhkk
20 '**
**********************************‘k******************1{**********
**********************i********k********************************
Kk kkkdkk A KNk K dkkkkKk
21 '*******************************‘k*‘k******************‘k*******
**
***********************‘k**
EETERT SRR E SRS S 2]
22 '**********************‘k***********************************1\‘*
*******'k******‘k***
*‘k*******************i(********************************‘k*********
hkdkk kA hkdkkkkkhk
23 '*****************************k******************************
'k*******1\'***
******************'k****‘k***************1\‘****************‘k**‘k****
kkkhkrkhkhkkkhhhhki
'**********************'k*************************************
**************************************‘k‘k************************
*******'k*********************'k***‘k*******'k**********************
hkkkhhkkkhkdkkhkhkk
25 ‘***********'k*****************‘k*****'k************************
1\'*******************
******1\‘**'k**
dkkkhkokkkkkkkkkkkk
26 '****************‘k***
*****‘k*****************’k**
**
* ok kodkok ok ok ok ok kokkokdkkk
27 '*******************************'k****************************
k*******************
i’********‘k***************************1\‘**************************
khkkkkhkhkhkhkhkhhkkk
28 '*‘k***1\'************
*k***‘k**********‘k*****
*k**‘k*****************
khkkkhhkkrkhkhdkkhhkk*k
29 '******'k*************‘k*************‘k‘k***************‘k********
‘k***
******************************'k*********************************
kkhkhkhkkhhkhkkkkhkhkxk
30 '*******************************'k**********************‘k*****
****************‘k*********‘k******************k************'k**‘k**
'k********************'k*************************k‘k***************
Khkkkhkhkhkkkkkhhkhkk*x
31 TRRANARAAA IR KR KA AR R AR RAKRKAKRARARKRA R I AR AR IR kA ARk ko ko kA x A
[R R R R R R R S RS R R R RS R AR R RS
kAR RA AR RAR A AR R RAFTKRNR A KRR AR AR A AR RN AR AR A AR RRAKR AR R A ARk kR kA ok kkk
EE AR R R SRR LSS RS
32 Lk k kAR AR KA A IRII KRNI IR R KR KA R KRR R R A KRR A RFANA R IR A AR AR Ak hk ok k&
KA AR I RAK AR KRR KR IR RRRR AR AR AR KRR AR ARk R AR A Ak Ak k kA Ak bk k ok hkkk
AR KA I KIRARAAKRIKRAR IR AKRRA KRR ARI KRR AIRRA AR AR IR b ARk h Tk hk Ak hhkh k&
% kK& kK Kk kK Kk ok ok okok Kk ok
33 Pk ke k kKRR KA KKK IR RRKARKRRARKRRR A AR KRR IR AR AR AR Ak kk bk hhhhhkhkdhk
A KA KRR KR I IR AR KR AR AR RRAF AR IR KRR RARIFARRI AR AR A AR I ARk Rk kR hh ok kdh®
KAk AR IR ARKI KRR A ARR A KA IR R KRR IR ARA KA KA AR AR A AR h AR AR AR IRk hhkhkh®
ko K kK kK k ok ok kok ok ok
34 ‘******************'k******************************'k**‘k*******
**************************‘k****************‘k********************
******‘k***
dhkhkhkhkkhkkkrkrkkhkhk
35 '*****'k*‘k**'k*************1\'*******7\'***************************

Program continued

69

graphics

*********************‘k******************‘k*******************‘k*‘k*
*********‘k*‘k**********‘k***********‘k*****************************
khkhkhkhkFhkhkhkhdkk ki
36 '*****'k*********'I(*******k************************************
********************k*****'k*******'k*******************‘k******‘k***
'k**'k'lr*****'k********'k**********************‘k*********************
Fhkkhkhkdhkhkhkdkkhkk
37 ‘************‘k***‘k**********************************‘k********
‘k*‘k*********'k*'k'k**
**********‘k***********'k*******'k*‘k*****‘Ir*************************
khkhkkhkkhkkkkrkrkkhhk
38 '***‘k**
************************'A'****‘k**********************************
'l'*******‘k**********'k*'k'k‘k********'k*******‘k******‘k****************
Thhkkhkhkkhkkhkhkkkhkh
39 "k*********************‘k**************************k**********
**************'k*7\'***‘k***
'k**1\'**'k'k*****'k’k*********************:‘r***************************
Kk K hkkkkkhkhkhkdkkhkd
40 '**********************'k********‘k******‘k*********************
******'k***'k'k****************'k***********************************
******************'A-'k**************'k********‘A‘******************i—&
hkkkkhkhkhkhkhkdhhhkk
41 '**********'k*************************‘k***********************
**
1\'*****‘k*****'k***
IRk K hkkhkkkkhhkhkhkkh
42 ‘**********************'k******'k*'k****************************
****************’k'k*****‘k**
**************************‘k*************************************
khkhkkkhk ok kkhdkhhkdkh
43 ‘*7\—*********t************************************1\'***********
****************‘k****‘k‘k************'ﬁ******'k*********************
************************%‘*'A'*'k***********************************
Thkkkh A Khkhhkhhkkhk*
44 "k***************************#**%'}:**7\'*‘k*‘k**i{**'}:****‘k*********
************************'k**1\'*'k*********'A'************************
*******'k******************-k*'k*********'k******‘k******************
Fhkhkhkhkhkkkhkrkhhkn
45 ‘*'k**
*******************t*#‘k;‘:*#****k‘k*k*******************************
*********r****************'k*************************************
deokdehe b g e ko Rk d R bk
46 '********‘.‘:**:‘:**'A':‘:*‘c‘:'k‘k**
'k**k******************************‘k******************************
**
Fhkkhkk kkkhkhkddhkk
47 '****i**********'k****'k**********************1\—****************
***************‘k************’k'k*********‘k************************
‘k**‘k***********'k****'k****'k***‘k*'k**********************t*********
Ahkkkkkkhhkhhhkkhi
48 ‘***'k**‘k***********'k*‘k*‘A'*****;‘:***'k'k**************************
***************'k****'k******'k******************‘k*****************
****‘k*****'k*'k*‘k***‘k*'k'ir**'A-****‘k*************‘k************‘k***‘k***
khkhkkkhhkkdhk Ak ik
49 '**********'k**********************‘k******'k*******************
********i****1\'***1(*'k******************'k*************************
'#******1\‘*****************‘k*************‘k************************
Kook ok Kok e kkk ok ok dok ok ok
50 ’*******‘k******'k‘k****"k***************************************
*******'k************'k'k*****k*‘k******‘k****************************
*********k************k***********‘k******‘k***********************
bbb b
51 'A
1000 :

' owkskxkx INITIALTZE SYSTEM **#wxwx
1020 DEFINT B - Z:

DEFSTR S:

L = 15360:

XM = 17136:

70

graphics

U = 16383:
C = 191:
CcLS

1040 POKE 16526,0:
POKE 16527,124

1060 DATA 205,127,10,213,197,245,62,5,17,0,60,1,204,0,237,176,6,8,35,
16,253,61,194,11,124,241,193,209,195,154,10,0

1080 FOR X = 31744 T0 31775
READ Y :
POKE X,Y
NEXT X

1100 PRINT “THE CODES TO OPERATE THIS PROGRAM ARE:"
1120 PRINT "1)DT---THIS ENTER'S THE TEXT MODE. TO EXIT PRESS 'ENTER'"
1140 PRINT “2)DR---THIS STORES THE SLIDE IN MEMORY AS THE SLIDE NUMBE

R IN THE LOWER RIGHT"

1160 PRINT "3)DP---THIS PRINTS THE SLIDE AS NUMBERED IN THE LOWER RIG
HT."

1180 PRINT "4)DW---THIS IS A 'CLEAR SCREEN'"

1200 PRINT "5)DC---CLEARS THE SLIDE AS NUMBERED IN THE LOWER RIGHT FR
OM MEMORY"

1220 PRINT "6)DS———THIS ENTERS INTO THE SLIDE SHOW ROUTINE.

PRINT NOTE:TO EXIT A CONTINOUS SLIDE SHOW, PRESS "CLEAR'
)

1240 PRINT :
PRINT :
PRINT “PRESS 'CLEAR' TO START"
1260 IF PEEK(16537) =
THEN
CLS :
POKE 16382, PEEK(27736):
GOTO 4000:

2000

' *kkKkk kK DRAWING kkkkkkk
2020 X =

Y =
2040 IF INKEY$ = "D"
THEN

3020

2060 B = PEEK(14590):

IFB=00RB =24 ORB = 96
THEN
2040:
ELSE
IF B = 128
THEN
2160
2080 IF B = 8 OR B = 40 OR B = 72 OR B = 136 OR B = 168 OR B
= 200Y = Y - 1:
IFY <OY =0
2100 IF B = 16 OR 8 = 48 OR B = 80 OR B = 144 OR B = 176 OR B
= 208Y = Y + 1:
IF Y > 47Y = 47
2120 IF B = 32 OR 8 = 40 OR B = 48 OR B = 160 OR B = 168 OR B
= 176X = X - 1:
IFX<O0X=20
2140 IF B = 64 OR B = 72 OR 8 = 80 OR B = 192 OR B = 200 OR B
= 208K = X + 1:
IF X > 127X = 127
2160 SET(X,Y
2180 IF B > 85 FOR I = 1 TO 10:
NEXT :
RESET(X,Y)
2200 GOTO 2040
3000 :

tokkkkkkk SEIECTS WHICH SUBROUTINE ***xaxx
3020 S = INKEYS$:
IF § = v
THEN Program continued

71

3040
3060

3080

3100

3120

3140

3160

3180

3200

3220

3240
4000

4020
4040

4060

4080
4100

4120

4140

4160

4180

4200

3020

PN = PEEK(16383) - 48

IF PN ¢

THEN
PN =

ELSE

IF PN > 9

THEN
PN

TN = PEEK(16382):
POKE 27736,TN
YM = PN * 1060

IF S =
THEN
4000
IF S =
THEN
5000
IF S =
THEN
6000
IF S =
THEN
7000
IFS =
THEN

0

0 :

=9

nyw

npw

npo

npw

ngu

uyr

POKE 16382, PEEK(27736)

GOTO 4000

ok

oo *

0

A
D
POKE A
S

R oo

IF S =
FOR 1 =
NEXT :

* Kk k ok TEXT dok ok ok kok ok

EEK(A):
,C
INKEYS:
"' POKE A,32:
1 70 20:

POKE A,D:

GOTO 40
B = ASC
IF B =
GOTO 20

40

(s)

13 POKE A,D:

20

graphics

IF B > 31 AND B < 91 POKE A,B:

A=A+

1:

IFA>U

THEN

A=
IF B =
A =

10 POKE A,D:
&4

A - 64
91 POKE A,D:

72

graphics

A=A + 64
4220 GOTO 4040
5000 :
v oxxxxkk% CLEARS SLIDE MEMORY ONE SLIDE AT A TIME *x%x%xx
5020 POKE 16383,67
5040 FOR Y = 1 T0 5:
FOR X = 0 TO 203
5060 POKE XM + YM + X,42
5080 NEXT X
5100 YM = YM + 212:
NEXT Y
5120 POKE 16383,PN + 48
5140 GOTO 4000
6000 :
! xkkxxxk RECORDS SLIDE TO MEMORY *x*xikxx
6020 POKE 16383,82
6040 FOR Y = 0 70 816 STEP 204:
FOR X = 0 TO 203
6060 7 = PEEK({15360 + X + Y)
6080 POKE XM + YM + X,Z
6100 NEXT X
6120 YM = YM + 212:
NEXT Y
6140 POKE 16383,PN + 48
6160 GOTO 4000
7000 :
fokkk kR kK REDRAwS SLIDE ER S 2
7020 POKE 16382,TN
7040 V = XM + YM:
X = USR(V)
7060 POKE 16383,PN + 48
7080 IF €CQ < > 0
THEN
RETURN
ELSE
4000
8000 :
tokkR kR kK SLIDE SHOw * ok k ok ok ok ok
8020 CLS :
INPUT "HOW MANY SLIDES WOULD YOU LIKE TO VIEW";Al
8040 PRINT "IN WHAT ORDER WOULD YOU LIKE TO VIEW THEM"
8060 FOR €CQ = 1 TO Al:
INPUT A1(CQ)
8080 IF A1(CQ) < 0 OR AL(CQ) > 9
THEN
A1(CQ) = 0
8100 NEXT CQ
8120 INPUT "HOW MANY SECONDS BETWEEN SLIDES";A2
8140 INPUT "WOULD YOU LIKE AN ENDLESS SHOW";CQ$
8160 FOR €CQ = 1 To Al:
PN = AL(CQ):
YHM = PN * 1060:
GOSUB 7000
8180 FOR DELAY = 1 TO 333 * A2:
NEXT DELAY
8200 NEXT €Q
8220 €CQ = 0
8240 IF PEEK(16537) = 31
THEN

GOTO 4000
8260 IF LEFT$({CQ$,1) = "Yy"
THEN

8160
8280 GOTO 4000

73

GRAPHICS

Graphs, Plus

by Allan S. Joffe W3KBM

The plus in “Graphs, Plus” means that the routines contained in the pro-
grams are useful in your own cookbook. I use the term “graph” to in-
dicate a plotted curve that has a relationship to the data points used to
develop the curve.

How the Program Works

Program Listing 1 plots the graph of a sine wave (see Photo 1). Lines 3
through 30 clear the screen (CLS) and set aside string space for setting the
background, which appears first. Lines 50, 55, and 60 input the data values
of the sine wave to be graphed. In line 55, the * 15 at the end of the line sets
the amplitude of the sine wave. Line 60 centers the sine wave on the screen.

Photo 1. Sine wave plot with background (Photos by Ira Joffe)

Inline 55, the expression SIN(X*6) sets the number of complete sine waves
that will appear. If you change this to SIN(X*3), then one wave is graphed,; if
it appeared as SIN(X+ 12), four waves would be graphed. As pointed out in the

74

graphics

remark in line 45, a CLS and RUN 50 dispenses with the background and
prints out the graph as a series of properly placed spots of light.

If you eliminate the STEP 2 in line 50, the graph assumes a “white on
white” character. This is a function of the POINT and NOT POINT
statements in lines 70 and 75. If you would like to see a “whiter on white” ef-
fect at this point, delete line 70.

A different type of graphing plot is a modulation envelope type of graph
(see Photos 2 and 3). Program Listing 2 gives the TRS-80 instructions for
this display. The program up to line 40 calculates the data points that form
the curve. Line 30 sets the number of waveforms to be plotted and controls
the amplitude of the image. Lines 50 and 60 center the image on the
monitor screen. The balance of the program sets the points of light that
produce the image.

If you follow the suggestion in the remark in line 90, you will see the
equivalent of half-wave rectification. If you then delete this insertion, you
can change line 50 to read:

Y=2+ (-]
When you are in the mood to think a bit, try to analyze why the new line 50
does what it does.

Bar Graphs

Program Listing 3 gives your computer the data and directions it needs to
implement a vertical bar graph (see Photo 4). Lines 20 through 40 input ran-
dom data so that you do not have to type in 16 numbers to see the program
run. If you want to input your own figures at a later date, then change line
30 to:

INPUT P(R)

Notice that, since you are dealing with the graph on an elemental level
(which precludes too much on scaling factors), if any P(R) value exceeds 47,
then you bump into the top of the screen and generate an error message. This
makes the random input statement convenient for seeing how the program
runs; the intent here is on generating the graph more than anything else.

If you watch the program run, you will see that a point is set at the max-
imum value of each data element, and then the graph line is finished. The
routine in line 70 sets this point. The remainder of the program is fairly easy
to grasp.

Now if you add the program modification shown in Program Listing 4 to
Program Listing 3, you can produce the same graph in a reverse video
presentation (see Photo 5). In lines 70 and 80, change SET to RESET. This
completes the changes for the reverse video presentation of the graph.

Before you go on to the horizontal bar graph, consider that the fundamen-
tal vertical bar graph has a long, horizontal base line of 128 positions, so that

75

graphics

if we used every fourth one, we could plot 32 independent pieces of data
with some viewing comfort. It has a potential maximum (without scaling) of
48 in the vertical dimension.

Photo 2. Modulation envelope type of display

If you turn the vertical graph on its side, these two factors are reversed. It
may seem that you haven’t gained anything, but you have. Your data values
can now go as high as 128. Holding them to a maximum value of 100 simpli-
fies scaling, if and when needed. If you are graphing data to be expressed as
a percentage, then this type of graph is a natural.

Program Listing 5 provides one way to program the horizontal bar graph.
Notice that the RND function in line 30 is RND(127), so that when you run
the demonstration program, you stand the chance of using all 128 horizontal
positions available in the TRS-80 graphics. The program is concise and to
the point. The expression in line 80, (T,3+*X —2), controls the vertical
separation of the adjacent horizontal graph bars.

In order to make room for the printing of values, the maximum data value
for any one bar ranges from 0 to 100; so for the demonstration program, line
30 shows a RND value of RND (100). Lines 45, 55, 60, and 80 print data
values. In line 60, if CHR$(61) is used, the bars are formed of equal signs
(=); CHR$(45) in line 60 produces a dash (—) graph; CHR$(46) produces a
period (.) graph; and CHR$(58) produces colons (:). My personal preference
is either the equal sign or the colon. The faster printing of the graph is due to
the construction of line 60, which uses the PRINT command rather than the
SET command.

76

graphics

Photo 3. Fancy fish using modulation envelope display

Photo 4. Vertical bar graph—normal video display

|

Program Listing 6 continues the evolution of the horizontal bar graph -
with items added to the fundamental program shown in Program Listing 5
(see Photo 6). First of all, Program Listing 6 offers a graph that prints out on

77

graphics

the screen in a much shorter time than the graph generated by Program
Listing 5. Next each bar of the graph is supplied with annotation; a printed
value is shown at each bar position to indicate the value of the bar. F inally,

Photo 5. Vertical bar graph—reverse video display

Photo 6. Annotated horizontal bar graph

78

graphics

Program Listing 6 includes the option of selecting the print form of the bar
itself. This is a question of taste; so once the method is made clear, you can
please yourself.

79

graphics

Program Listing 1. (In line 20, [a] is the @ symbol)

CLS
REM GRAPH OF SINCE WAVE WITH OR WITHOUT BACKGROUND
CLEAR 150

FOR X = 0 TO 767 STEP 48

PRINT @ X, STRING${112, CHR$(149))

NEXT X

REM LINES TO THIS POINT SET BACKGROUND

REM CLS AND RUN 50 GIVES SINE CURVE WITHOUT BACKGROUND
FOR X = 0 TO 120 STEP 2

J = SIN((X * 6) * .01745) * 15

Y = 19:

REM VERTICAL CENTERING FACTOR
IF POINT (X,Y) RESET (X,Y - J)
IF NOT POINT {X,Y) SET (X,Y - J)
NEXT X
END

5
10
20
30
40

150

Program Listing 2

REM MODULATION ENVELOPE BAR GRAPH DISPLAY
cLs
FOR X = 0 TO 120 STEP 2

J = SIN((X * 3) * .01745) * 20

IFJ <0

THEN

J = ABS(J)

REM NEXT TWO LINES CONTROL VERTICAL CENTERING
Y = 23 + 9

W=23 -4

FOR V = W TO 23

SET (X,V)

NEXT V:

REM TRY ADDING LINE 95 GOTO 140 -- IT'S RECTIFYING
FOR V2 = 23 T0 Y

SET (X,v2)

NEXT vZ

NEXT X
GOTO 150

7
10
15
20
30
40
50
60
70
80

90
100

Program Listing 3

REM VERTICAL BAR GRAPH
DIM P{20)

LS
FOR R
P(R)

1 70 16
RND (45)
NEXT

FOR X = 1 TO 16

L = 45 - P(X)

SET(7 * X, (45 - P(X)))
FOR T = 45 TU L SIEP - 1:
SET (7 * X,T):
NEXT T

NEXT X

GOTO 100

[T

80

2000

2010
2020

graphics

Program Listing 4. Reverse video modification

CLEAR 500

GOSUB 2000

C$ = STRING$(192, CHR$(191)):
PRINT C$;C$;C$:C$;

PRINT STRING$(128, CHR$(191));
RETURN

Program Listing 5

REM HORIZONTAL BAR GRAPH

CcLS
DIM P(20)
FORR =1 TO 16

P(R) = RND(127)
NEXT R
FOR X = 1 TO 16

L = P(X)

FOR T =0 TO L STEP 2:
SET (7,3 * % ~ 2):
NEXT T

NEXT X

GOTO 100

Program Listing 6

REM ANNOTATED HORIZONTAL BAR GRAPH
CLS
DIM P(100)
FOR R = 1 TO 16
P{R) = RND(100)
NEXT R
Q=0
FOR X = 1 TO 16
PRINT @ @, P(X);
PRINT @ Q + 5, STRING$((P(X) / 2), CHR$(61));
Q=0Q + 64
NEXT X
GOTO 100

81

HARDWARE

Interrupt Mode 1.5
Reverse Video Hardware Modification

83

HARDWARE

Interrupt Mode 1.5

by David Haan

his article deals with the interrupts of the TRS-80—specifically, getting
the mode 1 interrupt to operate in a manner similar to that of mode 2.

The Z-80 provides power for interrupt processing, particularly for mode
2. The TRS-80 as it stands, however, does not support mode 2 because the
IORQ and M1 signals are not available, and Z-80 support chips such as PI1As
and SIAs require these signals under mode 2. This leaves us with mode 1, but
the advantages of mode 2 are hard to overlook. Mode 2 is faster than any
other mode and can call up to 128 interrupt service routines directly,
anywhere in memory. Mode 1, on the other hand, can call only one routine
which must be at 38H. The TRS-80 uses mode 1, and when interrupted,
looks at a hardware address in the expansion interface. By determining
which bit is set in the byte that is returned, it can determine whether the
clock or disk controller interrupted the CPU. It then executes the ap-
propriate routine.

You can take this process one step further and have the TRS-80 look at an
interrupt-handling board and determine which of up to 128 outside devices
is interrupting the CPU. A board of this sort is shown in Figure 1. Since we
are using mode 1, the IORQ and M1 signals aren’t used. We will need a little
software to go with the board to simulate mode 2. This scheme requires
about 80 microseconds to access the correct interrupt service routine (ISR)
and begin execution.

The board receives the interrupting device’s priority level and determines
if this interrupt is of a higher priority than the current ISR, in execution. If it is
higher, the board generates a new interrupt. Upon completion of the last ISR,
the board is cleared and made ready for a new series of interrupts.

To see how this process works, let’s follow a manual interrupt and see
what hardware and software considerations are necessary. We will cover
the software first. Our interrupt priority levels must be between 0 and 254 in
multiples of 2. This is because the board forms an index into a table of 16 bit
addresses. We will arbitrarily set the manual-interrupt priority level to
OFEH (254), the highest level we can have. Next, we must set up the table
which contains the address pointers of all the ISRs. This same step would be
required if we were operating under mode 2. We will set up our table to start
at TFOOH. Since each of the interrupting devices needs two bytes for its ISR
address, the table will be 128 x 2 bytes, or 256 bytes long. As an example, if
a device has a priority level of 50H, its ISR address would be located at

85

hardware

3 vz 2
] 5_
7 L
af LI
via 13 2
14 15
34 ||5
+5v | GND B 12
Ul | 7418273 | 20 | 10 L
Uz | 7aLs273 | 20 | 10 o ek
U3 | 74L5125 |16 | 8
Ua | 74LS85 |16 | 8
U5 | 74LS85 | 16
U6 | 7aLsi23 | 16 | 8 +5v m
U7 | 8304 20 | 10 4 ¢ s B .
U8 | 74L502 14 1 7 *——Tz- us m
U9 | 7aLs30 |14 | 7 U3 10K = -
| 16
UI0 | 741504 |14 | 7 .- - ‘zl ;
Uil | 74L500 |14 | 7) " ,
2 5 i3 7 '1O0pF SIDE SIOE
UIOV\ togpF | L
x_)}”‘—. T wlous o
; : e o o
8 9 12 b
ouT 2 10K nr{___h 13 14
g ,
= 1
5y +5v
S
PORT 238 M
(OEEH) | B & 5% d Y7 be
>___%_ +5V T L Do
2 L |2 ok
2 15 5 7
5K 3| " 02
>IOOpF 2 o3l 7
TRS-80
5 15
100pF 4 12 o 04 8US
enl |k 2
T 10 & o o
a o D7,2
TRS-80 ,,L
8us
r
iNT

Figure 1. Vector interrupi-handling board

7F50H and 7F51H of our table. Our manual interrupt has a priority level of
OFEH, and I have set its ISR to reside at 7DOOH; so, 00H will be loaded into
location 7FFEH, and 7DH will be loaded into location 7FFFH. (The low-
order byte goes in the low-order memory location.) The loading of the manual
interrupt ISR address pointer is shown in Section 1 of the Program Listing.

Next, we need to tell the CPU where the table of ISR address pointers is lo-
cated. To do this in mode 2, we would put the high-order byte at the start ot
our table in the I register, or I = 7FH. The interrupting device would pro-
vide the low-order byte to form the address of the pointer which points to the
address of the appropriate ISR. Since we can’t do this in mode 1, we have to

86

hardware

do it through an interrupt processor. This interrupt processor is shown in
Section 3 of the Program Listing. When an interrupt is received, the CPU does
a call to 38H where a jump to 4012H is located. At 4012H, we put in another
jump instruction to cause the CPU to jump to our interrupt processor. This is
done by executing the code of Section 2 of the Program Listing.

The interrupt processor now gets the priority level from the interrupt-
handling board, gets the appropriate ISR address from the table, and does a
call to it. Once the CPU knows where our table is and how to get to our ISR,
we need to provide the ISR of our manual interrupt. This is shown in Section
4 of the Program Listing which saves the CRT image, clears the CRT, and
puts up a message. Before returning to BASIC, the routine restores the CRT.
Since we have all the software we need, let’s mentally push the manual in-
terrupt button and examine the operation of the hardware.

A schematic for the manual interrupt circuit is shown in Figure 2. The
one-shot U2 turns on the tri-state buffer, which puts the priority level
(OFEH) on a common bus I call the vector interrupt bus (VIB). The one-shot
and tri-state buffers are required on each device that interrupts the CPU,
since each puts its priority-level byte on the VIB in parallel. It can be there
only long enough to trigger U3 on the interrupt-handling board-—thus the
name one-shot. Figure 2 also shows a software interrupt circuit that can

generate the interrupt priority level you choose.

PORT 237 {OEDH)
AQ

u78 +5V |GND +5V | GND
Al Ut | 74L500 {14 | 7 [us | 7aLs273 {20 [10
3 7 U2 | 7415123 116 | 8 | ue | 74L5241 {20 |10
az t U3 | 7418367 | 16 | 8 | U7 | TaLsoa |14 |7
2 U4 [741530 14 |7
@ 3 2 Y
Al +
U7A
B | X 1__4 3
< = o T
< o o us ué
£) 000 2 2 viofE gy
= " 5 a viije Loy
o2 6 6 viz) 14
s 8 12
03 vi3fd—3
. TRS-80 04 wal2 vig
A ouT sus 4 5
05 5
ar p— 1Y k]
> >‘—~l‘5 por wrf
SOFTWARE 2
INTERRUPT ! 19
1 vz fa_ v
+5v 2 3T +8V
+5v [3 - 2K 4
MOMENTARY 5| 6
PUSHBUTTON - _._)
Ll 1200pF *SV
1200pF Q_—._?
12 B
1 u3
i 7
vio|
ar r
MANUAL L3
INTERRUPT

Figure 2. Manual and software interrupts

87

hardware

At this point, Ul on the interrupt-handling board receives the priority
level on the VIB. As line V10 goes low (it must always go low since our
priority levels are multiples of 2), it will trigger U3 which generates a clock
pulse to Ul and U6 after a short delay. This delay gives the data coming to
Ul time to settle down. Ul then distributes the priority level to U2, U4, U5,
and U7. After U6 is triggered by U3, it triggers Ul1, which toggles pin 11 of
Ull. This sets up an interrupt to the CPU, but the interrupt is not sent to the
CPU at this time.

U4 and US serve as an eight-bit word comparator. In this case, the priori-
ty level of OFEH on side A of U4 and U5 is compared with the priority level
on side B, which is initially zero. If side A is of higher priority than side B
(which it is), pin 5 of U5 is set high allowing pin 3 of Ul1 to issue the inter-
rupt to the CPU.

U7 is a tri-state driver which sends the priority level when the CPU re-

wvemobe 3 MV Al DTT hnn e demdameerand S AR llL Taandines O0TT facann b
quwm Als NZRAGAL LALG NJR WO AR Gl All\\/ll\—lt}\, AL LQRLAO AV OV UU.I.L, juulyc w

4012H, then jumps to our interrupt processor. The processor loads the A
register with the priority level from U7. It uses this value as an offset into the
table of address pointers to the ISRs. The address of the appropriate ISR is
fetched, placed into a call, and then the call is executed. At this point, you
are in the ISR for the manual interrupt.

A few things caused by the execution of our interrupt processor routine
were going on in the interrupt-handling board. When the CPU went to U7
to get the priority level, U2 was clocked by the leading edge of the signal
from pin 4 of U8. This caused the priority level to be loaded into U2, which
in turn output OFEH to side B of U4 and US. Since side B had the priority
level of OFEH, and side A had OFEH, pin 5 of U5 went low, turning off the
interrupt to the CPU. U6 was then clocked by the trailing edge of the pulse
trom pin 4 of U10, and U6 sent a reset to Ul. As a result, side A of U4 and U5
now has a zero.

At this point, anything could be in our ISR; Section 4 of the Program
Listing is intended for demonstration only. By hitting ENTER, you return to
the interrupt processor and check the interrupt-handling board to see if any
lower priority level interrupt has occured. If not, the OUT (0EFH), A clears
the board, and you return to BASIC. If another interrupt of lower priority
than the one you just executed is waiting, the interrupt processor is
reentered, and the new ISR is executed. If another interrupt of higher priori-
ty is received during an ISR, the interrupt-handling board interrupts the
CPU and the higher priority level interrupt is serviced. If each interrupt
received is successively higher priority, from 2 to 254, you could stack up 127
ISRs, assuming none had a chance to complete before it was interrupted.
Only one lower priority level interrupt can be saved, however, and only the
last one received will be executed, because each interrupt is overwritten by
the next if the previous one has not yet been serviced. I said earlier that there

88

hardware

are 128 ISRs which can be used. The interrupt-handling board uses ISR 0 for
comparing all the other ISRs; so the lowest ISR priority level available is
level 2. For this reason, we can stack up only 127 ISRs.

To ensure that you return from one ISR to a lower priority ISR which was
interrupted, the code in lines 790 through 840 must be the first code ex-
ecuted in each of your ISRs. The code in lines 1120 to 1170 must be the last
code executed in each ISR. This establishes a return instruction at lines 560
and 570 of the interrupt processor of Section 3 of the Program Listing.

To see Interrupt Mode 1.5 work, build the circuits shown in Figures 1 and
2.1 wire wrapped mine to simplify testing and modification. Because of the
power draw, you'll need a separate 5-volt power supply. After connecting
the interrupt-handling board to the TRS-80 expansion edge connector using
an appropriate connector and ribbon cable, set memory size to 30700, load
all the software in Sections 1 through 4 of the Program Listing, and execute
the software in Section 1. This returns you to BASIC. Load any BASIC pro-
gram that doesn’t POKE into the area above 30700 and which has some
display on the screen and run it. While it is running, hit the manual inter-
rupt button, and the screen should display a message. After hitting the
ENTER key, you should return to your BASIC program with the CRT intact
and ready to continue execution of your BASIC program.

The software you use for your ISRs depends entirely on your imagination
and on what you have interrupting the CPU. A clock routine which requires
interrupts similar to the one Radio Shack uses can be used, and now you can
prioritize its execution. Any other interrupt can also be prioritized so that
the more important one is serviced immediately when the device interrupts,
while blocking out lower priority level interrupts.

I use the manual interrupt along with other interrupting devices on an
S-100 bus I have interfaced to the TRS-80, including an A/D and a software
interrupt circuit. The software interrupt circuit shown in Figure 2 is an I/O
port which, when I output a byte to it (in multiples of 2), generates an inter-
rupt at whatever priority level I sent. For instance, if I send out a byte of
1CH, an interrupt of priority level 28 is generated. In this way, I can access
any ISR or machine-language program directly from any BASIC or ma-
chine-language program. In other words, I have 127 routines I can access, if
necessary, instead of only the one to 10 USR functions Radio Shack provides.

A word of caution: Since this interrupt-handling board uses the INT line
onthe TRS-80, it would preclude the use of the expansion interface, because
the clock and disk controller use the INT line. Neither the gate of the
interrupt-handling board nor the gate used on the expansion interface is a
tri-state or open-collector device. As such, the interrupt-handling board
would pull the TTL output gate in the expansion interface low.

89

7D@8

7D68 21927E
7DB3 22FETF

7D86 F3
7D97 DBEE
7D8% D3EE

7DOB 3EC3
7D0D 321240
7D10 210087E
7D13 221340
7D16 ED56
7D18 FB
7D19 C3191A

7 EB{

7 E@) FS5
7E@l C5

RS
S oasw L

7E8 4F
7ED B867F

7 E0] DA
7Ef 32137E
7 E6 8C
7E0C BA

7 EB) 32147E
ZEI C1
7El F1
7ELlCD

B o0

B8

7 El} F5
7Elf C5
7E1] DBEE
7EL} FEBO
7Elb 20E7
7EL) D3EE
7ELf Cl
TE2F1
7E2 CY

hardware

Program Listing. Software for the Interrupt Service Routine

60010
60020
Boo39
00840
6oe50
00068
epe7o
00080
pe09d
p@106
#0110
po120
@0130
00146
288150
opl66
60178
00180
00198
66200
60210
80228
20238
00240
BB250
00260
60270
20288
08290
op300
60310
26320
0@330
p0340
90350
00360
60379
0p388
20350
6400

a3

60420
60430
00440
86450
00460
6B470
00480
00490
eas508
80510
80528
90538
00548
0@550
08560
80570
BA580
88590
00600
pvo LY
00620
o630
00640
02658
0E6606
60670

SECTION 1

Encyclopedia
ycha%er"

THIS ROUTINE WILL PLACE THE MANUAL INTERRUPT
ISR ADDRESS INTO THE TABLE OF ISR'S.

ORG

;
START LD

P T R

e e e e me w

i
IPROC

TPROC

CALL

CALL1
CALYL2
CNTRL

~ v e

LD

1DBOH

BL ,MANINT
{(7FFEH) (HL

SECTION 2

sMAN, INT. ISR LOCATION.
;PLACE IN ISR TABLE.

THIS IS THE SET UP FOR THE INTERRUPT PROCESSOR.
IT MUST BE RUN TO ESTABLISH THE LOCATION OF THE

INTERRUPT PROCESSOR.

MEMORY.

DI
IN
ouT

LD
LD
LD
LD
M
EI
JP

THIS IS THE INTERRUPT PROCESSOR.
RESIDE IN PROTECTED MEMORY.

ORG

PUSH
PUSH

I

1 D

LD

A, (BEEH)
(PEEH) ,A

a,0C3H
(4912H) ,A
HL, IPROC
(4613H) ,HL
1

1A19H

SECTION 3

TEG0H

B, 7FH

A, (BC)
(CALL1) ,A
c

A, (BC)
(CALL2) ,A
BC

AF

8CDH

1

1

AF

A, (BEEH)

NZ,IPROC1
{DEEH) ,A
BC

AF

SECTION 4

IT NEED NOT BE IN PROTECTED

sDISABLE INTERRUPTS.
;THE IN AND OUT IN-

; STRUCTIONS CLEAR THE
; INTERRUPT BOARD.

; LOAD JUMP INSTRUCTION.
; INTO MEM. LOC. 4812H.

; START OF INT.

PROCESSOR.,

;PUT IN JUMP ADDRESS.
;SET INT, MODE TO 1.
;s ENABLE INTERRUPTS,
;GO TO BASIC ENTRY.

; SAVE

IT MUST

A" REGISTERS.

;REG. 'C’
3 INTO
;REG., 'B' HAS
ISR TABLE.

;ISR LO ORDER

;PUT ADDR, IN

HAS

;ISR HI ORDER
; PUT ADDR., IN
s RESTORE 'BC'
;RESTORE 'AF'

. BRIC

OFFSET

ISR TABLE,

START OF

BYTE.
CALL INSTR.

BYTE.

CALL INSTR.
REGISTERS.
REGISTERS.

7 CALL INSTRUCTION.
;CALL LO ORDER BYTE.
;CALL HI ORDER BYTE.

iSAVE 'AR'
;SAVE 'BC'
;GET INT.

REGISTERS.,
REGISTERS,
PRIORITY LEVEL.

;TEST IF ONE EXITS,
;GET ISR ADDRESS.

;CLEAR (NT,
s RESTORE
; RESTORE

chl
1ARY

BUARD,

REGISTERS.
REGISTERS.

; RETURN FROM INTERRUPT.

90

7E408

TE4AD
7TE5B
7E78
7E71
7E91
TE92
7E93
TE96
7E97
7TE9A
7E9D
TE9E
TE9F
TEAG
TEAL
TEA4
TEA7
TEAA
TEAC
TEAF
TEB2
7TEB5
7TEBS
TEBA
TEBD
TECE
7EC3
7ECS
7TECS8
TECA
7ECC
7ECE
7ED1
7ED4
TED7
7ED9
7EDA
7EDB
7EDC
TEDD
TEDE
7EEL
TEE2
‘7EE3
7EE4
7EE7

TEEA

TEEC
7EED
7EEE
TEEF
7TEF@
7EF2
7D08

59

57

8o

4E

3]

E5
2A157E
E5
21c908
22157E
FB

F5

C5

D5
219083C
110978
210004
EDB#
CDE47E
21407E
213000
11883C
EDB#
21717E
012000
11403C
EDB@
3A4038
FEO0Q
2002
18F7
210078
11803C
0100084
EDB@
Dl

Cl

Fl

F3

El

20680
00699
oa700
08718
00720
88730
00740
08750
80768
807780
00780
60790
60800
0p818@
00820
00830
00840
00850
60860
00870
00880
08890
08960
op9l0
08920
pA930
pB940
08950
00960
060970
20980
009908
g1000
glgle
plo20
01038
61040
1850
01060
01870
01080
01098
611008
61110
91128
91130
01148
61150
gl160
81170
91180
81190
01200
81210
81220
81230
81249
91258
01260
01278

00088 TOTAL ERRORS

~ . we e

i
MESS1
MSGND1
MESS2

MSGND2
MANINT

KYSTRK

RETURN

CLRSCN

CLR

hardware

ORG

DEFM
DEFM
DEFB
DEFM
DEFB
PUSH
LD

PUSH
LD

THIS IS THE MANUAL INTERRUPT SERVICE ROUTINE,
IT MUST ALSO RESIDE IN PROTECTED MEMORY.

TE40H

'*YOU CAN PLACE ANYTHING YOU '

'WISH IN THIS ROUTINE,'

[1):1

'NOW HIT ENTER TO RETURN TO BASIC'

oH

HL ;SAVE 'HL' REGISTERS.

HL, (CNTRL) ;GET 2 PUSH INSTRUCTIONS.
HL % ;SAVE PUSH INSTRUCTIONS.

HL,B8CSH ;BC9H IS RETURN INSTR.
{CNTRL) ,HL ;PUT RETURN IN INT. PROC.
; ENABLE INTERRUPTS.
AF s SAVE 'AF' REGISTERS.
BC ;SAVE *BC' REGISTERS.
DE :SAVE 'DE' REGISTERS.,
HL,3CO0H ;i START OF SCREEN,
DE,7800H ;s START OF BUFFER.
BC, 40808 ;# OF BYTES ON SCREEN.
; SAVE SCREEN DISPLAY.
CLRSCN ; CLEAR SCREEN, .
HL,MESS1 ; START OF MESSAGE 1.
BC,MSGND1-MESS1 ;LENGTH OF MESSl.
DE,3C@@H ; START OF SCREEN.
s PRINT IT,
HL,MESS2 ; START OF MESSAGE 2.
BC,MSGND2~MESS2 ;LENGTH OF MESS2.
DE,3C40H :START OF NEXT LINE.
;PRINT IT.
A, (3840H) ;LOOK FOR ENTER KEY,.
[} ; TEST FOR ENTRY.
NZ ,RETURN ;RETURN IF KEY ENTRY.
KYSTRK ;LOOK AGAIN,
HL,7800H ; START OF BUFFER.
DE,3CO0H ;s START OF SCREEN DISPLAY.
BC,400H ;# OF BYTES ON SCREEN.
; PRINT 1IT.
DE ;RESTORE 'DE' REGISTERS.
BC ;RESTORE 'BC' REGISTERS.
AF ;RESTORE "AF' REGISTERS.
:+DISABLE INTERRUPTS.
HL ;GET 2 PUSH INSTRUCTIONS.
{CNTRL) (HL sRESTORE INSTR. TO IPROC.
; ENABLE INTERRUPTS.
HL ;RESTORE 'HL' REGISTERS.
;RETURN FROM ISR.
HL,3CO80H ; START OF SCREEN.
BC,400H ;# OF BYTES TO CLEAR.
(HL) ,20H s PUT IN SPACES.
HL ;GET NEXT SCREEN LOC.,
BC ; COUNT DOWN BYTES.
A,B ;TEST IF THE
C ;BYTE COUNT IS ZERO.
NZ,CLR s CONTINUE IF NOT.

: RETURN WHEN DONE.
START

91

HARDWARE

Reverse Video Hardware Modification

by Dan Placido

veryone needs a change of pace, and reverse video offers you just that.

Reverse video adds pizazz to action games such as Air Raid and Saucer
and offers welcome relief from a screenful of dreary text. I viewed the acquisi-
tion of reverse video as the first step toward improved graphics capability.

A study of the TRS-80 technical manual proved what I had suspected:
Getting reverse video is surprisingly easy. Dot data, which combines with
composite syiichionization pulses to onm tie cumpusite videu sigual, is
available at Z30 pin 1. For regular video, the dot-data signal is inverted by
Z41, creating a normally-low output signal which goes high whenever a dot
is present. If I could invert this signal before it reached Z41, the result would
be a high signal which would go low whenever a dot was present—reverse
video! If that inverter could be switched on and off at will, then I would
have the best of both worlds.

The actual modification for reverse video consists of installing a switched
inverter in the video signal path. Because the inverter used for the modifica-
tion already exists inside the TRS-80, the process is relatively simple. Be ad-
vised before you consider reverse video that this is a hardware modification
which will void your warranty.

T - a
AIStaMIng NEVEISE VIUEo

I chose the header/connector cable assembly for this project, because it
would facilitate the addition of other switches and still allow easy removal of

RIBSON CABLE/
CONNECTOR
PLUGGED tNTO

HEADER

PERF, BOARD /

APPROX 1" x 2"

TOGGLE SWITCH
CEMENT TO PERF
BOARD

Figure 1. Component layout and assembly

92

hardware

the cover (by disconnecting the header). The cable is a 16-pin DIN cable
(Radio Shack #276-1976) with one connector cut off. The header is a 16-pin
IC socket (Radio Shack #276-1998). I cemented an SPST toggle switch and
the header on a small section of perfboard, then wired pins 9 through 16 on
the header together. After wiring the switch to pins 1, 2, and 3, I drilled a
mounting hole in the cover and installed the assembly using the switch hard-
ware. (See Figure 1.) The location I chose seemed to be a logical place
because it offered easy access without being in the way.

K%

N

Figure 2. Cover showing the switch location. The assembly is secured to the cover with the switch
hardware.

zs

— CUT TRACE TO
THIS PIN. {5)
INSET B INSTALL JUMPER

/ TO 230 PIN I

\CONNECT SWITCH LEAD

(REVERSE) HERE (PIN 6)

sragey
doTener

CONNECT LEAD
FROM 29 PIN 5 —7 %

AND LEAD FROM
SWITCH (NORMAL)
TO THIS PIN (1)
INSET A
TO SWITCH SWINGER
Figure 3. Approximate location of Z9 and Z30 on the PC board (bottom view). Insets depict traces
to be cut and connecting poinis.

93

hardware

The inverter I used is a spare one located at Z9. I located Z30 on the main
PC board and cut the trace at pin 1. (See Figure 3, inset A.) Likewise, I cut
the trace at Z9 pin 5. (See Figure 3, inset B.) Taking the cable, I plugged one
end into the header and cut off the other connector. 1 then separated the
wires back about four or five inches and stripped and tinned all the leads.
Following the cable color code (Figure 4), I soldered the wires from pins 9
through 16 to ground. (This serves as a shield from noise and crosstalk.) I
soldered the wire from connector pin 1 to the trace of Z41 pins 6 and 7; the
wire from pin 2 to Z30 pin 1; and the wire from pin 3 to pin 6 of Z9. Finally,
I connected a jumper from Z30 pin 1 to Z9 pin 5. The wires from pins 4
through 8 are covered and tied back for future use. (See Figure 5.)

Z41, 6&7
23 0, 1

e on
e, v

BROWN
ORANGE
SRIEN
VIOLET
WHITE
BROWN
ORANGE
GREEN
BLUE
YELLOW
RED

LA

- O WOWNDO DN =

-

GROUND o
BUS BLACK 12
GRAY 13
BLUE 14
YELLOW 15
RED 16

Figure 4. Cable assembly. Notice that the colors repeat. Use care to select the correct wires. Pin 1
on the connector is identified by a beveled corner.

zZ41 TO VIDEO
MIXER

3 1 I REVERSE
| 2 2 swi A
2 NORMAL

NEW HEADER/
CONNECTOR

Figure 5. Schematic

94

hardware

Once you've achieved reverse video, some readjustment of the brightness
and contrast will be necessary. On some sets, a slight vertical distortion may
occur. This causes a slow, horizontal waving of the display. To remedy this
replace R13 (a 2.2k Ohm resistor), located on the component board inside
the video monitor, with a 49k Ohm resistor. The component board can be
identified by the video-input cable connection, When attempting this or any
other modification, remember that success depends upon good soldering
practice and extreme care, especially when you are cutting traces.

95

HOME APPLICATIONS

Team Stats

Loans—Do You Really Know
the Cost of Yours?

97

~HOME APPLICATIONS

Team Stats

by Robert J. Mott Jr.

have developed a baseball/softball statistics program to use with a Model

III 16K TRS-80 and a Radio Shack Line Printer II. As a result, I have
established a statistical service for local teams. The idea is simple: I put each
team on a cassette, then charge a modest fee for each update of their file. It’s
all done by mail. Each team gets two copies of the report(see Example 1), a
blank worksheet (see Example 2), and a stamped, addressed envelope to
mail the completed worksheet after their next game. I take the new informa-
tion from the worksheet and update their file, producing two copies of the
new report and a blank worksheet.

The report provides what I consider to be the most important offensive
statistics for a team of up to 20 players. After the file is set up, eight entries
are made on the 10-key pad of the Model III for each active player per up-
date. Data entry takes no more than a few minutes per team.

The default setting is zero for all entries unless you are correcting an error,
and the program gives you plenty of chances to do that. Most entries are self
explanatory (1B = singles, 2B = doubles, and so on). But a few words about
baseball statistics might be in order for those of you who are not familiar
with them.

ABs, or at bats, means official at bats only. Hit batsmen, bases on balls,
and sacrifices (all entered as a W) are not considered official at bats. The on-
base (OB) percentage is determined by adding the W to the number of hits
and dividing this number by the total of ABs and Ws. Slugging (SLG)
percentage is the total number of bases the player reached on base hits (one
for a single, two for a double, and so on) divided by the number of official at
bats. There is a multiplier of 1000 (variable M) in lines 5420-5455 of the Pro-
gram Listing to accommodate the CRT format. There are also checks which
prevent I/O errors that could occur in file setup or if a player received a base
on balls during the game but had no official at bats. By the way, K means
strikeout in baseball lingo.

The program itself will allow you to do three things: You can set up files,
update files, and print files. Setting up the files is the most difficult part.
When you select the NEW FILE option, the system requests a team name.
The team name is the file name. It must be exact, because when a file is read
from tape for an update, the computer will accept only the precise name
before reading the cassette. This prevents inadvertently loading the wrong
file. Figure 1 shows the flowchart for the program.

99

home applications

D eeens A At L L L S NS
BAKER 1 15 5 2 1 0 2 4 4 3 333 800 333 266
BIRD 2 13 3 2 0 i 0 2 3 2 230 384 375 153
COMISKEY 3 8 1 1 0 0 0 1 4 0 125 126 416 125
CROCKER‘ 4 14 6 3 2 0 1 3 1 6 428 785 466 214
MCCARTHY C 5 4 0 0 0 0 0 3 0 0 0 0 0 750
MCCARTHY N 6 10 2 1 1 [\ 0 1 0 0 200 300 200 - 100
LORD 7 4 1 0 1 0 0 3 0 0 250 500 250 250
PUTNAM 8 12 5 1 2 2 0 1 2 2 416 916 500 83

TEAM TOTALS 80 23 10 7 3 3 16 10 13 287 562 366 200

Example 1. Sample report

When you set up the file, use the proper player sequence. 1 use
alphabetical order, but player number or any other sequence is acceptable.
Once the file is established, you may add a player, but you may not change

the seauence without going through a new file setun,

WORKSHEET
P LAYER NO AB 1B 2B 38 HR K W RBI
gg{g##hﬂ##H#H##H##H####H‘I#M##:#H#:lH#%####g”##:##ﬁg####g#”#:##H#M
coMSKEY 3w
CROKER 4w
WeoRTRY C 5 4
MCORTRY N 6 %

R M NN SO NS A ER O NN N S NI R SNNSNNEORSSCSCCOIITREISR

P UTHAM

Example 2, Sample worksheet

100

home applications

PREPARE
8 SORT NOS
LAYERS
INITIALIZE
NEW FILE
PRINT FILE
1 3 N
2

REPORTS

WORKSHEET

LOCATE
PLAYER
RECORD

REPORT

YES
WORKSHEET INPUE NEW
PLAYER
INFO

ADD PLAYER

TO FILE

WORKSHEET

REPORTS

UPDATED

CASSETTE

DISPLAY
UPDATED
FILE

ADD
GAME / WEEK
STATS

I

CALC AVEGS,
TEAM TOTALS

l

Figure 1. Flowchart

One 21-by-14 array is used as you build the file, although the zero
subscript holds no player information. The first player’s statistics are stored
at subscript (1,INl), the next at (2,N), etc. I refer to the first subscript as the in-
dex (I) throughout the program. There must not be any index without a
player name until the end of the file. END OF FILE is for tape reading and
writing keys frorm the null set in P(I). Each player must have a number, even
if you assign them arbitrarily (up to 999), because during the updates, a

101

home applications

search for the player number fetches the proper index for new player infor-
mation. During file buildup or updates you can reset the index to change any
player record until you enter Y after FILE OK--Y/N.

You may set up a team file with only player names and numbers to generate
a team worksheet or wait for game statistics to set up the file. In the latter case
you will have to tell team managers what information you need. Once you
have the file set up, each data entry will produce a blank worksheet.

The PRINT FILE option merely reads the file from tape and asks how
many copies of the report you want printed. Only one worksheet will be
printed. I generally give two copies of the report to each manager. The
FILE UPDATE option reads the old file from tape and stores it in array
B% (21,14). A CONT UPDATE check makes sure you have the latest file.
Once the proper file is read, you may enter the player number from the
worksheet and enter the latest game or week figures. The program checks
for valid player numbers and allows for the addition of new players at this
point. Once all the new information is entered in array A%, all file input
can be validated, then combined with previous data to produce an updated
printout, worksheet, and tape.

The printed report uses the command TIME$. You must set TIME$ in DOS
before entering or delete it from statement 7530 if DOS is not installed.

102

10
15
17

20
25

30
35

40
1000

1001

1005

1010
1020
2000
2010

2030

2040
2050
2070
2090
2100

2105
2110
2200
2210
2230
2280
2300
2310

2320
2330
2340
2350

3000

home applications

Program Listing. Team Stats

DEFINT S,P,1,Z,K,M,C,0,X,Y Encyclopedi
POKE 16425.1 ’ Loadder‘a

POKE 16424,65 :
' SET LINE TTL FOR PRINTER

CLEAR 5000
Q$ = "PCT":
M = 1000

DIM P$(21),A%(21,14),8
DP$ = CHR$(27) + CHR$(
' DOUBLE SIZE CHAR
POKE 16916,0
CLS :
S = 0:
FOR N = 1 T0 5:
PRINT :
NEXT N:
PRINT TAB(15) "T E A M STATISTICS"
PRINT :
PRINT TAB(20) “NEW FILE = 1":
PRINT TAB(20) "UPDATE FILE = 2":
PRINT TAB(20) "PRINT FILE = 3"
PRINT :
PRINT TAB(30);:
INPUT "SELECT: ";S
ON S GOTO 2000,3000,4000

%(21,14),T%(14)
14)

GOTO 1000

=1

INPUT "NEW FILE--ENTER TEAM NAME";N$:
IF N$ = "' GOTO 2010

PRINT "I=";1:

INPUT "RESET INDEX - IF END OF FILE, SET = 21, ELSE PRESS ENTER"
[
IF T <C1O0R T > 21

THEN

GOTO 2030
IF I = 21 GOTO 2200
INPUT "PLAYER NAME";P$(I)
INPUT “PLAYER NO";A%(1,1)
GOSUB'§OOO
X$ = "'
INPUT "RECORD OK--Y/N";X$:
IF X$ < > "Y" GOTO 2030
IF NP$ = "Y" GOTO 3100
I =1+ 1:
GOTO 2030

' PRINT NEW DATA
GOSUB 5000 :
' PRINT HEADING
GOSUB 5400 :
' TOTAL & CALC PLAYER AVGS
GOSUB 5100 :
' PRINT BODY A
X$ = "N":
INPUT "FILE OK--Y/N";X$
IF X$ = "Y" GOSUB 5600:
GOSUB 5200:
GOSUB 7000:
GOSUB 7600:
GOTO 20 :
" CALC TEAM AVGS,LPRINT REPORT-WORKSHEET & UPDATE TP
FOR S = 2 TO 10 :
' CLEAR TTLS
T%(S) = 0
NEXT S
GOTO 2030 :
' CORRECT INPUT
GOSUB 5300 : Program continued

103

home applications

' READ FILE TO BY%
3050 GOSUB 5000:
GOSUB 5900
' PRINT HEADING-BODY B
3090 X% = "N":
INPUT "CONT. UPDATE--Y/N";X$:
IF X$ < > "Y" GOTO 20
3092 FOR I = 1 TO 20 :
' MOVE PLAYER NO TO ARRAY A%
3094 A%(I,1) = B%(I,1)
3096 NEXTI
3100 I =
NPS = Tupye
* SET INDEX & DEFAULT
3110 INPUT "ENTER PLAYER NO--999 TO END";A%(0,1)
3120 IF A%(0,1) = 999 GOSUB 5000:
GOSUB 5100:
GOTO 3500:
' CHECK FOR END OF UPDATE-PRINT INFO
3130 IF B%{I,1) = A%(0,1) GOTO 3210 :
‘' IF PLAYER NO FOUND GET INPUT
3150 I = I + 1
3179 1F #3{1) = "" PRINT "INVALID PLAYER NO¥
INPUT “NEW PLAYER~-Y/N";NP§:
IF NP$ < > "Y' GOTO 3100
ELSE
GOTO 2030
' CHECK FOR VALID PLAYER NO
3190 GOTO 3130
' LOOP THROUGH ALL PLAYERS
3210 PRINT P$(I):
GOSUB 6000
' PRINT PLAYER NAME GET INPUT
3300 X$ = "N":
INPUT "RECORD OK--Y/N";X$
' VERIFY INPUT
3305 IF X$ < > "Y" GOSUB 6000:
GOT0 3300
3310 GOTO 3100 :
' NEXT PLAYER
3500 X$ = "N":
INPUT "FILE OK--Y/N";X$:
IF X$ ¢ > "Y" GOTO 3100
COVERIFY FILE
3510 GOSUB 6200 :
' ADD NEW DATA
3515 GOSUB 5400
' TOTAL & CALC PLAYER AVGS
3520 GOSUB 5000:
GOSUB 5100
' PRINT HEAD & BODY A
3525 GOSUB 5600
' CALC TEAM AVGS
3530 GOSUB 5200
' UPDATE FILE TO TP
3535 GOSUB 7000 :
' LPRINT REPORT
3550 GOSUB 7600 !
' PRINT WORKSHEET
3590 GOTO 20
4000 :
' READ FILE & LPRINT
4005 GOSUB 5300
' READ FILE
4010 GOSUB 5000 :
' PRINT HEADINGS
4020 GOSUB 6400 :
" TRANSFER B>A
4030 GOSUB 5100 :
' PRINT BODY Ay
4040 GOSUB 5400 :

s

104

home applications

COTTL
4050 GOSUB 5600 :
" CALC TEAM AVGS
4080 GOSUB 7000 :
* LPRINT REPORT
4090 GOSUB 7600 :
" LPRINT WORKSHEET
4099 GOTO 20
5000 :
' PRINT HEADINGS
5001 CLS :
POKE 16916,3 :
* SET SCROLL PROTECT
5010 Z = 32 - { LEN{NS$) / 2)
5030 PRINT TAB(Z)N$
5050 PRINT TAB(45)"BAT"; TAB(50)"SLG"; TAB(56)"08“; TAB(60)"K"
5070 PRINT "PLAYER"; TAB(12)"NO"; TAB(16)“AB"; TAB(20)"H"; TAB(22)"18B
“y TAB(25)"2B"; TAB(28)“3B"; TAB(31)"HR"“; TAB{35)"K"; TAB(38)"W"
. TAB(40)"RBI™; TAB(45)"AVG"; TAB(50)Q$; TAB(55)Q$; TAB(60)Q3%
5090 PRINT STRING$(64,"=");
5099 RETURN
5100 :
' PRINT BODY A%
5101 1 =1
5110 IF P§(I) = "" GOTO 5199

5130 PRINT USING “% $"3P3(1)s

5131 PRINT USING "###";A%(1,1);

5132 PRINT USING “####";A%(1,2);

5133 PRINT USING "###°sA%(I,3);A%(1,4)3A%(1,5);A%(1,6);A%(1,7);A%(1,8

);A%(1,9);
5134 PRINT USING “####";A%(1,1
5135 PRINT USING "f####" ;A% (I
5150 1 = I + 1
5170 IF I < 21 GOTO 5110
5199 RETURN
5200 :
* TAPE FILE UPDATE
5201 1 = 1:
INPUT “FILE UPDATE--PREPARE TAPE TO WRITE--PRESS ENTER";X
5203 PRINT # - 1,

D—‘v

i,A%(I 12);A%(1,13);A%(1,14)

N$
5205 PRINT # - 1,P$(I ; é ,13,A%(2),A%(1,3),A%(1,4),A%(1,5),A%(1,6
)IA%(I 1), A%(l 8),A% A%(1,10),A%(I,11),A%(1,12),A%(1,13),A%
5230 IF P$(I) = "" GOTO 5299
5250 1 = 1 + 1:
GOTO 5205

5260 FOR 1 = 2 T0 14
5270 PRINT # - 1,T(I);
5280 NEXT I
5299 RETURN
5300
‘ READ FILE
5301 1
INPUT "PREPARE TAPE TO READ--READ FILE FOR WHAT TEAM";T$
5310 INPUT # - 1,
IF 7% ¢ > N$ 20T0 5301
5350 INPUT # - 1,P$(I),B%(I,1),8%(1,2),8%(3),B%(1,4),8%(1,5),B%(I,6
2,8%(§,7),B%(1,8),B%(1,9),8%(1,10) LB%(1,11),8%(1,12),8%(1,13),B%
1,14
5360 IF P$(I) = "v GOTO 5399
§370 1 = I + 1:
1F 1 < 21 6070 5350
5399 RETURN
5400 1 = 1 :
" TOTAL & CALC PLAYER AVGS
5405 IF A%(I,2) = 0 GOTO 5450
5410 A%(I%B) < A%(1,4) + A%{I,5) + A%(1,6) + A%(I,7)
HITS
5420 A%{I,11) = M * (A%(I,3) / A%(I,2))
BAT AVG
5430 AZ(1,12) = ({4 * A%(I,7) + 3 * A%(1,6) + 2 * A%(I,5) + A%(I,4))

Program continued

105

5440 A%(I,14) = A%(1,8) / A%(I,2) * M :
' K PC
5450 IF A%(2) = 0 AND A%(I,9) = 0 GOTO 5490
5455 A%(I,l = ((A%(1,3) + A%(1,9)) /
;!
5460 FOR x = z TO 10
5470 T%(K) T%(K) + A%(I,K)
5480 K
5490 1 = 1 + 1
IF P$(I) = "" GOTO 5499
5495 IF I < 21 GOTO 5405
5499 RETURN
5600 :
' CALC TEAM AVGS
5601 IF T%(2) = 0 GOTO 5799
5606 T%(11) = (T%(3) / T%(2)) * M
5610 T%{12) = ((T
* M
5630 T%(13) = ((T
5650 T%(14) = (T% / T%(2
5700 :
YUOPRINT TUTALS
5701 PRINT TAB{0) STRING$(64,"=")
5710 PRINT “TEAM TOTALS *;
5711 PRINT USING “###p";7%(2);7%(
5712 PRINT USING "###";T%(4);T%(
5713 PRINT USING "####";T%(10);
5714 PRINT USING "#pa#ss";T%4(11
5799 RETURN
5900 :
' PRINT BODY~--B
5901 1 = 1
5910 IF P$(I) = "% GOTO 5999
5930 PRINT USING "% 3PS (I);
5935 PRINT USING “###";8%(1,1);
5940 PRINT USING "####";B%(1,2);
5945 PRINT USING "###";B%(I,3);B
);B%(1,9);
5950 PRINT USING "####";B% ;
5955
5960 1 = I + 1
5970 IF I ¢ 21 GOTO 5910
5999 RETURN
6000 :
' INPUT NEW DATA
6001 INPUT "AB";A%(I,2
6010 INPUT "1B";A%(I,4
6030 INPUT "za";Axgx,sg
6050 INPUT "3B";A%(I,6
6070 INPUT "HR";A%(I,7)
6090 INPUT “K";A%(I,8)
6110 INPUT “W";A%(I,9)
6130 INPUT "RBI";A%(I,10)
6199 RETURN
6200 :
' ADD NEW DATA
6201 FOR I = 1 TO 20
6210 FOR K = 2 TO 10
6230 AZ(I1,K) = A%(I,K) + B%(I,K)
6250 NEXT K
6370 NEXT I
6399 RETURN
6400 :
' TRANSFER B>A
6401 FOR I = 1 TD 20
6410 FOR K = 1 TO 14
6420 A%(I,K) = B%({I,K)
6430 NEXT K
6440 NEXT I

home applications

[A%R(I,2)} * M:
*SLG PCT

(I’
PRINT USING "#####";B%(1,11);B%(1,12);B%(1,13);B%(I,14)

5))71(6)3TH(7):T%(8);T%(9);
JiTH(12)5T%(13);T2(14)

%(1,4);B%(1,5);B%(1,6);B%(!

(A%(1,2) + A%(1,9))) * M :

G
3
§(7) 4+ TH(6) * 3 + T#(5) * 2 + T%(4)) / T%(2))
%(3) + T%(9)) / (T3(2) + T%(9))) *

(8))y

7);B%(1,8

106

6499
7000

7001
7005
7010
7020
7030
7040
7050
7215
7220
7230
7250
7260

7290
7300

7305
7310
7320
7330
7340

7360
7365
7370

7400
7410
7420

7430
7440
7450
7499

home applications

RETURN

" LPRINT REPORT
INPUT "PRINT HOW MANY COPIES";C
IF C = 0 GOTO 7499
FOR Y = 1 10 C
FOR X = 1 70 3
LPRINT CHR$(138)
NEXT X
GOSUB 7500
7 = 40 - LEN(N$)
LPRINT TAB(Z); CHR$(27); CHR$(14);N$
LPRINT CHR$(138); CHR$(138)
LPRINT TAB(57)"BAT"; TAB(63)"SLG"; TAB(69)"0B"; TAB(75)"K"
LPRINT "PLAYER"; TAB(15)"NO"; TAB{20)" B", TAB(ZS)"H“;
r¢ﬁé%gg;1g"; $ﬁ§§§§§"§8“; TAB(36)"38"; TAB(40)"HR"; TAB(44)"K";
ey "gB1%; TAB(57)"AVG"; TAB(63)Q%; TAB(69)Q$;
rhaiiesas (57) (63)Q% (69)qs
LPRINT STRING$(80,"=")
LPRINT CHR${138):

[F P$(I) = """ G070 7400
LPRINT USING "%
LPRINT USING “####"; A%(I.
LPRINT USING "##f#r™;A%(l,
LPRINT USING “####";A%(1,3 A%(I 4) ;A% (1,5);A%{1,6);A%(1,7);A%(
,8);A%(1,9);A%(1,10);
LPRINT USING "faséfs"iA%(1,11),A%(1,12),A%(1,13),A%(1,14)
LPRINT CHR$(138)
I =14+ 1:
IF 1 < 21 GOTO 7305
LPRINT STRING$(80,"=")
LPRINT CHR$(138);"TEAM TOTALS "
;?S§N¥%%SI?G BRI TR(2);TH(3);TH(4)5 T%(S) TE(6);TH(7):T%(8);T
LPRINT USING “#A####";TH(11);T%(12);T%(13);T%(14)
LPRINT CHR$(12)
NEXT Y
RETURN

7500 :

7501
7510
7530
7550
7599

' LPRINT DOP HEAD

LPRINT TABEIB% DP$;"HORNSBY'S HOME RUN"

LPRINT TAB{18)"YANKEE STADIUM"; TAB(43)"NEW YORK, NY 10017"
LPRINT TAB(18)"555-1212"; TAB(45) TIMES

LPRINT CHR$(138); CHR$(138)

RETURN

7600 :

7601

7610
7630
7650

7670
7680
7690

7730
7740
7750

7790
7799

| PRINT WORKSHEET

I = 1:

GOSUB 7500

LPRINT TAB(30)DP$;"WORKSHEET"
LPRINT CHR$(138); CHR$(138)

LPRINT "PLAYER": TAB(32)"NO"; TAB(39)“AB"; TAB(44)"1B";
TAB({49)"2B"; TAB(54)"3B"; TAB(59)"HR"; TAB(64)"'K"; TAB(69)"W";
TAB(74)"RBI"

LPRINT STRING$(80, "#")

LPRINT P$(1); TAB(31)A%(I,1);

LPRINT TAB(37) CHR$(124); TAB(42) CHR$(124); TAB(47) CHR$(124);
TAB(52) CHR${124); TAB(57) CHR$(124); TAB(62) CHR$(124);
TAB(67) CHR$(124); TAB(72) CHR$(124)

LPRINT STRING$(80,"=")
IF P$(1) = "" GOTO 7790
I =1+ 1:

IF I < 21 GOTO 7680
LPRINT CHR$(12)

RETURN

107

- HOME APPLICATIONS —

Loans—Do You Really Know the
Cost of Yours?

by Tom Van Dan Elzen

Banks and other lending institutions are run by humans, and humans
make mistakes. An error of only $1.00 per payment on a 30-year loan
amounts to $360.00. I've checked loans for friends and have found that
about eight out of ten have errors—as small as $.18 per payment, and as
high as $2.90 per payment. (The $2.90 error was on a 25-year loan for a total
of $870.00.)

In a local Sunday paper, an advertisement for a new car from a local car
dealer went something like this: “Anniversary Sale. Buy a new Bananaboat
for only $158.00 per month.” At the bottom of the ad were the particulars:
48 months at $158.00 per month. APR (Annual Percentage Rate) 14.98 per-
cent. Amount financed $5,632.16. Finance charges $1,951.84. Selling price
$6,136.16. Total amount of payments $7,584.00. If you run these figures
through the Loans program (see Program Listing) and solve for payment,
the monthly payment is $156.69 ($1.31 less than advertised). Over 48
months, this amounts to an overpayment of $62.88. If you assume that the
stated payment is correct and solve for the APR, the result is 15.438 percent
(almost 1/2 percent higher than stated). One possible reason for the
discrepancy is the length of time between the signing of the contract and the
first payment. If it is 45 days instead of the standard one month, this could
account for the increase. Remember this when you see an advertisement like
this:

SALE—SOLID PLASTIC FURNITURE

No payments for 90 Days
Happy Joe’s Furniture

Happy Joe is so happy because, during those 90 days, the interest accrues,

and the cost of the loan grows rapidly. The Loans program assumes that the
first payment is due one month after the contract is consummated.

There are five basic parts to any loan:
® The payment—The amount you contract to pay to the loan company
each month,
® APR—The Annual Percentage Rate. This is the interest rate specified by
the loan company.
@ Principal—The original amount of the loan.
© The number of payments—A four-year loan = 48 payments; a 25-year
loan = 300 payments.

108

home applications

@ Balloon—A balloon payment is usually associated with short-term con-
tracts under which a given amount of principal is borrowed for a given
number of months at a specified APR, but at relatively small monthly
payments (payments too small to pay off the loan). At the end of the agreed
number of payments, the remaining balance is due in total. This balance is
called the balloon payment. You can use this routine to calculate the early
payoff balance on your loans. For example, if you want to pay off your four-
year car loan at the end of the third year, solve for the balloon payment.

All through the program, you will see the previous entries or calculations
for the five parts of the loan displayed in brackets just before the ?. If the
previous APR you entered was 12 percent, the display would be:

ENTER A.P.R. <12>?

This serves as a scratchpad so you can follow changes without pencil and
paper.

When you calculate any of the five parts of a loan, the screen displays Total
Cost of the Loan and the Total Interest Paid over the life of the loan. This
helps you to determine the best arrangements you can make for a new loan.

There is a message at the bottom of each screen which tells you that press-
ing M returns you to the menu and that pressing the up arrow does the pre-
sent routine over.

How the Program Works

The program is made up of a menu and seven subroutines. The menu (see
Figure 1) gives you a choice of seeing a set of definitions of terms, solving for
any one of the five parts of a loan, or using an extra routine to calculate the
total interest paid for each year. The subroutines are as follows.

1) Definition of Terms (see Figures 2, 3, and 4)—Selecting Definition of
Terms from the menu gives you a brief description of each of the important
inputs the program uses.

9) Monthly Payment (see Figure 5)—Selecting Monthly Payment from the
menu sends the program to the second subroutine. It asks you to enter, one

sxxan MENU *xxxx

DEFINITION OF TERMS

MONTHLY PAYMENT

ANNUAL PERCENTAGE RATE (A.P.R))

NUMBER OF PAYMENTS

PRINCIPAL BALANCE AFTER (XX) PAYMENTS. COMMONLY CALLED 'LOAN
PAYOFF’ OR ‘BALLOON' PAYMENT.

6) ORIGINAL PRINCIPAL. ‘HOW MUCH CAN YOU AFFORD'?

7) END OF YEAR INTEREST PAID. (FOR INCOME TAX PURPOSES)

ENTER YOUR CHOICE FROM THE MENU BY THE NUMBER?__

[
~—

[]
= ==

Figure 1

109

home applications

at a time, the amount of principal, the number of payments, the APR, and
the balloon payment (if any).

*+++««DEFINITION OF TERMS+ « x+
‘PAYMENT" IS THE MONTHLY PAYMENT.
‘PRINCIPAL’ IS THE TOTAL AMOUNT OF THE LOAN INCLUDING ANY BALLOON.

‘NUMBER OF PAYMENTS' IS THE TOTAL NUMBER OF MONTHS THAT THE LOAN
REQUIRES FOR REPAYMENT.

‘A.P.R. IS THE ANNUAL PERCENTAGE RATE. WHEN ENTERING THIS VALUE, DO
NOTENTERIT AS APERCENT. FOR EXAMPLE, 12.5% WQULD BEENTERED AS 12.5,
NOT .125 OR 12.5%

PRESS ANY KEY TO CONTINUE
Figure 2
++»++DEFINITION OF TERMS CONTINUED: + » ++

‘BALLOON'—THIS TERM IS BEST DEFINED BY EXAMPLE. SAY YOU WOULD LIKE
TO BORROW $5000.00 FOR 48 MONTHS AT 12% A.P.R., THIS WOULD REQUIRE A
MONTHLY PAYMENT OF $131.67.

HOWEVER, DUE TO OTHER SHORT TERM BILLS, YOU WOULD LIKE TO MAKE
SMALLER PAYMENTS (FOR EXAMPLE $100.00 PER MONTH). THIS MEANS THAT
WHEN PAYMENT 48 COMES DUE, THERE WILL STILL BE $1938.92 REMAINING.
THUS, THIS PAYMENT EXPANDS (LIKE A BALLOON) FROM $100.00 TO $1938.92.

PRESS ANY KEY TO CONTINUE
Figure 3

*x«++DEFINITION OF TERMS CONTINUED *+ %%+

THE ROUTINE FOR CALCULATING A BALLOON PAYMENT MAY ALSO BE USED
TO CALCULATE AN EARLY PAYOFF ON A LOAN. THIS IS ACCOMPLISHED BY
ENTERING 'THE NUMBER OF PAYMENTS ALREADY MADE + 1" WHEN ASKED

‘ENTER NUMBER OF PAYMENTS'?
TiHE RESULTING "BALLOON WILL BE THE PAYOFF DUE ON THE NEXT
SCHEDULED PAYMENT.
PRESS ‘M" FOR MENU
Figure 4

THIS PROGRAM COMPUTES MONTHLY PAYMENT
ENTER AMOUNT OF PRINCIPLE < 0 >? 100
ENTER NUMBER OF PAYMENTS < 0 >P 122

ENTER A.P.R. < 0>? 12
ENTER BALLOON IF ANY< 0>?P0

THE MONTHLY PAYMENTIS § 1.42

-
3

OTAL COSTOF T

HE TOTAL COST O

E HE LO/ $
THE TOTAL INTEREST PAID IS % 73.24

PRESS ‘M’ FOR MENU OR * TO RE-CALCULATE PAYMENT
Figure 5

110

home applications

3) APR (see Figure 6)—The program asks you to enter the four parts of a
loan, other than the APR. At the top of the CRT, the number of loops that
the routine is taking to calculate the APR appears. Unlike the other four
parts of a loan, the APR does not have a formula for calculation. I use a
binary approach to successive approximation. This takes a while; so the
screen displays the number of iterations (loops) to let you know that it is still
working. I've waited through a maximum of 25 loops. If you find yourself
waiting longer, check your entries for an error.

4) Number of Payments (see Figure 7)—Again the program asks for the four
missing elements of the loan. It computes the number of payments to one
decimal place. If the answer is not a whole number (for example, 12.0), your
last payment will be a partial payment.

THIS WILL CALCULATE THE A.P.R.

ENTER MONTHLY PAYMENT < 0 > ? 88.85
ENTER NUMBER OF PAYMENTS < 0 > P 12
ENTER AMOUNT OF PRINCIPAL < 0 > ? 1000
ENTER BALLOON, IF ANY< 0>?0

THE A.P.R. = 12,000%

THE TOTAL COST OF THE LOANIS $ 1066.20
THE TOTAL INTEREST PAID IS § 66.20

PRESS *M® FOR MENU OR 1 TO CALCULATE NEW A.P.R.
Figure 6

THIS WILL CALCULATE THE NUMBER OF PAYMENTS

ENTER MONTHLY PAYMENT < 0 > ? 88.85
ENTERAPR.<0>7P12

ENTER AMOUNT OF PRINCIPAL < 0 > ? 1000
ENTER BALLOON, IF ANY<0>70

THE NUMBER OF PAYMENTS ARE 120

THE TOTAL COST OF THE LOAN IS § 1066.20
THE TOTAL INTEREST PAID IS § 66.20

PRESS ‘M’ FOR MENU OR t TO CALCULATE NEW NUMBER OF PAYMENTS
Figure 7

5) Balloon (see Figure 8)—You are again asked to enter the four missing
elements for the loan. If you wish to calculate an early payoff on a loan,
answer the Enter Number of Payments question with the number of payments
you have made, not the number of payments the loan was contracted for.

111

home applications

6) Principal (see Figure 9)—Again you must enter the four missing parts;
however, I have changed the wording to help you. I am assuming that the
people who use this routine want to know how large a loan they can afford. I
have worded the input questions accordingly.

THIS WILL CALCULATE THE ‘LOAN PAYOFF' OR ‘BALLOON' PAYMENT

ENTER MONTHLY PAYMENT < 88.85 > ? 88.85
ENTERAPR.<12>712

ENTER AMOUNT OF PRINCIPAL < 1000 > ? 1000
ENTER NUMBER OF PAYMENTS < 12 > ? 12

THE ‘BALLOON' OR ‘PAYOFF' PAYMENT IS $ 0.00

THE TOTAL COST OF THE LOAN IS $ 1066.20
THE TOTAL INTEREST PAID IS § 66.20

PRESS ‘M" FOR MENU OR 1 TO CALCULATE NEW BALLOON OR PAYOFF
Figure 8

CALCULATES HOW MUCH PRINCIPAL YOU CAN AFFORD

ENTER MONTHLY PAYMENT YOU CAN AFFORD < 88.85 >? 88.85

ENTER BEST A.P.R. AVAILABLE < 12 >? 12

ENTER NUMBER OF PAYMENTS YOU ARE WILLING TO MAKE < 12 >? 12
ENTER BALLOON, IF ANY< 0>?0

THE AMOUNT OF PRINCIPAL YOU CAN AFFORD IS $ 1000.00

THE TOTAL COST OF THE LOANIS $ 1066.20
THE TOTAL INTEREST PAID IS § 66.20

PRESS ‘M’ FOR MENU, t TO CALCULATE A NEW PRINCIPAL
Figure 9

CALCULATES END OF YEAR INTEREST FOR INCOME TAX PURPOSES

ENTER MONTHLY PAYMENT < 0 >? 88.85

ENTERAP.R. <0>712

ENTER AMOUNT OF PRINCIPAL < 0 >? 1000

ENTER NUMBER OF PAYMENTS (WHOLE NUMBERS ONLY) < 0 >? 12
ENTER BALLOON, IF ANY < 0>2 0

ENTER NUMBER OF PAYMENTS IN THE FIRST YEAR< 0 >? 6__

Figure 10

7) End of Year Interest (see Figures 10, 11, and 12)—This routine asks for
the five parts of the loan, plus the number of payments in the first year. Two
points to watch are the number of payments (they must be in whole
numbers) and the number of payments in the first year. If the first payment
is due in August, for example, then the number of payments in the first year

112

home applications

is five (August, September, October, November, and December). After you
enter the number of payments in the first year, the screen displays:

1) The total interest paid in the first year.

2) The total principal paid in the first year.

3) The remaining balance.

THE INTEREST PAID AT THE END OF YEAR< 1 >1IS§ 48.01
THE PRINCIPAL PAID AT THE END OF YEAR< 1 >15$ 485.09
THE PRINCIPAL REMAINING AT THE END OF YEAR< 1 >1S$ 51491

TO CONTINUE PRESS ANY KEY

TO ESCAPE THIS ROUTINE PRESS ‘E’
Figure 11
THE INTEREST PAID AT THE END OF YEAR< 2>1S$% 18.17

THE PRINCIPAL PAID AT THE END OF YEAR< 2>15$% 514.93
THE PRINCIPAL REMAINING AT THE END OF YEAR< 2>188% ~0.02

THE BANK OWES YOU § 0.02

PRESS ‘M’ FOR MENU, * TO CALCULATE NEW YEAR END INTEREST
Figure 12

To continue, press any key. If you don’t want to see the results for successive
years, press E (for escape) and you will see the message at the bottom of the
screen to press M (for menu) or the up arrow to calculate a new end of year
interest. Pressing any other than those mentioned above will generate the
results for the end of the second year, then the third year, and so on, until the
end of the payments.

The Program

Lines 500 to 720 constitute the Menu routine. The variable, Menu, can be
any number from 1 to 7. Line 720 sends you to subroutines 1000, 2000, 3000,
4000, 5000, 6000, or 7000 respectively.

Lines 1000 to 1460 make up the Definition of Terms routine. This is most-
ly text and PRINT commands.

Lines 2000 to 2400 contain the Monthly Payment subroutine. Other than
a few error traps (such as lines 1100 and 1140), the payment is calculated by
the textbook formula:

PMT = (PCT * (AMT - BAL (1 + PCT)t =NP))/ (1~ (1 + PCT)* -NP)
PMT = Monthly payment
PCT = Monthly Interest Rate (APR/12)
AMT = Original Amount of Loan (Principal)
BAL = Balloon
NP = Number of Payments

113

home applications

Lines 3000 to 3520 are the APR calculations. APR cannot be found by a
simple formula; so I have built a routine to calculate the APR using the
binary approach to successive approximation. It works as follows:

1) First, I multiply the payment entered by the user by 100 to move the cents
to the left of the decimal point; then I take the integer of this number to drop
off any double precision residue from previous calculations. This whole
number is saved as the variable PMT.

2) Next, I solve for a new payment (PMT (1)), using the other parts of the
loan based on an APR of 100 percent. (It can’t get that high, can it?)

3) The new payment is then converted to an integer in the same way as
stated in the first step.

4) The two payments are then compared to each other.

5) If the new payment is greater than the true payment, the new APR is
equal to: (the last low APR + the present APR) / 2.

6) If the new payment isless than the true payment, the new APR is equal to:
(the last high APR + the present APR) / 2.

7) If the new payment is equal to the true payment, then the present APR
must be the true APR.

8) Ifeither step 5 or step 6 is true, the program jumps back to step 2 and con-
tinues until step 7 is true. When step 7 is true, the routine drops to line 3340
and prints out the APR calculated to three decimal places.

9) Lines 3500 and 3520 are an error trap to prevent division by 0 (/0?). This
can occur if you enter erroneous data that leads to an APR of zero.

Lines 4000 to 4360 constitute the Number of Payments calculation sub-
routine. This follows the textbook formula for finding number of payments:

NP = LOG (PMT — (PCT « BAL)) / (PMT — (PCT + AMT)) / LOG (1 + PCT)

NP = Number of payments

PMT = Monthly payment

PCT = Monthly Interest (APR/12)
BAL = Balloon

AMT = Amount of Loan (Principal)

Lines 5000 to 5440 are the balloon calculation subroutine. This follows
the textbook formula:

BAL = (AMT - (PMT =+ ((1 - (1 + PCT)t —NP))/PCT))/ (1 + PCT)* -NP

Lines 6000 to 6380 are the subroutine that calculates the principal. This
follows the formula:
AMT = (PMT + (1 + PCT)* —NP) /PCT)) + (BAL + (I + PCT)* —NP)
Lines 7000 to 7800 calculate the year-end interest and principal paid.
This is based on the formulas:

Monthly Interest Paid = Monthly Interest Rate » New Balance
New Balance = Old Balance — (Payment - Interest Paid)

These two formulas are computed over and over so that:

114

home applications

Yearly Interest Paid = Sum of all the monthly interests paid in that year.
Yearly Principal Paid = Sum of all the monthly principals paid in that year.

Throughout the program, I have inserted spaces quite liberally for
readability of the listing. All spaces (except those inside quotation marks)
can be eliminated.

I did not write the subroutines with the intent of conserving memory, as
16K leaves plenty to work with. I wrote them to allow their use apart from
the program. If you want to calculate only payments, for example, all you
need are lines 2000 to 2300.

If you have a printer and would like a printout of the complete amortiza-
tion schedule, make the following changes and additions.

7270 LPRINT “PAYMENT #",*

7390 AS = “HEREEBEER"
TX +1;

7392 LPRIN

7394 PRINTTAB(IZ);:LPRINT »3 LPRINTUSING A$;MI;
7396 PRINTTAB{29);:LPRINT,;:LPRINTUSING A$;MP;
7398 PRINTTAB(43);:LPRINT ,;:LPRINTUSING A$;AMT(1)

INTEREST","

PRINCIPAL",”

BALANCE":LPRINT * *

Note the number of spaces in line 7270. In addition, change all PRINT
and PRINTUSING commands to LPRINT and LPRINTUSING in lines
7520, 7540, 7560, and 7580. In line 7700, change GOTO 7280 to GOTO
7270. See Figure 13 for a sample printout.

PAYMENT #

U O DD =

INTEREST PRINCIPAL BALANCE

0.83
0.76
0.68
0.60
0.52

9.17
9.24
9.32
9.40
9.48

90.83
81.59
72.27
62.87
53.40

THE INTEREST PAID AT THE END OF YEAR< 1 >1S$ 3.40
THE PRINCIPAL PAID AT THE END OF YEAR< 1 >1S$ 46.60
THE PRINCIPAL REMAINING AT THE END OF YEAR< 1 >1S$ 53.40

Figure 13

The following five examples allow you to check your program for errors:
Example Amount

1

(1 IR I]

$ 1,000.00
$10,000.00
$25,000.00
$35,000.00
$50,000.00

APR

12%
13%
14 %
15%
16 %

of Payments Payment

12 months
48 months
15 vears
25 years
30 years

$ 88.85
$268.28
$327.98
$448.29
$671.81

Balloon

0
-.10
$3,002.67
$ 312
$4,974.94

You can use the above setup and substitute any four variables to solve for the fifth variable.

Example

115

home applications

AMT
AMT(1)

APR
BAL
FY
MENU
MI

MP

NP
PCT
PCT(1)
PCT(2)
PMT
PMT(1)

YI
YP
XY, Z
X$

Amount of principal

Holding variable for new amount of principal calculations
when I don't want the original amount (AMT) disturbed.
Annual percentage rate

Balloon or balance

Number of payments in first year

MENU selection

Monthly interest paid

Monthly principal paid

Number of payments

Monthly interest in percentage

Last high PCT (used in APR calculation)

Last low PCT (used in APR calculation)

Monthly payment

Calculated monthly payment used to compare to PMT in
APR calculation.

Yearly interest paid

Yearly principal paid

Transient variables

Used in all INKEY$ routines

Table 1. Variable list

116

560
580
600
620

640
660
680

700
720
740

home applications

Program Listing

: LR R R S Y RS R] Encyc‘L?&’édel?'
; N .
! * WRITTEN BY *

; * T.J. VAN DAN ELZEN *
‘ * 7/4/81 *
: . .

' LR S ERSERSEEEEEEEE ST

; * ok ok koK MENU Kk kk Kk

CLS :

PRINT *kkxk MENU Awwkwxn
PRINT :

PRINT :

PRINT "1) DEFINITION OF TERMS®

)
PRINT "2) MONTHLY PAYMENT"
PRINT "3) ANNUAL PERCENTAGE RATE (A.P.R.)"
PRINT "4) NUMBER OF PAYMENTS"
PRINT "5) PRINCIPAL BALANCE AFTER (XX) PAYMENTS. COMMONLY CALLED
"LOAN PAYOFF' OR 'BALLOON' PAYMENT."
PRINT “6) ORIGINAL PRINCIPAL. 'HOW MUCH CAN YOU AFFORD' 2
PRINT "7) END OF YEAR INTEREST PAID. (FOR INCOME TAX PURPOSES)"
PRINT @960,""; :
INPUT "ENTER YOUR CHOICE FROM THE MENU BY THE NUMBER"; MENU
IF MENU < 1 OR MENU > 7 GOTO 520
ON MENU GOTO 1000,2000,3000,4000,5000,6000,7000

760 :

t

1000 :

1020
1040
1060

1080

1100

1120
1140

1160
1180

okwkonn DEFINITION OF TERMS ***xx

CLS :

PRINT * *kkxk DEFINITION OF TERMS x*x+*x

PRINT :

PRINT " 'PAYMENT' IS THE MONTHLY PAYMENT."

PRINT :

PRINT “ 'PRINCIPAL' IS THE TOTAL AMOUNT OF THE LOAN INCLUDING AN
Y BALLOON."

PRINT :

PRINT " 'NUMBER OF PAYMENTS' IS THE TOTAL NUMBER OF MONTHS THAT

THE LOAN REQUIRES FOR REPAYMENT."

PRINT :

PRINT * 'A.P.R.' IS THE ANNUAL PERCENTAGE RATE. WHEN ENTERING TH
IS VALUE, DO NOT ENTER IT AS A PERCENT. FOR EXAMPLE, 12.5

% WOULD BE ENTERED AS 12.5, NOT .125 OR 12.5 %"
PRINT @960, "PRESS ANY KEY TO CONTINUE";
IF INKEY$ = "
THEN
1140
ELSE

CLS
PRINT * *%kx% DEFINITION OF TERMS CONTINUED **x*xt

PRINT :

PRINT “ *BALLOON' - THIS TERM IS BEST DEFINED BY EXAMPLE. SAY Y0
U WOULD LIKE TO BORROW $5000.00 FOR 48 MONTHS AT 12 % A.P.R., T
HIS WOULD REQUIRE A MONTHLY PAYMENT OF $131.67."

Program continued

117

1200

1220

1240

1260

1280

1300

1320
1340

1360

1400
1420

1440

1460
1480

home applications

PRINT :
PRINT " HOWEVER, DUE TO OTHER SHORT TERM BILLS, YOU WOULD LIKE
TO MAKE SMALLER PAYMENTS (FOR EXAMPLE $100.00 PER MONTH).";
PRINT " THIS MEANS THAT WHEN PAYMENT 48 COMES DUE, THERE WILL
STILL BE $1938.92 REMAINING. THUS, THIS PAYMENT EXPANDS (LIK
E A BALLOON) FROM $100.00 TO $1938.92."
PRINT @960, "PRESS ANY KEY TO CONTINUE";
IF INKEY$ = "
THEN
1260 :
ELSE
CLS
PRINT " *kkkk DEFINITION OF TERMS CONTINUED **xx*
PRINT :
PRINT " THE ROUTINE FOR CALCULATING A BALLOON PAYMENT MAY ALSO
BE USED TO CALCULATE AN EARLY PAYOFF ON A LOAN.";
PRINT " THIS IS ACCOMPLISHED BY ENTERING 'THE NUMBER OF PAYMENTS
ALREADY MADE + 1' WHEN ASKED *
PRINT :
PRINT “ 'ENTER NUMBER OF PAYMENTS' 2"
PRINT
PRINT " THE RESULTING 'BALLOON' WILL BE THE 'PAYOFF' DUE ON THE
NEXT SCHEDULED PAYMENT."
PRINT 8960, "PRESS 'M' FOR MENU";
X$ = INKEY$
IF X$ = "
THEN
1420
IF X$ = "M"
THEN
500
GOTO 1400

1500 :

2000 :

2020
2040
2060
2080

2100
2120

2140
2160

2180
2200

2220

2240
2260

2280

2300

2320
2340

P o#xxkk CALCULATES MONTHLY PAYMENT *%%#x
CLS
PRINT “THIS PROGRAM COMPUTES MONTHLY PAYMENT":
PRINT :
PRINT
PRINT “ENTER AMOUNT OF PRINCIPLE <"AMT">";
THNPUT AMT
PRINT “ENTER NUMBER OF PAYMENTS <"NP">";
INPUT NP

IF NP < 1 GOTO 2080
PRINT "ENTER A.P.R. <"APR">";

INPUT APR

IF APR = 0O GOTO 2120

PRINT "ENTER BALLOON IF ANY <"BAL">";

INPUT BAL

PCT = APR / 1200

PMT = (PCT * (AMT - (BAL * ({1 + PCT) % - NP}))) / (1 - ((1
+ PCT) 4 - NP))

IF (PMT * 100) - INT(PMT * 100) > .49

THEN

PMT = INT(PMT * 100) + 1
ELSE
PMT = INT{PMT * 100)

PMT = PMT / 100

PRINT :

PR%NT USING "THE MONTHLY PAYMENT IS $#f###.#4"; PMT
PRINT :

PRINT USING “THE TOTAL COST OF THE LOAN IS S&p#####. 44", (NP
* PMT} + BAL

PRINT USING "THE TOTAL INTEREST PAID IS SH#####A#.#4"; (NP
* PMT) + (BAL - AMT)

PRINT @ 960,"PRESS 'M' FOR MENU OR '4' TO RE-CALCULATE PAYMENT";
X$ = INKEYS$

IF Xg =

118

home applications

THEN
2340
2360 IF X$ = "M"
THEN
500
2380 IF X§ = 4o
THEN
2020
2400 GOTO 2340
2420 :
2440 :
3000
tokkxkk CALCYULATES A.P.R. (INTEREST) ***xx**
3020 CLS :
PCT = .0825
PCT(2) = 0 :
X =20
3040 PRINT “THIS WILL CALCULATE THE A.P.R. ":
PRINT
3060 PRINT “ENTER MONTHLY PAYMENT < “PMT"> ",
INPUT PMT
3080 PRINT "ENTER NUMBER OF PAYMENTS <"NP"> "
INPUT NP

3100 IF NP < 1 GOTO 3080

3120 PRINT "ENTER AMOUNT OF PRINCIPAL <"AMT"> “;
INPUT AMT

3140 PRINT "ENTER BALLOON, IF ANY <"BAL"> “;
INPUT BAL

3160 ON ERROR GOTO 3520

3180 PMT(1) = (PCT * (AMT - (BAL * ((1 + PCT) 1 - NP)))) / {1
- ({1 + pCT) + - NP))

3200 PMT(1) = INT(PMT(1) * 1000) / 1000

3220 IF PMT(1) = PMT

THEN
3300
3240 IF PMT(1) > PMT
THEN
PCT(1) = PCT :

PCT = (PCT + PCT(2)) / 2
3260 IF PMT(1) < PMT
THEN
PCT(2) = PCT :
PCT = (PCT + PCT(1)) / 2
3280 X = X + 1 :
PRINT 850,"L00P";X;
GOTO 3180
3300 PRINT @ 512,"";
3320 APR = INT(PCT * 1200000) / 1000
3340 PRINT USING "THE A.P.R. = ##.###"APR;:
PRINT " "
3360 PRINT :
PRINT USING "THE TOTAL COST OF THE LOAN IS S$#####s#.#4"; (NP
* PMT) + BAL
3380 PRINT USING "THE TOTAL INTEREST PAID IS S$#######.#4"; (NP
* PMT) + (BAL - AMT)
3400 ON ERROR GOTO O :
PRINT @960,"PRESS 'M' FOR MENU OR '1' TO CALCULATE NEW A.P.R.";
3420 X$ = INKEY$:
IF Xs o onu
THEN
3420
3440 IF X$ = “M®
THEN
500
3460 IF X$ = "t
THEN
3020
3480 GOTO 3420 Program continued

119

home applications

3500 :
towkxkk DIVIDE BY ZERO ERROR TRAP **%*
3520 IF ERR / 2 + 1 = 11
THEN
PRINT @ 512,"THE A.P.R. IS LESS THAN ZERO. IT IS IMPOSSIBLE TO
COMPUTE." :
RESUME 3400
3540

3560

4000 :
!okkkkk (AL CULATES NUMBER OF PAYMENTS **xxx
4020 CLS
4040 PRINT "THIS WILL CALCULATE THE NUMBER OF PAYMENTS"
PRINT
PRINT
4060 PRINT "ENTER MONTHLY PAYMENT <"PMT">";
INPUT PMT
4080 PRINT "ENTER A.P.R. <("APR">";
INPUT APR
4100 PRINT “ENTER AMOUNT OF PRINCIPAL ("AMT">",
INPUT AMT
4120 PRINT "ENTER BALLOON, IF ANY <"BAL">";
INPUT BAL
4140 PCT = APR / 1200
4160 NP = (LOG((PMT - PCT * BAL) / (PMT - PCT * AMT))) / (LOG(1

+ PCT))
4180 IF (NP * 10) - INT(NP * 10) > .49
THEN
NP = INT{NP * 10) + 1
ELSE

NP = INT(NP * 10)
4200 NP = NP / 10
4220 PRINT
PRINT

PRINT USING "THE NUMBER OF PAYMENTS ARE ####.8";NP
4240 PRINT :
PRINT USING “THE TOTAL COST OF THE LOAN IS S$##ép#ss.2s"; (NP
* PMT) + BAL
4260 PRINT USING “THE TOTAL INTEREST PAID IS S###ff#d#.#4"; (NP
* PMT) + (BAL -~ AMT)
4280 PRINT @ 960,"PRESS 'M' FOR MENU , '?' TO CALCULATE NEW NUMBER OF

4300 X§ =

THEN
4300
4320 IF X$ = "M"
THEN
500
4340 IF X$ = "4
THEN
4020
4360 GOTO 4300
4380

4400

5000 :

! okxdkxk (A CULATES 'LOAN PAYOFF' OR 'BALLOON' PAYMENT *#**x

5020 CLS

5040 PRINT "THIS WILL CALCULATE THE 'LOAN PAYOGFF* OR 'BALLOON' PAYMEN
Tt

PRINT
PRINT
5060 PRINT "ENTER MONTHLY PAYMENT <"PMT">";
INPUT PMT
5080 PRINT "ENTER A.P.R. <"APR"™>";
INPUT APR

120

home applications

5100 IF APR = 0 GOTO 5080
5120 PRINT "ENTER AMOUNT OF PRINCIPAL <"AMT">",

INPUT AMT
5140 PRINT "ENTER NUMBER OF PAYMENTS <"NP*>";

INPUT NP
5160 IF NP < 1 GOTO 5140
5180 PCT = APR / 1200
5200 BAL = (AMT - (PMT * ((1 - (1 + PcT) % - &P) /7 PCT))) /7 ((1

+ PCT) 1t - NP)
5220 IF (BAL * 100) - INT(BAL * 100) > .49

THEN

BAL = INT({BAL * 100) + 1
ELSE
BAL = INT(BAL * 100)

5240 BAL = BAL / 100
5260 PRINT :

PgiET USING “THE 'BALLOON' OR 'PAYOFF' PAYMENT IS S$SEFSSE#8.54%;
5280 PRINT
5300 IF BAL < O PRINT USING “THE BANK OWES YOU S$#S#ESFF.44";

ABS(BAL) :

PRINT
5320 PRINT USING "THE TOTAL COST OF THE LOAN IS SE##SE#F.$4"; (NP

* PMT) + BAL
5340 PRINT USING "THE TOTAL INTEREST PAID IS S$###F#ER.EF"; (NP

* PMT) + (BAL - AMT)
5360 PRINT @ 960,"pRESS ‘M' FOR MENU, '?* TO CALCULATE NEW BALLOON OR

PAYOFF";
5380 X$ = INKEYS$
IF Xs = #Hu
THEN
5380
5400 [F X$ = "M"
THEN
500
5420 IF X$§ = "4
THEN
5000
5440 GOTO 5380
5460 :
5480 :
6000
!okkkkk CALCULATES PRINCIPAL **%x*
6020 CLS
6040 PRINT “CALCULATES HOW MUCH PRINCIPAL YOU CAN AFFORD"
6060 PRINT :
PRINT :
PRINT "ENTER MONTHLY PAYMENT YOU CAN AFFORD <"PMT">";
INPUT PMT
6080 PRINT "ENTER BEST A.P.R. AVAILABLE <"APR">";
INPUT APR

6100 IF APR = 0 GOTO 6080
6120 PRINT "ENTER NUMBER OF PAYMENTS YOU ARE WILLING TO MAKE <"NP">*"

INPUT NP
6140 PRINT "ENTER BALLOON, IF ANY <“BAL*>";
INPUT BAL
6160 PCT = APR / 1200
6180 AMT = (PMT * ({1 - (1 + PCT) 4 - NP) / PCT)) + (BAL * (1
+ PCT) 4 - NP)
6200 IF (AMT * 100) - INT(AMT * 100) > .49
THEN
AMT = INT(AMT * 100) + 1
ELSE
AMT = INT(AMT * 100)
6220 AMT = AMT / 100
6240 PRINT :
PRINT :
PRINT USING "THE AMOUNT OF PRINCIPAL YOU CAN AFFORD IS $#######.

Program continued

121

6260

6280
6300
6320

6340

6360

6380
6400

home applications

#4"; AMT

PRINT :

PRINT USING “THE TOTAL COST OF THE LOAN IS S$##s#sFE.44"; (NP

* PMT) + BAL

PRINT USING "THE TOTAL INTEREST PAID IS S$#&fssss.f8"; (NP

* PMT) + (BAL - AMT)

PRINT @ 960,"PRESS 'M' FOR MENU, *4' TO CALCULATE A NEW PRINCIPA
LY,

X$ = INKEY$:
IF X$ = "
THEN

6320
IF X$ = “M"
THEN

500
IF X$ = uTu
THEN

6000
GOTO 6320

6420 :

7000

7020
7040
7060

7280
7300
7320
7340
7360
7380
7400

7420
7440

7460 Z

7480

' oxxxxx CALCULATES END OF YEAR INTEREST FOR INCOME TAX *xxx*
CLS

PRINT "CALCULATES END OF YEAR INTEREST FOR INCOME TAX PURPOSES"
PRINT :

PRINT :

PRINT "ENTER MONTHLY PAYMENT <"PMT">";

INPUT PMT

PRINT "ENTER A.P.R. <"APR">";

INPUT APR

IF APR = 0 GOTO 7080

PRINT “ENTER AMOUNT OF PRINCIPAL <"AMT">";

INPUT AMT

PRINT “ENTER NUMBER OF PAYMENTS (WHOLE NUMBERS ONLY) <"NP">";
INPUT NP

IF NP < 1 OR NP < > INT{NP) GOTO 7140

PRINT "ENTER BALLOON, IF ANY <"BAL">";

INPUT BAL

PRINT "ENTER NUMBER OF PAYMENTS IN THE FIRST YEAR <"FY">";
INPUT FY

TE OOV /2 1 OnTH TIE0N
PR R R T R R U P VA

PCT = APR / 1200
FY(1) = FY = 1 :
Y =20:
AMT(1) = AMT :
YI = 0 :
Z=0:
MI 0 :

yp 0 :
Mp 0
FOR X = Y TO FY(1)

MI = PCT * AMT(1)

MP = PMT - MI
AMT(1) = AMT(1) - MP

L

YI + MI
YP + MP
IF X = NP - 1

122

home applications

7500 IF XX = 1
THEN
YP = YP + BAL :
AMT(1) = AMT(1) - BAL
7520 PRINT "THE INTEREST PAID AT THE END OF YEAR <" Z
PRINT USING "> IS $#####f#.#4"; Y1
7540 PRINT “"THE PRINCIPAL PAID AT THE END OF YEAR <" Z ;
PRINT USING "> IS S#####4.84"; YP
7560 PRINT “THE PRINCIPAL REMAINING AT THE END OF YEAR <" Z ;
PRINT USING "> IS $#####44.#4"; ANT(1)
7580 IF AMT(1) < O
THEN

PRINT :
PRINT USING "THE BANK OWES YOU $#######.44"; ABS(AMT(1))
7600 IF XX = 1
THEN
XX = 0 :
GOTO 7720
7620 PRINT :
PRINT :
PRINT :
PRINT "TO CONTINUE PRESS ANY KEY"
7640 PRINT :
PRINT :
PRINT "TO ESCAPE THIS ROUTINE PRESS 'E'"
7660 X$ = INKEYS$:
IF x¢ = "o
THEN

>

7680 IF X$ = "E

7700

7720 PRI
7740 X§ =

960,"PRESS 'M' FOR MENU, 'f' TO CALCULATE NEW YEAR END

7760 IF X$ = “M®
7780 IF X$ = "4

7800 GOTO 7740

123

INTERFACE

A Home-Brew Interface

125

INTERFACE

A Home-Brew Interface

by C. R. Vince

fter becoming the proud owner of a TRS-80 system in April of 1978,

I soon realized that the Level I, while an excellent teaching aid of the
BASIC language, left much to be desired when it came to making my
computer more than just an expensive toy. After I had waited anxiously
for several months (due, I suppose, to the extremely heavy demand), my
Level II arrived and was installed.

Now I could really make my “toy” earn its keep, or could I? Yes I could,
providing I put out another $439 (Canadian) for an expansion interface.
But wait, all that would give me would be a real-time clock, mini-disk
controllers, cassette and line printer controllers, and space for an additional
PC board. What about my home climate control, model railway control,
and other applications? There had to be another way, and I hope that after
reading this article you agree with me that there is another way, perhaps
even a better way, at least for hobby use.

Introduction

This chapter will describe an interface unit for the TRS-80 Level II that

will provide the following features:

1) An interface board to the TRS-80 itself.

2) An output board having up to 16 8-bit parallel output ports.
3) An input board having up to 16 8-bit parallel input ports.
4) A TTY interface board.

5) A home climate control system.

6) A model railroad speed control system.

I would like to point out here that I am no expert in electronic circuit
design. In this chapter, most of the circuits have been previously de-
scribed in other books and publications, including Microcomputing. 1
have merely put them together in one package as simply and as econom-
jcally as possible. However, the circuits have been tested and do work; in
fact, they are in daily use.

To enable novices to understand the workings of the interface unit I
have arrowed pertinent lines in the figures to show the directional flow of
data on that particular line. The unit has been built on five separate PC
boards (excluding the power supply). I use the term PC boards loosely, as

127

interface

these boards were handmade, and only the common lines such as the data
bus, the address bus, and the power lines were etched; other lines such as the
enable lines were wired.

The edge card connectors used were of the 62-pin type, since they were
the least expensive and most readily available at the time; consequently, pin
connections given are for the 62-pin variety. Others such as 44 pin could
be used, providing they have enough pins to accommodate all lines enter-
ing or leaving the board. The edge card connectors were mounted on a
piece of wood and like-numbered pins for the + 5V, the ground supplies, the
data, and the address lines were multiplied from one connector to the next.

I strongly recommend the use of sockets for all ICs, as troubleshooting
is made so much easier if you can simply replace a suspect IC to localize
the problem. To emphasize this point, when I first plugged in the inter-
face board, I had problems on a new IC, which seemed to work on static
bench tests but failed in the unit. By simply exchanging two ICs, the prob-
lem was localized in minutes. In addition, don’t forget to use .01 uF bypass
capacitors on about every fifth IC.

Interface Board

To allow for expansion, I decided to use 741.S367s to buffer all signals
coming from the TRS-80 (see Figure 1). I initially buffered the data bus in
both directions, but found that this caused problems, because the inter-
face unit bus is, in effect, parallel with the internal TRS-80 bus, and each
time an input to the Z-80 processor is effected (e.g., from memory), it also
inputs from the interface unit. Since the interface unit data bus had no
signal on it, the buffers interpreted this as a high (or a 1). This high caused
errors because at times it was transferred to the Z-80, overriding the low
(or 0) that should have been there. Therefore, in the final design
presented here, the data bus is buffered in one direction only—out to the
interface unit. Unfortunately, this results in two data buses in the inter-
face unit: one into the unit (buffered) and one out of the unit (not buffered).
This type of arrangement is not uncommon, of course, and presents no prob-
lems, except for some additional wiring. Buffered lines are denoted by the
“B” following the line designation (e.g., D6B means that data line 6 has
been buffered).

The interface board is connected to the TRS-80 by means of a 40-wire
cable. At the TRS-80 end an AMP P/N 88103-1 card edge connector (or
equivalent) is required. At the interface board end I chose to cable di-
rectly to the sockets holding the ICs. This has presented no problems, but
connection could be made to the interface board card connector if desired
(if enough pins are available). While two 20-wire ribbon cables would

128

interface

seem desirable and easier to connect on the AMP P/N 88103-1, my unit
works successfully using regular 40-wire cable about 12 inches long.
The interface board itself can be described in four separate sections:

o4 .
[
i N LRL] 0
o3 "
[.
20 fon2 028 2
06 "
L
24 ’h\, D68 4
o "
20 { © o7
J}’ 6
2
23 N3 208
o> I
s
) a8
27 P 20
NS -
s az8
40 > 22
34 O
s 238
N 2a
'
7
3 s aas
> 3
asp
3 afot 20
N2 Asn
1) 30
v 0
36 g a8 .
P
i
" r“[’% an
7) 499 36
[P WS S|
W
. S - 2108 18
r*‘l’ "
s - s PTSD
s L 2120
P az
W
6 " o 2138 P
0 ! L n s1ag
b 6
“
7 'd\u 4139 a8
S S G
7 ——
@ ___l'/’f f oute P
.

w0
a j,*! B GNP s s lzf
I ¥ Jen—
@ ﬁl\n TR o
L7
d
k4
21 60

a J—
3 —Nt ER5E .
=

3 1 Hixa

) £

waT A g

WAIT FROM 1€ e
> TEST 1 adB ASH A6H A7A FROM IC e

* st A,

23 = ot usco s Yo
2 24

GNg

GND '
29 -
oK J—
3t 20 QUTSELD
9 17
39 J; "

40 WIRE CABLE

TRS - 80
EXPANSION PORT

£0GE CARD : :‘D

INSELO

o ncd et « TALSIET Ve v PN (8 GND Y PIN O
¢ « 74508 Ve + PIN 14 GHD + PIN 7
how TaLS2H Veg v FIN 14 GND » PIN 7
NI 2ILT Vee v PIN 24 GND » PIN 12

Figure 1. Interface board

129

interface

® Data Bus Buffers. The data bus (D0-D7) is buffered by ICs a and b. As
mentioned earlier, only data to be output is buffered; input data is
presented directly to the TRS-80 without buffering. The buffers are
enabled by IC g, which provides a low signal whenever the OUTB or
WRB control lines go low. To avoid overloading these buffers, no more
than 40 output ports should be used unless additional buffering is provided.

® Address Bus Buffers. The address lines (AO-A15) are buffered in much
the same way as the data lines. The buffers are enabled by IC h on
receipt of a low signal from any one of the four control lines OUTB, WRB,

INB, and RDB.

@ Control Lines. The remaining lines from the TRS-80 are what I refer to
as control lines. Once again I chose to buffer the control lines that are out-
put from the CPU; the one input line, INT, is not buffered. I decided not
to butfer the WAIT, TEST, and SYSRES lines, since I could foresee no use
for them in the near or even distant future, however, I wired them to the
interface board just in case, so they could be buffered if desired in the
same way as other lines.

The control lines are buffered by ICs e and f. Note that there are three
GND lines. These should be connected to the GND of the interface board
power supply. The line connected to pin 39 of the TRS-80 edge connector
warrants mention here. In the Level I manual (page 228) this line is
shown connected to +5 V in the TRS-80. Prior to having my Level II
installed, this was the case, however, after the installation of the Level
I1, I noticed that the trace to pin 39 had been cut and pin 40 had been
strapped to pin 39, making pin 39 a ground line. Since I do not know
the state of other units with regard to this pin, I recommend that this pin
not be wired. Of the nine control lines wired, only two are used by cir-
cuits described in this article—the OUT and IN lines—however, the
board has been designed to allow for the easy addition of memory and an
interrupt board at a later date, which require the additional control lines.

@® Qutput and Input Port Initial Selectors. Whenever the TRS-80 exe-
cutes an input or output (port) instruction, the port address is placed on
the lower eight bits of the address bus (A0-A7). At the same time, the
OTUTB line (on an OUT instruction) or the INB line (on an INP instruc-
tion) is enabled. The input or output port initial selectors (IC i or j) are
selected by these lines. This causes the high four bits (A4-A7) to be de-
coded by the selected IC i or j, which are 74154 four-line to 16-line
decoders.

The output of the 74154 is used to select a particular input or output
board where the final port address is decoded. Thus using this configura-
tion, up to 16 input and 16 output boards could be selected, providing ad-
ditional buffers are used. In the design presented here only one input and

130

interface

one output board is used, each one containing ports 0 to 15. To select ad-
ditional boards, simply use the proper output from the 74154s to select the
desired board (e.g., to select ports 16 to 31, the output from pin 2 of the
relative 74154 would be used).

Output Port Board

The output port board (see Figure 2) provides up to 16 8-bit parallel
output ports. In my configuration I have used ports 0 to 8, since this was
the physical limit of the size of the board I have available. The board is
selected by the OUTSELD line from the interface board. This enables
IC m, a 74154, which now decodes the four bits presented to it on the AOB
to A3B lines.

The output from IC m is a low on one of the 16 output lines, cor-
responding to the binary value of lines AOB to A3B. This low is inverted
and subsequently enables a pair of 74LS75 quad latches. The data on the
DOB to D7B bus is now latched by the 74L.S75 quad latches. The true data
is now held by the latch and can be used to control external devices. The
use of the edge card connector pins is left to the discretion of the user.

Input Port Board

The input port board (Figure 3) operates in a similar fashion to the out-
put port board. The input board is selected by the INSELD line from the
interface board, enabling the 74154 to decode the final port address, ac-
cording to the data on the AOB to A3B lines. The output from the 74154
(IC o) strobes the selected input port (IC n), and the data present on the
input lines is transferred to the data bus. Again, due to physical limita-
tions, my board only has nine input ports. Either 74LS367s or 741.5368s
can be used as the input port; the pinout for either is identical. The only
difference is that the 741.8368 inverts the data present on the input lines,
whereas the 741.5367 does not. This can be useful.

Imagine a port (x) with 741.S367s and only one input, bit 0, on that
port being used. Performing a y = Inp(x) instruction will result in y hav-
ing a value of 254 or 255, depending on whether the input is high or low.
The other seven inputs are seen as high by the TRS-80. However, if
741.S368s are used, then the highs on bits 1 to 7 will be inverted and seen
by the TRS-80 as low or 0. Consequently, y will now have a value of 0 or
1. This does make programming a little easier.

Now that we can input and output to the TRS-80, a whole new world
has opened up! The following are three of the uses that I have successfully
tried to date. Obviously there are many more.

TTY Interface
Shortly after completing the interface board, I purchased a Model 33

131

interface

TeletypeTM at almost bargain-basement price from a local dealer at a clear-
ance sale. I constructed the TTY board (see Figure 4) in a couple of evenings.
It uses a popular UART, the AY-3-1015, and was selected primarily because

BIT
2 DoB 2 16 o
a Dig 3 hL] i
6 D28 [K 10 2
s D3g 7 2 2
ﬁqayog’gmcg l‘ J’B OUTPUT
L I'l PORT ©
0 b4g 2 3 4
V2 058 3 L) 5
\a D68 [K (4] [
© o8 7 8 L4
2 16 o
3] t
& K ho 2
7 g 3
4 13 OUTPUT
hH PORT 1
4 13
2 1% 4
3 15 5
[K 0 3
7 9 7
2 16 4]
3 15)
3 K 10 2
4 9 3
) 3
ouUTPUT
’—+“—+m PORT 2
2 16 q
3 i 5
[K 0 €
r 9 7
4
TO OTHER QUTPUT PORTS Z_
2 13 Q6
ATA
1 il
+5V
IFB?TOEMRFACE T_z_a_
BOARD
8 A08 - 741575 VLC'PIPJS GND » PIN 12
20218 L 7404 Vee ¢ PIN 14 GND « PIN 7
22 AZB M 74158 Voot PIN 24 GND = PIN 12
24 A3g)

TO OQUTPUT PORTS

R-13 (1F vseR!

__oTEED V|

13

L

TO QUTPUT
PORTS 3-8

PORT 9

21
PORT 10

2

=

¢

PORT It

2
TO TTY BOARD
3

29 TO TTY BOARD

Figure 2. Eight-bit parallel output board (only three ports shown)

132

interface

of the single 5 V supply required. Other UARTs would probably work just as
well. Whichever UART you purchase, I suggest you obtain a copy of the
specification sheets, as many variations are allowed (e.g., parity, number of
stop bits, number of bits/character, etc).

BIT
. 00 9 o o
A)
3 ol U A, 6 '
N
s 02 s 4 2
, o3 s z 3
- + INPUT
;z“,ggeamcs PORT O
.
9 04 4 1 4
. D5 7 5 5
. 2
. 06) ' 4 [
s vz 3 2 7
4 [G
7 4]
s N a 2
s 3
! INPUT
g PORT |
:
- i o 9 w0 _‘w______f_x________(___
- . ’ 6)
5 n a 3
3 2 7
9 w 0
7 B |
a N 4 2
A 3 2 3
v INPUT
PORT 2
.
b o 0 4
L | 7 [S
s K a 6
3 2 7
FROM OTHER INPUT PORTS
¥ ROM oV
INTERFACE ’t
BOARD 24 !
8 408
> N+ T4LS36T Vee ¢ PIN 16 GND « PIN 8
418 cc
B S —— OR 368
22 azB (SEE TEXT)
_>“‘—‘“B ° 0« 74154 Vee * PIN 24 GNOD » PIN 8
2a > =
J— = | 10 INFUT PORTS
.SM L (3-8
TO INPUT /
PORTS 11-15 PORT 9 25
{IF USED) PORT 10 fO TTY BOARD
27
” 12

Figure 3. Eight-bit parallel input board (only three ports shown)

133

interface

To list the numerous variations here would be too lengthy, however, the
circuit as shown will run a Model 33 TeletypeTM at 110 baud, 20 mA cur-
rent loop in half duplex operation. No programming is necessary to con-
vert the serial data to parallel or vice versa, as this is done by the UART.
The 555 timer circuit supplies clock pulses at 16 times the desired baud
rate, therefore, the clock frequency for 110 baud is 1760 Hz. The actual
serial data is transmitted to and received from the TTY by the two 4N26
optical couplers and the 2N2222 transistors. These couplers provide elec-
trical isolation between the TTY and UART.

At the start of any program that will input or output data through the
UART, an OUT 11,0 instruction should be used to reset all internal UART
registers and flags to 0. To input data from the TTY, an INP9, (x) instruc-
tion will enable the SWE-0 line (status word enable). If bit 1 is a 1, the
DAV (data available flag) line will be high, indicating that the UART
does, in fact, have data to input. An INPIO(x) will enable the RDE line
(received data enable) and will result in the data being placed onto the
data bus,

Following this, an OUT 10,0 should be executed to enable the RDAV
line (reset data available flag). Obviously, to ensure that no input is missed,
these instructions should be contained in a loop, with a branch out only
when a character is read. To output data to the TTY an INP9, (x) instruc-
tion will again result in the status word being output on the data bus.
This time, however, we are interested in bit 0, which will be the TBMT

————

=
-
1
-
"

134

interface

9
g.a
i
MV 890
2l
850
ALL OL o qyvos
2z 8va 3IIVIYILN
] LLE]
) z 850
s
820
2zzENZ — "
oze X — a1a
m% 92NY . 2
' 1z 6 LHOd QHvO8
J sd 1804 d/70 WOHS
303 1t 180d 0Y¥vO8
089 62 1H0d d/0 WOMd
vo9s 5% A oovs
L4
zzzaNg s+ | s as| Ase
0s op| &€ m%i 9¢ w%en g¢t 2¢l ¢} og] 62 82 2] 92f 52| v2| <2l 22| 12
qGI101-€~AY 1HYN
1s
_Mumcom 8] o] o1l 1 2] e« v} sif o] aif e 602
AS+ Ava iwes 01 180d QYOS
€2 140d d/0 WOHH
TH 091 AVOY
2 6 1u0d QuvOB
Ims 1804 d/1 WOH3
34| 33| 40 .
53)
ey AN = ¢
I¢ 50 =< za S
o' . cuvos
; €a FOVANILNI
v 6 oL
) 1t
s ALY [
565 Is— 30 €
-5 St
£ ‘ a 12 Ol 1¥0d QHVOE
1
* ELL) 1804 d/1 WOBS
Wy ' rs
H M ALt
AG s

Figure 4. TTY interface

transmitter buffer empty). If the TBMT flag is a 1 then the data may

flag (

. To do this, an OUTY,(x) instruc-

135

be output to the UART for transmission

tion is required.

interface

Note that during transmission from the UART, the EOC line on pin 24
goes low. This keeps the output from the 7400 high, which prevents the
UART from seeing the transmitted character on the receiver side (pin 20).
Three other flags are output on the data bus: OR (overrun), FE (framing
error), and PE (parity error). These can be checked by software if re-
quired, but this is not absolutely necessary.

THERMOSTATS ~—e

Y % 4

¥y==(®
e
___éamc

Figure 5. Furnace control

Home Climate Controls

Programmable timers that will turn down the thermostat setting at
night are available, however, the cost of two more thermostats is even
less, and besides that, it gives your TRS-80 something to do while you are
working! My house has three levels, so a thermostat on each level is en-
abled by a signal from an output port under program control. As a safety
feature, I have wired three outputs through a plug and socket arrange-
ment, so that in the event of a failure of the computer, by disconnecting
the plug, all three thermostats are automatically enabled, as shown in
Figure 5. (There’s nothing worse than trying to fix a program bug when
you can’t see the monitor for the ice crystals!)

136

interface

The triac—I used one from my junk box, as the voltage and current
demands are minimal (check this on your unit)—turns on the furnace as
the thermostat used to do. The triac is turned on by a simple circuit con-
sisting of an LED and an LDR (light dependent resistor), which I bought
at Radio Shack. Of course, these two items must be enclosed in a lightproof
container to be effective.

To provide a means of keeping time in the computer, I used a one-
minute pulse from a digital clock (which I had built some time ago) con-
nected to input port 0. The clock itself is driven by a 160 kHz crystal,
which is divided by a number of binary counters (7493s) connected in
series to produce a one-minute pulse. The input port is continuously
monitored for a change in state. Other methods could be used, e.g., a
FOR-NEXT loop or a 555 timer circuit if you are not too concerned about
accuracy.

Model Railway Speed Control

The speed control shown in Figure 6 is a simple digital-to-analog con-
verter circuit. With bit 3 low, the output of the converter circuit is low,
hence Q1 and Q2 are turned off. With bit 3 high, a voltage is presented to
the base of Q1, turning it and Q2 on. The exact voltage is determined by
the binary value of bits 0, 1, and 2. The output voltage appearing at the
emitter of Q2 is incremented in eight steps by decrementing the binary
value of the four inputs to the 7406 (bits 0-3).

Perhaps the easiest way to explain this is by saying that with a value of
8, Q1 and Q2 are off and with a value of 0, they are full on. Thus, the
train is stopped with a value of 8 and runs at its fastest speed with a value

Hav 12v
LamMP

FROM

1500

PORT

B
>

1500

Figure 6. Model railway speed control

137

interface

of 0 presented to the converter circuit from the output port. For values
between 0 and 7, the train runs at a correspondingly slower speed. The
actual voltage is from about 6 V, which is the lowest voltage that most
HO-scale trains will run at, to about 11.5 V (assuming a 12 V supply).

Software

If you decide to build the TTY interface board, the following programs
should greatly enhance the capabilities of your computer. Program List-
ings 1 and 2 allow the use of the resident TRS-80 LLIST and LPRINT
commands with a Model 33 (or similar) TTY and the TTY interface board
previously described.

The TRS-80 is designed to produce hard copy on a line printer through
a memory mapped I/O port at address 14312 (37E8H). The software
routines necessary to permit this function are continued within the BASIC
ROM.

I'first thought that I would be able to use these routines by decoding ad-
dress 14312 and wiring the UART circuit to it. However, I found that the
ROM routines do not issue a line feed command; at the end of a line of
print only a carriage return command is issued. Obviously the Radio
Shack line printer automatically line feeds whenever it receives a carriage
return. A 33 TTY does not!

With the help of the RSM monitor, I eventually found the answer. On
power-up initialization a number of addresses in RAM are loaded with in-
formation used by the BASIC interpreter. Two of these addresses, 16422
and 16423 (4026H & 4027H), are loaded with the entry point of the line
printer output routine—1421 (0580H). By providing my own TTY han-
dling routine and directing the BASIC interpreter to it by changing the
contents of 16422 and 16423, the TRS-80 can output to the TTY rather
than to the line printer.

Program Listings 1 and 2 do just that. Program Listing 1 is the actual
assembly language program which I produced using the Radio Shack
Editor/Assembler. Tt generates a line feed whenever a carriage return is
performed. It also generates a CR and LF when 64 characters are printed
on any line; thus the hard copy looks exactly the same as displayed on the
monitor.

If you have the Editor/Assmbler program, I recommend producing
Program Listing 1 and making a tape copy of it. Simply load it using the

system command and enter a “/”. This loads the nointer addresses 18499

..... <015 10205 TRC POINner aQuresses 164

and 16423 and returns to BASIC.

For those who do not have the Editor/Assembler, Program Listings 2
and 3 are provided. These are BASIC language programs which POKE
the machine-language program into high memory. Once POKEd, the

138

interface

BASIC programs can be deleted, and the TTY handler program will re-
main in high memory until power is removed. Program Listing 2 is for
16K and Program Listing 3 is for 4K. Remember that whatever method
you use, the memory size must be set to 20224 for a 4K computer or 32512
for a 16K computer. If you use Program Listings 2 or 3 take care when
entering the DATA statements. One wrong entry will probably cause
your computer to get lost, which will require a power-off reset to get it
back, which will erase your program entirely.

Program Listing 4 is a TTY test and demonstration program. It initially
requests the operator to input the number of “fox” messages required
and then goes on to output the standard TTY test message: “The quick
brown fox jumps over the lazy dog. 0123456789”. The operator is then
prompted to type a message. Note that the message is terminated with a
semicolon (;). The typed letters are displayed on the monitor screen and
are also typed back on the TTY, providing that no error flags are set.

Thus, if you have a suspect TTY, the location of the problem can be
determined (i.e., keyboard or printing unit) by using this program. For
example, if the “fox” message types OK and the characters displayed on
the monitor are incorrect, then obviously the trouble is in the keyboard
or transmitter portion of the TTY. Of course, the UART wiring is also
checked by this test.

Line 1090 is part of a continuous loop monitoring the status word flags
for a change. If a change in state on any flag except the TBMT flag is
detected, line 1100 will determine whether an error is present in the received
character. If an error exists, then a transfer will be made to line
1150, where the particular error is determined. If no error has been
detected by the UART, control will drop through to line 1110, where the
received character is processed. To save typing and memory, lines
1150-1195 can be replaced by:

1150 A$ = “TIY ERROR, FAULT CODE":5$ = STR$(S):A$ = A$ +S$
1160 PRINTA$:GOSUB1300

In this case, you must break down the decimal fault code given into
binary and Table 1 is used to determine the error.

-t
-~

Meaning

Always 0 (TBMT)
DAYV (data available)
OV (overrun error)
FE (framing error)
PE (parity error)

Lo N = O
[I |
[

Table 1

139

interface

Conclusion

In addition to the uses already described, the interface unit has been
used to turn on and off outside lighting at Christmastime and as a tele-
phone dialer. It is presently being used to control basement lighting, in
addition to the climate control system previously described.

Providing care and patience are used, even a novice should be able to
build this unit, as no special tools are required. Once this unit is built, 1
am sure that you will discover that your TRS-80 is no longer just an “ex-
pensive toy,” but rather a useful addition to your household.

140

interface

Program Listing 1

QO0@5 ;rFkkkEkkkkkakkxk TTYOPL Kkkkkkkkkkhkkhkkk Encwlopeda

#0@16 ;TTYOPl ALLOWS USE OF A REGULAR TTY WITH THE
00020 ;TRS-8@. THIS ALLOWS DIRECT USE OF LLIST AND
70030 ;LPRINT COMMANDS. IT RESIDES AT 7F@0(H) WHICH
86040 ;IS THE ADDRESS (32512D) THAT MUST BE ANSWERED
#0958 ;IN RESPONSE TO "MEMORY SIZE?". AFTER LOADING
20060 ;A "/ WILL LOAD THE DCB (4026H & 4827H) WITH
pA@78 ;THE "START" ADDRESS AND WILL THEN JUMP TO

00080 ;BASIC

00@90
TF00 0a100 ORG TFoeH
7708 D30B 80116 ouT (11),A ;RESET UART
7F82 21107F 00128 LD HL,START ;ADDR OF TIYOPL
TEO5 222640 90130 LD (4026H) ,HL ; INTO DCB
7F08 21240 00140 LD HL, 48228 ;CHAR COUNT ADDR
7FOB 3640 00158 LD (HL) ,64 ;LOAD § OF CHAR/LINE
7F@D C3191A 00160 JP lai9n 3JP T0 BASIC
F1e 79 96179 START LD A,C ;CHAR TO BE O/P
7F11 FE@D g0180 cp i3 ;CK IF CR
P13 2004 09190 JR NZ,Al ;JP IF NOT
TF15 CD2F7F 00200 CALL CRLF ;CR+LF ROUTINE
7F18 C9 20219 RET
7F19 CD267F 00220 Al CALL OPCHAR ;CHAR O/P ROUTINE
7F1C DD7E@5 00230 LD A, (1IX+5) ;LD # OF CHAR LEFT
TF1F FEGG 00240 Cp 2 ;CK IF CRLF NEEDED
Tr21 CO 00250 RET NZ ;RET IF NOY
7F22 CD2FTF 00260 CALL CRLF ;CR+LF ROUTINE
7F25 C9 80270 RET
726 CD3E7F 0@288 OPCHAR CALL CKTBMT ;CK IF TBMT
7829 D309 20299 ot (99} ,A ;O/P CHAR
7F2B DD3585 06308 DEC (IX+5) ;DEC CHAR COUNTER
7F2E C9 28318 RET
TF2F 380D 90320 CRLF LD A,l3 ;1ORD CR
TF31 CD267F 06339 CALL OPCHAR ;0/P CHAR
7F34 3E@A 08340 LD A,l8 ;LOAD LF
TF36 CD267F 08350 CALL OPCHAR ;0/P LF
7F39 DD360540 00360 LD {IX+5) ,64 ;RELOAD CHAR COUNTER
7F3D C9 08370 RET
7F3E F5 00380 CKTBMI' PUSH AF ;SAVE CHAR IN A
7F3F DB@Y 00390 IN A, (89) :I/P URRT FLAGS
7741 E601 20400 AND 1 ;STRIP OFF TBMT
7F43 FE@L 00418 Ccp 1 ;CK IF MI
7TF45 20F8 20420 JR NZ ,CKTBMT+1 ;JP IF NOT
7F47 F1 00430 POP AF ;RESTORE A REG
TF48 C9 00440 RET
7708 080450 END TFO0H

20000 TOTAL ERRORS

Program Listing 2

1¢ REM THIS IS THE 16K VERSION OF A BASIC PROGRAM FOR LOADING
20 REM A MACHINE LANGUAGE PROGRAM INTO HIGH MEMORY TO ALLOW
30 REM USE OF A TTY WITH LLIST AND 1PRINT COMMANDS.
40 REM ONCE LOADED, THE TTY HANDLER WILL REMAIN IN MEMORY
50 REM UNTIL POWER IS REMOVED, AND THIS PROGRAM MAY BE ERASED,
60 REM MEMORY SIZE MUST BE SET AT 32512 PRIOR TO RUNNING THIS
73 REM PROGRAM. OUTPUT TO THE TTY IS THROUGH PORT 9.
90 CLS
188 FOR X = 32512 TO 32584
116 READ Y:
POKE X,Y
128 NEXT Program continued

141

interface

130 POKE 16526,0:

POKE 16527,127
135 PRINT "TTY HANDLER LOADED"
1486 X = USR(O)
158 END
1608 pATA 211,11,33,16,127,34,38,64,33,42,64,54,64,195,25,26,121
1818 DATA 254,13,32,4,205,47,127,201,205,38,127,221,126,5,254,0
1628 DATA Al192,285,47,127,201,2065,62,127,211,9,221,53,5,261,62,13
1630 DATA 205,38,127,62,10,265,38,127,221,54,5,64,281,245,219,9
1049 DATA 238,1,254,1,32,248,241,201

Program Listing 3

18 REM THIS IS THE 4K VERSION OF A BASIC PROGRAM FOR LOADING

20 REM A MACHINE LANGUAGE PROGRAM INTO HIGH MEMORY TO ALLOW

390 REM USE OF A TTY WITH LLIST AND 1PRINT COMMANDS.

48 REM ONCE LOADED, THE TTY HANDLER WILL REMAIN IN MEMORY

56 REM UNTIL POWER IS REMOVED, AND THIS PROGRAM MAY BE ERASED.

60 REM MEMORY SIZE MUST BE SET AT 20224 PRIOR TO RUNNING THIS

76 REM PROGRAM. OUTPUT TO THE TTY IS THROUGH PORT 9.

98 CLS

108 FOR X = 20224 TO 20296

114 READ Y:

POKE X,Y
128 NEXT
130 POKE 16526,0:
POKE 16527,79

135 PRINT "TTY HANDLER LOADED"

140 X = USR(0)

150 END
160¢ DATA 211,11,33,16,79,34,38,64,33,42,64,54,64,195,25,26,121
1616 DATA 254,13,32,4,285,47,79,201,205,38,79,221,126,5,254,0
1026 DATA 192,205,47,79,261,285,62,79,211,9,221,53,5,201,62,13
1630 DATA 205,38,79,62,16,205,38,79,221,54,5,64,2061,245,219,9
1640 DATA 239,1,254,1,32,248,241,201

Program Listing 4

16600 CLEAR 508

1816 INPUT "§ OF FOX MESSAGES";K

1820 OUT 11,8:
GOSUB 1300

1023 A$ = "TTY TEST PROGRAM":
GOSUB 1300

1826 A$ = "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.2123456789"

1030 FOR 2 = 1 TO K

1935 GOSUB 1308

1040 NEXT

1850 AS = "PLEASE TYPE A MESSAGE":
GOsSUB 1388

11g8 IF S > 2
THEN
11508

1118 A = INP(1B):

142

interface

QUT 18,8:
IF A = 59
THEN
1138:
REM ; TERMINATES INPUT
11286 X$ = CHR$(A):
AS = AS + XS$:
PRINT @256,A%:
GOTO 1098
1136 GosuB 1330
1131 GOsuUB 1388
1135 AS$ = "ITY LOOKS OK-~PLEASE TYPE AGAIN":
GOSUB 1300
1137 GOTO 10879
1150 8S = S:
SS = SS AND 16:
IFSS <>8@
THEN
1188
1168 SS = S:
SS = SS AND 8:
IFS5<>8
THEN
1196
1178 85 = S:
SS = SS AND 4:
IFSS<>8
THEN
1195
1171 Goro 1197
1180 A$ = "PARITY ERROR":
PRINT A$:
GOSUB 1388
1182 GOTO 1168
1198 A$ = "FRAMING ERROR":
PRINT A$:
GOSUB 1300
1192 GUTO 1178
1195 A$ = "OVERRUN ERROR":
PRINT A$:
GOSUB 1309
1197 A$ = "TYPE AGAIN":
PRINT A$:
GOSUB 1308
1288 FOR 2 = 1 TO 109:
NEXT
1218 OUT 11,8:
GOTO 1888
1308 FOR X = 1 TO LEN(AS)
1318 C$ = MIDS(AS,X,1):
C = ASC(CS$):
GOSUB 1360
1328 NEXT
1338 C = 13:
GOSUB 1360
1340 C = 18:
GOSUB 1368
135¢ RETURN
13680 S =

1378 our 9,C:

143

TUTORIAL

A Handle On Programming:
Store and Recall

Prime Up Your 80
The Z-80’s Hidden Abilities

145

TUTORIAL

A Handle On Programming:
Store and Recall

by Allan S. Joffe W3KBM

his is an effort to show your TRS-80’s ability to store the contents of the

screen and recall those contents on demand. The screen contents may
be text or graphics, single or in combination. Program Listing 1 shows the
initial approach. The program uses a combination of BASIC and machine
language called from BASIC by means of the USR(0) function.

While the listing is reasonably well commented, a bit of explanation may
be in order. Lines 5 to 140 are involved in storing the information that line
10 writes to the screen. Line 110 gives the screen limits in decimal; a full
screen is 1024 bytes or 1K. Line 100 contains the decimal value of memory
location 5000 hex. This value increases by one each time the POKEing loop
cycles. You will notice that it takes a while for the screen contents to be
POKEd into memory. When the POKEing is completed, and the delay loop
in line 160 runs out, USR(0) gets the information that is stored starting at
memory location 5000 hex and block transfers it to the screen so that the en-
tire printout springs to life on the screen.

The block transfer routine that USR(0) calls is located in memory at 7000
hex or 28672 decimal. The machine-language code is as follows:

1100 3C Destination for data in memory (video screen)
21 00 50 Location of source of data to be moved

01 00 04 Number of bytes to be moved (1024)
ED BO C9 Execute block transfer and return to program

The two USR(0) pointers 408E and 408F have to contain 00 and 70 respective-
ly so that USR(0) will go where the machine code is stored starting at location
7000 hex.

The main drawback to this program is the time the POKEing section takes
to put the screen contents into memory. There is a way to speed up execution.
Examine Program Listing 2 and you will see that the POKE routine in BASIC
has vanished. In its place is another use of the USR(0) routine which ac-
complishes the same thing with greater speed. Line 20 reverses the USR(0)
function from its original purpose shown in Program Listing 1. In Program
Listing 1, USR(0) recovers the information stored in memory and brings it to
the screen. Line 20 of Program Listing 2 reverses this function so that the
routine stores the screen information into memory. Once the information is
stored, in order to get it back to the screen, we reverse the USR(0) routine
again using line 70. This time, USR(0) retrieves the information from memory
and displays it on the video screen. Under control of your BASIC program,

147

tutorial

you have modified USR(0) by reversing the source and the destination
codes in the machine-language program using the POKE commands in
lines 20 and 70.

A logical question is how to store more than one screen’s worth of infor-
mation. To store a full screen (let’s call it a page), you need to allow room in
memory for 1K, or 1024 bytes. This means that successive pages must be
spaced at 1K intervals. With this in mind, let’s stick with the first page ad-
dress of 5000 hex or 20480 decimal. The next two pages would have addreses
of 5400 hex or 21504 decimal and 5800 hex or 22528 decimal. Three pages
will do nicely for purposes of demonstration, as accomplished in Program
Listing 3.

POKE Location Value to POKE

16526 0
16527 112
28672 17
28673 0
28674 60
28675 33
28676 0
28677 88
28678 1
28679 0
28680 4
28681 237
28682 176
28683 201

Table 1. POKE locations and values for use without a monitor program

Notice that Program Listing 3 uses the INPUT statement. This time
around you are going to store text. Please note that if your stored text in-
cludes commas or colons the first character you enter should be a quotation
mark (). If you do not do this for text including the comma or the colon, you
will get an EXTRAS IGNORED error message.

We are still using our same machine code and the technique of making the
USR(0) routine store and then recall screen information. The programming
steps are simple and direct. We could use various subroutine methods of con-
structing the program, but they can complicate the idea of program flow.

Lines 30, 60, and 90 serve as page select lines so that the pages of text are
stored in consecutive 1K sections of memory. Lines 60 and 90 differ from line
30 in form. This is because, once having POKEd 28677,60 for the first time,
you need not repeat this code. The only code that changes with succeeding
lines is the POKE location 28674 which controls the page locations in

148

tutorial

memory. You will notice the same thing in the portion of the program that
extracts the text from memory and puts it on the video screen. Line 225 with
its attendant REM simply removes the INPUT ? from the screen when the
text is retrieved. It prints CHR$(32), a space which washes out the INPUT ?.
If this did not happen, your text would be preceded by a question mark
when you recalled it to the screen. You can eliminate the quotation mark by
using the same method should you so desire.

Program Listing 4 is self-contained to produce and store three different
graphics displays which you can then recall. Line 20 fills the screen with
numbers. Line 50 puts a solid graphics block in the upper left-hand
quadrant of the screen. Line 80 puts a larger, dotted graphics display on the
screen. The fundamentals of the program are otherwise unchanged.

The number of pages you can store depends on the size of your available
memory and on how large your BASIC programs are going to be for each
page. BASIC starts its programming memory usage at location 17129 (42E9
hex). Our first page is located at 20480 (5000 hex); so there is room to pro-
gram in BASIC. If you stay within these bounds, you can easily store seven
pages in a 16K system.

This system of store and recall could be used to implement simple anima-
tion. If your animation is confined to a small area of the screen, say the top
half, you can easily double the number of pages stored by cutting the bytes
transferred in half. To do this, you would alter the machine-code segment,
01 00 04 to 01 00 02, to store and transfer just the top half of the screen. In
other words, you split the screen horizontally. While it is beyond the scope
of these programs to split the screen vertically, these are the first steps to
doing so.

Use T-BUG or some other monitor to get the initial program of machine
code into the locations beginning with 7000 hex. If you are using T-BUG in
the original, load in the machine code; don’t forget that you must change the
USR(0) locations of 408E and 408F to their proper values. When you enter
your BASIC program, T-BUG will be overwritten, but this will not matter.
If you are fortunate enough to have a relocated copy of T-BUG that resides
in high memory, then T-BUG will stay resident in memory. This is a con-
venience, but is not necessary to explore the programs that I have presented
here. Table 1 contains the POKE locations and values required for use
without a monitor program.

149

tutorial

Program Listing 1

REM LISTING #-1 STORE AND RECALL

REM USR{O) ROUTINE STORED BEGINNING WITH HEX LOCATION 7000WHICH
IS DECIMAL 28672. MACHINE CODE 11 00 3C 21 00 50 0100 04 ED
80 €9LOCATION 408E(HEX) IS 00...LOCATION 408F(HEX)IS 70...

N -

4 REM THIS PART OF THE PROGRAM FILLS SCREEN WITH NUMBERS ANDSTORE
S THE SCREEN MATERIAL IN MEMORY STARTING AT LOCATION 5000H
5 CLS
10 FOR X = 1 TO 200: .
PRINT X;: Encyclopedia
NEXT X L
100 ¥ = 20479
110 FOR X = 15360 TO 16383
1156 ¥ =Y +1
120 A = PEEK(X)
130 POKE Y,A
140 NEXT X
150 CLS
160 FOR T = 1 TO 1000:
NEXT T
165 REM NOW USR(0) READS STORED INFORMATION BACK TO SCREEN
170 J = USR(0)
180 GOTO 180

Program Listing 2

REM LISTING #-2 STORE AND RECALL

REM USR(O) ROUTINE STORED BEGINNING WITH HEX LOCATION 7000WHICH
IS DECIMAL 28672. MACHINE CODE 11 00 3C 21 00 50 0100 04 ED
BO C9LOCATION 408E(HEX) IS 00...LOCATION 408F(HEX)IS 70...

N -

REM THIS PART OF THE PROGRAM FILLS SCREEN WITH NUMBERS ANDSTORE
S THE SCREEN MATERIAL IN WEMORY STARTING AT LOCATION 5000H
5 CLS
PRINT X;:
NEXT X
20 POKE 28674,80:
POKE 28677,60
30 REM LINE 20 PUTS SCREEN CONTENTS INTO MEMORY STARTING ATLOCATIO
N 5000 HEX
40 FOR T = 1 TO 1000:
NEXT T
50 J = USR(0)
60 CLS
70 POKE 28674,60:
POKE 28677,80
80 REM LINE 70 GETS STORED MEMORY CONTENTS AND PUTS THEM TO THESCR
EEN
90 J = USR(0)
150 CLS
160 FOR T = 1 TO 1000:
NEXT T
165 REM NOW USR (0) READS STORED INFORMATION BACK TO SCREEN
170 4 = USR{D)
180 GOTO 180

-

ra
>

150

0

270
280
285
300

tutorial

Program Listing 3

REM PROGRAM LISTING #-3 STORE AND RECALL

REM THIS PART OF PROGRAM ALLOWS YOU TO FILL THREE FRAMES OFMEMO
RY. ~MEMORY PAGE LOCATIONS #-1 5000 HEX(20480 DECIMAL)#-2 5400
HEX(21504 DECIMAL) #-3 5800 HEX{(22528 DECIMAL)

REM FOR USR(0) ROUTINE LOCATION 408E IS 00 AND LOCATION 408FIS
70. THESE NOTATIONS ARE IN HEX

CLS

CLEAR 300

INPUT A3

POKE 28674,80:

POKE 28677,60

J o= USR(O)

CLS :

INPUT 8BS

POKE 28674,84

J = USR{0)

CLs :

INPUT €3

POKE 28674,88

J = USR(0)

REM THIS PART OF THE PROGRAM ALLOWS RECALL OF THE MEMORY PAGES
IN THE ENTERED SEQUENCE.

CLS

INPUT "PRESS ENTER";Z

POKE 28674,60:

POKE 28677,80

J = USR(0)

PRINT @0, CHR$(32):

REM THIS GETS RID OF ? ON RECALL TO SCREEN

INPUT “PRESS ENTER";Z

POKE 28677,84

J = USR(0)

PRINT @0, CHR${32)

INPUT "PRESS ENTER";Z

POKE 28677,88

J = USR(0)

PRINT @0, CHR$(32)

END

10
15
20

30

40
50

Program Listing 4

REM LISTING #-4 STORE AND RECALL
REM THIS PART OF PROGRAM ALLOWS YOU TO FILL THREE FRAMES OFMEMO
RY. MEMORY PAGE LOCATIONS #-1 5000 HEX (20480 DECIMAL)#-2 5400
HEX(21504 DECIMAL) #-3 5800 HEX(22528 DECIMAL)
REM FOR USR{0) ROUTINE LOCATION 408E IS 00 AND LOCATION 408FIS
70. THESE NOTATIONS ARE IN HEX
REM DIFFERENT FORM OF ENTERING INFORMATION TO DEMONSTRATE HOWYO
U COULD PUT GRAPHICS PROGRAMS INTO THE STORE FRAMES
CLS
CLEAR 300
FOR X = 1 TO 100:
PRINT Xj:
NEXT X
POKE 28674,80:
POKE 28677,60
J = USR(0)
CLS
FOR X = 1 TO 20:
FOR Y = 1 TO 10: Program continued

151

tutorial

SET(X,Y):
NEXT ¥,X
POKE 28674,84
J = USR(O)
CLS :
FOR X = 1 TO 50 STEP 2:
FOR Y = 1 TO 30 STEP 2:
SET(X,V):
NEXT Y,X
90 POKE 28674,88
100 J = USR(D)
110 REM THIS PART OF THE PROGRAM ALLOWS RECALL OF THE MEMORY PAGE
S IN THE ENTERED SEQUENCE.
120 CLS
200 INPUT "PRESS ENTER";Z
210 POKE 28674,60:
POKE 28677,80
220 J = USR(0)
225 FOR T = 1 TO 1000:
NEXT T
230 CLS :
INPUT “PRESS ENTER";Z
240 POKE 28677,84
250 J = USR(O)
255 FOR T = 1 TO 1000:
NEXT T
260 CLS :
INPUT "PRESS ENTER";Z
270 POKE 28677,88
280 J = USR(D)
290 FOR T = 1 TO 1000:
NEXT T
300 END

W~
[o- o= an]

152

TUTORIAL

Prime Up Your 80

by Jim Mellander

y I Yired of hobbling along at BASIC speeds? Do you want to fully exploit
the speed and power of your TRS-80? If the answer is yes, drop your
BASIC and jump on the assembly-language bandwagon!

The Problem

To get this show on the road, we need to select a problem to program that
is challenging, yet simple. Let’s try to calculate prime numbers. A prime
number is a number which will divide evenly by only itself and one. The first
eight prime numbers are: 3,5,7,11,13,17,19, and 23. Before attempting to
write this program, we should consider the problem in some detail. First, we
notice that only odd numbers need to be considered since all even numbers
can be divided by two. This cuts in half the amount of numbers to check.
How are we going to determine if a number is prime? We could divide the
prospective prime by successive odd numbers. If the division comes out
even, we know the number is not prime and could go on and check the next
odd number. If the prospective prime survives all those divisions and none
comes out even, then the number must be prime—because that is the defini-
tion of a prime number,

Is our algorithm complete? Not quite. We haven't specified how the com-
puter is to know when it has finished dividing. The first thought is to check
all the odd numbers up to the number we are testing. That method will
work, but it involves far more divisions than are necessary, and dividing is
the slowest of the four standard arithmetic operations (+, —,*,/). The
TRS-80 uses the same division method we were taught in school, and you
remember how long that long division was! So, if we want the TRS-80 to go
at top speed, we will have to lessen its work load as much as possible. Amaz-
ingly enough, though, an assembly-language routine running this inefficient
technique is still faster than even the most efficient BASIC program. When
it comes to serious calculation, assembly language is the way to go.

Let’s give some thought to improving the division process. We will con-
sider a representative number, 127, and a sample divisor of 11. Upon divi-
sion the result is 11 with a remainder of 6. As you continue to divide, the next
divisor will be 13. 127/13 is 9 with a remainder of 10. Notice that the quo-
tient (9) is now less than the divisor (13), and they had previously been
equal. We have passed the point where we need to continue division: The
point where the quotient is equal to the square root of the prospective prime,

153

tutorial

in the case of 127:SQR(127) = 11.2694. Since we need to divide only by odd
numbers, this gives us five divisions as compared to 63 using the longer divi-
sion method.

The Algorithm

So, we arrive at the algorithm: To generate the sequence of prime
numbers, we will start at 3 and divide each prospective prime by successive
odd numbers until we reach the square root; unless a division comes out
even, in which case we will begin testing the next odd number for primeness.
If the prospective prime gets through all the divisions up to the square root,
it is, in fact, a prime number and is displayed on the screen. The BASIC pro-
grams in Program Listings 1 and 2 implement this idea.

Assembly Language Translation

Armed with our BASIC program listings and a copy of TRS-80 Assembly
Language Programming by William Barden, Jr. (highly recommended), we
can proceed to translate our program into assembly language. Several prob-
lems stand in our way, among them the necessity of learning a new lan-
guage, Z-80 (that's the name of the chip doing all the work) assembly lan-
guage. Assembly language is much more primitive than a high-level lan-
guage like BASIC, and it takes perseverance to master assembly language.
Once you have learned it, though, you will be able to talk to your computer
in its own language. Actually, that is not strictly true—the machine’s native
tongue is just a string of ones and zeros. Each particular combination of 1
and 0 (called bits) performs a specified function.

Some computer wizard decided that it would be much easier for us to
understand LiD A,(HL) ratier than 51111110, Doth specify the sume vpera:
tion, namely, to get a byte of data from memory and put it in the computer’s
accurnulator. The first is at least a little more intelligible than the second. A
special program called an assembler translates from the first form (assembly
language) to the second (machine language). Since assernbly language gives
you direct control of the machine without the drudgery of memorizing all
those bits, it is the language of choice for those who really want to get into
the TRS-80 (or any computer, for that matter).

One program you will need when climbing the assembly-language hill is
an assembler, preferably with a built-in editor, so that you can edit and then
assemble your assembly-language programs. Radio Shack markets ED-
TASM for that purpose. Microsoft, who developed the Level II BASIC we
all know and love, as well as Radio Shack's EDTASM, has come out with an
enhanced editor-assembler called EDTASM-PLUS. That is the program I
use and recommend to others.

The Z-80 chip is the workhorse of the TRS-80 and is one of the most ad-
vanced eight-bit microprocessors in existence. It does not have a division

154

tutorial

operator, however, and I know of no computer that has a built-in square
root. Level II has division and square roots, but like Star Trek, EDTASM,
and Blackjack, they are programs; so we will have to program those in, or
will we? Since Level II has those functions, can’t they be accessed from our
assembly-language program? Yes, definitely, but for speed we want our
own, since Level I spends a great deal of time on housekeeping and error-
detection. Refer to Wes Thielke’s article in the February 1980 issue of 80
Microcomputing for details on interfacing an assembly-language program
with Level II BASIC subroutines. It is fortunate that there are many assem-
bly-language programmers who have already written the routines we need.
We need only to find them and use them. 80 Microcomputing readers sub-
mit useful routines continually. 1 found the square root routine in William
Barden’s “Assembly Line” column for June 1980. The assembly-language
program in Program Listing 3 is essentially a translation of the BASIC pro-
gram in Program Listing 1 with a few changes. First, there is no test for ter-
mination of the outer loop; and so the program will run endlessly, cycling
through 16 bits. (That is the size of the prime number, NUM, in this pro-
gram.) To extend this to 24 bits or beyond would require almost a complete
reworking of the program.

Users who run this program long enough will notice an apparent error
when the number exceeds 32767. The output will then display large
negative numbers. What's going on? My program treats all numbers as un-
signed positive values, while the output routine in ROM treats the values as
signed numbers. In two’s complement notation, which is the binary
arithemetic system of the Z-80, - 32768 follows 32767. To calculate the un-
signed value of a negative number in this system, it is necessary to add 65536
to the number. That is why when you use BASIC to calculate Z-80 addresses
you will see code similar to: AD=VARPTR(X): IF AD<0O THEN
AD = AD + 65536.

Conclusion

Number crunching is not as slow on the TRS-80 as BASIC would have you
believe. A properly designed assembly-language routine will show your
TRS-80’s true colors. The sample program developed here has room for
enhancement, which 1 will leave to those dyed-in-the-wool assembly-
language buffs. The output problem mentioned above could be remedied by
writing your own output routine. Also, since the square root for the next
number will be at most one more than the preceeding square root, the pro-
gram could be rewritten to account for that rather than computing the
square root from scratch each time.

155

19

30
40

60
78

90
100

tutorial

Program Listing 1. Prime number generator

H

' PRIME NUMBER GENERATOR BY JIM MELLANDER,
DEFINT J 3

' THIS WILL SAME SOME TIME

FOR I = 3 TO 9999999 STEP 2
FOR J = 3 TO SQR(I) STEP 2

X=1/4J:

IF X = INT(X)

THEN
99

NEXT J

PRINT I, :

' NUMBER IS PRIME

NEXT 1
END

Em:y’clopeI dia

11/6/88

19 :

Program Listing 2

One-line prime number generator. Note: CINT function is slightly faster than INIT.

ONE LINE PRIME NUMBER GENERATOR. NOTE:

HTLY FASTER THAN INT.
20 DEFINT I,J:

FOR I = 3 TO 32765 STEP 2:
FOR J = 3 TO SQR(I) STEP 2:
IF I / J = CINT(I / J) NEXT I:
ELSE
NEXT
PRINT I,:
NEXT

CINT FUNCTION IS SLIG

Program Listing 3

Assembly-tanguage prime wwinber generaior, This program will work only on a Level Ii
machine because the ROM calls are different on Level 1. T-BUG users: Enter code at left; punch

tape

4E20

4E20
4E23
4E26
4E29

using the command P 4E20 4ESE 4E20 PRIMES.

20108 ;
82118 ; ASSEMBLY LANGUAGE PRIME NUMBER GENERATOR
98120 ; BY JIM MELLANDER.
00130 ;
88140 ; MOST ROM CALLS ARE FROM WES THIELKE'S
#8158 ;EXCELLENT ARTICLE IN 80-MICRO., 2-88. THANKS, WES!
681698 ;
00179 ORG 20000 ;FIT IT ON 4K MACHINE
29189 ;CHANGE ORG TO SUIT
00199 ;
00200 ; PRESS ENTER AT MEM SIZE QUESTION.
68219 ; TO LOAD TYPE: SYSTEM
68220 ; NAME OF PROGRAM: PRIMES
20230 ; WHEN LOADED TYPE: /26008 TO RUN
00240 ;
66259 ;
CDC981 6P260 START CALL 1C9H ; CLEAR SCREEN
2193889 002786 LD HL,3 ;START @ 3
22874E 26288 LD (NUM) , HL ; STORE
1833 29290 JR PRIME
94388 ;
28318 ; MAIN LOOP

156

4E2B
4E2D
4E30

4E33
4E34
4E37
4E38
4E3A
4E3B
4B3C
4E3D

4E3F
4E48
4E43
4E46
4E49
4E4A
4E4D
4E4E
4E4F
4E51
4E54
4E55
4E56
4E59

4E5A

4E5C

4ESE
4E61
4E64
4E66
4E69
4E6C

4E6F
4E72
4E73
4E74

4E77
4E7A
4E7C
4E7F
4EBO
4E82
4E85

4E87
4E89

4EBA
4E8B

3E03
32894E
2A874E

17}

323F4E
2A874E
3AB94E

2A874E
CD9AJA
3E88

010008
CDBE#F
CDA728

2ABT4E
23
23
22874E

CD2B#8
FEOL
CA72680
B7
28A9
Cb49ge
18a4

oooe
1]

7D
6C

068320
20339
08340
083508
08360
86370
08380
603906
00400
eo4le
00420
00430
08440
080450
00460
80470
00480
20490
gasog
6@510
68520
60530
28540
805580
60560
005780
20580
205908
20600
00610
00628
00630
00640
pA650
00669

00670 ;

00680
006 9¢
407009
2a71e
20728
287308
60748
20758
20760
20776
ae786
00790
20808
90816
20828
00830
00840
20850
20860
pes79
oossg
6e89g
20900
08910
00928
08930
80940
08959
00960
00976
60980
06990
01008
plele

;
LOOP

;

tutorial

LD A,3 ;TEST VALUE
LD (TEST) ,A ;SAVE IT
LD HL, (NUM) ;GET NUMBER

SQUARE ROOT ROUTINE FROM 886-MICRO 6/80 P. 24

,WRITTEN BY JAMES BRAUD.

i

SQRT1

SQR
SQRTY
DLOOP

PRIME

PRIME]

~

NUM
TEST

H

XOR A ;TRY @ FIRST

LD BC, @FFFFH ;BC = =1

ADD HL,BC ,IF HL < @

JR NC, SQRT9 EXIT !

INC A ,NEXT ROOT !

DEC BC ;UPDATE

DEC BC : SUBTRACTOR

JR SQRT1

DEFB 8

LD (SQR) ,A ;SAVE SQUARE ROOT

LD HL, (NUM) ;GET ORIGINAL VALUES
LD A, (TEST)

LD D,A ;GET DIVISOR IN D-REG
CALL MOD ; COMPUTE HL.MOD.D

Lb A H ;GET REMAINDER IN A-REG
OR A :SET FLAGS

JR %,PRIMEL ;IF # REMAINDER NOT PR.
LD HL,TEST ;POINT TO TEST VALUE
INC (HL) ;ADD 2 TO TEST DIVIDE
INC (HL) ; VALUE

LD A, (SQR) ;GET SQUARE-ROOT

CcP (HL) ; COMPARE WITH TEST VALUE
JR C,PRIME ;PRIME IF OVER

JR DLOOP ;ELSE LOOP AGAIN

NUMBER IS PRIME, SO DISPLAY IT!!

LD HL, (NUM) ;GET PRIME NUMBER

CALL OASAH ;STORE IN ACCUMULATOR

LD A,128 ;PERFORM EDIT

LD BC,20848D+0 $8*%256 8 DIGITS @ DECIMALS
CALL 6FBEH ;CHANGE TO DISPLAY FORMAT
CALL 28ATH ;DISPLAY ON SCREEN

LD HL, (NUM} ;GET NUMBER TESTED.

INC HL ;ADD 2 TO TRY NEXT NUMBER
INC

LD (NUM) , HL

CALL 2BH 3 STROBE KEYBOARD

Ccp 1 ;BREAK ?

JpP %Z,72H ;BACK TO BASIC

OR A ;ANY OTHER KEY ?

JR %, LOOP ;NO, TRY NEXT NUMBER

CALL 498 jWAIT FOR KEYBOARD

JR LOOP ;JUMP ON KEY PRESS

DEFW [} ;NUMBER TESTED FOR PRIME
DEFB 4 ;s TEST DIVISOR

SUBROUTINE TO CALCULATE HL.MOD.D

,ADAPTED FROM DIV~16 SUBROUTINE IN 'TRS-80
; ASSEMBLY LANGUAGE PROGRAMMING' BY W. BARDEN, JR.
;FROM PAGE 197. CALCULATION OF QUOTIENT REMOVED

H

; ENTER:
H

JEXIT

;
MOD

(HL) =DIVIDEND 16 BITS
(D)=DIVISOR 8 BITS
(H)=HL.MOD.D 8 BITS

LD AL
LD L,H Program continued

157

tutorial

4E8C 2600 01020 LD H,0
4EBE 5C $10389 LD EH
4EBF 0610 01040 LD B,16
4E91 29 91050 LOOPM ADD HL,HL
4892 17 21060 RLA
4E93 3601 a187¢ JR NC, LOOPM1
4E95 2C 01080 INC L
4E3%6 B7 916908 LOOPML OR A
4E97 ED52 91100 SBC HL,DE
4E99 3981 01118 JR NC,MOD1
4E9B 19 81120 ADD HL,DE
4E9C 10F3 21138 MOD1 DJINZ LOOPM
4ESE C9 gli4¢ RET
91158 ;
4E20 91168 END START
Program Listing 4
BASIC program to POKE and run the prime number routine.
18
! BE SURE TO SET MEMORY SIZE TO 19999 BEFORE RUNNING
28 POKE 16553,255 :

30

48

56

100
110
120
1308
146
150

168
178

' FIX ROM BUG
FOR I = 20860 TO 20126:

READ X:

POKE I,X:

NEXT

POKE 16526,32:

POKE 16527,78 :

' SET UP USR(#®) ADDRESS
X = USR(8)

' RUN ROUTINE

DATA 205,261,1,33,3,8,34,135,78,24,51,62,3,58,137,78,42
DATA 135,78,175,1,255,255,9,48,6,60,11,11,24,248,8,50
DATA 63,78,42,135,78,58,137,78,87,265,138,78,124,183,40
DATA 30,33,137,78,52,52,58,63,78,190,56,2,24,229,42,135
DATA 78,285,154,1¢,62,128,1,06,8,205,198,15,285,167,40
DATA 42,135,.78,35,35,34,.135.78,205.43,0,254,1,262,114
DATA 6,183,46,169,265,73,90,24,164,0,0,8,125,108,38,8,92
6,16,41,23,48,1,44,183,237,82,48,1,25,16,243,281

158

TUTORIAL

The Z-80’s Hidden Abilities

by Joe Sewell

hen Zilog released its extension of the famous Intel 80 series of micro-
processors, the micro world was shaken. As is true with similar
events, the Z-80 broke barriers for assembly-language programmers. Now
the Z-80 is beginning to fall into the same rut as the 8080—its limits are
becoming too obvious. The programmer wants more. Unbeknownst to
most, there is more to the Z-80 than the documentation tells you.

The Z-80 is of a rare breed in the eight-bit CPU world, because it uses all
256 possible bytes for its instruction set. Even rarer are its many instructions
that require two or even three bytes, not including any immediate data.
Four bytes, CBH, DDH, EDH, and FDH, are used to begin the multi-byte
instructions, and the other byte(s) finishes the code. Not all possible byte
combinations are used here, and it is through those unused combinations
that the Z-80 programmer can expand his processor’s limits. Some of these
undocumented codes actually produce a useful response.

I found this information working on a 16K TRS-80 which used the Z-80
processor. 1 also used Radio Shack’s T-BUG monitor with the TSTEP
module from Allen Gelder & Co. The TSTEP program, a single-stepper,
produces the actual CPU response (unless you change page zero as described
in the TSTEP manual), unlike the TRSDOS DEBUG stepper. DEBUG con-
sistently locks up whenever one of these illegal instructions is found, while
TSTEP continues as the CPU would. (I verified this by executing a short pro-
gram consisting of the code under test followed by a return to the monitor.)
While I cannot say this will work on all Z-80s, it does work for some.

Codes that use DDH or FDH as the first byte make the most sense. These
leading bytes direct instructions that follow which affect the index registers.
The instructions following the first byte are actually instructions involving
register pair HL. The leading byte directs the instruction to one of the index
registers and, with some, adds a displacement byte for indirect addressing.
This also works with the undocumented instructions. The basic rules are
as follows:

1) If the second byte is one instruction (i.e., not CBH, DDH, EDH, or FDH)
and no data follows (such as an LD register, register), the instruction is ex-
ecuted ignoring the leading byte. One exception: If register H is supposed to
be used, the most significant byte of the index register is used; if L, then the
least significant byte of the index register is used. Thus DD 24 would INC

159

tutorial

IXHI, or increment the MSB of register IX. FD 2E would LD IY[,(,0. (See
next rule.)

2) If the second byte is one instruction and would normally have data
following (as in a CALL instruction or a LD A,N), the data is assumed to be
zeros, and the instruction is executed as such (e.g., a DD 3E would load the
accumulator with 00H). So DD 18 would JR 0, which acts like an NOP (ex-
cept for timing).

3) If the second byte is CB, a four-byte instruction (including the first byte) is
assumed. It will act as though the first and third bytes were not there after
loading (indirectly) the register to be acted upon using the index register plus
a displacement, the third byte being the displacement. FD CB 08 07 would
act like LD A,(IX +8), RLC A (CB 07 is RLC A), saving one byte from the
documented method,

4) If the second byte is EDH, the CPU responds with a functional NOP.

As is always true, if DDH is the first byte, register IX is used, and FDH
specifies IY. Those undocumented instructions that do not use the index
register (i.e., the instructions without the first byte use néither H nor L) will
act the same regardless if DDH or FDH is used.

There are few undocumented codes beginning with CBH; they are CB
30-37H. They actually function similar to their CB 20-27H counterparts,
but they have one major difference: CB 20-27H are the SLA instructions,
which shift each bit in the register left, passing the most significant bit into
the carry flag and pushing a zero in the other end. CB 30-37H does the
same, except that a one is entered into bit 0 instead of a zero; so they func-
tion like an SLA/INC combination.

The illegal EDH instructions are less useful. If byte 2 is less than 40H,
greater than BBH, or is between 80H and 9FH inclusive, nothing appears to
be done. Those not in the above ranges perform either a NEG, a JP0, or NOP
(except for ED 6BH, which does an LD HL,(0)).

These extra operations usually show no other benefit than conserving a
byte or two. If the program, for example, requires register pair BC to hold
0000H, you could use the two-byte DD (or FD) 01H instead of the three-
byte 01 00 00. Other instructions are very handy. How many times have you
wanted to manipulate each byte of the index registers independently of the
other byte? Other codes are useless, and the programmer would be better off
using the documented code instead of the longer undocumented code.

I would like to emphasize again that these undocumented codes should
work on any Z-80 (I only have access to one; so I cannot guarantee other
Z-80s will also function this way) when running machine language, but may
not work with all monitors and disassemblers. This is probably due to the
ways they handle their functions; it can either actually run the present in-
struction and return to the monitor or read in the instruction and simulate

160

tutorial

running it. Those that simulate execution probably will not recognize these
illegal codes.

161

UTILITY

KBFIX Your BASIC Programs
File Name
Macros: Let Your Micro Do the Work

163

UTILITY

KBFIX Your BASIC Programs

by John W. Blattner

Many programmers complain of keybounce problems and the aggra-
vation of loading Radio Shack’s KBFIX. I wrote this program as a
partial solution to this problem, and I have since found it to be one of the
most useful routines in my library. Saver is a machine-language program to
be used with BASIC programs. It occupies 244 bytes of low RAM and per-
forms the following two functions:

@ Keyboard debouncing.

@ Saving of BASIC programs—together with the Saver front end—in
SYSTEM format.

You will still have to load Saver before you enter or load a BASIC pro-
gram. But once you have used the save feature of Saver to record the com-
posite program, you will never have to load Saver again to work with that
particular program. Keyboard debounce is permanently installed, without
your having to set MEMORY SIZE, much less load a separate program. As
an added feature, your BASIC program is now recorded in the more reliable
SYSTEM format, which means that you get the two advantages of full six-
character titles and a checksum of each 256-byte program block. The
checksum feature eliminates all those phony CLOADs-—the ones in which
you think that you have successfully loaded a 10,000-byte program only to
find the BASIC text buffer full of trash.

Make an object tape entitled SAVER with an autostart address of 42EBH,
(The correct autostart address is specified by changing line 147 of the listing
to read END START.) If you do not own an assembler, you could POKE (us-
ing the direct command mode) the 201 required bytes into memory and then
use the SAVER program to record itself. POKEing 201 bytes is tedious, but
not impossible. Note that all the numbers in the listing are in hexadecimal;
these would have to be converted to decimal. Nothing needs to be POKEd
into locations 4321H through 434BH. Once the program has been POKEd in-
to memory, type SYSTEM and answer the *? prompt by typing /17131 and
pressing ENTER. Your computer should respond with the READY prompt,
and you can then record your Saver program by following my directions.

To use Saver, turn on your computer and answer the MEMORY SIZE?P
query by pressing ENTER. Place the Saver tape in the cassette recorder and
rewind it to the beginning. Type SYSTEM and press ENTER. In response to
the »? prompt, type SAVER and press ENTER. Depress the play key on the

165

utility

recorder. When the Saver program has been read, another *? prompt will
appear. Type / and press ENTER. Your computer will respond with the
READY prompt. At this point the keyboard debounce routine has been
patched into the computer’s operating system, and the SAVE command has
been established for later use.

Now enter any BASIC program, either by composing, editing, and de-
bugging it from the keyboard, or by CLOADing it. (Composing will be
easier due to the presence of the keyboard debounce routine.) When the
BASIC program has been entered and checked, you may record it—along
with the Saver front end—in SYSTEM format. To do this, place a blank tape
in the recorder and position it for recording. Depress the play and record
keys. With the computer in the READY state, type SAVE. The screen will
clear, and the query TITLE? will appear. Answer this request with any title
of six or fewer characters. (Write this title on the tape that you are record-
ing; it will be needed when you want to load this tape.) Press ENTER, and
the recording will commence. When it is finished, you will have a SYSTEM
tape with Saver at the beginning, followed by your BASIC program.

To load the new tape, have the computer in the READY state and enter
the SYSTEM command. Answer the *? query with the title that you gave the
program when you recorded it. When the tape has been loaded, answer the
next *? query with / and press ENTER. Your program will then be executed.
Keyboard debounce will be built in, and the SAVE command will also be
established, in case you wish to modify and rerecord the BASIC program.
Once Saver (or any BASIC program with a Saver front end) has been load-
ed, keyboard debounce and the SAVE command will be there for any new
BASIC program. Saver can be used to make copies of itself. Simply follow the
directions for saving a BASIC program, with no BASIC program segment.

When you first load a composite (Saver-BASIC) program, you must run it
from the SYSTEM state. After it has been run once, however, vou may use
either the SYSTEM command (with a transfer to address 17131) or the RUN
command for subsequent execution. You may also edit the BASIC part of the
program in the usual fashion.

The 43 (decimal) bytes of empty space at line 34 of the Program Listing
provide stack space for the ROM initialization procedure. This feature can
be useful in case of a program crash—most likely caused by other assembly-
language routines that you are using with your BASIC program-—resulting
in ROM reinitialization. After such a crash, when your computer returns to
the READY state, enter the SYSTEM command and transfer to 17131. With
a bit of luck, your BASIC program will be restored and begin to execute. If
you have one of the late model ROM:s that has KBFIX built in, you may still
want to use Saver for its other features. It will function properly with your
ROM; its keyboard debouncer will substitute for that of the ROM.

166

42E8

42E8B
42EE
42F1
42F4
42F7
42FA
42FD
4300
4303
4304
4305
4308
4308
430C

430F
4312
4314

4317
4319
4320
0028

434C
434D
434¢L
4350
4351
4352
4353
4354
4355
4356
4358
4359
435A
435D
4360
4361
4362
4363
4364
4365
4366
4367

436A

436D

210F43
221640
216A43
22A141
21DD43
22A440
11FAFF
cp2c1s

010138
1600
213640

1838
54
[s14]

2C
14
801
F8
0A

018005

CD6000

(pceol
211943

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00560
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660

JFIRST SEG

utility

Program Listing. Saver

ORG

42EBH

%*SAVER PROGRAM*
MENT ESTABLISHES LINKAGES FOR

;KBFIX AND SAVE ROUTINES, SETS POINTERS

;FOR BASIC PROGRAM,

START

H

LD

HL,KBENT
(4016H), HL
HL, TAPE
(41A1H), HL
HL,FINIS
(40A4H) , HL
DE,OFFFAH
1B2CH

HL

HL
(80F9H) , HL
HL,1DLEH
HL

1B5DH

AND RUNS THE LATTER.

Encyclopedia
yn:Lxggikar'

;THE NEXT SEGMENT IS A VERSION OF RADIO

;SHACK'S KBFIX PROGRAM.

THE GAP

IN THE

JMIDDLE PROVIDES STACK SPACE FOR THE ROM
;DURING INITIALIZATION.

KBENT

TITLE
TSH

NXB

H

LD
LD
LD

JR

DEFM
DEFB
DEFS

LD
AND
RET
LD
RLCA
RLCA
JP

BC,3801H
0,0
HL,4036H

NXB
'TITLE? ¢

0
2BH

WM M~ M 2O T

3FEH

;THE LAST SEGMENT DUMPS MEMORY FROM 42EB
;TO THE END OF THE BASIC PROGRAM IN SYS-
;TEM FORMAT.

TAPE
SPRINT

CALL
"TITLE?
LD

IT IS CALLED BY

1C9H
" ON SCREEN.
HL,TITLE

"SAVE".

Program continued

167

4370

4373
4376
4377
4379
4378
437¢C
437E

437F
4381

4384
4385
4388

4388
438E

4391
4393

4394
4397
4399
439A
439C
439E
43A0
43A1
43A2

43R4
43A7

43A8
43AA
43AB
43AD
43AE
43AF
4380
4381
4382
4383
43B4
43B5
43B6
4387
4388
4389
43BA
4388
438C
438D
43BF
43C0

43C1
4305
43C6

43C8
43CA
43CB

43CC
43CD
43CE

CDA728

21E841
ES
0606
3620
23
10FB
El

0606
CbD90s

AF
€D1202
cbg702

216402
220140

3E55
CF

21E841
0606
7E
FEOD
2002
3E20
CF

23
10F5

21EB42
£E5

1E00
4B
3E3C
CF
7B
CF
7D
CF
7C
CF
85
83
4F
7E
CF
81
a4F
23
1D
20F 8
79
CF

ED5BF940
DF
38E0

3E78
CF
El

7D
CF
7C

00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00930
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360

utility

CALL 28A7H
;FILL INPUT BUFFER WITH SPACES.
LD HL,41E8H
PUSH HL
LD 8,6
FILL LD (HL), 20H
INC HL
DINZ FILL
POP HL
s INPUT THE TITLE.
LD B,6
CALL 5D9H
;TURN ON CASSETE AND WRITE LEADER.
XOR A
CALL 212H
CALL 287H

;ESTABLISH RST 8 FOR CASSETTE OUTPUT.

LD

HL,264H

LD (4001H), HL
JMRITE TAPE TYPE IDENTIFIER.
LD A,55H
RST 8
JRECORD TITLE.
LD HL,41E8H
LD B,6
NAME LD A, (HL)
cp 0DH
JR NZ,SKIP
LD A,20H
SK1p RST 8
INC HL
DINZ NAME
;COMMENCE RECORDING PROGRAM.
LD HL, START
PUSH HL
;RECORD ONE BLOCK OF 256 BYTES.
Lp1 LD £,0
LD C.E
Lo A,3CH
RST 8
) A,E
RST 8
LD AL
neT a
) ALH
RST 8
ADD AL
ADD ALE
LD C,A
LP2 LD A, (HL)
RST 8
ADD A.C
LD C,A
INC HL
DEC £
JR NZ,LP2
LD A,C
RST 8
JCHECK FOR END.
Lo DE, (40F9H)
RST 18H
JR C,LP1
JRECORD END SYNG BYTE.
LD A,78H
RST 8
PP HL
JRECORD AUTOSTART ADDRESS.
LD AL
RST 8
LD ALH

43CF
43D0

43D3
4306

43D9
430C
430D
0000

CF
CDF801

21961C
220140

C3191A
00
0000

01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470

00000 TOTAL ERRORS

utility

RST 8
; TURN OFF CASSETTE.
CALL 1F8H
;RESTORE NORMAL RST 8.
LD HL,1C96H
LD (4001H), HL
JRETURN TO BASIC.
Jp 1A19H
DEFB 0
FINIS DEFW Q
END

169

UTILITY

File Name
by Theodore J. LeSarge

ave you ever gone back to work on a program and discovered that you
forgot the file name? File Name is a program I have developed to
remedy this problem.

I have developed two versions of this program. The first is for machine-
language programmers, and the second is listed in BASIC. The machine-
language version is somewhat better because it is relocatable and contains
brief instructions. It loads well below stack space so you don’t need to set the
memory size. The BASIC version includes no prompts and requires that you
rerun the BASIC program for each use. I designed both versions for the
TRS-80 Model I Level II with 16K. Because the program is ROM depen-
dent, I don’t know if it will run in the Model 111.

InProgram Listing 1, you can see that the first few lines of the machine-
language program clear the screen, set up the cursor, load the HL register
pair with the starting address of the first message, and display it. Location
28ATH in ROM requires that the HL, pair be loaded with this starting ad-
dress. Note that the messages end with a double quotation mark, 22H, the
delimiter to stop the ROM display routine. A DEFB 0 will also halt output.
The next three lines are a keyboard scan to hold the CPU until you are ready
for further operation. hxeoute the keyboald scan by pressmg ENTER

B ann ot L1, ann
.n.;ulu) Py uu.uuéu SUU aird Lllb U\/cu\. \IL \u\/ LJlUb.luux JL LL‘)L Lllb)’ Llcax UIC

screen and set the A register to zero so that the call to 0212H will select the
first cassette. Line 320 calls ROM to turn on the cassette and checks for the
synchronization byte to appear. Since file names can be a maximum of only
six letters, line 330 sets up a loop to read seven bytes from the tape. It
displays seven bytes, of which only the last six make up the actual file name.
The first letter is the file name header code which is 55H or the letter U. The
program removes this letter from the display by writing over it with the sec-
ond message.

L.ine 340 assigns the HL pair to a screen location. The call to 0235H reads
a bytefrom tape and stores it in the A register. The following three lines store
the byte in video memory, bump the HL register, and decrement the count
in theB register. The program checks for a zero, and if the zero flag is set,
calls 0IF8H to turn off the cassette.

Lines 410 through 520 display the remaining three messages. The message
in line 620 has two spaces at the end. The second space removes the U that I
mentioned earlier. The last few lines go into another keyboard scan and wait

170

utility

for you to press ENTER or the letter E. ENTER sends the program back to
the start, and pressing E returns to ready.

To make the BASIC listing short, I eliminated all the messages from the
display. This version, shown in Program Listing 2, POKEs the proper
machine code into memory, adds the data, and checks at the end to see if
everything was read correctly. It then sets the location for the USR function
to jump to. After it displays the file name, it loads the A register with a space
and stores it on the screen to remove the file name header code (the U again).
The program then returns to ready.

One important thing to remember is that, if your cassette player is a
CTR-80, a pop may appear on the tape when the cassette motor is shut off. A
Radio Shack modification eliminated this problem. If you haven’t had your
cassette player modified, by all means do so. You can still play it safe and
remove the remote plug from your cassette. This will keep the machine from
turning off and possibly ruining a tape when you use this program.

171

TF58
TF58
TF5B
TF5E
7F61
7r64

TF67
TF6A
7F6C

TF6E
7F71
TF72
7F75
7F78
TF7A
1F7D
TF8@
TF81
TF82
TF84

7F87
TF8A
TF8D
1F90
TF93
7F96
7F99
TF9C
TF9F
TFA2
TFAS
TFAS

TFAB
7FAE
TFB@
1FB2
7FB4
1FB7

7FB9
1FC8
7FD8
1FEF
7F58

CDC9B1
21663D
222040
21BY97F
CDA728

CD4968
FE®D
28F9

CDC981
AF
Chl2@2
CD93g2
B687
214E3D
CD3582
17

23
18F9
CDF8a1l

21403D
222048
21Cce7r
CDA728
21CB3D
222049
21D87F
CDA728
21083E
222040
21EFTF
CDA728

(b4988
FE@D
28A6
FE45
CACCO6
18F2

52
46
41
45

utility

Program Listing 1. File Name, machine-language version

ek ERKARRA AT A KA A A A AN AR AR A Ak hhh ik H
;¥%% FILE NAME *** BncycLloompwa_

60166
pBlle
68120
88130
pB140
0@150
0@1l60
6P170
60180
20198
00208
006218
86220
ge23e
806240
20258
80260
66276
80280
60298
083080
86316
BB320
00338
80340
68358
80368
80378
80380
80398
[R 1]
006418
00420
28436
00448
00459
20460
80476
80480
na4940
06500
66518
805290
868538
08540
008558
0560
68578
80580
88598
Bo6os
#0616
00628
00630
pa640
80650

69088 TOTAL ERRORS

;BY THEODORE

J. LESARGE

;ORIGINAL PROGRAM - 1/20/88

;REVISED - 4/11/81
pREKKAAKRI AR IR A AR AR AR AR AR A Ak kK

ORG
CALL
LD
LD
LD
CALL

CALL
Cp
JR

CALL
XOR
CALL
CALL
LD
LD
CALL
LD
INC
DJINZ
CALL

LD
LD
LD
CALL
LD
LD
LD
CALL
LD
LD
LD
CALL

CALL
cp
JR
Ccp
Jp
JR

DEFM
DEFM
DEFM
DEFM
END

7F58H 732600

P1C9H :CLS

HL, 3D80H :+LINE FOUR

(40 2@H) ,HL ;SET UP CURSOR
HL,$+58H ;SET UP MESSAGE 1
28A7H ;& DISPLAY IT
849H ;KBD SCN

ODH ;s ENTER?

NZ,$-05H ;NO? AGAIN

B1C9H ;CLS

A ;ZERO A REGISTER
8212H ; FOR 18T CASSETTE
8293H ;ON TAPE/FIND SYNC BYTE
B,67H ;READ 7 BYTES

HL, 3D4EH ;SCREEN LOCATION
62354 sREAD A BYTE

(BL) ,A ;STORE ON SCREEN
HL ;BUMP DISPLAY
$-@5H ;B=B8? NO~GO AGAIN
21F8H ;OFF CASSETTE

HL, 3D40H ;LINE 5

(4020H) , HL ;SET CURSOR

HL, $+3BH ; 2ND MESSAGE
28AT7H ;DISPLAY IT

HL, 3DC@H ;LINE 7

(4820H) ,HL 7SET CURSOR
HL,$+3FH ;MESSAGE 3

28AT7H ;DISPLAY IT

HL, 3E00H s LINE 8

(4@20H) ,HL 1CURSOR

HL, $+4AH tMESSAGE 3 PART 2
28A7H ;DISPLAY IT

049H ;KBD SCN

fDH ;s ENTER?

Z,$~58H ;GO WAAAAY BACK
45H ;"E"?

Z,86CCH ;READY IN ROM
$-8CH ;GO AGAIN

"READY CASSETTE"

‘FILE NAME IS: "
"AGAIN? ~ PRESS <ENTER>"
"END? - PRESS <E>"

7F58H

18 C

Hou

e

Program Listing 2. File Name, BASIC version

172

20
30

49
50

60
78
80
9@
100

utility

FOR A = 308000 TO 30030
READ B:

POKE A,B

C =B+ C:

NEXT

IF C < > 2963

THEN
PRINT "BAD LOAD!":
END

DATA 205,261,1,175,265,18,2,265,147
pATA 2,6,7,33,78,61,285,53,2,119,35
DATA 16,249,2085,248,1,62,32,560,78
DATA 61,201

POKE 16526,48:

POKE 16527,117

CLS :

X = USR(®):

END

173

UTILITY

Macros: Let Your Micro Do the Work

by John R. Hind

acro programming is nearly as old as the digital computer itself. In the
A days when assembly language was the wave of the future for the pro-
grammer, someone noticed that a lot of programs had sections of code that
were almost identical and came up with the idea of duplicating card decks
(or was it paper tape?) with these sequences so that they could drop them in-
to a new program.

In time, these sequences were transcribed on tape and pulled in by a utili-
ty routine where needed in a source file. The immediate problem was that
the one or two odd cards in an imbedded sequence could no longer be
changed by selective duplication on a key punch, so the concept of substitu-
tion was born. At first the utility control statement which brought in the se-
quence was preceded by several EQUate statements for the changeable sym-
bols in the sequence. Next, the utility control statement was expanded to in-
clude definitions of symbols used in the sequence. Finally the concept of
character string replacement came into the picture. The source line which
brought in the sequence was termed a macro-instruction. It named a skeletal
definition to be inserted that defined one or more parameters which the sup-
plied value would replace before insertion.

Since some instruction sequences were similar but not exactly alike, the
concept of conditional inclusion and looping was added to the macro defini-
tions. With this new flexibility came the need to parse the macro parameters
and to pass information from one macro to another. The concept of the
macro-time variable known as the set-symbol and statements which could
compute its value as either a character string or as a character number final-
ly satisfied this need. With this new form, macros became the mainstay of
the operating system, not only as a means of simplifying user interface to ser-
vices like I/O (OPEN, GET, PUT, and the like), but also for generation and
configuration of the system itself.

Macro concepts have made their way into almost every computer lan-
guage system in existence—{rom the preprocessor that created structured
FORTRAN through PL/1 to most of the command languages that time-
sharing systems use. The reason for this wide use is that the concept simpli-
ties the human interface and saves user time and effort.

When I found myself in the middle of another project, typing in repetitive
lines of assembler source code, I finally decided that it was time to let my
micro do some of the tedious work. I needed a macro processor, but it had to

174

utility

do more than process assembler source. I wanted something that I could use
on text, data, and BASIC. It had to have the ability to allow a macro call in
the middle of a line, and to provide full character string manipulation and a
reasonable level of arithmetic functions. I didn’t care how many cycles of
my Z-80 it chewed up, what was important to me was the number of in-
structions executed during that time.

I proceeded to define my personal macro language, trying to balance the
function I was looking for against the complexity of implementing it in
BASIC. I came up with a reasonable set of language constructs (see the
Micro-Mac Summary section in this chapter). The program in the Micro-
Mac Source section is an implementation of my macro language. It is not an
end, but rather a starting point.

Many large machines have instruction sets which are orders of magnitude
more powerful than the Z-80 and hence much easier to program. A typical
large processor usually has some form of a storage-to-storage MOVE instruc-
tion, so let’s define our own macro version:

.REM move characters from addr P2 to addr P1 for a
+REM length of P3 --ex-- .MOVE A,B, 55
.MAC MOVE

PUSH HL ;&0 &1,&2,343

PUSH DE

PUSH BC
.CIF= DEST-IN-DE,&L,DE

LD DE,&1

: DEST-IN-DE
+CIF= SQURCE-IN-HL,&2,HL

LD HL,&2

SOURCE-IN-HL

LCIF= COUNT-IN-BC,&3,BC

LD BC,&3

: COYUNT-IN-BC

LDIR

POP BC

POP DE

POP HL
MEND

If the above macro was in a file named MACLIB, and we typed the follow-
ing lines after running the BASIC program discussed in the Micro-Mac
Source section:

.IM MACLISB
LOUTF TESTHMY
NOW LETS TEST THE MOVE MACRO
«MOVE TOAD,FROMAD,80
; END OF THE TEST
LOUTF *DI
MEND

Then we would find the following lines in a file named TESTMV:

NOW LETS TEST THE MOVE MACRO
PUSH HL ;.MOVE TOAD,FROMAD,80
PUSH DE

PUSH BC

LD DE,TOAD

H

175

utility

LD HL,FROMAD
LD BC,80
LDIR
POP BC
POP DE
POP HL
; END OF THE TEST

You may have noticed that if DE, HL, or BC had been the to or from or
lengh parameters, then the output would not have included the respective
loadof the DE, HL, or BC register. This is a straightforward case of condi-
tiond branch logic in a macro. Since the GOTO, IF, and LABEL com-
manis are executed in macros as a result of substitution, it is possible to
define conditional logic which is self-modifying. The simplest example of
this can be seen in a structured programming class statement such as the
GOT0 command in PASCAL:

.REM TRDOS DISK I1/0 CALLS,
LREM Pl IS DCB ADDR
REM P2 IS ADDR OF BUF/REC OR REC NUMBER
.REM P3 IS OPEN RECORD LENGTH
.MAC INIT,OPEN,POSN,READ,WRIT,CLOS,KILL,VERF
LD DE,&1 ; LOAD DE WITH THE DCB ADDR
.GOTO &0
.POSN
LD BC,&2 ; LOAD BC WITH RECORD NUMBER
CALL 4442H ; &0
WMRET
.. &0
LCIF= &0,+&2,+
LD HL,&2 ; LOAD HL WITH ADDR OF BUFFER/RECORD
.GOTO &0
: JINIT
CALL 4420H ; &0
MRET
. JOPEN
LD B,&3 ; RECORD LENGTH
CALL 44241 ; &0
CMRET
: LREAD
CALL 4436H &0
WMRET
: WHRIT
CALL 4439H ; &0
CMRET
.CLOS
CALL 4428H ; &0
LMRET
.KILL
CALL 442CH ; &0
SMRET

.1 &0

; * ok koK BAD CALL oK KKK

MEND
As you can see, I used a single skeletal definition and gave it a set of different
macro names. When this macro is called, its name is placed in PO (substitu-
tion symbol &0), which is later used as a label of a GOTO to simulate a
CASE statement. Then you give each clause the appropriate label value cor-
responding to the respective PO value. If no case clause with a matching
label is found, a label with the PO value will stop the search by marking the
endof the case statement.

176

utility

The TRSDOS disk 1/0 macro can save you keystrokes as well as decrease
the time you spend searching in the reference manual for those all important
hex addresses. Let’s add a macro which defines a DCB area and optionally
places a file name in it:

«REM this macro defines a DCB for a TRDOS file
«REM P1 1s the label of used for the area
«REM P2 1s tne optional file name
.MAC DCB
GOTO +&2
PR
&1 DEFB O03H
DEFS 31
+MRET
. +&2
LLEN 9,742
<ASET 9,31,-,349
&1 DEFM ‘&2
«AIFC FINISH,&9,0
DEFB 03H
SAIF= FINISH,&9,0
DEFS &9
: FINISH
«MEND

The important part of this macro is the use of . LEN, to set P9 to the length of
P2, and the .ASET which computes the remaining length to be defined in
the DCB after the file name has been placed there (31-P9). Notice that the
macro used parameter P9 as the work variable so that no global variables
would be touched.

We could have done this in fewer macro statements by remembering that
the file name doesn’t have to end in 03H if the rest of the DCB is blank. You
might ask how that helps:

-MAC DCB

-SETC 9,'22 ',1,32
&1 DEFM '29'

-MEND

Notice we have made use of the .SETC statement which provides us with a
substring function, By concatenating P2 with 32 blanks and then using the
first 32 characters of the expression, we have computed the proper value
for the DEFM expression. There is a lesson in this: Never underestimate
the power of a pure character string expression, which is what macros are
all about.

There is one other important concept that we need to illustrate: the use of
a second output file. Many times it is useful to define table entries at the
point in the code at which we first use them, but actually place them all at
the end of a pProgram. Micro-Mac will allow switching back and forth be-
tween a primary and a secondary output file. At the end of the code, where
the table should be inserted, we can close the secondary file and imbed it in
the primary file. The following macro can assist this process:

JMAC STAB PUTT GETT

.GOTO &0
: STAB

177

utility

.0UT2 TABLE
LOUTF
MRET
. PUTT
.0UT2
&1
LOUTF
MRET

: GETT

The STAB call will open a secondary output file named Table. The PUTT
call will place P1 in the Table file as a single line each time it is called. The
GETT call will close the secondary file and imbed it at the point of call. Let’s
Jook at a part of a sample program which uses these calls:

.STAB (OPEN TABLE FILE)
START LD (PA),HL
LPUTT PA DEFW O ; THE 7ZZZZ PARAMETER
LD (FLAG),A
LPUTT FLAG DEFB O ; INIT FLAG - 0=> XXX - 1=> YYV
RET ;FINISHED
. DEFINE DATA AREAS
JGETT (INSERT PA AND FLAG DEFINITIONS)
END START

So far I have restricted my examples to assembly-language usage. You can
use Micro-Mac on other forms of text data as well. Let's ook at a text macro
which writes a form letter. (It uses a : symbol to display the paragraph sym-
bol and a { for a page symbol.)

.REM P1 is a name ,P2 1s street,P3 1s city,
.REM P4 1is state, P5 is ZIP, P6 1is interest
MAC FORM

LINDX 9,81,

LSETC 9,811,589

-

TRS-80 Computer Club

780 Micro Lane

Somewhere, USA 9999

&1

&2

&3, &4 &5
Dear &9:

We are happy to announce that &6 will be one of -
tne subjects of presentations at our next meeting -
on & nignt &B. The meeting will start at & in -
&D which is located at &E.

Sincerely;
402DH
.MEND

In this case the input file would use .SETC symbols to define global variables

A, B, C, D, and E for all form letters and then would include a .FORM call
for each person who is to receive the letter:

LSETC AL friday
LSETC B,'January 23rd, 1981 '
LSETC €,7:30 pm

178

utility

<SETC D,Jonn Brown's nome

SETC E,1492 Di scovery lane

-FORM Tom Jones,862 Wild Rd.,Xv1 le,N.Y.,99999,graphics

LFORM L.

LFORM ...
You can see that the technique involved in macros has a wide range of appli-
cations outside of a macro-language processor such as Micro-Mac. The
general misconception is that use of this technique must be limited to a large

computer system.

Micro-Mac Summary

The following are descriptions of commands that can be used with Micro-
Mac.

Input Line Convention

An input line is defined as a string of characters which ends with an
ENTER key (0DH). If the line is taken from an EDTASM format file, the
leading line number will be removed before the line is processed. The trail-
ing ENTER is rernoved from the line if the string ends in a dash (—) as is the
dash itself. If the string ends in a semicolon (;), this character will be re-
moved. If a dash is desired at the end of a string in a line ending with an
ENTER key, then the string should end with —;. If the line does not end
with an ENTER key, the string should end with ——. Similarly, if a ; is
desired at the end, the line should be terminated by :;.

Each input line is separately processed, and if it does not contain a macro
command, it will be written to the output file. Since records in the output
file are delimited by ENTER characters, several input records can be con-
catenated into a single output record by use of the dash convention.

A macro invocation is signaled by a period, or dot (.) in the first position of
the input line string. If the line begins with two dots (..), then one is re-
moved, and the line will not be scanned as a macro command.

Substitution

Each input record (line string and optional ENTER) is first processed by a
symbolic substitution algorithm. The line is searched for an ampersand
character (&), and if one is found, the character following it is treated as a
Micro-Mac varia ble name, and both of these characters are replaced by the
current value string of that variable. The total length of the resulting string
including the op tional ENTER key must be less than 255 characters. This
means that care must be used with respect to the size and number of
substitutions made in a record.

If two ampersand characters are found (&&), a single & will be left in the
record but will not be used as a trigger for substitution. If the variable A had

179

utility

the value CATS, the string “JOHN && MARY LOVE &A” would become
“JOHN & MARY LOVE CATS” by the substitution process.

Variables

A variable is defined as a single uppercase character and is denoted by
{var} in the following descriptions. There are ten local variables denoted by
the digits 0, 1, .. ., 9 and 32 global variables denoted by the values :, <, =
>, ?,A,B,C, .. .,7Z. Avariable may contain a character-string value hav-
ing a length of up to 246 bytes. Micro-Mac provides built-in macros that can
set variable values based on parameter strings resulting from substitution of
input records.

Macro Format

A macro invocation is defined as an input record which, after substitu-
tion, contains a dot (.) as its first character and is terminated by ENTER.
The name of the macro follows the dot and is separated by at least one space
from the parameters. Here is the general format for a macro invocation:

J{macroname} <{p1}< {p2}<,...< {p9}>>>>ENTER

The parameter list consists of up to nine strings separated by commas (,). If
the string contains leading spaces or commas, it must be enclosed in single or
double quotation marks:

.TEST XYZ," marry’s hat ",'(HL),I',A B C ENTER

A macro is a set of named input lines that can be imbedded in the input
stream including an invocation line at that point. Before inclusion is made,
the local variables 0, . . ., 9 are placed on a stack and then are set to equal
the value of the macro name string and any parameters which appeared on
the invocation line. In the above example, the local variables would be set as
follows:

{ test}
{ marn s hat }
{(H

)1}
{ABC}

0"
1
A

([N

v VVYV

g

When the logical end of the named lines is found, the local variables will be
reset to their original values before scanning of the input stream continues.

Macro Definition

Two built-in macros are provided to allow macros to be defined from the
input stream. .MAC signals the start of a macro definition and gives the
macro from one to nine names. All lines following .MAC up to .MEND are
placed without substitution into an internal table for later use. Here is the
general format:

180

utility

-MAC {name}<,{name}<,... >>ENTER
{ macro text lines}
.MEND ENTER
Let’s define a macro, for example, which would add the contents of the
storage location named in P2 to the storage location named in P1:

JMAC ADDS
LD DE,(&2)
LD HL,(&1)
ADD HL,DE
LD (&1),HL
JMEND

Built-in Macros to Set Variable Values

SETC: Sets {var} to MID$({string value},{start},{length}). Default is
the first character in the string and the string’s length. An example of the for-
mat follows:

SETC {var},{string value}<,{start}<,{length} >>ENTER
LEN: Sets {var} to the length of {string value}. Here is the format to use:
.LEN {var},{string value} ENTER
INDX: Sets {var} to INSTR ({string value},{object}). The format for INDX
commands is:
INDX {var},{string value},{object} ENTER
SETA: Sets {var} to the arithmetic combination of {num} as computed in a
left to right sequence using {opr} where {opr} canbe +, —, *, /, OR, or
AND (i.e., [.SETA Z,&A, +,35,*,&B] means Z = ((A + 35)*B). Here is the
general format;
SETA {var},{num}<,OPR,{num}<,...>>
SEQN: Assigns a number to a variable that is incremented by 1 each time
this macro is called. The format for SEQN commands is as follows:
SEQN {var}ENTER
PSET: Resets local variables 1, . .., 9 to {new 1}, . ..,{new 9}. Here is the
format to use with PSET:
PSET {new 1}<,{new 2}<,{new 3}<, >>>ENTER
INPT: Prompts the operator for an input line and assigns the response to
{var}. The general format is:
NPT {var},{operator message} ENTER

Sequence Control—Built-in Macros

Colon: Used to identify a position in the input source. The {label} can be
a result of substitution, hence positions can be dynamically computed. Here
is the general format:
.+ {label JENTER

181

utility

GOTO: Causes a search for the corresponding line containing a[.: {label}]
within the current input file or macro. When the line is found, processing
continues. If issued in a file context, GOTO has the effect of a search until
the line is found or the end of the file is reached. The format is:

.GOTO {label}JENTER

CIF: String {value 1} and string {value 2} are compared, and if the result is
{?}, the program will GOTO {label}. The {?} can be =, <, or >. The for-
mat for a CIF command is:

.CIF{?} {label},{value 1},{value 2}ENTER

AIF: Same logic as CIF except the arithmetic values of string {value 1} and
string {value 2} are compared. Here is the format:

AIF{?} {label},{value 1},{value 2}ENTER

Input File Definition

IM: Will imbed the named TRSDOS file {file name} or request input
from the operator if {file name} is *KI. The current input source remains
open and will be used for input when the end of the imbedded file is found.
If 15 files have been reserved for BASIC, then up to 13 imbeds of TRSDOS
files may be nested. The format for an IM command is as follows:

IM {tile name}ENTER

The files may be either in ASCII format or NEWDQS EDTASM format.
When using the latter format, the line number will be removed automatical-

o ¥ 1 PSS N FING RO FURS 1 15 SO IR B SV SR
Ay Az AR 1111 aLbll LS VVILLE ad tails, It Wil e lClJlal,C\.L L})’ (VAW al_lal..\‘;\)-

Ouiput Files

OUTTF: Will cause macro output to be directed to the primary output file.
If a file name is given, any previous primary output file will be closed, and
the narned file will be opened. If the EDTASM option is specified, the
{filenary:2} is created in NEWDOS EDTASM format. When this option is
used, the first six characters of {filename} must not contain special
characters (i.e., TEST and TESTOK/ASM.pass:1 are good names, but
TEST/ASM will cause errors because of the / in position 5). Here is the
general format for the QUTF command:

{OUTF <{filename}<,EDTASM>>ENTER

OUT2: Same as .OUTF but for secondary output. Note that the EDTASM
option is not allowed. Here is the format for this command:

OUT2 <{filename}>ENTER

182

utility

Options

OPTN: Sets the option flag. A flag of 0 is normal while a flag of 1 causes a
trace of input lines obtained from files or macros, and a trace of output
strings. The format is:

.OPTN {option number}

Micro-Mac Source

This version of Micro-Mac runs on a 48K TRS-80 single disk system.
About 5K bytes of unused space are available for the addition of new macro
processor features, and about 18K can be used as a macro definition line buf-
fer. It can be run on a 32K system by reducing the size of the string area and
giving up some of the patch space. For a listing of the BASIC variables, see
Table 1 at the end of the article.

168 CLEAR 20666 : DEFINT I-N : DEFINT %,S5 : DEFSTR A-H :
DEFSTR P

Line 150 sends the program to the subroutine beginning at line 4800 which
initializes the variables—this code is near the end of the program to reduce
GOTO and GOSUB search time.

1568 GOsuUB 4840

208 CLS : PRINT"MICRO-MACRO PROCESSOR VERSION 1.8"
2508 PRINT" BY JOHN R. HIND"

386 PRINT CR;CR;CR;"ENTER MACRO LANGUAGE SOURCE"
356 PRINT " (.OUTF FN /.IM FN /ETC..)

The program then branches to the main execution loop with the keyboard
and display set up as the I/O devices. This way, the operator can enter

macro calls as program controls which avoids providing extra code in Micro-
Mac for this function and describing yet another user interface.

4090 GOTO 1688

This parse subroutine will extract a macro name and its parameters from the
current line buffer BL and place these string values on top of the parameter
stack P using the stack index IP. The first line will strip out the macro name.

588 J=INSTR(BL,BK)
IF J>729 THEN

P(IP)=LEFTS$ (MIDS$ (BL,21,J~21)+" ",25)
BL=MID$ (BL,J+%1,LEN(BL) ~-J-Z1) :
ELSE P(IP)=LEFT$ (LEFTS$ (BL,LEN(BL)~-21)+" ",25) : BL=""

Now we will clear space for the macro parameters in case fewer than nine
parameters appear on the line and will initialize the loop counter | which
will be used to index the parameter stack.
558 FOR L=zl TO 79 :
P(IP+L)="" :

NEXTL :
J=7@

183

utility

We will loop until the line buffer is empty, saving all parameters that we
might find. Note that all leading blanks are ignored.

609 L=LEN(BL)
IF L=26 THEN RETURN :
ELSE A=LEFT$(BL,21) : BL=MIDS$(BL,22)
IF A=BK THEN 608

Once we have found a parameter, we must check to see if it is null or if it is
delimited by a special character (" or :).

650 J=J+21 :
IF A="," THEN 600
ELSE IF A<>" " AND A<>"™ : " THEN 750

A normal string is a string which is between commas. Put it in parameter
stack P.

769 K=INSTR(BL,AR) : P{IP+J)=LEFTS$(BL,K-2%1)
BL=MID$ (BL,K+22)
GOTO 600

A special string is a string which contains delimiter characters. Remove
delimiter characters.

758 K=INSTR(BL,",")
IF K=20 THEN K=L :
888 P(IP+J)=A+LEFTS$(BL,K-21) : BL=MIDS$ (BL,K+Z1) : GOTO 628

This substitution subroutine replaces all macro variables found in the line
buffer, BL, with their current string values. We will print the unedited line
if the TRACE option flag is on.

908 J=21 :

IF (JT AND 21)=21 THEN

IF S(IS)<>Z28 THEN

PRINT " : : ";S(IS);" : : ";BL;" : : "
958 J=INSTR(J,BL,BA)

IF J=Z28 THEN RETURN :

ELSE K=ASC(MID$(BL,J+21))

If the variable is &, we want to leave an & in the line buffer and not rescan
it. That is, we must not use it as a trigger to find a variable name.

1600 IF K=ZA THEN
BL=LEFTS (BL,J) +HIDS (BL,J+22) : J=J+1 : GOTO 958
Normnal variables are saved on the very bottom of the parameter stack P,
whilethe current parameters 0 through 9 are on top of the stack at index IP.
Variable K is set to the index in P which contains the string value.

1056 IF K<58 THEN K=IP+K-48 :
ELSE IF K>95 THEN K=K-98 :
ELSE K=K-58

184

utility

Replace the trigger, &, and the variable name with the string value.

1106 BL=LEFTS$ (BL,J~21)+P(K)+MIDS(BL,J+22) : GOTO 958

The GET-NEXT-LINE subroutine gets the next line from the current input
source, defined by index IS, in the source stack S. S(IS) will be either a
positive value which indicates that the next line is from the macro buffer G,
zero for keyboard, or negative for a file.

1288 J=5(18) :
IF J>26 THEN BL=G(J) : S({IS8)=J+21 : RETURN

Line 1200 gets a line from keyboard or file. If the line received is the end of
file, then return a “.MEND” which causes termination of the source
statements in the stack.

1256 J=J AND &HF :
IF J=20 THEN LINEINPUT"SOURCE INPUT : “;BL :
ELSE IF EOF(J) THEN BL=".MEND" :
ELSE LINEINPUT§J,BL : GOSUB 1449

At the end of line 1250 we will handle flags and insert an ENTER character
if necessary.

13689 A=RIGHTS (BL,21) :
IF A=BS THEN A=CR :
ELSE IF A=BD THEN A=" " :
ELSE A=A+CR
135¢ J=LEN(BL}=-21 :
IF J<Z1 THEN BL=A : RETURN :
ELSE BL=LEFT$(BL,J)+A : RETURN

The EDTASM-Fixup subroutine changes an EDTASM file line into an
ASCII file line, removing the leading coded statement number.

1488 J=ASC(BL)
IF J=LX THEN BL=".MEND" : RETURN :
ELSE IF J=LQ THEN J=14 :
ELSE IF J>LZ THEN J=27 :
ELSE RETURN
1456 BL=MID$(BL,J) : J=ASC(BL)
IF J<>29 THEN RETURN :
ELSE BL=" "+MID$(BL,Z2) : RETURN

Macro-Return into the main execution loop decrements the parameter stack
pointer and frees the space held by the current macro parameters.

1550 FOR J=20 TO 2T :
P(IP+J)="" ;
NEXTJ :
IP=IP-3T
The main execution loop gets the next line, substitutes variable values, and
if the line is not a macro call, it outputs the line and loops. Note that . .” is

not treated as a macro call but as a request to generate a macro call. This

185

utility

allows the processor to be used to generate a control statement stream for
later use.

1600 GOSUB 1200 : GOSUB 900 :
IF LEFTS$(BL,21)<>"." THEN GOSUB 198@ : GOTO 1609 :
ELSE IF LEFTS$(BL,%2)=".." THEN
BL=MID$ (BL,2%2) : GOSUB 1988 : GOTO 1688

This routine pushes the parameter stack and checks to see if the macro is
built-in.

1650 IP=IP+2T : GOSUB 500 : J=(INSTR(GS,P(IP))+2Z4)/25

If the macro is built-in, a J-way branch is taken.

1760 ON J GOTO 4108 ,2150 ,2350 ,2350 ,1558 ,2580,
2900 ,3200 ,3400 ,3500 ,3750 ,3800 ,3858,
27068 ,2750 ,2800 ,4008 ,4250 ,4600 L4450,
4656 ,4750,1558

Since no branch was taken at 1700, this must be a user-defined macro.
Search the name table GN for a match. If not found then ignore it.

17508.J=(INSTR(GN,P(IP))+24)/25 :
IF J=28 THEN GOTO 1558

These lines push the index of the macro’s text lines onto the source stack so
that they will be used as input.

1809 IS=18+Z1 : S(IS)=IN(J) : SS(IS)=IN(J) : GOTO 1688

The Qutput subroutine sends the current line buffer BL to the output device

artomdind e s TEN T2 alam Sem e S Ve T il e 22 e Sl mmaem e SRR e R T
LI LCRL U)’ J NS LG QADU LU QLAY LEAC ARRAN, uy k.ll All\.xlls AU WAL WAAT HLECTRL LL LAXC UH\IUII

flag in JT is set. EDTASM format is used if the JA flag is set.

1968 IF (JO AND JI)=%# THEN
PRINT "<";BL;">" : RETURN :
ELSE IF (JT AND Z1)<>208 THEN
PRINT " (";JI;")(";BL;")"
195¢ IF (JA=JI) AND (CA=CR) THEN GOSUB 2858
2080 CA=RIGHTS (BL,21) : PRINT#JI,BL; : RETURN

Out-EDTASM formats a line with a line number for the NEWDOS
EDTASM program.

20580 CN=RIGHTS("P8@O8"+STRS(IA),25) : IA=IA+2T :
FOR I=Z1 TO 25 :
MID$ (CN,I,%21)=CHRS (KA OR ASC(MIDS$(CN,I,Z21))) :
NEXT I :
BL=CN+" "+BIL : RETURN

MAC saves user-assigned names and points each at the current top of the
macro text buffer.

2158 J=21
2200 IF LEN(P{IP+J))>20 THEN

186

utility

LN=LN+2Z1 :

GN=GN+LEFTS ("."+P (IP+J) +" ",2%5) : J=J+21
IN(LN)=IG :

GOTO 2200

We now read all source up to a .MEND and place it in the macro text buffer
without substitution for later use.

2250 GOSUB 128¢ : G(IG)=BL : IG=IG+Zl :
IF LEFTS$(BL,25)=".MEND" THEN 1558 :
ELSE 225¢

-MRET and .MEND close the current input source and pop the source stack.
Input continues where it left off.

2358 J=S(IS8) : IS=IS-21 :
IF IS=-1 THEN
GOSUB 4500 : CLOSE : PRINT"FINISHED" : STOP :
ELSE IF J<2@ THEN
J=J AND &HF : CLOSE J : JF=JF-21
2409 GOTO 1558

The GOTO command lets AL = the label string.

2508 AL=P(IP+321)

Line 2550 searches the current source for a label that matches AL.

2550 GOSUB 1208 : IP=IP-ZT : GOSUB 9668 : IP=IP+2T :
IF LEFTS (BL,25)=".MEND" THEN 2608 :
ELSE IF LEFT$(BL,23)<>". : " THEN 2558 :
ELSE GOSUB 500 :
IF P(IP+21)=AL THEN 1550 :
ELSE 2558

We are now at the end of the source. If the source is a macro, then restart at
the top. If not, execute a .MEND.

2606 IF S(IS)<Zl THEN 2350 :
ELSE S(IS)=85(IS) : GOTO 2558

Compare parameters 2 and 3 to .CIF =,.CIF>, and .CIF<. If the result is
true, then execute the .GOTO logic.

2788 IF P(IP+22)=P(IP+Z3) THEN 2588 : ELSE 1558
2750 IF P(IP+22)>P(IP+Z3) THEN 2508 : ELSE 1550
2808 IF P(IP+22)<P(IP+23) THEN 25¢0 : ELSE 1558

-SETC sets A equal to the proper substring of parameter 2.

2900 J=VAL(P(IP+23)) :

IF J=26 THEN J=21
2950 K=VAL(P(IP+24)) :

IF K=2¢ THEN K=LEN(P(IP+Z2))
3000 A=MID$(P(IP+22),J,K)

This instruction sets I to the index of the variable to be set in P.

187

utility

3058 I=ASC(P(IP+21)) :
IF I>58 THEN I=I-58 :
ELSE I=IP+I-58

Line 3100 sets variable to the string A.

3188 P(I)=A : GOTO 1550
INDX locates parameter 3 in parameter 2 and sets J to the location.
32060 J=INSTR(P(IP+22),P(IP+23))

J is converted to a string number in A. Then the program assigns its value to
a proper variable.

3250 A=STR$(J) :
IF LEFT$(A,Z21)=" " THEN A=MIDS$(A,22)
3388 GOTO 3858

.LEN sets] to the length of parameter 2, then assigns the value to a variable.
3400 J=LEN(P(IP+22)) : GOTO03250

.SETA evaluates the expressions in parameters 0 through 9 and puts the
result in J. It then enters .LEN logic to assign the result to a variable.

3560 K=22 : J=VAL(P(IP+K))
3550 K=K+Z1l : A=LEFT$(P(IP+K),21)
IF A="" THEN 3250 :
ELSE K=K+21 : I=VAL(P{IP+K})
3600 IF A="+" THEN J=J+I :
ELSE IF A="-" THEN J=J~I
ELSE IF A="*" THEN J=J*I
ELSE IF A="/" THEN J=J/1
ELSE IF A="0" THEN J=J ORI :
ELSE IF A="A" THEN J=J AND I :

ELSE PRINTY*Y INVALID OPERATOR".RBL

BLSE

3650 GOTO 35580

LAIF, _AIF> and .AIF< arithmetically compare parameters 2 and 3. If the
result is true, then enter the .GOTO logic.

3759 GOSUB 3940 :
IF J=K THEN 2500
ELSE 15580

3808 GOSUB 3960 :
IF J>K THEN 2500 :
ELSE 1550

3856 GOSUB 3900 :
IF JCK THEN 2508
ELSE 1558

Load J and K with parameters 2 and 3.
3900 J=VAL(P(IP+22)) : K=VAL(P(IP+z3)) : RETURN

.SEQN sets] to the sequence number value and increments the counter. It
then enters .LEN logic to set a variable to J's value.

46060 J=J0S5 : JS=JS+21 : GOTO 3258

188

utility

.IM pushes the new input source onto the source stack.

416¢ A=p(IP+Z1l) : IS=IS+2Z1 :
IFA="*KI" THEN S(IS)=28 : GOTO 1558
4150 S(IS)=JF OR &HBAGA :
OPEN "I",JF,A : JF=JF+21 : GOTO 1559

.OUTTF sets the current output file # to 1.
4250 J1=11

If there is a null file name, then the process is finished. If not, CLOSE the
old file if it is open.

4300 A=pP(IP+21) :
IF A="" THEN 1558 :
ELSE IF (JO AND JI)<>Zf THEN
GOSUB 4568 : CLOSE JI : JO=((NOT JI)AND JO)AND 23

OPEN the new file name. If there is no EDTASM option, then the process is
finished.

4350 IF A="*DI" THEN 1550 :
ELSE OPEN "O",JI,A : JO=JO OR JI :
IF P(IP+22)<>"EDTASM" THEN JA=23 : GOTO 1558

Output an EDTASM file header.

4408 JA=JI : CA=CR : A=LEFTS$(A+" ",%6)
PRINT#JI,CHRS (8HD3);A; : GOTO 1558

.OUTZ2 sets file #2 and enters .OUTF logic.
4450 JI=32 : GOTO 4309

If the EDTASM flag is on, then write a file trailer block.

4586 IF (JO AND JI)<>JA THEN RETURN :
ELSE PRINT#JI,CHR$(&H1A); : RETURN

NPT displays a message in parameter 2 and gets a new value for the
variable name in parameter 1. Enter .SETC logic to assign the value,

4680 PRINT P(IP+22);LINEINPUT" : ";A : GOTO 3850
OPTN sets the option flag JT from parameter 1.

4650 JT=VAL(P(IP+21)) : GOTO 1550

PSET resets the calling levels which the parameters set to those given on this
macro invocation.

4750 FOR J=IP+21 TO IP+2T :
P(J~2T) =P (J)
NEXTJ :
GOTO 1558

189

utility

————— { *%*%% INITIALIZE VARIABLES **%%% e

4850 Z26=9 : J=20 : K=i8 : I=720 : I=I0 : IS=2@ :

DIM §(20) : DIM 85(28) : S(IS)=ZPh : JO=28 : JI=Z0
4900 21=1 : 22=2 : 23=3 : %24=4 : 75=5 : 76=6 :

27=7 : 28=8 : 2Z9=9 : 2T=10

4956 BK=" " : BA="&" : ZA=ASC{BA) : BS=";" :
BD="~" : CR=CHR$(13)

5096 DIM P(198)

5850 IP=39 : BL="" : DIM G(1068) : IG=Zl
DIM IN(58) : GN="" : LN=20

5198 GS5= ".IM .MAC .MEND.MRET.: .GOTO.SETC.INDX

.LEN .SETA.AIF=.AIF>.AIF<,.CIF=.CIF>.CIF<.SEQN
.OUTF.INPT.QUT2.0PTN.PSET.REM "

51580 JF=23 : JT=20 : A="" : AL=""

5200 JA=23 : CA=BK : IA=2T : KA=&HB@® : SS(IS)=70
LX=&H1A : LQ=&HD3 : L2Z=175 : JS5=21

5250 RETURN

LOPTN 1

.REM THIS IS A SAMPLE PROGRAM TO TEST TRDOSIO/MAC
.REM NOW LETS GET THE DEFINITION FROM DISK
.IM TRDOSIO/MAC

.REM SETUP AN OUTPUT FILE

.OUTF TEST/OUT

.REM WRITE A HEADER INTO THE FILE

; THIS IS THE PIRST LINE IN TEST/OUT

;3 NOW LETS CALL THE OPEN MACRO

.OPEN FILE,BUFFER,LRECL

;THIS IS THE LAST LINE IN TEST

.REM CLOSE OUTPUT FILE

.OUTF *DI

.OPTN 9

. MEND.

Example 1

a9
i ; THIS IS THE FIRSYT LINE LN TEST/OUT
20 ; NOW LETS CALL THE OPEN MACRO
k1] LD DE,FILE
40 LD HL,BUFFER
59 LD B,&3 ; RECORD LENGTH
60 CALL 4424H
76 ; THIs IS THE LAST LINE IN TEST
8y ;

Example 2

.REM TRDOS DISK I/0 CALLS,

. REM Pl IS DCB ADDR
. REM P2 IS ADDR OF BUF/REC OR REC NUMBER
. REM P3 IS OPEN RECORD LENGTH
«MAC INIT,OPEN,POSN,READ,WRIT,CLOS,KILL,VERF
LD DE,&l
. GOTO &0
.t .POSN
LD BC,&2
CALL 4442H
«MRET
.t &0

190

utility

.CIF= &0,+&2,+
LD HL,&2
.GOTO &0
.t JINIT
CALL 4420H
. MRET
: .OPEN
LD B,&3 ; RECORD LENGTH
CALL 4424H
«MRET
: .READ
CALL 4436H
. MRET
: LWRIT
CALL 44394
. MRET
.z .CLOS
CALL 4428H
. MRET
.t JKILL
CALL 442CH
. MRET
. &0
H * Kk * Kk BAD CALL Kk KkKk K
.MEND

Example 3

AL
BL
RA
CN
G
GN
GS
IA
IG

String work area

String save area for labels

Input line buffer

ENTER flag for EDTASM output

Work area for EDTASM line number output
String array of macro source lines

String of user-defined macro names

String of built-in macro names

EDTASM line number

Last line used in macro source string array
Array of starting-string indexes of macros stored in G
Current index of source lines in G

Index in S of current input source

EDTASM output flag

Next file number for an imbed

Current output file

Output-file-open flags

.SEQN counter

.OPTN flag

Number of user-defined macro names
Variable and parameter stack

Array of input source flags

(index or file number with high-order bit on)
Stacks of starting line numbers of macros for .GOTO

Table 1. BASIC veriable usage

191

158
209
250
309
358
4608

458
508

550

600

ay
ur
W

709

758

858
908

958

utility

Program Listing. Micro-Mac

CLEAR 20680:

DEFINT I - N:

DEFINT %,S:

DEFSTR A - H:

DEFSTR P

GOSUB 4888 :

° INITIALIZE VARIABLES
CLS :

PRINT "MICRO~MACRO PROCESSOR VERSION 1.8"

PRINT " BY JOHN R. HIND"

PRINT CR;CR;CR;"ENTER MACRO LANGUAGE SOURCE"

PRINT "(.OUTF FN /.IM FN /ETC..)

GOTO 1688 :

" START EXECUTION

REM *** PARSE LINE BUFFER ***

J = INSTR (BL,BK):

IF J > 28

THEN
P(IP) = LEFTS{ MID$(BL,2%1,J - 21) + "
BL = MID$(BL,J + 21, LEN(BL) -~ J -~ %1):

ELSE
P(IP) = LEFTS(LEFT$(BL, LEN(BL) - 21)
BL o
FOR L = Z1 TO 29:
P(IP + L) = "":
NEXT L:
J = 28
L = LEN(BL):
IF L = 20
THEN
RETURN :

ELSE

A = LEFTS$(BL,21l):
BL = MID$(BL,22):
IF A = BK
THEN

608

THEN
688 :

ELSE

IFA <> """ ANDA <> "

THEN

758

K = INSTR (BL,A):
P(IP + J) = LEFT$(BL,K ~ 21):
BL = MID$(BL,K + 22):
GOTO 68¢
K = INSTR (BL,","):
IF K = 28
THEN

K =1
P(IP + J) = A + LEFTS{BL,K - 21):
BL = MIDS$(BL,K + 21):
GOTO 608
REM ***% EXPAND TEXT LINE BUFPFER *%*%
J = Zl:
IF (JT AND 21) = 21
THEN

IF 8(Is) < > 18

THEN

PRINT "::";S5(IS) ;"::";BL;"z:"

J = INSTR (J,BL,BA):

P

",25):

*,25):

Encvct)pedial'.

192

IF J = 28

THEN
RETURN :

ELSE

K = ASC(MID$ (BL,J + Z1))
10688 IF K = ZA
THEN
BL = LEFTS$(BL,J) + MID$(BL,J + 22):
Jd =J + 1:
GOTO 958
1058 IF K < 58
THEN
K = IP + K - 48:
ELSE
iF K > 95
THEN
K =K - 99:

ELSE
K =K - 58
1180 BL = LEFT$(BL,J -~ 21) + P(K) + MID$(BL,J + 22):
GOTO 958
1158 REM *** GET NEXT LINE *%*¥
12006 J = 5(1I8):
IFJ > 29
THEN
BL = G(J):
S(IS) = J + 21:

RETURN
1258 J = J AND &HF:
IPJ = 28
THEN
LINE INPUT "SOURCE INPUT : ";BL:

ELSE
IF EOF (J)
THEN
BL = ".MEND":

ELSE
LINE INPUT #J,BL:
GOSUB 1449
13¢8 A = RIGHTS$ (BL,Z1):
IF A = BS
THEN
A = CR:

ELSE
IF A = BD
THEN
A="":
ELSE
A=A+ CR
1356 J = LEN(BL) - Z1l:
IF J < 21
THEN
BL = A:
RETURN :

ELSE
BL = LEPFT$ (BL,J) + A:
RETURN

1468 J = ASC(BL + " "):

IF J = LX

THEN
BL = ",MEND":
RETURN : Program continued

193

utility

ELSE
IFJ = LQ
THEN
J = 14:
ELSE
IF J > L2
THEN
J = 27:

ELSE
RETURN
1456 BL = MIDS$ (BL,J):
J = ASC(BL):
IFJ < > 29
THEN
RETURN :

ELSE
BL = ° " 4 MID$(BL,22):
RETURN
1568 REM **%* EXECUTE LOOP *#*
1556 FOR J = 28 TO IT:
P(IP + J) = "":
NEXT J:
Ip = IP - 2T
1600 GOSUB 1208 :
GOSUB 989 :
IF LEFT$(BL,21) < > ",*
THEN
GOSUB 1900 :
GOTO 1680 :

ELSE
IF LEFTS$(BL,22) = ",."
THEN
BL = MID$(BL,22):
GOSUB 1909 :
GOTO 1600
1650 IP = IP + 2T:
GOSUB 566 :
J = [TNSTR {£E P(IP)} + 74y / 2%
1706 ON J GOTO 4188 ,2158 ,235@8 ,2350 ,1558 ,2580 ,2988 ,3200 13480 ,
3580 ,3756 ,3808 ,3858 ,2766 ,2756 ,2806 ,4888 ,4250 ,4600 ,4450
4650 ,4758,1558
1758 J = (INSTR (GN,P(IP)) + 24) / Z5:
IF J = 18
THEN
GOSUB 1908 :
GOTO 1559
1888 IS = IS + 21:
S(IS) = IN(J):
SS(IS) = IN(J):
GOTO 1608
1858 REM *#** OQUTPUT A LINE BUFFER *#*
1988 IF (JO AND JI) = 29
THEN
PRINT “<";BL;">":
RETURN :

ELSE
IF (JT AND 21) < > 22
THEN
PRINT "(®;JI;:")<";BL;">"
1950 IF (JA = JI) AND (CA = CR)
THEN
GOSUB 2850
29066 CA = RIGHTS(BL,Z21):
PRINT #JI,BL;:
RETURN

194

utility

2050 CN = RIGHTS ("08@8" + STR$(IA),25):
JA = XA + ZT:
FOR I = 21 TO 25:
MIDS$ (CN,I,21) = CHR$ (KA OR ASC(MID$(CN,I,21})):
NEXT I:
BL = CN + " " + BL:
RETURN
2109 REM %**% MAC #**
2158 J = 21
2200 IF LEN(P(IP + J)) > 28
THEN
LN = LN + 21:
GN = GN + LEFTS$("." + P(IP + J) + " ",25):
J = J + 21:
IN(LN) = IG:
GOTO 2288
2258 GOSUB 1280 :
G(IG) = BL:
16 = IG + 21:
IF LEFTS (BL,%5) = ".MEND"
THEN
1558 :

ELSE
22590
2308 REM *** _MEND & .RET **%*
2358 J = S(IS):
IS = IS8 - Z4l:
IP IS = - 1
THEN
GOSUB 4508 :
CLOSE :
PRINT “FINISHED":
CMD "S":

ELSE
IF J < 28
THEN
J = J AND &HF:
CLOSE J:
JF = JF ~ 21
2408 GOTO 1558
24580 REM **% SGKIP *%¥
2508 AL = P(IP + 21)
255¢ GOSUB 1288 :
Ip = IP - 27:
GOSUB 908 :
Ip = IP + ZIT:
IF LEFT$(BL,25) = ".MEND"
THEN
2680 :
ELSE
IF LEFT$(BL,23) < > ",: "
THEN
2550 :

ELSE
GOSUB 588 :
IF P(IP + 21} = AL
THEN
1550 :

ELSE
25548
2608 IF S(1S8) < 21
THEN
23508 :

EiSE
S{IS) = S8(IS): Program continued

195

26580
2768

2750

2868

285@
2989

2958

3089
3058

3100
3159

3200
3256

3300
3358
34068

3459
3508

3558

3600

utility

GOTO 2550
REM *** _CIF= / .CIF> / .CIFC #¥x
IF P(IP + 22) = P(IP + 23)
THEN
2500
ELSE
1558
IF P(IP + 22) > P(IP + 23)
THEN
2568 :

ELSE

1558
IF P(IP + 22) < P(IP + 23)
THEN

2500

ELSE

1558
REM *%*% _GQETC #¥#
J = VAL{P(IP + 23)):
IFJ = 24

THEN

J = 21
K = VAL(P(IP + Z4)):
I = 20

A = MIDS(P(IP + 22),J,K)
ASC(P(IP + 21)):

IF I > 58

H
K = LEN(P(IP + 22))

REM #*%% _INDX *%%
J = INSTR (P(IP + 22),P(IP + 23))
A = STR$(J):
IF LEFTS$(A,2]1) = " "

A = MID$(A,22)
GOTO 3858
REH #%% [EN #*%¥
J = LEN(P(IP + 22)):
GOTO 3258
REN ®#%% _QETA #*¥
K = 223
J = VAL(P(IP + K))
K=K + 21:
A = LEPTS(P(IP + K),21):
IFA = ""

THEN

3250

ELSE

K=K+ 21:

I = VAL{P(IP + K))
IFA = "¢"

THEN

J=J + I

ELSE
IFA = "="
THEN
Jg=J - I

ELSE

196

3650
3709
3750

3880

3854

3900

3950
4000

4858
4109

4158

4200
4259
4309

utility

IF A = "*"
THEN
J=J * I:

ELSE
IF A = "/
THEN
J =3/ I:

ELSE

1F A = "O"
THEN
J = J OR I:

ELSE
IF A = "A"
THEN
J = J AND I:

ELSE

PRINT "** INVALID OPERATOR",BL

GOTO 3558
REM *** _AIF= , .AIF> , .AIFC ***
GOSUB 39080 :
IF J =K
THEN
2500 :

ELSE

15580
GOSUB 3906
1IF J > K
THEN

2580 :

ELSE
1550
GOSUB 3906
IF J < K
THEN
2508 :

ELSE
1559
J = VAL(P(IP + 22)):
K = VAL(P(IP + 23)):
RETURN
REM *** _SEQN ***
J = Js:
Js = J5 + 21:
GOTO 3258
REM *kk .IM * %k
A = P(IP + 21):
18 = IS + 21
IF A = "*KI"
THEN
S(18) = 20:
PRINT BL:
GOTO 1558
S(IS) = JF OR &HB8OO:
OPEN "I",JF,A:
JF = JF + %1:
PRINT BL:
GOTO 1558
REM *** _OUTF , .OUT2
JT = 21
A = P(IP + 31):
IF A - nn
THEN
1550 :

197

Program continued

utility

ELSE
IF {(JO AND JI) < > 28
THEN
GOSUB 4504
CLOSE JI:
JO = ((NOT JI) AND JO) AND 23
4358 IF A = “*pI"
THEN
1558 :
ELSE

OPEN "0O%,JI,A:
JO = JO OR JI:

IF P(IP + Z22) < > "EDTASM"

THEN

JA = 23:

GOTO 1550
44090 JA = JI:

= CR:

A = LEFTS(A + "
PRINT $#JI, CHRS$ (&HD3);A;:

GOTO 1558
4458 JI = 22:
GOTO 4308

", 86):

4588 IF (JO AND JI) < > JA

THEN
RETURN :

ELSE

PRINT #JI, CHRS$(&H1A);:

RETURN

4550 REM *%% _INPT #**%*

4688 PRINT P(IP + 22);

GOTO 3858

LINE INPUT ": “;A:

4658 JT = VAL(P(IP + 21)):

GOTO 1559

4760 REM *%% _pGQET *#%%
4756 FOR J = IP + %1 TO IP + 2T:
P(J - 2T) = P(J):

NEXT J:

GOTO 1558
4808 REM
48508 720 = B

J = Z8:

K = 208:

I = 28:

I=20:

I5 = 28:

DIM §(28):

DIM 85(28):

S(18) = 20:

Jo = 20:

JI = 28
49608 z1 = 1:

Z2 = 23

23 = 3:

Z4 = 4:

Z5 = 5:

26 = 63

27 = 73

28 = B:

29 = 93

ZT = 18
4950 BK = ® "

BA = "&":

2A = ASC(BA):

BS = ";":

BD = "-":

CR = CHR$(13)

5806 DIM P(198) :

#k¥ks INITIALIZE VARIABLES **#%¥%

198

PARM STRINGS
5856 IP = 39:

BL = "":
DIM G(10069):
IG = 21:
DIM IN(58):
GN = "":
LN = 20
5168 GS = ",IM .MAC .MEND.MRET.: .GOTO.SETC.INDX.LEN ,SETA.AIF=,Al

F>.AIF<.CIF=.CIF>.CIF<.SEQN.OUTF.INPT.OUT2.OPTN.PSET.REM "
5150 JF = 23:

JT = Z0:
A = "":
AL = an
5280 JA = 23:
CA = BK:
IA = Z2T:
KA = §HB#@:
SS(IS) = 28:
LX = &H1A:
LQ = &HD3:
LZ = 175:
JS = 21

5258 RETURN

199

APPENDIX

Appendix A
Appendix B

201

APPENDIX

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose.”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level I1. To run in Level I, follow this procedure:
® Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
® Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent
code made to agree.
® Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model 1II Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
0UT236,0 and OUT236,2.

203

APPENDIX

Glossary

A

ac input module—1/O rack module which converts various ac signals origi-
nating in user switches to the appropriate logic level for use within the pro-
cessor.

ac output module—I/O rack module which converts the logic levels of the
processor to a usable output signal to control a user’s ac load.

access time-——the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator—the main register(s) in a microprocessor used for arithmetic,
shifting, logical, and other operations.

accuracy—generally, the quality or freedom from mistake or error; the ex-
tent to which the results of a calculation or a measurement approach the
true value of the actual quantities.

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

active elements—any generators of voltage or current in an impedance net-
work; also known as active components.

adaptor—a device for connecting parts that will not mate; a device designed
to provide a compatible connection between systems or subsystems.

A/D converter—analog to digital converter. See D/A converter.
add with carry—a machine-language instruction in which one operand is
added to another, along with a possible carry from the previous (lower-

order) add.

address—a code that specifies a register, memory location, or other data
source or destination,

204

appendix

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications, generally on large-scale computers.

algorithm—a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—the process of adjusting components of a system for proper
interrelationships, including adjustments and synchronization for the com-
ponents in a system. For the TRS-80, this usually applies to cassette heads
and disk drives.

alphanumerics—refer to the letters of the alphabet and digits of the number
system, specifically omitting the characters of punctuation and syntax.

alternating current—ac. Electric current that reverses direction periodical-
ly, usually many times per second.

ALU— Arithmetic Logic Unit.

Ampere— the unit of electric current in the meter-kilogram-second system of
units; defined in terms of the force of attraction between two parallel cur-
rent conductors; 1 coulomb/second.

Ampere-turn—a unit of magnetomotive force defined as the force of a
closed loop of one turn with a current of one ampere flowing through the
loop.

analog—the representation of a physical variable by another variable in-
sofar as the proportional relationships are the same over some specified
range.

analog input module—an I/O rack module which converts an analog signal
from a user device to a digital signal which may be processed by the pro-
Cessor.

analog output module—an I/O rack module which converts a digital signal
from the processor into an analog output signal for use by a user device.

AND—a Boolean logic function. T'wo operators are tested and, if both are
true, the answer is true. Truth is indicated by a high bit, or 1 in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately. A bit-by-bit logical operation which pro-
duces a one in the result bit only if both operand bits are ones.

205

appendix

anode—in a semiconductor diode, the terminal toward which electrons
flow from an external circuit; the positive terminal.

APL--a programming language; a popular and powerful high-level
mathematical language with extensive symbol manipulation.

argument—any of the independent variables accompanying a command.

Arithmetic Logic Unit—ALU. The section of a microprocessor which per-
forms arithmetic functions such as addition or subtraction and logic func-
tions such as ANDing.

arithmetic shift—a type of shift in which an operand is shifted right or left
with the sign bit being extended (right shift) or maintained (left shift).

array—a collection of data items arranged in a meaningful pattern such as
rows and columns which allow the collection and retrieval of data.

ASCII— American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—software that translates operational codes into their binary
equivalents on a statement-for-statement basis.

assembly language—a symbolic computer language that is translated by an
assembler program into machine language, the numeric codes that are
equivalent to microprocessor instructions.

asynchronous—not related through repeating time patterns.

asynchronous shift register—a shift register which does not require a clock.
Register segments are loaded and shifted only at data entry.

B

backup—1) refers to making copies of all software and data stored external-
ly 2) having duplicate hardware available.

base—the starting point for representation of a number in written form,
where numbers are expressed as multiples of powers of the base value.

206

appendix

BASIC—an acronym for Beginner’s All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing—a method of computing in which many of the same types
of jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the com-
puter operator. All the cards are put into the card reader, and the results of
each person’s program are returned later. This is contrasted with interactive
computing.

baud—1) a unit of data transmission speed equal to the number of code
elements (bits) per second 2) a unit of signaling speed equal to the number of
discrete conditions or signal events per second.

baud rate—a measure of the speed at which serial data is transmitted elec-
tronically. The equivalent of bits per second (bps) in microcomputing.

benchmark-—to test performance against a known standard.

BCD— binary coded decimal. The 4-bit binary notation in which individual
decimal digits (0 through 9) are represented by 4-bit binary numerals; e.g.,
the number 23 is represented by 0010 0011 in the BCD notation.

bias—a dc voltage applied to a transistor control electrode to establish the
desired operating point.

bidirectional bus-—a bus structure used for the two-way transmission of
signals, that is, both input and output.

bidirectional printer—a printer capable of printing both left-to-right and
right-to-left. Data is prestored in a fixed-size buffer.

binary—a number system which uses only 0 and 1 as digits. It is the
equivalent of base 2. Used in microcomputing because it is easy to represent
1s and Os by high and low electrical signals.

binary digit—the two digits, zero and one, used in binary notation. Often
shortened to bit.

binary point-~the point, analagous to a decimal point, that separates the in-
teger and fractional portions of a binary mixed number.

207

appendix

bipolar device—a device whose operation depends on the transport of holes
and electrons, usually made of layers of silicon with differing electrical
characteristics.

bi-stable—two-state

bit—an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

bit position— the position of a binary digit within a byte or larger group of
binary digits. Bit positions in the Model 1, II, III, and Color Computer are
numbered from right to left, zero through N. This number corresponds to
the power of two represented.

Boolean algebra—a mathematical system of logic first identified by George
Boole, a 19th century English mathematician. Routines are described by

combinations of ANDs, ORs, XORs, NOTs, and IF-THENs. All computer
functions are based upon these operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. On some machines it is keyed in, and
on others it is in read only memory (ROM). Using this program is called
booting or cold-starting the system.

borrow—one bit subtracted from the next higher bit position.
bps—bits per second.

breakdown—a large, abrupt rise in electric current due to decreased
resistance in a semiconductor device caused by a small increase in voltage.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug-—an error in software or hardware.

bump contact—a large area contact used for alloying direcily to the
substrate of a chip for mounting or interconnecting purposes.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.

208

appendix

byte—eight bits that are read simultaneously as a single code.

C

CAl—an acronym for Computer Aided Instruction.

card—a specially designed sheet of cardboard with holes punched in specific
columns. The placement of the holes represents machine-readable data.
Also a term referring to a printed circuit board.

card reader—a device for reading information from punched cards.

carrier—a steady signal that can be slightly modified (modulated) con-
tinuously. These modulations can be interpreted as data. In microcom-
puters the technique is used primarily in modern communications and tape
input/output (1/0).

carry—a one bit added to the next higher bit position or to the carry flag.

carry flag—a bit in the microprocessor used to record the carry “off the end”
as a result of a machine-language instruction.

cassette recorder-—a magnetic tape recording and playback device for enter-
ing or storing programs.

cathode—in a semiconductor diode, the terminal from which electrons flow
to an external circuit; the negative terminal.

character-—a single symbol that is represented inside the computer by a
specific code.

charge—a basic property of elementary particles of matter. The charge,
measured in coulombs, is the algebraic sum of the electric charge of its con-
stituents.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a
predetermined result for the block of data.

chip—the shaped and processed semiconductor die mounted on a substrate
to form a transistor or other semiconductor device.

209

appendix

circuit—a conductor or system of conductors through which an electric cur-
rent may flow,

circuit card—a printed circuit board containing electronic components.

clear—to return a memory to a non-programmed state, usually represented
as 0 or OFF (empty).

clobber—to destroy the contents of memory or a register.

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL—COmmon Business-Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

Colossus—a British computer used to crack German Enigma codes during
World War II.

common carrier—a communications transmission medium, such as the
Direct Distance Dialing (DDD) network of the Bell System.

compiler—software that will convert a program written in a high-level
language to binary code, on a many-for-one basis.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

complementary functions—two driving point functions whose sum is a
positive constant.

complementary metal oxide semiconductor—CMOS. A signal inverting
device formed by the combination of a p channel with an n channel device
usually connected in series across the power supply.

complementary transistors—two transistors of opposite conductivity (pnp
and npn) in the same functional unit.

210

appendix

computer interface—a device designed for data communication between a
central computer and another unit such as a programmable controller pro-
Cessor.

concatenate—to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

conditional jump—a machine-language instruction that jumps if a specified
flag (or flags) is set or reset.

conductor—a substance, body, or other medium that is suitable to carry an
electric current.

constant—a value that doesn’t change.

control block—a storage area of a microprocessor containing the informa-
tion required for control of a task, function, operation, or quantity of infor-
mation.

coulomb—the unit of electric charge in SI units (International System of
Units); the quantity of electric charge that passes any cross section of a con-
ductor in one second when current is maintained constant at one ampere.

counter—in relay-panel hardware, an electro-mechanical device which can
be wired and preset to control other devices according to the total cycles of
one ON and OFF function. A counter is internal to the processor; i.e., it is
controlled by a user-programmed instruction. A counter instruction has
greater capability than any hardware counter.

CPU-—central processing unit. The circuitry that actually performs the
functions of the instruction set.

CRT—-cathode ray tube. In computing this is just the screen the data ap-
pears on, A TV has a CRT.

cue-~-refers to positioning the tape on a cassette unit so that it is set up to a
read/write section of tape.

current—the net transfer or electric charge per unit of time by free elec-
trons; 1 ampere = 1 coulomb/second.

211

appendix

current mode logic—CML. Integrated circuit logic in which transistors are
paralleled so as to eliminate current hogging.

cursor—a visual movable pointer used on a CRT by the programmer to in-
dicate where an instruction is to be added to the program. The cursor is also

used during editing functions.

cycle—a specific period of time, marked in the computer by the clock.

D

D/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

daisy chain—a bus line which interconnects devices for serial operation.
daisy wheel—a printer type which has a splined character wheel.

data—general term for numbers, letters, symbols, and analog quantities
that serve as information for computer processing.

data base—refers to a series of programs each having a different function,
but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a
storage device. Knowledge of operating or programming a computer is not
necessary for a data entry operator.

data link—equipment, especially transmission cables and interface
modules, which permits the transmission of information.

debug—to remove bugs from a program.

decrement—to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

dedicated—in computer terminology, a system set up to perform a single
task.

default—that which is assumed if no specific information is given.

212

appendix

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

diagnostic program—a test program to help isolate hardware malfunctions
in the programmable controller and application equipment.

die bond—a process in which chips are joined to a substrate.

differential discriminator—a circuit that passes only pulses whose
amplitudes are between two predetermined values, neither of which are
Z€r0.

digital —the representation of data in binary code. In microcomputers, a
high electrical signal is a 1 and a low signal is a 0.

digital circuit—an electronic network designed to respond at input voltages
at one level, and similarly, to produce output voltages at one level.

diode—a device with an anode and a cathode which permits current flow in
one direction and inhibits current flow in the other direction.

diode transistor logic—a circuit that uses diodes, transistors, and resistors to
provide logic functions.

direct current—dec. Electric current which flows in only one direction; the
term designates a practically non-pulsating current.

disassembly—remaking an assembly source program from a machine-code
program.

disk—an oxide-coated, circular, flat object, in a variety of sizes and con-
tainers, on which computer data can be stored.

disk controller—an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—DOS. The system software that manipulates the
data to be sent to the disk controller.

displacement—-a signed value in machine language used in defmmg a
memory address.

213

appendix

dividend—the number that is divided by the divisor. In A/B, A is the divi-
dend.

divisor— the number that “goes into” the dividend in a divide operation. In
A/B, B is the divisor.

DMA—direct memory access. A process where the CPU is disabled or
bypassed temporarily and memory is read or written to directly.

documentation—a collection of written instructions necessary to use a piece
of hardware, software, or a system.

domain—a region in a solid within which elementary atomic, molecular,
magnetic, or electric moments are uniformly arrayed.

doping—the addition of impurities to a semiconductor to achieve a desired
characteristic.

dot-matrix printer—instead of each letter having a separate type head (like
a typewriter), a single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
manufacture.

double-dabble—a method of converting from binary to decimal representa-
Haon kn r]nnk]‘nn— tha laftmanct]r-nl» or]r]vnrr the nayt }“f and r-nnhnlnnrr nntil

the rlghtmost bit has been processed

downtime—the time when a system is not available for production due to
required maintenance.

driver-—a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex— refers to two-way communications taking place independently,
but simultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

214

appendix

E

EAROM-—an acronym for Electrical Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess, Once written to, it is used like a ROM, but can be completely erased if
necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editors.

electron—a stable elementary particle with a negative electric charge of
about —1.602 x 10 ~ ' coulomb.

emitter-coupled logic—a form of current mode logic in which the emitters
of two transistors are connected to a single current-carrying resistor in a way
that only one transistor conducts at a time.

enhancement mode—operation of a field effect transistor in which no cur-

rent flows when zero gate voltage is applied, and increasing the gate voltage
increases the current.

EOF—End Of File.

EOL—End Of Line (of text).

EPROM-—Erasable Programmable Read Only Memory. A read only
memory in which stored data can be erased by ultraviolet light or other

means and reprogrammed bit-by-bit with appropriate voltage pulses.

Exclusive OR—a bit-by-bit logical operation which produces a one bit in the
result only if one or the other (but not both) operand bits is a one.

execution—the performance of a specific operation such as would be ac-
complished through processing one instruction, a series of instructions, or a

complete program.

execution cycle—a cycle during which a single instruction of one specific
operation.

execution time—the total time required for the execution to actually occur.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

215

appendix

exponent—the power of two of a floating-point number.

F

feedback— the signal or data fed back to the programmable controller from
a controlled machine or process to denote its response to the command
signal.

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

Fibonacci series—the sequence of number 1, 1, 2, 3, 5, 8, 13, 21, 34,. . . in
which each term is computed by addition of the two previous terms.

field-effect transistor—FET. A transistor in which the resistance of the cur-
rent path from the source to drain is modulated by applying a transverse
electric field between grid or gate electrodes; the electric field varies the
thickness of depletion layers between the gates, thereby reducing the con-
ductance.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

filter—electrical device used to suppress undesirable electrical noise.

firmware—software that is made semi-permanent by putting it into some
type of ROUM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flip chip—a tiny semiconductor die having terminations all on one side in
the form of solder pads or bump contacts; after the surface of the chip has
been passivated or otherwise treated, it is flipped over for attaching to a
matching substrate.

flip-flop—a bi-stable device that assumes either of two possible states such
that the transition between the states must be accomplished by electronic
switching.

floating-point number——a standard way of representing any size of number
in computers. Floating-point numbers contain a fractional portion (man-
tissa) and power of two (exponent) in a form similar to scientific notation.

216

appendix

flowcharting-—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN—FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.

full duplex—a mode of data transmission that is the equivalent of two
paths—one in each direction simultaneously.

G
game theory—see von Neumann.
garbage—-computer term for useless data.
gate—a circuit that performs a single Boolean function. A circuit having an
output and a multiplicity of inputs, so designed that the output is energized

only when a certain combination of pulses is present at the inputs.

GIGO—Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics—information displayed pictorially as opposed to alphanumerically.
ground—a conducting path, intentional or accidental, between an electric

circuit or equipment and the earth, or some conducting body serving in
place of the earth.

H
H-—a suffix for hexadecimal, e.g., 4FFFH.

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

Hall effect—the development of a transverse electric field in a current-
carrying conductor placed in a magnetic field; ordinarily the conductor is
positioned so that the magnetic field is perpendicular to the direction of cur-
rent flow and the electric field is perpendicular to both.

Hall generator—a generator using the Hall effect to give an output voltage
proportional to magnetic field strength.

217

appendix

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Handshaking requires clocking pulses on both ends of the
communications line. Contrast with buffer.

hangup—the computer has ceased processing inexplicably.

hard copy—a printout; any form of printed document such as a ladder
diagram, program listing, paper tape, or punched cards.

hard magnetic—a term describing a metal having a high coercive force

which gives a high magnetic hysteresis; usually a permanent magnetic
material.

hard wired—having a fixed wired program or control system built in by the
manufacturer and not subject to change by programming.

hardware—refers to any physical piece of equipment in a computer system.
hex—hexadecimal.
hexa-dabble--conversion from hexadecimal to decimal by multiplying each

hex digit by sixteen and adding the next hex digit until the last (rightmost)
hex digit has been reached.

frexadecunal—represeiitailon oi nunoers i

¥y use
adecimal digits 0, 1, 2, 3,4, 5,6,7,8,9, A, B, C,D, E, and F.

high—a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming language which is CPU-independent
and closely resembles English.

high order—see most significant bit.

HIT—acronym for Hash Index Table. A section of the directory on a

TRS-80 disk.

hole--a mobile vacancy having an energy state near the top of the energy
band of a solid; behaves as though it were a positively charged particle.

218

appendix

host computer—the primary computer in a multi-computer or terminal
hookup.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

hysteresis—an oscillator effect wherein a given value of an operating
parameter may result in multiple values of output power or frequency.

IC—integrated circuit.

immediate—addressing mode in which the address of the information that
an operation is supposed to act upon immediately follows the operation
code.

inclusive OR—a bit-by-bit logical operation which produces a one-bit result
if one or the other operand bits, or both is a one.

increment—to increase, usually by one. See decrement.

indexed—addressing mode where the information is addressed by a
specified value, or by the value in a specified register.

indirect—addressing mode in which the address given points to another ad-
dress, and the second address is where the information actually is.

input devices—devices such as limit switches, pressure switches, push but-
tons, etc., that supply data to a programmable controller. These discrete in-
puts are two types: those with common return, and those with individual re-
turns (referred to as isolated inputs). Other inputs include analog devices
and digital encoders.

instruction—a command or order that will cause a computer to perform one
certain prescribed operation.

insulator—a nonconducting material used for supporting or separating con-
ductors to prevent undesired current flow to other objects.

integer variable—a BASIC variable type. It can hold values of - 32,768
through + 32,767 in two-byte two’s complement notation.

219

appendix

integrated circuit—IC. An interconnected array of active and passive
elements integrated with a single semiconductor substrate or deposited on
the substrate and capable of performing at least one electronic circuit func-
tion. See chip.

integrated injection logic—I*L. Integrated circuit logic which uses a simple
and compact bipolar transistor gate structure which makes possible large
scale integration on silicon for logic arrays and other analog and digital ap-
plications.

intelligent terminal—a terminal with a CPU and a certain amount of
memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program writtenin a
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compiler,

interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the
main program continues.

I/O—acronym for input/output. Refers to the transfer of data.

I/O module-—the printed circuit board that is the termination for field wir-
ing of 1/O devices.

I/O rack—a chassis which contains I/O modules.

I/O scan-—the time required for the programmable controller processor to
monitor all inputs arid control all outputs. The I/0 scan repeats continuously.

isolated I/0O module—a module which has each input or output electrically
isolated from every other input or output on that module. That is to say,

each input or output has a separate return wire.

iteration—one pass through a given set of instructions.

220

appendix

]

jack—a socket, usually mounted on a device, which will receive a plug
(generally mounted on a wire).

Josephson effect—the tunneling of electron pairs through a thin insulating
barrier between two superconducting materials.

K
K—abbreviation for kilo. In computer terms 1024, in loose terms 1000.
Karnaugh map-—a truth table that shows a geometrical pattern of func-

tional relationships for gating configurations; with this map, essential gating
requirements can be recognized in their simplest form.

L

ladder diagrams-—an industry standard for representing control logic relay
systems.

language—a set of symbols and rules for representing and communicating
information (data) among people, or between people and machines.

large scale integration—LSI. Any integrated circuit which has more than
100 equivalent gates manufactured simultaneously on a single slice of

semiconductor material.

latching relay—a relay with 2 separate coils, one of which must be energized
to change the state of the relay; it will remain in either state without power.

leakage current—in general, the undesirable flow of current through or over
the surface of an insulating material or insulator; the alternating current
that passes through a rectifier without being rectified.

leakage flux—magnetic lines of force that go beyond their intended space.

least significant bit—the rightmost bit in a binary value, representing 2°.

least significant byte—refers to the lowest position digit of a number. The
rightmost byte of a number or character string.

221

appendix

LIFO—acronym for Last In First Qut. Most CPUs maintain a “stack” of
memory. The last data pushed onto the stack is the first popped out.

light emitting diode—LED. A semiconductor diode that converts electric
energy efficiently into spontaneous and noncoherent electromagnetic radia-
tion at visible and near infrared wavelengths of electroluminescence at a for-
ward biased pn junction.

light pen—a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

line—in communications, describes cables, telephone lines, ete., over which
data is transmitted to and received from the terminal.

line driver—an integrated circuit specifically designed to transmit digital in-
formation over long lines—that is, extended distances.

line printer—a high-speed printing device that prints an entire line at one
time.

linear circuit—a network in which the parameters of resistance, inductance,
and capacitance are constant with respect to current or voltage, and in
which the voltage or current of sources is independent of or directly propor-
tional to the outputs.

linearity—the relationship that exists between two quantities when a
change in one of them produces a direct proportionai change in the other.

location—a storage position in memory.

logic—a means of solving complex problems through the repeated use of
simple functions which define basic concepts. Three basic logic functions are
AND, OR, and NOT.

logic diagram—a drawing which represents the logic functions AND, OR,
NOT, etc.

¢ level—the voltage magnitude associated with signal pulses represent-
ing ones and zeroes (1s and 0s) in binary computation.

logical shift—a type of shift in which an operand is shifted right or left, with
a zero filling the vacated bit position.

222

appendix

loop—a set of instructions that executes itself continuously. If the program-
mer has the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value, the loop is ter-
minated.

low-—a logic signal voltage. The computer senses this as a binary 0.
Isb—-see least significant bit.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

magnetoresistor—magnetic field controlled variable resistor.

magnitude—the absolute value, independent of direction.

mainframe—refers to the CPU of a computer. This term is usually confined
to larger computers.

mantissa— the fractional portion of a floating-point number.

matrix—a two-dimensional array of circuit elements, such as wires, diodes,
etc., which can transform a digital code from one type to another.

223

appendix

memory—the hardware that stores data for use by the CPU. Each piece of
data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each cap-
able of storing a tiny electrical charge.

memory module—a processor module consisting of memory storage and
capable of storing a finite number of words (e.g., 4096 words in a 4K
memory module). Storage capacity is usually rounded off and abbreviated
with K representing each 1024 words.

metal oxide semiconductor-—MOS. A metal insulator semiconductor struc-
ture in which the insulating layer is an oxide of the substrate material; for a
silicon substrate the insulator is silicon oxide.

micro electronics—refers to circuits built from miniaturized components
and includes integrated circuits.

microprocessor—an electronic computer processor section implemented in
relatively few IC chips (typically LSI) which contain arithmetic, logic,
register, control, and memory functions.

microsecond—us. One millionth of a second: 1 x 10— ¢ or 0.000001 second.

milliscecond—us. One thousandth of a second: 10 -3 or 0.001 cenond,

minuend— the number from which the subtrahend is subtracted.

mixed number—a number consisting of an integer and fraction as, for ex-
ample, 4.35 or (binary) 1010.1011.

mnemonic—a short, alphanumeric abbreviation used to represent a
machine-language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

modem—MOQdulator/DEModulator. An I/O device that allows com-
munication over telephone lines.

module-—an interchangeable plug-in item containing electronic com-
ponents which may be combined with other interchangeable items to form a
complete unit.

224

appendix

monitor—1) a CRT 2) a short program that displays the contents of registers
and memory locations and allows them to be changed. Monitors can also
allow another program to execute one instruction at a time, saving programs
and disassembling them.

MOS—see metal oxide semiconductor.

MOSFET-—metal oxide semiconductor field effect transistor.

most significant bit—the leftmost bit in a binary value, representing the
highest-order power of two. In two’s complement notation, this bit is the

sign bit.

most significant byte—the highest-order byte. In the multiple-precision
number A13EF122H, A1H is the most significant byte.

msb—see most significant byte.

multiple-precision numbers—multiple-byte numbers that allow extended
precision.

multiplexing—a method allowing several sets of data to be sent at different
times over the same communication lines, yet all of the data can be used
simultaneously after the final set is received. For example, several LED
displays, each requiring four data lines, can all be written to with only one
group of four data lines. The same concept is used with communication
lines.

multiplicand—the number to be multiplied by the multiplier.

multiplicand register—the register used to hold the multiplicand in a
machine-language multiply.

multiplier—the number that is multiplied against the multiplicand. The
number “on the bottom.”

N

NAND—an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

n-channel--a conduction channel formed by electrons in an n-type semi-
conductor, as in an n-type field-effect transistor.

225

appendix

negation—changing a negative value to a positive value, or vice versa. Tak-
ing the two’s complement by changing all ones to zeros, all zeros to ones, and
adding one.

nesting—putting one loop inside another. Some computers limit the number
of loops that can be nested.

network—a collection of electric elements, such as resistors, coils, capaci-
tors, and sources of energy, connected together to form several interrelated
circuits. A collection of computer terminals interconnected to a host CPU.

noise—extraneous signals; any disturbance which causes interference with
the desired signal or operation.

non-volatile memory—a memory that does not lose its information while its
power supply is turned off.

normalization—converting data to a standard format for processing. In
floating-point format, converting a number so that a significant bit (or hex
digit) is the first bit (or four bits) of the fraction,

NOT-—a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
This is the one’s complement.

NPN transistor-—a junction transistor having a p-type base between an
n-type emitter and an n-type collector; the emitter should then be negative
with respect to the base and the collector should be positive with respect to
the base.

n-type semiconductor— an extrinsic semiconductor in which the conduction
electron density exceeds the hole density.

O

object code—all of the machine code that is generated by a compiler or
assembler. Once object code is loaded into memory it is called machine
code.

octal—refers to the base 8 number system, using digits 0-7.
octal-dabble—conversion of an octal number to decimal by multiplying by

eight and adding the next octal digit, continuing until the last (rightmost)
digit has been added.

226

appendix

OEM—Original Equipment Manufacturer.

off-line—describes equipment or devices which are not connected to the
communications line.

offset value—a value that can be added to an address. Most addressing
modes allow an offset value.

off-the-shelf—a term referring to software. A generalized program that can
be used by a greater number of computer owners, so that it can be mass pro-

duced and bought off-the-shelf.

Ohm—the unit of resistance of a conductor such that a constant current of
one ampere in it produces a voltage of one volt between its ends.

Ohm’s law-—a fundamental rule of electricity; states that the current in an
electric circuit is inversely proportional to the resistance of the circuit and is
directly proportional to the electromotive force in the circuit. In its strictest
sense, Ohm’s law applies only to linear constant-current circuits.

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

on-line operation—operations where the programmable controller is direct-
ly controlling the machine or process.

operands— the numeric values used in the add, subtract, or other operation.

OR-—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

oscillation—any effect that varies periodically back and forth between two
values, as in the amplitude of an alternating current.

output——the current, voltage, power, driving force, or information which a
circuit or a device delivers. The terminals or other places where a circuit or
device can deliver energy.

output devices-—devices such as solenoids, motor starters, etc., that receive
data from the programmable controller.

overflow—a condition that exists when the result of an add, subtract, or other
arithmetic operation is too large to be held in the number of bits allotted.

227

appendix

overflow flag—a bit in the microprocessor used to record an overflow condi-
tion for machine-language operation.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide— an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

P

padding—{illing bit positions to the left with zeros to make a total of eight or
sixteen bits.

page—refers to a 256 (2 to the 8th power) word block of memory. How large
a word depends on the computer. Most micros are eight-bit word machines.
Many chips do special indexed and offset addressing on the page where the
program counter is pointing and/or on the first page of memory.

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously.

paraiiei circuti—an eieciric circuit in wiich the efernents, branches (having
elements in series), or components are connected between two points, with
one of the two ends of each component connected to each point,

parallel operation—type of information transfer whereby all digits of a
word are handled simultaneously.

parallel output—simultaneous availability of two or more bits, channels, or
digits.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even, the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

228

appendix

parity bit—an additional bit added to a memory word to make the sum of
the number of 1s in a word always even or odd as required.

parity check--a check that tests whether the number of 1s in an array of
binary digits is odd or even.

partial product—the intermediate results of a multiply. At the end, the par-
tial product becomes the whole product.

partial product register—the register used to hold the partial results of a
machine-language multiply.

passivation-—growth of an oxide layer on the surface of a semiconductor to
provide electrical stability by isolating the transistor surface from electrical
and chemical conditions in the environment; this reduces reverse-current
leakage, increases breakdown voltage, and raises power dissipation rating.

passive element—an element of an electric circuit that is not the source of
energy, such as a resistor, inductor, or capacitor.

PC—see programmable controller,
PC board—see printed circuit board.

p-channel—a conduction channel formed by holes in a p-type semiconduc-
tor, as in a p-type field effect transistor.

peripheral devices—a generic term for equipment attached to a computer,
such as keyboards, disk drives, cassette tapes, printers, plotters, speech syn-
thesizers.

permeability—a factor, characteristic of a material, that is proportional to
the magnetic induction produced in a material divided by the magnetic field
strength given by the equation:

magnetic induction (gauss)
= magnetizing field (oersteds)

m

permutation---arrangements of things in definite order. Two binary digits
have four permutations: 00, 01, 10, and 11.

PILOT—a simple language for handling English sentences and strings of
alphanumeric characters. Generally used for CAI

229

appendix

PL/1-—an acronym for programming language 1. A programming language
used by very large computers. It incorporates most of the better features
from other programming languages. Its power comes from the fact that bits
can be manipulated from the high-level language.

plotter—a device that can draw graphs and curves and is controlled by the
computer through an interface.

port—a single addressable channel used for communications.

P-N junction—a region of transition between p-type emitter and n-type
semiconducting regions in a semiconductor device.

PNP transistor—a junction type transistor having an n-type base between a
p-type emitter and a p-type collector.

positional notation—representation of a number where each digit position
represents an increasingly higher power of the base.

precision— the number of significant digits that a variable or number format
may contain.

print buffer—a portion of memory dedicated to holding the string of
characters to be printed.

printed circuit board—a piece of plastic board with lines of a conductive
material deposited on it to connect the components. The lines act iike wires.
These can be manufactured quickly and are easy to assemble the com-
ponents on,

processor—a unit in the programmable controller which scans all the inputs
and outputs in a predetermined order. The processor monitors the status of
the inputs and outputs in response to the user-programmed instructions in
memory, and it energizes or de-energizes outputs as a result of the logical
comparisons made through these instructions.

product—the result of a multiply.

program—a sequence of instructions to be executed by the processor to con-
trol a machine or process.

program panel—a device for inserting, monitoring, and editing a program
in a programmable controller.

230

appendix

program scan—the time required for the programmable controller pro-
cessor to execute all instructions in the program once. The program scan
repeats continuously. The program monitors inputs and controls outputs
through the input and output image tables.

programmable controller—PC. A solid state control system which has a
user-programmable memory for storage of instructions to implement
specific functions such as I/O control logic, timing, counting, arithmetic,
and data manipulation. A PC consists of the central processor, input/output
interface, memory, and programming device which typically uses relay-
equivalent symbols. The PC is purposely designed as an industrial control
system which can perform functions equivalent to a relay panel or a wired
solid state logic control system,

PROM—Programmable Read Only Memory. A memory device that is writ-
ten to once and from then on acts like a ROM.

protocol—a defined means of establishing criteria for receiving and
transmitting data through communication channels.

pseudo code—a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself.

p-type semiconductor—an extrinsic semiconductor in which the hole densi-
ty exceeds the conduction electron density.

punched-card equipment—peripheral devices that enable punching or
reading paper punched cards that hold character or binary data.

Q

quotient—the result of a divide operation.

R

RAM—acronym for Random Access Memory. An addressable LSI device
used to store information in microscopic flip-flops or capacitors. Each may
be set to an ON or OFF state, representing logical 1 or 0. This type of
memory is volatile, that is to say, memory is lost while power is off, unless
battery backup is used.

231

appendix

read—to sense the presence of information in some type of storage, which
includes RAM memory, magnetic tape, punched tape, etc.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a fast-access memory location in the microprocessor. Used for
holding intermediate results and for computation in machine language.

relative addressing—an address that is dependent upon where the program
counter is presently pointing.

remainder-—the amount of divident remaining after a divide has been com-
pleted.

residue—the amount of dividend remaining, part way through a divide.

resistor-transistor logic—RTL. One of the simplest logic circuits, having
several resistors, a transistor, and a diode.

resolution—a measure of the smallest possible increment of change in the
variable output of a device.

s vy LI) A T

. e PN R S W 2 Trooe3ooes 3 N
AU TR GAVAGU—a GiVIGLT il WiiCn € Givisor 15 1esuored it e arvide does

not go” for any iteration. A common microcomputer divide technique.

ROM-—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

rotate—a type of shift in which data is recirculated right or left back into the
operand from the opposite end.

rounding—the process of truncating bits to the right of a bit position and
adding zero or one to the next higher bit position based on the value to the
right. rounding the binary fraction 1011.1011 to two fractional bits, for ex-
ample, results in 1011.11.

RPG—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

232

appendix

RS-232—an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

rung—a grouping of PC instructions which controls one output. This is
represented as one section of a logic ladder diagram.

S

scaled up—referring to a number which has been multiplied by a scale fac-
tor for processing.

scaling— multiplying a number by a fixed amount so that a fraction can be
processed as an integer value.

scan time—the time necessary to completely execute the entire program-
mable controller program one time.

scientific notation—a standard form for representing any size number by a
mantissa and power of ten.

self-diagnostic—the hardware and firmware within a controller which
allows it to continuously monitor its own status and indicate any fault which
might occur within.

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and are called semiconductors.

semiconductor device—an electronic device in which the characteristic
distinguishing electronic conduction takes place within a semiconductor.

sensor—a sensing element, a device which senses either the absolute value or
the change in a physical quantity, and converts that change into a useful
signal for an information-gathering system.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. contrast with parallel.

serial operation—type of information transfer within a programmable con-
troller whereby the bits are handled sequentially rather than simultaneous-
ly, as they are in parallel operation. Serial operation is slower than parallel

233

appendix

operation for equivalent clock rates. However, only one channel is required
for serial operation.

series circuit—a circuit in which all parts are connected end to end to pro-
vide a single path for current.

shift and add— a multiply method in which the multiply is achieved by shift-
ing of and addition of the multiplicand.

shift register—a program, entered by the user into the memory of a pro-
grammable controller, in which the information data (usually single bits) is
shifted one or more positions on a continual basis. There are two types of
shift registers: asynchronous and synchronous.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (—) and 0 is positive { +).

sign extension—extending the sign bit of a two’s complement number to the
left by a duplication.

sign flag-—a bit in the microprocessor used to record the sign of the result of a
machine-language operation.

sign-magnitude—a nonstandard way of representing positive and negative
numbers in microcomputers.

signed numbers—numbers that may be either positive or negative.

significant bits—the number of bits in a binary value after leading zeros
have been removed.

significant digit—a digit that contributes to the precision of a number. The
number of significant digits is counted beginning with the digit contributing
the most value, called the most significant digit, and ending with one con-
tributing the least value, called the least significant digit.

silicon controlled rectifier—SCR. A semiconductor rectifier that can be con-
trolled; it is a pnpn four-layer semiconductor device that normally acts as an
open circuit, but switches rapidly to a conducting state when an appropriate
gate signal is applied to the gate terminal.

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer

234

appendix

simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

sink—a device that drains energy off a system; a device that switches a load
to an absorbing material, such as a ground.

software—refers to the programs that can be run on a computer.

solid state devices (semiconductors)— electronic components that control
electron flow through solid materials such as crystals; e.g., transistors,
diodes, integrated circuits.

SOS—silicon on sapphire. A semiconductor manufacturing technology in
which metal oxide semiconductor devices are constructed in a thin single-
crystal silicon film grown on an electrically insulating synthetic sapphire
substrate.

source program—the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

special purpose logic—proprietary features of a programmable controller
which allow it to perform logic not normally found in relay ladder logic.

SPOOL-—acronym for Simultaneous Peripheral Output, On-Line. Used to
overlap processing, typically, with printing.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

start-up—the time between equipment installation and the full operation of
the system.

state— the logic 0 or 1 condition in programmable controller memory or at a
circuit’s input or output.

status register—the register that contains the status flags set and tested by
the CPU operations.

stepper motor—a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines

the tracks on a disk.

storage—see memory.

235

appendix

strip printer—a peripheral device used with a programmable controller to
provide a hard copy of process numbers, status, and functions.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once. Similar to
a macro.

substrate—the physical material on which a microcircuit is fabricated; used
primarily for mechanical support and insulating purposes; however, semicon-
ductor and ferrite substrates may also provide useful electric functions.

subtract with carry—a machine-language instruction in which one operand
is subtracted from another, along with a possible borrow from the next
lower byte.

subtrahend—the number that is subtracted from the minuend.

successive addition—a multiplication method in which the multiplicand is
added a number of times equal to the multiplier to find the product.

surge—a transient variation in the current and/or potential at a point in the
circuit.

synchronous shift register—shift register which uses a clock for timing of a
system operation and where only one state change per clock pulse occurs.

syntax—the term is used exactly as it is used in English composition. Every
language has its own syntax.

system—a collection of units combined to work as a larger integrated unit
having the capabilities of all the separate units.

system software—software that the computer must have loaded and run-
ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

236

appendix

tape reader—a unit which is capable of sensing data from punched tape.

TeletypeTM—a peripheral electromechanical device for entering or output-
ting a program or data in either a punched paper tape or printed format.

termination—1) the load connected to the output end of a transmission line
2) the provisions for ending a transmission line and connecting to a bus bar
or other terminating device.

text editor—see word processor.

thumbwheel switch—a rotating numeric switch used to input numeric in-
formation to a controller.

timer—in relay-panel hardware, an electromechanical device which can be
wired and preset to control the operating interval of other devices. In the
programmable controller a timer is internal to the processor, which is to say
it is controlled by a user-programmed instruction. A timer instruction has
greater capability than any hardware timer. Therefore, programmable con-
troller applications do not require hardware timers.

time sharing—refers to systems which allow several people to use the com-
puter at the same time.

track-—a concentric area on a disk where data is stored in microscopic mag-
netized areas.

transducer—a device used to convert physical parameters, such as
temperature, pressure, and weight into electrical signals.

translator package—a computer program which allows a user program (in
binary) to be converted into a usable form for computer manipulation.

transistor—an active component of an electronic circuit consisting of a small
block of semiconducting material to which at least three electrical contacts
are made, usually two closely spaced rectifying contacts and one ohmic
(non-rectifying) contact; it may be used as an amplifier, detector, or switch.

transistor-transistor logic—TTL. A logic circuit containing two transistors,
for driving large output capacitances at high speed. A family of integrated
circuit logic. (Usually 5 volts is high or 1 and 0 volts is low or 0; 5V =1,
ov=0).

237

appendix

TriacTM__a General Electric trademark for a gate controlled semiconduc-
tor switch designed for alternating current power control; with phase con-
trol of the gate signal, load current can be varied over a range from 5 percent
to 95 percent of full power.

truncation— the process of dropping bits to the right of a bit position. Trun-
cating the binary fraction 1011.1011 to a number with fraction of two bits,

for example, results in 1011.10.

truth table—a table defining the results for several different variables and
containing all possible states of the variables.

TTL—see transistor-transistor logic.
TTY-—an abbreviation for Teletype.

two’s complement—a standard way of representing positive and negative
numbers in microcomputers.

U

unsigned numbers—numbers that may be only positive; absolute numbers.

utility—a program designed to aid the programmer in developing other soft-
ware,

UV erasable PROM—an ultraviolet erasable PROM is a programmable
read-only memory which can be cleared (set to 0) by exposure to intense
ultraviolet light. After being cleared, it may be reprogrammed.

\Y%

variable—a labeled entity that can take on any value,

volatile memory—a memory that loses its information if the power is re-
moved from it.

volt—the unit of potential difference or electromotive force in the meter-
kilogram-second system, equal to the potential difference between two
points for which 1 coulomb of electricity will do 1 joule of work in going
from one point to the other.

238

appendix

voltage—potential difference or electromotive force capable of producing a
current; measured in volts.

voltage drop—the voltage developed across a component or a conductor by
the flow of current through the resistance or impedance of the component or
conductor,

von Neumann, John (1903-1957)—Mathemetician. He put the concept of
games, winning strategy, and different types of games into mathematical

formulae. He also advanced the concept of storing the program in memory
as opposed to having it on tape.

w

weighted value— the numerical value assigned to any single bit as a function
of its position in the code word.

word—a grouping or a number of bits in a sequence that is treated as a unit
and is stored in one memory location. If the CPU works with 8 bits, then the
word length is 8 bits. Common word sizes are 4, 8, 12, 16, and 32. Some are
as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X

XOR-a Boolean function. Acronym for eXclusive OR. Similar to OR but
answer is high (1) if and only if one line is high.

Z

zero flag——a bit in the microprocessor used to record the zero/non-zero
status of the result of a machine-language instruction.

zero page—refers to the first page of memory.

239

INDEX

241

Accountants, program for, 10-11
program listing, 12

Action games, using reverse video with, 92

Addition program for children, 31-33

Address bus, 128, 130

Address lines, 130

Analysts, program for, 10-11
program listing, 12

Array, 3, 101, 102

ASC(32). 16

ASCHI character, 66

ASCH code, 15, 16

ASCH format, 182

Assembler, 154, 165

Assemnbly language, 154, 174

Assembly-language program, 155

Assembly-language routine, 63, 64, 153, 155, 166

Bar graph, horizontal, 76, 77
program listings, 81

Bar graph, vertical, 75
program listings, 80, 81

INDEX

Barden, William, Jr., TRS-80 Assembly Language Program-

ming, 154
Baseball statistics program, description of, 99-102
program listing, 103-107

BASIC, 16, 87, 88, 89, 147, 149, 153, 154, 155, 170

with macros, 175
BASIC interpreter, 23, 64, 138

BASIC program(s), 3, 21, 89, 138, 139, 149, 153, 154, 155,

165, 166
BASIC ROM, 138
Betting, in a horse race, 37-38

Binary approach to successive approximation, 111, 114

Binary arithmetie system, 155
Bit, most significant, 160
Bookkeepers, program for, 10-11
program listing, 12
Byte(s), 23, 64, 65, 85, 89, 147, 149, 160, 165
high-order, 86
least significant, 159
low-order, 86
most significant, 159
synchronization, 170
Character string replacement, 174
CHR$(8), 15, 16
CHR$(27), 15
CHR3(30), 15
CHR$(32), 16, 149
CHRS$(45), 76
CHR$(46), 76
CHR$(58), 76
CLEAR key, 63, 65, 67
Climate contral system, 127, 136-137
CLOAD(s), 65, 165
Clock, 85
Clock pulse(s), 88, 134
CLS, 74,75

243

CPU, 85, 86, 87. 88, 130, 159
CRT.87.89
CSAVE, 63, 64, 65
CTR-80, 171
Data,
dot, 92
INPUT, 15
numerical, 10
Duata bus, 128, 130, 131, 134
Data lines, 130
DATA statement(s), 63, 139
DEBUG. 159
Digital clock, 137
Digital-to-analog converter circuit, 137
Disk controller, 85
Division, 153
in Level I1, 155
program for children, 31-33
DOS, 102
Edge card connectors, 128
EDTASM, 154
EDTASM-PLUS, 154
8080, 159
80 Microcomputing, 24, 63, 155
Error trap(s), 113, 114
Error trapping routine, 24
Errors, /0, 99
Etch-A-Sereen, 63
Expansion interface, 85, 89, 127
EXTRAS IGNORED error message, 148
File name, description of program, 170171
BASIC program listing, 173
machine-language program listing, 172
555 timer cirenit, 134, 137
FOR-NEXT loap, 137
FOR statements, 21
Gems, investing in, 3
Gold, investing in, 3
evaluating stock items in, 6
GOTO, 64, 115
Graph generator, description of, 74-79
program listings, 80-81
Graphics, 63, 92
how to store and recall, 147-149
program listings to store and recall, 150-152
TRS-80, 76
Graphics dots, 37
Hard copy, 138
Hardware modification for reverse video, 9295
Horse race game, 37-38
program listing, 39-45
IC. 128, 130
DS Paper Tiger, 10
IF statements, 21, 30, 64
INKEY routine, 63, 65
INKEYS, 16
Input(s), 131

Input line string, 179
INPUT statement, 16, 21, 148
Intel 80 series of microprocessors, 159
Interface unit for TRS-80, 127-140
program listings, 141-143
uses for, 127, 140
Interrupt, manual, 86, 89
Interrupt circuit
manual, 87
software, 89
Interrupt-handling board, 85, 87, 88, 89
Interrupts of TRS-80, 85-89
program listing, 90-91
Interrupt processor, 87, 88, 89
Inverter, 92, 94
1O devices, 183
1O errors, 99
Junk box, 137
KBFIX, 166
Keyboard debouncing, 165-166
program listing, 167-169
KILL, 64
Klingon(s), 46, 47
LDR (light dependent resistor), 137
LED, 137
Level I manual, 130
Level 11 BASIC, 21, 154
Level 11 interpreter, 21, 22
Level 11 program, 21
Line printer, 132-column, 10
LLIST, 138
Loans,
APR (Annual Percentage Rate), 108, 111, 114
balloon payment(s), 109, 111, 114
end of year interest, 112-113
errors in, 108
finding out the cost of, 108-115
five basic parts of, 108-109
monthly payments, 108, 109-110
number of payments, 108, 111, 114
principal, 108, 112
program listing, 116-123
LPRINT, 10, 115, 138
LPRINT USING, 10, 115
Machine language, 147, 160
Machine-language program, 89, 138, 148, 165, 170
Macro(s),
description, 174-191
history, 174
program listing, 192-199
use with computer languages, 174
Macro command, 179
Macro definition, 180
Macro-instruction, 174
Macro invocation, 179
Macro language, 175
Macro parameters, 174, 183
Macro processor, 174
Manual interrupt, 85, 88
Mathematics program for pre-school children, 28-30
program listing, 31-33
Microcomputing, 127
Microsoft, 154

index

244

Model 1, 47
Model railroad speed control, 127, 137-138
Model 111, 46, 99
Model 33 Teletype TM, 131132, 134
Model 33 TTY, 138
Modulation envelope graph, 75
program listing, 80
Module routines (in programming), 3
Multiplication program for children, 31-33
Numerical expression, used as input, 21-24
program listing, 25-27
One-shot, 86
PEEK, 16
PlAs, 85
Platinum, evaluating stock items in, 6
POINT statements, 75
POKE(s), 22, 23, 63, 89, 147, 148, 165, 171
Port(s),
1/0, 89
memory mapped /0, 138
output, 136
parallel input, 127, 131
parallel output, 127, 131
Port address, 130
Precious metals, 3
evaluating stock items in, 6
Prime number(s),
definition of, 153
how to calculate, 153-155
program listings, 156-158
PRINT, 21, 76,.113, 115
PRINT USING, 115
Radio Shack, 16, 89, 137
Radio Shack Editor/Assembler, 138
Radio Shack line printer, 138
Radio Shack Line Printer 11, 99
Radio Shack modification to cassette player, 171
Radio Shack TRS-80, see TRS-80
Radio Shack’s EDTASM, 154
Radio Shack's KBFIX, 165
Radiio Shack's 1 G monitor, 159
RAM, 138
REM, 149
REM statements, 67
REMark statements, 63, 64

RESET, 75

RESTORE, 3

Reverse video hardware modification, 92-95
RND, 76

ROM, 155, 166, 170
ROM routines, 138
Scrolling, 16
Serial data, 134
SET, 75, 76
SlAs, 85
Silver,
computing the cost of, 3, 6-9
investing in, 3
Sine wave, graph of, 74
program listing, 80
Slide show program, description of, 63-67
program listing, 68-73
Softball statistics program, description of, $9-102

index

program listing, 103-107
S-100 bus, 89
Source file, 174
Square root(s), 153, 154
in Level I1, 155
Star Dreck game, description of, 46-47
program listing, 48.61
String, 23
input, 16
String space, 74
Subtraction program for children, 31-33
Successive approximation, binary approach to, 111, 114
SYSTEM format, how to save BASIC programs in, 165-166
program listing, 167-169
T-BUG, 149
Text, how to store and recall, 147-149
program listings, 150-152
‘THEN, 64
Triac, 137
‘Tri-state buffer, 87
Tri-state driver, 88
TRS-80, 67, 85, 89, 92, 128, 130, 131, 136, 138
interface unit for, 127-140
interrupts of, 85-91
Model 111 16K, 99
16K, 159
TRS-80 Assembly Language Programuming (Barden), 154
‘TRS-80 expansion edge connector, 89
TRS-80 Level I, 10, 127
TRS-80 microcomputer, 3
TRS-80 single disk system, 183
TRS-80 technical manual, 92
TSTEP module (Allen Gelder & Co.), 159
TTL output gate, 89
TTY, 134, 139
TTY handler program, 139
TTY interface board, 127, 131-136, 138
program listings, 141-143
software for, 138-139
UART(s), 132, 133, 134, 135, 136
UART circuit, 138
USR function, 147, 148, 171
Utility control statement, 174
Utility routine, 174
Variable(s),
numerical, 22
string, 21
VARPTR function, 22, 23
Vocabulary builder, 15-16
program listing, 17-20
Z-80, 85, 128, 154, 155, 175
capabilities of, 159, 161
Z-80-chip, 154
Zilog, 159

INDEX COMPILED BY NAN MCCARTHY

245

~WAYNE GREEN BOOKS

B qoyoorh Encyclopedia for The TRS-80*—A ten-volume series to
T 80 be issued every two months starting July 1981. The
Encyclopedia contains the most up-to-date information
on how to use your TRS-80".

40 Computer Games from Kilobaud Microcomputing—
Games in nine different categories for large and small
systems, including a section on calculator games.

Understanding and Programming Microcomputers—
A well-structured introductory text on the hardware and
software aspects of microcomputing.

Some of the Best from Kilobaud Microcomputing—
A collection of articles focusing on programming tech-
niques and hardcore hardware construction projects.

How to Build a Microcomputer and Really Understand
It—A technical manual and programming guide that
takes the hobbyist step-by-step through the design, con-
struction, testing and debugging of a complete

Toous it microcomputer system (6502 chip).

TeeHaUES
c$

Tools and Techniques for Electronics—Describes the
safe and correct ways to use basic and specialized tocls
for electronic projects as well as specialized metal work-
ing tools and the chemical aids which are used in repair
- shops.

Annotated BASIC—A New Technique for Neophytes—Two volumes ex-
plaining the complexities of modern BASIC, including complete TRS-80*
T o2l T BACIO mvnorome Lach nracram is annotated and fAoweharted tn

A VTR kA ASSMC LN rfl'v'élc‘.,'.:::ﬁ SRS UES S LRI st s

explain the workings of the program. By following the programs and an-
notation, you can develop new techniques to use in your own programs—or
in modifying commercial programs for your specific use.

Kilobaud Klassroom—A Practical Course in Digital Electronics.—This
popular series, first published in Kilobaud Microcomputing, combines
theory with practice. It starts out with very simple electronics projects and,
by the end of the course, you'll construct your own working microcomputer!

The New Weather Satellite Handbook— This handbook contains all the in-
formation on the most sophisticated spacecraft now in orbit. It is written to
serve both the experienced amateur satellite enthusiast and the newcomer.
The book is an introduction to satellite watching that tells you how to con-
struct a complete ground station. An entire chapter is devoted to microcom-
puters and the Weather Satellite Station.

To order call Toll Free 800-258-5473.

“TRS-80 is a trademark of Radio Shack Division of Tandy Corp

AJAHNS VIAIdOTIAONH

pasead 'y 3 payshes ‘g [10IPaWs g [pajujoddesip ‘1 Vosvd 0O NVHLYO4 IANQUIISSY (]
07 [0 3103s v Uo IpVoIPU} ISDId Judpa) 07 3y nofi pinom (sjabonbun) Joym 'n
Jsuonpsadxa moR yoypw mpadoiofisug ay; fo Anjonb yousao sy saoq ‘W

H1304 O 7106800 O
u o i fmnn BUYIO LOTd O aisvd O
o d e oL TVYOSvd O NVYLYOA O Pquisssy
. u o afenfiue 2asn nofi op (sjefonbun) joym 4
=] jm] =] aoepaIUY
] Im} 0 suopreoy|ddy swop
a m] a arempreH R - te 1Bd J YiedH g
]]] sopydesn X013X (J Wdl O ey [
8] @] m] sauren 08-SuL O pIeyoRd NSIMIH (O addy g
] [m] O uofjeanpy Jasooyo nofi pinom waishs joym “amdwososonu puoppo up fing 0} asam nofi ff g
]] r ssauisng
JS2J9JU] JSO[Y 1S0JIU] JEIIPOI IS2IDIU] ONJINWT
mofi 0 anppa pup jsauaiu) s7) fo sway ul vipadojfisug aY) fo UONDAS YID3 DDA 3SV3]] T 1m0 19uHd (3 FSIP P3XLL O
Addoy A8uis O WIpoW [soepalut uojsuedxy 3
ON [J S3A [JSTIPIS Bunwiupaboud mofi anosduiy o1 nofi padiay vipadopfiouy sy soy -y pou punog sons for [AAUD NSIA O

sumo nofi op (sjpsaydiiad Joym 'q
ON [J S9X [Juonpjuawmnoop ybnoua aapy swoibo.sd pup sapup ay1 1oy 10af nofi og '
HerQ dge O H91 O ¥y 0]

Wk Isnp xajdwod oo, aduris ooy, 3 Jonpy usndwos anofi saop finapdoa Aucwaw yonw moy D
‘2.0 vipadojpfioug ay) Uy s8I YL
YRS O R 11 194277 1] 19PO [19indwiod J0jo) O 11 [9497T | [9POW O
BYI0 ULy [EUCSIOd (] Jooyag/uGnEINPE [1 RAXT I [9POI [T 11 19POW (1 1 [2A9T 1 1SPOI (]

sjiomjeas] suopedydde swoy [ssauisng pakojdiajes] Jumo nofi op 0g-SYL (S/1I2PON oYM 'd

208-SH.L ay3 fo asn fupunud unofi sy oym H
13410 O 21015 B U 1} MBS [majaal joog [}

HI¥O4 O 10800 O YInout jo pIom [WO o saujzeSeut uj spy)
EeLtle) LOTd O oIsvda Zoipadofiouyg ay1 Inoqo wima] nofl pip Moy 'y

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

PLY MAIL

PERMIT NO. 81 PETERBOROUGH NH 03458

E

FIRST CLASS

POSTAGE WILL BE PAID BY ADDRESSEE

AYNE
Summer St.
Peterborough NH 03458

The real value of your com-
puter lies in your ability to use it.
The capabilities of the TRS-80*
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books. -

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

