ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80*

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

— VOLUMEd

*Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 4

[

AN I
PETERBOROUGH NH 03458

N

*Trademark of Tandy Corp.

FIRST EDITION
FIRST PRINTING DECEMBER 1981
Copyright ©1981 by Wayne Green Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey and Katherine Putnam
Technical assistance by Jake Commander
and Kenniston W. Lord Jr., CDP
lHustrations by Howard Happ
Typeset by Karen Stewart

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green...... v

BUSINESS

Mailing List for a Small Business
Charles P. Knight. i 3

Business Forms—The Statement
R. L. Conhaim. i 15

EDUCATION

Grade Calculator
Robert C. Jacobs, Ph.D.. 21

Classroom Doodles
Ann Rosenberg......... 27

GAMES
Asteroid Adventure
Greg Perry and Don Taylor. ccccciuin. 49

Compukala
Peter K. Moller. i, .. 54

Puzzler
JamesP. Morgan. 62

GRAPHICS

On Your Mark, Get Set, and Go
Gerald DeConto. i 71

HARDWARE

Program an EPROM
Dr. Steven A. Larson N3SL. 79

vii

contents

HOME APPLICATIONS
Pari-Mutuel

Arthur Welcher. e 93
Income Tax Withholding

Cliff DeJong. 100
INTERFACE
An Automatic Cassette Tape Interface

Dana W. Zimmerli. 119
Send and Receive RTTY in BASIC

Louis C. Graue K8TT0t 122
TUTORIAL
A Better Way

Robert V. Meushaw., 133
Dor’t Be a Slow POKE, Take a PEEK at Your Computer

Hunt K, Brand. i, 147
Hairy Bi-Nary and Hexy-Decimal

Joe D. Fugate.162
Instant Indexer: Programming in Disk BASIC

Del Gomes, John Jewelland Alan Zendner. 166
UTILITY
Uni-Key for the Model 1

Rowland Archer Jr.. i 185
BREAK Disable

Jim Rastin. e 197
Z-80 Disassembler

Daniel Lovy. i 199
APPENDICES
Appendix A. 217
Appendix B. 218
INDE X . e 255

viil

Encyclopedia
Y Lgader“"

The editors of Wayne Green Books want to help you use the programs in
your Encyclopedia for the TRS-80*. So to help you maximize the use of your
microcomputing time, we created Encyclopedia Loader.™

By a special arrangement with Instant Software™, Wayne Green Books
can now provide you with selected programs contained in each volume of
the Encyclopedia for the TRS-80 on a special series of cassettes called
Encyclopedia Loader™. Your encyclopedia provides the essential documen-
tation but now you’ll be able to load the programs instantly. Each of the ten
volumes of the Encyclopedia will have a loader available.

With Encyclopedia Loader™ you’ll save hours of keyboard time and
eliminate the aggravating search for typos. Encyclopedia Loader™ for
Volume 4 will contain the programs in the following ar*icles:

Mailing List for a Small Business

Business Forms-—The Statgment

Grade Calculator

Classroom Doodles

Asteroid Adventure

Compukala

On Your Mark, Get Set, and Go

Program an EPROM

Pari-Mutuel

Income Tax Withholding

Send and Receive RTTY in BASIC

Instant Indexer: Programming in Disk BASIC
Don’t Be a Slow POKE, Take a PEEK at Your Computer

BREAK Disable

Z-80 Disassembler
Encyclopedia Loader™ for Volume 1 EL8001 $14.95
{plus $1.50 postage & handling)
* Encyclopedia Loader™ for Volume 2 EL8002 $14.95
(plus $1.50 postage & handling)
Encyclopedia Loader™ for Volume 3 EL8003 $14.95
(plus $1.50 postage & handling)
Encyclopedia Loader™ for Volume 4 EL8004 $14.95
(plus $1.50 postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call 1-800-258-5473.

_ *TRS-80 is a trademark of Tandy Division of Radio Shack.

BUSINESS

Mailing List for a Small Business

Business Forms—
The Statement

BUSINESS

Mailing List for a Small Business
by Charles P. Knight

here are hundreds of mailing list programs for the TRS-80, offering

all sorts of advanced features, and usually, advanced price tags as
well. These are fine if you have been in business a long time and have a
customer list of moderate size, but they offer little advantage for the new
business needing only an “occupant” mailing. Most new, small (1 or 2 em-
ployees) neighborhood businesses begin their advertising with circulars,
but it is hard to determine whether the piece has been placed at the
customer’s door or down the nearest manhole cover.

The public library or city hall usually contains ample information about
streets and valid house numbers to build a simple occupant mailing list for
the particular area in which your business is located. Maillist is a program
to manage this list while providing rapid ways to enter your data. The
resulting labels will be addressed to OCCUPANT or any other string of up
to 26 characters in length. Look at your latest Radio Shack flyer to see this
type of list in use.

The program requires that you create a separate disk file every time
there is a change in any data field on the label other than the actual house
number. Since the street name, city, state, and zip code lines are stored
only once per data file, and the occupant field is provided by the program,
you can have an enormous number of individual addresses stored in a very
small space on a disk. You will probably run out of file directory entries
long before you run out of space on your diskette. These files will usually
contain only one or two hundred house numbers and will only occupy a
gran or two of disk space. NEWDOS80 users should specify DDGA = 3 at
FORMAT time to overcome this difficulty.

Using the Program

The real splendor of this program is the ease with which data is entered.
When you first run the program, you are greeted with a title logo and asked
if you want instructions. After this, you reach the main menu where you
may chose one of seven options. The first of these is the data entry option.
Select this option and you will be asked to enter the city, state, and zip
code for this file. You may input as many characters (including commas)
as you wish, but the data must be applicable to all the addresses you will
be entering for this file. If you wish to add a file already in memory, enter
ADD-ON (use uppercase only), and the data in memory will be appended.

3

business

The previous entry will not be shown before the first data item is typed,
but the information in the upper right corner of the display will be correct.
Next, you will enter the name of the street. A new file has to be created

when you change the street, city, or zip code.
Next, you are presented with an envelope drawn on the screen to

simulate addressing a piece of mail. Notice that the complete address is
already entered except for the house number. In the upper left of the
screen, the last item entered is displayed. Before the first item is entered,
XXXXX is displayed. The upper right corner keeps you notified of the
number of entries you have made, and the number of entries you may still
make before you must create a new file. You are also reminded that press-
ing @ will cause you to exit from this phase of the program. The message
at the bottom of the screen reminds you that Microsoft BASIC will occa-
sionally hang up to gather string space without warning. This is referred
to as garbage collection and is rarely a problem in this program, but the
presence of this message will keep the user from pressing the reset button
and losing an hour’s work for nothing. When you have entered all the
house numbers on the street, enter @, and you will be prompted for a
filespec for this file. I usually use the first eight characters of the street for
this name and use the /EXT to denote the difference between street,
boulevard, avenue, circle, etc. If, for some reason, you do not wish to
write this data to disk just yet, enter @ for the filespec, and an error trap
will return you to the menu without writing anything to disk. After the file
is written, you will be returned to the menu, where you may enter data for
another street, or elect to print labels, align the printer, end the program,
write the file to disk again (for backup under another filespec, on a dif-
ferent drive or after sorting), or sort the street numbers.

The Sort Routine

House numbers are usually entered numerically and will not need sort-
ing; however, I have provided a simple sort routine for those who like to
enter data backward, but want it sorted forward. The routine, taken from
the sort algorithm in David Lien’s book Learning Level 11, is a slow sort
made slower by the constant displaying of the sorting process on the
screen. The fact that the strings are sorted on their numeric values rather
than their string values doesn’t help either, but if they weren’t, 1001
would come before 304. A typical 50-number sort takes only about a
minute, so it isn’t intolerable. The large SORT displayed on the screen
during sorting helps tell at a glance what’s going on just in case you're
doing something else and want to check on the progress from across
the room.

After sorting, you will probably want to write the sorted file to disk.
Option 7 is provided for this purpose. On all writes to and reads from the

4

business

disk, the items being read/written are dynamically displayed at the upper
left-hand corner of the screen. By watching the data being read in from
disk, you can really come to appreciate the speed of today’s modern
microcomputer.

Before printing labels, it is usually necessary to align them in the
printer. This program provides a routine which outputs three strings of 24
Xs to allow vertical and horizontal centering of the label. When in this
routine, each time you press the ENTER key, another label of Xs will be
printed. Pressing the space bar returns you to the menu, where you may
select option 3 to print out the labels for the entire file.

Always use option 6 to end the program. This option releases the string
space cleared for data storage and leaves maximum memory available for
the next program. This also wipes out all the stored data (but not the pro-
gram), so be sure you have saved the file before exiting.

The Maillist Program

The program begins at line 80. First, 50 bytes of string storage space are
cleared so that two thirds of available memory can be calculated in the
next statement, If this were not done, the second time the program was
run, fewer bytes would be cleared than the first time. Line 130 is the
beginning of the program after initialization. Should you ever find
yourself at B ASIC ready and do not want to lose data in memory, type
GOTO130 to get back to the menu without loss of data.

Lines 170 0 470 are the data entry section of the program, with line 340
being the entxy point if only a file write is to be done. The statement at line
210 allows you to add on to a file already in memory, as noted above.
Lines 350 to 470 contain the routine to write the data to disk. The first
item written is the city, state, and zip code string (CZ$), and the next item
isthe street n ame string (ST$). The house numbers are stored individually.
For those of you who use NEWDOS80 and compile your programs with
Microsoft’s BASIC compiler, there is no LINEINPUT# incompatibility
here because CZ$ and ST$ are the only values that are LINEINPUT, and
they are never long enough to span a sector. I've tried it, and it works
every time w-ith both the early and later versions of this compiler.

Lines 480 to 600 are the routine to load a file from disk. While loading a
file, the infoxrmation is dynamically displayed in the upper left corner of
the screen. I have used this type of dynamic display throughout the pro-
gram primarily because I like it, but it also assures the operator that some-
thing is goirag on and it can be a great time-saver when debugging
programs.

Lines 610 %o 720 contain the routine to print the labels. If you wish to
stop printing | simply hold down the @ key, and you will return to the
main menu. "The label is displayed on the screen while it is being printed.

5

business

Lines 730 to 850 print a label consisting entirely of 24 Xs, making it easy to
get the label centered in the printer correctly. Pressing the space bar
returns you to the menu.

The remainder of the program consists of subroutines that are called by
the main program. Beginning at line 890 is the data input routine. All data
entered into the program come through this routine. The program passes
the values S and E to the subroutine, informing it where to start and end
the input on the screen. This limits the length of each item input to that
desired by the calling routine. TT$ contains the data which is passed back
to the calling routine, and it is that routine’s responsibility to deal with it
according to its needs. If the data were numeric, as with a menu selection,
then the value of TT#$ is taken. If string data is desired, the string you wish
to contain the data is set equal to T'T$. This routine will only return to the
calling routine when the ENTER key is pressed.

Line 1020 is the beginning of the routine that prints the logo and copy-
right notice at the beginning and the end of the program. Line 1200 starts
the routine to print the instructions on the screen. When you key this pro-
gram in, it would be advisable to type in all spaces and characters exactly
as shown to preserve the tight screen formatting I have used. After the pro-
gram is up and running, you can modify it. It is much easier to modify a
program that works than one that doesn’t. The main menu is printed in
lines 1400 to 1510. The error trap in line 1690 will always return you to the
main menu if any error occurs. For this reason, it is recommended that you

6

business

not key in line 110 (the ONERRORGOTO statement) until you have
checked for syntax and other typographical errors.

The sort routine begins in line 1530. The word SORT is printed in large
graphic characters on the screen to inform the user that the sort is in prog-
ress. The values of X and Y are displayed on the screen at all times along
with the the value being sorted on the left and the item being compared to
it on the right. If the item on the right is less than the item on the left, the
computer will exchange the two values, thus accomplishing the sort. If the
program seems to hang while sorting a large file, give it some time before
hitting the reset button, because the computer might be in a garbage col-
lection procedure and will resume normal operations in a couple of’
minutes without operator intervention.

This program was written with the needs of the small business in
mind. It emphasizes ease of data entry over flexibility; after all, the salary
expense for a secretary in a new business is a more significant portion of
available capital than in an older establishment. These data files will not
grow out of date as with other types of mailing lists, because if the
residence has not burned down or been otherwise destroyed, it still exists.
Today’s vacancy rates are low, so there should be a high rate of return on
advertising sent out in this manner. This program will be a great asset to
any small business owning a TRS-80.

Reference Line Number

00130 160, 1690

00140 140

00170 150

00200 200

00230 230

00250 210

00260 330

00290 310

00340 150, 310, 320

00360 360

00450 420

00480 150

00500 500

00560 600

00610 150

00720 660

00730 150

00750 750

00760 840

00820 850

00860 170, 340, 480, 610, 730
00890 200, 230, 360, 500, 630
00900 140, 310, 610, 1110
00910 910, 930 Table continued

business

00940 920

00950 920

00980 920

01020 120, 1520

01130 250

01200 1110

01370 1300

01380 1380

01390 130

01520 150

01530 150

01660 1640

01690 110

A 100, 140, 150

A$ 820, 830, 840

B$ 1650

C 900, 940

Cz$ 220, 260, 300, 380, 530, 700

E 140, 200, 230, 310, 360, 500, 610, 630, 900, 960, 1110

FS$ 360, 370, 500, 520

I 260, 270, 280, 310, 320, 340, 410, 550,
560, 570, 580, 590, 1610, 1620, 1630

M1 900, 910, 940, 960, 980, 990, 1000, 1010

NA$ 100, 260, 300, 630, 680

NU$(90, 100, 260, 310, 320, 420, 430, 440, 580
590, 660, 690, 1630, 1640, 1650

S 140, 200, 230, 310, 360, 500, 610, 630, 900, 980,
990, 1000, 1010, 1110

ST$ 240, 260, 300, 390, 540, 690

TI 340, 570, 650

TT$$ 140, 200, 210, 220, 230, 240, 310, 360, 500, 630
900, 940, 960, 990, 1010, 1110

WL 470, 570, 640, 1380, 1690

WL % 910

X 410, 420, 430, 440, 450, 650, 660, 690, 720,
1610, 1620, 1630, 1640, 1650, 1670

X$ 900, 910, 920, 950, 960

Y 1620, 1630, 1640, 1650, 1660

YZ 1090, 1520

Z 100

Table 1. Variables and references in Maillist

110
120
130
140

150
160
170
180
190
200

210

220
230

240
250
260

270
280
290

310

business

Program Listing

REM P R R R R R R R R R R R R R R s s SIS RS SRS R RS EE RS SR S N

REM £ SIMPLE OCCUPANT MAILING LIST o

REM «* COPYRIGHT (c) 1981 BY CHARLES P. KNIGHT **

REM x MINIMUM SYSTEM: TRS-80 32K %

REM o ONE OR MORE DISK DRIVES o

REM o 03/01/81 o

REM Kk kR AR AR R AR AXRRA A RN kA kA A bk hhk kA kX hkhkkkhkkkkdhk

CLEAR 50: .
CLEAR 2 * MEM / 3 Encyclopedia
DIM NU$(1500) Loader

DEFINT A - Z:

NA$ = "OCCUPANT":
NU$(0) = “XXXXX"
ON ERROR GOTO 1690
GOSUB 1020

GOSUB 1390

S = 863:

E = 864:
GOSUB 900:

A = VAL(TTS$):
IFAD>7ORACZI
THEN
140

ON A GOSUB 170,480,610,730,1530,1520,340

GOTO 130
GOSUB 860
PRINT @452,"ENTER CITY, STATE,
PRINT @516,"NAME OF STREET :";
S = 477:
E = 505:
GOSUB 890:
IF 77 = "
THEN

200
IF TT§ = "ADD-ON"
THEN
250
cz$ = TT$
s = 533:
E = 555:
GOSUB 890:
IF TT$ = "*
THEN
230
ST§ = " "+ TT§
GOSUB 1130
PRINT @64,NAS;:
PRINT @128,NU$(I)STS;" “;:
PRINT €192,02%;
I =1 +1
PRINT @115,1;:
PRINT €179,1500 - 1,

FAT R

PRINT @333,"ENTER NEXT ADDRESS OR " CHR$(34)"@" CHR$(34)" TO STO

P ENTRY";
PRINT ©0596,NAS;:
PRINT @667,ST$;:
PRINT @724,CZ%;
S = 660:
E = 666:
GOSUB 900:
1F TT$ =
THEN

290:
ELSE

IF 77% = "@"

THEN

340:

Program continued

320

330
340

350
360

370
380
390
400
410
420

430
440
450
460

470

480
490
500

510
520
530
540
550
560
570

580
590
600
610

620
630

business

ELSE
NUS(I) = TT$
IF NU$(1I) = “@"
THEN
340
GOTO 260
Tl =1 - 1:
GOSUB 860
PRINT @452,"ENTER FILESPEC FOR THIS FILE:";
S = 584:
E =S + 15:
GOSUB 890:
IF 77§ = "
THEN
360:
ELSE
FS§ = TT$
OPEN "0",1,FS$
PRINT #1,CZ$
PRINT #1,ST$
PRINT @O,"WRITING RECORD #";
FOR X = 1 TO 1
IF NUS(X) = "" OR NU$(X) = "@"
THEN
450
PRINT #1,NUS(X);",";
PRINT @16,X" "NUS(X)" "
NEXT X
CLOSE
FOR WL = 1 TO 1000:
NEXT WL:
RETURN
GOSUB 860
PRINT 0452,"ENTER FILESPEC TO BE LOADED:";
S = 584:
E =S + 15:
GOSUB 890:
IF 77§ = "*
THEN
500:
ELSE
FS$ = TT$
PRINT @O, "LOADING FILE #";
OPEN "I",1,FS$
LINE INPUT #1,CZ$
LINE INPUT #1,ST$
I =0
I =1+ 1
IF EOF (1)
THEN
CLOSE
Tl =1 - 1:
FOR WL = 1 T0 1000:
NEXT WL:
RETURN
INPUT #1,NU$(I)
PRINT B14,1" "NUS(I)" "y
GOTO 560
GOSUB 860:
PRINT ©452,"ALIGN LABELS IN PRINTER, THEN PRESS <ENTER>";:
§ = 496:
£ = 497:
GOSUB 900
PRINT @452, CHR$(249);:
PRINT ©452,"ENTER THE MESSAGE FOR THE FIRST LINE OF THE LABEL"Y;
§ = 517:
E =S + 32:
GOSUB 890:
IF TT$ = "

10

business

THEN

NA$ = "OCCUPANT":
ELSE

NA$ = TT$

640 FOR WL = 452 TO 644 STEP 64:
PRINT @WL, CHR$(249);:
NEXT WL
650 FOR X = 1 T0 TI
660 IF NU${Xx) = "@" OR NUS(X) = ""
THEN
720
670 IF INKEY$ = "@"
THEN
RETURN
680 LPRINT "":
LPRINT NAS$:
PRINT @452,NAS$;
6906 LPRINT NU${X);ST$:
PRINT @516,NUS(X)ST$" vy
700 LPRINT CZ$:
PRINT ©580,CZ%;
710 LPRINT
720 NEXT X:
RETURN
730 GOSUB 860
740 PRINT @452,"ALIGN LABLES THEN PRESS CENTER>";
756 IF INKEY$ < > CHR$(13)
THEN
750
760 LPRINT
770 LPRINT STRINGS$(24,88)
780 LPRINT STRING$(24,88)
790 LPRINT STRING$(24,88)
800 LPRINT
810 PRINT @516, "PRESS ENTER TO ALIGN AGAIN, SPACE BAR TO RETURN";
820 A$ = INKEY$
830 IF A$ = CHR$(32)
THEN
RETURN
840 IF A$ = CHR$(13)
THEN
760
850 GOTO 820
860 CLS
870 PRINT @320, STRING$(67,191);:
PRINT @445, STRING$(6,191);:
PRINT @509, STRING$(6,191);:
PRINT @573, STRING$(6,191);:
PRINT @637, STRING$(6,191);
PRINT @701, STRING$(3 191);
PRINT @704, STRING$(64,191);
880 RETURN
890 REM DATA INPUT SUBROUTINE
900 C = £ + 1 - S:
YT
PRINT @S STRING$(C,".");:
X$ = INKEY$
910 FOR WLy = 1 TO 5:
NEXT WL%:
PRINT @M1, CHR$(140);:
X$ = INKEYS$:
FOR WL% = 1 TO 5:
NEXT WL%:
PRINT @M1,%.";:
1F X$ I
THEN
910
920 IF X$ = CHR$(13)
THEN Program continued

11

business

940:
ELSE
IF X$ = CHR$(8)
THEN
GOSUB 980:
ELSE
GOSUB 950

930 GOTO 910
940 TT$ = LEFT$(TT$,C):
PRINT @M1, STRINGS(C - LEN(TT$),32);:
RETURN
950 IF ASC(X$) < 32 OR ASC(X$) > 122
THEN
RETURN
960 PRINT @M1,X$;:
TT$ = TTS + X§:
Ml = M1 + 1:
IF M1 > E
THEN
Ml = E
970 RETURN
980 M1 = M1 - 1:
IF M1 < S
THEN
M1 = §
990 PRINT @M1,".";:
TT$ = LEFT$(TT$,ML - S)
1000 IF M1 < S
THEN
Ml = S
1010 TT$ = LEFT$(TT$,ML - S):
RETURN
1020 CLS :
REM LOGO PRINTING ROUTINE
1030 PRINT @141, STRINGS$(35,191);:
PRINT @205, CHR$(191) STRING$(33,143) CHR$(191);
1040 PRINT @269, CHR$(191);" OCCUPANT MAILING LIST PROGRAM "

CHR$(191);
1050 PRINT @333, STRING$(6,191)" COPYRIGHT (c) 1981 BY " STRING$(6,19
1)
1060 PRINT €397, STRING$(8,191)" CHARLES P. KNIGHT " STRING$(8,191);
1070 PRINT @461, STRING$(12,191)" ALL RIGHTS * STRING$(11,191);
1080 PRINT @525, STRING$(13,191)" RESERVED " STRING$(12,191);:
PRINT @589, STRING$(35,191);
1090 IF Yz
THEN
RETURN
1100 PRINT B845,"D0O YOU NEED INSTRUCTIONS?™;
1110 § = 872:
E = 875:
GOSUB 900:
IF TT§ = "Y"
THEN
GOSUB 1200
1120 RETURN
1130 CLS :
REM DATA INPUT SCREEN
1140 PRINT @0,"LAST ADDRESS ENTERED :";:
PRINT @34, CHR$(191) STRING$(28,131) CHR$(191);
1150 PRINT @98, CHR${191);" ENTRY NUMBER :";:
PRINT €127, CHR$(191);
1160 PRINT @162, CHR$(191);" ENTRIES LEFT :";:
PRINT @191, CHR$(191);:
PRINT 8226, CHR$(143) STRING$(28,140) CHR$(143);:
PRINT @384, CHR$(191) STRING$(62,131);
1170 PRINT @447, STRING$(2,191);:
PRINT @511, STRING$(2,191);:
PRINT @575, STRING$(2,191);:
PRINT @639, STRING$(2,191);:
PRINT @703, STRING$(2,191);:

12

business

PRINT @767, STRING$(2,19
PRINT 8831, STRING$(2,1 1) STRING$(62 176);:
PRINT @895, CHR$({191);
1180 PRINT @969, “PROGRAM MAY PAUSE OCCASIONALLY TO PROCESS DATA";
1190 RETURN
1200 CLS
1210 PRINT 8199, STRING ,191);:
PRINT 8263, CHR$(1
PRINT @307, CHR${1
PRINT @327, CHR$(1
PRINT @371, CHR$(1
PRINT @391, CHR$(1
PRINT @435, CHR$(1
PRINT @455, CHR$(1
PRINT 8499, CHR$(1
1220 PRINT @519, CHR$(1
PRINT @563, CHR$(1
PRINT @583, CHR$(1
PRINT @627, CHR$(1
PRINT @647, CHR${191)
PRINT @691, CHR$(191);
1230 PRINT @711, STRING$(45,191);
1240 PRINT ©330,"THIS PROGRAM IS A SIMPLIFIED ENTRY";
1250 PRINT @394."0CCUPANT MAILING LIST SYSTEM. IN THE";
1260 PRINT @458, "ENTRY PHASE OF THE PROGRAM, YOU NEED";
1270 PRINT @522,"ONLY FILL 1IN THE BLANKS. THE HOUSE";
1280 PRINT @586, "NUMBERS TO BE ENTERED MUST ALL BE ON";
1290 PRINT @650,"THE SAME STREET AND HAVE THE SAME ZIP."}
1300 GOSUB 1370
1310 PRINT @329,"YOU WILL CREATE A SEPARATE NAMED DISK";
13206 PRINT @393,"FILE FOR EVERY CHANGE OF STREET NAME";
1330 PRINT @457,"CITY, STATE, OR ZIP CODE. THIS ALLOWS";
1340 PRINT @521,"PREVIOUSLY UNPRECEDENTED EASE OF DATA";
1350 PRINT ©585,"ENTRY. BE SURE TO SAVE THE FILE USING";
1360 PRINT ©649,"0PTION 2 BEFORE EXITING THE PROGRAM.";
1370 PRINT @903, "PRESS < > TO CONTINUEwesvensernosenananass
1380 PRINT @910,"ENTER";:
FOR WL = 1 TO 40:
NEXT WL:
PRINT 8910, STRING$(5,32);:
FOR WL = 1 TO 32:
NEXT WL:
IF INKEY$ < > CHR$(13)
THEN
1380:
ELSE
RETURN
1390 CLS
1400 PRINT ©8,"MAILING LIST MASTER MENU. ENTER SELECTION BELOW";
1410 PRINT @128, STRING$(64,191);
1420 PRINT @272,"<1> ENTER DATA FOR A NEW STREET";
1430 PRINT @336,"<2> INPUT DATA FROM DISK";
1440 PRINT @400,"<3> PRINT MAILING LABELS";
1450 PRINT @464,"<4> ALIGN LABELS ON PRINTER";
1460 PRINT @528,"<5> SORT HOUSE NUMBERS";
1476 PRINT @592,"<6> END PROGRAM";
1480 PRINT 8656,"<7> WRITE FILE TO DISK";
1490 PRINT @704, STRING$(64,191);
1500 PRINT @854,"SELECT :";
1510 RETURN

e e we e e ows «-w-............m

1520 YZ = - 1:
GOSUB 1020:
CLOSE :
CLEAR 50:
END

1530 CLS :

PRINT @192, STRING${12,191) STRING$(4,32) STRING$(8,191)

STRINGS(7,191) STRING$(3 32) STRING§(14,191)" " STRING$(16,191);
1540 PRINT @272, STRING$(2,191);

PRINT @285, STRING$(2,191) STRING$(3,32) STRING$(2,191);:

Program continued

13

1550

1560

1570

1580

1590

1600

1610
1620
1630

1640

1650

1660
1670
1680
1690

business

PRINT @302, STRING$(2,191);

PRINT @312, STRING$(2,191);:

PRINT @320, CHR$(191);:

PRINT @336, STRING$(2,191);:

PRINT @349, STRING$(2,191) STRING$(3,32) STRING$(2,191);:
PRINT @366, STRING$(2,191);

PRINT @376, STRING${2,191);:

PRINT @384, STRING$(12,191) STRINGS(4,32) STRING$(2,191);:
PRINT @413, STRING$(2,191) STRING$(3,32) STRING$(14,191);:
PRINT @440, STRING$(2,191);

PRINT @459, CHR$(191) STRING$(4,32) STRING$(2,191)

PRINT @477, STRING$(2,191) STRING$(3,32) STRING$(2 191)
STRING$(6,32) STRINGS(2,191);:

PRINT @504, STRING$(2,191);:

PRINT @523, STRING$(2.191);:

PRINT €523, CHR$(191) STRINGS(4,32) STRINGS(2,191);

PRINT @504, STRING$(2,191);

PRINT ©523, CHR§{191) STRING$(4,32) STRING$(2,191)

PRINT @541, STRING$(2,191) STRING$(3,32) STRING$(2 191)
STRING$ (6,32) STRING${2,191);:

PRINT @568, STRING$(2,191);

PRINT @576, STRING$(12,191) STRING$(4,32) STRING$(8,191)
STRING$(7,191) STRING$(3,32) STRING$(2,191) STRING$(6,32)
STRING$(2,191) STRING$(3,19 G$(9,32) STRING$(2,191);

PRINT @832, "SORTING PASS :";:
PRINT @870,"SORTING PASS :";:
PRINT @912, "MAKING";:
PRINT @927, “PASSES",
FOR X = 170 1 -1
FOR Y = X + 170 I
PRINT @714,NU$(X)" "y
PRINT @742,NU$(V)" "
PRINT @885,X" ";:
PRINT @847,Y" ";:
PRINT @920,1 - 1;
IF VAL(NUS(X)) <
THEN

)
1) STRIN
’

VAL(NUS$(Y))

RETURN
CLS :
PRINT 8512, "AN ERROR HAS OCCURRED. RETURNING TO MENU."“:
PRINT "ERROR : " ERR / 2 + 1" IN LINE # " ERL :
FOR WL = 1 TO 2500:
NEXT WL:
RESUME 130

14

BUSINESS

Business Forms—
The Statement

by R. L. Conhaim

A statement is a very useful business form. It indicates to the customer
exactly what is owed and what has been paid since the last report,
and gives the customer a chance to check his or her own records against
the supplier’s records.

The form of the statement depends on the type of business using it. As
used in most businesses, the statement is a compilation of open invoices
and a record of payments. In some cases, however, as with doctors and
dentists, the statement is a record of visits, charges, and payments. When
this is the case, the statement is the only record the patient receives.
Though the patient doesn’t receive an invoice, charges are made on the
books just as though invoices had been issued. Since invoices and charges

STATEMENT
FROM: DATE: 7/1/81
YOUR COMPANY NAME ACCOUNT NO. 1234
YOUR COMPANY STREET ADDRESS
CITY, STATE, ZIP

TO:

BECHHOLDT CONSTRUCTION CO.
6598 RIVERSIDE RD
VICTORVILLE

THIS STATEMENT REFLECTSPAYMENTS
RECEIVED THRU 6/25/81. IF YOUR
RECORDS DO NOT AGREE WITH OURS
CALL NANCY SMITH AT 227-8657.

OPENING BALANCE 56.89
INVOICENO. DATE YOURP.O.NO. CHARGE PAYMENT BALANCE

5678 6/18/81 B6784 121.34 178.23

56.89 121.34

5781 6/21/81 B6799 107.77 229.11

5799 6/23/81 B6807 54.29 283.40
LAST ITEM

PAY LAST AMOUNT IN BALANCE COLUMN

Figure 1. The statement

15

business

have been entered into the bookkeeping system by the time the statement
is issued, it is not a primary record. It is, however, useful for the customer
in reconciling his or her records. It is also a kind of low-key reminder that
invoices due have not been paid and can be an excellent form of public
relations when it carries a friendly tone.

The statement shown in Figure 1 contains more information than is
normally used in a statement, because it has been designed to give the
customer as much information as possible to check his or her records
thoroughly. A name and telephone number to call, if there is a dis-
crepancy in the records, is included for the customer’s benefit. The pro-
gram for the statement is quite straightforward. You would, of course, put
your own name and address in lines 130 through 150, and the name of
your bookkeeper and telephone number in line 300.

The INKEY function is used to reduce the number of key pressings
where the program asks if you have another entry or want to make another
statement. Because the statement is not a primary record and need not be
interactive with the bookkeeping system, the program does not provide for
recording the statement on disk or cassette. The statement has been
designed to mail in a number 10 (business size) window envelope. If your
printer provides for reduced size print, the statement could also be made
to fit in a smaller envelope.

/_ AT, DuE 51 | \

/

16

270

310

320
330
340

360

370
380
390

400
410
420
430
440

460
470
480
490
500
510
520
530
540
550
560

business

Program Listing. Statement program Encyclopedia
:XX
STATEMENT PRINT PROGRAM
'BY R. L. CONHAIM
'15506 KIAMICHI ROAD, APPLE VALLEY, CA 92307
PXXXXAXXXXXXX XXX XXXXXRXXX XXX KXXKAXKXXXXX XXX XX XXX XX
CLS
CLEAR 1000

INPUT "ENTER CUSTOMER'S ACCOUNT NUMBER";AN
INPUT "ENTER DATE";D1$%

INPUT “ENTER STATEMENT CLOSING DATE";D2$

LPRINT TAB(29) CHR$(O01);"STATEMENT"; CHR$(02):
LPRINT

LPRINT “FROM:"; TAB(46)"DATE:";D1$

LPRINT "YOUR COMPANY NAME"; TAB(46) "ACCOUNT NO.";AN
LPRINT "YOUR COMPANY STREET ADDRESS"

LPRINT “CITY, STATE, ZIP®

LPRINT

LPRINT

LPRINT STRING$(75,"-")

INPUT “CUSTOMER'S NAME";N$

INPUT "CUSTOMER'S STREET ADDRESS";A$

INPUT “CITY, STATE, ZIP®;C$

INPUT “ENTER OPENING BALANCE";BA

LPRINT “TO:":
LPRINT

LPRINT TAB(15)
LPRINT TAB{15) A$
LPRINT TAB{15)
LPRINT

LPRINT

LPRINT
LPRINT TAB(“THIS STATEMENT REFLECTS PAYMENTS"

25)
LPRINT TAB(25) "RECEIVED THRU ";D2%;".IF YOUR °
LPRINT TAB(25) “RECORDS DO NOT AGREE WITH OURS"
LPRINT TAB(25) "CALL NANCY SMITH AT 227-8657."
LPRINT
LPRINT
M$ = “BE, BEE.BE"
LPRINT TAB(46)"OPENING BALANCE"; TAB(61) USING M$;BA
LPRINT STRING$(75,"-"):
LPRINT
LPRINT "INVOICE NO."; TAB(19)"DATE"; TAB(31)“YOUR P.0.NO.";
TAB(47)"CHARGE"; TAB(55)"PAYMENT"; TAB(63)"BALANCE"

LPRINT STRING$(75,"-"):

LPRINT

PRINT "PRESS C FOR CHARGE, P FOR PAYMENT"

DEFSTR T

T = INKEYS:

IE T o an

THEN

390

IF T = "C* GOTO 430

IF T = "p" GOTO 520
GOTO 370

INPUT "INVOICE NUMBER";I1$

INPUT “INVOICE DATE";D3$
INPUT "CUSTOMER'S P.0.NUMBER";P$

INPUT "ENTER AMOUNT OF CHARGE®;CH
M$ = CRELBEE.HEC
BA = BA + CH
LPRINT I$; TAB(17)D3$; TAB(35)P$;
LPRINT TAB(43) USING M$;CH;
GOTO 550
INPUT "ENTER AMOUNT OF PAYMENT";PMT
LPRINT TAB(51) USING M$;PMT;
BA = BA - PMT
LPRINT TAB(61) USING M$;BA
PRINT “ANOTHER ENTRY? Y OR N" Program continued

17

business

570 T = INKEYS$:

IFT = "

THEN

570

580 IF T = "Y" GOTO 370
590 IF T = "N" GOTO 610
600 GOTO 560
610 LPRINT TAB(22)"LAST ITEM"
620 LPRINT STRING$(75,"-")
630 LPRINT
640 LPRINT TAB(32) "PAY LAST AMOUNT IN BALANCE COLUMN"
650 CH = 0:

PMT = 0:

BA =0
660 LPRINT CHR$(12)
670 PRINT "ANOTHER STATEMENT? Y OR N"
680 T = INKEYS:

690 IF T = "Y" GOTO 80
JO0IF T = "N" GOTO 720
710 GOTO 670

720 END

18

EDUCATION

Grade Calculator
Classroom Doodles

19

EDUCATION

Grade Calculator

by Robert C. Jacobs, Ph.D.

A s a teacher, I am often faced with having to calculate grades for large
numbers of students. The relative weights of the exercises that deter-
mine the grade vary considerably, making the job of computing averages a
time-consuming one. This seems an ideal problem for a computer; the
work is repetitive, tedious, and all too frequent. Where there are many
classes to prepare grades for, this program saves much drudgery. It also of-
fers the advantage of versatility. While the program uses my grading tech-
nique, it will adapt to most other grading systems with only minor changes.

I assign numerical marks to students on a scale of fifty to one hundred, so
that 85 and 94 express B and A respectively. Table 1 gives the precise range
of scores for each letter grade. At the end of the academic period, the
numerical grades are weighted, and an average computed. The grade
weight for each exercise is usually set and announced to the class at the
beginning of classes. For example, last winter I assigned a paper (33%),
two examinations (25% each), and gave a short quiz (17%). Though this
may sound complicated, the computer makes the calculation of a student’s
final average easy. After the average is determined, the program assigns a
letter grade. But, the instructor is given the opportunity to change the
grade in the light of any special circumstances which may exist for a par-
ticular student. After all the students’ grades are figured, the computer
tallies the grades for a class grade point average.

Your first entry indicates how many scores or marks are to be entered for
each student. Then in lines 130 to 150 you’re asked to enter the weight of
each score. The weights are expressed in percentages; no decimal point is
used. As the program is written, the total of these must be 100. After the
percentages are entered, the students’ scores are entered. These are also
expressed in percentages, because the arithmetic in line 210 requires it. If
999 is entered as the score, the program breaks out of its loop and goes to
the final class report.

After the entry of each student’s scores, the program repeats the scores
and shows the student’s average and letter grade. At this point, you may
alter the grade if you wish. In lines 430 to 520 a tally is kept of the grades
and the total grade points, so that the class G.P.A. may be computed at the
end. These lines can be altered if your school assigns different grade points
to the letter grades. Revising this sytem is fairly simple. The key elements
of this program are found in lines 280 to 380 and 430 to 5102, respectively.

21

education

These establish the relationship between score percentage and letter grade
and the relationship between letter grade and grade points. These values
are listed in Table 1. A list of variables is provided in Table 2 for con-
venience in revising.

Lines 230, 240, 410, and 420 allow the program to respond to upper-
and lowercase input without disturbing the rhythm of your work. To enter
the lowercase y or n in the quote strings, just hold the shift key down if you
are using an unmodified Level II machine or a Model III with the lower-
case switched off. When entering line 490, be sure you put a minus sign in
the quotation marks.

I hope you will find this program as useful as I've found it. It is a great
time-saver that bridges the gap between fully computerized student
record-keeping and the paper-and-pencil method of grade computation.

Grade in percent Letter grade Grade points
50-59° F 0.0
60-62 D- 0.7
63-66 D 1.0
67-69 D+ 1.3
70-72 C- 1.7
73-76 C 2.0
77-79 C+ 2.3
80-82 B~ 2.7
83-86 B 3.0
87-89 B+ 3.3
90-92 A- 3.7
93-100°% A 4.0

Table 1. Grade relationships

AV Increments of weighted scores

TP Total grade points

N Number of students: (N—1) = number of students
S Number of scores comprising each student’s average
G(X) Scores entered

W(X) Weights

X General counter

A$ Answer string for INKEY$ function

G1-G5 Count As, Bs, and Fs respectively

™ Accumulates total of the weights

GP Accumulates grade points: GP/N = G.P.A.

Table 2. Variable list

IThe relationships between percentage and letter grade are in lines 280-380.

#The relationships between letter grade and grade points may be found in lines 430-470. Lines
490-510 calculate grade points for + and — grades.

3At my school, the grade F does not take plus or minus, nor is there an A+.

22

19

29

30
58

60
70

88
99

118

120
130

149

158

160

178
180

198

268

education

Program Listing

CLS : Encyclopedia
PRINT TAB(24) "GRADE CALCULATOR": LJ)aCkEr'
PRINT

FOR X = 48 TO 88:

SET(X,3):

NEXT

PRINT TAB(38),"by"

PRINT TAB(25)"Robert C. Jacobs"

PRINT TAB(27)"April, 1981":
PRINT
PRINT * This program will figure averages and letter grades"

PRINT "of students and has the capacity to calculate the grade p
oint"

PRINT "average for an entire class."
PRINT " The instructor should enter the number of grades which
will®
PRINT "figure in the average and then the weight to be given to
each."”
PRINT "Weights should be expressed in percentages, and must add
to lagsg"
INPUT "How many test scores or grades will you use";S:
DIM W(8),G(S)
CLS :
PRINT "Weight for each score or test grade;";S;"weights are requ
ired.":
PRINT :
TW = 8
FOR X = 1 TO S:
PRINT "What percentage for score";X;:
INPUT W(X):
TW = TW + W(X):
NEXT
IF INT(TW + .1) < > 100
THEN
CLS :
PRINT @487,"TOTAL IS NOT 1@0%":
FOR X = 8 TO 848:
NEXT :
GOTO 139
CLS :
PRINT "ENTER 999 TO END AND GET CLASS REPORT":
PRINT
N=N+1
AV = @:
FOR X = 1 TO 8§
PRINT "Test score";X;"for student";N;:
INPUT G(X):
IF G(X) = 999
THEN
549
IF G(X) > 1868 OR G(X) < ¢
THEN
198
AV = AV + G(X) * W(X) / 188:
PRINT :
NEXT
PRINT "Are these entries correct (Y/N)?":
GOSUB 658
IF (A$ = "N") OR (A$ = "n") GOTO 188
IF {A$ < > "Y")} AND (AS < > "y*
THEN
229
CLS :
PRINT "This student’s marks were:":
PRINT
FOR X = 1 TO S:
PRINT "Score™;X;": ";G(X),: Program continued

23

education

NEXT
278 PRINT :
PRINT :
PRINT "The average is: ";:
PRINT USING "###.4#3";AV
280 IF AV < 68

THEN
GS = “"F":
GOTO 398
298 IF AV < 63
THEN
GS = "D-":
GOTO 390
3086 IF AV < 67
THEN
GS$ = "D":
GOTO 398
318 IF AV < 780
THEN
G$ = "D+":
GOTO 390
320 IF AV < 73
THEN
GS = "C-":
GOTO 390
338 IF AV < 77
THEN
GS = "C":
GOTO 399
348 IF AV < 88
THEN
G$ = "C+":
GOTO 390
350 IF AV < 83
THEN
GS = "B-":
GOTO 390
368 IF AV < 87
THEN
GS$ = "B":
GOTO 390
370 IF AV < 98
THEN
GS = "B+":
GOTO 390
388 IF AV < 93
THEN
GS = "A-":
ELSE
GS = "A"
396 PRINT

PRINT "Based on this student’s average, the grade is ";G$
468 PRINT :
PRINT "Substitute a different grade (Y/N)?":

GOSUB 650
418 IF (AS = "Y") OR (AS$ = "y")
THEN
INPUT "Enter correct grade and then press <ENTER>";GS$:
GOTO 438
428 IF (AS$ < > "N") AND (AS < > "n")
THEN
480
43¢ IF LEFTS$(GS$,1) = "a"
THEN
GP = 4:
Gl = Gl + 1:
GOTO 480
446 IF LEFTS$(G$,1) = "B"
THEN
GP = 3:

24

education

G2 = G2 + 1:
GOTO 489
450 IF LEFTS${GS$,1) = "C*
THEN
GP = 2:
G3 = G3 + 1:
GOTO 484
46@ IF LEFT$(GS,1) = "D"
THEN

b=/ -

Il o e o

7
J
r 4
GP = 1:
G4 = G4 + 1:
GOTO 4849
47¢ IF LEFTS$(GS,1) = "F"
THEN
GP = 0:
G5 = G5 + 1:
GOTO 484
488 IF GP = @ GOTO 520
49@ IF RIGHTS$(GS,1) = "=*
THEN
GP = GP ~ .3
508 IF GP = 4 GOTO 520
51¢ IF RIGHTS (GS$,1) = "+"
THEN
GP = GP + .3
528 TP = TP + GP:
538 GOTO 160
549 CLS :
PRINT TAB(22)"C LA SS REPORT"
558 FOR X = 44 TO 89:
SET(X,3):
NEXT
569 PRINT : Program continued

25

education

PRINT TAB(14)"THE CLASS GRADE POINT AVERAGE IS ";:
PRINT USING "#.#4";TP / (N - 1)
578 PRINT :
PRINT TAB({13)"GRADE",,"NUMBER"
580 PRINT TAB{14)"A",,,Gl
596 PRINT TAB(14)"B",,,G2
608 PRINT TAB(l4)"C",,,G3
618 PRINT TAB(14)"D",,,G4
620 PRINT TAB(14)"F",,,G5
630 PRINT TAB(47)"----~ "
PRINT TAB(48)N - 1
640 END
6580 AS = INKEYS:
IF AS = ""
THEN
650
ELSE
RETURN

26

EDUCATION

Classroom Doodles

by Ann Rosenberg

raphics in the classroom not only teach computer math but also pro-
mote problem-solving, creativity, and mental curiosity.

Stimulating a high school computer math class the week before the spring
vacation was my main objective in designing this project. The students had
been in the course for only eight weeks. We had studied system commands
such as NEW, LIST, DELETE, CSAVE, CLOAD, and EDIT; and pro-
gram statements such as INPUT, FOR-NEXT, READ-DATA, INT, RND,
IF-THEN-ELSE, GOSUB, and ON N GOTO. The group had successfully
written several math-oriented programs, but a change was now in order.
The class needed a project which was educational and fun. After rejecting
several ideas, we decided on a graphics assignment.

Using Drawings

Each of the 12 students was given the followiug assignment: Using the
TRS-80 Video Worksheet, draw a picture using horizontal, vertical, and
diagonal lines. From this, use SET(X,Y) and RESET(X,Y) to write the cor-
responding coding. After writing the program, they were asked to type it,
debug it, and place the completed program on tape.

Their first reaction was “What should I draw?” Until this assignment, the
students had been given exact instructions on what their programs were to
do and how. Now they seemed at a loss, but this changed quickly as they put
their imaginations to work.

Before long, several programs were written and put to the test on the com-
puter. After looking at their graphics results, most of the students weren’t
satisfied with their simple, stationary drawings. They went back to their
worksheets to create more sophisticated ones.

The following are examples of what the students developed:
© Program Listing 1—Started out as a simple house, but ended up a castle.
@ Program Listing 2—Was a strange face, but became a Frankenstein,
complete with moving lips and shifting eyes.
® Program Listing 3—Was an Easter Bunny, but it was quickly trans-
formed into a Playboy Bunny with blinking eyes.

@ Program Listing 4—Was a plain boat until the letters USA were added and
made to appear as though they moved across the body of the ship.

27

education

® Program Listing 5—Is the class favorite. The first day it was a simple stop

sign. The second day, the student added a dog. With a little prodding from
classmates, the student had the dog add a few “plops” at the base of the sign.
® Program Listing 6—Is the advertising logo for a lumber company owned
by a student’s father.

By the end of the week, everyone had completed exciting and creative
graphics displays. Each was so proud of his or her accomplishments that it
was not unusual for friends and teachers to stop by the computer room and
view the drawings.

The students not only enjoyed this assignment, but they became proficient
at using graphics. Future assignments will be much easier for them, Instead
of just solving right triangles with the Pythagorean theorem or general
triangles with the law of sines and cosines, they will be able to draw these
triangles. The graphics can also be used to make bar graphs, display data,
and write games.

28

[=R5 NN

20

30

40

50

60

70

80

81

90

110

120

140

150

170

130

education

Program Listing 1. Castle

REM KkkkkkRk CASTLE **wxsdwx
REM PROGRAMMER:

CLS

FOR A = 35 TO 79:
SET(A,27):

NEXT A

FOR F = 1
SET(37,F
NEXT F

FOR G = 17

SET(77,G):

NEXT G

SET(40,28):
SET(41,28):
SET(46,28):
SET(47,28):
551552,28y

SET(53,28

SET§70,28
SET(71,28
SET(76,28
FOR H = 40

ser(ss,zs%
)

NEXT K

SET(38,35):

SET{39,35)
FOR L = 37

SET(L,36):

NEXT L
FOR M = 3
SET(M,37
NEXT M
FOR N =

NEXT N
SET(75,3
SET(76,35
FOR 0 = 74

6
)
5
)
)
)

SET(0,36):

NEXT O

FOR P = 73
)

7
SET(P,37):

NEXT P

—

SET§59,28 :

3
SET(N,38
5

T0

T0

T0

T0

T0

TO

T0

T0

T0

70

T0

TO

TO

10

T0

17:

44 :

82:

71:

35:

35

47:

47:

47:

47:

40:

41:

42:

78:

MICHAEL SHLENKER {SOPHOMORE)

Encyclopedia
Yo Gader

Program continued

29

380

390

410

420

FOR Q = 72

SET(Q,38):

NEXT Q

SET 33,26y
SET(34,26
SET(80,26):

SET(81,26)
FOR R = 21

FOR Y = 68

SET(Y,19):

NEXT ¥

SET(54,13):
SET(55,13):
SET(60,13):

SET(61,13)
FOR E = 15

SET(52,E):

NEXT H
SET

SET{69,18
FOR I = 30

SET(40,1):

NEXT 1
FOR J = 30

SET(41,d):

SET§46,18):
47,18} :
SET?GB,ISy

T

TO

T0

T0

T0

TO

TO

T0

T0

TO

TO

TO

T0

T0

TO

T0

T0

T0

TO

25:

25:

25:

36:

83:

47

76:

52:

69:

55:

63:

61:

32

32:

education

30

440

450

460

470

480

490

500

510

520

530

610

620

NEXT J
FOR K = 30

SET(44,K):

NEXT K
FOR L = 30

SET(45,L):

NEXT L
FOR M = 30

SET(54,M):

NEXT M
FOR N = 30

SET{55,N):

NEXT N
FOR 0 = 30

FOR P = 30

SET(61,P):

NEXT P
FOR = 30

SET(64,Q):

NEXT Q
FOR R = 30

SET(65,R):

NEXT R
FOR S = 30

SET(70,8):

NEXT S
FOR T = 30

SET(71,T):

NEXT T
FOR U = 30

SET(74,U):

NEXT U

SET

SET(52,30):
SET(53,30):
SET(62,30):
SET(63,30):
SET(72,30):

SET(73,30)
FOR W = 24

SET(41,M):

NEXT W
FOR X = 24

SET(48,X):

NEXT X
FOR Y = 24

SET(54,Y):

NEXT Y
FOR Z = 24

SET(61,2):

NEXT Z
FOR A = 24

SET(67,A):

NEXT A
FOR B8 = 24

SET(74,8):

NEXT B

SET(42,43):
SET§43,2233

SET(44,21

SET(46,22
SET(47,23

SET 45,21;:

SET(55,23):
SET(56,22):

SETE42,30;:

T0

T0

TO

T0

T0

T0

10

T0

T0

T0

T0

T0

T0

T0

T0

TO

T0

T0

32:

32:

32:

32:

32:

32:

32:

32:

32:

32:

32:

32:

26:

26:

26

26:

26:

26:

education

Program continued

31

640

650

660

670

680

690

700

710

720

800

810

820

830

SET(57,21)
557(53 21):
SET(59,22):
SET(60,23)
SET(68,23):
SEng,zz):
SET(70,21):
SET(71,21):
SETVZ,Zzy
SET(73,23

SET(31,20):
SET(32,19):
SET(33,18):
SET(34,18):
SET(35,19):

SET(82,19)
SET(83,20)

FORC = 11 TO 16:

FOR D = 11 TO 18:

FORE = 1 TO 11:
SET(57,E):

FOR G = 58 TO 61:

SET(G,1):
NEXT G

FOR H = 62 TO 65:

FOR I = 66 TO 69:

FOR L = 59 TO 64:

FOR M = 32 70 37:

SET{M,11):
NEXT M

FOR N = 28 T0O 31:

SET(N,12):
NEXT N

FOR 0 = 24 T0 27:

SET(0,13)

NEXT 0
FOR P = 2
SET(P,14):
NEXT P

0 TO 71:

7

)

66 T0 69:
)

8 TO 31:
)

2 70 37:
)
? T0 87:

86 TO 89:

education

32

education

SET(S,12):
NEXT S
840 FOR T = 91 TO 92:
SET(T,13):
NEXT T
850 FOR U = 82 TO 89:
SET(U,14):
NEXT U
860 FOR V = 78 TO 81:
SET(V,15)
NEXT V
870 FOR W = 45 TO 47:
SET(52,W):
CNEXT W
880 FOR X = 45 TO 47:
SET(60,X):
. NEXT X
890 SET(53,44): -
SET(54,43): -
SET(55,42):
SET 56, 42r
SET 57,42):
SET(58,43):
SET(59, 44§
900 SET 38,41):
SET 76,41
SET(38,44):
SET(76, 44)
910 FOR Y = TO 43:
SET(37, Yh
NEXT Y
920 FOR Z = 42 TO 43:
SET(39,2):
NEXT Z
930 FOR A = 42 TO 43:
SET(75,A):
NEXT A
940 FOR 8 = 42 TO 43:
SET(77,8):
NEXT B
960 SET(42,23)
970 FOR C = 30 TO 32:
SET(50,C):
NEXT €
971 FOR D = 30 TO 32:
SET(51,D):
NEXT ©
980 SET(32,21):
SET(53,17)
990 FOR £ = 64 TO 68:
SET(E,43):
NEXT E
1000 FOR F = 68 TO 70:
SET(F,44):
NEXT F
1010 SET(46,44):
SET(47,44):
557548,45y
SET(49,45):
SET(46,46):
SET(47,46)
1020 GOTO 1020

Program Listing 2. Frankenstein

1 REM **xxwkax FRANKENSTEIN *xsxtwss
2 REM PROGRAMMER: GEORGE JANVIER (SOPHOMORE) Program continued

33

education

0

9 T0 11
= 28 TO 88 STEP 4
Y)

T0 18

140 NEXT Y

150 FOR X = 34 TO 45

160 SET(X,14):
SET(X,18)

170 NEXT X

180 FOR X =

70 81
190 SET(:

=
o B~y

200 NEXT
210 FOR Y
220 SET(

TO 24

ot

w
m
-
—
LY

230 NEXT
240 FOR Y
250 SETé

- <N

(= 0
H o< i <O v »

260 NEXT
263 FOR X
264 SET{X

0
)

)

8

)

)

? T0 26
370 63
4]

265 NEXT X
270 FOR Y = 41 TO 47
280 SET(44,Y):

71

290 NEXT ¥

300 FOR X = 38 T0 77
310 SET(X,31):

7
320 NEXT X
330 FOR ¥
340 SETE3

7

350 NEXT
360 FOR X
370 FOR Y
380 SET{X
390 NEXT
400 NEXT X
401 FOR X = 10
402 SET{X,23)

403 NEXT X

404 FOR X = 80 TO 125
405 SET(X,33)

406 NEXT X

407 FOR Y = 23 TO 33
408 SET(125,Y)

409 NEXT Y

410 FOR X = 72 TO 75
420 FOR Y = 15 TO 16
430 SET(X,Y)

440 NEXT Y
445 NEXT X

1
)
)
8
)
)
i 70 37
6
1
)

34

446
447
448
449
450
451
452
453

454
456

457
458
459
460

461

462
463

464
465

468

469
470

480
490
500

510
520
530
540
550
560
570
580
590
600
610
620
630
640

660
670
680
690
700
710
720
730
740
745

750 FOR

760
770

education

FOR X = 84 TO 100
SET(X,30)
NEXT X

FOR Y = 23 TO 30
SET(100,Y)

T
(o]
=
>

i
-

— o
-
—
o
[
o
@

SET(X,25
SET(X,29):
SET(X,27)

NEXT X

RESET(108,27)

FOR X = 112 TO 116
SET(X,25):
SET(X,29)

NEXT X

FOR X = 119 TO 123
SETéX,25;:
SET(X,29
NEXT X

SETE80,33;:

SET(81,32

SET(82,31):

SET(83,30)

FOR X = 1 TQ 100:

FOR Y = 15 TO 16
RESET(X,Y)
NEXT Y

NEXT X

FOR X = 72 70 75
FOR Y = 15 TO 16
RESET(X,Y)
NEXT ¥

NEXT X

FOR X = 38 TO 77
SET(X,34)

NEXT X

FOR X = 40 TO 43
FOR Y = 16 T0 17
SET(X,Y)
NEXT ¥

NEXT X

FOR X = 76 T0 79
FOR Y = 16 T0 17
SET(X,Y)
NEXT ¥

1 70 100:

X
X = 38 T0 77
RESET(X,34)
X

Program continued

35

780
790
800
810
820
830
840
850
860
870
880

education

FOR X = 40 TO 43
FOR Y = 16 TO 17
RESET(X,Y)
NEXT Y
NEXT X
FOR X = 76 TO 79
FOR Y = 16 T0 17
RESET(X,Y)
NEXT Y
NEXT X
GOTO 300

200

Program Listing 3. Playboy Bunny

REM *xxk%xx* P AYBOY BUNNY **xxkexx
REM PROGRAMMER: DANN SCHWARTZ (SOPHOMORE)
S

T0 8

++0 N O
+
=

wy
m
—
[#%)
S
+ O

NEXT Y
FOR F =
SET(30
SET(31
NEXT F
SET(43,8

FOR G

+ + O
o —

36

education

245 SET(67,21)
250 FOR X = 0 TO 12
260 SET(68,9 + X
270 SET(69,9 + X
280 NEXT X
290 FOR 8 = O T
300 SET(85 - 2 * 8,
310 SET(86 - 2 * B,
320 NEXT B
330 FOR C =
340 SET(88
350 SET(89
360 NEXT C
361 SET(88,1):
SET(87,1):
SET(89,1)
365 SET(87,17)
370 FOR D = 0 T
380 SET(85 - 2 * D
390 SET(86 - 2 * D
400 NEXT D
410 FOR E = 0 T
420 SET(49 - 2
430 SET&SO -~ 2
+ 2
+ 2

~
+

o

—

~

440 SET(78
450 SET(79
460 NEXT E
465 SET%35,27;
SET(36,27
470 FOR F = 0 TO 5
480 SET(33,28 + F
490 SET(34,28 + F
+ F
+ F

+ o+ o+ o+
mmmm
—

500 SET(90,28
510 SET(91,28
520 NEXT F
530 FOR H = 0
540 SET(35 +
550 SET(36 +
560 SET(89 -
570 SET(88 -
580 NEXT H
590 FOR I = 0
600 SET(48 ,4
610 SET(49,40
620 SET(75,40
630 SET{76,40
640 NEXT I
650 FOR J =
660 SET(60
670 SET(61
680 NEXT J
8

o - [ASHAS AL E)
o
+ o+
===

+ 4+
U
2 B NN

690 FOR K = 0 7
700 SET(38,40 + K)
710 SET(39,40 + K)
720 SET(58,40 + K}
730 SET(59,40 + K)
740 NEXT K

750 FOR Z
760 ssrg

<
w

1,40
Z,40
7,43
1,43
7,44
Z,44
Z,47
7,47

770 SET
780 SET(
790 SET(
800 {
810
820
830
840 (
845 FOR K = 16 TO 32
850 SET(30,K): .
SET(31,K) Program continued

1%
m
—

et et e

(%]

m

i i

=
B2 OT S

=wnwnv
mmm
< — —f
—
e
NEO—O— OO
o+ O
PO RS RSRI R N RS R —)
IR R
T
NN N NN
——

education

855 NEXT K

860 SET(49,44):
SET(48,43):
SET(49,43)

870 FOR L

880 sgrg

+ O

890 NEXT L

891 SET(48,44)

950 PRINT ©384, TAB(7);"I1'M";

955 PRINT @ 448, TAB(B);"A";

960 PRINT 8512, TAB(5);"PLAYBOY";

970 PRINT @ 576, TAB(6);"BUNNY!!";

973 FOR M = 0 TO 32

975 SET(0 + M,33)

977 NEXT M

980 FOR B = 16 TO 32

983 SET(0,B):
SET(1.8)

985 NEXT B

996 FOR $ = 0

997 SET(S,16)

999 NEXT S

1100 SET(47,27):
SET(46,27)

1120 RESETS47,2
RESET(46,2

1130 GOTO 1100

5000 GOTO 5000

~~
~—

Program Listing 4. Ship

1 REM khkkkkkdkk SHIP * kK ok ok ok kk
g REM PROGRAMMER: DAVID FUCHS (SOPHOMORE)
CLS
10 FOR X = 34 TO 95:
SET{X,44):
NEXT X
20 FOR X = 18 TO 111:
SET(X ,35):

60 FOR X = 74 TO 75
SET (X,21):
NEXT X

38

education

70 FOR X = 76 T0 77:
SET(X,19):

130 FOR X = 0 TO 7
2 * X,36 + X):

140 FOR X = 0
557247 -
SET -
SET§80 +
SET(81 +
NEXT X
150 FOR X =
SET(48
NEXT X
160 FOR X =
SET(62
SET(61
SET(78
SET(79
NEXT X
170 FOR Y =
SET(38,
NEXT Y
180 FOR Y = 38 TO 42:
SET(44,Y):
NEXT ¥
190 FOR X = 38 TO 44:
SET(X,42):
NEXT X
200 FOR X = 50 TO 57
SET (X,38):
NEXT X
210 FOR X = 50 T0 57
SET(X,40):
NEXT X

220 FOR X = 50 TO 57:
SET(X,42):
NEXT X

230 FOR Y = 38 TO 40:
SET(50,Y):
NEXT Y

240 FOR Y = 40 TO 42 :
SET(57,Y):
NEXT ¥

250 FOR X = 62 TO 71:
SET (X,38):
NEXT X

260 FOR X = 62 TO 71:
SET(X,40):
NEXT X

270 FOR Y = 38 TO 42 :
SET{62,Y):
NEXT ¥

280 FOR Y = 38 TO 42:
SET(71,Y):
NEXT ¥

290 FOR Y = 38 TO 42:
RESET(38,Y):
NEX

- =]
><
=)

+

> >C D <

>
N
~
+ 4+ o+
[N

X,27

38 TO 42:
Y):

TY
300 FOR Y = 38 TO 42:
RESET(44,Y):
NEXT Y
310 FOR X = 38 TO 44:
RESET(X,42):
NEXT X
320 FOR X = 50 T0 57: .
RESET(X ,38): Program continued

39

education

NEXT X

330 FOR X = 50 TO 57:
RESET(X,40)
NEXT X

340 FOR X = 50 TO §7:
RESET(X,42):
NEXT X

350 FOR Y = 38 TO 40:
RESET(50,Y):
NEXT Y

360 FOR Y = 40 TO 42:
RESET(57,Y):
NEXT ¥

370 FOR X = 62 T0 71:
RESET(X,38):
NEXT X

380 FOR X = 62 TO 71:
RESET(X,40):
NEXT X

390 FOR Y = 38 TO 42:
RESET(62,Y):
NEXT Y

400 FOR Y = 38 TO 42:
RESET(71,Y):
NEXT Y

410 GOTO 170

5000 GOTO 5000

Program Listing 5. Dog

1 REM hkkkkkkk DOG ok k kK Kk ok

REM PROGRAMMER: RANDY KESSLER (SENIOR)
CLS

FOR X = 54 TO 73
Y = 1

2
10
20
30
40
50 NEXT
60
70
80
90

110 SET(48,15)
120 SET(47,16)
130 SET{46,16)
140 SET(45,17)
150 SET(44,17)
160 SET(43,18)
170 SET(42,18)
175 X = 74

40

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
375
380
390
400
410
420
430
435
440
450
460
470
480
490
500
510
520
530
540
560
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

770
780
790
800
810
820
830
840
850
860
870
880
890
900

education

FOR Y = 13 70 18
FOR D =170 2
SET(X,Y)

X =X +1
NEXT D

NEXT Y
FOR X = 42 TO 43
FOR Y = 19 TO 24
SET(X,Y)

NEXT Y

NEXT X
FOR X = 84 T0 85
FOR Y = 19 TO 24
SET(X,Y)

NEXT Y

NEXT X
X = 44
FOR Y = 25 T0 30
FORD =1 70 2
SET(X,Y)
X=X+1

FOR X = 54 T0 73
Y = 30
SET(X,Y)

NEXT X
X = 83
FOR Y = 25 TO 29

FORD = 1 TO 2

SET(X,Y)
X=X -1
NEXT D

NEXT ¥
FOR Y = 31 TO 47

FOR X = 62 TO 65

SET(X,Y)
NEXT X

NEXT ¥
PRINT @478,"STOP";
SET§58.34)
SET{59,35)
SET(59,36)
SET(58,37§
SET(57,38
SET(56,39)

FOR Y = 38 TO 40

X = 55

SET(X,Y)

NEXT Y
FOR Y = 37 TO 41

FOR X = 32 T0 54

SET(X,Y)
NEXT X

NEXT Y
SET 32,353
SET§32,36
FOR X = 28 TO 32

Y = 36

SET(X,Y)

NEXT X
SET§28,37§
SET(29,37
FOR X = 23 T0 31

FOR Y = 38 TO 39

SET(X,Y)
NEXT ¥

NEXT X
SET(22,38)
SET(31,40)

FOR X = 34 TO 37

Program continued

41

education

910 FOR Y = 42 TO 43
920 SET(X,Y)

930 NEXT Y
940 NEXT X
950 FOR X = 33 TO 35
960 Y = 44
970 SET(X,Y)

980 NEXT X

990 FOR X = 50 TO 53
1000 FOR Y = 42 TO 43
1010 SET(X,Y)

1020 NEXT Y

1030 NEXT X

1040 SET(49,44)

1050 SET250,44
1060 SET

1070 FOR X = 1 TO 500:
X

1071 FOR K = 62 TO 57 STEP - 1

1073 SET(K,44)

1075 g = 1

1080 SET(56,40)

1090 FOR X = 1 TO 60:
NEXT X

1100 SET(57,41)

1110 FOR X = 170 100:
NEXT X

1120 RESET(56,40)

1130 SET(58,42)

1140 FOR X = 1 TO 100:
NEXT X

1150 RESET(57,41)

1160 SET(59,43)

1170 FOR X = 1 T0 100:
NEXT X

1200 RESET(59,43)

1210 RESET(58,42)

1212 SET(K,44)

1215 PRINT @950,"PLOP!",

1217 FOR X = 1 T0 200:
NEXT X

1218 PRINT €950," "

1225 NEXT K

1230 SET(59,44)

1240 PRINT @945, "WHAT A MESS!",

1250 PRINT @478, "PHEW ";

2222 GOTO 2222

Program Listing 6. Stone Lumber logo

1 REM *xkxaxxs STONE LUMBER *%*tkxwx
2 REM PROGRAMMER: BOB STONE (SENIOR)

42

10
20

30
40

50
60
70

80
90
100

110
120
130

150
160
170
180
190
200
210
220

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

CLS

SET (42,4):

SET (43,4)

FOR Y = 5 TO
SET (32,Y):
SET(33,Y):

(%
m
-5

e~
>

. =<
N

FOR Y = 21 TO
SET (58,Y):
SET (59,Y):
SET (60,Y):
SET (61,Y)
NEXT Y

FOR ¥ = 17 T0O
SET (70,V):
SET (71,Y

w
m
-
s o o o £ £ o S o T B S o N TN
DN e bt et et ok ek bt et B L0 WD WD WO WO WO 00 00 OO
i bl B O OOOCOSORWRHO U W

NEXT
SET (

=ZzWwn
mrm
>< —
—
DN DEDC N DD B WA

w
m
—t

=
m
>
—
><

FOR X = 18 70
SET (X,11)
NEXT X

FOR X = 20 TO
SET (X,12)
NEXT X

FOR X = 36 70

26

26

23

41

39

31

45

43

31

31

49

education

Program continued

43

390
400
410
420
430
4490

450
460
470
480
490
500
510

520
530

540
550

560

680
690
700

710
720
730

740
750
760

770
780

790

800
810

825
830

education

SET (X,14)
NEXT X
FOR X = 36 TO 47
SET (X,15)

NEXT X
SET 516,10;:
SET (17,10
FOR X = 22 70 31
SET {X,16)

NEXT X

FOR X = 24 TO 31
SET {X,17)

NEXT X

SET (46,8):
SET (47,8)

T0 61

FOR X = 44 TO &7
SET (X,21):

SET (X,22)

NEXT X

FOR X = 36 TO 57
SET (X,25)

SET (X,26)

NEXT X
FOR X = 66 TO 77
SET (X,17):

SET (X,18)

NEXT X

FOR X = 86 TO 89
SET Sx,17g:

SET (X,18
SET (X,22):

SET (X,23)

NEXT X
FOR X = 102 TO 103
SET (X,18):

SET (X,19):

SET (X,20)

NEXT X
FOR X = 104 TO 105
SET (X,19):

SET (X,20):

SET (X,21)

()

()
SET (}

()
SET :
SET 89,15:
SET (90,Y
SET (91,Y
SET (96,Y)
SET(97,Y)
SET (106,Y):
SET (107,Y)

44

education

840 NEXT Y
850 FOR X = 74 TO 81
860 SET §X,343:

SET (X,35
870 NEXT X
880 FOR X = 92 70 99
890 SET (X,28):

900 NEXT X
910 FOR Y = 31 TO 32
920 SET W)

930 NEXT Y
940 FOR Y = 29 TO 30
950 SET (98,Y

960 NEXT Y

970 FOR Y = 33 TO 34

980 SET(98,Y):
SET (99,Y)

990 NEXT Y

1000 SET (108,28):
SET (109,28):
SET (110,28):
SET §111,28;

1010 SET :
SET {

1020 FOR ¥

1030 SET
SET

1040 NEXT

1050 FOR ¥

1060 SET (

8 TO 33

—~—

0 31

1080 FOR Y
1090 SET (

0 32

1100 NEXT
1110 FOR Y
1120 SET (

1
1
Y
1
1
1070 NEXT Y
1
1
y
= 0 35
1
1
1130 NEXT ¥
1140 FOR Y = 34 T0 35
1150 SET (120,Y):
SET {121,Y):
SET §1zz,v;:
SET (123,Y
1160 NEXT Y
1200 GOTO 1200

45

GAMES

Asteroid Adventure
Compukala
Puzzler

47

GAMES

Asteroid Adventure

by Greg Perry and Don Taylor

espite widely held beliefs to the contrary, it is possible to write enjoy-

able programs for the TRS-80 Level II with only 4K of memory.
Asteroid Adventure is a prime example. The object of this space game is to
guide your ship through the asteroids of space, land on the moon safely, and
have fuel to spare.

At the beginning of the program, you are asked to enter your experience
level on a scale of one to ten. One is for advanced players, and ten is for
beginners. The first time you play you might enter a five. After you've
selected a level, the screen clears and a field of asteroids (+s) is printed. On
the right-hand side of the screen a half-moon appears; in the lower right cor-
ner a fuel reading, based on your experience level, is printed.

Your space ship is the greater-than sign in the upper left corner. Use the
four arrow keys to guide your ship. Holding a key down causes continuous
movement. The game commences when the first direction key is pressed.
Fuel consumption begins at the moment you first press a key. With skill and
luck you can maneuver your ship to the moon and land safely. If you hit an
asteroid during your voyage, you will blow up. Remember to keep an eye on
your fuel reading; you wouldn’t want to be caught in space with no gas!

Lines: Explanation:

30-115 Instructions
190-220 Input directions for movement
240-270 Land, blowup, or move
370-410 Draw random asteroid field
420-520 Draw moon
530-540 Blowup
600-610 Ran out of fuel
620-680 Beginning and experience input

Table 1. Program blocks

About the Program

The asteroid field is printed using the random-number generator; so the
field is different every play. Your ship is moved by using the PEEK
statements starting at line 190. Hitting an asteroid or landing on the moon is

49

games

detected by a PEEK that scans the next screen location in the direction of the
current movement. The speed of the game, as well as the amount of fuel you
have, is determined by the experience level you choose.

50

129

130
140
158
168
178
180
198

200

219

230

248

259

260

270

games

Program Listing. Asteroid Adventure

CLS
GOSUB 620
PRINT "iNSTRUCTIONS?":
P = ""
P$ = INKEYS:
IF P$ = "% GOTO 48
1F P$ "N" GOTO 129
IF P§ > "Y" GOTO 4@
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT START "
A$ = INKEYS:
IF A$ = "%

THEN

GOTO 115 :

ELSE

GOTO 128
P =g
(E - 1) * 14
a

SAFELY GUIDE YOUR

33333 aAll

390
430
@p,">";
PRINT €960,"FUEL:
REM * INPUT MOVE
IF PEEK(14480) = 8
THEN
AD =
N=1
IF PEEK(14480)
THEN
AD = 64:

- 64:
16

N=1
IF PEEK(14400) 64
THEN
AD = 1:
N=1

IF PEEK(14408) 32

IF P+ AD < @ ORP + AD >
THEN
AD = @
IF PEEK(15360 + AD + P} =
THEN
GOTO 538:
REM BLOW-UP
IF FG = 1
THEN
IF PEEK(15368 + AD + P)
THEN
AD = B:
GOTO 280
IF PEEK(15368 + AD + P} >
THEN
GOTO 558:
REM MOON
PRINT @P,".";:
Q=0+1

YOU ARE THE CAPTAIN OF A STAR SHIP.

THE MOON'S SURFACE BEFORE THE FUEL RUNS OUT.
ARROW KEYS TO GUIDE YOUR SHIP.
DOWN WILL CAUSE CONTINUOUS MOVEMENT.

Encyclopedia
4 L(g)ader"

YOU HAVE TO "

CREW THROUGH THE ASTEROIDS TO "
USE THE "

HOLDING THE KEYS "
PRESS ENTER TO "

1623

42

> =129

= 129

Program continued

51

29¢
300
31¢

320
338
340
358

360

380
390
480

410

420
438
4490
450
460
478
480
490
580

510

5208
538

546

558

570
608

610
620
630

PRINT @965,7T;

AD = @
FG = @

REM * SPEED FACTOR
FOR X =1 TO E * 10:

NEXT X
GOTO 19

REM * SET STAR FIELD

RANDOM
CR = 0

R = RND{14) + 2:
CR = CR + R:
IF CR > 1922

THEN

RETURN
PRINT @ CR,"*";:

GOTO 40

[/

REM * DRAW MOON

X = 63
FOR I =

1 TO 8

games

PRINT @X, STRINGS(I, CHR$(191));
X =X + 63:

NEXT I
X =X+
FOR I =

1
8

TO 2 STEP - 1

PRINT @X, STRINGS$(I, CHR$(191));
X = X + 65:

NEXT I
FOR Y =

45 TO 47:

FOR X = 126 TO 127:
SET(X,Y):
NEXT X,Y

RETURN
CLS :

PRINT CHR$ (23)
FOR I =
PRINT @ RND(1888),"* B O O M 11l *";:
NEXT I:
GOTO 690

CLS :

1 TO 158:

PRINT CHR$({23):

FOR I = 1 TO 18 * PRINT @272,"MISSION SUCCESFUL":

FOR Pl = 1 TO 58:
NEXT P1
PRINT @272, CHRS(30):
POR P1 = 1 TO 5@:
NEXT Pl:

NEXT

I

GOTO 690

CLS :
PRINT
PRINT
PRINT
m©:

“SORRY BUT YOU JUST RAN OUT OF FUEL (SPACE IS TOUGH

FOR P6 = 1 TO 908:
NEXT P6:
GOTO 690
GOTO 696

CLs

PRINT
PRINT
PRINT
PRINT
PRINT

CHR$(23) s

Ree o0 v

ASTEROID

ADVENTURE"

ISN'T

52

668
678

680
698

700
719

728

739

748

750

768
778

775
788

790

800

games

FOR I = 1 TO 288:
NEXT
CLS :
PRINT
PRINT
PRINT
PRINT
PRINT "WHAT IS YOUR EXPERIENCE LEVEL"
INPUT "<1~ADVANCED TO 18 BEGINNER >";E
IFE<1ORE?>I18

THEN

CLS :

PRINT

PRINT

-

LTI

RETURN
CLS :
PRINT :
PRINT "DO YOU WANT TO PLAY AGAIN?"
AS = wn
A$ = INKEYS:
IF A§ = "7
THEN
719
IF AS$ = "Y"
THEN
RUN
IF A$ < > "N"
THEN
718
CLS :
PRINT CHR$(23):
PRINT @210,"THANK YOU"
PRINT 8336,"FOR PLAYING®
FOR L, = 1 TO 980:
NEXT L
CLS :
FOR I =1 TO 7:
PRINT CHR$(23):
PRINT @268,"ASTEROID ADVENTURE":
FOR P1 = 1 TO 100:
NEXT P1
IF I = 7 GOTO 796
PRINT @268, CHR$(30):
FORT =1 TO 79:
NEXT T:
NEXT I
FOR I = 1 TO 1808:
NEXT I:
CLS
CLS

53

GAMES

Compukala

by Peter K. Moller

Today the game of Kala is played on an oblong or circular surface about
the size of a breadboard, but the game has a long history. Even before
the Phoenicians were reading and writing, Kala was being played by burly
competitors who rolled boulders around huge, open fields.

Compukala, which is probably the latest update on this game, is played
within the less dangerous limits of the TRS-80. The opposition can be either
another player or the not-so-burly TRS-80 itself.

Kala: Pips in Pits

To understand how the game is played, you must first be familiar with the
geography of the board. (See Figure 1.) On each side of the board are six in-
dentations called pits, numbered 1 through 6 on each side in opposite direc-
tions. At each end of the board are larger indentations-—one for each
player—which are called the kala. When you play on a board, the pips, or
playing pieces, can be small, simple objects such as matches, coins, or dried
beans. At the beginning of a round, each player has the same number of pips
in each of his six pits. The two kala are empty. The players determine be-
tween themselves how many pips will be in each pit at the start. The com-
plexity of the game depends on the number of pips used.

PLAYER "B" Qe

VIVH

@@@@@@l

¥Yvn

(0JEJOJOJOL0]

PLAYER “A" e

Figure 1. The Kala board. Moves are made in a counterclockwise direction.

Players move by picking up all the pips in a pit and placing one in each
successive pit, including the kala, in a counterclockwise rotation, until all
the pips have been redeposited. You'll often find yourself placing your pips
into your opponent’s pits. This is part of the strategy of Kala.

The object of the game is for one player to accumulate as many pips as
possible on his side of the board and in his kala. A round is over when one of
the players is left without any pips on his side of the board and, therefore,

54

games

cannot move. Scores are determined by the total number of pips each player
retains at the end of a round. The end of the match occurs when one player
accumulates a mutually agreed upon total of pips.

The rules of Kala are surprisingly simple for a game which requires the
strategy of backgammon and returns the endless permutations of cribbage.
There are only three rules:

® A repeat turn is earned when the last pip of any player’s move lands in
his kala.

® If a player’s last pip lands in an empty pit on his side of the board, any pips
in the pit directly opposite are captured and deposited in the captor’s kala
along with the capturing pip.

@ Once a pip is placed in a kala, it remains there until the end of the round.

Compukala: No Pips, No Pits

When you load and run this computer version of Kala, the computer
prompts you to enter the number of pips that will determine the end of a
match. This can be any number, depending on how many rounds of the
game you wish to play. Next, enter the number of pips to start the round. In
this version, the number of pips available ranges from two to five to allow
for beginning and advanced levels of play. The program then asks for the
players’ names. If you wish to play against the computer, enter computer as
player number 2.

A random number determines which player moves first. From that point
on in the round, plays are made in turn. Each player enters his move by in-
putting the pit number from which he wishes to move. After each turn, the
computer displays the distribution of the board and updates the scores. It
also traps illegal moves (such as moving from an empty pit or entering a
number larger than 6) and prompts the player to make another entry. If at
any time you wish to refresh your memory about the pit number designa-
tions, enter the letter P, and the board numbers will be displayed. Enter a P
again to return the display to the pip distribution mode.

Compukala is written in Disk BASIC and requires less than 16K of RAM.
You can delete error traps and features which provide a clear and symmetri-
cal display if memory overhead is critical. The residue function defined in
line 80 gives the game its circular nature. Once the fourteenth position of the
vector, A(14), has been reached, the first position of the vector is returned.

If you decide to play against the computer, you will find it has a low level
of intelligence. The computer knows only the rules of the game, and its only
strategy is to attempt to empty pits 4, 5, and 6 in its first two moves. Once
you discover the subtleties of the game, you can make the computer a more
worthy opponent by programming it with more strategies.

55

games

The word kala is taken from Jainist philosophy, a reformist sect of Hin-
duism founded in the sixth century B.C. It signifies time, the eternal aspect
of existence. There couldn’t be a better name for this game; you'll find its
pleasures are endless.

56

games

Program Listing. Compukala

10 Encyclopedia

20 Loader”
' COMPUKALA BY PETER K. MOLLER

25 :

! 7/1/80

30

40 :
¢ **INITIALIZE
50 :
60 CLS :
CLEAR 100
70 DIM A(14)
80 DEF FN RES(A,B) = A - (INT(A / B) * B)
90 GOSUB 740
100 PRINT @130,"ENTER MAXIMUM NUMBER OF PIECES FOR END OF MATCH-----
Sty
INPUT PS
110 PRINT @130,"ENTER NUMBER OF PIECES (BETWEEN 2 AND 5) TO BEGIN---
FRNTI
INPUT P
120 IF P > 5 OR P < 2 PRINT @70, CHR$(30):
GOTO 110
130 GOSUB 740 :
GOSUB 1970
140 IF G = > 1 GOTO 240

' **[NPUT PLAYER NAMES

180 PRINT €128, CHR$(30)

190 PRINT @141,"ENTER NAME OF PLAYER #l==>";:
LINE INPUT N$(O)

200 PRINT @141, CHR$(30)

210 PRINT @141,"ENTER NAME OF PLAYER #2==>";:
LINE INPUT N$(1)

220 PRINT @141, CHR$(30)

**DETERMINE FIRST MOVE

260 1 = RND(2) - 1
270 GOTO 350

! **EXCHANGE PLAYERS

320
330

340 ! **GOSUB BOARD ROUTINE AND SCORES

350 GOSUB 790 : Program continued

57

games

GOSUB 920
360 :
370 :
! **INPUT AND COMPUTE MOVES
380 :
390 IF N$(1) = "COMPUTER™ AND I = 1 GOSUB 1710
400 PRINT @75," ENTER NUMBER OF PIT TO EMPTY. "
410 M$ = INKEYS$:
IF M$ = "" GOTO 410

420 PRINT @64, CHR$(30);:
PRINT @192, CHR$(30);
430 IF M§ = "P" GOSUB 1000 :
GOTO 350
440 PRINT @78," "3N$(I);" MOVES FROM PIT # “;M$;
450 # = VAL(M$)
460 IF M > 6 OR M < 1

THEN
GOSUB 1180
470 IF I = 1
THEN
M=M+7
480 IF A(M) = 0
THEN
GOSUB 1180
490 IF 1 = 0 GOSUB 1860 :
ELSE
GOSuUB 1910
500 D = FN RES{M + A(M),14)
510 A(M) = 0
520 C = M
530 C = C + 1 i
540 IF C > 13
THEN
C=0
550 A(C) = A(C) + 1
560 IF C < > D
THEN
530
570 GOSUB 790
580 :
590 :
! **CHECK FOR ENDGAME
600 :

610 IF I = OAND C > = 7 ORI =1ANDC <=7 0RC=200RC
= 7 GOTO 630

620 IF A(C) = 1 AND A(14 C) =>1 GOSUB 1240
630 IF A(1) + A(2) + A(3) + A(4) + A(5) + A(6) = 0 GOSUB 1380
640 IF A(8) + A(9) + A{10) + A(11) + A(12) + A(13) = 0 GOSUB 1380
650
660 :
! **CHECK FOR REPEAT TURN
670 :

680 IF (C = O AND I = 1) OR {(C =7 AND I = 0) GOSUB 1650
690 :
700 :
! **NEXT TURN
710
720 GOTO 310
730 :
740 :
! **PAINT BORDER

58

games

750 :

760

770

780 :

'

PRINT @0, STRING$(63,1
PRINT 0256, STRINGS(63
PRINT @384, STRING$(63
RETURN

1);:
191);:
179);

: **DRAW THE BOARD

800 :

810
820

830

840

850

860
870
880
890
900
910

PRINT @205," =ENTER 'P' TO SEE PIT NUMBERS= °;
PRINT @710,A(0);:
PRINT @754,A(7)
PRINT @847,A(1}
PRINT @852,A(2)
PRINT @857,A(3)
PRINT ©862,A(4)
PRINT €867,A(5)
PRINT @872,A(6)
PRINT €616,A(8)
PRINT @611,A(9)
PRINT @606,A(10
PRINT @601,A(11
PRINT €596,A(12
PRINT @591,A(13
IF 1 = 0 PRINT
ELSE

GOTO 880
PRINT @535, CHR$(30);
GOTO 900
PRINT ©535,"¢-==";N$(1);
PRINT 6921, CHR$(30);
RETURN

' **KEEP SCORES

930 :

940

950
960
970

980
990

T1
T2
T1 (1) + A
T2 = A(8) + A
PRINT @330,N$
PRINT @353,N$
RETURN

0
0
A

+ A(3) + A(4) + A(5) + A(6) + A(7)
A(10) + A(11) + A(12) + A{13) + A(0)

"'S SCORE=";T1;:

s"'S SCORE=";T2;

v

1000 :

! **DISPLAY BOARD NUMBERS

1010 :

1020

1030
1040
1050
1060
1070
1080
1090
1100
1110

1120 q

1130
1140

1150

+

PRINT @711,"KALA";:
PRINT @753, "KALA";
FOR W = 847 TO 872 STEP &
Q=0Q+1
PRINT @W,Q;
NEXT W
Uu=7
FOR W = 591 TO 616 STEP 5
U=10-1
PRINT @W,U;
NEXT W

=0
PRINT @73, TO RETURN TO GAME BOARD....ENTER 'P'.";
E$ = INKEYS:
IF E§ = " GOTO 1140
PRINT @704, CHR$(30) Program continued

1160
1170

1180
1190

1200
1210

1220
1230

GOTO 7

t
¢

PRINT
FOR TT
NEXT
GOTO 3

1240 :

1250

1260
1270
1280
1290
1300
1310
1320

1330
1340
1350

1360
1370

1380
1330

1400
1410
1420
1430
1440
1450
1460
1470

1480
1490
1500
1510
1520
1530
1540
1550
1560

1570

1580

FOR TT
PRINT
PRINT
NEXT
IF I

A7)

A(C)

A(14

GOTO

A(0)

A(C)

A(14

GOTO

bW tou N

~

:
G =G
FOR TT
PRINT
PRINT
NEXT
GOSUB
PRINT
IF Tl
THEN
N4
ELSE
N4§
PRINT
PRINT
TS = T
TQ =T
PRINT
PRINT
FOR TT
PRINT
PRINT
NEXT
IF TS
PRINT
LINE I
K = 0:
CLS :
GOTO 1

1

1590 :

1600 :

1610

games

90

**]| L EGAL MOVE ROUTINE

@78, "ILLEGAL MOVE. PLEASE ENTER AGAIN!I!!";
= 1 TO 550:

50

**CAPTURE ROUTINE

= 1 T0 50
8728, "**CAPTURE**";
@728," '

TT
1 GOTO 1340
A(C) + A(14 - C) + A(T)
0:

0

(= N)
~
1

Lo
=
—
o
~

+ A(14 - C) + A(O)

w
OO
~—

1
[=1

**END OF ROUND ROUTINE

+ 1
=1 70 50
@711," << GAME IS OVER! HIGH SCORE WINS!
@711, CHR$(30);

TT

920

@80, " ROUND";G;"

> T2

= N$(0)

= N$(1)
©330,N$(0);" ENDS WITH:";T1;:
@353.N$(1);" ENDS WITH:";T2;
1+ TS:
2 + 10
©133,N$(0);" PIECES WON=";TS;:
@165,N$(1);" PIECES WON=";TQ;
=1 T0 100
©206,N4%;° WON THIS ROUND OF THE GAME!!';
@206, CHR$(30);
TT
= > PS OR TQ = > PS GOTO 1610
@717,°T0 PLAY ANOTHER ROUND, HIT 'ENTER'.";:
NPUT E$

30

**END OF MATCH ROUTINE

IF TS > 1Q

5>y

60

1620
1630

1635
1640

games

THEN
N4§ = N$(0)
ELSE
N4$ = N§(1)
PRINT @711," “sN4$;" HAS WON THE KALA MATCH! CONGRATS!

PRINT @9;0,"FOR ANOTHER MATCH, SIMPLY HIT ENTER.";:
LINE INPUT Z$%

1650 :

1660 :

1670
1680
1690
1700

1710
1720

1730
1740
1750
1760
1770
1780
1790
1800
1810

1820
1830

1840
1850

1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960

RUN
' **REPEAT TURN ROUTINE

IF N$(1) = “COMPUTER® AND I = 1 GOTO 1750

PRINT €78, " “INS(I);", TAKE ANOTHER TURNI!
GOTO 410

‘ **THE COMPUTER'S MOVES

PRINT €205, CHR$(30);

K=K+ 1

M = RND(14)

IF K< 3 AND M < 11 GOTO 1750

IF M =>1 AND M ¢ = 7 GOTO 1750

IF A(M) = 0 GOTO 1750

PRINT @76, " “IN$(1);" MOVES FROM PIT #";M - 7;
GOSUB 1910

FOR TT = 1 TO 50:

NEXT TT

GOTO 500

‘ **MOVE INDICATORS ROUTINE

f

FOR TT = 1 T0 50

PRINT @844 + (M * 5),">v;
PRINT @844 + (M * 5),* =,
NEXT TT

RETURN

FOR TT = 1 TO 50

1970 :

1980
1990

2000
2010

PRINT @621 - (M * 5) + 35,"¢";
PRINT @621 - (M * 5) + 35,0 0,
NEXT TT
RETURN
;
' **INITIALIZE POSITIONS ROUTINE
FOR X = 0 TO 13:
A(X) = P:
NEXT
A(0) = O:
A(7) = 0
RETURN

61

GAMES

Puzzler

by James P. Morgan

Word-finder puzzles appear daily in newspapers and monthly in a
variety of puzzle magazines. The following program presents one
method of creating these popular pastimes with your TRS-80 or any other
micro with a compatible language structure. The program is written in
Level 11 and requires a 16K memory.

Program Operation

After you load from tape and enter RUN, a brief explanation of the game
appears on the video. While you read this information, the computer forms
a 12 x 19 array of random letters. Then, specific words selected from a data
bank are inserted into the array horizontally, vertically, and diagonally in
random order. This process takes 20 to 25 seconds. Press any key to clear the
screen and display the puzzle with the eight hidden words. A list of the eight
words will appear below the puzzle. To play, search through the jumble of
letters for one of the hidden words. Once you have located one, type the
word and press ENTER. The program then prompts you for the coor-
dinates, vertical and horizontal, of each letter in the word. As you enter each
letter, the computer looks for a corresponding match-up on the screen. If it
finds one, it redraws the screen with that letter missing. If the match is in-
correct, the game ends, and the program returns to the beginning.

The first bit of string manipulation begins at line 320. The LEN(string)
function extracts the number of letters in a given string and returns a
numerical value. This value is assigned to the variable N and is used for
subsequent string manipulations. Lines 330 and 340 determine randomly
the manner in which the words are inserted in the puzzle. For example, if the
value of L returns as 1, line 340 sends the program to subroutine 400, the first
option in the line. Assuming the program jumps to line 400, let’s follow the
logic of just how the program inserts a word into the puzzle from that point.

Subroutines 400 through 1100 all work in the same manner. Line 410
chooses a starting location at random. Lines 420 through 450 then test to
find space to insert the selected word. Line 420 sets up a counter which cor-
responds to the length of the selected word. The next two lines test to find if:
(1) the proposed location is outside the confines of the array; and (2) the pro-
posed location is already filled with another letter. If the answer to either
question is yes, the program goes back to line 410 for another starting point.
If all of the proposed spaces are within the array and are unoccupied, the
program moves on to lines 460 through 490 to insert the word. The I counter
establishes the number of letters to be inserted. The value of the location
A$(X1,Y) is assigned to each letter in turn. Continue to play until you

62

games

discover all eight words and remove them from the array. You can then opt
to continue with a new puzzle or end the game.

How the Program Works

Although using Puzzler is quite simple, the programming techniques used
to create the puzzle are a bit more complex. Lines 10 through 110 print
general information concerning the puzzle. As you read this information,
the program moves on to the computations required to build the structure of
the puzzle. The three arrays used in the puzzle are DIMensioned at line 200.
The A$(X,Y) array used throughout forms the visual display. The C$(Z) ar-
ray stores 50 words, of which eight are selected at random to insert into the
A$(X,Y) array. The W$(A1) array stores the eight words selected from the
C$(Z) array. The POKE statement in this line is required for proper execu-
tion of the READ function of the TRS-80, Revision G.

Lines 210 through 250 initially set the 12 x 19 array to a value of empty
spaces two columns wide. These empty spaces are eventually filled either by
random letters or by the specific letters of the puzzle words. Lines 260
through 280 fill the C$(Z) array with the words from the data bank. Lines
290 through 350 begin the process of selecting the words and inserting them
into the A$(X,Y) array. Al is initially set at 0 and serves as a counter in later
subroutines to track the eight selected words. Line 300 selects a random
number which is then used to transfer the word value of that number into
the W$(Al) array at line 310.

The letter to be placed in the puzzle is derived from the MID$ function
which works as follows: The word is identified by the W$(Al) array which
was determined at line 310. The next two values in the MID$ statement find
the specific letter. I+ 1 identifies the starting point in the W$(Al) string,
while the last value, 1, indicates that only one letter is to be extracted. As the
counter increments, the letters are pulled one by one from the selected word
and are placed in order in the puzzle array. Line 490 keeps track of the
number of words inserted, and when the total reaches eight, the program
branches to line 1300. Otherwise, it returns to line 300, selects another
word, and repeats the placement process.

Two Loops

Lines 1300 to 1390 complete the job of filling in the entire A$(X,Y) array.
Two loops accomplish this task. As the program increments through the Y,X
loops, the test at line 1330 checks each array location for occupancy. If there
is already a letter assigned to a specific location, the program jumps to the
next value of Y, X. If the location is empty, lines 1340 through 1360 fill it in
with a random letter.

Since the ASCII codes for the letters of the alphabet run from 65 through
90, a random number from 1 through 26, when added to 64, results in a

63

games

number corresponding to the alphabetical portion of the code. Line 1360
translates that number via CHR$(n), which returns the letter corresponding
to the number and assigns it to the A$(X,Y) location. The array is now com-
plete. It takes about 20 to 25 seconds for the computer to create the filled-in
puzzle. At this point, you can see the results by hitting any key. The short
routine which accomplishes this task is found in line 1390. For those who
have not discovered this powerful tool, a word of explanation is in order.
Line 1390:

M$ = INKEY:IF M$ = “” THEN 1390

works as follows: INKEY$ tells the computer to stand by, because the user is
going to enter something directly from the keyboard. If “ (nothing) is in-
put, the statement tells the program to go back to the beginning of line 1390
and wait for the person at the keyboard to do something. When you press
any key, INKEY$ assigns the key value to the string variable M$, and the
program moves on to the next line—simple yet powerful, since it provides
the user with instantaneous keyboard control over the program. You can
also use this function to advantage with subsequent IF-THEN statements,
which can then be used for multiple-choice branching related to a specific
keyboard input. Hitting any key moves the program to the GOSUB routine
in lines 1700 through 1800, which prints the array and words and returns
control to lines 1500 through 1600.

Line 1510 selects a word and assigns the string value D$. Line 1530 ex-
tracts the number of letters in the word which will be used in the counting
sequence at line 1540. The error statement at line 1530 is a trap which
catches a bad input at line 1550, for example, a keyboard bounce resulting in
a coordinate outside the dimensions of the A$(X,Y) array.

The coordinates input at line 1550 are used to select the value of A$(X,Y),
which is compared to the value of E$ derived from the MID$ function at line
1560. If the letters match, the A$(X,Y) value is changed to “ ”, providing
positive feedback when the screen is reprinted.

Lines 1900 through 1940 provide the option to end the game or go back
for another puzzle. Note the use of INKEY$ as a branching device. The
DATA is stored starting at line 2000, and the error routine at line 3000.

Modifications and Changes

Everybody loves to play with a program; so I'll offer a few suggestions you
may want to try. You can increase the number of words in the data bank to
whatever number your available memory handles. This version of the pro-
gram leaves about 9000 bytes available in a 16K machine; so there is plenty
of space for expansion. To expand the data bank, you must change the
C$(50) dimension at line 200 to match the number of words in the DATA
file. Subsequently, line 210 has to CLEAR more string storage space, and
lines 260 through 300 have to be modified to reflect the number of words

64

games

available. You can insert more words into the puzzle by setting the value of
Al higher in lines 490, 590, 690, etc. and resetting the loop at line 1780. This
modification increases the time required to place the words into the puzzle.

65

games

Program Listing. Puzzler

5 REM *** PIND IT BY jJAMES p. mORGAN, OCT 79 **

18
29

30
40
50
60
70
8¢
90

100

110
195

208

285
218

CLS: PRINT@25,"FIND IT":PRINT
PRINT"WHILE YOU ARE READING THIS, THE COMPUTER IS BU
sY
PRINT®CHURNING AWAY WITH THOUSANDS OF COMPUTATIONS W
HICH
PRINT"WILL RESULT IN A WORD FINDER pUZZLE. iT TAKES
ABOUT
PRINT"25 SECONDS TO SET UP THE PUZZLE...IT WILL BE C
OMPLETE
PRINT"ANY SECOND NOW. yOU WILL BE SHOWN A SQUARE OF
JUMBLED
PRINT"LETTERS IN WHICH EIGHT LISTED WORDS WILL BE HI
DDEN.
PRINT"LOCATE A WORD, ENTER IT FROM THE KEYBOARD, AND
THEN
PRINT"CONFIRM YOUR LOCATION BY ENTERING THE COORDINA
TES~~
PRINT"VERTICAL, THEN HORIZONTAL, OF EACH LETTER IN
THE WORD.
PRINT"TO GET STARTED, TAP ANY KEY."
REM **%* DIMENSION ARRAYS, POKE FOR READ EXECUTION *
* %k
CLEAR 508: DIM A$(12,19), C5(58), WS$(8):POKEL6553,2
55
REM *** SET MAIN ARRAY TO EMPTY SPACE **#
FOR X=1 TO 12

226 FOR ¥Y=1 TO 19
238 AS(X,Y)=" "

248

NEXT Y

250 NEXT X
255 REM *** READ IN THE DATA FOUND AT LINE 2008 **+*

260 FOR 2Z=1 TO 50

278 READ C$(z)

288 NEXT 2

298 Al=0

295 REM *** SELECT WORD, ASSIGN TO W$, PULL LENGTH ***
308 z=RND (58)

318 W$(Al)=C$(Z)

320 N=LEN{WS$(Al))
325 REM *** SELECT INSERTION DIRECTION AT RANDOM ***

330

L=RND (8)

340 ON 1. GOTO 408,500,680,7060,8060,900,1000,1100
408 REM *** QUp VERTICAL SELECT AND PLACE *xx
418 X=RND(¥2)}: Y=RND(19)

42p

FOR I=@ TO N-1

430 IF X-I=0 THEN 410

449
459
4640
478
4806
498
500
518
528
536
540
550
560
5780
5808
590
600
610
620
636
640

IF AS(X-I,Y)<>" " THEN 418
NEXT 1
FOR I=§ TO N-1
A$(X-I,Y)=MIDS(WS(ALl),I+1,1)
NEXT T: Al=Al+l
IF Al=8 THEN 1306 ELSE 388
REM *** DOWN VERTICAL SELECT AND PLACE *%#
X=RND(12): Y=RND{19)
FOR I=0 TO N-1
IF X+I=13 THEN 510
IF AS(X+I,Y) <> ™ " THEN 510
NEXT I
FOR I=0 TO N-1
AS (X+I,Y) MID$(W$(A1) I+1,1)
NEXT I: Al=Al%
IF Al=8 THEN 135@ ELSE 368
REM *** RIGHT HORZ. SELECT AND PLACE #**#*
X=RND({12): Y=RND(19)
FOR I=0 TO N~1
IF Y+I=20 THEN 610
IF AS(X,Y+I)<>"™ " THEN 618

66

658
660
670
680
690
700
718
728
738
740
758
768
718
780
790
860
8le
820
830
840
850
860
878
888@
890
068
918
928
930
940
9508
960
978
980
990
1000
1810
1620
1836
lg40
1850
1060
1870
1880
1096
1100
1118
1120
1138
1140
11508
1160
1178
1180
1196
1360
1318
1320
1330
1340
1350
1366
1376
1380
1390
1400
1500
1510
1520
1530
1540

games

NEXT I
FOR I=0 TO N-1
AS(X,Y+I)=MIDS{(W$(ALl),I+1,1)
NEXT I: Al=Al+l
IF Al=8 THEN 1380 ELSE 380
REM **LEFT HORZ. SELECT AND PLACE ***
X=RND(12): Y=RND(19)
FOR I=§ TO N-1
IF Y~-I=@ THEN 718
IF AS(X,Y-I)<>" " THEN 718
NEXT I
FOR I=0 TO N-1
AS{X,Y-I)=MIDS$(WS$(Al),I+1,1)
NEXT I: Al=Al+l
IF Al=8 THEN 1308 ELSE 380
REM *** RIGHT UP D]AGONAL ***
X=RND(12): Y=RND({19)
FOR I=@ TO N-1
IF Y+I=20 THEN 810
IF X-I=8 THEN 818
IF AS$(X~I,Y+I)<>" " THEN 810
NEXT I
FOR I=@ TO N-1
AS (X~I,Y+I)=HMIDS$ (W$(AL),I+1,1)
NEXT I: Al=Al+l: IF Al=8THEN 1300 ELSE 360
REM *** LEFT DOWN DIAGONAL *¥**
X=RND(12): ¥=RND(19)
FOR I=0 TO N-1
IF Y~-I=P THEN 910
IF X+I=13 THEN 910
IF AS(X+I,¥Y-I)<>" " THEN 918
NEXT I
FOR I=@ TO N-1
AS{X+I,Y-I)=MIDS{WS(Al),I+1,1)
NEXT I: Al=Al+l: IF Al=8 THEN 1300 ELSE 388
REM *** LEPT UP DIAGONAL **%*
X=RND(12) : Y=RND(19)
FOR I=§ TO N-1
IF X~I=0 THEN 1810
IF Y-I=0 THEN 1810
IF AS$(X-I,Y-I)<>" " THEN 1818
NEXT I
FOR I=§ TO N-1
AS(X~-1,Y-I)=MIDS$ (WS (ALl),I+1,1)
NEXT I: Al=Al+l: IF Al=8 THEN 1300 ELSE 380
REM *** RIGHT DOWN DIAGONAL ***
X=RND(12): Y=RND(19)
FOR I=@ TO N-1
IF X+I=13 THEN 1110
IF Y+I=20 THEN 1110
IF AS(X+I,¥Y+I)<>" " THEN 111¢
NEXT I
FOR I=@ TO N-1
AS(X+I,Y+I)=MID$(WS(AL),I+1,1)
NEXT I: Al=Al+l: IF Al=8 THEN 1380 ELSE 300
REM *** FILLING IN REST OF AS(X,Y) ARRAY ***
FOR X=1 TO 12
FOR Y=1 TO 19
IF AS(X,Y) <>" " THEN 1378
B=RND (26)
C=64+B
AS$(X,Y)=CHR$(C)
NEXT Y
NEXT X
M$=INKEYS: IF MS="" THEN 1390
GOSUB 1768
REM *** MATCH UP ROUTINE *#**
INPUT"ENTER WORD. ENTER '*' TO END.";D$
IF D$="*" THEN 1900
N=LEN(D$) :ON ERROR GOTO 3888
FOR I=1 TO N

Program continued

67

1559

15680
1570

1580
1599
1600
1619
1709
1785

1719

1728
1739
1749
1758
1768
1779
1780
1799
1899
1909

1919
1920
193a
1949
2008
2618
2020
2030
2048
2059
20640
28740
2995
3089

3010
3820

games

INPUT"ENTER VERTICAL,HORIZ. COORDINATES OF LETTE
R MATCH.":X,Y
E$=MIDS$ (DS, I,1)
IF E$<>AS(X,Y)THENPRINT"WRONG!! START OVER":FORX=1
TO968 :NEXT: GOTO14
IF E$=AS$(X,Y) THEN AS(X,¥y)=" *
GOSUB 1769
NEXT I
GOTO 15080
REM *** THE SCREEN PRINT SUBROUTINE *#%%
REM ***NEXT LINE, USE 2 SPACES UP TO 9, OWE SPACE
AFTER #***
CLS:PRINT"L 2 3 4 5 6 7 8 9 1¢ 11 12 13 14
15 16 17 18 19"
FOR X=1 TO 12
FOR ¥Y=1 TO 19
PRINTAS (X,Y);" ";
NEXT Y
PRINTX
NEXT X
FOR Al=0 TO 8
PRINTWS(AL) ;" ";
NEXT Al: RETURN
CLS:PRINT"IF YOU WISH TO PLAY ANOTHER ROUND, TYPE
'Y' FOR YES."
PRINT"TO END, JUST TAP THE SPACE BAR."
G$=INKEYS$: IF G$="" THEN 1920
IF G$="Y"THEN 10
PRINT:PRINT"GOODBY FOR NOW.": END

DATA "COMPUTER","PAPER","TIGER","BYTE", "BAUD", "HOU
SE"
DATA "RANDOM","TABLE", "GENERATOR", "INPUT", "OUTPUT"
!IOHM"
’
DATA Y"RESISTOR","VIDEO","DISPLAY", "KEYBOARD", "LINE
u_epORY
v
DATA “INPUT","INTERFACE","SIGNAL","MICRO", "POWER",
"SUPPLY"
DATA "SYSTEM","RADIO", "WATT", "WAIT","STATE", "DEVIC
E"
DATA "PROGRAM","BASIC","CASSETTE","LINEAR","TIMER"
"BYTE"
6ATA "PLUS" ,"MINUS","GAME", *THEORY", "HIGH", "LOW" ,"
BUFFER"
DATA "ELECTRON","AIR","FORCE","NUMBER", "BINARY","H
EX", "END"

REM **%* ERROR ROUTINE NEXT ***

CLS:PRINT"BAD INPUT. TRY AGAIN.":FORX=1T01000:NEXT
GOSUB 17080

RESUME 1550

68

GRAPHICS

On Your Mark, Get Set, and Go

69

GRAPHICS

On Your Mark, Get Set, and Go

by Gerald DeConto

omputers are supposed to make our lives easier aren’t they? Then why

do we spend half our time either setting up or waiting for a graphics
display? Since I couldn’t answer this, I decided to do something about it; so
here is a short program to draw (or erase) a line from one point on the screen
to another. I call it GRAFX2.

GRAFX2 is a 255-byte extension of Level 1l BASIC. When it is in memory
and the first section has been executed, it causes the computer to respond to
the Disk BASIC commands LSET and RSET with something other than an
L3 ERROR message. LSET is designed to construct a line from one point on
the screen to anothier. RSET does the inverse and erases a line between two
points. These two new commands are the descendants of SET and RESET
and function in a very similar way. LSET and RSET, however, require the
x-and y-coordinates for both the start and the end points. The other difference
is that the coordinates must be integer variables. Using numbers or any other
type of variable confuses GRAFX2, and it will not function correctly.

GRAFX2 plots about 1800 points a second. This means that you can clear
the screen in about three-and-a-half seconds. Another feature of GRAFX2 is
that it can easily be patched back into BASIC if the computer restarts
(displays MEMORY SIZE?).

Program Concepts

Assume that you have just typed in a short BASIC program. By PEEKing
into the program’s memory locations you find characters and internal com-
mand codes. The codes are numbers ranging from 129 to 250. They are the
one-byte representations of the BASIC commands you just typed in.

When you entered the BASIC text, an encoding routine was called
automatically to reduce each reserved word to a one-byte code. This saves
memory space and speeds up execution. If you list or edit the text, a
decoding routine displays the commands in their original, readable form.

Since you have a program, you can use the RUN command. When the
RUN command is used, it causes a series of machine-language instructions to
be performed in ROM. It is responsible for stepping through BASIC pro-
grams and executing any command codes (commands) it finds. The com-
puter does this until you stop it or instruct it to do otherwise.

71

graphics

To execute a command you must locate the position of the command code
in the command code list. Once the location is found, a second list contain-
ing memory address pointers is scanned to obtain the corresponding entry.
For most commands, this address points to a subroutine in ROM that does
what the command was defined to do. The computer jumps (or calls) to
this address.

There are exceptions to the case. The Disk BASIC commands, for in-

stance, have their pointers send the computer to the reserved areas in RAM,
where a series of JP instructions is found. The computer is sent to the cor-

rect JP, and the JP sends it to the L3 ERROR routine if there is no disk. If a
disk is present, the computer goes to the appropriate disk operating system
routine. The important thing to remember is that these JP instructions are in
RAM. This means that you can alter them to send the computer to the right
entry point for each command in GRAFX2.

The Technical Aspect

The first 23 bytes of GRAFX2 change the JP instructions for the disk com-
mands LSET and RSET, giving you an easy way out of BASIC. Level II
BASIC uses the HL 1egister to keep tabs on the current position in a pro-
gram. Once a command code is found, HL points to the very next character
in the text—in this case, the first bracket. In order to move HL past this and
skip any spaces in the text, use RST 10H. The latter routine reads in the
name of the variable HL, pointed to and stores the value of this variable at
4121H. Note that this applies only to integer variables, since 2540H stores
other variables at different locations and in different formats. Numbers are
not read in by 2540H. GETVAL is called four times to get data. It also
checks to see that the values fall within the screen’s limits. If they do not,
then the computer goes to the L3 ERROR routine at 12DH.

In developing the program, I recalled what I knew about graphing lines. I
needed to know the difference between the y-coordinates (rise) and the
difference between the x-coordinates (run). These are easy to calculate,
but I also needed the slope. The slope is the slant of the line; it’s found by
dividing the rise by the run. This involves the use of division and good
knowledge of floating point numbers. I also needed to know how to
multiply in machine language, since, to get a new y-coordinate, I had to
multiply the slope by the next x-coordinate. This is easy to do in BASIC
but quite hard and slow in machine language.

I solved my problems by remembering that division can be simulated by
successive subtraction, and multiplication can be simulated by successive
addition. With a little bit of brain work I figured out a way to do what I
needed, and it used only integers. I ended up with a running tally which is
similar to the numerator of the slope. It keeps tabs on when I should incre-
ment and which coordinate to use.

72

graphics

This leads you to the Level II graphics routine at 150H. This routine gets
its data from the stack, with the exception of the y-coordinate, which is left in
the A register before the program jumps to 150H. You must establish the re-
turn address, the set or reset code, and the x-coordinate before going to 150H.

One thing I should mention about this routine is that it requires an ADD
HL,HL instruction (29H) at the return address for some of its calculations.
Since this doesn’t harm anything in this program, you can safely ignore it.

When you return from setting or resetting the current point, you must test
the current point and the end point for equality. If they are equal, then you
can go back to BASIC. You calculate the new x- and y-coordinates if the
points are not equal.

Remember that before loading in the program, you must set the memory
size at about 32250 to avoid having the BASIC stack wipe out any part of
GRAFX2. Note that I did not place this program at the very top of memory,
because I had my serial printer driver at the top. As I said before, the com-
mands need four data values—an x and a y for both the start and end points.
They must be integer variables for GRAFX2 to work. If the computer restarts,
you can restart the program by entering SYSTEM and then /32256. This puts
your memory pointers in reserved RAM to link GRAFX2 into BASIC.

This program is very useful in all types of computing. It draws in any
direction and is very good at doing borders, histograms, charts, or whatever
you need. You can also use it as a module for some of your own programs.

73

TEGD
TEQS
7EB2
TEBS
TEOB
TE@B
TEBE
7E11
7E14
7E17
7EL19
7E1B

TEID
7ELE
7ELF

TE22
TE24
TE27
TE2A
7E2D
TE2P
TE32
7E35
7E38
TE3A
7E3D
TE4D
TE43
7E45
7E48
7E4B
7TE4E
TE4F

3EC3
211778
329741
229841
211B7E
329A41
229B41
C3CCa6
3E8H
1862
3EB1

Cc5
D5
32FD7E

3E80
32FE7E
CDE27E
32F47E
3E38
32FE7E
CDE27E
32F57E
3E88
32FE7E
CDE2T7E
32F67E
3E38
32FE7E
CDE27E
32F77E
23

E5

aeloe
00119
80129
68130
0pl4p
08158
68160
68170
pelep
728196
oB200
00210
082208
50230
28240
009250
Bo260
28270
06280
08290
003006
66310
083208
88336
08340
68350
00360
08378
08380
60390
ao40@
664l
60420
20430
68440
00450
00460
00470
80480
66490
88500
6@510
80520
oes53¢9
80540
88550
08568
86570
oB580
286598
00600
20610
20620
20630
0640
o650
08660
88670
00680
20698
20780
00710
60720
007308
00740
08750
88768
se770

graphics

Program Listing. GRAFX2

;**

*

*

LEVEL II BASIC COMMAND EXTENSION

NAME: GRAFX2
BY : G, DECONTO
1415 SOUTH LAKESIDE DR.
WILLIAMS LAKE, BRITISH COLUMBIA
CANADA, V2G 3A7

NEW COMMANDS:
LSET(W,X,Y,Z) AND RSET(S,T,U,V)

LSET DRAWS A LINE FROM ONE POINT (START) TO
ANOTHER (END).
RSET IS ITS INVERSE AND ERASES A LINE,.

BOTH START AND END POINTS ARE DEFINED BY ONE
X AND ONE Y COORDINATE.THESE COORDINATES MUST
BE INTEGER VARIABLES FOR GRAFX2 TO WORK,
MEMORY MUST BE RESERVED AT ABOUT 32255 TO
AVOID WIPING OUT GRAFX2.

IN CASE OF COMPUTER RESTART (GOES "MEMORY
SIZE?") JUST ENTER "SYSTEM" AND "/32256"

AT THE PROMPT.

e e e S N eI

ORG TE@@H
START LD A,BC3H ;"JP" CODE
LD HL,LSET ;ADDRESS OF LSET
LD (4197H) ,A
LD (4198H) ,HL
LD HL ,RSET ;ADDRESS OF RSET
LD (419AH) ,A
LD (419BH) ,HL
Jp 6CCH ;RETURN TO BASIC
LSET LD A, 8PH ;CODE FOR "SET"
JR CONT
RSET LD A,014 ;CODE FOR “RESET"

HERE ON COMMANDS MERGE AND ARE IDENTICAL
HL POINTS TO CHARACTER AFTER COMMAND

CONT PUSH BC ;SAVE BC
PUSH DE ; SAVE DE
LD {WHICH) ,A ; {WHICH) =SET/RSET

LD A, 80H

LD (LIMIT),A ;X LIMIT
CALL GETVAL ;GET X1
LD (X1),A

LD A,30H

LD (LIMIT) A ;Y LIMIT
CALL GETVAL ;GET Y1
LD (Y1) ,A

LD A,88H

LD (LIMIT) ,A ;X LIMIT
CALL GETVAL ;GET X2
LD (X2) ,A

LD A,30H

LD (LIMIT) ,A ;Y LIMIT
CALL GETVAL ;GET Y2
LD (Y2) ,A

INC HL ; IGNORE BRACKET
PUSH HL ;SAVE HL

CALCULATE RISE,RUN AND THE INCREMENTS

74

Encyclopedia
ycL&a%er"

graphics

BO780 j=ecmorsEEsRS R SSSSSSIEE S EEERR S SRS SEREEmaEs RS
TE58 21F47E @¢798 GETRUN LD HL, X1 X VARIABLES
7E53 CDBETE 00800 CALL RYZRUN
7E56 21FS57E 80818 GETRYZ LD HL,Y1 ;Y VARIABLES
7E59 CDBE7E pp820 CALL RYZRUN
TE5C 3AFBTE 0p830 LD A, (RISE)
TESF 32FCTE 00840 LD (NUMER) (A ;s NUMERATOR = RISE

TE62 217478 29888 LOOP LD HL ,RETADD ; RETURN ADDRESS
TE65 ES 80890 PUSH HL
7E66 3AFDTE ag908 LD A, {WHICH) ;GET CODE
7E69 F5 g9o5le PUSH AF
TE6A 3AF47E 29928 LD A, (X1) ;GET CURRENT X
TE6D F5 00930 PUSH AF
TE6E 3AFSTE 20949 LD A, (Y1) ;GET CURRENT Y
TE71 C350081 00950 JP 156H ;GOTO GRAPHICS
TET4 29 #9960 RETADD ADD HL ,HL ;29H THIS ADDRESS
pag78 ; AVOIDS "SN ERROR"
PU98E ;==ss=ccccsmsmmmmsssssmmsssssssssssssssssssssssss
243998 ; TEST TO SEE IF WE ARE DONE
TE75 3AF67E 91918 TEST LD A, (X2)
TE78 47 41028 LD B,A
TE79 3AF47E 81030 LD A, (X1)
7E7C B8 01049 Cp B ;X1=X2 ?
7E7D 208E 91859 JR NZ ,NXTTST
TE7F 3AFP77E 61060 LD A, (Y2)
TE82 47 791979 LD B,A
7E83 3AFS57E 21488 LD A, (Y1)
TE86 B8 918949 CP B ;Y1=Y2 ?
7TE87 20804 91160 JR NZ ,NXTTST
7E89 E1 9111¢ POP HL ;POINTS ARE EQUAL
TE8A D1 81120 POP DE ;SO RESTORE THE
7E8B C1 91138 POP BC ;REGISTERS.
7E8C C9 91148 RET ;GO HOME!
21150 ;so=ss==sscs=ssoss=sss SEmssmsssssssomns mmm
81168 ; NOT DONE, DO WE INCREMENT X OR Y ?
91178 ;======= S === B =
7E8D 3AFATE $1186 NXTTST LD A, (RUN)}
7E98 47 91199 LD B,A
7891 3AFCTE 81200 LD A, (NUMER)
7E94 B8 91218 cp B s NUMERATOR < RUN ?
7E95 3812 #1220 JR C,INCX ;JUMP IF YES
7E97 B7 91238 INCY OR A ; NUMERATOR >= RUN
7E98 98 9312409 SBC A,B ; NUMERATOR=NUMERATOR-RUN
7E99 32FC7E 81259 LD (NUMER) ,A
TE9C 3AFS7E 81269 LD A, (YINC)
TEIF 47 31279 LD B,A
TEA@ 3AFS57E 81280 LD A, (Y1)
TEA3 88 81299 ADD A,B ; INCREMENT Y
7ER4 32F57E 91360 LD (Y1) ,A
7EA7 18B9 g1319 JR LOOP ; KEEP GOING
TEA9 47 B1328 INCX LD B,A
7EAA 3AFBTE #1339 LD A, {RISE}
7EAD B89 21349 ADD A,B ; NUMERATOR=NUMERATOR+RISE
7EAE 32FC7E #1359 LD (NUMER) ,A
7EB1 3AF87E 21368 LD A, {XINC)
7EB4 47 #1379 LD B,A
7EB5 3AF47E 01389 LD A, (X1)
7EB8 88 91399 ADD A,B ; INCREMENT X
7EB9 32F47E 01408 LD (X1),A
7EBC 18A4 #1410 JR LOOP ;KEEP GOING
81420 ;==== mes=sm==s == == ===
61430 ; SUBROUTINE TO GET RISE OR RUN
91440 ; USES BRACKET CONTENTS DURING SECOND CALL

21458

7EBE 46 91468 RYZRUN LD B, (HL) T GET X1 (Y1
JEBF 119200 01478 D DE, 2
7EC2 19 61480 ADD HL,DE ;POINT TO X2 (Y2)

Program continued

75

graphics

7EC3 7E 0149¢ LD A, (HL) 3GET X2 (Y2)
7EC4 4F 81568 LD C,A
7EC5 B8 815189 cp B
7EC6 2806 91528 JR Z ,EQUAL ;X2=X1 (¥2=Y1)
TEC8 3868 081530 JR C,LESS 7X2<X1 (Y2<Y1)
7ECA 3EB1 81540 GREATR LD A,l 7X2>X1 (¥2>Y1),INCREM,=1
7ECC 186C 81558 JR CONT2
7ECE 3EDQ #1560 EQUAL LD A, B 3 INCREMENT=8
7EDB 1888 81578 JR CONT2
7ED2 3EFF 01580 LESS LD A,BFFH 7 INCREMENT=-1
7ED4 19 81598 ADD HL,DE $PT TO INCREMENT
21688 ; STORAGE
7EDS 77 l619 LD (HL) ,A
TED6 78 81620 LD A,B ;EXCHANGE X1 (Y1)
81630 ; AND X2 (Y¥2)
7ED7 41 81640 LD B,C
7ED8 1883 21658 JR FIGURE
7EDA 19 81668 CONT2 ADD HL,DE ;PT TO INCREMENT
61670 ; STORAGE
TEDB 77 01680 LD (HL)} ,A
7EDC 79 01690 LD r sRESTORE X2(Y2)
7EDD 19 81760 FIGURE ADD HL,DE #PT TO RUN (RISE}
JEDE B7 81718 OR A ;CLEAR CARRY
TEDF 98 81720 SBC A,B s RUN=X2-X1
61738 ; (RISE=Y2~Y1)
TEEB 77 81748 LD (HL) ,A
7EE1 C9 81758 RET
81760 ;=== = ==
81778 ; SUBROUTINE TO GET VALUES FROM VARIABLES
21786 ;
7EE2 D7 81798 GETVAL RST 10H ;SKIP BLANKS
7EE3 CD4B25 01800 CALL 2540H ;PUT VARIABLES
61810 ; VALUE AT 4121H
7EE6 3AFE7E 21820 LD A, (LIMIT)
7EE9 47 81830 LD B,A
7EEA 3A2141 21840 LD A, (4121R) ;GET VALUE
7EED B8 01859 cp B sWITHIN LIMITS ?
7EEE D8 61860 RET C ;IF YES,RETURN
TEEF El 81870 L3ERR POP HL
7EF0 E1 21888 POP HL
7EF1 C32p@1 61890 Jp 81 2DH ;L3 ERROR ROUTINE
TEF4 00 51948 X1 DEFB [/
TEF5 00 6191@ Y1 DEFB [
TEF6 08 81920 X2 DEFB |4
TEF7 60 61930 Y2 DEFB [
TEF8 89 81940 XINC DEFB)
TEF9 00 £195¢ YINC DEFB [}
TEFA 00 01968 RUN DEFB [}
TEFB 80 81970 RISE DEFB 2
TEFC 00 61980 NUMER DEFB]
7EFD 00 81998 WHICH DEFB 9
TEFE 00 02000 LIMIT DEFB [
TEBD 82019 END START

00686 TOTAL ERRORS

76

HARDWARE

Program an EPROM

77

HARDWARE

Program an EPROM

by Dr. Steven A. Larson N3SL

Now that the prices of EPROMs are dropping to more tolerable levels
for hobbyists, the potential for adding one or more of these little
gems to the TRS-80 is within most everyone’s reach. First, I will describe
a method of adding 2000 bytes of EPROM programs for about $15. The
second part of this chapter describes an inexpensive (under $15) program-
mer designed specifically for the 2048-byte, single 5-volt version 2716
EPROM, using wire-wrap technique and easy-to-find parts.

An Additional 2000 Bytes of Permanent Memory

How would you like to have 2000 additional bytes of ROM routines of
your choosing—or of your own design? It takes only three common in-
tegrated circuits, one EPROM, a small 5-volt power supply, and a cable
to attach either to your expansion interface or directly to your expansion
port. The main component in the unit is the 2048-byte, single 5-volt sup-
ply, 2716 EPROM, which costs as little as $5. The total cost, even for new
parts, is only about $15 if you shop around. Currently there are several
commercial units available that are similar to the EPROM I will describe
here, but prices start at about $70.

If you look at the memory map in the back of the Level II BASIC
Reference Manual, you will notice that just above the 12K of BASIC ROM
is an area from 3000 to 37DD (hex) that is unused. Exatron uses this area
for their Stringy-Floppy unit, and there’s nothing to stop us from using
that same area—unless you already have an Exatron unit, but even that
can be taken care of with a simple switch.

I first began thinking about this project when I realized there were
several programs that I kept using over and over. Before 1 had disk drives
and the new keyboard driver in DOS, KBFIX was an absolute necessity
for any work of more than one minute in front of the keyboard; so when
the idea of permanently available programs came up, KBFIX was an ob-
vious choice. Secondly, again before my disk era, I spent a lot of time
making—or trying to make—backup copies of my tapes, and I used a pro-
gram called TRCOPY almost daily. In its original form it was only about
1800 bytes long, so I knew it would fit quite nicely into a 2K EPROM (but
with substantial address modifications). Finally, after adding my up-
per/lowercase character generator, loading the driver to it became a has-
sle, so that too was chosen to go into the EPROM. Now with my EPROM

79

hardware

board attached, I can use a mere SYSTEM command, and I have any or
all of the utilities immediately available, with no possibility of loading er-
rors, no memory size to set, and no chance of wiping them out with DOS.

The scenario wasn’t entirely as easy as I’ve made it sound, however, as I
knew no one other than commercial firms who could program my
EPROMs-—at a reasonable price; so I set out to design my own EPROM
programmer for the 5-volt version of the 2716 and eventually wound up
with a nine-IC unit that T wire-wrapped for a grand total of $12.

The Circuit

The circuit for the new memory card is quite simple, containing only
four integrated circuits including the EPROM. The last 49 bytes of the
EPROM are unusable due to address decoding limitations of the three ICs
used. You will notice from the memory map, however, that the TRS-80
picks up the addresses again at 3TDEH; so the last 34 bytes of the EPROM
block—from 37DEH to 37FFH—aren’t available for our use anyway.
Thus, the real loss in usable EPROM space is only 15 bytes. In order to
decode all the way to 37TDDH to gain those 15 bytes back, I figured two
additional ICs would be needed, and that wasn’t worth the money. The
schematic is shown in Figure 1. The three integrated circuits Ul-3 are
used to decode the address being sent out by the CPU.

Address Decoding

The addresses for this EPROM range from 3000H to 37CFH, and the
three ICs cover that entire range. Decoding A12-15 is straightforward.
These lines are only valid for the EPROM when they equal a binary 3,
i.e., when Al5 and Al4 are low (0s), and Al3 and Al2 are high (ls).
Decoding is done by UlA and U2A as follows: The output of UlA, an OR
gate, is low only if both Al4 and Al5 are low. The output of U2A, a
NAND gate, is low only if both A12 and Al3 are high. Thus, when the
CPU is sending out any address in the 3000 hex block, the outputs of both
UIA and U2A are low. Since we will actually need an active high for final
decoding (through U3C), the low from lines Al14 and A15 is immediately
fed into U2B, which is wired as an inverter.

Next, since we never need an address of 3800H or greater, line All,
which determines the 8 or greater part, was brought into the decoding
directly at pin 5 of Ul. Here it is ORed with the previously determined 3
so that the output of U1B is low only if the most significant byte of the ad-
dress being sent is in the range of 30-37H—in other words, 3800H and
above are not decoded. Again, since we actually need a high in the final
decoding, this low is fed into U2C which is wired as an inverter and then
into U3C, the last decoding gate.

80

hardware

TRS-80 EDGE
CONNECTOR
7 —]
10 i
&l +5V | GND
5] ul |4 7
9 e vz |14 | 7
us |14 |7
ut | 7aLs32
vz | 74Ls00
us | 7aLsio
ua | 2718
+5v
24 21
4] 810 Rl 19
3 9 22
17—
1) moed 8 23
36 L . va
. & 2
= E :
4 4
\—
334-—— 3 5
40 —]| 2 6
27 — ! !
26— Q 8i 12
“,2__ EC 20
17 {16 15 {14 D3 (4 [t0 [9
20— Dl
24 =l §
28 >
18—t :
26—
32 2
22—
30 —| g
8.29. 37w 77

Figure 1. EPROM memory board schematic diagram. Numbers to the left of the edge connec-

tor block indicate TRS-80 bus pin designations.

Finally, things get a little more complicated as we determine if the ad-
dress is 37CFH or lower—the only valid addresses for our EPROM. It is
easiest to see this by looking at the actual binary addresses in question, as
shown in Figure 2. Since the 30H to 37H part of the address has already

DECODED ule u3s
BY S — e
} b
UtA u2a [T || oo
AT | r“iﬁ | }r—’\
L T D
37Ex 001 R 0 X% ox x INVALID
370x 0 01 1 ot 1100 XX oxox INVALID
37¢x o0 ¢ oo 1100 X oxox x VALID
ADDR LINE | 15 14 13 12 105 8 765 4 P

Figure 2. Memory board address decoding scheme. If either A4 or A5 is high while both A6

and A7 are high, the address is invalid, as indicated.

81

hardware

been decoded, the only thing left to determine is whether the least signifi-
cant byte of the address is CF or less, which we do in a roundabout way
by determining if the byte is DO or greater. By looking at Figure 2, you
can see that the key lies in decoding lines A4-7. If both or either A4 or A5
is high at the same time that A6 and A7 are both high, the hex value must
be DO or greater. We obviously can’t disallow all DO or greater states, so
we need to determine when x7DO0 or greater exists and disallow that situa-
tion only. This is done by U3A, U3B, and UlD. Whenever addresses
3700-37FFH are output, all three inputs to U3A (A8-10) are high from
the 7, and its output is low. Looking at Figure 1 again, notice that when-
ever addresses xxDO to xxFF are output, either or both A4 and A5 are
high, setting the output of U1D high. Combining that output with A6 and
A7 at the input of U3B will give a low output there whenever the DO or
greater state is on the address bus. By ORing the outputs of U3A and U3B
together in U1C, the output of U1C will be high at all times except when
x7D0 to x7FFH is on the address bus, and these are the addresses we
wanted to exclude.

The final decoding is done in U3C, which simply ANDs what we’ve just
been through. When (1) Al15 and Al4 are low and (2) Al3 and Al2 are
high and Al1 is low and (3) x7D0-x7FFH is not on the address bus, then a
low pulse is output from U3C pin 8. This low is fed into the chip enable
pin on the EPROM which selects it for the read cycle in progress.

The only other pin on the EPROM that needs special attention is the
output enable (pin 20) which, when low, takes the data lines from a high
impedance state and connects them to the data bus during the read pulse
from the CPU.

Construction

Circuit layout is not critical and wire-wrap technique can be used.
Designing a printed circuit board would be fairly difficult and would re-
quire either double-sided boards or the extensive use of jumpers. I figured
that wire-wrappping four 1Cs, even though it looks messy, was far easier
than laying out a printed circuit board. The power supply can be small. If
you use 74LS series integrated circuits, the current drawn during an
EPROM access is only about 120 mA, and when no EPROM read is in
progress it drops to about 45 mA due to a standby feature of the EPROM.
I used a small, 5-volt wall power pack like those supplied with calculators
or games and have not had any problems with heat or erratic behavior in
the circuit,

How to Use It
Use of the new memory is as simple as typing SYSTEM and entering the

82

hardware

appropriate address. Since the three programs I mentioned did not fill up
my EPROM, I spread them out a little so that the decimal addresses were
easier to remember. Since I needed KBFIX every time I used the com-
puter, I programmed it at 3039H, which is 12345 decimal. TRCOPY was
programmed at 12500 decimal; 14000 activates my lowercase driver, and
14100 deactivates it. Obviously, the locations of your routines are up
to you.

If you want to add more programs than a single EPROM will allow,
you can have two or more EPROMs in the circuit. The modifications are
minimal, involving simply wiring additional EPROM sockets in parallel
with the first and running the chip enable line (U3B pin 8) through a
switch to the appropriate EPROM. Be sure your power supply can handle
the additional current each EPROM will add (about 25 mA).

The potential for a whole bank of useful utilities, subroutines, or even
BASIC programs is limited only by the 2000-byte confine of the cir-
cuit. Within that range, however, the only factor would be your own
imagination.

Build a 2716 EPROM Programmer for Under $15

The biggest obstacle in adding an EPROM to your system is getting the
device programmed. I am going to describe an inexpensive programmer
designed specifically for the 2048-byte, single 5-volt version 2716
EPROM. I purposely will go into fairly technical detail of the hows and
whys of the circuit design, so that you can modify my circuit or com-
pletely redesign it to fit your own needs. As you will see, there are many
ways to accomplish the task and many different integrated circuits that
can be used.

Background

As I mentioned previously, the memory map in the back of the Level I1
BASIC Reference Manual shows that immediately above BASIC ROM
there is a block of 2013 bytes from 3000H to 37DDH that is unused. Once
I decided to fill this gap with an EPROM, I needed an inexpensive method
of programming it. Buying a commercially-made programmer was finan-
cially out of the question. Of all the TRS-80 users I knew, nobody had an
EPROM programmer. The lowest price I found at a computer dealer was
$20 per EPROM, so the obvious alternative was to design my own. I
needed something that was going to be easy to build, used commonly
available parts, and could be interfaced directly to the TRS-80. The unit
presented here fills all those criteria and has worked without a flaw on
almost 75 programmed EPROMs.

83

hardware

The 2716 EPROM

At the time of this writing, the single 5-volt supply 2716 EPROM was be-
ing sold for as low as $5. Some confusion may result because different
manufacturers use different part numbers, but in general the ads will
specify a single voltage version if the chip is listed as a 2716. An equivalent
chip is the TMS2516, and to my knowledge, that number is unique to the
5-volt type. Throughout this chapter I will use the number 2716, and I will
be referring to the single-supply type exclusively.

The pin configuration of the 2716 is shown in Figure 3. The eleven ad-
dress lines A0O-A10 and the eight data lines D0~D7 are straightforward
and directly correspond to their counterparts on the TRS-80 address and
data buses. Pin 12 is a ground and needs no explanation. Power require-
ment is the standard + 5-volt level of most TTL ICs and is applied to pin
24, labeled V.. Pin 21, labeled V,;, (programming voltage), has + 5 volts
applied to it as well, except during the time the EPROM is actually being
programmed. Then, Vp, must have + 25 volts applied to it. Pin 20 is the
OE, or output enable line, which is active low and will take the data
lines from their normal high impedance state and gate them directly onto
the data bus during a read cycle. Pin 18 is the CE, or chip enable, serving
as the power control line, which, when brought low, will select the
EPROM for access by the CPU. It serves a dual purpose: When the
EPROM is in the programming mode, a high applied to pin 18 for 50-55
ms serves as the programming pulse, hence the label CE/PGM in
Figure 3.

A7 [T 2477 vee
AW H 23[_] AB
a5 {33 2273 A9
a4 []a 217 Vpp
a3 []s 20{7) OE
az s 91 ac
a7 18]y CE/PGM
a0 [s o7
po (e e[D&
o1 o s 08
o2 {3 1wy
onp [The 3P 03

Figure 3. Pin configuration for the Intel 2716 EPROM or any equivalent.

We will not be concerned with the read cycle of the 2716 here, as the
programmer presented does not have that capability. However, in order
to understand the circuit design and the actual programming steps,
details of the write cycle will be discussed.

The EPROM is in the programming mode when Vpp, pin 21, is at +25
V, and pin 20, the OE line, is high. When the address and data lines are
stable, a 50-55 ms + 5-volt pulse applied to pin 18 will write the data byte

84

hardware

into the currently addressed location. In order to do this under TRS-80
software control, however, some means of keeping the data and address
lines stable for this length of time has to be provided. Fifty milliseconds
may not seem long, but in that time interval the TRS-80 will execute
several thousand instructions, each potentially involving different ad-
dresses and data; so we cannot directly connect our EPROM lines to the
TRS-80 address and data buses, as they are changing every microsecond.
This problem is solved by the use of data latches, integrated circuits that
can input data and hold—or latch—it indefinitely when properly clocked
to do so. By routing the computer’s address and data lines to the inputs of
such latches and providing a latching pulse, the latches will hold the ad-
dress and data bytes stable for the 50-55 ms period the EPROM requires.
After that we are free to send a new address and a new data byte to the
latches for the next cycle.

RS- 80

cLock ——
ADDR 8US X X ¥

pata BUS X X

74L830
PIN 8

PiN 8 A

. I =
TaLST 4 [e

éIN 5 N h 50ms

|

PROGRAM PULSE

Figure 4. Circuit timing diagram. Minor propagation time delays are not indicated, as they
are not significant in this case.

Circuit Design

Circuit design was planned to use easily obtainable, inexpensive parts,
while minimizing part count. Other ICs could have been used and
possibilities will be discussed later. The timing diagram for the circuit is
shown in Figure 4, and the schematic in Figure 5.

Referring to Figure 5, Ul and U2 are 74LS174 hex D flip-flop 1Cs that
serve to latch the 11 address lines we use. Whatever data is present at the
input of the flip-flop when a positive-going pulse is applied to the clock in-
put, pin 9, will be transferred to the output and held there until the next
positive-going clock pulse is received. This pulse is represented by point A

85

hardware

in Figure 4 and is generated whenever the CPU executes an LD (xxxx), A
command, where xxxx is any address in the EPROM’s range of 3000H to
37FFH. Likewise, U3 and U4, 74LS175 quad D flip-flops, latch the eight
bits from the data bus when the same low-to-high pulse is applied to their
clock input, pin 9. Thus, we have the means for providing stable address
and data inputs to the EPROM during the write cycle.

To obtain the clock pulse needed for the latches, we have to use a
method that limits the pulse to only those times when we actually want to
program the EPROM; so simply using the WR line from the CPU or any
similar line will not work. Since the EPROM has to occupy the memory
space from 3000H to 37CFH, it seemed only logical that it should be ad-
dressed there, during programming. In order to accomplish this objective,
the addresses from 3000H to 37FFH have to be decoded. In reality only
the 3 needs to be decoded, since whenever the CPU is outputting an ad-
dress in the 3000H range during the program, it must be addressing the
EPROM by design.

Address decoding is done very simply by U8, a 741.504 hex inverter,

+ 27V
+5V INGOO!L3) {BATTERY}
3 +25v \ad 1 1
~ N N
IN40OI
TRS-B0 EDGE i TRS-B0 EDGE
CONNECTOR Ll CONNECTOR
ey 24 23 A
4 ALD 3 12 13 i7 13| 13 D7 20
17— 5 b ul 10, 22 U9 16 6] U3 12 & 24
i 5 o 7aLsi7a [y 23 2716 s 7| 7aLs175 |5 5 28
36— b4 A 5 ! 14 2 4 4 |1
38— 6 3. 2 2 9
3
) 4 13 15 13 D3 Legs
5 1) 18] ua 12 2 l—32
3 el 2] 7415175 (2 Y22
7 9 2 a of |10
35— as 14 15 8 9
31— ‘; 13 y2 '2 e
It 1
34— 7418174 -
40— 2 8 L 50ms PROGRAM
27— i A 5 PULSE
250] o 3| 2 ey 5
)-——B— -
4] 3 IN
s 19
Ri 741574
47k
UBA-C | SNol g 2937
Y aS 4 >2 f
4 1
o] 1a 3) 2 o4
6— 2 3 741530 »E L5V [
1) 741532 usD
o= : 8 LATCH TR ING [
§ ot 5 PULSE vz |16 8
3 u3 [18 8
[VENN NIRRT 8
Us {414 7
U6 {61214 | 7
13 u? |1s 4,5.7.9.10.42. 13
- ug |14 701113
ue | 20,24 12

Figure 5. Circuit schematic. Numbers outside the edge connector block indicate TRS-80 bus
pin numbers.

86

hardware

and U6, a 74L.S30 eight-input NAND gate. By including address line A1l
in the decoding scheme, we are actually decoding 30xx through 37xx
rather than the entire 3000H block, and a low is output from U6
whenever the EPROM board is being addressed. This low is combined
with the WR pulse from the computer such that, whenever both are low
(active) at the same time, the output of the OR gate, U7, also will be low.
Now all that has to be done is a simple inversion through gate USD, and
we have the positive clock pulse we need to strobe the address and data
into the appropriate latches.

Next, we must provide the actual 50-55 ms programming pulse and ap-
ply it to pin 18 of the EPROM. There are several ways of generating this
pulse, but to me the simplest is to let the computer do the work. U5, a
741874, is our old friend the D-type flip-flop again. In this case, though,
it is wired so that every time it receives a clock pulse, the state of pin 5, the
Q output, will simply toggle from high-to-low or low-to-high. By placing
the clock pulse under direct control of the TRS-80, we can control the
length of time pin 5 is in a high state--specifically, 50-55 ms for our pro-
gramming pulse. The clock pulse has to originate from a line from the
CPU that is otherwise not used in our program’s operation. One possibil-
ity that fits this restriction is the IN line, which normally is active only
during cassette operations. Whenever an INput command (in machine
language) is executed by the CPU, the IN line goes low for approximately
180 nanoseconds. We can use this pulse to cause U5 to toggle as just
described. The timing sequence is shown in Figure 4, points B and C. You
will again notice that it is the low-to-high transition that affects the actual
clocking. The program steps that bring this about will be discussed later.

The only other components to note on the schematic, Figure 5, are R1
and C1, both associated with U5. Since we must have a high level output
from U5 for our programming pulse, the state of the flip-flop has to be
known before we start. Otherwise the programming loop could be
entered with the flip-flop in the high state already, and we would toggle it
to the low state for 50 ms. Obviously, that would not program the
EPROM. Without R1-Cl in the circuit, the Q output of U5 will be ran-
domly high or low when power is applied. The combination of R1-C1
assures that the flip-flop will initialize with pin 5 low. For normal opera-
tion of the flip-flop, both pin 4, the SET, and pin 1, the RESET or
CLEAR, are tied to + 5 volts. Bringing pin 1 momentarily low will clear
the flip-flop to a state where pin 5 is low, which is what we need. When
power is applied to the circuit, C1 is discharged and appears as a direct
short to ground for pin 1, thus clearing the flip-flop and forcing pin 5 low.
However, Cl rapidly charges, blocking the flow of dc current and effec-
tively lifting pin 1 from ground. At that point, pin 1 is essentially at + 5

87

hardware

volts through R1, where it remains until power is removed.

Power supply requirements for the circuit are minimal. Any good
+ 5-volt dc source capable of supplying approximately 250 mA will suf-
fice. The programming voltage is obtained from three 9-volt batteries in
series and from dropping the resulting 27 volts to the required 25 volts
through 3 diodes, as shown in the schematic. (Each diode provides a
0.7-volt drop.) Any other 25-volt dc source should work as well.

Construction

The number of possible alterations to the circuit and the choice of 1Cs
are quite large, but whatever you decide to use should follow the outlined
principles. For example, an 8212 8-bit I/O port could be used as a data
latch, as could a 741.8374 octal D flip-flop. I avoided these because of the
expense, not only of the chips, but of the larger sockets they require.
Likewise, the programming pulse could have been obtained using a
7415121 or 7415123 wired as a one-shot, but this would require timing
resistors and capacitors and would have added unnecessary expense and
design headaches.

Evidently the actual layout of the circuit is not at all critical, as I used
wire-wrap technique without any difficulties. Designing a printed circuit
board for a more permanent unit probably would not be difficult either.
Interconnection to the TRS-80 expansion interface or expansion port
should be through a ribbon cable with appropriate connectors and should
be kept as short as possible. The cable in Photo 1 is a home-brew affair
that has worked for many different breadboard projects over the last two
years and works fine with the EPROM programmer as well as the
EPROM memory board described in this chapter.

Photo 1. Finished EPROM programmer board using wire-wrap technique. The home-brew
cable is also shown. The 25- and 5-volt supply lines are brought into the indicated positions
with clip leads.

88

hardware

Programming

The Program Listing, which I will refer to as Burn-it, is an example of
the steps necessary to program the EPROM. Burn-it can be located
wherever you have room in memory. As written, it expects to find the pro-
gram to be loaded into the EPROM stored between 9000H and 97CFH. I
chose that location so that checking or modifying the program would be
relatively easy, since all addresses would be displaced by 6000H and
therefore easy to verify. You can change this to fit your particular
memory size. Once the EPROM program is loaded and confirmed, you
are ready to jump to Burn-it. For the most part, the listing is self-
explanatory. When the program gets to the first IN A,(0) command, it is
ready to generate the programming pulse previously described. The IN
A,(0) command serves no purpose other than providing a pulse on the IN
line which toggles U5 to a high state. The program delays for approx-
imately 51.3 ms by counting down from 3500 to zero using a ROM routine
at address 60H and executes another IN command which toggles U5 back
to a low state, turning off the programming pulse. The CALL to ROM ad-
dress 22CH was added after my first EPROM run. Programming 2000
bytes at 50 ms per byte takes 100 seconds. That was an unbearably long
time to wait; so I added the call to provide a visual indication that the
computer was still running the program. Address 22CH is the beginning
of the ROM routine to blink the asterisk in the upper right-hand corner of
the screen. As an afterthought, I could have added an LED to the
EPROM circuit as an indicator that programming pulses were in progress,
but why add extra expense?

Final Thoughts

You may want to add pull-up resistors to all of the address and data
lines, depending upon how noisy your computer’s environment is. In
Photo 1 you can see that I did include them (labeled 4.7k), but I've since
found out that the board works just as well without them, so they were
omitted from the schematic (Figure 5). If you include them, I would
highly recommend resistor networks as shown, because wire-wrapping 19
individual resistors would be an unnecessary headache. If multiple
EPROMs are to be programmed at one sitting, a normally-open push-
button switch could be added in place of C1, so that U5 could be reset
manually at the beginning of each run.

Hopefully you can now build the programmer presented here or design
your own from the information presented. Once you have a working unit,
the possibilities for programs to put into the EPROM and have on line at
all times are limited only by the 2000-byte size of the free memory space.

89

hardware

Program Listing. Sample program listing in Editor/Assembler format.

00108 SETUP ORG
00118 LD

09120
00130
08148
90150
ge16@
80170
06188
00190
00200
80210
00220
00230
0@240
86250
00260
08278
06280
28299
06360
08310
0808320
80330
00340
06358

START

DONE

LD
b
D

8000H

Sp,8020H
HL., 986610
DE,3000H
BC, XXXXX

BC

A, (HL)
(DE) ,A
A, (8)
BC, 3508
60H

A, (8)
22CH

HL,

DE

BC

BC

A,B

C

NZ , START
YYYYY

:YOU CAN START ANYWHERE :
1SET UP YOUR OWN STACK (OPTIONAL) Encyci?pedla_
+ADDRESS OF PROGRAM TO BE LOADED oader
;FIRST ADDRESS OF EPROM

;XXXXX IS THE NUMBER OF BYTES

+IN YOUR PROGRAM(S)

:SAVE BYTE COUNT ON STACK

{GET BYTE TO BE PROGRAMMED

{SEND IT TO EPROM BOARD (LATCHES)

$TOGGLE PROGRAMMING PULSE ON

{LOAD A DELAY COUNT INIO BC

:CALL, ROM DELAY LOOP - COUNT OF

13500 WILL DELAY ABOUT 51.3 MSEC

+TOGGLE PROGRAMMING PULSE OFF

+ROM ROUTINE TO BLINK ASTERISK

+POINT TO NEXT BYTE TO BE PROGRAMMED

sPOINT TO NEXT ADDRESS IN EPROM

$GET THE BYTE COUNT BACK

:ONE LESS BYTE TO GO

{THESE THREE STEPS CHECK TO SEE

; IF THE BC REGISTER IS ZERO (DONE)

: AND WILL JUMP BACK TO START IF NOT

:OTHERWISE WE'RE DONE AND CAN JUMP

+OUT OF THIS ROUTINE - E.G., 1AI9H = "READY’,

;402DH = "DOS READY', ETC.

ON
TH

90

HOME APPLICATIONS

Pari-Mutuel
Income Tax Withholding

91

- HOME APPLICATIONS

Pari-mutuel

by Arthur Welcher

[0, this isn’t another program for making animated horses race around
L. N your CRT. It is not a program with random numbers to bet on. It is a
program to bet with!

Some friends, all of us racing fans, gathered to watch the Kentucky Derby
telecast. We decided we would like to bet on the race, just between our-
selves, of course. Normally, the betting would be done as a pool, where
everyone puts in a dollar and draws a number out of a hat to get the number
of their horse. But we wanted to include win, place, and show bets, and the
ability to bet on more than one horse in each race in our betting. We were
not restricted to the pool system-—there were enough of us to set up a pari-
mutuel betting system. What does pari-mutuel mean? I'm glad you asked,
because that is what this program is all about.

In the good old days, you had to wager with a bookmaker. The book-
maker would handicap, or rate, the horses in the race himself and set his
own odds on each horse’s chance of winning. The more money bet with him
on one horse, the lower each new bettor’s odds would be—the bookmaker
didn’t want to pay out more money on a race than he collected. He may have
given one person odds of 6 to 1 on a horse, and ten minutes later given some-
one else only 3 to 1 on that same horse. More money had been bet on that
horse, proportionately, in those ten minutes than on the other horses. The
odds got higher as the bookmaker got fewer bets on a particular horse.

The obvious solution was to have a controlled system where all bettors get
the same payoff, regardless of whether they bet early or late. That system,
known as the pari-mutuel system of wagering, places all of the money bet on
each horse in a race into a pool. The odds are calculated on each horse,
periodically, in the following manner.

The total pool is reduced by about 18 percent, depending on the state in
which the race is held. The remainder becomes the payout pool. From that
figure, subtract the amount bet on one horse then divide what is left by the
amount bet on that horse. You now have the odds on that particular horse.
The process must be repeated for each horse in the race. When a race is
started, the machines that print the tickets are automatically locked out, and
the final calculations are made. The win, place, and show pools are each
figured separately. The payout place pool must be divided by two, half of
the pool going to pay the place price on the winner, the other half to pay the
price for the place horse, or the horse that finishes second. The payout show
pool is handled in the same way, except it is divided by three, for the first

93

home applications

three horses that finish. The race track uses the 18 percent withheld for
operating expenses, purses, etc., with a share going to the state for taxes.

When all the mathematics have been done, the actual payoff figure is
rounded down to the nearest 10 cents. That means that as much as nine cents
of each payoff per dollar will not be divided ameong the winning tickets. This
becomes the “breakage,” a sizeable sum after a few hundred thousand dollars
have been wagered. This money becomes a part of the track’s income.

Since these formulas calculate the payoff per dollar, and the minimum bet
is two dollars, we must build a “times 2” factor into our formula so the posted
payoff amount is for a two dollar ticket.

In the event that there is a “minus” pool (so much money bet on the winning
horse that the payout pool is not large enough to pay 10 cents per dollar), the
race track must dip into its funds to make up the difference to make the payoff
10 cents on the dollar or a $2.20 payoff. In some cases, even a $2.10 payoff is
the minimum.

For our purposes, many of the historic elements discussed were not
necessary. We didn't need to take out a cut for the state or for operating ex-
penses. We wanted to divide and pay out the entire pool; therefore there was
no breakage. We did, however, follow the track’s example of placing a unique
code on all tickets for each race, so that no one can use a losing ticket on horse
number 3 in the first race yesterday as a winning ticket on horse number 3 in
the first race today.

By the Preakness party, we had a program working that gave us a complete
win, place, and show pari-mutuel betting system. (See Program Listing.) We
placed a roll of adding machine paper in our printer to make the tickets. We
used a TV modulator so that we could flash odds and pool totals on the TV
screen periodically as the tickets were sold. This information would also ap-
pear on the computer CRT. One person acted as ticket seller at the TRS-80
keyboard. If you have some sort of horse race game, such as the dice-throwing
type, this program works beautifully!

Line 110 lets you set options for the maximum number of horses in any ene
race. For the dice game mentioned here this would be six. Most racetracks
usually limit the number to 12.

Line 120 lets you select the number of wagering pools you will use. To
simulate a racetrack using win, place, and show pools, select three. For the
dice game, select one for win only.

Line 130 sets the dimensions for the arrays used in the program, the first ele-
ment being the number of horses, the second being the number of pools. Lines
150 and 155 set all pool totals to zero so that you may start the wagering. Line
200 is the random code generator for each race.

Lines 1000 to 1270 sell a ticket, print it out, and add the amount to the
proper wagering pool. The computer asks for HORSE NO. You input the re-
quested number. The computer then asks WIN, PLACE OR SHOW. Enter

94

home applications

either a 1, 2, or 3. (Note: If you have opted for a win only race, this step does
not appear.) The computer then asks for AMOUNT. Respond by inputting
the dollar amount of your bet. The computer prints the ticket and records
the wager.

You may continue to print tickets or select POST ODDS which will be up-
dated with each win ticket sale. The place and show pool information is visi-
ble for anyone who wants to see it, but is not reflected in the odds. This is
also true at the racetracks.

The odds are calculated in line 2020. There are two math possibilities that
must be discussed here. If there is no money bet on one horse, dividing by
zero would cause an error. (It would make the odds infinity to onel) Line
2015 sets odds in this event to be 99 to 1 (a standard racetrack maximum). If
the pool is approaching a minus pool, line 2025 sets our lowest oddsat 1 to 1
(definitely not a race track minimum). The track minimum is 1 to 9, or 11
cents to the dollar, but with breakage becomes 10 cents, or a $2.20
minimum payoff.

After the race, lines 3010, 3020, and 3030 ask for the results in order of
finish. When you input these numbers, lines 3055 to 3130 calculate the
payoff. Line 3150 sets the screen for the expanded mode, and lines 3160 to
3220 print the prices on the screen.

Remember, pari-mutuel betting works best for fairly large-scale betting.
With many people betting and money being bet on each horse in each pool,
there is usually not a great percentage difference between the largest
amount bet on one horse and the smallest amount bet on another horse in
that pool. Odds usually vary between 2 to 1 and 50 to 1. If you have un-
usually large differences, you will see unusual odds, but that’s what makes
horse racing!

95

58
55
68
65
78
75
80
98

108
118

128

138

149
158

155

168
200

220

23¢9
240
259

260
27¢
275
286
1608
1818

1629

1839

home applications

Program Listing. Pari-mutuel

Vokkkhhkkhhhhk Ak kA hhkkhhhkh kA hhkhkhhhhhkhhhkk

LI 3 *
v PARIMUTUEL *
; * BY *
vow ARTHUR WELCHER *
Vo *

M R R R R g Y L X 1.1
CLS
CLEAR 500
PRINT @488,"";:
PRINT "ENTER NO. OF HORSES USED ";:
INPUT H
PRINT @464,"";:
PRINT "ENTER 1, IF WIN ONLY
2., IF WIN & PLACE
3, IF WIN PLACE AND SHOW":
GOSUB 5898:
B = KB
DIM A(H,B):
DIM AM(H,B)
REM
FOR P = 1 TO H:
FOR Q = 1 TO B:

A(P,Q) = @:

NEXT Q,P

W = @:

TP = 0:

TS = 8
R =R+ 1

CLS :

X@ = RND(95) + 32:
X1 = RND{ 95) + 32:
X2 = RND{ 95) + 32:
X3 = RND({ 95) + 32:
X4 = RND({ 95) + 32:

CO$ = CHRS(X@) + CHR$(32) + CHRS(X1l) + CHRS(32)
+ CHR$(32) + CHR$(X3) + CHR$(32) + CHRS(X4)

CLS :

PRINT @460," M E N U"

PRINT :

PRINT TAB(12)"l., SELL TICKET"

PRINT TAB(12)"2. POST ODDS"
PRINT TAB(12)"3. POST PAYOFF"
PRINT :

PRINT TAB(12)"SELECTION :"
GOSUB 50009

ON KB GOTO 10086,20060,3000
GOTO 2148

REM

' kkkkkk kR XSET,, TICKET *#**kk¥kkk

HN§ = "HORSE NO,":

UHS = "SH#4, 44"

CLS :

PRINT @406,"SELL TICKETS FOR RACE NO. “;R:
PRINT

PRINT @528 ,HNS:

GOSUB 5800:

H1 = KB:

IF B =1

Encyclopedia
VCL Pel o

+ CHR$(X2)

96

1048

1658

1060
1679

1109

1118

1128

1125

1130

1135
1140

11508

1160
1170

1188
1198

i2¢8
121¢

1220
1225

1239
1240
1258
1260
1270
1275
2040

2016
2015

2029
2025

2038
2040

2058

home applications

THEN

W= 1:

GOTO 1100
IF B = 3

THEN

1979
PRINT @528,HNS$;H1;" WIN OR PLACE ";:
GOSUB 5000:
W = KB
GOTO 11988
PRINT @528,HNS$;H1;" WIN, PLACE OR SHOW ";:
GOSUB 5000:

W = KB
IF W= 1
THEN
WS = " TO WIN "
IF W= 2
THEN
W$ = " TO PLACE "
IF W= 3
THEN
W$ = " TO SHOW "
PRINT @528 ,HNS;H1;W$;" "
PRINT @528 ,HNS;HL1;W$;" AMOUNT ";:

INPUT AM(H1,W)

REM IF W>H THEN 1030

A(HL,W) = A{HL,W) + AM(H1,W):

W = TW + AM{HI,1):

TP = TP + AM(H1,2):

TS = TS + AM(H1,3)

LPRINT CHR$(138):

LPRINT CHR$(27); CHR$(14)" WELCHER"
LPRINT CHRS$(27); CHRS(14)" PARK"
LPRINT CHRS(138):

LPRINT STRINGS(28,"=")

LPRINT " RACE NO. ";R

LPRINT CHRS$(138):

LPRINT CHRS$(27); CHRS(14);CO$
LPRINT "":

LPRINT STRINGS(28,"=")

LPRINT CHR$(138):

LPRINT " AMOUNT ";:

LPRINT USING UHS$;AM(HL,W)

LPRINT CHR$(138):

LPRINT " ¥ ; CHRS(27); CHRS(14)W$
LPRINT CHR$(138):

LPRINT STRINGS(28,"-")

AM(HL,1) = 8:

AM(H1,2) = 0:

AM(H1,3) =
PRINT @912,"1, ANOTHER”

PRINT TAB(16)"2. RETURN TO MENU"
PRINT TAB(8) "SELECTION :";
GOSUB 5068

ON KB GOTO 1008,218

GOTO 1828

I |

| kkkkkrx DOST ODDS **** k&4
FORN =1 TO H
IF A(N,1) = @

THEN
OD(N) = 99:
GOTO 2038

OD(N) = INT((TW - A(N,1)) / A(N,1))

IF OD(N) < 1

THEN

OD(N) =1

NEXT
CLS :
PRINT HNS$ TAB(1¢)"ODDS"," WIN POOL","PLACE POOL","SHOW POOL"
PRINT STRINGS$(64,"=")

Program continued

97

2068
2070

2080
2890

2100
2119
2120
2130
2135
3600

36190

3020
3038
3040

3858
3655

3060
38790
36875

3080
3085

39940
3lee
3105

31190
3115

3120
3125

3130
3158
3155

3156

3168

home applications

FOR N1 =1 TO H

PRINT TAB(3)Nl; TAB(18)0OD(N1l),"

";A(NL1,3)

NEXT N1
PRINT :
PRINT "TOTAL","
PRINT :
PRINT

PRINT TAB(16)"1. SELL TICKET"
PRINT TAB(16)"2. POST PAYOFF"

GOSUB 50888

ON KB GOTO 1000,3080

GOTO 2040

";TW,

wapp, "

; *kkkkkk DOST PAYOFF **x&k%kkk%

CLS :
PRINT @4806,"";:
INPUT " WINNER ";E
PRINT TAB(1l6)"";:
INPUT " SECOND ";F
PRINT TAB(16)"";:
INPUT " THIRD ";G
FOR X9 = 1 TO 200:
NEXT

CLS
IF A(E,1) = B
THEN
El = TW:

GOTO 3970

El = INT((TW - A(E,l)) / A(E,1)) * 2

P2 = (TP - (A(E,2) + A(F,2)) / 2)

IF A(E,2) = 8

THEN
E2 = P2:
GOTO 3885

E2 = INT(P2 / A(E,2)) * 2

IF A(F,2) = 0

THEN
F2 = P2
GOTO 3108

F2 = INT(P2 / A(F,2)) * 2

";A(N1,1),"

";TS:

P3 = (TP - (A(E,3) + A(F,3) + A(G,3)) / 3)

IF A(E,3) = @

THEN
E3 = P3:
GOTO 3115

E3 = INT(P3 / A(E,3)) * 2

IF A(F,3) = D
THEN
F3 = P3:
GOTO 3125

F3 = INT(P3 / A(F,3)) * 2

IF A(G,3) = 8
THEN
G3 = P3:
GOTO 3158

G3 = INT(P3 / A(G,3)) * 2

PRINT CHR$(23)

IF B = 1

THEN
E2
E3
F2
F3
G3

IF B

THEN
E3
F3
G3

LI I | N 1 O 1]

LR SR vaSoSS

monon

"7A(N1,2),"

PRINT "HORSE" TAB(8)"WIN" TAB(16)"PLACE" TAB({25)"SHOW":

98

3176
3188
3198
3208
3210
3220
3230

3240

5000

5018

PRINT

UES = " # SHEE.HE SEEBLBE SEER LR
PRINT USING UES;E,E1l,E2,E3

Urs = " # Sh#E.RE SHER R
PRINT USING UFS$;F,F2,F3

uGcs = " ¢ SHdH.hR"
PRINT USING UGS;G,G3

PRINT :

PRINT :

PRINT

INPUT "FOR NEXT RACE HIT ENTER";Q:
CLEAR
CLS
R =R + 1:
GOTO 150
KBS = INKEYS:
IF KBS = “"
THEN

5000
KB = VAL(KBS):
RETURN

home applications

99

-~ HOME APPLICATIONS

Income Tax Withholding

by Cliff DeJomg

few years back, my wife went into real estate and was quite suc-

cessful. I didn’t realize how successful until our federal income taxes
were due. We owed an additional payment of nearly $2,000! I had
mistakenly assumed that we would have sufficient withholding from my
salary. After all, we had five children and above-average deductions.

The following year, I reduced my withholding allowances to increase
the federal tax withheld. Real estate fell off a little, however, and we
ended up getting a refund of about $1,000. Neither extreme of $2,000 due
or $1,000 refund was desirable. I don’t like borrowing from or lending
money to the federal government. In talking to several friends, I found
that a common problem for families or individuals with two or more
sources of income is making sure that the federal income tax withheld is
sufficient to cover your tax bill on April 15. One way to guess at a solution
is to obtain a federal form W-4 from payroll. Form W-4 is the Employee’s
Withholding Allowance Certificate. It contains instructions to allow you
to estimate the number of withholding allowances you should claim. Each
withholding allowance, or exemption claimed, is equivalent to either an
exemption or, in 1980, an extra $1,000 in deductions.

The W-4 instructions, however, are confusing and at best only approx-
imate. In addition, the W-4 form dogs not give estimates of the refund
resulting from deliberate overwithholding. There is no guidance for a
change in withholding allowances during the year, either. This program
(see Program Listing) has solved my income tax withholding problems
and has also helped several of my friends. It is written for a 16K Level II
TRS-80 and could easily be adapted to other computers.

Overview

This tax withholding program collects data on projected income from
several sources and combines it with estimates of itemized deductions, tax
credits, tax losses, and the number of exemptions. From this data, the
estimated federal income tax liability is computed. A table is then
displayed for each wage earner showing the refund or balance due for dif-
ferent withholding allowances. Also shown is the change in weekly take-
home pay. The program accounts for taxes withheld to date and allows for
changes in income or withholding allowances, etc. during the year. Filing
status may be Single, Married Filing Jointly, or Married Filing Separately.

100

home applications

Estimated tax liability is based on federal form 1040-ES, Declaration of
Estimated Tax for Individuals. Computation of withholding rates is done
by the federal percentage method. All tables are based on rates for the
1980 tax year. As of this writing, these tables are correct, but may be re-
vised. In any event, the correct tables are available through your local IRS
office. The program provides an option for output to a printer and allows
data to be stored on cassette tape. The tape data can be read back in and
altered, as necessary, later in the year.

Method

The code begins by displaying a title and initializing the standard
deductions and the value of an exemption. The date and filing status are
input, and the number of weeks remaining in the year is computed. In-
come data is then input from the keyboard or from tape. For these inputs,
it is helpful to have your most recent pay stub. For each wage earner, the
user inputs the tax withheld to date, the current number of withholding
allowances claimed, and the current rate of pay. The withholding income
is computed as the current annual rate of pay minus the withholding
allowances multiplied by $1,000. The annual withholding rate is com-
puted using Table 1 or Table 2, as appropriate, based on the withholding
income.

If the income data is input from tape, the data for each income source is
displayed and you are asked if the data is correct. If not, you may enter the

Withholding Income Amount of Income Tax to be Withheld
Over—$2400 But not over— $6600 15% Of the excess over—$2400
$6600 $10900 $630+18% $6600
$10900 $15000 $1404+21% $10900
$15000 $19200 $2265+24 % $15000
$19200 $23600 $3273+28% $19200
$23600 $98900 $4505+32% $23600
$28900 — $6201+37% $28900

Table 1. Withholding rate: married person

Withholding Income Amount of Income Tax to be Withheld
Over—$1420 But not over—$3300 15% Of the excess over—$1420
$3300 $6800 $282+18 % $3300
$6800 $10200 $912+21% $6800
$10200 $14200 $1626+26% $10200
$14200 $17200 $2666+30% $14200
$17200 $22500 $3566+34 % $17200
$22500 — $5368+39% $22500

Table 2. Withholding rate: single person

101

home applications

correct data from the keyboard. A summary of all income data is then
printed for verification. The program next asks for additional tax informa-
tion, such as an estimate of itemized deductions and the number of exemp-
tions. I use last year’s deductions as a basis for my estimates and guess a
little higher or lower. As before, if the data is from tape, it is displayed and
corrected if necessary. Tax liability is then computed according to either
Table 3 or Table 4, which give the tax rate schedules for Married F iling
Jointly and Single, respectively. For a filing status of Married F iling
Separately, the Married Filing Jointly table is used with the taxable in-
come and the tax, both divided by two.

Taxable Income Tax
Over—$3400 But not over—$5500 14%
$5500 $7600 $294+16%
$7600 $11900 $630+18%
$11900 $16000 $1404+21%
$16000 $20200 $2265+24 %
$20200 $24600 $3273+28%
$24600 $29900 $4505+32%
$29900 $35200 $6201+37%
$35200 $45800 $8162+43%
$45800 $60000 $12720+49%
$60000 $85600 $19678+54%
$85600 $109400 $33502+59%
$109400 $162400 $47544+64%
$162400 $215400 $81464+68%
$215400 ~ $117504 +70%

Of the amount over—$3400
$5500
$7600
$11900
$16000
$20200
$24600
$29900
$35200
$45800
$60000
$85600
$109400
$162400
$215400

Table 3. 1980 Tax rate schedules: married filing jointly

Taxable Income Tax
Over—$2300 But not over—$3400 14%

$3400 $4400 $154+16%
$4400 $6500 $314+18%
$6500 $8500 $692+19%
$8500 $10800 $1072+21%
$10800 $12900 $1555+24 %
$12900 $15000 $2059+26%
$15000 $18200 $2605+30%
$18200 $23500 $3565+34 %
$23500 $28800 $5367+39 %
$28800 $34100 $7434+44%
$34100 $41500 $9766+49%
$41500 $55300 $13392+55%
$55300 $81800 $20892+63%
$81800 $108300 $37677+68%
$108300 — $55697+70%

Of the amount over—$2300
$3400
$4400
$6500
$8500
$10800
$12900
$15000
$18200
$23500
$28800
$34100
$41500
$55300
$81800
$108300

Table 4. 1980 Tax rate schedules: single

102

home applications

The taxable income is the gross income less, the number of exemptions
multiplied by $1,000 (in 1980), less excess deductions. Excess deductions
are those amounts above the standard deduction. Tax losses are also sub-
tracted. The calculated income tax liability is then reduced by tax credits
to yield net tax liability. The total amount of withholding from all sources
can then be calculated easily, and using the tax liability figure calculated
earlier, the refund or balance due at the end of the year can be estimated.

The program also computes the refund or balance due if the number of
withholding allowances, that is, exemptions claimed, is changed from the
input date to the end of the year. This calculation is made for each income
source subject to withholding and is done for withholding allowances
ranging from zero to 10. As a bonus, the net change in weekly take-home
pay is also shown for different numbers of withholding allowances.

A$ temporary string variable
*AE number of exemptions
AW annual withholding
cw current withholding rate, $/week
D current day
DD day
DE excess deductions
+DI itemized deductions
DM dimension for income sources
DT day of tape data
E exemptions claimed index
+EC(I) current exemptions claimed
*EW(I) estimated annual withholding
EX value of an exemption ($1000 in 1980)
F temporary variable
Fl temporary variable
FS filing status flag (0is MJ, Lis 8, 2is MS)
GI total gross income
GW total annual withholding
1 index variable
ID$(I) identifier for income source
IT flag for input (1 is tape, 0 is keyboard)
] index variable
+LT tax losses
M current month
MM month
*MT month of tape data
*NS number of income sources
P flag for printer output (0 is no, 1 is yes)
R estimated refund
*RW income rate, $/week
SD(FS) standard deduction for filing status FS
TA temporary variable
TB tax bracket
TC tax credits Table continued

103

home applications

TE temporary variable
TI taxable income
TL temporary variable
*TW(I) tax withheld to date
TX tax liability
WA temporary variable
WB temporary variable
WH withholding without income source 1
\iZ! withholding income
WL temporary variable
WR weeks remaining to end of year
wuU weeks since update
ww current weekly withholding
Y current year
«YT year of tape data
YY year

Table 5. Variable list

Sample Problem

The use of the tax withholding program can best be illustrated by a sam-
ple problem. Table 6 shows the dialogue between the program and Sugar
Daddy. Sugar Daddy has his and his wife’s pay stubs for April
2, and an estimate of their deductions for 1980. His pay stub
shows $6,000 gross income to date and a gross income rate of
$650 per week. $1,500 has been withheld for federal taxes, and
Sugar Daddy is currently claiming four exemptions. His wife, Sweet-
ie Pie, has earned $2,500 so far and is drawing $225 per week.
She has had $600 withheld and is claiming no exemptions. Additional in-
come expected is $300 from bank interest on a savings account.

The income summary computed by the program shows that Sugar Daddy
and Sweetie Pie are doing quite well, with $42,925 gross income expected
in 1980. Estimated withholding is $8,180 for the current withholding
allowances. Itemized deductions are estimated by Sugar Daddy to be
$6,000 for 1980, with a tax credit of $125 and tax losses of $300. Adding in
their two children, Sugar Daddy and Sweetie Pie are entitled to four
federal income tax exemptions.

With the above information, the program estimates the total tax liabili-
ty as $8,391. The table labeled FOR INCOME FROM SUGAR DADDY
shows that Sugar Daddy will have an additional payment of $212 due to
the IRS if he continues to claim four exemptions. However, if Sugar Daddy
claims only one exemption from April 2 on, he will see a refund of $621
from IRS. In that case, Sugar Daddy’s take-home pay will decrease by $21
each week. Other options are evident from the printout. Since Sweetie Pie
is already claiming no exemptions, any change in her withholding status
would simply increase the balance due.

104

home applications

Modifications and Updates

The program as written is correct for the 1979 and 1980 tax years, but
may need to be changed. The current tables will be available from your
local IRS office or, possibly, you can borrow them from your company
payroll office. The information in Tables 1, 2, 3, and 4 is in the program at
data statements numbered 1740, 1780, 1830, and 1870, respectively. The
maximum income is represented in the second column, and the
corresponding percentage in the third column. In addition, the standard
deductions and value of an exemption are in line 1690.

OUTPUT TO PRINTER? NO
DATE (MM,DD,YYYY)? 4,2,1980
FILING STATUS?
MJ = MARRIED FILING JOINTLY
MS = MARRIED FILING SEPARATELY
S = SINGLE
P MJ

INCOME DATA
INPUT DATA FROM KEYBOARD(K) OR TAPE(T)? K

INPUT IDENTIFIER FOR INCOME (E.G., 'JOAN’)
PRESS ENTER IF NO MORE SOURCES? SUGAR DADDY

FOR INCOME FROM SUGAR DADDY

GROSS INCOME TO DATE? 6000

ESTIMATED INCOME FOR REMAINDER OF YEAR ($/WK)? 650
TAX WITHHELD TO DATE? 1500

CURRENT EXEMPTIONS CLAIMED? 4

INPUT IDENTIFIER FOR INCOME (E.G.,’JOAN’)
PRESS ENTER IF NO MORE SOURCES? SWEETIE PIE

FOR INCOME FROM SWEETIE PIE

GROSS INCOME TO DATE? 2500

ESTIMATED INCOME FOR REMAINDER OF YEAR ($/WK)? 225
TAX WITHHELD TO DATE? 600

CURRENT EXEMPTIONS CLAIMED? 0

INPUT IDENTIFIER FOR INCOME (E.G.,/JOAN’)
PRESS ENTER IF NO MORE SOURCES? BANK INTEREST

FOR INCOME FROM BANK INTEREST

GROSS INCOME TO DATE? 300

ESTIMATED INCOME FOR REMAINDER OF YEAR ($/WK)? 0
TAX WITHHELD TO DATE? 0

INPUT IDENTIFIER FOR INCOME (E.G., JOAN’)
PRESS ENTER IF NO MORE SOURCES? <ENTER> Table continued

105

home applications

SUMMARY OF INCOME

ESTIMATED CURRENT ESTIMATED
SOURCE ANNUALINCOME EXEMPTIONS CLAIMED WITHHOLDING
SUGAR DADDY $ 31350 4 $ 6401
SWEETIE PIE $ 11275 0 $ 1779
BANK INTEREST $ 300 0 $ 0
TOTALS $ 42925 $ 8180

PRESS ENTER TO CONTINUE? <ENTER>

ADDITIONAL TAX INFORMATION

ITEMIZED DEDUCTIONS (0 FOR STANDARD DEDUCTION)? 6000

TAX CREDITS? 125
TAX LOSSES (INPUT AS +)? 300
TOTAL NUMBER OF EXEMPTIONS? 4

TAXLIABILITY = $ 8391
FOR INCOME FROM SUGAR DADDY

EXEMPTIONS ESTIMATED REFUND (+)
CLAIMED OR BALANCE DUE (-)
0 $ 899
621
344
66
212—
485—
725~
965—
1205—

O 00 ~1D Ul W
R B H R P B L B B

10
PRESS ENTER TO CONTINUE?

B3
[
f=)
@
T

TAX LIABILITY = § 8391
FOR INCOME FROM SWEETIE PIE

EXEMPTIONS
CLAIMED
0

ESTIMATED REFUND (+)
OR BALANCE DUE (-)
212—
365—
500—
635—
770—
905—
$ 1019-
$ 1132—
$ 1244~
$ 1357—

L O T PSR

W0~ U W

43 % BRACKET

CHANGE IN TAKE-HOME
PAY PER WEEK

43 % BRACKET

CHANGE IN TAKE-HOME

PAY PER
$ 0

=l
B

> S H PO L P BB
£ DO DO =
C%OJ»&'—‘OD»&\P—‘\]

WEEK

106

home applications

10 $ 1391- $ 30
PRESS ENTER TO CONTINUE?

SAVE DATA TO TAPE? NO
READY
>

Table 6. Sample program

If you are fortunate enough to have a disk drive, the program can be
easily modified to save the data to disk rather than to cassette. The
necessary changes are shown in Table 7. These consist of adding OPEN
and CLOSE statements, adding the inputs for the filespec, changing
INPUT#-1 to INPUT#1 and PRINT#-1 to PRINT#1, and adding a comma
to the disk output file to separate the output string from the rest of the
data.

An enhancement that would be useful is adding state income tax con-
siderations. I did not put that into the program because it is a relatively
small effect, compared to federal income tax, and there are 50 states!
Moreover, most state income taxes are based strongly on the federal tax, so
adjusting exemptions for federal taxes will work for state taxes also.

Change the following statements as shown:

360 INPUT“INPUT DATA FROM KEYBOARD(K) OR DISK (D)”;A$:
A$ = LEFT$(A$,1)

370 IF A$=“K” THEN 580 ELSE IF A$<>“D” THEN 360

390 INPUT FROM DISK

410 IT = 1:PRINT:INPUT“FILESPEC”;FS$:OPEN “I”,1,FS$

420 INPUT$1,NS,DI,TC,LT,AE,MT,DT,YT:IF NS>DM THEN 650

450 INPUT#1,W(I),ID$(I);RW(I),EC(L), TW(I)

480 CLS:PRINT“DISK DATE : ”;MT;"/";DT;*/";YT:PRINT

560 NEXT I:CLOSE 1:GOTO 670

1340 ’SAVE DATA TO DISK

1360 CLS:INPUT “SAVE DATA TO DISK";A$

1380 PRINT:INPUT“FILESPEC™;FS$:0PEN “O",1,FS$

1400 PRINT#1,NS,DI,TC,LT,AE,M,D,Y

1420 PRINT#1,W(I),ID$(D),",”, RW(D),EC(I), TW(I)

1430 NEXT L:CLOSE 1

Table 7. Disk modifications

107

home applications

Program Listing. Income tax withholding

18 : Cyclope i
' TAX WITHHOLDING PROGRAM En {_Oadde'?

20 :
' BY CLIFF DE JONG COLORADO SPRINGS, COLORADO
30 :
48 POKE 16553,255:
CLEAR 18886
50 :

L
60 :
' DM IS THE MAXIMUM NUMBER OF INCOME SOURCES
70 :
80 DM = 108:
DIM W(DM),ID$(DM) ,RW(DM) ,EC(DM),EW(DM), TW(DM) +SD(2)
98 CLS :
PRINT @405,"TAX WITHHOLDING PROGRAM":
PRINT @543,"BY":
PRINT @666,"CLIFF DE JONG"
188 FOR I = 1 TO 2008:
NEXT :
GOSUB 1670:
F$ = “#Edb4a"
118 CLS
INPUT "OUTPUT TO PRINTER";AS:
PRINT :
IF LEFT$(AS,1) = "y"
THEN
P o= 1:
ELSE
139
120 IF PEEK(14312) > 127
THEN
INPUT "TURN ON PRINTER, PRESS ENTER";AS:
GOTO 128
136 PRINT :
INPUT "DATE(MM,DD,YYYY)";:M,D,Y
140 PRINT :
PRINT "FILING STATUS?":
PRINT " MJ = MARRIED FILING JOINLY":
PRINT " MS = MARRIED FILING SEPARATELY":
PRINT " S = SINGLE":

INPUT AS$
158 IF AS$ = "MJ"
THEN
FS = 8:
GOTO 208
168 IF AS = "MS"
THEN
F8 = 2:
GOTO 268
1790 IF A$ = "g"
THEN
FS = 1:
GOTO 200
188 GOTO 149
190 :
1
200 :
' COMPUTE NUMBER OF WEEKS REMAINING (WR)
210
L}
220 MM = M:
DD = D:
YY = ¥
GOSUB 1590:

108

home applications

Fl
238 MM

F
12:
DD 31:
Yy Y
GOSUB 1598:
WR = (F ~ Fl) / 7
249 :

#nan

259
' PRINT OUT DATE AND FILING STATUS
260 :

270 1IF P = @
THEN
339
280 LPRINT :
LPRINT M;"/";D;"/";¥:
LPRINT
299 IF F5 = @
THEN
LPRINT "MARRIED FILING JOINTLY":
LPRINT :
GOTO 330
398 IF FS = 1
THEN
LPRINT "SINGLE":
LPRINT :
GOTO 338
319 IF FS = 2
THEN
LPRINT "MARRIED FILING SEPARATELY":
LPRINT
320

330

INPUT INCOME DATA
349
1
358 CLS :
PRINT "INCOME DATA":
PRINT
368 INPUT "INPUT DATA FROM KEYBOARD(K) OR TAPE(T)";AS:
A$ = LEFT$(AS,1)
378 IF A$ = "K"
THEN
580:
ELSE
IF A$ < > "T"
THEN
360
388

390

- =

INPUT FROM TAPE

400 =
L]

419 IT = 1
PRINT
PRINT "PREPARE CASSETTE, PRESS ENTER":

INPUT AS
42¢ INPUT # - 1,NS,DI,TC,LT,AE,MT,DT,YT:
IF NS > DM
THEN
650
439 MM = MT:
DD = DT:
YY = ¥YT:
GOSUB 1598:
WU = (F1L - F) /7
440 FOR I = 1 TO NS Program continued

[

109

home applications

4506 INPUT # - 1,W(I),IDS$(I),RW(I)},EC(I),TW(I)
460 POKE 16553,255
478 WI = 52 * RW(I) - EC(I) * EX:
GOSUB 1970:
TW(I) = TW(I) + WW * WU:
EW(I) = TW(I) + WW * WR

488 CLS :
PRINT “TAPE DATE : ";MT;"/";DT;"/";YT:
PRINT

499 PRINT "FOR INCOME FROM ";IDS$S(I):
PRINT

500 PRINT " ESTIMATED ANNUAL INCOME = §"
510 PRINT " CURRENT INCOME RATE = ":RW(I
5280 IF TW(I) > @
THEN
PRINT " ";EC(I);" EXEMPTIONS CURRENTLY CLATMED"
538 PRINT " TAXES WITHHELD 'TO DATE = ST, TW(I)
548 PRINT :
INPUT "IT THIS CORRECT";AS$
556 IF LEFTS(AS,1) = "N
THEN
GOSUB 1470
560 NEXT I:
GOTO 670

W(I)
;" $ PER WEEK"

578
v
580 :
' INPUT FROM KEYBOARD
5908

[P
=]
i
=
o

600

618 CLS :
PRINT "INPUT IDENTIFIER FOR INCOME (E.G., 'JOAN')"
620 IDS(I) = "":
INPUT " PRESS ENTER IF NO MORE SOURCES";ID$(I):
IF IDS(I) = ""

THEN
NS =1~ 1:
GOTO 678

638 GOSUB 1470
648 I = I + 1:
IF I < DM
THEN
618
650 PRINT :
PRINT "ONLY ";DM;"” INCOME SOURCES ALLOWED":
PRINT "INCREASE DM IN LINE 60 TO MAXIMUM NUMBER OF INCOME SOURCE
S AND RE-RUN":
STOP
660 :
)
678 :
' PRINT SUMMARY OF INCOME
688 :
L
698 CLS :
PRINT "SUMMARY OF INCOME"
708 PRINT TAB(19)"ESTIMATED"; TAB(37)"CURRENT"; TAB(53)"ESTIMATED"
718 PRINT "SOURCE"; TAB(17)"ANNUAL INCOME"; TAB(32)"EXEMPTIONS CLAIM
ED"; TAB(52)"WITHHOLDING":
PRINT STRINGS(63,"-")
728 GI = @:
GW = B:
FOR I = 1 TO NS
738 PRINT IDS{I); TAB(20)"$";:
PRINT USING F$;W(I);:
PRINT TAB(4B8)EC(I); TAB(54)"$";:
PRINT USING F$;EW(I)
748 GI = GI + W{I):

110

home applications

GW = GW + EW(I):
NEXT I
758 PRINT TAB(21)"==w—w= "; TAB(55)"wmmmm—m "
768 PRINT "TOTALS"; TAB{28)"$";:
PRINT USING F$;GI;:
PRINT TAB(54)"$";:
PRINT USING F$;GW
776 IF P = 9
THEN
850
7806 LPRINT :
LPRINT "SUMMARY OF INCOME :":
LPRINT STRINGS(17,"-"):
LPRINT :
LPRINT TAB(19) "ESTIMATED"; TAB(37)"CURRENT"; TAB(53) "ESTIMATED"
798 LPRINT "SQURCE"; TAB(17)"ANNUAL INCOME"; TAB(32)"EXEMPTIONS CLAI
MED"; TAB(52)"WITHHOLDING":
LPRINT STRING$(63,"-")
806 FOR I = 1 TO NS
816 LPRINT IDS(I); TAB(28)"S$";:
LPRINT USING F$;W(I);:
LPRINT TAB(48)EC(I); TAB{(54)"S";:
LPRINT USING F$;EW(I)
828 NEXT I
838 LPRINT TAB(21)"——wm~m- "; TAB(55)"=mwmme= "
840 LPRINT "TOTALS"; TAB(28)"$";:
LPRINT USING F$;GI;:
LPRINT TAB(54)"s$";:
LPRINT USING F$;GW
858 INPUT "PRESS ENTER TO CONTINUE";A$

860 :
1
870 :
' INPUT ADDITIONAL TAX INFORMATION
880 :
1
898 CLS :
PRINT "ADDITIONAL TAX INFORMATION":
PRINT
988 IF IT = 0
THEN
970
914 IF DI = @
THEN
PRINT "STANDARD DEDUCTION":
ELSE

PRINT "ITEMIZED DEDUCTIONS = $";DI
92¢ PRINT "TAX CREDITS = $";TC
936 PRINT "TAX LOSSES = $";LT
940 PRINT AE; "EXEMPTIONS"
958 PRINT :
INPUT "IS THIS CORRECT";AS
968 IF LEFTS (AS$,1) = "Y"
THEN
1910:
ELSE
CLS
97¢ INPUT "ITEMIZED DEDUCTIONS (§ POR STANDARD DEDUCTION)";DI
988 INPUT "TAX CREDITS";TC
99¢ INPUT “TAX LOSSES (INPUT AS +)";LT
1608 INPUT "TOTAL NUMBER OF EXEMPTIONS";AE
1016 IF P = @

THEN
1080
1620 LPRINT :
LPRINT

LPRINT "ADDITIONAL TAX INFORMATION :":

LPRINT STRINGS(26,"-"):

LPRINT ;
1838 IF DI = 0 Program continued

111

1640
18580
1660
1978
10886
1890

1100

111@

il2e
1138
1148
11590

1168

11749

1lsg
11949

1208@
1210

1228

1238
1248

1258

1260

12708
1288

1298

1389

home applications

THEN

LPRINT " STANDARD DEDUCTION":

ELSE

LPRINT " ITEMIZED DEDUCTIONS = $";DI
LPRINT " TAX CREDITS = $";TC
LPRINT " TAX LOSSES = $";LT
LPRINT " ";AE;" EXEMPTIONS"

COMPUTE TAX LIABILITY
5
DE = DI - SD(FS):
IF DE < 8
THEN
DE = @
TI = GI - DE - LT - AE * EX:
GOSUB 1896:
TX = INT(TX - TC)

' PRINT WITHHOLDING TABLES

FOR I = 1 TO NS:
IF EW(I) = 0
THEN
1329
WH = GW -~ EW(I) + TW(I):
WI = 52 * RW(I) - EC{I) * EX:
GOsUB 19748:
CW = WW
CLS
PRINT "TAX LIABILITY = $";TX; TAB(43)TB * 106;" % BRACKET"
PRINT " FOR INCOME FROM ";IDS(I)
PRINT TAB(5)"EXEMPTIONS"; TAB(22)"ESTIMATED REFUND(+}";
TAB(44) "CHANGE IN TAKE-HOME"
PRINT TAB(7)"CLAIMED"; TAB(23)"OR BALANCE DUE(~-)"; TAB(47)"PAY
PER WEEK"
IFP=20
THEN
12640
LPRINT
LPRINT
LPRINT "TAX LIABILITY = $";TX; TAB(43)TB * 1£6;" % BRACKET"
LPRINT :
LPRINT " FOR INCOME FROM ";ID$(I)
LPRINT :
LPRINT TAB(5)"EXEMPTIONS"; TAB(22)"ESTIMATED REFUND(+)";
TAB(44) "CHANGE IN TAKE~HOME" -
LPRINT TAB(7)"CLAIMED"; TAB(23)"OR BALANCE DUE(~-)"; TAB(47)"PAY
PER WEEK":
LPRINT STRINGS$(63,"-")
FOR E = 8 TO 18:
WI = 52 * RW{I) - E * EX:
GOSUB 1879
R = WH + WW * WR - TX
PRINT TAB(9)E; TAB(28)"$";:
PRINT USING F$ + "-";R;:
PRINT TAB(49)"$";:
PRINT USING F$ + "=";CW - WW
IF P =1
THEN
LPRINT TAB(9)E; TAB(28)"$";:
LPRINT USING F$ + "-";R;:
LPRINT TAB(49)"S$";:
LPRINT USING F$ + "~";CW — WW
NEXT E

112

131@
13290
1330
1349
1350
1360

1374

1389
1398

1409
l4le

1420
1430
1449

1459
1469

1479
1480
1490

1500

15190
1529

153¢
1540

1558
1560

1578
1580
1590
1608
1610

1620
1630

home applications

INPUT "PRESS ENTER TO CONTINUE";AS
NEXT I

' SAVE DATA TO TAPE

CLS :
INPUT "SAVE DATA TO TAPE";AS$
IF LEFTS(AS,1) = °“N"
THEN
END
PRINT "PREPARE CASSETTE, PRESS ENTER":
INPUT AS
TE = NS:
NS = @:
FOR I = 1 TO TE:
IF W(I) > @
THEN
NS = NS + 1:
NEXT I
PRINT # - 1,NS,DI,TC,LT,AE,M,D,Y
FOR I = 1 TO TE:
IF W(I) = @
THEN
1440
PRINT # - 1,W(I),IDS(I),RW(I),EC(I),TW(I)
NEXT I
IFP=1
THEN
FOR J = 1 TO 8:
LPRINT :
NEXT
END
1
' INPUT INCOME DATA FROM THE KEYBOARD
:
W(L) = 8:
RW(I)
TW(I)
EC(I)
EW(I)
CLS =
PRINT "FOR INCOME FROM ";ID$(I)
INPUT "GROSS INCOME TO DATE";W(I)
INPUT "ESTIMATED INCOME FOR REMAINDER OF YEAR ($/WK)";RW(I):
W(I) = W(I) + RW(I) * WR

=R~~~

[)

INPUT "TAX WITHHELD TO DATE";TW(I)
IF TW(I) = @

THEN

RETURN

INPUT "CURRENT EXEMPTIONS CLAIMED";EC(I)
WI = 52 * RW(I) ~ EC(I) * EX:

GOSUB 1978:

EW(I) = TW(I) + WW * WR

RETURN

COMPUTE FACTOR F FOR DAYS BETWEEN DATES

INPUTS : MM MONTH, DD DAY, YY YEAR

e mas wous =

TE = 365 * YY 4+ 31 * MM + DD - 31
IF MM < 3 Program continued

113

home applications

THEN

Yy = YY - 1:

ELSE

TE = TE - INT(.4 * MM + 2.3)
1640 F = TE + INT(YY / 4) — INT(.75 + INT(YY / 108) * .75)
1658 RETURN

1668 :
¥
1679
' INITIALIZE STANDARD DEDUCTIONS AND EXEMPTION
1688 :
1698 SD(#) = 3400:
SD{l) = 23@8:
SD(2) = 1788:
EX = 1800:
RETURN
1788 :
L]
1718 :
' WITHHOLDING RATE OUT TABLES
1729 :
' -~ MARRIED
1736 :

1742 DATA 2400,0,66008,.15,10900,.18,15000,.21,19200,.24,23600,.28,289
208,.32,999999,.37
1758 =

1760 :

- SINGLE
1776

- e

1784 DATA 1428,0,3300,.15,6808,.18,10200,.21,14200,.26,17200,.38,2250
6,.34,999999,.39

1798 :
1
18648 :
' TAX RATE TABLES
1818 =
' ~ MARRIED FILING JOINTLY
1828
T

183p DATA 3460,0,55060,.14,76006,.16,119006,.18,16000,.21,20200,.24,2460
0,.28,29900,.32,352080,.37,45800,.43,60000,.49,85600,.54,109400,.
59,162400,.64,2154006,.68,999999,.7¢

1848 :

1858 :
' - SINGLE
1868 :

1878 DATA 2306,0,3400,.14,4400,.16,6500,.18,8506,.19,10800,.21,12966,
.24,15000,.26,18200,.30,23500,.34,288080,.39,34100,.44,41500,.49,
553¢06,.55,818008,.63,108366,.68,999999%,.78

1888 :
1
1896 :
' ESTIMATE TAX LIABILITY (TX) FOR TAXABLE INCOME (TI)
1946 :
1
1910 TX = 0:
TA = @:
RESTORE :
FOR J = 1 TO 16:
READ TL,TB:
NEXT
1920 IF FS = 1
THEN

FOR J = 1 TO 1l6:

114

home applications

READ TL,TB:
NEXT
1938 F = 1:
IF FS = 2
THEN
F=2
194¢ READ TL,TB:
TL = TL / F:
IF TI < TL
THEN
TX = TX + TB * (TI - TA):
RETURN
1950 TX = TX + TB * (TL - TA):
TA = TL:
GOTO 1949
1969 :
L}
1979 :
' ESTIMATE WEEKLY WITHHOLDING (WW) FOR W/H INCOME (WI)
1988 :
L}
1999 AW = §:
WA = 8:
RESTORE
2998 IF FS = 1
THEN
FOR J = 1 T0 8:
READ WL ,WB:
NEXT
2019 READ WL,WB:
IF WI < WL
THEN
AW = AW + WB * (WI - WA):
WW = AW / 52:
RETURN
2020 AW = AW + WB * (WL - WA):
WA = WL:
GOTO 2819

115

INTERFACE

An Automatic Cassette Tape Interface
Send and Receive RTTY in BASIC

117

INTERFACE

An Automatic Cassette Tape Interface

by Dana W. Zimmerli

he cassette tape port is probably the most popular I/O interface on the

TRS-80. The ease of connecting to the tape port makes it convenient as
a serial port for output to audio amplifiers, printers, modems, and so on,
and as an input port from serial terminals, light pens, etc. Unfortunately,
most people have to perpetually switch cables back and forth in order to use
this port effectively. This cassette tape interface is a simple device that
automatically controls the devices to which it is connected. I first recognized
the need for this when I bought a light pen for my TRS-80. Installing the
light pen was aggravated by a Data Dubber (see January and February 1980
issues of 80 Microcomputing). The number of cables to deal with resembled
a bowl of spaghetti, and the light pen fell into disuse because of the compli-
cated connections needed. Then I bought the Dancing Demon program
from Radio Shack and a small speaker-amplifier. These required more cable
swapping! I found the solution to my dilemmas in the circuit shown in
Figure 1. This circuit provides: (1) relay contact protection for the TRS-80;
(2) automatic selection of input and output for the cassette recorder inter-
face; (3) amplification for a light pen input; and (4) a nine-volt power sup-
ply for the Data Dubber, light pen, and amplifier. All of the parts are
available from your local Radio Shack store except the Data Dubber
(available from The Peripheral People, P.O. Box 524, Mercer Island, WA
98040).

The key element in the circuit is the CMOS quad bilateral switch at U2.
This is a unique logic element that is the equivalent of four toggle switches
with a logic level control. The circuit, wired as shown, selects one of two in-
puts (using switches connected between 1 and 2 or 10 and 11) and, at the
same time, selects one of two outputs (using switches between 3 and 4 or 8
and 9). The switching is made automatic by applying control voltages to
pins 5, 6, 12, and 13. As configured, the state of the recorder relay deter-
mines the inputs and outputs connected; if the relay turns on, the input and
output are switched to the cassette recorder. If it is not turned on, the input
and output connect to the external devices (light pens, audio amplifiers,
modems, serial terminals, etc.).

For light pen applications, four of the CMOS inverter stages are wired as
a linear amplifier. The specific values of resistors determine the gain of the
amplifier. In this circuit, a gain of over 30 is achieved. But, two variations

119

interface

are possible. First, if a light pen or other input does not require amplifica-
tion, the input marked Light Pen could be wired directly to pin 10 of U2. Be
certain, however, to wire the unused inputs of Ul (3, 5, 7, and 14) to either
ground or +9 volts. CMOS does not work properly with uncommitted
(open) inputs. Secondly, though I recommend it, a Data Dubber is not ab-
solutely necessary. If you don’t want the Data Dubber (or have it connected
externally), connect the line marked “to Data Dubber” to pin 1 of U2.

AMPLIFIER

FROM
FRON +9v 100K PLUG
DUBBER e
15 wle 3 4045 5047 27K LIGHT
rov PEN
1|3 ls]to ul 8 100K
o 4049 HEX INVERTER
14 13,5
4066 .
QUAD
5

7 BILATERAL

L] swiven +9V TO DATA DUBBER >—X 4
T0
T I8]z It 3 ! RECORDER
gags —
5 N t——--——-(i
4 > R
10 [C— Ki
TRS-80 ’ MINIATURE SPDT RELAY
2 6V, 500 OHM
1 {RS.275-004}
+av
IN30O! (2}
] b ara _ 0
DATA DUBBER
POWER 3 Byl oV f SURES— |
CONNECT l ZENER LIGHT PEN
+
4 = 470uF L TO
> T asv tuF AMPLIFIER
777

Figure 1. Circuit diagram

The Data Dubber connects between the recorder and the TRS-80, re-
shaping the pulses for higher reliability. One of the features of the circuit is
an automatic turn-off if there is no data coming in. Unfortunately, if you try
to load SYSTEM tapes created by the EDTASM program, you may find gaps
in the data which will turn off the Data Dubber. Since the automatic turn-
off isn’t necessary if you have the 9-volt supply for the entire circuit, you may
disable the automatic switch by removing transistor Q2 and putting a
jumper between the emitter and collector.

Construction of this interface is possible with point-to-point, wire-wrap,
or printed circuit board—in short, use your favorite style since layout is not
critical. Figure 2 shows the parts layout for my unit; I used wire-wrap on
perforated board. The power supply is driven from an ac voltage similar to
the TRS-80 supply. The pins indicated out on the circuit diagram corre-
spond to the pins on the DIN plug for the TRS-80 supply. An alternative is to
obtain an 18-volt ac, 1-Amp transformer with a center-tap. The center-tap
connects to pin 4 (ground), and the 18-volt ac connects to pins 1 and 3.

A coaxial power connector delivers power for an amplifier or other exter-
nal device. The jack for the amplifier must be grounded to the barrel or long

120

interface

part of the plug. My light pen plug is a three-conductor phone jack, so I have
wired ground, +9 volts, and a signal into that same jack.

The TRS-80 is connected to the recorder with five-pin DIN receptacles.
When you connect the existing recorder cable to these receptacles, you
might find that the plastic sleeve around the plug is too large. If so, cut off
the plastic plug and replace it with another plug. Wire pin 5 to the tip of the
AUX jack (gray); pin 4 to the tip of the EAR jack (black); pin 2 to the barrels
of these two jacks; and pins 1 and 3 to the smaller MIC jack (small gray
jack). It doesn’t matter which part of the small MIC jack goes to which pin
(1 or 3).

RELAY

3
2) TO RECORDER

O |

ot
.
ot

V4”7 ys00

(= T
L1

GND ITVAC

DATA DUBBER 5
TO AMPLIFIER

TO LIGHT PEN

LED

GND
+9

Figure 2. Parts layout

Remember that the recorder relay determines the input and output
devices. If you use the tape recorder, then the relay must be turned on by is-
suing an OUT 255,4 instruction. This is the instruction used by CLOAD and
CSAVE to load and save tapes, and by PRINT#-1 and INPUT#-1 to use the
tape. If you use the other devices, make certain that the program doesn’t
turn on the relay. Radio Shack’s Dancing Demon does not turn on the relay;
so it doesn’t require any modifications. Light pen software may or may not
turn on the relay; so you will have to check to see if yours does.

That’s all it takes to end your cable-swapping woes. Just turn on your
computer and you’ll be ready to use any device connected to the interface.

121

INTERFACE

Send and Receive RTTY in BASIC

by Louis C. Graue K8TT

his article contains a circuit diagram for an interface and a BASIC pro-

gram which enable your computer to send and receive RTTY. The pro-
gram provides features that make operating a pleasure. You need to enter a
station only once in order to send an automatic ID at any time, and you can
send prepared messages of any length with the push of a key. You can also set
up a prompt to ask for changes of variables within the prepared message.
Best of all, since the program is in BASIC, you can easily alter or expand it to
suit your own style of operation. Table 1 lists the parts you will need.

Number Type +5 Ground
02, 741502 14 7

02, 741502 14 7

04 741.804 14 7

30 741.830 14 7

367 7418367 16 8
UART TRI602B see schematic
555 NEB55V see schemnatic

Table 1. Parts list

Operating the Program

You can test the program without the interface for practice in operating it
before you go on the air. You need to simulate reception by making a tem-
porary addition of one line to the program. Key in the program and enter
the temporary line as follows:

101 A=49
Type RUN and press ENTER. The following should appear at the bottom of
the screen:

................... RECEIVE MODE -<cececmcacemamns
The quotation marks flow across the screen to simulate the message be-
ing received.
Next, hold the SHIFT key down and press T. At the bottom of the screen,
the following will appear:
------------------- TRANSMIT MODE ~wemeeeeemmineenne

122

interface

Notice that the received message remains visible so that you can refer to it
while typing a response. Type a few letters, and they should appear at the bot-
tom. They will be transmitted as you type.

Now hold the SHIFT key down and press the letter I. The following will
appear:

CALL/NAME/QTH OF CONTACT?

Answer by typing in KAOBVW (BILL) IN TOPEKA, then press ENTER. This
is the only time you will have to enter the call for any future ID. Press SHIFT
D and watch the ID message print at the bottom of the screen. It should ap-
pear as follows:

KAOBVW (BILL) IN TOPEKA DE K8TT (LOU) IN BOWLING GREEN, OHIO

Finally, test the station information message by holding down the SHIFT
key and pressing B (for brag). A neatly formatted message describing the sta-
tion will print as you sit and watch the computer do the work.

Explanation of the Program

Line 10 clears string space. You must increase the number when an out of
string space (OS) error appears. Line 20 turns on the cursor and dimensions
the variables.

Lines 30-40 contain lookup tables to translate between ASCII and
Baudot. The read data method cannot handle a quotation mark, so the spe-
cial assignment for A$(49) is necessary.

In line 50, R keeps track of the letters-figures shifting. R =0 for letters and
R =32 for figures. It is initialized to letters. Line 60 prints the receive mode
display.

Lines 70-90 check the UART (Universal Asynchronous Receiver/Trans-
mitter) for available data and the keyboard for a SHIFT T. The latter causes
a change to the transmit mode. Line 100 places incoming data in variable A.
Line 110 intercepts figure or letter shifts and fixes R. There is an automatic
change to letters in line 115 after it receives a space. Line 120 translates
Baudot to ASCII and prints the character.

Line 300 prints the transmit mode display, and line 310 changes keyboard
entries to ASCII. Line 400 intercepts uppercase entries and directs the pro-
gram to the appropriate subroutine. You should put new entries to call addi-
tional messages after this line.

Line 410 intercepts carriage return, line feed, and space for decoding
and action. Line 430 discards illegal characters or sends the program to the
letters routine.

Figures enter in line 450; variable T keeps track of the figures-letters shift.
If necessary, T is set to 1, and a figure shift is transmitted. Line 460 translates
figure to Baudot and calls the transmit subroutine.

123

interface

Letters enter at line 470; T is changed to a 0 if necessary, and a letters shift
is transmitted, Line 480 translates letter to Baudot and calls the transmit
subroutine. Line 600 waits for the UART to accept the character, and line
610 sends the character.

Lines 700-710 transmit and display any string set equal to M$. They also
handle all prepared messages.

Line 800 sends a CQ message when it is called. Type in your own version
between the quotation marks. The CHR$(10) and CHR$(13) send a carriage
return and line feed for formatting.

Line 900 asks for input of the call sign of a contact. The second half of the
ID message is in line 920. Type in your own message between the quotation
marks, leaving a space after the first quotation mark.

Line 950 combines the inserted call with your fixed call for the ID
message, then sets it equal to M$ so the 700 routine can send it.

The station information message is found in lines 1000-1050. M$ cannot
be longer than 255 characters. To send a long message, split it into parts.
Notice how the CR and LF (CHR$(10) and CHR$(13)) are inserted so that
the message will be neatly formatted. The data must be entered in lines
2000-2030 exactly as printed, or the translations will be a mess.

Modifications

Suppose you want to send the message “Merry Christmas and a Happy
New Year” without typing it out each time you send it. First, decide which
shifted key to assign to this message. If you choose SHIFT M which has ASCII
code 109, add a line between lines 400 and 410 of the program as follows:

401 IF X = 109 THEN 3000
At line 3000 type:
3000 M$ = “MERRY CHRISTMAS AND A HAPPY NEW YEAR.”:GOSUB700:GOTO310
In order to have the message set off by itself in the printout, add a CR and an
LF to both ends as follows:

3000 M$ = CHR$(10) + CHR$(13) + “MERRY - - - YEAR” + CHR$(10) + CHR$(13):
GOSUB700: GOTO310
To transmit this message, hold down the SHIFT key and press M. To send a
message that needs to have parts of it updated periodically, follow the exam-
ple of adding call signs to the ID message in the program.

Interface

The circuit (see Figure 1) is connected between a Flesher Corporation
TU-170 and the TRS-80 keyboard 40-pin connector. A 19-wire ribbon cable
will make all necessary connections to the 40-pin connector. Do not forget to
connect the signal ground, pin 29, to the circuit ground.

124

interface

The 1k potentiometer on the clock can best be set to 727 Hz for 60 words
per minute RTTY by using a frequency counter. You can also set it by tuning
in a RTTY signal and adjusting until you get solid copy. It is also possible to
send and receive 100 words per minute by switching in the proper value
capacitor to change the clock frequency to 1760 Hz.

+5v
4

~12v

2 b
PIN FUNCTION
i 0 13 12 23 34
2 0T 9 d
! 3s
IN]

19]
e ; p xa _b 8 4 37
“ l18| 38

38

35

3t UART

34

40

25 —a

~

30
22
32
26
18
28
24
20
29

l

!

&3

"Trrr

SIG _GNO

+5v
8
10K LA TU-170
L4 3 AFSK KEY 25) out
555 20
a7k . . DEMOD OUT LN

727H2 1K B 1 17
L

(60 WPM) T o
S MvLaR i £ f J;‘

Figure 1. Baudot serial-parallel conversion schematic

Al

125

interface

Notice that the send and receive pins of the UART are tied together.
The UART does all the timing and conversion between parallel and serial
1/0. This makes programming easier and leaves the computer time to do

other things.

TOP VIEW
Vgelt+svl d LU R T] b (2
*yggl-izvi 2 39 [T EPS
[K] 38 [nat
RDE [] 4 37 I NB2
RDB] 6 36 7] TS8
RD7 [C]6 35 [TINP
RD6 17 3a[7cs
Rps {718 33{] o088
RD4]9 32 [ber
RD3I [0 31 Dee
RD2 (11 30 [} 085
ROt [] 52 29 [] 084
PE (] 13 28 {7} 083
FE[14 27} p82
OR[]]15 26 {7 DBl
SWE] s 25 [so
RCP [17 24 [TJeoc
ROAV [] 18 23 [308
pav [[]1e 22 {7] TBMT
sI[] 20 211 XR

*PIN 2: AY-3-1014A/10150
NO CONNECTION

Figure 2. UART pin configuration

-
©
u
>
e £z8 2 TRANSMITTER
T 58> EE DATA BITS
g o Ve oo
o 328¢ E 2 @
Z Zunwoo zZ0 (=1 [=]
I HEERNEN
e o] ‘ }—4— 0aTa sTROBE
SERIAL
l Y F—oureur
6 %7 ANSMITTER END OF
cLock * I~ ° CHARACTER
16 X R EXTERNAL
CLOCK *‘—“—] RECEIVER T RESET
SERIAL
wpuT T I]
STATUS WORD ,__| | RECEIVER
ENABLE — T T H DATA ENABLE
528 8 Br2usy 2 P
LY ——
5w ow sl g d RECEIVER
&% tE8 EiFIES DATA BITS
E Fi @
4 3
o o

Figure 3. UART block diagram

126

interface

On-Air Operation

To operate on the air, enter and run the program. Search the 20-meter
band between 14080 and 14100 for RTTY signals. When a station calls CQ,
wait until the operator signs and then press SHIFT T, followed by SHIFT I.
Enter the station’s call and press SHIFT D. Type in your message, and when
finished, again press SHIFT D to ID. Finally, press SHIFT R to return to the
receive mode.

127

interface

Program Listing

2 Encyclopedia
' TRANSCEIVE RTTY IN BASIC - BY K8TT - 12/21/80 ye o

3 Loader
r **********************‘k*************************ﬂ'**********

&

7
' SET UP TRANSLATION ARRAYS AND CLEAR STRING SPACE

8 .

L N N T N R T R N R RN R AR R R

10 CLEAR 1000
20 PRINT CHR$(14):
DIM A$(63),B(60):
DEFINT I,R,T,A,X
30 FOR I = 0 70 62:
READ A$(I):
NEXT I:
A$(49) = CHR$(34)
40 FOR I = 1 TO 57:
READ B(I):
NEXT I
44
45
' RECEIVING ROUTINE
46
50 R = 0:
PRINT
60 PRINT @960, STRING$(21,"-");">>> RECEIVE MODE <<<"; STRING$(22,"

70 A = INP(253)
80 B$ = INKEYS:

IF ASC(B$) = 116
THEN
300:
ELSE
70
90 IF A = 254 GOTO 70
100 A = INP(252)
116 IF A = 27
THEN
R = 32:
ELSE
IF A = 31
THEN
R = 0:
GOTO 70
115 IF A = 4
THEN
R =10
120 A = A + R:
PRINT A$(A);:
GOTO 70
295 :

296 :
' TRANSMITTING ROUTINE

297 :

L T R T T T T T R T TR R T N T R R TR R IR TR TR T R R TR TR T T T}

300 PRINT :
PRINT @960, STRINGH(21,"-");">>> TRANSMIT MODE <<<"; STRING$(21,

Wy

128

interface

310 X$ = INKEYS$:
IF X§ = "
THEN
310:
ELSE
X = ASC(X$):
GOSUB 400:
GOTO 310
400 IF X < 96

410 IF X = 10
THEN
X = 2:
ELSE
IF X = 13
THEN
X = 8:
ELSE
IF X = 32
THEN
X o= 4:
GOSUB 600:
RETURN
430 IF X > 90
THEN
RETURN :
ELSE
IF X > 64
THEN
470:
ELSE
IF X < 32 RETURN
450 IF T = 0
THEN
T=1:
X = 27:
GOSUB 600:
X = ASC(X$)
460 X = X - b:
X = B(X):
GOSUB 600:
RETURN
470 IF T = 1
THEN
T = 0:
X = 31:
GOSUB 600:
X = ASC(X$)
480 X = X - 64:

Program continued

129

600

637

698 :

699

700
710

800

1000
1010
1020
1021
1022
1023
1024
1025

1026
1030

1040
1050

2000

2010

2020
2030

interface

X = B(X):
GOSUB 600:
RETURN
A = INP(253):
IF A = 252
THEN
600
0UT 252,X:
RETURN

' MESSAGE SENDING ROUTINE
R

Q = LEN(M$)
FOR L = 1 T0 Q:
X$ = MID$(MS$,L,1)
X = ASC(X§):
GOSUB 400:
NEXT L:
RETURN
M$ = CHR$(10) + CHR$(13) + "CQ CQ CQ CQ CQ €Q €Q CQ CQ cg cq €Q
CQ DE K8TT K8TT K8TT K8TT (LOU) IN BOWLING GREEN, OHIO
+ CHR$(10) + CHR$(13):

GOSUB 700:

GOTO 310

PRINT

INPUT "CALL/NAME/QTH OF CONTACT";C$

D$ = " DE KBTT (LOU) IN BOWLING GREEN, OHIO " + CHR$(10)

+ CHR$(13):

RETURN

M$ = CHR$(10) + CHR$(13) + C$ + D§:

GOSUB 700:

GOTO 310

Al$ = "~~~ AMATEUR RADIO STATION KB8TT
B1$ = CHR${10) + CHR$(13)

C1$ = "OPERATOR: LOUIS C. GRAUE (Lou)*

D1$§ = "QTH: 624 CAMPBELL HILL ROAD, BOWLING GREEN, OHIO 43402"
E1$ = "RIG: HEATHKIT - SB104A - SB230 LINEAR - TH6DXX AT 40 FEET
F1$ = "RTTY: TRS-80 COMPUTER - HOMEBREW PROGRAMS & INTERFACE"
Gl$ = "JOB: MATH PROFESSOR AT BOWLING GREEN STATE UNIVERSITY"
H1$ = “HOBBIES: COMPUTERS - ELECTRONICS - GARDENING - HOMING PIG
EQONS"

11§ = STRING$(63,".")

M$ = B1$ + Al§ + Bi§ + C1$ + B1$:

GOSUB 700

M$ = D1§ + BI$ + E1$ + B1$ + F1§ + Bl§:

GOSUB 700

M$ = G1$ + B1$ + HI$ + BI1$ + I1$ + B1§:

GOSUB 700:

GOTG 310

DATA LE,™ ",A," ",S,1,U," ",D,R,J,N,F,C,K,T,Z,L,%,H,Y,P,Q,0,B,G,
ML XLV, o, 3,0

DATA -, % M, "B, 7, L8, 4, (L5, ,),2,#,6,0,1,9, 7,

soses /st

DATA 3,25,14,9,1,13,26,20,6,11,15,18,28,12,24,22,23,10,5,16,7, 30
,19,29,21,17

DATA 13,17,20,9,0,26,11,15,18,0,0,12, 3,28, 29, 22,23,19,1,10,16,21
.7.,6,24,14,30,0,0,0,25

130

TUTORIAL

A Better Way

Don’t Be a Slow POKE,
Take a PEEK at Your Computer

Hairy Bi-Nary and Hexy Decimal

Instant Indexer:
Programming in Disk BASIC

131

TUTORIAL

A Better Way

by Robert V. Meushaw

I’m sure many of you have been faced with situations in which the pro-
gram you were writing just wouldn’t perform to your expectations
because of limitations which seemed beyond your control. In some cases,
processor speed or inefficient data storage techniques may limit your
capabilities, but in almost every hopeless situation I work on, I find that,
with perseverance, there is always a better way.

One of the most important lessons I have learned while programming is
that you should use your computer to help you analyze and resolve your
programming problems. In this chapter I will describe several program-
ming applications 1 have faced with my Level I TRS-80 and the ap-
proaches that I used to investigate such limitations.

Problem One

Computing vector magnitudes when given the x- and y-coordinates

(Figure 1) requires a square root function that is not built in to the Level

y-axis

@b 7] vector magnitude =V a? + b?
|

- X-axis

(a®)

Figure 1

133

tutorial

I. Fortunately, the appendix of the Level I manual includes a square root
function (Program Listing 1), but it performs slowly. Watching the results
being printed, I could almost feel the burden of the routine. I began to in-
vestigate how to improve the speed of my program.

Looking at Program Listing 1, you can see that the routine makes suc-
cessive approximations to the square root of X which eventually converge
(within the limits of the computer’s accuracy) to the square root of X. The
first approximation, Y, is taken as X/2. W keeps track of the error in the
approximation, and whenever the error is zero or is the same as the
previous iteration, the subroutine returns with Y as the square root of X.
This seems fairly straightforward, but, as you can see, there is really quite
a lot going on in one iteration, which is reason enough for its lack
of speed.

Wondering how many iterations of such a routine are necessary to com-
pute a square root, I decided to make some tests. The test program is
shown in Program Listing 2. It generates random numbers to be input in-
to the square root subroutine. Each time a new number is generated, a
counter is set to zero. The square root subroutine is called and modified to
increment the counter with each iteration. When the subroutine returns,
C contains the number of iterations necessary to compute the square root
of X. The value of C is used to increment the array element A(C). Using
this technique, the array element A(i) keeps count of the number of values
of X which require iterations in the square root subroutine to return
an answer.

The first three lines in the program initialize the array elements to zero.
Line 50 determines the value of X. This line is not fully specified in Pro-
gram Listing 2, because I ran the program a number of times with dif-
ferent expressions for X. In each case the program examines
15,000--20,000 values of X. This often requires several hours of run time.
(On several occasions I let the test run overnight.)

Usually, when a reasonable number of samples has been examined, I
interrupt the program and execute the routine beginning on line 2000,
which displays the percentage of samples requiring iteration counts of one
to one hundred.

Some Interesting Results

The program is first run with X = RND(0). This sets X equal to a ran-
dom number between 0 and 1. The resulting iterations are shown in Table
1. Beside each iteration value is its percentage. We can see that 34.6 per-
cent of the numbers require six iterations, 48 percent require seven itera-
tions, and so on. The highest number of iterations recorded is fourteen,
and no number requires five or less.

134

tutorial

Number of Iterations Percent of Numbers Tested

<=5 0
6 34.6
7 48
8 13
9 3.3
10 .87
11 16
12 .056
13 .01
14 .004
>=15 0

Table 1. Distribution of square root iteration counts for X = RND(0).

Table 2 shows the results using X = 1/RND(30000). The range of itera-
tions is between seven and fourteen, with the largest percentage of the
numbers requiring more than twelve.

Number of Iterations Percent of Numbers Tested

< =6 0

7 .03

8 .04

9 .33

10 1.2

11 5.4

12 19.3

13 47.8

14 25.9
>=15 0

Table 2. Distribution of square root iteration counts for X = 1/RND(30000).

Table 3 shows the results of X = RND(30000). These results appear
similar to those of Table 2 except that the range of iterations is offset
slightly.

Number of Iterations Percent of Numbers Tested
<=3 0
.004
.02
076
3
1.15
4.85
19
47.4 Table continued

et WO 00 -1 D U

ot et

135

tutorial

12 27.2
> =13 0

Table 3. Distribution of square root iteration counts for X = RND(30000).

The last set of results, shown in Table 4, is the result of using X =
RND(0)*1E10. I chose this to give some very large values for X. Again,
the results appear similar to those in Table 2 with a larger offset than in
Table 3.

Number of Iterations Percent of Numbers Tested

< =14 0
15 .05
16 17
17 .95
18 3.51
19 14.12
20 47.1
21 34.1

> =22 0

Table 4. Distribution of square root iteration counts for X = RND(0)+1E10.

The Search Begins

Now that I had a reasonable understanding of how the square root
subroutine works and why it consumes so much time, the problem re-
mained to find a technique to reduce the time.

My first thought was to investigate other methods of computing the
square root. One technique, which often yields good results, is a power
series approximation. These approximations are used in calculating sine,
cosine, natural log, and many other functions. The advantage of such a
technique is the elimination of the numerous iterations the computation
requires—thus saving time. Since it has been many years since I en-
countered such approximation techniques, I found myself digging out col-
lege books, which I had hoped never to see again. Though it was not as
clear to me now how a Taylor Series or Maclaurin Series approximation
works, I eventually convinced myself that there is no simple expansion
that can be used to solve this problem.

As is clear from Tables 1-4, larger numbers require more iterations to
compute the square root. Part of the reason for this is that the first approx-
imation to the square root is taken as X/2, which becomes a worse approx-
imation as X increases or decreases. Again, I considerd a power series ap-
proximation such as:

IF (X< = 10) THEN Y = X/2

136

tutorial

IF (X>10) AND (X< = 100) THEN Y = X/4
IF (X>100) AND (X< =1000) THEN Y = X/20
I experimented with several variations of this form, but none yielded a
significant reduction in the number of iterations.

A Glimmer of Light

Finally, I realized that I needed to look for a solution to my specific ap-
plication and not a general one. Looking back at Figure 1, I noticed that I
was not trying to find the square root of just any number, I was trying to
find the length of the hypotenuse of a right triangle—knowing the length
of each side! At this point I had found the first approximation—the sum of
the lengths of the sides of the triangle (i.e., A + B).

My next task was to determine how good my approximation method
really was. Program Listing 3 shows the program which I used to generate
the lengths of each side of the right triangle and the number whose square
root I needed. As in the previous set of test cases, program statements 50
and 51 are incomplete because I used four sets of values to test the same
conditions as before.

The program was run using A = RND(0) and B = RND(0). The value
of X was computed as (A*A + B*B). Table 5 shows the result of using the
new first approximation for the square root. Compared to Table 1, the

Number of Iterations Percent of Numbers Tested
<=2 0
1.1
13
13
52.3
33.6
0

~I UL W

> o

Table 5. Distribution of square root iteration counts using A = RND(0) and B = RND(0) and
modified first approximation.

Number of Iterations Percent of Numbers Tested
<=2 0
1.1
12.7
52.1
34.1
0

13 Ut W

> o

Table 6. Distribution of square root iteration counts using A = RND(30000) and B =
RND(30000) and modified first approximation.

137

tutorial

number of iterations is significantly reduced. In this case, most numbers
require five or fewer iterations, whereas Table 1 shows that most numbers
require seven or more iterations.

Table 6 shows the results of the new approximation when A =
RND(30000) and B = RND (30000). Notice that the results are
remarkably similar to those obtained in Table 5.

Number of Iterations Percent of Numbers Tested

1 0
2 .01
3 .96
4 13.16
5 51.6
6 34.27

>=17 0

Table 7. Distribution of square root iteration counts using A = 1/RND(30000) and B =
1/RND(30000) and modified first approximation.

Table 7 shows the results obtained using A = 1/RND(30000) and B =
1/RND(30000), and Table 8 shows the results obtained using A =
RND(0)*1E10 and B = RND(0)*1E10.

Number of Iterations Percent of Numbers Tested
<=2 0
1
13.5
51.3
34.2
0

;U

> =

Table 8. Distribution of square root iteration counts using A = RND(0)+1E10 and B =
RND(0)*1E10 and modified first approximation.

I was astounded that the results obtained using the new approximation
were almost identical in the four cases that I tested. I noticed two other
important facts. Most of the numbers required five or six iterations, and no
numbers required more than six iterations. This second fact is most impor-
tant, since it tells me that I can construct a new square root routine elimi-
nating the logical tests necessary to determine completion of the routine.

Referring to Program Listing 1, I can remove line 30080 by changing
the basic structure of the routine to a FOR-NEXT loop using six itera-
tions. Program Listing 4 gives the resulting square root routine. In this
version the speed of the routine is increased. It seems wasteful to perform

138

tutorial

six iterations when some numbers require less, but looking at the statistics
of Tables 5-8 you can see that 85 percent of the numbers require five or six
iterations. Therefore, the instances of inefficiency are small.

Now that I was over the major hurdle, I wanted to make my computa-
tions even more efficient. My primary target was the parentheses which
appear in line 120 of Program Listing 4. First, I experimented with alter-
nate methods of writing the approximation equations. Figure 2 shows
some of the equation derivations. The first equation shows the value of
the second approximation to the square root of X. In this equation, Y2 is
the second approximation and Y1 is the first. As you can see, Y2 can be
simply computed from Y1.

1 X 1 X
g x_ X,y
2 Y1+2<Y1 Y1> 2<Y1+ 1)
1 X 1
—ve+ L oy) =2
¥3 +2(3{2) 2

[
>
+ »
=

+
NP
A
o

+

=
g

Figure 2. Equations for the second and third approximations to the square root of X

In the next approximation, Y3 is simply expressed in terms of Y2. In equa-
tion 3, the substitution is made for Y2. This equation reveals something very
interesting. If we assign the value of (Y1 + X/Y1) to Z, then two successive

Z=Y+ X/Y
Y =Z/4 + X/Z

Figure 3. Equations which combine two successive approximations to the square root of X

139

tutorial

approximations can be simply computed using the equations shown in
Figure 3.

The fact that we have condensed two approximations into this set of
equations allows us to rewrite the square root routine as shown in Pro-
gram Listing 5. Notice that only three iterations of the FOR-NEXT loop are
required and that the parentheses are no longer included.

My final modification to increase the speed of the routine is shown in
Program Listing 6. Here, the FOR-NEXT loop is replaced with three sets
of equations which compute six approximations. This straight-line coding
requires more bytes of storage than the previous routinebut is slightly faster.

Program Listing 7 tests the various modifications which I have
developed by timing them. Five subroutines are used for the various tests.
The first subroutine i§ an immediate RETURN. I use this to determine
how much time the main routine requires. The four other routines are the
normal square root routines from the Level I manual: the normal routine,
the routine using a modified first approximation and a FOR-NEXT loop,
the routine using the modified approximation equation, and the routine us-
ing the straight-line coding of the approximation equations.

The results of the test are shown in Table 9. After subtracting the five-
second time of the main routine from the individual test times, the
subroutine times can be compared. Execution speed is cut by a factor of
more than eleven in going from the normal square root routine to my final
specialized version. An improvement of this magnitude makes the work
involved seem well worth the trouble.

Subroutine Used Total Time Total Subroutine Time
Immediate RETURN 5 sec. —

Normal square root 107 sec. 102 sec.
Program Listing 4 routine 26 sec. 21 sec.
Program Listing 5 routine 16 sec. 11 sec.
Program Listing 6 routine 14 sec. 9 sec.

Table 9. Execution times of the various square root routines.

Problem Two

The second example I will discuss involves an application in which my
primary concern is program space and accuracy. Because the TRS-80 is
limited to slightly more than 3500 bytes of usable storage, some programs
can become pretty cramped. My problem was to construct an array con-
taining values of sin(X) over a range of 0 to 7/2 (i.e., 0°-90°). As in the
case of the square root function, Level I BASIC does not contain the sine

140

tutorial

function. So, again I turned to the Level I manual’s sine function
subroutine. This routine is shown in Program Listing 8.

The basic sine routine calculation is performed using a power series ap-
proximation. Many mathematics text books will show that sin(X) can be
expressed as the infinite series:

sin(X) =X — (X**3)/3! + (X"*5)/5! — (X**7)/71 + (X**9)/91 ~ ...

In the case of Program Listing 8, the power series is computed using terms
up to X**9,

The Approach

When it became apparent that I needed a few more bytes of storage for
data, I examined the sine subroutine to see how many bytes 1 could
squeeze out. Because this is a repetitive task, a FOR-NEXT loop seemed to
be the appropriate method for computing the terms of the power series.
After several tries, I arrived at the routine shown in Program Listing 9.

The variable Q generates the terms of the power series. Each successive
value of Q is computed by multiplying the previous value by —X**2 and
dividing by the product of J, the loop index and (J-1). The variable Y
keeps a running sum of the power series terms. The savings in terms of
storage amounts to about 25 bytes, which is enough to give me the
breathing room I need. In fact, more savings are possible if unnecessary
lines in the resulting sine routine are eliminated.

There is an added benefit to the modified sine routine. It is very simple
and costs nothing in terms of storage to obtain more accuracy. It is only
necessary to replace the nine in line 120 of Program Listing 9 with the value
of the highest power term desired in the approximation. For example, 15
can be used.

The Final Test

Just to satisfy my curiosity, I decided to try the routine with more
terms. I first tried using 11 as the highest power term. The test routine is
shown in Program Listing 10. It uses the parameter N to specify for the
sine routine the highest power term in the approximation. For each value
of X, the sine routine is called twice—once using terms up to X**9 and
once using terms up to X**11. The values obtained using each approxima-
tion are printed, and in addition, the two values are compared and a
message is printed when the values are different.

The results of this test are both interesting and confusing. The approx-
imation using the X**11 term is more accurate, as I had hoped; however,
some results which appear to be the same when printed, produce a message
which says that they are different.

141

tutorial

I took this to mean that the internal binary representations of the values
are slightly different. A portion of the results of the test is shown in Table
10. The confusing part of the results appears in the last computed value.
The printed value displays 1.0000008, which contains more digits than I
have ever been able to print for a number (the normal number of digits is
six). Next, I tried adding another term to the power series approximation
(i.e., (X**13)/13!) but it produced no further improvement in accuracy.

Value of SIN(X) Value of SIN(X) Test

Using X**9 Term Using X**11 Term Result
.903989 .903898 different
.923880 .923880 different
941544 941544 different
956941 .956941 different
.970032 970031 different
980786 .980785 different
.995186 .995185 different
998798 .998795 different

1.000000 1.0000008 different

Table 10. Partial listing of results from test program shown in Program Listing 10. Note that some
values are not equal in a logical equivalence test even though the printed values are the same.

Aside from these few puzziing occurrences, which 1 have yet to fully
resolve, the results of my experiments have been successful. I have
achieved a savings in program space and an increase in accuracy.

The Moral

I hope that the examples that I have presented will encourage you to
find new and better ways to program routines in your applications. Don’t
assume that the method someone else uses is necessarily the best way for
you. I'm sure that you too will discover that finding a better way is
perhaps one of the most rewarding aspects of programming. Most impor-
tant of all, however, remember to make use of all your
resources—including your computer—to improve your work.

142

tutorial

Program Listing 1
TRS-80 Level I manual square root subroutine (shorthand notation has been expanded).

30010 REM * SQUARE ROOT* INPUT X, OUTPUT Y
30020 REM ALSO USES W AND Z INTERNALLY
30030 IF X = 0
THEN
Y = 0:
RETURN
30040 IF X > O
THEN
30060
30050 g 6ET “ROOT OF NEGATIVE NUMBER?":
30060 Y =
7 =
30070 W =
30080 I

30090

Program Listing 2
Program used to investigate the operation of the square root subroutine. The program was run
with the value of X in line 50 given as X = RND(0), X = 1/RND(30000), X = RND(30000), and
X = BRND(0)=1E10. The program starting at line 2000, run after a sufficient number of samples
were taken, prints the percentage of numbers for each iteration count.

1 TO 100
0

1000

= A(C) + 1

; "VALUES HAVE BEEN USED"
1

o
(=1
e MOCODO O

*
.
o

X/ Y -¥)*.5
)+ (W= 17)

-
=
-
o
) N e
)
WIS oW owonow

mm—
EC—A2ZEO~OX
[oed
+ 20 N+
-4
O

—
(=3
=
o
-
=

Z
GOTO 1010

i

1050

'

1060

2000 T =
2010 FOR = 1 T0 100

0
0R I
2020 T = T + A(I) Program continued

143

tutorial

2030 NEXT I

2040 FOR K = 1 TO 100

2050 PRINT K, 100 * A(K) / T
2060 NEXT K

Program Listing 3
Program used to compute the square root of X using the first approximation Y = A + B.

—
Ll
-

1 70 100
0

~
=3
Z»=0

DAg =YW I 0B M
>< —

b e
—t

««. VARIOUS EXPRESSI ON S ...
««+ VARIOUS EXPRESSI ON S ...
+ B *

2=
S O
—

o]
=3
MO TUDM OXNW» S
Z2O0 WO
<
2]

W/Y-Y)=*.s

¥ oouon

..4
o
—
o

— Y EN— -

URN
+ W

Program Listing 4
Modified square root routine using first approximation and FOR-NEXT loop.

100 Y = A + B:!' COMPUTE APPROX. TO SQ. RT.
110 FOR K = 1 T0 6:°' SET LOOP FOR SIX ITERATIONS
120 W= (W /Y -VY)y* . 5:* COMPUTE EROR

130 Y = ¥ + W' COMPUTE NEW APPROX.

140 NEXT K:' LOOP

150 RET.

Program Listing 5
Revised square 100t routine using new first approximation and combined approximation equa-
tions. Note that only three loop iterations are required.

100 Y = A + B:!' COMPUTE APPROX. TO SQ. RT.
110 FOR K = 1 70 3:' SET LOOP FOR THREE ITERATIONS
120 =Y+ X/Y:! COMPUTE TWO APPROXIMATIONS
130 Y = 1/4& + X/L:' USING MODIFIED EQUATIONS
140 NEXT K:! Loor

150 RET.

144

tutorial

Program Listing 6
Final square root routine which eliminates FOR-NEXT loop to maximize speed.

100y = A + B:! COMPUTE APPROX. TO SQ. RT.
110 Z = Y + X/Y:! USING THREE SETS OF
1200 Y = 774 + X/Z2:" MODIFIED EQUATIONS TO
130 2 = ¥ + X/Y:! COMPUTE SIX
140 Y = 7/4 + X/7:¢ APPROXIMATIONS
150 Z = Y + X/Y
160 Y = 72/4 + X/Z
170 RET
Program Listing 7
Program used to test the efficiency of the various square root subroutines.
10 FOR I = 1 TO 100:' SET LOOP FOR 100 ITERATIONS
20 A=RND(30000):B=RND{30000):" PICK VALUES FOR A AND B
30 X = A * A+ B * B:' COMPUTE SQUARE OF VECTOR MAG
40 GOSUB 100:° COMPUTE SQUARE ROOT
50 NEXT I:' Loop

60 PRINT "“TIMING TEST COMPLETED":' PRINT MESSAGE WHEN DONE
70 END

Program Listing 8
TRS-80 Level I manual sine function subroutine.

30370 REM *SIN* INPUT X IN DEGREES, OUTPUT Y
30371 REM ALSO USES Z INTERNALLY

30376 Z = ABS(X) / X:
X =7 %X
30380 IF X > 360
THEN
X = X / 360
X = (X -« INT(X)) * 360
30390 IF X > 90
THEN
X = X / 90:
Y = INT(X):
X = (X - Y} * 90:
ON Y GOTO 30410,30420,30430
30400 X = X / 57.29578:
IF ABS(X) ¢ 2.4861E - 4
THEN
Y = 0:
RET.

30405 GOTO 30440
30410 X = 90 - X:
GOTO 30400
30420 X = - X:
GOTO 30400
30430 X = X - 90:
GOTO 30400

30440 Y = X - X * X * X /6 + X ¥ X * X * X *X /120 - X * X
XK X ¥ X %X %X / 5040
30450 Y = Y + X * X * X * X * X * X * X * X * X / 362880
IFZ=-1
THEN
Y = - Y
30460 RET.

145

tutorial

Program Listing 9

Modified sine routine. The statements of this routine could be used to replace the power series
expression on lines 30440 and 30450 of Program Listing 8.

100 q = X:° Q SET TO FIRST TERM IN PWR SERIES
110 v = X:! Y IS SUM OF POWER SERIES TERMS
120 FOR J = 3 TO 9 STEP 2:' SET LOOP TO USE TERMS UP TO X**9
130 Q = - Q@ * X/J * X/{(J-1):'COMPUTE NEXT PWR. SERIES TERM

140 ¥ = ¥ + Q:° ADD TERM TO SUM

150 NEXT J:' LOOP

160 RETURN

Program Listing 10
Program used to test the effect upon SIN(X) of different power series approximations.

10 FOR I = 0 TO 32:' SET LOOP FOR 32 SINE WAVES
20 X = 1.5707963 * 1/32:" X IS INPUT (0<=X<= /2)

30 T = X:° SAVE X

40 N = 9:GOSUB 1000:" COMPUTE SQUARE ROOT

50 A1) = Y:° SAVE ANSWER

60 X = T:° RESTORE X

70 N = 11:GOSUB 1000:' COMPUTE NEW SQUARE ROOT
80 A(2) = Y:' SAVE ANSHER

90 PRINT A(1),A(2):" PRINT RESULTS

100 IF A(1)<>A{2)P."DIFFERENT":P.:'PRINT IF VALUES DIFFERENT
110 NEXT I:' LOOP

120 END
1000 q = X:' COMPUTE SINE OF X
1010 ¥ = X:' USING THE HIGHEST
1020 FOR J = 3 TO N STEP 2:° POWER TERM SPECIF LED
1030 Q = -Q * X/J * X/(J+1):" BY THE CALLING

1040 ¥ = Y + Q:' ROUTINE
1050 NEXT J

1060 RET.

146

TUTORIAL

Don’t Be a Slow POKE,
Take a PEEK at Your Computer

by Hunt K. Brand

‘he biggest problem when writing a BASIC real-time game program

4. (and many other programs) is speed. The two things common to most
of these programs are input commands and video displays. You can speed
up the way the computer accomplishes both of these functions by using
the BASIC commands PEEK and POKE. I will explain in simple terms
how PEEK and POKE work and how they are related to the PRINT and
SET commands, along with a detailed description of the video display
and how it is organized and accessed.

Faster Keyboard

The INKEY function works for single inputs aenly. It is also not the
fastest way to access the keyboard. The most used keys in games are the
arrow keys to steer and the space bar to fire, or similar control functions
of that sort. There is one address you can look at, or PEEK at, to see all of
these control keys: arrow keys, space bar, CLEAR, ENTER, and BREAK.
If you PEEK at this address, you can see what key or what combination of
these keys is being pressed (see Table 1). To get an idea of how address
14400 (decimal) works and the keys it checks, try the program in Program
Listing 1.

The Video

The video display can be visualized as a 64 x 16 graph. There are 64
print locations, or addresses, across the screen (0-63) for each of the six-
teen lines down (0-15). Each print location is divided into six parts—two
across and three down. These parts are called pixels (picture elements).
Each pixel, or any combination of pixels, can be turned on and off using
the SET, RESET, PRINT, and POKE commands. These commands will
be described later. 64 x 16 = 1024 total print locations on the video dis-
play, and each print location has six possible pixels, so 1024 x 6 = 6144
total different pixels on the screen. Only one letter can fit into a print lo-
cation, whereas a total of six pixels will be in the same print location.
Stated another way: You can have a total of 1024 letters on the screen or a
total of 6144 pixels on the screen. Each print location can be thought of as
a particular video memory location.

147

tutorial

Address: 14400 decimal (3840 hex)
Keys stored at address: arrows, space bar, CLEAR, ENTER, and BREAK keys.

Keys pressed Number stored
in address 14400

Arrow keys

up arrow 8
down arrow 16
right arrow 64
left arrow 32
up and left 40
up and right 72
down and left 48
down and right 80
Other keys

ENTER key 1
CLEAR key 2
Space bar 128

Note: If the space bar is pressed at the same time the other keys are pressed, it adds 128 to the
number.

Table 1. Keyboard control keys

Faster Video

PRINT (particularly PRINT@), SET and RESET, and POKE are the
commands used to send information to the video display. They all use
numbers to put information on the screen. The proper use of these func-
tions can lead to a faster display process. Understanding the advantages
and disadvantages of each, and how each works in comparison to the
other functions can help you decide which function, or what combination
of functions, to use.

The PRINT @xxxx command tells the computer to print at location xxxx
on the screen, where xxxx is between 0 and 1023 decimal. The SET(X,Y)
command tells the computer to turn on a particular pixel by supplying
two numbers-—the x- and y-axis numbers. RESET works the same way as
SET, but it turns off a particular pixel. POKE xxxx,ccc puts a letter or any
combination of pixels on the screen at address xxxx, where xxxx, in this ex-
ample, has the range 15360 through 16383 decimal. The number ccc is
the ASCII (American Standard Code for Information Interchange) or
graphic code in decimal for the character you want to print. This code
number is used for PRINT CHR$(cce) or POKE xxxx,ccc. Each command
will print the same character on the screen. The command POKE

148

tutorial

15360,191 puts a solid graphic block, CHR$(191), at address 15360
decimal. The first video address is 15360, at the top left hand corner of the
video display.

Display Characters

The TRS-80 has a total of 255 character codes, of which 128 are display
characters. The display characters can be divided into two groups—
alphanumeric and graphic. There are 64 alphanumeric character codes
(letters, numbers, and punctuation) that can be displayed on the screen,
and 64 graphic character codes. The alphanumeric character codes range
from 32 to 127 and are referred to as ASCII code numbers. Although there
are ASCII code numbers for lowercase letters (96-127), they are con-
verted to uppercase characters (32-95) when they are printed, so in effect
there are 64 alphanumeric characters. There is one graphic character for
each ASCII character. The ASCII code for a space, a blank print location,
is the number 32, while the graphic code number for a blank is 128. The
number 32 is the first ASCII code number, and 128 is the first graphic
code number. This illustrates the relationship between the two groups
and how one is derived from the other.

Although you can have any combination of pixels in a print location,
there is a corresponding code number for each. If you wanted each of the
two top pixels of a print location (code number 131) to be on at the same
time the two bottom pixels were on (code number 176), you could not put
one on top of the other. You would have to use the code that already exists
for that combination—code number 179.

There is a relationship between the graphic characters and their codes.
The lowest graphic code number, 128, turns off all six pixels of a print
location. The highest number, 191, turns all six pixels on. The next lowest
number, 129, turns on the top left-hand pixel of a print location. The next
highest number, 190, turns on all but the top left-hand pixel. In each
case, one is the opposite of the other. This relationship continues through
the whole range of graphic codes.

Program Listing 2 will give you an idea of how letters and graphics fit
into a print location. The code number will be displayed as each code is
POKEd. After each character, the full print location will be turned on
graphically with the POKE16000,191 command. This will let you see
how each character fits into a print location. Press the space bar for a new
number, or hold it down for a rapid check.

Lowercase Characters

If you want to use lowercase letters, you can have your keyboard
modified. Although there will be more display characters, you would still

149

tutorial

have the same number of graphic characters. A lowercase driver program
is used to display the lowercase letters. This is needed because the com-
puter normally converts all letters to uppercase; the driver program
bypasses the conversion, allowing the lowercase letters to appear on the
screen. If the driver program is not active, you cannot PRINT lower-
case letters, but you can POKE them. If you issue the command
PRINT@0,CHR$(118) without a lowercase driver, an uppercase V will
be printed. If you issue a POKE 15360,118 command, a lowercase v will
appear on the screen at the same place where the uppercase V appeared,
even though there is no lowercase driver. The POKE command works
because it puts the character directly into video memory, avoiding the
conversion to uppercase that the PRINT command goes through.

POKE Explained

POKE could be loosely translated as meaning put. When you tell the
computer to POKExxxxx,cce you are telling it to put a certain number
(cce) directly into a certain memory location (xxxxx). The number ccc has
the range 0 through 255. The number xxxxx is the memory address of any
RAM (random access memory) location into which you want to put the
number. Be very careful when using this command, because if you put a
number in the wrong memory location (one used by the computer to keep
track of what it is doing), it might cause the computer to freeze up.

We are concerned with POKEing the video memory addresses between
15360, the upper left corner of the video display, and 16383, the bottom
right corner of the video display. If you visualize the video display as a
window which allows you to look at a certain section of RAM, it will help
you understand how POKE works. Each time you POKE a number into a
video memory address that is different from the number already there,
you see the screen change at that location. What you see on the screen is
an ASCII or graphic representation of the number, not the number itself,
because when the number in the memory location is transferred to the
screen, it is converted to the ASCII or graphic character it represents. If
you put the number 79 in a video memory location you would not see 79
on the screen. To put the number 79 on the screen, you would have to
issue two POKE commands because the character 7 takes one print loca-
tion (memory address) and 9 takes another. Think of 79 as two different
ASCII code characters, not as a number.

When dealing with the video display, think of the POKE statement
as a faster PRINT @xxxxx, CHR$(ccc) command. The command POKE-
15360,191 is like the command PRINT @0,CHR$(191)—each will put a
solid graphic block at the upper left-hand corner of the video display. For
example, we could paint the screen white with this short line:

9 FOR I= 15360 TO 16383:POKEL, 191:NEXT I

150

tutorial

Although POKExxxxx,cce and PRINT@ xxxxx,CHR$(ccc) are alike,
POKE has two advantages. First, it is slightly faster, and second, a POKE
statement only affects one location on the screen, no matter where it is on
the screen. The cursor always follows a PRINT statement, but a POKE
command does not affect it. The PRINT command sometimes generates a
line feed (even if you use a semicolon), whether you want it to or not;
POKE does not. To get an idea of what this means, try to PRINT a solid
graphic block (or any character) on the bottom right hand corner of the
screen and have it stay there. Since 1023 is the PRINT @ location for that
spot, press the CLEAR key, and type in this command:

PRINT @1023, CHR$(191);
It prints in the corner, but an automatic line feed moves it up one line.
Even if you add on to the same statement the command:
u PRINT@ 0,"”;

to move the cursor back up to the top of the screen, it still would not
work. Press the CLEAR key to move the cursor to the top of the screen (to
avoid a line feed caused when you press ENTER, which might cause the
screen display to move up) and then type in POKE16383,191 (16383 is the
last location of video memory). This time the graphic block stays where it
is supposed to stay. POKE is the only way to put any character in this spot
and have it stay there. Program Listing 3 illustrates a solution to this
problem. If the last character of the last string were not POKEed, but
PRINTed, the whole screen display would have moved up one line, and
the top line of the screen display would have been lost.

PEEK Explained

PEEK looks, or peeks, at a certain address to see what is there. Just as
POKE puts a certain number into a memory location, PEEK can look at
what number is in a memory location. PEEK can look at any memory
location, even if it’s in ROM (read only memory). It works with the
keyboard, and you can see what key or keys are being pressed. It does not
change that address in any way; therefore, it is safe to use PEEK at any
address to see what is there. If xxxxx is the address you want to look at,
the PEEK command is written as PEEK(xxxxx). The statement
P=PEEK(15360) will look at the top left part of the video display
(memory address 15360) and assign to P the decimal value of the number
it saw when it PEEKed. For example, if we printed the words MY GAME
starting at the top left of the display, the letter M would be at the top left
of the screen, and since 15360 is the address there, P = PEEK(15360) will
return with the number 77, the ASCII code number for the letter M. Now
we know that M is at the top left-hand corner of the display. If we wanted
to know what was just to the right of it, we could PEEK at address 15361
(one place to the right) and see what was there. In this case P would

151

tutorial

return with the number 89. The command PRINT CHR$(89) will return
a Y. See Program Listings 3 and 4 for examples of the PEEK function. In
effect, we could look at the whole screen with this short line:

9 FOR 1=15360 TO 16383:P = PEEK(I):NEXT I

The POINT command for SET and RESET is similar to PEEK, but it tells
you only if a particular pixel is on or off, not what letters or other graphic
characters are in that print location. You can see what is in any print loca-
tion (all six pixels) with the PEEK command. Now you can see if a car or
ship in your program crashed or was hit by a missile from your program by
PEEKing at the location where it should be. If a space ship is represented
by a solid graphic block, CHR$(191), and the missiles by a single graphic
pixel like CHR$(130), PEEKing at the location will tell you if a missile is
there by returning the number 130 or if the ship is still there by returning
the number 191. If your ship is larger and takes up more than one memory
location, you can still check, but now you will have to PEEK at more
locations.

Converting PRINT and POKE

Although the POKE command is fast, it is still practical to use the
PRINT commands in some instances, so it is good to know how to convert
from one to the other. To find out what address to POKE on the screen
from a PRINT@xxxx,CHR${cce) command, simply add 15360 to the
number xxxx. The number 15360 is also the first video memory address.
To convert the statement PRINT@ 64,CHR$(191) to an equivalent
POKE statement, add 15360 to 64. 15360 + 64 = 15424, so POKE
15424,191 accomplishes the same thing. Remember that POKExxxxx,ccc
and PRINTCHR$(ccc) each use the same ASCII or graphic code number
(ccc). Each statement will print a graphic block at the beginning of the
second line of the video display. The reverse is possible, also. To find out
where to PRINT@ from a POKE statement, subtract 15360 from the
POKE address. The statement POKE16320,191 is converted this way:
16320 — 15360 = 960, so PRINT@960,CHR$(191) is equivalent to the
POKE command. Each will put a graphic block on the bottom left-hand
corner of the video display.

SET and RESET

Sometimes the SET and RESET commands are too slow. If you wanted
to use the SET command to generate graphics that would look like one
PRINT CHR$(191) or POKExxxx,191 (a solid graphic block), it would take
six steps. The SET command can only SET one pixel of a print location at a
time. Since there can be up to six pixels used at any one print location or ad-
dress, it would take up to six SET commands to accomplish this.

152

tutorial

The SET command is good for drawing lines at an angle, circles, and
designs using formulas, but if you need things like this printed continuous-
ly, it is better to convert the result to numbers (location and character
code) that you can POKE into a program line or simply to POKE and
PRINT CHR$(xx) commands. This is especially true when more than one
section of a print location is turned on at the same time. You can also save
the video as strings once the display is set up, so the screen can be quickly
printed again (see Program Listing 5). In either case, the PEEK command
can help you do this.

The SET (X,Y) command uses two numbers: the x- and the y- axis
numbers. Each SET command turns on one pixel of a print location
(video memory location) at a time. Any combination of pixels in a print
location can be turned on, but a SET command has to be used for each
one. The graphic codes used by PRINT and POKE can accomplish any of
the possible combinations with just one number. For example, to SET the
top two pixels of a print location, two SET commands are needed, but
only one POKE or PRINT CHR$(cce) command is needed. The CHR$
and POKE code number for this example is 131.

Converting SET and RESET

To convert a SET(X,Y) command to a PRINT or POKE command, we
have to know two things: where the print location is and what combina-
tion of pixels are on, or SET, at that location. To find out where it is, you
use this formula: PRINT@ location = INT (X/2) + (INT (Y/3)*64).

X has the range of zero through 127, for a total of 128. 128/2 = 64. You
divide by two because each print location has a total of two pixels across
(two across by three down). The number of print locations per line is 64 as
discussed earlier. Y has the range of zero through 47, for a total of 48.
48/3 = 16. You divide by three because each print location has a total of
three pixels down (two across by three down). You multiply by 64 to get
the exact position on the line. 16 is the number of lines of the video dis-
play; so the print location on the line (X/2) plus the line number times 64
(Y/3 times 64) gives the exact PRINT@ location. To convert this to a
POKE or PEEK address, you add 15360.

Multiplying 128 by 48 (total x- by total y-axis) gives you the number
6144. This is the total number of pixels that can be turned on by SET com-
mands. This is the same number you arrived at when you multiplied (64
X 16) x 6 = 6144. 64 x 16 is the total number of print locations on the
screen, and six is the total number of pixels in each print location. This il-
lustrates how the different commands are related.

Once you have found out where the print location is you have to find
out what combination and how many of the six possible pixels are on, or
SET. All you have to do is look, or PEEK, at the address you obtained.

153

tutorial

For example, if part of your program has two SET commands: SET
(120,2) and SET(120,1), the address of the first SET command is INT
(120/2) + (INT(2/3)=64) = 60. INT (120/2) = 60;INT (2/3) = 0.0 x 64
= 0; and 60 + 0 = 60, so the PRINT location is 60. The PEEK an POKE
address is 60 + 15360 = 15420. The address of the next SET command is
INT (120/2) + (INT (1/2)=64). INT (120/2) = 60, and INT (1/2) = 0, so
15420 is the address of the second SET command. Both addresses are the
same. To find out what is there, you look at the screen from your program
by issuing this command P = PEEK(15420). P returns with the value of
148, so if you PRINT @60,CHR$(148) or POKE15420,148 you will ac-
complish the same thing with one command that took two SET com-
mands. This is an example of how POKE and PEEK can help you convert
programs to work faster and accomplish the same thing with fewer
commands.

The Programs

The two main programs are Screen Saver (Program Listing 3) and
Video Map (Program Listing 4). Each of these programs uses the state-
ment: IFP < 32 THEN P = P + 64. This is needed for computers with
lowercase modifications that do not have the driver program active.
Sometimes when a PEEK command is used, an uppercase letter causes a
number less than 32 to return as the ASCII code for that character. This
would spell disaster if it were put into a string, because numbers under 32
are control codes for line feeds, back spaces, and the like. Adding 64 to
these numbers will cause them to have the correct ASCII code.

Screen Saver

The Screen Saver program (Program Listing 3) shows how to save the
video display in the form of strings. It can be used to save an important
display, usually graphic, that has to be displayed rapidly and often. A for-
mula for some SET commands might be used to draw what is needed,
with the result saved as strings. There is one string for each line of the
video. You can POKE these strings into program lines, or just use them in
the program. You can modify the program so it will save only a part of the
screen if that is all you need to save. Make sure that the cursor is where
you want the strings to be printed before you print them, or use PRINT@
statements.

The program is used to illustrate how PEEK and POKE can help to
control the video. PEEK looks at the screen to save it, and POKE helps
put it back on the display. The POKE statement is needed to avoid a line
feed caused by a PRINT statement when a character is printed at the last
location of the video display. This is why the last string, S$(16), was
treated separately. The first 63 characters were printed to avoid printing

154

tutorial

the 64th character in the last location. The last character was then
converted to its ASCII equivalent so it could be POKEd on the
screen—avoiding the line feed.

Video Map

Video Map (Program Listing 4) converts what is seen on the screen to
what the computer sees. It is also good for showing where certain address
or print locations are on the screen. To use the program, position the cur-
sor (the blinking solid graphic block) over whatever character you want to
analyze. Pressing the space bar once will cause the program to print the
address, print location, code number of the character, and the character
on the top line of the video display. If the cursor is on the top line of the
screen, and you press the space bar again, you will get information about
the information. Press the arrow keys to restore the original line. Press the
CLEAR key to return to the original program. The program will help you
understand how the video screen is organized and show you a practical ap-
plication of the PEEK and POKE function when used for keyboard and
video control. It can be used to help in the conversion from one type of
video display to another by showing you where everything is and what the
computer is seeing.

You can easily add some lines to store the information you want to
remember in a variable array by adding Program Listing 5. H5 is a
counter for the variable. Press the ENTER key to save the information
about where the cursor is. If you want to save more than 200 locations in
the array, change the DIM J(200,2) statement accordingly. The informa-
tion can be put into data statements in your program to be read and
POKEd back onto the screen. This is only practical when a small number
of locations is being checked. If you want to save the whole screen display
as strings, you can use Screen Saver (Program Listing 3).

The POKE function can be used to put information on the screen but
should not be considered the best way to accomplish this. Using POKE in
conjunction with the PRINT, and even the SET commands, will result in
a well-rounded and more efficient program. We covered the use of POKE
as far as the video display was concerned, but it can be used for many
other functions; for example, you can POKE in a machine-language
routine or even a BASIC program. Remember that POKE is a very power-
ful and dangerous command, because you might put something in a
reserved area of memory used in the control of the computer.

The PEEK command is a safer but just as powerful function that lets you
look at any memory location desired. Every BASIC word has a code
number, which the computer uses to save a program, so you can analyze

155

tutorial

the program by the code numbers you see when you PEEK. You can use
this function to look at, among other things, the video display and the
keyboard.

156

tutorial

Program Listing 1. Keyboard control key check

ARROW, SPACE, CLEAR, ENTER, AND BREAK KEY ADDRESS CHECK

19
: Encyclopedia
29 CLEAR 100 Loader"
C - 14400
"¢ IS ADDRESS OF KEYS
39 CLS)
PRINT TAB(10)"* PRESS ANY COMBINATION * *
49 p = PEEK(C)
* FIND OUT WHAT NUMBER IS THERE.
59
i 0 MEANS NO KEYS ARE BEING PRESSED.
§9 PRINT @ 448,"NUMBER IN ADDRESS 14400 :°;
79 PRINT @ 476," L.
" ERASE LAST NUMBER PRINTED.
89 PRINT @ 476,P; :
© PRINT NEW NUMBER.
99 GOTO 49
" CHECK ADDRESS AGAIN.
Program Listing 2. ASCII and graphic code display
9 CLS :
PRINT TAB(10)" * PRINT LOCATION TEST *"
19 PRINT " PRESS <SPACE> FOR NEXT CHARACTER "
29 PRINT " HOLD DOWN <SPACE> FOR NO PAUSE *
39 FOR I = 1 TO 255
" LOOP FOR ASCII CHARACTER CODE NUMBER.
49 PRINT @ 192," CHARACTER CODE NUMBER :°;
59 PRINT @ 216," ",
© ERASE LAST NUMBER.
69 PRINT @ 216,1; :
" PRINT NUMBER.
79 POKE 16000,191:
; POKE PRINT LOCATION WITH FULL GRAPHICS
89 POKE 16000,1 :
' POKE PRINT LOCATION WITH NUMBER I.
99 P = PEEK(14400) :
; CHECK KEYBOARD FOR SPACE BAR.
119 IF P < > 128
THEN
GOTO 79
" NO SPACE BAR DEPRESSED.
129 NEXT I
139 :
149 :
* NOTE : IF YOU HAVE A LOWERCASE MODIFICATION YOU)
159 - Program continued

157

tutorial

MIGHT SEE MORE LETTERS IN RANGE 1-32.

169 :
" GRAPHICS ARE IN RANGE 128 TO 191.
Program Listing 3. Screen Saver
9899 :
' SCREEN SAVER : A PROGRAM TO SAVE SCREEN AS STRINGS.
9912 :
9919 CLEAR 2000
DIM S$(16)
: ONE STRING FOR EACH LINE.
9929 FOR I = 15360 TO 16320 STEP 64 :
' START AT THE BEGINNING
9931
' ADDRESS OF EACH LINE.
9936 CC = CC + 1
i SET UP COUNTER FOR STRINGS 1 - 16.
9939 FOR L = I TO I + 63 :
: LOOK AT EACH ADDRESS OF LINE.
9949 P = PEEK(L) :
P p= ASCII OR GRAPHIC CODE OF ADDRESS.
9952 IF P < 32
THEN
P =P + 64
" LOWERCASE MODIFICATION NEEDS THIS.
9959 S$(CC) = S$(CC) + CHR§(P) :
" ASSIGN CODE TO STRING.
9969 POKE L,32 :
i ERASE PRINT LOCATION AFTER SAVING.
9979 NEXT L
NEXT 1
i CONTINUE LOOPS.
9989 INPUT " PRESS ENTER TO SEE SCREEN “;X
LS
9991 -
" PRINT SCREEN.
9992 FOR I = 1 TO 15
PRINT S$(1);
NEXT I :
" PRINT SCREEN.
9995 PRINT LEFT$(S$(16),63);:
 DON'T PRINT LAST CHARACTER.
9996 P = ASC({ RIGHT$(5$(16),1)):
" GET ASCII CODE OF LAST CHARACTER.
9997 POKE 16383,P :
" POKE LAST CHARACTER OF LAST STRING TO
9998 :
: AVOID LINE FEED THAT PRINT WOULD CAUSE.
9999 FOR X = 1 TO 999 :
NEXT X :

1

DELAY A WHILE.

158

tutorial

Program Listing 4. Video Map

9000 :
‘' VIDEO MAP.
9002 :
9010 :
' BY, HUNT K. BRAND
9012 :
' 3531 SAN CASTLE BLVD
9014 :
' LANTANA, FLORIDA. 33462
9015 :
' (305) 586-2377
9020 :
)
9030 :
' USE A GOSUB 9000 TO ACTIVATE.
9035
' NOTE : ISSUE A CLEAR 1000 STATEMENT BEFORE USING
9038 :

' THIS PROGRAM.
9040 DEFINT A - Z
9050 C = 14400

i ADDRESS OF ARROWS, CLEAR AND SPACE KEY.
9060 LA = 15360

: ADDRESS OF LOW VIDEQ MEMORY.
9070 HA = 16383 :

i ADDRESS OF HIGH VIDEO MEMORY.
9080 CC = 191 :

‘ CURSOR CHARACTER.
9090 €1 = CC :

i CURSOR CHARACTER.
9100 LC = 15840

' START CURSOR LOCATION.
9120 8% = "V .
FOR I = LA TO LA + 63
P = PEEK(I)
9125 IF P ¢ 32
THEN
P =P + 64
9130 B$ = B$ + CHRH(P)
POKE 1,143 :
NEXT I :

i ASSIGN B$ VALUE OF EACH ADDRESS.
9140 PRINT @26," VIDEO MAP “;

H1 = 5
9145 :
! ww=~ INSTRUCTIONS ~~--
9150 :
' USE ARROW KEYS TO MOVE CURSOR.
9160 :
' YSE SPACE BAR TO PRINT INFORMATION ON SCREEN.
9170 :
' USE CLEAR KEY TO RETURN TO MAIN PROGRAM.
9180 :

' TO PRINT INFO ALL THE TIME USE SPACE BAR MWITH ARROWS.
9190 P = PEEK(C)
IF P =20
THEN
9300
9200 IF P > 128 .
THEN Program continued

159

tutorial

P - 128 :
5 :

[I)

P
H
ELS

H 0
9210 IF P < > 128 AND H = 0 AND H1 = 5
THEN
PRINT @0,B$;
H1 = 0
9220 IF P = 8
THEN
LC = LC - 64
IF LC < LA
THEN
LC = LC + 64

i MOVE UP.
9230 IF P = 16
THEN

' MOVE DOWN.
9240 IF P = 64
THEN
LC = LC + 1
IF LC > HA
THEN
LC = LC - 1

' MOVE RIGHT.
9250 IF P = 32
THEN
LC = LC - 1
IF LC < LA
THEN
LC = LC + 1

' MOVE LEFT.
9260 IF P = 2
THEN
PRINT @0,BS;
RETURN

! ' CLEAR KEY.
9270 IF (P < > 128 AND H = 0)
THEN
9300 :

' PRINT SCREEN [NFORMATION.
9280 PRINT @0,"ADD =";LC;" -~ PRINT @ =";LC - LA;
9290 PRINT "~ _—."; TAB(POS(0) + 4)“CODE=";P1; TAB(55);
9295 PRINT "CHR$ = *; TAB(63) CHR$(P1); :
H1 = 5
9300 Pl = PEEK(LC)

' CHARACTER AT CURSOR POSITION.
9310 IF P1 < 32
THEN
Pl = Pl + 64 :

; LOWERCASE MODIFICATION
9311

WITHOUT DRIVER NEEDS THIS.
9320 IF P1 = 191

THEN
Cl = 32
ELSE

Cl = ¢C

160

9330
9340

9350

9360

tutorial

* MAKE CURSOR DIFFERENT.
POKE LC,C1
FOR X = 1 TO 40 :
IF PEEK{C) = ©
THEN
NEXT X
POKE LC,C1
POKE LC,P1
FOR X = 1 TO 40 :
P = PEEK(C)
IFP =0
THEN
NEXT X
GOTO 9300 :
ELSE
9200

9045

9046 :

Program Listing 5. Additions for Video Map
91M J(200,2)
: ARRAY TO SAVE SCREEN INFORMATION
' FOR VIDEO MAP.

9048 :

' J(A,2) WHERE J(A,1) IS VIDEO ADDRESS.

9049 :

9251

! J(A,2) IS CHARACTER AT THAT ADDRESS.
IF P =1
THEN

HE = H5 + 1

" ENTER KEY WAS PRESSED.

9252 :

9253

* H5 IS THE COUNTER FOR THE VARIABLE

IFP =1
THEN
J(H5,1)
J(H5,2)

LC :
Pl

B

| SAVE INFO.

161

TUTORIAL

Hairy Bi-Nary and Hexy-Decimal

by Joe D. Fugate

doubt if any subject scares the average TRS-80 user more quickly

than the mention of binary or hexadecimal—it’s almost like some kind of
electronic virus. So, if binary is not a type of terminal disease and hexadeci-
mal is not some kind of curse—just what are they and how do they work?

Binary

Bi means two, like a bicycle has two wheels. Ary means pertaining to.
Binary is pertaining to two, referring to two numbers, 0 and 1. Why those
two numbers? That’s because your computer knows only two states: off and
on. Off is the same as 0, on is the same as 1. Your computer can tell if a par-
ticular place in memory is either charged up (1) or turned off (0), and it
starts counting all those ones and zeros in a special math called binary math.

Binary math, first lesson: Each one or zero is called a digit, or more exact-
ly a binary digit, called a bit for short.

Binary math, second lesson: Let’s learn to count in binary. Zero,
one—now what? You can’t use two, because that’s not a bit (binary digit)
value. Only zero and one can be used. So what comes after one? It has to be
the next larger combination of 1 and 0. So what’s next? 2? No. 3? No. 4? No.
5P No. 67 No. (I'm being repetitive to point out that none of these are binary
digits.) 77 No. 8P No. 9? No. 10? YES! That 10 looks like a ten, but it’s not.
We counted to one in binary and were looking for two, but we couldn’t use
that, because we had to stick with zeros and ones, and we came to 10. So us-
ing zeros and ones only, 10 becomes the binary number for two. It follows
that 11 is three. Binary is extremely cumbersome, but remember, all the
machine can understand is zeros (off) and ones (on). So here’s what we have:

0 =0 1 bit (Binary digIT)
1=1
2 = 10 2 bits
3 =11
4 = 100 3 bits
5 = 101
6 = 110
7 = 111
8 = 1000 4 bits
Now let’s do the counting over, always using four bits in computer memory:
0 = 0000

162

tutorial

0001
0010
0011
0100
0101
0110
0111
= 1000
Let's take those four bits and give each bit position a value, based on its

position, like this:

]

it

O ~1 & Ut L O~
i

0=0000
8421 value
Notice that each value is two times the following value, because it’s binary,
and bi means two. Let’s say that if we have a 1 above that value, we'll use
the value to figure the decimal equivalent of the binary number. Here’s
an example:
2=0010
8421
It should be two, and it is] How about another try:
5=0101 Sum of values:
8421 4+1=5
Again, it works. Here are some more examples:

8=1000

8421 8 =8
10=1010

8421 8+2=10
15=1111

8421 8+4+2+1=15

It looks like fifteen is the maximum number we can store here. What if we
try eight bits instead of four? Remember, we just multiply each new position
by two to get its value. That gives us:
00 000000
128 64 32 16 8 4 2 1
The maximum number we can store in eight bits is:
111 11111
128 64 32 16 84 21 128+64+32+16+8+4+2+1 = 255
Because eight bits is a nice even number of bits to work with, the block of
eight bits has a name; it’s called a byte. Therefore, the biggest number you
can store in one byte is 255.

Hexadecimal

Hex means six. A hexagon has six sides. Decimal means ten. Hexadecimal
literally means six-ten or more exactly, 16.

1653

tutorial

Let's digress for a moment. It takes eight bits to equal one byte, so in
binary, let’s write out four bytes of all zeros:

00000000 00000000 00000000 00000000

That’s 32 bits (eight bits each, times four bytes). It would be nice if we didn’t
have to write out all those bits. There is a way— hexadecimal.

The key to understanding hexadecimal is to realize that it’s nothing more
than shorthand binary. Let’s see how that works. First off, in order to make
each byte more manageable, let’s break its eight bits into two groups of four
bits, like this:

0000 0000
0000 0000
4 4
1 byte

Now let’s take each four-bit group and come up with a single character
code to represent every possible four-bit combination. That's easy for zero
through nine:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

[O

© XTI U A L0

Notice that the code up to this point is the same as the actual numerical value
of the bits.

From the discussion on binary, we know that the largest number we can
store in four bits is 15 (1111). In our code assignment above, we stopped at
nine. What about 10 through 15, now that we are out of single-character
numbers. Let’s just use the first six letters of the alphabet for the remaining
codes, like this:

1010 = A (ten)
1011 = B (eleven)
1100 = C (twelve)
1101 = D (thirteen)
1110 = E (fourteen)
1111 = F (fifteen)

Let’s see how hexadecimal numbers work in actual practice. Since we
have divided our byte into two groups of four bits, we can now use two hexa-
decimal code characters to represent a byte:

164

tutorial

Example 1
0000 0000
0 0 Hex representation is 00
4 1 Actual numeric value = 0
Hexadecimal
codes
Example 2
0001 1000
1 8 Hex representation is 18
1 t Actual numeric value = 16+8 = 24
Hexadecimal
codes
Example 3
1111 0111
F 7 Hex representation is F7
Actual value = 128 +64 +32+16+4+2+1 = 247
Example 4
1100 1010
C A Hex representation is CA

Actual value = 128 +64 +8+2 = 202

It’s a lot easier to write F7 than 1111 0111. Notice that one byte will
always be represented by two hex digit codes.

Here is a problem for you to figure out yourself: What is the actual
numeric value of FF? (Hint: Remember hex is shorthand binary.) Did you
get 255P First convert FF back to binary. F equals 1111, so FF is 1111 1111.
List out the place values for each bit:

1 1 11 1111 Dbits
128 64 32 16 8 4 2 1 place value
Now let’s add up all of the one-bit place values, which in this case is all of the
place values. The sum is 255, so hex FF equals 255.

Now when you see things like “END OF RAM = 4FFF” you won’t

be intimidated.

165

TUTORIAL

Instant Indexer:
Programming in Disk BASIC

by Del Gomes, John Jewell and Alan Zendner

fould you like a neat, alphabetically listed menu on each disk, so
that all you’d have to do is type in the number of the program that
you'd like? Does having a list of your programs sorted by disk, program
name, or both sound even better? If the answer is yes, then this program
design should be of interest to you. With Instant Indexer, all these
features can be generated by your TRS-80 by merely entering and run-
ning this program.

The programs assist your microcomputer in creating a disk directory for
each disk using NEWDOS. They’ll also allow you to merge the directories
from each disk with varied output, and provide a distinctive menu selec-
tion for each disk. For those who are beginning Disk BASIC or who have
done limited programming in Disk BASIC, things do get easier. You have
a whole new world in front of you: easy access, quick loading, and new
instructions (TRSDOS, NEWDOS + , NEWDOS/80, and VTOS). If you
are a little overwhelmed by the newness of it all, then the techniques
employed here may be of even greater interest than the actual programs.
Their chief value is in the ideas and disk programming concepts that they
help you develop.

Video Memory

The key to using your Disk BASIC and Disk Operating System to create
the disk directory is in reading video memory. There is a specific area of
RAM devoted to what appears on your monitor screen. Each of the Radio
Shack manuals contains the addresses (from 15360 to 16383). Once you
realize the possibilities that evolve from being able to input data from the
computer display, you may want to write your own routine. (Then see if
we could have done a better job.)

If you have never examined your video memory before, let’s try a few
simple exercises. First get into BASIC, then press the CLEAR button, and
type a row of As across the top of the screen. You'll receive a syntax-error
message when you press ENTER. Now type in PRINT PEEK(15360).
Your TRS-80 responds with 65. Type in PRINT CHR$(65) and it responds
A. Aha! Now try PRINT CHR$(PEEK(15360)), the result is A. Press

166

tutorial

CLEAR again and type in your name. You're now ready to run the
following program:

10 CLS

20 LINEINPUT“MY NAME IS ";N$
30 CLS

40 PRINT N$

50 PRINT:PRINT

60 L = LEN(N$)

70 FORI =0TOL - 1
80 X = PEEK(15360 + I)
100 PRINT CHR$(X);

110 NEXT

120 END

By this time, you should have a feel for being able to get data off the
screen and using it in some practical fashion. Oh no! Someone out there
said that this did not work for him at all. If it didn’t work for you, and you
have a lowercase modification, relax. All you have to do is to run through
an additional step or two. This doesn’t mean a change in technique, but in
execution. As you probably know, for every simple rule that you learn for
the TRS-80, there are at least three exceptions. With a lowercase
modification, PRINT CHR$(PEEK(15360)) just makes a blank line.
That’s because Tandy uses the lower decimal codes to handle part of their
alphabet. However, if you type in PRINT CHR$(PEEK(15360) + 64), the
result should be an A. Note that because you have both lower- and upper-
case, you must check the program to see if PEEK(15360) < 32. If it is, add
64, as follows:

WIFX < 2THENX = X + 64

Reading the Directory

This very nice feature of capturing information from the screen in com-
bination with NEWDOS + ability to issue DOS commands using CMD,
simplifies this program. First the program calls FREE to determine: the
name of the disk, the date it was created, the number of files, and grans
remaining. The standard entry reads:

DRIVE 0 — DISKNAME MM/DD/YY 23 FILES 5 GRANS

If you have more than one drive, this information is repeated for each
drive. The data for Drive 0 will always be on the first line, for Drive 1 on
the second, and so forth. Taking this information from the screen requires
PEEKing at the appropriate video-memory locations. Line 1 is contained
in RAM from 15360 to 15423; line 2 from 15424 to 15487. Since the drive

167

tutorial

number isn’t needed, we begin PEEKing at 15372 to get the
name/number for the disk on Drive 0 (which this program is for). This
data is recorded in DISKS$.

The next step is to find out what programs and files are on the disk.
This only works for those programs and files that appear when you type
DIR upon entering DOS. The disk directory will not list invisible or
system files. The search is done by issuing the CMD DIR:X (where X is the
desired disk drive). Any programs or files found are displayed beginning
on the third line and continuing up to the fourteenth line. When you have
36 or more programs on a disk, the DIR command requires you to hit the
ENTER key to see all the names. This places a limit of 35 on the number
of program entries this routine can handle. For most people at the begin-
ning level, this should present no problem.

To find out how many lines there are, you can quickly PEEK at the first
character in each row. As soon as the routine returns a code 32, you know
that line is empty.

200 FORZ = 0TO 14

210 Y = PEEK(15488 + Z+64)

220 IFY = 32THENLAST = Z — 1
230 NEXT Z

This simple check saves PEEKing line after line of blank screen.

There are a number of ways of retrieving program names from video
memory. As so frequently happens in programming, we tried several in
developing our final routine. The first procedure discussed is not the most
efficient, nor the shortest, but, it handles the information in single steps
which are easily discussed.

For each line J of video, PEEK at the contents of the entire line. While
there are other methods technically equivalent, such as PEEKing in
blocks of 254, reading line-by-line gives a clear picture of what this por-
tion of the program is doing. Each line on the screen is read into a string
array (A$(J)) running from one to LAST. When the process is finished, the
string array contains a mirror image of your monitor screen.

Finally, to get the data from the video memory, each program name
must be isolated from the one to three names each line string contains.
Each line in your DIR listing contains a maximum of three evenly-spaced
entries. Since each line has 64 spaces, it is logical that the program names
begin at 20 space intervals: 1, 21, and 41. (If you want to check this fact,
just use CMD DIR from BASIC and the PEEK routines discussed earlier.)
This program works in combination with the BASIC functions MID$ and
INSTR. Indeed, MIDS$ is specifically designed to return a substring given
its beginning position (B) and length (L). (If we omit the length, then

168

tutorial

MID#$ will return all of the right-hand portion of the string from the start-
ing position to the end.) Let’s look at a sample string in our array:

A$(J) = “PROGRAMI PROGRAM2 PROGRAM3”

Then B$(K) = MID$(A$(J), B1, L1)—where Bl is the initial position and
L1 the length of the name—will return PROGRAML. Similarly B$(K + 1)
= MID$(A$(J),B2,L.2) will return PROGRAM2. B$(K + 2) = MID$(AS$(]),
B3,L.3) will provide PROGRAMS.

You already know that Bl =1, B2=21, and B3=41. All that you need
now is the length of the program names. Ah, but their length can vary
from one to 12 characters. INSTR to the rescue! INSTR returns the initial
position of a substring in the original string. This formula:

El = INSTR(BI, A$(), “ ™)

specifies where the blank portion following the first name in the string
begins. Note that L1, the length of PROGRAMI, is equal to E1-Bl.
Similarly, for L2 and L3:

E2 = INSTR(B2, A$(), “ ™)
E3 = INSTR(B3, A$(J), “ ™)

Because this function indicates the position in the main string to begin the
search, it is a very powerful and handy tool. Inserting these values into
our MID$ routine effectively separates out the desired names.

These steps may be repeated as many times as you need, until the LAST
line is read and analyzed. Using two loops to execute the string analyses
discussed makes this process shorter and more efficient. In the final line, a
check is made to insure that none of the strings, B(K + 1)$ or B(K + 2)$,
is empty. Of course, if the second string is null, then so is the third. One
simple way of determining this is to see if the value of E2 or E3 returned
by INSTR is equal to the starting position, B2 or B3. If they are equal, the
element is empty.

Reading the Efficient Way

Our final DISKDIR routine is a simpler, more direct method than the
one outlined above. Rather than approaching the video memory line-by-
line, we read each program name individually. The first step is to deter-
mine the number of lines containing programs. Be aware that you could
integrate this into the second step by checking to see if the first character
of each name is blank. The line-check method is kept so that the emphasis
is solely upon examining the name.

169

tutorial

Step two develops a series of operations that point the variable X to the
beginning of each program name. The FOR loop with ROW controls the
line or row placement; the FOR loop with COL determines the column.
An I counter determines the element of a string array:

240 FOR ROW = 0 TO LAST
250 W = 15488 + ROW+64
260 FOR COL = 0TO 2

270 I=1+1

280 X = W + COL+20

With X in the correct position, you can read the name character-by-
character directly into your string array. An A$(I) serves as a temporary
storage for each character. These characters are added one at a time into
B$(I) which serves as the final holder. The end of the name has been
reached when you receive a PEEKed code of 32. The check for the lower-
case modification is made by looking for codes less than 32,

290 A = PEEK(X)

300 IF A = 32 THEN 350

310 IFA < 32THENA = A + 64
320 A$(I) = CHR$(A)

330 B$(I) = BS(D) + A$()

340 X = X + 1: GOTO 290

These steps from 290 to 340 cycle until the name has been read in its en-
tirety. At this point, X is at the blank and A equals 32. The routine jumps
to line 350 to start next column:

350 NEXT COL

The result is a return to lines 260 and 270 where the I counter increases
and points to the next element in the string array, and is set to the second
column in the line. After another cycle, X is set to the third column. When

360 NEXT ROW

is reached, the process begins again for a new line.

It is possible that one or two of the final strings are empty. The initial
search for the number of lines merely guarantees that the first position of
the final line is occupied. Therefore, a quick check is made on the status of
the strings:

370 M =1
380 FORL = M TO M-1STEP —1

170

tutorial

390 IFB$(L) = " THENI =1 -1
400 NEXT L

Each one of the program names listed in the disk’s directory is contained
in the string array B$(1) to B$(I).

Sorting the Array

If you are using disks, you probably have encountered numerous sort
techniques, from bubble to Shell-Metzner to machine language. Any good
string sort will suffice. Because most disk files are under forty programs,
even the slow bubble sort would be adequate. For a faster method, use the
very rapid sort provided by Allan Emert in the July 1980 issue of “TRS-80
Microcomputer News” and included here in Program Listings 3 and 4.
Note that memory size must be set at 48895 for 32K and 65279 for 48K
systems,

Add good utilities such as this one to your regular programs. They can
save you considerable time in handling standard situations. Adding a sort
is simple, if it is in BASIC. Type in the routine as you normally would,
with the listing beginning at line 5000 or higher, but save it as an ASCII
text:

SAVE “RAPIDSRT/TXT", A

When a sort would be just the answer to a problem, it may be quickly
added by MERGEing. Load whatever program you have developed,
making sure that none of the line numbers in your program coincides with
those in RAPIDSRT/TXT. Then MERGE“RAPIDSRT/TXT”. The lines in
the sort routine have been sequentially inserted into your program. If any
lines had coincided, your program lines would have been replaced by
those of RAPIDSRT/TXT.

Subroutines or portions of other programs can be merged easily with
any program. You can build an extensive, usable library of subprograms
ready to be merged whenever needed.

Creating Disk Files

At this point, you have the file of all the program names on disk sorted
into alphabetical order. For those of you who are still learning the
elements of Disk BASIC, let’s review how to create a file of these names.
We'll be using sequential files. With sequential files, you sacrifice the
ability to retrieve a single record out of order. But since the names are
already in order, and the whole list is printed, sequential files are ap-
propriate.

171

tutorial

possible in all forms of NEWDOS. TRSDOS users are able to issue the
ATTRIB command within BASIC only with NEWDOS +, and its later
edition, NEWDOS/80.

To record the information on the disk, we use PRINT#1, B$(J) where 1
is the number of the buffer specified as the opened file and B$(J) is an ele-
ment in the sorted array. As when you have the computer print informa-
tion on the screen, you must specify delimiters to separate the different
components. Because you don’t want the strings to run together,
semicolons can’t be used. Though the comma can be used, it is not an effi-
cient way to utilize disk space. Putting a comma after a string causes
the next string to be printed a full tab setting away. Adding a comma
contained in quotes to the end of each element, except the last, provides
a solution:

160 PRINT#1, DISK$
420 FORJ = 1TOI - 1
430 PRINTEL, B$()+7, ™
440 NEXT]

450 PRINT#1, B§(l)

460 CLOSE

Congratulations! You've created a sequential disk file with the names of
all the programs you’ve placed on that disk. The hard work is over. It’s
time to have some fun using your new DISKDATA file.

Disk Menu

The menu program has three parts: opening and reading your new
DISKDATA file; printing the name of the disk and each of the program
listings; and running your selection. Opening a sequential file for input
from disk resembles the steps followed for sequential output:

60 OPEN “I”, 1, “DISKDATA”

An T specifies sequential input to buffer 1 from your directory file. To
transfer the information from disk into the TRS-80 memory banks, we use
INPUT# and LINEINPUT#. The first is suitable for the regular string ar-
ray. The second is necessary for DISK$, which contains punctuation
marks, the disk name, and the number of files and grans.

Printing this information in the desired format is simple, straightfor-
ward programming. Read in disk data, and print the name and informa-
tion about files/grans on the top line:

70 LINEINPUT#1, DISK$
80 PRINT “FILE DIRECTORY: ” + DISK$

172

tutorial

Then in three columns, and as many rows as necessary, print a number
and corresponding program name. There are a number of ways to do this.
The following method is not the fastest, but it mirrors the way in which
the information was obtained. A FOR loop with ROW controls the line
placement; A FOR loop with COL determines the column location:

90 FOR ROW = lto 14
100 FORCOL = 0TO 2

Now you're ready to read in the program names. An I counter marks the
elements in the string array again. When the PRINT TAB(COL*20) com-
mand places the cursor in the proper column, the element number and
name are printed:

10 1=1+1
120 INPUTEL, BS$(I)

130 PRINT TAB (COL+20)
140 PRINT USING F$; I;
150 PRINT B$(I);

After each program name has been read and printed, the routine checks
to see if that element is the last in the sequential file. If not, then the next
column is engaged:

160 IF EOF(1) THEN 200
170 NEXT COL

When all three program names have been printed, drop to the following
line and call the next ROW:

180 PRINT CHR#$(13);
190 NEXT ROW
200 CLOSE

This last step of closing the file is critical; always be sure that it is done. The
routine will work without properly closing DISKDATA. The trouble
comes later. Killing an open file can result in ruining all the information
stored on that disk.

The final part of the disk menu is constructing a routine to run the pro-
gram chosen. The usual procedure is to use an INPUT or LINEINPUT to
allow the user to designate his choice. NEWDOS + makes it easy to ex-
ecute CMD programs from BASIC:

290 LINEINPUT“NUMBER SELECTED: ”; S§

173

tutorial

230 L = VAL(S$)
240 IF RIGHT$(B$(L),4) = “/CMD” THEN CMD B$(L) ELSE RUN B$(L)

Our personal preference in menu routines is for INKEY$. But, an attrac-
tive user-oriented alternative is easily constructed:

220 PRINT “PROGRAM SELECTION IS: ”;
230 S$ = INKEY$

240 IF S§ = “” THEN 230

250 IF (VAL(S$) > 9 OR VAL(S$) < 1) THEN 230
260 PRINT S$;

In these lines, S$ is first checked to see if any key has been pressed. If some
entry was made, line 250 ensures that only the numbers one through nine
can be input.

These are the regular steps to obtain a single input from INKEYS$. If a
disk has more than nine programs, a second INKEY$ is added. That is
simple. Allowing for choice of a program designated by a single digit is
the tricky part. The solution is a timing loop:

270 T$ = INKEY$

280 IF C = 80 THEN 330

200 C=C + 1

300 IFT$ “” THEN 270

310 IF (VAL(T$) > 9 OR VAL(T$) < 1) THEN 270
320 PRINT T$

330 S = VAL(S$ + T9)

The steps from lines 270 to 290 will cycle for 80 counts. This is long
enough to enter a second number if you want. Experiment. Try changing
the value of C until the routine is right for you and your users. If it doesn’t
work well for you, then you can always use the regular ENTER and IN-
PUT process.

The success of this brief menu depends upon the care with which you
name your programs. If you have a machine-language program and omit
the /CMD after the name, your TRS-80 has no way of knowing how to
respond. Though abbreviations may appear useful in saving keystrokes,
typing in the full program name provides an attractive screen display and
it helps you remember just what each program is. After that, all you have
to do is enter one or two numbers with an INKEY$ routine.

Applications

An early application for the DISKDIR was to solve the problem of try-
ing to remember what disk the programs were on. The DISKDATA can

174

tutorial

create a master file for program libraries. This master file can supply the
following: a listing of all the programs in our disk library, a disk-by-disk
inventory, an accounting of which disk grans are still available, and a file
on each disk which can be loaded into Scripsit for those who don’t have
NEWDOS/80. This is convenient when you are in Scripsit but can’t
remember just what you named the file you want to load. It is also very
simple. DISKDATA is an ASCII file, so load it as you would any text
created on Scripsit.

175

tutorial

Program Listing 1. Disk directory program, 32K

kkkkkkhhkkhhhkhhhhhdh ok hhhkkhkhhkkkk kA bk hhkhkhh oK

* DISK DIRECTORY PROGRAM *

* ~.BY Del Gomes, John Jewell & Alan Zendner-- *
hkhkhkhkkhkhkhkhdkhhhkrhhkhhhkdhhhhkrhkrhkrkhkhhk kR kR kb kb khk

NS WO

Encyclopedia
$>>> INITIALIZATION OF PROGRAM <<<< Loader
10 CLEAR 8000

==== Disk Entry Point For 32K Machine Language Sort =

20 DE; USR = &HBFOO
25

i
[

; ==== Define & Dimension Variables =
30 DIM A$(100), B$(100), X(2)
40 DEFINT A - :
i LAST, ROW, COL ARE INTEGER VARIABLES.
‘ ==== Poke Sort Routine ====
50 GOSUB 5090

! ==== (pen Sequential File ====
60 OPEN "0",1,"DISKDATA:Q"
70 CMD "ATTRIB DISKDATA:0 (I)"
80 CLS

! >>>»> DETERMINE DISK NAME & NO. OF GRAMS <K<K

90 CMD "FREE"
100 FOR X = 15372 T0O 15423
110 A = PEEK(X)
120 IF A < 32

THEN

A = A + 64
130 D$ = CHR$(A)
140 DISK$ = DISK$ + D$
150 NEXT X
160 PRINT #1, DISKS$
170 CLS
175

! >>>> CREATE ARRAY OF PROGRAM NAMES <<<<

180 CMD "DIR :0"
=0

190 I
195
b ==== Determine Lines Containing Programs ====

200 FOR Z = 0 TO 14
210 Y = PEEK(15488 + Z * 64)
220 IF Y = 32

THEN

LAST = 2 - 1

GOTO 240
230 NEXT Z
235 :

! ==== Pepek Program Names Into String Array ====
240 FOR ROW = 0 TO LAST

250 W = 15488 + ROW * 64

260 FOR COL = 0 70 2

270 I =1+1
280 X = W+ COL * 20
290 A = PEEK(X)
300 IF A = 32

THEN

350

310 IF A < 32

THEN

176

tutorial

A=A+ 64
320 A$(I) = CHR$(A)
330 B3(I) = B$(I) + AS$(1)
340 X =X +1:
GOTO 290

350 NEXT CoL
360 NEXT ROW

365
' ==== Eliminate Empty Strings From Last Line ====

370 M = I
380 FOR L = M TO M - 1 STEP - 1
390 IF B$(L) = ""

THEN

I =1-1

400 NEXT L
405

==== Sort Program Names Into Alphabetical Order ==z==

410 GOSUB 5050
415 :
' >>>> WRITE PROGRAM NAMES TO DISK <<<«
420 FOR 0 = 1 TO0 I - 1
430 PRINT #1, B$(a) + v, "3
440 NEXT J
450 PRINT #1, B$(I)
455 :
' >>>> CLOSING PORTION OF PROGRAM <<<<
460 CLOSE
470 CLS
480 PRINT CHR$(23)
490 PRINT @ 256, "DISKDATA FILE HAS BEEN CREATED.®
500 FOR K = 1 TO 1500

5§10 NEXT K
520 CLS
530 END
5000 :
1 LA R RS LRSS R SR RS E RS S R EREE RS ES SRR SRR RS R RS S
5010 :
' MACHINE-LANGUAGE SORT FOR BASIC PROGRAMS
Memory Size = 48895
5020 :
' Source: TRS-80 Microcomputer News, July 1980,
pp.l+
5030 :
! Program Modified For 32K System With Disk Drive.
5040 ; EE S EE RS S S SR R R X S R R E R R R R R R R RS SRR A XS E RS S SR LY
5050 X{(0) = I
5060 X{1) = VARPTR(B$(1))
5070 Z = USR({ VARPTR{X(0)))

5080 RETURN

5090 DATA 205,127,10,94,35,86,237,83,19,191,35,94,35,86,237,83
5100 DATA 213,191,33,0,0,34,211,191,237,91,211,191,203,59,175
5110 DATA 203,58,48,2,203,251,237,83,211,191,122,179,200,42,19
5120 DATA 191,237,82,34,207,191,33,0,0,34,205,191,42,205,191,34
5130 DATA 203,191,42,203,191,237,91,211,191,25,34,209,191,235,33
5140 DATA 0,0,25,25,25,229,237,91,203,191,33,0,0,25,25,25,237
5150 DATA 75,213,191,9,235,225,9,229,213,14,0,126,71,26,184,48
5160 DATA 3,14,1,71,175,176,40,25,197,19,35,78,35,70,197,225
5170 DATA 235,78,35,70,197,225,193,26,150,56,10,32,39,19,35,16
5180 DATA 246,203,65,32,31,209,225,6,3,78,235,126,113,235,119
5190 DATA 35,19,16,246,42,211,191,235,42,203,191,175,237,82,34
5200 DATA 203,191,48,144,24,2,209,225,42,205,191,17,1,0,175,25
5210 DATA 34,205,191,237,91,207,191,237,82,218,58,191,195,24,191
5220 N = 0

5230 FOR = 1 70 203

5240 READ A

5250 N = N+ A

5260 POKE I - 16641,A Program continued

177

tutorial

5270 NEXT
5280 IF N < > 23865

THEN

END

5290 RETURN

Program Listing 2. Disk directory program, 48K

0 ¢ Ahkkhkkhk Ak hhk kA A A I A b Ak kb b h kA A kh bk bk kA kA kAR Ak ke Kk
1 * DISKMENU *
2! * --BY Del Gomes, John Jewell & Alan Zendner-- *
3 ¢ khkhkkrhkkhhhkhhhhhdhhdohrdhhkb kb hhkhhkhkhhhhhkrrhhkhhkhkkhd
4 t

5 :

! >»>> INITIALIZATION OF PROGRAM <<<K

10 CLEAR 8000

15 :

==== Disk Entry Point For 48K Machine Language Sort =

20 DEF USR = &HFFOO

i
i
3

‘ == pefine & Dimension Variables =

30 DIM A$(100), B$(100), X(2)
40 DEFINT A - Z :

i LAST, ROW, COL ARE INTEGER VARIABLES.
45 :

==== Poke Sort Routine ====
50 GOSUB 5090

! ==== (Open Sequential File ====

70 CMD "ATTRIB DISKDATA:0 (I)"
80 CLS

! >>>> DETERMINE DISK NAME & NO. OF GRAMS <<«

90 CMD “FREE"
100 FOR X = 15372 T0O 15423
110 A = PEEK(X)
120 IF A ¢ 32

THEN

A=A+ 64
130 D$ = CHR$(A)
140 DISK$ = DISK$ + D$
150 NEXT X
160 PRINT #1, DISK$
170 CLS
175

' 5>>> CREATE ARRAY OF PROGRAM NAMES <<<<

180 CMD "DIR :0"

190 1 0
195 :
! ==== pDetermine Lines Containing Programs ====

200 FOR Z = 0 70 14
210 Y = PEEK(15488 + 1 * 64)
220 IF Y = 32

THEN

LAST = Z - 1

GOTO 240
230 NEXT Z
235

240 FOR ROW = 0
250 W = 15488 + ROW * 64

178

tutorial

260 FOR COL = 0 TO 2
270 I =1+ 1
280 X = W + COL * 20
290 A = PEEK(X)
300 IF A = 32
THEN
350
310 IF A ¢ 32
THEN
A=A+ 64
320 A$(1) = CHRS$(A)
330 B$(I) = BS(I) + A$(I)
340 =X + 1 :
GOTO 290

350 NEXT COL

360 NEXT ROW

365 :

! ==== Etliminate Empty Strings From Last Line ====
370 M

380 F

=4 TOM - 1 STEP - 1
390) = v

400 NEXT L
405
== Sort Program Names Into Alphabetical Order ====

410 GOSUB 5050
415
! >>>> WRITE PROGRAM NAMES TO DISK <<<<
420 FOR J = 1 TO I - 1
430 PRINT #1, B$(J) + “, ",
440 NEXT d
450 PRINT #1, B$(I)
455
' >>>> CLOSING PORTION OF PROGRAM <<<<
460 CLOSE
470 CLS
480 PRINT CHR$(23)
490 PRINT @ 256, "DISKDATA FILE HAS BEEN CREATED."
500 FOR K = 1 TO 1500

510 NEXT K
520 CLS
530 END
5000 :
' L R e R S Y X R s R R]
5010 :
' MACHINE-LANGUAGE SORT FOR BASIC PROGRAMS
Memory Size = 65279
5020 :
' Source: TRS-80 Microcomputer News, July 1980,
pp.1+
5030 :
! Program Modified For 48K System With Disk Drive.
5040 :
l LR R R R R R R X 3
5050 X(0) = 1
5060 X(1) = VARPTR(BS$(1))
5070 Z = USR(VARPTR(X(0}))

5080 RETURN

5090 DATA 2056,127,10,94,35,86,237,83,19,255,35,94,35,86,237,83
5100 DATA 213,255,33,0,0,34,211,255,237,91,211,255,203,59,175
5110 DATA 203,58,48,2,203,251,237,83,211,255,122,179,200,42,19
5120 DATA 255,237,82,34,207,255,33,0,0,34,205,255,42,205,255,34
5130 DATA 203,255,42,203,255,237,91,211,255,25,34,209,255,235,33
5140 DATA 0,0,25,25,25,229,237,91,203,255,33,0,0,25,25,25,237
5150 DATA 75,213,255,9,235,225,9,229,213,14,0,126,71,26,184,48
5160 DATA 3,14,1,71,175,176,40,25,197,19,35,78,35,70,197,225
5170 DATA 235,78,35,70,197,225,193,26,150,56,10,32,39,19,35,16
5180 DATA 246,203,65,32,31,209,225,6,3,78,235,126,113,235,119

Program continued

179

tutorial

5190 DATA 35,19,16,246,42,211,255,235,42,203,255,175,237,82,34
5200 DATA 203,255,48,144,24,2,209,225,42,205,255,17,1,0,175,25
5210 DATA 34,205,255,237,91,207,255,237,82,218,58,255,195,24,255
5220 N = 0
5230 FOR =1 T0O 203
5240 READ A
5250 N = N + A
5260 POKE I - 257,A
5270 NEXT
5280 IF N ¢ > 25337

THEN

END
5290 RETURN
Program Listing 3. Machine-language sort for BASIC programs, 32K

5000 '
5005 t AEKEKE AR KR AE R R A AR R AR R AR AR ARI AR ARRR AR A AR AR A A ALY
5010 MACHINE-LANGUAGE SORT FOR BASIC PROGRAMS
5015 ' Memory Size = 48895
5020 ° Source: TRS-80 Microcomputer News, July 1980,
5025 ° pp.1+
5030 ' Program Modified For 32K System With Disk Drive.
5040 ' ERE R SRR SR S SRS R TR R s R RS ERER SRR RS RS TR R TR E
5045
5050 X(0) = 1
5060 X{1) = VARPTR(B$(1))
5070 Z = USR(VARPTR(X(0)))
5080 RETURN
5090 DATA 205,127,10,94,35,86,237,83,19,191,35,94,35,86,237,83
5100 DATA 213,191,33,0,0,34,211,191,237,91,211,191,203,59,175
5110 DATA 203,58,48,2,203,251,237,83,211,191,122,179,200,42,19

5120
5130
5140
5150
5160
5170

DATA 191,237,82,34,207,191,33,0,0,34,205,191,42,205,191,34
DATA 203,191,42,203,191,237,91,211,191,25,34,209,191,235,33
DATA 0,0,25,25,25,229,237,91,203,191,33,0,0,25,25,25,237
DATA 75,213,191,9,235,225,9,229,213,14,0,126,71,26,184,48
DATA 3,14,1,71,175,176,40,25,197,19,35,78,35,70,197,225
DATA 235,78,35,70,197,225,193,26,150,56,10,32,39,19,35,16

5180 DATA 246,203,65,32,31,209,225,6,3,78,235,126,113,235,119
5190 DATA 35,19,16,245,42,211,191,235,42,203,191,175,237,82,34
5200 DATA 203,191,48,144,24,2,209,225,42,205,191,17,1,0,175,25
5210 DATA 34,205,191,237,91,207,191,237,82,218,58,191,195,24,191
5220 N = 0
5230 FOR I = 1 TO 203
5240 READ A
5250 N = N + A
5260 POKE I - 16641,A
5270 NEXT
5280 If N < > 23865

THEN

END
5290 RETURN
Program Listing 4. Machine-language sort for BASIC program, 48K

5000 '
5005 1 Ak kh kA kkhkdhhkh A khkhkhhkRkhhhhhdhhhhhhkhkdhhhhrdhkrhdkh
5010 ' MACHINE-LANGUAGE SORT FOR BASIC PROGRAMS
5015 ' Memory Size = 65278
5020 ' Source: TRS-80 Microcomputer News, July 1980,
5025 PP.1+

180

tutorial

5030 Program Modified For 48K System With Disk Drive.
5040 *******«k*********x*******************************
5045 °*
5050 X(0) = I
5060 X(1) = VARPTR(BS$(1
5070 Z = USR(VARPTR(X
5080 RETURN
5090 DATA 205,127,10,94,35,86,237,83,19,255,35,94,35,86,237,83
5100 DATA 213,255,33,0,0,34,211, 255 237 91, 211 255, 203 59 175
5110 DATA 203,58, 48 2, 203 251 237 83 211 255 122 179 200 42 19
5120 DATA 255, 237 82 34 207 255 33 0,0, 34 205 255 42,205, 255 34
5130 DATA 203,255,42, 203 255 237 91 211 255 25 34, 209 255 235 33
5140 DATA 0,0,25, 25 25 229 237 91 203 255 33 0,0, 25 25 25,237
5150 DATA 75 213 255 9,235,225,9, 229 213 14 0 126 71 26 184 48
5160 DATA 3, 14 1,71, 175 176 40, 25 197 19,35, 78 35,70, 197 225
5170 DATA 235 78 35,70,197, 225 193,26, 150 56 10 32 39 19,35,16
5180 DATA 246, 203 65 32 31,209,225,6, 3 78, 235 126 113 235 119
5190 DATA 35, 19 16 246 42 211 255 235 42 203 255 175 237 82 34
5200 DATA 203 255 48 144 24 2,209,225,42,205,255,17, 1 0, 175 25
5210 DATA 34, 205 255 237,91, 207 255 237 82 218 58 255 195 24 258
5220 N = 0
5230 FOR I = 1 TO 203
5240 READ A
5250 N = N + A
5260 POKE I - 257,A
5270 NEXT
5280 IF N < > 25337
THEN
END
5290 RETURN
Program Listing 5. Diskmenu
0 t)\-**ft**-}r**************t*****‘k***********'k********
1 * DISK DIRECTORY PROGRAM ®
2! * -~BY Del Gomes, Jonn Jewell & Alan Zendner-- *
3 1 ***‘k
3
5
>>>> INITIALTZATION OF PROGRAM <¢<<<
10 CLEAR 2000
15 :
! >>>> DEFINE & DIMENSION VARIABLES <<<<
20 DIM B$(100)
30 DEFINT A - Z
40 F§ = "ap " .
I =0:
€ =20
45
! >>>> READ & WRITE DISKDATA <<«
50 CLS
60 OPEN "I", 1, "DISKDATA:0"

LINE INPUT #1, DISKS$

PRINT "FILE DIRECTORY "

FOR ROW = 1 70 14
FOR COL = 0 TO 2
I =1+1
INPUT #1, B$(I)

PRINT TAB(COL * 20)

PRINT USING F$;
PRINT B$(1);
IF EOF (1)
THEN
200
NEXT coL
PRINT CHR$(13);

I;

+ DISKS

Program continued

181

tutorial

190 NEXT ROW
200 CLOSE
210 PRINT :
PRINT
215 :
! >>>> SELECT & EXECUTE PROGRAM <<<<
220 PRINT "PROGRAM SELECTION IS: "
230 S§ = INKEYS
240 IF S% = ""
THEN

230
250 IF (VAL(S$) > 9 OR VAL(S$) < 1)
THEN

230
260 PRINT S$;
270 T$ = INKEYS$
280 IF C = 80
THEN
330
290 C = C + 1
300 IF T$ = "
THEN

270
310 IF (VAL(T$) > 9 OR VAL(T$) < 1)
THEN

270
320 PRINT T$
330 S = VAL(S$ + T$)
340 CLS
350 PRINT @ 394, "LOADING FILENAME: “; B$(S)
360 IF RIGHT$(B$(S),4) = "/CMD”

THEN
CMD B$(S)
ELSE
RUN B$(S)
370 END

182

UTILITY

Uni-Key for the Model I
BREAK Disable
Z-80 Disassembler

183

UTILITY

Uni-Key for the Model I

by Rowland Archer Jr.

One night while I was trying to massage some life into my tired fingers
after a couple of hours at the keyboard, it occurred to me that typing
programs is the sort of drudgery a computer is supposed to take out of life,
not put into it. Typing a BASIC program repeats many of the same BASIC
keywords over and over.

To pass some of this work off on the TRS-80, I needed a way to let it know
which keyword I wanted with a single-key abbreviation. Using computer-
ized keywords would also cut down on syntax errors and tedious editing.

Lowercase ASCII Code

Even though BASIC is uppercase only on the TRS-80, the keyboard will
generate lowercase ASCII character codes. Try this short BASIC program
and see what happens:

10 CLS

20 A§ ="

30 A$ =INKEY$: IF A$ =" THEN GOTO 30

40 PRINT @0,ASC(A$);: GOTO 20
Run the program and press any alphabetic key, say A. The ASCII code for
uppercase A, 65, should appear on the screen. Now press SHIFT A; the code
printed should be 97, which is lowercase a.

To get lowercase letters on a TRS-80, you press the SHIFT key. Although
it may seem backwards to shift for lowercase, would you rather have to shift
for uppercase? You would have to hold down the SHIFT key to enter every
BASIC keyword. A SHIFT-lock key would get around this problem, but ap-
parently Radio Shack didn’t feel the need for one.

A routine which examines every pressed key before the character value is
returned to the BASIC interpreter program is necessary. When the TRS-80
appears to be doing nothing, it is actually reading the keyboard over and
over, waiting for a key to be pressed. Assuming it is possible to intercept
characters from the keyboard and look them over before they reach BASIC,
it is possible to decide whether to send the character on to BASIC as is, send
back some other character instead, or even send BASIC a stream of two or
more characters in its place.

To accomplish this, it is necessary to install a filter between the keyboard
and the BASIC interpreter. This would be a device whose action filters input

185

utility

data streams to produce output data. We need a filter which translates some
input characters to BASIC keywords and leaves others alone. If the charac-
ter we intercept from the keyboard is an uppercase letter, a number, or a
special symbol (@, ?, +, etc.), our program should pass the character on to
the caller unchanged.

If it is a lowercase letter (a-z), however, which is transmitted when the
user hits the SHIFT key and a letter, the filter should replace that letter in
the input stream with a BASIC keyword. To do this, when a lowercase letter
is read from the keyboard, the program sets a substitution flag in the routine,
indicating that keyword substitution has begun. Use the ASCII value of the
letter as an index to a table of BASIC keywords. Pass BASIC the first letter of
the indexed keyword instead of the lowercase letter read from the keyboard.

When BASIC calls for input from the keyboard again, the routine will
note that the substitution flag is set and will send back the next character of
the keyword, without bothering to look at the keyboard to see if any keys are
pressed. This continues until the entire keyword is sent. Then the flag is reset
to normal operation until the next lowercase letter code is received. All this
happens so quickly that the keyword seems to appear on the screen the in-
stant the key is pressed.

Note that only 26 keywords can be handled with this method. It is possi-
ble, however, to select a group of keywords which are either frequently
used, difficult to type, or both. You can experiment by including different
keywords until you find the best subset for your needs. I have found the set of
26 shown in Table 1 to be very useful.

Intercepting Input

Since the routine will be used while editing BASIC programs, the easiest
approach is to write an assembly-language routine to look at characters
before the BASIC editor scans them. Take a look at the memory map in the
back of your Level II BASIC manual. Atlocation 4015H (hexadecimal) in the
BASIC reserved RAM area, there is a device control block for the keyboard.

Location 4016H is initialized by BASIC with the address of the keyboard
driver routine. A call to this routine returns with 0 in the A register if no key
is pressed, or the ASCII value of the key if one is pressed (like an assembly-
language INKEY$ routine).

Load the routine into high memory where it can be protected from BASIC
by answering the MEMORY SIZE? prompt appropriately on startup. When
it is first run, it grabs the address of the keyboard driver routine from loca-
tion 4016H and saves it for later use. It then stores the address of its own en-
try point at 4016H so that every routine (in ROM or elsewhere) which used
to call the keyboard driver directly will now call this routine instead.

The normal keyboard driver is called as a subroutine to read from the

186

utility

keyboard. If no key is pressed, the subroutine will return a zero to the ac-
cumulator (register A); in this case we return to the caller without changing
a thing. If a key has been pressed, it is examined as discussed above, and if it
is a lowercase alphabetic code, the keyword substitution routine begins.

A User-Defined Key

The above technique allows entry of 26 BASIC keywords, each with a
single keystroke, and by itself will save a lot of typing. But many BASIC pro-
grams use the same expression over and over; it would be convenient to enter
a phrase once and then recall it with a single keystroke. To do this, a key
must be defined whose substitution value can be changed dynamically,
without having to reassemble and reload the assembly-language routine.
This feature is easily added by declaring one key as the “define user string”
key. This routine uses SHIFT/CLEAR. The “substitute user defined string”
key is the shifted down arrow.

These keys can be located in the input stream in the same way shifted
alphabetic characters are intercepted. When SHIFT/CLEAR is pressed, a
START DEFINITION prompt is printed on the screen. Each character
typed, up to 64 characters, is saved in memory until SHIFT/CLEAR is hit
again. This terminates the definition of the string. END DEFINITION is
written on the screen. Now when SHIFT plus the down arrow are pressed,
the defined string is returned. Table 2 gives a summary of the actions the
filter routines will perform for the range of possible keyboard inputs.

The origin shown in the Program Listing of ONESTR is for a 16K
machine. Table 3 gives the ORG value to substitute, as well as the appropri-
ate answers to the MEMORY SIZE? prompt, for 32K and 48K machines. At
label INIT you will find the initialization code, which must be executed
once when ONESTR is loaded. This code retrieves the address of the current
keyboard driver routine from the keyboard device control block and stores it
after the CALL opcodes at labels KEYDR1 and KEYDR2.

Level II BASIC, TRSDOS 2.1, 2.2, and NEWDOS all use different
keyboard drivers. By picking up the address they have already put in the
device control block, it is possible to reap the benefits (debounce, etc.) of
these drivers and the benefits of ONESTR at the same time. The address of
label ONESTR is installed in the device control block so that it is called in the
future for keyboard input.

Choose an Instruction

Choose one of two instructions, depending on whether you will be load-
ing ONESTR from tape or disk. If you will be loading ONESTR from disk,
you must use JP 402DH to return to TRSDOS or NEWDOS. If you will be

187

utility

SHIFT for Keywords:
NEXT

A PRINT@ N

B ELSE O POKE
C CHRY(P PEEK(
D DATA Q LEFT$(
E RIGHTS$(R RETURN
F FOR S GOSUB
G GOTO T TAB(
H RND(U USING
1 INPUT" V STRINGY(
] READ W MID$(
K INKEY$ X SET(

L LEN(Y THEN
M ASG(Z RESET(

CLEAR—START/END definition
Down arrow—user string

Table 1. Reference chart of keywords

loading from tape with the SYSTEM command in BASIC, use JP 0072H to
return to BASIC. Note that the space taken up by this initialization code can
be reused after it is run, since the code is no longer needed. The answers to the
MEMORY SIZE? prompt are given in Table 3 and reflect this reuse of space.

At label USTR allocate 64 bytes for the user-defined string and give it an
initial value of RUN. Until it is redefined, typing SHIFT/down arrow will

Input ASCIH Value Output

Special characters 0-25 Same as input

SHIFT/down ar-

row 26 Substitute user-defined string (up to 64 characters)
Special characters 27-30 Same as input

SHIFT/CLEAR 31 & Shift* None (start/end user string definition)
Special characters 32-64 Same as input

and numbers

Uppercase letters 65-90 Same as input

Special characters 91-96 Same as input

Lowercase letters 97-122 Substitute a BASIC keyword

Special characters 123-127 Same as input

*Since the keyboard driver returns 31 for both SHIFT/CLEAR and CLEAR, we must test for
the shift key separately.

Table 2. Function of keyboard filter routine

188

utility

run a BASIC program. This may be changed to any other initial value you
like, and the code at label REST will allocate the remainder of the 64-byte
buffer. A zero byte after the string serves as the string terminator.

Beginning at label LA the table of strings to be substituted for the lower-
case letters are listed. Except for LA, the labels are included strictly for con-
venience in determining which keyword gets substituted for which letter;
they are not needed by the code. This is where you would substitute
assembly-language mnemonics, Pascal keywords, or anything else you
would like to type with one keystroke. If you do make substitutions which
cause the length of the program to change, be sure to change the program
origin so it will fit in your machine. Adjust your answer to the MEMORY
SIZE? prompt in this case to protect the new size of the program. Again, a
zero byte at the end of each string in the table serves as a terminator.

RAM Size ORG of Program Answer MEMORY SIZE?

16K TE58H 32361
32K BE58H 48745
48K FE58H 65129

*Since the keyboard driver returns 31 for both SHIFT/CLEAR and CLEAR, we must test for
the shift key separately.
Table 3. Origin of program and MEMORY SIZE for different RAM sizes

Selecting Keywords

I chose not to include an entry for PRINT, which is certainly a commonly
used BASIC keyword. The Level II BASIC handbook explains that a ques-
tion mark is a built-in abbreviation for PRINT. I did choose to include
PRINT @ as a keyword, even though typing ?@ works as well and is almost
as easy. The reasoning behind this is that @ and SHIFT @ appear the same
on the screen, but SHIFT@ doesn’t work as a PRINT qualifier. It’s a nasty
bug to catch since a listing appears normal. Including PRINT@ as a one-
stroke entry avoids the problem.

ONESTR is the main entry point to the program, and this is where control
is transferred whenever keyboard entry is requested. The OS FLAG is tested
to see if the routine is in the middle of a keyword substitution. If so, it
branches to SUBST and continues with the substitution. Otherwise, the
routine whose address was in the keyboard device control block before
ONESTR was loaded is called for keyboard input. If no key has been pressed,
it returns to the caller. If a key has been pressed, a decision is made about the
next action to take, based on the key’s ASCII value (as shown in Table 2).

If the keyboard input is a lowercase letter, the OS flag is set on. Search the
keyword table sequentially to find the start of the keyword to substitute. The

189

utility

number of keywords to skip is calculated from the ASCII value of the lower-
case letter read from the keyboard, minus the ASCII value of lowercase a.
Since each keyword is terminated by a zero byte, start at the head of the table
and check each character. Continue until you pass as many zero bytes as the
number of keywords you are supposed to skip.

Don't moan and groan about the inefficiency of a sequential search—it’s
easy to build an index for the address table and to put it into the routine so
that the appropriate address may be computed. To do this, use a DEFW
pseudo-op instruction for each label whose address is included in the follow-
ing table:

ADTABL DEFW LA
DEFW LB

DEFW LZ
The offset into the table for a lowercase letter, say b, is 2*
(ASCII(b)-ASCII(a)). The factor of 2 is used because of the two bytes each
entry takes. Load the HL register pair with the contents of this location, and
you have the address of the first letter of the keyword.
Why not use this technique, then, instead of the sequential search?

Because the address table takes up space, and although it does give faster re-
sults, the difference isn’t noticeable at the keyboard.

Test the Shift Key

The code at the label DEFINE is executed when the CLEAR key is
pressed. Since the keyboard driver routine returns the same value whether
CLEAR is pressed alone or shifted, a test must be done to verify that the
SHIFT key is indicated. Location 3880H contains a 1 if SHIFT is pressed,
and a 0 otherwise. Checking 3880H determines whether to start user string
definition, which is triggered by SHIFT/CLEAR.

Assuming SHIFT/CLEAR was pressed, the program types DEFINE
STRING: on the screen and waits for input. Each key pressed is tested to see
if it is SHIFT/CLEAR, which ends the definition. If not, it is added to the
user string buffer at USTR.

If 64 characters are typed without a SHIFT/CLEAR, then definition
mode is automatically terminated. User string definition ends by returning a
zero to the caller, indicating that no key was pressed. Thus the entire process
is invisible to the caller. This process can be used with any program (BASIC,
etc.) requesting keyboard input.

Note that most of the Level 1I BASIC string input editing is not im-
plemented. The back arrow will delete a character, but SHIFT plus the
back arrow will not delete the whole line. Another design trade-off is re-
flected here. The ROM routines for string input editing could have been

190

utility

used, but they terminate input when BREAK or ENTER are pressed. The
approach taken allows entire commands to be typed with one keystroke, in-
cluding ENTER at the end of the command.

Running ONESTR

If you are loading from disk, run ONESTR from the DOS READY
prompt. You can test it at this point by typing shifted letters; keywords
should appear. With either disk or tape, bring BASIC up, answering MEM-
ORY SIZE? as shown in Table 3. Disk users should be in business at this point.

Tape users should enter the SYSTEM command and load the object tape.
Once it is loaded, run the program by hitting ENTER.

Now it’s time to find those back issues of 80 Microcomputing and start
enjoying all the programs that you were too lazy to type.

Since this program was written, TRSDOS 2.3 came out. It requires a little
more help to keep it from clobbering this program when it loads BASIC from
disk. After line 00270 in the program, add:

4049 00272 ORG 4049H ; DISK USERS ONLY—PROTECT

4049 697E 00274 DEFW USTR-1 ; ONESTR BY LOADING DOS’

; HIGH$ LOCATION WITH ADDRESS

; OF LAST BYTE OF USABLE
; MEMORY

This extra code is not needed but does no harm under NEWDOS. You can
ignore the MEMORY SIZE? question (disk users only) if you add this code.

191

40816
3880

8334
8iCD
BgLF
B81A

6048

TE58
7E58
TESB
TESE

7861
TE64

7E67

TE6A
7E6D
TE6E
2805
893B

TERA
7TEAB

TEAC

7TEAE
7EB4
7EBS
7EB9
TEBA

221648
224E7F
22B@7F

21477F
221640

C3191A

52
08

o8
ee

0000

800108
88020
68030
o040
280850
Bog60
00870
o080
800908
oplep
gelle
2120
8139
08140
68159
80160
60178
83188
20190
0e2e8
092189
80229
26239
20240
68259
6260
082749
06289
8290
06308
08318
080320
08330
00340
ee3se
20360
68379
@380
08390
06488
20418
00420
08439
00440
20458
00460
08478
089480
Be49p
805060
060510
80520
08538
80540
88550
08560
68570
26580
B8@599
es6ee
886108
80620
00638
go64e
60658
20660
00670
8680
86690
oe7008
28710
20720
80738
20748

utility

Program Listing. ONESTR

; ONESTR - ONE STROKE KEYWORD ENTRY PROGRAM. INTERCEPTS
H LOWER-CASE CHARACTERS AND REPLACES THEM WITH
; KEYWORD STRINGS. ALSO ALLOWS THE USER TO ASSIGN A
; STRING OF UP TO 64 BYTES TO 'SHIFT-DOWN ARROW'.
H DEFINITION OF THIS STRING IS INITIATED AND
H TERMINATED BY 'SHIFT-CLEAR'.,
;
H REV 2.2 2/9/79
i
; BY ROWLAND ARCHER
H FLINT RIDGE 59
H HILLSBOROUGH, NC 27278
’
KEYDRV EQU 4016H 7ADDRESS IN KEYBOARD DCB
: OF DRIVER ROUTINE
SHIFT EQU 3880H :(388@H) IS 1 IF 'SHIFT'
; KEY IS PRESSED
PUTC EQU 833AH sPUT CBAR IN A ON SCREEN
CALL EQU BCDH ; '"CALL' OPCODE VALUE
DEFKEY EQU 31 ; 'SHIFT~CLEAR' KEY
UDSKEY EQU 26 7 "RETURN USER-DEF STRING'
i KEY = 'SHIFT-DOWN ARROW'
USTLEN EQU 64 ;USER-DEFINED STRING LENGTH

i
;THE FOLLOWING INITIALIZATION CODE IS PERFORMED ONLY
;WHEN THIS ROUTINE IS LOADED AND RUN THE FIRST TIME.

i
ORG @7ESBH ;ORG FOR 16K SYSTEM
INIT LD HL, (KEYDRV) ;GET ADDR OF KEYBRD DRIVER
LD (KEYDR1) , HL ¢ ROUTINE AND BUILD TWO
LD (KEYDR2) , HL ; CALL INSTRUCTIONS IN
7 THIS CODE WITH IT
LD HL,ONESTR iNOW PUT THE ADDRESS OF THE
LD (KEYDRV) , HL 3 ENTRY PT TO THIS ROUTINE
; INTO THE KEYBOARD DCB
b R R O L L L R e L L v e

$YOU MUST CHOOSE ONLY ONE OF THE FOLLOWING TWO JUMP

INSTRUCTIONS TO EXIT THIS INITIALIZATION CODE.

;IF YOU ARE GOING TO LOAD THIS PROGRAM FROM DISK WHILE
,IN DOs, USE

.

Jp 40 2DH ; TO RETURN TO DOS
,IF YOU ARE GOING TO LOAD FROM TAPE WHILE IN BASIC, USE
JP 28728 ; TO RETURN TO BASIC
P e L Y L L LRt T Ly arurron e
i
; ABOVE CODE IS ONLY USED ONCE AND CAN BE OVERWRITTEN
; AFTER IT RUNS - S0 'MEMORY SIZE?' PROTECTIONS STARTS
¢ WITH THE FOLLOWING DATA STRUCTURES:
i
USTR DEFM "RUN" 7USER STRING; INITIALLY
DEFB oDR ; 'RUN <ENTER>'
DEFB [} ;END OF STRING
USED EQU $-USTR $SIZE OF PREDEFINED STRING
REST DEFS USTLEN-USED sALLOCATE SPACE FOR REST
: OF USER-DEFINED STRING
DEFB] ;FORCE END OF STRING
OSFLAG DEFB] ;ONE-STROKE FLAG: = 1 WHILE
7 WE ARE SUBSTITUTING FOR A
7 LOWER-CASE CHARACTER
OSPTR DEFW [/} ;ADDRESS OF CURRENT CHAR
H

IN SUBSTITUTE STRING

i

;TABLE OF STRINGS TO SUBSTITUTE FOR LOWER-CASE CHARS.
7STRINGS ARE TERMINATED BY NULL (@) BYTES. STRING
;LABELLED 'LA' IS SUBSTITUTED FOR 'SHIFT-A', ‘LB’

sFOR 'SHIFT-B', ETC. EXCEPT FOR 'LA', LABELS

:ARE NOT REQUIRED, AND ARE ONLY INCLUDED FOR EASE IN
;DETERMINING THE STRING TO BE SUBSTITUTED FOR EACH LETTER.

;
LA DEFM 'PRINTE'

DEFB] ;ZERO BYTE END OF STRING
] DEFM 'ELSE"

DEFB
LC DEFM 'CHRS$ ('

192

TEBF
7ECH
7EC4
7ECS
7ECC
TECD
7ED@
7ED1
7EDS
7ED6
7TEDA
7EDB
7EEL
7EE2
TEE6
7EE7
7EED
7EEE
TEF2
7EFR3
TEF7
7EF8
1EFC
TEFD
701
TE@2
7807
7F@8
7FQE
7FOF
7715
TFl6
7FP1B
7F1C
7F20
7821
1F26
7r27
TF2F
138
7F35
7F36
7E3A
7F3B
TF3F
TFr40
7F46

147
TF4A
TF4B

7F4D
TF4E

TF56
7F51

TF52
TF54
TF56
7F58
TF5A
7F5C
7F5D
TF5F
7F61

3AABTE
B7
2838

o]
0000

B7
cs

FE1F
2846
FELA
2808
FE61
D8

FE7B
3801
Cc9

08758
80760
20778
20788
208792
088002
eesle
20828
0830
20840
20858
08860
20879
20886
20899
08908
0@9l1d
80929
80938
28940
89958
060960
20970
20980
20990
01008
81018
a1020
gl030
01040
01659
21068
21870
21080
21090
01180
81118
81120
gll3e
21140
01158
01160
61178
81188
61196
21200
el21e
81228
0123¢
01240
81250
21260
81270
81288
2129¢
091309
813180
061320
81336
91340
21358
01360
2137¢
21380
21390
21400
0141
01420
091430
0144
01458
01460
0147¢
21480
81490
21509

utility

DEFB [

LD DEFM '"DATA'
DEFB g

LE DEFM 'RIGHTS ('
DEFB a

LF DEFM 'FOR'
DEFB g

LG DEFM 'GOTO"!
DEFB [

LH DEFM 'RND{"*
DEFB 8

LI DEFM *INPUT"!
DEFB [/

LJ DEFM 'READ'
DEFB 8

LK DEFM TINKEYS'
DEFB 8

LL DEFM 'LEN (Y
DEFB [

LM DEFM 'Asc(’
DEFB [

LN DEFM 'NEXT!
DEFB g

LO DEFM 'POKE'
DEFB [/

LP DEFM VPEEK('
DEFB [/

LQ DEFM 'LEFTS$ ('
DEFB [

LR DEFM 'RETURN'
DEFB [

LS DEFM 'GOSUB'
DEFB [

LT DEFM 'TAB(?
DEFB [

LU DEFM 'USING'
DEFB [/

LV DEFM 'STRINGS ('
DEFB a

LW DEFM *MIDS ('
DEFB g

LX DEFM VSET('
DEFB [

LY DEFM TTHEN'!
DEFB [/

L% DEFM 'RESET("
DEFB [

;

sMAIN ROUTINE ENTRY POINT:

i

ONESTR LD A, (OSFLAG) ;IF FLAG<>@ WE ARE IN THE
OR A sMIDDLE OF A SUBSTITUTION
JR NZ,SUBST ;CONTINUE SUBSTITUTION

CALL NORMAL ROUTINE TO GET CHARACTER FROM KEYBOARD

DEFB CALL ;BECOMES 'CALL GET-CHAR'
KEYDR1 DEFW [WHEN INITIALIZATION CODE
PUTS ADDRESS OF KEYBOARD
DRIVER ROUTINE HERE
OR A ; CHARACTER RETURNED IN A
RET Z ;8 MEANS NO KEY PRESSED,
;SO JUST RETURN TO CALLER

;A KEY HAS BEEN PRESSED, HANDLE IT IF IT IS 'DEFKEY',
'UDSKEY' OR LOWER~CASE LETTER; ELSE JUST RETURN 1T,

cp DEFKEY ;DEFINE USER STRING?

JR % ,DEFINE ;YES, GO DO IT

Ccp UDSKEY ;REQUESTING USER STRING?
JR Z,SUBMOD ;YES, START SUBSTITUTION
cp 97 ;KEY < LOWER-CASE A?

RET C ;YES, RETURN UNCHANGED
Cp 123 ;KEY < LOWER~CASE Zz + 1?
JR C, SUBMOD ;YES, SUBSTITUTE

RET ;NO, RETURN UNCHANGED

Program continued

193

TF62
7F63
TF65
TF67
7F6A

TF6C
TF6F

7F71
7F72
TF74
7F75
TF76
TF77
7F78

TF7A

7F7C
TF7F
7F81
7F84

7F85 E

7F86
7F¥89
TF8A
7F8B
7F8D
TF98
7F91
TEF94
7F95

TF96
TF99
TE9A
7F9C
TF9E
TFOF

TFAB
7FAL
TFA2
7FAS5
7FA8
7FAB
TFAD
7FAE
TFAF
7FBB
7FB2
TFB3
7FB4
7FB5
7FB7
7FBY
7FBB
TFBE
7FBF
7FC1
7FC3

ES
FEIA
2885
216A7E
1818

21AE7E
D661

22AC7E
3E81
32AB7E
El

3A8038
B7
2004
3ELF
B7

c9

g151@
81520
81530
81540
81558
81560
81570
81580
81590
01680
01610
61620
61630
81640
2165@
gle6g
ple7@
81688
81690
gl7ee
1710
01720
81730
81740
81758
01760
61779
21788
81790
01800
B6181@
01828
gle3p
s8l84p@
01850
21860
01878
01880
01890
ploag
81910
81920
gl93e
021940
81950
81960
81970
al9se
81990
a2p0e
82818
02820
220830
02840
82850
22060
22079
220880
02090
082100
62110
82120
82138
82140
82150
B2160
862170
22189
82198
82209
p2210
82220
02230
82240
082258
82260

i

utility

iSTART NEW SUBSTITUTION - SET OSFLAG = 1,
7SET POINTER TO STRING TO SUBSTITUTE

i
SUBMOD PUSH
Cp

JR
LD
JR

HL

UDSKEY
NZ,KEYWRD
HL,USTR
SRCHDN

;USER-DEFINED STRING?

;NO, IT'S KEYWORD

;YES, GO SAVE POINTER TO

; STRING AND SET MODE FLAG

i
7KEY PRESSED WAS A LOWER-CASE LETTER. SET POINTER TO FIRST
;CHARACTER OF KEYWORD TO SUBSTITUTE FOR IT.

KEYWRD LD
SUB

OR
JR
LD
NXTC LD
INC
OR
JR

DINZ

;END SEARCH - HL HAS POINTER TO

i
SRCHDN LD

SETMD LD
LD
POP

HL,LA
97

A

%, SRCHDN
B,A

A, (HL)
HL

A
NZ,NXTC

NXTC

(OSPTR) , HL
Al

{OSFLAG) ,A

HL

iBASE OF SUBST-STRING TABLE
7 SUBTRACT ASCII{LOWER~CASE

; A) FROM KEY PRESSED

:2ERO => LOWER-CASE A

; PRESSED, END SEARCH

;ELSE A HOLDS NUMBER OF

; KEYWORDS TO SKIP OVER TO

¢ FIND STRING TO SUBSTITUTE

;INNER LOOP FINDS NULL

; END-QF-STRING BYTES
sOUTER LOOP COUNTS KEYWORDS
DESIRED STRING

;SAVE POINTER TO STRING
;SUBSTITUTION MODE STARTS

;RESTORE HL

i
iBRANCH HERE WHEN WE ARE DOING A SUBSTITUTION

;
SUBST PUSH
L

NOTEND INC

;DEFINITION

DEFINE LD

i
DEF PUSH

GETC PUSH

KEYDR2 DEFW

NTENDF LD

HL
BL, (OSPTR)
A, (HL)

A

NZ,NOTEND
(OSFLAG) ,A
HL
(OSPTR) , HL
HL

OF USER STRING
A, (SHIFT)
A

NZ,DEF
A,DEFKEY
A

BC

HL

HL , STRTDF
PUTSTR
HL, USTR
B, USTLEN

Z,GETC
DEFKEY
NZ,NTENDF
A, {(SBIFT)
A

NZ,ENDDEF
A,DEFKEY
(HL) , A

;SAVE HL

;GET CURRENT CHARACTER

; OF SUBSTITUTION STRING
;NULL END-OF-STRING?
:NO, MORE TO GO

:YES, END SUBSTITUTION
;BUMP POINTER TO NEXT

; CHARACTER AND SAVE IT
;RESTORE HL

;RETURN CHARACTER IN A

;SHIFT DEPRESSED?

; (DEFINE ON 'SHIFT-CLEAR')
;YES, DEFINE IT

:NO, RETURN 'CLEAR®

;SET FLAGS FOR CALLER
sRETURN CHAR IN A

;SAVE CALLER'S BC

;SAVE CALLER'S HL

;PUT PROMPT FOR START OF
; USER STRING DEFINITION
;POINTER TO USER STRING AREA
;MAX SIZE OF USER STRING
$SAVE OUR HL

;SAVE OUR BC

;BECOMES 'CALL GET-CHAR'
;ADDR OF KEY DRIVER HERE
;RESTORE OUR BC

;RESTORE OUR HL

;IS A NON-ZERO?

;LOOP UNTIL KEY PRESSED
;END DEFINITION?

;NOT END DEFINITION CHAR
;SHIFT KEY PRESSED?

;NOT ZERO IF IT IS

;YES, END DEFINITION
;RESTORE A

;ADD CHAR TO USER STRING

194

TFC4 23
7FC5 CD
7FC8 14

7FCA AF
7FCB 77
TECC 21
7FCF CD
7FD2 El
7FD3 Cl1
7FD4 C9

TFD5 7E
7FD6 B7
7¢D7 C8
7FD8 CD
7FDB 23
7FDC 18

7FDE @D
7FDF 44
7FED 8D
7FEE 08
7FEF @D
7FF@ 45
1FFE 8D
TFFF 28
7E58

26888 T

CALL
DEF
DEFINE
DEFKEY
ENDDEF
ENDMSG
GETC
INIT
KEYDR1
KEYDR2
KEYDRV
KEYWRD
LA

LB

LC

LD

LE

LF

LG

LH

LI

LJ

NOTEND
NTENDF
NXTC

3A03
E3

EF7F
D57F

303
F7

OTAL

28CD
TFAQ
7F96
881F
7FCA
TFEF
7FAD
7E58
TF4E
7FBE
4016
7F6C
TERE
7EBS
TEBA
7EC@
7EC5
7ECD
7EDL
TED6
7EDB
TEE2
7TEE7
TEEE
TEF3
7TEF8
TEFD
7FB2
7F@8
TFQF
TF16
7F1C
7F21
7827
7F30
7F36
7F38
TF48
TF98
7FC3
7875

82278
82280
02298
082308
02318
092320
092338
02340
02358
02369
823789
02380
092399
82408
82419
02420
02430
62440
82450
02460
82478
824849
02498
225880
82510
062520
02538
292549
62558
62568
82570
82588
ERRORS

20198
02060
2199@
0o2e9
082310
82548
02129
80298
91320
62150
601406
01640
00709
60728
20740
008760
00788
00808
00820
808840
008682
08880
720900
80920
20948
88960
20988
plo0e
01020
a1e4¢
21060
21489
¢1169
01120
01140
81168
21188
21200
81920
82260
91709

INC
CALL
DINZ

ENDDEF XOR
LD
LD
CALL
POP
POP
RET

i
i
i
i
P

utility

HL
PUTC
GETC

A

(HL) ,A

HL ,ENDMSG
PUTSTR

RL

BC

UTSTR LD A, (8L)
OR A
RET Z
CALL PUTC
INC HL
JR PUTSTR
i
; PROMPT MESSAGES:

STRTDF DEFB
DEFM
DEFB
DEFB

ENDMSG DEFB
DEFM
DEFB
DEFB
END

1318 02148
02819
81438

@DH

"DEFINE STRING:'
@DH

2

@DH

'"END DEFINITION'
4DH

2
INIT

61420 02020 02280 02250

02240
22330
02190 0229@
02580
80300
080318
00290 8348
21579
01640

81968
082210
1738 81758

;BUMP POINTER TO USER STRING
;ECBO KEY PRESSED

;REPEAT IF MAX STRING

; LENGTH NOT YET EXCEEDED
; PUT NULL END-OF-STRING

; MARKER AFTER USER STRING
;PUT OUT 'END OF DEF' MSG
;ALSO LEAVES @ IN A
;RESTORE CALLER'S HL
;RESTORE CALLER'S BC

;AND RETURN TO CALLER

PUTSTR: PUT STRING AT (HL) ON SCREEN. STRING IS
TERMINATED BY A @ BYTE.

;GET CHARACTER FROM STRING
;IF CHARACTER IS NULL (@)
; THEN FINISHED

;ELSE PUT CHAR ON SCREEN
;POINT AT NEXT CHARACTER
;AND GO GET IT

; CARRIAGE RETURN

;END OF STRTDF
;CARRIAGE RETURN

;END OF ENDMSG

Program continued

1OR”

utility

ONESTR 7847 01250 66330

OSFLAG 7EAB 08578 01258 81810 81918
OSPTR 7EAC 006680 81790 01878 61938
PUTC P33A 00188 02286 02458
PUTSTR 7FD5 02420 062098 08234P 92478
REST 7E6F 88549

SETMD 7F7F 81884

SHIFT 3880 00168 81990 02228
SRCHDN 7F7C 81790 81590 #1689
STRTDF 7FDE 02508 62080

SUBMOD 7F62 01558 81458 91499

SUBST 7F85 01864 81278

UDSKEY @01A 08218 081440 01560

USED 2005 08530 008540

USTLEN 0240 008238 060540 02110

USTR TE6A 08508 86538 01580 92100

196

UTILITY

BREAK Disable

by Jim Rastin

H ave you ever accidentally pressed the BREAK key during the execu-
tion of a BASIC program and fumed because you lost your place?
Have you ever had someone play with your TRS-80 during a demonstra-
tion and had to post a sign DO NOT TOUCH BREAK KEY? I have, and to
prevent this from happening, I wrote this program.

Although after pressing BREAK you can type CONT without losing
your variables, you may lose the display unless you rerun the program. But
this costs you your variables! My program eliminates the effect of the
BREAK key when running a program.

Program Listing 1 is written in BASIC, although when executed it
POKE:s into memory a machine-language program (see Program Listing).
But you need not know machine language to use it. Reserve 32742 when
you first power up and see MEMORY SIZE.

The program has some built-in advantages. It acts as a debounce pro-
gram. Typing POKE 32763,201 restores the BREAK key so that if you use
auto numbering to write a program, you may BREAK out of this mode.

Type POKE 32763,192 and the BREAK key no longer functions. Typing
POKE 32756,x (where x is a number from 1 to 255) will slow computer
operation. The higher the number POKEd into 32756, the slower the
TRS-80 functions, as it delays for every execution performed. For exam-
ple, if you POKE 32756 with 255, it takes a long time to enter any letter
from the keyboard. It also runs your programs very slowly. Typing POKE
32756, 0 returns your TRS-80 to normal speed. (The slow speed works well
for debugging programs or watching a list appear on the screen.)

You can either run the program as shown and CLOAD your programs,
or you can type the program omitting lines 50, 60, and 70 and place it in
front of your own. It is then incorporated into one program containing all
the features mentioned above.

You can vary the amount of time the debounce delay takes by typing
POKE 32755, x (where x is a number from 1 to 200). The program first
loads this memory location with 50. One word of caution—don’t load this
memory location with less than two. At a setting of less than ten the de-
bounce won'’t be very effective.

197

utility

Program Listing 1. BASIC

10 CLS : Encyclopedia
FOR X = 32743 T0 32767 Loader”
20 READ A
30 POKE X,A:
NEXT

40 POKE 16526,231:
POKE 16527,127:
X = USR(0)
50 PRINT @ 512,"DEBOUNCE OPERATIONAL WITHOUT BREAK KEY";
60 FOR X = 1 TO 1000:
NEXT
70 NEW
80 DATA 33,238,127,34,22,64,201,205,227,3,103,1,50,0,205,96,0,124,2
54,1,192,62,0,201,0,0

Program Listing 2. Machine language

00100 LD HL,7FEE ;KEYBOARD DRIVER ADD
00110 LD (4016),HL

00120 RET

00130 CALL OQ3E3H ;CALL KEYBOARD DRIVER
00140 LD H,A ;SAVE A

00150 LD BC,0050 yDEBOUNCE DELAY
00160 CALL 0060H

00170 LD A,H ;RESTORE A

00180 CP 1 ;COMPARE BREAK

00190 RET NZ sRET UNLESS BREAK
00200 LD A,0 ;PUT 0 IN BREAK
00210 RET RETURN

00220 NOP

*

198

UTILITY

Z-80 Disassembler

by Daniel Lovy

Machinewlanguage programs are faster, more efficient, and generally
more customized than their higher-level language counterparts. Un-
fortunately they are almost totally undigestable by anyone except the
machine.

An assembler can eat a readable assembly-language program and spit
back a stream of seemingly unrelated numbers. This program (see the Pro-
gram Listing) is a Z-80 disassembler which takes these numbers and the ob-
ject code and regenerates the assembly-language mnemonics. Written in
TRS-80 Level II BASIC, it runs in about 10K of memory and can disassem-
ble the entire Z-80 instruction set.

The program begins by asking which base you want to work with (hex or
decimal) —the default is hex. Next, it asks you to decide between an ASCII
dump or using the disassembler—the default is the disassembler. Then it
asks you if you want to have the output sent to a printer—no is the default.
The program then asks for the starting address. When disassembling
something in RAM, be sure to set the memory size so the program does not
destroy it. Hitting ENTER three times will default to the disassembler in hex
with no printer output. If you want the program to stop and take up its work
at another address, type I for interrupt.

Program Organization

The lines up to 160 initialize everything and take care of the base conver-
sions. The first number is then PEEKed from memory and converted to
binary. Line 210 tests to see if it is the first byte of a multiple byte op-code. If
it is not, the program looks at the first two bits. These determine which of
four types of instructions the op-code could be: a miscellaneous one, a load,
an arithmetic and logic, or a jump call and return. From there the program
uses one or more of the following subroutines to complete the translation:
© 2150—decodes the register pair
@ 2230—decodes the flag conditions
® 2340-—fetches data
© 2040—decodes the register involved
The program keeps track of how many bytes the instruction takes and adds it
to the program counter. The scheme is much the same for the multiple-byte
op-codes. There are a few additional subroutines worth mentioning:

190

utility

® 2400—does the conversion to binary
© 2410—translates the two’s complement numbers used in relative ad-
dresses into the proper positive and negative decimal numbers
® 2500—this is a two-line decimal to hex converter

At line 4000, if you request output to the printer, PR = 1 and is POKED
into location 16540. Then the next print statement executed will be sent to
the line printer. The program resets this after each print, which is why I
made this a subroutine.)

If you do not want to key in this entire program at once or would like a
shorter version, you could replace line 1100 with:

1100 018 = “MULTIPLE BYTE OP-—CODE”: INC =4: GOTO 240

Lines 1110-2030 may then be omitted. This saves nearly 100 lines and about
3K of memory, but the program will be unable to decipher the multiple-
byte op-codes. This does not occur often, and you can add these lines later.

0000 F3 DI
0001 AF XOR A
0002 C37406 JP 0674
0005 C30040 JP 4000
0008 (30040 JP 4000
000B El POP HL
000C E9 JP (HL)
000D C39F08 JP 069F
0010 C30340 JP 4003

0013 Cs5 PUSH BC
0014 0601 LD B,0001
0016 182E JR 46
0018 C30640 JP 4006
001B C5 PUSH BC
00IC 0602 LD B,0002
00E 1826 JR 38
0020 C30940 JR 4009
0023 C5 PUSH BC

Figure 1. Sample output

200

10 ¢

20

30 ¢

40

oy
Do

70
80

90

95
97

120

130
140

150
160

165

170

Program Listing. Z-80 Disassembler

utility

: Encyclopedia
Tokkkw 2-80 DISASSEMBLER Kk kK Loader-
'Rk DANIEL LOVY *ok ok
Tokkkw JANUARY 1981 *okokk
CLS :
CLEAR 200:
DEFINT Z,P:
PRINT TAB(22)“2-80 DISASSEMBLER":
PRINT :
PRINT
DIM A(8),HEX$(15)
FOR Z = 0 T0 9:
HEX$(Z) = CHR$(Z + 48):
NEXT :
FOR Z = 65 T0 70:
HEX$(Z - 55) = CHR$(Z):
NEXT
LE =
PRINT "DO YOU WISH TO WORK IN DECIMAL OR HEXADECIMAL (D/H)":
INPUT AS$:
IF A$ ¢ > "D"
THEN
H=1
IFH =1
THEN
A$ = "HEX"
ELSE
A$ = “"DECIMAL"
%NPUT "DO YOU WANT TO USE THE DISASSEMBLER OR GET AN ASCII DUMP
D/A) ";CH$
PRINT "DO YOU WANT THE OUTPUT TO GO TO THE PRINTER (Y/N}":
INPUT ANS$:
IF LEFT$(ANS,1) = "y"
THEN
PR =1
PC$ - uh:
PC = 0:
PRINT "ENTER STARTING ADDRESS (IN ";A$;")":
INPUT PC$
IF PC§ = ""
THEN
100
IF H¢ > 1
THEN
PC = VAL(PC$):
GOTO 165
FOR Z = LEN(PC$) TO 1 STEP - 1:
TEM$ = MID$(PCS$,Z,1)
FOR Z1 = 0 TO 15:
IF TEM$ = HEX$(Z1)
THEN
pC = 21 * 16 [(LEN(PC$) - Z) + .2 + PC:
GOTO 150:
ELSE
NEXT Z1:
PRINT “INVALID ENTRY":
GOTO 100
NEXT Z
PRINT :
PRINT
IF CH$ = "A"
THEN
3000
WR = PC: .
BYT = PEEK(PC) Pragranzconmnued

201

190

utility

01% wu
02$ Illl:
0TS
TEM
GOSy

BYT:
2400

o owonou

200 :

210

230
240

250

260

270
280

300
310
320

330

350

tokak TEST FOR MULTIBLE BYTES
IF BYT = 221 OR BYT = 203 OR BYT = 237 OR BYT = 253
THEN

FL = 1:

IX$ = "HL“:

GOTO 1100

ELSE

FL = 0

5 il SEPARATE ONE BYTE GROUPS

ON A(8) * 2 + A(7) + 1 GOSUB 290,590,680,830
GOSUB 4000:
IFH =1
THEN
CNV = WR:
GOSUB 2500:
PRINT CNV$;” ",
ELSE
PRINT WR;" *;
PC = PC + INC:
FOR Z3 = WR TO PC - 1:
TEM = PEEK(Z3)
GOSUB 4000:
LE = 2:

IFH =1
THEN

CNV = TEM:
GOSUB 2500:
PRINT CNV$;
ELSE

PRINT TEM;
EXT Z3:

= 4

GOTO 170
Lok MISC 0P CODES

ON A(3) * 4 + A{2) * 2 + A(1) + 1 GOSUB 320,420,450,520,540,550,
560,570

RETURN

ON A{6) * 4 + A(5) * 2 + A(4) + 1 GOTO 330,340,350,360,370,380,3
90,400:

! NOTE, THIS IS A GOTO

INC = 1:
01% = "NOP":
RETURN

INC = 1:

Ol$ = 1} xn:

02$ = "AF,AF'":
RETURN

INC = 2:

01% = "DJINZ":
GOSUB 2330:

COM = DI1:

GOSUB 2420:

02% = STR$(COM):
RETURN

202

420

430

470
480

490

510

GOSUB 410:
02% = D1%:
RETURN

GOSUB 410:

02% = "NZ," + D1%:

RETURN
GOSUB 410:

02§ = "Z," + D1%:

RETURN
GOSUB 410:

02% = "NC," + D1%:

RETURN
GOSUB 410:

02§ = "C," + D1%:

RETURN

INC = 2:
01$% = "JR":
GOSuUB 2230:
GOSuUB 2330:
COM = D1:
GOSUB 2420:

D1§ = STR$(C0M?':+ D18
> Pl

02% = 0T$ +

IF A(8) = 1

INC = 3:

01$ = HLDU:
GOSUB 2160:
GOSUB 2330:
025 = OT§ +

INC = 1:
01$ = 1 DD":
GOSUB 2160:
02$ = “HL,"
RETURN
01% = "LD":
IF A(6) = 1
THEN
480
INC = 1:
GOSUB 2160:
IF A(4) = 0
THEN
02% = u(u
RETURN
02$ - "A,("
RETURN
INC = 3:
GOSUB 2330:
IF A(4) = 0
THEN
02$ = u(u
ELSE

IF A(S) = 1
THEN

02% = "A,"
ELSE

02% L,
02% = 025 + “(* + D3§ + ")":

RETURN

"

“

"+ D3%:

0T%:

0T$ + "),A":
0T$ + ")

D3§ + "), "

CHLY .

g,

203

Program continued

utility

520 INC = 1:
GOSUB 2160:
IF A(4) = 0
THEN
013 - "INC"
ELSE
015 = “DEC“
530 02% = OTS:
RETURN
540 INC = 1:

1%
(2™
#ouon

6:
5:
S3 4:
GOSUB 2050:
01% = "INC":
02% = 0T$:
RETURN
550 INC = 1:
S1 6:

Sz = 5:

L

$3 4:
GOSUB 2050:
01% = "DEC":
02% = 0T$:
RETURN

560 INC = 2:

6:
5:

wr
™
o i

4:
01$ = "LD":
GOSUB 2050:
GOSUB 2330:
02% = OT$ + "," + D1§:
RETURN
570 INC = 1:
FOR Z = 1 TO A(6) * 4 + A(5) * 2 + A(4) + 1:
READ 01%:
NEXT :
RESTORE
RETURN
580 DATA RLGCA,RRCA,RLA,RRA,DAA,CPL,SCF,CCF
590 e ONE BYTE LOAD GROUP

600 01% = "LD"
610 S1 6:
52 5:
S3 4

205

0TS

HoHou

620 GOS

630 023

640 S1
52
53
GOSUB 2050

6§50 025 = 02§ + ", + OT$

660 INC = 1

670 RETURN

80 ARITHM. & LOGIC

sl

B 0

3:
2:
1:

690 INC

~
o
[
[l
=
=

et

* 4 + A(5) * 2 + A(4) + 1 GOTO 710,720,730,740,750,760,7

~
=]
~
oo~
(o=}

710 01§ - JADD":
02§ = "A":
GOTO 790

720 01§ = "ADC":
02§ = "A":
GOTO 790

730 01% = "SUB":
GOTO 790

204

740

750
760

780
790

800

810

utility

830 :

840

850

860
870

880

890
900

910
920

930

940

950
960

01% = "SBC":
02% = HAE,
GOTO 790
01$ = "AND":
GOTO 790
01$ = "XOR*
60T 790
01$ = "QR"
GOTO 790
01$ = "CP*
IF INC = 2
THEN
RETURN
ELSE
51 = 3
52 = 2:
$3 = 1:
GOSUB 2050
IF 02§ = "¢
THEN
02§ = 02§ + 0T$:
GOTO 820
02$ = 02§ + *," + OT$
RETURN
Dok JP CALL & RET
IF FL = 1
THEN
RGS = IX$
ELSE
RG$ = IIHL"
3) » 4+ A(2) * 2+ A(1) + 1 0OSUB 870,880,940,950,1040,105
o"1058) 1080
RETURN
INC = 1:
01§ = "RET":
GOSUB 2220:
02% = 0T$:
RETURN
INC = 1
IF A(4) = 0
THEN
01% = "POP":
Gosus 2160:
02% = 0T$:
RETURN
ON A(6) * 2 + A(5) + 1 GOTO 900,910,920,930
01§ = *RET":
RETURN
01§ = "EXX“:
RETURN
Ols = IIJPII:
02¢% = n(n + RG$ + u)u:
RETURN
01§ = "LD":
02§ = "SP," + RG$:
RETURN
INC = 3:
01§ = "Jp":
GOSUB 2220:
GOSUB 2330:
02§ = 0TS + *." + D33
ETU%N) » 4+ A(5) * 2 + A(4) + 1 GOTO 960,970,980,990,1000,1010
,1020,1030
INC = 3:
01$ nypn:
GOSUB 2330:
2 E? b3t Program continued

205

utility

970 RETURN
980 INC

#
~N

02$U= Il(ll ; Dl$ + ll).All:
990

—

=

(a4
"

2:
01% = "IN":
GOSYB 2330:
02$ = I|A‘(Il + Dl$ + u)n:
RETURN
1000 INC 1:
WEXN,
"{SP)," + RG$:

1010 INC 1:
IIEXII:
"DE,HL":

1020 INC
1030

1040 3
01$ = “"CALL":
GOSUB 2220:
GOSUB 2330:
02% = 0T + "," + D3§:
RETURN
1050 IF BYT = 205
THEN
INC = 3:
01% = “"CALL":
GOSUB 2330:
02% = D3%:
RETURN
1060 INC = 1:
01% = "PUSH":
GOSUB 2160:
02% = 0T$:
RETURN
1070 INC = 2:
GOSUB 700:
GOSUB 2330:
02% = 02% + "," + D1§:

1080 INC = 1:

01§ = "RST": .
= STRE(A(6) * 32 + A(5) * 16 + A(4) * 8) + "D":

RETURN

1090 e MULT. BYTE OP CODES

1100 ON A(B) * 8 + A(7) * 4 + A(6) * 2 + A(5) - 11 GOSUB 1130,1300,17
20,1310

1110 02$ = OT$:
GOTO 240

1120 :

C e THO BYTE PO CODES CB

1130 GOSUB 2330:
PC = PC + 1:
INC 1:
TEM D1:
GOSUB 2400
1149 51 =

wou

3
2:
1

w
~N
nono

GOSUB 2050

206

1150
1160
1170
1180
1190
1200
1210
1220
1230

1240
1250

1260

1270

1280

1290 :

1300

1310
1320

1330

1340
1350

1360
1370

1380

1390

1400

1410

1420

utility

ON A(B) * 2 + A(7) + 1 GOSUB 1170,1260,1270,1280

RETURN

ON A(6) * 4 + A(B) * 2 + A(4) + 1 GOTO 1180,1190,1200,1210,1220,

1230,1240,1250
01$ = "RLC":

RETURN

01§ = "RRC":

RETURN

01§ = "RL":

RETURN

01§ = "RR":

RETURN

01% = “SLA":

RETURN

01% = “SRA":

RETURN

01% = "NON EXSISTANT CODE":

RETURN
01$ = “SRL":
RETURN

"RES™:

"SET":

I[X$ = "IX":
GOTO 1320
IX$ = "1y"
GOSUB 2330:
IF D1 = 203
THEN

1640
GOSUB 2330:
PC = PC + 1:
TEM = D1:
GOSUB 2400:

8'}‘% : ;?R{(A(G) * 4+ A(5) * 2 + A(4)) + ",
TURN

STR$(A(6) * 4 + A(5) * 2 + A(4)) 4o

STR$(A(6) * 4 + A(5) * 2 + A(4)) + *,"

*kok 0P CODES

+ 0T$:

+ 0T$:

+ 0T$:

DD & FD

ON A(8) * 2 + A(7) + 1 GOSUB 1350,1560,1600,1620

RETURN

ON A(3) * 4 + A(2) * 2 + A(1) + 1 GOSUB 1370,1380,1450,1480,1500

,1620,1540,1370
TURN

RE
INC = 1:
01$ = "NON CODE":
RETURN
IF A(4) =0
THEN
01% = "Lp":
INC = 3:
GOSUB 2330:
0T$ = IX$ + "," + D3§%:
RETURN
01$ = "ADD":
INC = 1:
OT$ = IX$ + l|’|l
A= A(6) * 2 + A(5)
IFA=20
THEN
0G$ = "BC"
IF A = 1
THEN
OG$ = uDEN
IFA=2
THEN
0G$ = IX$

Program continued

207

1430

1440

1450

1460

1470
1480

1490
1500

1510
1520

1530
1540

1550
1560

1570

1580

1590

IF A
THEN
0G$

3

wgpn

0T$ = 0TS + OGS$:
RETURN

INC =

0T$
RETUR
INC =
0T$ =

N

3:
GOSUB 2330:
01 ipe

=0

(MR D3S o+)M o+ IXS
IX$ + ", (" + D3§ +)"

1:

I

IF A(4)

THEN
01%
ELSE
01%
RETUR
INC =
01% =
GOSuUB
CoM =
GOSUB
0T$ =

RETURN

INC =
01% =

CoM =

OTs = u(o + IX$ + Me" o4 STRs(COM)

RETUR
INC =

N

N
2

X$:

0
"INC Y
"DEC"

‘NC“:

2330:

D

1:

2420

"+ IXE o+ "+ 4+ STRE(COM)

2:
"DECH:
GOSUB 2330:
Di:
GOSUB 2420

3:
" gt
2330:
D1:
2420

(T4 IXS o+ "+t o+ STRE(COM)

INC = 2

IF A(3):* 4 + A(2) * 2 + A(1) < >

* 2 + A(4) <> 6

THEN
01%
0T$
INC

nowou

"NON CODE":
W,
1:

RETURN
uLpt:

A
HEN
159

wunwm
L N ==

0
3
2
1

01
GOSUB 2330:
IF

T

(3) * 4 + A(Z) * 2 + A(l) = 6

GOSUB 2050:
Dl:

GOSUB 2420:]
0T$ = "(* + IX$ + "+" + STR§{COM) + ")," + OT$:

COM =

RETUR
Sl
S2
S3

W onon

N

6:

5:

GOSUB 2050:
DI1:

GOSUB 2420: nyn
0T$ + ", (" + IX§ + "+" + STR$(COM) + ")":

CoM =
07§ =

+

+

208

utility

u)n:

"), Y+ D2§:

AND A{6) * 4 + A(5)

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710
1720

1730

1740
1750
1760

1770

utility

RETURN

INC = 2:

IF A(3) *» 4 + A{2) * 2 + A{1) <> 6
THEN

01%$ = "NON CODE":

INC = 1:

0TS = e,
RETURN

GOSUB 700:

COM = D1:

GOSUB 2420:

QT$ = 02$ P (u ¥ IX$ PR STR$(COM) + u)n:

RETURN

INC = 1:

IF A(6) * 4 + A(5) * 2 + A(4) < 4
THEN
01% = "“NON CODE™:
RETURN

GOSUB 830:

0T$ = 02%:

INC = 1:

RETURN

fokwx THREE BYT 0P CODES

PC = PC + 1
GOSUB 23130:
INC = 3:

TEM = D2:
GOSUB 2400

ON A(8) * 2 + A(7) + 1 GOSUB 1170,1260,1270,1280

COoM = D1

GOSUB 2420:

D$ = STRE(COM)

07$ M(TEING ¢ "+ 4 DS o+ M)®
TEM 2:

GOSUB
IF A(8
THEN
RETURN

2400
) + A(7) =0

0TS = STR$(A(6) * 4 + A(5) * 2 + A(4)) + "," + 0T$:

RETURN
GOSUB 2330:
PC = PC + 1:
INC = 1:
TEM = D1:
GOSUB 2400
IF A(8) = 1
THEN
1920

ON A(3) * 4 + A(2) * 2 + A{1) + 1 GOSUB 1760,1770,1780,1800,1830

,1840,1850,1860
02§ = 0T$:

INC = 1:

[%]
[aN]
[]

6:
51
4:
GOSUB 2050:
01% = "IN“:

0T$ = 0TS + “,{C)":
RETURN

won oo

RETURN

209

Program continued

1780

1790

RETURN
1800

utility

= 'sBc" ¢

= IIADCII
2160:

THL," + 0T$:

GOSUB 2330:

GOSUB 2160:

1
1810 IF
T

1820
N
1830

RETU
1840

01%

3:

+ D3% + ")," + 0TS:
ll’(ll + D3$ + II)H:

= "RETN":

RETURN :

ELSE
01%
RETY

INC
0T$
01%
RETU
1860 INC

1850

N

O
o=
—
<
—~u T H o

1870 01% =
071§ =
RETURN
01$ =
0T$ =
RETURN
01% =
0T$ =
RETURN
01% =
07§ =

1880

1890

1900

RETURN

1910 01% =
0T$ =
RETURN
1920

IF A(6

1930 IF A(3
THEN

01%

0T$

RETU
ON A(3
01$ =
GOSUB
01§ =
RETURN
1960 01% =

1940
1950

INC = 1

"

= "RETI":
RN
1 .

“IM" + STR$(A(S) + A(4))

1:
6) * 4 + A(5) * 2 + A(4) + 1 GOTO

“NON COBE":

wa.

uLpH.
"I,A":

"npr.
"A,I“:

"RRD":

nu,

“RLD":

w,

) * 4 + A(5)
“NON CODE":

* 2 + A(4) < 4

) * 4+ A(2)
= "NON CODE":

* 2 + A(1) > 3

RN
) * 4+ A(2)
“Lpt

1990:

01% + 0G$:

weph .,

210

* 2 + A{1) + 1 GOTO

1880,1870,1890,1870,1900,

1950,1960,1970,1980

utility

GOSUB 1990:
01% = 01§ + 0G$:
RETURN
1970 01$ = "IN
GOSUB 1990:
01% = 01% + 0GS$:
RETURN
1980 01% = “QUT":
GOSUB 1990:
01$ = 01% + 0G$:
RETURN
1990 07§ = “":
ON A(5) * 2 + A(4) + 1 GOTO 2000,2010,2020,2030
2000 0G$ = 1%

2010 0G§ = “D":
2020 0G$ = "“IR":
2030 0G$ = "DRY:

2040 :
Uokkk REGISTER DECODERS

2050 ON A(S1) * 4 + A(S2) * 2 + A(S3) + 1 GOSUB 2070,2080,2090,2100,2
110,2120,2130,2140
2060 RETURN
2070 0T$ = "B":
RETURN
2080 0T$ = “C“:
RETURN
2090 0T$ = “D":
RETURN
2100 OT$ = "E":
RETURN
2110 0T$ = "H":
RETURN
2120 0T$ = "L":
RETURN
2130 8T$ = "(HL)}":

2140 07§ = "A":
RETURN
2150 :

Pokkk REGESTER PAIRS

2160 ON A(6) * 2 + A(5) + 1 GOSUB 2180,2190,2200,2210
2170 RETURN
2180 0T$ = “BC":
RETURN
2190 0T$ = "DE":
RETURN
2200 IF FL =1
THEN
0T$ = IX$:
RETURN :
ELSE
0T$ = “HL":
RETURN
2210 0TS = “sp*:
RETURN

2220 :
tokkx FLAG CONDITIONS

2230 ON A(6) * 4 + A(5) * 2 + A(4) + 1 GOSUB 2250,2260,2270,2280,2290
,2300,2310,2320
2240 RETURN
2250 OT$ = “NZ*“:

RETURN .
2260 0T$ = “z": Program continued

211

RETURN

2270 OT$ = “NC":
RETURN

2280 0T§ = "C":
RETURN

2290 0T$ = "PO":
RETURN

2300 0T$ = "PE":
RETURN

2310 07§ = "P":
RETURN

2320 07§ = "M":

RETURN

2330 :
POk GET DATA BYTES

2340 D1

Do
w

2350

-
-

= 1

—
p u

WM i

o

2
2360 D1%
D2$
D3%
RETURN
2370 CNV = DI1:
GOSUB 2500:
D1$ = CNV§:
CNV = D2:
GOSUB 2500:
D2% = CNVS$
2380 CNV = D3:
GOSUB 2500:
03% = CNVS:
RETURN

STR$(D1):
STR$(D2):

N
7
- STR$(D3):

2390 :
PRk CONVERT TO BINARY

2400 F P - 1:
2 [(2 -1)):
* 2 [(2 - 1):

Z =8 T0 1 STE
) = INT(TEM /
TEM = TEM - A(Z)

2410 :
tokkk CONV TO TWOS COMP

2420 TEM = COM:
GOSUB 2400
2430 IF A(8) = 0
THEN
RETURN
2440 COM = COM - 1:
TEM = COM:
GOSUB 2400
2450 FOR Z = 8 T0 1 STEP - 1:
IF A(Z) = 1
THEN
A(Z) = 0
ELSE
A(Z) = 1
2460 NEXT 1:
CoM = 0
2470 FOR Z = 8 TO 1 STEP - 1:
COM = COM + A(Z) * 2 [(Z - 1):
NEXT Z
2480 COM = - COM:
RETURN
2490 :

D oawn CONV TO HEX

212

2500

2510

2590

3000

3010

3020

4000

4010

CNVS = "o

utility

FOR Z = LE TO 1 STEP - 1:

F=161[(Z - 1)

CNV$ = CNVS$ + HEX$(INT(CNV / F))
CNV = CNV - INT(CNV / F) * F:

NEXT :
RETURN

bokkk

CLS :

PRINT PC$:

BYT = PEEK(PC)
GOSUB 4000:

ASCIT DUMPER

IF BYT < 32 OR BYT > 128
THEN

PRINT BYT;

ELSE

PRINT CHR$(BYT);
PC = PC + 1:
BYT = PEEK(PC):
GOTO 3010

L A

POKE 16540,PR:
RETURN

ROUTE OQUTPUT TO EITHER SCREEN OR PRINTER

213

APPENDIX

Appendix A
Appendix B

215

APPENDIX

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose.”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level I1. To run in Level I, follow this procedure:
® Delete any dimension statements. Example: DIM A (25).
@ Change PRINT@ to PRINTAT.
©® Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent
code made to agree.
® Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model III Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
0UT236,0 and OUT236,2.

217

APPENDIX

Glossary

A

ac input module—1I/O rack module which converts various ac signals origi-
nating in user switches to the appropriate logic level for use within the pro-
Cessor.

ac output module—1I/O rack module which converts the logic levels of the
processor to a usable output signal to control a user’s ac load.

access time— the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator—the main register(s) in a microprocessor used for arithmetic,
shifting, logical, and other operations.

accuracy—generally, the quality or freedom from mistake or error; the ex-
tent to which the results of a calculation or a measurement approach the
true value of the actual quantities.

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

active elements—any generators of voltage or current in an impedance net-
work; also known as active components.

adaptor—a device for connecting parts that will not mate; a device designed
to provide a compatible connection between systems or subsystems.

A/D converter—analog to digital converter. See D/A converter.
add with carry—a machine-language instruction in which one operand is
added to another, along with a possible carry from the previous (lower-

order) add.

address—a code that specifies a register, memory location, or other data
source or destination.

218

appendix

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications, generally on large-scale computers.

algorithm—a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—the process of adjusting components of a system for proper
interrelationships, including adjustments and synchronization for the com-
ponents in a system. For the TRS-80, this usually applies to cassette heads
and disk drives.

alphanumerics—refer to the letters of the alphabet and digits of the number
system, specifically omitting the characters of punctuation and syntax.

alternating current—ac. Electric current that reverses direction periodical-
ly, usually many times per second.

ALU— Arithmetic Logic Unit.

Ampere—-the unit of electric current in the meter-kilogram-second system of
units; defined in terms of the force of attraction between two parallel cur-
rent conductors; 1 coulomb/second.

Ampere-turn—a unit of magnetomotive force defined as the force of a
closed loop of one turn with a current of one ampere flowing through the
loop.

analog—the representation of a physical variable by another variable in-
sofar as the proportional relationships are the same over some specified
range.

analog input module—an I/O rack module which converts an analog signal
from a user device to a digital signal which may be processed by the pro-
cessor.

analog output module—an I/O rack module which converts a digital signal
from the processor into an analog output signal for use by a user device.

AND—a Boolean logic function. Two operators are tested and, if both are
true, the answer is true. Truth is indicated by a high bit, or 1 in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately. A bit-by-bit logical operation which pro-
duces a one in the result bit only if both operand bits are ones.

219

appendix

anode—in a semiconductor diode, the terminal toward which electrons
flow from an external circuit; the positive terminal.

APL—a programming language; a popular and powerful high-level
mathematical language with extensive symbol manipulation.

argument—any of the independent variables accompanying a command.

Arithmetic Logic Unit—ALU. The section of a microprocessor which per-
forms arithmetic functions such as addition or subtraction and logic func-
tions such as ANDing.

arithmetic shift—a type of shift in which an operand is shifted right or left
with the sign bit being extended (right shift) or maintained (left shift).

array—a collection of data items arranged in a meaningful pattern such as
rows and columns which allow the collection and retrieval of data.

ASCII-—~American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—software that translates operational codes into their binary
equivalents on a statement-for-statement basis.

assembly language—a symbolic computer language that is translated by an
assembler program into machine language, the numeric codes that are
equivalent to microprocessor instructions.

asynchronous—not related through repeating time patterns.

asynchronous shift register—a shift register which does not require a clock.
Register segments are loaded and shifted only at data entry.

B

backup—1) refers to making copies of all software and data stored external-
ly 2) having duplicate hardware available.

base—the starting point for representation of a number in written form,
where numbers are expressed as multiples of powers of the base value.

220

appendix

BASIC—an acronym for Beginner's All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing—a method of computing in which many of the same types
of jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the com-
puter operator. All the cards are put into the card reader, and the results of
each person’s program are returned later. This is contrasted with interactive
computing.

baud—1) a unit of data transmission speed equal to the number of code
elements (bits) per second 2) a unit of signaling speed equal to the number of
discrete conditions or signal events per second.

baud rate—a measure of the speed at which serial data is transmitted elec-
tronically. The equivalent of bits per second (bps) in microcomputing.

benchmark —to test performance against a known standard.

BCD—binary coded decimal. The 4-bit binary notation in which individual
decimal digits (0 through 9) are represented by 4-bit binary numerals; e.g.,
the number 23 is represented by 0010 0011 in the BCD notation.

bias—a dc voltage applied to a transistor control electrode to establish the
desired operating point.

bidirectional bus—a bus structure used for the two-way transmission of
signals, that is, both input and output.

bidirectional printer—a printer capable of printing both left-to-right and
right-to-left. Data is prestored in a fixed-size buffer.

binary--a number system which uses only 0 and 1 as digits. It is the
equivalent of base 2. Used in microcomputing because it is easy to represent
1s and Os by high and low electrical signals.

binary digit—the two digits, zero and one, used in binary notation. Often
shortened to bit.

binary point—-the point, analagous to a decimal point, that separates the in-
teger and fractional portions of a binary mixed number.

221

appendix

bipolar device—a device whose operation depends on the transport of holes
and electrons, usually made of layers of silicon with differing electrical
characteristics.

bi-stable—two-state

bit—an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

bit position—the position of a binary digit within a byte or larger group of
binary digits. Bit positions in the Model I, 11, III, and Color Computer are
numbered from right to left, zero through N. This number corresponds to
the power of two represented.

Boolean algebra—a mathematical system of logic first identified by George
Boole, a 19th century English mathematician. Routines are described by
combinations of ANDs, ORs, XORs, NOTs, and IF-THENSs. All computer
functions are based upon these operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. On some machines it is keyed in, and
on others it is in read only memory (ROM). Using this program is called
booting or cold-starting the system.

borrow—one bit subtracted from the next higher bit position.
bps—bits per second.

breakdown—a large, abrupt rise in electric current due to decreased
resistance in a semiconductor device caused by a small increase in voltage.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug—an error in software or hardware.

bump contact—a large area contact used for alloying directly to the
substrate of a chip for mounting or interconnecting purposes.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.

222

appendix

byte-—eight bits that are read simultaneously as a single code.

C
CAI—an acronym for Computer Aided Instruction.

card—a specially designed sheet of cardboard with holes punched in specific
columns. The placement of the holes represents machine-readable data.
Also a term referring to a printed circuit board.

card reader—a device for reading information from punched cards.

carrier—a steady signal that can be slightly modified (modulated) con-
tinuously. These modulations can be interpreted as data. In microcom-
puters the technique is used primarily in modern communications and tape
input/output (1/O).

carry—a one bit added to the next higher bit position or to the carry flag.

carry flag—a bit in the microprocessor used to record the carry “off the end”
as a result of a machine-language instruction.

cassette recorder—a magnetic tape recording and playback device for enter-
ing or storing programs.

cathode—in a semiconductor diode, the terminal from which electrons flow
to an external circuit; the negative terminal.

character—a single symbol that is represented inside the computer by a
specific code.

charge—a basic property of elementary particles of matter. The charge,
measured in coulombs, is the algebraic sum of the electric charge of its con-
stituents.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a
predetermined result for the block of data.

chip—the shaped and processed semiconductor die mounted on a substrate
to form a transistor or other semiconductor device.

223

appendix

circuit—-a conductor or system of conductors through which an electric cur-
rent may flow.

circuit card—a printed circuit board containing electronic components.

clear—to return a memory to a non-programmed state, usually represented
as 0 or OFF (empty).

clobber—to destroy the contents of memory or a register.

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL—COmmon Business-Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

Colossus—a British computer used to crack German Enigma codes during
World War II.

common carrier—a communications transmission medium, such as the
Direct Distance Dialing (DDD) network of the Bell System.

compiler—software that will convert a program written in a high-level
language to binary code, on a many-for-one basis.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa. °

complementary functions—two driving point functions whose sum is a
positive constant,

complementary metal oxide semiconductor—CMOS. A signal inverting
device formed by the combination of a p channel with an n channel device
usually connected in series across the power supply.

complementary transistors—two transistors of opposite conductivity (pnp
and npn) in the same functional unit.

224

appendix

computer interface—a device designed for data communication between a
central computer and another unit such as a programmable controller pro-
Cessor.

concatenate--to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

conditional jump—a machine-language instruction that jumps if a specified
flag (or flags) is set or reset.

conductor—a substance, body, or other medium that is suitable to carry an
electric current.

constant—a value that doesn’t change.

control block—a storage area of a microprocessor containing the informa-
tion required for control of a task, function, operation, or quantity of infor-
mation.

coulomb—the unit of electric charge in SI units (International System of
Units); the quantity of electric charge that passes any cross section of a con-
ductor in one second when current is maintained constant at one ampere.

counter—in relay-panel hardware, an electro-mechanical device which can
be wired and preset to control other devices according to the total cycles of
one ON and OFF function. A counter is internal to the processor; i.e., it is
controlled by a user-programmed instruction. A counter instruction has
greater capability than any hardware counter.

CPU—central processing unit. The circuitry that actually performs the
functions of the instruction set.

CRT—-cathode ray tube. In computing this is just the screen the data ap-
pears on, A TV has a CRT.

cue—refers to positioning the tape on a cassette unit so that itisset up to a
read/write section of tape.

current—the net transfer or electric charge per unit of time by free elec-
trons; 1 ampere = 1 coulomb/second.

225

appendix

current mode logic—CML. Integrated circuit logic in which transistors are
paralleled so as to eliminate current hogging.

cursor—a visual movable pointer used on a CRT by the programmer to in-
dicate where an instruction is to be added to the program. The cursor is also

used during editing functions.

cycle—a specific period of time, marked in the computer by the clock.

D

D/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

daisy chain—a bus line which interconnects devices for serial operation.
daisy wheel—a printer type which has a splined character wheel.

data—general term for numbers, letters, symbols, and analog quantities
that serve as information for computer processing.

data base—refers to a series of programs each having a different function,
but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a
storage device. Knowledge of operating or programming a computer is not

necessary for a data entry operator.

data link—equipment, especially transmission cables and interface
modules, which permits the transmission of information.

debug—to remove bugs from a program.

decrement—to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

dedicated—in computer terminology, a system set up to perform a single
task.

default—that which is assumed if no specific information is given.

226

appendix

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

diagnostic program—a test program to help isolate hardware malfunctions
in the programmable controller and application equipment.

die bond—a process in which chips are joined to a substrate.
differential discriminator—a circuit that passes only pulses whose
amplitudes are between two predetermined values, neither of which are

zZ€ero.

digital—the representation of data in binary code. In microcomputers, a
high electrical signal is a 1 and a low signal is a 0.

digital circuit—an electronic network designed to respond at input voltages
at one level, and similarly, to produce output voltages at one level.

diode—a device with an anode and a cathode which permits current flow in
one direction and inhibits current flow in the other direction.

diode transistor logic—a circuit that uses diodes, transistors, and resistors to
provide logic functions.

direct current—dec. Electric current which flows in only one direction; the
term designates a practically non-pulsating current.

disassembly—remaking an assembly source program from a machine-code
program.

disk—an oxide-coated, circular, flat object, in a variety of sizes and con-
tainers, on which computer data can be stored.

disk controller—an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—DOS. The system software that manipulates the
data to be sent to the disk controller.

displacement—a signed value in machine language used in defining a
memory address.

227

appendix

dividend—the number that is divided by the divisor. In A/B, A is the divi-
dend.

divisor—the number that “goes into” the dividend in a divide operation. In
A/B, B is the divisor.

DMA—direct memory access. A process where the CPU is disabled or
bypassed temporarily and memory is read or written to directly.

documentation-—a collection of written instructions necessary to use a piece
of hardware, software, or a system.

domain—a region in a solid within which elementary atomic, molecular,
magnetic, or electric moments are uniformly arrayed.

doping—the addition of impurities to a semiconductor to achieve a desired
characteristic,

dot-matrix printer—instead of each letter having a separate type head (like
a typewriter), a single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
manufacture.

double-dabble—a method of converting from binary to decimal representa-
tion by doubling the leftmost bit, adding the next bit, and continuing until
the rightmost bit has been processed.

downtime—the time when a system is not available for production due to
required maintenance.

driver—a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex—refers to two-way communications taking place independently,
but simultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

228

appendix

E

EAROM—an acronym for Electrical Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if
necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editors.

electron—a stable elementary particle with a negative electric charge of
about —1.602 x 10~ '® coulomb.

emitter-coupled logic—a form of current mode logic in which the emitters
of two transistors are connected to a single current-carrying resistor in a way
that only one transistor conducts at a time.

enhancement mode— operation of a field effect transistor in which no cur-
rent flows when zero gate voltage is applied, and increasing the gate voltage
increases the current.

EOF—End Of File.

EOL—End Of Line (of text).

EPROM—FErasable Programmable Read Only Memory. A read only
memory in which stored data can be erased by ultraviolet light or other

means and reprogrammed bit-by-bit with appropriate voltage pulses.

Exclusive OR—a bit-by-bit logical operation which produces a one bitin the
result only if one or the other (but not both) operand bits is a one.

execution—the performance of a specific operation such as would be ac-
complished through processing one instruction, a series of instructions, or a

complete program.

execution cycle—a cycle during which a single instruction of one specific
operation.

execution time— the total time required for the execution to actually occur.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

229

appendix

exponent—the power of two of a floating-point number.

F

feedback— the signal or data fed back to the programmable controlier from
a controlled machine or process to denote its response to the command
signal.

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

Fibonacci series—the sequence of number 1, 1,2,3,5,8,13,21, 34,. .. in
which each term is computed by addition of the two previous terms.

field-effect transistor—FET. A transistor in which the resistance of the cur-
rent path from the source to drain is modulated by applying a transverse
electric field between grid or gate electrodes; the electric field varies the
thickness of depletion layers between the gates, thereby reducing the con-
ductance.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

filter—electrical device used to suppress undesirable electrical noise.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flip chip—a tiny semiconductor die having terminations all on one side in
the form of solder pads or bump contacts; after the surface of the chip has
been passivated or otherwise treated, it is flipped over for attaching to a
matching substrate.

flip-flop—a bi-stable device that assumes either of two possible states such
that the transition between the states must be accomplished by electronic
switching.

floating-point number—a standard way of representing any size of number
in computers. Floating-point numbers contain a fractional portion (man-
tissa) and power of two (exponent) in a form similar to scientific notation.

230

appendix

flowcharting—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN—FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.

full duplex—a mode of data transmission that is the equivalent of two
paths—one in each direction simultaneously.

G

game theory—see von Neumann,

garbage—computer term for useless data.

gate—a circuit that performs a single Boolean function. A circuit having an
output and a multiplicity of inputs, so designed that the output is energized

only when a certain combination of pulses is present at the inputs.

GIGO—Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics——information displayed pictorially as opposed to alphanumerically.
ground—a conducting path, intentional or accidental, between an electric

circuit or equipment and the earth, or some conducting body serving in
place of the earth.

H
H—a suffix for hexadecimal, e.g., 4FFFH.

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

Hall effect—the development of a transverse electric field in a current-
carrying conductor placed in a magnetic field; ordinarily the conductor is
positioned so that the magnetic field is perpendicular to the direction of cur-
rent flow and the electric field is perpendicular to both.

Hall generator—a generator using the Hall effect to give an output voltage
proportional to magnetic field strength.

231

appendix

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Handshaking requires clocking pulses on both ends of the
communications line. Contrast with buffer.

hangup—the computer has ceased processing inexplicably.

hard copy—a printout; any form of printed document such as a ladder
diagram, program listing, paper tape, or punched cards.

hard magnetic—a term describing a metal having a high coercive force
which gives a high magnetic hysteresis; usually a permanent magnetic

material,

hard wired—having a fixed wired program or control system built in by the
manufacturer and not subject to change by programming,

hardware—refers to any physical piece of equipment in a computer system,
hex—hexadecimal.

hexa-dabble—conversion from hexadecimal to decimal by multiplying each
hex digit by sixteen and adding the next hex digit until the last (rightmost)

hex digit has been reached.

hexadecimal—representation of numbers in base sixteen by use of the hex-
adecimal digits 0, 1, 2, 3,4, 5,6, 7, 8, 9, A, B, C, D, E, and F.

high— a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming language which is CPU-independent
and closely resembles English.

high order—see most significant bit.

HIT—acronym for Hash Index Table. A section of the directory on a
TRS-80 disk.

hole—a mobile vacancy having an energy state near the top of the energy
band of a solid; behaves as though it were a positively charged particle.

232

appendix

host computer—the primary computer in a multi-computer or terminal
hookup.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

hysteresis—an oscillator effect wherein a given value of an operating
parameter may result in multiple values of output power or frequency.

IC—integrated circuit.

immediate— addressing mode in which the address of the information that
an operation is supposed to act upon immediately follows the operation
code.

inclusive OR— a bit-by-bit logical operation which produces a one-bit result -
if one or the other operand bits, or both is a one.

increment—to increase, usually by one. See decrement.

indexed—addressing mode where the information is addressed by a
specified value, or by the value in a specified register.

indirect—addressing mode in which the address given points to another ad-
dress, and the second address is where the information actually is.

input devices—devices such as limit switches, pressure switches, push but-
tons, etc., that supply data to a programmable controller. These discrete in-
puts are two types: those with common return, and those with individual re-
turns (referred to as isolated inputs). Other inputs include analog devices
and digital encoders.

instruction—a command or order that will cause a computer to perform one
certain prescribed operation.

insulator—a nonconducting material used for supporting or separating con-
ductors to prevent undesired current flow to other objects.

integer variable—a BASIC variable type. It can hold values of -32,768
through + 32,767 in two-byte two’s complement notation.

233

appendix

integrated circuit—IC. An interconnected array of active and passive
elements integrated with a single semiconductor substrate or deposited on
the substrate and capable of performing at least one electronic circuit func-
tion. See chip.

integrated injection logic—I?L. Integrated circuit logic which uses a simple
and compact bipolar transistor gate structure which makes possible large
scale integration on silicon for logic arrays and other analog and digital ap-
plications,

intelligent terminal—a terminal with a CPU and a certain amount of
memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program writtenina
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compiler,

interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the
main program continues.

I/O—acronym for input/output. Refers to the transfer of data.

I/O module—the printed circuit board that is the termination for field wir-
ing of 1/O devices.

1/O rack—a chassis which contains I/Q modules.

I/O scan—the time required for the programmable controller processor to
monitor all inputs and control all outputs. The I/O scan repeats continuously.

isolated 1/0 module—a module which has each input or output electrically
isolated from every other input or output on that module. That is to say,

each input or output has a separate return wire,

iteration—one pass through a given set of instructions.

234

appendix

J

jack—a socket, usually mounted on a device, which will receive a plug
(generally mounted on a wire).

Josephson effect—the tunneling of electron pairs through a thin insulating
barrier between two superconducting materials.

K
K--abbreviation for kilo, In computer terms 1024, in loose terms 1000.
Karnaugh map—a truth table that shows a geometrical pattern of func-

tional relationships for gating configurations; with this map, essential gating
requirements can be recognized in their simplest form.

L

ladder diagrams—an industry standard for representing control logic relay
systems.

language—a set of symbols and rules for representing and communicating
information (data) among people, or between people and machines.

large scale integration—LSI. Any integrated circuit which has more than
100 equivalent gates manufactured simultaneously on a single slice of

semiconductor material.

latching relay—a relay with 2 separate coils, one of which must be energized
to change the state of the relay; it will remain in either state without power.

leakage current—in general, the undesirable flow of current through or over
the surface of an insulating material or insulator; the alternating current
that passes through a rectifier without being rectified.

leakage flux— magnetic lines of force that go beyond their intended space.

least significant bit—the rightmost bit in a binary value, representing 2°.

least significant byte—refers to the lowest position digit of a number. The
rightmost byte of a number or character string.

235

appendix

LIFO—acronym for Last In First Out. Most CPUs maintain a “stack” of
memory. The last data pushed onto the stack is the first popped out.

light emitting diode—LED. A semiconductor diode that converts electric
energy efficiently into spontaneous and noncoherent electromagnetic radia-
tion at visible and near infrared wavelengths of electroluminescence at a for-
ward biased pn junction.

light pen—a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

line—in communications, describes cables, telephone lines, etc., over which
data is transmitted to and received from the terminal.

line driver—an integrated circuit specifically designed to transmit digital in-
formation over long lines—that is, extended distances.

line printer—a high-speed printing device that prints an entire line at one
time.

linear circuit—a network in which the parameters of resistance, inductance,
and capacitance are constant with respect to current or voltage, and in
which the voltage or current of sources is independent of or directly propor-
tional to the outputs,

linearity—the relationship that exists between two quantities when a
change in one of them produces a direct proportional change in the other.

location—a storage position in memory.

logic—a means of solving complex problems through the repeated use of
simple functions which define basic concepts. Three basic logic functions are
AND, OR, and NOT.

logic diagram—a drawing which represents the logic functions AND, OR,
NOT, etc.

logic level—the voltage magnitude associated with signal pulses represent-
ing ones and zeroes (1s and 0s) in binary computation.

logical shift—a type of shift in which an operand is shifted right or left, with
a zero filling the vacated bit position.

236

appendix

loop—a set of instructions that executes itself continuously. If the program-
mer has the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value, the loop is ter-
minated.

low—a logic signal voltage. The computer senses this as a binary 0.

Ish—see least significant bit.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

magnetoresistor—magnetic field controlled variable resistor.

magnitude—the absolute value, independent of direction.

mainframe—refers to the CPU of a computer. This term is usually confined
to larger computers.

mantissa— the fractional portion of a floating-point number.

matrix—a two-dimensional array of circuit elements, such as wires, diodes,
etc., which can transform a digital code from one type to another.

237

appendix

memory— the hardware that stores data for use by the GPU. Each piece of
data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each cap-
able of storing a tiny electrical charge.

memory module—a processor module consisting of memory storage and
capable of storing a finite number of words (e.g., 4096 words in a 4K
memory module). Storage capacity is usually rounded off and abbreviated
with K representing each 1024 words.

metal oxide semiconductor-—MOS. A metal insulator semiconductor struc-
ture in which the insulating layer is an oxide of the substrate material; for a
silicon substrate the insulator is silicon oxide.

micro electronics—refers to circuits built from miniaturized components
and includes integrated circuits.

microprocessor—an electronic computer processor section implemented in
relatively few IC chips (typically LSI) which contain arithmetic, logic,
register, control, and memory functions.

microsecond—us. One millionth of a second: 1 x 10 —¢ or 0.000001 second.
millisecond—pus. One thousandth of a second: 10 -2 or 0.001 second.
minuend— the number from which the subtrahend is subtracted.

mixed number—a number consisting of an integer and fraction as, for ex-
ample, 4.35 or (binary) 1010.1011.

mnemonic—a short, alphanumeric abbreviation used to represent a
machine-language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

modem—MOdulator/DEModulator. An I/O device that allows com-
munication over telephone lines,

module—an interchangeable plug-in item containing electronic com-
ponents which may be combined with other interchangeable items to form a
complete unit.

238

appendix

monitor—1) a CRT 2) a short program that displays the contents of registers
and memory locations and allows them to be changed. Monitors can also
allow another program to execute one instruction at a time, saving programs
and disassembling them.

MOS-—see metal oxide semiconductor.

MOSFET—metal oxide semiconductor field effect transistor.

most significant bit—the leftmost bit in a binary value, representing the
highest-order power of two. In two’s complement notation, this bit is the

sign bit,

most significant byte—the highest-order byte. In the multiple-precision
number A13EF122H, A1H is the most significant byte.

msb—see most significant byte.

multiple-precision numbers—multiple-byte numbers that allow extended
precision.

multiplexing—a method allowing several sets of data to be sent at different
times over the same communication lines, yet all of the data can be used
simultaneously after the final set is received. For example, several LED
displays, each requiring four data lines, can all be written to with only one
group of four data lines. The same concept is used with communication
lines.

multiplicand—the number to be multiplied by the multiplier.

multiplicand register—the register used to hold the multiplicand in a
machine-language multiply.

multiplier—the number that is multiplied against the multiplicand. The
number “on the bottom.”

N

NAND--an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

n-channel—a conduction channe] formed by electrons in an n-type semi-
conductor, as in an n-type field-effect transistor.

239

appendix

negation—changing a negative value to a positive value, or vice versa. Tak-
ing the two’s complement by changing all ones to zeros, all zeros to ones, and
adding one.

nesting—putting one loop inside another. Some computers limit the number
of loops that can be nested.

network—a collection of electric elements, such as resistors, coils, capaci-
tors, and sources of energy, connected together to form several interrelated
circuits. A collection of computer terminals interconnected to a host CPU.

noise—extraneous signals; any disturbance which causes interference with
the desired signal or operation,

non-volatile memory—a memory that does not lose its information while its
power supply is turned off.

normalization—converting data to a standard format for processing. In
floating-point format, converting a number so that a significant bit (or hex
digit) is the first bit (or four bits) of the fraction.

NOT—a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
This is the one’s complement.

NPN transistor—a junction transistor having a p-type base between an
n-type emitter and an n-type collector; the emitter should then be negative
with respect to the base and the collector should be positive with respect to
the base.

n-type semiconductor— an extrinsic semiconductor in which the conduction
electron density exceeds the hole density.

O

object code—all of the machine code that is generated by a compiler or
assembler. Once object code is loaded into memory it is called machine
code.

octal—refers to the base 8 number system, using digits 0-7.
octal-dabble—conversion of an octal number to decimal by multiplying by

eight and adding the next octal digit, continuing until the last (rightmost)
digit has been added.

240

appendix

OEM-—-Original Equipment Manufacturer.

off-line—-describes equipment or devices which are not connected to the
communications line.

offset value—a value that can be added to an address. Most addressing
modes allow an offset value.

off-the-shelf—a term referring to software. A generalized program that can
be used by a greater number of computer owners, so that it can be mass pro-
duced and bought off-the-shelf.

Ohm-—the unit of resistance of a conductor such that a constant current of
one ampere in it produces a voltage of one volt between its ends.

Ohm’s law—a fundamental rule of electricity; states that the current in an
electric circuit is inversely proportional to the resistance of the circuit and is
directly proportional to the electromotive force in the circuit. In its strictest
sense, Ohm’s law applies only to linear constant-current circuits.

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

on-line operation—-operations where the programmable controller is direct-
ly controlling the machine or process.

operands—the numeric values used in the add, subtract, or other operation.

OR—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

oscillation—any effect that varies periodically back and forth between two
values, as in the amplitude of an alternating current.

output—the current, voltage, power, driving force, or information which a
circuit or a device delivers. The terminals or other places where a circuit or
device can deliver energy.

output devices—devices such as solenoids, motor starters, etc., that receive
data from the programmable controller.

overflow—-a condition that exists when the result of an add, subtract, or other
arithmetic operation is too large to be held in the number of bits allotted.

241

appendix

overflow flag—a bit in the microprocessor used to record an overflow condi-
tion for machine-language operation.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide—an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

P

padding—filling bit positions to the left with zeros to make a total of eight or
sixteen bits.

page—refers to a 256 (2 to the 8th power) word block of memory. How large
a word depends on the computer. Most micros are eight-bit word machines.
Many chips do special indexed and offset addressing on the page where the
program counter is pointing and/or on the first page of memory.

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously.

parallel circuit— an electric circuit in which the elements, branches (having
elements in series), or components are connected between two points, with
one of the two ends of each component connected to each point.

parallel operation—type of information transfer whereby all digits of a
word are handled simultaneously.

parallel output—simultaneous availability of two or more bits, channels, or
digits.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even, the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

242

appendix

parity bit—an additional bit added to a memory word to make the sum of
the number of 1s in a word always even or odd as required.

parity check—a check that tests whether the number of 1s in an array of
binary digits is odd or even.

partial product—the intermediate results of a multiply. At the end, the par-
tial product becomes the whole product.

partial product register—the register used to hold the partial results of a
machine-language multiply.

passivation—growth of an oxide layer on the surface of a semiconductor to
provide electrical stability by isolating the transistor surface from electrical
and chemical conditions in the environment; this reduces reverse-current
leakage, increases breakdown voltage, and raises power dissipation rating.

passive element—an element of an electric circuit that is not the source of
energy, such as a resistor, inductor, or capacitor.

PC—see programinable controller.
PC board-—see printed circuit board.

p-channel—a conduction channel formed by holes in a p-type semiconduc-
tor, as in a p-type field effect transistor.

peripheral devices—a generic term for equipment attached to a computer,
such as keyboards, disk drives, cassette tapes, printers, plotters, speech syn-
thesizers.

permeability—a factor, characteristic of a material, that is proportional to
the magnetic induction produced in a material divided by the magnetic field
strength given by the equation:

magnetic induction (gauss)
~ magnetizing field (oersteds)

m

permutation—arrangements of things in definite order. Two binary digits
have four permutations: 00, 01, 10, and 11.

PILOT—a simple language for handling English sentences and strings of
alphanumeric characters. Generally used for CAI.

243

appendix

PL/1— an acronym for programming language 1. A programming language
used by very large computers. It incorporates most of the better features
from other programming languages. Its power comes from the fact that bits
can be manipulated from the high-level language.

plotter—a device that can draw graphs and curves and is controlled by the
computer through an interface.

port—a single addressable channel used for communications.

P-N junction—a region of transition between p-type emitter and n-type
semiconducting regions in a semiconductor device.

PNP transistor—a junction type transistor having an n-type base between a
p-type emitter and a p-type collector.

positional notation— representation of a number where each digit position
represents an increasingly higher power of the base.

precision— the number of significant digits that a variable or number format
may contain.

print buffer—a portion of memory dedicated to holding the string of
characters to be printed.

printed circuit board—a piece of plastic board with lines of a conductive
material deposited on it to connect the components. The lines act like wires.
These can be manufactured quickly and are easy to assemble the com-
ponents on.

processor—a unit in the programmable controller which scans all the inputs
and outputs in a predetermined order. The processor monitors the status of
the inputs and outputs in response to the user-programmed instructions in
memory, and it energizes or de-energizes outputs as a result of the logical
comparisons made through these instructions.

product—the result of a multiply.

program—a sequence of instructions to be executed by the processor to con-
trol a machine or process.

program panel—a device for inserting, monitoring, and editing a program
in a programmable controller.

244

appendix

program scan—the time required for the programmable controller pro-
cessor to execute all instructions in the program once. The program scan
repeats continuously. The program monitors inputs and controls outputs
through the input and output image tables.

programmable controller—PC. A solid state control system which has a
user-programmable memory for storage of instructions to implement
specific functions such as I/O control logic, timing, counting, arithmetic,
and data manipulation. A PC consists of the central processor, input/output
interface, memory, and programming device which typically uses relay-
equivalent symbols. The PC is purposely designed as an industrial control
system which can perform functions equivalent to a relay panel or a wired
solid state logic control system,

PROM—Programmable Read Only Memory. A memory device that is writ-
ten to once and from then on acts like a ROM.

protocol—a defined means of establishing criteria for receiving and
transmitting data through communication channels.

pseudo code—a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself.

p-type semiconductor-—an extrinsic semiconductor in which the hole densi-
ty exceeds the conduction electron density.

punched-card equipment—peripheral devices that enable punching or
reading paper punched cards that hold character or binary data.

Q

quotient—the result of a divide operation.

R

RAM-—acronym for Random Access Memory. An addressable LSI device
used to store information in microscopic flip-flops or capacitors. Each may
be set to an ON or OFF state, representing logical 1 or 0. This type of
memory is volatile, that is to say, memory is lost while power is off, unless
battery backup is used.

245

appendix

read—-to sense the presence of information in some type of storage, which
includes RAM memory, magnetic tape, punched tape, etc.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a fast-access memory location in the microprocessor. Used for
holding intermediate results and for computation in machine language.

relative addressing—an address that is dependent upon where the program
counter is presently pointing.

remainder— the amount of divident remaining after a divide has been com-
pleted.

residue—the amount of dividend remaining, part way through a divide.

resistor-transistor logic—RTL. One of the simplest logic circuits, having
several resistors, a transistor, and a diode.

resolution—a measure of the smallest possible increment of change in the
variable output of a device.

restoring divide—a divide in which the divisor is restored if the divide “does
not go” for any iteration. A common microcomputer divide technique.

ROM—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

rotate—a type of shift in which data is recirculated right or left back into the
operand from the opposite end.

rounding—the process of truncating bits to the right of a bit position and
adding zero or one to the next higher bit position based on the value to the
right. rounding the binary fraction 1011.1011 to two fractional bits, for ex-
ample, results in 1011.11.

RPG—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

246

appendix

RS-232--an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

rung-—a grouping of PC instructions which controls one output. This is
represented as one section of a logic ladder diagram.

S

scaled up—referring to a number which has been multiplied by a scale fac-
tor for processing.

scaling—multiplying a number by a fixed amount so that a fraction can be
processed as an integer value.

scan time—-the time necessary to completely execute the entire program-
mable controller program one time,

scientific notation—a standard form for representing any size number by a
mantissa and power of ten.

self-diagnostic—the hardware and firmware within a controller which
allows it to continuously monitor its own status and indicate any fault which
might occur within.

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and are called semiconductors.

semiconductor device—an electronic device in which the characteristic
distinguishing electronic conduction takes place within a semiconductor.

sensor—a sensing element, a device which senses either the absolute value or
the change in a physical quantity, and converts that change into a useful
signal for an information-gathering system.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. contrast with parallel.

serial operation—type of information transfer within a programmable con-
troller whereby the bits are handled sequentially rather than simultaneous-
ly, as they are in parallel operation. Serial operation is slower than parallel

247

appendix

operation for equivalent clock rates. However, only one channel is required
for serial operation.

series circuit—a circuit in which all parts are connected end to end to pro-
vide a single path for current.

shift and add—a multiply method in which the multiply is achieved by shift-
ing of and addition of the multiplicand.

shift register—a program, entered by the user into the memory of a pro-
grammable controller, in which the information data (usually single bits) is
shifted one or more positions on a continual basis. There are two types of
shift registers: asynchronous and synchronous.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (—) and 0 is positive (+).

sign extension—extending the sign bit of a two’s complement number to the
left by a duplication.

sign flag—a bit in the microprocessor used to record the sign of the result of a
machine-language operation.

sign-magnitude—a nonstandard way of representing positive and negative
numbers in microcomputers.

signed numbers—numbers that may be either positive or negative.

significant bits—the number of bits in a binary value after leading zeros
have been removed.

significant digit—a digit that contributes to the precision of a number. The
number of significant digits is counted beginning with the digit contributing
the most value, called the most significant digit, and ending with one con-
tributing the least value, called the least significant digit.

silicon controlled rectifier—SCR. A semiconductor rectifier that can be con-
trolled; it is a pnpn four-layer semiconductor device that normally acts as an
open circuit, but switches rapidly to a conducting state when an appropriate
gate signal is applied to the gate terminal.

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer

248

appendix

simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

sink—a device that drains energy off a system; a device that switches a load
to an absorbing material, such as a ground.

software—refers to the programs that can be run on a computer.

solid state devices (semiconductors)—electronic components that control
electron flow through solid materials such as crystals; e.g., transistors,
diodes, integrated circuits.

SOS—silicon on sapphire. A semiconductor manufacturing technology in
which metal oxide semiconductor devices are constructed in a thin single-
crystal silicon film grown on an electrically insulating synthetic sapphire
substrate.

source program— the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

special purpose logic—proprietary features of a programmable controller
which allow it to perform logic not normally found in relay ladder logic.

SPOOL—acronym for Simultaneous Peripheral Output, On-Line. Used to
overlap processing, typically, with printing.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

start-up—the time between equipment installation and the full operation of
the system.

state—the logic 0 or 1 condition in programmable controller memory or at a
circuit’s input or output.

status register-—the register that contains the status flags set and tested by
the CPU operations.

stepper motor—a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines
the tracks on a disk.

storage—see memory.

249

appendix

strip printer—a peripheral device used with a programmable controller to
provide a hard copy of process numbers, status, and functions.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once. Similar to
a macro.

substrate—the physical material on which a microcircuit is fabricated; used
primarily for mechanical support and insulating purposes; however, semicon-
ductor and ferrite substrates may also provide useful electric functions.

subtract with carry—a machine-language instruction in which one operand
is subtracted from another, along with a possible borrow from the next
lower byte.

subtrahend—the number that is subtracted from the minuend.

successive addition-——a multiplication method in which the multiplicand is
added a number of times equal to the multiplier to find the product.

surge—a transient variation in the current and/or potential at a point in the
circuit.

synchronous shift register—shift register which uses a clock for timing of a
system operation and where only one state change per clock pulse occurs.

syntax—the term is used exactly as it is used in English composition. Every
language has its own syntax.

system—a collection of units combined to work as a larger integrated unit
having the capabilities of all the separate units.

system software—software that the computer must have loaded and run-
ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

250

appendix

tape reader—-a unit which is capable of sensing data from punched tape.

TeletypeTM—a peripheral electromechanical device for entering or output-
ting a program or data in either a punched paper tape or printed format.

termination—1) the load connected to the output end of a transmission line
2) the provisions for ending a transmission line and connecting to a bus bar
or other terminating device.

text editor—see word processor,

thumbwheel switch—a rotating numeric switch used to input numeric in-
formation to a controller,

timer—in relay-panel hardware, an electromechanical device which can be
wired and preset to control the operating interval of other devices. In the
programmable controller a timer is internal to the processor, which is to say
it is controlled by a user-programmed instruction. A timer instruction has
greater capability than any hardware timer. Therefore, programmable con-
troller applications do not require hardware timers.

time sharing—refers to systems which allow several people to use the com-
puter at the same time.

track—a concentric area on a disk where data is stored in microscopic mag-
netized areas.

transducer—a device used to convert physical parameters, such as
temperature, pressure, and weight into electrical signals.

translator package—a computer program which allows a user program (in
binary) to be converted into a usable form for computer manipulation.

transistor—an active component of an electronic circuit consisting of a small
block of semiconducting material to which at least three electrical contacts
are made, usually two closely spaced rectifying contacts and one ohmic
(non-rectifying) contact; it may be used as an amplifier, detector, or switch,

transistor-transistor logic—TTL. A logic circuit containing two transistors,
for driving large output capacitances at high speed. A family of integrated
circuit logic. (Usually 5 volts is high or 1 and 0 volts is low or 0; 5V =1,
0V =0).

251

appendix

TriacTM-—a General Electric trademark for a gate controlled semiconduc-
tor switch designed for alternating current power control; with phase con-
trol of the gate signal, load current can be varied over a range from 5 percent
to 95 percent of full power.

truncation—the process of dropping bits to the right of a bit position. Trun-
cating the binary fraction 1011.1011 to a number with fraction of two bits,
for example, results in 1011.10.

truth table—a table defining the results for several different variables and
containing all possible states of the variables.

TTL—see transistor-transistor logic.
TTY—an abbreviation for Teletype.

two’s complement—a standard way of representing positive and negative
numbers in microcomputers.

U

unsigned numbers—numbers that may be only positive; absolute numbers.

utility—a program designed to aid the programmer in developing other soft-
ware,

UV erasable PROM—an ultraviolet erasable PROM is a programmable
read-only memory which can be cleared (set to 0) by exposure to intense
ultraviolet light. After being cleared, it may be reprogrammed.

A%

variable—a labeled entity that can take on any value.

volatile memory—a memory that loses its information if the power is re-
moved from it.

volt—the unit of potential difference or electromotive force in the meter-
kilogram-second system, equal to the potential difference between two
points for which 1 coulomb of electricity will do 1 joule of work in going
from one point to the other.

252

appendix

voltage—potential difference or electromotive force capable of producing a
current; measured in volts.

voltage drop—the voltage developed across a component or a conductor by
the flow of current through the resistance or impedance of the component or
conductor,

von Neumann, John (1903-1957)—Mathemetician. He put the concept of
games, winning strategy, and different types of games into mathematical

formulae. He also advanced the concept of storing the program in memory
as opposed to having it on tape.

w

weighted value-—the numerical value assigned to any single bit as a function
of its position in the code word.

word—a grouping or a number of bits in a sequence that is treated as a unit
and is stored in one memory location. If the CPU works with 8 bits, then the
word length is 8 bits. Common word sizes are 4, 8, 12, 16, and 32. Some are
as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X
XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but

answer is high (1) if and only if one line is high. -

Z

zero flag—a bit in the microprocessor used to record the zero/non-zero
status of the result of a machine-language instruction.

zero page-—refers to the first page of memory.

253

INDEX

255

Address bus(es), 82, 84, 85

Address decoding, 86

Address lines, 83, 89

Amplifiers, audio, 119

ANDs, 82

Array(s), 62, 63, 64, 94, 169

Arrow keys, 147, 155

ASCII, 123

ASCII character codes, lowercase, 185
ASCH codels), 63, 194, 148, 154, 185
ASCII code numbex(s), 149, 151, 152
ASCII dump, 199

ASCII text, 171

ASCH value, 186, 190

Assembler, 199
Assembly-language INKEY$ routine, 186
Assembly-1 ics, 189, 199

Assembly-language program, 199
Assembly-language routine, 186
Asteroid adventure game, description of, 49-50
program listing, 51-53
Averages, computing, 21
Backgammon, compared to Kala, 55
BASIC, 71, 72, 73, 166, 168, 171, 172, 173, 185, 186, 188
191
BASIC commands, 147
BASIC functions, 168
BASIC keywords, as an aid in typing programs, 185-191
program listing, 192-196
Batteries, 88
Baudot, 123, 124
Betting, horse race, 93-95
program listing, 96-99
Binary, 162-163, 164
Binary math, 162-163
Bit(s), 162, 163, 164, 165, 199
Branching, 64
BREAK key, 147, 191
how to disable, 197-198
Buffer, 172
Business form, description of, 15-16
program listing, 17~18
Businesses, neighborhood, 3
Byte(s), 5, 64, 72, 79, 80, 83, 140, 141, 188, 189, 190, 199
address, 85
data, 85
related to bits, 163, 164, 165
Capacitors, 88
Cassette tape interface, how to construct, 119-121
Character codes, 149
Character generator,
lowercase, 79
uppercase, 79
CHRS$, 64, 124, 149, 150, 151, 152, 153
Circulars, advertising, 3
CLEAR, 64, 87
CLEAR key, 147, 151, 155, 166, 167, 190

INDEX

CLOAD, 27, 121, 197

CMD, 167

CMD programs, 173

CMOS, 120

Command code, 72

Compiler, Microsoft's BASIC, 5

Compukala game, description of, 55-56
program listing, 57-61

Computations, making more efficient, 139-140
program listings, 144-145

Computer math, using graphics to teach, 27-28
program listings, 29-45

Control keys, 147
program listing, 157

Counter, 63, 134, 170

CPU, 80, 82, 86, 87

Creativity, 27

Cribbage, compared to Kala, 55

CRT, 84

CSAVE, 27, 121

Dancing Demon program, Radio Shack, 119, 121
DATA, ¢4
Data bank, 62, 63, 64
Data bus(es), 84, 85, 86
Data field, 3
Data lines, 85, 88
Debounce program, 197-198
Declaration of Estimated Tax for Individuals, 101
DELETE, 27
Delimiters, 172
Device control block, 187, 190
DIM, 63, 155
Dimension, 64
DIN plug, 120
Diodes, 88
DIR, 168
Disassembler, 198-200
program listing, 201-213
Disk, saving data to, 107
Disk BASIC, 55, 71, 72, 166, 171
Disk commands, 72
Disk directory, 166-172
program listings, 176-178
Disk menu, 172-174
program listing, 180-181
Disk operating system, 72, 166
Display characters, 149
alphanumeric, 149
graphie, 149
program listing, 157158
Division, simulated by successive subtraction, 72
DOS, 79, 80, 167, 168

EDIT, 27

EDTASM, 120

80 Microcomputing, 1189, 181

Employee's Withholding Allowance Certificate, 100

257

index

EPROM(s), how to build and program, 79-89 Input(s), 82, 85, 95, 119, 120, 134, 186, 190
program listing, 90 address, 86
EPROM memory board, 88 clock, 85
EPROM programmer, 83 data, 86
Error routine, 64 keyboard, 187, 190, 191
Error statement, 64 lowercase, 22
Error trap(s), 4, 6, 55 sequential, 172
Exatron Stringy-FloppyTM unit, 79 uppercase, 22
Expansion interface, 79 INPUT, 27, 173
TRS-80, 88 INPUTY, 172
Expansion port, 79, 88 INPUT#L, 107
File(s), 172 INPUT# - 1, 107, 121
ASCII, 175 Input commands, 147
data, 3 Input devices, 121
directory, 172 INPUT process, 174
disk, 171 INSTR, 168, 169
disk, creating, 3 INT, 27
loading from disk, 5 Integers, 72
master, 175 Integrated circuits, 79, 80, 82, 83
sequential, 171, 172, 173 Interface, 120
Flip-flops, cassette recorder, 119
D-type, 87 cassette tape, 119-121
octal D, 88 expansion, 79
quad D, 86 1/0, 119
Floating-point numbers, 72 to send RTTY, 122-130
FOR loop, 170, 173 Interpreter, BASIC, 185
FOR-NEXT, 27 10,
FOR-NEXT loop, 138, 140, 141 parallel, 126
Form 1040-ES, 101 serial, 126
Form W-4, 100 Jainist philosophy, 56
FREE, 167 Kala, game of, description of, 54-55
Garbage collection, 4, 7 as played on computer, 55-56
Grade calculating, description of, 21-22 program listing, 57-61
program listing, 23-26 KBFIX, 79, 83
Grans, disk, 175 Keyboard bounce, 64
Graphic characters, 7, 150 Labels, printing, 5
Graphic code(s), 148, 149 Latch(es), 85
Graphic code number, 152 data, 88
Graphics, Law of sines and cosines, 28
in bar graphs, 28 Learning Level II (Lien), 4
in games, 28 LED, 89
to display data, 28 LEN, 62
to draw or erase a line, 71-76 Level I BASIC, 140
to téach computer math, 27-45 Level I manusl, 134
GOSUB, 27, 64 Level 11, 62
GOTO, 5 Level I BASIC, 71, 72, 187, 181, 199
Hexadecimal, 164-165 Level II BASIC handbook, 189
High school computer math, using graphics to teach, 27-18 Level IT BASIC manual, 186
program listings, 20-45 Level I BASIC Reference Manual, 79, 83
Horse races, betting on, description of, 93-85 Level II graphics, 73
program listing, 96-99 Level II machine, 22
Hypotenuse of right triangle, using length to find square Lien, David, Learning Level 11, 4
root, 137-138 Light pen(s), 119, 120
program listing, 144 LINEINPUT, 173
1Cs, 85, 88 LINEINPUTY, 172
D flip-flop, 85 LOOP(s), 63, 169
IF-THEN, 64 timing, 174
1IF-THEN-ELSE, 27 Lowercase driver, 83
Income tax withholding, 100-105, 107 Lowercase driver program, 150
program listing, 108-115 Lowercase letter(s), 149-150, 186, 189, 190
INKEY function, 16, 147 using POKE, 150
INKEY$, 64, 174 Lowercase modification, 167
INKEY$ routine, assembly-language, 186 LSET, 71,72

258

L3ERROR, 71, 72
Machine language, 72, 197
Machine-language program(s), 174, 197, 199
Machine-language sort, 171-172
program listings, 179-180
Maclaurin Series approximation, 136
Mailing list programs,
description of, 3-7
for the TRS-80, 3, 7
“occupant,” 3
program listing, 9-14
Memory, 5
4K, 49
16K, 62
video, 166, 168, 169
Mermory address, 150
video, 152
Memory banks, TRS-80, 172
Memory card, 80
Memory location, 150
Memory map, 80
Memory size, 73, 80, 89, 199
MEMORY SIZE?, 186, 187, 188, 189, 191, 197
Memory space, 86, 88
Mental curiosity, 27
Menu, 4
alphabetically listed on each disk, 166, 172-174
disk, 173
program listing, 180-181
Microsoft BASIC, 4
MIDS$, 63, 64, 168, 169
Mnemonics, assembly-language, 189, 199
Model 111, 22
Modems, 119
Multiplication, simulated by successive addition, 72
NAND gate, 80, 87
NEW, 27
NEWDOS, 168, 172, 187
NEWDOS/80, 3, 166, 172, 175
NEWDOS +, 166, 167, 172, 173
Numerator, 72

Object code, 199

ON.. GOTO, 27

Op-code, 199
multiple-byte, 198, 200

OR gate, 87

OS error, 123

Output, 82, 85, 87, 101, 119
sequential, 172

Output devices, 121

Pari-mutuel system of wagering, 93-95
program listing, 96-99

Pascal keywords, 189

PEEK, 49-50, 71, 147, 151-152, 153, 154, 155-156, 167,

168, 170, 199

Pixel(s), 147, 148, 149, 152, 153

POINT, 152

POKE, 63, 147, 148, 149, 150-151, 152, 153, 154, 197, 200
compared to PRINT @xxxxx, CHR$(cec), 151
converting to PRINT, 152
using with PRINT, 155
using with SET, 155

Port,
cassette tape, 119
expansion, 79, 88
input, 119
110, 88
serial, 119
Potentiometer, 125
PRINT, 147, 148, 150, 153, 189
converting to POKE, 152
PRINT@, 148, 150, 151 , 152, 153
converting to POKE oY PEEK, 153

PRINTCHRS, 148, 151, 152 153, 154, 166, 167

PRINT#1, 107, 172
PRINTY¥ - 1, 107, 121
PRINT location, 154
Printed circuit board, 82 88, 120
Printers, 119
Problem-solving, 27
Programy(s),
assembly-language, 199
BASIC, 83, 122, 155, 185, 186, 189, 197
BASIC interpreter, 185
BASIC real-time game, 147
debugging, 5
machine-language, 174, 197, 199
menuy, 172
Program statements, 27
Power series approximation, 136
used to caleulate cosirae, 136
used to calculate natuxel log, 136
used to caleulate sine, 136, 141-142
Puzzles, word-finder, desscription of, 62-65
program listing, 66-63
Pythagorean theorem, 28

Radio Shack, 185

Radio Shack Dancing IZ»€mon program, 118, 121

Radio Shack flyer, 3
Radio Shack manuals, 1.66
Radio Shack store, 119
Radio Shack TRS-80, seve THS-80
RAM, 55, 72, 166, 167, 199
BASIC reserved, 186
memory address of, 150
reserved, 73
Random code generator » i
Random letter(s), 63
array of, 62
Random number(s), 55 » 63, 134
Random-number gener=zator, 49
READ, 63
Recorder, 120
tape, 121
Relay, recorder, 119, 1821
RESET, 27, 71, 87, 147 » 148, 152-153
Reset button, 4, 7
Resistors, 119
pull-up, 89
Ribbon cable, 88, 124
ROM, 71, 151, 186
BASIC, 79, 83
ROM routines, 191
RSET, 71, 72

259

index

RTTY, send and receive, in BASIC 122-127 Video map, 155
program listing, 128-130 program listings, 159-161

RUN, 62, 71, 122, 188 Video memory, 166, 168, 169

Seripsit, 175 Video memory locations, 167

Sequential search, 190 VTOS, 168 L

SET, 27, 71, 147, 148, 152-153 Word-ﬁnder'pu.xzzlts. description of, 62, 65
converting to PRINT or POKE, 153-154 program listing, 66-68

Sine function, from Level I manual, 140-142 X-axis, 148, 153

program listing, 145-148 X-coordinates, 71, 72, 73, 133

Sines and cosines, law of, 28 Y-axis, 1.48, 153

16K machine, 64, 187 Y-coordinates, 71, 72, 73, 133

Sort(s), 170-171 Z.80 d)samen.'tb.ler, 189-200
bubble, 171 program listing, 200-213

machine-language, 171 Z-80 instruction set, 199

program listings for machine-language, 179-180
Shell-Metzner, 171
string, 171
Sort algorithm, 4
Space bar, 147, 155
Square root function from Level I manual, 133-134, 140
program listing, 143-144
Stack, 73
String(s), 62, 169, 170, 172, 188, 189
String array, 170, 171
String input editing, 191
String manipulation, 62
String space, 123
String storage space, 5, 64
Subroutine(s), 6, 62, 63, 140, 171
square root, 134
Switch,
CMOS guad bilateral, 119
normally-open push-button, 89
Syntax errors, 185
SYSTEM, 73, 82
SYSTEM command, 80, 188, 191
System commands, 27
SYSTEM tapes, 120
Tandy, 167
Taylor Series approximation, 136
Terminals, serial, 119
Theorem, Pythagorean, 28
Transistor, 120
TRCOPY program, 79, 83
TRSDOS, 166, 172, 187
TRS-80, 62, 79, 80, 82, 85, 87, 120, 121, 140, 149, 166, 167
174, 185, 197
Level I, 133
16K Level I1, 100
TRS-80 expansion interface, 88
TRS-80 Level II, 48
TRS-80 Level 1 BASIC, 199
TRS-80 Video Worksheet, 27
20-meter band, 128
UART, 123, 124, 128
Uppercase, 185

INDEX COMPILED BY NAN MCCARTHY

. Uppercase characters, 149, 150

Variables, integer, 71, 73

Vector magnitudes, 133

Video display(s), 147
how to save as strings, 154-155
program listing to save as strings, 158

260

~ WAYNE GREEN BOOKS

) prnovh Encyclopedia for The TRS-80* —A ten-volume series to
- e be issued every two months starting July 1981. The
Encyclopedia contains the most up-to-date information
on how to use your TRS-80*.

40 Computer Games from Kilobaud Microcomputing—
Games in nine different categories for large and small
systems, including a section on calculator games.

Understanding and Programming Microcomputers—
A well-structured introductory text on the hardware and
software aspects of microcomputing.

Some of the Best from Kilobaud Microcomputing—
A collection of articles focusing on programming tech-
niques and hardcore hardware construction projects.

How to Build a Microcomputer and Really Understand
It—A technical manual and programming guide that
takes the hobbyist step-by-step through the design, con-
s struction, testing and debugging of a complete

To microcomputer system (6502 chip).

1.8 68
o TECHNIQUES
£1LECTRONICS

Tools and Techniques for Electronics—Describes the
safe and correct ways to use basic and specialized tools
for electronic projects as well as specialized metal work-
ing tools and the chemical aids which are used in repair
shops.

Annotated BASIC—A New Technique for Neophytes—Two volumes ex-
plaining the complexities of modern BASIC, including complete TRS-80*
Level 1T BASIC programs. Each program is annotated and flowcharted to
explain the workings of the program. By following the programs and an-
notation, you can develop new techniques to use in your own programs—or
in modifying commercial programs for your specific use.

Kilobaud Klassroom—A Practical Course in Digital Electronics.—This
popular series, first published in Kilobaud Microcomputing, combines
theory with practice. It starts out with very simple electronics projects and,
by the end of the course, you'll construct your own working microcomputer!

The New Weather Satellite Handbook— This handbook contains all the in-
formation on the most sophisticated spacecraft now in orbit. It is written to
serve both the experienced amateur satellite enthusiast and the newcomer.
The book is an introduction to satellite watching that tells you how to con-
struct a complete ground station. An entire chapter is devoted to microcom-
puters and the Weather Satellite Station.

To order call Toll Free 800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp.

The real value of your com-
puter lies in your ability to use it.
The capabilities of the TRS-80*
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books.

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

