ENCYCLOPEDIA
FOR THE TkS-80"

A library of useful information
for your TRS-80*

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

— VOLUME 3

*Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 3

- I I I |
N T T
PETERBOROUGH NH 03458

Fd

FIRST EDITION
FIRST PRINTING OCTOBER 1981
Copyright © 1980 and 1981 by Wayne Green inc.
Printing in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey, Chris Crocker,
Nan McCarthy, Katherine Putnam
Technical Assistance by Jake Commander,
Kenniston Lord Jr, CPD, Dennis Thurlow
lilustrations Howard Happ
Typeset by Karen Stewart

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green.......... v

BUSINESS

Flex/Form
Jon Mark O'Connor. @ i 3

Inventory
Michael A. Rigsby.0 i i 13

EDUCATION

Algebra Tutor
Anne Weiss. 25

GAMES

Supermaze
Howard F. Batie. 57

Micro Basketball
Charles Weindorf. 67

GRAPHICS

Images
Buzz Gorsky K8BG. 91

HARDWARE

Regulate Your Video Monitor
William Klungle. 97

CTR-80 Modifications
John Simmons....... 100

vii

contents

HOME APPLICATIONS
The Great Girl Scout Cookie Caper

James N. Devlin. 107
Two Energy Savers

Joseph H. Hart.oooieamoiimminene oo 118
INTERFACE
Listen to Your Keyboard

Allen]. Domuret. e 133
A Deluxe Expansion Interface

Frank Delfine.o 144
Interfacing the TRS-80 to the Heath H14 Printer

George A. KRQUSE. + o oo e e 164
TUTORIAL
Saving Machine Language Routines Below BASIC

Edward B. Beach.t 171
CISAB—Backwards BASIC

C. Brian HOMESS. . o .ottt 179
Into the 80’s

Ian R. Sinclair

Part V. oo oo . 192
Part VI e 205

UTILITY
Spool and Despool

H. S. GEMETY. . oo eoi it et e 225
Renumbering Made Easy

JORn Stratigakis.o o oo 236
APPENDICES

AppendiX A. 249

Appendix B.. ... e 250
INDEX e 269

vili

BUSINESS

Flex/Form
Inventory

BUSINESS

Flex/Form

by Jon Mark O’Connor

"hether you're writing two or three in-house memos, 150 letters to

V. V business acquaintances, or inviting 500 friends to your house for
coffee and doughnuts, Flex/Form will take the drudgery out of the job.
Each letter will be personalized. All you have to do is sign the letters and
put them in envelopes.

A 16K machine will allow between 125-150 names and 48K will give
you access to 500. The program works well on disk.

No matter how many lines of text, the letter will appear neatly in the
middle of page. Since this is more of an informal approach to form-letter
writing, I chose not to bother with right justification.

The program has the ability to take any input—up to 30 characters—
and search through the data. Any data statement having that combina-
tion of letters will be sent to either the screen or the printer. Using the two
example data statements in line 1000-1001 we can retrieve both names
from the list by simply typing 80. As soon as 80 is matched, then each
name, address, city, state, etc. will be printed. In-house memos are not
set up exactly as in 1001, but notice there are only three pieces of data in
that line followed by a comma. If the list contained everyone who worked
at Instant Software and 80 Microcomputing and you wanted only the
editorial staff at a meeting, then you would only have to type edit or
editorial. If you wanted to invite only the folks from 80, it might be better
to use the fourth piece of data and insert a code such as E-80 and likewise
E-IS. As long as the code is not a combination that could be in a name or
address then you can use it. Admittedly, the search is slow, but consider-
ing what the computer has to go through, one second per data line is not
all that bad. I recommend that a popular list of names appear high in
your data list. Do not attempt to mix and match names and addresses in
your input. It will not work.

Since this is an informal letter-writer, I chose to allow a maximum of
only 10 lines of text. When typing in this program you may change the
availability of text lines by changing line 260 to meet your needs. The
variable KO is the text counter and also the variable that regulates the
printer spacing. In line 320 notice the expression : FOR LP=1 TO
(32-KO)/2. This controls the spaces from the top of the page to the first
line of your letterhead. An identical expression is in line 360. If you don’t
want your pages to be approximately 11 1/2 inches long, then play around
with the number 32 in each line. You could add another input line that
controls the length of the paper. This is entirely up to you, and since most

business

memo sheets would not be 11 1/2 inches, this may be significant for you to
experiment with. Also, the number 32 is the actual overhead of already-
used lines (letterhead, salutation, line space, etc.). If you want to add a
second or third page of text you will have to consider the overhead and the
fact that there are normally 66 printer lines for an 11 1/2” page. A simple
GOSUB routine will handle this for you.

The Program

The first thing you have to do is type in your name and address, so hit 1.
Develop the habit of using an opening quote mark. If you inadvertently
insert a comma into any input line, you will get an PEXTRA IGNORED
error. Though you can retype the line by hitting 9876, this is a bother, so
use the quote mark. Don’t type in the date now. Briefly, a sample of the
letter with only the above input will be displayed. This is not the way it
will be spaced in your letter.

The screen will show:

9999 TO END : ERROR - HIT 9876
LINE # 1
?

Hit 9999 for now, and you should be back at the menu. You have an-
other option at this point. If you want to bother with a data tape, do it.
Hit 6 and follow the instructions. Use a clean tape for data tapes. Sending
this data to the tape takes all of six seconds. If you’re a fast typist and don’t
mind typing in your name and address each time, you can delete lines
290-310. Change the menu and delete the references to these lines in line
40. This will greatly increase available memory for data lines. Also
change line 390 to read:

noN AT, T YT 1000 [aTaTs's)
VOV L)l LEO L AUVUVU » 4U000

Delete line 400, 1000, and 1001, but I would keep all of the above in the
program until you're familiar with it.

The only operation that will take you out of the program is updating
the data list (4). Insert a couple of data lines beginning with 1010. All
data statements must have the equivalent of four pieces of information.
Any piece that has a comma or colon must have opening and closing quote
marks. Since there are four READs, each line must have commas (exam-
ple in line 1001) in case there are not four pieces. If you want to add data
pieces to each data line, change line 100 accordingly. Insert new READ
statements and similar MID$ (x, P, M) statements. If you use extra data
pieces and use them merely as a location for the search, they need not be
printed; therefore, line 100 should be the only line changed. If this new
data is to be included in the letter, I leave it up to you to alter the rest of
the program.

Having inserted your few data lines for a test, now write a letter. Since
you have left the program, you're going to have to call up the data tape and

4

business

retrieve the information. Read the instructions after hitting 5. You should
be back at the menu after retrieval. Hit 1. Notice that the program knows
you have retrieved the information and from now on all you have to do is
type in the date and the letter. You can type the date “December 12, 1981
with the quotes.

You will see the letterhead and P.S. again. Then you are ready to type a
letter. Make it a short two-liner for now. Type only to the arrow and hit
ENTER. Now hit 9876. The last line you typed will remain on the screen
to help maintain continuity of thought. As soon as you retype the line and
hit ENTER, that line will be replaced.

When you have typed in your two-liner, hit 9999 to return to the menu.
Next hit 3 to see your letter. I have mentioned this many times, but don’t
forget the opening quote mark (disk users may use LINE INPUT for all
INPUT statements to avoid this nuisance). If your text doesn’t look exactly
the way you think you typed it in, then you have probably inserted a com-
ma. Hit 1 again. Retype the date. When you're back at the letter-writing
section, you’ll notice the first line of your text appears at the top of the
screen. Slowly hit the ENTER key until the offending line appears. (You’ll
have to hit ENTER for the second line twice.) Now type 9876 to change
that line and then continue to write the rest of the letter. As soon as 9876 is
entered, all lines below the mistake line are erased from memory.

Now you have a finished letter and are back at the menu. Hit 2 for the
search. By hitting either the down- or right-arrows we will see the com-
plete data list. Hit ENTER. The screen will display:

ENTER FOR LIST OF ALL “;A;”S OR HIT 7777 FOR LETTER? _

Hit ENTER and a maximum of four of the names you have inserted will
appear. Hit ENTER to continue the list. We can now send a letter to one
of the names on the list or return to the menu by hitting 9999. Enter a
name or just a character in one of the names displayed and then hit 7777
for the letter. Within moments a letter will be printed. And that’s all there
is to it.

56 EUSTIS PARKWAY
WATERVILLE, MAINE 04901
12/12/80

WAYNE GREEN

80 MICROCOMPUTING

PETERBOROUGH, NEW HAMPSHIRE 03458
DEAR WAYNE,

YOU ARE CORDIALLY INVITED TO THE MAINE/FLO OPEN HOUSE
continued

business

.

ON JANUARY 16, 1980. WE WILL BE DISPLAYING SOME TRULY RE-
MARKABLE STATE OF THE ART HARDWARE FOR THE TRS-80. WE FEEL
THE BEST WAY TO SHOW OFF OUR FINE LINE OF PRODUCTS IS TO AL-
LOW OUR PROSPECTIVE CUSTOMERS A HANDS-ON DEMONSTRATION
OF THEIR CAPABILITIES.

PLEASE COME TO OUR PARTY. THE DOORS WILL BE OPEN TO A
SELECT FEW FROM 1 P.M. TO 10 P.M. AND WE HOPE YOU CAN BE PART
OF THE FESTIVITIES.

SINCERELY,

JON MARK O’CONNOR

P.S. CALL ME AT 1-207-555-1212

Figure 1. Sample letter

FROM THE PUBLISHER’S DESK
12/12/80

DAVID SYLVER
EDITORIAL STAFF
80 MICROCOMPUTING

DEAR DAVID,
I AM IN DOUBT REGARDING THE NEW LAYOUT OF OUR MAGAZINE.
I WISH TO SPEAK TO EACH MEMBER OF THE EDITORIAL STAFF AT FOUR

O’CLOCK THIS AFTERNOON SO THAT WE CAN DISCUSS SOME MUCH
NEEDED CHANGES.

SINCERELY,

WAYNE

P.S. CALL ME AT EXT. 345

Figure 2. Sample letter

business

Program Listing

18 CLS :

DEF @477,"FLEX / FORM":

PRINT :

PRINT TAB(26)"JON MARK O'CONNOR":

PRINT TAB(26)"56 EUSTIS PARKWAY":

PRINT TAB({26)"WATERVILLE, MAINE ":

FOR T = 1 TO 588:

NEXT :

CLEAR 8@0:

DIM WS(38):

DEFSTR A ~ F,I1,Q,R,T,U:

DEFINT G,K,M,0,P:

KO = 8:

W= 0:

P9

A9
20 CLS :

LK = 1:

PRINT @0,"MEMORY LEFT"; MEM :

PRINT @324,

39 PRINT TAB{18)"ENTER NEW LETTER"; TAB(42)"<1>";A9;"SEARCH FOR NAM
E"; TAB(42)"<2>";A9;"SEE LETETER"; TAB(42)"<3>";A9;"UPDATE DATA
LIST"; TAB(42)"<4>";A9;"GET ADDRESS FROM TAPE"; TAB(42)"<5>";A3;
"SEND ADDRESS TO TAPE"; TAB(42)"<6>"

40 U = INKEYS:

IF U > CHR$(48) AND U < CHR${55)

THEN

ON VAL(U) GOTO 160,68,59,390,310,298:
ELSE

(]

@
CHR$(229)

49
58 CLS :
PRINT @Q128,:
FOR G = 6 TO KO + 1:
PRINT WS (G):
NEXT :
INPUT "HIT ENTER";L:
GOTO 28
68 CLS :
PRINT @980,:
GOTO 88
76 PRINT CHRS$(143); STRINGS$(23,148);" LIST COMPLETE "; STRINGS(23,1
40); CHR$(143):

LK = 1
80 X = B:
vV = 960:

PRINT "INPUT NAME, ADDRESS, OR PHONE # <9999 FOR MENU> ";
CHRS$(92):
PRINT TAB(10):
INPUT "SEARCH ~>";A:
IF LEN(A) > 30
THEN
PRINT @968, CHRS$(255) CHR$(255):
PRINT TAB(18)"INPUT AGAIN. LIMIT TO 38 CHARACTERS.
GOTO 80:
ELSE
IF A = "9999"
THEN
28:
ELSE
CLS
9¢ PRINT @968, "ENTER FOR LIST OF ALL ";A;"'S OR HIT 7777 FOR LETT
ER ";:
INPUT X:
PRINT @346, "SEARCHING":
PRINT @896, CHRS$(255):

M = LEN(A):
0= 1:
RESTORE Program continued

business

106 READ B:
READ C:
READ D:
READ E:
IF B = "%"

THEN
70:
ELSE
FOR P
IF A

1l TO 3@:
MIDS(B,P,M)

non

IF A = MIDS(C,P,M)
THEN
110:
ELSE
IF A = MIDS(D,P,M)
THEN
110:
ELSE
IF A = MIDS(E,P,M)
THEN
110:
ELSE
NEXT :
IF P > 308
THEN

100
118 IF X = 7777 GOSUB 328:
GOTO 168:
ELSE
IF LK = > 2
THEN
PRINT STRINGS$(63,179); CHR$(128);:
ELSE
PRINT STRINGS$(63,176); CHRS(128);
126 PRINT @V, CHR$(191);B;:
FOR G = LEN(B) + (V + 2) TO 35 + V:
PRINT €G,".";:

NEXT
PRINT TAB(37) "TELEPHONE ";:
IF E = °"
THEN
PRINT " <NOT LISTED>";:
GOTO 138:
ELSE
PRINT E;

138 PRINT TAB(62) CHRS$(191):
PRINT CHR$(191);C; TAB{62) CHR${191):
PRINT CHR$(191);D; TAB(S58)"<";LK;">"; TAB(62) CHR$(191):
0=0+1
LK = LK + 1:
IF O = 5 GOSUB 150:
GOTO 189:
ELSE
100
146 0 = 0 + 1:
GOTO 108
150 PRINT TAB(25):
INPUT "HIT ENTER";L:
PRINT ©896, CHRS$(191); TAB(62); CHR$(191):
0= 1:
RETURN
168 IF P9 = 99
THEN
W=20:
GOTO 210:
ELSE
CLS :

business

PRINT @968, "THE DATA SUPPLIED INDICATES THAT YOU HAVE NOT TYPE

D IN SOME IMPORTANT INFORMATION. PLEASE DO SO NOW. IF YO
U NOTICE AN ERROR ON THE PREVIOUS LINE HIT 9876 TO RETURN
T0 THAT LINE."
178 PRINT :

INPUT "TYPE IN YOUR STREET ADDRESS";:Q
186 INPUT "YOUR CITY STATE AND ZIP (PLACE IN QUOTES) ";R:
IF R = "9876"
THEN
178
198 INPUT "TYPE IN YOUR TELEPHONE #";F:
IF F = "9876"
THEN
180
288 INPUT "TYPE IN YOUR NAME";I:
IF I = "9876"
THEN
190:
ELSE
P9 = 99:
GOTO 226
218 CLS :
PRINT @968,"YOU HAVE ENTERED INFO FROM DATA TAPE SO SIMPLY":
PRINT "TYPE IN THE DATE AND THEN YOUR NEW LETTER":
PRINT
22¢ INPUT "TYPE IN DATE FOR LETTER (86/8¢/00)";T:
IF T = "9876" AND P9 = 99
THEN
220:
ELSE
IF T = "9876" AND P9 < > 99
THEN
200:
ELSE
GOSUB 236:
GOTO 258
238 FOR K = 1 TO 1000:
NEXT :
CLS :
PRINT @965,"YOUR LETTERHEAD, NAME AND P.S. WILL APPEAR LIKE THIS
n

FOR HT = 1 TO 1200:

CLS :
PRINT TAB(35)0Q:
PRINT TAB{35)R:
PRINT TAB(35)T:
IF GU = 99
THEN
X = 8:
PRINT €X,:
GOsuUB 388:
GOTO 249:
ELSE
PRINT
240 PRINT TAB(35)"SINCERELY,":
PRINT TAB(35) STRINGS$(20,95):
PRINT TAB(35)1I:
PRINT "P.S. CALL ME AT ";F:
PRINT STRING$(63,34):
FOR HT = 1 TO 1008:
NEXT :
P9 = 99:
RETURN
250 CLS :
GOSUB 378
268 IF KO < @ Program continued

business

ELSE
PRINT @832,"LINE # ";W + 1; TAB(62) CHR$(92):
INPUT W$(W):

IF WS(W) = "9876"

THEN
WS{W) = "%
W=W-=-1:
KO = KO - 1:
GOTO 260:
ELSE
IF WS(W) = "9999"
THEN
288:
ELSE
W=W+ l:
KO = KO + 1:
GOSUB 370:
IF KO = 180
THEN
CLS :
GOTO 280

278 IF KO = 9 FOR KL = 1 TO 16:
FOR OY = 1 TO 58:
NEXT :
PRINT @896," ##### ONE MORE LINE #####"; CHRS(229):
FOR OI = 1 TO 30:
NEXT :
PRINT @896, CHR$({222);:
NEXT :
GOTO 260:
ELSE
260
280 WS{W) = "":
GU = 99:
GOTO 20
299 CLS :
PRINT €@852,"SIGNAL TO SAVE ADDRESS":
PRINT TAB(23)"REWIND DATA TAPE":
PRINT TAB(22)"PRESS PLAY/RECORD":
PRINT TAB{26):
INPUT THIT 12345%;L:
IF L = 12345

THEN
3n0:
ELSE
20
380 CLS :

PRINT @464,"SAVING ALL INFORMATION";:
PRINT # - 1,KO,P9,GU,Q,R,T,F,I:
GOTO 20
318 CLS :
PRINT €852,"SIGNAL TO RETRIEVE ADDRESS":
PRINT TAB(25)"REWIND DATA TAPE":
PRINT TAB(27)"PRESS PLAY":
PRINT TAB(27):
INPUT "HIT 54321";L:
IF L < > 54321
THEN
20:
ELSE
CLS :
PRINT @852,"RETRIEVING ALL INFORMATION";:
INPUT # - 1,KO0,P9,GU,Q,R,T,F,I:
GOTO 20
326 CLS :
LPRINT STRING$(64,45):
FOR LP = 1 TO (32 - KO) / 2:

10

business

LPRINT CHR$(138):
NEXT :
PRINT TAB(35)0Q:
LPRINT TAB(35)Q:
PRINT TAB(35)R:
LPRINT TAB(35)R:
PRINT TAB(35)T:
LPRINT TAB(35)T:
FOR LP = 1 TO 4:
LPRINT CHR$(138):
NEXT :
PRINT B:
LPRINT B:
PRINT C:
LPRINT C:
PRINT D:
LPRINT D:
FOR LP = 1 TO 2
33¢ LPRINT CHR$(138):
NEXT :
FOR G = 1 TO LEN(B):
IF MID$(B,G,1l) = CHR$(32)
THEN
340:
ELSE
NEXT
340 PRINT @448,"DEAR ";:
LPRINT "DEAR ";:
FOR K = 8 T0 G - 1:
PRINT @453, LEFT$(B,K);::
A9 = LEFTS(B,K):
NEXT :
LPRINT A9;:
PRINT ",":
LPRINT ",":
FOR LP = 1 TO 4:
LPRINT CHR$(138):
NEXT :
FOR G = @ TO KO:
PRINT W$(G):
LPRINT W$(G):
NEXT :
FOR LP = 1 TO 5:
LPRINT CHR$(138):
NEXT :
PRINT TAB(35)"SINCERELY,"
350 LPRINT TAB(35)"SINCERELY,":
FOR G = 1 TO 2:
LPRINT CHR$(138):
NEXT :
PRINT TAB(35) STRINGS(28,95):
LPRINT TAB(35) STRINGS(28,95):
PRINT TAB(35)1:
LPRINT TAB(35)1:
FOR LP = 1 TO 4:
LPRINT CHR$(138):
NEXT :
PRINT "P.S. CALL ME AT ";F:
LPRINT "P.S. CALL ME AT ";F
366 FOR LP = 1 TO (32 - KO) / 2:
LPRINT CHR$(138):
NEXT :
LPRINT STRINGS(64,45):
RETURN
37¢ PRINT €788,"9999 TO END : ERROR ~ HIT 9876":
PRINT €0,:
FOR G = @ TO KO - 1:
PRINT WS$(G):
NEXT :
RETURN Program continued

11

380

390

1690

1001
30800

business

FOR G = @ TO KO:
PRINT WS$(G):
NEXT =
RETURN
CLS :
PRINT €966, "PRINT ALL DATA STATEMENTS EXACTLY LIKE THIS.":
PRINT "ANY STATEMENTS THAT HAVE COMMAS MUST HAVE QUOTE MARKS":
PRINT
PRINT "1@00@ DATA DR. JON MARK O'CONNOR,56 EUSTIS PARKWAY,";
SHR$(34);"WATERVILLB, MAINE #4961"; CHRS$(34);",";"1-207-555~1212

PRINT :

PRINT TAB(28):

INPUT "HIT ENTER";L:

PRINT @896, CHR$(222):

LIST 1060 - 29999

DATA WAYNE GREEN,80 MICROCOMPUTING,"PETERBOROUGH, NEW HAMPSHIRE
©93458",1-6@3~555~1212

DATA DAVID SYLVER,EDITORIAL STAFF,80 MICROCOMPUTING,

DATA *,% % *

12

BUSINESS

Inventory
by Michael A. Rigsby

\ften the proprietor of a small business works late at night and all

weekend attempting to keep track of inventory and daily trans-
actions. A computer system can act as a cash register, calculate taxes, print
receipts, tally transactions, maintain inventory records, and request
reorders. You can keep track of 800 items with this system, and the addi-
tion of a disk drive would boost the capacity to over 3000 types of mer-
chandise.

System Operation

Load Inventory. Next, type RUN and press ENTER.
WHAT IS TODAY’S DATE?__

will be displayed on the screen. Enter the date desired, without commas;
press ENTER.

TO OPERATE, TYPE ‘1",

TO USE INVENTORY, TYPE ‘2.

P
For a cash register type operation, type 1; for other functions, type 2.
Assume that a 2 was typed and entered.

MENU
TYPE THE NUMBER REPRESENTING YOUR CHOICE

ALTERING STOCK VALUES

ITEMS IN ALARM

VIEWING STOCK VALUES

RECORDING INVENTORY DATA

READING INVENTORY FROM TAPE

MODIFYING TAX PERCENTAGE

EXAMINATION OF DAY'S RECEIPTS

PRINTING OF INVENTORY VALUES AND ALARMS

O -~ D UL GO DO

P

A 1 enables you to enter stock values and alarm limits. A 2 causes the
computer to search through the inventory for items in alarm. Any items in
alarm will be displayed on the monitor; they will be printed by the
printer if you answer YES to the question, DO YOU WISH HARD COPY
OF THE ALARMS?. The machine takes about 30 seconds to perform this
search. A 3 enables the operator to view inventory values and alarm
values on the monitor, one at a time. A 4 records the values within the
computer onto cassette tape (Inventory Data I or Inventory Data IT). This
requires about 12 minutes for completion. 5 moves inventory data from

13

business

the appropriate tape (Inventory Data I or lnventory Data II) into the
computer. This also requires about 12 minutes. A 6 lets you examine or
change the sales tax rate. This number needs to be entered only once, as it
will become part of the information stored and loaded from the inventory
data tapes. A 7 causes a display to be produced on the monitor similar to
the one below.

TOTAL INPUT FOR THE DAY IS 3.09

TOTAL CHANGE FOR THE DAY IS 0

TOTAL CASH IN TODAY WAS 3.09

TOTAL CHECKS IN TODAY EQUALED 0

TOTAL CREDIT SALES TODAY AMOUNTED TO 0

TOTAL TAXES FOR TODAY EQUALED .09

HIT ENTER TO RETURN TO START MODE

-

An 8 causes the printer to produce a copy of all stock numbers and the in-
ventory available as well as the alarm values which have been set.
Returning to the start:

TO OPERATE, TYPE ‘1.
TO USE INVENTORY, TYPE ‘2.
P
Typing a 1 and pressing ENTER evokes a functional set of questions.
WHAT IS STOCK NUMBER?_, (Answer and ENTER)
HOW MANY ITEMS ARE BEING PURCHASED?__ (Answer and ENTER)
WHAT IS THE PRICE PER ITEM?__ (Answer and ENTER)
The stock number, quantity, price, and subtotal for that item will be
displayed on the monitor and printed.
ANOTHER ITEM?__ (Answer Y or YES or NO and ENTER)
If the answer is yes, the previous questions will be repeated, if no, new
responses appear. The subtotal, taxes, and tota! appear on the monitor
and at the printer.

HOW MUCH MONEY WAS TENDERED? (Answer and ENTER)
WAS IT CASH (1); CHECK (2); OR CREDIT (3)7__
(Answer “1”, or “2”, or “3” and ENTER)
THE CHANGE BACK IS (answer)
HIT ENTER TO CONTINUE?_

Upon depressing ENTER, the monitor will clear and WHAT IS THE
STOCK NUMBER? will occur again. To get back to the menu, type the
word MODE after WHAT IS THE STOCK NUMBER? and the program
will return to start. Table 1 shows a sample sales receipt.

As with any automated system, preparations are required to initiate the
system after which it will be simple to maintain. You must assign a stock
number to each item in the inventory—any number between two and 804.
A card file should be made, one card for each number. On the card should
be the vendor’s name and address along with any information pertinent to
ordering or maintaining that inventory item. Each item within the inven-

14

business

4342 @ 3.45 = 6.9
#35 (1) @ 5.67 = 5.67
42(1) @ 45 = 45
4567 (3) @ 3.89 = 11.67
445 (3) @ .99 = 2.97
4456 (1) @ .23 = .23
SUBTOTAL = 27.89

TAX = .84
TOTAL = 28.73
TENDERED = 30
CASH

THE CHANGE BACK IS 1.27
AUGUST 21 1980

Table 1. Sample sales receipt

tory must be counted for transference to the computer system. Everything
should be tagged with a stock number and the retail price. After comple-
tion, this data must be entered. Once the program is established, it will
never be necessary to take inventory again. The machine will maintain
accurate records. At predetermined levels (you select the level for each
item) an alarm will be available to indicate that it is time to reorder. A
provision is included to store vital information about each transaction on
magnetic tape as the activity occurs. This insures that no transaction need
be lost due to power failure.

Within the keyboard unit (central processor) are memory circuits
(RAM—random access memory). The memory may be filled with instruc-
tions (instructions are called programs; programs are called software) and
data. Data is information (numbers and words) which the operator
wishes to manipulate. Random access memory (RAM) functions only
while the computer is on. If the computer is turned off or if power
fails—for as little as one second— the machine “forgets” everything it had
in RAM.

The system requires four cassette tapes to operate. The first is the In-
ventory program. The Recover program may also be recorded on the
same cassette. Two tapes are reserved for inventory data; these hold the
present status of the inventory. Two data tapes are necessary-—one for the
morning and one for the evening—to assure preservation of the inventory
list. Suppose a power failure occurs in the evening while the day’s inven-
tory is being transferred to tape. That tape and the computer memory
would contain meaningless data. The Recover Data tape (transactions of
one day) and the morning inventory tape (the correct inventory list before
the present business day) could be used to rebuild the current inventory

15

business

list and transfer it to tape (at which point the new tape would become the
next day’s “morning” tape). The fourth tape is Recover Data, used if the
computer “forgets,” due to power loss.

On a typical day, the machine must be turned on and Inventory
loaded. Next, the Inventory Data tape (the one with the more current in-
ventory values) must be read into the computer. Before operating the
system, the Recover Data tape must be rewound and placed into the
recorder with the recorder set up in the record mode. At the end of the
day pull the microphone plug out of the recorder and allow about five
seconds of nothing to be recorded on the tape. This is done so that the
Recover Program can find the end of data if necessary. Insert the Inven-
tory Data tape that is not most current (do not use the same one used in
the morning), and record the inventory data onto the cassette. Label the
Inventory Data tapes in such a manner as to know which is most current.
It will be used in the morning.

STOCK NUMBER QUANTITY
34 2
35 1
2 1
567 3
45 3
456 1
0 0
0 0
0 0
0 0
654 3
46 4
0 0
0 0
0 0

Table 2. Recovered data

Trouble?

Incorrect entries may be modified easily. If an incorrect stock number,
quantity, or price is entered, complete the information requested until
ANOTHER ITEMP?__is displayed. Carefully observing the incorrect line,
repeat the stock number as previously typed; repeat the quantity,
preceding it with a minus sign; repeat the price as previously typed. This
will negate an incorrect line and the system will be ready to operate
normally,

16

business

If the power fails, record about five seconds of nothing on the Recover
Data tape as described previously. Remove that tape. Load the Recover
program. Return the Recover Data cassette to the recorder and place the
recorder in the play mode. Recover causes the printer to list the stock
number and quantity of each item purchased until the power failure. It
may or may not contain the transaction in progress when the power failed.
Load Inventory and then load the inventory data tape from the morning.
The printed list prepared by Recover must be entered manually into the
computer. Table 2 shows a sample list of recovered data.

Obviously this will take time, possibly more than can be spared in the
middle of a business day. Another option would be to remove the Recover
Data tape and load Inventory. Modify the tax percentage in the inventory
program (put in the sales tax rate); reload the Recover Data cassette (plac-
ing the recorder in record mode) and run the program. Doing this will
take two or three minutes; the Recover program can be used at the end of
the day to get the inventory straight.

Conclusion

When operating Inventory, a time delay of about five seconds occurs
after five stock numbers are entered or when ANOTHER ITEMP__ is
answered with NO. Stock numbers and quantities purchased are being
recorded on Recover Data during this time. The 12 minutes consumed
transferring the inventory data to and from tape are directly proportional to
the number of items in the inventory list; if 1400 items were used, the time
would be about 21 minutes. If you want to program to handle more than
800 items, additional memory must be acquired. A few program changes are
necessary to handle additional items and they are listed below:

5 DIM INV (804,2)

410 IF S =805 THEN 490
512 IF I>804 THEN 515
606 IF D>804 THEN 1900
1000 IF B>804 THEN 1100

1325 IF A =804 THEN 1350
1425 IF A =804 THEN 1450

In all lines listed except 410 the number 804 appears. 804 must be
changed to the new limit, the new limit being a number which is divisible
by six with no remainder. The 805 in line 410 must equal the new limit
plus one.

The program, written in BASIC, uses a two-dimensional array to store
the inventory information. Most program lines contain single statements
and as such are not overly difficult to follow. Start with a small system,
learn how it works and how to change things; then it will be easy to assess
the feasibility of further expansion.

17

31

35
48
45
46

415
425

426
4309
432

435
490
495
500
565
510
512

513

514
515
516
528
525
530

business

Program Listing 1. Inventory

DIM INV(804,2)
CLS

INPUT "WHAT IS TODAY'S DATE";Q$
CLS
PRINT "TO OPERATE, TYPE 'l',"
PRINT "TO USE INVENTORY, TYPE '2',"
INPUT "";A
IFA=1
THEN
49
IF A =2
THEN
58
GOTO 18
CLS
INPUT "WHAT IS STOCK NUMBER";B
IF INV(1,1) = @
THEN
1708
GOTO 1489
CLS
PRINT " MENU"
PRINT ® ©
PRINT " "
PRINT "TYPE THE NUMBER REPRESENTING YOUR CHOICE."
PRINT
PRINT "1 ALTERING STOCK VALUES"
PRINT "2 ITEMS IN ALARM"
PRINT "3 VIEWING STOCK VALUES"
GOTO 550
GOTO 16
O PRINT "THE PRESENT SALES TAX RATE IS ";INV(1l,1)
CLS
GOTO 4808

PRINT "STOCK NUMBER";S;"QUANTITY";A;"ALARM VALUE";B
IF VV = 1
THEN

LPRINT "STOCK NUMBER";S;™ ";A;" ";B
GOTO 465
INPUT "TYPE ENTER WHEN YOU WISH TO CONTINUE";Z$
GOTO 10

CLS
PRINT “"YOU ARE IN THE STOCK ALTERING MODE,"
INPUT "WHAT IS THE STOCK NUMBER YOU WISH TO EXAMINE";I
IF I > 824
THEN
515
IFI <2
THEN
515
GOTO 520
PRINT "YOU HAVE CHOSEN AN INVALID NUMBER, TRY AGAIN"

GOTO 518

PRINT "HOW MANY OF THE ITEMS ARE THERE?"
INPUT INV(I,1)

PRINT "WHAT IS THE PRESET LIMIT?"

18

business

535 INPUT INV(I,2)
537 INPUT "DO YOU WISH TO ALTER ANOTHER NUMBER";B$
540 IF B$ = "NO"

THEN
1@

545 GOTO 508
547 GOTO 50
550 PRINT "4 RECORDING INVENTORY DATA"
552 PRINT "5 READING INVENTORY FROM TAPE"
553 PRINT "6 MODIFYING TAX PERCENTAGE"
554 PRINT "7 EXAMINATION OF DAY'S RECEIPTS"

555 GOTO 5800
556 GOTO 1500
557 GOTO 1200
560 GOTO 19
6068 CLS
665 INPUT "WHAT NUMBER DO YOU WISH TO VIEW";D
686 IF D > 884
THEN
1909
619 PRINT "THE STOCK NUMBER 1S";D
615 PRINT "PRESENTLY THERE ARE";INV(D,1)
62¢ PRINT "THE ALARM VALUE IS";INV(D,2)
625 INPUT "DO YOU WISH TO VIEW ANOTHER NUMBER";D$
630 IF D$ = "YES"
THEN
608
648 GOTO 19
1660 IF B > 804
THEN
1ige
1062 IF B < 2
THEN
1198
1865 INPUT "HOW MANY ITEMS ARE BEING PURCHASED";C
1616 D = INV(B,1)
1815 D = D - C
1920 INV(B,1) =D
1625 INPUT "WHAT IS THE PRICE PER ITEM";E
193¢ F = C * E
1635 PRINT "# ";B;" QUANTITY ";C;" PRICE ";E;" TOTAL ";F
1037 LPRINT "#";B;"(";C;") @";E;"=";F
1938 GOTO 7089
1040 G = F + G
1645 INPUT "ANOTHER ITEM";AS$
1859 IF A$ = "y"
THEN
45
1652 IF A§ = "YES"
THEN
45
1653 GOTO 7030
1654 PRINT " SUBTOTAL=";G
1655 LPRINT " SUBTOTAL=";G
1656 H = INV(1,1)
1657 K G*H
1858 K INT(K * 100 + ,5) / 100
1059 GOTO 18049
1968 INPUT "HIT ENTER TO CONTINUE";AS
1061 G = @
1865 IF A$ = "MODE"
THEN
10
1468 CLS
1878 GOTO 45
11288 PRINT "INVALID STOCK NUMBER, PLEASE TRY AGAIN"
1185 GOTO 45
12¢¢ INPUT "DO YOU WISH TO RECORD THE INVENTORY DATA";HS$
1205 IF H$ = "YES" .
THEN Program continued

nouon

19

1210
1215

1220
1300
1305
1319
1315
1320

1325

1339
1358
1355
1360
1365
1490
1485
141¢
1415
1420

1425

1430
1458
1455
1460
1465
1588
1538
1535
1536
1769
1785

1718
1715
1720
1800
1801
1882
1805
1819
1811
1815
1816
1828
1821
1822
1825
183
1831
1832

1833
1834
1835
1837
1838
1840
1980

business

1368
INPUT "DO YOU WISH TO READ INVENTORY FROM TAPE";HS$
IF H$ = "YES"

THEN

1400
GOTO 10
CLS
INPUT "PREPARE THE TAPE RECORDER, HIT ENTER WHEN READY";A
A= -6
A=A+ 6
PRINT # - 1,INV(A,1),INV(A,2),INV((A + 1),1),INV{{(A + 1),2),INV(
(A + 2),1) , INV((A + 2),2) ,INV((A + 3),1) ,INV((A + 3),2),INV((A
+ 4),1) ,INV({(A + 4),2),INV((A + 5),1),INV((A + 5),2)
IF A = 804

THEN

1350
GOTO 1315
PRINT
GOTO 10
INPUT "HIT ENTER TO RETURN TO START":A
GOTO 10
CLS
INPUT "PREPARE THE TAPE RECORDER, HIT ENTER WHEN READY":A
A=-6
A=A+ 6
INPUT & - 1,INV(A,1) INV(A,2) ,INV((A + 1),1) ,INV((A + 1),2),INV(
(A + 2),1) ,INV((A + 2),2) ,INV((A + 3),1),INV({(A + 3),2),INV((A
+ 4),1) JINV((B + 4),2) ,INV((A + 5),1) ,INV((A + 5),2)
IF A = 864

THEN

1450
GOTO 1415
PRINT
PRINT "FINISHED INPUTTING"
INPUT "HIT ENTER TO RETURN TO START";A
GOTO 10
ON A GOTO 500,400,600,1300,1400,2000,2100,6000
PRINT "YOUR CHOICE WAS INVALID, HIT ENTER TO TRY AGAIN,"
INPUT A
GOTO 10
CLS
PRINT "THE TAX VALUE IS @, THE PROGRAM REQUIRES SOME TAX FOR OPE
RATION®)
PRINT "HIT ENTER AND GO TO TAX TABLE TO ENTER TAX VALUE."
INPUT A

GOTO 16

PRINT " TAX=";K

LPRINT " TAX=";K

GOTO 2508

L =G+K

PRINT * TOTAL=";L

LPRINT © TOTAL="; L

INPUT "HOW MUCH MONEY WAS TENDERED";Z1

LPRINT " PENDERED="; %1

INPUT "WAS IT CASH (1); CHECK (2); OR CREDIT (3)";72

GOTO 3000
ON 22 GOTO 2200,2300,2400
GOTO 2160
23 = 0
23 =21 - L
IF 23 < .81
THEN
2600
PRINT "THE CHANGE BACK IS ";%3
LPRINT " THE CHANGE BACK 1IS";23
LPRINT Q$
LPRINT
LPRINT
GOTO 2158
PRINT "INVALID CHOICE, TRY AGAIN"

20

business

1985 GOTO 685
2000 CLS
2085 INPUT "DO YOU WISH TO VIEW THE PRESENT SALES TAX";AS$
201¢ IF AS$ = "YES"
THEN

2050
2015 PRINT "WHAT IS THE SALES TAX YOU WISH TO INPUT?"
2820 INPUT INV(1,1)
2025 PRINT "HIT INPUT TO RETURN TO START"
2039 INPUT A
2035 GOTO 18
2058 PRINT "THE PRESENT SALES TAX IS ";INV(1l,1)
2060 GOTO 2825
2108 CLS
2118 PRINT "TOTAL INPUT FOR THE DAY IS ";z4
2115 PRINT "TOTAL CHANGE BACK FOR THE DAY IS ";Z6
2120 PRINT "TOTAL CASH IN TODAY WAS ";27
2125 PRINT "TOTAL CHECKS IN TODAY EQUALED ";Z8
213@¢ PRINT "TOTAL CREDIT SALES TODAY AMOUNTED TO ";Z9
2135 PRINT "TOTAL TAXES FOR TODAY EQUALED ";K1l
2137 M9 = Z4 - %6 - K1
2138 PRINT "THE TOTAL INCOME FOR THE DAY, LESS TAXES IS ";MS
214@¢ PRINT "HIT ENTER TO RETURN TO START MODE"
2145 INPUT A
2147 GOTO 190
2150 24 = 21 + 24
2155 26 = Z3 + 26
2157 GOTO 1068
2160 PRINT "INVALID CHOICE"
2165 GOTO 1828
22068 27 = Z1 + %7
2216 GOTO 1838
2308 28 = Z1 + 78
2316 GOTO 1830
2400 29 = 21 + 29
2418 GOTO 183¢
258 K1 = K + K1
2518 GOTO 1885
2608 23 = @
2618 GOTO 1833
3862 ON 22 GOTO 3858,3055,3060
3915 GOTO 1822

305¢ LPRINT " CASH"
3852 GOTO 1822
3055 LPRINT " CHECK"
3057 GOTO 1822
3068 LPRINT " CHARGE"

3062 GOTO 1822
4000 INPUT "DO YOU WISH HARD COPY OF THE ALARMS";AS
4005 VvV = @
401¢ IF A$ = "YES"

THEN

v = 1
4020 PRINT "SEARCHING FOR ITEMS IN ALARM"
4630 GOTO 482
5080 PRINT "8 PRINTING OF INVENTORY VALUES AND ALARMS™
5005 A = @
5018 INPUT A
5020 GOTO 1500
6008 S = 8
66010 S = 85 + 1
6820 LPRINT S; " PsINV(S,1) ;" ":INV(S,2)
6630 IF S = 800

THEN

10
6040 GOTO 6010
7008 L2 = L2 + 1
7018 ON L2 GOTO 710@,7200,7300,7400,7560
7039 PRINT # - 1,L3,L4,L5,L6,L7,L8,M4,M5,M6,M7
Program continued

21

business

7035 L3

se as ok 20 ae w0 w0 as e

]
w0
gonononwnwng g

7040 L2
71898 L3 =

B
=

7288 L5 =

7380 L7 =

-3
=

7408 M4 =

e Sian g0 Baee en 1) wr s TR s o2 T s
e
=

7500 M6 =

7510 PRINT
7515 L3

- 1,L3,L4,L5,L6,L7,L8,M4,M5,M6,M7

R

FOOOSSSRNESSESS AUHAFTFAEE AFRONHSSSSSSNDS RS

=
wn
o Nw D BN HY

e
Y
=

Program Listing 2. Recover

SREM RECOVER
18 CLS
28 INPUT "PREPARE TAPE RECORDER AND HIT ENTER WHEN READY";A
38 CLS
48 PRINT "STOCK NUMBER","QUANTITY"
5¢ LPRINT "STOCK NUMBER®,"QUANTITY"
68 INPUT § - 1,A,B,C,D,E,F,G,H,I,J
78 PRINT A,B
8¢ LPRINT A,B
98 PRINT C,D
168 LPRINT C,D
118 PRINT E,F
128 LPRINT E,F
138 PRINT G,H
148 LPRINT G,H
158 PRINT I,J
166 LPRINT I,J
178 GOTO 68

22

EDUCATION

Algebra Tutor

23

EDUCATION

Algebra Tutor

by Anne Weiss

In September of 1980, St. Peter’s High School in New Brunswick, NJ in-
vited 20 eighth graders to take an Algebra I course. Our purpose was to
offer non-traditional material to these above-average students and in-
troduce the students to the computer—a 16K Level II TRS-80. Since I had
some experience developing usable programs I decided to develop our
programs.

Six programs are listed at the end of this chapter. Many REM state-
ments and a list of variables are included for each one. Look at the begin-
ning REM statements to find the line number to go to if you want to see
scores when the program is interrupted at the end of a class period before
all the students are finished.

Program Listing 1

Program Listing 1 serves many purposes. Basically it is an introduction
to using the computer. The program also reviews arithmetic and order of
operations.

First, the students are shown how to run a program. Once that is done,
they see the directions on the screen as well as the symbols for zero (0) and
for multiplication (*). The program then goes on to take roll. We did this
because only five or six students use the computer at a given time, and we
never know who will be in the group for any one use. Besides, it lends a
nice personal touch. At first, they didn’t know that their names were
entered as DATA statements. Thisleads to a discussion of what computers
can and cannot do.

Students who are currently using the computer are given four
arithmetic questions of the form X(Y + Z) or XY + Z. The variables are
randomly chosen with X ranging from .1 to 30, Y from 1 to 50, and Z from
1 to 90. If a wrong answer is entered, the student is told the correct one.
This stimulates finding out what was done incorrectly. At the end of four
problems, the student is given his or her score.

After everyone has a turn, all scores are shown. Students not receiving
100 percent are then given a chance to answer four new problems. An ap-
propriate message is given at the end of each student’s turn, depending on
whether the score was raised, lowered, or remained the same. The pro-
gram continues until each student achieves 100 percent. With only five or
six in each group, this is usually done within a 40-minute period. We find
that any student who gets below 100% after the second round receives

25

education

“group tutoring” from his classmates on the next turn.

We discovered that we can use this program with our arithmetic
students also. A few DATA statement changes is all that it takes along
with changing the number-of-students variable (N) in line 120. We have
used this program both with and without calculators and are pleased with
it either way.

We plan to use this program for drill and practice of other concepts. All
that has to be done is to change the formula within the loop in lines
370-500 and the random variable assignment in lines 890-910.

Program Listing 2

We were quite pleased with the success of Program Listing 1. The
students pestered us to let them use the computer again and didn’t want to
wait their group’s turn. At this point we were still reviewing decimal
arithmetic with the eighth graders. We decided to break them into groups
of ten this time, and to let them work at their seats on a review sheet.

Program Listing 2 was written as a computerized answer-key. By now,
we were very aware of the need for variety with this group of youngsters.
Therefore, the format of Program Listing 2 had to be different from the
last one. Music made that difference! Thanks to one of my computer
students, John Dondzila, I was able to insert a small assembly-language
routine in the BASIC program. The AUX cable of the cassette recorder
must be plugged into an amplifier (we use the small Radio Shack one).

The music program is loaded into memory by a series of POKE state-
ments. Line 120 takes care of reserving the 28 memory locations needed
for the program. The decimal address of 32738 works with a 16K Model
I. If you are using something else, find the value of the top of your memory
and subtract 28. Substitute that value for AD in line 120. To run the pro-
gram without the music, simply delete lines 90-160, 540, 610-622.

After working at their seats on the decimal review sheet, the students
come up to enter their answers into the computer. This time, the student
sees a list of his or her classmates on the screen. For each student there is a
number, his or her name, and his or her score thus far. After entering his
or her number, the student enters the answer to each problem. Should the
student give a wrong answer, a raspberry-like buzzer is emitted and the
student is told to redo the problem. When the student comes back to the
computer, he or she will continue the sequence of problems. This con-
tinues until all problems are answered correctly. When that happens, a
musical “cheer” sounds. And so it goes until each student gets 100 percent.

This program can easily be adapted to be an answer-key to any work
sheet. The value of P (number of problems) is in line 190. The answers are
in lines 730-750.

26

education

Table 1 shows the review sheet for Program Listing 2.

NAME DATE

CLASS TEACHER

Review of Decimal Fraction Operations

Compute these decimal problems. Place your answers in the space at the bottom of the page.

L 3375 2. .08/T.888 3. .31/10.757
4. 3.206 + .7 = 5. 11.82 — 6.13 =
6. $13.42 7. 8.69 8. 13
x 5 x.9 —4.068
9. 200.653 10. 37.5 — 27.2846 =
—109.61
11. 4.2653 x 5 =
12 21.257 13. 10.00001
8.6 —5.64514
+_ 2.5806
4. 16 15. 100.
1.73 — 34.23891
1.124
2574
+ 75458

Table 1. Work sheet for Program Listing 2

Program Listing 3

Eventually we got around to introducing some algebra concepts. Pro-
gram Listing 3 serves as drill and practice for order of operations using
signed numbers.

The program starts by having someone take roll for the whole class.
Since only five or six students use the program at any one time, this is a
necessary chore. As with Program Listing 1, absent students are flagged
by having their scores, S(I), set equal to —1 in line 230. Once a student is
marked absent, he or she is not called on again for the duration of the
program.

I decided to use the idea of a contest as the format for this program. The
object is to see which student can get the most right out of five problems.

27

education

Students must simplify problems of the form X+ (Y + Z) or ~X~Y+ Z or
—X-Y)+Zor —X+Y+Z)or (—X+Y)+ (—Z) where X, Y, and Z are integers
or decimals between — 20 and 20, but not zero.

As the program is listed here, there are five turns per student. To
change that number, adjust the value of T in line 110. The student is told
the correct answer whenever he or she gives a wrong reply. After each stu-
dent has had five turns, the name of the student with the highest score ap-
pears on the screen.

Program Listing 4

By now, the students were solving linear equations of the form
Ax+By=C where A, B and C are decimals or whole numbers. Program
Listing 4 offered the students a chance to solve such equations in any one
of. four levels of difficulty. Level 1 generates equations of the form
X-+12=35. Level 2 gives slightly harder ones, such as X+ 22.9=47.1. Then
comes level 3 with 5X— 3= — 8. Finally, level 4 offers equations of the form
—3X+17.4=94.1. The students choose their own level of difficulty, which
means they usually try the hard ones first.

Students entering an incorrect answer are given the correct one, so that
they may check their work. The program is written to give every student
five turns. To change that value, adjust T in line 110.

This program also starts out by having someone take roll. It ends after
five turns with screen display of the students’ scores. There is a provision
here for the program to be repeated (line 440). If it is, the students have a
chance to change the level of difficulty before getting more equations to
solve.

Program Listing 5

It was time to change our program format. We were now aware that
the eighth graders enjoyed competition. They not only were pestering us
to let them compete against each other, but were also bragging about
being able to take on the top level Algebra I classes of ninth graders. Time
would not allow the luxury of having 55 more students work individually
with the computer. I therefore wrote the next program to include teams
as well as individuals. Instead of having student names as part of the pro-
gram data, the kids are asked to enter their names.

To heighten the element of competition, a timer was added to the pro-
grams. Program Listing 5 allows up to two minutes to answer problems of
the form .05X+ .04(500 - X) =22,

There are 24 equations with their answers stored as data. Each student
or team (up to six) gets four turns at solving randomly chosen equations.
Once an equation has been correctly solved, it no longer can be given as a

28

education

problem. This is accomplished by setting correctly answered equations
equal to the null string, E$(X) =", in line 460. One of the 24 equations is
randomly chosen in line 340, using X = RND(24). If that equation is the
null string, X is increased by 1 until a non-null one is found (lines
350-360). To keep X within bounds, a wrap-around is provided in line
350 (IF X=25 THEN X=1).

The timed input didn’t seem like much of a challenge until the students
were turned loose on the program. I never knew kids could push so many
wrong keys. The timer routine was then rewritten to include only what
we want, and to exclude everything else.

The timer-counter C is set at 5000 for two minutes time. H$ holds the
pieces of the student’s answer until ENTER is pushed. The routine starts
by clearing both in line 380. It then scans the keyboard using INKEY$, in-
crements the counter, checks if time is left, and goes back to the keyboard
scan. The loop is broken either when time runs out (lines 390 and 410) or
ENTER is pushed (line 420). Only numbers or the decimal point are ac-
cepted, printed on the screen, and stored in H$ (lines 400 and 440). The
back-arrow is accepted only if there is something in H$. In that case, the
previous character is deleted from both the screen and H$ (line 430).
When ENTER is pressed, A is set to the final answer (lines 420 and 450).
If time runs out, the student is told that he or she took too long to answer
(lines 390, 410, and 650). The next student then gets called upon.

Lines 500-520 and line 120 allow for a flashing message to be displayed
at the bottom of the screen. It’s the old “Press ENTER to continue” with a
new set of clothes.

Program Listing 6

The final program (Program Listing 6) covers five different work
sheets, each containing 30 different problems of a given type. Only two
are listed in the program to save space. Tables 2 and 3 show sample work
sheets. Up to six individuals or teams can use the program at one time.

After finding out the names of the students and which work sheet they
are using, the program proceeds to assign different problems to each stu-
dent. Lines 310-380 read the correct answers, randomly pick five prob-
lems for each student or team, and display those problem numbers on the
screen. F(X) serves as a flag for which problems have (1) or have not (0)
been assigned, so that no two students get the same problem. H(L,]) serves
as a holder for the Ith student’s problem number. For example,
H(3,1) . . . H(3,5) are the numbers of the five problems assigned to stu-
dent number three.

Once the problems have been assigned, the students work out their
respective equations from the given work sheet. I usually give them five or

29

education

six minutes before asking them to enter some answers. To keep things
moving, the program is designed to allow students to skip any unanswered
problems for the time being by just pushing ENTER (lines 450, 480, 490).
In that case, they are told to try that one later. This way, we don’t have to
wait for everyone to finish before answers are checked. Also, any incor-
rectly answered problems must be redone and entered on the student’s

Do not write on these sheets. Use scrap paper to solve for X.

1. .8X = 5.68 2. X+ .7=054

3. .04X = 100 4. 85X = 20

5. 104X = 52 6. X=21

7. 1.25X = 625 8 3X=.6

9. 09X =172 10. 6X = .12

1. X+ 5= 36 12. 3X 4+ 2= .8
13. X+ 2=47 14. 5X 4+ .8=33
15. X + 3.54 = 5.8 16. 24X + .15 = .87
17. X — 4=625 18. 3.2X - 3= 6.1
19. X -3=.27 20, 6X - 8=4
21, X — .02 =25 22. .2X ~ .7 = .78
23, 8=X+ .3 24, 04X + 8 = 104
25, 12 =X~ 14 26. 1.02X + 4.8 = 55.8
27. X~-2=285 28. 2.5X — .5 =245
28, X+ 36=290 30. 24 + 8X = .64

Table 2. Work sheet number 1

Do not write on these sheets. Use scrap paper to solve for X.

1. 3X + 12X =45 2, 4X + 2X= .24+ 3X
3. 37X+ 2.1X = 87 4 X4+ 4= .6X+2

5. 42X — 3.6X = 9.6 6. 18X + .5X ~ 48 = .7X
7. X + .04X = 104 8 .05X + 1.8 = .25X — .2

9. 92X - 124 = .3X 10. 1.2X + .05X = .I5X + 5.5
11, 8X - 6= .2X 12. 04X — 5) = 4

13. X + .05X = 525 4. 3(X - 2) = .2X

15. 1.2X— .08 = .8X 16. .02(X + 6) = .04X

17. 40 - 3.5X = .5X 18. .06(X — 5) = .05(X — 4)
19. 2.6X - .8 = .6X 20. .25(X + 60) = 6 + X

21. 6X + .3=.3X+ .9 22. .75(X + 6) = 21

23, X +35=.7X~ .1 24. 06X = .08(X — 50)

25. 06X — .25 = .03X + .35 926. .04X + .05(500 — X) = 23
27. X + .05X + .02X = 321 28. .03X + .02(800 — X) = 19
29. 2X + 1.08X — 30.6 = .02X 30. 06X + .04(1500 — X) = 72

Table 3. Work sheet number 2

30

education

next turn. C(X) keeps track of which problems have been correctly
answered.

The program continues until each student (or team) gets 100 percent.
Here again, we have students helping each other after the second round of
inputs. That really works well here, because the “tutors” are working on
different problems than they previously solved.

Future Programs

We can adapt these programs to any group by just changing a number
here or there and a few DATA statements or formula generators. The for-
mats are varied enough so that we can keep the students from being bored
by simply rotating their use.

Our next project will be fixing the programs up with some really simple
questions and letting the faculty and administration use them. We must
help dispel the fear of computers that can turn an intelligent human into a
shaking bowl of gelatin!

31

10
20
30
40
58
60
78
80
9@

108
119

120

130
140

150
160
170
180
199
268
219
220
236

249

250

260
270

280

299

3008

318

3209

'| * * * * * * * * * * * *
I PROGRAM ONE
] * % ORDER OF OPERATIONS AND ARITHMETIC
' * % GOTO 598 TO DISPLAY SCORES AFTER A BREAK
' * * PROGRAM RUNS UNTIL EVERYONE GETS 180%
s s BY ANNE WEISS
: * % T PETER'S H.S5., NEW BRUNSWICK, NJ §8981
; * * * * * * * * * * * *
i
REM INITIALIZATION AND DIRECTIONS
i
CLS :
N = 20:
DIM S{N):
T =4
PRINT "H EL L O 1"
PRINT :
PRINT :
FOR I = 1 TO N:
S(I) = - 2:
NEXT
PRINT "LET'S SEE WHAT YOU REMEMBER ABOUT ARITHMETIC"
PRINT "I WILL ASK YOU SOME SIMPLE QUESTIONS,"
PRINT "TYPE IN YOUR ANSWER AND THEN PUSH THE WHITE ENTER KEY"
PRINT :
PRINT "I USE THE SYMBOL § FOR THE NUMBER 'ZERO'
PRINT "I USE THE SYMBOL * TO STAND FOR MULTIPLICATION®
PRINT "YOU WILL EACH ANSWER";T;"QUESTIONS"
PRINT
INPUT "ARE YOU READY TO BEGIN ";Q$
IF LEFT$(0Q%,1) = °N® PRINT “NOW ¥j:
GOTO 220
RESTORE :
F=0:
cLS
i
REM MAIN LOOP...LINES 280 - 570
;
FOR I = 1 TO N:
READ N§
IF S(I) = T OR S(I) = - 1
THEN
570
REM SKIP ABSENT OR FINISHED STUDENTS
IF S(I) > = 6
THEN
339
REM TAKE ROLL ONLY ONCE
PRINT :
PRINT "IS ";N$;:
INPUT " HERE "“;QS:
S(I) = 6
IF LEFTS$(0$,1) = "N"
THEN
S(I) = - 1:

education

Program Listing 1. Order of operations and arithmetic

32

33¢
340

350
360

370
380

390

419
420
430
440

450
469

480
490
500

51¢
520

530
540

550

560

570
580

590
600

618

628
630

education

GOTO 5749

REM FLAG ABSENT STUDENTS
CLS
C=20

PRINT "AS OF NOW ";N$;" YOUR SCORE IS"; INT((166 * S(I)

/ T) + .5);"s"

PRINT "SEE IF YOU CAN BRING IT UP TO 168%"

PRINT :

PRINT
FOR J = 1 TO T:

PRINT

A = RND(2):

ON A GOSUB 890 ,980 :

REM INTEGERS OR DECIMALS
D = RND(2):

REM CHOOSE TYPE OF PROBLEM

IF D =1
THEN
4690
PRINT X;"*(";¥Y;"+";2;") =
INPUT R
Cl =X * (Y + 2):
Cl = .81 * INT(149 * Cl)

u

'
i

IF ABS(R - Cl) < .8@81 GOSUB 728

GOTO 500
GOSUB 810 :

PRINT "THE CORRECT ANSWER IS";X * (Y + 2)

GOTO 508

PRINT X;"*",;¥;"4+";2;" = *
INPUT R

Cl =X *Y + Z:

Cl = ,@1 * INT(160 * Cl)

.
i

IF ABS(R - Cl) < .@@9 GOSUB 720 :

GOTO 508
GOsUB 814 :

PRINT "THE CORRECT ANSWER IS";X * Y + 2

NEXT J:

H = 5(1):

5(1I) = C:

PRINT

S = INT((168 * s(I) / T) +
IF C > H PRINT "VERY GOOD
E TO";S;"s"

)
"INS; ML

YOU HAVE INCREASED YOUR SCOR

IF C = H PRINT "YOUR SCORE REMAINS AT";S;"s"

IF C < H PRINT "TOO BAD ";N§;".
n

PRINT
PRINT

INPUT "PUSH ENTER TO CONTINUE ";Q$

IF S(I) < 7T
THEN
F=F+1:

YOUR SCORE HAS FALLEN TO";S;"%

REM COUNT THOSE NOT GETTING 108% YET

NEXT I

REM PRINT SCOREBOARD

K

CLS :
RESTORE :
FOR I = 1 TO N:
READ N§$:
IF S(I) = -1
THEN
630

PRINT N$, INT((188 * S(I) / T) + .5):"%",

NEXT I:
PRINT

INPUT "PUSH ENTER TO CONTINUE ";Q$

33

Program continued

education

640 IF F > @
THEN
240 :
REM KEEP GOING UNTIL EVERYONE GETS 100%
658 CLS :
PRINT "CONGRATULATIONS!"
660 PRINT :
PRINT "YOU HAVE EACH RECEIVED A GRADE OF 188%"
678 PRINT :
PRINT "KEEP UP THE GOOD WORK!"
688 END
699 :
1]
7680 REM CHOOSE FROM 1 OF 4 'CORRECT' MESSAGES
718 :
728 B = RND(4):
ON B GOTO 740 ,758 ,768
739 PRINT "NICELY DONE ";NS$:

GOTO 770

740 PRINT "THAT'S RIGHT ";NS$:
GOTO 778

75@ PRINT "CORRECT ";N$:
GOTO 778

7680 PRINT "EXCELLENT"
77 C = C + 1:
RETURN
780 :
L}
798 REM CHOOSE FROM 1 OF 4 'WRONG' MESSAGES
800 :
)
810 B = RND(4):
ON B GOTO 830 ,846 ,850
820 PRINT “"SHAME ON YOU ";NS:
RETURN
830 PRINT "THAT'S WRONG ";N§$:
RETURN
840 PRINT "WHAT HAPPENED ";N§$;"2":
RETURN
850 PRINT "I'M SORRY ";NS:
RETURN
868 :
L}

REM GENERATE NUMERICAL VALUES FOR X,Y,Z

(R~}
bl
g

RND (38) :
RND(58) ¢
RND(98) :

URN
.1 * RND(58):
RND(20)
RND(38) :

URN

E
90g

918

cBL I I

E
928

930
940

EM PUT STUDENT NAMES HERE. ADJUST VALUE OF N IN LINE 120

e T wes TR R DRI R e

956 DATA "TOM B","JEFF","MIKE","ANDREW","STEVEN","TOM N","HAN"
968 DATA "MARIA C","CLAUDINE","LISA","DEBBIE","MATTHEW","KEVIN"
978 DATA "MARIA H","JENNIFER","DONNA V","DONNA S","JAIME"

980 DATA "WANDA","PATTY"

990

1060

-t we

1610

34

education

* * * * * * * * * * * * * *
* * LIST OF VARIABLES * *
1028 :l * * * * * * * * * * * * * *
1030 :
i;4? ? A = FLAG FOR INTEGER OR DECIMAL VALUES
> ' B = FLAG FOR CORRECT OR WRONG MESSAGE
1060 ' C = # OF CORRECT ANSWERS GIVEN DURING STUDENT'S TURN
1070 : Cl = ACTUAL ANSWER TO PROBLEM
1080 i D = FLAG FOR TYPE OF EQUATION
1096 [F = # OF STUDENTS GIVING ONE OR MORE WRONG ANSWERS
ii:a 3 H = HOLDER FOR STUDENT'S PREVIOUS # CORRECT
’ [I,J = FOR~NEXT VARIABLES
1120 i N = HOW MANY STUDENTS (ADJUST VALUE IN LINE 128)
1136 i N§ = STUDENT'S NAME
1 Q% = INPUT VARIABLE
1150 3 R = STUDENT'S ANSWER TO PROBLEM
ii:: 3 S(N)= SCORE FLAGS (~2 AT START, -1 IF ABSENT, 8-T # CORRECT)
! T = § OF QUESTIONS EACH (ADJUST IN LINE 129)
1180 i X = PROBLEM VALUE (INTEGER 1-38, DECIMAL .1 ~ 5.8)
iz:z : Y = PROBLEM VALUE (INTEGER 1-58)
: 7z = PROBLEM VALUE (INTEGER 1-98)
Program Listing 2. Answer-key for decimal sheet (music)
10 i * * * * * * * * * * * * * *
2 i * * PROGRAM TWO * *
3 i * * ANSWER-KEY POR DECIMAL SHEET (MUSIC) * *
4 3 * * BY ANNE WEISS * *
> | * * ST. PETER'S H.S.,, NEW BRUNSWICK, NJ 88991 * *
60 3 * * GOTO 260 TO SEE SCORES AFTER A BREAK * *
8 ' * * CONNECT AUX CABLE TO SPEAKER FOR SOUND * *
68 i * * CHANGE VALUE OF AD IN LINE 128 FOR <> 16K * *
70 :l * * * * * * * * * * * * * *
8@ :
]
99 :
]

REM GET MACHINE LANGUAGE PROGRAM INSERTED Program continued

35

education

160 :
T
118 DATA 180,75,60,50,68,50:
FOR I = 1 TO 6:
READ D:
NEXT

' ADVANCE DATA POINTER
120 AD = 32738:
HI = INT(AD / 256):
125 POKE 16527,HI:
POKE 16526 ,AD - HI * 256:
CLEAR:

' SET MEM SIZE
130 FOR I = AD TO AD + 28:
READ DT:
POKE I,DT:
NEXT I:
! LOAD MACHINE LANGUAGE PART
148 DATA 205,127,19,62,1,14,0,237,91,61,64,69,47,236,3,179,211
igg DATA 255,13,40,4,16,246,24,242,37,32,241,201
1]
170 REM INITIALIZE
186 :
1]
190 DIM N$(20),C(15),5(28):
N = 20:
P = 15
280 FOR I
5(r)
NEXT
218 FOR I
READ C(
NEXT I:
REM READ ANSWERS
228 FOR I = 1 TO N:
READ N$(I):
NEXT I:
REM READ NAMES
2308
1
240 REM DISPLAY MENU OF STUDENT NAMES AND NUMBERS AND SCORES
258 :
268 IF T = N GOSUB 630 :
END
278 CLS :
PRINT "HELLO AGAIN":
PRINT
288 FORI = 1 TO N
298 C = S{I) =~ 1:
S = INT(188 * C / P + .5)
368 PRINT I;N$(I);S;"%",
318 NEXT I
328 PRINT :
INPUT "PLEASE ENTER THE NUMBER BEFORE YOUR NAME ";Q
330 IF Q < 1 ORQ > N OR INT(Q) < > 0

.

(¢TI AN
[
3
z

-t b
w 13
o
o

THEN
320
340 IF 5(Q) = 16 PRINT "YOU ALREADY HAVE 166% ";NS$(Q):
GOTOQ 470
350 :
1
3680 REM GET STUDENT ANSWERS
3790 :
¥
380 CLS :

36

education

PRINT "OK ";N${(Q);" IT'S TIME TO ENTER YOUR ANSWERS TO THE PROBL
EMS"

398 PRINT

400 FOR I = S(Q) TO 15:
REM START WHERE EACH STUDENT LEPT OFF

41¢ PRINT I;") ";:

INPUT A
428 IF A = C{I)
THEN
5(Q) = 8(Q) + 1 :
ELSE
GOSUB 538

436 C = S(Q) - 1
440 NEXT I:
PRINT

458 IF S(Q) = 16 PRINT "VERY GOOD":

S = 1009:

T =T + 1:

GOSUB 590 :
REM MUSIC

460 PRINT N$(Q);" YOU NOW HAVE";C; "CORRECT ANSWERS FOR A SCORE OF";S
"%

’

478 PRINT :

PRINT "PLEASE ASK ANOTHER STUDENT TO COME UP"

488 PRINT
PRINT
PRINT

49¢ INPUT "PUSH THE ENTER KEY TO BEGIN ";Q$:
GOTO 278

508 :

T
510 REM WRONG ANSWER ROUTINE
520 :

538 PRINT A; "IS NOT THE ANSWER TO QUESTION #";1I
540 SS = USR(256 * B + 255):
REM BUZZER
558 PRINT "GO BACK TO YOUR SEAT AND TRY AGAIN *
560 & = INT(1@8@0 * C / P + .5)
570 I = P:
RETURN
588 :
L)
590 REM MELODY FOR 100%
609 :
¥
619 RESTORE :
FOR I = 1 TO 4:
READ D:
85 = USR(256 * 24 + D):
NEXT I
620 FOR I =
NEXT I
622 FOR I =
READ D:
S5 = USR(256 * 24 + D):
NEXT I
625 RETURN
627 :
)
630 REM EVERYONE GOT 1008%
640 :
1
650 CLS :
PRINT "VERY GOOD, EVERYONE GOT 1¢@%"
660 PRINT :
PRINT :
RETURN

789 : Program continued

37

education

718 REM ANSWER KEY, ADJUST VALUE FOR P IN LINE 194
728 :
736 DATA 12,.5,23.6,34.7,4.58,5.69
740 DATA 67.1,7.821,8.932,91.043,108.2154
756 DATA 21.3265,32.4376,4.35487,5.46598,65.76109
768
1
77@ REM STUDENT NAMES. ADJUST VALUE FOR N IN LINE 198
780
1
790 DATA "TOM B","JEFF","MICHAEL" ,"ANDREW","STEVEN","TOM N*,"HAN"
80¢ DATA "MARIA C","CLAUDINE","DONNA S","DONNA V","JAIME", "WANDA","P

ATTY"
816 DATA "LISA","DEBBIE", "MATTHEW" ,"KEVIN®","MARIA H","JENNIFER"
820 : o
830 :
* * * * * * * * * * * * * *
849 :
L LIST OF VARIABLES * ok
858 :
* * * * * * * * * * * * * *
860
879 ;
A = STUDENT'S ANSWER
88e
° AD = DECIMAL ADDRESS FOR 16K MACHINE LANGUAGE PART
899
’ C = # CORRECT FOR A GIVEN STUDENT
900 :
C(P) = ACTUAL ANSWERS
910 :
° D = DATA FOR MAKING MUSIC
926 :
 DP = DATA FOR DRIVING MUSIC PROGRAM
930
" HI = HEX HIGH ADDRESS FOR MACHINE LANGUAGE PART
940
I = FOR-NEXT VARIABLE
950 :
N = HOW MANY STUDENTS (ADJUST VALUE IN LINE 158)
960 :
° N$(N) = STUDENT NAMES
978 3
P = HOWMANY PROBLEMS (ADJUST VALUE IN LINE 196)
988
° Q = INPUT VARIABLE
999 :
Q$ = INPUT VARIABLE
1080 : ,
S = STUDENT’'S SCORE AS A %
1018 :
SS = CALL TO SOUND PROGRAM
1028 :
S(N) = PROBLEM $ TO START WITH FOR EACH STUDENT
1030 :
° P = TOTAL $ OF STUDENTS GETTING 109 %
Program Listing 3. Order of operations and signed numbers
19 :
) * * * * * * * * * * * * * *
28 :
1]

38

30
40
50
60
70
80

90
100

11e

120
130
149

160

179
180

190

200
218

220

240
258

260
270
280
299

300
318

320
330

education

* * PROGRAM THREE
; * * ORDER OF OPERATIONS AND SIGNED NUMBERS
i * * BY ANNE WEISS
1 * *

- e

* * * * * * * * *

]

REM INITIALIZATION AND DIRECTIONS
i

N = 20:

CLS :

DIM S(N):

T =5

PRINT TAB(16),"H EL L O AGAIN":
PRINT

*

*

ST, PETER'S H.S., NEW BRUNSWICK, NJ #8981

* * GOTO 548 TO SEE HIGH SCORES AFTER A BREAK

*

PRINT " TODAY WE WILL SEE WHO CAN CORRECTLY ANSWER THE MOST
QUESTIONS INVOLVING ADDING AND SUBTRACTING SIGNED NUMBERS"

PRINT :

PRINT "YOU WILL EACH HAVE";T;"PROBLEMS TO SOLVE"

PRINT :

PRINT "BE CAREFUL!1! I'M GOING TO TRY TO TRICK YOU":

PRINT

REM TAKE ROLL

PRINT "SOMEONE PLEASE TAKE ATTENDANCE FOR ME":

PRINT
PRINT "ANSWER WITH Y OR N"
FOR I =1 TO N:

READ N§$

PRINT NS$;:

INPUT " ":Q8

IF LEFT$(Q$,1) = "N"

THEN

S(1) = -~ 1:
REM STUDENT IS ABSENT
NEXT I
PRINT :
PRINT "“THANK YOU":
PRINT

INPUT "ARE YOU READY TO BEGIN (¥ OR N)

IF LEFT$(Q$,1) = "N" PRINT "NOW ";:
GOTO 260

IF LEFTS$(Q$,1) < > "Y"™ PRINT "I SAID ";:
GOTO 269

'
REM MAIN LOOP...LINES 320 - 498

FORL = 1 TO T:
RESTORE
FOR I = 1 TO N:
READ N$
IF (1) = -1
THEN
480 :
REM SKIP ABSENT STUDENTS
PRINT :
PRINT :
PRINT N$§

Qs

Program continued

39

390

419

429
430
440
450

460
470

480
490
500

510
520

530

540

550

560
570

586
590

education

RND(5) :

RND(28) :
RND(2):
B=1

E

HOIX me >
[V

F
T

-

H
X=~X:
' 5>GENERATE PROBLEM
= RND(20) :

»>> VALUES

= RND(2):
FB=1
THEN

= (Y + RND(130)) / 10:

O e

-

>>>AND DISPLAY
4 RND(20) ¢
B RND(2) :
IFB =1
THEN

== 2

>> PROBLEM
ON A GOSUB 688 ,708 ,728 ,746 ,760:
[N

INPUT K

IF ABS(K - C) = > 0881 GOTO 468

S(I) = S(I) + 1:

B = RND(5)

ON B GOSUB 818 ,820 ,838 ,848 ,850 :
GOTO 480

PRINT N$;", THE CORRECT ANSWER IS ";C
B = RND(5):

ON B GOSUB 868 ,870 ,880 ,890 ,900
NEXT 1

NEXT Ls
B:
T

-esngy

- D03

REM WINNERS

PRINT
PRINT
PRINT "ONE MOMENT PLEASE....":
FOR I = 1 TO 16008:
NEXT I
CLS :
PRINT "THE WINNER(S) cvvevese™:
PRINT
RESTORE :
FOR I =1 TO 20:
READ N$
IF S(I) = S PRINT NS$:
C=0C+1
NEXT I:
IFC =290
THEN
5 =8~ 1:
IF S > B GOTO 550
IF S > 6 PRINT :

PRINT "HAD A SCORE OF "; INT((168 * S / T) + .5);"s"

IF 8 = @ PRINT :

PRINT ° COULD NOT BE FOUND TODAY
ORRECT BETTER LUCK NEXT TIME!"
PRINT :

NO ONE GOT ANY PROBLEMS C

40

628

630

640
658

660
670

688
698

700
719

720
730

748
758

768
778

788

790
808

81@
828
830
8440

860
87@
88g

908
9186

929
936

949
950

960
978

980

education

INPUT "WOULD YOU LIKE TO SOLVE MORE PROBLEMS (Y OR N)
IF LEFTS$(Q$,1) = "N"
THEN

END
FOR I = 1 TO N:

IF s(1) > -1

THEN

S(1) =@

NEXT I:
GOTO 3208
END

REM PRINT PROBLEMS

-

L}
C=X+7Y +
PRINT X;"+(";Y;"+ ";%;") = "
Y
i

-~
.

RETURN
C=-X -
PRINT "~ "
RETURN
C==-X~-Y+ 2

PRINT "—{";X;"+ ";¥Y;% ";2%;") = ";:
RETURN

C=-X+Y+ 12

PRINT "~(";X;"-

RETURN
C==-X+Y -~
PRINT "(~ ";X;
RETURN

.

REM DISPLAY CORRECT OR INCORRECT MESSAGE

:

PRINT "TERRIFIC!!":

RETURN

PRINT "WAY TO GOI":
RETURN

PRINT "NICELY DONE!":
RETURN

PRINT "GOOD WORK!":
RETURN

PRINT "CORRECT!":
RETURN

PRINT "SHAME ON YOU":
RETURN

PRINT "BETTER STUDY YOUR NEGATIVE NUMBERS":
RETURN

PRINT "YOU RKNOW BETTER THAN THAT":

RETURN

PRINT "BETTER LUCK NEXT TIME":

RETURN

PRINT "YOU MUST NOT BE THINKING TODAY (11":
RETURN

-

";08

REM PUT STUDENT NAMES HERE, ADJUST VALUE FOR N IN LINE 119

DATA "TOM B","JEFF“,"MICHAEL","ANDREW",“STEVEN","TOM N"
DATA "HAN","MARIA C","CLAUDINE","DONNA V",DONNA s","JAIME","WAND

A", "PATTY"

DATA "LISA","DEBBIE", "MATTHEW","KEVIN","MARIA H" ,"JENNIFER"

P —

-

Program continued

41

education

* * * * * * * * * * * * * *
* LIST OF VARIABLES * ok
1080 :
1 * * * * * * * * * * * * * *
i1e :
L]
1029
! A = PROBLEM FORMAT FLAG
10838
' B = GSIGN, DECIMAL, AND MESSAGE FLAG
10840 :
' C = ACTUAL ANSWER (ALSO COUNTER FOR WINNER MESSAGE)
1650 :
' I,L = FOR-NEXT VARIABLES
1060 :
' K = STUDENT'S ANSWER
1870 :
' N = HOW MANY STUDENTS (ADJUST VALUE IN LINE 118)
1680
' N$ = STUDENT'S NAME
16996
' Q$ = INPUT VARIABLE
1100
' S = HIGHEST SCORE ATTAINED
1119 :
' S{(N)= # CORRECT FOR EACH STUDENT (-1 IF ABSENT)
1129 :
' T = NUMBER OF TURNS FOR EACH STUDENT (ADJUST VALUE IN LINE
119)
1138
' X = PROBLEM VALUE (INTEGER ~208 THRU 28, NOT @)
1149
' Y = PROBLEM VALUE (INTEGER 1-2¢, DECIMAL .2-15.8)
1159 :
' Z = PROBLEM VALUE (INTEGER -28 THRU 28, NOT @)
Program Listing 4. Solve linear equation Ax + B = C
18 :
v % % * * * * * * * % % * w %
20 s
' * * PROGRAM FOUR * *
30 :
' * * SOLVE LINEAR EQUATIONS AX + B = C * *
40
' * * BY ANNE WEISS * *
50
' * * ST. PETER'S H.S., NEW BRUNSWICK, NJ 68991 * *
60 :
' * * GOTO 41¢ TO DISPLAY SCORES AFTER A BREAK * *
@ :
7 ¥ * * * * * * * * * * * * * *
80 :
1]
98 REM INITIALIZE AND TAKE ROLL
166 :
1]
118 CLS :
N = 20:
DIM S(N):
T =75
126 PRINT TAB(18),"H E L L O AGATI N":
PRINT

13¢ PRINT "SOMEONE PLEASE TAKE ATTENDANCE FOR ME"
148 PRINT "ANSWER WITH Y OR N"
156 FOR I = 1 TO 28:

42

education

READ N§$
1680 PRINT N$;:
INPUT " ":08
17¢ IF LEFT$(Q$,1) = "N"
THEN
S(1) = - 1
180 NEXT I
199 PRINT :
PRINT "THANK YOU":
PRINT
208 INPUT "ARE YOU READY TO BEGIN (Y OR N) ";Q8
21@ IF LEFTS$(QS$,1) = "N" PRINT "NOW ";:
GOTO 280
220 IF LEFTS$(Q$,1) < > "¥" PRINT "I SAID ";:
GOTO 280
238 GOSUB 1198 :
REM MENU OF CHOICES
240 :
1
256 REM MAIN LOOP...LINES 279 - 368
260 :
L]
270 FOR L = 1 TO T:
RESTORE
280 FOR I = 1 TO N:
READ N§$
298 IF S{I) = -1
THEN
350
SKIP ABSENT STUDENTS
300 PRINT :
PRINT :
PRINT N$
319 PRINT "SOLVE FOR X: R
ON T5 GOSUB 758 ,830 ,938 ,1858
320 INPUT "X = ";Y:

D = RND(7)
339 IF ABS(Y - X) < .8881 GOSUB 510 :
ELSE
GOSUB 629
340 PRINT
350 NEXT 1
360 NEXT L
376 :

389 REM SCOREBOARD
390 :
1
40P PRINT "PLEASE WAIT FOR THE SCORE SHEET":
FOR I = 1 TO 500:
NEXT I
418 CLS 3
RESTORE :
FOR I =1 TO N
420 READ N$:
IF S(I) > - 1 PRINT N$, INT((188 * S(I)) / T+ J5)p e"
438 NEXT I
440 PRINT :
INPUT "DO YOU WANT TO SOLVE SOME MORE (Y OR N) "s0$
456 IF LEFT$(Q$,1) < > "Y" CLS :
PRINT "SO LONG":
PRINT :
END
460 FOR I = 1 TO N:
IF S(1) >~ 1
THEN
S(I) = @
478 NEXT I:
CLS i
GOTO 238 Program continued

43

480

498
500

518
528
538
540
558
560
578
588
598

600
618

628
638

640
650
660
676
680
690
700
710
728

738
748

758

768

778
788
798¢
800

810
820

83g¢

849

REM

L

S(I)
ON D
PRIN
RETU.
PRIN
RETU
PRIN
RETU
PRIN
RETU

CORRECT RESPONSE

= S(I) + 1:
GOTO 530 ,540 ,558 ,560 ,570 ,580
T "NICE WORK ";N$:
RN
T "THAT'S RIGHTI":
RN
T "WAY TO GO ";N$:
RN
T "GOOD WORK!":
RN

PRINT "CONGRATULATIONS ";N$:

RETU
PRIN
RETU
PRIN
RETU

1
REM

ON D

RN

T "TERRIFIC!11":
RN

T "WONDERFUL ";N$:
RN

INCORRECT RESPONSE

GOTO 648 ,650 ,660 ,670 ,680 ,698

PRINT "SHAME ON YOU, ";NS$:

GOTOQ
PRIN
GOTO
PRIN
GOT0
PRIN
GOTO
PRIN
GOTO
PRIN!
GOTO
PRIN'

708

T "BETTER STUDY SOME MORE":
708

T "THAT'S AWFUL, ";N$:
700

T "NO WAY ";N$:
780

T "TOO BAD!11":
780

T "NONSENSE!":
700

T "I'M SORRY, ";N$

PRINT “THE CORRECT ANSWER IS "X
RETURN

:

REM GENERATE EASY PROBLEMS
:

B = RND{20):

S = RND(2):

IFS5 =2B=-B

C = RND(30):

8 = RND(2):
IFS=2C=~2C

PRINT "X ";

IF B > B PRINT "+";

PRINT B;"= ";C:

X = C ~ B:

RETURN

:

REM GENERATE SLIGHTLY HARDER PROBLEMS
:

B = RND{38):

S = RND(2):
IFS=2B=-8B

C = RND(58):

S = RND(2):

IF S =2C=~-2C

education

44

education

858 5 = RND(2):

IF S = 2 B = (10 * B + RND(9)) * .1
860 S = RND(2):

IF § =2 C = (18 * C + RND(9)) * .1
870 PRINT "X ";
886 IF B > @ PRINT " +";
898 PRINT B;"= ";C:

X =C - B:
RETURN
968
t
918 REM GENERATE HARD PROBLEMS
9208
1
93¢ A = RND(5):
S = RND(2):
IF 8§ =2 A = - A
940 B = RND(50):
S = RND(2):
IF S =2B=-8B
958 C = RND(180):
8 = RND(2):
IFS=2C=-~C

968 PRINT "ROUND ALL ANSWERS TO 2 DECIMAL PLACES"
979 IF A = 1 PRINT "X ";:
GOTO 1060
98¢ IF A = - 1 PRINT "-X ";:
GOTO 1009
99¢ PRINT A;"X ";
1060 IF B > § PRINT "+";
1919 PRINT B;"= ";C:
X = (C - B) / A:
X = @1 * INT(198 * X + .5):
RETURN
1020 :
L}
193¢0 REM GENERATE REALLY HARD PROBLEMS
1040

1058

U D e
Eou
1=
&

1060

10790

1@89
1090

HHNHOOMNnD

]

2
(
2B=.1%*B
{
2

C=,1*C
1108 PRINT "ROUND ALL ANSWERS TO 2 DECIMAL PLACES"
111¢ IF A = 1 PRINT "X ";:
GOTO 1148
1128 IF A = - 1 PRINT "-X ";:
GOTO 1149
1138 PRINT A;"X ";
1148 IF B > @ PRINT "+";
1158 PRINT B;"= ";C:
X = (C - B) / A:
X = .01 * INT(1060 * X + .5):
RETURN
1160 :
[}

1178 REM MENU OF CHOICES
1180 :
'

1198 CLS : Program continued

45

education

PRINT "DO YOU WISH TO SOLVE":
PRINT
1200 PRINT "1, EASY PROBLEMS SUCH AS X + 12 = §"
1216 PRINT "2. SLIGHTLY HARDER ONES SUCH AS X + 22.9 = 47,1"
122¢ PRINT "3, HARDER ONES SUCH AS 5 - 3 = -g"
1238 PRINT "4, REALLY HARD ONES SUCH AS =3X + 17.4 = 94,1"
1248 PRINT :
INPUT "ENTER 1, 2, 3, OR 4 PLEASE ";T5
1250 IF T5 < > 1 AND T5 < > 2 AND T5 < > 3 AND T5 < > 4 GOTO 1248
1268 RETURN
1270 :
¥
1280 REM PUT STUDENT NAMES BERE. ADJUST VALUE FOR N IN LINE 118
1298 :
1388 DATA "TOM B","JEFF","MICHAEL“,"ANDREW","STEVEN“,“TOM N®
1310 DATA "HAN","MARIA C","CLAUDINE", "DONNA S","JAIME", "WANDA" , "PATTY
L]

1320 DATA "LISA“,"DEBBIE","MATTHEW“,"KEVIN“,"MARIA H", "JENNIFER", "DON

NA V"
1330 :
v
1348
v * * * * * * * * * * * * * *
1359 :
' * * LIST OF VARIABLES * *
1360 :
L] * * * * * * * * * * * * * *
1378 :
1
1380 :
' A = PROBLEM VALUE (INTEGER -5 THROUGH 5)
1399 :
' B = PROBLEM VALUE (INTEGER 1-50,DECIMAL .1-30.9, + OR =)
1400 :
4 X = ACTUAL ANSWER
1419 :
' Y = STUDENT'S ANSWER
1420 :
' I,L = FOR-NEXT VARIABLES
1430 :
' N = HOW MANY STUDENTS (ADJUST VALUE IN LINE 118)
1440
* N$ = STUDENT'S NAME
1450 :
' Q$ = INPUT VARIABLE
1460 :
' 8§ = SIGN FLAG
1478 :
' S(N)= # CORRECT (-1 IF ABSENT)
1480 :
' t = NUMBER OF TURNS (ADJUST VALUE IN LINE 118
1496 :
' T5 = TYPE OF PROBLEM FLAG
Program Listing 5. Decimal linear equations with brackets
18
' * * * * * * * * * * * * * *
20
' * * PROGRAM FIVE * *
38 :
' * * DECIMAL LINEAR EQUATIONS WITH BRACKETS * *
49
' * * BY ANNE WEISS * *
58
' * * ST PETER'S H.S., NEW BRUNSWICK, NJ #8991 * *
60 :

46

78
80

9¢
108

110
128
138

140
158
160

170
186

190
200

210
229
230
240
258
260
270
280

290
308

316
320
330
348

350

360

H

.

t

education

* GOTO 57¢ TO SEE SCORES AFTER A BREAK

* * * * * * * * * * *

REM INITIALIZE

CLS :
CLEAR

3000

I$ = " PUSH ENTER FOR YOUR EQUATION"

PRINT
FOR I
NEXT
PRINT
FOR I

@ 340,"H EL L O":
= 1 TO 500:

@ 646, "WELCOME TO THE ALGEBRA ROUND ROBIN"
=1 TO 1000:

NEXT :

CLS
PRINT
PRINT

"UP TO 6 STUDENTS OR TEAMS MAY PARTICIPATE":

INPUT "HOW MANY STUDENTS (OR TEAMS) ARE ENTERING THE CONTEST ";N
IF N<1ORND> 6 OR INT(N) < > N

THEN
CLS :
GOTOC 164
DIM S(N) NS$S(N),E$(24),A(24):
PRINT
FOR I = 1 TO 24:
READ E$(I),A(I):
NEXT
FOR I = 1 TO N:
S(1) = @

PRINT "ENTER THE NAME OF STUDENT (OR TEAM) #";I1;:
INPUT N$(I)

PRINT :
NEXT I1:
CLS
PRINT "O.K. HERE WE GO"
PRINT "I WILL GIVE YOU AN EQUATION TO SOLVE"
PRINT "YOU WILL HAVE ABOUT 2 MINUTES TO ENTER YOUR ANSWER"
PRINT :
INPUT "PUSH ENTER TO START ";QS$:

cLs

.
:

REM MAIN LOOP...LINES 316 - 550

FOR J

PRINT
PRINT

=1 TO 4

PRINT TAB(25);"R OU ND # ";J
PRINT

FOR I

X =

= 1 TO N:
RND(24)

IF E$(X) = "7
THEN

X

=X + 1:

IF X = 25
THEN

X = 1:

' KEEP GOING UNTIL AN

IF ES§(X) = ""
THEN
350 :

UNANSWERED ONE IS FOUND

PRINT E$(X):
PRINT "WHAT IS YOUR ANSWER ";N$(I)

Program continued

47

education

380 RINT "X = ";:
=@z
= RND(5) + 5:
L

390

-3 (Y

D

n
INKEYS:
= nn

LR

$
HEN
C=C+ 1:
IF C = 5000
THEN
650 :
ELSE
398
400 IF ASC(AS) < 45 OR ASC(AS) > 57
THEN
396 :
ELSE
PRINT AS$;:
H$ = AS
4109 B$ = INKEYS:
IF B$ = #*®
THEN
C=C+ 1:
IF C = 5000
TBEN
650 :
ELSE
410
420 IF ASC(BS)
THEN
459
438 IF ASC(BS$)
THEN
H$ = LEFTS$(HS, LEN(HS) - 1):
PRINT BS;:
IF H$ < > °°
THEN
419
ELSE
390
449 IF ASC(BS) < 45 OR ASC(BS) > 57
THEN
410
ELSE
PRINT BS;:
H$ = HS + BS:
GOTO 410
450 PRINT :
A = VAL(HS)
460 IF A = A(X)
THEN
E$(X) = "":
Y=Y -~ 5:

$
$
F
T

i

13

8

' FLAG QUESTION AS ANSWERED CORRECTLY
470 ON Y GOSUB 69¢ ,7¢8 ,718 ,7206 ,736 ,7706 ,788 ,790 ,800 ,814@
480 X =14+ 1:
IF X =N+ 1

THEN
X =1
490 IP X =1AND J = 4
THEN
FOR K = 1 TO 1008:
NEXT :

GOTO 530
508 PRINT @832,N$(X);I$:

: SIGNAL THE NEXT STUDENT
518 FOR K = 1 TO 1086:
NEXT :

48

education

PRINT @896,"ENTER";:

0$ = INKEYS
528 IF Q§ = ""
THEN
FOR K = 1 TO 100:
NEXT :
PRINT @896," ¥
GOTO 514
538 CLS
548 NEXT I
558 NEXT J

560 :
1]
578 REM SCORES
580 :
1
590 PRINT "THE SCORES ARE":
PRINT
608 FOR I = 1 TO N:
PRINT N§$(I),25 * S(I):
NEXT I:
PRINT
618 PRINT :
END
628 =
¥
638 REM TIME RAN OUT
648 :
]
658 PRINT :
PRINT "SORRY ";N$(I);" YOU TOOK TOO LONG":
GOTO 488
660 :
]
670 REM CORRECT RESPONSE
680 :
¥
698 PRINT "WAY TO GO ";NS$(I):
S{1) = S(1) + 1:
RETURN
788 PRINT "RIGHT ONI":
S{I) = S(I) + 1:
RETURN
718 PRINT "THAT'S GOOD, ";N$(I):
S(1) = S(I) + 1:
RETURN
728 PRINT "TERRIFICII":
S(I) = S(I) + 1:
RETURN
738 PRINT "GOOD WORK, ";NS$(I):
S(I) = S(I) + 1:
RETURN
748 =
1]
758 REM INCORRECT RESPONSE
768 :
t
778 PRINT "SORRY ";NS(1):
RETURN
788 PRINT "BETTER LUCK NEXT TIME":
RETURN
798 PRINT "SHAME ON YOU, ";NS$S(I):
RETURN
808 PRINT "W RO NG | ":
RETURN
818 PRINT "TOO BAD ";NS(I):
RETURN
828

1
839 REM 24 PROBLEMS AND ANSWERS Program continued

49

education

840 :
L

850 DATA ".B7X + .04 (9668 - X) = 4507,3000
866 DATA ".06X - .84(3580 - X) = 166" ,3080
870 DATA ".B6(X - 5) = .B4(X + 8)",31
880 DATA ".B4X + .B3(20800 - X) = 75",1508
890 DATA ",13X - 1.4 = .88X + 7.6",1808
900 DATA ",B5X - .25 = .@2X + .44",23
910 DATA ".8X + 2.6 = ,2X + 9,8",12
92§ DATA ".86X + 48 - 03X = 70",1680
930 DATA ".02(X + 5) = 8",395
940 DATA ".B5(X - 8) = .B7X",-20
950 DATA ".4(X - 9) = ,3(X + 4)7,48
960 DATA ",B2X + .B4(1560 - X) = 4B",600
976 DATA ".05X + 10 = .B6(X + 58)",780
986 DATA ".B8X = .B3(X + 200) - 47,48
996 DATA "1.7X = 38 + ,2X",20

1880 DATA "1.5% - 1.69 = .2X",1.3

161¢ DATA ",.B8X = 1.5 + ,07X",150

1820 DATA ",5X - ,3X = 8",40

1830 DATA "2X + .5X = 58",20

1046 DATA ".08X - .9 = ,B2X",15

1856 DATA ".7X - .4 = 17,2

1060 DATA ",83X - 1.2 = 8,7",338

1870 DATA ".4X + B8 = 4,24",18.4

1086 DATA ",B5X + .04(508 - X) = 22°,2080

[

L]

o184+

1090 :
1106 :
;

L L L L A A S T T . N
e, LIST OF VARIABLES L
1128 : % x x ok k% ko x *x & %
1139 :

:
4o A{) = 24 ACTUAL ANSWERS
nses . STUDENT'S FINAL ANSWER
1160 A$ = FIRST INKEYS OF ANSWER
1170 B$ = REST OF INKEY$ OF ANSWER
1180 : C = TIMER COUNTER (5800 GIVES 2 MINUTES - LINES 398 & 410)
1190 ES()= 24 EQUATIONS
1200 = H$ = HOLDS ANSWER UNTIL DONE ENTERING
1216 IS = CONTINUATION MESSAGE
12?9 " 1,7 = FOR-NEXT VARIABLES
1230 N = HOW MANY PARTICIPATING
1248 - N$()= NAMES OF STUDENTS OR TEAMS
1230 0$ = INPUT VARIABLE
1268 : S() = # CORRECT FOR EACH STUDENT
1278 ; X = RANDOM FLAG FOR CHOOSING EQUATION
1280 Y = RANDOM FLAG FOR CHOOSING MESSAGE DISPLAYED

50

10
20
38
A8
58
68
79
8@
9¢

100
119

129
130
144
15¢
160
174
18¢
194

200
218
22¢

239

248

25¢
26¢

278
2880

299
308

319

328
338
3490

education

Program Listing 6. Randomly assigned problems

; * * * * * * * * * * * * * *
N PROGRAM SIX L
i % % STUDENTS DO RANDOMLY ASSIGNED PROBLEMS * *
" % % ON ONE OF FIVE ASSIGNED WORKSHEETS * %
v BY ANNE WEISS * %
i % % g7 PETER'S H.S., NEW BRUNSWICK, NJ #8981 * *
[GOTO 60@ FOR SCORES AFTER A BREAK x #
; * * * * * * * * * * * * * *
H
REM INITIALIZE AND GIVE DIRECTIONS
i
CLS :
PRINT "H ELLO STUDENT S":
PRINT
PRINT "TODAY YOU WILL DO PROBLEMS FROM A WORKSHEET"
PRINT "YOUR TEACHER WILL TELL YOU IF YOU ARE TO WORK ALONE OR IN
TEAMS, "
PRINT "UP TO 6 GROUPS MAY PARTICIPATE":
PRINT
INPUT "HOW MANY STUDENTS (OR TEAMS) ARE THERE ";N
IF N <7ANDN > 8 AND INT(N) = N
THEN
199
PRINT "PLEASE COUNT AGAIN...MAXIMUM IS 6":
PRINT :
GOTO 168
DIM N$(N),H(N,5) ,A(38) ,S(N),C(38) ,F(30):
PRINT :
PRINT
PRINT "ASK YOUR TEACHER WHICH WORKSHEET YOU ARE USING TODAY"
INPUT "ENTER THE NUMBER OF THAT WORKSHEET ";W
IF W < 6AND W > @ AND INT(W) = W
THEN
240
PRINT "DON'T BE A SMART-ALECKI11":
PRINT :
GOTO 218
CLS
FORI =1 TON
PRINT "ENTER THE NAME OF THE STUDENT (OR TEAM) #°;1;:
INPUT N$(I)
NEXT I
3’
REM ASSIGN PROBLEMS
3
FOR I = 1 TO W:
FOR J = 1 TO 38:
READ A(J):
NEXT J:
NEXT I:
CLS
FORI =1TON
PRINT N$(I);" DO PROBLEM #",
FOR J = 1 TO 5:

X = RND(38) Program continued

51

350

360

3706

380

398

400
418

428

430

44p
450
460

516
528

530
540

550
564

588
590

600

616
620

education

IF F(X) =1
THEN
X=X+ 1:
IF X = 31
THEN
X =1
IF F(X) = 1
THEN
359

REM GET ANSWERS

1
C = f:
PRINT :
INPUT "PUSH ENTER WHEN ANSWERS ARE READY TO BE ENTERED ";Q$
FOR I = 1 TO N:
IF 8(1) = 5
THEN
C=C+ 1:
GOTO 560
CLS :
PRINT "@K ";N$(I);", WHAT ARE YOUR ANSWERS?"
PRINT "JUST PUSH ENTER FOR THOSE YOU DON'T KNOW YET":
PRINT
FOR J = 1 TO 5:
X = H(I,J):

Q= - 99999,99:

PRINT "#";X;:

INPUT " ";0

IF Q = —~ 99999,99 PRINT "YOU CAN TRY THAT ONE LATER ";N$(I):
GOTO 520

R = RND(5):

R =R + 5:
S(1) 5(1) + 1:
C(X) 1
ON R GOSUB 696 ,766 ,718¢ ,720 ,736 ,748 ,756 ,766 ,778 ,780
NEXT J:
PRINT
ON 1 + S(I) GosuB 829 ,830 ,840 ,858 ,860 ,870
PRINT :
IF I < N INPUT "PUSH ENTER TO CONTINUE ";Q$
IF N = I INPUT "PUSH ENTER TO SEE ALL SCORES ";Q$
NEXT I:
PRINT

'
REM DISPLAY SCORES

1

FOR I = 1 TO N:
PRINT N$(I),268 * S(I):
NEXT I

i

REM SEE IF ANY PROBLEMS NOT SOLVED YET

52

education

630 :
t
648 PRINT :
PRINT
IF C = N END
658 PRINT :
GOTO 428
660 =

[

670 REM DISPLAY 'CORRECT' OR 'INCORRECT' MESSAGE

688 :

698 PRINT "TOO BAD - THAT'S WRONG!":
RETURN

7808 PRINT "SORRY ";N$(I);". DbETTER CHECK YOUR WORK":
RETURN

718 PRINT "SHAME ON YOU - YOU CAN DO BETTER THAN THAT":
RETURN

720 PRINT "H O R R O R §, ";N$(I);"! I THOUGHT YOU KNEW ALGEBRA":
RETURN

738 PRINT "NOW REALLY!!! TRY AGAIN":
RETURN

740 PRINT "CORRECT ";N$(I):
RETURN

758 PRINT "T ERR I F I C":
RETURN

768 PRINT "WAY TO GO, ";N$(I):
RETURN

776 PRINT "KEEP UP THE GOOD WORK":
RETURN

780 PRINT "WONDERFUL I1[":
RETURN

798 :
1

88¢ REM SCOREBOARD MESSAGES

810 :
'

82 PRINT "SHAME ON YOU ";N$(I);". yOU DIDN'T GET ANY CORRECT":
GOTO 880

830 PRINT "YOU CAN DO BETTER THAN ONLY 1 CORRECT, ";N$(I):
GOTO 88¢

840 PRINT "40% IS NOT TOO GOOD ";NS$(I):
GOTO 880

850 PRINT N$(I);", SO FAR YOU HAVE A SCORE OF 60%":
GOTO 880

860 PRINT "VERY GOOD, ";N$(I);"! YOU NOW HAVE A SCORE OF 80%":
GOTO 880

878 CLS :
PRINT "CONGRATULATIONS, °N$(I);"! YOU EARNED 100%":
RETURN

880 PRINT "GO BACK AND DO THE PROBLEMS YOU MISSED"

890 PRINT "YOU WILL HAVE ANOTHER CHANCE TO ENTER YOUR ANSWERS"

98¢ RETURN

910 :
'

920 REM ANSWERS FROM WORKSHEET ONE

930 :

1
94¢ DATA 7.1,4,7,2500,40,50,3,500,2,80,.02,3.,1,2,2.7,5,2.26
95§ DATA ,3,6.65,2,3.27,8,2.52,7.4,.5,60,13.4,56,10.5,10,5.4,.05
960 :
978 REM ANSWERS FROM WORKSHEET TWO
980 :
L)
998 DATA 3,.8,1.5,4,16,.3,1909,10,2008,5
1008 DATA 10,1065,500,6,.2,6,10,10,.4,12,2,22,-12,200
1616 DATA 20,280,308,300,19,600
1020

1039 REM 36 ANSWERS FROM WORKSHEET THREE Program continued

53

education

1640 :
]
1850 :
1
1860 REM 30 ANSWERS FROM WORKSHEET FOUR
1979
t
1980 REM 38 ANSWERS FROM WORKSHEET FIVE
iesg@ :
1
1160 :
]
11149
' * * * * * * * * * * * * *
1129 :
t * * LIST OF VARIABLES * *
1138 :
i * * * * * * * * * * * * *
1140 :
1}
1159 :
' A(30) = ACTUAL ANSWERS
1169 :
' C = HOW MANY GOT 190%
1178 ¢
'C(38) = FLAG FOR WHICH PROBLEMS HAVE BEEN CORRECTLY ANSWERE
D
1180 :
' OF(30) = FLAG FOR WHICH PROBLEMS ALREADY ASSIGNED
1198 :
' H(N,5)= PROBLEMS ASSIGNED EACH STUDENT
1200 :
' I,3 = FOR-NEXT VARIABLES
1218
' N = NUMBER PARTICIPATING
1229
'ONS(N) = PARTICTDANTS' NAMES
1230 :
' Q = STUDENT'S ANSWER
1249 :
' Q8 = INPUT VARIABLE
1250
' R = FLAG FOR WHICH MESSAGE DISPLAYED
1269 :
' S5(N) = SCORES
1276 :
' X = RANDOM SELECTOR FOR PROBLEMS
1286 :
' W = WORKSHEET NUMBER

54

GAMES

Supermaze
Micro Basketball

55

GAMES

Supermaze

by Howard F. Batie

Supermaze puts you inside a maze with a corridor ahead of you in com-
plete perspective. Halls lead off to the right and left (see Figure 1). I's up
to you to guess which way to go. You can see a maximum distance of four
units ahead. If there’s a wall three squares ahead, however, you can’t see
beyond it.

™ —

Figure 1

Three Options

Each move offers three options: forward one space, left, or right. After
each move, you get a new picture of what lies ahead. A counter keeps track
of the number of forward moves, but is not incremented if you turn. The
minimum number of forward moves needed to exit successfully and your
score are printed on the screen when you leave the maze. If you get turned

57

games

around and leave the maze at the entrance, you lose. And if you're unfor-
tunate enough to walk into an electric wall, you fry.

The Program Listing contains six mazes of increasing difficulty and is
written for a Level II TRS-80 with 16K. The program’s first array is called A
and has the dimensions of 105 x 1. It uses the zero element. The first 100
elements (0-99) contain either a zero value or a five-digit decimal number
which defines the shape of the element’s maze location. Visualize the first
100 elements of the A array as a 10 x 10 matrix (which is the maximum size
of the maze) as shown in Figure 2.

NORTH D=l

N
o|lilz]3lalsle]7]8]o
wofufjw{izlalslelir|ie]le

20| 2122|2324 25|26 |27 | 28] 29
EAST
30| 31|32|33 3435|3637 |38] 30 D=2
wesT |40]|at|a2]a3|aalas|a6]|a7|as]a0
Do LINES 770 - 810
50|51 |52[53]54]55|56]|57 | 5859
60| 6l |62|63|6a]65|66|67|68]69
70|71 |72]73 74|75 76 |77 | 78] 79
LINE 820
80| 8i|82|83|84a|e5|86 |87 |88 80 p -~
90| o1 |92|93 | 94|95 |96 |07 |98 |09 | | L100] 101}102| 103]104]

SOUTH D=3

STARTING SQUARE—
ENDING SQUARE
MINIMUM NUMBER OF MOVES
MAZE SIZE: o BY

Figure 2

Constructing the Maze

The Program Listing statements 930-980 construct the 8 X 7 maze of
Figure 3, with the entrance at location 60 and the exit at location 57. Other
mazes shown in Figures 4 through 8 are constructed by statements
990-1270. Note that all mazes must be entered from the left side and exited
on the right side, because the initial direction (D) is equal to 2 in line 200.

The final five elements of the A array (100-104) specify the starting and
ending locations, minimum number of moves to the exit, and the size of the
maze. These can differ for each maze. If any numbered matrix location in
the grid is outside the maze, the contents of the corresponding element will
be set to zero; otherwise, the five-digit decimal defines the shape of the maze

58

games

location. To prevent blanking of the leading zeros in the last four digits, the
first of the five digits is always one.

In each of the last four digits, a one represents a wall, and a zero represents
a hall (no wall). The second, third, fourth, and fifth digits correspond to the
north, east, south, and west sides. For example, the shape of block 60 in
Figure 3 is designated by 10000, and block 65 is designated by 10101.

ofrtj213|l4;1516|7|819
o345 116117|18] 19
20| 2l |22|23|2425(26 27| 28|29
30| 31| 32§33 | 3435363738 39
40| 41842843 144|45046§4748 |49
50§ 51 |52 | 53§ 5455 |56f57%58|59
>60| 6l {62§63 64865566 |67368|69
TOR7IQ72 |73 | 74|75 |76 |TT7Tf78| 79
80| 8l 828384 (8586087 B8 |89
90| 9l [92§93 | 9489596 | 97§98 |99

8x7

14 MOVES

Figure 3
ol1}l21314|5|6|T7T]8]l|09
01 1Hji2113 114151617 [18] 19
204 211222324 25|2627Q28 29

30| 31323383435 |36337438] 39
40| 41§42 1434444546 |47§48 |49
50 51 525385455 |56§57)58]59
M60| 61|62 63|64§65|66]|6768]|69
70471372873 7475 |76 7THTB | 7O
80| 8i382|83§84 85086878889
90|91]92f93 |94 |95)96 |97 98|99

8x 8
20 MOVES

Figure 4

Changing the Shape

To change the shape of the maze, simply code the data statements to cor-
respond with the particular maze you construct. Lines 990-1040 and
10501100 in Program Listing 1 correspond to the mazes of Figures 4 and 5.

59

20f 21 |22|23 |24} 252627 |28 29
30| 3132 33| 34|35|36537 38|39
40f 41|42 |43[144[|45]46747 | 48|49
50| 51152153} 54| 555657 | 58|59
60| 61 |62}6364!65[66]67 | 68|69
TORTIHT2E 73 74|75 |7T6RTT |78 7O
80| 8l | 82183 |84|85[86%87 | 88|89
90} 91 | 92193 | 94|95 |96} 97 | 98|99

7 x 10
23 MOVES

Figure 5

After you have created a number of mazes, video prompts let you choose one
of the six mazes to replay and run.

Of course, nearly every program written can be refined, and this one is no
exception. Two improvements that come to mind are a built-in random
maze generator and the use of machine-language graphics which would
provide more speed.

ojtl2]3H4|516]7E8B]|O

IOl IIBI2EI3 B4 | IBEI6GRIT [IBE IS
20§ 2122 |23 {24 25526527 | 28§29
300 31|32 |33334(35({36 | 3738 |39
40} 4142 |43 | 4445461474849
50f 5152153 | 54 55| 5657 | 58F 594
60| 61|62} 63641165166 |67 681 69
TO|TI |72 73474 | 75§76 |77 (7879
80! 81 |B82|83|84(85|86|87|88|89
90|91 [92]93194]95|96{97 98|99

0 x 8
29 MOVES

Figure 6

60

games

(0] { 293 485 |67 8 g9
ORIy i2 {13 1148151617]IB]19
20p 21 {22823 2425|264 2T7T§28§ 29+
30| 31 {32 |33 |34835036 |37 | 38039
40| 41 J42])43 |44 4544647 48| 49
50{ 51 |52]53§54|55 56575859
60 6l |62§63§64 65466 |67 | 68] 69
TO |71 |72|73 7417576 |77TQ78 |79
803 8i182)183 | 84)85]86E87 | 8889
90| 9192193194 95896979899
10 x 10
38 MOVES
Figure 7
(o] | 213 4159867 819
IOFIIQI2R13 0144 ISR16[117 118 19
#2021 |22)23 |24 | 2582627 | 28f 29
300313233834 35§36 (3738139
40| 414243 144145146047 3484 49
50| 51 |62 | 5354555657858 59
-60 6l 62§63 |64165]|66 67| 68469
TO|TI[|T2Q7374]|75 (76 |T7TT78| 79
80| 8i]|82|8384)85386])87 88| 89+
9019192193 |94[95{96397 {9899
10 x 10
45 MOVES
Figure 8

61

games

Program Listing
(Please note: Because of space considerations, this program has not been formatted.)

5 REM --- SUPERMAZE FOR THE TRS-88 LEVEL II 16K

16 REM -~ VERSION 6.2

15 REM -~ COPYRIGHT BY HOWARD F. BATIE 1980

25 REM -~ DISPLAY TITLE

3¢ CLS:PRINT@339,"* * * § U P E R M A 7 E LA
40 PRINT@784,"COPYRIGHT 1988"

58 PRINT"BY HOWARD F. BATIE"

60 PRINT"HERNDON, VA"

78 FORI=1TO1088:NEXTI

75 REM -- SETUP

80 CLEAR:DIMA(104),D(23)

90 FORI=@TO23:READD (I):NEXTI

118 CLS:PRINT" WHICH MAZE DO YOU WANT"

12¢ LL=0:FORI=@TO5:PRINT@128*%I+197,"MAZE NR";D(4*I+LL);
136 PRINT"IS";D(4*I+LL+1);"BY";D(4*I+LL+2);

140 PRINTTAB(26),"MINIMUM NUMBER OF MOVES IS";D(4*I+LL+3)
142 LL=@:NEXTI

158 PRINT@25,"";:INPUTMN

166 IFMN>6ORMN<1PRINT@25," ";:1GOTO158

178 CLS:IFMN=1THEN198

188 FORI=BTO (185*(MN-1))-1:READAA:NEXTI

190 FORI=BTO164:READA(I):NEXTI

200 BE=0:X=A(108):D=2

285 REM ~-- INSTRUCTIONS

218 CLS:PRINT@128,"YOU ARE IN A";A(183);"BY";A(104);
212 PRINT"MAZE WITH ELECTRIFIED WALLS. FIND YOUR"

220 PRINT"WAY OUT IN THE LEAST NUMBER OF MOVES.":PRINT
238 PRINT"THE MINIMUM NUMBER OF MOVES IS";A(182);

232 PRINT"FOR THIS MAZE.":PRINT

240 PRINT"MOVE FORWARD BY TYPING 'F', TURN RIGHT BY TYPING 'R'"
250 PRINT"OR TURN LEFT BY TYPING 'L'.":PRINT

260 PRINT"TURNS TO THE RIGHT OR LEFT DO NOT COUNT AS MOVES."
278 PRINT:PRINT"PRESS 'ENTER' WHEN READY TO START."
286 M$=INKEYS$:IFM$=""THEN28O

285 REM -~ START

290 CLS:GOSUB838

295 REM -~ IS THERE A WALL TO THE RIGHT?

360 PRINT@435,"MOVES:";:PRINT@580,Q;

381 ONE+1GOTO302,387,316,313,317

382 GL=15374:GR=15399

383 POKEGR,160:POKEGL,144

384 GR=GR+64:GL=CL+64:IFCGR>16248THEN3G6

305 POKEGR,178:POKEGL,149:G0T0364

386 POKE16270,133:POKE16295,138:G0T0321

387 GL=15442:GR=15459

308 GL=GL+64:GR=GR+64:IFGR>16100THEN321

3069 POKEGL,149:POKEGR,178:G0OT0388

318 GL=15509:GR=15528

311 GL=GL+64:GR=GR+64:IFGR>15978THEN32]1

312 POKEGL,149:POKEGR,178:GOT0311

313 GL=15575:GR=15582:POKEGL,144 : POKEGR, 1640

314 GL=CL+64:GR=GR+64:IFGR>15840THEN316

315 POKEGL,149:POKEGR,176:GOT0314

316 POKEGL,133:POKEGR,138:G0OT0321

317 GL=15641:GR=15644

318 POKEGL,148:POKEGR,168:POKE15833,129:POKE15836,138
319 GL=GL+64:GR=GR+64:IFGR>15773THEN32]

328 POKEGL,149:POKEGR,178:GOT0319

321 IFVAL(MIDS$({(B$,4,1))=0THEN339

322 REM --- DRAW WALL TO THE RIGHT

323 ONE+1G0OT0324,326,3306,333,335

324 POKE15400,184:POKE15461,142:POKE15402,131:POKE16296,180
325 POKE16368,138:POKE16361,173:POKEL6362,144:G0T0368
326 POKE15524,131:POKE15460,160:POKE15461,184

327 POKE15462,142:POKE15463,171:POKE16166,144

62

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
359
351
355
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
388
390
391
392
393
394
395
396
397
398
399
415

430
440
458
455
460
461
462
463
464
465
466
467

POKE16164,139
POKE16236,173:
POKE15585,131:
POKE15523,174:
POKE16034,188:
POKE15583,184
POKEL5967,1380:
POKE15645,142:
POKE15836,138:
POKE15902,139:

:POKE16165,188

POKE16231,186
POKE15521,160
POKE15969,144
POKE16098,130

:POKE15584,174

POKE15968,175
POKE15646,171
POKE15837,173
GOTO364

games

:POKE16229,130

:POKE16295,139:GOT0368

:POKE15522,184
:POKE16833,139

:POKE16899,175:G0T03608

:POKE15903,180
:GOTO360

:POKE15838,186

REM ~--- DRAW HALL TO THE RIGHT
ONE+1GOT0348,343,346,348,350
GT=15399:GB=16295
GT=GT+1:GB=CGB+1: IFGB=16381THEN360
POKEGT, 176 : POKEGB, 140 :GOT0341

POKEL5524,131:
POKE15527,171
POKE16162,176
POKE15585,131:
POKE15969,176
POKE15583,176
POKE15904,174:
POKE15645,140:
POKE15838,171

POKE15525,131:
:POKEL6108,176
:POKE16163,186:

POKE15586,131

:POKE15978,176
:POKE15584,186:

GOTO360
POKE15646,174

POKE15526,131
:POKE16161,176
GOT0360

:POKE15587,171

:POKE15971,186:G0T0369

POKE15983,140

:POKE15837,131

REM ~- IS THERE A WALL TO THE LEFT?

IFVAL (MIDS(BS,6,1))=8THEN377

REM --- DRAW WALL TO THE LEFT
ONE+1GOT0363,366,376,373,375
POKEL15373,180:POKE15372,141:POKE15371,131
POKE16269,184:POKE16333,129:POKEL6332,158
POKE16331,160:G0T0420
POKE15438,151:POKEL5439,141:POKE15448,188
POKE15441,144:POKE15505,131:POKE16278,135
POKE16206,181:POKE16207,158:POKE16208,129

POKE16144,184:POKE16145,135:POKE16681,160:G0T0420

POKE15586,157 : POKE15587 ,180 : POKE15588,144
POKE15572,131:POKEL6882,159:POKE16083,129

POKE160619,184:POKE16020,135:POKE15956,160:G0T0420

POKE15573,157 : POKE15574,180:POKE15957,159
POKE15958,129:POKEL5894,184:G0T0420
POKE15639,151:POKE15640,141:POKEL5895,135
POKE15831,181:POKE15832,158:G0T0429

REM ~-~ DDRAW HALL TO THE LEFT
ONE+1G0T0379,391,394,396,398

GT=15369:GB=16

265

GT=GT+1:GB=GB+1:IFGB=16270THEN428
POKEGT, 176 : POKEGB, 140 : GOTO3 80

POKE15562,151:
POKE15585,131:
POKE16088,176:
POKE15578,151:
POKE15954,181:
POKE15573,181:
POKE15894,148:
POKE15639,157:
POKE15832,131

POKE15503,131
POKE16878,181
POKE16081,176
POKE15571,131
POKE15955,176
POKE15574,176
GOT0428

POKE15640,140

+POKE15504,131
:POKE16879,176
1 GOTO420

:POKE15572,131

:POKE15956, 176 : GOT0420

:POKE15893,157
:POKE15831,151

REM ~-- IS THERE A WALL AHEAD?

IF({X+ (E*Y)=A(180)) *(D=4))+ ({X+(E*Y)=A(101)) *(D=2)) THEN580

IFVAL (MID$(B$,3,1))=1THEN460

GOTO481

REM --- DRAW WALL AHEAD
ONE+1GOT0461,465,469,473,477
POKE16278,141:POKE16295,142:POKE15374,176
POKE15399,176:GT=15374:GB=16270
GT=GT+1:GB=GB+1: IFGT=15399THEN500

POKEGT, 176 : POKEGB, 144 : GOT0463
POKE15566,151:POKE15523,171:POKE16882,181
POKE16699,186:GT=15506:GB=16082
GT=GT+1:GB=GB+1:IFGT=15523THEN508

Program continued

63

468
469
478
471
472
473
474
475
476
471
478
479
480
481
483
490
495
508
51¢
528
530
540
545
558
560
570
580
598
600
61P
615
628
630
640
650
655
660
678
680
698
695
700
718
728
738
740
750
752
760
762
770
772
780
790
800
8lp
820
825
836
848
858
860
865
870
875
880
890
892
894
896

games

POKEGT,131:POKEGB, 176 : GOTO467
POKE15573,151:POKE15584,171:POKE15957, 181
POXE15968,186:GT=15573:GB=15957
GT=GT+1:GB=GB+1: IFGT=15584THEN50G

POKEGT, 131 :POKEGB, 176 : GOTO471
POKE15575,176 : POKE15582,176 : POKE15895,141
POKE15982,142:GT=15575:GB=15895
GT=GT+1:GB=GB+1: IFGT=15582THENS 52

POKEGT, 176 : POKEGB, 146 : GOTO475

GT=15641:GB=15833

POKEGT, 156 : POKEGB, 131

GT=GT+1:GB=GB+1: IFGT=15645POKE15644,172:GOTO588
POKEGT, 146 : POKEGB, 131:G0T0479
E=E+1:IFE>4THEN500

GOSUB830

GOTO3p8

REM -- MOVE FORWARD, TURN RIGHT OR TURN LEFT
M$=INKEY$:IFMS=""THENS00

E=0:IFMS$="F "THEN550

IFM$="R"THENG20

IFMS$="L"THEN660

GOTO5060

REM --~- MOVE FORWARD

CLS:IF(X=A(100))* (D=4)THEN700
IF(X=A(101))*(D=2) THEN760

GOSUBB79

IFVAL (MID$(B$,3,1))=1THEN718

Q=0Q+1 s X=X+Y

GOSUBB38

GOT0360

REM ---- TURN RIGHT

CLS:D=D+1:IFD<5THEN640

D=1

GOSUB836

GOTO380

REM —~-- TURN LEFT

CLS:D=D~1:1FD>UTHENG6 80

D=4

GOSUB839

GOT03489

REM ~- WIN OR LOSE

PRINT@338,"YOU LOSE. OUT AT ENTRANCE.":GOTO778
FORI=18T019 : FORJ=3TO4 : SET (I, J+%) :NEXTJ : Z=%+1 : NEXTI
FORI=13TO8STEP~1:SET(19,I) :NEXTI:2=0
FORI=19TO33 :FORJ=8T0O9:SET(I,J+Z) :NEXPJ: Z=2+1 : NEXTI
PRINT@536,"%2ZZAAPPPP!!"

PRINT@653,"YOU JUST RAN INTO THE ELECTRIFIED WALL!"
GOT0778

PRINT@333,"YOU WIN IN";Q;"MOVES. ";A(102);
PRINT"IS MINIMUM SCORE."

PRINT: PRINT

PRINTTAB(13) "DO YOU WANT TO TRY AGAIN? (Y=YES, N=NO)"
M$=INKEY$: IFM$=""THEN7 80

IFM$="Y"RESTORE : GOTO80

IFMS$="N"THEN820

GOTO788

CLS:PRINT@320,"0K. COME BACK WHEN YOU'RE":END
REM =-- TEST FOR DIRECTION YOU ARE FACING
IFD=1THENY=-1§

IFD=2THENY=1

IFD=3THENY=1§

IFD=4THENY=~1

REM -~ FETCH ARRAY A CONTENTS FOR CURRENT LOCATION
B$=STRS (A (X+ (Y*E)))

REM -~ ROTATE ARRAY A CONTENTS FOR CURRENT DIRECTION
IFD=1THEN9#2

FORI=2T0D

B4=VAL(MID$(B$,4,1)) :B5=VAL(MIDS$(BS,5,1))
B6=VAL(MIDS$(BS$,6,1)) :B3=VAL(MIDS$ (BS,3,1))
P=10000+B4*1808+B5*%100+B6*10+B3

64

96@

992

945

914@

912

925

93¢

940

942

950

952

968

962

978

972

98¢

985

998

1000
1002
1010
1012
1020
1022
1630
1832
l164@
1945
1850
1852
1060
1062
1070
1072
1480
1082
1090
1692
1100
1185
1110
1112
1114
1129
1122
1124
1130
1132
1134
1140
1142
1144
1145
1158
1155
1160
1162
1164
1170
1172
1174
11860
1182
1184
1199
1192
1194
1200
1202
1204

games

B$=STRS (P) : NEXTI

RETURN

REM —-— ARRAY D DATA
DATAL,8,7,14,2,8,8,20,3,7,10,23,4,10
DATA8,29,5,18,10,38,6,10,10,45

REM -- ARRAY A DATA FOR MAZE NR 1
DATAG,0,0,0,6,0,0,06,0,0,0,0,0,0,0,0,0,0,0,0
DATAG,0,0,0,0,0,0,0,0,0

DATAllﬂEl llﬂlﬂ 111@0 11611,111066,11011,11000,11100,0
DATAl@G11,11100,18111,116¢1,10016,11116,10101,108101,0
DATA11181,16161,11011,10106,11101,11001,10110,16001,0

DATA1611},10161,106011,11000¢,10000,10010,11016,111060,0
DATA11601,16010,111008,108101,106011,11100,11101,10101,0

.8
.0
@
DATALOG®0,10000,11100,10011,10100,10101,11011,10110, a,0
@
'
.0
0

DATA10011,11010,16116,106011,11110,108011,10016,10110,0
DATA68,57,14,8,7
REM -- ARRAY A DATA FOR MAZE NR 2
DATAG,0,0,0,0,0,06,0,0,0,0,0,0,6,0,0,0,0,0,0
DATAlllﬂl llﬂll 110@0 llﬂlﬂ llﬂﬂﬂ llﬂlﬂ 1llﬂﬂ 11101,9
pATAl@@1),11¢106,10000,11110,10011,11010,10100,106101,0
DATA11601,11106,10001,11100,11001,11110,10801, 10100,0
DATA1#101,10101,16111,101061,16101,11001,10110, 10111,0
DATAL8000,10066,11010,10000,10100,10001,11010,111060,0
DATA1G161,16111,11181,10101,10101,10011,11166,10411,0
DATAlGG@1,11116,10061,10100,16011,11110,10101,11101,0
DATA16611,11610,10116,16011,11610,1111€,10011,101108,0
DATAGS,77,20,8,8
REM —- ARRAY A DATA FOR MAZE NR 3
DATA11001,11010,11100,11011,116006,11000,11106,0,0,0
DATA1G0G®,111006,10111,11101,10101,10101,10111,6,9,0
DATAL18101,10611,110006,10000,10110,101061,111081, 0,0,0
DATA18611,11160,16111,10111,11001,10010,10100,0,0,0
DATA111@1,10001,11060,11100,10101,11011,10110,0,0,0
DATA)GO11,16116,141061,10111,10001,11110,11101,0,0,0
DATA11601,11006,10116,11601,1006106,11110,16101, 2,0,0
DATAlG101,10101,11161,106101,11011,11000,106110, 6,0,0
DATAL0GG¢1,10010,10100,10061,11014,10100,11001,06,0,0
DATA1®111,11611,16110,10611,11116,16611,106116,0,0,0
DATALG,86,23,7, lﬂ
REM -— ARRAY A DATA FOR MAZE NR 4
DATA11611,11010,110008,11100,110061,11016,110060
DATA11110,11611,11100,11601,111106,10101,10111
DATAl@811,11100,10101,11011,11108,10101
DATA18101,11101,10611,11000,11010,10116,10101
DATA11011,1¢106,10101,10100,100811,11000,1@110
DATA11601,11110,100601,111066,10061,10118
DATA166G1,11160,10001,11010,10100,11001,101090
DATA1G111,10061,11160,10101,10111,10101,11011
DATA1®116,16101,16101,11001,18116,100811
DATA10001,11019,101106,11161,111081,10161,10001
DATAL®116,11161,11101,10011,11010,11016,10110
DATAL@P11,10110,10011,1106140,106010,10110
DATAG,0,0,06,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8
DATA3G,59,29, lﬂ 8
REM -- ARRAY A DATA FOR MAZE NR 5
DATA11001,11010,11100,11011,11166,11001,11110
DATA11011,11100,11101,10100,11101,106001,11008
DATA16110,10101,110601,11000,10010,10100
DATAL@101,1@8611,10110,10101,11101,108011,16100
DATA10111,11101,10001,10001,110106,11000,106010
DATAl@116,11101,10611,1106008,10110,10101
DATALG@11,11110,10101,11001,11010,1010¢,11161
DATA16101,11011,10110,1106061,11016,101008,18111
DATA11611,16000,10116,10101,11001,11108
DATA1®101,11611,10110,11101,11101,10101,11011
DATAL1Q@1¢,10100,10111,10001,11010,11006,10110
DATALGG11,10000,11600,11110,10001,11110
DATAL@101,11181,10101,11611,11100,10101,16101
DATAL11001,10000,11116,10011,10110,10011,11010
DATAl@ﬂlﬂ,10110,10%11,1@110,lﬁﬂll,llllﬂ

.9
]
.0
'@
]
.0
.0
]

Program continued

65

1210
1215
1229
1222
1224
1230
1232
1234
1240
1242
1244
1250
1252
1254
1260
1262
1264
1270
1289

games

DATA16,29,38,10,10

REM -- ARRAY A DATA FOR MAZE NR 6
DATAllﬂﬂl,1186@,1191%,111@2,110@1,111@0,11@11
DATAlllBE,llBll,lllﬂﬂ,lﬂlll,lﬂlﬂl,lllﬂl,lﬂlﬂl
DATAl@lll,lﬂlﬂl,llﬂﬂl,lﬂﬂﬂﬂ,llﬂlﬂ,lﬂl@ﬂ
DATAllBﬂB,lﬂ@lﬁ,lﬂllﬂ,lﬂﬂﬂl,110”0,16110,10101
DATAlﬂﬂll,llllﬂ,lﬂlﬂl,lﬂlﬂl,llﬂll,llﬂﬂﬂ,lﬂllﬂ
DATAlﬂﬂll,llll@,lﬂﬁll,lllﬂﬂ,llﬂﬂl,lﬂlﬂﬂ
DATAlﬂﬂll,llllﬂ,lBlﬂl,llﬂll,llﬁﬂﬁ,llllﬂ,lllﬂl
DATAlﬂlﬂl,lﬂlll,lﬂlBl,llﬂﬁl,llﬂlﬂ,lﬂﬂﬂﬂ,llllﬂ
DATAlﬂlﬂl,lllﬂl,lﬂﬂll,lﬂlﬂﬂ,lllﬂl,lﬁlﬂl
DATAlﬂﬂll,llllﬂ,lﬂlﬁl,llﬂﬂl,lﬂlﬂﬂ,lﬂﬂll,ll@lﬂ
DATAIGBEE,lﬂllﬂ,lﬂlﬂl,llﬂﬂl,llﬂlﬂ,lﬂlﬂﬂ,lﬂlll
DATAlBZﬂl,llﬂlﬂ,llﬂlﬂ,lﬂlﬂﬂ,llﬂﬂl,lﬂllﬂ
DATAIﬂBll,lllﬂﬂ,lﬂﬂll,llllﬂ,lﬂlﬂl,lllﬂl,lllﬂl
DATAlBlﬂl,lﬂﬂll,llﬂlﬂ,llﬂll,lﬂﬂlﬂ,llﬂl@,llﬂlﬂ
DATA16610,10010,106110,10011,11016,11110
DATA28,89,45,16,10

END

66

GAMES

Micro-Basketball

by Charles Weindorf

stepped onto the court to play another game of “death” basketball. Death

means no rules, no referees, and no sanity. I was at a disadvantage
because my 130-pound, five-foot-seven-inch body didn’t send the opposing
six foot-seven inch center into a tailspin. I then asked, “Why kill myself? I
like basketball, but not terminal injuries.” That's how my search for a good
basketball game program began. Finally, I decided to design one myself.

The Program

The Micro-Basketball program is designed for a Level I1 16K TRS-80 and
uses about 15.5K of memory. It should be input via cassette. For those will-
ing to suffer a little keyboard cramp, the following hints should aid in the
typing. In a line such as 4330, there are 15 spaces between two words.
Counting all those spaces slows the typing process. Before typing the instruc-
tions (and cursing at me) here is a simple way to avoid the ordeal. First,
leave out lines 3360-4550; then change lines 3360, 3400, and 3750 to CLS:
RETURN. The program still offers you directions and a scorebook, but it
only redraws the court.

Instructions

Most computer games are a battle of wits between human and computer,
but this game’s instructions make the reader wonder if his ammunition is
running low. Some of the instructions for this game are complex. My friends
who have played the game tell me that it is best to read the instructions
quickly, and then refer to them as needed. With this advice in mind, I wrote
the program with an option that allows you to refer to the instructions
before any offensive or defensive play. If you choose to leave the instructions
out, however, refer to this article to explain the procedures of the game.

The instructions are split into two parts: the directions (the total set of in-
structions) and the scorebook.

Directions

The directions explain the graphics and the game’s limits. Included are
the offensive and defensive courts, and the set of players assigned to each
team. Your team (visitors) always has thin players, while the computer’s
team has fat ones. Each game is limited to two 15-minute halves (unless the
game is tied and goes into overtime). Each offensive play uses up 20 seconds
on the clock.

67

games

Scorebook

The scorebook section explains strategy and its effect on the shooting
percentage. The three factors that change the shooting percentage are: team
setup, team status, and a random number. Team setup determines the ma-
jor portion of the shooting percentage (starts at 50 percent each play). Table
1 displays the three offensive and three defensive choices. Each offense has a
different probability of success against a certain defense (just as in a real
game). Table 2 gives all the possible offensive/defensive combinations and
shows which are favorable to the offense or the defense. Any combination
that is favorable to the offense increases the shooting percentage by 15 per-
cent. Any combination favorable to the defense decreases the shooting
percentage by 15 percent. Any other offensive/defensive combination in-
creases the chance that a foul will occur from 15 to 35 percent.

Offensive Choices Defensive Choices
outside shot (1) 3-2 defense (1)

inside shot (2) 2-1-2 defense (2)
choice shot (3) man-man defense (3)

Table 1. Choices

Favored Offensive Setups
(1) off. vs. (2) def. (2) off. vs. (3) def. (3) off. vs. (1)def.

Favored Defensive Setups
(1) off. vs. (1) def. (2) off. vs. (2) def. (3) off. vs. (3) def.

Other Offensive/Defensive Setups
(1) off. vs. (3) def. (2) off. vs. (1) def. (3) off. vs. (2) def.

Table 2. Setups

Team status also changes the shooting percentage. Before each play, team
status (aggressive or safe) is chosen along with team setup. To explain team
status, I will use an example from a real basketball game. The defensive
team has decided to play safely to stop any offensive plays that are designed
to penetrate near the basket. The offensive team’s play is aggressive (de-
signed to penetrate), and the defense is able to stop the play before it is fully
executed, forcing the shooter to take an uncomfortable shot. The shot is not

68

games

likely to go in. The next time down the court, the defense decides to play ag-
gressively (to stop any shots away from the basket), but the offense decides to
play aggressively also. This allows the offensive team to break through and
give the shooter a comfortable shot. This shot probably goes in.

In Micro-Basketball, there are small arrows that signify aggressive and
safe play. The arrows may seem confusing at first, but are very useful once
they're understood. If the arrows for your team are pointed at the other
team, your team plays aggressively; if the arrows are pointed away, they
play safely. The effect upon the shooting percentage is this: If the offensive
status and defensive status are the same, the shooting percentage increases
by 10 percent. If the offensive and defensive status differ, shooting percent-
age decreases by 10 percent.

A random number is the third factor in shooting percentage. This random
number from one to ten is added to the shooting percentage to make the
game a higher scoring contest.

For example, the offense is playing an inside shot while the defense is
playing the three-two. In Table 2, you find that it is one of the setups that
has no effect on the shooting percentage. Both offense and defense are play-
ing aggressively, so the shooting percentage increases 10 percent, and there

T MO VISR

e

YOUR CFFENGIVE COURT,

Photo 1. The player’s offensive half court. Character string combinations are used to draw the
basket and foul circle.

69

games

TIE HOE VISTTORS

Photo 2. The two teams lined up for the second foul shot,

is a random number of three. Since the shooting percentage starts at 50, the
final shooting percentage equals 50 + 0 + 10 + 3 = 639%.

Subroutines

The fun part of Micro-Basketball is its graphics, particularly seeing your
men pass, dribble, and shoot. (At least it’s fun while you're winning.) Even
the computerized cheering sections get into the action. For organization’s
sake, I separated the program into 11 major subroutines, each designed to
handle a specific part of the graphics. Dribbling (1720), shooting (2770),
fouls (2910), player positioning (1500), and court drawing (1030) are called
from the main body of the program (0-1020). The combination of these
subroutines simulates the deployment of offenses and defenses in an actual
basketball game.

All of the graphics are done using PRINT @ statements. The position of an
object is found by each individual subroutine from a set of arrays using
tables of numbers as starting points. From these, the computer draws the
figures. The arrays C (court design), OF (offensive players), DF (defensive
players), and PM (the moving basketball) are in two subdivisions, one for

70

games

each half-court., The use of the subroutines and the arrays permits the pro-
gram to execute the graphics quickly, enhancing the realism of the game.

The subroutine that prevents the basketball from erasing the players and
the court could be useful in many programs. The @-to-POINT subroutine
(lines 3210-3290) converts a PRINT @ number (MO) and changes it into the
number of lines down (MP) and the number of spaces over (MQ). It then
checks all the blocks within a three-by-two space by using MQ and MP to
determine the POINT coordinates. The formula for the x-coordinate is MQ
* 2 + AT7; the y-coordinate is MP * 3 + A6 (where A7 and A6 are the
parameters of the loops). If there are any blocks SET within the space, the
subroutine returns a 1 in MR. The shooting subroutine, in turn, skips print-
ing the ball at that space.

Photo 3. Action on the players’ defensive court prior to the shot. The scoreboard to the left gives
the facts of the play. (Photographs by Thomas Cwalina)

Sequence of Play

Micro-Basketball proceeds much like a regular basketball game. Each of-
fensive play has dribbling, passing, and shooting, as well as a possibility of
fouls, blocks, three-pointers, and even slamdunks. There are three major
segments that make up each offensive play. The setup, the action, and the
transition sections simulate most of the play of a regular game.

71

games

In the setup section, the player and the computer pick offensive and
defensive strategies. The offensive player picks the type of shot, a shooter,
and a status, while the defensive player chooses a defense and a status. The
two teams are then placed on the court. Since there are three types of de-
fense, the defensive positioning will vary, but the offense will always be
placed on the court as shown in Table 3. The scoreboard (the time clock and
space directly beneath it) is then set up. It shows the offensive/defensive
choices and the shooter. The play is ready to begin.

Right guard (G) G

Right foreward (R) R

Point man (P) P
Left foreward (L) L

Center (C) C

Table 3. Positions

The action sequence continues until the offensive play is completed. As
play begins, either a foul will be called, or the ball will be given to the
shooter. If there is a foul called, the men line up as in a real game, and two
shots are taken. If play continues, the ball is dribbled and passed by the
point man to the shooter.

In the next action sequence, the shooter will either take the shot or have it
blocked. If the ball is blocked, play goes to the transition section. The shot,
once away from the shooter, will either go in or be missed. If the shot goes in,
there is a chance that it will be a slamdunk or a three-pointer. An inside shot
of five feet or less, or any inside or choice shot by the center, is counted as a
slamdunk. A shot of 27 feet or greater is counted as a three-pointer. If the
shot misses, there is a 40 percent chance of an offensive rebound. An offen-
sive rebound sends the program back to the setup section. If a shot is made or
missed, the program goes to the transition section.

The transition section handles the post-action play. If there is a blocked
shot, slamdunk, or three-pointer in the action section, a cheering section
(one for each team) jumps up and down for the good play. After this is done,
the other team is given control of the ball, and the program goes back to the
setup section.

Well, armchair basketball fans, our time has come. Micro-Basketball lets
us dribble, pass, shoot, slamdunk, block, and cheer to our heart’s content.

72

18
28

30
40

50

68
70

8@
100
110
120
138

1490

158
168
178

188
199

200

219

220
239

240
250

268

270
280

299

3¢
318

games

Program Listing, Micro-Basketball

REM CHARLES E. WEINDORF

CLEAR 208:
CLS

MICRO BASKETBALL 1/88

DIM DF(2,3,5) ,0F(2,5),C(2,6):
29

GOTO 46
GOSUB 3338
T = 15:
S = 0@
TE = 1:
GOSsuB 1038
PB = 170
IPT <10

THEN

PA = 171:

GOTO 90
PA = 178
GOSUB 3348
PRINT @242, "WHAT PLAY?";:
PRINT @306,"(1)OUTSIDE";
PRINT @378,"(2) INSIDE";:
PRINT 8434," (3)CHOICE";
PRINT @498," (4) SCOREBOOK"
PRINT €562," (5)DIRECTIONS”

K$ = INKEYS:
IF K$ = ""
THEN

138

PL = VAL(KS$):
IF PL < =8 ORPL > 5
THEN

.
i

I

130
FOR A9 = 242 TO 562 STEP 64:
PRINT €A9,"™ "
NEXT

PRINT €242,"WHAT MAN?™;
K$ = INKEYS$:

ON PL GOTO 188,238,280,340,350

PRINT @306," (1) POINT MAN";
PRINT @370,"(4) CENTER";:
PRINT @434,"(5)R. GUARD";
K$ = INKEY$:
IF K§ = "*
THEN

200
ML = VAL(KS):

IF ML > <1 AND ML > < 4 AND ML > < 5

THEN
200
GOTO 360
PRINT @306,%(2)R. FORWARD"
PRINT €370,"(3)L. FORWARD"
PRINT @434," (4)CENTER";
K$ = INKEYS:
IF K$ = *"
THEN
250
ML = VAL(KS):

i3

i

IF ML > < 2 AND ML > < 3 AND ML > < 4

THEN

250
GOTO 360
PRINT @306,"(1)POINT MAN";
PRINT €378," (2)R. FORWARD"
PRINT @434,"(3)L. FORWARD"
PRINT @498,"(4)CENTER";
PRINT @562,"(5)R. GUARD";
K$ = INKEYS:

.
K
.
1

s
HY

(Note: This listing is formatted for readability.
Memory space is tight, and the user is advised to
compress where possible.)

73

games

IF K§ = "%
THEN
319
328 ML = VAL(KS$):
IF ML < = 8 OR ML > 5
THEN
318
339 GOTO 360
340 GOsUB 3758:
GOTO 50
350 GOSUB 3400:
GOTO 58
360 K$ = INKEYS:
FOR A9 = 242 TO 882 STEP 64
PRINT @AS," "
NEXT
376 PRINT @242,"STATUS";:
PRINT @306, (1)AGGRESSIVE";:
PRINT @370, (2)SAFE";
386 K$ = INKEYS:
IP K$ = °"
THEN
380
390 SL = VAL(KS$):
IF SL > < 1 AND SL > < 2
THEN
389
46¢% KS = INKEYS
410 FOR A9 = 242 TO 370 STEP 64:
PRINT @A9," "
NEXT
420 REM *** COMP DEF. CHOICE
439 PC = RND(3):
SC = RND(2)
P1§:
P3§:
P23:
PD$ = P4S
450 KS$ = INKEYS
460 GOSYB 1518
478 FW = 194:
FX 218:
FY 786
FZ 718
KK 1z
TA = 241:
GOSUB 1878
480 IF ™ = 1
THEN
T = B:
GOTO 570
498 GOSUB 2780
500 IF ML = 1
THEN
530
518 GOSUB 17308
520 IF BK = 1
THEN
GDSUB 2288:
B = O:
GOTO 550
538 GOSUB 2840
540 GOSUB 2390
! 550 PRINT @TA + 458,"HIT (P)LAY";
! 560 K$ = INKEYS:
i IF K$ < > "p"
THEN
560
; 578 GOSUB 1260
i 580 K$ = INKEYS$

PAS
PBS
PC$

#unn

B onououo§ o

74

games

598 TE = 2:
GOSUB 1930

606 PB = 128
619 IF T < 18

THEN

PA = 129:

GOTO 638
628 PA = 128
638 GOSUB 3388
640 PRINT @192,"WHAT DEFENSE?";:

PRINT @256,"(1)3-2";:

PRINT @328,"(2)2-1-2";

658 PRINT @384,"(3)MAN-MAN";:

PRINT @448,"(4)SCOREBOOK";

660 PRINT @512,"(5)DIRECTIONS";
678 K$ = INKEYS: *
IF K$ = ""
THEN
670
680 PC = VAL(KS):
IF PC < = @ OR PC > 5
THEN
678
698 ON PC GOTO 728,720,720,708,710
708 GOSUB 3750:
GOTO 590
718 GOSUB 3460:
GOTO 596
728 K$ = INKEYS:

FOR A9 = 192 TO 512 STEP 64:
PRINT @A9," "y
NEXT

738 PRINT @192,"STATUS";:
PRINT 8256 ," (1) AGGRESSIVE";:
PRINT @328,"(2)SAPE";
746 K$ = INKEYS:
IF K$ = ""
THEN
748
758 SC = VAL(KS):
IF SC > < 1 AND SC > < 2

THEN
748
768 FOR A9 = 192 TO 328 STEP 64:
PRINT @A9," "
NEXT
778 REM ** COMP OFF. CHOICE
788 PL = RND(3):
SL = RND(2)

790 ON PL GOTO 800,840,860
868 XX = RND(3):

IF XX =1
THEN
ML = 1:
GOTO 8868
818 IF XX = 2
THEN
ML = 4:
GOTO 889
82¢ ML = 5

83¢ GOTO 880

840 ML = RND(3) + 1
858 GOTO 880

860 ML = RND(5)

870 GOTO 880

880 K$ = INKEYS

899 PAS = P2§:
PBS = P4§:
PC$ = P1S:
PD$ = P3$

98¢ GOsSuUB 1518

75

games

91¢ FW = 226:
FX = 258:
FY = 758:
FZ = 762:
KK = = 1:
TA = 193:

GOSUB 1878
9206 IF ™ = 1
THEN
™ = B:
GOTO 1410
930 GOSUB 2788
948 IF ML = 1
THEN
976
950 GOSUB 1738
960 IF BK = 1
THEN
GOSUB 2280
BK = #:
GOTO 998
978 GOSUB 2848
980 GOSUB 2390
99¢ PRINT @TA + 450,"HIT (P)LAY";
1008 K$ = INKEYS:
IF K§ < > "p"
THEN
1000
1018 GosuB 1269
1828 K$ = INKEYS:
GOTO 50
1038 CLS :
PRINT @C(TE,6), STRING$(32, CHR$(148)):
1040 PRINT @C(TE,6) + 320, STRINGS(32, CHRS$(148));
1050 PRINT @1, STRINGS(63,"-");
1968 PRINT @961, STRINGS(62,"-");
1978 IF TE = 1
THEN
PRINT €0, CHRS$(176);:
GOTO 1098
1886 PRINT @63, CHR$(176);
1896 FOR A% = C(TE,1) TO C(TE,l) + 895 STEP 64:
PRINT @A9,BS;:
NEXT
1188 FOR A9 = C(TE,2) TO C(TE,2) + 328 STEP 64:
PRINT @A9,BS§;:
NEXT
1116 PRINT @C(TE,3), CHR$(148) + CHR$(172) + CHRS$(188);
1128 PRINT @C(TE,3) 67, CHR$(137) + CHRS$(164);:
PRINT @C{TE,3) 133, CHR$(169);
1138 PRINT @C(TE,3) 197, CHR$(154);:
PRINT &C{TE,3) 259, CHRS$(152) + CHRS$(134);
11490 PRINT @C(TE,3) 328, CHR$(140) + CHR$(142) + CHR$(143);
1158 PRINT @C(TE,3) 4, CHRS$(188) + CHR$(156) + CHR$(148);
1168 PRINT Q@QC(TE,3) 58, CHR$(152) + CHRS$(134);:
PRINT @C(TE,3) 121, CHR$(158);
1170 PRINT @C(TE,3) 185, CHR$(165);:
PRINT €@C(TE,3) 25@, CHRS(137) + CHRS$(164);
1188 PRINT QC(TE,3) 316, CHR$(143) + CHRS(141) + CHR$(148);
1198 GOSUB 1208:
GOTO 1239
1200 PRINT @C(TE,4), CHR$(152) + CHRS$(134) + CHRS$(140) + CHRS$(144);
1218 PRINT RC(TE,4) + 64, CHRS$(137) + CHR$(164) + CHRS(1408) +
CHR$(129);
12280 RETURN
1238 PRINT QC(TE,5)," TIME HOME VISITORS";
1240 RETURN
12580 REM CLOCK COUNTER
1260 8 = 5 ~ 20
1278 IF S < 68

-~

R k]

76

1280

1299
1308

1318

1320 PA

1339
1340

1350
1360

137¢

1380

1399

1400
1419

1428

1430

14490
1456
1460

1470
1480
1499
15698
151¢
1529

1539
1540

1550
1560

157¢

games

THEN
= 40:
T =T - 1
IF T = @ AND =g
THEN
1300
RETURN
CLS :
VvV = VYV + 1:
IF VW = 2
THEN
1400
TE = 12
GOSUB 1639
= 171z
PB = 17B:
GOSUB 33068:
FOR A9 = 1 TO 3088:
NEXT
CLS
PRINT CHR$(23):
PRINT €472,"HALFTIME"
FOR A9 = 1 TO 30800:
NEXT
CLS :
PRINT "**** DO YOU WANT TO QUIT NOW AND SAVE FACE";:
INPUT 11§
IF II$ = "NO"
THEN
T = 153
S = 0:
GOTO 58
IF II$ > < "YES"
THEN
1360
PRINT "TRY AGAIN SOMETIME,":
END
IF H(1) < > H(2) GOTO 1438

ém'—]
[

PRINT CHRS$(23):
PRINT @472,"OVERTIME!"
FOR A9 = 1 TO 3000:
NEXT
GOTO 59
IF B(l) < H(2)
THEN
1480
PRINT TAB(21);"*%dkkk yOU WIN *&kkkkin
PRINT TAB(21);%"*#***% PURE LUCK ®#%##x"®
PRINT TAB(21);"HOME™;H(2);:
PRINT TAB(31);"VISITORS";H(l);:
GOTO 1478
PRINT TAB(21);P**#*%s& T WIN *kA&hkkn
GOTO 146¢
REM ** SET UP PLAYERS ON THE SCREEN **
FOR A9 = 1 TO 5
PRINT QOF(TE,A9) ,PCS$;:
PRINT €OF(TE,A9) + 64,PD$S;
PRINT @DF(TE,PC,A9),PAS;:
PRINT @DF(TE,PC,A9) + 64,PBS;
NEXT
ON TE GOTO 1569,1598
IF 8L = 1
THEN
OF§ = CHR$(93):
YW = - 1z
GOTO 1610
OF$ = CHR$(94):
YW = 4

77

1580
1599

l6p0

l6le
1620

1630

1640
1650

1660

1670
1680
1690
1700
1718
1728
1738

1748
1758

1768
1770
1788
1790

lspe
1810

1820
1830
1849
1858
18680
1878
1880
1890
1998
19140
1920
193¢
1940
1950
1960
1970
1988
1999
2080
2810
2020
2830

games

GOTO 1618
IF SL = 1
THEN
OF$ = CHR$(94):
YW = -

GOTO 1618
OF$ = CHR$(93):
YW = - 1
ON TE GOTO 1628,1650
IF SC = 1
THEN
DF$ = CHR$(94):
¥X = 4:
GOTO 1670
DF$ = CHRS$(93):
¥YX = -1
GOTO 1676
IF SC =1
THEN
DF$ = CHR$(93):
YX = -~ 1:
GOTO 1670
DF$ = CHR$(94):
YX = 4
FOR A9 = 1 TO 5
PRINT @OF(TE,A9) + YW,OFS;
PRINT @DF(TE,PC,A9) + YX,DFS$;
NEXT
RETURN
REM ** DRIBBLE **
IF TE = 1
THEN
A4 = 63:
ELSE
A4 = 68
FOR A6 = 1 TO A5
PRINT @OF (TE,ML) + A4, CHR$(131);:
GOSUB 1810
PRINT €OF{TE,ML) + A4, CHRS$(148);:
GOSUB 1816
PRINT @OF (TE,ML) + A4, CHR$(176);:
GOSUB 1818
PRINT €OF{TE,ML} + A4, CHR$({148);:
GOSUB 1816
PRINT @OF(TE,ML) + A4, CHRS$(131);:
GOSUB 1818
GOTO 1838
FOR A7 = 1 TO 20:
NEXT
RETURN
NEXT A6
PRINT €OF (TE,ML) + A4, CHR$(128);
RETURN
REM **LOGIC**
ON PL GOTO 18806,1968,1920
PRINT @TA + 63,"0UTSIDEY;
GOTO 1830
PRINT @TA + 64, INSIDE";
GOTO 1930
PRINT @TA + 64,"CHOICE";
PRINT @TA + 1,"OFF DEF";
ON PC GOTO 1958,1979,1990
PRINT @TA + 72,% 3=-2";
GOTO 2088
PRINT @TA + 72," 2-~1-2";
GOTO 2889
PRINT @€TA + 72,"MAN-MAN";
PRINT @TA + 194,"**SHOOQTER**";

ON ML GOTO 20#20,2040,2060,2080,2160
PRINT @TA + 259,"POINT MAN";
GOTO 2110

78

2040
2050
2068
2087¢
2080
2890
2160
2110

2120

2138

2140
2158
2168
2179

2180
2190

2260

22180
2220
2239
2240

2250
2260

2270
2280

2290

2300

2310

2320
2330

2340
2350
2360

games

PRINT QTA + 258,"R. FORWARD";
GOTO 2118
PRINT @TA + 258,"L, FORWARD";
GOTO 2114
PRINT @TA + 26¢,"CENTER";
GOTO 2118
PRINT @TA + 259,"R. GUARD";
8% = 50:
IF PL = PC
THEN
2149
IF PC = PL + 1 OR PL, = PC + 2
THEN
2130:
ELSE
GOTO 2168
S$ = 8% + 15:
GOTO 2178
S = 8% - 15
GOTO 21749
Fg = 2¢
IF 8L = 8C
THEN
S% = S% + 10:
ELSE
S = 8% -~ 10
PRINT @TA + 322,"HIT (P)LAY?";
K$ = INKEYS:
IF K$ > < "p"
THEN
2199
FF = 15:
FF = FF + F%:
IF RND(168) < FF
THEN
2929
F$ = @
S% = S% + RND{18)
PRINT @TA + 322," SHOT%="S%;
IF RND(168) < S%
THEN
MM = l:
H(TE) = H(TE) + 2:
RETURN
MM = @ Iy
IF RND(108) > 35
THEN
RETURN :
ELSE
BK = 1
RETURN
FOR A9 = 1 TO 18:
PRINT @TA + 323,"BLOCKED! ":
FOR A8 = 1 TO 50:
NEXT :
PRINT @TA + 323," ",
FOR A8 = 1 TO 58:
NEXT :
NEXT
GOSUB 48208:
RETURN
RETURN
IF RND(168) > 48
THEN
RETURN
PRINT @TA + 321,"OFF REBOUND!";
PRINT @QTA + 386,"HIT (P)LAY";
K$ = INKEYS:
IF K$ < > "p"
THEN
2360

79

2378

2380
2390
2400

2418
2420

24390
2440
2450
2460
2470

2488
2490

2500
2510

2528

2530

2540
2550
2569
2570
2580
2599
260608
2610
2628
2630
2640
2650
2660
2678

2680
2690

2700

games

IF TE = 1
THEN
58:
ELSE
GOTO 598
RETURN
REM Eha T N-*%
IF MM = @
THEN
GOTO 2748:
ELSE
MM = 0

PRINT @TA + 323, %%-IN-** ",
GOSUB 2438:
GOTO 2490
cosuB 3300
FOR A9 = 1 TO 5
PRINT @C(TE,4)," wes
PRINT @C(TE,4) + 64," ",

GOSUB 1288
NEXT
RETURN
IF PL = 1
THEN
HD = 20 + RND(18):
GOTO 2519
GOTO 2550
IF HD < 27
THEN

PRINT @QTA + 386,HD;"FOOTER";:
RETURN

H(TE) = H(TE) + 1:

GOSUB 3308:

FOR A9 = 1 TO 18:
PRINT @TA + 386,"3 POINTER";
FOR A8 = 1 TO 50:

NEXT :

PRINT @TA + 386," T
FOR A8 = 1 TO 58:

NEXT :

NEXT

GOSUB 4828:

RETURN
IF ML < > 4
THEN

2690

FOR A9 = 1 TO 4
PRINT @TA + 387,"S%;:
GOSUB 1818
PRINT @TA + 388,"L";:
GOSUB 1816
PRINT @TA + 389,"A%;:
GOSUB 1818
PRINT @TA + 398,"M";:
GOSUB 1818
PRINT @TA + 391,°D%;:
GOSUB 1818
PRINT @TA + 392,7U%;:
GOSUB 1810
PRINT @TA + 393,°N%;:
GOSUB 1818
PRINT @TA + 394,"K%;:
GOSUB 1819
PRINT @TA + 387," "3
NEXT

GOSUB 4828

RETURN

IF PL < > 2
THEN

2720
SD = RND(15):

80

games

IF 8D < = 5 GOSUB 2560:
RETURN
2718 PRINT @TA + 386,5D;"FOOTER";:
RETURN
2728 SD = RND(25) + 53
IF 8D < 27
THEN
2710:
ELSE
2520
2739 RETURN
2748 PRINT @TA + 323,"* MISS * ";:
FOR A9 = 1 TO 508:
NEXT
2758 GOSUB 2338
2768 RETURN
2778 REM ** SHOOT **
2788 QQ = ML:
ML = 1:
GOSUB 1738
2796 ON QQ GOTO 2820,2880,2816,2820,2820
28909 ML = 53
GOSUB 1738:
GOTO 2828
2810 ML = 4:
GOSUB 1738
GOTO 2824
2828 ML = QQ
2838 RETURN
2848 FOR AA = OF(TE,ML) TO C(TE,4) STEP PM(TE,ML)
2858 MO = AA
2869 GOSUB 3218
2879 IF MR = 1
THEN
2896
2880 PRINT @AA, CHR$(176);
2898 NEXT
2906 RETURN
2914 REM *** FOUL SHOTS ***%
2928 IF TE = 1
THEN
OF (TE,1) = OF(TE,1) - 15:
ELSE
OF(TE,1) = OF(TE,1) + 13
2938 FOR D9 = 1 TO 2:
GOSUB 1838
2948 GOSUB 3368
2958 PRINT €@TA,"FOUL CALLED";
2960 1IF D9 = 1
THEN
PRINT @TA + 64,"FIRST SHOT ";:
ELSE
PRINT @TA + 64,"SECOND SHOT";
2976 FOR AY = FW TO FX STEP 12
2988 PRINT @A9,PAS;:
PRINT €A9 + 64,PBS;
2998 NEXT
3809 FOR A9 = FY TO F2 STEP 12
3818 PRINT @A9,PAS;:
PRINT @A9 + 64,PBS;
3020 NEXT
330 FOR A9 = FW + 6 TO FX — 6 STEP 12
3040 PRINT @A9,PC$;:
PRINT @A9 + 64,PDS;
3958 NEXT
30680 FOR A9 = FY + 6 * RE TO F2 + 6 * KK STEP 12
3979 PRINT @A9,PCS$;:
PRINT @A9 + 64,PDS$;

3pse REXT
3996 IF TE =1
THEN

81

DC
DC
3169

3110
3129

313¢
3148

3150
3168
3170

3180

3199
3200

3210
3220
3230
3248
3258
3260

32790

3280
3296
3369

3310

3320
33390
33490
3350

3360
3370
3380

3390

3400

3410
3420
3430
3440
3450
3460

games

= 482:
ELSE

476
PRINT @DC,PC$;:
PRINT @DC + 64,PDS;
PRINT @TA + 192,"HIT (P)LAY?";
K$ = INKEY$:
IF K$ > < "p"
THEN
3128
ML = 1t
GOSUB 28440
IF RND(190) < 80
THEN
GOSUB 2430:
H(TE) = H(TE) + 1
GOSUB 3308
NEXT
IF TE = 1
THEN
OF(TE,1) = OF(TE,1) + 15:
ELSE

OF(TE,l) = OF(TE,1) - 13
FOR RR = 1 TO 788:

NEXT
T™ = 1
F§ = 0:
RETURN
REM ** 'GET' CHECK **

MP INT(MO / 64)
MQ MO - (MP * 64)
FOR A7 = @ TO 1
FOR A6 = 0 TO 2
IF POINT(MQ * 2 + A7,MP * 3 + A6)
THEN
MR = 1:
GOTO 32908
NEXT :

NEXT
MR = @
RETURN
PRINT @PA,T
PRINT £PB
PRINT @PB
PRINT @PB
PRINT @PB
IF 8§ =8

THEN

PRINT @PB + 5,"0";
RETURN
PRINT CHRS$(23)
PRINT @462,"MICRO BASKETBALL"
FOR A9 = 1 TO 3006:

NEXT

CLS

-~

++ 4+

INPUT "*%**%+ WOULD YOU LIKE DIRECTIONS? (Y)ES OR (N)O";2Z$

IF 22$ = "N®
THEN

RETURN
IF 2%$ < > "y*
THEN

CLS :

GOTO 3376
CLS :

PRINT ®#***% OBJECT OF THE GAME: TO OUT-~SCORE THE COMPUTER";

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

" WITHIN THE

" CHOOSING THE CORRECT

"TION OF OFFENSIVE AND DEFENSIVE
"PLAYS."

ALLOTTED TIME BY";
COMBINA®;
L]

"DESCRIPTION OF THE GAME: THE GAME IS PLAYED ON TWO HALF-"

i

82

3470
3480

3490
35600

3510
3528
3539
3540
3550

35680
3570
3580

3590
3689
3619

3620
3630

3640
3658
3660
3678
3680

3690
3708
3718
3728
3730
3740

3750
3768

3779
3788

3796
38600

3810
3820
3830

3840
3850
3860
3870

7
PRINT
"3
PRINT
L]

PRINT
PRINT
":

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

games

"COURTS, ONE FOR YOUR OFFENSE AND
" ONE FOR YOUR DEFENSE. A SCORE

"BOARD IS IN THE CORNER OF THE *;
" SCREEN, UNDER WHICH A PLAY BY

"PLAY DESCRIPTION 1S GIVEN."

"hkkkkkkkkkk*x THE PLAYERS: YOUR PLAYERS:";P2$;
"THE COMPUTER'S:";Pl§;"."

TAB(38);P4$;:

TAB(57) ;P38§;

@896 ,"ANY KEY TO CONTINUE?";

K$ = INKEYS:

IF K$
THEN

3580

CLS
PRINT
PRINT
n

i
PRINT
PRINT

i

PRINT
PRINT
PRINT
PRINT

PhEkARAARAKKKRNRRS [IMITS: THE GAME IS LIMITED TO TWO 15 ";
"MINUTE HALVES. EACH OFFENSIVE

"PLAY EQUALS 20 SECONDS, THE ";
"OFFENSIVE RESTRICTIONS ON EACH "

"PLAYER ARE";

" DESCRIBED IN THE "3
" 'SCOREBOOK' SECTION."

"ANY KEY?"

K$ = INKEYS$:

GOSUB
PRINT

FOR A9

NEXT
CLS
TE =
GOSuB
PRINT

FOR A9

NEXT
CLS
PRINT
PRINT

FOR A9

NEXT
CLS
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

1639
@132,"YOUR OFFENSIVE COURT.";
= 1 TO 2500:

2:

1030
@165 ,"YOUR DEFENSIVE COURT.";
= 1 TO 2500:

CHR$(23) :
@468, "SCOREBOOK" :
= 1 TO 1808:

"THE PLAYERS ARE":
n

"THE RIGHT GUARD (G)":
"THE RIGHT FORWARD (R)"
"THE POINT MAN (P)":

"THE LEFT FORWARD (L)"
"THE CENTER (C)"

@168,"G";

@222,"R"; :

@306 ,"P";:

@8358,°L";:

@424,"C";

@448 ,"*** THE SET-UP ON THE OFFENSIVE COURT 18 ";
"PORTRAYED TO THE RIGHT.";
"HIT 'C' TO CONTINUE,"

K$ = INKEY$:

IF K§
THEN

387¢

<> "ct

83

3880
389¢

3900
3910
3920
3938
3940
3958

3960
3978
3980

3990
4000
401¢
4020
4030
4040

49850
4060
4078
4088
40898
4100
4116

4129
4130
4140
4158
4168
4178

4188
4198
4208
4210
4220

4230
4248

4250
4260
4270
4280
4290
4300

4310
4320

4330
4340
4350
4360
4370
4380

games

GOSUB 3896:
GOTO 3949
CLS :
PRINT "OFFENSIVE CHOICES DEFENSIVE CHOICES"
PRINT "OUTSIDE SHOT (1) 3-2 DEFENSE ()"
PRINT "INSIDE SHOT (2) 2-1~2 DEFENSE (2)"
PRINT "CHOICE SHOT (3) MAN-MAN DEFENSE (3)"
RETURN
PRINT
PRINT P**** EACH PLAYER HAS A SHOOTING % OF 50 AT THE START OF ®
;
PRINT "EACH PLAY, BUT IT CAN BE AFFECTED BY THE ";
PRINT "DEFENSIVE CHOICE."
PRINT :
PRINT TAB(15);"THE FAVORED OFFENSIVE SET-UPS."
PRINT STRINGS(63,"-")
PRINT "(1)OFF VS (2)DEF ** (2)OFF VS (3)DEF ** (3)OFF VS (1) DEF®
PRINT "**** THIS WILL CAUSE THE SHOOTER'S % TO INCREASE 15%.°
PRINT
PRINT "ANY KEY?"
K$ = INKEYS:
IF K$ = "°
THEN
4040
GOSUB 3898
PRINT
PRINT TAB(15);"THE FAVORED DEFENSIVE SET-UPS."
PRINT STRINGS(63,"-")
PRINT "(1)OFF VS (1)DEP ** (2)OFF VS (2)DEF ** (3)OFF VS (3)DEF"
PRINT "#*** THIS WILL CAUSE THE SHOOTER'S % TO DECREASE 15%.7
PRINT :
PRINT TAB(25);"THE OTHERS"
PRINT STRINGS$(63,"-")
PRINT ®(1)OFF VS (3)DEF ** (2)OFF VS (1)DEF ** (3)OFF VS (2)DEF"
PRINT "#*** THIS WILL NOT CHANGE THE SHOOTER'S %, BUT IT ";
PRINT "INCREASES THE CHANCE HE WILL BE FOULED."
PRINT PANY KEY?";
K$ = INKEYS:
IF K§ = "
THEN
4178
CLS
PRINT TAB(22);"SPECIAL OPTIONS."
PRINT STRING$(63,"~")
PRINT °#%%% BOTH THE OFFENSE AND DEFENSE ARE REQUIRED TO PLAY "y
PRINT "EITHER TAGGRESSIVE' OR 'SAFE'. THIS ALSQ AFFECTS T
HE ";
PRINT ®SHOOTING %. IF BOTH THE DEFENSE AND OFFENSE PLAY *
i
PRINT “THE SAME, THE SHOOTING % INCREASES 18%. IF °
7
PRINT "THEY PLAY DIFFERENT, ";
PRINT "THE % * DECREASES 16%."
PRINT
PRINT "##*%#* THE TYPE OF PLAY (AGGRES OR SAFE) IS SHOWN BY 7;
PRINT CHR$(93);" OR ®; CHR$(94):"."
PRINT :
PRINT "#%** EXAMPLE. IF AN ARROW (ON AN OFFENSIVE PLAYER)"j
PRINT " IS POINTED AT THE BASKET, THE TEAM IS PLAY"
7
gEINT "ING AGGRESSIVELY. IF THE DEFENSE HAS ARROW
H
PRINT " POINTED AT THE BASKET, THEY ARE PLAYING";
PRINT * SAFELY, THE ";
PRINT "RESULT 1S THAT THE $ IS DECREASED BY ";
PRINT "1@% (SEE RULE ABOVE)."
PRINT "ANY KEY?";
K$ = INREYS:
IF K§ = 77
THEN

84

4390
4400
4410

4420
4439
4440

44508
4469
44790
4480
4490
4509
4519

4520

45380
4548
4550
45608
4570
4580
4590
4600
4610
4620
4630
4649
4650
4660
4670

4680
4699

47080
4710
4728
4739

47480
4750
4768

4779

4788
479¢

4800
4818
4828
4838
4840
48590
4860

4878
48860
4890

games

4388
CLS
PRINT “#*k&aA%4% SHOT % RANGE: THE SHOT % OF A PLAYER IS ALSO ";
PRINT "ASSISTED BY A RANDOM NUMBER LESS

",

’
PRINT “THAN 10."
PRINT
P§INT “*k4* LIMITS ON PLAYERS: (1)OUTSIDE SHOT-POINT MAN, CENTER
v
PRINT * AND R. GUARD,"
PRINT * (2) INSIDE SHOT ~-CENTER, L. ";
PRINT "FORWARD, AND R, ";
PRINT "FORWARD,"
PRINT * (3)CHOICE SHOT -ALL PLAYERS,."
PRINT "ANY KEY?"
K$ = INKEYS:
IF K§ = "™
THEN
4518
IF HE§ = "D" OR HE$ = "g"
THEN
4548
RETURN
GOSUB 1030
RETURN
DATA 64,352,353,449,107,320
DATA 127,352,353,507,65,352
DATA 493,138,778,860,93,464,179,819,865,97
DATA 476,196,708,728,216,456,194,706,736,224,487,132,772,854,87
DATA 482,248,760,741,230,501,250,762,733,221,476,185,825,871,183
DATA -6,62,-66,-68,60,6,66,~62,-68,68
Pl§ = CBR$(176) + CHR$(187) + CHR$(177) + CHR$(144)
P3$ = CHR$(32) + CHR$(151) + CHRS$(149) + "
P4$ = CHR$(32) + CHR$(158) + CHRS(148) + " *
B$ = CHR$(191)
P2§ = CHR$(176) + CHR$(155) + CHR$(177) + CHRS$(144)
FOR A8 = 1 TO 2:
FOR A8 = 1 TO 6
READ C(A9.A8)
NEXT :
NEXT
FOR A9 = 1 TO 2

FOR AB = 1 TO 5
READ OF (A9,A8)
NEXT :

NEXT

FOR A9 = 1 TO 2:

FOR A8 = 1 TO 3:

FOR A7 =1 T0 5

READ DF(A9,A8,A7)
NEXT :

NEXT :

NEXT
FOR A9 = 1 TO 2:

FOR AB = 1 TO 5

READ PM(A9,A8)

NEXT :

NEXT
A5 = 2
GOTO 38
REM *%%%* CROWD CHEERING
CLS
PRINT CHR$(23)
PRINT @456 ,"THE CROWD GOES *;
XL = RND{3):
ON XI. GOTO 4870,4880,48908
PRINT "WILD":
GOTO 49949
PRINT "CRAZY":
GOTO 4900
PRINT "INSANE":

85

games

GOTO 4900
4996 FOR A9 = 1 TO 780:
NEXT :
CLS
4918 FOR A9 = 384 TO 896 STEP 256
4920 PRINT @A9, STRING$(64, CHR$(131));
4938 NEXT
4949 FOR A9 = 31 TO 991 STEP 64
495 PRINT @AY, CHRS$S(191) + CHR$(191);
4968 NEXT
4978 IF BK = 0
THEN
5600

4980 IF TE = 1
THEN
TE = 2t
ELSE
TE = 1
4998 BOS
PAS
PC$
HOS PBS:
PBS$ PDS:
PD$ HOS
5408 IF TE = 1
THEN
CW = 257:
CR = 291:
GOTO 5828
5010 CW = 291:
CR = 257
5820 FOR A9 = CR TO CR + 512 STEP 256
5038 PRINT @a9,"";
5948 FOR A8 = 1 TO 5:
PRINT PAS" ";:
NEXT

[0 U | I 1O

86

50850
5060

5878
50680
5090
5100

5110
5120

5130
5140
5150
5168
5178
5180

5190
5200
521¢

5220
5238

5240

games

PRINT @AS + 64,"";
FOR A8 = 1 TO 5:
PRINT PB$" ";:
NEXT

NEXT

FOR A9 = CW TO CW + 512 STEP 256

PRINT @A9,"";

FOR A8 = 1 TO 5:
PRINT PCS" ";:
NEXT

PRINT @AS + 64,"";

FOR A8 = 1 TO 5:
PRINT PD$" ";:
NEXT

NEXT

FOR A9 = 1 TO 5

FOR A8 = CW - 64 TO CW + 448 STEP
FOR A7 = AB TO AB + 24 STEP 6
IF CC = 1 GOTO 5218
CC = 1:
PRINT @A7,PCS$;:
PRINT @A7 + 64,PDS;:
PRINT @A7 + 128," ",
NEXT
GOTO 523¢
CC = 21
PRINT @A7," Pes
PRINT @A7 + 64,PCS;:
PRINT @A7 + 128,PDS;
NEXT
NEXT :
NEXT
RETURN

256

87

GRAPHICS

Images

89

GRAPHICS

Images

by Buzz Gorsky K8BG

he program shown in the Program Listing generates a series of lines like

the spokes of a wheel from a randomly chosen point on the screen. It
will then draw another pattern, delay, clear the screen, and start again.
Let’s see how it’s done.

Starting at line 100, the K loop goes from one to two to draw the two pat-
terns. X1 and Y1 are chosen randomly as values up to 127 and 47, respective-
ly, so that the pair (X1,Y1) refers to a random point on the display in the for-
mat used by SET statements. This point will be the center for the radiating
line pattern. Then, in line 110, T runs from zero to 170 drawn in increments
of 10. T represents the angle in degrees (in this case 10) at which each line
drawn will radiate. Since each line will run through the center of the circle,
we only have to let T go this far.

Figure 1. Sample pattern of radial drawing

When T is 90, a vertical line is needed. This is drawn by the FOR-NEXT
loop involving L. In line 120, T1 is set equal to T times a constant to change
the degree value to a radian value.

In line 130, X will run through the limits of the values which can be
displayed. Y is then set equal to X times the tangent of T1. Y = X*TAN(V) is
the equation for a line in a polar coordinate system.

In line 160, we check to see if the values of X2 and Y2 can be shown on the
screen with a SET (X2,Y2) statement. If so, they are displayed at 170, and if

91

graphics

not, we go to 180. There we set X2 =X1~X and Y2=Y1 +Y. This then
reflects the line just drawn through the center of the circle. If the values of
X2 and Y2 can be displayed, then the SET statement displays them. Other-
wise what happens depends on the value of Z.

If the first half of the line had terminated because values were off the
screen, then Z would equal one. If this part of the line were also off limits,
then we would reset Z equal to 0 and go to the next value of T. However, if Z
were zero, then we would go to 190 and the next value of X. When X was
completed, we’d have the next value of T. In this way, each half of the line is
finished until it reaches the limits of the display.

Figure 2. Printout of radial drawings

In line 200, there is a short wait and then the second pattern is drawn by
going to the next value of K. A long delay follows, after which the program
is run.

It's useless, I know, but fun to watch, and the radial line drawing tech-
nique might even find a place in something useful!

92

8d
906

11e

120
130
140
158

178
l8e

19¢

200

graphics

Program Listing

REM RADIAL LINE DRAWING PROGRAM BY BUZZ GORSKY, K8BG

REM THIS PROGRAM WILL BEGIN AT A RANDOM SPOT ON THE SCREEN AND

DRAW A SERIES OF RADIAL LINES FROM THAT POINT. IT WIL REPEAT THE
PROCESS TWO TIMES, HOLD THE DISPLAY, THEN BEGIN AGAIN.

RANDOM :
CLS :
FOR K = 1 TO 2:
X1 = RND(127):
Y1 = RND(47):
REM K SETS THE LIMIT OF 2 DISPLAYS BEFORE STARTING. X1 AND Y1
ARE RANDOM DISPLACEMENTS FROM THE UPPER LEFT CORNER OF THE SCRE
EN.
FOR T = @ TO 170 STEP 18:
IF T = 98
THEN
FOR L = 8 TO 47:
SET(X1,L):
NEXT L:
NEXT T:
REM T IS RADIAL ANGLE IN DEGREES. FOR T=98 A VERTICAL LINE I
S DRAWN RATHER THAN USING THE Y=X*TAN(T) EQUATION.
TL = T * ,@174533:
REM MODIFY T TO RADIANS
FOR X = 3 TO 127:
REM RUNS X THROUGH LIMITS OF DISPLAY
Y = X * TAN(Tl):
REM SET Y ACCORDING TO RADIAL EQUATION OF STRAIGHT LINE,
X2 = INT(X + X1):
Y2 = INT(Y + Y1):
REM MODIFY X AND Y ACCORDING TO RANDOM DISPLACEMENT
IF (X2 > 127 OR Y2 < # OR Y2 > 47)
THEN
Z = 1z
GOTO 188:
REM IF X2 OR Y2 ARE OUT OF DISPLAY LIMITS THEN SET Z=1 AND
GOTO 18# OTHERWISE DISPLAY
SET(X2,Y2)
X2 = INT{X1 -~ X}):
Y2 = INT(Yl - ¥Y):
IF (X2 > - 1 AND X2 < 128 AND ¥2 > - 1 AND Y2 < 48)
THEN
SET(X2,Y2) :
ELSE
IF 2 = 1
THEN
2 = @:
NEXT T':
REM CONTINUE THE RADIAL LINE IN A MIRROR IMAGE. IF X2 AND
¥2 ARE OUT OF DISPLAY LIMITS AND %=1 THEN NEXT ANGLE ELSE N
EXT X.
2 = @:
NEXT :
NEXT :

REM REST Z AND CONTINUE
FOR J = 1 TO 568:
NEXT :
NEXT :
FOR J = 1 TO 30000:
NEXT :
RUN :
REM DELAY THEN DRAW NEXT PICTURE, AFTER 2 PIX HOLD, THEN START
AGAIN.

93

HARDWARE

Regulate Your Video Monitor
CTR-80 Modifications

95

HARDWARE

Regulate Your Video Monitor—
for the TRS-80 Model I

by William Klungle

he Radio Shack TRS-80 is a lot of computer for the money invested.

However, even with a good product such as the TRS-80, there is
room for improvement. One of the areas that Radio Shack seems to have
overlooked is the voltage regulation of the monitor. The regulation in the
computer itself is excellent, but voltage regulation in the monitor is almost
nonexistent. Any variation in the ac house current, such as may be caused
by a pump or a dishwasher or a disk drive, results in a noticeable fluctua-
tion of the video display.

Shortly after purchasing a TRS-80, I decided, for aesthetic reasons, to
place the separate power module of the computer inside of the monitor
case. This allowed the computer to reside on the family-room bookshelves
and, with a small amount of rewiring, provided a single power switch for
the entire system (see “Turn it Off!” Microcomputing, April 78, p. 114).
As long as the monitor was on the workbench anyway, I took a close look
at the power supply circuit to see what could be done about the regulation
problem.

Regulating Transistor Circuit

The original circuit consisted of a half-wave rectifier and several RC
filter networks (Figure 1). The characteristics of the transistor circuits
tend to amplify even the small variations in supply voltage, so that
without some type of regulation, the video display would never stand still.

B+ SUPPLY

220 RECTIFIER 1300 1309
Lgt]

B+ SUPPLY

AY!
Uil
hY|
Ul

HOVAC

<

Figure 1. Original circuit

In the monitor’s early life as a portable television, there were provisions
made on the chassis for an additional transistor to be mounted. The
chassis has been punched to mount a TO-66-style transistor in the same
area where the rectifier is mounted. Voltage regulation can easily be
added by using only four inexpensive parts. The regulator circuit is not
critical in its specifications, and any components that meet or exceed the

97

hardware

minimum requirements may be used successfully. The original power
supply provides approximately 120 V de @ 350 mA. Any NPN silicon
transistor in a TO-66-style case with a break-down voltage (VCEO) of over
150 volts and a minimum current rating (1c) of 500 mA should work.

Unfortunately, Radio Shack does not list some of the parts needed for
this modification, so unless your local store happens to carry parts that are
not in the catalog, you will have to seek another parts supplier. The parts
I used are show in Table 1.

1 Sylvania transistor ECG 124
1 Sylvania socket ECG 421
1 Sylvania zener diode ECG 5050
1 18k 1W resistor

Total cost should not exceed $5.

Table 1. Parts list

The regulator circuit is wired as shown in Figures 2 and 3. The 18k resistor
serves as a current limiting resistor for the zener diode. The zener holds the
base of the regulator transistor at 100 V dec. The transistor’s emitter will
always be within .6 volts dc of the base voltage. The 130-Ohm, 7-Watt
resistor, which is located after the rectifier (Figure 2), distributes the supply
voltage which is in excess of the 100 volt output of the regulator.

Short the 22-Ohm resistor (Figure 2**) with a piece of wire. Shorting
this resistor allows the regulator to function over a greater range of line
voltage variations.

Modification Tips

Consider the following precautions:

1. Be sure to unplug the power cord before you work on the monitor.

2. When installing the transistor, be sure to use the mica insulator and
the two insulating washers supplied with the transistor. These isolate the
transistor from the chassis. Be sure that the transistor is isolated.

3. Use asilicone-based heat-sink compound between the transistor and
the mica, and between the mica and the chassis. The silicone ensures
proper heat dissipation.

4. Use caution when working around the exposed CRT (picture tube). A
sharp blow on the neck of the tube could cause an implosion, which would be,
at the least, costly—not to mention dangerous. Place a large towel or heavy
cloth over the tube while it is exposed; this will protect you in case of accident.

5. If you have a voltmeter, turn the power on and check the voltages (as
indicated in Figure 2) before installing the “new” wire from the transistor. If

98

hardware

96.4VDC

(10-130VDC
———————— M
REGULATING
JUMPER(SHORT) r\\TRANSXSTQR e B+ SUPPLY
220 REC::FIER 1300 e 1300

1
|
{
|
|
i
e [
110VAC [18K

100 VDC
A ZENER

B8+ SUPPLY

Al
AY]
1

|
|
|
|
1
| .
|
|
1
i
7

Figure 2. Modified circuit

the voltages don’t match those in Figure 2, turn off the power and recheck
all the connections. Make sure that the transistor is not shorting to the

chassis.

1308

ORIGINAL POSITION

NEW PQSITION
OF 130 OHM RESISTOR

SUMPER

OOOOOO?

GROUND CONNECTION O

228

/

“ZNSTALL NEW WIRE

[~ reGuLaTor TRANSISTOR

) MOUNTING LOCATION

ZENER DIODE

Figure 3. Circuit modification

99

HARDWARE

CTR-80 Modifications

by John Simmons

Here’s how to modify your CTR-80 to make it much more convenient to
use with your TRS-80. The modifications are very simple and take less
than an hour. First, make sure your recorder has been modified to prevent
partial erasure of programs. This modification will be done free for the ask-
ing by Radio Shack; see your dealer. This modification is vital—don’t over-
look it and learn the hard way by losing important programs.

Before going on to the do-it-yourself modifications, be aware that they
will void the 90-day Radio Shack warranty. They will also void the 30-day
warranty on repairs or modifications done by Radio Shack. However, the
first modification is so simple it can be removed in just a few minutes, should
the need arise.

Modifications

The first modification allows you to hear what the computer is reading
from the tape. All you'll need is a 33-Ohm, 1/2-Watt resistor, a small Phillips
screwdriver, a pencil soldering iron, and some rosin core solder. Plug in the
iron to warm it up and follow these steps:

1) Remove all cables and any cassette from the recorder. Place the recorder
upside down with the jacks facing away from you on a flat surface. Put a soft
cloth underneath the CTR-80 to protect it from scratches.
2) Remove the battery compartment door and set it aside. Remove the screw
in the battery compartment and the two screws on the opposite end of the
recorder.
3) Carefully separate the case by lifting up on the battery compartment half.
There will be three wires leading from the battery compartment to the
“guts” of the recorder; be careful not to break them if you are not going on to
the next modification.
4) You will see that there are three solder pads on the PC board associated
with the earphone (EAR) jack. Carefully solder the 33-Ohm resistor be-
tween the middle pad (the one that has a speaker wire soldered to it) and the
pad farthest from the edge of the PC board. See Photo 1. Make sure that the
resistor lies flat against the PC board and will not touch any other pads.
5) (Skip this step if you are going on to the next modification.) Reassemble in
reverse order.

That's all there is to the first modification. Now, when you use the
recorder with the computer, you will hear the program or data being read

100

hardware

by the computer. I find a 33-Ohm resistor produces just the volume 1 want.
If you want more volume, try a 22-Ohm resistor; less volume, try 47 Ohms.
You will have to use a slightly higher volume setting when loading a pro-
gram—try one higher number. If you use the recorder for other purposes,
the resistor has no effect when the earphone jack is not used.

Photo 1. 33-Ohm resistor attached

The next modification is only slightly more difficult and requires two
things in addition to the tools needed above. You will have to sacrifice bat-
tery operation and the external six-volt (DC6V) jack. You will also need a
sub-miniature SPST (single-pole single-throw) switch with two short lengths
of wire. This modification allows manual play and record without unplug-
ging the computer from the remote (REM) jack.

1) Follow steps 1-3 above.

2) Remove the three screws holding the recorder frame to the top half of the
case. Remove the two screws holding the PC board. Be sure to note the hole
each screw came from.

3) Remove the nuts from the microphone (MIC), remote, auxiliary, and ear-
phone jacks.

4) Carefully pull the recorder slightly out of the case, enough to remove the
two screws holding the jack panel to the recorder frame. Do not strain the
wires leading to the condenser mike in the top half of the recorder case.

5) Remove the two screws holding the DC6V jack to the panel. Cut the three
wires attached to the jack. Put the jack in your junk box.

101

hardware

Photo 2. Switch leads soldered to pads of the remote jack

6) Solder a five-inch length of hookup wire to each switch terminal.

7) Install the switch in the vacated DC6V hole.

8) Solder the other ends of the switch leads to the two PC board pads of the
remote jack. See Photo 2.

9) Reassemble in reverse order.

Now, with the switch in the on position, you may manually play a tape to
locate the beginning of a program without removing any plugs. With the

Photo 3. Switch installed

102

hardware

switch in the off position, the computer has total control of the recorder, as
before. When I dump a program to tape, I rewind the cassette fully and put
the CTR-80 in the record mode. Then I flip the newly installed switch to
manual and let the tape run to 10 on the index counter. This insures that my
new program will be the first on the tape, and bypasses any bad tape at the
beginning of the cassette. I then turn the switch off, and start the dump (hit
ENTER). When the computer is finished, I flip the switch on and advance
the tape (still in the record mode) to the next round number. Then I flip the
switch off and dump another (backup) copy of the program to tape. This
adds a large safety margin,

103

HOME APPLICATIONS

The Great Girl Scout
Cookie Caper

Two Energy Savers

105

~ HOME APPLICATIONS

The Great Girl Scout Cookie Caper

by James N. Devlin

How many times have you gone to an innocent organizational meet-
ing with your little boy or girl only to return home as the new cub-
master or district leader? Scout leaders are not born, they are made in
meetings. My wife came home from just such a meeting and lo and
behold, she had just been volunteered for the job of area cookie chairper-
son. Each of us had been similarly volunteered for many jobs in the past. 1
ended up as a cubmaster once and I even became a girl scout troop leader
for several years as the result of just such organizational diplomacy.

At the time we didn’t give it a lot of thought. Later however, when the
cold light of reality dawned, the job began to take on ominous dimensions
involving math, a subject that is not the most popular in the world, rank-
ing somewhat above a poke in the eye in many people’s minds.

What could be more natural in the face of such a crisis than to enlist the
aid of the faithful TRS-80 lurking quietly in the corner of the room? It
turned out not to be such an overwhelming task after all. There were only
eight troops with a total of 120 girls along with a selection of seven types
of cookies to be tallied by cases and boxes along with their various dollar
amounts and totals. But the challenge was just too much to dismiss. A pro-
gram had to be written!

This program (see Program Listing) can be adapted easily to a great
number of similar situations where items are sold by members of an
organization, and where there is a need to assemble the individual sales
into a special format for purposes of ordering or to provide a tally of the
results.

The program input consists of the boxes of different cookies sold by
each of the girls. In our case there were seven varieties of cookies to be ac-
counted for. These were placed into the program by means of a DATA
READ statement, since next year there might be a different number of
varieties or they might have different names. By placing the names of dif-
ferent items into this statement the program can be adapted readily to any
group’s particular requirements.

This was the approach that was taken for all parameters: the number of
troops, the number and names of the girls in each of the troops, etc. These
data statements are placed in the 900 and 1000 blocks so that the program
can be easily tailored to individual troop situations. The girls’ names were
entered along with their respective troops and then read into a matrix.
The size of the matrix is adjusted to fit using the troop size data in line 900
and 1000.

107

home applications

Line 900 contains the total number of troops, and the 1000 series of
lines contains the total kids for that troop in each third element. By
changing these numbers the program will compute any size group (within
memory limits of course), distributed in any arbitrary way. However you
must be consistent in the succeeding data to be sure that the number of
names matches the number assigned to each troop. I did this by placing
one troop in the 1100 block, for example, and another troop in 1200, etc.

When the girls turn in their cards, the information is simply transferred
to the program when it is requested. For each troop, every girl’s name is
sequentially displayed, followed by each type of cookie. Then the number
of boxes that she has sold of that particular type is entered. This procedure
continues until all of the sales for all of the girls in that troop have been
entered. The program then returns to the calling menu which presents the
various options that are available. These options are for an input mode
and a variety of output modes. The input mode permits the choice of
either keyboard input or tape input. When keyboard input is requested,
any of the troops listed can be selected individually and incorrect troop
numbers are automatically rejected.

This is all of the information that is required, and it is the only record
that needs to be kept by the individual troop leaders. All other informa-
tion will appear on the display (or printout if you have a printer). All box-
to-case conversions will be done by the program as well as the dollar
amounts and troop profit.

As with any accounting or inventory program, some form of hard copy
is desirable. Otherwise you must note down the essential output informa-
tion from the screen. The program is presented with the normal print
statements and it is a simple matter to replace the appropriate ones with
LPRINT. If you are only concerned with case totals and summary infor-
mation, hard copy is not needed.

After the information is entered for each of the girls, you can then select
the troop results or the summary from the option billboard. Should you
select the individual troop information, the screen will list the troop
number and leader at the top. Then, in column form, it will present each
girl’s name followed by the number of boxes of each type of cookie that
she sold. The total box count and the total money that she will have to col-
lect from her customers follows in the right hand column. If more girls are
in the troop than can be displayed on the screen, the table is held until the
input key is depressed. Eight girls’ names are displayed in the present pro-
gram, but this can be changed in line 452.

After all of the girls and their totals have been displayed, a summation
by cookie type will be presented, followed by the troop’s total dollars and
the troop’s profit. This is an excellent document to return to the troop
leader when the cookies are delivered, as it is a'complete record of each

108

home applications

girl’s sales performance. After printing the troop data, the machine com-
putes the case totals and the extra boxes of each kind of cookie. This is the
information that is needed when the troop leader comes to pick up her
order and is really the bottom line of the troop data. It makes it very easy
to sort out the proper individual deliveries from the grand total of wall-to-
wall cases that will be filling your living room. If you don’t have a printer,
you can run the program at delivery time and display the individual troop
records and case totals when the respective leaders come to pick up their
cookies. Any troop’s information can be selected at any time.

When selected, the summary sheet lists each troop number in the left
hand column and each cookie type in the column headings. The cookie
types are subdivided into the specific cases and boxes. In the right hand
column is the total troop dollar figure. Here the individual troop perfor-
mance can be compared and evaluated. At the bottom is the summation
of actual total cases and boxes along with the total dollars that each troop
is responsible for.

An output option lets you put all of the sales data onto a data tape so
that you can make future runs of the program without having to manu-
ally input data again. As you are probably aware, the cookie supplier usu-
ally requires that all the individual troops place their orders in even case
lots. This is where the program makes its greatest contribution. No longer
will each of the troops have to convert its own sales into whole case lots.
The program does this all at one time.

As an example of this advantage, take our own case where there were
eight troops and seven separate varieties of cookies. If each troop (in the
worst case) sold one extra box of each type of cookie, they would have to

109

home applications

order one extra case of that type of cookie just to cover the one box that
was sold. This would result in each troop having to sell an additional
eleven boxes of each kind of the seven varieties, or a total of 77 boxes more
than they had already sold. If this were the situation for each of the eight
troops, that comes to a total of 616 more boxes of cookies that must be sold
in a territory that has already been saturated. In other words, 50 addi-
tional cases of cookies would have to be sold. That’s great for the supplier,
but not so good for the hard working little girls. If there were fifteen
troops involved, that would end up being 96 cases or a phenomenal 1155
boxes.

Of course, not all troops will sell just one extra box of each type, but the
residuals would be approximately half of this worst-case figure in the
average situation. With the program and a single total computation the
worst case figure dwindles to a mere 77 boxes or six cases and one could
expect that this would average out to around three additional cases. Quite
a difference!

With modifications, this program can be adapted to many other selling
projects since the size of the matrix is read in as part of the data, along
with the names of the items to be sold, each time that the program is run.
Other products used to raise money by direct sales to consumers would
simply be entered in the custom program. A commercial venture run from
the home such as Amway would also lend itself to a program of this type.

In the Program Listing all of the troop members are listed by their ini-
tials, however in the program for our individual case the last names of
each of the girls were used. This is a nice touch since kids love to see their
names in print. Line 450 will print 13 characters of each name. The header
READ statements in lines 100-180 automatically adjust the size of the
matrix to accommodate the varying size of the troops. The eight troops of
120 scouts fit comfortably in the 16K machine and additional memory
space can be obtained by shortening the names of the individuals to con-
serve string usage.

Next year, when you “volunteer” to take responsibility for your organi-
zation’s favorite fundraiser, be ready and waiting with this program.

110

home applications

TROOP # 101 *** LEADER R.G.

NAME CRS
KA. 4
M.B. 1
CLF. 1
CHF. 0
S.G. 5
KJ. 1
N.K. 12
c.Q. 3
R.R. 1
L.R. 3
AS. 5
TOTALS 36

WO = O b= O OO

CRE

TROOP PROFIT IS 132.00
TROOP 1 CASE TOTALS

101
373
512
533
1210
1219
1235
1448

TOTALS
RESID’S

TOTAL CASE COUNT = 433 CASES.

TOTAL DOLLAR VALUE IS $7794.00

-1 O B~ o

Q
la]

[v]

C
T DWDD O

[\’JH)—'U\NH»&WO

CASES
CASES
CASES
CASES
CASES
16 CASES
12 CASES

00O

e OO e b D e 05 UL

CHI

Q0 R O N OO D U= D
[=>] ot

o]
ot

MIN

0 BOXES
11 BOXES
11 BOXES
3 BOXES
1 BOXES
6 BOXES
4 BOXES

*** COMPLETE SUMMARY ***

CHES
CB

1,11
4, 8
1,7
1, 7
5,10
2,11
0, 8
1,11

22
11

@]
S
GO 00 00 i b yin b OO

DO = 0O DL LD W

TEAS
C B
9,3
10,10
5,7
6,10
14, 6
5,10
2,6
7,11

64
9

111

CHIP
C B
7,1
8, 6

>

Bt

fu—

»&:—‘“U‘:&AC:J
—

B D b L O

Figure 1. Sample run

MINT
C B
16, 6
29, 2
14, 2
12,10
34, 6
16,11
6, 0
14, 4

145
7

SUG TOTAL
5 44
2 13
6 20
6 22
9 47
30 113
19 106
12 69
16 40
16 65
27 121
148 660

SUGR
C B
12, 4
17, 7
7,0
9,3
24, 9
10, 4
3,11
11, 6

97
4

AMNT

66.00
19.50
30.00
33.00
70.50
169.50
159.00
103.50
60.00
97.50
181.50

990.00

AMNT

$ 990.00
$1461.00
$ 652.50
$ 736.50
$1893.00
$ 843.00
$ 322.50
$ 804.00

home applications

Program Listing

5 DIM MM$(120) ,A1(120),B1(128),C1(128),D1(120),E1(120),F1(128),G1(
128) ,82(128)
7 FORI =1 TO 3:
ouT 1,08:
NEXT I
OUT 1,64:
ouT 1,250:
ouT 1,51
1¢ REM G.S. COOKIE PGM -J,DEVLIN ,79
25 CLS :
PRINT :
PRINT "** GIRL SCOUT COOKIE PROGRAM **"
39 PRINT :
PRINT :
PRINT :
PRINT "WANT INSTRUCTIONS 2"
32 INPUT "YES/NO";YS$
35 IF ¥Y$§ = "YES"
THEN
500
4@ INPUT "CHANGE PRINT MODE (YES/NO)";Y$
45 IF ¥Y$ = "YES"
THEN
GOSUB 320688
56 READ T
60 SS = @:
= "HEHELEET:
B$ = "##":
Bl$ = "##4"
108 FOR I = 1 TO 7:
READ C$(I):
I

@©

156 FOR I = 1 TO T:

READ TN(I):

READ TLS$(TI):

READ TT(I):

88 = S8 + TT(I)
168 TE{(I) = 8S:

TS(I) = TE(I) - TT(I) + 1:

NEXT I
178 FOR I = 1 TO T
186 FOR J = 1 TO 88:

READ MM$(J) :

NEXT J
200 CLS :

PRINT TAB(18),"DATA INPUT....cceses(1)”
201 PRINT TAB(16),"TROOP SUMMARY...ees.(2)"
23 PRINT TAB(16),"COMPLETE SUMMARY....{3)"
204 PRINT TAB(10) ,"ENDevsssvernesoosess(d)”
205 PRINT :

PRINT "VALID TROOP NUMBERS":

FOR I =1 TO T:

PRINT "TRP~";T1,TN(I):

NEXT 1
2¢8 INPUT "ENTER # OF OPERATION";R
216 IF R > @ AND R < 5

THEN

230

220 PRINT "INVALID ENTRY":

GOTO 2088
238 ON R GOTO 240,408,800,700
240 INPUT "WILL DATA ENTERED FROM TAPE (1) OR KEYBOARD (2)";Y
256 IF Y = 2

THEN

360

268 INPUT "TAPE LOADED & PLAY SET... HIT ENTER";X
265 CLS

112

278
275

280
285
290
295

300
302

304
305

310

314
315

316

318

328
338
335
338

348
341
342
343
344
345
346
348
350
355

360
365

home applications

PRINT CHR$(23);:
PRINT @266, "LOADING"
1 TO 88
INPUT # ~ 1,A1(1),B1(1),C1(X),DL(I),EL(T),F1(I),GL(I):
PRINT @468,1

FOR I =

NEXT I
FOR K =
GOSUB 3
NEXT K:
GOTC 2849

lLT0T

60

INPUT "WHICH TROOP";N
1 TO T:
TN(I)

FOR I
IF N
THEN
K=1

o

GOTO 3149

NEXT I

PRINT "TROOP NOT IN MY MEMORY~TRY AGAIN":

GOTO 360
CLS :
PRINT :

PRINT "ENTER THE # OF BOXES SOLD BY EACH GIRL"

PRINT :

INPUT "IF NO CHANGE -HIT ENTER";X
FOR L = 1 TO 6:

S1{(L,K)
NEXT L
CLS :
FOR I =

INPUT "ENTER NONE TO SKIP ,ELSE ENTER";YS:

g:

TS(K) TO TE(K):
PRINT MMS(I)

IF Y$ = "NONE"

ON J GOSUB 348,341,342,343,344,345,346

+

Al(J):
B1(J):
Cl(J)

D1(J):
B1(J):

THEN
338
FORJ =1 TO 7:
PRINT C$(J):
INPUT A
NEXT J:
INPUT "-HIT ENTER";X
¥$ = "y":
CLS :
NEXT I:
GOTO 358
AL(I) = AL(I) + A:
RETURN
B1(I} = Bl{I) + A:
RETURN
Cl{(I) = C1(I) + A:
RETURN
D1(I) = D1(I1) + A:
RETURN
E1(I) = EL(I) + A:
RETURN
F1(I) = FL(I1) + A:
RETURN
G1(I) = GL(I) + A:
RETURN
FOR I =1 TO 7:
S(I,K) = @:
NEXT I
GOSUB 3640
GOTO 209
FOR J = TS(K) TO TE(K)
S1(1,K) = S1(1,K)
81(2,K) = 81(2,K}
81(3,K) = 81(3,K)
S1(4,K) = 51(4,K)
S1(5,K) = 81(5,K)
81(6,K) = S1(6,K)

+
+
+
+
4

F1(J):

113

Program continued

375

8@

385
390
460
404

485
406

418

420

430
449
450

453
455

460

home applications

S1(7,K) = 81(7,K) + G1(J)
S2(J) = AL(J) + BL(J) + Cl(J) + D1(J) + E1(J) + F1(J)

GT(K) = GT(K) + S1(I,K)
83(1,K) = SL{I,K) / 12:
S4(I,K) = INT(S83(I,K)):

U = (83(I,K) - S4(I,K)) * 12:
S5(I,K) = INT(U + .5)

NEXT I
RETURN
INPUT "WHICH TROOP ";N
Z = 1l:
FOR I = 1 TO T:
IF N = TN(I)
THEN
K = I:
GOTO 419
NEXT I
PRINT "THAT TROOP NOT IN MY MEMORY~TRY AGAIN":
GOTO 498
CLS :

PRINT "TROOP #";TN(K);:
PRINT " *#*% LEADER "TLS$(K) :
PRINT
PRINT "NAME hF
FOR I =1 TO 7:
PRINT LEFTS$(CS(I),3):" ";:
NEXT I:
PRINT " TOTAL AMNT"
PRINT
FOR J = TS(K) TO TE(X)
PRINT LEFTS$(MMS$(J),13);:
PRINT TAB(14)Al(J); TAB(19)B1(J); TAB(24)Cl(J); TAB(29)D1(J);
TAB(34)EL1(J); TAB(39)F1(J); TAB(44)Gl(J); TAB(58)S2(J);
TAB(55) :
PRINT USING A$;S2(J) * 1.58
IFP 2 > 9
THEN
INPUT "HIT INPUT TO CONTINUE";X:
7 o= 1:
CLS :
GOTO 455
Z=24+1
NEXT J:
PRINT
PRINT TAB(0) "TOTALS"; TAB(14)S1(1,K); TAB(19)S1(2,K); TAB(24)S81
(3,K); TAB(29)S1(4,K); TAB(34)S1(5,K); TAB{39)S1(6,K);
TAB(44)51(7,K); TAB(58)GT(K); TAB{55):
PRINT USING A$;GT(K) * 1.58
PRINT :
PRINT "TROOP PROFIT IS ";:
PRINT USING AS$;GT(K) * .20
INPUT "HIT INPUT FOR CASE TOTALS";X:
CLS :
PRINT
PRINT :
PRINT "TROOP ";K;" CASE TOTALS"
PRINT :
FORI =1 TO 7
PRINT TAB(@)CS(I);"..0....”; TAB(20)84(I,K);"CASES"; TAB(38)S5
(I,K);"BOXES"
NEXT I
INPUT "~HIT ENTER";X:
GOTO 200
CLS :
PRINT :
PRINT "THIS PGM OPERATES FROM LISTS OF TROOPS."

114

home applications

540 PRINT "166@¢ DATA TRP # 1,LDR 1,15, ETC."
598 PRINT "LINES 11#0-1999 CONTAIN GIRL'S NAMES"
650 PRINT "LINE 968 = TOTAL # OF TROOPS"
668 PRINT "LINE 910 = COOKIE TYPES"
695 PRINT :
INPUT "-~HIT ENTER";X:
GOTO 58
788 INPUT "DO YOU WISH TO RECORD THIS DATA YES/NO";Y$
718 IF ¥$ = "YES"
THEN
740
728 GOTO 785
748 INPUT "IF TAPE LOADED, CUED AND IN RECORD... HIT ENTER";X
756 FOR I =1 TO SS
760 PRINT # - 1,Al(I),B1(I),C1(I),D1(I),E1(I),P1(I),GLl(I)
778 NEXT I
788 PRINT :
PRINT "*TAPE COMPLETE*"
785 INPUT "CHANGE PRINT MODE (YES/NO)";Y$
787 IF ¥$ = "YES"
THEN
32000
799 INPUT "ANOTHER LOOK AT THE DATA....YES/NO";Y$
795 IF Y$ = "YES"
THEN
200
798 GOTO 9999
808 REM SUMMARY PRINT OUT

818 CLS :

PRINT :

PRINT " *%% COMPLETE SUMMARY %% *
82¢ PRINT :

PRINT "TROOP ";:
FOR I =1 TO 7:
PRINT " "; LEFTS(CS(I),4);"™ ";:
NEXT I:
PRINT " AMNT"
825 FOR I = 1 TO 7:
PRINT TAB(I * 7)" C B";:
NEXT I
827 PRINT
839 FORK=1TO T
84¢ PRINT TN(K);:
FOR J = 1 TO 7:
PRINT TAB(J * 7):
PRINT USING B$;:;S4(J,K);:
PRINT ",";:
PRINT USING B$:;S5(J,K);::
NEXT J:
PRINT " §%;:
PRINT USING A$;GT(K) * 1,58
850 NEXT K
852 FOR J = 1 TO 7:
Ti(J) = B:
NEXT J
855 FOR J = 1 TO 7:
FOR K =1 TO T:
T1(J) = T1(J) + S1(J,K):

NEXT K:
NEXT J
860 FOR J = 1 TO 7:
T7(J) = TI(J) / 12:
T8(J) = INT(T7(J)):
T6(J) = (T7(J) - T8(J)) * 12:
T9(J) = INT{T6(J) + .5):

NEXT J
865 FOR J = 1 TO 7:
IF T9(J) < =9

THEN

868 Program continued

115

home applications

867 T8(J) = T8(J) + 1:
T9(J) = 12 - T9(J)
868 NEXT J
876 PRINT :
PRINT "TOTALS";:
FOR J = 1 TO 7:
PRINT TAB(J + 6):
PRINT USING Bl$;78(J);:
PRINT " K
NEXT J
875 PRINT :
PRINT "RESID'S";:
FOR J =1 TO 7:
PRINT TAB(J + 7):
PRINT USING BS;T9(J);:
PRINT ® "i
NEXT J
888 S6 = 8:
FOR J =1 TO 7:
56 = 56 + T8(J):
NEXT J
885 PRINT :
PRINT :
PRINT "TOTAL CASE COUNT= ";S6;" CASES,
898 PRINT :
PRINT "TOTAL DOLLAR VALUE IS § ";:
PRINT USING A$;S6 * 18,0
895 INPUT “"~HIT ENTER";X:
GOTO 208
968 DATA 8
918 DATA CRSP,CHES,CREM,TEAS,CHIP,MINT,SUGR
lgge DATA 161,R.G.,11,373,J.S.,28,512,N.T.,16
101¢ DATA 533,D.H.,16
1¢2¢ DATA 1216,P.S.,23,1219,E.D.,19
1838 DATA 1235,L.W.,3,1448,N.R.,12
1166 DATA K.A,,M.B,,CI.F.,CH.F.,S.G.
1118 DATA X.J.,N.K.,C.Q0.,R.R.,L.R.
1128 DATA A.S.
1266 DATA K.A,,E.A.,N.B.,J.D.,M.D.
1218 DATA L.G.,M.G.,J.K.,K.K.,C.L.
122¢ DATA S.M.,J.MCG.,L.P.,B.P,
1236 DATA M.P.,K.R.,L.V.,/M.W. /M.W.,T.W,
1368 DATA G.B.,M.B.,A.B.,T.E.
1314 DATA D.F,,;C.G.,D.MCK.,T.0'B,
1328 DATA K.P.,S.P.,J.R.,A.S.
1330 DATA J.W.,T.W.,A.W.,S.W.
148 DATA K.B,,C.C.,W.F.,S.G.
1416 DATA K.G.,L.H.,L.K.,J.M.
1429 DATA M,N.,D.P.,K.R.,M.R.
1438 DATA T.R.,M.S.,K.W.,8.Z,
1569 DATA C.B.,M.B.,K.C.,J.D.
1519 DATA C.D.,L.F.,M.F.,A.H.
152¢ DATA M.H,,C.J.,R.J.,B.K.
1530 DATA T.K.,M.K.,M.M.
154¢ DATA L.P.,K.R.,K.S.,H.S..
1556 DATA J.S.,B.S.,R.U.,S.W.
1668 DATA B.A.,T.C.,B.D.,M.E.
1616 DATA S.E.,J.G.,L.MCC.,S.MCG.
1620 DATA R,R.,H.S.,T.S.,K.V.
1630 DATA K.W.,E.W.,R.W.,A.W.
1648 DATA M,B.,T.N.,S.V.
1760 DATA S.G.,A.M.,L.R.
186¢ DATA M.B,,C.C.,T.D.,K.D.
1818 DATA D.F.E,C.G.,M.M.,C.M.
18286 DATA S8.S.,L.S.,D.V.,T.W.
9999 END
32806 INPUT "ENTER LPRINT FOR TTY";A$
32816 IF A$ = "LPRINT"
THEN

116

home applications

32020 IF AS > "LPRINT"

A = 178;

B = 175
32836 FOR M = 17129 TO 28671
320490 IF PEEK(M) = B AND PEEK(M + 1) = 32

THEN

POKE M,A
32850 NEXT M:
RETURN

117

— HOME APPLICATIONS

Two Energy Savers
by Joseph H. Hart

Saving on energy bills (electricity, oil, gas, etc.) is always a popular
topic of conversation. If you are like me, you have tried different ways
to save money on your energy bills, but you may not know how much you
have actually saved. In this chapter, I will discuss two programs that can
help you figure out your energy savings.

ENERSAVE (Program Listing 1) will calculate your energy savings
from the information you enter. I have found that more than just instruc-
tions are an absolute necessity in programs of this type. Therefore, I have
included an explanation and definitions, as well as instructions within the
program.

After asking if you want instructions, ENERSAVE asks you about your
home. What type of heating do you have? Do you have an air condi-
tioner? What is the present R-value of the insulation in the area you are
going to insulate? (Some terms may be new to you, so I have included a
list of definitions in Table 1). Next, ENERSAVE asks about cost. How
much does your heating fuel cost? How much does your cooling fuel (elec-
tricity) cost? Then it asks you about the area to be insulated. Where are
you going to insulate—ceiling, wall, or floor? What is the square footage
of the area to be insulated? What is the R-value of the insulation you are
going to add?

DEFINITIONS

Heating Degree-Days—an indication of the need for heating. Obtainable from
the local National Weather Bureau.

Cooling Hours—an indication of the time cooling is needed.

R-Value—a measure of the ability of a substance to resist the flow of heat,

Table 1. Definitions

To be able to accurately calculate the savings over the life of the insula-
tion, T had to find a way to account for the annual increase in fuel cost, as
well as the amount of interest if you took out a loan to buy and install this
insulation. ENERSAVE will ask you for these percentages. It will then
calculate your savings as an equal annual savings for the life of the insula-

118

home applications

tion. I have found it easier to have this information collected ahead of

time, so to help you, I have included a list of the necessary information in
Table 2.

NECESSARY INPUT

DD Heating degree-days

CH Number of cooling hours

EH Heat energy cost

EC Cooling energy cost

11 R-value of insulation to be added

PI R-value of existing insulation

N Expected life of new insulation

I Cost of money to you (interest rate)

E Expected annual increase in energy cost (percentage)
SF Square footage of area to be insulated

OPTIONAL INPUT

1cC Cost of insulation
IS Cost to install

Table 2. Information needed to use ENERSAVE

Now that you know how much you will save annually, you may want
to know how many years it will take to recover your investment. ENER-
SAVE will ask you for the cost of the insulation and the cost of installing
this insulation. It will then calculate the number of years to recover your
investment.

How Much Did You Save on Your Electric Bill Last Year?

ELECTCOM (see Program Listing 2) will tell you the amount of elec-
trical energy you used for heating, cooling, base, and the savings for each
year. This sounds like it would be very simple to do, but it really isn’t. Let’s
say you want to find how much you saved on electricity by trying to com-
pare the total dollars spent for electricity month by month for each year.
This method is not accurate, because you have compared the cost of elec-
tricity for one year to a higher cost of electricity for the next. For example,
electricity increased about 34 percent in 1979. You have not compared your
electricity use. Another reason why it is not accurate to compare energy on a
cost basis alone is the fact that one year may be colder or hotter than the
next. If you compare a cold winter with a mild winter, there is a savings for
the milder winter, just because less heat energy was required. The same ef-

119

home applications

fect occurs when you compare a hot summer to a mild summer. Less cooling
energy is needed in the milder summer than in the hotter summer.

How do we compare one year’s electrical use to another? We compare
energy use, or kilowatt-hours. Now we are comparing the energy used in
one year compared to another, independent of cost. After we determine
the savings in energy, we can multiply by the average cost of electrical
energy to obtain cost savings.

We still need to make an adjustment for the fact that winter may be
colder one year than the other and summer may be hotter one year
than the other. To achieve this, I have used something called a degree-day
in this program. A degree-day is a unit that represents the amount of heat-
ing or cooling energy needed. Heating and cooling degree-days for your
area can be obtained from your local National Weather Bureau. The
degree-days are calculated daily and used to determine the monthly and
yearly degree-days for both heating and cooling. Therefore, the heating
degree-days and cooling degree-days change from year to year.

Now that we know how the program adjusts for heating and cooling
and variations due to weather, and that the program uses kilowatt-hours
for comparison, all we need is electricity usage for each month. You will
probably find that your monthly electrical bills are not always (if ever) on
a calendar month basis, that is, usage from the first of the month to the
end of the month, but that doesn’t matter. Just use the kilowatt-hour
usage on each monthly bill. It doesn’t matter what month with which you
start, as long as the annual heating and annual cooling degree-days
match. Therefore, you may use any twelve month period for the first year
and any other twelve month period for the second year, as long as the an-
nual heating and cooling degree-days correspond for the two twelve
month periods.

I hope these programs will help you to use energy in the most efficient
manner.

120

home applications

Program Listing 1. ENERSAVE

10 REM * INSULATION , PAYBACK AND SAVINGS EVALUATION * *
VERSION 1,1 =~ -~ - MARCH 2, 1980 =~ - -

20 REM * COPYRIGHT (C) 1988 * * JOSEPH H., HA
RT * * 2312 THOUSAND OAKS DR, * * RI
CHMOND VIRGINIA *

39 CLS :

PRINT :

PRINT :

PRINT :

PRINT CHR$(23); TAB(4) STRINGS(25,"* ");" * INSULATION
* * PAYBACK AND SAVINGS * * EVALUATION

n

40 PRINT TAB(4) STRINGS(25,"*"):
FOR X = 1 TO 1900:
NEXT
58 PRINT
PRINT
INPUT "DO YOU WISH INSTRUCTIONS";GS:
IF G$ = "NO" OR G$ = "N"
THEN
1000
59 REM * INSTRUCTIONS *
68 CLS :
PRINT " THIS PROGRAM WILL ESTIMATE YOUR ANNUAL MONEY SAVING
SRESULTING FROM THE INSTALLATION OF INSULATION. IT USES BASICEN
ERGY EQUATIONS FROM 'A S H R A E' (AMERICAN SOCIETY OF
76 PRINT "HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS) TO
CALCULATE THE HEAT LOSS AND/OR HEAT GAIN. IT ALSO USES ECONOMIC
TERMS ASSOCIATED WITH MOVING THE VALUE OF MONEY FROM THE FUTURE
BACKWARDS TO THE PRESENT. THESE TERMS ARE ";
88 PRINT "CALLED 'CAPITALRECOVERY FACTOR' AND 'PRESENT WORTH FACTOR
'. 1 HAVE TAKEN THE 'PRESENT WORTH FACTOR' AND CONVERTED IT IN
TO A 'GEOMETRIC SERIES' WHICH INCORPERATES AN ESCALATION FACTOR
. THERFORE THE 'ESTIMATED ANNUAL HEATING AND";
98 PRINT " COOLING SAVINGS FOR 'N' YEARS' ISA TYPE OF AVERAGE SAVIN
GS FOR THE 'N' YEARS.":
PRINT @9€0," (HIT ENTER TO CONTINUE)";:
INPUT G$:
CLS
1¢9 PRINT " BEFORE YOU CAN UTILIZE THIS PROGRAM, CERTAININFORMAT
ION (NOT USUALLY KNOWN) WILL NEED TO BE GATHERED, THE FOLLOWIN
G NUMBERS WILL BE NEEDED:"
119 PRINT TAB(3) "ANNUAL DEGREE DAYS (IF KNOWN)"; TAB(48)"TYPE OF HEA
Tﬂ

Hoes an

140 PRINT TAB(3) "R~VALUE OF PRESENT INSULATION"; TAB(4#)"VALUE OF MO
NEY (%)"

150 PRINT TAB(3) "R~VALUE OF ADDITIONAL INSULATION"; TAB(4@)"ENERGY E
SCALATION (%) "

160 PRINT "SQUARE FOOTAGE OF AREA TO BE INSULATED":
PRINT @90#8," (HIT ENTER TO CONTINUE)";:
INPUT GS$:
CLS

170 PRINT :
PRINT "DEFINITIONS:"

180 PRINT TAB(5) "ANNUAL DEGREE DAYS -~ A UNIT MEASURING THE EXTENTTO
WHICH THE OUTDOOR MEAN (AVERAGE OF MAXIMUM AND MINIMUM) DAILYDRY
-BULB TEMPERATURE FALLS BELOW 65 DEGREES F. TOTALED FOR EACH DAY

Program continued

121

128

190
200

220

999
loea

1016

1920

1029
1030

1040

1058

1060

1078

1680

1099

1695

1108

1110

1120

1129
1130

home applications

PRINT TAB(3) "ANNUAL COOLING HOURS (IF KNOW)"; TAB(48)"A/C (YES
OR NO)

PRINT TAB(3)"HEATING COST ($#.¥###)"; TAB(40)"COOLING COST (S$#.0#
#)

FOR ONE YEAR,"

PRINT TAB(5)"ANNUAL COOLING HOURS - A UNIT MEASURING THE TIMETHE
COMPRESSOR OF AN AIR CONDITONING SYSTEM RUNS PER YEAR."

PRINT TAB(5)"R-VALUE - A UNIT MEASURING THE RESISTENCE TO THE FL
OW OF HEAT THROUGH A CERTAIN MEDIUM."

PRINT TAB(5)"ENERGY ESCALATION - THE RATE (%) AT WHICH ENERGY WI
LL INCREASE IN COST PER YEAR.”

PRINT :

PRINT :

INPUT "NOW YOU'RE READY TO BEGIN (HIT ENTER)";GS$

REM * INPUT DATA ROUTINE *

CLEAR 2000:

DEFSNG F,C,E,I,P,N,T:

DEFINT A,B,S,D,X:

CLS :

PRINT :

INPUT "IF YOU KNOW THE NUMBER OF DEGREE DAYS FOR YOUR AREA, ENTE
R IT;BUT IF YOU DON'T ENTER THE NUMBER '40068'";DD:

GOSUB 4800:

IF 2 = 1 GOTO 1080

PRINT "WHAT TYPE OF ENERGY DO YOU USE TO HEAT YOUR HOME?

HEAT PUMP ~ - = = = = » = 1 ELECTRIC BASE
BOARD - - -~ 2 ELECTRIC FURNACE - - - - 3

GAS = = = = = = = = = - = 4
PRINT CHR$(27)" OIL = = = = = = = = = = = 5%
INPUT A
REM * CALCULATING FUEIL CONSTANT *
IF A =1
THBEN

FC = 68 * DD * 28 * .9 / 3413 / 68 / 1.8:
TH$ = "HEAT PUMP"

IF A =2

THEN
FC = 60 * DD * 17 * .9 / 3413 / 68 / 1:
TH$ = "ELECTRIC BASEBBOARD"

IFA=3

THEN
FC = 68 * DD * 208 * .9 / 3413 / 68 / 1:
TH$ = "ELECTRIC FURNACE"

IF A = 4

THEN
FC = 68 * DD * 24 * ,9 / 68 / 10660080 / .685:
TH$ = "GAS"

IFA=25

THEN
FC = 60 * DD * 24 * ,9 / 608 / 140060 / .54:
TH$ = "OIL"

IF A <1 ORA >S5 GOTO 1010

INPUT "DO YOU HAVE AN AIR CONDITIONER";ACS:

IF BC$ < > "YES" IF ACS$ < > "NO" PRINT "ANSWER YES OR NO 1117:
GOTO 1090

IF AC$ = "NO" GOTO 11140

INPUT "IF YOU KNOW THE NUMBER OF COOLING HOURS FOR YOUR AREA,ENT
ER IT; BUT IF YOU DON'T, ENTER THE NUMBER '650'";CH:

GOSUB 4010:

IF Z = 2 GOTO 1160

CLS :

PRINT "WHERE DO YOU PLAN TO ADD INSULATION? CEILING -
————— 1 WALL = = = = = = = 2 FLOOR -
______ 3r.

INPUT B

IF AC$ = "NO"

THEN

1168
REM *1 CALCULATING COOLING CONSTANT *

IF B =

122

home applications

CC = CH * 45 * 5 * .9 / 3413:
P$ = "CEILING":

GOTO 11690
1140 IF B = 2
THEN
CC = CH * 22 * ,5 * 9 / 3413:
P$ = "WALL":
GOTO 1168
1150 IFP B < > 3
THEN
i11e:
ELSE
CC = § AND FC = FC / 2:
P$ = "FLOOR"

1160 INPUT "HOW MUCH DOES YOUR HEATING ENERGY COST ($B.0##/KWH ORSO.$##
#/CCF OR $(#,##/GAL.)";EH:
GOSUB 4020:
IF 2 = 3 GOTO 1160:
IF AC$ = "NO" GOTO 11880
117¢ INPUT "HOW MUCH DOES YOUR COOLING ENERGY COST($0.0##/KWH)";EC:

GOSUB 4830:

IF 2 = 4 GOTO 1179
1180 IF B = 1 GOSUB 3006
1196 IF B = 2 GOSUB 3100
1280 IF B = 3 GOSUB 32008

1216 INPUT "WHAT IS THE AVERAGE R-VALUE OF THE INSULATION YOU PLAN TO
INSTALL";I1:
GOSUB 4040:
IF 2 = 5 GOTO 121¢
1220 INPUT "WHAT IS THE APPROXIMATE AVERAGE R-VALUE OF THE INSULATION
YOU PRESENTLY HAVE";PI:

GOSUB 4840:
IF 2 = 11 GOTO 1228
1230 CLS :
INPUT "HOW MANY YEARS DO YOU EXPECT THE INSULATION TO LAST";N:
GOSUB 4880:

IF 2 = 9 GOTO 1239
124¢ INPUT "IF YOU WERE TO BORROW THE MONEY FOR THE INSULATION AND TH
EINSTALLAION, WHAT WOULD BE THE INTEREST RATE (%)";I:
GOSUB 4058
IF 2 = 6 GOTO 1240
125¢ INPUT "HOW MUCH DO YOU EXPECT ENERGY TO INCREASE EACH YEAR (%)"
;E:
GOSUB 4068:
IF 2 = 7 GOTO 1258
1268 INPUT "WHAT IS THE SQUARE FOOTAGE OF THE AREA TO WHICH YOU ARE G
OING TO ADD INSULATION";SF:
GOSUB 4870:
IF 2 = 8 GOTO 1260
1269 REM * CALCULATING 'CAPITAL RECOVERY FACTOR ' AND *

* 'GEOMETRIC SERIES PRESENT WORTH FACTOR ' *

1270 1X = 1 / 199:

EX = E / 100:

CRF = IX / (1 - (1 + IX) [- N):

GSPWF = @:

FOR K = 1 TO N:

GSPWF = GSPWF + ({1 + EX) / (1 + IX)) [K:

NEXT

1279 REM * CALCULATING SAVINGS *

1280 EA = CRF * GSPWF * SF * ((1 / PI) - 1 / (PI + II)) * ((FC
* EH) + (CC * EC))

2269 REM * DISPLAYING INPUT AND SAVINGS ROUTINE *

2270 CLS :
X$ = "SSH.HEE":
VS = "SSHRE, BRE, 84"
¥$ = "§E§,4":
728 = "§H#4":
TS = "§§.8":
US = "§84, 884", Program continued

123

2280
2298

2308
2310
2320
2330
2340
2350

2360

23780

2380

2398

2460

2419
2429

2438

2440

2999
3000

30190

3820
3830

home applications

PRINT TAB(21)"INSULATION ANALYSIS":
PRINT TAB{28)"SAVINGS":
PRINT "USING THE FOLLOWING INPUT - - -":
PRINT TAB(5) "DEGREE DAYS"; TAB(22)"=";:
PRINT TAB(24) USING Z$;DD;:
PRINT TAB({37)"COOLING HOURS"; TAB(55)"=";:
PRINT TAB(57) USING Z$;CH
PRINT TAB(S5)"TYPE OF HEAT"; TAB(22)"=";
PRINT TAB(5)"AIR CONDITIONER"; TAB(22)"
PRINT TAB(37)"COST OF COOLING"; TAB(55)"=
PRINT TAB(5)"COST OF HEATING"; TAB(22)"=";
PRINT TAB(37)"INSULATION LIFE"; TAB(55)"="; TAB(57) USING T$;N
PRINT TAB({5)"COST OF MONEY"; TAB(22)"="; TAB(24) USING T§;I;:
PRINT "$"; TAB(37) "ENERGY ESCALATION"; TAB(55)"="; TAB(57)
USING T$;E;:
PRINT "g"
PRINT "SQUARE FOOTAGE OF ";P$;" TO BE INSULATED IS . USING U$;S
F;:
PRINT " SQ.FPT."
PRINT "PRESENT INSULATION IN THE ";P$;" HAS AN R-VALUE OF ";
USING T$;PI;:
PRINT "."
PRINT "PLANNING TO ADD INSULATION WITH AN R~VALUE OF ";
USING T$;I1;:
PRINT ","
FI = PI + II:
PRINT "FINAL R-VALUE FOR ";P$;" IS "; USING T$;FI;:
PRINT ".,"
PRINT TAB(1@)"YOUR ESTIMATED ANNUAL HEATING AND COOLING SAVINGS
FOR "; USING T$;N;:
PRINT " YEARS IS ";:
PRINT USING VS$;EA;:
PRINT ".":
IF G=5
THEN
24409 N
PRINT TAB(26)"D0 YOU WISH TO KNOW THE PAYBACK ";:
INPUT M$:
IF M$ = "NO"
THEN
PRINT @936, "EVALUATION TERMINATED.":
END
REM * PAYBACK ROUTINE *
CLS :
G = 5:
INPUT "HOW MUCH DO YOU THINK THE INSULATION WILL COST";IC
INPUT "HOW MUCH DO YOU THINK IT WILL COST TO INSTALL THIS INSULA
TION";IS:
PB = (IC + IS} / EA:
GOSUB 4898:
GOTO 2270
PRINT @896,"% * YOU WILL RECOVER YOUR INVESTMENT IN ABOUT ";:
PRINT USING T$;PB;:
PRINT " YEARS, * *":
INPUT "(HIT ENTER FOR ANOTHER ANALYSIS) ";M$:
RUN 1008
REM * ROUTINE TO DISPLAY INSULATION R-VALUES *
CLS :
PRINT TAB(28) "CEILING"
PRINT TAB(18) "AVERAGE STRUCTUAL R-VALUE":
PRINT TAB(22)"BASED ON INSULATION"
PRINT "INSULATION R-VALUE"; TAB(47) "AVERAGE R~VALUE"
FOR X = 1 TO 3:
READ IR,AR:
PRINT TAB(11)IR; TAB(53)AR:
NEXT :
FOR X = 1 TO 5:
READ IR,AR:
PRINT TAB(l@)IR; TAB(52)AR:
NEXT

AB(24) THS

="; TAB(24)ACS$;

"=". TAB(57) USING X$;EC;
TAB(24) USING X$;EH;

124

3940

3108

3200

3999
4000

4005
4010

4815
4020

4825
4939

4035
4840

4845
4050

40855
4069

home applications

PRINT :
PRINT "INSULATION R-VALUE + STRUCTURAL R-VALUE = AVERAGE R-VALUE
",
RETURN
CLS :
PRINT TAB(29) "WALL":
GOTO 3610
CLS :
PRINT TAB(29) "FLOOR":
GOTO 3018
REM * INPUT ERROR ROUTINE STATEMENTS *
2 = 0:
IF DD < 242 OR DD > 108080
THEN
PRINT "*** ANNUAL DEGREE DAYS ARE FROM 206 TO 19,808 DAYS PER
YEAR, **%";
Z = 1:
GOTO 410¢
RETURN
2 = @:
IF CH < 200 OR CH > 3080
THEN
PRINT "*** COOLING HOURS ARE FROM 2860 TO 3,800 HOURS PER YEAR,
KkEn,
7 = 2:
GOTO 4188
RETURN
Z = @:
IF EH < 0,02 OR EH > 4
THEN
PRINT "#%* ENERGY COST SHOULD BE BETWEEN $0.62 AND $4. IF ENE
RGY *** *%% COST IS HIGHER CHANGE 'X$' IN STATEMENT # 2274.
kkk B,
Z = 3:
GOTO 4169
RETURN
Z =@
IF EC < 8.2 OR EC > 6,1
THEN
PRINT "##* COST PER KWH SHOULD BE ENTERED IN THE FOLLOWING FOR
M - — ***%%% S _p§#.IF COST PER KWH HAS RISEN ABOVE $@.10 PER
KWH, *kk%xkk CHANGE 'X$'IN STATEMENT # 2270.
*kdk i,
Z = 4:
GOTO 4149
RETURN
2 = @:
IF (II OR PI) < # OR (IXI OR PI) > 60
THEN
PRINT "**% INSULATION R~VALUES CAN NOT BE NEGATIVE. HOUSES WL
TH *#kkxkk TNSULATION R-VALUES HIGHER THAN 60 MAY CAUSE IMPU
RE AIR, ***".
Z = 5:
GOTO 4188
RETURN
2 = 0:
IF 1 < ORI > 36
THEN
PRINT "*** MONEY CAN NOT COST LESS THEN BEING FREE(ZERO COST).
IF **%*%%%x YyOoU ARE PAYING MORE THAN 36% IN INTEREST PER YEAR
, CHECK **%*** WITH A COMMERCIAL BANK FOR COMPETITIVE RATES.
Akkn,
Z = 6:
GOTO 4109
RETURN
Z = 0:
IFEC<C®ORE > 28
THEN

PRINT "#*** THIS PERCENTAGE IS AN AVERAGE. ONE YEAR'S INCREASE
MAY *xxkk* BE 1¢0% ,BUT OVER THE LIFE OF THE INSULATION THE

Program continued

125

home applications

AVERAGE ****** GHOULD BE LESS THAN 20% .
ki kT,

2 =17

GOTO 4168

4065 RETURN
4078 Z = B:

IF SF <G ORSF >18 [5

THEN
PRINT "*** UNLESS YOU HAVE AN UNUSALLY LARGE HOUSE, YOU MAY HA
VE ****ks MADE A MISTAKE IN CALCULATING THE SQUARE FOOTAGE
OF THE **%*%*% AREA TO BE INSULATED. PLEASE CHECK YOUR CALAULA

TION. *EET .
Z = 8:
GOTO 4140
4975 RETURN
4080 2 = 9:
IFN <O ORN > 162
THEN
PRINT "**%* YOU MUST HAVE FOUND SOME SUPER~INSULATION. UNUSALL
Y *¥*%%%k*x TNSULATION WILL LAST FOR ABOUT THE LIFE OF THE HO
USE kkk%%% (390 TO 40 YEARS).
kkk o n,
Z = 9;
GOTO 4168
4685 RETURN

4698 IF PB < @ OR PB > 100

THEN

PRINT "*** YOUR PAYBACK HAS EXCEEDED 160 YEARS., IF YOU WANT T
o]

*kkkk% KNOW THE EXACT PAYBACK, CHANGE *TS$' TO 'Y$' IN ST
ATEMENT **%%%% § 227¢,

kkkT .,

GOTO 4188

4095 RETURN
4168 FOR X = 1 TO 3060:

NEXT
RETURN
4999 REM * DATA FOR INSULATION TABLE *
5666 DATA ©,2.5,3.7,6.0,7.4,8.8,11.6,12.3,15,15.9,19,19,22,22,36,36
5610 DATA §,4.2,3.7,7.1,7.4,9.8,11,13,0,3.5,3.7,8.4,7.4,12.2,11,15.4,
15,18.2,19,208.4
Program Listing 2. ELECTCOM
1B REM % % % % & % % % & % % % & & % ® % & & % % % % * #
* ELECTRIC ENERGY COMPARISON
* VERSION 1,1 - - - - MARCH 8,198 - - - - *
* COPYRIGHT (C) 1980 *
20 REM * JOSEPH H. HART *
* 2312 THOUSAND OAKS DR. *
* RICHMOND VA, 23229 *
30 REM ¥ k k * k k Kk k k %k k k k k k * * % *k ¥ k *k k * %
40 CLS :
PRINT :
PRINT :
PRINT :
PRINT CHR$(23); TAB(4) STRINGS(25,"* ");" *
* * ELECTRIC ENERg¥ * * COMPARISON *
*
50 DEFINT A,B,C,D,F,G,H,J,M,N,0,8,X,Y:

60

PRINT TAB(4) STRINGS$(25,"* "):
FOR X = 1 TO 1000:

NEXT
PRINT
PRINT
INPUT "DO YOU WISH INSTRUCTIONS";GS:
IF LEFT$(GS$,1) = "N"

e

126

home applications

THEN
1000
69 REM * INSTRUCTIONS *
76 CLS :
PRINT * THIS PROGRAM ENABLES YOU TO COMPARE YOUR KWH ENERG

Y USE FOR ONE YEAR WITH ANOTHER YEAR'S USE., THIS WILL TELL YOU
IF YOUR USAGE OF ELECTRICAL ENERGY HAS INCREASED OR DECREASED,
THE PROGRAM WILL SEPARATE YOUR MONTHLY USAGE"

8¢ PRINT "INTO ' BASE USE ' (LIGHTS, COOKING, RADIO, TV, ETC.)' HEA
TING USE ' AND ' COOLING USE ' FOR EACH YEAR, THIS METHOD ENABL
ES YOU TO SEE WHERE YOU ARE SAVING OR USING MORE ELECTRICAL ENER
GY,":
PRINT @994," (HIT ENTER TO CONTINUE";:
INPUT G1§

98 CLS :
PRINT :
PRINT "YOU WILL NEED THE FOLLOWING DATA FOR THE INPUT:
HEATING DEGREE DAYS FOR YOUR AREA FOR EACH YEAR

TO BE COMPARED COOLING DEGREE DAYS FOR YOUR AREA F
OR EACH YEAR"
166 PRINT " TO BE COMPARED MONTHLY KWH
USE FOR TWO COMPLETE YEARS"
116 PRINT :
PRINT " TOTAL HEATING AND COOLING DEGREE DAYS FOR A YEARCAN
USUALLY BE OBTAINED FROM YOUR LOCAL NATIONAL WEATHER BUREAU. "
120 PRINT " THE MONTHLY ELECTRICITY USAGE (KWH) CAN BE OBTAINEDE

ITHER FROM YOUR MONTHLY ELECTRICITY BILLS OR FROM YOUR LOCAL E
LECTRIC POWER COMPANY,"
138 PRINT @98¢,"NOW YOU ARE READY TO CONTINUE (HIT ENTER)";:

INPUT G1S$:
GOTO 104@
999 REM * DATA INPUT ROUTINE *
1908 CLS
CLEAR 20006:
INPUT "ENTER YOUR MONTHLY KWH USAGE FOR YEAR #-1, STARTING WITH
JANUARY - = = = = ";Jl:

IF J1 > 5080 GOSUB 5088:
IF Y < > 1 GOTO 1009

1619 INPUT " FEBRUARY - -~ = = =~ ":Fl:
IF F1 > 5088 GOSUB 5800:
IF Y < > 1 GOTO 1019

1829 INPUT " MARCH = = « - = =~ "iM1:
IF M1 > 5008 GOSUB 5000:
IF Y < > 1 GOTO 1020

1¢38 INPUT " APRIL - - = = = =~ ":AL:
IF Al > 5869 GOSUB 5000:
IF Y < > 1 GOTO 1830

1648 INPUT " MAY - = = = = = - "MA:
IF MA > 5008 GOSUB 5000:
IF Y < > 1 GOTO 1040

1958 INPUT " JUNE = = = = = = - ";JA:
IF JA > 5088 GOSUB 5000:
IF Y < > 1 GOTO 1058

1966 INPUT " JULY = = = = = - - ";JB:
IF JB > 5808 GOSUB 5¢60:
IF Y < > 1 GOTO 1068

167@¢ INPUT © AUGUST - - — - = = ";AB:
IF AB > 5080 GOSUB 5000:
IF Y < > 1 GOTO 1070

19488 INPUT " SEPTEMBER ~ ~ - - ";51:
IF 81 > 5000 GOSUB 5000:
IF Y < > 1 GOTO 10889

1098 INPUT " OCTOBER -~ -~ ~ - - "3;01:
IF 01 > 5088 GOSUB 5000:
IF ¥ < > 1 GOTO 1896

1196 INPUT " NOVEMBER = -~ = = =~ "iN1:
IF N1 > 5088 GOSUB 5080:
IF Y < > 1 GOTO 11¢0

1119 INPUT " DECEMBER - =~ — = = ";D1:

IF D1 > 5080 GOSUB 5600: I&ogranzconﬁnued

127

home applications

IFY <> 1 GOTO 1118
1128 INPUT "ENTER HEATING DEGREE DAYS FOR YEAR #-1";DC:
IF DC > 16066 OR DC < 208 GOSUB 50108:
IFY <> 1 GOTO 1120
1130 INPUT "ENTER COOLING DEGREE DAYS FOR YEAR #-1";C3:
IF C3 > 3080 OR C3 < 200 GOSUB 5@20:
IF Y < > 1 GOTO 1130
1146 CLS :
INPUT "ENTER YOUR MONTHLY KWH USAGE FOR YEAR #-2, STARTING WITH
JANUARY =~ - - - -~ -~ ";J2:
IF J2 > 5080 GOSUB 5000:
IF Y < > 1 GOTO 1149
1158 INPUT " FEBRUARY =~ - - - - ~ "iF2:
IF F2 > 588 GOSUB 5008:
IFY <> 1 GOTO 1158
1168 INPUT * MARCH ~ = =~ = = = = "iM2:
IF M2 > 5800 GOSUB 5080:
IFY <> 1 GOTO 1168
1178 INPUT " APRIL = = = = = = - ":A2:
IF A2 > 5009 GOSUB 5008:
IFY <> 1 GOTO 1174
1180 INPUT " MAY -~ - - = = « — ~ ":MB:
IF MB > 5060 GOSUB 5008:
IF Y <> 1 GOTO 1188
1198 INPUT * JUNE = = = = e e -~ ";JC:
iIF JC > 5889 GOSUB 5008:
IF Y < > 1 GOTO 1198
1208 INPUT * JULY = = = = = = = - ":JD:
IF JD > 5060 GOSUB 5000:
IFY <> 1 GOTO 1286
1218 INPUT " AUGUST = = = = = - - ":AC:
IF AC > 5008 GOSUB 5008:
IF Y <> 1 GOTO 1210
1229 INPUT " SEPTEMBER =~ - = =~ = ";82:
IF S2 > 50888 GOSUB 5888:
IF Y <> 1 GOTO 1228
1238 INPUT " OCTOBER = = = = = = ";02:
IF 02 > 5000 GOSUB 5000:
IF Y < > 1 GOTO 1238
1248 INPUT " NOVEMBER = = — — - -~ "iN2:
IF N2 > 5808 GOSUB 5000:
IF Y <> 1 GOTO 1248
1258 INPUT " DECEMBER = =~ - = = ~";D2:
IF D2 > 5009 GOSUB 5000:
IF Y < > 1 GOTO 1250
1260 INPUT "ENTER HEATING DEGREE DAYS FOR YEAR #-2";DD:
IF DD > 10000 OR DD < 288 GOSUB 50610:
IF Y <> 1 GOTO 1268
1278 INPUT "ENTER COOLING DEGREE DAYS FOR YEAR #-2";C4:
IF C4 > 30080 OR C4 < 200 GOSUB 5020:
IF < > 1 GOTC 1278
1280 Bl = (AL + MA + O1) * 1,67 * 1.6
1298 C1 = (MA + JA + JB + AB + S1) - (Al + MA + 0l1)
1368 H1 = (Ol + N1 + D1l + J1 + F1 + M1l + Al) -~ ((Al + MA + O1)

]

* 1.67)
1318 XS = "#44, 848"
CLS :

PRINT TAB(16)"ANALYSIS BASED ON ACTUAL USAGE":
PRINT STRINGS$(63,"*")

1328 PRINT TAB(9)"FIRST YEAR"; TAB(38)"*"; TAB(39)"SECOND YEAR":
PRINT TAB(3@)"*"

1339 PRINT "JAN"; TAB(S5) USING X$;Jl;:
PRINT TAB(15)"JULY"; TAB(21) USING X$;JB;:
PRINT TAB(3@)"*"; TAB(33)"JAN"; TAB(39) USING X$;J2;:
PRINT TAB(50)"JULY"; TAB(54) USING X$;JdD

1343 PRINT "FEB"; TAB(5) USING X$;Fl;:
PRINT TAB(15)"AUG"; TAB(21) USING X$;AB;:
PRINT TAB(38)"*"; TAB(33)"FEB"; TAB(39) USING X$;F2;:
PRINT TAB(56)"AUG"; TAB(54) USING X$;AC

1358 PRINT "MARCH"; TAB(5) USING X$;Ml;:

128

home applications

PRINT TAB(15)"SEPT"; TAB(21) USING X$;81;:
PRINT TAB(B)“*“; TAB(33) "MARCH"; TAB{39) USING X$;M2;:
PRINT TAB(5@)"SEPT"; TAB(54) USING X$;52

1368 PRINT "APRIL"™; TAB(5) USING X$;Al;:
PRINT TAB(lS)"OCT"~ TAB(21) USING X$;01;:
PRINT TAB(30)"*"; TAB(33) "APRIL"; TAB(39) USING X$;A2;:
PRINT TAB(58)"OCT"; TAB(54) USING X$;02
137¢ PRINT "MAY"; TAB(5) USING X$;MA;:
PRINT TAB(15)"NOV"; TAB(21) USING X$;Nl;:
PRINT TAB(30)"*"; TAB(33) "MAY"; TAB(39) USING X$;MB;:
PRINT TAB(5@)"NOV"; TAB(54) USING xs;nz
1380 PRINT "JUNE"; TAB(5) USING X§$;JA;
PRINT TAB(lS)"DEC"- TAB(21) USING X$ Dl;:
PRINT TAB(30)"*"; TAB(33)"JUNE"; TAB(39) USING X$:;3C;
PRINT TAB(50)"DEC"; TAB(54) USING X$;D2
139¢ PRINT "HEATING DEGREE DAYS ";DC; TAB(3¢)"*"; TAB(32) "HEATING D
EGREE DAYS ";DD
1460 PRINT "COOLING DEGREE DAYS ";C3; TAB(34)"*"; TAB(32)"COOLING D
EGREE DAYS ";C4
141¢ PRINT @998 ," (HIT ENTER FOR RESULTS)";:
INPUT G1$
1426 B2 = (A2 + MB + 02) * 1.67 * 1.6
1439 C2 = (MB + JC + JD + AC + 52) - (A2 + MB + 02)
1440 H21= (02 + N2 + D2 + J2 + F2 + M2 + A2) - ((A2 + MB + 02)
* 1,67)
1458 BS = (Bl -~ B2)
1468 CS = {(C4 / C3) * Cl) - C2
147¢ HS = ((DD / DC) * H1l) - H2
1488 CLS :
PRINT :
PRINT TAB{19)"ESTIMATED ANNUAL USE":
PRINT STRINGS$(63,"~"):
PRINT TAB(17)"YEAR #~1"; TAB(30)"YEAR $-2"; TAB(49)"SAVINGS"
1499 PRINT "BASE"; TAB(18) USING X§$;Bl;:
PRINT TAB(31) USING X$;B2;:
PRINT TAB{58) USING X§$;BS
1560 PRINT "COOLING"; TAB(18) USING X$;Cl;:
PRINT TAB(31) USING X$;C2;:
PRINT TAB(58) USING X$;CS
1585 PRINT "HEATING"; TAB(18) USING X$;Hl;:
PRINT TAB(31) USING X$;H2;:
PRINT TAB(58) USING X$;HS
1518 PRINT TAB(1l7)"~—=—wew- "s TPAB(38) " ": TAB(49) "—emmmmnim "
1529 T1 = (BL + Cl + H1):
T2 = (B2 + C2 + H2):
TS = (BS + CS + HS)
153¢ PRINT TAB(9) "TOTAL"; TAB(18) USING X$;T1;:
PRINT TAB{(31) USING X$;T2;:
PRINT TAB(58) USING X$; rs’
1548 VS = "DECREASE":
IF T8 < @
THEN
V$ = "AN INCREASE":
TS = ABS(TS)
1558 PRINT :
PRINT :
PRINT " YOU HAVE ";V$;"™ OF "; USING X$;TS;:
PRINT " KWH FOR YEAR #-2 COMPARED TO YEAR #~1 AFTER ADJUSTING FO
R BOTH HEATING AND COOLING DEGREE DAYS,"
156¢ PRINT €98d,"FOR ANOTHER COMPARISON ENTER '1'";:
INPUT G:
IF G = 1 GOTO 1088:
ELSE
END
5000 Y = 2:
PRINT "**% YOU HAVE ENTERED AN EXCESSIVE AMOUNT OF ENERGY ***%*%%
USE. IF YOUR ENTRY 1S CORRECT ENTER A 'l'. kb 1
INPUT Y:
RETURN
5010 Y = 2:

INPUT "** HEATING DEGREE DAYS ARE USUALLY FROM 200 TO 18,809 DEG
Program continued

129

50828

5838

home applications

REE **** DAYS PER YEAR, YOU HAVE ENTERED A NUMBER OUTSIDE THESE
** *% LIMITS. IF YOUR ENTRY IS CORRECT ENTER A 1,

Y = 2:

INPUT "** COOLING DEGREE DAYS ARE USUALLY FROM 2886 TO 3,680 DEGR

EE ** *% DAYS PER YEAR., IF YOUR ENTRY IS CORRECT ENTER A '1°',
LELIN'S

RETURN

END

130

INTERFACE

Listen to Your Keyboard
A Deluxe Expansion Interface

Interfacing the TRS-80
to the Heath H14 Printer

131

INTERFACE

Listen to Your Keyboard

by Allan J. Domuret

Radio Shack is marketing a software debounce program to cure unin-
tended multiple character generation from the keyboard. For those of
you who are unfamiliar with the problem, keyboard bounce is caused by the
mechanical opening and closing of keyboard switches, which results in
multiple character outputs to the computer. The bounce problem can be
severe if the keyboard contacts become dirty or if you have nervous fingers.
Bounce can be overcome with either software or hardware, but Radio
Shack neglected both, with one exception that will be discussed in the
following paragraphs. Radio Shack’s software fix is on the market. If you
haven’t already purchased it, here is my version, free. Just load it in with the
Radio Shack Editor/Assembler.

In fact, I believe my debounce program is superior to Radio Shack’s
because mine includes generation of keyboard audio feedback so that you
can hear every keystroke, accidental multiple keystrokes, and missed
keystrokes, with only some minor, and optional, modifications to your
cassette recorder. The audio feedback supplements the debounce software
by contributing to the reduction of typing errors. As an added bonus, some
cassette recorder modifications, which will allow for DEBNC audio feed-
back and also improve the performance of your recorder, are included.

The DEBNC program sends keyboard audio signals to the cassette
recorder without activating the cassette operating relay with every
keystroke. This design prevents beating the relay to death while typing, and
it also keeps DEBNC from interfering with CLOAD and CSAVE functions.
However, you have to manually turn on your recorder in order to hear the
audio feedback. This provides a built-in safety feature, which should pre-
vent accidental erasure of tapes left in the recorder.

Keyboard Bounce: Its Causes and Cures

As mentioned above, keyboard bounce is caused by the mechanical open-
ing and closing of keyboard switch contacts. Figure 1 explains what actually
happens every time a key is pressed. In the TRS-80, all eight data lines are
held at logic zero while ROM software scans the keyboard for a keystroke.
When you press a key, a logic 1 is output to the appropriate data line,
which is then detected and decoded by ROM software. (The details of how
ROM scans and decodes the keyboard are beyond the scope of
this chapter, but for those who are interested, I recommend an excellent
book by Titus, Rony, Larsen, and Titus called 8080/8085 Software Design,
published by Howard W. Sams & Co., 1978. As a relative newcomer to the

133

interface

BOUNCE PULSES

LOGIC |

LOGIC O

Figure 1. Leading and trailing pulses when a key is pressed

field of microcomputers and machine-language programming, I found this
book extremely informative and easy to read, even though it is oriented to
the 8080/8085 CPUs. Keyboard scanning and debounce routines are covered
in chapter 7.)

Figure 1 shows the generation of a series of random pulses when a
keyboard switch is initially closed. As the key is held down for a few
milliseconds, the pulsations even out as the switch contacts settle down
against each other. When the key isreleased, another series of random pulses
is generated as the switch contacts separate. As a result of this switch
bounce, a collection of logic 1s is sent to the data lines, and, depending on
the severity of the bounce, ROM sometimes interprets these bounce pulses as
multiple keystrokes rather than only one keystroke—hence, the multiple
character problem. Ideally, if we could send a single pulse to ROM as shown
in Figure 2, a single keystroke would be properly decoded by ROM and the
multiple-character generation problem would be eliminated.

An inspection of the TRS-80 keyboard switches will help clarify the cause
of keyboard bounce. Gently pry up the space bar at its center (the space bar
iseasier to get at than the other keys) with a plastic lever such as a thincomb.
Don’t use a metal pry, such as a screwdriver, or you will nick the plastic.
Now, watch the exposed metal-switch contacts while you press down the
square key holder. It should be fairly obvious from observing the action of
these contacts that there is some inherent spring or bounce in them. Since the
space bar is loose, leave it off because later we'll see how to clean all the
keyboard contacts.

In order to eliminate the bounce problem, it is necessary to smooth out the
leading and trailing pulses as illustrated in Figure 1, to obtain a reasonably
continuous output as shown in Figure 2. Hardware such as an alternating

LOGIC |

LOGIC O
Figure 2. Continuous output

134

interface

current rectifier circuit, can be employed to filter these pulses into a smooth
output pulse, but the focus here is on software, so we won’t be getting into
hardware design.

The leading and trailing pulses rarely last longer than a few milliseconds,
so if ROM can be convinced to ignore the first and last few milliseconds of
keyboard output, it could direct its processing efforts to the center or flat
part of the keyboard output pulse. The solution, then, is to tell ROM to ig-
nore the first and last ten milliseconds or so of keyboard output, thereby
solving the bounce problem. This is what DEBNC does.

TRS-80 Debounce Software

The first column in the Program Listing is the memory location for a 16K
system. Note that the program resides in upper memory. For 32K or 48K
systems, the ORG (ORiGinate) instruction on the top line should be adjusted
to BFBCH (BFBC hex, which corresponds to 49084 decimal) or FFBCH
(FFBC hex, which corresponds to 65468 decimal). For the accompanying
16K program, the 7FBCH address corresponds to 32700 decimal. These
decimal addresses correspond to MEMORY SIZE? as requested by ROM
when the computer is powered up; keep them handy.

Column two is hexadecimal machine language, which is automatically
generated by the TRS-80 Editor/Assembler. Column three represents line
numbers to ease programming and editing. Column four is the label field
used to simplify addressing and branching in the program. Columns five
and six are the familiar Z-80 mnemonics. Note that the labels in column four
correspond to addresses referenced in column six. For instance, subroutine
DELAY in column four corresponds to memory location 7FEO hex and is
referenced by the instruction CALL DELAY at memory location 7FCD hex.

Programming with the TRS-80 Editor/Assembler only requires typing in
the information in columns four through six. The assembler automatically
generates the line numbers and computes the memory location for the line
(column three) as well as the memory location represented by the label (col-
umn four).

Debounce Relay

DEBNC keeps an eye on the keyboard, which, in its quiescent (idle) state,
outputs a continuous stream of logic Os on all data lines. If the instructions at
lines 140 through 160 detect only zeros from keyboard, scanning the
keyboard continues until something more interesting is detected. When a
key is pressed, a logic 1 is put onto one of the data lines and lines 140
through 160 immediately recognize this different-from-zero output. Before
the CPU is allowed to process this non-zero keyboard output, the debounce
software introduces a short time delay of a few milliseconds to allow the

135

interface

keyboard switch bounce to settle down. It is during this short delay period
that the program generates an audio tone and sends it to the cassette output
port. After all, why not let the computer do something useful while it is kill-
ing time?

If you study the program closely, you will note that no time delay is pro-
vided to compensate for keyboard bounce upon key release, because ROM
already contains a short delay to do this. (Those of you who have a monitor
such as the Small System Software RSM-1S can see the ROM CALL for this
key-release time delay at memory location 044F hex. The actual delay is a
subroutine at memory location 0060 hex.)

I don’t know why Radio Shack designers went only half way by providing
for debounce upon key release and not upon initial key press. At any rate,
this is the exception I mentioned in the first paragraph.

As for the audio output, the DEBNC DELAY subroutine simply calls up
the save-memory-to-cassette software in ROM and outputs a series of pulses
to the cassette port. The pulses consist of alternating sync pulses used in all
cassette recordings, interspersed with logic 1s (FF hex in lines 390 and
410). These pulses are sent out to the cassette as if the computer intended to
record them. One concern in developing the program, however, was to keep
the recorder in a normally off condition to prevent accidental tape erasures,
while still preventing the computer from turning on the cassette-controlling
relay every time it output a tone in response to each keyboard keystroke.
This is accomplished by modifying the ROM CSAVE subroutine in DEBNC
lines 340 through 380.

The cassette relay-turn-on override takes place in line 360: To turn on
the motor for recording, ROM software would normally LD HL, FF04H,
but instead we simply LD HL,FFOOH to prevent the cassette from being
turned on while still allowing the audio output to go to the cassette port.
Without this feature, the ROM software, if it had its own way, would turn
on the cassette every time a keystroke was output to the cassette port, and by
now most TRS-80 owners are aware that such abuse of the cassette-control
relay would send the relay to an early grave. Now, how do we get the
cassette recorder to cooperate and give us the audio output from software?
There are several options.

The easiest way to get the audio out of the cassette is to connect a small
3.2-Ohm speaker to a miniature phone jack and plug it into the ear output
jack on the side of the recorder (see the cassette recorder modifications sec-
tion for an alternative, and preferred, method). Next, it is necessary to get
manual control of the cassette recorder by either pulling the remote plug
from the side of the recorder or installing an override switch of the type
described by Frank B. Rowlett, Jr., in Microcomputing, January 1979, p. 54
(for an alternative method, see the recorder mod section).

136

interface

With the recorder now enabled, raise the tape cover by pressing the
EJECT lever on the recorder. Then in the upper-left corner of the tape cavi-
ty you will find an “erase-protect” lever that protrudes when you attempt to
depress the RECORD lever. Hold this erase-protect lever in while simulta-
neously depressing the RECORD and PLAY levers as you would in prepar-
ing a recording. Manually holding in this erase-protect lever enables the red
RECORD lever to be depressed. This activates the cassette amplifier and
allows the audio from the computer to enter the amplifier via the cassette
aux input.

By now you probably have noticed one glitch. This procedure keeps the
cassette motor running continuously while DEBNC is used in this mode. If
you spend hours typing a BASIC program into the computer using DEBNC
with its audio feature, your cassette motor will run for these same hours. You
have several options:

1. Let the motor run. It has a long life, and you really won’t hurt it.

2. Install a motor turn-off switch to deactivate the motor without
defeating the cassette amplifier. This, too, is covered in the recorder mod
section.

3. Ignore the audio output. The debounce program will still use the audio
output subroutine to generate the necessary debounce time delay, but you
just won’t hear it and it won’t hurt anything.

4. Feed the audio tone to a separate amplifier.

Notice the built-in safety feature of this design. There is no way to activate

137

interface

the cassette recorder with DEBNC and accidentally erase a valuable cassette
tape. Of course, it is possible to leave a tape in the recorder to enable activa-
tion of the RECORD/PLAY levers, but the danger of doing this, I believe, is
low. By now, most computerists have developed good tape-handling prac-
tices so as to avoid such accidents.

Perhaps it would be worthwhile to mention the purpose of lines 170
through 200 in DEBNC. Without these program steps, the TRS-80 keyboard
would output what would sound like a continuous audio output for as long
as a key remains depressed. As a key is held down, keyboard scanning con-
tinues and an audio tone would be output on every scan cycle for as long as
the key is held down. Lines 170 through 200 determine if the keyboard out-
put is the same as it was in the last scan cycle. If so, it skips the tone
generating delay. If a keyboard output that is different from the last scan
output is detected, then the delay is permitted. This technique still preserves
the debounce feature.

Lines 450 and 460 in DEBNC are used to gain control of the keyboard
scan routine. In normal operation, the keyboard memory scan routine vec-
tor is stored in memory locations 4016H and 4017H. When ROM wants to
scan the keyboard, it calls the contents of memory locations 4016H and
4017H and finds the ROM scan routine at memory location 03E3H. To gain
control of the keyboard scan routine, it is necessary to change the contents of
4016H and 4017H so that the jump will be to DEBNC at memory TFBCH in-
stead of to O3E3H. This is what lines 450 and 460 in DEBNC do.

If for some reason it becomes necessary to RESET the computer while
DEBNC is working, ROM will regain control of the keyboard scan and
DEBNC will be defeated. If this happens, it will be necessary to reload
DEBNC. This should be no problem because DEBNC only takes a few
seconds to load.

It might occur to you as it did to me to POKE the DEBNC start address in-
to 4016H and 4017H. It won’t work. Any attempt to change the keyboard
scan vector located in 4016H and 4017H while ROM is busy scanning will
crash the system. This will require turning the computer off and back on to
reset everything.

Loading and Operating Debounce

Upon RESET or initial application of power, enter the appropriate
memory size when so requested by the computer. Use the addresses as pro-
vided above in the TRS-80 Debounce Software section. As an example, for a
16K system, DEBNC should originate at memory 7FBCH, which cor-
responds to MEMORY SIZE 32700 decimal (enter the decimal figure into
the computer, not the hex number).

Next, the usual system code is entered, followed by the file name,
DEBNC, to start loading. After the tape loads, hit the BREAK key, and

138

interface

Fo—————————

—_————————— ey

et] sosvose | B3k _
it s §
A9 _ 74 30 P10+ WWm (aroy m
118 oo 90 ¥
* X
(] =3) e |3C
L= 7 (A2€} 2 1l o _ 2aH
1 gos =i-1=14
] 1 HOLOW 31v70S1 OL b ’ o | |
| i HOLIMS TIVLSNI o800 i ! :
L [N W
vI10-AS 212 vl o9 _ ﬁw'
2q ¢
H By wel 1000 ~ 1gH
~— i€ sy 215
%22 oy |
o veENl o | o 1-1s -8 cus |
3LON3Y 9-1$ N 22 o I
el Y +s10
| AT 4 oge +— |
- AQl A0S A 1000
{ 002z 1670 rA3
i 213 319 m
! 5100 T
es wees 22 22000,], it
JI0E I 0z35¢ Loy
| T e |
AOS m
! %28 AGH | o T. s 22'0 oot |
AG o2y Ly s %0 m_un—.. Ly —
3
L “ & ¢ |l
as
[1000 adocy LD
oo -+ AT'9 3 - 3w
HOLIMS NOL i Az aso| aso] P20 sy vmomw et _
* AVt HOI
q3LvI0S! ! o9 D MR N L ﬁl |
0L 103NNO2 m A\ n.]/ »wfm 19 % »”m o3 _
AOVP 3LOWIY N) 1) el i L LA f 0Lk 1| o
_ AE'S 0953 (G3y) 90 agii| Azo| 29 218 " _
0cE | aez| L28F 9b-AHE 3l I© !
_ 12 <Y 18A /" ey UV gy
Aos | 3dozz A0S vy %042 _
aow o1anv V3] s f 624
_ ¥04 HOLSISIY A/ oce 89 %81 50 Ag9 ”
2 oz . o 824 oge M- L3
w i RIUES 5OLY i 920+ X0V
i JdomM ¥e'ce S8 oMo 1 . o _
A9ILON LOOHLIM _ Aot 89 bid angL | 8300 guee
JONVHD OL 123r8NS 3uv 90i 2z » £5 _
WYHOYIO DILVWIHOS _ -
ANV SNOILVOI4103dS A3 00! ASS Al AZ'y N\ (v 3unoid 057V 338) |
| 1Z4 sty HOLIMS “IO8LNOD 3NOL
i« 3d .I_
2d0, 1d30X3 37 Nl b s s e e e v o o e - —— — ——— ——— —— — — — s ——— S S— o —
SINIVA 3ONVLIOVAYD TV
. Q00L=) ‘SHHO NI
SINTYA IONVISISIE 1Y 5295852 2894052 SObLIDSZ SOPLIOST SorL1052
S3LON 50 v €0 20 1o

Figure 3. CTR-41 cassette recorder schematic
(Reproduced by written permission from Tandy Corporation.)

139

interface

DEBNC is ready. This is a departure from typical system tape-loading pro-
cedures. No slash (/) key or ENTER key should be pressed because the
modified keyboard vector which has been loaded into 4016H and 4017H
automatically addresses DEBNC.

Finally, set up the cassette recorder as described in preceding paragraphs
if audio feedback is desired. Personally, I find the audio feedback indispens-
able, because it eliminates many typing errors.

Cleaning Keyboard Contacts

While you are sitting there with your space bar still hanging out, use your
plastic comb, or whatever, and pop off all the other key caps to expose the
key contacts. Now spray all the key contacts with tuner cleaner, rubbing al-
cohol, or something similar,

Three cautions should be observed in this cleaning process. First, don’t use
a cleaner that could mar or otherwise damage your plastic keyboard. Per-
form a chemical reaction test using the cleaner on the bottom of your
keyboard where possible melting or damage won’t show. Second, don’t use
cotton swabs to dab liquid cleaner on the contacts. The cotton may leave
small threads on the contact which could interfere with normal operation of
the contacts. And third, don’t put any unguents on the contacts, such as
Vaseline, which is an insulator, not a conductor, and will only serve to latch
onto dust, cigarette smoke particles, and so on to the extent that the contacts
will become inoperative, either wholly or partly.

Of course, if your TRS-80 is new, this cleaning procedure should not be
necessary, but if your keyboard has been sitting on the table uncovered for
months, the cleaning will not hurt. As a final protection, keep your key-
board covered when not in use. The debounce software should solve most of
your bounce problems, and proper care and cleaning of the key contacts will
also help, even without the debounce software.

TRS-80 Cassette Recorder Modifications

A schematic of the Radio Shack CTR-41 cassette recorder, extracted from
the owner’s manual, is provided in Figure 3. Four modifications are recom-
mended, and three of them are, in my opinion, indispensable even without
the use of debounce software. These mods have been suggested in various
forms by other hobbyists, most of them requiring some kind of external con-
trolling box. Refer to both the schematic and the accompanying printed cir-
cuit board sketch (Figure 4) when making the mods.

1. Audio Modification: Connect a resistor (I used a 47-Ohm) across the
top speaker wire and the top ear connector (J2) as shown in both figures.
Different size resistors will provide different volume levels. Experiment to
find a suitable volume level. Figure 4 shows where to connect this resistor on

140

interface

the printed circuit board. In addition to allowing use of DEBNC audio, this
resistor will also allow you to hear both CSAVE and CLOAD audio without
external boxes or without the necessity of pulling plugs on the side of the re-
corder. With this mod, you will have no more recording surprises as a conse-
quence of not hearing what was going into or out of the recorder. If desired,
a switch can be installed in series with this resistor to defeat it.

2. Separate Motor Control: A switch in series with the motor as shown in
the schematic will permit shutting off the motor when only the cassette am-
plifier is desired for DEBNC audio. This is not shown in Figure 4 because 1
have not installed such a switch.

3. Computer/Manual Cassette Control: In Figure 3, locate the tone control,
S3. Isolating the switch from the circuit without disturbing R28 and C21
leaves the tone circuitry in the high mode as it should be for computer use.
When properly wired, this switch can be used to get manual control of the
recorder without external mods and without pulling out the remote jack. See
Figure 4 for instructions as to where to cut leads on the board to isolate the
tone control switch. Now run two wires from the switch to the two connec-
tors on the remote jack as shown in Figures 3 and 4.

4. Ground Loop Mod: As long as your recorder is disassembled, this is a
good time to do another indispensable mod. The stock Radio Shack CTR-41
recorder is notorious for generating hum via ground loops when used with

AUDIO MOD
CONNECT RESISTOR
ACROSS X AND Y

GROUND LOOP FiX
CUT TRACE AND
A INSTALL JUMPER

MOTOR MOD

CONNECT JUMPERS
FROM 2 70 2' AND

E FROM 3 70 3'

CUT TRACES RUNNING

TO POINTS 2 AND 3

i
L\%

JUMPER

|

Figure 4, CTR-41 printed circuit board.

141

interface

the TRS-80. The fix is to cut the board trace and run a jumper wire as shown
in Figure 4. This fix will greatly reduce hum on computer-generated tapes
and will also reduce loading problems. There are other methods for curing
the ground loop problem, but this one keeps the mod inside the recorder
where it belongs, out of sight. It is my understanding that newer TRS-80
recorders have some of these mods installed, especially the ground loop fix,
so it may be necessary to perform only mods one and two to isolate the
cassette motor while using DEBNC with audio. You will have to determine
your own needs.

142

TFBC
TFBC
TEBP
7FPC2
7PC4
7FC5
7FC6
7FC8
TFCY
TFCA
7FCB
TFCD
TFDO
7FD1
TFD2
7FD3
7FD4
3k
7FD8
7FD9
TFDA
TFDC
7FDF
TFE@
TFE2
TFES
TFE6
TFE9
TFEC
7FED
TFEF
TFF2
TFF4
TFF7
TFFA
4016
4016
6000
p0808 TOTAL

213649
010138
l600
oa

A7
2809
S5F

7E

BB
2803
CDE@7F
0A

5F

AE

73

A3
C2FA@3
14

2C
CB@1
F2C47F
Cc9
3E00
32E437
E5
2100FF
CD2162
El
3EFF
CD6402
3EFF
CD64082
CDF801
c9

BCTF

CKKEY 7FC4
DEBNC 7FBC
DELAY 7FED
INAGN 7FD@
INCSCN 7FD4
ZERO 7FD1

interface

Program Listing. DEBNC program symbolic list

00100
00118
00120
00138
B6O140
60158
601680
00179
00180
00190
00200
gp216
00220
80230
00240
00258
00260
060270
ep2890
80290
00300
00310
00320
0@339
20340
08358
00360
60379
66380
00398
00408
00410
00420
o430
ga440
0459
004640
60478
ERRORS

00140
00110
09330
00220
00260
282390

DEBNC

CKKEY

INAGN
ZERO

INCSCN

DELAY

80318
o460
00210
00200

08160

ORG

INC

LD

PUSH
b
CALL
POP

CALL
LD
CALL
CALL
RET
ORG
DEFW
END

7FBCH
HL,4036H
BC,3801H
D,00

A, (BQC)

A

%, 2ERO
E,A

A, (HL)

E

7, INAGN
DELAY

A, (BC)
E,A

(HL)

(HL) ,E

E

NZ,93FAH
D

L

C
P,CKKEY

A, 0
(37E4H) ,A
HL
HL,@FFOQH
9221H

HL

A,OFFH
826 4H

A, OFFH
#2644
@1F8H

4p16H
DEBNC

143

INTERFACE

A Deluxe Expansion Interface

by Frank Delfine

lanning to expand your TRS-80? Not sure which system is best? If you
want to use your TRS-80 to do more than just write BASIC programs,
you should consider the expansion interface presented here.

After reviewing the features of the Radio Shack expansion interface, I de-
cided that it just wasn’t flexible enough for the projects I had planned for my
TRS-80. Since most of my computer projects involve custom-designed hard-
ware interfaced with a microcomputer, I was looking for a way of utilizing
the TRS-80 as a development tool for these projects. With this goal in mind,
I designed the Deluxe Expansion Interface. Photo 1 shows the TRS-80 with
the expansion box and disk drive.

Features of the Deluxe Interface

The Deluxe Expansion Interface has the following features:

1) Allows the use of up to four 5 1/4-inch minifloppy drives.

2) Provides a parallel printer port.

3) Provides a serial RS-232C communications port.

4) Connects the TRS-80 keyboard bus to an S-100 motherboard.

5) When constructed with the specified S-100 mainframe will provide 12
slots for expansion plus a 20-Amp + 8-volt supply and a 4-Amp = 16-volt
supply for supporting future boards in the system.

6) Provides 16K of static R/'W (read/write or random access) memory for a
32K TRS-80 system, which is easily expandable to 32K for a full 48K system.

7) Provides a real-time clock.

This system forms the foundation of my general-purpose microcomputer
development station. Future boards for the system include devices such as
ICE packages (in circuit emulator), PROM programmers, general-purpose
1/0 boards, high-speed tape backup, and 8-inch floppies, all of which are
nicely supported (both electrically and mechanically) by this expansion box.

System Configuration

The system is divided into four sections:

1) The S-100 mainframe with motherboard and power supplies.

2) The IPC board (interface/printer/communications): contains the buf-
fering and data flow control circuitry necessary to interface the TRS-80 bus
to the S-100 bus properly. The parallel printer port and the RS-232C serial
port also reside on this board.

144

interface

3) The FDC board (floppy disk controller): controls the floppy disk
operations.

4) The static RAM board: contains 16K of static R/W memory. A second
memory board may be added to provide a full 48K system.

Mainframe/Motherboard Description

The mainframe is manufactured by California Computer Systems and in-
cludes a 12-slot S-100 motherboard. The motherboard features active termi-
nation and a crisscross type of PC pattern to act as a sort of twisted pair line.
This should tend to minimize the noise pickup and cross talk from adjacent
PC board runs. The power supply provides you with an unregulated +8 V
dc at 20 A as well as unregulated + 16 V dc at 4 A. In an S-100 system the
power supplied to the bus connectors is always unregulated, therefore, the
regulation must be handled on each card in the system by employing three
terminal regulators. This does away with the need for a massive heat sinking
and regulating stage in the back of the enclosure and insures that the correct
voltage is supplied to each board, since any voltage drops along the mother-
board are on the input side of the regulator stage. This is an important con-
sideration when you have several boards, each capable of drawing a few
Amps, plugged into a motherboard that is 12 slots long. I mention this in
case some of you would like to build a custom enclosure and were thinking of
using a regulated supply.

In addition to the enclosure, supplies, and motherboard, the mainframe
contains a cooling fan and cutouts on the back panel for various connectors.
The mainframe should be operated with the cover in place for the best
results from the cooling fan.

IPC Board Operation and Description

The IPC board buffers the signals from the TRS-80 keyboard connector
and routes them to the S-100 bus for use by any other card plugged into the
motherboard. In addition to providing a buffering operation, the address
bus is monitored and only allows the data bus buffers to become enabled
when a device which is not in the keyboard is accessed. The addresses of con-
cern here are those in the memory-mapped I/O section of the TRS-80
memory map, as well as all addresses above 7FFFH, the end of the 16K
keyboard system. The data buffers must also be enabled for all I/O opera-
tions with the exception of the cassette port located in the keyboard at port
255. Since this is not in the expansion box, the data buffers must be disabled
during any cassette operations.

Referring to Figure 1, ICs 1 and 2 are the address buffers. They are en-
abled at all times, since in this system we are allowing only the Z-80 in the
keyboard to ever have control of the address bus. If any DMA (direct

145

interface

memory access) operations or multiprocessor designs were to be used in the
expansion box, the address buffers would have to be controlled according-
ly. ICs 3 and 4 are the data bus buffers. Two buffers are used to create a
single bi-directional bus. IC3 allows data to flow from the expansion box to
the keyboard. IC4 allows data to flow from the keyboard to the expansion
box. To understand how these buffers are controlled, we start at address
decoder IC9A and IC9B. These gates, along with IC6A, are set up to detect
any address whose high-order byte is equal to 37H. The address map for
the TRS-80 shows that this is where the disk drive, line printer, and inter-
rupt latch (the function of the interrupt latch will be discussed later)
reside. Referring again to Figure 1, we can see that this 37xxH signal is
gated with AS15* in IC5D. The output of IC5D will be a low anytime an
address greater than or equal to 8000H is placed on the address bus or if
37xxH is generated on the bus. The only other conditions left to detect are
any 1/O operations and a cassette operation. 1C23, along with IC6B and
IC6C, forms the cassette port decoder. Any cassette operations will force
the output of IC6D high, disabling the data buffers through IC8A and
IC8B. Any other I/O operation is detected by IC5C and causes IC6D’s out-
put to go low, letting the buffers operate.

The RS-232C serial port is shown in Figure 2. It is mapped into several
I/O ports between E8 and EB. The function of each of these ports is listed in
Table 1. IC33A and IC26, along with seven gates from IC30 and 31, form
the address decoder to provide the I/O device-select pulses. These particular
ports match the port addresses used in the Radio Shack expansion interface.
This means that existing software drivers will work here also.

The 1488 and the 1489 ICs (ICs 28 through 32) are line driver and receiver
chips which accomplish the level shifting between the UART’s TTL levels
and the = levels required for the RS-232C specification. The CTS, (clear to
send), DSR (data-set ready), CD (clear data), RI (right indicator), RTS
(ready to send), and DTR (data terminal ready) signals are modem hand-
shaking signals and are provided so that the port may interface with a
modem to tie the TRS-80 into a time-sharing network. RD (received data)
is the serial data coming into the UART, while TD (transmitted data) is the
serial stream put out by the UART.

The AY-5-1013A UART used requires +5 V and — 12 V., While there are
other devices available (such as the AY-3-1015) which require only +5 V
and are pin compatible, they tend to be more expensive. Since the line driver
chips require + 12 V, the power supply will be there anyway, so you may as
well use the cheaper chip.

The next function to be discussed is the parallel-printer port. The printer
is mapped at 37E8H. The printer requires eight data bits plus a strobe pulse.
The CPU looks at the upper four bits of the port for the printer status. This
means we need an eight-bit latched output port and a four-bit input buffer

146

interface

TRS-80 S$-100
8US 118 BUS
—_ 2
ININ
o 4
nnno
T ‘: 3 {
ouUT 12 5 45 ouT
J—. 8
wa WR

*5V
TAS-80 5-100 TRS-80 % 5-100
ADDRESS BUS 20 AnDRESS BUS DATA BUS 20 o DATA BUS
AlS :]7 2 cl 18 32>A5|5 oo G}Q 8 1] BS/QSD DsO
w ! 3 6 2 163 35794
A<} 74L5241 26> as14 01 <} 2 s aisea [2 D> os1
Al3 GS 4 !IQ Q;D AS3 ch]_g 7 13 4‘/83{> ps2
I :]5 15 5 33D ASI12 D3<:26 14 J 42/399053
Al GB 6| 14 B7D ASHH DaC's 5 15 38/91 0S4
AIO 04 13 T 37D ASIO DSG_E_B 16 4 39792 0S5
A9 :]l"] i2 34 ASS e czﬂ 3 17 40/93{>Dse
A8 G“ L] k) 84 AS8 D7<}_2_0 18 2 43/90> ps7
T [lefis +5v 3"[1-9—
+5v +5v 1c7
iQ 8
g
ica
7415241
3]

Figure 1, Partial schematic of IPC board

147

interface

at 37E8H. IC20 serves as the output latch, while IC21 acts as the input buf-
fer. In order to provide a suitable strobe to the printer, the 37TE8H write
pulse triggers the one-shot IC22 and stretches the pulse width to accom-
modate the printer.

The only remaining functions on the IPC Board are the buffering of the
IN*, RD*, OUT*, and WR* signals by IC18 (see Figure 1), the SYSRES*
signal by IC19D, and the generation of three device-select signals for use by
the FDC board (see Figure 3). These signals are DISK SELECT (37ECH to
37EFH), INTERRUPT LATCH (37E0H), and DISK DRIVE SELECT
(37E1H). They are developed by ICs 11, 12, and 19 and are passed to the
FDC board via three unused pins on the S-100 bus (pins 13, 14, and 15).
Table 2 gives a complete IC list for the IPC board.

FDC Board Operation and Description

Disk operation is controlled by the operating system software and the
INS1771 controller chip (see Figure 4). This chip makes interfacing to the
disk drive a relatively simple matter. As I mentioned earlier, the disk con-
troller utilizes four memory locations (37ECH through 37EFH). This is how
the CPU reads and writes status information, command information, and
data to and from the controller chip. Table 3 lists the function of each of
these addresses in more detail.

The disk operates on an interrupt basis. When the controller chip has
some data for the processor, it brings the INTRQ pin high causing the inter-
rupt latch (IC11) to set. The output of the interrupt latch is connected to the
processor interrupt pin via the IPC board. If we examine the interrupt latch
more closely, we see that in addition to the disk interrupt setting the latch,
IC8B can also cause an interrupt to occur. IC8 forms the “heartbeat” inter-
rupt latch. This is what updates the real-time clock in the operating system
software. The input to IC8A is a 40-Hz pulse train derived from the 8.0 MHz
clock IC1. This causes an interrupt to occur every 25 ms. The operating
system uses this interrupt to update a counter in software that can be
displayed as the time of day. (When the CMD“T” command is issued in
Disk BASIC, it causes the interrupt to be disabled in software. This is
necessary when you want to carry out cassette operations, since these are
time-dependent, and any interrupts would cause a loss of data.) Since we
have two devices which can cause IC11 to generate an interrupt to the pro-
cessor, we need a way to inform the processor which device must be ser-
viced. This is handled by buffer IC12. When an interrupt occurs, the proces-
sor jumps to a service routine which reads the buffer (IC12) at 37EOH. If D7
is high, the interrupt is from the clock. If D6 is high, the disk has caused the in-
terrupt. The routine can now jump to another routine to service the device.

148

interface

1 914 WOoHd

2> LSC
A

€ 913 WOoHd
WX3AXX,

68v1
SN b1
{ _ 2691
e
| 51
D
| EE
!]
>
{ 2
3
£
Q
-l
2
Is
va
34
S9VId
34 HOYH3
HO.
NO OVOT
“HYAY viva
sio1
05 2%
SG— 820! (3
YOLOINNOD 3dAL
S2-WEQ 35N ,
sN@ D2gz-SH ZLi M-
24 34
vyl
8y M
Jy: 5
Oy 7
e 7
Sy
e - sios Ot
SN@ 001-§ WO uxs_mmwOmf vI01 Ouf
AS +A
[
$08S

osg

‘014 04

Figure 2. RS-232C port

149

interface

When a disk operation is initiated, a drive is selected and the motor is
turned on. This is done by writing a drive select word to 37E1H. This word
is latched by ICs 15 and 20 and selects a drive by pulling one of the drive
select lines low on the Shugart bus to the drives. The 37E1H write pulse also
causes the one-shot IC13A to start the drive motor. See Table 4 for a com-
plete IC list for the FDC board.

Before I conclude my discussion of the disk, I will discuss data separation.
When data is read off the disk, it appears to the controller as a stream of
clock pulses with the data contained within a certain time frame, or win-
dow, between the clock pulses. The controller chip utilizes the 1-MHz clock
out of IC2B to determine the location of the data window. Since this clock is
asynchronous with the data coming from the disk, the data can occur out-
side of the data window and be lost. To solve this problem, the chip
manufacturer recommends the use of an external data separator. Such a cir-
cuit is shown in Figure 5. It can be added to the disk controller circuit of
Figure 4 to provide a more reliable system. For more information on the in-
terfacing of disk drives, I direct your attention to the references I have pro-
vided at the end of this chapter. Table 5 gives a list of ICs needed for the
FDC separator.

16K Static RAM Board

Some of you might be wondering why I chose to use static instead of
dynamic memory for this project. While it is true that dynamic memory
does have advantages over static memory, such as lower cost and chip count,
I feel reliability and ease of circuit reproduction is an issue in a project such
as this. Dynamic memory utilizes a single transistor as a charge storage ele-
ment for its bit cell. Since the charge will leak off after a short period of time,
the array must be periodically recharged or refreshed to avoid losing data.
Another thing to take care of in a dynamic system is address multiplexing.
The address in a 16K dynamic RAM chip, such as the 41186, is presented to
only seven pins. Since 14 address lines are required to address 16K of
memory, these pins are multiplexed by using the MUX (multiplexer), RAS
(row address strobe), and CAS (column address strobe) signals from the
CPU. When the MUX signal is low, a RAS pulse is applied to the chip which
latches the lower seven bits into the chip. A short time later, the MUX signal
goes high, and a CAS pulse is applied, latching the upper seven bits into the
chip. These strobes are rather fast and would have to be brought to the ex-
pansion box via the ribbon cable at the rear of the keyboard. Since the cable
must be about three feet long, this could prove to be a problem as far as noise
and capacitive/inductive effects are concerned. An elaborate buffering
scheme in the cable and on the IPC board would need to be added. Another

150

interface

consideration in dynamic systems is proper and adequate bypassing of the
power supply lines at the chips themselves. The component locations as well
as the values become critical in the design. This would prove to be an un-
workable situation for someone trying to make a wire-wrap copy of the
board. In addition to these points, I have had experience with some Radio
Shack expansion interfaces where a relatively small amount of ac line noise
does cause memory errors. Even an expensive line regulator does not com-
pletely eliminate the problem. For these reasons, I decided a static memory
would be the better solution.

The schematic of the memory board is shown in Figure 6, and the IC list is
shown in Table 6. The 16K x 8 memory itself is formed from 32 1K x 4
2114s. The address decoder (IC2) is set up so that it is only enabled when an
address of 8000H to BFFFH is present. This represents a 16K block of
memory. IC2 breaks this block into 16 1K segments to provide a chip select
signal for each pair of 2114s. For a 48K system, you must add a second board
with the decoder wired for a start address of COO0H (see insert in Figure 6).
As an alternative to wire-wrapping 37 ICs onto a plugboard, you can pur-
chase an assembled S-100 16K RAM board and just plug it in. If this is a bit

-
70 166AGmm e
PIN 3
(SHT 1)
1
AS7€ 1 =,
256 o X
[T L—
5

oy TO 1C33
Fig 2

4 STROBE |

TRS-80

CENTRONICS

BUS \.,/ /
MX-80
BUS

. {>svsn£s
]

SYSRES *

Figure 3. Partial IPC board

151

interface

too expensive, blank PC boards are available which save you the wiring but
you supply your own chips.

Before constructing the wire-wrap memory board, I tried out an old 4K
RAM board from a Processor Technology SOL system. All that was required
was setting the address DIP switches to start at 8000H and plugging it in. In-
stant 20K system] While the address, data, and read/write lines are compati-
ble with the S-100 conventions, there are some extra signals on the S-100 bus
which are not used by the TRS-80. These signals tend to be defined as active
high. Since the motherboard has active termination, they will get pulled up
by the bus automatically. There may be some S-100 boards which will re-
quire some signals to be jumpered for proper operation.

As a closing comment on the memory board, I would like to point out that
static memories are beginning to become more densely packaged. At the
time of this writing, NEC has published a preliminary spec on a 16K x 1
static memory. This is the same density as a 4116 dynamic RAM. These chips
would allow the circuit of Figure 6 to be built with only 8 ICs for the
memory instead of 32. These chips are not yet available and probably will be
rather expensive at first, but it appears that static memory will more closely
approach dynamic memory in cost effectiveness in the near future.

Construction and Troubleshooting

All of the boards are wire-wrapped on prototype plugboards. Connec-
tions between the keyboard and IPC board are made via a 36-inch length of
40-conductor ribbon cable. You will have to get a 40-pin edge connector to
mate with the keyboard PC card and another connector and mate for the
IPC board. I used 3M connectors on the ribbon cable, but there are many
other types available. The connectors can be crimped onto the ribbon cable
easily with just a 2 1/2-inch vise. Carefully line the ribbon in the connector,
making sure that each wire is positioned at the center of each pin. You may
have a problem if the ribbon cable has been stored on its edge. This causes
the wires to get a little closer together than they should be. If this happens,
gently stretch the cable at the connector end until it fits the connector. The
ribbon should be left protruding from the connector about 1/2 inch. This
can be trimmed off later. Once everything is aligned, press down on the con-
nector with your fingers to get things started. Place the connector in the vise,
and compress it until the two halves touch. Remove the cable from the vise,
and trim off the excess cable from the connector with a knife. Take your time
with these cables, since a mistake here could cost you hours in debugging
time later.

1 have found that the best way to get a project like this working is to build
and test one section at a time. The IPC board should be the first card built.
Start with the voltage regulators (Figure 7 shows the power supply for the

152

interface

Ll
oz
SIUSAS AHTII.N_ un

»wdkdn

oonL

30N

(123104Hd 3L1IEM}

oY

N
"

sng
LHYONHS

A
ey s P—— -

_ 1viva 3LIHM)
7] [ETCERENUET VTS A
a
| mAm i wAm 1 St
oz <3 >\u_ 4315
ERNE T Tt T (2
L #1241 1231
- LNIQ
< m
A rei° z 1531
st <Y o vesr b— 4G, e
HOLOW son v saix
»0z2
1LLISNI
AG+
2004 9 9191
5121 —d = 0sa
<4 V 1sa a1 aH
150 v ~JF 5] vivs [|
o s191 [fF] P] x._uﬂ_
2Sd1g 2

QY o3g

AG-

A2+

uv@_mﬁ

AG+

(THW)

(HD07D swez)

T

S

S

~

8

<

R

&
214 6§ §} &
v20voN

153

interface

IPC board), address and data buffers, and address device decoders. After
you have these all wired up, plug in the card without any ICs, and check for
proper supply voltages at the IC sockets. You may want to get an S-100 ex-
tender card to aid in making measurements on the cards while they are in
the mainframe. If all looks well here, turn off the mainframe, unplug the
card, and install the chips. Now plug the keyboard into the IPC board, and
turn on the mainframe and the TRS-80. If the TRS-80 doesn’t power up
properly or locks up on you, turn everything off and check for proper cable
orientation. Note that the TRS-80 keyboard does not necessarily have the
same pin orientation as the connector you may be using. Take this into con-
sideration when you wire the connector to the IPC board. Check also for any
shorted pins on the wire-wrap connector on the IPC board, and be sure the
buffers are oriented properly in their sockets. When you have the keyboard
functioning properly with the IPC board connected and powered up, you
are ready to run some tests. To check that the address decoders are working
properly, you can write a little loop in BASIC using the PEEK and POKE
commands to generate device select pulses. You should run these test loops
and look at all the device selects with an oscilloscope. Make sure that not on-
ly the proper devices are being selected but that no other devices are in-
advertently being enabled. As an example run:

10 PRINTPEEK (14312):GOTO10

and look for a series of pulses on IC8 pin 11. This is the printer status port.
Check all other outputs on IC11. The data bus buffers should also be
checked to see if they are enabled by the proper devices and in the proper
direction. If these buffers turn on at the wrong time, they could cause the
TRS-80 to hang up when powered on.

Once the device selects are working, the ports can be added. Start with
the printer and add the RS-232C port (this port may be omitted entirely if
you don’t care to use the serial feature). The printer is connected to the IPC
board via a 26-conductor ribbon cable. The particular connector used at the
printer end will depend on the exact printer you are going to use. I have
listed the pinouts for the standard Centronics bus, since most printers follow
this convention. My system uses an Epson MX-80 which does have a dif-
ferent pinout, and I have listed this in addition (see Figure 3).

To use the RS-232C port, you will need a driver routine in software.
There are many available for the TRS-80, so I will not present one here. If
you wish to write your own driver, Table 1 will assist you in defining the
control and data functions.

An oscilloscope can be used to trace the data in and out of the drivers and
UART. Remember the output of the 1488 should be between = 6 volts. The
1489s are expecting to see an input swing between some value greater than

154

interface

+ 3 volts. You should always have a TTL level at the input and output pins
of the UART.

+5v
4

+ 235008

o —— i 4

e
|
t
=

SEP"CLKL26

|2 > FrOM 1c218
i PIN 4 -FIG 4

»

[
A e
| Y P S |
M e
=) &
Az |
g
|
= |
~ 1
8 oc |
o) |
G:‘\Sl

REMOVE sEp-patal®l
1c2l PIN 4
FROM PIN 27
8 CONNECT AS
SHOWN

IC16
INSI7T71
(FIG 4}

MODIFY
FROM FiG 4

T— XTDSIj;

Figure 5. Optional data separator for FDC board

Once the IPC board is working, you can proceed to the floppy. To aid in
troubleshooting, you may want to build the circuit in Figure 4 first, get the
disk working, then go back and add the external data separator in Figure 5
(see Photo 2). The circuit is pretty straightforward, and a little care in the
wiring should result in a working board the first time. Each time the reset
button on the keyboard is pressed, the program goes out and reads the 1771’s
status to see if a disk is connected to the system. You should see a pulse at the
37EC address select (pin 15 on the S-100 bus—see Table 7 for a complete
S-100 pinout listing) every time you reset or power the keyboard on. If all is
well, you should be able to insert a system disk, press the reset button, and in
a few seconds the DOS READY prompt should appear. Before trying your
system disk for the first time, you should try to get a backup made just in case
you run into problems at the beginning of your testing. If the system is
powered up with the FDC card installed but without a disk in the drive, you
will get a combination of graphics/alphanumeric characters on the screen.
This is a normal situation. If you want to get to Level II BASIC from this
point, hold down the BREAK key while pressing the reset button. To get in-
to Disk BASIC, insert a disk and press the reset button. (Figure 8 shows the
power supply for the FDC board.)

155

interface

A
(WNVANYL) dmzes
azz
T 5

a

- AS+ §-101 H04 9
1£-9291 81 Nid 0L E301M0HY 05Y

§2-9101 8! Nid 0L AS*

6/

€50 250 150 0S0

dddd

k]
93NN >?@AL 9 oo8s

S1NONid H0d4 8 914 uww\

S121-93) 8l NId OL AS*

401
L4

{HSHNIS Lv3n 3sm)

1
& snid oL

16287 L

€ISV

2tsv

BOSIWL
SOt

ve &SV
v8 8SYV
€8 LSv
28 9sv
sng ss3uvagy | 62 SSv Z ot
00I-s) 0 vSV -
1€ esv
18 2SV o
08 1SV
6. OSV =)
. 6SV-0SV
oL
14
65v-0SV 0L N
691 891
o 191 o191
€19l 2101 5
ol
112 X 0§~
FA]| L 1)

118y
== 0ISY

HBEBO =uav
LY¥V1S 804 350

Figure 6. Static RAM board

156

interface

/‘ HEAT SINK!

) I\

AuF DISK
SPREAD OVER SUPPLY PINOUTS
LINES AROUND BOARD

+8Y UNREG

HEAT SINK!
PIN SAME FOR 7905
'/ P "

2y . s SEE FIG 8
: . ~16V UNREG
l 7912
22uF /J; 2 2uF
I 35V I 35V
viay 2eor
<71 . :>@usv UNREG
10 PIN 14
oF ic28 2y

172w

Figure 7. Power supply-—IPC board

- HEAT sinkt

+5V
< ' ' ' ! 7805

AuF DISK I I I jl?f&m y

SPREAD OVER
SUPPLY LINES
ARQUND BOARD

8v GND
UNREG /

o |TOP
7805 VIEW

LM340T12

BCE
m”l l l"ou‘r

Iz 2,F
35V
+2V
<3 . £ By “onp
LM340TI2 UNREG

JJ‘ <
2.24F /J7 22.2uF
;]:35V asv

NO HEAT SINK REQUIRED

-5V . .
= \L 7905 ‘——I—g—b(::)-rev UNREG
22 22.F !N (00 NOT GROUND TABI)

3 i
T35V ,J7 I 35v
o
ToP

VIEW

7905

132
GND"" l\l’“OUT

Figure 8. Power supply— FDC board

157

interface

The RAM card is constructed in the same manner as the previous two
cards. You should try to locate a .1 uF disc capacitor physically close to every
other 2114 and attach it between the +5 V supply (pin 18) and GND (pin
19), keeping the lead lengths as short as possible. The chip select signals may
be tested by again writing some small loops in BASIC to access memory
within each 1K segment. If you have the disk running when you’re testing
the memory, this is very simple, since you can now specify a hex address in
the BASIC PEEK or POKE statement (i.e., POKE and H8000). When you
think you have the memory working properly, you should run the
TEST1A/CMD diagnostic on the TRSDOS system disk to verify this. It will
tell you at what bit(s) and at what address there is a problem, and it will also
specify the problem chip in the Radio Shack expansion interface. If you get
the technical manual for the expansion interface, you can cross-reference
this information to the S-100 board.

You must have the S-100 mainframe powered on before the MEMORY
SIZE? question is answered in order for the TRS-80 to recognize the extra
memory available to it. To determine the amount of memory it does have, it
writes data to the RAM area and reads it back. If it sees even one wrong bit,
it assumes that address is the end of available memory. This can also be used
as a diagnostic tool in getting the memory running.

While this expansion interface does not represent the cheapest method for
expanding your Model I, it does offer flexibility over the Radio Shack expan-
sion interface and can be built for about the same cost or less. You are also
open to the world of S-100 boards available from dozens of sources. Adding

Photo 1. TRS-80 with expansion box and disk drive

158

interface

your own custom hardware is a simple plug-in operation. You don’t have to
worry about power supplies or special stacking ribbon cable connectors to
get everything to plug into the back of the keyboard. The keyboard is
isolated from the S-100 bus, so playing on the S-100 bus should never harm
the TRS-80. If this is what you have been looking for in a TRS-80 expansion
system, then give the Deluxe Expansion Interface a try.

References

(1) Hoeppner, John, “Interface a Floppy-Disk Drive to an 8080A Based
Computer.” May 1980, Byte, pp. 72-102.

(2) Lancaster, Don. TV Typewriter Cookbook. Howard W. Sams & Co.,
Inc., 4300 W. 62nd St., Indianapolis, IN 46268, 1976.

(3) Intel Data Catalog. Intel Corporation, 3065 Bowers Ave., Santa Clara,
CA 95051, 1980.

(4) TRS-80 Microcomputer Technical Reference Handbook. Radio Shack
Division of Tandy Corporation, One Tandy Center, Ft. Worth, TX 76102,
1978.

(5) TRS-80 Expansion Interface Handbook. Radio Shack Division of Tandy
Corporation, One Tandy Center, Ft. Worth, TX 76102, 1980.

HIH T

Photo 2, FDC board (top) minus the external data separator. 16K RAM board (bottom) with the
first 2K RAM wired in.

159

interface

PORT FUNCTION
IN ouT
E8 Read modem status Reset UART
E9 N/A Set baud rate
EA Read UART status Set UART options
EB Read UART data Load UART data
Table 1. RS-232C port functions
DESIGNATION PART NUMBER +5 +12 -12 GROUND
IC1-4 T41.5241 20 10
i1C5 7408 14 7
1C6 7432 14 i
IC7 7400 14 7
1C8 7432 14 7
1C9 7420 14 7
IC10 Not used
IC11 74154 24 12
I1C12 7420 14 7
iC13 7400 14 7
iCi4 COM5016 2 9 11
IC15 AY-5-1013 1 2 3
IC16 7475 5 12
IC17 1489 14 7
IC18 7404 14 7
IC19 7408 14 7
1C20 8212 24 12
1C21 74125 14 7
1C22 74123 16 8
1C23 7420 14 7
IC24 Not used
1C25 7400 14 7
1C26 7442 16 8
1C27 74125 14 7
1C28 1488 14 1 7
1C29 Not used
1C30 7432 14 7
1C31 7402 14 7
1C32 1489 14 7
1C33 7432 14 i

Table 2. IC list for the IPC board

160

interface

MEMORY LOCATION FUNCTION
IN ouT
37EC Read FDC status Write FDC command
37ED Read track reg Write track reg
37EE Read sector reg Write sector reg
37EF Read disk data Write disk data

Table 3. Floppy disk control port functions

DESIGNATION PART NUMBER +5 +12 -5 GROUND

1C1 MC4024 14,13 7,5,9,12
1C2 7474 14 7
1C3-7 7490 5 10
1C8 7474 14 7
1C9 7432 14 7
I1C10 7400 14 7
1C11 7474 14 7
IC12 74125 14 7
1C13 74123 16 8
ICl14 7407 4 7
IC15 7474 14 7
IC16 INS 1771 21 40 1 20
IC17, 18 8226 16 8
IC19 7408 14 7
1C20 7474 14 7
1c21 7404 14 7
1C22 7420 14 7
ica3 7407 14 7

Table 4. IC list for the FDC board

DESIGNATION PART NUMBER +5 GROUND
IC1 74123 16 8
1C2 7400 14 7
1C3 7404 14 7
IC4 7400 14 7
IC5 74123 16 8
1C6 7493 5 10

Table 5. IC list for FDC data separator

161

interface

DESIGNATION PART NUMBER +5
IC1 74L500 14
IC2 74154 24
IC3, 4 7415241 20
IC5 74LS08 14
1C6-37 2114L 18

Table 6. IC list for the I6K RAM board

GROUND

PINNUMBER FUNCTION

1

2

3
4-11
12

13

14

15
18-17
18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34
35/94
36/95
37
38/91
39/9
40/93
41/88

+ 8 volts unregulated dc

+ 16 volts unregulated dc

WAIT» input to Z-80

Vectored interrupts—not used by TRS-80
External ready #2—not used by TRS-80
37E0 device select pulse-—interrupt latch
37E1 device select pulse—disk select
37EC device select pulse—floppy control

Not used
Status disable—not used by TRS-80

CMD/CNTRL disable—not used by TRS-80
Unprotect— not used by TRS-80

Single step-—not used by TRS-80
Address disable—not used by TRS-80
Data out disable—not used by TRS-80
Phase 2 clock—not used by TRS-80
Phase 1 clock—not used by TRS-80
Hold acknowledge—not used by TRS-80
Wait—not used by TRS-80

Interrupt enable (output)—not used by TRS-80
Address 5—AS5

Address 4—AS4

Address 3—AS3

Address 15—AS15

Address 12—AS12

Address 9—AS9

Data 1--DS1

Data 0—DS0

Address 10—AS10

Data 4—DS4

Data 5—DS5

Data 6—DS6

Data 2—DS2

162

interface

42/89 Data 3--DS3

43/90 Data 7—DS7

44 Machine cycle 1-not used by TRS-80

45 OUT—output device strobe (active high)

46 IN—input device strobe (active high)

47 RD—memory read strobe (active high)

48 Halt acknowledge—not used by TRS-80

49 CLOCK*—inverted phase 2—not used by TRS-80

50 Ground

51 + 8 volts unregulated de

52 — 16 volts unregulated dc

53 Sense switch input—not used by TRS-80

54 External clear—not used by TRS-80

55 Real-time clock—not used by TRS-80

56 Status strobe—not used by TRS-80

57 Data input gate #1—not used by TRS-80

58 Front panel ready—not used by TRS-80

59-64 Not used

65 RAS*—row address strobe for dynamic RAM

66 CAS*—column address strobe for dynamic RAM

67 Phantom disable—not used by TRS-80

68 WR-—memory write strobe (active high)

69 PS+—project status—not used by TRS-80

70 PROT—protect—not used by TRS-80

71 RUN-—not used by TRS-80

72 PRDY—processor ready—used for wait states

73 PINT *x—interrupt request

74 PHOLD*—connects to the TEST+ TRS-80 sxgnal to force processor busses to
a high-impedance state

75 PRESET*—reset line

76 PSYNC—indicates beginning of machine cycle—not used by TRS-80

77 PWR»—used for I/O write operation

78 PDBIN—not used by TRS-80

79 Address 0—ASO

80 Address 1—AS1

81 Address 2—AS2

82 Address 6—AS6

83 Address 7—AS7

84 Address 8—AS8

85 Address 13—AS13

86 Address 14—AS14

87 Address 11—AS11

88-95 See 35-43

96 INTA—interrupt acknowledge

97 SWO+*—not used by TRS-80

98 SSTACK—not used by TRS-80

99 POC+—power on clear—not used by TRS-80

100 Ground

Table 7. S-100 pinout listing for the Deluxe Expansion Interface for the TRS-80

163

INTERFACE

Interfacing the TRS-80
to the Heath H14 Printer

by George A. Knaust

It didn’t take long after purchasing a TRS-80 16K Level II system to real-
ize that a line printer is not only a desirable peripheral, but a necessity
when producing software for your system. After looking at specifications,
prices, and the fact that Heath was offering a 10 percent discount at the
time, I came to the conclusion that the Heath H14 printer was the way to go.

Three months after I placed the order, the kit finally arrived and after
several more months of finding the time to work on it, I finally completed
it. The Heath documentation was excellent as usual, almost totally
without errors.

One of the factors that also influenced my decision to purchase the Heath
H14 printer were the ads by Small System Software (SSS) appearing in
Kilobaud Microcomputing and 80 Microcomputing for their TRS232
Printer Interface. From the description of this product, there was no reason
to believe that this wasn’t the way to interface the TRS-80 (without the ex-
pansion interface) to the Heath H14 printer.

The only problem after everything was connected, was in implementing
line feed. Initially I chose the Auto Line Feed option via a DIP switch on the
H14 PC board and answered N to the question: ADD LF AFTER CR(Y/N)?
displayed by the SSS program. This did not work, so without further investi-
gation I chose the alternate option, completed the final entry requested by
the program, and the printer responded with the correct printout to the
LLIST command.

1 immediately started making printouts of some of the more important
programs I have on cassettes. My interest in mundane things wanes fast, so I
started looking into the control commands listed in the Heath HI4
Operator’s Manual, i.e., control of character width and the number of lines
perinch. I decided the best way of implementing the control commands was
through the concatenation of string values. This would supply the continu-
ous stream of serial data required for the H14 to recognize these commands.
The H14 control panel contains a push-button switch labeled WIDE. When
this switch is in the depressed position, the printer produces 80 characters
per line (10 per inch). When this switch is in the out position, the printer
produces 132 characters per line (16.5 per inch).

Table 1, taken from the Heath H14 Operator’s Manual, shows the control
commands required to obtain 80, 96, or 132 characters per line with the
WIDE switch either IN or OUT.

164

interface

WIDTH SWITCH POSITION WIDTH CODE
CODE WIDE NARROW DECIMAL
(char/line) (char/line)

ESC u CTL-A 80 80 27117 1
ESC u CTL-D 80 96 27117 4
ESC u CTL-H 80 132 27117 8
ESC u CTL-P 96 80 27117 16
ESC u CTL-T 96 96 27 117 20
ESC u CTL-X 96 132 27 117 24
ESC u SPACE 132 80 27 117 32
ESCu$ 132 96 27 117 36
ESC u (132 132 27 117 40
Table 1.

Also, two choices of line spacing are available on the H14: six lines per
inch (activated on power up) and eight lines per inch. Both are software
selectable, making it possible to change back and forth under program con-
trol. The command codes are as follows:

ESC x for six lines per inch
ESC y for eight lines per inch

The Program Listing is a short program in BASIC that was written to for-
mat and send the required commands to the H14. CHR$(27) generates the
ASCII code for ESC, CHR$ (117) generates the ASCII code for lowercase u,
and A is entered for the desired characters per line from column three under
the decimal column in Table 1. B is entered for the number of lines per inch,
120 or 121. CHR$(120) generates the ASCII code for lowercase x, and
CHR$(121) generates the ASCII code for lowercase y. This is a straightfor-
ward approach to obtaining the desired results. However, initially the
printer would not respond with a change in character width or line spacing.

A call to Heath’s service center to determine if something was being over-
looked or if there could be a bug in the H14 produced no answers. A closer
look at the assembler listing of the program POKEd into the high RAM
location by the SSS BASIC software revealed that the software tested the
code entered, and if it was a command code, it rejected it and looked for
the next character.

The lines in the assembler listing which perform this test are as follows:

CP 20H ; CONTROL?
RET C ; YES, RETURN (for next char.)

The machine codes for these mnemonics are contained in decimal form in
the DATA statements at the end of the SSS BASIC program. Line 1920 con-
tains the decimal code for RET C as 216. Listing this line on the TRS-80

165

interface

monitor shows the location in the line. By using the EDIT feature of Level 11
BASIC, the 216 can be deleted and a zero inserted in its place. After this
minor change, the SSS program was run. Then the program in the the Pro-
gram Listing was entered and run, and various decimal codes for character
width and line spacing were tried. The H14 printer now responded accord-
ing to the commands entered. So far, I have not found any harmful effects
from this minor change.

In conclusion, I would say the Heath H14 printer interfaced to the
TRS-80 via SSS’s TRS232 interface is highly recommended for those who
would like to add printer capability to their TRS-80. And, in addition, for
those so inclined, there is the pride of building the printer yourself and then
seeing it work to your satisfaction.

i

HEATH

H14 | =
Operator’s >
Manual

166

interface

Program Listing 1

' SOFTWARE SELECT OF CHARACTER WIDTH & LINE SPACING
' FOR HEATH H14 PRINTER BY GEORGE A. KNAUST 5/14/80
CLS

PRINT TAB(10)"SWITCH POSITION"; TAB(36);"WIDTH CODE"
PRINT TAB(8)"WIDE"; TAB(21);"NARROW"; TAB(36); "DECIMAL"
PRINT TAB(9)"80"; TAB(23);"80"; TAB(48);"1"

PRINT TAB(9)"86"; TAB(23);"96"; TAB(48);"4"

PRINT TAB(S)"80"; TAB(22);"132"; TAB(40);"8"

PRINT TAB(9)"96"; TAB(23);"88"; TAB(39);"16"

PRINT TAB(9)"96"; TAB(23);"96"; TAB(39);"20"

PRINT TAB(9)"96"; TAB(22);"132"; TAB(39);"24"

PRINT TAB(8)"132"; TAB(23);"88"; TAB(39);"32"

PRINT TAB(8)"132"; TAB(23);"96"; TAB{39);"36"

PRINT TAB(8)"132"; TAB(22);"132"; TAB(39);"48"

INPUT "ENTER WIDTH CODE FROM TABLE";A

INPUT "ENTER 128 POR 6 LINES/IN. OR 121 FOR 8 LINES/IN.";B
AS = CHR$(27):

BS = CHRS(117):

CS = CHRS(A):

D$ = CHR$(B)

WCS = AS + BS$ + C$:

LPRINT WC$

LI$ = AS$ + DS:

LPRINT LIS

END

167

TUTORIAL

Saving Machine Language Routines
Below BASIC

CISAB—Backwards BASIC

Into the 80s
Part VI
Part VII

169

TUTORIAL

Saving Machine-Language
Routines Below BASIC

by Edward B. Beach

nyone who has programs in BASIC that need machine-language help

knows the considerable frustration of having to reserve memory in the
TRS-80. I never can remember what MEMORY SIZE to set for the various
programs that I run. In addition, some of my programs require loading
more than one SYSTEM tape, and then I have to figure out a new protection
address for the combined programs. A further complication arises when one
expands memory from 16K to 32K, 32K to 48K, or even 4K to 16K. Unless
the machine-language routines are fully relocatable, you’ll have to move
them all to high memory and change all the absolute addresses within the
routine. This isn’t too much of a problem for people who have an assembler
and the source code for the routine. However, I did not have all these nice
things when I started out and still find it a nuisance to have to reassemble
even short routines.

1 have seen quite a few articles on how to move Radio Shack’s TBUG ma-
chine-language monitor to high memory so programmers could have TBUG
resident along with BASIC programs. Even with all of TBUG’s short-
comings, it is still a nice, compact (1.5K) utility. One of TBUG’s neatest
features is that it does not use any of the ROM routines or reserved Device
Control Blocks (DCBs), so you're free to do whatever you want with
memory without having to worry about disturbing anything in the process.
Using the techniques described in this article, you can have TBUG resident
along with BASIC programs without having to bother about relocating
TBUG. It stays right where it was written to reside, at 4380H to 4980H, and
has its own stack and workspace.

The way to do this is to reserve low memory for machine-language rou-
tines and move the BASIC workspace (programs, variables, and stack)
above the reserved low memory. Using this technique, we can write ma-
chine code using absolute addresses in any size memory, since the machine-
language code will always be at the same place in memory—regardless of the
amount of memory in the system. The one problem is that low memory starts
at different locations for different TRS-80 models and operating systems.

Figure 1 shows why this is so. In the Model I, BASIC workspace begins at
42E9H, while in the Model III it starts one page (256 bytes) higher, at
43E9H. Disk BASIC uses a starting location somewhere in page 6BH. In all
models and systems, however, there are two very important pointers that
tell the operating system just where the BASIC workspace is located. We
will use these two pointers to move the workspace to allow us room at the

171

tutorial

low end of memory for our own purposes. Just remember that routines writ-
ten in machine language for the Model I will not necessarily run in a Model
III unless absolute addresses within the routine are adjusted upward by 256
bytes. Disk BASIC is also an entirely different matter.

Of course there are other pointers used by BASIC that are also important.
However, we do not need to concern ourselves with these pointers, because
they are automatically adjusted any time a BASIC program is run or
CLOADed. The command NEW will also reset all of the various pointers,
provided the two important pointers mentioned before are correctly set.

The two pointers we must manipulate are at 40FFH and 40A4H. The
pointer at 40FFH points to the first entry in the BASIC workspace. On
power-up this is initialized to an address of 42E8H in the Model I and 43E8H
in the Model III. The pointer at 40A4H is initialized to an address one byte
past this address: 42E9H and 43E9H in the Model I and Model III respec-
tively. In addition, the actual data at the location pointed to by the vector at
40FFH must be zero. If this location contains a non-zero value, you will get
an error message for any command you type in.

To simulate an empty BASIC workspace, the location pointed to by the
vector at 40A4H (and the following location as well) must also be set to zero.
Otherwise the two bytes starting at this location are assumed to be a link ad-
dress to the next line of a BASIC program. Unless these locations contain a
legitimate link address, you can get some peculiar resuits if you run or list
a program.

As a simple example of how we might reserve low memory, let’s say we
would like the beginning of the BASIC workspace to be relocated to 4400H.
This would leave locations from 42ESH to 43FFH free for us to use and pro-
tected from BASIC. (This example, and most of those which follow, will
assume that we are discussing the Model I. Adjust everything upward by 256
if you are dealing with the Model II1.) We would have to make the address
(pointer) at 40FFH be 4400H, and the address (pointer) at 40A4H be 4401H.
In addition, we would have to be sure that the data at locations 4400H,
4401H, and 4402H is zero. It’s that simple.

One of the most straightforward ways to enter a machine-language pro-
gram into a TRS-80 is to have a BASIC program READ the data bytes from
DATA statements and POKE them into memory. I have used this technique
many times and have always been appalled by the fact that the final
machine-language program occupied far less memory than data elements
needed to produce the program. The data is stored by BASIC in DATA state-
ments as ASCII characters. Each machine-language byte is encoded as from
one to three ASCII characters (0 to 255) in the DATA statement. In addi-
tion, the commas separating the numbers in the DATA statements each take
up another byte of memory.

172

tutorial

Top of Available RAM
String Storage
Space. Usually
50 Bytes, Set by
CLEAR.
Stack Space
Variable
Space
Always Zero Last Three
Always Zero Bytes of BASIC
Always Zero Program
BASIC
Workspace
(40A4) - 42E9H First Available 43E9H —» (40A4)
(40FF) = 42E8H Always Zero 43E8H ~» (40FF)
Command/ (Available for Short
EDIT/LIST Machine-Language
Buffer Routines)
41E9H FIRST IN BUFFER 42E9H

Model 1 Model 111

Figure 1. BASIC memory map of Model I and Model 111

It always seemed to me that a neat way to use BASIC to POKE machine-
language data into memory would be to overlay the DATA statements
which produced the code with the resulting machine code. This is fairly easy
to do if we put the DATA statements that make up the machine-language
program at the beginning of the BASIC program and then use a FOR-NEXT
loop to read the data and POKE it into the locations just read. After the
machine code is POKEd into memory, we set up the two pointers mentioned
before, initialize the first three bytes of the new BASIC workspace to zero,
and then execute a NEW command. This will wipe out the BASIC program,
which is no longer needed, and reset all the necessary memory pointers.

Using this approach, we do not reserve any more of low memory than is
actually required for the machine-language code. In addition, if we need to
enter more machine-language code, we can use exactly the same technique
again and reserve additional low memory starting in the relocated BASIC
workspace. We actually sacrifice five bytes of memory every time we do this
since we will have to preserve these bytes while the BASIC program reads
and POKEs. The five bytes constitute the link address to the next line
number (first two bytes), the line number of the DATA statement (next two

173

tutorial

bytes), and the DATA keyword (one byte). With the exception of these five
“wasted” bytes, the READ and POKE technique is very conservative
of memory.

Program Listing 1 is an example of using this technique of POKEing
machine code over DATA statements. Lines 10 and 20 are the DATA state-
ments that hold the machine code. The machine-language program repre-
sented by the two DATA statements is a simple driver for the TRS-80 video
to allow the display of lowercase characters. It is a fully relocatable routine
and occupies 30 bytes of memory.

If you count the number of elements in the two DATA statements you will
see that there are 31. The extra element tells the POKEing routine how
many elements to read and POKE. This is the first number in line 10. Line
30 sets all variables used to integer to speed things up. Line 40 picks up the
two bytes at 40A4H and 40A5H (16548 and 16549) to find the beginning of
the current BASIC workspace. These two bytes are assigned to AL and AH
(Address Low and Address High) after adding five to the low-order address
byte. The subroutine at line 510 checks AL for overflow past 255 and adjusts
AH and AL if needed.

The address now contained in AH and AL is the location where we will
begin POKEing the machine-language program. This same address must be
substituted for the address in the video device control block (DCB) at 16414
and 16415. Line 50 takes care of this for us. Line 60 reads the byte count into
N for the limit of the FOR-NEXT loop in lines 70 through 90. Line 80 reads
the data, POKE:s it into memory and then increments AL (and AH if neces-
sary). Subroutines at lines 600 and 500 handle these operations.

After all the data has been POKEd into memory, AL and AH point to the
byte just following the last byte POKEd in. All that remains is to fill this
location and the next two locations with zeros and reset the two BASIC
pointers to their new values. Lines 90 through 120 handle this task. Notice
that the last instruction in line 120 is NEW, which will wipe out the BASIC
program and restart BASIC with a clean slate. The entire BASIC program
from line 30 to the end (with the exception of line 50) can be used as a gener-
al-purpose routine for POKEing machine-language routines into low
memory. For linking BASIC programs to machine-language programs, line
50 should POKE AL and AH into locations 16526 and 16527, respectively.
These are the USR address pointer locations.

Figure 2 shows how the machine-language program of Program Listing 1
is actually POKEd into memory to overlay the data elements of line 10. The
first data byte (221) goes into the space between the DATA keyword and the
3 of the 30 in the first data element. The next data byte (110) replaces the 3 of
30, and the next data byte (3) replaces the 0 of 30, and so on. The last data
byte replaces the 5 of the 154 data element. The next three locations (4,4) are

174

tutorial

the three nulls used to mark the BASIC workspace with no program present.
The location of the middle null (the comma between 154 and 4) is the new
beginning of BASIC workspace. Notice how little space this routine occupies
compared to the BASIC program and DATA statements!

!

10 DATA 30,221,110,3,221,102,4,218,154,4,221,126,5,183,40

0 Beginning of
e 0 New BASIC]
O Workspace

Machine-Language
Cade Occupies These 30
Lucations

Figure 2. Machine-language code overlays data elements.

For very long machine-language programs, it is conceivable that the ma-
chine code will eventually be POKEd into locations in the BASIC program
that could possibly cause trouble, such as at the end-of-line token (a null),
the link address or line number of the next DATA statement, or the next
DATA keyword. In practice this is never going to create a problem. The
reason for this is that BASIC maintains a separate DATA pointer. As long as
all the READ:s are done at one time (as they will be here), the DATA pointer
will be stepped forward quite regularly. It will have reached the end of the
first DATA statement long before the POKEd data reaches this physical
location. It will find the next DATA statement and be quite happy again for
a long time. It is perfectly all right to go ahead and destroy (write over) the
preceding end-of-line marker, line link address, line number, and keyword.
The DATA pointer always moves on!

Another Hiding Place in Low Memory

For very short machine-language routines like the one in Program Listing
1, there is an even better way to store programs in low memory. If you look
again at the memory map in Figure 1, you will see that there is an area of
memory that is 256 bytes long reserved for the command/LIST/EDIT buf-
fer. This buffer is used to hold BASIC command inputs and lines of BASIC
programs when they are edited or listed. In most instances, very little of this
buffer is ever used. If you were to have an extremely long line in BASIC, it
could fill up the buffer. Most of us never use anywhere near all of the buffer.
In fact, I have never written a program myself (or listed a commercial
BASIC program) that used more than half of this buffer. This means that

175

tutorial

perhaps 100 or so bytes at the upper part of the buffer are unused. There is
most certainly room for the 30-byte video driver program.

Using the command buffer for machine-language program storage has a
nice feature associated with it: If you should ever have to totally reset the
computer (without turning off power), your machine-language program
will still be there. This is not necessarily true of SYSTEM programs in re-
served high memory or for programs POKEd into low memory as described
earlier. A return to MEMORY SIZE? will reset everything to power-on con-
ditions. But programs in the command buffer will remain. All you need to
do is reset the pointers (usually USR at 16526, 16527) to recover the ma-
chine-language program.

Program Listing 2 shows how the video driver can be POKEd into this
hiding place. Notice that this program assigns the starting address (17096 or
42C8H) absolutely, without checking BASIC pointers. In addition, the pro-
gram is not automatically erased with a NEW command since the DATA
statements have not been written over. Instead, the last part of the program
reminds the user that he or she can recover the video driver routine by
POKEing appropriate values into two locations. The entire BASIC
workspace can now be used by typing NEW to remove the BASIC program.
Keep this technique in mind if you have short machine-language routines to
keep on tap. You might even fit in two or three USR routines, changing the
USR pointer as required from the calling BASIC program.

Hiding TBUG in Low Memory

If you use TBUG, here is how you can hide it below the BASIC work-
space. Use TBUG to enter the short program shown in Program Listing 3.
Then use TBUG’s P command to make a SYSTEM tape with a starting ad-
dressof 436EH, going to 4980H, with a default entry address of 436EH. You
can use any program name you like for the program. I chose TBUGL for
originality.

When you load the program using the SYSTEM command, start the pro-
gram by typing / ENTER in response to the SYSTEM prompt. You will then
get the BASIC READY prompt and you're off and running. Even in a 4K
system you will have almost 1.5K of memory left for BASIC programs above
TBUG. In addition, the space from 42E9H to 4380H is available to you, free
of charge. You can enter TBUG from BASIC at any time by using the
SYSTEM command followed by /17312 ENTER, just as always.

Ifyou would rather have your modified TBUG begin execution in TBUG
rather than in BASIC, change the last two bytes of Program Listing 3 to A0
43. To get from TBUG to BASIC, use TBUG’s] command to jump to address
1A 19H. This will get you the READY prompt from BASIC. Be sure to type

176

tutorial

NEW, CLOAD, or RUN to reset all the necessary pointers. Otherwise you
will find that BASIC thinks it doesn’t have a great deal of memory; TBUG
has moved the stack to 4980H, and BASIC won’t like this! NEW, CLOAD,
or RUN (even with no BASIC program present) will straighten things out.
You can use the 18-byte program in Program Listing 3 all by itself to set
aside low memory for machine-language programs. Change the third and
fourth bytes to any address you would like to establish as the beginning of
BASIC workspace, remembering that the least significant half of the address
comes first. Now, everything from 42E9H to the address you select will be
protected from BASIC. It's simple, easy to do, and easy to tack on to any
machine-language routine you want to use with BASIC, or all by itself.

177

tutorial

Program Listing 1

10 DATA 30,221,110,3,221,102,4,218,154,4,221,126,5,183,40
20 DATA 1,119,121,254,32,218,6,5,254,128,210,166,4,195,125,4
30 DEFINTA-Z

40 AH = PEEK(16549):AL = PEEK(16548) + 5: GOSUB510

50 POKE16414,AL:POKE16415,AH

60 READ N

70 FOR I=1TON

80 READ D: GOSUB600:GOSUB500

90 NEXTLI:D =0

100 GOSUB600: POKE16639,AL:POKE16640,AH: GOSUBS500
110 GOSUB600:POKE16548,AL:POKE16549, AH: GOSUB500
120 GOSUB600:NEW

500 AL =AL+1

510 If AL>255 THENAL = AL - 256:AH=AH + 1

520 RETURN

600 POKE 256+AH + AL,D:RETURN

Program Listing 2

10 FORI = 0T029

20 READ D:POKE 17086 + 1D

30 NEXT I

40 CLS:PRINT“TO RESTORE LOWERCASE AFTER SYSTEM RESET, ENTER THE
FOLLOWING:”

50 PRINT:PRINT“POKE 16414,200:POKE 16415,66"

60 POKE 16414,200:POKE 16415,66

70 DATA 221,110,3,221,102,4,218,154,4,221,1286,5,183,40,1

80 DATA 119,121,254,32,218,6,5,254,128,210,166,4,195,125,4

Program Listing 3
436E: AF 21 804977 22 FF 40 23 77 22 A4 40 2377 C3 19 1A

178

TUTORIAL

CISAB: Backwards BASIC

by C. Brian Honess

hat’s right —backwards BASIC. In this chapter we’ll learn a whole

new language, modestly named HONESS (take your choice of
acronym: Here’s Our New, Easy, Super System, or maybe Help Out Note-
worthy Enthusiastic Successful Students, or maybe Handy Official Nota-
tion Employing Sophisticated Subjects). Whatever you call it, HONESS is
a machine language, which is fed into your BASIC interpreter along with
the data, at which point BASIC takes over. You write your instructions in
machine language. The important thing about HONESS is that you will
see how a machine language works, and you will be able to expand the
operation codes, as well as expand and experiment to your heart’s con-
tent. Let’s see what it is all about.

HONESS can be run on almost any computer. You could just as easily
code a FORTRAN program to accept HONESS instructions and data.
We'll assume that the computer running HONESS programs has 99
storage locations. Each of these 99 storage locations can hold eight
decimal digits, divided into four groups of two digits each (see Figure 1).
We'll call each of the eight-digit groups a word, so we’ll need a 99-word
machine. Each of these 99 words can store either an instruction or a data
value, and the largest data value that our language will handle is
99999999. We’'ll have to make a few concessions to keep things simple at
first, so let’s work with just whole numbers for now.

TWO-DIGIT NUMBERS IN £ACH

Figure 1

The first two digits of the word contain the op (operation) code, and
the other three two-digit parts contain addresses, or operands. Some op-
codes are going to need all three of the addresses, and others will require
just one, two, or none at all. If a particular address isn’t required, we’ll
just fill it with two zeros. We’ll start you off with the five basic arithmetic
operations (add, subtract, multiply, divide, and exponentiate), and a
read and write command, plus a halt instruction. We’ll also need an un-
conditional branch instruction, and then a high, low, equal compare

179

tutorial

technique. This set of operation codes will make a fairly powerful
language.

We’re going to use base 10 numbers for each of the op-codes, and the
addresses and data, just to make things easier for you. Of course, true
machine language would be just ones and zeros (binary). If we used true
binary, each word would have to be able to hold 28 binary digits, in four
groups of seven, because it takes seven binary bits to hold the largest

Op-code Meaning Address Meaning
Portion
01 Add Al A2 A3 Add contents of address Al

to the contents of address
A2 and store the result in A3

02 Subtract Al A2 A3 Subtract the contents of A2
from Al and store the result
in address A3

03 Multiply Al A2 A3 Multiply contents of Al by
contents of A2 and store
result in A3

04 Divide Al A2 A3 Divide contents of Al by
contents of A2 and store
result in A3

05 Read Al 00 00 Read into location Al

06 Print Al 00 00 Print from location Al

07 Exponentiate Al A2 A3 Raise contents of Al to the
power stored in A2 and store
result in A3

08 Branch Al 00 00 Unconditional branch to
location stored in Al

09 Halt 00 00 00 Stop

10 Equal compare Al A2 A3 If contents of Al = contents
of A2, GOTO location in A3

11 Low compare Al A2 A3 If contents of Al < contents
of A2, GOTO location in A3

12 High compare Al A2 A3 If contents of Al > contents

of A2, GOTO location in A3

Table 1. Op-codes found in HONESS

decimal number that is two-digits long (99), so instead of writing 28-bit
binary numbers for each word, let’s use eight-digit decimal numbers.

Table 1 shows the various op-codes, and which address portions are re-
quired for them. We’ll be writing all our programs using these op-codes.
You can expand on them if you like, and put in all sorts of special-purpose
functions.

Let’s look at a couple of instructions now, break them into the four two-
digit groups, and see what they mean.

180

tutorial

04586312

oA

04 58 63 12

The op-code is 04, which means divide. The three addresses say: Divide the
number stored in location 58, by the number stored in location 63, and store
the answer at location 12.

12171893

2/I7/ \IB \93

This is a high compare op-code, so if the contents stored at location 17 are
greater than the contents stored at location 18, then we go to the instruc-
tion number stored in location 93.

Simple Programs

We're ready to write a simple program now, but there is one little prob-
lem remaining—how to load the program into the desired storage loca-
tions. We might not want to store the program in the first n storage loca-
tions, and we might want to store constants, etc. in high storage without
having to go to the trouble of storing zeros in all the unused locations be-
tween the end of the program and the high-storage area. To get around
this, we're going to attach a two-digit loader in front of each of the eight-
digit words. Therefore, if we want to store the instruction 08151617 into
location 73, it would become: 7308151617.

For our first program, let’s consider the problem of reading in two
numbers, adding them together, and then printing out the result. Here is
a HONESS program to do this. I've coded it on the left, the way it was
written and broken it down into the component parts on the right, so we
can see them more easily to talk about them.

0105720000 01 05 72 00 00
0205730000 02 05 73 00 00
0301727358 03 01 72 73 58
0406580000 04 06 58 00 00
0509000000 05 09 00 00 00

The first two-digit number drops off after loading, and 05720000 is in
storage location 1, 05730000 is in 2, and so on. After loading, the com-
puter is directed to return to storage location 1 and begin executing the
program. The 05 op-code says to read a data value that is stored in loca-
tion 72. The second instruction is also a read, and it reads into location 73.
The third instruction says to add the contents of 72 to the contents of 73
and store the result in 58. The fourth instruction says to print out the con-
tents of location 58, and the last instruction is a STOP instruction. There

181

tutorial

is nothing sacred about the storage locations, 72, 73, and 58. They were
just unused locations in our 99-word memory. We could have used any
other numbers between six and 99. We couldn’t use one through five,
because those locations hold the program. Therefore, they can’t be used
for data values.

Let’s consider the problem of finding the average of n sets of three
numbers each. In other words, we have a group of students (any number
between one and the largest number your machine can calculate in an
evening), and each student has three exam grades. You want to compute
the average of each set of three exam grades, and then return to consider
another student, and so on. Let’s draw a flowchart for this infinite loop

program (Figure 2):

X=G1+G2

Y=X4+G3

Z=Y/3

Figure 2

Now, I'll code the HONESS program and write what each line does to
the right of it. Also, I'll break down each instruction into components, but
of course, when keyed into the machine, these would all look like 10-digit
numbers.

Loader Op-code Al A2 Al Comments

01 05 23 00 00 Read Ist number into 23

02 05 24 00 00 Read 2nd number into 24

03 05 25 00 00 Read 3rd number into 25

04 01 23 24 26 Add 1st and 2nd numbers and
store in 26

05 01 25 26 26 Add 3rd number to total in
location 26

06 04 26 99 26 Divide total in 26 by the

constant in 99, and put
answer back in 26

182

tutorial

07 06 26 00 00 Print contents of 26
08 08 01 00 00 Go to 1st instruction
99 00 00 00 03 Constant used for division

Next, let’s consider the equation y = ax* + bx + c, by reading in some
values for a, b, ¢, and x, and calculating and printing y. I won’t bother
with a flowchart, because you should be able to figure this one out. Notice
that the arrows in the comments mean “put into location number,” and
that I find x? by multiplying x by itself.

Loader Op-code Al A2 A3 Comments
01 05 21 00 00 Read a — 21
02 05 22 00 00 Read b — 22
03 05 23 00 00 Read ¢ —~ 23
04 05 24 00 00 Read x — 24
05 03 24 24 25 x2 - 25
06 03 21 25 26 ax? — 26
07 03 29 24 27 bx — 27
08 01 26 27 28 ax® + bx — 28
09 01 23 28 29 ax* + bx + ¢~ 29
10 06 29 00 00 Print - 29
11 09 0 00 00 Stop

An Expanded Averaging Program

Now, let’s expand our average-of-three-numbers program, to find the
average of any number of numbers. We'll have to use the trailer principle
to get out of the reading loop, so we’ll choose a trailer value of 99999999,
the largest number we can hold in our storage word (therefore, we can’t
have the number 99999999 as one of the numbers we’re finding the
average of).

We'd better flowchart this one, so it’ll be easier to follow (see Figure 3).

Here’s the program in HONESS, written from the flowchart shown in
Figure 3. Compare each instruction in the code with the appropriate
flowchart block, to gain an understanding of how this trailer-triggered,
loop-with-an-exit program works.

0105320000 Read x — 32

0210329606 If x = 99999999 GOTO 06
0301979898 Add 1 to C (counter)

0401329999 Add x to S (sum)

0508010000 GOTO 01

0604999851 S/C - 51

0706510000 Print — 51

0809000000 Halt

9700000001 Constant for incrementing counter, C
9800000000 Counter, C, for number of values read
9900000000 Store sum of x values here

183

tutorial

START

SET §
{SUM) TO /—"99 00 00 00 00
ZERO &

Y
s 1o | 98 00 00 00 00
ZERO

X

/96 99 99 99 99

X= YES
99999999 A (AVERAGE)

N
ADD ! 70
C{COUNT)

| <D
®—1 Teomr

97 00 000001

Figure 3

Finding the Largest Number

For our last example, let’s consider something with a few more decision
blocks. We'll read in three numbers, and print out the largest one. The
three numbers can be all the same, all different, (or anything in between),
and in any order.

(HALT)

Figure 4

184

tutorial

There are two ways to solve this problem, and a flowchart and program
are delineated for each. I'll write a few comments to the right of each pro-
gram, and also separate the component parts, so you can study them more
easily. The first solution method is a real mind-boggler (see Figure 4),
with decision blocks, GOTOs, and the like, all over the place. The second
is a little more organized (see Figure 5), in that we consider the first
number to be the largest, no matter what value it has, then we change it
to another value if we find one that is larger.

START

SET BG
(BIG)= A

BG<=B

o
o
v
©

o7

SET8G=8

B8G:C

10 86>C

SET 86=C

BG

sToP

Figure 5

Here is the program in HONESS, written from the flowchart shown in
Figure 4:

01 05 61 00 00 Read A — 61

02 05 62 00 00 Read B —~ 62

03 05 63 00 00 Read C — 63

04 11 61 62 08 If A<B GOTO 08
05 11 61 63 11 IfA<CGOTO 11
06 06 61 00 00 Print A

07 09 00 00 00 Halt

tutorial

08 11 62 63 11 IfB<CGOTO 11
09 06 62 00 00 Print B
10 08 07 00 00 GOTO 07
11 06 63 00 00 Print C
12 08 07 00 00 GOTO 07
Here is the HONESS program written from the flowchart in Figure 5:
01 05 61 00 00 Read A — 61
02 05 62 00 00 Read B — 62
03 05 63 00 00 Read C — 63
04 01 61 98 99 Move A to BG (this is done
by adding zero)
05 11 99 62 07 1If BG<B GOTO 07
06 08 08 00 00 GOTO 08
07 01 62 98 99 Move B to BG
08 11 99 63 10 If BG< C GOTO 10
09 08 11 00 00 GOTO 11
10 01 63 98 99 Move C to BG
11 06 99 00 00 Print — BG
12 09 00 00 00 Halt
98 00 00 00 00 Constant zero, used for

converting an ADD to a
MOVE instruction.
99 00 00 00 00 Storage for BG

The HONESS Program

Now we’re ready for the actual HONESS program. The listing is fairly
long, but I've included lots of REMarks. I guess you don’t really have to
key them in, but they could be handy to have with the Program Listing,
since they contain all of the features of the language, plus the instructions
on how to load any programs you write in HONESS. The first 62 lines (10
through 71) are REMarks, and we've already discussed everything
through line 63, so let’s pick up the discussion with line 64. We need to
have some way of telling the machine when the program has been read, so
that it won’t continue reading DATA statements, thinking they are pro-
gram-instructions, and try to execute them. We’ll key a value of zero into
the loader to mean we've come to the end of the program instructions,
and any other DATA statements containing data, rather than HONESS in-
structions. Lines 901 through 998 will be used for entering the program
and any data values, and REMark 70 shows a typical DATA line. This
happens to be an instruction that is being loaded into location number 21.
It is an ADD instruction, and says to add the number in 10 to the number
in 11 and store the answer in 17.

Line 74 defines the variables M and X as being double precision. This is
necessary, since we're dealing with 10-digit numbers going in, and the
usual six-place BASIC just won’t be enough. Line 75 sets up the 99 storage

186

tutorial

locations, Line 76 reads a DATA statement, and loads it into location X.
In line 77, it strips off the first two digits, which you’ll recall is the loader.
This tells it which of the 99 locations to store that particular instruction
in. We strip off the first two digits by dividing by 100000000 in line 77. In
line 78, we check to see if the loader equals zero, because if it does, then
this is the last program instruction, and loading has been completed. If
the last instruction hasn’t been found, line 79 loads the instruction in the
correct storage location, we then go to the read statement again, from line
80, and read the next instruction. This process continues until the zero is
found in the loader.

Lines 81 through 88 simply print out a big long table of how all 99
storage positions look after the HONESS program has been loaded. You
may want to put some sort of prompt and an IF-THEN statement in here,
so that you can skip this part unless you particularly want this dump for
debugging purposes. Line 88 lets us know that the execution phase has
begun.

Lines 89 and 90 take us back to the first instruction to begin execution.
“Why did you need to set N = 0 and then N = N + 1 instead of just say-
ing N = 177 I hear you ask. Well, if I'd done it that way, I would have
had to put an N = N + 1 before every GOTO 90 later in the program.
Line 91 pulls out the particular instruction we’ll be working on, and loads
it into X. This insures that the original instruction remains intact, and we
just make a duplicate of it.

Lines 92 through 95 separate the eight-digit number in X into its four
component parts (A0, Al, A2, and A3-A0 is the op-code, remember).
Then, in line 100, we look at the op-code and go to one of the 12 listed
statements, depending upon the value of the op-code. If you add addi-
tional op-codes to the program, you’ll have to add more line numbers to
the ON. . .GOTO, and add the coding for your particular op-code at
those line numbers. I think you’ll see how easy it is to add op-codes from
looking at the 12 I've included. Here is a list of just some of the op-codes
you could add easily:

Square root Reciprocal

Sine Cube root
Absolute value Arc sine

Base e log Arc cosine

Base 2 log Arc tangent

Base 10 log Cosine

Tangent Hyperbolic sine
Hyperbolic cosine Hyperbolic tangent
Change sign Move

Depending on the op-code, we GOTO a line number somewhere be-
tween 110 and 220, and at each of the locations the operation is per-
formed, and we return to increment N and look at the next instruction.

187

tutorial

Eventually we run into the 09 HALT op-code, and that results in a GOTO
190, which then immediately directs us to line 400. At line 400, a dump of
all 99 locations occurs, so that you can see the ending values stored in each
location. Again, you may want to print this only after a YES answer to a
prompt and question. It should be easy for you to add this feature.

Now you're ready to try the example programs on the previous pages,
before you write some of your own. I'll code the necessary DATA
statements for the first program we considered, wherein we simply read
in two numbers, added them, and printed the result.

901 DATA 0105720000
902 DATA 0205730000
903 DATA 0301727358
904 DATA 0406580000
905 DATA 0509000000

906 DATA 0000000000 (Line 906 is the statement with
907 DATA 2 the 00 loader that separates
908 DATA 5 the program from the data.)

This could all be put on fewer lines by keying in the numbers with
commas between them, perhaps five or six per line, but I think this way it
makes it easier to debug and visualize. Since my data values for the pro-
gram are 2 and 5, the answer, 7, should be printed after the program
prints EXECUTION HAS BEGUN! and before it does the POST-
MORTEM DUMP OF STORAGE.

188

WO~ VU W

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

tutorial

Program Listing

Khkhkkhkkhkkkkhhkkhkkhkhkkhhhhkhkhhhhkhkhh ok kAR hhhkhkkrk Ak kK

* b
* "CISAB (THAT'S BACKWARDS BASIC FOLKS!) *
* *
* BY: C. BRIAN HONESS *
* COLLEGE OF BUSINESS ADMINISTRATION *
* UNIVERSITY OF SOUTH CAROLINA *
* COLUMBIA, SC 29248 *
*k*k * k Kk
HONESS IS A MACHINE LANGUAGE CAPABLE OF BEING RUN ON
MOST DIGITAL COMPUTERS. 1T HAS A MEMORY CAPACITY OF 99
WORDS. EACH WORD CONTAINS EIGHT DECIMAL DIGITS. THESE
DIGITS ARE DIVIDED INTO FOUR GROUPS OF TWO DIGITS EACH.
WE SHALL DENOTE THESE FOUR GROUPS AS A#, Al, A2, AND A3
WHERE A0 IS THE OPERATION CODE AND Al, A2, AND A3 ARE
USED TO CONTAIN THE LOCATIONS OF THE OPERANDS. FOR
EXAMPLE, LET A@, Al, A2, AND A3 BE ¢1, 14, 15, AND 20.
81 INDICATES THAT THE OPERATION IS ADDITION. THE
CONTENTS OF WORD 14 ARE ADDED TO THE CONTENTS OF WORD
15, AND THE RESULT IS STORED IN WORD 24.
THE FOLLOWING ARE HONESS OPERATION CODES:
¢l - ADD g1 Al A2 A3 MEANS ADD CONTENTS OF
Al TO CONTENTS OF A2
AND STORE RESULT IN A3

92 - SUBTRACT #2 Al A2 A3 MEANS SUBTRACT CONTENTS
OF A2 FROM CONTENTS OF
Al AND STORE RESULT IN A3

3 - MULTIPLY 93 Al A2 A3 MULTIPLY CONTENTS OF Al
BY CONTENTS OF A2 AND
STORE RESULT IN A3

4 - DIVIDE 4 Al A2 A3 DIVIDE CONTENTS OF Al
BY CONTENTS OF A2 AND
STORE RESULT IN A3

85 - READ 5 Al 60 90 READ INTO LOCATION Al

#6 - PRINT 66 Al 80 8¢ PRINT FROM LOCATION Al

87 ~ EXPONENTIATE @7 Al A2 A3 RAISE CONTENTS OF Al TO
THE POWER STORED IN A2
AND STORE RESULT IN A3

28 -~ BRANCH #8 Al 80 6@ UNCONDITIONAL BRANCH TO
LOCATION STORED IN Al

#9 - HALT 9 80 60 66 STOP AT THIS LOCATION

18 - COMPARE = 18 Al A2 A3 1IF CONTENTS OF Al =
CONTENTS OF A2, GO TO
LOCATION IN A3

11 - COMPARE < 11 Al A2 A3 IF CONTENTS OF Al <
CONTENTS OF A2, GO TO
LOCATION IN A3

12 - COMPARE > 12 Al A2 A3 IF CONTENTS OF Al >
CONTENTS OF A2, GO TO
LOCATION IN A3

IN ORDER TO READ THE PROGRAM INTO THE COMPUTER, EACH
WORD HAS A TWO-DIGIT PREFIX ATTACHED TO IT. THIS TWO-
DIGIT PREFIX IS CALLED A LOADER. ITS PURPOSE IS TO
PLACE EACH WORD IN A LOCATION SPECIFIED BY THE PROGRAMMER.
IF THE INSTRUCTION WORD IS TO BE STORED IN LOCATION 21,
THE LOADER AND INSTRUCTION WOULD APPEAR AS:

21 ¢1 18 11 17 (THE INSTRUCTION 1S5, OR COURSE, TO
ADD THE CONTENTS OF 1@ TO THE CONTENTS OF 11 AND STORE
THE RESULT IN 17.)

A "@@" KEYED INTO THE FIRST TWO COLUMNS OF A DATA
LINE, SIGNIFIES THE END OF THE PROGRAM. DATA, IF ANY,
WILL FOLLOW.

Program continued

189

tutorial

68 REM A TYPICAL DATA LINE WOULD THEN LOOK AS FOLLOWS:
69 REM

76 REM 962 DATA 2161161117

71 REM

74 DEFDBL M,X

75 DIM M{99)

76 READ X

77 LD = INT { X / 1006060000)
78 IF LD = @

THEN

81
79 M{LD) = X - (LD * 10000060800)
8@ GOTO 76
81 PRINT

82 PRINT "MEMORY DUMP AFTER LOADING COMPLETED:"
83 PRINT

84 FOR I = 1 TO 99

85 PRINT I, M(I)

86 NEXT I

87 PRINT

88 PRINT "EXECUTION HAS BEGUN!"

89 N= 0

99 N = N + 1

91 X = M(N)

92 AP = INT (X / 1000090)

93 Al = INT (X / 10000) - (AP * 180)

94 A2 = INT (X/ 188) - (Al * 168) - { AQ * 10008)

95 A3 = X - (A2 * 189) ~ (Al * 10880) - (AG * 1000000)

168 ON A9 GOTO 119,120,130,140,159,166,176,188,198,200,210,228
118 M{A3) = M(ALl) + M(A2)
111 GOTO 98
126 M(A3) = M(Al) - M(A2)
121 GOTO 98
136 M(A3) = M(Al) * M(A2)
131 GoTO 90
148 M(A3) = M(Al) / M(A2)
141 GOTO 96
158 READ M(Al)
151 GoTO 90
160 PRINT M(Al)
161 G0TO 96
176 H(A3) = M(Al) [M(A2)
171 GOoTO 96
180 N = A3
181 GOTO 91
196 GOTO 460
200 IF Al = A2
THEN
202
201 GOTO 98
202 N = A3
203 GOTO 91
218 IF Al < A2
THEN
212
211 GOTO 90
212 N = A3
213 ¢0TO 91
228 IF Al > A2
THEN
222
221 GOTO 9@
222 N = A3
223 6oTO 91
4@8 PRINT
419 PRINT "POST-MORTEM DUMP OF STORAGE"
42@ PRINT
43@ FOR I = 1 TO 99
4483 PRINT I, M(I)
450 NEXT I
46@ PRINT

190

901
962
9@3
904
985
906
997
908

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

91057200080
9205730000
0391727358
9406580000
p509000000
0000000080
2

5

tutorial

191

TUTORIAL

Into the 80s
Part VI

by Ian R. Sinclair

0 nce your programs pass the very simple stage, you’ll need to present a
menu. As the word suggests, a menu is a list of choices for the user. The
way it is presented and the way the user makes the choice are all the differ-
ence in the world between a program that is a joy and one which is a pain.

The menu should, first, give the user some idea of what the choice is— not
just a listing of five numbers! The description needr’t elaborate, none of
your “sun-ripened section of choice, West Coast subroutine, delectably
preserved in quotes”—it isn’t that sort of menu—but it must tell all. Figure 1
shows a typical short menu, with choices for keyboard entry, entry of data
from cassette, and termination. Termination is important, if the menu is
presented several times in the program. There’s nothing as infuriating as
having to go through several unnecessary steps just to stop a program. The
BREAK key can be used to terminate, but it makes sense to construct pro-
grams that need little interference.

MENU
1. KEYBOARD ENTRY.
2, CASSETTE ENTRY.
3. TERMINATE.

Figure 1

Using the command PRINT CHR$(23) just before the menu printout
prints it in double-sized characters. The character size can then be returned
to normal later with a PRINTCHR$(28), POKE 16445,0, or CLS command.

The simplest way to carry out a menu choice is to type and enter the
number of the chosen item. In ordinary BASIC, this would be done as
demonstrated in Program Listing 1. The choice is made by typing one of the
numbers shown in the menu and ENTERing. Line 30 is an error trap: If you
have selected a number that doesn’t exist, you are informed and steered back
to the menu to try again. That’s an important point, If an error trap causes a
return with no explanation, the user may not know that there is an error,
because there is only a slight flicker on the screen. Showing a message lets the
user know that there has been an incorrect entry.

192

tutorial

Lines 40 through 70 implement the choice. For each possible menu
number, the program is instructed to jump to a different line or to end. At
each of the new lines (the examples show 300, 700, 1000), a new section of
program must start. This will carry out the action promised by the menu.

That's how a Brand X computer might deal with a menu, but the TRS-80
has a whole lot of tricks up its sleeve. One of the tricks, as far as a menu
choice is concerned, is the command ON K GOTO. . .. Program Listing 2
demonstrates this by replacing lines 40 through 60, deleting line 70, and
adding a new line, 5000, in Program Listing 1. When you enter a number, it
is assigned the variable name K. In the new line 40, the command assumes
that K is a number that ranges from one upwards, and it counts the line
numbers that are entered between commas. If K is one, it brings you to the
first number; if K is two, it brings you to the second; and so on. You must
make sure that there are as many line numbers following GOTO as there are
choices on the menu. Program Listing 2 is a development of this system; you
don’t even have to use ENTER. By using the INKEY$ command, whatever
number you hit will be assigned to K at once, and your program choice
follows. INKEY$ needs a string variable, K$, so that the step K = VAL(K$),
or the use of ASC(K$), is needed to convert to the number form, K. Because
TRS-80 BASIC has the ELSE command, the conversion can go into the same
line. Line 40 makes the error-trapping routine more interesting. If the selec-
tion has been correctly made, line 40 is ignored, but a faulty selection causes
the words INCORRECT ENTRY to be flashed ten times. This routine also
makes use of STRINGS$.

When using PRINT STRING$, remember a number of characters are
printed in a row. The number is the first number specified in the paren-
theses. The second number is the ASCII code number for the character we
want to print. If you can’t be bothered to look it up, you can write the
character between quotes, like STRING$(25,“*”). In this example, 32 is the
ASCII code for a space, so STRING$(15,32) simply replaces the words IN-
CORRECT ENTRY by spaces, deleting the words. Line 50 has the ON K
GOTO selection feature, and the line numbers which follow take the pro-
gram to the routines which are specified on the menu. You can use the same
program for different games, because you only have to select a different set
of data and instructions for each game.

Alternatives

We don’t always want a full menu selection. Sometimes a choice of two is
quite enough. There are two methods I use. One is the letter or number
method illustrated in Program Listing 3. The choice is between two items,
and you are invited to type any number for one or for the other. Once again,
we don’t use ENTER when you make a choice— though it does give you time

193

tutorial

for second thoughts, because we use INKEY$. Line 10 gives the instructions,
and line 20 contains the usual INKEY$ instructions. In line 30, we take
VAL(K$), which will be zero if K$ is a letter, and use that to decide whether
we jump to line 100 (PROCEED) or line 40 (RETURN). It’s simple and ef-
fective, but it can be phased by typing0 as a number. A foolproof way makes
use of the ASCII codes of letters and numbers and is shown in Program
Listing 4.

In line 30 of this program, the first section, K = ASC(K$) finds the ASCII
code for the character which has been selected. If this is a number, then its
ASCII code is less than 58 and more than 48, and this is sorted out by the sec-
ond section of line 30. If the character is a letter, its ASCII code is less than
91 (unless you hit SHIFT as well) and more than 64. This also causes a jump.
If any other key has been pressed, line 40 registers a mistake and causes a
return, after a short delay, to the choice in line 10,

We can go further with the use of INKEY$. Program Listing 5 shows a
routine requesting a YES or NO answer directly from the keyboard without
using ENTER. It’s a development of the YES/NO routine we used in Part
IV, with a flashing error message, and a flashing asterisk (which I call a
“flashterisk”) as a prompt. Just to add bells and whistles, there is a time limit
feature—you must type YES or NO quickly to beat the asterisk, or your en-
try is ignored! These routines, ranging from the simple to the full scale
YES/NO are often needed in a program. It is tedious to enter them in each
place where needed.

That brings us to subroutines.

Subroutines

A subroutine is a short (or long or middling, but usually short) piece of
program which is needed more than once in the course of a main program. It
can be called up from different parts of the main program. Calling a subrou-
tine means leaving your main program action and starting the subroutine
action. It is implemented by the command GOSUB.

This is another very powerful command, because it saves having to type
the same piece of program again and again. To see how it works, look at
GOSUB in action in Program Listing 6. Line 10 asks you to type any letter,
and line 20 calls up the subroutine in line 100. This consists of the INKEY$
routine. The computer will wait for you to press a key. When that happens,
the subroutine returns to the instruction after the place where it was called.
In this case, that’s the PRINT K$ instruction in line 20. The word LETTER
is printed alongside. In line 30, you are asked to type any number, and once
again the subroutine is called in line 40. This time the RETURN instruction
in line 100 causes the number to be printed with NUMBER alongside
because the return is in line 40. Just to be sure, we do it all over again in lines
50 and 60.

194

tutorial

See the devilish cunning of it all? It’s the same subroutine each time, but
it’s entered from different parts of the program. It returns to the instruc-
tion immediately following the GOSUB which called it. You can have as
many GOSUBs as you like, providing each one starts with a line number.
You can’t call up a subroutine which starts halfway along a line and ends
with RETURN.

If you forget the RETURN, the program will crash through, going to the
instruction which follows the last line of the subroutine. If there isn’t one,
the program will end, leaving you wondering what's happened.

If you enter a subroutine incorrectly, for example, forgetting the END in
line 70 of Program Listing 6, you'll get an error message in line 100—RG.
This means RETURN without GOSUB, because there is a RETURN com-
mand, but no GOSUB to call it. There’s no record inside the computer of
where it should return. It can’t return!

You can have a subroutine called from inside another subroutine. This is
called nesting, and you can nest subroutines until you run out of memory.
Program Listing 7 shows an example of a nested subroutine. The main pro-
gram asks for a YES/NO answer, and this, in turn, causes a GOSUB to the
INKEY$ routine we looked at earlier. This time, however, an error in the
typing of YES or NO causes another subroutine to be called, a flashing error
subroutine. Because this subroutine can be called from any part of the pro-
gram, it is available to signal an error later on.

Use subroutines every time a piece of programming is done more than
once in a program. The use of INKEY$ is one example. Another is any
PRINT routine which is more than a simple PRINT N$ type of command.

A problem that turns up eventually when you start using subroutines is
called passing parameters. Look at the simple subroutine in Program Listing
8. It compares two numbers, A and B, to determine which one is larger. This
is perfectly straightforward if you have two numbers in the program which
are represented by variables A and B. What happens if you haven't, or if you
want to compare several sets? This is the problem of passing parameters.
Whatever you want to compare has to be converted to the variable numbers
A and B, because these are the variables which are used in the subroutine.

In line 10, there is no problem. The numbers are entered directly from the
keyboard, and the comparison is made in line 20 by calling the subroutine.
In line 30, two words are input, and we compare their lengths by making the
variables A and B take the values of the word lengths. Then we call the sub-
routine. In line 50, two letters are input and their ASCII codes equated to
the variables A and B, so the subroutine can be used again to determine the
order of the letters. An END command is used just before the subroutine to
make certain that the subroutine cannot be entered accidentally, but must
be called each time it is to be used.

195

tutorial

Sometimes parameters have to be passed twice, once when the subroutine
is being entered, and again after returning from it. Program Listing 9 il-
lustrates this, using a comparison of numbers which are the tag numbers of
strings (the subscripts). In this simple example there is no reason why we
should have used L$(N) in the subroutine. If you remember, however, that
a subroutine like this would have to be called from several parts of a pro-
gram—perhaps to sort out string variables—you see it is important to keep
the variables used in the subroutine different from those in the main pro-
gram. Unless we return to the original variables L$(N), the printout in line
40 will be incorrect, because it will show only the original strings. If you
have a subroutine which isn’t working correctly, it could be that you’re not
passing parameters!

There’s one more useful command which makes use of subroutines. It’s a
menu command, ON N GOSUB, and it works just like ON N GOTO. Your
menu will list choices from one upwards and ask for a choice which is then
assigned to the variable SN. When the instruction ON N GOSUB is used, the
program will branch to one of a number of subroutines. For example, if
there were five menu items, we would need steps such as:

100 INPUT N: ON N GOSUB 200,300,400,500,600
Input 1, and you go to the subroutine which starts at line 200; input 2,
and you go to the subroutine which starts a line 300; and so on. If you want
less effort, you can use the INKEY$ answer instead of INPUT. Each subrou-
tine will return to the instruction which follows the ON N GOSUB com-
mand, even if the next instruction is on the same line 100.

Neat printing

Messy printing is something that will bug you once you get over the initial
thrill of seeing a program work. Professional programs are notable for good,
clear, well set out print routines, and there’s no reason why yours should
look scruffy, especially when you can write a subroutine which can be used
more than once, and in different programs that will make your print rou-
tines look neat. The main items needing attention are headings and under-
lining, boxing, and tabulation.

Headings are comparatively easy. The main thing is not to overkill. At the
start of a program, it’s sensible to have the title displayed in double-sized let-
ters, centered, with underlining, as illustrated in Program Listing 10. If you
have another 20 headings the same way though, it will tire the eye. Try
grading your headings in order of importance, with double-sized letters used
once, apart from a flashing error warning. The next important headings can
use double-spaced letters with underlines, such as in line 30 of Program
Listing 10. The least important headings can be inset (using TAB(10)) and
not underlined, but with a one line gap underneath. There is no reason why

196

tutorial

you should follow that scheme, but it does illustrate what I mean. To match
with the headings, print menus are in the same style.

To avoid looking at a set of instructions each time you run a program,
contain the instructions in a subroutine. They can then be consulted at the
start of a program if needed, but skipped if not.

A further refinement—if your program demands a lot of memory space,
delete the instruction lines automatically if they are not needed. The
DELETE command will run just as efficiently as a program instruction, as it
does in direct command mode. Program Listing 11 shows an example of this.

Boxing is another way to draw attention to something. This can be effec-
tive when a question is asked, and an answer has to be typed—look at Pro-
gram Listing 12, and run it to see what happens. The box is drawn in lines 20
and 30. In line 20 we pick the X-values of the ends of the box, and draw lines
down, making the box three print lines deep. In line 30 we draw them across
to complete the box. To program these effects, you need to use the video map
on page E/1 of your manual. I clip a piece of tracing paper over the video

. map and draw the shapes I want on top of the paper. I can then see what has
to be SET, to make the shape. It’s easy if you want only straight horizontal
or vertical lines. You can then use one FOR-NEXT loop for the Ys and
another for the Xs. .

Boxing can create some interesting effects. One s illustrated by adding the
new line 50 shown in Program Listing 13. Each character of the name is
peeled off by using the MID$ instruction, and at the same time part of the
floor of the box is reset. The effect is of letters dropping down and knocking
holes in the box, and it adds a bit of interest to what might be only a dull IN-
PUT. Remember though, once per program is enough for these tricks.

Tabulation is one of the things that can make a video screen or paper
printout look really professional. You may not feel your programs need neat
tabulation, but who knows? Take a look at Program Listing 14, which uses
string tabulations to round off the game from Part IIL. This is an easy one,
because four columns can be set by using the comma as a delimiter. We then
use a FOR-NEXT loop to print out the items, again using the commas as
delimiters. Another way of creating neat tabulation is to make use of the
TAB instruction. It has been used in Program Listing 15 to create a neat dis-
play of 90 random numbers. Line 10 sets up an array of 90 random numbers
of two digits. The print tabulation is in line 20, using two FOR-NEXT loops.
The first, FOR X =1 TO 90 STEP 9 sets up ten lines of numbers, and FOR
Y =0 TO 8 creates the nine number positions across each line.

Program Listing 16 shows the part of the routine which is of interest to us.
Since this is a money table, we assume that the quantities are dollars and
cents, and there are two figures after each decimal point. That means that if
the last cents figures are lined up, the decimal points must also be lined up,

197

tutorial

and we can easily line up the right-hand side by using TAB and LEN. The
figures are entered in line 10, and the variable used for the total T is set to
zero. In line 30, we set up another FOR-NEXT loop in which we calculate
the total (T =T + Z(N)) and convert the quantity Z(N) to a string so that we
can use LEN on it. In line 40, we print the value Z(N) at the tab position
LEN(Z$), which starts before TAB(30). This spacing should be just right to
get the end figures of the quantity on the TAB(30) position.

What do you do if someone enters a number not having the correct
number of figures after the decimal point? The obvious answer (to me,
anyhow) is to pack the number with zeros until it has two figures after the
point. The question is—how? Program Listing 17 will do just that. We have
a new entry procedure here, which turns each number into a string, Z$, and
then tests Z$ to find where it has a decimal point. This is done by finding the
length of Z$ and examining each character in turn, using the FOR-NEXT
loop to see if a decimal point is present—ASCII code 46. If the figure, con-
verted into a string, has two digits after the decimal point, it will be detected
in line 30. If Z$ = 142.64 we will jump out of the loop in line 20 at K =4, be-
cause the decimal point is the fourth character along from the start. The
total number of characters is 6, so Z = K — 2, and we can jump to line 60 to
print the amount,

Line 40 detects a figure with one digit after the decimal point. When this

Finally, line 50 sorts out the last possibilities. If the number has been written
with a decimal point but nothing after it, a pair of zeroes will be added, and
if there is no decimal point (so that K will have taken a value of L + 1 before
stopping the loop, and Z —~ K = - 1), then a decimal point and two zeroes
are added.

This program applies to money quantities, but the techniques can be
adapted for anything else where you need to recognize a feature and line up
on it.

Tape on Tap

In Part IT we looked at the CSAVE and CLOAD procedures for recording
and replaying programs, to avoid the tedious task of having to key in a pro-
gram each time you switch the computer on. You've probably discovered
other chunks of information that you don’t want to have to enter each time.
If you have a home finance program which you use once a week, you cer-
tainly don’t want to spend the last week of the year reentering all the data
for the 51 previous weeks. On the other hand, you don’t want to keep the
computer running all year, so you can enter financial data once a week. You
need to record the data once a week so that it can be recalled.

Some programs need more data than the computer can hold, though it

198

tutorial

may not be needed all at once. In these cases, data has to be stored on
cassette or some other storage system. A pack of recorded data is called a file,
and data filing is an important and interesting topic. Cassette data files are
called serial files—you start recording at one end of the tape, and you keep
on until you're through or you hit the other end. There’s no way you can au-
tomatically pick a piece out of the middle of the taped data without reading
everything that’s gone before, unless you note the tape counter readings of
recorded sections. This problem drives most people to use disks because a
disk system comes with an operating program (the Disk Operating System,
or DOS). It does the file-finding for you. Disk filing isn’t all sweetness and
light though. It’s my opinion that most nonprofessional users don’t need disk,
especially since there is an alternative, the Exatron Stringy FloppyT™,

Back to cassette files. There’s a record command and a replay command.
The record command is PRINT# -1, and the replay command is IN-
PUT# ~ 1. When you play back, two asterisks appear, but they don’t blink.
The # — 1 means that we have only one cassette recorder on line. If you have
an expansion interface (which disqualifies you as a beginner), you can run two
cassettes, # — 1, and # — 2. Since most people buy expansion interfaces to avoid
cassettes, we’ll stick to the # — 1 channel, however, which uses the normal
five-pin cassette connector at the back of the TRS-80.

There’s a world of difference between the CSAVE and CLOAD com-
mands and the PRINT# -1, and INPUT# -1 commands. When you
CSAVE a program, the listing is saved. You don’t have to do anything spe-
cial to ensure this. Similarly, when you use CLOAD, you load in the whole
program. PRINT# - 1 and INPUT# — 1 are different. You have to say if you
are recording or replaying a string or a number, and the size is then
restricted. The maximum safe size for one record operation is 248
characters; you can send out 255, but you can only get back 248. In addi-
tion, you have to say what you are recording, and no commas must appear,
even within quotes, in the string which is recorded.

Suppose you have two strings, L$ and S$, and two numbers, N and J,
which you want to record. Your recording command will look something like:

100 PRINT# - 1, L$,S$,N,]

When that instruction comes along, you must be prepared with a cassette
ready to record, and the record/play keys pressed. Usually we have a “hit
any key to start” step just before the recording stage, as shown in Program
Listing 18. The PRINT# ~— 1 instruction in line 40 will record these items on
the tape, along with a leader and a brief trailer (end byte). Each PRINT# —
command causes the leader to be recorded, followed by the data, then the
trailer, so that quite a lot of tape will be used even if there is only one byte of
data to be recorded.

199

tutorial

To replay the data, you need a section which contains an INPUT# —1
command with the same arrangement of strings and numbers as the
PRINT# — 1 command. The variable names don’t have to be the same, but
the order and number of the variable data must be. If we want to replay the
data recorded by the PRINT - 1 command used in the previous example, we
could use an instruction such as:

INPUT# - 1, A$,B$,C.D
This uses different variable names, but the arrangement is identical—two
strings followed by two numbers. Any other order, or a differing number of
string or number variables, will cause an error message, FD (faulty data) if
the sequence is wrong, or OD (out of data) if you have asked for more data in
the INPUT command than was recorded. It’s not a bad idea to use different
variable names on the replay.

This is very straightforward stuff, but as it is (and the manual isn’t helpful
on this point), it requires time-consuming routines. It uses a lot of tape. If
you set up a loop which looks something like:

200 for J = 1 to 100: PRINT# - 1,N(J):NEXT
you’'ll wait a long time while it records, because each step in the F OR-NEXT
loop starts a new recording with leader and trailer. This line will cause 100
recording runs!

Pack it Close

Since you probably bought a computer to save time, this lengthy pro-
cedure is useless. All would be well if we could just use a line like 300
PRINT - 1, FORJ = 1 TO 100:N(J):NEXT—but we can’t. The problem s to
pack the data so that 240 bytes or so can be recorded in one chunk. I haven't
seen this topic discussed very much in magazine articles, but it’s one I've spent
time on. It could be that this will help even hardened, old time operators.

The solution is simple, if the data consists of numbers or strings which are
the same length. If they are numbers, convert them into strings, using the
STR$(number) command. Remember, this packs strings into long strings,
using the + (concatenate) string action, and records the long string. Pro-
gram Listing 19 shows what has to be done. Line 10 sets up a FOR-NEXT
loop to input 50 numbers of four digits each, and the CLEAR statement
prepares for this. Each number is converted into a string as it is entered, and
the length is tested to make sure you don’t cheat. These numbers can come
from any part of the program. The packing routine is in line 40. S$ was in-
itialized as a blank string in line 10, and it now has the number string tagged
on. After three strings, for example, 1234, 5678, and 9012, the string S$ is
123456789012. This string increases until all 50 numbers have been joined,
and S$ is 200 characters. The long string is recorded. There will be a leader
and a trailer recorded with it, and you have saved a lot of recording time.

200

tutorial

If the number existed in the form of N(J) before the packing step, you will
need a FOR-NEXT loop which converts each number into a string and then
packs it. Make sure that S$ is set to blank (“’) before the FOR-NEXT loop
which packs it. Otherwise you can get some peculiar results when you do the
routine more than once.

Replaying a packed string is easy, provided you know how it was packed.
In this example, we used data in four-digit units, 50 to a string. Our replay
procedure looks something like Program Listing 20. Lines 500-520 are the
usual replaying procedure, rewound to the correct place, ready for replay.
At 520, the 200-byte string which we’ve labelled L$ will read in from the
cassette. Converting this into the form we need, 50 sets of numbers, is done
in line 530. The FOR-NEXT loop sets the number as 50, and the expression
L(N) = VAL(MID$(L$,4*N — 3,4)) gets the groups. When N =1, we try to
find VAL(MID$(L$,4*1 — 3,4) which is the value of the group of four
characters starting with character 1. That’s the first set of four. WhenN =2,
4*N — 3 is 5, so we read another four starting with character five, That’s the
second set of four.

The key to this is the formula 4N - 3 which we’ve used to find the first
character from 1 to 50. Whatever number of digits you use for a group, it is
always similar; it’s the number of coded digits multiplied by N, with one less
than the group number subtracted; if you are dealing with seven-character
groups, the formula would be 7+N — 6. This style of packing and unpacking
can make cassette files more efficient than the Level II manual suggests. It
can even delay abandoning cassettes!

Suppose that the items you record are not in convenient groups of four or
whatever? One answer is to pack them so that they are a standard length.
Suppose the items are single-precision numbers with up to six digits. There’s
no reason why any number of less than six shouldn’t be packed with blanks
up to six-digit length, using something like Program Listing 21. The key part
of the routine is in line 20:

N$ = STRING$(7-LEN(N$),32) + N$

If N$ is 25.2, then the length of the string is five characters, because the
STR$ conversion always adds a leading blank. The instruction is to form a
number of blanks (ASCII 32) equal to 7 — 5, and add these to N$, making N$
two blanks longer. When this lot is unpacked, the VAL command will sim-
ply remove these blanks again.

Maybe you’re hard to please, and you want to pack together strings of dif-
ferent lengths. You’ll object to packing your valuable tape with blanks,
which can happen if some are one or two characters and others 20 or more.
There are two solutions in BASIC which I use (and others in machine code).
I'll describe the simplest of the BASIC methods here—it’s rather slow, but it
works well. This routine depends on the use of ASCII character 128. Itis a

201

tutorial

blank, like ASCII 32, but with a difference. ASCII 32 is what you get when
you hit the space bar on the keyboard, but ASCII 128 never gets entered
from the keyboard, and the computer recognizes it as a different character.
If we pack strings with 128 between them, we should be able to unpack
them by scanning the replayed string and looking for the 128 code number.
This is what makes the replay slow, because all the replayed characters have
tobe checked. There is an enormous saving in time, compared with record-
ing each string. The speed of the routine doesn’t matter if the strings are
displayed on the video screen. If anything, we’ll probably want to slow
things down.

Program Listing 22 shows the routines. The packing is fairly straightfor-
ward, and the long string is formed with a CHR$(128) between each added
string. Make sure that the total number N is recorded to make playback
easy. Another addition is the string length detecting routine in line 570. This
ensures that the string does not become too long to record, because you don’t
know how many you can pack. If one more string makes the total too long, it
is recorded, then reset to zero so that packing can continue.

The unpacking routine examines each character of a replayed long string
until a 128 appears. The assembled string is given a subscript number, the
number is incremented, and the unpacking routine continues. The end
comes when the subscript number equals the number of strings recorded, or
when an end of data code is detected. I've opted for a recorded number in
this example.

Routines like these convert cassette data files from rather useless
curiosities into reasonable methods of storing and replaying data. The high-
speed methods using machine code (with routines built into the TRS-80
ROM) can be impressive. One warning-—always make a backup cassette of
valuable data, just as you make a backup of a valuable program. It’s worth-
while to put a special routine in your programs to do this, such as in Program
Listing 23.

202

tutorial

Program Listing 1

1¢ CLS:DEFINT K,N

20 PRINTCHRS (23)TAB(15) “"MENU":PRINTTAB(15) "#***" ;pPRINTT
AB(1)"1. TO ENTER NEW DATA":PRINTTAB(1)"2. TO READ
EXISTING DATA":PRINTTAB(1l)"3. TO ENTER DATA FROM
TAPE" : PRINTTAB(1)"4. TO TERMINATE PROGRAM":PRINT"P
LEASE CHOOSE BY NUMBER"

30 INPUT K:IF K<1 OR K>4 THEN CLS:PRINT"MISTAKE - PLEAS
E TRY AGAIN":FOR N=1T0508:NEXT:GOTO20

4¢ IF K=1 THEN 300

50 IF K=2 THEN 709

60 IF K=3 THEN 1880

78 IF K=4 THEN CLS:END

30¢ CLS:PRINT"DATA ENTRY STARTS HERE":STOP

70@ CLS:PRINT"DATA READ SECTION STARTS HERE":STOP

106¢ CLS:PRINT"TAPE ENTRY SECTION STARTS HERE":STOP

Program Listing 2

18 DEFINT K,N

20 CLS:PRINTCHRS$ (23)TAB(15) "MENU": PRINTTAB(15) "###4#" : PR
INTTAB{2)"l. GAME OF GENDER":PRINTTAB(2)"2. GAME O
F GROUPS" :PRINTTAB(2)"3. GAME OF YOUNG":PRINTTAB(2
)"4. TERMINATE":PRINT:PRINTTAB(2)"PLEASE SELECT BY

NUMBER"

38 K$=INKEYS$:IF K$="" THEN 36 ELSE K=VAL(KS)

49 IF K<1 OR K>4 THEN CLS:FOR N=1TO01¢:PRINT@473,"INCORR
ECT ENTRY":FOR Z=1TO26:NEXT Z:PRINT@473,STRINGS (15
¢32) :FOR 2=1TO020:NEXT Z:NEXT N:GOTO28

58 ON K GOTO 306,700,1000,5008

68 END

3080 CLS:PRINTTAB(25)"GAME OFGENDER":STOP

780 CLS:PRINTTAB(25)"GAME OF GROUPS":STOP

1600 CLS:PRINTTAB(25)"GAME OF YOUNG":STOP

5008 CLS:END

Program Listing 3

1# PRINT"HIT ANY LETTER TO PROCEED, ANY NUMBER TO RETUR
Nll

2f K$=INKEYS$:IF K$="" THEN 20

3¢ IF VAL{KS)=0 THEN 100 ELSEA4#

4@ CLS:PRINT"RETURN PROGRAM STARTS HERE":STOP

16¢ CLS:PRINT"PROCEED PROGRAM STARTS HERE":STOP

Program Listing 4

1# CLS:PRINT"HIT ANY LETTER TO PROCEED, ANY NUMBER TO R
ETURN"

20 K$=INKEYS$:IF K$="" THEN 20

38 K=ASC(KS):IF K>48 AND K<58 THEN 50 ELSE IF K>64 AND
K<91 THEN 184

40 CLS:PRINT@480, "MISTAKE":FOR N=1T0580:NEXT:GOTO16

50 PRINT "RETURN PROGRAM":STOP

16§ PRINT "PROCEED PROGRAM":STOP

203

tutorial

Program Listing 5

1600 CLS:A$=""

1610 KS=INKEYS$:IF K$=""THEN 1280 ELSE PRINT K$;

1920 AS=AS$+K$:IF LEN(A$)<2 THEN 1010

1638 IF LEN(A$)=2 AND AS$="NO" THEN M=2:G0TO02800

1640 IF LEN(A$)=3 AND A$="YES" THEN M=1:G0T02000

1958 IF LEN(A$)=2 GOTO181§ ELSE F$="MISTAKE":GOT01500

1068 END

1208 PRINT@1,"*":FOR Z=1TO3@:NEXT Z:PRINT@1,” ":FOR 2=l
TO30 :NEXT Z:GOTO1010

1508 CLS:PRINTCHRS({23):FOR I=1TO15:PRINT@470,F$:FOR J=1
020 : NEXT J:PRINT@476,STRINGS(28,32) :FOR J=1T028:N
EXT J:NEXT I:PRINTCHRS(28):G0T01008

2088 IF M=1 THEN CLS:PRINT"THE 'YES' PROGRAM FOLLOWS":E
LSE CLS:PRINT "THE 'NO' PROGRAM FOLLOWS"

Program Listing 6

18 CLS:PRINT "TYPE ANY LETTER"

28 GOSUB 1@8:PRINT K$;" (LETTER)"

3¢ PRINT:PRINT"TYPE ANY NUMBER"

48 GOSUB 1P@:PRINT K$:;" (NUMBER)"

58 PRINT: PRINT"NOW TRY ANY KEY"

68 GOSUB 1@0:PRINT "YOU CONFUSED ME"

78 END

108 K$=INKEY$:IF K$="" THEN 100 ELSE RETURN
118 END

Program Listing 7

16 CLS:PRINT"PLEASE TYPE YES OR NG (DON'T USE ENTER)":G
OSUB 1880 :PRINT :CLS:PRINT"YOUR CHOICE WAS ";M

20 END

1666 As=""

1618 K$=INKEYS$S:IF K$="" THEN 1610 ELSE PRINT K$;

1820 A$=AS+K$:IF LEN(A$)<2 THEN 10180

1639 IF LEN(A$)=2 AND A$="NO" THEN M=2:RETURN

1846 IF LEN(A$)=3 AND AS$="YES" THEN M=1:RETURN

1850 IF LEN(A$)=2 THEN 1610 ELSE F$="MISTAKE":GOSUB 120
8:GOTOL10

1260 CLS:PRINTCHRS(23):FOR I=1TO15:PRINT@478,F$:FOR J=1
T020 : NEXT J:PRINT@470,STRINGS (28,32):FOR J=1T020:N
EXT J:NEXT I:PRINTCHRS(28):RETURN

Program Listing 8

18 CLS:INPUT "TWO NUMBERS,PLEASE";A,B

280 GOsUB510

3¢ INPIT"TWO WORDS, PLEASE"; N§,L$

40 A=LIN(NS$):B=LEN(L$):GOSUB 518

5¢ INPUT "TWO LETTERS, PLEASE";A$,B$

60 A=ASC(AS):B=ASC(BS$):GOSUB 510

76 END

500 END

518 IF ADB THEN CLS:PRINT "FIRST IS LARGER"
52@ IF A=B THEN CLS:PRINT "THEY ARE EQUAL"
538 IF A<B THEN CLS:PRINT "SECOND IS LARGER"
548 RETURN

204

tutorial

Program Listing 9

10 REM YOU WOULD PLACE A DIM STATEMENT HERE

20 FOR N=1TO6:READ X(N),LS$(N):NEXT

38 FOR N=1TO6 STEP2:A=X(N):B=X(N+1):Y$(N)=L$(N):Y$(N+1)
=L$ (N+1) :GOSUB 208:L$ (N)=Y$ (N):L$ (N+1)=YS$ (N+1)

40 PRINT X(N);;;Y¥Y$(N);TAB(30)X(N+1);;Y$(N+1) :NEXT

196 END

2060 IF A>B THEN Z$=YS$(N):YS$(N)=¥Y$(N+1):YS$(N+1)=2$

216 IF A=B THEN PRINT "EQUAL";

220 RETURN

408 DATA 2,"THUMB",1,"FINGER",7,"TOE",14,"FOOT",8,"JAW"
R 8, "EAR"

418 END

Program Listing 10

16 CLS:PRINT@344,CHRS(23) "HEADING" : PRINTTAB(12) STRINGS(
7,48)

28 FOR N=1TO1200:NEXT:PRINT CHRS(28):PRINT TAB(13);

3¢ L$="SUBHEADING":FOR N=1TO LEN(LS$):PRINT MIDS(LS$,N,1)
" ";:NEXT:PRINT:PRINTTAB({13)STRINGS(37,48)

40 PRINT PRINTTAB(6)"SUB ~HEADING!" : PRINT: PRINTTAB(Z)"TH
IS GIVES A REASONABLY NEAT APPEARANCE"

Program Listing 11

18 CLS:PRINTE@3,"DO YOU NEED INSTRUCTIONS?":GOSUB 1808:1
F M=1 THEN GOSUB 5008 ELSE IF M=2 THEN DELETE 5060
~5020

2@ PRINT "NEXT STEP"

38 STOP

1800 REM THE YES/NO SUBROUTINE GOES HERE

1810 RETURN

5608 PRINTTAB(26)"INSTRUCTIONS":PRINTTAB(26)STRINGS(12,
48) : PRINT

5010 PRINTTAB(2) "THE OPERATING INSTRUCTIONS GO HERE"

5020 RETURN

Program Listing 12

16 CLS:PRINT@325,"WHAT IS YOUR NAME?"
2@ FOR ¥Y=18 TO 26 :SET(32,Y):SET(92,Y) :NEXT
3¢ FOR X=32 TO 92:SET(X,18) :SET(X,26) :NEXT

48 PRINT@465,"";:INPUT N$
50 PRINT@71G,"YOUR NAME IS ";N$;" ,HUH?"
60 END

Program Listing 13

10 CLS:PRINT@325,"WHAT IS YOUR NAME?"

2@ FOR ¥=18 TO 26:SET(32,Y):SET(92,Y) :NEXT

30 FOR X=32 TO 92:SET(X,18):SET(X,ZG):NEXT

4@ PRINT@465,"";: INPUT N$:FOR X=32 TO 92:SET(X,24) :NEXT

56 FOR L=1 TO LEN(N$) RESET (36+2*L,24): PRINT@657+L MID
$(N$ L,1):FOR N=1TO 158:NEXT N:NEXT L

60 EN

205

18
20

39
40

tutorial

Program Listing 14

FOR N=1TO4 :READ AS(N),F$(N),Y$(N),G$(N) :NEXT

CLS:PRINT "MALE","FEMALE","YOUNG","GROUP":PRINT:PRIN
T

FOR N=1T04:PRINT AS(N),FS(N),¥Y$(N),G$(N) :NEXT

DATA "GANDER", "GOOSE","GOSLING","GAGGLE", "BULL","COW
", "CALF", "HERD", "RAM", "EWE", "LAMB", "PLOCK", "DOG", "
BITCH", "PUPPY", "PACK"

1e
20

Program Listing 15

DIM N(186):FOR L=1T0O90:N(L)=RND(99) : NEXT
CLS:FOR X=1T098 STEP 9:FOR Y=@TO8:PRINTTAB(Y*6+4)N(X
+Y) ; ¢ NEXT Y:PRINT:NEXT X

18

20
30
49
50

Program Listing 16

CLEAR206:FOR N=1 TO 8:INPUT "CASH AMOUNT"; Z(N):NEXT
:T=0

PRINT "CASH SUMS"

FOR N=1TOB8:T=T+Z(N):2$(N)=STR$ (Z(N))

PRINTTAB (3@ - LEN(2$(N)))2$(N):NEXT

PRINT: PRINTTAB(7) "TOTAL IS :~"TAB(38 - LEN(STRS{T)))
T

18

20
38
48
58

55
60
78
88
9¢

Program Listing 17

CLEAR 200:FOR N=1TO8:INPUT "CASH AMOUNT";Z$(N):Z=LEN
(28 (N))

FOR K=1 TO Z:IF MIDS(2$(N),K,1)<>"." THEN NEXT K

IF %-K=2 THEN 55

IF 2~K =1 THEN 2$(N)=2$(N)+"@":G0T0O55

IF Z~K=0 THEN Z$(N)=2$(N)+"08" ELSE Z$(N)=Z$(N)+".08
"

NEXT N

T=@:CLS: PRINT"CASH SUMS"

FOR N=1TO08:T=T+VAL (2% (N))
PRINTTAB{3@~LEN(%$(N)))2Z$(N) : NEXT

PRINT: PRINTTAB (7) "TOTAL IS :~ "TAB(3@-LEN(STR$(T))})T

166 END

10
38
LY
58
60

76

Program Listing 18

INPUT "TWO WORDS, PLEASE";L$,S$

INPUT"...AND NOW TWO NUMBERS";N,J

CLS:PRINT@135, "PREPARE FOR RECORDING DATA,PLEASE":PR
INT: PRINT"PRESS ANY KEY TO START RECORDER"

K$=INKEY$:IF K$="" THEN 40

PRINT#~1,L$,S$,N,J

CLS:PRINT "RECORDING COMPLETE - PRESS STOP KEY ON RE
CORDER"

END

206

10
208

30
40

tutorial

Program Listing 19

CLEAR30@:58="":FOR J=1T050

INPUT "ENTER A FOUR-FIGURE NUMBER,PLEASE";N:N$=RIGHT
$(STRS (N) ,4)

S$=S$+NS::NEXT

CLS:PRINT@330, "PLEASE PREPARE FOR RECORDING - PRESS
ANY KEY TO START"

50 K$=INKEY$:IF K$="" THEN 50

60 PRINT#-1,58%

78 CLS:PRINT"RECORDING COMPLETE":PRINT "S$ IS ";S$
Program Listing 20

508 DIM L(51):PRINT"PLEASE PREPARE FOR REPLAY. HIT ANY

KEY WHEN READY":L$="":N=0#

510 KS$=INKEY$:IF K$="" THEN 510

520 INPUT#-1,LS$

53¢ FOR N=1TO58:L(N)=VAL(MID$(L$,4*N-3,4)) : NEXT

548 PRINT"DATA READY - ":FOR 2=1TO58@:NEXT:FOR N=1TO050
STEP 10:FOR X=8T09:PRINT L{(N+X);:NEXT X:PRINT:NEXT
N

55@ END

Program Listing 21
18 8$="":FOR J=1 TO 3@:PRINTJ".";:INPUT N

N$=STRS (N) : N$=STRINGS (7 ~LEN(NS),32) +N$:5$=S$+N$:NEXT
REM DATA IS NOW PACKED

PRINT: PRINT"PACKED DATA - ";S$

REM NOW RECORD IT!

500
5186

520
538
540
558
560
570
580
598
600

618
620
630

640

650
660
678
688

Program Listing 22

CLS:PRINT"PREPARE A CASSETTE FOR A TAPE FILE"

PRINT"NOTE THE STARTING POINT ON THE TAPE COUNTER,
AND PRESS THE PLAY AND RECORD KEYS"

PRINT"PRESS ENTER WHEN READY"

INPUT X:CLS:PRINTTAB(21) "RECORDING...PLEASE WAIT"

PRINT #-~1,I: REM I IS THE NUMBER OF ITEMS

AS=""

FOR N=1 TO I:A$=AS$+L$(N)+CHR$(128)

IF LEN(AS$)+LEN(L$(N+1)<245 THEN 598

PRINT#~1,A$:AS=""

NEXT N:PRINT #-1,A$

CLS:PRINT" RECORDING FINISHED. PRESS ENTER TO RETUR
N TO MENU":REM NEED A RETURN TO MENU ROUTINE HERE

STOP: REM REPLAY ROUTINE STARTS HERE

CLS:PRINT@336, "PREPARE THE DATA TAPE FOR REPLAY"

PRINTTAB(13)"PRESS PLAY KEY; WHEN READY PRESS ENTER
"

INPUT X:CLS:PRINTTAB(19) "ENTERING DATA, PLEASE WAIT
"iX=1
INPUT#~1,1

INPUT#~-1,A$:FOR N=1T0245:B$=MIDS (A$,N,1)
IF BS<>CHR$(128) THEN L$(X)=L$(X)+B$:G0T0690
X=X+1

Program continued

207

tutorial

699 NEXT N:IF X<I GOT0668
786 CLS:PRINTTAB(26)"DATA ENTERED."
713 REM NOW YOU DISPLAY, OR OTHERWISE USE DATA

1060

1010
1829
1838

1048

Program Listing 23

T=§: REM DATA MUST BE IN SINGLE STRING FORM. THE M
ESSAGE WILL ALREADY HAVE PRINTED THAT RECORDER IS
TO BE MADE READY, ENTER PRESSED TO START RECORDING
PRINT#-1, AS:IF T=1 THEN 1040

PRINT"NOW PREPARE BACKUP CASSETTE":T=1
CLS:PRINT"PRESS ENTER WHEN READY TO RECORD BACKUP"
:INPUT X:GOTOL018

CLS:PRINT "RECORDING COMPLETE":REM PROGRAM THEN PR
OCEEDS

208

TUTORIAL

Into the 80s
Part VII

by Ian R, Sinclair

y now, you've lost your beginner’s status, and it’s time to look at a few
items which had to be left aside earlier. The first of these is program
planning. Many BASIC programs grow untidily and haphazardly from an
idea or from another program. We've all looked at someone else’s program
and thought, “Hey—1I could really make something out of this.” After a lot
of work you can have a program that pleases you, but it’s what I call a Stein
program —Frank N. Stein-——made from bits and pieces, and full of GOTOs.
When you start programming, you're glad to write a program that works,
and you don’t really care about how it was planned and what it looks like.
You should now start to care about these points, because there is a con-
siderable saving in time that can be made.

I don’t have much time to spend in front of the computer. Most of my pro-
gram work has to be done in other places, at lunch breaks, where and when 1
have odd moments. Because computer time is precious, I don’t want to
spend it sorting out syntax errors, NEXT without FOR, and other needless
errors. This is particularly important on the Level II TRS-80, because every
time you edit, you lose any variable values in the program, so the whole pro-
gram must be run again from the start. It makes sense, therefore, to have all
syntax errors sorted out before you enter a program.

Why syntax in particular? When the TRS-80 detects a syntax error, which
might be very trivial, it hangs up the run, displays the SN error message, and
then enters edit mode automatically, with the offending line number dis-
played and waiting for you to edit it. If you make any attempt to edit, even
L for LIST, you reset all your variables. On some programs this wouldn’t
matter, but if your program involves reading in data from tape or entering a
number of items from the keyboard, you won’t want to lose it if there’s any
way of avoiding it. Make a note of the line number and then press the
RESET button; this takes you out of the EDIT mode without losing the
variables. Alternatively, press Q for Quit.

You can now type GOTO (next line) and processing will take up from
there, unless there is a NEXT whose FOR was in the previous line. If the line
you lost had an important command in it, substitute with a direct com-
mand. For example, if the line read 510 PRRINT“VALUE IS”;V:
N =V12 + 2+C - 6+L, and it hung up because of the double R in PRINT
(when will you do something about that key bounce?), press RESET, type
N =V12 +2+«C - 6+1. ENTER, and then type GOTO 520, assuming that
next line is 520, and ENTER again. Your program should then continue.

209

tutorial

Practically all the commands of the TRS-80 can be used either from the
keyboard directly or within a program with the same effect.

You can spend a lot of time at the keyboard sorting out flaws which never
should have gotten that far. Program planning should make your keyboard
hours more productive. A program should start with an outline plan of what
you want it to do. If it's a game program, you need to consider what the
strategy of the game is to be and write down the rules. This is the hardest
part of any game program, and it’s why there are several thousand versions
of “Hangman.” If you start with simple, established rules, you've saved
yourself months of effort. You can’t start programming until you know what
you need to program,

Once you have a clear idea of what the program is supposed to do, write it
down. It’s only too easy to make a lot of alterations to a program, which will
leave you at the next session wondering what it was you wanted to do, and
why you did it. Lots of professional programmers use flowcharts, and flow-
charting is urged on every trainee programmer. I dislike flowcharts. They
complicate rather than simplify for me, causing too much visual clutter. You
can find plenty of reading matter about flowcharts elsewhere—I'm going to
describe how to work without them. To be fair, flowcharts can be very
useful when you are working in other programming languages, but I feel
that they aren’t really appropriate to BASIC.

I start by writing down what I expect the program to do—at what stages 1
need to put in information and at what stages I expect to see information on
the screen (or the printer). This is my equivalent of flowcharting, but in
words rather than in pictures. Once I'm sure what I want the program to do,
I sit down with a stack of paper. As I use a sheet, I title it and give it a page
number. Next, I design any menu stages. I also note what is going to happen
when each choice is made.

Construction

The next step is program construction. I usually go for a very short (10-20
line numbers) main program, with the choices arranged as subroutines, so
that I can alter them as much as I want to later. Program Listing 1 shows an
example of this—each part which might need changing is a subroutine, and
the main program consists of only five lines. All the INKEY$ steps, YES/NO
decisions, and so on, are left as subroutines, since they can be standard
subroutines which are used in several programs. I keep a tape of all my
subroutines and run that in as a starter for any program I am entering.

If the title is short, the method of underlining I've shown in Program List-
ing 1 is quicker than using STRINGS. If the complete program is long, it’s a
good idea to delete the instruction lines if instructions are not needed. This
can be done immediately after the decision step by using the fact that a NO

210

tutorial

answer returns M=2. A line such as 100 IF M =2 THEN DELETE
8000-8100 will delete instruction lines 8000 through 8100. This leaves you
free to design your instructions after the program is running as you want it,
Any alterations you make in the instructions won’t affect the main program.
If the instruction lines are lines 20 through 120, adding more instructions
will have to be done carefully. In addition, it's difficult to follow what the
program does when it gets cluttered with extra lines.

The rest of the program is designed in the same way, with a menu display
followed by the INKEY$ routine letting you choose an item. This subroutine
would normally include any error-trapping you needed. Line 40 is the menu
subroutine crossroads. Line 50 is needed because after any of these sub-
routines has been used, the program will return at line 50. We have to offer
the choice of a return to menu or ending the program.

Not every program can be put into this form; there are programs which
need no menu choices, and which use very few subroutines. Once the main
program has been written you can start designing the subroutines. Each of
these should be treated just like a main program.

Watch Your Variables

Each time you make use of a variable, N, A$, or whatever it is, write
down what you use it for and in what lines it’s used. For example, it’s easy to
get into the habit of using N in FOR-NEXT loops. If you use N for anything
else within a loop, you will wreck the loop. If you start a loop as 2400 FOR N

= 1TO 200:INPUT N$(N) and follow it up with something like 2420 PRINT-
CHR$(23)L$(N):FOR N = 1TO1500:NEXT and then several lines later you
have 2450 NEXT, don’t be surprised if odd things happen.

At 2400, N will take the value 1, and you input the first string. At 2420,
this string is printed, and a delay loop is used to keep the large letters on the
screen for a time. The trouble is that the delay loop also uses N, so that at the
end of the delay loop, N will be set to 1501. At line 2450, the NEXT com-
mand will find that N is 1501, much greater than the jump-out-of-loop
value which was set in line 2400, so the loop stops. You could spend a lot of
time wondering why only one value ever got itself input and displayed,
especially if you save memory by writing long lines with the variables buried
deep inside.

Also note how each subroutine uses variables from the main program or
from other subroutines, and what it does with them. For example, if you
have a set of strings stored as array L$(N), and these are used by a subroutine
and changed in the subroutine, make a note of this. If you need to use the un-
changed value in another subroutine, you will have to use a different
variable name for the changed value.

After using this method of constructing programs for some time, you’'ll
have a good stock of useful subroutines. Some of these (neat printing

211

tutorial

routines, tabulated displays, record and replay of packed data, etc.) are like-
ly to be used in every program you write. Keep them together on a cassette,
with a note of what they do and what line numbers are used. Make sure you
also note what variables each subroutine uses, what variables have to be
passed to it, and what variables it passes back. If you write programs which
use many subroutines, then you can update and improve them easily. Got a
tape replay subroutine which is too slow? Some day you’ll come across a
faster one, and you’ll be able to rewrite it in subroutine form and use it to
replace the old one. Even if these new routines need more lines, the
subroutine methods allow you to leave plenty of space so there’s no need to
try to shoehorn a new routine in between lines 40 and 50, for example.

PEEK and POKE

Everything that goes on inside the TRS-80 involves the use of machine
code. Each command used in BASIC calls up a machine-code subroutine
which in turn calls other subroutines to do the work. The BASIC used by the
TRS-80 is interpreted BASIC, which means that when you RUN, each com-
mand calls up the machine-code subroutines one by one as the program pro-
gresses. This is a lengthy and clumsy way of using BASIC, and mainframe
machines use a program called a compiler, which converts all the BASIC
commands of a program into one large machine-code program, rather than
operating piece by piece. Compiled BASIC runs a lot faster, but it’s not easy
to edit, which is why it’s not used much in microcomputers. A good ma-
chine-language program runs a lot faster and takes up much less memory
space than the equivalent BASIC program, which is why so many long pro-
grams are written in machine code.

A machine-language program consists entirely of numbers between 0 and
955. A lot of books and articles show these numbers in the hexadecimal scale,
which is based on sixteen, as compared to the normal scale based on ten.
Hexadecimal numbers use the letters A through F to represent the decimal
numbers 10 through 15, and they make any machine-language program
look highly exotic until you get accustomed to them.

The use of hexadecimal codes is a hangover from early microprocessor
units, and the TRS-80 displays every number in ordinary decimal form. It
therefore seems pointless to keep converting numbers into hexadecimal and
back again just to represent machine-code programs, which the computer
converts into binary code anyway. A lot of information in the TRS-80 codes
comes in a mixture of hex and decimal. Conversions always cause mistakes, so
I work entirely in decimal unless I am writing new machine-code programs.,

The Program Line
The PEEK command lets you find code stored at any memory location in-

212

tutorial

side the computer. Using PEEK does not alter any of the codes, so you can
PEEK to your heart’s content. One very instructive PEEK is at a program in-
struction line, and Program Listing 2 lets you do just that. The number
17129 is the address number of the first byte of free memory into which
BASIC programs are entered. When you PEEXK there, you are looking at the
first code of any program that has been entered. No matter what number
you give to the first line of your program, the first code is always stored at
17129. Our program lets you look at the first ten code numbers.

For the moment, ignore the first two numbers in the series, and concen-
trate on the third and fourth, which are 10 and 0. These constitute the line
number. Two codes are used, because we can use line numbers up to 65529,
which uses two bytes. The line number is stored in two parts: The lower part
comes first, and the upper part comes second. The actual decimal number is
determined by adding the lower part to 256 multiplied by the upper
part—in this case, it's 10 + 256+0. Line 1000 would be 232,3, because 232
+ 3+256 =1000. Table 1 shows how to convert decimal numbers to num-
bers in TRS-80 coded form.

The first and second numbers are the address number of the next line, so
that the TRS-80 can pick up its directions at the start of each line. The
numbers in our example should be 9,67, because the next line should start at
address number 9 + 67+256 = 17161. When you PEEK at a piece of com-
pletely unused memory, you will find that the codes are alternately 0 and
255, which are the numbers that are set into the memory by the power-on se-
quence. Some bytes (low in memory address number) are set to other values
when the BREAK key is pressed.

Whenever you type a line number, you use up five bytes of memory, con-
sisting of a zero which is placed at the end of the previous line (to indicate
that it has ended), the two bytes of the next line address, and the two bytes of
the line number. Avoiding short lines wherever possible, even if it means us-
ing a lot of ELSE-IF statements, saves considerable amounts of memory,
sometimes making the difference between being able to fit the program and
getting the OM error signal.

Code number five on our list is 129. That’s the TRS-80 code meaning
FOR. You might expect this to be stored as three codes, the ASCII codes for
F, O, and R, but the TRS-80 uses memory-saving single codes for all its com-
mands. Table 1 shows a list of the command codes. After the FOR code,
there’s a blank (ASCII 32) because you typed in a blank between FOR and N
(didn’t you?). The computer does not need this space, and you can save
memory by omitting all such spaces. There are only a few statements which
can cause trouble if you do this to them—check the examples in the manual.

N appears as the seventh item in our list, stored as its ASCII equivalent,
78. The eighth item is the code for =, which is 213. This is not the same as

213

tutorial

the ASCII code for =, because we're not using = as a character to be
printed but as a command to be carried out. Since you left a gap between =
and 17129, the ninth code number is 32.

The detective work begins to look interesting, and we would like to look
beyond the tenth code. Program Listing 2 was a rather wasteful printing
method, and we'll get more information on to the screen by using Program
Listing 3, which prints the codes in lines separated by commas. We can now
see the whole program in its coded form.

We recognize the first nine codes from the previous examples. The num-
bers 17129 and 17179 are stored in ASCII form, needing five bytes each.
This is a wasteful method; if you use a number such as 17129 frequently in a
program, you can save memory by declaring it as an integer variable. Use a
command such as A% = 17129. The % sign means that the number is an in-
teger and can be stored in two bytes using the code method we have seen
used for line numbers. Alternatively, by using DEFINT A at the start of the
program, we could command A = 17129 and achieve the same result. Each
time we need 17129 in the program, we can now use A, saving memory
space. The TO part of the FOR-TO-NEXT loop is stored, as usual, as a
single-code number. Conversion of certain words, like FOR, NEXT, RUN,
and so on, into single-byte numbers means that you have to be careful not to
use these words as variable names in a program.

By checking the code numbers in Table 1, and the ASCII codes, you can
trace how the instructions are coded—but this is just coded BASIC, not true
machine code. The code numbers in a BASIC line are instructions to the in-
terpreter. This introduces you fairly painlessly to the idea of instructions
stored as number codes, and it shows beautifully how the TRS-80 line is cod-
ed. You can now see how it’s possible to change line numbers. The first line
number will always be found at memory locations 17131 and 17132. The
bytes in 17129 and 17130 will indicate the address of the start of the next
line; the third and fourth along from that number will give the next line
number and so on.

Program Listing 4 searches through 16K memory and stops when it finds
the address of line 5000. 5000 in TRS-80 code is 136,19, so we set the
IF. . . statement to detect the sequence 136,19 anywhere in the memory. If
you have a reference to this number as a variable earlier than line 5000,
you'll turn up the wrong address, but it’s simple to modify the program so
that it lists every reference to 5000 (by adding a :NEXT at the end of line 10).

POKE

POKE is the companion command to PEEK, and it has to be followed by
two numbers. The first number following POKE is the address which is to be
used. The second number, separated from the first by a comma, is the

214

tutorial

Code
129

131
132
133
134
135
136
137

139
140
141
142

BASIC Keyword

FOR
RESET
SET

CLS
CMD
RANDOM
NEXT
DATA
INPUT
DIM
READ
LET
GOTO
RUN

IF
RESTORE
GOSUB
RETURN
REM
STOP
ELSE
TRON
TROFF
DEFSTR
DEFINT
DEFSNG
DEFDBL
LINE
EDIT
ERROR
RESUME
ourt

ON
OPEN
FIELD
GET
PUT

215

Code
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

189
190
191
192
193
194
195

197
198
199

201
202
203

231
232

236
237

239

BASIC Keyword

LOAD
MERGE
NAME
KILL
RSET
RSET
SAVE
SYSTEM
LPRINT
DEF
POKE
PRINT
CONT
LIST
LLIST
DELETE
AUTO
CLEAR
CLOAD
CSAVE
NEW
TAB

TO

FN
USING
VARPTR
USR
ERL
ERR
STRING$
INSTR
POINT
TIME$
MEM
INKEY$
THEN
NOT
STP
CVs
CvD
EOF
LOC
LOF
MKI$
MKS$
MKD$
CINT
CSNG

tutorial

215 SGN 241 CDBL
216 INT 242 FIX
217 ABS 243 LEN
218 FRE 244 STR$
219 INP 245 VAL
220 POS 246 ASC
221 SQR 247 CHR$
222 RND 248 LEFT$
223 LOG 249 RIGHT$
224 EXP 250 MID$
225 COs

226 SIN

227 TAN

228 ATN

229 PEEK

230 CVI

Divide the number by 256 and discard anything which follows the decimal point. What’s left is
the upper byte (which always comes second in the coding sequence).

Multiply the upper byte number by 256 and subtract the result from the original number. The
answer is now the lower byte (which comes first in the code sequence).

EXAMPLE: Convert 23478 to TRS-80 code: 23478/256 = 91.710937. All we want is the 91 (up-
per byte): 91 x 256 = 23296. Subtract from 23478, and we get 182 (lower byte).
The number in TRS-80 coding is therefore 182 91.

Table 1. Converting decimal numbers to numbers in TRS-80 coded form.

number between 0 and 255 which is to be inserted into that address in
memory. Unlike PEEK, POKE changes the code stored in memory (unless
you have used identical numbers), so it’s a command you have to be careful
about. You can’t change the ROM which operates BASIC, but you can
change a lot of codes elsewhere and end up with some very strange effects. A
lot of poorly planned POKE instructions will cause the computer to start up
again, with the words MEMORY SIZE? appearing. Unless you use the reset
button at the back, you will lose any program which you had in memory, in-
cluding machine-code programs as well as BASIC.

Most machine-code programs are loaded from system tapes, and we cov-
ered the techniques for loading these in Part II (see Volume 1 of the En-
cyclopedia). It always irks me to have to use a system tape for a short pro-
gram, so I've rewritten common routines as BASIC programs, by using
POKE. If 1 POKE a code number to a place in memory, it’s as surely there as
if T had put it there from a system tape. Program Listing 5 demonstrates the
form of the BASIC program needed—this reads 100 bytes from a data line
and POKEs them one by one into memory locations 32667 upwards.

If the machine-language program is short (less than 255 bytes), it is more
convenient to read the characters into a string as illustrated in the Level I

216

tutorial

manual. Program Listing 6 shows an example of this for a printer routine.
The complete machine-code program exists as the long string ZZ$, and the
program is accessed by using the address of the string in memory. The ad-
vantage of using a string for this purpose is that it doesn’t need any answer to
the MEMORY SIZE question, so nothing goes wrong if you forget to reserve
memory. The disadvantage is that the address of a string in memory is not
fixed. If the memory starts to fill up, the strings will be shifted about, and
the computer will keep track of each. If a string gets shifted between two of
the VARPTR instructions, however, the memory will get completely
scrambled. For short routines and programs which use very little memory,
it’s fine,

For either of these methods, you still have to obtain machine code in the
form of data lines. There are two ways of doing this. The first is to print out a
decimal dump of the machine code, using a short BASIC program like Pro-
gram Listing 5, setting the memory address numbers to the first and last ad-
dresses of the machine-code program which you placed in protected
memory. This works well if the program is only twenty bytes or so, but it
becomes decidedly tedious for longer programs.

POKE Graphics

You may also use the POKE instruction to obtain quick graphics. The
video display of the TRS-80 is memory mapped, which means that every
part of the screen corresponds to a piece of data in the memory. Because of
the memory mapping, we can create shapes on the screen through POKE in-
structions to video memory, which runs from 15360 to 16383. Address 15360
controls the top left-hand side of the screen. The addresses go in bundles of
64 per line on the screen for 16 lines to 16383, which is at the bottom right-
hand side. At each memory address, you can POKE numbers which will
light up a screen block, just as SET does. Figure 1 shows what numbers cor-
respond to which cells. If you type POKE 15360,5, you will light up the cells
shown in the example at that part of the screen. POKE graphics require
practice, but they run a lot faster than SET or CHR$() routines, and they
are very useful when animations are needed. Program Listing 6 introduces a
new TRS-80 BASIC function (and you thought you knew it alll).
VARPTR(variable) is a form of the PEEK command and is applied to a
named variable. If you have a number variable such as N in a program, the
command PRINT VARPTR(N) puts the number, which is the memory ad-
dress at which the variable N is stored, on the screen. If you then enter
PRINT PEEK(VARPTR(N)), you’ll get one byte of the variable itself—the
byte which is stored at the VARPTR(N) address number. Integer variables
need two bytes, so you’ll have to PEEK(VARPTR(N) + 1) as well, and find
the value by using the well-worn formula: lower byte + 256 * upper byte.

217

tutorial

16|32

5= 44|
SO POKE 15360,5 LIGHTS UP
THE TOP LEFT CELLS (48 1)

Figure 1

Single-precision numbers need four bytes of storage, and double-precision
numbers need six bytes of storage, but the address of the first byte can always
be obtained from the VARPTR command.

There's more information which you can get using the VARPTR com-
mand, but the address numbers are the most important. If you use the
VARPTR command on a string variable, PEEK(VARPTR(string)) returns
with the length of the string (a number of bytes not exceeding 255). The ad-
dress of the string in memory is obtained from VARPTR(string) + 1, the
lower byte, and VARPTR(string) + 2, which is the higher byte. This is the
scheme used in Program Listing 6.

An important point about routines held in a string is that you must not
erase the data or POKE instructions, because the TRS-80 resets all string
variables each time you EDIT, CLEAR, or RUN. If the machine-code pro-
gram isin high protected memory, then just switching off or giving a new
answer to the MEMORY SIZE question will delete it.

USR(0) is used to insert a machine-code program in the middle of a BASIC
program. For example, suppose you have the Radio Shack KBFIX program
stored in high memory at address 32600, but the program has not been run.
The problem is how to make the program run without having to go back to
the SYSTEM command, type a slash, and enter the number 32600. The solu-
tion takes two steps. First, place the address of the start of the machine code
into reserved memory at addresses 16526 and 16527. This lets the computer
know where to find the machine-code program. Then, to go into the

218

tutorial

machine-code program, use the command USR(0) with some other com-
mand, such as PRINT. The statement PRINT USR(0) would result in the
machine-code program being run immediately after this statement was en-
countered. The PRINT part of the command is a dummy command, there
only because the computer refuses to recognize USR(0) as an instruction by
itself. Statements such as A = USR(0) are equally acceptable.

We’'re now approaching the end of “Into the 80s.” I've purposely omitted
quite a few instructions which you’ll find useful later, simply because they're
not particularly useful to you at this stage. The time has now come to sort
out a few leftover items, and to give some advice on where to go from here,
now that the keys of your TRS-80 look a little dull with wear.

By this time you’ve probably further explored the EDIT capabilities of the
TRS-80. The manual is useful, with helpful examples, so you’ll appreciate
how powerful these EDIT subcommands are. Making full use of them can
greatly reduce the time you spend programming, but you have to memorize
the commands. Remember that whenever you use an EDIT command, you
will lose all the values of variables. Don’t type a lot of precious data into a
program until you're sure that all the syntax errors are cleared, because the
computer goes into edit mode automatically when a syntax error is detected.
You can prevent this in various ways: Remember to press Q (for quit) when-
ever a snytax error appears, or use a line such as 2 ON ERROR GOTO 5000

|

and put STOP in line 5000 early in your program. If any error occurs, the
program will jump to line 5000 and break without losing variables. You can
then find the error code number by typing PRINT ERR/2 + 1 (the manual
has a list of the error codes). The line number of the error can be found by
typing PRINT ERL. These error-trapping routines can also be used inside

219

tutorial

programs to help break out of errors which arise inevitably from the pro-
gram, like reading too many data bytes—examples are given in the manual.

Where do you go from here? There’s any amount of BASIC programming
to do. Even if you run out of BASIC programs for your own use, there’s a fair
chance that there will be many people around you who need BASIC pro-
grams, but have no idea of how to write them. Lots of people earn a respect-
able living by writing programs, or by adapting existing programs, and as
your skill improves you might find (as I do) that this is interesting and
rewarding work, daylight or moonlight.

The other way you can go is into machine language, a much more dif-
ficult path. If, like me, you started computing in machine language before
BASIC was invented, the path is easier, but for the complete beginner, the
problem is to find a book which starts right at the beginning. With regret, I
must report that the Radio Shack books which come with their Editor/As-
sembler package are not for the beginner, but the articles which appear in
80 Microcomputing are a step in the right direction. I have also found a book
called Machine Language Programming from the Ground Up, by Hubert S.
Howe, Jr., which is excellent. Look out for it.

One final point. In this business you never stop learning—no one ever
knows it all. No matter how long you have been using the TRS-80, you’ll be
able to thumb through 80 Microcomputing some day and be struck dumb by
some piece of information or some smart subroutine that had never struck
you before. That’s the best thing of all, because for me, while I'm learning,
T"m living.

220

tutorial

Program Listing 1

4 GOSUB INP E 8£'S FIG 7.1

18 CLS:PRINT@154,CHRS$(23) "TITLE" : PRINTTAB(13) "=====":F0
R N=1TO150@:NEXT:GOSUB2@@:REM 200 IS SUBROUTINE W
HICH ASKS IS INSTRUCTIONS ARE NEEDED

20 CLS:PRINTTAB(35)"MENU" :PRINT:PRINTTAB(2)"1. ENTER NE
W DATA" :PRINTTAB(2)"2. REPLAY DATA CASSETTE":PRINT
TAB(2)"3. PROCESS DATA" :PRINTTAB(2)"4. RECORD DATA
":PRINTTAB(2)"5. END PROGRAM"

38 GOSUB 508:REM INKEY$ ROUTINE TO FIND CHOICE

40 ON K GOSUB 1009,2000,3000,4000,5000

58 PRINT "DO YOU WANT TO RETURN TO THE MENU?" :GOSUB 600
:IF M=1 THEN 20 ELSE 5@00:REM YES/NO RUTINE IS AT
600

5000 END

Program Listing 2

18 FOR N= 17129 TO 17139:PRINT PEEK(N) :NEXT
20 END:REM INTO THE 88'S FIG 7.2

Program Listing 3

18 FOR N=17129 TO 17179:PRINT PEEK(N);" " ; sNEXT
20 END:REM INTO THE 88'S FIG 7.5

Program Listing 4

5 REM NRO THE 88'S FIG 7.6

190 FOR N=17129 TO 32767: IF PEEK(N)<>136 AND PEEK(N+1)<>19 THEN
NEXT ELSE PRINT N

20 END

5688 PRINT"THIS IS LINE 50408"

Program Listing 5

12 FOR N=@ TO 99:READ J:POKE 32667+N,J:NEXT
20 DATA:REM NEED 108 NUMBERS BETWEEN # AND 255

Program Listing 6

1 CLEAR3#8:272$="":FOR I=1T01@7:READ J:2%$=2%$+CHRS(J) N
EXT:POKE16422,PEEK(VARPTR(2%$)+1) : POKE 16423,PEBK(
VARPTR(ZZ2S$)+2)

5680 DATA255,243,121,254,13,46,3,254,32,216,245,229,197
+6,9,55,245,245,33,1,252,2085,33,2,33,222,0,43,124,
181,32,251,241,31,245,48,19,33,2,252,24,19,14,3,17
5,13,46,2,24,219,0,0,0,0,24,47,198,8,33,1,252,285,
33,2,0,0,33,222,0,43,124,181,32,251

5661 DATAL6,212,17,222,6,203,74,46,11,33,2,252,205,33,2
,27,122,179,32,251,241,241,254,13,40,198,183,44,19
7,193,225,241,201

221

UTILITY

Spool and Despool
Renumbering Made Easy

223

UTILITY

Spool and Despool

by H. S. Gentry

imultaneous Peripheral Qutput OverLap (SPOOL) is a technique used

by most large computer systems to prevent program delay because a slow
peripheral, like a printer, is not ready. The output data is written (spooled)
on a mass storage device and then transferred (despooled) when the
peripheral is ready.

Spool

The TRS-80 spooler system is divided into two major sections, SPOOL
and DESPOOL. The first of these sections is the output spooler, shown in
Program Listing 1.

The code in line numbers 300 through 440 requests the file name and
places it in the device control block (DCB) for the file. Line numbers 470
through 540 open an existing file or create a new one and check for errors. If
any error is found, an error message is printed and the spool operation is ter-
minated. If the file opens without error, then lines 550 through 590 connect
the spooler to the printer DCB and return control to the operating system.

Now, each time the operating system (DOS, BASIC, etc.) attempts to
print a character, the code in lines 650 through 930 is activated. The
character is counted and stored in a 256-byte buffer. When this buffer is full,
it is written to the disk. This procedure continues as long as the user allows it
or until an error is detected.

When the spool operation is completed, you must close the spool file. This
is necessary for two reasons. First, the data printed may not have ended on a
956-byte boundary. Thus, some data may be in the buffer that has not been
written to the file. Closing SPOOL will detect this situation, set the unused
area of the buffer to zeros, and write the last buffer to the file. The second
reason is that the system program CLOSE must be called to update the
disk directory.

The spool system performs both of these close operations, if control is
transferred to label KLOSE (location FE76H in Program Listing 1). This
may be done by entering DEBUG and typing GFE76. The memory contain-
ing the KLLOSE program, the file DCB, the pointers, and the 256 byte buffer
must not be changed until the close operation is done.

If you don’t like using DEBUG to close your file you can create a close
program as follows: load (but don’t execute) the SPOOL program, then

225

utility

dump the KLOSE part of SPOOL to a disk file called CLOSE/CMD. Don’t
dump more memory than needed. Actually, you only need an execution
(transfer) address.

The dump command to close the file for the SPOOL in Program Listing 1
iss DUMP CLOSE/CMD:0 (START =XFE76 ,END =XFE9D’,TRA =
X‘FE76’). Now, after your spool operation is finished, return to DOS and

type CLOSE. The file is then closed and the spool operation terminated.
You are left with an ASCII file containing all the printer output since the

spool was started.

Despool

If you want to print a copy of the spool file the command PRINT could be
used. However, this ties up the system while the printer is running. For-
tunately, there is a better way, DSPOOL, shown in Program Listing 2. This
program opens the spool file for printing and returns to the operating
system. The data in the file is then printed while you perform almost any
other job on your system. That’s right, you can run a BASIC program or per-
form other disk operations while the file is being printed.

There are only a few exceptions: You cannot re-boot the system, you can-
not write to the spool file while despooling, you cannot print data in the
regular DOS manner until the despool is completed, you cannot spool one
file while despooling another. The last restriction is included only because
SPOOL and DSPOOL use the same memory.

If you move one of the programs to another location, you could SPOOL
and DSPOOL at the same time, although you still may not write and read
the same file at one time. You must use two different file names.

DSPOOL uses two links to the operating system, one to the 25-millisecond
interrupt and another to the keyboard driver. The TRS-80 hardware inter-
rupts the microcomputer forty times per second. The operating system uses
this interrupt to run foreground tasks. These tasks include the real time
clock, TRACE, or any job you’d like to run.

To run a given job you need to store the address of a pointer in the
25-millisecond queue list. The queue list is at memory location 4510H and
4511H. The pointer is two memory bytes containing the address of your pro-
gram. This is a little confusing so let’s look at Program Listing 2 to see what
it means.

Lines 800 through 850 put the address of something called PINT in loca-
tions 4510H and 4511H. Notice that the code also saves the former contents
of 4510H, 4511H to be put back later. PINT is a pointer that contains the
memory address of your program.

In this example, 4510H, 4511H contains FD7A (the address of PINT) and
FD7AH contains the address of INTHDL (FD7CH). Now, every 25 millisec-
onds INTHDL, the interrupt handler, is run.

226

utility

INTHDL

The function of the DSPOOL interrupt handler INTHDL is very simple.
It checks the RS-232 board to see if it will accept an output character. If the
RS-232 board is not ready, INTHDL returns to the operating system. If a
character can be output, INTHDL checks CCNT.

As long as CCNT is zero, INTHDL returns to the system. If it isn’t, one
character is output and counted. If the character is a carriage return, the
buffer is set up to output a line feed. Aslong as there is data in the buffer, IN-
THDL will print it. All of this takes place in time stolen from your other
work by the interrupt.

Getting data to the buffer is SCAN’s job. SCAN reads one record every
time the print buffer is empty (CCNT =0). It is linked to the TRS-80
keyboard driver and runs every time the system checks the keyboard for in-
put. If there is data in the buffer, SCAN returns control to the keyboard
driver. But, if the buffer is empty, SCAN performs a file read, delaying the
keyboard input for about one second.

If all the data has been read from the file, SCAN disconnects the DSPOOL
program. If your printer is 110 baud, the disk reads occur about every 30
seconds. The spool system does not drive any printer faster than 40
characters per second (one per interrupt).

If your printer is faster than this, it will slow down to 40 cps. At40 cps the
disk reads occur about every 7.5 seconds. If reading at this rate interferes
with the keyboard too much, then add a counter to INTHDL to slow the
printer and thus the reads.

Another technique that reduces disk reads is reading two (or more) sectors
at a time. However, this complicates the procedure used to find the end of
the data.

Modifications

The DSPOOL program shown in Program Listing 2 is for a serial printer
using the Radio Shack RS-232 board. The program can be used with a
parallel printer (such as the standard printers sold by Radio Shack) by mak-
ing a few changes.

Delete lines 370 through 500 and move the label SETUP to line 510.
Replace lines 1210 through 1230 with the code in Program Listing 3.
Replace line 1350 with LD(37E8H),A.

If your printer automatically feeds a line on every carriage return then
delete lines 1360 through 1370 and lines 1430 through 1500.

If you use SPOOL-DSPOOL with NEWDOS or NEWDOS 80, it works as
is. If you use it with TRSDOS 2.1, TRSDOS 2.2, or VTOS 3.0, you must add
DEC HL between lines 860 and 870. This is necessary because the
NEWDOS DCB maintains the number of sectors in a file, while the other
systems maintain the number of sectors plus one.

227

utility

If you use TRSDOS 2.2, change the program ORG and move both pro-
grams down to allow at least 51 unused bytes at the top of memory.
Remember the end of the program is not the end of the memory it uses, Both
SPOOL and DSPOOL. use 256 bytes of memory starting at BUFFER. 1f
BUFFER is at FE69H, the program uses memory up to FF69H.

It is also necessary to change the program ORG if you have less than 48K
of memory or if a program is already using the top of your memory. Another
useful modification replaces the 32 blanks in INBFR (line 2160 in DSPOOL,
line 1210 in SPOOL) with a file name. For example: INBFR DEFW
‘PRINTFIL/LST °. (Be sure to include enough spaces after the file name and
before the last quote mark to make a total of 32 characters.) Then delete the
code that requests the file specification (lines 500 through 680 in DSPOOL,,
lines 300 through 450 in SPOOL.). The system then uses ‘PRINTFIL/LST as
the SPOOL, DSPOOL file and you don’t need to answer the filespec question,

Operation

Operating the SPOOL-DSPOOL system is very easy. Assemble the pro-
grams and create the disk files using NEWDOS EDTASM, the Radio Shack
EDTASM and TAPEDISK or any other assembler. I use SPOOL/CMD as
the file name for the spooler and DSPOOL/CMD for the despooler.

To use the system you need only type SPOOL when you want the spooling
to begin and answer the FILESPEC? question with the name of the file that
is to hold the printer output. If you want to spool BASIC output, you must
run SPOOL before you go to BASIC, unless you have NEWDOS.

With NEWDOS you can run the SPOOL-DSPOOL system from BASIC
with the CMD*“XXX” command. When all of your printer output is spooled
return to DOS and type “CLOSE” (or type CMD“CLOSE” from NEWDOS
BASIC). When you are ready to print the file type “DSPOOL” and answer
the FILESPEC? question with the same filespec used to spool the output.
When the system returns to DOS, you may run another job, as long as you
follow the rules.

While DSPOOL is running, the character in the lower right corner of the
TRS-80 video display will flash. This indicates that DSPOOL is running. If
you do not like this feature, delete lines 1180 through 1200 in DSPOOL.

Summary

The source code given in the listings is for the NEWDOS Editor-
Assembler. You can easily change the code for any other assembler. Don’t
forget the rules given above. Always close your spool file when you are
finished, and be sure to protect the memory used by these programs when in
BASIC. Don’t attempt to use CLOSE to close the read file after you run
DSPOOL. It’s not necessary and won’t work.

228

utility

If you have two disk drives, you can use one entire diskette to spool printer
output, If you have only one drive, your spooling is limited, but you should
be able to accumulate several pages of output before you must DSPOOL.
Either way SPOOL-DSPOOL should improve your TRS-80 throughput.

This program is designed to work with TRSDOS 2.1, 2.2, and 2.3, and
with NEWDOS 2.1.

229

4467
8g48
4424
4436
4026
482D
4428
4428
443C

FEOO
FEB0
FE@3
FE@6
FE@9
FE®B
FEQE
FEQF
FE1@
FEl2
FE13
FEl4
FE15
FE16
FE18
FE19

FE1B
FElE
FE21
FE23
FE26
FE28
FE2B
FE2E
FE31
FE34
FE37
FE3A
FE3D

FE40
FE41
FE42
FE45
FE46
FE47
FE4A
FE4D
FE4F
FES51
FE52
FES55
FE56
FES7

21CSFE
Cb6744
21A4FE
9620
Ccb4geo
78

B7
28EE
EB

83

6F

21E1FE
11A4FE
8600

CD20644
2809

21DSFE
CD6744
C32D448
2A2640
22A2FE
2146FE
2226480
C32D48

ES

F5
2A9EFE
71

23
229EFE
JAAGFE
FEFF
2807
3C
J2A0FE
Fl

El

c9

oe8leo
88110
00120
0130
20149
8158
00160
20170
0188
80190
00200
pe21e
8220
90230
80240
88250
80270
08280
00290
20300
08310
00320
808330
B340
008358
08360
00370
02380
280398
60400
00410
00420
068438
60440
80450
80460
00470
60480
20490
06500
00510
08520
00538
806540
80550
06560
88570
60580
88596
00600
80616
08620
08630
80648
60650
00660
60670
00680
20690
207040
80718
00720
00730
00740
089750
060760
60770
28780

Program Listing 1. SPOOL,

utility

;THIS IS THE PRINTER SPOOLER ~ WHEN LOADED
;IT WILL INTERCEPT ALL PRINTER OUTPUT AND
3STORE IT IN A 256 BYTE BUFFER WHEN THE
;BUFFER IS FULL THE DATA IS WRITTEN TO
FILE. THE SPOOL FILE MUST
;BE CLOSED BY RUNNING THE SYSTEM PROGRAM

;s THE SPECIFIED

sCLOSE.
’
DIsSp EQU 44671
INPUT EQU 40H
OPEN EQU 44241
READ EQU 4436H
PRDD EQU 4026H
DOs EQU 402DH
CLOSE EQU 4428H
INIT EQU 4420H
WRITE EQU 443CH
’
ORG BFEOQH
SETUP LD HL,MSG1 ;LOG ON
CALL DISP
LD HL,INBFR
LD B,32
CALL INPUT
LD A,B ;GET ACTUAL %
OR A
JR Z,SETUP ;NO INPUT
EX DE,HL
ADD AE ; ADDRESS+#
LD L,A ; LOW ADDRESS
LD A,D sHI ADD
ADC A0
LD H,A ;HI ADDRESS
LD (HL) , 28R ; BLANK CR
s INBFR NOW HAS FILE SPEC WITH TRAILING BLANKS
7 INIT THE FILE
LD HL,BUFFER ; PLACE
LD DE, INBFR ;DCB
LD B,B
CALL INIT sOPEN IT
JR Z,0K ;2=1 IF OK
LD HL, ERM
CALL DISP
JP DOS ;AND GET OUT
OK LD HL, (PRDD) ;OLD DRIVER
LD (SAVDD) , HL ;SAVE IT
LD HL,DRIVE ;NEW DEIVER
LD {PRDD) , HL ;PUT IT IN
JP DOS ; DONE

;FILE IS OPEN -~ THIS IS THE ACTUAL DRIVER
;IT WILL STUFF THE CHARACTERS IN THE BUFFER
;IF THE BUFFER IS FULL A WRITE TO THE DISK

sWILL BE DONE.

’

DRIVE PUSH
PUSH
LD
LD
INC
LD
LD
[03:4
JR
INC
LD

pPOP POP
POP
RET

HL

AF

HL, (PRT)
(HL) ,C
HL

(PRT) ,HL
A, (CCNT)
OFFH
zZ,00T

A
{CCNT) ,A
AF

HL

s POINT TO BUFFER
3 SAVE CHARACTER

; COUNT

; DUN

;COUNT IT
;PUT IT BACK

GO BACK

230

FE76
FE79
FETA

FE7C
FETF
FE81
FE83
FEB85
FE86
FE87

FEB9
FESC

FEBF
FE92
FE95
FE98
FE9B
FESE
FEAQ
FEA2
FEA4
FEC5
FED4
FED5
FEED
FEEl
FEOD

Cc5

D5
DDES
FDE5
11A4FE
CD3C44
21ElFE
229EFE
AF
32A0FE
FDE1l
DDEL

3AAQFE
B7
2813

2ASEFE
3600
FEFF
2804

11A4FE
CD3C44

11A4FE
CD2844
2AA2FE
222640
C32D49
E1FE

3@0ee TOTAL

BUFFE
CCNt
CLOSE
DISP
DOS
DRIVE
ERM
INBFR
INIT
INPUT
KLOS
KLOSE
LOPC
MSGl
OK
OPEN
ouT
POP

R FEEl
FEAQ
4428
4467
402D
FE40
FED5
FEA4
4420
0040
FESF
FE76
FETF
FEC5
FE31
4424
FE58
FES5

00790
60800
00819
00820
00830
00840
08850
00860
00879
20880
008899
80900
60910
00920
049380
008948
809508
00960
0089790
o980
00990
01000
010610
81020
01038
10480
01858
010680
21870
81088
810990
91100
01110
gllze
81130
01140
01158
81166
01178
1180
811990
01200
81210
01220
01239
81240
081250
81268
81270
ERRORS

01260
81190
00240
20180
80230
08650
01240
61210
08250
06190
01130
00970
016820
01220
08550
00200
00790
09760

ouT

utility

PUSH BC

PUSH DE

PUSH IX

PUSH 1Y

LD DE, INBFR
CALL WRITE

LD HL ,BUFFER
LD (PRT) ,HL
XOR A

LD (CCNT) ,A
POP Iy

POP IX

POP DE

POP BC

JR POP

;DCB

;RESTORE POINTER

i A=0

;THIS IS THE CLOSE ROUTINE - CALLED BY
;THE CLOSE FUNCTION TO CLOSE OUT THE LAST

sRECORD AND THEN CLOSE THE FILE

KLOSE LD A, (CCNT) ; COUNT
OR A
JR Z2,KLOS iNO DATA CLOSE FILE
;DATA IN FILE - NULL REMMAINDER THEN WRITE AND CLOSE
LD HL, (PRT)
LOPC LD (HL) , 8
CP @FFH ;DUN
JR 2,WRIT ;FULL WRIT IT
INC A
INC HL
JR LOPC
sTHIS 1S THE WRIT TO THE DISK ROUTINE
WRIT LD DE, INBFR ;DCB
CALL WRITE
;THIS IS THE CLOSE ROUTINE - IT WILL CLOSE THE
;FILE
KLOS LD DE, INBFR ;DCB
CALL CLOSE
LD HL, (SAVDD)
LD (PRDD) , HL ;RESTORE PRINTER
Jp DOS ; DONE
PRT DEFW BUFFER
CCNT DEFW [/
SAVDD DEFW]
INBFR DEFM !
MSGl DEFM 'SPOOL FILESPEC?’
DEFB 3
ERM DEFM 'SPOOL ERROR'
DEFB 3
BUFFER DEFB [}
END SETUP
00470 00850 01180
00716 08750 00880 06970
01140
00310 06530
08540 005908 01170
005740
88520
9320 00480 #A830 01090 61130
20500
08340
8099¢
PRDD 4026 00220 00558 08580 01160
81670 PRT FESE 61180 00670 00700 PB860 01010
68300 READ 4436 00210
08510 SAVDD FEA2 01208 00560 01150
SETUP FEPO 08300 9037¢ 012740
008730 WRIT FEB9 01090 g1p40
@930 WRITE 443C 06278 pe840 01100

231

4467
00490
4424
4436
4510
4016
402D
POEA
POEB
3FFF
BOES
BOEY

FDOO
FDO@
FDO3
FDO6
FDB9
FDBB
FDOE
FDAF
Fp1@
FD12
FD13
Fpl4
FD15
FD16
FD18
FD19

FD1B
FD1E
FD21
FD23
FD26
FD28
FD2B
FD2E

FD31
FD32
FD35
Fp38
FD3B
FD3E
FD3F
FD42
FD45
FD48

211DFE
CD6744
21F6FD
0620

CD4god

213DFE
11F6FD
0600

CD 2444
2809

21 2EFE
CD6744
C32n48

F3

2A1 045
223 BFE
216 2D
221045
FB

2AB 2FE
22F 3D
3AFED
32F 58D

Program Listing 2. DSPOOL

utility

1979 - H. 8. GENTRY

;PRINTER DE-SPOOLER - WHEN LOADED IT CONNECTS

;LOADED ONE RECORD AT A TIME INTO LOCAL BUFFER

;DISPLAY MESSAGE

; INPUT MESSAGE

;OPEN A FILE

sREAD A FILE

;25 MS QUEUE

s POINTER TO KEYBOARD
;RTN TO DOS

; CONTROL/STAT UART
;DATA

;jGET ACTUAL #
s NO INPUT

; ADDRESS+ #
;LOW ADDRESS
+HI ADD

;HI ADDRESS
i BLANK CR

; INBFR NOW HAS FILE SPEC WITH TRAILING BLANKS

; PLACE TO PUT DATA
;DCB
;LRL=0

;2=]1 IF OK

;AND GET OUT

;OLD ONE

;SAVE IT

; POINTER

tLINK

;GET SECTORS

;GET BYTES TO EOF

AND GET OUT

80168 ;DSPOOL ~- 09 OCT.

00110

90128 ;TO THE 25MS INTERRUPT AND TO THE KEYBOARD
ﬂg}3ﬂ ;SCAN ROUTINE. THE SPECIFIED FILE WILL BE
00140

99158 ;AND THE INTERRUPT HANDLER WILL PRINT ONE
#0168 ;CHARACTER EACH TIME THE PRINTER IS READY.
§817¢ ;WHEN THE EOF IS FOUND THE LINK TO THE
#6180 ;INTERRUPT HANDLER AND THE KEYBOARD SCAN
#6190 ;IS REMOVED.

080200 ;

98218 DISP EQU 4467H

@622¢ INPUT EQU 40H

98239 OPEN EQU 4424H

00240 READ EQU 4436H

00256 MS25 EQU 4510H

#0268 KBDD EQU 4016H

#028¢ DOS EQU 482DH

P@29¢ CNTREG EQU BEAH

@@30¢ DTAREG EQU JEBH

98320 ALIV EQU 3FFFH

98330 RESURT EQU BESH

96340 SWITCH EQU OE9H

0350 ;

80360 ORG OFDOGH

90519 SETUP LD HL,MSG1

80520 CALL DISP

20530 LD HL, INBFR

80540 LD B,32

20550 CALL INPUT

20560 LD A,B

#0570 OR A

028580 JR 2, SETUP

86590 EX DE,HL

00600 ADD AE

p06610 LD L,A

00620 LD A,D

#8630 ADC A B

20648 LD H,A

80650 LD (HL) , 20H

20660

9867¢ ;INTERRUPT DRIVER IS LINKED ANY TIME CCNT IS
80680 ;NOT ZERO IT WILL PUT QUT THE NEXT CHARACTER
20690 ;

#0700 ;NOW TIME TO OPEN THE SPOOL FILE

80710 LD HL,BUFFER

66728 LD DE, INBFR

60730 LD B, 8

88740 CALL OPEN

20750 JR %,0K

80760 LD HL , ERM

60778 CALL DISP

30780 JP DOS

BB796 ;LINK 25 MS DRIVER

00860 OK DI

00818 LD HL, (MS25)

20820 LD (SAvV25),HL

p0830 LD HL,PINT

p0840 LD (MS25) ,HL

80850 EI

#0860 LD HL, (SEC)

60870 LD (SECTOR) , HL

20880 LD A, (BX)

#0890 LD (BCNT) ,A

@P9GF ;FILE OPEN OK NOW LINK KBD SCAN

#691¢ ;KBD SCAN WILL THEN FIND BUFFER EMPTY
¢9920 ;AND READ A RECORD.

232

FD4B
FD4E
FD51
FD54

FD57

FD5A
FD5B
FD5C
FD5D
FD5E
FD5F
FD68
FD61

FD62
FD64
FD65
FD66
FD69
FD6A
FD6D
FD78
FD72
FD74
FD76
FD79
FD7A
FD7C
FD7E
FD7F
FDEB1
FD83
FD84
FDB7
FDBA
FD8B
FDBE
FD8F
FD92
FD93
FD94

FD95
FDY6
FD97
FD9A
FD9B
FD9C
FDYE
FDYF
FDAG

FDA2
FDA3
FDA4
FDAS

2A1640
22A5FD
2195FD
221648

C32D40

22
44
55
66
77
AA
cC
EE

64FD
F5

E5
3AFF3F
3C
32FF3F
3AE837
E6F0
FE308
2p1C
2A1BFE
7D
FEOD
2005
7C
FEQO
280F
2B
221BFE
2A19FE

08938
00940
88950
00960
08970
00980
66998
81000
21018
0610280
gle3e
81040
216580
01660
gle7a
0lo80
81690
61100
91118
011208
611398
01140
2115@
61160
011790
p118@¢
011940
01200
81210
81215
01220
81225
812480
81250
01260
g127e
21280
81290
1308
91310
01320
0133¢
81340
81358
61380
81390
81400
61410
81420
8151¢
91528
#1538
#1540
01550
81560
815740
gls8e
91599
91680
01610
91620
01638
gle4a
0l65@
61660
21670
6lego
81690
81700
8171¢

utility

LD HL, (KBDD)
LD (KEY) ,HL
LD HL, SCAN

LD (KBDD) , HL

;GET OLD ADDRESS

3} SAVE FOR CONTINUE
;NEW SCAN

; LINKED

;SCAN IS NOW LINKED. NEED ONLY TO ENABLE

; INTERRUPTS AND GET BACK TO DOS.

SCAN WILL

;BE RUN EVERY TIME KEYBOARD IS CHECKED

; INTHDL WILL BE RUN EVERY 25 MS

BDTABL

JP DOS
;THIS 1S THE BAUDE RATE TABLE
DEFB 22H
DEFB 44H
DEFB 55H
DEFB 66H
DEFB 774

DEFB BAAH
DEFB #CCH
DEFB OEEH

;GET OUT

H
;PHIS IS INTHDL THE INTERRUPT HANDLER
;IT WILL PRINT A CHARACTER IF CCNT IS NOT

;2ERO AND THE PRINTER IS READY.

PINT
INTHDL

OTPT

CONT

i
;THIS IS SCAN -

DEFW INTHDL

PUSH AF

PUSH HL

LD A, (ALIV)
INC A

LD (AL1V) ,A
LD A, (37E8H)
AND BFOH

Ccp 30H

JR NZ,CONT
LD HL, (CCNT)
LD AL

Ccp 2

JR NZ,0TPT
LD AH

Ccp g

JR 2, CONT
DEC HL

LD {CCNT) ,HL
LD HL, (ADDR)
LD A, (HL)

LD (37E8H) ,A
INC HL

LD (ADDR) , HL
POP HL

POP AF

RET

;i POINTER TO INTHDL
;SAVE AF

; CHAR COUNT

;PUT IT OUT
;L=0 CHECK H

{ALL ZERO GET OUT
;-1

;

;PUT IT BACK

;GET ADDRESS OF CHAR
; DATA

; BUMP ADDRESS

;DONE GET OUT

IT IS LINKED TO KEYBOARD SCAN

;AND WILL WATCH CCNT. IF CCNT IS ZERO THEN
;SCAN WILL READ A RECORD.

;ANY READ ERROR

IF EOF IS FOUND OR
IS ENCOUNTERED SCAN WILL

;DISCONNECT ITSELF AND THE 25 MS HANDLER

H
SCAN

;NOPE -
EXIT

KEY

PUSH AF

PUSH HL

LD HL, (CCNT)
LD AL

OR A

JR NZ,EXIT
LD A H

OR A

JR Z,RRCD
RETURN TO KEYBOARD
POP HL

POP AF

Jp o

EQU $-2

;YES READ RECORD

;DUMMY JUNP
;BACK UP 2

Program continued

233

FDA7
FDAB
FDAY
FDAB
FDAD
FDBO
FDB3

FDB5
FDB6
FDBY
FDBC
FDBF

FDC2
FDC4
FDC6
FDCT
FDCB
FDCY

FDCC
F'DCF
FDD2
FDD5
FDD6
FDD8

c5

D5
DDE5
FDE5
11F6¥D
CD3644
2817

F3

2A3BFE
221045
2AASFD
2216489

FDEl
DDE1
Dl

Ccl

FB
C3A2FD

213DFE
2219FE
2AF3FD
D
FEDOS
286D

FDDA 7C

FDDB
FDDD

FDDF
FDE2
FDE3
FDE5
FDE7
FDEB
FDEB
FDEE
FDF1

FDF3
FDF5
FDF6
FE#2
FDFE
FE1S
FEIB
FEID
FE2D
FEJE
FE3A
FE3B
FE3I
FDop

FEGD
2008

3AFSFD
6F
2600
1807
2B
22F3FD
216081
221BFE
18CF

6660
60
20

3DFE
sepe
44
23
44
83
BBoo
08

@888 TOTAL

ADDR
ALIV
BCNT

FEl19
3FFF
FDF5

BDTABL FD5A

BUFFER FE3D
BX FDFE
CCNr FE1B
CLO0s FDB5
CNTREG 80EA
CONT FDY2
DECIT FDE7

91728
1730
61748
91750
01780
01798
01808
51810
81820
01830
01840
01850
81860
91878
01880
81898
91900
81918
91920
91938
1946
91950
21960
81970
01980
81990
92000
82019
02020
02030
92040
92058
02051
02068
22070
92080
02050
82100
#2119
62120
02130
82148
52150
02168
82178
02180
02190
22200
82219
062229
82238
82248
02250
02268
2278
ERRORS

062190
00320
02150
01830
02260
02180
02200
01820
00290
01400
062680

RRCD PUSH BC
PUSH DE
PUSH X
PUSH IY
LD DE, INBFR ;DCB
CALL READ ; READ RECORD
JR 7,0KR ;READ OK SET COUND
;NOT OK KILL EVERYTHING
CLOS DI ;STOP INTS.
LD HL, (SAV25) ;OLD ADDRESS
LD (M825) ,HL ; PUT BACK
LD HL, (KEY) ;OLD KBD
LD (KBDD) , HL ; PUT BACK
;NOW POP REGISTERS AND RESTORE STACK
POP pOP 1Y
POP X
POP DE
POP BC
EI
Jp EXIT
;READ IT OK SET UP CCNT THEN GET OUT
OKR LD HL ,BUFFER
LD (ADDR) , HL
LD HL, (SECTOR) :GET SECTORS
LD AL ; TEST
cp g ; ZERO?
JR N% ,DECIT ;NOPE DEC IT AND STORE
LD AH
cp] ;HI =%ZERO?
JR NZ,DECIT ; NOPE
;SECTOR COUNT=8, USE EOF BYTE COUNT NOT 256
LD A, (BCNT)
LD L,A
LD H,0
JR SCNT
DECIT DEC HL
LD (SECTOR) , HL
LD HL, 256
SCNT LD (CCNT) , HL
JR POP ;RESTORE AND GET OUT
’
SECTOR DEFW 8
BCNT DEFB 8
INBFR DEFM '
SEC EQU INBFR+12
BX EQU INBFR+8
ADDR DEFW BUFFER
CCNT DEFW 8
MSG1 DEFHM '"DSPOOL FILESPEC?’
DEFB 3
ERM DEFM 'DSPOOL ERROR'
DEFB 3
SAV25 DEFW g
BUFFER DEFB 8
END SETUP
91330 01396 1960

01180 61260
00890 620850

08710 1958

00880

01240 81320

01225 @l300
02600 02030

92199
61600 02110

234

utility

DISP 4467 00210 @p520 @677¢
DOS 402D 00288 gp789 61618
DTAREG 90EB 0030¢
ERM FE2E 92230 20760
EXIT FDA2 01680 91638 #1938
INBFR FDF6 02160 90530 00720 01788 02176 02180
INPUT 084¢ 08220 90559
INTHDL FD64 01160 #1159
KBDD 4016 00260 0@930 00960 01860
KEY FDA5 81710 g0940 01850
M525 4510 60250 00810 00840 01840
MSG1 FE1D 62219 085106
OK FD31 pe800 00758
OKR FDCC B1950 91880
OPEN 4424 00230 80749
OTPT FD83 91310 g1l27e
PINT FD62 81158 gp830
POP FDC2 01880 92120
READ 4436 00240 91798
RESURT 0#ES 003348
RRCD FDA7 91728 61660
SAV25 FE3B 02250 po820 91838
SCAN FD95 #1580 20950
SCNT FDEE 92118 02079
SEC FEB2 02170 06860
SECTOR FDF3 02140 ¢0870 01970 62098
SETUP FD@#@ 08510 gos588 @2270
SWITCH OOE9 00340
Program Listing 3
091210 LD A, (37E8H)
91215 AND @2ren
081220 Ccp 308
081225 JR NZ ,CONT

235

UTILITY

Renumbering Made Easy

by John Stratigakis

here comes a time in a person’s life when it becomes necessary to re-

number BASIC program lines. My time came when I had to add a line
between lines 7 and 8 of a 150-line program. I solved this problem with a
few PEEKs and POKEs. What could be simpler? A renumbering program,
that's what! I developed a strong craving for a program that would change
all line numbers and line references within a BASIC program. Then, one
day, I was wandering through my local Radio Shack store, and I spotted a
program called Renumber. Not wanting to part with my only ten-dollar
bill, I made up my mind that if Tandy could do it, why couldn’t I? I started
to work on a quick and easy renumbering program.

First, a little knowledge of BASIC is necessary. Unlike Level I, Level 11
BASIC stores each command word as a one-byte code (see Table 1). This is
much faster than storing each letter of the word, because the BASIC inter-
preter only has to check for one byte rather than four or five. Thus,

PRINT X/5
is stored as 5 bytes: B2 20 58 D0 35. This method of storage makes it easy to
search for references (GOTO, GOSUB, etc.).

In addition, each line contains a zero at the end of the line, the line
number in the form of two hex bytes, and a two-byte pointer, which is the
address of the beginning of the next line. However, the pointer in the last
program line does not point to the next line, but instead, it points to the end
of the program—a pair of zero bytes. Therefore, the program

10 FOR X =1 TO 1000:NEXT
is stored as follows (keep in mind that 42E9 is the beginning of BASIC pro-

gram storage):

42E9 42FC
FC 42 oA 00 81 20 58 Ds 31 20 BD 2 31 30 30 30 3A 87 00 [14] 00
10 FOR X = 1 TO 1 0 0 0 : NEXT

Notice that there are three zero bytes at the end: one for the end of the line,
and two for the end of the program.

However, there is one matter that complicates things. Line references are
not stored in hex. Rather, they are stored as ASCII numbers. Thus, GOTO
10 is stored as 8D 20 31 30 instead of 8D 20 0A 00.

The Program

First, I had to set the guidelines for the program (see Figure 1). This was the
flowchart I used for Renumber 1.0, 2.0, and 3.0. Versions 1.0 and 2.0 were
both total flops, since I had to hand-assemble them and key in the machine
code with T-BUG. Then, I got my Editor/Assembler program, and version

236

utility

3.0 went along smoothly. When it finally assembled correctly, I ran a test. I
renumbered the following program:
5 FOR X =1 TO 1000:NEXT

10 GOTO 5
After renumbering, it looked like this:

10 FOR X = 1 TO 1000:NEXT

20 GOTO 20
What happened was that the renumbering program changed old line 5 to
line 10. The GOTO 5 became GOTO 10. Then, old line 10 became line 20.
1t was here that the problem occurred. The renumbering program assumed
that GOTO 10 (which used to be GOTO 5) was a reference to old line 10. It

END 80 ouT A0 VARPTR C0 EXP EO
FOR 81 ON Al USR Cl COs El
RESET 82 OPEN A2 ERL C2 SIN E2
SET 83 FIELD A3 ERR C3 TAN E3
CLS 84 GET A4 STRING$ C4 ATN E4
CMD 85 PUT A5 INSTR C5 PEEK ES
RANDOM 86 CLOSE A6 POINT C6 CVI E6
NEXT 87 LOAD A7 TIMES$ C7 CVS E7
DATA 88 MERGE A8 MEM Cc8 CVD E8
INPUT 89 NAME A9 INKEY$ C8 EOF E9
DIM 8A KILL AA THEN CA LOC EA
READ 8B LSET AB NOT CB LOF EB
LET 8C ‘RSET AC STEP CC MKI$ EC
GOTO 8D SAVE AD + CD MKS$ ED
RUN 8E SYSTEM AE - CE MKD$ EE
IF 8F LPRINT AF « CF CINT EF
RESTORE 90 DEF BO / DO CSNG FO
GOSUB 91 POKE Bl) DI CDBL Fl
RETURN 92 PRINT B2 AND D2 FIX F2
REM 93 CONT B3 OR D3 LEN F3
STOP 94 LIST B4 > D4 STR$ F4
ELSE 3A95 LLIST B3 = D5 VAL F5
TRON 96 DELETE B6 < D6 ASC F6
TROFF 97 AUTO B7 SGN D7 CHR$ F7
DEFSTR 98 CLEAR B8 INT D8 LEFT$ F8
DEFINT 99 CLOAD B9 ABS D9 RIGHT$ F9
DEFSNG 9A CSAVE BA FRE DA MID$ FA
DEFDBL 9B NEW BB INP DB 3A 93 FB
LINE 9C TAB(BC POS DC FC
EDIT 9D TO BD SQR DD . FD
ERROR 9E FN BE RND DE | FE
RESUME 9F USING BF LOG DF ISA FF
Table 1

237

utility

START

INPUT
VALUES

FIND QLD
LINE NO

CHANGE
LINE NO

RESET vES
POINTERS END P
I NO

RETURN TO
BasiC

GET A
BYTE

YES INC
LINE NO

NO

e

YES

INSERT
NEW NO

E—

Figure 1

was therefore changed to GOTO 20, the line that old line 10 became. There
was a simple cure to this problem. All T had to do was insert a byte before
each changed line number to signal the renumbering program that “you
already changed this one, dummy!” When renumbering was over, I would
remove the markers.

Then came another disappointment. After renumbering a large program,
I found that half of it had turned to garbage. I later learned that after one
reference was changed, one of my pointers was no longer accurate. Because
of this, my program was renumbering nonexistent line numbers and making
other stupid mistakes. Not knowing what to do, I scrapped this version.

Now, I had to change the program logic. A look-up table seemed to be the
answer. Using standard methods, though, to renumber a 16K program, I
would need a 48K system just to hold the look-up table. After many sleepless

238

utility

nights, I finally found the answer. Remember those two-byte line pointers?
They would be a nice place to store old line numbers. All I would have to do
is insert the old line number into the line pointer area of a line. Then, I
would insert the new line number into the line number area of that line, and
repeat the process for each line. (Notice that the line pointer and line
number will be the same for a line that is not to be renumbered.)
At this point, I would have a look-up table which shared memory with the
resident BASIC program. Next, I would search the program for references.
When I found one, I would search through the line pointers (old line
numbers) until I found the one which matched the reference. Having done
this, I would take the new line number from the line and insert it into the
reference. When all references were done, I would reset all line pointers to
make them accurate. (See Figure 2.) This was the basis for working version
4.0. 4.1 is merely a reworked 4.0 with a few minor changes.

START)

INPUT
VALUES

SET UP
TABLE

CHANGE
ALL LINE
NOS

GET A
BYTE

RESET YES

POINTERS
RETURN TO NO
BASIC

FIND KO
IN TABLE

INSERT
NEW NO

I

Figure 2

239

utility

Using the Program

Renumber is located at 7D05-7F7A. I located it here so it would not in-
terfere with KBFIX or Real-Time Clock. If this location conflicts with other
programs you have, all you have to do is change the ORG statement in the
source listing. However, if you do this, be sure to change the memory size
and starting address of the program. Since I used 7D05-7F7A, I will use
these addresses in describing the use of the program.

Upon power-up, answer MEMORY SIZE? with 32005 (decimal of 7D05).
Type SYSTEM, and answer the prompt with the file name the program was
saved under (I used RENUM). After the program is loaded, enter a /.
RENUM is now operational. Should you happen to deactivate it, type
SYSTEM and enter /32005, and it will again be activated.

To renumber a program, type NAME and press ENTER. The computer
will respond with OLD START?. Answer this with the number of the first
line to be renumbered (if you want to renumber the whole program, just
press ENTER). Answer NEW START? with the line number to be used first
(press ENTER for 10). Answer INCREMENT? with the increment to be used
between line numbers (press ENTER for 10). When READY appears on the
screen, the program will be renumbered with GOTO, GOSUB, THEN,
ELSE, and RUN statements updated to reflect the new line numbers.

A few notes on the program:

1. Never renumber a program that has a line number of 0. Doing so wiil
cause this version of RENUM to kill your program,

9. If you answer a question with a number that has five characters, you will
not have to press ENTER.

3. Experiment on a program you have saved. This way you can find out the
capabilities of RENUM.

Author’s Note

The following changes are necessary so that my program will work on
systems with an expansion interface:
1. Change line 190 from ORG 7D05H to ORG 7D00H
2. Delete line 4100
3. Change lines 250, 2120, and 3670 from HALT to JP 72H
The memory size is 32000, as is the start address.

240

4289
4288
4290
4260
42A0
7DB5

7D@85
7068
TDBA
7D@D
D10

7D11
7D14
7D17
7D1A
7D1B
7D1C
TD1E
7D1F

7D21
7D24
7D25
D26
7D28
7D29
7D2C
702D
7D2E
TD2F
D38
7D31
7D34
7D37
7D3A
7D3D
TD3E
TD3F
D41
7D42

7D44
D47
TD4A
7D4D
7D548
7D53
7D54
7D55
7D57
7D58

7D5A
7D5D

7068
7D63
7D65
7D66
D67
TD6A

218E41
36C3
21117D
228F41
76

21547F
CDA728
CDO6TF

CDA728
CD@67F

216A00
228842
216E7F
CDA728
CDO67F
AF

BC
29006
BD
2083

218A00
229842

2AA4 40
1810

06160
00110
0a120
00139
60140
28150
oRl60
60170
60180
008190
09200
08210
60220
68230
08249
08250
20260
00278
00280
20290
20300
86310
060329
00330
90340
68358
#0360
08370
00380
00390
004090
00419
20420
804390
00449
00450
0460
80478
80480
00490
80500
80510
00529
28530
00540
805508
805690
285706
80588
#0599
20600
68610
60620
20630
00640
08650
00660
066670
280680
20690
as7¢0
00710
80720
80730
008740
#0750
60760

utility

Program Listing., Renumber 4.1

H RENUMBER 4,1
’
WRITTEN BY JOHN STRATIGAKIS
’
OSTART EQU 4288H
NSTART EQU 4288H
INCREM EQU 4290H
BUFFER EQU 42094
BUFPTR EQU 42A0H
ORG 7D85H
;SET "NAME"™ VECTOR
PROG LD HL ,41BEH
LD (HL} ,8C3H
LD HL ,RENUM
LD (418FH) ,HL
HALT
; INPUT VALUES
RENUM LD HL,OLD
CALL 28A7H
CALL INPUT
XOR A
cp H
JR NZ,0LD1
Cp L
JR NZ,0LD1
; DEFAULT
LD HL, (40R4H)
cp (aL)
INC HL
JR NZ,SEARCH
Ccp (HL)
JP Z,1E4AH ;FC
SEARCH INC HL
LD E, (HL)
INC HL
LD D, (HL)
EX DE,HL
OoLD1 LD (OSTART) ,HL
LD HL ,NEW
CALL 28A7H
CALL INPUT
XOR A
cp H
JR N7 ,NEW1
Ccp L
JR NZ,NEW1
; DEFAULT
LD HL,@AH
NEW1 LD {NSTART) ,HL
LD HL,INC
CALL 28A7H
CALL INPUT
XOR A
cp H
JR NZ, INCRE
Ccp L
JR NZ,INCRE
;s DEFAULT
LD HL,8AH
INCRE LD (INCREM) ,HL
7 SEARCH FOR OLD LINE NO.
LD HL, {40A4R8)
JR TEST
TEST1 INC HL
TEST2 INC HL
LD A, (OSTART)
Cp (HL)

Program continued

241

utility

7D6B 2813 80776 JR 7, TEST3
7D6D 23 207 88 INC HL
TD6E 23 §0796 TEST4 INC HL
7D6F AF 20880 XOR A
D70 $10000 68812 LD BC, 8
7D73 EDBI 80828 CPIR
D75 AF #8830 TEST XOR A
7D76 BE 20848 cp (HL)
D77 20EC 80858 JR NZ,TEST1
7D79 23 29868 INC HL
7D7A BE #0870 cp (HL)
7D7B 28E9 26880 JR NZ,TEST2
7D7D C34AlE #6894 Jp 1E4AH ;FC ERROR
7D86 23 00998 TEST3 INC HL
7D81 3A8142 08918 LD A, (OSTART+1)
7D84 BE 80928 cp (HL)
7D85 28E7 90930 JR NZ, TEST4
7D87 2B P0940 DEC HL
7D88 E5 00950 PUSH HL
7D89 C1 60960 POP BC
#8978 ;SET UP PART OF TABLE
7D8A 2hA440 0098 LD HL, (40A4H)
7D8D ES ¢8998 NEXLN1l PUSH HL
7D8E D1 81000 POP DE
7D8F 23 #1010 INC HL
7098 23 81020 INC HL
7D91 E5 81030 PUSH HL
D92 B7 81840 OR A
7D93 ED42 91050 SBC HL,BC
7095 E1 #1060 POP HL
7D96 2811 61070 JR 2, NEXLIN
7D98 TE 91088 LD A, (HL)
7D99 12 218908 LD (DE) (A
7D92 23 81160 INC HL
7D9B 13 611108 INC DE
7D9C TE 91120 LD A, (HL)
7D9D 12 611308 LD (DE) ,A
TDYE 23 #1140 INC HL
7D9F AF #1150 XOR A
7DAD C5 81168 PUSH BC
7DAl 610668 01170 LD BC, 0
7DA4 EDBL g1188 CPIR
7DA6 C1 #1198 POP BC
7DAT 18E4 612060 JR NEXLNI
#1218 ;SET UP REMAINDER OF TABLE
TDAY9 TE 01228 NEXLIN LD A, (HL)
7DAA 12 91230 LD (DE) ,A
7DAB 23 81240 ING L
7DAC 13 81250 INC DE
7DAD 7E #1260 LD A, (BL)
7DAE 12 81270 LD (DE) ,A
7DAF 3A8942 §1288 LD A, (NSTART+1)
7DB2 77 91298 LD (HL) ,A
7DB3 2B 21369 DEC HL
7DBL 3A8842 #1318 LD A, (NSTART)
7DB7 77 #1320 LD (HL) ,A
7DBS 23 91338 INC HL
7DBY 23 #1340 INC HL
7TDBA AF 913506 XOR A
7DBB 216808 81360 LD BC, 0
7DBE EDBI 91376 CPIR
7DCE ES 91380 PUSH HL
7DC1l D1 #1390 POP DE
7DC2 BE 61400 cP (HL)
7pC3 23 61410 ING HL
7DC4 2810 81420 JR 7, NOLIN1
7DC6 23 $1439 NOZERL INC HL
7DC7 ES5 61448 PUSH HL
7DC8 2A8842 B1458 LD HL, (NSTART)
7DCB ED4B9942 01466 LD BC, (INCREM)

242

7DCF
7DD@
7DD3
7DD4
7DD6
70D7

7DD9
7pDC
7DDD
7DDE
7DDF
7DE@
7DE1
7DE3
7DE5
7DE6
7DE7
7DE9
7DEB
TDEC
7DEE
TDFD
7DF2
7DF5
7DF7
TDFA
7DFC
TDFF
7E81
7E64
TED6
7E09
7TEBA
7E8C
7E@D
TEBE
7EGF
7E11
7E12
7E13

TELS
7E18
7E19
7E1A
7E1B
7E1C
7E1D
7E1F
7820
7E22
7E23
TE24
TE25
7E28
TE2A
7E2B
782C
7E2D
TE2E
TE2F
7831

7E32
7E35

TE36
7E37
7E38

a9
228842
El
18D3
BE
20ED

CA367E
FESE
CA367E
FES1
CA367E
FES5
CA367E
FECA
CA367E
B7
2003
23

22F940
76

D7
E5
CD5ALE

81478
61480
81498
91508
01510
01528
01538
01540
81558
61560
01570
#1580
81599
61600
2l610
0l620
01639
01640
01650
01660
81670
61680
pl698
61700
91710
81720
91730
21740
01750
81760
01778
01780
01799
01800
01810
01828
01830
01840
081850
01860
01878
01888
81890
081900
81919
81920
081938
81940
081959
#1960
081970
01980
01990
02800
02010
02020
02930
02040
82050
220860
02070
62080
82099
02100
02110
02120
62130
0921490
02150
82160

ADD
LD
POP
JR
NOLIN1 CP
JR

utility

HL,BC
(NSTART) ,HL
HL

NEXLIN
(HL)
NZ,NOZER1

;SEARCH FOR LINE REFS,

LD
INC1 INC
INC2 INC
INC
GETBYT 1INC
LD
cp
JR
QUOTES INC
LD
Ccp
JR
OR
JR
JR
CHECK Cp
JP
Ccp
Jp
cp
JP
Ccp

NEXT INC

JR

;RESTORE "NEXT LINE" POINTERS

POINTR PUSH
POP
XOR
Ccp
INC
JR
CP
JR

NOTEND INC
INC
INC
LD
CPIR
LD
LD
INC
LD
LD
JR

END INC

HL, (40A4H)
HL

HL

HL

HL

A, (HL)
22H

Nz ,CHECK
HL

A, (HL)
221

Z ,GETBYT
A

% NEXT
QUOTES
8DH

%, LINE
8EH

%, LINE
91H

% ,LINE
95H

2, LINE
BCAH
%, LINE
A

NZ ,GETBYT
HL

A

(HL)

Nz ,INC1
HL

(HL)
NZ,INC2

HL, (40A4H)
HL

DE

A

(HL)

HL
NZ,NOTEND
(HL)

2 ,END

HL

HL

HL

BC,0

AL
(DE) ,A
DE

AH
(DE) (A
POINTR
HL

;RESTORE "VARIABLE POINTER™

LD
HALT

(40F9H) ,BL

sROUTINE TO CHANGE LINE REF.

LINE RST
PUSH
CALL

108
HL
1E5AH

Program continued

243

7E3B
TE3C
7E3D

TE3E
7E41
TE42
7TE43
TE44
TE46
TE47
TE48
TE49
TE4A
TE4D
TE4F
7E58
7E52
TES3
TE54
7E55
TES7
7E58
7E59
7E5C
7TE5D
TESE

TE68

7E61
TE62
TE65
7E68
7E6S
TE6A
7E6B
TE6C
TE6D
TE78
TE73
7E76
TET9
7E7C
7TETF
TE82
TEB5
7E88
TE8B
7JEBE
TE9D
7E93
TE95
7E96
7E98
7E99
TE9B
TESC
7ESD
TEAD
TEAL
TEA3
7ER4
7TER5
TEAG
TEAT
7EA8
TEA9
TERA
TERB

Cl
E5
C5

2AR440
7E

BB

23
2816
23

23

23

AF
610600
EDB1
BE
2BEF

23

ES5
210042
22A042
El

SE

23

56

EB
111027
CD3BTF
11E863
CD3B7F
116408
CD3B7F
110780
CD3B7F
118100
CD3B7F
2AAG42
3608
210842
3E38
BE
2003
23
18FA
E5

D1
2AR04A2
B7
ED52
E5

cl

Dl

D5

13

o8B

78

Bl
20FA

82178
02186
82198
082200
02210
082220
02230
82240
02250
02260
82270
82280
082290
062300
82310
62320
062330
082340
02358
02368
02378
82380
62390
02408
82410
082420
02430
82449
02450
02468
82470
82480
62490
62500
62510
82520
82530
82548
625508
62560
82578
082580
62590
082680
02610
82620
02630
062640
0626508
82660
82670
026 86
62698
62708
B2716
082728
82730
02748
082758
B2760
82778
82780
82799
82800
0628108
62820
62830
02840
22850
32860

utility

POP BC

PUSH HL

PUSH BC
;SEARCH FOR OLD NO. IN TABLE

LD HL, (48A4H)
CHECK4 LD A, (HL)

cp E

INC HL

JR % ,CHECK3
CHECK5 INC - HL

INC HL

INC HL

XOR A

LD BC, 0

CPIR

cp (HL)

JR NZ,CHECK4

INC HL

cp (HL)

DEC HL

JR N%,CHECK4

POP BC

POP HL

Jp COMMA
CHECK3 LD A, {HL)

cp D

JR NZ,CHECKS
; FOUND

HL

;FIND DESTINATION OF MOVE

PUSH HL

LD HL , BUFFER

LD (BUFPTR) ,HL

POP HL

LD E, (HL)

INC HL

LD D, (HL)

EX DE,HL

LD DE,2718H

CALL DIVIDE

LD DE,3E8H

CALL DIVIDE

LD DE, 64K

CALL DIVIDE

LD DE, 8AH

CALL DIVIDE

LD DE,1

CALL DIVIDE

LD HL, (BUFPTR)

LD (HL) , 8

LD HL , BUFFER

LD A,38H
CMPARE CP (HL)

JR NZ ,FOUND

INC HL

JR CMPARE
FOUND PUSH HL

POP DE

LD HL, (BUFPTR)

OR A

SBC HL,DE

PUSH HL

POP BC

POP DE

PUSH DE
DESTIN INC DE

DEC BC

LD A,B

OR C

JR NZ ,DESTIN

244

7EAD
TEAE
TEAF
7EBG

7EBL
7EB4
7EB5
TEB6
TEB7
7EB8
7EBY
7EBB
7EBC
TEBD
7EBE
TECH
TEC1
7TEC2
7EC3
7TECS
TEC6

7EC7
TECA
7TECB
TECC

TECD
7EDG
7ED2
7ED3
7EDS
7ED6
TEDS
7ED9
7EDA
7EDC
7EDD
7EDE
TEDF
TEEL

TEE2
7EE3
7EE4
7EE6
TEES

TEEC
7EED
7EEE
7TEEF
7EF®
7EF1
7TEF3
7EF4
7TEF6
TEF8
TEFA
7EFB
TEFC
TEFD
7EFE
TEFF
Tr00
TFr@2
7F@3
TFB4

014099
AF
2B

CDECTE
El
Dl
E5

210842
3E30
BE
2003

28

D7
FE2C
CA367E
C3E17D

ES
D5
C5
ES
B7
ED52
El
3804

02870
02880
22890
02900
02910
062920
82930
029408
02950
02960
02970
62980
92990
03600
03010
03020
030830
#3040
83850
63060
83070
03680
23890
03100
03110
03120
83139
03149
03150
03160
031706
83180
093190
03200
032190
063220
93230
03240
03250
03260
632780
032860
03290
03300
#3319
063320
63330
033490
83350
83360
9337¢
03380
033906
23400
03418
03420
63430
03440
0345¢@
03460
03470
03480
83490
#3500
063518
03520
03536
83540
83550
63560

utility

POP BC

POP HL

PUSH BC

PUSH HL
;FIND NO. OF BYTES TO MOVE

BC,0

XOR A

DEC HL
BYTES INC HL

INC BC

Cp (HL)

JR NZ,BYTES

INC HL

INC BC

Cp (HL}

JR NZ,BYTES

INC HL

INC BC

Ccp (HL)

JR NZ,BYTES

POP HL

PUSH DE
;MOVE!

CALL MOVE

POP HL

POP DE

PUSH HL
7 INSERT ASCII FOR NEW REF.

LD HL,BUFFER

LD A,30H
CMPR1 cp (HL)

JR NZ,LOAD

INC HL

JR CMPR1
LOAD LD A, (HL)

OR A

JR Z ,DONE

LD (DE)} .3

INC DE

INC HL

JR LOAD
DONE POP HL
;CHECK FOR COMMA

H (ON-GOTO,ON~GOSUB)

COMMA DEC HL
RST 1¢H
Ccp 2CH
JP 2 ,LINE
JP GETBYT+2
; SUBROUTINE TO MOVE BYTES

MOVE PUSH HL

PUSH DE
PUSH BC
PUSH HIL
OR F
SBC HL,DE
POP HL
JR C,MOVEL®
LDIR
JR COMPLT
MOVEL1® ADD HL,BC
DEC HL
EX DE, HL
ADD HL,BC
DEC HL
EX DE,HL
LDDR
COMPLT POP BC
POP DE
POP HL

Program continued

245

TFB5

TF86
TF89
TF@A
7FBC
TF@F
7F11
7F13
TF15
7F18
7F19
7F1B
7F1D
TF1F
TF22
TF24
TF27
TF2n
TF2B
TF2C
TF2E
TF30
7F31
TF34
TF35
TF37
TF3A

7F3B
7F3D
TF3E
TF40
7F42
TF43
TF45
TF46
TF47
TF4A
7F4B
TF4D
TF4E
TF4F
TF52
TF53

TF54
7F56
TF61
TF62
TF6D
TF6E
7F79
TETA
085

(o]

2AR7 40
ES
8685
CD2BA@
FEB1
2006
3E@D
CD3360
76
FE@D
2811
FE30
FABCTF
FE3A
F20CTF
CD3366¢
7

23
14DE
3600
El
CD5Al1E
EB
3EOD
CD3308
(&)

6600
B7

ED52
3863

04
18r8

63570
#3580
83590
63600
23618
63620
063630
03640
063650
03666
03670
63680
63690
063708
63710
63726
23730
63740
83750
83760
63770
63788
83798
063800
63819
p382e
838380
83840
#3858
83860
63870
03880
23890
03968
63910
83926
63930
B3940
083959
83960
93978
63980
83990
04000
p4ple
B4p28
64030
04pAD
64050
84060
04870
04080
04090
04100
p4110

000606 TOTAL ERRORS

RET
; SUBROUTINE TO INPUT VALUES
INPUT LD HL, (4BATH)
PUSH HL
LD B,5
KEYSCN CALL 2BH
cp 1
JR NZ,NOBRK
LD A,8DH
CALL 33H
HALT
NOBRK CP @DH
JR % ENTER
cp 300
Jp M,KEYSCN
cp 3AH
Jp P,KEYSCN
CALL 33H
LD (HL) ,A
INC HL
DINZ KEYSCN
ENTER LD (HL) ,8
POP HL
CALL 1E5AH
EX DE, HL
LD 5,0DH
CALL 330
RET
; SUBROUTINE TO DIVIDE HL,DE
DIVIDE LD B0
LOOP1# OR A
SBC HL,DE
JR C,DONE1®
INC B
JR LOOP18
DONE1@ ADD HL,DE
PUSH HL
LD HL, (BUFPTR)
LD A,B
ADD A,30H
LD (HL) ,A
INC HI
LD (BUFPTR) ,HL
POP HL
RET
;MESSAGES
OLD DEFW @DBEH
DEFM 'OLD START?
DEFB 8
NEW DEFM 'NEW START?
DEFB @
INC DEFM " INCREMENT?
DEFB 8
HALT ; PROTECTIVE
END PROG

utility

END BLOCK

246

APPENDIX

Appendix A
Appendix B

247

APPENDIX A

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose.”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level I1. To run in Level I, follow this procedure:
@ Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
® Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent
code made to agree.
® Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model III Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
OUT236,0 and OUT236,2.

249

APPENDIX B

Glossary
A

access time—the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator—traditionally the register where arithmetic (the accumula-
-tion of numbers) takes place.

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

A/D converter—analog to digital converter. See D/A converter.

address—a code that specifies a register, memory location, or other data
source or destination,

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications.

algorithm—a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—adjustment of hardware to achieve proper transfer of data. In
the TRS-80 this usually applies to cassette heads and disk drives.

alphanumerics—refers to the letters of the alphabet and digits of the num-
ber system, specifically omitting the characters of punctuation and syntax.

ALU-~ Arithmetic-Logic Unit. Internal, and inaccessible to the program-
mer, it is the interface between registers and memory, manipulating them as
necessary to perform the individual instructions of the microprocessor.
analog—data is represented electrically by varying voltages or amplitudes.
AND-—a Boolean logical function. Two operators are tested and if both are
true the answer is true. Truth is indicated by a high bit, or “1” in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately.

APL—a popular high-level mathematical language.

argument—any of the independent variables accompanying a command.

250

appendix

ASCII—American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where

characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—a piece of software that translates operational codes into their
binary equivalents.

B

backup—refers to making copies of all software and data stored externally
and having duplicate hardware available.

base—a mathematical term that refers to the number of digits in a number
system. The decimal system, using digits 0 through 9, is called base 10. The
binary system is base 2.

BASIC-—an acronym for Beginner’s All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing—a method of computing where many of the same type
jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the
computer operator. All the cards are put into the card reader, and the
results of each person’s program are returned later. This is contrasted with
interactive computing.

baud rate—a measure of the speed at which serial data is sent. The equiva-
lent of bits per second (bps) in microcomputing.

benchmark—to test performance against a known standard.
binary—a number system which uses only 0 and 1 as digits. It is the equiva-
lent of base 2. Used in microcomputing because it is easy to represent 1s and

0Os by high and low electrical signals.

bit—an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

Boolean algebra—a mathematical system of logic named after George

251

appendix

Boole. Routines are described by combinations of ANDs, ORs, XORs,
NOTs, and IF-THENs. All computer functions are based upon these
operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. Sometimes it is keyed in, and on
other machines it is in read only memory (ROM). Using this program is
called “booting” the system or cold-starting,

bps—bits per second.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug—an error in software.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.

byte—eight bits that are read simultaneously as a single code.

C

CAl—an acronym for Computer Aided Instruction.

card—a specifically designed sheet of cardboard with holes punched in
specific columns. The placement of the holes represents machine-readable
data. Also a term referring to a printed circuit board.

carrier—a steady signal that can be slightly modified (modulated) con-
tinuously. These modulations can be interpreted as data. In microcom-
puters the technique is used primarily in modem communications and tape
input/output (1/0).

character—a single symbol that is represented inside the computer by a spe-
cific code.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a prede-
termined result for that block of data.

252

appendix

chip—a physical package containing electrical circuits. They vary from
aspirin-size for a simple timer to about the size of a stick of gum for a com-
plete microprocessor.

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this, clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL—COmmon Business Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

compiler—a piece of software that will convert a program written in a high-
level language to binary code.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

concatenate—to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

constant—a value that doesn’t change.

CPU—Central Processing Unit. The circuitry that actually performs the
functions of the instruction set.

CRT—Cathode Ray Tube. In computing this is just the screen the data ap-
pears on. A TV has a CRT.

cue—refers to positioning the tape on a cassette unit so that it is set up to
read/write the right section of tape.

cycle—a specific period of time, marked in the computer by the clock.

D

D/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

data base—refers to a series of programs each having a different function

253

appendix

but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a stor-
age device. Knowledge of operating or programming a computer is not nec-
essary for a data entry operator.

debug—to remove bugs from a program.

decrement—to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

dedicated—in computer terminology, a system set up to perform a single
task.

default—that which is assumed if no specific information is given.

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

digital—all data is represented in binary code. In microcomputers, a high
electrical signal is a 1 and a low signal is a 0.

disassembly—remaking an assembly source program from a machine-code
program.

disk—an oxide-coated, circular, flat object, in a variety of sizes and contain-
ers, on which computer data can be stored.

disk controller—an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—(DOS) the systemn software that manipulates the
data to be sent to the disk controller.

DMA—direct memory access. A process where the CPU is disabled or
bypassed temporarily and memory is read or written to directly.

documentation—a collection of written instructions necessary to use a piece
of hardware, software, or a system.

254

appendix

dot matrix printer—instead of each letter having a separate type head (like a
typewriter), the single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
make,

driver—a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex—refers to two-way communications taking place independently,
but simultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

E
EAROM—an acronym for Electrically Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if

necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editor.

EOF—End Of File.
EOL—End Of Line (of text).
EPROM— Electrically Programmable Read Only Memory. The chip is pro-

grammed by voltages higher than normal for computer chips. Once pro-
grammed, it is used like ROM, but can be erased by exposure to ultraviolet

light.
exclusive OR—see XOR.
execution cycle—a cycle during which a single instruction actually occurs.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

255

appendix

F

fetch cycle—a cycle during which the next instruction to be performed is
read from memory,

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occured.

flowcharting—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN—FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.
G
game theory—see von Neumann.
garbage—computer term for useless data.
gate—a circuit that performs a single Boolean function.

GIGO—Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics—information displayed pictorially as opposed to alphanumerically.

H

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Contrast with buffer.

256

appendix

hangup—a situation where it seems the computer is not listening to you.
hard copy—a printout.

hardware—refers to any physical piece of equipment in a computer system.
hexadecimal—a number system based on sixteen. The decimal digits 0-9 are
t(;?zidtsalong with the alpha characters A-F, which are also recognized as

high—a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming code that does not require a knowl-
edge of the CPU structure.

high order—see most significant.

HIT—acronym for Hash Index Table. A section of the directory on a
TRS-80 disk.

host computer—the primary computer in a multi-computer or terminal
hookup.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

IC—-integrated circuit. See chip.

immediate addressing—the address of the information that an operation is
supposed to act upon immediately follows the operation code.

increment—to increase, usually by one. See decrement.

indexed---the information is addressed by a specified value, or by the value
in a specified register.

indirect—the address given points to another address, and the second ad-
dress is where the information actually is.

intelligent terminal—a terminal with a CPU and a certain amount of

257

appendix

memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program written in a
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compile.

interrupt—asignal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is

branched to. When finished, the registers are popped from the stack and the
main program continues.

I/O—acronym for input/output. Refers to the transfer of data.

J

jack—a socket where wires are connected.

K

K—abbreviation for kilo. In computer terms 1024, in loose terms 1000.

L

least significant—refers to the lowest position digit of a number, or right-
most bit of a byte. In 19963 the 3 is the least significant digit. Opposite of
most significant.

LIFO—acronym for Last In First Out. Most CPUs maintain a “stack” of
memory that this rule applies to. The last piece of data pushed into the stack
is the first piece popped out.

light pen—a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

258

appendix

loop—a set of instructions that executes itself continuously. If the program-
mer had the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value the loop is terminated.

low—a logic signal voltage. The computer senses this as a binary 0.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

mainframe--refers to the CPU of a computer. This term is usually confined
to larger computers.

memory— the hardware that stores data for use by the CPU. Each piece of
data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each
capable of storing a tiny electrical charge.

microprocessor—a CPU on a single chip.
mnemonic—a short, alphanumeric abbreviation used to represent a

machine-language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

259

appendix

modem—MOdulator/DEModulator. An I/Q device that allows com-
munication over telephone lines.

monitor—1. a CRT. 2. a short program that displays the contents of
registers and memory locations and allows them to be changed. Monitors
can also allow another program to execute one instruction at a time, saving
programs and disassembling them.

most significant—refers to the highest value position of a number of the left
most bit of a byte. In the number 1923 the 1 is most significant because it
represents thousands.

multiplexing—a method allowing several sets of data to be sent at different
times over the same bus lines, yet all of the data can be used simultaneously
after the final set is received. For example, several LED displays, each re-

quiring four data lines, can all be written to with only one group of four
data lines.

N

NAND-—an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

nanosecond—one billionth of a second.

nesting—putting one loop inside another. Some computers have a limit to
the number of loops that can be nested.

NOT—-a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
O

object code—all of the machine code that is generated by a compiler or as-
sembler. Once object code is loaded into memory it is called machine code.

octal—refers to the base 8 number system, using digits 0-7.
OEM —Original Equipment Manufacturer.

offset value—a value that can be added to an address. Most addressing
modes allow an offset value.

off-the-shelf—a term referring to software. Means the program is general-

260

appendix

ized so that it can be used by a greater number of computer owners, thus it
can be mass produced and bought “off-the-shelf.”

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

OR—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

overflow-—a situation that occurs when an arithmetic function requires
more than the machine is capable of handling. Most computers have a flag
so that this condition can be tested.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide— an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

P

page—refers to a 256 (2 to the 8th power) word block of memory. How large
a word is depends on the computer. Most micros are 8-bit word machines.
The term is important because many chips do special indexed and offset ad-
dressing on the page where the program counter is pointing and/or on the
first page of memory.

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

PC board—stands for Printed Circuit board. A piece of plastic board with

261

appendix

lines of a conductive material deposited on it to connect the components.
The lines act like wires. These can be manufactured quickly and are easy to
assemble the components on.

peripheral—any piece of hardware that is not a basic part of the computer.

PILOT—a simple language for handling English sentences and strings of
alphanumeric characters.

PL/1—a programming language used by very large computers. It incor-
porates most of the better features from other programming languages.

plotter—a device that can draw graphs and curves controlled by the com-
puter through an interface.

port—a single addressable channel used for communications.

PROM-—Programmable Read Only Memory. A memory device that is writ-
ten to once, and from then on acts like a ROM.

pseudo code—a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself.

R

RAM-—an acronym for Random Access Memory. Memory that can be writ-
ten to or read from. It is addressed by the address bus.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a memory location used by the CPU and not addressed by the ad-
dress bus. It cannot be used by the programmer.

relative addressing—an address that is dependent upon where the program
counter is presently pointing.

ROM—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the

262

appendix

machine will try, but the data is not remembered.

RPG—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

RS-232—an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

S

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricty.
Transistors and integrated circuits are made from semiconductive material
and called semiconductors.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. Contrast with parallel.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (~) and 0 is positive (+).

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer
simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

software—refers to the programs that can be run on a computer.

source program-—the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

status register—the register that contains the status flags set and tested by
the CPU operations.

stepper motor—a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines
the tracks on a disk.

263

appendix

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once. Similar to
a macro.

syntax—-the term is used exactly as it is used in English composition. Every
language has its own syntax.

system software—-software that the computer must have loaded and run-

ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

text editor-—-see word processor.

time-sharing--refers to systems which allow several people to use the com-
puter at the same time.

track—a concentric area on a disk where data is stored in microscopic
magnetized areas.

TTL—Transistor-Transistor Logic. Means that the electrical values for

logic highs and lows fall within the values necessary to run transistors. See
semiconductor.

U

utility-—a program designed to aid the programmer in developing other
software.

Vv

variable—a labeled entity that can take on any value.

von Neumann, John (1903-1957)-Mathemetician. Put the concept of
games, winning strategy, and different types of games into mathematical

264

appendix

formulae. Also advanced the concept of storing the program in memory as
opposed to having it on tape.

w
word—in computing it refers to a number of bits that are in a parallel for-
mat. If the CPU works with 8 bits then the word length is 8 bits. Common
word sizes are 4, 8, 12, 16, and 32. Some are as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X

XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but
answer is high (1) if and only if one line is high.

Z

zero page—refers to the first page of memory.

265

INDEX

267

Addition, 179
Address buffers, 145, 146, 154
Address bus, 145, 146
Address decoder, 146, 151, 154
Address map, 146
Address multiplexing, 150
Air conditioner, 118
Algebra, 25-31
program listings, 32-54
Alphanumeric characters, 155
Arithmetic, review of, 25
decimal, 26
program listing, 32-35
Arithmetic operations, 179
Array(s), 17, 58-59, 70-71, 150, 211
ASC, 193
ASCII, 201-202
ASCII characters, 172
ASCII code(s), 165, 193, 184, 195, 198, 213, 214
ASCII numbers, 236
Assembler, 135, 228
Assembly-language routine, 26
Backup cassette, 202
Backup copy, 103
BASIC, 17, 154, 174, 177, 179, 186, 192, 201, 209, 214,
216, 228
interpreted, 212
with machine language, 171, 174, 218-219
BASIC workspace, 171, 173, 176, 177
Basketball game, description of, 67-72
program listing, 73-87
Binary, 180
Block(s) (in basketball), 71
Boxes, how to draw on screen, 197
program listing, 205
BREAK key, 138, 155, 192, 213
Buffer, 175, 176, 177, 225, 227
address, 145, 146, 154
data, 145, 154
data bus, 145, 146, 154
Byte(s), 172, 173, 174, 176, 199, 200, 213, 214, 217, 226,
228, 236, 238
data, 220
double-precision numbers, storage needed for, 218
single-precision numbers, storage needed for, 218
Capacitor, disk, 156
Card file, 14
Cash register, computer system acting as a, 13
Cassette-control relay, 136
Cassette recorder, modifications of, 100-103, 133, 140-142
program listing, 143
Chips, 152
CHR$, 165, 217
CHR$(23), 192
CHR$(28), 192, 202
CLEAR command, 200, 218
CLOAD, 133, 141, 172, 177, 198, 199
CLS, 192
Command codes, 213

INDEX

Compiler, 212
Connector(s), 140, 141, 145, 152, 154, 157
cassette, 199
Control commands, 164
Controller chip, 148
Cookies, Girl Scout, description of program to keep track of
sales of, 107-110
program listing, 112-117
Cooling fuel, cost of, 118
CPU(s), 135, 148
8080/8085, 134
CSAVE, 133, 141, 198, 199
CTR-41 cassette recorder, 140, 141
CTR-80, 100, 103
Data buffers, 145, 154
Data bus buffers, 145, 146, 154
Data code, 202
Data lines, 4, 135, 186
Data list, 4
DATA READ statement, 107
Data statement(s}, 3, 4, 60, 107
DATA statement(s), 25, 26, 31, 165, 172, 173, 174, 175, 176
186, 188
Data tape, 4, 109
Debounce program, 133-138, 140-142
program listing, 143
DEBUG, 225
Defense(s) (in basketball), 68, 69, 70, 72
DEFINT, 214
Degree-day, 120
Delay loop, 211
DELETE, 197
Deluxe Expansion Interface, instructions for building,
144-146, 148, 150-152, 154-157
Disk BASIC, 148, 155, 171-172
Division, 179
DOS, 199, 225, 226
DOS READY prompt, 155
Dribbling (in basketball), 71
subroutine for, in program, 70
Editor/Assembler, 220, 236
Educational programs for eighth graders, 25-31
program listing, 32-54
8080/8085 CPUs, 134
8080/8085 Software Design (Titus, Rony, Larsen, and
Titus), 133
80 Microcomputing, 3, 164, 220
Electric bills, 120
Electrical energy, amount used, 119
Electricity, cost of, 118
total dollars spent for, 119
Electricity usage, 120
ELSE command, 193, 210
ELSE-IF statements, 213
END command, 195, 237
Energy bills, saving on, 118-120
program listings, 121-130
Equations, solving, 28
program listing, 42-46

269

index

Error message, 172, 184, 200, 225
Error trap(ping), 192, 211
subroutines for, 219
Exatron Stringy Floppy TM, 199
Expansion interface(s), 199
instructions for building, 144-146, 148, 150-152, 154-157
Radio Shack, 144, 146, 151, 156
technical manual for, 156
Expansion system, TRS-80, 157
Exponentiation, 179
EXTRA IGNORED, 4
FDC board, 145, 148, 150, 155
FDC card, 155
File(s), 189, 225, 227
ASCII, 226
card, 14
data, 199
disk, 226
serial, 199
File name(s), 225, 226, 228
Flowchart(s), 182, 183-184, 185, 186, 210
FOR, 213, 214
Form-letter writing, 3-6
program listing, 7-12
FOR-NEXT loap(s), 91, 173, 174, 197, 198, 200, 201, 211
FOR-TO-NEXT loop, 214
Foul(s) (in basketball), 71, 72
subroutine for, in program, 70
Fuel cost, annual increase in, 118
Girl Scout cookies, description of program to keep track of
sales of, 107-110
program listing, 112-117
GOSUB, 4, 194, 195, 236, 240
GOTO, 184, 187, 193, 209, 236, 240
Graphics, 70, 71
machine-language, 60
used with POKE, 217-219
Graphics characters, 155
Graphics program, description of, 81-92
program listing, 93
Ground loops, 141
Hard copy, 108
Hardware modifications, 97-99, 100-103
Hangman, 210
Headings, printing of, 196-197
program listing, 205
Heath Hl4 Operator’s Manual, 164
Heath H14 printer, interfacing to TRS-80, 164-166
program listing, 167
heating fuel, cost of, 118
Hexadecimal codes, 212
Hexadecimal numnbers, 212
HONESS programming language, 179-188
program listing, 189-191
Howe, Hubert S., Jr., Machine Language Progr g
fram the Ground Up, 220
1Cs, 150, 154
IF ... statement, 214
IF-THEN statement, 187
INKEY$, 29, 193, 194, 185, 196, 210, 211
Input, 3
BASIC command, 175
INPUT, 4, 196, 197, 200
Input mode, 108

INPUT¥#-1, 199-200
Instant Software, 3
Insulation, 119
R-value of, 118
Intel Data Catalog, 157
interpreter, 179, 214
BASIC, 236
Inventory, 13-17, 107-110
program listings, 18-22, 112-117
Inventory records, 13
/O boards, 144
1/O operations, 146
IPC board, 144, 145-146, 148, 152, 154, 155
Junk box, 101
KBFIX program, 218, 240
Keyboard bounce, how to eliminate, 133-138, 140-142
program listing, 143
Keyboard contacts, how to clean, 140
Kilobaud Microcomputing, 164
Kilowatt-hours, 120
Lancaster, Don, TV Typewriter Cookbook, 157
LEN, 198
Letterhead, 4
Letters, double-sized, 196
Letter writing, 3-6
program listing, 7-12
Level II BASIC, 155, 166, 236
Level I manual, 201, 216-217
Level 11 TRS-80, 209
LIST, 209
LLIST, 164
Lowercase characters, 174
LPRINT, 108
Machine code(s), 165, 171, 173, 174, 175, 212, 217, 218
Machine-code program(s), 216-217, 218-219
Machine-code subroutine, 212
Machine language, 179, 180, 220
hexadecimal, 135
used with BASIC, 171-178, 218, 219
Machine-language code, 173
Machine-language program(s), 173, 174, 175, 176, 177, 212,
216-217
Machine Languag
{Howe), 220
Machine-language routine(s), 171, 175, 177
Mainframe, 144, 145, 212
S-100, 156
Mathematics programs for eighth graders, 25-31
program listings, 32-54
Matrix, 59, 107, 110
Maze game, description of, 57-60
prograrn listing, 63-67
Memory, 15, 17, 26, 135, 151, 156, 175, 213, 217, 228
dynamic, 150
high protected, 219
fow, 171, 172, 173
statie, 150, 151, 152
using POKE to change, 216
video, 217
Memory map, 175
MEMORY SIZEP, 135, 156, 171, 176, 216, 217, 218, 240
Memos, 3
program listing, 7-12
Menu, 4, 5, 14, 108, 192, 193, 211

Prog ing from the Ground Up

270

index

Micro-Basketball game, description of, 67-72
program listing, 73-87
Microcomputing, 97, 136
Microprocessor units, 212
MIDS$, 4, 197, 201
Motherboard, 152
Multiplexer, 150
Multiplication, 179
National Weather Bureau, 120
NEW, 172, 173, 174, 176, 177
NEWDOS, 227
NEWDOS Editor-Assembler, 228
NEWDOS EDTASM, 228
NEWDOS 80, 227
NEXT command, 211, 214
NEXT without FOR, 209
NPN silicon transistor, 98
Offense(s) (in basketball}, 69, 70, 72
OM error signal, 213
ON ERROR GOTO, 219
ON. . .GOSUB, 198
ON...GOTO, 187, 193, 196
Op {operation) code(s), 179, 180, 181, 187
Operands, 179
Operating system, 225, 226, 227
Order of operations, 25, 27
Oscilloscope, 154
Parameters, 71, 107
passing, 195, 196
Passing (in basketball), 71
Patterns, description of program to generate, 91-92
program listing, 93
PC board(s), 100, 101, 152
PEEK, 154, 156, 212-213, 214, 218
Percent sign (%) signifying integer, 214
POINT coordinates, 71
Pointer(s), 172, 177, 226, 236, 239
BASIC, 174, 176
data, 175
memory, 173
POKE, 26, 138, 154, 156, 165, 172, 173, 175, 176, 192,
214, 216-217
compared to PEEK, 214, 216
use with graphics, 217-219
Polar coordinate system, 91
Port(s),
cassette, 136, 145
110, 146
parallel printer, 144, 146
RS-232C, 154
RS-232C communications, 144
RS-232C serial, 144, 146
Price, retail, 15
PRINT, 192, 164, 195, 219
PRINT@, 70, 71
PRINT ERL, 219
PRINT#-1, 199-200
Print routines, 198
Printed circuit board, 141
Printer, serial, 227
Printouts, 164, 196
Processor Technology SOL system, 152
Program(s), 181, 184

BASIC, 26, 137, 144, 171, 172, 173, 175, 176, 177, 209,

213, 220, 226
FORTRAN, 179
HONESS, 182, 187
infinite loop, 182
machine-code, 216-217, 218-219

machine-language, 173, 174, 175, 176, 177, 212, 216-217

music, 26
PROM programmers, 144
Radial line drawing, 92
Radian value, changing degree value to a, 81
Radio Shack, 97, 133
Radio Shack CTR-41 cassette recorder, 140, 141
Radio Shack Editor/Assembler, 133
Radio Shack EDTASM, 228
Radio Shack expansion interface(s), 144, 146, 151, 156
Radio Shack KBFIX program, 218
Radio Shack RS-232 board, 227
Radio Shack TRS-80, see TRS-80
Radio Shack warranty, 100
RAM, 15, 165
dynamie, 152
RAM board, 152
$.100 16K, 151
RAM card, 156
Random maze generator, 60
Random number, 68, 69, 70
RC filter networks, 97
READ, 4, 100, 172
READY prompt, 176, 240
Real-Time Clock, 240
Receipts, printing of, 13
Rectifier, half-wave, 97
Rectifier circuit, 135
Regulator circuit, 97, 98
REM statements, 25
REMarks, 186
Renumbering BASIC program lines, 236-240
program listing, 241-246
Reorders, 13
RESET button, 138, 155, 176, 209, 216
Resistor, 98, 100, 101, 140, 141
RETURN, 194, 195
Ribbon cable, 150, 152
ROM, 133, 134, 135, 136, 138, 202, 216
ROM software, 133
RS-232 board, 227
RUN, 177, 214, 240
R-value of insulation, 118
Sales, description of program to keep track of, 107-110
program listing, 112-117
Sales tax rate, 14, 17
Scoreboard, 72
SET, 71, 91, 92, 197, 217
Shooting (in basketball), 71
subroutine for, in program, 70
Shot (in basketball), 68, 69, 72
Slamdunks (in basketball), 71, 72
Small Systems Software (555}, 164
Small Systems Software RSM-18, 136
SN error message, 209
Software, operating system, 148
$-100 board, 156
$-100 bus, 144, 145, 152, 157
$-100 motherboard, 144, 145

271

S-100 16K RAM board, 151
Source code, 228
Spooler system for the TRS-80, 225-229
program listings, 230-235
SPST (single-pole single-throw) switch, 101
SSS TRS232 interface, 166
Stack, 171
Static RAM board, 145
Stein, Frank N., 209
Stock number(s), 14, 15, 16, 17
STRS, 200, 201
String(s), 199-200, 202, 211
concatenating, 200
null, 28
packing, 200-201
STRINGS, 183, 210
Subroutine(s), 194-196
importance of having a stock of, 211-212
machine code, 212
to handle graphics, 70
Subseript number, 202
Subscripts, 196
Subtraction, 179
Supermaze game, description of, 57-60
program listing, 63-67
Switch(es),
DIP, 152, 164
keyboard, 133, 134
SPST (single-pole single-throw), 101
Symbols,
multiplication (»), 25
zero(@), 25
Syntax error{s), 208, 219
SYSTEM command, 176, 218
System disk, 155
TRSDOS, 156
SYSTEM programs, 176
SYSTEM prompt, 176
SYSTEM tape(s), 171, 176, 216
TAB instruction, 196, 287
Tabulation, 197-198, 212
program listings, 206
‘Taxes, calculation of, 13
T-BUG, 171, 176, 236
Team(s), 67, 68, 69, 72
Television, portable, 97
THEN statements, 240
Three-pointer{s) (in basketball), 71, 72

Titus, Rony, Larsen, and Titus, 8080/8085 Seftware Design,

133

Transactions, tally of, 13
Transistor, 97, 150

NPN silicon, 98

regulator, 98
Transistor circuits, 97
TRSDOS 2.1, 227
TRSDOS 2.2 227-228

TRS-80, 25, 58, 67, 97, 133, 144, 152, 154, 156, 157, 164

174, 193, 199, 213
commands of, 210
detecting of errors, 209

entering a machine-language program into, 172

memory mapping of, 217
reserving memory in, 171

index

spooler system for, 225-235
string variables with, 218
use of machine code in, 212
TRS-80 BASIC, 193
TRS-80 code(s), 212, 213
TRS-80 Editor/Assembler, 135
TRS-80 Expansion Interface Handbook, 157
TRS-80 expansion systemn, 157
TRS-80 Microcomputer Technical Reference Handbook,
157
TRS-80 Model 1 and Model 111, BASIC workspace com-
pared, 171
machine-language routines compared, 172
'TRS-80 ROM, 202
TRS232 Printer Interface, 164
TV Typewriter Cookbook (Lancaster), 157
UART, 146, 154
USR, 176, 218-219
VAL, 193, 194, 201
Variable(s), 171, 174, 212
integer, 214
list of, 25
number, 200
string, 193, 196, 200, 218
Variable names, 200, 214
VARPTR, 217-218
VCEO, 98
Video display, fluctuation of, 97
how to regulate, 97-99
Video map, 197
Voltage regulation of the monitor, 97
Voltage regulators, 152
Voltage, supply, 98
Voltmeter, 97
VTOS 3.0, 227
X-coordinate, 71
Y-coordinate, 71
Z-80, 145
Z-80 mnemonics, 135
Zener diode, 98
Zero element, 58

InpEX CompILED BY NAN McCARTHY

Encyclopedia
Y Lgader

The editors of Wayne Green Books want to help you use the programs in
your Encyclopedna for the TRS-80. So to help you maximize the use of your
microcomputing time, we created Encyclopedia Loader™,

By a special arrangement with Instant Software™, Wayne Green Books
can now provide you with selected programs contained in each volume of
the Encyclopedia for the TRS-80 on a special series of cassettes called
Encyclopedia Loader™, Your encyclopedia provides the essential documen-
tation but now you’ll be able to load the programs instantly. Each volume of
the Encyclopedia will have a loader available.

With Encyclopedia Loader™ you’ll save hours of keyboard time and
eliminate the aggravating search for typos. Encyclopedia Loader™ for
Volume 3 will contain the programs in the following articles:

Flex/Form

Algebra Tutor

Supermaze

Micro Basketball

The Great Girl Scout Cookie Caper
Two Energy Savers
CISAB—Backwards BASIC

Spool and Despool.

Encyclopedia Loaderm™ for Volume 1
ELS8001 $14.95
(plus $1.50 postage & handling)
Encyclopedia Loaderm™ for Volume 2 ‘
EL8002 $14.95

(plus $1.50 postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call 1-800-258-5473.

— WAYNE GREEN INC.

Need information about microcomputing? Turn to Wayne Green Inc. and
get the products that make understanding and using microcomputers easy,
fun and economical.

One of Wayne Green Inc.’s monthly publications is for you.

{ microcomputing

80 Microcomputing is designed for the users of the TRS-80*.
You get:
© hundreds of pages of articles and extended systems
documentation.
® as many as 20-30 useable programs free each month.
@® money saving ad pages to shop in.
@ a look at what other users are doing and how.
© an honest look at the system from a publisher not con-
nected with Tandy.
® reviews and applications that make your system more
useful.
To Subscribe Call Toll Free 800-258-5473.
kilobaud

MICROCOMPUTING ™

Kilobaud Micrecomputing gives a useable look at all microcomputers.
You get:

@ introduced to all the systems from Apple to ZX-80.

© a look at microcomputers in business, science, educa-
tion and your home.

© a magazine that is understandable if you are a begin-
ner, a guide if you're an intermediate, and exciting if
you're an expert,

® useable programs, articles, applications and reviews.
® an easy way to shop competitively in the ad pages.
To Subscribe Call Toll Free 800-258-5473.

Desktop Computing is the first computing publication to be written in plain
English. You get:

® a plain speaking look at mini- and microcomputers. . .
reaily the first magazine written about these computers
in English.

® a practical view from business people like you who are
using computers every day.

To Subscribe call Toll Free 800-258-5473.

Encyclopedia
y Loader”

You can find everything you need in Software and Books from Wayne Green
Inc. Encyclopedia Loader is the software companion to this Encyclopedxa
for the TRS-80*. You get: -

® a separate cassette for each volume of the Encyclopedla

® no more aggravation with typos.

® more time to use the programs.

To Order Encyclopedia Loader Call Toll Free 800-258-5473.

d N

@ Load-80, designed as a companion to

80 Microcomputing, is a dump of the major

LOAD 80 program listings in “80” on a monthly

cassette. You get:

® the best and the longest of the programs in “80”
without typing those lengthy listings so you save hours of
your time.

® big money savings—the programs would cost a lot more if
you had to buy each one separately.

@ no more a gravatlon (you don’t have to go back and
search for the typo).

To Order Load-80 Call Toll Free 800-258-5473.

Instant Softwareinc.

Instant Software is the most complete publisher of microcomputer software
in the world. You get:

frograms for every need—there are hundreds ran ing
rom business to games to science to health to utilities.

® an inexpensive way to expand the function of your com-
puter.

® pm%:ams for all the systems from Apple to TRS-80* and
e machines in between.

® the best programs available. Since Instant Software is the
biggest it gets the best programmers.

For a Catalog of Instant Software Products,
Call Toll Free 800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy

Encyclopedia for The TRS-80*—A ten-volume series to
be issued every two months starting July 1981. The
Encyclopedia contains the most up-to-date information
on how to use your TRS-80*.

40 Computer Games from Kilobaud Microcomputing—
Games in nine different categories for large and small
systems, including a section on calculator games.

Understanding and Programming Microcomputers—
A well-structured introductory text on the hardware and
software aspects of microcomputing,.

Some of the Best from Kilobaud Microcomputing—
A collection of articles focusing on programming tech-
niques and hardcore hardware construction projects.

How to Build a Microcomputer and Really Understand
It—A technical manual and programming guide that
takes the hobbyist step-by-step through the design, con-
struction, testing and debugging of a complete micro-
computer system (6502 chip).

, , Tools and Techniques for Electronics—Describes the
Toor3 R puaus safe and correct ways to use basic and specialized tools
 ror BECTRLE for electronic projects as well as specialized metal work-
i/ ing tools and the chemical aids which are used in repair
shops.

Hobby Computers Are Here—The fundamentals on
how computers work—explaining the circuits and the
basics of programming plus a couple of TVT construc-
tion projects.

#® The New Hobby Computers—Contains introductory
articles on such subjects as large scale integration, how
to choose a microprocessor chip, and introduction to
programming, computer arithmetic, etc.

To order call Toll Free 800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp.

- The real value of your com-
puter lies in your ability to use it.
The capabilities of the TRS-80*
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books. .-

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

