ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

}/OLUME 2

Trademark of Tandy Corp.
— y p

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 2

wwwww

|
|
N

OOOOOOOOOOOOOOOOOOO

rrrrrrrrrrrrrrrrrrrrrr

FIRST EDITION
FIRST PRINTING SEPTEMBER 1981
Copyright© 1980 and 1981 by Wayne Green Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey, Chris Crocker,
Nan McCarthy, Katherine Putnam
Technical Assistance by Jake Commander,
Dennis Thurlow
Hlustrations by Howard Happ
Typeset by Karen Stewart

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. Itis one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green..........ccooiiiiii i, v

BUSINESS
The Name and Address File

Hubert C. Borrmann KOMVB. 3
Expense Report

William Klungle. 16

EDUCATION
Story Math

William Klungle. 35
Smile—TRS-80 Loves You

J.David McClung. 45

GAMES
Keno

C. Brian Honess.t 59
Tie Attack

Bob Menten. 67

GRAPHICS
Worksheet

Dan Rollins. e 77
Curve Plotter

David R. Cecil. 87

HARDWARE
Chip Tester

Joe Magee. 99
Build a Light Pen

Wayne Holder. i 108

vii

CONTENTS

HOME APPLICATIONS
BASIC Word Processor

Delmer D. Hinrichs. i, 125
States Worked: A Program for Radio Amateurs

Edward G. McCloskey KB3CK. e 146
Personal Property Inventory

Robert James Lloyd. i 162

INTERFACE
Testing 1,2,3
D. C.Nelson. i, 185

LANGUAGE
Decode CW Directly from the Cassette Earplug
Louis C. Graue. i 197

TUTORIAL
Into the 80s
Ian R, Sinclair
Part IV. . . 211

UTILITY
EDTASM for Model II1

Richard Koch..... i, 245
Put Some Flash into Your Menus

JOhn Acres. . ..o 249
FILEX: A Communication Package for File Exchange

Larry Rudner........ i, 256

viii

CONTENTS

APPENDICES
Appendix A.. ..o
Appendix B......o.oiiiiiii

BUSINESS

The Name and Address File
Expense Report

BUSINESS

The Name and Address File

by Hubert C. Borrmann KOMVB

his is a program written for Level II, 16K and consists of the main pro-

gram, written in BASIC, and a machine-language routine with two en-
try points. The machine-language routine (assembled in Program Listing 2)
is POKEd into upper memory which must be reserved. Answer MEMORY
SIZE? with 32607. The name and address file is saved on cassette tape and
loaded into memory whenever you want to work with it. The 10 fields of my
record are:

1) last name

2) first name and initial
3) street address

4) city or town
5) state

6) zip code

7) telephone
8) note 1

9) note 2

10) remarks

Why do I use machine language at all? It is because the TRS-80 does not
really understand BASIC, only machine language, and therefore an inter-
preter is needed to interpret the BASIC statements and issue the proper in-
structions in machine language. This takes time, since each BASIC line has
to be reinterpreted again and again, as long as the program is running. By
using the machine language routine, the program executes a lot faster.

The operation of the program is controlled by a menu and has the follow-
ing selections:

L—Iload file from tape

W —write file on tape

A—add record to file (in memory)
P—print (and change) records
S——sort the file in memory
E—-end the program

The first thing to do before you can work with your file is to load it. Once the
data is in memory, you can perform the other operations. If you don’t have
an existing file, start one with the A selection (add records). If you want to
print a record on the screen, type P and, when prompted, type in the last
name of the record you want to see. (The search will be made by comparing

3

business

as many characters as you typed in. If you typed in, for instance, SM, you
will get all the Smalls, Smiths, Smythes, etc.) You do all this in BASIC. Once
you have found the proper record (all records are in the subscripted variable
C$), the memory location is obtained with the VARPTR instruction. (See
line 920 of Program Listing 1.) This address is passed to the machine
language entry point #1 in variable L1 via the USR (User Service Routine).
See line 940.

Let's now go to the machine-language listing (Program Listing 2), entry
point #1 (line 20). The first thing to do is CALL OA7FH. This puts the
memory address out of L1 into the register pair HL. The program then pro-
ceeds to move the selected record, one character at a time, onto 10 lines of
the video screen. The individual fields of each record have a delimiter (1),
and this tells the program when to start the next line. This action, being in
machine language, is extremely fast. When the record is built, a return in
line 210 transfers control back to the BASIC program.

You now have the option either to return to the menu, change the record
you have displayed, or look for another record with the same selection cri-
teria. To find the next record, type N. The program now looks for the next
record and, if found, gets its memory address and again has machine lan-
guage display it. If, however, you want to change the record and type C, the
program enters an edit mode, and a block cursor may be moved with the
horizontal or vertical arrow keys. This cursor is non-destructive, and will
not delete characters unless directed to do so. The necessary corrections may
now be typed in. To move the cursor to the beginning of the following line,
press both the shift and the left arrow keys. When all corrections are made
and you press ENTER, the program will now link to the machine-language
routine entry point #2 (see line 720 in Program Listing 1). The memory loca-
tion of the large dummy variable L$ is passed to this entry point (see line
700) because we want the machine-language program to take the record, as
shown on the screen, and build a new record in this variable L$.

Entry point 42 is on line 220 of Program Listing 2, and we again CALL
0A7FH and this way get the address of L$ into HL. This register pair issaved
in the stack (line 230). Next, this program determines the end of the signifi-
cant information in each of the 10 lines by looking for the first non-blank in
each line, from right to left.

The last blank preceding the first significant character is replaced by |,
and when all 10 lines have been delimited, the record can then be packed in-
to variable L$ whose address has been saved in the stack. Packing starts in
line 450 of Program Listing 2, where we first retrieve the saved address of
L$. Then the record is built, one character at a time, starting with the first
screen line (last name) until an | is found. Next we go to the next screen line
(first name) and move those characters until an ! is reached again. This con-
tinues until all 10 lines have been packed.

4

business

Before returning to the BASIC program, we want to pass the number of
characters in our record to it, so that the BASIC program can extract the
right number of characters out of the dummy L$, whose length remains un-
changed. This is done by transferring the count from IX to HL in lines 670
and 680. We then jump to 0A9AH. (See Level I1 BASIC Reference Manual,
page 8/9.) This returns you to the BASIC program, and the record count has
been moved out of register pair HL into the variable X. In line 740 of Pro-
gram Listing 1 we extract the new record and replace the old record in
C$(N) with it.

All of those single-character moves are very fast, but would be very slow
in BASIC. The above procedure happens if you change a record. You also
make use of the same subroutine, entry point #2, whenever you add a record
to the file. The add routine also displays the string space remaining. This
method of communicating between BASIC and machine language can, of
course, be used in many other applications, and I hope that this example will
help to bridge the communications gap.

Whenever you are updating data files, it is a good idea to keep at least the
two most current versions. This is so that in case of a catastrophe you may go
back to the second most current version. This will work all the better if you
also keep notes of the changes made during the last updates. If you want to
display all records of the file, type P, and when prompted for the last name,
type one space and ENTER. The program will display the first record on the
file and proceed to the next record as you type N until the end is reached.
The sort option is not really necessary but is included anyway since a file in
sequence looks better and neater.

You may wonder why I didn’t provide for deletion of a record. I did this to
conserve program space. A record may easily be deleted (logically) by
changing its last name to DELETED, and the next time you want to add a
record, first check for any DELETEDs. You may now enter the new infor-
mation over the old record.

Both programs, BASIC and machine language, are not hard to follow,
and for the sake of convenience, 1 have included a list of the variables used
and the lines on which they occur (Table 1), and a list of all branch instruc-
tions (Table 2).

business

Table 1. Variables list

A$ 240 320 400 440 460 480 500 520 780
960 1040 1300 1440 1460
Al$ 840 880
B$ 120 140 160 800 980 1000 1060 1420 1500
c$ 20 80 220 300 740 760 860 880 920 1240
L 420 520 540 560 580 600 620 640 660 680

920
L$ 100 700 740
L1 920 940
L2 700 720
LL 700

N 20 80 220 240 280 320 400 740 760 1020
1040 1120 1180 1280

Nl 280 300 840 860 880 900 920 980 1020 1060

N2 1020 1040

P 420 520 540 560 580 600 620 640 660 680

Pl 20 420 520 540 560 580 600 620 640 660

680
Q1 1480 1500
Q3% 1440
Q43 1480
05 1500
Q7 1460

SA 420 540 560 580 600 620 640 660 680
SD 1100 1120 1140 1160 1180 1220 1240

S1 1200 1260

S] 1200 1220 1240

SL 1220 1240

SP 1100 1180 1280

ST 1180 1200
Sw 20 760 1020 1040
T1$ 40 200 280 1080 1320 1540

T2 40 380
T3% 60 820 980
T4 60 840
T5% 80 200

T6$ 80 280
X 102 115 720 740 940

business

120

200
220
280
360
380
400
420
440

520
540

560
580
600
620
640
660
680
780
820
860

900
980
1040
1060
1080
1120

Table 2. Branch instructions

...GOTO
...GOTO
...GOTO
... THEN.
... THEN.
... THEN
... THEN.
..GOTO.
... THEN.
...GOTO.
... THEN.
... THEN.
... THEN
.. THEN.
...GOTO.
... THEN.
...GOTO.
...GOTO.
...ELSE.
...GOTO
...GOTO
.. .ELSE.
...GOTO
...ELSE.
...GOTO
...GOTO
...ELSE.
...GOTO
...ELSE.
... THEN.
... THEN.
.. THEN.
... THEN.
... THEN..
... THEN
.. THEN
..ELSE.

THEN

..GOTO
.. GOTO.
...GOTO.
..THEN.

THEN

.. THEN
...ELSE.
... THEN
.. THEN

..120 FROM LINE
..120 FROM LINE
..120 FROM LINE
.120 FROM LINE
.120 FROM LINE
1120 FROM LINE
.120 FROM LINE
.120 FROM LINE
.200 FROM LINE
.990 FROM LINE
.280 FROM LINE
.360 FROM LINE
.380 FROM LINE
.400 FROM LINE
420 FROM LINE
.440 FROM LINE
.440 FROM LINE
.520 FROM LINE
.540 FROM LINE
540 FROM LINE
540 FROM LINE
540 FROM LINE
.. 540 FROM LINE
.540 FROM LINE
. 540 FROM LINE
540 FROM LINE
.540 FROM LINE
540 FROM LINE
.540 FROM LINE
.560 FROM LINE
/580 FROM LINE
_600 FROM LINE
.620 FROM LINE
640 FROM LINE
.660 FROM LINE
.680 FROM LINE
780 FROM LINE
1820 FROM LINE
860 FROM LINE
860 FROM LINE
/860 FROM LINE
.900 FROM LINE
980 FROM LINE
.1040 FROM LINE
1060 FROM LINE
.1080 FROM LINE
/1120 FROM LINE

.. 180
.. 260
.. 340
.. 800
.. 840
.1000

1060
1300

.. 120
..220

120

.. 140

140

..800

1020

.. 440
..540
. 440
..560
..560
.. 580
.. 580

600
.600

..620
..640
.. 640
.. 660
..660

.460

.. 460

.480

..480
..460

.480

..500

.800

.. 140
..880

.980

.1060
..880
. 1000
.. 760
.1060
.. 160
1120

continued

1140
1220
1280
1320
1420
1440

1480
1540

business

... .GOTO. 1140 FROM LINE
.. THEN. 1220 FROM LINE

THEN. 1280 FROM LINE

.GOSUB. 1320 FROM LINE

THEN. 1420 FROM LINE
GOSUB. 1440 FROM LINE

.GOSUB 1440 FROM LINE

GOSUB. 1440 FROM LINE

..GOSUB . 1440 FROM LINE
. GOSUB 1440 FROM LINE
.GOSUB. 1440 FROM LINE
-THEN. 1480 FROM LINE
. GOSUB . 1540 FROM LINE
..GOSUB. 1540 FROM LINE

GOSUB 1540 FROM LINE
GOSUB . 1540 FROM LINE

1260

. 1240

1160
120

- 1420
.. 260

340
780
.980
1060

1300

1500
380
820

..980
.1060

1
3
5

20

40
60

80

100

160

1860
200

business

Program Listing 1. BASIC listing

REM **xx%x%* BYy: HUBERT C. BORRMANN, K@MVB EhEk kKKK
REM MEMORY SIZE : 32687 !

CLS :

PRINT CHRS$(23):

PRINT @398,"NAME & ADDRESS FILE"

CLEAR 9000:

DEFINT A - Z:

DIM CS$(181):

N =

= 11
Pl = 15572:
SW = @
T1$ = "NAME AND ADDRESS LIST "
T28 = "ADDING RECORDS. RECORD #"
T3$ = "PRINTING RECORDS. RECORD $"
T4$ = "TYPE IN LAST NAME OR 'END' "
CS(N) = "HEND#":

T5$ = "LOADING RECORDS. RECORD [
T6$ "WRITING RECORDS. RECORD #"
LS = L T S DI S B Rl FR RN
..7.........8.........9.........lﬂ........ll........12........13
UOE 7 DU £ DU TSP [SRR §: JRRPIS | P
oo 202 i 2200023l "
RESTORE :
FOR X = 32668 TO 32762:
READ XX:
POKE X,XX:
NEXT X
DATA 2ﬁ5,127,10,221,42,243,127,221,34,245,127,1,64,%,22,19,126,2
54,33,46,8,221,119,6,35,221,35,24,243,21
DATA 40,13,35,221,42,245,127,221,9,221,34,245,127,24,227,201,205
,127,10,229,42,247,127,34,249,127,22,18,38,40
DATA l,64,@,126,254,32,32,4,43,29,32,247,35,62,33,119,21,4@,11,3
9,46,42,249,127,9,34,249,127,24,229,225
DATA 253,42,243,127,253,34,245,127,3@,32,221,33,&,@,22,10,253,12
6,8,119,253,115,8,221,35,254,33,46,5,253,35
DATA 35,24,238,2¢,4ﬂ,13,35,253,42,245,127,253,9,253,34,245,127,2
4,222,221,229,225,195,154,19,21,61,0,0,60,61,0,0,0
FOR X = 1 TO 1080:
NEXT X
GOSUB 1328:
IF Bs = IIL"
THEN
200:
ELSE
IF B$ - l'w"
THEN
280
IF Bs = "All
THEN
380:
ELSE
IF B$ = "p"
THEN
828:
ELSE
IF B$ = WY
THEN
360
IF Bs o= "S“
THEN
1089
GOTO 128
CLS :
PRINT @20,T1$:

1

PRINT €64,T5% Program continued

business

228 PRINT @91,N;:
INPUT # - 1,CS(N):
IF CS(N) < > "H#END#"

THEN
N =N+ 1:
GOTO 228

24¢ PRINT @64,N - 1;" RECORDS LOADED FROM CASSETTE ";:
AS$ = "PRESS ANY KEY WHEN READY."
260 GOSUB 1448:
GOTO 128
288 CLS :
PRINT @28,T1S$:
PRINT @64,T6S:
FOR N1 = 1 TO N
398 PRINT @91,N1;:
PRINT # - 1,C$(N1):
NEXT N1
328 PRINT @64,N ~ 1;" RECORDS WRITTEN OUT ON TAPE":
AS = "PRESS ANY KEY WHEN READY"
340 GOSUB 1440:
GOTO 120
360 CLS :
PRINT CHR$(23);:
PRINT @4606,"THE END":
ENMD
380 GOSUB 1540:
PRINT @64,T2$
408 PRINT @91,N;:
PRINT @128, FRE(AS);
420 P = 1:
L = 1:
SA = PEEK(PlL + P + (L * 64)):
POKE P1 + P + (L * 64),138
440 AS = INKEYS:
IF A§ = U0
THEN
440:
ELSE
IF A$ = "," OR A$S = ":" OR A§ = "I"
THEN
AS = v.n,
GOTO 520
460 IF AS = CHR$(8)
THEN
560:
ELSE
IF A$ = CHR$(9)
THEN
580:
ELSE
IF A$ = CHR$(91)
THEN

640
480 IF AS = CHRS(10)
THEN
660:
ELSE
IF AS = CHRS$(24)
THEN
600 :
ELSE
IF AS = CHRS$(25)
THEN
620
560 IF AS$ = CHRS$(13)
THEN
680
528 POKE Pl + P 4+ (L * 64), ASC(AS):
P =P + 1:
IF P > 40
THEN

10

560

600

624

640

660

680
7848

728

7460
7648

788
868

business

P = 48
SA = PEEK(PL + P + (L * 64)):
POKE P1 + P + (L * 64),138:
GOTO 440
POKE P1 + P + (L * 64),5A:
P=P - 1:
IFP L1
THEN
P = 1:
GOTO 540:
ELSE
540
POKE P1 + P + (L * 64),SA:
P =P+ 1:
IF P > 48
THEN
P = 48:
GOTO 548:
ELSE
549
POKE P1 + P + (L * 64),SA:
P = 1:
L =L+ 1:
IF L > 18
THEN
L = 1:
GOTO 546:
ELSE
549
POKE Pl + P + (L * 64),8A:
P = 40:
GOTO 548
POKE P1 + P + (L * 64),8A:
L =1L - 1:
IF L < 1
THEN
L = 18:
GOTO 540:
ELSE
548
POKE Pl + P + (L * 64),5A:

L o= 1:
GOTO 548:
ELSE
540
POKE P1 + P + (L * 64),8A
LL = VARPTR(LS):
L2 = PEEK(LL + 1) + 256 * (PEEK(LL + 2))
POKE 16526,142:
POKE 16527,127:
X = USR(L2)
C$(N) = LEFT$(LS,X)
IF 8w < > @
THEN
1640:
ELSE
N =N+ 1:
C$(N) = "$END#"
A$ = "TYPE 'N' FOR NEXT RECORD, 'M' FOR MENU.":
GOSUB 1449
IF B$ = "n"
THEN
120:
ELSE
IF BS = "Nll
THEN
400:
ELSE
780

Program continued

11

business

828 GOSUB 1548:
PRINT @64,7T3S
840 PRINT @128,T4S;:
INPUT AlS:
IF Al$ = "END"
THEN
126:
ELSE
Nl = 1
868 IF LEFTS{CS$(N1),5) = "#END#"
THEN
GOTO 828
880 IF Al$ = LEFT$(CS(N1), LEN(ALS))
THEN
908 :
ELSE
Nl = N1 + 1:
GOTO 564
96@¢ PRINT @91,N1;
928 L1 = 1:
L = VARPTR(CS$(N1l)):
L1 = PEEK(L + 1) + 256 * (PEEKR(L + 2))
948 POKE 16526,96:
POKE 16527,127:
X = USR(L1)
960 A$ = "TYPE 'C' TO CHANGE, 'N' FOR NEXT RECORD, 'M' FOR MENU.."
980 GOSUB 1440:
IF B$ = "N"
THEN
Nl = Nl + 1:
CLS :
GOSUB 1540:
PRINT @64,T3%;:
GOTO 860
1968 IF BS$ = "M"
THEN
120:
ELSE
IF BS < » "¢C"
THEN
9809
S 1:
N Nz
N = NI1:
GOTO 428
1040 SW = §:
N = N2:
A$ = "TYPE 'N' FOR NEXT RECORD, 'M' FOR MENU"
10660 GOSUB 1440:
IF B$ = "M"
THEN
120:
ELSE
IF Bs - "Nll
THEN
N1l = NI + 1:
CLS :
GOSUB 1548:
GOTO 860:
ELSE
1068
1088 CLS :
PRINT @208,T1$:
PRINT @64,"SORTING THE FILE"
1188 SD 1:
SP 2}
11206 SD 2 * SD:
IF SD <N - 1
THEN
1120
1140 SD = INT((SD - 1) / 2)

1020 sw
2

12

business

1168 IF SD = @
THEN
12849
1186 ST = N - 1 - SD:
SP = SP + 1:

PRINT @148,"PASS & ";SP;
1260 FOR SI = 1 TO ST:
SJ = SI

1228 SL = SJ + 8D
1248 IF LEFTS(CS$(SL),18) < LEPT$(CS(SJ),18)
THEN
555 = C$(8J):
C$(S8J) C$(SL):
Cc$(SL) 55§
8J = 8J - S5D:
IF 8J > 8
THEN
1226

1260 NEXT SI:
GOTO 1140
1280 PRINT @2@4,N - 1;" RECORDS SORTED IN ";SP;" PASSES";
1306 AS$ = "PRESS ANY KEY FOR MENU...":
GOSUB 1440:
GOTO 120
1328 CLS :
PRINT CHR$(23):
PRINT @8,7T18:
PRINT @196,"L
1340 PRINT €2690,"W
PRINT @€324,"A

LOAD FILE FROM TAPE"

WRITE FILE ON TAPE":

ADD RECORDS TO FILE"

1360 PRINT @388,"P PRINT (AND CHANGE) RECORDS":
PRINT @516,"E END THE PROGRAM"

1380 PRINT @452,"S = SORTING THE FILE";

1460 PRINT @978,"TYPE IN YOUR CHOICE";

1420 BS = INKEY$:
IF BS = "*
THEN

I I S T

1440 AS = " " + AS 4+ " M:
038 = STRINGS(LEN(AS), CHR§(8)):
Q4% = AS + Q3%
1468 PRINT @968, STRING$(63, CHR$(148));:
Q7 = ((64 - LEN(AS)) / 2):
PRINT 8968 + Q7,"";
1480 FOR Q1 = 1 TO LEN(Q4%):
PRINT MID$(Q45,01,1);
1586 FOR Q5 = 1 TO 7:
NEXT Q5,01:
BS = INKEYS$:
IF BS P 1nmn
THEN
1480
1520 PRINT @968, STRINGS(63," "}i:
RETURN
1540 CLS :
PRINT @28,T1S$:
PRINT @257,"LAST NAME":
PRINT €321,"FIRST NAME & INIT."
1560 PRINT @385, "STREET ADDRESS":
PRINT @449,"CITY OR TOWN"
158¢ PRINT @513,"STATE":
PRINT @577,"2IP-CODE":
PRINT @641,"TELEPHONE #"
1668 PRINT @705,"NOTE 1":
PRINT @769,"NOTE 2":
PRINT @833, "REMARKS";:
RETURN

13

TF68
TF60
7F63
TE67
TF6B
TF6E
TF78
TF71
7F73
TF75
7r78
7F79
TF7B
TFID
TFTE
TF88
7F81
TF85
7F87
7F8B
7F8D
TF8E
7F91
TF92
7F95
7F98
TF9A
7FOC
TF9F
TFAQ
7FA2
TFA4
TFAS
TPR6
TPA8
TFA9
TFAB
TFAC
TFAD
TFAF
TFB1
7FB4
TFB5
7FB8
7FBA
7FBB
TFBF
7FC3
7FC5
TFCY
TPCB
7FCE
7FPCF
7FD2
TFD4
7FD6
7FD8
7FDA
7FDB
7FDD
7FDE
TFES®
7FEL
TPES
TFET

eosle
CD7F8A 00820
DD2AF37F 00030
DD22F57F 00049
plaoeg 00850
160A 20860
7E 08070
FE21 poose
2868 06096
DD7789 6e106
23 6pl1o
DD23 68128
18F3 08130
15 70140
286D 60156
23 0olep
DD2AFST7F 90170
DDB9 20180
DD22F57F 60190
1883 262060
c9 26218
CD7FBA 20220
E5 00230
2BRF77F 082409
22F97F 060250
168A 26260
1828 082768
0814860 00280
78 60290
FE20 06300
2004 08310
2B pe328
1p 060330
20F7 pe34g
23 263590
3E21 op36d
77 00376
15 60380
2808 60398
1E28 084080
2AF97F g0410
89 00420
22F97F 00439
18E5 00440
Bl 00450
FD2AF37F 00460
FD22F57F 00470
1E28 0a480
DD2106680 #8490
1608A 60560
FDTERS 2ps51n
77 08520
FD7388 00530
DD23 20540
FE2]1 68550
2885 Bo560
FD23 08570
23 06588
18EE 20590
15 006080
280D 60610
23 0e620
FD2AFS7F 00639
FDO9 00640
FD22F57F BU650

business

Program Listing 2. Assembled listing

ENTR1

CHCK1

FND1

DONE1
ENTR2

CHCK2

EXCL

PACK

CHCK3

FND2

ORG
CALL
LD
LD
LD
LD
LD
cp
JR
LD
INC
INC
JR
DEC

INC
LD
ADD
Lb
JR
RET
CALL
PUSH
LD
LD
LD
LD
Lb
LD
cp
JR
DEC
DEC
JR
Inc
LD
LD
DEC
JR

ADD
Lb

TR60H
BATFH

IX, (ADDR1)
(ADDR2) ,IX
BC,0040H
D, @AH

A, (HL)
21H
Z,FND1
(IX+00H) ,A
HL

IX

CHCK1

D

e=tgn
i

%,DORE1

HL

IX, (ADDR2)
IX,BC
(ADDRZ) ,IX
CHCK1

BATFRH

HL

HL, (ADDR3)
(ADDR4) ,HL
D,@AH
E,28H
BC,0040H
A, (HL)
20H

MZ ,EXCL
HL

E
NZ,CHCK2
HL

A,21H
(HL) ,A

D

Z ,PACK
E,28H p="
HL, (ADDR4)
HL,BC

(ADDR4) ,HL
CHCK2

HL

1Y, (ADDR1)
(ADDR2) ,IY
E,20H L
IX,8800H
D,8AH

A, (IY+00H)
(HL) ,A
(IY+@8H) ,E

IX

21H

% ,FND2
Iy

HL
CHCK3

="

et "
;=

et n
H H

ety N
;=01

D

% DONE2

HL

1Y, (ADDR2)
IY,BC
(ADDR2) ,IY

14

business

7FEB 18DE 00660 JR CHCK3
7FED DDES 98670 DONEZ2 PUSH IX
7FEF El 646680 POP HL
TFF@# C39ABA 08690 JP BA9AH
7FF3 153D pe700 ADDRIL DEFW 15637
TFFS 0000 68718 ADDR2 DEFW [
TFF7 3C3D 98720 ADDR3 DEFW 15676
7FF9 G000 60738 ADDR4 DEFW 6
0gee 608746 END

15

USINESS

Expense Report

by William Klungle

'his program keeps tabs on your expenses quickly and easily every
L month. The program provides a monthly printout of expenses for the
current month, year to date, and the percentage each represents of your
total income. Expense Report requires a TRS-80 with an expansion interface,
a minimum of 32K memory, one disk drive, and an 80-column line printer.

Soft Keys

The program uses what I call a “soft key” method of obtaining command
decisions from the operator. When the soft keys are activated, only a keyboard
input of one of the requested keys allows the program to continue. All major
program decisions use the soft keys in place of the standard menu method.

Two subroutines control soft key operation. Subroutine 3000 enables the
keys, but before this subroutine is called, the elements of array L$ are de-
fined to properly label the keys. The routine displays the keys on the bottom
of the screen, then the program remains in a closed loop until the operator
presses one of the requested keys. When a proper key is pressed, the value of
the key is returned in variable X. The soft keys are removed from the screen
by subroutine 4000, which also nulls the elements of array L$.

Simple Entry

Original entry, account correction, and expense entries are all accom-
plished through the use of forms. The original entry and correction form is
displayed on the screen by subroutine 2000. The monthly expense entry
form is displayed by subroutine 165.

The heart of this program is subroutine 8000. This routine allows normal
keyboard entry within the form boundaries, yet guards against illegal key-
strokes as well as prevents the operator from typing more than the allowable
number of characters for any given input request. Before this routine is
called, the length variable (L.G) is set to the maximum number of characters
to be allowed and the location variable (PA) is set to position the pointer in
the form. The pointer (>) is displayed in the form position which is currently
accepting input.

During original entry, each input requires data. The program does not
allow the operator to bypass an entry unless something (in the case of numer-
ics, the proper data) is entered. The back-space key still functions normally
to allow corrections before the ENTER key is pressed; the up-arrow key

16

business

allows the operator to back through the form to a previous entry. If the up .
arrow is pressed when the pointer is in the first position (ACCT #), the pro-
gram returns to the main menu keys.

The account numbers must be between 101 and 180. The account number
minus 100 is the actual array location of the account data as it is stored in ar-
rays AC$(#) and M(#,#).

Data Storage

When data is to be stored, this program stores one data set per record on
the disk. During program operation all account data is held in memory,
which allows fast access for modification or entries. If the data currently

Photo 1. Expense program menu

held in memory is modified or updated, file flag F is set equal to one. Before
the program is terminated, flag F is checked and if it is equal to one, the
operator is required to store the current data on the disk to update the file.
Subroutine 5000 writes data from the arrays to the disk.

Data Read

One of the first operations the program performs after initialization is to
load the previously stored account data into memory. Subroutine 6000 reads
the data from the disk. The program requires from 30 to 45 seconds to com-
pletely load all 80 accounts. During the read, the program incorporates an
ON ERROR statement to prevent program termination in the event of a
data read error. If a read error does occur, the program branches to line

17

business

6020 and displays a POSSIBLE DATA LOSS message before continuing the
read. Ifthis message appears, check the current data carefully before contin-
uing normal operation. When typing this program, leave the ON ERROR
statement out until the program has been fully tested and all typing errors
have been corrected.

Current Accounts

The current account descriptions and data are stored in two arrays,
AC$(#) and M(#,#). AC$(#) contains the account number (3 numeric), the
account description (1-30 characters), and the break flag (1-2 characters).
The first position of AC$(#) for each active element is a period (.). This char-
acter is a program test to determine quickly if a particular array element
contains valid data. The data positions in an active element of AC$(#) are:

Position Description

1 = (.) if active

2-3 = break flag
4-33 = acct. description

The numeric data for each account is stored by monthly division in the ele-
ment of array M(#,#) which corresponds to its active element in array
ACS$(#). The account monthly total is stored in its respective array sub-
element. Example: M(#,6) = June dollars.

Report Printing

When you select the report printing function, the program reads through
data array AC$(#), searching for at least one element with a period in the
first position. This insures that the data for at least one account is available
for printing. Before printing can begin, you must enter a total income
amount for the current month and for the current year-to-date. The report
uses these figures in calculating percentage in the various expense accounts.
After these figures have been entered, a second group of soft keys is
displayed, allowing printing of the report, selection of the number of copies
needed, or return to the main menu.

Date Control

The current month entered when the program first initializes controls ac-
cess to the monthly data. As an example, if the date were entered as
06/30/80, the data entries made to the accounts would be stored in the sixth
subelement of array M(#,#). A report printed at this time would provide in-
formation for June as the current month; the year-to-date amounts would be
calculated on all data from January through June. In order to alter the cur-
rent month, you must terminate and restart the program.

18

business

Photo 2. Account entry format

Entry and Correction

After the ENTRY & CORRECT soft key is selected, the proper form ap-
pears on the screen. The first entry requested is the account number. This
must be a numeric entry from 101 to 180. If the number entered is already
assigned to a current account, that account data automatically displays on
the form and the program enters the correction mode. In this mode, an entry
may be left unchanged by pressing only the ENTER key. Data typed for any
entry replaces the current data being displayed. The up-arrow key allows
you to step back one entry for each time the key is pressed. If you press the up
arrow when the entry pointer is in the account number position, the form is
removed and the program returns to the main menu soft keys. After the last
entry on the form, soft keys are displayed which allow you to save the data,
delete the data in the case of a correction, or return to the menu for a new
entry without saving the data.

Break Flag

Since this program does not provide an account sorting feature, original
data entry requires planning. The subtotal breaks are keyed by a change in
the account group break flag. When making the original entries the operator
should plan to enter accounts of the same group in numeric sequence. The
account group break flag may be any combination of two letters or numbers
to represent a particular account group. As the report prints, a subtotal oc-
curs whenever the flag changes.

19

business

Delete

The program provides for account removal through a delete soft key. In
the entry and correction mode, if an existing account number is entered, the
account data displays on the form. Skip through the form by pressing
ENTER, and when the soft keys come up, a delete key is present. After press-
ing the DELETE soft key, a second set of soft keys are displayed to allow the
operator to confirm or cancel the delete command.

Enter Expenses

Enter expenses monthly. When the ENTER PAYMENT soft key is pressed,
the expense entry form displays. Entering a current account number brings
that account to the form. The account description, current monthly total of
expenses already entered for that month, and the year-to-date total of ex-
penses for the account display. When an amount is entered and the ENTER
key is pressed, the current month and year-to-date totals update to reflect
the added (or subtracted) amount. When all entries are made to that ac-
count, type N or NEXT, then press ENTER to clear the form for the next ac-
count. When all expense entries are made, type D or DONE, then press
ENTER to return to the MENU. Pressing the up-arrow key when the pointer
is in the account number position also returns the program to the menu.

Printer Control
If this program is to run on a TRS-80 with a printer connected to the par-

Photo 3. Year-to-date totals

20

business

allel port of the expansion interface, add the following program line to pre-
vent hangups in the event the printer is off-line when a report is requested.

320 CC=0: IF PEEK(14312) > 127 THEN FOR T =1 TO 5:
PRINT@729,“CHECK PRINTER";: FOR I =1 TO 50: NEXT I:
PRINT @729, ”;: FOR1=1TO 50: NEXT I:
NEXT T: GOTO 310

Although this program was written to provide accurate monthly expense
reports, you can adapt it to any personal or business application which re-
quires account-type reporting. Type the program into the computer by sec-
tions. Enter the subroutines first, then enter and test each section to
eliminate typing errors. Remember to leave the ON ERROR statements out
until the program has been completely debugged.

EXPENSE REPORT

PAGE 1 PRINTED ON 10/30/80
ACCT # DESCRIPTION OCT AMT % YEAR TO DATE %
INCOME AMOUNT 132456 1.00 14235.80 1.00
101 MEALS 100.00 0.08 550.00 0,04
102 LODGING 459.67 0.35 2474.67 0.17
103 TRANSPORTATION 34500 026 1681.00 0.12
SUB-TOTAL 904.67 0.68 4705.67 0.33
110 UNIFORMS 23.00 0.02 961.00 0.02
111 TOOLS 55.00 0.04 420.00 0.03
SUB-TOTAL 78.00 0.06 681.00 0.05
120 MILEAGE @.18 PER
MILE 54.66 0.04 391.44 0.03
121 TOLLS AND FEES 16.00 0.01 950.00 0.02
SUB-TOTAL 70.66 0.05 64144 0.05
130 TRAINING MATERIALS 89.00 0.07 332.00 0.02
131 TRAINING FEES 125.00 0.09 1039.00 0.07
SUB-TOTAL 214.00 0.16 137100 0.10
GRAND TOTALS 1267.33 0.96 7399.11 0.52

Example 1. Sample expense report

21

18 :
' EXPENSE REPORT PROGRAM W. KLUNGLE
15 :
' TRS-86, 32K MEM, 1 DISC, 88 COL PRINTER
20 E
29 :
' INITIALIZE
39 CLEAR 4000:

35

36

37

business

Program Listing

DIM H$(12),LS$(8),ACS$(80),M(80,12):

DEFINT I,J,K,T

FOR I = 1 TO 12:

READ HS$(T):

NEXT I:

DATA " JAN " , " E\EB " R " MAR " ’
UG " . " SEP n . " OCT ” ' n NOV n ’
LF$ = "% 3%

SHERERRS.EES LR

- Il%

SHEGHEHE BT SH 4"
Us$ = "3
%% 3"

38 :

39 :

48

45

50

55

' MEN

F = f8:

SK = @:
GOSUB 10808:

"

]

APR ",

DEC ¢

MAY "," JUN v," JUL n,
SEEREEE BT S HMR
SRESHEES . HEY 4R

3

PRINT @467,"ENTER TODAYS DATE AS MM/DD/YY":

PRINT @537, "DATE=";:
LINE INPUT "";D$:
IF LEN(DS$) < > 8
THEN

49:
ELSE

CM = VAL({ LEFTS$(D$,2)):

IF CM <1 OR CM > 12

THEN

40

ON ERROR GOTO 508:
PRINT @467, STRINGS$(48," ");:
PRINT @531, STRINGS$(40," ");:
GOSUB 60600:
ON ERROR GOTO 588
GOSUB 1868:
PRINT @472,"SELECT FUNCTION":
L${(1) = " ENTER":
LS$(5) " PAYMENT":
L$(2) " PRINT":
L$(6) "REPORTS" :
LS$(3) " MAINTAIN":
LS(7) " ACCOUNTS" :
L$(4) "SAVE AND":
L$(8) = " EXIM"
GOSUB 3880:
GOSUB 40069:
ON X GOTO 100,300,208,4080

99 :

'

100 :

185

' ENTER EXPENSES

CLS :

CM = VAL(LEFTS(DS$,2)):
GOSUB 178

%3

A

22

110

115

128

125

135

145

164

179

175

199

PRINT
PRINT
PRINT
PRINT
PRINT

business

@536," ENTER ACCOUNT NUMBER PR
e

@139,"

@154, STRINGS(38," ");:
w, .

@276," I
@394 ," ",

PA = 139:
LG = 3:
GOSUB 8000:
IF TS = "¢

THEN
50:
ELSE

IF LEN(T$) < > 3 OR VAL(T$) < 161 OR VAL(T$) > 180
THEN

GO

SUB 81060:

GOTO 115

A = VA

IF LEFTS(ACS$(A),1) < >

THEN
GOSU
GOTO

L(T§) - 108:

B 8lea:
115

PRINT @155, MIDS$(ACS(A),7,30);:

YT = @

MT = §:
FOR I = 1 TO CM:
YT = YT + M(A,I):

NEXT
MT = M
PRINT
PRINT

I:

(A,CM)
@276 ,MT; :
@364 ,YT;

PRINT €534,"ENTER $, NEXT, OR DONE ";:
PA = 413:
LG = 18:

PRINT @PA," L]

GOSUB 8008:
IF LEFTS$(TS$,1) = "N"

THEN
119:
ELSE
IF LEFTS(7$,1) = "D
THEN
58:
ELSE
AP = VAL(TS$):
MT = MT + AP:
YT = YT + AP:
PRINT @276 ,MT;:
PRINT €304,YT;
F =1
PRINT @538," * DATA FILED * A]
M{A,CM) = MT:
FOR T = 1 TO 250:
NEXT T:
GOTO 148
1
' EXPENSE ENTRY FORM
CLS :
FOR I = 66 TO 450 STEP 64:
PRINT @I, STRINGS(6@, CHRS$(191));:
NEXT I:
PRINT @132," ACCT # R
PRINT @148," DESC:
PRINT @266," ";H$(CM);" TO DATE $ "
PRINT @289," 19"; RIGHTS(DS$,2);" TO DATE $
PRINT @485," PAYMENT s
PRINT @3, LEFT$(DS$,3); RIGHTS$(DS,2);" PAYMENTS";:
RETURN

Program continued

23

business

208 :
' ENTER AND MAINTAIN ACCOUNTS
205 CLS :
GOSUB 2009
219 PA = 198:
LG 3:
RT ‘H
CR 'K
GOSUB 8006:
IF RF = 1 AND T§ = "®
THEN
5@:
ELSE
IF LEN(TS) < 3
THEN
215:
ELSE
A = VAL(TS) - 108:
IFA<1ORAO> 88
THEN
215:
ELSE
N$ = T$:
GOTO 220
215 GOSUB 8168:
PRINT @PA," "
GOTO 218
228 GOSUB 2180:
IF LEFTS$ (ACS(A),1) = ",
THEN
CR = 1:
GOSUB 2200
225 PA = 208:
LG = 30:
RT = @:
GOSUB 8008:
IF RT = 1 AND T$ = ""
THEN
219:
ELSE
IF T§ < > "
THEN
DS$ = TS
IF RT = 1
THEN
210
236 IF T$ = "" AND CR = 1
THEN
DS$ = MIDS(ACS(A),7,30):
ELSE
IF T$ - nn
THEN
GOSUB 8106:
PRINT @PA, STRINGS(34," ");:
GOTO 225
245:
2

nououou

235 PA
LG

Houwu

R :
GOSUB 8p08:
IF RT = 1 AND T§ = """
THEN
225:
ELSE
IF 7§ < » "
THEN
BS = T$:
IF RT = 1
THEN
225
240 IF TS = "" AND CR = 1
THEN

24

business

BS = MIDS$(ACS$(A),2,2):
ELSE
IF T$ = "v

GOSUB 8108:
GOTO 235
387
7
@:

245 PA

[
[»]
onou

RT
I =1:
GOTO 255

250 PA = PA - 10:
I =1~-1:
RT = 0:
IF PA = 569

THEN

ELSE
IF PA < 384
THEN
235
255 GOSUB 8000:
IF RT = 1 AND TS = """
THEN
250
ELSE
IF T$ < > ""
THEN
M(A,I) = VAL(TS):
IF RT = 1
THEN
250
256 IF TS = "" AND CR = 1
THEN
PRINT @PA, LEFTS$({ STRS(M(A,I)),7);:

GOSUB 8108:
PRINT @PA," "
GOTO 255
260 PA = PA + 10:
I =1+ 1:
IF PA = 447
THEN
PA = 579
265 IF PA < 638
THEN
255
266 1IF LEN{(BS) =1
THEN
Bs - B$ + " 1
267 IF LEN(DSS) < 38
THEN
DSS = DS + " "
GOTO 267
278 L$(1) " FILE":
LS(5) " DATA":
LS(3) " DELETE":
L$(7) " ACCOUNT":
1P LEFTS(ACS$(A),1) < > "."
THEN
L$(4) = " RETURN":
L$(8) = " TO MENU"
271 GOSUB 3080:
GOSUB 40808:
ON X GOTO 275,270,280:
IF LEFTS{ACS(A),1) < > "."
THEN
50:

ELSE .
278 Program continued

~
.

nE KR

25

business

275 F = 1:
PRINT @793,"* DATA FILED *";:
ACS(A) = ", + BS + NS + DSS:

FOR T = 1 TO 260:
NEXT T:
PRINT @793," i

PRINT @198," "
GOSUB 2180:

GOTO 210

280 LS(1) = " CONFIRM":
L$(5) = " DELETE!":
L$(4) = " CANCEL":
L$(8) = " DELETE":

GOSUB 3008:
GOSUB 40@8:
ON X GOTO 285,280,280,270
285 ACS$(A) = " "
PRINT @793,"ACCOUNT DELETED":
FOR T = 1 TO 1060:
NEXT T:
PRINT @793," "
PRINT @198," e
GOSUB 2100:
GOTO 218
299
1)
300 :
' REPORT PRINTING SECTION
365 GOSUB 1408:
PRINT €23," REPORT PRINTING ";:
PRINT @464,"PRINTER ON-LINE, PAPER IN PLACE!";:
NC = 1
366 PRINT @598, "ENTER NET INCOME FOR ";HS(CHM);" $";:
LINE INPUT "";NS$:
NS = VAL(NSS):
IP NS ¢ 1
THEN
396
307 PRINT @654,"ENTER NET INCOME FOR 19%; RIGHTS(DS,2):;" §";:
LINE INPUT "";YSS$:
¥S = VAL(YS$):
IF ¥$ < 1
THEN
387
31@ PRINT @588, STRINGS(48," ")
PRINT @652, STRINGS(48," ")
PRINT @603, "COPIES= ";NC;:

;s
HEd

L$(1) = " PRINT":
L$(5) = " REPORT":
L$(3) = " SELECT":
L$(7) = " COPIES":
L${4) = " RETURN":
L$(8) = " TO MENU":

GOSUB 3008:

GOSUB 4008:

ON X GOTO 320,314,315,58
315 NC = NC + 1:

IF NC > 5
THEN
NC = 1

316 GOTO 318
320 CC = B:

REM -TYPE PRINTER CHECK HERE FOR PARALLEL PRINTER
323 T = 1:

Sl = @:

52 = @:

Gl = @:

G2 = B:

SK = 1:

TPS = LEFTS (ACS (1),3):

26

business

LC =@
PC = 1
PRINT @594," PRINTING COPY ®.CC + 1;" "
LS(3) = " STOP":
L$(7) = " PRINT!":
GOSUB 3000:
SK = @
324 IF LEFTS(ACS(T),1) < > "."
THEN
350
325 IF LC = @
THEN
LPRINT TAB(33);" EXPENSE REPORT v
LPRINT " ":
LPRINT "PAGE ";PC; TAB{34);"PRINTED ON ";D$:
PC = PC + 1
336 IF LC = 8
THEN
LPRINT " ":
LPRINT "ACCT # DESCRIPTION ";HS$(CM) ;" AMT
$ YEAR TO DATE g":
LPRINT " ":
LPRINT USING LFS$;" ","INCOME AMOUNT",NS," ",1,% “,¥s," ",1:
LPRINT " ":
LC = 8
335 IF TPS$ < > LEFT$(ACS$(T),3)
THEN
TP$ = LEFTS{ACS(T),3):
Pl = S1 / NS:
P2 = 82 / ¥S:
GOSUB 360:
LPRINT USING ST$;" SUB-TOTAL",s1," ",pl," ",s2," ",P2:
LPRINT " ":
Gl = GL + 81:
G2 = G2 + S2:
sl Gz
52 g:
LC = LC + 2
340 AD = M(T,CM):
YD H

LTS I T (I

[

FOR I = 1 TO CM:
YD = YD + M(T,I):

NEXT I:
Sl = 81 + AD:
82 = 82 + ¥YD:
Pl = AD / NS:
P2 = ¥YD / ¥S:
X$ = INKEYS:
IF Xs - "311
THEN

GOSUB 4060:
LPRINT "*INCOMPLETE REPORT!":
FOR TP = 1 TO 65 - LC:
LPRINT " ":
NEXT :
GOTO 318
345 LPRINT USING LF$; MIDS(ACS(T),4,3), MIDS(ACS(T),7,38),AD," ",Pl,
" “'YD'" ",PZ:
LC = LC + 1:
IF LC > 55
THEN
FOR TP = 1 TO 66 - LC:
LPRINT " ":
NEXT :
LC = @
35 T = T + 1:
IF T < 81
THEN 3241)
ELSE Program continued

27

355

399
400
405

508
999

10060
10865

1889

2000
2005

2010

business

Pl = 81 / NS:
P2 = 82 / ¥8:
GOSUB 360:

Gl = Gl + 81:
G2 = G2 + 82:
Pl = Gl / NS:
P2 = G2 / ¥S:
LPRINT " ":

LPRINT USING ST$;" GRAND TOTALS",G1," ",P1,"
LC = LC + 3
FOR TP = 1 TO 66 ~ LC:
LPRINT " "
NEXT :
CC = CC + 1:
IF CC < NC
THEN
323:
ELSE
310

LPRINT USING US$;" ", "==ss=ss== APRELILE

LPRINT USING ST$;" SUB-TOTAL",Sl," "yP1," ",82," ", p2:

",G2," ",P2:

LC = LC + 1:
RETURN
1
' SAVE DATA AND EXIT PROGRAM
GOSUB 1608:
IF F =1

THEN

GOSUB 5800:

PRINT @472,"SELECT FUNCTION";:

L$(1) = " RETURN":
L$(5) = " TO MENU":
L$(3) = " STORE":
L$(7) = " AGAIN":
L$(4) = " EXIT":

GOSUB 30800:
GOSUB 40080:
ON X GOTO 415,405,400,418
CLS :
PRINT :
PRINT "EXPENSE PROGRAM TERMINATED.":
PRINT @898,"":
END
F = 08:
GOTO 58
RESUME 58
1

' SCREEN HEADER ROUTINE

CLS :

PRINT STRINGS$(64, CHRS$(179));:
PRINT @23," EXPENSE PROGRAM ";:
RETURN

' ENTRY FORM ROUTINE

FOR I = 66 TO 665 STEP 64:

PRINT @I, STRINGS$(61, CHR$(191));:
NEXT I:

POKE 15426,198:

POKE 15486,189:

POKE 16802,175:

POKE 16662,159

PRINT @3,"ACCOUNTS";:

PRINT @132," ACCT # ";:

PRINT @156," ACCT DESCRIPTION ";:
PRINT @177," ACCT GROUP ";:

28

2015

2020
2899

business

PRINT @198," AP E]

PRINT @208, STRINGS$(38," ");
PRINT @245," ";

C = 1:

FOR I = 325 TO 382 STEP 10:
PRINT @I, HS$S(C);:
PRINT @I + 62," i
C=C+ 1:
NEXT 1:
FOR I = 517 TO 575 STEP 10:
PRINT @I, H$(C);:

PRINT @I + 62," A
C=C+ 1:
NEXT I

RETURN

]

21690 :

2165

2199
2200
2285

2999
3000

3605

3010

30899

' CLEAR FORM ROUTINE

PRINT €208, STRING$(3E," "y
PRINT @245,"

FOR I = 387 TO 437 STEP 1@:

PRINT @I," "3
NEXT I:

FOR I = 579 TO 629 STEP 18:
PRINT @I," i
NEXT I:

RETURN

' PRINT IN FORM ROUTINE
PRINT @209, MIDS$(ACS$(A),7,30);:
PRINT @246, MID$(ACS${A)},2,2);:
C = 1:
FOR I = 387 TO 437 STEP 10:
PRINT @I, LEFTS$(STRS$(M(A,C)),7);::
C=C+ 1:
NEXT 1I:
FOR I = 579 TO 629 STEP 18:
PRINT @I, LEFT$(STRS (M(A,C)),7);:
C=C+ 1:
NEXT I:
RETURN

' SOFT KEY ENABLE ROUTINE

PRINT @832, STRING$(64, CHR$(140));:

FOR K = 16269 TO 16319 STEP 17:
POKE K,170:
POKE K + 64,170:
NEXT
X = 1:
FOR K = 837 TO 894 STEP 16:
PRINT @K,X;:
PRINT @K + 61,LS({X);:
PRINT @K + 125,L$(X + 4);:
X =X+ 1:
NEXT :
IF 8K = 1
THEN
RETURN
X$ = INKEYS$:
IF X$ < "1" OR X$ > "4"
THEN
3010:
ELSE
X = VAL{X$):
RETURN

29

Program continued

business

4008
' SOFT KEY DISABLE ROUTINE
4885 X$ = STRINGS(64," "):
PRINT @832,X$;:
PRINT @B896,XS;:
PRINT @968, LEFTS(XS$,63);:
FOR K = 1 TO 8:

Ls (K) = nwy,
NEXT :
RETURN
4090 :
t
5800

' PRINT TO FILE
5865 OPEN "0O",1,"DATAFILE":
PRINT @473,"UPDATING FILES";:
FOR T = 1 TO 80:
PRINT #1, CHRS(34);ACS(T); CHRS(34) ;M(T,1);M(T,2) ; M(T,3);M(T,4)
:M(T,S);M(T,G);M(T,7);M(T,B);M(T,Q);M(T,l@);M(T,ll);M(T,lZ)z
PRINT @542,T;:
NEXT T:
PRINT @542," Mer
CLOSE :
RETURN
5698 :
t
6000 :
' READ FROM FILE
6065 OPEN "I",1,"DATAFILE":
ON ERROR GOTO 6428:
PRINT @473,"READING FILES";:
FOR T = 1 TO B8@:
INPUT #1,ACS(T),M(T,1),M(T,2),M(T,3),M(T,4) ,M(P,5),M(T,6),M(T,7
) M(T,8) ,M(T,9),M(T,18),M(T,11),M(T,12):
PRINT @542,7;:
NEXT T:
CLOSE
RETURN
6810 PRINT @473," "
= 37:
FOR I = 1 TO 12:
M(T,I) = VAL(MIDS{(WS$,S,7)):
M(T + 1,I) = VAL(MIDS(WS,S + 120,7)):
NEXT I:
NEXT T:
CLOSE 1:
RETURN
6620 PRINT @6808,"POSSIBLE DATA LOSS!";:
RESUME NEXT
7999 :
1
80088 :
' KEY INPUT ROUTINE
8810 PRINT @PA,">";:
T$ - Ligi}
8828 X$ = INKEYS:
IF X$ > CHR$(31) AND XS < CHRS({91)
THEN
8030:
ELSE
IF X$ = CHRS(91)
THEN
8870:
ELSE
IF X$ = CHRS(8)
THEN
8050 :
ELSE
IF X$ = CHR$(13)
THEN
80889:

30

8030

8040
84540

8060

B8U65
8e70
8080
8098
8100
8118

8120

business

ELSE
8020
IF LEN(TS$) < LG
THEN
PRINT X$;:
T$ = TS + XS$:
IF LEN(T$) ¢ LG - 1
THEN
PRINT CHRS(95); CHRS(24);
GOTO 80208
IF LEN(TS$) < LG
THEN
PRINT " "; CHR$(24);
IF LEN(TS) > 8
THEN
T$ = LEFTS$(TS$, LEN(TS$) ~ 1):
PRINT X$; CHR$(95); CHRS$(24);
GOTO 8628
RT = 1
IF LEN(TS$) > @ AND LEN(T$) < LG
THEN
PRINT " ";
PRINT @PA," ";:
RETURN

' ENTRY ERROR ROUTINE
PRINT @23,"* ENTRY ERROR *";:
FOR K = 1 TO 5:

PRINT @PA,"*";:

FOR J = 1 TO 38:

NEXT J:

PRINT @PA," ";:

FOR J = 1 TO 30:

NEXT J:

NEXT K:
PRINT @23, STRINGS(30," ");:
RETURN

31

EDUCATION

Story Math
Smile—TRS-80 Loves You

33

EDUCATION

Story Math

by William Klungle

Idon’t understand these questions! They’re dumb and I can’t do them any-
way! I quit!” With that, my fifth grade daughter closed the book on her
math assignment of story problems. Later that evening she was happily
sharing the computer with her sister, enjoying a program called Story. Story
generates random short stories by using the names of the children running
the program. My daughters and their friends have run and enjoyed this pro-
gram for the last year. :

As I watched, a method of changing my daughter’s opinion of story prob-
lerns came to mind. If she enjoyed the Story program so much, why not com-
bine it with a math program? The results were well worth the effort. If you
own a 16K Level II TRS-80 and have grade-school-age children that dis-
like story problems as much as mine, you may find it worth your time to try
this program.

Designing the Program

Programming the math function on the computer is not very difficult, but
when you wish to have the problems presented in a variety of stories, the task
becomes more difficult. Story Math is designed for children in grades one
through six, and the difficulty level of the questions asked is determined by
the school grade of the child operating the program. The questions for
grades one through three involve only addition and subtraction. Multiplica-
tion is added for fourth grade, and in fifth grade, division is included. The
school grade which the child enters is also used as a multiplier for the ran-
dom numbers which are generated for the problems. The multiplier in-
creases the difficulty of the problem as the child progresses in school. There
are several names used in the story problems, but the name of the child run-
ning the program is always added to the list so that his or her name is used in
at least some of the questions. A series of ten questions is asked, after which a
summary of the number answered right and wrong is given. If your system
includes a printer, optional hard copy of the questions asked and the child’s
answers may be obtained simply by turning on the printer. My children
seem to try harder to provide the correct answers to the problems if they
know the results are being printed.

35

education

The Variables

The program uses several string arrays to provide the variety of text lines
used toform the story problems. The string array variables and their uses are
shown in Table 1.

B$(+)—the first line of the story

I$(x)—the item used in the story
C$(*)—the container used for the item
A$(+)—the action taken with the item
E$(»)—the question line of the story
NM$(+*)—names used in the story
M$(*)—messages used for incorrect actions
ACS$(»)—action needed to solve the problem

Table 1

Additionally, string variable N$ stores the child’s name and X$, AN$, and
SC$ are used as temporary variables to accept answers or provide responses.
The numeric variables used are shown in Table 2.

Vl1—random selection for B$(+)
V2—random selection for E$(+)
V3—random selection for I$(»)
V4—random selection for C$(+)
V5—random selection for A$(+)
V6-—random selection for NM$(+)
Nl—top number of the problem
N2—bottom number of the problem
F—flags type of problem: 1= add,

2 = subtract, 3= multiply, 4 = divide
GR-——school grade of child
RT-—right answers
WR—wrong answers
QN-—current question number
AN—child’s answer given
CA—correct answer to the problem
FT—printer flag for the first question

Table 2

How it Works

Program lines 50 through 70 are housekeeping chores which clear
memory space for string variables, define the integer variables, and read the
data into the various arrays. Line 80 is the actual entry point of the program

36

education

which sets the right or wrong answer counters, the question number to one,
and the first time flag to zero. Program line 100 clears the screen and asks the
child to type his or her name. If the name variable is null, the question is
asked again, If the child responds with QUIT, the program terminates.

Building the Story

The beginning and ending lines and the name to be used in the story are
selected in line 140. The container and item variables are selected in pro-
gram lines 150 and 160. The highest allowable action as determined by
school grade is selected in program lines 170-220. The numbers to be used in
the story problem are selected and tested in lines 230 and 240. In order to
keep the wording in the stories correct, the numbers used are never less than
two. Lines 250 and 260 make sure that a larger number is not to be sub-
tracted from or divided into a smaller one.

Finding the Answer

The story, depending upon the math action necessary in the question, is
displayed by lines 270-470. All displays are generated in the 32-character-
per-line mode (CHR$(23)) to help the child read the questions. Once the
story has been displayed, the child is asked to decide what action must be
taken to solve the problem presented. Until the child correctly determines
the proper action, he or she cannot continue with the problem. A wrong
answer at this stage will provide only a visual prompt, but is not considered
as a right or wrong answer. Once the proper action is determined by the
child, the answer to the question is requested by line 510. When the child
responds, the correct answer is determined by program lines 520-550 and
then compared with the child’s answer in lines 570 and 580. Please note that
for division problems, the correct answer and the child’s answer are both
rounded to one decimal place to keep the problems simple. The degree of
difficulty in division problems may be altered by removing the rounding
function on line 550 or by changing the rounding factor (10) to 100 or 1000
or 10000.

Printing the Results

Lines 590-660 are for those of you who wish to use a printer with this pro-
gram. If you do not have or don’t intend to use a printer you can eliminate
these lines. If your printer is not connected via the expansion interface
parallel port you will have to change line 590 to some other method of deter-
mining when the printer is ready to accept data. If the printer is turned on,
the question and answer will be printed after the child has answered.

37

education

The Score

After 10 questions have been answered, the tally of right and wrong
answers is displayed, and the child may choose to run the program again or
to stop. If the child elects to continue, the program is restarted at line 80.

Expanding the Program

The data for the program lines, articles used, names, etc. is stored in pro-
gram lines 700-770. Expanding the program is easy once you have worked
out additional sentences and phrases which will fit in well and make sense
with the other possible story line combinations. Simply increase the array
dimension for the phrase or article you wish to expand and add the words in
the data line to which they apply. I hope your children have as much fun
running this program as mine do.

Sample Run

NIKKI OWNS
37 CUPBOARDS
CONTAINING
64 PEANUTS EACH.
HOW MANY PEANUTS DOES
NIKKI HAVE?
TO SOLVE THIS PROBLEM YOU MUST:
(1) ADD (2) SUBTRACT
(3) MULTIPLY (4) DIVIDE
(ENTER NUMBER OF ANSWER)? 3

NIKKI OWNS

37 CUPBOARDS
CONTAINING

64 PEANUTS EACH,

HOW MANY PEANUTS DOES

NIKKI HAVE?

AFTER YOU MULTIPLY
YOUR ANSWER IS? 2368

38

education

Sample Printout

CARLA’S STORY MATH QUESTIONS AND ANSWERS FOR GRADE 5

TAMMY HAS 67 DOLLARS
AND MUST PUT THEM IN 18 BAGS.

HOW MANY DOLLARS ARE IN EACH BAG?

ANSWER GIVEN = 3.7, THE CORRECT ANSWER

= 3.7

DAVID OWNS 17 MIRRORS
AND MUST PACK THEM IN 6 TRUCKS.

HOW MANY MIRRORS ARE IN EACH TRUCK?
ANSWER GIVEN = 2.7, THE CORRECT ANSWER

= 2.8

JOE OWNS 2 CUPBOARDS
CONTAINING 68 DOLLARS EACH.

HOW MANY DOLLARS DOES JOE HAVE?

ANSWER GIVEN = 136, THE CORRECT
ANSWER = 136

GEORGE OWNS 48 RECORDS
AND MOTHER GIVES 31 RECORDS

HOW MANY RECORDS DOES GEORGE HAVE?
ANSWER GIVEN = 79, THE CORRECT ANSWER

=179

RALPH HAS 74 COO COO CLOCKS

AND THEN WINS 32 COO COO CLOCKS

HOW MANY COO COO CLOCKS DOES RALPH

HOLD?
ANSWER GIVEN = 106, THE CORRECT
ANSWER = 106

CAROL HAS 29 CUPBOARDS
OF 54 RECORDS EACH.

HOW MANY RECORDS DOES CAROL POSSESS?

ANSWER GIVEN = 1566, THE CORRECT

ANSWER = 1566

CARLA HAS 43 SPOONS

AND DISTRIBUTES THEM BETWEEN 7 TRUCKS.
HOW MANY SPOONS ARE IN EACH TRUCK?
ANSWER GIVEN = 6, THE CORRECT ANSWER

= 6.1

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS WRONG

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS WRONG
continued

39

education

JOE OWNS 41 SPOONS

AND MUST PUT THEM IN 11 WASH TUBS.

HOW MANY SPOONS ARE IN EACH WASH TUB?
ANSWER GIVEN 3.7, THE CORRECT ANSWER
= 3.7

CARLA WILL EARN 45 DOGS

AND SISTER LOSES 21 DOGS

HOW MANY DOGS DOES CARLA HOLD?
ANSWER GIVEN = 24, THE CORRECT ANSWER
= 24

GEORGE WAS GIVEN 78 DOLLARS

AND IS PAID 7 DOLLARS

HOW MANY DOLLARS DOES GEORGE OWN?
ANSWER GIVEN = 85, THE CORRECT ANSWER
= 85

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS CORRECT

CARLA’S ANSWER IS CORRECT

40

education

Program Listing 1. Story Math

14 :
' STORY MATH
20 :
' TRS-88 LEVEL II
38
' W. KLUNGLE #110788-1
40

5¢ CLEAR 50848:

DEFINT W,R,D,V

60 DIM BS(4),E$(4),1$(8),C$(6),A$(12) ,NMS(10) ,M$(4) ,ACS(4)
78 FOR R = 1 TO 4:

READ BS$(R):

NEXT R:

FOR R = 1 TO 4:
READ ES$(R):
NEXT R:

FOR R = 1 TO 8:
READ IS(R):
NEXT R:

FOR R = 1 TO 6:
READ CS(R):
NEXT R:

FOR R = 1 TO 12:
READ AS$(R):
NEXT R:

FOR R = 1 TO 1@:
READ NMS$(R):
NEXT R:

FOR R = 1 TO 4:
READ M$(R):
NEXT R:

FOR R = 1 TO 4:
READ ACS(R):
NEXT R

8¢ RT a:

WR a:

QN 1:

FT 4]

9¢ RANDOM
188 CLS :

N§ = """y

PRINT CHR$(23); TAB(1l);"HELLO!":

PRINT :

PRINT " WELCOME TO A MATH ADVENTURE.":

PRINT :

PRINT :

PRINT :

INPUT "WHAT IS YOUR NAME ";NS$:
IF N§ = ""
THEN
168:
ELSE
IF N§$ = "qQuIT®
THEN
END
11¢ NM$(RND(1g)) = NS
12¢ PRINT @320,"WHAT SCHOOL GRADE IS ";N$:
INPUT "IN THIS YEAR ";GRS:
GR = VAL(GRS$):
IF GR > 6
THEN
GR = 6 Program continued

Bowouon

41

education

130 CLS
X§ = "
PRINT CHRS$(23);"OK ";N$;",":
PRINT "ARE YOU READY FOR":
PRINT "QUESTION NUMBER ";QN;:
INPUT " ";X$:
IF LEFTS$(XS,1) < > "y¥
THEN
680
149 V1 RND(4):
RND(4) :
RND{18)
158 v3 RND(8) :
IF V3 < 2
THEN
158
160 V4 = RND(6):
IF V4 < 2
THEN
160
170 F = 1:
IF GR < 4
THEN
V5 = RND(6)
188 IF GR = 4
THEN
V5 = RND(9)
198 IF GR > 4
THEN
V5 = RND(12)
280 IF V5 > 3
THEN
F =2
21¢ 1IF V5 >
THEM
F =
220 IF V5
THEN
P =
236 N1 = RND(GR * 26):
IF N1 < 2
THEN
230
246 N2 = RND(GR * 12):
IF N2 < 2
THEN
249
250 IF N1 < N2 AND F
THEN
RANDOM :
GOTO 230
260 IF N1 < N2 AND F = 4
THEN
RANDOM :
GOTO 238
278 CLS :
PRINT CHRS$(23)
286 PRINT NM$(V6);BS$ (V1)
298 IF F > 2
THEN
360
388 PRINT N1;I$(V3)
319 PRINT AS$(V5)
320 PRINT N2;I$(V3)
338 PRINT :
PRINT "HOW MANY";IS$(V3); "DOES"
340 PRINT NM$(V6);ES(V2);" 2"

350 GOTO 480
360 IF F > 3

<3
N
[)

6

&= v
w

#
N

42

education

THEN
430
PRINT N2;C$(V4)
PRINT AS$(V5)
PRINT N1;I$(V3);"EACH,"
PRINT :
PRINT "HOW MANY";I1$(V3);"DOES"
418 PRINT NM$(V6);ES(V2);" 2"
420 GOTO 480
430 PRINT N1;I$(V3)
4406 PRINT AS(V5)
450 PRINT N2;Cs$(v4);"."
460 PRINT :
PRINT
478 PRINT
480 PRINT :
PRINT "TO SOLVE THIS PROBLEM YOU MUST;":
PRINT " (1) ADD {2) SUBTRACT":
IF GR > 3
THEN
PRINT "
IF GR > 4
THEN
PRINT " (4) DIVIDE"
PRINT @768,"";:
INPUT ¥ (ENTER NUMBER OF ANSWER)
AC = VAL(ACS):

37¢
380
390
400

"HOW MANY";I$(V3)
"ARE IN EACH"; LEFTS(C$(V4), LEN(CS$(V4)) - 2);" 7"

(3) MULTIPLY";:

";ACS:

IF AC < > F
THEN
PRINT €832,M$(RND(4)):
GOTO 49¢
508 FOR R = 576 TO 896 STEP 64:
PRINT @R, STRINGS$(32," ");:
NEXT R
518 PRINT @576,"AFTER YOU ";ACS(F):

INPUT " YOUR ANSWER IS ";ANS$:
AN = VAL(ANS):

ON = ON + 1
520 IF F =
THEN
CA = N1 + N2
538 IF F = 2
THEN
CA = N1 -~ N2
540 IF F = 3
THEN
CA = N1 * N2
550 IF F = 4
THEN
CA = N1 / N2:
CA = INT(CA) + (INT((CA ~ INT(CA)) * 10) / 18):
AN = INT(AN) + (INT((AN - INT(AN)) * 18) / 10)
560 PRINT :
PRINT
576 IF AN = CA
THEN
PRINT "YOUR ANSWER IS CORRECT i":
RT = RT + 1:
SC$ = "CORRECT"
584 IF AN < > CA
THEN
PRINT "SORRY, YOUR ANSWER IS WRONG I":
WR = WR + 1:

SC$ = "WRONG"
IF PEEK(14312) > 127
THEN
FOR R =
NEXT R:
GOTO 678
IF FT = @

599
1 TO 908:

600 Program continued

43

658

6648

690

768
718
728
738

748

758
768
778

education

THEN
LPRINT N$;®'S STORY MATH QUESTIONS AND ANSWERS FOR GRADE";GR:
LPRINT *
LPRINT "
FT = 1
IFF > 2
THEN
638
LPRINT NMS$(V6);BS(V1);N1;I$(V3):
LPRINT AS(VH);N2;1$(V3):
LPRINT "HOW MANY";IS(V3);"DOES ";NMS${V6);E$(V2);"?":
GOTO 668
IFF >3
THEN
658
LPRINT NMS$(V6);BS(VL);N2;C$(V4):
LPRINT AS(VS5);N1;I$(V3);"EACH,":
LPRINT "HOW MANY";IS({(V3);"DOES ";NMS(V6);E$(V2);"2":
GOTO 660
LPRINT NMS$(V6);BS(V1);N1;IS$(V3):
LPRINT AS$(VS5);N2;CS(V4);".":
LPRINT "HOW MANY";IS$(V3);"ARE IN EACH"; LEFTS(CS$(V4), LEN(C$(V4)
) = 2);" 2"
LPRINT "ANSWER GIVEN =";AN;", THE CORRECT ANSWER =";CA;
TAB(50) ;N$;"*S ANSWER IS ";SC$:
LPRINT " "
IF QN < 11
THEN
139
CLS
PRINT CHR$(23);"STORY MATH":
PRINT :
PRINT :
PRINT "YOU HAD ";RT;" CORRECT ":
PRINT "AND ";WR;" INCORRECT ANSWERS.":
PRINT :
PRINT :
INPUT "WOULD YOU LIKE TO TRY AGAIN ";ANS:
IF LEFT$(ANS,1) = "Y"
THEN
86
CLS :

PRINT CHR$(23):

PRINT :

PRINT :

PRINT :

PRINT TAB(18);"BYE ";N$:

END

DATA ® HAS "," WAS GIVEN "," WILL EARN "," OWNS "

DATA " HAVE"," POSSESS"," OWN"," HOLD"

DATA " APPLES "," DOLLARS "," PEANUTS "," COO COO CLOCKS "," DOG

S "," RECORDS "," SPOONS "," MIRRORS "

DATA " BOXES "," BAGS "," WASH TUBS "," CUPBOARDS "," SHELVES ",
" TRUCKS "

DATA "AND MOTHER GIVES "," AND 1§ PAID ","AND THEN WINS ","WHEN

A MAN TAKES ","THEN DAD REMOVES ","AND SISTER LOSES ","OF ","CON

TAINING ","WITH ","AND MUST PUT THEM IN ","AND MUST PACK THEM IN
" "AND DISTRIBUTES THEM BETWEEN "

DATA "JOE","CAROL","SALLY","SUE","DAVID","GEORGE","RALPH" ,"POSIE
", nTOM", "TAMMY "

DATA "SORRY, THAT'S NOT QUITE RIGHT.","BETTER READ IT AGAIN!","N

0, LOOK IT OVER AGAIN!","PLEASE BE MORE CAREFUL!"

DATA "ADD","SUBTRACT" ,"MULTIPLY","DIVIDE"

;
n
"

e e

44

EDUCATION

Smile—TRS-80 Loves You

by J. David McClung

People communicate continuously with facial expressions. A TRS-80 can,
too. I have found that one of the greatest problems in writing education-
al programs for children can be overcome through the use of faces drawn on
the computer with graphic blocks. I have purchased several educational
programs for my children but have discovered that all of them require the
children to read. Although my children enjoy the programs, I get tired of
having to read the instructions and responses to them. To overcome the
problem, I have written a series of programs which the children can use
without adult supervision.

The common feature of the programs is a graphic face drawn in the upper
right corner of the screen with graphic blocks. The face has three expres-
sions. A neutral face indicates that some response is expected from the child.
A smiling face shows that the child responded correctly. An incorrect
response gets a frown. The Faces subroutines are shown in Program Listing
1. These lines are included in each program that uses the faces. To use the
program you must merge lines 8000 through 8550 with another program
with these features:
® The first program command should be GOTO 8500.
® The active program must begin at line 1000.
® Whenever a neutral face is needed, include GOSUB 8200.
® Whenever a smiling face is needed, include GOSUB 8100.
® Whenever a frowning face is needed, include GOSUB 8300.

Each of the remaining program listings can be merged with Program Listing
1 to make an educational program:

Count (Program Listing 2)—This program is the favorite of my five-year-
old daughter, Jenny. The program places up to twenty graphic blocks on the
CRT screen. Jenny is expected to press the white ENTER key the same num-
ber of times.

Number Series (Program Listing 3)— This game is slightly more advanced
than Count, but my five year old plays it without help from me. The pro-
gram prints three consecutive numbers on the screen. The child must res-
pond by selecting the next number from the keyboard.

Alphabet (Program Listing 4)—similar to Number Series except that three
consecutive letters of the alphabet are displayed rather than numbers. The
child is required to respond with the next letter of the alphabet.

Odd1Out (Program Listing 5)-—displays four graphic blocks. Three of the
blocks are identical. The child is expected to respond with the number of the
block that is different.

45

education

Months (Program Listing 6)—displays the names of eleven months. The
child is expected to spell the name of the missing month correctly.

Days (Program Listing 7)—displays the names of six days of the week.
The child is expected to correctly spell the name of the seventh day.

Addition (Program Listing 8)—teaches the child to add.

Subtraction (Program Listing 9)—teaches the child to subtract.

Multiply (Program Listing 10)—teaches the child to multiply.
My children have gotten hours of enjoyment from these programs. There is
nothing like a smiling face to brighten the day.

46

education

Program Listing 1. Faces subroutines

8000
FACE SUBROUTINES

e

8419
' THIS SUBROUTINE IS DESIGNED TO PROVIDE THE GRAPHIC FACES FOR §
EVERAL EDUCATIONAL PROGRAMS

8829

' USE "GOTO 8588" AS THE FIRST COMMAND IN THE PROGRAM: USE A DA

TA STATEMENT FOR LINE 1880 OF THE EDUCATIONAL PROGRAM,

8839

(C) 1988 BY DAVE MCCLUNG, RICHARDSON, TEXAS

81d9

HAPPY FACE
= 41:

OR X = 1 TO 7:

PRINT @P,HS$(X);:

P =P + 64:

NEXT X

8120 RETURN

82090

8119

P e mae

' NEUTRAL FACE
8218 P = 41:
FOR X = 1 TC 7:
PRINT @P,NS$S(X);:
P =P + 64:
NEXT X
8220 RETURN
8309
' SAD FACE
8318 P = 41:
FOR X = 1 TO 7:
PRINT @P,SS$(X);:
P =P + 64:
NEXT X
8320 RETURN
8409 :
' DATA FOR FACES
8402 DATA 32,32,32,176,14B,140,131,131,131,131,131,131,131,143,140,17
6,32,32,32,32,32,184,131,32,32,144,169,32,32,32,32,32,144,159,32
,32,131,164,144,32,168,129,32,32,32,130,129,32,32,32,32,32,130,1
29,32,32,32,32,169,32
8404 DATA 149,32,32,32,32,32,32,32,136,176,132,32,32,32,32,32,32,32,3
2,149,138,144,32,32,131,164,144,32,32,32,32,32,16“,152,131,32,32
,32,154,32,32,130,137,164,176,176,136,131,131,131,131,131,129,32
(1606,176,140,131,32,32
8406 DATA 32,32,32,32,32,131,131,l3l,l4ﬂ,14E,14ﬂ,134,131,131,131,32,3
2,32,32,32
8408 DATA 32,32,32,176,140,140,131,131,131,131,131,131,131,146'149,17
6,32,32,32,32
8410 DATA 32,184,131,32,32,16@,144,32,32,32,32,32,16ﬂ,144,32,32,131,1
64,144,32
8412 DA%A 168,129,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,169
32
8414 DATA 149,32,32,32,32,32,32,32,136,143,132,32,32,32,32,32,32,32,3
2,149
8416 DATA 138,144,32,32,32,32,32,176,176,176,176,176,152,32,32,32,32,
32,154,32
8418 DA&A 35,13ﬂ,137,164,176,32,130,32,32,32,32,32,32,32,169,176,14@,
131,32,32
8420 DATA 32,32,32,32,32,131,131,131,140,l4ﬂ,14ﬂ,134,131,131,131,32,3
2432,32,32
8422 DATA 32,32,32,176,14@,140,131,131,131,131,131,131,l31,14ﬂ,l4ﬂ,l7
6,32,32,32,32
8424 DATA 32,184,131,32,32,152,164,32,32,32,32,32,152,164,32,32,131,1
64,144,32 Program continued

47

education

8426 DATA 168,129,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,169
32

r
8428 DATA 149,32,32,32,32,32,32,32,136,131,132,32,32,32,32,32,32,32,3
2,149
8430 DATA 138,144,32,32,32,32,176,152,149,140,140,140,164,176,32,32,3
2,32,154,32
432 DATA 32,13¢,137,164,176,131,32,32,32,32,32,32,32,32,163,176,148,
131,32,32
8434 DATA 32,32,32,32,32,131,131,131,146,140,146,134,131,131,131,32,3
2,32,32,32
8500
' LCAD FACES
8519 CLEAR 1888:
DIM A(28) ,H$(7),N$(7),85(7)
8520 FOR X = 1 TC 7:
FOR Y = 1 TO 28:
READ A:
HS(X) = H$(X) + CHRS(A):
NEXT Y:
NEXT X
8530 FOR X = 1 TO 7:
FOR ¥ = 1 TO 20:
READ A:
N$(X) = N$(X) + CHRS$(A):
NEXT ¥:
NEXT X
8548 FOR X = 1 TO 7:
FOR Y = 1 TO 26:
READ A:
55(X) = S$(X) + CHRS$(A):
NEXT Y:
NEXT X
8550 GOTO 1660

Program Listing 2. Count

109 :
' COUNT TO TWENTY
110 :
' (C) 1980 DAVE MCCLUNG, RICHARDSON, TEXAS
126 CLS :
PRINT @15, "COUNT TO TWENTY":
PRINT :
PRINT "AN EDUCATIONAL GAME FOR PRESCHOOL CHILDREN":
PRINT :

PRINT "{C) 1988 - DAVE MCCLUNG, RICHARDSON, TEXAS"
138 GOTO 8508
1068 :
' ALWAYS INCLUDE A DATA STATEMENT AT 1000
1818 CLS :
GOSUB 8160
1826 D = RND(28):
ON D GOTO 1830,1046,1850,1660,1076,1680,1090,1108,1110,1128,1130
,1146,1156,1160,1170,1188,1196,1266,1210,1220
1836 Q0$ = "0 N E":
GOTO 1238
1940 Q$ = "T W O":
GOTO 1230
1956 Q$ = "T H R E E":
GOTO 1238
1866 QS = "F O U R":
GOTO 1238
1878 Q$ = "F 1 V E":
GOTO 1230
1888 Q$ = "S I X":
GOTO 1238
1898 Q$ = "S E V E N":
GOTO 12308
11686 Q$ = "E 1 G H T":
GOTO 1238

48

education

1116 Q$ = "N I N E":
GOTO 1239
1120 Q$ = "T E N":
GOTO 1238
1139 Q§ = "E L B
GOTO 1230
1140 Q§ = "T W E
GOTO 1238
1150 Q$ = "T H I

v N":

L

R
GOTO 1239

R

T

T

E":
E E N":

1168 Q$ = "F O U
GOTO 1238
1178 Q8 = "F I
GOTO 1230
1186 Q§ = "S5 1
GOTO 1230
1196 QS = "S E
GOTO 1239
1200 Q§ = "E T
GOTO 12390
1210 Q0§ = "N I
GOTO 1239
1228 Q8 = "T W
GOTO 12390

E N":

[I - R A)

o]

E

E N":
E N":

T E E N":
E N":

E E N":

m o2 6 < X
jo s

L= T - T = B~ |
<)

N

12398
' PRINT BLOCKS
1248 FOR S = 1 TO D
12580 B = RND(862)
1268 IF ((B > 514) AND (B < 544)) OR ((B > 642) AND (B < 672))
OR ((B > 77@8) AND (B < 808)) GOTO 127¢ :
ELSE
GOTO 1259
1270 FOR T = 1 TO S:
IF (B = A(T)) OR (B = A(T) + 1) OR (B = A(T) -~ 1) GOTO 1250
1289 NEXT T:

A{S) = B
1290 PRINT @ B, CHR$(191);
1368 NEXT

1318 PRINT @458,08;:
PRINT @396,D;
1320 GOSUB 8200
1339 :
' COUNT
1340 C$ = INKEYS:
IF C$ = "" GOTO 1340
1350 E = 1
1368 FOR Z = 1 TO 158:
C$ = INKEYS:
IF CS§ < > " E =E + 1:
GOTO 1368
1379 NEXT 2
1388 IF E = D GOSUB 81¢4:
FOR X = 1 TO 1580:
NEXT X :
ELSE
GOSUB 8308:
FOR X = 1 TO 1508:
NEXT X
1399 CLS :
GOSUB 81¢8:
GOTO 1020
1498 E = E + 1:
GOTO 1368
1418 END

Program Listing 3. Number Series

148 CLS :
PRINT "NAME THE NEXT NUMBER":
PRINT Program continued

49

education

182 PRINT "A GAME FOR PRESCHOOLERS":
PRINT
183 PRINT "{C) 1988 -~ DAVE MCCLUNG, RICHARDSON, TEXAS"
104 :
' MUST BE MERGED WITH "FACES" SUBROUTINE
268 GOTO 8588
1060 :
' ALWAYS INCLUDE A REMARK STATEMENT AT 1080
1616 A$ = CHRS(191):
BS = CHRS(191) + CHR$(191)
C$ " #% - #E - %%
1820 CLS :
GOSUB 8200
1038 N = RND(28):
M=N-2
1048 PRINT @768,"";
1856 IF N > 9 PRINT USING C$;M,M + 1,BS;:
ELSE
PRINT USING cs M M+ 1,A$;
1060 IF N < 19 FP§ =
GOTO 1100
1876 F$ = INKEYS:
IF F$ = "" GOTO 1878
1480 PRINT @ 708,°";:
PRINT USING C$;M,M + 1,F$;
1168 G$ = INKEYS:
IF G$ = ™" GOTO 1108
1118 H$ = F$ + G$:
Q = VAL(HS)
1115 PRINT @ 700,"";:
PRINT USING C$;M,M + 1,HS;
1128 IF Q = N GOSUB 8188 :
ELSE
GOSUB 8386
1139 FOR X = 1 TO 1500:
NEXT X
1148 GOTO 1080
1268 END

o

Program Listing 4. Alphabet

188 CLS :
PRINT "NAME THE NEXT LETTER ":
PRINT
162 PRINT "A GAME FOR PRESCHOOLERS":
PRINT
163 PRINT "(C) 1986 —- DAVE MCCLUNG, RICHARDSON, TEXAS"
1e4 :
' MUST BE MERGED WITH "FACES" SUBROUTINE
208 GOTO 8508
1800 :
' ALWAYS INCLUDE A REMARK STATEMENT AT 1480
16109 C§ = " $% - %% - %% ~ %%":
B$ = CHR$(191)
1820 CLS :
GOSUB 8200
1030 N = RND(26):
N= N + 64
1031 M§ = CHR$(N):
GOSUB 280608
1832 0§ = CHR$(N):
GOSUB 2008
1833 P§ = CHRS(N):
GOSUB 2000
1040 PRINT @780,"";
185@ PRINT USING C$;M$,08$,P$,BS
1060 H$ = INKEYS:
IF H$ = "" GOTO 1060
1064 PRINT €708,"";
1065 PRINT USING C$;M$,08$,PS,HS

50

1870

1138
1140

1200
2000

2018

education

IF H$ = CHR$(N) GOSUB 8100:
ELSE
GOSUB 830¢
FOR X = 1 TO 1500:
NEXT X
GOTO 1200
END
IF N = 98
THEN
N = N~ 25:
ELSE
N=N+1
RETURN

104

128
130

200
ilee9

10819

1029

1030
1035
1lpo49
1050
1068
le61
1962
1863
1064
1970

1880

1698

1109
1209

Program Listing 5. Odd10ut

CLS :

PRINT "ODD ONE OUT":

PRINT

PRINT "A GAME FOR PRESCHOOLERS":
PRINT

PRINT "(C) 1980 ~~ DAVE mCCLUNG, RICHARDSON, TEXAS

i MUST BE MERGED WITH "FACES™ SUBROUTINE
GOTO 8588

' ALWAYS INCLUDE A REMARK STATEMENT AT 1680
CLS
N
N
v
\'
iF
B$
AS
D$
cs
GOSUB 8200
PRINT @636,BS;
PRINT @788,"";
R = RND(4):
ON R GOTO 1661,1062,1063,1064
PRINT USING C$;A$,D$,DS$,D$;:
GOTO 1878
PRINT USING C$;D$,A$,D$,DS$;:
GOTO 1870
PRINT USING C$;D$,D$,AS$,DS$;:
GOTO 1070
PRINT USING C$;D$,D$,DS$,AS$;:
GOTO 1078
HS = INKEYS:
IF HS = "" GOTO 1670
IF VAL(HS$) = R GOSUB 8188 :
ELSE
GOSUB 8308
FOR X = 1 TO 1500:
NEXT X
GOTO 1000
END

]

RND(61) :

N + 129:

RND(61) 2

VvV + 129:
= V GOTO 1618
" 1 2 3 47
CHRS$ (V)
CHRS (N)
" %% %% 3% 3%"

nono

B uz

Program Listing 6. Months

169 CLS
PRINT "MONTHS":
PRINT

181 PRINT "A GAME FOR GRADE SCHOOL CHILDREN":
PRINT

Program continued

51

162
118

200
1p00

1685

1010
1820

103¢

education

PRINT "{C) 1988 -- DAVE MCCLUNG, RICHARDSON, TEXAS

' MUST BE MERGED WITH "FACES" SUBROUTINE.
GOSuUB 85088

' ALWAYS INCULDE A REMARK AT 1088
CLS

GOsSUB 8200

R = RND(12):

GOSUB 3000:

GOSUB 2800

PRINT @810,"NAME THE MISSING MONTH";:
PRINT @ 874,"";

1046 INPUT WS
185¢ IF W$ = M$ GOSUB 8180 :
ELSE
GOSUB 8300
1968 FOR X = 1 TO 1808:
NEXT X:
GOTO 1068
1876 STOP
2000 :
' MONTHS
2081 IF R < > 1 PRINT @ 64,"JANUARY";
2082 IF R < > 2 PRINT @ 128,"FEBRUARY";
2003 IF R < > 3 PRINT @192, "MARCH";
2004 IF R < > 4 PRINT @256,"APRIL";
20885 IF R < > 5 PRINT @320,"MAY";
20666 IF R < > 6 PRINT @384,"JUNE";
2007 IF R < > 7 PRINT @448,"JULY";
2088 IF R < > 8 PRINT @512,"AUGUST";
2009 IF R < > 9 PRINT @576,"SEPTEMBER";
2616 IF R < > 10 PRINT @64@,"0CTOBER";
2611 IF R < > 11 PRINT @784,"NOVEMBER";
2612 IF R < > 12 PRINT @768, "DECEMBER";
2013 RETURN
3088 =
' MONTH
3961 IF R = 1 MS = "JANUARY"
382 IF R = 2 M$ = "FEBRUARY"
3883 IF R = 3 M$ = "MARCH"
3§04 IF R = 4 MS$ = "APRIL"
3§65 IF R = 5 M$ = "MAY"
3686 IF R = 6 M$ = "JUNE"
3§87 IF R = 7 M$ = "JULY"
3988 IF R = 8 M$ = "AUGUST"
3§89 IF R = 9 MS$ = "SEPTEMPER"
318 IF R = 18 M$ = "OCTOBER"
3611 IF R = 11 MS = "NOVEMBER"
3912 IF R = 12 M$ = "DECEMBER"
3§13 RETURN
Program Listing 7. Days
188 CLS :
PRINT "DAYS OF THE WEEK":
PRINT
11 PRINT "A GAME FOR GRADE SCHOOL CHILDREN":

102
118

208
1000

1885
1618
1820

PRINT
PRINT "{(C) 1988 —- DAVE MCCLUNG, RICHARDSON,

' MUST BE MERGED WITH "FACES" SUBROUTINE.
GOSUB 8500

' ALWAYS INCULDE A REMARK AT 18089
CLS

GOSUR 8209

R = RND(7):

GOSUB 3088:

GOSUB 2008

TEXAS

52

education

1039 PRINT @81@,"NAME THE MISSING DAY";:
PRINT @ 874,"";

1040 INPUT WS

1856 IF W$ = M$ GOSUB 8184 :

ELSE
GOSUB 8300
1868 FOR X = 1 TO 1000:
NEXT X:
GOTO 1660
1878 STOP
2000 :
' DAYS OF THE WEEK
2001 IF R < > 1 PRINT @ 64, "MONDAY";
2002 IF R < > 2 PRINT @ 128,"TUESDAY";
2603 IF R < > 3 PRINT @192, "WEDNESDAY";
2004 1F R < > 4 PRINT @256, "THURSDAY";
2005 IF R < > 5 PRINT @320, "FRIDAY";
2606 IF R < > 6 PRINT @384,"SATURDAY";
20807 IF R < > 7 PRINT @448, "SUNDAY";
2613 RETURN
3000 :
' MONTH
3001 IF R = 1 M$ = "MONDAY"
3082 IF R = 2 M$ = "TUESDAY"
3683 IF R = 3 M$ = "WEDNESDAY"
3064 IF R = 4 M$ = "THURSDAY"
30085 IF R = 5 M$ = "FRIDAY"
3066 IF R = 6 M$ = "SATURDAY"
3007 IF R = 7 M$ = "SUNDAY"
3813 RETURN
Program Listing 8. Addition
1089 CLS :
PRINT "ADDITION":
PRINT
181 PRINT "A GAME FOR GRADE SCHOOL CHILDREN":
PRINT
162 PRINT "(C) 1988 - DAVE MCCLUNG, RICHARDSON, TEXAS
1190

' MUST BE MERGED WITH "FACES" SUBROUTINE.
200 GOSUB 8508
19896
' ALWAYS INCULDE A REMARK AT 1000
1905 CLS
GOSUB 8200
A RND(99):
B RND(99)
1020 P$ = "§4n;
Q5 = "+§§"
183¢ PRINT @ 586,"";:
PRINT USING PS$;A;
1948 PRINT @ 649,"";:
PRINT USING Q$;B;
1058 PRINT @ 713,%w--";
1968 PRINT @ 777,"";:
PRINT USING " g3%"; CHR$(191);
107¢ H$ = INKEYS:
IF HS = "" GOTO 16478¢
1988 PRINT @ 778,"";:
PRINT CHR$(191);:
PRINT HS;
1899 IF (A + B) < 9 GOTO 1200
1196 J$ = INKEYS:
IF J$ = "" GOTO 1108
1119 HS$ = J$ + HS:
PRINT @ 777,"";:
PRINT USING "###"; VAL(HS$);
1115 IF J$ = "@" PRINT @778,"6"; Program continued

1010

53

1128
1125
1138

1140

1200

121@

1220
1238

education

IF (A + B) < 99 GOTO 1208
PRINT @ 777, CHR$(191);
J$ = INKEYS:
IF J$ = "7 GOTO 1138
HS = J$ + HS:
PRINT @ 777,"";:
PRINT USING "###"; VAL(HS):
IF (A + B) = VAL(HS) GOSUB 8169
ELSE
GOSUB B389
FOR X = 1 TO 1500:
NEXT X
GOTO 10060
END

100

161

162
119

200
1060

1005
1818

1028
1038
1040

18506
1068

1070
lps@
1890
1095
1100
1110
1120
1130

1140

1200

1210

1220
1230

Program Listing 9. Subtraction

CLS :

PRINT "SUBTRACTION":

PRINT

PRINT "A GAME FOR GRADE SCHOOL CHILDREN":

PRINT

PRINT "(C) 1980 -- DAVE MCCLUNG, RICHARDSON, TEXAS

i MUST BE MERGED WITH "FACES"™ SUBROUTINE.
GOSUB 8588

' ALWAYS INCULDE A REMARK AT 1000
CLS :
GOSUB 8288
A = RND(99):
B = RND(99):
IF B > A GOTO 1918
PS = "H§":
Qs = "-#4"
PRINT @ 586,"";:
PRINT USING PS$;A;
PRINT @ 649,"";:
PRINT USING Q$;B;
PRINT @ 713,7==-";
PRINT @ 777,"";:
PRINT USING " %$"; CHR$(191);
HS$ = INKEYS:
IF HS = "" GOTO 1878
PRINT @ 777,"";:
PRINT USING "###"; VAL(HS);
IF (A - B) < 9 GOTO 12048
PRINT @778, CHRS$(191);
J$ = INKEYS:
IF J$ = "" GOTO 1186
BS = J$ + HS$:
PRINT @ 777,"";:
PRINT USING "##4#"; VAL(HS$);
IF (A - B) < 99 GOTO 1208
J$ = INKEYS:
IF J$ = "" GOTO 1138
HS$ = J$ + HS:
PRINT @ 777,"";:
PRINT USING "###"; VAL(HS);
IF (A - B) = VAL(H$) GOSUB 8188 :
ELSE
GOSUB 8308
FOR X = 1 TO 1588:
NEXT X
GOTO 1008
END

54

education

Program Listing 10. Multiply

190 CLS :
PRINT "MULTIPLY":
PRINT
1¢1 PRINT "A GAME FOR GRADE SCHOOL CHILDREN":
PRINT
162 PRINT "(C) 198¢ -- DAVE MCCLUNG, RICHARDSON, TEXAS
116 :

' MUST BE MERGED WITH "FACES" SUBROUTINE,
268 GOSUB 8588

1099 :

' ALWAYS INCULDE A REMARK AT 1486
1665 CLS :

GOSUB 8208
1818 A = RND(99):

B = RND(9):

C = RND(9):

D= (B * 18) + C:

IF A < D GOTO 1018
1020 PS = "##":

QS = "x#E":

W$ = CHR$(191)

163¢ PRINT @ 333,"";:
PRINT USING P$;A;
1049 PRINT € 396,"";:
PRINT USING Q$;D;
1959 PRINT @ 468,"---";
18680 L = 526:
GOSUB 76@0:
HS = L$
1088 PRINT @ 526 ,HS;:
L = 525:
GOSUB 7080:
Js$ = L$
1119 HS = J$ + HS:
PRINT @ 525,HS;
1128 IF (A * C) < 168 GOTO 1288
1138 L = 524:
GOSUB 7080:
Js$ = L$
1140 HS$ = J$ + HS:
PRINT @ 524,HS;
1288 L = 589:
GOSUB 7888:
G$ = L§
1228 PRINT @ 589,GS$;
1240 L = 588:
GOSUB 7080:
I$ = LS$
1250 G$ = I$ + GS:
PRINT @588,G$;
126¢ IF (A * B) < 186 GOTO 1308
1276 L = 587:
GOSUB 7088:
I$ = LS
1288 G$ = I$ + GS:
PRINT @587,GS;
139¢ PRINT @ 658,"————— ",
13190 L = 718:
GOSUB 7080:
I$ = L$
132¢ P = VAL(GS) * 18 + VAL(HS)
1340 PRINT @718,I$;
1360 L = 717:
GOSUB 7680:
G$ = L$
1378 I$ = GS + 1S
138¢ PRINT @717,1%5;
1398 IF P < 166 GOTO 1560 Program continued

55

1408

1410
1420
1430
1440

1458
l46@

1478

1509

1510

1520
1538
7000

7018
7620

7030
7040
7658

7060
7078
7080

education

L = 716:
GOSUB 7000:
G$ = L§

I$ = G$ + I3

PRINT @716,1%;

IF P < 1008 GOTO 14648

PRINT @715,",%;:

L = 714:

GOSUB 7088:

GS$ = L$

I$ = G§ + IS

PRINT @714,"";:

PRINT USING "#,###"; VAL(IS);:

PRINT " = YOUR ANSWER";

PRINT @ 778,"";:

PRINT USING "#,###";(A * D);:

PRINT " = CORRECT ANSWER"

IF VAL{I$) = A * D GOSUB 8100 :
ELSE
GOSUB 8308

FOR X = 1 TO 2508:

NEXT X

GOTO 1888

END

' BLINKING CURSOR
PRINT @ L,W$;

FOR X = 1 TO 15:

L$ = INKEYS:

IF L$ < > ™" GOTO 7080
NEXT X

PRINT @ L," ";

FOR X = 1 70 15:

L$ = INKEYS:

IF L$ < > "" GOTO 7080
NEXT X

GOTO 7618

RETURN

o6

GAMES

Keno
Tie Attack

57

GAMES

Keno

by C. Brian Honess

he ancient Chinese game that we know today as keno is one of the most

popular casino gambling games. The game is played on a card, not unlike
a bingo card. The keno card consists of the first 80 integer numbers, arranged
in eight rows of 10 numbers each. Figure 1 shows the typical keno card.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 4 75 % 77 78 79 80

Figure 1. Typical keno card

Each of the numbers is called a spot, and you may play from one to fifteen
spots. A spot is played by marking through it with a crayon, although in our

NUMBER OF SPOTS MARKED

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NUMBER OF
CATCHES
1 3

2
3 42 4 2 1

4 112 20 4 2

5 480 88 24 9 4 2 1

6 1480 360 92 44 20 8 5 i i

7 5000 1480 300 132 72 32 16 10 8
8 18000 4000 960 360 240 80 40 28
9 20000 3800 1800 600 720 300 132

10 25000 12000 1480 4000 1000 300
11 25000 8000 8000 3200 2600
12 25000 20000 16000 8000
13 25000 24000 24000
14 25000 25000
15 25000

Table 1. Dollar payoff per dollar bet

59

games

keno program, we’ll just make the spot disappear. After you've chosen the spot
or spots you want to play, the house draws exactly 20 numbers at random.
Then you compare the spots you chose with the numbers that have been
selected at random. Every time one of the numbers that you selected is the
same as one of the random numbers drawn, it is called a catch. Depending
upon the number of catches you have and the number of spots you marked,
you win or lose, based on a payoff table. Table 1 shows a typical payoff table.

Notice in Table 1 that you don’t have to get exactly the same number of
catches as the number of spots marked in order to be a winner. For example,
suppose you had decided to mark five spots. If those five spots were all in the
20 random numbers selected by the house, you’d win $480.00 for each $1.00
bet. You’d also win if only three or four of your selections were in the group of
20 numbers called. For three catches you’d win $2.00, and for four you'd win
$20.00. Notice too, that there is an upper limit on the amount you can win, in
this case, $25,000.00. This program is coded so that you can win $25,000.00
maximum for each $1.00 bet. If you'd like to reduce your chances of winning
big and have your program conform more closely to the big casino games, in-
sert the following line:

5675 IF WN > 25000 THEN WN = 25000

You're going to find out quickly that it is much more difficult to win than
you would first suppose. When you play keno in the casinos there are usually
special combination tickets that give you more ways to win. These specials
are not included in this program, since they vary widely and are often ex-
tremely complex. Figure 2 gives an example of the screen display midway in-
to a typical game.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 34 35 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 70
71 72 73 74 75 76 7 78 79 80

BANKROLL = $100 BET = $50

CALLED NUMBERS: 63 18 33 36 19 68 78 80 26 11
42377 910 227 15 47 69

NUMBER OF HITS: 3 YOU WON $2100
Figure 2. Example of screen display for keno

60

games

About the Keno Program

At the beginning of the Program Listing, 400 string locations are reserved,
and the arrays are dimensioned. P holds the payoff table, S holds the spots you
want to play, and RN holds the 20 random numbers chosen by the house. The
payoff table is read, beginning in line 120. If the player wants instructions, the
program executes the subroutine beginning at line 9000, and upon returning to
the main part of the program, the player is bankrolled with $100.00 in line 140.

The subroutine at line 8000 draws the playing screen. Since we want an
8-by-10 playing card, the row numbers in line 8030 go from one to eight. The
column number is adjusted in lines 8020, 8040, and 8080 to center the 10 col-
umns of the keno card. After printing the amount in the player’s bankroll, the
program goes to the subroutine starting at line 5000, where the number of spots
tobe played, NS, and the bet, B, are determined. Starting in line 5180, the NS
spots are selected, and there are appropriate traps to make sure you don’t enter
the same number twice or don’t choose a number greater than 80.

The routine starting in line 5270 blanks out the spot that was chosen on the
playing card. This is done by subtracting one from the number, dividing by 10,
and looking at the integer part of the resulting number. This calculation gives
the line number of the chosen spot on the playing card. For example, suppose
that the number 45 is selected. (45 — 1)/ 10 = 4.4, and if we take INT(4.4), this
results in the row being identified as row 4. To find out why I had to subtract
one from the spot number, I suggest you try a few numbers: 19, 20, and 21 will
do nicely.

The remainder of this section of the program, through line 5330, calculates
the column number in a similar fashion and blanks out that location on the
screen. The routines at line 5340 and 5410 simply produce and print the 20 ran-
dom numbers. The PRINT USING statement is used to nicely format the out-
put. At this point, the program diverts control to the subroutine at line 6000,
which simply holds the display on the screen until the space bar is pressed.

Returning to the routine starting at line 5530, the program now has to deter-
mine the number of catches, or hits, between the numbers selected by the player
and the 20 numbers selected by the computer. A counter, NH (number of hits), is
initialized to zero and then incremented by one each time a number shows up in
both categories. This is accomplished in the nested loops in lines 5560 through
5600, after which the contents of NH are printed. Starting in line 5620, the payoff
table is checked to see if there is a payoff for the number of hits versus the number
of spots played. If there is, this amount is added to the bankroll in line 5770, and if
not, it is subtracted in line 5710. Next, the program returns to play again, unless
the bankroll has fallen to zero, in which case the “you lost it all” subroutine at line
4000 is executed.

61

games

A Final Word

Sections of this program are of special interest, such as those in which just a
portion of the screen is altered, while some lines remain intact. This technique is
especially obvious where the payoff table is printed, starting in line 9120. By
carefully using PRINT @, PRINT TAB, and PRINT USING statements, the
headings remain on the screen while the numbers below them change.

An excellent way to learn screen formatting is to get a blank screen video
worksheet and go through the program by hand, filling in the worksheet at the
appropriate locations as you encounter the various types of PRINT statements.
You wouldn’t have to do this with the paragraph of instructions from lines 9000
through 9100, but it would be instructive to do it from line 9110 through line
9420, and also for the main subroutine, from line 5000 through about line 5500.

62

games

Program Listing

1 REM AR AR ERA IR AR AR R R IR R AR KR IR R IR RN AR A KAk
2 REM * *
3 REM * <K< KENO >>> *
4 REM * BY: *
5 REM * C. BRIAN HONESS *
6 REM * COL. OF BUS. ADM. *
7 REM * UNIV. OF S0. CAROLINA *
8 REM * COLUMBIA, SC 29208 *
9 REM * *

10 REM ek khhhidddhkhhdkkhhkhkkXFARKIRIX IR R KRR KRS K IRk

168 CLEAR 400
118 DIM P(73,3), S{(15), RN(208)
1290 REM * READ PAYOFF TABLE *
121 FOR I = 1 TO 73
122 READ P(I,1),P(I,2),P(I,3)
123 NEXT I
125 CLS
126 PRINT @ 528, "WANT TO SEE INSTRUCTIONS (YES/NO)";:
INPUT Y$
13 IF ¥Y$ = "YES" GOSUB 9000
148 BR = 180.00
154 GOSUB 80060
160 GOSUB 506060¢
998 END
4000 REM *** YOU LOST IT ALL ROUTINE EE
4919 CLS
PRINT @ 533, "YOU LOST YOUR BANKROLL"
4p20 PRINT @ 593, "WANT TO PLAY AGAIN (YES / NO)";:
INPUT Y$
4930 IF ¥Y$ = "YES"
THEN
140
4949 CLS :
GOTO 999
5000 REM *** PLAY A GAME *EK
5¢1¢ REM * CHOOSE SPOTS *
5§20 PRINT @ 778,"HOW MANY SPOTS DO YOU WANT TO PLAY (1-15) ";
5¢3¢ INPUT NS
5¢4@9 IF NS < 16 AND NS > 8
THEN
507¢@
55¢ PRINT @ 778, STRINGS$(48," ")
5860 GOTO 5020
5¢7¢ REM * MAKE BET *
568¢ PRINT @ 848, "HOW MUCH WOULD YOU LIKE TO BET";:

INPUT B
589¢ IF B < = BR
THEN
5158
5168 PRINT @ 973, "THAT'S MORE THAN YOU HAVE! -- RE-ENTER BET";
5119 FOR I = 1 TO 999 :
NEXT I

5128 PRINT @ 968, STRINGS(48," “);
5139 PRINT @ 848, STRINGS(48," ");
5148 GOTO 5088
5159 PRINT € 688, "BET = $"; B ;
5160 PRINT @ 848, STRINGS(48," "};
5178 PRINT @ 778, STRINGS(54," ");
518§ REM * SELECT SPOTS TO PLAY *
5199 FOR I = 1 TO NS
5288 PRINT @ 772, STRINGS(24," "};
5219 PRINT @ 772, "ENTER SPOT NO. "; I;
5228 INPUT S(I)
5239 IF S{I) > 88 OR S(I) <1

THEN

5200 Program continued

63

games

5246 FORJ =1 ~ 1 T0 1 STEP - 1
5259 IF §(I) = 8(J)
THEN
5200
5260 NEXT J
52780 REM * PUT 'BLANKS' IN SPOT'S NUMBER IN BOARD *
5288 21 = INT((S(I) - 1) / 18)
5298 22 =77 + (21 * 64)
5388 23 =22 + (4 * ((S(I) -~ 1) = (z1 * 18)))

5318 PRINT @ 23, " ",
5320 NEXT I
5338 PRINT @ 772, STRINGS(24," ");

5348 REM * PRODUCE 20 RANDOM NUMBERS *
5358 FOR I = 1 TO 28
5368 RN (I) = RND(80)
5376 FOR J =1 - 1 T0 8 STEP - 1
5388 IF RN(I) = RN(J)
THEN
5360
5390 NEXT J
5408 NEXT I
5416 REM * PRINT THE 26 RANDOM NUMBERS *
5420 PRINT @ 772, "CALLED NUMBERS: v
5430 AS = " §"
5440 FOR I = 1 TO 10
5458 PRINT USING AS; RN(I);
5460 NEXT I
5478 PRINT @ 852, "";
5488 FOR I = 11 TO 28
5498 PRINT USING A$; RN(I);
5508 NEXT I
5518 GOSUB 60068
5520 PRINT @ 968, STRING$(63," "):
5536 REM * DETERMINE NUMBER OF 'HITS' *
5548 PRINT € 964, "NUMBER OF HITS: "
5558 NH = 8
5560 FOR I = 1 TO 28
5578 FOR J = 1 TO NS
5588 IF S{(J) = RN(I)
THEN
NH = NH + 1
5598 NEXT J
5608 NEXT I
5610 PRINT @ 988, NH;
5620 REM * CHECK PAYOFF MATRIX TO SEE IF WIN *
5630 WN = 0§
5640 FOR I =1 TO 73
5658 IF NS < > P(I,1)
THEN
5698
5666 IF NH < > P(I,2)
THEN
5698
5678 WN = P(I,3) * B
5688 GOTO 5768
56906 NEXT I
5789 PRINT @ 1868, "SORRY YOU LOSE";
5710 BR = BR - B
5728 PRINT @ 644, STRINGS(24," "y

5730 PRINT @ 644, "BANKROLL = S$"; BR;
5748 FOR I =1 TO 1500 :

NEXT I
5745 IF BR < = @

THEN

4000

5758 GOTO 158
5760 PRINT @ 18886, "YOU WON $"; WN;
5776 BR = BR + WN
5775 FOR I = 1 TO 1580 :
NEXT I

64

games

5788 GOTO 150
6000 REM *** PRESS 'SPACE' WHEN READY Ll
6010 PRINT @ 968, ".covennvnnns esreene PRESS..eeveens WHEN READY.......
",
R R
6020 FOR K = 1 TO 25:
K$ = INKEYS:
IF K$ < > ""
THEN
RETURN :
ELSE
NEXT K
6638 PRINT @ 985, "'SPACE'";
6040 FOR K = 1 TO 25:
K$ = INKEYS:
IF K$ < > "
THEN
RETURN :
ELSE
NEXT K
6658 GOTO 6010
7080 REM *** PAYOFF TABLE i
7661 DATA 1,1,3

7882 DATA 2,2,12

7683 DATA 3,2,1,3,3,42

7804 DATA 4,2,1,4,3,4,4,4,112

7085 DATA 5,3,2,5,4,206,5,5,480

7096 DATA 6,3,1,6,4,4,6,5,88,6,6,1480

7697 DATA 7,4,2,7,5,24,7,6,368,7,7,5800

7¢@8 DATA 8,5,9,8,6,92,8,7,1480,8,8,18000

70689 DATA 9,5,4,9,6,44,9,7,300,9,8,40800,9,9,20000

7010 DATA lﬂ,S,Z,lﬂ,6,2B,lﬂ,7,132,10,8,96@,1ﬂ,9,38ﬂﬁ,lﬁ,lﬂ,ZSDﬂE

7611 DATA 11,5,1,11,6,8,11,7,72,11,8,36&,11,9,18@@,11,1ﬂ,126ﬂ0,11,11,
25000

7812 DATA 12,6,5,12,7,32,12,8,240,12,9,600,12,1@,1489,12,11,8ﬂﬂﬁ,12,1
2,25000

7013 DATA 13,6,1,13,7,16,13,8,80,13,9,72%,13,19,40@@,13,11,83@@,13,12
,206000,13,13,25000

7¢14 DATA 14,6,1,14,7,1@,14,8,4@,14,9,300,14,lﬂ,l@ﬂﬂ,14,11,3206,14,12
,16000,14,13,24000,14,14,25000
7015 DATA 15,7,8,15,8,28,15,9,132,15,1ﬂ,3ﬂ0,15,11,2669,15,12,8ﬁ09,15,
13,24000,15,14,25000,15,15,25000
8908 REM *** PLAYING SCREEN ***
8016 CLS :
PRINT
8028 X1 = 77 :
X2 = 114
N =1
8630 FORR = 1 TO 8
8948 FOR X = X1 TO X2 STEP 4
8958 PRINT @ X, N;
3068 N=DN+1
8678 NEXT X
8888 X1 = X1 + 64
X2 = X2 + 64
8098 NEXT R
81@8 PRINT @ 644, "BANKROLL = $"; BR
8999 RETURN
JpG8 REM *** INSTRUCTIONS ***
9616 CLS :
PRINT @ 153, "*** KENO ***"
PRINT :
PRINT
9628 PRINT " THE ANCIENT CHINESE GAME WE KNOW TODAY AS KENO, IS PL
AYED"
0@3@ PRINT " ON A CARD WITH THE FIRST 80 INTEGERS, ARRANGED IN A MATR
X"
9g4d BRINT " OF 8 ROWS AND 18 COLUMNS. YOU MAY SELECT FROM ONE TO 15
OF"
0@5¢ PRINT " THESE 'SPOTS', AND IN A CASINO YOU'D SIMPLY MARK THROUGH
THEM" Program continued

65

9061
9076
9080
9090
9108
9119
9120
9130
9149
91548
9168
91740
9186
91986
9200

92140

9226

9230
9240

9258
9260
9270
9280
9290
9300
9310
932¢
9400

9410

9428
9999

games

PRINT " WITH A CRAYON. 20 OF THE POSSIBLE 80 NUMBERS ARE THEN D
RAWN n
PRINT " AT RANDOM. THEN, DEPENDING UPON THE NUMBER OF SPOTS THA
T You"®
PRINT " MARKED THAT WERE AMONG THE 28 NUMBERS SELECTED, YQUR PAY
OFF"
PRINT " IS CALCULATED."
GOSUB 6000
CLS :
PRINT
PRINT @ 86, "*** PAYOFF TABLE **%" .
PRINT
PRINT TAB(18) "NUMBER NUMBER $ PAID"
PRINT TAB(18) "MARKED CALLED /$ BET"
R1 1
R2 8
X1 484
X2 415
X3 422
FOR R = R1 TO R2

PRINT @ X1,"";

PRINT USING "##"' P(R,1);

PRINT @ X2,"";

PRINT USING "##"' P(R,2);

PRINT @ X3,""; :

PRINT USING "##### #4"; P(R,3);

X1 = X1 + 64

X2 X2 + 64

X3 X3 + 64

IF R = 73

THEN

9280

NEXT R
Rl = Rl + 8
R2 = R2 + 8
GOSUB 6000
PRINT @ 968, STRINGS{63," ");
GOTO 9160
X = 466
FOR R =1 T0 8

PRINT @ X, STRINGS$(63," ");

X =X + 64

NEXT R
PRINT @ 728,"WANT TO SEE IT AGAIN (YES / NO)";:
INPUT Y$§
IF Y§ = "YES"

THEN

9119
CLs
RETURN

(LN (N1 0 | OO

oo

66

GAMES

Tie Attack

by Bob Menten

ie Attack is a real-time, shooting gallery type game that was written for

Level I, 4K and converted to Level II. Level I operation of the game re-
quires only about 2K of the available memory, but the animated title and in-
structions use up most of the remaining memory. I have 233 bytes remaining
when I load the game into my TRS-80. In order to get it all in 4K, everything
must be abbreviated as shown in Appendix A. Also, forget that there is a
space bar on your keyboard—except in PRINT statements.

Playing the Game

You are an artillery captain in command of an anti-neutron cannon on an
isolated space outpost. Your outpost is being buzzed by a horde of Tie fight-
ers. The Tie fighters fly by at different speeds and routes—covering every
corner of your field of fire. Your mission: to destroy as many Tie fighters as
possible with the 25 anti-neutron shells that remain in your armory. Fire
your cannon by pressing the clear key. Theoretically, every Tie fighter will
be within the range of your cannon. However, you will find it difficult to hit
some of the faster moving fighters. If in doubt, it would be better to let a Tie
fighter escape and save a shell for an easier target. A running tally is printed
at the top of the screen. This will show shots left, misses, Tie fighters
destroyed, and Tie fighters escaped.

Tie Animation

Line 1010 initializes the Tie animation sequence. Variable A determines
which of six possible routes the Tie fighters will take. (See Table 2.) The ap-
parent speed of the Tie fighters is determined by the value of E. In routes
five and six, the Tie fighters are stepped E + 2 positions horizontally. In the
four diagonal routes (A=1, 2, 3, or 4), the Tie fighters are sequentially
stepped one row vertically and E + 2 positions horizontally. Lines 1500 and
4100 to 4610 set the speed and the starting positions for the animation. Lines
2000 through 2070 perform the actual animation.

Shot Animation

After each step of Tie animation, the shot animation sequence is tested. If
the shot sequence is not active (S =1 in line 2100), the program is returned
for another Tie animation step. If the shot sequence is already active,
(S =2), the shot () is stepped upward two rows vertically (lines 2140-2160).
Subroutine 8000 tests for a hit. A hit is sensed on two rows—the row where
the shot (1) is printed and the row directly below.

67

Line
Number
990

1010

1480

1500
2000-2040
2050-2070
2100

2105

2110
2115-2135
2140
4100-4110
4200-4210
4300-4310
4400-4410
4500-4510
4600-4610
4700-4750
8000
8020-8090
9000-9020
9050-9060
9065
9066-9070

Function

initialize game

initialize animation sequence

test for game end

initialize Tie animation coordinates
animate Tie fighter

test for Tie animation stop—count escapes
test for active cannon shot animation
test for new cannon shot

return to Tie animation if cannon shot is inactive
initiate new shot

animate cannon shot

initialize route 1

initialize route 2

initialize route 3

initialize route 4

initialize route 5

initialize route 6

Tie animation stop coordinates

test for hit

blowup tie fighter

delays

draw cannon

count misses

print score

Table 1. Line functions

68

games

Variable
A

NEHONWZORT T IHEOW

N=<Xg<an

Functions

Tie Route
A =1 upper right to lower left
A =2 lower left to upper right
A =3 lower right to upper left
A =4 upper left to lower right
A =5 horizontal—right to left
A = 6 horizontal—left to right

Tie start position

Tie stop position

Tie speed

speed steps

hit? (0 = no:1 = yes)

count shots left

count Tie escapes

count misses

count hits

yes/no questions

FOR-NEXT loops

print position—title and instructions

cannon shot print position

shot animation status
S =1 inactive
S =2 active

title X coordinates

title Y coordinates

determine yes/no answer

FOR-NEXT loops

FOR-NEXT loops

yes/no questions

FOR-NEXT loops

Table 2. Variables list

Tie Animation Speed Equalization

The purpose of lines 2005 and 2007 may not be readily apparent. After a
step of Tie animation, the program tests for an active or inactive shot anima-
tion sequence. If the shot status is inactive, the program returns for another
Tie animation step. However, if the shot status is active, the program goes
through a number of additional steps (animating the shot) before another
Tie animation step. The additional shot animating program steps add a little
time delay between Tie animation steps. Without lines 2005 and 2007, the
apparent speed of the Tie fighter would slow down very noticeably when the
cannon is fired. A small time delay is added to the Tie animation sequence
when the shot status is inactive.

69

games

Program Listing 1. Tie Attack. This listing was originally in Level I and was converted to Level
1. To use in Level 1, change line 2105 to read: IFPOINT(60,42) = 0THEN2115 and abbreviate
the program as indicated in Appendix A.

5 CLS :
N = 8.01:
Y = 1.,1:
A$ = "y-0-("
168 0 = 186:
FOR X = 1 TO 10:

PRINT @Q,AS$
185 GOSUB 9885
11¢ PRINT €Q," "
115 Q = Q + 59:
NEXT X
120 GOSUB 991P
125 Q = 448:
FOR X = 1 TO 19:
PRINT @Q,A$
136 GOSUB 9485
135 IF Q = 475
THEN
155
148 PRINT @Q," "
145 Q = Q + 3:
NEXT X
158 GOTO 168
155 PRINT @474,"TIE ";:
GOTO 145
160 Q = 128:
FOR X = 1 TO 18:
PRINT @Q,AS$;
165 GOSUB 9000
1786 IF Q = 478
THEN
190
175 PRINT @Q," "
176 IF Q > 479
THEN
178
177 GOTO 188
178 Q = Q + 5:
NEXT X
179 IF Q > 565
THEN
185
188 Q = Q + 78:
NEXT X
185 GOTO 288
198 PRINT @Q,"ATTACK":

GOTO 180
208 Q = 384:

T = 48:

U =19
285 GOSUB 500
218 Q = 512:

T

= 48:

U= 24
215 GOSUB 5688
220 FOR X = 19 TO 24
225 SET(48,X):

SET(49,X):

SET(74,X):

SET(75,X)
230 NEXT X
235 GOSUB 9428
240 CLS

70

245
258

255

260
265
270

275

585
518
515

520
525
534
535

540
600
605
610
615
620
700
765
718
715
720
725
738
735

740
745
7508
755
768
765
718
715
7860
785
7960
795
800
810

99¢

995
1600

1019

PRINT
INPUT
IF V =
THEN
275
IF V =
THEN
270
GOSUB
GOTO 2
vV =1,
CLS :
GOTC 9
CLS
GOTO 7
FOR X
PRINT
GOSUB
PRINT
IF (X
THEN
539
GOSUB
GOTO
GOSUB
Q=20

games

@8448,"DO YOU NEED INSTRUCTIONS~1=YES/@=NO";:
v
1

[}

9090
45
1:

208

21’
=1 TO l4:

@Q,AS;

9085

eg," “;

>=17) * {X < = 11)

9685
535

600
+ 4:

NEXT X

RETURN
FOR P
SET(P

=T T0T+ 5

1U)

NEXT P
T=T+5

RETURN
PRINT
PRINT
GOSUB
PRINT
GOSUB
GOSUB
GOSUB
PRINT
GOSUB
PRINT
GOSUB
PRINT
GOSUB
PRINT
PRINT
GOSUB
PRINT
GOSUB
PRINT
GOSUB
GOSUB
GOSUB
vV =1.
GOTO 9
CLS :

0
0z
g:
'K
]
GOSUB
PRINT

R nRHHI

WWREHQR

"YOU ARE AN ARTILLERY CAPTAIN"

"COMMANDING AN ANTI~NEUTRON CANNON"

9010

"YOUR OUTPOST IS BEING BUZZED BY A HORDE OF TIE FIGHTERS"
9010

810¢

9610

"YOUR MISSION==-=";:

9910

"DESTROY AS MANY TIE FIGHTERS AS POSSIBLE"
90920

"YOUR CANNON IS FIRED BY PRESSING THE CLEARR KEY"
9920

"THERE ARE ONLY 25 ANTI-NEUTRON CANNON SHELLS"
"LEFT IN YOUR ARMORY"

9020

"FIRE YOUR CANNON CAREFULLY"

9920

"MAKE EVERY SHOT COUNT"

9910

9020

9¢ 20

1:

209

25:

Program continued

71

1488

1490
1500
2080
20085

2087
2018

2020
2030
2040
2859

2055
2069

2065
2078
2100
2185
2110
2115
2120
2125
2138
2135
2140
2142
2145

2150
2155

2160
2165
4100
4118

4200
4210

4308
4310

4400
4410

games

9100
GOSUB 9610
ON A GOSUB 4100,4200,43080,4400,4500,4600
PRINT @B,AS;
IF 8§ =2
THEN
2010
GOSUB 9885
PRINT @B," T
B=B+F
ON A GOTO 20659 ,2060,2060,2050,2060,20850
PRINT @B,AS;
GOTO 2100
IF B> C
THEN
2870
GOTO 2838
IF BLC
THEN
2070
GOTO 2839
Jd=J+ 1:
GOTO 1088
IF 8§ =2
THEN
2140
IF INKEYS = CHR$(31) GOTO 2115
GOTO 20080
GOSUB 96858
R = B862:
S 2:
I I-1
PRINT @R,"[";:
GOSUB 86808
IF H =1
THEN
1000
GOTO 2008
PRINT @R," ";:
R =R - 128
IF R < 158
THEN
2165
PRINT @R,"[";
GOSUB 8800
IF H =1
THEN
1600
GOTO 2000
S = 1l:
GOTO 2080
ON E GOSUB 4709,4700,4700,471¢
B = 186:
F = 62 ~ E3
RETURN
ON E GOSUB 4738,4738,4738,4740
832
(-
URN
E GOSUB 473#,4730,4730,4748
890:
(-~ 1) * (66 + E):

[

1) * (62 - E):

=i
=R

g]
=
=]

]
=

E GOSUB 4700 ,4700,4708,4710
128:
66 + E:

MU EEOXmw

72

4500
4519
4600
4610
47008
4718
4738
47409
4750
8000

8010
8020

80390
86831

8032
8033

8034
8048
8645
86850

8055
8060

8065
8078
80875

8088
8090

8168
8165

8110
8115
8120
8125

9600

9065

90810

games

RETURN
B = 314 + 64 * RND(7):
[B - 57
(E +2) * (-~ 1):
URN
256 + 64 * RND(7):
(¢ B + 57
F E + 2:
RETURN
C = 889:
RETURN
C = 768:
RETURN
C = 128:
RETURN
C = 256:
RETURN
C = 328:
RETURN

P
RE
B

[I

[

IF (B<=R) * (B>=R~4) 4+ (B < =R+ 64) * (B >

+ 69)
THEN
8829

RETURN

H = 1:

L=L+1

PRINT @R," ";

FOR P = 1 TO 3:
PRINT @B, "I=*=1";
GOSUB 9465
PRINT €B," b
GOSUB 9005
NEXT P

PRINT @B

PRINT @B

PRINT @B 64,"0";

PRINT @B 68, "-";:

PRINT @B + 7,"<";

GOSUB 9885

GOSUB 8698

PRINT @B -~ 11,"-";:

PRINT @B ~ 138,">";:

PRINT @B - 128,"0";

PRINT @B -~ 121,"-";:

PRINT @B + 14,"<";

GOSUB 96085

GOSUB 88949

RETURN

PRINT @B ~ 2@4," ":

PRINT :

PRINT :

RETURN

Q = 328

FOR X = 1 TO 9:
PRINT @Q," "
Q=0Q + 6:
PRINT @Q,AS
GOSUB 9669
NEXT X

PRINT @Q,"]
GOTO 730

FOR Z = 1 TO 200:
NEXT 2:

RETURN

FOR Z = 1 TO 25:
NEXT 2Z:

RETURN

FOR X = 1 TO 10006:
NEXT X:

n_w,,
3,"-";:

79,%5%;:

R

Program continued

73

9020

96858

9060

9865
9066
9867
9968
9069
9078
9140

9165

9166

911e

9208
9205
9210

9215
9220

9225

9230

9235
9240
9245
9258

9255
9256
9257
9260
9265
9270
9275
9280
9285

games

RETURN
FOR X = 1 TO 2000:
NEXT X:
RETURN
FOR X = 42 TO 44:
SET(60,X):
SET(61,X):
NEXT X
SET(59,44):
SET(62,44)
K=25~-1I=-1L
PRINT @8,°"SHOTS LEFT";I;
PRINT @72,"MISSES";K;
PRINT @27,"TIE FIGHTERS DESTROYED®;L;
PRINT @91,"TIE FIGHTERS ESCAPED";J;
RETURN
PRINT @448,"D0O YOU WANT TO PLAY AGAIN-1=YES/@#=NO";:
INPUT V
IFPV =1
THEN
Vv =1,1:
GOTO 92048
IFV =20
THEN
V= ,081:
GOTO 9200
GOSUB 9088:
GOTO 9148
Q = 448
CLS
FOR X = 1 TO 18:
PRINT @Q,A$
GOSUB 9885
IF (X = 4) * (V = Y)
TBEN
9260
IF (X = 5) * (V=17Y)
THEN
9278
IF (X = 5) *# (V = N)
THEN
9280
PRINT @Q," "
Q=0+6
NEXT X
IF V=1,1
THEN
994
GOTO 9255
GOSUB 9020
GOTO 9960
PRINT €Q," GOOD"
GOTO 9249
PRINT @Q,"LUCK!"
GOTO 9248
PRINT €Q,"BYE "
GOTO 9240

74

GRAPHICS

Worksheet
Curve Plotter

75

GRAPHICS

Worksheet

by Dan Rollins

here are three levels for working with graphics on the TRS-80. First,
the SET and RESET commands offer a lot of flexibility, but can take
forever to execute. Typing 10 or 20 lines of these commands is not my idea of
fun. Next we have the POKE command. Individual graphics bytes may be
read from DATA or included in program lines. POKEing these into screen
memory is much faster, but flexibility is lost. Appendix C of the user’s
manual must be consulted to identify each of the chosen characters.
Finally, the preferred method is string packing, or as some call it, “fast
graphics.” This method uses strings which are built from those same TRS-80
graphic characters, with the possible inclusion of control codes such as
CHRS$ 24-27. These codes allow positioning of the cursor from within the
string itself. The advantage to using this method is that the concatenated
string may be placed anywhere on the screen with a simple PRINT @ com-
mand. It is also the fastest way to recall a complex figure which has a height
of more than one line. With a little creative programming, you can achieve
some fantastic visual effects! Example 1 might give you a few ideas. All of
these examples were created using WRKSHEET. The printout is from my
IDS 440 Paper Tiger.

POHVO

-I'

l[234eToPl A

Example 1. Graphics ideas

Traditionally, string packing is a tedious process. The would-be artist
draws the desired figure on a Video Display Worksheet and, manual in
hand, decodes individual bytes to be included in the string. These bytes and
the necessary control codes are typed into DATA lines where they may be
read and POKEd into a dummy string waiting on a program line. Finally,
the DATA lines and POKE code are deleted, yielding the object of the whole
process, a single line defining a string literal.

77

graphics

The TRS-80 can handle these mundane matters. WRKSHEET (Program
Listing 1) handles all the messy work described above, with similar results,
but the output is in a different form. Disk users end up with a sequential file
for MERGEing with another program. Tape 1/O is in the form of single-
line, CLOADable program modules.

G &d BB

Example 2. Intelligent LIFE forms
How it Works

The doodle routine in lines 5000-5120 gives the user full control of a one-
pixel cursor for creating the final design. It features repeat- and multiple-
key action. In other words, holding down an arrow keeps the dot moving.
Holding down vertical and horizontal arrows simultaneously causes motion
along a diagonal. An important feature is the traverse function. While the
spacebar is pressed, the cursor moves without changing the screen. Shifted
arrows erase along the path of motion. Finally, the CLEAR key clears the
screen with the CHR$ (128) character (this is necessary in some cases), and

ENTER exits the doodle routine, sending control to the main program.

A few more notes on the doodle routine. The cursor is constantly flashing
(line 5020), and moving off the screen returns you to the opposite side (lines
5080 and 5090). The logical variable is used in many of these functions to
keep it concise. If it doesn’t make any sense, just remember that the expres-
sions enclosed in parentheses are evaluated as either —1 (true) or 0 (false).
The current X, Y coordinates and the line and column number are printed on
the top line. This is useful as an aid in transferring from a paper worksheet
and will otherwise come in handy in some applications. For example,
animation will require that placement of each frame be in the same position
relative to screen line boundaries. If you are defining the alphabet as a set of
billboard-sized characters, you’ll want each to have the same height and
width. Omit line 5025 if it's not needed, as it slows execution. I also suggest
eliminating the remarks and using multiple-statement lines where possible.

The first section of the main program looks at the screen one line at a time.
If it encounters a graphics byte, it saves the position in the integer array,

78

graphics

A(X), and builds a temporary string (T$) of the rest of the line. When it
reaches the end of the line, it counts backward until it finds a graphics
character, truncating T$ so it includes only the minimum number of bytes.
This is saved as an element of the A$ array which corresponds to the current
line. The algorithm is repeated until the end of the screen is reached.

The next section processes the data just gathered. B$ is compiled from two
components: (1) the graphics bytes in the A$ array and (2) the control codes
required to reproduce the original image. This section also checks for an
oversized string. I have set the limit at 225 characters, but it could con-
ceivably be longer. That value leaves room for the line number, variable-
name, and other necessities of the output string. Tall thin figures usually
take less space than short wide ones, due to the backspacing requirement. A
diagonal line, stretching from the top of the screen to the bottom, takes
about 100 bytes of string space. An important facet of WRKSHEET is the
edit feature. Should a string grow too long, it may be shortened or altered.
The edit routine prints as much of the string as it was able to compile and
jumps back to the doodle routine. Before saving the string, lines 8300-8360
provide for a review of the design. It may also do much to explain how
WRKSHEET works. Follow the cursor as it spirals down a diagonal line if
you want a real visual treat!

Lines 8520-8650 provide for disk output. Lines 9000-9190 are for Level I1
tape I/O. Either section may be omitted to suit your system. Both versions
prompt for a line number which may range from 1 to 65529. Note that each
ends with a COMPILE ANOTHER STRING (Y/N) query. A negative
answer results in fall-through to program end, otherwise execution loops
back to the doodle routine and starts over.

The disk section prompts for a variable name. LINEINPUT is very handy
here as it allows for names such as GR$(1,9). If you intend to include a
DEFSTR command in your target program, the dollar sign ($) will not be
necessary. This prompt should be carefully considered, as EDIT won't be of
any help later on. The EDIT mode thinks the graphic bytes are command
codes and converts them to such after editing the line. You should never edit
a line with graphics in a stringl (LIST has the same delusion, but it is
harmless.) You'll be asked for a filename in line 8520. Reply in standard
TRSDOS format: filename /extension. password:drive#. I like to use the ex-
tension / GFX, though it may as well be /BAS or /TXT. The file created may
be merged, loaded, and treated as a BASIC program. Notice that the line is
executed only once.

Level II Tape

As a one-year veteran of Level II, my suggestion is to sell your car and buy
a disk drive. Walking to work will be worth it. I can’t imagine writing and

79

graphics

debugging a complex program without the NEWDOS shorthands for LIST,
EDIT, and the RENUM command.

The output routine employs a number of POKE gimmicks that will be of
interest to the tape-bound hacker. My goal was to create a CLOADable file
from the packed graphics string. Such a file could be appended to another
program with a few POKEs from direct mode. I believe, however, that
youll probably want to use the program in Program Listing 2 for
multiple mergings.

Firsta word about BASIC file format. Briefly, each line of Level I1 BASIC
requires a Next Line Pointer (NLP), a line number, the program data, and
an end of line marker of one byte of 00. The final line requires an end of pro-
gram marker of three bytes of 00. The first program line is pointed to by the
two-byte word at 16548,9. The last byte of program text may be located by
subtracting two from the pointer at 16633,4. A CSAVE operation starts by
sending a batch of zeros, a sync-byte, and the BASIC program header to the
cassette. CSAVE then reads the bytes beginning at the address pointed to by
the start-of-BASIC pointer, recording (verbatim) anything encountered up
to the address held by the end-of-program pointer. CLLOAD reads bytes un-
til three zeros are encountered. It then adjusts the NLPs to jibe with the
start-of-BASIC pointer, prints READY, and jumps to command mode.

After some reflection, you might realize that a CSAVE operation is not
limited to BASIC text. Anything in memory may be sent to cassette. Just
POKE the pointers with new values, type CSAVE“A” and watch the tape
spin! But when including such instructions within a program, there’s a
catch. The pointer for the end of BASIC is also the spot where ROM looks to
find where it’s currently saving its list of simple variables. This one really
stumped me for a while. BASIC evaluates LSB and POKE:s it in, but by do-
ing so, it changes the variables list pointer. When BASIC tries to execute the
second POKE, it can’t find it. Nobody likes to have furniture moved without
a little warning! It may sound easy now, but the solution lies in using
subscripted, or array variables. A different pointer keeps track of these
variables.

Give B$ any value and send it to the output routine at line 9000. You’ll
wind up with a one-line program saved on tape. This simply defines a string
literal on a line number of your choice. The difference between this and a
data tape is that it may be CLOADed alone or appended to another pro-
gram. Using the VARPTR of B$ as a reference, lines 9110-9130 calculate
temporary values for the start and end of BASIC. It is very important to
avoid any changes to 9100-9160. For example, don’t change the program to
CSAVE with a variable file name. This will affect the storage location for
B$. Other changes can be equally disastrous. For a brief moment your
BASIC interpreter has been tricked into believing that there is only one line
of codein its memory. To show how thin the ice is, consider that the pro-

80

graphics

gram is actually executing text that it isn’t aware of! Mind the advice on line
9099, or become acquainted with the MEMORY SIZE prompt. After
CSAVE“A” is issued, the pointers are immediately restored and execution
either ends or branches to the doodle routine.

New Commands

After CSAVEing a tapeful of packed graphics, you’ll want to include
them in any of a number of display-oriented programs. Program Listing 2
POKEs a short machine-language routine into low memory to make the ap-
pending process considerably easier. No memory size need be saved as the
code is written over your L3 ERROR jump vectors. One major advantage to
this is simplicity of operation. To hide whatever BASIC text is in memory,
just type PUT. Now a second program may be CLOADed, NEWed,
EDITed, typed in, or executed with total disregard to the first. Another
unused Disk BASIC command, GET, is used to restore the original or com-
bined program. Furthermore, once in memory, these commands are avail-
able till powerdown or a jump to address 0 (e.g.: SYSTEM ENTER *?
/0 ENTER).

The disadvantage of using the L3 ERROR jump-off area for program
storage is that you might commit an 1.3 ERROR. However, in my experi-
ence with Level II, I never once received that message unintentionally. In
fact, most of the keywords need to be in the right syntax for ROM to get even
that far. Make your own choice (Program Listing 3 gives an alternative), but if
you choose the L3 method, avoid typing CLOSE, LOAD, NAME, or KILL.

One note on appending program modules: Radio Shack’s RENUM may be
protected in high memory and used to straighten out line numbers. Line
numbers must be in ascending sequence for the LIST and RUN processors,
but they don’t need to start out that way. Use the default values by typing
ENTER three times in response to the prompts. This renumbers everything,
starting with the first line and incrementing by 10 to the last line. Problems
occur only when both modules of the merged program make reference to the
same line number. Avoid this by first renumbering the base program with
unlikely or even very high values. Type PUT, CLOAD the appendage, type
GET, and renumber with default values.

For disk users, load your base program. Type MERGE“filename”. The
combined program can’t be SAVEd in the ASCII format, as graphics bytes
will be translated to their equivalent keywords.

Further WRKSHEET Information

Program logic requires that the design be drawn as one contiguous figure.
A completely blank line is the cue to exit the compiler. Some trickery will

81

graphics

allow blank Y-coordinate lines if they don’t span an entire screen line. The
processing time to compile a string is about 40 seconds, depending on the size
and shape of the design.

All REMarks may be omitted. These have no effect on program logic. If
you can think of any reason to do so, the PUT and GET commands of Pro-
gram Listing 2 may be executed from a program line. Coincidentally,
MERGE does the same as GET. This was not planned. It just happens that
the entry point of MERGE is at a convenient address.

Ideas

The tape routine may be of greater significance than is immediately ob-
vious; TRS-80 BASIC Computer Games includes a program called Animal
(or Name My Animal). The program is tiny, but the concept is enormous. As
you play the game, the program becomes more and more “intelligent.” It
builds a library of questions and responses which narrow the category, final-
ly making a guess when it’s down to one animal. Unfortunately, it starts out
“dumb” on the next RUN. A creative programmer could modify the tape
routine in WRKSHEET to create DATA lines instead of graphics strings.
After some time working with Animal, the data array could be dumped to
tape and appended to the program, effectively increasing its intelligence on
each RUN.

Many data base management programs must read a master file from tape
before updating any accounts. If this file is relatively permanent, why not
include the values on DATA lines, saving scads of time and effort? Changes
could be made with EDIT mode, and the verify (CLOAD?) option would
also be helpful.

Suggested Improvements

Many times a single string just isn’t long enough to hold the desired image.
Include code to continue compilation on a second string. Just pass B$ to B1$,
for example, and resume the loop. All the characters are preserved in the A$
array. A prompt would be needed for a second line number and variable
name in the save routine. Alphanumeric data could be included in the
string. Perhaps you could test for <SSPACEBAR> <CLEAR> (K = 130) in
the doodle routine, then GOSUB to an INKEY$ routine. As written,
WRKSHEET compiles characters with a value greater than 128 (lines 8050
and 8110). Change this to 32 and replace GOSUB 6000 with CLS.

Lines 40-4998 are left open for a purpose. Here you may MERGE or type
in code to create designs from other sources. Example: Graph a circular
SINE function using the SET command. Then jump to 5000, edit in a smile
and two eyes. Save the result and repeat the action, this time with one eye
winking. Get the picture?

82

graphics

Program Listing 1. Worksheet

* PROGRAM ID : WRKSHEET/BAS
* AUTHOR
DAN ROLLINS
* DATE : 11/10/80
21 %
* PROGRAM ABSTRACT
THIS PROGRAM AIDS IN THE CREATION OF "FAST-GRAPHICS"
STRINGS. THE USER DRAWS A DESIGN ON THE SCREEN USING
THE ARROW KEYS, THE SCREEN IS THEN PEEKED AND A
3 ' STRING VARIABLE IS COMPILED FROM THE RESULTING GRAPHICS
BYTES. THE PROGRAM INCLUDES OPTIONS FOR SAVING IT AS A
PROGRAM LINE, USING EITHER DISK OR TAPE IO,
10 CLEAR 2008 :DEFINT X-Z :DIM AS(16),A(15)
3¢ GOSUB 6888 :GOTO 50800
4999 ' ALL-PURPOSE DOODLE ROUTINE
KAXkkkhkkkhhkhrhkhhkkhkrkkd
5008 X=60:Y=20
5920 IF POINT(X,Y),RESET(X,¥):FOR T=1TO1@:NEXT:SET(X,Y)

5038
5040
5050

5060
5078
50889
5098
5100

5118

5120
5130

5999
6080

7999

8008
8010
8020
8030
8040
8658
8068
8070
8080
8692
8100
8l1e
8128
8130
8140
8199

8204
8210
8220

ELSE SET(X,Y) :FOR T=1TOLl@:NEXT:RESET(X,Y)
5025 PRINT@O,"X=";X;" ¥=";¥Y;" LINE #=";INT(Y/3);
" COLUMN #=";INT(X/2);

K=PEEK(14400)

IF K=1 THEN 8000'
IF K=2 GOSUB 6000:G0T05008'

X=X+(X>127) *127-(X<8) *127"

* <ENTER> TO SAVE STRING
* <CLEAR> TO CLEAR-

* SCREEN WITH GRAPHICS
Y=Y+ ((KAND8) =8)~((KAND16) =16} * * UP,DOWN ARROWS
X=X+((KAND32)=32)~((KAND64)=64)' * LEFT,RIGHT ARROWS

Y=Y+ (Y>47) *47-(Y<B) *47
THEN 50208' * <SPACEBAR>+<ARROW>

IF {KAND128)=128

it

IF PEEK(14464)THEN RESET(X,Y)

* SCREEN WRAP-AROUND

TRAVERSE W/0 CHANGE

ELSE SET(X,Y)' * (SHIFT>+<ARROW>
= ERASE DOT

GOTO 5828° * GET NEXT INPUT

ThhkhkRRAIRKRAKRAK KR KKKk

' * CLEAR THE SCREEN WITH GRAPHICS BYTES

FOR J=@ TO 14 :PRINT STRINGS$(64,128);
:NEXT :PRINT STRINGS$(63,128);:POKE 16383,128

:RETURN

' * SEARCH THE SCREEN FOR GRAPHICS CHARACTERS

* ARRAY AS$(X) HOLDS ANY SUCH CHARACTERS ON LINE X

* ARRAY A(X) HOLDS THE POSITION OF THE FIRST CHARACTER
PRINT @@ ,"****x* COMPILING GRAPHICS STRING ***%xU;

FOR X=8 TO 15

T$="" :FIRST =-1 :A$(X)="" :A(X)=0

FOR Y=8 TO 63

Z=PEEK(15360+X*64+Y}

IF 2<129 AND FIRST=~1 GOTO 8088
IF FIRST =~1 LET FIRST=Y
T$=T$+CHR$(2)

NEXT Y

IF FIRST=-1 THEN 81440

LAST=63

IF PEEK(15368+X*64+LAST) <129THEN LAST=LAST-1:GOTO 8118

AS$(X) =LEFT$(T$,LAST~FIRST+1)

IF FP<>1 THEN SP= 64*X+A(X) :FP=1"'

NEXT X :Fp=0'

' * BUILD BS FROM ARRAY AS(X)
* INSERT DOWN-FEEDS AND BACK-SPACES AS NEEDED
*

Bg=1"
FOR X=0 TO 15
L=LEN(A$ (X))

:L1=LEN(AS$(X+1))

tA(X)=

FIRST
* SP SAVES KEY POS,
* FOR EDIT ROUTINE

Program continued

83

8230
8248

8258
8260

8278
8280
8299

8300
8310
8320
8330
8340
8350
8360
8370
8389

8399

8400

8410
8420
8439
8499

8588
8510
8519

8528

8530
8549
855¢@

8560
8578

8580
8608
8610
8620
8630
8640
8650
8999

9000
9018
9p28
5830

graphics

IF L=0 THEN 8294'
* SKIP IF BLANK LINE
IF LEN(BS$)+L>225 GOTOC B468

ELSE BS$=B§+AS(X)' * ADD SAVED CHARACTERS
IF Ll1=@ THEN X=16 :GOTO B298@ * EXIT IF LAST LINE
LAST=A(X) +L:BACK=LAST~A(X+1}"' * CALCULATE NUMBER

OF BACK-FEEDS NEEDED
IF LEN(BS)+BACK>225 GOTO 8400
B$=B$+CHRS$ (26) +STRINGS (BACK, 24) '* ADD DOWN,BACK FEEDS
NEXT X
CLS: PRINT
¢ PRINT" GRAPHICS STRING IS * ";LEN(BS$);" * BYTES LONG"
INPUT " DO YOU WANT TO REVIEW THE STRING (Y/N)";Q$
IF Q$="N" GOTO 8588
CLS: PRINTE SP,CHRS(14);' * CURSOR PN
FOR X=1 TO LEN(BS)
PRINT MIDS$(BS,X,1);
FOR T=1 TO 75 :NEXT' * SHOW BIZ
NEXT X :PRINT @@,;
INPUT" EDIT OR SAVE STRING (REFLY E OR S)";Q$
IF Q$<>"E" GOTO 8580
ELSE GOTO 8439
o

* QVERSIZE STRING IS NOT LOST
* IT MAY BE EDITTED HERE
PRINT :PRINT " STRING TOO LONG
** COMPILATION ABORTED **

INPUT"RESTART PROGRAM OR EDIT STRING (REPLY R OR E)";Q1$
IF Q18="R" GOTO 38

GOSUB 6600:PRINT@ SP,B$; :GOTO 5088@' * BACK TO DOODLE
ok

* STRING IS5 SAVED IN B$, READY FOR FINAL PROCESSING
*

CLS :INPUT"OUTPUT TO TAPE OR DISK (REPLY T OR D)}";Ql$
IF Q1$="T" THEN 9608 ELSE IF Q13<>"D" THEN 8500

T kkkkkhhkhkhhhhhdhhhkhkkhhhhhhhhhhgh

* THIS SECTION CREATES A *
* SEQUENTIAL OUTPUT FILE *
* TO DISK *

hhkkkkhhkkkdhhdhhkrkkhhhhhkhkhkkhhkhhkhk

IF OP<>)1 THEN LINEINPUT"FILESPEC FOR OUTPUT ";FS$
: OPEN"O",1,FS$
: OP = 1
INPUT"DESIRED LINE NUMBER FOR GRAPHICS STRING";LN
IF LN<1 OR LN>65529 OR INT(LN)<> LN GOTO 8538
LINEINPUT"DESIRED NAME FOR STRING VARIABLE
(EXAMPLE :A$) ";VNS$
C$=STRS(LN) +" "+VNS$+"="+CHRS (34)
: 1P LEN(CS$)+LEN(BS) > 238 GOTO 8400
PRINT:PRINT C$;"....5TRING....";CHRS$(34) :PRINT
:INPUT "IS THIS FORMAT CORRECT (Y/N)";Q2$
IF Q28<>"Y" THEN 8538
B$=CS$+BS+CHRS(34) +CHRS(13) ' * ADD QUOTE, <CR>
PRINT#1,BS$
INPUT"COMPILE ANOTHER STRING (Y/N)*"; 03$
IF Q3S$<> "N" THEN 30
CLOSE 1
END
Ik khkdk kA AR khhRkd ko hhhkhhkdhdhk
* THIS SECTION IS FOR LEVEL II, *
* A ONE - LINE BASIC PROGRAM IS *
* CREATED IN BS. IT IS USED AS *
* A CSAVE FILE *
khkdkhhkhhhkkhhkhkhhhhhbhhhhhkhhhhhhik
INPUT"NUMBER OF LINE TO HOLD GRAPHICS STRING";LN
IF LN<1 OR LN>65528 OR LN<> INT(LN} GOTO 9889
INPUT"NAME FOR THE STRING VARIABLE (EXAMPLE: AS)";VNS$
PRINT : PRINT LN;" ";VNG;"="
;CHRS(34);"....STRING,...";CHRS(34)

84

9040
9050
9060
9870
90679

9080
909¢
9699

graphics

PRINT :; INPUT"IS THIS FORMAT CORRECT (Y/N)";Q3$
IF Q3% <>"Y" THEN 9008

PRINT :INPUT"READY CASSETTE ..,. HIT <ENTER>";QA
N2=INT(LN/256) :N1=LN - N2 * 256

' C$ IS COMPRISED OF 2 "DUMMY" BYTES

* FOR THE NLP, THE HEX VALUES FOR THE

* LINE NUMBER, THE STRING NAME, THE BASIC

* TOKEN FOR "=", AND A QUOTE MARK

*

*

C5="#8"+ CHRS(N1)+ CHRS$(N2)+ VNS$+ CHRS$(213)+ CHRS(34)
IF LEN(BS)+ LEN(CS) > 246 GOTO 8508
Thhhkkhhkhhkhhhhkhrhhrhhkhkk
* VARIABLE ALLOCATION *
* INHIBITION ZONE *

* *

9100
*

9114

91240
9139
9140
9150
9159

9160

B$=CS$+B$+CHRS (34) +STRINGS(3,0) "
ADD CLOSE QUOTE AND
END—-O-PROGRAM MARKER

V=VARPTR(BS) :A(1l)=PEEK(V+l)
sA(2)=PEEK(V+2)' * CALCULATE START ,
T=A(1)+A(2)*256 + LEN(BS$)' * END OF STRING

A(4)=INT(T/256) :A(3)=T-A(4)*256
A(5)=PEEK(16548) :A(6)=PEEK(16549)'* SAVE TRUE
A(7)=PEEK(16633) :A(8)=PEEK(16634)'* POINTERS
' * ADJUST THE START-0-~BASIC AND

* END-O-BASIC POINTERS TO THE START

* AND END OF B$ WHICH IS IN HIGH MEMORY

* CSAVE THE LINE AND RESTORE THE POINTERS.

*

POKE 16548,A(1) :POKE 16549,A(2)

:POKE 16633,A(3) :POKE 16634 ,A(4)
:CSAVE "a"
:POKE 16548,A(5) :POKE 16549,A(6)

9169

:POKE 16633 ,A(7) :POKE 16634,A(8)
*

1%

* END INHIBIT ZONE *
Ehhhhkhhhhhhhhhkhkhhhhhkk

9176 PRINT :INPUT"COMPILE ANOTHER STRING (Y/N)";038
9186 IF Q3$<>"N" GOTO 38
9190 END
Program Listing 2

1:

' *THIS PROGRAM ADDS 2 COMMANDS TO YOUR
2

' *LEVEL II BASIC DICTIONARY, PUT AND GET.
3 :

1 %
4 :

' *PUT WILL "HIDE" ANY BASIC TEXT IN MEMORY.
5 3

' *PROGRAMS MMAY THEN BE CLOADED, LISTED, & EXECUTED.
6

LIS 3
7

' *GET RESTORES THE COMBINED PROGRAMS.
8 :

' *LINE NUMBERS SHOULD BE IN ASCENDING ORDER.
18 X = 16768
20 READ Y:

IF Y = - 1 GOTO 40
38 POKE X,Y:

X=X 4+ 1:

85

Program continued

graphics

GOTO 28
48 sTOP
50 DATA 141,65,217,42,249,64,43,43,34,164
60 DATA 64,217,201,217,33,233,66,24,245,-1

Program Listing 3
8 REM CLOAD MODULE 1, THEN, AT READY, TYPE
1 REM >X=16633:Y=16548:%=PEEK(X) :L=(2<2) :POKE Y+1,PEEK(X+l)+L:POK
E Y,2-2-L*256 <ENTER>
2 REM
3 REM NOW CLOAD MODULE 2
4 REM AND TYPE
5

REM >POKE 16548,233: POKE 16549,66 <ENTER>

86

GRAPHICS

Curve Plotter

by David R. Cecil

ow would you like to use the computer to create string art type figures?
Or how about a constantly changing display of curves to fascinate and
delight the kids on the block?

Here are six simple programs for screen displays. The names and equa-
tions of several exotic looking curves are included. The curves are in polar
form, parametric equations, and in circles or lines. A scale factor must be in-
put to determine the figure size (some suggested scale factors are included
for experimentation).

The programs are written for the TRS-80’s display area of 128 by 48. The
origin of the curves is near the center of the screen (at 65, 23), the x-axis i$
horizontal, and the y-axis is vertical (the two axes are not displayed). To
simplify the programs and allow the visible creation of the curves as the
angle parameter changes, BASIC has been used for the curve generation in-
stead of assembly language.

Polar Curves

The polar coordinate curves are plotted as if the screen were a sheet of
polar coordinate paper with the pole at the center and the polar axis
horizontal.

Program Listing 1 is to be used for curve equations, in polar form, with
bounded extent. Enter the program and type RUN. When the input prompt,
?, appears, use 10, and then 2 for the second input prompt. A four-leaved
rose (rhodonea) is sketched. To terminate the display, press the BREAK key.
To obtain rhodonea with different numbers of leaves, try the following
choices for the scale factor S and the constant A.

Be sure to use the BREAK key for every new curve, Note that the larger
the S, the larger the figure; note also that when A is an integer, there are A
leaves for A odd, but 2A leaves for A even. For non-integer A, the leaves
overlap considerably and the figure appears incomplete. To complete the
figure, a larger number than 2+PI in line 50 is needed (try 4+PI or some other
multiple of 2+PI).

Now use R =1+ A*COS(I) for line 60. If A=1 (and S of perhaps 5), the
figure is heart-shaped (a cardioid); if A =2, we have a trisectrix (let S =4);
for A<1, there is one loop, and for A>1, there are two loops. The curves are

87

graphics

called limacons of Pascal.

Here are some other curves created by changing line 60 and by increasing
2+PI to 4+PI in line 50. Freeth’s nephroid has R = 1 + 2+SIN(I/2 + A) for
its equation (try S = 3, A = 10). Folia are given by R =
COS(I)*(A*SIN(I)*2 —1)(try S = 10, A = 3), and the equation for Cayley’s
sexticis R = COS(I/3 + AN3(try S = 11, A = 3 and see where the loop is
located). Changing the constant A in either Freeth’s nephroid or Cayley’s
sextic rotates the figure. Experiment by observing the orientation of the loop
in Cayley’s sextic for the following S, A combinations.

S 10 9 9
A 1.7 24 0

These combinations have bounded values for the parameter I (such as 0 to
2n, or 0 to4m). For interesting figures that have unbounded parameters for I,
use Program Listing 2.

ll'l’.l'
R

l‘lllx l'

Photo 1. A many-leaved rose using Program Listing 1 with S = 8, A = 3.5 and line 50 having 0
TO 4+PI STEP 2+P1/180. (Photograph by William R. Tinsley)

Program Listing 2 creates a hyperbolic spiral (try S = 15, A = 1). A cross
curve has R = AxSQR(1/COS(I)12) + (1/SIN(I)12) for line 50 (try S = 1, A
=3). You can increase the number of plotted points by changing the 60 in
line 20 to 120. A folium of Descartes is plotted if line 50 is R =
A*SIN(I)*COS(I)/(SIN(I)13 + COS(I)*3). This has an interesting shape for S
= 2, A = 5. Many other curves with polar equation forms can be handled
with Program Listings 1 and 2. Some of these curves will be presented in
terms of parametric equations.

88

graphics

Parametric Equation Curves

Program Listing 3 modifies Program Listing 1 to allow parametric equa-
tions. The program is designed to simulate plotting in the Cartesian plane
with usual graph paper.

The parametric equations for the curves are in lines 60 and 70 with the
x-coordinate called X1, the y-coordinate Y1, and the parameter 1.

The equations already listed in lines 50 and 60 represent the roulettes
called hypocycloids and give the curve traced by a point on the cir-

-

s
-
Ve
S
- i
B
5
L

o

% 0
\"‘n
’ ."l 1)

Photo 2. Lissajous figure using Program Listing 3 with S = 11, A = .8, B = 2and C = .9.
(Photograph by William R. Tinsley)

cumference of a circle rolling on the inside of a larger fixed circle. You might
want to start experimenting using the following choices.

S 2 2 3 2.8 3 6
A 5 9 10 7 9 7.2
B 1 2 3 2 3 4.6

Did you notice that if (A - B)/B is an integer, there are A/B cusps (ver-
tices)? Also if A — Bislarger than B and if A — B and B are relatively prime
(no common factors except + 1), you see A cusps in B revolutions? Finally,
did you note that when A and B are not integers, the figure is not completed
symmetrically?

If you would like to see the larger fixed circle, add the following to Pro-

89

graphics

gram Listing 3. Try this with some of the choices for S, A, and B suggested
above.

S52FORJ=1TO 2

54 IF J =1 THEN 60

56 X1 = A/B+COS(])

58 Y1 = A/B+SIN(])

59 GOTO 80

105 NEXT J

Epicycloids are obtained by tracing a point on the circumference of a cir-
cle rolling on the outside of a larger fixed circle. To sketch these you need
only change the + inline60 toa — and change the A/B in lines 56 and 58 to
(A — 2+B)/B. Some interesting patterns are obtained with the following
choices:

S 2 2 1 3
A 5 9 16 9
B 1 2 2 3

Photo 3. Cardioid using Program Listing 4 with a fixed circle size of 9. (Photograph by William R.

Tinsley)

90

graphics

Photo 4. Astroid using Program Listing 5 with A =5. (Photograph by William R. Tinsley)

Epicycloids have (A — 2+B)/B cusps when this number is an integer, and
A — 2+B cusps (lying on the fixed circle) in B revolutions when A - 2+B and
B are relatively prime with A — 2*B>B.

If you delete lines 52 through 59 and line 105 and change lines 60 and 70
to read:

60 X1 = COS()/(1 + SIN(I)12)

70 Y1 =X1+SIN(I)
the resulting figure is called a lemniscate of Bernoulli. A nice sized sketch is
obtained with S = 9. (Note the constants A and B are not used here, but you
caninput A = 1 and B = 1 when asked by the program or delete the last half
of line 30.)

Some very interesting curves, called Lissajous figures or Bowditch curves,
can be obtained using parametric equations. Make the following changes in
Program Listing 3.

30 INPUT “SCALE FACTOR =",
S: INPUT “CONSTANTS
A,B,C":AB,C

50 FOR I=0TO 10«PI STEP
2+P1/90

91

graphics

60 X1=SIN(A+I + B)
70 Y1=CxSIN(I)

Here are some choices you might want to try:

S 12 10 11 12
A 75 4 8 .67
B 0 75 2 2.8
C .8 1 .9 i

String Art on the Computer

Constructing curves with the computer is done in much the same way that
string art figures are made. To illustrate the possibilities let’s construct a car-
dioid (the heart-shaped figure mentioned earlier) and an astroid (a four-
pointed star, or hypocycloid of four cusps).

For the cardioid, begin with a fixed circle C and a fixed point PF (use the
point on the circumference at the extreme left of the circle for PF). Then
choose a number of points (X0,Y0) on C and draw circles with centers at
(X0,Y0) and with radii equal to the distance between PF and (X0,Y0). The
curve generated by these circles is the desired cardioid. Program Listing 4
creates the circles and the cardioid. You might try an A of 8 or 9 for a nice
sized display. If X0 + A in line 110 is changed to X0 — A, the cardioid is
turned 180° since the point PF is now on the extreme right of the circle.

Lines instead of circles will generate the four-pointed astroid star. With x-
and y-axes positioned so the origin is at the center of the screen and a line RS
of fixed length 4+ A, we draw several copies of the line with R always on the
x-axis and S always on the y-axis.

Program Listing 5 allows different choices for A (values between 4 and 7
give nice displays) and draws the RS lines two at a time, one above and one
below the x-axis. The astroid can also be generated using ellipses since the
envelope of the ellipses X = A*COS(I), Y = (1 — A)*SIN(I) is the astroid X
= Y4*(3*COS(I) + COS(3*1)), Y = V4*(3+SIN(I) — SIN(3*I)).

Computer Spirograph

The last program (see Program Listing 6) presents a panorama of
hypocycloids, epicycloids, and rhodonea (roses) generated in random order
and sizes. If the curve suddenly disappears, the random size is too big for the
screen, but don't worry! The curve will reappear in a smaller size.

After each curve is constructed, the values for T, N, and S are displayed
for a short period at the bottom of the screen. If you don’t want these values
shown, delete line 180. If you prefer fewer points drawn, change the step

92

graphics

Photo 5. Random pattern using Program Listing 6. The value of N and S is displayed.
(Photograph by William R. Tinsley)

size in line 70 to 2«P1/90 or 2+P1/60, etc.; more points may be obtained with
9+P1/360. In line 70 the parameter I makes three revolutions (0 to 6m). If
more revolutions are desired, change the 6+PI to 10+PI (or 4+PI for fewer
revolutions), etc.

References

A Book of Curves by E. H. Lockwood, Cambridge University Press, 1961.
A Catalog of Special Plane Curves by J. Dennis Lawrence, Dover Publica-
tions, 1972.

93

graphics

Program Listing 1

1@ ON ERROR GOTO 128
28 PI = 3,14159
38 INPUT "SCALE FACTOR=";S§:
INPUT "CONSTANT=";A
40 CLS
56 FORI = § TO 2 * PI STEP 2 * PI / 180
60 R = COS(A * I):
REM THIS LINE IS CHANGED FOR OTHER POLAR CURVES
786 X =65+ 4.9 * S % R * COS(I)
88 Y =23 - 2,3 ¥ g * R * SIN(I)
98 SET(X,Y)
168 NEXT I
116 GOTO 116
120 RESUME NEXT

Program Listing 2

186 ON ERROR GOTO 138
26 PI = 3.14159:
W =2%PI / 68:
I =
3¢ INPUT "SCALE=";S:
INPUT "CONSTANT=";A
49 CLS
56 R =A/ I:
REM THIS LINE IS CHANGED FOR OTHER POLAR CURVES
66 FORJ = 1 TO 2.1:
I

78 X =65 + 4.9
86 Y =23 - 2.3
98 SET(X,Y)

160 NEXT J

116 T =1+ W

128 GOTO 58

138 RESUME NEXT

* COS(I)
*

5 * R
5 * R SIN(I)

Program Listing 3

16 ON ERROR GOTO 138
20 PL = 3,14159
36 INPUT "SCALE=";S:
INPUT "CONSTANTS A,B=";A,B
40 CLS
56 FORI =@ TO B * 2 * PI STEP 2 * PI / 90
66 X1 = (A - B) * COS{I) + COS((A -B) / B * I
78 Y1 =) * BIN(I) - SIN((A - B) / B * I
88 Y =23 - 2.3 * ¥l
= 9 * X1

F RN

168 SET(X,Y)
116 NEXT I
120 GOT0 128
138 RESUME NEXT

94

graphics

Program Listing 4

186 ON ERROR GOTO 178

178

INPUT "SIZE OF FIXED CIRCLE";A

CLS
PI

FOR I = — PI TO PI STEP 2 * PI / 188

X1
Y1

3.14159

A * COS(I}:
A * SIN(I)

SET(63,2.2 * X1,23 + Y1)
NEXT 1

FOR J
X0

YO

PI TO PI STEP 2 * PI / 20

+ 1~

R * COS(K):
+ R * SIN(K)

SET(63 + 2.2 * X,23 + Y¥)
NEXT K,J

GOTO 168

RESUME NEXT

X0 + A) [2 + Y0 [2)
pI TO PI STEP 2 * PI / 90

ON ERROR GOTO 128
INPUT "A VALUE";A
CLS
Q=4%A*19 / 20
FOR X = — Q TO Q STEP 4 * A / 28
FOR XX = X TO @ STEP -~ X / 10
Y = (1-XX/X) * SOR(16 * A [2 - X [2}
SET(63 + 2.4 * XX,23 + ¥)
SET(63 + 2.4 * XX,23 - Y)
NEXT XX, X
GOTO 110
RESUME NEXT

Program Listing 5

Program Listing 6

ON ERROR GOTO 219
RANDOM

N = 7 * RND(@):
RND(4)

RND(6)

T =
S =
CLS
PI

FOR I = @ TO 6 * PI STEP 2 * PI / 180

3.14159

ON T GOTO 90,1906,120,130

X1

N * COS(I) + COS(N * I):

GOTO 118

X1

N * COS(I) - COS(N * I)

Yl = N * SIN(I) - SIN(N * I}:
GOTO 150

R

3+ 2 * COS(N * I):

GOTO 1490

R

5 * SIN(N * I)

95

Program continued

148
150

168
170

X1 = R * COS(I):

Y1 = R * SIN(I)

XK =65+ 49 / S * X1:
Y =23 +23 /8 * Yl
SET(X,Y)

NEXT I

graphics

180 PRINT @968,"T=";T,"N=";N,"S=";83;

190

200
218

FOR J = 1 TO 1258:
NEXT J

GOTO 38

5= S + 1:

RESUME 5@

HARDWARE

Chip Tester
Build a Light Pen

97

HARDWARE

Chip Tester

by Joe Magee

Ever see someone selling bargain ICs at a sidewalk sale? Sure you have,
and usually the vendor thinks they are good, but isn’t sure. In a similar
experience I recently obtained quite a few 4118 memory chips. These are
very nice 1K x 8 static RAMs made by Mostek, but I don’t have anything
that uses them, so testing them is not very simple. Knowing that I also come
across bargain 2114s from time to time, I decided to do something to let me
test the memory devices. By the time the project was done, I learned how to
test memory using a BASIC program, and using BASIC and assembly lan-
guage together. I designed a test circuit, and devised a scheme to add other
peripherals to my TRS-80.

Hardware

The goal was to test unknown memory devices while not disturbing the
TRS-80 data and address buses. Thus the circuit can be divided into func-
tional sections: One is the device under test (DUT), another is its address
decoding, another is the DUT/TRS-80 isolation, and the last is an 1/O port
used for control. The DUT is simply a 4118 of unknown quality. The decod-
ing for the DUT addresses is handled by U5, a 741.5138. The 4118 decodes
AO through A9 itself, and the 741.5138 decodes A12 through A15. US actual-
ly decodes eight 1K blocks from 8000 hex to 9FFF. Tying A13, Al4, and A15
to G2B, G2A, and G1 enables U5 only when addresses 8000 through 9FFF
appear on the address bus. Tying A10 through A12 to the A, B, and C inputs
causes one of the Y inputs to be low, corresponding to the proper one of
eight possible sets of 1K blocks between 8000 and 9FFF. The YO output of
US5 is the chip select for the 4118, which puts it in the address range 8000
through 83FF.

There is another concern. During certain 1/O operations, the top half of
the address bus may have data on it, possibly causing U5 to decode an ad-
dress. This does not cause unwanted memory accesses because the read and
write lines are not active during this time. To get a read or write to the 4118,
not only must the chip select be active, but also read or write. Read and
write lines come from the TRS-80. They, as well as the address and data bus,
are buffered to isolate the TRS-80 from the DUT. This isolation is required
because if there is any type of short in the DUT it could cause erroneous data
to appear on the data bus and thus foul up the operation of the TRS-80.
These isolation devices, Ul, U2, and U3, have three-state outputs. This is
necessary for the lines hooked to the TRS-80, and also for the DUT. Many
MOS devices can get confused if signals are applied to their inputs or outputs

99

hardware

before their main power is applied. Early versions of this circuit seemed to
indicate that the 4118 is susceptible to this confusion. Thus, these isolation
devices hold all the 4118 inputs in a high impedance state while the power
is off.

This brings us to the control section. This section activates the isolation
circuit, it determines what direction data should be going in relation to the
DUT, it applies and removes power to the DUT, and it lights certain status
indicators. The isolation circuits are activated by a signal called Master
Enable Not (labeled ME) . ME (and all other control signals) is an outputof a
7418374, U6. U6 is configured as an I/O port; we'll go into that later. ME
can be set or reset under software control. When it is low, all isolation cir-
cuits, Ul, U2, and U3, are enabled. Also, when U3 is enabled, the read line
from the TRS-80 is allowed to go to the DUT. It also goes to a gate and invert-
er which is used to determine the direction of data flow to or from the DUT.
This is a line called DIR. Thus, the data from the DUT will never be placed on
the data bus unless chip select, read, and Master Enable are all active.

Besides Master Enable, there are three other lines. Two of them are con-
trol status indicators. These indicate whether a DUT passed or failed. After
a test is run, a pass or fail decision is made. One of these lights can then be
turned on under software control. The last control line activates a reed
relay. This relay supplies power to the DUT. When DUT power is on
another LED is lit. It is called Test In Progress (or TIP). Thus, the status of
DUT power is also under software control. The last piece of hardware to
discuss is the I/O port. It consists of U6 and U7. U6 has already been dis-
cussed. What makes it an I/O port (actually, output only) is the address
decoding provided by U7. In a TRS-80, I/O ports are defined by the condi-
tions of the lower eight address lines (A0 through A7) and IN and OUT.

I made certain assumptions about this test circuit which speeded and
simplified its design. The biggest assumption was that it would be the only
thing tied to the TRS-80 expansion port while it was being used. The final
design presented here does allow other things to be on the port, but liberties
were taken with the port address decoding. Specifically, U6 will accept data
for certain port addresses greater than 240 decimal. This allowed me to use
only one IC to decode the port address. By putting A5 through A7 on the A,
B, and C inputs, I could decode eight blocks of 32 addresses. But because 1
putAd on G1 and A3 on G2B, only those addresses with A3 low and A4 high
can be decoded. Also, I tied OUT to G2A. This means that U7 will only
decode an address when A3 is low, A4 is high, and an output to a port is be-
ing done. I then selected the Y7 output. This causes U6 to accept data
whenever an OUT command is issued to a port whose address is between 240
and 247 decimal. Thus, while this circuit occupies eight port addresses, 248
are still available. But don’t forget that the DUT is still sitting in the memory

100

hardware

address space from 8000 to 83FF hex.

| SIDEWALK SALE

Special on
Memory Chips

Software

Memory testing is a complex, controversial, and often emotional subject.
The purpose of this project has been to provide the most testing for the least
time and effort. The software can be divided into three sections: initializa-
tion, testing, and processing. Two programs are provided. One is in BASIC
and the other is part BASIC and part machine language.

The BASIC program provides the address and data for each failure. The
BASIC/machine-language program provides pass/fail indications only. The
BASIC program takes one-and-one-half minutes to test a good chip while
the mixed program takes about three-quarters of a second. (Most of this time
is used up by the BASIC portion.) The initialization portion turns off all
indicators, removes DUT power, and resets Master Enable. This is done by an
OUT 240,15 instruction, which sets the four low-order bits of the data field to
one. It also sets up the display on the screen for pass/fail data to come later.

The test gives you three options: first is TEST. In this mode, a testis run. A
one is added to the total units tested, and a one is added to either the pass or
fail count depending on the outcome. Second is RETEST. This option is the
same test, but no counts are changed. It is primarily used to verify a failure.

101

hardware

The third option returns you to BASIC with the READY prompt. The test
portion executes three different memory tests. In each case the memory is
loaded with a known pattern. Then, after all 1024 bytes are loaded, they are
read back and the read data is checked against what it should be. If the data
does not match, an error is flagged. At this point the BASIC program will
print a message giving the memory address checked, the data found there,
and what was expected. The machine-language version simply returns with a
fail indication. This means that the machine-language test should be used to
weed out the bad chips becausg it runs very quickly, and the BASIC program
can be used to go back and check bad devices to see what was wrong.

Each of the three tests uses a different pattern. Each pattern has its own
purpose. The first is a number which goes from 0 to 255 (0 to FF hex). On read
back, this will tell us if the address decoders are working. This is because if we
write to memory and immediately read, or if we put the same data in each
byte, we really can’t tell for sure if we addressed more than one byte. So we fill

+BV +5V

Ls245 4lig
L
8 DO 2 [{:] 9 0o oF 20
o b SR
D D2 D2 A9
€ D3 5 15 13 o3 a8 23
F D4 "; ' :: :: D4 ar |
H D5 05 4 ae
J D6 L 12 €106 5
K D7 Z ! il P A4

~n
by

IR DIR l vee Az

244
20

+
=
> <
(=] (s}
=
+
o
<
»
S
of~lojolalu|n

2 2
3 Al 4 3
6 1
4 A2 2
5 A3 : 12
6 A4 2 S
13 T
T A5 5 5
8 A6
17 3
s A7 :
Gi
— 2R
hEGZ {62) —,?G

1IU):6
8[:015[35

kS
g et

|
{

'

&
&
e
Je

Figure 1. 4118 Test socket electronics

102

hardware

the memory with different bytes and then read them back. The second pat-
tern is all zeros, and the third is all ones. This checks that each memory cell
canhold a0 or 1.

The final portion of the program is the processing. It turns off DUT power
and if an error is found, the red (fail) LED is turned on. If no error, then the
green (pass) LED is lit. Also, if T is selected, the units tested and appropriate
pass or fail counts are incremented. There you have it: a fairly simple, yet
fairly complete memory test. The same concepts used here can be extended
to other types of memory devices.

+5v 138

8000-83FF
e ol -
14 A2 3¢ v P
13 Al 2 va 2 .
12 A0 D T . 0 \ 55%4 o
15 A3 54 628 va 35 DIR
6 A4 G2 ys |2
moas b ve ~9_ascoo 9FFF
8 7 -9FF!
— 17 >
e L5V
— 5
RG +5V 374 L5V
P
20 2 Jo—
3 o P ” ME
e 20 " PASS i el -
3 p| ————] 20 30 A 150)
16 12 15 ! ~ ig
4 D2 o & 40} L T Mev
PO Q——_ DY 50 2. FAIL e Y ‘;’50
[P J—1 7 sa |15 9@’3 7500 | RELAY s TP
A He e L — T ey
-8 06 - "; 70 8o |2
1
9 D7 el 80 CON o 6 4118 TESTER/CONTROL SECTION
G i CLK
Pl
L4
MY 13 2 74L5138
8 A aran 1 -—@~———c'50 16 | PASS (GRN)
16 vo b8 1 7415367 2 .—-'—-—w»——-ﬂt')
3 14 { 74LS02 50
- - VY
2-17 A7 " [Yi = | 7405245 3 P 4
2-15 A6 — 8 vof— | 74LS374 4 13| TIP (YELLOW)
2413 A5 — L1 7 o |14 PINWN 50 0l2
e Y Iy 3 So PN . N
e 4 10 . °
P ouT Gza i I 24 PINZIF
€ S 7 A [0
2-11 A4 6l 16 f— | PLUG P’
63 - | RELAY 8 o-{Ph———e 5 | FAIL (RED)
FO-F7

Figure 2. 4118 Tester control section

103

100
200
300
408
508
600
708
758
800
968

1600
1610
1180

1300
15089

1609

1768

1860

1908
2000
2160
2200
2300

2400
3000
3100
32p0
3300

3408
AB00

4109
4200
4360

4400
4500
476080
4809

4900
4950

5008
5108
5200
5308
5468

hardware

Program Listing 1. BASIC memory tester

REM R g I L E L e L T L arur v

REM * 4118 MEMORY TEST *
REM * COPYRIGHT 1988, JOE MAGEE *
REM * 2405 BUNKER HILL *
REM * TEMPLE, TEXAS 76501 *
REM **********************************k*******************
OUT 248,15

CLS

PRINT TAB(15),"4118 MEMORY TEST"

PRINT

PRINT "PRESS 'T'' TO TEST"

PRINT " 'R' TO RETEST"

PRINT " 'E' TO EXIT"

T = 8:

R =

P =

F =

PRINT @448,"UNITS TESTED","PASSED","FAILED"
A$ = INKEYS:

IF AS = """
THEN
1580
IF AS$ = """
THEN
2008
IF AS = "R"
THEN
2100
IF A$ = "E"
THEN
END
GOTO 1588
T=1T+ 1
DA = @
OUT 248,7
FOR I = 1 TO 18:
NEXT
ouUT 240,6

FOR AD = 32768 TO 33791
POKE {AD - 65536) ,DA

DA = DA + 1
IF DA > = 256
THEN
DA = @
NEXT
DA = 0:
FF = 0

FOR AD = 32768 TO 33791
D = PEEK(AD - 65536)
IF D = DA

THEN
4709
FF = 1
GOSUB 15000
DA = DA + 1
IF DA > = 256
THEN
DA = @
NEXT

IF FF > 0

THEN
5408

DA = @

GOSUB 10080

DA = 255

GOSUB 10000
IF A$ = "R"

104

55008

5668
5760
5800
5909

6000
6100
700¢

7100

7200
16600
16100
10209
18300
10400
10500

10600
19700
11069
11169
15000
15100

hardware

THEN
7088
IF FF = 1
THEN
5968
P =P+ 1
ouT 248,13
GOTO 60060
F=F+ 1:
ouT 248,11
PRINT @512,T,P,F;
GOTO 1508
IF PF = B
THEN
57680
ouT 244,11
GOTO 60088
FOR AD = 32768 TO 33791
POKE (AD ~ 65536) ,DA
NEXT
FOR AD = 33768 TO 33791
D = PEEK(AD - 65536)
IF D = DA
THEN
110090
FF = 1
GOSUB 15688
NEXT
RETURN

PRINT €576 ,"ERROR-~ADR=";AD; "DATA=";D,"SHOULD=";DA;

RETURN

100
200
300
400
500
600
760
758
800
900

1660
la1e
1169

1300
1509

1600

17089

1860

Program Listing 2. BASIC/machine-language version—BASIC portion

REM
REM * 4118 MEMORY TEST
REM * COPYRIGHT 1980, JOE MAGEE

REM * 2405 BUNKER HILL

REM * TEMPLE, TEXAS 76501

KAkEkhRAKRKRAKR I KRR R ARI AT R AR R T AR AR AR K AN R AR Ak dh b hhhhid

*
*
*
*

REM KKK RRTREAKRN AR AKKIARA KR IR TR AR AR ARk hkhkhhkhhhdhhhkhhkd

OUT 248,15

CLS

PRINT TAB(15),"4118 MEMORY TEST"
PRINT :

PRINT "PRESS 'T' TO TEST"
PRINT " 'R’ TO RETEST”
PRINT " 'E' TO EXIT"

T B

R @

P a:

F [

nowonou

PRINT @448,"UNITS TESTED","PASSED","FAILED"

A$ = INKEYS:
IF A§ = "7
THEN

1599
IF A$ = "T"
THEN

2009
IF A$ = "R"
THEN

2200
IF AS = "E"
THEN

CLS :

Program continued

105

1968
2009
2200
2300

2400
2508

2600
54p0

5580

5600
5708
5800
59060

6000
6108
7068

7168
7208

hardware

END
GOTO 1500
T =T+ 1
OUT 249 ,7
FORI = 1 TO 10:
NEXT
OUT 249 ,6
POKE 16526 ,8:
POKE 16527,125
FPF = USR(15)
IF A§ = "R"
THEN
7680
IF FF = 1
THEN
5980
P =P+ 1
OUT 246,13
GOTO 6008
F =F + 1:
ouT 240,11
PRINT @512,T,P,F;
GOTO 1580
IF FF = @
THEN
5780
OUT 248,11
GOTO 60689

Program Listing 3. BASIC/machine-language combined memory test—machine-language portion.

BASA
8000
0400
D00
D88
7088
7083
D86
D68
D@8
7069
TD8A
7D8C
TD@F
7D11
D14
D17
7D17
D19
7D1B
TD1E
TD1F

20100 ;*****************‘k****‘k***************‘k*****************
*

00208 ;*

884060 ;* AND CHECKS DATA ONLY,
0p416 ;*

6042p ;* WHEN LOADING THIS PROGRAM ANSWER THE "MEMORY SIZE"

80438 ;* PROMPT WITH 31999,
ag44g ;*

08506 ;* COPYRIGHT 1988, JOE MAGEE
24p5 BUNNKER HILL

TEMPLE, TEXAS 76501
R R R R I I T TTT I

88600 ;*
88766 ;*
#6988 MERTPT EQU gA9AH
21088 MESTRT EQU 8680H
81168 MEMCNT EQU 490K
91200 ORG 7DG8H
$1368 MEMTST EQU $
216686 81400 LD HL ,MESTRT
918804 01506 LD BC,MEMCNT
3E68 01608 LD A0
91786 MEMLPl EQU $
77 01860 LD (HL) ,A
3¢ 91988 INC A
EDAL 22000 CPI
EABBTD 82180 Jp PE,MEMLP1
3E80 #2208 LD A0
21068¢ 02308 LD HL ,MESTRT
g186064 32408 LD BC,MEMCNT
§2500 MEMLP2 EQU $
EDAL 62600 CPI
20831 22700 JR NZ ,MEMERR
E2217D 92889 JP PO, MEMCN2
3c 82908 INC A
18F6 83000 JR MEMLP2

4118 MEMORY TEST
88300 ;* THIS MACHINE LANGUAGE PORTION STORES, READS

*
*
*
*
*
*
*
*
*
*

;RTN TO BASIC WITH HL
;START OF FIXTURE ADR SPC
;SIZE OF 2114/4118 MEMORY
;START ADR

;GET STARTING ADR

yGET BYTE COUNT

;DATA FIELD

; LOAD 1.00P

; LOAD MEMORY CELL

;SET UP NEXT DATA FIELD
;DUMMY TO BMP HL, DEC BC
;DO NEXT CELL

;SET UP DATA FIELD

;GET START ADR

;GET BYTE COUNT

;CHECK LOOP

; COMPARE DATA

; IF ERROR-EXIT

;IF DONE, GO ON

;s NEXT DATA FIELD

;DO NEXT CELL

106

7D21

7D21 3EQ@
7D23 CD317D
7D26 3EFF
7D28 CD317D
7D2B 210600
7D2E C39APGA
D31

7D31 216880
7D34 110188
7D37 @100894
7D3A 77
7D3B EDB#@
7D3D

7D3D 2100880
7D48 06106004
7D43

7D43 EDAL
7D45 2004
7D47 EA437D
7D4A C9
7D4B

7D4B El1
7D4C

7D4C 212100
TD4F C39A0A
D08

¢p0eg TOTAL

MEMCHK 7D31
MEMCK1 7D3D
MEMCN2 7D21
MEMCNT 0409
MEMER1 7D4B
MEMERR 7D4C
MEMLP1 7D@8
MEMLP2 7D17
MEMLP3 7D43
MEMTST 7D@0
MERTPT OA9A
MESTRT 8000

03100
03200
03308
83400
93500
03600
03760
03800
g3908
04p00
a41e0
04200
04308
64400
94500
#4600
24700
64800
04909
85000
85100
85200
05300
#5400
85509
#5609
B5700
ERRORS

03800
04400
063100
21100
05200
05400
01700
02509
64700
01360
06900
B1000

hardware

MEMCN2 EQU $;NOW DO 1'S AND 6'S
LD A,8 ;0'S FIRST
CALL MEMCHK ;GO
LD A, OFFH ;NOW 1'S
CALL MEMCHK ;GO
LD HL,8 s SET UP PASS FLAG
Jrp MERTPT ;EXIT TO BASIC
MEMCHK EQU $:1'S AND @'S CHECK LOOP
LD HL ,MESTRT ;GET START ADR
LD DE,MESTRT+1 ;DEST ADR
LD BC MEMCNT :+BYTE COUNT
LD {HL) ,A ;DATA TO PROPAGATE
LDIR ;LOAD ALL BYTES
MEMCK1 EQU $:NOW CHK DATA
LD HL ,MESTRT ;GET START ADR
LD BC,MEMCNT ;GET BYTE COUNT
MEMLP3 EQU $;CHECK LOOP
CPIL ; CHECK CELL
JR NZ ,MEMER1 :ERROR EXIT
JP PE,MEMLP3 ;DONE?~NO, DO NEXT CELL
RET ;DONE AND NO ERRORS
MEMERL EQU $; COME HERE FROM SUBRTN
POP HL ; POP RTN ADR FROM STK
MEMERR EQU $;+ ERROR EXIT
LD HL,1 ;SET UP ERROR RTN CODE
JP MERTPT ;EXIT TO BASIC
END MEMTST ; END
93308 #3500

062800

915006 92499 04100 04600

04900

02708

02100

83600

05000

85700

937008 85600

91490 02300 093900 04068 84500

107

HARDWARE

Build a Light Pen

by Wayne Holder

[magine the magic effect of moving chess pieces around your screen with
the stroke of a light pen.

What is a light pen? It is a wand that guides and instructs your TRS-80
computer. To be more technical, the pen is a light-sensing peripheral that
plugs into the cassette jack on the keyboard or expansion chassis, allowing
you to select things on the video screen by pointing at them. A light pen lets
your computer see where you are pointing.

The pen has thousands of uses. Use it for computer games or to draw pic-
tures on the screen. Let it answer the questions in a quiz, act as a futuristic
control panel for an automated house, or for menu selection in busi-
ness applications.

How It Works

The schematic diagram of the light pen is shown in Figure 1. Its heart is
photodetector PQ1. PQ1 is a VTA-1011 photoDarlington which conducts
more current when illuminated. Transistors Q1 and Q2, resistors R1, R2,
and R3, and capacitors C1 and C2 compose a bias source for the phototran-
sistor. This is a kind of voltage regulator, except that it tracks only slow
changes in current. Quick pulses of light cause a change in the voltage across
the phototransistor, whereas slow changes in light do not. This allows the
circuit to adapt to different ambient light conditions.

The ac signal that crosses the phototransistor in response to quick changes
in light is coupled through capacitor C3 and is amplified by transistor Q3.
The amplified signal is passed into the TRS-80 circuitry where it simulates a
cassette input signal.

Itis fortuitous that the cassette recorder’s input circuit also serves as a light
pen input circuit. I won’t go into how the TRS-80 circuitry works, but if you
are interested, I suggest you read the TRS-80 technical manual.

Construction Details

Homebrewers can build the light pen into the body of an old felt tip
marker or similar housing. You can wire the circuit on perfboard or similar
material. If you are skilled with machine tools you may elect to duplicate the
housing shown in Photo 1.

Figure 2 shows the parts outlines and dimensions for the body and end
caps. DELRINTM plastic is recommended for machining the end caps, be-
cause it is easily worked on a lathe without shattering or chipping. Figure 3
shows the foil pattern and outline for constructing the printed circuit card.

108

hardware

Figure 4 shows the component placement on the circuit card. 1 recommend

using a bending guide to prebend the resistor and capacitor leads before in-
serting them into the circuit card.

RI l l
15K c! c2

IpF InF

i
2N3906 Q2
< 2N3906

A
">+ BATTERY

AAA,

»HD

Q3
2N3306
B

OUTPUT
2.4M
X
4
Tour
PQI $|:
VTA-1011 o
Y C
< -{"> GROUND
Figure 1. Light pen schematic
0 30 40 30
R
177 45°
T FF0 &) (e
620 .520 ?150 185 Gji) 32“0
e 50

X

END CAP (2 REQUIRED) ALUMINUM HOUSING

ALL DIMENSIONS IN INCHES

Figure 2. Outlines and dimensions for body and end caps

109

hardware

The three 2N3906 transistors are mounted flat against the circuit card so
that the completed assembly will fit into the tubular housing with plenty of
clearance. The three transistors are mounted such that the rounded side of
the case presses against the circuit card and the flat side faces up.

Bend the leads at a 90-degree angle and insert them into the card. Notice
that the pattern of holes is different for Q3. Photo 2 shows the assembled cir-
cuit card.

Capacitors C1 and C2 are axial lead, ceramic chip type. They were selec-
ted specifically for their small size, but any 0.1 uF nonpolarized capacitor
with at least a 25-volt rating may be used. The same thing applies to capac-
itor C3, which is a miniature tantalum type. All resistors are 1/4-Watt com-
position for film types with a value tolerance of five percent.

Mounting the Photodetector

Mounting photodetector PQ1 is very important. Cut off the base lead (the
center one), and bend the emitter and collector leads to the length specified
in the placement diagram. The leads should bend in the direction of the
now removed base lead. The emitter lead (the one nearest the tab) connects
to the Y pad, and the collector lead connects to the X pad of the circuit card.

Insert all of the components into the circuit card. Be careful to check that
they are all flat against the surface, so that the card will fit into the housing.
Then solder them into place. Use a good grade rosin core solder, and be
careful not to excessively overheat any of the components. Trim the leads

Photo 1. Assembled light pen

110

hardware

as close to the circuit card as possible to prevent them from shorting to the
aluminum housing.

Check the position of the phototransistor by inserting the PC assembly in-
to one of the end caps. If you have measured correctly, the narrow end of the
card will fit into the end cap all the way. The end of the phototransistor
should be recessed from the other end about 1/4 of an inch. Next, wire the
connector to the cable and battery clip, using Figure 5 as a guide. Twist
together the cable shield, the brown wire in the cable, and the black wire
from the battery clip. Solder them to pin 2 of the connector,

Twist together the white wire from the cable and the red wire from the
battery clip. Solder them, and insulate the soldered joint with tape or heat
shrink tubing. Solder the green wire from the cable to pin 4 of the connector.
Assemble the connector, being careful to crimp the cable and battery clip
wires into the strain relief tabs.

Slip the other end of the cable through one of the end caps. Pull about four
inches through and fasten a nylon ty-wrap around the cable near the end
cap. The ty-wrap will prevent the cable from pulling out of the end cap once
the pen is assembled.

Strip the insulation from the cable, and trim the wires so that they
measure about two inches from the end of the end cap. Solder the white wire
to point A on the circuit card (Figure 4). Solder the green wire to point B,
and the brown wire to point C. Trim off the excess wire after soldering.

At this point your light pen is almost ready to operate. Before final
assembly, test it by plugging it into the keyboard, connecting a battery, and
running the program shown in Program Listing 1. I advise, however, that
you first read the section on programming.

Photo 2. Assembled circuit card and housing

111

hardware

When you are satisfied that your light pen is working correctly, assemble
it into the housing, using epoxy cement to fasten the end caps into the alumi-
num tube.

Programming

The pen is a device that can sense light coming from the video monitor.
Software is used to distinguish exactly where the light pen is pointing, but
the software must be accurate. Let’s take a look at exactly what is involved
in programming a light pen.

When we look at the screen of the video monitor, we see continuous light.
Those of us who are savvy about how television works know that the light is
not really continuous. Television creates images by scanning a point of light
across the television screen. This point of light scans so rapidly that to our
human eyes it appears to be everywhere at once. The photosensor of the
light pen, however, is not so easily fooled. It sees a pulse of light every time
the point scans past wherever the light pen is pointing.

The video monitor is designed to scan from the top to the bottom of the
screen 60 times a second, or once every 1/60 of a second. This means the light
pen sees 60 pulses of light every second whenever the light pen is pointed at
an illuminated area on the screen. The light pen converts these light pulses
into electrical pulses. The electrical pulses are fed into the TRS-80’s cassette
input latch. A latch is a device that stores information. It has two states: SET
(on) or RESET (off). The TRS-80 is able to RESET the latch, while the light
pen can SET it.

In addition, the TRS-80 can determine the state of the latch at any time.
The light pen SETs the latch every time it senses a pulse of light from the
video monitor. Once the latch is SET, it stays in that state until it is RESET
by the TRS-80. Therefore, to detect whether or not the light pen is “looking”
at light, we need only to RESET the latch, wait atleast 1/60 of a second, and
then check the latch to see if it is SET.

BASIC Program Listing 1 clears the screen (line 10) and puts a spot of light
in the center of the screen (line 20). Line 30 RESETs the latch. (Read the
TRS-80 technical manual for more details.) Line 40 delays execution for
about 1/60 of a second. Line 50 reads the state of the latch and decides which
message (ON or OFF) to print.

Type in the program, connect the light pen, and run it. You will find that
pointing the light pen at the spot of light displays the ON message in the up-
per left corner of the screen; otherwise the OFF message will show.

Now look at the subroutine shown in Program Listing 2. This subroutine
does all the work of testing to see if the light pen is looking at light. If a pro-
gram performs a GOSUB 9000, upon return the variable LP will be set to 0 if
the light pen is looking at darkness or 128 if the pen sees light. We will make
use of this BASIC subroutine in developing more sophisticated programs.

112

hardware

Figure 3. PC foil pattern

COMPONENT SIDE VIEW

el 38" je—
- £ ..
El)
(E‘ "\- ﬂ
o
@A " lremo smmo B
VACTEC
&) (ST e G L—— "
: _-—\, > o SR ,
sy (- -7
@ 3905 o s FgPes s mrye o] (3

Iﬁ'ﬁ/

TAB
Figure 4. Components placement guide

5 PIN 180% D.I.N. PLUG
RADIO SHACK CAT. #274-003

GRN
= B
SHIELD /BRN
= C HLIGHT PEN
WHT A
BLK RED
- +
—

BATTERY CLIP
RADIO SHACK CAT. #270-325

Figure 5. Plug/cable wiring

113

hardware

Some Programming Examples

Naturally, the software must do more than simply determine if the light
pen sees light. The pen could easily pick up a stray pulse of light from a light
fixture, or by being pointed at a line of text. Good software must, therefore,
include checks to verify where the light pen is actually being pointed. Enter
the BASIC program shown in Program Listing 3, and try it.

This program expects you to point the light pen at the * displayed on the
screen. The program calls subroutine 9000 and tests the returned value in
variable LP, in order to wait until the light pen senses light (lines 30 and 40).
The program then tries turning the * on and off several times and calls 9000
each time. It is checking to see if the light pen sees light with the * on, and,
also, if it sees no light with the * off. The program does not decide that the
light pen is looking at the * until it can successfully repeat this test several
times. This double checking is very important for proper operation of any
light pen program.

Now let’s look at another light pen application called menu selection.
Most of us have used programs that required us to choose among various op-
tions. The game Star Trek, popular in most computer circles, is an example.
To play the game, the player is usually requested to “TYPE 1 TO FIRE
PHASORS, TYPE 2 TO FIRE PHOTON TORPEDOES, TYPE 3 TO SCAN
QUADRANT FOR LIFE,” etc. Wouldn’t it be great if your computer had
separate keys labeled with each option? You can use the light pen in this ap-
plication.

Consider if the screen showed something like this:

* FIRE PHOTON TORPEDOES

* FIRE PHASORS

* SCAN FOR LIFE IN QUADRANT

* SURRENDER
You could play the game by touching the light pen to the * next to the ap-
propriate command. Perhaps certain commands would call up other menus
of commands for us to select from.

Imaginary Restaurant

We don’t have space here to present a complete Star Trek program, but
try the program shown in Program Listing 4. The program is called Im-
aginary Restaurant, and you use the light pen to select what you would like
to eat from the bill of fare.

Lines 5 through 40 reserve string space and dimension the arrays A$ and B.
Array B is then initialized to the values 192, 320, and 448, which correspond
to areas on the screen that will be changed with the PRINT@ command.

Lines 100 through 110 read the contents of the DATA statements into the

114

hardware

array A$. The array is initialized to contain messages that the program will
display. A$ is a two-dimensional array organized so that the messages are
put into groups of four. Each group corresponds to the X dimension of the
array, and the particular message in a group corresponds to the Y. Line 120
selects the first group by setting X =0.

Lines 200 through 240 display a group of messages on the screen. Message
0, Y =0 of each group, is displayed as a prompting message at the top of the
screen. Messages 1-3 are displayed as choices with a target spot preceding
each one. The first group of messages appears as follows:

WELCOME TO THE IMAGINARY
RESTAURANT—PLEASE SELECT
* BREAKFAST

* LUNCH

* DINNER

The program expects the user to select one of the three choices it offers by
pointing to the associated spot with the light pen. The program waits at
statement 300 until the pen detects light. When it’s detected, the program
assumes that the user is pointing to one of the three spots.

Lines 310 through 350 determine which spot, by turning off each selec-
tion. The program assumes the light pen will see darkness when it finds the
correct one. As a precaution should the test fail, the program will get to line
360. The program branches to line 400 when it thinks it has located the selec-
tion. Lines 400 through 450 perform a double check on this assumption by
turning the suspect spot on and off several times, checking for the correct
response. If this double check fails, the program branches back to line 300.

If the check passes, the program displays an arrow, <=, next to the spot
and waits for the light pen to see darkness. This means the user has lifted the
pen from the screen. Line 500 checks for further displayed choices. If they
are there, the program sets X to the group requested and branches back to
200. If they are not, the program terminates by printing the final selection.

"The Magic Subroutine

Imaginary Restaurant is a rather specialized program, as you probably
noticed. If light pen input is ever going to be painless, we will need to de-
velop a subroutine to do the hard work for us. Before we get into exactly how
we are going to write such a subroutine, let’s define how we would like it
to work.

The PRINT@ command in Level II BASIC is a very convenient way to
display messages anywhere on the screen. Using this command, you can
refer to any location on the screen by using a value between 0 and 1023. Im-
aginary Restaurant made extensive use of the PRINT@ in setting up the
display and in turning the light pen targets on and off. Suppose we had a

115

hardware

subroutine that would accept a list of locations on the screen, where each
location on the screen was described by a value from 0-1023.

Let us further suppose that this subroutine would display a light pen
target ateach of these locations, wait for the light pen to touch one of them,
and determine which one was touched by returning a value. This will be our
magic light pen subroutine. Let us design this subroutine such that the list of
locations is contained in an array called LST, and that the first element of
this array, LST(0), will contain a value indicating how many locations are
in the list. Therefore, if we wish to display three targets on the screen at loca-
tions 120, 430, and 522, we would set up the array as follows:

100 LST(0) = 3
110 LST(1) = 120
120 LST(2) = 430
130 LST(3) = 522

We would then call our subroutine. (Let’s assume it starts at line 9100.)
We will design the subroutine to set a variable called SCAN equal to the list
element index (in this case 1-3) which corresponds to the target location
touched by the light pen. If, for example, the light pen had touched the
target displayed at location 430, then SCAN would equal two upon return-
ing from the subroutine. The listing for the Magic Light Pen subroutine is
shown in Program Listing 5. Program Listing 6 is a short program that uses
the magic subroutine to build a simple quiz program.

The subroutine makes use of variables names SCAN, 1, LP,CNT, C$, and
the array LST, so don’t use them elsewhere. Also remember to DIMension
the array LST and to put the proper values into it before doing a GOSUB
9100. The string variable C$, which is assigned a value at statement 9120,
determines what character will be used as the light pen target. Currently it is
set to a graphic character, but you can change it to something else if you like.

Assembly-Language Programming

The light pen can be used by assembly-language programs just as easily as
it can be by BASIC programs. Assembly language has the advantage of be-
ing much faster than BASIC. This is a real help when writing light pen pro-
grams, because you can test more targets on the screen in less time. An
assembly-language equivalent to the BASIC subroutine at 9000 is shown in
Program Listing 7. This program is presented using Zilog standard Z-80
mnemonics. This simple subroutine is sufficient to perform all light pen in-
put. I recommend, however, that anyone planning to write assembly-
language programs for the light pen should be thoroughly familiar with as-
sembly-language programming.

116

hardware

What to Do About Problems

Should you experience problems with your light pen, the following sug-
gestions could be of help. If the light pen refuses to work at all, the problem
could be a weak or drained battery. Try replacing the battery, and then try
one of the simple programs such as the ON/OFF test in Program Listing 1. If
thelight pen still refuses to operate, try turning down the lights in the area of
the video screen. Adjusting the brightness and contrast on the video monitor
may also be of help. The light pen is most sensitive to the video screen when
the contrast and brightness are adjusted for a bright, clear image with a
dark background.

Note: Recent models of the TRS-80 computer and those which have had the cassette fix installed may
not work correctly with the light pen, unless a 1k Ohm resistor is installed between points B and C on
the circuit card. This resistor may also be installed between pins 2 and 4 inside the DIN connector.

117

hardware

Program Listing 1. Test of light pen operation

1@ CLs

20 SET(64,24):
SET(65,24)

30 our 255,8

40 FOR X = 1 TO 6:
NEXT X

50 IF (INP(255) AND 128) = @ GOTO 78

68 PRINT @F,"ON ";:
GOTO 38

78 PRINT @B,"OFF";:
GOTO 30

Program Listing 2. Light-detecting subroutine

9068 OUT 255,80
90612 FOR Z = @ TO 6:
NEXT 2
90280 LP = (INP(255) AND 128)
9038 RETURN

Program Listing 3. Verification of light pen position

16 CLS
20 PRINT @384,"* <= TOUCH HERE";
308 GOSUB 9080
40 IF LP = § GOTO 30
58 CNT = 2
60 PRINT @384," ";
70 GOSUB 9008
80 PRINT @384,7*";
98 IF LP < > @ GOTO 38
108 GOSUB 9880
119 IF LP = 8 GOTO 30
120 CNT = CNT - 1
136 IF CNT < > @ GOTO 68
148 CcLS
150 PRINT "DON'T TOUCH ME!"
168 STOP

Program Listing 4. Imaginary Restaurant

5 CLEAR 1208
16 DIM A$(4,4),B(3)
192

20 B(@) =
38 B(1) = 320
40 B(2) = 448

99 REM READ DATA INTO ARRAYS
106 FOR X = 8 TO 3:
FOR ¥ = § TO 3
116 READ AS$(X,Y):
NEXT Y,X
120 X =@
199 REM DISPLAY A SCREEN GROUP

118

200
218

228
238

240
299
380

316
320
338

340
350
360
399
468
419
428

430
4460

458
460
478
488

498
499
560

518
520
530
540
558

568
578

599
600
610
620
630
640
650
660
670
680
690
708
718
720
738
740
758
760

7790

CLs

PRINT AS(X,0):
PRINT :

PRINT

FORY =1 TO 3

hardware

PRINT CHR$(149);" "iAS(X,Y):

PRINT
NEXT Y

REM WAIT FOR LIGHT PEN TO SENSE LIGHT

GOSUB 9@00:
IF LP = 8 GOTO 36¢
FORW = 8 70 2
PRINT @B(W)," ";
GOSUB 9080:
IF LP = @ GOTO 488
PRINT @B(W), CHRS(140);
NEXT W
GOTO 38¢

REM GET HERE IF PROPER ONE LOCATED. DOUBLE

FOR S = 0 TO 1
PRINT @B(W), CHR$(140);
GOSUB 9880:
IF LP = § GOTO 380
PRINT @B(W)," ";
GOSUB 9080:

IF LP = 128 PRINT @B(W), CHR$(140);:

GOTO 360
NEXT S
PRINT @B(W), CHR$(148);"<=";
S =0
S =858+ 1:
GOSUB 9604:
IF LP = 128 GOTO 470
IF S < 5 GOTO 488

REM GET HERE IF DOUBLE CHECK PASSES

IF X = @
THEN
X =W+ 1:
GOTO 288
CLS

PRINT @192,"VERY GOOD! WE AT THE IMAGINARY"

PRINT " RESTURANT HOPE YOU ENJOY YOUR"

PRINT AS(X,W + 1):;" FOR ";A$(8,X)

PRINT :
PRINT :
PRINT

PRINT "BY THE WAY, YOUR CHECK TOTALS---$37.58"

FOR X = 8 TO 5080:
NEXT

GOTO 128

REM DATA AREA

DATA WELCOME TO THE IMAGINARY RESTURANT-

DATA BREAKFAST
DATA LUNCH
DATA DINNER

DATA FOR BREAKFAST WE ARE SERVING

DATA "HAM, EGGS, AND SAUSAGE SPECIAL"

DATA PANCAKES AND FRIED POTATOES

DATA COFFEE AND DANISH
DATA OUR LUNCH SPECIALS ARE

DATA "HAMBURGER, COKE, AND FRIES"

DATA ROAST BEEF SANDWICH

PLEASE

DATA VEGETARIAN SPECIAL (RICE AND BEAN CURD)

DATA FOR DINNER WE ARE PLEASED TO OFFER

DATA EXPENSIVE STEAK
DATA OVERPRICED SEAFOOD
DATA ECONOMY SOUP AND SALAD

1
1

REMEMBER TO INCLUDE SUBROUTINE 9888

119

CHECK

SELECT

hardware

Program Listing 5. Magic light pen subroutine

9140 :

' MAGIC LIGHT PEN ROUTINE
9118 L = LST(8)

9128 C$ = CHR$(140)

9130 FOR I =1 TO L:

' DISPLAY TARGETS ON SCREEN
914@ PRINT @LST(I),CS
9158 NEXT I
9168 GOSUB 9880:

' WAIT FOR LIGHT INPUT FROM PEN
9176 IF LP = 6 GOTO 9168
9188 SCAN = 1
919@¢ PRINT @LST(SCAN)," ";:

' DETERMINE TARGET TOUCHED
9208 GOSUB 9000
9218 IF LP = @ GOTO 92640
9220 PRINT @LST(SCAN),CS;
9238 SCAN = SCAN + 1
9240 IF SCAN < = I GOT 9199
9258 GOTO 9168
9260 PRINT @LST(SCAN),CS$;:

' TARGET FOUND. DOUBLE CHECK
9270 GOSUB $600
9280 IF LP = GOTO 9168
9299 CNT = 2
93¢0 PRINT @LST({SCAN)," ";
9318 GOSUB 9880
9328 PRINT @LST({SCAN),CS$;
9338 IF LP < > @ GOTO 9188
93406 GOSUB 9880
935¢ IF LP = @ GOTO 9168
9368 CNT = CNT - 1
9376 IF CNT < > 0 GOTO 93090
9388 PRINT QLST(SCAN) - 2,"=>";:
' DISPLAY PROMPT ARROWS
9390 PRINT @LST(SCAN) + 1,"<=";
9468 GOSUB 9088:

' WAIT FOR PEN TO BE LIFTED
9416 IF LP < > B GOTO 9480
9428 RETURN

Program Listing 6. Quiz routine

166 DIM LST(4)
3

118 LST(8) =

128 LST(1) = 266
138 LST(2) = 394
14¢ LST(3) = 522
158 CLS

168 PRINT "WHO WAS THE SECOND PRESIDENT OF THE U. S5, ?"
1780 PRINT R@LST(1l) + 4,"THOMAS JEFFERSON"

180 PRINT @LST(2) + 4,"JOHN ADAMS"

190 PRINT @LST(3) + 4,"PAUL HARVEY"

208 GOSUB 9106

120

hardware

210 CLs

228 IF SCAN = 2 PRINT "THAT IS CORRECT!"

230 IF SCAN < > 2 PRINT "I'M SORRY. YOU ARE WRONG."
248 STOP

Program Listing 7. Assembly-language version

@199 ;SUBROUTINE TO READ LIGHT PEN STATUS AND RETURN
@0119 ;A =¢ IF 'NO LIGHT' OR 128 IF 'LIGHT'
90128 ;

20130 PUSH HL
90140 LD HL,1500
00150 Lp A,d
00160 out (255) ,A
6017¢ ;DELAY FOR 1/68 OF A SECOND
0918@¢ LOOP DEC HL
80190 Lb A,H
00200 OR L

90210 Jp NZ,LOOP
00220 IN A, (255)
002308 AND 128
08248 POP HL
08250 RET

121

HOME APPLICATIONS

BASIC Word Processor

States Worked:
A Program for Radio Amateurs

Personal Property Inventory

123

~ HOME APPLICATIONS

BASIC Word Processor

by Delmer D. Hinrichs

You do always think of better phrasing after you see your thoughts in
print, don’t you? A word processor for your computer lets you write let-
ters and articles without typing a series of rough drafts. All of your typing
revisions and editing are done on the video display, and you produce hard
copy only after you are satisfied with the text. You can also save the text on
cassette so that you can make additional corrections and/or hard copies at a
later time.

This BASIC word processor has the following features:

1. It accepts normal upper/lowercase typing on an unmodified 16K Level
IT TRS-80.

2. It is line-oriented. Every line of text has a line number for reference.
This number need not be printed.

3. Editing is similar to Level II BASIC editing, except that the entire line
is always visible under a transparent cursor.

4. You can change any of the ten variables to format for print or display.

5. Words can be automatically moved between lines to make all lines the
correct format length.

6. Lines of text can be deleted, inserted, replaced, or moved.

7. Lines of text can be automatically right-justified.

8. Up to 120 lines of text, nearly 5 pages, double-spaced, can be in
memory at one time.

Running the Program

When the program is loaded and RUN is entered, a title and prompt,
COMMAND?, are displayed. The program will accept 17 single-letter legal
commands, as shown in Table 1.

A ADD Add text at the end of the text file.

B BLANK Eliminate blank lines, and renumber text file.

C COMPILE Move words between lines in a specified block of lines to adjust lines to
the correct length.

D DELETE Delete a specified block of lines.

E EDIT Edit a specified line.

F FORMAT Change the format for text display or printing.

H HELP List the 17 valid commands.

I INSERT Insert new lines into the middle of the text.

J JUSTIFY Right-justify the text file.

K KILL Eliminate the current text file, and start over.

L. LOAD Load a text file from cassette tape.

125

home applications

M MOVE Move specified lines to a new location in text.
P PRINT Print the text file on the printer.

R REPLACE Replace a specified line with a new line.

S SAVE Record the text file on cassetté tape.

V VIDEO Display the text file on the video display unit.
X EXIT Exit from the program.

Table 1. Single-letter legal commands

Now, let’s examine these commands in detail.

ADD. The final lines of the current text (if any) are displayed, and a
flashing block cursor shows where text will be added. This command
automatically turns on the line number display option. Text can now be
typed continuously without having to ENTER each line. When the text file
is filled, a FILE FULL message is shown. Subcommands in the ADD mode
are shown in Table 2.

- Moves the cursor left one position, and erases the last character.
Shift < Erases the entire current line.
- Moves the cursor five positions to the right, adding five spaces.

Space bar Moves the cursor one position to the right.
ENTER Ends the line, and goes to the next line before the automatic end-of-line action.

Shift -~ Ends the line, and moves the line text to the extreme right of the line.

{ Ends the line, and leaves an end-of-page marker, the down arrow, at the end of the
line.

CLEAR Ends the line, and leaves a do-not-justify marker, left arrow, at the end of the line.

Shift 4 Ends the line, centers the line text, and leaves a do-not-justify marker at the end of

the line. (Some TRS-80s require Shift + 2.)
Shift@ Ends ADDing text, and returns to command mode. The first Shift@ stops the pro-
twice gram, and the second returns. Occasionally, only one Shift@ is needed.

Table 2. Subcommands in the ADD mode

BLANK. All blank lines are eliminated from the text, and the line
numbers are closed up. Note that blank lines are empty, and this command
does not affect lines that contain only spaces. During operation, this com-
mand displays DELETING BLANK LINES; when done, it automatically
displays the new text file using the VIDEO command.

COMPILE. After editing or reformatting the text, some lines may be too
long or too short to properly fit into the specified line length. This command
shifts words between the lines of a specified block to get the best possible fit.
COMPILE works in two stages: It first checks for lines that are too long and

126

home applications

pushes any extra words onto the following line. It then checks if any line can
accept words from the following line and pulls any possible words back onto
the preceding line. COMPILE should be used on only one paragraph at a
time, as it left-justifies all lines except the first within its range. It can also
bury any end-of-page or do-not-justify markers that are not on the last line
within its range. This should be avoided, as the markers are then ineffective.
Extra spaces between moved words are eliminated, except at the ends
of sentences.

Following a period, question mark, exclamation point, or colon, three
spaces are inserted. Trailing spaces are deleted, leaving only one space in a
previously all-space line (to keep the BLANK command from eliminating
the line). Note that COMPILE can push extra words forward several lines,
but can pull words back only one line.

During operation, this command displays COMPILING. If, after using
COMPILE, the last line of the specified block is still too long, a LINE n HAS
x CHARACTERS message is displayed. To correct this, INSERT an empty
line and COMPILE just those two lines. After a satisfactory COMPILE, the
text file will be automatically displayed by the VIDEO command.

DELETE. This command eliminates a specified block of lines. If only one
line is to be eliminated, enter that line number as both the first and last line
number to DELETE. The text is displayed when done.

EDIT. The entire line—255 characters—is visible when in EDIT, in-
cluding the character under the cursor. If a non-existent or empty line is
specified, an ENTRY ERROR message is given. This command auto-
matically turns on the line number display option. See Table 3 for subcom-
mands in the EDIT mode.

n< Moves the cursor to the left n positions. The default value of n is always one.

n— or n (space) Moves the cursor to the right n positions without adding spaces.

A Again. Cancels previous editing changes, and reenters EDIT mode. (List makes
editing changes permanent.)

nC Change next n characters to next n entered characters. Cursor returns to start of
changed block when done, as a signal that you have finished.

nD Delete the next n characters, and close up the line.

H Hack the rest of the line, and enter the INSERT mode.

I Insert characters into the line, and move following characters to the right.

While in the INSERT mode, you can move the cursor left or right without
changes to the text by using < or —.

L List the line, and return cursor to the beginning. Also makes past editing
changes immune to the Again subcommand.

nSc Search for the nth occurrence of character c. Keeps upper and lower case
separate, so can be used to find out if a letter on the video display is correct case.

X Go to the end of the line, and enter the INSERT mode.

Table continued

127

home applications

Shift ¢ Exits the H, 1, or X modes, and returns to EDIT.
Shift — Moves current text to extreme right of the line.
Shift ¢ Centers current text, and adds a do-not-justify marker to the end of the line.

(Some TRS-80s require shift ¢ Z.)
ENTER or Exits from the EDI'T command.
Shift@

Table 3. Subcommands in the EDIT mode

After exiting from EDIT, if the line is too long, the LINE n HAS x
CHARACTERS message is given. If the line is not too long, the text is
displayed by the VIDEO command.

FORMAT. This command resets the ten text formatting parameters from
their default values, either for the video display or for printing of the text.

1. Line length: Default value is 60 characters to fit on one video display
line.

2. Line spaces: Default value is 0. Enter the number of blank lines that
you want to appear between lines of text.

3. Line numbers: Default value is Y. To delete line numbers, enter N.

4. First line: Default value is 0 to show all lines of the text. To start the
display or printing at a later line number, enter the desired beginning line
number,

5. Left margin: Default value is 10 to print the default 60-character line
centered on an 80-character printer. This setting affects only the printer.

6. Page length: Default value is 15. This is the number of lines to be
printed on each page, so you might set it to 50 for printing unspaced text, or
to 25 for spaced lines.

7. Page numbers: Default value is N, no page number. To print page
numbers, enter “Y”. Note: You must print page numbers if you want to print
a page heading (see item 10 below).

8. First page: Default value is one to start page numbering with page
number one. May be reset as required.

9. Page 1 number: Default value is Y to print page numbers for all pages.
To print page numbers for all pages except page one, enter N.

10. Heading: Default value is one space. If a page heading is to be printed
at the top of each page, enter it. For this entry only, press shift and the letter
for lowercase and the letter for uppercase. If the heading is to have leading
spaces (for centering) or punctuation, enclose it in quotes(*”). The heading is
printed or displayed only if the page numbering is on (items 7 and 9 above).

After going through these ten FORMAT parameters, you are returned to
the command mode.

INSERT. This command inserts a line (or lines) of text into the middle of
the current text. The following lines of text are moved down and renum-
bered. Specifying a non-existent line will give an ENTRY ERROR. To insert

128

home applications

empty lines (for COMPILE or MOVE), just press ENTER. If the text file is
filled, a FILE FULL message is given.

JUSTIFY. This command right-justifies all of the text, i.e., it makes the
right ends of the lines even. The only exceptions are lines with a do-not-
justify or an end-of-page marker at the end, or a line that has no spaces be-
tween words. Extra spaces are inserted between words, starting randomly,
but evenly distributed. Spaces may be inserted between adjacent words, or
every other word, depending upon whether there is an even or odd number
of words in the line. Trailing spaces are eliminated, leaving only one space
for an all-space line. Leading spaces are not affected, so that indentation
may be maintained.

It is suggested that JUSTIFY be used only after the text is in its final form,
as the extra spaces may be incorrectly left in by COMPILE (after EDITing).
During its operation, this command displays JUSTIFYING; when done, the
text is displayed by VIDEO.

KILL. This command eliminates all text from the text file, leaving the
program ready to accept new text. The command asks twice if you really
want to KILL the text to avoid accidental loss of a text file.

LOAD. This command loads a previously SAVEA text file from cassette.
It can then be treated just like a keyed-in text file. After you enter this com-
mand, the program pauses to let you get the cassette in position and set the re-
corder to play. Since it may take several minutes to load the text file, the pro-
gram displays LOADING to reassure you that the program has not hung up.

MOVE. This command transfers a specified block of lines either forward
or backward in the text file. Lines MOVEd to must be empty (blank); lines
MOVEJ from are left empty. INSERT may be used to place empty lines
where needed. If a non-empty to line is found, the transfer of lines stops, and
a LINE n NOT EMPTY message is displayed. However, no text is lost. After
the MOVE is complete, the text is displayed by VIDEO.

PRINT. This command prints the text file. Remember to reset FORMAT
before trying to PRINT your text. If the printer is not ready to go, PRINTER
NOT READY. ABORT (Y/N) is displayed, and you have a chance to get the
printer ready or to go back to the command mode. The BLANK command is
automatically executed before PRINTing, as a blank line would cause a
FUNCTION CALL error. During its operation, first DELETING BLANK
LINES, then PRINTING is displayed. If the printer encounters an end-of-
page character (ASCII 17), that page will be terminated early, the normal
between-pages spacing inserted, and the next full page started. Note: It is
assumed that roll paper is being used; no form feeds are used.

Different printers operate somewhat differently, so you may have to
change some things in lines 1680-1740. Specifically, my printer, a COM-
PRINT 912, interprets the ASCII control character 30 in line 1680 as contin-
uous print (no pagination). The corresponding control character 28 in line

129

home applications

1740 means paginate (insert seven blank lines). Some printers may require
line feed characters (usually ASCII 10) after each printed line.

Some printers will not accept the LPRINT at the end of line 1690, and re-
quire LPRINTCHR$(138) (or LPRINT“ ") instead. If the 138 pseudo-
control character in line 1710 does not work for you, use:

1710 M = M + I:IFSFORK = 1TOS: LPRINT“ ":NEXTK

A little revision should allow any printer to be used.

REPLACE. This command allows any specified line to be replaced with a
newly entered line. REPLACE operates just like ADD, except that it applies
to only one line. After a FILE FULL message, you cannot REPLACE a line.

SAVE. This command records the text file on cassette. The program
pauses to let you get the cassette into position. It displays SAVING during
operation. You can record four lines of text per data block to save time and
tape. If the line length is greater than 61 characters, only three lines of text
can be recorded per block. If it is greater than 82 characters, only two lines
of text can be recorded per block. If it is greater than 123 characters, only
one line of text may be recorded per block.

To make the changes (if necessary), determine the number of lines you
can fit in a block. Change the four at the end of line 1780 to that number.
Change the three in line 1790 to one less than that number. Finally, line
1810 must be changed so that the X$(0), X$(1), X$(2), X$(3) series has the
same number of elements as lines in the block. For example, two lines to a
block means the series is X$(0), X$(1).

1

|

< dnikindidncucgsesnescene e st ©)
sdhcbecnbebboby rneti bbebit- :
cbehncnbebne
cnenncacmnm ep
e, mcinem

S mecmammoncam eme me ma @
~m

“m ¢,
oy X XG X
©o%, %0 €, cveitdhsy dohughyh :
shashidujRdiscdhfuy cemeime @
cikckch oot

== euliciclr (4

"“I"""”I”"“ o o _ clitelciet ckehokekokakekokekefen e OF

Afkikifklskifsiicisisk

fakitkiricikan

HRARD TSR Rk sKEf IR Stk I
fikikikIsiwa AGFASFSGF A N
FDFGFHOH WIWIWIW

WIUWHGDH cliveusuie
gifkikjdgtiidkjankakicaikain *
I

fdgdfdddidiqwiiwlwiwiwiwigtehdfc
dicbexiounayyyoahl ASKSKSKSKKKS)
hl'ﬂ;w_'"m{rlyh1lvﬂuujwwkuldlikiky K
skikskjstyjoeu vuyuwuydihoshonbes
tkekckekek

} ckekkekeke

giruvisisisinxavav.mt mm e moma o

]
PRUY SR

130

home applications

To LOAD the text recorded with the revised SAVE routine, correspond-
ing changes must be made to lines 1540 and 1550 of the program. If text lines
are more than 60 characters long, NL should be redefined in program line 30
to approximately 7200/(characters per line). The exact value should be a
number divisible by lines per block. For example, NL = 120, and 120 is
evenly divisible by four.

VIDEO. This command displays the text file on the video display. If the
line length is greater than 60 characters (64 if LINE NOS. was set Nin FOR-
MAT), the lines will “wrap around” to the next display line. After each
displayed page of text, the program halts, showing PRESS ENTER?. To dis-
play the next page just press ENTER; to return to the command mode (to
EDIT a line, etc.) key in any letter, then press ENTER. VIDEO may show
one of three non-text markers at the end of a line: a left arrow for do-not-
justify, a down arrow for end-of-page, or an underline after any trailing
space. These markers allow you to keep better track of the text.

EXIT. This command allows for a graceful end to the program. More im-
portantly, it CLEARs the string space to its normal value, so that the next
program you run does not crash. It is easy to forget to CLEAR 50. It also
returns the TRS-80 to its normal speed (OUT254,0—see below). This com-
mand asks again if you really want to EXIT from the program to avoid ac-
cidental loss of the text file.

HELP. This command displays all 17 legal commands and their one-word
definitions, to refresh your memory. It also tells how to return to the com-
mand mode, for those commands that do not automatically return.

Potential Program Problems

Speed is the most noticeable problem, but this is inherent in BASIC
strings. The lack of speed shows up as brief pauses in program operation. As
the text file becomes full, the pauses become more frequent and longer.
Each time BASIC manipulates a string, it must assign a new location foritin
string space. This quickly fills up string space, so a garbage collection
routine is used to delete all of the old, no-longer-needed versions. This
periodic garbage collection causes the pauses. Some other BASICs avoid this
string-handling problem by requiring that the length of all strings be specified
in advance, thus trading off flexibility and memory space for speed.

One partial solution to the speed problem is to install the Archbold
TRS-80 clock control board. The OUT254,1 at the end of line 50
automatically increases speed by 50 percent if this has been done. Other-
wise, it has no effect.

A program halt accompanied by a BASIC error message or from accident-
ally touching BREAK does not necessarily mean that your text file is lost. In
most cases you can recover by typing GOTO60, then pressing ENTER. This

131

home applications

puts you back into the command mode.

A trailing space in the 60th position on a line will cause a wrap-around
underline marker on the next line when displayed. Such a trailing space can
be removed by using EDIT, COMPILE, or JUSTIFY.

Under some conditions, an extra blank line may be inserted in the video
display when text is being keyed in. This is not an extra line in the actual text
file, as can be verified by using VIDEO.

When using EDIT, if you delete all printable characters following the
cursor, it stops flashing and becomes solid. This does no harm; press L to get
back to normal operation.

If a text line has more than 22 words and requires over 21 spaces to justify,
an error will occur in JUSTIFY. To avoid this, redimension arraysS and T in
line 30, but not too much, or you will run out of memory.

Program Modifications

This program requires 7226 bytes of memory as loaded, but uses nearly all
the memory of a 16K TRS-80 when RUN. For a 16K TRS-80, key in the Pro-
gram Listing in compressed format, without any of the extra spaces added
for legibility.

A 16K Model IIT TRS-80 will require changing CLEAR 7400 to CLEAR
7130 and changing NL = 120 to NL =116 in line 30. For a 32K TRS-80,
change CLEAR7400 to CLEAR22000 and change NL = 120 to NL = 360 in
line 30. This not only triples the size of the text file, but also increases the
program’s speed.

This program uses the ASCII control characters 17 and 20 as markers rep-
resenting end-of-page and do-not-justify, respectively. If these characters
are not NOPs (no operation) on your printer, change 17 in program lines
320, 1040, 1420, 1730, and 1930 and/or change 20 in program lines 470,
1050, 1180, 1420, and 1940 to values that do not affect your printer.

You may want to add extra features to this program. Be warned: There
are less than 100 bytes of memory left unused. For everything added,
something will have to be deleted. I have already minimized REMarks, used
multiple statement lines, reused variables, and left out all spaces to save
memory, as well as to increase speed.

To help with possible modification, I have included Table 4 showing ar-
rays and variables. A brief REMark shows the entry point for each com-
mand. Even more brief REMarks show the entry points for subcommands in
ADD and EDIT.

Arrays
A$(120) Lines of text
X$(3) Buffer text lines for LOAD and SAVE
$(20) Position to enter space for JUSTIFY
T(20) Number of spaces to enter for JUSTIFY Table continued

132

NRXCOmOm"WZ ZZL
ocmTZ zg

home applications

Variables

Input entry character

Blank to end of line (ASCII 30)—code may differ on some systems
Cursor (graphics character 143)

Format string for line number (“### ")

Heading for each page

Left part of text string

Line numbers? (“Y” or “N”)

Page numbers? (*Y” or “N”)

Print page number for page number 1? (“Y"/“N”)

Number “n” string for EDIT subcommands

Right part of text string

Space character (* ”)

Temporary text manipulation string

Temporary text line string for EDIT

ASCII value of text character

Beginning display line

Cursor position

Cursor displacement for wrap-around lines; temporary cursor position
First line for COMPILE, DELETE, or MOVE; found character flag for EDIT
search (0,1)

First line of text for VIDEO or PRINT

First page number to be listed

Multi-use integer counter

Insert text flag for INSERT (0 or 1)

Multi-use integer counter

Multi-use integer counter, L + 1

Line number of text

Last line number of text

Line length in characters

Left margin to start PRINTing

Multi-use integer counter

Number “n” for EDIT subcommands; number of spaces to skip for JUSTIFY;; first
new line number for MOVE

Number of lines of text

Position in text line, PRINT line number

Page length in number of lines

‘Temporary position in text line

Return or REPLACE flag (0 or 1)

Spacing between text lines

ASCII value of space (32)

Length of A$(L) string, page number

Length of A$(L + 1) string, move cursor flag for EDIT (-1 or + 1)
Last line for COMPILE, DELETE, or MOVE

Table 4. Arrays and variables

133

home applications

Program Listing

18 CLS :
PRINT TAB(20)"BASIC WORD PROCESOR"
20
' BY D.D.HINRICHS
30 CLEAR 7400:
DEFINT A - Z:

NL = 120:
DIM AS$(NL),X$(3) ,5(28),T(28)
40 BS = CHRS(30):
C$ = CHRS$(143):
FS = "##4 ":
N§ = "y";
PN$ = "N":
Pls - IIYII
50 8§ = " ";
H$ = 8§:
LA = - 11
P =1z
FP = 1:
PL = 15:
LL = 68:
LM = 10:
U = 32:
OUT 254,1
60 L = LA:
IT = @:
R = 8:
As = “":
PRINT

INPUT "COMAND";AS:
IF A$ = "" GOTO 80
78 A = ASC(AS) ~ 64:
IF A > @ ON A GOTO 99,480,510,766,790,1220,806,1326,1356,1398,151
8,1526,1580,890,80,1640,80,1756,1776,88,80,1830,808,1978
B8 PRINT "** ENTRY ERROR *#%",
GOTO 60
98 CLS
D= 8:
N§ = "y":
IF LA < @
THEN
L = 0:
GOTO 130:

' ADD
168 IF NL = LA + 1
THEN
210:

ELSE
IF L > FL + 12
THEN
B =1L - 12;:
ELSE
B = FL

D+ (X + 3) / 64

L - FL + D) * §4:
IF C > 896 PRINT :

148 PRINT @C, USING FS$;L;:
PRINT AS$(L);:
P = LEN(AS(L)) + 1:

134

150

1640
1789

180

190

210

220

230

240
259

27¢

280

290

home applications

won

C C + P + 33
K L +1
PRINT @C,CS$;:
AS = INKEYS$:
PRINT @C,8§;:
IF AS = "" GOTO 156
GOSUB 298:
ON A - 7 GOTO 360,410,318
IF A = 13
THEN
AS$ = S$:
GOTO 214:
ELSE
IF A = 24
THEN
380:
ELSE
IF A = 31 GOTO 460
IF A = 25
THEN
430:
ELSE
IF A = 26
THEN
33¢
IF A = 96 IF LA <K L
THEN
LA = Lt
GOTO 66:
ELSE
69
PRINT @C,AS;:
AS(L) = A$(L) + AS:
IF P < = LL
THEN
P=P+ 1:
C=C+ l:
GOTO 150
IF R GOTO 60:
ELSE
IF NL < = K PRINT :
PRINT "FILE FULL":
LA = NL - 1:
GOTO 68
IF LEN(AS$(K))
THEN
L = K:
GOSUB 1368
IF K > LA
THEN
LA = K
IF AS = S% GOTO 288
FOR M = LL + 1 TO 2 STEP ~ 1l:
AS = MIDS(AS{L) M,1):
IF AS < > S$ NEXT M:
GOTO 288
AS(K) = RIGHTS(AS(L),LL - M + 1):
AS(L) = LEFT$(A$(L),M - 1)
PRINT @€C - LL + M - 1,BS$;:
L = K:
GOTO 130
A$(L) = LEFTS$(AS(L) ,LL):
L = Kz
GOTO 139
A = ASC(AS):
IF A > 64 AND A < 91
THEN
A=A + U:
ELSE
IF A > 96 AND A < 123
THEN

135

Program continued

300

328

338

3589

368

370

380

408
418

438

440

458

470

480

home applications

A=A-U
AS$ = CHRS$(A):
RETURN
IF P > LL GOTO 210:
" D
PRINT @C, CHR$(92);:
A$(L) = AS$(L) + CHRS$(17):
A$ = S§:
GOTO 210
IF P > LL GOTO 218:

s-p
= (L - FL + D) * 64 + 4:
F C> 980
THEN
C = 908
GOSUB 1188
P =1:
A$ = S§:
GOTO 216
IF P = 1 GOTO 150:
'L
C=C =~ 12

'
o
I

A$(L) = LEFTS(AS(L),P - 1):
GOTO 158
IF P = 1 GOTO 158:

' 8-L
AS(L) = "
P =1
C= (L~ FL +D) * 64 + 4:
IF C > 940
THEN

C = 906
PRINT @C,BS;:
GOTO 158
IF P > LL - 6 GOTO 150:
H
AS $(L) + STRINGS$(5,8$):

7]
[}
=

GOSUB 1200:

P =1:

AS = S5§:

GOTO 218

IF P > L GOTO 210:

' CL

PRINT @C, CHR$(93);:
AS(L) = AS$(L) + CHR$(29):
AS = 8§:

GOTO 210

CLS :

PRINT "DELETING BLANK LINES":
FOR J = LA TQ @ STEP -~ 1:

' BLANK

136

5@8

516

520

530

540

558

568

590

680

620

home applications

IF A$(J) = "" FOR I = J TO LA:

AS(I) = AS(I + 1):
NEXT I:
AS(LA) = "":
LA = LA - 1
NEXT J:
IF R
THEN
RETURN :
ELSE
183¢

INPUT "FIRST LINE TO COMPILE";F:

IFF <O
THEN
F = @:

! COMPILE

INPUT "LAST LINE TO COMPILE";Z:

IF 2 > LA
THEN
Z = LA
IFF >=1
THEN
86:
ELSE
CLS :
PRINT "COMPILING":
FORL = F TO 2 - 1:
L +1
X = LEN{AS$(L)):
nn,

ELSE
IF X < = LL GOTO 608
FOR I = X TO 1 STEP - 1:
A§ = MIDS(AS(L),I,1)
IF A$ < > 8%
THEN
X$ = AS + X$:
NEXT I:
GOTO 608:

EiSE
IF X$ = "" NEXT I
A = ASC({ RIGHTS(XS,1)):

IF A = 33 OR A = 46 OR A = 58 OR A =

THEN
Xs P X$ + n ”
AS(L) = LEFTS$(AS$(L),I =~ 1):
IF LEN(AS(K)) = ¢
THEN
AS(K) = XS§:
GOTO 540
AS(K) = X§ + S$ + AS$(K):
GOTO 548
X = LEN(AS(L)):
IF X < 2
THEN
620:
ELSE
FOR I = X TO 2 STEP - 1
IF RIGHTS$(AS(L),1) = S$
THEN
AS(L) = LEFTS$(AS$(L),I - 1):
NEXT I
NEXT L:
FORL =F TO % - 1:
K=15L+1

137

63

Program continued

638

640
658

660

67¢

688
690

708

718

720

738

7486

7580

768

770

788

= LEN(AS$(L))
= §§(A$(K))

"

FOR

home applications

X = D OR Y = @ GOTO 758
SC(RIGHTS (AS(L) ,1))
A =33 ORA =46 ORA = 58 OR A = 63

A$(L) + "o,

A$ = MIDS(AS(K),I,1)

IF A$ < > 88
THEN
X§ = X$ + AS:
NEXT I
ELSE

IF X$ = "" NEXT I
IF LL - X < I GOTO 718

Y=Y~ I:
IFY <8
THEN

Y = @

AS$(L) = AS(L) + SS + X$:
AS(K) = RIGHTS{(AS(K),Y):

GOTO 638
X = LEN(AS(L))
IF X <
THEN
730:
ELSE

FOR I =X TO 2 STEP - 1
IF RIGHTS(AS(L),1) = S$
THEN

AS(L) = LEFTS(AS(L),I - 1):

NEXT I
IF Y <2
THEN
758:
ELSE

FOR I =Y TO 2 STEP ~ 1

IF LEFT$(AS$(K),1)
THEN

= 88

A$(K) = RIGHTS(AS(K),I -~ 1):

NEXT
NEXT L:
X = LEN(AS$(2)):
GOTO 9608

INPUT "FIRST LINE TO DELETE";F:

IFF <8

' DELETE

INPUT "LAST LINE TO DELETE";Z:

IF 2 > LA
THEN
2 = LA
IF F > %
THEN
80:
ELSE
FOR I =F TO Z:
AS(I) = "";
NEXT I:
GOTO 1838

798 INPUT "EDIT LINE";L:

' EDIT
800 C

= 43

IFL < 80RIL > LAOR AS(L) = "" GOTO 88:

138

home applications

P = l1:
X$(0) =
N§ = "Y
819 CLS :
I = L
GOSUB 19148:
N = 1:
= nn
820 GOSUB 910:
IF A > 47 AND A < 58
THEN
Q$ = Q% + AS:
N = VAL(QS$):
GOTO 820
838 M = B:
IF A = 8
THEN
Y = - 1t
GOSUB 946:
ELSE
iIFA=90RA=1U
THEN
Y = 1:
GOSUB 94¢
848 IF A = 97
THEN
AS(L) = X$(8):
GOTO 88#:

'A
85¢ IF LEN{AS(L)) > = LL GOTO 878
868 IF A = 25 GOSUB 1209:
ELSE
IF A = 26 GOSUB 1188
878 IF A > 98 ON A - 98 GOSUB 960 ,1000,1960,1960,1968,10820,1038
888 IF A = 115 GOSUB 1128:
ELSE
IF A = 126 GOSUB 1178:
ELSE
IF A = 188 GOTO 889
898 IF M =1
THEN
N = 1:
Q§ = "":
GOTO 820:
ELSE
IF R PRINT @320,;:
ELSE
810
9¢@ IF LL < X PRINT "LINE";L;"HAS";X;"CHARACTERS":
GOTO 60:
ELSE
1839
918 X$ = MIDS$(AS$(L),P,1)
920 PRINT @C,CS;:
A$ = INKEYS:
PRINT @C,X$;:
IF A$ = "" GOTO 920
939 GOSUB 294:
X = LEN(AS(L)):
IF A= 13 ORA = 96
THEN
R=1:
RETURN :
ELSE
RETURN
946 M = 1:
FOR I = 1 TO N:
P=P+Y:
IF P > X Program continued

"A$(L):

139

home applications

THEN
P = X:
RETURN
958 IF P < 1
THEN
P =1:
RETURN :
ELSE
C=C+Y:
NEXT I:
RETURN
960 Q = P:
D= C:
FOR I = 1 TO N:
GOSUB 918:
IF R OR A = 27
THEN
P = Q:
C =D
RETURN :
e
978 PRINT @C,AS$;:
GOSUB 1184:
P =P 4+ 1:
GOSUB 11108:
AS$(L) = L$ + AS + RS
A-—--

980
99¢

1004

'D
1610 GOSUB 1100:
Q0 = P:
P =P + N:
GOSUB 1114:
AS(L) = L$ + RS:
P = Q:
RETURN
1820 cosus 11689:
A$(L) = L$ + 8$:
PRINT @C,BS:
i H
1630 GOSUB 91@:
IF R OR A = 27 RETURN :
‘1
10408 IF A = 10
THEN
AS(L)
R = 1:
RETURN
1050 IF A = 31
THEN
AS(L) = A$(L) + CHRS$(28):
R = 1:

= AS(L) + CHRS(17):

RETURN
1060 PRINT @C,AS;:
IF A =8
THEN
Y = - 1
GOSUB 944:
GOTO 1039

140

home applications

16786 IF A = 9

THEN
Y = 1:
GOSUB 940:
GOTO 1638:
ELSE
IPP>X
THEN
X =P
1088 GOSUB 1100:
GOSUB 1114:
AS(L) = L$ + AS + RS:
PRINT @C,B$;AS$ + RS
1090 C = C + 1:
P=P + 1:
GOTO 1830
1108 L$ = "7
IF P < 2 RETURN :

ELSE
L$ = LEFTS$(AS(L),P - 1}):
RETURN

1118 R$ = "":
IF P > X RETURN :

ELSE
RS = RIGHTS{AS(L),X - P + 1):
RETURN
1120 GOSUB 918:
Q= P:
D = C:
[
1138 FOR T = 1 TO N:
F=0:
FORJ = Q + 1 TO X:
D=D+1
1149 IF MIDS(AS$(L),J,1) = AS
THEN
F = 1:
Q = J:
J =X
1150 NEXT J:
NEXT I:
iF F
THEN
P = Q
C =D
1168 A = U:
RETURN
1178 A$(L) = AS(L) + S$8:
P =X + 1:
C =P + 3:
GOTO 1830:
' x
1180 AS(L) = STRINGS((LL - LEN(AS(L))) / 2,32) + AS$(L) + CHR$(20):
* S-b
1198 PRINT €C,BS$;AS$(L); CHR$(93);:
RETURN
1208 A${L) = STRINGS$(LL - LEN(A$(L)),32) + AS$(L):
' S~R
1218 PRINT @C,B$;AS(L);:
RETURN
1228 CLS

PRINT "LINE LENGTH =";LL,:
INPUT "NEW =";LL:

' FORMAT '
1238 PRINT "LINE SPACES =";S,: Program continued

141

home applications

INPUT "NEW =";8§

1248 PRINT "LINE NOS. = TTINS;, e
INPUT "NEW (Y/N)";N$
1250 PRINT "FIRST LINE = "iFL,:

INPUT "NEW =";FL

1260 PRINT "LEFT MARGIN =":LM,:
INPUT "NEW =";LM

1276 PRINT "PAGE LENGTH =";PL,:
INPUT "NEW =";PL

12806 PRINT "PAGE NOS. = 'PPPNS; Y,
INPUT "NEW (Y/N)";PN$

129¢ PRINT "FIRST PAGE = ";FP,:
INPUT "NEW =";FP

1368 PRINT "PAGE 1 NO, = M 2:2 T TR
INPUT "NEW (Y/N)";Pl$

1310 PRINT "HEADING = '";H$;"' "t
INPUT "NEW {Y/N)";H$:
GOTO 69

1320 CLS :

PRINT "LEGAL COMMANDS ARE:":
' HELP

1338 PRINT "a ADD","B BLANK","C COMPILE","D DELETE","E EDIT","F FORMA
T","d HELP","I INSERT","J JUSTIFY","K KILL","L LOAD","M MOVE","p
PRINT","R REPLACE","S SAVE","V VIDEO","X EXIT®

1348 PRINT "KEY 'SHIFT-@' TWICE TO RETURN FROM A,E,I,R TO COMMAND MOD
E":
GOTO 60

1356 INPUT "INSERT AT LINE®";L:
IF L <P ORL > LA GOTO 80:

' INSERT
1360 IF NL = LA + 1 PRINT "FILE FULL":
GOTO 68:
ELSE
IF R GOTO 60
1378 FOR I = LA TO L STEP - 1:
AS(I + 1) = AS(I):
NEXT I
1386 AS(L) = v,
LA = LA + 1:
L =1L~ 1z
IF IT RETURN :
ELSE
IT = 13
GOTO 908
1398 CLS :

PRINT "JUSTIFYING":
FOR L = § TO LA:
X = LEN(AS(L)):

' JUSTIFY
1488 IF X < 2 GOTO 1588:
ELSE
FOR I = X TO 2 STEP ~ 1:
A = ABC{ RIGHTS (AS(L),1})
1410 IFA=1U
THEN
A$(L) = LEFT$(AS(L),I - 1):
X=X -1
NEXT I
1428 IF X > = LL OR A = 17 OR A = 20
THEN
1500:
ELSE
J =g
1

K =
FORI =1 TO X

1430 IF MIDS(AS$(L),I,1) < > S$
THEN

142

horme applications

1448 NEXT I:

IF J = 8 GOTO 15640
1450 K = RND(J) - 1:
IF INT(J / 2) =J / 20RJ =1
THEN
N = 1l:
ELSE
N =
14680 FOR I 1 TO LL - X:
T (K) T(K) + 1:
K = K + N:
IFK>J -1
THEN
K=K-~-Jd
1478 NEXT I:
FORI =J - 1 TO @ STEP ~ 1l:
A$ = STRINGS(T(I),SS$):
T(I) 4]
1489 AS(L) = LEFTS$(AS$(L),S(I)) + AS + RIGHTS (AS(L), LEN(AS$(L))

o

LR I

1499 NEXT I
1568 NEXT L:
GOTO 1839
1516 CLS :
INPUT "REALLY KILL (Y/N)";AS:
IF AS = "Y"
THEN
RUN :
ELSE
60:

' KILL
1520 GOSUB 1828:
CLS :
PRINT "LOADING":

' LOAD
153@ INPUT % - 1,LA,LL,S,N$,FL,LM,PL,PN$,FP,P1$,HS
154¢ FOR I = @ TO LA STEP 4:

INPUT # - 1,X$(0),X$(1),X5(2),X$(3)
155¢ FOR J = 8 TO 3:

L =1+ J:
X = LEN(X$(J)):
Ag(L) = "":

IF X < 1 GOTO 1578
1560 FOR K = 1 TO X:
AS$(L) = AS$(L) + CHR$(ASC(MIDS(X$(J),K,1)) - 128):
NEXT K
1570 NEXT J:
NEXT I:
GOTO 69
158¢ INPUT "FIRST LINE TO MOVE";F:
IF F <@
THEN
F =0:

' MOVE
1598 INPUT "LAST LINE TO MOVE";Z:
iF 2 > LA
THEN
Z = LA
1608 IF F > 2
THEN Program continued

143

1610
1628

1630
1648

1658
1668

1678

1680
1692
1790
1718
1728
1730
1748

1750

1760

1778

1788
1790

home applications

80:
ELSE
INPUT "FIRST NEW LINE";N:
FOR I = F TO 2
IFP LEN(A$(N)) PRINT "LINE";N;"NOT EMPTY":

A$(N) = AS(I):
AS(I) = "":

IF N > LA
THEN
LA = N

NEXT I:
GOTO 1838
IF PEEK(14312) < 128
THEN

X = FP:

M = FL:

GOTO 1670:

' PRINT
INPUT "PRINTER NOT READY, ABORT (Y/N)*®;AS$
IF A§ = "y"
THEN
60:
ELSE
INPUT "PRESS ENTER";AS:
GOTO 1648
R = 1:
GOSUB 486:
CLS
PRINT "PRINTING"
LPRINT CHR$(38):
IF PN$ < > "Y" OR (P1§ = "N™ AND X = 1) GOTO 1708
LPRINT AB(LM)HS; TAB(LL + LM = 7)"PAGE"; USING "###";X:
LPRINT TAB(LM)
FORP =M TOM + PL — 1:
IF P > LA GOTO 1748
M=M+1:
IF S LPRINT STRING$(S-1,138)
LPRINT TAB(LM);:
IF N§ = "Y" LPRINT USING F$;P;
LPRINT AS(P):
IF ASC(RIGHTS$(AS(P),1)) < > 17 NEXT P
LPRINT CHR$(28):
IF P > LA
THEN
60:
ELSE
X =X+ 1:
GOTO 1688
INPUT "REPLACE LINE";L:
IF L < 4 OR L > LA GOTO 88:

' REPLACE

GOSUB 1820:
CLS :
PRINT "SAVING":

' SAVE

PRINT # - 1,LA,LL,S N$ FL,LM,PL,PN$,FP,P1$,HS:
FORL = @ TO LA STEP

FOR J = # TO 3:

J-

I L +
X = LEN(AS(D):
X$(J3) = "%

AH i

144

home applications

IF X < 1 GOTO 1818
186 FOR K = 1 TO X:
X$(J) = X$§(J) + CHR$(ASC(MID$(AS(I).K,1))
NEXT K
1818 NEXT J:
PRINT # - 1,X$(8),X$(1),X$(2) ,X$(3):

NEXT L:
GOTO 64
1826 INPUT "READY CASSETTE, THEN PRESS ENTER";AS:
RETURN
1839 CLS :
X = FP - 1:
FOR M = FL. TO LA STEP PL:
X =X + 1:
' VIDEO

1840 IF P1$ = "N" AND X = 1 GOTO 1860
185@ IF PN$ = "Y" PRINT HS$; TAB(LL ~ 7)"PAGE" USING "###";X:
PRINT
1866 FOR I =M TO M + PL -~ 1:
IF I > LA GOTO 1890
1878 IF S PRINT STRINGS(S - 1,18)
1886 GOSUB 1918
1894 NEXT I:
A$ = "',
IF I < = LA INPUT "PRESS ENTER";AS:
IF A$ < > ""M = LA
1969 NEXT M:
L = LA:
GOTO 60
1919 Y = LEN(AS$(I)):
iF Y
THEN
A = ASC{ RIGHTS$(AS$(I),1)):
ELSE
A=0
1928 IF N$ = "Y" PRINT USING F$;I;
193¢ PRINT AS$(I);:

IF A = 17 PRINT CHR$(92);
1948 IF A = 28 PRINT CHR$(93};:
ELSE

IF A = U PRINT CHR$(95);
19508 IF N$ < > "Y¥" OR ¥ < > 60 PRINT
1560 RETURN
1978 CLS :
INPUT "REALLY EXIT (Y/N)";A$:
IF A$ < > "Y" GOTO 6@:

' EXIT
1980 CLS :
CLEAR 50:
ouT 254,6:
END

145

- HOME APPLICATIONS

States Worked:
A Program for Radio Amateurs

by Edward G. McCloskey KB3CK

here are many systems for keeping track of which states have been

worked or confirmed on each band. I've tried index cards, notebooks, and
filing systems, but I could never find one system that was both easy to maintain
and allowed quick retrieval of information. The following program meets all
my requirements, and it will most likely be an improvement over any written
system you may be using. With this program, you can display the status of each
state for an entire band, display each state with its status on each band, list all
states not confirmed on any band, and change the status of any state with a
single keystroke.

Three status codes indicate that a state is: (1) not worked, (2) worked, but not
confirmed, and (3) confirmed. Table 1 explains each of the nine menu functions
and provides the necessary keying instructions for each function. The state
names are arranged alphabetically by call district, with Hawaii and Alaska at
the end of the list (see lines 35120 and 35130 in the Program Listing). The ab-
breviations used are those found in the U.S. Callbook. Table 2 contains an
alphabetical list of all symbols used in the program along with a comment, line
number, and memory location for each,

MenuNo. Function Performed

1. Start New Index: Displays the status of all states one band at a time, starting with 10
meters and allowing status changes to be made for any state. The cursor (left arrow)
points to the state for which changes will be accepted. Press 1, 2, or 3 to change the
displayed status. The new code will be displayed as the cursor moves to the next state.
The cursor may be moved backwards to change any input errors by pressing B. After
all desired changes have been made, press X to move to the next band. This function is
intended for initialization of the status codes, but may be used at any time.

2. Input Data Tape: Reads all status codes from tape, and returns to the menu when all
status codes have been read.
3. Review Specific Band: Displays one band only (your choice), and returns to the menu

whenever any key (except shift) is pressed. This is a display function only. No changes
can be made to the status codes.

4. Record Data Tape: Records all status codes on tape, and returns to the menu when
all status codes have been recorded. A new data tape must be recorded any time the
status of a state has been changed.

5. Review Specific State: Displays any state, along with its status on each band. The
status code for any band may now be changed using the same keys as described under
menu function 1. The cursor (right arrow) points to the status code that may be changed.

146

home applications

6. Review All Data: Displays all bands in succession, starting with 10 meters and ending
with mixed band. Press any key to move to the next band. This is a display function only.

7. Review Mixed Band W.A.S.: Displays all states and the status of each. Press any key to
return to the menu. This is a display function only.

8. List Needed States: Displays all states not at status 3 on each band, starting with 10
meters and ending with‘mixed band, Press any key to return to the menu. Thisisa
display function only.

9. End Session: Displays a reminder message to record a new data tape if any changes

have been made. Press any key to enter BASIC. Press X to return to the menu.
Table 1. Menu functions

I have attempted to document this program in a way that will be useful to
beginners. The comments in the Program Listing are intended to detail what
each line is doing, while the comments in Table 2 explain the operation of each
individual routine.

Program Operation

Menu Display: Lines 300 through 500 display all menu choices and the input
staternent for choice selection. The message statement used to display the menu
is contained in lines 35000 through 35020. Whenever a slash (/) is encountered
in the message statement, program execution jumps to line 450, where the video
location for the next character is updated. An exclamation point is used to signal
the end of the message statement. These two methods avoid unecessary line
numbers and reduce the number of spaces needed in each message line. Lines
520 through 760 examine the keyboard input from line 540 and send program
execution to the selected function. Any character other than 1 through 9 returns
execution to line 300, and the above procedure is repeated until proper
keyboard input is received.

New Index: Lines 1000 through 1200 display all state names and draw the
graphics display. Callsto Al, A5, A2, A4, and A8 are made to display the status
codes for each state on 10, 15, 20, 40, and 80 meters, respectively. A call to UP
is made for each display to allow the status codes to be changed.

Input Data: Lines 2000 through 2210 read the data from tape, loading 300
bytes of data into memory locations 48D4H through 49FFH. Execution returns
to line 300 after all data has been read.

Review Band: Lines 3000 through 3750 contain the routines used to review
each of the five bands. The first function of this section is to determine which
band you want displayed. Lines 3050 and 3060 get two characters from the
keyboard. The first character mustbeal, 2,4, or8, and the second character
must be a 5 or 0, otherwise execution returns to line 3000, and the above pro-
cedure is repeated until correct input is received. Once a correct input is found,
program execution jumps to X1, X5, X2, X4, or X8.

147

home applications

Record Data Tape: Lines 4000 through 4210 record 300 bytes of data from
memory locations 48D4H through 49FFH onto tape, returning to the menu
display when all data has been recorded.

Review Specific State: Lines 5000 through 5090 determine which state is to
be reviewed, based on keyboard input at line 5050. Lines 5100 through 5310
search the state list until a match with the input is found, with the IX register be-
ing used to point to the location of the correct status code. Line 5110 checks for
theend of the state list if the keyboard input does not match any state, and ex-
ecution returns to line 5000 for another input. Lines 5320 through 5440 display
a heading and the name of the state being reviewed. Lines 5450 through 5580
display the status codes for the state being reviewed and the key instructions.
Lines 5590 through 5620 restore the HL register to the 10-meter status code and
put the cursor on screen. Lines 5630 through 5740 check for correct keyboard
input, sending program execution to the selected operation. Line 5750 puts the
new status code into memory, and line 5760 displays the new code on the
screen. Lines 5770 through 5780 are used to move the cursor and adjust the HL
and IY registers accordingly.

Review All Data: Lines 6000 through 6120 display each band in succession,
starting with 10 meters and ending with 80 meters, then going to the mixed
band routine to display the mixed band status.

Review Mixed Band W.A.S.: Lines 7000 through 7130 display all data with
calls to subroutines QP and MX. Lines 7300 through 7360 reset all status codes
for mixed band to 1. Lines 7400 through 7520 check the status of each state on
all five bands, sending execution to line 7900 each time a status code greater
than 1 is found. Lines 7900 through 7920 put the status codes found into the
proper memory locations for mixed band.

List Needed States: All bands are displayed by lines 8000 through 8340, with
each band requiring seven program lines. Calls to LP and MP are made for
each band being displayed. The LP routine (lines 8700 through 8770) displays
the heading and sets the memory pointers to the location of the status codes for
the band being displayed. The MP routine finds all states not at status 3 by call-
ing P4 to display the state name.

End Session: Lines 9000 through 9060 display a message on the screen as a
reminder to record a new data tape if any changes have been made to any of the
status codes.

Print Subroutine: Lines 25000 through 25060 are used to display all standard
message statements throughout the program. Upon entry to this routine, the IY
register holds the address of the first character to be displayed, and the IX
register holds the video location where the first character is to be printed. Line
25010 checks for the end of the message statement and returns to the calling
routine whenever an ! is found.

Display Status Subroutine: Lines 25100 through 25290 are used to display the

148

home applications

status codes of each state whenever an entire band is being displayed. Upon en-
try, the IX register holds the address of the first status code to be displayed. The C
register is used to count five columns for display, and the B register is used to
count 10 rows in each column. The IY register is used as a pointer for the screen
locations, with the HL register helping out when moving from the bottom of
one column to the top of the next.

Display States Subroutine: Lines 25500 through 25730 are used to display the
state names whenever an entire band is displayed. The operation of this routine
is basically the same as that of the display status subroutine with some dif-
ferences. The roles of the IX and IY registers are reversed, and there is no need to
count columns, since the end of this routine occurs when an exclamation point is
encountered at line 25570. This frees the B register to be used to count the three
bytes of each state name. After all state names are displayed, execution jumps to
GH to draw the graphics display.

Graphics Display Subroutine: Lines 25740 through 25970 draw the graphics
display whenever an entire band is displayed. The C register counts 10 graphics
characters per vertical line, and the B register counts six vertical lines. The DE
register is used to increment the video location by 12 spaces each time a graphics
character is printed, and by four spaces each time a row of six is completed.
Lines 25920 through 25970 draw the bottom line of the display.

Display Band Subroutines: Subroutines Al, A5, A2, A4, and A8 are used to
display 10, 15, 20, 40, and 80 meters respectively. All are identical except for
the data location (D1, D2, etc.) and message statement (MA, MB, etc.) used.

Update Data Subroutine: This routine is used along with the new index
routine. Program control is passed to this routine after each band is displayed.
Upon entry, the HL register contains the address of the first data byte of each
band. Lines 27000 through 27030 set the column count, row count, and video
pointers. Lines 27040 through 27180 get and evaluate keyboard input, sending
program execution to the desired function when proper input is received. Lines
27190 through 27270 store and display new status codes, adjust all necessary
counters and pointers, and return to line 27040 when completed. Lines 27280
through 27360 are used when the cursor has reached the bottom of any column,
moving the cursor to the top of the next column, and resetting the row counter.
Lines 27370 through 27900 are used when the cursor is to be back spaced.
Special routines are used when the cursor is at the bottom of the last column, at
the top of column one, and at the top of any other column.

When the cursor reaches the bottom of the last column, and a status code (1,
2, or 3) has been entered for Alaska, the cursor has reached a limit and will con-
tinue to point to AK. The only keyboard inputs that will be accepted are B and X.

The remainder of the Program Listing (lines 35000 through 35180) con-
sists of the message statements used throughout the program. The ASCII
codes for each message are listed in lines of 16 bytes each with the beginning
address for each 16-byte line shown.

149

home applications

SYMBOL ADDR

Al
A2
A4
A5
A8

4FOF
4F35
4F48
4F22
4F5B
4ECD
4EE6
4F04
4EF1
4FC4
5022
4A41
4906
496A
499C
4938
49CE
4A08
4E92
4EA0
48D4
4EAF
4E4E
4F9E
4FB2
4FDF
4FFD
5012
4FDO
4F7A
4C2D
4C45
4B07
4ED9
4CA3
4AC2
4D46
4D4C
4D64
4E11
5034
5153
5173
519A
51C2
51E4
51EF

LINE

26200
26400
26500
26300
26600
25680
25790
25920
25840
27370
27840
520
140
160
170
150
180
240
25220
25500
130
25550
9000
27190
27980
27520
27630
27780
27420
27040
5100
5210
3030
25740
5630
2000
7420
7440
8000
8700
35000
35030
35040
35060
35070
35080
35090

FUNCTION

Display 10 meter status
Display 20 meter status
Display 40 meter status
Display 15 meter status
Display 80 meter status

Move to next column

Display one graphics row
Draw bottom graphics line
Move to next row

Setup to back space cursor
Back space or move to next function
Determine menu choice selected
First byte of 10 meter data
First byte of 20 meter data
First byte of 40 meter data
First byte of 15 meter data
First byte of 80 meter data

Set all data to status 1

Move to next column

Display state names

First byte of mixed band data
Display one column

Start of end session routine
Change status code

Move cursor to next column
Move cursor back one column
Move cursor back to beginning
At end of display, get input
Move cursor back one row

Get keyboard input

Search for first letter match
Check second letter

Get keyboard input for band
Display graphics

Get one byte from keyboard
Start of tape input routine
Setup to move data (50 bytes)
Check data to be moved

Start of list needed states routine
Display message and set counters
Menu display message

Input data tape message

Band choice message

Record data tape message
State choice message

Mixed band message

List needed states message

continued

150

home applications

M8 520E
M9 5270
MA 5190
MB 5204
MC 534B
MD 5355
ME 4D5D
MF 535F
MG 5307
MJ 5330
MN 4A22
MP 4DFE
MU 4A14
MV 4CCl
MX 4D40
NP 4C76
NW 4A81
0 4BEE
P2 4C5A
P3 4E7F
P4 4E29
PM 4A36
PT 4E64
01 4D38
QP 4D30
RA ACDE
RB 4AFC
RC 4BDI1
RS " 4COB
RX 4D05
ss 4E74
T 4BF6
U 4AET
UP 4F6E
v 3C00
w 4ADF
X1 4B3B
X2 4B77
X4 4B95
X5 4B59
X8 4BB3
XV 4B21
XX 4B28

End session message

State list message

10 meters message

15 meters message

20 meters message

40 meters message

Move data

80 meters message

Heading message for review state
Key instructions message
Check message M1 for / or |
Determine if state is needed
Display menu

Move cursor and data pointer
Setup to move data (5 bands)
Display data

Start of new index routine
Output data (150 bytes)

Print heading

Display one column

Display needed state and its status
Add 32 spaces if / is found
Routine to print messages
Put 1 in status location

Set mixed band data to 1
Start of review all data routine
Start of review band routine
Start of record data routine
Start of review state routine
Start of review mixed band routine
Display status

Record byte on tape

Read byte from tape

Start of update data routine
Screen location 0

Input data tape (150 bytes)
Display 10 meters

Display 20 meters

Display 40 meters

Display 15 meters

Display 80 meters

Check keyboard input

Check keyboard input

Table 2. Symbols used in the program

As for reference material, the book I found most useful is How to Program the
Z80 by Rodnay Zaks. Other reference material included TRS-80 Assembly
Language Programming by William Barden Jr., the Editor/Assembler manual,
and many of the articles in 80 Microcomputing and Kilobaud Microcomputing.

151

home applications

Program Listing

w108

a611@

00128
48D4 #8138 DX EQU 48D4H sMIXED BAND STARTS HERE
4906 2014¢ D1 EQU 4906H ;18 METERS STARTS HERE
4938 g8158 D5 EQU 49388 ;15 METERS STARTS HERE
4964 #0160 D2 EQU 496AH 720 METERS STARTS HERE
499¢C 88170 D4 EQU 499CH ;40 METERS STARTS HERE
49CE 60188 D8 EQU 49CEH ;88 METERS STARTS HERE
3Co8 28198 v EQU 3CBeH 7 SCREEN LOCATION @
4n00 80200 ORG 4APOH ;START PROGRAM AT 4AGQH
4A88 DD21D448 00210 LD IX,DX ;STARTING AT MIXED BAND
4A04 0696 26228 LD B,150 ; FOR 158 COUNTS
4A06 3E31 00236 LD A,31H ; PUT AN ASCII 1
4008 DD7780 86248 DM LD (IX),Aa H INTO THIS LOCATION
4A@B DD7781 00250 LD (IX+1) ,A ;AND THIS LOCATION
4AQE DD23 06260 INC IX ;ADJUST MEMORY POINTER
4n19 DD23 88270 INC IX ;ADJUST MEMORY POINTER
4A12 18F4 00280 DJINZ DM ;IF B <>@ THEN 240
4A14 CDC991 08300 MU CALL g1CoH 7CLEAR SCREEN
4A17 FD213459 08316 LD IY,M1 ; POINT TO MESSAGE M1
4A1B DD21163C 00320 LD IX,V+22 7PRINT AT 22
4A1F 21803C 08330 LD HL,V ;POINT TO SCREEN LOC 6
4A22 FDTEBB 08340 MN LD A, (1Y) 7GET MESSAGE CHARACTER
4725 FE2F Bp358 cp A ;CHECK FOR A "/"
4A27 280D 80360 JR Z,PM ;IF / FOUND THEN 458
4A29 FE21 6p378 CP R ;CHECK FOR "I*
4A2B 2814 ng3806 JR %,CH ;IF | FOUND THEN 528
4A2D DD7764 BB390 LD (IX),A ; PRINT MESSAGE CHARACTER
4A36 DD23 BO4ABE INC X 7NEXT SCREEN LOCATION
4A32 FD23 00419 INC Iy s NEXT MESSAGE CHARACTER
4A34 1BEC o429 JR MN ;GO FOR NEXT CHARACTER
4A36 112900 00450 PM LD DE, 32 ;ADD 32 SPACES
4239 19 00460 ADD HL,DE ; TO HL REGISTER
4A3A B5 60478 PUSH HL ; FOR FOR PRINT LOCATION
4A3B DDE1 80480 POP IX ; OF NEXT CHARACTER
4A3D FD23 gg4aop INC Iy ;ADJUST MESSAGE POINTER
4A3F 18E1 20500 JR MN ; GET NEXT CHARACTER
4A41 DD21B93F 00526 CH LD IX,V+953 ;SCREEN LOCATION 953
4R45 DD222P40 00530 LD (482p1) ,1X 7 STORE CURSOR LOCATION
4A49 CDB31B 60540 CALIL 1BB3H ;GET KEYBOARD INPUT
4An4C 23 86550 INC HL ;POINT TO INPUT
4A4D CDCY9B1 685608 CALL 61C9H ; CLEAR SCREEN
4A50 7E 8B578 LD A, (HL) ;PUT INPUT IN A REGISTER
4A51 FE39 00588 Cp ‘g ;IS INPUT A 9
4A53 CA4EAE 98598 JP Z,ES : IF YES THEN 90080
4A56 FE38 0g689 Cp '8! ;1S INPUT AN 8
4A58 CA644D 60619 JP Z,Ls ;IF YES THEN 8000
4A5B FE37 PB620 cp 7! ;IS INPUT A 7
4A5D CAOS54D 0p630 JP Z,RX ;IF YES THEN 7000
4A60 FE36 00640 Cp 6! ;IS INPUT A 6
4762 CADEAC Be650 JP Z ,RA ; IF YES THEN 6080
4A6% FE35 68660 Ccp '5¢ ;I8 INPUT A 5
4R67 CAPBAC 80670 Jp Z,RS ; IF YES THEN 5000
4A6A FE34 00688 Ccp '4' ;IS INPUT A 4
4M6C CAD14B 00650 Jp Z,RC ;IF YES THEN 4060
4AGF FE33 08700 cp '3 ;IS INPUT A 3
4A71 CAFC4A 0e710 JP Z,RB ; IF YES THEN 3000
4A74 FE32 60720 cp 12! ;IS INPUT A 2
4A76 CAC24A B6a730 JP Z,IN ;IF YES THEN 2009
4A79 YE31 Boe7489 CP '1t ;IS INPUT A 1
4A7B CA814A 20750 Jp 2 NW ;IF YES THEN 1008
4AT7E C3144A 86760 Jp MU ;BAD INPUT - GO AGAIN
4A81 CDCY9B1 01000 NW CALL #1C9H ;CLEAR SCREEN
4A84 CDAGAE 01818 CALL DS ;DISPLAY STATES/GRAPHICS
4R87 FD212F53 G1£20 LD 1Y, MJ ;GET MESSAGE LOCATION
4A8B DD21493F 01830 LD IX,V+832 ; PRINT AT 832
4ABF CDG44E 01040 CALL PT ; MESSAGE MJ

152

CDOFAR
210649
CD6E4F
CD224F
213849
CD6E4FP
CD354F
216R49
CD6E4F
CD484F
219C49
CDGE4AF
CD5B4F
21CE49
CD6E4F
C3144a
FD215351
DD21C@3D
CD644E
DDZ21E33D
DD2220486
CDB31B
PEQ2
0696
21D448
3E00
Cpl12p2
CD9682
CD3502
77

23

16F9
CDF881
0696
216A49
gD

20E6
C3144A
FD217351
DD21C@3D
CDG44E
DD21F43D
DD222046
CDB31B
D7

CDCoBl
CDAQ4E

01850
01060
01670
01088
010906
61100
01110
81120
gll3e
61140
21159
6lle60
061170
01180
081190
01200
02000
02010
62020
02030
02040
02050
02060
02070
02080
62090
22100
02110
02120
g2138
02140
62150
02160
02170
62180
02190
02200
82219
083000
03010
83020
03038
03048
030850
03060
03070
03080
03090
063100
03110
03120
03130
03140
63150
063160
63170
03180
031940
3200
63216
63220
03230
83240
63250
03260
83270
03280
03299
03308
283310

IN

RB

GB

Xv

XX

Xl

home applications

CALL
LD

CALL
CALL
LD

CALL
CALL

CALL
CALL
LD
CALL
CALL
LD
CALL
JP
LD

CALL

CALL

HL,D8
up

MU

IY,M2
1X,V+448
PT

IX,V+483
(4820H) ,IX
1BB3H
c,2
B,156
HL,DX
A,D

212H
296H
235H
(HL) ,A
HL

u
g1FBH
B,150
HL,D2

c

NZ, W

MU

1Y,M3
IX,V+448
PT
IX,V+500
(4020H) ,IX
1BB3H
10H

C, (HL)
HL

B, (HL)
A,B

l@l

7, XX

lsl
Z,XV

GB

A,C

lll
7,X5

GB

A,C

lll
7,X1

l2|
7,X2

|4|

4

-
-

14
8
Z,X8
GB
81CoH
DS

;DISPLAY 1@ METERS
;POINT TO 18 METER STATUS
; UPDATE DATA

;DISPLAY 15 METERS
;POINT TO 15 METER STATUS
; UPDATE DATA

;DISPLAY 28 METERS
;POINT TO 20 METER STATUS
;UPDATE DATA

;DISPLAY 40 METERS
;POINT TO 48 METER STATUS
;UPDATE DATA

;DISPLAY 80 METERS

; POINT TO 8¢ METER STATUS
;UPDATE DATA

;GOTO 300 -MENU-

;GET MESSAGE LOCATION

; PRINT AT 448

; MESSAGE M8

;SCREEN LOCATION 483

s NEW CURSOR LOCATION
:GET KEYBOARD INPUT
;COUNT 2 DATA BLOCKS

; 156 BYTES PER BLOCK

;s STARTING AT MIXED BAND
;DEFINE TAPE DRIVE

; INPUT FROM TAPE

;FIND SYNC BYTE

;READ ONE BYTE

;STORE BYTE

;ADJUST MEMORY POINTER
;IF B <> GET NEXT BYTE
; TURN ON CASSETTE

;RESET BYTE COUNT

:START AT 268 METERS

;ONE LESS DATA BLOCK
;GET 150 MORE BYTES
;GOTO 309 -MENU-

;FIND MESSAGE LOCATION
;PRINT AT 448

; MESSAGE M3

:SCREEN LOCATION 50

i NEW CURSOR LOCATION
;GET KEYBOARD INPUT
;POINT TO FIRST CHATACTER
;PUT CHARACTER IN C
;POINT TO NEXT CHARACTER
;STORE SECOND CHARACTER
: INTO A

:1S 2ND CHARACTER #

:IF YES THEN 3200

;IS 2ND CHARACTER 5

;IF YES THEN 3168

;BAD INPUT - GOTO 3030
;PUT 18T CHARACTER IN A
;15 CHARACTER 1

;IF YES THEN 3398

;IF NO THEN 3638

;PUT 1ST CHARACTER IN A
;IS CHARACTER 1

;IF YES THEN 3300

315 CHARACTER 2

;IF YES THEN 3488

;1S CHARACTER 4

;IF YES THEN 3580

3+ IS CHARACTER 8

;IF YES THEN 367¢

;BAD INPUT ~GOTO 36830
;CLEAR SCREEN

;DISPLAY STATES/GRAPHICS

Program continued

153

4B41
4B45
4B48
4B4C
4B50
4B53
4B56
4B59
4B5C
4B5F
4B63
4B66
4B6A
4B6E
4871
4B74
4B77
4B7A
4B7D
4B81
4B84
4B88
4B8C
4B8F
4B92
4B95
4B98
4B9B
4B9F
4BA2
4BA6
4BAA
4BAD
4BBO
4BB3
4BB6
4BB9
4BBD
4BCO
4BC4
4BC8
4BCB
4BCE
4BD1
4BD5
4BD9
4BDC
4BED
4BE4
4BE7
4BE9
4BEB
4BEE
4BFO
4BF3
4BF6
4BF7
4BFA
4BFB
4BFD
4Co0
acp2
4C05
4CB6
4C08
4COB
4C8F
4Cl3
4C16
4ClA
4C1E

DD216649
CD744E
FD215851
DD219A3E
CDG44E
CD49p0
C31l44a
CDC9B1
CDAGAE
DD213849
CD744E
FD216452
DD21SA3E
CD644E
cb4spg
C3144A
CDCY901
CDABAE
DD216A49
CD744E
FP214A53
DD219A3E
CD644E
CD4909
C3144A
CDCo01
CDAG4E
DD219C49
CD744E
FD215453
DD219A3E
CD644E
Cb4500
C3144A
CDC9A1
CDABA4E
DD21CE49
CD744E
FD215E53
DD219A3E
CD644E
Cbaogp
C3144a
FD219A51
DD21C@3D
CD644E
DD21E93D
DD2220848@
CDB31B
BEB2
6696
21D448
3ERD
cpl2p2
CDe782
7E
CD6402
23

10r9
CDF8el
6696
216A49
oD

20E6
C3144A
Fp21C251
Dp21CB3D
CD644E
DD21E43D
DD222040
CDB31B

03320
63338
83340
03350
63360
83370
63380
23390
083400
03410
03420
063430
03440
83450
03460
63470
03480
03490
03500
835160
83528
03530
03540
03560
83570
3580
83590
03600
03610
03620
63630
83648
083650
83660
03670
23680
03690
83768
83710
83720
03730
03748
83758
04008
04610
04020
64030
240640
04058
04060
04070
oap8e
040690
04100
64118
64120
641308
84149
24150
24169
64178
04180
04190
04200
04219
25000
05018
05020
65030
05040
85858

X5

X2

X4

X8

RC

RS

home applications

LD
CALL
LD
LD
CALL
CALL
Jp
CALL
CALL

CALL
LD
LD
CALL
CALL
JP
CALL
CALL
LD
CALL
LD
LD
CALL
CALL
JP
CALL
CALL
LD
CALL
LD
LD
CALL
CALL
JP
CALL
CALL

IX,Dl

S8

Iy ,MA
IX,V+666
PT

2491
MU
A1CYH

1Y, M4
IX,V+448
PT
IX,V+489
(4820H) ,IX
1BB3H

c,2

B,158

HL, DX

A, D

212H

287H

A, (HL)
2641

HL

7

g1F8H
B,158
HL,D2

c

NZ,0

MU

1Y M5
IX,V+448
PT
IX,V+484
(4B20H) ,IX
1BB3H

;FIND 10 METER DATA
;DISPLAY 18 METER STATUS
;FIND MESSAGE MA

s PRINT AT 666

H MESSAGE MA

;GET KEYBOARD INPUT
;GOTO 368 -MENU-

;CLEAR SCREEN

;DISPLAY STATES/GRAPHICS
;FIND 15 METER DATA
;DISPLAY 15 METER STATUS
;FIND MESSAGE MB

7 PRINT AT 666

H MESSAGE MB

:GET KEYBOARD INPUT

;1 GOTO 380 -MENU~

;CLEAR SCREEN

;DISPLAY STATES/GRAPHICS
;FIND 20 METER STATUS
;DISPLAY 28 METER STATUS
;FIND MESSAGE MC

;PRINT AT 666

H MESSAGE MC

;GET KEYBOARD INPUT
;GOTO 308 ~MENU-

;CLEAR SCREEN

;DISPLAY STATES/GRAPHICS
;FIND 48 METER STATUS
;DISPLAY 4@ METER STATUS
;FIND MESSAGE MD

;PRINT AT 666

; MESSAGE MD

;GET KEYBOARD INPUT
:GOTO 388 -~MENU-

:1CLEAR SCREEN

;DISPLAY STATES/GRAPHICS
;FIND 88 METER STATUS
;DISPLAY 88 METER STATUS
;FIND MESSAGE MF

1 PRINT AT 666

;i MESSAGE MF

;GET KEYBOARD INPUT
;GOTO 300 -MENU-

;FIND MESSAGE M4

;PRINT AT 448

sMESSAGE M4

;SCREEN LOCATION 489
;NEW CURSOR LOCATION
;GET KEYBOARD INPUT
;COUNT 2 DATA BLOCKS

; OF 156 BYTES EACH

s STARTING AT MIXED BAND
;OUTPUT TO CASSETTE
;DEFINE CASSETTE DRIVE
;WRITE LEADER & SYNC BYTE
;PUT BYTE IN A

;RECORD DATA BYTE

;GET NEXT BYTE

;IF B <>@ RECORD MORE

; TURN OFF CASSETTE
;RESTE BYTE COUNT

;START AT 20 METERS
;ADJUST BLOCK COUNT

;IF NOT @ DO NEXT BLOCK
;GOTO 300 -MENU-

;FIND MESSAGE M5

; PRINT AT 440

s MESSAGE M5

; SCREEN LOCATION 484
;NEW CURSOR LOCATION
;GET KEYBOARD INPUT

154

4C21
4C22
4C26
4C2A
4C2D
4C360
4C32
4C34
4C35
4AC38
4C39
4C3B
4C3E
4C40
4C42
4C45
4C46
4C47
4C49
4C4cC
4C4D
4C4ar
4C52
4C54
AC55
4C57
4C5A
4C5D
4C61
4C63
4C64
4C68
4C6B
4C6C
4C6E
4C71
4C72
4C73
4C74
4C76
4C79
4CT7A
4AC7D
4C7E
4C81
4C83
4C84
4C86
4C88
4C8C
4C8E
4C8F
4C93
4C96
4C99
4C9B
4C9F
4CA3
4CA6
4CAB
4CAB
4CAD
4CAF
4CB1
4CB3
4CB5
[1¢:y)
4CB9
4CBB
4CBD
4CBE

D7
FD217652
DD216649
CDC901
FD7E00
FE21
28D7

78
FD4600
B8

280A
110300
FDLY
DD23
C32D4C
23

7E

FD23
FD4EDQ
B9

2808
110200
FD19

2B

DD23
C32D4C
CDC9¢1
FD218653
DDES

El
DD21863D
CD644E
ES

DDE1
21C23D

20F0
PEBS
FD212F53
DDE5

El
DD21483F
CD644E
L1FAQQ
ED52
DD21C93D
DD368@5E
CD4960
FE58
CAl44A
FE42
2812
FE31
280A
FE32
2806
FE33
2802
20E6

77
DpD7781

95060
85070
05080
650890
95100
5110
85120
95130
05140
95150
65160
951789
85180
95199
095200
95210
095220
05230
095240
85250
05260
85278
85288
#5290
85300
85310
#5320
095330
#5340
85350
095360
85370
95380
05398
85400
05410
05420
05430
054440
05458
05460
#5470
85480
85490
05500
#5510
85528
95530
95540
65558
85560
#5578
95580
#5590
85600
#5610
05620
85638
95640
#5650
056680
85670
056 80
95690
857060
257180
05728
85730
#5740
85750
65760

FS

Gl

P2

NP

JP

HP

NS

home applications

RST
LD
LD
CALL
LD
CpP
JR
LD
LD
Cp
JR
LD
ADD
INC
JP
INC

INC
LD
Cp
JR
LD
ADD
DEC
INC

CALL
LD
PUSH
POP

CALL
PUSH
POP
LD
LD
INC
LD
LD
LD
ADD
LD
LD
LD
ADD
DEC
JR
LD
LD
PUSH
POP
LD
CALL

5BC
LD
LD
CALL
CP
JP
Cp
JR
Cp
JR
Cp

cp
JR
JR
LD
LD

104
IY,M9
IX,D1
g1CSH
A, (1Y)
l!l
%,RS
A, (HL)
B, (1Y)
B

Z,Gl
DE,3
1Y,DE
IX

FS

HL

A, (HL)
84

C, (1Y)
c

2,P2
DE,2
1Y,DE
HL

1X

FS

g1Cc9H
1Y, MG

IX

HL
IX,V+384
PT

HL

IX
HL,V+450
(HL) ,B
HL

(BL} ,C
C,5

DE,7
HL,DE

B, (IX)
(HL) ,B
DE, 58
IX,DE

c

NZ, NP
c,5

1Y ,MJI

IX

HL
IX,V+832
PT

DE, 258
HL,DE
IX,V+457
(IX),5EH
g49H

IXI

7, ,MU

IBI

7 MV

lll

7 ,NS

|2|
%,NS

l3|

2 ,NS
NZ,HP
(BL) ,A
(1X+1) A

s POINT TO FIRST CHARACTER
;FIND MESSAGE M9

;FIND 18 METER DATA
;CLEAR SCREEN

;GET FIRST CHARACTER
:CHECK FOR END OF MESSAGE
;IF FOUND - BAD INPUT
;FIRST LETTER OF INPUT
;LETTER FROM STATE LIST
;DO THEY MATCH

sIF YES CHECK 2ND LETTER
;IF NO GET NEXT STATE

: BY MOVING 3 PLACES
;ADJUST DATA POINTER
;CHECK NEXT STATE

s POINT TO 2ND CHARACTER
; & PUT IT IN A

;GET SECOND STATE LETTER
;s & PUT IT IN C

;DOES IT MATCH 'A'

;IF YBES GOTO 5320

;IN NO GET NEXT STATE

; BY MOVING 2 PLACES
;GET FIRST INPUT LETTER
;ADJUST DATA POINTER
;CHECK NEXT STATE
;CLEAR SCREEN

; FIND MESSAGE MG

; SAVE DATA POINTER

; INTO HL REGISTER
;PRINT AT 384

;s MESSAGE MG

; SAVE DATA POINTER

; INTO IX REGISTER
;PRINT AT 450

;FIRST STATE LETITER
;PRINT AT 450+1

;SECOND STATE LETTER
;COUNT 5 DATA BYTES

; 7 SPACES APART

;MOVE 7 SPACES

;GET FIRST DATA BYTE

; PRINT FIRST BYTE

;MOVE DATA POINTER 50

; FOR NEXT DATA BYTE
;DECREMENT BYTE COUNT
;IF C<>9 DO MORE

;FOR 5 CURSOR LOCATIONS
;FIND MESSAGE MJ

; SAVE DATA POINTER

; INTO HL

;s PRINT AT 832

s MESSAGE MJ

;TO RETURN DATA POINTER
; TO 18 METER STATUS

; SCREEN LOCATION 457
;DISPLAY CURSOR

;GET KEYBOARD INPUT

;I8 INPUT X

;IF YES GOTO 386 -MENU-
;IS INPUT B

;IF YES THEN 5770

;IS INPUT 1

;IF YES THEN 5750

;1S INPUT 2

;IF YES THEN 5750

;IS INPUT 3

;IF YES THEN 5750

;BAD INPUT-GOTO 5630

; STORE NEW STATUS
;DISPLAY NEW STATUS

Program continued

155

4CC1
4CC4
4CC5
4CC9
4CCC
4CCE
4CD2
4CD3
4CD5
4CD7
4CDB
4CDE
4CEL
4CE4
4CE7
4CEA
4CED
ACF @
4CF3
ACFé6
4CF9
4CFC
4CFF
4DB2
4085
4008
4DBB
4DPBD
4D10
4p12
4D15
4D18
4D1C
4p20
4p23
4027
4D2A
402D
43¢
4an34
4p36
438
4D3B
4D3D
4D3F
4D40
4p42
4D46
4p4A
4p4acC
4D4F
458
4053
4p55
457
4p58
4D5A
4p5C
4D5D
4060
4D63
4D64
4067
4D6B
4D6F
472
4p75
4n78
4D7B
478

113200
19
DD368620
110700
DD19
DD36085E
oD

20CE
BEBS
DD360620
C3964C
CDCop1
CDAG4E
CDOF4F
CD496e
Cp224p
CD498g
CD354F
CD4906
CD484r
Cch4908
CD5B4F
Ch498p
C3054D
CDCYP1
CD384D
2632
CD4@4D
2633
CD484pD
CDAQ4E
FD21E451
DD21993E
CD644E
DD21D448
CD744E
CD49%gp
C31l44A
DD21D448
8632
3E31
DD77068
DD23
18Fr9

(o]

0665
DD210649
FD21D448
GE32
DD7EGH
BC
CC5D4D
DD23
FD23

2D

20F2
10EA

Cc9
DD7EDS
FD7708
c9
CDCo@1
FD219851
DD21163C
CD644E
CDl114E
218649
CDFE4D
cpeopl
FD216452

85770
85780
85790
85800
65810
85828
05830
85848
065850
65860
65870
o6000
06810
g6020
26030
6040
06050
06060
066070
06080
060690
26100
86110
06120
07600
270610
p7820
37030
07040
27650
07060
07876
070880
870908
07100
87118
67120
87130
87300
073180
87320
67330
07340
87358
67360
87400
87410
067420
07430
07440
07459
07460
#7470
07480
87490
07500
67518
875208
27960
87914@
87920
08080
28018
68029
08638
08040
28050
88860
280708
08080

MV

RX

QP

01

MX

K1l
K2

ME

LS

home applications

CALL

DEC
JR
DJINZ
RET
LD
LD
RET
CALL
LD
LD
CALL
CALL
LD
CALL
CALL
LD

DE,58
HL,DE
(IX),20H
DE,7
IX,DE
(IX),5EH
C

NZ ,HP
C,5

(1X) ,28H
P

IY , M6

IX
iy
C
NZ ,K2
K1

A, (IX)
(1Y) ,A

B1CYH
IY ,MA
IX,V+22
PT

LP
HL,D1
MP
p1CoH
Iy ,MB

;ADJUST DATA POINTER

; TO NEXT BAND

+ERASE OLD CURSOR

7MOVE CURSOR 7 SPACES

H FOR NEXT BAND
;DISPLAY NEW CURSOR
;ADJUST BAND COUNTER

;IF NOT 8 GET INPUT

s RESET BAND COUNTER
+ERASE OLD CURSOR

; AND START OVER
;CLEAR SCREEN

tDISPLAY STATES/GRAPHICS
;DISPLAY 16 METER STATUS
;GET KEYBOARD INPUT
;DISPLAY 15 METER STATUS
1 GET KEYBOARD STATUS
;DISPLAY 28§ METER STATUS
;GET KEYBOARD INPUT
;DISPLAY 4§ METER STATUS
;GET KEYBOARD INPUT
;DISPLAY 80 METER STATUS
;GET KEYBOARD INPUT
;GOTO 7000

;CLEAR SCREEN

;SET ALL DATA TO 1
;ASCIT 2 IN H

sMOVE ALL 2'S

;ASCIT 3 IN H

;MOVE ALL 3°'S

;DISPLAY STATES/GRAPHICS
;FIND MESSAGE M6

;PRINT AT 665

MESSAGE Mé

;FIND MIXED BAND DATA
;DISPLAY STATUS

;GET KEYBOARD INPUT
:GOTO 368 —~MENU-

;FIND MIXED BAND DATA
;COUNT 58 BYTES

;ASCII 1 IN H

i AND INTO DATA LOCATION
;ADJUST DATA POINTER
;GOTO 7338 UNITL 50 BYTES
;7 ARE DONE THEN RETURN
;COUNT 5 BANDS

;START AT 18 METER DATA
;POINT TO MIXED BAND
;COUNT 58 STATES

;PUT DATA BYTE IN A

;IS IT A MATCH

;IF YES THEN 7900
7ADJUST DATA POINTER
+ADJUST MIXED BAND
;ADJUST STATE COUNT

;IF NOT 8 GOTO 7448
;ADJUST BAND COUNTER
sRETURN AFTER 5 DONE

;s STORE NEW STATUS

; IN MIXED BAND LOCATION
;GET NEXT BYTE

; CLEAR SCREEN

sFIND MESSAGE MA

s PRINT AT 22

; MESSAGE MA

;DISPLAY MESSAGE M7
;START AT 1§ METERS
;DISPLAY NEEDED STATES
;CLEAR SCREEN

;FIND