ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information
for your TRS-80

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

. .
N VOLUME |

ENCYCLOPEDIA
for the TRS-80%*

VOLUME 1

wwwww

AN I A
PETERBOROUGH NH 03458

N

FIRST EDITION
FIRST PRINTING APRIL 1981
Copyright © 1980 and 1981
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Chris Crocker, Nan McCarthy
and Susan Philbrick
Technical Assistance: Dennis Bathory Kitsz
and Dennis Thurlow
Design by Clare McCarthy
Ilustrations by Howard Happ
Typeset by Karen Stewart

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

lit

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green. ...ttt ireiiaenans v

BUSINESS
Down the Road

Bill Vick. oot e 3
After the Goldrush

Jerry Frost.o e e 7
Business Forms: The Invoice

R.L.Conhaim. ...ttt 17
How Much Interest?—The Rule of 78

Charles B. Steele.ooviie it iininaenns 23

EDUCATION
Computer Education

Joseph R. Chartier WIRFE and Carl A. Goldner W4ERA. 35
Measuring Instructional Effectiveness with the TRS-80

Maj. Vernon Humphrey.c.cciiiiiie ... 40
Using a TRS-80 to Tabulate Student Ratings

Anne Weiss. 49

GAMES
Swords and Sorcery 11
Barry L. Adams. i 57
The President Decides
Clinton Motey.ttt 78
Babe Ruth Is Alive and Well and Hitting Home Runs on My TRS-80
Ralph Hickok........ i i, 88

GRAPHICS
Four Graphics Methods

John Krutch. i e 105
TRSpirograph

Ronald A. Balewski............c.iiiii i 113
Adventures in Roseland

Allan S. Joffe W3KBM.ttt 117

CONTENTS

HARDWARE
Punch Out Your Disks
Richard Taylor.ot 123
Build a Snooper/Snubber
Philip O. Martel KAIGK. i 127
HOME APPLICATIONS
Car Pool
Walter K. McCaRam.ttt et 133
Doctor Your Records
Wilbur A. Muehlig, M.D.., 144
Computacar
RA. KY. ..o i 157
Bio-Bars: Biorhythms in Bar Graph Form
Ronald J. Thibodeau.o 162
INTERFACE
TTY Interface
Robin Rumbolt. e 173
Why Bother to Interface?
Allan S. Joffe W3KBM.t 183
TUTORIAL
Into the 80s
Ian R. Sinclair
Part L. e e e 199
Part Tl ..t e 212
Part Tl ..ot e e 226
UTILITY
Printer Calibration
L.O. Bexrode.ot e 243
Delay Loop
Allan S. Joffe W3KBM.ttt 246

vt

APPENDICES
Appendix A
Appendix B
Index......

CONTENTS

...
...

..

vit

BUSINESS

Down the Road
After the Goldrush

Business Forms:
The Invoice

How Much Interest?
—The Rule of 78

BUSINESS

Down the Road

by Bill Vick

As a regional sales manager with a major consumer products company, 1
am constantly challenged with finding new and creative ways of filling
the product pipeline between my company and the consumer. This pipeline,
or channel of distribution, consists of department stores.

The way a store projects its future sales and determines the stock needed
to support those sales is a basic financial planning concept, applicable to
large or small businesses.

Our company now furnishes a stock and sales plan designed to maximize
profits, as well as a profitability and return on investment analysis. These
reports are generated on my TRS-80, and this article covers the planning
process and its application.

The Retail Season

Retailers periodically go through a planning process forecasting sales for a
given period of time, called a season. Normally a season runs six months and
is referred to as a “spring” or “fall” season. Whether the sales forecast is done
with linear regression, exponential smoothing, S.0.T.P. (seat of the pants),
or any other means, the end result is that merchandise must be purchased in
advance of planned sales. The control and management of the flow of inven-
tory through a retailer determines whether or not a profit is made.

WHAT YEAR IS THE PLAN FOR (YY) ?80

WHAT IS THE CHAIN'S NAME ?ANY STORE
WHAT IS THE BRANCH/DOOR'S NAME ~ ?MAIN ST.
WHICH SEASON WILL THIS PLAN COVER

(FALL OR SPRING) ?SPRING

ENTER THE 79 SALES FOLLOWED BY A COMMA, THEN THE 80 SALES
79/80 SALES FOR FEB? 11.1,12.2
79/80 SALES FOR MAR? 10.9,13.1
79/80 SALES FOR APR? 11.5,10.7
79/80 SALES FOR MAY? 12.4,15.2
79/80 SALES FOR JUN? 9.2,9.9
79/80 SALES FOR JLY? 11.6,11.9

PLANNED SEASON TURN? 1.39
IF YOU HAVE AN ACTUAL BOM ENTER IT.
IF YOU DO NOT PRESS ENTER ?P—

Example 1

business

Plans are normally drafted for both seasons and the fiscal year. A turnover
ratio of stock to sales is predetermined, based on the needs of both the
retailer and the vendors involved. In a simplified way, turnover is the
number of times an average inventory will replace itself as it is sold.

As an example, if over a six month period, or season, sales were $10,000,
with an average inventory of $8,000, the turnover ratio would be 1.25 for
the season. The turnover ratio is critical. Too fast a turnover means in all
probability sales were lost as a result of being out of stock, while too slow a
turnover can eat into profit and increase your overhead. Generally, the
faster the turnover, the greater the profit.

Two Seasons

In my business, we work on two seasons a year, which go from February
through July and August through January. The average inventory turnover
is 3.0 per year, or 1.4 turns in the spring and 1.6 in the fall.

The following program determines monthly stock levels and planned pur-
chases needed to maintain stock levels. A sales history for the prior period is
shown, along with the B.O.M. (beginning of month) inventory, the E.O.M.
(end of month) inventory, and the allowed monthly receipts or O.T.R.
(open to receive).

—1980 STOCK/SALES PLAN FOR ANY STORE—MAIN ST.

FEB MAR APR MAY JUN JLY TOT

79 SALES 1.1 109 115 124 9.2 11.6 66.7

80 SALES 12.2 13.1 10.7 15.2 9.9 11.9 73.0

BOM 52.6

EOM 53.5 511 556 503 523 525

OTR 13.1 107 152 9.9 119 122

TURN 1.39 AVGINV 52,5 TOTALSALES73.0 +9%
Example 2

Additionally, the average inventory carried on hand and the percent of
increase or decrease planned are also shown. It is an interactive program
designed to be used by people not versed in either computerese or retailing.

The advantages of this type of planning are many. Not only can the
retailer’s stock and sales plans be done with speed and accuracy, but a
number of “what if” situations can quickly be accomplished to determine
viable alternatives.

business

Program Listing
180 CLEAR 1000:
CLS
118 REM * STOCK AND SALES PLANNING
128 REM * BILL VICK 1/38/80
130 REM *
14¢ PRINT TAB(20)"STOCK AND SALES PLANNING"
15¢ PRINT TAB(25)"BY BILL VICK"
168 PRINT TAB(22)"ALL RIGHTS RESERVED"
179 FOR T = 1 TO 560:
NEXT T
180 DIM M(l3),M$(13),BOM(13),Z$(2),OTB(lB),S(lB)
198 RESTORE :
CLS
289 INPUT "WHAT YEAR 1S THE PLAN FOR? (YY) ";YEARS
210 YEARS = RIGHTS(YEARS,2):
YEAR = VAL(YEARS):
LYEAR = YEAR - 1
220 INPUT "WHAT IS THE CHAIN'S NAME? "L.CHAINS
238 INPUT "WHAT IS THE BRANCH/DOOR'S NAME? "+ BRANCHS
249 FOR M = 08 TO 12:
READ MS$(M):
NEXT 3
REM * READ IN MONTHS
250 DATA JAN,FEB,MAR,APR,MAY,JUN,JLY,AUG,SEP,OCT,NOV,DEC,JAN
26¢ PRINT "WHICH SEASON WILL THIS PLAN COVER (FALL OR SPRING) ":
276 GOSUB 820:
REM * INKEY ROUTINE
280 IF KBS = "S"
THEN
PRINT "SPRING"
ELSE .
PRINT "FALL"
298 PRINT
3¢ IF KBS = "8"

w3

w
[}

s

S = 2t
GOTO 330
320 IF KBS < > "S" AND KBS < > "F"
THEN
CLS
GOTO 268
33§ PRINT "ENTER THE ";LYEAR;" SALES FOLLOWED BY A COMMA, THEN THE "
;YEAR;" SALES"
3490 FOR T = SB TO SE
35§ PRINT LYEAR;"/";YEAR;" GSALES FOR "aMS(T);
366 INPUT S(T),M(T)
374 ST = ST + S(T):
REM * TOTAL SALES THIS YEAR
38¢ TS = TS + M(T):
REM * TOTAL SALES LAST YEAR
398 NEXT
480 AV = (INT(TS - ST) / ST) * 168:
REM * PERCENT INCREASE IN SALES
418 PRINT :
INPUT "PLANNED SEASON TURN ";TURN
42¢ PRINT "IF YOU HAVE AN ACTUAL BOM ENTER "
43¢ INPUT "IF YOU DO NOT, PRESS ENTER ";BOM
449 AS = TS / 6:
REM * AVERAGE MONTHS SALES = TOTAL SALES/SIX MONTHS
45 AI = TS / TURN:
REM * AVERAGE INVENTORY = TOTAL SALES/TURN
460 IF BOM < = @
THEN
478
ELSE
480

Program continued

478 IF M(S
THEN
BOM
ELSE
BOM
25(1)
28(2)

488
499

508
519
528
538
549
558
569

= "
P

"

578
580

EOM(T
EOM
REM
NEXT
CN = {
REM *
EOM (SE
YEAR
CLS :
PRINT
YEAR
PRINT
PRINT
PRINT
PRINT
+ 3),
PRINT
t 3),
PRINT
PRINT
PRINT
+ 3),

598
600

616
620
630

648
658
668
674
680

698
788
719

business

B) > AS

= (M(SB) ~ AS) + AI :
(AS - M(SB)) + AI
" FEB
" AUG

EE 08
"OTR HEE#
"BOM B, 4"
##SALES ###.4
##5ALES ###.§ HE#.4 HBE.#
TURN ##.## AVE INV $###.#
5B TO SE ~ 1:

* COMPUTES EOM INVENTORY

) = (M(T + 1) - AS) + AI
EOM + EOM{(T):

* TOTAL EOM FOR SEASON

JUN
DEC

JLY
JAN

MAR
SEP

APR
ocT

- MAY

= NOV

TRy
B840

EOM .

LR 208

[
4.4

L L]
LR 2%

. #
(2228

EA L2 S £ 10 4
(2225 BN 1 108
(2%

B LR #RELE BHELH
LEZ 28]

TOT SALES

AL * 7) (BOM + EOM):
COMPUTES ENDING PERIOD INV.
} = CN

YEAR + 1900

YEAR;" STOCK/SALES PLAN FOR
YEAR - 1998

Z$(8)

USING L$; LYEAR, S(SB), S(SB + 1), S(SB + 2}, 8(SB
5(SB + 4), S(SB + 5), ST
USING R$; YEAR, M(SB), M(SB + 1), M(SB + 2), M(SB
M(SB + 4), M(SB + 5), TS

USING 0S$; BOM
USING N$; EOM(SB), EOM(SB + 1), EOM(SB + 2), EOM(SB
EOM(SB + 4), EOM(SB + 5)

":CHAINS;"™ - ";BRANCHS

TOT"
TOT

$iE.47
FhELR"
+HEEE"

720 PRINT :
PRINT USING BY$; M(SB + 1), M(SB + 2), M(SB + 3), M(SB + 4), M(S
B + 5), M(SB)
PRINT
AI (EOM + EOM(SE) + BOM) / 7:
REM * AVERAGE INVENTORY
PRINT USING Q$; TURN, AI, TS, AV
PRINT :
GOSUB 840
PRINT "DO YOU WANT TO PRINT THIS? (y/N)y "
GOSUB 820:
REM * INKEY ROUTINE
IF LEFTS(KBS,1) Y

THEN

GOSUB 858:

GOTO 628:

REM * IF YES LPRINTS
IF KBS = "N" RUN 180:
REM * IF NO RERUNS PROGRAM
IF KBS < > "N" AND KBS < > "y*

THEN

770
KBS = INKEYS:
IF KB$ = ""

THEN

820

738
749

7508
768

778
780

798

80@
814

820

830 KB VAL(KBS) :

RETURN

POKE 16414,88;:

POKE 16415,4:

RETURN

REM * LPRINT TO PRINT
POKE 16414,141:

POKE 16415,5:

RETURN :

REM * PRINT TO LPRINT

840

850

BUSINESS

After the Goldrush

by Jerry Frost

any of you will say, “But I don’t have bags of silver or gold chains.”

You may surprise yourself when you find that Uncle Walter's Masonic
ring or Grandpa’s pocket watch has more than sentimental value. A close ex-
amination of silver coins left in your bureau, baby cups, and cuff links will
tell if they are sterling or 14K or 18K gold.

The accompanying program will store your inventory of gold and silver
and produce an up-to-the minute account of these holdings compared to the
daily spot prices in any of the world’s precious metal markets—New York,
London, Paris, Zurich, Hong Kong.

The market analysis section of the program will tell, at a glance, the per-
centage of gain or loss on your holdings, as gold and silver continue
to climb.

Tipping the Scales

The first thing to do is to determine, as accurately as possible, the actual
pure gold or silver content of that class ring or sterling teapot. Obviously,
weighing them with a bathroom scale won’t do unless, of course, you possess
a hundred pounds or so of these precious metals. The best solution is to use a
jeweler’s scale.

Since most of us don’t have one, you’ll want to visit your local jeweler and,
for a fee, have your cache weighed. If you have a postage scale at the office,
you’ll get a fairly accurate measurement in avoirdupois ounces.

Precious metals are currently weighed in troy ounces in the United States
and Canada as a standard of measurement.

Simply multiply avoirdupois ounces by .91 14583 to obtain the equivalent
troy weight. For example, weigh a sterling silver spoon on a standard scale
and observe a weight of 1.5 avoirdupois ounces. Multiplying 1.5 by
.9114583 gives you a troy ounce weight of 1.367 ounces.

This is only a gross weight, not the actual pure silver content. All sterling
silver has non-precious metals added to it as hardeners. Fineness, therefore,
is defined as being that part of the metal alloy containing pure gold orsilver.
Sterling silver has 925 parts silver in 1000 parts alloy. You must now find the
pure silver weight of the sterling spoon: Multiply .925 by the gross weight of
1.367 troy ounces. This yields 1.264 troy ounces of pure silver, expressed in
what’s called “1000 fine.”

business

Pure gold is considered to be 24 karats. The relation of fineness tokaratsis
also proportional. A 14K gold ring, for example, contains 583.3 parts gold in
1000 parts of alloy. An 18K ring would contain 750 parts gold in 1000 parts
of alloy. Weigh the ring or any other gold item, then convert it to troy
ounces and multiply by its fineness. Table 1 shows the conversion of karats
to fineness.

karats = 1000 fine 20 karats = 833.3 fine
karats = 958.3 fine 18 karats = 750. fine
karats = 916.6 fine 16 karats = 666.7 fine
21.6 karats = 900.0 fine 14 karats = 583.3 fine
21 karats = 875.0 fine 1 karat = 041.7 fine

Table 1

BBk

A warning: Do not weigh different karat items together; combine all 14K
jewelry, all 18K, etc., and weigh them separately.

A magnifying glass will help you see the karat stamp on jewelry. Beware
of any gold item stamped G.P. or G.F. This means the piece of jewelry is
gold plated or filled. It is not a solid gold alloy. So, don’t waste your time
weighing these items.

Fineness

Both United States and foreign gold and silver coins contain various
amounts of fineness. Table 2 lists the most common intrinsic domestic and
foreign gold coins with their pure troy ounce content. Multiply this weight
by the number of coins you have.

US. $20 gold piece .9675
$10 gold piece .4838
$5 gold piece 2419
$2.50 gold piece .1209
$1.00 gold piece ~ .0483
Table 2

U.S. silver coins minted through 1964 contain 90 percent silver. Clad
fifty-cent pieces minted from 1965 through 1970 contain 40 percent silver.
Coin dezlers and precious metal buyers consider that a $1000 face value bag
of circulated United States coins minted through 1964 contains about 720
troy ources of silver, while a $1000 face value bag of circulated Kennedy
silver clad half dollars minted from 1965 through 1970 contains about 295
troy ources.

business

All United States coins (other than some proof sets minted for collectors)
minted after 1970 are nothing more than copper clad coins with no silver
content whatsoever!

Foreign coins are another source of silver. Some countries even stamp the
purity and weight right on the coin. If you aren’t sure, a trip to a local coin
dealer or library will tell if there is treasure in that hoard. An excellent coin
catalog, Standard Catalog of World Coins, is published by Krause
Publishers, Iola, Wisconsin. You'll find a reference to your coin and its silver
content in this catalog.

Inventory Program

Once the groundwork has been laid and all of your gold and silver
holdings accurately measured, converted to troy ounces, and their fineness
determined, you’re ready to enter inventory data statements in a program.

The program lists the following information: description, quantity, pure
troy weight (in ounces), and original cost (or close estimate). Refer to Table
3(a) for examples and proper format. Make sure that the last statement in
the inventory of precious metals data line always terminates with END.

20000 REM * INVENTORY OF PRECIOUS METALS *
20010 DATA #14K JEWELRY, 1, 1.75, 250

20020 DATA *STERLING SILVER, 1, 120, 680

20030 DATA *STERLING KNIVES, 8, 1.20, 75

20040 DATA END

Table 3(a)

30000 REM * CLOSING DATES & SPOT PRICES *
30010 DATA #01/21/80, 850

30020 DATA *01/21/80, 50

30030 DATA END

Table 3(b)

The computer will have to determine whether your data is of gold or
silver. To do this, precede the description and spot price dates with the
marker # for gold and * for silver. Therefore lines 20010 and 30010 refer to
gold, while lines 20020, 20030, and 30020 refer to silver. The marker will be
stripped for all CRT displays and printouts.

Referring to line 20030, notice that if you include sterling knives, they are
listed separately from other silverware. This is because knife handles are
usually hollow and filled with wax. The blade is often made of stainless
steel. A good rule of thumb is to weigh the knife and take two-fifths of the
total weight as sterling content.

business

The quantity number 1 in line 20010 means that you gathered your 14
karat gold jewelry as a group, weighed it, and came up with 1.75 total troy
ounces. The eight knives in line 20030 were weighed separately, giving a
weight of 1.20 troy ounces. The program takes the quantity eight and

multiplies it by 1.20 for a total weight of 9.6 troy ounces. This is for the con-
venience of those who wish to list their gold and silver items separately.

Lines 30010 and 30020 keep tab on the daily market closing price. You
can consult the business sections of most newspapers to obtain this data.
Line 30010 shows, for example, that on January 21, 1980, gold closed at
$850 an ounce, while line 30020 shows that on the same day, silver closed at
$50 an ounce.

You can enter new data daily, weekly, or monthly to keep up with the
fluctuating bullion market, as compared to the latest spot metals price.
Always terminate the last closing dates and spot prices line with END.

The program needs no explanation. The input commands are self-
prompting. If you require hard copy (recommended), just change PRINTS
to LPRINTS. Better yet, if you're using a disk system with NEWDOS (also

31.1033 grams

480 grains

20 pennyweight (DW'T)
1 pound troy

1 pound avoirdupois

1 ounce avoirdupois

1 kilogram

1 troy ounce

1 troy ounce

I troy ounce

12 troy ounces
14.5833 troy ounces
0.9114 troy ounces
32.15 troy ounces

[

oo

I gram = 5.3 karats (Roman)

I gram = 15.432 grains

I gram = 0.643 pennyweight (DWT)
1.5552 grams =] pennyweight (DWT)
1,000 grams = 1 kilogram

98.3495 grams = 1 ounce avoirdupois

4 grains = 1 pennyweight (DWT)
5,760 grains =] pound troy

15,432 grains = 1 kilogram

437.5 grains = | ounce avoirdupois
7,000 grains = 1 pound avoirdupois

I grain = 0.0648 grams

240 pennyweight (DWT) = 1 pound troy

643.01 pennyweight (DWT) = 1 kilogram

18.2291 pennyweight (DWT)
291.666 pennyweight (DWT)

1 ounce avoirdupois
1 pound avoirdupois

1kilogram = 2.68 pounds troy
Ikilogram = 35.274 ounces avoirdupois
1kilogram = 2.2046 pounds avoirdupois

Table 4

10

business

recommended), simply hit the JKL keys simultaneously and you’ll get a hard
copy of the screen displays. If you require larger arrays, increase at line 800.

After creating your data statements, selecting menu item 4 will
automatically re-SAVE the program (METAL/BAS) and data to disk. A se-
quential or random file method could be used, but I feel the method of re-
SAVING is adequate for this data management without increasing the size
and complexity of the program. Cassette users must change the SAVE
“METALS/BAS” to CSAVE “METAL?” in line 2200. It is good practice to
keep a separate copy of your program in case of I/O errors.

Other Metals

You can incorporate other precious metals—platinum, for example—in
the program. You may also want to keep track of the price of copper. That
lowly penny in your pocket may someday be worth more for its intrinsic
value than for its monetary value!

To include these or other metals in the program, first create additional
menu lines between lines 1200 and 1500, Then edit lines 2900 and 4900, in-
serting new markers denoting the new metals. Any uppercase symbols such
as % and | will do. You'll have to add IF statements between lines 1900 and
92200. Edit line 2300. Be sure to precede all data lines with the new marker(s).

business

After the program is run, the first display produces an itemized inventory
of your precious metal holdings. The MKT. VALUE (market value) column
tells, at a glance, its current value. The COST column refers to your original
investment. The CHANGE column gives the percentage of difference be-
tween the current market value and the initial cost. The automatic scrolling
feature of the program allows you to pause between displays.

The next display contains the current total dollar value of your invest-
ment, compared to the original value. These holdings are represented in
pure 1000 fine troy ounces.

The final display is an up-to-the-minute market analysis showing past
closing dates and closing spot prices and the percentage of change from the
current spot price of the metal in question.

This analysis allows you to keep up with the volatile activity in the
precious metals exchange and to record its history. The automatic scrolling
pauses between these displays.

Another addition to the program will help determine the pure troy ounce
content of your holdings. Although troy ounces are used, you may refer to
Table 4 and convert most common weights to troy ounces. United States
silver coins don’t have to be weighed because the program will do it for you.
Enter the face value and its percentage (90 percent or 40 percent) of silver.

Now delete the example data lines, 20010 through 30090, and add your
own. Run the program and see how “loded” you are.

12

740
8gg
908@
igep

1100

1298
1360
1460
1508
16080

1709

1800
1908

2000

2160

2200

2360

2400
2508
2600

27640

2800
2900

3000
3160
3200
3300

3400
35008

3600
3700

Program Listing

CLEAR 1000
DIM M$(50),0(50),F(58)
CLS
PRINT :
PRINT :
PRINT :
PRINT TAB({25)"* MENU *"
PRINT :
PRINT
PRINT TAB(15)"1
PRINT TAB(1l5)"2
PRINT TAB(15)"3
PRINT TAB{1l5)"4
N$ = INKEYS:
IF N$ = "" GOTO 1680
N = VAL(NS$)
CLS
IFN =1

THEN

GS$ = "GOLD"
IF N = 2

THEN

GS$ = "SILVER"
IF N = 3

THEN

7200
IF N = 4

THEN

PRINT @590 ,"";:

[I A |

INPUT "HIT <ENTER> TO SAVE NEW DATA";X§:

business

GOLD MARKET ANALYSIS"

SILVER MARKET ANALYSIS"

TROY OUNCE WEIGHT CALCULATION"
WRITE NEW DATA STATEMENTS TO DISK"

PRINT @588,"NOW RE-WRITING PROGRAM AND ADDING NEW DATA TO DISK
",

SAVE "METALS/BAS":
RUN
IF N<1ORND>S3
THEN
909
PRINT TAB(25)GS$;" ANALYSIS"
PRINT TAB(20) STRINGS(23,131)
PRINT :
PRINT
PRINT "<ENTER> CURRENT SPOT

* ":GS$;:

INPUT " * PRICE PER TROY OUNCE ";P

PRINT
IF N =1
THEN
R$ = "*7y
ELSE
IF N = 2
THEN
RS = "$":
REM *SET DATA MARKER *

INPUT "<ENTER> TODAY'S DATE (MM/DD/YY)

FOR X = 1 TO 59
READ M$(X)
IF M${X) = "END"
THEN
X =X - 1:
Z = Xz
GOTO 37649
READ Q(X),F(X),C(X}
IF LEFT$(MS(X),1) = RS
THEN
X = X = 1:
REM * READ DATA MARKER *
NEXT X
FOR X = 1 TO %Z:

Program continued

13

business

MV(X) = P * F(X) * Q(X):
MV = MV + MV(X):
C=C+ C(X):
Q=0+ 0(X):
F=F + F(X) * Q(X)
3800 NEXT X
3960 CLS

4000 GOSUB 6300:
GOTO 4100
41608 FOR X = 1 TO 2
4200 PRINT USING "###";0(X);:
PRINT TAB{6) RIGHTS$(MS(X), LEN(MS$S(X)) - 1);:
PRINT TAB(31) USING "##, ###.4#"; MV(X);:
PRINT TAB(42) USING "#4,### . ##";C(X);:
PRINT TAB(54) USING "+####.4"; ((MV(X) - C(X)) / C(X) * 106);:

PRINT " "
4388 2% = %% + 1l:
IF %22 = 10
THEN
22 = 0:
PRINT STRINGS$(63,45):
GOSUB 6288:
IF X = 2 GOTO 47088:
ELSE
GOSUB 6380
4409 NEXT

458 GOSUB 6200

4680 PRINT STRINGS(8,32):
PRINT STRINGS (63,45)

4708 PRINT TAB(8)"CURRENT MARKET VALUE = $";:
PRINT USING "##,#4##.#8"; MV

48006 PRINT TAB(9)"ORIGINAL INVESTMENT = $";:
PRINT USING "##,#8#%.4%";C

4900 IF N = 1

THEN
R$ = "*":
ELSE
IF N = 2
THEN
R$ = "#":
REM * SET DATA MARKER *
5088 PRINT :

PRINT TAB(18)"REPRESENTING ";:
PRINT USING "###.4#";P;:
PRINT " TROY OUNCES OF 1808 FINE ";GSS$
5188 PRINT STRINGS(63,45)
5208 GOSUB 62008:
GOSUB 7080:
Z2Z = P
GOTO 5300
5368 FOR X = 1 TO 50:
READ D$(X)
5408 IF D$(X) = "END"
THEN
2 = Xz
GOTO 5800
55868 READ SP(X)
5608 IF LEFTS(D$(X),1) = R$
THEN
X =X - 1z
REM * READ DATA MARKER *
5788 NEXT X
5800 2 = Z - 1:
FOR X = 1 TO Z:
PRINT RIGHTS$(D$(X), LEN(DS$S(X)) - 1),:
PRINT USING "%, ###,##";SP(X);:
PRINT , USING "+###,.#4"; ({P ~ SP(X)) / SP(X) * 108);:

PRINT " &"

5968 22 = 7% + 1:
IF 722 = 10
THEN

14

6000
6108

6200

6300

6400
6500
6600
6768

6800
6900
7060

7160
7200

7308
7400
7500

7600
7700
7800

7998
8000
8100
8260
8300
8408
8508

8600
8700
8800

‘8908
9800
9100

9209

9308
9400
9508
9600
9789

9800
9909
10000
10100
10200
10300

business

PRINT STRINGS(63,45):

2% = B:

GOSUB 62848:

IF X = % GOTO 6160
NEXT X

PRINT @980,"PRESS <ENTER> RETURN TO MENU";:

LINE INPUT AS:
RUN

PRINT @980 ,"PRESS <ENTER> TO CONTINUE";:

LINE INPUT AS:
CLS :
RETURN

PRINT D$; TAB(20)GSS$" PORTFOLIO"; TAB(46)"SPOT = $";:

PRINT USING "#,###.4#";P
PRINT TAB(15) STRINGS$(25,61)
PRINT

PRINT STRINGS$(63,45)

PRINT "QTY"; TAB(1@)"DESCRIPTION"; TAB(32)"MKT. VALUE";

TAB(46) "COST"; TAB(55)"CHANGE"

PRINT STRINGS$(63,45)

RETURN

PRINT D$; TAB(15)GS$" MARKET ANALYSIS";
PRINT USING "#,###.##";P:

PRINT TAB(15) STRINGS$(23,61):

PRINT :

PRINT STRINGS$(63,45):

TAB(46) "SPOT = $";:

PRINT "CLOSE DATE"; TAB(19)"SPOT"; TAB(34)"CHANGE TO DATE":

PRINT STRINGS(63,45)

RETURN

' * GOLD & SILVER TROY OUNCE WEL
CLS

PRINT TAB(25)" * MENU *”

PRINT :

PRINT

PRINT TAB(15)"1 - GOLD CALCULATION"
PRINT TAB(15)"2 - SILVER CALCULATION"
N$ = INKEY$:

IF N$ = "" GOTO 78680

CLS

N = VAL(NS)

IF N = 2 GOTO 100¢0

CLS

GHT *

PRINT TAB(15)"GOLD CONVERSION TABLE"

PRINT TAB(15) STRING${21,45)

PRINT :

PRINT

INPUT "<ENTER> KARAT WEIGHT OF GOLD ITEM ";K

K = .p41666667 * K

PRINT :

PRINT

INPUT "<ENTER> WEIGHT SYSTEM: 1 ~ AVOIRDUPOIS 2 -

IF AT < 1 OR AT > 2 GOTO 890¢
IF AT =]JAT = .9114583:

ELSE

AT = 1
PRINT

INPUT *<ENTER> WEIGHT OF GOLD ITEM (OUNCES) ";W

W=WH*K * AT

PRINT

PRINT STRINGS (46,45)

PRINT "ITEM CONTAINS";:

PRINT USING "##.8#84";W;:

PRINT " TROY OUNCE(S) OF PURE GOLD."
PRINT STRINGS (46,45)

GOSUB 6100

PRINT TAB(15)"SILVER CONVERSION TABLE"
PRINT TAB(15) STRINGS (23,45)

PRINT

PRINT "<ENTER> 1 - STERLING SILVER

2 - U.S. COINS"

TROY " ;AT

Program continued

15

1p408

16568
19608
10708
16800

16900
11000
11108
11208
11368

11400
11500
11600

11708

11800
11909
12000
12100
12208
12300

12400
12560
12600
12760
12800
12900

13008

13180
13200
13300

13400
13569

13600
13700
138060
20000
20010
20020
20030
20040
20850
20060
20079
20080
20090

30000
300810
300629
30030
30040
30650
306060
30878
30080
30090

business

N$ = INKEYS:

IF N$ = "" GOTO 10488

PRINT @192, STRINGS$(63,32)
N = VAL(NS)

IF N <1 ORN> 2 GOTO 18388

IF N = 1N = ,925:
GOTO 126088:

REM * .925= STERLING FINENESS *

PRINT

PRINT TAB(18)"1 -~ 98% PRE-1965 U.S. SILVER COINS"
PRINT

PRINT TAB(1@)"2 - 48% 1965-1970 KENNEDY SILVER CLAD HALVES"
X$ = INKEYS$:

IF X$ = "" GOTO 11300

X = VAL(XS)

IF X <1 ORX > 2 GOTO 11660

IF X = 1X = ,72:

REM 90% SILVER WEIGHT PER $1 FACE VALUE

IF X = 2X = .295:
REM 40% SILVER WEIGHT PER $1 FACE VALUE
PRINT

INPUT "<ENTER> FACE VALUE OF U.S. COINS ";FV
FV = FV * X

PRINT

PRINT STRINGS (57,45)

PRINT "U.S. COINS CONTAIN ";:

PRINT USING "#, ###.##4";FV;:

PRINT " TROY OUNCE(S) OF PURE SILVER."

PRINT STRINGS(57,45)

GOSUB 6108

PRINT

INPUT "<ENTER> WEIGHT SYSTEM: 1-AVOIRDUPOIS 2-TROY ";AT
IF AT < 1 OR AT > 2 GOTO 12768

IF AT = 1 AT = .9114583:

ELSE

AT = 1

PRINT :

PRINT

INPUT "<ENTER> WEIGHT OF STERLING ITEM (OUNCES) ";W
W=WH*N*AT

PRINT :

PRINT

PRINT STRINGS(59,45)

PRINT "STERLING ITEM CONTAINS ";:

PRINT USING "#, ###. #48";W;:

PRINT " TROY ONCES OF PURE SILVER."

PRINT STRINGS(59,45)

GOSUB 6168

END

REM * EXAMPLE INVENTORY DATA LINES *
DATA #14K JEWELRY,1,1.75,250.88

DATA *STERLING SILVER,1,120,680.68

DATA *STERLING KNIVES,8,1.28,75.60

DATA #$20 U.S. GOLD PIECE,1,.9675,325.00
DATA *$48 FACE 96% U.S. COINS,48,.720,624 .00
DATA *$75 FACE 48% U.S. COINS,75,.295,400.00

DATA #18K NECKLACE,1,.475,548.00

DATA END

i

REM * EXAMPLE CLOSING DATA & SPOT PRICE DATA LINE

DATA #01/21/80,858.08
DATA *§1/21/80,58.80
DATA #01/22/80,682,80
DATA #01/30/80,698.00
DATA *01/30/80,34.080
DATA *04/02/80,14.60
DATA #04/02/80,493.008
DATA END

' END OF LISTING

16

BUSINESS

Business Forms: The Invoice
by R. L. Conhaim

Every business, large or small, needs some kind of paperwork to inform
its customers of merchandise or services sold. Retail businesses often use
cash register receipts or sales slips. But, at the wholesale, services, or
manufacturing level, the invoice is the most common sales record. The
buyer uses the invoice as an accounts payable record and to price inventory
records. The seller uses it as an accounts receivable record and for inventory
management.

In the past, the next step up from manual invoice writing was the billing
machine. Today, the computer has taken over the invoicing function. In
many computer systems, invoicing is interactive with accounts receivable,
general ledger, and inventory programs.

The invoice program in this article produces a computer-generated in-
voice containing the essentials suitable for many businesses. It requires a
TRS-80 Level II and a peripheral printer. With slight modification the pro-
gram can be used with pre-printed invoice forms or, as presented here, it can
produce the entire invoice on plain paper. The program also provides for
keeping a record of totals on tape or for posting to the business ac-
counting system.

Let’s take a closer look at the invoice and the program which generates it.
The heading information is part of the program and would not be needed on
pre-printed forms. The invoice number for the first invoice of the day is pro-
vided by the computer operator. Subsequent invoice numbers are provided
in consecutive order by the program. The operator, in response to
prompting, enters the date, buyer’s purchase order number, terms of the
transaction, and the name and address of the buyer. The position on the
page of the buyer’s name and address has been chosen to be visible in the
window of a #10 (business size) window envelope if the invoice is folded in
thirds. For any of this information which is to be repeated on the next in-
voice, the operator merely presses ENTER in response to the appro-
priate question.

Data for each item sold is supplied by the operator. The item number in
the first column is supplied automatically by the computer. Price each is
entered by the operator and the total (price times quantity) is calculated by
the program. The price each and totals columns are right-justified through
the print-using function. Long item descriptions, up to two lines of 34

17

business

characters each, can be used. By the use of the LEN function, the computer
determines whether a one- or two-line description is needed, so the operator
need not count characters.'The only limit to the number of items that may
be included on one invoice is the size of the sheet.

After the last item is entered, the program prints LAST ITEM, after which

INVOICE
FROM: INVOICE NUMBER: 1234
GENERAL SUPPLY COMPANY DATE: JULY 20 1980
1234 CENTER STREET P.O.NO:B6789
DAYTON, OHIO 45406 TERMS:2%-10 DAYS

NET 30
SUPPLIES AND EQUIPMENT FOR COMMERCIAL & INDUSTRIAL USE

TO:
THE BONKERS CONSTRUCTION CO.
7650 MALDEN LANE
DAYTON OHIO 45406
ITEM QUAN DESCRIPTION PRICE EA. TOTAL
1 16 #21 D handle shovels 5.67 90.72
2 6 Gross #8 x 1-%4” flat head wood
screws 2.13 12.78
3 3 Concrete shaker screens size 7 3490 104.70
4 4 Cragmire #23 wheelbarrows 67.10 268.40
5 6 Stanley #44 nail hammers 6.80 40.80
6 2 Portable tool sheds equipped with
master locks 208.80 417.60
LAST ITEM
** SUB—TOTAL 935.00
SALES TAX (5.0%) 48.75
SHIPPING CHARGES 8.90
**TOTAL 990.65
YOU MAY DEDUCT 18,70 IF PAID BY JULY 30 1980
INVOICE SUMMARY
NEXT INVOICE NO. 1235
TOTAL MERCHANDISE 935.00
TOTAL POSSIBLE DISCOUNT 18.70
TOTAL SALES TAX 46.75
TOTAL SHIPPING 8.90
GRAND TOTAL 990.65

Example 1. Sample Invoice

18

business

the subtotal for merchandise is calculated by the computer and printed.

In response to prompting, the operator indicates whether or not the in-
voice is subject to a prompt-pay discount, sales tax, if any, and shipping
charges. The data is calculated automatically and printed. Because buyers
typically miscalculate the prompt-pay discount, the program does the
calculating for them, indicating the dollar amount that may be deducted by
the entered date.

After all items on the invoice have been printed, line 730 signals the
printer to advance the paper to the next sheet. When all invoices during a
session are completed, the program prints totals for the session of merchan-
dise, possible discounts, sales taxes, shipping costs, and a grand total on a
separate sheet. Discounts are not included in the grand total, as not all
buyers will take the discount.

The latest totals may then be added to the totals for previous sessions and
kept on cassette tape. The cassette of the previous totals is loaded, the new
figures added to previous figures, and the result recorded back to the
cassette. If desired, a month-to-date summary can then be printed out.

19

258

260
270
288
298

3pe

310 :

328
338

340
358
360
378
380

390
400
41p

420
430

440

458
460
478
4880

business

Program Listing

LD 0.0:0.0.0.9.0.0.0/0.0.0.0.6.6.0.0.0.0.0.0.0:0.0:0.0.0.00.:0.6.6.9.0.:6.0.06.9:9.9:6.6.6.60:4.0 4

' INVOICE PRINT AND TAPE STORAGE PROGRAM

' BY R. L. CONHAIM

'OXXX
CLs

CLEAR
INPUT
INPUT
INPUT
INPUT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
AL USE
LPRINT
INPUT
INPUT
INPUT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
DEFDBL

' BEG
LPRINT
LPRINT

$:9:0.0.0:0:0.9,0.0.0.0.19.9.$.0.0.9.8.0.9.9.0.90.8:6.0.0.$.0966099$0.900099694

1000

Y“ENTER STARTING INVOICE NUMBER";X1
"ENTER DATE";DAS

"ENTER P,O., NUMBER";PO$

"ENTER TERMS";El$

TAB(32) CHR$(81);"INVOICE"; CHRS$(02):

"FROM:"; TAB(46) "INVOICE NUMBER:";Xl

"GENERAL SUPPLY COMPANY"; TAB(46) "DATE: ";DAS$
"1234 CENTER STREET"; TAB(46)"P.0.NO:";POS$
"DAYTON, OHIO 45486"; TAB(46) "TERMS:";E1$

TAB(11) "SUPPLIES AND EQUIPMENT FOR COMMERCIAL
"

STRINGS(75,"~")

"NAME"; N§

"STREET" ; AS

"CITY,STATE,ZIB";CS$

"TO: ":

TAB(15) NS
TAB(15) AS
TAB(15) C$

B,J,S,T
IN ENTRY OF ITEMS

STRINGS$(75,"-")
"ITEM"; TAB(8) "QUAN"; TAB(27) "DESCRIPTION";

ICE EA, TOTAL"

LPRINT
LT = L
INPUT
INPUT
IF LEN
THEN
Ll =
ELSE
Ll =
INPUT
M$ = "
TP R
ST S
LPRINT
IF L1
GOTO 4
IF L1
THEN
LPRI

[}

STRINGS(75,"-")

T + 1

"QUANTITY SOLD"; Q
"DESCRIPTION";I$
(15) > 34

1:

]

"UNIT PRICE";R

BH HEEL BT

* 0
T + TP

LT; TAB(7)Q;

= § LPRINT TAB(l5)1$;:
66;

=1

NT TAB(15) LEFTS$(1$,34);"-"

LPRINT TAB(16) MIDS$(IS$,35);
LPRINT TAB(53) USING M$;R;
LPRINT TAB(63) USING MS;TP
INPUT "ANOTHER ITEM (Y/N)";:D$

& INDUSTRI

TAB(56)

" PR

business

49¢ IF D$ = "Y" GOTO 350:
ELSE
500
500 LPRINT TAB(2@)"LAST ITEM"
510 LPRINT STRINGS(75,"-"):
LPRINT
520 LPRINT TAB(32)"** SUB-~-TOTAL"; TAB(63); USING M$;ST
53¢ INPUT "IS THIS INVOICE SUBJECT TO PROMPT PAY DISCOUNT (¥/N)";D1$
540 IF D1$ = "Y" GOTO 558:
ELSE
580
550 INPUT "ENTER DISCOUNT PERCENT (WHOLE NUMBER)";E2
568 INPUT "ENTER DISCOUNT EXPIRATION DATE";DT$
579 2 = (E2 / 168) * ST
58¢ INPUT "IS THIS INVOICE TAXABLE (Y/N)";D3$
599 IF D3$ = "Y" GOTO 688:
ELSE
620
600 08 = .05 * §T
616 LPRINT TAB(32)"SALES TAX (5.0%)"; TAB(63) USING M$;0S
620 INPUT "ENTER SHIPPING CHARGES";F
630 IF F = @ GOTO 659
640 LPRINT TAB(32)"SHIPPING CHARGES"; TAB(63) USING MS$;F
658 T = ST + 08 + F
660 LPRINT TAB(37) "**TOTAL"; TAB(63) USING M$;T
670 IF D1$ = "Y" GOTO 688:
ELSE
00
680 LPRINT :
LPRINT ; TAB(8) "YOU MAY DEDUCT "; USING "##.##";2;
690 LPRINT " IF PAID BY ";DT$

788 Bl = Bl + ST:
B2 = B2 + 2:
B3 = B3 + 0OS:
B4 = B4 + F:
BS = B5 + T
718 X = 1
728 8T = @:
2= 8:
05 = B:
F=0:
T = @
Xl = X1 + 1
LT = #

738 LPRINT CHRS$(12)
748 INPUT "ANOTHER INVOICE (Y/N)";D4$
750 IF D4s = "Y" GOTO 166:
ELSE
768
760 LPRINT TAB(28)"INVOICE SUMMARY":
LPRINT
770 LPRINT TAB(15) "NEXT INVOICE NO.";X1:
LPRINT
78¢ LPRINT TAB{10)"TOTAL MERCHANDISE"; TAB(35) USING M$;Bl
796 LPRINT TAB(1¢)"TOTAL POSSIBLE DISCOUNT"; TAB(35) USING M$;B2
8¢# LPRINT TAB(18)"TOTAL SALES TAX"; TAB(35) USING M$;B3
819 LPRINT TAB(10)"TOTAL SHIPPING"; TAB(35) USING M$;B4
82¢ LPRINT TAB(18)"GRAND TOTAL"; TAB(35) USING M$;B5
836 Cl = @
846 INPUT "PREPARE CASSETTE TO PLAY, WHEN READY PRESS ENTER";Cl
85¢ IF Cl < > @ GOTO 830
86¢ INPUT # - 1,J1,32,303,J4,J5

876 J1 = J1 + Bl:
J2 = J2 + B2:
J3 = J3 + B3:
J4 = J4 + B4:
J5 = J5 + B5S
888 D1 = @

Program continued

21

business

890 INPUT "PREPARE CASSETTE TO RECORD. WHEN READY PRESS ENTER;D1
98¢ IF D1 < > @ GOTO 880

91¢ PRINT ¢ - 1,01,32,03,J4,J5

928 PRINT "REWIND CASSETTE.INVOICES COMPLETED"

93¢ INPUT "DO YOU WANT MONTH-~TO-~DATE SUMMARY (Y/N)";MS$

94¢ IF MS$ = "Y" GOTO 20608:

ELSE
95¢

956 END

2¢68 INPUT "ENTER TODAY'S DATE";TD$

20658 LPRINT "MONTHLY INVOICE SUMMARY AS OF ";TD§:

LPRINT

2060 MS = "#i# $EEOHET

28706 LPRINT “TOTAL MERCHANDISE"; TAB(35) USING M$;Jl
2(8¢ LPRINT "TOTAL POSSIBLE DISCOUNT"; TAB(35) USING M§;J2
2098 LPRINT "TOTAL SALES TAX"; TAB(35) USING M$;J3
2168 LPRINT "TOTAL SHIPPING"; TAB(35) USING MS$;J4

2118 LPRINT :

LPRINT TAB(10) "GRAND TOTAL"; TAB(35) USING M$;J5

2128 PRINT "REWIND CASSETTE"

2138 GOTO 950

22

BUSINESS

How Much Interest?
The Rule of 78

by Charles B. Steele

So you inherit $10,000 from good old Aunt Minnie and decide now is the
time to get that auto or furniture loan off your back. The whopping
finance charge that was added to the cost of what you bought won’t all have
to be paid after all. Let’s see now, the loan was for 48 months and you've
been making monthly payments for two years. If you pay it off, you should
get that finance charge cut about in half. Off to the finance company to tell
them the good news. They won’t have to hound you for those monthly in-
stallments any more.

But now for the bad news. When the finance officer hears you want to
pay off the loan, he does some calculating and tells you that you get a reduc-
tion of only 25.5 percent of the finance charge. You now discover that in-
stallments you have been paying were a lot more interest and a lot less prin-
cipal than you thought. You've already paid 74.5 percent of the finance
charge and those are dollars you'll never see again.

How could this be? You thought that half the loan period had expired
and, therefore, that half the interest was paid. Wrong—now you hear about
the Rule of 78 which permits lenders to charge a much larger proportion of
interest up front.

Background

Consumer loans, or installment loans as they are often called, usually
have the interest as an add-on. This means that the full rate of interest is
charged on the entire principal for the full loan period. For example, on a
$4000 loan that is to run 36 months at nine percent interest, the interest
would be $1080 ($360 per year for three years); therefore the amount to be
repaid would be $5080, which would be divided into 36 equal monthly
payments of $141.11. (Federal regulations require the lender to compute
and disclose the Annual Percentage Rate (APR) to the borrower, which
shows the actual rate being paid due to the decreasing balance of the loan.
The APR will be significantly larger than the simple rate used to compute
add-on interest as in the example above.)

The Rule of 78 is a frequently-used means of apportioning interest and
principal in each monthly payment. As time passes during the life of the
loan, the amount of interest paid each calendar year under this rule must be
known by the borrower if he is to use it as an income tax deduction. If the
loan runs full term, then nothing more needs to be known about the appor-

23

business

tionment. However, if the borrower decided to pay off the loan early, then
the amount of interest paid up to that time is required so the rebate or
unearned portion of the interest can be deducted by the lender from the loan
total to determine the balance due at payoff time.

What does all this have to do with the number 787 The Rule of 78 is ac-
tually defined as a sum-of-digits method of calculation. The 78 comes from
its application on loans lasting one year. If the sequential numbers from one
to 12 are assigned to the 12 months in a year, the sum is 78: 12 +11+10+9
+8+7+6+5+4+3+2+1="78. Obviously, the name of the rule is a mis-
nomer because the method is used for a variety of loan periods longer and
shorter than one year.

The theory behind this method is that the borrower on a one-year loan has
12 times as much of the debt outstanding at the time of the first installment
as he would have at the last installment; 11 times as much at the second in-
stallment; 10 times at the third, and so on. Thus, he should be charged
12/78ths of the interest on the first installment; 11/78ths on the second;
10/78ths on the third, etc. Since the lender’s administrative costs for a loan
are largest when the loan is taken out, he can recover these costs, nearer to
the time they were incurred using the Rule of 78.

Carrying this on when there is an early payoff, that portion of interest
originally allocated to the time period after the payoff would not be
charged. Thus, in the one-year loan case, if it were paid off in the 10th
month, then the 11th and 12th month charges would not be made. They
would be 2/78ths and 1/78th of the interest, or a total of 3/78ths would be
rebated.

If a loan runs for longer than a year, the pattern is the same. For example,
the sum of the months for two years is 300 and for three is 666.

Calculation

In real life things get more complicated than in the examples above. There
might be a three-and-one-half year loan beginning in September with a
finance charge of $1466.83 and paid off in November of the third year. The
prablem is to determine how much interest is paid in each calendar year and
the amount of rebate at early payoff.

This calculation can be made by laboriously adding up the numbers
representing each of 42 months and those representing the number of
manths that remain after the first year and after the second year. Then the
number of months remaining after November of the third year must be
determined; finally, all of these have to be manipulated into answers. For-
tunately, mathematicians have come to the rescue and provided a formula
forthis kind of arithmetic progression. The formula tells us that n(n + 1)/2,
where n is the number of months, will give the answer. Don’t believe it? Try
forone year: 12(12 + 1)/2 =78 which is the same total arrived at after add-

24

business

ing12 + 11 + 10. ..

Given this helping hand, how do we find out how much the income tax
deduction will be in the first year in the above exampler First, determine
what part of the total interest is allocable to payments made in the first year.
This is: the sum of month numbers in entire loan period minus the sum of
month numbers in period remaining after first year, all divided by the sum
of month numbers in the entire loan period. Applying this: (903 — 741)/903
= .1794 or 17.94 percent of interest is paid in first calendar year.

Where did those numbers come from?
® Loan life is three and one-half years or 42 months:
n(n+ 1)/2 = 42+43/2 = 903
@ Payments began in September, so four payments were made in the first
calendar year and 38 payments remain:
n(n + 1)/2 =38+39/2 =741

Applying the 17.94 percent to the total loan interest of $1466.83, we find
interest for the first year is $263.15. This can then be entered on Schedule A
of Form 1040 when the tax return is prepared.

Similarly, using the sum of month numbers remaining after the second
year, we find that 43.19 percent of the total interest, or $633.52, would be
paid and would be a tax deduction in the second year.

For the third year, when there is an early payoff in November, the for-
mula is: the sum of month numbers remaining after the second year minus
the sum of month numbers remaining after payoff, all divided by the sum of
month numbers in the entire loan period. Applying this: (351 — 120)/903 =
.2558 or 25.58 percent of total interest. Thus, $375.22 will be paid the
third year.

Where did those numbers come from?

® At the end of the second year, the loan had 26 months to run
(42 -4 — 12 = 96):
n(n + 1)/2 = 26%27/2 = 351
@ At payoff time the loan had 15 months to run (42 -4 -12 - 11 =15):
n(n+1)/2=15+16/2 =120
Now, to determine the rebate:
® Rebate = Total interest less interest until payoff
® Rebate = 1466.83 —263.15 -633.52 — 375.22 =$194.94

If we had merely wanted to know the rebate to decide if it was worth-
while to pay the loan early, we could divide the sum of month numbers re-
maining after payoff by the sum of month numbers in the entire loan period.
From numbers used above, this would be: 120/903 = .1329 or 13.29 percent
of total interest or $194.94, the same as above.

Calculations like these are a real time-consuming pain and an invitation
to errors. Sure, there are tables available to help with some of this, but

25

business

usually they are for specific loan lives that do not fit all cases. Also, early
payoff tables are hard to find (see bibliography if you wish to pursue
further). Why suffer through all this when your friendly computer is sitting
in the corner begging to tackle a calculation like this—error free!

Take the time to copy the program listing. Put it in your library and you'll
never have to calculate by the Rule of 78 again. The program is written in
TRS-80 Level 11 BASIC. Program lines have been numbered in steps of 10 to
facilitate use of the AUTO command in copying it. (Instant Software’s
Renumber program is a great tool for converting your programs to even
steps this way.)

When entering program lines where portions are enclosed in quotes and
onthe DATA line 470, be certain to include spaces exactly as shown to assure
proper format alignment. For example, in line 130 there are five spaces be-
tween the first quote mark and the word HOW. This spacing is particularly
critical in lines 470, 490, and 500. Proper columnar alignment, as shown in
figures 3 and 4, is determined by line 470. In this line there must be a total of
eight letters and spaces for each word before the comma. For example
FIRST__ __ __,SECOND__ __, THIRD_ . __ __, etc.

Who thought up this rule? I have not been able to find out. References to
the Rule of 78 were encountered in publications dated as far back as 1948,
but there was no indication of its origin.

No doubt all this is much more than you ever thought you wanted to know
about the Rule of 78, but at least if you did not know it before, you can avoid
wrong assumptions about interest payments on installment loans. If you use
the Rule of 78 in your profession, you can be assured of quick and error free
caleulations with this program.

Running the Program

Upon entry of brief information about the loan, the program provides the
amount of interest and percent of total interest for each calendar year in the
life of the loan or until the early payoff. For an early payoff it also shows the
amount of rebate.

To input data for the program, the four questions shown in Figure 1 are
answered. If the early payoff is answered YES, a fifth question about time of
the payoff is asked, as shown in Figure 2.

HOW MANY MONTHLY PAYMENTS IN LIFE OF CONTRACT?__

IN WHAT MONTH DOES PAYMENT BEGIN? _

HOW MUCH IS TOTAL FINANCE CHARGE (INTEREST) IN DOLLARS AND CENTS?__
WAS THERE AN EARLY PAYOFF OF THE LOAN CONTRACT?

Figure 1

26

business

The program then lists the calculated answers and summarizes original
input data above the listing. An example run for a five-year loan that goes to
maturity is shown in Figure 3. Figure 4 shows the same loan with an early
payoff after 38 months.

HOW MANY PAYMENTS ARE THERE UP TO AND INCLUDING MONTH OF THE
EARLY PAYOFF?__

Figure 2

PMTS: 60 MOS. IST PAY: AUGUST. EARLY PAYOFF: NONE.

YEAR PERCENT INTEREST
FIRST 15.85 $375.48
SECOND 32.46 $769.08
THIRD 24.59 $582.63
FOURTH 16.72 $396.19
FIFTH 8.85 $209.75
SIXTH 1.53 $36.25

TOTAL INTEREST IS: $2,369.38
Figure 3

As written, the program limits loan life to 120 months (10 years). Most
loans of this type are shorter. Correcting messages are provided if absurd en-
tries are made such as loan life of one month or less and early payoff time in
excess of loan life. If negative amounts are entered, they are made positive.
Life of loan entries are converted to integers if they are entered with decimal
amounts (e.g., 24.6 months will be calculated as 24 months). If the number
of months for early payoff is entered with decimal amounts, a choiceis given

PMTS: 60 MOS. 1ST PAY: AUGUST. EARLY PAYOFF: NONE.

YEAR PERCENT INTEREST
FIRST 15.85 $375.48
SECOND 32.46 $769.08
THIRD 24.59 $582.63
FOURTH 13.28 $314.62

TOTAL INTEREST IS: $2,041.81
THIS IS 86.17% OF TOTAL FINANCE CHARGE OF $2,369.38
DUE TO EARLY PAYOFF. THUS ‘REBATE’ IS: $327.57

Figure 4

27

business

for rounding up to a full month or re-entering. The program accepts month
of first payment input as the full name of the month or as an abbreviation of
the month (e.g., AUG; at least three letters). The program accepts finance
charges in any amount, but there is some rounding of amounts over $10,000,
and some leading percent signs will show if finance charges exceed $100,000
due to use of the PRINT USING statement. However, dollar amounts will be
correct. Calculations are single-precision which is more than adequate for
most loans of this type.

Extending the Program

Most installment loans using the Rule of 78 are for periods shorter than the
10 year maximum provided in the program. If loan lives longer than 10
years are desired, the program can be modified by changing lines 80, 150,
470, 480, and 750. Depending on how much longer than ten years, addi-
tional lines equivalent to 490 and 500 may need to be added to control
scrolling,

Spacing in all data entries on Line 470 will have to be adjusted if the pro-
gram is to include a thirteenth year or more. Otherwise, format of the run
will not be uniform. Note that because the program provides for the loan to
begin at any month during the year, provision in lines 470 and 480 have to
be made for one more calendar year than the maximum number of years
allowed for life of the loan.

For reference, Table 1 shows a list of variables used in the program.

Most Significant
N Number of payments in loan life
M$ Month of first payment
P Payments in first year
T& TI Total interest
E$ Early payoff question response
D Divisor in sum of months formulas
PO Payoff payments
PR Payments remaining after payoff
I Interest
PO$ Payoff question response about decimal months
Others used

0,00,Z,G,B,E,X,A$,TI$,YP$,Z8,UP$, UI$

Table 1. List of Variables

28

business

Bibliography

® Greynolds, E. B., Jr., Aronofsky,]. S., Frame, R. J., Financial Analysis
Using Calculators, McGraw-Hill, N.Y., NY, 1980.

@ More, N. D., Dictionary of Business Finance & Investment, Investors
Systems, Inc., Dayton, OH, 1975.

® Neifeld, M. R., Neifeld’s Guide to Installment Computations, Mack
Publishing Co., Easton, PA, 1953. (Has early payoff table for selected
periods up to 36 months)

® Swindle, R. E., Business Math Basics, Wadsworth Publishing Co., Bel-
mont, CA, 1979.

® Webber, R. P., Business Math—A Consumer Approach, Houghton Mif-
flin, 1976.

@ New Rules on Consumer Credit Protection, Commerce Clearing House,
N.Y., NY, 1969.

rud

[

=
—])

 Fo— — |
-
N
o~

‘] i

10
20
30
40

50

60
70
80

90
100
119

120
130
140

150

160

170
180
190
200
21p
220
230
240
250
260
2798
28p
299

300

310

320
338

340

358
360
376

business

Program Listing

CLS
PRINT CHRS$(23)
PRINT @ 322,"* * * * RULE OF '78 * * * %0
FOR 0 = 1 TO 1208:

NEXT O
CLS

PRINT :

PRINT "THIS IS A PROGRAM TO CALCULATE PERCENT AND AMOUNT OF INTE
REST"

PRINT "PAID EACH YEAR WHEN A LOAN IS BEING PAID QFF UNDER THE 'R
ULE "

PRINT "OF 78', MONTHLY INSTALLMENTS MUST BE EQUAL DOLLAR AMOUNT
S AND

PRINT "LIFE OF THE LOAN CONTRACT MUST NOT EXCEED 120 MONTHS (18
YEARS) .,IF THERE IS AN EARLY PAY-OFF OF THE LOAN, PROGRAM WILL AL
50 ADJUST INTEREST ACCORDINGLY.

FOR 00 = § TO 2000:

NEXT 00

PRINT :

PRINT "JUST ENTER THE FOLLOWING INFORMATION ABOUT THE LOAN:"
PRINT :

CLEAR
DEFINT N
INPUT " HOW MANY MONTHLY PAYMENTS IN LIFE OF CONTRACT ;N
IF N < 2
THEN

730
IF N> 128
THEN

750
PRINT :
INPUT " IN WHAT MONTH DOES PAYMENT BEGIN ";M$
IF LEFT$(M$,3) = "JAN" P =
IF LEFT$(MS$,3) = "FEB" P = 11
IF LEFTS(M$,3) = "MAR" P = 18
IF LEFTS(M$,3) = "APR" P = 9
IF LEFT$(M$,3) = "MAY" P = 8
IF LEFTS(M$,3) = "JUN" P = 7
IF LEFTS(M$,3) = "JUL" P = 6
IF LEFT$(M$,3) = "AUG" P =5
IF LEFT$(M$,3) = "SEP" P = 4
IF LEFTS$(M$,3) = "OCT" P = 3
IF LEFTS$(M$,3) = "NOV" P = 2
IF LEFT$(M$,3) = "DEC" P = 1

IF P = @ PRINT :

PRINT"“PLEASE ENTER MONTH OR CORRECT 3 LETTER ABBREVIATION FOR M

ONTH,":

GOTO 164

IF P> N

THEN
P =

b=

PRINT
INPUT HOW MUCH IS TOTAL FINANCE CHARGE (INTEREST) IN DOLLA
RS AND CENTS";T

T = ABS(T)

PRINT :

IF T > 9999,99 PRINT " (FOR FINANCE CHARGES EXCEEDING $10,888, MI
NOR ROUNDING ERRORS MAY OCCUR IN INTEREST DOLLAR AMOUNTS.)":
PRINT :

2 e

ELSE
350
FOR z = 1 TO 15008:
NEXT 2
INPUT " WAS THERE AN EARLY PAY~OFF OF THE LOAN CONTRACT";ES$
IF ES "YES" GOTO 778

IF E§ < > "NO" PRINT "PLEASE ANSWER YES OR NO.":
50

30

business

380 CLS
399 D= N * (N+ 1) / 2
400 G = N - P
416 IF PR > 0 AND G < PR
THEN
G = PR
420 E = D

4308 GOSUB 680
448 PRINT "PMTS:"N"MOS.";" 1ST PAY: "MS$".";:

IF PO = @ PRINT " EARLY PAY-OFF: NONE." :
ELSE
PRINT " EARLY PAY-OFF:"PO"MOS,"

450 PRINT TAB(8)"YEAR"; TAB(25)"PERCENT"; TAB(44)"INTEREST"
460 PRINT TAB(7) STRINGS$(7,129); TAB(24) STRINGS$(1¢,129); TAB(43)

STRINGS$(11,129)

470 DATA "FIRST ","SECOND ","THIRD ","FOURTH ","FIFTH ", "81X
TH " ,"SEVENTH ","EIGHTH ","NINTH ", "TENTH ", "ELEVENTH

480 FOR X = 1 TO 1l:
READ AS

490 IF PR > P AND A$

560 IF PR = © AND A$S

518 PRINT TAB(7) AS;:
GOSUB 838

520 GOSUB 648

530 NEXT X

540 TIS = "$S#,BEE.EE7

550 PRINT TAB(24)"TOTAL INTREST IS:"; PRINT USING TIS$;TI

568 IF T = @ GOTO 590

570 YPS = "#$#, 44"

580 IF E$ = "YES" PRINT :

PRINT " THIS I8";:

PRINT USING YPS$;1¢0 * TI / T;:

PRINT "$ OF TOTAL FINANCE CHARGE OF";:
PRINT USING TIS$;T;:

PRINT " DUE" :

"EIGHTH " GOSUB 878
"ELEVENTH" GOSUB 878

no#

PRINT " TO EARLY PAY-OFF. THUS 'REBATE' IS:";:
PRINT USING TIS;T - TI
59¢ PRINT

INPUT "DO YOU WANT TO RUN ANOTHER CALCULATION";ZS
600 IF 2$ = "YES"
THEN
CLS :
GOTO 119
610 IF 2$ = "NO"
THEN
CLS
PRINT :
PRINT @465, “THANK YOU, GOODBYE,":
PRINT :
PRINT :
GOTO 6340
628 PRINT :
PRINT "PLEASE ANSWER YES OR NO,":
GOTO 594
638 END
640 G = G - 12
650 IF PR > @ AND G < PR

THEN
G = PR
660 IF G < @
THEN
G =8
670 E = B
680 B = G * (G + 1) / 2
698 I = (E ~B) /D

700 TL =TI + I * T
718 IF I = @
THEN
549 Program continued

31

720
738

748
750

768

770

788
798

808
818
828
830
848
850

860
878
888

8940

908

914

928
93¢

948

business

RETURN
PRINT :
INPUT "LIFE OF CONTRACT CAN'T BE UNDER 2; CORRECT LIFE";N
GOTO 140
CLS :
PRINT :
PRINT :
PRINT "SORRY, LIFE OF CONTRACT IN THIS PROGRAM IS LIMITED TO 128
MONTHS (186 YEARS). TRY AGAIN."
PRINT
GOTO 118
PRINT :
INPUT " HOW MANY PAYMENTS ARE THERE UP TO AND INCLUDING MONT
H OF THE EARLY PAY-OFF" ;PO
PO = ABS(PO)
IF PO >N CLS :
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT PAYMENTS MADE UNTIL EARLY PAY-OFF CAN'T EQUAL OR EXC
EED LIFE OF CONTRACT; TRY AGAIN,":
GOTO 770
IF PO > INT(PO) GOSUB 899
PR = N - PO
GOTO 388
upsg = " BG4
uIrs = " SSH, BEE HE"
PRINT USING UPS$;I * 108;:
PRINT USING UI$;I * T
RETURN
PRINT "NOTE-TOP INFO IS GOING TO DISAPPEAR; PRESS ANY KEY TO CON
TINUE,"
IF INKEYS$ = "" GOTO 888 :
ELSE
RETURN
CLS :
PRINT :
PRINT :
PRINT "UNDER RULE OF 78 IF THE NUMBER OF MONTHS UNTIL PAY-OFF IN
CLUDES A PORTION OF A MONTH, IT IS COUNTED AS A FULL MONTH., YOU
R ENTRYOF"PO"MONTHS WILL BE CHANGED TO"™ INT(PO) + 1"FOR THE CALC
ULATION,"
PRINT :
PRINT "IF THIS IS OK, ENTER YES; IF NOT, ENTER NO TO RE-DO";:
INPUT POS
IF POS = "YES"
THEN
PO = INT(PO) + 1:
GOTO 818
IF POS$ = "NO" GOTO 770
PRINT :
PRINT "PLEASE ANSWER YES OR NO.":
GOTO 960
RETURN

Dee ve se e 00 I

32

EDUCATION

Computer Education

Measuring Instructional
Effectiveness with the
TRS-80

Using a TRS-80 to
Tabulate Student
Ratings

33

EDUCATION

Computer Education

by Joseph R. Chartier W1RFE
and Carl A. Goldner W4ERA

en Vianello is the principal of the Fort King Middle School in Ocala,
Florida, and not only does he believe in the importance of the com-
puter and its impact on the future, but he also acts on his beliefs.

If anyone had told you ten years ago that an eighth grade class in com-
puter education would be the most popular course at that grade level, you
might have concluded he was a prime candidate for the funny farm. Not so!
Here at Fort King, a computer education course in BASIC is, in fact, most
popular with eighth graders.

The course is taught in a computer laboratory equipped with sixteen
Level II TRS-80s. Perhaps even more amazing than the fact that such a
facility does exist in a middle school is the story of how the lab came to be.

Spice Sale

Shortly after his appointment as principal of this middle school (grades 6
through 8), Ken Vianello, convinced that computers were here to stay, laid
the groundwork to prepare students for the impact of these devices.

As Vianello observed, “We in education are notorious for reacting but
never acting. If the prediction is true that over 40 million microcomputers
will find their way into our homes in the next decade, then it makes good
sense to start now to train our young people in the practical applications of
this equipment.”

The funds for this project were not available through regular budget
channels, so Vianello elected to raise the money through the sale of spices.
With the enthusiastic support of the parents and students, some $19,000
worth of “sneeze-proof” pepper, “cry-proof” onions, seasoning salt, and
bacon bits were sold, providing sufficient profits to finance the program.

In the early part of 1979, with the spice drive funds in hand, Principal
Vianello, hopeful that the program could be operational for the 1979-80
school year, assembled his staff, Ms. Jane McClellan, curriculum supervisor,
and Ms. Holley Griffin, a math teacher with a flair for computing.

They purchased fifteen Level II 4K TRS-80 units after reviewing most of
the microcomputer equipment that could do the job within their budget
limitations. Renting, leasing, and time-sharing arrangements were con-
sidered and subsequently discarded, since future budget appropriations
could jeopardize the program.

35

education

Computer Carpentry

The Fort King Middle School has an enrollment of 1100 with a faculty
and staff of 57, yet they found time to build a computer lab. Yes, it was built
from scratch—for where else could one find an eighth grade computer
laboratory? Moreover, the only space available to house the facility was a
multi-level lecture hall that required considerable carpentry work to con-
vert it into a flat-floored lab. Virtually all the lecture hall furniture was
adapted for use as computer work desks, saving considerable expense.

If any of the staff were-skeptical, they have long since joined the ranks of
the believers.

Let’s make one point very clear: The course is not elective—it is required
of every eighth grade student! And there are 350.

Each student receives eighteen weeks of instruction, in two nine-week
segments, separated by a nine-week break. With five 50-minute periods per
week, the course provides nearly 75 hours of classroom time.

Despite the fact that the course is required, to date, Vianello reports, only
five youngsters have been lukewarm to cool in their reactions to the training,
and only two of these asked to be excused.

For the majority of students, the course has been a success. School starts at
8:00 am. Ms. Holley Griffin, who teaches five of the daily classes, usually ar-
rives about 7:00 am, hoping for a few minutes alone at her newly acquired
TRS-80 Level II with disk drive. Invariably, two or three youngsters are
already there waiting for her to open the lab. By 7:30 most of the first class of
the day is on hand with all keyboards in use. After the final class of the day,
there are some enthusiasts who must be literally pried loose from the
keyboard.

Why is the course so successful?

It’s probably a variety of things, not the least of which are good teaching
methods coupled with high student interest. Classroom work is assigned ac-
cording to the student’s capability. In general, two students of comparable
ability share the use of a TRS-80.

Grading is on the satisfactory/not satisfactory basis, so none of the
students are made to feel they are struggling for a particular grade.

Learning Levels

While most of the pupils are permitted to set their own pace, the high
achievers are given additional classroom work and homework on a much
tighter and structured schedule. This group is required to turn in fully
documented special assignments at least every two weeks.

Ms. Griffin and Ms. McClellan combined their talents to prepare some
project material tailored to the three student learning levels: the gifted, the
average, and the low achievers. Space does not permit a complete list, but a

36

education

few from each category are outlined below.

1. Gifted or Advanced Student Projects.

@ Write a program which asks a person his or her weight; print that person’s
equivalent weight on each of the planets and the moon.

® Develop a program which translates an alphabetic message into Morse
code.

@® If you put P dollars into a savings account with an interest rate R, com-
pounded T times a year, how much money would there be in the account at
the end of N years? Write the program so that it answers the question for any
combination of the parameters P, R, T, and N. Now use the program to
determine the amount A after one year, starting with $100 at five percent in-
terest when it is compounded (1) annually, (2) semi-annually, (3) quarterly,
and (4) daily.

® You are about to purchase a car. Assume you normally drive 10,000 miles
per year and use EPA mileage ratings from 10 miles per gallon (MPG) for a
heavy luxury car to 40 MPG for a small economy sedan. Write a program
which lists, in three columns, the MPG from 10 to 40, the gallons of gasoline
used in one year, and how much that gas costs using a current local price for
unleaded gas.

2. Average Student Projects.

In this category Ms. Griffin has provided eight pages of projects and prob-
lems to give the students some good programming practice. Students are
asked questions such as:

@ How would you correct it to make it run right?

@ How would you modify it to make it a better program?

® Compare two programs shown; tell which you prefer and why.
® Take a listed program and make your own adaptation.

The program guide provides a number of examples to apply to the above
practice work.

A section in the Average Student Guide asks the student to translate some
word problems into BASIC programming formats. They are asked to copy
the finished program on a BASIC Coding Sheet, remembering the steps for
developing a program: (1) Feed in the data, (2) Provide an equation (for-
mula), and (3) Print the answer.

Most of this exercise, for the average student, involves taking word problems
in arithmetic and converting them into computer language. For example:

® A carton of soft drinks costs 98¢, and a doughnut costs 12¢. What is the
total cost of three cartons of soft drinks and ten doughnuts?

® A family drove 2,300 kilometers one summer. The next summer, they
drove 1,084 kilometers. How much further did they drive the first summer?

37

education

3. Projects for Low Achievers.
For this group seven pages of simple program exercises for copy practice
on the TRS-80 keyboard have been prepared. These are some examples:

10LET X = 100/4 + 75
20 LET Y = 200/20

30 PRINT X/Y

40 END

10 REM * ADDITION PROBLEM *
20 READ A,B,C,D
IETE=A+B+C+D

40 PRINT E

50 DATA 25, 3, 17, 12

Teacher’s note: Remember how we got rid of the “?O.D. error” in another program we did?

10 PRINT * MY COMPUTER IS A WHIZ AT ARITHMETIC”
20 PRINT 5 + 2+ 4 + 3

30 PRINT 8 — 16/32

40 PRINT (5 + 2) * (8 - 3)

50 PRINT “THAT'S ALL FOLKS!”

60 END

It was this third group that surprised school authorities. These youngsters
have an extremely short attention span, and they cause discipline problems
in many classrooms. Not so here in the computer lab!

When one of these students sat down at the TRS-80 keyboard, he seemed
transformed into a totally different student. His interest was quite intense in
the short programs he was given to copy.

After copying a number of simple programs, some of these pupils even
dream up programs of their own. The following program was written by
one of the youngsters:

10FORI = 0TO 1332
20 X = RND (1023)

30 PRINT X,“*”;

40 NEXT 1

Teaching Technique

Ms. Gritfin’s expertise in math, coupled with some computer training,
madeher an ideal choice for her position. In addition to some of the teaching
material she has developed herself, she makes liberal use of various TRS-80
manuals including Learning Level I by David A. Lien. The lab’s reference
shelves contain a number of publications which the students can consult at
any time. In the laboratory, Ms. Griffin has the usual chalkboard and
overhead projector which are used to explain and demonstrate various steps
in BASIC programming. Considerable material is on transparencies and can

38

education

be readily copied by students on their keyboards from the projection screen.

The Computer Education Program has been well received and enjoyed by
the students, and there have been few disciplinary problems. Interest in the
course is spreading in a contagious way! Members of the faculty, parents,
and other outsiders have indicated a desire to learn more about microcom-
puters as a direct result of student enthusiasm.

At least one adult education class is using the laboratory for an evening
computer course in BASIC. There have even been inquiries from county and
city service departments concerning training programs for employees. If the
demand persists, Ken Vianello’s ingenuity may well be tried again.

What about Service?

What about equipment problems?

In general, the staff feels they have received good service and support
from the two Radio Shack stores in Ocala.

Local store managers have graciously cooperated by loaning a keyboard
or two during repairs. No serious interruptions have occurred because of
equipment failures.

What would they change, if they had it to do again? “Very little,” said the
Curriculum Supervisor, Jane McClellan.

Some of the students doubted they would have chosen computer ed if it had
been an elective subject, but now that they are immersed in it, you couldn’t
pry them loose. Sixth and seventh graders have shown considerable interest in
the course and are impatient to get “with it” in the next year or two.

Several Ocala families have purchased microcomputers for the home as a
direct result of the interest sparked by this forward-looking program at the
Fort King Middle School.

An adult class is using the lab for a Central Florida Community College
course in BASIC, and many of them have microcomputers on order. The
senior members of the class are just as enthusiastic as the younger members.

The use of the microcomputer as a patient teaching aid has just begun.
Youngsters are able to accept that the computer cannot forgive mistakes and
will not tolerate sloppy or faulty instructions. Students have, in exaspera-
tion, called the machine an idiot or a dumbbell, but they do not get mad at
the TRS-80 when it tells them they are wrong.

Progressive educators like Ken Vianello and Jane McClellan are providing
the direction and leadership for this innovative experience in education.

Teachers Tommy Parker, who works with a group of gifted youngsters,
and Holley Griffin are, in a real sense, pioneers in this field, and their con-
tribution will not go unrecognized. As a result of the excellent work of this
group and the efforts of others in this dynamic venture, we can look forward
to an interesting future with the computer as a willing help-mate.

39

EDUCATION

Measuring Instructional Effectiveness
with the TRS-80

by Maj. Vernon Humphrey

| ost microcomputer applications in the field of education involve
LV AL either using the computer as an instructional device or using it for test
grading and similar administrative purposes. One of the most fruitful appli-
cations of the computer is often overlooked: using the computer as a tool to

measure the effectiveness of instruction and to provide a basis for improving
the instruction.

There are many methods of designing good tests, but no test, no matter
what theory the instructor follows, can be regarded as effective until it has
been validated. One of the most valuable tools in validating tests is the PHI
coefficient. It provides a statistical basis for determining the quality and ef-
fectiveness of the test.

There are two basic methods of validating tests, both of which use the PHI
coefficient. Depending on the type of course you are teaching, you may
choose to use one or both methods.

One of the most critical factors in teaching is constructing good tests.
From the students’ standpoint, a well-designed test is an assurance that the
conscientious student will be properly rewarded for his efforts with a good
test score. For the teacher, the test forms the basis for improvements in
course content and teaching techniques. In industrial training programs,
employers and supervisors need assurance that persons who have been
trained can do the jobs they were trained for.

All too often, however, an instructor, after putting in many long hours in
preparing lesson plans and teaching classes, puts together a test which really
doesn’t measure anything.

The first method measures the validity of the test as a predictor of on-the-
job effectiveness. The instructor designs a test which he hopes will measure
job mastery and administers the test to two groups. The first group consists
of people who are known to be proficient in the job (this can be determined
by querying supervisors, consulting productivity records, or direct observa-
tion at the job site). The first group is called the “master” or “instructed”
group. The second group (“non-master” or “non-instructed”) consists of peo-
ple who are known not to be proficient in the job. The test is administered to
both groups and the PHI coefficient is used to determine which questions or
test elements adequately discriminate between groups. The test is modified
until all questions or test elements provide a good level of discrimination.

40

education

The second method is to validate the test for use as a yardstick to measure
the effectiveness of the instruction, in order to improve the instruction.
Again, two groups are used. The “instructed” group is given the instruction
before the test is administered. The “non-instructed” group is given the test
without the instruction.

In both methods, each question is scored as “pass” or “fail.” A correct
response constitutes a “pass” and an incorrect response, regardless of the
number of possible responses, is scored as “fail.” The PHI coefficient
calculation compares the responses of the two groups on a question-by-
question basis. It pinpoints those questions which do not discriminate be-
tween groups well enough to be useful in predicting job performance or in
measuring teaching effectiveness.

The PHI coefficient also indicates the reasons for inadequacy and suggests
corrective action. Since there are two groups tested and two possible out-
comes (pass or fail) for each question, there are four possible situations for
each question:

1. Instructed students tend to pass and non-instructed students tend to
fail. This indicates a valid question and the PHI coefficient will be +0.3
or higher.

2. Both groups tend to pass. This indicates the question is either
“transparent” or covers something that is common knowledge. 1t does not
adequately discriminate and should be revised, eliminated, or the scoring
weight should be reduced. The PHI coefficient will be less than +0.3.

3. Both groups tend to fail the question. If you are validating to predict
job performance, this question does not discriminate and should be
eliminated. If you are validating the test for use as a yardstick, the instruc-
tion itself is at fault. The PHI coefficient will be less than +0.3.

4. Instructed students tend to fail and non-instructed students tend to
pass. Although this kind of question does discriminate, it indicates fun-
damental shortcomings in design. Either the actual job practice is different
from what the instructor or supervisor believes it to be, or the instruction is
confusing or wrong. The PHI coefficient will be strongly negative.

Running the Program

The program will run in 16K Level II. It allows you to define the size of
the test by entering the number of questions in the test and then accepts
question-by-question input for instructed and non-instructed students. The
two groups must be equal in size and the program tests for group size quali-
ty. Data can be entered by keyboard or tape.

The program asks you to enter PASS (1) or FAIL (2) for each question for
each student. You terminate entries by entering 99999. The program will
accept only those three numbers, so if you have a problem with keybounce,
you won't spoil your data.

41

education

When you have terminated entries for the instructed group, the program
calls for the non-instructed group. The entries will automatically terminate
when the numbers of the two groups are equal. You can also terminate non-
instructed entries with 99999. In that case the two groups will not be equal,
of course, and the program will give you the choice of adding more non-
instructed students, deleting the extra instructed students, or aborting the run.

When you have equal numbers in the two groups, press ENTER to con-
tinue the program. To read or edit the data, select the READ option. If you
want to record the data, you must read before recording,.

Both READ and CALCULATE PHI COEFFICIENT options give you a
choice of video or print output. Video output displays a screenful at a time in
READ and a question at a time in CALCULATE options. The RECORD
option uses the high-speed tape recording routine published in the July 1979
issue of the Radio Shack Microcomputer Newsletter. Lines 1550 and 1560
are a short tape manipulating routine originally published in the November
1978 issue.

As written, the program will accept up to 600 responses for each group of
students. If you have a test with twenty questions, you can have up to thirty
students in each group. For larger numbers, redimension arrays A and B in
line 10.

42

1@

20

3¢

40

50

60

70
8¢

1l¢o
110

120

130
140

150

160
176
180
196

208

210
220

education

Program Listing

CLEAR 1200:
DIM A(680):
B(60@2)

'H

8:
'H
B
1:
1

o
]
=

[ES L O

- HODUO W

PHI Coefficient Program by MAJ V. Humphrey, US Army In
stitute for Professional Development, Ft. Eustis, VA 23604
CLS :
PRINT :
PRINT :
PRINT STRINGS$(64,"%"):
PRINT :
PRINT TAB(18)"PHI COEFFICIENT"
PRINT
PRINT
INPUT " 1=KEYBOARD INPUT, 2=TAPE INPUT. WHICH";G:
ON G GOTO 60,930
PRINT :
PRINT :
INPUT "HOW MANY QUESTIONS IN EXAM";N
PRINT "BEGIN ENTERING DATA FOR INSTRUCTED STUDENTS. 1=PASS, 2
=FAIL, (ENTER 99999 TO END.}"
PRINT “"STUDENT NUMBER"(J - 1) / N + 1
FORI = § TON - 1
PRINT "QUESTION"I + 1
INPUT A:
IF A = 99999
THEN
158
IFA < >1ANDAC > 2
THEN
INPUT "ERROR! 1=PASS, 2=FAIL. PRESS 'ENTER' WHEN READY TO CON
TINUE";E:
GOTO 118
A{(J + I) = A
NEXT I:
J =J + N:
PRINT :
GOTO 89
CLS :
PRINT "BEGIN ENTERING DATA FOR NON-INSTRUCTED STUDENTS. (ENTER 9
9999 TO END)."
PRINT "STUDENT NUMBER"(K - 1) / N + 1
FORI =0 TON - 1
PRINT "QUESTION";I + 1
INPUT A:
IF A = 99999
THEN
2508
IF A< >1AND A< > 2
THEN
INPUT "ERROR! 1=PASS, 2=FAIL. PRESS 'ENTER' WHEN READY TO CON
TINUE";E:
GOTO 199
B(K + I) = A
NEXT I:
K =K + N:
PRINT :
IFK=J
THEN
240 Program continued

e

43

238
240

250

260
279

280

290
300

310
320

339
340
350
360
370

380

398
400
416
420

439

440
450
460
470
480

490

508
518
520
530

540
550

578
580

598
600

education

GOTO 168
INPUT "NUMBER OF NON-INSTRUCTED STUDENTS EQUALS NUMBER OF INST
RUCTED STUDENTS, PRESS 'ENTER' WHEN READY TO CONTINUE.";B:
ON E GOTO 388
IF K =7
THEN
3g0
PRINT "YOU HAVE "(J - 1) / N" INSTRUCTED AND "{K - 1} / N" NON=-
INSTRUCTED STUDENTS, yOU MUST HAVE EQUAL NUMBERS."
INPUT "1=DELETE EXTRA STUDENTS. 2=ADD NEW STUDENTS, 3= ABORT.WHI
CH";E:
ON E GOTO 280, 1546, 1570
IF K> g
THEN
K =J
J =K
CLS :
INPUT "1=READ. 2=CALCULATE PHI COEFFICIENT. WHICH";E:
ON E GOTO 310,1158

INPUT "PRINT OR VIDIO (B/V)}";Z$:
IF 2§ = "P" GOTO 13889

CLS :

B = 1:

PRINT "FOR INSTRUCTED STUDENTS"
FOR I = E T0 J - 1 STEP N
PRINT "STUDENT NUMBER " INT(I / N) + 1

FORH =0 TO N~ 1
PRINT TAB{5)A(I + H):
NEXT H:
PRINT
IFI=E+ 4 *N
THEN
E=E + 4 * N:
GOTO 400
GOTO 4l@
INPUT "WANT TO CONTINUE";G
NEXT I
INPUT "NON-INSTRUCTED STUDENTS"™;E:
ON E GOTO 438
CLS :
E=1

FOR I = E TO K - 1 STEP N

PRINT "STUDENT" INT(I / N) + 1
FORH =6 TON~-1
PRINT TAB(5)B(I + H);
NEXT H:
PRINT
IF I=E+ 4 *N
THEN
E=E+ 4 * N:
GOTO 518
GOTO 520
INPUT "WANT TO CONTINUE";G
NEXT I

INPUT "1=READ. 2=CHANGE LINE. 3=DELETE STUDENT. 4=ADD STUDENT.S5=
RECORD., 6=CALCULATE PHI,WHICH";G

ON G GOTO 318, 550, 676, 1548, 788, 1150

INPUT "1=INSTRUCTED STUDENTS, 2=NON-INSTRUCTED STUDENTS. WHICH";
L

INPUT "WHICH STUDENT. (ENTER 99999 TO END) ";M:
IF M = 99999

THEN

539
FOR I =8 TO J -~ I STEP N

IFI/N+1=n

THEN

600
NEXT 1

FOR H= 08 TO N ~ 1

44

610
620
630

640

658
660
67¢

688

708
718
728
738

758

768

770
780
798
B@8

810
820
838

840
850

876
880

890
969

PRINT "QUESTION"H + 1
INPUT A
IFL =1
THEN
A(I + H + 1) = A
IFL = 2
THEN
B(I + H + 1)
NEXT H
GOTO 558

[
>

education

INPUT "1=INSTRUCTED STUDENTS. 2=NON-INSTRUCTED STUDENTS., 3=RETUR

N TO MAIN PROGRAM.WHICH";L:
IFL =3
THEN
539

INPUT "WHICH STUDENT. (ENTER 93999 TO END)";M?

IF M = 99999
THEN

Z = (N * M) - (N-1):
N:

Jl = K - N:
= K
PRINT "NUMBER OF STUDENTS NOW
FOR I = 2 TO J2 - 1 STEP N
FORH =@ TON - 1
IF L =1
THEN
A(I + H)
IF L = 2
THEN
B(I + H) = B({I + H) + N)
NEXT H:
NEXT 1:
IFL =1
THEN
J = Jl
IFL = 2
THEN
K = J1
GOTO 678
INPUT "NAME FOR DATA FILE";D$
INPUT "TAPE SET TO RECORD";G
B$ = nn,
A$ - n/n
PRINT # - 1,D$,N,J,K
FORI =1TO J

B

A((I + H) + N)

"(Jl - 1) / N

IF LEN(BS + STR$(A(I)) + AS) > 230

THEN
PRINT # ~ 1,BS:
BS = "©
B$ = BS + STR$(A(I)) + AS
NEXT :
PRINT # - 1,BS
BS = ",
AS = lv/u
FORI =1 T0 J

IF LEN(BS + STRS(B(I}) + AS) > 239

THEN
PRINT # -~ 1,BS:
Bs = N

BS = BS$ + STRS(B(I)) + AS
NEXT :

PRINT # - 1,BS$:

GOTO 538

NEXT I

Program continued

45

education

920 GOTO 538
938 INPUT "TAPE LOADED AND SET TO RUN";G
940 AS$ = "/":
B$ = nu,
J =1
958 INPUT # - 1,DS,N1,NN,K
960 PRINT "FILE BEING READ = "D$
97¢ INPUT # -~ 1,BS:
N = LEN(BS$):
LF = 1
986 FOR I =1 TO N
99¢ IF MID$(BS,I,1) = AS

THEN
NC =1 - LF :
ELSE
GOTO 1820
1686 A(J) = VAL(MIDS$(BS$,LF,NC))
1616 LF = I + 1:
J=J+ 1
1626 IF J > NN
THEN
10840
1830 NEXT I:
GOTO 978
10480 N = Ni:
J = NN
1650 AS = "/";
BS = mn,
J =1
1862 INPUT # - 1,BS:
N = LEN(BS):
LF = 1

1876 FOR I = 1 TO N
1688 TIF MIDS$(BS,I,1) = AS
THEN
NC =1 -~ LF :
ELSE
GOTO 1118
1698 B(J) = VAL(MIDS$(BS$,LF,NC))
1180 LP = T + 1:
J=J+ 1
1118 IF J > NN
THEN
1130
1126 NEXT I:
GOTO 1060
1138 N = NI:
J = NN
1148 GOTO 538
1158 IF J < > K
THEN
268
1160 INPUT "PRINT OR VIDIO (P/V)";2$
1178 CLS :

1180 J - 1 STEP N
1199 = 2
B="B +1
12080 IPFP A(I + H) =1
THEN
A=A+1
1216 1IF B(I + H) = 2
THEN
D=D+1

46

1228

1239

1240

1258
1260

1278
1280

1290
13¢0

1310

1320

1330
1340
1350

1360
1370
1380

1390
1400
1410

1420

1439

1449
1458

l46@
1479

education

IF B(I + H) =1
THEN
C=C+1

NEXT I:
IF 2§ = "p"

THEN

1470
PRINT :
PRINT :
PRINT "FOR QUESTION "H + l:
PRINT TAB(25)"PASS"; TAB(35)"FAIL":
PRINT "INSTRUCTED"; TAB(25)A; TAB(35)B:
PRINT "NON-INSTRUCTED"; TAB(25)C; TAB(35)D
A2 = (A * D) - (B * ()
B2 = SQR((A + B) * (C+ D) * (A+C) * (B +D)):
IF B2 = §

THEN

1490
X = A2 / B2
IF 28 = "P"

THEN

1480
PRINT "PHI COEFFICIENT FOR QUESTION "H + 1" = "X

[0 I |
.

oW

[

IF 28 = "p¥

THEN

1340
INPUT "WANT TO CONTINUE";G
GOTO 1180
PRINT :
PRINT :
INPUT "LAST QUESTION, l= RECALCULATE, 2=RETURN TO MAIN PROGRAM,
3= END. WHICH.";G
ON G GOTO 1156,536,1376
END
LPRINT "STUDENT RESPONSES FOR "D$:
LPRINT :
LPRINT :
LPRINT "FOR INSTRUCTED STUDENTS":
LPRINT
FORI =1 TO J ~ 1 STEP N:

LPRINT "STUDENT NUMBER " INT(I / N + 1)
FORH =@ TO N - 1:

LPRINT TAB(5)A(I + H);

NEXT H:

LPRINT :

NEXT I
LPRINT :
LPRINT :
LPRINT "NON~INSTRUCTED STUDENTS"
LPRINT :
FORI = 1 TO K - 1 STEP N:

LPRINT "STUDENT NUMBER " INT(I / N + 1)
FORH = 0 TO N ~ 1:

LPRINT TAB(5)B(I + H);

NEXT H:

LPRINT :

NEXT I
GOTO 53¢
LPRINT :
LPRINT : :
LPRINT "FOR QUESTION "H + 1: Program continued

47

education

LPRINT TAB(25)"PASSY; TAB(35)"FAIL":
LPRINT "INSTRUCTED"; TAB(25)A; TAB(35)B:
LPRINT "NON~-INSTRUCTED"; TAB(25)C; TAB(35)D:

GOTO 1250
1480 LPRINT "PHI COEFFICIENT FOR QUESTION "H + 1" = "X
1498 IF Z$ = “P"
THEN
1520

1568 PRINT "DENOMINATOR FOR THIS QUESTION = "B2". NUMERATOR = "A2:
IF A2 > @ PRINT "QUESTION IS GOOD.":
GOTO 1388

1519 PRINT "QUESTION IS BAD.":
GOTO 1308

1520 LPRINT "DENOMINATOR FOR THIS QUESTION = "B2", NUMERATOR ="A2:
IF A2 > # LPRINT "QUESTION IS GOOD,":
GOTO 13649

1536 LPRINT "QUESTION IS BAD,":
GOTO 13889

1540 INPUT "1=ADD INSTRUCTED STUDENT., 2=ADD NON-INSTRUCTED STUDENT., W
HICH";E:
ON E GOTO 88,160

1558 OUT 255,4

1568 INPUT ;AS$

1578 END

48

EDUCATION

Using a TRS-80 to
Tabulate Student Ratings

by Anne Weiss

00 often, while teachers concentrate on students, they forget about
their colleagues. Many of them have no direct experience with com-
puters. The tendency is to view the machines as mystifying monsters who
make errors on their bills.

Our 16K Level IT TRS-80, with its ability to perform arithmetic calcula-
tions quickly and to make complicated if-then decisions tirelessly, seemed a
natural to help ease the burden of assigning grades at the end of each mark-
ing period. After discussing the various methods of grading with several
teachers at St. Peter’s High School in New Brunswick, NJ, a program called
Grade Book was developed. The program was designed to be flexible
enough to meet the needs of different teachers.

Programs such as Grade Book not only help to lessen the work involved in
performing necessary chores, but also have nice fringe benefits. They can
help dispel any computer-related anxieties and can help make teachers more
receptive to using computers in their own classes. For example, we are
preparing presently to have a class of sociology students use the computer

GCRADES

S007]

HOMEWORK

TESTS

CLASSWORK

.

A
TRS-80 1111111111111

49

education

simulation Hammurabi to investigate the problems involved in ruling a
country. Also, our tape library should be increasing by leaps and bounds,
since some typing students will be getting practice by keying in programs
from books and magazines.

Another necessary chore that must be carried out annually is the tallying
of points for those students who are candidates for the National Honor Soci-
ety. Every spring our NHS moderator spends a good deal of time counting
the ratings given eligible students by each faculty member. Her summaries
then go to a committee for final consideration. Here again, our TRS-80 is
helping to get the job done.

Our administration and faculty are asked individually to rate each can-
didate with respect to their qualities of character, leadership, and service to
the school, along with an overall recommendation for election to the Soci-
ety. The ratings are on a scale of 0 (lowest) to 5. In the past, there was a
dilemma about what to do when certain teachers could not rate a particular
student in some or all of the categories. The question was how to differen-
tiate between a given rating of 0 and one of no rating due to lack of
knowledge of the student.

It was decided to use a method similar to that employed in Grade Book to
differentiate between an assigned grade of 0 and an excused absence or omis-
sion. In the first case the student is penalized, but not in the second. In the
NHS program, the user is instructed to enter 0 for a rating of zero, and -1 to
indicate that a rating was not given. When the scores are tallied, the - 1s
are ignored.

We also wanted the summary to include the names of any teachers who
gave a low recommendation rating (0, 1, or 2), as well as how many positive
or negative comments were listed for each student. An appropriate form was
devised to facilitate data handling (see Figure 1). Each faculty member was

PLEASE CIRCLE THE APPROPRIATE RESPONSE IN EACH CATEGORY. IF YOU DO
NOT KNOW A PARTICULAR STUDENT, CIRCLE ‘NO" AND GO ON TO THE NEXT
STUDENT

Able to Recommend For
Student () Rate? Leadership Character Service Acceptance Comments
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345
YesNo 012345 012345 012345 012345

Figure 1

50

education

given a description of the categories and the meanings of the various
responses. To hand-tally the results would be quite tedious and often would
present the possibility for error. Fortunately, the TRS-80 can grind out such
summaries tirelessly and accurately in practically no time. QOur small
Quick Printer II gives us a compact record of each student’s ratings. This in-
formation is then added to the student’s academic record and other creden-
tials and is presented to the election committee as a neat package.

The program seems versatile enough to be able to be adapted for use in
other tallying situations. Figure 2 shows a typical printout for a student.

STUDENT #1 # OF TEACHERS
LEADERSHIP 80 20
CHARACTER 60 20
SERVICE 60 15
RECOMMEND 78 19

20 TEACHERS RATED STUDENT

17 DID NOT

CUMULATIVE SCORE OF 276 POINTS
OVERALL RATING IS 15
5 POSITIVE REMARKS
2 NEGATIVE REMARKS
RECOMMENDATION OF LESS THAN 3 BY
SMITH
JONES

Figure 2

Notice that there was no mention of disks or fancy line printers. If ever we
are fortunate enough to obtain any, our applications will be able to touch
every corner of the school. For now, we are concentrating on more bake and
plant sales in order to raise the funds needed to purchase a third system.

51

10
20

30
49
50

60
70
8@
90
168

118

120

130

140

158
160

176
188

2009

219
220

230
240

260

279

280
290

education

Program Listing

REM RECORD HONOR SOCIETY RATINGS

.

1 % % % % % k &k k %k k Kk kK k Kk k kK *k %k k &k k k kK k k k Kk *

BY DR ANNE WEISS

- moes

Kok ok Kk Kk ko k k Kk Kk k Kk K k k k Kk Kk Kk Kk k k k kK Kk Kk Kk %
CLEAR 4060:

DIM T$(48):

REM RESERVE SPACE FOR 48 TEACHER NAMES
CLS :

DIM A$(4) ,A(4),K(4),X(4)

A$(ly = "LEADERSHIP":

A$(2) = "CHARACTER"

AS$(3) = "SERVICE":

A$(4) = "RECOMMENDATION"

PRINT "FOLLOW THE DIRECTIONS GIVEN AND PUSH THE ENTER KEY"
PRINT "AFTER EACH ANSWER":

PRINT :

PRINT

PRINT "EACH STUDENT SHOULD HAVE A NUMBER, AS WELL AS EACH TEACHE
R":

PRINT

PRINT

PRINT "CHECK THE SCREEN AS YOU GO ALONG TO CATCH ANY ERRORS":
PRINT :

PRINT

INPUT "PUSH ENTER WHEN YOU ARE READY TO START ";Q$:

CLS :

GOSUB 788

REM INITIALIZE FOR EACH STUDENT

FOR 8 = 83 TO X
T = P2
P =0:
N = @:
U= 8:
G = B:
Z2=0
FOR I = 1 TO 4:
A(T) = B:
K(I) = B:
NEXT

REM PROCESS EACH TEACHER

FOR T1 = 1 TO Y
PRINT :
PRINT "DOES TEACHER #";Tl; "KNOW STUDENT #";S;" (Y OR N)":
INPUT K$

F o= 0:
REM RESET LOW RECOMMENDATION FLAG
IF K$ = "N"
THEN
U=70+1:
GOTO 418:
REM COUNT TEACHERS NOT KNOWING STUDENT
IF K$ = "Y"
THEN
290
PRINT "DO AGAIN PLEASE":
GOTO 240
PRINT :
PRINT :

52

300
31e
320
330

340

350

360
370

380

390

408

410

420

430

458

460
470

480
490
500

518
520
530
548
550
560

578
580

education

PRINT :

PRINT "ENTER RATINGS FOR STUDENT #";S;"BY TEACHER #":T1:

PRINT

PRINT "USE -1 WHEN QUESTION IS NOT ANSWERED"
PRINT "USE -2 TO REDO ANY TEACHER'S RATINGS"

FOR I =1 TO 4
PRINT :
PRINT AS(I);:
INPUT X(I)

IF X(I) > 5 OR X(I) < - 2 OR X{(I)

IN, PLEASE":
GOTO 338
IF X(I) = -~ 2
THEN
CLS :
GOTO 240:
REM CORRECT AN ERROR
NEXT I

IF X{4) < 3 AND X(4) > -1 T =17+ 1:

F = 1:

INPUT "TEACHER'S NAME"™; TS$(T):
REM LOW RECOMMEND

PRINT :

INPUT "REMARKS P=P0OS, N=NEG, 9=NONE" ;Q$
IF Q$ = "P" OR Q$ = "N" OR Q$ = "g"

THEN
410
PRINT "DO AGAIN PLEASE":
GOTO 380
A = WMy

INPUT "PUSH ENTER TO PROCEED - USE @ TO DO OVER ";AS:

REM FINAL CHECK
IF A < > "n

THEN
718
IF K§ = "N"
THEN
490
REM GO ON TO NEXT TEACHER
IF Q§ = "p"
THEN
P =P + 1z
REM ANOTHER POSITIVE COMMENT
IF Q% = "N"
THEN
N =N+ 1:

REM ANOTHER NEGATIVE COMMENT

FOR I =1 TO 4
IF X(I) > - 1

THEN
A(I) = A(I) + X(I):
K(I) = K(I) + 1:

Z =7 + X(I):

REM SKIP -1 RESPONSES
NEXT I
NEXT T1

.

1

REM PRINT OUT STUDENT'S SUMMARY

LPRINT "STUDENT #";S; TAB(19);"# OF TEACHERS"

FOR I = 1 TO 4

LPRINT A$(1); TAB(13);A(I); TAB(25);K(I)

NEXT I

LPRINT T1 - U - 1;"TEACHERS RATED STUDENT"
IF U > 6 LPRINT U;"TEACHERS DID NOT"

FOR I =1 TO 4:
IF K(I) = @
THEN
608

< > INT(X(I)) PRINT "DO AGA

Program continued

53

education

598 G = G + A(I) / K(I)
600 NEXT I
618 LPRINT "CUMULATIVE SCORE OF";Z;"POINTS"
62¢ LPRINT "OVERALL AVERAGE RATING IS"; INT(G + .5)
6380 IF P > B LPRINT P;"POSITIVE REMARKS"
640 IF N > @ LPRINT N;"NEGATIVE REMARKS"
656 IF T = @
THEN
680
660 LPRINT "RECOMMENDED LESS THAN 3 BY"
676 FOR I = 1 TO T:
LPRINT TS$(I):
NEXT I
680 LPRINT
LPRINT
LPRINT
PRINT :
PRINT
698 NEXT S
700

716 REM REDO A PARTICULAR TEACHER
720 =

738 IF F = 1

GOTO 248
778 :
1
788 REM GET STARTING PARAMETERS
798 :
L]
868 INPUT "HOW MANY STUDENTS ALL TOGETHER ";X:
PRINT
818 INPUT "WHICH STUDENT # STARTING WITH ";Sl:
REM 1IN CASE THIS IS A CONTINUATION
820 PRINT :
INPUT "HOW MANY TEACHERS DID RATINGS ";Y
836 IF PEEK(14312) < > 127 PRINT "PLEASE CHECK THAT THE PRINTER IS R

EADY TO GO™:

INPUT "PUSH ENTER WHEN PRINTER IS READY ";Q$
848 RETURN
845

)
850 :

' A() = SUMS IN 4 CATEGORIES X{) = INPUTS OF 4 CATEGORIES
860
] ' K() = # TEACHERS RATING AS() = CATEGORY NAMES
76 :

' T§() = LOW RECOMMENDERS K$ Y OR N IF KNOW STUDENT
880 :

' F = LOW RECOMMEND FLAG G = RATING AVERAGE
898 :

N = # NEGATIVE COMMENTS P = # POSITIVE COMMENTS

990

' 8§ = STUDENT BEING RATED 81 = STARTING STUDENT #
910 :

' T = # LOW RECOMMENDS Tl = TEACHER DOING RATING
920)

' U = § TEACHERS NOT KNOWING X = # OF STUDENTS RATED
936 :

' Y = # OF TEACHERS RATING Z = SUM OF ALL RATINGS

94¢ :
' Q$ = INPUT VARIABLE

54

GAMES

Swords and Sorcery 11
The President Decides

Babe Ruth Is Alive and
Well and Hitting Home
Runs on My TRS-80

55

GAMES

Swords and Sorcery 1l

by Barry L. Adams

he August 1978 issue of Kilobaud Microcomputing magazine carried

a game program entitled Swords and Sorcery. The program was writ-
ten on an SWTP 6800 machine using an 8K BASIC interpreter. The game
involved you in the search and rescue of a princess held in an evil captor’s
dungeon. During the quest, the player encountered a variety of creatures
—some good, some bad.

I immediately fell in love with the program and soon adapted it to my
Level II 16K machine. As written, the listing required less than 8.5K of
memory. When it comes to writing game programs, I generally follow the
advice of my old art teacher: When you’re painting a picture, fill up the
entire canvas; after all, you're paying for it.

Armed with this bit of philosophy and a great deal of unused space in my
16K memory, I set out to paint my canvas.

New Dimensions

The revised program still follows the overall theme of the original, but
adds more dimension to the encounters that pop up during play. The pro-
gram uses TRS-80 graphics and includes a few new adversaries. Whereas
the original program is primarily random based, the revised program also
includes the elements of skill, strategy, and awareness.

The scenario of the game is familiar. In typical fairy tale fashion, you
are an impoverished, rather inept hero, attempting to rescue an elfin
princess who has been imprisoned in a dungeon located deep within the
Old Forest. When you begin your quest, you are equipped with only a
small sword and some provisions.

Prior to entering the Old Forest you may be offered assistance from a
dryad, as well as the counseling of the Great Oracle. The nymph is a real
plus as she makes an excellent guide and can be helpful in combat with the
trolls. However, be careful not to offend her, because she can turn that
magical power on you with a curse.

The Oracle, on the other hand, appears to be more interested in the
maidens you’re bringing rather than helping. Nevertheless, once ap-
peased, he can point you in the right direction.

Before you start your journey, familiarize yourself with two units of
measure in this little magical world: the Yerb and the Farbble Warfer.
Both are measures of distance. Legend has it that the measure was defined
as the distance between Ezekiel Yerb’s house and that of Hansel Farbble
Warfer. One man was short and the other rather tall, and as a result the

57

games

two could never agree on the number of steps between the two houses. The
sense of the whole thing has long since been lost, and, today, all we know is
that 1 Yerb is equal to % of a Farbble Warfer.

While on your journey, you will meet a number of different critters. The
full cast of characters is as follows:

Nymph: She knows the Old Forest like the back of her hand and is very
good in fights with trolls.

Hot dog salesman: Hal You thought that you could get away from them,
yet here they are. Don’t laugh! One of these gastronomical marvels can
keep you going long after your provisions have given out.

The Great Oracle: Generally, he has more interest in what you can do
for him, rather than what he can do for you. However, he may tell you the
correct path to take.

Slave girls: They provide conversation and something for the satyrs to
look at; otherwise, they do little but cut into your provisions.

Rats: They will give you the willies and make you run, but otherwise are
of little consequence.

Snakes: A snake bite will lay you up for a day.

Spiders: They will attack, unless you can outrun them.

Dragons: Dragon slaying is still big news with big rewards, but be careful!

Goblins: You can be startled by them and run, otherwise they will enslave
you, sell you to the satyrs, or let you go free for ransom.

Trolls: There are two kinds of trolls—your everyday run-of-the-mill troll
and the dreaded warrior trolls. The common trolls are pesky fighters, par-
ticularly dangerous in the early going, while the warrior trolls are bad news
all of the time.

The Necromancer: The chief heavy and captor of the princess, as well as
the all-around bad egg.

Elements of the Fantasy

The other elements of the fantasy consist of the pits into which one occa-
sionally tumbles, gold coins, and an enchanted sword. As you might have
guessed, the pits are an obstacle from which you must escape either by
climbing or yelling for help. The gold that you pick up along the way is
used to buy food, pay ransom, and provide you with a little bankroll
should you be lucky enough to complete your quest.

Of course, there is a “Catch 22.” The weight of all that gold is somewhat
of an encumbrance to combat and inhibits your fighting ability. The en-
chanted sword, on the other hand, enhances your fighting ability. In fact,
you are usually in big trouble if you don’t have it.

A player’s fighting skill develops with successful combat. A player in-

58

games

creases fighting ability in combat with common trolls, satyrs, and dragons.
But there are degrees of improvement. More fighting ability is acquired by
slaying dragons than trolls. However, a similar gain is made when either a
troll or a satyr runs from you.

In like fashion, your own fighting ability is diminished when you run
from combat. Dragon fighting is the only exception. It’s your choice. You
can walk away from it any time.

Considerable fighting ability is usually necessary to defeat a warrior
troll. But after fighting one of the super trolls, you are usually so frazzled
that your fighting ability has been reduced.

The playing instructions are simple. Prior to loading the program from
cassette, set the memory size to 32697 in order to reserve room for the
dragon’s graphics code. If you are already up and running, you can get
back to MEMORY SIZE? without powering down by entering the SYSTEM
command followed by /0 ENTER.

Initially, entering RUN will get the introductory title and the familiar
READY. At that point the first five lines of the program are automatically
deleted. Entering RUN thereafter initiates the main program. This is done
to conserve memory, providing an additional 600 or so bytes.

The INKEY$ command is used to eliminate the repeated use of the
ENTER key where possible.

There are questions which require word answers: RUN, YES, NO,
CLIMB, and YELL. Only the first letter of the word need be typed. In two
cases a prompt answer is important—encounters with either the spiders or
the dragons. To avoid attack from a spider, the player must strike the R key
as quickly as possible. In the case of the dragon, the rescuer is moved
toward and away from the dragon by using the less than and greater than
signs. Any other key will stop the rescuer in place.

Once you have rescued the princess, you no longer have the choice to
tight or not fight common trolls. To make it to safety, you have to fight
your way out.

The Listing

There are several lines that contain IF statements like IF F PRINT“THE
NYMPH GOES MAD” (line 900). This is not a mistake, but a memory-
saver, and is permissible because numerical IF statements test for a non-
zero value. F, in this case, can only be a 1 or a 0.

The revised program requires nearly all of your 16K memory. To further
conserve memory, no REM statements are used except for the listing title.
However, the program has been written in more or less block format with
a PRINT statement introducing each block. Table 1 lists those blocks. That

59

games

should be enough to start you on your search for the dungeon, the princess,
and a typical fairy tale ending.
Have fun, but watch out for the onions on those hot dogs—they are

murder.

LINE NUMBERS DESCRIPTION

1-11 introductory title; set up dragon’s graphics code
14-30 initialize variables; main program entry point
65-70 random number seed
85-105 timer gallery

110-115 question routines

120 setup for nymph

125-170 Great Oracle

180-195 set up of main program loop
200 main loop entry point
220-240 nymph guidance and lot casting
250-270 path choosing

280 enchanted sword

290 snake in the grass

300 check for dungeon and trolls
310 check for rats

320 check for dragons

330 check for pit

335 check for the dungeon
340-360 something is in the bushes
370 check for Necromancer and Satyrs
390-400 gold

410 slave girl

420 check for dungeon

430 check for pit

440 dead end

500 nymph’s mad

530-540 travel advisory

550-556 check on provisions

570-600 captured by goblins

610-695 dungeon

700-745 run-of-the-mill troll

750-790 Satyrs

800-885 the pits

900-910 Necromancer

950 rats

960-1095 Warrior Troll

2000 something is in the bushes
2100-2120 spider

2300-2350 surprise goblin

2400-2430 the hot dog salesman
3000-4200 dateline: news story

Table 1. Block format for Swords and Sorcery 11

60

1

3

5

1e

11
15

20

25

30

games

Program Listing

CLS :

PRINT @278,"SWORDS AND SORCERY II":

PRINT @408,"BY BARRY L., ADAMS":

PRINT €467,"GREENVILLE , NORTH CAROLINA":

PRINT @586,"BASED UPON A PROGRAM WRITTEN BY BRUCE TURRIE"
PRINT @656,"PUBLISHED IN THE AUGUST 1978 ISSUE™:

PRINT @735,"0F":

PRINT @791,"KILOBAUD MAGAZINE":

PRINT
FOR X
READ
POKE
NEXT

= 32767 TO 32789 STEP - 1:

)
FOR X ; 32768 TO 32697 STEP - 1l:

X

v %

READ
POKE
NEXT
DELETE 1 ~ 11
DATA 160,196,191,180,184,191,191,191,191,191,188,144,160,186,191
»191,191,191,191,191,191,191,191,191,191,191,188,188,144,169,198
,191,147,175,191,191,191,191,191,191,191,191,159,131,179,191,181
,160,190,191,191,151,1608,191,191,168,191,186,178
DATA 188,188,191,194,189,131,13%,131,176,191,178,191

Z:

REM SWORDS AND SORCERY II
CLS :

CLEAR 258:
DEFINT L:

XX = 458:

GOSUB 65:

FOR X = 1 TO 9:
READ Y,Z:

A(X) = Y:

B(X) = Z:

NEXT

DATA 15898 3,15961,7,160623,16,16086,17,15969,4,15967,2,15844,1,1
5781,80, 15717 a:
R$ = " OUR BUNGLING HERO "

RANDOM :

PA = 2:

B$(1) = "CLANK ":

B$(2) = "SLASH ":

B$(3) = "WOOSH ":

B$(4) = "BONG ":

B$(5) = "CRASH "

B$(6) = "BING ":

B$(7) = "CLANK ":

S$(1) = CHR$(160) + CHR$(183) + CHRS$(18l) + CHR$(183) +

CHR$(181l) + STRINGS(606,32) + STRINGS(4,149):
QS8 = CHR$(149):
K$ = CHR$(132)
58(2) = CHR$(176) + CHR$(144) + CHR$(176) + CHRS(144) +
STRINGS$(59,32) + CHR$(162) + CHR$(135) + CHR$(151) + CHRS$(151)
+ CHR$(167) :
FOR ¥ = 1 TO 5:
FOR X =1 TO 5:

READ Z: ’
ES(Y) = E$(Y) + CHR$(Z):
NEXT X,Y

E$(6) CHR$(15§) + " " 4+ CHRS(156):
cansuss)' + " " 4 CHR$(135):

TO 7:

=
73
[«
>
<3 =lln e
=

.

Program continued

61

65

70

80
85

90

95

118

115

120

125

games

E3S$ = E3§ + CHRS$(Y):
NEXT @
FOR X = 1 TO 7:
READ Y:
E4$ = E4% + CHR$(Y):
NEXT :
GOTO 78
CLS :
PRINT @XX, CHR$(23); "SWORDS AND SORCERY I1%:
PRINT :
RETURN
PA = 10:
PRINT "ENTER A NUMBER BETWEEN 1 AND 9":
GOSUB 115:
A = AN:
PA = B:
FOR X = 1 TO A:
PN = RND(A + 5):
NEXT :
PA = B:
GOSUB 90:
CLS :
GOTO 129
RETURN
FOR T9 = 1 TO 58:
NEXT :
RETURN
FOR T9 = 1 TO 180:
NEXT :
RETURN
FOR T9 = 1 TO 380:
NEXT :
RETURN
FOR T9 = 1 TO 500:
NEXT :
RETURN
FOR T9 = 1 TO 1688:
NEXT :
RETURN
AS$ = INKEYS:
IF AS = "7
THEN
118
ELSE
AN = ASC(AS):
IF AN = 89 OR AN = 78 RETURN :
ELSE
118
AS = INKEYS:
IF A = "",115
ELSE
AN = VAL(AS):
IF AN > PA,115

ELSE
PA = 2:
RETURN

IF RND(PN) * 2 < = RND{PN) * RND(2) GOSUB 65:
PRINT "A DRYAD HAS OFFERED TO BE YOUR":
PRINT TAB(12);"GUIDE":
PRINT TAB(6);" DO YOU WISH IT ?":
GOSUB 118:
GOSUB 96:
IF AN = 89
THEN
F=1
ELSE
IF RND(B) > .2 GOSUB 65:
GOSUB 508:
GOSUB 185
CLS :

62

130

148

155

160

170
189

195

200

210

220

games

XX = 266:
GOSUB 65
W= F:

PRINT " THERE ARE THREE PATHS INTO THE OLD FOREST, HOWEVER , ON

LY ONE IS TRUE THE OTHERS ARE FOUL AND":
PRINT TAB(4);"REEK OF MISERIES UNTOLD":
PRINT :
C = RND(3):
Y = RND(3):
IF RND(8) > .4

THEN

Y = C
PRINT "DO YOU WISH TO CONSULT THE GREAT";:
PRINT TAB(12);"ORACLE ?":

GOSUB 110:
IF AN = 78,188 :
ELSE
CLS :
XX = 202:
GOSUB 65:
PRINT :

PRINT "AHA! TOC GAIN FAVOR WITH THE FAT ONE AND GET THE POOP

YOU RNEED YOU MUST FIRST APPEASE HIM.":
PRINT
PRINT TAB(2);"HOW MANY MAIDENS SHOULD BE":
PRINT TAB(14);"SACRIFICED";:
INPUT MD:

IF RND(MD) < RND(PN) PRINT TAB(l);"OH OH THE ORACLE IS OFFENDED
",

K=K~ 1:

GOTO 1680

IF RND(B) > .4 - (MD / 18)

THEN

165

PRINT "THE SIGNS ARE UNCLEAR -~ YOU MUST ";:
GOTO 178

PRINT :

PRINT TAB(S);"THE ORACLE SAYS PATH";Y:
PRINT TAB(S5);"IS THE PATH OF TRUTH":

P =1

IF F AND RND(MD) > RND(PN) * RND{PN) GOSUB 568
PRINT :

PA = 3:

PRINT TAB(5);"CHOOSE PATH 1,2 OR 3":
GOSUB 115:
X = AN:

L = RND(188) + 100:

IF X < > C

CLS :

PRINT TAB(21);"SWORDS AND SORCERY II":
PRINT

PRINT :

PRINT "YOU HAVE COME TO A FORK IN THE PATH":
C = RND(2):

Z - P

S=8-2=-G/ (1+12):

IF S < 4

THEN

= 4
IF RND(3) > K
THEN
L =L+ 1
L2 = 7 + RND(28):

B

Program continued

63

games

L0 = L2:
IF F PRINT "PERHAPS YOU WOULD LIKE TO ASK THE NYMPH ?":
GOSUB 110:
IF AN = 78,258 :
ELSE
IF RND(B) > .5 + K / 58 PRINT "SHE DOESN'T KNOW" :
GOTO 258:

ELSE
PRINT "SHE SAYS PATH ";C:
GOTO 258
23§ PRINT "WILL YOU CAST LOTS TO DECIDE 2"
GOSUB 118:
IF AN = 78
THEN
258
ELSE
PRINT "THE LOTS SAY YOU SHOULD TAKE PATH" ;:
IF RND(®) > .5 + K / 18
THEN
X=3=-C:
ELSE
X =C
240 PRINT X
253 PRINT "WHICH WAY DO YOU WISH TO PROCEED PATH 1 OR 2 ?":
GOSUB 115:
B = B:
IF X = C
THEN
K = K + RND(@) * SGN(,5 =~ RND(B)):

268 K

278 L2 = L2 - 8§
280 I =1 + 1:

IP E = # AND RND{f#) < .15 + .2 * F PRINT :

PRINT " WHAT LUCK ! YOU HAVE HAPPENED UPON ONE OF THE ENCHANTE
D SWORDS OF THE OLD ONES":

K =K + ,2:
E = 1:
PRINT
296 IF RND(B) - .5 * (F + D) > .95 PRINT :
PRINT " S NAKE t1Hprrpeteil™:
PRINT :
GOSsuB 538
368 T =T + 1:
IF RND(B) < .15
THEN
420 «
ELSE
IF RND(@8) > .8 + {K + D) / 38 GOSUB 768:
GOSUB 95
316 IF RND(@) > .95 GOSUB 950:
GOSUB 95
320 IF RND(O) > .92 GOSUB 2200
339 IF RND(6) < .93 GOSUB 844:
GOSUB 95
335 1IF RND(@) < .4,420
348 PT = B:
IF RND(@) > .97 GOSUB 20689
35§ IF RND(@) < .2 GOSUB 2088:
GOSUB 95
368 IF RND(@) > .96 IF M < = § GOSUB 20880 :
ELSE

GOSUB 24060
376 IF RND(8) > .98 + (XK - I / 18) / 1680 GOSUB 988
38¢ IF W < > 8 AND RND(®) > .95 + (K + D) / 58 GOSUB 750:
GOSuUB 95

64

385
399

400
419

440

5006

538
540

558

568
565

578

IF RND(B)
IF RND(9)

>

< .1 GOSuUB 578
.75 PRINT
PRINT "WHAT'S THIS BESIDE THE PATH"

PRINT "A CHEST":
PRINT "GOLD 1":

GC = RND(PN) * RND(PN):
PRINT "THERE ARE ";GC;"COINS":

G =G + GC

DS = DS ~ GC *

0001

games

IFT > 19 ~ 2 * F GOSUB 540

IF RND(d)
W=W+ 1:
M=M+1
IF L2 > 8,276 :
ELSE
L =L - LO * ,85:
IF L < 2@ GOSUB 614
IF D < > - 1 OR RND(#)
ELSE
IF RND(O) >

L2 = L2 + LO:
L = L + LO:

D = @:
GOTO 278
PRINT TAB(
PRINT TAB(
PRINT TAB(
F =0z

W= 0:
K=K~ 1:
RETURN
PRINT "YOU
PRINT "YOU
IF F PRINT

ABS(L - 28);"YERBS AWAY":

ELSE

3);
2);
8);

HAVE BEEN HURT
MUST STOP AND REST BEFORE GOING ON.":

"

< .85 PRINT " YOU MEET A SLAVE GIRL":

9,280 :

.6 GOSUB 868
PRINT "OOPS THIS PATH IS A DEAD END":

TPHE NYMPH IS MOST PERTURBED":
"SHE CURSES YOU AND DISAPPEARS":
"INTO THE FOREST":

"THE NYMPH THINKS THAT THE DUNGEON IS LESS THAN" ;

PRINT "YOU HAVE TRAVELED"; INT(ABS(DT - L) * ,75); "FARBBLE W

ARFERS"
T = @
GOSUB 185:

H=H+1+W-F:

IF H < 4 ~W+ F,560

ELSE
IF J = @

PRINT :

. R
']
=
1
o
=

PRINT

GOTO 30080

PRINT :

PRINT "YOU HAVE BEEN CAPTURED BY GOBLINS":

IF E < > 1,600 =

ELSE

PRINT "YOU HAVE JUST EATEN THE LAST OF YOUR FOOD":

=

g8 PRINT "TIME TO PUSH ON"

PRINT "THEY WANT THE SWORD THAT ONCE BELONGED TO THE OLD ONES

-7

PRINT "WILL YOU TRADE IT FOR YOUR FREEDOM 2%

GOSUB 110:
IF AN = 78,6080
ELSE

Program continued

65

630
650

games

E =~ ,8:
PRINT "IT IS THEN AGREED":
GOSUB 108
IF PT AND RND(8) < .3
THEN
FOR T = 1 TO 58:
PRINT "HA,HA,HA,HA,HA,HA,HA,HA,HA HA,HA,HA,HA,HA,HA,HA,HA HA
+HA,HA HA":
NEXT :
PRINT "THEY TOSS YOU BACK INTOQ THE PIT WHERE "
IF M < 14 RETURN :
ELSE
R4 = 7;
GOTO 36060
Q = RND{30):
IF G > = Q PRINT "THE GOBLIN LORD FREES YOU FOR";Q; "GOLD COINS"
G =G~ Q:
GOTO 580:

ELSE
IFW< =0
THEN
R4 = B8:
PRINT "YOU ARE ENSLAVED":
GOTO 3000:

ELSE
PRINT "YOU ARE SOLD TO THE SATYRS BY THE GOBLINS":
GOSUB 760:
GOTO 580
IF R = § PRINT :
PRINT "LOOK! THERE 1S THE ENTRANCE TO THE DUNGEON":
GOSUB 185:
PRINT "H";:
FOR EX = 1 TO 61:
PRINT "M";:
GOSUB 80:
NEXT :
PRINT " 1":
PRINT "THERE APPEARS TO BE A GUARD":
GOSUB 105:
PRINT "IT'S TOO DARK TO SEE FROM HERE - MUST GET CLOSER ":
GOSUB 105:

GOTO 650
IF L > # RETURN :
ELSE
IFR = - 2
THEN
R4 = 9 :
ELSE
R4 = 16
GOTO 3668
CLS :
DX = 8f:
FOR DY = 41 TO 18 STEP -~ 1:
SET(DX,DY) :
NEXT :

FOR DY = 17 7O 12 STEP ~ 1:
DX =DX + 1:
SET{DX,DY) :

NEXT

FOR DX = 86 TO 94:
SET(DX,12)

NEXT :

DX = 94:

FOR DY = 12 70 19:
DX =DX + 1:
SET(DX,DY) =
NEXT :

FOR DY = 19 TO 44:

66

655

680

685

SET(162,DY):
NEXT
DX = 70

FOR DY = 39 TO 1 STEP -

SET(DX,DY) :
NEXT :

FOR DY = 2 TO 47:
SET(128,DY):
NEXT :

WX = 6:

L2 = 448:

FOR EZ = 1 TO 3:
GOSUB 685
NEXT EZ

X = 1t

GOSUB 695

GOSUB 95:

X = 3:

GOSUB 695:

GOSUB 95:

X = 1:

GOSUB 695:

GOSUB 90:

X = 4:

GOSUB 695:

GOSUB 95:

X = 1:

GOSUB 695:

GOSUB 90:

X = 3:

GOSUB 695:

GOSUB 90:

X = 1:

GOSUB 695:

GOSUB 98:

X = 8:

GOSUB 695:

IF LZ > 448
THEN

RETURN

VA = 448:

VB = 462:

FOR V3 = 1 TO 2:
FOR LZ = VA TO VB:

PRINT @LZ,ES(WX);:
GOSUB 90:
PRINT @LZ,E$(8);:

WX = (3 - (WK - 5)) + 5:

NEXT :
GOSUB 668:
VA = 462:
VB = 476:
NEXT V3:
PRINT @VB,ES$(4);:
GOSUB 685:
PRINT @VB,ES$({5);:
GOSUB 685:
PRINT @VB,ES$(5);::
PRINT @VB,ES(4);:
FOR X = 1 TO 3:
PRINT @492 ,BE18;:
GOSUB 160
PRINT 2492,E2S;:
GOSUB 96:
NEXT :
GOTO 690
PRINT @492,E18;:
PRINT @145,"2";:
FOR EX = 1 TO 15:
PRINT "%%;:
GOSUB 85:

1:

games

Program continued

67

games

NEXT EX:
FOR EX = 1 TO RND(500):
NEXT EX:
PRINT @492,E2%;:
GOSUB 95:
PRINT @145, STRINGS(16," ");:
PRINT @492,E1$;:
RETURN
690 PRINT @490,E3$;:
GOSUB 100:
PRINT @498, STRINGS(8," "
GOSUB 906:
PRINT @490,E3$;:
GOSUB 108:
PRINT @490,E4$;:
GOSUB 100:
PRINT @VB,ES$(2);:
GOSUB 100:
CLS :
ON RND(4) GOSUB 700,960,960,700:
R= 1z

=W+ 1
PRINT :
PRINT "OK,YOU'VE FOUND THE PRINCESS":
PRINT "LET'S GET OUT OF HERE 1":
GOTO 629
695 PRINT @LZ,E$(X);:
RETURN
788 PRINT :
PRINT "UGH ! A TROLL !l1} YOUR FIGHTING ABILITY IS";DS
Y 1000;"%":
FRINT
IF LZ > 0
THEN
710 :
ELSE
PRINT "ARE YOU GOING TO FIGHT HIM?":
GOSUB 118:
IF AN = 89
THEN
710 :
ELSE
IF RND{3) = 1
THEN
DS = DS - ,@1
785 GDSUB 748:
RETURN
718 B = @:
IF E = 1 AND RND{8) < .2 + DS PRINT :
BRINT "THE TROLL RUNS I":
ERINT :
DS = DS + .01:
RETURN :

ELSE
PRINT "THE FIGHT BEGINS , ., . "
GOSUB 190:
FOR 27 = 1 TO RND(PN) * 3
715 R4 = 3:
PRINT B$(RND(7));:
GOSUB 90 :
NEXT 27:
PRINT :
IF RND(@) + DS + (DS * (E + F * 18)) > .5 PRINT :
PRINT "THE TROLL HAS BEEN DEFEATED AND LIMPS OFF":
PRINT :
D = DS + ,0036:
GITO 725:

ILSE

68

games

SP = .3
IF B =
THEN
SF = .5
728 IF RND(@) > SF + (DS * (E + F)) PRINT "QOOOF !":
GOTO 3080:

1

ELSE
PRINT :
PRINT "YOU BOTH ARE TOO TIRED TO CONTINUE THE FIGHT !":
PRINT :
TB = 1:
IF RND(3) < > 2
THEN
DS = DS - ,082
725 IF LZ = 0 GOSUB 540:

RETURN :

"ELSE
IF TB = 1 PRINT "YOU MUST REST":
GOSUB 180:

FOR EX = 1 TO RND(40):
PRINT "REST ,";:
GOSUB 85:
NEXT :

PRINT " - AGAIN !":

GOSUB 85:

GOTO 718

73¢ IF LZ > 8 GOSUB 100:
RETURN :

ELSE
IF RND(@) + .65 * E < .4 GOSUB 548
735 RETURN
740 PRINT :
PRINT "R";:
FOR T8 = 1 TO PN * 5:
PRINT "U";:
GOSUB 88:
NEXT T8:
PRINT "N 11ti1li™:
PRINT :
L L + 4 * 8 * (RND(B) ~ .7):
T T + 1:
IF RND(8) > .7 GOSUB 800
745 RETURN
758 PRINT :
PRINT "OH NO! SATYRS.":
IF E AND RND(@) < .5 PRINT " HA, THEY RUN FROM YOUR SWORD":
DS = DS + .925:
RETURN
760 PRINT "THEY WILL LET YOU GO FREE IS IF YOU WILL FIGHT THEIR CHA
MPION - WHAT IS YOUR DECISION 2":
GOSUB 116:
IF AN = 89 GOSUB 960:
IF RND(@) > .2 RETURN :

ELSE
DS = DS ~ .082
778 PRINT "THE SATYRS WANT THE FEMALES OF YOUR GROUP" :
W= 0:
F o= 0:
IFR = 1
THEN
R = =~ 2
780 PRINT "WILL YOU AGREE TO THESE TERMS 2"
GOSUB 110:
IF AN = 78 PRINT "OH DID YOU MAKE THEM MAD - THEY DO YOU IN AND
TAKE THE WOMEN":
R4 = 6: Program continued

69

games

GOSUB 188:
GOTO 3006:

ELSE
PRINT "THEY TAKE THE WOMEM":
IF RND(8) > .83 PRINT "THEY CURSE YOU":

K=-75
798 IF RND(6) > .3 RETURN :

ELSE

R4 = 5:

PRINT "THE SATYRS CAN NEVER BE TRUSTED - THEY DO YOU IN ANYWA

",

GOsUB 168:

GOTO 3008
808 PRINT :

PRINT "YOU HAVE FALLEN INTO A DARK PIT"

819 PT = 1:

IF RND(8) > .5 GOSUB 548
82¢ PRINT "YOU MUST ESCAPE":
PRINT "DO YOU WANT TO TRY AND CLIMB OUT OR YELL FOR HELP ?"
838 A$ = "":
AS$ = INKEYS$:
IF A$ = "¢
THEN
838
BELSE
A = ASC(AS):
IFA =67 ORA = 89 ZX = § :
ELSE
830
835 IF A = 67 PRINT "OK LET'S GIVE IT A TRY !":
GOSUB 185:

ELSE
860
840 IF RND{4) < ,5 - ZX / 16 PRINT "YOU'VE MADE IT - YOU ARE QUT":
RETURN :

ELSE
PRINT "YOU FALL WHILE TRYING TO CLIMB !":
PRINT
PRINT
IF RND(B) < .2 GOSUB 548
858 ZX = ZX + 1l:

PRINT :
PRINT "PUFF PUFF! TOO DAMN DEEP GOT TO YELL FOR HELP!":
GOSUB 105
868 CLS :

SP = 540:

POR ¥3 = 1 TO RND(3):
X6 = 1:

GOSUB 885:

FOR X4 = 1 TO RND(58) * 10:
NEXT X4:

CLS

GOSUB 85:
NEXT X3:

X6 = 3:

GOSUB 885:

GOSUB 188:

X6 = 1:

GOSUB 885:

GOSUB 140:

X6 = 4:

GOSUB 885:

GOSUB 185:

70

865

878

880

885
9080

995
910

games

CLS :
GOSUB 85:
X6 = 2:
GOSUB 885:
GOSUB 95:
CLS :
X6 = 23
GOSUB 885:
PRINT €287,Q%:
PRINT @351,K$:
GOSUB 90
PRINT @722,"GEE , IT'S DARK DOWN HERE":
GOSUB 108:
CLS :
X6 = 2:
GOSUB 885:
PRINT €283,"H E L P I":
GOSUB 95:
X6 = 5:
GOSUB 885:
X4 = 10:
PRINT @X4,"*":
FOR X3 = 1 TO 6:
X4 = X4 - 1 4+ { RND(3) - 1):
PRINT TAB(X4);"*":
GOSUB 85:
NEXT X3
PRINT @660 ,"A ROPE HAS BEEN LOWERED":
X6 = 1:
GOSUB 885:
GOSUB 185:
PT = @:
Y = RND(4):
PRINT @724,"YOU HAVE BEEN RESQUED BY "
IF Y = 1 GOSUB 766 :

ELSE
IF Y = 2 PRINT "OH NO !":
PT = 1:
GOSUB 578 :
ELSE
W=W+1:
IF F > 8 PRINT "THE NYMPH"
ELSE

PRINT "AN OLU LADY"
PRINT "YOU MUST START OUT":
GOSUB 160:
GOTO 294
PRINT @SP,ES$(X6):
RETURN
PRINT :
PRINT "IT'S THE NECROMANCER ., . . . 1":
IF RND(8) > .6 GOSUB 748:

RETURN :

'ELSE
IF P PRINT "THE NYMPH GOES MAD":
W=W-1:
F =0

IF R > 0 PRINT "HE TAKES THE PRINCESS":
R =

= -2
IF E = 1 PRINT "HE TAKES YOUR SWORD":
E = -~ 1.5:
PRINT "YOU ARE CAST INTO A DEEP PIT":
PRINT :
GOSUB 818:
RETURN :

"ELSE
R4 = 1l:

Program continued

71

980

1000

1819

1928

games

GOTO 3000
PRINT :
PRINT "UGH! RATS, MILLONS OF THEM":
GOSUB 740:
RETURN
W3 = 2:
Hl = 1 + DS:
H2 = 1 + DS:
W2 = 1 4+ .3 * RND(DB):
H3 = 2 + SGN(E):
CLS :
PRINT @458, CHRS$(23);"IT'S A WARRIOR TROLL":
R4 = 4:
GOSUB 165:
CLS :

PRINT TAB(22);"THE BATTLE BEGINS"
FOR Z2 = 1 TO 288:

X = RND(7):

NEXT 22:

PRINT :

PRINT "YOU CIRCLE FOR POSITION";:
FOR X2 = 1 TO 5:

PRINT " , ";:

GOSUB 94:
NEXT X2:
PRINT

H1 = H1 - ,85:
B2 = H2 -~ .B5:
PRINT "HE ATTACKS WITH BOTH SWORD AND MACE SWINGING !":
IF X = 1 PRINT "HE SLASHES WILDLY WITH HIS SWORD !":
FOR T7 = 1 TO RND(6):

PRINT "SLASH !";:

GOSUB 98:

NEXT :

PRINT :
GOTO 1638

IF X = 2 PRINT "HE THRUST HIS SWORD STRAIGHT FOR THE BODY !":
GOTO 1638:

.ELSE
IF X = 3 PRINT "HE ATTEMPS T0O SEVER YOUR HEAD IN A SINGLE BLO
Wim:

GOTO 1830:

ELSE
IF X = 4 PRINT "HE TWIRLS THE MACE DIRECTLY TOWARD YOUR HEA
D "
GOTO 1838
IF X = 5 PRINT "HE SWINGS HIS MACE SAVAGELY AT YOUR BODY !":
GOTO 1838:

ELSE
IF X = 6 PRINT "HE GLANCES YOUR BLOW AND LAYS ON WITH HIS SWO
RD t":
GOTO 1638:

ELSE
PRINT "HE KICKS SAND IN YOUR FACE AND SWINGS HIS SWORD TO C
LEAVE THE AIR AND YOUR HEAD ALONG WITH IT"

PRINT "S";:
GOSUB 88:
PRINT "W";:
GOSUB 80:
FOR X = 1 TO 58:
PRINT "0";:
GOSUB 88:
NEXT :
PRINT "1I";:
GOSUB 86:
PRINT "8";:

72

games

GOSUB 80:
PRINT "H "
1839 IF RND(@) < = .5 + ,3 * H2 / W2
THEN
1850 :
ELSE

PRINT "YOU'RE HIT 1":

H1 = H1 - .2:

H2 = H2 - .2:

GOSUB 108:

PRINT TAB(15);"0000F !!":

GOSUB 95:

IF H1 > = .B5 PRINT TAB(38);"YOU STAGGER AWAY . + + « o o"2
GOTO 988:

ELSE
PRINT TAB(3@);"YOU'RE DOWN !il":
GOSUB 169
1935 PRINT :
PRINT "HE SLOWLY CLOSES FOR THE FINAL BLOW [
FOR X = 1 TO RND(16):
PRINT " STEP !";:
GOSUB 95:
NEXT :
PRINT
IF RND(@) > .1 + E / 28
THEN
1845
1¢42 PRINT :
PRINT TAB(13);"YOU DESPERATELY MAKE A FINAL THRUST !1":
GOSUB 185:
IF RND(8) > .9 + D5 PRINT TAR(22); "SORRY, YOU BLEW IT 1"

ELSE
PRINT TAB(28);" OOOF !":
GOSUB 185:
PRINT TAB(1%);"YOU DID IT ! HE'S DOWN {1":
GOSUB 185:
RETURN
1645 PRINT :
PRINT TAB(23);"YOU'RE FINISHED 1"
GOSUB 185:
GOTO 3060
1858 X = RND(6):
IF X = 1 PRINT "YOU STOP HIS BLOW WITH YOUR SWORD AND BACK AWAY
1
GOTO 1885:

"ELSE

IF X = 2 PRINT "YOU DUCK UNDER HIS SWORD - VEER FROM HIS MACE
AND ATTACK 1":

GOTO 1078:

ELSE
IF X = 3 PRINT "YOU PARRY THEN ATTACK !":
GOTO 1678
1968 IF X = 4 PRINT "YOU KICK HIM IN THE SHINS AND SCAMPER AWAY 1":
GOTO 1895:

"ELSE
TF X = 5 PRINT "YOU STOMP HIS TOES WITH YOUR BOOT I":
GOTO 1895:

ELSE
PRINT "YOU SLASH LEFT !";:
IF RND{3} = 1 PRINT :

ELSE
PRINT "YOU SLASH RIGHT !"
1965 PRINT "THEN THRUST STRAIGHT FOR HIS KNEES"
1678 FOR X3 = 1 TO H3:
IF RND(®) < = .1 PRINT "YOU MISSED HIM 11117

"ELSE Program continued

73

games

X = RND(H3):
IF X = 1 PRINT "YOU GOT HIS LEG I":

W2 = W2 - (DS + H2 / 5):
W3 = W3 -~ (DS + H2 / 5):
“ELSE

W2 - (DS + H2 / 3):
W3 - (DS + H2 / 5)
1875 IF X = 3 PRINT "YOU SCORE TO HIS BODY !":

IF X = 2 PRINT "YOU'VE SLASHED HIS ARM":

W2 - DS:

W3 = W3 - (.85 + DS)
1880 NEXT X3
1885 IF W2 < ,1

1698 IF W3 > ,05

ELSE
PRINT "HE'S DOWN !1111":
PRINT "YOU'VE FINISHED HIM OFFi1":
GOSUB 165:
DS = DS * RND(0):
RETURN
1895 W2 = W2 - (DS * RND(D))
W3 = W3 - (DS * RND{B))
GOTO 1885
2088 PRINT "HOLD IT !%;:
GOSUB 98:
PRINT " THERE'S SOMETHING MOVING BEHIND THAT BUSH 1?1":
GOSUB 90:
R4 = RND(S5):
ON R4 GOSUB 706,2108,2200,2300,2400:
RETURN
2100 CLS :
PRINT @154,"GEEZE 11}11":
GOSUB 95:
PRINT @279,"A HUGH SPIDER |":
PRINT @384,"QUICK ! R";:

RN = RND(18) + PN:
U2 =0
2118 A$ = INKEYS:

PRINT *0U";:
U2 = U2 + 1:
IF U2 = RN
THEN
2129 :
ELSE
IF AS = ""
THEN
2110
ELSE
IF AS < > "R"
THEN
2110
ELSE
PRINT "N":
GOSUB 98:
CLS :
PRINT @478,"WHEW !{":
RETURN
2128 PRINT @347,53(1):
GOSUB 90:
PRINT @347," frs
PRINT @412,88(2);:
GOSUB 90 :
PRINT 8412,8$(1):
PRINT @684 ,"SLURP {":
GOSUB 90
PRINT @663,"BU";:
FOR X = 1 TO 18:
PRINT "R";:

74

games

NEXT :
PRINT "P 11";:
GOSUB 168:
PRINT " HIC 1":
GOSUB 188:
R4 = 23
GOTO 3000
2206 PRINT "HMMMMMMMMM . ., . . « « SURE IS WARM ?12":
GOSUB 164:
CLS
PRINT @468, CHR$(23);"YIEPE | RS SR
GOSUB 90:
PRINT @524,"IT'S A DRAGON IR NN
GOSUB 95:
CLS
2218 W3 = 83
FOR X2 = 1 TO 9:
GOSUB 2290:

NEXT ¢

W3 = B:

X6 = 32789:
X4 = 157@4:
X5 = 15788:
GOSUB 2280:
X4 = 15768:
X5 = 15772:
GOSUB 2280:
X4 = 15835:
X5 = 15836:

GOSUB 2280:
X7 = 16800 + RND(18):
GOSUB 2278:
PRINT @768,;
2215 X$ = INKEYS:
IF X$ < > "7

THEN
Y2 = ASC(X$):
IF Y2 = 44
THEN
Y2 = - 1 @
ELSE
IF Y2 = 46
THEN
Y2 = 1 3
ELSE
Y2 = 8

222¢ GOSUB 2269:
X7 = X7 + Y23
IF X7 > 16818
THEN
DS = DS + .045:
PRINT :
PRINT "YOU DID IT ! =~ YOU SLAYED THE DRAGON !i!t":
GOSUB 1@8:
RETURN :

ELSE
IF X7 > = 16800 GOSUB 2270 :
ELSE
2295
2248 IF RND(4) < > 1
THEN
2215
ELSE
F2 = 18B:
FOR F1 = 46 TO 38 STEP - 1:
F2 = F2 + 1z
1IF POINT(F1,F2) IF E = 1

THEN
R7 = RND(2) :
ELSE
R7 = RND(3} :
Egggg Program continued

75

2245

2250

2260

2279

2280

2290

2295
2300

2358

2400

games

IF R7 = 2 PRINT "SIZZLE - YOU'VE BEEN SCORCHED !7;:
DS = DS - ,962:
ELSE
PRINT "YE";:
T6 = X7:
FOR X7 = T6 TO 16068 STEP - 1:
GOSUB 2278:
PRINT "O";:
GOSUB 2268:
NEXT :
PRINT "w I":
R4 = 1:
GOTO 3080
SET(F1,F2):
NEXT
GOSUB 98:
F2 = 18:
FOR F1 = 46 TO 38 STEP - 1:
F2 = F2 + 1:
RESET(F1,F2):
NEXT
GOTO 2215

FOR X3 = 9 TO 3:
POKE X7 + X3,128:
NEXT :

POKE X7 + 65,128:

POKE X7 + 66,128:

RETURN

POKE X7,136:

POKE X7 + 1,174:
POKE X7 + 2,140:
POKE X7 + 3,45:

POKE X7 + 65,151:
POKE X7 + 66,149:
RETURN

FOR X3 = X4 TO X5:
W3 = W3 + 1:

POKE X3, PEEK(X6 - W3):
NEXT

RETURN

FOR 21 = @ TO B(X2):
W3 = W3 + 1:

POKE A(X2) + 21, PEEK(32768 ~ W3):
NEXT 2z1:

RETURN

PRINT "COWARD [":
RETURN

C3 = 38:

PRINT :

PRINT "IT'S A GOBLIN ";:
FOR EX = 1 TO 45:

PRINT "1I";:

GOSUB 88:

NEXT :
GOSUB 80:
PRINT :
FOR EX = 1 TO 32:

C3 = ABS(C3 + (SGN(RND(3) - 2) * 5)):
IF C3 > 56

THEN

C3 = 56

PRINT TAB(C3);"R U N §1":

NEXT :
PRINT TAB(C3);"WHEW, SAFE !":
C = RND(2):
L = L + RND(PN) * C:
DS = D8 ~ .81 * (RND(PN + 1) - 1):
RETURN
PRINT "GEE !":
GOSUB 95:
PRINT "IT'S A KID SELLING HOT DOGS 1?71":
IF J AND G > @

THEN

A

76

2420

2434

3gge

31ee

3200

3300

3400

35008

3609

3708

3aee

3909

4000

41060

4200

4500

5008

games

HD = RND(G + G / 2) :

ELSE
HD = G + 1
GOSUB 160

PRINT "THE KID SAYS HE'LL SELL YOU ONE OF HIS GASTRONOMIC DELIG
HTS FOR";HD;"GOLD COINS":

GOSUB 180:

IF BD > G PRINT "SORRY, YOU'RE TOO POOR":

RETURN :

ELSE
G =G - HD

M = M - RND(14)

PRINT "GREAT !"

RETURN

GOSUB 168:

CLS :

PRINT "DATELINE : THE OLD FOREST":

PRINT :

ON R4 GOTO 3108,3200,3300,3408,3500,3608,3780,3800,3900,4000,42

1}

PRINT " WOW! CAN";R$;"RUN. WHAT AN EXHIBITION OF BLINDING SPEED

. UNFORTUNATELY IT OCCURRED AS A RESULT OF A BLISTERING DISCOVE

RY CONCERNING DRAGONS AND IN THE OPPOSITE DIRECTION OF THAT OF

THE PRINCESS.":

GOTO 45680

PRINT " WHILE SEARCHING FOR THE LOST PRINCESS";R$;"BECAMETHE M

AIN COURSE OF A RAMBLING ARACHNID":

GOTO 4508

PRINT " “;R$;"WAS ABLE TO HAVE A VERY CLOSE LOOK AT ONE OFTHOSE
MUCH TALKED ABOUT TROLL SWORDS TODAY ~ UNFORTUNATELY IT WAS

WHILE HE WAS BEING STABBED WITH IT":

GOTO 4588

PRINT "BLUNDER MAN STRIKES AGAIN":

PRINT R$;"STUPEFIES EVERYONE - MAKES TROLL'S SWORD DISAPPEA

R IN BODY - UNFORTUNELY HIS OWN":

GOTO 450808

PRINT "AFTER REACHING FULL AGREEMENT WITH" ;RS; "THE SATYRS NOT O

NLY THREW A GREAT FEAST IN HIS HONOR BUT MADE HIM THE MAIN DISH
AS WELL":

GOTO 4500

PRINT " WHILE";RS$;"WAS CONDUCTING VERY DELICATE NEGOTIA -TIONS
WITH THE SATYRS - THEIR DIPLOMATIC CORP ATE HIM FOR LUNCH":

GOTO 45086

PRINT " ";R$;"FOUND THAT WHILE ON HIS LOFTY EXCURSION HE COULD
DO WITHOUT MANY THINGS. UNFORTUNATELY FOOD WAS NOT ONE OF THEM
- HE STARVED TO DEATH":

GOTO 4508

PRINT " YOU GUESSED IT !";R$;"HAS DONE IT AGAIN.":

PRINT "HOPE HE LIKES DOING WINDOWS":

GOTO 45080

PRINT R$;"MAKES IT TO DUNGEON AND BACK THROUGH MANY PERILS -
HAS ONLY ONE PROBLEM - LOOSES PRINCESS":

GOTO 4508

PRINT R$;"HAS PULLED 1T OFF -~ THE PRINCESS HAS BEEN RESQUED"

it

IF G > RND{3@) PRINT ;" - IS IMMEDIATELY ACCEPTED INTO THE KIN
G'S COURT AND IS ALLOWED TO DO ALL THOSE NICE LITTLE THINGS THA
T ONE DOES HAPPILYEVER AFTER":

GOTO 4509

PRINT " -~ UNFORTUNATELY HE IS TOO POOR TO BE ACCEPTED IN TO
ROYALTY - MUST KEEP UP THE IMAGE YOU KNOW":

GOTO 4508

PRINT R$;"RAN INTO SLIGHT DIFFICULTY - THE NECROMANCER.";:
PRINT "INFORMED SOURCES SAY THAT OUR HERO NOW EATS HEY AND IS H
EARD TO BREY OCCASSIONALLY"

PRINT :

INPUT "ENTER FOR ANOTHER ADVENTURE";A:

RUN

DATA 156,172,32,156,172,159,175,32,159,175,140,188,32,140,188,1
88,14¢,32,188,14¢,176,188,32,176,188,138,156,172,32,168,148,158
,138,140,188,32,140,188,133

77

GAMES

The President Decides

by Clinton Morey

The president of the United States receives a telegram from the U.S.
Ambassador to Panama. Panamanians are rioting in the streets and
throwing bombs at American citizens in the Canal Zone. The president’s ad-
visors are divided on what to do. Some suggest taking a hard line, condemn-
ing Panama and ordering U.S. troops into the streets. Others urge caution,
putting the troops on alert, but taking no overt action to further worsen the
situation. What will the president do?

Computer Re-Creations

Each student in my high school government class had to make that deci-
sion, as if he were the president. The U.S.-Panama crisis of 1964 occurred
when Lyndon Johnson was president of the United States. To give my students
an understanding of the types of decisions a president must make, T designed a
computer program to recreate this minor crisis in our nation’s past.

The program is not a simulation but a re-creation of an historical event,
with some allowance for student interaction. It's run on a Level IT 16K. In
this historical re-creation, the computer compares the student’s responses
with those made by President Johnson, but follows closely the true course of
events regardless of the student’s decisions. This allows the student to learn
about an historical incident in a high interest situation, to compare his deci-
sions with those of a real president, and to evaluate the quality of the deci-
sions made.

The computer program gives information to the president in bits and
pieces. Messages from the American ambassador or the senior military of-
ficer come to the desk of the president (Figure 1), requiring him to make
some kind of decision. Later developments often require the president to al-
ter his decisions as new facts are revealed. And, just as in real life, the presi-
dent’s advisors suggest alternate courses of action.

This bit-by-bit acquisition of information is important in helping the stu-
dent understand the decision-making process. We could all be great
presidents, if we had the gift of hindsight.

Classroom Discussion

There are no right or wrong answers in the course of this historical re-
creation. Although some students make decisions that could possibly lead to
war, the value of this computer program comes from an empathy for the
tough decisions that a president must make. Thus, a very important part of

78

games

the activity takes place after each student has gone through the program, in
the form of classroom discussion.

The program is not really a game—but it has proven to be fun for my
students who have used it. From a teacher’s standpoint, the value of the pro-
gram is not in the level of enjoyment, but in the changes that occur in the
student. In my classes, I have seen significant changes in students’ percep-
tions of the presidency after working through this program.

I believe there is a place in computer instruction for historical re-creation,
not just recreation.

DATE: JANUARY 9, 1964
TO: PRESIDENT MOREY
FROM: U.S EMBASSY TO PANAMA

LARGE CROWDS OF PANAMANIAN CITIZENS HAVE GATHERED ALONG THE
CANAL ZONE BOUNDARY, SHOUTING, JEERING AND THROWING ROCKS AND
ANYTHING THAT CAME TO HAND.

RIOTING HAS BROKEN OUT IN COLON AND PANAMA CITY.

PANAMANIAN STUDENTS AND CITIZENS HAVE THROWN MOLOTOV COCKTAILS
AT BUILDINGS AND AUTOMOBILES.

CARS WITH CANAL ZONE LICENSE PLATES HAVE BEEN ATTACKED AND THEIR
OCCUPANTS PULLED OUT AND SAVAGELY BEATEN.

PANAMANIAN AUTHORITIES HAVE BEEN OF LITTLE HELP. PANAMANIAN POLICE
FORCES HAVE STOOD ASIDE. PANAMANIAN NATIONAL GUARD UNITS HAVE RE-
MAINED IN THEIR BARRACKS.

CANAL ZONE POLICE FORCE TOO SMALL (ONLY 80 MEN) TO CONTROL RIOTERS.
REQUEST U.S. ARMY TROOPS BE CALLED OUT TO PROTECT CANAL ZONE.

Figure 1. Message from the Embassy

79

16
20

25
38

35
49

58
19

88

99

100

118
139

148

158
160
170
180

190

200
219

220
230

240

games

Program Listing

REM THE PRESIDENT DECIDES...PART 1
DIM D$(14)
CLS :

BRINT @468,"THE PRESIDENT DECIDES...PART1":

FOR X = 1 TO 800:

NEXT X:

CLS :

PRINT "YOU ARE ABOUT TO BEGIN A SIMULATION CONCERNING THE TYPES
OF":

PRINT "DECISIONS THAT MUST BE MADE BY AMERICAN PRESIDENTS."
GOSUB 10080

PRINT "THE SITUATIONS YOU ARE GOING TO FACE ARE REAL. PRESIDENT
S IN THE PAST HAVE HAD TO DEAL WITH THESE ISSUES."

GOSUB lagee

PRINT "AS YOU STUDY THE EVENTS AND MAKE DECISIONS TRY TO EVALUAT
E":

PRINT "NOT ONLY YOUR CHOICES BUT ALSO THOSE OF THE PRESIDENT WHO

n

PéINT "MADE THE REAL LIFE DECISIONS."
GOSUB 18618
INPUT "ENTER YOUR LAST NAME";N$

CLS :

PRINT "WELCOME TO THE HALLS OF POWER PRESIDENT ";NS$;"."

PRINT :

PRINT "YOU ARE GOING TO GO THROUGH A TIME OF TESTING SIMILIAR TO

THAT" ¢

PRINT "FACED BY PRESIDENT LYNDON JOHNSON IN 1964.":

GOSUB 18990

PRINT "THE DECISIONS YOU MAKE WILL BE COMPARED TO THE DECISIONS

MADE BY PRESIDENT JOHNSON DURING THAT PERIOD.":

FOR X = 1 TO 12080:

NEXT X

P§INT "FOR THE SAKE OF THE ENTIRE COUNTRY, I WISH YOU THE BEST O
F":

PRINT "LUCK IN YOUR IMPORTANT TASK PRESIDENT ";N§$

GOSUB 16910

CLS :

PRINT "DATE: JANUARY 7, 1964":

PRINT :

PRINT

PRINT "PRESIDENT ";N$;" YOU HAVE BEGUN SERVING YOUR NEW TERM AS"

PRINT "PRESIDENT ONLY SIX WEEKS AGO. A MESSAGE ARRIVES AT YOUR
DESK.":
FOR X = 1 TO 1268:
NEXT X
LPRINT "DATE: JANUARY 7, 1964"
LPRINT "T0: PRESIDENT ";N$
LPRINT "FROM: U.S. EMBASSY IN PANAMA"
LPRINT " —— -
T - o o " e 4t s i S o T S i T T Bt P A Y . Sk B S S e T o e 7 3 L
LPRINT "A GROUP OF AMERICAN HIGH SCHOOL STUDENTS AT BALBOA HIGH
SCHOOL IN THE PANAMA CANAL 2%0NE HAVE RAISED THE AMERICAN FLAG IN
"

LPRINT "FRONT OF THE HIGH SCHOOL BUILDING. THE PEOPLE OF PANAMA
ARE AWARE OF WHAT THE STUDENTS HAVE DONE."

LPRINT "ww——- - - ————
— - R "
PRINT @896, "READ THE MESSAGE AND PRESS ENTER TO CONTINUE.™
A$ = INKEYS$:
IF AS = """
THEN
239
CLS :

PRINT "ALTHOUGH ON THE SURFACE THIS SEEMS LIKE AN INOFFENSIVE AC

80

241

245
258

278

280
290

309
310

315
328
339
340
358
3608
378
3890

390
400

418

games

T,":

PRINT "YOU ARE AWARE THAT TROUBLE COULD RESULT.":
FOR X = 1 TO 1208:

NEXT X

PRINT "THE FLAG RAISING VIOLATED AN AGREEMENT PRESIDENT KENNEDY

HAD":

PRINT "MADE WITH PANAMANIAN PRESIDENT ROBERTO CHIARI IN 1962.":

GOSUB 18008

PRINT "THE U.S. AND PANAMA HAVE BEEN TRYING TO REACH AN AGREEMEN

"

PRINT "REGARDING CHANGES IN THE 60 YEAR OLD TREATY GOVERNING U.S
L

PRINT "CONTROL OVER THE CANAL AND THE SURROUNDING ZONE. NO BREA

PRINT "THROUGHS HAD BEEN ACHIEVED IN THOSE TALKS BUT THE TWO":
PRINT "PRESIDENTS HAD AGREED THAT THE FLAGS OF THEIR TWO COUNTRI

PRINT "WOULD FLY SIDE BY SIDE.":

GOSUB 106000

GOSUB 18918

PRINT "SINCE THE SUMMER OF 1963 THE CIA HAS BEEN WARNING YOU THA
T

PRINT "YOU SHOULD EXPECT DIFFICULTIES IN PANAMA IN LATE 1963 OR

EARLY":

PRINT "1964.":

GOSUB 100088

PRINT "THE CIA HAS SAID THAT FIDEL CASTRO, WORKING CLOSELY WITH

THE" :

PRINT "PANAMANIAN COMMUNIST PARTY, HAS BEEN SENDING GUNS, MONEY

AND":

PRINT "AGENTS INTO PANAMA.

PRINT "THE CIA HAS SAID THAT DEMONSTRATIONS WERE LIKELY AND AN":
PRINT "ATTEMPTED COUP AGAINST THE LEGAL GOVERNMENT WAS POSSIBLE.
"

GOSUB 10800

PRINT""THE CIA ALSO WARNS THAT IF THAT DOES HAPPEN, THE CANAL AN

D THE":

PRINT "CANAL ZONE WOULD BE SPECIAL TARGETS.":

GOSUB 16008

GOSUB 168818

PRINT "JANUARY 9, 1964":

PRINT :

PRINT "PRESIDENT ":N$;". TWO DAYS HAVE PASSED SINCE THE INCIDEN

T":

PRINT "AND THINGS IN PANAMA HAVE APPEARED STABLE.":

PRINT "TODAY, YOU HAVE RECEIVED THIS MESSAGE:"

GOSUB 10008

LPRINT "DATE: JANUARY 9, 1964"

LPRINT "TO: PRESIDENT ";N$

LPRINT " - - - -
T

LPRINT "PANAMANIAN STUDENTS HAVE ORGANIZED PROTEST MARCH. THEY

ENTERED THE CANAL ZONE AND WENT TO BALBOA HIGH SCHOOL."

LPRINT "THEY FOUGHT WITH CANAL ZONE POLICE AND AS THEY LEFT THE

CANAL ZONE, THEY BROKE WINDOWS, BURNED AUTOMOBILES, AND CAUSED"

LPRINT "EXTENSIVE PROPERTY DAMAGE. SEVERAL STUDENTS AND POLICEM

EN WERE INJURED."

GOSUB 10828

GOSUB 10918

PRINT "YOU MEET WITH YOUR ADVISORS AND THEY SUGGEST THE U.S.":

PRINT "TAKE THE FOLLOWING ACTIONS:":

PRINT TAB{5)"(1l) SEND A PROTEST TO THE PANAMANIAN GOVERNMENT, " :

PRINT TAB(5)"(2) ASK THE GOVERNMENT OF PANAMA TO HELP."

PRINT TAB(5)"(3) ALERT U.S. ARMY TROOPS STATIONED IN THE CANAL Z

ONE,":

PRINT TAB{(5)"(4) ORDER U.S. ARMY TROOPS TO PROTECT THE CANAL ZON

E n

PRINT "~ - ——-- - -

-t e

PRINT "CONSIDER THE SUGGESTIONS OF YOUR ADVISORS. YOU WILL BE A

Program continued

81

430

440
450

460

470
480

4908
500
510
520
5380

540

550
560

578
588
598
600

610

620
630

640
650

670

708
705

games

SKED":

PRINT "MAKE A DECISION ON EACH ONE.":

GOSUB 10610

PRINT "PRESIDENT ";N$;":":

PRINT“TAB(S)“WOULD YOU PROTEST WHAT HAD HAPPENED TO THE GOVERNME
NT OF":

PRINT TAB(5)"PANAMA (YES/NO)":

INPUT DS${1)

PRINT TAB{5)"WOULD YOU ASK THE GOVERNMENT OF PANAMA FOR HELP":
INPUT D$(2)

ggINT TAB{5) "WOULD YOU ALERT U.S. ARMY TROOPS STATIONED IN PANAM

INPUT D$(3)
PEINT TAB(5) "WOULD YOU ORDER U.S. ARMY TROOPS TO DEFEND THE CANA
L":
INPUT DS (4)
GOSUB 10000
CLS :
FOR Z = 1 TO 18:

FOR X = 1 TO 28:

PRINT @465, "URGENT MESSAGE":

NEXT X:

FOR Y = 1 TO 28:

CLS

NEXT Y:

NEXT 2
LPRINT "DATE: JANUARY 9, 1964°
LPRINT "TO: PRESIDENT ";N§$
LPRINT "FROM: U.S. EMBASSY TO PANAMA"
GOSUB 10820
LPRINT "LARGE CROWDS OF PANAMANIAN CITIZENS HAVE GATHERED ALONG
THE CANAL ZONE BOUNDRY, SHOUTING, JEERING AND THROWING ROCKS"
LPRINT "AND ANYTHING THAT CAME TO HAND.":
LPRINT "RIOTING HAS BROKEN OUT IN COLON AND PANAMA CITY.":
LPRINT "PANAMANIAN STUDENTS AND CIVILIANS HAVE THROWN MOLOTOV CO
CKTAILS AT BUILDINGS AND AUTOMOBILES."
LPRINT "CARS WITH CANAL ZONE LICENSE PLATES HAVE BEEN ATTACKED A
ND THEIR OCCUPANTS PULLED OUT AND SAVAGELY BEATEN."
LPRINT "PANAMANIAN AUTHORITIES HAVE BEEN OF LITTLE HELP. PANAMA
NIAN“POLICE FORCE HAVE STOOD ASIDE. PANAMANIAN NATIONAL GUARD U
NITS":
LPRINT "HAVE REMAINED IN THEIR BARRACKS."
LPRINT "CANAL ZONE POLICE FORCE TOO SMALL (ONLY 86 MEN) TO CONTR
OL RIOTERS."
LPRINE "REQUEST U.S. ARMY TROOPS BE CALLED QUT TO PROTECT CANAL
ZONE.
GOSUB 100828
PRINT "YOUR ADVISORS HAVE SEEN THE MESSAGE. THEY SUGGEST:":
PRINT TAB(5)"(1) YOU LODGE PROTEST WITH PANAMA GOVERNMENT.":
PRINT TAB(5)"(2) YOU REQUEST AID FROM THE GOVERNMENT OF PANAMA."
PRINE TAB(5)"(3) YOU ORDER U.S. ARMY TROOPS TO STATION THEMSELVE
S IN":
PRINT TAB(5)"THE CANAL ZONE BUT HOLD THEIR PIRE.":
PRINT TAB(5)"(4) YOU ORDER U.S. ARMY TROOPS TO PROTECT CANAL ZON
E AND"
PRINT TAB({5)"FIRE ON PANAMANIAN IF NECESSARY.":
PRINT " "
PRINT "DECIDE WHAT YOU WILL DO ON EACH OF THESE REQUESTS."
GOSUB 10018
PRINT "PRESIDENT ";N$;", PLEASE INDICATE YOUR DECISION ON THE FO
LLOW=-":
PRINT "ING SUGGESTIONS.":
GOSUB 10880
INPUT "LODGE A PROTEST WITH THE PANAMANIAN GOVERNMENT";D$(5):
INPUT "REQUEST AID FROM THE GOVERNMENT OF PANAMA";DS$ (6):
INPUT "ORDER US TROOPS INTO CANAL ZONE BUT NOT TO FIRE";D$(7)
INPUT "ORDER US TROOPS TO FIRE ON PANAMANIANS IF NECESSARY";D$(8
)
GOSUB 100089
IF LEFT$(D$(7),1) = "N" AND LEFT$(DS$(8),1) = "N" GOTO 728

82

games

716 CLS :

IF LEFT$(DS$(7),1) = LEFTS(D$(8),1) PRINT "YOUR ANSWERS ARE I

NCONSISTENT PRESIDENT ";N§:

PRIN? "YOU HAVE ORDERED U.S. ARMY TROOPS INTO THE CANAL ZONE BUT

CAN" :

PRINT "THEY FIRE ON PANAMANIANS?":

GOSUB 10000:

GOTO 658
728 CLS :

PRINT "EVALUATION OF DECISIONS,...":

PRINT "PRESIDENT JOHNSON DID NOT PROTEST TO THE GOVERNMENT OF":

PRINT "PANAMA. HE DID ASK FOR THEIR AID AND HE DID ORDER U.S. A

RMY"™:

PRINT "TROOPS TO BE CALLED OUT BUT THEY HAD ORDERS NOT TO FIRE."
73¢ PRINT " e o o o 7 - -
740 IF LEFTS (D$(5),1) = "Y" PRINT "PRESIDENT ";N$;", YOUR DECISION T

¢ PROTEST TO THE GOVERNMENT":

PRINT "OF PANAMA WAS DIFFERENT THAN THAT MADE BY PRESIDENT JOHNS

ON,"

75@ IF LEFTS(D$(6),1) = "N" PRINT "YOUR DECISION NOT TO ASK THE GOVE

RNMENT OF PANAMA FOR AID IN":

PRINT "THIS CRISES DIFFERED WITH THE DECISION MADE BY PRESIDENT"

PRINT "JOHNSON."
‘768 IF LEFTS(DS$(8),1) = "Y" PRINT "UNLIKE YOU PRESIDENT ";N$;",PRESI
DENT JOHNSON DID NOT":
PRINT "WANT AMERICAN SOLDIERS TO FIRE ON PANAMANIAN CIVILIANS."
778 PRINT " T— - -—
—
GOSUB 100618
788 PRINT "CONTINUING WITH OUR SIMULATION WE WILL FOLLOW EVENTS AS T
HEY":
PRINT "CONFRONTED PRESIDENT JOHNSON BASED ON HIS DECISIONS.":
GOSUB 100800
799 CLS :
FOR 2 = 1 TO 18:
FOR X = 1 TO 28:
PRINT @465,"URGENT MESSAGE":

NEXT 2

795 LPRINT "DATE: JANUARY 9, 1964"

866 LPRINT "TO: PRESIDENT ";N$

818 LPRINT "FROM: COMMANDER OF AMERICAN TROOPS STATIONED IN THE CANA
L ZONE"

820 GOSUB 10020

830 LPRINT "AMERICAN SOLDIERS ARE BEING SHOT AT BY SNIPERS. SEVERAL
CASUALITES REPORTED. REQUEST PERMISSION TO FIRE ON SNIPERS."

84¢ GOSUB 10020

858 CLS :
PRINT "YOUR ADVISORS--THE SECRETARY OF STATE, THE SECRETARY OF D
EFENSE":
PRINT "THE DIRECTOR OF THE CIA, AND OTHER AREA SPECIALISTS ALL A
GREE" :

PRINT "YOU SHOULD ALLOW U.S. TROOPS TO PROTECT THEMSELVES."

868 GOSUB 10060

878 PRINT "——m= et - -my
PRINT "PRESIDENT ";N$;", IT'S YOUR DECISION. WILL YOU ALLOW U.S
. TROOPS TO RETURN FIRE IN THEIR EFFORTS TO PROTECT AMERICANS?"

INPUT D$(9)
875 IF LEFTS(DS(9),1) = "N PRINT Moo o s o o o s e
",

FOR X = 1 TO 2000:
NEXT X:
GOTO 920
888 GOTO 1889 Program continued

83

960
9106

930
1000

1819
1020
1038
1049

1050

1060

1670
10880
1090

1160
1110
1128

1130

1140

1158

1168
1165

games

GOSUB 18088

PRINT "ALTHOUGH PRESIDENT JOHNSON DID NOT CHOOSE TO AUTHORIZE U,
S.":

PRINT "TROOPS TO FIRE AT PANAMANIANS AS YOU DID, EVENTS SOON FOR
CED":

PRINT "HIM TO TAKE THAT STEP.":

GOSUB 10880

PRINT "SNIPER FIRE FROM PANAMANIANS KILLED FOUR AMERICAN SOLDIER
S "y

PRINT "WOUNDED SEVERAL. PRESIDENT JOHNSON FELT THIS REQUIRED AM
ERICAN":

PRINT "TROOPS TO RETURN FIRE."

GOSUB 10818

CLS :

PRINT "WHILE YOU CONTINUE YOUR DUTIES ON JANUARY 9, YOUR ADVISOR
s":

PRINT "RECEIVE A MESSAGE FROM YOUR EMBASSY IN PANAMA AND ASK YOU
TO":

PRINT "RETURN TO HANDLE SOME MORE DECISIONS.":

GOSUB 16908

LPRINT “TO: PRESIDENT "N§$

LPRINT "FPROM: U.S. EMBASSY IN PANAMA"

GOSUB 19020

LPRINT "PRESIDENT CHIARI HAS INDICATED TO US THAT HE WILL BREAK

DIPLOMATIC RELATIONS WITH THE UNITED STATES BECAUSE OF THE AGRES
SION"

LPRINT "OF THE U.S. ARMY TROOPS AGAINST PANAMANIAN CITIZENS, I T
RIED TO MAKE CLEAR TO PRESIDENT CHIARI THAT WE WERE ONLY DEFENDI

NG"®

LPRINT "OQUR NATIONALS AND PROTECTING TERRITORY LEGALLY UNDER OUR
CONTROL. ":

LPRINT "PRESIDENT CHIARI SAID THE U.S. WOQULD RECEIVE FORMAL NOTI

CE OF THE BREAKING OF DIPLOMATIC RELATIONS TOMORROW."

GOSUB 1080620

GOsUB 16000

PRINT "WITH THIS NEWS, YOU GO TO BED. YOUR ADVISORS WILL WAKE ¥

oU IF":

PRINT "IMPORTANT NEWS ARRIVES DURING THE NIGHT.":

PRINT :

PRINT :

PRINT "SLEEP TIGHT PRESIDENT ";N$;".":

GOSUB 14000

GOSUB 1@000

GOSUB 14810

CLS :

PRINT "JANUARY 18, 1964":

PRINT :

PRINT "THIS MORNING YOU MEET IN THE CABINET ROOM WITH YOUR ADVIS

ORS":

PRINT "TO DETERMINE WHAT YOU SHOULD DO NEXT.":

PRINT

PRINT "CIA DIRECTOR MC CONE POINTS OUT THAT TROUBLE HAS BEEN BRE

WING":

PRINT "IN PANAMA FOR AT LEAST 6 MONTHS. HE SAYS PANAMA'S IRRITA

TION":

PRINT "OVER THE FLAG INCIDENT IS UNDERSTANDABLE, BUT THAT THE"

PRINT "ACTIVITIES WHICH HAVE OCCURED SINCE THAT INCIDENT ARE PAR

"

PRINT "OF A WELL-PLANNED ANTI-AMERICAN DEMONSTRATION.":

PRINT "REVIEW THE REPORTS OF THE PREVIOUS DAY AND PRESS <ENTER>

WHEN YOU WISH TO CONTINUE.":

INPUT A

CLS :

PRINT "YOUR ADVISORS RECOMMEND YOU TALK DIRECTLY WITH PRESIDENT"

PRINT "CHIARI OF PANAMA.":

INPUT "WILL YOU ASK YOUR STAFF TO PLACE A CALL TO CHIARI (YES/NO
)" :D5(18)

IF LEFTS{DS(10),1) = "Y" GOTO 1200

GOSUB 18660

84

11790

1175
11882

1185
1200
12190

1220
1239

1240
1258

1260

1278

1288

1290
13¢0

1319
1320
1338

1348
135@

1369
137¢

1380
1399
1400
1410
1420
1438
1449

14540
1469

1470

games

PRINT "UNLIKE YOU PRESIDENT ";N$;", PRESIDENT JOHNSON PLACED THE
",

PRINT "CALL TO CHIARI. I'M NOT SURE I AGREE WITH YOUR DECISION

NOT":

PRINT "TO TALK DIRECTLY WITH THE PANAMANIAN PRESIDENT."

GOSUB 16080

PRINT "BUT LET'S GO ON WITH THE PHONE CALL AS PLACED BY PRES IDEN

T":

PRINT "JOHNSON."

GOSUB 1001¢

CLS

GOSUB 1040060

PRINT "POR A TRANSCRIPT OF THE PHONE CALL SEE THE TELETYPE, "
GOSUB 10069

LPRINT "TRANSCRIPT OF TELEPHONE CONVERSATION BETWEEN PRESIDENT L

YNDON JOHNSON AND PRESIDENT CHIART.":

LPRINT "JANUARY 10, 1964"

GOSUB 160820

LPRINT TAB(1#)"JOHNSON: HELLO, MR, PRESIDENT. MR. PRESIDENT i

WANTED TO SAY TO YOU THAT WE DEEPLY REGRET THE SITUATION OF VIOL
ENCE"

LPRINT "THAT HAS DEVELOPED IN PANAMA. WE APPRECIATE VERY MUCH Y

OUR CALL TO THE PANAMANIAN PEOPLE TO REMAIN CALM. WE RECOGNIZE
THAT"

LPRINT "YOU AND I SHOULD DG EVERYTHING WE CAN TO RESTORE QUIET,
AND I HOPE THAT YOU'LL DO EVERYTHING POSSIBLE TO QUIETEN THE SIT
UATION"

LPRINT "AND I WILL DO THE SAME. YOU AND I SHOULD BE AWARE OF TH
E POSSIBILITY, AND THE LIKLIHOOD, THAT THERE ARE ELEMENTS UNFRIE
NDLY"

LPRINT "TO BOTH OF US WHO WILL EXPLOIT THIS SITUATION."

LPRINT TAB(16)"CHIARI: I FEEL, MR PRESIDENT, THAT WHAT WE NEED
IS A COMPLETE REVISION OF ALL TREATIES WHICH AFFECT PANAMA-U.S.
RELATIONS"

LPRINT "BECAUSE THAT WHICH WE HAVE AT THE PRESENT TIME IS NOTHIN
G BUT A SOURCE OF DISSATISFACTION WHICH HAS RECENTLY, OR JUST NO

wl'

LPRINT "EXPLODED INTO VIOLENCE WHICH WE ARE NOW WITNESSING."

LPRINT TAB(10)"JOHNSON: MR. PRESIDENT, I AM SENDING TOM MANN, O
UR ASSISTANT SECRETARY OF STATE, TO YOUR COUNTRY AS MY PERSONAL®
LPRINT "REPRESENTATIVE. HE AND HIS GROUP WILL DO EVERYTHING IN
THEIR POWER TO FIND A SOLUTION TO THE CURRENT PROBLEMS."

LPRINT TAB(10)"CHIARI: I CAME TO WASHINGTON IN 1961 AND TALKED

WITH PRESIDENT KENNEDY ABOUT TREATY REVISIONS. IN THREE YEARS,

MR.,"

LPRINT "PRESIDENT, NOT A THING HAS BEEN DONE TO ALLEVIATE THE SI

TUATION."

LPRINT TAB(1@)"JOHNSON: PRESIDENT CHIARI, WE MUST LOOK FORWARD

AND NOT BACKWARD. VIOLENCE IS NO WAY TO SETTLE GRIEVANCES. FIRS

T, LET*

LPRINT "US END THE VIOLENCE; THEN WE CAN BEGIN TO TALK OVER OUR

DIFFERENCES AND FIND SOLUTIONS."

LPRINT TAB(10)"CHIARI: YOUR COUNTRY HAS OFTEN SHOWN INDIFFERENC
E TO PANAMA'S PROBLEMS."

LPRINT TAB(10)"JOHNSON: OUR DELEGATION WILL BE ON A PLANE IN 30
MENUTES AND WILL ARRIVE IN PANAMA IN 5 HOURS. I CANNOT ACT MUC
H

LPRINT "FASTER THAN THAT, MR. PRESIDENT."

LPRINT TAB(10)"CHIARI: I AM GRATEFUL FOR YOUR COOPERATION, MR.
PRESIDENT. I AM GLAD YOU ARE A MAN OF ACTION AND OF FEW WORDS."
LPRINT "I AM SURE OUR DIFFICULTIES WILL BE IRONED OUT."

GOSUB 14628

GOSUB 18019

PRINT "AS YOUR DELEGATION GETS READY TO LEAVE, YOUR ADVISORS SUG
GEST" :

PRINT "YOU HAVE THEM...":

PRINT oo s s ottt i "

PRINT "(1) AGREE TO EXPLORE NEW TREATY ARRANGEMENTS IF GOVERNMEN
T OF"

PRINT "PANAMA STOPS THE VIOLENCE.": Program continued

85

1480

1485
1490
1495

1508
1600

1749

18608

1810
1828
1830
1900

2000
2010

2020
2030

2040

2850

3000
9999

games

PRINT "(2) TELL PRESIDENT CHIARI HIS GOVERNMENT MUST RESTORE ORD
ER,":

PRINT "RESUME DIPLOMATIC RECOGNITION AND AGREE TO A PLAN OF COOP
ERA-":

PRINT "ION IN STUDYING THE PROBLEM WITH NO PRIOR COMMITMENTS."
PRINT "(3) TELL PRESIDENT CHIARI THE US DOES NOT RESPOND TO BLAC
KMAIL":

PRINT "AND WE WILL SEND IN ADDITIONAL TROOPS IF NEEDED.":

PRINT "(4) AGREE TO ANY REASONABLE REQUESTS PANAMA WANTS IF THEY
CAN":

PRINT "RESTORE PEACE."

PRINT Mo ermomom s e om e "

INPUT "ENTER THE NUMBER OF YOUR ORDER TO THE U.S. DELEGATION" ;N
IF N < 1 GOTO 1450

IF N > 5 GOTO 1456

ON N GOTO 1600,1706,1880,1960

CLS :

PRINT "PRESIDENT ";N$;", YOUR DECISION DIFFERED FROM THAT OF PRE

5.":
PRINT "JOHNSON. PRESIDENT JOHNSON DECIDED IT WOULD NOT BE WISE

TO" &

PRINT "GIVE IN TO DEMANDS MADE BY RIOTERS.":
GOTO 2600

CLS :

PRINT "PRESIDENT ";N$;", YOUR DECISION WAS THE SAME AS PRESIDENT
LY

PRINT "JOHNSON'S.":

GOTO 2000

CLS :

PRINT "THIS IS A RATHER SERIOUS THREAT YOU ARE MAKING PRESIDENT"

PRINT N$;". PRESIDENT JOHNSON DID NOT CHOOSE TO MAKE THIS THREA
PRINT "EVEN HAD IT BEEN SUCCESSFUL, THE U.S. WOULD HAVE LOST MAN

PRINT "FRIENDS IN LATIN AMERICA."

GOSUB 10618

GOTO 2008

CLS :

PRINT "PRESIDENT ";N$;", HOW COULD YOU! WILL YOU GIVE IN TO ANY
a.

PRINT "TERRORIST OR ANY GROUP OF PEOPLE WHO WANT TO PUSH THE U.S

PRINT "AROUND FOR THEIR OWN ADVANTAGE?"
GOSUB 10010
PRINT "PRESIDENT JOHNSON LET THE GOVERNMENT OF PANAMA KNOW THE U

PRINT "WOULD NOT CONSIDER REQUESTS FOR TREATY NEGOTIATIONS":
PRINT "UNTIL THE VIOLENCE HAD STOPPED AND PANAMA RESUMED DIPLOMA

PRINT "RECOGNITION OF THE U.S."
GOSUB 10000
PRINT "IT TOOK SEVERAL DAYS BEFORE PANAMA REALIZED THE U.S. WOUL

PRINT "NOT BACK DOWN FROM ITS STAND.":
GOSUB 10088
PRINT "PRESIDENT CHIARI, REALIZING NOTHING WAS TO BE GAINED FROM

PRINT "FURTHER RIOTING ORDERED THE PANAMA NATIONAL GUARD OUT OF

PRINT "BARRACKS. ORDER WAS QUICKLY RESTORED.":
GOSUB 10000
INPUT "PRESS ENTER TO CONTINUE";O:

PRINT "THE CRISES WAS OVER. WITHING A FEW MONTHS PANAMA AND THE

PRINT "U.S. WERE AGAIN ON FRIENDLY TERMS.":
GOSUB 10009

PRINT "END OF SIMULATION."

END

86

100088

19010
19015

16016
16017
18020

18825

FOR X = 1 TO 1208:
NEXT X:
RETURN

PRINT @896,"PRESS <ENTER> TO CONTINUE."

A$ = INKEYS:
IF A = """
THEN

10815
CLS
RETURN

games

LPRINT "

RETURN

87

GAMES

Babe Ruth Is Alive and Well and Hitting
Home Runs on My TRS-80

by Ralph Hickok

he American League All-Stars seemed to have the game well in hand.

They were leading, 4-0, in the bottom of the ninth, thanks to home runs
by Babe Ruth and Mickey Cochrane, while Cy Young had given up only
three National League hits.

Then Frank Frisch doubled and was singled home by Zack Wheat. After
Bill Terry singled, Hank Aaron hit a home run to tie the score. Young retired
the next two hitters, only to give up a single to Mel Ott and a game-winning
double to Ernie Banks, as the National League pulled it out, 5-4.

If you know something about baseball, you're wondering when Hank
Aaron ever hit a home run off Cy Young, who retired from the game 22 years
before Aaron was born. Or when Zack Wheat and Ernie Banks ever could
have played together.

The answer is that it all happened right in my living room, just a few days
ago, on the CRT of my Level I 4K TRS-80, thanks to a program which I call
Historic Baseball. The listing was converted to Level II 16K.

The game described above was one of a long series between the all time
all-stars of the American and National Leagues, as chosen in a vote of sports-
writers and fans in 1969, professional baseball’s centennial year. With
Historic Baseball, you can play games between any two teams of the
past—or of the present, for that matter.

I wrote the original program in Level I BASIC more than a year before I
had a computer, and I assumed it would require at least 16K. The original
would have, but, having finally bought my 4K model, I condensed the pro-
gram to fit, thereby eliminating a number of features.

Although I regret the loss of those features, I was pleasantly surprised at
how much I managed to squeeze into the abridged version. Although the list-
ing has been converted for 16K Level I1, it can be used on Level 1 4K if con-
densed according to Appendix A.

Historic Baseball is essentially an operating program that brings the hit-
ters to the plate in the proper order, generates random numbers (based on
the players’ actual statistics) to determine what happens, gives a pitch-by-
pitch printout on the action, and stops when the game is over—whether in
nine innings or extra innings.

The hitting statistics are embedded in 18 DATA lines (1505-1545 for one
team, 1600-1640 for the other). See Table 1. Pitchers’ statistics are carried in
two program lines (55 and 60).

88

games

5-10: Initialize and ask which team bats first

20-45: Determine which hitter is up and fetch DATA

50-65: Modify hitter’s data with pitching factors

70-100: Deliver pitch—generate random number and determine result
105-325: Single—move runners and score runs, as necessary

500-525: Home run; how many runs score? Set R to 0

600-615: Triple; counts runs, if any—set R to 4

700-735: Double; move runners and score runs, as necessary

800-810: Strike—is it a foul? Increment S—is it Strike 3?

900-950: Ball—increment B—is it Ball 4?

960-990: Out-—double play possibility? Go to Out subroutine
1505-1545: DATA lines; hitting statistics for Team 1

1600-1640: DATA lines; hitting statistics for Team 2

3220: Out subroutine—is side retired? If 9th inning or later, is game over?
5000: Prints top of scoreboard—inning and team at bat

5014: Prints middle part of scoreboard

5065: Prints lower part of scoreboard

7000: Change score if runs came in; does score end game?

9000: Time delay

Table 1. Line Descriptions

If you're playing a long series betwéen two teams, you can have a dif-
ferent set of pitchers for each game simply by changing the two program
lines. To insert a new set of teams, you change the 18 DATA lines, the two
pitching program lines, and three lines in the scoreboard subroutine.

Using a separate data development program, I have worked out the
DATA lines and pitching program lines for all of the players listed in
Daguerrotypes, a Sporting News publication that includes complete year-
by-year statistics on all players in the Baseball Hall of Fame and many other
stars of the past. 'm now working on the data for all teams that have won
pennants in either league since 1901, the beginning of baseball’s modern era.

If you have access to the Macmillan Encyclopedia of Baseball, or a similar
reference work, you can do it yourself, for any players you like.

Looking at the DATA lines before running through the rest of the pro-
gram, each line contains a string variable, the hitter’s position and name
(e.g., 2B—CHARLIE GEHRINGER, the leadoff man for the American
League All-Stars), followed by six numbers. A glance at the READ state-
ment in line 45 reveals that the variables are designated H, J, K, L, M, and N
(Table 2).

H represents the number of hits per 500 official times at bat, not including
strikeouts. To take a simple example, if a player batted .333 on 200 hits in
600 times at bat and struck out 100 times, the number of strikeouts is sub-

89

games

tracted from the times at bat. He now has 200 hits in 500 times at bat, so his
H figure is 200. This will give him a batting average of .400 for those times at
bat when he doesn’t strike out.

] and K represent balls and strikes, respectively. To work out these
figures, T use a general formula that’s plugged into the data development
program. Multiply a player’s total walks by 6 and total strikeouts by 4.5;
then divide each figure by his actual times at bat, including walks and
strikeouts; then multiply by 1100. This seems to work well, statistically.

L, M, and N are fractional figures representing the player’s proportion of
doubles, triples, and home runs, respectively, to total hits. In every 1,000
hits, Charlie Gehringer will have 202 doubles, 51 triples, and 65 home runs.

Now to the pitching program lines. Line 55 in this program represents

A—Indicator of which team is batting (= 1or 2)
B—# of balls on current hitter (= 0 to 4)
C-—Which player is at bat when A =1
D—Which player is at bat when A =2
G—# of outs per 500 at-bats for each hitter
H-—# of hits per 500 at-bats for each hitter
I—Inning—incremented by .5 after each half inning; if a non-integer, it's the bottom half of
the inning

J—Proportion of balls thrown to specific hitter
K —Proportion of strikes thrown to specific hitter
L—Proportion of doubles to hits
M-—Proportion of triples to hits
N-—Proportion of home runs to hits
O-—# of outs in this half inning
R—Indicator of which bases are occupied:

=0, basesempty

=1, runner on first

= 2, runner on second

=3, runners on first and second

=4, runner on third

=5, runners on first and third

=6, runners on second and third

=7, bases loaded
S—# of strikes on current hitter
V—Counter of runs scored on preceding play
W —Counter to READ current hitter’s statistics; = CwhenA =1, =D+9 when A =2; also

used as a random number in some situations

X—Total runs for first team to bat
Y—Total runs for second team to bat
Z—Random number to determine result of pitch

Table 2. Table of variables for Historic Baseball

90

games

Walter Johnson’s career statistics, and line 60 represents Christy
Mathewson’s. (Some time in the future, I'm going to play a similar series,
based on statistics from each player’s best season.) Each line contains three
factors that change the hitter’s raw H, J, and K figures. These factors are
based on the pitcher’s performance as compared to the average pitcher dur-
ing the period—either a season or a career.

Walter Johnson’s figures show that he gave up only 90.2 percent the
number of hits and 74.7 percent the number of walks of the average pitcher,
while striking out hitters 162 percent more frequently.

Returning to the beginning of the program to see how it runs, note the
variables that are initialized: O is the number of outs; I is the inning in-
dicator; C and D indicate which hitters are due to bat for each team and are
initialized at 0 because they’ll be incremented by 1 when the teams take their
turns at bat; R indicates which bases are occupied and is set at 0 when there
are no runners; X and Y are score indicators; and V is a run counter.

The player is asked which team bats first, and the input is A. A is used
throughout as an indicator of which team is batting. In general, if A =1, the
team represented in DATA lines 1505 through 1545 is at bat; in this specific
program, that’s the American League.

This brings us to line 20, which is where the program goes every time
there’s a new hitter. This RESTORESs the data (we’ll see why in a moment)
and checks to see if any runs were scored on the previous play (is V greater
than 07); if so, it goes to the score-incrementing subroutine at line 7000 and
then resets V to 0.

After going to subroutine 5000 to print the top part of the scoreboard, the
program checks to see which team is at bat and then goes to the appropriate
line to determine which hitter is due at the plate—C if A=1, Dif A=2,
After the ninth player in the order has had his turn at bat, the variable C or
D becomes 10 and is then reset to 1, to bring the leadoff man up again.

W is setequal to C or to D + 9. Tosee why, suppose the National League is
batting first. D = 1, meaning their leadoff man, Pie Traynor, is due to hit. W
then equals 10. The FOR-NEXT loop at line 45 performs nine dummy
READs, carrying it all the way through the American League DATA lines,
and then retrieves the data for Traynor from line 1600. This explains why line
20 RESTORES the data; the READ cycle must always begin at line 1505.

Following Traynor through his turn at bat should make the rest of the
program fairly clear. Line 50 initializes the ball and strike counters, Band S,
‘to 0. Since A =2, the program ignores the conditional branch and drops to
line 55, where Traynor’s raw figures are changed by Walter Johnson'’s pitch-
ing factors.

The original figures were: H=165, J =388, K=171. Line 55 changes
them to: H=148,] =289, K =277.

91

games

Line 65 is a pitcher tiring factor. The pitcher will be somewhat above
average for the first three innings, exactly average (his average, that is) in
the fourth, and from then on he’ll become progressively less effective. Since
this is the first inning, the H figure is lowered to 142.

Now that the final H figure for this time at bat has been computed, it is
subtracted from 500 to find G, the out figure, and it is multiplied by L., M,
and N to establish the proper figures for doubles, triples, and home runs. For
Traynor, they are 21, 9, and 3.

At line 70, we go to another section of the scoreboard subroutine to print
the ball and strike count and the number of outs. This is where the program
comes every time there is another pitch to a hitter who’s already been
brought up to the plate. The CRT announces, HERE COMES THE PITCH,
and a FOR-NEXT loop at line 9000 introduces a time delay.

The random number, Z, will be in the range between 1 and 1059
(500 +J + K), inclusive, in this case. If Z is less than or equal to 277 (K), the
pitch is a strike, and the program branches to line 800. If it is greater than
2717, but less than or equal to 566 (J + K), it's a ball—line 900. If greater than
566, but less than or equal to 924 (G +] + K), it’s an out—line 960—and so
on through the hits, If it fails the tests for extra base hits, control drops to line
105, and the hit is a single.

If there is a hit, the program has to determine whether any runs score and
which bases are now occupied. Triples (line 600) and home runs (line 700)
are relatively easy to handle. After a home run, the bases are always empty,
so the R figure is always 0; after a triple, there’s always a runner on third, so
R =4. All that has to be determined is how many runs score.

Singles and doubles are a bit more complicated. There’s the possibility of a
runner scoring from second on a single or from first on a double. This
possibility is handled with a second random number, W. The runner will
score 60 percent of the time.

The random number W is also used on a strike, to determine whether or
not it’s a foul ball. A foul ball will result 15 percent of the time. If there are
two strikes on the hitter, a foul doesn’t count as the third strike, so the pro-
gram prints THE COUNT HOLDS and returns to line 70. At line 804, the
strike figure is incremented and, if this is the third strike, the program goes
to the out subroutine at line 3220. If not, it goes back to line 70 to update the
count on the scoreboard and to deliver the next pitch.

A similar procedure is followed at 900, if the pitch is a ball. If it’s ball 4,
the R figure is changed; if not, it's back to line 70. For convenience, I
grouped all possible R outcomes at this part of the program, lines 920-945,
since I needed four of them in the case of a walk, anyway.

At line 960, where outs (except for strikeouts) come, there’s a check to see
whether there are less than two outs and whether first base is occupied, for

92

games

the possibility of a double play. (This line explains why I assigned R values in
a seemingly arbitrary way: Any time R is an odd number, there’s a runner on
first, so checking is quite easy.) If the double play possibility exists, another
random number is used; there will be a double play 15 percent of the time,
when W is not less than 86.

The only time a runner can score on an out (unfortunately) is when there’s
a double play that doesn’t retire the side, with a runner on third. Lines 986
through 990 deal with that situation.

Beyond the DATA lines is the out subroutine, line 3220. This increments
the out counter and, if there are three outs, it changes the A figure to bring
the other team to bat. It also checks to see whether this is the ninth inning or
later. If so, it goes to line 3260 to determine whether or not the game is over.
If the home team is leading after 8%z innings, or either team is leading at the
end of Inning 9 or later, the game ends. If the game is to continue, line 3245
changes the top of the scoreboard to show the new inning and the team at bat.

The scoreboard subroutines begin at line 5000. This was originally all one
subroutine, but the continual blinking of the entire scoreboard, being un-
necessarily updated after each pitch, was making me seasick, so I broke it up
into three segments. Lines 5005, 5008, and 5010 are the lines that have to be
changed when you change teams.

The score-changing subroutine is at line 7000. Again, there’s a check to

93

games

determine whether this is the game-winning run, in the bottom of the ninth
or an inning later than the ninth. The last line, 7045, updates the relevant
part of the scoreboard.

And, finally, line 9000 is a time delay which is called at several points in
the program.

The 4K version is not interactive. With a little tinkering, however, it is
possible to use a pinch-hitter or a relief pitcher. It is not terribly com-
plicated, but you have to be a bit careful to avoid messing up the scoreboard.
Here is how it’s done:

Suppose our old friend Pie Traynor is due to bat. You really need a home
run, and you’ve got Henry Aaron on the bench beside you. Aaron is approx-
imately 7% times as likely to hit a home run as Traynor.

You hit the BREAK key and LIST the data lines—Traynor is at line 1600.
You type in a new line 1600: D.PH-HANK AARON, 176, 586, 503, .173,
.032, .183. But, if you go back to line 20 at this point, that spot in the batting
order will be skipped, and the next hitter will come to the plate. So you have
to reset the D figure (in this case—the C figure if the other team is at bat) to
the hitter before this spot in the lineup. Then, when you RUN 20, the figure
will be incremented by 1, and Aaron will be at the plate. Since Traynor is
the leadoff man, you can accomplish this by typing either D=0 or D=9.
Now type RUN 20—but, before you ENTER it, clear the screen (with the
CLEAR key, of course). Now hit the ENTER key.

(As an alternative, you could ENTER D = 1, and RUN 25, but you will
lose the top part of the scoreboard until the next hitter comes up.)

Of course, you can also change pitchers by changing either line 55 or line
60, but it really doesn’t make much sense unless your relief pitcher is much
better than your starting pitcher. Since the pitcher tiring factor is based on
the inning, the relief pitcher will be just as tired as the starter.

Where does all this data come from? The data development program
takes raw baseball statistics and converts them into data for use in Historic
Baseball. As a matter of fact, it prints out the hitters’ DATA lines, except for
the line numbers, and it also shows you exactly how the pitchers’ program
lines should read.

The hitter’s portion of the program is fairly straightforward. The player’s
official at-bats, hits, doubles, triples, home runs, walks, and strikeouts are
input, The program subtracts strikeouts from at-bats, computes a batting
average based on this figure, multiplies by 500 to get the H figure, and then
computes the J, K, L, M, and N figures. Then it prints out the DATA line.

The procedure for pitchers is somewhat different, because the program
calls for major-league figures on batting average, average walks per game,
and average strikeouts per game. This information is all contained in a table
on page 23 of the Encyclopedia of Baseball. For specific seasons, you can

94

games

consult almanacs and such specialized publications as the annual Sporting
News Dope Book.

The program computes the batting average (again, not including
strikeouts) against the specific pitcher and divides this by the major-league
batting average to produce a factor. It does the same with his average
numbers of walks and strikeouts per nine innings, and then it prints out the
program line.

One word of caution: Memory is very tight if you condense this for 4K
Level 1. If you have Crossetti, Lazzeri, DiMaggio, Yastrzemski, and others
on the same team, your TRS-80 may respond with a SORRY. Abbreviate
names, as necessary, the way they often do in the newspaper box scores:
Yastrzemski becomes “Yaz,” and so forth.

Although you can’t do anything but watch the game and use a pinch-
hitter here and there, there is room for a lot of experimentation between
games. In my All-Star series, for example, each team has a 23-player roster,
including five pitchers, so I've been using different combinations of players
and different batting orders for each game. In some games, I've used a
designated hitter; in others, I've had the pitchers batting for themselves.

As in real baseball, pinch-hitters are used more often for pitchers than for
anyone else—especially since, in this program, the other players are all out-
standing hitters. And, unless you grossly violate the rules of baseball, you do
have to bring in a reliever after you've pinch-hit for the pitcher.

I haven’t done this yet, but it would be possible to simulate the effects of
righty vs. righty, lefty vs. lefty, etc., by juggling with the data. Against a
left-handed pitcher, for example, you could arbitrarily subtract 5 from each
left-handed hitter’s H figure (lowering the batting average by 10 points) and
add 5 to each right-handed hitter’s H figure. But, for consistency’s sake, this
would require changing all the DATA lines again if a right-handed relief
pitcher comes in.

I don’t know how meaningful Historic Baseball is. Like any sport,
baseball involves many intangibles which cannot be computerized (at least,
not accurately), such as the ability of some players to hit in the clutch, the ef-
fect of daring base-running in helping to stimulate or disconcert the offense,
and so on.

For lack of memory, many of baseball’s myriad possibilities have been left
out of the program. A runner attempting to score from second on a single
might be thrown out at home plate, while another runner goes from first to
third on the same play and the batter takes second on the throw-in. Outs will
be specific: grounders, outfield flies, line drives, or pop-ups, and the proba-
bilities will be pegged to the hitter’s statistics. A power hitter like Babe Ruth
will be much more likely to hit a long fly ball than a singles hitter like Pie
Traynor. There will be wild pitches, passed balls, errors—based on the ac-

95

games

tual fielding percentages of the players involved—and there will be more of
the actual suspense of a real baseball game.

The printout might say, for example, IT'S A LONG FLY BALL TO
LEFT FIELD, and then, after a time delay, IT’'S A HOME RUN! or IT’S
OFF THE WALL FOR A DOUBLE or IT'S CAUGHT AT THE WALL
FOR OUT #3.

That, however, is still in the future. In the meantime, I'm enjoying the 4K
version and I imagine that anyone who is interested in both computers and
baseball also will enjoy it.

96

18
20

25

28

30
49

42
45

5@

55

69

65

70

75

80

85

90

games

Program Listing. This listing was originally in Level 1.

T

PR

L I |)
SRR

MM AT

INPUT "WHO BATS FIRST? 1l-A. L.
CLS
RESTORE :
GOSUB 5000:
IFV >0
THEN
GOSUB 78@8:
V=20
IF A =1
THEN
49
D=D+ 1:
IF D= 18
THEN
D=1
W=0D+ 9:
GOTO 45
C=0C+ 1:
IF C = 18
THEN
C =1
W=2cC
FOR Z = 1 TO W:
READ B$,H,J,K,L,M,N:

NEXT 2
B = g:
S = @:
GOSUB 5014:
IF A =1
THEN

60
H = INT(.962 * H):
J = INT(.747 * J):
K = INT(1.62 * K):
GOTO 65
H = INT(.958 * H):
J = INT(.553 * J):
K = INT{1.31 * K}
H=H+ 2% (I ~-4):
L = INT(L * H):
M= INT(M * H):
N = INT(N * H)

GOSUB 5065:

2-N. L.

PRINT @640,"HERE COMES THE PITCH":

GOSUB 96840
G = 508 - H:
%2 = RND(568 + J + K):
IF 2 < =K
THEN
800
IF 2 < =K + J
THEN
98¢
IF 2 < =K+ J+G
THEN
960
IFZ<=K+J+G+1L
THEN

Program continued

97

lge

185

298

295
360

305

310

315
320

325 v

508

505
518

515
528
525
600

685

618

615

700

718

715

70

75

games

700
IFZ<K<=K+JdJ+G+ L4+ M

THEN

608
IF2<=K+J+G+L+ M+ N
THEN
508
PRINT "IT'S A SINGLE":
W = RND{(10):
ON R + 1 GOTO 920,925,290,308,295,305,310,320
IF W > 6

THEN

938
Vo= l:
GOTO 920
IFW >6

THEN

935
V=1l:
GOTO 925
IF W > 6

THEN
vV = 1:

GOTO 930
V = 2:

GOTO 928

IFW>6

THEN

V= 1

GOTO 28

= 23

GOTO 925

PRINT "IT'S A HOME RUN!":
V=1

ON R + 1 GOTO 525,51#,516,515,516,515,515,5180
V=V+1l:

GOTO 525

V=V + 2:

GOTO 525

V=V + 3:

GOTO 525

R=§:

GOTO 20

PRINT "IT'S A TRIPLE":
iIFR =@

THEN
945

IF R = 7

THEN
vV = 3:

GOTO 945
IF (R =3) + (R=25) + (R = 6)

THEN
V=2
GOTO

V= 1l:
GOTO 945

PRINT "IT'S A DOUBLE":

W = RND(1@):

ON R + 1 GOTO 949¢,71¢,715,726,715,7208,725,738
IFW > 6

THEN

959
V= 1l:
GOTO 948
IFW >6

THEN
V=1
GOTO

V= 2
GOTO 949

945

950

Program continued

98

735
800

802

804

810
900

9085
910

915
920

925
9349
935
940
945
958
960

962

98¢

986
988

9289

998
1585

games

IF W > 6
THEN
vV = 2:
GOTO 950
Vo= 3:
GOTO 945
W = RND(108):
IF W < 86
THEN
804
PRINT "IT'S A FOQUL BALL":
IF 8 = 2
THEN
PRINT "THE COUNT HOLDS":
GOTC 78
S =85+ 1:
PRINT "IT'S STRIKE";S:
IF 8 = 3
THEN
GOSUB 3228:
GOTO 20
GOTO 780
B =B+ 1:
PRINT "IT'S BALL";B:
IF B = 4
THEN
918
GOTO 78
PRINT "THAT'S A WALK":
IF R = 7
THEN

ON R + 1 GOTO 928,925,925,935,934,935,935,935

GOTO 2
R =172
GOTO 20

[}
IF (0 < 2) *# (R/ 2 < > INT(R / 2))
THEN
980
PRINT "IT'S AN OUT":
GOSUB 3220:
GOTO 28
W = RND(1@0):
IF W < 86
THEN

962
PRINT "IT'S A DOUBLE PLAY":
GOSUB 3220:
GOSUB 3228
ON INT(R / 2 + 1) GOTO 996,945,988,988
IF 0 = 2
THEN
V=1
IF R =17
THEN
945
R = @:
GOTO 20
DATA 2B~C.GEHRINGER,167,779,185,.2082,.051,.0865

Program continued

99

1518
1515
1520
1525
1538
1535
1540
1545
16080
1665
1610
1615
1620
1625
1630
1635
1640
3228

3225
3235

3240

3245
3260

3265

3278

3275

3280
5060

5002

5803
50065

5008
5014
5815

5020
5625

5030
5035

games

DATA LF-TY COBB,193,658,244,.173,.07,.028

DATA RF-BABE RUTH,203,1298,630,.176,.047,.249
DATA 1B-LOU GEHRIG,188,1847,411,.197,.06,.181
DATA SS-JOE CRONIN,166,869,401,.225,.652,.074
DATA CF-JOE DIMAGGIO,171,685,249,.176,.859,.163
DATA C-BILL DICKEY,163,641,205,.174,.837,.1083
DATA 3B-B.ROBINSON,153,455,448,.177,.03,.097
DATA P-WALTER JOHNSON,132,365,513,.171,.875,.844
DATA 3B-PIE TRAYNOR,165,388,171,.154,.068,.824
DATA SS-HONUS WAGNER,174,558,282,.187,.0674,.03
DATA 2B-R.HORNSBY,195,744,365,.185,.857,.103
DATA CF-WILLIE MAYS,176,730,553,.159,.046,.209
DATA RF-HANK AARON,176,586,503,.173,.032,.183
DATA LF-STAN MUSIAL,176,846,274,.2,.049,.131
DATA 1B-BILL TERRY,183,509,319,.17,.851,.87

DATA C-ROY CAMPANELLA,156,742,523,.153,.016,.268
DATA PvCiMATHEWSON,123,425,665,.138,.033,.519
O= 0+ 1:

PRINT "THAT'S OUT #";0:

IFO =3

THEN

3235
GOSUB 90@0:
RETURN
A=A+ 1:
IF A =3

THEN

A =
0= 0:
I=1+.5
R= 0:
IF (I > 9)

THEN

3260
GOSUB 5080:
RETURN
IF I = INT(I) * (X < > Y)
THEN

3280
IF (A= 1) * (X > ¥)

THEN

3288
IF (A = 2) * (Y > X)

THEN

3280
GOTO 3245
PRINT "THE GAME IS OQVER":
END
IF I = INT(I)

THEN

5003
PRINT @15,"BOTTOM OF INNING"; INT(I):
GOTO 5885
PRINT @15,"TOP OF INNING";I
IF A = 1

THEN

PRINT @35,"A.L. BATTING":

RETURN
PRINT @35,"N.L. BATTING":
RETURN

PRINT @64 ,"AMERICANS~~";X
PRINT @108, "NATIONALS—~";
PRINT 3

PRINT B$;" AT BAT"

Of R + 1 GOTO 5825,5830,50835,5040,5045,5058,5055,5068
PRINT "NO RUNNERS":

RETURN

PRINT "RUNNER ON 1ST":

RETURN

PRINT "RUNNER ON 2ND":

Y

100

games

RETURN

504¢ PRINT "RUNNERS ON 1ST & 2ND":
RETURN

5045 PRINT "RUNNER ON 3RD":
RETURN

5@5@ PRINT "RUNNERS ON 1ST & 3RD":
RETURN

5655 PRINT "RUNNERS ON 2ND & 3RD":
RETURN

5060 PRINT "BASES LOADED":
RETURN

5065 GOSUB 9600:
PRINT @648,"":
PRINT €784,"":
PRINT @768,"":
PRINT @832,""
5070 PRINT @448, "BALL","STRIKE","OUT":
PRINT B,S,0:
GOSUB 90090:
RETURN
788¢ IF (I > 9) * (I < > INT(I))
THEN
7028
7685 PRINT @775,V;"RUNS SCORE"
7619 IF A = 1
THEN
X =X+ V:
RETURN
7615 ¥ = Y + V:
RETURN
7828 IF (A = 1) * ((X + V) > Y)
THEN
V=Y=-X+1:
GOTO 7835
7825 IF (A = 2) * ({Y + V) > X)
THEN
V=X-Y+1:
GOTO 7835
7638 GOTO 7965
7835 PRINT @775,V;"RUNS SCORE TO WIN THE GAME!":
IFA=1
THEN
X=X+1
7046 IF A = 2
THEN
Y=Y+ 1
7045 GOSUB 5014:
END
9068 FOR %2 = 1 TO 1580:
NEXT Z:
RETURN

101

GRAPHICS

Four Graphics Methods
TRSpirograph

Adventures in Roseland

103

GRAPHICS

Four Graphics Methods

by John Krutch

he TRS-80 is not distinguished for the high quality of its graphics. In

fact, it has just about the lowest resolution graphics of any micro-
computer on the market today. But there are so many ways to access the
TRS-80’s graphics capabilities, and it is so easy to take advantage of them,
that it comes close to making up for the low resolution.

In this article, we will consider four methods of doing graphics on the
TRS-80. We'll look at a single graphics routine which is handled in four dif-
ferent ways. Three of the variations will be written in Level II BASIC. The
first involves SET; the second, POKE; and the third, PRINT. The last varia-
tion will be written in assembly language; it primarily invokes the block-
move command LDIR. We will also make timing comparisons among the
four methods, and we’ll be arriving at conclusions which may be surprising
to some readers.

First, let’s examine graphics routines which use the BASIC statement SET.

SET Graphics

There are 128 x 48, or 6144, pixels (picture elements) on the TRS-80’s
video monitor. Any one of these pixels can be turned on (i.e., made white in
contrast to the monitor screen’s dark background) with the help of SET.
Furthermore, any pixel that has been turned on can be turned off again with
the RESET statement. Since a pixel can be anywhere on the screen along a
two-dimensional grid, two coordinates, representing both dimensions, are
always specified when you're turning a particular pixel on or off.

The format of the SET statement is

SET(X,Y)

where X is a number 0 to 127, representing any one of 128 horizontal posi-
tions along the monitor. Y is a number 0 to 47, representing any one of 48
vertical positions along the monitor. So X and Y together specify one pixel.
For instance, SET(0, 0) turns on the pixel in the upper left-hand corner of
the screen. SET(127, 0) turns on the pixel in the upper right-hand corner.
SET(0, 47) turns on the pixel in the lower left-hand corner. SET(127, 47)
turns on the pixel in the lower right-hand corner. RESET operates in a
similar fashion.

SET and RESET are useful because they allow one or all of the 6144 pixels
to be easily controlled through BASIC. If you need to make use of the
TRS-80’s high-resolution mode (such as it is), this is the way to go.

SET, however, has an annoying problem: It is very, very slow. Any
graphics program which makes extensive use of it isbound to be slow as well.

105

graphics

If you want to see for yourself just how slow a SET graphics routine can be,
type in Program Listing 1 and run it.

This program draws a chessboard on the display, line by tedious line. The
routine is as straightforward as possible; it was not deliberately written to
run slowly. If you time the routine, you should get the same figure I did:
about 33 seconds from the first square of the chessboard to the sixty-fourth.
In other words, BASIC is taking roughly half a second to draw each square.
This is intolerably slow, especially since there are ways of doing the same
routine without using SET which are orders of magnitude faster.

POKE to Video RAM

The tremendously useful POKE statement puts a byte of data directly into
memory. POKE can therefore be utilized to do graphics when the data byte
is placed in memory locations 3C00-3FFF (decimal 15360-16383). Loca-
tions 3C00-3FFF are the video RAM; any byte that finds its way here is
picked up by hardware, translated into an ASCII or graphics character
depending on the value of the byte, and placed into the corresponding loca-
tion on the video display. The values that the graphics generation hardware
interprets as graphics characters are hexadecimal 80-BF (decimal 128-191).

What we need to do in order to utilize POKE graphics, then, is decide
which graphics characters we need for our graphics routine, and then POKE
them into the appropriate locations in video RAM. Graphics character 191 is
a solid rectangle; several of them will do nicely for the white square of a
chessboard. Program Listing 2 POKEs character 191 into the video RAM to
produce a chessboard on the screen. This POKE chessboard, incidentally, is
the same as the SET chessboard in every respect; the only way you can tell
the difference between the two is by examining the listings.

This one is much faster than the SET routine; my reading is about eight
seconds, four times faster than the SET program. But we can do it faster
still. Quite a bit faster, as a matter of fact. And we can do it in BASIC.

Printing Graphics Strings

STRINGS is a handy function which lets you create a lengthy string of
characters with just a few keystrokes. For instance,

PRINT STRING#$(20, “X”)
gives you a string of twenty Xs. But the character to be incorporated into the
string doesn’t have to be specified directly, as in the example above; it can be
specified by using its ASCII (or character) code. This feature makes it pos-
sible to create strings of graphics characters. For example,
A$ =STRING$(100,136)

puts a string of 100 of the graphics character 136 into variable A$. A$ can
now be printed and the string of graphics characters will appear on the

106

graphics

display. A$ can also be concatenated just like any other string.

We make use of the STRING$ function combined with PRINT in the pro-
gram in Program Listing 3. After defining A, B, C, and D as string variables,
a string of eight of the graphics character 191 is put into B and eight blanks
are put into C. (Graphics character 191, you'll remember, is the solid rec-
tangle we used in the POKE program.) Eight of the character 191, when
printed side by side, form the top half of a white chessboard square Similar-
ly, eight blanks would form the top half of a black square.

A horizontal row of a chessboard can either begin with a white square and
end with a black one, or begin with a black square and end with a white.
Line 60 concatenates B and C eight times to form the top half of a white-to-
black row and stores this new string of characters in A. Line 70 does the same
thing in a different order to form the top half of a black-to-white row; this is
stored in D. Line 80 prints A and D the number of times needed to create the
chessboard on the screen. Notice that the last few positions of the chessboard
are POKEd in instead of printed directly; if the last position (PRINT@
1023) were printed, the display would scroll, and the chessboard would be
ruined. I know of no way to get around this in BASIC.

The amazing thing about this little program is the rapidity with which it
executes. It will print a chessboard that fills the screen, just like the boards
that were made with SET and POKE, but it does so in one second flat. This
is some 33 times faster than the SET program! There’s no getting around it;
if you’re writing a BASIC program which involves graphics routines, you
should use PRINT STRINGS statements if you're interested in getting classy,
high-speed graphics.

PRINT statements are the fastest way a chessboard (or almost any
graphics routine) can be done in BASIC. But, of course, there is one further
way to put a chessboard on the screen, and it is much faster than anything
we've looked at so far.

Machine Language

Machine-language programs are fast because they take direct control of
the microprocessor. There is no need for a BASIC interpreter to serve
as middleman.

As you might expect, a chessboard-drawing routine written in assembly
language (which will, of course, be assembled into machine language) will
be lightning-fast compared to even the fastest of our BASIC programs.

Program Listing 4 is a listing of such a routine. The program takes the
familiar graphics character 191 (hexadecimal BF) and puts it into the first
eight locations in the video RAM. Then it puts character 128 (hexadecimal
80), which is a blank, into the next eight video RAM locations.

At this point, what you would see on the screen is the top half of the first

107

graphics

twosquares of the chessboard (i.e. , the top half of a white square and the top
half of a black square). The program so far has operated very much like the
BASIC POKE program in Program Listing 2. But now a new phase begins.
The program takes those first sixteen bytes in the video RAM and uses them
as a “bootstrap” segment. With the block-move instruction LDIR, the
bootstrap bytes are put into the next 16 memory locations, then the next 32,
and 64, and so on, until the entire video RAM is filled with chessboard
graphics characters.

The BASIC program in Program Listing 5 incorporates the assembly-
language program of Program Listing 4 as a USR routine. This program will
not operate under Disk BASIC, because of differences in the way Disk
BASIC and Level IT BASIC handle USR.

The assembly-language program (which is completely relocatable) can be
made into an object file with the help of Radio Shack’s Editor/Assembler;
you can then load it into the computer with the SYSTEM command, or the
object code can be put directly into memory with T-BUG, or you can just
type in the BASIC program in Program Listing 5.

If you load either of these programs into your computer, you’ll find (sur-
prise, surprise!) that machine-language graphics are fast. The chessboard
will appear on the display in the blink of an eye.

But “blink of the eye,” come to think of it, is a rather imprecise term. Just
how much faster, exactly, is the machine-language routine than the various
BASIC routines? Let’s figure it out. .‘

Each of the instructions in the Z-80’s instruction set, while executing, lasts
a certain number of T-states (clock cycles). Zilog, the manufacturer of the
Z-80, has provided tables which show the number of T-states that each in-
struction takes up.

For instance, referring to Program Listing 4, the instruction

LD HL,3C00H

inline 120 of the listing requires 10 T-states to execute. The instruction in the
next line, line 130,

LD (HL),0BFH
also requires 10 T-states to execute, but since it’s part of a loop which cycles
eight times, it takes up a total of 80 T-states.

If we go through the entire listing in this way, calculating the number of
T-states needed for each instruction, we find that the program requires a
total of 21,820 T-states to get to line 550, where the HALT loop is located.

Now, since the TRS-80 runs at a clock speed of 1.774 MHz, or 1,774,000
cycles per second, one T-state is equal to about 0.6 microseconds (0.0000006
seconds). 21820 T-states times 0.6 microsec. = 0.013 sec. In other words, it
takes the machine-language routine only about one-hundredth of a second

108

graphics

to draw the chessboard on the screen!

The Results

The timing comparisons we’ve made are summarized in Table 1. As you
can see, the machine-language routine is the hands-down winner, being 100

times faster than its nearest competitor, and fully 3300 times faster than the
SET routine.

GRAPHICS METHOD TIME REQUIRED

SET 33 sec.

POKE 8 sec.

PRINT 1 sec.

Machine- 0.01 sec.
language

Table 1. Time taken by four graphics methods to draw a chessboard on the display.

The most interesting thing about our timing comparisons is the fine per-
formance of PRINT graphics. Although PRINT isn’t in the same league as
machine-language graphics as far as speed is concerned, it's a whole lot
closer than SET and POKE. And PRINT statements have a distinct advan-
tage over machine language when it comes to actual programming, since
graphics routines are easier to write in BASIC using PRINT statements than
they are in assembly language.

109

graphics

Program Listing 1

' SET GRAPHICS DEMO

18 CLS
20 FOR I = 1 TO 4
3 FOR J =1 TO 6
48 FOR K =1 TO 4
50 FOR L = N TO N + 15
60 SET(L, Y)
78 NEXT L
88 N=N+ 32
90 NEXT K
169 N = B:

Y=Y+ 1
119 NEXT J
126 FOR M = 1 TO 6
130 FOR P = 1 TO 4
148 N =N+ 16
158 FOR Q = N TO N + 15
160 SET(Q, Y)
179 NEXT Q
180 N =N+ 16
190 NEXT P

200 N = 8:

Y=Y+ 1
2109 NEXT M
220 NEXT I

238 GOTO 239

Program Listing 2

]
' POKE GRAPHICS DEMO
1¢ CLS
20 L = 15368
30 FOR I = 1 TO 4
48 FOR J =1 TO 2
50 FOR K = 1 TO 4
69 FORM =1 TO 8

78 POKE L, 191
80 L=1L4+1
98 NEXT M

100 L =L+38

118 NEXT K

120 NEXT J

136 FOR N =1 TO 4
140 FOR P =170 2
158 L=L+8

160 FORQ =1 TO 8

176 POKE L, 191
188 L=L+1
198 NEXT Q

208 NEXT P
218 NEXT N
220 NEXT I
238 GOTO 238

Program Listing 3

1
' PRINT GRAPHICS DEMO
10 CLEAR 200
20 CLS
30 DEFSTR A - D

40 B = STRINGS$({8, 191)
50 C = STRINGS${8, " ")
60 A=B +C+B+C+B+C+B+¢C

110

78
80
90
1ld0
118

POKE I,
NEXT I

120 GOTO 128

graphics

+ B
sA;A;D;C;B;CiB;CiB;iC;

4700
4A00
4703
4A05
ARnQ6
4A87
4A09
4n0B
4ABD
4AQE
4ABF
4Al11
4A13
4A16
4A19
4A1C
4AlE
4A21
4A24
4027
4A29
4A2C
4A2F
4A32
4A34
4A37
4A3A
4A3D
4A3F
4A42
4R45
4748
4A4R
4A4D
4A50
4AAS53
4A55
4A58
4A5B
4ASE
4760
4A63
4766
4A69
4A6B
ANQO

21683C
36BF
23

7D
FE@8
20F8
3688
23

7D
FPE10
20F8
21003C
11183C
811000
EDB@
210@83C
112@3cC
012000
EDB#
21003C
11403C
814060
EDB#
21683C
11883C
012000
EDB@
21803C
11A083C
012008
EDB@
218@3C
11co3c
gl4a000
EDBO
21003C
11803D
010001
EDB@
21083C
1le03E
8106002
EDB#@
18FE

Program Listing 4

¢P166 ;MACHINE-LANGUAGE GRAPHICS DEMO

00110
00120
#8138 LOOP1
ga140
80158
g0le6e
001786
98188 LOOP2
001990
002009
ge2le
08228
08230
00240
8250
p8260
8B278
pe288
06290
80300
@310
008320
pe330
80340
#0350
#6360
08370
00380
#0390
0e460
ge418
86420
90438
00440
08450
pR46¢@
00470
004849
00490
90500
08510
208520
00530
00540
09550 HALT
89560

99800 TOTAL ERRORS

4A6B 00550 98550
LOOP1 4A83 00138 08170
LOOP2 4A0B 09189 00220

HALT

ORG 4AD0H

LD HL,3C@0H
LD (HL) , 9BFH
INC HL

LD AL

Cp 984

JR NZ,LOOP1
LD {HL) ,80H
INC HL

LD AL

Ccp 100

JR N%,LOOP2
LD HL,3CO0H
LD DE,3C10H
LD BC,16
LDIR

LD HL,3CO0H
LD DE,3C20H
LD BC,32
LDIR

LD HL,3CO0H
LD DE,3C40H
LD BC,64
LDIR

LD HL,3CO8H
LD DE,3C80H
LD BC,32
LDIR

LD HL,3C88H
LD DE,3CABH
LD BC,32
LDIR

LD HL,3C80H
LD DE,3CCon
LD BC,64
LDIR

LD HL.,3CO0H
LD DE,3D0OH
LD BC,256
LDIR

LD HL,3C0O0H
LD DE,3E00H
LD BC,512
LDIR

JR HALT

END 47004

1

B

Program Listing 5

BASIC + MACHINE LANGUAGE GRAPHICS DEMO
19 FOR I = 18944 TO 19849
20 READ B
36 POKE I,

Program continued

111

40
50

60

70
89

90
168

119
128

graphics

NEXT I
POKE 16526, 0:
POKE 16527, 74
PRINT “"FOR A LOOK AT FAST MACHINE-LANGUAGE GRAPHICS,"
PRINT "PRESS <ENTER>."
A$ = INKEY$:
IF A$ < > CHRS$(13)
THEN
80
X = USR(1)
DATA 33,0,60,54,191,35,125,254,8,32,248,54,128,35,125,254, 16,32
,248,33,0,60,17,16,60,1,16,06,237,176,33,0,60,17,32,60
DATA 1,32,6,237,176,33,0,60,1,64,0,237,176,33,8,60,17,128, 68,1,
32,06,237,176,33,128,60,17,166,68,1,32,06,237,176,33,128
DATA 60,17,192,60,1,64,08,237,176,33,0,60,17,08,61,1,8,1, 237,176,
33,0,606,17,0,62,1,8,2,237,176,24,254

112

GRAPHICS

TRSpirograph

by Ronald A. Balewski

he TRS-80 is a versatile instrument. It can be both amusing and
enlightening. This program is a bit of both; it will give you a little bet-
ter understanding of two graphic patterns,

To put the purpose of this program in a layman’s terms, it draws
spirograph patterns on the TRS-80’s video screen. The mathematician, on
the other hand, will tell you that it plots hypoeycloids and epicycloids!

First, let us start with the hypocycloid. Hypocycloid is the name given to
the curve traced out by some point on a circle which is rolling around the in-
side of a larger circle. Figure 1(a) should clarify this definition. The
metric equations which describe this curve are as follows:

X = (A +B)COSO - B COS(((A + B)/B)®©)
Y = (A + B)SIN® - B SIN(((A + B)/B)®)

Figure 1(b) is a typical pattern. As you can see, there are four points
where the curve touches the circle. This would seem to indicate that the cir-
cumference of the track circle must be four times that of the rotating circle.
(You may be interested to know that the rotating circle only revolved around
its axis three times. I suppose the fourth expected rotation comes from the
fact that the entire circle as a whole took a circular path. You can see this by
imagining what happens as Figure 1(a) is drawn.) Using the formula for cir-
cumference, C = 2nR, we can see that the radius A of the track circle must be
four times that of the rotating circle. To see this illustrated, use the
values, say 20 and 5 for the track and rotating circle radii, respectively, and
run this program. You will get a pattern similar to Figure 1 (b). Epicycloid is
the name given to the curve traced out by some point on a circle which is
rolling around the outside of another circle. (See Figure 2(a). The para-
metric equations which describe this curve are as follows:

2

A

Figure 1(a) Figure 1(b)

113

graphics

X = (A + B)COSV - B COS(((A + B)/B)V)
Y = (A + B)SINV - B SIN(((A + B)/B)V)
This curve is on the outside as opposed to the inside of the track circle.
Try using 20 and 5 again for the track and rotating circle radii, only this
time request an epicycloid. You will see something similar to the drawing

in Figure 2(b).
’3’
a

Figure 2(a) Figure 2(b)

One feature is still missing from our spirograph formula. With the above
equations, we can only get variations of Figures 1(b) and 2(b). By moving
the drawing point from the circumference of the rotating circle, we can get
looping, leaf-type patterns. This would involve adding a constant to certain
B values, while leaving the others alone. Elaborating on this, wherever B is
used to dictate the motion of the revolving circle, it must be unchanged or
this would throw off the desired number of nodes by effectively changing the
radius of the rotating circle. On the other hand, Bs which are used to decide
where the next point should be drawn can be changed to give you a different
design with the same overall symmetry.

After some guesswork, I came up with four new parametric equations:

HYPOCYCLOID:
X = (A= (B +K))COSO + (B + K)COS(((A ~ B)/B)®)
Y = (A - (B + K))SIN® — (B + K)SIN(((A - B)/B)®)
EPICYCLOID:
X = (A + (B +K))COSO - (B + K)COS(((A + B)/B)®)
Y = (A + (B + K))SIN® — (B + K)SIN(((A + B)/B)©)

Once I had these monstrous equations, it was a simple matter to write the
program to go with them. All the program does is step from 0 to 2N, where
N is the number of times to go around the track circle. For each step, X and Y
are calculated, scaled, and plotted.

A few words on operating the program: After the identification message,
you will first be asked for the radii of the track and rotating circles. You can

114

graphics

use any values here, as the graph will be automatically scaled to fit the
screen.

Next you will be asked for a pen displacement (our old friend constant k).
Zero will draw a perfect hypocycloid or epicycloid. A positive value will
draw a design with looping edges. The bigger the value, the bigger the loop.
A negative value will draw a smoother curve. If you enter the negative of
what you had entered for the radius of the rotating circle, you will get a cir-
cle (it should not be too difficult to see why). Try it! Next, you enter the
number of revolutions around the track circle. Some designs take more than
others. If you don’t know how many you will need, enter a large number.
You will be able to stop it when it’s finished. Next, for the step size, about 0.1
should be good enough. A smaller number will give you a more filled-in line.
K INCREMENT VALUE lets you gradually increment or decrement the
constant k as the graph progresses. It makes for some unusual effects. Final-
ly, if you want a hypocycloid, enter an H; for an epicycloid, enter an E.

When the drawing is complete, a period will appear in the top left corner
of the screen. To draw the same pattern again, press the X. To draw a dif-
ferent pattern, press the space bar. If you decide that the drawing is com-
plete before the entered number of revolutions, press the clear key. The
drawing will stop and the period will appear. You can then either draw it
again or make another drawing as stated above.

If you would like to see the X and Y values before they are scaled, insert
the following line:

52 PRINT@0,X;Y;

To see the numbers after they are scaled, use this line:
56 PRINT@0.,X;Y;

This program is fascinating]

track rotating

circle circle pen step k design

radius radius displacement revolutions size increment type
20 3 2 3 .025 0 H
30 3 7 1 025 0 H
16 3 ~1 3 025 0 H
10 3 -1 3 .025 0 E
10 5 0 4 .025 .01 H
6 1 3 1 .025 0 E

Table 1. Values for spirograph designs

115

graphics

Program Listing

REM kkkkkkk* TRGPIROGRAPH kkkkkkkk

REM BY RON BALEWSKI

CLS :

PRINT CHR$(23):

PRINT @466, "TRSPIROGAPH":

FOR K = 1 TO 968:

NEXT

6 CLS :
INPUT “"RADIUS OF TRACK CIRCLE";A:
INPUT "RADIUS OF ROTATING CIRCLE";B:
INPUT "RADIAL DISPLACEMENT OF PEN FROM ROTATING CIRCLE";K:
INPUT "NUMBER OF REVOLUTIONS AROUND TRACK CIRCLE";NR:
INPUT "SIZE OF EACH STEP AROUND TRACK CIRCLE (IN RADIANS)";ST

7 INPUT "K INCREMENT VALUE";KI:
PRINT :
INPUT "WOULD YOU LIKE THE PATTERN BASED ON A HYPOCYCLOID ({SMALL
CIRCLE ROTATING INSIDE A LARGER ONE) OR AN EPICYCLOID (SMALL CIR
CLE ROTATING AROUND THE OUTER PERIMETER IF A LARGER ONE)";TY$

8§ TP = K

18 CLS

(SR SR

= TP

15 2 = 3.14159 * 2 * NR

18 X = (A + 2 *B + K) / 62:
SY = (A + 2 *B + K) / 48:
IF TY$ = "H"

THEN
SX = SX - (B / 62):
SY = SY - (B / 48)

20 FOR TH = @ TO Z STEP ST
21 K = K + KI
22 IF PEEK(14408) AND 2
THEN
80
25 IF TYS$ = "E"
THEN
X = ((& + (B + K)) * COS(TH))
+ B) / B) * TH)))
39 IF TY$ = "E"
THEN
Y = ((A + (B + K)) * SIN(TH))
+ B) / B) * TH)))
4 IF TYS = "H"
THEN
X = ((A - (B + K)) * COS(TH)) + ((B + K) * (Ccos(((A
- B) / B) * TH)))
5 IF TYS$ = "H"
THEN
= ((A - (B + K)) * SIN(TH)) - ((B + K) * (SIN({((A
B) / B) * TH)))
55 X (X / SX) + 62:
Y (Y / sY)/ 2+ 24
6 IF (X > = 8 AND X < = 123) AND (Y > = § AND Y < = 47)
THEN
SET (X,Y)
78 NEXT TH
86 PRINT @@,".";
9 A$ = "7
A$ = INKEYS:
iF As = nn
THEN
90
108 IF A$ = " "
THEN
6:
ELSE
IF AS = "X"
THEN
10:
ELSE
90

((B + K) * (COS{((A

((B + K) * (SIN(((A

<

[

116

GRAPHICS

Adventures in Roseland

by Allan S. Joffe W3KBM

his general equation, J = a SIN X, if properly translated into a program

that your TRS-80 can digest, paints a three-leafed rose onto your
monitor screen. The Program Listing gives a programming possibility. After
you have run the program and examined the scenery, the question “Why
bother?” may come up.

Pattern After Pattern

For a partial answer, make the following changes and additions to the Pro-
gram Listing.
5G=0
15 G=G + L:PRINT@50,G
30 R = 35+SIN(G+])
80 INPUT Z$
90 GOTO 10

You now have a program that produces pattern after pattern, because of
the changing value of G, each time the program runs. Line 80 is merely a
way to put in a controlled pause. When one pattern has been generated, you
may examine it for as long as you wish, hitting ENTER to get the next one.
The PRINT statement in line 15 is an index that will help you make a record
of any pattern that happens to strike your fancy.

Running the revised listing, you will see that when G is an even number,
the rose has petals equal to 2+G, and when G is odd, the petal count equals
G. Note also that when G is odd, the figure is first traced and then retraced
by the program. If you are going to run any number of these patterns, I sug-
gest you alter the STEP in line 20 to read .035. This cuts the print time in
half without too much damage to the image.

After you have played with the program for a bit, jump past the rose petal
section by changing line 5 to read G =29. Remember that as the patterns
form, you can stop them as desired using SHIFT @. You will notice that
some of the patterns are predominantly circular, while others are spirals.
Some are cluttered looking and others are quite sharply defined.

You can expand them by setting the value in line 5 to such constants as 99,
199, or 299 to find new patterns. For more visual fun with your TRS-80, set
the value of G in line 5 to 29. Line 20 should read:

20 FOR] =0 TO 3.14 STEP .035

This line eliminates some of the clutter you may have noticed in the patterns
and also speeds up the printing of the image.

117

graphics

When G = 35 you see an image of five tangent circles. If G = 44 you have a
gaggle of four circles. When G =36 you see a stylized eagle inside a spiral
segment. We already have index G as a guide. Add another index so you can
see what I see in the following examples.

Change line 30 to read:

30 R = 35+SIN(G+]):PRINT @0,]

Start the program running again by setting G in line 5 to equal 28. The
first time you run the program, G will equal 29. If you stop the pattern when
J =1.12, you should see what might be interpreted as a barbell weight.

If G=33 and] =1.575, you may see a dinosaur.

If G =63 and] = 1.47, you will hopefully see Snoopy the dog (see Figure 1).

If G=116 and] =1.435, you will see a running dog.

Here are some other fantasies available by altering G: G = 143 is a stylized
Darth Vadar, and G = 144 gives you a close approximation of the human eye
as shown in a cross section of an anatomy book (see Figure 2).

Figure 1. Snoopy

Negative Values

You can also use negative values for G. In this last image, let G = — 144,
The pattern is identical except it has been rotated so that it is now the mirror
image of the positive G input.

Since we are dealing with circular functions, this displacement can be left

118

graphics

to right as in this example, or top to bottom (G=1and G= - 1).

You can also get a combination of shifts, such as both right to left and top
to bottom, as when G =36 or G = — 36. There are times when altering the
symmetry makes the image more realistic. For example, if G =33 and
J=1.115, you see what looks like a running horse. If you alter line 30 to
read:

30 R = 45+SIN(G+])

the running horse becomes more realistic.

Figure 2. The human eye

Program Listing

10 CLS
20 FOR J =0 to 6.28 STEP .0175
30 R=235+SIN(3+])

40 X = (R+COS(])) + 64

50 Y = (R+SIN(J)) + 47

60 SET(X,47 - (Y/2))

70 NEXT]

119

HARDWARE

Punch Out Your Disks

Build a Snooper/
Snubber

121

HARDWARE

Punch Out Your Disks

by Richard Taylor

For the price of a standard paper punch you can double your present disk
storage. Just follow the simple steps detailed in this article and you can
be reading and writing on both sides of your disks. I have punched out over
100 disks and only two of them have had defective second sides.

To get started you will need a pencil, a paper punch that catches its own
punches, a tracing of a disk, and a smooth piece of paper. The tracing of the
disk (which we shall call the “templet”) can be made by photocopying a
blank disk (do not photocopy a disk with data on it), cutting apart an un-
usable disk, or by making a tracing.

Try to use a stiff piece of paper or glue the copy to a piece of cardboard.
Cut out the center hole, the oblong area below it, the write protect notch on
the upper right edge, and the small hole near the center hole. The smooth
piece of paper can be the backing from a peel-away label or something
similar. The templet shown in the illustrations has two holes punched. This
is just a convenience and is not needed to do the job.

The Second Hole

The only thing that prevents a Radio Shack disk drive from writing to the
second side of your disks is that it needs a second small hole near the center so
that it can find the sectors correctly. If you rotate your disk in its sleeve and
watch the small hole, you will see an even smaller hole right in the disk. Soft-
sectored disks have only one of these and the disk drive uses a light to “see”
when this tiny hole passes by.

Our job is to punch a second hole in the sleeve so that when the disk is
flipped over it will have a hole that allows the drive to see the tiny hole in the
disk. The placement of the second hole does not have to be perfect. Aslong as
the tiny hole can be seen through the new hole in the sleeve, everything will
run correctly.

STEP 1: With the label of the disk in the upper left-hand corner, place the
templet on the disk so that the small hole is positioned by the lower left side
of the center hole. Line up all reference points. Using a pencil, trace the new
small hole on the disk. Also trace the notch on the upper left edge (Figure 1).

STEP 2: Take the strip of smooth paper and insert it between the sleeve
and the disk.

STEP 3: Using your thumb, make room for the punch by lifting the sleeve
near the center hole (Figure 2).

123

hardware

Figure 1

Figure 2

124

hardware

Figure 4

125

hardware

STEP 4: Insert the punch and line it up with the traced hole. Punch the
hole.

STEP 5: Insert your finger where the punch was and check to see if the
liner has been completely removed. In most cases it will not be. With your
finger, push it up through the hole and tear it off.

STEP 6: Repeat steps 1 through 5 on the second side of the disk.

STEP 7: Punch the new notch near the bottom of the label (Figure 3).

That’s all there s to it. Figure 4 shows you what your new disk should look
like. Labels can be placed in the upper left corner with no problems. Any
problems with the new side will show up immediately, just as they would
with a new disk. There is no need to treat this new style any differently. All
of my disks are double-sided and, while I was unsure at first, I now have no
fear of using the second side for the most important programs and data. In
the early days there were problems involving bulk erasing. Now we have
TRSDOS 2.2, 2.3, and NEWDOS. All of these operating systems will back
up over a disk that contains data without requiring bulk erasing.

126

HARDWARE

Build a Snooper/Snubber

by Philip O. Martel KA1GK

he relay that controls the TRS-80’s cassette player is subject to high
voltage across its contacts when it’s turned off.

Radio Shack gives the relay some protection with two 75-volt zener
diodes across the contacts, but thisisn’t always enough. The relay sometimes
welds shut.

When this happens, you can remove the remote plug from the recorder
and operate it manually. Eventually the relay unsticks. Or you can try the
snooper/snubber.

Easy to Build

The snooper/snubber, a small easy-to-build electronic circuit, monitors
the TRS-80’s cassette interface and gives the relay extra protection. The
snubber circuit (Figure 1) gives the motor current some place to go when the
relay contacts open, so that the current doesn’t try to jump across the con-
tacts and weld them together.

elt)

Ly MOMENTARY oy
o NORMALLY OPEN
I
NONPOLAR

Figure 1. The Snubber Circuit

The snubber can be placed anywhere between the relay contacts and the
cassette recorder motor. To avoid breaking any of Radio Shack’s seals, I put
the snubber circuit in a small box, plug the remote from the TRS-80 into the
box, and run a jumper cable with subminiature phone plugs from the box to
the recorder. In addition, a push-button switch across the circuit lets me ad-
vance the tape in play mode.

The snooper (Figure 2) is a simple means of monitoring the audio signals
into and out of the TRS-80. The snooper consists of five miniature phone
jacks, a crystal earphone, a double-pole double-throw (DPDT) center-off
switch, and some shielded cable.

Two of the jacks accept the earphone and auxiliary plugs from the
TRS-80. Two others pass out the same signals to the cassette recorder via
jumper cables with miniature plugs on each end. The fifth jack passes one of

127

hardware

the two signals to an external device such as an amplifier. You'll need one, if
you are running programs that produce sound.

The DPDT switch determines which of the two signals—the earphone
signal (to the TRS-80) or the auxiliary signal (from the TRS-80)—is passed to
the fifth jack and to the crystal earphone. The crystal earphone outputs a low-
volume signal, audible, but not loud enough to require a volume control.

—~ -

! [
n \ /\ v H
.
W
= 7 (7
L—ﬁ i N/ ﬂ
_f
1 -:—::]ﬂﬂ CRYSTAL
b EARPHONE
L))
0 7 N

Figure 2. The Snooper Circuit

Construction

If you have some experience in electronics, you can build the snooper/snub-
ber from the schematic diagrams. If not, I've provided some guidelines.

Build your snooper/snubber in a plastic box. If it’s metal, you may en-
counter ground loops. These cause a loud, low-pitched buzz on recorded
tapes. A box about 2 x 3 x4 inches is a good size. You can use one-half this
size, but, unless you like repairing watches or constructing ships in bottles,
its likely to prove frustrating.

You can lay out the components any way you like. Mine has the jacks for
the TRS-80’s cable in front, the jacks for jumper cables in back, the fifth jack
on one side, and the two switches and earphone on top.

Drill the holes and mount the components loosely. (Miniature jacks take
1/4-inch holes and subminiature jacks take 3/16-inch holes.) How you mount
the earphone depends on its shape. If the earphone is flat, drill several small
toles and glue the earphone behind them. If the earphone has a roughly cylin-
drical earplug, drill a hole to fit the earplug and glue the earplug to the box.

Take the shielded wire and run it between the jacks and switches to
measure how much is needed. Leave an extra inch and a half on one end of
each piece of wire as it is cut. This may seem like a lot, but it is much better

128

hardware

to stuff any extra length of wire into the box than to come up a tenth of an
inch short.

Before you solder the circuit together, remove all the components from
the box and put it well away from your soldering iron. The affinity that
plastic boxes have for hot soldering irons, you cannot believe.

Soldering

The wiring is straightforward, but most of the parts, especially the jacks,
are fairly small. You aren’t going to get all the wires from the shield through
those little holes in the jacks. Cut off about half of the wires very close to the
insulation and things will go much easier.

Make sure that all the remaining strands of the shield are twisted together.
One tiny, almost invisible strand of wire can short out one of the signals.
This condition is not likely to damage anything, but the time spent trying to
track down a short can be frustrating.

The DPDT switch (Figure 3) has a 3 X 2 array of contacts on the bottom.
All the shields should be connected to one set of three contacts, and all of the
center wires to the other set of three contacts.

TO CASSETTE
RECORDER

ALL CENTER CONDUCTORS

AtL SHIELDS

AUXILIARY LINE

FIFTH JACK AND
CRYSTAL EARPHONE

~

/ EARPHONE LINE

Figure 3. The DPDT Switch

The shielded wires can be run from one jack to the other and then to the
switch, or from one jack to the switch and then to the other. I recommend
the second approach, since it puts the point where the two shielded wires
join at the switch, which usually has larger contacts than the jacks.

The specific values given for the resistor and capacitor are not critical.
Anything within a factor of about ten should work fine. That is, the capac-
itor should be between about 0.3 microfarads (uF) and 3 uF and the resistor

129

hardware

should be between about 3 Ohms (Q) and 30 Q, The capacitor and resistor
are soldered together by one lead and soldered to the normally open-push-
button switch by the other (Figure 4).

| MICROFARAD
CAPACITOR

TO CASSETTE
RECORDER
REMOTE LINE

10 OHM
RESISTOR

MOMENTARY
PUSHBUTTON

I NORMALLY OPEN

Figure 4. The Capacitor and Resistor

The earphone should be a high impedance type. A crystal earphone is
specified, but any type with an impedance of 10 kR (10 kilohms = 10,000
Ohms) or more will work. The high impedance minimizes loading and re-
sults in a fairly low volume.

Once you have the snooper/snubber assembled, normal use of the cassette
recorder will test it. If you would like to give the snubber a thorough test,
run the program shown in Program Listing 1. It will turn the cassette motor
on andoff repeatedly with a period of about five seconds. I ran this program
for more than 1000 cycles of the relay with no trouble. Not bad, considering
that the relay had failed the first day I used my TRS-80.

Program Listing 1. Test Program

10 OUT 255,4

20 FOR I=1TO 1000: NEXT 1
30 OUT 255,0

40 FOR1=1TO 1000: NEXT1
50 GOTO 10

130

HOME
APPLICATIONS

Car Pool
Doctor Your Records
Computacar

Bio-Bars: Biorhythms
in Bar Graph Form

131

—HOME APPLICATIONS

Car Pool

by Walter K. McCahan

hile driving to work and contemplating nontrivial uses for my

TRS-80 microcomputer, I noticed that almost every car on the road
was occupied by only one person. Keeping in mind the high cost of gasoline
and other automobile operating expenses, I felt that a bit of research was
in order.

After a hasty and short survey of a local office building, I found that the
overwhelming reason that car pools had not been formed was the employees’
lack of knowledge as to which other employees lived close to them and were
available to form a pool. I also found that the employer was willing to pay a
healthy sum to provide employees with the information with which to form
car pools. To attack and solve this problem I devised the following plan
of action:

1. Find the home address of each employee.

2. Reduce these addresses into zones.

3. Write a program to match employees that live close to one another.

4. Give each employee a list of these other nearby employees and instruct
them to form car pools.

Step 1.

Gathering personal information from the employees in this building was
not a difficult task and was accomplished by the letter shown in Figure 1.
The letter was copied on the company’s copy machine and was distributed
with each employee’s payroll check. I found that since there was a direct
savings to them, the employees were quick to complete the information and
return the questionnaire.

Step 2.

After looking into several methods of relating addresses to locations, in-
cluding the name of the town and zip code, it was decided that a completely
independent method of zoning must be developed.

Using a map of the local area (Harrisburg, PA), I produced a grid of 16
sections (see Figure 2). Each zone on this grid represents 225 square miles, so
that the entire grid represents the 3600 square miles centered on Harrisburg,
an area of about 1.5 million people. Each employee was provided with a
copy of this map and was instructed to enter the proper zone on the
questionnaire.

133

home applications

Fellow Employees:
In these times it is no longer economical for each employee to drive his or her car to work alone.

In aneffort to conserve gasoline (and therefore money), your company is providing a computer
service that will match your name with other employees that work with you so that you can form
a car pool.

Attached you will find a map of our local area which has been divided into 16 zones. You will
also find below a form that is to be clipped and returned to the personnel department after it is
completed.

All items on the form are self-explanatory except for the one labeled “Zone.” In this blank you
should enter the number of the zone in which you live, according to the numbers on the map. If
you do not live within one of the zones, enter the zone nearest to your home.

After all of the forms have been returned and entered into the computer you will be furnished
with a list of names and instructions on how to set up your car pool.

Sincerely,
The Management

CAR POOL QUESTIONNAIRE

NAME
STREET ADDRESS
CITY & ZIP
TELEPHONE NO.
ZONE
SHIFT
BUILDING

Figure 1. Gathering Employee Information

Step 3.

To accomplish matching employees, the Level II TRS-80 program in the
Program Listing was written. Before getting into a general discussion of the
program, it would be well worth mentioning a somewhat unorthodox method
of saving and loading data to and from tape. When first looking at the pro-
gram, it is surprising that only one array is dimensioned-—line 50. This is all
that is necessary since all information for each record is concatenated into one
string called N$. This is done at lines 390 or 410. By using this method, record
and retrieve times to and from cassette tape are greatly reduced.

134

home applications

Step 4.

A match was printed for each person who participated in the project and
a copy was sent to each employee along with the letter shown in Figure 3.

Conclusion

The results of this venture were very gratifying, in that the number of cars
in the company’s parking lot have decreased substantially while the number
of employees working in the building has increased. The program has since
been used by others, including one large company who ran the program
through several times, entering only those who worked on one shift in each
run. It has also been used by a company for the registrants of a seminar they
were holding.

R 2 Cocolamus | Onental)
wistervill /]
land_ 2z~

l'

i . '
s A \Maze m Sla - fﬂ
L5

@

4 Dalmaha/ From Ty
! - - <7
D . @-.-) Gratz { &) 3

AY

y RFunknmo«n 3
N Rossv.nf

10a0s (39
B o5
"4,,3,/‘,',, : \|
A Bermuf
el : RE
5 7t . e i
; oy 7 i] o BE vorrfoa
: 3 wy s) (ke
F - ow ; ol R
P AL (1 - Hﬂmbid' Fa— N ”‘_ P " ; - oy = oW e Da
N 1SE A ‘B New ; thomag 0tog R A Yoe ingsar
«?E 1L o Cragie 7 - \bbons/ s vhe /?c;\ﬁ\'_" N"g;‘ml??f?g?;\?afledﬂmn @
Murms . G Juniens ™ L 8 o] Nasnvilie £1 b} Hagtown «. ‘Broguevitte
:;\?bwiq P 08 New bt K Mangat 2 foroPers- | Jacobus TRe a/as‘\ o

Figure 2. Grid Map of Harrisburg, PA area

135

home applications

Dear Fellow Employee:

About two weeks ago you were asked to complete and return a questionnaire which was con-
cerned with car pooling.

Attached is a computer printout of the results of this project as they relate to you,

On the printout you will find a list of people who represent the optimum prospects for forming
a car pool—these people are under the category of first choices—and all live quite close to you.
The second category is those people who are second choices. These people do not live as close as
those in the first category, but do live close enough to make a car pool worthwhile.

With this list we have provided you with the basic information needed to form your own car
pool—the rest must be worked out by you. The easiest way to form a pool is to start calling your
fellow employees starting from the top of the list (each employee's telephone number is given) and
make your own meeting arrangements.

Sincerely,
The Management
Figure 3

The Program

Lines 10 through 220 contain the program header, initialize the program,
print instructions, and print the menu of functions available. The multiple
branch statement in line 230 sends the pointer to the proper section of the
program as selected from the menu.

Lines 300 through 430 accomplish the function of building or adding to a
file of data. Each line of data is prompted by the program, and the operator
need only answer each prompt to build a file. Lines 325, 335, 345, and 355
set thesize of each line. The string sizes of name, street, city, and zip are set
at 30 characters each, while the telephone number has a field of 15
characters and zone is left at either one or two characters, depending on the
zone entered. This field sizing is done by adding null characters up to the
field size.

Thereason behind all this string manipulation is to ensure that each data
element such as name, address, city, etc., starts at the same position in the
array containing the N§ variables. This must be done so that the portion of
the program that breaks N$ back into the various fields knows where to start
looking for each data element,

Lines 500 through 760 allow changes to be made to data already in the
file. Here again each string is set to size and concatenated after the correc-
tion ismade. Lines 800 through 940 are used to establish and print out the

136

home applications

desired relationship between the zones of the employees in the file. The
subroutine in lines 3000 through 3060 is used to break down the con-
catenated string N$ back into the various elements represented by N1$, N2§$,
N3$, N4$, and N5$. The actual printing of the data elements contained in
strings N1$ through N5$ is accomplished by the subroutine in lines 4000
through 4020.

First choice matching—where the zone is the same as that for the person
being matched—is done in lines 5000 through 5050. The actual matching of
zones is in line 5020. This line also prevents the printing of the person being
matched as a choice. The subroutine in lines 6000 through 6880 selects the
second-choice matches. A name is selected as a second choice if his or her
zone is adjacent to the zone of the person being matched.

Using the Program

In order to ensure the least complicated operation, the program is written
in the “tutorial mode,” that is, the operator need only answer the questions
displayed by the computer in order to run all of the functions.

Function 1— This function is used for initial entry of data into the file and
is a simple matter of entering the required information in response to the
questions: NAME?, STREET ADDRESS?, CITY & ZIP?, TELEPHONE
NO.?, and ZONE?. The information is entered directly into the computer
from the questionnaires returned by the employees and need not be in any
particular order. The file is closed upon answering NO to the question DO
YOU HAVE ANOTHER NAME TO ENTER? or upon reaching 80 names in
the file.

137

home applications

Function 2—Since most operators are not trained typists, I felt it was
necessary to allow a simple means of correcting inaccurate data. Entering
the name of the person for whom the data is to be corrected will result in
each line of data being displayed—one at a time—exactly as it appears on
the file. If that line is to be changed, the correct information is typed in. If no
correction is to be made to that line, the operator may move on to the next
line simply by pressing ENTER. After all corrections have been completed,
the entire corrected file is displayed.

Function 3— This function prints out the name, address, and telephone
number of the person for whom a match is sought, followed by short instruc-
tions, then a list of first choices, and then a list of second choices. The first
choices are those employees that have the same zone as the person for whom
a match is being sought, while second choices are those who live in a zone
which is adjacent. By studying the zoned map and comparing it to the chart
in Table 1, you will see this relationship.

Functions 4 and 5—These functions are straight-ahead applications for
saving and recalling data to and from a cassette file. As explained above, this
process is shorter than usual due to the fact that only one string is transferred
to the cassette file.

Zone Zones that are adjacent
2,5,6

1,3,5,6,7

2,3,6,7,8

3,7,8

1,2,6,9,10
1,2,3,5,7,9,10,11
2,3,4,6,8,10,11,12
3,4,7,11,12
5,6,10,13,14

10 5,6,7,9,11,13,14,15
11 6,7,8,10,12,14,15,16
12 7,8,11,15,16

13 9,10,14

14 9,10,11,13,15

15 10,11,12,14,16

16 11,12,15

Table 1. Relationship of zones used in selecting second-choice matches

© o ~ITDU WM

138

10
28
30
40
50
60

70
80
90
100
110

120
138

140
1598

160
178
18¢
198
200
218
220
230
300

310

315

320

325

338
335

340

350
355

home applications

Program Listing

vk CAR POOLING *

! %% WALTER K. MCCAHAN **

; * % * %

vokk TRS-88 LEVEL 11 **

CLEAR 8880:

DIM N$(81)

CLS :

PRINT :

PRINT :

PRINT "THIS PROGRAM MATCHES RIDES THAT ARE AVAILIBLE FOR CAR POO
LING":

PRINT

PRINT "THE OUTPUT OF THE PROGRAM WILL BE THE NAME AND ADDRESS"

PRINT "OF THE PERSON FOR WHOM A MATCH IS SOUGHT FOLLOWED BY A"
PRINT "LIST OF FIRST CHOICES THEN A LIST OF SECOND CHOICES,"
PRINT "AND A LIST OF THIRD CHOICES. THE PERSON SHOULD BE"

ERINT "GIVEN THE LIST ALONG WITH THE INSTRUCTIONS TO CONTACT THE

PRINT "LISTED PEOPLE, IN ORDER, AND ARRANGE A CAR POOL."
PRINT

PRINT :

PRINT :

PRINT

INPUT ™ TO PROCEED PRESS EMTER";X

CLS :

PRINT :

PRINT :

PRINT "THE FOLLOWING FUNCTIONS ARE AVAILIBLE:"
PRINT " 1. ENTER OR ADD TO LIST OF NAMES
PRINT " 2. MAKE CORRECTIONS TO AN EXISTING NAME
PRINT * 3. FIND A MATCH

PRINT " 4. SAVE A FILE ONTO CASSETTE

PRINT * 5. LOAD A FILE FROM CASSETTE

PRINT :

PRINT

INPUT "ENTER THE NUMBER OF YOUR CHOICE";X
ON X GOTO 36¢,500,800,1200,1408

CLS :
PRINT
PRINT
PRINT
INPUT
CLS :
PRINT "ENTER THE PROPER INFORMATION IN RESPONSE TO EACH PROMPT":
PRINT
FORI =1+ 1 TO 80

INPUT “"NAME";N1S:

PRINT

M1 = 38 - LEN(N1S):

M$ = STRINGS(M1," "):

N1$ = N1$ + M$

INPUT "STREET & ADDRESS";N2$:

PRINT

M2 = 30 - LEN(N2$):

M2§ = STRINGS(M2," "):

N2$ = N2$ + M2$

INPUT "CITY & ZIP";N3$:

PRINT

M3 = 30 - LEN(N3$):

M3$ = STRINGS(M3," "):

N3$ = N3§$ + M3$

INPUT "TELEPHONE NUMBER";N4§$:

FETIRTE

ENTER THE NUMBER OF NAMES ALREADY ON THE FILE";I

PRINT
M4 = 15 - LEN(N4S$): N
M4$ = STRINGS(M4,”™ "): .Program continued

139

360
376

380
390
480

418
420
430
500

518

520
522

525

530

535
540

558

555
569
578
580

590
600
610
620

630
635

640
650
655

660
670
675

680
690
695

700
710
715
720

730
735

740

750
768

home applications

N4$S = N4$ + M4S

INPUT "ZONE";N55:

PRINT

PRINT :

INPUT "DO YOU HAVE ANOTHER NAME TO ENTER";QS$
IF QS$ = "NO" GOTO 410

N$(I) = N1$ + N2$S + N3$ + N4S$ + NSS
CLS :

NEXT I
N$(I) = N1$ + N2$ + N3$ + N4$ + N5$
Pl = I
GOTO 150

'okE CORRECTION SUBROUTINE * &
CLS :
PRINT :
PRINT
INPUT "ENTER NAME FOR WHICH CORRECTION IS TO BE MADE";S$
POKE 16422,88:
POKE 16423,4
M1l = 30 - LEN(S$):
M$ STRINGS (M1," "):
s$ 5§ + MS$
FOR I = 1 TO Pl:
IF LEFTS(NS(I),38) = S$ GOTO 578
NEXT I
CLS :
PRINT S$:;" NOT FOUND ON FILE"
PRINT :
INPUT "WANT TO TRY AGAIN";Q$
IF Q$ = "NO" GOTO 158

[

GOTO 508
GOSUB 3008
CLS :

PRINT "EACH LINE OF INFORMATION WILL BE DISPLAYED AS"
PRINT "IT APPEARS ON THE FILE. IF IT IS TO BE CORRECTED"
PRINT “THE CORRECT INFORMATION SHOULD BE TYPED IN. IF"
PRINT "NO CORRECTION IS TO BE MADE TO THAT LINE PRESS ENTER."
PRINT :

PRINT N1§

INPUT N1$

Ml = 38 -~ LEN(N1S$):

MS$ = STRINGS(ML," "):

N1$ = N1$ + MS

PRINT N2$

INPUT N2§

M2 = 30 - LEN(N2$):

M2$ STRINGS (M2," "):

N2$ N2$ + M2S

PRINT N3$

INPUT N3$

M3 = 30 - LEN(N3S):

M3$ STRINGS (M3," "):

N3$§ N3$ + M3$

PRINT N4$

INPUT N4S

M4 = 15 ~ LEN(N4S):

M4S$ = STRINGS(M4," "):

N4$ = N4S + M4S

PRINT N5$

INPUT N58

N$(I) = N1$ + N2$ + N3$ + N4$S + N58

CLS :

PRINT "FOLLOWING IS THE CORRECTED FILE"

GOSUB 4008

POKE 16422,141:

POKE 16423,5

PRINT

INPUT "DO YOU HAVE ANOTHER CORRECTION TO MAKE";Q$

IF Q$ = "YES" GOTO 504

GOTO 158

#ou

140

home applications

800

tokk MATCH A SPECIFIC PERSON *%
819 CLS

PRINT :

PRINT :

INPUT "ENTER NAME FOR WHICH A MATCH IS SOUGHT";S$
815 M1 = 38 - LEN(S$):

M$ = STRINGS(M1,"™ "):

8% = S$ + M§
828 FOR I = 1 TO P1:
IF S8$ = LEFTS$(NS(I),38) GOTO 840
825 NEXT I
830 PRINT 5$;" NOT FOUND ON FILE":
GOTO 924
840 GOSUB 3000
845 N9$ = N5S:
N5 = VAL(NS5S)
850 GOSUB 4000
868 LPRINT :
LPRINT " FOLLOWING IS A LIST OF POSSIBLE RIDERS FOR THE"
870 LPRINT "PERSON NAMED ABOVE. THE RIDERS LISTED UNDER FIRST"
880 LPRINT "CHOICE ARE MOST DESIRABLE, BUT THE SECOND CHOICES"
899 LPRINT "ARE ALSO BENEFICIAL."
990 GOSUB 500@
919 GOSUB 6800
920 PRINT :
PRINT :
INPUT "DO YOU HAVE ANOTHER NAME TO MATCH";Q$
93¢ IF Q$ = "YES" GOTO 8040
94¢ GOTO 156
12088
'Rk SAVE ONTO CASSETTE *ok
1218 CLS :
PRINT :
PRINT :
PRINT
1220 INPUT "WHEN CASSETTE IS READY PRESS ENTER";X
1230 CLS :
PRINT :
PRINT :
PRINT
124¢ PRINT "NOW RECORDING ONTO CASSETTE"
1258 PRINT # - 1,Pl
1268 FOR I = 1 TO Pl
1278 PRINT # - 1,N$(I)
1280 NEXT I
1298 CLS :
PRINT :
PRINT :
PRINT
1390 INPUT "RECORDING COMPLETE. PRESS ENTER TO PROCEED.";X
1319 GOTO 158
1400 :
vokk LOAD FROM CASSETTE *#
1418 CLS :
PRINT :
PRINT :
PRINT
1420 INPUT "WHEN CASSETTE IS READY PRESS ENTER";X
1430 CLS
1448 PRINT
PRINT
PRINT :
PRINT "NOW LOADING FROM CASSETTE"
1450 INPUT # - 1,P1
1460 FOR I = 1 TO Pl
1479 INPUT # - 1,N$(I)
1488 NEXT I
1496 CLS :
PRINT : Program continued

. v ae

141

home applications

PRINT :

PRINT "LOADING NOW COMPLETE, ";P1;" ITEMS ON THE FILE"
1500 PRINT :

PRINT :

INPUT "PRESS ENTER TO PROCEED";X
1519 GOTO 158

3008 :
[T TO BREAK DOWN STRINGS **
3010 N1$ = LEFT$(N$(I),30)
3028 N2$ = MIDS(NS$(I),31,38)
30838 N3$ = MIDS(NS$(I),61,38)
3046 N4$ = MIDS(NS$(I),91,8)
3650 N5$ = RIGHTS$ (NS$(I),2)
3055 SW = 1
3P60 RETURN
4080 :

Pokk TO PRINT A RECORD %
4010 LPRINT :
LPRINT TAB(1lO)N1S:
LPRINT TAB(10)N2S:
LPRINT TAB(10)N3S:
LPRINT TAB(1l0)N4S:
LPRINT TAB(1B)N5S
4920 RETURN
5608 :
vk TO SELECT FIRST CHOICES k%
5019 FOR I = 1 TO P1 + 1
5815 GOSUB 3000
5620 1IF N9$ = N5$ AND S$ < > N1$ GOTO 5030
ELSE
5040
506306 GOSUB 4000
5035 SW = @
5040 NEXT I
5850 RETURN
6000 :
vk TO SELECT SECOND CHOICES k%
6005 LPRINT :

LPRINT :

LPRINT * SECOND CHOICES®:

LPRINT
6616 FOR I = 1 TO Pl
6020 R = VAL(RIGHTS(NS(I),2))
6030 IF R = 2 AND N5 = 1 GOSUB 3008
6840 IF R = 6 AND NN5 = 1 GOSUB 3080
6058 IF R = 5 AND N5 = 1 GOSUB 3068
6066 IF R = 1 AND N5 = 2 GOSUB 300¢
6679 IF R = 3 AND N5 = 2 GOSUB 3000
6088 IF R = 5 AND N5 = 2 GOSUB 30088
6090 IF R = 6 AND N5 = 2 GOSUB 3000
6188 IF R = 7 AND N5 = 2 GOSUB 38088
6118 IF R = 2 AND N5 = 3 GOSUB 3600
6120 IF R = 4 AND N5 = 3 GOSUB 3880
6130 IF R = 6 AND N5 = 3 GOSUB 3000
6140 IF R = 7 AND N5 = 3 GOSUB 3000
6150 IF R = 8 AND N5 = 3 GOSUB 3008
6168 IF R = 3 AND N5 = 4 GOSUB 3000
6178 IF R = 7 AND N5 = 4 GOSUB 3800
6188 IF R = 8 AND N5 = 4 GOSUB 3400
6190 IF R = 1 AND N5 = 5 GOSUB 3680
6208 IF R = 2 AND N5 = 5 GOSUB 3060
6218 IF R = 6 AND N5 = 5 GOSUB 36068
6220 IF R = 9 AND N5 = 5 GOSUB 3088
6238 IF R = 1P AND N5 = 5 GOSUB 3000
6240 IF R = 1 AND N5 = 6 GOSUB 3800
62580 IF R = 2 AND NS5 = 6 GOSUB 3060
6260 IF R = 3 AND N5 = 6 GOSUB 3080
6278 IF R = 5 AND N5 = 6 GOSUB 3080
6280 IF R = 7 AND N5 = 6 GOSUB 3800
6290 IF R = 9 AND N5 = 6 GOSUB 3000

142

home applications

6300 IF R = 10 AND N5 = 6 GOSUB 3008
631¢ IF R = 11 AND N5 = 6 GOSUB 3008
6320 IF R = 2 AND N5 = 7 GOSUB 3800
6330 IF R = 3 AND N5 = 7 GOSUB 3000
6340 IF R = 4 AND N5 = 7 GOSUB 3000
635¢ IF R = 6 AND N5 = 7 GOSUB 3000
6360 IF R = 8 AND N5 = 7 GOSUB 3000
6370 IF R = 1@ AND N5 = 7 GOSUB 3000
6388 IF R = 11 AND N5 = 7 GOSUB 3000
6396 IF R = 12 AND N5 = 7 GOSUB 3000
6406 IF R = 3 AND N5 = 8 GOSUB 3000
6416 IF R = 4 AND N5 = 8 GOSUB 3000
6426 IF R = 7 AND N5 = 8 GOSUB 3000
643¢ IF R = 11 AND N5 = 8 GOSUB 3000
6448 IF R = 12 AND N5 = 8 GOSUB 3000
6445 IF R = 5 AND N5 = 9 GOSUB 3008
645¢ IF R = 6 AND N5 = 9 GOSUB 3860
6460 IF R = 10 AND N5 = 9 GOSUB 3000
6470 IF R = 13 AND N5 = 9 GOSUB 3000
6488 IF R = 14 AND N5 = 9 GOSUB 3088
6499 IF R = 5 AND N5 = 18 GOSUB 3000
6508 IF R = 6 AND N5 = 10 GOSUB 3000
651¢ IF R = 7 AND N5 = 10 GOSUB 3800
6520 IF R = 9 AND N5 = 10 GOSUB 3080
653@ IF R = 11 AND N5 = 10 GOSUB 3000
6548 IF R = 13 AND N5 = 108 GOSUB 3880
6550 IF R = 14 AND N5 = 18 GOSUB 38080
6568 IF R = 15 AND N5 = 10 GOSUB 3080
657¢ IF R = 6 AND N5 = 11 GOSUB 3000
65880 IF R = 7 AND N5 = 11 GOSUB 3089
6590 IF R = 8 AND N5 = 11 GOSUB 3080
6600 IF R = 10 AND N5 = 11 GOSUB 3880
661¢ IF R = 12 AND N5 = 11 GOSUB 3000
6620 IF R = 14 AND N5 = 11 GOSUB 3008
6638 IF R = 15 AND N5 = 11 GOSUB 3000
6640 IF R = 16 AND N5 = 11 GOSUB 3600
6650 IF R =7 AND N5 = 12 GOSUB 3488
66680 IF R = 8 AND N5 = 12 GOSUB 3800
6678 IF R = 11 AND N5 = 12 GOSUB 3826
6680 IF R = 15 AND N5 = 12 GOSUB 3008
6698 IF R = 16 AND N5 = 12 GOSUB 3800
6788 IF R = 9 AND N5 = 13 GOSUB 3880
671¢ I1F R = 1¢ AND N5 = 13 GOSUB 3080
672¢ IF R = 14 AND N5 = 13 GOSUB 3600
6730 IF R = 9 AND N5 = 14 GOSUB 3000
6746 IF R = 10 AND N5 = 14 GOSUB 3800
6750 IF R = 11 AND N5 = 14 GOSUB 3000
6768 IF R = 13 AND N5 = 14 GOSUB 3600
6778 IF R = 15 BND N5 = 14 GOSUB 3680
67880 IF R = 18 AND N5 = 15 GOSUB 3888
6798 IF R = 11 AND N5 = 15 GOSUB 3008
6889 IF R = 12 AND N5 = 15 GOSUB 3009
6818 IF R = 14 AND N5 = 15 GOSUB 3000
6828 IF R = 16 AND N5 = 15 GOSUB 3806
6838 IF R = 11 AND N5 = 16 GOSUB 3000
68480 IF R = 12 AND N5 = 16 GOSUB 3040
6850 IF R = 15 AND N5 = 16 GOSUB 36088
< > N1$ GOSUB 4000

6868 IF SW = 1 AND S$%
6865 SW =

6870 NEXT I

6880 RETURN

143

- HOME APPLICATIONS

Doctor Your Records

by Wilbur A. Muehlig, M.D.

[hen 1 was practicing medicine, my secretary kept a “daybook,”

V V entering each payment made by a patient, adding totals for the day,
the month, and finally, the year.

When 1 left private practice, 1 continued the same general method
of keeping track of income checks, but my usual practice was to let the
arithmetic go until the end of the year when my taxes were due. At this time
totaling my income was a rather discouraging job, but ideally suited to
a computer.

This bookkeeping program should be of interest to anyone owning a few
stocks and bonds. Tt is written with the retired person in mind, and therefore
includes Social Security income and annuity payments.

The program, which handles up to 35 entries a month, accepts eight types
of entries: earned income, dividends, interest, annuity funds, tax-free in-
terest, Social Security, life insurance dividends, and miscellaneous items.
The first four are taxable, the next three untaxable, and the last is for your
records only.

The program is written in Level II BASIC for a TRS-80 with 32K and a
single disk drive, but it can be easily modified to use a cassette. The printout
has a line length of 61 characters, but can be compressed to fit into 40 col-
umns. Though the program can be used without a printer, much of its bene-
fit is lost.

First Steps

Choose MAKE A FILE ENTRY (number three in Table 1) when first us-
ing the program. Enter the day of the month and the source of the income;
choose the type of entry, the amount (Table 2), and press ENTER.

When you have finished making your entries, save them to disk using the
first menu option and the disk option: SAVE MONTH’S FILE TO DISK
(one in Table 1). Before adding more entries for the same month, load the
previous ones with disk option two.

You can use menu options four (CORRECT AN ENTRY), five (DELETE
AN ENTRY), or six (SEE A PRINTOUT ON VIDEO) at any tirme while
making these entries. Option four is also useful for checking the income type
you have chosen, since it is not printed by either the video or hard copy
printouts,

After the month’s entries are complete, disk option four loads the yearly
totals from the previous month. Menu option two totals each type of income

144

home applications

for the month and the year and then displays the results. You can use disk op-
tion three to save the totals, menu option six for a complete video printout,
and seven for hard copy (See Table 3 for sample).

WHAT DO YOU WANT TO DO?

1—DISK OPERATIONS
2—COMPUTATIONS

3-—~MAKE A FILE ENTRY
4—CORRECT AN ENTRY
5—DELETE AN ENTRY

6—SEE A PRINTOUT ON VIDEO
7—MAKE A HARD COPY
8—LEAVE THE PROGRAM

CHOOSE? 1

WHAT DO YOU WANT TO DO?

1—SAVE MONTH’S FILE TO DISK
2—LOAD MONTH’S FILE FROM DISK
3-—-SAVE YEARLY TOTALS TO DATE
4—LOAD YEARLY TOTALS
5—RETURN TO MENU

CHOOSE? 1

Table 1

Changes

Changing to cassette data files will require alterations between lines 240
and 370. Sequential disk files are quite similar to cassette files, and use of the
Level 11 BASIC Reference Manual should make this change simple.

Taxable items can be changed to nontaxable or vice versa in lines
7000-7070 and 6099-6820. Note that L() and R() collect the taxable and
nontaxable items for printing in columns. Refer to the list of variables (Table
4) as necessary.

Miscellaneous entries include loan repayments, refunds, and money from
the sale of stocks and bonds. The program doesn’t handle capital gains be-
cause of their special requirements, but you can type the data on the back of
the monthly pages.

This program considers life insurance dividends as nontaxable income, al-

145

home applications

1
TO END FILE ENTRIES, TYPE 99

DAY OF MONTH? §

SOURCE OF INCOME (NOT OVER 24 SPACES)
PAT&T

WHAT TYPE OF ENTRY?

1—EARNED INCOME 5—TAX FREE INTEREST

2—DIVIDEND 6—SOCIAL SECURITY
3—INTEREST 7-—LIFE INSURANCE DIVIDEND
4—ANNUITY 8—MISCELLANEOUS ITEM
CHOOSE? 2

AMOUNT OF DIVIDEND? 345.67__
1 DATE 5 AT & T DIVIDEND § 345.67

IF THE ABOVE IS INCORRECT, TYPE 1. IF THE PART THEN DISPLAYED IS COR-
RECT, PRESS ENTER, OTHERWISE TYPE THE CORRECTION.

NOTE: IF THE ERROR IS IN THE TYPE OF INCOME, DELETE THE WHOLE ITEM
AND REENTER.

IF THE ABOVE IS CORRECT, TYPE 2 TO GO ON?__
Table 2

though they are actually premium refunds. You can change this by omitting

“ +FS” from line 7060.
Annuity payments can also be modified to record a second earned income

by changing the entry name in lines 660, 694, 1310, 1510, and 6410.

The printout is for five-and-one-half by eight-and-one-half-inch paper at
12characters per inch. The printout itself is 54 characters wide with a seven-
character margin.

You can narrow the printout by as much as 14 characters by reducing the
Source of Income heading from 24 to 10 and removing the same number of
spaces from between the percentage signs in lines 1440 and 1450. Abbreviate
other terms such as Total Earned Income (line 1485), and decrease the first
number in STRING$(54,45) (lines 1420 and 1460).

To use a 40-column printer, get rid of the margin by removing TAB(7)
after each LPRINT.

If you decrease the hard copy width and want your video printout to
match, make the same changes in lines 1200 to 1390.

146

home applications

About the Program

The program asks for the year and month and automatically generates
data files. In any month but January, the yearly total file will be from the
preceding month. Do the computations in January without loading the
yearly totals,

The program will allow you to return to the menu if you choose a wrong
number. If you press the BREAK key and get into BASIC, type GOTO 100
to get back to the menu without losing data files.

Line 240 saves the original file if you accidentally choose SAVE
MONTH’S FILE TO DISK instead of LOAD MONTH’S FILE FROM
DISK. Without some such safeguard the program could file a string of zeros
and erase the original file. Line 299 gives a similar safeguard for SAVE
YEARLY TOTALS TO DATE.

An ON ERROR GOTO prevents data loss if you choose LOAD MONTH’S
FILE FROM DISK when there is no such file or pick LOAD YEARLY
TOTALS.

Inregard to disk space, none of my summary data has taken up more than
one gran. Since the program requires nine grans, the total disk space, in-
cluding the program, for a year comes to 32 grans and fits nicely onto one
disk. Using hard copy, the same disk can be used year after year.

DAY SOURCE OF INCOME TAXABLE NONTAX.
1 1 TIAA $ 225.68
2 1 IA PS $ 153.00
3 3 NW PS $ 212.50
4 3 SS (PD TO BANK) $ 418.10
5 3 MASS MUT DIV $ 33.15
6 5 GAS SERV $ 160.00
7 10 NE INV TRUST $ 178.52
8 10 TEXACO] $ 50.00
9 15 OMAHO NAT’L CORP $ 225.00
10 15 MUNI INV TRUST $ 58.10
11 15 TESORO $ 108.00
12 17 CORP INC FUND $ 35.05
13 21 KCP&L $ 256.00
14 29 JAPAN FUND $ 15.00
TOTALS FOR MAR 1979 MONTH YEAR TO DATE
TOTAL EARNED INCOME $ 0.00 $ 0.00
TOTAL DIVIDENDS $ 1,393.07 $ 1,740.12

Table 3. Income Ledger for March 1979

147

home applications

Y$

\'£:

M()

H

DA()

8()
E().ET.ES
D(),DT,DS
1(),IT,IS
A(),AT,AS
T(),TT,TS
G(),GT,GS
F(),FT,FS
CQ)

L()

LS

R()

RS

Q

U$

X

B,J.K,Z

Pl

Year

Yearly file name

String, name of month

Number of month

Day of month

String, source of income

Earned income, monthly total, yearly total
Dividends, monthly total, yearly total
Interest, monthly total, yearly total
Annuity, monthly total, yearly total

Tax free interest, monthly total, yearly total
Social Security, monthly total, yearly total
Life insurance dividend, monthly total, yearly total
Miscellaneous items

All taxable items

Total taxable income to date

All nontaxable items

Total nontaxable income to date

Total income to date

Formatter

File counter

Counters and null

Number of items plus one (99 to end entries)

Table 4. Variables for Ledger Program

148

WA

11
12
13

15

20
40

home applications

Program Listing

REM
REM
REM
REM
REM
CLS
PRINT :

PRINT :

PRINT :

PRINT :

PRINT :

PRINT :

PRINT

PRINT TAB(23)"INCOME LEDGER PROGRAM":

PRINT :

PRINT :

PRINT

INPUT "DO YOU WANT INSTRUCTIONS FOR USE (Y/N)";Z$
IF Z$8 = "Y" GOTO 4000

CLEAR 500:

DEFDBL E,D,I,A,T,G,L,C,F,R,Q:

DEFINT B,J,K,H,X,2,P:

Pl =1

PERSONAL INCOME LEDGER PROGRAM *
WILBUR A. MUEHLIG, M.D. *

726 N. 91 PLAZA, APT. 385,
OMAHA, NE 68114

ocT. 1979,

* * F F *

45 DEFSTR S,M,V,Y,U
5@ DIM S(35),E(25),DA(35),D(25),1(25),A(25),T(25),6(25),L{35),C(25)
(F(35),R(35),M(12)
52 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG, SEP,OCT,NOV, DEC
53 FOR H = 1 TO 12:
READ M$(H):
NEXT
55 CLS :
PRINT :
PRINT :
PRINT :
PRINT
6@ INPUT "YEAR OF THIS REPORT (##4#)";¥$
80 PRINT :
INPUT "NUMBER OF THIS MONTH (1 TO 12)";H
160 CLS :
PRINT
116 PRINT °
WHAT DO YOU WANT TO DO?
1-DISK OPERATIONS 2~COMPUTATIONS
3-MAKE A FILE ENTRY 4-CORRECT AN ENTRY
S~DELETE AN ENTRY 6-SEE A PRINTOUT ON VIDEO
7-MAKE A HARD COPY 8~LEAVE THE PROGRAM®"
114 PRINT :
INPUT "CHOOSE";J
120 ON J GOTO 208,1262,600,860,1000,1225,1400,1600
208 CLS :
PRINT :
PRINT :
PRINT :
PRINT :
PRINT "

WHAT DO YOU WANT TO DO?

1-SAVE MONTH'S FILE TO DISK 2-LOAD MONTH'S FILE FROM DISK
3-S5AVE YEARLY TOTALS TO DATE 4-LOAD YEARLY TOTALS
5-RETURN TO MENU"

220

238
235

PRINT :
INPUT "CHOOSE";J
ON J GOTO 246,270,299,349,235

GOTO 189 Program continued

149

home applications

240 IF S(1) = ""
THEN
PRINT "FILE EMPTY.":
INPUT “"PRESS ENTER";ZS:
GOTO 200
241 OPEN "O",1,M(H)
242 PRINT "SAVING MONTHLY FILE TO DISK....."
245 PRINT #1,P1
250 FOR X = 1 TO P1 -~ 1
255 PRINT #1,S(X):
PRINT #1,X;DA(X);E(X);D(X):I(X);A(X);T(X);G(X);F(X);:C(X)
2680 NEXT :
CLOSE
265 PRINT :
PRINT "MONTHLY FILE SAVED TO DISK":
FOR Z = 1 TO 5088:
NEXT :
GOTO 1840
276 ON ERROR GOTO 18060
272 OPEN "I",1,M(H)
275 INPUT #1,Pl
280 FORX =1 TO P1L ~ 1
285 INPUT #1,S(X):
INPUT #1,X,DA(X),E(X),D(X),I(X),A(X),T(X),G(X},F(X},C(X)
287 PRINT X;S(X)

298 NEXT :
CLOSE

291 FORX = 1 TO PL - 1:
L{X) = E(X) 4+ D(X) + I(X) + A(X):
R(X) = T(X) + G(X) + F(X) + C(X):
NEXT

295 PRINT :
PRINT "MONTHLY FILE LOADED.";:
INPUT " PRESS ENTER";ZS:
GOT0 168

299 IF ES=@ AND DS=0 AND IS={ AND AS=8 AND TS=0 AND GS
=f FS=@ AND (S=0

THEN
INPUT "FILE EMPTY. PRESS ENTER";Z$:
GOTO 200

388 VS = M(B) + ¥Y$:
OPEN "O",2,V$
385 PRINT :
PRINT "SAVING YEARLY TOTALS TO DISK..."
320 PRINT #2,ES;DS;IS;AS;TS;GS;FS:
CLOSE
336 GOT0 1909
349 ON ERROR GOTO 1800
350 VS = M(H - 1) + Y3
355 OPEN "I",2,V$
360 PRINT :
PRINT "LOADING YBEARLY TOTALS...."
37¢ INPUT #2,ES,DS,15,AS,TS,GS,FS:
CLOSE
388 GOT0 168
599 REM * TO MAKE A FILE ENTRY *

688 CLS :
PRINT :
PRINT :
PRINT
662 FOR X = P1 TO 50
618 CiLS :
PRINT :
PRINT :
PRINT
612 PRINT X
613 PRINT :
PRINT "TO END FILE ENTRIES, TYPE 99"
615 PRINT :

Ir DA().() < > ¢ PRINT DA(X);" ";

150

620
622

630
640
645
660

662
665

670
680

691
692
693
694
695
696
697
698
700

7@5
7087

7088
799
71@

728
730
748

799
;374

8le
815

817
828
830
840
850

home applications

INPUT "DAY OF MONTH";DA(X)

99

"OPRINT S(X);" ",

PRINT "SOURCE OF INCOME (NOT OVER 24 SPACES)":

IF LEN(S{X)) > 24 PRINT "TOO LONG. TRY AGAIN.":

IF DA(X) =
THEN

Pl = X:

GOTO 160
IF 8(X) < >
PRINT
INPUT S(X)
GOTO 640
PRINT "WHAT

REST2-DIVIDEND
7-LIFE INSURANCE DIVIDEND4-ANNUITY

5 ITEM

TYPE OF ENTRY?1-EARNED INCOME 5-TAX FREE INTE
6-~S0CIAL SECURITY3-INTEREST
*8-MISCELLANEOU

ON ERROR GOTO 1788

PRINT :

INPUT "CHOOSE";B
ON B GOTO 6160,6200,63060,6408,6500,6600,6700,6800

CLS :
PRINT :
PRINT
PRINT :

PRINT X;" DATE";DA(X);"

IF E(X) > @
PRINT USING
IF D(X) > @
PRINT USING
IF I(X) > 8
PRINT USING
IF A(X) > 8
PRINT USING
IF T(X) > 0
PRINT USING
IF G{X) > @
PRINT USING
IF F(X) > @
PRINT USING
IF C(X) > 8
PRINT USING
PRINT :

PRINT "IF THE ABOVE IS INCORRECT, TYPE 1,

PLAYED"

PRINT "IS CORRECT, PRESS ENTER, OTHERWISE

PRINT :
PRINT
WHOLE"
PRINT "ITEM
REM
PRINT :

"NOTE:

",'S(X)“ "
PRINT "EARNED INCOME
"SHES, EELHETE (D)

PRINT "DIVIDEND ";:
"SHER, L HEY;D(X)

PRINT "INTEREST “;:
SHER, BELEETI(X)

PRINT "ANNUITY ";:
TSHEH, BEEEYA(X)

PRINT "TAX FREE INTEREST
USHER, EELHET;T(X)

PRINT "SOCIAL SECURITY
USHEE, HELHETG(X)

PRINT "LIFE INS. DIV. b E
TSHEE, BHLEE"P(X)
PRINT "MISC. DEPOSIT
USHEE, BHLEE";C(X)

Twe
~

LY
i

", .,
HE

Heo
V

IF THE PART THEN DIS
TYPE THE CORRECTION."
IF THE ERROR IS IN THE TYPE OF INCOME, DELETE THE

AND REENTER."

* INCOME TYPE ERROR CAN CAUSE CONFUSION IF NOT DELETED *

INPUT "IF THE ABOVE IS CORRECT, TYPE 2 TO GO ON";Z

IF 2 =

1 GOTO 610

IF 2 < > 2 GOTO 718

NEXT :
GOTO 1690
REM
CLSs
PRINT :
PRINT :
PRINT :
PRINT
PRINT
PRINT :
PRINT "
INPUT

* USES SAME CORRECTION SECTION AS FILE ENTRY *

"WHICH NUMBER DO YOU WISH TO CORRECT"

(8 TO RETURN TO MENU) "

~
.

K
IF K = § GOTO 160

FOR X = TO
IF K =
NEXT

GOTO 100

Pl -1

1
X GOTO 680

Program continued

151

999
1088
1602

1685
1018

16289

1825
1830
1840

1200

1218
1220

1225

1230
1235

1246
12508
1268

1262

1263
1264

home applications

REM * DELETES ENTRY AND RENUMBERS *
PRINT "WHICH NUMBER DO YOU WANT TO DELETE?"

PRINT " (§ TO RETURN TO MENU) it

INPUT X

IF X = @ GOTO 188

DA(X) = O:

S(X) = "":

E{X) = 8:

D(X) = B:

I(X) = B:

A(X) = B:

T(X) = B¢

G(X) = D:

F(X) = B:

C(X) = B:

L(X) = B:

R(X) = @

FOR X = X + 1 TO Pl:
DA(X - 1) = DA(X):
S{X - 1) = S{X):
B(X - 1) = E{(X):
D{X - 1) = D(X):
I(X - 1) = I(X):
A(X - 1) = A(X):
T(X -~ 1) = T(X):
G(X - 1) = G(X):
F(X - 1) = F(X):
C(X - 1) = C(X):
L(X - 1) = L{X):
R(X - 1) = R{X)
NEXT

Pl = Pl - 1

PRINT :

PRINT "ENTRY DELETED.":
FOR 2 = 1 TO 70608:

NEXT :
GOTO 168
CLS :
PRINT TAB(16)"INCOME LEDGER FOR ";M(H);" ";Y$:
PRINT
PRINT "## DAY SOURCE OF INCOME TAXABLE NONTAX."
PRINT STRINGS(54,45):
RETURN
GOSUB 1209 REM * ALLOWS REPRINTING OF HEADING ON EACHPAGE OF VI
DEO *

FOR X = 1 TO P1 ~ 1
IF X / 11 = INT(X / 11) PRINT :
INPUT "PRESS ENTER TO CONTINUE";Z§$:

CLS :

PRINT :

GOSUB 1288

IF R(X) = @ PRINT USING "## ## % 3 SH#d,
##. 44" ;X DA(X) 1 S(X) s L(X)

IF L(X) = 8 PRINT USING "## ## 3 2

SHEE, HELHE" ;X DA(X) ;S (X) sR(X)

NEXT :
PRINT :

INPUT "ENTER 1 TO RETURN TO MENU, 2 TO SEE YEARLY TOTALS.";Z:
IF 2 = 1 GOTO 188 :

ELSE

1279
CLS :
PRINT
PRINT
PRINT
PRINT
R"
PRINT "THE YEAR. THE MONTH'S ENTRIES SHOULD BE COMPLETE, YOUR P
RINTER"
PRINT "READY, AND THE YEARLY TOTALS INPUT FROM DISK BEFORE CONTI

"THE FOLLOWING COMPUTES INCOME TOTALS FOR THE MONTH AND FO

152

home applications

NUING.™
1265 PRINT :
PRINT "TO RETURN TO MENU, TYPE 1, TO CONTINUE WITH THE COMPUTATI
ON,"
1266 PRINT "TYPE 2.":
PRINT :
INPUT 2
1267 IF 2 = 1
1268 IF 7 < »
1278 GOSUB 74
1279 CLS
1288 PRINT " TOTALS FOR ";M{H);" ";¥$;" MONTH YEAR TO D
ATE"
1282 PRINT
1285 PRINT "TOTAL EARNED INCOME Yt
PRINT USING "S####, #5484 SHE#4, #4444V ;ET,ES
1298 PRINT "TOTAL DIVIDENDS "is
PRINT USING "S####,$4#.4% S#b##, #44.44;DT,DS
1368 PRINT "TOTAL INTEREST "
PRINT USING "S$###4, #4%.448 SHas4, #44,447;17,15
1318 PRINT "TOTAL ANNUITY FUNDS N E
PRINT USING "S####, 444,484 Shess, #43 $8";AT,AS
132¢ PRINT "TOTAL TAX FREE INTEREST s
PRINT USING "S####, ###. 458 SHEsd, #44 4,077,708
1336 PRINT "SOCIAL SECURITY "
PRINT USING "S###4,#4#.48 SH444, 444, 4$4";G7,G8
134¢ PRINT "TOTAL LIFE INS. DIV. N
PRINT USING “SH####, #4448 SHEME, 424 54" PT,FS

GOTO 18¢
2 GOTO 1262
a0

1355 PRINT :
US = “Shiss, hd, §4"
136@ PRINT "TOTAL TAXABLE INCOME TO DATE i E
PRINT USING US$;LS
1378 PRINT "TOTAL NONTAX. INCOME TO DATE LFE
PRINT USING US$;RS
1380 PRINT "TOTAL INCOME TO DATE L
PRINT USING US;Q
139¢ PRINT :
INPUT "PRESS ENTER TO CONTINUE";ZS:
GOTO 100
1400 CLS :
PRINT :
PRINT :
PRINT
PRINT :
PRINT :

PRINT "IF YOUR PRINTER ISN'T READY, ENTER 1 TO RETURN TO MENU,"
1402 PRINT :
INPUT " OTHERWISE ENTER 2.";%:
IF 2 = 1 GOTO 168
1485 CLS :
LPRINT TAB{2@)"INCOME LEDGER FOR ";M(H);" ";Y$:
LPRINT "¢
141¢ LPRINT TAB(7)"## DAY SOURCE OF INCOME TAXABLE NONT
AX."
1429 LPRINT TAB(7) STRINGS(54,45)
14386 FOR X = 1 70 P1 - 1
1448 IF R(X) = @ LPRINT TAB(7) USING "## ## 3%
3 SHEH BELER";XDA(X) ;S(X)L(X)
1459 IF L(X) = @ LPRINT TAB(7) USING "#% ## %

] SHER, HE L HE" X DA(X) ;S (X) R(X)
14683 NEXT :
LPRINT TAB(7) STRINGS(54,45):
LPRINT "*"
1488 LPRINT TAB(7)" TOTALS FOR ";M(H);" ";¥$;" MONTH YE
AR TO DATE"

1482 LPRINT "%
1485 LPRINT TAB(7)"TOTAL EARNED INCOME E
LPRINT TAB(7) USING "S#H###, ##4. 4% SH###, #8484 ;ET,E8
149¢ LPRINT TAB(7)"TOTAL DIVIDENDS E
LPRINT TAB(7) USING "S####, 444,484 SH####,#44,.44";DT,DS
Program continued

153

1508
1518
1528
1538
1548
1555
1557
1568
157@
15890

1590

16642

1618
1620

1708

lsge

4000

4018
4020
4630
4040
4060
4090
4100

4110
4138

414¢
4150
4160
4178

418¢

LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
us = "
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
PRINT
INPUT
GOTO 1
CLS
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
iF 28
PRINT
PRINT
END
PRINT
INPUT
GOTO 6
PRINT
INPUT
GOTO 1
CLS :
PRINT
PRINT
PRINT
PRINT
PRINT
ARE"
PRINT
79,"
PRINT
PRINT
PRINT
TION"
PRINT
PTION"
PRINT
PRINT
INPUT
CLS =
PRINT
PRINT
PRINT
PRINT
LAST"
PRINT
PRINT
PRINT
NOT"
PRINT
"

home applications

TAB(7)"TOTAL INTEREST "

TAB(7) USING "SH#i#, #4#.44 SEE##, 844, 887;1IT, IS
TAB(7)"TOTAL ANNUITY FUNDS L

TAB(7) USING "SH##h, #h4. 4% S##4s, #44,44";AT,AS
TAB(7)"TOTAL TAX FREE INTEREST PR

TAB(7) USING "SHi##,#8#.44 Sti##, 848.44";1T,T8
TAB(7) "SOCIAL SECURITY "yt

TAB(7) USING "SHi##, 444,44 SEE#H, #44.48";GT,GS
TAB(7)"TOTAL LIFE INS. DIV, R

TAB(7) USING "Shi#h, #4#.4% SHE#E, $44. 887 ;FT,FS
SEEnY, HEe HE"

LN

TAB(7)"TOTAL TAXABLE INCOME TO DATE "yt
TAB(7) USING US$;LS

TAB(7) "TOTAL NONTAX. INCOME TO DATE "
TAB(7) USING US;RS

TAB(7) "TOTAL INCOME TO DATE "i:
TAB(7) USING US;Q

"PRESS ENTER TO CONTINUE";Z§:

00

"HAVE YOU SAVED FILES TO DISK (Y/N)";z$

= "N" GOTO 100

"OK. SO LONG!":

"ENTRY ERROR. PRESS ENTER AND TRY AGAIN.";Z8$:
65

"NO FILE ON DISK. PRESS ENTER.";Z$:
27

" PERSONAL INCOME LEDGER":

"1l) DISK FILES ARE NAMED AUTOMATICALLY. THE MONTHLY FILES
"JAN, FEB, ETC. THE YEARLY TOTAL FILES ARE JAN1979, FEB19
"ETC., AND ACCUMULATE THE FIGURES FOR THE YEAR TO DATE."
"2) MAKE ENTRIES FOR THE MONTH. SAVE TO DISK WITH DISK OP
"#1. BEFORE ADDING ENTRIES FOR THE SAME MONTH, USE DISK O
"%2 TO LOAD THE PREVIOUS ENTRIES."

"PRESS ENTER";Z$:

"3) UNDER TYPES OF INCOME, THE FIRST FOUR ARE TAXABLE, THE
"FOUR NONTAXABLE AND ARE SO RECORDED BY THE PROGRAM."
"MISCELLANEQUS TYPES SHOULD INCLUDE SUCH THINGS AS LOAN"
“"REPAYMENTS, GIFTS, REFUNDS, ETC. MISCELLANEOUS ITEMS ARE

"TOTALED INTO NONTAXABLE INCOME SINCE THEY DON'T REPRESENT

154

4190
4200
4210
4220
4230
4249
4245
4259
4255
4269
4278
42808
4299
4318

4320
4330

4340

60a8
6099

6100
6110

6120

6200
6210

6220

6360
6310

6320

6400
64180

6420

6500
6510

65208

6600
6610

66208

6700
67180

6720

PRINT "INCOME.

PRINT

home applications

",

PRINT "4) MENU CHOICES 4, 5 AND 6 MAY BE USED DURING PREPARATION

opF"

PRINT "MONTHLY FILES."

PRINT :

INPUT "PRESS ENTER";Z$:

CLS
PRINT :
PRINT "5)

THIS"

WHEN A MONTHLY FILE IS COMPLETE,
PRINT "#1 TO SAVE IT TO DISK.

USE DISK OPTION"
NEXT, GET YOUR PRINTER READY, IF

PRINT "RESULTS IN LOSS OF THE PROGRAM AND/OR MONTHLY FILE, RELOA

D"
PRINT "THEM.
ILE"

PRINT "AND MENU OPTION #2 FOR COMPUTATIONS.

ESULTS"

THEN USE DISK OPTION #4 TO LOAD THE YEARLY TOTAL F

AT THIS TIME, THE R

PRINT "MAY BE CHECKED ON VIDEO (MENU OPTION #6) OR HARD COPY MAD

E"

PRINT " (OPTION #7).

FORE"

PRINT "LEAVING THE PROGRAM."

PRINT

THE YEARLY TOTAL SHOULD BE SAVED TO DISK BE

PRINT "6) IT IS DESIRABLE TO KEEP A SET OF FILES ON A SECOND DIS
"
PRINT "FOR BACKUP."

PRINT

PRINT "7) REENTRY TO THE PROGRAM, IF NEEDED, IS AT LINE 166."

PRINT

INPUT "PRESS ENTER";ZS$:

CLS :
GOTO 49
END

REM * CLASSIFY INCOME AND SEPARATE INTO TAXABLE,

XABLE, R(X) *
IF E{(X) <> @
PRINT :

INPUT "AMOUNT
L(X) = E(X):
GOTO 688

IF D(X) <> @
PRINT :

INPUT "AMOUNT

L{X) = D(X):
GOTO 680

IF I(X) <> @
PRINT :

INPUT "AMOUNT
L(X) = I(X):
GOTO 680

IF A(X) <> 8
PRINT :

INPUT "AMOUNT
L(X) = A(X):
GOTO 680

IP T(X) <> 8
PRINT :

INPUT "AMOUNT
R(X) = T(X):
GOTC 680

IF G(X) <> @
PRINT :

INPUT "AMOUNT
R(X) = G(X}:
GOTO 688

IF F(X) <> 8
PRINT :

INPUT "AMOUNT
R(X) = F{X):

PRINT E(X);

OF EARNED INCOME";E(X)

PRINT D(X);

OF DIVIDEND";D(X)

PRINT I(X);

OF INTEREST";I(X)

PRINT A(X);:

OF ANNUITY";A(X)

PRINT T{X};

OF TAX FREE INTEREST";T(X)

PRINT G(X};

OF SOCIAL SECURITY";G(X)

PRINT F(X);

OF LIFE INSURENCE DIVIDEND";F(X)

L (X} ,AND NONTA

Program continued

155

home applications

GOTO 688
6880 IF C{X) < > 8 PRINT C(X);
6810 PRINT :

INPUT "AMOUNT OF MISCELLANEOUS ITEM";C(X)
6828 R{X) = C(X):

GOTO 680
7668 REM * COMPUTATIONS *
7085 FOR X = 1 TO P1 -~ 1
7818 ET = ET + E(X):

DT = DT + D(X}:

IT = IT + I(X):

AT = AT + A{(X)
7628 TT = IT + T(X):

GT = GT + G(X):

FT = FT + F(X)
7625 NEXT
78386 ES = ES + ET:

DS = DS + DT:

IS = IS + IT:

AS = AS + AT
7640 TS = TS + TT:

GS = GS + GT:

FS = FS + FT
7650 LS = ES + DS + IS + AS
7060 RS = T8 + G8 + FS

7878 Q = LS + RS
7875 RETURN

156

—HOME APPLICATIONS

Computacar
by R. A. Kay

hen I began experimenting with I/O ports on my TRS-80 Level I1, I
soon became bored with flashing LEDs. The next thing to catch my
fancy was an innocent radio-controlled racing car. What a great idea, 1
thought, to have a car hurtling around the basement under computer-radio-
control.
This turned out to be simple to do. What's more, the car may still be used
in its normal way.

Car Control

The car I use is one of several using a two-channel controller, providing
left and right steering, but no stop/start/reverse. When I first hit RUN, I
started running to catch the car before it demolished itself on the wall. It did
not stop!

The inexpensive brand of car goes forward or does an abrupt turn while
reversing. More expensive cars use extra channels to provide motion control
such as forward/stop/reverse, or even proportional steering or speed. The
following techniques can be expanded and will handle these features.

You don’t have to understand how the radio link works, only how to
enable the computer to simulate the action of the controller.

Figure 1 shows the switching arrangement to use the two channels.
Switch A must always be closed for operation.

In the central position, switches B and C are open. Turning the wheel
right closes switches B(1) and B(2), thus applying power (+9 volts) to the
transmitter and the right modulator. This produces an output signal which
is encoded by the car’s receiver and causes the car to steer right. Turning the
wheel left closes C(1) and C(2) and causes the car to steer left.

The steering mechanism is interesting. The front wheels normally run
free, since drive is provided by the rear wheels. Upon receipt of a left or right
control signal, the receiver actuates the appropriate wheel brake, which
consists of a shaft rotated by the wheel within an electromagnet coil. A cur-
rent in the coil causes the shaft to slow down, by attraction or eddy current.
Thus, the wheel drags and pivots the front bogie to turn the car. A spring
returns the bogie to the central position when the signal ceases.

Computer Control

To make the computer control the car requires only a two-bit output port
(one bit per channel). When either bit is 1, a transistor applies +9 volts to

157

home applications

_ RIGHT

~ MODULATOR

+9V B B
A TO
o TRANSMITTER
POWER INPUT
Ci c2
. LEFT
MODULATOR
Figure 1. Schematic showing controller switches
Do D, ACTION
(0] 0] CENTRE
0o l LEFT TURN
Table 1. Truth table
| 0 RIGHT TURN L
of controller action in
response to data outputs
i TYPE | +5 | anDp
EXPANSION ict T4LS30 14 7
ice 74LS04 14 7
PonT c3 | 7eusoz | 14 | 7
ica | Tasts | 5 | iz
36 ['S Jr SN
2 NOTE - POWER SUPPLY MUST NOT +9V (CONTROLLER)
38 AB O] et BE TAKEN FROM TRS-80.
35 YIRS | B YT A SEPARATE +5V SUPPLY
. ne K 15 NECESSARY. 2N3904
34 A3 °-'—-——5 1c3
3 174 741502
40 A2 e 2 4T SWITCH 81
27 Al D——-—‘-I— ! 1ca {RIGHT TURN)
, , 741.575 toK
25 I 2 Lz s s
ice 4
1/6 741504
3
2 1]
12 ouF +9V (CONTROLLER)
47K
22 ol
23804
30 oo S SWITCH Ct
{LEFT TURN)
10K
29 GROUND CONTROLLER
< ov

Figure 2. Schematic of output port 254

158

home applications

the appropriate switch contacts in the controller. A 0 bit opens the switch.
Thus, we have a three-state controller as shown in the truth table, Table 1.

The TRS-80 allows 256 ports, numbered 0 to 255. Port 255 (FFH) is used
by the cassette player. I chose to use port 254, since it requires the
fewest gates for decoding. The circuit of the output port and transistor
drivers is shown in Figure 2.

When the correct port address is decoded with the out signal going low,
the output from IC3 latches data bits Dy and D, to the output of IC4. A 1 at
the base of transistor Q1 or Q2 turns the output on, applying + 9 V to the ap-
propriate switch contacts in the controller. Switch A is simply shorted for
continuous action.

Simple Program

Only 00, 01, and 10 are acceptable values for D;Dy, corresponding to
BASIC statements, in Level II:
OUT 254, 0 ~— Center
OUT 254,1 - Left
OUT 254,2 - Right
Dy and D,, both 1 (3 decimal), cannot be allowed, since these would cause
the car to steer both ways. The car would probably end up going straight,
with a certain amount of smokel
The Program Listing shows a simple program to control the car on a pre-
defined course, given as a string of steering commands (up to 250) in line
100. The program reads and holds each command for a period defined by
the loop in line 160. The subroutine in lines 800-880 draws a plan of the
course on the screen (within the limits of TRS-80 graphics). I find that five
successive turn commands produce a 90 degree turn, hence the increment of
turn (INC, line 800) is90/5 = 18 degrees, converted to radians for use by the
SIN and COS functions.
Here are some points to note:

@ The power supply for the TRS-80 is barely adequate for the computer. Do
not use it to power external circuits, such as I/O ports. A simple 5 V power
supply is shown in Figure 3, which is adequate for the circuit here.
® Model cars are susceptible to dust, so racing surfaces must be clean and
smooth. A tile floor is ideal. Any bumps or obstacles may affect the steering.
® Make sure that the course is a closed loop in range of the radio link (~30
foot radius). Otherwise the car will keep going once radio control is lost.
Having antennae vertical ensures maximum range.

The car is “dumb” and tries to follow the course defined by the computer,
but can’t avoid obstacles. This would require it to have sensors, transmitting
data back to the computer input ports.

159

home applications

7805

5V
~ + REGULATED

120V 6.3V v = L
aC. §||§ o0ma | Brioce | T eyt Nad

l+
vt

~ -

Figure 3. 5 V Regulated Power Supply

This simple application shows the basics of operating a remote device via
computerized radio control. And by using the same radio parts with dif-
ferent output devices, the possibilities are endless. For instance, how about a
radio-controlled lawn-mower? All you need is a powered mower. Use the
same radio control to operate steering devices. Input the appropriate course
to the computer, type RUN, and watch your lawn being cut automatically.

160

120
130
149

158
155
160

170
189
799
800
81g

826

83¢
840
856

860
878
880
999

home applications

Program Listing. Simple Control Program

REM RADIO CAR CONTROL

REM

INSERT COMM AND STRING IN LINE 188 (< 258 CHAR)
REM @=STRAIGHT

REM 1=LEFT TURN

REM 2=RIGHT TURN

REM >2=END

REM

REM ADJUST DURATION OF COMMAND IM LINE 160

REM

AS = "0EPO00PU11111000000002222222222222000000000000011111663"

Y = 20
BS$ = MIDS(AS,N,1)
CcoM = VAL(BS)
IF COM > 2
THEN
999
OUT 254 ,COM
GOSUB 800
FOR M = 1 TO 180:
NEXT M
N=N+1
GOTO 128
END
INC = 18 * ,8174533
IF COM = 1
THEN
ANG = ANG - INC
IF COM = 2

ANG = ANG + INC
X = X - 4 * COS(ANG)
Y = ¥ - SIN(ANG)
IF X < 0

IF YO
THEN

Y =@
IF Y > 47
THEN

Y = 47
SET(X,Y)
SET(X - 1,Y)
RETURN
END

161

-~ HOME APPLICATIONS

Bio-Bars: Biorhythms in Bar Graph Form

by Ronald J. Thibodeau

Here is a biorhythm program that does not need to be analyzed. If you
are unhappy with the usual sine wave display currently being used for
biorhythms, this bio-bars program may keep your interest up.

By now, almost everyone is familiar with biorhythms and what they
mean. In theory, biorhythmic patterns describe our “ups and downs” in
terms of our physical, emotional, and intellectual condition. Based on the
research done by doctors Swoboda and Fliess, the biorhythm theory states
that three cycles of 23, 28, and 33 days run concurrently from birth and con-
tinue until we die. The first half of each cycle represents an area of strength,
while the second half of the cycle represents relative weakness. The physical
cycle lasts for a period of 23 days. The first half (11% days) is a high period
while the second half is considered to be a low period of activity. Similarly,
the emotional cyclelasts for 28 days (14 high and 14 low) and the intellectual
cycle lasts for 33 days (16% high and 16% low). These cycles can be
represented in the form of a bar graph as shown in Figure 1.

5 CRITICAL 3.
PERIOD

7

v

a X .
PHYSICAL EMOTIONAL INTELLECTUAL

Figure 1. Bio-bar graph

162

home applications

In the bar graph presentation, the high period occurs above a value of five
and up to and including a value of ten. The low period occurs between a
value of zero and up to but not including a value of five. The midpoint of the
scale, five, represents a critical period when the body is adjusting (or trying
to adjust) to a transition from a high period of performance to a low period
of performance and vice-versa.

If a bar is at level five it is considered to be a “critical” day. If two bars are
at level five it is considered a double-critical period. When all three bars are
at level five, it is a triple-critical day. These critical days are not considered
dangerous but they do indicate that a person’s reactions may bring about an
unsatisfactory situation.

Since the direction of the bar could be increasing (going up) or decreasing
(going down), we must have a way of denoting this direction. To do this, the
program produces an up or down arrow to the left of each bar. See Figure 2.

PHYSICAL EMOTIONAL INTELLECTUAL

This program was originally written for the TRS-80 Level I, but was
modified for Level II as explained in Appendix A. If a 4K system is used, you
will have to be very careful not to use excess spaces since the program will re-
quire all but 69 bytes.

163

home applications

Lines 10-40

These are simply an introduction to the program and may be eliminated if
you need more memory.
Lines 100-130

The only inputs required in the program appear in these lines. They are:
(1) name, (2) date of birth, (3) date of computation. You can enter any date
as a date of computation. But, if you enter a date in the future, don’t expect
the computer to be your personal crystal ball. Biorhythm programs do not
predict what will happen, but rather how you might behave. If the date of
birth and the date of computation occur during the same century, you can
enter the year by using only the last two significant digits. However, if the
date of birth and the date of computation are in different centuries, you
must enter the entire year (1980 instead of 80).
Lines 140-145

Both lines are simple FOR-NEXT loops to produce the scale numbers
from one through ten and the dashed lines across the screen. See Figure 3.

PHYSICAL EMOTIONAL INTELLECTUAL

NAME : JOHN DOE AGE: 38 DATE:4 19 1980
(14180 DAYS}

EMOT:9.9

Figure 3

164

home applications

Lines 150-170

These lines produce the bar graph border and the titles of each bar
(PHYSICAL, EMOTIONAL, INTELLECTUAL). Be sure to include eight
spaces between physical and emotional and six spaces between the emotional
and intellectual titles for proper alignment with each bar. See Figure 3.
Lines 180-230

This portion computes the total number of days that input A (person) has
lived. It begins by computing the person’s age, lines 180-190, and adding
the number of days elapsed since the birthday to the day of computation
(lines 215-225). Leap year add-on days are added in line 230 by the variable
INT G/4.

Lines 240-270

These lines divide the total number of days by the cycles of 23, 28, and 33.
The remainder of this quotient is then used in the next portion of the pro-
gram. Line 270 contains constants which must not be altered.

Lines 280-400

All of the IF-THEN statements included here will convert the variables 1,
], and K into corresponding values between zero and ten (L,M,N). These are
later converted into the appropriate bar heights for each cycle.
Lines 500-550

The variable P is used to convert the values of L, M, and N into bar
heights using the video graphics Y-coordinate. The X-coordinate is simulta-
neously assigned to locate the bars across the screen.

Lines 560-650

Line 560 produces the base for each of the three arrows. Lines 600
through 650 determine the direction (up or down) for each arrow. The
GOSUB-1000 routine produces the remainder of each arrow based on the
value of variable T. Be very careful not to confuse the numeral zero with the
variable letter O in this portion of the program.

Lines 660-670

After the video graphics are produced, these lines will print all of the in-
puts entered earlier along with the person’s age, in years and days, and the
date of computation. The actual values of the bar heights, values of zero to
ten, are also shown because the bar heights are only an approximation. See
Figure 3.

Lines 735-980 and 2000-2130

These lines provide statements regarding the person’s physical, emo-
tional, and intellectual condition. A calculation is also made and displayed
to show the duration of days remaining in a cycle. All critical days (value of
five) last for 24 hours and no computation is required. See Figure 4.

165

home applications

PHYSICAL EMOTIONAL

INTELLECTUAL
PHYSICAL CONDITION

BEST TIME FOR PHYSICAL TRAINING OR WORK.

COMPETE AND TRAVEL. DURATION: 6 MORE DAY(S)

Figure 4.

Subroutines 1000 and 3000

Subroutine 1000 draws the up and down arrows. If the value of T is
unspecified, then lines 1010-1030 will be executed to produce the up arrow.
If T = 1, then lines 1040-1060 will execute the down arrow.

Subroutine 3000 provides a time delay to allow the reading of each
biorhythm statement. It then erases the screen from locations 768 to 1023 so
that the next statement will appear in legible condition.

At the end of a program, lines 2050, 2095, and 2140 send command back
to the beginning of the program so that someone else can obtain a graph.

Good luck and may all your biorhythms be favorable.

166

YD B

20

30
40
100
il
120

130
140

145

160

17e
188

1990

200

210

Program Listing

home applications

This listing was originally in Level 1.

DIM A(12)
DIM UNNECESSARY FOR LEVEL I

REM
CLS
A=

FOR X

0 8:

N:
TAB(28),"BIO~BARS":
TAB(30),"BIO":
TAB(31),"B"

T
(A),"BIO-BARS", TAB(B),"BIO-BARS"

TAB(24),"BIO-BARS PROGRAM":

TAB(28),"BY TIBBY"
= 1 TO 2000:
N

"ENTER YOUR NAME ";AS

T"ENTER DATE OF BIRTH (EX.6,14,1941).USE
"ENTER TODAY'S DATE AS ABOVE.";D,E,F

= H T0 I:

PRINT @X,"-":
NEXT X:

H + 64:

I + 64:
NEXT N

FOR X = 7 TO 8:

H =
1 =

FOR Y

= @ TO 31:

SET(X,Y):
SET(X + 115,Y¥):
NEXT Y:
NEXT X
FOR X
SET(X,0):
SET(X,31):
NEXT X

PRINT
IF (D
THEN
G =
IF (D
THEN
G =
A(l)
A(2)
A(3)
A(4)
A(5)
A(6)
A7)
A(8)

WonowowoNHnH

@715, "PHYSICAL
> A) 4+ ((D = A) * (E >

=7 TO 122:

F~-C

EMOTIONAL

B))

< Aa) + ((D=23a) * (E<B))

F-C-1

31:
59:
9@ :
128:
151:
181:
212
243:

COMMAS.";A,B,C

INTELLECTUAL"

Program continued

167

215

220

225

239
2490
250
260
270

280

290

308

320

33@

340

350

380

390

400

500
518

520
530

540

home applications

A(9) = 273:
A(lg) = 304:
A(1l) = 334:
A(12) = 365
IF (A< D) + ((A=D) * (E> B))

THEN
%2 = A(D) - A(A) + E - B

IF (A > D) + ((A=D) * (E < B))

THEN

%z = 365 - (A(A) - A(D)) - B + E

IF (A = D) * (E = B)
THEN
Z =
H= (G * 365) + (INT(G / 4)) + %
I = INT(((H / 23) - INT(H / 23)) * 23)
J = INT{({(H / 28) - INT(H / 28)) * 28)
K = INT({{(H / 33) ~ INT(H / 33)) * 33)
U = ,B8695:
v o= .7142
W = .606
IF I = 23
THEN
1 =20

IF (I > = B) * (I < = 5.75)
THEN

L=(0*1I)+5
IF (I » 5.75) * (I < = 17.25)
THEN

L= {(=-U%TI)+ 15
IF (I > 17.25) * (I < 23)
THEN

L= (0 *1I)~-15
IF J = 28

THEN

J = 8
IF {(J > =8) * {(J < =17)
THEN

M= (V*J) +5
IF (J > 7) * (J < = 21)
THEN

M= (~V*J) + 15

IF (J > 21) * (J < 28)
THEN
M= (V*J) - 15
IF K = 33
THEN
K =8

IF (K > = @) * (K < = 8,25)
THEN

N= (W *K) +5
IF (K > 8.25) * (K < = 24.75)
THEN

N={-W*¥*K) + 15
IF (K > 24.75) * (K < 33)
THEN

N = (W * K - 15
P = INT(31 - L * 3)
FOR X = 22 TO 39:

FOR Y = 31 TO P STEP - 1:

SET(X,Y) s

NEXT Y:

NEXT X
P = INT(31 - M * 3)

FOR X = 54 TO 71:

FOR Y = 31 TO P STEP ~ 1:
SET(X,¥):
NEXT Y:

NEXT X

P = INT(31 - N * 3)

168

550

560

6089

618
620

638
640

650
660
665
670
735
740
750
768
770
788
785
79¢
800
8le
820
825
83¢
848
85¢
860
878
880
890
909
985
910
920
9348
9448
945
958
960
978
986
1e00
1010

home applications

FOR X = 86 TO 183:
FOR Y = 31 TO P STEP ~ 1:
SET(X,¥):
NEXT Y:
NEXT X
FOR X = 11 TO 19 STEP 2:
Y = 15:
SET(X,Y):
SET(X + 32,Y):
SET(X + 64,Y):
NEXT X
T = @:
O = 11:
IF (1 > 5.75) * (I < 17.25)
THEN
=1
GOSUB 1008
T = @:
0
I

3

= 43:

F (J >7) * (J < 21)

THEN

=1

GOSUB 1809

T = @:

0= 75:

IF (K > 8.25) * (K < 24.75)
THEN
T =1

GOSUB 1008

3

PRINT "NAME :";AS; TAB(22),"AGE :";G; TAB(44),"DATE :MiD;E;F

PRINT TAB(22),"(";H;"DAYS)"

PRINT "PHY. :";L; TAB(22),"EMOT. :";M; TAB(44),"INT.

GOSUB 3008

PRINT @796,"PHYSICAL CONDITION"

IF L < = 5 GOTO 798

PRINT "BEST TIME FOR PHYSICAL TRAINING OR WORK.

SN
£ "N

PRINT "COMPETE AND TRAVEL. DURATION :";11.5 - I;"MORE DAY (S).

GOSUB 3000
GOTO 868
IF L = 5 GOTO 830

PRINT "REST AND RECHARGE YOUR BATTERY. TENDENCY TO TIRE EASILY.
PRINT "GENERAL LACK OF ENERGY. DURATION :";23 — I;"MORE DAY (S).

GOSuB 3000
GOTO 868

PRINT "CRITICAL ! UNSTABLE. TREAT FOR HEADACHES, ITLNESSES,ETC.

PRINT "ACCIDENT PRONE. DURATION : 24 HOURS.
GOSUB 3840

PRINT €796, "EMOTIONAL CONDITION

IF M < = 5 GOTO 918

PRINT "OPTIMISTIC, GOOD NATURED WITH HIGH CREATIVITY. GOOD FOR
PRINT "TEAMWORK AND SEX. DURATION :";14 - J;"MORE DAY (S)."

GOSUB 390860

GOTO 2080

IF M = 5 GOTO 958

PRINT "TENDENCY TO BE IRRITABLE AND UNCOOPERATIVE.
PRINT "RECHARGE. DURATION :";28 —~ J;"MORE DAY (S).
GOSUB 3000

GOTO 2000

PRINT "CRITICAL ! UNSTABLE EMOTIONS. LOW REACTIONS. QUARRELS.

PRINT "KEEP COOL. DURATION : 24 HOURS.

GOSUB 3000
GOTO 20040
IF T = 1 GOTO 1049
X = 0:
Y = 15:
FOR Q = 1 TO 5:
SET(X,¥Y):
Y=Y - 1:
X =X + 1:

Program continued

169

1028

1038

1635
1840

1858

1860

1070
2060
2010
2020
2030
20846
2050
2060
2070
2080
2099
2695
2100
2128
2130
2149
3060

361e
9999

home applications

4:
15 TO 19 STEP 2:
):

4:
15 TO 11 STEP ~ 2:
)

RETURN

PRINT @788, "INTELLECTUAL CONDITION®

IF N < =5 GOTO 2860

PRINT "EXCELLENT THINKING, JUDGEMENT AND CONCENTRATION.
PRINT "PLAN AND DECIDE. DURATION :";16.5 - K;"MORE DAY(S).
GOSUB 3008

GOTO 18

IF N = 5 GOTO 2100

PRINT "LACKING IN THINKING POWER, GATHER AND ADJUST.
PRINT "DO EASY TASKS. DURATION :";33 - K;"MORE DAY(S).
GOSUB 3000
GOTO 18

PRINT "CRITICAL ! UNSTABLE INTELLECTUAL POWERS. MEMORY FAILS.
PRINT "LOW MENTAL ABILITIES. DURATION : 24 HOURS.

GOSUB 3000
GOTO 14

FOR X = 1 TO 5000:

NEXT X:

FOR X = 768 TO 1623:

PRINT @X,:

NEXT X
RETURN

END

170

INTERFACE

TTY Interface

Why Bother to Interface?

171

INTERFACE

TTY Interface

by Robin Rumbolt

fter a few weeks of familiarization with my TRS-80 and Radio Shack’s

Level 11 BASIC, I found my programs getting longer than the 16 lines
that the CRT would accommodate at one time. Listing and relisting to see
various parts of the program during debugging became tedious. 1 soon
found myself making repeated trips to the neighborhood Radio Shack store
to get my programs listed on their line printer.

This couldn’t go on. After all, I did have that model 33 Teletype out in the
garage if I could figure out how to hook it up. I found several Teletype inter-
face kits on the market in the $75-$120 price range, but having barely
squeaked the TRS-80 into the family budget and being an avid home-
brewer, I decided to build my own interface. The resulting circuit required
only five parts.

Interfacing Techniques

The usual method of interfacing a Teletype to the TRS-80 is shown in Fig-
ure 1. This method requires a UART that accepts data in parallel form from
the CPU data bus, adds the proper start and stop bits, and sends the data out
in serial form at a rate determined by an external baud rate generator. This
method is fast and efficient and, if interrupt driven, can even let the pro-
cessor do something else while the UART is serializing the data. For parts, it
requires an address decoder circuit, a UART, bus buffers, a baud rate
generator IC, and some form of TTL-to-current-loop interface circuit. Also,
a software routine is required to set up the internal functions of the UART
and then continuously route data to the UART. '

ADDRESS ADDRESS BAUD RATE]

DECODER GENERATOR o
LINES

ADDRESS
ENABLE CLOCK
8US

BUFFER DATA

e N TINES
DATA > UART

CONTROL :

LINES

ORI U

SERIALIZED
TTL TO CURRENT LOOP INTERFACE ::>ga;m1_1§
N

Figure 1. Hardware printer interface block diagram

173

interface

Another method, shown in Figure 2, merely writes a bit at a time out to a
location at a decoded 1/O port. This method requires hardware only for de-
coding the port address and interfacing to the current loop of the printer.
While this method requires less hardware than the first method, it does re-
quire more software. In addition, the processor is tied up the whole time do-
ing the actual output of bits. The software routine must take the data, add
the proper start and stop bits, and then write the bits out to the I/O port one
at a time at a rate determined by a software timing loop.

Al
DECODER

LINES

ADDRESS
ENABLE

BUS
BUFFER DATA

DATA > LINE T
WRITE DATA LATCH
LINE :

EONTRO U

SERIALIZED
TTL TO CURRENT LOOP INTERFACE > DATA TO
PRINTER

Figure 2. Alternate interface block diagram

Since the LPRINT routine in the TRS-80 ROM is non-interrupt driven,
and since I had enough half-finished construction projects in process
already, it was obvious that the simplest hardware interface was the best.

Remembering that the CPU decodes port FF for cassette input/output
and motor control, I studied the schematic for any unused bits I might use in
that port. There were several. I decided to use bit D5 for my serial output
line. Since the port was already decoded, the need for external address
decoding and bus-buffering hardware was eliminated. Now all T had to pro-
vide was a data latch to store the bit and a current loop interface.

Figure 3 shows how I accomplished this task with only five parts. The
7418175, which I will refer to as Z59A, serves as the data latch. Although it is
capable of latching four bits, I used only one section to latch bit D5. Resistors
R1 and R2 and transistor Q1 are used to buffer the output of the latch and pro-
vide approximately 20 mA of drive current for the optical isolator.

The 4N35 optical isolator provides about 2500 volt isolation between the
outside world current loop and my precious CPU—a nice thing to have
when you accidentally connect the loop supply wrong! The outputs of the
4N35 are connected to two unused pins on the video output connector.
These pins then connect to the 20 mA printer loop.

174

interface

TO 258 PIN ¢ v————l
!

CLR

10 260 PiN 7 2o

5| zs9a TO VIDEO
C

o ouTPUT
raLsirs| B, a CIRCUIT
e 2N3904

05
TO 259 PIN 8

o

Veo GND

6 8
TO Z59 PIN 16

TO 253 FIN 8

+

20mA LooP | °
SUPPLY

+ -

2 J2
PIN 3 PN
ToP ! s
vew 2 s TRS-80 MODEL 33
.) KEYBOARD TTY

Figure 3. TTY interface schematic

Software

Now that I had the hardware capability to enable or disable current flow
in an external loop, I needed a program to turn this current flow on and off
according to the ASCII bit pattern required by the printer. The flowchart of
such a program is shown in Figure 4.

Since the normal logic state of the bits in port FF is 0, I used the logic 0 to
represent the mark, or current-flowing condition, in the loop. A logical 1
written to the output port represents the space condition and disables cur-
rent flow in the loop. The flowchart describes the program fairly well, so I
will only touch on a few of the high points.

The LPRINT and LLIST routines in ROM never output a line-feed code
since they assume the printer to have automatic line feed on the carriage
return. Since my machine does not have that feature, I included a routine to
output a line feed whenever a carriage return was output by the ROM.

Also included is a character-counter routine set to limit line length to ap-
proximately 70 characters. I use memory location 16424 as the counter.
Every time a character is output, this memory location is incremented.
When it reaches 70, a carriage return and line feed are printed. The
character counter is set to zero initially and also every time a carriage

return/line feed is output.
Because the LPRINT and LLIST routines were written to operate with

Centronics printers, they examine the line printer address, memory location
14312, for a ready bit to be set before they output the next character.

175

MAIN ROUTINE

SAVE
REGISTERS
HL ,/DE AF

l

LOAD BYTE
FROM REG

e

l

SAVE
REGISTERS
BC

CHAR COUNT
= 707

PRINT
CARRIAGE
INCREMENT RETURN
CHARACTER
COUNTER l
l PRINT
LINE FEED
PRINT BYTE l
RESET
CHARACTER
COUNTER=0
ADVISE ROM
PRINTER
READY
RESTORE
REGISTERS

RETURN

interface

PRINT

SET
BIT COUNTER

:

ouTPUT
START BI7
(SPACE)

l

LOAD BYTE

TEST LSB
oF

B8YTE

58207 1ES

DELAY

SAVE
REGISTERS
AF

l

SET LOOP
COUNTER =671

DECREMENT
L.ooP
COUNTER

RESTORE
REGISTERS
AF

OUTPUT MARK OUTPUT SPACE

I

DECREMENT
8IT COUNTER

BIT
COUNT =0 7

ROTATE
BYTE RIGHT

OUTPUT
PARITY BIT
{MARK)

l

QUTPUT
2 STOP BITS
{MARK)

RETURN

Figure 4. Software flowchart

RETURN

176

interface

Therefore, the Teletype program writes a fake ready bit to this address to
enable a character output by the ROM routines.

The section of code labeled PRINT in Figure 4 is a part of the program
that serializes the data to be output. It first holds the output in space condi-
tion for one bit time to simulate the start bit. Then the program samples
each bit in register H and outputs a logic 0 (mark) or a logic 1 (space) to bit
D5 of port FF, depending on the bit status of the byte being printed. After
all bits have been sampled, the program holds the output in mark condition
for three bit times—one for an even parity bit and two for two stop
bits—before executing a return to ROM.

The part of the program labeled DELAY determines the baud rate of the
output. The delay loop furnishes approximately 13.56 microseconds’ delay
each time it is executed. Therefore, for the 9.1 millisecond bit time required
for a 110 baud printer, this delay loop is executed 671 times.

Installation

To make the required modifications, first place the keyboard face down
on a soft surface and remove the six Phillips-head screws holding the case
together. Note that there are three different sizes, so note where each size
goes. Next, holding the case together with your hands, place the keyboard
right side up on your work surface and gently lift off the top cover.

Notice that the keyboard is connected to the main PC board by a delicate,
white, flat ribbon cable located on the lower left edge of the keyboard PC
board. Trying not to flex this cable too much, pull the keyboard away from
the main PC board and hold it vertically while removing the five little
white plastic spacers that are on the PC board and lift the entire assembly
out of the bottom half of the case. Holding the keyboard against the main PC
board, turn the whole assembly over and place it so the IC numbers can be
read with the keyboard face down.

Locate Z59 in the lower left area. Take a new 74L.S175 IC and bend all
but the four corner pins outward. Place this IC, Z59A, piggyback style on
top of Z59. Solder the four corner pins of Z59A to their counterparts on Z59.
Use as little heat and solder as possible to avoid overheating the ICs or caus-
ing shorts.

Now cut one of the leads of both R1 and R2 and the base and collector
leads of Q1 to a length of about Y4 inch. Solder the short lead of Rl to the
base lead of Q1. Similarly, solder the short lead of R2 to the collector of QL.
Turn Q1 upside down and solder its emitter lead to Z59, pin 8. Run a short
piece of insulated wire from Z59A, pin 4, to Z60, pin 7. Make sure that
all unconnected leads of Z59A are bent away from Z59 and are not touching
anything else. Solder one end of a long piece of insulated wire to the uncon-
nected lead of R2. Take a good look at what you have done so far. Make sure

177

interface

that the transistor and resistors are secure and that their leads are not
touching anything that they are not supposed to touch.

Oncesatisfied, turn the PC boards over and mount them back in the lower
half of the case. Before putting the top cover backon, do the following: Take
a 4N35 IC and cut off pins 3 and 6. Then, referring to Figure 5, solder pin 1
of the 4N35 to the trace shown. Solder the end of the hookup wire still dan-
gling to pin 2 of the 4N35. Solder pins 4 and 5 of the 4N35 to short pieces of
hookup wire, which should then be soldered to the video connector
pins shown.

POWER J2 VIDEO CASSETTE
SWITCH POWER ouTPUT 1/0
JACK JACK JACK

[ole RN e] 0o 0O

UPPER RIGHT HAND
CORNER OF MAIN
PC BOARD
(KEYBOARD TOP
COVER REMOVED)

Figure 5. 4N35 installation on main PC board

The modification is now complete. Reassemble the rest of the case. Con-
nect the Teletype and loop supply as shown. Upon power-up, set MEMORY
SIZE to 32566 for a 16K machine or 20277 for a 4K model. Enter and run
the TTY program. When RUN is typed, the BASIC program will POKE the
TTY program into high memory and then destroy itself. From then on, the
LLIST and LPRINT statements should work using the Teletype as a
line printer.

Conclusion

For those who are not afraid to modify their prized equipment, this
modification is convenient and works well with any program utilizing the
line printer control block set up in RAM by the Level II ROM. Since Radio
Shack’s Editor/Assembler does not use this control block, the printer will not
operate while using the Editor/Assembler. This is the only shortcoming I
have found.

A final note: As I was going over the program for the 50th time in prepara-
tion for this article, I noticed that by adding four more bytes to the begin-
ning of the program I could have the CRT echo what was being LPRINTed.
I have included them in the TTY programs. These bytes are a call to a
subroutine located in ROM at hex location 0033, which displays the
character on the CRT.

178

interface

References

® Radio Shack TRS-80 Editor/Assembler Operation and Reference Manual.
Ft. Worth, TX: Radio Shack, 1978.

® TRS-80 Technical Manual Ft. Worth, TX: Radio Shack, 1978.

179

5 :

10

interface

Program Listing 1. TTY program for 4K Level 11 TRS-80

' ITY 4K LEVEL II=—--- SET MEM SIZE TO 28277
CLS :
INPUT "DO YOU WANT CRT TO ECHO LPRINT?";A$:
IF AS < > "Yy" AND A$ < > "N
THEN
19 :
ELSE
IF AS = "Y"
THEN
POKE 16422,54
ELSE
POKE 16422,58
POKE 16423,79:
POKE 16424,8:
FOR I = 20278 TO 20423
READ BYTE
POKE I,BYTE
NEXT
DATA 121,285,51,0,229,213,245,97,197,124,87,254,13,194,86,79,265
»,136,79,38
DATA 16,205,136,79,62,0,50,46,64,195,126,79,58,40,64,254,76,194,
115,79,265
DATA 136,79,38,13,2085,136,79,38,10,205,136,79,62,0,50,40,64,195,
126,79,58
DATA 406,64,60,50,46,64,98,205,136,79,62,63,50,232,55,193,241,269
$225,201,6
DATA 7,62,48,211,255,265,188,79,124,183,203,71,262,157,79,62,16,
195,159,79
DATA 62,48,211,255,2065,188,79,5,282,174,79,124,203,31,195,146,79
+62,16, 211
DATA 255 20¢5,188,79,205,188,79,265,188,79,261,245,17,159,2,27,12
2,179, 194
DATA 192,79,241,2ﬂ1
NEW
END

10

20

30
40
50

Program Listing 2. TTY program for 16K Level 11 TRS-80

' TTY 16 K LEVEL II-——-- SET MEM SIZE TO 32566
CLS :
INPUT "DO YOU WANT CRT TO ECHO LPRINT?";AS:
IF A$ < > "Y" AND AS < > "N"
THEN
18
ELSE
1F A$ = "yw
THEN
POKE 16422,55
ELSE
POKE 16422,59
POKE 16423,127:
POKE 16424,0:
FOR I = 32567 TO 32712
READ BYTE
POKE I,BYTE
NEXT

180

interface

60 DATA 121,205,51,0,229,213,245,97,197,124,87,254,13,194,87,127,20
5,137,127,38
65 DATA 18,205,137,127,62,0,50,40,64,195,127,127,58,40,64,254,78,19
4,116,127,205
7¢ DATA 137,127,38,13,285,137,127,38,16,205,137,127,62,8,56,40,64,1
95,127,127,58
75 DATA 40,64,68,50,40,64,98,205,137,127,62,63,50,232,55,193,241,20
9,225,201,6,7
80 DATA 62,48,211,255,205,189,127,124,103,263,71,262,158,127,62,16,
195,160,127,62
85 DATA 48,211,255,205,189,127,5,2062,175,127,124,203,31,195,147,127

/62,16,211
98 DATA 255,2065,189,127,265,189,127,205,189,127,2081,245,17,159,2,27
,122,179,194
95 DATA 193,127,241,281
97 NEW
99 END
Program Listing 3. Assembly-language listing
4F36 eoael ORG 4FP36H
4F36 79 ae002 LD A,C
4F37 CD3309 80083 CALL 9033H
4F3A E5 00004 PUSH HL
4F3B D5 2086485 PUSH DE
4F3C F5 00086 PUSH AF
4F3D 61 80007 LD H,C
4F3E C5 20008 PUSH BC
4F3F 7C #0989 LD A,H
4F40 57 00016 LD D,A
4F41 FEOD 06911 cp opy
4F43 C2564F 80012 aJp NZ,EOL
4P46 CD8BAF 20013 CALL PRINT
4F49 260A 00914 LD H,B8AH
4F4B CDBBAF 20816 CALL PRINT
4FAE 3EQ00Q gegl7 LD A,B80H
4F50 322840 20018 LD (4028H) ,A
4F53 C37E4P 06619 JP EXIT
4F56 3A2840 200826 EOL LD A, (4828H)
4F59 FE46 gge21 cp 46H =
4F5B C2734F 208822 Jp NZ,MIN
4F5E CD8B4F 80023 CALL PRINT
4F61 268D 00924 LD H,0DH
4F63 CDB84F 08825 CALL PRINT
4F66 260A 200626 LD H,8AH
4P68 CDB84F @oa27 CALL PRINT
4F6B 1EQQ 20028 LD A,00H
4F6D 322840 09929 LD (4028H) ,A
4F78 C37E4F 20630 Jp EXIT
4F73 3A2840 99831 MIN LD A, (4028H)
4F76 3C 26032 INC A
4F77 32284¢ 200833 LD (4028H) ,A
4F7A 62 30034 LD H,D
4F7B CD884F 98035 ouT CALL PRINT
4F7E 3E3F 90836 EXIT LD A,3FH ="t
4F80 32E837 20837 LD (37E8H) ,A
4F83 C1 20838 PoP BC
4F84 F1 20939 POP AF
4F85 D1 00040 POP DE
4F86 El 00041 POP HL
4F87 CS 00942 RET
4F88 0607 #0043 PRINT LD B,07H
4F8A 3E20 00844 LD A, 2088 p="g"
4F8C D3FF 900845 ouT (@FFH) ,A Program continued

181

interface

AF8E CDBCAF pBR46 CALL DELAY
4F91 7C 00047 LD A H

4F92 67 09048 LOOP Lp H,A

4F93 CB47 pa049 BIT B,A

4F95 CAOD4F 00658 JP Z,SPACE
4{F98 3EDO #0051 LD A,B

4F9A C39F4F 08652 JP BIT

AF9D 3E20 98053 SPACE LD A, 20H p= "
4F9F D3FF 60854 BIT ouT {BFFH),A
4FAL CDBCAF 80055 CALL DELAY
4FA4 05 26856 DEC B

AFAS5 CAAE4F 808057 JP %, DONE
4FAB 7C pOB58 LD A,H

4FA9 CBI1F 08059 RR A

4FAB C3924F 80860 JP LOOP
4FAE 3E00 00661 DONE LD A,8

4FBO D3FF 08062 ouT (@FFH) ,A
4FB2 CDBCAF pOP63 CALL DELAY
4FBS CDBCAF 00064 CALL DELAY
4FB8 CDBC4F 00065 CALL DELAY
4FBB C9 49067 RET

4FBC F5 p@#68 DELAY PUSH AF

4FBD 119F@2 00869 LD DE,@29FH
4FC@ 1B p@A706 DLOOP DEC DE

4FCl 7A 60071 LD A,D

4FC2 B3 20072 OR B

4FC3 C2CO4F 200873 JP Nz ,DLOOP
4FC6 F1 00074 POP AF

4FC7 C9 80075 RET

poRo 000876 END

90080 TOTAL ERRORS

BIT 4F9F 00054 00852

DELAY A4FBC 00068 pPEA6 $0G55 00063 POO64 060065
DLOOP 4FCO 20078 008073

DONE AFAE 00061 28857

EOL 4F56 08020 20012

EXIT AFTE 86036 pop1Y 06030

LooP 4F92 00048 00060

MIN 4F73 B@Q31 pB022

ouT 4F78 68035

PRINT 4F88 00043 g9013 §PG1l6 BPG23 D025 GO027 0835
SPACE 4F9D @0053 008586

PRINT :

PRINT "SET TOP OF FORM TO 207
PRINT "SET LEFT EDGE OF FORM TO ~4":
PRINT "SET DENSITY CONTROL TO 4"
INPUT " 'ENTER' TO CONTINUE" ;X

182

INTERFACE

Why Bother to Interface?

by Allan S. Joffe W3KBM

Soorler or later you will want to control something in the way of an out-
side world device by using your TRS-80. It may be a relay to key a
transmitter with Morse code or a method of turning lights on and off accord-
ing to a predetermined schedule. Whatever your desire, the key to fulfill-
ment is an interface. The other side of the coin is taking an outside world
signal, properly conditioning it, and being able to feed it into the computer.
The end result may be as fundamental as printing the input on the video
screen or having the computer accept this information and then act on it by
controlling a relay. For the first action (fundamental control of an outside
device via a relay), we need an output port. To accept properly conditioned
information from an outside source into the computer, we need an input port.

Let us put into words what we could do with both types of ports available
to us. Suppose that our output port is controlling a relay which can turn a
source of heat on or off. Further suppose that our input port is getting prop-
erly conditioned information that represents outside world temperature that
is being warmed by the source of heat. We could then write a program in
BASIC that would allow us to turn the heat on when the temperature dropped
below a point that we had programmed as desirable and turn it off if the
room temperature reached or exceeded the upper limit set by the program.

General Types of Ports

There are two common types of ports, latched and non-latched. General-
ly the output port is a latched (locked on) port and the input port is a non-
latched port. When we say that a port is latched, we mean that when infor-
mation is entered into the port, there is a device that holds or remembers the
information put there. You can consider that the latch is a type of memory
device which when told to turn on, stays on, and when told (by the program
in the computer) to stay off, stays off.

How Many Ports are Available?

Let us consider the output port situation first. The normal way to con-
figure or send information to an output port is via the data bus of the com-
puter. This data bus is eight bits wide, DO to D7. If you know a bit about
binary or hex notation you know that the maximum decimal value that is
represented by eight bits is 255. This means that you have a potential of 256
output ports that your computer could control. You have to remember that
zero is a very real thing and that an output port number 0 does exist, making
the total a very real 256 available output ports.

183

interface

An output port is a slightly different ball game as you have two methods of
selecting input ports. If you use a technique of memory-mapped ports
(which will not be considered here), you can have literally thousands of in-
put ports. If you use the same idea that is going to be presented for the out-
put ports (a method called direct addressing) and limit yourself to the same
eight bit concept, then you will again be limited to 256 input ports, which
for our purposes should hardly represent a limitation of any consequence.

Starting Out

Using broad brush strokes, the information that we need to control our
choice of input port comes from the low order eight bits of the address bus,
A-0 to A-7 inclusive. We also need the help of the IN signal supplied by the
computer. To select the desired output port, we need eight bits of help from
the data bus, DO through D7 inclusive, and the help of the OUT signal sup-
plied by the computer.

We will also need one more available signal from the computer, which is
the SYSRESET. The use of this and the other signals will become clear when
we examine the intimate details of a practical I/O (input/output) device that
will serve you well until you feel the need for a fancier device. This is not to
imply that it is of limited utility; what limits it is your imagination and
perhaps the cost of hanging things on the many potentially available inputs
and outputs.

The rear of your TRS-80 has a forty-pin male edge connection portion
that will mate with the proper socket. You can be fancy and get a prepared
connector complete with attached ribbon cable on one end and bare on the
other. You can get fancier (meaning more expensive) and get the same type
of cable with connectors on both ends. Finally, you can go austere and get a
wire-wrap plug with no cable attached and roll your own. The bottom line
on costs (depending on how fancy) ranges from $4 to $16.

Methods of Construction

I prefer the perforated boards with the 0.1 inch spaced holes such as Radio
Shack #276-1394. This board is 11.2 by 15.4 cm, large enough to work with
and small enough to avoid the temptation of crowding. As it will not all fit
on one board, you will be forced to go with the modular concept. This has its
good points. You will change with the times as your knowledge and ex-
perience expand. The modular approach will allow you to re-use existing
portions of this proposed project in the future, as whim dictates. For exam-
ple, one of the modular divisions is to put all the relays and associated drivers
on one board. You can make your own divisions in terms of modularity as
they make sense to you and your knowledge of future needs. The five-volt
regulated power supply is another logical modular division. Incidentally, a -

184

interface

suitable power supply for this project will not be detailed as this information
is so readily available to you.

Where to Find the Signals

If your Level II manual is like mine, the information is not there. The in-
formation is available in the Level I book and better yet, in the TRS-80
Micro Computer Technical Reference Handbook, along with prints of the
computer and excellent text on how the various portions of the computer
function. This book is a worthwhile investment to read, before you start
thinking seriously about tackling this business of interfacing. The key here is
to find out how the TRS-80 works rather than how you think it works.

About Decoding

Our first premise is that we are going to control what our interface does by
using BASIC language programming. Certainly we can use assembly
language, but we have to start somewhere. There are two fundamental
commands in BASIC that we will be using. The first (which controls the out-
put port) is OUT. You can demonstrate this use very nicely by having it
make the one output port that exists in the TRS-80 function. Here is the way
we write the command in BASIC.

10 OUT 255,4
20FORT = 1TO 300:NEXT T
30 OUT 255,0

Now press PLAY on your cassette machine and run the program. The
motor will start and then stop. Your available output port, which is ad-
dressed as 255 (decimal), has turned the cassette control relay on and then
off as it followed your BASIC program. There is a corresponding input port
availability which has seen use by at least one commercial light pen designed
for use with the TRS-80, but as a general concept the I/O abilities of the
computer demand an external interface to be of real value.

When we instructed the computer to OUT 255,4, two things of importance
happened inside the engine room. The 255 appeared on the low eight bits of
the address bus. It made its appearance in binary form, which is 11111111,
and the equivalent of all those ones or high states in digital terms made
something happen. The other part of the expression OUT 255,4, namely the
4, caused the data bus to output on its low order 4 bits (DO to D3 inclusive)
which resulted in the appearance of binary pattern 0100 on these data bus
terminals. The combination of these two actions made it possible for the
computer to turn on the cassette motor, with further action of the OUT
255,0 instruction causing it to turn off when the delay loop had run its course.

185

interface

The address bus is decoded or made to respond to the 255 address with the
help of an eight input NAND gate. When all inputs of the NAND gate are
high, we get a desired signal from its output. At the same time, the OUT in-
struction causes the OUT signal generated by the computer to go low. These
two signals arriving at the right time complete the address decoding portion
of the process. The binary pattern that appears on the data bus (due to the 4
in the expression in the program) is applied to a four-bit latch which by elec-
tronic manipulation caused therelay to close. When the timing loop ran out,
the next expression (same port number of 255 but with the 0 in the expres-
sion) again called port 255; however, this time the data bus carried the
binary pattern 0000 and the relay turned off.

Some Specifications

The actual unit to be described will have the following good features built
in: There will be one input port that is eight bits wide; there will be one out-
put port (latched) that is also eight bits wide. There is also an option to con-
trol fifteen relays. This variety of control will be enough to keep you busy
well into the future. By some simple modification we can cut down on the
number of relays controlled and add either more input ports or more output
ports. More on this when we get to the nitty-gritty. The power requirements
are easily handled by an LM 309 TO-3 style regulator with a minimal heat
sink. The particular integrated circuits that show up on the schematic were
used as they are relatively inexpensive.

A Brief Circuit Description

If you examine the schematic in Figure 1, you will see my first module.

This consists of five integrated circuits.

1-74L.520 dual four input NAND gate package

1-74154 one of 16 data distributor

1-4050 CMOS buffer (hex)

2-8212 eight bit 1/O port
The total current drain of this module is about 160 to 180 milliamps. The
82121Cs will definitely run warm to the touch, which is normal. The 74154
will exhibit a bit of temperature above ambient and the remaining two 1Cs
will show no apparent heat rise.

The one half of the 741520 marked A has its four inputs connected to the
four address bus bits A-7 through A-4. We get a desired output from pin 6
only when all four input bits are ones. The 4050 CMOS buffer has four of its
inputs connected to the bottom four address bus bits, A-3 to A-0. The other
two inputs of this IC carry the IN signal and the OUT signal.

If address bus bits A-7 through A-4 are all ones and the lower four address
bits are all zeros, then the address bus will carry a bit pattern in binary of

186

interface

11110000, which translated into decimal is 240. This represents the lowest
port number that we have available to us as an output port. If all eight bits
were ones, then the binary pattern would be 11111111, which in decimal is
255. Thus we have some sixteen (16) possible port addresses at our com-
mand. The next chip in line is the 74154. It has sixteen output lines, any one
of which may be selected by the combination of bits applied to pins 20, 21,
22, and 23. Note that these pins are fed signals from the low four bits of the
address bus through the 4050 buffer. All of these output lines are normally
high. When a given output line is selected, it goes low. Two sets of signals
must be present for the 74154 to operate as desired. The proper bit pattern
must be on the address bus and the signals to pins 18 and 19 must go low.
One of these signals is from pin 6 of the 741.520 and is used as a decoder. The
other is the out signal which the computer generates as required in response
to your use of the OUT command in BASIC.

The output line of pin 1 of the 74154 will go low when the bit pattern ap-
plied to the decoding inputs A B C D are all low or zeros. The output of pin 6
of the 741.520 will go low only when all four of its inputs see a high state or
all ones. Thus the binary pattern needed to make the 74154 output line go
low is 11110000 binary or 240 decimal; thus our output port has an address
of 240. The remaining output pins of the 74154 may be selected by addresses
241 to 255 inclusive. These output lines can be used as relay drive signals
with some added circuitry.

8212 as an Output Port

The 8212 is an eight-bit wide 1/O port that is tri-state capable. It contains
eight buffer amplifiers along with eight latches and some circuit selection
logic to make use of these major features. The eight inputs of the 8212 are
connected to the eight bits that make up the data bus. The eight outputs are
brought out to a terminal strip for ease of use. Notice that the SYSRESET
line from the computer goes to pin 14 of this device. When you power up the
computer, this signal momentarily goes low, which puts all the latches in the
8212 into a known state.

For the 8212 to output information in latched form, it needs two signals
which are applied to pins 1 and 13. The second half of the 741.S20 provides
one needed signal from pin 8. The other signal comes from pin 1 of the
74154. You can see that unless the output address of 240 is programmed, this
latter signal will not exist and the port will not be called or selected.

8212 as an Input Port

This use is quite different from the output port setup. First, we do not use
the latches at all, so they are disabled and made transparent. The 8212 has
been turned into the equivalent of an ordinary tri-state gated buffer. Note

187

interface

that pins 11, 13, and 14 are all tied together and then returned to -+ 5 volts
through a 1k resistor. The biggest single difference is that the only decoding,
if you can call it that, is provided by the use of the in signal to gate the buffer
amplifiers in this 8212 on or off as called for in the program controlling the
input port.

Thus while you have to address the out ports (either the eight bit wide or
the other fifteen available potential ports), the input port can be called by a
dummy argument ranging between zero and 255. To program the output
port, you need two items in the statement. You need the port address fol-
lowed by a decimal number that will put the desired binary bit combination
on the port output. For example: OUT 240,255 energizes our eight-bit out
port and puts the binary pattern 11111111 at the port outputs.

To program the input port, we need the following type of statement:
PRINT INP(X) where X is any letter or integer between zero and 255. This
dummy argument for the input statement is needed to satisfy the TRS-80
syntax. The decoding scherr.. does not require the use of the dummy argu-
ment, but the computer protocol does.

A slightly different form of the input statement will allow you to assign
the value existing at the input port to a variable, thusly: A = INP(X) where
X is the dummy argument. Run the following program on your TRS-80 to
see what happens.

10 FORX = 0 TO 255
20 PRINT INP(X)
30 NEXT X

When you run the program, you will see a series of figures, all of them be-
ing 255 except the very last one, which will be 127. The program asks the
computer to examine the bit pattern of all possible 256 port positions. It tells
you that on all but the last one the bit patternis 11111111, which is 255 deci-
mal. The bit pattern for the last port is 01111111, or 127 in decimal.

Each time the computer issued an INP command, the in signal went low.
The input port we are considering in the schematic needs only to have the IN
signal (which comes to pin 1 of the 8212 from pin 15 of the 4050) go low.
When this happens any digital information on the input port lines will be fed
to the computer data bus. If the input lines of this port are just hanging in
mid air (no connection), running the program just outlined would give an
answer of 255. In this condition, all of the inputs are automatically in the
high or one state. When I use the input port under discussion, I usually
assign the dummy argument to match the number of the output portin use.
This is merely a sort of mnemonic device on my part. You must, however,
assign some number in the INP statement or the TRS-80 will give you an er-
ror message.

188

interface

8SW

1d0d LNdNI

222819 6] 4] S} €

gs

1 Nt
€1 2ics

r _Nm_h.m_o_mwv‘

Pn OEECEEG

T am3ig

vwogl/061 LN3YHNd A1ddns

gsW 887

(Q3HOLVYT)
1¥0d 1ndino

Lno
2iegs

eclogiBi9l 6] 2] S| €

SNid ¥O0LO3INNOD 08-SHL —» 0228281 922C220¢

(sne vivaQ) Za 0L oa

2
13S3Y 'SAS
£
62
co> 20
I af
‘oS
NI
= 21
y344ng sz
61 K
vleL 218 110 <.\ NoN iz
pSIb. Bfe——21 SOWD ov
22 9 050t

“He of ve

%oz E] &t

02S71b4
] =13
3 TV 1€
@ v TV mm
9 2 5=V o
] -V

02s¥L

SNid
HOLJINNOD
08~-SHL

189

interface

Power-Up Precaution

With the I/O port circuits attached to your TRS-80, when you power up
the system, it is important to first apply power to the 1/O device and then
turn on the TRS-80. The reason for this is quite logical. When the I/O is first
turned on, it produces glitches until it settles down. These unwanted power-
up signals can find their way to the data bus, particularly from the input
port, and mess up the TRS-80 initialization so that your computer may do
weird things. This sad state of affairs can be avoided by turning on the I/O
and letting things settle for a few seconds before you apply power to the
TRS-80. You will not damage the computer but you can mess up its
operating system. If you are a newcomer to I/0O concepts, try to digest the
signal flow a bit at a time. If you can build something and understand how it
works, then you are ahead of the game.

Initial Testing

Assume that you have built the unit diagrammed in Figure 1 and have a
five-volt regulated power supply ready to turn on. The first item of business
is toapply power with a milliammeter in place to monitor the current drawn
from the supply. Any drain up to about 200 milliamps is acceptable. If the
current drain is in the ball park, let the unit cook for five or ten minutes.

Test the ICs for undue warmth, remembering that the 8212 chips will get
from warm to rather warm in normal operation. The bulk of the current
drain is going to these chips, hence the heating effect. If the unit has passed
this smoke testing with flying colors, it is time to give the overall wiring one
lastvisual check for solder splashes or bridges, making sure that all of the ICs
are properly seated in their sockets, etc. Then, and only then, should you
comsider the initial connection of I/O to the TRS-80.

The first connection episode should be done with no power applied to the
1/O board. Power up the computer and run any test program to check for
proper computer operation. If the TRS-80 is functioning normally, turn it
off and then apply power to the I/0 unit. Now restore power to the TRS-80
and once again run a test program to assure yourself that some misadventure
in wiring, inadvertently getting the edge connector plug upside down, etc, is
notgoing to send you into a corner, muttering mea culpa. What we are try-
ingto do is protect our TRS-80 with common sense which is worth several
bushels of blown fuses.

Input Port Test Program
Type this program into the machine and run it:

10 PRINT INP(240);
20 GOTO 10

190

interface

When you run the program, you will see the screen fill up with a series of
255 figures. This tells you that all eight input lines of the input port are
high, which is normal. If you do not get this indication, shut down and
check your wiring.

Assume that we have gotten the desired results. With the program run-
ning, take a test clip and short pin 3 of the 8212 to ground. You should now
see the 255 change to 254 because you have changed the bit pattern from
11111111 to 11111110 (from decimal 255 to decimal 254). If you short the
inputs one at a time (to ground), you will see the numbers on the screen
change to reflect the altered bit pattern being fed to the data bus via
your function input port. Pin 3 is the LSB or least significant bit and pin 22
carries the MSB or most significant bit. If you short pin 22 to ground, you
should see the number on the screen change to 127, which represents
01111111. If your results match this format, then your IN port seems to be
functioning properly.

Testing the Output Port

This will go more quickly as you are fairly sure you have no problem
caused by the I/O being hooked to the computer.
Type in and run this test program:

10 OUT 240,0: FOR X = 1 TO 400:NEXT X
20 OUT 240,255: FOR X = 1 TO 400:NEXT X
30 GOTO 10

Run the program. Apply a voltmeter to the output port pins 4, 6, 8, 10,
15, 17, 19, and 21 in turn. You should see a dc reading that goes up and
down in time with the two delay loops in the program. On the high swing,
my Simpson 260 goes up to about 4.5 volts, but this will vary with the damp-
ing of your particular meter movement. What you are doing is alternately
feeding all ones (highs) to the outputs when the port is on and then getting all
zeros (low states) when the port is off, on and off being defined in the BASIC
program. Remember the bit pattern for 255 is 11111111, and the bit pattern
for zero is 00000000; hence the indications that you get are correct. Once
again, if you do not get this result, check for wiring errors or defective ICs.
My experience has been that if you have taken the precaution of obtaining
your ICs from a reliable supplier, the usual cause of any problem is a
wiring goof.

At this point, you may assume that the fifteen outputs of the 74154 will
work as expected when we put them to use. Unless you have a logic probe,
there is no practical way to check for a pulse output, as the pulse is just a bit
better than one microsecond in duration.

191

interface

7 a3y

sng ¥y3Td

€

C#
civl
ct] & _' «H :_ un\
Vo oo,
o] [

11—
Gl Bl

vSive OL

€

E%N_O_mw‘um

a3sn LON
€i¥. NO
218 6 SNid
‘310N

$

AOI OL 8+

90A

192

interface

The Relay Module

We are now going to examine the module that allows us to turn relays on
and off under program control, with the aid of module number one that we
have just examined. There is a flexible side to this module. By this I mean
you might wish to duplicate it or you might wish to expand it. Some possible
areas for so doing will be touched upon as logic dictates. The schematic
shown in Figure 2 shows what the beast looks like on paper.

General Description

There are three 7473 JK flip-flops and a 7407 hex buffer making up the
chip complement. Please note that on the 7473 chips, pins 9 and 12 have no
connections made to them. All of the J-K pins on the flip-flops are tied to Vec
through a common 1000-Ohm resistor. All of the CLEAR pins of the flip-
flops are tied together and then this common lead goes to pin 2 of the 74154.
We will examine just why a bit later. For now, remember that when the
CLEAR goes low, the Q outputs of the flip-flops go low and the NOT Q out-
puts go high. The NOT Q outputs are the working outputs of the flip-flops
that go to inputs of the 7407 hex buffer. The outputs of the 7407 act as relay
drivers; in this case I have six relays that I can control at will by proper com-
puter programming.

Getting Down to Business

You recall that, due to the decoding available from module one, we have
sixteen addresses that we can summon to do very specific things. As set up for
this adventure, address 240 activates the eight bit output port. The balance
of the addresses (241 to 255), when called, make each succeeding output pin
of the 74154 go low momentarily, after which it returns to its normal high
state. Thus when we call one of these addresses, we are really only
generating an output pulse from the selected OUT pin of the 74154, What
we make those pulses (or strobes) do separates the sheep from the goats.

Since we are dealing with relays, it would be nice to know (at power up)
what the contacts are doing. We want to be able to assume that the contacts
are open, or, if you prefer, closed, before we do any programming. On
power up, there is no guarantee that the flip-flops will come up as you desire
them. In my case I want all of the Q sides of the flip-flops to be low so that all
of the NOT Q sides will be high. Why this is so lies up ahead.

Certainly, we could have used the system RESET signal of the TRS-80
which was used in module one. Why this was not done is a fair question.
Here we can be flexible—we have the facility to control more than a single
module two. My preference is to have independent control of RESET for
each module two that I have in the system, something that use of the TRS-80

193

interface

SYSRESET signal would not readily give me as it exists for use only when the
'TRS-80 is first powered up. This is why the CLEAR bus of module two goes
topin 2 of the 74154. I can make this pin go low momentarily by calling its
port address, which is 241, and thereby set the contacts of all six relays to
known starting positions.

Please note that once again, due to the nature of the decoding used in
module one, we run into the use of a dummy argument in the form of the
OUT expression when calling any of these relay control ports. To use the
RESET feature that I have built into port address 241, you would program:
OUT 241,X where X is any number from zero to 255. Once again, I general-
ly use the port number for the dummy argument as a memory convenience.

Buffer Relay Driver

My unit has a mix of relays. Four of them are reed relays that operate at
ordinary TTL circuit voltages. These are shown connected to 7407 buffer
output pins 2, 4, 6, and 8. The maker has packed four reed relays into a very
tiny package, each relay having one set of normally open contacts—light du-
ty contacts, I might add, similar to the cassette relay in your TRS-80.

The other two relays connected to buffer output pins 10 and 12 are, by
reed relay comparison, quite substantial in current carrying capacity. They
have 2500-Ohm coils and pull in quite a supply source of voltage. They are
thelarge crystal can type and have double-pole, double-throw contacts. It is
obvious that with these six relays you have a good deal of control of outside
devices, through computer programming control. At first, it may seem that
using the relays that take other than standard TTL working voltages means
building a separate power source, but think a bit. You need a regulated five-
volt supply to power this whole interface, and any regulator needs to be fed
from an unregulated source that is higher than the desired regulated value.
It is that voltage source that can feed the two larger relays.

My six relays are operated by calling addresses 249 to 254. Notice that I
avoided using 255 as that is assigned to your cassette relay. For the record,
address 255 is available at pin 17 of the 74154, which is nice to know if your
cassette relay has died or is showing signs of heading west from “welditis of
the contacts.”

The following assumptions are made. Modules one and two are tied
together and turned on. Then the TRS-80 is powered up, this order being
followed to avoid glitching the computer’s power-up programming routine.

The first thing we want to do is get the relay module relays in our standard
desired postion; in my case I want to make sure that all the reed relays have
their contacts open. To doso, I run OUT 241,241 and pin 2 of the 74154 goes
low long enough to make all of the NOT Q outputs of the flip-flops high. The
reason for this being a desired condition is worth examining. The 7407 is a

194

interface

power buffer and is non-inverting. The same state you put into it (high or
low) comes out of it. If you put a low into it, the output pin goes to ground.
This would effectively put the relay from its supply voltage to ground, and
the relay would turn on. The opposite is true if a high goes into the input of
the 7407 buffer (being used here as a relay driver). Now you can understand
that I have specified my starting base for relay contact positions being open
and how this comes about by the use of the RESET or CLEAR pulse from
pin 2 of the 74154.

Now that we have our relays where we want them, let us consider a sim-
ple program to open and close a given set of relay contacts. We will use an
ohmmeter as an indicator and for specifics we will use the reed relay marked
A in the diagram. This relay is connected to pin 2 (output) of the 7407. The
input to this amplifier is pin 1, which is in turn connected to pin 13 of its con-
trolling flip-flop (NOT Q). The final link in the chain is pin one of this flip-
flop which gets its control pulse from pin 16 of the 74154. Pin 16 of the 74154
will go low when its port address of 254 is called by your program.

Remember our fundamental assumptions. We have gotten our relay con-
tacts into a known starting position and our chmmeter is across the contacts
of relay A. If things are working as planned, the meter shows no indication
as the contacts should be OPEN.

Now we can insert this little program into the computer and RUN.

10 OUT 954,254:REM remember the dummy argument
90 FOR X = 1 TO 400:NEXT X:REM Timing loop
30 GOTO 10

When you run this program, the meter will pulse with the opening and
the closing of the contacts. How can the same command act to both open
and close the relay contacts? The answer is that we are using a J-K flip-flop.
This IC will change state every time that its clock input is presented with a
properly shaped pulse that makes a high to low transition. If you are at all
familiar with the conventional binary divider, then you can see what
is happening.

If you take a head count of what we have used out of the sixteen available
addresses you will see that:
® We have used address 240 to control the eight-bit output port.

@ We have used address 241 to generate the CLEAR signal for module two
(relay module).

® We have used six more addresses (249 to 254) for individual control of the
six relays. We have eight available control ports for use, as your imagina-
tion dictates.

The 7407 can accept up to 30 volts on the output pins; but pin 14, which is
the supply pin for the insides of the chip, should be limited to the standard
five volts. I have shown no inductive kick diodes across the relay coils and

195

interface

the unit functions well without problems. You may wish to install them as a
precaution across each relay coil (cathode to the supply side of the relay and
anode to the side of the relay going to the IC output pin) if it suits your needs
andthe particular relays that you use. If I had used heavy 12-volt relays with
coil currents of 15 to 20 milliamps, then I would have felt safer with the
diodes across the coils.

Incorporating the use of these relays is simple, as you can see how little
prograrmming it takes to get them to turn on or off. If someone makes a tri-
state relay, then we have a bit of a problem. See Table 1 for a table of port
addresses and the output pins of the 74154,

PORT ADDRESS 74154 OUTPUT PIN

240 1
241 2
242 3
243 4
244 5
245 6
246 7
247 8
248 9
249 10
250 11
251 13
252 14
253 15
254 16
255 17

Table 1

196

TUTORIAL

Into the 80s

197

TUTORIAL

Into the 80s
Part I

by Ian R. Sinclair

any articles are written for those of you who have owned a TRS-80

for some time and know what programming is all about. “Into the
80s” is dedicated to the thousands who are just about to buy a TRS-80—or
have just bought one—and want to know what they’ve gotten into.

Throughout the series, we’ll be talking about the Model I Level II
TRS-80. Level is Tandy’s word to indicate the complexity of programming
language its computer is able to understand. We're dealing with the Level
II only for two good reasons. First, Level II is much more useful. And,
secondly, the Level I computer is already accompanied by an excellent
manual for the beginner.

One measure of a computer’s power is its memory. Memory dictates the
amount of information (data) a computer can store and is measured in
units called kilobytes, shortened to K. The 4K computer can store four
kilobytes of data. Nothing in this series will cause you to run out of memory
space on a 4K TRS-80.

Before you proceed, be assured of one point. The computer does exactly
as you instruct it—nothing less, nothing more. If you have not put in the
instructions to print letters or numbers on the video screen, then these let-
ters or numbers just don’t get printed. One of the humiliating things about
being a computer owner is knowing that whatever goes wrong is your
fault.

Practical Pointers

Take a look at the sockets at the back of your 80. They are European
DIN-type sockets and match five-pin plugs. There are three of them: one
each for power in (from the transformer unit), cassette in/out (I/0), and
video out.

Before you start using your 80, take the advice of an old hand and label
these plugs and sockets with differently colored tapes. I use red for the
power plug, green for video, and yellow for the cassette. If your 80 sits in
the same place and you never unplug it, this isn’t significant. The oddsare,
however, that some day you’ll want to shift it, and you could easily end
with plugs in the wrong sockets, since they are identical and easily con-
fused in poor lighting conditions.

Keeping your system cool is another useful tip. Try not to have a desk
lamp shining on the keyboard, for instance. It doesn’t help, either, if
you've used the computer all day with bright sunlight heating up the

199

tutorial

keyboard casing and the electronics inside. High temperatures also
damage cassette recordings.

I'vefound that a normal room temperature of 70-75 degrees won’t cause
the T'RS-80 any distress, even if you use it all day. It’s another story if you
have an expansion unit attached, but we won’t go into that. Just make sure
that that little black box which is the transformer unit is on the bench or on
the floor, with room for air to circulate around it; don’t put it inside a box
or surround it with books.

Power It Up

You're ready to power up. Plug all the line plugs into the wall sockets
and switch on. Don’t switch on the keyboard first—always have power on
the cables before you turn on the units, because the switch for the
keyboard does more than just switch power.

Start the countdown by switching on the monitor. Let the monitor
warm up for a minute, then switch on the computer keyboard. The
ON/OFF switch is at the back, next to where the power supply plug enters
the casing. It’s deliberately made a bit hard to find, because when you
switch off a computer, all the program material you had stored in it is lost,
gone forever, unless you recorded it on a cassette previously.

As you press the ON/OFF switch, you’ll see the video screen suddenly
filled with a mixture of numbers, letters, and odd shapes. That’s
“garbage,” caused by the computer memory being activated. Each little
cell of memory can store a bit of information, zero voltage represented by a
zero, or +5 V represented by a 1.

Upon power-up, when all of these cells are activated, some come on as
Is, some as 0s. About 8192 of these memory cells send signals to the video
screen. The cells which are set to 1 cause parts of the video screen to light
up, and the cells which are left to 0 keep the screen dark.

The result is a display of light and dark pieces at random or almost at
random. Circuits inside the computer force these light and dark places into
patterns, the patterns which we call letters, numbers, and graphics blocks,
and this s the pattern we see just as we depress the ON/OFF switch. When
you release the power switch, the garbage clears, because the switch-on
starts a memory clear routine for the video screen and memory—that’s
why itisn’t a good idea to switch the keyboard on before plugging in the
line and powering up.

The Mystery Message

Shining on the video screen in all its glory is the message MEMORY
SIZE? Ithas floored many a beginner. Did no one back at Fort Worth tell

200

tutorial

the machine what its memory size is, you ask? Ignore it for the moment,
press the ENTER key, and these more reassuring words appear:

RADIO SHACK LEVEL II BASIC
READY
>

Your computer is prepared for programming in the BASIC program
language.

What about the MEMORY SIZE? message? Well, as it happens, a lot of
computer tasks can be performed faster and more efficiently by giving in-
structions directly to the microprocessor chip inside the computer. This
chip needs special instructions, called machine code or object code, and
these instructions can’t be loaded into the computer in the same way as an
ordinary BASIC program.

Unless you're going to use machine-code programs right away, though,
you can ignore the MEMORY SIZE? question.

The one time you can’t ignore it is when it appears while you're running
a program. When that happens, it's an unwelcome sign, called a re-boot,
that something is very wrong with your program. The computer has
started its power-on sequence again. There’s no harm in it, but you will
have lost your program unless you saved it on cassette earlier.

The READY signal is an invitation, but unless you know what it’s in-
viting you to do, you can’t take advantage of it. At the READY signal, you
can either load a program from a cassette or you can type one yourself.
Since you’ll learn more about the 80 from writing your own programs,
however simple, we'll start there and leave the frustrations of cassette
loading for a later date.

READY is an invitation for a BASIC program. BASIC is an acronym for
Beginners’ All-purpose Symbolic Instruction Code, and it’s the easiest of
programming languages to learn.

Why should we have to learn BASIC?

It’s all bound up with the way computers work and are designed. The
fastest and most efficient programs are written in machine code, but learn-
ing and using machine code is a painful business, and writing machine
code is a frustrating experience.

For these reasons, computer designers have continually sought to make
it possible to give instructions in simpler forms, using English words (or
Spanish, French, Italian, and others) and stringing them together in a way
which is reasonably simple to understand.

If you've looked at some of the programs printed in the back of the
TRS-80 manual or published in 80 Microcomputing, you might not quite
believe this last statement, but compared to most other computer

201

tutorial

languages, BASIC is reasonably easy to understand. We can devise simpler
languages, but the penalty for using a simpler language is either that it
doesn’t do as much as we would like, needs more memory, or takes longer to
run. Right now, your TRS-80 comes with its BASIC language built in.

Like any other language (and I've had to cope with Latin, French, and
Greek in my time), BASIC is best learned by using it. Unless you intend to
use your computer simply to run programs written by other people and ob-
tainable on cassette, you haven’t much choice—learn BASICI!

Unlike other computer languages, BASIC isn’t standardized. A program
written in BASIC for another computer may not run on the TRS-80, and
vice versa, unless you make a few changes.

It is possible to write BASIC programs that will run on any computer
equipped with the BASIC language (the Adam Osborne programs are good
examples of this), but you can get a lot more out of your 80 if you know the
peculiarities of its particular dialect.

This dialect, incidentally, is one of the most advanced BASICs fitted to a
small computer. We can’t hope to show all the features of BASIC pro-
gramming in this series, but we can try to fill the gap between elementary
BASIC textbooks and Radio Shack’s Level II Reference Manual that comes
with your computer,

Program Proverbs

If you've never programmed a computer before, learning BASIC on
your own can create as many ulcers as guarding a bank during a revolu-
tion, Computers are fussy about the way you use the language. If the
manual says that a word must be followed by a comma, then it really must
be followed by a comma, or your program won’t run.

If, on the other hand, a word needs a semicolon after it, you can’t get by
with just a comma or a colon. This punctuation is translated into instruc-
tions by the computer, and different marks denote different instructions.

Translated? That’s just what happens. There are about twelve thousand
bytes of memory inside your TRS-80 which you can’t alter. The profes-
sionals call it ROM, or read-only memory. It reads your BASIC program
and converts each letter into machine-code instructions to the
microprocessor. Because each instruction is converted and then carried
out, the instructions are much more long-winded than those in a machine-
code program.

Bigger computers can do what’s called compiling, which means
translating the entire program into machine code in one run, and then run-
ning the machine code. The TRS-80, like all small computers, only inter-
prets—it converts each instruction in the BASIC program into code, runs
it, and then goes on to the next part. The difference is between dictating

202

tutorial

directly to a secretary, with all the ums and ers of speech, and delivering
an edited tape to an audio typist.

Let’s start again with the READY signal staring us in the face. Your first
response toward writing a program is to type a line number. The line
number is a tag we can attach to an instruction so that we and the com-
puter know where to find that instruction.

Take any number between 1 and 65529. Normally, you start at 10 or
100. It doesn’t matter what numbers you choose, since you don’t use more
memory by numbering lines 100, 200, 300 than by numbering them 10, 20,
30. It is important to remember that the program should flow from the
lowest numbered line to the highest.

Since we have to start somewhere, type 10 and a space. Your program
now starts at the line numbered 10. Since it’s a bit depressing to stare at a
blank screen, we’ll get the computer to PRINT my name.

10 PRINT “TIAN R. SINCLAIR”

Remember, the quote marks must be in place, because they indicate to
the computer that the words between them are to be printed on the video
screen and are not part of an instruction. Marks that divide one kind of
word from another are called delimiters, and the quote marks are the
easiest of these delimiters to work with. Make sure that anything you want
printed to the video screen starts and ends with quote marks.

Made a mistake? We're not all trained typists, so the TRS-80 is very
forgiving. Use the backspace, the arrow which points to the left, on the key
next to the @. Each time you press this key, one letter of your instruction is
wiped out, and you can type another one. Keep on until the line is perfect-
ly typed.

Now that you've typed the line, you must press ENTER to make certain
that it’s planted into the computer’s memory. Even if you forget the line
number, you still get a result—the words which were inside the quote
marks will be printed, but you don’t have a program because it won’t
repeat, and you must start again. If your line was entered correctly, it is
now a very simple program. We can run the program by typing the word
RUN and then hitting ENTER again.

All right, so it’s not impressive, but each time you type the word RUN
and hit ENTER, you’ll get my name printed on the screen. Makes me feel
good at least.

Try typing the instruction with no space between the 10 and the PRINT,
so that it reads 10PRINT “IAN R. SINCLAIR”. Does it make any dif-
ference in the way the program runs? Did I say that computers were fussy?

Now type LIST10 and hit ENTER. This prints your instruction line on the
screen again. Notice anything about it? Right, the space has been put in again
between the 10 and the PRINT. You can’t cheat your TRS-80 this way!

203

tutorial

Now try some more deliberate errors. It’s just as well to know at this stage
what effects they have, rather than being tangled up with an unfamiliar error
message later on. For a start, leave out the first set of quote marks. Then try
typing PPRINT or PRIINT instead of PRINT. Doesn’t run, does it?

Instead, you get the words SN ERROR. SN is a shortened version of SYN-
TAX, a word that language teachers use to mean the way in which a
language is constructed. If you say in English, “I am here since yesterday,”
your syntax in English is poor, but the same phrase in French is gram-
matically correct.

Syntax is a matter of rules, and an SN error means you have broken a rule
of BASIC by leaving out a delimiter or misspelling an instruction word.
Some newer computers, incidentally, reject a syntax error the moment it is
entered, but the TRS-80, like its generation of home computers, doesn’t spot
the error until you try to RUN.

How much can you PRINT in one instruction? Try it] Type 20 PRINT
“...and then type as many words as you like. You’ll find that the words
don’t run off the edge of the video screen, but form new lines of text on the
monitor. The video monitor accepts only 64 characters/ line, while the com-
puter allows up to 250 characters/line, The computer no longer responds to
keyboard input when the 250 character limit is reached.

PRINT Plus Spaces
Now try the one-liner below:
10 PRINT* SPACED ALONG”

Because we've labeled this line as line 10, it has wiped out the old line 10.
Notice that the space between the first set of quote marks and the first letter
of the word affects the way it prints. This is one way of adding spaces.

Ancther way is by indicating tabs. Tab means the same as it does on a
typewriter: tabulation. The width of the video screen is divided into 64
starting points, numbered from 0 to 63. Using TAB() selects one of these as
a starting point for what you print.

10 PRINT TAB(25)“IN THE CENTER"

Notice the syntax—parentheses after TAB enclose the number, between 0
and 63. The quote marks surround the words to be printed.

If you had put the first set of quote marks between PRINT and TAB, you
would have printed, at the left-hand side of the screen, the phrase TAB(25)
IN THE CENTER, which isn’t exactly what we wanted.

Why TAB(25)? Well, I counted the letters and spaces in IN THE
CENTER and made it 13 characters. I rounded that to an even number, 14,
then subtracted from 64, leaving 50. Half of 50 is 25, and that’s the tab
number. Why? Well, the number of letters and spaces gives the number of

204

tutorial

positions on the line which are used to print. If we want these words to be
centered, then there has to be an equal number of spaces on each side, and we
find this by dividing the number of unused places, 50 in this example, by two.

Try printing your own name centered on the screen.

Notice, by the way, that we're still entering each one-line program as line
10, deleting the previous program in line 10. Later on, we’ll look at other
ways of removing old programs, getting rid of unwanted lines, or running
only the lines we want.

TAB is one of the BASIC commands or functions that not all small com-
puters have, but it’s only the start of the options which are available to the
TRS-80 owner.

10 PRINT “SPACE”, “THE", “WORDS”, “OUT”

Type the above line very carefully. See the commas? Each comma lies
outside the quote marks that set off the words, because we don’t want the
commas printed. If we type:

10 PRINT “SPACE, THE, WORDS, OUT”

hit ENTER, type RUN, and hit ENTER again, the printout on the video
screen would be:
SPACE, THE, WORDS, OUT

As it is written, the effect is quite different, as you will see. The commas
have commanded the computer to space the four words across the width of
the screen. Each comma instructs the computer to start printing the next
word at the next print zone. There are four print zones, each of which can
take up to sixteen characters (letters, numbers, or spaces). If you PRINT
more than sixteen characters in a zone, the comma causes a skip to the next
zone. Try the following program.

10 PRINT “THE ZONES WILL TAKE”,
“SIXTEEN CHARACTERS EACH”

The comma is used as a print delimiter. We can also use the semicolon as a
delimiter, but with a very different action. Try entering the program in Ex-
ample 1. With more than one line of program, you must remember to push
ENTER at the end of each typed program line. When you run the program
(type RUN and hit ENTER), what happens?

The semicolon is another signal to the computer when it’s used in this
way. Typed after a printed quantity, the semicolon means: Use the same
line and keep printing, so that the words we typed in three separate instruc-
tion lines end up on one single line of type. This would happen, incidentally,
even if we had several other lines of instructions between these PRINT in-
structions, so watch carefully for these semicolons if you are entering a pro-
gram which has been written in BASIC by someone else. All small com-
puters use this form of instruction.

205

tutorial

What happens if you leave out the semicolons? Try itl Each PRINT com-
mand causes the video to start on a new line. This is one way you can space
out your printing vertically.

Meanwhile, look at Example 2 for a very powerful command which few
small computers have in their BASIC. It’s the POS function. POS means
position, and it means the position of the cursor mark, that short line which
shows where the next letter will appear on the screen when you type a pro-
gram line.

As a result of the POS, instruction, the computer makes a note of how far
along a line you have printed. Add five to that place number, as we’ve done
in Example 2, and the result is five spaces between each word.

When you type line 10, by the way, don’t hit ENTER until the end of the
instruction after the last set of quote marks. If you hit ENTER before then,
you’re indicating that you want to start another numbered instruction line.
Another point is that you should type DELETE 20-30 and hit ENTER
before running the program. If you don’t, you’'ll print the words in lines 20
and 30 of the previous program, unless, of course, you have switched off be-
tween working Examples 1 and 2.

By this time, your video screen must be looking a bit cluttered, solet’s look
at another useful function that helps clear things up. Example 3 shows a
four-line program (we're getting more adventurous) which makes your
video printouts look better. The new instruction, CLS, means, simply, clear
the screen.

When the program is run, the screen clears, removing the program lines.
After the CLS instruction has been used, the next PRINT instruction will
place the words in quote marks on the top line.

In line 30, I've used the word PRINT by itself. What does that do? Try
leaving it out by typing DELETE 30 and hitting ENTER. Then type RUN
and hit ENTER again. See the difference? The PRINT command in line 30
causes a one-line space between HEADING and the words in line 40. Want
atwo-line space? Then type 30 PRINT, hit ENTER, type 40 PRINT and hit
ENTER again. Now run this one and watch the larger gap appear between
the heading and the line of words.

Time to take a look at the program. Type LIST and hit ENTER. Your
program appears under the last lot of printing, with the lines in correct
order. That’s just one example of why the BASIC language uses these line
numbers. We can place any line number against a line, and the computer
sorts them into order. If we use the same number for two different lines,
then the last one typed and entered wins, the older one is deleted. We can
also delete lines by typing DELETE, then the line number, and hitting
ENTER.

206

tutorial

Can we delete more than one line at a time? Sure we can. Just type
DELETE 10-40, and every line of the program in Program Listing 1 will be
rubbed out. The other way we can remove a whole program, but this time
without needing to know how many lines it has or what their numbers are, is
to type NEW and then hit ENTER.

More Spaces

Suppose we want to print a word at the center of the screen. There are six-
teen lines of print on a full screen, so we could print on line eight. We could
type seven lines with PRINT, but no words, to make the print position move
down one line at a time. We could then use the commands PRINT TAB()
to space the word to the center of line eight.

There’s a much easier way of doing this sort of thing with a TRS-80, by us-
ing the PRINT @ command. It must be entered correctly, with no space be-
tween the T of PRINT and the @ sign, and a comma immediately after the
number following @. If you put an unwanted space in, you'll get the SN er-
ror message when you try to run it. A much less obvious error is typing @
with the SHIFT key depressed. If you hit SHIFT and @ at the same time,
the @ appears as usual on the video screen, but the code number which is
fed into the computer is NOT the correct one. You'll get the SN error report
when you try to run it, but the line will look good on the screen.

With these warnings in mind, try the program in Example 4. Remove the
previous programs by typing NEW and entering. Now type in the three lines
of the new program and run it. Interesting? The word GREETINGS ap-
pears around the center of the screen, and the next line of print is four lines
under that.

Take a look at page E1 at the back of your Level Il manual. Turn the page
so that the numbers are all right side up, and you can read off the PRINT@
numbers and the TAB numbers. The numbers in heavy type at the top are
the TAB numbers for each line, and also the PRINT @ numbers for the first
line, the top line. For the second line of PRINT @, the numbers start at 64
(see the columns down the left- and right-hand sides), for the third line, 128,
and so on.

To find a PRINT@ starting number for any position on the screen, pick
your spot, locate the TAB number at the top of the page and the PRINT @
number for the start (at the left- or right-hand side), then add the two. For
example, if you want to start around the center, try TAB(31) on the line
starting at 448. That gives us a PRINT @ on the number 448 + 31 or 479, so
we type PRINT @479, then add the quote marks and the message.
Remember the syntax: PRINT, no space, @, no space, number, no space,
comma, then quote marks for the message, and keep your fingers off that shift
key when you are typing the @.

207

tutorial

Using More

The TRS-80’s big, big BASIC allows us yet another way of printing which
isn’t available to people with other types of machines. The new instruction
this time is PRINT USING, and it instructs the computer to arrange the
printing to suit some definite pattern which must be specified in the PRINT
USING command. PRINT USING is most useful when you have to print out
a number in standard form, such as a price or a sum on a check. It’s also
useful when you want to round off a fraction.

Since the number of times you are likely to want to use this command in
your own programs is limited, compared to the everyday ones such as TAB
and PRINT @, we’ll look at only a few of the PRINT USING commands.

Example 5 shows PRINT USING applied to rounding off a fraction. Enter
the program and run it to see how the number is printed. This is a smart way
of making sure that your printout doesn’t contain lots of figures after the
decimal point. After all, you wouldn’t like to think that you had just printed
a check for $56.2357.

Another useful feature of the PRINT USING command is that it can insert
a floating dollar sign. Now, if you thought that the dollar was sinking rather
than floating, let me explain that phrase. You might want to print out some-
thing like amounts of $1.50, $26.40, $147.50, and so on. What the floating
dollar sign does is position itself ahead of the first figure of the number so
that you don’t print 1$27.50 and $02.40. Try it out with the program in Ex-
ample 6.

The Level IT manual has a large number of examples of PRINT USING, so
we’ll leave this one, which is a more specialized command than most of the
ones we shall be using in this series.

Bugs

Depending on the age of your 80, you may already have met the dreaded
kkeybbounce. You type PRINT and it appears on the video screen as
PPRINT or PRIINT or some other weird combination of repeated letters.

When you try to run a program with an unwanted double letter in a com-
mand word, you'll get an SN error message, meaning that the internal cir-
cuits of your computer simply don’t recognize the word. Of course, if you
have an unwanted double letter in a message which is enclosed in quote
marks, then it will simply be printed out that way.

Keybounce is a problem that plagues any mechanical switch, like
keyboard switches. You press a key and the electrical contacts close. But,
because they’re made from springy material, they bounce open again before
finally closing and staying closed. Each time the switch closes, it completes
an electrical connection, and if that happens to be the electrical connection
which prints the letter P on the video screen, then you get two of them.

208

tutorial

Every manufacturer of computers gets around this by using a time delay
each time a key is pressed. The computer takes no notice of the key until the
time delay is over. Only a small time delay of about a thousandth of one sec-
ond (one millisecond) is needed.

Radio Shack seems to have given short measure to this problem on the
older TRS-80s. On some models, keybounce can be fixed by pulling off the
keycaps and cleaning the contacts. That's what Radio Shack says, anyway,
but my own TRS-80 has fixed keycaps that don’t come off easily, and it
bounces very badly. The keybounce is so bad, in fact, that if there were no
cure for it, I would have scrapped the whole thing months ago.

Yes, there is a cure, and it works. Radio Shack supplies a program on a
machine code tape entitled KBFIX. Enter this one, and your keybounce
troubles are over until the next time you switch on. Incidentally, more re-
cent TRS-80s have no trace of keybounce.

Sometimes keybounce is just a nuisance. Other times it can cause a com-
plete hangup of your computer, and one of these other times is when you
type LIST and get LLIST. LLIST is a command word which was unfor-
tunately chosen for printing a list on the Radio Shack line printer. Run
LLIST and the result is—nothing. No keys have any effect, nothing appears
on the screen, and the computer appears to have died on you, with just that
accusing word LLIST staring at you from the screen.

What's happened is that you have commanded the computer to print a list
on the printer, and because there’s no printer connected, it’s waiting for you
to connect one. Don’t rush out with a fistful of dollars, because you can re-
cover from this stall in two ways.

One is to switch off completely, but that way you’'ll lose any program you
had in the computer. The easier way is to push the RESET button at the
back of the computer, at the opposite end from the ON/OFF switch. On my
80, this is under a small flap which also houses the connector for expanding
memory. Pushing and releasing this switch removes the hangup, and the
computer is ready to run again. Whatever your manual says, you don’t lose
your BASIC program when you use RESET unless the Radio Shack expan-
sion interface is connected.

The keybounce problem can also be avoided by using a short BASIC pro-
gram, shown in Program Listing 1. It’s a sight longer than the others we've
used in this part, and you have to be sure that you've typed each character
correctly. Run it, and it sorts out the keybounce and then deletes itself!

At this stage, it’s not easy to explain how it works, because it makes use of
parts of memory we don’t normally use, the reserved RAM. The purpose of
these memory parts is kept a close secret, and it’s only when someone with a
bit of time to spare investigates thern that we even get to know about them.

209

tutorial

Keybounce is just one example of what folks in the computing business
call a bug—a flaw in a system. A bug may be in the operating system, or it
may be in a program. Wherever it is, “Into the 80s” will show you how to
stamp out some of the most active bugs.

10 PRINT“SEE THE EFFECT”;
20 PRINT“OF A SEMICOLON™;
30 PRINT“ON THE PRINTOUT"”

Example 1

10 PRINT“SPACE"; TAB(POS(0) + 5)“THE"; TAB
(POS(0) +5)“WORDS”; TAB(POS(0) + 5)"EVENLY"

Example 2
10 CLS
20 PRINT TAB(28)"HEADING”
30 PRINT

40 PRINT TAB(5)“THIS IS A NEATER WAY OF PRINTING”

Example 3

10 CLS
20 PRINT @475,“GREETINGS”
30 PRINT @704,“THIS USES THE PRINT@ COMMAND TO SPACE LINES”

Example 4

10 CLS
20 PRINT USING"“##.447:2.736

Example 5

210

tutorial

10 CLS
20 PRINT USING“$$#4.#47:21.471

Example 6

1 POKE 16553,255:CLEAR:FOR N = 16480 TO 16492:READ K:
POKE N,K:NEXT:FOR N = 16435T0O16437:READ K:POKE N,K:
NEXT:POKE 16405,0:DELETE 1-2

2 DATA 205,227,3,183,200,14,40,16,254,13,32,251,201,195,96,64

Program Listing 1

211

TUTORIAL

Into the 80s
Part II

by Ian R. Sinclair

Et doesn’t take long for the novelty of printing your name on the video
screen to wear off. There are more interesting ways of using the TRS-80,
including the manipulating of variables.

A variable is a code for something, which might be your name, your
driver’s license number, or any other piece of information you choose. The
fact that you can change this code at any time makes it variable, but once
you've defined it, the computer will make use of this code any time you in-
struct it to.

String Variables

Using the methods you learned in the last section, type ENTER and run
the program in Program Listing 1. There are a few new points to make here.
First is the use of the dollar sign after the letter N. The letter is being used as a
variable, but the dollar sign makes it a particular type of variable called a
string variable. A string is simply a collection of the characters we would
normally place between quotes for a PRINT command.

In Program Listing 1, N$ (pronounced en-string) is a string variable
which we have declared as a code for the words, “THIS IS A STRING,
1,2,3, TESTING”. Each time we ask for N$, that's what we get.

You may not realize it yet, but this is a mighty powerful instruction. It
means, for example, that you can print a phrase of up to 250 characters or so
just by using the command PRINT N$. Even better, the Level II machine
lets you use many string variables.

You can use each letter of the alphabet, a letter and a number (A1$, B3$,
and so on), or two letters (AZ$, BD$), as long as the string sign is used to in-
struct the computer that this is a string variable. If you leave out the string
sign, the computer will normally reject any attempt to equate the variable
code letter to a string of letters, because a letter with no string sign means
that the variable is a number.

The exception occurs at the very start of a program, when you have told
the computer that all variables which start with a specified letter will be
string variables. This is done by using the DEFSTR (define as string) com-
mand. A program starting with 10 DEFSTR A,K, T uses variables such as A,
AM, AA, K1, KZ, TZ, TT, and so on without the string sign after them.

212

tutorial

Let’s look a bit harder at this string thing. Can we really store a long
string? Try Program Listing 1 again, but this time make the first line read:
10 N$ = “THIS IS A MUCH LONGER STRING WHICH WILL
NEED MORE MEMORY SPACE THAN THE PREVIOUS ONE”
Don’t change the remaining lines, but type in the new line 10, ENTER,
and run.

The Clear Command

So, you got an error message? Even if you typed everything correctly and
didn’t get the SN error message, you still get the words OS IN 10. OS means
out of string space; was Sinclair wrong? Something else you have to learn
about the TRS-80 is you have to let it know in advance how much memory it
needs to reserve for strings.

Normally, when you first switch on, the 80 reserves 50 units (bytes) of
memory for strings. Each character of a string, and that includes spaces,
remember, takes up one byte of memory, so you don’t need to have very long
strings to total over 50 characters. To reserve more space, use the CLEAR
command at the start of a program. Try it by typing in the following line at
the beginning of the program:

5 CLEAR 200

Leave line 10 as it is; ENTER and run. This time there should be no OS er-
ror message, because we’ve reserved enough string space for 200 characters.
Now this may seem confusing, because when you are inventing a program
you may not know just how much string space you need. That’s OK, because
you don’t have to enter the CLEAR instruction until your program is com-
plete and ready to run, and by that time you should be able to tell how many
characters are going to be stored as strings. If you forget, it’s no great hassle
to type in a line 5 with a CLEAR instruction, followed by a number big
enough to store all your characters. Lines are numbered in tens in order to
leave room for second thoughts like this.

Why should we have to do this? Well, it’s all tied up with the way the
computer controls the memory space. We said in the first chapter of this
series that it is possible to reserve space at the top of memory for machine-
code programs.

This is not the only reserved space in the memory. The memory space just
below the machine-code space is reserved for strings. If you haven't used a
CLEAR (number) instruction, only 50 bytes of this memory are reserved.
Use more than 50 bytes of string and you get the OS warning, because you
have run out of reserved space, and that part of memory is in danger of being
used for something else.

213

tutorial

Why don’t we just start every program with CLEAR 2000, reserving plen-
ty of space? Simple: It’s wasteful. Reserve too much space in memory and it’s
like roping off half a parking lot—you’re wasting space. Memory is valuable
to the computer, so we don’t reserve any more than we need, especially
when we’re entering a long program.

The way computers use strings (called string handling) is one of the points
that sets apart the serious computer from the “just-for-fun” machine. It’s the
big, big improvement of the Level Il machine over the Level I, for example.

The little program that we’ve been running gives you a taste of this. In
line 40, the PRINT command asks for a print (on the video screen) of the
message we’'ve coded as N$, but also for the message “; ALL, WELL..” Notice
the positions of the quotes and the semicolons? The semicolon immediately
after N$ is a command, meaning put in a space and keep printing on the
same line. The semicolon inside the quotes is part of the message and it gets
printed. There’s nothing to show, when you look at the whole message on
the video screen, that one group of characters was stored as a string and the
other as a PRINT command inside quotes.

Here we should mention the matter of numbers. If a variable letter isn’t
specified as a string by the dollar sign or the DEFSTR command, then it’s a
number. We'll find later on that we can define three types of numbers, but
for the moment we won’t look for complications. We can write a line, such
as 20 A = 15, and then throughout the program we can use A instead of hav-
ing to type 15. If we want to change it, we use another statement, such as
100 A = 16. These statements are called variable assignments, and the
equality sign doesn’t mean equals when it's used in this way, but rather
“takes the value of.”

This is very important, as you'll see later, because some statements look
odd if you assume that = means “equals.” Take a look at the short program
in Program Listing 2. N$ is a string variable which we set to be “GREEN
BOTTLES” in line 10. The number variable A is set to 10 in line 20. When we
get to line 30, we get. . . well, try it for yourself! If we now add a new line:

35A = A-1: GOTO 30
and RUN again, we see some wild printouts which won’t stop until we press
the BREAK key.

What happened? We did say that = means “takes the value of.” In line
20, A takes the value of 10, so in line 30 you get:

10 GREEN BOTTLES, HANGING ON THE WALL

(You did get the comma inside the quotes, didn’t you?) At the new line 35,
A takes the value of 10 — 1, which is 9. The colon marks a new instruction on
the same line. This saves us from having to make a new line number. The
next instruction is GOTO 30-—go back and carry out the instruction in line 30
and go on from there. This is the PRINT instruction all over again, so you get:

214

tutorial

9 GREEN BOTTLES, HANGING ON THE WALL

The program then automatically steps to the next line, 35 again. This time
A starts at 9; the instruction A = A - 1 gives A the new value of 8 and so on.
This is called a loop—the program simply goes from instruction 30 to 35,
then back to 30 again, and you can’t get out of it except by pressing the
BREAK key, by another program instruction, or by letting it run out
of numbers.

The INPUT Instruction

We need to look now at a more immediate way of entering information
into the computer. So far, every string and number we’ve used has been
planned ahead and put into the program from the beginning. The only
method we have of changing things is by retyping the program lines (I'll talk
about editing them later).

The instruction that saves us a lot of time is called INPUT, and an example
of its usage is in Program Listing 3. Type in the program, remembering that
the @ sign must follow directly after the T of PRINT, no spaces allowed,
and the number of the PRINT @ position must be followed by a comma and
then the first set of quotes. If you run the program, right away the screen
clears, and the words

WHAT IS YOUR NAME?

appear. On the next line a question mark appears, and the program stops,
waiting. It’s waiting for you to put in your name, or any other name. You
can take your time about typing a name, because the computer waits until
you hit ENTER. When you do hit ENTER, your name appears with that
famous phrase after it. You can enter any name or any gibberish at the IN-
PUT step. It will accept numbers, or mixed names and numbers like CON-
VICT 99, or anything else you put in. They will get printed just as if they
had been placed between quotes in a PRINT command.

1

2 dhtkindidncbegscsnesebehehosccnst @
sdhebeentebhbeb rneti bbeber
cbehnenbebne
cheRncrcmnm Y -
cm,tnemnem

Y emmemcememe m cme me ma @

am c
<

€
©, %, xc.,cucvmmuv danddhit

¢ ckikckch pet
clilicici] :
elllelelel ckekekekekaokenekekefaue I K

- G R i
TN T AT T ﬂk“klklmk'klk!I'Iskmkilkl(k!mk he

1Kk I8 waAGF ASFS
~ F D W|W\W|W -
~ Ot uegyeuie
’lk]l&)ddlkfdk](xllkdk]lkdlkdik N
) ldgdfddd;dmwhwlw\wxww
= 5 SKSKSKSKKKS J
h H;"{Hmh!mlT(;vduu)wawkl;dllk]k 5
vpeuuvnyuwuvd hoshbnbe! -
\ Teakcw o
; ckckk:kckc
. giruwisisiginxavovmt. mmon moear 0

215

tutorial

This is more useful, because it lets you write programs that look a bit more
friendly, for a start. The TRS-80 goes further with its input command than
some others, in fact, and lets you use INPUT like a PRINT statement, so you
can write a line such as:

20 INPUT “WHAT IS YOUR NAME"; N$: CLS

to replace line 20 and 30 in Program Listing 3. Do I hear an objection? It’s
true that when you use INPUT to print like this, you can’t place the printing
where you want it, because you can’t have INPUT TAB or INPUT@. Try
this for line 20:

20 PRINT @22,;:INPUT “WHAT IS YOUR NAME”;N§$:CLS

Watch the sequence of delimiter markings in this one—after the 22 we
have comma, semicolon, and then colon marks. Notice we don’t use a ques-
tion mark after NAME, but you’ll see one when the program runs, because it
forms part of the reply to the INPUT command.

Suppose you try to use N instead of N§ after INPUT? You can’t do it,
unless what you enter is simply a number. If you specify a string variable,
you can INPUT what you like, up to 255 characters; however, if you specify
a number, then you must enter a number—no letters permitted.

Using INPUT statements to make a sort of conversation is illustrated in
Program Listing 4. In line 20, your name is assigned to N$ by the INPUT
statement, and line 30 makes a friendly comment.

Atline 40, the INPUT asks for age, and at line 50 for this year. The grand
finaleis in line 60, when the printout on the video screen gives the name and
year of birth. How? Since it has the present year, represented by variable Y,
and your age, variable A, it only has to subtract A from Y to get your year of
birth—unless you lied about your age! Simple—but it looks like magic to
anyone who hasn’t seen your TRS-80 in action before.

CLOAD and Friends

CLOAD is one of the instructions we use many times on the TRS-80. It
means Cassette Load, and it’s the instruction that lets you use these pro-
grarms on cassette.

The freedom that cassette loading and saving gives you is immense.
Without cassettes, each program you use is lost whenever you type a new
program or switch off. By saving your programs on cassette, you can enter
them at any time.

Inaddition, cassettes give you a chance to run programs which might take
many hours to enter from the keyboard or which most of us could never
devisw even if we were locked in a padded cell for a year.

Okay, let’s go over cassette loading in detail. If you bought a complete
TRS-80 outfit, you'll have the CTR-80 recorder; a used TRS-80 might come
witha CTR-41. I use a fairly high-grade recorder which has a better-than-

216

tutorial

normal frequency response (which means it records and plays high notes
better). This is advantageous because the recording and replaying of data
and programs uses high notes, and you can’t load properly unless these notes
are loud and clear. For example, if the tone control of a cassette recorder is
set to reduce high notes, it just won’t load programs.

Whatever cassette recorder you use must have a microphone input socket,
automatic recording level adjustment, an earpiece output socket, and a
motor control. The motor control takes a small (2.5 mm) jack plug, the
smallest plug on the TRS-80 cable, which comes from the cassette outlet on
the TRS-80 keyboard.

The signals out of the cassette recorder come from the earpiece socket, a
3.5 mm one, which is linked by pushing in the black plug at the end of the
TRS-80 cassette cable. For loading cassettes, you don’t need the microphone
plug (the grey one). Check them all again.

If you are not using the CTR-41 or CTR-80 recorders, then whatever you
use must have the same plug-in arrangements, particularly the motor con-
trol, because the recorder motor is controlled by the computer. If you
bought only the TRS-80 keyboard and are using your own cassette recorder
(or reel-to-reel recorder), then you will have to make or buy adapter leads,
or do without motor control.

If you are using the CTR-80 from Radio Shack, then the recorder will run
fast forward or fast reverse even when the computer has stopped the motor
from running in the play or record/play settings. If you are using the
CTR-41 or any other cassette recorder, you won’t have this rather useful
facility. For a lot of program work it won’t matter, but if you would like to
go from one place on the tape to another, then there are various fixes. A few
user-group magazines will show you how to cut tracks inside the recorder to

do this.

TO 'MIC!

T

TO MOTOR CONTROL TRS-80
———————— []

________ _] L {~—--—-—-MOTOR ——-—"D

SWITCH OPEN- COMPUTER CONTROLS MOTOR
SWITCH CLOSED - MANUAL CONTROL

FROM 'EAR'

Figure 1

My own fix consists of an adapter box and a small switch which allows ei-
ther normal or computer control of the recorder motor. With this addition,

217

tutorial

you can also use manual control with the cassette recorder switched to play,
which is useful for finding a short gap between the programs on the tape. If
you start a playback in the wrong place on the tape, it won’t load correctly
and the program won’t run. If hardware doesn’t interest you, the easy solu-
tion is to type:
10000 OUT 255,4: GOTO 10000

ENTER this and RUN, and the motor will stay switched on by the com-

puter until you press BREAK.

Loading the Program

At this point we’ve sorted out our recorder, everything’s plugged in, and
we're ready to go. Next, we need a BASIC program on a cassette. My
TRS-80 came with Radio Shack’s Blackjack program, and it’s likely that
yours did too. If not, then you'll need some software.

Pop the cassette into the recorder, with the program you want to load, so that
the label of the wanted program is uppermost. Rewind the tape com-
pletely—the CTR-80 will make a moaning noise when the rewind is complete.

Set the volume control of the recorder to halfway between its maximum
and its minimum settings. Make sure that the tone control, if you have one,
is set to give maximum treble.

Now we're ready. Type CLOAD on the TRS-80 keyboard, press play on
the recorder and press ENTER on the keyboard. You should hear the motor
of the recorder start to hum. If the motor starts when you press play, there’s
a fault in the motor circuit somewhere. The motor-control jack may not be
plugged fully in. If the motor doesn’t start at all, then perhaps there are no
batteries or the power line isn’t plugged in. (Editor’s note: The motor control
relay is also notorious for “sticking.” To help correct this problem, see “Build
a Snooper/Snubber” in the HARDWARE section of this book.) These are
what we call hardware problems. ,

Another possible hang-up could be a software one. Are you sure that you
typed CLOAD? Keybounce, which may have given you CCLOAD or
CLLOAD won’t be accepted by the computer, and it will snap back with an
SN error when you hit ENTER.

By now, if all has gone well, the cassette should be running. Unless you
have connected the loudspeaker of the cassette recorder so that you can listen
to the tape as it plays, you won’t know when the action actually starts, until
you see things happening in the top right-hand corner of the monitor.

Two asterisks appear once the program starts loading, one steady, the
other flashing slowly. One asterisk flashes at the rate of loading program
lines, on for one line, off for the next. If you're loading a short program with
short program lines, the rate of flashing will be rapid, and it won’t be long

218

tutorial

before a click comes from inside the keyboard unit, the cassette recorder
motor stops, and READY appears on the video screen.

If all this happens, you have achieved a successful load first time, and you
qualify for the Fort Worth Perfboard Medal of Honor.

It’s much more likely, first time around, that things won’t run quite so
smoothly. There are two extremes to the problem. One is that no asterisks
appear at all. This could simply be due to a tape which starts only after a
long leader, which is why it is so useful to have a loudspeaker tone; but if
there is no trace of the asterisks after a minute, there is replay volume trou-
ble. Despite what the manual may say, this indicates that the replay volume
is either much too low or much too high. If, on the other hand, you get two
asterisks, but the right-hand one isn’t flashing, then it’s a dollar to a cent that
the replay volume is just a little bit too high.

Cassette Control

If you have either of these problems, you’ll soon find that you have
another one as well. The cassette recorder motor keeps humming away hap-
pily until it comes to the end of the cassette or until you do something about
it. It certainly won’t stop at the end of the program load, because the stop in-
struction was never loaded into the computer. You can waste a lot of time
just waiting for a cassette to load, so keep a careful eye on these asterisks. If
they aren’t blinking properly, then press the RESET button at the back of
the computer, rewind the cassette, press CLEAR to remove the old instruc-
tions and asterisks, and start again with a different volume control setting.

Don’t give up if you overshoot and go far too high or far too low. When I
bought my first TRS-80, I spent the better part of an afternoon trying to
achieve a good load. Since finding the correct settings, it has never at any
time failed to load a good cassette. You don’t need to use expensive chrome-
dioxide tape material, just reasonably good quality audio tape, like Agfa or
TDK. It’s definitely an advantage to use tape sold in short lengths for com-
puter work, but the C60 length is very useful when you’re developing a pro-
gram with several versions.

You may find that you have a tape which simply won’t load under any
conditions. The odds are that it’s a tape intended for a Level I machine.
Once again, if you have the sound wired on your cassette recorder, you can
check this, because the Level I tapes have a lower pitched note and sound
quite different.

Once you have found the correct setting for the Radio Shack Blackjack
tape, or whatever you use for trials, try to find the limits of the volume con-
trol settings. It takes a lot of patience, but it's worth your while on the older
models (later models are more tolerant of volume control settings). Load the
cassette at different settings, checking only for a few seconds that the

219

tutorial

asterisks are flashing correctly, then use RESET to stop the tape and rewind.
You should end up with two marks on the volume control, one at the lowest
position at which a tape will load, one at the highest.

Set the volume control for normal operation midway between your
marks. If you then find a tape doesn’t load correctly at this midway setting,
try it at each of the extreme settings. If it won’t load on any of your marked
range, reject it. One final check: Make sure it is a BASIC tape and not a
machine-code (SYSTEM) tape, which requires quite a different technique.

When you have loaded your BASIC tape, type LIST and hit ENTER. The
program will now list, unless it’s one which has been specifically coded to
prevent copying. As the program lists, it will scroll up the screen
tairly rapidly.

You can stop the scrolling any time by hitting SHIFT and @ at the same
time, so I usually keep one finger on the shift key and another on the @ key
to stop and start the scrolling. Any other key can be pressed to
restart scrolling.

Ididn’t say what scrolling means? When you’ve seen it, you’ll know —it’s
the way the listed lines appear at the bottom of the screen, seeming to push
previously listed lines off the top of the screen.

What you should be looking for in the listed program is corruption—gib-
berish lines, sometimes with no numbers or numbers out of order. Trouble
is, until you get to know a bit more about programming, you don’t really
know a strange line from a perfectly good onel The real test, of course, is to
run the program. If it operates perfectly, then there is nothing wrong with
your cassette recorder volume control setting, and you can look forward to a
long, active computing life.

Just keep your head clean. I mean, of course, the record/play head of the
cassette recorder. Get a pack of cleaning fluid (isopropyl alcohol) and clean-
ing pads and use them as the instructions indicate: every three months or so,
depending on how much tape you use. Don’t be too generous with the fluid,
as it can sometimes swell the plastic bearings inside cassette recorder motors,

Loading System Tapes

While we're on the subject of this cassette loading caper, we might as well
look at how machine-code tapes are loaded. A machine-code, or system tape
usually comes with a bit more information than a BASIC program tape.

For one thing, you'll need an answer to the MEMORY SIZE? question
which appears when you switch on. This is a number, such as 32000, that
reserves some memory. The system tape, or the instruction sheet which
comes with it, should have the correct number printed on it. If the program
is one which doesn’t need reserved memory or which reserves its own, the in-
structions will say so.

220

tutorial

Hit ENTER and the usual Radio Shack message comes up, with READY.
Next, type SYSTEM, and hit ENTER again. This time, you’ll get an asterisk
and a query at the left-hand side of the video display. That’s 80 language for,
“What's the code name for the tape?r”

The code name will have up to six letters and must be typed. For example,
the Radio Shack fix tape for keybounce has the code name KBFIX. When
you've typed the name, prepare the cassette recorder to replay, press the
play key, and hit ENTER. The cassette recorder motor will start, and, if all
is well, you should see the usual asterisks to indicate that you are loading
your first machine-code program. The rate of flashing is usually a lot slower
than it is for a BASIC program, so don’t worry if the load stops after only a

few slow flashes.
Now what can go wrong? Well for one thing, the code name which you

typed may not be the code name for the first program on the tape. If it isn’t,
the left-hand asterisk will be replaced by a letter. If that letter is C, then you
have trouble, and you’ll have to try again with a different volume setting.
Hit the RESET switch to stop the action, rewind the tape, clear the screen,
and start again by typing SYSTEM. You don’t have to switch off and answer
the MEMORY SIZE? question again.

Next question: Having loaded it, how do you run it? When the tape has
finished loading, the recorder motor cuts out, the asterisk stops flashing, and
another asterisk and query appear under the first one on the left-hand side of
the monitor. Type a slash (/) and then the entry number of the machine-
code program.

Machine-code programs are not as simple as BASIC programs in this
respect: You have to instruct the computer where to start working. The en-
try number should, once again, be noted either on the cassette or on the in-
struction leaflet. It may be the same as the number you used to answer the
MEMORY SIZE? question. When you've typed the slash and the number,
hit ENTER and your machine-code program will run.

Suppose you quit using one machine-code program and want to start us-
ing another one which needs more memory roped off? You don’t have to
switch off to do this. Just type SYSTEM, hit ENTER and when the asterisk
and query appear, type slash and 0 and hit ENTER again. The MEMORY
SIZE question will appear again. You’ll lose any BASIC programs you had
in store, though, so if you have mixed BASIC and machine-code, make sure
that you have the BASIC program on tape.

A few machine-code programs are “self-locating.” Once you have loaded
them in by typing their code names and entering, the second step is just to
type the slash and hit ENTER. Whatever type of machine-code program
you may be using, don’t forget the slash. Otherwise, you’ll find that when
you hit ENTER, the cassette motor starts running again, trying to enter
another program, and you’ll have to recover control by using the RESET

221

tutorial

button. You’ll probably lose the program which was loaded, but you can
start again.

Recording Programs

We've left until the end the matter of recording BASIC programs of your
own. You’ll want to record your own programs, of course, to remind
yourself how good you are. You'll also want to make back-up copies of soft-
ware you've bought, just in case anything should happen.

How do you record a program? The first step is to prepare a blank
cassette. Don’t think you can re-record an old tape in the same cheerful way
you may be used to doing with audio cassettes. You might get away with it,
but odds are you won’t, and your recording will be corrupted. If you want to
re-record a tape, wipe it completely with a bulk eraser. If the program you
want to record has taken you a long time to run correctly, you won’t want to
trust it to anything but a length of good quality fresh tape.

Reel the cassette back to the start and take a look at it. If there’s a leader, a
piece of clear or colored plastic tape at the beginning, advance the tape a bit
until the grey magnetic coating is visible. I usually run each tape for a count
of five on the tape-footage counter. Don’t touch the tape; it will leave a
greasy mark which can cause loading problems later. Place the tape in the
machine again, note the counter setting, and press the record and play keys.
A few cassette recorders use one single record key, but most use the safer
system of needing two keys for recording.

The volume control setting doesn’t matter, because recording volume is
automatically controlled, unlike replay. Now type CSAVE and a quote
mark, then a letter and another quote. If you choose “A” as the letter, this
will appear on the screen as CSAVE “A”,

If you don’t use the code letter the computer will reject your attempt to
record, but only after it has already recorded a signal on some of the tape,
which you won’t be able to use again unless you can erase it thoroughly.

When you're satisfied that all is well, hit ENTER, and the program
should start to record. There are no flashing asterisks to remind you this
time, just the quiet hum of the motor of the cassette recorder until it clicks
off at the end of the recording. The click, incidentally, comes from the relay
inside the TRS-80. At the end of the CSAVE, READY appears on the screen.

At this point, don’t start shouting eureka and running around. You don’t
know yet that you have a good recording. Rewind the tape, type
CLOAD?P“A” (or whatever letter you used), and press play on the recorder.
Then check again that the query mark has been typed after CLOAD, hit
ENTER, and wait. The program will play back, with the usual flashing
asterisks, but this time the replayed program is being compared byte by byte
with the program which is still in the memory of the computer.

222

tutorial

If they aren’t identical, the message “BAD” will be displayed. You have
then to sort out whether the tape copy is faulty or you need a different
volume control setting for this program. Only when you’ve CSAVEd and
CLOADed with no error messages can you be sure that you have a good
copy of your program. Cautious people always make two recordings, check-
ing one with CLOAD? People like me who shed blood, sweat, and tears to
create a program always make three copies.

Be very careful that when you use the CLOAD? command, you don’t
leave out the query mark. If you do, the program on tape will load, replac-
ing the program that was in the computer. If the recording was good, this
won’t matter, but if the recording was bad, you have lost the good original
and have a bad copy, and that just isn’t fair trading.

The CSAVE Instruction

Very little ever seems to go wrong with a CSAVE instruction, but there
are a few points you will need to remember. One is that the computer can
only control the motor of the cassette recorder; it has no control over the rest
of the recorder.

If, for example, you use CSAVE but forget to press the record and play
keys of the recorder, or press only one of them, then the computer will push
out the recording just the same, with no warnings and no recording made. It
might be useful to arrange it so that you got an error message, but this would
need more connections between the computer and the recorder and would
make the recorder a non-standard item.

You should always use CLOAD? after a CSAVE, so you can check that
you really did record that program. A much worse fault is to type CLOAD
and run with the record and play keys down. This way you load no pro-
gram, and you wipe out anything which was on the tapel

When you CSAVE a program, you have to use a letter or a couple of let-
ters or letter/number—it’s like choosing a name for a variable. If you don’t
do as we've said, the CSAVE will not run, an SN error will be displayed, and
the tape will be corrupted.

The label is called a file name, and it’s important to the recording. It’s
used when you CLOAD the program, and it’s particularly useful when you
have several short programs packed together on a piece of tape. Suppose you
have three programs on the start of a C15 cassette, and they have been
labelled “A”, “B”, and “C” at the time they were CSAVEd.

When you CLOAD, you can type CLOAD?“B” and hit ENTER, and
start running the cassette from the start. When the first program starts to
replay, the left-hand asterisk will be replaced by the letter A to show you
that this is the file name (the first letter if there’s more than one) of the pro-
gram which is being read. The other asterisk will flash normally. When the

223

tutorial

program which you have requested comes on line, it will load in the usual
way, with one steady asterisk and one flashing one, then the recorder will
switch off.

Normally, when I keep several programs on one cassette, I leave plenty
of space between and use the tape counter to find each one, but I find this
label-search very useful for my backup cassette, which is a C60 with all
my most valuable programs stored tightly together. Since I use this only
when a valuable program has been wiped or corrupted (and I'm resting the
other backup cassette), it doesn’t matter if it takes twenty minutes to find
the program.

One last point—always start a replay either at the start of a cassette or ata
point where you know there’s no program recorded. If you start running
where there’s a program recorded, the load will be faulty, and the computer
can lose control of the motor. You’ll end up having to use the RESET button
and rewinding the tape.

224

tutorial

Please note: These listings are not formatted. Enter them normally.
Program Listing 1

5 REM FIG.2.1 INTO 88'S

10 N$="THIS IS A STRING , 1,2,3, TESTING"
28 PRINT NS

38 PRINT

49 PRINT N$;"; ALL WELL"

Program Listing 2

5 REM FIG 2.2 INTO 88'S

19 N$="GREEN BOTTLES"

28 A=19

39 PRINT A;;N$;" ,HANGING ON A WALL"
40 END

Program Listing 3

5 REM FIG.2.3 INTO 88'S

18 CLS

28 PRINT@23,"WHAT IS YOUR NAME?"

39 INPUT N$: CLS

4¢ PRINT@L7,N$;" -THIS IS YOUR LIFE!I"
58 END

Program Listing 4
5 REM FIG.2.4 INTO 86°'S
18 CLS
2¢ INPUT "WHAT IS YOUR NAME, PLEASE";N$
3¢ PRINT:PRINT N$;" I LIKE THE SOUND OF THAT"
4¢ INPUT "TELL ME PLEASE WHAT AGE YOU WILL BE THIS YEAR
(IN WHOLE YEARS)";A
5¢ INPUT"AND NOW WHAT YEAR THIS IS";Y¥
60 PRINT:PRINT"SO, ";N$;" ,YOU WERE BORN IN ";Y-A
708 END

225

TUTORIAL

Into the 80s
Part III

by Ian R. Sinclair

[ow that we've been over the methods of CSAVE and CLOAD, we can
L. Nl take steps which lead to longer programs. I am going to explain the
programming methods which you’ll find in longer programs and show some
short examples which you can use in programs of your own.

Are you ready for the Force? The instructions we're going to look at in this
part are among the most powerful instructions in BASIC, and your TRS-80
has one of the most complete BASICs I know.

The IF-THEN Statement

The IF-THEN-ELSE instruction allows a computer to make a com-
parison and a decision. The comparison will be between two quantities,
strings, or numbers, and the decision will be about what to do next. The best
way to show how this works is with an example (Program Listing 1). Let’s go
through it carefully.

Lines 10 through 60 print out the rules of a very simple game. A lot of
improvements can be made, and we will need to make them if we want the
game to be interesting, but for the moment, let’s take just one step at a time.

The new parts of the program start at lines 70 through 90. The program
prints the word LION and waits for your reply to be typed and entered in
line 80. The reply which you type becomes the variable N$, which can now
be compared with the correct answer, which is the word PRIDE. Line 90
does just this: If you typed PRIDE, correctly spelled, then N$ = “PRIDE”,
and the program will print the words WELL DONE and end.

If you typed anything but PRIDE, the rest of line 90 is ignored, and the
program shifts to line 100 to tell you that your answer is wrong. You are then
asked to try again, and the program returns to line 70 by using the command
GOTO 70. Try it, giving a correct answer on one run and an incorrect
answer on the next run, so you can see how the computer treats these differ-
ent cases.

Meanwhile, what about ELSE, which only a few computers feature in
their BASIC? The BASIC statement in line 90 used only IF-THEN. If N§ =
“PRIDE”, then the program goes on to complete the other instructions in
line 90. If N$ is not “PRIDE”, then the rest of line 90 is ignored and the next
line executed is line 100. That last section of line 90 is rather important, in-
cidentally. If you omit the : GOTO 120, when you answer PRIDE the com-
puter would print:

226

tutorial

WELL DONE
WRONG, I'M AFRAID—TRY AGAIN
LION ?

A correct answer should stop this simple program, and only an incorrect
answer should permit the entry of another answer. You have to remember
when you write a program that unless you command it otherwise, the pro-
gram will always step from one line to the next in numerical order.

The ELSE Command

That big, big BASIC of the TRS-80, however, lets you write lines 90
through 120 in a much shorter form, which is shown in Program Listing 2.
This can now be the last line in the program. Type in DELETE 100.120, hit
ENTER and then type in your new line 90. Try it; this time, if N$ is not
“PRIDE”, the rest of the line is ignored only as far as ELSE, then the section
after ELSE is carried out. Using IF-THEN-ELSE in this way can save a
number of lines in your program.

Computer Comparisons

In addition to the use of IF-THEN-ELSE, another innovation is the use of
the equality sign in the expression IF N$ = “PRIDE”. This is not quite the
same use of the equality sign that we've used until now. When we have a
command like IF N$ = “PRIDE”, the computer compares the two stored
strings, N$ and PRIDE, letter by letter, to determine whether they are iden-
tical. If one string has a space or a comma or a period and the other hasn’t,
then they’re not identical. We'll later look at ways around that problem.

The equality sign comparison isn’t the only one which can be made. We
can also write IF N$ > “PRIDE” or IF N$ < “PRIDE”, though these
statements would not be used in this game. The > sign means greater than,
and when it’s applied to a string it means that the word used for N$ would
come later in an alphabetical index than the word PRIDE. For example, if
“ROAR” > N$, then it comes later in a list than PRIDE, because R follows P
in the order of the alphabet. “PRUDENT” > N$, because it also
comes later, because U comes after I in the alphabet, even though both
words start with PR. The < sign means less than, and works exactly in
reverse. To complete the story, we can combine these symbols as shown in
Table 1.

Clearing Methods

Since we're writing programs of twelve lines and more, we need to be able
to clear one program (after using CSAVE to preserve it) in order to start all
over again with another program. Type NEW and hit ENTER —it’s that
easy. This doesn’t actually erase the program the way you can erase a tape, it
erases only the instructions inside the computer which act as a signpost to the

227

tutorial

start of the program. Your old program is completely wiped out when you
enter a new one of the same length or longer or when you switch the com-
puter off and on again later.

Some owners of other computers would give both ears and a tail for the
TRS-80’s edit facilities. We’re not going to cover all of the editing methods at
once, but it’s time you met the main one. With your program set up, type
EDIT 70 and hit ENTER. This will result in the number 70 being displayed
on the screen with a cursor (dash mark) beside it. Press the space bar and
release it, and the cursor moves right. Press again, and the first letter of
PRINT appears. Another press and the second letter appears. Looks as if
you're typing all these letters with the space bar, doesn’t it? The backshift ar-
row (+) allows you to go back until just the number shows; the space bar
allows you to go forward to show more of the instruction.

Space bar your way to the end of the line and then backspace until the last
quotation marks disappear but you can still see the entire word LION. Press
the letter I on the keyboard, but don’t hit the ENTER key. Backspace until
the L of LION disappears, leaving only the first quotation marks visible.
Now type the word WHALE and hit ENTER. The line should read:

70 PRINT “WHALE”

The new word has been inserted (I for INSERT) between quotation
marks. In this example, we first had to delete by backspacing after the I had
been pressed, but it’s also possible to add letters, spaces, or whole words into
a line by using the I key and then typing in the new material. You can alter a
line as much and as often as you like in this manner, but if you interrupt a pro-
gram to alter a line, you will have to reRUN the program from the beginning.

Now that we’ve changed line 70, we need also to change line 90. Type
EDIT 90 and hit ENTER. Use the space bar to step along to the E of PRIDE,
then press the I key. Step back, using the back arrow, until the P of PRIDE
has disappeared, then type in SCHOOL and hit ENTER. Line 90 should
now have “SCHOOL” in the place of “PRIDE”, and the program makes
sense again.

Increase the Beasts

One of the problems of our program in Program Listing 1 is that it’s
limited, to say the least; it's not the sort of thing that’s likely to hold your in-
terest on a long rainy afternoon Perhaps we can use a new instruction to pep
things up a bit, starting with a method to add more animals.

Look now at Program Listing 3. There’s a new instruction in line 70,
READ Q$,A$. The READ instruction tells the computer to look for data,
and the data must always be labeled by starting with the word DATA.
There’s no comma after DATA, but there must be a comma after each word
in the list except for the last one. Because we're asking the computer to read

228

tutorial

string variables from this list, it is a good idea to enclose each word in the list
within quotation marks. Where the comma after each word is not inside
quotation marks, it indicates to the computer where each word ends.

In line 70 the computer assigns values to the string variables Q$ and A$.
First time around, it makes Q$ identical to LION and A$ identical to
PRIDE. To do this, the computer simply makes the first string variable,
which is Q$, equal to the first word read from the data line, and the second
string variable, A$, equal to the second word read from the line. We can
have a line 70 which looks like this:

70 READ Q1$,A1%$,02$,A2$,Q38,A3%
This would have read three sets of question and answer words, or we could
have read all six sets in one operation.

As it is, we chose to read just one question and one answer in line 70, and
in line 80 we print the question word. Since Q$ is assigned to LION in line
70, that's what comes up on the video screen. We don’t ask for the answer
word (A$) to be printed, so it isn’t. At line 90 you're asked to input your an-
swer, and line 100 then compares your answer with one, PRIDE, which has
been taken from the list.

We've made a few changes in line 100, also. If your guess is correct it is an-
nounced on the video screen, and the instruction GOTQ70 tells the com-
puter to read another pair of words. That’s what makes this READ
.. .DATA pair of instructions so useful; each READ is a new one, with new
information coming in from the data line or lines. This time, Q$ is set equal
to WHALE, and A$ is set equal to SCHOOL.. See why we call these quan-
tities variables? We vary what they are set to each time, instead of leaving
them set for all time.

Looks a bit more interesting now, doesn’t itP You can use as much data as
your computer has space for (and your typing fingers will really ache before
you fill up the 16K TRS-80 with data). Your TRS-80 won’t let you type more
than a total of 255 characters on a line, so if your words (or numbers, of
course, if you use number data) need another line, then you just start
another line.

There are rules about this, as you might expect. The last word in a line
must not have a comma following it, and the next line must start with a line
number which is greater than the line number of the previous line, After the
line number, you must type in the word DATA, then the first data word for
the line, a comma, the next data word, and so on.

The computer always reads the data in order, starting with the lowest
numbered line. There is no simple command which will fetch word number
six, for example, although such a command would be very useful to have.
Later we’ll see how we can get around this limitation.

We still don’t have a really satisfactory program yet. For one thing,

229

tutorial

there’s no end to the program. It simply reads data until the last word has
been read, and then you get an error message—OD (out of data). If you
can’t answer one of the questions, the program simply sticks, going back to
line 80 from line 100 until you answer correctly or switch off in disgust.

Change Your Game

We need a few changes. First, we need to be able to stop the program
when all six sets of words have been used. Secondly, we need to be able to
limit the number of wrong answers so that the program doesn’t stick. Final-
ly, it would be useful to keep some sort of score.

You may not realize it, but you know one method by which to make these
changes. The obvious method is to use counting variables which start at zero
or unity and are increased by one (incremented) at each loop of the program.

Start by counting the number of times a set of questions and answers is
read from the lines. Do we need to count this? Counting is one way of solv-
ing the problem, but there’s another one: Put in a final pair of data items,
and make the computer reject them. There’s no animal called Z, and it
doesn’t hunt in Zs, so we can add Z, Z to the end of the line. We don’t want to
print Z, so we'll intercept this data, called a terminator, between reading in
line 70 and printing in line 80:

751F Q$ = “Z” THEN END
110 DATA “LION”,“PRIDE”, .. .“GEESE”,“GAGGLE” “Z”,“Z”

We have to put both Zs in the line, because the READ statement in line 70
always reads two strings. If there’s only one, we’ll get that OD error message
again. This is a much more satisfactory way of terminating a read than by
counting the number of sets of reads, because it lets us add to the data easily,
by inserting more data between the gaggle and the Z; if we had used a count,
we should also have to change the count number.

We now have the problem of the program looping around line 80 through
100 and back when you can’t answer. Let’s allow three tries only, and if all
are wrong, we print the correct answer and fetch the next pair of words.

How do we do that?

First of all, we must select a letter to represent the number of tries; T looks
useful, asit will remind us of t for try. A letter which reminds you of what
you are trying to do makes life a lot easier when you are designing and
redesigning the program, or when someone else is trying to understand it.
We want to allow one attempt whenever a pair of names is read, so we need
to make T take the value of unity each time data is read. Edit line 70 to:

70 READ Q$, A$: T =1
and T will be correctly set at each read step.
Now we want to add one to T each time you answer incorrectly. We can

230

tutorial

do that by altering line 100 (which is lengthening every time we alter this
program) to read:

100 IF N$ = Q$ THEN PRINT “WELL DONE”:

GOTO 70 : ELSE PRINT

“WRONG, I'M AFRAID - TRY AGAIN™:

T=T+1:GOTO 80
After our third attempt, T will have a value of four. We now need to arrange
for this to cause the program to break out of its loop. If T is less than four,
line 80 should print Q$ and ask for an input reply. If T is equal to four, we
want to print the correct answer and start with another pair of words. It
looks like a convincing case for an IF-THEN statement. Suppose we make
line 80 read:

80 PRINT Q$: IF T = 4 THEN PRINT
“ANSWER IS”;A$:PRINT:GOTO 70

If you've had three attempts, the answer is printed and a new animal
question is asked. In line 70 T is again set to 1, so the next time the program
goes to line 80 the new piece of program is ignored again. We’ve printed the
words and the variable A$ in the new section of line 80 using a semicolon to
keep the video display running on the same line. (We could have used T = 0
inline 70 and IF T = 3 in line 80.)

The next item on the list is a way of keeping score. To be fair, we need to
keep a tally of the number of total attempts and the number of successful at-
tempts. Each time we’ve been successful, we've printed WELL DONE, so
we could make a count of the successful attempts there. Each time we an-
swer, we input something on line 90, so the total number of attempts could
be counted there.

Let’s use the variable A for the number of attempts. We have to start at
zero, so A must be set to zero early in the program. Line 10 is fairly empty,
and we can add, after a colon, A =0. To count the attempts, line 90 needs
another addition: A = A + 1 so that A is increased by one each time
you answer.

If we use S to count successes, we can set S =0 in line 10 and increment it
just after the statement PRINT “WELL DONE” in line 100:

100 IF N$ = Q$ THEN PRINT “WELL DONE™:

S$=S+1:GOTO 70: ELSE

PRINT “WRONG,I'M AFRAID - TRY AGAIN™:

T=T+1:GOTO 80

Finally, having counted attempts and successes, we better make some use

of them. When the last pair of items (the terminators) has been read, we can
print the scores instead of just finishing the program. This is done by adding
line 75:

231

tutorial

75 IF Q$ = “Z” THEN 120

and adding line 120, which prints the score.

In case you're getting a bit lost with all these changes, Program Listing 4
shows what the program now looks like. The program which started as a
very simple game is now more advanced and does its own scoring as well.

Add Excitement with FOR-NEXT

The game will be much improved if we can arrange the program so that
the computer can pick any animal at random and surprise you. We can’t
tackle that until we learn two other instructions.

The first is a really powerful one called the FOR-NEXT loop. Its purpose
is to allow you to count the number of times an operation is carried out. For
example, if we type in the instructions:

200FORN = 1TO6

210 READ S$

220 NEXT
a loop will be set up to read six items from a line somewhere else in the pro-
gram. The first time the computer comes to line 200, it sets N at 1 and then in
line 210 reads the first item, assigning it to S$.

There being no instructions about what to do with the item in this exam-
ple, the computer goes to the next line—NEXT. NEXT means go back to the
FOR instruction and make N one step greater. The size of the step, unless
you instruct it otherwise, is 1. The next time round N is set to 2, and in line
210, the second item is read.

Once again we go to line 220, and the NEXT instruction compares the
value of N (now two) with the limit we set (which was six) and returns the
program to line 200. This loop repeats until the NEXT instruction makes N

= 7. This stops any return to line 200, so that the program goes on to the
next line,

The example we've used is a fairly simple one, with very few instructions
between the FOR and the NEXT. We could, in fact, write such a short piece
of program on one line:

200 FORN = 1 TO 6 : READ S$: NEXT
and we don’t have to worry about having to set up a comparison like:
210 IF N< = 6 THEN 200 ELSE 220

The word powerful, when it’s applied to an instruction, means it does a
lot of program work without needing much typing. The amount of work it
does can be judged from the time it takes. As an example, and so that you
cansee the FOR-NEXT loop doing something, try the program in Program
Listing 5. Use a digital watch to measure the time between pressing ENTER
on this one liner and getting the READY signal back, and watch the line

232

tutorial

printing out. FOR-NEXT loops are often used deliberately in programs to
create a time delay, such as to give you a definite time period in which to
answer a question before moving on to the next one.

BASIC Information

There’s a routine built into the BASIC language which picks numbers ran-
domly for any number limits you like to use. The command is RND, and
what makes it so useful (not just for games, incidentally) is that it can be
followed by a whole number (an integer) in parentheses. The result will be
an integer picked at random which lies between one and the number you
used in the parentheses. For example, RND(6) should cause the computer to
come up with a random whole number between one and six.

We have a data list of six items and can produce a random number be-
tween one and six. It would be useful if that random number could be used
to select the corresponding item of data. For example, if RND(6) came up
two, the second item from the list would then be selected, and so on.

There’s no such instruction in BASIC so we have to look for ways around
this problem. Suppose the random number came up three. Could we
perhaps read the data list three times and use the last item only? We could
indeed, and that’s what the first sample FOR-NEXT program did.

Take a look now at Program Listing 6. There’s a new line in the old pro-
gram, line 65. At the start of line 65, T, the number of times you've tried, is
set at 1. We had to shift it because our new program is going to read data in
several times before it actually prints an animal name, and we don’t need T
set more than once each time. The next instruction in line 65is Y = RND(6),
which picks a number between one and six and allocates it to the variable Y.
We can now use a FOR-NEXT loop, with the counting variable N counting
from one to Y. You don’t know yet what that number Y is, as it’s going to be
set and used by the computer itself.

What happens on each loop? At a value of N set at one, the program
moves to line 70 and reads the first two items (LION, PRIDE) on the list.
There are no other instructions, so the NEXT command causes N to advance
to two and the next pair of items is read. Reading the next pair of items in
this way automatically causes the previous values to be wiped out, just as
recording a new item on a music cassette wipes out the one on it before. The
value of the variable N will be increased by one on each run around this
loop, until it equals Y, the random number. Suppose Y happens to be four.
Then the fourth set of words is read and the loop stops with Q$ and A$ stor-
ing the fourth set of words, SHEEP and FLOCK.

The FOR-NEXT loop has stopped and the program moves to line 80, car-
rying out one very important instruction on the way. RESTORE causes the
data selector to go back to the start of the data. Without RESTORE, the next

233

tutorial

time we look for a word the data would be counted from where we left off
first time, which doesn’t leave much room for choice, since only a herd of
cows and a gaggle of geese follow the flock of sheep. RESTORE sets
everything back so that the next random number starts the search from the
beginning of the data again.

We've now arrived at line 80, and the question word is printed as before.
The rest of the program is also unchanged, so that if you answer correctly or
have three unsuccessful tries, the program returns—or does it? You need ex-
tra eyes in this business. If we want the next word to come up, we need a new
random number, else the program will go back to its old way of taking the
next pair of data words. Instead of GOTO 70 in line 80 and 100, we want
GOTO 65, and that should set things right.

The game’s getting more interesting now, and it would be useful to have
more items on the list, because with only six sets of items it’s not much of a
game. Our changes have made the Z,Z terminator unnecessary. Because
we're picking at random from six, there’s no chance that Z will ever be
picked, so we can remove these letters from line 110, We can also remove
line 75.

How do we go about ending the game and reading the score? It would be
useful to see the score any time we want and opt to continue or end,

For a simple game like this, let's view the score after each set of five
answers.

Weneed to count a set of five items printed and then show the score. We
will set up another variable (J) to act as a counter and increment each time a
question is printed. We want a way of telling when] is 5, 10, 15, or any
other multiple of 5. We could have lines like:

200IF] = 5THEN.
210IFJ = 10 THEN.....
220IF] = 15 THEN.

but that’s a waste of time and memory. A much easier trick is to make use of
yet another feature of that big BASIC in the TRS-80, the INT command.
INT means rounding off a number by removing the fractional part.
INT(6.25) is 6, INT(2.14) is 2, and so on. The way we’re going to use INT is
in a decision step:

IF INT (J/5) = J/5THEN.

The easiest way to understand how this works is to imagine taking values from
one upwards. If J is 1, then J/5 is 0.2, and INT(J/5) is zero. J/5 certainly isn’t
equal to INT(J/5). For] = 2,3,4 we get the same effect; the INT value is zero,
but for] = 5, when 5/5 = 1, and INT(5/5) also equals 1, the test succeeds.
At] = 6,]/5 = 1.2, and INT(5/5) = 1, and the two are unequal again

234

tutorial

until] = 10, when both J/5 and INT(J/5) are equal to 2. This test therefore
allows us to detect each set of five steps of J.

If /5 = INT(J/5) we want a score. We don’t want the score to come up
too quickly, so we'll introduce a time delay between each test, which will
also delay the appearance of the score. To do this we can use:

FOR Z = 1 to 500: NEXT

Z doesn’t mean anything to the program; it’s just a variable which we’re us-
ing for a time delay.

How do we use the test IF J/5 = INT(J/5)? If the test fails, the ELSE at the
end of the line directs the program to find another item. This will happen on
the first four runs. When the test succeeds, and J/5 = INT(J/5), we've
reached the fifth (or tenth, fifteenth, twentieth.) item, and the screen
is cleared and the score printed.

The next line is the new way of deciding whether to continue the game or
stop. The question DO YOU WANT TO CONTINUE? is asked, and in-
structions are given for answering. An answer of this type (Y or N) has to be
followed by hitting ENTER; later on we’ll look at methods of answering
questions like this without using the ENTER key.

This looks like a good time to sit back and take a hard look at our program,
which is possible only if you have a copy on paper. Short programs of sixteen
lines or less can be viewed on the video screen, but this one will not quite fit
into sixteen lines. For programs longer than this, the only effective way to
check it is to print it on paper or to copy the listing from the video screen.

Shape Up and Look Professional

A long hard look at our program as it is now shows that it needs renumber-
ing. The odd-numbered lines we added have inserted useful features into the
program, but they make it look rather untidy. If we had a really long pro-
gram here, the simplest way of renumbering would be to use a renumbering
program. As we're remodeling the program with this new random selection
feature, we might as well write out the program again and renumber as we
go. The result is shown in Program Listing 7.

It’s at this stage that you can make a program look and run more profes-
sionally than most home-brewed efforts. One pointer is neat printing, with
good tabulation and even lines, preferably right justified. Right justified
means that the ends of the lines on the right of the screen are lined up, and it
has to be done by careful attention to the spaces between the words in the
line. A professional programmer may spend as much time tidying up the
printing in a program as on the rest of the program.

The next item on the list is error traps. Professional programmers write
programs which other people are going to use, and a good program should
be user friendly and crash-proof. User friendly means that when the user has

235

tutorial

to make some sort of choice, the questions should be politely put and easy
to answer.

For example, it’s a whole lot friendlier to be asked to type YES or NO than
1 or 2. Crash-proofing is even more important and means that every input
from the user has to be tested. For example, if a YES or NO answer is called
for, what happens if the user types YO or NES? A home-brew program
might terminate, or worse still, it might take the answer as being YES or NO
with no indication to the user. A much better way is to respond to a wrong
answer with a statement such as:

“TM SORRY—I DON'T RECOGNIZE THAT ANSWER 7,
N$;“ PLEASE TYPE YES OR NO”

In this line, N$ would be the word which the user had typed and the line
would be followed by a GOTO instruction so that the choice was pre-
sented again.

Each request should be accompanied by a clear list of what the choices
are, the user should be reminded of the choice, once made, and an unaccept-
able answer should be explained, with a return to the request. Making sure
that this is all done is not so simple; it can take up a lot of time and needs a lot
of careful thought. It also needs memory space. It pays off handsomely in
the end, however, because your program will always be a delight to run,
easy for you or your friends to use, and a very attractive item if you want to
sell it.

Speed It Up

A few final details will help the program to run faster. It’s not giving
secrets away to tell you that the TRS-80 can store numbers in three different
forms. If you don’t specify what you want, all number variables are stored as
single precision numbers, as if they consisted of a number with several places
of decimals. This takes up a lot more memory space than a simple whole
number (an integer). If we can define all number variables as integers, our
programs will run faster and use less memory. The program in Program
Listing 7 uses a lot of number variables which could be defined as integers:
A,S,T,Y,N,Z. By redefining them, we can clear enough string space for
more data words. Alter line 10 to read:

10 CLLEAR 100: DEFINT A,S,T,Y,N,Z,J:A = 0:5=0:] =0:CLS

Notice that A and A$ are entirely different variables: one is a number
variable which we’ve now defined as an integer; the other is a string variable
which is an answer to a question.

236

tutorial

How about taking the plunge for yourself and designing your own ques-
tion and answer game? Remember that you will have to insert a larger
number after CLEAR in line 10 if you use a lot of word pairs (the number
should be equal to the number of characters, plus a bit in reserve). You will
also have to change the title and instructions to fit your own ideas.

Sign Meaning

= exactly equal to

A<B A less than B (earlier in the
alphabet)

A>B A more than B (later in
alphabet)

A<>B or A><B A not equal to B

A<=B A less than or equal to B

A>=B A greater than or equal to B
Table 1

“Into the 80s” will continue in Volume II of the Encyclopedia.

237

tutorial

Please note: the following listings are not formatted. Enter them normally.

Program Listing 1
18 CLS
28 PRINT@26,"COLLECTIVES"
3 PRINT:PRINT"I SHALL GIVE YOU THE NAME OF A CREATURE.
b

49 PRINT"I SHALL THEN ASK YOU THE NAME FOR A GROUP OF S
UCH CREATURES"

58 PRINT"FOR EXAMPLE - WOLF"

68 PRINT "YOUR REPLY SHOULD BE -~ PACK. NOW TRY —--"

76 PRINT "LION"

80 INPUT NS

90 IF N$="PRIDE" THEN PRINT "WELL DONE":GOTO120

168 PRINT "WRONG, I'M AFRAID -~ TRY AGAIN"

116 GOTO 70

128 END

Program Listing 2

90 IF N$="PRIDE" THEN PRINT "WELL DONE":END:ELSE PRINT
"WRONG - I'M AFRAID, TRY AGAIN":GOTO70

Program Listing 3

18 CLS

2¢ PRINT@26,"COLLECTIVES"

39 PRINT:PRINT"I SHALL GIVE YOU THE NAME OF A CREATURE"

48 PRINT"I SHALL THEN ASK YOU THE NAME FOR A GROUP OF S
UCH CREATURES"

5@ PRINT"FOR EXAMPLE - WOLF"

6@ PRINT"YOUR REPLY SHOULD BE - PACK., NOW TRY--—-~=-= "

78 READ Q$,AS$

88 PRINT QS

9% INPUT NS

100 IF N$=A$ THEN PRINT "WELL DONE":GOTO 70:ELSE PRINT
"WRONG, I'M AFRAID - TRY AGAIN":GOTO88

116 DATA "LION","PRIDE", "WHALE","SCHOOL","FISH", "SHOAL"
. "SHEEP", "FLOCK", "COWS", "HERD", "GEESE", "GAGGLE"

Program Listing 4

18 CLS:A=0:5=0

2§ PRINT@26,"COLLECTIVES"

36 PRINT:PRINT"I SHALL GIVE YOU THE NAME OF A CREATURE"

4¢ PRINT"I SHALL THEN ASK YOU THE NAME FOR A GROUP OF S
UCH CREATURES"

50 PRINT"FOR EXAMPLE - WOLF":PRINT"YQUR REPLY SHOULD BE
- PACK"

60 PRINT"YOU ARE ALLOWED THREE TRIES. AFTER THE THIRD I
NCORRECT ANSWER":PRINT"YOU WILL BE SHOWN THE CORRE
CT ANSWER AND ASKED THE NEXT QUESTION"

78 READ Q$,A$:T=1

75 IF Q$="Z" THEN 120

86 PRINT Q$:IF T=4 THEN PRINT "ANSWER IS ";A$;:PRINT:GO
TO70

9% INPUT NS$:A=A+l

180 IF N$=AS THEN PRINT "WELL DONE":5=S+1:GOTO78:ELSE P
RINT "WRONG, I'M AFRAID - TRY AGAIN":T=T+1:GOTO80

238

tutorial

11¢ DATA "LION","PRIDE","WHALE","SCHOOL","FISH","SHOAL"
, "SHEEP", "FLOCK", "COWS", "HERD", "GEESE" , "GAGGLE" , "2
n l’lle
1
128 PRINT:PRINT"YOUR SCORE IS ";S;" IN ";A;" ATTEMPTS":
END

Program Listing 5

160 POR N=1TO580:PRINT "JUST LOOK AT THIS...!":NEXT

Program Listing 6

19 CLS:A=0:5=0

20 PRINT@26, "COLLECTIVES"

3@ PRINT:PRINT"I SHALL GIVE YOU THE NAME OF A CREATURE"

40 PRINT"I SHALL THEN ASK YOU THE NAME FOR A GROUP OF S
UCH CREATURES"

5¢ PRINT"FOR EXAMPLE - WOLF":PRINT"YOUR REPLY SHOULD BE
- PACK"

60 PRINT"YOU ARE ALLOWED THREE TRIES. AFTER THE THIRD I
NCORRECT ANSWER" :PRINT"YOU WILL BE SHOWN THE CORRE
CT ANSWER AND ASKED THE NEXT QUESTION"

65 T=1:¥Y=RND(6):FOR N=1TOY

7¢ READ Q$,AS:NEXT:RESTORE

75 IF Q$="Z" THEN 120

80 PRINT Q$:IF T=4 THEN PRINT "ANSWER IS ";AS;:PRINT:GO
TO65

9¢ INPUT NS:A=A+l

18¢ IF NS$=AS THEN PRINT "WELL DONE":S=S+1:GOT065:ELSE P
RINT "WRONG, I'li AFRAID ~ TRY AGAIN":T=T+1:GOTO80

112 DATA "LION","PRIDE","WHALE","SCHOOL","FISH", "SHOAL"
. "SHEEP", "FLOCK","COWS", "HERD", "GEESE", "GAGGLE", "2
n'nzu

12¢ PRINT:PRINT"YOUR SCORE IS ";8;" IN ";A;" ATTEMPTS":
END

Program Listing 7

10 CLS:A=@:S=@:J=0

20 PRINT@26, "COLLECTIVES"

3¢ PRINT:PRINT"I SHALL GIVE YOU THE NAME OF A CREATURE"

40 PRINT"I SHALL THEN ASK YOU THE NAME FOR A GROUP OF S
UCH CREATURES"

5¢ PRINT"FOR EXAMPLE - WOLF":PRINT"YOUR REPLY SHOULD BE
- PACK"

60 PRINT"YOU ARE ALLOWED THREE TRIES. AFTER THE THIRD I
NCORRECT ANSWER":PRINT"YOU WILL BE SHOWN THE CORRE
CT ANSWER AND ASKED THE NEXT QUESTION"

78 T=1:¥Y=RND(6) : FORN=1TOY

80 READ Q$,A$:NEXT:RESTORE

S0 PRINT QS:J=J+1:IF T=4 THEN PRINT"ANSWER IS ";A$:PRIN
T:GOT012¢

106 INPUT N$:A=A+1

110 IF N$=A$ THEN PRINT "WELL DONE":S=5+1:GOT0126:ELSE
PRINT "WRONG, I'M AFRAID -~ TRY AGAIN":T=T+1:GOT0908

120 FOR 2=1TOS500:NEXT:IF J/5=INT(J/5) THEN CLS:PRINT "Y
QUR SCORE IS ";8;" IN ";A;" ATTEMPTS":ELSE 70

130 PRINT:PRINT "DO YOU WANT TO CONTINUE? TYPE Y FOR YE
S, N FOR NO"

149 INPUT Z$:IF 2$="Y" THEN 780 ELSE IF 2$="N" THEN END
ELSE 149

15¢ DATA "LION","PRIDE","WHALE","SCHOOL","FISH", "SHOAL"
, "SHEEP", *FLOCK", "COW", "HERD", "GEESE", "GAGGLE"

239

UTILITY

Printer Calibration

Delay Loop

241

UTILITY

Printer Calibration
by L. O. Rexrode

If you use more than one type of paper with your printer, this simple
modification makes a lot of sense. At the office my TRS-80 and Centron-
ics 779 with tractor feed are primarily used for handling advertising mail in-
quiries and our normal operation uses five different types of forms.

In the interest of saving time and improving efficiency, the need for a
method that starts every print routine exactly where it is intended,
regardless of who is operating the sytem, was apparent.

Three Variables

With the Centronics 779, three variables are of primary importance in
printing a professional looking form: left margin setting, top-of-form setting,
and the density setting. Any, or all of these, may require different settings
for various print routines or form sizes. The length of form (number of lines)
is not included, since a program is usually written with this factor as a con-
stant. The simplest variable is the left margin setting. The printer’s
roller/tear-bar assembly has an engraved scale in one-eighth-inch increments
from — 15 on the left to 90 on the right. This scale should be used to set the
left edge of the form to be printed. The value is determined by a trial run.

To set the top-of-form requires the addition of a scale to the 779. This is
done quite easily if you use the holddown clamp on the left pin feed
assembly. Use a three-and-one-half-inch peel-off label and type a column of
numbers, say, from 1 to 21, trim off the excess margins, and place the label
right along the edge of the holddown clamp. The resultant scale now allows
you to set the top-of-form to a specified position.

The third variable is the print density control. This sets the number of
characters-per-inch printed. For maximum legibility you usually want this
set as wide as the form will allow. The control, located on the rear of the
printer, is not only difficult to reach but requires several lines of print, with
trial and error adjustments, to get the optimum settings. A calibrated dial
knob solves this problem easily.

The dial knob I used is Radio Shack’s part no. 274-413. However, on some
printers, the shaft may not protrude quite far enough to get a good bite
when the set screw is tightened. If so, use a coarse file on the rear face of the
knob, removing about 1/32” to 1/16”.

Cut a sliver from the adhesive-backed label to make a pointer for the dial
and place it approximately as shown in Figure 1. Rotate the adjustment
shaft fully counter-clockwise (lowest density setting) and push the knob onto

243

utility

the shaft, setting the number one mark to the arrow. Tighten the set screw
and you're through.

Find Your Values

Run each of your print routines and determine the optimum value of the
three variables: left margin, top-of-form, and density. Note these values for
use with the routines. The best place to note them is in your program, im-
mediately preceding the first LPRINT statement. If you are new to pro-
gramming, here is the statement I use (your line number, title, and values
will relate to your own program, of course):

CLS:PRINT @320, “READY TO PRINT MAILING LABELS DIRECTLY FROM
DISK”:PRINT:PRINT“SET TOP-OF-FORM TO 20":PRINT“SET LEFT EDGE OF
FORM TO -4”:PRINT “SET DENSITY CONTROL TO 4": INPUT* ‘ENTER’ TO
CONTINUE”;X

When LLISTing a program in BASIC, it is not possible to use such a
prompting message. I am constantly LLISTing with the density set too
Jow—which results in my losing the ends of long program statements. As a
reminder to myself to set the density before starting a LLIST, I used another
label, placed prominently on the top front of the printer that almost shouts,

)

244

utility

“For Listings Set the Density to 7.” It works. We have been using this meth-
od for several months now, and it is quite gratifying to see the results. No
matter who is operating the system, and regardless of how often we change
forms or paper, the first line of print goes down exactly where we want it to.

A couple of other time-savers we have added to our program are worth
the time and the slight additional memory required. The first one resulted
from our operator having spent over an hour trying to figure out why the
computer wouldn’t run and finally realizing that the out-of-paper switch
was off, due to a small tear in the form which wasn’t readily apparent.

To prevent this from happening again, I added a GOSUB in front of every
LPRINT statement. The subroutine checks the status of both the out-of-
paper switch and the print switch. If either is off, a prompting message is
displayed telling the operator what is wrong and allowing him to correct be-
fore continuing. My subroutine reads as follows:

750 IFPEEK(14312)<128 RETURN

751 CLS:PRINT @468,“PRINTER NOT READY”:
PRINT @ 583, “R'—RETURN
TO MENU ‘O—OK TO CONTINUE”

752 Q$ =INKEY$:IF Q$ = “R”THEN 511

753 1FQ$ = “O”THEN RETURN ELSE 752

This simple solution has saved us hours.

Add “Top-of-Form”

Since the 779 doesn’t have front panel controls that allow either a line feed
or a top-of-form, I added these as a part of my program. Since each program
has a menu, this was the obvious place to access these routines. The menu
uses the INKEY$ function, so it was just a matter of adding the up arrow as
the selection to advance one line and adding the letter T to go to top-of-
form. I did not include these two symbols in the menu table to prevent clut-
ter. They are blind selections. Here are the routines:

620 IFQ$ = “t"THEN 800
625 IFQ$ =“T"THEN 810

800 IF PEEK(14312)<128 GOTO 805 ELSE 511
805 POKE 16424,1;POKE 16425,0:LPRINT CHR$(11): GOTO 511
810 IF PEEK(14312)<128 GOTO815 ELSE 511
815 POKE 16424,51:POKE 16425,0;LPRINT CHR$(11):GOTO511

In either of these routines, if the printer is not ready, nothing happens ex-
cept returning you to the menu. The t advances the paper one line. The T
advances the paper 51 lines, then you return to the menu.

In all the routines in this article, my menu routine begins at line 511.

245

UTILITY

Delay Loop

by Allan S. Joffe W3KBM

If you've ventured into the world of assembly programming, you'll even-
tually need a delay or timing loop. Though there isno “best way” to delay
a program, we can explore various methods.

Basically a time delay loads a value into a register (or values into a pair of
registers) and then decrements this value to zero. This means we also need a
mechanism that tells the computer when it has decremented the initial value
to zero, so that it can continue the program.

The Zero Flag

Consider Program Listing 1, loaded using T-BUG.

The C2 instruction in memory location 4A06 is a JP NZ,NN which signals
the computer that if the comparison of the contents of the D and A registers
is not zero, it should go back to the location specified by the NN which in our
case is 4A02. This is the location of the decrement instruction.

One thing that this routine does not take into account is that when
decrementing a single register, the zero flag is operative. (This is not true
when we come to the case of decrementing a pair of registers.)

You notice that to continue the decrementing process, we had to tell the
program to go back to a specific location. This means that if you did not load
the program into the memory locations specified, you would have had to
change the return locations in 4A07 and 4A08.

InProgram Listing 2 we will use a relative jump instruction that obviates
the need for such changes. This allows the program to relocate, for with the
relative jump, the computer knows where it should go even if you change
the origin of the routine.

In this listing I've introduced the mnemonic form of the instruction.

This listing is considerably shorter than the first one for several reasons.
One s that the first example is used to illustrate the idea of comparing the
contents of one register with another to determine when the zero condition is
reached. The first listing tells the program where to go if the zero condition
has not been reached. This takes three locations, while the new method uses
but two locations in memory.

The jump relative instruction in location 4A03 works in conj unction with
the FD information in location 4A02. We know that to make the loop decre-
ment, we have to keep returning to location 4A04. Location 4A02 is three
steps back from location 4A04, counting location 4A04 as step one. You have
signaled the computer that this is what you want by inserting FD.

246

utility

What is the significance of FD? It is a minus three in twos complement
form. If you had needed a relative jump of minus seven, then the FD would
have become F9. Table 1 shows the relative jump values from minus one to
minus 16.

The absolute delay produced by the simple timing loop using a single
register is just about maximum when the register initial value is FF (255
decimal). I say “just about” because if the initial value in the register is 00,
then you have 256 iterations of the loop, because the first decrement takes
you from 00 to FF.

This is a bone for the nitpickers in the group.

Longer Delays

If we need longer delays, we can insert another identical loop after the
first one, but there is another route to travel. This method decrements a pair
of registers. If one register can be packed with FF, then two registers can be
packed with FFFF,

Remember, if we use a pair of registers we will have to resort to some sort
of a compare operation as with Program Listing 1, because when you decre-
ment a pair of registers, the zero flag is not automatically working in your

247

utility

behalf. Thus we need some program steps to get the zero flag back from
vacation.

Since the idea of the jump relative code seems to have merit, we will go
that route as well. When possible, I like to use the BC register pair for
decrementing. BC seems to shout out “byte counter” and is, for me, a
memory jogger.

Running Program Listing 3, you notice that it takes more time before the
program returns to T-BUG. This tells us that we have achieved a much
longer delay than when decrementing the contents of a single register. The
delay is in the neighborhood of 1.1 seconds.

The listing also uses the OR function, which is why we had to do what we
did in memory location 4A04.

To operate any of the logic functions, you have to call on the services of
the A register.

The jump relative figure in location 4A08 is equal to minus six (see Table
1), the proper value to get back to location 4A03, which contains the DEC
BC instruction.

The above is but one viable routine, not the only one.

FF -1
FE -2
FD -3
FC -4
FB -5
FA -6
Fg -7
F8 -8
F7 -9
F6 -10
F5 -11
F4 12
F3 -13
F2 -14
F1 -15
FO -16

Table 1. Minus Relative Jump Values (twos complement form)

The Interrupt

Now let us get down to the business of combining a single register decre-
ment and the register pair decrement to achieve significantly longer time
delays. The game plan is to interrupt the decrement of the register pair while
a single register decrements to zero. BC is the register pair in Program
Listing 4 and the D register is used as the interrupt register.

When you load Program Listing 4 and RUN, be prepared to sit back for
two minutes and 32 seconds before it returns you to T-BUG. The key ele-

248

utility

ment of the time delay is the value in location 4A05, the value being
decremented in the D register.

If you change this value from FF to AA, then the delay time becomes one
minute and 43 seconds. If it is changed to 64, then the time delay is one
minute and one second. Changing this value to OA is going to give you a
total time delay of about eight seconds. Thus this delay routine is quite flexi-
ble and should satisfy all but the most unusual needs.

You will get the most good out of this exercise if you use the breakpoint of
T-BUG to examine the program at various points.

4A00
4A01
4A02
4A03
4A04
4A05
4A06
4A07
4A08
4A09
4A0A
4A0B

Load register D with N (value to decrement)

Hex for 255

Decrement value in D register

Load the A register with zero. . . . this is
the test value to show loop is done
Compare value in D with value in A

If this test shows A and D both zero the
loop is finished. If not pgm goes to 4A02
and continues decrementing value in D
When decrement is finished the program
returns to T-BUG which is at 4380.

Program Listing 1

4A00 16 LDDN
4A01 FF
4A02 15 DECD
4A03 20 JRNZ
4A04 FD
4A05 C3
4A06 80
4A07 43

Program Listing 2

4A00 01 LDBCNNN
4A01 FF

4A02 FF

4A03 0B DECBC
4A04 78 LDAB
4A05 BO ORB
4A06 Bl ORC
4A07 20 JRNZ
4A08 FA

4A09 C3

Program continued

249

utility

4A0A 80
4A0B 43

Program Listing 3. Decrementing the BC register pair

4A00 01 LD BC,NN
4A01 FF

4A02 FF

4A03 0B DECBC
4A04 16 LDD,N
4A05 FF

4A06 15 DECD
4A07 20 JRNZ
4A08 FD

4A09 78 LDAB
4A0A BO ORB
4A0B Bl ORC
4A0C 20 JRNZ
4A0D F5

4AOE C3

4AOF 80

4A10 43

Program Listing 4

250

APPENDIX

251

APPENDIX A

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose.”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level II. To run in Level I follow this procedure.

® Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
® Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent
code made to agree.
@ Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model III Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
0OUT236,0 and OUT236,2.

253

APPENDIX B

Glossary
A

access time—the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator—traditionally the register where arithmetic (the accumula-
tion of numbers) takes place.

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

A/D converter—analog to digital converter. See D/A converter.

address—a code that specifies a register, memory location, or other data
source or destination.

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications.

algorithm—a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment— adjustment of hardware to achieve proper transfer of data. In
the TRS-80 this usually applies to cassette heads and disk drives.

alphanumerics—refers to the letters of the alphabet and digits of the num-
ber system, specifically omitting the characters of punctuation and syntax.

ALU— Arithmetic-Logic Unit. Internal, and inaccessible to the program-
mer, it is the interface between registers and memory, manipulating them as
necessary to perform the individual instructions of the microprocessor.
analog—data is represented electrically by varying voltages or amplitudes.
AND-—a Boolean logical function. Two operators are tested and if both are
true the answer is true. Truth is indicated by a high bit, or “1” in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately.

APL—a popular high-level mathematical language.

argument—any of the independent variables accompanying a command.

254

appendix

ASCII--American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—a piece of software that translates operational codes into their
binary equivalents.

B

backup—refers to making copies of all software and data stored externally
and having duplicate hardware available.

base—a mathematical term that refers to the number of digits in a number
system. The decimal system, using digits 0 through 9, is called base 10. The
binary system is base 2.

BASIC—an acronym for Beginner's All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing—a method of computing where many of the same type
jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the
computer operator. All the cards are put into the card reader, and the
results of each person’s program are returned later. This is contrasted with
interactive computing.

baud rate—a measure of the speed at which serial data is sent. The equiva-
lent of bits per second (bps) in microcomputing.

benchmark—to test performance against a known standard.
binary—-a number system which uses only 0 and 1 as digits. It is the equiva-
lent of base 2. Used in microcomputing because it is easy to represent 1s and

Os by high and low electrical signals.

bit—an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

Boolean algebra—a mathematical system of logic named after George

255

appendix

Boole. Routines are described by combinations of ANDs, ORs, XORs,
NOTs, and IF-THENs. All computer functions are based upon these
operators.

boot—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. Sometimes it is keyed in, and on
other machines it is in read only memory (ROM). Using this program is
called “booting” the system or cold-starting.

bps—bits per second.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug—an error in software.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.

byte—eight bits that are read simultaneously as a single code.

C

CAl—an acronym for Computer Aided Instruction.

card—a specifically designed sheet of cardboard with holes punched in
specific columns. The placement of the holes represents machine-readable
data. Also a term referring to a printed circuit board.

carrier—a steady signal that can continuously be slightly modified
(modulated). These modulations can be interpreted as data. In microcom-
puters the technique is especially used in modem communications and tape
input/output (1/0).

character—a single symbol that is represented inside the computer by a spe-
cific code.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a prede-
termined result for that block of data.

256

appendix

chip—a physical package containing electrical circuits. They vary from
aspirin-size for a simple timer to about the size of a stick of gum for a com-
plete microprocessor.

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed of frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL—COmmon Business Oriented Language. A language used
primarily for data processing. Allows programiming statements that are very
similar to English sentences.

compiler—a piece of software that will convert a program written in a high-
level language to binary code.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

concatenate—to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

constant—a value that doesn’t change.

CPU—Central Processing Unit. The circuitry that actually performs the
functions of the instruction set.

CRT—Cathode Ray Tube. In computing this is just the screen the data ap-
pears on. A TV has a CRT.

cue—refers to positioning the tape on a cassette unit so that it is set up to
read/write the right section of tape.

cycle—a specific period of time, marked in the computer by the clock.

D

D/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

data base—refers to a series of programs each having a different function

257

appendix

but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer, or onto a stor-
age device. Knowledge of operating or programming a computer is not nec-
essary for a data entry operator.

debug—to remove errors from a program.

decrement-—to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

dedicated—in computer terminology, a system set up to perform a single
task,

default—that which is assumed if no specific information is given.

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

digital—all data is represented in binary code. In microcomputers, a high
electrical signal is a 1 and a low signal is a 0.

disassembly—remaking an assembly source program from a machine-code
program.

disk—an oxide-coated, circular, flat object, in a variety of sizes and contain-
ers, on which computer data can be stored.

disk controller—an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system (DOS)— the system software that manipulates the
data to be sent to the disk controller.

DMA—direct memory access. A process where the CPU is disabled or
bypassed temporarily and memory is read or written to directly.

documentation—a collection of written instructions necessary to use a piece
of hardware, software, or a system.

258

appendix

dot matrix printer—instead of each letter having a separate type head (like a
typewriter), the single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
make.

driver—a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex—refers to two-way communications taking place independently,
but simultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

E

EAROM-—an acronym for Electrically Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if
necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editor.

EOF—End Of File.

EOL—End Of Line (of text).

EPROM-—Electrically Programmable Read Only Memory. The chip is pro-
grammed by voltages higher than normal for computer chips. Once pro-
gramrmed, it is used like ROM, but can be erased by exposure to ultraviolet
light.

exclusive OR—see XOR.

execution cycle—a cycle during which a single instruction actually occurs.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

259

appendix

F

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flowcharting—a method of graphically displaying program steps, used to
develop and define an alogrithm before writing the actual code.

FORTRAN--FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.
G
game theory—see von Neumann.
garbage—computer term for useless data.
gate—a circuit that performs a single Boolean function.

GIGO—Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics—information displayed pictorially as opposed to alphanumerically.

H

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Contrast with buffer.

260

appendix

hangup—a situation where it seems the computer is not listening to you.

hard copy—a printout.

hardware—-refers to any physical piece of equipment in a computer system.

hexadecimal—a number system based on sixteen. The decimal digits 0-9 are

lcifefitsalong with the alpha characters A-F, which are also recognized as
gits.

high—a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming code that does not require a knowl-
edge of the CPU structure.

high order—see most significant.

HIT—acronym for Hash Index Table. A section of the directory on a
TRS-80 disk.

host computer—-the primary computer in a multi-computer or terminal
hookup.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

IC—integrated circuit. See chip.

immediate addressing— the address of the information that an operation is
supposed to act upon immediately follows the operation code.

increment—to increase, usually by one. See decrement.

indexed—the information is addressed by a specified value, or by the value
in a specified register.

indirect—the address given points to another address, and the second ad-
dress is where the information actually is.

intelligent terminal—a terminal with a CPU and a certain amount of

261

appendix

memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program written ina
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compile.
interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the
main program continues.

I/O—acronym for input/output. Refers to the transfer of data.

J

jack-—a socket where wires are connected.

K

K—abbreviation for kilo. In computer terms 1024, in loose terms 1000.

L

least significant—refers to the lowest position digit of a number, or right-
most bit of a byte. In 19963 the 3 is the least significant digit. Opposite of
most significant.

LIFO—acronym for Last In First Out. Most CPUs maintain a “stack” of
memory that this rule applies to. The last piece of data pushed into the stack
is the first piece popped out.

light pen—-a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

262

appendix

loop—a set of instructions that executes itself continuously. If the program-
mer had the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value the loop is terminated.

low—a logic signal voltage. The computer senses this as a binary 0.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

mainframe—refers to the CPU of a computer. This term is usually confined
to larger computers.

memory—the hardware that stores data for use by the CPU. Each piece of
data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each
capable of storing a tiny electrical charge.

microprocessor—a CPU on a single chip.
mnemonic-—a short, alphanumeric abbreviation used to represent a

machine language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

263

appendix

modem—MOdulator/DEModulator. An 1I/O device that allows com-
munication over telephone lines.

monitor—(1) a CRT. (2) a short program that displays the contents of
registers and memory locations and allows them to be changed. Monitors
can also allow another program to execute one instruction at a time, saving
programs and disassembling them.

most significant—refers to the highest value position of a number of the left-

most bit of a byte. In the number 1923 the 1 is most significant because it
represents thousands.

N

NAND—an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

nanosecond—one billionth of a second.

snesting— putting one loop inside another. Some computers have a limit to
the number of loops that can be nested.

NOT—a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).

0

object code—all of the machine code that is generated by a compiler or as-
sembler. Once object code is loaded into memory it is called machine code.

octal—refers to the base 8 number system, using digits 0-7.
OEM—Original Equipment Manufacturer.

offset value-—a value that can be added to an address. Most addressing
modes allow an offset value.

off-the-shelf—a term referring to software. It means that the program is
generalized so that it can be used by a greater number of computer owners,
thus it can be mass produced and bought “off-the-shelf.”

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

264

appendix

OR-~a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

overflow—a situation that occurs when an arithmetic function requires
more than the machine is capable of handling. Most computers have a flag
so that this condition can be tested.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide—an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

P

page—refers to a 256- (2 to the 8th power) word block of memory. How
large a word is depends on the computer. Most micros are 8-bit word
machines. The term is important because many chips do special indexed and
offset addressing on the page where the program counter is pointing and/or
on the first page of memory.

parallel-—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

PC board—stands for Printed Circuit board. A piece of plastic board with
lines of a conductive material deposited on it to connect the components.
The lines act like wires. These can be manufactured quickly and are easy to
assemble the components on.

peripheral—any piece of hardware that is not a basic part of the computer.

265

appendix

PILOT—a simple language for handlinig English sentences and strings of
alphanumeric characters.

PL/1—a programming language used by very large computers. It incor-
porates most of the better features from other programming languages.

plotter—a device that can draw graphs and curves controlled by the com-
puter through an interface.

port—a single addressable channel used for communications.

PROM—Programmable Read Only Memory. A memory device that is writ-
ten to once, and from then on acts like a ROM.

pseudo code—a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself.

R

RAM-—an acronym for Random Access Memory. Memory that can be writ-
ten to or read from. It is addressed by the address bus.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a memory location used by the CPU and not addressed by the ad-
dress bus. It cannot be used by the programmer.

relative addressing— an address that is dependent upon where the program
counter is presently pointing.

ROM-—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

RPG—an acronym for RePort Generator. A language for business that
primarily reads data off cards and prints out reports containing that data.

RS-232—an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

266

appendix

S

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and called semiconductors.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. Contrast with parallel.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative (—) and 0 is positive (+).

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer
simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

software—refers to the programs that can be run on a computer.

source program-—the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

status register—the register that contains the status flags set and tested by
the CPU operations.

stepper motor—a special motor in a disk drive that moves the read/write
head a specific distance each time power is applied. That distance defines
the tracks on a disk.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it branched from to get to the routine. This
routine is used many times from many different places in the program, and
the subroutine allows you to only write the code for that routine once.
Similar to a macro.

syntax—the term is used exactly as it is used in English composition. Every

267

appendix

language has its own syntax.

system software—software that the computer must have loaded and run-
ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

text editor—see word processor.

time-sharing—refers to systems which allow several people to use the com-
puter at the same time.

track—a concentric area on a disk where data is stored in microscopic
magnetized areas.

TTL—Transistor-Transistor Logic. Means that the electrical values for

logic highs and lows fall within the values necessary to run transistors. See
semiconductor.

U

utility—a program designed to aid the programmer in developing other
software.

Vv

variable—a labeled entity that can take on any value.
von Neumann, John (1903-1957)-—Mathemetician. Put the concept of
games, winning strategy, and different types of games into mathematical

formulae. Also advanced the concept of storing the program in memory as
opposed to having it on tape.

w

word—in computing it refers to a number of bits that are in a parallel for-

268

appendix

mat. If the CPU works with 8 bits then the word length is 8 bits. Common
word sizes are 4, 8, 12, 16, and 32. Some are as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X

XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but
answer is high (1) if and only if one line is high.

Z

zero page—refers to the first page of memory.

269

Aaron, Hank, 88, 94
Accounts payable record, 17
Accounts receivable record, 17
Alloy, 7, 8
American League, 88, 91
American League All Stars, 88, 89
Analysis, investment, 3
market, 7, 11
Annual Percentage Rate (APR), 23
Area of strength in biorhythm cycle, 162
Arithmetic progression formula, 24
ASCII, 106
Assembly language, 105, 107, 108
Asterisk(s), as part of program loading, 218, 219, 220, 221
Audio tape, quality of, 219
AUTO command, 26
Automobile operating expenses, 133
Avoirdupois ounces, 7
Balls and strikes formula, 90
Banks, Ernie, 88
Baseball game, 88
description of program, 88-98
statistics, 94
Baseball Hall of Fame, 89
BASIC, 35, 39, 105, 106, 107, 108, 109, 206, 209, 220, 233
computer course in, 39
Level 1, 88
BASIC programming, 38, 201
BASIC programming language, clearing screen, 206
correcting mistakes in, 203
deleting lines, 206, 207
learning, 201-208
PRINT USING command, 208
BASIC programs, recording, 222
Beginners’ All-purpose Symbolic Instruction Code, 201
Billing machine, 17
Biorhythm, cycles, 162
patterns, 162
program graph description, 163
program instructions, 164-166
program listing, 167-170
theory, 162
B.0.M. (beginning of month) inventory, 4
Bugs, 208, 209, 210
Bullion market, 10
Business, 4, 17
accounting system, 17
large, 3, 17
section of newspapers, 10
small, 3, 17
Bytes, 213
Calculation of loan finance charge, 24
Calculation of rebates of loan interest charges, 25
Calendar year, 23, 24, 26
calculation of loan interest charges in, 24, 25
Canada, 7
Canal Zone, 78

INDEX

Car pool program, description of, 136-138
listing, 139-143
use by companies, 135
Car pool, plan of action to form, 133, 134, 135
questionnaire, 134
zone grid map, 135
Cassette Load, 216
Cassette loading, instructions for, 216-221
Cassette, preparing blank for recording, 222
Cassette recorder, 221
loud speaker of, 218
motor of, 222
required features of, 217
Cassette, recording BASIC programs on, 222
saving programs on, 216
Cassette tape, 19
users, 11
Catalog, coin, 9
Central Florida Community College, 39
Centronics 779 with tractor feed, 243
Chessboard graphics characters, 88
Chessboard, 107, 108, 109
POKE, 1086, 107
SET, 106, 107
Circle, 113, 115
CLEAR command, to reserve space in memory, 213
Cochrane, Mickey, 88
Code, 212
Coin dealer(s), 8, 9
Coins, 7, 8, 9
copper clad, 9
foreign, 8, 9
percentage of silver in, 8
table of fineness of, 8
Common weights, conversion to troy ounces, 12
table of, 10
Company, 3
consumer products, 3
Comparison and decision in computer program, 226, 227
Computer, as basis for improving instruction, 40
as tool to measure effectiveness of instruction, 40
Computer education course, 35, 36, 39
grading of, 36
teaching methods of, 36, 37, 38
Computer lab, in middle school, 35, 38
building of, 36
Computer program fringe benefits, 49
Concept, financial planning, 3
Consumer, 3
Content, gold, of item, 7
silver, of item, 7, 9
troy ounce, of item, 8, 11
Converting programs to even steps, 26
Copper, 11
Corruption in listed program, 220
CPU, 173, 174
Crash-proof programs, 235

270

Crosetti, 95
CRT, 88, 92, 173, 178
displays, 9
CSAVE instruction, notes, 223, 224
CTR-41, 216, 217
CTR-80 recorder, 216, 217
moaning noise in, 218
Daguerrotypes, 89
Data management, 10
Delaying a progrdm, directions for, 246-249
Delay loop(s), 191, 246
program listing, 249, 250
Deparment stores, 3
DiMaggio, 95
Disk BASIC, 108
Disks, double sided, 126

index

Disk sleeve, instructions for punching second hole in, 123, 126

Disk storage, doubling of, 123
Disk system with NEWDOS, 10
Disk, tracing of, 123
Displays, 9, 10

of metal inventory program, 12
Dollar amount, 19

Dollar sign (3) signifying string, 212, 213, 214, 216, 226,

297, 228, 229, 231, 232, 236, 245
Domestic gold coins, 8
DPDT switch, 127, 128, 129
diagram of, 129
Dragons, 58, 59
Dryad, 57
Dungeon, 57, 60
Early payoff (of loan) tables, 27
Editor/Assembler, Radio Shack’s, 108
Educational pioneers, 39
Education, computer, 35, 39
80 Microcomputing, programs printed in, 201
Enchanted sword, 58
Encyclopedia of Baseball, 94
E.OM. (end of month) inventory, 4
Epicycloid(s), 113, 115
Error message, 213
Error traps, 235
Equality sign, 227
Equivalency of weights to troy ounces table, 4
Exponential smoothing, 3
Fairy tale, 57, 60
File name, importance in recording, 223, 224
Finance charge, 23, 24
Financial planning concept, 3
program listing, 5, 6
Fineness, amounts of, in gold and silver coins, 8
as being part of metal alloy, 7
Fiscal year, 4
Fliess, 162
Forecasting, sales, 3
Foreign, gold coins, 8
silver coins, 8
table of, 8
Format for metals inventory program, 9
Formulas for finding load interest charges, 25
Fort King Middle Schocl, 35, 39
enrollment of, 36
Fort Worth, 200
Perfboard Medal of Honor, 219

Frequency response in recorders, 217
Frisch, Frank, 88
Fund raising projects, 35, 51
“Garbage” on video screen, 200
Gehringer, Charlie, 89, 90
General ledger, 17
Goblins, 58
Gold, 7, 9, 10, 58
coins, 58
fineness table, 8
content of metal alloy, 7
plated, 8
pure, 8
solid alloy, 8
weight of coins, table, 8
Grade Book program, 49
Grandpa's pocket watch, 7
Graphics methods program, 105
listing, 110-112
Graphics strings, 106
Great Oracle, 57, 58
Griffin, Holley, 35, 36, 38, 39
Gross weight, 7
Hammurabi, 50
Hard copy, 10
Historic Baseball program, 88, 94, 95
listing, 97-101
Historical re-creation program, 78, 79
changes in students as result of, 79
listing, 80-87
Hong Kong, 7
Hot dog salesman, 58
Hypocycloid(s), 113, 115
IF statement, 11
Income ledger program, description of, 147
directions for using, 144-146
listing, 149-156
Income tax deduction, 23, 24, 25
Information, entering into computer, 215
Installment loans, 23, 26
Instaliment(s), 23, 24
Instant Software’s Renumber program, 26
Integer, 233, 238
Integrated circuits, 186
Interest, 23, 24, 25
Interest payments, 26
program directions, 26-28
program listing, 30-31
Interest, percent of, paid in year, 25, 26
Interfacing, 185
Teletype to TRS-80, methods of, 173-178
program listing, 180
Isopropyl aleohol, 220
Inventory, 4
data statements, 9
management, 17
program(s), 9, 17
records, 17
Inventory, flow of, 3
gold and silver, 9
precious metals, 9
Investment analysis, 3
total dollar value of, 11
Invoice(s), 17, 18, 18

271

computer generated, 17
forms (preprinted), 17
manual, writing of, 17
numbering in consecutive order, 17
sample of, 18
window envelope, 17
program, 17
program listing, 2022
Invoicing function (taken over by computer), 17
1/0 errors, 11
Iola, Wisconsin, 9
Jeweler's scale, 7
Jewelry, 8
weighing of, 8
Johnson, Lyndon, 78
Johnson’s, Walter, career statistics in baseball game
program, 91
JKL keys, 11
Karat gold jewelry, 10
Karats, 8
conversion of, to fineness, table, 8
KBFIX, fix tape, 209, 221
Kennedy, silver clad half dollars, 8
Keybounce, 208, 210, 218
curing, 209, 221
Kilobaud Microcomputing, 57
Kilobytes, 199
Knife handles, 9
Knives, 8
weighing, 9, 10
Krause Publishers, 9
LAST ITEM, 18
Lazzeri, 95
Learning Level 11, 32
LDIR, 105, 108
LEDS, 157
LEN function, 18
Level] BASIC, 88
Level 1 4K TRS-80, 88
Level II BASIC, 105, 108, 144, 173
Level I BASIC Reference Manual, 145, 207, 208
Level IT machine, 212, 214
Level IT 16X, 41, 57, 78
Library, 8
Lien, David A, 38
Linear regression, 3
Loan(s), 23, 24
consumer, 23
early payoff of, 24, 25, 26, 27
furniture, 23
installment, 26
Loan, five-year early payoff example, 27
Loan interest (charges), 25
Loan interest program bibliography, 29
listing, 3032
Loan period(s), 23, 24, 25
Loan, rebate of interest of, 25
Loop, 215, 231, 232, 233
Looping, 230
London, 7
LPRINTS, for hard copy, 10
McClellan, Jane, 35, 36, 39
Machine code, 201
programs, 213, 221

index

tapes, loading, 220, 221
Machine-code tape KBFIX, 209
Machine-language programs, 107
Machine-language routine, 108, 109
Macmillan Encyclopedia of Baseball, 89
Manager, sales, 3
Marker symbols, 9
Market(s), 7

bullion, 10
Market closing price, 10
Mathewson's, Christy, career statistics in baseball game

program, 91

Memory in computer, 199, 213, 214, 220, 236
Memory for strings, reserving of, 213, 214
MEMORY SIZE?, 200, 201, 220, 221

as unwelcome sign in program, 201
Metal(s), alloy, 7

price, 10
Metal(s), precious, 7, 8, 9, 11, 12
Method, sequential or random file, 10
Microcomputer, as patient teaching aid, 39
Microcomputer equipment within budget limitations, 35
Microcomputers, student enthusiasm for, 39
Month-to-date summary, 19
Morse code, 183
Motor control in cassette recorder, 217
Motor control relay sticking, 218
National Honor Society, 50

rating of candidates for, 50
National League, 88, 91
Necromancer, The, 58
New Brunswick, N.J., 49
NEWDOS, 10, 126
New York, 7
Nontaxable income, 145
Nymph, 57, 58
Object code, 201
Ocala, Florida, 35, 39
Old Forest, 57, 58
O.T.R. (open to receive), 4
Overhead, 4
Panama, 78
Paper punch, 123
Paperwork, 17
Parametric equations describing epicycloid, 113, 114
Parametric equations describing hypocycloid, 114
Paris, 7
Parker, Tommy, 39
Patterns(s), 117

circles, 118

barbell weight, 118

dinosaur, 118

human eye, 118

rose petal, 117

running dog, 118

running horse, 119

Snoopy the dog, 118

stylized Darth Vadar, 118

stylized eagle, 118
Patterns program,

description of, 117, 118, 118

listing, 119
Peripheral printer, 17
Pixels, 105

index

Plans), 4
stock and sales, 3
Platinum, 11
Plugs, five-pin, 199
labeling of, 199
POKE, 105, 106, 109
Ports, input and output, 183, 184, 186, 187, 188, 190, 191
Precious metal markets, 7
daily spot prices of, 7
inventory of, §
Precious metals, 7
buyers, 8
program listing, 13-16
weighing, 7
President, 78
President’s advisors, 78
Princess, 57, 58, 59, 60
Principal, 23
PRINT, 105
graphics, 109
Printer, modification of, to facilitate using various types of
paper, 243-245
Printing professional looking forms, 243-245
Printouts, 9
Prints, 10
PRINT STRING statements, 107
Process, planning, 3
application of, 3
Products company, consumer, 3
Profit(s), 3, 4
Program(s), 4, 7, 9, 10, 17
clearing, 277
information to be repeated in, 17
invoice, 17
loading BASIC instructions, 218
recording, 222
writing simple, 201
Quest, 57
Question and answer game program, directions for writing,
226-237
listing, 238-239
Quick printer II, 51
Racing car, computer radio controlled, 157
program description, 159
program listing, 161
switching arrangement to use two channels, 157
switching arrangement schematic, 158
using two channel controller, 157
Radio controlled lawn mower, 160
Radio Shack, 127, 208, 217, 221
disk drive, 123
Microcomputer Newsletter, 42
stores in Ocala, 39
perforated boards, 184
Radio Shack’s Blackjack program, 218
Radio Shack's calibrated dial knob, 243
Radio Shack's Level I Reference Manual, 202
Radio Shack TRS-80 Editor/Assembler Operation and
Reference Manual, 179
RAM, 108, 107, 108, 178, 209
Random file, 11
Ransom, 58
Rats, 58
Rebate of interest on loan, 25

Re-boot, 201
Record/play head, 220
Recorder, 216, 218
Recorder motor, 217, 219
Reel-to-reel recorder, 217
Relative weakness in biorhythm cycle, 162
Relay module, 193
Relay program, description of, 188, 191, 195
REM, 9
Re-numbering, 235
Replay volume, 219
Reports, 3
Reset statement, 105
Retail, 3
Retail business, 17
Retailer(s), 3, 4
ROM, 174, 175, 177, 178, 202
Rule of 78, 23, 24, 26, 28
defined, 24
Ruth, Babe, 88, 95
St. Peter’s High School, 49
Sales, 3, 4
Sales plan, 3, 4
Sales forecast, 3
Satyrs, 58, 59
SAVE, 11
“METAL/BAS", changing to CSAVE “METAL" for
cassette users, 11
Scale, jeweler's, 7
Screen displays, 11
Scrolling, 220
automatic, 12
Season (retailer’s), 3, 4
Sectors, disk, 123
Sequential file, 11
SET, 105, 109
slowness of, 105, 106
Silver, 7, 9, 10
coins, 8§
content, 7, 9
foreign coins, 9
U.8. coins, 8,9
Silver, pure, 7
Slave girls, 58
Snakes, 58
Snooper/snubber, electronic circuit, 128, 129
description of, 127
testing of, 130
Social Security income, 144
Sockets, European DIN-type, 199
labeling of, 199
S.O.T.P. (seat of the pants) sales forecasting, 3
Spiders, 58, 59
Spirograph designs, values for, 115
Spiragraph patterns, 113
program description, 114, 115
program listing, 116
Sporting News, 88
Sporting News Dope Book, 95
Spot prices, 10
Standard Catalog of World Coins, 9
Standard of Measurement, 7
Sterling silver, 7
weighing, 7

273

index

Stock, 3
levels of, 4
Stocks and bonds in income ledger program, 144
Store(s), 3
String, 215
String handling, 214
String space, 236
reserving in memory, 213
String variables, 212, 216, 229, 236
Students’ rating program, goals of, 50
listing, 52-54
summary form, 50
Swoboda, 162
Swords and Sorcery game program listing, 61-77
Tabulating in BASIC programming, 204, 205
by using PRINT @ command, 207
Tandy's word, 199
Taxable income, 144, 145
T-BUG, 108, 246, 248, 249
Teletype, 173, 177, 178
interface kits, 173
Templet, 123
Terry, Bill, 88
Test, validity of, as predictor of on-the-job effectiveness, 40
to measure effectiveness of instruction, 40
possible outcomes of, 41
Time comparison of graphies methods, table, 109
Traynor, Pie, 91, 92, 84, 95
Trolls, 57, 58, 58
Troy ounce content, 8, 12
Troy ounce(s), 7, 8, 8, 10
TRSDOS, 2.2, 2.3, 126
TRS-80, 39, 50, 51, 95, 113, 117, 133, 134, 144, 157, 199,
204, 207, 208, 212, 216, 218, 219, 222, 243
TRS-80, cassette player relay, 127
characters to a line, 229
clock speed, 108
graphics, 57, 105
graphics capabilities, 105
high resolution mode, 105
in room temperatures, 199, 200
Level I 4K, 88, 163
Level 11 BASIC program, 26, 35, 36, 38
Level 11 16K, 49
manuals, 38, 201
memory inside, 202
Model 1 Level 11, 199
powering-up directions, 200
storing numbers three ways, 236
Technical Manual, 179
TRS-80's edit facilities, 228
T-states (clock cycles), 108
Turnover (ratio of stock), 4
“Tutorial mode,” program written in, 137
Tutorial program listings, 225
Two-bit output port, use in computer control of racing car,
157
Two-channel racing car, switching arrangement, 157, 159
UART, 173
Uncle Walter's Masonic Ring, 7
United States, 7, 8,9
gold coins, table of fineness, 8
gold coins, table, 8
silver coins of, 8

United States, President of, 144, 145
Untaxable income, 144, 145
“Ups and downs” in biorhythm patterns, 162
U.S. Ambassador, 78
User friendly programs, writing 235
USR, 108
Validating test program, instructions, 41, 42
listing, 4348
Validating tests, methods of, 40
Value, 7
Variable, 212, 226, 230, 232, 234, 236
Vendors, 4
Vianello, Ken, 35, 36, 39
Volume control of cassette recorder, 222
Warfer, Hansel Farbble, 57, 58
Weighing, gold, 8
silver, 7
sterling knives, 10
Weight(s), avoirdupois ounces to troy ounces, 7
conversion table, 10
common, to troy ounces, 12
Wheat, Zack, 88
Wisconsin, 9
Yastrezmski, 95
Yerb, Ezekiel, 57, 58
Young, Cy, 88
Z-80, 108
Zener diodes, 127
Zero flag, 246, 247, 248
Zilog, 108
Zurich, 7

INDEX COMPILED BY LAURA BARNICLE

274

— WAYNE GREEN INC.

Need information about microcomputing? Turn to Wayne Green Inc. and
get the products that make understanding and using microcomputers easy,
fun and economical.

One of Wayne Green Inc.’s monthly publications is for you.

| microcomputing

80 Microcomputing is designed for the users of the TRS-80".

You get

® hundreds of pages of articles and extended systems
documentation.

@ as many as 20-30 useable programs free each month.

© money saving ad pages to shop in.

® a look at what other users are doing and how.

@ an honest look at the system from a publisher not con-
nected with Tandy.

@ reviews and applications that make your system more
useful.

To Subscribe call Toll Free 800-258-5473.

kilobaud

MICROCOMPUTING ™

Kilobaud Microcomputing gives a useable look at all microcomputers.
You get

@ introduced to all the systems from Apple to ZX-80.

@ a look at microcomputers in business, science, educa-
tion and your home.

@ a magazine that is understandable if you are a begin-
ner, a guide if you're an intermediate, and exciting if
you’re an expert.

@ useable programs, articles, applications and reviews.
@ an easy way to shop competitively in the ad pages.
To Subscribe call Toll Free 800-258-5473.

Desktop Computing is the first microcomputing publication to be written in
plain English. You get
® a plain speaking look at microcomputers. . . really the
first magazine written about microcomputers in
English.
® articles on how business people just like you bought a
microcomputer and are using it to their advantage.

To Subscribe call Toll Free 800-258-5473.

~ WAYNE GREEN INC.

LOAD 80|

You can find everything you need in Software and Books from Wayne Green
Inc. Load-80, designed as a companion to 80 Microcomputing, is a dump of
the major program listings in “80” on a monthly cassette. You get

®the best and the longest of the programs in “80”

without typing those lengthy listings so you save hours
of your time.

® a big money savings— the Erograms would cost a lot
more if you had to buy each one separately.

® no more aggravation (you don’t have to go back and
search for the typo).

To order Load-80 call Toll Free 800-258-5473.

Instant Softwarenc.

Instant Software is the most complete publisher of microcomputer software
in the world. You get
@ programs for every need—there are hundreds ranging
rom business to games to science to health to basic
utilities.
®an inexpensive way to expand the function of your
computer.

® programs for all the systems from Apple to TRS-80*
and all the machines in between.

® the best programs available since Instant Software is
the biggest it gets the best programmers.

For a catalog of Instant Software products call
Toll Free 800-258-5473.

*TRS-80 is a trademark of the Radio Shack Division of Tandy Corp

~ WAYNE GREEN BOOKS

Encyclopedia for The TRS-80* —A ten-volume series to
be issued every two months starting July 1981. The
Encyclopedia contains the most up-to-date information
on how to use your TRS-80*.

40 Computer Games from Kilobaud Microcomputing—
Games in nine different categories for large and small
systems, including a section on calculator games.

Understanding and Programming Microcomputers—
A well-structured introductory text on the hardware and
software aspects of microcomputing.

Some of the Best from Kilobaud Microcomputing—
A collection of articles focusing on programming tech-
niques and hardcore hardware construction projects.

How to Build a Microcomputer and Really Understand
It—A technical manual and programming guide that
takes the hobbyist step-by-step through the design, con-
struction, testing and debugging of a complete micro-
computer system (6502 chip).

ools and Techniques for Electronics—Describes the
safe and correct ways to use basic and specialized tools
for electronic projects as well as specialized metal work-
ing tools and the chemical aids which are used in repair
shops.

568
TOOLY? s |

FOR ELE ROMICS -

Hobby Computers Are Here—The fundamentals on
how computers work-explaining the circuits and the
basics of programming plus a couple of TVT construc-
tion projects.

The New Hobby Computers— Contains introductory
articles on such subjects as large scale integration, how
to choose a microprocessor chip, and introduction to
programming, computer arithmetic, etc.

A To order call Toll Free 800-258-5473.

*TRS-80 is a trademark of Radio Shack Division of Tandy Corp.

The real value of your com- ¢
puter lies in your ability to use it.
The capabilities of the TRS-80"
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is availabile in
your instruction books. : |
The Encyclopedia for the TRS-80 wnl teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.
The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

