T =

TWO DOLLARS AND NINETY-FIVE CENTS

¥ COMPUTER
PRAGRAMMING

InN BAgil
FOR EVERYGNE

T
#’_“rr Sl - .1

i ———— THOMAS A. DWYER
- B P— MICHAEL S. KAUFMAN

¥
3

INSTRUCTIGRG FUn

PROGRANTHNG

e | earning and Running Programs in BASIC ® Beginning Vocabulary
® \ariables Stored in Lists & Tables ® Subscripted Variables

® Storing Programs on Paper Tape Punch & Reader ® Data Analysis
e | earn Twenty Key Words ® Seven Commands ® Four Functions

® Practical Applications ® Games & Simulations ® Business Uses

CaMpe
PHDBHHM

Thomas A. Dwyer
Michael S. Kaufman

Robert B. Davis, Editorial Adviser

RADIO SHACK
A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

ABOUT THE AUTHORS

Thomas A. Dwyer is Associate Professor of Computer Science at the University
of Pittsburgh, Pittsburgh, Pennsylvania. Dr. Dwyer has taught at the high school
level as well as in college, and is currently Director of Project SOLO, an ex-
periment in computing for secondary school systems.

Michael S. Kaufman is currently an undergraduate at Harvard University. He
worked in Project SOLO at the University of Pittsburgh and at Pittsburgh’s
Taylor Allderdice High School.

EDITORIAL ADVISER

Robert B. Davis, currently on leave from Syracuse University, has assumed the
positions of Director of the Curriculum Laboratory, Associate Director for
Education of the Computer-Based Education Research Laboratory (PLATO
Project), and Professor of Elementary Education, at the University of Illinois in
Urbana-Champaign.

Hlustrations by Mark Kelley

CREDITS

Page 3 Digital Equipment Corporation (left) Data General Corporation (right)
Page 5 Hewlett Packard

Page 6 Digital Equipment Corporation

Page 78 Teletype Corporation

First Published by Houghton Mifflin Company
Boston, Mass., U.S.A.

1977 Impression

Copyright © 1973 by Houghton Mifflin Company

All rights reserved. No part of this work may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, or by any information stor-
age or retrieval system without permission in writing from the pub-
lisher.

Printed in the United States of America
Library of Congress Catalog Card Number: 72-4392
ISBN: 0-395-14716-6

Contents

Part1 GETTING READY FOR THE JOURNEY

-1 Here’s the Plan, 1

-2 How to Recognize a Computer, 2

-3 Getting Ready to Communicate with a
MINICOMPUTER, 6 _

1-4 Getting Ready to Communicate with a
TIME-SHARING COMPUTER, 7

1-5 The BASIC Language, 10

1-6 Putting It All Together, 12

1-7 You’re On!, 13

1

1

Example of a Perfect Session, 14

Typing Mistakes), 16
1-10 More Programs for You to Try, 17

Part2 THE

2-1 The Basic Vocabulary of BASIC, 18

2-2 BASIC Statements Using the Key Words
[PRINT] and [END], 19

2-3 Statements Using the Key Word , 29
2-4 The |INPUT| Statement, 37

2-5 The |GOTO| Statement, 46
2-6
2-7

Statements Using [IF ... THEN];[STOP|, 52
Statements Using the Key Words [FOR] and [NEXT];
STEP]|, 63

2-8 Storing Programs on Paper Tape, 78

Part 3 TECHNIQUES FOR THE SEASONED TRAVELER

BASIC Bulldozers, 83
Subscripted Variables: and , 84

3-1
3-2
3-3 Two-dimensional Arrays, 93

3-4 Using in PRINT Statements, 97
3-5

3-6

[READ] and [DATA| Statements; |RESTORE|, 100

Some “Library” Functions in BASIC:

SQR]|, [INT], [ABS], [RND|, 109 _

-7 [GOTO...OF..]or[ON...GOTO..], 120
8

GOSUB| and RETURN|, 123

8
-9 Example of a Normal Session (the Kind with Plenty of

18

83

4-1 Data Analysis, 127

4-2 Nonnumeric Applications, 132
4-3 Games and Simulations, 136
4-4 Business Applications, 141
4-5 Batch-Mode Computing, 148

Selected Answers and Hints for Exercises
Index
Summary of BASIC

126

149
154
156

1-1 Here’s the Plan

Our tour of computer programming in BASIC is about to begin.
Here’s a quick idea of where we are headed, how we’ll get there, and
some of the more interesting things we’ll meet along the way.

This book is divided into four parts:

]
B@iigﬂg PART 1 will tell you a little about computers and what to
expect of them. It will also show you how to get the com-

ﬂgaﬂy ?@ﬁ'} puter ready to ‘“‘talk’” to you (this is sometimes called

Jlogging in).

ghe Ejnﬂ%;s‘ey PARTS 2 AND 3 form the main part of the tour. They show
you how to write computer programs. A program is a list of

instructions that makes the computer work for you, follow-

ing your wishes with great precision and speed.

PART 4 is where the fun begins. It introduces you to pro-
fessional computer applications, including such things as
an airline reservation system, automated game playing, and
a program that “writes” payroll records.

As you go through the book, you’ll find that you are frequently
asked to stop reading, go to your computer, and try out the ideas you
have just read about. Working directly with a machine in this way is
called ON-LINE computing. The nice thing about ON-LINE com-
puting is that it gives you an opportunity to experiment. Even if you
make mistakes, the computer will just sit there, humming away, an
obedient robot that doesn’t know whether you are a beginning stu-
dent or the world’s greatest scientist.

[}

ON-LINE

You'll recognize ON-LINE sections by seeing ON-LINE
printed in the margin as shown here. The reason actual
computing is called “on-line” is that there is a direct con-
nection between you and the computer made over a tele-
phone line, or over similar wires. You'll see exactly how this
is done in Sections 1-3 and 1-4.

Work which is done without a direct connection to a computer is
called OFF-LINE. Examples of off-line work are reading the book, -
doing exercises which simulate (imitate) the action of a computer,
drawing flow charts (explained on pages 47 and 54), and punching
programs on paper tape (explained on pages 78-82). The best way
to learn computer programming is to continually mix off-line prepara-
tion with on-line computing.

When you are ON-LINE, you will be communicating with the
computer in a ‘“conversational”” way, using a special language called
BASIC. We'll have a lot to say about BASIC in this book, but let’s
first find out something about computers.

1-2 How to Recognize a Computer

The full name for the kind of computer we will study is “general
purpose digital computer.” From now on we’ll simply refer to such
machines as “computers,” which is what everybody does anyway.
The important thing for us now is learning how to use a computer.

Computers come in many sizes and shapes, but there are two
general types you are likely to encounter.

The first of these is called a MINICOMPUTER system. As you
can see from the name, the computing part of such a system is small
in size — about as big as the average television set. Although there
is some limit on the size of the problems that a “MINI"’ can handle,
it is able to do very sophisticated things — including all the programs
in this book.

DEpOSIT

i -

Two Minicornputers

As the drawing at the left suggests, there are
at least two parts to a minicomputer ‘“‘system”
(that’s what “‘system’ means — something with
several parts). There is the box labeled MINI-
COMPUTER and there is also an object called
a TERMINAL. The terminal looks something
like a typewriter. It is the means by which you
and the computer will “talk” or communicate
with each other.

The large arrows in the picture show that
you communicate with the computer by typing
instructions on the terminal keyboard, while the
computer communicates back by printing infor-
mation on the paper in the terminal.

A minicomputer is usually located right in the
room with the person who is using it, and it is
usually controlled with terminals. Why did we
say “usually”? Because some minicomputers are
controlled by dropping a deck of specially marked
cards into a hopper on the machine. If you are
using such a system, your teacher will show you
how to mark such cards. You should also take
a look at Section 4-5 in this book, which talks
about “batch system” computers that use card
input.

The second type of computer that you may use is the large machine
that requires a room all to itself, and which may be many miles away.
Such machines can also be controlled with terminals, but the ter-
minals are hardly ever in the same room as the computer. This is
no problem, since two-way communication with a computer can take
place over telephone lines. The setup looks something like this:

Using this arrangement, many people can simultaneously com-
municate with a large, expensive computer. The process that makes
this possible is called time sharing.

How does time sharing work? Because of the tremendous speed
with which it carries out its operations, the computer can give each
person all the computing time he needs in a fraction of each minute
that he is connected to the computer. The rest of that minute can g0
to the other users (by “user” we mean anyone working at an on-line
terminal). The situation is something like that of a grocery clerk
taking telephone orders from several customers at the same time. If
the clerk could switch back and forth from one telephone to another
fast enough, each customer would think he was getting the clerk’s
full attention. The computer is that fast; you think it’s talking only
to you!

The picture at the top of page 5 shows the arrangement used by
some time-sharing systems. The box labeled “multiplexor” is a

device that squeezes several computer conversations into one
“leased” telephone line used exclusively for computing. Users need
only dial a local number that connects them to the multiplexor.

A Large Time-Sharing Computer

To make things clearer, let’s continue this discussion by con-
sidering the two types of computer systems separately. You need
read only the section that corresponds to your type of computer
(1-3 for minicomputers, 1-4 for time-sharing computers).

1-3 Getting Ready to Communicate with a
MINICOMPUTER

There are three things you should do:

1. Make sure (by asking someone) that the MINICOMPUTER is
turned on and ready to accept instructions written in BASIC.
(It may be necessary to “‘load” something called the BASIC
compiler into the computer. This will have to be done by
someone familiar with your machine. That word “compiler”
is explained on page 10.)

2. Check to see if the TERMINAL is switched on (if not, turn the
knob to LINE).

Minicomputer with Terminal and Other Equipment

3. Type the letters SCR on the terminal (this is short for SCRatch;
it erases anything that still might be left from the last person
who used the computer) and then push the key marked
RETURN (short for carriage return).

You're now ready to type in a program. Skip to Section 1-5.

A. BUILT-IN TELEPHONE

1. Push the button marked ORIG.

1-4 Getting Ready to Communicate with a
TIME-SHARING COMPUTER

You might want to glance enviously at the instructions for the mini-
computer users. They had a rather simple explanation of how to get
the computer ready. Time-sharing users will have more things to
consider, although the process is much easier to do than to read
about. The exact steps you should follow will depend on the par-
ticular time-sharing system that you are using, and the best way to
learn is to have someone show you. The instructions that follow
should help in a general way, however.

The first thing you have to do is call up your computer. Telephones
are used with terminals in two ways. Check to see which type you
have, and then read the correct column.

B. TELEPHONE SEPARATE FROM
TERMINAL

1. Turn the knob on the terminal to LINE.

2. There should be a small box called an
ACOUSTIC COUPLER near the telephone.
Switch it ON.

3. Dial the telephone number of the com-
puter. The computer should answer with
a high-pitched whistle.

4. Place the telephone receiver into the
coupler as shown in the diagram.

2. Dial the telephone number of the com-
puter. The computer should answer with a

high-pitched whistle.

3. Probably, you should push the FDX button
on the right side of the terminal. (There are

some systems where you shouldn’t push
this button — ask to be sure.)
4. Now LOG IN as described below. 5. Now LOG IN as described below.

LOGGING IN is the process of identifying yourself to the com-
puter. This is necessary because the computer has many people
using it, and it has to know who you are in order to keep track of the
work you do.

We'll show an example of logging in on one particular time-sharing
system. After reading this, you should write down the procedure for
the particular system you are using, since it may be a little different.

7

So that you can follow our discussion of logging in, we've
included a picture of a terminal keyboard. It would be a good
idea for you to locate the various keys as you read the rest of
this part of the book. You will notice that the 'etters always
print as capitals. You use the SHIFT key only when you want
to type one of the symbols at the top of a key. For example, if

you press@the 2 will print. If you hold down the SHIFT

key while pressing the same key, the " will print.

DLOOOOOOOOOOOE
HEOOOOOOOOOO®®
HOOGOEOOOOO®®E

HOOOOOOOOOO

C

SPACE BAR >

The method of LOGGING IN that we’ll show you is that of Time -
Share Corporation in Hanover, New Hampshire 03755, which offers
a time-sharing service. Since this service uses only the BASIC
language, the LOG-IN is especially easy. You simply type in

HELLO- followed by your identification number, a comma, and
your password, as shown in the first line below. Notice that no

spaces are typed in this line. Now press the carriage RETURN key.

If you have done all this correctly, the computer will respond by

typing a reply like the next two lines shown. On some Time Share
Corporation connections, another line giving the time is included.

The user typed this line. H260
is his identification number,
and BUD is his password.

—_—

The computer typed this re-
sponse. It is now ready to
accept instructions writte
in BASIC. ‘

H

HELLO=-H260» RUD @® ® means press

<A HELLO FROM TSC

the RETURN key.

N

We’ve used a box with a curved line at the
bottom to indicate paper taken right off the
terminal. This is a standard symbol and will
be used in the rest of the book.

Since anyone can see the password once it’s typed, your teacher
may tell you to insert secret “control” letters in the password you
use. For example, you may be told that the password is BUPD.
PC is called “control P.” You type it by first pressing the key marked
CTRL, and then (while still holding the CTRL key down) pressing P.
The computer will “know” you did this, but nothing will print on
the page for unauthorized persons to see.

NOTES FOR USERS OF OTHER TIME-SHARING SYSTEMS

NOTE 1: In our example of logging in, the user was the first
one to type. On some time-sharing systems, the computer
types a short message (like the date) as soon as you connect
the telephone. Then it’s your turn.

NOTE 2: In our example, the computer was ready to accept
programs written in BASIC right after log-in. On systems
that offer other languages in addition to BASIC, you may
have to type the word BASIC during some part of the log-in
procedure to tell it which language you are going to use.

NOTE 3: Some time-sharing systems ask you the question
NEW OR OLD? right after log-in. This means that the com-
puter wants to know whether you are going to work on an
old program that is stored in its memory or write a new one.
Your teacher will tell you how to handle this.

FINAL CHECKLIST FOR TIME-SHARING USERS

1. Do you have the telephone number
for your computer?

{

2. Do you have the identification number
and the password you are to use?

|

3. Do you have a sample of an actual log-in
session on your system?

maa

Were
the answers to

YES
all 3.‘3:::'?%0”5 Onward

and upward!

Get the missing| NO
information.

LPARLE 2- YoUS
FRA /Vg%l /S 7

1-5 The BASIC
Language

CHABLA USTEL
ESFPANOL?

Now that you have the com-
puter’s attention, what do you
say to it? Well, as you may
suspect by now, the “con-
versation” that you carry on
with a computer through a
terminal can’t be in ordinary
English (or any other ‘“‘natural”
language). Instructions to a
computer have to be written
in a special programming lan-
guage.

A number of such program-
ming languages have been de-
veloped for ‘“‘conversational’
computing. The most popular
of these, and by far the best one
for any beginner to master, is
called BASIC (Beginner’s All-
purpose Symbolic /nstruction
Code).

Computers don’t actually “understand” BASIC. They translate
BASIC into machine code, something that looks very mysterious
to human beings. The translation is done by a special program called

- the BASIC COMPILER. Fortunately, you don’t have to know

anything about the COMPILER, since it is used automatically
anytime you RUN a BASIC program.

Sentences written in BASIC are called statements. Let’s compare
some BASIC statements with English sentences that we might use
to instruct a robot-like character called XENON. We’ll imagine
that the English instructions are coming from a tape recorder.
(Don’t take this comparison too seriously; it’s only meant to give
you a rough idea of how the computer interprets BASIC.)

ENGLISH SENTENCES

BASIC STATEMENTS

Attention Xenon. This is H260,BUD speaking. Please mem- HELLO-H260,BUD
orize the following instructions.
Do not execute them until you are told to

1. The chalkboard behind your desk has several squares 1 LET X=9
drawn on it. Write the letter X next to one of these, and
then write the number 9 inside this square.

2. Now write the letter Y next to another square, and then 2 LET Y=12
write the number 12 inside the square.

10

3. You'll find a large piece of paper on your desk. On the 3 PRINT “PROBLEM 1"
first line you are to print “PROBLEM 1.”

4. On the next line of this paper you are to print the sum of 4 PRINT X+Y
the number written next to X and the number written
next to Y.

5. On the next line of the paper you are to print “PROBLEM 5 PRINT “PROBLEM 2"
2.

6. On the next line of the paper you are to print the product 6 PRINT XY
of the number written next to X and the number written (Notice that multipli-
next to Y. cation is indicated by

* in BASIC.)

7. This is the end of your instructions. 7 END
....STAND BY....

You are now commanded to execute the preceding instruc- RUN
tions — Begin

STEP 3

1 Wzg0ds

By now you have undoubtedly noticed that BASIC uses very few
words compared with English. BASIC also requires that you give
your instructions in very small “steps” — one thing at a time.)

We won’t say any more about BASIC for now, since that’s what
the rest of this book is all about. If you didn’t follow all of the pre-
ceding discussion, don’t worry about it. We’ll go through everything
step-by-step in Part 2.

The important thing to do now is to get ON-LINE so that you can
get a feel for how all of these ideas work on a real computer.

11

1-6 Putting It All Together

Here’s a summary of how the things discussed so far g0 together
during an ON-LINE session. There are really four major steps in
any ON-LINE session.

If you have a Mini If you are | Time sharing
(GETTING THE minicomputer, follow OR using time sharing, fol-
COMPUTER the instructions in low the instructions in
READY) Section 1-3. Section 1-4.

Next you type your program (in-

© STEP 2 structions) in at the terminal, This is also

(ENTERING YOUR using the language BASIC. The called

BASIC PROGRAM) computer won't carry out these CREATING
instructions at this time; it just a program.

stores them in its memory.

\

@ STEP 3 Now you tell the computer to carry This is also
(RUNNING YOUR out your instructions by typing called
PROGRAM) RUN. It will then follow your in- EXECUTING
structions and print any results. a program.

® STEP 4 Type SCR (short | Mini Type BYE [Time sharing
(LEAVING THE for scratch) to (short for good-bye). On
COMPUTER) erase’” your program OR some systems you may

from the computer’s have to type LOGOUT

memory. (ask to be sure).

Turn off the equipment if no
one else is going to use it.

ON-LINE

ON-LINE

NE

ON-LI

ON-LINE ON-LINE ON-LINE ON-LINE

ON-LINE

1=7 You’re On!

The time has come for you to try out these ideas at a real computer
terminal, even though you have not yet learned to write your own
programs in BASIC. Follow the directions below. You can’t hurt
anything; so don’t be afraid to make mistakes. (The examples in
Sections 1-8 and 1-9 illustrate some of the things that may happen.)

Step 1 Get the computer ready by following the directions in
Section 1-3 if you have a mini or Section 1-4 if you use
time sharing.

Step 2 Type in your BASIC program. Use the example from
Section 1-5 (remember Xenon?).

If you are in the middle of a line and make a typing error,
press the RETURN key. The computer will then print
?2? or a message saying it found an error. Press the
RETURN key again and type the entire line over again.

NOTE: Some computer systems have additional
features for correcting errors, such as use of the
ESCape key, or certain special characters like <.
You'll have to find out what these are on your
system from your teacher or the instruction manual
that came with your system.

Here’'s what you type:

LET X=9

LET Y=12

PRINT "PROBLEM1"
PRINT X+Y

PRINT "PROBLEM 2"
PRINT X*Y

END

® means press
the RETURN key.

RN N SERE VI
Sefefeleyfe)ey

In case you have made a few mistakes and would like
to be sure that you have corrected everything, just type:

LIST ®

The computer will type back all the BASIC statements
that it has stored in its memory.

If you see something you don't like in one of the state-
ments (for example, statement 3), just type it over. The
Jast version you type of statement 3 is what counts —
all other versions are erased.

Even though you may have putin a “revised’ statement 3
after statement 7, the computer will put statement 3 back
in order. To check this, just type LIST again.

13

14

Step 3 Now you're ready to see the computer execute (carry out)
your instructions. Simply type:

RUN ®
You can type RUN as often as you like. If you get tired of
seeing the same answers, you can change some of the
statements in your program. For example, you might
type:

This changes statements
1 and 2 only; statements
3,4,5,6,and 7 are still in
the computer.

1 LET X=99 ® |
2 LET Y=49 ® |
RUN ®

What do you think will happen?

NOTE: If you wish to delete (get rid of) some state-
ments, just type the line numbers followed by a
carriage RETURN.

EXAMPLE: If you type
3®
4 ®

statements 3 and 4 will be erased from your program
(forever).

Step 4 Leave the computer. If you are the last to use it for the
time being, follow Step 4 of Section 1-6.

1-8 Example of a Perfect Session

Let’s first show what happens when someone follows the preceding
directions without making a single mistake (which just about never
happens!).

NOTE: The rest of the examples in this book are shown as
run on a terminal connected to the computer of Time Share
Corporation, Hanover, New Hampshire 03755,

The details of logging in and out, the wording of error
messages (shown in the next section), and the manner of
correcting typing errors may differ slightly on other systems.
However, all the BASIC programs in this book will run on
other systems.

Here’s our perfect session (notice that this student has made state-
ments 3 and 5 a little “fancier”’). From now on we won’t show press-
ing the RETURN Kkey; this must be done after every line typed by
the user.

HFLLO =(User’s identification number and password)™]

< Log-in

1 LET X=9 -1

2 LET v=12

3 PRINT "FROBRLEM 1 (SUM)"®

4 PRINT X+Y <« Program creation
5

6

7

PRINT "PROBLEM 2 (PRODUCT)"
PRINT X*Y
END

RUN -

«— Program execution

1 LET X=99 PR
o LET Y=49 1 Program modification
RUN -

| Execution of the
modified program

EBYE -
002 MINUTES OF TEl ME.

<« Log-out

15

1-9 Example of a Normal Session (the Kind with
Plenty of Typing Mistakes)

HELL O=(User’s identification number and password)

ELLO FROM TSc Student forgot second .

READY. The computer typed ERROR. On the Time Share Cor-
poration system, if a student does not see what his

1 LET X=9 error was, he types ? and presses RETURN. The com-

2 LET v=12 / puter then responds with an explanation as shown.

3 PRINT ""PROBLEM 1|

'EFROR? NO CLOSING QUOTE

3 PRINT "PROBLEM 1" <———— Student types in statement 3 correctly.
4 PRINT X+Y

5 PRINT "PROBLEM 2 J
é—..”.__._..___.

This time the student sees his error; so he just presses
RETURN and retypes statement 5.

0R
5 PRINT "PROBLFM 2%
6 PINT XkY

The student misspelled PRINT. The
ROR? MISSING ASSICGNMENT OPERATOR explanation is no help to a beginner; so
6 P INT X*Y

he just checks the spelling.
7 END

LIST Let's see what we have.

i All the errors have vanished!

Let’s try it.

It works!

| Time to go home.

16

One last suggestion — it will be a good idea
to save your first successful program as a guide
for your next ON-LINE session.

. & PRINT X# Y
7 BND
RUN
PR:‘BLEM 1
PRoOBLEM %

1-10 More Programs for You to Try

The rest of this book will be devoted to the “‘art of programming’ in
the BASIC language. However, you may want to run another pro-
gram or two just for the fun of it before reading on. Here are two
short programs you can try. We won’t explain them here at all, and
we won’t tell you what happens when they execute. You’ll find out
after you type RUN.

Program 1 10 PRINT "THIS IS A COMPUTER"™
20 FOR K=1 TO 4

30 PRINT “NOTHING CAN GO®

40 FOR J=1 TO 3

S0 PRINT "WRONG®™

60 NEXT J

70 NEXT K

80 FND

RUN

~N]

Program 2 | 10 LET Y=1970

20 LET P=200

30 PRINT "YEAR">“MILLIONS OF PEOPLE"
40 PRINT Y»P

50 LET Y=Y+5

60 LET P=1.2%P

70 IF Y>2070 THEN 90
80 GOTO 40

90 END

RUN

\

Remember — you’re not expected to understand how these pro-
grams work (you will at the end of Part 2 of this book). They are
given here in case you want to try out your computer system and
become more familiar with using a terminal. You’ll also find that the
experience will help you understand things a great deal better when
you return to reading.

17

1R

The
Economy
Toue

2-1 The Basic Vocabulary of BASIC

Now that you know how to manage an ON-LINE session with your
favorite computer, we can turn our attention to showing you how to
write your own programs in BASIC. We’ll do this in Part 2 by con-
centrating on a dozen key words in the BASIC language. The
amazing thing is that you will get along very well with this small
vocabulary and be able to write interesting programs for the com-
puter. (In case you’re wondering, Part 3 of the book will extend your
vocabulary to include about as many more key words.)

Each section in Part 2 will show you how to use a few key
words to make BASIC statements. And once you have
learned how to put a couple of statements together, you'll
have a program. It’s as simple as that — key words are used
to make statements, and statements are used to make
programs.

The key words that we’ll study in Part 2 of this book are:

PRINT
END

LET

INPUT

GOTO

IF... THEN
STOP
FOR...(STEP)
NEXT

In addition to these key words, we’ll also use the three commands
that you have already met:

LIST
RUN
SCR (SCR is short for SCRATCH)

What's the difference between a key word and a command? A key
word is never used alone. It’s always part of a BASIC statement
that has some other parts to it. (We’ll soon learn what these other
parts are.) Commands, on the other hand, are used by themselves.

For example, here’s a silly little BASIC program with two state-

ments followed by a command:

e

—— —————=—" Other parts of the statement
. 3 P e
First statement \\.\ o . / B
10 PRINT "SUPERSTAR"|
Second statement 20 END __|f—| Program
7FUN \\
S — A | Key words

] .
Command |-~

SUPERSTOR®

//_,—-——\ — Qutput

Statements are instructions to the computer. The computer stores
these instructions in its ‘“‘memory,” but it doesn’t execute them (carry
them out) until you say so. You do this by typing the command
RUN. Then the computer executes all of your instructions. Any
results that it prints out after you tell it to RUN are called OUTPUT.

NOTE: The word READY at the top of the program shown
above is printed by most computers after you have logged in
correctly. It means that the computer is ready to accept a
BASIC program.

Most computers also print a message after you run a pro-
gram to indicate that the OUTPUT is complete (END, DONE,
RAN, and so on). The Time Share Corporation system types
END (not shown in the print-out above).

2-2 BASIC Statements Using the Key Words
PRINT | and [END

Let’s look at the outline of a BASIC program that uses only two key

words: PRINT and END.

wThese are skeleton
BASIC statements.

] @ @ 8 PPINT e e 0 0020 - N -
______ | ees PRINT ecoooeol This is going to
— ‘ cocess| be our program.
\\:. PRINT prog
*leoeo END

R LI

The dots mean that something is missing and must be inserted in

these positions before we have real BASIC statements.

19

20

To illustrate what the missing parts of a PRINT statement may
be, let’s look at an example of a program with three PRINT state-
ments and one END statement:

READY

10 PRINT *DEMONSTRATION®
20 FPRINT "2+2 15"

30 PRINT 2+2

40 END

RUN

DEMON STRATION
2+2 IS

S

The first thing you should notice is that every BASIC statement
starts with a line number. This can be any whole number from 1 to
9999 (do not use commas in writing large numbers for a computer).
The line numbers serve as a guide to the computer in RUNning the
program, telling it in what order it should carry out your instructions.

Next comes a key word. Suppose that the key word is PRINT.
What comes next?

One kind of thing that can follow PRINT is shown in statement
10 in our example:

One of the things you
can put after PRINT

19 PRINT “DEMONSTRATION" is any message you
T K_,/ want, provided you
Line number Key word put it between quota-

tion marks.

When you say RUN, the computer will obediently print back
whatever was typed between the quotation marks; however there
is one thing you can’t have inside the quotation marks — you can’t
have another quotation mark. If you say, for example,

10 PRINT “THAT'S A “"HOT” ISSUE”

to a computer, it will not print what you want. It may not accept
the statement at all and simply print ERROR.

To get around READY
this limitation,
you can use 10 PRINT "THAT'S A °‘HOT® ISSUE"
single quotation 20 END
marks as shown RUN
at the right.

THAT'S A "HOT® ISSUE

What else can we put after PRINT? Take a look at line 30 of
our example. In this statement we didn’t use quotes:

30 PRINT 2+2

When we RUN the program, the computer will print 4 for line 30.
In other words, if you don’t use quotation marks, the computer will
calculate what’s there, and then print the answer.

MORAL: If you don’t use quotation marks, you had better
have a number or a numerical expression that can be calcu-
lated using arithmetic. (Later on you’ll learn to use vari-
ables.)

By now you have probably noticed the symbols that computers
use for doing arithmetic:

+ means add

— means subtract

* means multiply (don’t use Xx)

/ means divide (you're not allowed to use =)

These symbols are also called operators. There is one other operator
used by computers:

1 means exponentiate

(Some computers use ** instead of 17.) Don’t let that word “éxpo-
nentiate”” worry you. All it means is repeated multiplication. Thus,

21

374 is shorthand for 3#3x%3%3. In other words, 314 means ‘‘take
the product of four threes.” Watch:

READY

10 PRINT 3t 4
20 FND
RUN

READY

10 PRINT 8+4

20 PRINT 8-4

30 PRINT 8%4

40 PRINT 874

50 PRINT 8.0/4.0
60 PRINT o5%8

70 PRINT 3t3

80 PRINT 10e8=7¢7
90 PRINT 3+4-6
100 PRINT 5%4+3
110 PRINT 4+3%5
120 END

20 D

22

READY
SAME 10 PRINT 3% 3% 3% 3
RESULT 20 END

RUN

8\1/ i_’/

61
8? Exercise 1 Write down the odtput you think a
i g computer would produce after it got the

L2 signal to RUN the program shown at the left.
v (This is called simulating a computer run.
2 - It's very good practice and it can come in
2 very handy when you are trying to find a “bug”’

1% (error) in a program.)
i7

A Check your answers with those printed upside

down at the left.
N

Don’t feel bad if you were puzzled by statements 100 and 110.
There is really no way to predict what

100 PRINT 5%4+3 or 110 PRINT 4+43+5

will do unless you know that computer scientists once agreed that
multiplication should be done before addition in a given problem.
Thus, in line 110 the computer will first calculate that 35 is 15, and
then add 4 to get the answer 19.

But suppose that’s not what you want — then you must use paren-
theses. If you type

110 PRINT (4+3)%5

then the computer must first calculate what’s inside the parentheses.
This means it first finds that 443 is 7, and then it multiplies this 7 by
5 to get the answer 35.

PRACTICAL RULE: When asking the computer to PRINT
answers to arithmetic problems, group things together the
way you want them with parentheses. Be sure that every
left parenthesis has a matching right parenthesis.

FORMAL RULES:

(1) If there are no parentheses, the computer performs
operations by going from left to right three times. The
first time, all exponentiation operations (1 or **) are
done. The second time, * and / operations are done in
order from left to right. The third time, + and — are done
in order from left to right.

EXAMPLE: 3+5+213—-4/2+3 becomes 3+5+8—4/2%3
then 3+40-6
then 37

(2) If there are parentheses, the computer looks for the
first right parenthesis, backs up to the matching left
parenthesis, and then applies rule (1) to convert every-
thing inside this inner pair of parentheses to a single
number. These parentheses are then thrown away, and
the process is repeated. If you use several pairs of paren-
theses, the computer works from the “inside” out.

EXAMPLE: ((83+5)%3)/4 becomes (8+3)/4
then 6

Exercise 2 Copy and complete the following:
(a) 4+9=
(b) (4+9)=
(c) (4+9)*2—

(d) 4+(9%2)=__¢
(e)

(

(

e) (4+ (9*2))*3~
f) (44(9%2))* (3+1)

. g).5 «8+9*2»(3+1D=
When in doubt, use parentheses. 1

They can’'t do any harm — and

they may make the difference be-

tween a right or a wrong answer.

NOTE: .5 is the same as t
0.5 to the computer. E

Here are several different computer programs using PRINT.
Simulate running each of these by writing down the output you
would produce if you were a computer.

Exercise 3 Simulate running this program.

PRINT 42+44
PRINT '"AND"
PRINT 3%33

PRINT "ARE TWO SECRET AGENTS."
END

23

Exercise 4 Simulate running this program.

10
20
30
40
50
60
70

Let’s see what else we can do with the PRINT statement. For

PRINT
PRINT
FRINT
PRINT
PRINT
PRINT
END

IIO R Ve

!IO H "

"WHAT HAPPENED IN THE YEAR"
1000+ 776

(5%20M)+ (2% 450)+ (9% 5)

CCSk (5% 16X/ 4)%5%x(212))+]

one thing, we can do several problems on one line.

EXAMPLE:

READY

10 PRINT 9t15,9125913,9t 4,915

20 END
RUN

81

6561

59049,

The computer calculated the answers to five problems for us and
printed them on the same line. Notice what the comma does. When
commas are used in a PRINT statement, they space the answers

into 5 parts called zones:

Zone 1

9
<—15 spaces—»
AAANAAAALABAAAAD

Zone 2

81
<«—15 spaces—»
BAANABARAAAALAL

Zone 3
729
<—15 spaces —»
AAAARARLDADLALAS

Zone 4

6561
<—15 spaces—»
(Y- Y-Y-Y-Y-Y-Y-¥-Y-Y-Y.Y-Y.Y:

Zone 5

59049
<12 spaces—

BAAAAAAAALAN

24

A

NGO
lpariiv

-

CUBTOMER
FPAREING

oMLY
VAL STORE]

If there are more than five items in the PRINT statement, the
computer will go to the next line:

READY
10 PRINT 3» 3%2s 3% 3, 3% 45 3% 55 3% 65 3% 7

20 END
RUN

18

Another mark of punctuation you should know about is the semi-
colon. What the semicolon does varies somewhat from computer
to computer, but it is always true that the semicolon leaves less
space between answers than the comma.

On the Time Share Corporation system, the semicolon puts the
answers as close together as possible. There will be one space
between positive numbers because space is left for a possible negative
sign.

To see the difference between what a comma does and what a
semicolon does on this system, look at the following example.
(Your computer may do things slightly differently.)

READY

10 PRINT 97, 3+459%8» 1785 *FO0T"
20 PRINT 973 3+439%831/83 " %FOOT"

30 END Note extra space needed.
RUN
97 7 72 = 125 FOOT

97 7 72 125 FOOT

QUICK SUMMARY: If you want output spread out, use a
comma; if you want output put close together, use a semi-
colon. Of course, the comma and semicolon are only used
when you want more than one item on the same line.

25

26

Let’s take time out to try some of these ideas
on a computer. Before going ON-LINE, you
probably should review the section on correcting
typing errors (page 16).

(From now on we’ll give our ON-LINE pro-
w grams code names for easy reference.)

Code Name: /ARITH/

ON-LIN

Run the following program on your computer.

READY

10 PRINT
20 PRINT
30 PRINT
40 PRINT

50 END :
>

*147 + 38 =3 147+ 38

5280%53 " FEET IN 5 MILES®

"THERE ARE®";26%26%265'" THREE-LETTER CODE NAMESe"®
*COMPARISON OF 22/7 AND 355/113:%,22/7»355/113

After you get this program to work, go on to /ARITH2/.

WARNING WARNING WARNING WARNING

Before you do the next ON-LINE program, notice that its
W line numbers start with 100. If you had typed it in right after
%‘3 /ARITH/, the computer would have tried to put the two
= programs together with statements 10 to 50 followed by
O statements 100 to 150.

Do you see that if you were then to type RUN, the computer

would ignore lines 100 to 1507? It wouldn’t look past the END
% statement in line 50. So, even though you were trying to
=i RUN /ARITH2/, all you would get would be /ARITH/ once
2 again.
@]

To avoid this difficulty, you must get rid of the old program

before typing in the new one. You do this by typing SCR and
w pressing RETURN. To check that there is no program there,
z type LIST. The computer will let you know in some way that
=l there is no program there. On Time Share Corporation in-
% stallations, the typing would look like this:

SCR
LIST <—— There was nothing to LIST

w END
Z
=3 MORAL: SCRatch the old before bringing in the new. Check
= with a LISTing.
(8]

= Code Name: /ARITH2/
Z;;a RUN the following program; experiment with changes in it.
=
© READY
100 PRINT "HAT SIZES IN DECIMAL FORM®™
iy 110 PRINT 6+5/856+3/45 6+ T/85 73 7+ 1/85 T+1/45 7+3/8
f% 120 PRINT "LDRILL SIZES™
j 130 PRINT 1/3252/325 37325 4/32s5/ 32567325 7/3258/32
o 140 PRINT “MONEY AFTER DOUBLING $1 FOR 15 DAYS = $"32115
150 END
_
1]
=
(@)
1A
Q By now you are probably discouraged by the amount of typing you
have to do to get a little output. The trouble is that you can’t write
very interesting programs if the only key words you know are
PRINT and END. So we’ll sneak in two extra key words (FOR and
NEXT, which we’ll discuss in detail later) to help make this on-line
session more interesting. You aren’t expected to understand what
these key words do at this time. Just type them in as shown.
w
5 NOTE: Code names with double slashes
4 indicate extra on-line programs.
O Code Name: //MULTABLE//
REALY
w
2«”2% 10 PRINT ™ MULTIPLICATION TABLES FOR 10s 11, AND 12%
5 20 PRINT " ===-o-ce-cecmeecec e ceaas "
5 30 PRINT °
40 FOR X=1 T0 12
50 PRINT X3"%10=""3X%10,X5"k11=""3X*k11,X3"%k12="3X*x12
60 NEXT X
= 70 END

NOTE: PRINT with nothing after it produces what is called
a line feed. This means that the paper ‘“feeds’ up one extra
line. Thus, the effect of line 30 above is to put a blank line
in the OUTPUT, making it look neater.

27

28

LET'S REVIEW SECTION 2-2

) Different forms of the PRINT statement look like the fol-
lowing:

123 PRINT 45

50 PRINT 900/450

36 PRINT “"HELLO THERE”

900 PRINT 10, 10«2, 10«3, 51 73, ((16+32)/8)+123
20 PRINT 3+1; “SCORE AND”; 4+3; “"YEARS AGO”

If more than one expression is used (as in lines 900 and 20
above), the following punctuation marks are used to separate
the output:

@A comma separates the output up to 15 spaces:

10 PRINT ugn’ "3"’ AV giVGS

2 3 4

10 PRINT 25 3s 4 gives (note space for sign)
2 3 4

@A semicolon prints the outputs close together:
10 PRINT “2';"3";"4" gives
234
10 FRINT 25334 gives

2 3 4

An END statement is always needed as the last line of a
program. It consists simply of a line number and END.

© RUN is the command which tells the computer to execute all
the statements in its memory. Since RUN is not a statement,
it never has a line number.

@ SCR means scratch. It is a command which erases the
previous program from the computer’s memory. It never has
a line number.

LIST is a command that causes the computer to type out all
the statements it has in its memory at the present time. It
never has a line number.

2-3 Statements Using the Key Word |LET

It’s election time, and the votes for the three leading candidates have
Jjust been tallied. Flamboyant has 8497 votes, Handsome has 7231
votes, and Moderate topped the group with 9821 votes. Here’s how
the workers at election headquarters have “stored” this information
on the chalkboard in the back room.

Our picture shows three spaces or locations on the board, called
F, H, and M. We can think of F, H, and M as labels pasted on the
board. Next to each of these labels is written the number of votes
“stored” in our chalkboard memory. These numbers can, of course,
be erased at any time, and new numbers can be put in each location.

Now let’s use this picture to get a feel for what goes on in com-
puter memories. We can also “‘store” numbers in the memory of a
computer. In order to know where these numbers are being kept,
we must also use labels for the various memory locations.

The LET statement in BASIC does both of these things at once.

It gives a label to the memory location.

© It stores a number in this memory location.
For example, the statement
20 LET F=8497
© Gives the label F to a location in the computer memory.
@ Stores the number 8497 in the memory location having that

label. The number 8497 is called the contents of the memory
location F.

Labels are sometimes compared to the
names on mailboxes as shown in the picture

on the right. Notice that the /abel is very
different from the contents of the box.

One mailbox has the /abel Smith, but it
contains a letter.

A
&P
@

We might call the label Smith a variable
because the material put into the “Smith”

|
|

NN
¥
N

mailbox can vary: one day a letter, the next
day a magazine.

vV LV

L L bV

i
|

30

In a similar way, the labels used for memory locations in a com-
puter are called variables. This is because different numbers can be
stored in a computer memory location; its contents can vary. In
BASIC, the names we use for labels are usually single letters such
as A, B,C, X, Y.

The actual memories of computers don’t look like chalkboards
or mailboxes, of course. However, a person who wants to program
a computer doesn’t have to know about the actual construction of
memories, and for our purposes the chalkboard picture is better.

E| 250 565 §497

H| At 429 723/

M 378 2485 952/

For one thing, we see that we can erase the number next to a label
and put in a new number. This is exactly what computers do in their
electronic memories. If we put a new number in the same location
as an old number, the first number is erased.

If a BASIC program says

10 LET A=4

we may imagine that the computer’s
memory looks like this: — 4

If we now say
20 LET A=12 Al 12 _

here is what the memory looks like:

The 4 is gone (forever), and a 12 is now
in its place.

In computer language, we say that memories have the
property of destructive read in; that is, when we ‘‘read in”
the 12, we destroy the 4.

READY One big difference between a computer and a chalkboard
is that the computer can do arithmetic on the numbers on

5 LET A=5%5 the right side of a LET statement before storing the

10 PRINT A =";4 answer in its memory (the chalkboard just stands there).

15 LET A=6%6 In the statement

20 PRINT A =34 5 LET A=5%5

25 END A

RUN the computer first calculates 5%5 and then stores the
answer (25) in location A. The statement

A= 05 15 LET A=6+%6

% stores 36 in location A, wiping out the 25.

SUGGESTION: It will help if you read LET statements from
right to left. In the statement

5 LET A=5%5

the computer calculates what’'s on the right side (using
special arithmetic circuits). It then stores the answer in
memory location A. You can imagine that the process looks
like this:

5 LeT

31

39

Let’s apply all of this discussion by writing a program to give us
the total votes in our election (the one with Flamboyant, Handsome,
and Moderate). To make life interesting, we’ll also have our program
PRINT out the percent of votes that each candidate received. You
may recall that such a percent is found as follows:

Percent of votes received by a candidate
= (number of votes received/total number of
votes)* 100

This formula is used in lines 60, 70, and 80 of the following program.

READY

10 LFT F=8497

20 LET H=7231

30 LET M=9g821

40 LET T=F+H+M

50 PRINT "T0TAL NO. OF VOTES CAST IS'T

60 PRINT "% FOR FLAMFOYANT ="3 CF/T)*100; "%"
70 FRINT "% FOR HANDSOME ='3 (H/T)*1005"%"
RO PRINT "% FOR MODEFATE ="3 (M/T)*x1005"%"
90 END

RUN

TOTAL NO. OF VOTES CAST IS 25549
Z FOR FLAMBOYANT = 3325777

% FOR HANLSOMLE = 28.3025%

% FOR MODEKATE = 38.£4399%

G

Notice that 33.2577+28.3025+38.4399=100.0001 instead of
exactly 100. This is because the computer rounded off its answers,
Round-off error isn’t serious in this example (what’s .0001% among
friends!), but it can sometimes cause trouble if the programmer lets
it “pile up” too much.

SUMMARY OF THE THINGS THAT CAN BE USED IN A
LET STATEMENT: :

10 LET X = 12 * Y + W
A N S A A
Line Numberl IKey Wordl lVariabIeI Constantl lOperators] | Variables'

X, Y, and W are called variables, since different numbers can
be stored in the locations they represent. The number 12 is
called a constant because it doesn’t change.

In BASIC you're allowed to use only one variable on the left
side of the equal sign (=) in a LET statement, and as many
as you want on the right side. Constants can be used only
on the right side.

Let’s watch some LET statements in action. On the left we’ll
show a BASIC program. On the right we’ll “picture” what happens
inside the computer.

BASIC PROGRAM MEMORY

READY (a]] [e] | [] | [°]
10 LET A=7 7
20 LET B=3 3
30 LET C=A+B 10
40 LET D=23%C >|230
S0 LET D=DI*100 23000
60 PRINT A3B;C3D
70 END

RUN

7 3 10 23000
. _

Did you catch what happened in statement 50? The computer
worked on the right side of the statement first, calculating D100,
when the D location still had 230 in it from the previous step. Then
it took the answer (23000) and put it back in location D. This means
that the 230 was erased, and replaced by 23000.

Notice that the computer has an in-
exhaustible supply of constants.
You name it, and you've got it!

33

B O

WY@

So far we have used single letters for variable
names. That gave us 26 names for VARIABLES.

NOTE: To avoid confusion between the
letter O and the numeral zero, we will
write zero as @ when it is necessary to
make a distinction.

In BASIC you can also use a single letter
followed by a single digit for a variable name.
Examples are:

A5, B7, D8, X9, Y1, Y2, Y3, A0

This gives us 260 additional names for variables!

Exercise 1 Which of the following variable names are allowed
in BASIC, and which are not allowed?

A B C8 C23 XY 2D 5F w8 W13
w2 H7 09 I J9 IOU F-2 3 X3.1

Exercise 2 Simulate the RUN of the following program. Copy
and fill in the chart at the right, showing the locations of memory,
as you proceed.

READY A B E1 E2 E3 W

10 LET A=12 $12
20 LET B=8§ >3
30 LET Fl=A+PR ?
40 LET E2=A-B e .
50 LET E3=A%B -
60 PRINT A3B;F13F23 E3
70 LET A=A%10 > ¢
80 LET B=A+B £ :
90 LFT u=A+R : -
100 PRINT ¥
110 END

RUN

- ouTPUT: _°

A\ 4

Exercise 3 Simulate a RUN
of the program shown at
the right. Make a chart like

10 LET A=3%4
20 LET B=10*A
30 LET C=B/4+6

that for Exercise 2, and fill 40 PRINT A3 B;C
in the memory locations as 50 LET A=B+C
you proceed. 60' PRINT A

34

ON-LINE

ON-LINE

Exercise 4 (One last check
to make sure you’re ready
for the next ON-LINE ses- 10 LET A-2=4

sion.) Look at the ‘pro- 20 PRIN 4
gram’ shown at the right. 30 LET 4=C
In each line there is an error. 40 PRINT,C,A
Find each error and re- 50 LET C/3=6
write the lines in a form that 60 LET A=C+
70 PRINT AC

makes sense. (It is impos-
sible to guess what the
original programmer had
in mind; so there is no one
“right” way to correct
each line.)

80 LET D=4 X A
90 PRINT THE ANSWER IS D
100 EMD

Code Name: /RAT1/

You are the program director of a national TV network, ABS
(All-purpose Broadcasting System). And it's that time of year
again; the lllson rating service reports are in, which means that
you have to make your annual appearance before the Board of
Directors with a list showing what percent of the audience ABS
had for each of the “prime” hours (7 P.M. to 11 P.M.).

For each time slot, you must provide the total number of view-
ers, the number of viewers watching ABS, and then the per-
centage of viewers watching ABS. Your meeting with the Board
is in just half an hour, and your list of percentages still isn’t ready.
Can the computer help? Let’s find out. Here’s a partial picture

35

ON-LINE ON-LINE ON-LINE ON-LINE

ON-LINE

Ly

ON-LINE ON-LIN

ON-LINE

of the computer OUTPUT you’d like. The numbers of viewers
came from the lilson survey.

TIME SLOT

W -

&

35483- 6379 —

TOTAL VIEWERS VIEWERS OF ABS Z WATCHING ABS

31546 88176
36530+ 9604
478670 16390

Write a program, using a series of LET and PRINT statements,
which will output a complete chart. The formula you need for
the last column in the chart is:

No. of viewers of ABS
Total No. of viewers

Percent watching ABS = <)*100
Your program should first PRINT headings. Then tor the first
time slot, here’s what you might do:

LET N=1

LET A=the total number of viewers

LET B=the number of viewers watching ABS
LET C=(B/A)*100

Then PRINT N, A, B, C. Now repeat the process for N=2, and so
on. Of course, you'll have to write statements in correct BASIC
with line numbers, sticking exactly to the rules you’ve seen so far.
When you’ve done this and are pretty sure your program is cor-
rect, take it to the computer and RUN it. ‘

Code Name: //RATSTUDY//

In order to make this next program more interesting, we're
going to sneak in the FOR and NEXT statements again without
explanation (it's coming soon). We’'ll use them
to write a program that shows how the %
ratings of ABS in time slot 1 would change for
each extra thousand viewers added until ABS
had 30,876 people watching their shows.

The program is printed at the top of page 37.

RUN it and see if you can figure out how it
works. (If you can’t, wait until Section 2-7).

READY

10 PRINT "RATING STUDY FOR TIME SLOT 1"

20 PRINT "TOTAL VIEWERS's'VIEWERS OF ABS"»" % WATCHING ABS"
30 LET A=31546

40 LET B=8876

50 FOR X=1 TO 22

60 LET B=B+1000

70 PRINT A>B» (B/AX* 10035 %"

80 NEXT X

90 END

>
LET'S REVIEW SECTION 2-3

@ The LET statement is used to ‘“assign a value to a variable.”
This means that the value (number) is stored in the computer’s
memory in a location which has a label, or “address,” that is
given by the variable’s name. For example:

BASIC STATEMENT PICTURE OF COMPUTER MEMORY
10 LET M=16+4 N
L= |

ON-LINE

ON-LINE

The value 20 is stored in the computer’s memory in a location
that has the address, or label, called M. The RIGHT side of
the BASIC . statement is calculated first, and then stored in
the location named on the LEFT side.

@ Variable names can be single letters (A, B, C,..., X, Y, Z)
or single letters followed by single digits (such as Al, B7,
W0, X3).

2-4 The |INPUT| Statement

You probably found that your television-viewers
program in Section 2-3 consisted of many re-
peated statements. For example, for each time
slot, you had to have several LET statements.
You may have had something like this:

LET N=Time slot no.

LET A=Total viewers

LET B=Viewers of ABS

LET C=(B/A)=*100 (% watching ABS)

PRINT N, A, B, C

....... which means that a set of similar state-
ments had to be used for each time slot. Well,
that’s not very good programming.

37

Let’s see if we can write a better program. We’ll keep A, B, and C
meaning the same things as listed on page 37. First, let’s write the

essential statements:

30 LET C=(B/A)#100<—That's a good start.

40 PRINT A,B,C;"%"’ «——We have t

100 END

210 evr 4
20 INPUT B
Fo 4&7’(‘:6%)&700

PTG g

o PRINT the answers to get OUTPUT.

Of course, this program would
not work because it has no
values for A and B. To give A
and B values, we’ll use a new
kind of BASIC statement — the
INPUT statement.

Let’s add two statements at
the beginning of our program:

These are the answers
printed by line 40.

38

RUN<«————— Second RUN

736530
79604
36530+« 9604

END

RUN «—— One more time

7479617
216390
47967 16390

END

10 INPUT A
20 INPUT B
Here’s what a few RUNSs look like:

This ? is from the first READY

INPUT statement. The

computer is asking us 10 INPUT A

to tell it what the value 20 INPUT B

of A should be. We 30 LET C=(B/8X%100

typed in 31546, and then ‘*gopg;g'r As Bs Ci 2"

pressed the RETURN !

; RUN

key.

—— . \\\ﬁ?slsae
This ? is asking f‘r..)r the ___|.>?88 76
value of B (from line 20). —~>31546 88176 28e1367%
END

26.2907%

34¢1693%

Let’s summarize the effect of a statement like:
10 INPUT A

When the computer executes the program and gets to statement 10, it

prints a ? and then

waits for you to type in a number for A, followed by a carriage
RETURN (you’re INPUTting the number into the computer).

OK; that’s the basic program in BASIC. Let’s spruce it up a bit.

First, you know what A, B, and C stand for, the network president
knows what they stand for, but not everyone does. So let’s putina
few PRINT statements to clear this up. Let’s also show the time slot
numbers:

10
15
20
30
35
36
40

1

\//

READY
1 PRINT "TYPE IN THE TIME SLOT NUMBER:*®

3 INPUT N
5 PRINT "INPUT THE TOTAL NUMBER OF VIEWERS:"”

100 END
RUN

TYPE IN THE TIME SLOT NUMBER:

71

INPUT THE TOTAL NUMBER OF VIEWERS:
731546

TYPE IN THE NUMBER OF ABS VIEWERS:
18876

TIME SLOT NO. TOTAL VIEWERS VIEWERS OF ABS % WATCHING ABS

INPUT A

PRINT "TYPE IN THE NWMBER OF ABRS VIEWERS:"™

INPUT B

LET C=(B/7A)X*]100

PRINT "TIME SLOT NOe'"s*"TOTAL VIEWERS',"VIEWERS OF ABS"»
PRINT ™ % WATCHING ABS"

PRINT NsAsBs C3 *'2%

31546 8876 28+1367%

NOTE: Because of the comma at the end of line 35, the com-
puter prints the OUTPUT from lines 35 and 36 on the same
line. A new RUN is needed for the next time slot.

Code Name: /RAT2/

RUN the preceding program using the data for time slots 2, 3,
and 4 given in program /RAT1/, Section 2-3.

ON-LINE

39

Let’s take a look at another program that
uses the INPUT statement. Suppose that you’d
like to calculate how many hours a person has
slept in his lifetime (well, why not?). Let’s
assume that everyone sleeps about 1/3 of the
time (8 hours out of 24). And let’s take a year as
365 days (disregarding leap years).

101

Here’s a program you might use, with a sample
RUN.

READY

10 PRINT "HOW MANY YEARS OLD ARE YOU?"™
20 INPUT Y

30 LET H=Y*24%365

40 PRINT "HOURS LIVED", "HOURS SLEPT"
50 PRINT HsH/3

60 END

RUN

Notice that the INPUT statement

caused the computer to PRINT a ?
and then stop. The student typed| |HOW MANY YEARS OLD ARE YOU?

in the number 12 and pressed ri2

HOURS LIVED HOURS SLEPT
RETURN. 105120. 35040.
END

Let’s try again.—p RUN

- HOW MANY YEARS OLD ARF YOU?
The student typed letters in- L2 THIRTEEN — '
stead of numerals. The computer| 1,43 This it understood!
doesn’t understand letters; so HOURS LIVED HOURS SLEPT
it typed ?? (some computers 113880, 37960«
type messages like “ILLEGAL
CHARACTER”). END

RUNe——— One more time

HOW MANY YEARS OLD ARE YOU?
. 211 1/2

Fractions not allowed! The com- EXTRA INPUT - WARNING ONLY
puter took the INPUT as 111 (1) and
ignored the /2, giving us a very| | HOURS LIVED HOURS SLEPT
wrong answer. 972360 3241200

END

WMAWWMAMAANMAANMAAN AN AMAANNNNY

40

Let's try again.

7115
HOURS LIVED
100740

END

This worked. Moral: you must use either whole
numbers or decimals for INPUT — never use
fractions as INPUT.

NMAANNWVWVVWMAANNVWNVVAAMMAN VAW
RUN

HOW MANY YEARS OLD ARE YOU?

HOURS SLEPT
33580,

R

SPECIAL TRICK: To put the INPUT ? at the end of the ques-
tion being asked, end the PRINT statement which comes just
ahead of the INPUT statement with a ; as shown here:

| Don’t put any ? mark here.

10 PRINT "HOW MANY YEARS OLD ARE YOU'3
RUN

HOW MANY YEARS OLD ARE YOU?14

Put a ; after the last .

This is the INPUT ?.

HOURS LIVED HOURS SLEPT

122640 40880
\

ON-LINE

ON-LINE

ON-LINE

Code Name: /SLEEP/

RUN the preceding program for Y=10, 20, 30, 40, 50, 60. Com-
pare the results for 10 and 30 and for 20 and 60. What do you

discover?

Try the program for a variety of ages, including ages like 12.75
(which means 12 3/4 years or 12 years and 9 months old).

Code Name: /RETIRE/

RUN the following program for a variety of values for Y.

READY

Notice the space between *
and YEARS. If we hadn’t

20 INPUT Y

40 END

10 PRINT "HOW MANY YEARS OLD ARE YOU';

30 PRINT "YOU CAN RETIRE IN"; 65-Y3;" YEARS.'|| Would be right next to the

put it there, the Y in YEARS

preceding numeral.

RUN S
\

41

We can use an INPUT statement for several variables. Study this:

READY

10 PRINT "TYPE IN THE NO. OF NICKELS» DIMES» AND QUARTERS YOU HAVE:"

20 INPUT N»D»Q
30 PRINT "YOU HAVE"™j3 e 05%N+e 1% D+0o25%Q35 " DOLLARSe"

40 END
RUN

TYPE IN THE NO. OF NICKELS», DIMES, AND QUARTERS YOU HAVES
>? 35 5o 4
YOU HAVE 165 DOLLARSe

L\

Notice that we type in three numbers
separated by commas to match line 20.

The computer stores the first number in N, the
second number in D, and the third number

in Q:

N|_3_
5 In statement 30 it calculates the .05+x3= .15
Dl 2 __ __ __ dollars you have as shown at the .10+5= .50
right and then PRINTS the result .25%4=1.00
Q|_4____ _ on the terminal. 1.65<—~0UTPUT
RUN If you forget to type in all the numbers asked for by the

program, the computer may keep asking (??) until you do:

TYPE IN THE NO. OF NICKELS» DIMESs AND QUARTERS YOU HAVES
?3
2?7554

YOU HAVE 1.65 DOLLifi;__’ﬂ_,———*’”"“_""-_—ﬁ I

Code Name: /MONEY/
RUN the preceding program with different values for N, D, Q.

Code Name: /'SUMPROD/

Write and RUN a program that will find both the sum and the
product of 4 numbers. Use a statement like:

20 INPUT W,X,Y,Z

ON-LINE

42

SPECIAL INFORMATION ABOUT LARGE NUMBERS

Look at the following program and printout:

READY

10 PRINT 30%40% 100000
20 END
RUN

1« 20000E+08

| l-eoov0Eron

What does 1.20000E+08 mean? It’s computer ‘‘scientific notation”
for 120,000,000 (that’s one hundred twenty million). Scientific
notation is a shorthand for very large (or very small) numbers. Let’s
see how it works. First recall that

102=10x10=100, 10%=10x10x10=1000, and so on.
This means that
1.2x102=120, 1.2x103=1200, and so on.

We can thus see that multiplying 1.2x 103 is the same as moving the
decimal point three places to the right:

1.2x10%=1200.

In the same way, 1.2x108=120000000. Now you can probably see
how scientific notation works::

1.20000E+08 means 1.20000x 108, which means
120000000.

In other words, since a computer can’t print 10® on a terminal, it
uses E+08 to mean x 108,

The number 8 is called an exponent, and E+08 means “times 10 .
with the exponent positive 8.” (The largest possible exponent on
the Time Share Corporation system is +38.)

RULE: E+10 means “move the decimal point 10 places to
the right.”

EXERCISES

Find the missing numbers.

1. (a) 5.00000E+06=5000000 (b) 8,000,000=__?

2. (a) 8.23000E+08=__7 _ (b) 27,000,000=2.70000E __?
3. (a) 1.23000E+11=__7 _ (b) 2,234,000=2.23400E__2

43

44

SPECIAL INFORMATION ABOUT SMALL NUMBERS

Look at the following programt and output:

READY

10 PRINT (C1/71000>7/12)/5280
20 END
RUN

1« 57828E-08

romaos

You can perhaps guess what 1.57828 E-08 means. It means
1.57828x1078, which means .0000000157828.

In case you haven’t used negative exponents before, here’s how
they work:

1 1 1
L 0-2= = -3 -
10 1 107=35575=01. 107 =35x70x70~

=10~ 001,
and so on.
This means that

1.5x107'=.15, 1.5x107%2=.015, 1.5x1073=.0015,
and so on.
We can thus see that multiplying 1.5X 1072 is the same as moving the
decimal three places to the left:
1,5x1073=.001.5
Raas
In our program, 1.57828E~-08 means 1.57828x 1078, which means

00000001.57828, or .0000000157828.
ReAaAANAAS

RULE: E-10 means “move the decimal point 10 places to
the left.”

EXERCISES
Find the missing numbers.
4. (a) 1.50000E—07=-00000015 (b) .000000732=7.32000E__?

5. (a) 3.75000E—06=__"7 (b) .0000006=__7?

6. (a) 9.82000E—16=__"7 - (b) .00000000000015=___"7

tIn case you were wondering, this program finds out how many miles wide a
one-thousandth-of-an-inch hair is.

ON-LINE

EXERCISES
Supply the missing numbers.

7. (a) 2.00000E+09=__" 2.00000E—09=__7

(b)

8. (a) 6.30000E+08=__"7 (b) 6.30000E—08=__"7
9. (a) 3.14159E+11=__"7 (b) 3.14159E—-11=__"
10. (a) __?__=7000000000 (b) __?__=0.000000007
11. (a) 7 =328100000000 (b) __? _=0.0000003281

12. (a) _7__=1000000000 (b) __? __=0.00000001

Code Name: //SUPER-SLEEP//

Write and RUN a program that prints the number of hours,
minutes, and seconds that a person has slept.

Challenge: Can you use your program to find out how old a per-
son has to be in order to have slept a million seconds? a billion
seconds?

LET'S REVIEW SECTION 2-4

@ The statement
20 INPUT X

causes the computer to stop, print a ?, and wait for you to
type in a decimal number. Then when you press the RETURN
key, the computer continues the program, with the number
you typed now stored in the location X.

© The statements

15 PRINT “WHAT IS X";
20 INPUT X

print WHAT IS X? and wait for you to type in a number,

© The statement
25 INPUT W, X,Y,Z

causes the computer to stop, print a question mark, and wait
for you to type in four numbers, separated by commas. It
puts the first number you type in W, the second in X, the third
in Y, and the fourth in Z. If you don’t type four numbers, it
will remind you with a double question mark.

@ Very large and very small numbers are printed with scientific
notation.

EXAMPLES:
1.34567E+08 means 134567000.
1.34567E—08 means .0000000134567.

45

2-5 The GOTO] Statement

At last — a statement that allows you to tell the
computer where it can go!

Let’s illustrate its use in our second TV-rating
program (RAT?2 in Section 2-4). We’ll put in a
statement (line 50) that tells the computer to GO
(back) TO line 10 and run the program all over
again:

10
15
20
30
35
36
40
45

>50

| READY

INPUT

PRINT “TYPE IN THE NUMBRER OF ABS VIEWERS:®

INPUT

LET C=(B/8)% 100

PRINT "TIME SLOT NOe's “TOTAL VIEWERS"™, "VIEWERS OF ABS",
* % WATCHING ABS*"

PRINT NsAsBs C5 2"

PRINT

PRINT

1 PRINT “TYPE IN THE TIME SLOT NUMBER: "
3 INPUT N
5 PRINT "INPUT THE TOTAL NUMBER OF VIEWERS:"

A

B

GOTO 1

100 END
—~]

-

46

Here's the GOTO
statement.

You

— may type either

50 GO TO 1

or

50 GOTO 1

Recall that this makes the computer PRINT an empty

line and makes the output look nicer.

Now we don’t have to continually type RUN. BUT — the com-
puter will go eternally back to line 1, through line 50, back to line 1,
and so on. This program puts the computer into an “infinite loop.”
This means that the computer will try to go through a program (or
a part of it) forever unless it is stopped.

BEFORE YOU RUN ANY PROGRAM HAVING AN INFINITE
LOOP, MAKE SURE YOU KNOW HOW TO STOP THE
“RUNNING” (EXECUTION) OF THE PROGRAM. Ask some-
one how to stop it, or read your computer manual, but make
sure you know.

On the Time Share Corporation system, you stop the program
execution by pressing and releasing the BREAK key if the program
is RUNning; if the computer has printed ? and is waiting for INPUT,
you must press CTRL and C at the same time and then press

RETURN.

Here’s what a RUN of the preceding program would look like:

RUN

TYPE IN THE TIME SLOT NUMBERS

72

INPUT THE TOTAL NUMBER OF VIEWERS:

736530

TYPE IN THE NUWMBER OF ABS VIEWERS:

79604

TIME SLOT NO. TOTAL VIEWERS VIEWERS OF ABS
2 36530 9604

—+TYPE IN THE TIME SLOT NUMBER:

73

INPUT THE TOTAL NUMBER OF VIEWERS:®

247867

TYPE IN THE NUMBER OF ABS VIEWERSS

216390

TIME SLOT NOe TOTAL VIEWERS VIEWERS OF ABS
3 47867 16390

TYPE IN THE TIME SLOT NUMBERS
74

INPUT THE TOTAL NUMBE
STOP

% WATCHING ABS
26029072

%Z WATCHING ABES
34 2407%

The BREAK key was
pressed here.

See what the GOTO statement did? The computer went
back to line 1 and started the program over again.

Flow charting is a method of showing in what order the computer

will RUN a program. It uses special symbols

Z_I_Nfi/ I:M LET <—START> C END)

and a lot of arrows to create a “map’” of what the computer will do.

Here’s a flow chart of the preceding program:

A FLOW CHART OF THE TV-RATING PROGRAM WITH GOTO

1
PRINT “TYPE IN THE TIME SLOT NUMBER:"

3
INPUT N

5
PRINT “INPUT THE TOTAL NUMBER OF VIEWERS:’

15
PRINT “TYPE IN THE NUMBER OF ABS VIEWERS:"]|

20
INPUT B

30
LET C = (B/A) = 100

I
35
PRINT “TIME SLOT NO.” “TOTAL VIEWERS"
“VIEWERS OF ABS™, "% WATCHING ABS"
40
PRINT N, A, B, C; “%"

48

Notice that the GOTO statement doesn’t
get a box. It is shown by an arrow that

‘““goes to”’ the right place.

You can see from the flow chart that the computer will never reach
the END statement in this particular program, since the line above it
represents the GOTO statement. But we still must have an END
statement in the program.

Flow charting is especially helpful in planning very complicated
programs, since a flow chart makes it easier to follow the logic or
sequence of the program.

EXERCISES

Pretend that you are a computer and RUN (on paper) each of these
programs.

1. Use 1 for A (STOP after 5 loops):
10 INPUT A

Infinite [20 PRINT A
N

| 30 LET A=A+1
oop 40 GOTO 20
50 FND

ON-LINE ON-LINE ON-LINE ON-LINE

ON-LINE

2. Use 1, 2, and 10 for R:

10 PRINT "PROGRAM TO FIND AREA OF A CIRCLE"
20 PRINT "TYPE IN RADIUS"

30 INPUT R

40 LET A=3.14159%R*R

50 PRINT "AREA =";A

60 GOTO 20

70 END "#“—ﬂ"#”_’#*4_,,,,————-'“””"____——

3. What’s wrong with each line of this “program’ ?

10 INPUT 4 70 INPUT F+G
20 LET B=3A 80 LET H="F+G”
30 INPUT C+A 90 PRINT “H";=H
40 LET C=B+A, 100 GOTO 5

50 INPUT, D,E 110 THE END

60 PRINT “D/E=;D/E

Code Name: /RAT3/

There is still one more thing we can do with our television pro-
gram — shorten it! One way to do this is to input several numbers
in one step, as we did in Section 2-4. So, here’s our final version:

REALY

S PRINT *TYPEs IN THIS ORDER:"

6 PRINT “TIME SLOT NO.» TOTAL VIEWERS» VIEWERS OF ABS™

10 INPUT Ns>A»B 1

20 LET C=(B/A)*100

30 PRINT "TIME SLOT NO«'">"TOTAL VIEWERS"s “"VIEWERS OF ARS"»
31 PRINT "™ % WATCHING ABRS"

40 PRINT Ns»A»B»C; 3"

45 PRINT

50 GOTO 6

100 END

\

We are transferring to line 6, not 5, just
to make the output a little shorter.

RUN this program using the information from program /RAT1/,
page 36.

SPECIAL: Change line 6 to end with a ; and see what happens.

49

ON-LINE ON-LINE ON-LINE

ON-LINE

8
N
N
N
N
]

Code Name: //WAU//

You are a dispatch director for TRANS WAUKEGAN AIRLINES.
It's your job to give the pilots all the information they need for
their flights.

One of the things they have to know is the estimated flight time,
that is, how long the flight is expected to take. You're getting
tired just guessing —so —in a small step for mankind and a
giant leap for Waukegan — you decide to use the computer.

Write and RUN a program using the information given in the
table on page 51. Your program should produce OUTPUT like
that shown below. (MPH means miles per hour.)

RUN

TYPE IN:

FLIGHT NUMBER:? 128
PLANE SPEED (MPH):? 600
DISTANCE (MILES>:?560
>WIND SPEED (MPH)Y:?7=~40

—40 means a head wind hinder- FLIGHT NUMBER: 128
ing the plane’s progress. ESTIMATED FLIGHT TIME: 60« MINUTES
40 would mean a tail wind FUEL NEEDED: 9960 POUNDS + RESERVE
helping the plane.

TYPE IN:
FLIGHT NUMBER:?

Here’'s some flight information for Trans Waukegan Airlines

you can use to test your program.

FLIGHT NO. PLANE SPEED DISTANCE WIND SPEED
(miles) (mph)
126 600 mph BOSTON-PITTSBURGH 483 —45 (head)
381 600 mph WASHINGTON-LOS ANGELES 2300 —55 (head)
513 600 mph DENVER-SALT LAKE CITY 371 —25 (head)
125 600 mph MIAMI-NEW YORK 1092 +38 (tail)
120 600 mph SAN FRANCISCO-CHICAGO 1858 +50 (tail)
630 600 mph DETROIT-SEATTLE 1938 —60 (head)
819 600 mph PHILADELPHIA- 123 +30 (tail)
WASHINGTON
w
=
;:Zg The speed of the plane with respect to the ground is called the
(e} ground speed. We are assuming that the wind is either a head
wind or a tail wind. If there is a tail wind, the ground speed equals
the sum of the plane speed and the wind speed. If there is a head
w wind, you subtract the wind speed from the plane speed, or you
£ do as the computer does, that is, add the negative number repre-
g senting the head wind speed.
(@]

Here are the formulas you’ll want to use:

Ground speed in miles per minute=(Plane speed+Wind speed)/60

Time traveled in minutes=Distance (miles)/(Ground speed in miles per minute)

Approx. 166 pounds for each minute of flight time

ON-LINE ON-LINE

ON-LINE

EXAMPLE
Suppose:
Plane speed=600 MPH

Wind speed=60 MPH (this means a tail wind)

Distance=330 Miles
Then:

Ground speed in miles per minute=

(600+60)/60=660/60=11 Miles per minute
Time traveled in minutes=330/11=30 Minutes
Fuel needed=166+30=4980 Pounds of fuel

51

52

LET'S REVIEW SECTION 2-5

© Computers execute statements in the order that is given by the
statement line numbers. You can change this order by using
a GOTO statement. A GOTO statement, as the name im-
plies, will force the computer to go to a specific statement
anywhere in a program. For example:

300 GOTO 179

will force the computer to go from statement 300 to statement
179 and continue execution at that point in the program. We
say that the program branches to statement 179.

© Several good programming ideas have been illustrated in the
last few pages, which we also ought to review:

1. It’s a good idea to use a PRINT statement to tell the person
RUNning the program what the INPUT statement is
asking for.

2. Instead of always reRUNning a program, we can use a
GOTO statement to cycle back to the beginning of the
program (or to any other point). An even better technique
will be shown later.

3. Always label an answer. Don’t just say 26.290, for example.
Make sure it’s clear whether 26.290 is the percent of
viewers watching ABS, the weight of your dog, or whatever
else you had in mind.

2-6 Statements Using |IF ... THEN|; |STOP

Sue is a computer programmer for the transportation department of
her state. She has just been given her latest assignment: computer-
ize the automobile driver licensing process. Sue hardly knows where
to begin.

But, being logical (all computer programmers are logical), she
decides the first thing the computer should do is to look at the per-
son’s age and determine what type of license (if any) can possibly
be issued. Here is what Sue is thinking:

First, IF the person’s age is less than 16, THEN the computer
should print:
“NO LICENSE POSSIBLE — UNDER AGE”
But, IF the person is 16, THEN the computer should print:
“JUNIOR OPERATOR’S LICENSE POSSIBLE”
Finally, IF the person is older than 16, THEN the computer
should print:
“OPERATOR’S LICENSE POSSIBLE”

Sue has set up three conditions about the applicant’s age (by
applicant we mean the person who has applied for a driver’s license).
The conditions are:

(1) the applicant is younger than 16, or
(2) the applicant is 16, or

(3) the applicant is older than 16.

One and only one of these conditions can be true for each applicant.
Hence, it should be possible to program the computer to find out
which fits each applicant. Let’s first use English “IF’’ sentences to
show the logical thinking needed to decide which kind of license the
applicant can request.

SUPPOSE THAT AN APPLICANT IS 19 YEARS OLD:

(1) IF the applicant is younger than 16, ...
But the applicant is NOT younger than 16; so condition 1
is FALSE and we continue.

(2) IF the applicant is 16, . ..
But the applicant is NOT 16 years old; so condition 2 is
FALSE, and we continue.

(3) IF the applicant is older than 16, . ..
The applicant is 19; so condition 3 is TRUE. We therefore
decide that the applicant is eligible for a regular operator’s
license.

53

2

Here’s a flow chart that describes our logic:

A diamond-shaped box in a flow chart
is called a decision box.
there should always be a question that [——>
can be answered yes or no.

Inside the box

/NPUT APPLICANT'S AGE/

YES[PRINT “NO LICENSE POSSIBLE —
> UNDER AGE"
t—

IS AGE
LESS THAN
167

54

PRINT “JUNIOR OPERATOR'S
~| LICENSE POSSIBLE"]

~——]

PRINT "OPERATOR'S LICENSE
~| POSSIBLE"

~——

NO

1 SOMETHING'S WRONG!] END

Another way to describe a decision box is to say that it corre-
sponds to a condition which is either true or false. Such conditions
are described in BASIC by using the symbols <, =, or >, where:

A<16 means A is less than 16
A=16 means A is exactly equal to 16

A>16 means A is greater than 16

Now, look again at the flow chart. Can you think of an age that
gives the answer NO for all three questions in the decision boxes?
In other words, can you think of an age which is not less than 16, not
equal to 16, and also not greater than 16? Of course not. This tells
us that the third decision box is not really needed.

Exercise 1 Redraw the flow chart above so that it uses only
two decision boxes.

Before writing her program, Sue decided on one more improve-
ment. Instead of ENDing the program after checking one applicant,
she decided to have the program “‘loop” back to the beginning. But
to avoid having an infinite loop, she put in a special decision box at
the start which would stop the program anytime she typed in O (zero).
Her new flow chart is shown at the top of page 55.

A=0 is Sue’s code for
stopping the program.

If Ais not <16 and A
isnot =16, then A>16.

The computer comes here
from line 20 IF A<16.

The computer comes here
from line 30 IF A=16.

The computer comes here
from line 15 IF A=0.

|

|
/INPUT APPLICANT'S AGE

IS AGE = 0? YES

PRINT “NO LICENSE POSSIBLE —
“|UNDER AGE"

PRINT “JUNIOR OPERATOR’S
* LICENSE POSSIBLE"

S —
PRINT “OPERATOR'S LICENSE

~| POSSIBLE"”
N —

Here’s a program based on Sue’s flow chart:

READY

3 PRINT "TYPE O (ZERO)> TO STOP THIS PROCRAM."
4 PRINT
S PRINT "TYPE IN APPLICANT'S AGE:";

\10 INPUT A
15 IF A=0 THEN 100

20 IF A<16 THEN 80

30 IF A=16 THEN 90

40 PRINT "OPERATOR®'S LICENSE POSSIBLE"

45 GOTO 4

80 PRINT “NO LICENSE POSSIBLE-~-UNDER AGE"
85 GOTO 4

|90 PRINT "JUNIOR OPERATOR'S LICENSE POSSIBLE"
95 GOTO 4

100 PRINT "PROGRAM TERMINATED"

105 END

RUN

TYPE O (ZERO) TO STOF THIS PROGRAM.

TYPE IN APPLICANT'S AGE:? 30
OPERATOR®'S LICENSE POSSIELE

TYPE IN APPLICANT®S AGE:?16
JUNIOR OPERATOR®'S LICENSE POSSIELE

TYPE IN APPLICANT'®S AGE:?14
NO LICENSE POSSIBLE--UNDER AGE

TYPE IN APPLICANT®S AGE:?0
PRO GRAM TERMI

~———

NATELD

55

56

Here are examples of three other kinds of conditions that can be
used in BASIC:

A>=16 means A greater than 16 or A equal to 16

A<=16 means A less than 16 or A equal to 16

A<>16 means A notequal to 16 (on some computers
can be used instead of <>)

,The_,condition A>=18 is true if either A>18 or A=18. Here’s
an example showing how you might use such a condition. This
example also illustrates the use of the key word STOP.

PRINT “TYPE YOUR AGE"

10 PRINT "IYPE YOUR ACE.*

20 INPUT A

30 IF A >= 18 THEN 60

40 PRINT "NOT ELICGIBLE TO VOTE®"
50 STOP

60 PRINT "FLIGIFLE TO VOTE"

70 ENL

INPUT A

IS Az =187

NO

PRINT "NOT ELIGIBLE
TO VOTE"

USING THE KEY WORD |STOP

RULE: The last statement in a BASIC program must be an
END statement. If you wish a program to stop executing at
any other place, use a statement with the key word STOP.

Exercise 2 Here is a part of a program. At the top of page 57, we
give you 10 versions of line 40. In each case, decide if the con-
dition is true or false, and indicate the next statement to which
the program will “‘branch.”

10 LET B=16
20 LET C=24
30 LET D=48
40 ==e-eeee--

STATEMENT 40:

CONDITION 1S:

BRANCH TO:

SAIE I A

COXXN®

40
40
40
40
40

40
40
40
40
40

IF
IF
IF
IF
IF

IF
IF
IF
IF
IF

D>B THEN 60
B=D THEN 60
B/8=D/C THEN 60
B<>D THEN 60
D<=2+«C THEN 60

D/B>=D/C THEN 80
3xD<>2xB THEN 80
B+xD<=C*D THEN 80
C+B<40 THEN 80

BxB>=D*D THEN 80

TRUE (48>16)
FALSE (16 is not equal to 48)
TRUE WHY?
? WHY?
TRUE WHY?

WHY?
WHY?
WHY?
WHY?
~ WHY?

o
|

-~

-~

-~

60
50
60

2

2

-~

-~

-~

=~

=~

Exercise 3 Pretend you are a computer and simulate running
the following program. It is a ridiculous program, but it is an
interesting puzzle. If you do it right, you'll receive a pleasant
surprise. (If all else fails, try it on a computer.)

10 LET F=10

20 IF 18<2%F THEN 40

30 PRINT *"wAS"™

35 GOTO 140

40 LET G=20

50 IF G/F <> 4/2 THEN 70
60 PRINT "THIS"

70 GOTO 90

80 PRINT '"NEVER"

83 PRINT "A"

85 GOTO 60

90 PRINT "PROGRAM"

100 LET F=F-7

110 IF F/2 <= 1«5 THEN 20
120 FRINT "EVER"

130 IF F/2>1.5 THEN 70
140 PRINT "RUN"

150 IF G+F<2S5 THEN 165
157 PRINT "SPOT"

158 PRINT "RUN"

160 LFT F=F+1]

165 1IF G-F <= F+F THEN 157
170 PRINT "CORRECTLY."

180 END

Jeo mp

57

ON-LINE

Checks to see if
20 problems have
been done.

Code Name: /MATHQUIZ/

Here is a program that is short, yet it gives a long addition quiz
(twenty questions). Draw a flow chart and then RUN it. (You
might also try changing it to a multiplication quiz.)

C counts number correct.
W counts number wrong.

READY

-5 LET C=0
I;-10 LET w=0
20

30 LET Y=1

If A is the correct

answer, GOTO 110.

40 IF (C+V

'“\\ 50
60

70

INPUT A

IF A is not correct,

gives correct answer.

80

PRINT
190

100
110

GOTO 1
PRINT

Jumps over the
correct-score lines
(110, 120).

i20
> 1 30
140
—>150

LET C=

GOTO 4

160 PRINT

Changes X and Y
to give us a new
problem.

170 PRINT
180 END

L

"NO»
LET W=W+1

The first QUIZ problem
is to add 50 and 1.

LET X=50

g

)=20 THEN 160

PRINT "WHAT IS*'3X3"™ +"3Y;

PRINTS the problem.

e

IF A=X+Y THEN 110
THE SUM IS"3X+Y3 %"

30
""VERY GOOCL"
C+1

Student answer

Counts wrong answers.

LET X=X-2
LET Y=Y+3

0

"THAT'S THE ENDe"
" CORRECT AND'";W;" WRONG."

B

YOU HAD;3 C3

Back to give another
problem.

ON-LINE

ON-LINE

NE

ON-LI

Counts correct answers.

On the Time Share Corporation system,
lines 5 and 10 are unnecessary. The
variables automatically have the value
0 to start with.

FLOW CHART
(START)
10
LET I =1
15
PR IS 1>10 YES
This is e
called | PRINT | # |
a Loop.
30
LET I=1+1
40
GOTO 15

Let’s discuss another use of the 1F ... THEN statement. Suppose
that we wish to print the squares of all the whole numbers from 1 to
10. (The square of 2 is 2x2, or 4.) We could say:

10 PRINT 1=1
20 PRINT 2%2
30 PRINT 3x%3

< There would be 6 additional state-
. ments here.
100 PRINT 10+10
110 END

But that’s rather ridiculous! We can write a much shorter program
which will do the same thing, as shown in the following flow chart
and program.

PROGRAM

READY

10 LET I=1

15 IF I>10 THEN 50
20 PRINT I*13

30 LET I=I+1

40 GOTO 15

S0 END

RUN

1 49 16 25 36 49 64 81 100

renrren

Notice that the program would be the same length if we de-
cided to print the squares of the whole numbers from 1 to
100!

You can see from the flow chart that the program automatically
repeats itself. This is called looping.

On the next page we shall examine this program in detail.

59

Sets the first (initial) value of |. Since
we want the numbers 1 to 10, we set |
equal to 1 for a start.

We first check to see if | has gone past
1 10. If it has, we want line 50 (END). If

not, we wish to PRINT Ixl, as in line 20.

After the square of a number is printed,
we then want to increment (increase) |
by 1 to get the next number.

Step 15

The END statement
is reached only
when | exceeds 10.

loop.

10 LET I=ti

15 1IF I>10 THEN S50fF

20 PRINT Ix*I; /
30 LET I=I+1e— |

40 GOTO 15

Then we branch back to statement 15, where
we decide whether or not to continue.

uses IF ... THEN to test if we are finished. We put our

test right at the start of this program. (It is also possible to put it
other places.) Notice that IF ... THEN provides a neat way of
escaping from a loop. In other words, there won’t be an ““infinite”

SUMMARY: Programs can avoid infinite loops by using
IF ... THEN statements together with statements that incre-
ment the loop variable.

It's something like a bus driver who travels the “loop’ shown
below, over and over. Each time he passes the starting point,
he pushes the button to increment his trip counter. He gets out
of the loop and heads for the garage when his counter shows
>10 trips.

I T S B
P E ok '
m— ,
7!
»vapoapn i
000000000
gounuuoun i ol
e ;
noaoamﬁ) ;gmﬂﬂ"%" > Fagnno0on
o 00 0p0aDAD ggﬂaggg 4 ; pinnoonon
P23 2000980 A 00 & i DD%UUEE
e —a ki o » ‘ DU
LYY) =

60

ON-LINE

Code Name: /SEQ/

Change the preceding program to print out the squares of the
numbers from 10 to 30.

Code Name: //QUIZ//

Write (OFF-LINE) a QUIZ program on any subject (music, history,
physics, mathematics, accounting, and so on) that appeals to
you. You can use the following program as an example. Your
program should be at least as long, and it should keep score.
Include enough directions so that anyone can RUN your program.
When you are sure it’s ready, try it ON-LINE with a friend.

ON-LINE

SAMPLE QUIZ PROGRAM (sample RUN is given on page 62):

READY

5 LET S$=0 :

10 PRINT “"HERE IS A LIST OF SIX NAMES IN MUSIC. YOU WILL BE"
11 PRINT "ASKED FOUR QUESTIONS; ANSWER EACH WITH THE NUMBER"
12 PRINT "CORRESPONDING TO THE CORRECT NAME."

15 PRINT 1. BFATLES 2« ENRICO CARUSO™

17 PRINT 3. BOB DYLAN 4. LUDWIG VAN BEETHOVEN®"
20 PRINT °*°S. JOHANN Se BACH 6o LOUIS ARMSTRONG"

25 PRINT

30 PRINT *"WHO WROTE NINE SYMPHONIES?*

40 INPUT A

50 IF A=4 THEN 64

60 PRINT °NO», BEETHOVEN (4) IS THE ANSWERe"

63 GOTO 7¢C

64 LET S=5+1

65 PRINT "RIGHTiI"™

70 PRINT “NAME A FORMER MAJOR °‘ROCK® CROUP.™

80 INPUT B

90 IF B=1 THEN 104

100 PRINT "NO» BEATLES (1) IS THE ANSWER."™

103 GOTO 110

104 LET S=5+1

105 PRINT "CORRECT1"

110 PRINT “A FAMOUS ITALIAN OPERA STAR WHO DIED IN 1921 WAS:"
120 INPUT C

130 IF C=2 THEN 144

140 PRINT °'NO» ENRICO CARUSO (2) IS THE ANSWERe.'

143 GOTO 150

144 LET S=S+1

145 PRINT "YESII®

150 PRINT *"WHO WAS °*SATCHMO *?"

160 INPUT D

170 IF D=6 THEN 184

180 PRINT "“NO», LOUIS ARMSTRONG (6) IS THE ANSWER."

183 GOTO 190

184 LET S=5+1

185 PRINT *GREAT!™

190 PRINT *OK» YOUR SCORE OUT OF A POSSIBLE 4 IS"™;S5"."
200 IF S=4 THEN 220

210 PRINT "HOPE YOU HAD FUNe MAYRE NEXT TIMF YOU CAN DO BETTER."™
215 STOP

220 PRINT "YOU HAD A PERFECT SCOREe CONGRATULATIONS!!I®™
230 END

61

Here is a
RUN
sample RUN
of the QUIZ
mpgnmnshown HERE IS A LIST OF SIX NAMES IN MUSICe YOU WILL BE
on page 61: ASKED FOUR QUESTIONS: ANSWER EACH WITH THE NUMBER
CORRESPONDING TO THE CORRECT NAMEe.
1« REATLES 2. ENRICO CARUSO
% 3. BOB DYLAN 4o LUDWIG VAN BEFTHOVEN
= 5 JOHANN S. BACH 6o LOUIS ARMSTRONG
2
O WHO WROTE NINE SYMPHONIES?
75
NO» REETHOVEN (4) IS THE ANSWERe
i NAME A FORMER MAJOKR °*ROCK® CROUPe
=1 71
i CORRECT!
é A FAMOUS ITALIAN OPERA STAR WHO DIED IN 1921 WAS:S
(@) 75
NO»> ENRICO CARUSO (2) IS THE ANSWERe
WHO WAS °*SATCHMO '?
W 76
2 GREAT!
=] OKs YOUR SCORE OUT OF A POSSIBLE 4 IS 2.
g HOPE YOU HAD FUNoe MAYBE NEXT TIME YOU CAN DO BETTERe
\

LET'S REVIEW SECTION 2-6

© The IF ... THEN statement is one of the most important
statements in programming. It allows a computer program to 23 IF A<4 THEN 200
decide whether the next statement to be executed is the one 97 IF C>=9xA THEN 320
right below, or the one which the THEN part mentions. 126 IF R=S+T THEN 560
Some examples of correct IF ... THEN statements are shown 516 IF V<>M+| THEN 680
at the right. The parts of the IF ... THEN statement are:

Key Words | ™~

|Line Number] Condition to be Tested “YES” Line Number
l
120 IF A > 3 x W THEN 400
130<|'‘NO” Line Number
/\\
© Flow chart rep- “THE NUSIBER A THE
resentation of the GREATER THAN _~VES™ _L_l'@g(gag _Ti

above IF ... 3+W?
THEN state-
ment. GO TO THE NEXT LINE (130)

62

RUN

16
25
36
49
64
81
100

2-7 Statements Using the Key Words
FOR | and |[NEXT |; |STEP

The FOR and NEXT statements were invented to simplify the
writing of programs that do the same kind of thing over and over
again — in other words programs that contain loops. This means
that FOR and NEXT can help you write short programs that pro-
duce lots of output.

The IF ... THEN statement can also be used to write programs
with loops (see page 59), but using FOR and NEXT is easier in
those cases to which it applies. Let’s compare using the two methods
to print the squares of the first ten natural numbers:

Looping with Looping with
IF...THEN FOR | and | NEXT
10 LET I=1
20 1IF I>10 THEN 60 10 FOR I=1 TO 10
30 PRINT I%*I1 20 PRINT I*I
40 LET I=I+1 30 NEXT 1
50 GOTO 20 40 END
60 END
——_’__’_—_’_’_———-

These two programs do the same thing:

© They both start I out equal to 1.

@ They both PRINT IxI, and then increase 1 by 1.

© They both continue to run over and over until finally I reaches 10.

@ Then they both stop.

In other words, both of these programs would RUN as shown at the
left.

Notice that FOR and NEXT are
both used in the second program.
They are always used as a pair.

63

We can see the “loop” in the first program (the one that uses

IF ... THEN) by drawing a flow chart. We can also see that when
the number I gets larger than 10, the IF statement will throw the
computer out of the loop.

(sTART)

LET I=1

LET I=1+ 1 ===

A

PRINT | = |

The heavy colored lines show where the looping takes place.
This looping idea works the same way in a FOR-NEXT loop,
except that the computer automatically does the

incrementing step (LET I=I+1)
and the

testing step IS 1>107).

Here’s a description of the FOR-NEXT version of the same
program.

BASIC

ENGLISH

10 FOR I=1 TO 10
20 PRINT I*1

30 NEXT I
40 END
\——_——‘—_/

Let I=1, print I,

go back and get the next [(=2), print Ixl,
go back and get the néext I(=3), print Ixl,
and so on,

until we have finally printed x| for 1=10.

64

Are you confused? The above explanation of FOR-NEXT loops
is from a computer viewpoint. Let’s look at FOR-NEXT loops
from a human viewpoint.

Let’s write a “program’ to describe what really happens when a
person does something several times. For example, suppose that we
want someone to clap his hands five times.

A “‘program” that we might try on him is the following:

1. FOR each number from 1 to 5, you're going to do
something. Let’s start with 1.

2. Clap your hands.

3. Go back and get the NEXT number, but stop if the
next number is greater than 5.

Someone following our “program” would do the following:

Start with 1.

Check, is 1 greater than 5?

NO

(1) lcLap

Go on to the NEXT number; 1+1=2.

Check, is 2>57
NO

(2) loLar

NEXT number — LET the number equal
2+1=3

1Check, is 3>57
NO

(3) |cLap!

(NEXT | — LET I=l+1=3+1=4

iCheck, is 4>57
NO

(4 loLap!

NEXT | — LET I=l+1=4+1=5

JCheck is 5>57
NO

(5 lcLap

NEXT | — LET I=l+1=5+1=6

Check, is 6>57
YES
|ISTOP!

—A

If you felt that the above was silly for human beings, we agree.
That’s because human beings are much more intelligent than com-
puters. But now you have some idea of how FOR and NEXT work.

65

SUMMARY: The FOR and NEXT statements are used to count
for the computer while it does something over and over.

READY

Zg‘:r:vgf; 10 FOR I=1 TO 10 —— : This is
|20 PRINT I*I|< This is like clapping. like

statements 30 NEXT 1 counting.

here. 40 END

RUN

1

4

9

16
25
36
49
64
81
100

R

Here’s an example which has 4 statements berween the FOR and
NEXT statements. These 4 statements are called the body of the

loop.
READY
This is the BODY of the loop.
—10 FOR I=1 TO 6 The BODY is the part of the
20 PRINT I,2%I,3%I program between the FOR state-
LOOP [30 IF 1=3 THEN 50 — ment and the NEXT statement,
gg gg;grégwrﬂf HALFuAY THRoueHw|| |39 ! 18 executed each fime
60 NEXT I }Sg computer goes through the
70 END P.
RUN
1 2 3
2 4 6
3 6 9
WE'RE HALFWAY THROUGH
4 & 12
5 10 15
6 i2 18

~N_

66

A FOR statement doesn’t have to start with 1. Look at the
following:

10
20
30
40
RUN

O b wn

END
10
RUN

5
6

END
10
RUN

163
164
165

END

REALDY

___#ﬂ,,,’/;”’/,

FOR M=2 TO §
PRINT M

NEXT M

END

FOR M=5 TO 6%—__|

We are changing only line 10;
the rest of the program remains
the same.

FOR M=163 TO 165

If you were told to count to 10 by 2’s, you would say:

2 4 6 8 10
How about counting from 1 to 9 by 2’s:

1 3 5 7 9
Or count from 2 to 11 by 4’s:

2 6 10.

Note that the lower number (1 in from / to 9) is the first value,
and the number you are counting “by” is then added to it to get the
next number. You again check to see if the new number is greater
than the upper limit (9 in from 1 to 9).

In counting from 2 to 11 by 4’s, (2, 6, 10), the next number would
have been 14; but 14 is greater than the upper limit, 11, and so, it
is not included.

67

We can include a similar idea in the FOR statement by using the
additional key word STEP.

FOR Z=1 T{ 7 STEP 2

means counting from 1 to 7 by 2’s.

READY

10 FOR Z=1 TO 7 STEP 2
20 PRINT 2

30 NEXT Z

40 END

RUN

Steps of 2

N ww -

END
10 FOR Z=2 TO i1 STEP 4
RUN

2
6 Steps of 4
10

END
10 FOR Z=0 TO 50 STEP 10
RUN

0

10
20
30
40
50

u

Steps of 10

NOTE: Unless there is a STEP part in the FOR statement, the
computer assumes the values are to be increased by 1.
10 FOR I=1 TO 4 means the same as 10 FOR I=1 TO 4
STEP 1.

Here’s an example of “stepping backward”!

READY

10 FOR Z=10 TO O STEP -1

20 PRINT Z

30 NEXT Z

40 PRINT "skokokokokskkkokkkkBLAST=OF Faokokakokodkokdkkokokok
50 END

RUN

1
9
8
T
6
5
A
3
2
1
0
*k

ok ok ok ok kokok BL A S T=0 F Fkokosk skokok ok kokok kK

-

Notice that when you are ‘‘stepping backward,” the larger number
in the FOR statement comes first:

FOR Z=10)TO 0 STEP —1

On the other hand, when you are “‘stepping forward,” the larger
number comes second: ~

FOR I=2 TO @D STEP 3

Really, then, we can say that each FOR statement determines a
set of values for a particular variable:

10 FOR F=1 TO 3
determines the set {1,2,3} for the variable F.
10 FOR P=2 TO 8 STEP 2
determines the set {2,4,6,8} for the variable P.

69

Exercise 1 For each FOR statement, write the set of values that
will be used:

FOR Statement Variable Set of Values

FOR L=3 TO 9 STEP 3 L {3,6,9}
FOR G=1 TO 9 STEP 2 G {1,3,5,7,9}
FOR Y2=3 TO 8 STEP 3 ? ?

FOR W=314 TO 817 STEP 200 f)
?
?

FOR B7=3 TO 16 STEP 5
FOR R=1 TO 6
FOR M8=3 TO 27 STEP 6

ESRECARS RN

Exercise 2 Now, given a variable and a set of values, write an
appropriate FOR statement.

Variable Set of Values FOR Statement
Q {1,4,7,10} FOR Q=1 TO 10 STEP 3
P -{18,25,32,39,46} ?

K3 {200,201,202,203,204} ?

X {1,11,1.2,1.3,1.4151.6,1.7} ?

N4 {10,8,6,4,2} Z

D6 {3,8,13,18,23,28}

Look at the following programs and then answer the questions after
each program.

Exercise 3 |,, poR p=8 T0 30 STEP 6
20 PRINT *HELLO®
30 NEXT P
40 PRINT "GOOD=-BYE®™
END
How many HELLO’s will be printed?
How many GOOD-BYE’s will be printed?
Exercise 4

10 FOR L=3 TO 19 STEP 4
20 PRINT L-2
30 PRINT L+2
40 NEXT L

END

How many numbers will be printed in all?
Now, print the numbers out.

Exercise 5 Find the two errors in the following “program’:

10 FOR F=36 TO 34 STEP 2
20 PRINT F

30 NEXT G

40 END

USING VARIABLES IN FOR-NEXT STATEMENTS

Here’s a simple program that will print out 5 rows of 10 asterisks
each:

READY

10 FOR I=1 TO 5

20 PRINT " kokoksk ok ok kok
30 NEXT I

40 END

RUN

ok ok ok ok ok ok ok
ook Kok o ok ok %
ok ok ok ok ok ok ook ok
ek ok ok ok ok ok ok
ook ok o ok Aok ko ok

That's simple enough! Now, let’s change the above program as
follows:

5 INPUT R
10 FOR I=1 TO R

With this change, we can have different numbers of rows printed

out. Watch:
RUN
?3 Since R=3, line 10 becomes
ok K ok ok Kk K
Aok e ok Ak ok ok 10 FOR I=1 TO 3
Rk Kok kK Kk k and 3 rows of asterisks are printed.
END
RUN
74 Since R=4, line 10 becomes
oo ok ok ok ok o ok ’
ok ok o o o 10 FOR I=1 TO 4
Aok ok ok ok ok ok ok and 4 rows of asterisks are printed.

ook ok ok ok ko ok koK

s

Now that we know that we can put a variable in a FOR statement,
let’s change the program again:

50 END

BLOCKS OF ASTERISKS O YOU WANT"™:

PRINT "HOW MANY ROWS OF ASTERISKS LO YOU WANT IN BLOCK®™;H3;

READY

5 PRINT "HOW MANY

6 INPUT T

10 FOR H=1 TO T

15

20 INPUT R

25 FOR I=1! TO R

30 PRINT "tdkskskokokokokakkodk
35 NEXT 1

40 NEXT H

KL e

The preceding program illustrates NESTED FOR LOOPS. As
the name implies, NESTED LOOPS are loops nested, or included,

within other loops.
loop with H, and

In the above program, we have the FOR-NEXT
within that loop, the FOR-NEXT loop with I.

The two loops work like this:

10 FOR H=1 TO T
(Leaving out the
other steps.) 25 FOR I=1 TO R J | loop. H loop.
30 PRINT "**********"] | This is the <] This is the
35 NEXT I inner loop. outer loop.
40 NEXT H
-

4}

When the computer reaches the FOR statement
in line 10, it sets H=1 and then continues, as
usual, executing the body of that loop. But it just
so happens that the body of the H loop is another
FOR-NEXT loop — the I loop. So the computer
now must go through the body of the I loop, over
and over until I is greater than R (the number of
rows of asterisks wanted).

When 1 is greater than R, the computer skips
to the line right after the NEXT I, just as it would
in any FOR loop. The line the computer skipped
to is the NEXT H which returns the computer
to line 10 (finally!). Now it sets H=2 and re-
peats the whole process again.

You might compare this with the way an odometer on an auto-
mobile works. The tenth-mile dial must go through all the ten digits
before the mile dial moves one digit.

The best way to understand what a computer does with nested
FOR loops is to RUN the program and study the output. Here is

a sample RUN:

RUN

EXERCISES
Run each program BY HAND.

1.

HOW MANY BLOCKS OF ASTERISKS IO YOU WANT? 3

HOW MANY ROWS OF ASTERISKS DO YOU WANT IN BLOCK 174
ok ok ok o ok ko
ook sk ok ook ok ok ok
e e ke ke ok sk ok ook 3k
ook ofokokokok
HOW MANY ROWS OF ASTERISKS DO YOU WANT IN BLOCK 272
sok sk ok ook kokok
s sk ok ok ok ok ok ok ok
HOW MANY ROWS OF ASTERISKS DO YOU WANT IN BLOCK 376
ook ok ook o ok ko
ok ook ok ok ok
ek ok ok o ook ok ok o
koo 2k o ok ok ok ok ok ok
ok sk ok ok ook ok K

s s ok ook ok ok ok ok ok

Do you see that the computer went through the H loop 3 times?
And, that each time the H loop was executed, the I loop was run
first 4, then 2, and finally 6 times? If you keep in mind that the

BODY of the H loop IS the I loop, this is easier to understand.

10
20
30
40
50
60
70

PRINT "THIS
FOR K=1 TO 4

PRINT "NOTHING CAN GO"

FOR J=1 TO 3
PRINT °*WRONG
NEXT J
NEXT K

80 END

1S A COMPUTER. "

(Now you’ll understand Program 1

in Section 1-10.)

10 FOR w=2 TO & STEP
20 PRINT "* * *

30 FOR X=18 T0 20

40 PRINT ™ * %

50 NEXT X

60 NEXT W

70 END
~\,__“_,ﬂﬂ-’”’”"-”__—

73

REALY

10 FOR I=1 TO -5
20 . PRINT *®'%";

30 NEXT I
40 END
RUN

A SPECIAL

You know that using the semicolon (;) at the end of a PRINT
statement (so that the computer does not give a new line feed)
can create interesting effects. We can use this idea in printing

TRICK

out rows of asterisks.

Here the semicolon caused the 5 asterisks to be printed on

the same line.

74

ON-LINE

ON-LINE

<will print out _?_ lines.
<will put _?__ asterisks on
each line.

«We need this PRINT state-
ment to tell the computer
NOT to continue to print
on the same line. In-
stead, we want a new line.

EXERCISES
Run each program by hand, and show the OUTPUT.
3.
10 FOR I=8 TO 10
20 FOR J=13 TO 18
30 PRINT "x%°*;
40 NEXT J
50 PRINT
60 NEXT I
70 END B
-
4.
10 FOR S=1 TO 10
20 FOE T=1 TO S
30 PRINT "x";
40 NEXT T
50 PRINT
60 NEXT S
70 END
-

RUN the program in Exercise 2.

RUN the program in Exercise 4.

Code Name: /STARS/

Code Name: /TRIANGLE/

Code Name: /BLOCKS/

Write and RUN a program that will print 3 rectangles, each having
4 rows of 7 asterisks each, using nested loops. '

Taurz 1

|o
1

1 7o 60GYKP<Y

1 8

Tozo L1y
T YOLZIIIY

¢ Toleo 1S V7L

ON-LINE

Code Name: //GRADE//

by <>,

ON-LINE ON-LINE ON-LINE

ON-LINE

N-LINE

@ .

QUIZ- 2.
oTo 20 <17
217 Yo <‘7<’7
Y 1o 60<IKAENY
¢l To EOXy<yy
g1 To lov<+y

RUN

INPUT GRADESe TYPE 101 WHEN FINISHED.
785
27290
2100
7295
785
755
7100
75
7260
295
720
740
765
770
275
7101

GRADES DI STRIRUTION

0 TO 20 <k>

21 TO 40 <k>

41 TO 60 <k><k>

61 TO 80 <Ck><h>CKkD>CKRD> <KD

g1 TO 100 <k><Kk><hD>Chk><K><k>

AVERACE GRADE WAS 7206667

\

Write a program (OFF-LINE) that plots a bar graph of the grades
on a quiz. After you have perfected your program, try it ON-LINE.
The output might look like this, where each unit is represented

If you need some ideas, try running this

experimental program.

READY

1 PRINT "INPUT GRADES. "3
2 PRINT " TYPF 101 TO STOP."
s LET T=0

10 INPUT G

20 IF G>100 THEN 150

25 IF G<70 THEN 10

30 LET T=T+1

40 GOTO 10

150 PRINT 70 TO 100,
200 FOR K=1 TO T

300 PRINT "<*>'3

400 NEXT K

75

STARTING SPEED
(miles/hour)

76

5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
45
5.0
5.5
6.0

ON-LINE ON-LINE ON-LINE ON-LINE

ON-LINE

Code Name: ///SPEED CAR///

Write a program (OFF-LINE) to solve the following problem.
Then RUN it ON-LINE.

You are an engineer helping to design a new type of amuse-
ment park ride. The layout looks like this:

V7 777
X RN

The car starts to the left of point A with a certain starting speed.
Then it continues along the track, passing ‘‘booster” stations A,
B,C, D, thenA, B, C, D again, and so on. Every time the car passes
station A, B, C, or D, its speed is increased 10% by the gear you
see rotating below the track. If, for instance, the car is traveling
at 5 miles per hour coming into station B, when it leaves B, it
will be traveling at 5+.1x5=5.5 miles per hour.

The ride is designed so that the car goes around 10 times be-
fore the power is cut and the car coasts to a halt. The designers
are unsure as to what speed the car should start. Some say 2
miles per hour, others say 5 miles per hour. To end their dilemma,
they turn to you.

FINAL SPEED
(after 10th trip around)

?
P
P Well, now that you're stuck with

Ty the job, what are you going to do?
5 Probably the best idea would be to
P make a chart of the various start-
” ing speeds of the car, and, for each
P starting speed, show what the final
P speed of the car would be. Thus,
P you want to write a program to
P complete the table shown at the

T left.

ON-LINE

|
|

HINTS: You will need NESTED FOR LOOPS.

The OUTER LOOP will control the increasing starting speed.
(FOR S=.5 TO 6 STEP .5)

The INNER LOOP will calculate the speed after 40 **‘boosts.”
(FOR B=1 TO 40)

ON-LINE

ON-LINE

SAMPLE CALCULATION
Suppose that the starting speed were 10 mph:

BOOST NO. SPEED AFTER BOOST

1 Speed=10+.1x10=11
2 Speed=11+.1x11=12.1

3 Speed=12.1+.1¥12.1=13.31
. and so on, for 40 boosts. The reason that
we use 40 is that we go around the track 10
. times, passing 4 booster stations each time.
40

LET'S REVIEW SECTION 2-7

@ FOR-NEXT loops are used for repetitive calculations or
looping. There are several parts to a FOR-NEXT loop.
The loop starts with a FOR statement at the beginning, and
ends with a NEXT statement at the end.

A variable is chosen as a counter (for example, 1), and lower
and upper values are specified for it. A STEP part is some-
times also included to show how much I should be increased
each time the loop is repeated. For example:

10 FOR I=10 TO 16 STEP 2
A

First value ||Second value ||Step value

Thus line 10 says that I will be taken from the set of numbers
{10, 12, 14, 16}.

At the end of the loop, a NEXT statement is always needed.
The general format for a FOR-NEXT loop is:

10 FOR I1=A TO B
20 \I5ODY OF LOOP

30
40 NEXT |

Nested loops are loops within loops:

10 FORI=ATO B Body of the | loop
(outer loop)

Body of the J loop
(inner loop)

70 END

78

2-8 Storing Prdgrams on Paper Tape

NOTE: This section is not about computer programming.
It tells you how to use a special piece of equipment called
the paper tape punch and reader. You can read through this
section at any time to get the general idea, and then refer
to it whenever you wish to use paper tape.

Why paper tape? As you move along in the computer program-
ming world, your programs are bound to get longer and longer.
When that happens, having to type in the same program more than
once (say on different days) becomes discouraging. It would be nice
if we could ““store” our programs for future use, and then later have
the machine type in our programs for us. That’s exactly what paper
tape can do. Let’s see how.

LEADER
A

If your terminal is equipped to punch paper
tapes, it may be of the type shown in the photo-
graph. The combination paper tape punch and
reader is on the left side of the terminal. The
punch has a narrow yellow paper tape unrolling
under a panel of four buttons marked ON, OFF,
BSP, and REL. The reader is the part in front
with the small plastic cover.

This machine stores programs for us by punch-
ing holes in the paper tape.
A punched tape looks like this:

PROGRAM TRAILER
A A

4 N/

10 \Code for space

Sometimes this row
of holes is omitted.

20

These small holes are
not part of the code.

Each vertical line is a code for one of the charac-
ters used on a terminal. You don’t have to know
these codes — they are automatically “decoded”
back into letters, numerals, and other symbols
when the tape is “read” by the tape reader. The
picture at the left shows you some of the codes.
(We’ve put the code for “space” twice between
the other codes to spread things out.)

There are four ways in which you can use
paper tape. We shall discuss each one in detail.

SAVING PROGRAMS ON PAPER TAPE
WHILE ON-LINE

If you have perfected a program while using the
computer on-line, and want to save it for the
future, here’s what to do on the Time Share
Corporation system (other systems may vary):

1. Type the word PUNCH, press the ON but-
ton on the tape punch (left side of terminal),
and then press the RETURN key. The
terminal will chatter away while the punch
first produces a series of small holes as a
lead-in (leader). Then it will punch your pro-
gram into the tape (while simultaneously
typing out a copy for you), and finish with a
series of small holes as a trailer.

2. When the computer has finished, press the
OFF button on the tape punch, and tear off
the tape with a quick pull upwards. Notice
the shapes of the tape ends. They are
shaped like arrows pointing toward the
beginning of your tape.

79

on

FEEDING A PROGRAM INTO THE COMPUTER FROM

PAPER TAPE WHILE ON-LINE

Use your regular procedure to get your computer READY to
accept BASIC programs.

Hold the tape with the arrows pointing toward you. Place the
tape underneath the little plastic cover on the tape reader and
press the small holes in the leader of the tape over the cogs
in the wheel that moves the tape forward. Then close the
cover.

On the Time Share Corporation system, you next type TAPE
and press the RETURN key.

Push the lever on the tape reader to ON and watch the action.
To RUN the program now, simply type RUN. (If you wish to
make changes before RUNning it, type KEY first.)

0O

A K)
»":‘:"0“01:‘:
e
52 ur,:g

52 RS
\ P {08 K ELRAHK
o &7 N7
Vs !

%
Gl
e A

PREPARING A PROGRAM ON PAPER TAPE OFF-LINE

1.
2.
3.

(WITHOUT THE COMPUTER)

Turn the switch to LOCAL (switch on right side of terminal).
Press the ON button on the tape punch (left side of terminal).
Press the HERE IS key (upper right of terminal keyboard) to
produce a ‘‘leader.”

OR

Press the RUBOUT and REPT keys together (both are on right
side of keyboard) until about 2 inches of tape are punched.
(You should have a longer leader and trailer than those shown-
on page 78.)

. Type in the statements of your program as usual except, at
the end of each line, press in this order:

the RETURN KEY
the LINE FEED KEY

On some systems, you may also need to press:
the RUBOUT KEY

. If you make a typing error, you can correct it in one of two
ways:
a. Merely type a RETURN, LINE FEED, and RUBOUT, and
then retype the entire line correctly;

OR

b. You can erase a single character by pressing the BSP
(Back-SPace) button on the tape punch (left side of
terminal) followed by pressing the RUBOUT key on the
keyboard. ‘

To erase two characters, use 2 BSPs followed by 2 RUB-
OUTs, and so on. After you have erased the characters,
then type the correct characters and continue.

. After finishing the program, press the HERE IS button (or
press simultaneously the RUBOUT and REPT keys) to get
about two inches of “trailer” tape.

. Tear the tape off, pulling straight up.

. Turn off the tape punch by pressing OFF and turn off the
terminal (or press the CLR button).

When you’re ready to try your program ON-LINE, follow the direc-
tions in ﬂ on page 80.

Whenever you make a tape copy of your program, be sure to write
some identification on the beginning of the tape for future reference.

SPEEDL CAR e o
rers/6 N 3 .o.o-

81

OFF-LINE DUPLICATION OF TYPEWRITTEN MATERIAL

The picture below was “drawn’ on a terminal. There is no easy way
to make the computer do this — in fact you shouldn’t use the com-
puter at all ... just the terminal, after lots of preliminary planning
at your desk. The same idea applies to “form” letters, and so on.

If you want to make such a picture, and then reproduce several
copies for your friends, you should do it OFF-LINE, but with the
paper tape punch turned ON. The instructions in(pages 80-81)
can be followed, EXCEPT you can use only method 5b for correct-
ing mistakes.

When you are finished, you can then make copies, also OFF-LINE
(terminal switched to LOCAL) by merely putting the tape in the
paper tape reader, and pushing the lever below the tape reader to
START. The same procedure can be used for duplicating listings
of programs already punched on tape.

ok ok ok ok % ok ok ok
3 ok ok ok 3 ok ook ok s ok ok A ok o e ok ok
Aok ok ko dkokok ok sk ok ok ok kel ok ok

sk ok ok ok ko ok & ko %
*okok * dok ok
Aok & BE MY % %ok
%k % UVALENTINE %k gk
Aok e ok
Aok A ko
ok %k ok ok
* %ok ok ok
&k %k Aok ok
* ok ok ok A o ok ok
sk ke ok ok Aokok ok
o’ Aok ¥ ok A o
ok ok ok ok ok
*okok
*

NOTE: Larger computer systems also allow you to save pro-
grams on magnetic tapes or on magnetic discs. The methods
of doing this vary; so you’ll have to get the information from
your computer reference manual or your teacher.

Techaigues
forthe
Seasoned
Tnaveler

3-1 BASIC Bulldozers

This marks the mid-point of our tour, and congratulations are in order.
You can now handle input (INPUT), output (PRINT), branching
(GOTO), conditional branching (IF ... THEN), computing and
storing numbers (LET), and looping (FOR-NEXT). Theoretically,
just about any programming problem can be handled with this
fundamental set of key words.

Of course, it’s also ‘“‘theoretically” true that one can move any
amount of earth with a shovel, given enough ambition. However, in
practice there are times when having a bulldozer available can make
life much more pleasant.

This is the bulldozer part of the book — the place where advanced
features of BASIC will be explained in order that complicated pro-
gramming problems can be handled without backbreaking labor.

We will explain eight of these special features as follows:

FEATURE

SOME APPLICATIONS OF THE FEATURE

Variables with
single subscripts

REM

Variables with
double subscripts

TAB

READ — DATA
Library Functions
Computed GOTO
GOSUB — RETURN

©
©
©
©

O

@ Useful in handling values stored in tables (these are called

Especially helpful in handling lists of values (these are called
arrays).

A key word used to introduce descriptive comments into a
program.

two-dimensional arrays).

Used for printing special output patterns.

Key words used to get lots of input into the computer.
Used to do the work of many statements.

Used to replace a group of IF ... THEN statements.

Key words used to shorten programs that use similar groups
of statements in several places.

83

84

DIM REM

Up to this point we have been getting along pretty well with two
kinds of variable names. One is the single letter: A, B, C, ..., Z.
The other is a letter followed by a single digit: A0, A1, A2, ..., BO,
Bl, B2, ..., and so on. Let’s call these “ordinary” variable names.
But, as our programming gets more complicated, we’ll run into
trouble very soon with just “ordinary” variable names. To show this,
let’s use an example:

3-2 Subscripted Variables; and

TAKE-A-CHANCE-INTERNATIONAL AIRLINES

Suppose that TACI-Air has one flight each day of a 31-day month,
and that there are three passenger seats available on each plane.
We want to run a reservation office — a place where a person can
request a seat for any day in the month.

TAKE-R°CHANGE INTERNATIONAD ARWIAYS

Well, we can set up a board like this:

MARCH
[1] [2 [3] [4] [5] L6 [7]
A =3 B =23 C =3 D=3 E=3 F=3 G =
I Lo [0 [11] [12] [13 [14
H=3 | =3 J=3 K=3 L =3 M= 3 N =3
[15] 16 [17] L8] [19 [20 L21]
0O =3 P=3 Q=3 R =3 S =3 T=23 U=3
L22] | 23] [24 25 | 26 | 27 28
V=3 W =3 X =3 Y =3 Z =3 Al =3 | B1 =3
[29] [30] [31
Ct =383 D1 = 3 E1 =3

A is the name of the variable where we store the number of
seats available on March 1; B is for the seats available on
March 2, and so on. When we start, we let A=3, B=3, and
so on. If a passenger requests a ticket for March 1, we look
at our board, say OK, and sell him the ticket. And then we
change the value of A to 2.

Let’s try automating our system so that any
ticket office in the country can use a terminal to
make reservations. A program to do this might
start out as follows:

10 LET A=3
20 LET B=3
30 LET C=3
40 LET D=3

Hold it! Do you see that we’d need 31 LET
statements just to assign the starting values for
each day? That’s one of the problems with
“ordinary” variable names — we have the job
of not only choosing the names but also storing
values in the locations they label one at a time.
Just think, if we were doing the airline reserva-
tions for the whole year, we’d need 365 separate
LET statements to assign starting values!

Another trouble with “ordinary’ variable names in this example
is that they’re not very logical; why should A stand for March 1, or
P for March 16? So we need a way of naming variables where the
computer could help choose the names and where the names would
fit our situation a little better.

MARCH Let’s look at the situation a little more closely.
S We could invent As any calendar shows, a month is a collection
5 6 7 8 91011 a shorthand of days — March is a collection of 31 days.
oI 61T 8 notation calling We refer to a specific day in March by it b
19 20 21 22 23 24 25 . p y n Viarch by 1ts numboer,
26 27 28 29 30@) *'/ this M(31). for instance, March 12 or March 27.
In a similar way, we can set up a collection of computer variables.
M array This collection is called an array; arrays also have names: the “M
r A N array” or “H array,” for example. And (just as with months) we
i_ e T T T T T "i can talk about a specific member of the array by using an array name
I M(1) | | followed by a number in parentheses, for example, M(8) or H(12).
=" 1 These symbols are called subscripted variables (the number is the .
I LM@2) || l subscript):
Tuall J
| Single letter l{‘;UBSCRIPT
| M) I | ARRAY NAME [™ "
TN
M@ | | o M)
e ——— — — ! M(8) is pronounced “M sub 8.”
M) || l
[I
| T 1] | 85

86

-
| NEED)00
VARIABLES

iﬂ%ﬂﬁ/y a WITH

One of the best things about subscripted variables is that they
help the computer keep track of where things are stored. This is
because the computer ‘“‘knows” that M(8) is the 8th member of the
array M (just as we know that March 8 is the 8th day of March).
Also, just as we know that there are 7 days of March before March 8,
the computer ‘“‘knows’ that there are 7 members of the M array
before M(8). We’ll soon see how useful this is. But first let’s notice:

A CRUCIAL DIFFERENCE

H8, an ordinary variable, is not the same as H(8), a sub-
scripted variable. The difference is something like that
between the name

HENRY EIGHT <t This is like an ordinary
variable. “Eight” is
just part of this man’s
name.

and the name
HENRY THE EIGHTH

This is like a subscripted variable. The name tells
us we have a whole collection of Henrys (who were
Kings of England), and that this man is the eighth
one — the eighth King of England named Henry.

. LABEL CONTENTS
NS NG, By the way, there is one similarity between ordinary and sub-

I
|
L

M(8)

: 429 ; scripted variables — both store values. That is, M(8) is a label for

i S, J a memory location which can store a value (for example, 429).

M Most computers have enough storage room for arrays with quite

o a few members. However, it is up to us, in our programs, to indicate
My how many members of the array we’ll need. For instance, in TACI-
M'vl(%?) Air, we’ll need 31 variables, one for each day of March. We warn
MM:"si;)) the computer that we’ll need 31 by saying
Md) 10 DIM M(31)
i)
M(17) (Anytime you have a subscript larger than 10, you must use a
M'\"(SL?) DIMension statement.) After warning the computer, we can use the
MM(§21())) subscripted variables anywhere in the program.
M(22)

,\,“('((gis)) Let’s illustrate all of this by writing the complete TACI-Air pro-
&"gg)) gram. First, let’s picture a reservation board that uses subscripted
M(27) variables:

M (28)

M((329) MARCH

M (30)
M(31) 7 M(1)=3| M@2=3] M@)=3 | M4)=3| M5)=3 | M6)=3 | M(7)=3

M(8)=3 | M(9)=3 | M(10)=3| M(11)=3| M(12)=3| M(13)=3| M(14)=3

This says that there This time we have stored the number of seats for the 1st day in
are 3 seats avail- M(1), for the 2d day in M(2), ..., for the 16th day in M(16), ...,
able on March 8. and so on. That’s logical, isn’t it?

Here’s how we do this in BASIC:

The warning to reserve 10 DIM MC(31) The trick is to write
enough space. 20 FOR D=1 TO 31 _
30 LET M(D)=3 30 LET M(D)=3
40 NEXT D and ask the computer to
©0 0 0006 00O OO 0O 6O 9D make D:", 2’3'.."31.
AR

We can now assign our 31 starting values with only 4 statements!
Here’s the complete reservation program.

1
. This line checks to see if there

R

EADY are as many seats left as you
10 DIM MC311] wish on the day you requested.
20 FOR D=1 TO 31 ;

30 LET MCDl=3 (M[D] is the number of seats left
40 NEXT D on day number D.) If there are,
50 PRINT he ti

60 PRINT “TYPE THE DAY IN MARCH REQUESTED AND THE NUMBER OF SEATSe" then t. e ticket
70 INPUT DsN agent is autho-
80 IF MLDl >= N THEN 120 rized to issue a ticket
90 PRINT "SORRY, ONLY";MCDJ3*" SEAT(S) AVAILABLE." .

100 PRINT " FOR MARCH"3D; "o MAKE ANOTHER REQUEST." (line 120), and the num-
l;g gg:‘gTSO c LON OK--1 ' ber of seats available
1 “"RESERVATION OK==-1SSUE"iN3* TICKET(S) FOR MARCH*;D;"e" | . ;
130 LET MCDI=MCD1-N is reduced by N (line
140 PRINT "STILL";MLD)s"™ EMPTY SEATC(S) ON MARCH"3D;"e" 130).

150 PRINT *NEXT REQUEST PLEASE«"

160 GOTO 50

170 END

A RUN is shown on the next page.

87

88

MAMAAN A WUMNAN WUWVWANAA WWUWW AWM

TYPE THE DAY IN MARCH REQUESTED AND THE NUMBER OF SEATS.
75,2

RESERVATION OK--ISSUE 2 TICKET(S) FOR MARCH 5.

STILL 1 EMPTY SEAT(S) ON MARCH 5.

NEXT REQUEST PLEASE.

TYPE THE DAY IN MARCH REQUESTED AND THE NUMBER OF SEATSe
21851

RESERVATION OK~--1SSUE 1 TICKET(S) FOR MARCH 18-

STILL 2 EMPTY SEAT(S) ON MARCH 18.

NEXT REQUEST PLEASE.

TYPE THE DAY IN MARCH REQUESTED AND THE NUMBER OF SEATS.
75,2
SORRY» ONLY 1| SEAT(S) AVAILABLE.

FOR MARCH 5. MAKE ANOTHER REQUESTe.

TYPE THE DAY IN MARCH REQUESTED AND THE NUMBER OF SEATSe
7652 :
RESERVATION OK==-ISSUE 2 TICKET(S) FOR MARCH 6

STILL 1 EMPTY SEAT(S) ON MARCH 6.

NEXT REQUEST PLEASEs

TYPE THE DAY IN MARCH REQUESTED AND THE NUWMBER OF SEATSe.
?
END

We decide to stop the INPUT. On Time
L Share Corporation installations, you press ||
CTRL and C together, followed by RETURN.

Notice that this program does not keep a record of the reservations
from one RUN to the next. A more practical program is given on
page 131.

There is another interesting feature of subscripted variables that
you should know about. It is OK for the subscript to be any expres-
sion, that is, a combination of variables and numbers joined by the
operators *, /, +, —, and 1.

EXAMPLES: X(K+1), X(K—1), B(2+J+1)

Exercise 1 In each row, find which variable name or names are
the same as the underlined name. For example:

G(12) G(14) G12 G(12+10)

M9 M(9) M(2¢45) M M(4+5) M9 M(16-7)
P(3) P(6-3) P(3) P3 P(1+2) P(4-2) P(27/9)

L(4) M(4) L(16/4) L4 L(A+1+1+1) L(128/32)
Z(16) Z(160/10) Zz16 Z Q(16) Z(256/16)

Exercise 2 Simulate running the following program:

10 DIM Q24
20 LET M(1)=2
30 LET M(2)=8
40 LET M(3)=16
50 LET @(4)=10
60 LET Q(6)=20

MANVWWWAN AM VWA N WAWWMMAMANNNANIWANS

AV AMAMNMANANNVANANAMNAAMN WV MNANMANAN

70 LET Q(24)=130
80 PRINT MC1)+M(3)

90 PRINT M(1+2)

100 PRINT M(1)4M(2)
110 PRINT QC4%6)

120 PRINT QC4)*Q(6)
130 PRINT QC10+14)

140 PRINT M(28-25)

150 PRINT M(6-4)

160 PRINT Q€24/6)

170 PRINT Q€24)/Q(6)
180 PRINT M(241)+M(3-1)+Q(8=4)+Q(3+3)
190 END

Another useful statement is the REMark statement. REMark
statements are placed in a program to help other people understand
a listing of the program. REMarks are not printed duringa RUN —
only during a LIST. For example:

LIST

10 REM PROGRa&M TO FINLD AREA OF CIRCLE

20 PRINT "TYPE IN THE RADIUS C(IN FEET>:*3
30 INPUT R

40 PRINT "AREA 15'53014159%R*R;5*" SQe¢ FTe"®
S0 REM THE NUMBER 314159 IS °PI.°’

60 ENL

END
RUN

TYPE IN THE RADIUS (IN FEFET)$?10
AREA IS 314159 SQe¢ FTe

Exercise 3 Simulate RUNning this program:

10
20
30
40
50
60
70
80
90
100

REM PROGRAM TO PRINT SQUARES OF ANY 5 NUMBERS
PRINT "TYPE IN 5 NUMBERS» ONE FOR FACH '?°:"
FOR I=1 TO S

INPUT NCID
NEXT 1
PRINT "YOUR NUMBERS", "SQUARES OF YOUR NUMBERS"

FOR K=1 TO S
PRINT NC(K)sNC(KI%®NC(K)
NEXT K

END

89

90

Exercise 4 Simulate RUNning this program:

10 REM PROGRAM TO GENERATE 10 FIBONACCI NUMRERS
20 LET A(l)=}
30 PRINT AC1)3
4C LET A(2)=1
S0 PRINT A(2)3
60 FOR J=3 TO 10
70 LET A(JI=ACJ=1)+H(J=2)
80 PRINT A(J)3
90 NEXT J ;
100 ENLD —
\
NOTE: Fibonacci was a mathematician born in Pisa, ltaly, in
1180. The numbers named after him are still used today in
higher mathematics.
Code Name: /TRACK1/
w Suppose an athlete can run the 100-yard dash in 12 seconds.
% How fast is he going in miles per hour (mph)?
2
©
Well, 100 yards=300 feet=300/5280=.0568 mile.
And 12 seconds=12/3600=.00333 hour.
=3 So his speed is D/T=.0568/.00333=17.0455 mph.
=
2
©
That's a lot of arithmetic, especially if we want to do it for a list
of athletes. Let’s use the computer!
=
= On the next page is a program which prints the speeds for as
% many runners as you wish, and then gives the average speed.
After studying it and the sample RUN, see if you can modify the
program so that it prints the average of only those athletes you
L . .
= specify. For example, you might want the average of the three
L:? highest speeds (that is, athletes 2, 4, and 5). Can you do this by
% letting the user INPUT the subscripts of the variables he wants

averaged?

RFALRY

100 DIM TL 201
110 LET S$=0
120 PRINT "HOW MANY TRACK °TIMES® LO YOU WISH TO ENTFR (<20)*';
130 INPUT N

140 PRINT "AFTER EACH '?° ENTFR & TIME (IN SECONIS) FOR THE'":
150 PFRINT "™ 100-YARL DASH.*"

160 FOR I=1 TO N - ~
170 PRINT “ATHLETE #";1: S is used to“f'.nd thﬁ’ SUM
180 INPUT TCI1] of all the “times.” The
190 LET S=S+TC1] , average time will then be
200 NEXT I

210 PRINT S/N.

220 PRINT “HFRE ARE THE TIMES ANL SPEELS:*

230 PRINT "ATHLETE #"»"TIME (SECONDS)'","SFEEl (MILES PER HOUR)®
240 FOR I=1 TO N

250 PRINT I,TCI15(300/5280)/CT(131/3600)

260 NEXT 1

270 PRINT

280 PRINT "THE AVFRAGE TIME WAS™: S/N; "™ SECONDSs '

290 PRINT "THE AVFRAGE SPFED WAS"™; (300/5280)/C(S/NY/3600)3° MPHe "
300 ENC

RN

HOW MANY TRACK °‘TIMES® IO YOU WISH TO FNTER (<20)?5
AFTER EACH °? * ENTFR A TIME (IN SECONLS) FOR THE 100-YARL DASH.
ATHLETE # 1721503

ATHLETE # 221240

ATHLETE # 3714.1

ATHLETE # 4?1163

ATHLETF # 5279.8

HERE ARF THE TIMES AND SPEEDS:

ATHLETE # TIME (SECONLS) SPEED (MILES PER HOUR)
1 1503 13 369
2 te 170455
3 1461 14- 5068
4 113 181014
5 9.8 20872

THE AVERAGE TIME WAS 12.5 SECONILS.
THE AVERAGE SPEFL WAS 163636 MPHe

e

Code Name: /AIRLINE1/

Run the TACI-Airline reservation program for several customers.

Code Name: /AIRLINE2/

Add the following statements to your airline program and see
what happens (type 0, 0 as the last INPUT):

75 IF D=0 THEN 162

162 PRINT

164 PRINT “SEATS LEFT FOR THE MONTH OF MARCH ARE (LDAY» SEATS)s™
165 FOR D=1 TO 31

166 PRINT DsM(D)5 "™ ¥

168 NEXT D

91

ON-LINE

i3]

ON-LINE ON-LINE ON-LINE ON-LINE ON-LINE ON-LIN

ON-LINE

92

Code Name: //SORT//

Here’'s a good example of the value of subscripts. This program
sorts a collection of numbers into ascending (increasing) order.
After studying the program and running it, see if you can write a
similar program to put numbers into descending (decreasing)
order.

READY

110 DIM LCL100]
120 PRINT

140 INPUT N

160 FOR I=1 TO
170 INPUT LII]
180 NFEXT I

270 PRINT
290 FOR I=1 TO

310 NEXT I
320 END
RUN

23.25
740 68
7986 32
2078
7125

78

—

100 PRINT "PROCRAM TO SORT A LIST OF NUMEERS INTO ASCENLING ORLCER"

130 PRINT "HOW MANY NUMFERS ARE TO BE SOKTELD';

150 PRINT "“TYPE IN THE LIST OF NUMBERS ONE AT A TIME:"

190 FOR K=1 T0 N-)
200 FOR J=1 TO N-K

210 IF L{J) <= L{J+1] THEN 250 This is the tricky part.
220 LFT T=L[J] .
930 LET LLJIeLLJ+13 It swaps the number in
240 LET LCJ+11=T . L(J) with the number in
250 NEXT J

260 NEXT K L(J+1).

280 PRINT "THE SORTEL LIST IS:3"

300 PRINT LLI.

PROGRAM TO SORT A LIST OF NUMRERS INTO ASCENLCING ORLEFR

HOV MANY NUMPEFRS ARF TO PE SORTEI?S
TYPE IN THE LIST OF NUMBERS ONE AT A TIME:

THE SORTEL LIST IS:

N

N

3.25 4. 68 125 9832

/ T

Challenge Combine the //SORT// program with the program
/TRACK1/ to put the athletes’ records in the order
of first place, second place, and so on, and then to
give the average time for the first three places.

R 0 o
e FFIC = 5700 g
4’/4&//%’:/73 477%//*/*; Cd?/\/ﬁg’—‘-glz.go _
7 DSASTER. = O
- m:lsﬂB/Lr/V 2 % S
o G it WG] waRe.

-~ /

3-3 Two-dimensional Arrays

A new mayor of Ashbank has just been elected. One of his main
campaign promises was to make Ashbank a safe place in which to
live.

His first directive is to the police department — cut down the
number of traffic accidents. So the police commissioner’s first move
is an order to his computing division — get statistics on the number of
accidents at each intersection.

Let’s look at a map of downtown Ashbank and help ABC (The
Ashbank Bureau of Computing) analyze the problem: '

1st Avenue

) o o (D] | 3) m
o Cm @ o @@ ED o Com 3@
ﬁ J od Avenue |
and

3d Sireet

2d Avenue EmE (n
o
wmd o st
@ (0] @
o o o
B R et
3 n)
”'(?5 e k@]
— o ™
3d Avenue .
3 an

First, we’ll need an easy way to refer to a particular intersection.

Second, we’ll have to be able to associate the number of accidents
at the intersection with the name of the intersection.

We could letter the intersections with single letters, or we could
use subscripted variables. Which shall it be? Well, the downtown
area is rapidly expanding — so our method should make it easy to
add other intersections in the future. Also, the streets already have
numbers — why not use them?

93

94

With these facts in mind, we could refer to the intersections by first
giving the AVENUE name, and then giving the intersecting
STREET name. The intersection in our picture marked with a
heavy dot is “2d AVE and 3d ST.”

This suggests that it would be nice to have a second type of
subscripted variable, one that has two subscripts. Here’s what these
variables look like in BASIC:

N(2,3) represents the number of accidents at 2d AVE and
3d ST. N(1,2) represents the number of accidents at 1st
AVE and 2d ST and so on.

Just as with single-subscript variables, the double-subscript
variables store values. Soif, in the past year, 23 accidents have taken
place at 2d AVE and 3d ST, we can say:

LET N(2,3)=23
If 21 occurred at 1st AVE and 2d ST, we can say:
LET N(1,2)=21

We can think of these storage locations as if they were arranged
in a table. The contents are the numbers of accidents at each
intersection.

Street
1st Street 2d Street 3d Street
Avenue
1st Avenue 46 accidents 21 accidents 72 accidents
2d Avenue 13 accidents 28 accidents 23 accidents
3d Avenue 16 accidents 18 accidents | 34 accidents

The usual practice is to enter these numbers into the computer by
rows, that is, in the order:

46, 21, 72, 13, 28, 23, 16, 18, 34

The best way to compare the safety of the different intersections
is to find each intersection’s percentage of the total accidents in
Ashbank. If we found, for instance, that one intersection has 37%,
and another has 21%, then it would be clear that the former for
some reason is much more dangerous.

So we write the program shown on the next page.

READY

246
721
272
713
728
723
716
218
234

AVE

AVE
AVE
AVE
AVE
AVE
AVE
AVE
AVE
AVE

WWWNO NN = =

20 PRINT

90 NEXT S
100 NEXT A
110 PRINT

10 PRINT "TYPE IN THE NUMBER OF ACCIDENTS AT EACH INTERSECTION"
"IN THE ORLER 1ST AVENUF AND 1ST STREET, 1ST AVENUE ANL"
30 PRINT *2D STREET» AND SO ON."™

40 LET T=0

50 FOR A=1 TO 3
60 FOR S=1 TO 3
70 INPUT N[A»S)
80 LET T=T+NCLA,S]

120 PRINT * AVE
130 FOR A=1 TO 3
140 FOR S=1 TO 3
150 PRINT A3 AVE AND"3S3"™ ST "s(NLA»S1/T)%1003"%"
160 NEXT S
170 NEXT A
180 PRINT
190 PRINT "1ST AVE'S PERCENTAGE IS"™3 (N[1,11+NC1s21+NC 15332/ T#1003"%e"
200 PRINT ™2D AVE'S PFRCENTAGE IS"5 (N[25 11+N[25 21+NL 25 312/ T1005 "%e""
210 PRINT "3D AVE'S PERCENTAGE IS"5 (NC 35 114NC 3,23+N{ 35313/ T«1005"2."
220 END

TYPE IN THE NUMBER OF ACCIDENTS AT EACH INTERSECTION,
IN THE ORDER 1ST AVENUE AND 1ST STREET» 1ST AVENUE AND
2D STREET»

AND SO ONo

STREET % OF TOTAL
1 ST 1609 7422
2 ST Te T4908%
3 ST 260 5683%
1 ST 40 79 705%
2 ST 10.3321%
3 ST 8+ 487092
1 ST 5.90406%
2 ST 60 642072
3 ST 122 5461%

1ST AVE'S PERCENTAGE IS 5142915%
2D AVE'S PERCENTAGE IS 23:6162%.
3D AVE'S PERCENTAGE IS 25+0923%«

\

AND STREET"»"% OF TOTAL"™

S —

You can see that 1st Avenue clearly has the most accidents — over
50% of all the accidents in Ashbank. There should no longer be any
doubt that 1st Avenue needs some traffic lights.

The most complex parts of the program are the nested FOR loops
in lines 50-100 and 130-170.

95

Let’s make a table to see how the nested FOR loops work.

FOR A—1 QJ@Q
FOR S—1 N(1,1)
—2 N(1,)
—3 N(1,3)

FOR A—2
FOR S—1 N(2,1)
-2 N(2,2)
-3 N(2,3)

FOR A—3
FOR S—>1 N(3,1)
—2 N(3,2)
vvvvv >3 N(3,3)

1st AVE and 1st ST
1st AVE and 2d ST
1st AVE and 3d ST

2d AVE and 1st ST
2d AVE and 2d ST
2d AVE and 3d ST

3d AVE and 1st ST
3d AVE and 2d ST
3d AVE and 3d ST

Line 80 finds the total number of accidents in Ashbank.
Line 150 prints the percentage of all accidents happening at each

intersection.

And lines 190-210 find the percentages of accidents by avenues.

Code Name: /ACCIDENT/

Change and RUN the above program for a town that has 16

w dangerous intersections (4 streets and 4 avenues).
z
Z’“,s
= 1st Street 2d Street 3d Street 4th Street
©

1st Avenue 3 accidents 8 accidents 6 accidents 2 accidents
% 2d Avenue 2 accidents 14 accidents 11 accidents 9 accidents
=
= 3d Avenue 2 accidents 4 accidents 5 accidents 3 accidents
O

4th Avenue 1 accident 3 accidents 2 accidents 0 accidents

96

Just as with single-subscript variables, the double-subscript
variables must have DIMension statements if subscripts
greater than 10 are to be used. Suppose, for example, you
wanted to run /ACCIDENT/ for a town with 15 avenues and
20 streets. Then you would need to add the statement:

1 DIM N(15,20)

WARNING: Since this requires 300 memory locations, it
might not work on some minicomputers.

3-4 Using [TAB |in PRINT Statements

If you’re bored with numbers, PRINT TAB is the answer! PRINT
TAB allows you to make graphs, draw designs, plot curves, and,
generally, to have fun.

Here’s how it works: You have to tell the computer two main
things:

© What to print, and
@ Where to print it.

REATLY

What to print

lig IN|T| TAB(8) 3 "%x** Where to print it

E

%
012345678

column 8

The 8 is the number of a space on the terminal paper. The terminal
paper is thought of as having 72 spaces, ‘or columns, numbered
from 0 to 71.

Statement 10 above tells the computer to go to column 8 and print
an asterisk (*) there. The statement

10 PRINT TAB(14);*""; TAB(20);" ="

would print two asterisks, one in column 14 and one in column 20.
That’s the general idea; now for some specifics:

You can print anything at the specified position: Nonnumeric
characters must be placed within quotation marks; numbers do
not need quotation marks.

READY

10 PRINT TABC15); "™dkkkkx"
20 PRINT TABRC1%);"HELLO THERE"

These are numerical
expressions; they do

30 PRINT TABC(15);: 3+4 '
40 PRINT TAB(15)5-3=-4 |

not require quotation
marks.

S0 END
RUN
A 3k ok ok
HELLO THERE
7
-7

_—///;—___\

This is column 15.

Notice that the computer will always leave a
space in front of a number for a sign — either
positive (+) or negative (—). But it does not print
a + sign, only a — sign. Therefore the 7 is actually
printed in column 16.

97

98

A variable can be used to tell the computer where to print:
If X equals 10,

PRINT TAB(X); " *"

means the same as:

PRINT TAB(10);“="

If M equals 64,

PRINT TAB(M); "

means the same as:

PRINT TAB(64);" "

You can also specify several columns in which the computer is
to print. (See the next example.)

@ Once the carriage is in a position, it cannot move backwards
(the terminal has no backspace); only TABs to further positions
along a line will be carried out. For instance:

REALY
10 PRINT TABC(S5)3*%*3 TAB(10)3 "+ 3 TABC15) 3 *="
20 END
RUN
* + -
—]
Column 5 10 15

If you use a decimal number with TAB, only the whole number
part is used:

PRINT TAB(19.788) is taken to mean PRINT TAB(19)

To show you what’s going on, let’s use an example. One simple
~design for the computer to print is a tree. On the next page is a
LISTing of the tree program and a RUN.

The first FOR loop will cause the computer to print 10 pairs of
asterisks. The positions of the two asterisks in each row are:

| TAB(35-1) TAB(35+)
1 34 36
2 33 37
3 32 38
4 31 39
5 30 40
10 25 45

READY

10 PRINT TABC35); "%

20 FOR I=1 TO 10

30 PRINT TABC35-1)3"*"3 TAB(35+1); %"

40 NEXT 1

50 PRINT TABC35=1)3 "ok okok ok okook ook ook 5 sk ok ok o okok ok ok ok °
60 FOR I=1 TO 3

70 PRINT TABC33)3'"+"; TAB(37); "+

This is the base
of the tree.

80 NEXT I
90 PRINT TABC(33)3 " ++++4+"
100 END
RUN
*
* Xk
* *
* *
* #*
* *
* *
* %
* *
* %
* *
>k 3k o ke %k ke 3k e Ak s e ok ok ok o sk ook ok %k ko

+ +

+ +

+ +

+++++

S

ON-LINE

tall as the one shown.

This prints the
tree trunk.

Code Name: /TREE/

Modify the above program to print a tree that is about twice as

99

ON-LINE

ON-LINE

e

ON-LIN

NE

e

ON-L

1Y

ON-LIN

100

Code Name: //BRAKE//

Write a program that makes a “‘graph’ of the distance it takes a
car to stop if it is going 10, 15, 20, .. ., 80 miles per hour. Use
the formula:

Distance needed to stop (in “‘car lengths”)=.01%S+S (S=speed
in MPH) or in BASIC:

LET D=.01%SxS

Here’s a sample output:

RUN

SPEED

e —————

DISTANCES NEEDED TO STOP A CAR AT VARIOUS SPEEDS

DISTANCE (EACH + REPRESENTS ONE CAR LENGTH)
L R e L L L L L O O O AU MR

R R L R L T B T T O o O S A i S G A U U G R

%

e — \

If you need some help, first try this simple program:

5 LET S=40

10 LET D=S*S*.01

20 PRINT S;TAB(D+3);"*"
30 END

3-5 |READ | and |DATA | Statements; |RESTORE

We've discussed the INPUT statement (page 37) as one way of
getting data (values) into a program. When you use the INPUT
statement, the computer types a ? and then waits for you to type in a
value. After you type it in and press RETURN, the computer
then uses that number in its calculations. But, if you have a lot of
data which won’t change from RUN to RUN, there is a better
method for getting information into the computer. This method uses
the READ and DATA statements.

READY

10 READ AsBsCsD
20 LET X=A%3%C+D
30 PRINT "X ="3X
40 DATA 2-3:54510
50 END

RUN

X = 34
___//

Look at the program at the left below.

How did that work? The keyword READ tells the computer that
some variables follow which don’t have any values as yet. To find
their values, the computer searches for a DATA statement where the
values are listed.

So, in our example, at line 10, the computer “sees’ the keyword
READ, and then the A; it searches for a DATA statement, finds it,
and then stores the first value in the DATA statement in location A.

10 READ A, ...
20

30

40 DATA

Values for B and C and D are found in the same way.
10 READ A,B,C,D

20
28 DATA ;2&9

When finished with line 10, the computer has given A the value 2,
B the value 3, C the value 4, and D the value 10. At line 20, using
A, B, C and D, the value of X is calculated (X=2+3%4+10=34).

Look at this program:

REALY
10 READ FsGoHsM F equals 23
20 PRINT F+G+H+M G equals 32
30 DATA 23,32510»1 H equals 10
40 END M equals _1
RUN 66
66
-

101

102

There are several interesting variations possible with READ-
DATA statements:

1. We can have more than one READ statement ior one DATA
statement. The various READ statements use the values in
the DATA statement one by one. When a value has been used,
it cannot be used again (unless you do something special as
explained on page 104). For example:

READY
Here’s what happened:

10 READ AsB 10 READ A,B

20 PRINT A+B 20

30 READ C»D 30 READ C,D
40 PRINT C+D 40 ‘ 1
50 DATA 5510515520 50 DATA () 40),15),20
60 END
RUN

15

35
S —

2. We can also have several DATA statements. It does not matter
to the computer where the DATA statements are located in
the program, or how many DATA statements are used. The
computer combines all of the DATA statements into one big
list of values, which will be used one by one by the READ
statements. So

50 DATA 2,3,4,5
is the same as:

50 DATA 2
51 DATA 3,4
52 DATA 5

Query Is

50 DATA 2
51 DATA 4,3
52 DATA 5

the same as the first two examples?

Answer No, since the numbers are not in the same order as in
the original DATA list.

Here's another example of several READ and DATA statements

w

REALY .
in one program:
10 READ A:B
20 PRINT A+B READ A.B
30 READ CsDsE
40 DATA S READ | | C,D,E
50 PRINT A+C+E-D DATA
60 DATA 10 |
70 DATA 15,20 DATA
80 DATA 25 DATA ’
90 END DATA
RUN
15 3. Two other possibilities can occur:
25 a. One is that there are fewer variables in the READ state-
- ments than values in the DATA statements. In this case,
only the values in the DATA statement needed by the READ
statements are used.
READY
READ A,B
10 READ A»B
20 PRINT B-A READ C,D,E
30 READ CoDsE
40 PRINT C*DkxE¢+R-A DATA , ’,97’33
SO0 DATA 1545552051059 7» 33
60 END
RUN The 97 and 33 are never used.
3
1003

b. On the other hand, there may be fewer values in the DATA
statements than variables in the READ statements. If the
computer finds that it needs more values than are provided,
it halts the RUNning of the program, and types a message
that says: “OUT OF DATA.” For example:

READY

10 READ A»B

20 READ C

30 PRINT A+B+C

40 DATA 5510

S0 END

RUN

OUT OF DATA IN LINE 20

——

The moral is that the programmer must make sure that
variables and data match, if that's what he wants.

103

4. It is possible to use the same data over and over by using the
RESTORE statement. The RESTORE statement is particularly
useful when the same data is to be used at several places in
the program. Here’s an example:

READLY

10 READ A»BsC This uses up all the data.
20 PRINT "TOTAL COST IS'";
30 PRINT A+B+(Cs "

40 PRINT "SEPARATE COSTS ARE:'"; Thi
50 RESTORE IS restores the data so

60 READ X : that it can be used again.

70 PRINT X3
80 GOTO 60
90 DATA 5579
100 END

RUN

TOTAL COST IS 21.
SEPARATE COSTS ARE: 5 7 9
OUT OF DATA IN LINE 60

S~]

A QUICK SUMMARY:

© For giving many variables values, READ-DATA state-
ments are much more efficient than INPUT or LET state-
ments, especially if the program is to be RUN several times.

The READ statement names the variables in which the
values are to be stored.

@ The DATA statement contains the values which will be
stored in the variables.

© It's the programmer’s responsibility to make sure that
the variables in the READ statement match the values in the
DATA statement.

104

EXERCISES

Simulate running each of these programs.

10 LET A=12
20 PRINT A
30 READ AsB
40 PRINT A%*B
50 DATA 8510
60 END

10 FOR I=1 TO 5
20 RLAD AsB
30 PRINT I3A3B

40 NEXT 1

50 LATA 2545 Ls 8565 12585165 105,20
60 END

\

10 READ A»BsCs D

20 PRINT Ax%xB

30 PRINT D/C

40 PRINT B+C

50 DATA 25245125 36
60 END

R

10 READ MsToFa W

20 PRINT M+W

30 PRINT WkM

40 IF T/F>10 THEN 60
50 STOP

60 PRINT W+M

70 DATA 1515

80 LATA 351

90 END
~—-__————"—_’_————-—-~

10 DATA 5,10215

20 READ Rs S

30 PRINT R+S

40 READ T

50 RESTORE

60 READ UsVs W

70 I1F T=U THEN 100

80 IF S=V THEN 110

90 GOTO 120

100 PRINT "YOU'RE WRONG*®
105 GOTO 120

110 PRINT "YOU'RE RIGHT"

120 END

105

e
/
U

Code Name: /WEATHER1/

When the United States Weather
Bureau (now the National
Weather Service) was established
in 1870, records of weather pat-
terns were kept for the first time.
Temperature patterns were in
part determined by comparing
average monthly temperatures

) from year to year. At the Mar-
i quette, Michigan, station, the
/ average monthly temperatures
’, for 1874 and 1875 were as given
/ in the table below.
4") Using READ-DATA statements,
1t write a program which finds the
é difference between temperatures
2 in 1874 and 1875 for each month.
=
S |\ Month
JAN | FEB | MAR | APR | MAY | JUNE | JULY |AUG | SEPT | OCT | NOV | DEC
1 2 3 4 5 6 7 8 9 10 11 12
Year ;
L
= 1874 119.0° | 18.9° | 23.3° | 29.6° | 51.3° | 58.1° |65.3° |{64.4°| 60.0° | 45.7° | 29.9° | 21.0°
|
g 1875 59°| 1.3°|19.4° | 33.3°| 48.5°| 56.7° |63.0° |61.5°| 52.8° [39.9° | 28.5°| 25.7°
o Hint: Arrange the DATA statements like this:
2
- 100 DATA 19.0,18.9,23.3,29.6,51.3,58.1,65.3,64.4,60.0,45.7,29.9,21.0
% 110 DATA 5.9,1.3,19.4,33.3,48.5,56.7,63.0,61.5,52.8,39.9,28.5,25.7
Then READ the DATA for each year (FOR I=1 TO 12, READ A(l),
NEXT | —for the months in 1874; FOR I=1 TO 12, READ B(),
% NEXT | — for the data from 1875). In a loop, find the difference
5 between each A(l) and B(l) and print it out. A part of a RUN might
> look like this:
(@)
MONTH 1874 1875 DIFFERENCE (DEGREES)
1 19.0 5.9 -13.1
% 2 18.9 1.3 -17.6
=5 3 23.3 19.4 -3.9
B
O
Code Name: /WEATHER2/
w
Z Change your program so that if the month in 1875 is warmer than
o= its respective month in 1874, the program prints out:
=2
(@)

MONTH (number) IS WARMER BY ? DEGREES.

ON-LINE ON-LINE

ON-LINE

ON-LINE

144

ON-LIN

INE

ON-

ON-LINE

If it’s colder, print out:
MONTH (number) IS COLDER BY ? DEGREES.

Code Name: ///SURVEY///

Write a program that tabulates opinions taken from a question-
naire of the following type (or invent questions of your own

choice):
Name: Age:__ Male] Female []
1 The President should wear a beard:
1=Agree
2=Disagree

3=No opinion

2 April 15 should be a holiday:
1=Agree
2=Disagree
3=No opinion

3 Schools should remain open all summer:
1=Agree
2=Disagree
3=No Opinion

Your program should use a separate DATA statement for each
person who fills out a questionnaire. The numbers in each DATA
statement should mean the following (use 1 for male, 0 for

female):
) Opinion on Question

SexD \} az} /;,ﬂ/’/%

First Questionnaire—901 DATA 0, 1
Second Questionnaire—902 DATA 1, 1
Third Questionnaire—903

A RUN of your program should look like this:

8,
6

SIS

RUN

DATA GATHERED ON QUESTIONNAIRE
AGREED DI SAGREED NO OPINION

1 FEMALE VOTE: 1 4 5

MALE VOTE: 4 1)

UNDER AGE 16 VOTE: 3 1 3
2 FEMALE VOTE? 1 4 5

MALE VOTE? 1 7 2

UNDER AGE 16 VOTE: 1 4 2
3 FEMALE VOTE: 3 1 6

MALE VOTE: 3 5 2

UNDER AGE 16 VOTE: 2 2 3

—

107

ON-LINE ON-LINE ON-LINE ON-LINE

ON-LINE

1L

ON-LIN

ON-LINE

ON-LINE

108

Here’s part of the program that produced this RUN:

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

700
710
720
730
740
750
760
770
780
790
800
810
820
830

READ N

FOR I=1 T0 3

FOR J=1 TO 3

LET XCI-J1=0

LET YL15J1=0

LET ZCI,J1=0

NEXT J

NEXT 1

FOR I=1 TO N

READ S»A

FOR J=1 TO 3

READ C

IF 5=1 THEN 280

LET XCJ>Cl=X[{Js>Cl+1
GOTO 290

LET YL J»Cl=Y[JsCl+1
IF A >= 16 THEN 310
LET Z({JsC1l=Z(J»Cl+1
NEXT J

NEXT I

FOR I=1 TO 3

PRINT I3 TABC(S5); "FEMALE VOTE:"“TARC30)3X[I»173;
PRINT TABC40)3XC152)5 TABC(S53)3XC 1, 3]

© L] ® e ® L] © ® ° © ® ° e o o L ® ® ® L] L] L]

DATA 20

DATA 0515515151
DATA 05332253, 3
DATA 1521515352
DATA 0522525253
DATA 1536535251
DATA 1514535253
DATA 0513535353
DATA 0555535 35 1
DATA 1549515352
DATA 1532,35151
DATA 0s445,25,25,2
DATA 1556+ 3,252
DATA 05325252, 3

Extra: Modify your program so that it prints the percentage of

people who voted in each category.

3-6 Some “Library” Functions in BASIC:
SQR|,|INT|, ABS|, | RND

Like most things in computer programming,
functions are easier to use than explain. How-
ever, it will help if we take the time to introduce
some new terminology — words like function,
argument, and value. This will make it possible
to give an accurate description of exactly what
happens when you use functions in a program.

Functions are actually small programs stored
inside the computer. There are quite a few of
these available in BASIC, and the collection
of functions that you can call upon is often called
a library of functions. In this section we’ll
discuss four of the library functions found in
every version of BASIC.

[SQR Here are two BASIC programs that use the SQR (square
root) function:

READY OR REATDY

10 LET X=SQR(25) 10 PRINT SQR(25)
20 PRINT X 20 END

30 END RUN

RUN

5

5

—

SQR is a function which gives you the square root of a number. You
supply a number which is called the ARGUMENT. SQR then
returns the VALUE of the function — which is the square root of
the number. So we have:

FUNCTION ARGUMENT VALUE
L
SQR(25)=5< (since 5+5=25)
**\\f‘

. The argument is always enclosed
in parentheses.

In general, a function can be used at any place in a program
where a variable is used; except—you can never use a
function on the left side of a LET statement (because a
function is not a location in which you can store a value).

109

Here’s a program that uses the SQR function
in two statements:

Problem How long can sections of a fishing
rod be to fit into a flat rectangular
box?

Answer From geometry we know that the
“diagonal” of such a box is given by:

- DIAGONAL=SQUARE ROOT OF (LXL+WxW)
In BASIC we would say:
LET D=SQR(L*L+W=*W)

Here’'s a program which uses this formula, with the lengths in
inches:

REALY

10 PRINT "TYPE LENGTH OF ROX» WIDTH OF ROXs ANT LENGTH OF SECTION:™
20 INPUT LsUsR

30 LFT D=SQRCL*L+Wky)

40 IF D<R THEN 70

S0 PRINT "THE FISHING ROD WILL FITe'

60 STOP

70 PRINT "“THE FISHING ROD WON°T FITe"

80 PRINT "THE DIAGONAL OF THE BOX IS ONLY'';
90 PRINT D3 INCHES."™

100 END

RUN

TYPE LENCGTH OF BOX» WIDTH OF BOX» AND LENGTH OF SECTION:
720,155 28

THE FISHING ROD WON'T FIT.

THE DIAGONAL OF THE BOX IS ONLY 25 INCHESe

Notice in statements 30 and 80 that the
argument of the SQR function is allowed to
be an expression.

When using functions, you should be aware of the order in which
the computer does things. Operations within the argument of the
function are done first. then the function is evaluated, and, finally,
all other arithmetic operations in the statement are done in the usual
order (see page 23).

110

EXAMPLE:

REALY Function Argument Value Printed
10 LET F=36 R -
20 PRINT SQRC(F) SQR F=36 6 6
30 PRINT SQRC4%*F) SQR 4%F=144 12 12
40 PRINT SQERCF=11)+10 SQR F—11=25 5 15
50 PRINT 2%SQRCSQRC4%xF)I*3) SQR @ 4+F=144 12
% 6 SQR @) 12+3=36 6 12
60 PRINT SQR(=36) SQR ~36 Error
70 ENL message
FUN T
6 A negative argument
12 is not accepted. We
15 cannot take the square
i2 root of a negative num-
ber.
SQR OF NEGATIVE ARCUMENT IN LINE 60
Code Name: /PIZZA/
[}
% Let's suppose you are a very neat eater, and
= only take 1-square-inch bites when consuming
O a pizza.
Question How many such bites are in a 10"
diameter pizza?
= Answer A=mxrxr=78.5397 sq.-in. bites as
;‘Téﬂ found in the program below.
g
Your problem is to improve the given program
so that you can also input the price of the
w pizza. The program should then tell you both
Z the number of square-inch bites and the cost
=4 per bite. Use your program to find out which
% is the best buy: 8" pizza @ $0.75, or 10" pizza
@ $1.00, or 12" pizza @ $1.50.
w
Z READY
|
: 10 INPUT D
< 20 LET R=D/2
o 30 LET A=3.14159%R*E
40 PRINT "THERE ARE";A3' SQUARE-INCH BITES IN ACN)Y*s D; "= INCH PIZZA-"
50 END
RN
W
£
= 710
2 THERE ARE 78.5397 SQUARE-INCH BITES IN A(N) 10-INCH PIZZA.

111

Code Name: //INVERSE PIZZA//

Now let’s look at the reverse problem: How big a pizza (diameter)

% do you need to feed a crowd of P people if each person is to get
- a given number (call it B) of 1-square-inch bites? -
% Some information you’ll need:
The radius of a pizza with A square inches of eating is given by
LET R=SQR(A/3.14159) '
w © Pizzas are ordered by their diameter D, and D=2+R.
Z
=5 Write a program that allows you to input the number of people
= coming to your pizza party, and the number of 1-square-inch
o bites each person is to get.
The output should be like the following:
RUN
HOW MANY PEOPLE AT YOUR PARTY?10 Output should
HOW MANY SQUARE-INCH BITES EACH? 31 continue until

INCHES.

INCHES.

INCHES.

\

IF YOU ORDER 1 PIZZACS), THE DIAMETER(S) SHOULL BE AT LEAST 19.8672
IF YOU ORDER 2 PIZZA(S)» THE DIAMETFR(S) SHOULD BE AT LEAST 14.0482 goes below 8

IF YOU ORDER 3 PIZZA(S)» THE DIAMETER(S) SHOULD BE AT LEAST 114703

-

112

the diameter

inches.

IE_] Another function in the BASIC library is one that takes the
integer part of the argument. INT(N) is defined on most computers
as the greatest integer less than or equal to N. If N is not an integer,
then INT(N) is the closest integer to the left of N, pictured on the
usual horizontal number line. If you look at the picture below, you’ll
see that

INT(2.3)=2 0 1 2

INT(.8)=0 0<—(38) 2-(2.3)

If N is an integer, then INT(N)=N.

Question: What does INT(—.5) mean? Here’s the way our rule
works:

a. If the argument is positive, then the largest whole number ““to
the left” can be found by chopping off the decimal part (therefore,
INT(2.3)=2).

b. If the argument is negative, then the largest whole number con-
tained in the argument is still the integer “to the left” of the
argument. Therefore INT (—.5)=—1.

-1 0 1

s il L

—1 =(—.5)

4

Now let’s look at a few uses of the INT function.
To find out if a whole number is even or odd, we can use the INT

function very nicely:

REALY

10 INPUT N

40 GOTO 10

60 GOTO 10
70 END

20 IF INT(N/2)=N/2 THEN 50 number by 2 leaves no
30 PRINT "0DD"

50 PRINT "EVEN"

Since dividing an even

remainder, INT(N/2)=N/2
only for even numbers.

N/2=5.5, INT(N/2)=5, and
so N/2 does not equal
INT(N/2). Thus, 11 is odd.

READY

10 LET A=10/3
20 PRINT "#"s5A
30 END

RUN

§ 3033333

The INT function is very commonly used in another way. Let’s
say we had $10.00 and wanted to divide it equally among three
people. Let’s see how much each person gets. The program at the
left gives the answer.

But money is only expressed with two decimal places — we’d like
$3.33, instead of $3.33333. How do we chop off the extra 3’s?

We want 2 digits after the decimal point; so we multiply by 100,
take the INT part, and then divide by 100.

INT(100+3.33333)/100
=INT(333.333)/100
=333/100

But, 333/100=3.33, which is what we wanted. (This program doesn’t

say who gets the extra penny.)
How would we have got one decimal place? We would have

multiplied by 10, taken the integer part, and then divided by 10:

INT(10%3.33333)/10
=INT(33.3333)/10
=33/10
=3.3

1
).

In general, if you want a number to have N decimal places
(and it has more than N places), use the following:

INT((101N)*old number)/(10TN)
If you want the value rounded, use
INT((101N=*old number+.5)/(10TN)

113

ON-LINE ON-LINE

ON-LINE

114

ABS| ABS is a BASIC function which returns the ABSOLUTE
VALUE of a number. The function is written ABS (X).

ABS(10)=10
ABS(0)=0
ABS(-10)=10
ABS(-427)=427

Notice that ABS(15—10)=5 and ABS(10—15)=S5.
Try this program to see why that's useful:

Code Name: /ELEVATOR/

REATDY

10 PRINT
20 INPUT
30 PRINT
40 INPUT
50 PRINT
60 PRINT
70 END
RUN

END

5 PRINT "THIS PROGRAM ASSUMES A BUILDING WITH 15 FEET BETWEEN FLOOERS."

THIS PROGRAM ASSUMES A BUILDING WITH 15 FEET BETWEEN FLOORS.
WHAT FLOOR IS THE ELEVATOR ON?8

TO WHICH FLOOR IS IT GOING? 18

THE NUMBER OF FEET THE ELEVATOR TRAVELS IS 150.

\ T

“WHAT FLOOR IS THE ELEVATOR ON";

A

"“TO WHICH FLOOR IS IT GOING";

B

“THE NUMBER OF FEET THE ELEVATOR TRAVELS IS*;
15%ABSC(A=B); e "

RND[The last function which we will discuss
is the random number function RND. RND
causes the computer to select a “‘surprise’” num-
ber between 0 (zero) and 1; in other words a
number like .032145, 285467, or .765321.

032145
.285467
765321

It’s as though the computer spun a wheel of
chance, like the one in our picture, to get the
value for the RND function; we’re never quite
sure what number will be selected.

Sorry to have to say this again, but this func-
tion varies slightly among computers, and the
best way to find out about it is to check your
computer manual, ask your teacher, or (best of
all) experiment. Here are some suggestions.

The general form of the function is RND(X). On some computers,
the value of X is not important; on other computers, it makes a dif-
ference. You’ll see how this works on the next page. But first you
should try an experiment. RUN the following program twice:

READY

10 FOR K=1 TO 5
20 PRINT RND(1)»

30 NEXT K

40 END

RN

.

Here’s the result of the preceding experiment on two different com-
puter systems which we’ll call A and B.

Computer A
RUN
- 731631 <893412 « 660973 + 685044 +655552
END
RUN
+619889 . 728673 +222167 9. 70735E-02 + 766305
END
Computer B
RUN
+ 529432 « 225555 « 3290178 + 306689 « 537845
END
RUN
.+ 529432 +225555 < 329078 306689 .+ 537845
END
\ i

Computer A produced a completely different set of random numbers
on each RUN. For the applications in this book, this is preferred.
If your computer acted like computer A, you’re all set!

If your computer acted like computer B, there are three things you

115

116

can try doing to make it act like computer A, producing a real ““sur-
prise” on every RUN.

[ﬂ On some systems, you add a statement containing RND(—1) at
the beginning of the program. RUN this program twice.

READY

S LET X=RND(=1)
10 FOR K=1 T0 5
20 PRINT RND(1)»

30 NEXT K
40 END
RUN

——__’__________J

|:2] On other systems, the way to get different random numbers on
every RUN is to change statement 5 to read:

5 RANDOMIZE

The rest of the program stays the same.

If none of the above work, there is a somewhat clumsy way of
making each RUN be “almost’ a surprise. It takes five extra state-
ments as follows:

READY

PRINT "TYPE THE SECOND HAND'S POSITION ON WALL CLOCK';
INPUT S

FOR J=1 T0 S

LET X=RND(1)

NEXT J

10 FOR K=1 TO 5

20 PRINT RNDC(1),

ORI Wv

30 NEXT K
40 END
RUN

TYPE THE SECOND HAND'S POSITION ON WALL CLOCK?26
*« 38255 598038 +995577 ¢ 168938 *953169

END
RUN

TYPE THE SECONL HAND'S POSITION ON WALL CLOCK?45
* 366534 * 34335 «61215 ° 748658 + 512073

END

The user typed in 26 after the first RUN to indicate that the second
hand on a clock “happened” to show 26 seconds past the minute.
Lines 7, 8, and 9 then forced the computer to run down its list of
random numbers to the 26th one before printing anything in line 20.
On the second RUN, since the clock happened to show 45 seconds, a
different number in the list was used as the starting point.

One last thing — if your computer acts like A, and you want it to
act like B, try experiment . This technique works in reverse on
some computers!

Now let’s look at a program that uses RND. We’ll write a com-
puter program that ‘‘simulates” the tossing of a coin eight times.
We'll assume that the random numbers are evenly distributed
between 0 and 1. Since there are two possible results of a coin toss
(HEAD or TAIL), let’s decide that if R<.S, it represents a HEAD,
and that if R=.35, it represents a TAIL (we could just as well reverse
this choice).

REALY

5 LET X=RND(-1)
10 LET H=0

20 FOR I=1 TO 8
30 LET R=RND(1)
40 IF R<e«5 THEN

60 GOTO 90
70 LET H=H+1

90 NEXT I

110 END
RUN

TAILS
TAILS
TAILS
HEADS
TAILS
HEADS
TAILS
HEADS

\h—_—__________—-————‘-—"_'\

50 PRINT * TAILS " or use

80 PRINT ' HEALS "

100 PRINT "NUMBER OF HEADS ="3H

NUMBER OF HEADS = 3

To get different tosses
on different RUNS, your
computer may require
that you omit this step,

70

5 RANDOMIZE

instead.

Just as if you tossed a real coin, the order of HEADS and TAILS
is random. If you RUN the program several times, it is highly prob-
able that the average number of HEADS will be approximately equal

" to the average number of TAILS.

ON-LINE

Code Name: /COIN/

Write a program that simulates tossing a coin 100 times. Sugges-
tion: Put a semicolon at the end of lines 50 and 80, and add a line
which prints the number of TAILS. Also experiment with changing
R<.5 to R<=.5.

117

MAKING RND(1) MORE USEFUL

b iR N RND(1) generates decimals between 0 and 1. Frequently, though,

\ e we prefer integers between two other numbers; for instance, to
simulate rolling a die, we might want to generate random integers
from 1 to 6 (1, 2, 3, 4, 5, or 6).

What can we do? Well:

: RND(1) gives numbers between 0 and 1 (not including 1)

~ 6+*RND(1) gives numbers between 0 and 6 (but not including 6)
INT(6xRND(1)) gives integers from 0 to 5. '
INT(6+*RND(1)+1) gives integers from 1 to 6, which is what we
wanted.

In general, INT((b+1-a)*RND(1)+a) gives the integers from a
to b inclusive. In the preceding example, a=1, b=6, and we have:

INT((6+1—1)*RND(1)+1)

MINI-EXERCISES
Write programs that each generate 10 random integers of the follow-
ing kinds:

1. Integers from 5 to 20 inclusive

2. Integers from 9 to 15 inclusive

3. Integers from 1 to 3 inclusive

4. Integers from 1 to 100 inclusive
5. Integers from —50 to 50 inclusive

Code Name: /RAND/
Try the solution to Exercise (1) ON-LINE:

1Y)

Z

o READY

-

o S LET X=RND(=1) (SEE PAGE 1164)
10 FOR I=1 TO 10
20 PRINT INTC16RNDC1)+5)3

w 30 NEXT I

= 40 END

! RUN

2

5] \//"_—\

118

ON-LINE ON-LINE

ON-LINE

E

ON-LIN

ON-LINE ON-LINE ON-LINE

ON-LINE

Code Name: /DICE/

Write a program that simulates the throwing of two dice. It
should look like this:

RUN

FIRST DIE SECONL DIE - TOTAL
3 2 5
2 3 5
i 3 4
4 1 S
i 5 6
4 2 6
5 2 7
6 3 9
4 4 8
2 3 5

END

-

Code Name: //GUESS//

Write a program that asks two players to guess which number
between 1 and 100 the computer randomly picked. The program
should give 10 points to the player who was closest. It might look
like this:

RUN

PLAYER 17 47
PLAYER 27 78

THE COMPUTER HAD B2
PLAYER & WAS CLOSEST.
SCORE: PLAYER 1 HAS O POINTS; PLAYER 2 HAS 10 POINTS.

LET'S TRY AGAIN.
FLAYER 17 31
PLAYER 279

119

120

3-7 |GOTO...OF...[or|ON...GOTO...

Let’s imagine that we are writing an American history quiz pro-
gram — the computer asks multiple choice questions, the person
types in the number of his choice, and then the computer not only
tells him if he is right or wrong, but also why.

A sample question is:

Who was the first man to walk on the moon?
There are four choices:

1) Alan Shepard

2) John Glenn

3) Neil Armstrong

4) Buzz Aldrin

Let’s call the person’s answer X. He will type
either a 1, 2, 3, or 4 for X.
We could then say:

208 IF X=1 THEN 220
209 IF X=2 THEN 230 —
210 IF X=3 THEN 240
211 IF X=4 THEN 250

These send the computer to
special places in the pro-
gram which tell the person
why his specific answer was
right or wrong.

But in BASIC, we could condense those four lines into one line:
210 GOTO X OF 220, 230, 240, 250

NOTE: On some computers, this same kind of statement is
written slightly differently and is known. as an ON state-
ment — we’ll explain the ON statement on page 121.

When the computer reaches line 210, it has a value of X (typed in
by the person).

Line 210 says: If X=1, the computer will go to the first line num-
bered, or line 220. If X=2, the computer will go to the second, or
230. If X=3, it will go to the third, or 240. If X=4, it will go to the
fourth, or 250.

In other words, the statement can be read like this;: GOTO the
Xth line number OF these ___,__, .

Notice that for each wrong answer, there was a separate mes-
sage, explaining why it was wrong.

Now, let’s finish our example, and then fill in a few more details.

Remember, the following could be part of a larger program.

200
201
202
203
204
205
210
215
216
220
221
225
230
231
235
240
241
245
250
251
270

END
RUN

73

REALDY

WHO WAS THE FIRST MAN TO WALK ON THE MOON?
1) ALAN SHEPARD

2) JOHN GLENN

3) NEIL ARMSTRONG

4) BUZZ ALDRIN

RIGHT!! ON JULY 20, 1969» ARMSTRONG BECAME THE
FIRST MAN T0 WALK ON THE MOON.

If the person types less
PRINT "WHO WAS THE FIRST MAN T0 WALK ON THE MOON?2" than a 1 or more tr_lan a
PRINT "1)> ALAN SHEPARD" 4, the computer will go
PRINT "2) JOHN GLENN" . .
PRINT "3) NEIL ARMSTRONG" to line 215, which re-
PRINT "4) BUZZ ALDRIN" minds the person of the
INPUT X rules.

GOTO X OF 220,230 2405 250 /
PRINT "PLEASE TYPE IN 1, 2, 3, OR 4"

G0TO 205

PRINT "NO» SHEPARD WAS THE FIRST AMERICAN TO GO INTO"
PRINT " SPACE; ARMSTRONG IS THE ANSWER."

G0TO 270 ,

PRINT "WRONG; GLENN WAS THE FIRST AMERICAN TO OREBIT THE"
PRINT " EARTH; ARMSTRONG IS THE ANSWER."

GOTO 270

PRINT "RIGHT!! ON JULY 20, 1969, ARMSTRONG BECAME THE"
PRINT * FIRST MAN TO WALK ON THE MOONe "

GOTO 270

PRINT "NO3 ALDRIN WAS THE SECOND MAN--ABOUT HALF AN HOUR"
PRINT " AFTER ARMSTRONG."

END

In a longer program, this
would be the next question.

\

the key words

[ON...GOTO...| instead of

or 220, if X is 2 to line 230, and so on.
So, the two possible forms are:

or

uses. They do exactly the same thing.

|GOTO...OF...|

The ON...GOTO. .. statement looks like this:
210 ON X GOTO 220, 230, 240, 250

Again, if X is 1, the computer will go to the 1st line number

210 GOTO X OF 220, 230, 240, 250

210 ON X GOTO 220, 230, 240, 250

Check, perhaps by trying them on your computer, or by
reading your computer manual, which form your computer

THE ON...GOTO...STATEMENT: Many computers use

121

ON-LINE ON-LINE ON-LINE ON-LINE

ON-LINE

122

In either case, if X is not a whole number, the value of X is
truncated (the decimal part of X is chopped off). For example,
IF X=3.65, a GOTO-X-OF statement will use 3 as X. If X is less
than 1 OR greater than the number of lines listed, the computer will
skip the GOTO-X-OF statement and continue on the next statement.

Finally, expressions can be used instead of X — just make sure
the expression takes on the correct integer values for the number
of line numbers following it. Check these examples:

20 GOTO M OF 20,30,40,50,60 20 ON M GOTO 20,30,40,50,60
80 GOTO F+Z OF 100,120,153 80 ON F+Z GOTO 100,120,153
114 GOTO P-Q OF 600,200,1800,2200 | 114 ON P—-Q GOTO 600,200,1800,2200

RUN

IO RE MI
RE FA MI
SOL Fe MI
RE FA M1
SOL FAa MI
MI SOL Fa
SOL Fa MI
MI RE L0

__/—J

These are all correct uses of GOTO...OF...or of ON...
GOTO ...

Code Name: /MELODY/

Use RND and GOTO K OF to write a program which generates
8 bars (measures) of melody as follows: Begin with ‘DO RE MI,”
end with “MI RE DO,” and generate randomly 6 bars in between. .

DO RE MI FA soL

HINT: Try this short program to get some ideas:

REALY

5 LET X=RND(=1) (SFF PAGE 116¢)
10 LET K=INTC(3*ENLC1)+1)
20 GOTO K OF 30s 50, 70

30 PRINT "RF FA MI®™

40 C€OTO 10

50 FRINT *MI SOL FA"

60 COTO 10

70 PRINT "SOL FA MI™

80 COTO 10

90 ENL

RN

m

After you have RUN the program, write the melody out in three-
quarter time, using regular musical notation as shown in the
diagram above.

Main Program:

Subroutine:

e9000c00C0
0000000000
2000000000
GO SUB 500
s~ 00000QOO000
@e00ev0000
so0ece0000

—

&50000.010-
9e00000000

I~ RETURN

ON-LINE

Code Name: //SONG//

Write a program that randomly generates 4 lines of melody, with
four bars in each line. Allow all 7 notes (DO, RE, MI, FA, SOL, LA,
TI) to be used. Hint: Use nested FOR loops (see page 72).

3-8 |GOSUB RETURN

There are times when the same type of calculation may be needed
at various points in a program. Instead of retyping the statements
needed for this calculation each time, we can write a subroutine (a
part of a major program) which performs the needed calculations.
The GOSUB statement is then used to branch to this subroutine
from any point in the program. The RETURN statement is used
to tell the computer that the subroutine is finished, and the program
should now resume execution where it left the main program. It
works as shown at the left.

and

Another use of subroutines is to enable several persons to work
on the same large program simultaneously. Each person writes a
subroutine to do part of the program; then, a main program links all
of these subroutines together.

Subroutine #1

9200000000
0000000000

GO SUB 1000 —

20000000060

[* 1000 eco0coo

eeo0o00ceee0

©00c000000

©0000000Q@06 e
cceccecosoe Subroutine #2 RETURN

GO SuB 2000

©000000000

2000 ec0000

eo0ecv000000

\“ RETURN

Subroutine #3

000000000 eeo0ceo000e

20000000060

e000000000

GO SuB 3000

9008000000 o0
R
scoco0co0000

%)SOOOoouoeo

evecscoesn

@000 9e0000

T RETURN

123

Let’s look at an example of a quiz program that uses GOSUB:

124

ENL
~—— /

READY
120 PRINT "IN THIS PROGRAM» YOU WILL BE ASKEF FOUR QUESTIONSe*
130 PRINT
140 PRINT "AFTER EACH QUESTION, TYFE THE NUMBER OF THE ANSVER"
150 PRINT "YOU RELIEVE TO BE CORRECT."
160 PRINT
170 PEINT "1. ONE OF THE LONCEST CASES OF RICCOUGHING LASTFI:"
180 PRINT TARC10); 1) 3 DAYS™; TABC40); "3) & WEEKS"
190 PRINT TARC10)5"2) 2 VEEKS"; TAR(40)3"4) & YEARS"
200 LET A=4
210 GOSUB 9000
220 PRINT "2+ THF LAPGEST DISH FVER PEEPAREL WAS:"
230 PRINT TAPC10)3"1> FRIED FLEPHANT"; TARC40);"3) BOILEL HIPPO"
E 240 PRINT TARC10)3"2) ROAST CAMEL"; TARC40)3"4) BAKFI RHINO™
5 250 LET A=2
@ 260 GOSUP 9000
5 £70 PRINT "3 ROPFRTO CLEMENTE LAST PLAYED FOR WHAT TEAM?"
= 280 PRINT TARC10)3"1) CHICAGO"; TAR(40)5"3) ST. LOUIS"
290 PRINT TABC(10);"2) PITTSEURGH" TAR(40);5"4) POSTON"
300 LET A=2
310 GOSUE 9000
320 PRINT "4 'LOVE® IS A TERM IN WHAT SPORT?"
330 PRINT TABC10)3"1) GOLF"; TAEC40)3"3) BILLIARLS®
340 PRINT TAEC10)3"2) SOCCER™; TABC40); "4) TENNIS"
350 LET p=4
360 GOSUB 9000
420 PRINT "THAT'S ALL THF QUFSTIONS FOR NOWe"
430 PRINT "OUT OF FOUR QUESTIONS YOU ANSWEREL';C3" CORRECTLY"
440 PRINT "AND"; W * INCORRECTLY."
.| 450 sTOP
’ 9000 PRINT "TYPE THE NUMRER OF YOUR ANSWER:":
9010 INPUT R
9020 IF A=R THEN 9060
0 9030 PRINT "NO» THE ANSWER 1S NUMBER®"; A5 '
£ 9040 LET W=u+1
g 9050 GOTO 9080
2 9060 PRINT "&OW==THAT'S RIGHTe"
9070 LET C=C+!1
9080 PRINT
.| 9090 RETURN
9900

Here’s a sketch of how the quiz program works:

170 Question 1 (hiccoughing)

210 GOSUB 9000

@“““ """" 1 220 Question 2 (largest dish)

260 GOSUB 9000

”(@“ ‘‘‘‘‘ =| 270 Question 3 (Roberto Clemente)

310 GOSUB 9000

(@)““’* 320 Question 4 (‘love’)

360 GOSUB 9000

"“"”l 420 Summary of scores

9000 . . . Subroutine:
Input the answer and check it.
If wrong, print the correct answer
and add 1 to the “"wrong’’ counter (W).
If right, print "WOW — THAT’S RIGHT"’
and add 1 to the '‘correct’” counter (C).
9080 RETURN

In this example, lines 170 to 410 present four different quiz ques-
tions. The subroutine always does the same thing: it allows the
student to input an answer, it checks the answer, and it keeps score.
Notice that the correct answer is always found in the variable A. ’

Summary: At a GOSUB statement, the computer:
@ goes to the subroutine,
@ works through the subroutine until it finds a RETURN
statement,
© then it branches back to the statement right after the GOSUB
that sent it to the subroutine in the first place.

Here’s a RUN of our program:

RUN

IN THIS PROGRAM» YOU WILL PRE ASKEL FOUR QUESTIONS.

AFTER EACH QUFSTION., TYPE THE NUMBER OF THE ANSWER
YOU RFLIEVE T0 EE CORRECT.

1« ONE OF THE LONCGEST CASES OF HICCOUGHING LASTEI:
1> 3 DAYS 3) 8 WFEKS

. 2) 2 WEEKS 4) 8 YEARS

TYPE THE NUMBER OF YOUR ANSWER:?1

NO» THE ANSWER IS NUMBER 4.

2« THF LARGEST DISH EVER PREPAREID WAS:
1) FRIED FLEPHANT 3) ROILED HIPPO
2) ROAST CAMEL 4) EAKEL EHINO
TYPE THF NUMBRER OF YOUR ANSWER:?1
NO» THE ANSWER IS NUMEBER 2.

3« ROPERTO CLEMENTE LAST PLAYED FOR WHAT TEAM?
1) CHICAGO 3) 5T LOUIS
2) PITTSRURGH 4) PBOSTON
TYPE THE NUMEER OF YOUR ANSWER:?2
WOw=-THAT'S RICGHT.

4o 'LOVE® IS A TERM IN WHAT SPORT?
1) CGOLF 3> BRILLIARLS
2) SOCCER 4) TENNIS
TYPE THE NUMBRER OF YOUR ANSWFR:?4
WOUW-=THAT'S RICGHT.

THAT®S ALL THE QUESTIONS FOR NOW.
OUT OF FOUR QUFSTIONS YOU ANSWFRED 2 CORRECTLY
ANL 2 INCORRFCTLY.

S I

Code Name: /FACT QUIZ/

Write a quiz program using your own questions (and answers).

Code Name: //SUPER QUIZ//

Get 8 students to work on a longer quiz with each person con-
tributing 3 questions. Student #1 should use line numbers in the
1000’s and student #2 in the 2000’s, and so on.

125

Twenty key words, seven commands, and four functions — that’s
the total count for the BASIC vocabulary studied in the first three
parts of this book. Here they are:

KEY WORDS COMMANDS FUNCTIONS
PRINT STOP READ RUN SQR
F&ﬂAway END FOR DATA LIST INT
LET NEXT RESTORE SCR ABS
@iacgs INPUT STEP GOTO K OF BYE RND
GOTO DIM (or ON K GOTO) PUNCH
IF REM GOSUB TAPE
THEN TAB RETURN KEY

As we are about to see, that’s more than enough vocabulary to
write programs that solve professional-level problems — to do what
is called applications programming. Some of these applications may
seem far away from the life of a student, but they will become
familiar in short order. ’

NOTE: Since all the required features of BASIC have been
explained in the first three parts of this book, we will not
explain the programs in this part in complete detail. This
means that it may take several days of study and ON-LINE
experimentation to completely master a given programming
idea. The ‘‘'suggested explorations” given following the
programs could take even longer. Don’t be discouraged by
this; that's what being a professional is all about.

A teacher and class may decide to attack the different sections
of Part 4 as individualized (or team) projects. If this is the case, the

list on the next page will help in selecting projects.

126

Here are the programs you’ll find in Part 4. The sections shown
here can be taken in any order; it’s also OK to skip over sections in
case you are in a class that’s using an ‘“‘individualized project”
approach.

4-1 Data Analysis

/HOTEL/ and /AIRLINE/ illustrate computer
reservation systems, one of the fastest growing
applications of computers today.

4-2 Nonnumeric Applications

Computers can be used to manipulate words
as well as numbers. The programs /SOAP/ and
/MENU/ show you how.

4-3 Games and Simulations

The program /SLOT MACHINE/ makes the
computer simulate a gambling device; you’ll
see why it’s impossible to “‘beat the house.”
The program /BURIED TREASURE/ is a
two-dimensional game that shows what a power-
ful tool coordinate geometry can be.

4-4 Business Applications

/ADD-ON INT/ and /UNPAID-BAL INT/
show you how to calculate the interest charged
by credit companies and banks when they loan
you money; /[PAYROLL/ is a program that cal-
culates the ‘‘take-home” pay for each employee
in a company.

4-5 Batch-Mode Computing

This section is for people who use card input
instead of a terminal.

4-1 Data Analysis

There are many hotels that use computers to find out if a room is
available on the dates requested by a customer. Airlines use similar
systems to find out if there is room on a specified flight on a specified
date. There are even computer reservation systems for checking
theater and sporting event ticket requests. All these systems use
the same general programming idea — they compare the customer’s
request with data about the rooms (or seats) already reserved.

127

Program 1: /HOTEL RESERV/
Here are two sample RUNS of the program.

RUN

THE PIXIE HOTEL AUTOMATED RESERVATION SYSTEM
et o e o o o st ok ok el ok ook skl sk ok e ek s sk e s ol ook ook ok ook ok ok e e ok

HOW MANY DAYS DO YOU WISH TO STAY?3

TYPE IN EACH DATE DESIRED AFTER EACH °? > TYPING
MARCH 1 AS 3-.01» DECEMBER 14 AS 12.14» AND SO ONo

24004

2405

?4.06

ROOM 901 IS AVAILABLE ON DATES REQUESTEDe.
RATE IS % 18 PER DAY.

ROOM 902 IS AVAILABLE ON DATES REQUESTEDe
RATE IS % 16 PER DAY.

ROOM 905 IS AVAILABLE ON DATES REQUESTERD.
RATE IS $ 20 PER DAY.

WHICH ROOM DO YOU WISH?901
YOUR RESERVATION IS CONFIRMED.

MEMO TO RESERVATIONS: ENTER NEW DATA FOR ROOM 901.
ADD 40045 4.055 406 TO PRESENT LATAs

RUN

THE PIXIE HOTEL AUTOMATED RESERVATION SYSTEM
e e e o ok sk e e ok sl ke ek o e e ok o ok ok ok o ok o ek ok o ok o ok ook sk koK Kok

HOW MANY DAYS DO YOU WISH TO STAY?2

TYPE IN EACH DATE DESIRED AFTER EACH °? '» TYPING
MARCH 1 AS 301, DECEMBER 14 AS 12-.14, AND SO ONo

74.08

T4 09

SORRY» NO ROOMS ARE AVAILABLE FOR ALL DAYS REQUESTED.

-------------------- TEAR HERE====-==c=wsccoccaaanx

128

The data on hotel rooms are given in DATA statements that use

the following code, or structure:

9813 DATA 813, 15, 403, 4.04, 510, O

HOTEL // / / \

LINE
NUMBER ||ROOM NO.||RATE ||APRIL 3| APRIL 4|| MAY 10|{| END OF DATA
This statement says that Room 813 rents for $15 per day, and that
it is already reserved for April 3, April 4, and May 10. The zero at
the end is a “flag” to the computer that lets it know there is no more
information on file for Room 813.
A LISTing of the program is given below.

10 PRINT "THE PIXIE HOTEL AUTOMATED RESFRVATION SYSTEM"™

20 PRINT "ok sk ookt sk ok e ok oo sk ok ok ook sk ok ook ok ok ook sk o s oo ok oo ok ok ko ok 99

30 PRINT

40 PRINT "HOW MANY DAYS DO YOU WISH TO STAY™:

50 INPUT N

60 PRINT "TYPE IN EACH DATE DESIRED AFTER EACH °?'» TYPING"

70 PRINT * MARCH 1 AS 3.01» DECEMBER 14 AS 12.14> AND SO ON.*"

80 FOR I=1 TO N

90 INPUT DCI1

100 NEXT I

110 LET J=0

120 READ R _ T

130 IF R<O THEN 280 This must be done by typing in new

:gg ggzg ;1 DATA statements. On computers

160 IF DI <> O THEN 210 that have file commands, the program

170 LET J=d+1 can be written so that the computer

180 LET RCJI=R . .

190 LET PCLJI=P makes its own changes in DATA.

200 GOTO 120

210 FOR 1=1 TO N

220 IF DI1=D{I] THEN 250

230 NEXT I

240 GOTO 150

250 READ Di

260 IF DI=0 THEN 120

270 GOTO 250

280 IF J <> O THEN 320

290 PRINT

300 PRINT “SOURRY> NO ROOMS ARE AVAILABLF FOR ALL DAYS REQUESTEDe"

310 GOTO 500

320 PRINT

330 FOR I=1 TO J ,

340 PRINT "ROOM“$;RCIJ3" IS AVAILABLE ON DATES REQUESTELs"

350 PRINT " RATE IS $";PCLI15" PER DAYe™

360 PRINT

370 NEXT I

380 PRINT "WHICH ROOM DO YOU WISH';

350 INPUT R

400 PRINT "YOUR RESERVATION 1S CONFIRMED"

410 PRINT

420 PRINT "ev-=-ccomocccccancan TEAR HERE=====-==m=ceccca-aa- "

430 PRINT

440 PRINT "MEMO TO RESERVATIONS: ENTER NEW DATA FOR ROOM®; R"."

450 PRINT "ADD *3

460 FOR I=1 TO N-1

470 PRINT DL113"s °3

480 NEXT I 4

490 PRINT DCNI;™ TO PRESENT DATA."

500 PRINT

510 PRINT "-=----coccmooaaoaoan TEAR HERE=====-====macacaacax "

520 FOR I=1 TO 8

530 PRINT

540 NEXT 1

550 STOP

AMVWVWWNAMAN VANV AWWWWAVVWVWANV WM ANVIVMNAAAMY

129

MV YWINWNMNAN ANV ANANVAIWAAAN VAN
S60 DATA 9015 1854008540150

S70 DATA 9025165 4003540085 400950

580 DATA 90351753e015360825 4¢04s 4055 420850

590 DATA 9045 145 40035 40 04s 40 095 40150

600 DATA 905,205, 40.08,0

610 DATA -1

620 END

SPECIAL INFORMATION FOR SOME COMPUTERS

NOTE: We used the code 4.03 for April 3 since all versions
of BASIC allow DATA statements that use numbers. How-
ever, it may be that your computer also allows ‘‘strings’”
(check the index in your computer reference manual). If
so, you can also store alphabetic information. Even better,
if your computer allows file commands, you can use these
instead of DATA statements. You'll have to read about using
file commands by yourself, since they differ with every
computer.

Program 2: /AIR RESERV/

This reservation program uses a slightly different
method for storing and checking data. Take-A-
Chance-International Airlines (TACI-Air) keeps
- the information on how many seats are available
' on each of their two daily flights in the double-
subscript variables A(I1,J) (for flight 1) and B(1,J)
(for flight 2). The subscript I represents the

month, and J the day of the month. Thus,

LET B(11,8)=3

would be a way of storing in the computer the information that there
are 3 seats available on flight 2 on November 8.

TACI-Air keeps current records for two months. The following
program is for January and February. The program assumes that
3 passenger seats are available on each plane at the start. Excep-
tions to this rule are then handled with READ-DATA statements.

Here’s a sample RUN:

RUN
TACI-AIR RESERVATION SYSTEM
ek sk o e e o e ke e ode ook ok o o ok ok ok sk ook ok ok ko
ENTER MONTH> DAY» FLIGHT NOe» NO. OF SEATS DESIRED? 1185252
2 SEAT(S) CONFIRMED ON FLIGHT NOs 2 ON 1/ 18
DO YOU WISH TO TRY ANOTHER RESERVATION (TYPE 1 FOR YES.»
0 FOR NO)>?1

ENTER MONTHs DAY» FLIGHT NOes> NOe OF SEATS DESIRELD? 155525 1

WMV WA WANAVMANAVMNWANANNNY VW

130

DO YOU WISH TO TRY ANOTHER RESERVATION (TYPE 1 FOR YES»
0 FOR NO)>?1

ENTER MONTH» DAY» FLIGHT NOe» NOo. OF SEATS DESIRED?15551»21
1 SEAT(S) CONFIRMED ON FLIGHT NO. { ON 1/ S

DO YOU WISH TO TRY ANOTHER RESERVATION (TYPE 1| FOR YES»
0 FOR N0)20

MESSAGE TO RESERVATIONS AGENT: ENTER NEW DATA
STATEMENT(S) BEFORE RUNNING THIS PRGRAM AGAINe.

\ T —

Here’s a LISTing of the program /AIR RESERV/.

DIM A[L135311-BL135311]

FOR I=1 TO 2
FOR J=1 TO 31
LET Al1-J1=3
LET B[I,J1=3
NEXT J

NEXT I
LET AL2,291=AL[2s301=AL2, 31]=(ﬂ These steps remove the extra days
L o 2, 891=Bl2, 301=B02, 31120 from February (not a leap year).

2

IF I=13 THEN
READ A[(I»J1>BlLI»J]

GOTO 100

PRINT “TACI-AIR RESERVATION SYSTEM"
PRINT % skokdkideokok ok ok o o ok ook e s skl skoke e ook o 00

PRINT

PRINT "ENTER MONTH» DAY» FLIGHT NO.»> NO. OF SEATS LESIRED";
INPUT M»Ds F»N

PRINT

GOTO F OF 210,250

IF A(M»DI<N

PRINT N3 * SEAT(S) CONFIRMED ON FLIGHT NOo®;F3™ ON";M3*/"3D
LET ACM, D)=A[M,D1-N

GOTO 300
IF BIMsDI<N

PRINT N3 " SEAT(S) CONFIRMED ON FLIGHT NOo"™3;F3"™ ON'3M3'/*3D
LET BCMs D}=BlM»,D1-N

GOTO 300

PRINT "SORRY--NOT ENOUGH SEATS AVAILABLE ON THAT FLIGHT.™
PRINT "DO YOU WISH TO TRY ANOTHER RESERVATION (TYPE {§ FOR YES», "™

PRINT *
INPUT A

IF A=1 THEN
PRINT

PRINT "MESSAGE TO RESERVATIONS AGENT: ENTER NEW DATA"
PRINT “STATEMENT(S) BEFORE RUNNING THI ROGRAM AGAIN."
DATA 15252525 153525 151545151515 5515051351

END

140

THEN 290

THEN 290

O FOR NO)*™;

160

The first “13” stops the
READ of line 100. The
— last “13"” is needed to
- prevent an OUT OF

DATA message.

Lines 20 to 70 put a ““3” in each of the variables A(I,J) and B(L,J).
This is the number of seats normally available on one of TACI’s
flights. Changes in this number are taken care of by the READ and
DATA statements (100, 120, and 380). For example,

380 DATA 1,%,2,2

means that on January 2, flightSSA and B have only frwo seats left.

131

Suggested Explorations:

1. Add statements to /AIR RESERV/ which automatically tell
the reservation agent what new DATA should be added to
statement 380 before running the program again.

2. Inventory Control: Harry Hardsell is a salesman for the Ace
Hardware Company. Heis in Chicago and has a customer who -
wishes to order 7842 left-handed, brass-plated bolts, stock
number 809, and 87 model-302 red buckets. Harry mutters to
himself, “Oh, if only | could dial a computer at company head-
quarters in Oshkosh, and using my portable terminal, RUN a
program that would tell me how many of each of these items
are in stock for immediate delivery, the price of each, and the
total bill less 5% cash discount.” Can you write a program for
Harry that does these things for any one of ten different
products?

4-2 Nonnumeric Applications

We tend to think of computers as calculating machines which work
only with numbers. This is not completely true. Computers can also
do things with words and letters. We’ll show two interesting ex-
amples of this that work on even the simplest minicomputers.

Program 3: /SOAP/

Have you ever wondered how names for cereals, detergents. and
such are chosen? We’ll probably never know, but let’s see what a
computer might do.

Study the pgjt-out at the top of the next page.

=
& G

132

RUN

PROGRAM TO GENERATE NAMES BEGINNING WITH °GL°

GLAS GLAP GLAT GLAR GLAE
GLES GLEP GLET GLER GLER
cLIS GLIP GLIT GLIR GLIB
aos GL.OP GLOT GLOR GLOB
&us GL UP GLUT GLUR GLUB

The trick to /SOAP/ is to use nested FOR loops. Our program
always starts the name of the soap with GL. It uses the FOR loop
starting in line 120 to choose a vowel. It uses the FOR loop in
line 130 to add each of the consonants S, P, T, R, and B. Then it
goes back and tries a second vowel, and so on. Here is a LISTing:

100 PRINT "PROGRAM TO GENERATE NAMES BEGINNING WITH °GL°"
110 PRINT
120 FOR I=1 T0 S
130 FOR J=1 T0 5
140 PRINT “GL";
150 GOTO I OF 160,180-200,2205 240
160 PRINT "A;
170 GOTO 250
180 PRINT "E*;
190 GOTO 250
200 PRINT "I
210 GOTO 250
220 PRINT "0
230 GOTO 250
240 PRINT "U*;
250 GOTO J OF 260s280» 3005 320 340
260 PRINT ™S
270 GOTO 350
280 PRINT “P'»
290 GOTO 350
300 PRINT "T"»
310 GOTO 350
320 PRINT "R™»
330 GOTO 350
340 PRINT "B*»
350 NEXT J
360 NEXT 1
370 END

——

Program 4: /MENU/

Let’s suppose that you have just become vice-
president in charge of promotion for Gus’s
Restaurant. You decide to introduce a novelty
— a terminal at every table where a customer
can custom-order his meal. An example of what
might happen is shown on the next page.

133

134

RUN

+++ THE AUTOMATED RESTAURANT +++

THIS IS GUS®°S ROBOT READY T0 HFLP YOU SELECT YOUR MEAL.
TYPE THE NUMBER OF YOUR SELECTION AFTER EACH °? 'e

1=TOMATO JUICE(+15)52=GRAPEFRUI T(e 30), 3=CLAM CHOWLER(C. 40322
1=HAMBURGER(-60):2=CH£ESEBURGER(-70):3=HOT DOGC(e 50573
1=MUSTARD(=00)52=CATSUP(005, 3=NO THIN G?7 1

1=APPLE PIE(+30)s2=1CE CREAM(.20), 3=CHOCOLATE CAKE(.25)73
1=COFFEEC.15)52=SOFT DRINK(Ce15)» 3=MILKC.15)71

ORDER 10 COOK: A 25 E 3» C 1s D 3 B 1
*hkkkk ANNOUNCING ~--

YOUR CUSTOM-TAILORED DINNER

STARTING WITH
*k++ SWEET PINK-CENTFRED CRAPEFRUIT

AND FEATURING
++%% A SUCCULENT HOT DOG SMOTHERED WITH MUSTARD

AND FOR DESSERT
**RICH MOIST CHOCOLATE CAKE

OWNED WITH

*FRESH=-BREWED COFFEE

OHs YES» YOUR BILL IS $ 1.2
YOUR SUGGESTED TIP IS % «18.

VERY NICE SERVING YOUe. COME AGAINo

Here is a LISTing of /MENUJ/.

180
190
200
210
220
230
240
250

PRINT "+++ THE AUTOMATEL RESTAURANT +++¢"

PRINT

PRINT "THIS IS GUS'S ROBOT READY TO HELP YOU SELECT YOUE MEAL. "

PRINT

PRINT "TYPE THE NUMBER OF YOUR SELECTION AFTER EACH °®? *e"

PRINT

PRINT "1=TOMATO JUICE(s15)s 2= CRAPEFRUI TCe 30)» 3=CLAM CHO WDERCo 40)*';

INPUT A

PRINT "1=HAMBURGER(+ 60)s 2=CHEESEBURGER(« 7025 3=HOT DOGC(s50)";

INPUT E

PRINT "1=MUSTARD(00),2=CATSUP (e 00)» 3=NOTHING";

INPUT C

PRINT "1=APPLE PIE(.30),2=ICE CREAM(»20), 3=CHOCOLATF CAKE(oES)“;

INPUT D

PRINT Jl=COFFEE(-15):2=SOFT DRINK (e 15)5 3=MILK(e15)";

INPUT B
FRINT
PRINT

PRINT "ORDER TO COOK: A"™;A3"s E";E;"s C";C;"s D" D; "> "3 B

PRINT
PRINT
LET P=0

PRINT "kkk%kkkx ANNOUNCING ==«*
YOUR CUSTOM-TAILORED DINNER"

PRINT "
PRINT

WWAVVAMASAMAMAAAANAWVVVWAAMAMAWMWAAAN WA WAMAW

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
g10
820

VMWW WA W WWWANAMAMWMA WYY

PRINT "S
60TO A O
PRINT "%
LET P=P+
GOTO 360
PRINT "
LET P=P+
GOTO 360
PRINT "%
LET P=P+
PRINT
PRINT “A
GOTO F O
PRINT "+
LET P=P+
GOTO 470
PRINT "+
LET P=P+
COTO 470
PRINT "+
LET P=P+
GOTO C O
FPRINT "
GOTO 530
PRINT *
GOTO 530
PRINT
PRINT
PRINT "A
GOTO D O
PRINT "
LET P=P+
GOTO 640
PRINT "k
LET P=P+
GOTO 640
PRINT "#
LET P=P+
PRINT

PRINT "LDOWNEL WITH"

GOTO B OF 670, 700, 730

PRINT "# FRESH-BREWED COFFEE"

LET P=P+.15 :

GO TO 750

PRINT "#EEFRESHING SOFT DRINK®"

LFT P=Pt.l5

GOTO 1750

PRINT "*WHOLESOMF VI TAMIN=-ENRICHEL MILK"
LET P=P+.15 '

PRINT

PRINT

PRINT "OHs, YES» YOUR RILL IS $";P;3'e"
LET P1=INTC((P*.15+.005)%1003/100

PRINT "YOUR SUGGESTED TIP IS $";P1;'e"
PRINT

PRINT "VERY NICE SERVING YOU. COME AGAIN."
END

TARTING WITH"

F 280, 310s 340

*++ TANTALIZING TOMATO JUICE"™
<15

*++ SWEET PINK-CENTERED GRAPEFRUIT"
*3

*++ DELICIOUS CLAM CHOWDER"
o 4

ND FEATURING"

F 3905 4205 450

+%% A SIZZLING HAMBURGER''
6

+%% A SIZZLING CHEESEBURGER'S
o7

+%% A SUCCULENT HOT LDOG";
5

F 48055005 520

SMO THERED Wl TH MUSTARD"

SMOTHERED WITH CATSUP"

ND FOR DESSERT"

F 560, 5905 620
*MOTHER®S APPLE PIE"
+3

*CREAMY ICE CREAM"
° 2

#RICH MOIST CHOCOLATE CAKE"
025

Suggested Explorations:

1. Write a program that will generate names for musical groups.
For example,.you might generate names by combining adjec-
tives, colors, and animals (producing such names as HAPPY
PURPLE CHICKEN, OUTRAGEOUS ORANGE OSTRICH).

2. Write a program that produces sentences of the form
THE (noun) (verb) (adverb).

135

— —————

4-3 Games and Simulations

Although many people think of games as being used only for recrea-
tion, computer games can also serve serious purposes. For example,
computer scientists have programmed games like chess in order to
study the question of “machine intelligence.” Simulations (programs
that imitate something) are often combined with games to help study
complex ideas.

Program 5: /SLOT MACHINE/

This program simulates (acts like) a machine that has 3 “windows.”’
A picture of an orange, a lemon, or a cherry appears in each window
each time you put in money (50 cents in our machine) and pull the
imaginary handle. If all three pictures are the same, you win $3.00.
If not, you lose your 50 cents.

One way of figuring your odds for winning is to
draw a diagram like that shown at the left below.
The winning combinations are marked with the

[

. 1 . . .
ORANGE would win about 5 of the time, or 10 times.

Playing 90 times would cost you $45.

| First | i Second ﬁ' : Third —1: symbol *. You can see that although there are
: Window | } Window ; | Window 27 possible combinations, only 3 of these are
' | I b “winners.”

I CHERRY J#% :
| : | CHERRY | {%l\ﬁ}\lj Here are all the 27 possible paths;i the
: : ; ~ SRANGE— winning”’ combinations are ringed.
[| I :
I | | CHERRY Ccco CCL CCO
I[Q,g RY_ ! LEMON CLC CLL CLO
! i | romanGE] CoC coL COO
: , ! CHERRY
| ! ORANGE LEMON LCC icb LCO
| : ; | ORANGE LLC L LLO
| | | LOC LOL LOO
! | i | CHERRY
: } | CHERRY | ‘ LEMOL OCC OCL 0CO
| | | | ' ORANGE | OLC OLL OLO
| /] | SHERAY 00C OOL
[_LEMON ' "“"“I{ LEMON ' < LEMON J* A mathematician would say that your prob-
: | | | | _Q@E]I ability of winning on this machine is:

| |
; ! | | CHERRY p — No. of winning combinations _ 3 _ 1
| | ORANGE | LEMON " No. of possible combinations 27 9
| | | | ORANGE
: : ! } : CHERRY ! In other words, if you played 90 times, you
: : CHERRY)< LEMON

|

| 1 |
I l
| I

LEMON

Winning 10 times would give you $30.

["CHERRY
[LEMON
| ORANGE ¥

I CHERRY
LEMON
l “ORANGE

So you can see that on the average the owner of
the machine would make $15 on every 90 plays.
In other words, in the long run, on this machine
you lose, he wins. A sample RUN of this pro-
gram is given on the next page.

] |

1+ Challenge: Write a proeram that will print out thic lict

RUN

THIS IS A $.50 SLOT MACHINE.

PAYOFF IS $3 FOR 3 CHERRIES, 3 LEMONSs OR 3 ORANGESe

ALL OTHFR COMBINATIONS LOSEe

HOW MANY 50-CENT PIECES DO YOU WANT TO USE IN PLAY?6

YOU START WITH & 3

DO YOU WISH TO PLAY (TYPE 1 FOR YESs, O FOR NO)?1
$3SORANGESS S###LEMON ## ### #LEMON #4# TOO BAD=--YOU LOST 3%e 50

YOU NOW HAVE & 2.5
DO YOU WISH TO PLAY C(TYPF 1 FOR YES» O FOR NOJ?1
$$30RANGES$$SSFORANCGE S $x %« CHERRY **x% TOO BAL==YOU LOST $.50-

YOU NOW HAVE % 2
DO YOU WISH TO PLAY C(TYPE 1 FOR YES» O FOR NO)?1
#HFLEMON ### ## #LEMON ## # # # SLEMON ### GREAT--YOU WON $3.

YOU NOw HAVE $ S
0 YOU WISH TO PLAY C(TYPE 1 FOR YES» O FUR NO)?1
$$30RANGESE S # #4LEMON ##### #LEMON ### TOO BAL~--YOU LOST $.50.

YOU NOW HAVE % 45
DO YOU WISH TO PLAY C(TYPE 1 FOR YESs 0 FOR NO)>?1
##ALEMON ### 53 S0RANGESS533SORANGES$S TOO BAD-=-YOU LOST %e50.

YOU NOW HAVE % 4
DO YOU WISH TO PLAY (TYPE 1 FOR YES», O FOR NO)J?1
#4k CHERRY*#%x $$S0RANGE$$$$$SORANGESSS TOO BRALD--YOU LOST %50

YOU NOW HAVE % 3¢5
L0 YOU WISH TO PLAY (TYPE 1 FOR YESs O FOK NO)?71
#%% CHERRY*** $$SORANGE$$$$$S0RAN CES$$ TOO BAD=--YOU LOST %o 50

YOU NOW HAVE & 3
DO YOU WISH TO PLAY (TYPE 1 FOR YES», O FOK NO>?1
###LEMON # # #% 4k CHERRY *%* $$SORAN GE$$$ TOO BAL--YOU LOST $.50.

YOU NOW HAVE % 205
DO YOU WI'SH TO PLAY (TYPE 1 FCR YES» 0 FOR NO)>?1
#H#FLEMON###35SORANGESSS## 4L EMON ### TOO BAL~--YOU LOST $-50.

YOU NOW HAVE % 2
DO YOU WISH TO PLAY C(TYPE 1 FOR YFS» 0 FOR NO)?71
#LEMON # # #4 %k CHERRY %%k k%% CHERRY* %% TOO BAD~~YOU LOST 3. 50-

YOU NOW HAVE & 15
DO YOU WISH T0 PLAY (TYPE 1 FOR YESs O FOR NOJ?1
##HLFMON###SSSORANGEF$$$## #4LEMON### TOO BAL--YOU LOST $.50-

YOU NOW HAVE §$ 1
DO YOU WISH TO PLAY C(TYPE 1 FOR YES» 0 FOR NO>?1
$$SORANGE$$ & # # SLEMON # # #4 % CHERRY*%* TOO BAL~-=YOU LOST %50

YOU NOW HAVE % 5
DO YOU WISH TO PLAY (TYPE 1 FOR YES» O FOR NOJ?71
###LFMON # # %%k CHERRY **%* $$SORANGE$$$ TOO BAL--YOU LOST 350

YOU HAVE LOST ALL YOUR MONFY.
SORRY AROUT THAT

To simulate selecting one of the three “pictures,” we use the BASIC
statement (see page 138):

160 LET N=INT(3xRND(l))+1
This gives us a 1, a 2, or a 3 for N. Then by using

170 GOTO N OF 180, 210, 240
(or 170 ON N GOTO 180, 210, 240 on some computers)

our program branches to a line that prints one of the words
“CHERRY,” “LEMON,” or “ORANGE.” 137

Here’s a LISTing of the program for you to study.

10 PRINT "THIS IS A $.50 SLOT MACHINE.*"

20 PRINT "PAYOFF IS $3 FOR 3 CHERRIESs 3 LEMONS, OR 3 ORANGESs"

30 PRINT "ALL OTHER COMERINATIONS LOSF.'

40 PRINT "HOW MANY 50-CENT PIECES [O YOU WANT TO USE IN PLAY";

50 INPUT ™

60 LET M=M*.5

70 PRINT "YOU STAET WITH §°'3M

80 LET X=RND(-1) (SFF PAGF 116+

90 PRINT DO YOU WISH TO PLAY (TYPE 1 FOR YES» O FOP NO)*;

=100 INPUT A

f;g I{ETACSOTH—B\’ 410 C, L, and O1 will keep count of
130 LET L=0 how many cherries, lemons,
140 LET Ot=

150 FOR 1=1QT6 ‘53 . or oranges came up for you.
160 LET N=INTC(3%*RNDC(1))+1

170 GOTO N OF 180-210,240

180 PRINT '"¥%#* CHERRY *%% '}

190 LET C=C+1 ’ 0 H 12
500 COTO 260 H.ere s where your 3 “‘window
210 PRINT “###LEMON###"; |<— pictures are made by the random
220 LET L=L+1}

230 GOTO 260 generator.

240 PRINT "$$$ORANGE$$%";

250 LET 01=01+1 @

260 NEXT I

297G IF C=3 THEN 350

880 IF L=3 THEN 350 < Determines if you won.
200 1F301=3 THEN 350 :

300 PRINT " TO0O BAD==-YOU LOST $e¢500°"

310 LET M=M-+5 Takes 50 cents from you.
320 PRINT

330 -IF M=0 THEN 400

340 GOTO 380 Checks to see if you have

350 PRINT " GREAT--YOU WON $3.°
360 LET M=M+3) any money left.
370 PRINT ~—_

380 PRINT "YOU NOW HAVE $";M | Gives you $3.00.
2390 GOTO 90

400 PRINT "YOU HAVE LOST ALL YOUR MONEYe"
410 PRINT "“SORRY ABOUT THAT®
420 END

Program 6: /BURIED TREASURE/

To play this game you need a 10 by 10 grid like the one shown at the
top of the next page. The computer will randomly select a rectan-
gular block of 4 adjacent squares (horizontally or vertically) to repre-
sent a “buried treasure.” You are to try to locate it by ‘“digging
holes.” The remaining instructions are given in the program. A
sample RUN is given on the next page.

138

(o

woR

~

-l

RUN

YOU WILL NEFF A 10 BY 10 GRID T0 REFER TO IN PLAYING THIS GAMFe
THE COMPUTER HAS BURIFD A ‘TREASURE' IN A FOUR-SOUARE
RECTANGULAR REGION WITHIN THE GRID. YOU CAN DIG 10

TEST HOLES IN AN AFTFRNOONe. YOU REPRESFNT THE LOCA-

TION OF FACH HOLE BY TYPING AN X-CGORDINATEs A COMMA-

AND & Y-COORDINATE.

WHERE DO YOU WANT YOUR FIRST HOLE? 1,1
NOTHING THERE--NO. OF TRIES LEFT: 9

NEXT HOLE?2,2
NOTHING THERE--NOe. OF TRIES LEFT: &

NEXT HOLE?3-3
NOTHING THERE--NOe. OF TRIES LEFT: G

NFXT HOLE? 4» 4
NOTHING THFRE=-=-NO. OF TRIFS LFFT: (&

NEXT HOLE?5»5
NOTHING THERE~--NOe OF TRIES LEFT:

n

NEXT HOLE? 626
NOTHING THERE--NO. OF TRIFS LEFT: 4

NEXT HOLF? 75> 7
FURFKA-~YOU FOUND IT!

A LISTing of this program is given on the next page.

139

140

Here’s a LISTing of this program for you to study.

260
2170
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

LET X=sRND(=1)
LET Z=INTC(24RNDC1)+1) . :
GOTO Z OF 1205190 NOTE: Our coordinates for this
LET X[13=INTC7#RNDCI)+ 1)
LET YL 13=INTCI1O%RNDCI)+1)

FOR I=2 T0 & Cartesian coordinates, which
LET XL I1eX(I-13¢} i i

LET YCIJe¥LI=1) name points. Our coordinates
NEXT 1 identify squares.

GOTO 250

LET XC1)=INTCIO0O®RNDC1)+1)
LET YU 1I=INTC7%RNDC1)+1)
FOR I=2 T0 4

LET X{Il=sX{i-11]

LET YEI)=Y{1I=1]+1}

NEXT

LET S=10

PRINT

PRINT “WHERE B0 YOU WANT YOUR FIRST HOLE™;
INPUT X»Y

FOR I=} TO 4

IF X <> XUI)l THEN 320

IF Y=Y(I) THEN 470

NEXT

PRINT *NOTHING THERE==-°3"

LET S=S-1

IF S=0 THEN 400

PRINT "NO. OF TRIES LEFT:s *3S
PRINT

PRINT "NEXT HOLE®:

GO TO

PRINT “TIME TO GO HOME®

PRINT “THE TREASURE WAS LOCATEDR AT "3
FOR I=1 TO 3

PRINT ™C"™3XLI23""3Y(113°), °;

NEXT

PRINT ™ AND (™3 XL 413 *3YL 433°)e "

STOP

PRINT "EUREKA=-YOU FOUND ITI§"

END

“YOU WILL NEED A 10 BY 10 GRID TO REFER TO IN PLAYING"}
* THIS GAME."

“THE COMPUTER HAS BURIED A °TREASURE® IN A FOUR-SQUARE"™
* RECTANGULAR REGION WITHIN THE GRID. YOU CAN DIG 10"

* TEST HOLES IN AN AFTERNOON. YOU REPRESENT THE LOCA-*
* TION OF EACH HOLE BY TYPING AN X-COORDINATE, A COMMA,™
** AND A Y=-COORDINATE."™

problem differ from the usual

I

i

280

1

Challenge: If you increase the number of tries to 16, can you
devise a strategy that will always win?

Suggested Explorations:

1. Write a program that plays another game. If you need ideas,
see if your library has a copy of Game Playing with Computers
by Donald D. Spencer (Spartan, 1968).

2. Modify /BURIED TREASURE/ so that when you have missed,
the computer tells you whether your X- and Y-coordinates
were too large or too small. What is the minimum number
of tries you now need to insure winning?

4-4 Business Applications

More and more business operations are being handled with the aid
of computers. In this section we’ll look at some applications that
involve the financial side of business.

—

i
D@

YA,

' BIONEET MABRY
%%@ﬁg

1

e e

Let’s suppose that you want to start your own business. To get
started, you’ll have to borrow money. The “rent” that you’ll have to
pay on your loan is called interest. Interest is calculated by multiply-
ing the amount borrowed, by the interest rate per year, and then
multiplying this answer by the number of years you wish to borrow

the money. (Interest rates are usually given as a percent per year.)

EXAMPLE: Suppose that you borrow $1,000 at 8% per year for
two years. How much “rent” (interest) must be paid?

1000 * .08 * 2 = 80+2=$160
= N —
—

Amount borrowed
(principal)

Interest rate per year Number of years Interest (rent)

Of course, in addition to paying the $160 interest, you’ll also have
to pay back the $1,000! Now comes the catch — you’ll be expected
to pay this back in monthly installments, starting right away (not 2
years from now).

Question: Even though | start paying back the money | borrowed

right away, do | have to pay interest on the full amount? The
answer is usually yes. Let’s see how this works.

141

142

Program 7: /ADD-ON/

“Add-on” interest is charged by most finance companies. This
means that the interest is added to the principal right away, and that
you then pay back this total amount in monthly installments. Here’s
a program that calculates the monthly installments for a loan of
$18,000, paid back over 5 years (60 months) at the rate of 6.5%
per year ‘“‘add-on” interest.

RUN

INSTALLMENT PAYMENTS WITH ADD-ON INTEREST
AMOUNT BORROWED (PRINCIPAL) =718000
ANNUAL INTEREST RATE (LDFCIMAL) =7.065
NUMBER OF MONTHS TO REPAY THE LOAN =760

YOU PAY $ 397.5 EACH MONTH FOR THE NEXT 60 MONTHS.
INTEREST YOU ARE PAYING EACH MONTH IS % 975

AT THE ENL OF S YEARS:

PRINCIPAL REPAID TOTAL INTEREST SuM OF THE PAYMEN TS
18000 5850 23850

The total interest is computed by using this formula:
Total interest=(Principal)(Interest rate)(No. of years)
The monthly installment is found as follows:

Principal +Total interest
No. of months

Monthly instaliment =

You will find these formulas in lines 100 and 110 of the following

program:

PRINT "INSTALLMENT PAYMENTS WITH ALD-ON INTEREST"
PRINT
PRINT "AMOUNT BORROWED (PRINCIPAL) =3

INPUT P
PRINT "ANNUAL INTEREST RATE (LECIMAL) =';

INPUT I
PRINT "“NUMBER OF MONTHS TO REPAY THE LOAN ="

INPUT M
PRINT

LET T=P%I*(M/12)

LET Mi=(P+T)/M

LET I1=T/M

PRINT "YOU PAY $";M1;" EACH MONTH FOR THE NEXT'3M;* MONTHS."
PRINT "INTEREST YOU ARE PAYING EACH MONTH IS $"511
PRINT

BRINT "AT THE END OF";M/12;'" YEARS:"™

PRINT

PRINT “PRINCIPAL REPAID"; TABR(20)5"TOTAL INTEREST':
PRINT TAB(C40)3"SUM OF THE PAYMENTS"

PRINT P3 TABC20)3 T3 TABC40); M4M1

END

T

Notice that in /ADD-ON/ the borrower paid five years’ interest
on the full amount borrowed, even though he began paying part of

it back each month.

On large loans to well-established companies, banks sometimes
compute the interest on only the unpaid balance (amount still
owed). This is a more complicated calculation, and the computer
can be a real help.

Program 8: /UNPAID-BAL INT/

Let’s now look at the RUN of a program that calculates the monthly
payments on an $18,000 five-year loan at 6.5% interest computed on
the unpaid balance for each month. Our program has the extra
feature of showing how to split the payments (shares) among several
“partners” (3 in our example).

RUN
INSTALLMENT PAYMENTS WITH INTEREST ON UNPAID BALANCE
AMOUNT BORROWED (PRINCIPAL)Y =?18000
ANNUAL INTEREST RATE (DECIMAL) =?7.065
NUMBER OF MONTHS TO REPAY THE LOAN =7 60
NUMBER OF PARTNERS WHO BORROWED THE MONEY =23
MON TH PRINCIPAL OWED INTEREST MON THLY PAYMENT SHARE
i 18000 975 3975 132¢5
2 17700 95088 395. 88 13196
3 17400 Q9425 394.25 131417
4 17100 92.63 392063 130877
5 16800 91 391 130+ 333
6 16500 896 38 389. 38 1290793
1 16200 8775 387075 129.25
8 15900 86.13 386013 128071
9 15600 840 5 3840 S - 1280167
10 15300 8288 382-88 127627
11 15000 8125 381.25 127083
12 14700 79.63 3790 63 1260 543
13 14400 78 378 126
14 14100 76 38 376+ 38 1250 46
15 13800 Tde 75 374+ 75 1240917
VWMWY MMM AAMANVWMWVAVMAMN
MV\/\/VWWW\AAAMvaWWWV\VWWVWWV\/W\NWWWWVWWV\ANWWW
45 4800 26 326 108667
46 4500 240 38 324. 38 108.127
47 4200 22075 3220 75 107583
48 3900 2113 32113 107043
49 3600 195 3195 10625
50 3300 1788 317-.88 ' 10596
51 3000 1625 31625 105417
52 2700 14063 31463 104877
53 2400 13 313 104- 333
54 2100 11.38 311.38 103793
55 1800 90 75 309. 75 10325
56 1500 8o.12 308. 12 . 1020707
57 1200 6o 5 30605 1020167
58 900 40 88 304-88 101627
59 600 3025 303.25 101.083
60 300 163 301- 63 1000 543
TOTAL S PAID 297386 209739 699129
]

You'll notice that when interest is calculated on the unpaid balance,
the total interest on $18,000 over five years is $2,973.86. But (see
page 142) it is $5,850 for add-on interest over five years, even though
both calculations used the same rate per year (6.5%). The total add-
on interest is approximately rwice as much as the total interest paid
on the unpaid balance!

143

144

Here is a listing of the program /UNPAID-BAL INT/:

10
20

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

LET T1=0

LET T2=0

LET T3=0

PRINT *"INSTALLMENT PAYMENTS WITH INTEREST ON UNPAID BALANCE"

PRINT

PRINT "AMOUNT BORROWED (PRINCIPAL) ='

INPUT
PRINT
INPUT

PRINT "NUMBER OF MONTHS TO REPAY THE LOAN =";

INPUT M

PRINT *NUMRER OF PAPINERS WHO PORROWED THE MONEY =*3
INPUT N

PRINT

LET PI=INTC((P/M+.005)%100>/100

PRINT "MONTH'"; TABC10)3 "PRINCIPAL OWED"; TAB(26); "INTEREST";
PRINT TABC40); "MONTHLY PAYMENT' TARC60); "SHARE"

J=1 TO M

T1=INTCC1/12%CI%P)+.005)%100)/100

P2=Pl1+1]

Ti=T1+1I1

T2=T2+pP2

Z=P2/N

T3=T3+Z

FOR
LET
LET
LET
LET
LET
LET

PRINT J5 TABC10); P; TAB(26);3 I 15 TABC40); P25 TAB(603 Z
LET P=P-P1

NEXT J

PRINT

PRINT “TOTALS PAID"; TABC(26); T1; TABC40Y; T25 TABC(60)3 T

END

"ANNUAL INTEREST RATE (DECIMAL) ="

—_—
B

I

The calculation part of this program is done over and over (60
times) in the FOR loop of lines 180 to 270. The important line to
notice is:

260 LET P=P-P1

This statement reduces the principal by the amount paid. This
means that the interest calculation in line 190 gets smaller and
smaller for each month.

SPECIAL TRICK: The +.005 used in lines 280 and 300
causes the money to be “rounded off’’ to the nearest penny.

EXAMPLE: 8/3=2.66667 INT((8/3+.005)%100)/100=2.67

Program 9: /PAYROLL/

Figuring out the paycheck for each employee in a big company is a
lot of work, and computers are used extensively for this job. The
computer also calculates tax deductions and other amounts to be
subtracted from the “‘gross” pay of an employee. The amount left
is called ‘“‘net” or “take-home” pay.

Our payroll program will have to make some assumptions:

1. Employees receive their normal ‘“hourly rate” for the first 40
hours each week. After that their rate is multiplied by 1.5 (time
and a half).

2. Tax deductions are made on the following approximate basis:

GROSS WEEKLY PAY $50 OR LESS: NO TAX

GROSS WEEKLY PAY $51 TO $75: 5% TAX WITHHELD
GROSS WEEKLY PAY $76 TO $100: 10% TAX WITHHELD
GROSS WEEKLY PAY $101 TO $150: 15% TAX WITHHELD
GROSS WEEKLY PAY OVER $150: 20% TAX WITHHELD

3. Each employee is allowed to specify an amount to be taken out
of his paycheck and deposited in a savings plan.

Here’s a RUN of our program. The OUTPUT is a series of “‘pay
forms” which can be cut out and inserted in the employee’s pay
envelope along with his check.

RUN

PROGRAM TO COMPUTE PAYROLL

AFTER ALL EMPLOYEES' LATA HAVE BEEN TYPEL IN»
TYPE A ZERO FOR THE EMPLOYEE NUMBERe THEN
THE PAYROLL WILL BE PRINTED OUT.

EMPLOYEE NUMBER =?7123
HOURS WORKED =739

PAY RATE =73+ 78
SAVINGS PLAN =715

EMPLOYEE NUMEER =799
HOURS WORKED =751
PAY RATE =75e45
SAVINGS PLAN =720

FMPLOYEE NUMBER =70

e rEsESCCEECE S S N ECEC S CEESSSSEESESSSSSSEEIESESSEES

FMPLOYEE NUMBRER = 123

NORMAL PAY = 147042
OVERTIME = 0
TOTAL CGROSS PAY = 147.42

DEDUCTIONSe o
SAVINGS PLAN: 15
TAX WITHHELD: 220113
TOTAL DEDUCTIONS = 37113

NET PAY = 110031
eSS E S EECEEESCSS SRS SNESISESSSSSSSSISEESSSERISSISEES
====================================:==================
FMPLOYEE NUMBER = 99

NORMAL PAY = 218

OVERTIME = 89925

TOTAL GROSS PAY = 307.925

{ DEDUCTIONSeso
SAVINGS PLAN: 20
TAX WITHHELD: 61585

TOTAL DEDUCTIONS = 81585

NET PAY = 226+ 34
=============:==

———

145

“+ A0

Here is a LISTing of the /PAYROLL/ program:

10 PRINT "PROGRAM TO COMPUTE PAYROLL®
20 PRINT

60 PRINT
70 LET N=1
80 PRINT "EMPLOYEE NUMBER ="
90 INPUT ECN]

100 IF ECNI=0 THEN 200

110 PRINT "HOURS WORKED =";
120 INPUT HIN]

130 PRINT "“PAY RATE =";

140 INPUT RCN]

150 PRINT "SAVINGS PLAN =";
160 INPUT SINJ]

170 LET N=N+)

180 PRINT

190 GOTO 80

200 LET N=N-|

210 FOR I=1 TO N

220 PRINT

230 PRINT "====

250 PRINT
260 PRINT "EMPLOYEE NUMBER ='";EC1)]
270 LET 01=0

280 IF HLI] <= 40 THEN 320

30 PRINT "AFTER ALL EMPLOYEES®' DATA HAVE BEEN TYPED INs™
40 PRINT " TYPE A ZERO FOR THE EMPLOYEE NUMBERe THEN®
50 PRINT " THE PAYROLL WILL BE PRINTED OUT."

240 PRINT "=zz=zzs==s==s=cs=zzzzzzs=sscccz===z====

290 LET O1=(HLI3~40)*R[IJ%1e5 <

Checks to see if employee worked
“normal’’ or “overtime’’ hours.

I

300 LET G=40%R{1] <—
310 GOTO 330

320 LET G=HCIJI*R[I] «
330 PRINT TAR(29); *NORMAL PAY =" 6
340 PRINT TAB(29); "OVERTIME =501

Uses the "overtime’ formula to
calculate “time-and-a-half’’ pay.

350 LET T=G+01 <
360 PRINT TAR(29); "TOTAL GROSS PAY =°3
370 PRINT "DEDUCTIONSeso"

380 PRINT ™ SAVINGS PLAN:'; S[11

7390 IF T>50 THEN 420

400 LET F=0

410 GOTO 520

420 IF T>75 THEN 450

——>1 430 LET F=T%.05

440 GOTO 520

450 IF T>100 THEN 480

460 LET F=Txkxe]

470 GOTO 520

480 IF T>150 THEN 510

490 LET F=T*.15

500 GOTO 520

510 LET F=T%.2

520 PRINT ' TAX VWITHHELD:'; F

S30 LET D=S[IJ)+F

540 PRINT TAB(29); "TOTAL DEDUCTIONS =3[

Lines 300 and 320 use the “‘normal”
formula to calculate normal pay.

Calculates “‘gross’ pay.

550 PRINT

560 PRINT TAR(29); "NET PAY =" INT(CT-D)* 100+ 5)7100

570 PRINT

580 NEXT I

590 PRINT

600 PRINT "==========:== "
610 END

to be withheld.

Lines 390 to 510 are used to find out in which “‘tax bracket”
the gross pay falls and then to calculate the amount of tax

Suggested Explorations:
1.

Write a program that keeps track of your checking account.
It should add in deposits, subtract the amounts of checks
you write, subtract the monthly and/or individual check
charge the bank makes, and print the balance for any date.

Write a program that prints out monthly bills for a credit-card
company. It should add in payments made in the past month,
subtract the cost of purchases made, and subtract a 1.5%
monthly finance charge on the unpaid balance. (NOTE: A
monthly 1.5% finance charge=18% yearly charge.)

It is often desirable to put records in order, either alphabet-
ically or numerically. Below is a subroutine that can be added
to the /PAYROLL/ program that will sort the pay records by
employee number. You’ll have to add a new line

205 GOSsuUB 1000
to PAYROLL, and change
610 END to 610 STOP.

1000 LET N1=N-1
1010 LET S=0

1020 FOR I=1 TO N1

1030 IF ECIJ<ECI+1) THEN 1170
1040 LET E=E[(1] -
1050 LET ECIJ=ECI+1]
1060 LET ECI+1]=E -
>1070 LET E=H(1) —
1080 LET HCI1=HL[I+11]
1090 LET HCI+11=E o
1100 LET E=R(1) -
1110 LET ROIII=ROI+1] <
1120 LET RCI+131=E -
1130 LET E=S(I1) -
1140 LET SCI1=SCI+1)
1150 LET SCI+11=E .
1160 LET S=1

1170 NEXT I

1180 LET Ni=N1-1

1190 IF S <> 0 THEN 1010
1200 RETURN

1210 END

—— e ———

E is a temporary variable The list E(l) is sorted

used in swapping. in increasing order, and

(Recall the //SORT// the lists H(l), R(l), and

program in Section 3-2.) S(l) are rearranged to
match.

4. Can you change your program so that it sorts the pay records

in order of increasing net pay?

147

440

4-5 Batch-Mode Computing

Computing done at a terminal connected to a computer that “speaks”
BASIC is often called “interactive,” since there is give-and-take
between the machine and the programmer.

For many applications, however, interactive computing is not
needed. For example, the job of preparing payroll checks does not
require that a human being be in constant communication with the
computer, watching each piece of information it prints. It suffices
that the instructions for preparing these checks be programmed just
once, and that the computer then be left by itself to grind out the
checks, with the human operator picking them up later in the day.
The diagram below illustrates a typical batch system.

After designing his program at his desk, the user “writes” his
program on cards. This is done either by making special pencil marks
on the card or by punching holes in the card. He then takes his
“deck” of cards to the computer room and places it on a stack (batch)
of decks from other users. The card reader interprets the statements
on the cards by decoding the marks on them. The computer then
executes the programs that were on the cards, and prints the output.
The programmer may have to wait a few hours since batch systems
are often used for very long-running programs. If there are mistakes,
or if revisions must be made, the whole process must be repeated.
Just one warning: if you are using a batch computer, you can’t use
INPUT statements (why?). Use READ-DATA instead.

Selected Answers and Hints
for Exercises

Section 2-2, page 23
Exercise 2(f): (4+(9%2))*(3+1)=88

Section 2-3, page 34
Exercise 1: The variables C23, XY, 2D, 5F, W13, 10U,
F-2, 3, and X3.1 are not allowed in BASIC.
Exercise 2: The program output is:
12 8 20 4 96
248
Section 2-4, page 45
" Exercise 9: (a) 314159000000
(b) .0000000000314159
Exercise 10: (a) 7.00000E+09
(b) 7.00000E—09

Section 2-5, page 49
Exercise 2: For R=2, the RUN looks like this:

PROGRAM TO FIND AREA OF A CIRCLE

AAAPANMANAAAANNANNPNRANNA
TYPE IN RADIUS
(£
AREA =

12+ 5664

Exercise 3: For example, in line 60, the right quotation
mark is missing; in line 80, the quotation marks
should not be used.

Section 2-6, page 57
Exercise 2, #8: TRUE, 16%48 is less than 24*48; branch to
line 80.

Section 2-7, page 70

Exercise 1: For example, the variable M8 takes on the
values in the set {3,9,15,21,27}.

Exercise 2: For example, the variable X is made to take on
the given set of values by the statement:
FOR X=1 TO 1.7 STEP A1

Exercise 4: Ten numbers will be printed in all.

Pages 73-74
Exercise 2: The pattern will be: % & *

#
* *
* *

* * %
* *
* *
* *

® % *
* *
& *
* *

* & *
* *
* *
* *

Exercise 3: Three lines, with six asterisks on each line.

/BLOCKS/ - Use 3 nested
FFOR loops: The outer loop
will control the number of
rectangles (3), the middle
loop will control the num-
ber .of rows per rectangle
(4), and the inner loop will
control the number of
asterisks per row (7).

Page 76
//ISPEED CAR///

10
20
30
40
50
60
70
80
90

FOR I=1 TO
FOR J=1 TO
FOR K=1 TO
PRINT **%°3
NEXT K
PRINT
NEXT J
'PRINT
NEXT 1

100 END
-

3 bW

STARTING SPEED
(MILES/HOUR)
5

° ° .
w - w v

AN D DWW~ -
. =
w

Section 3-2, pages 88-90

FINAL SPEED

(AFTER 10TH TRIP AROUND)

22.6296
45.2593
67.8889
90.5185
113.148
135.778
158.407
181.037
203.667
226.296
248.926
271.556

Exercise 1: For example, Z(16), Z(160/10), Z(256/16)

Exercise 2: 18

?712
?13
?14
?15
?16

Exercise 3:

YOUR NUMBERS

SQ. OF YOUR NO.

144
169
196
225
256

149

Section 3-2 (continued)

Modification of /TRACK1/:
Add the following steps:

291 PRINT

292 PRINT "INPUT ATHLETE NUMRBRERS FOR 3 REST SPEEDS: ™
293 INPUT AsE-C

294 LET S1=C300/5280)/(TLAY/3600)

295 LET S2=(300/5280)/(TLB1/ 3600

296 LET S3=(300/5280)/(TLC1/3600?

297 PRINT "AVERAGE SPEED OF TOFP 3 WAS'"™;

298 PRINT (S1+S2+S3)/35 % MPHe "
\._

" Section 3-4, page 100
A program for //BRAKE//

20 PRINT

30 PRINT "SFFED
40 LET D=0

SC PRINT TAB(4);
60 FOR N=1 TO 66
70 PRINT "+

80 NEXT N
90 PRINT
100 PRINT

110 1IF D>0 THEN 180

120 FOR I1=10 TO BO STEP 5
130 LET D=Il*I%*.01

140 PRINT I3 TAB(D+3)3 %
150 NEXT 1

160 PRINT

170 GOTO 50

Section 3-5, page 105
Exercise 4: Output is: 2
1

Section 3-6, pages 111-112

Modification of /PIZZA/:

Find the cost per bite by dividing the cost (for example,
$1.00 for a 10" pizza) by the number of square-inch bites
(78.5397 for a 10" pizza). The best buy will be the pizza
with the lowest cost per bite (this is the same idea as unit
pricing in supermarkets).

HINT for //INVERSE PIZZA//:
If P = no. of people, B = no. of bites each, and N = no.
of pizzas:
LET D = 2 * SQR(P * B/(3.14159%N))

Pages 118-119

Exercise 5: Change line 20 in /RAND/ to:
. 20 PRINT INT(101*RND(1)-50)

150

10 PRINT *DISTANCE NEEDED TO STOP A CAR AT VARIOUS SPEEDS"™

DISTANCE (EACH + REFPRESENTS ONE CAR LENGTH)*™

180 END

Hint for /DICE/:

Use a variable for the toss of each die.

For example:
LET A = INT(6+RND(1)+1)
LET B = INT(6*RND(1)+1)
PRINT A, B, A+B

Hint for //GUESS//:
To find which player was closer to the computer’s choice,
you might do the following:

Use P1 as player one’s number, P2 as player two’s num-
ber, C as the computer’s choice, and then use a conditional
statement of the form:

IF ABS(C—P1)<ABS(C—P2) THEN. ..
(We use ABS to get the numerical “‘distance’ from C to
P1 and P2))

If the condition is true, P1 wins. If the condition is not
true and the players gave different numbers, then P2 wins.

What do you want the computer to do if the second player
uses the same number as the first player?

Section 3-6 (continued)

Pages 122-123
Comments on /IMELODY/:

DO, RE, MI, FA, SOL, LA, TI stand for different notes
of a scale: DO is the first, RE is the next (one tone higher),
and so on. Listen to the song “DO RE MI” from The Sound
of Music to get an idea of what these notes sound like.

Hints for //SONG//: End each song with DO.

(1) For a simple program, you might select several bars

as in /IMELODY/:

DO MI SOL, LA FA RE, and so on
You can then have the computer randomly select 4
of these to make each line except the last. Make
special provisions to end with DO.

(2) For a more complicated program, you can have the
computer make up each bar by making 3 or 4 random
selections from the 7 possible notes.

(3) You can extend the possibilities by using DO1 as
the upper octave of DO.

(4) Here’s an example with four bars per line.

5 RANDOMIZE
10 FOR L=1 TO 4
20 FOR B=1 TO 3

50 GOTO 90

70 GOTO 90

90 NEXT E

110 GOTO 170
130 PRINT *¢ SOL
140 GOTO 160

150 PRINT e MI

160 NEXT L
170 PRINT ™": IO

180 END

RUN

¢ FA RE ¢ LA TI
¢ Fo RE ¢ SOL M1
s LA T1 ¢ SOL MI
¢ SOL MI @ L& TI
\

(SEE

80 PRINT ": FA RE

60 PRINT "™s SOL MI

100 IF L<& THEN 120

o8 00 00 o0

93 o
2

[2]
3

[I3
5

® Y8
®

La TI
SOL MI
FA RE
SOL MI

e 0% e 00

PACE 116¢)

MI
SOL
SOL

30 GOTO INTC(3*RNDC1)+1) OF 40560580
40 PRINT °**: LA TI

120 GOTO INTC(2%RNDC1)>+1) OF 1305150

% s> 20 o6

151

Section 4-3, page 140
Quizzes make interesting game programs, especially when
the RND function is used.

Here are two examples that may give you some ideas.

5 RANDOMIZE (SEE PAGE 116+)

10 LET W=0

20 LET R=0

30 PRINT "QUIZ ON SPEED = DISTANCE/ TIME"

40 PRINT

50 FOR I=1 TO 5

60 LET D=INTCC3%*RNDC13+12%100)

70 LET T=CINT(S*RNL(1)X+5))/10

B0 PRINT "AIRPLANE";I; " COES';D;" MILES IN"; T;"™ HOURS."
90 PRINT "WHAT IS ITS SPEEL TN MPH"™;

100 INPUT Si

110 LET S=I/T

120 IF ABSCINTC(S1=S)) <= 2 THEN 160

130 PRINT "NO: SPEED = D/T ="3D;"/";T;'" =";53" MPH"
140 LET W=W#1

150 GOTO 180

160 PRINT "UVERY GOOD! THE EXACT ANSWER IS™;S3' MPH«"
170 LET R=R+1

180 PRINT
190 NEXT 1
200 PRINT

210 PRINT "SCORE: "5R;"™ RIGHT» "5 W;"™ WRONC'
220 LET P=R/5%100

230 PRINT "PERCENTAGE RIGHT:*; P; %"

240 FND

RUN

QUIZ ON SPEFD = DISTANCE/TIME

AIRFPLANE 1 GOES 107 MILES IN «8 HOURSe
WHAT IS ITS SPEED IN MPH? 134
VERY GOOD! THE EXACT ANSWFR IS 13375 MPH.

AIRPLANE 2 GOES 311 MILES IN «6 HOURSe.
WHAT IS ITS SPEED IN MPH? 520
VERY GOOD! THE EXACT ANSWER IS 518333 MPHe

AIRPLANE 3 GOES 127 MILES IN o6 HOURSe
WHAT IS ITS SPEEL IN MPH?212
VERY GOOI! THE EXACT ANSVWER IS 211667 MPHe

AIRFLANE 4 GOES 399 MILES IN 9 HOURS.
WHAT 1S ITS SPEED IN MPH? 440
NO: SPEFD = I/T = 399/ 9 = 443333 MPH

AIRPLANE 5 GOES 251 MILES IN «5 HOURSe
WHAT IS ITS SPEED IN MPH? 502
VERY GOOD! THE EXACT ANSWER IS 502 MPHe.

SCORE: 4 RIGHT» 1 WRONG
PERCENTAGE RICGHT: 80%

152

S RANTOMIZE (SEE PAGE 1164)
10 PRINT "THIS IS AN 'IQ'-TYPE QUIZ."

20 PRINT -

30 PRINT "THIS PROGRAM WILL PRINT VARIOUS SEQUENCES OF NUMEFRS"
40 PRINT "FACH ENDING WITH A BLANK (==-=-=). WHEN YOU SEE A '? ', "
50 PRINT “TYFE IN THF NUMBFR THAT YOU THINK THE COMPUTER MIGHT"
60 PRINT "HAVE PRINTED IN PLACF OF THE BLANK."

70 PRINT

80 LET R=0

90 LET W=0

100 FOR I=1 TO S

110 PRINT “PROBLEM"; I

120 LET A=INTC10%RNLCC1)+1)

130 LET B=INTCLO*RNDC1)+1)

140 LET G=INTC3*RNL:(1)+1)

150 IF A>R THEN 290 '

160 GOTO G OF 17052105250

170 LET X=24A+3%R

180 PRINT A3 ' "3 B35 ", "5 A+ B3 "5 "5 A+ QKB "y ===n- "

190 INPUT Y

200 GOTO 410

210 LET X=A*AxPxE*R.

220 PRINT A3 "s "3 P53 "> M3 Q%R " Y BROAXE; Yy =—====- "

230 INPUT Y

240 GOTO 410

250 LET X=-B

260 PRINT A3 "> "™3E3 " " E=A3 " "3 =A3 "5 mmmmn "

270 INPUT Y

280 GOTO 410

290 GOTO G OF 300s 400s 380

300 LET X=A%5

310 FPRINT A3 "> "3 2%A3 " V5 3%A3 "> " 4%kA5 " —==== "

a0 INPUT Y

330 GOTO 410

340 LET X=16%A

350 PRINT A3 's "32%A3 " "5 4%kA3 " Y 8%A3 "y =m=== .

360 INPUT Y

370 GOTO 410

380 LET X=A15

390 PRINT A3 "> "3 0%A3 "> "3 AT 35" " A1 43"y ===wa®

400 INPUT Y

410 IF X=Y THEN 450

420 PRINT "NO3- THE COMPUTFR'S SEQUENCE HAS™3X;™.®
430 LFT W=li+1

440 GOTO 470

450 PRINT "THAT'S RIGHT!"

460 LET R=k+l1

470 PRINT

480 NEXT I

290 PRINT

500 PRINT "SCORE: ";R;" RIGHT» '5W:" WRONG"
510 END

RUN

THIS IS AN ‘IGQ'-TYPE QUIZ.

THIS PROGRAM WILL PRINT VARIOUS SEQUENCES OF NUMEERS
EACH ENDING WITH A BLANK (~==--= de WHEN YOU SEE A '7°'»
TYPE IN THE NUMBER THAT YOU THINK THE COMPUTER MICHT
HAVE PRINTEL IN PLACE OF THE PLANK.

PROBLEM 1

Bs 165 245 385 —===-
240
THAT®S RICGHT!

\NANSAANNNANAANANAANNAN S SAAANAN SAANANANANAAANNANN
NANAANNANNAAAMAAANANNANMNAANNANNAN AN

FROBLEM S
T2 85 56s 4HUBsy =-===
725088

THAT'S RIGHT!

SCOKRE: 4 RIGHT» 1 WVRONG

153

Index

ABS, 114
Absolute value, 114
Acoustic coupler, 7
Argument
See Functions
Arithmetic operators, 21
order of, 23
Array, 85
two-dimensional, 93

Balance, unpaid, 143
Batch-mode computing, 148
Body of loop

See FOR-NEXT
BREAK key, 47
Business applications, 141147

Comma, use of, 24
review, 28
Commands, function of, 19
Compiler, 10
Conditional statements
See IF-THEN
Constants, 32-33
CTRL key; 9, 47

DATA statements

See READ-DATA
Data analysis, 127-132
Decisions

See IF ... THEN
Deleting lines, 14
Destructive read-in, 31
DIM, 87

double-subscript, 96
Double-subscript variables

See Variables

END, 19-28
review, 28
Erasing characters
on line, 13
on tape, 81
Erasing lines, 14
See also SCRatch
Errors, correcting, 13, 16
ESCape key, 13
Execution of program
See RUN
Exponentiation, 21-22
scientific notation, 43

Fibonacci numbers, 90
Flow charting, 47-48
FOR-NEXT, 63-77
body of loop, 66
nested loops, 72
review, 77
STEP, 68
variables in, 71

154 ;

Functions, 109-119
ABS, 114
argument, 109
INT, 112
RND, 114
SQR, 109
value, 109

Games and simulations, 136-140
GOSUB-RETURN, 123-125
GOTO, 46-52

review, 52
GOTO...OF ..., 120-123

or ON ... GOTO..., 121

IF ... THEN, 52-62
compared to FOR-NEXT, 63
for looping, 59
review, 62

Increment, 60, 64

Infinite loop, 46

INPUT, 37-45
multivariable, 42
review, 45

INT, 112

Integer part of, 112

Interest rate, 141

Keyboard, diagram, 8
Keywords, 18, 126

LET, 29-37
review, 37
Library functions
See Functions
Line feed, 27
Line numbers,.20
LIST, 13
review, 28
Logging in
minicomputer, 6
time sharing, 7-8
Logging out, 12

Memory locations, 29, 86, 94
Minicomputer, 3

logging in, 6
Multiplexor, 4

Nested FOR loops
See FOR-NEXT
Nonnumeric applications, 132-135

Off-line, 2
ON...GOTO...

See GOTO ... OF ...
On-line, 1-2
Operators, arithmetic

See Arithmetic operators
Order of operations, 23
Output, 19

Paper tape, 78-82
feeding programs on-line, 80
paper tape punch, 78
paper tape reader, 78
preparing programs off-line, 80
saving programs on-line, 79

Parentheses, use of, 22-23

Percent, 32

PRINT, 19-28
comma with, 24
quotation marks in, 20
review, 28
semicolon with, 25
zones, 24

PRINT TAB
See TAB

Programs
/[ACCIDENT/, 96
[ADD-ON/, 142
/AIR RESERV/, 130
/AIRLINEL1/, 91
/AIRLINE2/, 91
[ARITH/, 26
/ARITH?2/, 27
/IBLOCKS/, 74
//IBRAKE//, 100
/BURIED TREASURE/, 138
/COIN/, 117
/DICE/, 119
/ELEVATOR/, 114
/[FACT QUI1Z/, 125
/IGRADE//, 75
/IGUESS//, 119
/HOTEL RESERV/, 128
//INVERSE P1ZZA//, 112
IMATHQUIZ/, 58
/IMELODY/, 122
/MENUY/, 133
/MONEY/, 42
/IMULTABLE//, 27
/[PAYROLL/, 144
[PI1ZZAJ, 111
[IQUIZ//, 61
/IRANDY/, 118
IRAT1/, 35
/IRAT2/, 39
/IRAT3/, 49
[IRATSTUDY//, 36
IRETIRE/, 41
[SEQ/, 60
/SLEEP/, 41
/[SLOT MACHINE/, 136
/SOAP/, 132
[ISONG//, 123
[[SORT//, 92
//ISPEED CAR///, 76
[STARS/, 74
/SUMPROD/, 42
/[SUPER QU1Z//, 125
[ISUPER-SLEEP//, 45
/[ISURVEY///, 107

ITRACK1/, 90

/TREE/, 99
/TRIANGLE/, 74
/UNPAID-BAL INT/, 143
IIWAU//, 50
/WEATHER1/, 106
/WEATHER?2/, 106

Quotation marks in PRINT state-
ments, 20

Random numbers, 114
RANDOMIZE, 116
READ-DATA, 100-108
summary, 104
READY, 19
REMark, 89
RESTORE, 104
RETURN Kkey, 8
RETURN statement
See GOSUB-RETURN

Rounding, 113
RND, 114
RUBOUT key, 80-81
RUN, 14

review, 28

Saving programs
See Paper tape
Scientific notation, 43
review, 45
SCRatch, 26
review, 28
Semicolon, use of, 25
review, 28
Simulation, by hand, 22
of coin tossing, 117
of games, 136-140
SQR, 109
Square root, 109
STEP, 68

STOP, 56

Subroutine, 123

Subscripted variables
See Variables

TAB, 97-100
Tape, paper

See Paper tape
Terminal, 3

See also Keyboard
Time sharing, 4

logging in, 7-8
Truncation, 113
Two-dimensional arrays, 93

Value
See Functions
Variables, 30-34, 37
double-subscript, 94-96
single-subscript, 85-92

155

Name and page

Summary of BASIC

STATEMENTS (require line numbers)

Purpose

Example

PRINT(page 19)

LET(page 29)
INPUT(page 37)

GOTO(page 46)
IF ... THEN(page 52)

FOR (STEP)(pages 63, 68)

NEXT(page 63)

DIM(pages 87, 96)
REM(page 89)
TAB(page 97)

READ(page 100)

DATA(page 100)
RESTORE (page 104)

GOTO . .. OF(page 120)
(ON ... GOTO,page 121)
GOSUB(page 123)

RETURN(page 123)

RANDOMIZE (page 116)
STOP (page 56)

END(page 19)

LIST (page 13)
RUN (page 14)
SCR(page 26)

Variables: X,Y3,C(Y),N(X,Y),F(B(X),J)

(pages 30, 34, 85, 94)

Functions: SQR, INT, ABS, RND (pages 109-119)

156

Types out messages
or values of numerical expressions ————>
or both

Calculates an expression and assigns the value to

a given location.

Requests data for certain variables from the ter-

minal (during a RUN).

Sends the program execution to another line. —

Sends the program execution to the given line if

the condition is true.

Sets up and runs the body of a loop a stated num-

ber of times.

Closes the loop.

Declares maximum sizes of arrays, ———
Permits comments.
Permits computed placement of output. ———-

Assigns values from DATA statements to given
variables.
Holds the data (values) for READ statements. —>
Allows data to be used again.

Sends the program execution to one of several
lines depending on the value of the variable.
Sends the program execution to a subroutine. —

Sends the program execution back to the line after
GOSUB.

“Randomizes’’ the random number generator (only
on some computers).
Halts RUN of program (may be anywhere within the
program).
Last line of program.

170 PRINT “HELLO THERE”

200 PRINT X, 3*X+5, 416

220 PRINT "“ANSWERS="; X+9; 416; Y
50 LET Y=7

60 LET X=2+#B+X

380 INPUT AB
60 GOTO 205

90 IF W8<=4 THEN 260

40 FOR |I=1 TO 9 STEP 2
Body of the loop

80 NEXT |

150 DIM M(20),N(15,20)
105 REM CALCULATES AREA
160 PRINT TAB(X); "

150 READ A(J),B().C
200 DATA 2,36
238 RESTORE

310 GOTO Y OF 35,90,125
(310 ON Y GOTO 35,90,125)
40 GOSUB 300

320 RETURN

5 RANDOMIZE

65 STOP
999 END

COMMANDS (need no line numbers)

Prints out the current program.
Begins execution of the program.
Erases the current program.

MISCELLANEOUS

Operators: +,—,*,/, 1 (page 21)

Other commands vary from computer to
computer. Check your reference manual.

Relations: <,<=,=,>,>=,<> (pages 54, 56)

[Also available: SIN, COS, TAN, ATN, LOG, EXP, SGN]

RADIO SHACK gﬁ\ DIVISION OF TANDY CORPOCRATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U K

260-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBEURY
RYDALMERE N SW 2116 5140 NANINNE WEST MIDLANDS WSi0 7N

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf

