Radlﬂ maek Catalog No. 62-2074

TRS-80 MODEL /111

BUSINESS

Programming Applications

William
A TR it S S e TN Barden

F ;I 1 3
W F . e - o R LB R R — e — i mn p——— A b S — e - vy | W

-— o e, —(— ——— - Hﬂ'—lmh-—.._*m- + ERE I'Ili'1'l-'w-_'_l__"-' o o — L -

N frm— L e —— e, i o T B s e N B — o — s ———————— ——— s ¢ i P’ g vy W

B i e ——— L N B —— i e | R T WS WECET G ¥ i

=

- —— o a—— - T - - ‘F..— ¥ — -

- g e e e T A S E— o S e— — 0 ———— e R . i — _——.'_—-fF'F e —E
-'—_ T —— S SIE— ——— A= -—' B — [| x o
.—"“‘Mﬁ-_'-ll —E T e e e e s i S 5 ' L R O — ——
¢ . R e - T T ———— | ——— o B TR RNk s W R
— e e B G B T L AT B e s e e | e it . k - 1 —— s W EeaEed @ e
!---ur..—-_q.-ni-'-,-- Y e S Wy WRr o R iy ——

—-n--_‘_- _.'h.'“.-‘l'|l m._.

[— .-—h*-_— -L e e e e ——

F ey s i, mamm temmmer e me—
Fand F - T — . = e R o —
] P — e T 6 0 — _“'
] H“hh#- T R T | S
g i

L T T. L L] _‘-'-"-._—_' . R g T R el

i

- o e e ——— T — .
S FoTE | R om—— -

g —— '-'1"—-lllll|'-' il a el

o e m @ ——
L ey G S e (e i — W —
—._-_ - —— Tl o ———

- .l

- -

o il

oy .. -

g —
R R B o —————————
O 4 T e

bl R R RN R e]

ST
AE R

L5
e

A

i
'-'_..l"

e,

U.S.A. $4.95

© 1982 by Radio Shack, a division of Tandy
Corporation, Fort Worth, Texas 76102

FIRST EDITION
FIRST PRINTING

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photo-
copying, recording or otherwise, without the prior written
permission of the publisher. No patent liability is assumed
with respect to the use of the information contained herein.
While every precaution has been taken in the preparation
of this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information con-
tained herein.

International Standard Book Number:

Library of Congress Catalog Card Number:

Printed in the United States of America

Preface

“Is there a step-by-step procedure for writing business applications programs in
BASIC on the Model I, I, or III?”

Radio Shack asked me this question some time ago in regard to a potential book
idea.

“Sure,” I answered, flippantly. ”It would be about 4000 pages long with very fine
print.” However, I began pondering the question.

Now let’s be honest . . . There’s some learning involved in just finding out how to
load programs into a microcomputer. There’s a great deal more work in learning
the BASIC language to write programs, and there’s even more work in learning
the programming craft — how to use the BASIC language to construct useful
programs.

I knew I couldn’t write a single book that would make it possible for every
TRS-80 user to write large business applications programs after he had read it.
Nobody could. But perhaps I could guide the user’s efforts in the approach to
learning how to write business applications programs. Maybe I could even give
him some tools to use.

The result of this effort is Business Applications Programming Guide. 1t doesn’t
claim to be a step-by-step guide, but it does claim to provide you with a plan. It
also gives you some powerful tools that you can use during the period when you
don’t know enough to easily write your own business programs. These tools are
what I call the General Purpose Modules.

The General Purpose Modules are a collection of a dozen and a half BASIC
programs that perform “difficult” functions for the first-time user — things such
as loading and saving files on disk, sorting data, displaying forms on the screen,
reading in keyboard data, and the like. They are grouped together in a core set of
programs that you can use with additional BASIC programs to create business
applications programs.’

To show you how these modules work, I've included complete descriptions of the
BASIC “code,” implemented a complete Mail List program, and described an
Information Retrieval Program and an Inventory System built around the
modules.

By some study of the modules in this book, you will be able to do one of two
things — you will probably be able to use all or some of the modules in
constructing your own business applications and you may even be able to discard
the modules and write your own programs from scratch. Either way, I will be
delighted.

In addition to the General Purpose Modules — the “tools” — P've provided you
with a general “blueprint” on how to proceed in business programming,
Although I have strong opinions about some elements of programming, such as

good documentation, I've tried hard to make the plan a reasonable one. It is
being used by the business programmers today that create good software and has
been time-proven. The plan is nothing magical — it involves such things as
flowcharting and design specifications — but you may never have actually seen
the steps of the plan in print before!

I won’t bore you with how wonderful microcomputers are for business applica-
tions and tell you that the TRS-80s are the best for your filling station or retail
store. It is true, however, that we finally have reached a point where a small
business user can spend a reasonable amount of money on a microcomputer
system and use it to great advantage in virtually any business. This book attempts
to show you how in a practical way.

There are four sections in the book.

Section I answers some basic questions about business applications and then
outlines the steps of “the plan.”

Section II provides an overall and then a detailed description of the General
Purpose Modules. Each module is described almost down to a line by line basis.
More importantly, general concepts for each module are discussed — file struc-
tures, sorting, and so forth.

Section ITI describes a typical business application that uses the General Purpose
Modules, a MAILLIST program that will work on the TRS-80 Model I, II, or
II1. The complete program is contained in this book. The additional BASIC
programs that use the General Purpose Modules are described in detail, along
with the way the two sets of programs connect or “interface.”

Section IV describes two other business applications in terms of use with the
General Purpose Modules, an Information Retrieval program called KEY-
WORD, and an Inventory System called INVENT. Flowcharts and descriptive
text are provided for both applications.

Two Appendices provide a shortened or “compressed” form of the General
Purpose Modules, and a compressed form of the MAILLIST program.

I hope that you will use this book and the programs in it to advantage in your own
business programs. The opportunities for “computerizing” a small business are
there now — use them!

Business Applications Programming Guide
Table of Contents

Section I
Introduction to Business Applications Programming
Chapter One. BUT I'VE HAD NO FORMAL TRAINING3
Chapter Two. STEPS IN DEVELOPING AN
APPLICATIONS PROGRAMooviiiiiinnnnnnn.., 11

The Basic Plan — Budgeting Time For Program Development — Using the
General Purpose Modules in This Book

Section II
General Purpose Modules

Chapter Three. OVERALL DESCRIPTION OF THE
GENERAL PURPOSE MODULESooovuevevnrnennnnnn. 29

What the General Purpose Modules Are — How the Modules Are Arranged in

a Program — What Variables Are Used — What the Modules Do — Unused
Module Area — Detailed Description of Modules

Chapter Four. DISPLAY OPERATIONS USING THE GPM 53

Video Display Characteristics — BASIC Methods of Displaying Characters
— GPM Design Philosophy for Display Operations — MENU Module Opera-
tion — FORMS Module Operation — FORMO Module Operation —
PROMPT Module Operation

Chapter Five. CHARACTER INPUT USING THE GPM 69

Keyboard Input Operations — GPM Design Philosophy for Input Operations
— INPUT Module Operation — FORMI Module Operation — PROMPT
Module Operation

Chapter Six. DATA STORAGE USING THE GPM 83

The Problems of Data Storage — Data Storage in the GPM — Sorting and
Searching — Ordering in the GPM — AINIT Module Operation — ASRCH
Module Operation — AADD Module Operation — ADEL Module Operation

Chapter Seven. SECONDARY SORTS AND
STRING MODULES ..ottt inieenenennannnns 103

Primary and Secondary Sorts — SECSRT Module Operation — SSRCH,
SUNPK, and SPACK Modules

Chapter Eight. LINE PRINTER, CASSETTE, AND
DISK OPERATIONSioiiiiiiiiiiiiiiiiininennnnnnnn, 115

Line Printer Operations — Cassette Operations — Disk Operations — Error
Operations

Section III
An Application Example

Chapter Nine. MAILLIST — DESIGN SPECIFICATION 141
Using the Basic Plan — MAILLIST Design Specification
Chapter Ten. MAILLIST — MAIN DRIVERc.cc0ovennnns 163

Step 5: General Program Design — Step 6: Flowcharting MAILLIST — Step 7:
Coding MAILLIST — The MAIN Driver

Chapter Eleven. MAILLIST — ADDING, DELETING, AND
MODIFYING ENTRIESc000eenn Ceeenaseneaseneeans 169

Add Entry Processing MFADD — Delete Entry Processing MFDEL — Mod-
ify Entry Processing MFMOD

Chapter Twelve. MAILLIST — DISPLAYING AND
PRINTING ENTRIEScvvviieocrcrrronnuasonossasanccnns 185

Defining the Range — Defining the Print Format — Displaying and Printing
the Range of Items

Chapter Thirteen. MAILLIST — CASSETTE/DISK AND
AUXILIARY FUNCTIONS . .iiiiiieiinaenecnnooacnsaonnns 199

Save File Processing — Load File Processing — Secondary Sort Processing
—Search Processing

Section IV
Other Business Applications

Chapter Fourteen. INFORMATION RETRIEVAL OVER
MULTIPLE DISK FILES ¢ .. civviiainiiiiieicnacnonannoaass 215

Problem Number 1: An Information Retrieval System — Using the GPM With
Additional Disk Files — KEYWORD Design Spec — General KEYWORD
Design — KEYWORD Flowchart

Chapter Fifteen. A SIMPLE INVENTORY SYSTEM 235

Problem Number 2: An Inventory System — INVENT Design Spec — General
INVENT Design — Special Problems in INVENT — Using the GPM In Your
Own Applications

Appendices
Appendix I. GENERAL PURPOSE MODULES 265
Appendix II. MAILLIST PROGRAMcoovviunuieeiinnenn. 273

vi

MAILLIST-Cassette/ Disk and Auxiliary Functions

Section I
Introduction to Business
Applications Programming

Chapter One
“But I've Had No Formal Training . . .”

Why is it so difficult to put together a business or other applications program?

How long will it take? CanI do it even though I've had no formal training in
computer programming? Will microcomputers really replace your tax man?

We'lltry to answer a lot of these questions in this chapter. We'll try to be brutally
honest in our answers too. Microcomputers are a new technology and there’s a
“mystique” about them. It’s sometimes difficult to cut through this mystique to
obtain the solid answers that are required to make intelligent decisions in using
microcomputer systems as effective business tools.

“All right, since you brought it up — can TRS-80s be used in business
applications?”

As recently as 1977, some professional computer magazines declared that no
microcomputers were being used in significant business applications. You’ll still
hear that refrain from larger computer manufacturers today, but the simple facts
are that microcomputers such as the TRS-80 Models I, II, and I1I not only can do
almost every job that larger computer systems can do, but can do them at a
fraction of the cost.

“You hedged there — almost every job . . .”

There’s no question that a very large system offers advantages over a microcom-
puter system —— otherwise they could not compete. The advantages are greater
storage capacity, ability to run many programs simultaneously, and higher speed.
These features, however, are necessary only when the systems are being used by
very large companies that maintain large programming staffs to write and
maintain such programs as payroll for thousands of employees, “point-of-sale”
terminals, or other large-scale operations.

“What kinds of applications can the TRS-80s handle?”

Payroll, accounts receivable, billing, accounts payable, job estimating, informa-
tion retrieval, management reports, projections — virtually any business applica-
tion that is now being done by manual methods can be implemented on a
microcomputer.

“Can I find a program to perform my specific business application?”

One of the weak points in all microcomputer systems has been and continues to
be, applications software. The reason is that good software takes a great deal of
time to write. Because of the number of TRS-80 systems sold, there is more
software available for them than any other computer, not just any other micro-
computer. You'll find many common business applications from Radio Shack
and other vendors. The more specific your requuirements, however, the more
difficult it will be to find a program to do the job.

MAILLIST-Cassette/ Disk and Auxiliary Functions

“What about buying programs from small vendors?”

Caveat emptor. There is a great deal of garbage being offered from many
companies. Some of the programs simply don’t work. Many of them don’t work
well. This is not to say that a small supplier won’t have an excellent program for
your application, or that a large supplier won’t have garbage. Be very wary when
purchasing any program. Try to find out specifically what it does, how fast it does
it, and, probably the most important item, whether there is adequate documenta-
tion available.

“Ok then, how about writing my own business applications programs?”

Presumably that’s why you’ve bought this book. It’s certainly possible, even
feasible. But there are some problems.

“What kind of problems?”

The problems generally fall into four areas — learning the system, learning
BASIC, learning how to design and structure the program, and writing the
program.

“Seems to be a lot of learning involved . . .”

Right. To say there isn’t some hard work in learning computer basics, BASIC
language, and programming techniques would be lying.

“How much work?”

Well, that depends on your aptitude towards computer systems. Some people
soak the new technology up. Others never understand it. I remember that I was
very reluctant to get involved with digital computers in the early sixties. They
seemed very mysterious.

If you’ve got a reasonable head on your shoulders, there’s absolutely no reason
you shouldn’t be able to learn all facets of computer systems in general and
TRS-80s in particular. Hundreds of thousands of people have. And I mean
people from every walk of life, not just those trained in mathematics, computer
science, or engineering.

To get back to the amount of work . . . You must learn BASIC programming.

BASIC is the simplest (but very powerful) high-level language usually used with
the TRS-80s. You can get a good working knowledge of BASIC in as little as 20
hours. Typically, though, it'll probably take several months of part time study
before you feel comfortable in BASIC.

Another area is learning about computer systems in general. You'll get some of
this in the process of learning about BASIC. This will be an ongoing process,
however, as the technology changes, so it’s hard to put a time value on it.

The last area of learning involves learning about the design and structure of
BASIC programs. That's what this book is all about. If you have some

MAILLIST-Cassette/ Disk and Auxiliary Functions

knowledge of BASIC, then we'll try to sharpen that knowledge up with this book
and show you how to use your BASIC expertise in constructing useful business
applications programs.

“Will this book teach me BASIC?”

No, sorry. As I say, it will “sharpen up” your BASIC. We'll be explaining
“tricky” and some not so tricky BASIC statements. Before you can use this book,
however, you must have some experience in using either TRS-80 Model I Level I1
BASIC, TRS-80 Model ITI Level III BASIC, or TRS-80 Model II BASIC. You
don’t have to be an expert BASIC programmer before reading this book; you
should be familiar enough with the language to recognize most of the commands
and to have used many of them in short practice code of your own. Use your
particular BASIC Reference manual as that — a reference manual — if you
encounter difficult commands in the BASIC code in this text.

“What about Level I BASIC — can I use that for programs?”’

Level I on the Model I or III is great for learning BASIC and for simple games
and applications programs. It is not an option for business programs, however.
The Level IT or I1I upgrade is an absolute requirement for business applications,
and we won’t be considering Level I BASIC in this book.

“What about the fourth problem you mentioned earlier, writing the programs?”

This book should certainly help in writing your own BASIC application pro-
grams. Much of the hard work is in structuring the program — dividing it into
convenient segments of BASIC code that perform specific functions. We've
provided some “standard” short programs that you can use as building blocks in
constructing your own applications.

“What about other languages such as FORTRAN or COBOL?”

FORTRAN (FORmula TRANGslator) is primarily a scientific language useful for
programming mathematical and engineering computations. COBOL (Common
Business Oriented Language) is indeed a business language but is perhaps best
suited for large-scale systems or for companies that can utilize a staff of existing
COBOL programmers. BASIC remains one of the easiest languages to learn and
is probably best for highly “interactive” systems such as the TRS-80 Models L, I1,
or IIL

“How long does it take 10 write a BASIC program?”

Take a look at some typical “code” from a BASIC program listing in Figure 1-1.
This is code of average complexity. Each line generally has one BASIC com-
mand or function on it. Typical time spent to code this program was about 60
lines per day. And don’t forget, we're talking about a trained computer profes-
sional under the best circumstances and moderately hard “code.”

MAILLIST-Cassette/ Disk and Auxiliary Functions

11110 XX=0

11120 PRINT @ YE:XB$+" "
11130 IF XB=3 GOTO 11280

11140 XCs=""

11150 XI$=INKEY$:IF XI$="" GOTO 11158
11160 IF XI$>CHR$(YK) GOTO 11:00@
11170 IF XI$<»CHR$(YKR) GOTO 11190
11180 XX=1: GOTO 11290

11190 IF XI$=CHR$(13) GOTO 11:30

11200 XCH=XCE+X1%

11z1@ PRINT & YE+LEN(XB$)+1:XC%s

11226 GOTO 11150

11230 IF XB=0 THEN XC=VAL (XC$)

11240 IF XB<>Z GOTO 11290

11250 IF XC$<:>"YES" AND XC$<>"Y" AND XC$<>"NO" AND XCé<:"N" GOTO 11120
11260 XC#=LEFT$(XC$%s1)

11270 GOTO 11290

11280 FOR XI=1 TO 9@0@:NEXT XI

11290 RETURN

Figure 1-1. Typical BASIC Applications Code

“That’s not very fast. I spoke with one programmer who said he could code my
billing system in a week . . .”

Beware of such estimates from people whose business cards read “John Smith,
Computer Programer (sic).” He either wants your business very badly, doesn’t
have much experience, or is going to provide a totally inadequate package that
will have to be constantly changed and updated and will have no instructions on
use. Common sense tells us that just preparing instructions on how to usesucha
system will take three or four days.

By the way, when I said 60 lines per day, I meant 60 lines per day on the average.
During the design phase of a program, you'll be doing a lot of head scratching
with no coding. During the coding phase you’ll probably be “laying down” code
at a faster rate. The 60 lines per day is just a nominal figure useful in estimating
times to code a specific job; typically computer software companies would use
such standards in determining schedules for software.

“How big is a typical program?”

Most BASIC programs are “compressed” so that they make better use of
memory, as shown in Figure 1-2. When this is done, the typical size ranges from
200 lines up to 1000 or more. In this case, figure two “normal” commands per
line, 30 lines per day, or 10 to 50 days or more to implement the program.

MAILLIST-Cassette/ Disk and Auxiliary Functions

11110
11120
11140
11150
11160
11170
11180
11190
11200
11230
11240
11250
11260
11280
11290

XX=0
PRINTAYE s XBg+" "5 IFXR=3G0TO11280
X(:$= "
XI$=INKEY$:IFXI$=""GOTO 11150
IFXI4:>CHR$(YR)GOTO11:200
IFXI$<>CHR$ (YK)GOT011190
XX=1:GOTO11290
IFX1$=CHR$(13)G0TO11230
XCE=XCE+XIEPRINTAYE+HLEN(XPS) +15 XCH3 :GOTO11150
IFXB=0THENXC=VAL (XC$)
TrEGOTO11290
CETYEST"ANDXCE Y ANDX CH = "NO" ANDXC$ <> "N"GOTO11 120
XCe=LEFT$(XC$s1) :GOTOL11290
FORXI=1TO9@@:NEXTXI
RETURN

Figure 1-2. “Compressed” BASIC Program

But 30 into 200 is 6 days and 30 into 1000 is 33 days . . .

The increased time of the smaller program represents the larger proportion of
“paperwork”; the increased time of the larger program represents the larger
proportion of design and debugging time for a large program. Figure 1-3showsa
rough graph of times to program an application. Times tend to flatten out on the

smaller program end and increase on the larger program end.

TIME
(DAYS)

50 -~
45 —f=

35
30 4
25 4
20
15 4
10 1

1 : : L])] 1

6 7 8 9 10 11 12

SIZE OF PROGRAM —
(IN 100s OF LINES)

—
-
(X3 .
&

w0

Figure 1-3. Programming Time Estimates

“Can I hold you to these standards?”

Absolutely not. There are too many variables — whether you have a cassette or

1 &2

MAILLIST-Cassette/Disk and Auxiliary Functions

disk system, how experienced you are, whether you have system problems, how
often you make backups, and so forth. These are guidelines only and represent
the best case. A good rule of thumb to follow is that programs always take longer
than expected!

“Gulp. Thirty days is a lot of time to write a program . . .”

Yes, but it’s realistic. Most people don’t realize the amount of work involved in
writing software. That’s why custom-tailored programs are expensive.

“Isn’t there an easier way 1o get a custom-tailored program for my application?”

It might be possible to take an existing package and modify it for your needs.
However, in a lot of cases this means learning how the entire program works, and
there’s that investment in time again. This is hard especially when the commands
are compressed together in one line, blanks are deleted, and there aren’t any
explanatory REMarks. In some cases it may be almost impossible.

Another way to cut down the time for designing and programming is to use a base
of “standard” code for specific functions that come up in every program —
inputting text data, displaying “forms,” and so forth. We've got about a dozen
and a half modules — the General Purpose Modules — that are guaranteed to
work in the book. You can use these, or build up a “library” of your own.

As you might guess, it gets easier and easier to design and code the more that you
do. Youdo have the advantage of being in complete control of the software, also.

“How does a BASIC business program differ from other BASIC programs?”

We've used the term “business applications” rather loosely here. What we really
mean is any applications program that is dedicated to implementing typical
business functions such as inventory, accounting, record keeping, filing of data,
and so forth. These functions have some things in common. One of the things
they have in common is that they are all oriented towards handling collections of
data - records of transactions. Another characteristic they share is that they are
not concerned with a great deal of “number crunching.” Stock market simula-
tions and economy models notwithstanding, most business programs do simple
arithmetic computations. A third characteristicis that they are “report-oriented”;
the final result is a report on a display or line printer of an updated inventory file
or mail list or other easily interpreted collection of data. The same thing holds
true for input; input is usually textual data that is in conveniently interpreted
form.

MAILLIST-Cassette/ Disk and Auxiliary Functions

Some of the things we won’t be talking about in this book are games, high-speed
graphics, assembly-language, or other esoteric topics.

“Is there a step-by-step procedure to follow to write a BASIC applications
program?”’

Ifthere is, please call me collect. Butseriously ... What we’ll do here is to explain
what we feel is a step-by-step procedure to follow. The process we’ll describe here
will be one that professional business programmers follow, suitably modified for
the TRS-80 systems. It will be oriented to keep a beginning programmer out of
trouble. Various BASIC programmers may scoff at some of the time-consuming
aspects of this procedure, but it is our sincere belief that the programs written by
such a procedure will be less prone to failure, faster in execution, and ultimately
take less time to develop and maintain than the ones generated by sitting down at
the console without any planning. We'll give you the steps in the next chapter.

Chapter Two
Steps in Developing an
Applications Program

We’re going to outline a step-by-step procedure for developing business-oriented
applications programs in this chapter. The procedure we’re presenting is not one
that we just created for this book. The basic elements of the procedure have been
used by good programmers for years in writing applications programs. Because
there are some differences in the operation of the large computer systems on
which the procedure is based, we’ve modified the steps to work well with
microcomputers such as the TRS-80 Models I, 1L, and III.

Some of the steps will tend to be somewhat subjective — programmers may differ
in their opinions about certain aspects of the procedure. When this is the case,
we'll let you know the options and recommend a course of action. Later, after
you’ve developed a number of applications programs, you’ll form your own ideas
about the most effective way to produce programs.

The Basic Plan

The basic steps in developing applications programs are shown in Figure 2-1 in
“flow chart” form. As you know from reading other TRS-80 manuals and
computer books and magazines, flow charts are used to show the flow of a
procedure. We'll be using a few very simple flow chart symbols throughout the
book; they are shown in the figure. We'll talk more about the use of flow chart
symbols later in this chapter.

The steps from the figure are these:

Learn the characteristics of the system
Learn the BASIC you’ll be using
Research the applications problem
Write a design specification

General program design

Flowchart the program

Code the program

Enter the program

Debug the program

10. Create the final version of the program
11. Write an operational manual for the program

XN bh W~

Note that some of the “flow” in this procedure is repetitive, or what computer
people call “iterative.” There may be one or more iterations or repeats of certain
sections of the procedure. We'll talk about that in a while.

11

Steps in Developing an Application Program

x = STEP #

(smr) @
. 3 GENRAL

CODE THE
PROGRAM
LEARN THE DESIGN PROGRAM
SYSTEM @
CHARACTERISTICS
®
n Y
LEARN THE WITH DESIGN
BASIC
YOU'LL USE
@
\ ENTER THE
PROGRAM
RESEARCH THE
APPLICATIONS
PROBLEM
- ¥
v FLOWCHART DEBUG THE
THE PROGRAM PROGRAM
WRITE A ® ®
DESIGN
SPECIFICATION
®
QUESTION
ABOUT
QuesTions
ABOUT “E‘”‘?'G”
PPLICATION }
4 ? HO—FINAL
| VERSION HERE
WRITE AN
OPERATIONAL
MANUAL
(@)

Figure 2-1. Steps in Program Development

Step Number One: Learn the Characteristics of the System

The first step in the procedure is to learn everything possible about the system
youw’ll be using. The reasons for this are obvious. You may have created an
excellent BASIC program to provide automatic billing. The program may be
error free. When it comes time to run the program, however, you may find that
you simply don’t have enough memory to hold the program and the data files you
will be working with. Or the line printer may not be able to print your billing
information on the forms you require. Or the clerk that inputs the billing

12

Steps in Developing an Application Program

information may not know what to do when a disk error occurs and runs off with
the office leasing agent . . .

Of course it’s not necessary to delve into the schematic diagrams of the system to
find out how the TRS-80 operates electrically. But it’s good to get an idea of the
general operation of the system in terms of the memory layout of RAM, ROM
and video; to find out the general layout of disk files, and to find out specifics on
1/O devices such as line printers.

You've already learned a significant amount about computers to reach this point,
but don’t stop here. Continue to learn about microcomputers in general and your
TRS-80 system in particular. That’s why we’ve shown the path back to this step in
Figure 2-1. A gross misunderstanding about disk or memory capacity or printer
speed may require some additional research into the system!

Stép Number Two: Learn the BASIC You'll be Using

We mentioned in Chapter One that you should have some knowledge of Level I,
Level I11, or Model Il BASIC at this point. The BASIC code in this book can be
used to clarify certain points about the use of BASIC commands. You should
become very familiar with most basic commands and functions, however. Not
knowing that you can easily convert from the string “123.56” to a value of
“123.56” might result in a lot of laborious coding where a single function would
suffice!

This is one of the major obstacles that all programmers, professional or
part time, face — becoming familiar enough with the language so that the com-
mands come instantly to mind. To a certain extent, the language determines the
structure of the program, so it’s very important to think in terms of BASIC when
designing a large program.

Table 2-1 shows a recommended “priority” of study for BASIC commands and
functions in business applications programs which might be a help in determining
where to expend the most effort.

Here again as shown in Figure 2-1, learning BASIC will be an iterative process, at
least until you’ve written enough code so that you hardly ever have to refer back
to the BASIC manual.

13

Steps in Developing an Application Program

High Priority:

CLEAR. CLOAD, CLOSE, CLS, CMD®*T**, COMT, CSAVE, DATA, DEFINT, DEFSNG,
DELETE, DIM, EDIT, END. FOR..TO. .STEP/NEXT, GOSUB, BOTO, IF .. THEM. .ELSE,
IMPUT. IMPUTHR. KILL, LIST, LLIST, LDAD, LPRINT, LPRINT TAB, LPRINT
USING, MERGE, MID$. NAME, MEW, OPEW, PRINT, PRINT @, PRINT TRE, PRINT
USING. READ, REM, RESTOR, RETURM, RUN, SAVE, STOP

INSTR, LEFTS, LEN, MEM, MID$, RIGHTS, STRE, STRINGS, VAL
Next Priority:

CLOAD?. CMD*¢R*7, CHMD®*S°° . DEFDEL, DEFFM, DEFUSR, ERROR, FIELD, BET,
INFUTH-b, LINE INPUT, LINE INPUTHb, LSET, OM ERROR BOTO, OM..GDSUE,
OM, ,GOTO, POKE. PRINT #-b, PRIMT Hb, PUT, RESET, RESUME, RSET, 3ET,
SYSTEM, TRON, TROFF

RES, ASC. EOF, ERL, ERR, FRE, IMKEYE, IMT. LOF, MKD®. MKI$, MKS$, PEEK
Some Never Used, Some Sophisticated:

CMD®<I*?, COBL. CHR$. CINMT, CSNS, CVD, CVI, CVS. FIX, POS. RND, SOR,
TIME$. USR, USRr. VARPTR

Seldom Used:

ATN, CMO* <D, COS, LET, OUT, EXP, INP. LOB, POINT, RANDOM, SBN, SIN, TAN

Table 2-1. Study Priority of BASIC Commands
Step Three: Research the Applications Problem

This is the step in the procedure that you are probably most familiar with. In
many cases you are an expert in the application itself. You know how many
accounts you have for billing, what types of personnel records you are keeping, or
the steps in estimating costs for an air-conditioning installation.

This step is probably the single most important step of the whole process. In it you
will have to convert the manual methods that you are using into computer system
equivalents. To do that you will have to define the “dimensions” or “parameters”
of the problem. How many accounts will the program have to handle? What type
of information is held in each account? How many characters will have to be held
in each field of information? What special codes are used to represent different
billing information? What provisions should be made for future expansion? How
often should the “file” be updated?

Although the manual methods seem obvious to you and the people that work on
the application, are they? The computer has no “common sense.” It must follow a
specific sequence of operations. At this point an attempt should be made to define
the manual operations by writing down the “flow” with contingencies for every
condition. This will help define the “common sense” approach that you may now
be following in your application. In fact, this writing process is absolutely
necessary in converting to a computerized process.

A sample analysis of a portion of an order entry application is shown in Figure
2-2. Note that the analysis doesn’t have to be a flowchart (it could very well be),
but can be a simple handwritten account of the manual process. Here again this
may require one or more “iterations” to clarify what really goes on in the manual
process. You may even find that nobody really knows what does go on in the
operation!

14

Steps in Developing an Application Program #sl @

1. Answer phone.
——= 2. Get customer name.

NO 3. Get customer address.

4. Repeat name and address. OK?
| YES

5. Get list of items for order. Take each item separately.

e A. Get description.
B. Find catalog number. I
C. Valid? Yes, continue. No
NO D. Find number desired.
E. Verify price.
NO F. Last item?

6. Repeat list of items, description, humbers, and price.

7. Customer agrees?
| YES

8. Get additional data — resale #, efc.

! (Remaining steps)

Figure 2-2. Order Entry Analysis Example

Step Four: Write a Design Specification

The next two steps, writing the design specification and designing the program,
may be on the same level, or one may precede the other. Some “systems analysts”
or programmers would be in favor of writing a design specification first before
program design. This is known as “top down” design. Others would be in favor of
doing both at the same time. Still others would produce the design spec after the
program design.

We favor, whenever possible, writing a design specification with operational
procedures first, and then producing a program design. The design spec would
consist in this case of a set of written procedures on how to use the system. It
would show all screen and line printer forms and list the various functions
available. A page of a design spec for a program developed later in the book is
shown in Figure 2-3.

15

2 i1l Steps in Developing an Application Program

MAILLIST Design Specification
OVERVIEW:

MATLLIST is a complete mailing list program designed to operate on the
TRS-80 Model I, II, or II Microcomputer Systems.

It can handle up to several hundred entries of forty or fifty characters each,
or more entries if the entry size is reduced. MAILLIST builds an in-memory
file of mailing list entries. Entries can be added, deleted, or modified at any
time. High-speed “list” sorting is used to alphabetize each entry as it is
added.

Entries may be displayed on the screen one at a time or in user-specified
ranges. Entries may be printed on the system line printer in mailing label
format or in any user-defined format, such as a line by line report.

Any character string, from a single character to larger strings, may be used
in a “search” mode. MAILLIST will search all entries for the given string.
This feature can be used to locate a street address, zip code, or other data.

Entries are arranged in alphanumeric order based upon the entire entry.
JONES ,ED, 25555 ORKHURST appears before JOMES,ED,25556 OAIK-
HURST, for example. The “sort key” is essentially the last name. At any
time the list of entries may be resorted based on any other field, such as zip
code. This secondary sort can then be displayed or printed. This feature s
handy for arranging the entries in zip code order for bulk mailing require-
ments, for example.

The complete list of entries may be saved as a disk or cassette (Model I/1II)
file with a user-specified name. Files can be loaded from disk, or two files
may be merged together into a new “master file,” again with user-specified
name.

MAILLIST is “menu-driven” and uses a complete set of “fill-in forms” to
prompt the user. Complete editing features are provided for entry of user
data.

LOADING PROCEDURE:

To runMAILLIST, first load BASIC. If you are using the Model II, specify
BASIC -F:1 to allow you to have at least one disk file. Next, load

Figure 2-3. Sample Design Specification

How closely will the design spec match the manual methods in Step 47 In some
cases it will be possible to closely emulate the manual methods in the computer
system; in other cases the manual methods simply don’t lend themselves to being
duplicated in the computer. In most cases, some changes to the established

16

Steps in Developing an Application Program 2

manual processes will have to be made. Manual methods allow for street
addresses of virtually any length, for example. In the computer version some limit
must be put on the number of characters for the street address. Manual methods
allow for flagging certain accounts with red tags; in a computer these flags must
be special codes that require a search.

How closely will the operational portion of the design spec match the final
program? This is related to programmer experience and familiarity with the
system and BASIC. For the first several applications, there may be some miscon-
ceptions about the system (Step 1) that result in changes to the design spec. After
several larger programs have been implemented, the operational portion of the
design spec should be very close to the actual operation of the program.

The following items should be in the design spec:

® Overview of what the application does

@ Loading procedure

@ How to start execution

e List of program functions

@ Description of each separate program function

® Screen appearance of “menus”

© Screen appearance of input forms or “prompting” for operator input
@ Screen appearance for reports or display of records

® Line printer appearance for reports

(One cautionary rule about design specs: Never start your spec with the words
“Welcome to the Wonderful World of Acme Business Software . . .)

Step Number 5: General Program Design

The next step is to decide how to design and structure the program. In some cases
this step precedes the design spec or operates in conjunction with it. In this phase
you will have to ask yourself such questions as:

© How will I store text and data in the program?

® Should I use arrays and, if so, how large will they be?

® What kind of searching algorithms do I need to locate the separate data items?
© What about disk storage? Should I use random or sequential files?

© How should I structure the program — should it be one massive set of code, or
should I divide it up into modules?

© What variables should I use, and what data types should they be?

Much of this design is going to come from experience. You may implement a
design by using a string array of items and find that searching for a certain item
takes several minutes. On the next application you may discard that method as
too time consuming and look for other approaches.

17

Steps in Developing an Application Program

Because this step is so much related to experience, we’ve made it a lot simpler.
We've defined a set of general purpose modules that have a kind of “built-in”
structure, one that uses string arrays geared to high-speed merging of data. We
don’t claim that the approach is best for every application. It is an approach that
will serve you until you can define your own program structure, however.

We'll be discussing the basic design and modules in the next section.

Step 6: Flowchart the Program

The next step is to flow chart the program. There are many programs that are
never flowcharted, especially those sold for microcomputers in BASIC. Is flow-
charting necessary? Or is it simply possible to sit down at the TRS-80 and enter
BASIC code?

It’s certainly possible to enter BASIC code for small programs without using
flowcharts and not get into trouble. BASIC on the TRS-80s is very “interactive,”
and it is easy to “edit” and modify BASIC commands and functions until the code
works.

The larger the program, however, the more difficult it is to take advantage of this
interactive nature. Unless program plannning is done, the end result of entering
code and modifying it until it works is a hodge-podge of statements with no
logical flow at all. An old programming joke talks about the two methods of
developing a program. One method is to sit down and carefully plan out the
program by a design spec and flowcharts. The other method is to go to a
wastebasket in the computer room, pick out any listing, and modify it until it
works the way you want it to! Entering code without planning results in programs
that look similar to the second method.

Why use flow charts at all? Why not simply jot down notes on the flow of the
program? Some programmers do this and it works well for them. However, we’d
strongly recommend that you flowchart at least for the first two or three large
programs. Then, if you find that an alternative method works (and your program
structure is clean), use that method.

We've included flow charts for many of the application examples used with the
General Purpose Modules. The flow charts are not descriptive down to a
command level, but simply provide a general “flow” of the program. A sample is
shown in Figure 24.

We've used only seven symbols in our flowcharts. The rectangle (Cisa
“procedure box.” Notes inside the box describe processing ranging from incre-
menting a counter to scanning an array for an entry. The statement number for
the approximate point in the program where the processingis done is sometimes
placed at the top left of the symbol.

The diamond () is a “decision” symbol. Two or more paths may be taken from

18

Steps in Developing an Application Program

FROM MAIN

ENTER
3 —_ FOR FIRST
=0 FINDN

¥

s
s |y
FORM P8, 2R

23150 “ 5500

8000
Y FORMS

QUTPUT
SEARCH
FORM

YES—ABORT §

X =1 YES—LAST
FROM FINDN
? ¥
2/8

1000
SSRCH

SEARCH FOR

XASXL) N s

Aws O umm':iﬁm SEARCH

SETUP FOR
SKELETON === ZPS8)

ouTPUT
STANDARD
SKELETON

Figure 2-4. Sample Flow Chart

19

| . . . e
2 g Bs1 Steps in Developing an Application Program

the decision point. An optional number at the top left is the statement number at
which the decision is made.

The < > symbol indicates that a subroutine is executed. The name of the
subroutine is on the top right of the symbol. An optional statement number for
the point at which the GOSUB takes place is on the top left of the symbol.

The oval ((___)) indicates a starting or ending condition. The triangle (V)
indicates a “branch out” or a RETURN.

The small circle ((*)) is an “on-page” connector. It contains a letter indicating
where on the same page the path is completed.

The symbol is an “off-page” connector. When the flowchart is on two or
more pages, this symbol is used to connect the path from one page to another. A
page number with a letter indicates the connection point. , for example,
would indicate “page 4, point A.”

Note that the flow is generally down and to the right. As you can see from Figure
2-1, flowcharting is an iterative procedure. The flowcharts may have to be redone,
or may even result in modifications to the general program design (step 5), or
design spec (step 4).

Step Number 7: Code the Program

Once the flowcharts have been developed, it’s easy to code the program. Can you
now sit down at the keyboard and start “laying down code™ Here again,
programmers do it, and some do it very well. For your first several large
programs, however, it’s advisable to write down the “rough” code using pencil
and paper, leaving plenty of space between statement lines.

In some installations, all programming is done on “coding sheets” which are then
submitted to a “data entry” clerk who enters the code into a program file. This file
is then “compiled,” and the programmer gets the listing to “desk check,” or look
over for errors. One of the chief reasons for coding sheets is that large systems do
not allow the programmer the luxury of being able to use the system on an
individual basis — many “jobs” are run simultaneously. On the TRS-80s, how-
ever, we have a single-user capability. Still, some further thought is needed before
sitting down to enter the program. Coding sheets aren’t required, but some paper
and pencil work is.

Step 8: Enter the Program

We've finally made it to the keyboard! At this point the BASIC program can be
entered, using your code from paper, or your flowcharts, or a combination of
both. What does the code look like? (Please, no derogatory comments . . J)

There are two main criteria to be considered in BASIC programs on the TRS-80.
The first is readability and format. The second is execution speed.

20

.

Steps in Developing an Application Program [

BASIC is sometimes said to be self-documenting. In other words, you can pick up
a BASIClisting, look at it and tell immediately what is happeningin the program.
A good example of this is shown in Figure 2-5, where it’s immediately obvious
what the program is used for!

11282 GOTO11110° PROMPT
111180 XX=0

11120 PRINTAYEs XP$+" "3
11130 IFXB=3G0OT011280

11140 XCg=""

1115@ XI$=INKEY$:IFXI$=""GOTO1115@
11168 IFXI$:>CHR$(YK)GOTOL11200

11170 IFXI$<>CHR$(YK)GOTO1119@

11180 XX=1:G0T011290

11190 IFXI$=CHR%(13)G0OTO11230

11208 XCe=XCs+X1$

1121@ PRINTAYE+LEN(XP$)+1sXC$3

11220 GOTO11150

11230 IFXB=@THENXC=VAL (XC%)

1124@ L 2E0OTO11290

112509 "YES"ANDXCS <> "Y" ANDXC$<>"NO" ANDXCS <> "N"GOTO11120
11260 XC$=LEFT$(XC%s1)

11270 GOTO11z90

11280 FORXI=1TO9@B:NEXTXI

11290 RETURN

Figure 2-5. Self-Documentation (Tongue in Cheek)

Not so obvious, is it? Contrast this with the code from Figure 2-6. Figure 2-6 is
“formatted” with plenty of REMarks, indentations to show loops, and single
commands (for the most part) on each line.

Which is best?

The answer is that the code shown in Figure 2-5 is best for memory storage
requirements and execution speed and worse for debugging and readability. The
code shown in Figure 2-6 is worse for memory storage and execution speed and
best for debugging and readability. The difference in execution speed between the
“compressed” code and “pretty format” code may be 2to 1. On the other hand, it
may take four times as long to debug the compressed code because it’s so difficult
to understand what is happening. Which should be used?

The approach we’ll take is that REMarks, formatting, and single statement lines
will be used for entering and debugging the program. Once the program has been
fully debugged and tested, we can then delete all REMark lines, delete all spaces
between commands, and put multiple statements on single lines. Most of the
BASIC code shown in this book will be in the “pretty format” structure for
explanation. We've also included a compressed version for high-speed execution
and less memory storage (see Appendices I and I0).

21

Steps in Developing an Application Program

11900 GOTO 11110 °PROMPT
LH@ID 7 385365636 3 3963696 56 FH T 9636 36 30303603636 J 36 30000363 H00IJEH IR IR0 B0 S SRR R R

11028 * THIS IS THE "PROMPT® MODULE. IT OUTPUTS A GIVEN MESSAGE

11038 ° AT LAST LINE AND READS IN A USER STRING OR NUMERIC
11048 * RESPONSE.

11850 ° INPUT: XB$=MESSAGE TO BE OUTPUT

11860 ° XB=B IF NUMERIC RESPONSEs=1 IF STRING
11070 ° =% IF YES OR NO RESPONSE:=3 NO RESPONSE
11880 ° QUTPUT : XC$=5TRING RESPONSE OR “Y" OR "N"

118968 ° XC=NUMERIC RESPONSE OR @ IF ENTER

11106 P St 4 36 363 B A6 36 9 6 06 06 6 36 36 3 3 I IR S S R R R
11110 XX=0

11120 PRINT & YE: XB$+" "

11130 IF XB=3 GOTO 11286

11140 XCé="" .

11150 XI$=INKEY$:IF XI$="" GOTO 11150

11160 IF XI$>CHR$(YK) GOTO 11200

11170 IF XI1%<>CHR$(YK) GOTO 11190
11180 XX=1: GOTO 11290
11198 IF XI$=CHR$(13) GOTO 11230

11200 XCH=XCH+XI%

11210 PRINT & YE+LEN(XB%)+15XC%3

11220 GOTO 11156

11230 IF XB=0 THEN XC=VAL(XC%)

11240 IF XB<»2Z GOTO 11290

11250 IF XC$<>7YES®" AND XC$:<>"Y" AND XC%:>"NO" AND XCH<x"N" GOTO 11120
11260 XC$=LEFT$(XC%s 1)

11276 GOTO 11296

11280 FOR XI=1 TO 9BB:NEXT XI

11290 RETURN

Figure 2-6. Formatted BASIC Listing

You should probably use many REMarks thrown in at appropriate places and
logically grouped statements in a single line from the start. The REMarks should
contain truly useful information. It’s considered bad form to put inaFEMark such
as 1000 REM THIS IS A REMARK. ™’

After you've debugged and tested your program, you can then delete the FEMark
lines and “renumber.” In later programs, if you find that you can easily read
BASIC code that is run together, by all means use it, but bear in mind that the
saving in memory space and execution speed between a program with 60-
character wide lines and a program with 20-character wide lines is only about
15%.

Step 9: Debug the Program

All right, you've entered the program and stored it as a file on disk or cassette.
What'’s next?

The next step, of course, is debugging — running the program and correcting any
“logic” or minor errors that have occurred. Logic errors pertain to program
design. If you have done a good job on Steps 5 and 6, there should be a minimal
number of major logic errors in the program. There will probably be a huge
number of other errors, however. Don’t be dismayed — it happens in every

22

Steps in Developing an Application Program

program. Sure, in speaking to some programmers it sounds as if they spew out
perfect code every time. Let’s just say they are stretching the truth somewhat.

Faced with this superabundance of errors, how do you logically proceed? Most
programmers just plunge right in and start correcting each error. This is where
microcomputers that use interactive software such as the TRS-80s are extremely
powerful. It’s easy to find the error, correct it by a line Edit, run the corrected
version immediately, and test it again.

After a half dozen or so errors, save the corrected program on disk or cassette,
and keep on debugging. Eventually you will reach a point where the number of
errors has been reduced to a manageable number. At this point you can write
down a list of the more subtle bugs and work on them one at a time. At this point
too, you should think about saving backup versions of your program, so that you
don’t inadvertantly wipe out all of your corrections with no record of what they
were.

When every last bug has been found and stomped, the debugging work has just
begun. Too many programs are now deemed “checked out” and released. What
should be done, and what is usually done in professional software houses, is to
now develop a “test plan” to exercise the program. Write down a list of features
that should be checked out. For example, if the program should be able to handle
100 accounts, try it with 100 accounts. If a name field should be able to handle 1 to
23 characters, try names of 1, 23, and 5 characters. If allowable menu values are 1
through 10, try 0, -1, 1, 10, and 11.

Look at the program from the point of view of your most critical friend (or
enemy) and try to develop a list of several dozen, or a hundred, or several hundred
test cases. Incorporate these into a test file on disk or cassette if possible. Keep on
debugging the program until the list runs perfectly.

Isn’t this time consuming? Yes, definitely. In some cases, testing and exercising
the program may take 30 to 509 of the total program development time.
However, industries find that program “maintenance” costs — finding and
correcting errors in existing programs — far exceed the costs of program
development!

Step 10: Create the Final Version of the Program

At this point you’ve debugged and tested the program. If the program has
replaced an existing manual system, the program has probably been run “in
parallel” with manual methods until every last flaw has been found and corrected.
When you are confident that the program is working well, and you have a clean
copy of the final version with backups safely stored on disk, and you have a
number of program listings that exactly correspond to the version of the program
that is running, you’re almost done.

23

Steps in Developing an Application Program

If the program operates at a fast enough speed and does not take up too much
memory, you are done except for Step number 11. Leave the program as it is. If
you'd like to increase its speed and reduce its memory requirements, then you
may clean it up by carefully deleting any remaining REMark lines, deleting spaces
between commands, and merging statements in single lines. Invariably, however,
this process is going to introduce new errors. To detect these new errors, you've
got to repeat the test plan once again, and even run the system in parallel. It is
your decision at this point as to whether the extra debugging time is worth the
increased speed and reduced memory requirements.

There is an old programming axiom (circa 1945) that “there are no final versions
of programs.” This is largely true. There are probably still bugs in your program
design or code. Be aware that they may still show up months later, and be
prepared by always keeping an up-to-date version of the program listing and
notes on execution.

Step 11: Write An Operational Manual for the System

You're almost done. If you’re lucky, the design spec is still valid as far as program
operation. Usually, some minor corrections are necessary. Add the corrections
and use it as an operational manual for the program. Too many programs have
inadequate documentation. They may be excellent programs, but totally unusa-
ble by inexperienced personnel.

If you are to be the sole user of your program, it’s still a valid idea to have an
operations manual. It’s very easy to be confused by what you did in a program
that you wrote six months previously. (Occasionally you'll discover that the
programmer you’ve condemned with an expletive deleted is yourself!) If other
people are to use your program, thena detailed operational manualis absolutely
necessary.

Budget Time for Program Development

We mentioned previously that an average of 30 lines per day was typical for
program development of a moderately hard, moderately long business applica-
tions program. In other words, a 600 line program would take 20 8-hour days to
develop. How does this time break down into the various steps we’ve outlined
here?

Figure 2-7 shows a typical “pie” for the different segments of steps 3 through 11.
This is meant to be a guide only, and not a hard, fast analysis. (Many books have
been written about program development budgeting. Many managers have met
their fate after the 32nd schedule slip.)

24

Steps in Developing an Application Program Ml

MANUAL STEPS 1, 2
5% MINIMAL AMOUNT
STEP \ OF TIME FOR LEARNING
11 . THE SYSTEM & BASIC
) AFTER EXPERIENCE —

STEP 3 THIS EXPANDS
RESEARCH CONSIDERABLY
INTO APPLI— O\ AT BEGINNING

CATIONS

STEPS 4-6
DESIGN

SPEC, GENERAL
DESIGN, FLOW-

STEPS 9,10
DEBUG,
FINAL VERSION
40%

STEPS 7, 8
CODING
PROGRAM
ENTRY

20%

Figure 2-7. Program Development Breakdown by Taslk

Using the General Purpose Modules in This Book

By providing you with several dozen and a half well-documented, checked-out
programs that handle form output, text and value input, menu generation, line
printer output with page formatting, searching and sorting operations, and many
others, we feel that the program development time for many of your business
applications programs can be significantly reduced.

You will be able to concentrate on writing the true applications portion of the
program instead of establishing a core program design and data structure.

The General Purpose Modules in the next section are designed to be useful not
only at this point in your programming experience, but also as modules you can
use in the future.

There are disadvantages in using the modules. It does take some time to learn
how they work. They do establish a data structure that may not be the best one for
many applications. However, give them a try. At the worst, you may gain some
insights into system operation while we’re explaining their functions. At best
you'll have a standard set of general purpose programs that can form the basis for
a “library” of other routines.

25

Overall Description of the General Purpose Modules & "

Section II
General Purpose Modules

27

Chapter Three
Overall Description of the
General Purpose Modules

In this chapter we’ll look at what the General Purpose Modules will do for you,
how they are arranged in the program, what variables are used, how they work
in general, and other aspects of using them. In later chapters in this section we’ll
look at common application program functions and how they are implemented
by specific General Purpose Modules.

What the General Purpose Modules Are

The General Purpose Modules are a collection of about a dozen and a half
modules, or collections of BASIC code. The module size varies from about four
to fifty lines, in “uncompressed” format.

Each module performs a common function that is used again and again in every
application program. There is a module to search a string for a given string (to
find USA in 50U5A for example), a module to find a given entry in a string array, a
module to print a report on the system line printer.

Figure 3-1 shows the IMEMU module as a typical module in size, complexity, and

format.

10060

10030
10040
1 Q@5
12060
a7
1 BEn
10090
1210
i@11e
1010
121360
12140
iQ1se
10160
1170
10180
119

GOTOIO148 * MENU
T IR R ST R R R R L R R KR FHFHE IR EEREEHERE
TOTHIS I8 THE MENU MODULE. IT TAKES A NUMBER OF STRING
OITEMS AND DISPLAYS THEM ON THE SCREEN IN THE FORM OF A
TOUMENUY. IT THEN UBES THE INPUT SURROUTINE TO GET THE
TOPONGE FOR VALIDITY. IF THE RESPONSE IS CORRECT, IT
* RETURNS THE NUMBER OF THE SELECTED ITEM. IF THE RES-
7 OPONSE I& NOT CORRECTs IT WAITS UNTIL A PROPER RESPONSE
7 HAS BREEN KEYED IN BY THE USER.
’ INPUT: ZA=# OF ITEMS 1-1@
? ZAS (M =TITLE OF MENU
’ ZAB (1) ~ZA$ (N =MENU SELECTIONS
? OQUTPUT:ZR=TTEM SEILECTED
PR R E KB R R KKK H R KRR B EBHAKREERREFREEAEERA RS EEA R R EE
IF ZA<1 OR ZAX10 THEN STOP
CLSG
PRINT CHR$(2) 3
ZI=LEN(ZA%(Q))
FRINT QYA/Z-Z1/2+70%(0) 3

FOR ZI=1 TO ZA

PRINTQZTI#YA+YA+1Dy ZT5ZA%(71) 3

NEXT 71
FRINT @ZI#YA+YC+15s "ENTER SELECTIONs 1 THROUGH "3743
ZC=(ZI¥YA+YC+R0) 1 7D=2: ZE=0: GOSUR 2000
IF ZF<1 OR ZF:>ZA GOTO 10770
LB

RE TURN

Figure 3-1. MENU Module

29

' Overall Description of the General Purpose Modules

Each module is a subroutine that is called by the “main” applications code — the
part that you will normally be writing. The last command in every module is a
RETURN to return back to the “calling” program. A typical “calling sequence” is
shown in Figure 3-2, which calls the MENU module to write out a menu of items as
shown in Figure 3-3.

#0150 *DISPLAY MENU

TR160 ZA=B:ZAE (@) ="MAIL LIST":ZA$(1)="ADD ENTRY TO FILE"
2@170 ZA$(Z)="MODIFY OLD ENTRY":ZA%(3)="DELETE ENTRY"

SRIE@ ZA$(4)="DISPLAY/PRINT FILE":Z7A$(5)="8EARCH FILE"

TBL90 ZA%(6)="NEW SORT":ZA&(7)="L0OAD FILE":ZA%(B)="8AVE FILE"
R0 GOSUR 10000

Figure 3-2. Calling Sequence

There are four parts to every module.

The first line has the name of the module. This is a descriptive name indicating
what the module does, for example, “MENU?” for the menu module.

The second part is a description of the module. In this case lines 10010-10130 are
the description. When this module is used in your BASIC program, these lines
would normally be deleted, since they would take up a great deal of storage and
slow down program execution.

The third part of each module is a “body” of BASIC code. Thisis the portion of
the module that actually does the computational work, for example, displaying
the menu items on the screen. Within the body of the module, there may be one
or more “GOSUBs” to other modules. In general, many of the modules are
related in this fashion.

The fourth part of the module is the RETURN command.

When all of the descriptive parts of the module are deleted, the module appears
in “compressed” form. The compressed form of the MEHU module is shown in
Figure 3-4. Note that allREMark lines have been left out, and that all spaces have
been deleted, except for those within strings to be printed. This is the form of the
module that you should use in your programs; the “uncompressed” form is for
descriptive purposes only, and you'll have to admit, it is a lot easier to read. (An
attempt to compress the program further by deleting every other statement
failed, and is not included here . . .). The compressed form of all General
Purpose Modules is provided in Appendix I.

30

Overall Description of the General Purpose Modules

Figure 3-3. MENU Operation

10606
10140
10150
10160
10170
10180
18190
10200
10210
10220
10230
10240
18250
10260

GOTO1@140° MENU

IFZA<IORZA>1BTHENSTOP

CLS

PRINTCHR$(Z) 3

ZI=LEN(ZA%(@))
PRINTAYA/2-Z1/2+:ZA%(@) 35

FORZI=1TOZA
PRINTOZI*YA+YA+1DsZ135ZA%(Z1) ¢

NEXTZI

PRINTAZI#YA+YC+15s "ENTER SELECTIONs 1 THROUGH "3:7A:
ZC=(ZI*YA+YC+5@) : ZD=2: ZE=0: GOSURZ000
IFZF<10RZF>ZAGOTO10220

IB=2F

RETURN

Figure 3-4. “Compressed” Form of MENU

31

Overall Description of the General Purpose Modules

How the Modules Are
Arranged in a Program

A typical business applications program that uses the General Purpose Modules
must have a definite line number arrangement, as shown in Figure 3-5. The
General Purpose Modules have line numbers that range from line number 100
through line number 19999. The modules are arranged in this sequence for a
specific reason.

(STARTING)
LINE NUMBERS MODULE
100
XFER
1000
SSRCH
1500
LPDRIV
2000
INPUT
2500
SUNPK
3000
LINES 3000 -
3500 4999 RESERVED
4000 FOR USER “FAST
, ROUTINES” IF
4500 DESIRED
5000
ASRCH
5500
FINDN
6000
SECSRT
6500
SPACK
7000
D
7500 AADD
REPORT
8000
MS
8500 FOR
FORMI
9000
FORMO
9500
ADEL
10000
MENU
10500
AINIT
11000
PROMPT
11500
ERROR
12000
LOAD
12500 coLo
CDSAVE
13000 LINES 13000-19999
) " RESERVED FOR USER
4 /" “SLOW ROUTINES”
20000 IF DESIRED

USER APPLICATIONS |
PROGRAMS START AT
LINE 20000 :

Figure 3-5. Line Numbers for General Purpose Modules
and Other Programs

32

Overall Description of the General Purpose Modules

e 3

When the BASIC interpreter searches for a line number in a GITO or GOSUE
statement, it starts at the beginning line and searches forward. Even though this
search is in machine-language, the language that the microprocessor in the
TRS-80 understands (and few other parties), the search does take some time.
This search time can make a difference in BASIC program execution speeds,
hence we’ve put the most commonly used modules in the lowest line numbers.

Normally, when you are using the General Purpose Modules, you will be writing
your BASIC applications code starting at line number 20000. Since your
application code will do a lot of “calling” of the General Purpose Modules, the
overall effect will be to speed up the entire applications program.

The General Purpose Modules take up about 5900 bytes of memory storage in
compressed format. If you must delete any General Purpose Modules, there are
some that cannot be deleted because other modules “call” them. F igure 3-6
shows how the modules interrelate and which ones could be deleted. You could
not delete the INFUT module and still use MENL, for example, as there is a GOSUR
to MENU in IMPUT.

USER
APPLICATION PROGRAMS

TRANSFER TO LINE

20000

START ——= yren

INITIALIZATION T 10 | inE
G010 | amiT 20100

i

10500
MENU _ FORMS ERROR CASSETTE/DISK
l MENU FORMS FORMI FORMO ERROR CDLOAD | CDSAVE
aw e " P "
—'——_—‘—l ARRAY
/ \ HANDLING
ADEL AADD ASRCH FINDN
PACK/UNPACK MESSAGE REPORT SORT
—t AR —_— zEreRy 2=
SPACK 3UI‘3PK PROMPT REP"ORT SE(iSRT
|
LINE
KEYBOARD § ¥ STRING vy v v PRINTER
INPUT SSRCH LPDRIV
*ALWAYS INCLUDE

**CALLS ANOTHER GPM

Figure 3-6. Relationship of General Purpose Modules

33

Overall Description of the General Purpose Modules

None of the modules are absolutely required for any applications program in the
20000 area except for the #INIT module. This module must be called imme-
diately on start-up of your applications program. It must be called by a GOTO
19500 rather thanaG0SUE, and line 10890 in AINIT must be changed to return
back to the line after the 50T 10508, We'll give some examples of this later in
the book.

What Variables are Used

The General Purpose Modules use variables that start with the letters X, Y, and
Z. These are “reserved” variable letter ranges and must not be used by your
application program except as “inputs” or “outputs” to the modules. (My
apologies to any Xaviers, Youngs, and Zieglers out there.) Any other variable
names may be used by your application program, subject to the normal rules
governing variable names.

The X, Y, and Z variables are defined as “integer” variables in the AINIT
module. Integer variables, as you may know, take up only two bytes of storage
and are rapidly accessed and handled by the BASIC interpreter.

The General Purpose Modules also use string variables in the same letter ranges.
Many times a string variable may have the same two-letter name as an asso-
ciated “integer” variable. This is permissable in BASIC. The string variable
ZF$, for example, is different from the integer variable ZF, but both are used in
the same module.

Arrays used by the General Purpose Modules have the same X,Y, and Z names.
There is one large string array used, XAS$, two large integer arrays, XA% and
XB% (the “%” specifies “integer”), and several smaller arrays. The number of
“elements” in each large array — XAS, XA%, and XB% — are equal and are
“dimensioned” automatically based on available memory.

Figure 3-7 shows the variables used by the General Purpose Modules. Many of
them are “shared” by several modules. There are two reasons for this. The fewer
variables, the faster that each can be located by the BASIC interpreter, and
hence, the faster the BASIC program will operate. Secondly, the modules are
somewhat interrelated as a “system” and variables used in one module may
provide information to the next module. We’ll describe this action in the course
of talking about the modules.

The shaded variables represent variables that you will never use; they are used as
“scratch,” or temporary storage, by the modules of the system.

34

Overall Description of the General Purpose Modules

“SYSTEM”
PARAMETERS

VARIABLE
XA%

DESCRIPTION
ARRAY HOLDING PRIMARY POINTERS TO XA$.

XA$ MAIN ARRAY HOLDING DATA IN GPM.

XB% ARRAY HOLDING SECONDARY POINTERS TO XAS$.

XB INPUT TO PROMPT FOR TYPE OF INPUT.

XB$ INPUT TO PROMPT FOR MESSAGE STRING.

XC USER RESPONSE OUTPUT FROM PROMPT.

XC$ USER RESPONSE OUTPUT FROM PROMPT.

XD$ SEARCH STRING INPUT TO ASRCH.

XF WORKING VARIABLE.

XH WORKING VARIABLE.

Xl WORKING VARIABLE.

Xi$ WORKING STRING.

XJ OUTPUT FROM ASRCH. ENTRY BEFORE
INSERTION POINT.

XK OUTPUT FROM ASRCH. NEXT AVAILABLE ENTRY.

XL OUTPUT FROM ASRCH. ENTRY AFTER
INSERTION POINT.

XM “FOUND” FLAG OUTPUT FROM ASRCH.

XN REPORT COUNTER.

XP ARRAY HOLDING ITEMS FOR REPORT.

XQ SIZE OF XA%, XB%, XA$ ARRAYS.

XS INPUT TO FINDN. # OF ENTRY TO FIND.

XT INPUT TO FINDN. SEARCH TYPE FLAG.

XU WORKING VARIABLE FOR FINDN.

XW INDEX OUTPUT FROM SSRCH.

XW$ INPUT TO SSRCH. STRING TO BE FOUND.

XX ABORT FLAG FROM INPUT.

XY$ INPUT TO SUNPK. STRING TO UNPACK.

XZ$ INPUT TO SSRCH. STRING TO BE SEARCHED.

YA WIDTH OF SCREEN FROM AINIT.

YB NUMBER OF LINES ON SCREEN FROM AINIT.

YC WIDTH * 2 FROM AINIT.

YD WIDTH * 3 FROM AINIT.

YE WIDTH * 15 + 10 . PROMPT LOCATION FROM AINIT.

YF BOTTOM BOX SYMBOL FROM AINIT.

YG TOP BOX SYMBOL FROM AINIT.

YH LEFT BOX SYMBOL FROM AINIT.

Yi RIGHT BOX SYMBOL FROM AINIT.

YJ FIELD PROMPT CHARACTER FROM AINIT.

YK CLEAR CHARACTER FROM AINIT.

YL ACTIVITY FIELD START FROM AINIT.

YS PRIMARY/SECONDARY FLAG.

Figure 3-7. General Purpose Module Variables

35

3

Overall Description of the General Purpose Modules

VARIABLE DESCRIPTION
YT SORT FIELD # INPUT TO SECSRT.
ZA$ ARRAY HOLDING MENU ITEM STRINGS.
ZA INPUT TO MENU. NUMBER OF ITEMS.
ZB OUTPUT FROM MENU. ITEM SELECTED.
ZC SCREEN LOCATION INPUT TO INPUT.
ZD MAXIMUM LENGTH INPUT TO INPUT.
ZE NUMERIC/MIXED FLAG INPUT TO INPUT.
ZE$ WORKING STRING IN INPUT.
ZF INPUT VALUE FROM INPUT.
ZF$ INPUT STRING FROM INPUT.

ZH WORKING VARIABLE.

yd WORKING VARIABLE.

ZJ LPDRIV FIRST TIME FLAG.

ZK LINE COUNT IN LPDRIV.

ZL LENGTH OF PAGE INPUT TO LPDRIV.

ZM LENGTH OF PRINT IMAGE INPUT TO LPDRIV.
ZM$ STRING INPUT TO LPDRIV.
ZN$ TITLE STRING INPUT TO LPDRIV.
zp FORM WIDTH INPUT TO FORMS.
ZP$ ARRAY HOLDING ITEM STRINGS FOR FORMS.
ZQ NUMBER OF ITEMS IN FORM INPUT TO FORMS.
ZR ARRAY HOLDING ITEM LENGTHS FOR FORMS.
Zs ARRAY HOLDING SCREEN LOCATIONS

FROM FORMS.
ZW$ INPUT STRINGS FROM FORMI.
ZX STRING LENGTHS FROM SUNPK.
ZZ ARRAY HOLDING ERROR CODES FOR ERROR.
zz$ ARRAY HOLDING ERROR MESSAGES FOR ERROR.

Figure 3-7. General Purpose Module Variables

What the Modules Do

Each module accomplishes a specific function, sometimes without calling
another module, and sometimes calling one or more. We’ll describe each one
starting from the most basic up. This will be the “first cut” explanation. Later
we’ll explain each module in detail.

XFER Module (Line 100)

This module simply transfers control to line 20000. Line 20000 is assumed to be
the start of your application program for mail list, information retrieval, inven-
tory, and so forth. When the entire application has been coded, specifying
RUN without a line number will then start the program at line 20000. (The
modules do get somewhat more complicated from this point . . .) Figure 3-8
shows the description of the module.

36

Overall Description of the General Purpose Modules

1AB * XFER
TIE 7 Ml B RS K E RN E RN E NN REH A B EEE RN FERKEELEEBEE AL HEE T EER KRB X AR
LR GOTO 70000
TER TR FEHRXHE ERRX FHEHEKEFE BRI EEAKE N EEFFRREBEFRE R FEE X B HE R F RN KN
Figure 3-8. XFER Module Description
SSRCH Module (Line 1000)

SSFCH is the search string module. Figure 3-9 shows its description. SSRCH
looks for string XW$ in string XZ$. Suppose that you had defined a string in
your applications program as A$ and you wanted to see if the “sub-string” EILL
was in A§. The calling sequence to SSRH might be

THFUT A%
SEB=EAF I aWE=CCBILL T T :GOSUE 100
FEM RETURM HERE FROM S3RCH

String A$ was first input. Then string XZ$ was set equal to A$. Now there are
two strings that contain the same character data, A$ and XZ$. XWS$ was set
equal to BEILL. Next, a call was made to ASRCH by BOSUE 1000,

1@ GOTO 1890 * SEROH

MSBRIEE S R R R R T R T R R R R R R e S S N R T T
L@z 7 THIS 16 THE SEARCH STRING MODUIE. 1T SEARCHES THE X7%
1030 ° STRING FOR A SEARCH STRING OF XW$. X7% MUST PF LARGER
La4@ * OR EQUAL. TO LENGTH OF XW$.

jese 7 INPUT: XKW TRING TO BE
1@60 7 K TRING TO BPE SE&RCHED

jave QUTPUT & X ART INDEX OF STRING OR -1 IF NOT FOUND

TRBB 7 R R TR R R R B HR R RE R KRR KR ERR R R R EHERRHEEEBHRAE LR £

FOUND

Figure 3-9. SSRCH Module Description

When a RETURHM is made to line 20220, variable XW will contain the location of
EILL if found in XZ$ (AS$), or a -1 if the EILL string was not found. If
BARDEN,BILL was input as A$, for example, XW would be “returned” as 8, the
eighth character position from the left in BARDEN, BILL .

Since we want to do these searches all the time, what you have in SSRCH is a
handy “precanned” subroutine to search for a given string. Sure, it takes some
shuffling around to set XW$ equal to A$, but that’s the price you have to pay for
precanned subroutines.

LPDRIV Module (Line 1500)

This module prints a string ZM$ on the system line printer. The description of
LFDRIY is shown in Figure 3-10. If the string is a null (empty, as in ZM$=“ "),
then a “form feed” is done to the next page. This module automatically does
“page formatting,” skipping over the bottom of the page to start a new page.

You can define the number of lines to be printed per page by setting variable ZM

37

Overall Description of the General Purpose Modules

to the number of lines per page and variable ZL to the length of the page in lines.
ZM and ZL would only need to be set every time a new page format was needed
(probably only once per program).

1500 GOTO 14630 *LPDRIV

TE LG 7 H W36 4 9 3 KB 303 3336 0 36 3 30 336 396 3 30K I K 38 363 R H S E R
157 * THIS IS LINE PRINTER DRIVER. IT QUTPUTS A SINGLE L.INE

1530 ° TO THE LINE PRINTERs ADDS ONE TO THE LINE COUNTs AND
154@ * TESTS TO SFF IF LAST LINE ON PAGE HAS PEEN REACHED. TF
155@ * LAST LINF HAS BEEN REACHEDs A "FORM FEED" I& DONE.

1560 7 INPUT: ZM=NUMBER OF I.INES PER PAGE

1857a 7 ZL=LENGTH OF PAGE IN LINES

1580 ° ZM$=STRING TO BE PRINTED. IF NULL. ("") THEN
1590 7 "FORM FEED" IS DONE

1600 7 ZN$=PAGE TITLE MESSAGE OR "" IF NO TITLE
1610 7 OQUTPUT:LINE IS PRINTED ON SYSTEM LINE PRINTER

R e P E R R T e SR X S S R Rl e e S ke

Figure 3-10. LPDRIV Module Description
A sample call to print the line THIS I5 A LINE would look something like this

20200 ZM=t0:ZL=ER

20600 ZMF=**THIS IS A LIME® " :GOSUE 1500

The dots indicate other code between the line that “initializes” the line counts
and the line that calls LPDRIV.

INPUT Module (Line 2000)

This module is used to input a string of characters by using the INKEY$
function in BASIC. Figure 3-11 shows the description. As the characters are
input, they are “echoed” to the screen at a screen location specified by variable
ZC, which holds a screen location value of 0 through 1023 (Model I/III) or 0
through 1919 (Model II). Variable ZD holds the maximum length of the input
string to be input. Variable ZE specifies whether a text string or numeric
variable is to be input. OnRETURN, string variable ZF$ holds the input string ifa
text string was to be input, or variable ZF holds the numeric value.

@@l 60702118 * INPUT
IR R R R R T R R R S S R R T S S IR R S S S ISR A
FRE@ 7 OTHIS I8 THE INPUT MODULE. [T INPUTS A NUMERIC VALUE OR

S@3@ 7 STRING FROM & GIVEN SCREEN LOCATION BY USING THE INKEY$
2040 7 FUNCTTON.

2@50 INPUT SCREEN LOCATIONs @ THROUGH 1023

2060 7 MAXTMUM LENGTH OF TNPUT STRING

@re JE=0 TF NUMERIC STRINGs =1 IF MIXED

bl 1/ QUTPUT METF NUMERTC

2098 TRING IF MIXED

TUDE 7 RN KR K KK H I KN 6 KT K6 B I B K KR B R 0 KK KB K

Figure 3-11. INPUT Module Description

38

Overall Description of the General Purpose Modules

This module is primarily used for “form fill in.” It is called by module FORMI , the
FORM Input module. This module calls IMPUT with a “form field” location
specified in variable ZC. INPUT handles the job of getting input characters from
the keyboard, displaying them on the screen, and checking for valid characters.

The input function is terminated either when the ENTER key is pressed, or after
the maximum number of characters has been entered.

A call to read an input string from screen location 544 (about the center of the
screen on a Model I/I1I) with an expected length of no greater than 10 charac-
ters would look like this:

20200 ZC=S544: Z0=16: ZE=1: GOSUE 2000

2021@ REM RETURM HERE WITH STRING IN ZF %

SUNPK Module (Line 2500)

This module is used to “unpack” a large string which is contained in string
variable XY$. The module description is shown in Figure 3-12. The unpacking
operation separates the string into sub-strings, or fields. The General Purpose
Modules work with fields of data for form fillin, searches, and other operations.
The fields for a mail list entry might be

(Field 1) EARDEN

(Field 2) BILL

(Field 3) HACIK WRITER

(Field 4) 250 N.S. MEMORY LANE
(Field 5) COMPUTER CITY

(Field 6) ch

(Field 7) 33999

(Field 8) (714) 555-1212

FE00 GOTO 2600 *SUNPKR

5 R R T T T R B R T IR R g
7OTHIS I8 THE UNPACK STRING MODULE, IT FINDS THE INDIV-

T IDUAL FIELDS OF A STRING CREATED BY THE PACK STRING
7OMODULE RY LOOKING FOR AN EXCLAMATION MARK CHARACTER.

? INPUT: XY$=GTRING TO UNPACK

? QUTPUT:STRING XY$ IS UNPACKED INTO ZW$(1)—-7W$(N)

’ AND LENGTH OF EACH PUT INTO ZX(1)-ZX{(N)

’ NUMBER OF FIELDS IS PUT INTO Z6.

e R R T S R e T T T SRR SRR g

Figure 3-12. SUNPK Module Description

When the fields are stored as a complete entry in an array of mail list entries, they
are stored like this

BARDEMIEILL 'HACK WRITERIZSO
CITYICA1999391 (714 585-12121

M.5. MEMORY LAWE'COMPUTER

39

Overall Description of the General Purpose Modules

The 5UNPK module “unpacks” this entry and stores the eight fields by looking for
the “!” character (called a delimiter) into the ZW$ array. The length of each of
the fields is put into array ZX. The number of fields found is put into variable

ZQ.

SUMPEK is used to unpack any string into the number of fields defined by the
delimiting “!” character.

ASRCH Module (Line 5000)

This module is used to search the XAS$ array for a given string XD$. Figure 3-13
shows the description. The XD$ array holds a number of entries that have the
“packed” form shown in the previous SUNPK description. These entries could
represent mail list entries, billing information, orders, or any alphabetic,
numeric, or special characters for the application involved.

5000 GOTOSH146 *ASRCH

U IR T T T RS R RS E IR LT L LTS LR LR SRS EE SRS LRSS LR SRR
SO ' THIS I8 THE SEARCH ARRAY MODULE. 1T 1S5 USBED To SEARCH
5030 7 FOR A GIVEN STRINGs EITHER TO FIND THE EXPECTED SGTRING
S@40 7 OR TO FIND THE SPOT WHERE THE STRING SHOULD BE INSERTED
a05@ INPUT: XD$=8TRING FOR SEARCH

5060 7 XA AND XA% ARRAYS CONTATIM APPROPRIATE DATA
5070 OUTPUT: XJ=INDEX TO ENTRY BEFORE STRING

gLi=17] XK=TNDEX TO NEXT AVAILABLE SLOT

LS99 ° ¥L=INDEX TO NEXT ENTRY AFTER STRING OR STRING
5108 ° OR —1 IF NEXT ENTRY OUT OF ARRAY

2110 XM=@ IF NOT FOUNDs 1 IF FOUNDs &=0UT OF MEMORY
S1za XG=# OF ENTRY

SR T EEAEAEEEAEEAEEARAAERRHEE R R RS F AR AR A X HAK K HE R R B KA

Figure 3-13. ASRCH Module Description

To speed up searches, sorts, and merges, the XA% array holds values that
represent the order of entries. The string to be found is put into XD$, and a call
is made to ASRCH. The string will either be found or will not be found. If the
string is found, variable XM=1, otherwise it is 0.

Three variables are used to hold the position of the string in either the “found” or
“not found” case. If the search string is found, XL contains the number of the
X AS$ array that matches the entry; if the search string is not found, XL points to
the next entry after the position in XA$ where the search string should have
been. The XAS array is essentially in alphabetical order. If XL=-1 no “interme-
diate position” was found.

Variable XJ points to the previous entry in XAS$ if the search string is found, or
to the entry before the position where the string should have been.

Variable XK points to the next “available,” or unused, position in XA$. XA$
normally contains a large number of unused positions, either positions at the
end because the array has never been filled up, or ones interspersed throughout
XAS$ because entries have been deleted.

40

Overall Description of the General Purpose Modules

Variable XS holds the number of the entry in XA$; this is either the number of
the “found” entry, or the number of the position where the entry “should have
been” (the insert point).

A call to ASREH to search for the entry BRRDEM'EILL 1HACK WRITER 1250 M. S.
... in XA$ would go something like this

: “D%=* “BARDEM" " : BOSLE S0p@

20210 IF XL <>-1 PRINT ¥A%(¥L)1 ELSE PRIMT **MOT FOUND®*

J I
g

[

Note that here the search was made for the first “field” of BARDEN. XL would
point to BARDEN!BILL! . .. even though the entire string did not match. Much
more about that later.

FINDN Module (Line 5500)

This module finds a given entry number in the XA$ array. Figure 3-14 shows the
description. Instead of searching for a string in XA$, FINDN simply counts
forward until the nth entry is found. Variable XS contains the number of the
entry to find.

3300 GOTOS545@ *FINDN

SET@ 7 A 33 I F I I I I I T 38938 3636 304363 H 200
3532@ 7 THIS I8 THE "FIND NTH ENTRY® MODULE. IT SEARCHES THE
3330 ° XA ARRAY TO FIND EITHER A GIVEN ENTRY #: OR TO FIND
534@ ° THE NEXT ENTRY.

355G 7 INPUT: XU=CURRENT # FROM PREVIOUS FIND NTH

D360 7 XS=# TO FINDs 1 TO N OR -1 IF FIND ALL

5570 7 XT=0 IF FIND NTHs 1 IF FIND NEXT

23580 Y5=0 IF PRIMARY: 1 IF SECONDARY

L5ee 7 OUTPUT : XM=@ IF ENTRY NOT FOUND ON FIND NTHs 1 IF
2600 7 FOUND

5610 ° XJ=INDEX TO LAST ENTRY

ae6zB XL.=INDEX TO NTH ENTRY OR NEXT ENTRY

563@ 7 OR -1 IF NOT FOUND

TOAW 7 R REH IR IR F MBI KA I I N

Figure 3-14. FINDN Module Description

On RETURN, variable XM is set to 1 if the nth entry is found or to 0 if it was not
found. It will not be found if the number sought is greater than the number of
entries in XA$. Variables XJ and XL are set as they were in ASRCH, to the
previous position and to the next position in XA$, respectively. XL is set to -1 if
the entry number sought is greater than the number of entries in XAS$.

Normally FIMDN is used to search for the nth entry and then, having found the
nthentry, it is used to access the next entries one at a time. Thisis accomplished
by setting variable XT, which specifies “find »” if XT=0, or “find next” if XT=1.
Variable XU should be set to 0 on the first call to FIMDM and is used by F INDHN
thereafter.

41

Overall Description of the General Purpose Modules

Normally F INDN searches through the XA$ array on the basis of “field 1” being
in alphabetical order. Field 1 would be the last name of a mail list, for example,
and the “leftmost” field in the XA$ entry. A “secondary key” of any field may be
used, however. In this case,F INDN searches for the nth entry based on the order
of one of the other fields. Variable YS isset to 0 asF INDN is to be used with field
1, or to 1 if FINDN is to be used with another field. The SECSRT module
description explains this function further.

A sample call to find the 11th entry of XA$, and then to find the remaining
entries in XA$ would look like this

20200 XU=0: xS5=11: XT=0: ¥3=0: GOSUB 5500
20210 IF xM< >0 THEN PRINT ®A$(xL) ELSE STOR
20220 XS=-1: XT=1: GOSUB 5500

20230 IF xL<<>-1 THEN PRINT XA$(xL) ELSE STOP
20240 GOTO 29220

SECSRT Module (Line 6000)

This module is used to resort the XA$ array by a field other than field 1. Figure
3-15 shows the description of the module. Normally the order of XAS$ is based
on field 1, which is the leftmost field of each entry in XAS. The field 1 portion of

BARDEMIBILL VHACK WRITER!ZEG N.S. MEMORY LAME . . .

for example, would be “BARDEN.” The order for field 1 is maintained in
integer array XA%.

LRRA GOTO 4100 *SECSRT

LADID P HEEBEERERFEFHEF R K ERARFHEERELXERRFREREEREFE AL RERDEENHRAREHR
6070 ° THIS IS THE SECONDARY SORT MODULE. IT IS USED TO SORT
&B2Q * THE XA$() ARRAY BY A SECONDARY FIELD. THE INDICES TO
604D ° THE SORT ARE HELD IN THE SECONDARY INDEX ARRAY XB%()
s@50 INPUT: XA%() AND XA%() ARRAYS

6060 ° YT=# OF SECONDARY FIELD

LED OUTPUT : SORTED ARRAY OF INDICES IN XBY%() ARRAY

ODBD 7 55556 0K I I H KKK KB B KK A I K

Figure 3-15. SECSRT Module Description

SECSRT allows a resort of the XAS$ array based on some other field. Variable YT
is used to input the field number. The “secondary” sort could be done on field 7,
for example, if field 7 were the zip code in a mail list. Integer array XB% is used
to hold the order for the new field, while integer array XA% maintains the
“primary sort” order for field one.

To call SECSRT to sort on field 5, for example, we’d have:
20200 YT=5:60SlE €000

The idea here is to use the first field for high-speed shuffling of entries, but to give
a slower-speed capability to sort on any entry field.

42

Overall Description of the General Purpose Modules

SPACK Module (Line 6500)

SPACK does the reverse of SUMFIK. It “packs” a number of fields into one long
string. Figure 3-16 shows the SPACK description. The fields are held in string
array ZWS$. Variable ZQ holds the number of fields to be packed. OnRETURH,
the fields from ZWS$ are packed into string XY$, with “!” characters between
each field.

EHQB GOTO &&QQ P SPACK

R R R R T R R R e R R TS S RS E R E R R
7OTHIS I8 THE PACK STRING MODULE. IT CONSTRUCTS A STRING
POOF XY$ MADE UP OF THE "ZP$" FIELDS IN SEQUENCE.

6540 7 THE “DELIMITER" BETWEEN FIELDS IN THE XY$ STRING 15 AM
6550 7 EXCLAMATION MARK CHARACTER.

HE560 7 INPUTY Za=H# OF 7IP$ FIELDS

&30

ZWS 1) - 7WS (N =FTELDS
OUTPUT:XY$ STRING MADE UP OF FIELDS
LR R Y R I P R P T S SRR LR e

Figure 3-16. SPACK Module Description

If we had the fields A LORF OF BREAD, A JUG OF WIME, and THOU in ZW$(1),
ZWSL(2), and ZW$(3), for example, this call to SPACK

200 Z0=3: G05UE EE0@

@ FRIMNT =%

would result in a printout of
A LOAF OF BREAD YA JUG OF WINE!TTHOUE

SPACK is used to unpack entries from X A$ and separate them into fields for easy
printing, modification, or other operations.

AADD Module (Line 7000)

The AROD module is used to add an entry to the XA$ array. Figure 3-17 shows
the description of ARDD. A call to ASRCH must precede the call to FADD to set up
variables XJ, XK, and XL.

TR0 GOTO 7h7A C AADD

TOAIW 7 R EFEFFFEEERFEREE IR ERF R F R EREE TR E R A F A A B R RS K I REEH AR R ELHE E AW
7@ 7 THIES [S THE ADD ENTRY MODULE. IT ADDS AN ENTRY TO THE
7030 0 XA%$ ARRAY AND SETS APPROFRIATE XAY POINTERS

7240 TNPUT: XJs XKKs Xl SETUP FROM SEARCH MODULE

TaEH OUTPUTIENTRY ADDED

T@RED 7 W KA WKWK TN U T KK NN FE TR KK IR RN R

Figure 3-17. AADD Module Description

Obviously, it is convenient to be able to add, delete, and modify (delete and add)
entries to the XA$ array, and AADD provides the add capability.

43

Overall Description of the General Purpose Modules

REPORT Module (Line 7500)

The REFORT module provides the capability of printing a form or report on the
system line printer. Figure 3-18 shows the description. REFLORT scans through
integer array XP and prints based on the code found in each element of the
array.

7506 GOTO 746440 ° REPORT

VAN EEE T T T EL LRSI ESILT TSI EEEL LTS EEI TSI L EELLLELTEELE L LT LT E LT3
752@ 7 THIS IS THE REPORT MODULE. IT PRINTS A REPORT ON THE

7H3B 7 SYSTEM LINE PRINTER AS DEFINED BY A LIST OF "ITEMS".
7540 7 INPUT: XP(@)=NUMBER OF ITEMS

7550 7 APCL)Y-XP(N)=]ITEMS

7hHA6 XN=AUTO-INCREMENTING COUNTER

7H7e 7 OUTPUT: ITEMS DEFINE PRINTING OF FIELD DATA

7580 ITEMB: @=I.INE FEED

7590 IELD N STRING IN ZW$(1)-ZW$(N)

7THDD 7

7418 7 SE EJECT

76EH 7 RINT REPORT COUNTER XN

YRV IR T XTSI EST LT LT EELTEEE LIS ELE LT LT L L TS T

Figure 3-18. REPORT Module Description

Codes are provided for printing any field found in array ZWS$, for a line feed
(new line), for a tab to any character position along a line, for a new page, or for
an item count. Although this doesn’t appear to be much at first glance, it is
possible to print virtually any form by defining the proper codes and fields.
Possible report formats are described in detail in a later chapter.

FORMS Module (Line 8000)

This module prints out a “form” on the screen. Figure 3-19 describes the
module. A “boxed” form of variable width, title, variable number of fields, and
variable input field length is automatically generated by this module.

BOBB GOTOE1ZO °FORMS

FRAID PHEAEFXEFEFERFEEFEEEAFREFEHEREREEELEH LR FEERERFRHREEHR S EHERK
BOZG THIS IS FORM SKELETON MODULE. IT OUTPUTS A FORM MADE

§@30 ' UP OF A NUMPER OF "FIELDS". IT IS USED IN CONJUNCTION
804G ° WITH THE FORM INPUT MODULE TO INPUT FORM DATA.

gang 7 INPUT: ZP=FORM WIDTH IN # OF CHARACTERS, 10-60
860 Z2a=4# OF ITEMSs 1-12

ga7e ZP$ (@) =FORM TITLE

aesa -’ IP$(1)-ZPH(N)=FIELD STRING

eaea ZR(O1D-ZR(N)=FIELD LENGTH

8100 OUTPUTFORM 15 OUTPUT ON SCREEN

g11a 25(1)~72S(N)=8CREEN LOCATION OF FIELDS

FLE0 T HERREEREEE R R R H R RIS R FHREHEHR R R R HEHR AN R FEK K

Figure 3-19. FORMS Module Description

Variable ZP defines the form width. Variable ZQ is the number of fields in the
form. The first entry of array ZP$, ZP$(0), holds the title of the form. The
remaining entries of array ZP$ hold the field text. The corresponding entries of
array ZR hold the “field width” for the input section of the form.

44

Overall Description of the General Purpose Modules

OnRETURHM, array ZS holds the screen positions for each of the fields for input.

To output a form for a “part number” description, for example, the following
code might be used:

SR=E0: Z0=3: ZP3(@)=° “PART MUMBER DESCRIPTION™®
SPE(L)=""PART NUMBER * 7@ ZPF(2)=° *DESCRIFPTION *°
ZPE 1= MAMUFRCTURER™ " @ ZRI11=10: ZR{Z1=30

0 2R3 =2@: E0SUE &

and would result in the form shown in Figure 3-20.

Figure 3-20. FORMS Module Example

ZS8(1), ZS(2), and ZS(3) would hold three screen location values which could
then be used in calling the FOFMI module to input field data.

The FORMS module can have a great deal of use for displaying forms of various
types since the forms only have to be defined one time, say in a subroutine. As
any number of fields are allowed, and input field lengths are variable, the task of
redefining new graphics and displays for different forms is handled automati-
cally by FORIS, ‘

45

Overall Description of the General Purpose Modules

FORMI Module (Line 8500)

This module is used after FORIMS to automatically allow 1nput of field data on the
displayed form. Figure 3-21 shows the module description. FORIMI calls the
IHPUT module to input each form field. AtRETURHN, array ZWS$ holds the entries
for each field.

E5 OO GUfo:w/E’i ’F\”)RMI

TH s 168 THE F (,)RM ,[NPU] !"1‘,)[)(!5‘,5 AFTER A F ()RM HAH
VAR T HAS BEEN DUTFUT, THIS MODULE READE IN THE FORM FIELDS.
5] 34(0 ! [NPUT® NO PARAMETERG
erEnm OUTPUT: INPUT STRINGS IN FWH(1) - ZWs(N)
T KRR K N KRR K K R KR KR MR R R KRR KRR KRR R

Figure 3-21. FORMI Module Description

After FORIMS has been called for the previous example of a part number descrip-
tion, FORMI would be called by

2RZ4n E05UE 25800

FORMO Module (line 9000)

This module is used in conjunction with FOFM= to display field data. Figure 3-22
shows the description.

/('Wl(l’l GOTOYAER °FORMO
R EEEEANEEEAFEEEEFF R H A A K AN EFH A A EH KT B R DA DUR KSR LA
THIS 18 FORM OUTRUT MODUILE. 11 MAY BE USED AFTER A FORM
SRELETON HAS CEN OUTPULT. FIELD DATA MAY BE DISFLAYED
*ORY USTING THTS MODULE.
? INFUT: TW$HCT) = ZWHIND) CONTAING FIELD DATA
OUTRUT: FTELD I’)/ﬂ(x I')I‘SPI AYFI) '[N F LET. I\"‘"

Figure 3-22. FORMO Module Description

FORMO is used to repetitively display new entries from XA$ (or any source) once
FORMS has setup the “skeleton.” Forty part number descriptions could be
displayed in sequence by first calling FORMS, and by then calling FOR110 forty
times, after each part number entry was obtained from XAS$ by FIHOM and
“unpacked” by SLMFL.

The field data to be displayed must be in array ZWS$; this arrangement is
performed automatically by Sl

ADEIL Module (Line 9500)

This module deletes an entry from X AS$, based on variable setup from a previous
ASRCH call. Figure 3-23 shows the description.

46

Overall Description of the General Purpose Modules

LA GOTOIET7O ° ADEL

GETQ 7 HH A EEHE R R E KRR HH K H I IR I I BB BN R
9320 7 THIS I8 THE DEILLETE ENTRY MODULE. IT DELETES AN ENTRY FRO
F33@ ° THE XA% ARRAY.

E4m 7 INPUT: XJsXKs XL SETUP FROM SEARCH MODULE

PE50 7 OQUTPUT: ENTRY DELETED

DHE@ 7 HHHHE R R H A F KRR IR I B HI K HK KK

Figure 3-23. ADEL Module Description

HOEL implements the “delete” portion of the add entry, modify entry, and delete
entry to XAS$.

MENU Module (Line 10000)

This module displays a menu of items and inputs an item number selection.
Figure 3-24 shows the module description. Menus are used to provide interac-
tive foolproof choice of system functions for applications programs. MENU
outputs a menu of items with title, waits for the input defining the item number,
and then returns the number selected.

106G GOTO1B140 * MENU
TOQIQ P R ERERFEERERE N HFEFE LR HH NI H BB FH I H K950 9 36345
10020 * THIS I8 THE MENU MODULE. IT TAKES A NUMBER OF STRING

10@30 > ITEMS AND DISPLAYS THEM ON THE SCREEN IN THE FORM OF A
@04l "MENU". 1T THEN USES THE INPUT SUBROUTINE TO GET THE
1005@ ° PONGE FOR VALIDITY. IF THE RESPONSE IS8 CORRECT, IT
1Q26G ° RETURNS THE NUMBER OF THE SEILECTED ITEM. IF THE RES -
1a07@ * PONSE IS NOT CORRECTs IT WAITS UNTIL A PROPER RESPONSE
180 ° HAS REEN KEYED IN RY THE USER.

109a INPUT: ZA=# OF ITEMS 1-1@

1atme -’ ZAS (M) =TITILLE OF MENMU

iarie ZAS${1)~ZA$ (N)=MENU SELECTIONS

B el B QUTPUT:ZB=TTEM SELECTED .

T@QIBQ 7 HHFEH KR HE R EHH KNS BRI KN H KA K EH I I I I K KW I KK

Figure 3-24. MENU Module Description

Variable ZA holds the number of items in the menu. The strings defining the
items in the menu are in the ZA$ array, startingat ZA$(1). ZA$(0) holds the title
of the menu. On RETLRM, ZB holds the number of the item selected.

As an example, if you wished to display a menu of three choices for a billing
system, the call might look like this:

and the menu displayed would appear as shown in Figure 3-25. MENU would
RETURM with a valid selection in variable ZB.

47

Overall Description of the General Purpose Modules

Figure 3-25. MENU Module Example
AINIT Module (Line 10500)

This module is used for initializing the arrays and some variables used by the
General Purpose Modules. The description of HINIT is shown in Figure 3-26.
This module should be called immediately by the applications program at 20000
by a GOTO 16500, Line 10890 of the module must be changed to the return line
after the call.

1R506
1051@

10 ‘
10540
10556
10560
10570
10580
1@059@

GOTOI@AH1D *AINIT
TEEFRAEREAREREEEEEN R EF R RS AR EF IR YA EFRH IR N L E N L E S AR LK
TOTHIS I8 THE INITIALIZE ARRAYS MODULE. [T MUST RE CALIED
 REFORE ANY ARRAY PROCESSING I& DONE. IT &ETS UP THE
T OXAY% AND XA$ ARRAY To “UNUSBED".

’ INPUT: NO PARAMETERS

¥ ueCALLED BY & GOTO®E*
OUTPUT: XAY% ARRAY SET TO ALL -¥
XA% ARRAY SET TO ALl "#"

Figure 3-26. AINIT Module Description

The #INIT module calculates the amount of free memory and bases the size of
the arrays upon this amount. It then initializes the XA$ and XA% arrays by
marking each of their entries with an “unused” string or value. It then sets

48

Overall Description of the General Purpose Modules

parameters for the type of system by asking for the system type, Model I, II,
or IIL

PROMPT Module (Line 11000)
The FROMPT module is used to output a warning or prompt message on the last

screen line. It then reads in a numeric or string response, or waits a short time if
no response is expected. Figure 3-27 shows the description of this module.

11000 GOTO 11118 ° PROMPT

11010 ’%%i*%**i%*%**%*****%***%****%%**%*%%**%************%***%

L102@ ° THIS I8 THE "PROMPT" MODULE. IT OUTPUTS A G

IVEN MESSAGE

1103@ * AT LABT LINE AND READS IN A USER STRING OR NUMERIC
11040 7 RESPONSE.

i1e5e - INPUT: XB$=MESSAGE TO BE OUTPUT

11860 7 0 IF NUMERIC RESPONSEs=1 IF STRING,

Hieve IF YES OR NO RESPONSEs=3 NO RESPONSE
11080 OUTPUT: XC$=8TRING RESPONSE OR "Y' OR "N"

l1iava -’ XC=NUMERIC RESPONSE OR @ IF ENTER

LLLQW 7 3353 M 340N H RN H RTINS AIE T A I BTN 39T I

Figure 3-27. PROMPT Module Description

String variable XBS$ is the message to the output. Variable XB is a 0 for a
numeric response, 1 for a string response, 2 for a yes or no response, and 3 for no
response. On RETURN string variable XC$ holds the string response or “Y” or
“N,” while integer variable XC holds a possible numeric response.

PROMPT is used for general system prompt messages and error messages. The
following call outputs the error message INVALID EMTRY f:

20200 XBF=**IMVALID ENTRY 87z %B 3 : GOSUE 11066
ERROR Medule (Line 11500)

The ERROR module is used for “expected” errors, such as not finding a disk file
name. The description of ERROR is shown in Figure 3-28. Certain types of errors
are what we’ve melodramatically called “catastrophic” errors. These are “logic”

11508 6GOTO 11640 "ERROR

11510 ’***%%%ﬁ%%%**%*%**%******************%*%****%*%**%*{%***%

1152@ * THIS 1§ THE ERROR MODULLE. IT RESPONDS TO A

"NON-=-CAT

SAGE QUTPUT»

TI53& ° ABTROPHIC" SYSTEM ERROR BY OUTPUTTING A MESSAGE AND
11548 * SETTING AN ERROR FLAG.

11550 INFPUT: Z7(@)=ZERO IF ALL ERRORS CATASTROPHIC,
11560 - NUMBER OF ERROR TYPES IF POSSIRILE
11570 7 ERRORS

11580 - 27 ARRAY HOLDS All. ERROR NUMRERS POSSIBIE
ii1s9a » Z7% ARRAY HOLDS ERROR MESSAGES

11608 ° QUTPUT: TF ERROR NUMPER FOUNDs ERROR MES

11412 ° XX FLAG SETs AND RETURN MADE TO NEXT STATE-
1i6z0 7 MENT. IF NOT FOUNDs RESUME AT ERROR.

11630 ’*%*%%%%*%*%*%%***%**%%*%****%***i%*****%***%%****%*****%

Figure 3-28. ERROR Module Description

49

Overall Description of thé General Purpose Modules

errors caused by improper coding in your application; they need to be fixed by
finding a bug or bugs in your program. ERROR passes these through with the
message CATASTROPHIC ERROR, causing a BREAK.

If you allow certain errors in your program, such as not finding a named disk
file, or attempting to write a protected diskette, ERROR gives you the ability to
detect these errors, printout a message indicating the type of error, and continue
in the program for corrective action. This is normally much better than a BREFiK
back to the BASIC interpreter for errors which are correctable by the system
user.

Array ZZ is used to hold the “allowable” error numbers in ZZ(1) on. ZZ(0)
holds the number of allowable error codes. A related array ZZ$ holds the error
message to be displayed if an allowable error is found. After the detection of the
error code and display of the message, variable XX is set so that the applications
program knows that the ERROR routine has been entered.

CDLOAD Module (Line 12000)

This module is used to load a cassette or disk file in special General Purpose
Module Format. The description of COLOAD is shown in Figure 3-29.

15000 GOTO 12110 ° CDLOAD

1zl ° PEEFEEEEr T e r s P 2T EEE LS L ELLETEESE ST S EESEEE S

M3 THIS IS THE CASSETTE/DISK L.0OAD MODULE. IT LOADS A

17030 ° CASSETTE OR DISK FILE IN GPM FORMAT INTO THE XA% ARRAY
12040 * AND ADJUSTS THE XAY POINTERS. THE LOAD IS EITHER AN
13050 * INITIALIZE TYPE OR A MERGE.

12060 7 INPUT: ZW$(1)="C" FOR CASSETTE OR "D" FOR "DISK"
12078 ° ZWS () =FILENAME (DISK ONLY)

1z0ea ZWE () ="1" FOR INITIALIZE OR "M" FOR MERGE

OUTPUTIFILE READ INTO XA%$ AND XAY% ADJUSTED

R L eI e e e e RS LS S IR E S AR ke S R

Figure 3-29. CDLOAD Module Description

General Purpose Module files are sequential “ASCII” files made up of all of the
entries from the XA$ array. The CULOAD routine reloads a previously written
file into the XA$ array. There are two types of loads, initialize loads and
“merges.” The initialize load clears the XA$ array of all entries and loads in the
cassette or disk entries from the specified file; it is similar toa BASICLUAD. The
merge load merges entries from the cassette or disk file with the current entries in
the XA$ array, ordering the entries as it does so; it is similar to the BASIC
MERGE.

COLOAD is called with string array ZW$ containing the types of operations.
ZWS$(1) defines whether the load is from cassette (C) or disk (D). ZW$(2) is the
disk file name. ZW$(3) defines an initialize or merge.

CDSAVE (Line 12500)

The description of COSAVE is shown in Figure 3-30. CDSAVE is the counterpart to
CDLOAD — it saves the data from X A$ to a disk or cassette file. The entries from

50

A GOTO 12580 ° CDSAVE

iR R R R R T R R T Y S S SRV
7 THIS IS THE CASSETTE/DISK SAVE MODULE. IT SAVES THE Xa4$
? ARRAY AS A CASSETTE OR DISK FILE IN GPM FORMAT.

? INPUT: ZW$(1)="C" FOR CASSETTE OR "D* FOR DISK
’ ZW$ () =F ILENAME (DISK ONLY)
? OUTPUT : XA$ ARRAY WRITTEN TO CASSETTE OR DISK

12570 7***%*%*%************%**%**i***%%*%%**%*%%******%%*******

Figure 3-30. CDSAVE Module Description

XAS$ are written out as a file, from entry number 1 on through the last entry of
XAS. The resulting GPM file must be reloaded by COLOAD, but may be
examined by the DOS LIST or PRINT command, as it is an ASCII file.

The ZWS$ array holds the type of file and name as in the case of COLOAD.

Unused Module Area

The line numbers from 13000 through 19999 have been left free for modules to
be defined by the user. If each module is allocated a range of 500, there is enough
room for 14 additional modules. If each module is numbered with lines in
increments of 10, there may be 50 lines in a module.

Lines 3000 through 4999 have been left free for “high-speed” modules you might
want to add to the General Purpose Modules. Modules located here will be
executed more rapidly than in a later area.

Detailed Description of Modules

In the remainder of this section we’ll describe each of the modules in detail. You
may want to scan over this and go right on to Section II1, which describes a
sample application, and Section IV, which describes further applications. The
module description, however, also discusses system operation in regard to
display, keyboard input, string operations, array and data storage, and input/
output, so you may want to refer back to it or read those portions of it which
aren’t detailed descriptions of the modules.

51

Chapter Four
Display Operations
Using the GPM

We’re going to discuss video display operations using the General Purpose
Modules (GPM) in this chapter. We’ll start by describing the display character-
istics of the TRS-80, then describe what general approach is used in the GPM,
and finally discuss three GPM display modules, MENU, FORMS, and
PROMPT, in detail.

Video Display Characteristics

The screens of the TRS-80 Models 1, I1, and III are divided up into lines and
character positions. The Model I and III have 16 lines, with each line capable of
holding 64 characters in 64 character positions. The Model II has 24 lines with
80 characters ona line. The displays for the three models are shown in Figure 4-1.

MODEL I/l
~
LINE 1
16 LINES OF
64 CHARACTER
POSITIONS
16)
N J
64 CHARACTER POSITIONS/LINE
MODEL i
LINE 1 A
24 LINES OF
> 80 CHARACTER
POSITIONS
4
LINE 2)
N J

s

80 CHARACTER POSITIONS/LINE

Figure 4-1. Video Display for Models 1, If, and 1l

53

= . .
s Display Operations Using the GPM

Most of the time we’re interested in displaying character data on the screen.
Whenever we talk about character data, or character mode we really mean
display of the alphabetic characters A-Z and a-z, the digits 0-9, and special
characters such as !, ”, and &. These characters are represented by distinct codes
called ASCII codes. ASCII (American Standard Code for Information Inter-
change) codes are standardized codes used by many input/output devices that
convert “human” input to data, or that convert computer output to recognizable
form. The ASCII codes used in the TRS-80s are shown in Figure 4-2.

E e ! I
L =37§f ’ DIGITS ST:LC ’ AL,PHAvl S Laoma- ST =
el P N Ve S e g P
| 6 Tas] olss] : le5]alor | Jo7]a 123
1 1149 1]59] : |66]| B |92} 98ib
2 s0|2f60] <|67]C {93} 9| c
3 #1513 (|61 = |68]D |94 100| d
4 $ (52| 462> |69 E |95} 101]e
51 %|53|5 |63 ? |70| F |96} {102 {
6 | alsaleleal@|71la 103| 9
7 5517 72| H 104| h
8 (|56}]8 73| 1 105] i
9) |57]9 74(4 106| j
* 751 K 107| k
+ 76| L 108 |
7| M 109| m
-— 781 N 110} n
7910 11| o
/ 8o P 12| p
8t| Q 13| q
82| R 14| r
83i S 115| s
84| T 116] t
Notes: 85| U "7 u
£ - space 86| V 118| v
87| w 19w
e ey " x| ol x
upon system and device. 8ol Y 121| v
Code may or may not be
standardized. See 90| Z 122 z
appropriate manual.

Figure 4-2. ASCII Codes

Note that all ASCII codes that define character data are between decimal 32 and

decimal 127.

It’s not only convenient to be able to display character data, however. Some-
times it’s also nice to be able to draw bar graphs, horizontal and vertical lines, or

54

Display Operations Using the GPM

special characters, such as flashing cursors. The TRS-80s have this graphics
capability to some extent, and we can easily draw lines or special symbols, or
even make figures.

The TRS-80 Models I and 11l have 16 times 64 or 1024 character positions, while
the Model II has 24 times 80 or 1920 character positions. Each one of these
character positions may hold a single alphanumeric or graphics character. We
can intermix alphanumeric and graphics characters at will by outputting the
proper code to the screen character position. If the code is between 32 and 127,
the character will be alphanumeric. If the code is a graphies character code a
graphics character will result. The graphics character codes are not really part of
the ASCII codes. There are special codes above 127 as shown in Figure 4-3.

MODEL I/1lt MODEL i
VALUE
128 128
GRAPHICS CODES GRAPHICS CODES
128-191. DEFINE ggi?,ﬁfg"s“
A “SIX-BIT” (TYPICAL
PROGRAMMABLE 15
PATTERN 1% REPEATS AsCH
§= (TYPICAL) CODES EQUIVALENT
L TO 32 to 111
191
192
MODEL 1: SPACE
COMPRESSION
CODES
MODEL Iii: SPECIAL
CHARACTERS (ALSO
FOR VALUES OF 0-31).
PREDEFINED. b
(TYPICAL) §g’,’ URUSED
255 252-255 CURSOR _

Figure 4-3. Graphics and Special Codes

Each of the character positions on the TRS-80 are referenced by a number,
starting with 0. The first character position on line 1 is 0, the next is 1, and so
forth. The first character position on subsequent lines is 64, 128, 196, and so
forth for the Models I and 111 and 80, 160, 240, and so forth for the Model II. In
other words, the character positions are incremented by 64 or 80 for each new
line. To find the character position number for any character position, subtract
1 from the line number, multiply by 64 (Models I and III) or 80 (Model I1), and
add the character position on the line minus one.

Come on now, the math isn’t all that bad. As an example, suppose that we
wanted the middle of the screen on a Model I. There are 16 lines, so we’ll take

55

Display Operations Using the GPM

line 8. There are 64 character positions per line, so we'll take the 32nd. The
character position number (CP#) is

CP#=(8-1)*¥64+32-1=512+31=543

This scheme is shown in Figure 4-4. See, you didn’t need a computer to work it
out...

64 (MODEL I/1ll) OR 80 (MODEL 1)
CHARACTER POSITIONS/LINE

A

LINE
1
2
3
4
5 |
16 LINES (MODEL
I/11l) OR 24
LINES (MODEL 1) S v _—
CHARACTER POSITION ON LINE = 20

MODEL V/lii:
CHARACTER POSITION = CP# = (LINE #-1)*64 + (CHARACTER
POSITION ON LINE -1)
= (5-1)*64 + 20 = 256 + 20 = 276
MODEL I
CHARACTER POSITION = CP# = (LINE #-1)*80 + (CHARACTER
POSITION ON LINE -1)
= (5-1)*80 + 20 = 320 + 20 = 340

Figure 4-4. Character Position Numbering

BASIC Methods of Displaying Characters

There are really two methods for displaying alphanumeric or graphics charac-
ters on the video screen in BASIC, the FRINT or the FRINT E.

We can simply say

100 PRIMT ¢ *HELF, I AMBEIMG HELD PRISOMER IH A FORT WORTH COMPUTER
PLAMT ™"

and get an output of the text at the next line on the screen. The problem with this
method is that the screen keeps “scrolling up”; subsequent lines eventually reach

the bottom of the screen and previous lines disappear out of sight past the top.
Also, we can’t easily display a form, as the scrolling moves the form up.

The problems related to scrolling are solved by using the FRINT @ form of the
PRINT command. Every time a PRINT @ is used, the character position of the

56

4

Display Operations Using the GPM

screen is specified after the @, and no scrolling occurs, as long as a semicolon (;) is
used at the end of the print statement. The semicolon simply says, “print the text
and don’t skip to the next line.”

Most of the display work we’ll be doing in the GPM will use the FRINT @
command, rather than just a PRINT, so you’d better brush up on it in your
reference manualif you're not familiar with it. The general form of the PRINT &
is:

1660 PRINT @ XXxx, © * TIPPECAMOE AND TRS-80 TOO!? '

The = will be a character position, 0 through 1023 for the Models I and I1I or
0 through 1919 for the Model I1. The semicolon will always be used at theend to
avoid skipping to the next line and disrupting previous screen output.

How about graphics character display? We’ll be using graphics characters for
display of forms. We'll use the graphics characters to draw a box around the
forms, a simple application. We’ll also use graphics characters as a blinking
cursor for input of text, and to represent predefined “fields” of data. These
functions are shown in Figure 4-5.

GRAPHICS FOR “BOX"

NAMET !ILHITT T
NAME2 11111111111
NAME3 [1iit1intnt

FORM DEFINED BY
CHR$(178) GRAPHICS

GRAPHICS FOR CURSOR AND FIELDS

e FIELD DEFINED
e —— BY GRAPHICS
CHARACTERS —

p
ODEL
NAME1mIIHIIHIHIIIHH o 2(138) (Mop

i)
\ BLINKING CURSOR HERE

MARKS POSITION. GRAPHICS
CHARACTER TURNED ON
AND OFF RAPIDLY.

Figure 4-5. Graphics Display Operations

Sometimes we’ll be PRINTing a string of graphics characters (as in the “box”
lines), and other times we’ll be PRINTing a single graphics character (as in the
cursor case). The common method for doing this is to use the CHR% function.

57

4 &2

1

Display Operations Using the GPM

The CHR$ function creates a single character string from a numeric value. If we -
said

106 PRINT @ 512, * “MESSAGEL’ *+CHR$(149)+° “MESSAGEZ" "3

for example, we’d be printing the string shown in Figure 4-6. The “+”in this case
means that we've joined the three strings of MESSAGEL, CHR®(1437, and
MESSABEZ to make one larger string, and then PRINTed that string. This
process of joining strings is called concatenation, a bit of computer jargon for a
simple process.

100 PRINT@512, “MESSAGE1"+CHR$(149)+"MESSAGE2";

MESSAGE1l MESSAGE?2
Figure 4-6. CHR$ Example

The °HRS function created a single character string from the graphics character
code of 149. This single character code was joined to MESSAGEL and then
MESSAGEZ was joined to the result.

If we wanted to output a number of graphics characters at one time, we could
make a long string out of graphics characters by saying something like

100 A$=CHRS [149)+CHRS [143)+CHRE(143

200 PRINT @ 512, A%;

which would print three graphics characters at screen character position 512.
An easier way to do this, provided that all graphics characters are the same,
would be to use the STRINGS function. The STRINGS function creates a string

made up of a number of characters, alphanumeric or graphics. To makea string
of 5 “A” characters, for example, we’d say

100 B$=STRINGE(S, “*RA°7)
200 PRINT @ 512,B%;

The result of this would be a display of * *ARRFFA* " at screen character position
512.

To create a string of graphics codes, it’s simply a matter of combining the
STRINGS and CHR$ functions. This code

106 B$=STRIMGS (5, CHRE(143] |
200 PRIMT B 512, B%;

58

Display Operations Using the GPM

would print 5 graphics characters at screen position 512. This is the technique
we’ll use in the GPM for printing the horizontal lines of boxes, or for field
characters.

GPM Design Philosophy for Display Operations

The basicidea we've used for the General Purpose Modules display functions is
this: We’ve provided modules for easy display of menus, forms, and system
messages.

We’ve made these displays automatic as far as screen formatting. You don’t
have to be concerned about screen character positions — for example, the
module willautomatically center the form for you. Menu items will be automat-
ically numbered. System messages, that is, messages from your applications
program, will be displayed in a special message area. An “activity area” will
display counts of internal “number crunching” so that during long processes the
user will be able to see that the system is actually working instead of being “hung
up.” (Yes, Virginia, systems even “hang up” for computer book writers — too
often!)

The display modules work in conjunction with keyboard input modules. We’ll
explain the display functions in this chapter and talk about keyboard input in
the next.

The screen has been divided into specific areas in the GPM design, as shown in
Figure 4-7. The first line is generally used as a title for a form or menu. The last

Figure 4-7. GPM Screen Areas

59

am
4 faTfi71 Display Operations Using the GPM

7]

portion of the title line is the “activity area.” It displays activity counts during
extended processing. The activity counts are generally the record numbers of
data being processed.

The last line of the screen has been designated as a system message area. The
system message may be an error message — indication of an invalid record
number, for example, or it may be a “prompt” type of message — a query
regarding continuing or restarting.

The bulk of the screen is used to display a menu or form. Typical menus and
forms are shown in Figure 4-8.

Figure 4-8. Menus and Forms

60

Display Operations Using the GPM oo

The system variables used in the display modules are automatically set after
loading and specification of your system type (Model I, I, or III). Variable YA
is the screen width in characters (64 or 80). Variable YB is the number of lines
(16 or 24). Variables YC and YD are the character positions of the start of the
second and third lines of the screen. Variable YF, YG, YH, and YI are the
graphics characters to be used for horizontal “top” lines, horizontal “bottom”
lines, “left” lines, and “right” lines. Variable YJ is the graphics character to be
used for the input “field” area to be displayed on the form. Variable YE defines
the character position of the input area for a response to a system message.
Variable YL defines the character position of the activity area. All of these
variables are initialized in the AINIT module.

MENU Module Operation

The IMENU module is shown in Figure 4-9. It displays a number of menu items on
the screen, along with a menu title, and calls the INPUT Module (line 2000) to
input a menu item selection. The menu items and title are automatically
centered and numbered. A typical call and display are shown in Figure 4-10.

16000
10210
10020
10630
18040
10850
10060
10670
10880
10090
10160
10116
10120
16130
10140
18150
10160
10170
10180
16196
106208
10210
10220
18230
10240
10250
10260

GOTO1@140 *MENU
B TR T R R T R T T R I I R Y R
* THIS IS THE MENU MODULE. IT TARES A NUMBER OF STRING
ITEMS AND DISPLAYS THEM ON THE SCREEN IN THE FORM OF A
"MENU". IT THEN USES THE INPUT SUBROUTINE TO GET THE
PONSE FOR VALIDITY. IF THE RESPONSE IS CORRECTs IT
RETURNS THE NUMBER OF THE SELECTED ITEM. IF THE RES-
PONSE I8 NOT CORRECTs IT WAITS UNTIL A PROPER RESPONSE
HAS BEEN KEYED IN BY THE USER.
INPUT: ZA=# OF ITEMS 1~10
ZAS(@)=TITLE OF MENU
ZA$(1)-ZA%$(N)=MENU SELECTIONS

? QUTPUT:2ZB=ITEM SELECTED
M2 RS e R T IR Y I R T X)
IF ZA<1 OR ZA>1B THEN STOP
CLS
PRINT CHR%(Z)3
ZI=LEN(ZA%(@))
PRINT QYA/Z-ZI/2:ZA%(D);

FOR ZI=1 TO ZA

PRINTQZI®#YA+YA+1D. Z13ZA%(Z1) 3

NEXT 71
PRINT &ZI#YA+YC+15, "ENTER SELECTIONs 1 THROUGH "3ZAj3
ZC={Z1#YA+YC+5@) : ZD=2: ZE=B: GOSUR 2000
IF ZF<1 OR ZF»ZA GOTO 10220
B=27F
RETURN

L L L)

Figure 4-9. MENU Module Listing

First, MEMU tests the number of menu items, variable ZA. If ZA is less than 1 or
greater than 10, MENU stops so that the application program can be corrected.
Next, the screen is cleared by the CLS.

61

Display Operations Using the GPM

CALL:

F15@ "DISPLAY MENU

S 6D ZA=RIZAS (@) ="MATL LIST":ZA$(1)="ADD ENTRY 7O FILE"
ZP170 ZAE(Z)="MODIFY OLD ENTRY":ZA%(3)="DELETE ENTRY"

20180 ZIA%(4)="DISPLAY/PRINT FILE":7A%(5)="SEARCH FILE"

D190 ZA$(6)="NEW SORT":ZA%(7)="L0OAD FILE":ZA%(8)="8AVE FILE"
20200 GOSUR 10000

Figure 4-10. Menu Module Call and Display

Now, the title is displayed on the first line. Thetitleisin ZA$(0) and may be any
number of characters, as long as it does not overlap the “activity area,” which
starts 9 character positions less than the screen width. The length of the title is
found by the LEN function, which is used to set ZI equal to the title length. The
title in ZA$(0) is then printed at (Y A-ZI)/2, which is width-length of title divided
by two, or the character position which approximately centers the title. Wesay
approximately, because the result could be XX.5. In this case, the “XX”
position is automatically used by the FRIMT & function.

The menu selections are displayed in the “indented loop.” The loop goes from
ZI=1 to ZA, the number of items. Nine items, for example, would mean 9
repeats, or iterations. The FRINT @ statement in the loop prints the selection
number (ZI) and the text of the selection (ZA$(ZI)). The *“2"" location is
(ZI*Y A+Y A+10). This is equal to the width of a line times the iteration number
plus one line plus 10 character positions. For the first item, this would be

62

Display Operations Using the GPM 4

8000
801
8020
8030
8040
8050
8060
8070
8080
8070
8100
8110
8120
8130
8140
8150
8160
8170
8180
8190
8200
8210
8220
8130
8240
8250
8260
8270
8:80
8290

1*64+64+10 or 138, ten character positions on the third line (Mod I, III width
used in this example). Subsequent items are arranged in a column one line
below.

Now the prompt message EMTER SELECTION, 1 THROUGH 25 is displayed two
lines after the last item and slightly indented (ZI*YA+YC+15). YC is equal to
two line widths (YA*2).

At this point a call is made to the INFUT subroutine to input the response. The
parameters passed to IMFUT (Line 2000) are the screen location for the input,
ZC, the maximum length of the input string, ZD, and a “numeric/string” flag,
ZE. Here the maximum length is two characters (values of 1 - 10), the input is
numeric, and the location is 50 character positions past the prompt message.

A RETURM is made from IMFUT with ZF set to the input value. A check is made
on this value. Ifitisless than 1 or greater than the number of menu items (ZA),
itis invalid, and the prompt message must be repeated for new input. If the value
is all right, ZB is set equal to ZF and a return is made to the user’s application
program.,

FORMS Module Operation

The FORMS module is shown in Figure 4-11. It displays a form on the screen,
along with a form title. Inside the form are “fields,” which are subdivisions of the

GOTOBI3D *FORMS
? %****%%***%*******%****%****'*****%**%***%****%***%*****%
> THIS IS FORM SKELETON MODULE. IT OUTPUTS A FORM MADE
> UP OF A NUMBER OF "FIELDS". IT IS USED IN CONJUNCTION
* WITH THE FORM INPUT MODULE TO INPUT FORM DATA.
’ INPUT: ZP=FORM WIDTH IN # OF CHARACTERS: 10-60
’ ZG=# OF ITEMSs 1-1Z
’ ZP$(@)=FORM TITLE
’ ZP$(1)-ZP$(N)=FIELD STRING
’ ZR(1)~ZR(N)=FIELD LENGTH
’ OUTPUT:FORM IS OUTPUT ON SCREEN
’ Z8(1)-2ZS(N)=SCREEN LOCATION OF FIELDS
? ***%*******************-*************%**%*******%*****%**
IF ZP<1@ OR ZP>YA-4 THEN STOP
IF Z8<1 OR Z@>12 THEN STOP
cLS
PRINT CHR$(Z) s
PRINT @YA/Z-LEN(ZP$(0))/2sIP$(0) 3
ZI=(YA-2P) /%
PRINT & ZI+YCsSTRINGS(ZPsCHRS(YF));
PRINT @ZI+YD+YA%ZGs STRINGS(ZPs CHR$(YG)) 3
FOR ZH=ZI+YD TO ZI+YD+YA%(ZG-1) STEP YA
PRINT @ ZHs CHR$ (YH) 3
PRINT @ ZH+ZP-15CHR$(YI)3
NEXT ZH
FOR ZH=1 TO Z@
PRINT @ZI+1+YC+YA®ZHsZP$(ZH) 3" "3STRINGS(ZR(ZH)s CHR$ (YJ)) 3
IS(ZH)=ZI+1+YC+YARZH+LEN(ZP$ (ZH)) +1
NEXT ZH
RETURN

Figure 4-11. FORMS Module Listing

63

Display Operations Using the GPM

form. Each field has text defining it, and an entry area for user input. The text
and size of the entry area are defined by the user. The form is “boxed” and
automatically centered. A typical call and form are shown in Figure 4-12.

CALL:

29050 ZP%(@)="MODIFY ENTRY"
2060 ZP=57:70=8

29070 ZRP&(1)="(1) NAME1 VRZPHE ()= (R) NAMEZ !
2on80 ZP%(3)="(3) NAME3 "eZPE(4)="(4) BSTREET "
29090 ZP$(5)="(5) CITY "iZPE(AI="(4L) BTATE "
29100 ZP%(7)="(7) ZIP "IZPH(B)="(8) REFERENCE"

79110 ZR(1)=17:ZR(2)=15:1ZR(3)=15:IR{4)=30:ZR(3)=20
29170 ZR(&)=1D:ZR(7)=2:ZR(8)=10:GOSUR BORO

Figure 4-12. FORMS Module Call and Display

First the form width in ZP is compared to limits of 10 and 4 less than the screen
width, YA. If the form is too small or too large, FORMS stops so that the
application program can be corrected. Next, the number of fields in the form,
ZQ, is tested. If ZQ is less than 1 or greater than 12 a second STOP occurs. If
these two parameters are all right, the screen is cleared in preparation for
displaying the form.

The title of the form is in ZP$(0). It is displayed at (*A-LEM[ZPE (@} | ~Z. This
is the width of the screen — the length of the title divided by 2, which gives the
starting character position of the title for centering.

64

Display Operations Using the GPM

Variable ZI is set to (YA-ZP)/2. This is the left-hand edge of the form to
properly center it.

The next two statements draw the top and bottom lines of the box.
STRIMGE(ZP,CHRE(YF 1 | defines a string of graphics characters with a length
equal to the form width ZP.

Variable YF is the proper graphics character for the system, established in
AIMIT. The stringis FRINTED @ a position two lines (YC) down from top and

3P 1

in” an amount equal to ZI.

STRINGE(ZP,CHR$(Y51) defines a string of graphics characters of form width;
it is drawn at ZI+YD+YA*ZQ. This is at the next line after the last of the field
lines.

The next set of code (lines 8210 through 8280) represents a loop to draw the left
and right lines for the box. ZI+YD is the character position one line down from
the first character position of the top line. ZI+¢D+vA#*(Z0-17 is the character
position one line up from the first character position of the bottom line. ZH
increments from the start to end character positions by STEPping YA. YA is
the screen width or line width. STEPping this value increments to the next
vertical character position. The left line is drawn by outputting the left graphics
character (YH) at ZH. The right line is drawn by outputting YI at ZH+ZP-1.

At this point the box has been drawn. All that remains is to display the text for
each field and the entry area for each field. ZH is again incremented, this time
from 1 to ZQ, the number of fields. Each time through the loop, one field
description, a blank, and a field entry area are displayed on the next line.

The field description is obtained from ZP$(ZH). A blank separates the field
description from the field entry area. The field entry area is generated by
STRINGH(ZR(ZH), CHR%(vJ) 1. The YJ character is the graphics character for
the field entry area from the AINIT module. The length of the field entry area is
obtained from the ZR array. Each field, then, has text (from ZP$) and an entry
area length (from ZR) associated with it as an input parameter.

The field description is printed at Z1+1+¢C+%7%ZH, which starts at one character
position further right than the left side, and at the current line for the field
[WCHYREZH .

A second action taken in this loop is to save the starting character position of the
field entry area in array ZS. This starting position is used in FIRMI, form input,
and FORMO, form output to define where the field entry areas are. Each field
entry area is defined by ZI+1+VC+"¢A*ZH+LEN(ZPE(2H) 1+1, which is the start of
the text for the field plus the length of the text plus one.

ARETURN is made from FORMS with one entry in the ZS array for each field entry
area (ZQ fields).

65

Display Operations Using the GPM

FORMO Module Operation

At this point, FORMS has displayed the form as defined by the calling applica-
tions program. There has been no text input or output in the field entry areas,
and the form appears as shown in Figure 4-12. FORMD (Figure 4-13) is used to
output to the field entry area after FORMS has been called. A typical call and
output are shown in Figure 4-14.

R0 GOTORA80 °FORMO

GUITD 7 5333 336 363 30 3 360 6 3 36 36 36 3 36 36 36 30 46 36 3 96 3 3 36 6 36 3 6 636 96 3 36 36 36 9 36 3696 36 53 3 K% 3
2020 * THIS IS FORM QUTPUT MODULLE. IT MAY BE USED AFTER A FORM
3R ° SKRELETON HAS BEEN OUTPUT. FIELD DATA MAY BE DISPLAYED
043 * BY USING THIS MODULE.

050 ° INPUT: ZW$(1) — ZW$(N) CONTAINS FIELD DATA

2060 OUTPUT: FIELD DATA DISPLAYED IN FIELDS

QD7D 7 3535 3B 3 IR I I 3636 A6 3 I I3 I I I 3 36
2080 FOR ZI=1 TO Z&

9096 PRINT @ ZS(Z1)s5ZW$(ZI)3STRINGS(ZR(ZI)-LEN(ZW$(ZI))s" ") 3
2100 NEXT Z1I

9110 RETURN

Figure 4-13. FORMO Module Listing
CALL:

21800 "DISPLAY MAIL LIST SKRELETON

21810 GOSUR 29000

21820 *DISPLAY FIELDS ON FORM ACTUAL CALL
21830 GOSUER 2000 <t TO FORMO

Figure 4-14. FORMO Module Call and Display

66

Display Operations Using the GPM

11000
11010
110:0
11030
11040
11050
11860
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
1121@

11240
11250
11260
11270
11280
11290

Text to be output to the field entry areas has to be in array ZWS$ at this point.
ZW$(1) corresponds to field 1, ZW$(2) to field 2, and so forth. FORM is called
with the ZWS$ array containing the text to be output. FORMO then goes through
the ZW$ array for ZQ field items. ZQ must be set to the number of fields
associated with the form.

For eachiteration of the Z] loop, the field entry area character position is picked
up from the ZS array. ZS was previously set up by FOFIMS and contains the
starting character position for every field entry area. A FRINT E is done at
ZS(ZI). The text from ZWS$(ZI)isFRIMNTed. AsFORMO is typically used to print
records of a file in form format, any remaining graphics characters or previous
characters in the field entry area are cleared. The length of the field entry area is
in the ZR array. We also know the length of the text for the field — it is
LEM[ZW$(Z1 1 1. The difference of the two are the number of blank spaces
required to substitute for previous characters. The required string is
STRIMNGS(ZR(ZI)-LEM(ZWS(ZI) 1,7 *7).

A RETURN is made after the last field has been displayed in the form.

PROMPT Module Operation

The last module in this section is the PROMPT module, shown in Figure 4-15. It is
used for four functions

GOTO 11118 *PROMPT

R R S R R T T
7 THIS I8 THE "PROMPT" MODULE. IT OQUTPUTS A GIVEN MESSAGE
* AT LAST LINE AND READS IN A USER STRING OR NUMERIC

* RESPONSE.

’ INPUT: XP#%=MESSAGE TO BE OUTPUT

? XB=0 IF NUMERIC RESPONSEs=1 IF STRINGs

? =2 IF YES OR NO RESPONSEs=3 NO RESPONSE

? OQUTPUT : XC4=8TRING RESPONSE OR "Y" OR "N"

’ XC=NUMERIC RESPONSE OR @ IF ENTER
T 36 F A B I I 3 B 36 26 S 3 26 36 3 6 36 363 36 B 69 3 6 6 36 36 96 36 36 36 36 696
XX=@

PRINT & YEsXP$+" "g

IF XB=3 GOTO 11280

XC$=.‘,II n

XI$=INKEY$:IF XI$="" GOTO 11150
IF XI$:CHR$(YK) GOTO 11700

IF XI$<>CHR$(YKR) GOTO 11190
XX=1: GOTO 11290

IF XI$=CHR%{(13) GOTO 11230
XCE=XCH+X1%

FPRINT & YE+LEN(XB$)+1:XC%3

GOTO 11150
IF XB=@ THEN XC=VAL(XC$)
IF XB- GOTO 11290
IF XC#x"YES" AND XC%<3"Y" AND XCH<:"NO" AND XC$<:>"N" GOTO 11120
XCE=LEFT$(XC%$s1)
GOTO 11290
FOR XI=1 TO 9@B:NEXT XI
RETURN

Figure 4-15. PROMPT Module Listing

Display Operations Using the GPM

Displaying an error or warning message

Displaying a message that requires a text answer
Displaying a message that requires a YES or NO answer
Displaying a message that requires a numeric answer

® & ® ©

All four functions involve a message in XB$. This message is output in the
“prompt” message area at character position YE. YE is defined in the AINIT
module and is dependent on the system type. One of the first actions taken in
PROMPT is to output the XB$ message at YE. If variable XB then specifies that
“no response” is required (error or warning message), a 50T0 timing loop FOR
XI=1T0O90@:NEXT I isdone. This loop simply wastes time for about 3 seconds
while the TRS-80 user can read the message and then RETURNS to the calling
program.

A typical call and display are shown in Figure 4-16.
CALL:

*1100 XB$="MODIFY YES OR NO":XB=1:GOSUB 11000:IF XX=1 GOTO 21240

Figure 4-16. PROMPT Module Call and Display

Since the other three functions are very much related to user response and
keyboard input, we’ll discuss them in the next chapter.

68

Chapter Five
Character Input Using the GPM

Input of character data involves some special tricks using the INKEY$ function.
We'll find out how input can be done in general, the design philosophy of the
GPM, and how individual modules in the GPM work in this chapter.

Keyboard Input Operations

Whenever a key is pressed on the TRS-80 system, a single character code is
generated. If the key pressed is an alphabetic character, a digit, or a special
character such as “ or #, the character code is in standard ASCII code, as we
described in the last chapter.

There are certain keys, however, that generate codes that are not ASCII codes,
but which are unique to the TRS-80 system. The right arrow, left arrow, and
BREAK are examples of these types of control keys. In order to use the TRS-80
effectively, we've got to be able to read characters one at a time, using the
INKEYS function. The INKEYS function will read all keys - even the control
keys. Because of this we’ve got to delve into the mysteries of the “control codes”
to a certain extent. (I know - somewhere in a padded room there is a pro-
grammer inventing computer jargon . . .)

Why can’t we simply use the INFUT command of BASIC to input strings of
character data? The reason is that the INFUT is done on a line basis. After the
INPUT, the BASIC interpreter skips to the next line. Ifthe line is at the bottom
of the screen, it also scrolls the screen up one line, with the display going off the
top edge of the screen. This automatic feature of BASIC is too automatic for us.
We have no control over where the character string appears on the screen during
input. This makes it virtually impossible to fill-in forms and to respond to
messages at a specific screen location.

The INKEY$ Function

Y ou may never have used the INKEYS$ function in BASIC before, so let’s review
how it works. The basic code for an INKE'Y% operation is shown here

1lee CLS

200 AS=INKEYS

0@ IF A%="" "7 BOTO 206
400 PRIMNT B @, A$;

Le@ GOTO 200

This code first clears the screen by the CLS. Next, string A$ is set equal to
INKEYS$. When the BASIC interpreter encounters line 200, it willimmediately
read the keyboard. If no key is being pressed at the time, INKEY$ will be set
equal to a null string, or “”. If a key is being pressed, INKEY$ will be set equal to
the character or code for that key.

69

Character Input Using the GPM

What we’ve done in lines 200 and 300 is to test INKEYS for a pressed key. If a
key is being pressed, INKEY$ and AS$ will be set equal to the key. If no key is
being pressed, INKEY$ and A$ will be set to a null string of “ . We’ll loop back
to line 200 until we detect a key.

When we detect a key we’ll terminate the loop and print the one character string
AS$ at screen location 0, the start of the first line. Then we’ll go back for the next
character in the INKEYS$ loop.

Here’s a very important point: The INKEYS function reads but does not display
the key. We have to display the key ourselves by a PRINT statement. This is the
price we have to pay for being able to detect a single key at a time without
intervention by the “display driver” of the BASIC interpreter.

If you run the program above, you’ll notice that the special control keys such as
the arrows do not generally display anything on the screen. The reason for this is
that the special control codes generated for these keys are not displayable when
we go to PRINT them — the BASIC interpreter doesn’t know what to do with
them since they are not standard display characters.

We can see what codes are generated by a similar type of program to the one
above. Line 400 here has an ASC function that converts the one-character string
in A$ to a numeric value. This numeric value is an ASCII value for displayable
characters or a control code value for non-displayable characters.

160 CLS

200 AS=IMNKEYS

J0e IF A%="" " BOTO 200

400 PRINT B @, ASC(AS);

500 GO0TO 200

If we run this program, we can see the ASCII codes (check the back of your
BASIC reference manual) and the control codes that are read from the key-
board. We've listed all the codes from a Model I using Disk BASIC in Figure
5-1. Other models or configurations may differ slightly.

What Do You Do With Those Control Codes?

The main problems in using INKEYS$ are in PRINTing the characters at the
right place and discarding useless control codes. However, we may keep some
control codes for special functions.

One of the control codes we might want to keep is that generated for the
BACKSPACE (Model II) or Left Arrow (Model I/III). This key is normally
used to delete a character previously typed.

Another key that might be useful is the ENTER key. This key would mark the
end of the input just as it does in the BASIC INPUT statement.

70

Character Input Using the GPM

! 33| | @) |+ 108 | n| |< 60
34 5 (2] M 109 J 74 > 62
s '@ e ™ 10| |k 75| |+ 43
$ ®| [~ @) [0 m| | 76| |2 63
% ar| |~ @) |* 112 |m 7 4
& B "o @) | n3 |n 78] |. 46
39 t 91] 114 o 79 / 47
(| | g |s us| |p so| |; 59
) 41 @ 64 o7 116 Q 81
. a2 |- @ v | |s 82
= 61| |- @) |v ey s 83
1 al fea @) |w ne|l |7 84
2 s0| | 97 | 120] Ju 85
3 51| |8 98 | 121] v 86
4 52| | 9 |z 12| |w 87
5 53 D 100 A 65 X 88
6 sal | 101 B 66| |v 89
7 55| |F 102 c 67| |z 80
8 s6|] |°c 103 D 68
9 57 *H 104 E 69
] 48 i 105 F 70
S = SHIFT
58 *J 106 G 7 non-standard
- as| |m q07 H 72

Figure 5-1. Keyboard Codes ©

A third control key that might be useful is one that would say “stop doing
whatever we are doing and get me back to some control point.” This is somewhat
similar to the BREAK key, which allows a return to the BASIC interpreter from
any point in a BASIC program. A key that might be used here is the CLEAR
(Model I/1II) or “up arrow” (Model II).

Of course, these choices for usable control keys are somewhat arbritrary (I have
a well-used dart board marked off in ASCII codes . . .). Any other keys that
produce specific control codes could have been used instead. Depending upon
the application, we might have also chosen keys that produce ASCII characters
for control functions. If we never use the % character, for example, we could
have used that key to designate “backspace.”

We have in fact, set aside the ! character as a special character in the GPM
modules. The exclamation point is used between fields of data, and can’t be used
in normal text input. (The GPM modules can’t be used for advertising copy! If
you know what I mean!)

71

Character Input Using the GPM

GPM Design Philosophy for Input Operations

In the General Purpose Modules, we’ve provided modules for inputting charac-
ter or numeric data by means of the INKEY$ function. At the same time that
character data is entered, it is displayed by the GPM module on the screen.

Three control keys are used in the GPM:

1. Left arrow or BACKSPACE for backspace
2. ENTER for ending the input
3. CLEAR or “up arrow” for setting a “terminate operation” flag

The GPM character input modules work in conjunction with the GPM display
modules discussed in chapter four. There are three GPM modules in this
function, IMPUT, FORMI, and PROMPT.

IMPUT is the “lowest level” module. It allows entering character data via the
INKEYS$ function and automatically “echoes” the characters at a given screen
location.

FORMI is the “FORM Input” module. It works in conjunction with FORIMO,
“FORM Output” to allow the user to enter data for each form field. FORMI calls
the INPUT module to actually do the INKEYS$ input.

The FROMFT module is a dual function module that both displays a system
message and accepts a response to it. PROMPT was partially discussed in
chapter four. PROMPT uses a separate INKEY$ “routine” from INPUT.

There are several system variables used with the character input modules.
Variable YK is the “terminate operation” code. This is initialized in the AINIT
module based upon whether the system is a Model I/ IIT or Model I1. A 31 code
is used for the latter, while a 30 code is used for the Model II.

Variable YJ is the “field prompt” character, a vertical bar in the Model I/III or
an asterisk in the Model II. This character is also initialized in AIMIT based on
the system. The field prompt character is automatically displayed whenever an
INPUT operation is done so that the input field can be defined.

INPUT Module Operation

The IHPUT module is shown in Figure 5-2. It inputs a string of characters and
echoes the string to a given screen location. It is primarily used after the FORMO
module (see Chapter Four) has output a form to the screen. A sample call and
action are shown in Figure 5-3.

72

&
G

Character Input Using the GPM E=TH

8)

000 GOTOZ11@ * INPUT

ZOT@ 7 3 3 I I3 I AT 29693 I I IR
2020 ° THIS IS THE INPUT MODULE. IT INPUTS A NUMERIC VALUE OR

£@30 ° STRING FROM A GIVEN SCREEN LOCATION BY USING THE INKEY$
204@ 7 FUNCTION.

2058 ° INPUT: ZC=SCREEN LOCATIONs @ THROUGH 1033

2060 ZD=MAXIMUM LENGTH OF INPUT STRING

rave ZE=@ IF NUMERIC STRINGs =1 IF MIXED

2080 ° QUTPUT: ZF=VALUE IF NUMERIC

;090 ZF$=8TRING IF MIXED

2100 ° xx B FE U B I3 FE 3 I IE I I 6 T I 363 363 T 3 966 396 6 220 2 2

2110 XX=0
F12@ IF 2C<@ OR ZCrYA®YB-1 THEN STOP
2130 IF ZD<1 OR ZD>Z55 THEN STOP
214@ PRINTAZCySTRINGS(ZDs CHR$(YJ)) 3
215@ ZFg=""

PRINT & ZC+LEN(ZF4$)sCHR$(YJ) 3
ZE$=INREY%
IF ZE$<x"" GOTO 2210
PRINT & ZC+LEN(ZF$)s" "3
GOTO 2160
IF ZE$:>CHR$(YK) GOTO 2300
IF ZE$=CHR%(13) GOTO 2350
IF ZE$<>CHR$(YK) GOTO 2250
XX=1:GOTO 2360
IF ZE$<>CHR$(8) GOTO Z1460
IF ZF$="" GOTO 2290
IF$=LEFT$(ZF$s LEN(ZF$)~1)
PRINT @ ZCy ZF$+CHR%(YJ)3
GOTO 2160
IF LEN(ZF$)=ZD GOTO 2350
IF ZE$="s" THEN ZE$="3"
IF$=2F$+ZE%
PRINT ®ZCs ZF%3
GOTO 2160

2330 IF ZE=@ THEN ZF=VAL(IF%)
2360 RETURN

Figure 5-2. INPUT Module Listing

The first thing that INFUT does is to set variable XX to 0. Variable XX is the
“flag” variable that indicates whether the CLEAR (Model I/11I) or “up arrow”
(Model II) key has been pressed to terminate the current operation. Variable
XX will be returned as a 0 if the key has not been pressed, or as a 1 if the input
operation has been terminated.

A check is then made to make certain that the screen location variable ZC is
within the limits of 0 through 1023 or 1920. If ZC is not a screen location within
these limits, INPUT performs a STOP so that the user can correct his program
for a valid value in ZC.

A check is also made for the length of the input string, held in variable ZD. A
STOP occurs if the length is not between 1 and 255 characters.

73

Character Input Using the GPM

CALL

21146 XBE="FIELD # TO MODIFY":XB=0:GOSUR 11000@:IF XX=1 GOTO 1240
211506 IF XC=B GOTO 21230

21160 IF XC<{1 GOTO 21140

21170 GOSUR 7060

21180 PINPUT NEW STRING FOR FIELD

21190 [ZC=ZS5(XC)2ZD=ZR(XC) :ZE=1:GOSUB 2@@0O :IF XX=1 GOTO 2124@ |
21200 WS (XC)=ZF%
2121@ GOTO 21140

INPUT CALL

Figure 5-3. INPUT Module Call and Action

Next, the input field is displayed at screen location ZC by performinga PRINT
@ ZC. The 3TRING% function is used to display a string of ZD “field prompt”
characters. The field prompt character is defined by variable YJ and is either a
vertical bar (Model I/III) or an asterisk (Model II).

Next, string variable ZF$ is cleared to a “null” (zero length) string. Variable ZF$
will hold the input string on RETURN from INPUT.

The double-indented code (line 2160 through 2200) is the INKEYS loop. It
performs the INKEY$ function by setting variable ZE$ equal to INKEY$. Ifno
key was pressed (ZE$S=INKEY$=" ") the code loops back to INKEY$ once
again.

74

Character Input Using the GPM

The two FRIMT statements in the loop are used to flash a “cursor” on and off.
String variable ZF§ is the current string that has been entered at any point. The
FRIMT @ ZCHLEWN[ZF®],CHRE(Y.J]; statement displays the YJ prompt char-
acter at the current character position in the entry field. Three statements later, a
blank (* “)is displayed at the same character position. It takes some time to
execute the four statements. The effect is that during the time no key is being
pressed an alternating prompt character and blank are displayed. This appears
as a blinking prompt character at the character position for the input.

Ifa key is pressed, ZES$ is “non-null.” The single-indented loop between 2210 and
2340 is then entered. There are five actions taken in this loop, dependent upon
the “current” character in string variable ZES$.

Normal Character

If the character is greater than the YK character (ZE$>CHRS$(YK)), line 2300 is
executed. This will happen if the character is a “normal” alphanumeric or
special character. The code at line 2300 first checks to see that the current input
string in ZF$ is not equal to the maximum input length. If it is, a 50TO 2350
results, which we’ll talk about shortly.

If the length is less than the maximum, the current character in ZES$ is added to
(appended to) the ZF$ string by ZF$=2F#+2E%. The new string is then
displayed at ZC by the FRINT zC,ZF%;. This amounts to displaying all
previous characters plus the new character from ZE$. A jump is then made back
to the “inner loop” at 2160.

ENTER Character

If the ZES characteris an ENTER character [ZE$=CHR#[131 | then the current
key being pressed is an ENTER. This marks the end of the input and the end
processing at line 2350 is entered. Up to this point each character has been
echoed to the screen and ZF$ contains the entire input string that has been
entered from the keyboard.

Terminate Operation Character

If the character in ZE$ isa CLEAR (Model I/ I1I) or “up arrow” (Model IT), then
the input operation is to be terminated. (This might happen, for example, if the
input was started and the user discovered that he was entering data for the wrong
field. There must be a means to stop the operation and restart.) If this happens,
ZEE=CHRE (1], variable XX is set to 1, and the RETURHM is executed. Variable
XX is the flag that indicates a “terminate operation” has occurred.

Backspace Character

If ZE$=CHR% (5 1, then a backspace (Left Arrow or BACKSPACE) key has been
pressed. If ZF$=" " at this point, either no character has been entered, or

75

Character Input Using the GPM

backspaces have been done to the start of the field. In either case, a GOTO 2160
for the next character is performed.

If ZF$ contains a partial input string, then the last character entered must be
deleted and the modified string displayed. The string minus the last character is
put into ZF$ by doing a ZF $= LEFT$[2F$,LEN{ZF$)-1). The LEFT$ com-
mand takes all characters of ZF$ except the last. The modified string is then
displayed at ZC by the FRINT B ZC, ZF$+CHRE(v.J) ;. The CHR$(YJ) replaces
the deleted character by the field prompt character. A GOTO 2160 then reenters
the INKEYS loop.

None of the Above

If the ZE$ character is none of the above, then the key pressed is not a valid
character for the GPM input. It is dropped into the bit bucket (on the floor
behind the machine) and the program goes back to look for the next INKEY$
character.

The two statements at the end of TMNFUT RETURH to the calling program after first
checking the ZE variable. If ZE=0 then the input string represented a numeric
string, such as “123.” For convenience, the numeric string is converted from its
ZF$ string form to an actual numeric value by ZF=VAL (ZF$].

Inany case, ZF$ contains the input string entered during the INPUT operation.
The display shows all valid entered characters, except of course, for deleted
characters and the ENTER.

FORMI Module Operation

This module is shown in Figure 54. It operates in conjunction with the FORIS
and INPUT modules to read in the character strings for the form fields. The
FIRMS module first outputs a form to the screen. The FORMI is then called to
allow the user to “fill in” the fields of the form. FORMI calls the IHFUT module to
read in and display the fields. A sample call and action for FORIMI is shown in
Figure 5-5.

8500 GOTOBS7@ ’FORMI

B 1@ 7 433 3636 3096 36 303 3636 336 3 363 3630 H 36 36 B0 H 36 I3 0 0 I I I R 3
8520 * THIS IS THE FORM INPUT MODULE. AFTER A FORM HAS

§530 ° HAS PEEN OUTPUTs THIS MODULE READS IN THE FORM FIELDS.
8540 ° INPUT: NO PARAMETERS

86550 ° OUTPUT: INPUT STRINGS IN ZW$(1) - ZW$(N)

BSOD 7 4 KK NI T I IO IR I IR SRR
8657@ FOR ZI=1 TO 1@

8580 LC=78(Z1):ZD=ZR(ZI) s ZE=1

8590 GOSUR Z000 :IF XX=1 GOTO B&6ZD

8600 ZW$(Z2I)=IF%

B&610 NEXT Z1I

84620 RETURN

Figure 5-4. FORMI Module Listing

76

Character Input Using the GPM [{=I'§

CALL:

SRE20 IP=55:2Q=4:72P%(@)="PRIMARY DISPLAY/PRINT"

22230 ZP$(1)="STARTH# (ENTER IF NOT KNOWN)"

2w240 IP$(2)="START ENTRY (ENTER IF NOT KNOWN)" FORMS
22250 IP$(3)="END# (ENTER IF NOT KNOWN)" CALL
2260 IP$(4)="END ENTRY (ENTER IF NOT KNOWN)"

22270 IR(1)=3:ZR(2)=15:ZR(3)=3:ZR(4)=15:6G05URBOO0D

22290 GOSURBS00: IFXX=1G0T0Z22950 FORMI CALL

Figure 5-5. FORMI Module Call and Action

After FORMS has output the form, the ZS array contains the screen locations for
each of the screen fields. Variable ZQ contains the number of fields on the form.
For example, suppose that the form shown in Figure 5-6 has been displayed on
the screen by FORIMS. ZQ is set to 4 before the FIORMS call and still retains that
value before the FORMI call. After the FORMS operation ZS has been filled as
follows:

77

Character Input Using the GPM

ZS(0)=unchanged

ZS(1)=219 Location of field 1
ZS(2)=283 Location of field 2
7S(3)=347 Location of field 3
ZS(4)=411 Location of field 4

Figure 5-6. Field Definition

FORMS is also called with array ZR containing the length of each entry field. This
array is maintained (not changed) so that when FRMI is called, the ZR array
contents can be read for the FORMI call.

FORMI uses the locations of each field entry area in the ZS array to call the INFLIT
module. The number of calls made to I+FUT at line 2000 equals the number of
fields. Each call is made with ZC set to the location of the next field and with ZD
set to the maximum length of the field. Variable ZE is set to I as numeric input is
not required.

After each call to IMFUT, string variable ZF$ contains the input string. This is
stored in the string array ZW$ after the GOSUE 2000 call.

Variable ZR is used as a general purpose “working” variable to step from 1 to
the number of fields.

78

Character Input Using the GPM

11000
11010
11020
11030
11040
11050
11068
11070
11088
11090
11100
11110
11120
11130
111406
11150
11160
11176
11180
11190
11200
1121@
11220
11230
11240
11250
11260
11270
11280
11290

PROMPT Module Operation

Operation of the PROMPT module (Figure 5-7) was discussed earlier in the
previous chapter. In this discussion we’ll talk about the IMKEYS operation.
FROMFT in this mode is used to output a system prompting message such as
MUMEER OF RECORD? and to read in the corresponding reply. The message is
displayed in the prompt message area defined by location YE. A sample call
and action is shown in Figure 5-8.

GOTO 1111@ °PROMPT
7RSS KT3I I I 36 3696 369 H IR R
’ THIS IS THE "PROMPT" MODULE. IT QUTPUTS A GIVEN MESSAGE
’ AT LAST LINE AND READS IN A USER STRING OR NUMERIC
’ RESPONSE.
? INPUT: XB$=MESSAGE TO BRE OUTPUT
’ XB=@ IF NUMERIC RESPONSEs=1 IF STRINGs
? =% IF YES OR NO RESPONSE;=3 NO RESPONSE
? OUTPUT: XC$=STRING RESPONSE OR "Y" OR "N"
’ XC=NUMERIC RESPONSE OR @ IF ENTER
TS BRI I I I I B IR
XX=@
PRINT & YEs XPB%+" "3
IF XB=3 GOTO 11280
X C$= nn
XI$=INKEY$:IF XI$="" GOTO 11150
IF XI%:>CHR®(YK) GOTO 11200
IF XI$<:CHR$(YK) GOTO 1119@
XX=1: GOTO 11290
IF XI$=CHR%(13) GOTO 11230
XCE=XC+XI1%
PRINT & YE+LEN(XB$)+1sXC%3
GOTO 11150
IF XB=@ THEN XC=VAL (XC$%)
»2 GOTO 11290
IF XC$:<>"YES" AND XC$<>"Y" AND XC$<>"NO" AND XC$<:"N" GOTO 11120
XCe=LEFTH(XC%s1)
GOTO 11290
FOR XI=1 TO 9@@:NEXT XI
RETURN

Figure 5-7. PROMPT Module Listing

The INKEYS loop is the indented code from line 11150 through line 11220.
String variable XC$ holds the input character string. Initially it is set to a
“null” string of “ ”, or 0 characters.

Variable XI$ is used to hold the input character from INKEYS. If INKEY$=""
(no key pressed), a loop is made at line 11150.

There are three cases for entering characters in this INKEY$ code.

79

Character Input Using the GPM

Figure 5-8. PROMPT Module Call and Action

Normal Character
If XI$ is greater than CHR$(YK) then it is an alphanumeric character. In this
case the code at line 11200 appends the XI$ character string to the XC$
character string by xC#=xC$+x1$. The new string is then printed in the
prompt message area, after the prompt message by PRINT @ YE+LEM (B +1 . xL%3.
The YE+LEN(XE%)+1 starts the display at the proper place. The code then
goes back to get the next INKEYS$ character.

Terminate Operation Character

If the character is a CLEAR (Model I/III) or “up arrow” (Model II) charac-
ter, then the terminate operation flag variable XX is set toa 1 and a RETURN is
made. XX was set to a 0 on entry to PROMPT. The terminate operation
character is used to provide a means to “restart” if the user finds himself in the
middle of a prompt sequence when he does not want to be there.

ENTER Character

If the character is an ENTER character (XI$=CHR$(13)), then the input
operation is over. A transfer is then made to the end processing portion of the
PROMPT module.

80

Character Input Using the GPM

End Processing

When line 11230 is executed, XC$ holds the string response to the prompt
message, except for the case when no input is required (variable XB=3 on
entry).

If input variable XB=0, the input response is numeric. The character string in
XBS is converted to a numeric value by xC=VAL (%L and the next statement
causes a RETURM. The RETURM is made in this case with XC$ containing the
string response and XC equal to the numeric value of the string.

If input variable XB=1 (string response specified) a return is made with XC
unchanged.

If input variable XB=2, a YES or MO response is called for. A YES or MO is
always changed to a ¥ or M for easy comparison in the main routine. In this
case line 11250 looks for a YES, ¥, MO, or M. If none of these are equal to
XC8, the program loops back to repeat the entry. If any of the four is present,
XC8 is set equal to the leftmost character of XC$ by ¥C#=LEFTH(x¥0%,17. A
RETURM is then made with XC%=Y or M.

81

Chapter Six
Data Storage Using the GPM

We’re going to cover an important aspect of the General Purpose Modules in
this chapter, data storage. First we’ll discuss the problem of data storage in
general terms, then we’ll talk about the philosophy used in the GPM, and finally
we'll discuss how each of the GPM modules operates.

The techniques of data storage are sometimes called data structures. Data
structures include such things as DATA statements, lists, and arrays. Also
included in this area are the types of data to be stored — strings, integer values,
single-precision values, and so forth.

The Problems of Data Storage

At first glance, it doesn’t seem like there should be a problem in storing data. We
know from our BASIC reference manuals about variables in general, DATA
statements, one-dimensional arrays, or lists, and more complex arrays, includ-
ing string arrays. However, the choice of what type of storage we use directly
affects the program operation as far as speed, memory storage, disk or cassette
operations, sorting the data, searching for values, and so forth. Let’s take a look
at some of the storage alternatives that BASIC offers and discuss their strengths
and weaknesses.

Variables

The first type of storage that a user comes in contact with is simple variables.
This is not an aspersion on the variable’s intelligence, just a qualifier that says the
variable is not part of a complex variable such as an array.

A simple variable, as you know, is defined by any two letter name, the first of
which must be alphabetic. You may also know that there are a number of
variable types:

Integer variables

Single-precision variables

Double-precision variables

Double-precision variables with scientific notation
String variables

® © © © o

Integer variables can only hold integer values from -32768 to +32767. Single-
precision, double-precision, and double-precision with scientific notation varia-
bles can hold fractional values and large numbers at some sacrifice of accuracy
— for example, 32.5567899 is printed as 32.5568, as a single-precision variable.
String variables are used to hold character strings.

At this point, you’ve probably worked with some single-precision and string
variables, and we won’t dwell on their descriptions or on descriptions of the
double-precision variables, as they are similar in concept.

83

6 &

Data Storage Using the GPM

Variables are usually used to store intermediate results in the course of a
program. In a large program you’ll have many intermediate results, and a
correspondingly large number of variables.

The advantages of using simple variables are these:

e They’re easy to use.

e There are a lot of them — 936, not counting names that are identical except
for data type suffixes, such as AA and AA%.

e Insome cases the name can be used as a mnemonic device, such as variable
“CT” for Current Total.

You could construct an entire program with just simple variables. However, it
would suffer from some drawbacks. Some of the disadvantages of simple
variables are:

o Each separately named variable must be located by the BASIC interpreter.
With a lot of variables, this takes a great deal of time. (A second is an eternity
both in microcomputer timing and when the dentist says “I'll be done in a
second!™)

e Similar types of data are not grouped together. If variable AAS$ holds the
account number, variable AB$ holds the company name, variable AC$ holds
the address, and so forth, it may become quite tedious to work with collections
of these variables to represent one set of data.

® More memory storage than necessary may be used to hold data. Each
numeric variable takes up from five to eleven bytes, and with a large number of
variables, this may become a significant factor in total program size.

DATA Statements

Another type of storage is by means of DATA statements. You’ve probably
performed a simple program like

100 A=0

110 FOR %=1 TO 1@

126 REARD C

130 A=A+C

149 NEXT X

150 PRINT *¢TOTAL IS:"’;A

160 DATA 2,15,45,67,34,56,5,1,5,100

This program READs a value from the DATA list into C, and then adds the
value to a subtotal in A, finally printing the total.

The DATA list in statement 160 is an easy way to list numeric values for
processing. It is fine for simple programs and for student exercises, but has
many weaknesses:

e The DATA must be inthe program text. External data cannot be entered into
the DATA list.

84

Data Storage Using the GPM

© The data must be read sequentially from beginning to end. It is possible to
start at the beginning of the list by using the RESTORE command, but it is not
possible to retrieve the third, or fifth, or twenty-third item, without going
through a READ for each item.

© The RESTORE positions a “pointer” to the beginning of the list, but there is
no way to position the pointer to a random spot in the list.

® Separate DATA statements form one collective list, rather than separate
groupings of data related to different functions.

Because of the above limitations, DATA statements are seldom used in larger
applications programs, except possibly for “initialization” of variables at the
beginning of a program.

Arrays

Arrays are a number of similar types of variables (such as integer or double
precision or string variables) grouped together under one name. Items within
the array are referenced by the array name and element number. For example,
BOOK would be displayed here from the EX$ array containing EEL |, BUOK, and
CAMDLE:

100 DIM EX$=(3)

110 EX$(1)=**“BELL""
120 EX3(2)="*B00K" "
130 EX$(3)=* ‘CANDLE™ "
140 PRINT EX$(2)
As you know from your BASIC reference manuals, arrays may be one-
dimensional, such as the one above, or multi-dimensional. A two-dimensional
array might represent a chessboard by

100 DIM CB=(2,7]
There are a number of advantages to arrays:

© Similar types of data can be conveniently grouped together.

® Total memory storage is less than storing a separate variable for each item in
the array.

@ Total overall processing time may be reduced in storing or retrieving data
over working with separate variables.

Of course, there are a number of disadvantages, too:

@ Eachitemin the array must be referenced by its number or “coordinates,” and
not by a name, and this may become confusing.

® Since the array is (usually) one huge block of data, it may be difficult to sort
the data in the array to put it in some sort of logical order, either alphabetic or
otherwise. The same problem occurs in searching for data.

85

Data Storage Using the GPM

e Multi-dimensional arrays are hard to use, as it is tedious to compute the
location of the data within the array.

Execution Speed and Memory Storage

It seems suprising to many microcomputer users that many applications pro-
grams, business and otherwise, are too slow and too large. (An old program-
ming axiom in use before the days of “virtual storage” states that programs
always occupy 200 bytes more memory than is available . . .) The very fact that
BASIC is a high-level language and easy to use, however, causes a degradation
in both speed and storage efficiency.

With a Disk BASIC Model I, we have about 48K (49152) bytes of RAM
available initially for user program and data storage on a system with maximum
memory. About 10K of the 48K is dedicated to TRSDOS and BASIC software,
leaving 38K. That 38K must be divided up between the user program and data
storage. If we assume that we are working with 200 records of data with about
60 bytes apiece, that means that 12K of memory must be available to hold all the
records (of course, we could hold portions of the records at the expense of a lot
of disk activity). That leaves 24K to hold the user program, miscellaneous
variables, arrays, and string working area. As a typical program might contain
400 lines at 40 characters per line, we now have 8K for “working storage.” You
can see that there is not an unlimited amount of memory available by any means.

How about speed? Computers are supposed to be able to calculate in millions of
operations per second. It’s true that microcomputers can add hundreds of
thousands of numbers per second; the TRS-80 Model I can add at the rate of
about 445,000 operations per second, for example.

However, the TRS-80s have to execute many instructions just to interpret a
single line of BASIC code. The rate at which BASIC lines may be executed
ranges from less than 50 to 800 lines per minute. If the BASIC program is
performing operations such as sorting data, delays in processing may not only
be noticeable to the user, they may be interminable.

Data Storage in the GPM

The basic method of data storage we’ve used in the General Purpose Modules is
that of a one-dimensional string array. Data is held in the form of a number of
string entries in the array as shown in Figure 6-1, which holds entries for a small
file.

The string array has the name of XAS$, chosen in the “X, Y, Z” range of letters
that we're using for the GPM. The size of the array is based upon how much
memory is available after loading the GPM, the user’s application program that
uses the GPM, and CLEARing a portion of memory for strings.

86

Data Storage Using the GPM

“VARIABLE LENGTH” ENTRIES

xas@) [*]
(1) | FINK!!REUBEN SANDWICH! 1
(2) |BELL!A.G.!TELEPHONE! |
(3) | EDISON!T. !ELECTRIC LIGHT!
(4) | DE FOREST!L. IVACUUM TUBE!
(5) | TESLAIN. ITESLA COIL! |
(6) | MORSE!S.F.B. ' TELEGRAPH!
(7) | MAXIMIH.P. TMACHINE GUN!
(8) | GODDARD!R.H. 'ROCKETRY! |

® |-
(10 [*

Figure 6-1. String Array Example

Each entry in the XAS$ array may be from 1 to 255 characters in length, so that
the entire array holds a number of variable length entries.

Each entry in the XAS array is further subdivided into fields. A field is any
logical subgroup of an entry, dependent upon the application program. In the
example of Figure 6-2, for example, the fields are last name, initials, and
invention. Each field is terminated (or in computer jargon, delimited) by an
exclamation point (!). When a field contains no characters, two exclamation
points will be together, as shown in the figure.

xas@) [*]
(1) | FINK!!REUBEN SANDWICH!]
(2) |BELL!A.G.!TELEPHONE! |
(3) |EDISON!T. !ELECTRIC LIGHT!
(4) | DE FOREST!L.!VACUUM TUBE!
(5) |TESLA!N.ITESLA COIL! |
(6) | MORSE!S.F.B. | TELEGRAPH!
(7) | MAXIMIH.P. ! MACHINE GUN!
(8) | GODDARD!R.H. 'ROCKETRY! T

© 1=
(10) |-

DELIMITER

pd

| GODDARD (R.H. fROCKETRY!
— A A

FIELD 1 FIELD 2 FIELD 3

Figure 6-2. Fields in Entries

87

Data Storage Using the GPM

You'll notice that the entries in the array appear to follow no alphabetical order.
Actually, there is an order to the array, and it’s held by a second array called
XA%. XA% is an integer array made up of entries that are each two bytes long
as shown in Figure 6-3. There is one entry in XA% foreachentry in XA$. We'll
talk about the relationship of the XA% and XA$ arrays shortly.

2 BYTES VARIABLE LENGTH
—N

—

xa$0) [~ 1

(1) | FINKT TREUBEN SANDWICH!]
(2) |BELL'A.G. I TELEPHONE! I
(3) [EDISON!T. !ELECTRIC LIGHT!

(4) | DE FOREST!L. 'VACUUM TUBE!

(5)| TESLA!N. ! TESLA COIL! |
(6) [MORSE!S.F.B. | TELEGRAPH!

(7) [MAXIM TH.P. { MACHINE GUN!

(8) | GODDARD!R.H. |ROCKETRY'! |

(C)]
(10) |-

Figure 6-3. XA% and XAS$ Arrays

XA%(0)
U]
@
3
4
(5)
(6)
N
8
9

(10)

i IN

[AY Y

NININ[OiO =

U

The second method of storage we’ve used in the GPM is by simple variables.
We've made all of the variables in the General Purpose Modules integer varia-
bles to cut down on storage requirements. We’ve used as few variables as
possible to avoid having a long list of variables that the BASIC interpreter has to
search. All variables in the GPM use the naming conventions of X,Y,and Z,
and these are variable names that your application program should not use.

Sorting and Searching

Before we discuss more on how the array is ordered, let’s first talk in general
terms about sorting and searching. Sorting refers to puttinglong lists of dataina
logical order, such as in alphabetizing. Searching refers to finding an entry
within a sorted (or unsorted) list.

Let’s assume that all data will be held in the one-dimensional XA$ stringarray.
Suppose that we have 200 entries in the array and want to find a particular one.
We could input a search “key” and proceed as follows:

100 INPUT A%

110 FOR I=1 T0O 193

120 IF A$=XA$(1) GOTO 15@

130 MEXT I

14@ PRINT **HOT FOUMD®” :STOP
156 PRIMT * “FOUNMD AT * 75 T25TOF

The above code searches the array from bottom to top (or, for you southern
hemisphere readers, from top to bottom) for the specified entry of A$. If the

88

i 6

Data Storage Using the GPM f»

entries in XA$ were each 30 characters long, the average search would find the
entry at entry 100 and take about one second; the worst case search would be
about twice the average search time. Although this seems very fast, when other
operations must be done during the search and when the size of the array grows,
the search becomes slower and slower.

Because searches are very time consuming for unordered data, almost all long
arrays are ordered — either in alphabetical, numeric, or some other order. When
arrays are ordered, faster search algorithms (such as the binary search) can be
used.

The order most commonly used for string arrays is alphanumeric order. In this
order, the entries are ordered in “phone book” fashion in this priority: space, !,”,
#,8, %, &, (,), *, +, comma, -, period, /,0-9, colon, semicolon, <, =, >, 9, @,
A-Z, a-z. Typical entries with this ordering sequence would be

'EXPLETIVE DELETED!
$AVE YOUR PENNIES
Fave your perinies
SMITH, JOHM

SMITH, TOM

ZENTHHK

How does an array get ordered? One method is to simply search for an insertion
point for a new entry and move everything down, as shown in Figure 6-4. If we
wanted to insert a new entry at the 100 element of the XA$ string array, for
example, we could do:

106 FOR I=100 TO 198
110 XAS(I+1)=XA%(1)

120 NEXT I

130 XA%(1007=¢ *MEW ENTRY " ®

XA$(0) | «
(1) | BELL!A.G. I TELEPHONE! 1
(2) | DE FOREST!L. |VACUUM TUBE!
(3) [EDISON!T. 'ELECTRIC LIGHT!
(4) | FINK! |REUBEN SANDWICH!
(5) | GODDARDIR.H. '[ROCKETRY!
(6) |MAXIM'H.P. TMACHINE GUN!
(7) [MORSE!SF.B. ITELEGRAPH! g“gv‘f,zg':&% ENTRIES
(8) ITESLA!N. I TESLA COIL! |

O
(10) | =

Figure 6-4. Inserting a New Entry — One Alternative

<E|FERRISIIWHEEL | INSERT

89

Data Storage Using the GPM

As a matter of fact, though, this method is much too time consuming. Although
this simple case takes about one second, the speed increases greatly for more
complicated code and larger arrays. Because this simple approach is too slow,
sophisticated techniques of sorting such as the Shell-Metzner sort have been
developed.

It’s somewhat of a paradox — data can’t be found without ordering arrays, and
yet we must go to elaborate sorting techniques to order the data in a reasonable
time!

Ordering in the GPM

We've tried to develop an efficient means of sorting and searching in the General
Purpose Modules. Like every method, it’s a compromise. The scheme used is
called a “linked list.” It’s nothing new, but it does seem to work well for string
arrays.

Here are its advantages:

e It permits easy “insertions” into the array
o It permits easy deletions of entries
o Tt will work easily with variable-length entries with any number of fields

Here are its disadvantages:

e Searches for entries are done from the beginning of the array
e It is moderately complex

We've already described the XA$ array and how it holds variable-length string
entries with field subdivisions. Now let’s see how the XA% array relates to the
XAS in the linked list structure.

The X A% array is an integer array. It holds the same number of entries as are in
the XA$ array. XA9,(1) corresponds to XAS$(1), XA%(2) to XA$(2), and so
forth as shown in Figure 6-5. The order of the XA$ array is maintained by the
pointers in the XA% array.

START

s

xas@)[2 []
O FINK! ! REUBEN SANDWICH! |
@[4 BELL!A.G. ! TELEPHONE! |
3] 1 EDISON!T. !ELECTRIC LIGHT!
@] 3 DE FOREST!L. ! VACUUM TUBE!
)] -1 TESLA!N. ! TESLA COIL! |
6] 5 END MORSE!S.F.B. | TELEGRAPH!
(7)|_6 MAXIM ! H.P. | MACHINE GUN!
@ 7 GODDARD!R.H. |ROCKETRY'! |
9 -2 *

(10)| -2 \j

Figure 6-5. Using the XA% Array to Order XA$

90

Data Storage Using the GPM

The first element of XA%, XA%(0), holds a pointer value that represents the
next item number in the ordered list. In Figure 6-6, XA%(0) holds 2, which
means that XA$(2) contains the first entry of the X A$ array. XA%entry 2 holds
a pointer to the next entry. In this case it is 4, which means that the second entry
islocated at XA$(4). This chain continues, “link” after “link” until the last entry
inthearrayis found. The last entry has a value of -1, indicating that there are no
more entries in the list. As you can see from Figure 6-5, starting with X A%(0),
it’s easy to trace a chain of items by going forward in the list.

With this structure, we can eliminate the time-consuming “overhead” of moving
around large amounts of string data. The entries in XA$ stay where they are;
only the pointers in XA% are adjusted.

Deleting an Entry

To delete an entry, all that has to be done is to remove the link from the chain
and adjust the pointers in XA%. This process is shown in Figure 6-6 for a
deletion of one entry in XA$. The deleted entry in XA$ is “blanked out” by
replacing the XA$ entry with the string “*”. This marks the XA$ entry as
“unused” so that a new entry can use the XA$ position. At the same time the
corresponding XA% entry is marked unused by setting it to -2.

START

XA%(9) 2 J XA$(0) r—'-l

1) 8 (1) | FINK! IREUBEN SANDWICH! 1
2) 4 (2) | BELL!A.G.!TELEPHONE! r
(3) 1 (3) | EDISON!T.!ELECTRIC LIGHT!
4) 3 (4) | DE FOREST!L.!VACUUM TUBE!
&) | -1 5 (5) [TESLAIN.!TESLA COIL! l
(6) 5 (6) | MORSE!S.F.B. | TELEGRAPH!
]
| -2 " REPLACES
i XAS$(7)
(8) 6 (8) | GODDARD!R.H. IROCKETRY!
9| -2 [N
(10)| -2 (10) | *
\
H
/ REMOVED
N LINK
]

4
/

Figure 6-6. Deleting an Entry Using a Linked List

91

Data Storage Using the GPM

Adding an Entry

The process for adding an entry is shown in Figure 6-7. To add an entry, the
“chain” is broken and the previous pointer in XA% is set to the number of the
added entry position. The pointer in XA% corresponding to the added entry
position is loaded with the “next” entry.

START
XA%@) | 2 | 3 XA$(0) _l
m| 8 (1) | FINK!IREUBEN SANDWICH! J
@] 4 (2) | BELL!A.G. | TELEPHONE! |
@ 1 (3) | EDISON!T. |ELECTRIC LIGHT!
@] 3 (4) | DE FOREST!L. !VACUUM TUBE!
©) | -1 (5) | TESLA!N. !TESLA COIL! I
6 | 5 (6) | MORSE!S.F.B. | TELEGRAPH!
m| s £ () | MAXIMIH.P. | MACHINE GUN!
® | 9) h (8) | GODDARD!R.H. IROCKETRY! I
©®] 7 él (9) | HINKEL!C.P.E.|COLE SLAW! I (NEW ENTRY)
(10) | -2 (10) __J N
| | ADDED LINKS

.

>
Figure 6-7. Adding An Entry Using a Linked List

Modifying an Entry

Modifying an entry might change the entry such that itis out of order. Changing
AABLE to ABLE, for example, would mean that ABLE must go between AARD-
YARKE and ACTIVE. For this reason, a modify may be handled by a deletionand
then an add, as shown in Figure 6-8.

92

Data Storage Using the GPM

START
xa%@) | 2 XA$(6) l
THIS ENTRY DELETED
m| -1 L ()] ANk iREUBEN SANDWICH! l‘ AND THEN ADDED AS
\ NEW NAME.
@l s \ (@ | BELLIAG. ITELEPHONE! l
)1
@] 8 K| (@ | EDISONIT. 1ELECTRIC LIGHT!
v
@| 3 ¢ I\ (4| DEFORESTIL IVACUUM TUBE!
s
®| 1 |} | ()| TESLAIN. ITESLA COIL! [
|
®] s 5 { (6) | MORSE!S.F.B. ITELEGRAPH!
]
m| s b /(| MAXIMIHP. IMACHINE GUN!
/
®| 7 [(8| GODDARD!R.H. IROCKETRY! l
@ -2 @]
)
MODIFIED
(o) | -2 ao) | I Links

Figure 6-8. Modifying an Entry Using a

Linked List

Initial Conditions

Initially all entries of X A$ are filled with “*” and the X A9 entries are filled with
-2 to mark them “unused.” XA%(0) is a special case. Initially it is set to -1, as
there are no entries in the XA$ array. This is compatible with the logic that says
“if the pointer value to the next entryisa -1, you have come to the last entry in the

list.” Initialization values are shown in

XA%

XAY%(9) -1 XAS(9)
) -2 (%)}
(2) -2 (2)
(3) -2 (3)
) -2 4)
(5) -2 (8)
d; =
-2
-2
-2
HA%(XQ) -2 XA$(XQ)
-2 = UNUSED

Figure 6-9. Initialization of GPM Arrays

Figure 6-9.

* % ONE CHARACTER
IN EACH POSITION

N
u (s

)
«

—)

“““ = UNUSED

93

Data Storage Using the GPM

AINIT Module Operation

The AINIT module is shown in Figure 6-10. It is used to initialize the XA$ and
X A% arrays and to set the “system variables” in the Y letter range based on the
type of system used.

10500
1251@
10520
12530
12540
12550
10560
1@570
10580
10590
10600
10610
10620
12630
10640
10650
10660
10670
10680
10690
10700
10710
10720
108730
18740
1@8750
10760
16770
106780
108790
16800
10810
10820
12830
10840
10850
16860
10870
10860
12890

GOTOLI@61@ *AINIT
3B 36 3 I T2 T3 I IR 36 IR RN
* THIS IS5 THE INITIALIZE ARRAYS MODULE. IT MUST BE CALLED
* PEFORE ANY ARRAY PROCESSING IS DONE. IT SETS UP THE
> XA% AND XA% ARRAY TO "UNUSED".
? INPUT: NO PARAMETERS
? *###CALLED BY A GOTO%%%
? OUTPUT: XA% ARRAY SET TO ALL -2
’ . XA$ ARRAY SET TO ALL "#*"
B 3 BB KB B U B B B B O KRR R
" CLEAR STRING AREAs DEFIME INTEGERs AND FIND ARRAY SIZE
CLEAR INT(MEM#.85)? ###,85 MAY BE ADJUSTED#*#*%
PRINT CHR$(Z)3
DEFINT XsY»Z
XJ=@: XK=0:XL=0: X5=0: XU=0: XQ@=0:YS=0: XT=0: XI=0: XH=0
ZI=0:ZH=0: XWs="":XDs=""1XZ$="" 1 XY&=""
XG=INT (MEM/52) %4
YE=32@0: YL=33
DIM XAY%Z(XG):DIM XA$(XG):DIM XP(Z@):DIM ZW$(Z@)sDIMXBL(XQ)
DIM ZA$(11) :DIM ZP%(13) :DIM 2Z(11) :DIM ZZ%(11)
FOR XI=1 TO X@-3 STEP 4
XA%AXT) == XA%AXT+1)=—2 s XAL(XI+2)=—2: XAL(XI+3)=—2
XAS (XT)="%#" : XA (XI+1)="%" t XAS(XTI+2)="%" s XAS (XI+3) =" %"
PRINT & YLs XIs
NEXT XI
PRINT & YLs" "3
XAZ(D)=-1:XA$(@Q)="#"
PRINT & 328 "MOD I(1)s II(Z)s OR III(3)7"
XI$=INKEY$: IF XI%="" GOTO 10780
XC=VAL(X1%)
IF XC<1 OR XC>3 GOTO 180778
IF XC=2 THEN YA=80 ELSE YA=6&4
IF XC=2 THEN YB=Z4 ELSE YB=16
YC=YA#Z:YD=YA#*3: YE=YA%(YE~1)+10
IF XC«x2 GOTO 18870
YF=15@: YG=150: YH=148: YI=14B8: YJ=17@0: YK=30: YL=71
GOTO 10880
YF=17&% YG=131: YH=149: YI=17@: YJ=138: YK=31: YL=33
ON ERROR GOTO 11500
GOTO 201@@° #%¥#CHANGE THIS FOR YOUR SYSTEM###

Figure 6-10. AINIT Module Listing

AINIT must be called by a GOTO 1950@ before any processing in the user
application programs. Note that the callisa GOTO rather thana GOSUB. The
reason for this is that CLEAR actions in the AINIT will destroy any return
address from a GOSUB. AINIT returns to location 20100 after it has finished
initialization; the application program must expect a return to this address after
the AINIT,

94

Data Storage Using the GPM (s

The first thing AINIT does is to perform a CLEAR INT(MEM*.85). This
statement finds the memory size (the available RAM memory after loading the
programs) takes 85% of this memory space, converts the result to an integer, and
CLEARS this amount for strings. As you know, the CLEAR clears all variables
and sets aside string storage space. The .85 or 85% allocation is purely a “good
guess” of the amount of the ratio of string storage space to available memory.
The user might try adjusting this value in different applications. Ifitis too low
an “OUT OF STRING SPACE” type error will result.

Next, a PRINT CHR$(2) is done. This code turns off the blinking cursor in the
Model II; GPM uses its own blinking cursor. It has no effect in the Models I and
II1.

Next, variable names in the X, Y, and Z range are declared as integers (DEF INT
X,'.2]. All GPM variables will hold values from -32768 to +32767 so the
integer range is adequate. Integer variables take only two bytes of storage each
and their processing is much faster than other numeric variables.

Next, a number of critical variables are declared. The only purpose of this
statement is to store the variables at the beginning of the variable storage area,
making the retrieval of these often used variables as fast as possible. This speeds
up the overall execution of the program.

Next, variable XQ is computed. Variable XQ is the dimension of the XAS,
XA%, and XB% arrays. It is a multiple of four (plus one byte) since later
processing initializes the arrays by STEPping in increments of 4. The size of the
arrays is based on the current memory divided by 13, an arbritrary figure. If
your array entries will be a small number of characters, use a smaller divisor; if
your array entries will be a larger number of characters, use a larger divisor. The
13 divisor is based on entries of about 60 characters.

Next YE (prompt message location) and YL (activity field start) are temporarily
initialized for AINIT actions.

The next statements allocate major GPM arrays.

The code that is indented (lines 10700 through 10740)is a FOR...NEXT...STEP
loop that sets all XA$ entries to “*” and all XA9% entries to -2 (unused). After
each four entries have been initialized, the current number is displayed at YL.

This denotes “activity” and reassures the user that the program is still running.

The next two statements clear the activity area and set XA$(0) to “no entries”
and XA%(0) to “*”,

The remaining code initializes system variables based on user input of the type of
machine being used. Variable XC s set to 1,2, or 3 for the Model L, 11, or III.
The system variables represent the “parameters” of the system as shown in
Table 6-1.

95

Data Storage Using the GPM

Table 6-1.
VARIABLE MODEL I/li MODEL Il DESCRIPTION

YA 64 80 Width of screen

YB 16 24 # lines on screen
YC YA*2 = 128 YA*2 = 160 Location of 2nd line
YD YA*3 = 192 YA*3 = 240 Location of 3rd line

YE 970 1850 Location of prompt message
YF 176 150 “Bottom” box character

YG 131 150 “Top” box character

YH 149 148 “Left” box character

Yi 170 148 “Right” box character

YdJ 138 170 Field prompt character

YK 31 30 CLEAR character

YL 55 71 Location of activity field

Table 6-1. System Variables

The next to last statement sets up the location of the error handling routine. This
module (ERROR) is used primarily for “non-catastrophic” errors such as “disk
file name not found.” Any BASIC error will cause the ERROR module to be
entered. The ERROR module will display a user-specified message if desired, or
will simply return to BASIC for its error message.

The last statement returns to the user application program at line 20100.

ASRCH Module Operation

The ASRCH module is shown in Figure 6-11. It is one of the most important
modules in the GPM, as it searches the XA$ array for either a given entry or a
location in the array that will mark where an entry will be inserted (added). A
sample call and action are shown in Figure 6-12.

The module is called with string variable XD$ containing the string for the
search. XAS$ and XA%, of course, contain the entries currently being used.

On RETURN ASRCH will pass back these variables:

XK has the entry number of the next available entry in XAS$
XJ has the entry number of the last entry

XL has the address of the next entry

XM is a “found/not found” flag

XS contains the number of the entry

e © © 6 @

There are several modes of operation of ASRCH. We'll explain the meaning of
each of the modes.

96

Data Storage Using the GPM

5000 GOT0514@ *ASRCH

SOLD 7 393350339696 3690 I 5123006 3696 96 3006396 30 3636 36 96 36 9696 96 96 96 9636
5020 ° THIS I8 THE SEARCH ARRAY MODULE. IT IS USED TO SEARCH
S@30 ° FOR A GIVEN STRING» EITHER TO FIND THE EXPECTED STRING
3@84@ * OR TO FIND THE SPOT WHERE THE STRING SHOULD BE INSERTED
5050 ° INPUT: XD$=STRING FOR SEARCH

5060 ° XAZ AND XA% ARRAYS CONTAIN APPROPRIATE DATA
L2070 OUTPUT: XJ=INDEX TO ENTRY BEFORE STRING

5080 - XK=INDEX TO NEXT AVAILABLE SLOT

096 ° XL=INDEX TO NEXT ENTRY AFTER STRING OR STRING
5100 - OR =1 IF NEXT ENTRY OUT OF ARRAY

511@ ° XM=@ IF NOT FOUNDs 1 IF FOUNDs Z=0UT OF MEMORY
5120 ° XS=# OF ENTRY

ST3@ 7 55533 363 3BT AT 3236363606 I T3 26 36 96 3696 0 6 366 96 36 3696 36 96 36202
31480 IF XAZ(@)<>-1 GOTO 5180

5150 XJ=0:XK=1:XL=~1:XM=@:XS=0

5160 GOTO 5370

5170 *FIRST FIND NEXT AVAILAPLE SLOT

5180 FOR XK=1 TO X

5190 IF XAZ{XK)=-2 GOTO 5240

HZ00 NEXT XK

5210 XM=z

5220 GOTO 5370

5230 "NOW XK=NEXT AVAILABPLE SLOT

3240 XJ=0: X5=1

5250 XL=XA%(@)

5260 PRINT & YLs X83° "3

3270 IF XD${xXA%(XL) GOTO 5316

5280 "MATCH HERE

5290 XM=1

5300 QOTO 3370

5310 IF XD$<XA%(XL) GOTO 5360

5328 XJ=XL

5330 XL=XA%(XL)

3340 X5=X5+1

5350 IF XL<>—1 GOTO 5260

a336@ XM=0

53370 RETURN

Figure 6-11. ASRCH Module Listing -

97

Data Storage Using the GPM

XA$
LINK *\\\\~
XJ=LAST ENTRY
XK=NEXT "SLOT” (FIRST UNUSED)
XL=NEXT ENTRY
~= =

@580 *NOW CONSTRUCT ONE STRING FROM FIELDS
20590 GOSUBR 6500

20600 *NOW _SEARCH FOR KEY IN EXISTING FILE
Z2@610 (XD 4] ~a— ASRCH CALL
FQ62@ T IF NOT OUT OF MEMORYs CONTINUE

20630 IF XMo:Zz GOTO ZB670

20640 XP=3:XR$="0UT OF MEMORY":GOSUR 11000
20650 GOTO 20680

20660 DD _ENTRY

20670 700 | <t———————UTILIZES ASRCH PARAMETERS
z06B@

Figure 6-12. ASRCH Call and Action

Call Made Expecting to Find XDS$

If a call is made with XD$ containing the entire entry string that should be in
XAS$, then variable XL will contain the entry number of the string and variable
XJ will contain the previous entry number. Variable XK will contain the entry
number of the first “free slot,” which is meaningless in this case. Flag variable
XM will be set to a 1 if the entry is found. Variable XS will hold the number of
the entry.

If the XDS$ string is not found, variable XM will be set to 0, and the remaining
variables will be set as in the next case. Figure 6-13 illustrates this mode.

98

Data Storage Using the GPM H=T 7]

XA%(0)
a)
@)
3)
(4)
(8)
(6)
@)
(8)
(8)

(10)

N N\ F

-2

-2

XA$(0)
(1)
2

r.'l

FINK!!IREUBEN SANDWICH! l

BELL!A.G. | TELEPHONE!

3
()

EDISON!T. lELECTRIC LIGHT! I

DE FOREST!L. IVACUUM TUBE! -l

(8)

TESLAIN. ITESLA COIL! I

(6)
7

MORSE!S.F.B. ITELEGRAPH!

MAXIM!H.P. IMACHINE GUN!

(8)

GODDARD!R.H. |[ROCKETRY! '

9

(19

HERE

’ POINTS

20200 XD$=“FINK!! REUBEN SANDWICH!"
20210 GOSUB 5000

Figure 6-13. ASRCH Call with “Found”

POINTS
HERE

POINTS

HERE

g —]
XK
XL

XM=1=FOUND

Call Made Not Expecting to Find XD$

This is the mode used for finding the insertion point in the XA$ array for adding

a new entry. In this case, flag variable XM will be set to 0 on RETURN.

Variable XK will hold the entry number of the next free entry in XA$. The XD$
string will not be added to XAS at this point.

Variable XL will hold the entry number of the next entry after the insertion
point, and variable XJ will hold the entry number of the entry just prior to the
insertion point. Variable XS will hold the number of the variable associated
with the XL entry; this is the count of the entry from the beginning of the list.
The “typical” case for a call in this mode is shown in Figure 6-14.

99

Data Storage Using the GPM

START
XAY%(0) 2 J XA$(0) | * l
POINTS
(1) 8 (1) | FINK!!REUBEN SANDWICH! l HERE
(2) 4 (2) | BELL!A.G.! TELEPHONE! l
POINTS | HERE
(3) 1 3 (3) | EDISON!T. |ELECTRIC LIGHT!] <&
4) 3 (4) | DE FORESTIL. {VACUUM TUBE! J
5 |- 5 (5) | TESLAIN. ITESLA COIL! l
(6) 5 3 (6) | MORSE!S.F.B.! TELEGRAPH!
Y] 6 5 (7) | MAXIMIH.P. | MACHINE GUN!
(8) 7 (8) | GODDARD!R.H. |ROCKETRY!
T T XJ—
@ | -2 @]+ | emsTEN 1 gqPOINTS .0
________ 1 HERE)
o) | -2 (10) XM=0=NOT FOUND

20200 XD$="EINSTEIN":GOSUB 5000

Figure 6-14. ASRCH Call with “Not Found”

There are two “untypical” cases here. If the XA§ array is empty, XJ contains a
zero for the XA%(0) entry and XL is set to -1 to indicate that there is no “next”
entry. All other variables are set as before. If the XDS$ string is “greater” than
the last entry, the insertion point is at the end of the list. In this case XL contains
a -1 to indicate that there is no “next” entry.

General Operation

ASRCH first checks for an empty list by testing XA%(0) for 0. If the list is
empty, XJ issetto 0, XK to 1, XI.to-1, XM to 0, and XSto 0. ARETURN is
then made.

The first set of indented code searches for the first unused entry. Every unused
entry is set to -2 in XA% either from initialization, or as entries are deleted.
Variable XK is set to the entry number of X A% that contains the first -2. If the
loop is completed, no unused entry has been found in the entire list, and an “out
of memory” return is made (XM=2).

The code at line 5240 is entered if the array is not empty. XJissetto 0 and XS to
I. Variable XL is then loaded with the “next” value from XA%(0). From this
point, the loop at 5260 through 5350 is executed. It continues until the XD$
string is found, until an insertion point is found, or until the entire array is
scanned (insertion point at end).

The first action in the loop is to print the current number at the activity area. The
search may be seconds in some cases, and this indicates activity to the user.

100

Data Storage Using the GPM

Next, a comparison of XD$ and XA$(XL) is made. If they are equal, the entry
has been found (there is a “match™). In this case XM issetto 1 anda RETURN
is made.

If they are not equal, a test is made for XDS$ being less than XA$(XL). If this is
the case, an “insertion point” has been found, flag XM is set to 0 for “not found”
and a RETURN is made.

If they are equal or XD$>XAS$(XL), then the next entry in XA$ must be
examined. XJ (previous) is set to XL (next). XL is then set to the next entry
number from XA%(XL). The count of entries in XS is incremented by one. At
this point XL contains the entry number of the next entry. If this entry number
is -1, the end of the list has been reached, flag XM is set to 0, and a RETURN is
made. If the next is not -1, the loop continues.

AADD Module Operation

The ARDD module is shown in Figure 6-15 in all its complexity. It adds an entry
to XAS. It takes the XL, XJ, and XK variables values from an ASRCH call
immediately preceding. XDS$ is copied into the next available entry in XA$ by
XA$(XK)=XDS$. The next available value in XAY% is then set to the next entry
number by XA%(XK)=XL. Finally, the previous value in XA% is adjusted to
hold the added entry number by XA%(XJ)=XK.

7000
7010
70:0
7030
7040
7050
7060
7070
7080
7070
7100

GOTO 70870 *AADD

Bttt R S S R RS IR T e
’ THIS IS THE ADD ENTRY MODULE. IT ADDS AN ENTRY TO THE

> XA$ ARRAY AND SETS APPROPRIATE XA%Z POINTERS

? INPUT: XJs XKy XL SETUP FROM SEARCH MODULE

’ OQUTPUT:ENTRY ADDED

TR IR I I I I 3 I I I
XA$ (XK)=XD%

XAZ (XK)=XL

XAZ(XJ)=XK

RETURN

Figure 6-15. AADD Module Listing

ADEL Module Operation

The ADEL module is shown in Figure 6-16. It deletes an entry from X A$ based
on ASRCH call parameters just prior to ADEL. Since XK (first unused entry
number) is not required, it is used as a temporary variable. XK is first set to the

101

6

Data Storage Using the GPM

next entry number from the entry to be deleted. The previous value in XA% is
then set equal to this entry number by XA%(XJ)=XK, “breaking the link.” The
last two actions set the XA% entry and XA$ entry to “unused.”

9500
9510
95208
9530
9540
550
560
?570
2580
9590
600
610

GOTOI570 *ADEL

I TR T IR R R S IS S S R LRSS L
* THIS IS THE DELETE ENTRY MODULE. IT DELETES AN ENTRY FROM
> THE XA% ARRAY.

’ INPUT: XJsXKs XL SETUP FROM SEARCH MODULE

’ OUTPUT: ENTRY DELETED

A 33 BB 3 363 3 U A I R I I RN
XK=XAX(XL)

XAL(XT)=XK

XA%(XL)=~2

XAB (XL)="#"

RETURN

Figure 6-16. ADEL Module Listing

102

Chapter Seven
Secondary Sorts and String Modules

In this chapter we’re going to look at another aspect of data storage in the GPM
modules, secondary sorts. The GPM are set up to perform ordering of data as it
isentered. The ASRCH and AADD modules can be used to order each entryin XA$
as it is entered from the keyboard, disk file, or tape. Order is based on the
alphanumeric string in each entry starting with the first field. The SECSRT
module provides a “secondary” sort that will reorder the entries in XA$ based
upon any field desired. For example, if there are 8 fields in a mailing list, SECSRT
will reorder XA$ based on the “zip code” field.

The second topic we’ll be talking about here are some of the other modules
related to data storage in the GPM. F INDN finds the nth entry in XAS$. There are
also some modules that will “pack” and “unpack” entries to and from their
respective fields.

Primary and Secondary Sorts

When the GPM modules were designed, they were made to order data based on
the first “field” of each entry. You’ll recall that each entry in XA$ can be ordered
into any number of fields, each field being separated by an exclamation point
character (!). The idea here was that the first field could always be the “key” field
— the one that contained the last name for a mail list, the account number for
billing, or the part number for inventory. Entriesin XA$ could then be ordered
on this key.

At times, though, it’s nice to be able to reorder the entries based upon some other
field, such as zip code, state, or type of account. The SECSRT module allows you
to do this.

Because the XA array is “dedicated” to keeping track of the order based on a
normal entry (field 1,2,3 ..) in XAS$, a second array must be used. The second
array is designated XB% and is also an integer array of the same size of XA%
(the number of entries equals XQ). (See Figure 7-1.)

The second field for the sort could have been specified while the XA$ array was
empty and secondary sorting could have been done at the same time as primary
sorting. However, this would slow down the processing for adding entries by at
least a factor of two. It would also prohibit resorting on another field, if that
were desired.

As a result, SECSRT sorts the entries in XA$ in one huge sort operation at any
time the user specifies. After the sort, if any adds, deletes, or modifies are done
to XAS$, a flag is set that says that the secondary sort is “invalid” and must be
redone. Secondary sorts, then, are meant to be used just prior to using the data
in XAS, as further activity will invalidate the sort.

103

i1 Secondary Sorts and String Modules

XBY% XA% XA$
XB%(B) XA%(0) XA$(0) AJ
1) Q)] 1)
) (3] (2)
@ ©) ® |
4) 4) 4 J

= Ar AT A A= +
XB%(XQ) XA%(XQ) XA$(XQ)
(SECONDARY (PRIMARY (STRING
SORT) SORT) ENTRIES)

Figure 7-1. XB% Array

The advantages of being able to sort at any time on a second field are obvious.
What are the disadvantages? The primary disadvantage is that SECSRT is slow!
Expect sorts for 100 entries to be on the order of 1 hour, and sorts for 200 entries
to be on the order of 4 hours! (Sorts for 1000 entries take approximately 8
months . . .) The sort time increases drastically as the number of entries
increases. With this proviso on SECSRT use, let’s look at the operation of
SECSRET.

SECSRT Module Operation

The SECSRT module is shown in Figure 7-2. Entry is made to SECSRT with
variable YT containing the number of the secondary field for the sort. RETURN is
made after the sort is done with XB% containing the sorted entry numbers. A
sample call is shown in Figure 7-3.

The first action that SECSRT takes is to initialize the XB% array. A -2 for an
unused entry is stored in each entry position of XB%, and then a -1 for “next
entry number” is stored in XB%(0).

Next, a check is made of XA%. If it is empty (XA%(0)=-1), no sort is necessary
and a RETURH is made.

SECSRT sorts by following the threaded list of XA%. Variable XG holds the
“current” entry number from the XA% array, starting with XA%/(0).

The code from line 6180 through 6270 takes the current entry and finds the field
specified in YT. The double-indented code at 6220 through 6250 finds the start
of the specified field by calls to SSRCH (line 1000). After the start of the field is
found another call to SSRCH finds the end of the field. XD$ is finally loaded with
the characters from the field specified in YT.

104

Secondary Sorts and String Modules

&20B GOTO 6100 *SECSRT
EBID 7 343303 AT I I I T I I I I B

6Bz@ * THIS IS5 THE SECONDARY SORT MODULE. IT IS USED TO SORT

6030 * THE XA$() ARRAY BY A SECONDARY FIELD. THE INDICES TO
604@ ° THE SORT ARE HELD IN THE SECONDARY INDEX ARRAY XBY%()
&850 INPUT: XA%() AND XA%Z() ARRAYS

60860 YT=# OF SECONDARY FIELD

&B70 OUTPUT:SORTED ARRAY OF INDICES IN XB%() ARRAY

GOBD 7 3433 3403 B W H I I IO I I I 3 362636 3 3 6 R RN B
609G *FIRST INITIALIZE XB%() ARRAY

6100 FOR XI=1 TO Xa@-3 STEP 4

6110 XBA(XI)==2e XBAAXI+1)=~ s XBAU(XI+2)=~2t XBA(X]+3) =~2
6120 PRINT @ YLsXIs

6130 NEXT X1

6148 XB%L(B)=-1

6150 IF XA%(B)=-1 GOTO 6350

6160 XK=XAZ(B®)

6170 *UNPACK EACH XA$ ENTRY

65180 PRINT & YLsXKs" "3

6190 XZ$=XA%(XK)

foyedvil] XWg="1"

6210 IF YT=1 GOTO 6268

6220 FOR ZI=1 TO YT-1

6230 GOSUE 1000

6240 XZ$=MIDS(XZ%s XW+1s LEN(XZ$)~XW)
6250 NEXT Z1

6268 GOSUB 106006

6270 XD$=LEFT$(XZ%s XW-1)
6280 *SEARCH FOR ADD POINT
6290 GOSUR 46360

6300 XBZ(XK)=XL.

6310 XB%(XJ)=XK

6320 *NOW GET NEXT ENTRY
6330 XK=XAX (XK)

6346 IF XK<{>-1 GOTO 6186
6350 RETURN

6368 IF XBZ(B)<>-1 GOTO 6390
6370 XJ=0:XL=-1

6388 GOTO 6450

6390 XJ=0

6400 XL=XB%(@)

6410 XY$=XA%(XL) :GOSUR =500
6420 IF XD$<ZW$(YT) GOTO 6450
6430 XJI=XL s XL=XBZ (XL)

6440 IF XL<>—1 GOTO 6410
6453@ RETURN

Figure 7-2. SECSRT Module Listing

y — GET FIELD # FOR SORT

23580 WT=VAL(ZW$(1))]
2359@ IF YT<1 OR YT:8 GOTO 23550
23600 *NOW S

23610 §

~%——— SORT — ALL DATA IN XA$ AND XA%

Figure 7-3. SECSRT Module Call

105

Secondary Sorts and String Modules

At this point the field from the current entry of XAS$ is in XDS$. A search must
now be made through all of the entries in XA$ to find the “insertion point.”
Subroutine 6360 accomplishes this. It returns variables XJ, XK, and XL just as
ASRCH does in specifying the insertion point. XK is the first “unused” entry
number, XJ is the “previous” entry number, and XL is the “next” entry number.
These entry numbers will be used to insert the link in XB%; the entry in XAS$ will
remain undisturbed.

After the insertion point is found, XB%(XK)=XL sets the unused entry in XB%
to the next entry number. The last entry number is set to the unused entry
number by XB%(XJ)=XK. The next entry number is then found by
XK=XA%(XK). This picks up the next entry number from the current XA%
entry. Ifitis not -1, the code loops back to 6180 for processing of the next entry.
Each entry number (XK) is printed at the “activity area” to indicate processing.

Subroutine 6360 acts similarly to the ASFCH module. It searches the entries in
X A$ to find an insertion point for the field in XDS$. Instead of changing pointers
in XA%, it uses the secondary sort array XB%.

If there are no entries in XB%, XJ (previous) is set to 0 and XL (next) issetto-1.
A RETLRM is then made for this first entry.

If there are entries in XB%, the subroutine first finds the first “unused” entry
number in XB%. Since XBY% was initialized at the beginning of the SECSRT
module, this will be the next sequential location in XB%. This value is held in
XK.

Next, the entry in XA$ corresponding to each entry in XB% is “unpacked” by
calling the SUMFI module (line 2500). This puts all of the fields for the entry into
the ZW$ array. The proper field (ZW$(YT)) is compared to XD$. When XD§
is less than the field of the current XAS$ entry, a RETURH is made with XJ, XK,
and XL set to the proper insertion point.

A complete example of SECSRT action is shown in Figure 7-4.

106

Secondary Sorts and String Modules

XA% ORDERED XB% ORDERED
ON FIELD 1 ON FIELD 2
(DATE)

START

XA%(0)
)
@)
[©)]
@j 1
(5)
(6)
7
(8)
(9)
(10)
(L))

XB%(0)
)]
(2)
3)
4)
(8)
(6)
7
(8)
(9)

XA$(0)

1

(2

(3) | COLOSSUS!1943! I

(4) | NICOLAS!1952!

(5) | ACE!1951!

(6) | MANCHESTER MK 1119491]

(7) | EDVAC!1952! l

(8) | WHIRLWIND!19501 l

(9) | BINAC!1949!

(10) {10)

(11) (11)
NOTE: XA% ORDER IS NEVER ALTERED BY XB% ACTION

Figure 7-4. SECSRT Operation

FINDN Module Operation

The F IMOM module is shown in figure 7-5. It is used to find the nth entry in the
XAS$ array. This is useful because sometimes the number of the entry will be
known in place of the “name” or key of the entry.

5508 GOTO565@ *FINDN

AR T TR E TR P T T T T T
5523 ° THIS 18 THE "FIND NTH ENTRY" MODULE. IT SEARCHES THE

TREAC!1953!

UNIVAC!19511

Z/

2

=

T RS

<62

A

353@ °* XAZ ARRAY TO FIND EITHER A GIVEN ENTRY #s; OR TO FIND
3340 ° THE NEXT ENTRY.

5550 INPUT: XU=CURRENT # FROM PREVIOUS FIND NTH

5560 XS=# TO FINDs 1 TO N OR -1 IF FIND ALL
5570 * XT=@ IF FIND NTHs 1 IF FIND NEXT

53588 ° YS=@ IF PRIMARYs 1 IF SECONDARY

5590 ° QUTPUT:XM=@ IF ENTRY NOT FOUND ON FIND NTHs 1 IF
3600 - FOUND

5610 * XJ=INDEX TO LAST ENTRY

5620 ° XL=INDEX TO NTH ENTRY OR NEXT ENTRY

5630 ° OR -1 IF NOT FOUND

SEAD 7 3B B 303333 6 026 2 26 26 36 36 636 6 B 3 36 3636 36 6 26 36 36 36 30 H 36 030 S B0
565@ IF XU<»B GOTO 5740

5668 IF XAZ(@)=-1 GOTO 5770

5670 XU=1:XJ=0

5686 IF YS=0 THEN XL=XA%Z(@) ELSE XL=XR%(@)

5690 IF XU<>X8 GQOTO 5728

5700 XM=1

5710 GOTO 5780

5720 IF XT=1 GOTO 5770

5730 XU=XU+1

5740 XJ=XL:IF YS=0 THEN XL=XAZ(XL) ELSE XL=XB%(XL)

5750 IF XL=-1 GOTO 577@
3760 GOTO 5690

5770 XM=0

5780 PRINT & YLs XU3" "3

579@ XU=XU+1
5800 RETURN
Figure 7-5. FINDN Module Listing

107

Secondary Sorts and String Modules

F IMDN operates in two modes. The first mode finds the nth entry. A sample call
(Figure 7-6) would specify that the 50th entry in XA$ is to be found. The second
mode finds the “next” entry. The second mode is usually used after finding the
first. The 50th entry is found, for example, and then the module is repeatedly
called for the 51st, the 52nd, and so forth (Figure 7-7). The second mode is much
faster than the first, as it does not start from the beginning of the list.

MUST BE 6 ON THIS FIRST CALL TO FIND N
50TH ENTRY
“FIND N~

//FIND IN PRIMARY SORT ORDER
e Vet P N

XU=B:X5=50: XT=0:YS=0:G0O5UR 5500

IF XL<x=1 PRINT "S5@TH ENTRY="3XA$(XL)3 ELSE PRINT "NOT FOUND"3
IF XL=-1 STOP <

XG=—1:XT=1:Y5h=0:GOSUR 5500

T OUNEXT ENTRY="[FXA®(XL)35 ELSE PRINT "NOT FOUND"3
22630

IF XL=-1, XA$ HAS LESS
THAN 50 ENTRIES
COULD ALSO HAVE CHECKED

Figure 7-6. FINDN Module Call for “FIND N” XM HERE

22600 XU=0:XS=50:XT=0:YS=0:GOSUR 5500
22610 IF XL<¥»—1 PRINT "S5@TH ENTRY="3;XA$(XL)3 ELSE PRINT "NOT FOUND";
2620 IF XL=—1 STOP
22630 XS=-1:XT=1:YS=0:GOSUB 5500
Fr640 IF?XL{'ﬂl PRINTS“NEXT ENTRY=":XA$(XL)3: ELSE PRINT "NOT FOUND":
22650 IFLXL<r—1BGOTO Ezzazmw\
iF XL=-1 END OF LIST
FIND IN PRIMARY HAS BEEN REACHED
SORT ORDER

“FIND NEXT”
FIND ALL, COULD ALSO
BE A SPECIFIC # TO
DEFINE END OF RANGE
WITH CHECK OF XM

Figure 7-7. FINDN Module Call for “Find Next”

[

FINDN finds entries from either the primary or secondary array.
Find Nth Entry

In this mode, XU must be set to 0. Variable XS contains the number of the entry

108

Secondary Sorts and String Modules Eell7 7

to be found. Variable XT is set to 0 to specify the “find nth” mode. Variable YS
specifies the nth entry of either the primary or secondary array (XA% or XB%).

As XU=0, line 5660 is executed. A check is made of XA%(0). If the entry
number is -1, then there are no entries in XAS$ and a RETURN is made with
variable XM set to “not found.”

If there are entries in XA$, XU is set to 1 and XJ to 0. XU holds the “current
number” as entries are found. XJ holds the “last” entry number. XL is then set
to the first entry number of either the XA% or XB% array.

The code from line 5690 through 5760 is the main loop of FIMNOM. It goes down
through the list of XA% or XB% and counts the number of the entry by adding
one to XU. When XU equals XS, the number to find, a RETURHN is made with XJ
and XL set to the “last” entry number and desired entry number, respectively.

It is possible that the number will not be found if the “number to find” in XS is
greater than the number of entries in XA$. In this case a -1 is detected, and a
RETURM is made with XM set to 0 for “not found.”

The current entry number is displayed in the “activity area” before the RETURN
is made.
Find Next Entry

This mode is very similar to the first, except that the count is not made from the
beginning of XA% or XB%, but from the last entry number. XU in this case
holds the number from a previous call. Variable XS holds a number to find, if a
limit is required, or -1 if all entries are to be found. Variable XT holds a 1 for
“find next.” Variable YS contains a flag for either the primary or secondary
array XA% or XB%.

The count is resumed from entry XU and proceeds as in the mode above, A
check is made of XT at line 5720, and a RETURN made with XJ and XL set up as
before. XM is set if the current entry number corresponds to the value in XS.

SSRCH, SUNPK, AND SPACK MODULES

These three modules are used to “pack” and “unpack” fields and entries in X A$.

SSRCH is used to search a string for a given smaller string - to find USA in
S0USA, for example. It is a general-purpose routine that can be used for any
search of this type.

SUNPK takes an entry with fields “delimited” by exclamation points and unpacks
the entry into the ZW$ array. It’s used to take an entry from the XA$ array and
separate into fields for display or comparison.

SPACK is used to do the inverse of SUMPK. It takes fields in the ZWS$ array and
packs them into XA$ format with exclamation point delimiters (separators).

109

Secondary Sorts and String Modules

SSRCH Module Operation

The S5RCH module is shown in Figure 7-8 and a sample call in Figure 7-9. Input
to SSRCH is the string to be found, XW$, and the string that may contain XWS,
string XZ$. If the XW$ string is found within XZ$, variable XW is returned with
the starting “index,” or position number, of the string. The position number is a
value of 1, 2, 3 and so forth, that corresponds with the character position of the
string,

1000 GOTO 109@ *SSRCH

TOID 7 354360 365636 365 3636 36 360636 06 36 336 36 3636 96 96 96 56 36065 363006 9606 0000 06 0636 9606 3690 3 6 36 2 966 3
1020 ° THIS 1S5 THE SEARCH STRING MODULE. IT SEARCHES THE XZI%

1838 *° STRING FOR A SEARCH STRING OF XW$. XZ$ MUST BE LARGER
1240 ° OR EQUAL. TO LENGTH OF XWs$.

1050 ° INPUT: XW$=STRING TO BE FOUND

1860 ° XZ#=8TRING TO BE SEARCHED

1@7@ ° OUTPUT : XW=START INDEX OF STRING OR -1 IF NOT FOUND
LOB@ 7 333 33 336 5 3 363636 36 96 36 9 3363606 3 369006 36 36 56 36 36 336 36 6 060030 300 36 4696 36 96 360 6 3696 3036 3606 20 0
1090 IF LEN(XW$):*LEN(XZ$) THEN STOP

1100 XI=LEN(XZ%): XH=LEN(XW%$)

1110 IF XW$="!" GOTO 1150

1120 FOR XW=1 TO XI-XH+1:IF MID$(XZ%sXWsXH)=XWs GOTO 1180
1130 NEXT XW

1140 GOTO 1170

1150 FOR XW=1 TO XI:IF MID$(XZ%sXWs1)="!" GOTO 1180
1160 NEXT XW
11760 XW=-1

1180 RETURN
Figure 7-8. SSRCH Module Listing

SETUP STRING TO BE FOUND

SETUP STRING TO BE SEARCHED
FROM XA$ ENTRY

XZ$=XA% (XL }:GOSUE 1000

F XW=-1 GOTO 23150

: *STRING FOUND HERE ~————— XW< >-1 AND HOLDS
P3E20 PRINT & YLs XU-13" "y STARTING CHARACTER

POSITION

Figure 7-9. SSRCH Module Call

First a comparison is made of the length of the two strings. If the string that is
sought is longer than the string that may contain it, the program STOPs.

Variables XI and XH are then set to the length of XZ$ and XW$, respectively.

If the search string is “!”, a special fast search is done in lines 1150 through 1160.
If the search string is not “!”, the code from lines 1120 through 1140 is per-
formed. In either case, if the string is found within XZ$, line 1180 is executed
without variable XW being set to -1. If the string is not found, the program “falls
through” the loop to set XW equal to -1. Each loop tests for XW$ by “sliding”
XWS along the length of XZ$ for comparison, as shown in Figure 7-10.

110

Secondary Sorts and String Modules

XW$ | REFRESH |~
COMPARE

xzs [A GOOD MEMORY IS A REFRESHING EXPERIENCE!]

POSITION POSITION POSITION
1 13 41

Figure 7-10. SSRCH Module Action

SUNPK Module Operation

This module is shown in Figure 7-11. It calls the SSRCH module to separate the
XY$ string into fields which are placed into array ZW$. ZW$(1) corresponds to
field 1, ZW$(2) corresponds to field 2, and so forth. A sample call is shown in

Figure 7-12.
2500 GOTO 2600 *SUNPK
2510 ARl SRR T T T TR R R R R R A R S R vV
2328 ° THIS IS THE UNPACK STRING MODULE. IT FINDS THE INDIV-
<53@ ° IDUAL FIELDS OF A STRING CREATED BY THE PACK STRING
254@ ° MODULE BY LOOKING FOR AN EXCLAMATION MARK CHARACTER.
550 INPUT: XY#=STRING TO UNPACK
2560 ° OUTPUT:STRING XY$ IS UNPACKED INTO ZWE (1) ~ZWE(N)
2570 AND LENGTH OF EACH PUT INTO ZX(1)-ZX(N)
2580 NUMBER OF FIELDS IS PUT INTO Z@Q.
2590 R R R T T X T T T T L L L L L T pnvngt v vV
2688 Z@=1:XWs="1":1XZ$=XY$:ZI=LEN(XZ%$)
2610 GOSUR 10B@ :IF XW=-1 GOTO 2690
2620 ZW$(ZR)=MIDS(XZ%s 19 XW—1)
2630 ZX(Z@) =XW-1
2640 ZI=ZI-XW
2650 IF ZI<1 GOTO 2690
2660 XZ6=MID$(XZbs XW+1521)
2670 Za=20+1
2680 GOTO 2610
2690 RETURN

Figure 7-11. SUNPK Module Listing

ZO500 XY$=XA%(XK)
251@ GOSUR 2500

"FIELD Z="35 ZW$(Z)5" AND LENGTH="37X(2)

Figure 7-12. SUNPK Module Call

First of all ZQis set to 1, XW$ is set to the search string “!”, XZ$ is set to X Y$ for
the search, and ZI is set to the length of XZ$. Variable ZQ is incremented by one

through the loop of lines 2610 through 2680. The number of loops will corres-
pond to the fields involved.

111

Secondary Sorts and String Modules

Each time through the loop, a call is made to SSRCH (line 1000). A search will
be made for “!” in SSRCH. If XW=-1 on RETURN, a RE TURN is made from SUNFI<.

If XW does not equal -1 on RETURN from SSRCH, then it points to the next
position of “!” in the XZ$ string (XY$ string). The leftmost portion of XZ§ is
then cut off and stored in ZW$(ZQ) by the MIDH(xZ%,1,XK-17}. The length of
this portion is represented by XW-1. The length is put into ZX(ZQ). Variable ZI
is then adjusted to the length of the rightmost portion of the XZ§ string
(ZI-XW). If the rightmost position of the string is 0, the unpacking operation is
done. Otherwise, XZ$ is set equal to the rightmost portion of the string by
MIDE(XZ$, xW+1,Z1 1, ZQ is incremented by one, and the next search is made.
A sample operation is shown in Figure 7-13.

BEFORE:

XY$ [DIN!DIN IDIN!AND WE'll PLUG THE 3

iCASSETTE INY l

PACKED ENTRY

AFTER:
ZW$(8) ZX(8)
(1) | DIN (1) 3
UNPACKED 2 3
FIELDS @| b @
(3) | DIN (3) 3
(4) | AND WE'll PLUG THE CASSETTE iN (4) 30

zo [4 | UNeackeo
Figure 7-13. SUNPK Operation

SPACK Operation

The SPACK module is shown in Figure 7-14. Its operation is the inverse of SUMNPI<.
Variable ZQ contains the number of fields in the ZW$ array. String variable
XY$ is initially null. Each of the fields in the ZW$ array is “concatenated” with
XY$ by XY$=XY$+ZWS(XI). A “!” is also added after each field. A sample call
and operation are shown in Figure 7-15.

112

SIZE OF
FIELDS

Secondary Sorts and String Modules

6500
6310
6520
6530
6540
6550
6560
6570
6580
6590
64600
6610
b620
6630
6640

GOTO 6600 *SPACK
T AT T I A3 35309990 30 AR

b
3
2
)
k3
2

2

THIS IS THE PACK STRING MODULE. IT CONSTRUCTS A STRING
OF XY$ MADE UP OF THE "ZP$" FIELDS IN SEQUENCE.
THE "DELIMITER" BETWEEN FIELDS IN THE XY$ STRING IS AN
EXCLAMATION MARK CHARACTER.
INPUT: Zo=# OF ZP$ FIELDS
ZW$ (1) ~ZWs(N)=FIELDS
OUTPUT:XY% STRING MADE UP OF FIELDS

? ****%*%*%**%*#%***%*************%*********%*%****%**%*-ﬁ-*
XY$=II H

FOR XI=1 TO Za
XYE=XYS+ZWE (XTI)+v 1"
NEXT X1

RETURN

Figure 7-14. SPACK Module Listing

CALL:

ZQ480 WS (1) ="LIPERTY" s ZW$ (2) ="EQUALITY"
ZB4AFM TWE(3)="FRATERNITY" : ZW$ (4)="A TRS-8R"
20500 Za=4: GOSUR 4500

ACTION:

BEFORE:

zQ 4 I # OF FIELDS IN Zw$

zws(e)]
()| LIBERTY
2] EQUALITY
3)| FRATERNITY
@ |

FIELDS TO BE PACKED

AFTER:

Xv$ b.IBERW 'EQUALITY!FRATERNITY 1A } RESULT

Figure 7-15. SPACK Module Call and Action

113

Chapter Eight
Line Printer, Cassette,
and Disk Operations

We’ve included some “input/ output” modules in the General Purpose Modules
to take care of printing operations on the system line printer, and “file” opera-
tions on cassette (Models I and III) and disk. (There are other input/output
operations possible with the TRS-80s, but we’ll leave such things as the down
range satellite communications functions for the thirty-second book in this
series . . .)

The line printer modules are LPDRIV and REPORT. LPDRIV automatically
performs page formatting and report titling. REPORT can be used to “format”
any type of printed report by skipping lines, tabbing, printing fields of data, and
printing the contents of a variable “counter.”

The cassette/disk file modules are COLOAD and COSAVE. COSEVE creates a
cassette or disk file from the XA$ array in memory, writing out the entire array
in sequential ASCII file format. CDLUAD loadsin a previously written file; the
load is either an “initialization” type load, or a “merge” of the file data with
existing entries in XAS$.

Another GPM module discussed in this section is the ERROR module, which is
used primarily for disk errors such as “file not found” or “disk full.”

Line Printer Operations

The two BASIC commands that can be used for the system line printer are
LLIST and LFRINT. We'll only be discussing LFRINT in this section, asLLIST is
only used for listing BASIC programs and is not used during execution of
applications programs.

LPRINT is similar to PRINT for display work — deceptively simple. It allows you
to print a line or partial line of data items, strings, or combination of the two, but
does not provide automatic “page formatting” (positioning on the page), just as
PRINT does not allow you to position characters on the screen.

LPDRIV Module
The LPORIY module performs three functions in the GPM:

@ Printing a line
® Automatic page formatting
® Automatic titling

The applications program using LFORIY must first initialize two variables that
will probably remain in force throughout the entire application.

115

8 gelBs Line Printer, Cassette, and Disk Operations

ZL is the length of the printer page in lines. The standard number of lines per
vertical inch is 6. As most printing will be done on 11 inch long pages, ZL is
usually 6 times 11 or 66. If you are using other length pages or special forms,
simply set ZL to the lines per page by multiplying lines per vertical inch by length
of the page in inches.

7M is the number of lines per page on the “print image.” This figure is initialized

the same way — the number of vertical lines per inch is multiplied by the length
of the print area, as shown in Figure 8-1.

PAPER
] POSITION LINE
I / PRINTER HERE
INITIALLY
a
ZL=INCHES* PRINT ZM=INCHES"#LINES/INCH
» ogr:;!fﬁélgg:&) IMAGE (# LINES IN PRINT IMAGE)
|
Y
PAPER

Figure 8-1. Line Printer Variables

LPDRIV Module Operation

The LPORIY module is shown in Figure 8-2. Entry is made with ZM and ZL set
up as discussed. String variable ZM$ is the string to be printed on the current
line. ZNG$ is a title message that will be printed on every new page. If no title
message is to be printed, then ZN$=*", a “null” string. A typical call and action
for LPDRIY is shown in Figure 8-3.

116

Line Printer, Cassette, and Disk Operations

156@ GOTO 1630 °LPDRIV

1510 ’**%****%**********%**************%******%******%*%****%*
152@ * THIS IS LINE PRINTER DRIVER. IT QUTPUTS A SINGLE LINE
153@ * TO THE LINE PRINTERs ADDS ONE TO THE LINE COUNTs AND
134@ > TESTS TO SEE IF LAST LINE ON PAGE HAS BEEN REACHED. IF
1350 * LAST LINE HAS BEEN REACHEDs A "FORM FEED" IS DONE.
1560 - INPUT: ZM=NUMBER OF LINES PER PAGE

1570 ~ ZL=LENGTH OF PAGE IN LINES

1580 - IM$=8TRING TO BE PRINTED. IF NULL ("") THEN
1590 » "FORM FEED" 1S DONE

1600 ° IN%=PAGE TITLE MESSAGE OR "" IF NO TITLE
1610 OUTPUT:LINE IS PRINTED ON SYSTEM LINE PRINTER

1620 ’*%***************************%*************%**#*********
1630 IF 72J<:0 GOTO 1660

1640 ZJ=1

1650 IK=0

1660 IF ZM$="" GOTO 1700

1670 LPRINT ZM$

1680 ZK=ZK+1

1690 IF ZIK<*ZM GOTO 1760

1700 FOR ZI=1 TO ZL-ZK

1710 LPRINT"

1720 NEXT Z1

1730 ZK=@

1740 IF ZN$="" GOTO 1740

1750 IM%$=IN$: GOTO 1500

1768 RETURN

Figure 8-2. LPDRIV Module Listing
CALL:

fQ100 XM=50
20110 XlL.=&6
0120 IN$="SAMPLE PAGE TITLE"

20140
20150 °
20160
21038
F2000 IM$="SAMPLE LINE": GOSUB 1500
LINE
SAMPLE PAGE TITLE ~———m——— TITLE FROM ZN$ PRINTER
e | INE SPACING WHEN LPDRIV CALLED
SAMPLE LINE <@ TYPICAL LINE WITH Zig=""

Figure 8-3. LPDRIV Module Call and Action

117

Line Printer, Cassette, and Disk Operations

LPDRIV uses an internal variable ZJ as a “first time flag.” ZJ will be zeroed by the
CLEAR command in AINIT or by initial loading of the program. If ZJ is zero,
this is the first entry to LPDRIV. ZJisthensetto 1,and ZK issetto 0. ZK is the
internal variable used to hold the current number of lines that have been printed
on the page.

When the application program is first run, the system line printer paper should
be positioned to the spot where the first line is to be printed.

Note: Normally LPDRIV initializes a “new page” after receiving a null string. To
reset LPDRIV after any repositioning of the line printer paper to the top of the
page, a call should be made to LFDRIV with XJ=0.

If ZMS$ is equal to a null string (“) then LPDRIV will automatically perform a
“page eject,” or new page position. Loop 1700 through 1720 performs this
operation by doing an LPRINT®® ** for a
number of times equal to (ZL-ZK). If the length of the page (ZL) is 66 and the
current line position (ZK) is line 0, for example, 66 lines will be skipped to
position the paper at the top of the next page. If the current line position is 22, 44
lines will be skipped to position the paper at the top of the next page.

If ZM$ does not equal a null string, then it contains a “normal” line to be
printed. This is done by LPRINT ZM$. The current line count in ZK is then
incremented by one count. Next, ZK is compared to ZM, the number of lines in
the print image. If they are equal, a “page eject” must be done, and the loop at
1700 through 1720 is executed. If they are not equal a RETURN is made.

Any time a “page eject” is done, the current line count in ZK is set to 0. At that
point, the printer paper is positioned to the first line of the new page. If variable
ZNS$ is not a null, then a title is to be printed. In this case, ZM$ is set equal to
ZNS$, and LPORIV calls itself again! When this action is taken, the title in ZM$
(ZN$) is printed as a normal print line and a RETURN is made after the print.

Note that the call back to the beginning is a GOTO rather than a GOSUE. A GOSUB
would be invalid, as only one RETURN is eventually made.

LPDRIV With the Model II

The FORMS command of the Model II allows complete page formatting on the
Model II system with control of page size, number of lines per page, width, and
other functions. You have two options for using LPDRIV with the Model IL

First, you may specify a page length equal to page size in the FORMS com-
mand. In this case no “page ejects” will be done by the Model II software, but
only by the LPDRIV module. This is the preferred approach.

The second option is to specify a ZM value (number of lines per print image) asa
-1 and use the FORMS control. With the second option, however, you will not be
able to get automatic page titling, as LPDRIV will never “eject” a page.

118

Line Printer, Cassette, and Disk Operations

REPORT Module

LFORIY handles the most basic line printer operations — printing a line,
top-of-page formatting, and page titling. REFORT expands upon these basic
operations.

REPORT uses a list of data items in array XP. The first element of this integer
array, XP(0), is the number of items in the array, as shown in Figure 8-4. The
item “codes” are as follows:

0 = line feed

@ -] = page eject

® -2 = print report counter XN
@

®

-3 to -63 = tab to character position 3 to 63
1ton = print field 1 to n

XP(9) s # OF ITEMS FOR REPORT
XP(1) 2
XP(2) 10
XP@) ! SIX ITEMS FOR REPORT
XP(8) 15
. XP(5) 2
XP(6) 9
= =Y
XP(20)

Figure 8-4. REPORT Data ltems

REPORT takes each of these items and performs the operation specified. A
complete set of operations is defined by the number of items in the XP array.
The items in the XP array can be redefined and a new call made to FEFORT for
another set of operations.

Let’s take each of these items and discuss the action of REPORT.

If the item in XP() is a -1, a page eject is done to the top of the next page. This
code is therefore used to get to the top of the page before printing.

If the item in XP()is a 1 to n, where 7 is the number of fields used in the XA$
entry, the character string representing the field is printed at the current line
printer position. Each field is contained in the ZWS$ array in a position
corresponding to the field number.

No line feed is done after the field is printed. This code is used to printafield ona
line. For example, if a mailing list application was in process, the first and last

119

Line Printer, Cassette, and Disk Operations

names of the addressee might be printed by two consecutive codes of 2,1, which
would print the first and last names on the same line.

If the item in XP() is a 0, a line feed is performed. This makes the printer skipto
the next line. To print a complete mailing list entry with fields as shown in
Figure 8-5, for example, the XP array would hold 2,1,0,3,0,4,0,5,6,7,0,0,0, fora
six line printout each time REPORT is called.

XP
13 13 ITEMS
/ 2 FIELD 2
LINE1 | BiLLBARDEN <¢ 3 FIELD 1
2 | HACK wnnrsn\ ° NEW LINE
3 | 250 N.S. MEMORY LANE — 3 FIELD 3
4 | COMPUTER CITY CA 93999 " NEW LINE
5 \ ™ 4 FIELD 4
6 o NEW LINE
\ \ \ s FIELD §
\ O\ 6 FIELD 6
\ 7 FIELD 7
Py NEW LINE
? NEW LINE
° NEW LINE
o by

Figure 8-5. REPORT Printing Example 1

If the item in XP() is a -3 to -63, then a “tab” operation would be done. This
would move the line printer to a character position on the print line correspond-
ing to the tab value. To print a last name, first name at tabs 10 and 30, for
example (see Figure 8-6), the XP array would hold -10,2,-30,1,0.

120

Line Printer, Cassette, and Disk Operations

TAB POSITIONS

111 1 1 2 2 2 2 2 3 3 33 34
] 2468 0246 80 2462802408628 0
Il L 1 i I I 1 1 1 i [1 1 1 1 i 1 i i 1
L] T T T T T] 1 | [T 1 T ¥ 1 T 1 1 I
LINE1 | M BABBAGE CHARLES
A
2 | BOOLE GEORGE
G
3 HOLLERITH HERMAN
4 | N LEIBNIZ GOTTFRIED
5 PASCAL BLAISE

XP(9) 5 SITEMS
-10 TAB TO 10
2 FIELD 2
-30 TAB TO 30
1 FIELD 1
] NEW LINE
JV -

Figure 8-6. REPORT Printing Example 2

Iftheitemin XP()isa-2, then the report counter variable XN is printed. XN is
automatically incremented by one each time it is printed. If the XP array
defined inventory items, for example, each set of inventory fields printed would
cause XN to be incremented by 1 if the codes in XP included a “print report
counter” code of -2. To print a list of part numbers and descriptions together
with an index number, for example, the XP array might contain -2,-5,1,2,0, as
shown in Figure 8-7. XN would be set to 1 prior to the first call to REPORT; it
would then increment automatically from the initial value of 1.

121

Line Printer, Cassette, and Disk Operations

TAB POSITIONS

-
N
E-3
-t
-+ @

LINE 1 2358 CPU MODEL 1

2416 EXPANSION INTERFACE
1001 BULK ERASER

1010 SELECTED BITS FOR DATA

7532 MISCELLANEOUS Z-80 INSTRUCTIONS

oW
NS W=

XP(®) 5 5 ITEMS
-2 PRINT REPORT COUNTER
5 TABTO 5
1 FIELD 1
2 FIELD 2
0 NEW LINE
L -

Figure 8-7. REPORT Printing Example 3

A complete example of REPORT is shown in Figure 8-8, which uses REFORT and
LPORIY to print an entire page of information from entries in the XA$ array.
Other GPM modules are called to get the XA$ entries (FINDN) and to unpack
them into the field array, ZW$ (SUNPK).

122

Line Printer, Cassette, and Disk Operations

1 EARL ECHEL 627 FALLINGWATER DR. HUNTINGTON BEACH CA 92647
b ROBERT EDISO KINROSS RD #5 BROOKLINE MA QX146

2 F. EDWARDS P.0O. BOX 9999 SCOTTSDALE AZ 8535%

4 CARL ELKINS 9414 S0. FAIRPLAIN AVE. WHITTIER CA 90401

5 EDWARD ERVIN 17243 PURCHE GARDENA CA 903249

b DENNI& EVANS 8904 AMPER TRAIL SUN CITY AZ B5351

7 JAMES C. FAGAN 326 1/2 W. FOOTHILL PL. CLAREMONT CA 91711
a DALE FAIRFIELD 5514 ADDINGTON DR. ANAHEIM CA 92807

g MIKE FANDICH 929 UNIVERSITY DR. COSTA MESA CA 92637

10 JOHN FAULK 3331 E. COMMONWEALTH FULLERTON CA 92631

11 BILL D. FIVES 5444 SILVA LAKEWOOD CA 90713

12 K.K. FOSTER 1234 17TH DRIVE LAGUNA BEACH CA 92651

13 CARL FRANK BZ45 PARK MILANO CALARASAS CA 91302

14 JIM FREEMAN 1735 DARYN CANOGA PK. CA 91307

15 TEG FULLER 3888 SOUTH TOWNSEND SANTA ANA CA 92704

16 JIM GABRIEL 1308 WESTMINISTER WESTMINISTER €A 92683

17 P.R. GAGLIANO 8118 SMITHE DR. #8 HUNTINGTON BCH CA 92646
18 JOHN GALLAHER 1388 LINDFORD LANE YORBA LINDA CA 92486

19 JAMES GARNER 8880 SOUTH JASON COURT ENGLEWOOD CO 90110
=0 GEORGE GARON 123 W. 123RD #6 ANAHEIM CA 92801

1 JOSEPHINE GARULA 1932 HARDWICK AVE. LAKEWOOD CA 90713

eSS MICHAEL GATES 3634 ONATEOQ TRAIL CHAPEL HILL NC 27514

Figure 8-8. REPORT Printing Example 4

REPORT Module Operation
The REFORT module is shown in Figure 8-9.

123

Line Printer, Cassette, and Disk Operations

7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
74680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780

GOTO 7640 *REPORT
T e T e A R R R S R R R S LS S S

7
k)
E
B
K
2
3’
k)
2
)

£

THIS IS THE REPORT MODULE. IT PRINTS A REPORT ON THE
SYSTEM LINE PRINTER AS DEFINED BY A LIST OF "ITEMS".
INPUT: XP(@)=NUMBER OF ITEMS
XP(1)-XP(N)=ITEMS
XN=AUTO-INCREMENTING COUNTER
OUTPUT:ITEMS DEFINE PRINTING OF FIELD DATA
ITEMS: @=LINE FEED
1-N=FIELD N STRING IN ZW$(1)-ZW&(N)
~-M=TABE TO M
-1=PAGE EJECT
—-2=PRINT REPORT COUNTER XN

LTRSS TS P P L S L L LS R ST ST LR AL R LR
IF XP(@)<1 THEN STOP
IME=""

FOR XI=1 TO XP(@)

IF XP(XI)«<x@ GOTO 7700

IF ZM$="" THEN ZIM$=" "

GOSUR 1500 :ZIM$="":GOTO 777@

IF XP(XI)>@ THEN ZM$=ZM$+ZWH(XP(XI))+" "i GOTO 7770
IF XP(XI): THEN ZM$=ZM$+STRINGS$ (~XP(XI)~LEN(ZM%)s" "):iGOTO 777@
IF XP(XI)«x=2 GOTOQ 7760

ZME=ZME+STRE (XN)

XN=XN+1

GOTO 777@

IME="":GOSUE 1500

NEXT XI

RETURN

Figure 8-9. REPORT Module Listing

The first action REFIRT takes is to test XP(0) for no entries (0 value). A STOF is
done to inform the user of the error.

Next, ZM$ is set to a null string (*”). Variable ZM will hold the current string to
be printed during the course of REFIRT,

Lines 7660 through 7770 constitute the loop that takes each item from the XP
array and performs the necessary action. The loop is executed a number of times
equal to the number of items in XP (FOR XI=1 TO XP(0)).

A check is first made for the item being equal to 0 (line feed). Ifitis a zero, ZM$
contains a line of data to be printed or may be a null string. If it is a null string,
ZMS is set to a blank line for printing, otherwise no line feed would result. The
LFDRIY module (line 1500) is then called for printing the line. After the call to
LPDRIV, ZMS$ is reset to “ ” and a GOTD 777@ will increment to the next item

in XP.

If the item is not equal to 0, a check is made for an item greater than 0. This
would be a field item. If the item is greater than 0, the field item in ZWE [XP(©1)
is appended to the “working string” of ZM$ and a GOTD 7770 picks up the next
item. Note that at this point nothing has been printed (no call has been made to

LFDRIY).

124

L]
e b sk Operatons 85 8
Line Printer, Cassette, and Disk Operations

If theitem s not 0 or greater than 0, it is a negative item of page eject, print report
counter, or tab. If the item is less than -2, it is a tab item. In this case the
“working string” of ZM$ must be “padded out” with blanks to the tab position
specified. The number of blanks required is the tab position minus the current
length of the string in ZM$. This is (-XP(XI)-LEN(ZMS$)). A STRINGS of
blanks is generated and added to ZM$. A GOTO 2770 picks up the next item.
Note again that no line has been printed.

It is possible to specify a tab position less than the current print position,
producing an illegal function call error. Always make certain that fields that are
printed do not exceed the tab position specified!

If the item is not 0, greater than 0, or less than -2, then it must be -1 (page eject) or
-2 (print report counter).

If the item is not equal to -2 it is a page eject. ZM$ is set to “*, which is the signal
to LFDRIY to eject a page. A callto LPORIY at line 1500 ejects the page and the
next item is picked up.

If the item is -2, the report counter XN is converted to a string from a numeric
variable by STR$(XN). This string is then appended to ZMS$. The count in XN
is “bumped” by one, and the next item is picked up by a G0TO 7770, Here again,
no line is printed.

Cassette Operations

Although provision is made for cassette files in the GPM modules, their use is
not recommended. The chief reason for this is inconvenient multiple file
operations.

The cassette drive reads or records data at a rate of about 63 or 189 characters
per second (Model Iand Model I1I, respectively). However, each record may be
only 248 characters long, as shown in Figure 8-10. Between each record is an
inter-record gap of leader or zero data. This gap is used to get the cassette tape
up to speed before cassette read or write operations take place. 200 entries of 40
characters per entry would take about 15 minutes to write or read on the Model I
and 5 minutes on the Model III, which is a tolerable time, even though much
slower than the approximately 15-second read/write rate for the same file on
disk (these times do not include the BASIC processing for each record, which
would add several minutes).

Cassette speeds are therefore marginally acceptable. The main disadvantage of
cassette lies in the fact that it is a sequential-access device. Both data within a file
and files themselves must be accessed sequentially.

First of all it’s inconvenient to read in any file, because the cassette must be
positioned by a REWIND, by manually positioning the tape, or by searching for

125

Line Printer, Cassette, and Disk Operations

FILE 1

RECORD RECORD RECORD RECORD

i 2 3 a
[teaer [ear [aap P car 7] aar P car | \
:)

RECORD RECORD RECORD RECORD
5

(o D Aw U Aw Awl Ao

FILE #1 HAS 4 RECORDS OF ABOUT 130 BYTES EACH
FILE #2 HAS 4 RECORDS OF ABOUT 240 BYTES EACH
GAP IS EQUIVALENT TO ABOUT 256 BYTES

Figure 8-10. Cassetie Storage

a given file name. The latter method adds still more time to the operation and is
still a manual operation initially to REWIND the tape. (Unfortunately, there s
no TRS-80 “automated finger” peripheral device to handle cassette button
pushes . . .)

Once the file is found, data within the file must be accessed sequentially. The
first records (entries) must be read before a desired record is found. Thereis no
way to read in the 23rd or the 56th record without first going through all of the
preceding ones. Figure 8-11 shows what we mean.
TO GET TO THIS POINT, WE
MUST READ ALL PRECEDING
~<g———TAPE TRAVEL = 63 CHARACTERS/ RECORDS UNDER COMPUTER

SECOND ON MODEL | CONTROL OR ATTEMPT A
MANUAL POSITIONING

FILE 1 FILE 2 FILE 3
¢ t ¢ s (
\ 2 -] 5 g % S
Zh) An 2 g

a ((g (g 7

THIS GAP THIS GAP PRECEDING

CANNOT BE A FILE ALSO CANNOT

EASILY LOCATED BE PRACTICALLY LOCATED

(LOCATING IT BY

EAR OR COUNTER
IS POSSIBLE, NOT
PRACTICAL)

Figure 8-11. Multiple Files with Cassette

This lack of random-access capability on cassette for either files or data withina
file makes it a poor choice for large applications programs of any type. In the
GPM, therefore, we’ll be concentrating on disk operations, although we will
mention the built-in cassette capability for those of you who don’t yet have a disk
drive or two. (Any cassette operations you wish to implement can easily be
converted to disk at a later time.)

126

Line Printer, Cassette, and Disk Operations

Disk Operations
General Disk Considerations

Before we talk about disk files, let’s review some general facts about disk
operation in general. Each diskette is a circular piece of mylar with a magnetic
coating. Standard Radio Shack diskettes allow writing data on one side only.

Each diskette is divided into a number of tracks. A track is a concentric circle
around the disk as shown in Figure 8-12. Each track is divided into sectors.

26 SECTORS/

MODEL Il DISKETTE

77 TRACKS

26 SECTORS/
TRACK

256 BYTES/
SECTOR

512, 512

BYTES/DISKETTE

. 256 BYTES/
SECTOR

MODEL | DISKETTE

35 TRACKS

10 SECTORS/
TRACK

256 BYTES/SECTOR

89,600 BYTES/DISKETTE

: 256 BYTES/
: SECTOR

MODEL Il DISKETTE

40 TRACKS

18 SECTORS/
TRACK

256 BYTES/SECTOR

18 SECTORS/
TRACK
SECTOR 256 BYTES/
v SECTOR
184,320 BYTES/DISKETTE
Figure 8-12. Diskette Layout

The TRSDOS Disk Operating System for the Model I, I1, or III keeps track of
which sectors are allocated for disk files. A file is any logical grouping of similar
records.

There are two general types of files in BASIC, sequential files and random files.

Sequential files are somewhat similar to cassette files. They are long strings of
data, as shown in Figure 8-13. The file crosses over sector boundaries, and there
is no relationship to the record (entry) number in the file to the sector number on
the diskette. TRSDOS records the starting track and sector and the file is read
in as a string of data.

127

Line Printer, Cassette, and Disk Operations

TO REACH THIS

RECORD, ALL OF

THE PRECEDING
RECORDS MUST BE

READ
RECORD #80 RECORD #81
[d 7
——» BELLIAG.!TELEPHONE! |G| DE FORESTILIVACUUM “\—»
* TRACK 30 TRACK 30 /
SECTOR 6 SECTOR 7
SECTOR
BOUNDARY

E CARRIAGE RETURN
R| CHARACTER

Figure 8-13. Sequential Files on Disk

The user must place some recognizable piece of data as an “end-of-file” marker
at the end of the file, or use the EOF (end-of-file) BASIC function to avoid
reading in more data than the file contains. If the first approach is used, the
mark might be something as innocuous as a character not used in the file, such as
an asterisk (¥).

Random files are organized in records, as shown in Figure 8-14. Each record is
fixed-length. Data can be read from the file by GETting a specific record
number and can be stored by PUTting a specific record number. As any record
can be read or written at any time, access of data within the fileis on a “random”
rather than sequential basis.

SECTOR SECTOR SECTOR
BOUNDARY BOUNDARY BOUNDARY
TRACK 30 TRACK 30
SECTOR 6 SECTOR 7
e
RECORD
80 81 82 83 84 85 86 87 88
7

—

4 64-BYTE RECORDS/
SECTOR

THIS RECORD
MAY BE READ
BY ONE “DISK
ACCESS” WITHOUT
o . . READING PRECEDING
Figure 8-14. Random Files on Disk RECORDS

There are advantages and disadvantages of each type of file structure. Sequen-
tial files offer these advantages:

e Generally they are more efficient in disk storage as a record does not have to
be “padded out” to a fixed length

e They are somewhat easier to use in setting up commands

e When data is accessed sequentially, as in reading in a large number of
sequential entries, the disk operations are fairly fast

128

Line Printer, Cassette, and Disk Operations

The advantages of random files are:

© Individual records or entries can be easily accessed on disk, allowing such
operations as “disk sorting”

© Fields within records can be easily accessed

® Numeric data can be more easily handled and “packed”

GPM Disk Operations

The GPM COLOAD and COSAYVE modules are geared to sequential files, primarily
to make most efficient use of RAM memory. Multiple files may be written or
read, and any number of files may be “merged” into one file.

Files are written on disk directly from the XA$ array. The contents of XA$ are
written as a sequence of entries, following the order of the X A% “pointers.” The
last record of the file is an “*”, marking the “end-of-file.” An example of this
approach for a small number of entries in XAS$ is shown in Figure 8-15.

MEMORY (ENTRIES WRITTEN DISK FILE
— OUT IN ORDER) —_—
XA% xas[] : RECORD 1
FINK! {REUBEN SANDWICH ! |
BELL!A.G. | TELEPHONE! I

EDISON!T. {ELECTRIC LIGHT!
DE FOREST!L. |VACUUM TUBE!
TESLA!N. | TESLA COIL! [
MORSE!S F.B. I TELEGRAPH! .
MAXIM!H.P. IMACHINE GUN!

GODDARD!R.H. |ROCKETRY ! |

i

Figure 8-15. Disk Operations in the GPM

®W o N Ot e W N

ele [l [e]-[-[=]~]

All GPM files are in ASCII format. This means that the data appears on disk as
a string of ASCII characters. Because the files are in this format they can be
LISTed on the screen by the TRSDOS LIST command, PRINTed on the
system line printer by the TRSDOS PRINT command, and read in under
SCRIPSIT for editing operations if absolutely necessary.

Using the ASCII format means that you have excellent control over the disk file
operations, as files may be examined or corrected if necessary! (This is a boon to
paranoids such as the author who occasionally think that computer systems are
“out to get them” . . .) Figure 8-16 shows how the file used in Figure 8-15 would
appear when PRINTed by the TRSDOS PRINT command.

129

Line Printer, Cassette, and Disk Operations

BELL!A.G. !TELEPHONE!

DE FOREST!L. {VACUUM TUBE!
EDISON!T. |ELECTRIC LIGHT!
FINK! 'REUBEN SANDWICH!
GODDARD!R.H. {ROCKETRY!
MAXIM!H.P. IMACHINE GUN!
MORSE!S.F.B. I TELEGRAPH!
TESLA!N. !TESLA COIL!

Figure 8-16. Printing GPM Files
CDSAVE Module Operation

The CDSAVE module is shown in Figure 8-17. It takes the XA$ array and writes it
out to disk (or cassette) as a sequential file in ASCII under a user-specified file
name. A typical call and action is shown in Figure 8-18.

12500 GOTO 12580 ' CDSAVE

TEDLD 7 45 R KK HHH NI ISR H TR T H R R HHERHRERREREHEEHRE
12520 ° THIS IS THE CASSETTE/DISK SAVE MODULE. IT SAVES THE XA$

12530 ° ARRAY A5 A CASSETTE OR DISK FILE IN GPM FORMAT.

12540 ° INPUT: ZW$(1)="C" FOR CASSETTE OR "D" FOR DISK
12558 7 W (2)=FILENAME (DISK ONLY)
12560 ° QUTPUT: XA% ARRAY WRITTEN TO CASSETTE OR DISK

12570 7 B3935 363 3 5636 3636 3 3036 36 36 36 30 36 9696 36 30 36 36 36 3030 36 3 36 36 40 H 6 636 H 0 I I H I R H R HHF

12580 IF ZW$(1)="C" GOTO 12600
12590 OPEN "O"s 15 ZW$(Z)

12600 XU=0

12610 X8=-1:XT=1:G0SUR 5500

12620 IF XL=-1 GOTO 12650

12630 IF ZW$(1)="D" THEN PRINT #1:XA%(XL) ELSE PRINT #-1sXA$(XL)

12640 GOTO 12610

1265@ IF ZW$(1)="D" THEN PRINT #1s"%#" ELSE PRINT #-1,"#"
12660 IF ZW$(1)="D" THEN CLOSE 1

12670 RETURN

Figure 8-17. CDSAVE Module Listing

CDSAVE is called with ZW$(1) containing a “C” for cassette or a “D” for disk.
ZW3$(2) contains a disk file name; ZWS$(2) is ignored for a cassette file.

If ZW$(1) is “D” for disk, the disk file is first OPENed by the OPEN
“0”,1,ZW$(2) statement. The OPEN operation makes an entry in the
TRSDOS directory under the file name in ZW$(2). It essentially tells TRSDOS
“here comes a file named xxxxx.” The “O” in the OPEN statement indicates that
the file will be an Qutput file.

The “1” indicates that the file will use buffer number 1. A buffer is a memory
area in which the data is assembled into 256-byte records for output to the disk.
Disk writes are done a sector at a time, so the separate pieces of data are stored in
the buffer until 256 bytes are available, at which time a disk write of one sector is
performed. This eliminates constant writing to add new pieces of data to the

130

Line Printer, Cassette, and Disk Operations

XA%(0)
1
(2
3)
4)
(5)
(6)
@)
(8)
9)
(10)
(1)
(12)

CALL.:

24540
24550
24560
24570
24580
24590
24600
24610
24620
24630

1
ENTRIES — 17
WRITTEN g
OUT IN e
ORDER
]
2 XA$(0) _E‘
3 ™ H
4 @ 4
¢
5 (3) 3
1 (4)
6) g
M c DISK
7 (6) 4 FILE
D (OR
-1 ™ CASSETTE)
-2 ®)
-2 ©) R
-2 (10) c
-2 1) 5
-2 (12) -
,r~_J’ 4 R
E
c
16 |
R
E
c
7
)

*FIRST OUTPUT SAVE SKELETON
ZP=55:2Q=2:2P$(0)="SAVE FILE” Fhoony LE
ZP$(1)="SAVE ON CASSETTE (C) OR DISK (D)7~
ZP$(2)="DISK FILENAME?”:ZR(1)=1:2ZR(2)=15:G0SUB 8000
*NOW READ IN RESPONSES

GOSUB 8500 : IF Xx=1 GOTO 24630

IF ZW$[1)<>“C” AND ZW$(1)<>"D” GOTO 24550

»SAVE TO CASSETTE OR DISK

BOSUB 12500 | < ZWS(1) - ZWS(2)
RETURN HOLD DEVICE, NAME'

Figure 8-18. CDSAVE Module Call and Action

disk file, which would add several seconds for each piece of data written to the

disk.

Next, a call is made to the FINDN module to find the next record from XA$. As
XU was set to 0, the first call finds the very first XA$ entry. The entire XA$ entry
is output to the disk file (to the disk buffer) by the FRINT #1,%A%(xL). XL
contains the entry number of the XA$ entry from the F INUM module.

The loop from 12610 through 12640 writes each “next entry” from XAS$ until
XL=-1, indicating that the last entry in the XA$ array has been reached.

131

Line Printer, Cassette, and Disk Operations

At this point all data has been written to the disk file with the possible exception
of the the last partially filled buffer, as shown in Figure 8-19. To write out this
buffer, and to properly tell TRSDOS that all data in the file has been output, a
CLOSE operationisdone. CLOSE 1 writes the last buffer and initiates TRSDOS
actions such as writing an end-of-file mark and completing the directory entry.

PARTIALLY
FILLED
WITH DATA
A “CLOSE”
WRITES OUT l

THIS REMAINING

DATA 256-BYTE

BUFFER

)]
{

SUBSEQUENT
WRITES CONTINUE
FILLING BUFFER
UNTIL . ..

L

THE DATA REACHES
THIS POINT, AT WHICH
POINT A DISK WRITE
OF THE ENTIRE BUFFER
IS DONE.

Figure 8-19. CLOSE Action

If ZW$(1) contains a “C” for cassette operations, all of the above actions are
performed with the exception of the OPEN and CLOSE. Writes to cassette are
done by a PRINT #-1,%A%[XL 7.

CDLOAD Module Operations

The CDLOARD module is shown in Figure 8-20. It loads a previously written GPM
file into the XA$ array and sets up the XA% array pointers as it does so. There
are two types of loads that may be done by COLORAD,

The first type of load is an “initialize” load. In this case the XA$ array is first
“cleared” of all previous entries. The disk file is then read sequentially into
XA$(1), XAS$(2), XAS$(3), and so forth until the last entry has been input. As
disk file entries are arranged in order, the initialize load results in an ordered
arrangement of the entries in XA$ on completion. This is a “fast” load that is

132

Line Printer, Cassette, and Disk Operations

a8

12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
12120
12130
12140
12150
12160
12170
12180

2190
12200
12210
12220
12230
12240
12250
12260
12270
12280
12290
12300
12310
12320
12330
12340
12350
12360
12370
12380
12390

GOTO 12110 *CDLOAD
R Y Y X T R R R R R R R R R RV R R R R
7 THIS IS8 THE CASSETTE/DISK LLOAD MODULE. IT LOADS A
> CASSETTE OR DISK FILE IN GPM FORMAT INTO THE XA%$ ARRAY
’ AND ADJUSTS THE XA%Z POINTERS. THE LOAD IS EITHER AN
> INITIALIZE TYPE OR A MERGE.
? INPUT: ZW$(1)="C" FOR CASSETTE OR "D" FOR "DISK"
? ZWS (Z)=FILENAME (DISK ONLY)
? ZW$(3)="1I" FOR INITIALIZE OR "M" FOR MERGE
? OUTPUT:FILE READ INTO XA$ AND XAY ADJUSTED
MEZ X R R R T R X XY R R R R R R RO R
IF ZW$(3)="M" GOTO 12200
TINITIALIZE ARRAYS IF "INITIALIZE"
FOR XI=1 TO X@-3 STEP 4
XAZAXI)==2 XAZ XTI+) ==2 s XAL(XI+Z)==2 2 XA%(XI+3)=—2
XAS(XI)="#" s XA (XI+1)="#" s XAS(XI+Z)="#" t XA$ (XI+Z)=" 5"
PRINT & YL9sXI3
NEXT XI
PRINT @ YbLs * "
XAZ(D)=—1:XA%(B)="%"
IF ZW$C1)<>"D" GOTO 12260
2Z(@)=1: Z2Z2(1)=53: ZZ4(1)="FILE NOT FOUND"
OPEN "I"51+ZW$(2)
22(@)=@
IF XX=1 GOTO 12390
"NOW READ IN ENTRIES ONE AT A TIME
XI1=0
IF ZW$(1)="C" THEN INPUT#-1,XY% ELSE INPUT #1:XY%
JF XY$="#" THEN GOTO 12380
IF ZWS(3)="M" GOTO 12350
INITIALIZE TYPE ADD HERE
XAZAXI)=XI+1: XA (XI+1)=XY$eXI=XI+1aXA%(XI)=~1
PRINT & YL3sXIs
GOTO 12270
MERGE TYPE ADD HERE
XD$=XY%$:GOSUR 5000
GOSUR 7606
GOTO 12278
IF ZW$(1)="D" THEN CLOSE 1
RETURN

Figure 8-20. CDLOAD Module Listing

used for initializing a file at the beginning of an application program. Figure
8-21 shows this type of load.

133

.

Line Printer, Cassette, and Disk Operations

"

Al

-1
R
E
c
XA% XA$ 1
XA%(@) | 1 D XA$(D) | «
ml 2 D (1) | ENTRY 1
@] 3 D @ 2 =)
@] a LINKS (3) 3
@l s D (a) 4
6| 6 2 5 5]
© -1 D (6) 6 3
@] 2 M. | DISK
" - | 1 FILE
- * FOR
2 " * . LOAD
] SUBSEQUENT
-2 a READS ||
-2 *
-2 -
" — 5
‘NL 2
6

Figure 8-21. Initialize Load !
|

o~

The second type of load is a “merge” load. In this case the entries in XA$ are not
cleared, but left intact. Each of the disk file entries are then read, and each entry
is added to the XAS$ array. This add operation results in each entry being
“inserted” at the proper place in XA$ with the pointers in XA% adjusted for the
insert.

The merge load allows one or more disk files to be merged together with or
without existing data in XA$. Because the add takes some “overhead,” this type
of load is slower than the initialize. Figure 8-22 shows this type of load for a
merge of two disk files.

Onentry, ZW$(1) contains a “C” for cassette or a “D” for disk. ZW$(2) contains
a disk file name for the file to be used in the load. ZW$(3) contains an “I” for
initialize, or an “M” for merge.

If ZW$(3) is an “I” for initialize, the XA$ and XA9 arrays are “cleared.” The
code in lines 12130 through 12180 sets every entry in XA% to -2 (unused) and
every entry in XAS$ to «#» (unused). The clear operations are done in groups of
four entries to reduce the time for clearing. For each set of four clears, the

134

Line Printer, Cassette, and Disk Operations

- OmX

XA% XA$

Xa%(@) | 1 XAS$(0) ’_-] N
My 3 N (1) | EXISTING 2
@ 7 N 2 | ExISTING
@ 4)N ©)
@] 2 B\ @ | exisTing |
&) 8 5 /‘ (5) | EXISTING 3
@ s K X 6) | EXISTING /
m| s [X2) l]
®] 10 (8) | EXISTING I 4

¥
-

9)
(10)
1)
(12)

-
e

(9) EXISTING
(10)]
a1 <<

(12)

S——

4
©w ~N
R TVF

1
»n

)
N

AN

/

’ UNCHANGED LINK

1
“fCHANGED LINK ON MERGE

2

Figure 8-22. Merge Load

current value of X1 is printed in the “activity area.” The last action in the clear is
to set XA%(0) to “no entries” (-1) and XA$(0) to «s».

If a disk file is to be loaded, an OPEN must be done. The OPEN on a disk read
serves a similar purpose as an OPEN on a disk write - it causes TRSDOS to find
the specified file name and prepare for reading in data from the file. The OPEN
specifies that an input operation (“I”) will be taking place, that buffer 1 will be
used, and that the file name will be found in ZW$(2). Here again a buffer full of
datais used. Reads of one sector at a time are done; data is then taken from the
buffer one piece at a time for each IHFLIT.

The action taken at line 12210 is in case of a “non-catastrophic” error. If the
wrong file name is specified, it is convenient to have the BASIC program print
out FILE MOT FOUND instead of stopping. The ERROR module discussed later in
this chapter handles this type of error, and we’ll cover the actions in detail there.

135

i
= . . : :
8 Line Printer, Cassette, and Disk Operations

If an initialize load is to be done, the loop at 12270 through 12330 is followed.

Each time through the loop an INPUT from the disk file (buffer) is done by the
INPUT #1,XYS$. This reads the next entryinto string variable XY$. If thisentry
is «*» the last entry has been read and line 12380 is executed. If the «s»
end-of-file is not present, the following actions are taken:

o XA%(XI)issetto XI+1. This sets the pointer in XA% to the next consecutive
entry.

e XA$(XI+1)isset to XYS. This stores the entry just read into the XAS$ array.
e XI is incremented by one. This is in lieu of a FOR XI=1 TO . . . loop.

e The next XA% entry is set to -1 to mark the end of the “chain.”

Foreach entry added, the value of X1 is displayed in the activity area to reassure
the user that something is happening!

If a merge load is to be done, the code from line 12270 through 12370 is executed.
First, the entry is read into XY$ as above. In this case, though, XD$ is set equal
to XY$ and a call is made to the ASRCH module (line 5000) to find the proper
insertion point in XA$. After the point is found, the ARDD module (line 7000) is
called to add the entry. The loop then repeats until the end-of-file «» is found.

When the last file entry of «#» is found, both the initialize and merge loads go to
line 12380. The CLOSE here closes the disk file operations of buffer I.

For cassette operations all functions above are identical with the exception of
the OPEN and CLOSE. The next entry for cassette is read into string variable
XY$ by an INPUT#-1.

Error Operations

There are a number of different types of errors in BASIC programs. Many are
simply “logic” errors caused by improper coding of the program. Making a
spelling error in a BASIC command might result in a “syntax” error, for
example. An “illegal function call” might occur if an invalid array number were
used, such as XA$(-1). In these cases the BASIC interpreter stops execution of
the program and prints out the type of error and line number. This is well and
good, as the user must correct the logic error in the program and can tolerate the
termination of the program.

There are other types of errors, however, which are not logic errors, but are
“recoverable” errors. In these cases, the BASIC program should not stop, but
should continue so that the user can “try again.” An example of this type of error
is attempting a load of a file with the wrong file name. In this case the user may
have simply made a spelling error. He does not want the program to terminate,
but wants a chance to reenter the name correctly.

The ERROR module of the General Purpose Modules allows recovery of errors
caused by “non-catastrophic” conditions — cases that are not program logic
errors but correctable conditions. (By catastrophe we don’t mean Armageddon

136

Line Printer, Cassette, and Disk Operations

or nuclear war — we mean a serious program error that ordinarily would cause
the BASIC interpreter to stop execution.)

BASIC provides a command that will cause a user’s error routine to be entered
in case of any error. Executing an ON ERROR GOTO XXX command will
cause a “jump” to the user’s error routine at line XXX for any BASIC error. If
the user’s error routine is at line 11500, for example, executing ON ERROR
GOTO 11500 will cause a transfer to line 11500 for every BASIC error.

What should be done in an error routine? The primary action in the routine
should be to determine if the error is a program logic error or a correctable error.
If the error is a logic error, then the routine will return control to the BASIC
interpreter so that it can print out the error code and stop the program. If the
error is correctable, then some type of warning message should be displayed and
an appropriate correction action taken.

The sequence for returning to the BASIC interpreter in case of a logic error is to
do the following:

e Executean i ERFOR GOTO @ statement. This “resets” the error “trapping” to
the user’s error routine.

o Execute a RESUME statement. This resumes execution at the line which caused
the error. The error will occur again, but as the user’s error routine is now not in
control, the BASIC interpreter error “handler” will print out the error condition
and stop program execution.

If the error is not a logic error then a warning message can be displayed, and a
FESUME MEXT will execute the next line after the line in which the error occurred.

How does the user error routine know the type of error that has occurred?
BASIC provides an error code which can be tested by using the ERR function.
The error code can be compared with a list of acceptable error codes.

ERROR Module Operation

The ERROR module is shown in Figure 8-23. It uses the approach outlined above
to test for recoverable errors. If a recoverable error is found, a warning message
is displayed in the “prompt” message area, an error flag is set, and a return is
made to the next BASIC line after the error. If a recoverable error is not found,
a return is made to the BASIC error handler.

The ERRCF module is entered after the error has occurred. At some point early in
the application program an OH EFROF GOTO 11500 must have been executed.

Whenever a recoverable error is possible, the ZZ array must be initialized with
all recoverable error codes. ZZ(0) contains the number of error code entries in
the array. If norecoverable errors are possible, ZZ(0) is set to 0 and the ERROR
module will always return to the BASIC error handler.

137

11500 GOTO 11640 *ERROR
IR T T T TR A R R T Y S e R R A LR I
11520 * THIS I8 THE ERROR MODULE. IT RESPONDS TO A "NON-CAT-

11538 * ASTROPHIC" SYSTEM ERROR BY QUTPUTTING A MESSAGE AND
11540 ° SETTING AN ERROR FLAG.

11550 ° INPUT: ZZ{(@)=ZERO IF ALL ERRORS CATASTROPHICs

11560 ~ NUMBER OF ERROR TYPES IF POSSIBLE
1157@ ° ERRORS

11580 ° 77 ARRAY HOLDS ALL ERROR NUMBERS POSSIBLE
11590 ~ 72Z% ARRAY HOLDS ERROR MESSAGES

11600 ° OUTPUT:IF ERROR NUMBER FOUNDs ERROR MESSAGE OUTPUT,
11610 ° XX FLAG SETs AND RETURN MADE TO NEXT STATE-

11620 ° MENT. IF NOT FOUNDs RESUME AT ERROR.

11A3D 7 HR M3 H I IR A T H IR IR R H R HR
11640 IF ZZ(@)=0 GOTO 11710

114650 FOR XF=1 TO ZZ(@)

11660 IF XA=80 GOTO 11670

11670 IF ERR/Z=ZZ(XF) GOTO 1174@
11680 GOTO 11700

11690 IF ERR=ZZ(XF) GOTO 11740

11700 NEXT XF

11710 XP$="CATASTROPHIC SYSTEM ERROR" :XP=3:G0S5UR 11000
11720 ON ERROR GOTO @

11730 RESUME

11740 XB$=ZZ$(XF):1XR=3:G0SUR 110600

11750 XX=1

11760 RESUME NEXT

Figure 8-23. ERROR Module Listing

Each error code entry in ZZ has a corresponding error message in the ZZ$ array.
The error code in ZZ(1) has an error message in ZZ$(1), the codein ZZ(2) hasan
error message in ZZ$(2), and so forth.

After arecoverable error code has been detected and the error message printed,
ERROR sets variable XX to 1. This variable can then be tested after every action
that might produce an error to see whether an error did occur.

An example of this is shown in the code of Figure 8-20 for COLOAD. Error code
53 is stored in ZZ(1) and the message F ILE MOT FOUND is stored in ZZ$(1). ZZ(0)
issetto 1, for 1 entry. The OPEN file is then done. After the open, the XX flagis
tested fora 1. Ifitisa 1,a FILE MOT FOUMD error has occurred and the load is
aborted by a RETURN without any INPUT action.

The first action in ERROR is to test for entries in the ZZ array. If there are no
entries, line 11710 is executed. Line 11710 prints the message CATASTROFHIC
SYSTEM ERRFOR and then resets the error “trap” by UM ERROR GOTO @. The
RESUME causes the line in which the error occurred to be executed once more
causing the BASIC error handler to be entered (program stops).

If the ZZ array has entries, all entries are compared to the ERR code. If all
entries are tested and no “match” is found, line 11710 is again executed to return
to the BASIC error handling. If the ERR code is found in ZZ, the correspond-
ing ZZ$ message is printed at line 11740. The XX flag is then set to 1, and a
RESUME MExT causes a return to the line following the line in which the error
occurred.

138

MAILLIST — Design Specification &

Section III
An Application Example

139

Chapter Nine
MAILIST = Design Specification

In this section we’ll design and code a typical business applications program
using the General Purpose Modules as a base. MAILLIST will be an applications
program that will process a file of mailing list entries — everything from initial
entry, through disk storage, and on to label printing. While we don’t claim that
it is the ultimate mailing list program, we think you’ll find that it works rather
well with many features not found in other mailing list applications.

Using the Basic Plan

In Chapter 2 we described a basic plan in producing a business applications
program. We'll try to follow the steps we discussed in that chapter here. Those
steps were:

Learn the system characteristics

Learn the BASIC you’ll be using
Research into the applications problem
Writing a Design Specification

General Program Design

Flowcharting the program

Coding the program

Entering the program

Debugging the program

Creating the final version of the program
Writing an operational manual for the program

OO XN N AW -

— —

We’'ll cover steps | through 4 in this chapter. Inthe other chapters of this section
we’ll cover the remaining steps for four separate sets of functions for the mailing
list program.

Steps One and Two: Learning the System and BASIC

There’s not a great deal that we can do for these two steps — they’re really up to
you. The MAILLIST application will be geared toward sequential disk file
storage and processing using Level II and Disk BASIC. We can only recom-
mend reviewing some of the Radio Shack manuals on specific items that might
be giving you trouble.

As we did in the last section, we’ll be explaining the actual BASIC code used in
the program in detail. You may be able to jog your memory about certain
BASIC statements and functions that are used by MAILLIST by the descriptive
text. If operation of a BASIC command or statement is still fuzzy, go back and
read the appropriate description in the Level II, Disk BASIC, or Model II
BASIC manual.

As we mentioned earlier, these steps are “iterative” steps. Some people hate to
wade through manuals without practical examples. They operate best by

141

learning enough to be dangerous, write some BASIC code, run into problems
and then go back to find out what is happening. (The author admits to frequent
use of this approach.) Other people are more disciplined — they go through an
entire course in BASIC and then start writing programs. Use whatever
approach works best for you.

Step Three: Research Into the Mailing List Problem

We’ve already done the research for you in this application. We wanted a mail
list program that would operate as follows:

1. It would make efficient use of the General Purpose Modules, for obvious
reasons.

2. All entries would be stored in RAM; although disk files would be used for
storage, the entire disk file would have to be able to be contained in RAM. Disk
file sorts and access were considered beyond the scope of this book.

3. Entries would not have fixed-length fields, to maximize the number of
entries that could be stored.

4. Entries would be easily added, deleted, or modified.

5. Entries would be easily displayed with minimum search time.

6. Entries would be easily printed, in any format that the user desired.

7. Entries could be easily sorted on any field, although the main sort field
would be last name.

8. A search could be made for any string of characters from a single letter or
digit to a long name.

9. Up to eight separate fields could be used for each entry.

10. No assembly-language code would be used. Assembly-language code is
excellent for certain portions of programs, but beyond the scope of this book.

Step Four: The Design Spec

The design specification for MAILL.IST is shown in Figure 9-1. It includes all of
the the operational procedures for MAILLIST in an example of “top-down”
design. Of course, in this case, and in other applications that would use the
General Purpose Modules as a base, the design is not strictly “top-down,” as we
were using the existing General Purpose Modules. We had to work within the
framework of the array data storage, sequential disk files, menu format, display
forms, and other characteristics of the General Purpose Modules.

In the general case, you might be defining the application from scratch, based on
your research in step three and on your knowledge of the system and BASIC.
You may choose to use the General Purpose Modules. If you do, you will be
forced to accept the structure defined by the General Purpose Modules in return
for ease of use and reduction in design time.

142

MAILLIST — Design Specification

MAILLIST Design Specification
OVERVIEW:

MAILLIST isa complete mailing list program designed to operate on the TRS-80
Model 1, II, or III Microcomputer Systems.

It can handle up to several hundred entries of forty or fifty characters each, or
more entries if the entry size is reduced. MAILLIST builds an in-memory file of
mailing list entries. Entries can be added, deleted, or modified at any time.
High-speed “list” sorting is used to alphabetize each entry as it is added.

Entries may be displayed on the screen one at a time or in user-specified ranges.
Entries may be printed on the system line printer in mailing label format or in
any user-defined format, such as a line by line report.

Any character string, from a single character to larger strings, may be used in a
“search” mode. MAILLIST will search all entries for the given string. This
feature can be used to locate a street address, zip code, or other data.

Entries are arranged in alphanumeric order based upon the entire entry.
JONES,ED, 25555 OAKHURST appears before JONES ,ED, 25556 ORIKHURST, for
example. The “sort key” is essentially the last name. At any time the list of
entries may be resorted based on any other field, such as zip code. This
secondary sort can then be displayed or printed. This feature is handy for
arranging the entries in zip code order for bulk mailing requirements, for
example.

The complete list of entries may be saved as a disk or cassette (Model I/110) file
with a user-specified name. Files can be loaded from disk, or two files may be
merged together into a new “master file,” again with user-specified name.

MAILLIST is “menu-driven” and uses a complete set of “fill-in forms” to prompt
the user. Complete editing features are provided for entry of user data.

LOADING PROCEDURE:

To run MAILLIST, first load BASIC. If you are using the Model II, specify
BASIC -F:1 to allow you to have at least one disk file. Next, load MAILLIST
from disk by RUN MAILLIST, or load from cassette by LOAD MAILLIST,
followed by RUN. MAILLIST should start execution, and you should see the
display shown in Figure 9-1-1.

143

g
i=m . g e
9 MAILLIST — Design Specification

Figure 9-1-1. MAILLIST Initialization Display

Now enter the model number of your system, 1 for a Model I, z for a Model 11,
or 3 fora Model ITI1. MAILLIST will continue initialization procedures as shown
by an activity display in the upper right hand corner of the screen. There will be

no display of the 1, 2, or 3 digit.
After initialization, MATLLIST will display a menu of items, as shown in Figure
9-1-2.

144

MAILLIST — Design Specification

Figure 9-1-2. MAILLIST Menu

PROGRAM FUNCTIONS

The separate program functions for IMATLLIST are shown in the menu of Figure
9-1-2.

Function 1 adds a MAILLIST entry to the file, or starts a new file of items.

Function 2 displays an existing entry by item number or name and allows a user
to change part or all of the entry.

Function 3 displays an existing entry by item number or name and allows the
user to delete the entry from the file.

Function 4 displays a range of items from the file. The range may be specified as
a starting entry number or name and an ending entry number or name in any
combination. This function also prints the range of items on the system line
printer in mailing list or user-specified format.

Function 5 searches the file for a given search string. The first or all occurrences
of the search string are displayed at the user’s option.

Function 6 resorts the entire file based upon a user-specified “field.”

145

MAILLIST — Design Specification

Function 7 loads an old disk (or cassette) file. The file is loaded either as a new
file, or is merged into the current file in memory.

Function 8 saves the current file on disk (or cassette).

DESCRIPTION OF FUNCTIONS:
Starting a New File or Adding an Entry

To start a new file or add an entry to the current file, select item 1 from the menu.
You will see the display shown in Figure 9-1-3. This is the add entry form that
must be filled in to add the entry. If a new file is being started, the entry will
automatically start the new file.

Figure 9-1-3. Add Entry Form

The form for add entry is the standard mailing list form for many other
functions. It consists of eight “fields” — MAMEL, MAMEZ, MAMES, STREET, CITY,
STATE, ZIP, and REFERENCE. MAMEL is the primary “sort key.” Use the last name
of an individual for this field as all entries will be arranged in alphabetical order
based upon this field. MAMEZ is first name. MAMES is company name, title, or
other description or may be left blank. STREET, CITY, STATE, and ZIF are
obvious. REFERENCE may be any particular coding you want to use for the entry
— telephone number, date of entry, or other. As you may sort on this field by

146

]
: =
MAILLIST — Design Specification Helli7

the “secondary sort,” you may wish to adopt a standardized coding of your own
format.

Enter the data for each field, terminated by pressing the ENTER key. Any field
may be left blank by simply pressing ENTER with no data. If at any time you
wish to terminate the add operation, press CLEAR (Model I/11II) or “up arrow”
(Model II). This will take you back to the menu of items.

If you make a mistake, you may use the “left arrow” (Model 1/1II) or BACIK -
SPACE (Model II) to correct it. If you have made a mistake on the previous field,
either terminate the add by CLEAR (Model I /11I) or “up arrow” (Model II) or
finish entering the data and perform a “modify” function.

Figure 9-1-4. Modify Entry Form

Modifying an Entry

To modify an existing entry, select menu item 2. After 2 has been selected, you
will see the form shown in Figure 9-1-4. Enter the entry number if known, say
froma previous report. If the entry number is not known, press ENTER for the
entry number and enter the last name of the entry in the next field.

147

(=]
9 MAILLIST — Design Specification

MATLLIST will now search for the entry number or last name of the entry. After
it finds the entry number or the last name, it will display the entry as shown in
Figure 9-1-5, along with the message MIOIFY VES OF MO, If you do not wish to
modify the entry, enter an M. A return will be made to the menu.

Figure 9-1-5. Modify Entry Display

If you do want to modify the entry, enter a . MAILLIST will now display the
message FIELD # TO MODIFY. Scan the entry and enter the field number, I
through 8, that you wish to modify. The selected field will be deleted, and you
can reenter the data. Continue this process until the entry has been modified
correctly. To terminate the modify, press ENTER after the field number
“prompt.” The entry will then be resequenced, based on the new information,
and a return made to the menu.

At any time during the modify, CLEAR (Model I/III) or “up arrow” (Model II)
may be pressed to return to the menu. If this is done after the MODIF" YES OR 1O,
however, the entry may be deleted.

Deleting an Entry

To delete an entry, select menu item number 3. The delete form will be
displayed, as shown in Figure 9-1-6. Enter the entry number if known, or simply
ENTER. Enter the last name of the entry if the number is not known.

148

MAILLIST — Design Specification §

Figure 9-1-6. Delete Entry Form

MATILLIST will search for the entry number or last name and display the entry as

shown in Figure 9-1-7, along with the message DELETE YE5 0R tO, If you wish to

delete the entry, enter /. The entry will be deleted and a return made to the menu.
If you do not want the entry deleted, enter I for a return to the menu.

Atany time, pressing CLEAR (Model I/ III) or “up arrow” (Model II) will cause
a return to the menu.

149

@
9 n Spcicat
MAILLIST — Design Specification

Figure 9-1-7. Delete Entry Display

Displaying an Entry

To display an entry or group of entries, select menu item number 8. The form
shown in Figure 9-1-8 will be displayed. If the display is to be in order of MAME L,
enter P. If the display is to be in the order of the secondary key, enter 5. To
display the entries in secondary key order, a secondary sort (function 6) must
first have been performed; review this description.

150

MAILLIST — Design Specification

Figure 9-1-8. Display Entry Form

If the display is to be in primary key order, the form shown in Figure 9-1-9 will
be displayed. If the display is to be in secondary key order, the form shown in
Figure 9-1-10 will be displayed. Enter the start of the range by entering start
number or name. Enter the end of the range by entering end number 6r name. If
the start numbers or end numbers (or start names or end names) are not known,
enter an approximate number or name. (The display may be interrupted at any
time by pressing the CLEAR (Model I/11I) or “up arrow” (Model II)). If the
entire list is to be displayed, enter “1” for start number, followed by an ENTER
for the other fields.

151

Ll
g=m
9 MAILLIST — Design Specification

Figure 9-1-9. Primary Sort Form

MEILLIST will now search for the starting number or name and for the ending
number or name. If found, the question DISFLAY (D) ORF PRINT(F |7 will be
displayed. Enter U for display.

The range of entries in the list will now be displayed one at a time in standard
format. Anautomatic return will be made back to the menu after the last entry
has been displayed, or a return can be made by CLEAR (Model I/1III) or “up
arrow” (Model II).

The display function can be used to rapidly search the list for a desired entry by
entering an approximate starting number or name and returning to the menu
with CLEAR (or “up arrow”).

152

MAILLIST — Design Specification

Figure 9-1-10. Secondary Sort Form

Printing an Entry

Menu item 4 also selects the print entry function. This works the same as the
display function up until the question DISFLAY (D] OF FRINT(F|7. At this
point, enter P.

MAILLIST will then ask CURFEMT FORMAT [C) OF MEW (7. If you want a
printout in standard MAILLIST format, enter . Labels will be printed out as
shown in Figure 9-1-11, for the entire range of entries selected.

153

MAILLIST — Design Specification

(- \
O @)
O L) O

- D
@) BILL BARDEN O

HACK WRITER
250 N.S. MEMORY LANE
O L COMPUTER CITY CA 99999 O
_

- “
O O
oL J©

(\
O 0]
Ol) O

Figure 9-1-11. Label Printing

If you want a printout in a different format, enter 1. MAILLIST will then ask
SUPPRESS MEW PAGE, v OF M7. If you want page formatting (no overprinting of
the end of page) enter I, otherwise enter . Page formatting is not desirable for
labels, for example, but is desirable for report formats.

MATLLIST will then display a list of entry items as shown in Figure 9-1-12, and
then ask ITEM TwPE. These items define the format of the printout for each
entry in the list. The set of items for the standard list is shown in Figure 9-1-13.
To return to this format after definition of a new set of items, these items must
be reentered.

154

MAILLIST — Design Specification

Figure 9-1-12. Standard Print ltems

To define a new printout, enter a set of items after the “prompt” message. To
end the entry, enter a -Z. Some possible formats along with the standard format
are shown in Figure 9-1-13.

155

MAILLIST — Design Specification

ONE INCH SPACING,
THREE LINE LABEL ENTER

BILL BARDEN 092’1 ,0,4,0,5,6,7,0,”,@,'3
250 N.S. MEMORY LANE
COMPUTER CITY CA 99999

SIMPLE REPORT

BARDEN BILL 250 N.S. CA 99999
FOX KELLY 15321 OAKR T CA 92153
STOUT MICHAEL 921 E. 92361

ENTER

0,1,2,3,4,5,6,7,-3
STANDARD LABEL ENTER
BILL BARDEN 0,2,1,0,3,0,4,0,56,7,0,0,-3
HACK WRITER

250 N.S. MEMORY LANE
COMPUTER CITY CA 99999

Figure 9-1-13. Print Format Examples

After the new items have been defined, MAILLIST will print out the specified
range of entries in the new print format. The CLEAR key (Model I/11I) or “up
arrow” key (Model IT) may be used to end the printout at any time and return to
the menu.

Search Processing

Selecting menu item 5 enters the search processing function. The form shownin
Figure 9-1-14 s first displayed. Enter the search string; the string may be 1 to 30
characters.

156

MAILLIST -— Design Specification

Figure 9-1-14. Search Processing Form

MAILLIST now searches the entire list, starting at entry 1. If the search string is
found, the entry containing the search string is displayed as shown in Figure
9-1-15 and the program asks COMTIMUE?. If you want MAILLIST to search for
the next entry containing the string, enter ', otherwise enter I to return to
the menu.

157

MAILLIST — Design Specification

Figure 8-1-15. Search Display

When the entry containing the string is found (if it is found), the entry number is
displayed in the upper right hand corner of the display.

Secondary Sort

To sort on another field than field 1, select menu item 6. After selecting the
secondary sort, the form shown in Figure 9-1-16 will be displayed. Now enter the
field number, 1 through 8 (field number 1 would only duplicate the currently
sorted list, but it can be used).

158

MAILLIST — Design Specification

Figure 9-1-16. Sort Form

MATLLIST will now sort the entire file in memory, based on the selected field.
This “sort” can be used in the display or print function to produce a list ordered
on the selected field, as, for example, zip code order.

Because this sort is meant to give some versatility in ordering the entries without
taking time during “add entry” processing, it is very slow compared to the
interactive “add entry” sort. Expect the secondary sort to take one hour for 100
entries and longer times for larger files. The “activity” of the sort is indicated by
a display in the upper right-hand corner of the screen.

Load File

Menu item 7 selects the load file function to load a MHILLIST file previously
written out by the Save File function (see next item description). The form
displayed in Figure 9-1-17 is displayed for this processing. If the file to be loaded
is on disk, enter [1, otherwise enter C for cassette. The disk filename must be
entered for disk files but can be ignored for cassette files; simply type in ENTER
in the latter case.

159

f=m . e
9 MAILLIST — Design Specification

Figure 9-1-17. Load File Form

If you want the file to be loaded in by itselfand do not want to retain the current
entries in memory, enter “I” for initialize. In this case the file will load in and
“overlay” any existing entries.

If you want the file to be “merged” with current entries in memory, type “M” for
merge. In this case the file will be loaded in and merged with the entries already
in memory. The result will be a new file in memory with all entries in correct
order. The merge function can be used to consolidate two files on disk or one on
disk (cassette) and one in memory.

If a cassette file is being initialized or merged, position the cassette tape just prior
to the file before entering the I or M. MAILLIST will read the first file that it finds

on cassette.
Save File

Menu selection 8 selects the save file function. The form shown in Figure 9-1-18
is displayed for save file. Enter C for cassette or [for disk. Enter an appropriate
file name for a disk file; this field will be ignored for cassette files (type ENTER).

160

MAILLIST-Design Specification

Figure 9-1-18. Save File Form

MAILLIST will then save the entire file in memory on disk or cassette, under the
specified file name. A return is then made to the menu.

SYSTEM ERROR MESSAGES:

During the course of MAILLIST processing, certain error messages may be
displayed. Here is a list:

Add Entry
OuT OF MEMORY: Current entries exceed memory limits.
Modify/ Delete Entry

REEWNTER VALID MUMEER OR MAME: Erroneous entry number or name used in
specifying entry for modify.

Display/ Print Processing

161

[l
9 MAILLIST-Design Specification

MEWER SORTED OR MODIFIED - RESORT: Secondary sort has never been per-
formed, or entries have been added, deleted, or modified after a secondary sort.

STRRT MUMEBER HOT FOUMD: Starting number exceeds number of entries in list.
MO START MUMEBER DR STRIMG: Neither a number nor name was entered.
START STRING WOT FOUND: Name was beyond last entry in list.

EMND STRIMNG MOT FOUND: Name was beyond last entry in list.

IMVALID ITEM TYFE: Invalid print format item was entered.

Load File

FILE MOT FOUMD: Disk file was not found on diskette.

MAILLIST DISK FILES:

MATLLIST disk files are ASCII files. They may be LISTed and PRINTed as any
ASCII file as a means to examine mail list files without using the MAILLIST
program.

162

Chapter Ten
MAILLIST—MAIN Driver

In the previous chapter we produced a design specification that defined what
MAILLIST was to do, but we did not include any information on how to do it. In
this chapter and following chapters we’ll define how the MAILL IST functions will
be implemented by a series of flowcharts and the actual code for MAILLIST.

In most programs, the processes of steps 5 and 6 — general program design and
flowcharting — are iterative. When we start thinking about how things are to be
done and flowcharting the process, we see errors in the way program functions
are to proceed. We also see more efficient ways of doing things! Programmers
are naturally lazy, and if it’s possible to change the design specification slightly to
make the program easier to write, it’s no sin. (It’s best not to change the “scope”
of the design spec, however, say from a mail list function to accounts receivable!)

Step 5: General Program Design

The general program design in MAILLIST has been greatly simplified by using
the General Purpose Modules as a base. We already have the program routines
to add and delete entries to a file of data, to save and load the file of data to disk
or cassette, to generate forms and input data to the forms, to search the file, and
other functions. The structure of the file is also well defined; this is good and
bad, of course. We are “locked-into” a specific data structure that uses a list of
items in an array.

We have already done a major part of the program design in writing the design
specification. We drew on our past experience either consciously or subcon-
sciously about what could feasibly be done in the program. We knew, for
example, that it was no problem to produce a form on the screen, or to input
character data to the form, and included such functions in the design
specification.

Because we’re using the General Purpose Modules, we can proceed right to the
next phase of the implementation, the flowcharting of MAILLIST. We'll cover
any unanswered questions about general design in this step.

Step 6: Flowcharting MAILLIST

We'll be using a few standard flowcharting symbols in the flowcharts of this
section. If you’ve forgotten what they represented, go back to Chapter 2 and
review the descriptions. There’s nothing mysterious about using the symbols —
they’re just a shorthand way of showing the program flow so that we can then
convert to BASIC statements.

First of all, assume that we have the use of all of the General Purpose Modules.
We'll be using most of them, all of them in fact, as subroutines to simplify our
own coding. In the flowcharts we’ll refer to them by the C> symbol and use
their titles and line numbers.

163

10 &8

MAILLIST — Main Driver

The flowcharts will generally be divided into separate functions that are related
to each of the eight functions of the MAIL L IST program as defined in the design
specification. You’ll find that most business applications programs can be
broken down this way, and it’s very convenient to be able to segment a large
program in this fashion.

Step 7: Coding MAILLIST

At the same time that we show the flowcharts for MAILLIST, we’ll show the
actual code. In actual practice, the flowcharts might have been done before the
code, at the same time as the code, or not at all, as we described in Chapter 2.

The General Purpose Modules have lines numbered below 20000, as shown in
Figure 3-5. We will use lines 20000 and above for the MAILL.IST “modules.” We
say modules here, because the MAILLIST application can be as easily divided
into segments just as the General Purpose Modules were.

The line numbering scheme we’ll use for the MAHILL IST modules will be similar to
the GPM. We'll start each module at some increment of 500, such as 23000 or
23500, starting at line 20000. We’ll use line “increments” of 10, so that the line
numbering runs 23000, 23010, 23020, and so forth. This s just a nicety, and you
can use whatever increment you wish in your applications program. (If you feel
more at ease in increments of 16 (hexadecimal), you have great promise as an
assembly-language programmer!)

We'll also follow a “standard” format for the MATLLIST modules. On the first
line we’ll have a GOTO followed by the title of the module. Anexample is 20000
GOTO 20010 “MAIN. The GOTO bypasses the descriptive text at the beginning
of the module, which will be deleted in the “compressed” form of MAILLIST.
Here again, the MAILLIST modules will be shown as “uncompressed” with
REMarks and blanks for appearance. We'll also provide a compressed format
for high-speed and minimum memory in Appendix II.

The Main Driver

The flowchart of MATIH, the main driver of MAILL IST is shown in Figure 10-1 and
the corresponding code is shown in Figure 10-2. MAIM"= purpose is to start the
MAILLIST processing, to display the menu of items (functions) available, and to
branch out to a selected function. After the function has been completed,
MAIN will be reentered to repeat the process for the next selected function.
MAIN is really the main loop of the program, and for that reason we call it a
“driver.” This approach is a tried-and-true approach to use in any large pro-
gram, and we can’t go too far wrong in using it for MAILLIST.

164

MAILLIST — Main Driver

ENTERED
FROM XFER

CLEAR 0
CLEAR SCREEN
PRINT TITLE

INITIALIZE

v

10500
vV AINIT

INITIALIZE
LINE PRINTER
PARAMETERS

e ZM,ZL,XN$

\

INITIALIZE
REPORT
FORMAT

o e S1X LINE
LABEL

PUT MENU
ITEMS INTO
ZA$

DISPLAY
MENU

Figure 10-1. MAIN Module Flowchart

ZB
1
2
3
4
5
6
7
8

L O T TR T T TR}

<

v

BRANCH
ouT

=== GOSUB

Add Entry
Modify Entry
Delete Entry
Display/Print
Search

Sort

Load File
Save Flle

The very first thing we want to do in MAIHM is to call the AIMIT module at line
10500. AIMIT must be called once at the beginning of each applications
program, but never again! We could just call AKINIT without doing anything else
but to comply with the design spec, we’re going to output a message about

165

el
O

10

MAILLIST — Main Driver

20000 GOTO 20010 *MAIN
20010 CLEAR B

e, el R T T T T TR T ST R R AT PP X R X Y T

2@@30 ° THIS IS THE MAIN DRIVER. IT CONTROLS ALL PROCESSING

el IV ERE T TS T PR TR ST LTS ELEEEL L LR LEL LIS L L LS LR L

20050 *OUTPUT TITLE

D060 CLS:PRINT & @s"MAIL LIST: INITIALIZING..."$
20070 ° CLEAR STRING SPACE AND INITIALIZE ARRAYS
P8 GOTO 10500

20090 *INITIALIZE LINE PRINTER PARAMETERS

20100 ZM=—1:ZL=566:XNE=" MAIL LIST"

20110 ° INITIALIZE REPORT FORMAT

20120 XP(@)=13:XP(1)=B:XP(2)=2:XP(3)=1:XP(4)=0:XP(3)=3
20130 XP(6)=0:XP(7)=4:XP(B)=0:XP(9)=5:XP(10)=6:XP(11)=7
20140 XP(12)=0:XP(13)=0

20150 *DISPLAY MENU

20160 ZA=B:ZA%(@)="MAIL LIST":ZA$(1)="ADD ENTRY TO FILE"
20170 ZA$(Z)="MODIFY OLD ENTRY":ZA%(3)="DELETE ENTRY"
20180 ZA%$(4)="DISPLAY/PRINT FILE" :ZA%(53)="8EARCH FILE"

20190 ZA%$(6)="NEW SORT":ZA$(7)="LOAD FILE":ZA$(8)="GAVE FILE"

2Dz0D GOSUR 10000

202190 *ZB CONTAINS SELECTION VALUE OF 1-9. NOW BRANCH OUT.
20220 *RESET SECONDARY SORT FLAG IF PENDING CHANGE

20230 IF IB<4 OR ZB=7 THEN YT=0

20240 ON ZBR GOSUR 20500, 21000, 21500, 22000, 230005 23500, 24000, 24500

Z@258 GOTOZD160

Figure 10-2. MAIN Module Listing

initialization. The reason for this is that the initialization process in AIMIT does
take some time, and it’s reassuring to the user to see something happening.
Don’t forget also that AINTT shows “activity” in the “activity area” of the screen
to indicate that some processing is taking place.

AIMIT is called by a 3070 10508, Remember that this is a special case of a
module that is not called by a GOSUE as AIMIT performs a CLEAR that erases
the return point. The return point here is at line 20100. A 5070 2618@ is the last
action of AIMIT, and line 20100 must be used in every applications program for
the return, unless the GOTO in AINIT is changed.

Before calling AINIT we performa CLEAR 0. Thisis an optional step to release
all previously allocated string space to AINIT. If MAILLIST is restarted, this step
brings us back to a known point.

The next step is to initialize all system variables and parameters that were not
initialized in AINIT. This would include:

e REFORT parameters that control the REFORT printing

e Line printer parameters for page length, number of lines per page, and
automatic page titling

e Error conditions in ERROR for allowable errors with proper messages (not
done here)

FIMIT handles everything else for us. Depending upon the applications pro-
gram, you may have other variables that must be initialized at this point.

166

10

MAILLIST — Main Driver

Remember that we’re going to perform these functions only one time, and that
these are initialization procedures only.

Now we come to the section of MAIN that is the reentry point (line 20160). This
point will be reentered after the menu function has been completed. The first
thing we want to do here is to clear the screen and output the menu of items by
using MENU. Before we can do this we must define the parameters that MENU
uses, the number of items in ZA, and the text for the items in string array ZAS$.
After these are defined, MENU is called at line 10000. Calling MENU clears the
screen and automatically displays the menu items, properly centered with menu
title. It also displays the title message in ZA$(0).

On return from MENU, ZP holds the selection value of 1-8. A return isn’t made
unless the user has input the proper value. The selection value corresponds to
the number of the function in the ZA$ array. The next action is to “branch out”
to the processing for the function. We could say IF ZF=1 THEN GOSUE 205600
and so on, but it’s much more convenient to use ZB in a “computed GOSUB.”
This statement will perform a GOSUB 20500 for ZB=1, a GOSUB 21000 for
ZB=2, and so forth. After the function processing has been completed, it will
RETURN to the next line, which will take us back to the reentry point at 20160.

The line numbers for the GOSUBs were determined after writing the code for
each function. Note that some of the line numbers for the functions jump by
1000 instead of 500. The reason for this is that these turned out to be larger
modules and we could not maintain both line increments of 10 and contain the
code in 50 lines. We could have gone to smaller increments, but this is a problem
when using one large program and using the renumbering capability provided in
the Renumber utility program.

Before the “branch out” to the MAILLIST function was made, we first per-
formed a test of ZB and set variable YT on the result. YT is the “secondary sort”
flag used in the SECSRT module. Ifit is 0, it means that either no secondary sort
was done, or that an add entry, delete entry, modify entry, or load file function
invalidated the previous sort. In this case the sort has to be done again before a
display or print of the list on the secondary “key” can be done. Here we test for
an add, modify, or delete by testing for a MEML item selection of less than 4 or for
aload file function of 7. If any of these are done, then YT is reset to 0. If none of
these functions are to be performed, then the secondary sort will still be valid
after the function (display/print, search, new sort, or save file). YT is 0 right
after MAILLIST load, so that condition is also logically correct.

In the following chapters we’ll discuss the other MATLLIST functions, roughly
grouped by functions of similar nature.

167

Chapter Eleven
MAILLIST—Adding, Deleting and
Modifying Entries

In this chapter we’ll discuss the flowchart and code of three MAILL IST functions
— addingan entry to the file, modifying an entry in the file, and deleting an entry
from the file. A branch is made to one of these functions from the MAIN driver
discussed in the previous chapter. All three modules of MATILL IST draw heavily
on the General Purpose Modules (as one might suspect at this point).

FROM
MAIN

TITLE TO
ZP$ (9)

29000
YV MLSKEL

OUTPUT
MAIL LIST
“SKELETON"

8500
Y FORmMI

READ IN
FIELDS TO
ZW$

YES-ABORT

CONSTRUCT
ONE STRING
IN XY$

XY$—-XD$

5000
Y . ASRCH

SEARCH
FOR ENTRY

MUST BE
FOUND

OouTPUT
“OUT OF MEM-
ORY MSG”

7000

ADD
ENTRY
TO XA$

Py

¥

Figure 11-1. Add Entry Module Flowchart \FE'URN
ezt TO MAIN

169

MAILLIST-Adding, Deleting and Modifying Entries

Add Entry Processing — MFADD

The flowchart for Add Entry is shown in Figure 11-1, while the actual code for
this function is shown in Figure 11-2.

20500 GOTO z@55B *MFADD

e R R R R LR TR T FEE LTI LIS EL LTI L LTS L LS 2T
*B520 ° THIS IS ADD ENTRY PROCESSING.

ZOSIMD 7 563536 363 3 B3 33 336 3636 36 3 36 36 36 3 3 3036 36 3 3B 36 36 3 9 3636 3636 36 36 96 3 3 3636 3 0636 36 96 36 3 36 96 9 3
20540 *FIRST OQUTPUT SKELETON

20550 ZP$(0)="ADD ENTRY":GOSUE 9000

20560 *NOW READ IN FIELDS

2570 GOSUR 8300:1IF XX=1 GOTO D680

20580 "NOW CONSTRUCT ONE STRING FROM FIELDS

@590 GOSUE 6500

20600 *NOW SEARCH FOR KEY IN EXISTING FILE

2B610 XD$=XY$:GOSUBR 5000

20628 CIF NOT OUT OF MEMORYs CONTINUE

20630 IF XM<:2 GOTO 2ZB670

20640 XP=3:XP$="0UT OF MEMORY":GOSUER 11000

20650 GOTO 20680

20660 *NOW ADD ENTRY

20670 GOSUR 7008

20680 RETURN

Figure 11-2. Add Entry Module Listing
These are the steps in adding an entry to the existing file in RAM:

Output an add entry form

Input the fields for the form

Construct one large string from the individual fields

Add the string in the proper place in the array in memory
Go back to the MAIN program for the next function

SNk~

All of the functions above can be done by calling a GPM module. We havea
module to output a form (FORMO), a module to read in the fields of the form
(FORMI), a module to “pack” the fields (SPACIK), a module to search for the
insertion point (F5RCH), and a module to add the entry (FACD). It should be an
easy job to tie these together to implement the add function (all right, then, an
easy job compared to, say, a 4000-person payroll program . . .).

First of all we must clear the screen and output the add entry form. The form is
shown in Figure 11-3. Although we could call FORMD after setting up the field
descriptions and lengths in the ZP$ and ZR arrays, we’ll take another tack.
Since this form is continually being output, we’ll make our own subroutine
(module). Thisisshown in Figure 11-4; it’s called ML.SKEL , “Mail List Skeleton,”
and calls FORMO to clear the screen and output the skeleton. We’ve put it out of
the way starting at line 29000.

170

MAILLIST-Adding, Deleting and Modifying Entries

Figure 11-3. Add Entry Form

29000 GOTO Z9060 *MLSKEL

FQOLD 7 3 I I T I T I I I T I
29020 ° THIS MODULE DISPLAYS THE MAIL. LIST SKELETON. IT IS USED
29030 * EVERY TIME THE STANDARD FORM IS TO BE DISPLAYED.

29040 ° ZP$(@) MUST CONTAIN THE TITLE

el e Y R R R R R X R I R R R
29060 ZP=57:70=8

29070 ZP$(1)="(1) NAMEI] "rZPs(Z)="(2Z) NAMEZ "
29080 ZP$(3)="(3) NAME3 ":ZP$(4)="(4) STREET "
29096 ZP$(5)="(5) CITY "1ZP%(6H)="(6) ETATE "
29100 ZP$(7)="(7) ZIP ":ZP%(8)="(8) REFERENCE"

29110 ZR(1)=17:7ZR(2)=15:ZR(3)=15:7ZR(4)=30:ZR(5)=20
29120 ZR(6)=10:ZR(7)=2:ZR(8)=10:G0SUE 80006
29130 RETURN

Figure 11-4. MLSKEL Module Listing

MLSKEL displays all parts of the standard form except for the title in ZP$(0).
Since this will be different for different functions, we’ll leave that as one of the
parameters to be set before MLSKEL is called. The first thing we’ll do, then, is to
set ZP$(0) to ADD EMTRY as a title and call MLZIEL at 29000.

171

MAILLIST-Adding, Deleting and Modifying Entries

We now have the form on the screen. Next, the user must fill in the form by
entering data for each field. The FORMI does this automatically, and returns field
data in ZW$(1) through ZW$(8). FORMI is called by a G0SUB 8500, After the
RETURN is made, variable XX may be set to a 1 if the user wanted to terminate
the add operation. In this case we must return to the menu without taking any
action, so we’ll test XX and return if XX=1. No harm is done in this action as the
list in memory hasn’t been altered in any way.

Now we’ve got the data on the screen and in the ZWS$ array. To add the entry to
the list, we’ve got to “pack” it into one string. To do that we’ll call SPACK at line
6500. SPACK takes the data from ZW$ and puts it into standard GPM format in
string XY$. A sample of this operation is shown in Figure 11-5. After return is
made from SPACK, XY$ contains the packed string.

Zw$() N
(1) | BARDEN
(2 [BILL
(3) | HACK WRITER |
(4) | 250 N.S. MEMORY LANE] L ineur

FIELDS

(5) | comPUTER CITY [
(6)
@)
®) | nasssi212

\U[SPACK

XY$ I BARDENIBILL! HACK WRITER!250 N.S. §

/

i MEMORY LANE!COMPUTER CITYICA!99 i

9991 71455512121

e J
P;X(ED
ENTRY
Figure 11-5. SPACK Action STRING

Now that we have the entire entry, we must search for the proper entry point in
XA$, using the pointers in XA%. The ASFCH module does this for us, but works
with a string in XD$. We must first transfer XY$ to XD$. After we do that, we
can call ASFCH at line 5000.

ASRCH returns XJ, XK, and XL along with some other parameters to indicate
how the search went. In the case of an add, we don’t expect to find the entry, and
XJ, XK, and XL will be set to the proper insertion point even if the list is empty.
If the entry is found, this means we’ve already added the entry previously. We
make no provision for notifying the user about this, although we could have. It
will be apparent to the user soon enough if this is the case, and a delete is easy.

172

]
Sl
MAILLIST-Adding, Deleting and Modifying Entries 1 1

About the only thing we have to watch for is being out of memory because of too
many entries. In this case we won’t (can’t) add the entry. We will output a
warning message by calling the PROMFT module, however. If XM=2, the
message OUT OF MEMORY will be printed at the prompt message area, and we’ll
simply return to the menu.

If XM is not 2, we can go ahead and add the entry. At this point XJ, XK, and
XL are set to their proper values for the add. The AADD module is set up to use
these parameters after an ASRCH call, so we can simply call ARDD by a GOSUB
700@. Theentry string in XD$ will be added to the list in memory at the proper
place.

After a RETURN is made from AADD, a RETURN is made from the MFADD
module, and the MAIM driver is reentered.

It’s important to note which variables are being used in this process and to
realize that they are non-conflicting. Certain variables “ripple through” several
modules, being used for a succession of actions. A typical add with variable
action is shown in Figure 11-6.

STEP VARIABLES
1. READ IN FIELDS (FORMI) ZWS$ ARRAY
2. MERGE INTO ONE STRING ZWS$ ARRAY-XY$
(S PACK)
3. SEARCH FOR ENTRY XY$~XD$, XJXK.XL
(ASRCH)
4. ADD ENTRY (AADD) XJ,XK,XL XD$—XA$ ARRAY
Zw$
ARRAY
PACK Xv$

ﬁ[!lr[!l 1

XD$
3y

L v v 1]

SEARCH
AND ADD

- -

Figure 11-6. Typical Add Entry

173

MAILLIST-Adding, Deleting and Modifying Entries

Delete Entry Processing — MFDEL

Figure 11-7 shows the Delete Entry flowchart, and Figure 11-8 shows the actual
code. We'll discuss this module first, as the Modify Entry uses a portion of

MFDEL to avoid repetitive code.

FROM
MAIN

ENTER

21500

21560 |y

SETUP VAR-
IABLES FOR [— —ZPS.ZP,
DELETE FORM :

8000
Y FORMS

OUTPUT
DELETE
FORM

8500
¥ FORMI

INPUT
RESPONSES
IN ZW$

YES-ABORT

~ __ENTRY # NOT
, SPECIFIED

YES
11000
PROMPT

OUTPUT
“REENTER
NAME"
MSG

CONVERT
ZW$(1) TO
NUMERIC IN
Xs

174

XD$=ZW$(2)
SEARCH FOR
NAME

—— FOUND OR
NOT END?

- 11000
21720 | PROMPT

OUTPUT
“# OR NAME
NOT FOUND"

MSG

Figure 11-7.

Delete Entry Module Flowchart

__ENTRY #
IN XS

21750

SETUP FOR
“FIND N”
0—-XU
6—-XT

PUT ENTRY
IN XA$ (XL)
INTO XY$

FIELDS

29000
MLSKEL

Y

OUTPUT
STANDARD
SKELETON

DISPLAY
FIELDS

_MODIFY

. CHECK zB
FROM MENU

OUTPUT
“DELETE
Y/N" MSG

i ==waue TO MAIN -

Figure 11-7. Delete Entry Module Flowchart (con’t)

The actions that we have to take to delete an entry are as follows:

1.

Input an entry number or entry name for the delete

Search for that number or name

If the entry is found, display the fields of the entry in a form and ask whether

the entry is truly to be deleted.

If the entry is to be deleted, delete the entry from the list; if not, return to the

menu.
Return to the main menu.

175

11 &

MAILLIST-Adding, Deleting and Modifying Entries

GOTO 2155@ *MFDEL

P g A A3 363 B 6 B T I I R R R R R R R K
> THIS IS DELETE ENTRY PROCESSING

PGB B I 3 0 I 6 BRI B I I R R RN
*FIRST OUTPUT DELETE SKELETON

IP%(@)="DELETE ENTRY"

ZP=55:70=2:ZP$(1)="ENTRY # (ENTER IF NOT KNOWN)"
ZRP%(Z)="NAME1 STRING (ENTER IF NOT KNOWN)"
ZR{1)=3:ZR(2)=15:GO5UR 8000

"NOW READ IN FIELDS

GOSUR 8500 : IF XX=1 GOTO 21900

IF ZW$(1)="" GOTO 1650

XS=VAL (ZW$ (1))

IF XS8=0 GOTO 21650

GOTO 21750

IF ZW$(2)<="" GOTO 214690
XB=3:XR4="REENTER VALID # OR NAME":GOSUB 11000
GOTO 21560

21680 *SEARCH FOR FIELD 1 NAME HERE

21690 XD$=ZW#(Z) :GOSUR 5000

Z170@ *IF FOUNDs CONTINUE

F171@ IF XM<=@ OR XL<>—1 GOTOQ 21790

21720 XB=3:XR$="# OR NAME NOT FOUND":GOSUB 11000
21730 GOTO 21900

Z174@ *NOW HAVE ENTRY # IN X5 — FIND NTH ENTRY
21750 XU=0:XT=0:G05UR 5500

21760 °IF FOUND CONTINUE

21770 IF XM=0 GOTO 21720

21780 *NOW GET ENTRY STRING AND "UNPACK" IT
21790 XY$=XA%(XL) :GOSUB 2500

21860 *DISPLAY MAIL LIST SKELETON

21810 GOSUR 29000

21820 *DISPLAY FIELDS ON FORM

21830 GOSUR 9060

21840 *CHECK ZB FLAG FROM MENU SELECTION FOR DELETE OR MODIFY
21850 IF ZB=Z GOTO 21100

21860 XB#%="DELETE YES OR NO':XP=1:GOSUR 1180@2:IF XX=1 GOTO 21900
21878 IF XCH="N" GOTO 1900

21880 *DELETE ENTRY

21890 GOSUR 9500

21920 RETURN

Figure 11-8. Delete Entry Module Listing

These are the general actions for the delete. There are some other actions that we
also have to take. We must check for either an entry number or name; if neither
has been input, then the user has made an error. If the entry is specified by
number only, and that number is beyond the last number of the list, then we
can’t display or delete the item. Also, if the user wants to terminate the Delete
operation, variable XX will be set to 1; we’ll have to return to the menu in this
case.

First of all we’ll output the Delete “skeleton” form by setting up ZP$ and ZR and
calling FOR15 at line 8000. This form is shown in Figure 11-9. Next, we’ll read in
the fields for the form by calling FORMI at line 8500. FORMI stores the field input
inthe ZW$ array. On return from FORMI, variable XX may be set to 1 if the user

176

MAILLIST-Adding, Deleting and Modifying Entries

has terminated the delete operation at this point. If this is true, we’ll RETURN
from MFOEL without taking further action.

Figure 11-9. Delete Entry Form

At this point we have either an entry number or an entry name or both in
ZW§(1) and ZW$(2). The code from line 21610 through 21740 tests the two
fields. If neither has any input, the message REENTER YALID & OR MNAME is
displayed in the prompt message area and the Delete form is again output.

If an entry number is in ZW$(1), it is converted to a numeric value by
XS=VAL(ZW$(1)), and line 21750 is executed. At line 21750, a call is made to
FIMOM at line 5500. FINDN finds the entry number defined by XS. If the
number is out of range, line 21720 displays the t OF MAME MOT FOUND message
and RETURNS from MFDEL.

If ZW$(1) is blank, then ZW$(2) contains an entry name. Delete must search for
this name and find the corresponding entry number. It does so by setting XD$
equal to ZW$(2) and calling the ASFCH module. ASRCH searches the current list
in memory and returns flag XM=1 if the name is found. If the end of the list is
reached variable XL is set to -1. If XM<>0 OR XL<>>-1, the entry has been

177

MAILLIST-Adding, Deleting and Modifying Entries

found and variable XS contains the entry number (from AZRCH); a branch is
then made to line 21790. If this is not true, the message # O MAME MOT FOUND is
displayed by calling FROMPT at line 11000 and a RETURN is made from IMFDEL .

At this point we’re at line 21790 with variable XL containing the current entry
location in XA$. This represents either the entry number defined in the EMTRY #
field, or the entry containing the name defined in the MAMEL STRING field. Inthe
latter case, this is the first entry containing the name.

The entry defined by XA$(XL) is now transferred to XY$ for “unpacking” in
SUNPK (line 2500). The complete string in XY$ is unpacked into fields ZW$(1)
through ZW$(8) after SUMPI.

Next, we’ll retrieve the skeleton in the closet by ML.SKEL at line 29000. The fields
in ZW$ are then displayed in the skeleton by calling FORMO at line 9000. FORMO
takes the fields in ZW$ and displays them at the proper places in the skeleton.

All that’s left now is to ask the user whether he wants to delete the entry. The
prompt message DELETE YES OR MO is displayed. If XC$is “N,”a RETURN is
made without deleting. If the response is “Y” a delete entry call is made to the
ADEL module at line 9500 to remove the entry from the list. RDEL uses variables
XJ, XK, and XL to delete the entry from XA$ and changes the pointersin XA%.

The ZB flag action in line 21850 will be explained in the Modify Entry module,
next. A typical delete entry action is shown in Figure 11-10.

STEP VARIABLES

1. FIND STRING IF NOT # ZW$(2)—XD$, XJ, XK, XL, XS
(ASRCH)

2. FIND # (FINDN) XS, XJ, XK, XL

3. GET ENTRY XAS$(XL)—XY$

4. UNPACK ENTRY (SUNPK) XY$—2ZW$ ARRAY
AND DISPLAY (FORMO)

5. DELETE IF REQUESTED XA$(XL) DELETED FROM XA$
(ADEL)

ZW$ ARRAY XA$ ARRAY
E‘: SR
XY$
FOR GET |

NAME S [I 1]

1 |
A
i AN '
DELETE ZwW$
XA$(XL) ARRAY
IF REQUESTED

Figure 11-10. Typical Delete Entry DISPLAY

178

[]
=]
MAILLIST-Adding, Deleting and Modifying Entries 1 1

Modify Entry Processing — MFMOD

If we refer to the Design Spec we can see that Modify Entry is very similar to the
actions of Delete Entry. A specified entry is located by number or name. The
entry is then displayed on the standard mail list form. The user is queried as to

FROM
MAIN

SETUP TITLE
IN ZP$(0)

OUTPUT
FIELD DATA
TO FORM

!

GOTO
21560 DELETE
===« PROCESSING

UPDATES FOR
=menemm EACH NEW SET

OF DATA
CODE
2000
V INPUT
DEFINE
e FIELD AND
RETURN INPUT NEW
FROM DATA
e = DELETE
PROCESSING
y
11000
21140y pROMPT TAKE INPUT
STRING AND zcis
OUTPUT PUT IN ZWs(zC) [=——"FIELD 4
e’ PROMPT
MSG
]
GET NEXT FIELD
20590
ADD ENTRY
/. UNUSUAL
CALL
21240 g
RETURN
eamcn s TO MAIN

Figure 11-11. Modify Entry Module Flowchart

179

1 1 MAILLIST-Adding, Deleting and Modifying Entries

whether he truly wishes to modify the entry. If yes, the entry is deleted. All of the
actions up to this point are identical to the Delete Entry action in MFDEL.

Modify Entry next asks the user which fields are to be modified and inputs the
new fields. After the last field has been input, MFIMOD adds the modified entry to
the list.

The MFMOD flowchart is shown in Figure 11-11 and the actual code in Figure
11-12.

21000 GOTO 21050 *MFMOD

R T T i
21820 ' THIS IS MODIFY ENTRY PROCESSING

R IR S e A R S LR L A b bt b b b il
21040 *FIRST OQUTPUT MODIFY SKELETON

Z1050 ZIP%(B)="MODIFY ENTRY"

21060 GO TO DELETE PROCESSING. BOTH MODIFY AND DELETE HAVE VERY
21070 *SIMILAR PROCESSING AND IT CAN BE SHARED BETWEEN THE TWO!
21880 GOTO 21560

21@9® *REENTER FROM DELETE PROCESSING HERE

~11@@ XB$="MODIFY YES OR NO":XB=1:GOS5UR 110@0:IF XX=1 GOTO 21240
21110 IF XCH="N" GOTO 21240

21120 °DELETE ENTRY HERE

#1130 GOSUR 9508

21140 XP$="FIELD # TO MODIFY" :XP=B:GOSUB 11000:IF XX=1 GOTO 21240
21150 IF XC=0 GOTO 21230

21160 IF XC<1 GOTO 21140
21170 GOSUR 000
1180 *INPUT NEW STRING FOR FIELD

21190 7C=75(XC) 1ZD=ZR(XC) 1 ZE=1:GOSUR 2000 :IF XX=1 GOTO Z1Z40
21200 IWE(XC)=ZF%

21210 GOTO 21140

21270 NOW "ADD" ENTRY BY USING ADD ENTRY PROCESSING!

21230 GOSUR @590

#1240 RETURN

Figure 11-12. Modify Entry Moduie Listing

The first action taken is to set the title in ZP$(0) to MODIF'Y ENTRY. A GOTO
21560 then enters the Delete Entry code. After the entry has been found by
number or name and displayed, MFDEL checks the ZB variable from the menu
selection (MENU). If ZB=2, the Modify Entry function is being processed, and
control is returned back to line 21100 in MFMOD.

The entry has now been displayed on the screen. MFIOD next asks the question
MODIFY YES OR NO. This gives the user an out if the wrong entry has been found.
If he answers N to PROMPT (line 11000), the RETURN at line 21240 returns to the
main menu. A RETURN is also made if variable XX is set to 1 from the user
pressing the ENTER key (Models I/III) or “up arrow” key (Model II).

If the answer is ¥, the ADEL module at line 9500 deletes the entry; variable XJ,
XK, and XL are still set up from the search and are used in the delete. If we were
to look at the X A$ list at this point, we would see that the entry displayed on the
screen has been deleted. It only exists on the screen and in the ZWS$ array (screen

180

MAILLIST-Adding, Deleting and Modifying Entries

fields) at this point. (If the CLEAR (Model I/ IH) or “up arrow” (Model II) is
used now, the entry will disappear for good, unless you have total recall!)

The code from line 21140 through 21210 is the loop for allowing the user to
modify any of the eight fields displayed on the screen. The message FIELD # T0
MODIFY isfirst displayed in the prompt message area as shown in Figure 11-13.
The user then enters a field number to FROMFT. PROMPT returns the response in
XC. If XC is less than 1, the response is invalid, and line 21140 repeats the
question. Ifthe responseis 0, ENTER has been pressed without a field number.
In this case, the user has terminated the modify operation; line 21230 then takes
the current field information in ZW$(1) through ZW$(8) and adds the entry. We
could have written the add entry code here, but it exists in the Add Entry
module, so a transfer to the proper Add Entry code is made by GOSUE 20530,
After the Add Entry Code has added the entry to the list,a RETURN is made to
line 21240 which in turn RETURNS to the main menu.

Figure 11-13. Modify Entry Prompting

181

11

MAILLIST-Adding, Deleting and Modifying Entries

If the user has entered a valid field number for the modify, the FORMO module
is called at line 9000. The FOFMO module takes the current field information in
ZW$(1) through ZW$(8) and displays it on the form. This is necessary to
“update” the screen from the last field modify.

Next, the field to be modified is erased by “fill” characters and new user input is
started. This operation is shown in Figure 11-14. The TMPUT module (line 2000)
does this automatically. Before INPUT is called, the screen location of the field
and maximum length of the field are picked up from the ZS and ZD arrays,
respectively. These values were set by FORMS (form skeleton) when the MATIL -
LLIST form was displayed.

Figure 11-14. Modify Entry Field Entry

On RETURN from INPUT, ZF$ contains the new field input, and the field also
appears on the screen. The proper field array ZW$(XC) is set to the new field,
and a loop back to line 21140 is made for the next field to be modified. During
this modify operation the user may press ENTER or “up arrow” to terminate the
operation. If he does,a RETURN is made to the main menu. A typical modify
entry action is shown in Figure 11-15.

182

MAILLIST-Adding, Deleting and Modifying Entries

STEP VARIABLE

1. FIND STRING IF NOT # ZW$(2)—XD$, XJ, XK, XL, XS
(ASRCH)
2. FIND # (FINDN) XS, XJ, XK, XL
3. GET ENTRY XA$ (XL)—-XY$
4. UNPACK ENTRY (SUNPK) XY$—ZW$ ARRAY
AND DISPLAY (FORMO)
5. DELETE ENTRY IF MOD- XAS$ (XL) DELETED FROM XA$
IFICATION (ADEL)
6. INPUT NEW FIELDS ZwW$
7. GO TO ADD ENTRY
PROCESSING
XA$ ARRAY
IS ARRAY ::l
XY$
E SEARCH N -
= 7
FOR ENTRY N
NAME Jl
|
I ; T\] zws
ARRAY
GO TO
ADD ENTRY
PROCESSINGé——————_ ‘
USING ZwW$ DELETE
XA$(XL)
IF MODIFY 1L
T - DISPLAY

Figure 11-15. Typical Modify Entry

183

Chapter Twelve
MAILLIST —Displaying and
Printing Entries

The MFDISF module is the largest module of MAILLIST. It is large because it
combines the two functions of display of entries and printing of entries, in
addition to subordinate functions such as defining print formats and handling
display of secondary sorts. MFDISP could have been split up into two separate
modules, one for display and one for printing. Despite the size, however,
MFDISF actions are fairly straightforward and we’ll describe them in detail so
that you’ll have no problems.

The flowchart for MFDISF is shown in Figure 12-1 while the actual code is shown
in Figure 12-2.

Defining the Range

The code from line 22050 through line 22530 is concerned simply with defining
the “range” of entries to be displayed or printed, in addition to specifying
whether a “primary” or “secondary” sort is to be used.

The first action taken in this part of the code is to call FORMS (line 8000) with the
one-entry form PRIMARY (P OR SECOMDARY [S KEY'?. After this form has been
displayed by FORMS, FORMI is called at line 8500 to get the user input.

If the user input is not “P” or “S,” the entire form is displayed once again,and a
new FORMI occurs.

If ZW$(1) (the input from FORMI) is “P,” the code at 22220 is executed, otherwise
line 22120 is executed. The display/print for a primary sort and the display/-
print for a secondary sort are somewhat different in their “range” definitions.
The range of entries for a primary sort may be defined by astart number or by a
start name and an end number or an end name. The range of entries for a
secondary sort may only be defined by a start number and an end number. The
reason for the limitation on the secondary sort is that it is much easier to find the
“nth” entry in XB% (the secondary sort “pointers” array) then to find a name.
(That’s programmer lethargy again . . .)

If a secondary sort is specified, variable YT is checked. If YT is 0, the secondary
array has never been sorted, or an old sort has been invalidated by a new entry,
deletion, or modification. In this case the message NEVER SORTED OR MODIF IED-
RESORT! is displayed by calling the PROIMFT module at line 11000, and MFDISP
starts again.

If YT is not 0, the secondary sort can proceed. First, the secondary sort form

shown in Figure 12-3 is displayed by calling the FORIMS module at line 8000.
Next, the two fields associated with the form are read in by calling the FORMI

185

MAILLIST-Displaying and Printing Entries

FROM
MTN
n ENTER __SECONDARY KEY
SPECIFIED
22050
SETUP VARI- ZP$,2P,

ABLES FOR [===Zq'7p

DELETE FORM [vEs

11000
PROMPT

8000
OUTPUT
Y FORMS "NEVER
SORTED” MSG
OUTPUT
DELETE
FORM
8500 6——-———‘
7 FORMI
1-Ys
INPUT SETUP VAR |____zP$zP,
RESPONSE ABLES FOR ZQZR
IN ZWS$(1) SECONDARY
SORT FORM
8000
Y FORMS
YES-ABORT
OUTPUT
FORM
| ww
«pr OR / FORMI
s
INPUT
RESPONSES
) _ YES-ABORT 0
¥No
6/B
YES vy MAKE COMPATIBLE
ea)en | WITH PRIMARY
Ve SORT FORM

Figure 12-1. Print/Display Module Flowchart

186

MAILLIST-Displaying and Printing Entries

I 2/C '
PRIMARY KEY

=== SPECIFIED
22220 Y

SETUP VARI-
ABLES FOR |ememess ZP$,ZP,
PRIMARY ZQ,zR
SORT FORM

11000
PROMPT

OUTPUT
“START # NOT
FOUND" MSG

8000
Y __Forms

OUTPUT
FORM

1/A

8500
/ FORMI

INPUT
RESPONSES

YES
11000
PROMPT

OUTPUT
“NO START #
OR STRING”
MSG

NO-START # |

SEARCH
FOR
VALZWS(1))

Figure 12-1. Print/Display Module Flowchart (cont.)

187

MAILLIST-Displaying and Printing Entries

XM=0
AND XL=-1
?

YES
11000
! PROMPT

OouTPUT
“START STRING
NOT FOUND”
MSG

NO-FOUND STRING

22420 §

AB=ZW$(3)

. START
#70 AA

emamem END #

22470

SEARCH
FOR ZW$(4)

ZM=0
AND XL=-1

OUTPUT
“END STRING
NOT FOUND”

YES-NO # OR STRING

AB=8999

NO-FOUND

PROMPT

MSG

Figure 12-1. Print/Display Module Flowchart (cont.)

USE

o DUMMY

END #

188

4/A

START # IN AA
END # IN AB
11000

o PROMPT

22540

“DISPLAY
OR PRINT”
MSG

YES-OLD
FORMAT

NO-DEFINE

NEW FORMAT 5/C

YES-ABOT

OUTPUT
“SUPPRESS
NEW PAGE”
MSG

SAVE RESPONSE
IN AC$

NO-PRINT
e ——————————
11000

PROMPT
FORMS

OUTPUT
“CURRENT/
NEW" MSG

QUTPUT
PRINT ITEMS

e NO FIELDS

_YES-ABORT
5/A

Figure 12-1. Print/Display Module Flowchart (cont.)

“D” OR
wprip
NEVER 50 LINES/
REACH= === ZM=-1 ZM=50 e ez ez PRINT
END IMAGE
. I
/
SETUP FOR
PRINT ITEM
DISPLAY

189

STORE ITEM
AllS IN XP (Al)
Al=1 e = CURRENT INDEX XP(B)=XP(8)+1
TO XP ARRAY
. /
22720 11000
PROMPT

OUTPUT Al=Al1

“ITEM TYPE"

YES-ABORT

22820
YES-VALID TITLE TO
ZP$(D)
NO-INVALID
ITEM
11000 L
PROMPT /

OuUTPUT
“INVALID
ITEM” MSG

29000
MLSKEL

QUTPUT
STANDARD
FORM

YES-END
OF ITEMS

6/A

Figure 12-1. Print/Display Module Flowchart (cont.)

190

FINDN

2500
A SUNPK

UNPACK
ENTRY
INTO ZW$

DISPLAY
FIELDS

YES-END OF

XY$=XA$(XL) === ASRCH

FROM

_VES-ABORT

. USE
KE
(fo INKEY$

YES-END OF

NO-—NOT DONE

Y

DISPLAY
CURRENT #
IN ACTIVITY

AREA

PRINT
FIELDS

7500
REPORT

22050 é

RESET
FLAG

DELAY FOR
LAST DISPLAY

Figure 12-1. Print/Display Module Flowchart (cont.)

YS=g ==e==PRIMARY/SEC

191

MAILLIST-Displaying and Printing Entries

GOTO 2z@05G *MFDISBP

7 3 333 S0 B 26 B 6 BT B I R R R R R H RN
* THIS IS DISPLAY/PRINT PROCESBING

PETEERERESEETE S LTI IX T LTI LT L L LS LSS S8k kst add]
"FIRBT CHECK FOR PRIMARY OR SECONDARY KEY
ZP=55:20=1:ZP$(D)="DISPLAY/PRINT"
ZP%{(1)="PRIMARY (P) OR SECONDARY (8) KEY?"
ZR(1)=1:G0O8UEL B0OOD

GOSUR 850@ :IF XX=1 GOTO 22950

IF ZW&(1)«<>"P" AND ZW$(1)<>"8" GOTO ZZ@50
YS=@:IF ZW$(1)="P" GOTO 22220

’SECONDARY KEY HERE

IF YT<>8 GOTQ 22150

XP=3:XP$="NEVER SORTED OR MODIFIED-RESORT!":GOSUR 11000
GOTO 22050

YG=1:ZP=55:20=2:7P$(0)="SECONDARY DISPLAY/PRINT"
ZP$(1)="START # (ENTER IF NOT KNOWN)":ZP$(2)="END # (ENTER IF NOT KNOWN)"
ZR(1)=3:ZR(2)=3:6G05UE 8000

"NOW READ IN FIELDS AND REARRANGE FOR CHECK
GOSUR 8500 :IF XX=1 GOTO 22950
ZWE(3)=ZWS (2) 2 ZWH(2)="" 1 ZW$ (4)=""

GOTO 22310

IP=55:Z0=4:7P%(@)="PRIMARY DISPLAY/PRINT"
ZP$(1)="START# (ENTER IF NOT KNOWN)"
ZP$(Z2)="START ENTRY (ENTER IF NOT KNOWN)"
ZP$(3)="END# (ENTER IF NOT KNOWN)"

ZP$(4)="END ENTRY (ENTER IF NOT KNOWN"
ZR(1)=3:ZR(2)=15:ZR(3)=3:7ZR(4)=15:GOSUE 8000
*NOW READ IN FIELDS

GOSUR 8500 :IF XX=1 GOTO 22930

*NOW CHECK START # OR STRING

IF ZW$(1)="" GOTO 22370
XU=@:X5=VAL (ZW$ (1)) :XT=0:GOSUR 5500

IF XM<>B GOTO 22420

XB$="START # NOT FOUND"

XB=3:G05UL 11000

GOTO 22050

IF ZW&(2)<>"" GOTO 22390

XB$="NO START # OR STRING" :GOTO Z=z350
XD$=ZW$ (Z) : GOSUB 5000

IF XM=@ AND XL=-1 THEN GOTO ZZ410ELSE GOTO :z4Z0
XB&="START STRING NOT FOUND":GOTO 22350

AA=XE
*NOW FIND END # OR STRING
IF ZW$(3)="" GOTO 22470

AR=VAL (ZW$(3))
GOTO 22540
IF ZW$(4)<>"" THEN GOTO ZZ500
AB=9999
GOTO 22540
XD$=ZW$(4) 1 GOSUB 5000
IF XM<*@ OR XL<>—1 GOTO 22530
520 XB$="END STRING NOT FOUND":GOTO 22350
FZ530 AR=XS ‘
22540 XB$="DISPLAY(D) OR PRINT(P)?":XE=1:GOSUB 11008:IF XX=1 GOTO 2295
22550 AC$=XC$
22560 IF AC$<>"D" AND AC$<:"P" GOTO 22540
22570 IF AC$="D" GOTO 22820

Figure 12-2. Print/Display Module Listing

192

22580
22590
22600
22610
22620
22630
22640
22650
22660
22670
22680
22690
22700

22740
22750
22760
22770
22780
22790
22800
22810
22820
22830
22840
22850
22860
22870
22880
22890
22900
22910
22920
22930
22940
22950
22960
22970

MAILLIST-Displaying and Printing Entries

*PRINT HERE

XB$="CURRENT FORMAT (C) OR NEW (N)7":XP=1:GOSUB 1100@8:IF XX=1 GOTO 21950

IF XC$<>"C" AND XC#<x"N" GOTO 22590
IF XC$="C" GOTO 22830
"DEFINE NEW FORMAT HERE
XB$="SUPPRESS NEW PAGEs Y OR N7":XB=X:GOSUR 11000
IF XCé="Y" THEN ZIM=-~1 ELSE ZM=5@
ZP=55:7Q=46:7P$(@)="DISPLAY/PRINT FORMAT ITEMS"
ZP$(1)="0=NEW LINE" :ZP$(Z)="1-N=FIELD N"
IP$(3)="-M=TAB TO POSITION M":ZP%(4)="—-1=NEW PAGE"
ZP$(5)="-2=PRINT REPORT COUNTER XN":ZP$(&)="-3=END ITEM DEFINITION"
ZR(1)=0:ZR(Z)=01ZR(3)=0:ZR(4)=0:ZR(5)=0:ZR(6)=0:GOSUR SO00
XP(B)=0
Al=1
XB$="1TEM TYPE?7:":XP=0:GOSUE 11000:IF XX=1 GOTO 22950
IF XC>=63 AND XC<=8 GOTO 22760
XB$="INVALID ITEM TYPE - IGNORED":XB=3:GOSUP. 11000
GOTO 22720
IF XC=-3 GOTO 22830
XP(AI)=XC
XP(@)=XP(D)+1
Al=AT+1
GOTO 22720
"DISPLAY OR PRINT HERE
ZP$(@)="DISPLAY ENTRY"
IF AC%="D" THEN GOSUBR 29000
XU=0:XS=AA: XT=0:GOSUE 5500
X8=—1:XT=1

IF XL=-1 GOTO 22950
XY$=XA%(XL) :GOSUR 2500
XN=XU~-1
IF AC$="D" THEN GOSUE. 9000 ELSE GOSUR 7500
IF INKEY$<>"" GOTO 22950
IF XU»=AB GOTO 22950
GOSUR 5500
PRINT & YLs XU-Z3" "3
GOTO 22860
YS=0
FOR AI=1 TO 9DQ:NEXT Al
RETURN

Figure 12-2. Print/Display Module Listing (cont.)

module. A RETURN is made with ZW$(1) and ZW$(2) containing the input.
After the input, variable XX may be set to a 1 if the user wanted to terminate the
operation. In this case a RETURN is made by a GOTO 22950. The next step is
to check the start and end numbers. As this is a similar condition to the primary
sort, the common check at line 22310 is executed after first setting ZW$(3) equal
to ZW3(2) and ZW$(4)=ZW$(2)=" " (null string).

193

=m . . .
12 MAILLIST-Displaying and Printing Entries

Figure 12-3. Secondary Sort Form

If a primary sort is called for the code starting at line 22220 is entered. This
displays the form shown in Figure 12-4 by a call to the FORMZ module at line
8000. The four fields are now read in by a call to FORMI (line 8500).

194

MAILLIST-Displaying and Printing Entries

Figure 12-4. Primary Sort Form

Line 22310 is executed for both the primary and secondary sort cases. The code
from line 22310 through 22530 is concerned with finding the start and end entry
number for the range, and converting a name to an entry number if necessary.

If there is neither a start number in ZW$(1) nor a name in ZW$(2), then the
message MO START # OR STRIMG is displayed by a call to the FROMFT module (line
11000).

If there is a start number in ZW$(1), then a possible name in ZW$(2) is ignored.
A call is made to the F INDN module to look for XS=VAL(ZWS$(1)). If this start
number is not found, the message START NUMEER MOT FOUMD is displayed by a
call to PROMFT, and MFDISF is started over. (The only way for the start number
not to be found is if the number of entries in the list exceed the start number.) If
the start number is found, AA is set equal to XS in line 22420.

If there is no start number in ZWS$(1) but a name in ZW$(2), line 22390 is
executed. This line calls the AZRCH module to look for the name, and in the
process, find the entry number in variable XS. If the name is not found, the

195

12 ¢

MAILLIST-Displaying and Printing Entries

message START STRIMG HOT FOUND is displayed by a call to FROMFT, and the
MFDISF moduleis restarted. If the name is found, variable AA is set equal to XS
in line 22420.

We now have the start number in AA in line 22420. We must now go through a
similar process for the end number or name. If there is neither end number in
ZW$(3) nor name in ZW$(4), variable AB is set equal to 9999 in line 22480, and
line 22540 is executed. This case allows the user to display/print the entire list
from a given point. If there is a start number, a possible name is ignored and
variable AB is set equal to VAL(ZW$(3)). If there is no end number but an end
name, XDS$ is set equal to ZW$(4) and a call is made to the ASFCH module (line
5000) at line 22500 to find the entry number in XS corresponding to the name. If
the name is not found, the message END STRING NOT FOUND is displayed and
MFDISP is restarted. If the name is found, variable AB is set equal to the entry
number XS containing the name and line 22540 is executed.

Defining the Print Format

At this point, line 22540, we have the start entry number in AA and the end entry
number in AB. I know, it was a lot of work just to get those two numbers, but
sometimes code does become somewhat messy to accomplish trivial results (and
quite often it’s the reverse — trivial code for messy results . . .)

Next, a form containing one field is output — DISPLAY(D) OF PRINTF 7.
Variable ACS$ is set equal to the input of XC$. Variable XC§ will be used later in
the Display/Print procedure. If ACS is neither “D” nor “P,” the form is again
displayed at line 22540. If variable XX is equal to 1, the user wants to terminate
the operation and a RETURN is made by a 50T0 22358,

If a D has been input, a branch is made to line 22820. The remainder of the code
from 22590 through 22800 is concerned with defining the print format.

The next form to be output is CURRENT FORMAT (£ OR MEW (M) 7. If the input
string XC$ is neither C nor M, the operation is repeated at line 22590. If C is
specified, the current print format will be used, and a GOTD 22530 is executed.

Ift is specified, a new print format will be defined in the code from line 22630
through 22800. This print format will consist of a series of print format items
held in array XP. They will replace the last set of print format items held in the
array and define a user-tailored print format.

Before the format is defined, the message SUFPRESS WEW PAGE, v OF M7 is
displayed by the PROMPT module. If the response in XC$ is “Y” then ZM, the
number of lines per page, is set to -1, otherwise the number of lines per page is set
to 50. The new page suppress is used for label printing and other continuous line
printing where page separations are not desired.

Next, FORMS is called to display a form defining the possible display/print
format items (Figure 12-5). This is not really a form, as the form input fields are
defined as zero length; it is more descriptive text.

196

MAILLIST-Displaying and Printing Entries

Figure 12-5. Print Format ltem Form

The code from line 22700 through 22800 defines the format item input loop.
Each time through the loop the prompt message I TEM TVFE? is printed by a call
to PROMFT. The response is RETURNed in XC as a numeric value (XB=0 on the
call). If the item type input is greater than -63 and less than 9, it is entered in the
XP array as a format item to be used in the REPORT module. If the item value
is not in this range the message IMVAL IO ITEM TYFE - IGHORED is displayed and
the item type message is displayed again for new input. A special case occurs
when the item type value is -3; -3 terminates the input. For each item type, XP(0)
is incremented by one count.

Displaying and Printing the Range of Items

The code from line 22820 through 22940 either displays the entries over the
range defined by entry number AA through AB or prints the entries over the
same range. ACS still contains the “P” or “D” response to the DISPLAY OR PRINT
question.

197

MAILLIST-Displaying and Printing Entries

If a display is to be done, MLZKEL (line 29000) is called to display the mailing list
skeleton. Next, F IMOM (line 5500) is called to find the starting entry number in
AA. Now XS is set to -1 (find all entries) and XT is set to 1 (find next entry) for
the FIMDN calls in the following loop.

The loop from 22860 through 22940 displays or prints every entry over the
range. First a check is made of the next entry number in XL. If it is -1, then the
end of the list has been reached and line 22950 is executed to end MFO ISP, If XL
is not -1, XY§ is set equal to the entry string from XAS$. The SUNPE module is
then called (line 2500) to unpack XY$ into fields, with the fields going into the
ZWS$ array.

XN, the number of the entry for the REFCORT module, is set to XU-1 each time
through the loop. XU is set to the number of the next entry from FINDH, If a
display is being done, FORM2 (line 9000) is called to display the fields in ZWS$,
otherwise REFIIRT is called (line 7500) to print the fields as defined by the current
print format items in the XP array.

After the display or print of the current item a check is made of INKEYS.
INKEYS will be a “non-null” if a key has been pressed. If INKEYS$ does not
equal “” the display/print is terminated. This is necessary to give the user an
“out” if he wants to recover from printing a long list of entries. If XU is equal to
or greater than AB, the end entry number, the display/ print is also terminated
by aGOTO 22350, If neither case is present, F IHDM is called (line 5000) to find the
next entry. The PRINT 'L prints the number of the current entry in the “activity
area” so that the user may use it for a reference number in other MAILLIST
functions. A loop is then made back to line 22860 for a display/ print of the next
entry.

After the last entry has been printed, YS, the variable that defines whether a
primary or secondary sort is being displayed or printed, is set to 0, for primary. A
short time delay is then entered in line 22960 so that the last entry does not
disappear too quickly from the screen as the menu is displayed by the RETLIRH.

198

Chapter Thirteen
MAILLIST —=Cassette/Disk and
Auxiliary Functions

In this chapter we'll talk about the remaining MAILLIST functions — cassette
and disk storage, search processing, and secondary sort processing. The actual
application code for these functions make extensive use of the General Purpose

Modules, and the programs here are rather short.

FROM
MAIN

24500
ENTER

!

SETUP VARI-

ABLES FOR =emen ZP, ZQ, ZP$, ZR

SAVE FILE
FORM

& 8000
24550 Yy FORMS

OUTPUT
SAVE FILE
FORM

8500
\ FORMI

INPUT
RESPONSES
TO

Zws$

YES-ABORT

FILE ON CAS-
SETTE OR
DISK

v

RETURN
Figure 13-1. Save File Module Flowchart e TO MAIN

199

13 a:; i

MAILLIST-Cassette/ Disk and Auxiliary Functions

Save File Processing

The flowchart for the MFSAVE module is shown in Figure 13-1 and the actual
code is shown in Figure 13-2. The bulk of the code for MFSAVE is done in the
COSAVE module, located starting at line 12500.

24500 GOTO 24550 *MFSAVE
U R S e R T T T T S S S S AR SR s R s

24520 * THIS IS SAVE FII.LE PROCESSING

P IR Y e e T e e e DL LI TR I R R AR SR S e R
2454@ *FIRST QUTPUT SAVE SKELETON

2455@ IP=55:Z0=2:Z2P$(0)="8SAVE FILE"

24560 ZP$(1)="SAVE ON CASSETTE (C) OR DISK (D)?"

24570 ZP$(2)="DISK FILENAME?":ZR(1)=1:ZR(Z)=15:608UR B000
24580 *NOW READ IN RESPONSES

24590 GOSUR 8588 : IF XX=1 GOTO 24630

24600 IF ZW$(1)<x"C" AND ZW$(1)<>"D" GOTO 24550

24610 *SAVE TO CASSETTE OR DISK

24628 GOSUR 12500

24630 RETURN

Figure 13-2. Save File Module Listing

Save File is called from the menu by specifying menu item 8. It may be called at
any time to save the current MAILLIST file in memory as a disk or cassette
(Model I/I1I) file.

Figure 13-3. Save File Form

200

MAILLIST-Cassette/ Disk and Auxiliary Functions

First, the Save File form is displayed on the screen by a call to the FORIMS module
(line 8000). This form is shown in Figure 13-3. The responses to the form
questions are returned in ZW$(1) through ZW$(2) after a call to the FORMI
module (line 8500). At this point ZW$(1) contains a C for cassette, or a U for
disk, and ZW$(2) contains a disk file name (ZW$(2) is ignored for cassette).

The last action that MFSAYE takes before the RETURN is to call the COSAVE
module to write out the entire XAS$ file to cassette or disk. The actions of

CDSAVE are discussed in the previous section. Typical save file action is shown in
Figure 134.

ENTRIES WRITTEN

IN ORDER
XA$(@) "'1 DISK FILE

(1) | JOHNSONISAMUEL!1 10) ENTRY 1
(2) | BLARNEY!IRISHI122 {><: 2
(3) | MCAFFEY!1JOCK 112320 3
(4) | KOWALSKIISTANLEY 11 —>< 4
(5) | YUILI-CHEN!129875 { 5
(6) | WATANABEIFLOYD!ION 6
(1) | SMITHIA.LE1123821 7 7
(8) | SMITH!A.L.DI123822 \ 8
(9) | SMITHIA.LF11899 R 9
(10) | SMITH!BLACK15218 10
(11) | SMYTHILORD PERCY G 11
“END OF FILE" i~ J 12
CASSETTE FILE

(-——--__.» ENTRY 1
2
3
ENTRIES WRITTEN 4
IN SAME seouznce{ 5

AS ABOVE
8
7
8
9
10
e 1
“END OF FILE" —— i __J 12

Figure 13-4. Typical Save File Action

201

MAILLIST-Cassette/ Disk and Auxiliary Functions

Load File Processing

The flowchart for Load File is shown in Figure 13-5 while the actual code is
shown in Figure 13-6. As in MFSAVE, most of the work is done in a General

Purpose Module COLOAD located starting at line 12000.

FROM MAIN
]
I

24000
ENTER

¥

SETUP VARI-
ABLES FOR
LOAD FILE

FORM

=== ZP,2Q,ZP$,ZR

OUTPUT

INPUT
RESPONSES
TO

Zw$

ZW$(3)
=" OR

= 8000
24050 § FORMS

LOAD FILE
FORM
8500
Yy FORMI

YES-ABORT

Figure 13-5. Load File Module Flowchart

202

MAILLIST-Cassette/ Disk and Auxiliary Functions

24000 GOTO Z4B50 *MFLOAD

SHDLD 7 R R I BB
F4@E@ ° THIS IS L.OAD FILE PROCESSING

ORI 7 A A3
24040 CFIRST OUTPUT LOAD SKELETON

24050 IP=55:Z0=3:7P%(@)="1L0AD FILE"

24060 ZP$(1)="1.0AD FROM CASBSETTE (C) QR DISK (D)7"

24070 IP$(2)="DISK FILENAME?":ZP$(3)="INITIALIZE (I) OR MERGE (M)7"
24080 ZR(1)=1:ZR(Z)=15:ZR(3)=1:GOSUR 8000

24090 *NOW READ IN RESPONSES

F4100 GOSUR 8500 : IF XX=1 GOTO 24150

24110 IF ZWHC1)<x"C" AND ZW$(1)<>"D" GOTO 24050

24120 IF ZWSE(3)<x"I" AND ZW$(3)«<>"M" GOTO 24050

24130 *NOW READ IN FROM CASSETTE OR DISK

24140 GOSUR 12000

2415@ RETURN

Figure 13-6. Load File Module Listing

MFLOAD is entered from a menu selection of 7. First, MFLOARD displays the Load
File form on the screen by a call to FOFMS. The Load File form is shown in
Figure 13-7. The responses to the form questions are read into ZW$(1) through
ZW$(3) by a call to the FORMI module. ZW$(1) contains a C for cassette or a [
for disk, ZW$(2) contains a file name for disk, and ZW$(3) contains an I for
initialize or an 1M for merge.

Figure 13-7. Load File Form

203

13

MAILLIST-Cassette/ Disk and Auxiliary Functions

A check is made on the responses and the form is displayed again for proper
input if the responses in ZW$(1) or ZW$(3) are incorrect.

COLOAD is called by a GOSUB 1200@. COLOAD will read in the entire GPM-format
file from disk into X A$ and adjust the pointers in XA%. If Initialize is specified,
the entries from the file will be loaded in consecutive fashion; this is the
“high-speed” mode. If Merge is specified, the entries from the disk file will be
merged with the entries already in memory; this mode is slower but (as they say)
powerful as it allows two or more files to be merged. The complete actions of
COLOAD are discussed in the previous section. Typical load file actions are shown
in Figure 13-8.

DISK OR CASSETTE FILE _—] XA$(8)
ENTRY 1 | BLARNEY | IRISH 1122 f—— XA$(1)
2 | JOHNSON!SAMUEL!! 10 —_— @
3 | KOWALSKI!STANLEY 1! e e
4 | MCAFFEY1JOCK 112320 INITIALIZE -_— @
5 | SMITHIA.L.D1123822 #gﬁresmns - &
6 | SMITHIALEI123821 a2 O { — ©
7 | SMITHIALFI1999 R 1E'$c’fﬂ$(2)' — m
8 | SMITHIBLACK!15218 — ®)
9 | SMYTHILORD PERCY G —_— ®)
10 | WATANABEIFLOVD!!ON — (10)
11 | YUILI-CHEN 1120875 \—“""‘> 1)

(—-I XA$(8)
EXISTING m
@

EXISTING (3)

EXIST! 4
MERGE LOAD STING @
LOOKS FOR FIRST X)
UNUSED ENTRY
AND THEN PER- EXISTING (6)
FORMS AN ADD

TO MERGE A X: o

DISK OR CASSETTE ®

ENTRY WITH

EXISTING DATA \‘*)
A

(10)
(11)
(12)
(13)

Figure 13-8. Typical Load File Action

204

MAILLIST-Cassette/ Disk and Auxiliary Functions

Secondary Sort Processing

The flowchart for Secondary Sort Processing is shown in Figure 13-9, while the
actual code is shown in Figure 13-10. Again, the processingis short as much of it
is done in the SECSRT module, located starting at line 6000.

FROM
MAIN

23550 ¥

SETUP VARI-
ABLES FOR
SECONDARY |======ZPZQ,ZP$,ZR
SORT FORM

8000
FORMS

OUTPUT
SEC. SORT

RESPONSES
TO ZwW$

YES-ABORT

CHANGE
ZW$(1) TO
NUMERIC (YT)

INVALID
SORT #

NO
6000
SECSRT

SORT
XAS$, PUT
POINTERS IN
XB%

Y

RETURN
ememca TO MAIN

Figure 13-9. Secondary Sort Module Flowchart

205

=]
[. .
1 3 MAILLIST-Cassette/ Disk and Auxiliary Functions

GOTO 235358 *MFSEC

e B LR Y R R R R TR R TS IS L
235208 ° THIS 15 SECONDARY SORT PROCESSING

e N { R T TR T Y R T e e I I e I IR e R S T
23540 FIRST OUTPUT SORT SKELETON

23550@ ZIP=55:Z0=1:172P%$(0)="8SECONDARY SORT":ZP%(1)="50RT ON FIELD # :°"
23560 ZR(1)=1:G0O5UE 8000
23570 GOSUR 85@@:IF XX=1 GOTO
23580 YT=VAL(ZW$(1))

23590 IF YT<1 OR YT:8 GOTO
23600 °*NOW SORT

23610 GOSUR 4000

23620 RETURN

Figure 13-10. Secondary Sort Module Listing

The Secondary Sort form is first displayed by a call to FORIMS (line 8000). The
field number for the sort is returned from FORMI (line 8500). YT is set equal to
the VALue of ZW$(1) and then compared for a valid range of 1 through §; the
form is again output if the response is incorrect.

23500

362

23550

The last action of MFSEC is to call SECSRT to actually sort the XAS array by
adjusting the pointers in XB%. As previously discussed, this sort is rather time
consuming compared to the entry-time sort of the primary field in XA%. The
actions of SECERT (line 6000) are described in detail in the previous section. On
RETURN from SECSKT, the MAIM driver is reentered for the next menu
selection.

Typical secondary sort processing is shown in Figure 13-11.

XA% SORTED XB% SORTED

ON FIELD 1 FIELD 1 FIELD 7 ONFIELD7
START START
XA% (0) XA$ (0) _l XB% (0) 2
1) (1) | JoHNSON!SA (e 9520111] -
@ (2)| BLARNEY!IR AMAMANAA 11234511 @ 5
@) (3)| MCAFFEY1JO AMANAAS 15512111 @) 6
@) (4) | KOWALSKI!S AN 12382511 @ 5
(5) (5)| YU!LI-CHEN AMAAA 1191111 (5) 8
) (6)| WATANABE!F AN 1872381 6) 1
) ()| SMITHIAL. NMAAAA 13492111 Y 9
®) (8)| SMITHIAL. AAMAAAN 13492111 ® | 7
@) @ smiTH1AL AAAAMAN 13492111 @ | 10
(10) (10) | smiTH1BLAC | fpndrsn 1assssi () | 1 D
“an (11| sMITHILORD | § A 14598011 an 3 2

Figure 13-11. Typical Secondary Sort Processing

Search Processing

The flowchart for Search Processing is shown in Figure 13-12, while the actual
code is shown in Figure 13-13. Search file is a “convenience” feature added to

206

MAILLIST-Cassette/ Disk and Auxiliary Functions

13

the MAILLIST applications that allows a user to find any character string in a
MAILLIST entry, as for example, a search for all entries that live in West
Racoon, Wisconsin. All of the processing is done within the IMF SRCH as there is
no GPM module to perform this function.

FROM MAIN
1]
I

|
23000
< ENTER)

/

SETUP VARI-
ABLES FOR
SEARCH
FORM

8000

OUTPUT
SEARCH
FORM

8500
v FORMI

INPUT
RESPONSES
TO zw$

ZWS(1)—
AWS

\

SKELETON

OUTPUT
STANDARD

SKELETON

SETUP FOR fje=

_._zrz0q,
zP$,ZR

¥ FORMS

=== ZP$(8)

- e FOR FIRST
Xu=0 FINDN
i 5500
23150 FINDN
FIND
NEXT,
FIND
ALL B
KEY YES-ABORT
PRESS
?
NO
XL=-1 YES-LAST
FROM FINDN
? A
NO
1000 8
SSRCH
SEARCH FOR
XA$(XL) IN AWS IS
AWS$ ==eme= ORIGINAL SEARCH
STRING
NO-NOT XW=-1
FOUND
YES
2/A

Figure 13-12. Search Module Flowchart

207

l 2/A l
STRING FOUND

"IN ENTRY HERE
)

DISPLAY
XU-1 IN YES-KEEP SEARCHING
ACTIVITY
AREA
2500
Y SUNPK =
A
UNPACK RETURN
ENTRY FOR T0
DISPLAY 10
INTO ZW$
9000

V FORMO
OUTPUT
FIELDS IN
ZW$ 70 STRING
DISPLAY /ememee SOMEWHERE

IN FIELDS
11000

| PROMPT

OUTPUT
“CONTINUE”
MESSAGE
VES-ABORT

Figure 13-12. Search Module Flowchart (cont.)

First the Search form is displayed by a call to the FORIMZ module (line 8000). The
Search form is shown in Figure 13-14. Next, the response to the form is read into
ZW$(1) by a call to FORIMI. If variable XX is set to 1 after the call the user has
pressed CLEAR (Model I/III) or “up arrow” to terminate the Search operation
and a RETURN is made at line 23270.

208

'3~7®

d GOTO 2305@ *MFSRCH

e R Ty T T L T R T AR S e
? THIS I8 SEARCH PROCESSING

AR R R T T T R T TR R T TR R Ry
FIRST QUTPUT SEARCH SKELETON
ZP=05:1720=1:17P$(@)="SEARCH" : ZP$(1)="SEARCH STRING:"
ZR(1)=30:G0SUR 8000

"NOW READ IN SEARCH STRING

GOSUR 8500:IF XX=1 GOTO 23270

IF ZWs(1)="" GOTO 23370

AWE=ZWE (1)

ZP% (@) ="SEARCH"

GOSUR 27000

NOW READ IN ENTRIES ONE AT A TIME

XU=0
XG==11XT= 1 CﬂqUB 5500
IF INREY$<:>"" GOTO 23270
IF XL=-1 GUTU 23270
XWeE=AlWSE

XZ$=XA%$(XL) :GOSUR 1000
IF XW=—1 GOTO 23150
"STRING FOUND HERE
PRINT & YLs XU-13" "3
XY$=X74:GOSUR 2500
GOSUR 2000
XBH="CONTINUE?" : XB=2:GOSUR 110@@:IF XX=1 GOTO 23270
IF XC$="Y" THEN GOTO 23150
RETURN

Figure 13-13. Search Module Listing

If ZW$(1), the “search string” is a null, and the Search processing is terminated
by a GOTO 2327@. Otherwise, the search string is transferred to “working
variable” AWS from ZW$(1). TheMATLLIST skeleton is then displayed by a call
to MLSKEL at line 29000. The skeleton only has to be displayed once, as FORM
will be called to display any entry containing the search string,

The loop from line 23150 through line 23260 is used to read in each entry of
XAS, starting from the first in sequential order. The order, of course, is
established by the pointers in XA%. Each entry is searched for the search string
in AWS. Ifthe search string is found, the entry is displayed on the form by a call
toFORMD. The user then has the choice of continuing or terminating the search.

The first action in the loop is to call F MO at line 5500 to find the next entry. XU
is initially set to 0 (current number), XS is set to -1 (find all), and XT is set to 1
(find next) and the call toF IMDN is made. On RETURN from FIMDOM, if XL=-1,
then the last entry has been found and the search is over; a[30T0 232 7@ returns to
the main menu in this case. The state of INKEYS$ is also checked after the
RETURN from F IHOH, If INKEYS$ is not “null” (“ ”), the user has pressed a key,
and the search operation is terminated by a G070 23270,

209

MAILLIST-Cassette/ Disk and Auxiliary Functions

Figure 13-14. Search Processing Form

If the last entry has not been found and if the user has not terminated the search,
XW$is set equal to AWS. XW$ is the input variable to SZRCH, the string search
module at line 1000. XZ$ is then set equal to the current entry XA$(XL). XL
points to the current entry from the FIMNDH call. XZ$ is the “string to be
searched” variable for the S5RCH call. The call to S5RCH is then made.

On RETURN from S5RCH, XW is set to -1 if the search string was not found, or
to a positive character position if the string was found. If XW is-1, aloop back
to line 23150 continues the search with the next entry. If XW is positive, the
string was found in the current XA$ entry, XA$(XL). The number of the entry
is displayed in the “activity area.” The number is XU-1; XU is the “next entry”
number fromF IMDN. XY$ is then set equal to XZ$, the current entry string, and
the SUMFI module at line 2500 is called. SUMPK unpacks XY$ into ZW§(1)
through ZW$(8). A call toFORMO at line 9000 then outputs the fieldsin the ZW$
array to the field positions on the screen.

After the fields have been displayed, the message COMTIMNUE? is displayed in the
prompt message area by a call to PROMPT (line 11000). If the response is “Y,” a
loop back to line 23150 searches the next entry. If the response is “N,” or if the

210

MAILLIST-Cassette/ Disk and Auxiliary Functions

13

user has pressed the “CLEAR” key (Model I/I11) or the “up arrow” (Model II),
the Search processing is also terminated, and a RETURN is made to the main

menu.

Typical search file action is shown in Figure 13-15.

XA$(0)
1)
@
3)
@)
(5)
(6)
@)
®)
9)

(10)
(1)

ZW$(1)=AW$=SEARCH STRING="FL"

-

JOHNSON!SAMU
BLARNEY ! IRIS

MCAFFEY 1JOCK

KOWALSKIISTA

YU!LI-CHEN!!
WATANABE ()
SMITH!AL.E.

SMITHIA.L.D.

SMITH!IALF.

SMITH!BLACK!

SMYTH!LORD P

SEARCH FINDS AND

#5

PMANNAN ICALS
AMAA/ INY 123

A/ 1SDIS
AAAM INC123825

AW 1AL

AAANANV 1UTI18 /

AW IFLT 3492

DISPLAYS 5 OCCURRENCES

OF “FL”

Figure 13-15. Typical Search Processing

211

Information Retrieval Over Multiple Disk Files B

Section IV
Other Business Applications

213

Chapter Fourteen
Information Retrieval
Over Multiple Disk Files

In this section we’ll show you some other business applications programs built
around the General Purpose Modules.

The first of these will be similar to the concept of the MAILLIST we've been
working with. It will retrieve records by searching for “keywords,” but it will do
it over the entire disk, if desired. This program could be used for a variety of
business applications including filing telephone conversations in a computer
log, filing legal briefs for future reference, establishing a publications index, or
others. The emphasis here will be on use of the entire disk “resource,” or disk
space.

The second application will be a simple inventory system that is geared to a file
referenced by user part numbers. Records will include the part number,
description, number on hand, and other “parameters,” and simple “transaction
records” will handle such things as receiving new shipments and orders.

The applications will be presented in the form of general design and flowchart
descriptions, rather than complete BASIC programs. There are several reasons
for this. The first is that each application would probably require one-half a
book to present! The second is that defining a complete application is probably
going to be useless to your specific needs. From this point on, it will be primarily
up to you to design and implement your own business applications the way you
would like to see them. If you can use the General Purpose Modules, or a
portion of them, well and good. If not, we hope that the exercises in design and
programming will be beneficial in implementing your own applications. (The
third reason is that the author needs R&R after struggling through the GPM
code ..))

Problem Number 1: An Information Retrieval System

Suppose that we want to write an applications program using the General
Purpose modules that will “retrieve information.” Actually, almost every pro-
gram does that, but we mean one in which a great volume of information may be
stored with many “entries,” with the capability to quickly retrieve all entries that
contain references to a particular topic.

Anexample of this application might be a log of telephone conversations. While
the conversation was going on the computer could be used to let the user enter a
brief summation of the subject, the date, the caller, and so forth. This entry
could then be filed in a DOS file. At a later time, all entries corresponding to
“12-12-80” or “extortion attempt” could be retrieved and displayed or printed on
a report.

215

14

Information Retrieval Over Multiple Disk Files

Another use for a program of this type might be an index of publications. The
title of the magazine would be entered, along with the date of issue, author
name, title of article, subjects covered, and so forth. Later, all entries corres-
pondingto a certain topic could be printed out or displayed. Typical entries for
this use are shown in Figure 14-1.

RETRIEVAL "KEYWORDS”

f—_k A .-_\
MAGAZINE,
SUBJECT DATE TITLE DESCRIPTION
T ——A ———

BASIC PROGRAMMING !BYTE 12/80!1S THERE HOPE FOR THE ALTAIR 88007!BURNS,
ALGORITHMS ! CREATIVE COMPUTING 06/79! PROGRAM A 113-BIT MULTIPLY!BOOL
PRINTERS ! INTERFACE AGE 01/79!1A NEW, INEXPENSIVE 2x3 MATRIX PRINTER!CL

BASIC PROGRAMMING !BYTE 06/79! THURD, A NEW THREADED-LIST LANGUAGE ! ZYLK
BUSINESS | PERSONAL COMPUTING 03/80!NEW 900-BYTE BASIC PAYROLL ! TARANTE
HARDWARE APPLICATIONS | KILOBAUD MICRO 02/79! TRS-80 144 MHZ CLOCK MOD!
BOOK REVIEWS !80-US 01/80! SIMPLIFIED BASIC FOR LOWER ANIMALS ! SMITH, MA

r>»Z0--—-00>

Figure 14-1. Typical Publications Index Entries

If we are to use the GPM modules for this application, we have the mechanism
for displaying menus, outputting and inputting data on forms, building an
ordered list in memory, adding to, deleting, or modifying entries on the list,
saving the list on disk, and loading it back in from disk. The GPM is set up for
ordering entries by field number 1, which could correspond to a user designated
“keyword,” as shown in Figure 14-2. Searches could be made on other keywords
in similar fashion to the “Search” function of MAILLIST.

THIS FIELD IS PRIMARY
FIELD USED TO ORDER GPM
FILES. CAN BE “KEYWORD" FIELD.

r\-&——\

BARRIS, M.!AUTO; HOME; SPECIAL
ABRAMS, B.!AUTO; HOME; CASUALT,
FLETCHER, J.1AUTO; SPECIAL EA
STOUT, M.INONE ! REF. 12-12-80

FOX, J.K.1AUTO; TAC; HOME !REF. 0
JOHNSON, R.IAUTO; BUSINESS CAS
MOW, W.!AUTO; HOME; BOAT; SPECIA

ADDITIONAL
DATA

. >
i

NEXT N FIELDS CAN ALSO
BE KEYWORD FIELDS. ANY
NUMBER OF KWS COULD BE
USED AND COULD BE UP
TO WIDTH OF SCREEN IN
LENGTH

Figure 14-2. Keyword Ordering

One problem that is present, however, is the use of disk files. How can we
expand the disk “resource” so that we do not have to limit the disk file to a size
that can be contained in memory with the GPM modules and application
program? After all, we would like to use all 90,000 bytes of disk on the Model I,
all 180,000 bytes of disk on the Model III, and all 500,000 bytes on the ModelIl.

216

Information Retrieval Over Multiple Disk Files

We might even want to use more than one drive, to expand the disk capacity to
more than four times our capabilities in a small system.

Using the GPM Modules With Additional Disk Files

The COLUAD and COSAYE modules in the GPM are geared toward a single file.

This file is loaded into memory from disk by a user-specified name. The file
cannot be larger than the memory size left in RAM after the GPM, applications
program, variable storage area, string storage area, and so forth are established.

The obvious answer here is to use more than one file — to use as many as are
convenient on disk. This will serve several purposes. It will enable the GPM to
work with smaller files in memory, avoiding problems of “pushing the limit” on
string storage space. It will also expand the amount of disk space used to the
limit of the disk by using more than a single file.

Of course, it’s easy to see how more than one file could be used even with the
existing structure. InMAILLIST, for example, we could have a separate file for
A-Z — twenty six files in all, or we could separate the names into other
convenient groupings. What we really want in an applications program, how-
ever, is a way to handle multiple files automatically, without manual interven-
tion. What we’ll show you in the following design and flowchart will define one
approach to how this can be done.

KEYWORD Design Spec

Every program has to have a name, and we’ll cleverly call ours KEYWORD, as
information is retrieved based on three keywords. A portion of the design spec
for KEYWORD is shown in Figure 14-3-1.

KEYWORD Design Specification
OVERVIEW:

KEYWORD is an information retrieval program that allows the user to store short
records of information (up to 200 characters per entry) on disk file. Records
may be easily added to or deleted from the disk. At any time, all entries that
contain a specified keyword may be retrieved and displayed or printed.

LOADING PROCEDURE:

To run KE¥WORD, first load BASIC. If you are using the Model I, specify ERSIC
-F:1 to allow you to have at least one disk buffer. Next, load KEYWIRD from
disk by RUN KEYWORD. KEYIWORD should start execution, and you should see the
display shown in Figure 14-3-1. Now enter the model number of your system, 1
for Model 1, Z for Model II, or 3 for Model II1. FKEYWORD will continue
initialization procedures as shown by the activity display in the upper right-hand
corner of the screen. There will be no display of the 1, 2, or 3 digit.

217

Information Retrieval Over Multiple Disk Files

Figure 14-3-1. Loading KEYWORD

After initialization, KEYWORD will display a menu of items as shown in
Figure 14-3-2.

218

Information Retrieval Over Multiple Disk Files

Figure 14-3-2. KEYWORD Menu

PROGRAM FUNCTIONS:
The separate program functions for KE'vLIORD are shown in the menu. They are:

Function 1: Adds an entry to disk.
Function 2: Deletes an entry from disk
Function 3: Searches for a keyword on disk.

Adding an Entry to Disk

To add an entry to disk, menu function 1 is selected. After selection, the form
shown in Figure 14-3-3 is displayed. The bulk of the form is devoted to four
fields (TXT:) of text of fifty characters each for a total of 200 characters of text.
The text can be any appropriate text for the data being stored. If you are
keeping a record of telephone conversations, for example, you might have a
brief resume of the subject, date, party, and so forth. If you are keeping arecord
of publications, you might have the magazine, issue date, title of article, author,
and so forth.

219

Information Retrieval Over Multiple Disk Files

Figure 14-3-3. Add Entry Form

The first three fields are the “keywords” under which the data is to be filed. The
first of these (K W1) is the most important. It is the main keyword for filing. The
first character of this keyword must be A-Z. Except for that restriction, key-
words may be any combination of alphabetic, numeric, or special characters
including spaces. All “records” in the file will be ordered on this keyword, and
retrieval of records containing this keyword will be very fast.

The two remaining keywords are secondary keywords that may also be used in
retrieving data from disk. Retrieval times for records containing these keywords
will be much longer than retrieval of records containing the main keyword, but
they are included to make the application more useful.

To use the Add entry, enter all three keywords, with the primary keyword in
field 1. If you want to use just one or two keywords, simply press ENTER for
KW2 or KW3 or both. After entering the keywords, enter the text by typing in
any characters except “!”. If the text will fit on less than four, three, or two lines
simply press ENTER for the other lines. After entering the text, the record just
defined will be added to the disk file. A typical entry is shown in Figure 14-3-4.

220

Information Retrieval Over Multiple Disk Files

Figure 14-3-4. Typical Entry

Deleting an Entry

To delete an entry from disk, select menu item 2. The form shown in Figure
14-3-5 will be displayed. Enter the primary keyword that defines the record.

221

Information Retrieval Over Multiple Disk Files

Figure 14-3-5. Delete Entry Form

The first record containing the keyword will then be displayed on the screen as
shown in Figure 14-3-6, along with the message DELETE (D) OR MEXT (1M)7. To
delete the record, press 0. The record will be deleted from the disk file, and the
next record in sequence will be displayed.

222

Information Retrieval Over Multiple Disk Files

Figure 14-3-6. Delete Entry Example

To bypass deleting the current record, but to display the next record, press .
The next record in sequence will be displayed on the screen, and the process can
be continued until the desired record is found.

To return to the menu, press CLEAR (Model I/1I1I) or “up arrow” (Model II).
The menu will be redisplayed for the next choice.

Modifying a Record

Since the records are short, modifications of records are handled by manual
deletions of the erroneous record, and adding the corrected entry again in an
“Add Entry” operation.

Searching for a Keyword

If menu item 3 is selected, IE'vLORD will display the form shown in Figure 14-3-7.
Enter the KW field. KW should be the “primary” keyword, the one under which
the record was filed initially. This may not be possible. If telephone conversa-
tions are filed by date in the KW1 field, for example, and a search is to be made

223

Information Retrieval Over Multiple Disk Files

for a name from the KW2 field, then one of the two secondary keywords must be
entered as the “search” key.

Figure 14-3-7. Search Form

Enter D for display only or E for both display and printing, depending upon the
desired print action.

KEYWORD will now search the entire disk for records that have “primary”
keywords corresponding to the search keyword. It will display and/or print all
such entries as shown in Figure 14-3-8. After each entry has been displayed, the
message MEXT (1) 7 will be displayed. To find the next record, press i. To return
to the menu, press ENTER (Model I/1II) or “up arrow” (Model II).

224

Information Retrieval Over Multiple Disk Files

Figure 14-3-8. Search Display

After KE'YWORD has searched and displayed all records containing the search key
inKW1, it will search for the key in all KW2 and KW3 fields. The same display
will be used as previously.

Pressing any key during search processing (non-display) will cause the search to
terminate.

General KEYWORD Design

We generated the design spec above as an example of “top-down” design for a
BASIC applications program. This is the “first cut.” It’s quite possible that we
may want to add additional functions or change the operations above once we
start flowcharting KEYWORD. Implicit in the production of the design spec
were the steps of

@ Learning the system
® Learning the BASIC
@ Research into the application

225

Information Retrieval Over Multiple Disk Files

Another consideration, of course, was incorporation of the existing General
Purpose Modules. Also, during the design spec definition, we kept thinking
ahead to the implementation about “easy” and “hard” things to do, and this
influenced the general design. When it came time to incorporate a “modify”
capability, we opted to modify by deleting and adding an entry manually, as the
modify would not be (very) simple because of the file structure in use.

The key to the design of KE'*WORD is the disk file structure. Twenty-six files are
used, named “KWA” through “KWZ.” Any time a primary keyword is refer-
enced, the first character from the keyword (and it must be a letter) is added to
the letters “KW” to make up the file name “KWx.”

The maximum number of files on a Model I system is 64, so there is no problem
with the number of files used, unless the diskette is used with a number of other
files. Asfarastheactual storage, each file is a sequential file and new data in the
file fills up remaining space; there are no “gaps” of data as there might be in a
random file. The minimum space allocated by DOS for each file is one granule,
or five sectors (Model I). The total “best case” minimum space is 5 times 26
sectors, or 130 sectors, or 13 tracks out of 35. Actually this is not really the
minimum since a file is not used if a keyword containing the letter has never been
referenced. If a primary keyword of “Zxxx” has never been used, for example,
disk file “KWZ” is not allocated.

Assume that typical entries are 128 characters long. This would represent, say,
25 characters of keywords plus 7 “delimiters” (!) plus 96 characters of text. In
this case, about two entries could be made per sector, allowing for a maximum
of 460 entries in a TRSDOS diskette, the worst case (Model I). For a data
diskette, the number of entries would be increased to about 648 (ModelI). Fora
Model II1 system the maximum number of entries would be close to 1300, while
a Model II could hold 3900 entries.

Of course, there are problems in allocating disk files based upon the first letter of
the keyword. Certain letters are used more frequently, and these files would
have more entries. However, assume that the average file would have 20 entries
while the largest file has 40 entries. The average file would take about three
seconds to read in, another three seconds to add the entry, and three seconds to
write out. These times are within acceptable limits.

In the following flowcharts, we haven’t “optimized” the file manage. The files
could have been split up on different disk drives by using a disk drive specifica-
tion in the file name, such as “K WS:1.” This would permit larger overall files (at
increased processing times) or even expanding the number of files to forty or
fifty (at decreased processing times). Perhaps selection of the file could be based
on a “table” of names — keywords with first characters of X-Z would use file
“KWX,” keywords with first characters of I, J, or K would use file “KWI,” and
so forth.

226

14

Information Retrieval Over Multiple Disk Files

Another obvious improvement would be to never read in a file if the current file
in memory is the same file, and to write out an updated file only if a new file was
to be read in. This would be handy in cases where many keywords with the same
first character were to be processsed.

The point here is that there are many games to play with disk file allocation; the
approach in KE'YWORD is one possible solution.

KEYWORD Flowchart

The flow chart for KEYWORD is shown in Figure 14-4. It is divided into five
sections, the MAIHM driver, Add Entry, Delete Entry, Search, and the DISPRT
subroutine.

MAIN Driver

The MAIN driver first initializes all arrays and variables and then inputs the
code for the type of system. The parameters for the system in use are then stored.
The AINIT module is used here. Next, MEMU is called with appropriate title and
menu text in the ZAS$ array. After MEMU is called, a GOSUB to the appropriate
processing routine may be made by testing variable ZB.

Add Entry Processing

The Add Entry Processing function reads in the proper file, adds the current
entry, and writes out the file again. We don’t care here if the file exists or not. If
the file doesn’t exist, an OPEN call in COSAVE will create it. If the file exists, the
OPEN call in COSAVE will overwrite the existing file. DOS handles all of this
automatically.

First of all, FORM3 is called to display the Add Entry form (Figure 14-3-3). Next,
FORMI is called to input the seven fields associated with the form into ZW$(1)
through ZW$(7). If variable XX is a 1 after the FORMI call, the user has
terminated the operation by pressing ENTER (Model 1/1II) or “up arrow”
(Model II); in this case a return is made to the menu.

Next, the fields are packed into a single string by SFACK. The XY$ string will
have “I” “delimiters” as in the MARILLIST case.

A check is made of the first character of KW1. Ifit is not A-Z, an error message
such as TMVALID K1 MAME can be displayed by FFOMPT, and the input process
repeated.

If KW1 is valid, the ZZ array is setup for a “file not found” error code. The
message associated with this error code may be null (“). This setup is necessary
because we don’t know at this point whether a file exists for the keyword.
COLOAD is called for “KWx.” On RETURN, XX will be set if the file was not
found or 0 if the file was found. We do not care, as the XAS$ array is initialized in
the first case (empty).

227

Information Retrieval Over Multiple Disk Files

MAIN

‘ START }

¥ AmNIT

INITIALIZE
ARRAYS,
ETC.

¥ MENU

MENU
ITEMS

RANCH,
ouT

1=ADD ENTRY
2=DELETE ENTRY
3=SEARCH ENTRY

ADD ENTRY

FROM MAIN

ENTER

FORMS

DISPLAY
ADD ENTRY
FORM

Y FORMI

INPUT
FIELDS

YES-ABORT

PACK FIELDS
INTO
ONE STRING

5

GET FIRST
CHARACTER
FROM KW1
FIELD

PROMPT

OUTPUT
ERROR
MESSAGE

SETUP ERROR
ARRAY FOR
“FILE NOT FND"

¥ CDLOAD

READ DISK
FILE “KWX" X=FIRST
(INITIALIZE) /e . CHARACTER
FROM KW1

ASRCH

SEARCH
FOR
ENTRY

Y AADD

ENTRY

y CDSAVE

OUTPUT
FILE "KWX"

Figure 14-4. KEYWORD Fiowchart (b

228

Information Retrieval Over Multiple Disk Files

DELETE ENTRY
FROM MAIN

DISPLAY
DELETE
ENTRY
FORM

FIRST
CHARACTER
AZ
?
NO
{_PROMPT

YES

OUTPUT
ERROR

MESSAGE

—

SETUP ERROR
ARRAY FOR
“FILE NOT
FOUND"

¥ CDLOAD

READ DISK
FILE "KWX"
(INITIALIZE)

X=FIRST
====e CHARACTER
FROM Kw

PRINT
“NOT FOUND"
MESSAGE

SEARCH
FOR KW

UNPACK
INTO
FIELDS

DISPLAY
FORM

Figure 14-4. KEYWORD Flowchart (cont.)

DISPLAY
FIELDS

—

4 PROMPT

DISPLAY
“DELETE OR
NEXT"
MESSAGE

“D" OR
N
?

DELETE
THIS
ENTRY

y

FINDN

GET
NEXT
ENTRY

YES AT
END?

S

229

Information Retrieval Over Multiple Disk Files

SEARCH

FROM MAIN

ENTER

NE——
@ Y FORMS

DISPLAY
SEARCH
FORM

Y FORMI

INPUT
FIELDS

FIELD 2
“D" OR “B”

Y PROMPT

OUTPUT
ERROR
MESSAGE

SETUP ERROR
ARRAY FOR
‘FILE NOT FOUND"}

Y CDLOAD

READ DISK
FILE “KWX"
(INITIALIZE)

X=FIRST
e eaes CHARACTER
FROM KW

4/A

Figure 14-4. KEYWORD Flowchart (cont.)

230

SEARCH
FOR
KEYWORD

UNPACK
INTO
FIELDS

DISPRT

DISPLAY
OR PRINT
FIELDS

YES-ABORT

AT END
OR KEYPRESS
?

“USE
INKEYS
NO

Information Retrieval Over Multiple Disk Files

DISPRT
‘ ENTER |
4/A / FORMO
DISPLAY
e SECOND PORTION
OF SEARCH FIELDS
Y
SETUP LOOP
FOR READING
“KWA"-*KWB"
CDLOAD

REPORT

PRINT

EAD IN
NEXT FILE

Vv FIELDS
ON LINE
COMPARE PRINTER
FIELDS 2 &
3 WITH SEARCH o
I -
KEY B4 PROMPT

OUTPUT
“NEXT?"
MESSAGE,
GET RESPONSE

AT “Kwz”
OR KEYPRESS
?
| & USE
INKEY$
NO AT END
OR KEYPRESS
__USE
INKEY$
/e e MAIN YES

DISPRT

SET XX TO 1

Y

DISPLAY
OR PRINT

— FIELDS
DELAY UNTIL
SETUP FOR INKEY$=" "
“FIND NEXT”

(FIRST ENTRY)

Figure 14-4. KEYWORD Flowchart (cont.)

231

14

Information Retrieval Over Multiple Disk Files

Next, a search is made for KW1. The search variables XJ, XK, and XL (and
others) are RETURNed with the proper values for adding the entry, even for an
empty XAS$ file. AADD is called to add the entry.

The last action taken is to write the disk file “K'Wx” back out again and to return
to the menu.

Delete Entry Processing

Delete entry processing is more involved. Here the proper file is located based
on the initial character of KW1. Then a search is made for the first entry
containing the keyword. If the entry is found, the user may delete or go to the
nextentry. If he looks at more than one entry, the F IMNDI module is called to get
the next entry. Delete Entry is geared to easily deleting one or more entries with
the same primary keyword.

First of all, FORMS is called to display the Delete Entry form (see Figure 14-3-5).
The field associated with the form is read in by FORMI. If the first character of
the KW is not A-Z, an error message is displayed by PROMPT and the form
output repeated.

If the first character of the KW is valid, the error setup for “file not found” is
done similarly to the Add Entry Processing. COLOAD is then called to load the
file. If variable XX is set on RETURN, the file was not found, the entry cannot
be deleted, and a MOT FOUMD message is displayed by PROMPT, followed by a
RETURN to the menu.

If the file was found, it is in XA$. We can now search for all entries containing
the keyword. A search is made by calling RSRCH with XD$ containing the
keyword. If anentry is not found (XL equal to-1), a return is made to the menu.
Bear in mind that the ASRCH will search for the KW among entries that contain
not only the KW, but additional keywords and text as well — an exact match
will never be made, but XL will be returned to the first entry containing the KW
string.

If the entry is found, it is unpacked into separate fields (ZW$) by SLMPK. Next,
the fields are displayed on the form by FORIMS (form output) and FORMD (field
output). The message DELETE (] OR WEXT 1] 7 is then displayed by FROMFT.
A check is made for the correct response.

If the response is D, the entry is deleted by a call to ADEL. If the responseist, the
entry is not deleted. RETURN can be made to the menu by a press of CLEAR
(Model I or M) or “up arrow” (Model II).

A call is now made to F IMON to find the next entry from this point. If XL=-1
after this call, the last entry in XAS$ has been reached and aRETURH is made to the
menu. If XL is not equal to -1, the next entry is displayed, and the process
repeated. This action continues untila “CLEAR?” or until the last entry has been
processed.

232

Information Retrieval Over Multiple Disk Files

Search Processing

Search processing is split up into two parts. Searching may be stopped at any
time by pressing any key during the search or by pressing CLEAR (Model 1/1I1I)
or “up arrow” (Model II) during display of items. The first part is a search of the
file associated with the search keyword. Thisinvolves reading in the “KWx” and
searching for any and all entries whose first field matches the search key. The
second portion systematically searches all files, KWA through KWZ, and looks
for the search key in KW2 and KW3 of each entry in each file.

The FORMS module is first called to output the Search form (see Figure 14-3-7).
The fields are input by FORMI. If the D or B response is not correct after FORMI,
FROMPT is called with an error message, and the process repeated.

Next, the search KW is tested for a first character of A-Z. If a character is not
found, the assumption is made that one of the other two keywords is involved,
and a GOTO the second part of Search takes place. If A-Z is found, the error
code setup is done as before, and COLOAD loads in the appropriate file. 1f the file
is not found, a GOTO the second part of the Search takes place as there is no
primary keyword that will match. If the file is found the search continues.

FSRCH is called to search for the primary keyword. If the KW is not found, a
GOTO the second part of Search is made. If the keyword is found in the first
field of the entry, the entry is unpacked into fields and displayed on a form (see
Figure 14-3-8) or printed by a call to the DISFRT subroutine.

If the next entry is to be found, F IMDH is called to get the next entry. If XL=-1,
the second part of Search processing is entered. If XL is not equalto -1, the next
entry is displayed or printed. A keypressis also detected at this time. A keypress
will abort the first search and cause the second portion of the search to be
entered.

At this point, the first portion of the Search has been done. All entries in the disk
file associated with the primary keyword have been displayed, if any. Now the
Search will look for all entries in every file that contain the keyword in KW2 or
KW3.

Aloop is first setup for reading KW A through KWZ. This can easily be done by
performing a FOR I=1 TO Z& statement and then forming the file name by
EPE[Z2)= lKW® "HOHRE [B844I .

Each of the 26 times through the loop, the next KWx fileisread in. After KWZ
(orakeypress),a RETURN is made to the menu. If thefileis not found, the next
file is loaded. If a file is found, the Search continues for keywords.

When a file is found, a setup is made for reading all of the entries in the file,
starting with the first, by calls toF IMDM, asinMATILLIST. FIMDM is called to read
in the next entry. This entry is unpacked into fields by SUMFI. The second and

233

Information Retrieval Over Multiple Disk Files

third fields (in ZW$(2) and ZW$(3)) are compared with the search key. If either
matches, the entry is displayed or printed by a call to DISFRT. If neither match,
the next entry is found (unless X1.=-1 or a keypress) in which case the next KWx
file is read.

DISPRT Subroutine

The DISFRT subroutine displays and prints the entry fields. Either a D or B
response to the previous display/print question causes a display by a call to
FORMO, Ifthe response isE, a call to REFORT also prints the entry. (The REFORT
format must be properly setup by a definition of the items in the XP array. This
should be done at the start of MAIt.) After the display or display and print, the
message HEXT7 is displayed by a callto FFOMPT. Pressingant key returns to the
search processing to find the next entry; pressing CLEAR (Model I/III) or “up
arrow” (Model II) aborts the search.

234

Chapter Fifteen
A Simple Inventory System

In this chapter we’ll describe a simple inventory system that uses the General
Purpose Modules as a base. The inventory program, IMVENT, is not meant to be
a sophisticated inventory system, but is designed to further expand the basic
concepts of disk files and use of the GPM. A system similar to the one described
could be used to advantage in a small business, however. The system described
here permits:

e FEstablishment of a master inventory file with part numbers, description,
number on hand, number on order, vendor, and other critical data

@ Disk record keeping of the day-to-day transactions for the inventory — sales,
incoming shipments, and orders

@ Daily or periodic updating of the inventory file by generation of a new master
file from the old master file and transactions

®© Report generation describing the current contents of the inventory

Among the things we’ll be discussing here is a very important point — how we
can use GPM files, essentially strings of character data, to handle simple
arithmetic computations. We’ll see how it can be done easily with no strings
attached . . .

Problem Number 2: An Inventory System

Suppose that we have a small business that has an inventory of several hundred
or more parts. We would like to keep records of the current inventory on a day to
day basis. Currently, by manual methods, we have inventory descriptions based
upon part number.

Typical part information is as shown in Figure 15-1. The internal part number is
a number from 1000 through 9999. The vendor part number is the part number
that we would order from a vendor. The part description is a brief text descrip-
tion of the part. The list price is the price we would normally pay for the part.

:4
o ui
E g 7
z I E o a a
o Z z 4 o
g w 5 4 & & o
o« o = [+ [=] [+ [[+4
I o o g w w] =] [*]
£ St a & s | ¢ | 2 S 2
< E w @ =] w 2 < w
o >a Q] z o 3 =) >
1234 74155 DECODER 1.25 9 20 NS
1235 74160A COUNTER 115 5 20 10 12/12/80 NS
1238 74165 SHIFT REG 1.80 2 25 0 NS
1240 7485 COMPARATOR 1.60 7 10 10 1/2/81 Ti
TS B e L sl R . WS S S, S

Figure 15-1. Part Information Example

235

15

A Simple Inventory System

The number on hand is the actual number in inventory at the current time. The
desired stock level is the optimum level we want to maintain. If the actual level is
higher than this, we are overstocked — lower, and we are understocked.

The number on order is the current number we have ordered but not received.
The date of order is the date we placed the order.

The vendor code is a two-character code that references another list of vendors
that contains the vendor name, address, contact, and so forth.

Each day we have transactions that directly concern our inventory. We may sell
a number of items. Each time we sell items, we should adjust the inventory by
subtracting the number of items sold from the current inventory amount. Each
time we receive a shipment of parts, we should stock the part and adjust the
inventory count upwards by the number of items received. We may also order
parts if we see that our inventory stock is running low; we should make a note for
the inventory item that we have ordered the part and how many we have
ordered.

As we operate now, we have to visually inspect the inventory by riffling through
cards that represent the current stock of parts. We have to make a judgment for
each part concerning its status and take some action such as reordering.

How can we computerize this simple inventory system and improve upon the
manual methods that we now use?

It seems apparent that we have all the tools necessary in the GPM to handle
menus, form output, field input, sorting, adding and deleting entries, and
loading and saving disk files. We’ve seen how that can be done inMAILLIST. The
key here seems to be the day-to-day transactions — how can we “merge” the
transactions with the old inventory data to produce an updated inventory file?
Also, how can we perform the adds and subtracts on the inventory counts? Let’s
consider each question.

First of all let’s establish a “master inventory file.” This will be similar in concept
to the other files we’ve been using. It will be made up of hundreds of records, or
entries. Each entry will have a number of fields as shown in Figure 15-2. The
primary field, field number 1, will be our internal part number. The other eight
fields will be vendor part number, part descrition, list price, # on hand, desired
stock level, # on order, date of order, and vendor code.

All of the information for a particular part will be character data, even the
numeric quantities. All of the parts will be in a file called OLDMAST, for “Old
Master.” This file will be a sequential ASCII file identical to the structure we
used in MAILLIST, Each entry of the file will be ordered on the first field, internal
part number. The length of each entry will be variable, based upon the total
number of characters describing each part. A portion of a typical OLOMAST file
will look like Figure 15-3.

236

A Simple Inventory System E5

MAXIMUM FIELD SIZE

FIELD DESCRIPTION (MAY BE SMALLER)
PART NUMBER (FIELD 1)
VENDOR PART NUMBER)
DESCRIPTION 1]
LIST PRICE (XXX.XX) o (4)
NUMBER ON HAND 5)
DESIRED STOCK LEVEL ®)
NUMBER ON ORDER 7
paTe o oroer woory) | | I/ |1/ 1] ()
VENDOR CODE _j ®

Figure 15-2. Master Inventory Records

FIELD 1 EIGHT ADDITIONAL FIELDS, VARIABLE LENGTH
ORDER N

ey f ﬂ N
i
] EMPTY FIELD
ENTRY 50 1234!74155!DECODER!1.25!9!20!0(!!5NS!E
51 1235!74160A!COUNTER!1.15!5!20!10!12/12/80!NS!E
52 1238!74165!SHIFTREG!1.90!2!25!0!!NS!E
53 1240!7485!COMPARATOR!1.60!7!10!10!1/2/81!TI!l
i
i

3537 44 45

CHARACTERS/ENTRY
Figure 15-3. Typical OLDMAST File

In the INVENT program we’ll have provisions for creating the OLOMAST file, just
as we did in MAILLIST. Obviously we must be able to add part numbers to the
file, delete them when we no longer carry them, and modify their descriptions
when prices or vendors change.

We'll also establish a new type of file, called TRAMZ. This file will have the same
format as GPM files — it will be a sequential ASCII file with a variable number
of entries and with entries a variable length. Like the OLDMAST file, the first field
of each entry in the file will be the internal part number. The other fields,
however, will represent “transaction” data. We’ll have three different types of

237

15 &%

A Simple Inventory System

entries in the TRAKS file — Sales, Orders, and Received. The fields for each of the
three will appear as shown in Figure 15-4.

MAXIMUM FIELD SIZE
(MAY BE SMALLER)

SALES ENTRY

PART NUMBER
SHIPPED

INVOICE NUMBER I I I I IJ
TYPE OF ENTRY EI

ORDER ENTRY

PART NUMBER
ORDERED

P.O. NUMBER] I I I IJ

TYPE OF ENTRY

=

RECEIVED ENTRY

PART NUMBER
RECEIVED

P.O. NUMBER [T11T]
TYPEOFENTRY |R

Figure 15-4. TRANS File Fields

The Sales entry will have the internal part number in field 1. Field 2 will be the
number shipped or sold. Field 3 will be a reference to our invoice number. Field
4 will be an “S” for a sale transaction.

The Order entry will have the internal part number in field 1. Field 2 will be the
number ordered. Field 3 will be a our purchase order number. Field 4 will be an
“QO” for an order transaction.

The Received entry will have the internal part number in field 1. Field number 2
will be the number received. Field 3 will be our purchase order number. Field 4
will be an “R” for a received transaction.

As parts are sold, ordered, or received, we will make entries into the transaction
file. As the TRANS file will be ordered by part number, the three types of
transactions will be intermixed, as shown in Figure 15-5.

238

A Simple Inventory System

ENTRY 10

12551151480701211S1

|
5
|

11 1998!7!J8070122!S!l

12

5117110!PG35289!10!

i3

4777110!1PG35290!0!

14

1922150!J8070123!S!

15 5213!10!PG31029!R!

16

5214!101PG31029!R!

Figure 15-5. Typical TRANS File Entries

Sold 15 of part 1255
Sold 7 of part 1998
Ordered 10 of part 5117
Ordered 10 of part 4777
Sold 50 of part 1922
Received 10 of part 5213
Received 10 of part 5214

The daily activity, then, will be recorded in the TRAHMS file. At the end of the day,
or other period, the transactions in the TRANS file will be merged with the

OLOMAST

The way that this will be accomplished is by first loading the OLDMAST by the
COLOAD module, and then by merging (M) the entries in the TRANS file. When
this is done, we’ll have a conglomeration of OLDMAST entries with TRANS entries.
Allentries, however, will be ordered by part number. All TRANS entries pertain-
ing to the part number will be immediately adjacent to the OLOMAST entry. This
situation is shown in Figure 15-6.

PART
#

TYPE OF ENTRY

ENTRY CONTENTS

TRANS-Sales
TRANS-Sales
OLDMAST
TRANS-Sales
TRANS-Order
OLDMAST
TRANS-Receipt

19521121J80702001S ! |
19521714807019815! |

1952174164 !SHIFT REG!1.85!20120!20!12/12/80!NS! I

1953120!1J807198!S!

1953150!PG35305!0!

19531741691 COUNTER

12.15140!20!1INS!

1953!75!PG30001!R!

Figure 15-6. OLDMAST and TRANS Merge Operation

239

15 &

A Simple Inventory System

Now the file in memory can be processed by another part of the IMVENT
program. This part would take all TRAMZ entries for every OLOMAST entry and
adjust the # on hand field, the number on order field, and date of order field
based on the type of TRANS entry. As each TRANS entry is processed it can be
deleted from the file. When every TRAMS entry has been used for an update, the
remaining OLDMAST entry will have the current information about the part.
When the update is done for every entry, the field in memory will represent an
updated “Old Master” which can now be called a “New Master” and written out
as NEWMAST. This process is shown in Figure 15-7.

OLDMAST/TRANS ENTRIES

19521121J8070200!S! l
SOLD 12, SOLD 7=19
1952171J8070198!S! 20 WERE ON HAND, NOW 1

1952174164 | SHIFT REG11.85120120120112/12/801NS!] REST OF INFORMATION REMAINS THE SAME
195312014807198!S!

SOLD 20. 40 WERE ON
1953150 PG35305101 HAND. 75 RECEIVED, NOW

19531741691 COUNTER 12.151401 201 1INS ! | o DR OF 50 ON

19531751 PG30001!R! I TODAY'S DATE.

NEWMAST v

1952174164 | SHIFT REG!1.85!11120!20112/12/80!NS! l
19531741691 COUNTER!2.15195!50!1/5/81!NS! !

}

Figure 15-7. Creation of NEWMAST

The process of converting an Old Master into a New Master by a Transaction
file should, of course, go hand in hand with disk “backups.” It is only prudent to
save each days TRAMS file on a separate disk, along with the Old Master. This
way a complete record is maintained of all stages of the inventory on a daily
basis. Should an Act of God strike (such as an inventory clerk moving to
Poughkeepsie), the inventory field can be reconstructed from backups.

A manual file maintenance procedure after the conversion saves OLOUMAST and
TRANS on a backup diskette, and REMAMES NEWMAST to DLLDMAST for the next
days transactions. This process is shown in Figure 15-8.

240

A Simple Inventory System

START OF DAY DURING DAY END OF DAY
DISKETTE #1 DISKETTE #1 DISKETTE #1
MERGE
OLDMAST/
OLDMAST OLDMAST OLDMAST TRANS

- 2 UPDATE
COMPLETED
TRANS S
FILE WRITE

ACTIVE
TRANS

EMPTY TRANS
FILE

FILE
ouTt
NEWMAST
NEXT
DAY
DISKETTE #1 DISKETTE #1 DISKETTE #1 DISKETTE #2
OLDMAST E
OLDMAST,
RENAME KILL \ TRANS OLDMAST
OLDMAST e NEWMAST i
NEWMAST OLDMAST, ON BACKUP TRANS
TO TRANS DISKETTE
OLDMAST TRANS
KEEP THIS
. DISKETTE AS
Figure 15-8. Backup Procedure for INVENT BACKUP—RENAME
FILES WITH DATE,
ETC.

What about the numeric processing problem? How can we convert the string
data in the OLOMAST and TRANS to numeric values, adjust the OLDMAST value,
and save it as string data once again? This can easily be done by use of the VAL
and STRS functions.

VAL takes a string value that represents numeric data and changes it to numeric
variables. If the string is in ZW$(5), for example, the string would be converted
to a numeric variable AA by:

1000 AR=YAL[ZWE(5])

Going the other way around, a numeric variable can be converted to a string
variable by STRS$:

2000 ZWE(5)=5TRE(AA]

As long as the strings contain digits, a possible decimal point and no extraneous
characters, there should be no problems in switching from string to numeric and
back again. Once the switch has been made to numeric, arithmetic operations
(such as adds, subtracts, multiplies, and divides) can be easily done. When the
final result is obtained, it can be reconverted to a string value to be stored in an
entry field. Here’s an example of an add:

241

15 g=rfis1 A Simple Inventory System

1000 ARF=* 23477

AEE="*5E7" "

EE=VAL [ARE)

1030 CO=VAL [ABES)

1@49 DO=BB+CC

@ ACE=STRE(DD)

» PRINT RA%,FE$,BB,CC,00,ACE
1@78 STOP

The display would be “234 567 234 567 801 801” when the string and
numeric variables were printed.

Having described how we are going to handle the general approach in IMNVENT,
let’s generate a design specification. Note that although the design spec is
another example of “top-down” design, we really did quite a bit of thinking
about the actual structure and operation of the program before writing the

design spec.
INVENT Design Spec

The design spec is shown in Figure 15-9.

INVENT Design Specification

OVERVIEW:

INYENT is an inventory control system that handles updating of an inventory file
by daily transactions. The inventory file contains records that describe an
inventory of parts by part number, description, number on hand, and other
parameters. The daily transactions include processing of sales of parts, ordering
of new parts to replenish the inventory, and receipt of parts for restocking.

IMVENT may be used to

Build and maintain a master file of parts

Keep track of the stock of parts on a daily (or other) basis

Keep track of the current orders for parts including number ordered and date
of order

e Generate a report of the current parts inventory

LOADING INVENT:

To load IMVENT, first load BASIC. If you are using the Model I1, specify BASIC
-F:1toallow youto have at least one disk buffer. Next, load INVENT from disk
by RUN INVENT. INVENT should start execution, and you should see the display
shown in Figure 15-9-1. Now enter the model number of your system, 1 for
Model 1, Z for Model I1, or 3 for Model III. INVENT will continue initialization
procedures as shown by the activity display in the upper right hand corner of the
screen. There will be no display of the I, 2, or 3 digit.

@ @

After initialization, IMVENT will ask for the current date and will then display a
menu of items as shown in Figure 15-9-2.

242

A Simple Inventory System

Figure 15-9-1. Loading INVENT

PROGRAM FUNCTIONS:

The program functions for INVEMT are shown in the menu. The first three menu
items pertain to “inventory master file” maintenance. The next four pertain to
“transaction file” records, and the last two are used to update the master file and
to provide an inventory report, respectively.

Inventory Master File

The inventory master file is a collection of records describing every part in the
inventory. Each part is described by one “record” in the file. Each record is
made up of eight fields that describe the part or inventory status of the part.

The fields are:

® Internal part number. A four digit number that defines your internal part
number. This is the primary way parts are referenced.

® Vendor part number. A 12-character part number that is the vendor’s part
number.

243

A Simple Inventory System

Figure 15-9-2. INVENT Menu

Part description. A 15-character description of the part.

List price. A six-digit list price of the part. The last three characters of this
must be “.xx” where xx is the number of cents in the price.

Number on hand. The actual number on hand in the inventory.

Desired stock level. The number which optimally should be in stock.
Number on order. The number on order, if any.

Date of order. The date of order, if any.

Vendor. A two-character code that describes the vendor.

® ® ®© © @

The inventory master file is used as a running record of the inventory. Typically,
the master file will be updated daily by the transaction file to produce a new
master file for the next day’s transactions.

Transaction File

The transaction file is a daily record of transactions that affect the inventory.
There are three types of transactions: sales (parts are sold and removed from the
inventory), orders (parts are reordered to restock the inventory), and receipts
(parts are received and are placed in inventory).

244

A Simple Inventory System

The transaction file represents a daily record of these transactions. Sales, orders,
and receipts are entered as they occur. At the end of the day, the transaction file
is used to update the master inventory file to create a new master file for the next
day.

A sales entry for the transaction file contains:

e Part number (your internal part number corresponding to the part number in
the master file)

@ The # shipped or sold

@ Your invoice number

® An “S” for sales

An order entry for the transaction file contains:

© Part number (your internal part number corresponding to the part number in
the master file)

@ The number ordered

@ Your purchase order number

© An “O” for order

A receipt entry for the transaction file contains:

(]

Part number (your internal part number corresponding to the part number
in the master file)

@ The number received and restocked

@ The original purchase order number

e An “R” for receipt

Updating

Normally only the transaction file is used during periods of business operation.
The master file may be maintained by adding new parts, deleting parts, or
changing parts descriptions or data, but this would normally be done “after
hours.” The transaction file and master file are “merged” together to create a
new master file at the end of each day (or periodically). The old master file and
day’s transactions are saved as a “backup,” while the “new” master file is used for
the next update.

Master File Functions
Menu items 1, 2, and 3 are used to create and maintain the master file.

To add a new masuer file entry, or to create a master file, select item 1. The form
shown in Figure 15-9-3 will appear. Enter the data for the nine fields shown on
the form in the format indicated.

245

A Simple Inventory System

Figure 15-9-3. Add Master File Entry Form

To delete a master file entry, select menu item 2. The form shown in Figure
15-9-4 will appear. Enter the part number to be deleted. TMVEMT will search the
file for the part number and display it on the screen in the format shown in
Figure 15-9-5, along with the message DELETE?. Enter ‘' if you wish the item
deleted, or N if you do not want to delete the item.

246

A Simple Inventory System

Figure 15-9-4. Delete Master File Entry Form

247

A Simple Inventory System

Figure 15-9-5. Typical Delete Entry Display

To modify a master file entry, select menu item number 3. The form shown in
Figure 15-9-6 will appear. Enter the part number to be modified. INVENT will
search the file for the part number and display it on the screen in the format
shown in Figure 15-9-5, along with the message FIELD MUMEER TO MODIFY?.
Enter the field number to be modified, and then enter the corrected data. Repeat
as often as necessary. When the form is to your satisfaction, press ENTER and
the corrected entry will be saved in the master file.

248

A Simple Inventory System

Figure 15-9-6. Modify Master File Entry Form

The functions above operate with a disk file called OLOMAST. This file is
automatically loaded from disk when the first master file function is invoked and
saved on disk when a menu function other than 1 through 3 is selected. To
properly “close” the file, always select another menu function after the master
file maintenance has been done.

Transaction File Functions

Menuitems 4, 5, 6, and 7 are used to build a transaction file. When menu item 4
is selected, the form shown in Figure 15-9-7 will appear on the screen. Enter the
fields for the form in the format indicated.

249

A Simple Inventory System

Figure 15-9-7. Sales Form

When menu item 5 is selected, the form shown in Figure 15-9-8 will appear on
the screen. Enter the fields for the form in the format indicated.

250

A Simple Inventory System

Figure 15-8-8. Order Form

When menu item 6 is selected, the form shown in Figure 15-9-9 will appear on
the screen. Enter the fields for the form in the format indicated.

251

A Simple Inventory System

Figure 15-9-9. Receipt Form

Menu item 7 is a special item that will delete a previously entered transaction
entry. When menu item 7 is selected, the form shown in Figure 15-9-10 will
appear on the screen. Enter the approximate number of the transaction item.
INVENT will retrieve that number entry and display it on the screen in the
appropriate format, along with the question DELETE ?. To delete the transaction,
enter . To return to the menu, enter N or simply press ENTER. As deletions
should be rare, this function allows a search for the transaction without embel-
lishments. It may be necessary to perform the search several times to find the
correct entry.

252

A Simple Inventory System

Figure 15-9-10. Delete Transaction Entry Form

Normally only menu items 4 through 7 will be used during the daily recording of
transactions. These items work with the transaction file called TRANS. TRANS is
automatically loaded when the first transaction item is selected, and saved when
anitem other than 4-7is selected. Be certain to periodically save the current file
in memory by selecting another menu item. An easy way to do this is to select
item 9 (Report), and then to abort the operation by pressing CLEAR (Model
I/11I) or “up arrow” (Model II). The TRAHMS file in memory will be saved before
the Report function is entered, and reloaded as it is aborted.

Update Function

Menu item 8 selects the update function. When this item is selected, the
OLDMAST file will be loaded, followed by the TRANS. The two files will then be
merged to produce one new file NEWMAST. INVEMT will display messages at
various stages of the operation. The steps are

® Save the TRANS file or OLDMAST file in memory if necessary.
@ Load the TRAMNS file.

253

A Simple Inventory System

e Load (merge) the OLDMAST file.
e Update the OLDMAST file with TRANS data and save the new file on disk as
MEWMAST.

At the end of the operation, three files are on disk — TRANS, OLDMAST, and
MEMMAST. It is the user’s responsibility to save the TRANS and OLDMAST files on
another disk as backup and to RENAME the NEWMAST to OLDMAST for the next set
of operations.

Report Operations

When menu item 9 is selected, a Report of the current OLDMAST on disk will be
produced on the system line printer, and simultaneously displayed on the screen.
After the selection, the message PRINTER READY? will appear. When the line
printer is ready, enter ‘. The report shown in Figure 15-9-11 will be produced
from the OLDMAST file on disk.

INVENT INVENTORY REPORT

PART VENDOR PART DESCRIPTION LIST PR #OH LVL # Q0
4001 7452 EXPAND AND/OR 1.15 12 50 (%}
4002 7453 EXPAND AND/OR/I 1.15 @ 50 100
401B 7455 AND/OR/1 .79 pesey 2 10
4011 7474 FLLIP-FLOP 1.25 7 5 50

Figure 15-9-11. INVENT Report

Before INVENT produces the report, it will “purge” itself of any current activity.
If it is working with the TRANS or OLDMAST files in memory, it will automatically
save the file on disk and then load in the OLDMAST to produce the report. Report
simply lists the current OLDIMAST; it does not know whether OLDMAST has been
updated by the current TRANS file.

Aborting Any Operation

Generally, any operation except saving a file on disk can be aborted by pressing
the CLEAR key (Models I/III) or the “up arrow” key (Model I) to return to the
menu of items.

General INVENT Design

Because this is such a large program compared to the other ones we’ve described
in this book, we’ll indicate in a general way how the INVENT functions may be
implemented using the GPM modules. We'll supplement the description with
flowcharts of some of the functions.

Master File Functions

The three master file functions of adding an entry, deleting an entry, and
modifying an entry can easily be handled along the same lines as MAILLIST. The
sequence of operations and forms would be very similar.

254

DATE CD

NS
12/15/80 TI
21/12/81 MO
P1/12/81 TI

Ll
- 15
A Simple Inventory System KeTH]

One difference is that the OLDMAST file would have to be automatically read into
memory any time a master file function is entered from another function. A
variable “flag” would keep track of the current file in memory. Similarly, going
from a master file function to another function would automatically save the
OLOMAST file on disk. These actions could be taken care of in the MAIN driver
program as shown in Figure 15-10.

MAIN
ENTERED
FROM XFER
g
]
[
20000
START
v
CLEAR 8
CLEAR SCREEN
PRINT TITLE
T MAIN YES
LOOP===== AA$ IS FILE
: IN MEMORY
¥ amir
PUT MENU
ITEMS INTO 2A$
INITIALIZE
7 DISPLAY
MENU
INITIALIZE
LINE PRINTER |====2ZM,ZL,XN$
PARAMETERS
YES-MASTER

\

INITIALIZE e amem SINGLE LINE “OLDMAST"
—ABS$ osn o e AB §

REPORT REPORT
FORMAT IS NAME
OF FILE TO

BE USED
“TRANS" IN THIS
—AB$ OPERATION

Y __ FORMS

OUTPUT
DATE <
FORM v

Y__ Fommi

READ
IN
DATE

Figure 15-10. MAIN Flowchart

255

A Simple Inventory System

“TRUTH TABLE” OF FILE ACTIONS

POSSIBLE CONDITIONS:

AAS$ ABS$
“NONE” “OLDMAST”
“NONE” “TRANS”

“OLDMAST” “OLDMAST"

“OLDMAST” “TRANS"
“TRANS" “TRANS"
“TRANS” “OLDMAST”

CDSAVE

ACTION
LOAD IN AB$
LOAD IN ABS$
NONE
SAVE AAS$,LOAD AB$
NONE
SAVE AAS,LOAD AB$

Y cDLOAD
LOAD
FILE
ABS$
v
PUT ABS$ AAS NOW
INTO AAS mmemen CURRENT
FILE ZB=1 Add Master ZB=6 Receipt Entry
2 Delete Master 7 Delete Transaction
3 Modify Master 8 Update
fomem = GOSUB 4 Sales Entry 9 Report
5 Order Entry

Figure 15-10. MAIN Flowchart (cont.)

Transaction File Functions

The flowchart in Figure 15-10 also shows the automatic load and save of the
TRANS file depending upon the menu item selected. Any time a transaction file
operation was being processed (most of the time), the TRAMNS file would be
“resident.” It would be saved only when another item was selected, and reloaded
when a new transaction operation was started.

There are essentially two transaction file operations - adding an entry to the file
and deleting an entry to the file. They can be handled in similar fashion to
adding and deleting entries in MAILLIST. The 0, R, and = codes should be
automatically put into the transaction entry after the other data has been

256

A Simple Inventory System

15

entered. This can be done by putting them into ZW$(4) after the form has been
filled in,as shown in Figure 15-11.

FROM INPUT

PROCESSING FOR

SALES.OR?EH, RECEIPT

y

CHANGE
ZQ FROM 3
TO 4

ZQ WAS # OF
====== FORM ITEMS
FOR FORMS,

FORMI

4 BE=6

NO-MUST

YES-SALES

VES-ORDE|

AC$="0"

XY$—-XD$

ACS=R
— Y
Vv
o |___genyer
ACS ENTRY

PACK
FIELDS

FROM ZW$

Figure 15-11. Transaction Entry Flowchart

Y ASRCH

SEARCH
FOR ENTRY
POINT

OuUT OF
MEMORY

- ACTION . ..

The delete transaction entry can be handled much more simply than the delete in
MAILLIST. Here, only an entry number is specified, and a call to F INOM can be
done with the entry number, as shown in Figure 15-12.

257

A Simple Inventory System

ENTER

i

SETUP
VARIABLES
FOR DELETE
FORM

.

Figure 15-12. Transaction Deletion Flowchart

258

OUTPUT
DELETE
FORM

INPUT
RESPONSE
IN ZW$(1)

CONVERT
ZW$(1) TO
NUMERIC

OUTPUT
“INVALID
#" MSG

YES-ABORT

#>1
AND <10000 >
NO

Y PROMPT

. 2PS$ZP,
20,2R

Y FORMS

\ FORMI

SETUP FOR
“FIND N"
8—XU
0—-XT

¥ FINDN

YES

PUT ENTRY
IN XA$(XL)
INTO XY$

UNPACK
XY$ INTO
ZW$ FIELDS

OUTPUT
SKELETON
W/4 FIELDS

¥ SUNPK

Y FORMS

OUTPUT
“# NOT
FOUND"” MSG

2/B

INCLUDES

e e e TYPE OF

TRANSACTION
“0”, “$", OR
“q

¥ PROMPT

ol
: El
A Simple Inventory System e HI 15

DISPLAY
FIELDS

¥ PROMPT

OUTPUT
“DELETE?"
MSG

YES-ABORT

NO-ABORT

DELETE
ENTRY

>y

RETURN

e]
MAIN

Figure 15-12. Transaction Deletion Flowchart (cont.)

Update Function

The update function is a new concept. It involves purging any TRANS file or
OLDMAST file in memory, and then reading in OLDMAST from disk in a COLOAD
“*I°” (initialize) mode. Next, the TRANS file is loaded using COLOAD in an
“*1M7 " (merge) mode. The two files have now been merged in memory and are
ordered by part number.

Now the TRANS file entries can be located for each OLOMAST entry. There may be
no corresponding TRAMS file entries for an OLDMAST entry or any number. As
each TRANS entry is found, the OLOMAST entry is updated by the data in the
TRAMS entry. The TRAMS entry is then deleted by a call to FDEL. When all

259

A Simple Inventory System

OLDMAST entries have been updated, only the OLDMAST entries remain, and the
file can be written out as MEWMAST. The flowchart for this function is shown in

Figure 15-13.

FROMI MAIN
|
I
ENTER

OLDMAST IN
soemmses MEMORY FROM
MAIN OPERATION

UNPACK
ENTRY INTO

7 FORMS
ZW$
OUTPUT
“UPDATE”
FORM / _ NOFIELD
INPUT
¥ CDLOAD YES-CONTINUE
CURRENT
‘.“ﬁsxﬁs., “"""PART #=ENTRY?
FILE | NO-NEW PART #

XU FOR FIRST
FINDN

e em s AA=LAST
PART #

MOVE AC$
FIELDS TO

(MAJOR "
LOOP) ‘ v FINDN ZWS$ FIELDS

FIND
NEXT, FIND
ALL

SPACK

PACK
FIELDS
INTO XY$

XL=-1 g
FROM FINDN Y ES-DONE

v REPLACE
CURRENT XA$

ENTRY WITH
3/A XY$

e
e

Y

ZW$(1)—AA NEW
INITIALIZE """ PART #
AC$ ARRAY

2/A

Figure 15-13. Update Flowchart

260

UNPACK
INTO
Zw$

TRANS

TRANS

OR MASTER
ENTRY
?
| MASTER
ADD OR MERGE
ZW$ FIELDS ADD # ON
WITH AC$ HAND, #
ARRAY ON ORDER,
REPLACE ORDER
DATE IN OLD
GET ORDER DATE
mmemem NEXT
Y ENTRY
1/A
ADJUST #
ON HAND
|emem e SUBTRACT

Figure 15-13. Update Fiowchart (cont.)

RECEIPT
ENTRY
?

NO

ADJUST
ON HAND

=== ADD

<

e e MUST BE
y ORDER

ADD # ON
ORDER TO #
ON ORDER
FIELD

/

ENTER ORDER
DATE IF NO
PREVIOUS
DATE

DELETE
THIS
ENTRY

1/A

¥ ADEL

DELETES
== e=TRANSACTION
ENTRY

261

A Simple Inventory System

CDSAVE

WRITE
OUT XA$
AS “NEWMAST"

Y PROMPT

OUTPUT
“UPDATE
COMPLETE"
MESSAGE

Figure 15-13. Update Flowchart (cont.)

Report Generation
The last function, report generation, is easy. (An old programming adage,
however, says “Nothing is simple, nothing is easy” ...) The FEPORT format is
defined in the XP array and will never change (it should be defined in MAIN).

The Report function purges the memory of the TRAMS or ILOMAST file and then
reads in OLOMAST, Eachentry of DLOMAST, starting from entry 1, is then accessed
by a call to F IMDI. As each entry is found, it is unpacked into fields by SUMHPI
and output via REFORT, The flowchart for this operation is shown in Figure

15-14.

262

A Simple Inventory System

FROM
MAIN

\

=D

! FORMS
UTPUT
REPORT
FORM NO
s eamFIELD
INPUT

o

¥ PromPT

OUTPUT
“PRINTER
READY?" MSG

Figure 15-14. Report Flowchart

OLDMAST IN
=== e= MEMORY FROM
MAIN OPERATION

XU=0 . SETUP FOR
FIRST FINDN

YES
FROM FINDN
\
RETURN
e emem TO MAIN
UNPACK
ENTRY
INTO ZW$
ARRAY
| REPORT
PRINT
ENTRY
e =mam XP ARRAY
SETUP IN
MAIN
INITIALIZATION

Special Problems in INVENT

There are no insoluble problems in IMNVENT. Probably the chief problem is that
of memory limitations. Here again, the OLDIMAST and TRAMS files could be split
up into several files based upon part number to facilitate handling larger
inventories. Disk files could be also allocated on more than one drive.

There is no conflict in having one file with a different number of fields in each
entry. The SUNFIK routine will unpack any number of fields into the ZW$ array.
As shown in the flowchart above for the update, another array must be used
when two successive SUMPIKs are done, for obvious reasons.

263

A Simple Inventory System

Using the GPM In Your Own Applications

The discussion above is not meant to be a definitive solution to an inventory
program, but a suggested way to handle an inventory using the General
Purpose Modules. At this point you should be able to construct your own
solutions using the GPM file structure and modules. Perhaps you have
learned enough in the examples of MAILLI=ST, KEYWORD, and THYEMT to throw
away the General Purpose Modules and construct your own approaches. If
so, my feelings won’t be hurt — as a matter of fact, I would be delighted!
Happy applications programming!

264

Appendix I
General Purpose Modules

The following BASIC code contains all of the General Purpose Modules in
“compressed” form. To use, key in the statements exactly as shown. We can’t be
responsible for applications in which any of the statements are modified; we will
be held directly responsible for any errors that occur in the code shown.

Are there errors in this code? We have tried hard to debug the program, but
there are invariably errors in any code. There will be two types of errors
— invalid parameters passed to the GPM and logic errors.

The General Purpose Modules are not “fool-proof.” They can be fooled easily
by calling them with invalid parameters. You would not want to have subrou-
tines that could not be fooled — they would check for every error condition and
be horrendously slow. Your task, as an applications programmer, is to make
certain that you call the GPM with correct parameters. These errors, then, are
your responsibility.

If you are using the GPM exactly as shown and have found definite logic errors
in the GPM please let us know and we will correct subsequent versions. These
errors should be minimal.

265

APPENDIX E General Purpose Modules

120 GOTOZO0RO

1200 GOTO1R9@" SSRCH

109@ IFLEN(XW$)*LEN(XZ$)THENSTOP
1180 XI=LLEN(XZ%$) : XH=LEN(XW$)
111@ IFXWs="!'"GOT01150

1120 FORXW=1TOXI~XH+1::IFMID$(XZ$s XWs XH) =XWEGOTO1180
1130 NEXTXW

1148 GOTO1170

1150 FORXW=1TOXI:IFMID$(XZ%s XWs 1)="1"GOTO1180
1160 NEXTXW

1170 XW=-1

1180 RETURN

1500 GOTO1463@° LPDRIV

1630 IFZJ-BEOTO14660

1640 ZJ=1

1650 IK=0

166@ IFZM$=""GOTO1700

1670 LPRINTZM%

1680 ZK=ZK+1

1690 TFZIK<>ZMGOTO1760

1700 FORZI=1TOZL~-2ZK

1710 LLPRINT" "
1720 NEXTZI

1730 ZK=0

1740 IFZN$=""GQOT0O17460

175@ ZM$=IN$:GOTO1500

RETURN

GOTOZ11@” INPUT

XX=@
IFZCBORZC:YA*YR~1THENSTOP
IFZD<10RZD =259 THENSTOP
PRINTAZCs STRING$(ZDs CHR%(YJ))3
ZF‘%:II n

PRINTAZC+LEN(ZF%)s CHR%(YJ) 3
ZE$=INKEY$%
IFZE$<>""QOTOZ210
PRINTAZCHLEN(ZF$)s " "3
GQOTOZ16@
IFZE$>CHR$(YK)GOTOZ300
IFZE$=CHR%(13)G0OTO @
IFZE$< > CHR® (YK)GOT 5@
XX=1:G0TOZ23460
IFZE$<*CHR$(8)GOTO2160
IFZF$=""QOTOZ290
IF=_EFT$ (ZF4$s LEN(ZF$)~-1)
PRINTAZCs ZF$+CHR$(YJ) 35
GOTOZ160
IFLEN{(ZF$)=ZDGOTOZ350
IFZE$="3 "THENZE%="3"
ZF$=2F$+7E$

PRINTRZCs ZF% 5

GOTOZ160
IFZE=BTHENZF=VAL(ZF$%)

RETURN
GOTOZ600° SUNPK
Z@=1 i XWE=" 1Y i X2$=XY$: ZI=LEN(XZS)

266

APPENDIX I

5400
5310
5,470
5330
5440
5350
5360
5370
5500
5650
5660
5670
5480
5690
5700
5710
5720
5730
5740
5750
5/60
5770
5/80
5790
5600
L0000
6100
6110
6120
6130
6140

GOSURL1OBA: IFXW=—1GOTO2690
IWE(ZQ)=MIDS(XZ%s 13 XW~1)
ZX(Z@)=XW~1

2I1=721-XW

IFZI<1GOTOZ690
XZ$=MID$ (XZ$s XW+14521)
ZQ=7Q+1

GOTOZA10

RETURN

GOTO514@° ABRCH
IFXAZ(@) < >—-1G0T05180
XJ=0: XK=1:XL=-1:XM=0:X5=0
GOTOS370

FORXK=1TOX&
IFXAZ(XK)=-2G0T0O5240
NEXTXK

XM=z

GOTOS5370

XJ=@:X5=1

XL=XA%(@)

PRINTAQYL s XSs" "y
IFXD$< > XA$(XL)IGOTO531@
XM=1

GOTO5370@
IFXD$<XA%(XL)GOTOS53460
XJI=XL.

XL=XAZ(XL)

XS=X5+1

IFXL<>=1G0T05248

XM=@

RETURN

GOTOS65@° FINDN
IFXU<=BQ0TOS740
IFXAZ(@)=-1G0OTOS778
XU=1:XJ=@
IFYS=@THENXL=XAZ(@)ELSEXL=XRP%(0)
IFXUL>X860OTOS5720

XM=1

GOTO5780

IFXT=1G0TO5770

XU=XU+1

XJ=XL : IFYS=BTHENXL=XAZ(XL)ELSEXL=XB% (XL)
IFXL=-1G0TO5770
GOTO5490

XM=0

PRINT&YLs XUs" "3
XU=XU+1

RETURN

GOTOL100° SECSRT
FORXI=1TOX®-3STEP4

XBZAXD) ==2:XBACXI+1)=—2 XBU(XI+2)=—2: XBL(XI+3)=-2
PRINTAYLs XI3

NEXTXI

XBZ%(@)=-1

267

APPENDIX I I l General Purpose Modules

6150 IFXAZ(@)=—1G0T0O6350
L1468 XK=XAZ(D)
6180 PRINTaYLs XK3" "y
619@ XZ$=XA%(XK)
L2008 XWe="!1"
L2218 IFYT=1GOT0L260
b220 FORZI=1TOYT-1
6230 GOSUR 1000
624D X7$=MIDE(XZ$s XW+I1sLLEN(XZE)—XW)
6250 NEXTZI
6260 GOSUR1A00
b270 XD$=LEFT$(XZ%s XW-1)
L6290 GOSUBLISLD
63008 XBYL(XK)=XL
6310 XBZ(XJ)=XK
6330 XK=XAZ(XK)
6340 IFXK<:—1GOT0O6180
6350 RETURN
63640 IFXBZA(D) <>—1G0TOL370
6370 XJI=0: XL=~1
6380 GOTOL456
63908 XJ=0
6400 XL=XR%(@)
6410 XY$=XA$(XL) :GOSUBZ500
6420 IFXD$<ZWS(YT)IGOTOL450
6430 XJ=XL:XL=XP%(XL)
6440 IFXL<>—1G0T0&4410
6450 RETURN
65080 GOTOLLBB’ SPACK
66HBB XYg=""
6610 FORXI=1TOZqQ
662D XY$=XYE+ZWE(XI)+" 1"
6630 NEXTXI
6640 RETURN
7000 GOTO7@7@’ AADD
7070 XA$(XK)=XD$
7080 XAYL(XK)=XL.
7090 XAL(XJ)=XK
7100 RETURN
7500 GOTO764@° REPORT
7640 IFXP(@) <1 THENSTOP
74650 IM$=""
7660 FORXI=1TOXP(D)
7670 IFXP(XI)<>BGOTO7700
7480 IFZM$=""THENZIM$=" "
7490 GOSURLISQ@:ZMs="":G0OTO7770
7700 IFXP(XI)>*@THENZM$=ZM$+ZWs(XP(XI))+" ":GOTO7770
7710 IFXP(XI)<~ZTHENZM$=ZM$+STRINGS (—~XP(XI)-LEN(ZM$)s" ") :GOTO7770
7720 IFXP(XI)«»=2G0TO7760
7730 IM$=ZM%+S5TR$ (XN)
7740 XN=XN+1
7750 GOTO7770
7760 ZM$="":GOSUR1500
7770 NEXTXI
7780 RETURN

268

General Purpose Modules APPENDIX I

2000
8130
8140
8150
8160
8170
8180
8190
ayetril}
8210
gaz@
8230
8240
8250
8260
8270
880
829@
8500
8570
2580
8570
8600
84610
84620
2000
080
050
2100
911@
500
57@
2580
9590
600
9610
10000
12140
12150
12160
10170
18180
10190
10:00
10210
1022
10230
10240
18250
10260
10500
10610

GOTOB13@° FORMS
IFZP<1@0ORZP:YA-4THENSTOR
IFZQ<10RZO>12ZTHENSTOPR
CLS
PRINTCHR® (X) 3
PRINTAYA/Z-LEN(ZP$(D))/Zs ZP$(D) 3
2I=(YA~IP) /2
PRINTRZI+YCs STRINGS(ZPs CHR$(YF)) 3
PRINTRZI+YD+YA#Z@s STRING$(ZPs CHR$(YG))3
FORZH=ZI+YDTOZI+YD+YA*{(Z0~1)STEPYA
PRINT&ZHs CHR$ (YH) 3
PRINTAZH+ZP-1s CHR$(YI);
NEXTZH
FORZH=1TOZ®
PRINTQZI+1+YC+YA#ZHs ZP$(ZH) 5" " 3STRING$(ZR(ZH)s CHR$(YJ))}
Z8(ZH)=ZI+1+YC+YA*#ZH+LEN(ZP$(ZH)) +1
NEXTZH
RETURN
GOTOBS70° FORMI
FORZI=1TOZ®
ZC=78(Z1):ZD=2ZR(Z1)3ZE=1
GOSUBRZRO0: IFXX=1G0T0OBLZ0
ZWs(Z1)=7F%
NEXTZI
RETURN
GOTO08@° FORMO
FORZI=1TOZ®
PRINTQZS(ZI) s ZW$(Z1) 5STRINGS(ZR(ZID~LEN(ZWS(ZI))" ")
NEXTZI
RETURN
GOTO?370° ADEL
XR=XAX(XL)
XAL(XJ)=XK
XAZ(XL)=-Z
XA (XL)="%"
RETURN
GOTO1@140° MENU
IFZA<IORZAX1BTHENSTOP
CLS
PRINTCHR$(Z) 3
ZI=LEN(ZA%(@))
PRINTAYA/Z~21/2s2A%(D) 3
FORZI=1TOZA
PRINTRZI*YA+YA+10+Z13ZA%$(Z1)3
NEXTZI
PRINTRZI#YA+YC+15s "ENTER SELECTIONs 1 THROUGH "3ZAs
ZC=(ZI1#YA+YC+50) 1 ZD=2: ZE=0: GOSURZ000
IFZF{10RZF>ZAGOTO1Q220
IB=7F
RETURN
GOTO1061@” AINIT
CLEARINT (MEM#.85) " ##%, B5SMAYREADJUSTED###

269

APPENDIX E General Purpose Modules

10620 PRINTCHR®(Z) 3

10430 DEFINTXsYsZ

10640 XJ=0:XK=B:XL=0:XS=0:XU=D:X0=0:YS=0:XT=0:XI1=0:XH=0
10650 ZI1=0:ZH=0:XW$="":XDE=""iXZs=""2XYs=""

10660 XQA=INT(MEM/5Z) %4

10670 YE=3:Z0:YL=55

10680 DIMXAZ(XG) :DIMXA$(XQ) tDIMXP(Z@) :DIMZWS (2@) :DIMXB%L (X&)
10690 DIMZA$(11):DIMZP$(13):DIMZZ(11):DIMZZ$(11)
10700 FORXI=1TOXQ-38TEP4

10710 XAZ(XI)=—=Z2:XAY%AXI+]1)=—2: XAL(XI+2)==2 1 XAL(XI+3)=-2
10720 XAF(XI)="#" s XAE(XI+1)="%" i XAS(XI+2)="%" I XAS(XI+3)="%"
10730 PRINTQYLsXIs

10748 NEXTXI

10758 PRINTaYLs" "3

10760 XAZ(@)=-1:XA%$(@Q)="%"

10770 PRINTQ32@:"MOD I(1)s TII(Z)s OR IIIC(3)7"

10780 XI$=INKEY$:IFXI$=""GOTO10780

10790 XC=VAL(XI%$)

12880 IFXC<1O0RXC-3G0OTO10770

10810 IFXC=2THENYA=BOEL.SEYA=64

10820 IFXC=ZTHENYE=Z4EL.SEYR=1&

10830 YC=YA*Z:YD=YA¥3:YE=YA*(YR-1)+10

108408 IFXC GOTO10870

10850 YF=150:YG=150:YH=148:YI=148:YJ=170:YK=30:YL =71
18860 GOTOI10880

10870 YF=176:YG=131:YH=149:YI=170:YJ=138B:YK=31:YL=55
10880 ONERRORGOTO11500

10890 GOTOzA100”° ###+CHANGETHISFORYOURSYSTEM# %%

11000 GOTO01111@° PROMPT

11118 XX=0

11120 PRINTQYEs XB$+" "3

11138 IFXR=3G0TO11280

11148 XC=""

11150 XI1$=INKEY$:IFXI$=""GOT011150

11160 IFXI$:>CHR$(YK)IGOTO11200

11178 IFXI$<>CHR$(YR)GOTO1119@

11180 XX=1:G0T011290

11190 IFXI$=CHR$(13)GOTO11230

11200 XC$=XCH+XI%

11710 PRINTAOYE+LEN(XB$)+1sXC%3

11220 GOT0111508

11230 IFXEB=BTHENXC=VAL (XC$%)

112460 IFXE GOTO11290

11250 IFXC "YES"ANDXC®="Y"ANDXC$<>"NO"ANDXCE<>"N"GOTO11120
11260 XCh=LEFTH(XC%s1)

11270 GOTO11290

11280 FORXI=1TO0@D:NEXTXI

11298 RETURN

11500 GOTO1164@° ERROR

11640 IFZZ2(0)=0GOT011710@

11650 FORXF=1TOZZ(@)

11660 IFXA=8B0GOTO11690

116780 IFERR/2=ZZ{(XF)GOT0O11740

11680 GOTO11700

1169@ IFERR=ZZ(XF)GOT0O11740

270

[
Elll
General Purpose Modules APPENDIX

11700
1171@
11720
11730
11740
11750
11760
12000
12110
12130
12140
12150
12160
12170

12240
12260
12270
12280
12290
12310
12320
12330
12350
12360
12370
12380
12390
12500
12580
12590
12600
12610
12620
124630
12640
12650
126460
12670

NEXTXF

XB#="CATASTROPHIC SYSTEM ERROR":XP=3:GOSUR1 1000
ONERRORGOTOQ

RESUME

XB$=ZZ% (XF) : XP=3:GOSUE11000

XX=1

RESUMENEXT

GOTO12110° CDLOAD

IFZW$(3)="M"GOTO12:00

FORXI=1TOXG-35TEP4

XALCXI) =—2 XAL(XI+1) == s XAL(XI+2) ==2 2 XAY(XI+3) =2
XAS(XI)="#" i XAG(XI+1)="%" i XAS(XI+Z)="%#" I XAS(XI+3)="%"
PRINTAYLs XI3

NEXTXI

PRINTaYLs " '3

XAZ(D)=—1:XA$(D)="%"

IFZW$ (1) <>"D"GOTO1 2260
ZZ(@)=1:22Z2(1)=83:72Z%(1)="FILE NOT FOUND"
OPEN"TI"s1sZWH(Z)

27(0)=0
IFXX=1G0T012390
XI1=0

IFZW$ (1)="C"THENINPUT#-1s XYSELSEINPUT#1sXY$
IFXY$="#"THENGOTO12380

IFZW$(3)="M"GOTO12350
XAZ(XI)=XTI+1:XA$(XI+1)=XY$: XI=XI+1 s XAL(XI)=—1
PRINTAYL s XI3

GOTO12270
XD$=XY4% : GOSURS000
GOSUR70200

GOTO12270
IFZW$(1)="D"THENCLOSE1
RETURN

GOTO12580° CDSAVE

IFZW$(1)="C"GOTO1 2600

QPEN"OQ"s 1+ ZWH(2)

XU=0

X8=—1:XT=1:GOSURS500

IFXL=~160T012650
IFZW$(1)="D"THENPRINT#1s XA$ (XL)ELSEPRINT#~1s XA$(XL)
GOTO12610
IFZW$(1)="D"THENPRINT#1s " *"ELSEPRINTH#~14 " %"
IFZW$(1)="D"THENCLOSE1

RETURN

271

Appendix II
MAILLIST Program

The following code is a “compressed” version of the MAILLIST program. Key
in the code together with the General Purpose Module code of Appendix I to
form one total MAILLIST program. The completed code will occupy approxi-
mately 11,429 bytes.

Here again, we’d like to hear about hard logic errors that are not errors caused
by modified code or invalid parameters passed to the General Purpose Modules.

273

APPENDIX I I

MAILLIST Program

0000
To01
pel e 1)
20080
0100
201D
20130
20140
2160
20170
'@18@

’ISSE
20570
20590
TSI

21150
21160
21170
21190
21200
21218
21230
21240
21500
21550
21560
21570
21580
21600
21610
21620
21630
21640
21650
21660

274

GOTOZBR1D*MAIN

CLLEARD

CL.S:PRINT&Rs "MAIL LIST: INITIALIZING..."

GOTO10500

IM=~1 217l =46 XNE=" MAIL LIST"
XP(@)=13:XP(1)=0:XP(2)=2:XP(3)=1:XP(4)=0:XP(5)=3

XP(&)=0:XP(7)=4:XP(8)=0:XP(?)=5:XP(10)= 6.XP(11)"
XP(12)=0:XP(13)=0

ZA=R:17A%(D)="MAIL LIST":ZA%(1)="ADD ENTRY TO FILE"
ZAS(2)="MODIFY OLD ENTRY":ZA$(3)="DEIL.LETE ENTRY"
ZA$(4)="DISPLAY/PRINT FILE":Z2A%$(5)="SEARCH FILE"
ZA$(&)="NEW SORT":ZA%(7)="LOAD FILE":ZA%$(8)="5AVE FILE"
GOSUR 10000

TFZR<40ORZB=7THENYT=0
ONZBGOSURZA500, 21000: 21500 22000 23000 23500, 24000, 24500
GOTOZD160

GOTOZO550° MFADD

ZP%(@)="ADD ENTRY" :GOSURZ2000

GOSURBHPB: IFXX=1G60TO20680

GOSUR6500

XD$=XY4% : GOSUR5 D00

IFXM - 2G0TOZR670

XP=3: XB$="0UT OF MEMORY":GOSUB!1000

GOTOZD680

GOSUR7000

RETURN

GOTOZ1050° MFMOD

ZP$(@)="MODIFY ENTRY"

GOTOZ1560

XB$="MODIFY YES OR NO":XP=1:G0SUR11000: IFXX=1G0TOZ1240
IFXCe="N"GQOTOZ1240

GOSURIS06

XB$="FIELD # TO MODIFY":XRP=0:GOSUR11008@: IFXX=1G0TOZ1240
IFXC=REOTOZ21230

IFXCL1G0TOZ1140

GOSUR?000
Z2C=75(XC)Y:ZD=ZR(XC) : ZE=1:GOSURZRA0A: IFXX=1GOTOZ1240
IWE(XC)=2ZF%

GOTOZ1140

GOSURZR59@

RETURN

GOTOZ155@0° MFDEL

ZP$(@)="DELETE ENTRY"

ZP=55:Z0=2:7ZP$(1)="ENTRY # (ENTER IF NOT KNOWN)"
IP$(Z)="NAME1 STRING (ENTER IF NOT KNOWN)"
ZR(1)=3:ZR(2)=15:G08URBOOO

GOSURB5008: IFXX=1G60T021900

IFZW$(1)=""G0T021650

XS=VAL (ZW$ (1))

IFXS=BGOTO21650

GﬁTﬁ”175E

IFZWE(2) 1" "G0TO21690

XB=3: XB$—"REENTER VALID # OR NAME":GOSUR11000

MAILLIST Program APPENDIX II

GOTOZ1560
XDe=7W$ () : GOSURS Q00

IFXM<-DBORXL < >—1GOTOZ1790
XB=3:XBé="# OR NAME NOT FOUND":GOSUR11000
GOTOZ1900

XU=0@: XT=0:GOSURS500
IFXM=0GOTOz1720

XY$=XA%$(XL.) :GOSURZS00

GOSUBRZ9000

GOSUR000

IFZB=2GOTOZ1100

XB$="DELETE YES OR NO":XP=1:GOSUBL1000: IFXX=1GOTOI1900
IFXC$="N"GOTOZ1900

A GOSUE9500

RETURN

GOTOZZB50° MFDISP
ZP=05:170=1:ZP%$(@)="DISPLAY/PRINT"
ZP#(1)="PRIMARY (P) OR SECONDARY (S) KEY?"
ZR(1)=1:GOSUBBDAO

GOSURBSAB: IFXX=1G0TOZ2950

IFZWE (1) <> "P"ANDZWS (1) <> "S"GOTOZ 2050
YE=R:IFZWS (1) ="P"GOTOZI2S

IFYT<:BGOTOZZ150

XB=3:XBe="NEVER SORTED OR MODIFIED-RESORT'" :GOSUR1100@
GOTOZZ2050

Y8=1:Z2P=55170=2:7P$(@)="SECONDARY DISPLAY/PRINT"
ZPE(1)="GTART # (ENTER IF NOT KNOWN)":ZP$(Z)="END # (ENTER IF NOT KNOWN) "
ZR(1)=327ZR(2)=31G0OSURED0Q

GOSURB500: IFXX=1G0TO22950
ZWE(R)=ZWH(2) e ZWS(Z)="" 1 ZWS (4) =n n

GOTOZZ2310

IP=53:120=4:72P$(@®)="PRIMARY DISPLAY/PRINT"
ZP$(1)="START# (ENTER IF NOT KNOWN)®"

IP$(2)="START ENTRY (ENTER IF NOT KNOWN)"
ZP$(3)="END# (ENTER IF NOT KNOWN)"

ZP4(4)="END ENTRY (ENTER IF NOT KNOWN"
ZR(1)=31ZR(Z2)=15:1ZR(3)=3:17ZR(4)=15: GOSURBRDQ
GOSURB500: IFXX=1G0T0O22950

IFZW$(1)=""GOTO22370

XU=0: XS=VAL(ZW$ (1)) : XT=0:GOSURS500

IFXMI-BGOTO22420)

XBs="START # NOT FOUND"

XB=3:GOSUR1 1000

GOTOZZ050

IFZW$(2) < =" "GOTOZ23790

XB$="NO START # OR STRING" :GOTOZZ>350
XDE=ZW$(2) : GOSURSO0R
IFXM=BANDXL=~1THENGOTOZZ41DELSEGOTOZZ450

XB$="START STRING NOT FOUND":GOTO22350

23420 AA=XS

22440 IFZWS(3)=""GOTOZ2470

22450 AR=VAL (ZW$(3))

22460 GOTOZ2I540

Z2470 IFZW$(4) <" "THENGOTOZZ500

275

MAILLIST Program

22900
2E910
22920
22930
22940
22950
22960
22970
23600
23050
23060
23080
23070
23100
23110

276

ABR=9997

GOTOZZ540

XD$=ZW% (4) : GOSURS000

IFXM<>RORXL < >~16G0TOZ22530

XB&="END STRING NOT FOUND":GOTOZZ350

AB=XS

XB$="DISPLAY(D) OR PRINT(P)?":XP=1:GOSUBR11000: IFXX=1GOTO2=9508
ACE=XCS

IFAC$<>"D"ANDACS > "P"GOTO 22540

IFAC$="D"GOTOZ2B:0

XB$="CURRENT FORMAT (C) OR NEW (N)?":XB=1:GOSUR11000: IFXX=1G0TOZ2950
IFXCH<x" C"ANDXCE>"N"GOTOZZ570

IFXCe="C"GOTOZZR30D

XB$="SUPPRESS NEW PAGEs Y OR N7":XB=Z:GOSUB11000
IFXC$="Y" THENZM=~1ELSEZM=50
ZP=55:70=61ZP$(@)="DISPLAY/PRINT FORMAT ITEMS"
ZP$(1)="0=NEW LINE":ZP%(Z)="1~N=FIELD N"
ZP$(3)="~M=TAB TO POSITION M":ZP$(4)="-1=NEW PAGE"
ZP$(5)="-2=PRINT REPORT COUNTER XN":ZP$(&)="-3=END ITEM DEFINITION"
ZR(1)=0:ZR(2)=0:ZR{(3)=0:ZR(4)=0:ZR(5)=0B:ZR(6)=0:GOSURBO00
XP(@)=0

Al=1

XB$="ITEM TYPE?7:":XP=0:GOSUR110B0@: IFXX=1G0TOZ:950
IFXCx~b63ANDXC=BG0OTQZ2760

XB$="INVALID ITEM TYPE - IGNORED":XB=3:GOSUBR11000
GOTOZZ720

IFXC=-360TO22830

XP(AI)=XC

XP(@)=XP(@)+1

AT=AT+1

GOTO =0

ZP$(@)="DISPLAY ENTRY"

IFAC$="D" THENGOSUBR 22000

XU=@:XS5=AA: XT=0:GO5URS500

XG=—~12XT=1

IFXL=-1GOTOZ2958

XY$=XA% (XL) : GOSURZ50Q

XN=XU-1

IFAC$="D" THENGOSURZDOREL SEGOSUR7500
IFINRKEY$<»""GOTOZ22950

IFXU»=ARGOTOZ2930

GOBURS500

PRINTAYLs XU-235" "3

GOTOZ2860

Y5=0

FORAI=1TO9B0:NEXTAL

RETURN

GOTOZ305B* MFERCH
IP=55:20=1:ZP$(@)="SEARCH" : ZP%$(1)="8SEARCH STRING:"
ZR(1)=30:G0SURBDRD

GOSUBRB508: IFXX=160TOZ3Z27@

IFZW$(1)=""GOTOZ327@

AWS=ZWE (1)

IPE(0)="BEARCH"

MAILLIST Program APPENDIX II

GOSURZ2000@

XU=0
XE=-1:XT=1:GOSURS500
TFINKEY$<>""GOTOZ3270
IFXL==-160TOZ3270
XWe=AWS
XZ4=XA%$ (XL) :GOSUR1D00
IFXW=—1GOTOZ3150

PRINT&YLsXU-13" "3
XY$=X7%$:GOSUBZ500
GOSURT000

XB#="CONTINUE?" : XR=Z:GOSUR1 1000 : IFXX=1G0OTOZ3270
RETURN

GOTOZ3550" MFSEC

IP=53:Z0=1:Z2P%(0)="SECONDARY SORT":ZP$(1)="SORT ON FIELD # :"
ZR({1)=1:GOSURBOOG

GOSUEBS50@: IFXX=1G0TOZ34620

YT=VAL(ZWS (1))

IFYT<10RYT>8GOTOZ3550

GOSURLDOR

RETURN

GOTOZ4@50° MFLOAD

IP=55:Z70=3:ZP$(@)="1.0AD FILE"

ZP$(1)="LOAD FROM CASSETTE (C) OR DISK (D)7?7"
IP$(2)="DISK FILENAME?" :ZP$(3)="INITIALIZE (I) OR MERGE (M)?"
ZR(1)=127ZR(2)=15:ZR(3)=1:GOSURBADO

GOSURBSR@: IFXX=1G0TOZ4150

IFZWSE (1) <" C"ANDZWS (1) <> "D"GOTOZ4050

IFZW$(3) <" T "ANDZWS (3) <>"M" GOTOZ24050

GOSURL1 2000

RETURN

GOTOZ2455@0° MFSAVE

IP=585:120=2:7P%$(0)="SAVE FILE"

ZP$(1)="SAVE ON CASSETTE (C) OR DISK (D)7*
ZP$(2)="DISK FILENAME?" :ZR(1)=1:ZR(Z)=15:G0OSURBOOD
GOSUBBS500: IFXX=1G0TO24630

IFZWS (1) <>"C"ANDZWS (1) <="D"GOTOZ4550

GOSUR 12500

RETURN

GOTOZ?060° MI_SKEL.

ZP=57:70=8

IP$(1)="(1) NAME1 "EZP$(2)="(Z) NAMEZ "
ZP%$(3)="(3) NAME3 "1ZPE(4)="(4) STREET "
IP$(5)="(5) CITY "tZP$(6)="(46) STATE "
IP$(7)="(7) ZIP ":ZP$(8B)="(8) REFERENCE"

ZR(1)=17:ZR(2)=15:ZR(3)=15:1ZR(4)=30:ZR(5)=20
29120 ZR(46)=1@:ZR(7)=9:ZR(8)=10: GOSUPBOORD
29130 RETURN

277

AADD Module

desCription . .o v v e e 43

T 101, 268

OPEIALION & v vttt ettt et et e e 101
ADEL Module

AESCIIPHON « 4 o vttt et e e 46

41 102, 269

OPETALION & v v vttt ettt e e e e 101
AINIT Module

deSCIIPtION L & vttt e e 48

BSting . e e 94, 269

OPETALIOM v v vttt ettt ettt ee e et e e 94-96
ATTAYS s o vttt ittt e e e e e e e 85
ASRCH Module

AESCIIPLION « 4 vttt ettt et e it et 40

1 - 97, 267

OPETALION & v vttt sttt e ettt e et ettt e 96-101
BASIC

APPlCATIONS & vttt ittt e e 3,11, 14

developmentt i e e 11-25

QIS PlaY o vt e e 56-58
Cassette OPErAtIONS « v vttt ettt ee et ee et s e eee e eeee e, 125-126
CDLOAD Module

eSCTIPHOM L+ vttt e e 50

¢ 133, 271

1001 -1)« 132-136
CDSAVE Module

eSCTIPtION . o v st i e e e 50

T 130, 271

OPETALION & o vttt ittt ettt e e 130-132
COBOL .. 5
Coding .« ottt e e 20
Data

] 1 281 ¢ 84

R0 L 83
Debugging ... e 22-23
Design

PrOBTAIN . & vttt ettt ittt s st et oo oeoennennnnsoneoeennenss 17-18

SPECHfICAtioN . o v v\ttt e e e 15-17
Disk OPErations. . v« ottt ettt ittt e e e 127-129, 215-234
Display

BASIC methods.o vuiet ittt i i 56-59

Characters i e 54

ChATACIETIStICS v v v vttt st ittt ettt it e e 53

BTADNICS L oot 55
ERROR Module

0T T] 5T)« P 49

T 138, 270

OPETAtION & v vttt ittt e s e et e e et te et e 137-138
EITor Operations ovttttt ittt e e 136-137
FINDN Module

deSCTIPtON o v et e e e 41

1T 107, 256

OPETALION & 4 vt vttt ettt e et et e ettt e e e 107
Floweharting.ttt i i 18-20
FORMI Module

ESCTIPHOM « o v vttt et e e e e 46

140 - 76, 269

© OPETALIONS vt vt iie i in e e s tnseaanaresaaronassasessssens 76
FORT RAN Lttt ittt ettt etiataas s entonnanonnsnnnnns 5
FORMO Module

L2041 o 1 46
) F 7 P 66, 269
10) o153 r2X 1 T) 66
FORMS Module
AESCIIPLION « vt vttt i e e e e 44
T3 2~ 63, 269
OPETALION & 44 v vt v ees it it n e neonsaesnssaansonsnsoasssns 63-65
General Purpose Modules (GPM),
USIIIE + v v v eevveosonoeneneoesasunosnsnnsensosananssnsasns 25, 29-51
GPM
additional disk files ... vvvitr ittt i i i s 217
Character INPUL. . v v vttt i vt en e en it innaneasanasaeansasnsos 69
data SLOTAZE o« v v v vt eniv s nr et enenaneaeannasasanens 83, 86
QISPIAY ¢ v vt v e et e i i i i it e s 59
USAZE + v o v s e v o svennennensnnsnenesasaesueansosaanasosenonnssns 53
Information retrieval SYStEM . .o vvv v e in i ivenn st vnnrnnennnarnens 215-217
INKE Y oottt itit ittt in ittt ninetnnnnnsnasnneanannens 69-72
INPUT Module
eSCIIPHON « 4 v vttt ittt it ittt i e ettt eanana e 38
0o P 73, 266
(o) 13 X8 o + KPP 72-76
Input/Output
CASSELIE v vt v v e e as et sa et senetr e ey 125-126
G £ SR P 127-129
0T3¢ 5 113 115-125
INVENT Program
G T s o= T 242
103 12 A 255-263
R 007014 10 11PN 243-254
MEWINASE & vt v eevneenesancssnsneesnssossnsssnsesnnssnnsss 240-242
10) 16 B s 1) PN 236-239
Inventory system, SAMPIE .« .. vvinvr it it i 235-241
Keyboard INpUt. . v v v vttt i it ie it it ittt n s ennaaeaasnns 69-71
Keyboard codes ..ot iiiiiiii ittt 71
KEYWORD Program
(o4 s) o1 S NN T 217
e (-2 4 o 225-227
1)z o) 6T o A e 227-231
functions
Add tO dISK v v v v v v vt et ettt it e 219-220
delete AN eNtIY oo veiv i i ii i inn e aanaaraaaaens 221
search for KEYWOrd .. oo v v vi ittt e et inaenaannnss 223
10 013 =88 T o 227, 232-234
Length of programsvvvriti vt inenenroesnenanereesennns 6
Line printer OPErations « ... vev v vttt ven e vnnenonnenenssnsensns 115-118
Linked BSt. oo v nen e iieie e renseracnsnenenonoennannsones wee.. 9093
LPDRIV Module
AESCTIPHON ¢ vttt it tr it i it i e tsna i ensaasneeeenas 37, 115
PPN 117, 266
16) o153 221 T)« 116-118

280

MAILLIST Program

add entTY . .o o e e 146
16 (T 1L 148
ESIgN SPEC .« v vttt ettt ettt et e 142
diSplay €Nty ..t e e e 150
load file o oot e e 159
load/run procedureoiiiuiiiiiii i e 143
Program fUNCtioNS . .. vu ittt ettt e e e 145
DI EITY &ttt ettt et ettt ettt e et eee e, 153
PIIMATY SOTE. o ottt vttt ettt ettt et e ettt teeeeeeennnnerens 152
SAVE M1l oo e 160
SEATCR PIOCESSINE &4 vttt ettt itet ittt eeennnnns 156
SECONAATY SOTt 4 v vt vttt e et e enees e eneenenenesneensnnenennnns 158
SYSEEIME €TTOTS 4 v v et e vt a ittt et st s enensenonseneeneenennes 161-162
MAIN Module
deSCTIPHON « o 4t vttt ittt ettt e e e 164-167
flOWChArt . oottt e e e 165
7 166, 274
MENU Module
e 14103 29, 47
21 - 61, 269
OPETALION vttt e ettt ettt ettt tee et 61
MFADD Module
eSCTIPHON « o v vttt ittt e e e e e e 170
flowChart . .o i e e e e 169
4 1~ 170, 274
MFDEL Module
flowehart . ..o 174-175
]2 176, 274
(601 11 T3 174-178
MFDISP Module
AeSCIIPHOM . o v vttt ettt e e 185
flowehart ... e 186-191
2 - 192-193, 275
OPETALION & 4 vttt ettt et ee e e e e s 185-198
MFLOAD Module
v o 1410« 202-204
flowChart ... e 202
1 203, 277
MFMOD Module
flowehart ..o e 179
5 - 180, 274
OPETALION vttt ettt ettt s etensinannnennn, 179-183
MFSAVE Module
0Ty Yoo (o) « 199-201
flowehart ... o e 199
I s v vttt et et e e e e e 200, 277
MFSEC Module
QESCTIPLON . v v vttt ettt et ittt s 205-206
1 O] ¢ 205
] - 206, 277
MFSRCH Module
0) 1210 207-211
flowehart ...t i e 207-208
o - 209, 276
MLSKEL Module
QeSCTIPHON . v ottt et et sttt 171
¢ - 171, 277

103 S 4103+ 171-173

Module

ATTANZEMENT . « o v v vt ts ettt v enraesnrossnennrossnsnarsssnsnses 32

ATEA UNUSEA + v oot ene i vneienatoanroonatonossnassonnsnaenonnns 51

6 L0t o113 e) ¢ 36-51

57 £ T 30

Telationship . vvvt e sttt i i i i i it i e e 33
Plan for program developmentt 11-25, 141-142
Program development

CHATACKETISLICS v v v v e v v a e e oensonsnosenssosonensnsenssnnsnnsns 12

1 o T 22

dESIZN SPECS « v v vt iis it i i e 15

QOCUMENE . « v v v v st et v eeooesoonneecansansosssonssesnssenns 21, 24

03 2o) 4T u A 18

Program deSiBNl .+ o vttt i i i i i e 17
PROMPT Module

ESCIIPHON « & v v vttt s e ittt e et e s s aaanaasseaeanasnnsassss 49

StIIE e v vt e v eee e ee i iae ettt 67,79, 270

OPETALION + o vttt ittt et ii et enein s aeanerae s 67, 79-81
REPORT Module

L0 w1015 3+ P 44, 119-123

O P 124, 268

OPETALION + v o v vttt iie i ins it an s s aneanaannsenannansn 123-125
SEATChINE « vt vttt ittt ittt it i i e e 88-90
SECSRT Module

eSCIIPLON . o vttt it et it it i i it i i e e 42

T8 £ 105, 267

6213 2213 T) ¢ K P 104-107
Sort

MAILLIST primary and secondaryovvvienennnennnenenns 194-198

primary and secondaryeiieiiiiiiraiaenaans 88-90, 103-104
oY o 11 1V 88-90
SPACK Module

4 (1ol ' 1 1o 1 L T 43

5 V- 113, 268

OPETALION ¢ v v vt te ettt it nv st snenonsnsnensnsnensns 109, 112-113
Speed, of EXECULION .« vt vttt ittt i i i i i i e 86
SSRCH Module

17 ' 11 T3+ - 1

BStIMg . v v vt ve et e ettt i i e e 110, 266

OPETALION + v vt v vt it enis s eas s asaennnensansenannnnns 109, 110-111
Steps in program development i il i i it 11
SHIANE AITAYS + v ¢ v e v v v vt e nen s s s oaonsnsnsnsnsnsnsasacnensonsnss 86-88
SUNPK Module

0 (108 Yo 15 3+ N 39

23 T 111, 266

OPETALION « o v vt v et s in i aen st eisnensaensaenes 109, 111-112
Time to WIte @ PrOZIAM . o oottt v e va v ensonnrossosansnoenssnnanens 5-8
Variable

MOodule St Of . vttt it it it it i e e 34-36

1, 11X 83-86
Video display, characteristics . . . oo v vvvinne e it ineeneans 53-56
XFER Module

0 [oTes 1 1o s L 36

SEIIZ s v v v e v e e e et n e n e n it i e 37, 266

282

RADIO SHACK g A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U.K.
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE, N.S.W. 2116 0140 NANINNE WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf

