Basic

BASIC-English
Dictionary

for the APPLE; PET and TRS-80°

Basic
BASIC-English
Dictionary

for the Apple; PET"
and TRS-80"

Basic
BASIC-English
Dictionary

for the Apple; PET"
and TRS-80"

Larry Noonan

dilithium Press
Beaverton, Oregon

DEDICATION

To my daughter Kristyl, whose life will be influenced and
enriched by the computer age.

© Copyright, dilithium Press, 1982

All rights reserved. No part of this book may be reproduced or
utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording or by any information storage and
retrieval system, without written permission from the publisher.

10 9 87 65 4 3 21
Library of Congress Cataloging in Publication Data

Noonan, Larry, 1946-
Basic BASIC English dictionary for the Apple, PET, and TRS-80.

1. Basic (Computer program language) 2. Apple II (Computer) -
Programming. 3. PET (Computer)—Programming. 4. TRS-80
{Computer) — Programming. I. Title.

QA76.73.B3N66 001.64'24 81-19507
ISBN 0-918398-54-1 AACR2

Cover: Marty Urman

Printed in the United States of America
dilithium Press

11000 S.W. 11th Street

Beaverton, Oregon 97005

* Apple isa trademark of Apple Computer Inc. PET is a trademark of Com-
modore Business Machines. TRS-80 is a trademark of Tandy Corporation.

PREFACE

Our society is now in the midst of the computer age. Computers
influence all of our lives to a greater or lesser extent. Businesses use
computers to bill us and issue our paychecks; doctors and lawyers
use them to keep records on their patients and clients; pilots use
them to help navigate their planes; shopkeepers use computers to
manage their inventory records; NASA uses them for space ex-
ploration. Computers are used widely by hospitals, banks,
newspapers, schools and research institutions. They are even used
in the home to regulate appliances, to play video games, and to
keep personal records such as addresses, Christmas card lists,
recipes and the family budget.

We hear more and more often that people should become “com-
puter literate” so that computers may be used and enjoyed by
everyone. The Basic BASIC-English Dictionary tackles two aspects of
computer literacy: computer language and programming. The
BASIC language of the Apple, PET, and TRS-80 microcomputers
are explained in detail, in the form of dictionary definitions, with a
generous number of examples. The Basic BASIC-English Dictionary
makes it possible to translate one BASIC to another, quickly and
easily. Representations of the three computers help you compare
the commands, statements, functions and operators of each com-
puter's BASIC.

vi / Basic BASIC-English Dictionary

CONTENTS

Introduction 1

Part 1-- Alphabetical listing of BASIC statements, functions,

andcommands., 3

Alphabetical listing of operators. 91
Part [I-Summaryofterms 103
Appendix A—ASCIICodes.c..oii... 113
Appendix B— Abbreviations of BASICWords 119
Appendix C—-Graphics. 121
Appendix D—ReservedWords 139

Appendix E—Boolean Operators......................... 145

viii / Basic BASIC-English Dictionary

INTRODUCTION

Three computers are emerging as educational tools in many
school systems. These same computers seem to monopolize much
of the written material found in computer magazines. They are the
Apple II, the PET, and the TRS-80.

All of these computers are used in my school. After using them
for some time, it became obvious that there was a need for some-
thing that would help students, teachers and other computer users
recognize the similarities and differences among the three BASIC
languages used by these computers.

Too often it has been my experience to find a terrific program in a
magazine that was just what I wanted —to play a game, teach a con-
cept to my students, or help in my personal finances—but written
in a BASIC different from the dialect used by my own computer.
This book is an attempt to help you understand the three BASIC
dialects, and thus make better use of your personal computer.

The book is divided into two parts. Part I is a dictionary of the
more commonly used commands, functions, statements and
operators used in the three BASIC dialects. If you come across a
command, function, statement or operator that you do not under-
stand, look it up in Part I. You will find the English definition with
each new term printed next to it; if it is not used by that computer,
the translation is printed instead. {See the example on the next
page.)

Part 1I is a summary of terms. This part may be used as a quick
reference when more detailed information is not needed.

The similarities and differences of the ASCII codes, abbreviated
key words, reserved words, graphics and Boolean operators are
covered in several appendices.

2 / Basic BASIC-English Dictionary

EXAMPLE
GET statement
word how it is used {command, statement, function or operator)

A definition of the word appears here.
Also see: BASIC terms with similar meanings are listed here.

Apple - The GET$ statement is used only in Applesoft BASIC.

GETS$ This sentence tells you that on the Apple II computer,
only Applesoft, and not Integer BASIC, uses the state-
ment GETS$.

PET + The PET personal computer uses the statement GET.
GET

TRS-80 - The TRS-80 does not use GET, but it does have a state-

INKEY$ ment that means the same thing, or nearly the same
thing: INKEY$. There will also be a sentence explaining
that only Level II, and not Level I, BASIC uses the IN-
KEY$ statement.

If there are any peculiarities that appear in only one or two of the
computers, it is written beside that computer's name.

If the word ANSI appears next to the word, it means that the word
has a defined syntax in the ANSI standard for a minimal BASIC,
ANS X360-1970.

Part I

Alphabetical Listing of
BASIC Statements,
Functions, and

Commands

A. function

ABS gives the absolute value of the specified number.
Format: 10 A= ABS({N) means that A equals the absolute value of
the number N.

The number returned is always positive.
EXAMPLE: ABS{-171) is 171.

Also see: ABS, AT

Apple * The ABS function is used in both Applesoft and Integer
ABS BASIC.

PET + The ABS function is used in PET BASIC

ABS

TRS-80 -« A.is used in Level I BASIC as an abbreviation of ABS
A. and AT. ABS and/or AT is used in Level II Basic.

ABS (ANSI) function

ABS gives the absolute value of the specified number.
Format: 10 A= ABS(N) means that A equals the absolute value of
the number N. The number returned is always positive.
Example: ABS(-171) is 171.

Apple * The ABS function is used in both Applesoft and Integer
ABS BASIC.

PET - The ABS function is used in PET BASIC.
ABS

TRS-80 - ABSisused only in Level I1 BASIC. In Level I BASIC A.
ABS may be used.

AND operator {See page 91.)

4 [/ ' (apostrophe)

' (apostrophe) (ANSI} statement

The ' (apostrophe) is used as a short form for the REM statement on
the TRS-80.

On all three computers PRINTCHR$(39) can be used to print an
apostrophe on the screen.

TRS-80 - The ' (apostrophe) is used in both Level I BASIC and
Level II BASIC.

ASC function

The ASC function returns the integer ASCII code for the letter,
number or character used as the argument of the function.

Format: ASC(A$) returns the integer ASCII code for the first
character of A$. If A$=A, then the decimal number 65 will be
returned because 65 is the ASCII code for A.

ASC can be used with POKE to POKE a value directly into screen
memory as shown below.

Also see: CHRS$, Appendix A for ASCII codes, and Appendix C for
graphics.

Apple * The ASC function is used in both Applesoft and Integer
ASC BASIC.

PET + The ASC function is used in PET BASIC. Appendix I

ASC lists the special ASCII characters on the PET.
POKE32970, ASC("*") will poke a star or asterisk into
screen memory address 32970.

Note: The cursor does not move when graphics or other
characters are poked into screen memory.

TRS-80 - The ASC function is used only in Level II BASIC.
ASC 5 A$ - ¥kt

10 POKE15500,ASC(A$) pokes a star or asterisk into
memory location 15500.

* (asterisk) (ANSI) operator (See page 91.)

AT function

The AT function is used after PRINT to indicate the starting loca-
tion for the PRINT statement.
Example: 10 PRINT AT 10, "THE NUMBER IS"
40 PRINT AT 40; "THANK YOU"

Apple » The AT function is used in both Applesoft and Integer
AT BASIC.

TRS-80 - The AT function is used in Level I BASIC only. In Level
(AT IT BASIC AT is replaced by the @.

@ (AT) operator (See page 92.)

BREAK / 5

ATN (ANS]) function

The ATN function calculates the arctangent of a number specified
in radians.
Format: A=ATN(x/y)

Apple + The ATN function is used in Applesoft BASIC, but not

ATN in Integer BASIC. Programs with ATN cannot be
translated directly into Integer BASIC.

PET + The ATN function is used in PET BASIC.

ATN

TRS-80 + The ATN function is used only in Level II BASIC.
ATN

AUTO command

The AUTO command automatically provides numbers for the pro-
gram lines.

Example: AUTO 10,5 will start the program lines at 10, and incre-
ment each line number by 5.

Apple -+ The AUTO command is used only in Integer BASIC.

AUTO Typing AUTO and pressing RETURN displays a 10, and
puts the computer in the automatic line number mode.
Typing CONTROL X (CTRL X}, then MAN, returns the
computer to the manual insertion of program lines
mode.

TRS-80 - The AUTO command is used only in Level II BASIC.

AUTO Typing AUTO and pressing the ENTER key places the
computer in the automatic line numbering mode. Press-
ing the BREAK key returns the computer to the manual
mode. '

BREAK key

The BREAK key stops program execution. Resume program execu-
tion by entering the CONT command. The BREAK key also stops
the scrolling of the program's listing.

Also see: CONT, STOP, POKE

Apple + Applesoft uses the STOP key to halt program execution.
STOP

PET + Pressing the RUN/STOP key stops or breaks the pro-
RUN/ gram, and prints out the line number where the pro-
STOP gram stopped.

Example: BREAK IN LINE 10

TRS-80 - The BREAK key is used in both Level I BASIC and

BREAK Level II BASIC. To disable the BREAK key POKE
16396,23. To re-enable the BREAK key POKE
16396,201 or POKE 16396,20. See POKE for other
methods of disabling functions of the computer.

C. command

C. command is the short form for CONT, and is used to restart a
program or listing after it has been stopped by the BREAK key.

Also see: CONT, CON, BREAK key

Apple + The CON command is used in Integer BASIC. The
CON CONT command is used in Applesoft BASIC.
CONT

PET + The CONT command is used in PET BASIC.
CONT

TRS-80 - The C. command is used in Level 1 BASIC as an ab-
C. breviation for CONT. Level II BASIC uses the CONT
command.

CALL command

CALL is a command which enables some computers to jump to a
machine language program.

Also see: USR, SYS, SYSTEM

Apple The CALL command is used in both the Applesoft and
CALL Integer BASIC languages. USR is also used in Applesoft.

USR CALL A jumps program execution to a machine
language subroutine beginning at memory location A.

CALL-151 puts the computer into machine language
mode. An * (asterisk) prompt will appear.

CALL-936 is used in Integer Basic to clear the screen.

PET + The USR command is used in PET BASIC.
USR

TRS-80 - The USR command is used in Level II BASIC only.
USR

CDBL function

The CDBL function is used to change numbers or numeric
variables from single-precision to double-precision (C-change;

CHR$ / 7

DBL~double). Single-precision numbers contain 6 significant
digits.
Example: .333333

Double-precision numbers contain 16 significant digits.
Example: .3333333333333333

Also see: CSNG

TRS-80 - The CDBL function is used only in Level II BASIC.
CDBL Example: 10 CLS
20 X=6:Y=7
30 PRINT" SINGLE PRECISION 6/7=";X/Y
40 PRINT"DOUBLE PRECISION 6/7=";
CDBL(X)/CDBL(Y)
50 END

When the program is run the following results:
SINGLE PRECISION 6/7= .857143
DOUBLE PRECISION 6/7=.8571428571428571

Note that in the single-precision, the last number is
rounded off.

CHRS function

CHRS$() is a function which retrieves the character, letter or
number represented by the decimal ASCII number code within the
parentheses. It allows the computer to print characters not nor-
mally accessible from the keyboard.
Example: 10 INPUT L
20 PRINT CHRS$(L)

If the computer operator inputs the number 65, the letter ‘A’ will be
printed on the video screen because 65 is the ASCII code for the let-
ter A.

Also see: ASC, Appendix A, TEXT

Apple + The CHRS$ function is used only in Applesoft. Integer
CHR$ BASIC does not use CHR$. However, this function can
be simulated by creating a string with all the ASCII
characters. (Note: Use a space for the quotation mark to
avoid ending the string at that point.)
A$="1#8%'()*+,-.7012345678. . ..
..... UVWXYZ __"

The first of the ASCII characters is a space, and its code
number is 32. If we want an 'A’ to be printed, we can
subtract 31 from the code for ‘A’. We will have the
number representing the ‘A’ in our string. The ASCII
code for ‘A’ is 65, so we have 65-31=34. A$(34,34)
would print from the 34th character in the string to the
34th character in the string, which is, of course, only
one character, the 'A'. We can say that CHR$(65)=
A$(34,34) and in general CHR$(N)= A$(N-31,N-231).

8 / CINT

PET « The CHR$ function is used in PET BASIC. See Appen-
CHRS$ dix A for special ASCII characters to be used with
CHRS$ on the PET.

TRS-80 - The CHRS$ function is used only in Level II BASIC.
CHR$ Since the left arrow is used for backspacing, the right
arrow for TABbing and the down arrow for line feed,
we must use their ASCII codes with CHR$ when we
want to print them on the screen.
Example: 10 PRINT CHR$(93);CHR$(94);CHR$(92)

The line above would print the left arrow, right arrow,
and down arrow. Graphics and TABs can also be pro-
grammed in this way (see Appendix A).

CHR$(23) can be used to convert the video display from
64 characters per line to 32 characters per line.
Example: 10 PRINT CHR$(23);"LARGE LETTERS"
20 FOR A=1 TO 500: NEXT A
30 CLS
40 PRINT "I AM BACK TO NORMAL"
50 FOR A=1 TO 500: NEXT A

Line 10 prints "LARGE LETTERS" in 32 characters per
line mode. Lines 20 and 50 are timers. Line 30 clears
the screen and returns the video display to the normal
64-character-per-line mode.

CINT function

CINT converts numbers to their integer value (C~convert; INT -
ingeter). The numbers assigned to the CINT function cannot be
larger than + 32767 or smaller than -32767. Variables used in the
CINT function return to their original precision when they are used
again in the program without the CINT function.

TRS-80 + The CINT function is used only in Level II BASIC.
CINT

- (circumflex) operator (See page 92.)

CLEAR command, statement

When not followed by an argument, CLEAR resets all variables to
zero. It is also used to set aside bytes in memory storage when an
argument is included after it.

Example: 10 CLEAR 150 reserves 150 bytes in memory for string
storage.

Each character in a string, including spaces, takes up one byte of
memory. It does not take long to use up the automatically allotted
50 bytes. When more than 50 bytes are required, the CLEAR(N)
statement must be used or an OS {out of string space) error will
occur.

CLOAD / 9

Also see: ERASE, CLR, SHIFT—

Apple
CLEAR
CLR

PET
CLR
TRS-80
CLEAR

» The CLEAR command or statement is used only in Ap-

plesoft. The CLR command or statement is used in In-
teger BASIC. CLEAR and CLR reset all variables to zero
and all strings to null.

* The CLR command or statement which is the short

form for CLEAR is used in PET BASIC.

+ The CLEAR command is used only in Level II BASIC.

The CLEAR(N) statement automatically reserves N
bytes for string storage. The ERASE statement cancels
all the reserved memory space.

In the commad mode CLEAR clears the display. If
SHIFT — has converted the display to 32 characters per
line, the CLEAR returns the display to the 64-character
per line format.

When the computer is turned on, 50 bytes of memory
are reserved automatically, even without the CLEAR
statement. All string variables are reserved by the
single CLEAR statement.

CLEAR key

The CLEAR key is used to clear the video screen of all ASCII codes
and characters.

Also see: CLS, GR, CLR, CLR HOME key

Apple
GR

PET
CLR/
HOME

TRS-80
CLEAR
key
CLS

.

+ GRis a graphics command which also clears the screen.

The PET CLR/HOME key, when used with the SHIFT
key, clears the video screen. The clear screen command
can be inserted into a program by using CHR$(147).

+ The CLS command and statement can be used to clear

the video screen in both Level I and Level II BASIC.

Pressing the CLEAR key, then the ENTER key, clears
the screen and places the cursor at the top left corner of
the monitor.

If graphics blocks have been turned on with the SET
statement, the CLEAR key will turn off all the blocks at
once.

CLOAD command

The CLOAD command is used to load a recorded program from
tape to the computer (C— cassette; LOAD—load). CLOAD"A" loads
program “A" from tape into computer memory. Other programs on
the tape are ignored until "A" is found and loaded. CLOAD, with no
specified program name, loads the first program that it encounters
on the tape.

10 / CLOSE

Also see: LOAD, VERIFY

Apple * The LOAD command is used in both the Applesoft and
LOAD Integer BASIC.

VERIFY can be used to check a SAVEd program.
PET + The LOAD command is used in PET BASIC. VERIFY
LOAD is used to check if the SAVEd program is recorded
properly.
TRS-80 - The CLOAD command is used in both Level I BASIC
CLOAD and Level II BASIC. The CLOAD?"A" command is used
to compare a program in memory with one on tape. The
message "BAD" is displayed if the recording is bad. The
letter in parentheses is the name of the program.

CLOSE command, statement

CLOSE is a command and a statement that is used to close a file that
was opened by the OPEN command. CLOSE stops the flow of in-
formation to a file or disk.

Format: CLOSE 1, file number

Also see: INPUT#, OPEN, PRINT#, STORE

PET * The CLOSE command or statement is used in PET
CLOSE BASIC. To read from TAPE 1 use the following
statements:
OPENS3, 1,0 opens file 3 on device 1 (tape recorder).
The 0 is the secondary address that tells the computer
to read a file.
INPUT#3,A$ reads back a value from the tape which
is stored in the string A$.

CLOSE 3 closes file number 3.

TRS-80 - CLOSE is used in the DOS (disk operating system).
CLOSE

CLR command, statement

The CLR command and statement is an abbreviation for CLEAR,
which is used to set all variables to zero.

Also see: CLS, CLEAR

Apple * The CLR command and statement is used only in In-
CLR teger BASIC. CLEAR is used in Applesoft.

In Integer BASIC CALL 936 clears the screen.

PET + The CLR command or statement is used in PET BASIC.
CLR CLR deletes all the stored references to variables, ar-
rays, functions, GOSUB and FOR-NEXT statements.

TRS-80 - CLS in Level I BASIC clears the screen but does not set
CLEAR variables to zero. CLEAR and CLS are both used in
Level II BASIC.

CLS / 11

CLR/HOME key

The CLR/HOME key has two functions. When the key is pressed
without the SHIFT key, the cursor returns home, that is, to the top
left corner of the screen. The video display remains unchanged.
When the CLRZHOME key is pressed with the SHIFT key, the
screen is cleared of all alphanumeric characters and graphics. The
cursor appears in the upper left corner of the blank screen.

Also see: CLS, CLEAR, CLR

Apple + CLR is used in Integer BASIC, but it does something dif-
CLR ferent. CLR is a short form for CLEAR, which sets all
variables to zero.

CALL-936 is used in Integer BASIC to clear the screen.
PET + The PET CLR/HOME key returns the cursor to the top
CLR/ left of the video screen. The characters on the screen re-
HOME main the same.

The SHIFT and CLR/HOME keys, pressed at the same

time, clear the screen and return the cursor to the top
left of the screen.

The clear screen command can be inserted into a pro-
gram by using CHR$({147).

The home cursor command can be inserted into a pro-
gram by using CHR${19).

TRS-80 - The CLS is used to clear the screen in both Level I and

CLEAR Level II BASIC.

key The CLEAR key and ENTER key, pressed in that order,
clear the screen and place the cursor at the top left of
the screen.

CLS command and statement

The CLS command and statement clears the video screen in a way
similar to that of the CLEAR key. It may be used in a program line
as in 10 CLS. This is useful when a blank screen is desired for a
fresh video printout. It is often used in games.

Also see: SHIFT @, CLR, CLR'HOME, CHR${)

Apple « Pressing the ESC key puts the computer into the edit
ESC mode. Pressing the SHIFT @ then clears the screen and
SHIFT@ places the cursor in the upper left corner of the screen.

The GR graphics command also clears the screen.
In Integer BASIC CALL-936 clears the screen.

PET - The PET CLR/HOME key, pressed at the same time as
CLR/ the SHIFT key, clears the screen. If a clear screen is
HOME desired in a statement it can be achieved by typing

PRINT "SHIFT CLR'HOME" or ?"SHIFT CLR/HOME".

12 / CMD

In both of these a reverse heart will be displayed in the
statement.
PRINT "3" or 273"
The clear screen command can also be inserted into a
; program by using CHR$(147).
TRS-80 -+ The CLS command and statement is used in both Level
CLS I and Level II BASIC.

The CLS statement is also used to return the video
display to the normal 64 character-per-line mode after it
has been changed to 32 characters per line by the use of
CHRS$(23). (See CHRS$)

CMD command

The CMD command is similar to PRINT# except that in this mode
the computer remains connected to the external device. PRINT and
LIST commands are then carried out on the external device instead
of on the video screen. If the computer is on line to a printer then
CMD LIST will make a hard copy of the program on the printer.

Also see: LLIST, PRINT#

PET + The CMD command is used in PET BASIC.
CMD Format: OPEN 3,4 opens file numbered 3.
CMD 3 the printer listens to number 3.
LIST the program is printed by the printer
({the printer continues to listen after
the listing).
PRINT#3 stops the printer from listening
CLOSE 3 closes file number 3.

TRS-80 -+ LLIST is a similar command in both Level I and Level II
LLIST BASIC.
{colon) operator {See page 93.)

COLOR command and statement

The COLOR command and statement is a special feature specifying
the color to be displayed on the video screen.
Example: 10 color =3 produces a purple color on the screen

Also see: PLOT, VLIN, HLIN, HPLOT

Apple + Applesoft and Integer BASIC both use the COLOR com-
COLOR mand and statement in their low-resolution graphics.

Color Codes

0. black 6. medium blue 11. pink
1. magenta 7. light blue 12. green
2. dark blue 8. brown 13. yellow
3. purple 9. orange 14. aqua
4. dark green 10. gray 15. white
5. gray

COS / 13

, (comma) (ANSI) operator {See page 93.)

CON command

CON is an abbreviation for continue. This command continues a
program’s execution after it has been stopped by STOP, END, or
CTRL C.

CON does not work after an error, editing, typing NEW, or after
the execution of the program has ended normally.

Also see: C., CONT, STOP, END, CTRL C

Apple + The CON command is used in Integer BASIC. The
CON CONT command is used in Applesoft.

PET + The CONT command is used in PET BASIC.
CONT

TRS-80 -+ The CONT command is used in Level II BASIC. In
C. Level I BASIC C. is used as an abbreviation.
CONT

CONT command

CONT is an abbreviation for continue, and continues a program's
execution after it has been stopped by STOP, END, the BREAK key
or the STOP key. CONT does not work after an error, editing,
typing NEW, or after the execution of the program has ended
normally.

Also see: C., CON, STOP, END, BREAK key, STOP key, CLR
Apple + The CONT command is used only in Applesoft. Integer
CONT Basic uses the CON command.

PET « The CONT command is used in PET BASIC. It may
CONT only be executed in the direct mode. It does not work
after the CLR command.

TRS-80 -+ The CONT command is used in Level II BASIC. The C.
CONT command is used in Level I BASIC.

COS (ANSI) function

The COS(X) function returns the cosine of X. The argument "X"
must be in radians.

Apple + The COS function is used only in Applesoft. Programs
COS which use COS cannot be translated directly into In-
teger BASIC.

PET + The COS function is used in PET BASIC.

COS

TRS-80 - The COS function is used only in Level II BASIC.
COS

14 / CRSR

!
CRSR key

The CRSR key moves the cursor down one space. The SHIFT and
CRSR keys pressed at the same time move the cursor up one space.
Cursor up can be written in PRINT statements by the reverse field
71. Type PRINT "SHIFT CRSR” Cursor down can be written into
PRINT statements by the reverse field i . Type PRINT ”CRSR“

Also see: ESC C, ESC D, | ({down arrow)

Apple * Pressing the ESC key followed by the C key moves the
ESC C cursor down one space. Pressing the ESC key followed
ESC D by the D key moves the cursor up one space.

PET . |
! The CRiSR key is unique to the PET.

CRFR Cursor up can be inserted into a program by using
CHR${145).
Cursor down can be inserted into a program by using
CHR$(17).
TRS-80 - The | (down arrow) moves the cursor down to the next
| line.
Cl{SR key

When the SHIFT and CI{SR keys are pressed at the same time, the
cursor moves one space to the left. Cursor left can be written in
PRINT statements by using the reverse field # . Type PRINT
"SHIFT CRSR" Pressing the CRSR key without the SHIFT key
moves the cursor one space to the right. Cursor right can be placed
in PRINT statements by using the reverse field 2 . Type PRINT
"CRSR"

Also see: ESC A, ESC B, — [LEFT ARROW)

Apple + Pressing the ESC key and the A key moves the cursor

ESC A one space to the right. Pressing the ESC key and the B

ESC B key moves the cursor one space to the left. The— (right
arrow) enters the character under the cursor into
memory and moves one space to the right. The — (left
arrow) deletes one character from the line, and moves
the cursor one space to the left.

PEf " The CPESR key is unique to the PET. Cursor left can be
CRSR inserted into a program by using CHR${157). Cursor
right can be inserted into a program by using CHR$(29).

TRS-80 - The space bar moves the cursor one space to the right.
SPACE The ~ (left arrow) moves the cursor one space to the
BAR left, deleting one character from the line.

CTRLC / 15

CSAVE command

CSAVE is used to record a program in the computer's memory onto
cassette tape. (C—cassette; SAVE —save)

CSAVE"A" gives the recorded program the name "A".
Also see: SAVE, LOAD, CLOAD, VERIFY, CLOAD?

Apple + The SAVE command is used in both Applesoft and
SAVE Integer BASIC. VERIFY is used to check a SAVEd
program.

PET « The SAVE command is used in PET BASIC. VERIFY is
SAVE used to check a SAVEd program.

TRS-80 + The CSAVE command is used in both Level I BASIC
CSAVE and Level II BASIC. CLOAD? is used to check a SAVEd
program.

CSNG function

The CSNG function is used to change numbers from double-
precision back to single-precision (C—change; SNG —single}. Dou-
ble-precision numbers are accurate to 16 digits, while single-
precision are accurate to 6 digits.
Also see: CDBL
TRS-80 + The CSNG function is used only in Level II BASIC.
CSNG Example: 10 CLS
20X=1Y=7
30 PRINT"DOUBLE PRECISION 1/7=";
CDBL{X)/CDBL(Y)
35 N=CDBL(X)/CDBL(Y]
40 PRINT" SINGLE PRECISION 1/7=",;
CSNG(N)
50 END
When the program is run the following results:
DOUBLE PRECISION 1/7= .1428571428571429
SINGLE PRECISION 1/7= .142857

The double-precision number changes back to a single-
precision number.

CTRL C command

The CTRL C command is used in the monitor mode to halt the pro-
gram or listing of the program.

Also see: RVS, SHIFT@

Apple « CTRL C is used in Applesoft.

CTRL C .
PET + The RVS key, when held down, slows the listing of a
RVS program, which allows it to be read and studied.

TRS-80 - Pressing the SHIFT@ keys at the same time stops the
SHIFT@ listing or execution of a program. Pressing any letter
will then resume the listing or execution.

16 / CTRLGand CTRL]

CTRL G and CTRL J commands

CTRL G
Pressing the CTRL (control) key and the G key simultaneously
causes the speaker to emit a beep sound.

CTRL J

Pressing the CTRL (control) key and the] key simultaneously
causes a line feed.

Apple + The CTRL G command causes the speaker to emit a
CTRL G beep sound. CTRL J causes a line feed. CALL-922 does
CTRL] the same thing during the execution of a program.

CHRS$(10) causes a line feed during the execution of a

program.
TRS-80 -+ The OUT command can be used in Level II BASIC to
ouT make a noise on the tape recorder.

CTRL X command

The CTRL X command deletes the entire line being typed. After a
line is entered into memory, it may be deleted by typing the line
number and ENTER or RETURN.

Also see: SHIFT

Apple * The CTRL X command is used only in Applesoft.
CTRL X

TRS-80 - Pressing the SHIFT and the — (left arrow) keys at the
SHIFT— same time deletes the entire line being typed.

D. statement

D. is a Level I BASIC abbreviation for the DATA statement. DATA
statements may be placed anywhere in a program. Elements in a
DATA statement must be separated by a comma.

Apple + The DATA statement is used only in Applesoft.
DATA

PET + The DATA statement is used in PET BASIC.

DATA

TRS-80 - The D. abbreviation is used in Level I BASIC. DATA is
D. used in Level II1 BASIC. In Level II BASIC the D without

a period following is used to define a variable as
double-precision with scientific notation.

DATA (ANSI) statement

DATA statements contain data elements that can be read by READ
statements. Each element in the DATA statement must be

DEF / 17

separated by a comma. Commas and ends of lines are considered
terminators for an element of data. To enter DATA statements you
first type the line number, then the word DATA, then the first data
value, then a comma, then the second data value, and so on to the
last data value for the line. No comma is entered at the end of the
line.

Also see: D., , comma, READ
Apple - The DATA statement is used only in Applesoft.

DATA Example: 10 DATA A, "B, "C"
Some DATA statements can be translated into Integer
BASIC.

Example: 1000 DATA 6,20, - 1,6,4,3 can be translated
into Integer Basic by typing 1000 A(l)=6:A(2)=
20:A(3)= ~ 1:A(4) =6: A(5)=4:A(6)=3

PET » The DATA statement is used in PET BASIC. Blanks and
DATA graphics characters are not considered DATA unless
they are surrounded by quotation marks.
Example: 1000 DATA NAME is legal
2000 DATA #, , ISILLEGAL

When loading blanks, colons or commas into DATA
statements, treat them as part of a longer string and
enclose them in quotation marks.

Example: 3000 DATA "NAME: AGE"

TRS-80 -+ The DATA statement is used in Level II BASIC. The ab-
DATA breviation D. is used in Level I BASIC.

DEF (ANSI) statement

The DEF statement allows you to define new functions. The name
of the function is FN, followed by a legal variable name. This state-
ment is useful in defining functions which are not intrinsic to a par-
ticular computer's BASIC language.

Examples:

1. To define a SECANT, SEC(X) function DEF FN §(X)=
1/COS(X) where X is in radians. FN §{X] is used for SEC(X} from
then on in the program.

2. To define the INVERSE COSECANT, ARCCSC(X) DEF FN
C(X)=ATN(1/SQR(X*X ~ 1)} + (SGN(X] -1)*3.14/2. FNC(X] is then
the same as ARCCSC(X).

Also see: DEFDBC, DEFINT, DEFSNG, DEFSTR

Apple + The DEF statement is used only in Applesoft. DEF FN
DEF A{M) = (N -3)*9 defines a function FNM which can be
substituted for M in the defined expression.

Example: FNM(3) would return the number 0, while
FNM(5) would return 18. In the first example (3-3)*9
=0 while in the second example (5-3)*9=18.

18 / DEFDBL

PET + The DEF statement is used in PET BASIC. DEF FN(M)

DEF is acceptable, where FN A6 —letter and number and FN
AO-—letter and letter are both acceptable defined func-
tions.

The user-defined functions must be contained in one
line with not more than 80 characters. String functions
cannot be defined.

TRS-80 - Level II BASIC has a number of built-in defined func-
tions. See: DEFDBL, DEFINT, DEFSNG, DEFSTR

DEFDBI. statement

The DEFDBL statement defines a variable or number as being
double-precision. Double-precision numbers are accurate to 17
digits. (DEF —define; DBL - double}

Example: 10 DEFDBL A,D defines the variables A and D as being
double-precision.

Also see: CDBL, CSNG

Apple + The DEF statement is used only in Applesoft.
DEF

PET » The DEF statement is used in PET BASIC.
DEF

TRS-80 - The DEFDBL is used only in Level II BASIC.
DEFDBL

DEFINT statement

The DEFINT statement defines variables as integers. DEFINT can
be used with multiple variables if they are separated by a comma
(DEF —define; INT —integer).
Examples: DEFINT A, B,C, defines A, B, C as integer.
DEFINT A-F defines A, B, C, D, E and F as integers.

Also see: DEF

Apple + The DEF statement is used only in Applesoft.
DEF

PET + The DEF statement is used in PET BASIC.
DEF

TRS-80 - DEFINT is used only in Level I BASIC. The Z-80 micro-

DEFINT processor, like the 6502, allows only integers from
—32767 to +32767. Less memory is required to store
integer values than non-integer, which is an advantage
in longer programs.

DEFSNG statement

The DEFSNG statement re-defines variables as single-precision in
programs where the DEFDBL statement has been used to make the

DEL / 19

variables double-precision (DEF—define; SNG —single). Multiple
variables may be used after the DEFSNG statment, if separated by
a comma.

Examples: DEFSNG A,B,C re-defines A, B and C as single-
precision. DEFSNG A-F re-defines A, B, C, D, E and F as single-
precision.

Also see: DEF, CDBL, CSNG

Apple + The DEF statement is used only in Applesoft. Applesoft
DEF can deal with numbers with 9-digit precision in the
range + 10 to the power of 38.

PET - The DEF statement is used in PET BASIC.
DEF

TRS-80 - DEFSNG is used only in Level I1I BASIC.
DEFSNG

DEFSTR statement

The DEFSTR statement is used to define variables as string
variables (DEF-define; STR-string). The DEFSTR statement may be
used with multiple variables if they are separated by a comma.

Examples: DEFSTR A,B,C defines A, B and C as string variables.
DEFSTR A-F defines A, B, C, D, E and F as string variables. The $
sign declaration may then be omitted.

Also see: DEF, DIM

Apple + The DEF statement is used only in Applesoft.
DEF

PET + The DEF statement is used in PET BASIC.
DEF

TRS-80 - The DEFSTR statement is used only in Level II BASIC.
DEFSTR When using the DEFSTR and DIM statements in the
same program, always place the DIM statement after
the DEFSTR because the DEFSTR statement resets the
array depth to 10. This would cause problems if the
desired size of the array was more than 10.
Example: 10 DIMAB(30,20) sets array AB to 30x 20.
20 DEFSTRA resets all arrays to 10, which results in ar-
ray AB being set to 10x 10. This would cause more than
half the stored information to be lost.

DEL command

DEL is an abbreviation for DELETE.

Format: DEL 10 deletes line 10. An alternate way to delete is to
type each line number, then press the ENTER or RETURN key.
Typing NEW eliminates all line numbers, that is, the whole pro-
gram is erased from memory.

Also see: DELETE, INST/DEL

20 / DELETE

Apple + The DEL command is used in both Applesoft and In-
DEL teger BASIC. DEL A,D deletes lines A and D.

PET - The PET uses the INST/DEL key to delete lines.
INST/DEL CHR${20) can be used to delete lines during a program
run.

TRS-80 + The DELETE command is used only in Level IT BASIC.
DELETE DELETE A-D deletes lines A to D inclusive.

DELETE command

Format: DELETE 10 deletes line 10. DELETE # to # deletes
specified lines.

Example: DELETE 20-40 deletes all the lines from 20 to 40 in-
clusive. An alternate way to delete is to type each line number,
then RETURN or ENTER. Typing NEW eliminates all line numbers
by erasing the whole program, which is in memory.

Apple + The DEL command is used in both Applesoft and In-
DEL teger BASIC.

PET + The PET uses the INST/DEL key to delete lines.
INST/DEL CHR$(20) can be used to delete lines during a program
run.

TRS-80 + The DELETE command is used in Level II BASIC.
DELETE
DIM (ANS]) statement

The DIM or dimension statement establishes the number of
elements in a numeric or string array.

DIM A (15
dimension array number of elements assigned to the array
name

When the DIM statement is executed, all values stored in each
designated array element are set to zero. Space is set aside for the
specified array with subscripts as in the parentheses.

Apple + The DIM statement is used in both Integer BASIC and
DIM Applesoft.
Example: DIM NAMES$(40) sets aside space for
specified array with subscripts within range.

In Integer BASIC strings must be dimensioned. If A$ is
to be 30 characters long, the user must type: DIM
A$(30) at the beginning of the program to avoid a
RANGE ERR message.

PET + The DIM statement is used in PET BASIC. 10 DIM A(5),
DIM B(6) dimensions matrix A so that it has 5 subscripts and
matrix B so that it has 6 subscripts. BASIC automati-
cally sets up space for ten elements in an array if a one-
dimensional array is used without a DIM statement.

DRAW AT / 21

Space for a ten by ten array is set up automatically if a
two-dimensional array is used without a DIM state-
ment. The DIM statement must be used if more space is

needed.
TRS-80 - The DIM statement is used only in Level Il BASIC. DIM
DIM A$(100) creates an array of 101 string variables from

A$(0) through A$(100).
/ (division sign) (ANSI) operator {See page 93.)
$ (dollar sign) (ANSI} operator (See page 94.)

| (down arrow) key

The | (down arrow]) is a line feed, which makes the cursor move
down to the next line.

Also see: ESC, C, CRSR

Apple + Pressing the ESC key followed by the C key moves the

ESC C cursor down one line. CTRL] causes a line feed.

CTRL] CALL-922 does the same thing during the execution of a
program. PRINT CHR${10) can also be used to create a
line feed during execution of a program.

PET The PET CRSR key moves the cursor down one line.
CRSR

TRS-80 - The | (down arrow) is used in both Level I and Level II
! BASIC.

DRAW AT statement, command

The DRAW AT command draws a defined shape {loaded from
cassette by the SHLOAD command) at a specified location.
Format: DRAW N AT XY
Example: 10 DRAW 1 AT 30,40 draws the shape which has the
number 1 in the shape table starting at the location 30 {X co-ordi-
nate), 40 (Y co-ordinate).

The color is set by the HCOLOR command.
Also see: HCOLOR, SHLOAD, XDRAW AT, SET, RESET, PRINT
AT, PRINT@

Apple + The DRAW AT command is used only in Applesoft
DRAW BASIC.
AT

PET « The PET cursor keys can be programmed to draw
graphics at specific locations on the screen.

TRS-80 - The SET and PRINT@ commands can be used to print
SET or place graphics at specified locations on the screen in
PRINT@ both Level I and Level II BASIC.

22 |/ DSp

DSP statement

The DSP statement displays a specific variable and its value every
time the variable is given a new value. The line number containing
the variable is also shown. NO DSP or TROFF is used to stop this
process.

Also see: TRACE, NO TRACE, TRON, TROFF

Apple + The DSP statement is used only in Integer BASIC.

DSP TRACE is similar in that it displays the line numbers as
the program is executed. Unlike DSP, TRACE does not '
display the values of the variables. NO DSP can be used
to stop the display of a number and its value.

TRS-80 - The TRON statement is used only in Level II BASIC. It

TRON turns on, or displays, the line numbers as each line is
executed. It does not, however, give the value of the
variables used in the program.

E. statement

E. is the Level I BASIC abbreviation for the END statement.
Also see: END

Apple + The END statement is used in both Applesoft and In-
END teger BASIC.

PET + The END statement is used in PET BASIC.

END

TRS-80 - The E. statement is used only in Level I BASIC. Level II
E. BASIC uses the END statement.

EDIT command

The EDIT command is used to start editing a specified line.
Example: EDIT 10 allows the operator to edit line 10 using all the

edit commands. EDIT (no line specified) allows the operator to edit

the first line in the program.

Also see: ESC key

Apple + ESC is used only in Applesoft BASIC. Pressing the ESC

ESC key puts the computer into the edit mode.

PET + Using the PET INST/DEL key is the fastest way to edit a
INST/ line. The PET has two other screen edit keys. They are:

DEL

TRS-80 - The EDIT command is used only in Level II BASIC.
EDIT Some of the editing commands are

END / 23

C, change the next character

D, delete the next character;

I, insert one or more characters

SHIFT 1, terminate the insert command

L, list the line that is being edited but do not ter-
minate editing

S, search for a specified character

ENTER, terminate editing.

ELSE statement

The ELSE statement is used after the IF-THEN statement. When
the IF condition is not met the ELSE statement takes over, and pro-
gram execution goes to the line number specified.

Example: 50 IF X=1 THEN 10 ELSE 20

If the X does equal 1 the program goes to line 10, but if X does not
equal 1 the program continues at line 20.

Without the ELSE the program continues at the next line when the
condition in the IF-THEN statement is not met.

Also see: IF-THEN

The Apple and PET get the same results by placing a
GOTO statement in the line after the IF-THEN state-
ment.
Example: 10 IF X=5 THEN 100
20 GOTO 200

This would be the same as
10 IF X=5 THEN 100 ELSE 200.

Using the ELSE statement often saves memory space.

TRS-80 - The ELSE statement is used only in Level 11 BASIC.
ELSE

END (ANSI) statement

The END statement is used to end the execution of the program
without printing the last line number. This is different from the
STOP statement.
Example: 10 REM
20

999 END
1000 REM SUBROUTINE STARTS HERE
The END statement keeps the subroutine safe from accidental ex-
ecution with the main part of the program. Using CONT after an
END statement causes the program to resume.

Also see: STOP

Apple + The END statement is used in both Applesoft and in In-
END teger BASIC.

24 / ENTER

PET + The END statement is used in PET BASIC.
END

TRS-80 + ENDis used in Level Il BASIC. In Level I BASIC E. may
END be used as an abbreviation.

ENTER key

The ENTER key is used to signify the end of an input line. On all
three computers CHR$(13) can be used to generate a return during
a program run.

Also see: RETURN

Apple + The RETURN key is used on the Apple II computer.
RETURN

PET + The RETURN key is used on the PET computer.
RETURN

TRS-80 - The ENTER key is used on the TRS-80 computer.
ENTER

= (equal sign) (ANSI) operator (See page 94.)
ERASE statement

The ERASE statement cancels all the reserved space in memory. It
cancels the CLEAR(N) statement.

Also see: CLEAR

TRS-80 - The ERASE statement is used only in Level II BASIC.
ERASE

ERL function

The ERL function is used with the ON-ERROR statement to iden-
tify the line in which an error occurred. The line number contained
in the ERL function changes each time an error occurs.

Example: 10 ON ERROR GOTO 100

160 PRINT "THERE IS AN ERROR IN LINE";ERL
Also see: ON ERROR

TRS-80 - The ERL function is used only in Level II BASIC.
ERL

ERR function

The ERR function is used to identify the error code of the last error.

It changes each time an error occurs.

TRS-80 -« The ERR function is used only in Level II BASIC. The

ERR ERR value must be divided by 2, and then 1 added to
the answer, to get the actual error code.

ESCC / 25

ERROR command, statement

ERROR is used to simulate a program error.
Example: ERROR A causes an error message to be printed.

The type of error is specified by the error code, represented by the
operand A.
Example: 10 ERROR 14 prints OS ERROR IN 10

See your own manual for error codes and statements for error
handling.

TRS-80 - The ERROR command and statement is used only in
ERROR Level II BASIC.
ESC A command

Press the ESC key to get into edit mode. The A key can then be
pressed to move the cursor one space to the right. Press the REPT
key to repeat the movement.

Also see: SPACE BAR, CRSR, REPT, EDIT

Apple + The Apple II computer uses the ESC A command to

ESC A move the cursor one space to the right.
PET * Pressing the PET cursor key (CRSR) without a SHIFT
CRSR moves the cursor one space to the right.

TRS-80 - The TRS-80 SPACE BAR or — (right arrow) key moves
SPACE the cursor one space to the right. CHR$(25) can also be
BAR used for the — (right arrow}.

ESC B command

Pressing the ESC key puts the computer in the edit mode. If the B
key is then pressed the cursor moves one space to the left.

Also see: CRSR, — (left arrow)
Apple + The Apple II Computer uses the ESC B command to

ESC B move the cursor one space to the left.
PET * Pressing the PET cursor key CIE:SR and the SHIFT key
CRSR at the same time moves the cursor one space to the left.

CHR${157) can also be used to move the cursor one
space to the left.

TRS-80 - Pressing the TRS-80 -~ (left arrow) key moves the cur-
- sor one space to the left. CHR$(24) and CHR${8) can
also be used for the — (left arrow).

ESC C command

Pressing the ESC key and the C key moves the cursor down one
line. ESC puts the computer into the edit mode, so that other com-
mands can be executed.

26 / ESCD

t
Also see: down arrow, CRlSR

Apple - The Apple II computer uses the ESC C command to
ESC C move the cursor down one line.

PET + Pressing the PET cursor key (CRSR} once moves the
l

1
CRISR cursor one line down. CHR$(17) can also be used to
move the cursor one line down.

TRS-80 - Pressing the TRS-80 | {down arrow) key moves the cur-
| sor one line down. The down arrow is a line feed.
CHR$(26) can also be used for the | (down arrow}.

ESC D command

Pressing the ESC key puts the computer into the edit mode; then
pressing the D key moves the cursor one line up.

1
Also see: CRlSR

Apple + The Apple II computer uses the ESC D command to

ESC D move the cursor up one line.

PET + Pressing the SHIFT key and the cursor key at the same
1 time moves the cursor one line up. CHR$(145) can also

CRJSR be used to move the cursor one line up.

TRS-80 -+ Pressing the TRS-80 t (up arrow) key moves the cursor
t one line up. CHR${27) can also be used for the 1 {up
arrow).

ESC E command
ESC F command

Pressing the ESC key puts the computer in the edit mode. Pressing

the E key then clears the screen from the position of the cursor to
the end of the line.

CALL-868 will do the same thing during execution of a program.

Pressing the F key after the ESC key clears the screen from the cur-
sor position to the bottom of the page.

CALL-958 will do the same thing during execution of a program.

Apple + The Apple II Computer uses the ESC E command to

ESCE clear the screen from the current cursor position to the

ESCF end of the current line. The ESC F command clears the
screen from the current cursor position to the end of the
screen.

PET - The SYS command can be used to simulate an escape
SYS back to a specific line (example a menu} by placing the

following line after every INPUT line: IF A$="@"
THEN POKE167,1:5YS850583: GOTO 1000 where A$
changes to correspond to the same variable used in the
INPUT statement, and 1000 is the line to which the user
wants to escape. The "@" can be any key the user wants.
The "@" key is not often used, and therefore is a good
choice.

TRS-80 - InLevel II BASIC CHR$(30) clears the screen to the end
of the line. CHR$(31) clears the screen to the end of the
page.

! (exclamation mark) operator (See page 95.)

EXP ([ANSI) function
The EXP function is the opposite of the LOG function. EXP(n) com-
putes the natural logarithm’s base value e (2.718289) raised to the

power of (n).
Example: A=EXP(2) is A=2.718289 * 2.718289 or

A=(2.718289)2
Also see: LOG
Apple + The EXP function is used only in Applesoft. Programs
EXP using EXP cannot be translated directly into Integer
BASIC.

PET + The EXP function is used in PET BASIC.
EXP

TRS-80 - The EXP function is used only in Level II BASIC.
EXP

F. statement

The F. statement is an abbreviation for the FOR statement, and is
part of a FOR-TO-NEXT statement. It assigns numbers to numeric
variables.
Example: 10 F. A=1 TO 10
20 PRINT"HELLO"
30 NEXT A

In this example, A is given the value of 1 and HELLO is printed.
When the NEXT A is encountered in line 30, A=2 and HELLO is
printed again. This continues until HELLO has been printed ten
times.

Also see: FOR, FOR-TO-NEXT

28 / FIX

Apple « The FOR statement is used in both Applesoft and In-
FOR teger BASIC.

PET + The FOR statement is used in PET BASIC.
FOR

TRS-80 - The FOR statement is used in Level II BASIC. Level I
F. BASIC uses the F. statement or the FOR statement.

FIX function

The FIX function removes all numbers to the right of the decimal
point. Unlike the INT function, it does not round negative
numbers.

Example: 10 A=3.7865 10 A= -3.7865
20 B=FIX(A) 20 B=FIX(A)
30 PRINT B 30 PRINT B

The program in the first example prints the number 3. The program
in the second example prints the number —3. In both cases the
.7865 has been removed.

Also see: INT

TRS-80 -+ The FIX function is used in Level II BASIC.
FIX

FLASH command, statement

The FLASH command causes the output on the screen to flash,
alternately showing white on black and then black on white. The
NORMAL command is used to return to the non-flashing display.

Also see: NORMAL, CHR$, OFF/RVS

Apple + The FLASH command or statement is used only in
FLASH Applesoft.

PET « The RVS key is used in PET BASIC. It reverses the
RVS video display from the usual white on black to black
characters on a white background. The RVS key can be
programmed along with its opposite, the SHIFT RVS
key, which returns the display to normal. Flashing can
be programmed by using the RVS and SHIFT RVS in
turn.
Example: 10 PRINT" THIS IS A DEMO"
20 FOR A=1TO 500: NEXTA
30 PRINT"[HOME key||SHIFT RVS| THIS
IS A DEMO”
40 FOR A=1 TO 500: NEXTA
50 GOTO 10

CHRS$ can also be used to reverse the field and return to
normal.
RVS on CHR$(18); RVS off CHR$(146)

FRE / 29

FN function

The FN function is used with the DEF statement to specify the
defined variable of the operator.
Example: 10 DEF FNA(R)=3.14*R*R
20 PRINT"ENTER A RADIUS OF A CIRCLE"
30 INPUT R
40 C=FNA(R)
50 PRINT"THE CIRCUMFERENCE OF A CIRCLE
WITH RADIUS"R;"1S";C

Also see: DEF, DEFDBL, DEFINT, DEFSNG, DEFSTR
Apple + The FN function is used only in Applesoft.

FN DEF FN A[X)=X*2+3 defines a function FNA. The
FNA is substituted for X in the defined expression.
FNA(5) gives an answer of 13.

PET - The FN function is used in PET BASIC. Other ways to
FN write the function are FNAG6 (letter and number), and
FNAO (letter and letter).

The user-defined functions must be contained on one
line (80 characters). String functions cannot be defined.

TRS-80 - Level II BASIC has a number of built-in defined func-
tions that are similar to the FN functions. See DEFDBL,
DEFINT, DEFSNG, and DEFSTR.

FOR (ANSI) statement

The FOR statement is part of a FOR-TO-STEP-NEXT statement,
and assigns numbers to specified numeric variables. Each time
NEXT is encountred the number after FOR is incremented by the
STEP value (one if STEP was omitted). When the number following
TO is exceeded, program execution continues with the line follow-
ing the one which contains the NEXT statement.

Also see: NEXT, STEP

Apple + The FOR statement is used in both Applesoft and In-
FOR teger BASIC.

PET + The FOR statement is used in PET BASIC.
FOR

TRS-80 -+ The FOR statement is used in both Level I BASIC and
FOR Level II BASIC.

FRE function, statement

The FRE function is used to determine the amount of memory
space available in the computer. FRE(0) returns the total amount of
free memory space. FRE{A$) is used to tell the operator how many
bytes of total string space are free in the computer's memory. The
argument must be enclosed in parentheses.

30 / G.

Also see: MEM

Apple - The FRE(0] function is used only in Applesoft.
FRE

PET + The FRE(0) function is used in PET BASIC.
FRE 10 PRINT "% FOR A=1TO 10
20 INPUT "ENTER A STRING";A${A)
50 PRINT "THERE IS NOW ";FRE(0};" BYTES OF
SPACE LEFT"
60 NEXTA

Try the above program and experiment with it to
discover the amount of space that is used by strings.

TRS-80 - The FRE function is used in LEVEL II BASIC.

G. statement

G. is an abbreviation for the GOTO statement.
Also see: GOTO

Apple - The GOTO statement is used in both Applesoft and In-
GOTO teger BASIC.

PET + The GOTO statement is used in PET BASIC.
GOTO

TRS-80 -+ The G. statement is used in Level I BASIC. Level II
G. BASIC uses the GOTO statement.

GET command, statement

The GET command scans the keyboard until a character is typed. It
waits for the operator to type, and then continues with the execu-
tion of the program.
Example: 10 GET X
20 IF X=""THEN 10

Line 20 tells the computer that if X is null, or if nothing has been
typed on the keyboard, THEN return to line 10 and try again. This
continues until the X condition in the IF statement is met.

Also see: INKEY $

Apple - The GET$ command is used only in Applesoft. In a pro-
GET$ gram, GET$ waits for the operator to type a one-
character value for A$. Pressing the RETURN key is not
necessary.
Example: 10 GET A$: IF A$=" " THEN 10

GOSUB / 31

GET ANSS$ can suspend program execution until a
character is typed on the keyboard. The character is not
displayed on the screen.

PET - The GET statement is used in PET BASIC. Only
GET numeric values are accepted as input for the GET state-
ment. If GET variable $ is used, then a numeric or
string character can be entered.
Example: 10 GET V§: IF V$=""THEN 10 or
10 GET Z$: IF Z$=" " GOTO 10
In both examples, if a numeric or string character is not
typed on the keyboard, execution stays in the same
line. Program execution continues when a character is
typed.
TRS-80 - The INKEY$ statement is used in Level II BASIC. It per-

INKEY$ forms the same way as GET, except string characters
are also acceptable.

GET# command

The GET# retrieves a single character at a time from a cassette tape.
The character is placed in the field specified following the GET#.
Format: GET# file, field

Also see: INPUT#

PET « The GET# command is used in PET BASIC. INPUT#
GET# can also be used.

TRS-80 + INPUT #-11is used in both Level I and Level II BASIC.
INPUT#
-1

GOS. statement
GOS. is an abbreviation for the GOSUB statement.
Also see: GOSUB

Apple - The GOSUB statement is used in both Applesoft and In-
GOSUB teger BASIC. In Applesoft, the GOSUB statement must
be followed by a line number. In Integer BASIC,
GOSUB may be followed by a variable or expression.

PET + The GOSUB statement is used in PET BASIC.
GOSUB

TRS-80 -+ The GOS. statement is used in Level I BASIC. Level II
GOS. BASIC uses the GOSUB form.

GOSUB (ANSI) statement

The GOSUB statement transfers execution of the program to a
subroutine at the line specified after the GOSUB.
Example: 5 GOSUB 1000

32 / GOTO

In the example, execution of the program branches to line 1000
every time line 5 is executed. The subroutine which starts at line
1000 must end with a RETURN statement so that execution returns
to the main program.

Also see: GOS., RETURN

Apple + The GOSUB statement is used in both Applesoft and In-

GOSUB teger BASIC. In Applesoft, the GOSUB statement must
be followed by a line number. In Integer BASIC, the
GOSUB statement may be followed by a variable or
expression.

PET « The GOSUB statement is used in PET BASIC.
GOSUB

TRS-80 - The GOSUB statement is used in Level Il BASIC. Level
GOSUB 1 BASIC may also use the abbreviation for GOSUB,
which is G.

GOTO [ANSI]) statement

The GOTO statement transfers execution of the program to a
specified line and continues there.
Example: 10 GOTO 100

When line 10 is reached, the program jumps to line 100 and con-
tinues execution.

Also see: G.

Apple + The GOTO statement is used in both Applesoft and In-

GOTO teger BASIC. In Applesoft, the GOTO statement must
be followed by a line number. In Integer BASIC, the
GOTO statement may be followed by a variable or
expression.

PET « The GOTO statement is used in PET BASIC.
GOTO

TRS-80 - The GOTO statement is used in Level II BASIC. In
GOTO Level I BASIC GOTO or G. may be used.

GR command, statement

The GR command or statement puts the computer into the low
resolution graphics mode. Each time GR is encountered in a pro-
gram, the top 40 by 40 character area is cleared to black. The bot-
tom 4 lines can be used for text.

Also see: PLOT, HLIN-AT, VLIN-AT, HCOLOR, HGR, COLOR,
SCRN, STRINGS$, CHR$(}, APPENDIX C

Apple + The GR statement is used in both Applesoft and Integer
GR BASIC.

HCOLOR / 33

Low Resolution Graphics Commands
GR sets graphics.
COLOR sets color (0 to 15}
PLOT places dot.
HLIN draws a horizontal line.
VLIN draws a vertical line.
SCRN returns color to the screen at a particular point.

PET « The PET has keys which produce screen graphics.
Pressing simultaneously the SHIFT key and a graphic
key produces graphics on the screen.

Example of keys:

AEHUWWW(E)

TRS-80 -+ The TRS-80 uses SET, RESET and STRINGS$ for
SET graphics.
RESET

STRINGS Changing the video display to 32 characters per line

from 64 characters per line can be an effective graphics
function. This is done by placing CHR$(23) in a PRINT
statement.

Example: 10 PRINT CHR$(23);"XXXXXXXXX"

Return to the normal 64 characters per line mode by us-
ing the CLS command. (See CHR$)

> lgreater than) (ANSI) operator (See page 95.)

> = (greater than or equal) operator (See page 95.)

HCOLOR command

The HCOLOR command is used in high resolution graphics to set
the color for the PLOT statement. The colors are numbered from 0
to 7, not O to 15 as in low resolution graphics.

Format: HCOLOR =n where n is a number from 0 to 7

Also see: COLOR, HGR
Apple + The HCOLOR command is used only in Applesoft.

HCOLOR Colors For High Resolution

0 Black 1 4 Black 2
1 Green 5 Orange
2 Violet 6 Blue

3 White 1 7 White 2

34 / HGR

HGR command

The HGR command puts the computer in the high resolution
graphics mode. It clears the top 280-by-160 character area to black,
and reserves the bottom four lines for text.

The HGR2 command (used only in Applesoft) clears the entire
280-by-192 character area of the screen to black.

Also see: HCOLOR, HPLOT, SHLOAD, DRAW, ROT, SCALE
Apple + The HGR command is used only in Applesoft.
HGR High Resolution Graphics Commands

HGR2 and Statements

HCOLOR sets the color {0 to 7).

HPLOT draws a horizontal line.

SHLOAD loads a shape table from cassette.
DRAW draws a shape.

ROT sets rotation.

SCALE sets scale.

HIMEM: command

The HIMEM: command sets the highest memory address available
for the Applesoft program use.

Apple + The HIMEM: command is used only in Applesoft.
HIMEM:

HLIN-AT statement

The HLIN-AT statement displays a horizontal line at a specified
row on the screen.

The GR statement must be executed before the HLIN-AT, or any
other graphics statement, can be implemented. The color of the line
is controlled by the COLOR statement.

Also see: SET, STRINGS$, GR, COLOR

Apple * HLIN is used in both Applesoft and Integer BASIC.

HLIN-AT HLIN Y1,Y2 AT X draws a horizontal line from the
point Y1,X to the point Y2,X. HLIN is used in Low
Resolution Graphics.

PET + The PET uses the special graphics keys to draw lines.

TRS-80 - Level I and Level II BASIC use the SET command and
also the STRINGS$(number, ASCII code) function to
draw lines.

HOME command

The HOME command clears the screen and puts the cursor at the
top left corner of the screen.

HPLOT / 35

Also see: CALL, CLS, CLEAR, CLR/HOME key, ESC E, ESC F

Apple + The HOME command is used only in Applesoft. Integer
HOME BASIC uses the CALL-936 command. (Note: Applesoft
can also use the CALL-936 command.)

To clear part of the screen first press ESC to get into the
edit mode. Then move the cursor to the desired
character and press the F key to erase or clear the rest
of the screen (down to the bottom). Pressing the ESC
key and then the E key erases the rest of the line in
which the cursor is located.

PET + The PET HOME key puts the cursor at the top left cor-
HOME ner of the screen. In a PRINT statement, the cursor can

key be returned home by the use of the reverse field
character & . Type PRINT'CLR/HOME" or ?"CLR/
HOME"

TRS-80 -+ The Level I and Level I BASIC CLS command or state-

CLS ment and the TRS-80 CLEAR key both clear the screen

CLEAR and place the cursor at the top left corner of the screen.

key The ENTER key must be pressed after the CLEAR key.

HPLOT statement

The HPLOT statement places a colored graphics block at a
specified location.

Example: 10 HPLOT 30,20 places a colored graphics block at the
horizontal co-ordinate 30 and the vertical co-ordinate 20.

The horizontal co-ordinate can be any point from 0 to 279. The ver-
tical co-ordinate can be any point from 0 to 159 in the HGR mode
and from 0 to 191 in the HGR2 mode.

Point 0,0 is located in the upper left corner of the screen.

On all three computers the POKE command and CHR$ function
can be used with the PRINT statement to place graphics characters
on the screen.

Also see: HGR, COLOR HGR2, PRINT@, PRINT AT, SET, RESET,
CHRS$, POKE

Apple + The HPLOT statement is used only in Applesoft.
HPLOT

PET « The PET uses cursor control and graphics keys to draw
graphics on the screen. Placing the cursor control keys
inside the program allows the placement of graphics at
specific locations on the screen.

TRS-80 - The SET, RESET, PRINT@ or PRINTAT statements in
Level I and Level II BASIC can be used to place
graphics and other characters at specific locations on
the screen.

36 / HPLOT TO

HPLOT TO statement

The HPLOT TO statement plots or draws a line from the first
specified point to the second specified point.

Format: HPLOT X1,Y1 TO X2,Y2

Example: 10 HPLOT 20,30 to 40,50 draws a line from point 20,30
to point 40,50.

The statement may draw to multiple points.
Example: 10 HPLOT 20,30 TO 40,50 TO 60,70 TO 100,200

Also see: COLOR, HGR, HGR2, HLINE, VLIN, POKE, STRING$

Apple + The HPLOT TO statement is used only in Applesoft
HPLOT BASIC.
TO

PET * The POKE statement can be used in PET BASIC to print
POKE lines of graphics.

TRS-80 -+ The STRINGS statement can be used in Level I and

STRINGS$ Level II BASIC to print graphics in a horizontal line

POKE across the screen. The POKE statement can also be used
to print lines of graphics.

HTAB command

Like VTAB, HTAB starts a printed line at a specified location on the
screen.

Example: 10 HTAB 14 places the cursor at column 14 (there are
40 columns). Unlike TAB, the HTAB command does not have to be
used in a PRINT statement.

Also see: TAB, VTAB, SPC

Apple + The HTAB command is used only in Applesoft BASIC.
HTAB TAB is used in Integer BASIC. TAB can also be used in
Applesoft BASIC. HTAB 5=TAB 5

PET * The TAB and SPC commands are used in PET BASIC to
TAB skip a number of spaces during PRINTing.
SPC

TRS-80 - The TAB command is used in Level II BASIC. T. is used
TAB in Level I BASIC.

I. function, statement
I. is an abbreviation for the INT function.
Also see: INT

IF-GOS. [/ 37

Apple + The INT function is used in Applesoft BASIC.
INT

PET + The INT function is used in PET BASIC.

INT

TRS-80 -+ Thel. function is used in Level I BASIC. Level I1 BASIC
1. uses INT.

IF (ANSI) statement

The IF statement is used in conditional branching statements such
as IF-THEN, IF-GOSUB, IF-LET, IF-GOTO, IF-GOS., etc. It tests
expression values using the relational operators =, >, <, =<,
=<, and < >. If the test is passed or the assertion (e.g. X=3) is
true, execution goes to the specified line after THEN, GOSUB,
GOTO, etc. If the test fails or the assertion is false, then execution
jumps to the next numbered line.
Example: 10 IF X=0 GOTO 1000
20 PRINT"X DOES NOT EQUAL 0"
1000 PRINT"X EQUALS 0"

If the X=0 condition is met, then execution goes to line 1000. If
X < >0, then execution continues to the next numbered line — that
is to line 20.

Also see: THEN, GOTO, LET, GOS., G., GOSUB

Apple - The IF statement is used in both Applesoft BASIC and
IF Integer BASIC.

PET « The IF statement is used in PET BASIC.
IF

TRS-80 - The IF statement is used in both Level I and Level 11
IF BASIC.

IF-G. statement
The IF-G. statement is an abbreviation for the IF-GOTO statement.
Also see: IF-GOTO

Apple + The IF-GOTO statement is used in both Applesoft and
IF-GOTO Integer BASIC.

PET « The IF-GOTO statement is used in PET BASIC.
IF-GOTO

TRS-80 -+ The IF-G. statement is used in Level I BASIC. Level II
IF-G. BASIC uses IF-GOTO.

IF-GOS. statement

The IF-GOS. statement is an abbreviation for the IF-GOSUB
statement.

Also see: IF-GOSUB, IF-THEN

38 / IF-GOSUB

Apple + The IF-GOSUB statement is used in both Applesoft and
IF- Integer BASIC.
GOSUB

PET + The IF-GOSUB statement can be simulated in PET
IF THEN BASIC by the use of the IF-THEN statement and the
GOSUB GOSUB statement.
Example: 10 IF N=2 THEN GOSUB 1000. This state-
ment would be the same as 10 IF N=2 GOSUB 1000

TRS-80 -+ The IF-GOS. statement is used in Level I BASIC. Level
IF-GOS. II BASIC uses IF-GOSUB.

IF-GOSUB statement

IF-GOSUB is a condition branching statement which uses one of
the relational operators =, <=, > =, <>, >, <. If the condition
in the IF-GOSUB statement is met, then execution continues at the
specified line number, which is found after GOSUB. If the condi-
tion is false, then execution continues at the next numbered line. To
return to the main part of the program a RETURN command must
be used at the end of the subroutine.

Example: 10 IF X=1 GOSUB 1000

The subroutine which starts at line 1000 will be executed only if
X=1.If X equals anything else, execution of the program continues
at the next numbered line.

Also see: IF-GOS., GOSUB, IF-THEN, IF-GOTO
Apple + The IF-GOSUB statement is used in both Applesoft and

IF- Integer BASIC.
GOSUB
PET - The IF-GOSUB statement can be simulated in PET

IF-THEN BASIC by the use of the IF-THEN statement and the
GOSUB GOSUB statement, or by the use of the IF-GOTO
statement.
Example: To simulate IF N=2 GOSUB 1000 use the
following lines.
10 IF N=2 THEN GOSUB 1000
or
10 IF N=2 GOTO 100
100 GOSUB 1000

TRS-80 - The IF-GOSUB statement is used in both Level I and
IF- Level II BASIC. Level I BASIC also uses If-GOS.
GOSUB

IF-GOTO statement

IF-GOTO is the same as IF-THEN, but IF-GOTO must be followed
by a line number.
Format: IF (condition) GOTO (program line number)

IF-THEN / 39

Also see: IF-THEN, IF-G.

Apple + The IF-GOTO statement is used in both Applesoft and
IF-GOTO Integer BASIC.

PET « The IF-GOTO statement is used in PET BASIC.

IF-GOTO

TRS-80 -+ The IF-GOTO statement is used in both Level I

IF-GOTO and Level II BASIC. Level I BASIC also uses the IF-G.
statement.

IF-T. statement
IF-T. is an abbreviation for the IF-THEN statement.
Also see: IF-THEN, THEN, IF

Apple - The IF-THEN statement is used in both Applesoft and
IF-THEN Integer BASIC.

PET » The IF-THEN statement is used in PET BASIC.
IF-THEN

TRS-80 - The IF-T. statement is used in Level I BASIC. Level II
IF-T. BASIC uses the IF-THEN statement.

IF-THEN (ANSI) statement

IF-THEN is a conditional branching statement which uses one of
the relational operators =, <=, > =, <>, >, <. If the condition
is met, then execution continues at the line specified after THEN. If
the condition is not met, then execution continues at the next
numbered line. (Exception: See Integer BASIC below.] Commands
may be used after THEN.

Example: 10 IF A=6 THEN STOP

In the example, if A=6 the program stops, but if A equals anything
else, the program continues at the next numbered line.
Format: IF (condition) THEN (program line number)
IF (condition) THEN (statement or command)

Also see: IF, THEN, IF-T.

Apple + The IF-THEN statement is used in both Applesoft and
IF-THEN Integer BASIC.
Example: 50 IF A=10 THEN A=A+1: B=A+10

In most BASICs, including Applesoft, if A=10 then
A=A+1 and B=A+10. However, if A< > 10, then ex-
ecution continues at the next numbered line. In Integer
BASIC, if A#10, then the first statement {A=A + 1) is ig-
nored, but the second statement (B= A + 10) is executed.
Only in Integer BASIC is the first statement ignored
when the IF THEN statement is false. Change our ex-
ample to the following:

50 IF A#10 THEN 60: A=A+1: B=A+10

60

40 / IN.

Here if A is not equal to 10, then the rest of the line is
skipped.
PET + The IF-THEN statement is used in PET BASIC.
IF-THEN
TRS-80 - The IF-THEN statement is used in both Level I

IF-THEN and Level II BASIC. Level I BASIC also uses the IF-T.
statement.

IN. statement
IN. is an abbreviation for the INPUT statement.
Also see: INPUT

Apple » INPUT is used in both Integer BASIC and in Applesoft.
INPUT

PET « The INPUT statement is used in PET BASIC.
INPUT

TRS-80 - The IN. statement is used in Level I BASIC. Level II
IN. BASIC uses INPUT.

IN# command

The IN# command is used to direct the program to take input data
from a slot number where a peripheral is connected.

Example: IN# 4 tells the computer that a peripheral is connected
to slot #4, and that future input will come through slot #4 and not
the keyboard. To reset to normal, enter the command IN#0.

Apple + IN# is used in both Applesoft and Integer BASIC.
IN#

INKEYS$ function

The INKEY$ function reads a character from the keyboard without

stopping execution, while waiting for the ENTER key to be pressed.

The computer scans the keyboard until it receives a message.
Example: 10 IF INKEY$="A" THEN 100 ELSE 10

When the A key is pressed, the program jumps to line 100. If no
key, or the wrong key, is pressed then the program loops back to
line 10 (ELSE 10). This continues until the proper character is
entered.

Also see: GETS$, GET, ENTER

Apple - The GET$ statement is used only in Applesoft BASIC.
GET$

PET + The GET statement is used in PET BASIC.
GET

TRS-80 - The INKEY$ statement is used in Level II BASIC.
INKEY$

INPUT# / 41

INP statement

The INP statement inputs a decimal value, from 0 to 255, from a
port.

TRS-80 + The INP statement is used in Level II BASIC.
INP

INPUT (ANSI) statement

The INPUT statement is used to input a numeric or string variable
from the keyboard. A question mark (?) is printed on the screen and
execution halts until a response is entered. ENTER or RETURN
must be pressed when the input is complete.
Example: 10 PRINT"WHAT IS YOUR NAME"
20 INPUT A$

The INPUT has a built-in ability to output text for prompts. The
above example could be shortened to 10 INPUT*"WHAT IS YOUR
NAME";AS$.

One INPUT statement could ask for 2 or more responses from the
user.
Example: 10 INPUT"WHAT IS YOUR NAME AGE AND
GRADE";A$,B,C

A comma must separate each of the INPUTs. When an INPUT
statement is used, as in the last two examples, a semicolon
separates it from the string variable. Integer BASIC, however, uses
a comma.

Apple - The INPUT statement is used in both Applesoft and In-
INPUT teger BASIC. Applesoft can use a string response to the
INPUT statement.

Applesoft BASIC uses a semicolon after INPUT as in
50 INPUT "ANSWER";N. Integer BASIC uses a comma
after the INPUT statement: 50 INPUT "ANSWER", N

PET + The INPUT statement is used in PET BASIC. The max-

INPUT imum length of the INPUT must not exceed 79 charac-
ters. INPUT can have a statement contained within it:
50 INPUT "5*2= ";A

TRS-80 + The INPUT statement is used in both Level I and Level

INPUT II BASIC. The INPUT statement accepts letters,
numbers, or a combination of both.

INPUT# statement

The INPUT# statement is used when taking input data from a
cassette tape. The number specified after the # (number sign] in-
dicates the number of the INPUT device (usually 1 for the cassette).
If the DATA is not loaded properly, an error message is printed.

Also see: CLOSE, OPEN, PRINT#, GET#

42 | INST/DEL

PET + The INPUT# statement is used in PET BASIC.

INPUT# INPUT#1,variable (the variable can be numeric or
string)
Example: 10 OPEN1,1,0'/READ" opens file 1 entitled
READ
20 INPUT#1,A inputs the value of A
30 CLOSE 1 closes file 1

If the data is not properly loaded into the computer, an
error message is printed: 7BAD DATA ERROR.
GET is also used to input data in PET BASIC.

TRS-80 - INPUT#-1, variable (the variable can be numeric or
INPUT# string)

INPUT#-1 is used in both Level I and Level 1I BASIC.

INST/DEL key

The INST/DEL key moves all characters to the right of the cursor,
one space to the right, replacing the character to the left of the cur-
sor. One character is deleted at a time.

One space is inserted by pressing the SHIFT and INST/DEL keys.
This space may then be filled with a character.

Also see: DELETE, DEL, (left arrow)

Apple * The DEL key on the Apple II computer is used to delete
DEL characters.

PET * The INST/DEL key on the PET computer is used to in-

INST/DEL sert or delete characters. CHR$(20} can be used to
delete during a program run. CHR$(148) can be used to
insert during a program run.

TRS-80 - Level 11 BASIC uses the DELETE command to delete
DELETE characters from memory.

INT (ANSI) function

The INT function is used to find the integer value of a number. The
numbers are rounded down to the largest integer equal to or less
than the argument. Only numbers between -32767 and + 32767
can be used.
Example: 10 INT(- 3.5) prints ~4
20 INT {9.9) prints 9
30 INT (.25} prints O

Apple * The INT function is used only in Applesoft. Integer

INT BASIC has no INT function because all values are
already integers. When translating a program to Integer
BASIC, delete all INT(} functions.

— (leftarrow) / 43

PET « The INT function is used in PET BASIC.
INT

TRS-80 - The INT function is used in both Level I and Level 11
INT BASIC.

INVERSE command, statement

The INVERSE command sets the screen output to black on white
instead of the usual white on black. The NORMAL command
returns the screen output to white characters on black.

Also see: OFF/RVS key, SET

Apple + The INVERSE command is used only in Applesoft. In-
INVERSE teger BASIC uses the POKE 50,127 statement to achieve
the same result.

PET + The PET uses the RVS key to produce the reverse field.

RVS key The reverse field can be inserted into a program run by
using CHR$(18). The reset reverse field can be inserted
into a program by using CHR$({146).

TRS-80 - A reverse field can be achieved in graphics by using the
SET command.

L. command

The L. command is an abbreviation for the LIST command.
Also see: LIST

Apple + The LIST command is used in both Applesoft and In-
LIST teger BASIC.

PET « The LIST command is used in PET BASIC.
LIST

TRS-80 + The L. command is used in Level I BASIC. Level II
L. BASIC uses the LIST command.

— (left arrow) key

The ~ (left arrow) deletes one character from the line being typed,
and moves the cursor one space to the left.

Also see: C}iSR

Apple + The - (left arrow) key is used on the Apple Il computer
— to delete characters to the left of the cursor.

44 |/ LEFT$

PET * Pressing the SHIFT key and the cursor CR;SR key at the
CRSR same time moves the cursor one space to the left. To
- delete or change a character, another character must be
typed when the cursor is on top of the one that is to be

replaced or changed. The reverse field character #§
can be used in PRINT statements to achieve the same

results.
TRS-80 - The — (left arrow) key is used on the TRS-80 computer.
- A number specified before the — (left arrow), while in

edit mode, moves the cursor the specified number of
spaces to the left, and erases all the characters in be-
tween. Pressing the SHIFT - (left arrow) deletes the
entire line currently being typed.

LEFT$ function

The LEFT$ function is used to select part of a string for use
elsewhere. The LEFTS$('string’, number) function returns the
specified number of string characters, starting from the left side of
the string. A comma must separate the string and the number, and
quotation marks must be used around the printed string ("ARTIST")
if it is not a string variable (A$).

Example 1: 10 PRINT LEFT$ ("ARTIST",3) returns the first 3 let-
ters or ART.

Example 2: 10 A$ ="ARTIST"

20 PRINT LEFT$(A$,3)

This also returns the first three letters or ART. The string and/or
number inside the argument may be variables.
Example 3: 10 LEFT$(A$,X) where both A$ and X are variables

that are stored elsewhere in the program

If the number inside the argument is larger than the number of

characters in the string, the whole string will be returned.

Also see: MID$, RIGHTS$

Apple - The LEFTS$ function is used only in Applesoft. Though

LEFT$ LEFT$ is not used in Integer BASIC, there are other
string handling notations. A$(N) prints all the charac-
ters of A$ starting with the Nth character. A$(N,P)
prints all the characters starting with the Nth character,
and ending with the Pth character.

To translate LEFT$(A$,3) to Integer BASIC the user
would type A$(1,3). In general LEFT$(A$,N)=A$(1,N).

PET » The LEFT$ function is used in PET BASIC.

LEFT$ If the specified number used after the LEFT$ is
negative, zero or greater than 255 then an ILLEGAL
QUANTITY ERROR is printed.

TRS-80 + The LEFT$ function is used only in Level II BASIC.
LEFT$

LIST / 45

LEN function

The LEN function measures the length of strings by counting the
number of characters in the string variables. Non-printable
characters and blanks are also counted.
Example 1: 10 PRINT LEN({"ARTIST") prints 6
Example 2: 10 PRINT "WHAT IS YOUR NAME’
20 INPUT A$
30 PRINT"YOUR NAME CONTAINS";
40 PRINT LEN{A$); © CHARACTERS"

The program in Example 2 prints the number of characters in your
name (A$).

Apple - The LEN function is used only in Applesoft.
LEN

PET - The LEN statement is used in PET BASIC. It may be
LEN used as part of a numeric expression.

TRS-80 - The LEN function is used only in Level II BASIC.
LEN

< (less than) (ANSI) operator (See page 96.)

< = (less than or equal operator (See page 96.)

LET (ANSI) statement

The LET statement is used to assign numeric values to variables.
Example: 10 LET A=15

LET is optional LET A =B produces the same result as A=B.

Apple - The LET statement is used in both Applesoft and In-
LET teger BASIC.

PET - The LET statement is used in PET BASIC.
LET

TRS-80 - The LET statement is used in both Level [and Level I
LET BASIC.

LIST command

The LIST command displays a program listing starting with the
lowest number. The listing normally scrolls to the end unless it is
stopped. LIST 10 lists only line 10. LIST 10-100 lists all lines from
10 to 100 inclusive.

Also see: L.
Apple + The LIST command is used in both Applesoft and In-
LIST teger BASIC.

PET + The LIST command is used in PET BASIC. This com-

LIST mand may be entered as LIST or LIST- to list the entire
program. LIST A- lists the program from line A to the
end. LIST -A lists the program up to line A.

46 / LOAD

TRS-80 + The LIST command is used in Level II BASIC. In Level I
LIST BASIC L. is used.

Pressing the SHIFT@ at the same time stops scrolling.
The listing of the program continues when any charac-
ter key is pressed.

LOAD command

The LOAD command is used to load a program from tape into the
computer. The program in computer memory is erased as the new
program is loaded.

Also see: CLOAD

Apple + The LOAD command which loads a program from tape
LOAD is used in both Applesoft and Integer BASIC. Only
RESET can interrupt a LOAD.

PET * The LOAD command is used in PET BASIC. It has
LOAD several forms:

LOAD loads the first program encountered on the
tape.

LOAD"GAME" searches for the file named "GAME"
and then loads it.

LOAD"GAME" 2 searches for the file on input device
#2; when found, it is loaded.

10 LOAD"GAME" is used in a program. Execution of
the program stops until "GAME" is loaded. The new
program starts execution from its lowest number.

Pressing L and then SHIFT O starts the loading pro-
cess without printing out the whole word on the
keyboard.

Pressing the SHIFT RUN/STOP keys at the same time
also starts loading from the cassette tape (2.0 ROM's).

TRS-80 + The CLOAD command is used in Level I and Level II
CLOAD BASIC. CLOAD"A" searches for the program named
"A"; when found, it is loaded.

LOG (ANSI) function

The LOG(n) function computes the natural logarithm of the specific
argument (number inside the brackets). To compute common logs
from natural logs, multiply the natural log by .434295. To compute
the natural log from a common log, multiply the common log by
2.3026.
Example: 10 X=LOG/(2)
computes the natural log of the number 2.

Apple * The LOG function is used only in Applesoft. Programs

LOG using LOG cannot be translated directly into Integer
BASIC.

MEM /| 47

PET « The LOG function is used in PET BASIC.
LOG

TRS-80 + The LOG function is used in Level II BASIC.
LOG

LOMEM: command

The LOMEM: command sets the lowest memory address available
to the Applesoft program user.

Apple + The LOMEM: command is used only in Applesoft.
LOMEM:

M. function, command, statement
M. is an abbreviation for the MEM command and statement.
Also see: MEM, FRE

Apple + The FRE(0) function is used only in Applesoft. It returns

FRE(0) the amount of memory still available to the operator.
PET + The FRE(0) function is used in PET BASIC. It reports
FRE the total amount of unused memory space.

TRS-80 + The M. function is used in Level I BASIC. In Level II
M. BASIC MEM is used. FRE(0) and FRE(A$) are also used

in Level II BASIC.

MAN command

If the computer is in the automatic line numbering mode, the
operator must press control X {CTRL X), then MAN and RETURN
to begin inserting program lines manually.

Also see: AUTO

Apple - The MAN command is used only in Integer BASIC.
MAN

TRS-80 -« In Level 11 BASIC if the computer is in the automatic

BREAK line numbering mode, pressing the BREAK key returns

key the computer to the monitor or command mode, which
requires the manual insertion of line numbers.

MEM command, statement

MEM is used with the PRINT command to tell the user the number
of unused bytes of memory remaining in the computer. It can also
be used in a program line or subroutine such as

1000 PRINT MEM;"BYTES OF MEMORY REMAINING"

1001 RETURN

48 / MIDS$

In longer programs, this helps keep track of how much memory
space is left.

Also see: M., FRE
Apple - The FRE(0) function is used only in Applesoft. It returns

FRE(0) the amount of memory still available.
PET * The FRE(0) command is used in PET BASIC. It reports
FRE(0) the total amount of unused memory space.

TRS-80 - In Level Il BASIC PRINT MEM displays the amount of
MEM memory space still available. If the statement PRINT
MEM is used just after the computer is powered up, the
following will appear:
for 4K—3284 bytes
for 8K—7428 bytes
for 16K~15,572 bytes
for 32K-31,288 bytes
for 64K -63,274 bytes

Level IT also uses FRE(0} and FRE(A$).

MID$ function

The MID$ function selects characters from the middle of a string.
The MIDS${"STRING", number over, number of letters) function
displays a specified number of letters or elements in a string. The
starting letter or element is specified by the number over from the
beginning of the string. The string must be in quotation marks
{unless it is a variable like A$). The string and numbers must be
separated by commas.
Example 1: 10 PRINT MID$("AUTOMATIC",5,3)

Example 1 prints MAT, which starts with the 5th element of the
string and is 3 letters long.
Example 2: 10 A$ ="AUTOMATIC"
20 PRINT MID$(A$,5,3)

This also prints MAT.

As with the LEFT$ and RIGHTS$ functions, the arguments may all
be variables as in MID${A$,X,Y). The A$ must be a stored string,
while X and Y must be numeric variables stored earlier in the
program.

Also see: LEFTS, RIGHTS

Apple * The MID$ function is used only in Applesoft. Integer

MIDs$ BASIC does not use MID$; however there are other
string handling notations. A$(N} prints all the
characters of A$ starting with the Nth character.
A$(N,P) prints all the characters starting with the Nth
character and ending with the Pth character.

NEW / 49

To translate MID$(A$,2,3) to Integer BASIC, the user
would type A$(2,4). In general MID${AS$ N,P)=

A$(N.N+P-1).
PET - The MID$ function is used in PET BASIC. If either of
MID$ the specified numbers are less than zero or greater than
255, an ILLEGAL QUANTITY ERROR is printed on the
screen.

On the PET, MID$ may be written as MID$(STRING,
number). In this example all the characters from the
specified number to the end will be written. This makes
it similar to the RIGHT$ function.

TRS-80 -+ The MIDS$ function is used only in Level II BASIC.
MID$

MOD function

A MOD B computes the remainder when A is divided by B.
Example: 10 PRINT 11 MOD 5 prints the number 1. (1 is the re-
mainder when 11 is divided by 5.).

Apple » The MOD function is used only in Integer BASIC.

N. command, statement

N. is used as an abbreviation for the NEW command and the NEXT
statement.

Also see: NEW, NEXT

Apple « NEW and NEXT are both used in Applesoft and Integer
NEW BASIC.

NEXT

PET « NEW and NEXT are both used in PET BASIC.

NEW

NEXT

TRS-80 + The N. command and statement is used in Level I
N. BASIC. Level II uses NEW and NEXT.

NEW command

The NEW command erases the resident BASIC program from com-
puter memory. It deletes all program lines and all variables.

Also see: N., CLEAR(n}, CLR'HOME

50 / NEXT

Apple - The NEW command is used in both Applesoft and In-
NEW teger BASIC. It deletes the current program in memory
so that a new one may be entered.

PET + The NEW command is used in PET BASIC. It deletes

NEW the resident program and all variables. The screen
memory is not affected by the NEW command. Even
though the program is erased from memory, the screen
still shows the last video monitor display from that
program.

TRS-80 + The NEW command is used in Level II BASIC. Level I

NEW BASIC uses N. NEW does not change the string space
allocated by a previously executed CLEAR(n|
statement.

When the NEW command is executed, the screen
memory is cleared, and the screen goes blank, except
for the cursor in the upper left hand corner.

NEXT (ANSI) statement

The NEXT statement is used in a FOR-NEXT loop to return execu-
tion of the program to the first statement of the loop. When the loop
value exceeds the limit specified, the loop terminates and the state-
ment following the NEXT statement is executed.
Example: 10 FOR A=1 TO 15

20 PRINT A

30 NEXT A
NEXT A causes the program to jump back to line 10. In this pro-
gram the numbers 1, 2, 3, 4,5,6,7,8,9, 10, 11, 12, 13, 14, and 15
are printed. The A is optional in some BASIC languages.

Also see: N., FOR

Apple + The NEXT statement is used in both Applesoft and In-

NEXT teger BASIC. In Integer BASIC the NEXT statement
must be followed by a variable. In Applesoft the
variable name is optional.

PET - The NEXT statement is used in PET BASIC.
NEXT

TRS-80 - The NEXT statement is used in Level II BASIC. In Level
NEXT I BASIC N. may be used.

NORMAL command, statement

The NORMAL command or statement returns the screen to the
normal display, which is white on black. It turns off the INVERSE
and/or FLASH commands.

Also see: INVERSE, FLASH, OFF/RVS key, CHR${), CLS

Apple + The NORMAL command is used only in Applesoft. In
NORMAL Integer BASIC POKE 50,255 achieves the same result.

OFF/RVS [/ 51

PET - The PET RVS key produces a black on white display.
SHIFT Pressing the SHIFT key and the RVS key at the same
RVS time returns the display to the normal white on black.

The RVS key and SHIFT RVS key can be programmed
by putting them inside quotation marks. See OFF/RVS
for more details on the RVS key.

TRS-80 + In Level II BASIC the CHR$(23) function and CLS com-
CHRS$(23} mand are used to change from one screen format to
CLS another.

CHRS$(23) changes the screen display to 32 characters
per line. The CLS command returns the display to the
normal 64 characters per line.

NOT operator (See page 96.)
<> (not equal){ANSI) operator {See page 97.)

NOTRACE command, statement

The NOTRACE command stops the TRACE function. Both TRACE
and NOTRACE may be used in program statments. TRACE
displays the program lines as they are executed.

Also see: TRACE, TROFF, TRON

Apple + The NOTRACE command is used in both Applesoft and
NO- Integer BASIC.
TRACE

TRS-80 - The TROFF command is used in Level II BASIC to turn
TROFF the TRACE off.

(number sign) operator (See page 97.)

OFF/RVS key

The OFF/RVS key, when pressed, displays the remainder of the
line being typed in reverse field. Reverse field is black on white in-
stead of the usual white on black. The SHIFT OFF/RVS key turns
the reverse field off, or turns it back to normal.

The reverse field can be placed in a PRINT statement by placing
the reverse field character R in quotation marks.

Example: 25 PRINT “ [OFF/RVS]" is typed but a reverse field R
appears in the quotation marks.

The reset can be placed in a PRINT statement by typing PRINT
"[SHIFT OFF/RVS{".

52 / ONERRORGOTO

Also see: INVERSE, NORMAL, FLASH

Apple * The INVERSE command is used only in Applesoft. In-
INVERSE teger BASIC uses POKE 50,127.

PET * The PET uses the OFF/RVS key.

OFF/IRVS The reverse field command can be inserted into a pro-

gram by using CHR$(18).

The off reverse, or reset reverse field command, can be
inserted into a program by using CHR$(146). This key
can also be used in a program.

Example: 10 PRINT"[RVS] THIS IS A DEMO
[SHIFT RVS]"

In this example the words THIS IS A DEMO will be
displayed in reverse field, black on white. SHIFT RVS
returns the display to normal.

[CJrepresents a single or double key, not individual
characters.

ON ERROR GOTO statement

The ON ERROR GOTO statement is used to branch to an error
recovery routine when an error is encountered during execution.
This prevents the program from stopping.
Example: 10 ON ERROR GOTO 100
20 PRINT "7 DIVIDED BY 0 IS"
30 A=7/0
100 PRINT “DIVISION BY ZERO IS IMPOSSIBLE."

When the error in line 30 is encountered, the program jumps to line
100.

Also see: ONERR GOTO, ST.

Apple + The ONERR GOTO statement is used in Applesoft.
ONERR

GOTO
PET * The ST statement is used by the PET to check the status
ST of an I/O {INPUT/OUTPUT) operation. It can be used

as an ON ERROR GOTO statement. If ST=0, then
there are no errors in I/Q. We can use the statement
100 IF ST< >0 THEN 1000. If the status is not equal to
zero (e.g. there is an error), jump to line 1000.

See the ST. statement for information.

TRS-80 - The ON ERROR GOTO statement is used in Level II
ON BASIC.

ERROR

GOTO

ON GOTO / 53

ON G. statement

The ON G. statement is an abbreviation for the ON GOTO
statement.

Also see: ON GOTO

Apple + The ON GOTO statement is used only in Applesoft.
ON
GOTO

PET - The ON GOTO statement is used in PET BASIC.

ON

GOTO

TRS-80 - The ON G. statement is used in Level I BASIC. Level II
ON G. BASIC uses ON GOTO.

ON GOSUB statement

ON GOSUB is a branching statement which evaluates the expres-
sion after ON, and then goes to one of the subroutines specified by
the line numbers after GOSUB.

Example 1: 10 ON A GOSUB 1000,2000,4000

If A is 1, execution goes to line 1000; but if A is 2, it goes to line
2000, and if A is 3, execution jumps to the subroutine starting at
line 4000. If the integer value of A is less than 1 or more then 3, the
test fails and the program does not branch to any subroutine. The
program may continue at the next line, or it may even crash.

Example 2: 100 ON A GOSUB 15000,20000

In Example 2, the integer value of A must be 1 or 2 to insure that
one of the subroutines will be executed. A RETURN is located at
the end of the subroutine.

Also see: GOSUB, RETURN

Apple - The ON GOSUB statement is used only in Applesoft.
ON

GOSUB

PET - The ON GOSUB statement is used in PET BASIC.

ON

GOSUB

TRS-80 -+ The ON GOSUB statement is used in both Level I and
ON Level 1T BASIC.

GOSUB

ON GOTO statement

The ON GOTO statement is a multiple branching statement.
Example: 10 ON Z GOTO 1000,2000,4000

54 / ONERRGOTO

Z is a numeric variable. If Z is 1, GOTO 1000 is executed. If Zis 2 or
3, execution jumps to line 2000 or 4000 respectively. If the integer
value of Z is less than 1 or more then 3, the test in the ON GOTO
statement fails, and the program may either proceed at the next line
or crash.

Also see: GOTO, ON GOSUB

Apple - The ON GOTO statement is used only in Applesoft
ON BASIC.
GOTO Example: 100 ON N GOTO 1000,2000,3000

Integer BASIC can simulate ON GOTO with the follow-
ing:

100 IF N=1 THEN 1000

101 IF N=2 THEN 2000

102 IF N=3 THEN 3000

Another method is to use 100 GOTO N*1000. This
can be used when the lines to GOTO are incremented

evenly.
PET « The ON GOTO statement is used in PET BASIC.
ON
GOTO
TRS-80 - The ON GOTO statement is used in both Level I and
ON Level II BASIC.
GOTO

ONERR GOTO statement

The ONERR GOTO statement causes the program to branch to an
error recovery routine when an error occurs. This prevents the pro-
gram from stopping and an error message being printed.

Also see: ON ERROR GOTO, ST.

Apple - The ONERR GOTO statement is used only in
ONERR Applesoft.

GOTO
PET + The ST statement is used by the PET to check the status
ST of an I/O (INPUT/OUTPUT) operation. It can be used

as an ONERR GOTO statement when I/O operations
are involved. If ST=0 then there are no errors in I/O.
We can use the statement 100 IF ST< >0 THEN 1000. If
the status is not equal to zero (e.g., there is an error}, ex-
ecution of the program jumps to line 1000.

See the ST. statement for more information.

TRS-80 -+ The ON ERROR GOTO statement is used in Level 11
ON BASIC.

ERROR

GOTO

ouT / 55

OPEN command, statement

The OPEN command is used to open a file so that DATA can be
read in.
Format: 10 OPEN 1,1,0'/READ"

file #1 1 input device open tape to look
(1 cassette) for file entitled
"READ"

CLOSE is used to CLOSE the file.
Also see: CLOSE

PET - The OPEN statement is used in PET BASIC. The
OPEN parameters for the OPEN statement are OPEN F, D,
S, F$.

F—File number to be used in INPUT#, PRINT# and
CLOSE statements

D - Physical device number
0=keyboard
1 = 1st cassette tape recorder
2=2nd cassette tape recorder
4 =printer
8 =disk drive

S—Secondary address for tape recorder
O=read file from the tape
1=write file to the tape
2 =write file (end with the end of the tape)

To write to TAPE 1 the following would be used in the
program.

OPEN 3,1,2,"name"

PRINT#3,A$ prints the value of A$ along channel 3 to
the tape recorder and records it.

CLOSE 3 closes file number 3

OR operator (See page 98.)

OUT statement

The OUT statement sends a number to a specified computer output

port. This is often used for sound generation or other types of con-

trol operations. The format is OUT port number, byte number.

Example: 10 OUT 255,1

TRS-80 -+ The OUT statement is used only in Level II BASIC. In a

ouT program, OUT 255,4 turns the cassette recorder on for
music or other effects. OUT 255,0 turns the cassette
recorder off.

P. statement

The P. statement is an abbreviation for the PRINT statement and
for POINT.

Also see: PRINT, POINT

Apple + The PRINT statement is used in both Applesoft and In-
PRINT teger BASIC.

PET + The PRINT statement is used in PET BASIC.
PRINT

TRS-80 - The P. statement is used in Level I BASIC. Level II
P. BASIC uses the PRINT statement and POINT.

P.A. statement
P.A. is the abbreviation for PRINT AT and PRINT@.
Also see: PRINT AT, PRINT@

TRS-80 - The P.A. statement is used in Level I BASIC. Level I
P.A. BASIC can also use the PRINT AT statement to produce
the same results.

Level II BASIC uses the PRINT@ statement.
() (parentheses) {ANSI) operator (See page 98.)

PDI function

The PDL function is used with game paddles. The control units are
identified as PDL(0) and PDL(1).

Apple + The PDL function is used in both Applesoft and Integer
PDL BASIC.

PDL stands for game paddle. There can be up to 3 pad-
dle controls. PDL 1, 2 or 3 returns the setting from 0 to
255 of the specified game control paddle.

Format: PDL 1 returns the setting of game control
paddle number 1.

PEEK statement

The PEEK statement is used to read the contents of a specified ad-
dress in the computer's memory. (See individual manuals for
memory address maps.)

Example: PEEK(A) prints the contents of memory location A.
This will be a number between 0 and 255. PEEK is sometimes used

PLOT / 57

to see what number was POKEd into a memory address, and both
PEEK and POKE are often used with the USR(X]) statement to start
a machine language subroutine.

Also see: POKE, USR()

Apple - The PEEK statement is used in both Applesoft and In-
PEEK teger BASIC. PEEK(-16336) causes a click on the
speaker. In PEEK(X ~A] if the value of (X~ A) is less
than 127, the button on the game control X is being

pressed.
PET + The PEEK statement is used in PET BASIC. In the PET,
PEEK the contents of any address greater than hexadecimal

C000 is always returned as zero.

PEEK can be used to disable the BREAK or STOP key
on the 2.0 or 4.0 ROM PETs. The following line disables
the STOP on both these memory types: 1 POKE144,
PEEK (144} + 3. To re-enable the STOP key use this line:
2 POKE144,PEEK(144) - 3.

TRS-80 - The PEEK statement is used in Level 1I BASIC.
PEEK

% (percent) operator (See page 99.
(period) operator (See page 99.)

PIr key

The = key returns a constant of 3.14159265. This is used in numeric
operations.

PET * The = key is used only on the PET. CHR$(222} or
™ CHR$(255) can be used to print out the symbol on the
screen.
Example: READY.
10 PRINT"THIS IS PI ";CHR$(222)
READY.

When the program is run the result is: THIS IS PI .
PLOT statement

The PLOT statement is used to turn on a color graphics block on the
screen. The block is specified by two numbers following the plot
statement.

Example: PLOT 10,5. The first number {10} indicates the column
and the second number (5) indicates the row. The numbers can be
from 0 to 39 with 0,0 being the top left block on the screen. The
color is black unless otherwise specified.

To turn the color block off, either color the block black (color
number 0), or execute the GR statement. The GR statement erases
the whole screen.

58 / + (plus sign)

Also see: GR, SET, S., COLOR

Apple + The PLOT statement is used in both Applesoft and In-

PLOT teger BASIC. It is used in low resolution graphics.

PET + The PET uses the graphics keys and characters to light
up specific locations, and to do graphics.

TRS-80 - The SET statement is used in Level I and Level II

SET(X,Y) BASIC. The SET(X,Y) command lights up the specified
graphics block. In Level I BASIC S. can be substituted
for SET.

+ (plus sign) (ANSI) operator (See page 100.)

POINT statement
The POINT statement is used with the IF THEN statement to find
out if a specified graphics block is on. A —1 or 1 is returned if the
block is on, and a O if it is off.

Example: 10 IF POINT(1,6)= -1 THEN 100
If the graphics block (1,6} is on, program execution jumps to line
100. If the test fails, execution proceeds to the next numbered line.
PEEK can be used to look into a screen memory location to discover
if a particular character is there.
A =PEEK 15950 sets A equal to the contents of screen memory loca-
tion 15950 (on the TRS-80). In a baseball game an asterisk {ASCII
42) could be the ball, and the screen location 15950 could be the
plate. When the key is pressed to swing the bat, the computer
would do the following: 500 IF A=42 THEN PRINT "A HIT", that
is, if the ball is over the plate there is a hit.

Also see: SCRN, PEEK, Appendix A, Appendix C
Apple + SCRN is used to determine the color of a graphics

SCRN block. If it is not on, a 0, which is the color code for
black, is returned.

TRS-80 - The POINT statement is used in both Level I and Level
POINT II BASIC. A 1 is returned if the block is on, and a 0 if it
is off.

In Level I BASIC, a P. can be used.

POKE statement

The POKE statement puts values from O to 255 into specified
memory locations.

Example: 10 POKE 89,255 pokes the number 255 into memory
location 89.

Also see: PEEK, TEXT, STOP, BREAK key, C., CON, CONT

Apple - The POKE statement is used in both Applesoft and In-
POKE teger BASIC. POKE A,65 pokes the value 65 into
memory location A.

PET
POKE

TRS-80
POKE

POP / 59

POKE 50,127 is the Integer BASIC equivalent to the
Applesoft INVERSE.

POKE 50,255 is the Integer BASIC equivalent to the
Applesoft NORMAL.

POKE 33,33 sets the width of the screen to 33 col-
umns from the normal 40 columns.

Use POKE 33,40, or type TEXT, to reset the column
number to 40.

+ The POKE statement is used in PET BASIC.

The memory address may be from 0 to 65536, and the
bytes to be stored must be from 0 to 255 inclusive.

Format: POKE memory address, number to be poked.

POKE 59468,14 converts all graphic characters to
lower case letters.

POKE 59486,12 and/or turning the computer off and
then on again, returns the PET to its normal graphic
character mode.

POKE 167,0 turns the cursor on {*548,0)*Old ROM's

POKE 167,1 turns the cursor off (*548,1}

To disable the STOP key To re-enable the
STOP key
ROM 1.0 POKE 537,163 POKE 537,133
ROM 2.0 POKE 144,49 POKE 144,46
ROM 4.0 POKE 144,88 POKE 144,85

On the 2.0 and 4.0 ROM PETs POKE 144, PEEK (144} + 3
disables the STOP key. POKE 144, PEEK(144)-3 re-
enables the STOP key.

« The POKE statement is used in Level II BASIC.

POKE 16405,0 disables the keyboard.

POKE 16405,1 re-enables the keyboard. Do not use
these except inside program lines.

POKE 16413,0 disables the video monitor.

POKE 16413,7 re-enables the video monitor.

POKE 16396,23 disables the break key.

POKE 16396,20 (or 16396,201) re-enables the break
key.
POKE 16421,0 disables the printer.
POKE 16421,6 re-enables the printer.

POP command

The POP command removes one address from the RETURN ad-
dress stack.

Apple
POP

+ The POP command is used in both Applesoft and In-

teger BASIC.

60 / POS

POS command
The POS command is used to determine the next position available
to print a character. Any argument can be used. We call this type of
argument a dummy argument.
The POS command can be used in a program line.

Example: 100 PRINT "HERE" TAB(POS(0)+10) "TO HERE IS
TEN SPACES”

The cursor moves ten spaces more than the position {POS) of the
cursor after the first "HERE" is printed.

Also see: TAB, SPC

Apple + The POS{) command is used only in Applesoft. It
POS() returns the current horizontal position of the cursor.
The value can be from 1 to 39.

PET + The POS () command is used in PET BASIC. It returns

POS|() the present horizontal position of the cursor.
TRS-80 - The POS command is used in Level IT BASIC. It returns
POS|{ | a number from O to 63 indicating the current position of

the cursor on the video screen.

PR command

The PR command sends output to a peripheral connected to the
specified slot instead of the T.V. screen.
Example: PR#4 sends output through slot #4.

To reset to normal, enter the PR#0 command.
Also see: OQUT

Apple - The PR command is used in both Applesoft and Integer
PR BASIC.

TRS-80 + The OUT statement is used in Level II BASIC.
ouT

PRINT (ANSI) command, statement

PRINT is used to print numbers or strings on the screen.

Example 1: 10 PRINT A prints the numeric value of the
variable A.

Example 2: 10 PRINT A$ prints the characters stored in the string
variable AS$.

Example 3: 10 PRINT "GOOD" prints the contents of the quota-
tion marks.

The use of commas (,) in PRINT statements spaces the output into
horizontal zones.

The semicolons {;} used in PRINT statements leave no spaces be-
tween letters or words that are separated by them.

TAB is often used with the PRINT statement to insert a number of
spaces before the statement is printed.

PRINT AT / 61

PRINT by itself on a line leaves an empty line during the run of
the program. The ? can be used as a short form for PRINT.

Also see: PRINT AT, TAB, SPC

Apple
PRINT

PET
PRINT

TRS-80
PRINT

+ The PRINT statement is used in both Applesoft and In-

teger BASIC.
The ? can be used as a short form for PRINT.

SPC(X] is used in Applesoft with the PRINT statement
to put X spaces between the last character printed and
the next one.

Semicolons {;) are used to concatenate printed items.

Commas (,) separate items into three tab fields on the
screen.

« The PRINT statement is used in PET BASIC.

The graphics keys can be used in PRINT statements.
This is a good way to do graphics.

« The PRINT statement is used in both Level I and Level

II BASIC. Level I BASIC can use P.
PRINT AT is used in Level I BASIC.
PRINT@ is used in Level 1I BASIC.

The PRINT USING statement is used in Level II BASIC
to print numbers or strings with a particular format.

PRINT AT statement

The PRINT AT statement specifies the starting location of a string
or numeric variable to be printed on the screen.

Example: 10 PRINT AT 10, "HELLO";A$ prints HELLO and the
string (in this case a person's name) at location 10 on the screen.

Also see: AT, @, PRINT, SPC{ |, TAB

Apple
SPC| |

PET
TAB
SPC

+ The PRINT AT statement is used in both Applesoft and

Integer BASIC. The SPC{) command is used in Ap-
plesoft with a PRINT statement to insert a specified
number of spaces between the last character printed
and the next one. The TAB function used with the
PRINT statement can be used in Applesoft. The TAB
statement can be used in Integer BASIC.

+ The PRINT statement is used in PET BASIC.

PRINT TAB(N),"character” can be used to place spaces
before the desired printout. SPC can also be used on the
PET to count a number of spaces from the last cursor
position before printing the next character, word or
sentence.

Using the cursor controls inside quotation marks will
also allow the programmer to PRINT at specific loca-
tions on the screen.

62 / PRINT USING

Example: 10 PRINT"home key|[cursor down][cursor
downl[cursor right{ HERE"

This line will cause the word "HERE" to be printed two
lines down and one space right from the home position,
which is the top left-hand side of the monitor.

TRS-80 + The PRINT AT statement is used in Level I BASIC. A
PRINT short form for PRINT AT is P.A.

AT Level 1I BASIC uses the PRINT@ statement.

If the user hits SHIFT and @ at the same time, @ ap-
pears as usual on the screen, but the ASCII code
number is not correct, and a syntax error will occur
when the program is run.

PRINT AT location 960 is at the bottom left corner of
the video screen. PRINT@960, "down arrow” will cause
a line feed and scroll the whole screen upward. PRINT-
ing a space into location 1023 {bottom right corner) will
also result in a line feed.

See the TRS-80 PRINT AT & TAB GRAPHICS
WORKSHEET.

PRINT USING statement

The PRINT USING statement allows printed output to be displayed
in a specified format. The number sign (#) is used to reserve a posi-
tion for each number.

Format: PRINT USING “string”; value

Example: 5 X=262.2

10 PRINT USING "**##### ##",X

This prints 262.20. Since there are two #'s after the decimal in line
10, a zero is added after the 2 to fill the space. See the TRS-80 Level
IT BASIC Manual for more PRINT USING examples.
The PRINT USING operators, numbers or strings can be specified
as variables.

10 AS$ ="**## ### ##"

20 X=1276.5

30 PRINT USINGAS$;X
This would result in **1,276.50 being printed. Notice that more
than one of the formats were linked together in line 10.
Also see: $,%

TRS-80 - The PRINT USING statement is used only in Level II
PRINT BASIC.
USING

PRINT# statement

The PRINT# statement is used to store data on cassette.
Example: 1000 PRINT#1,A;"";B stores the value of A and B on
cassette recorder #1. This can later be read back into the computer

R. / 63

by using the INPUT# statement. The values in the PRINT# list can-
not exceed 255 characters.

Also see: INPUT#, OPEN, CLOSE, CMD

Apple + The STORE statement is used only in Applesoft.
STORE

PET + The PRINT# statement is used in PET BASIC.
PRINT# Format: PRINT#1, data

Data is transferred, one character at a time, to the tape.
Example: 10 OPEN1,4,0 file#1, device 4 (printer),
0 (start at the beginning)
20 PRINT#1 K prints value K on printer
30 CLOSEL1 closes file #1

CMD may be used in place of PRINT#.

TRS-80 -+ The PRINT# statement is used in Level I BASIC. Level
PRINT# II uses PRINT#-1.
Example: PRINT#-1, A$,B$,C,D,E stores on cassette
the strings A$ and B$, and the numeric values assigned
to C, D, and E.

R. command, statement, function

R. is an abbreviation for RUN, RND (Random) and RESET. (RESET
is used in graphics to turn off a graphics block.)

R. is recognized as RUN when used as a command.

R. is recognized as the RND function when followed by (X) where
X is a numeric variable.

R. is recognized as the RESET statement when followed by (X,Y)
where X and Y are the co-ordinates of the graphics block that is to
be shut off.

Also see: RUN, RND, RESET

64 / RANDOM

Apple + The RUN command is used in both Applesoft and In-

RUN teger BASIC. The RND function has no short form in

RND Applesoft or Integer BASIC.

PET + The RUN command is used in PET BASIC. The RND

RUN function has no short form on the PET.

RND

TRS-80 -+ The R. command is used in Level I BASIC for RUN,

R. RND and RESET. Level IT BASIC uses RUN, RND and
RESET.

RANDOM statement

The RANDOM statement randomizes a set of numbers which are
selected by the RND function. RANDOM insures that a new set of
random numbers will be generated for the RND function each time
the program is run. RANDOM must be placed before the RND
functions in a progam.

Also see: RND

Apple « The RND statement is used in both Applesoft and In-
RND teger BASIC.

PET + The RND function is used in PET BASIC.
RND

TRS-80 - The RANDOM statement is used only in Level II
RANDOM BASIC.

REA. statement

REA. is an abbreviation for the READ statement, which is used to
read stored information from DATA lines.

Also see: READ

Apple + The READ statement is used only in Applesoft.
READ

PET - The READ statement is used in PET BASIC.
READ

TRS-80 + The REA. statement is used in Level I BASIC. Level 1I
REA. BASIC uses READ.

READ (ANSI) statement

The READ statement reads numeric or string DATA from DATA
lines, and assigns that DATA to variables. Each time the READ
statement is executed, the next element in a DATA line is read.
When all the DATA is read, it must be restored, or an "OUT OF
DATA ERROR" occurs.
Example 1: 10 READA,NS$,C
150 DATA 6, "JOHN", 14 assigns 6 to A, JOHN to
N$ and 14 to C.

REM / 65

Example 2: Numbers can be assigned to subscript variables as in
90 FOR A=1 TO 6: READ N(A): NEXT A
100 DATA 6,20,-1,6,4,3

In example 2 N(1) equals 6, N(2} equals 20, N(3) equals -1, etc.
Also see: RESTORE, REA., DATA

Apple - The READ statement is used only in Applesoft. READ
READ X$ assigns the next DATA character or string to X8$.

Integer BASIC can simulate READ...DATA
statements by writing out all the DATA in variable
statements.
Example: 90 FOR A=1TO 6: READ N({A): NEXT A
100 DATA 6,20,~1,6,4,3

These lines can be changed for Integer BASIC.
100 A(1)=6:A(2)=20:A(3) = - 1:A{4) =
6:A(5)=4:A(6)=3
PET - The READ statement is used in PET BASIC.
READ

TRS-80 - The READ statement is used in Level II BASIC. REA. is
READ used in Level I BASIC.

RECALL command

The RECALL command loads an array back from tape after it has
been saved by the STORE command.
Example: 100 RECALL X loads array X into computer memory.

Note: The array must have been dimensioned (DIM) correctly.
Also see: DIM, STORE

Apple + The RECALL command is used only in Applesoft.
RECALL

REM (ANSI) statement

The REM statement is used for program comments. They have no
effect on program execution. REM is often used to identify dif-
ferent sections of the program, such as subroutines. If more than
one line is required for the remark or comment, REM must precede
each line.
Example: 10 REM THE PROGRAM STARTS HERE
100 REM GAME SUBROUTINE

Apple - The REM statement is used in both Applesoft and In-
REM teger BASIC.

PET + The REM statement is used in PET BASIC.
REM

TRS-80 + The REM is used in both Level I and Level II BASIC.
REM The apostrophe {’) can be used as a short form for REM.
Example: 10 * THE PROGRAM BEGINS

66 / REPT

REPT key

Pressing and holding the REPT key after pressing and holding any
other key causes that key to be repeated.

Example: Pressing the REPT and X keys down at the same time
results in the following:
),9.9.0.9.9.0:9.9.9,0.9.0,9.9.0.9.0.9.90.9.0.9,0.0.0.0.0.9.0.9.0.0:0.0°0.0.0.9.0.¢
The X's continue until the keys are released.

Apple + The Apple II REPT key is used to enter multiple
REPT characters.

TRS-80 - The Model II TRS-80 has a REPT key.
REPT

RESET command
The RESET command puts the computer into the monitor mode.
CTRL C or G returns control to Applesoft.

Apple + The RESET command is used in Applesoft.
RESET

RESET statement

The RESET statement is used to turn off a graphics block previ-
ously turned on by the SET command.

Example: 500 RESET({X,Y) where X and Y represent the co-ordi-
nates of a graphics block on the screen. X is the column and Y is the
row.

Also see: SET, PLOT, HPLOT, Appendix C

Apple * PLOT is used in both Applesoft and Integer BASIC.

PLOT HPLOT is used only in Applesoft. PLOT X,Y is used in
low resolution graphics and HPLOT X,Y in high resolu-
tion graphics to place a colored graphics block at a loca-
tion specified by the X and Y.
There is a RESET command in Applesoft (see the
previous reference).

PET * PRINT statements and the PET graphic keys are used to
place graphics in a program.

TRS-80 - The RESET statement is used in both Level I and Level

RESET IT BASIC.

REST. statement

The REST. statement is an abbreviation for the RESTORE
statement.

Also see: RESTORE

Apple + The RESTORE statement is used only in Applesoft.
RESTORE

RET. / 67

PET « The RESTORE statement is used in PET BASIC.
RESTORE

TRS-80 + The REST. statement is used in Level I BASIC. Level II
REST. BASIC uses RESTORE.

RESTORE (ANSI) statement

The RESTORE statement restores all the DATA in the DATA
statements so they can be used again when another READ state-
ment is encountered in the program. It also starts the READing of
DATA at the beginning of a program.

Also see: REST., DATA, READ

Apple - The RESTORE statement is used only in Applesoft.
RESTORE

PET - The RESTORE statement is used in PET BASIC.
RESTORE

TRS-80 + The RESTORE statement is used in both Level I and
RESTORE Level II BASIC. In Level I BASIC REST. may be used.

RESUME statement

The RESUME statement is used with the ON ERROR GOTO
routine. The program resumes at a line specified after the RESUME
statement.

Example: 1000 RESUME 100. This causes the program to resume
at line 100 without stopping and without producing an error
message. If no line is specified, the program resumes at the line
where the error occurred.

Apple - The RESUME statement is used only in Applesoft.
RESUME

TRS-80 + In Level 11 BASIC RESUME NEXT causes the program

RESUME to resume on the line following the line where the error
occurred. RESUME NEXT must be in an error handling
subroutine.

RET. statement

The RET. statement is an abbreviation for RETURN.
Also see: RETURN

Apple - The RETURN statement is used in both Applesoft and
RETURN Integer BASIC.

PET « The RETURN statement is used in PET BASIC.
RETURN

TRS-80 - The RET. statement is used in Level I BASIC. Level 11
RET. BASIC uses the RETURN statement.

68 / RETURN

RETURN key

The RETURN key is used to signify the end of an input line. On all
three computers CHR$(13) can be used to generate a return during
a program run.

Also see: ENTER

Apple + The RETURN key is used on the Apple II computer.
RETURN

TRS-80 - The RETURN key is used on the PET computer.
RETURN

TRS-80 - The ENTER key is used on the TRS-80 computer.
ENTER

RETURN (ANSI) statement

The RETURN statement is used at the end of a subroutine. After a
GOSUB is executed and the subroutine is completed, the RETURN
statement returns execution of the program to the line following the
GOSUB. If a RETURN statement without a GOSUB is encountered
then execution halts and an error message is printed.

Also see: RET., GOSUB

Apple - The RETURN statement is used in both Applesoft and
RETURN Integer BASIC.

PET + The RETURN statement is used in PET BASIC.
RETURN

TRS-80 -+ The RETURN statement is used in both Level I and
RETURN Level II BASIC. Level I BASIC may also use RET. as a
short form.

—(right arrow) key

The — (right arrow) is a cursor control character used to move the

cursor one or more spaces to the right.

Also see: CliSR

Apple + The Apple II — (right arrow) enters the character under
— the cursor into memory, and moves the cursor one

space to the right.
PET * Pressing the PET cursor CI:{SR key once moves the cur-
CRSR sor one space to the right and enters the character

under it into memory. (In PRINT statements the
reverse character B can be used.)

Cursor right can be inserted into a program by using

CHR$(29).
TRS-80 -+ The TRS-80 right arrow (—) moves the cursor to the
- next tab stop. The tab stops are located at positions 0, 8,

16, 24, 32, 40, 48 and 56.

RND / 69

SHIFT— converts the display from 64 characters per
line to 32 characters per line.

CHRS$(9) can be used for the —(right arrow).

RIGHTS$ function

The RIGHT$ function is used to select a number of string
characters in a string. The format is RIGHT${"string", number]. The
number is counted from the right side of the string.

Example: 10 PRINT RIGHT$("UPSTAIRS",6)

This prints the last six characters (STAIRS). A string variable may
also be used.

Example: 10 PRINT RIGHT$(A$,3) where A$ has already been
assigned a string value.

The number of characters can also be expressed as a variable or

arithmetic expression.
Example: 10 PRINT RIGHT$("UPSTAIRS" X + 1)

Note: A comma must separate the string and the number. If the

number inside the argument is larger than the number of
characters in the string, the whole string will be returned.

Also see: LEFT$, MID$

Apple - The RIGHTS$ function is used only in Applesoft. In In-

RIGHTS$ teger BASIC RIGHTS is not used. There are, however,
other string handling notations. A${N) prints all the
characters of A$ starting with the Nth character.
A${N,P) prints all the characters starting with the Nth
character and ending with the Pth character.

To translate RIGHTS$(A$,6) the user would type
A${LEN(A$)-5,LEN(A$))

In general RIGHT${A$ N})=A${LEN({AS$)-N+1,
LEN(AS$)).

PET + The RIGHTS$ function is used in PET BASIC. If the
RIGHTS$ specified number is zero, less than zero or greater than
255, an ILLEGAL QUANTITY ERROR is printed.

TRS-80 -+ The RIGHTS$ function is used only in Level II BASIC.
RIGHT$

RND (ANSI) function

The RND function generates random numbers. This is often used
in games.

Also see: R.

Apple + The RND function is used in both Applesoft and Integer
RND BASIC.

RND(1) returns a random real number between 0 and
0.999999999 inclusive each time it is used.

70 / ROT

PET
RND

TRS-80
RND

RND(0} returns the last random number again.

RND(negative number) returns a different fixed
number for each negative number.

RND(positive number} returns a random number
every time it is used.

In Integer BASIC decimals are not used, so RND|(0)
returns a random number integer between 0 and 9. To
get a random number between 0 and X, Applesoft uses
INT(RND(0)*X + 1).

Integer BASIC uses RND(X) + 1.

+ The RND function is used in PET BASIC.

RND(0] gives the same sequence of random numbers
for each RND call.

RND(negative number) returns the same random
numbers each time it is called.

RND(positive number} gives a new sequence of
random numbers each time RND is called. The range
of numbers generated is from 0.000000000 to
0.999999999. INT(RND(1)*10) gives a random number
between 1 and 10.

RNDjvariable) can be used if that variable has been
defined elsewhere in the program. If the variable has
not been defined, it is given the value zero, and the
resultant numbers are the same as for RND|(0).

+ The RND function is used in both Level I and Level II

BASIC.

RND(0) returns a random number between 0 and
0.999999999999999 inclusive each time it is used.

RND(integer) returns an integer between 1 and the
integer.

ROT statement

The ROT statement sets the rotation angle of the shape from
DRAW or XDRAW.

Format: ROT=N where N is a number.

Example:

40 ROT =0 sets rotation of the shape in a vertical direc-

tion. ROT=16 is for 90 degrees clockwise. ROT=32 is for 180
degrees clockwise.

A series of ROT's could change the position of the shape quickly so
the shape would appear to be spinning.

Apple .
ROT

The ROT statement is used only in Applesoft.

RUN/STOP / 71

RTS command

The RTS command must be the last instruction in a machine
language program that has been accessed from BASIC. RTS causes
the program to return to the original BASIC program.

PET « The RTS command is used in PET BASIC.
RTS

RUN command

The RUN command is used to initiate the execution of the program
in memory, starting at the lowest line number.

A specific line number can be placed after the RUN command.
Example: RUN 100. This causes the execution of the program to
start at line 100.

Also see: R.
Apple + The RUN command is used in both Applesoft and In-
RUN teger BASIC. The RUN command clears all variables

and begins execution at the specified line. If no line
number is specified, execution starts at the lowest line
number in the program.

PET + The RUN command is used in PET BASIC. Pressing the
RUN R key, followed by the SHIFT and U keys, results in the
program starting execution.

TRS-80 + The RUN command is used in both Level I and Level II
RUN BASIC. R. may also be used in Level I BASIC.

RUN/STOP key

Pressing the RUN/STOP key stops program execution and prints
out the line number where it stopped. Pressing RUN/STOP in con-
junction with the SHIFT key starts the loading process.

Also see: LOAD, RUN, BREAK key, STOP

Apple + The RUN and STOP commands are used in Applesoft
RUN and Integer BASIC. Both commands must be entered
STOP letter by letter.

PET + The PET RUN/STOP key causes the program to STOP
RUN/ and print out the line number where it stopped.
STOP Example: BREAK IN LINE 20

SHIFT and RUN/STOP pressed at the same time starts
the LOADing process.

TRS-80 - The RUN and STOP commands are both used in both
RUN Level I and Level II BASIC. Both commands must be
STOP entered letter by letter.

The BREAK key also stops execution and print the line
where it stopped.
Example: BREAK IN LINE 20

S$. function, command, statement

The S. statement is an abbreviation for the STEP and graphics SET
statements. S. is recognized as SET when followed by two numbers
in brackets. The numbers are the co-ordinates of the graphics
block, which is to be turned on.

Example: 10 S. (5,12)

S. is recognized as STEP when it is used with the FOR TO NEXT
statement.
Example: 10 FOR X=1 TO 100 S.2
20 NEXT X

In this example the STEP is equal to 2.
Also see: STEP, PLOT, SET

Apple * The S. statement is used in both Applesoft and Integer
STEP BASIC. The STEP statement replaces S. when S. is used
PLOT as a short form for STEP.

PLOT replaces S. when S. is used as a short form for
SET.

PET + The S. statement is not used in PET BASIC. STEP re-
STEP places S. when S. means STEP, and the graphics keys
replace S. when S. means SET.

TRS-80 - The S. statement is used in Level I BASIC. Level II
S. BASIC uses either STEP or SET.

SAVE command

The SAVE command is used to save programs by transferring them
from the computer's memory to cassette tape.

SAVE’'name" gives a program a name on the tape. LOAD"name"
loads that program back into computer memory from cassette tape.
If more than one program is recorded on the tape, LOAD"name"
searches and LOADs only the program that is named.

Also see: CSAVE, LOAD

Apple + The SAVE command is used in both Applesoft and In-
SAVE teger BASIC.

PET + The SAVE command is used in PET BASIC. It saves the
SAVE program on cassette tape.

SAVE'"GAME" saves and names the file on cassette
tape.

SET / 73

SAVE'GAME" 2 saves and names the file on cassette
recorder #2. When a number is not specified, recorder
#1 is assumed.

SAVE'GAME" 2,1 saves the named file on cassette
recorder #2, and writes an end of tape block.

TRS-80 - The CSAVE statement is used in both Level I and Level
CSAVE II BASIC. (C— cassette; SAVE —save)

SCALE statement

The SCALE statement sets the scale {from 0 to 255) of the shape to
be drawn on the screen from the DRAW or XDRAW commands.

Also see: DRAW, XDRAW

Apple - The SCALE statement is used only in Applesoft.
SCALE

SCRN function

The SCRN function returns the color of the graphics block specified
by two numbers in brackets and separated by a comma.
Example: 200 IF SCRN({10,10) =15 GOTO 10

In the example, if the color of point (10,10} is white (15 = white), the
program continues at line 10.

Also see: COLOR, POINT

Apple - The SCRN function is used for low resolution graphics
SCRN in both Applesoft and Integer BASIC.

TRS-80 - The POINT statement is used in both Level I and Level
POINT 1I BASIC. A 1 is returned if the block is on, and a 0 is
returned if it is off.

(semicolon) (ANSI) operator (See page 101.)

SET statement

The SET statement turns on a graphics block. The location on the
screen is specified by the co-ordinates which are in brackets after
SET.

Example: 10 SET (5,9) turns on the graphics block located at the
intersection of the 5th column and the 9th row. The RESET state-
ment turns off the graphics block.

Also see: PLOT, RESET

Apple + The PLOT statement is used in both Applesoft and In-
PLOT teger BASIC. It is used in low resolution graphics.

HPLOT gpLOT is used for high resolution graphics in

Applesoft.
PET - The PET graphics keys are used for program graphics.

TRS-80 - The SET statement is used in both Level I and Level Il
SET BASIC. Level I BASIC cdn also use the S. form of SET.

74 / SGN

SGN function

The SGN function determines the sign of a number (positive or
negative). If the number is less than 0 (< 0), then -1 is returned. If
the number is greater than 0 {>0), then 1 is returned. If the number
equals equals O (=0), then 0 is returned.

Apple * The SGN function is used in both Applesoft and Integer
SGN BASIC.

PET * The SGN function is used in PET BASIC.
SGN

TRS-80 - The SGN function is used only in Level II BASIC.
SGN

SHIFT@ keys

SHIFT@ halts the execution or listing of a program. Pressing any
key causes execution or listing to continue.

Also see: RVS

Apple * The Apple II CTRL C keys, when pressed at the same

CTRL C time, stop the listing or the execution of a program.

SHIFT@ When the computer is in edit mode, pressing SHIFT@
at the same time clears the screen and places the cursor
in the upper left corner of the screen.

PET * Pressing and holding down the PET RVS key during

RVS listing of a program, slows the scrolling so that it is
easier to read and study. Pressing the STOP key stops
the listing, but when more listing is desired, the
operator must start again from the beginning. This
can be very inconvenient when working with a long
program.

TRS-80 - The TRS-80 SHIFT@ keys are used in both Level I and

SHIFT@ Level II BASIC to stop the program listing or program
execution. ‘

SHIFT INST/DEL key
The SHIFT INST/DEL keys, pressed simultaneously, insert spaces.

PET * Pressing the PET SHIFT and INST/DEL keys at the

SHIFT same time inserts spaces. SHIFT RETURN moves the

INST/DEL cursor to the next line without entering the line into
memory; that line will be ignored during running or
listing.

TRS-80 - Entering EDIT, pressing the "I key and then the space

EDIT I bar, inserts spaces.

space bar

SIN / 75

SHIFT —(left arrow) key

The SHIFT — (left arrow) deletes the entire line currently being
typed.

Apple - The Apple II CTRL X key combination deletes the en-
CTRL X tire line currently being typed.

TRS-80 -+ The TRS-80 SHIFT ~- (left arrow) keys are used in Level
SHIFT I and Level 11 BASIC to delete the line currently being
- typed.

SHIFT — (right arrow) key

The SHIFT - (right arrow) converts the display to a 32 character-
per-line format from the usual 64 character-per-line format.

Clearing the screen using the CLEAR key or the CLS statement
returns the screen to a 64 character-per-line format.

Also see: CLEAR, CLS

TRS-80 + The TRS-80 SHIFT — (right arrow) keys are used in
SHIFT Level I and Level I BASIC to convert the display to the
- 32 character-per-line mode.

SHLOAD command

The SHLOAD command loads a shape table from cassette. The
shape table may have a number of shapes, each of which are given
a number so they can be drawn by the DRAW command.

Also see: DRAW

Apple - The SHLOAD command is used only in Applesoft.
SHLOAD

SIN (ANSI]) function

The SIN(X) function calculates the Sine of the angle X expressed in
radians.

length of opposite side

SINE X = length of hypotenuse

To convert radians to degrees, multiply the number of radians by
57.29578; to convert degrees to radians divide by 57.29578.
Example: to find the sine of 35°, 10 X =SIN(35/57.29578).

Apple - The SIN function is used only in Applesoft. Programs
SIN containing SIN cannot be translated directly into In-
teger BASIC.

PET + The SIN function is used in PET BASIC.
SIN

TRS-80 -+ The SIN function is used only in Level II BASIC.
SIN

76 | SPC

SPC function

The SPC function places a specified number of spaces, or skips
characters, before a string or number to be printed.
Example: 10 PRINT SPC(5); "WHAT IS YOUR NAME"

In the example, 5 spaces or skip characters are placed before the
sentence to be printed.

Also see: TAB

Apple * The SPC function is used only in Applesoft. TAB may

SPC be used with the same result. SPC(N} is used only in the
PRINT statement, and puts the specified number (N} of
spaces between the last element and the next.

PET * The SPC function in PET BASIC places the specified

SPC number of skip characters, not spaces, between the last
character and the next. The range of values are from 0
to 255 inclusive.

TAB may be used with the same effect, except TAB
counts from the left margin each time it counts spaces.

TRS-80 - The TAB function is used in both Level I and Level II
TAB BASIC.

SPEED command, statement

The SPEED command sets the speed of character output onto the
screen. The speed is specified by the numbers between 0 and 255.
Example: SPEED = 100

SPEED can be used to scroll the listing of a program more slowly so
it can be studied. .

Apple * The SPEED command is used only in Applesoft.
SPEED

PET * On the PET, POKE 59458,62 is a speed-up for the 2.0
POKE ROM PETs.

59458,62

TRS-80 - In Level II BASIC, POKE 32763, 1 to 255 controls the
POKE program speed or listing. The higher the number poked
32763,n into memory location 32763, the slower the execution

of the program or the listing. To return the computer to
normal speed use POKE 32763,0.

SQR (ANSI) function
The SOR function calculates the square root of a positive number.
Example: 10 PRINT'THE SQUARE ROOT OF ";X;" IS ";SQR(X)

Apple + The SQR function is used only in Applesoft. Programs
SOR using SQR cannot be translated directly into Integer
BASIC.

STEP [77

PET - The SOR function is used in PET BASIC.
SQR

TRS-80 - The SOR function is used only in Level II BASIC.
SOR

ST. statement
The ST. statement is an abbreviation for the STOP statement.
Also see: STOP

Apple + The STOP statement is used only in Applesoft.
STOP

PET + The PET uses the RUN/STOP key.
RUN/ The PET uses ST to check the status of an /O (In-
STOP put/Output). Some of the common values for ST are
ST listed here.

ST =0 no error

ST =4 short block

ST =8 long block

ST =16 unrecoverable READ error

ST =32 checksum error

ST=64 end of {ile is detected

ST =128 the end of the tape is detected.

Example of use: 100 IF ST =16 PRINT
"UNRECOVERABLE READ ERROR"

TRS-80 -+ The ST. statement is used in Level I BASIC. Level II
ST. BASIC uses STOP.

STEP (ANSI) function

The STEP function is used with the FOR-TO-NEXT statement to
specify the size of the step increment. Positive or negative numbers
may be used after the STEP. If no number is specified + 1 is used as
the STEP value.
Example: 10 FOR X =100 TO 10 STEP -~ 10
20 NEXT X

The number after the STEP can be a variable.
Example: 10 FOR X=100 TO 10 STEP A
20 NEXT X

Also see: S., FOR, NEXT

Apple « The STEP statement is used in Applesoft and Integer
STEP BASIC.

PET « The STEP statment is used in PET BASIC.
STEP

TRS-80 + The STEP statement is used in Level II BASIC. Level 1
STEP BASIC may also use STEP and the short form S.

78 | STOP

STOP (ANSI) statement

The STOP statement halts execution of the program, and prints out
the line number where the stop occurred. The STOP statement can
be placed anywhere in a program.

The purpose of the STOP statement is to stop the program from go-
ing into subroutines or other areas of the program by mistake.
STOP is often placed on the line before a subroutine begins so that
the only way to get to the subroutine is by a GOSUB statement.

Also see: BREAK key, GOSUB, POKE, RUN/STOP key
Apple * The STOP statement is used only in Applesoft. CONT

STOP continues a program's execution after it has been
STOPped.

PET * The operator may use the RUN/STOP key to stop a pro-

RUN/ gram's execution. The program will respond with

STOP BREAK IN LINE N. N is the number of the line where
the program was stopped.

CONT after STOP continues the execution at the point
following STOP.

POKE144,49 disables the STOP key.

POKE144,46 re-enables the STOP key.

Disabling the STOP key prevents accidental BREAKing
of the program.

See POKE for more details on disabling the STOP key
for different ROM sets.

TRS-80 -« The STOP statement is used in Level 1 and Level II
STOP BASIC. In Level II BASIC CONT after the stop con-
tinues the execution.

The BREAK key can also stop a program, but it cannot
be used within a program.

STORE command

The STORE command saves a numeric array on a tape.
Example: STORE X stores or saves on tape the numeric array X.

Note: STORE cannot be used to store or save string arrays.
Also see: PRINT#, CMD

Apple * The STORE command is used only in Applesoft.
STORE

PET + The PRINT# statement is used in PET BASIC. The for-
PRINT# mat is PRINT#1, data. The data is transferred to the
tape a single character at a time.
Example: 10 OPEN 1,4,0 FILE#1, device 4 (printer)
start at beginning
20 PRINT#1,K prints K on printer
30 CLOSE 1 close file #1

STRINGS / 79

The CMD command may also be used in place of the
PRINT# statement.

TRS-80 - The PRINT# statement is used in Level I BASIC. Level
PRINT# II BASIC uses PRINT #-1.
Example: PRINT#-1,A$,B$,C,D,E stores on cassette
tape the strings A$ and B$ and the numeric values of C,
D, and E.

STRS$ function

The STR$ function converts a numeric value into a string so that
the RIGHTS$, LEFT$, MID$ and other string functions can operate
on it.

Example: 10 STR$({20). The number 20 can now be handled as a
string.
Also see: RIGHTS$, LEFT$, MID$

Apple + The STR$ function is used only in Applesoft.
STR$

PET - The STR$ function is used in PET BASIC.
STR$

TRS-80 - The STR$ function is used in Level II BASIC.
STR$

STRINGS$ function

The STRINGS$(number,ASCII code] function is used with the
PRINT statement to print the ASCII character the number of times
specified.

Example: 10 PRINT STRING$(5,42) prints the ASCII character "*"
five times.

The STRINGS$ function is useful in graphics. The string that is
created can have up to 255 repeated characters. Any characters on
the keyboard may be used, except the quotation mark, comma and
colon, which must be printed by using their ASCII code numbers.

Also see: STR$

Apple - The PRINT statement is used in Applesoft and Integer
PRINT BASIC.

PET « The PRINT statement is used in PET BASIC.
PRINT

TRS-80 -+ The STRINGS function is used in Level II BASIC. Level
STRINGS$ II BASIC allows the string characters to be enclosed in
quotation marks, or even to be string variables.
Example 1: 10 PRINT STRING$(5,"Z")
Example 2: 10 A$ ="Z"
20 PRINT STRING#$(5,A$)

In both examples Z is printed five times.

80 / - (subtraction sign)

~ (subtraction sign) (ANSI) operator (See page 102.)

SYS command

The SYS command transfers control of the program to a machine
language program.
Format: SYS(starting address)

To return from the machine language program, the last instruction
in the machine language must be an RTS command.

Also see: SYSTEM, PEEK, POKE, RTS, USR, CALL

Apple - The CALL function is used in both Applesoft and In-
CALL teger BASIC. Applesoft also uses the USR command.

The CALL N function transfers the program to a
machine-language subroutine starting at memory loca-

tion N.
PET + The SYS(N) command is used in PET BASIC. It
SYS transfers control to the machine language program
starting at N. Starting address must not be greater than
65535.

DATA transfer to and from the machine language pro-
gram must be done by PEEKing and POKEing.

The SYS command can simulate an escape key back to a
specific line, by placing the following line after every
INPUT line.

IF A$="@"THEN POKE167,1: SYS50583: GOTO
1000 where A$ changes to correspond to the same
variable as used in the INPUT statement, and 1000 is
the line to which the user wishes to escape.

Typing SYS4 gets the user into the monitor program
and makes it possible to study the internal codes used

by the PET.
TRS-80 - The USR function is used in Level II BASIC. It calls a
USR machine language subroutine.

SYSTEM command

The SYSTEM command allows machine language programs to be
loaded from cassette. Enter SYSTEM and the *? apperars. Enter the
file name and the program starts loading. When loading is com-
plete, another *? appears. Enter a slash / and starting address. If no
address is entered, the program starts at the address specified in the
program.

Also see: SYS, CALL, PEEK, POKE, USR, RTS

Apple + The CALL function is used in both Applesoft and In-

CALL teger BASIC. The CALL N function transfers the pro-
gram to a machine language subroutine starting at
memory location N.

TAB / 81

PET < The SYS command is used in PET BASIC. The SYS(N]
SYSTEM command transfers the program to a machine language
SYS program starting at memory location N.

TRS-80 + The SYSTEM command is used only in Level II BASIC.

T. function, statement

T. is an abbreviation for the TAB function and the THEN state-
ment. T. replaces TAB when it is followed by a number enclosed in
parentheses. T. replaces THEN when used with an IF statement,
and when it is not followed by a number in parentheses.

Also see: TAB, THEN, IF-THEN

Apple « TAB and THEN are both used in both Applesoft and In-
TAB teger BASIC.
THEN

PET - TAB and THEN are both used in PET BASIC.
TAB

THEN
TRS-80 -+ The T. statement abbreviation is used only in Level I
T. BASIC. Level 11 BASIC must use TAB and THEN.

TAB (ANSI) function

The TAB function is used with the PRINT statement to insert a
specified number of spaces before the characters to be printed.
Format: 10 PRINT TAB(N)"string"; TAB(N}"string"
Example: 10 PRINT TAB(10)"HELLO" prints 10 spaces before the
HELLO is printed. As seen in the format, more than one TAB can
be placed in a statement.

A numeric variable or expression may be used inside the paren-
theses.

If the print position is greater than the TAB value, the TAB is ig-
nored.

Example: 10 PRINT'0123456789"; TAB(5). The TAB has no effect.
Also see: T., SPC

Apple « The TAB function is used in both Applesoft and Integer
TAB BASIC. In Applesoft HTAB can also be used; the PRINT
statement is not necessary.

There is no TAB function in Integer BASIC; the TAB
statement is used instead.

82 / TAN

Applesoft: 10 PRINT TAB(6);"*"
Integer BASIC 10 TAB 6: PRINT"*"

PET * The TAB function is used in PET BASIC. TAB places the
TAB cursor at the column specified in the argument. The
range of values can be between 0 and 255 inclusive.
Format: TAB(X)

If X>255 TAB is ignored.

TAB uses skip characters, not spaces, in placing the

cursor.
Example: 10 PRINT TAB(9),"NAME"

SPC may be used in a similar way, except SPC counts
spaces from the last cursor position and not from the
margin, as with the TAB function.

TRS-80 - The TAB function is used in both Level I and Level II
TAB BASIC. Level I BASIC may also use the T. function.

CHR$(9) can be used to TAB during a program.

TAN (ANSI) function

The TAN(X) function calculates the tangent of the specified angle in
radians.

length of opposite side

TAN(X) ~length of adjacent side

To convert from radians to degrees, multiply by 57.29578.

To convert from degrees to radians, multiply by 0.0174533. These
are useful because you must input the angle expressed in radians
into the formula, and then convert back when the computer gives
the result.

Apple » The TAN function is used only in Applesoft. Programs

TAN using TAN cannot be translated directly into Integer
BASIC.

PET + The TAN function is used in PET BASIC.

TAN

TRS-80 + The TAN function is used only in Level II BASIC.

TAN

TEXT command, statement

The TEXT command or statement is used to return from the
graphics mode to normal text mode. The GR command is used to
enter the graphics mode.

Also see: GR, SHIFT—, POKE, CHR$

Apple + The TEXT command is used in both Applesoft and In-
TEXT teger BASIC. The TEXT command is used to place the

TI / 83

computer in a non-graphics text mode. This allows 40
characters per line and 24 lines.

POKE 33,33 changes 40 characters per line to 33
characters per line. To reset this to the normal 40
characters enter POKE 33,40, or type TEXT once again.

PET - PET changes modes in only one instance. The regular
graphics mode can be changed to the upper and lower
case mode by typing POKE 59468,14. POKE 59468,12
changes the computer back to the normal graphics
character mode.

TRS-80 + The use of the SHIFT-~ (right arrow) converts the video
display to 32 characters per line from the usual 64
characters per line.

You can also use CHR$(23) to convert to 32 characters
per line. Clearing the screen with CLS then returns the
display to 64 characters per line. Try this:

10 PRINT CHR$(23);"TITLES"

20 FOR A=1TO500:NEXT A

30 CLS

40 PRINT'I AM NOW BACK TO NORMAL"

50 FOR A=1TO500:NEXTA

THEN (ANSI) statement

The THEN statement is part of the IF-THEN statement. If the con-
dition in the IF part is met, the statement(s) following the THEN are
executed.

Example 1: 10 IF X =1 THEN 100 transfers execution to line 100
only if X=1. If X#1, then the program continues at the next
numbered line.

Example 2: 10 IF X=1 THEN A=5
If X=1 then A is assigned the value.

Also see: IF, IF-THEN

Apple - The THEN statement is used in both Applesoft and In-
THEN teger BASIC.

PET « The THEN statement is used in PET BASIC.
THEN

TRS-80 -+ The THEN statement is used in both Level I and Level
THEN 11 BASIC. T. can be used in Level I BASIC.
TI function

The TI function is an abbreviation for the TIME function. The TI
function indicates elapsed time.

Also see: TIME

PET « The TI function is used in PET BASIC.
TI

84 / TI$

TI$ function

The TI$ function is an abbreviation for the TIMES$ function. It
keeps track of time in hours, minutes and seconds.

Also see: TIME$

PET + The TI$ function is used in PET BASIC.

TI$ If you want to display the time during your program,

place this line near the beginning of the program:
TI$ ="000000". At the part of the program where you
want the time displayed, insert this line: PRINT "&";
TI$. The "81" homes the cursor, and the TI$ prints the
time, since the time was set to zero.

TIME function

The TIME function tells how much time has elapsed since the com-
puter was turned on.

Example: PRINT TIME will give the length of time since the com-
puter was turned on.

PET * The TIME command is used in PET BASIC. The TIME

TIME is incremented 60 times per second, and is expressed as
a six-digit number. It cannot be reset to zero without
turning the machine off.

TRS-80 - There is a clock feature when the expansion interface is
used.

TIMES$ function

The TIMES$ function is used to indicate the time of day. The time is
expressed in 6 digits, and is in a 24-hour-clock format.
Example: TIME$ ="163921" (hhmmss)

This means that it is (16-12) =4 o'clock, 39 minutes, and 21 seconds,
or 4:39:21 p.m.

PET + The TIMES$ function is used in PET BASIC.
TIMES$

TRACE command, statement

The TRACE command prints each program line as it is executed. It
is often used in debugging programs. NOTRACE turns off the
TRACE. TRACE is not turned off by RUN, CLEAR, NEW, DEL or
RESET. TRACE can be used as a statement to turn the trace on at
specific locations in the program.

Also see: TRON, NOTRACE, TROFF

Apple + The TRACE command is used in both Applesoft and In-
TRACE teger BASIC.

TRS-80 + The TRON command is used only in Level II BASIC.
TRON

USR / 85

TROFF command, statement

The TROFF command turns off the trace of program line numbers
as they are executed. As with the TRON command, TROFF can be
used as a statement to turn the trace on and off in specific parts of
the program.

Also see: TRACE, NOTRACE, TRON
Apple - The NOTRACE command is used by both Applesoft

NO- and Integer BASIC.
TRACE

TRS-80 - The TROFF command is used in Level II BASIC to turn
TROFF off the trace (TRON).

TRON command, statement

The TRON command is used to display each program line as it is
executed. It is used in debugging.

TRON can be used as a statement to display the line numbers of
only certain parts of a program. To turn off the trace, use the
TROFF command or statement.

Also see: TROFF, TRACE, NOTRACE

Apple - The TRACE command is used in both Applesoft and In-
TRACE teger BASIC.

TRS-80 + The TRON command is used only in Level II BASIC.
TRON

! (up arrow) (ANSI) operator (See page 102.)

USR function, command

The USR function calls a machine language subroutine from the
computer's memory and executes that program.

A machine language program may be loaded into memory by using
the POKE statement, or by using the SYSTEM command to load it
from tape.

The USR function can also execute a machine language program

that transfers the specified value to a machine language subroutine.
If the argument is not needed, a dummy argument can be used.

Also see: SYS, SYSTEM, POKE, PEEK, CALL

Apple - The CALL command is used in both Applesoft and In-
CALL N teger BASIC; USR is used only in Applesoft.
USR

86 / VAL

The CALL N function transfers the program to a
machine language subroutine, which starts at memory
location N.

The USR(X) function passes a specified value (X) to a
machine language subroutine.

PET + The USR function is used in PET BASIC. It passes a
SYS value into a machine language program.

USR The SYS function runs a machine language program

starting at a specified address.
Example: 10 SYS(634)

TRS-80 - The USR function is used only in Level II BASIC.
USR(N) USR(0} to USR(9) can be used.

VAL function

The VAL function coverts numbers (which are considered strings)
back into numeric notation. VAL is therefore the complement of
STR$. Try this:

10 A$="XYZ"B$="XYZ123":.C$="123XYZ" The results are:
20 PRINTVAL(AS) 0
30 PRINTVAL(BS$) 0
40 PRINTVAL/(CS$) 123

The zeros result because VAL ignores the rest of the instruction
once a letter is encountered. The third one is a number because the
number part of the string comes first.

Apple + The VAL function is used only in Applesoft.

VAL

PET + The VAL function is used in PET BASIC. When using
VAL VAL, if the string is not numeric, a zero (0) is returned.

VAL may be used in a numeric expression.

TRS-80 + The VAL function is used only in Level 11 BASIC.
VAL

VARPTR function

The VARPTR function returns the address where a specified
variable and its value are stored in memory. If the variable has not
been given a value, an error message is printed.

Format: VARPTR|(variable)

TRS-80 - The VARPTR function is used only in Level II BASIC.
VARPTR

VTAB [/ 87

VERIFY command

VERIFY checks to see if the program SAVEd on cassette is the same
as the one in memory.

VERIFY "GAME" compares the file "GAME" with the program in
memory, and reports on the success or failure of the attempt to
SAVE that file.

Also see: CLOAD?, SAVE, CSAVE, CLOAD

PET - The VERIFY command is used in PET BASIC. It com-

VERIFY paresthe program in memory to the program on tape. If
there is a mistake a ?VERIFY ERROR is printed, and it
would be wise to re-SAVE the program and VERIFY it
again.
Pressing the V key and then the SHIFT E will start the
verifying process.

TRS-80 + The CLOAD? command is used only in Level II BASIC.

CLOAD? If the CSAVE was not successful, a BAD message ap-
pears. CSAVE the program again.

VLIN AT statement

The VLIN AT statement displays a vertical line at a specific loca-
tion. The line length can be from 1 to 39 units long.

Example: 10 VLIN 10,20 AT 30 draws a line from row 10 to row
20 at column 30.

The GR statement must be executed before the VLIN statement.
The COLOR statement determines the color of the line.

Also see: GR

Apple + The VLIN AT statement is used in both Applesoft and
VLIN AT Integer BASIC. It is used in low resolution graphics.

VTAB statement

The VTAB statement tells the computer the line where the operator
wants a PRINT statement to start.
Example: 10 VTAB 6
20 PRINT"HELLO"
The HELLO is printed on the 6th line.

VTAB moves the cursor up or down, but not left or right.
Also see: TAB, PRINT AT, PRINT@, @, PRINT

Apple + The VTAB statement is used in both Applesoft and In-
VTAB teger BASIC. VTAB values can be from 1 to 24,
representing the screen's 24 lines.

PET - The TAB statement is used in PET BASIC. It places a
TAB specified number of skip characters between the last
character printed and the next. Using PRINT

88 / WAIT

TRS-80
TAB

statements with nothing after them moves the cursor
down.

+ The TAB statement is used in both Level I and Level II

BASIC. TAB can be used to PRINT statements on dif-
ferent lines on the screen. PRINT statements and
PRINT AT or PRINT@ will also PRINT at desired
locations.

WAIT command, statement

The WAIT statement causes the program to wait until the contents
of a specified location is equal to a particular number.

Also see: FOR-TO-NEXT

Apple
WAIT

PET
WAIT

TRS-80

* The WAIT command or statement is used only in

Applesoft.

Example: WAIT A,B,C
In this example the computer waits until the contents of
location A is A ORed with C and ANDed with B and
gives a non-zero result.

« The WAIT statement is used in PET BASIC.

Example: WAIT A,B,C

The status of memory location A is read and ORed with
B and then ANDed with C until the result is a non-zero
number. The program then continues.

+ The best way to WAIT in Level I or Level II BASIC is to

use a FOR-TO-NEXT statement.
Example: 50 FOR X=1 TO 100: NEXT X

The program waits until the computer counts from 1 to
100. The length of time waited can be increased by rais-
ing the number after TO.

XDRAW AT statement

The XDRAW AT statement draws a defined shape loaded from
tape by the SHLOAD command. The drawing starts at a specified
location. The difference between XDRAW and DRAW is that the

XPLOT / 89

XDRAW colors are complement the colors that are already on the

screen at that point.
Example: XDRAW 1 AT 30,40

This draws a shape, given the label number 1, starting at the point
30,40.

Also see: HCOLOR, SHLOAD, DRAW AT

Apple + The XDRAW AT statement is used only in Applesoft.

XDRAW
AT

XPLOT statement

XPLOT is a graphics statement that is a reserved word in Applesoft.
It does not correspond to current command; it is a word without
function or meaning at the present time. Presumably this statement
will have some meaning in future versions of Applesoft.

Also see: SET, RESET, PLOT

Apple + XPLOT is a reserved word in Applesoft.
XPLOT

PET - The PET uses its special graphics keys and characters
for plotting.

TRS-80 -+ Level I and Level II BASIC use the SET statement to
SET turn on graphics blocks.

90

Alphabetical Listing of
Operators

And operator

AND is a mathematical operator often used in IF-THEN
statements. It is usually referred to as a logical AND.

Example 1: IF X=5 AND Y =3 THEN 100
X must equal 5 and Y must equal 3 before the program branches to
line 100; otherwise the next line is executed.

Example 2: IF A>3 AND B>5 THEN 100
In Example 2, if A is greater than 3 and B is greater than 5, then, and
only then, program execution jumps to line 100. AND, along with
OR and NOT, are Boolean Operators. See Appendix E for more in-
formation on Boolean Operators.
Also see: * (asterisk), Appendix E, NOT, OR

Apple + The AND operator is used in both Applesoft and Integer
AND BASIC.

PET + The AND operator is used in PET BASIC.
AND

TRS-80 - AND is used in Level II BASIC. The * (asterisk]) is used
AND in Level I BASIC to represent AND.

* (asterisk) (ANSI) operator

The * (asterisk) is used by all three computers as a multiplication
sign.

On all three computers PRINT CHR$(42) can be used to print an
asterisk (*) on the screen.

Also see: AND

92 /| @ (AT

Apple *+ The * (asterisk) operator is used in both Applesoft and
* Integer BASIC. An * (asterisk) appears when a
CALL-151 is executed. This indicates that the computer
is in the mode to accept machine language instructions.

PET + The * (asterisk} operator is used in PET BASIC.

TRS-80 + The * (asterisk) operator is used in Level I BASIC to
* represent the logical AND. In Level II BASIC AND
must be used.

@ (AT) operator

The @ operator specifies the starting location on the screen for a
PRINT statement. The @ argument must be followed by a comma.
Example: 10 PRINT @ 30,"WHAT IS YOUR NAME"

On all three computers PRINT CHR${64) can be used to print an @
sign on the screen.

Also see: AT, PRINT, PRINT AT

Apple + The AT function is used in both Applesoft and Integer
AT BASIC.

TRS-80 + AT or A. must be used in Level I BASIC. The @ operator
@ is used in Level II BASIC. The argument following the
@ can be numbered from 0 to 1023.

~ [circumflex) operator

The ~ (circumflex) operator is a symbol for exponentiation.
Example: 3”2 is the same as 32 or 9.

Also see: | (up arrow)

Apple « The ~ (circumflex) operator is used in Applesoft and In-
~ teger BASIC. CHR${94) or CHR${222) may be used in a
program to represent a circumflex.

PET « The t (up arrow) operator is used in PET BASIC.
! CHR$(94) can be used in a program to print out an ! (up
arrow).

TRS-80 - The ! (up arrow) operator is used in both Level I and
1 Level II BASIC. CHR${91) can be used in a program to
print out an ! {up arrow).

/ (division sign) / 93

: (Colon) operator

The : (colon) allows the placing of more than one statement on one
program line. This saves memory space.
Example: 10 CLS: PRINT "RULES": GOSUB 1000

On all three computers PRINT CHR$(58) can be used to print a :
(colon) on the screen.

Apple - The : (colon) operator is used in Applesoft and Integer
: BASIC.

PET + The : {colon) is used in PET BASIC.

TRS-80 - The : (colon) operator is used in both Level I and II
: BASIC.

, (comma) (ANSI) operator

The , (comma) operator is used in PRINT statements to separate the
elements so that they will be printed in separate zones. The ,
(comma) is also used in DATA, DIM, INPUT, ON-GOTO, ON-
GOSUB and READ statements to separate the different elements.

Also see: PRINT, PRINT@, PRINT AT, DATA, DIM, INPUT, ON-
GOTO, ON-GOSUB, READ

Apple + The , (comma) operator is used in both Applesoft and
. Integer BASIC. The , {comma) may be printed by using
PRINT CHR$(44) as one of the program lines. In Integer
BASIC a comma is used after the INPUT statement.
Example: 50 INPUT "ANSWER",N

PET « The , (comma) operator is used in PET BASIC. The ,
. {comma) may be printed by using the statement PRINT
CHR$(44) as one of the program lines.

"

As with the other computers, the "," is a print delimiter.

TRS-80 -« In Level II BASIC the , (comma) is used after the
, PRINT@ statement.

PRINT CHR$(44) can be used to print a comma on the
screen.

/ (division sign) (ANSI) operator

The / {division sign) operator is used in the arithmetic operation of
division.

94 / $ (dollar sign)

Example: 10 A=B/2 reads as A equals B divided by two.
On all three computers PRINT CHR${47) may be used to print a /
sign on the screen.
Also see: Appendix I

Apple + The / {division sign] operator is used in Applesoft and in
/ Integer BASIC.

PET + The / (division sign) operator is used in PET BASIC.
/

TRS-80 - The/ (division sign) operator is used in both Level I and
/ Level II BASIC.

$ (dollar sign) (ANSI) operator

The $ (dollar sign) operator designates a variable as a string
variable.

Example: 10 INPUT"WHAT IS YOUR NAME";A$. The program
expects a string input for the person's name.

On all three computers PRINT CHR${36) may be used to print a $
sign on the screen.

Also see: Appendix I, PRINT USING

Apple + The $ (dollar sign) operator is used in both Applesoft
$ and Integer BASIC.

PET + The § (dollar sign) operator is used in PET BASIC.

TRS-80 - Level I BASIC has only two string variables: A$ and BS.
$ Level II BASIC has many more string variables.

The PRINT USING statement uses the $ sign to format
lines that contain dollars.

= (equal sign) (ANSI) operator
The = (equal sign) is used in arithmetic operations as an equal sign.
It is also used to give variables a designated value.

Example: 10 A$="Yes"

20 B=15

The = (equal sign) can also be used in conditional IF-THEN, IF-
GOTO or IF-GOSUB statements to test for equal expressions.

Example: IF A=3 THEN 100

Also see: IF-THEN, IF-GOTO, IF-GOSUB

Apple + The = (equal sign) operator is used in both Applesoft
= and Integer BASIC.

> = (greater than or equal) / 95

PET + The

{equal sign) operator is used in PET BASIC.

TRS-80 - The = (equal sign) operator is used in both Level I and
= Level IT BASIC.

! (exclamation mark) operator

The ! (exclamation mark) is used to change double-precision
variables back to single-precision.

On all three computers CHR$(33) can be used to print an ! {ex-
clamation mark) on the screen.

Also see: PRINT USING, CSNG, CDBL

TRS-80 - The! (exclamation mark) is used in Level II BASIC. The
! PRINT USING statement prints only the left-most
character in a string.

> (greater than) (ANSI) operator

The > (greater than) operator is used in conditional operations to
indicate that one expression is greater than another. It is used in IF-
THEN, IF-GOTO, and IF-GOSUB statements.

Example: IF X>Y THEN 1000

Apple + The > |greater than) operator is used in Applesoft and
> Integer BASIC.

PET + The > (greater than) operator is used in PET BASIC.
>

TRS-80 -+ The > (greater than) operator is used in both Level 1
> and Level II BASIC.

> = (greater than or equal) operator

The > = (greater than or equal) operator is used in conditional
operations to indicate that one expression is greater than or equal to
another. It is used in conditional IF-THEN, IF-GOTO, and IF-
GOSUB statements.

Example: 10 IF X > =Y THEN 1000

Apple + The > = (greater than or equal) operator is used in both
> = Applesoft and Integer BASIC.

PET + The > = (greater than or equal) operator is used in PET
> = BASIC.

TRS-80 - The > = (greater than or equal) operator is used in both
> = Level I and Level II BASIC.

96 / < (lessthan)

< (less than) (ANSI) operator

The < (less than) operator is used in conditional operations to in-
dicate one expression is less than another.
Example: A<B

The < (less than) operator is used in IF-THEN, IF-GOTO, IF-
GOSUB statements.

Apple + The < (less than) operator is used in both Applesoft and
< Integer BASIC.

PET + The < (less than) operator is used in PET BASIC.
<

TRS-80 - The < (less than) operator is used in both Level I and
< Level II BASIC.

< = (less than or equal) operator

The < = (less than or equal) operator is used in conditional opera-
tions to show that one expression is less than or equal to another.
Example: IF X< =Y THEN 1000

In the above example if X is less than or equal to Y, then execution
jumps to line 1000. The < = operator is used in the IF-THEN, IF-
GOTO and IF-GOSUB statements.

Apple * The <= (less than or equal} operator is used in both
<= Applesoft and Integer BASIC.

PET + The < = (less than or equal) operator is used in PET
<= BASIC.

TRS5-80 -+ The < = (less than or equal) operator is used in Level I
= and Level II BASIC.

NOT operator

NOT is used as a logical NOT in relational expressions between two
numbers or variables.
Example: 10 IF NOT A=3 THEN 100

(number sign) / 97

This means that if A is NOT equal to 3, THEN program execution
jumps to line 100. If the logical NOT is false, then program execu-
tion continues at the next numbered line. In our example, if A is
equal to 3, then the program continues at the next numbered line.

NOT, along with AND and OR, are examples of Boolean Operators.
See Appendix E for more information on Boolean Operators.

Also see: AND, OR, Appendix E

Apple « NOT is used in both Applesoft and Integer BASIC.
NOT

PET + The NOT operator is used in PET BASIC.
NOT

TRS-80 - The NOT operator is used in both Level I and Level 11
NOT BASIC.

<> (not equal) (ANSI) operator

The < > (not equal) operator is used to indicate inequality.
Example: IF X< >Y THEN 1000

The < > operator is used in conditional IF-THEN, IF-GOTO and
IF-GOSUB statements.

Apple + The < > (not equal) operator is used only in Applesoft.
<> Integer BASIC uses the # (number sign} for not equal.

PET + The < > [not equal) operator is used in PET BASIC.

<>

TRS-80 -+ The <> (not equal} operator is used in Level I and
<> Level II BASIC.

(number sign) operator
The # (number sign) has different meanings for all three machines.

Apple + In Integer BASIC the # (number sign) operator is used
for the not equal operator. In Applesoft the < > {not
equal) sign is used.

PET + The # (number sign) operator is used for DATA input.

Format: INPUT#1, variable
TRS-80 -+ In Level I and Level II BASIC the # {number sign) is

used in PRINT#-1 and INPUT#-1 statements.
Format: INPUT#-1, variables. :

It also defines a variable as double-precision in Level 11
BASIC.

OR operator

The OR operator is the logical OR.

Example: 10 IF A=1 OR A=2 THEN 1000
In the example, the A can be equal to 1 or it can be equal to 2, in
order for the program to branch to line 1000. If A is equal to
anything else, execution of the program continues at the next
numbered line.

OR, along with AND and NOT, are examples of Boolean Operators.
See Appendix E for more information on Boolean Operators.

Also see: AND, NOT Appendix E

Apple - The OR operator is used in both Applesoft and Integer
OR BASIC.

PET * The OR operator is used in PET BASIC.
OR

TRS-80 -+ The OR operator is used in Level II BASIC. In Level I
OR BASIC the + (plus sign) is used for the logical OR.

{) (parentheses) (ANSI) operator

The () (parentheses) operator is used to surround the arguments in
function calls. They are used in PEEK (), TAB(), FRE() LEN(),
LEFT$(), RIGHT$(), MID$(), CHR$(), ASC(), DIM(), SIN(},
COS(), ABS(), RND{}, SGN(), SOR(}, EXP{), LOG(), TAN{},
ATN(), INT(), PDL{), USR(), etc.

The () (parentheses) operator is also used to determine the order of
operations in a mathematical equation. Expressions inside paren-
theses are evaluated first.

Example 10 A={3+2)*5. The part inside parentheses is per-
formed first. The result is 25. If the parentheses were not included,
the multiplication would be performed first, and the result would
be 13.

Apple * The () (parentheses) operator is used in both Applesoft
() and Integer BASIC.

. (period) / 99

PET + The () (parentheses) operator is used in PET BASIC.
()

TRS-80 -+ The () (parentheses) operator is used in both Level I
{) and Level II BASIC.

% (percent) operator

The % (percent) operator is used to define a variable as integer. On
all three computers CHR$(37) can be used to print a % sign on the
screen.
Also see: INT, PRINT USING
Apple - The % (percent] operator is used in Applesoft to in-
% dicate an integer variable.

Example: A%

In Integer BASIC A is sufficient to indicate an integer
because all letters are integer variables.

PET - The % (percent) operator is used in PET BASIC to

% define a variable as integer.
TRS-80 - In Level II BASIC the % (percent) operator is used in the
% PRINT USING statement. It allows the printing of a

specified number of left-most letters or characters in a
string. (See PRINT USING)

% also defines a variable as an integer in Level II
BASIC.

. (period) operator

The . (period) operator is used in abbreviations, and it is used as a
decimal in mathematical operations.

On all three computers CHR$(46) can be used to print a period on
the screen during a program run.

Apple - The . (period) is used in both Applesoft and Integer
. BASIC. The . (decimal) is used in Applesoft.

Integer BASIC has no floating point. Try 1 divided by 3;
the answer is 0. Entering 2.6 results in a SYNTAX ERR.
Because of this, Integer BASIC has no SIN{), COS{),
TAN(), ATN{), SQR(), LOG() and EXP() functions.
Programs with these functions cannot be translated
directly into Integer BASIC.

PET + The . (period) is used in PET BASIC.

TRS-80 - The . (period) operator is used in both Level I and Level
. II BASIC. In Level II BASIC. LIST. and EDIT. cause the
LISTing and EDITing of the last program line entered.

100 / + (plus sign)

It also LISTs the line number that caused an error
message to be printed.
Example: LIST. ENTER
orEDIT. ENTER
or. ENTER
In the third example, entering a period after an error
message appears causes that line to list.

+ (plus sign) (ANSI) operator

The + (plus sign) operator is used for the arithmetic addition opera-
tion. The + (plus sign) is also used for concatenation of strings (the
linking together of strings).

Example: 10 PRINT "UP" +"STAIRS"

In the example, the two words are linked or concatenated to form
one word, which is UPSTAIRS.

On all three computers CHR$(43) can be used to print a + sign on
the screen.

Also see: OR

Apple » The + (plus sign} operator is used in both Applesoft and
+ Integer BASIC.

PET + The + {plus sign) operator is used in PET BASIC.

TRS-80 -« The + (plus sign) operator is used in both Level I and

+ Level I BASIC. In Level I, the + (plus sign) is used as a
short form for the logical FOR. In Level II BASIC, the
FOR must be used.

? (question mark) operator

The ? (question mark] is used by all three computers as a short form
for the PRINT statement.

On all three computers CHR$(63) can be used to print a ? (question
mark) on the screen.

Also see: PRINT

Apple -+ The ? (question mark) operator is used in both Ap-
? plesoft and Integer BASIC.
PET * The ? (question mark) operator is used in PET BASIC.

? When the ? is used as a short form for the PRINT state-
ment, the long form (the word PRINT] is automatically
placed in the program.

; {semicolon) / 101

TRS-80 - The ? (question mark) operator is used in both Level I

? and Level II BASIC. As is the case with the PET, the
long form, PRINT, appears in the program when ? is
used as a short form of PRINT.

** (quotation marks) operator

- " {quotation marks) are used in PRINT statements to indicate what
is to be printed. If the quotation marks are not included, all letters
are treated as variables, and their assigned values are printed.

Example: 10 A=5
20 PRINT"A" prints the letter A
30 PRINT A prints the value 5 since there are no
quotation marks around the A, and in line 10 A is
given the value 5.

On all three computers, CHR${34) can be used to print the quota-
tion marks on the screen.

Example: 10 PRINT CHR$(34);"HERE";CHR$(34} prints "HERE"
on the video monitor.

Also see: CLOAD, CSAME, SAVE, LOAD, PRINT, CHR$(}), §
dollar sign, Appendix A

Apple « The " (quotation marks] operator is used in both Ap-
! plesoft and Integer BASIC.

PET + The " {quotation marks) operator is used in PET BASIC.
" LOAD "GAME" searches for the file named "GAME',
and then loads it.

Quotation marks are used in LOADing as seen above,
but they are also used in SAVEing a program. SAVE
"GAME" would SAVE the program "GAME" on tape.

TRS-80 - Level I BASIC uses " (quotation marks) in the PRINT#
" statement. Level II BASIC uses ” (quotation marks) in
the CSAVE and CLOAD commands to give the program
a specific name. Unlike the PET computer, which
allows a word or even group of words for the title, the
TRS-80 allows only single letters for titles.
Example: SAVE"A" saves the program named "A" on
tape.

; (semicolon) (ANSI) operator

The ; (semicolon) operator is used in PRINT statements to print
values without intervening spaces.

102 / - (subtraction sign)

Example: 10 PRINT'INSTRUCTIONS FOR THE GAME";
20 PRINT"ARE PRINTED BELOW"

Lines 10 and 20 result in the whole sentence being printed on one
line: INSTRUCTIONS FOR THE GAME ARE PRINTED BELOW.

On all three computers CHR$(59) can be used to print a ;.

Apple * The ; (semicolon) operator is used in both Applesoft and
; Integer BASIC.

PET * The ; (semicolon) operator is used in PET BASIC.
TRS-80 - The ; (semicolon) operator is used in both Level I and
; Level II BASIC.

~ (subtraction sign) (ANSI} operator

The — (subtraction sign) operator is used for the arithmetic opera-
tion of subtraction. The - (minus sign) is also used as a sign of
negation.

Apple * The - (subtraction sign) operator is used in both Ap-
- plesoft and Integer BASIC.

PET * The - (subtraction sign) operator is used in PET BASIC.

TRS-80 - The - (subtraction sign) operator is used in both Level
- and Level II BASIC.

I (up arrow) (ANSI) operator

The 1 (up arrow) is used to indicate exponentiation.
Example: 312 is the same as 32 or 9.

Also see: ~ (circumflex)

Apple * The ~ (circumflex) is used by Applesoft and Integer
~ BASIC.

PET * The 1 {up arrow} operator is used in PET BASIC.
1

TRS-80 - The ! (up arrow) is used in Level I and Level II BASIC.
!

Part II

Summary of Terms

o, 4%

2= 2 2

22922

§522¢%

1E2%3

Terms <& E E EE E Meaning
A. X absolute value
ABS X X X absolute value
" (apostrophe) X X short form for REM
ASC X X X return ASCII code
AT X X X start PRINT location
ATN X X X arctangent
AUTO X X automatic line numbering
BREAK key X stops AUTO, Program RUN
or LISTing

C. X continue program execution
CALL X X machine language
CALL-936 X cursor to top left
CDBL X single to double precision
CHRS$ X X X return ASCII character
CINT X convert to integer
CLEAR X X reset variables to zero
CLEAR key X X cursor to top left and clear

screen

104 / Basic BASIC-English Dictionary

Terms A I P TITI Meaning

CLEAR key X clear video screen

CLS and

reverse CLEAR

key

CLOAD X X load program

CLOSE X close file

CLR X X reset variables to zero

CLR/HOME X cursor to top left and/or clear

key screen

CLS X X clear video screen

CMD LIST X output to line printer

COLOR X X specify color

CON X continue program execution

CONT X X X continue program execution

COS X X X cosine

CSAVE X X save program

CSNG X double to single precision

CTRL C key X halt program or program
listing

CTRL G key X beep sound

CTRL J key X line feed

CTRL X X delete line

cursor keys X X X X X move cursor

D. X list data

DATA X X X list data

DEF X X define functions

DEFDBL X define double precision
variable

DEFINT X define integer variable

DEFSNG X redef'u.le. variable as single
precision

DEFSTR X define string variable

DEL X X delete

Summary of Terms / 105

Terms A1 P TITII Meaning

DEL key X delete

DELETE X delete

DIM X X X X dimension arrays

DRAW AT X position for drawing

DSP X variable value displayed

E. end a program

EDIT X edit

ELSE X use after IF-THEN

END X X X X end a program

ENTER key X end of input line

ERASE X cancels reserved space

ERL X identify error line

ERR X identify error code

ERROR X simulate error

ESC X X put into edit mode

ESC A X X move cursor right

ESC B X X move cursor left

ESC C X X move cursor down

ESCD X X move Cursor up

ESCE X X delete from cursor to end of
line

ESCF X X delete from beginning of line
to cursor

EXP X X X compute natural log of e

F. for

FIX X remove numbers after
decimal

FLASH X flash display

FN X X specify defined variable of
the operator

FOR X X X X for

FRE X X X indicate unused string space

106 / Basic BASIC-English Dictionary

Terms A 1 P TITII Meaning

G. X goto

GET X X scan keyboard for input

GET# X input from a peripheral

GOS. X gosub

GOSUB X X X X gosub

GOTO X X X X goto

GR X graphics

HCOLOR X set high resolution color

HGR X high resolution graphics mode

HIMEM X set highest memory address
available

HLIN-AT X X draw horizontal line

HOME X clear screen and cursor to top
left

HPLOT X graphics

HPLOT TO X graphics

HTAB X start print at specific location

I X find integer value

IF X X X X Xif

IF-G. X if goto

IF-GOS. X if gosub

IF-GOSUB X X X if gosub

IF-GOTO X X X X if goto

IF-T. X if then

IF-THEN X X X X if then

IN. X input

IN# X X input from a peripheral

INKEY$ X scan keyboard for input

INP X input a decimal value from a
port

INPUT X X X X input

Summary of Terms / 107

Terms A1 P TITI Meaning
INPUT# X X X input from a peripheral
INST/DEL key X insert or delete
INT X X X find integer value
INVERSE X black on white display
L. X list program
LEFTS$ X X X examine left of string
LEN X X X length of string
LET X X X X X let
LIST X X X X list program
LOAD X X X load program
LOG X X X natural log
LOMEM: X set lowest memory location
M. X unused memory
MAN X with CTRL X, stops AUTO
MEM X unused memory
MID$ X X X examine middle of string
MOD X remainder in division
N. X new or next
NEW X X X X delete entire program
NEXT X X X X next
NORMAL X white on black display
NOTRACE X turn trace off
OFF/RVS key black on white display
ON ERROR X on error goto
GOTO
ON G. X on goto
ON GOSUB X X X on gosub
ON GOTO X X X on goto
ONERR GOTO X on error goto
OPEN X open file

108 / Basic BASIC-English Dictionary

Terms A I P TITII Meaning

ouT X send number to output port

P. X print or point

P.A. X print at

PDL X X game paddles

PEEK X X X X peeking into memory

Pi 7 key Pi, 3.14159265

PLOT X X graphics

POINT X see if graphics block is on

POKE X X X X poke into memory

POP X X removes one address from
return address stack

POS X X X current position of cursor

PR X X send output to a peripheral

PRINT X X X X print

PRINT AT X print at specified location

PRINT USING X print output in specified
format

PRINT# X X store data on cassette

R. X run, rnd or reset

RANDOM X initial randomize

REA. X read data lines

READ X X X read data lines

RECALL X load an array from tape

REM X X X X X remark

REPT key X X X X enter multiple characters

RESET X monitor mode

RESET X X turns off graphics block

REST. X restore data

RESTORE X X X restore data

RESUME X X resume after error

RET. X return from subroutine

Summary of Terms / 109

Terms A1 P TITI Meaning
RETURN X X X X return from subroutine
RETURN key X X X signify end of input line
RIGHTS$ X X X examine right of string
RND X X X X random function
ROT X rotation angle
RTS X signals end of machine
language subroutine

RUN X X X X X run program

RUN/STOP key X stop program execution

S. X step or set

SAVE X X X save program

SCALE X set scale of drawing

SCRN X X returns color of graphics
block

SET X X turns on a graphics block

SGN X X X find sign of number

SHIFT@ key X X clear screen

SHIFT@ key X . X halt listing or execution of a
program

SHIFT HOME X clear screen and cursor to top

key left

SHIFT X insert spaces

INST/DEL key

SHIFT — key X X deletes entire line

SHIFT — key X X convert to 32 character-per-
line format

SHLOAD X load shape table

SIN X X X sine

SPC X X spaces before PRINT

SPEED X control output on screen

SOR X X X square root

ST. X stop

STEP X X X X step

110 / Basic BASIC-English Dictionary

Terms A I P TITII Meaning

STOP X X stop

STORE X store data on tape

STR$ X X X numeric to string

STRING$ X prints ASCII character n
times

SYS X control to machine language
program

SYSTEM X load machine language
program

T. tab

TAB X X tab

TAN X X X tangent

TEXT X X return to monitor mode

THEN X X X X then

TI X TIME (elapsed)

TI$ X TIME$

TIME X time function (elapsed)

TIMES$ X time of day

TRACE X X display program lines as they
are executed

TROFF X turn off TRACE

TRON X display program lines as they
are executed

USR X X X transfer value to machine
language

VAL X X X string to numeric

VARPTR X address of variable

VERIFY X check save

VLIN AT X X draw vertical line

VTAB X X line to start PRINT

WAIT X X cause program to wait

XDRAW AT X draw shape

XPLOT X reserved word, no meaning

Summary of Terms / 111

= =
T o
> >
v
Q = =
2 2 2 9
R SN I
. < = < <
= n »n MM
2 = < o o
L H B e @
2fc2¢
Operators < £ o = = Meaning
AND X X X and
* X and
* X X X X X multiplication
@ X start PRINT location
AT X X start PRINT location
A X X exponentiation
t X X X exponentiation
X X X X X separate statements in
program
, X X X X X separate elements in PRINT
statements
/ X X X X X division
$ X X X dollar and string sign
= X X X X equal sign
! X double precision to single
precision
> X X X X X greater than
>= X X X X X greater than or equal to
< X X X X X lessthan
< = X X X X X lessthan or equal to
<> X X X X not equal
X not equal
NOT X X X X logical not
OR X X X X logical or
+ X logical or

112 / Basic BASIC-English Dictionary

Operators A I P TIT-II Meaning
() X X X X X surround arguments
% X X X define as integer
X X X X X decimal
+ X X X X X addition
? X X X X X abbreviation for PRINT
g X X X X X indicate what is to be printed

in PRINT statements

b
>
b
>
>

print values without
intervening spaces

- X X X X X subtraction

Appendix A

ASCII Codes

What Are ASCII Codes?

Since computers do not understand English, a code was invented
to represent the letters, numbers, graphic characters, special func-
tions and special characters that are commonly used by program-
mers to make programs for the computer. This code is called ASCII
and it stands for the American Standard Code for Information Inter-

change.

At one time the ASCII codes were uniform. Now each computer
has a different set of ASCII codes, which sometimes creates dif-
ficulty in translating programs. The following chart shows some of
the differences.

Code Apple II PET TRS-80 Function
8 CTRLH - - backspace and
delete one
character
9 CTRLI - - place cursor in the
next tab position
13 CTRLM RETURN ENTER enter that current
RETURN line into memory
18 CTRL R RVS key - place video into
reverse field mode
19 CTRLS CLR key CLEAR key clear screen and/or
home the cursor
20 CTRLT DEL key - delete a character

during the run of
the program

114 / Basic BASIC-English Dictionary

Code AppleII PET TRS-80 Function

27 ESC SHIFT SET ESC on the Apple
command places the
computer in
graphics mode

131 CTRL C SHIFT RUN graphic function varies
to load and
run a
program
{2.0 ROM's)
145 CTRL Q cursor up graphic function varies
146 CTRL R reverse graphic function varies
field off
147 CTRL S clear screen graphic function varies
148 CTRLT inserta graphic function varies
space
222~ piw TAB 30 function varies
spaces

The ASCII codes 32 to 95 represent characters that are very
similar on all three computers.

ASCII Character Codes 32-95

Code Apple I1 PET TRS-80
32 space space space
33 ! ! !
34 ! ! "
35 # # #
36 $ $ $
37 % % %
38 & & &
39 ' ' '
40 (((
41)))
42 * * *
43 + + +
44 . , ,
45 - - -
46 . .

47 / /

48 0 0 0

ASCII Codes / 115

Apple II PET TRS-80

Code
49
50

—ANM TN ON~0N

AN T WM

—ANMNMT WO WOWNW0N

51
52
53
54
55
56
57

V0 @CROAMEOI~— M ASZOA0MOED>Z XN —— | | |

eV 0~ @<C<AUAREON ~ M ASZO0A 0K NRHD > I X NN ———— |

eV 10 @< 0RO~ ASZ0A0E 0D >Z XN —r (|

58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

116 / Basic BASIC-English Dictionary

On the Apple and PET, codes 96 to 127 are duplicates of the
characters represented by codes 32 to 63. These codes give lower
case letters on the TRS-80 when the keys are SHIFTed. Most of the
video monitors supplied with the TRS-80 computer can display
only upper case letters, which can lead to problems in debugging a
program.

Example: If one letter in a reserved word like PRINT is SHIFTed
by accident, the computer interprets the word as PRiNT or PrINT,
etc. This causes a syntax error when the program is run. If the
monitor prints only upper case letters, then the word looks per-
fectly normal in a listing. Finding the syntax error is therefore very
difficult. The solution is to re-type carefully the whole line that is
indicated as having the syntax error.

ASCII Character Codes 96-127

Code Apple II PET TRS-80

96 space space shift@

97 ! !

96 g !

99 # #
100 $ $
101 % %
102 & &
103 ' '
104 ([
105) J
106 * *
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122 : :
123 ; ; shift !
124 shift!
125 shift—
126 shift—
127

+
+

COONOUTD WN = O — -

|
OO N RAEWN O~ |
NN X E<LE 00T ODE —Fe 50 0 00 oD

Vo A-
>~V A -

ASCII Codes / 117

POKE 59468,14 puts the PET in lower case mode. SHIFTed
characters are then upper case letters. POKE 59468,12 returns the
computer to normal.

PET Graphics and Lower Case Chart

ASCII POKE 59468,12 POKE 59468,14
Code Graphics Lower Case

193 $
194 !
195 -
196 -
197 -
198 -
199 i
200

201

202

203 -
204 [
205
206
207 r
208 T
209 2
210 -
211 #
212
213
214
215
216
217 |
218 #

S e L

N~ X T <E 0 O0TOBE —F— 0@ -0 Q0 oo

The codes 128 to 255 are special functions, have no purpose, or
are repeats of other codes.

Codes 129-191 are graphics characters on the TRS-80.

Codes 192-255 are TABs for codes 0-63 on the TRS-80.

Codes 161-255 are graphics characters on the PET.

Repeated ASCII Character Codes on the PET 161-255

Repeated
Code Code Character
161 255

§
162 226 -]

118 / Basic BASIC-English Dictionary

Repeated

Code Code Character
163 227 -
164 228 -
165 229 i
166 230
167 231 i
168 232 2
169 233 F’
170 234 i
171 235 k
172 236
173 237
174 238 1
175 239 o
176 240 r
177 241 L
178 242 T
179 243 N
180 244 i
181 245 i
182 246 i
183 247 -
184 248 =
185 249 -
186 250 .|
187 251 8
188 252 "
189 253 -
190 254 #
222 255 T

To see all the characters, run the following simple program.

10 X =32
20 PRINTX;:PRINTCHRS$(X)

30 FOR A=1 TO 1000: NEXT A
40 X=X+1

50 GOTO 20

Line 10 initializes X at 32, which is the first non-function code.
Line 20 prints the code and the character associated with it.
Line 30 is a timer.

Line 40 increments X.

Line 50 returns the execution of the program to Line 20.

Appendix B

Abbreviations of
BASIC Words
for the PET and TRS-80

Abbreviations on the PET

For any BASIC word, the user types the first letter of the word
{e.g., L for LIST), and while holding down the SHIFT key, types the
second letter. If the computer is in the graphics mode, the second
letter appears as a graphic character (e.g., \ for I). Some users like
to go into the lower case mode so that the letters are read easily (See
POKE for instructions).

In some cases this two-letter method is not adequate because
more than one word starts with the same two letters. In these cases,
the first two letters are typed, and then the SHIFTed third letter is
entered.

All abbreviations are converted to complete words upon the LIST
command.

The following is a list of the PET abbreviations.

BASIC Abbreviation BASIC Abbreviation
ABS Ab EXP Ex
AND An FOR Fo
ASC As FRE Fr
ATN At GET Ge
CHRS$ Ch GOSUB GOs
CLOSE CLo GOTO Go
CLR Cl INPUT# In
CMD Cm LEFTS$ LEf
CONT Co LET Le
DATA Da LIST Li
DEF De LOAD Lo
DIM Di MID$ Mi

END En NEXT Ne

120 / Basic BASIC-English Dictionary

BASIC Abbreviation BASIC Abbreviation
NOT No SGN Sg
OPEN Op SPC| Sp
PEEK Pe SQOR Sq
POKE Po STEP STe
PRINT ? STOP St
PRINT# Pr STR$ STr
READ Re SYS Sy
RESTORE REs TAB|(Ta
RETURN REt THEN Th
RIGHTS$ Ri USR Us
RND Rn VAL Va
RUN Ru VERIFY Ve
SAVE Sa WAIT Wa
SIN Si

Abbreviations on the TRS-80

Level I
BASIC Abbreviation BASIC Abbreviation
ABS A. NEXT N.
CLOAD CL. POINT - P.
CONT C. PRINT P.
CSAVE CS. PRINT AT P.A.
DATA D. READ REA.
END E. RESET R.
FOR F. RESTORE REST.
GOSUB GOS. RETURN RET.
GOTO G. RND
INPUT IN. RUN
INT I. SET

LIST L. STEP(after FOR)
MEM M. STOP
NEW N. TAB(after PRINT)

nwvwm
SRe oD

Level 11

BASIC Abbreviation

PRINT ? {question mark)
REM ' (apostrophe)

Appendix C

Apple, PET, and
TRS-80 Graphics

Graphics
Apple PET TRS-80
Screen size 40 % 40 40x 25 40x 25
Color Yes No No
Screen Memory POKE POKE POKE

PET has 94 separate characters which can be displayed in normal
or reverse. This creates a total of 188 different characters. The com-
mands PRINT and PRINT CHR$ can be used for graphics. Cursor
movements can also be programmed.

The TRS-80 can light up graphic blocks by using the commands
POKE, PRINT@, STRINGS$, PRINT, PRINT@, PRINT@CHRS +
CHRS$, PRINT CHRS$, and SET/RESET.

Graphics on the Apple

The Apple's low resolution graphics screen is made up of a 40 by
40 array, numbered from 0 to 39. See the Apple Low Resolution
Graphics Worksheet.

Low resolution graphics commands are:

GR sets the computer to the graphics mode.

COLOR sets the color (0 to 15).

PLOT places a colored dot on the screen.

HLIN draws a horizontal line.

VLIN draws a vertical line.

SCRN returns color on the screen at a particular point.

Each of these commands is explained in more detail in Part I of
this book.

If you want to color the square at position (5,3} then use the com-
mand PLOT 5,3.

122 / Basic BASIC-English Dictionary

Column

01 2 345 6 7 8 9 101112131415 16 17 18

g A~ W N = O

E

O o N O

—_
]

n

—
—_

—
[\S]

—
w

To color positions (5,3) and (10,7) green use the following
program.

10 GR

20 COLOR=12
30 PLOT 5,3
40 PLOT 10,7
50 END

Line 10 sets mode to low resolution graphics. Line 20 sets color:
12 is the number for green. In lines 30 and 40, the column number
comes first, followed by the row number.

0N M A WwN - o

R T O T O R N S e A =S a1
FITANEDN OB P®IONE G D - O W

29

Apple, PET, and TRS-80 Graphics / 123

Apple Low Resolution Graphics Worksheet
Column

01 23 456 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

124 / Basic BASIC-English Dictionary

Graphics on the PET

The PET graphic character set consists of 64 graphic symbols,
which can be displayed on the screen by using the PRINT
statement.

To print a rectangle on the screen, type the lines below. (Keys in-
side quotation marks are shifted.)

100 PRINT "--clear screen

200 PRINT“@ @ five times ® "—print top of rectangle

300 PRINT"@ @ "~ print side of rectangle

400 PRINT'(T))
500 PRINT"@five times @ "~ print bottom of rectangle

The program appears on the screen as shown below.

FRIMTIY

FRIMTY "
FRIMT" 1"
FREIMT" i"

—

RIS I W R N

5
=3
-
[
X3
-
=)

i

ATy 0 e g

The PET screen display has 25 lines or rows with 40 characters
per line.

40 columns

25 rows

25

Apple, PET, and TRS-80 Grahpics / 125

The cursor control characters () can be included

in PRINT statements.
Try the following programs. (Keys in quotation marks are
SHIFTed unless otherwise specified.)

1. 10 PRINT " "
o @EEEEOOO
The first four keys are not SHIFTed.

18 PRINT"ZY

S8 PRIHT" SBIesE RUN the program.

2. Change line 20 to

20 PRINT @@@ "

The first key is not shifted.
28 PREIMTY degdd" RUN the program.

3. Change line 20 to

20 PRINT (55 () (B W)(2)(2)

First five keys are not SHIFTed.
IR PRIMT"eEEsge-——" RUN the program.

4. Add to the above program

0 PRINT () DWOWOHE)
s print* () (DR DEDE)

]

I OPRIMTY &~ oo HY

4;_1 BR MY e L LIST the program.

Experiment with the PRINT statement, and combinations of
graphics keys and cursor control keys.
Here is a full listing of the above graphics program.

16 FRIMT"I"

26 PRIMT " MeERRI

38 PRINT" - om0 H RUN the program.
4B PRINTY = o

~
1%

READY.

126 / Basic BASIC-English Dictionary

This program displays all the graphic characters and their
numeric value one at a time.

10 PRINT " (&) (This key is shifted.)

20 FOR X =161 TO 255

30 PRINT CHRS$ (X}, X

40 GETAS$:IFA$=" " THEN 40
50 NEXT X

If you want to see all the PET characters, change line 20 to
20 FOR X=0 TO 255

The TAB and SPC functions can be used with the PRINT
statement.
1. Graphics characters can be placed in different locations on
the screen.

2. The TAB () function moves the cursor right to a specified col-
umn number. The numbers in the brackets must be between
0 and 255 inclusive.

Try this example: 10 PRINT TAB (9), !
The SPC (} function moves the cursor.

3. Write a specified number of spaces or skips. The number in
the brackets can be from 0 to 255 inclusive.

Try this example:

10 PRINT SPC (50}, "~ — ** —
20 PRINT'— < < < <"; SPC (50}, "~ = ** — —"

PRINTing, which we have already looked at, is one way to write
on the screen of a PET. Another way is by POKEing into screen
memory, which is much easier than it sounds.

The PET screen has 40 columns and 25 rows for a total of 1,000
blocks or squares that can be used for graphics. Unfortunately,
these blocks are not numbered from 1 to 1,000 because the com-
puter uses the memory addresses of the blocks. (See the PET POKE
Screen Memory Graphics Worksheet.)

The first screen memory location is 32768, and the last screen
memory location is 33767. By using the worksheet you can find the
memory address you need.

Example: The fifth square in the first row would be 32768 (first
address) + (5~ 1) (one less than the number of blocks from the left)
=32772 (memory address of the desired location).

In general, add to the first address in the row a number which is
one less than the number of blocks over from the left side.

32768
32808
32848
32888
32928
32968
33008
33048

Apple, PET, and TRS-80 Graphics / 127

Furth

er Examples:

starting address —32848
block number -7

one less -6
calculation —32848 +6=232854

POKE32854,90 prints a diamond in that location.

33128
33168
33208
33248
33288
33328
33368
33408
33448

33488
33528
33568
33608
33648
33688
33728

starting address —33368

block number —-14
one less —-13
calculation -33368+13=33381

j{

21

H:

starting address
block number
one less
calculation

—33688

—-21

20
—33688+20=33708

POKE places a character anywhere on the screen by POKEing the
numeric value of that character into the memory location. Use the
following format: POKE address, value.

Numeric values for the PET graphic characters and the reverse
field of the graphic characters are listed on the next three pages.

Use the following program to experiment with these values. The
graphic character is POKEd near the middle of the screen.

128 / Basic BASIC-English Dictionary

10 PRINT"}"

20 INPUT"WHAT IS THE NUMERIC VALUE OF THE
CHARACTER";X

30 POKE33268,X

40 GOTO 20

A horizontal line can be displayed on the screen by using the
following program. The line may be drawn at different positions by
changing the value of R (R is the first memory address in a row.
The graphic symbol making up the line can be changed by giving
different values to the variable X in line 20 (X is the numeric value
of the graphic character).

10 PRINT"3" —clears the screen

20 R=33208:X=211 -sets values

30 FOR A=0 TO 39 -—loop used to add 0 to 39 to R in line 40

40 POKE R+A, X ~POKE into screen memory

50 NEXT A ~—completes the loop started in line 30

60 GOTO 60 -endless loop to prevent the READY prompt
from destroying the display

The STOP key must be used to stop the display in this program;
this prints a line of hearts across the middle of the screen.
The following program prints a vertical line.

10 PRINT" 2"

20 C=32775: X=218 -C is the first column address; X is the
value for a diamond

30 FOR A=0 TO 1000 STEP 40—STEP means that the com-
puter skips to the 40th space past the cursor. This turns on
every 40th graphic block

40 POKE C+ A, X—~POKEs the screen memory

50 NEXT A—completes the loop started in line 30

60 GOTO 60~ sets up an endless loop

Varying the STEP value in line 30 prints different lines and scat-
terings of diamonds.

The BASIC function ASC converts a character to a number. This
function can be used with the POKE command as follows:

10 PRINT"3"
20 POKE 32928, ASC("*")

This displays the character * in the fifth row, first colvmn. (See
the PET Graphics Worksheets.) By changing the character in the
quotation marks, other letters, numbers or graphic characters can
be poked into screen memory.

Apple, PET, and TRS-80 Graphics / 129

Graphic ASCII POKE Reverse POKE
Character Code Number Number

i 161 97 225
@ 162 98 226
- 163 99 227
—_ 164 100 228
165 101 229
166 102 230

167 103 231

E 168 104 232
il 169 105 233
i 170 106 234
i 171 107 235
] 172 108 236
- 173 109 237
“ 174 110 238
= 175 111 239
r 176 112 240
+ 177 113 241
178 114 242

- 179 115 243
! 180 116 244
[} 181 117 245
i 182 118 246
- 183 119 247
- 184 120 248
= 185 121 249
- 186 122 250
F] 187 123 251
2 188 124 252
4 189 125 253
= 190 126 254
"8 191 127 255
- 192 64 192
& 193 65 193
194 66 194
- 195 67 195
- 196 68 196
- 197 69 197
- 198 70 198
! 199 71 199
! 200 72 200

. 201 73 201
202 74 202

’ 203 75 203
- 204 76 204
205 77 205
o 206 78 206

207 79 207

130 / Basic BASIC-English Dictionary

Graphic ASCII POKE Reverse POKE
Character Code Number Number

1 208 80 208
@ 209 81 209
- 210 82 210
i 211 83 211
! 212 84 212
213 85 213
A 214 86 214
b 215 87 215
216 88 216
; 217 89 217
& 218 90 218
P 219 91 219
220 92 220
221 93 221
i 222 94 222
4 223 95 223
224 96 224
225 97 225
- 226 98 226
. 227 99 227
- 228 100 228
A 229 101 229
= 230 102 230
t 231 103 231
i 232 104 232
R 233 105 233
- 234 106 234
i 235 107 235
il 236 108 236
= 237 109 237
238 110 238
239 111 239
. 240 112 240
+ 241 113 241
v 242 114 242
i 243 115 243
: 244 116 244
] 245 117 245
i 246 118 246
- 247 119 247
- 248 120 248
- 249 121 249
. 250 122 250
' 251 123 251
2 252 124 252
d 253 125 253
254 126 254

T 255 94 222

131

Apple, PET, and TRS-80 Graphics /

PAS VAR
LTLEE
L89¢€¢
Ly9EE
£09¢¢€
L9GEE
PAASI S
L8VEE
LYYEE

LOVEE
L9€€e
YAAARS
LBTEE
LYZEe
PAA%RS
L91€¢
PAASES
L80€¢E
LY0EE
200€¢€
L96¢¢
1262¢
1L88¢¢
LY8¢E
2082¢

0% 6€ 8€ LE 9 SE ¥E€ ££ 2 1€ 08 62 87 L2 92 ST ¥2 €2 22 1207 61 81 L1 9T ST #1 €121 1101 6 8 £ 9 S v € T 1

87.LE€

889¢¢€

8179¢E¢

809¢¢

89GEE

87SEE

88YEE

8Yvee

807¢¢

89€€E

87¢Ce

887¢EE

81¢cee

A%

'89T€EE

'8CIEE

880€¢

8¥0€E

800€€

8967¢

8C6C¢E

8882E

818¢E

808¢7¢

89.7¢€

suwn[o) O
L9LEE 0} §9LTE SUOLIBIOT SSAIPPY AIOWSIA]

199ysyIop, sorydern Arowrdjy uaaxdg ayod IAd

sMoYy
€c

132 / Basic BASIC-English Dictionary

Graphics on the TRS-80

Graphics can be printed on the TRS-80 by using the SET and
RESET statements. SET turns a graphics block on; RESET turns a
graphics block off.

There are 128 horizontal graphic block addresses numbered from
0 to 127, and 48 vertical graphic block addresses numbered from 0
to 47. (See the TRS-80 SET and RESET Graphics Worksheet.) By plac-
ing the X and Y co-ordinates inside the brackets after SET or
RESET, a total of 6,144 graphic block locations can be turned on or
off.

Example: SET|0,0) lights up the block in the top left corner.

RESET(0,0) turns off that block.

SET(62,24) turns on the block that is 62 spaces in from the left (X
co-ordinate) and 24 lines down (Y co-ordinate). This is near the
center of the screen.

RESET(62,24) turns off that graphic block.

The whole screen can be turned white by using the following pro-
gram.

10 CLS

20 FOR Y=0 TO 47

30 FOR X=0 TO 127

40 SET (X,Y)

50 NEXT X

60 NEXT Y

70 FOR A=1 TO 10000: NEXT A

To draw a horizontal line near the middle of the screen, use this
program.

10 CLS
20 FOR X=0 TO 127

30 Y=24

40 SET(X,Y)

50 NEXT X

60 FOR A=1 TO 10000: NEXT A

To draw a vertical line near the middle of the screen, use this pro-
gram.

10 CLS
20 X =64

30 FOR Y=0 TO 47

40 SET(X,Y)

50 NEXT Y

60 FOR A=1 TO 10000: NEXT A

The PRINT@ (PRINT AT in Level I) can be used in graphics. (See
the PRINT AT and TAB Graphics Worksheet.)

Apple, PET, and TRS-80 Graphics / 133

The PRINT@ numbers range from 0 to 63 in the first line, 64 to
127 in the second line, 128 to 191 in the third line, and so on, up to
the last line, whose numbers range from 960 to 1,023.

PRINT@478,"******" places six stars near the center of the
screen.

192

256

320

384

448 s | ok ke o |

512

576

The TAB function is used with the PRINT statement to place let-
ters, numbers or graphics at a particular spot or block on a line. If
the cursor is in the 24th row and you want to print stars 20 spaces
over, you could use the following statement: 10 PRINTTAB(20),

Mok %k k ok ok kI

704

768

832

896 EIEIEIEY E Y

960

TaB w0 1]z 011516 7 8]0 ofufezlaa]she]irfishofaoferj2e s jasf2s oo o7 a8 20 f30 |31 {321 3444 35)

Instead of using quotation marks, you could use the ASCII code
numbers along with the CHR$() function. Place the code number
inside the brackets.

PRINT CHR$(157) prints a r on the screen.

PRINTTAB(58),CHR$(157) prints the b on the screen at the 58th
TAB position as shown below.

afesee]er an o Po Lo fseLaalmasslaofar]anfsolaala 1 fa2fasfaaf 45 16147 0[5 [52]54[54 |55 (56 [57 [sslaa o fat [62 [63] - TAB

63

127

134 / Basic BASIC-English Dictionary

PRINT@250,CHR${157) prints the ’ on the screen at the 250th
PRINTAT location as shown below.

255

319

383

The STRINGS$(number, ASCII code) function can be used with
the PRINT, PRINT@ or PRINT TAB statements to print graphics or
any ASCII character, the number of times specified. The string that
is created can have up to 255 repeated characters. Any characters
on the keyboard may be used, except the quotation mark, comma
and colon, which must be printed by using their ASCII code
numbers.

PRINT@940,STRING$(10,131) prints a line 10 spaces long near
the bottom right corner of the screen.

767

895

959

1023

36]371 38 30100 41{ 42{ 43] 44} 35| 46| 47| 18] 29[50]51]52{53] 54 62]63{~— TAB

The TRS-80 graphics codes and characters are listed on the next
page. The TRS-80 uses ASCII codes from 129 to 191 for graphics.

POKE

POKE is one of the best ways to print graphics on the TRS-80
screen. The video memory locations range from 15360 to 16383
inclusive.

There can be 64 graphics blocks on a single line. Adding 64
moves the block down on the screen. Subtracting 64 moves the
block up one line.

POKE16383,191 displays a graphics block at the bottom right cor-
ner of the screen.

10 FOR X=15360 TO 16383

20 POKEX,191

30 NEXT X

This whites out the whole screen.

Apple, PET, and TRS-80 Graphics / 135

10 FOR X =1 TO64

20 POKE 15872 +X,136

30 NEXT X

This speeds a dot across the video screen.

See the TRS-80 POKE Graphics Worksheet for the exact locations
of all the POKE addresses.

TRS-80 Graphics

Codes can be used with the CHRS$ function or with POKE

statements.
1128 B 143 ! 158

129 ﬁj 144 ! 159
130 ﬁ 145 Eﬁ 160
131 E 146 @j 161
132 E 147 ﬂ 162
133 ﬂws m 163
134 H 149 E 164
135 ﬂ 150 H 165
136 n 151 ﬂ 166

===

Pl Fd™ D! P Ml ™ B B e EES

136 / Basic BASIC-English Dictionary

137

Apple, PET, and TRS-80 Graphics /

> 0O0-0+TU=-=CT+O0W

EEESEEEEEEE e C Y BB B EHEHEEEEEE E

133HSMHOM SOIHdVHD 13534 ANV L3S (O

SJeUIpI0-00 X

Sdl

138 / Basic BASIC-English Dictionary

IV INRd

8YL —|r9]79) ¢leeiveleciec]icosta B srirsferizefirlorfes oe fcorfes fer fr afsfzjoletefefalifof=—avL
£201 096
656 968
568 23]
1£8 892
292 0L
£02 or9
6£9 . 9.8
7221 (A%
1ie 8t
FAud 8E
£8E 0ze
61¢ 9gz
§6T z61
161 821
421 9
£9 0
afhejac]1elocfcefrefeclasticfoc]ar]sre privjzvjivjoseeireiefatjsejrefee oyl tjor] e rel ezl oelealvef el e efozls s oo e ez oo s faf 2 o [e v [e 7 § 1 [0 | =——avd

19ysyIoM sorgdern qef, pue 1y yuid 08-SHL

Appendix D

Reserved
Words

Words which have special meaning to the computer are called
reserved words. Most computers make it possible for reserved
words to take up only one byte of program memory. All other
characters, in words or by themselves, use up one byte each of pro-
gram memory.

Reserved words may not be used as variable names because each
one is reserved by the computer for a special purpose. If a reserved
word is used as a variable, or part of a variable, the computer
recognizes it as the function, statement or command that it
represents.

Example: If you use LISTS as a variable name for some lists of ar-
ticles, the computer normally responds with a syntax error message
because LISTS contains the reserved word LIST.

Reserved words for the three computers are listed on the next
three pages. To avoid syntax errors and to avoid crashing your pro-
gram, make sure none of the reserved words are used as variables
or as parts of variables.

APPLESOFT RESERVED WORDS

& CONT FN

ABS COS FOR

AND DATA FRE

ASC DEF GET

AT DEL GOSUB
ATN DIM GOTO
CALL DRAW GR

CHR$ END HCOLOR=
CLEAR EXP HGR

COLOR= FLASH HGR2

140 / Basic BASIC-English Dictionary

APPLESOFT RESERVED WORDS (cont.)

HIMEM:
HLIN
HOME
HPLOT
HTAB

IF

IN#
INPUT
INT
INVERSE
LEFTS$
LEN

LET

LIST
LOAD
LOG
LOMEM:
MID$
NEW
NEXT
NORMAL
NOT
NOTRACE
ON

ONERR
OR

PDL
PEEK
PLOT
POKE
POP
POS
PRINT
PR#
READ
RECALL
REM
RESTORE
RESUME
RETURN
RIGHTS
RND
ROT=
RUN
SAVE
SCALE =
SCRN(

SGN
SHLOAD
SIN
SPC|
SPEED =
SOR
STEP
STOP
STORE
STR$
TAB|
TAN
TEXT
THEN
TO
TRACE
USR
VAL
VLIN
VTAB
WAIT
XPLOT
XDRAW

INTEGER BASIC RESERVED WORDS

ABS
AND
ASC

AT
AUTO
CALL
CLR
COLOR
CON
DEL
DIM
DSP
END
FOR
GOSUB
GOTO

HLIN

IF

IN#
INPUT
LEN
LET
LIST
LOAD
MAN
MOD
NEW
NEXT
NOT
NOTRACE
OR
PDL
PEEK
PLOT
POKE

POP
PRINT
PR#
REM
RETURN
RND
RUN
SAVE
SCRN
STEP
TAB
TEXT
THEN
TO
TRACE
VLIN
VTAB
XPLOT

Reserved Words / 141

PET RESERVED WORDS

ABS INT RIGHT$
AND LEFTS$ RND
ASC LEN RUN
ATN LET SAVE
CHRS$ LIST SGN
CLOSE LOAD SIN
CLR LOG SPC
CMD MID$ SOR
CONT NEW ST
COS NEXT STEP
DATA NOT STOP
DEF ON STR$
DIM OPEN SYS
END OR TAB
EXP PEEK TAN
FN POKE THEN
FOR POS T1
FRE PRINT TI$
GET PRINT# TO
GET# READ USR
GOSUB READ# VAL
GOTO REM VERIFY
IF RESTORE WAIT
INPUT RETURN

TRS-80 LEVEL I RESERVED WORDS
ABS INPUT READ
AND INT RESET
AT LET RESTORE
CLS LIST RETURN
CONT MEM RND
DATA NEW SET
END NEXT STEP
FOR ON STOP
GOSUB POINT TAB
GOTO PRINT THEN

IF
TRS-80 LEVEL Il RESERVED WORDS

@ CHR$ CONT
ABS CINT COS
AND CLEAR CSNG
ASC CLOSE CVD
ATN CLS CVI

CDBL CMD CVS

142 / Basic BASIC-English Dictionary

TRS-80 LEVEL II RESERVED WORDS (cont.)

DATA KILL PUT
DEFDBL LEFT$ RANDOM
DEFFN LET READ
DEFINT LSET REM
DEFSNG LEN RESET
DEFUSR LINE RESTORE
DEFSTR LIST RESUME
DELETE LOAD RETURN
DIM LOC RIGHT$
EDIT LOF RND
ELSE LOG SAVE
END MEM SET

ERL MERGE SGN

ERR MID$ SIN
ERROR MKD$ SQR

EXP MKI$ STEP
FIELD MKS$ STOP
FIX NAME STRING$
FOR NEW STR$
FRE NEXT TAB

GET NOT TAN
GOSUB ON THEN
GOTO OPEN TIME$

IF ouT TROFF
INKEY$ PEEK TRON
INP POINT USING
INPUT POKE USR
INSTR POS VAL

INT PRINT VARPTR

All these words are Level II BASIC reserved words. However,
some of them have no function unless a disk operating system is
connected to the computer.

APPLE, PET AND TRS-80
A COMPARISON

Reserved Words

These reserved words are recognized by the computer as having
special meaning and, therefore, must not be used in programs for
any purpose other than what they were intended. Reserved words
usually take up only one byte of program memory.

Reserved words common to the Apple, PET and TRS-80

ABS AND ASC ATN CHRS$
CONT COS DATA DEF* DIM
END EXP FOR FRE GOSUB

GOTO IF

LEN LET

NEW NEXT
PEEK POKE
REM RESTORE
RUN SGN
STOP STR$

TO USR

Reserved Words / 143

INPUT INT LEFTS$
LIST LOG MID$
NOT ON OR
POS PRINT READ
RETURN RIGHTS RND
SIN SOR STEP
TAB TAN THEN
VAL

* Not used in the same way.

Reserved words of similar meaning

Apple PET TRS-80
AT @, AT
AUTO AUTO
CLEAR CLR CLEAR
LOAD LOAD CLOAD
SAVE SAVE CSAVE
DEL DELETE
ESC EDIT
FN FN
GET GET INKEY$
HOME PRINT"=1"* CLS
INVERSE RVS{key)*
NORMAL shift RVS(key)*
TRACE TRON
NOTRACE TROFF
ONERR ON ERROR
PLOT Graphics Keys* SET, RESET
SCRN PEEK POINT
STORE PRINT# PRINT#
RESUME RESUME
SPC SPC
VERIFY VERIFY CLOAD?
WAIT WAIT
* Not a reserved word, but has the same result.
Special Reserved Words
Apple
COLOR DRAWAT FLASH GR HCOLOR
HGR HGR2 HIMEM HLIN-AT HPLOT
HPLOT TO LOMEN ROT PDL RECALL
SCALE SHLOAD SPEED TEXT ULIN AT
VTAB XDRAW AT XPLOT
PET
T TI TI$ TIME TIMES$

144 / Basic BASIC-English Dictionary

TRS-80
CDBL CINT CSNG our ELSE
ERASE ERL ERR ERROR FIX
PRINT USING STRING$ INP MEM

VARPTR

- Appendix E

Boolean Operators

BOOLEAN OPERATORS

Boolean operators can be one of the most difficult computer con-
cepts to grasp.

The most commonly used Boolean Operators are AND, NOT and
OR. They are often found in IF-THEN statements.

If we regard the Boolean Operators as testers of the truthfulness
of statements, we may shed some light on their meaning and
usefulness.

Examples: 5IF A=5 AND B=6 THEN 1000

50 IF A=51 OR B=19 THEN 1000
200 IF NOT X THEN 1000

What do these statements mean?

The AND operator results in a True, if both parts of the condi-
tional IF-THEN statement are True. If the condition posed in the
IF...AND half of the statement is met, the instruction following
THEN is executed.

IF True AND True THEN True, and therefore execute the in-
struction after THEN

IF True AND False THEN False

IF False AND True THEN False

IF False AND False THEN False

In the last three lines the condition is not satisfied, and execution
continues on the next line of the program.
The following lines are an example of actual use.

100 INPUT"DO YOU WISH TO PLAY A GAME IF YOU ARE
SUCCESSFUL(Y/N)'A$
110

Educational program

146 / Basic BASIC-English Dictionary

400 PRINT"YOUR AVERAGE IS";N
410 IF A$="Y" AND N>79 THEN 1000
420 END

1000 REM***GAME***

These lines could be used in an educational program where a stu-
dent must attain a proficiency of 80% or more on a number of ques-
tions in order to play a game.

Line 100 asks the student if he/she wants to play the game at the
end of their work. Lines 110 to 390 contain the educational
program.

Line 400 gives the student's average. Line 410 checks to see if the
student wanted a game AND if the average is 80% or more. If both
these conditions are True, then execution jumps to line 1000 where
the game starts. If either of these conditions is False, that is, the stu-
dent did not want a game or attained an average of less than 80%,
the execution continues at line 420.

Line 420 ends the program.

The OR operator results in a True if either part of the conditional
statement is true.

IF True OR True THEN True
IF True OR False THEN True
If False OR True THEN True
If False OR False THEN False

Only in the last line is the condition not satisfied.
The following program is an example of actual use.

100 INPUT"'DO YOU WISH INSTRUCTIONS";A$
110 IF A$="YES" OR A$="Y" THEN 1000
120 IF A$="NO" OR A$="N" THEN 140
130 GOTO 100
140 (rest of program)
1000 PRINT'INSTRUCTIONS"

In this program line 100 asks the user if he/she want instructions.

Line 110 checks to see if A$ equals "YES" or "Y". If either of these
are True, then execution jumps to line 1000 for the instructions.

If A$ does not equal "YES" OR"Y", then execution proceeds to line
120.

Line 120 checks to see if A$ equals "NO" OR "N". If either is true,
then execution jumps to line 140 and the rest of the program. If A$
does not equal "NO" OR "N", then none of the acceptable answers to
our question in line 100 have been input, and execution proceeds to
line 130. This causes an unconditional jump to line 100, and the
question is repeated.

Boolean Operators / 147

The NOT operator is the least used of the Boolean operators.
Placing NOT in front of a variable either changes the variable to its
logical complement or checks to see if the variable is false.

Example: 10 IF NOT X THEN 100

Here, if X is false (X=0), then execution continues at line 100. If
X is true, then execution continues at the next numbered line.

The following chart summarizes the Boolean Operators. The
number 1 represents a True, and 0 represents a False.

AND Operator OR Operator NOT Operator
1AND 1=1 10R1=1 NOT 0=1
1 AND 0=0 10R0=1 NOT 1=0
0 AND 1=0 OOR1=1

0 AND 0=0 0OR0=0

148 / Basic BASIC-English Dictionary

ABOUT THE AUTHOR

Larry Noonan is a resource teacher with the Separate School
Board in Ontario, Canada. He helps teachers use microcomputers
in the classroom and teaches courses in programming. Larry has
written articles for various computer periodicals and is presently
taking his Masters of Education in Computers in Education at the
Ontario Institute of Studies in Education.

150 / Basic BASIC-English Dictionary

Yes, send me your free catalog,
BRAINFOOD, which lists over 80

$1

microcomputer books covering

software, hardware, business

applications, general computer literacy OFF

and programming languages.

| understand that you will give me $1 NEXT

off my next order when | order from ORDER|
u

BRAINFOOD.

NAME S

ADDRESS

CITY, STATE, ZIP

$1
OFF
NEXT
ORDER!

Yes, send me your free cataiog,
BRAINFOOD, which lists over 80
microcomputer books covering
software, hardware, business
applications, general computer literacy
and programming languages.

1 understand that you wili give me $1
off my next order when | order from
BRAINFOOD.

NAME S

ADDRESS S

FREE CATALOG FREE
CATALOG FREE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG

Mail To:
dilithium Press
P.O. Box 606
Beaverton, OR 97075
Or Call:

800-547-1842

CITY, STATE, ZIP

$1
OFF
NEXT
ORDER!

Yes, send me your free catalog,
BRAINFOOD, which lists over 80
microcomputer books covering
software, hardware, business
applications, general computer literacy
and programming languages.

| understand that you will give me $1
off my next order when | order from
BRAINFOOD.

NAME -

ADDRESS

CITY, STATE, ZIP

FREE CATALOG FREE
CATALOG FFIEE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG _FREE CATALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG F TALOG
FREE CATALOG FREE
CATALOG FREE CATA
LOG FREE CATALOG
FREE CATALOG FREE

MORE HELPFUL WORDS
FOR YOU

Computers for Everybody
Jerry Willis and Mer! Miller

This fun-to-read book covers all the things you should know
about computers. If you're anxious to buy one, use one or
just want to find out about them, read this book first.

ISBN 0-918398-49-5 $5.95

Peanut Butter and Jelly Guide to Computers
Jerry Willis

This entertaining book is a simple, easy-to-digest source of
information on personal computing. It leads you through all
the essential knowledge of “computer literacy "

ISBN 0-918398-13-4 $9.95

Nailing Jelly to a Tree
Jerry Willis and William Danley, Jr.

This is a book about software. The emphasis is on learning
to use the thousands of available programs that have
already been written, and adapting them to your machine

ISBN 0-918398-42-8 $15.95

Small Computers for the Small Businessman
Nicholas Rosa and Sharon Rosa

If you've ever considered a computer for your business but
didn’t know where to turn, this is the book that will arm you
with all the information you'll need to make an intelligent,
cost-effective decision

ISBN 0-918398-31-2 $16.95

‘@ dilithium Press, P.O. Box 606, Beaverton, OR 97075

Send to: dilithium Press, P.O. Box 606, Beaverton, OR 97075

Please send me the book(s) | have checked. | understand that if I'm not fully satisfied, | can return
the book(s) within 10 days for full and prompt refund.

. Computers for Everybody - Peanut Butter and Jelly Guide to Computers
Nailing Jelly to a Tree . Small Computers for the Small Businessman
[J Check enclosed §$ [} Please charge my
Payable to dilithium Press 00 VISA [IMastercharge
[Send me your catalog of books. # Exp. Date
Signature
Name
Address

City, State, Zip BB

BASIC-English
Dictionary

If you’re like thousands of other computer users, you've
probably found really great programs in magazines or
books, but they were written in BASIC for some machine
other than your own. This unusual dictionary presents you
with an alphabetical listing of all commonly used BASIC
commands, statements, operators, and special keys. These
are then translated for use on the Apple, PET, and TRS-80
computers. Converting from one BASIC to another is done
easily, as examples and explanations are abundant.

The nitty little differences in BASIC can drive you
crazy. This dictionary can be your prescription to a saner
approach to using this language.

ISBN 0-918398-54-1

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf

