basic hasic

\eLrP-1 AN INTRODUCTION TO COMPUTER PROGRAMMING
‘ | IN BASIC LANGUAGE
2 Fdr Y=1 Td 10

5 LET C=0 second edition

10 FdRrR X=1 T2 50

20 - LET F=INT(2%RNDC1)) JAMES S. COAN
30 IF F=1 THEN 60

40 PRINT "T''3

S0 GOTa 100

S8 REM C COUNTS THE NUMBER @F HEADS

60 LET C=C+1

70 PRINT "H';

100 NEXT X

110 PKRINT

120 PRINT "HEADS '3C3'"@UT @F S50 FLIPS"
125 NEXT Y ' -
130 END

RUN

FLIP-1

HTTTTTHTTHHTTHTTTTTTTTHTHHHHHHTTTTTHTHHH THHH TTHHTT
HEADS 21 dUT @F 50 FLIPS
HTTHTHHTTHTTHTHHTTTHHHTTTTTTHHHH T THTH THHHH THH T THHH
HEADS 26 2UT @F 50 FLIPS
HTHTTTHTTHTTHTTTTTTTTHTTHTTTHTHTHTTTHTTTTTHHH THHHT |
HEADS 17 @UT @F S0 FLIPS

THITTTTTHTHTHTHH THHHHHHTHTTTHHTTHTTTTTTTHHTHTTHHTT
HEADS 21 @UT OF S50 FLIPS
TTHHTTTTHTHHTTHTHTHHHHTTHHTHHHTTTTTTHTHHHHTTHTHHTT
HEADS 24 JJT 3F S0 FLIPS
HTHTHHHHHHHTHTTTTTTTHTTHHHHHH TTTHTTTTHTH TTHH THH THH
HEADS 26 JUT @F 50 FLIPS .
HTTTTTHTTTTHHTTHTTHTHHHHTHTHHTTHHHHTHTTHTHTHTTTTHP
HEADS 22 @UT @F S0 FLIPS

THTHHHHHH THTHHHHTTTHH TH THHHHH THHH THH THHHHHHH TTTHTH
HEADS 34 2dT OF 50 FLIPS /
HTTHHTHHFTHTTTTTTHHHTTTHTTTHHTTHTHTHHHHHTTHHTHﬁTHT
- HEADS 24 AUT IF 50 FLIPS

’ TFHHTHHIHHHTHTTHTHHHTHHHTTTTHHHTTTTHTTHTHHTHHTHrHT
HEADS 26 AUT OF S0 FLIPS

INE | HAYDEN

Basic BASIC

An Introduction to Computer Programming in BASIC Language

Hayden Computer Programming Series

COMPREHENSIVE STANDARD FORTRAN PROGRAMMING
James N. Haag

BASICS OF DIGITAL COMPUTER PROGRAMMING (Second Ed.)
John S. Murphy

BASIC BASIC: An Introduction to Computer Programming in BASIC Language (Second Ed.)
James 8. Coan

ADVANCED BASIC: Applications and Problems

James S. Coan

DISCOVERING BASIC: A Problem Solving Approach

Robert E. Smith

ASSEMBLY LANGUAGE BASICS: An Annotated Program Book
Irving A. Dodes

PROGRAMMING PROVERBS

Henry F. Ledgard

PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS
Henry F. Ledgard

EORTRAN WITH STYLE: Programming Proverbs

Henry F. Ledgard and Louis J. Chmura

COBOL WITH STYLE: Programming Proverbs

Louis J. Chmura and Henry F. Ledgard

BASIC WITH STYLE: Programming Proverbs

Paul Nagin and Henry F. Ledgard

SNOBOL: An Introduction to Programming

Peter R. Newsted

FORTRAN FUNDAMENTALS: A Short Course

Jack Steingraber

THE BASIC WORKBOOK: Creative Technigues for Beginning Programmers
Kenneth E. Schoman, Jr.

RASIC FROM THE GROUND UP

David E. Simon

APL: AN INTRODUCTION
Howard A. Peelle

Basic BASIC

SECOND EDITION

An Introduction to Computer Programming in BASIC Language

JAMES S. COAN

Community Computer Corporation
Germantown Friends School

H

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Coan, James S
Basic BASIC: an introduction to computer
programming in BASIC language.

(Hayden computer programming series)
Includes indexes.
1. Basic (Computer program language).
2. Electronic digital computers—Programming.
. Title.
QA76.73.B3C62 1978 001.6'424
ISBN 0-8104-5107-7
ISBN 0-8104-5106-9 pbk.

77-14640

Copyright ® 1970, 1978 by HAYDEN BOOK COMPANY, INC. All rights re-
served. No part of this book may be reprinted, or reproduced, or utilized in
any form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any in-
formation storage and retrieval system, without permission in writing from

the Pubiisher.

Printed in the United States of America

4 5 6 7 8 9

PRINTING

79 80 81 82 83 84 85

YEAR

Preface

With the increasing availability of computer access through remote terminals
and time sharing, more and more schools and colleges are able to introduce
programming to substantial numbers of students.

This book is an attempt to incorporate computer programming, using BASIC
language, and the teaching of mathematics. I believe the two activities support
each other.

Flowcharts are used throughout the text. The general approach is to begin
with short complete programs and then simply and methodically build them
into larger programs. Each new capability or new organization of capabilities
is presented to create a desired effect in a program. Details are introduced
only as they become necessary or useful for the writing of a program, rather
than as sets of facts to be memorized in case a particular situation should
ever arise. Over 125 programs are used to achieve this.

All of the elementary BASIC language capabilities are presented in the first
five chapters and Chap. 7. Chapter 6 and Chaps. 8-13 emphasize applications.
The first seven chapters may be studied in conjunction with, or at any time fol-
lowing, a first-year algebra course. Chaplers 8-13 are applications oriented,
covering many of the popular topics of precalculus mathematics, with all of the
required algorithms developed in the text. Thus, this text is suitable for use
either as a supplementary text to be incorporated into existing mathematics
courses, or as the text for a course or unit to cover programming alone.

Appendices A and B, respectively, present information for the operation
of programs on paper tape and a few comments on error diagnosis. Appendix
C introduces two formatting capabilities that are available on some time-
sharing systems. Flowchart shapes are summarized in Appendix D. A sum-
mary of BASIC statement types is provided in Appendix E and an index of
all the programs in Chaps. 2-13 is provided in Appendix F.

Many of the problems in the book are intended to enable the student to
develop interesting mathematical concepts upon seeing the printed results of
program RUNS. Possible solution programs are given in Appendix G for the
even-numbered problems to give the student an indication of the correctness

of his program without being required to run every program. However, par-
ticularly at the beginning, students derive greater benefit from seeing programs
run (or not run) than from any other programming activity.

1 wish to thank Germantown Friends School for its support in the prepara-
tion of this text. Thanks are due Mis. Geoffrey Wilson for test teaching and
numerous students for test learning portions of the manuscript.

JaMmes S. Coan
Philadelphia

reface to the Second Edition

The First Edition of this book has been significantly enhanced by present-
ing character string handling and the use of data files. Since strings and files
involve language differences which depend on the computer, two versions are
presented. Demonstration programs are presented in Chap. 7 for both General
Electric Information Services BASIC and Hewlett-Packard BASIC.

The little used statement RESTORE is no longer discussed, and the INPUT
statement is now presented in Chap. 1.

Thanks are due to the Community Computer Corporation for assistance in
the preparation of material for this Second Edition.

James S. Coan
Philadelphia

Chapter

Chapter

Chapter

Chapter

Contents

1—Introduction to BASIC

1-1 PRINT . .

1-2 READ-DATA

1-3 System Commands

14 LET

1.5 INPUT .
1-6 Sample Ploglams ,,,,,,,,,,,

17 Comma and Semicolon in PRINT Statements

Summary and Problems for Chap. 1

2—Writing a Program

2-1 Planning

22 REM

2-3 Flowcharting . ..

2-4 JF-THEN .
Summary and Problems for Lhap 2 .

3—Loops and Lists

3-1 Introduction to Machine- Made Loops
Summary and Problems .
3-2 More on Loops .
Summary and Problems
3-3 Introduction to Lists
Summary and Problems .
3-4 More on Lists . .
Summary and Problems .

4—Computer Functions

4-1 Introduction to INT(), SQR(), ABS(), and SGN()

Summary and Problems .
4-2 Reducing Common Fractions and Dimension
Conversions . e
Summary and Problems
4-3 Program-Defined Functions
Summary and Problems .
4-4 Random Number Generator
Summary and Problems .

[y
T ODULR O

11

13
.13

13

13

92

prs)

24

24
31

.31

34
35

. 38

40

. 45
. 47

47
50

. 50
. 54

55
61
62
71

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

5—Elementary Data Processing
5-1 Introduction to Data Processing .
Q. PR B 5 B N P
uuunucuy il LA ULIAGELED B
5-2 Arrays .
Summary and Problems
5-3 A More Detailed Questionnaire Analysxs
Summary and Problems

6—Specific Applications .

6-1 Euclidean Algorlthm S,
Problems o

6-2 (‘hange Base
Problems

6-3 Looking at Tnteqms Dlmf bv T)lmt
Problems . .

7--Strings and Files

7-1 Introduction to Strings

7-2 Strings—The Substring Scheme
Summary and Problems .

7-3 The String Array Scheme
Summary and Problems .

7-4 Introduction to Data Files

7-5 Hewlett-Packard Files
Summary and Problems

7-6 General Electric Files
Summary and Problems

8~The Quadratic Function .
8-1 Zeros

8—‘7 Axis of Symmetry and Tmmng Point

8-3 Plotting the Parabola = . .
Summary and Problems for C hap 8

9—Trigonometry

9-1 Introduction to SIN(X) CAS(X), and TAN()

9-2 Right Triangles and Arctangent
Summary and Problems

9-3 Law of Sines and Law of Cosines
Summary and Problems

9-4 Polar Coordinates
Summary and Problems

10—~Complex Numbers

10-1 Fundamental Operations
Summary and Problems

0-2 Polar Coordinates
Summary and Problems

10-3 Powers and Roots
Problems

11 Polymomiale

11-1 Fundamental Operations
Summary and Problems
11-2 Integral Zeros
Summary and Pr oblems

11-3 Real Zeros «
Summary and Problems .
11-4 Complex Zeros
Summary and Problems

Chapter 12—-MAT Instructions in BASIC

12-1 Introduction to MAT Instructions
Problems . o

12-2 Solving a Problem
Problems

12-3 Operations and Specnl Matrices .
Summary and Problems

12-4 Solving Simultaneous Linear Equatlons
Summary and Problems -

12-5 Transpose of a Matrix
Problems .. . o

Chapter 13--Elementary Probability

13-1 Introduction
13-2 Enumeration
Summary and Pr oblems
13-3 Simple Probability
Summary and Problems
13-4 Random Simulation .
Problems
13-5 Binomial Trials .
Problems

Appendix A--Storing Programs on Paper Tape

A-1 Introduction .. «

A-2 Punching Paper T'lpe Off-Line

A-3 Reading Paper Tape

A-4 Getting the Computer to Punch Pdpel 'Iape

Appendix B—-Error Diagnosis

B-1 Introduction o
B-2 Errors that Prevent RUN ..
B-3 Errors that Terminate a RUN . .
B-4 Errors that Cause Unexpected or Incorrect Results
Summary e

Appendix C—Special Formatting Functions

C-1 TAB(X) . ..
C-2 IMAGE Statement

Appendix D—Summary of Flowchart Shapes

Appendix E—-Summary of Statements in BASIC

Matrix Instructions
Functions
Files

Appendix F~Index of Programs in Text
Appendix G—Answers to Even-Numbered Problems
Index

163

. 168
168
175

. 176

176

179

180

.. 183

185

188

190
193

... 194
.. 196

197

197

197

203
204
206
206
209
210

. .214

215
..215

215
216
216

..218

218
218
221
299

ppyd]

294

225
295
227
228

229

230
231
232

240
263

Basic BASIC

An Introduction to Computer Programming in BASIC Language

CHAPTER 1

Introduction to BASIC

In working with a computer, you, the programmer, must communicate
with the computer. In order to do that you will have to use a language that
the computer will understand. There are many languages written for this pur-
pose. The language of this text is called BASIC. The actual physical com-
munication is rather complicated and we will ignore most of the mechanics
except for the apparatus at our end of things. The device we will be using is
called a remote terminal. It will have a specific name depending on the manu-
facturer. The remote terminal has a keyboard, which is the part we are most
concerned about.

1-1 PRINT

No matter how complicated a particular set of instructions is, you will have
to tell the computer to put the results into some form discernible to yourself.
Therefore, let us begin with a discussion of the PRINT statement. If you want
the computer to write the following statement “THIS IS A SHORT PRO-
GRAM,” you will type on the keyboard of the terminal as follows:

10 PRINT "THIS IS A SHORT PR@GRAM."

20 END
The computer, on proper instruction, will do exactly what you have set out
to do.

The two lines 10 and 20 constitute a complete program. Several comments
are in order here.

1) Note that every line in a program must begin with a positive integer.

9) The statement that we want to write out is in quotes; this may be used
to good advantage, for example, for headings and labels.

3) In many time-share systems, every program must have as its highest
numbered line the END statement. In some systems, the END statement
is optional.

2 Basic BASIC

4) Note that all the letters are capitals. The terminal you may use or may
not be restricted in this way. Note also that the letter “O” has a slash
mark to distinguish it from the digit “0.” On some terminals the reverse
is true, the digit “0” has a slash and the letter “O” does not. On some
printers one is more nearly a circle than the other or one is nearly dia-
mond shaped. You can easily determine the method used by your equip-
ment by examining some sample output on your screen or “hard copy.”

5) It is conventional although not required to use intervals of 10 for the
numbers of adjacent lines in a program. This is because any modifica-
tion in the program must also have line numbers. So you can use the
in-between numbers for that purpose. It should be comforting to know
at this point that the line numbers do not have to be typed in order.
No matter what order they are typed in, the computer will follow
numerical order in executing the program.

6) Each line of a program is called a program statement.

You probably think of the computer as something that more commonly
produces numerical results and you are partly correct. Suppose you wish to
multiply 23.4 by 91. One way of doing this on the computer would be to
write a program like this:

10 PRINT 23.4%91
20 END

Then on proper instruction the computer will type out the following and stop.

2129. 4
DANE

Computers vary as to the message that gets printed here. Notice the absence
of quotes. In this case you have instructed the computer to perform an opera-
tion. Had you in fact wanted 23.4 ° 91 typed out, then you would change the
program. You might write the following;:

10 PRINT “23.4%91=",23. 4491
20 END

This time the result will be as follows:
23. 4%91= 2129. 4
DBNE

You have succeeded in instructing the computer not only to perform an opera-
tion, but to print out the result in easily understandable form, which is desir-
able throughout mathematics. Notice the use of the comma here. The comma
may be used to separate the different parts of a PRINT statement. Used in
this way, a comma is called a delimiter. Notice too, that there are eight spaces
between the equals sign and the nuinber, A way 1o eliminate all but one of
them will be explained later. There are many fine points that we will discuss
as we progress, but for now we will take it in small quantities.

If we were limited to the PRINT and the END instructions, we would
quickly return to using pencil and paper or an ordinary desk calculator. With-

Introduction to BASIC 3

out some additional capability, the computer would scon disappear. This
brings us to the READ and DATA statements.

PRINT
Characters in quotes will be printed exactly as typed. Computed
results will be typed as decimal numbers or as integers.

1-2 READ-DATA
The READ statement says to look for DATA as in the following:

10 DATA 23.4,91:83519,87594, 76, 5.98,876,918
20 READ A.,B

30 PRINT AxB

35 GIT3 20

A0 END

The computer ignores the DATA statement until it finds a READ, then it
takes the first number in the first DATA statement and assigns that value to
the first variable in the READ statement. Then, if there is a comma and
another variable in READ as in our example, the computer assigns the second
number in the DATA line to it; were there a third variable, the computer
would continue until it ran out of variables. In our program, the first time
through, A = 23.4 and B = 91. The next line says PRINT the product. Having
printed the product the computer looks for the next instruction, which is
CG@TE 20. This is a new one that means exactly what it says. So the computer
will GOTO line 20 and execute that instruction again. At this point the com-
puter “knows” that it has already read and used the first two numbers in
the DATA line. So it goes to the third and fourth numbers and assigns them
to A and B in order and proceeds to print the product of 83 and 19, then
goes back and assigns the fifth and sixth numbers to A and B, and so on until
it runs out of numbers in the DATA line. There may be any number of DATA
lines in a given program; all you need to realize for the time being is that a
comma must be used to separate each discrete item of data and a comma
should not be placed after the last item in a particular DATA line. Also, be
careful not to use commas to designate thousands, millions, etc. Warning: You
may not put variubles or operation symbols in a DATA line. Only numbers in
decimal form are allowed so fur. Here is the computer’s response to the above
program:

2129. 4
1577
8173
454, 48
804168.

3UT 3F DATA IN LINE 20

4 Buasic BASIC

Note the explicit message at the completion of the print-out. This will vary
from computer to computer.

In our examples so far, we have used only multiplication (®). The other
arithmetic operations that you may use are addition (+), subtraction (—),
division (/), and exponentiation (raising to a power). There are two symbols
in common use for exponentiation: one is an upwards arrow (1), and the other
is a double asterisk (°®). Symbols used to instruct the computer to perform
some operation are called operators. The symbols listed here are specifically
designated as the arithmetic operators. The numbers on which the operation
is to be performed ave called operands. Contrary to convention in algebra, the
multiplication symbol mugst he precent. AR in algebra must bhe written A ° B
for the computer. The computer assigns the same priorities to arithmetic
operations as are assigned in algebra. If there are several operations of the
same priority to be performed on the same line, the computer does them from
left to right. Several sample programs will be given soon.

READ
The READ statement looks for numbers in a DATA statement.
READ X, Y, Z looks for numbers in groups of three.

DATA

The DATA statement supplies values for the variables designated
in the corresponding READ statement. Items of data must be sep-
arated by a comma. Numbers only are allowed.

1-3 SYSTEM COMMANDS

There are two kinds of instructions of which you should be aware. We have
already discussed an instruction given by a program that you have written, We
have not yet mentioned an equally important kind of instruction, the system
command. We must realize that the computer does nothing by itself. There-
fore, there must be what is called an executive program which will respond to
your wishes. You need not worry about the executive program; it is taken care
of by the people who maintain the computer.

The first system command required is referred to as the sign-on or log-on.
The exact form of this varies from computer to computer. So we really cannot
be specific here. It simply notifies the computer that you would like to use it.

Once you are signed on, the next most important command is RUN. After
you have typed vul your prugram, the compuler must bave a way of knowing
that you want it to execute the program. So you must type RUN and then
touch the return key on the keyboard. Only then will it respond to the pro-
grammed instructions.

Possibly next in importance is the command SCR (SCRub or SCRatch) or

Introduction to BASIC &5

CLE (CLEar) followed by depressing the return key. (Which you use will
depend on the computer you are connected with.) Suppose you have run a
program and someone else would like to run his. The old program may be
erased by using the SCR command. So whenever you begin a new program
it might be wise to simply type SCR and touch the return key. The system
command must not be preceded by a number. There are several other com-
mands that we will take up as they seem appropriate.

RUN
Notifies the computer to execute the program instructions. Must
not have a number in front of it.

SCR or CLE =~ — N &W

Notifies the computer that you are not going to use the current
program. The current program is erased from the working area of the
computer. Must not have a number in front of it.

1-4 LET

At this point you do have enough information to write quite a few
programs. However, another statement type that may be used to make life
easier is the LET statement. The LET statement may be used to assign any
number or any algebraic expression to any variable. Using a LET statement,
the last program would look like this:

10 DATA 23.4,915,83,19,87,945 765 5.98,876,918
20 READ A,B

30 LET C=A#B

40 PRINT C

50 GaT3 20

60 END

RUN

2129.4
1577
8173
454. 48
804168,

@UT 3F DATA IN LINE 20

We obtain the same results as before. In this particular program, we really
did not save anything. However, in any situation where we need to write the
value of A ° B several times or the expression is more involved, we will see
that a saving may result. There are many things that you could not do
without a LET capability.

/ 6 Basic BASIC

LET

May be used to assign explicit values to a variable as LET X = 4.58,
or may be used to assign algebraic expressions to a variable as LET
V=X7°F+4 Y ° G. Note: All variables on the right-hand side must
have been previously evaluated. On some computers LET is optional.
Such systems permit Z = 4.56, for example.

1-5 INPUT

The INPUT statement serves much the same purpose as the READ state-
ment in that it permits us to provide numbers for the computer to work with.
For example, 100 INPUT A will cause the computer to print a question mark
and stop at line 100. The question mark is a signal to whoever is operating the
terminal that he or she is to type the desired value for A on the keyboard and
press the carriage return key to resume the run of the program. Likewise, 100
INPUT A, B, C will call for three numbers separated by commas to be typed
at the keyboard. It is advisable to have the computer print a label so that the
operator can determine the nature of the numbers required. In the following
program, note that the semicolon at the end of line 100 enables us to type the
values for A and B on the same line as the printed label. The input numbers
15, 17 following the question mark were typed at the keyboard by the program
operator.

100 PRINT "INPUT TWO NUMBERS:";

110 INPUT A.B
120 PRINT " THE NUMBERS ARE:"; A3 B

130 PRINT ' THEIR SUM IS:";A+8
140 PRINT "THEIR PRGDUCT IS:*sA%*B
150 END

RUN

INPUT TW@ NUMBERS:?15,17

THE NUMBERS ARE: 15 17
THEIR SuM I15: 32

THEIR PREDUCT IS: 255

DONE

INPUT
Causes the computer to request data from the keyboard.

ot

B CAMD
c 5

If we want the computer to obtain a decimal value for a compound frac-
tion, there may be several programs that will do the job. Here we will have
to use our knowledge of the order of operations as determined in algebra.

Introduction to BASIC 7

Three programs follow that find a decimal value for

2/5 4+ 3/7
3/4-1/3

10 LET Ns2/75+377
20 LET D=3/4-1/3
30 PRINT N/D

40 END

RUN

1.98857
DONE

10 LET F=(2/5¢+3/1/¢3/4~1/3)
20 PRINT F

30 END

RUN

1.98857
DANE

10 PRINT (2/5+3/1)/(374-1/73)
20 END
RUN

1.98857
DANE

Parentheses serve as a powerful tool in grouping terms properly for the
desired results. Keep in mind that priorities are exactly as they are in algebra
and that if several operations of the same priority appear in the same line, they
are executed from left to right.

Carefully study the programs which follow to see how the placement of the
parentheses affects the results.

10 PRINT "3/5/3/5="33/5/3/5

20 PRINT "3/(5/375)=*33/(5/3/5)

30 PRINT *3/5/(¢3/5)a"33/75/¢3/5)

40 PRINT *(€3/5)/(3/75)="3C¢3/5)/¢3/5)
S0 PRINT *'(3/5/3)/5="3C¢3/5/3)/5

60 PRINT *(¢3/5)/3/5="3(3/5)/3/5

70 END

RUN

3/5/3/5= <04
37(5/73/53= 9.
3/5/¢3/79= 1
€3/5)7¢3/5)= 1
(37/57/3)/5= .04
€3/53)/73/5= .04

DONE

10 PRINT "A="32t3+1+312+1
20 PRINT *"B="321(3+1)+322+1
30 PRINT "C="32t3+C1+3)12+1
40 PRINT "D="3213+ 1+31(2+1)
S0 PRINT "E='32¢(3+1+3)12+1
60 END

RUN

8 Basic BASIC

moOQDm>D
Wonon N
N
w

[}
[S]
r4
22

It is important to know the capacity of the computer you are working with.
Notice that according to the computer, (2/5 + 3/7)/(3/4 — 1/3) = 1.98857.
If we work that out longhand, the result would be 1.98857142. BASIC pro-
vides from 6 to 15 digits, if they are needed, depending on the computer, with
the last digit rounded off in decimal nwubers, i it is the capacity digit

If the results require more than the digit capacity of the computer, the
computer prints in scientific notation as follows:

10 LET A=98781.

20 LET Al=8976

30 LET P=A®Al

40 PRINT A» "%, Al,"='", P
50 END

98781, * 8976 = 8.86658E+08

DBNE

The E -+ 08 means “times ten to the eighth power” and the decimal number is
rounded off to the sixth digit. When the computer uses this notation, it is
called E-format. Again we get large spaces using the comma to delimit the
printed results. We will discuss this before we wind up chapter one.

A new item Al appears in the above program in line 20. There you will find
the statement LET A1 = 8976. The computer treats this as a new variable. In
BASIC you may use any letter of the alphabet and any letter of the alphabet
followed by a single digit as a variable. Some computers have additional
simple variables. Thus a large number of variables are available.

Probably the best way to learn how the computer handles scientific notation
is by experience. So, let us run a sample program to see what happens.

5 PRINT l.xli' IIY "’ IIQCI' IIPOD’ "sll

10 DATA 1.31E+10,2.13E+1151+16132E~05,2.83E+06
20 READ X»Y

26 LET Q@=X/Y

40 LET PsX%Y

50 LET S=X+Y

60 PRINT X»YsQsPsS

65 GOTe 20

70 END

Introduction to BASIC 9

X Y Q P S
1. 31000E+10 2. 13000E+11 6. 15023E-02 2. 79030E+21 2.26100E+11

1.16132E-05 2+.83000E+06 4. 10360E-12 32.8654 2.33000E+06

GUT @F DATA IN LINE 20

Notice the use of Q for quotient, P for product, etc. This is a technique
that is useful not only on the computer, but throughout mathematics.

Suppose you wish to write a program to find the total cost of a purchase
in which there are different numbers of items at various prices, say 2 @ $.35,
3 @ $2.65, 11 @ $.25, 1 @ $9.49, and 35 @ $1.59. We could have many
more, but for a sample this should suffice. This program could of course be
written in several ways, but here is one possibility:

10 PRINT "ITEMS">"UNIT PRICE",*"C@ST","SUBTQGTAL"
20 DATA 250355 3,24655,115.25,159.49,35,1.59

25 LET T=0

30 READ NP

40 LET T=T+N*P

45 PRINT NaP,N%P, T

50 G2TQ@ 30

70 END

RUN

ITEMS UNIT PRICE C3ST SUBT2TAL
2 .35 .7 .7
3 2.65 7-95 3.65
it .25 2.7% 11.4
1 9. 49 9. 49 20.89
35 1.59 55. 65 76+ 54

AUT 39F DATA [N LINE 30

The single figure we set out to obtain is in the lower right-hand corner. The
result is $76.54; however, the other information is bound to be useful in at
least some situations. Besides, even if we only print the right-hand column,
we do not yet know how to dispose of the first four figures in that column. If
you only want to print the right-hand column, then lines 10 and 45 may be
altered thus:

10 PRINT “SUBT@TAL”
45 PRINT T

and only that column will be printed. Notice that line 10 is executed only once
and line 45 is executed five times. The GOT@ statement in line 50 only
returns the computer back to line 30. So the computer only prints the headings
once and only lets T = 0 once.

Still, in the last program, the combination of lines 25 and 40 may seem
strange, but it will not as soon as you gain a little more insight into how the
computer works. Line 25 is said to initialize the value of T at 0, i.e., give it an
initial value of 0. When the computer executes the initializing statement, line

10 Basic BASIC

25 LET T = 0, it “says” that there is a location in the computer storage area
which A eall T oand that thic seaeram alss regiires

which this program will call T and that this program alsc requires that the
number zero be stored in that location for now. If we then say 26 LET T = 5,
then the computer will put the number 5 in that location designated as T and
zero will no longer be there. If we write a program that says 25 LET T = 0
followed by 26 LET T = T + 1, then the computer goes to the location where
it is storing the value for T, “sees” 0, adds 1 to it, and returns the result to the
location from which it just got 0, thereby replacing 0 (the old value) with 1
(the new value). So we see that in BASIC (as in other computer languages) =
does not mean “two names for the same thing.” It means, instead, that the
number on the right is to be placed in a location whose name is specified on
the left. Thus we see that the equals sign as used here really specifies an opera-
tion for the computer to perform. So the equals sign is called an assignment
operator or a replacement operator, and the LET statement is called the
assignment statement or replacement statement.

Let us go through the program line by line. The lowest numbered line is a
PRINT statement. So, right off, the computer prints the headings. Then it
recognizes that the next statement is a DATA statement and ignores it. Line
25 assigns the value 0 to T. Then in line 30 the computer reads the first two
numbers in the DATA line. Line 40 says that the previous value of T is to be
taken out of storage and added to N times P. So, the first time through line
40, the value of T on the left will be 0 (from storage) plus the cost of two
items at $.35, or $.70, and the computer returns the value .70 to the location
in storage called T. Line 50 sends the computer back to read the next two
numbers in the DATA line and to add their product (7.95) to .70 to get 8.65.
It should be clear that we are printing the values of N, P, N times P, and T
each time we read two new numbers. This process continues until the com-
puter finds no more data. This causes the computer to terminate the RUN.

1-7 COMMA AND SEMICOLON IN PRINT STATEMENTS

Let us look at one more capability. In two of the programs of this chapter,
the results were printed out with unnecessary great spaces. You may have
noticed that we did not have these spaces in the two programs where semi-
colons were used in the PRINT statements. We have two delimiters, i.e., we
have two signals that tell the computer how closely we want the results
printed. The rules are a little complicated, but in general, the semicolon
specifies closer spacing than the comma. The comma sets up zones across the
page. The number of characters in the zones does vary from computer to
computer, but 15 characters per zone is common. This zone width does
not change with the number of digits in the numbers being printed. The
semicolon sets up different sized zones depending on the number of digits
in the number and whether it is in scientific notation. Here is the pro-
gram from p. 8 again. First we run it. Then we insert a line which
replaces the comma print delimiters with semicolon delimiters. And we call
for another RUN,

Introduction to BASIC 11

10 LET A=98781.

20 LET A1=8976

30 LET P=A%Al

40 PRINT A, "', A1, "'='", P
50 END

98781 * 8976 = B8.86658E+08

DBNE
41 PRINT A3"%'"; Als"='"; P
RUN

98781 . * 8976 = B.B6658K+08

98781 * B976 = B+B66SBE+08

DONE

The output of this program is much more closely spaced. Notice that in the last
line of the printing there is a space between the ® and 8976. The computer
leaves a space there for a + sign but does not print it. If the number printed
were negative, then there would be a minus sign printed in that space. The
same holds true for the space between the = and 8.86658E + 08. Also notice
that in all program runs there is a space before the first number printed in any
line if the number is positive. However, if we write 10 PRINT “3” in a pro-
gram, then when we run the program, 3 will be printed in the very first
space. This is because the computer treats things in quotes differently from
the values of variables for printing purposes.

SUMMARY OF CHAP. 1

1) We now have the PRINT statement which puts results in readable form.
It may be used for titles, headings, and labels.

2) Everything in quotes will be printed just as you type it (except more
quotes).

3) Commas or semicolons may be used between the different items to be
printed to control spacing,

4) The READ statement is used to read data. Several variables may be
read with a single READ statement by separating them with commas, or they
may be read with different READ statements. Just be sure the data is in
proper order to match the READ variables.

5) The DATA statement supplies data for the READ statements. Discrete
items of data must be separated with commas.

6) The LET statement may be used to assign any value or any algebraic
expression to any variable.

7) The INPUT statement allows the operator to enter data from the key-
board in response to a question mark.

12 Basic BASIC

8) The G@TD statement is used to alter the progress of the computer
during the execution ot a program.

9) The END statement may or may not be required. If required, it must
carry the highest line number in the program.

10) The system commands to date are RUN and SCR or CLE. System com-
mands must not be preceded by line numbers.

PROBLEMS FOR CHAP. 1°

1) Define the following items: BASIC, PRINT, END, READ-DATA, LET, RUN,
(’@TQ) statement, system command, program, remote terminal, comma delimiter,
semicolon delimiter, scientific notation, initialize, and print zone.

2) What is the greatest number of vnriables permissible in a single BASIC pro-
gram thus far?

3) Which of the following are valid BASIC variables? A, XI, 1B, XA, YI12.

4) The statement was made in Chap. 1 that you cannot have the computer print
quotes by putting quotes inside quotes. Why not?

5) Write a program to add 2081, 682, 1161, and 72.03.

6) Write a program to add 1E6 and 1E — 3. Comment on the result.

7) Have the computer multiply 2E3 by 1E — 1.

8) Have the computer print a decimal value for %4

9) Modify the purchase program on p. 9 to total the number of items.

10) Write a program that will print the sum of the first 10 counting numbers.
Put the numbers in as data.

11) Write a program that will print the product of the first 10 counting numbers.
J/ 12) Write a program that will multiply two binomials. In other words, for
(Ax + B)(Cx 4 D), you will put in data in groups of four numbers (A, B, C, D), and
you want the computer to write out the threc numbers that are cocflicients in the
product.
J 13) Have the computer print products of fractions by putting the numerators
and denominators in as data and printing the numerator and denominator of the
product as two numbers.
J 14) Do the same for adding fractions as in problem 13).

15) Have the computer print all possible arrangements of three digits using each
once. Assign the digits in a DATA line and use semicolon spacing.

16) Write programs to print decimal values for the following:

(a) 1/2 4 1/3
173 — 1/4
(b) 2/3 3/4
56 T /3
43 — 32
(e) 1/2 4 3/7 e
250 —1 iz
(d) (93.481 — 7.008)4 N
4.983 — 87.82

® Check marks (/) in front of problem numbers indicate the more difficult problems.

CHAPTER 2

2-1 PLANNING

In Chap. 1 we looked at some programs and tried to analyze them, but
we did not really go into the development of the programs themselves. Pro-
grams do not just happen, they do not appear whole. They are planned and
developed with some considerable care. There are two important tools that we
will be using to help us write programs. One is a new BASIC statement type,
the REM statement. The other is flowcharting.

2-2 REM

XXX REM (REMark), where XXX is a line number in a BASIC program,
notifies the computer that what follows is to be ignored during the RUN of
the program. This means that you may write any message you like following
REM. None of what you type has any effect on the execution of the pro-
gram, but you may comment or remark upon the function of a particular
line or a group of lines or the entire program.

REM
Permits the programmer to remark or comment in the body of his
program.

EXAMPLE
118 REM THE NEXT THREE LINES PRINT THE FIRST SUM.
9 REM THIS PROGRAM ADDS PAIRS @OF NUMBERS.

2-3 FLOWCHARTING

Flowcharting, or block diagramming as it is sometimes called, is useful in
planning programs in any computer language or for that matter in planning
the solving of any problem, whether or not you are using a computer. We

13

14 Basic BASIC

introduce flowcharting by an example. Suppose we want to add the counting
numbers from 1 to 50 including 1 and 50, We will need two varinbles: one
for counting and the other to keep track of the sum. We want to start the
counting variable at 1 and the summing variable at 0. Then for every value
of the counting variable we want to add the counting variable to the old
value of the summing variable to get a new value of the summing variable.
Figure 2-1 represents a rough flowchart for such a process.

Figure 2-1 attempts to break the problem into its most fundamental steps.
By using a diagram of this kind, we are able to show the direction we must
follow to do the problem. We would like to have each step small enough for
the computer to handle with one BASIC statement. However, this will not
always be practical. In our example, though, it will be both practical and
reasonable to have each step be a BASIC statement. With that in mind we
redraw the diagram using statements more nearly like those in BASIC lan-
guage. At the same time we will introduce the more standard practice of
having different shapes for boxes that indicate different kinds of functions.
The shapes used for this example are listed in Fig. 2-2 and the new flow-
chart is Fig. 2-3(A).

This time we are very close to being able to write the program directly
from the flowchart. Of the statements in Fig. 2-3(A), the only one for which
we do not yet have a corresponding BASIC language statement is decision-
making. BASIC has a statement type that allows us to alter the path of the
computer through a program depending on whether an algebraic sentence is

true or false.

Start counting variable
Cat1l

<+

Start summing variable
Satd

Add summing variable
and counting variable

Have we done no Add 1.to
all 50? %T counting
. variable
< ves .
Print sum

Fig. 2-1. Diagram for adding counting numbers from 1 to 50.

Writing a Program 15

Used for beginning and

Terminal ending of programs.

Indicates that a computation

Operation
P is to be performed.

Shows that a question is being asked
and a decision is being made.

Indicates that results are
PRINT to be printed and will also
READ be used to indicate the
READ statement.

Small circle shows that we are
going to transfer to another
statementin the program.N

will match another small circle
in the same chart.

Fig. 2-2. First five shapes
Arrowheads will indicate direction in all cases. used for flowcharting.

2-4 IF-THEN

XXX IF Z = Q THEN 230 means that if Z does equal Q, then the next
line to be executed is line number 230. If Z does not equal Q, then the com-
puter is directed to simply execute the line with the next number after XXX.

The equals sign appears in the IF~THEN statement. Used here the equals
sign is clearly not the assignment operator we defined earlier. In the IF-THEN
statement the equals sign specifies a required relation (mathematical equality)
to exist between two numbers. Therefore, the equals sign is now designated as
a relational operator.

With the IF-THEN statement added to our growing list of BASIC state-
ments, we should be able to write the program directly from the Jowchart. See
Fig. 2-3(B). If we simply copy the program in Fig. 2-3(B) and run it, it looks
like the program below.

10 LET C=t

20 LET 8=0

30 LET S=5+C

40 IF C=50 THEN 70
50 LET C=z=C+1i

60 GAT? 30

70 PRINT S

80 END

1275

16 Basic BASIC

\T/

LETS=0 20 LETS=0

IETS=S+C 30 LETS=S+C

40 IFC=50THEN 70

LETC=C+ 1 50 LETC=C+1

60 GOTO 30
70 PRINTS

80 END

(A (B)

Fig. 2-3. (A) Flowchart for adding counting numbers 1 to 50. (B) Pro-
gram written from flowchart.

BASIC allows us to give programs names. This requires a system com-
mand and will vary with the system tied in with your terminal. Some systems
use the command NAME-, while others use NAME without the hyphen. After
the system command, you type the name to be used. Being able to name pro-
grams will be helpful to us here as we will be able to refer to programs by
name from now on.

We will give the last program a name, insert some REM statements to
explain the function of certain lines, and add a label to make the printed
result clearer. It is always recommended that you write programs with the
thought that someone else will be reading them and you may not be there to
do the explaining. You may even find that vou cannot understand your own

Writing a Program 17

SumMi

3 REM THE EXECUTIVE PRIGRAM ALLAWS US T@ GIVE BUR PRIGRAM A
NAME

5 REM THE RESTRICTIONS 3N NAMES VARY FR3M SYSTEM T2 SYSTEM

8 REM %%k &%

9 REM WE ARE ADDING INTEGERS @NE THROUGH S50 IN THIS PRQGRAM

10 LET C=1

20 LET S=0

30 LET S=S+C

38 REM HAVE WE ADDED 50 (THE LAST NUMBER T@ BE ADDED) YET?

40 IF C=50 THEN 70

48 REM WE HAVEN'T ADDED S0 YET *%% S@ WE ADD ONE

50 LET C=C+1

60 GOT® 30

68 REM WHEN C=50 WE PRINT S (THE SUM) IN LINE 70

70 PRINT S

80 END

1275

DONE
70 PRINT "THE SUM @F THE INTEGERS FROM @NE T@ FIFTY IS';
RUN
Suml

THE SUM @F THE INTEGERS FROM ONE T@ FIFTY IS 1275

DONE

programs several weeks after you write them, unless they have good REM
statements. See SUM1.

Let us do another program, similar to SUM1, where we will add all the
odd integers from 5 through 1191. This time instead of starting the counting
variable at 1, we will have to start it at 5. Since we are only interested in
odd numbers, we will have to add 2 instead of 1 each time we add the new
number to the summing variable. We will test N (the number added) each
time through the summing step to decide whether we have reached the
desired number, in this case 1191. First we draw the flowchart in Fig. 2-4.
This flowchart is very much like the one in Fig. 2-3(A). See SUM2. Again, of

10 LET N=5

20 LET S=0

28 REM LINE 30 ADDS THE NEW NUMBER TO THE SUMMING VARIARLF.
30 LET S=S+N

40 IF N=1191 THEN 70

48 REM ADD 2 IN LINE 50 F@R @DD NUMBERS

350 LET N=N+2

60 GOTO 30

70 PRINT *'SUM OF QDD NUMBERS FRGM S TO 1191 1S'":S

B0 END

SUM @F 0DD NUMBERS FROM S TO 1191 15 355212,

DONE

18 Basic BASIC

LETS=S+N ¥

PRINT S

T

LET N=N+2

Fig. 2-4. Flowchart for adding
odd integers from 5 to 1191,

course, we use the IF-THEN statement, because we have to decide each time
we add 2 whether or not we have reached 1191

The IF-THEN instruction is called a conditional transfer. Unless instructed
otherwise, the computer executes the statements of the program in numerical
order. The IF-THEN statement allows us to tell the computer to alter that
order of execution on the condition that an algebraic sentence is true. If the
algebraic sentence is false, then the computer passes to the next line in
sequence. On the other hand, the GOT@ statement is an unconditional transfer.

IF-THEN
XXX TF YYYYYY THEN ZZZ. If YYYYYY is true, transfer to line
ZZ7Z. 1f YYYYYY is false, pass to the next line after XXX.

Writing a Program 19

You may have more than one conditional transfer in the same place in a
program. This would be necessary if you wanted to test for several conditions.
Suppose in SUM2 you want to see the sum several times during the RUN.
Let us look at the sum for the first two, for N = 731, and the last two.

First we should draw a new flowchart. It is clear from the flowchart that we
have to decide each time we print the sum whether or not we have finished
or have to add 2 and take the sum again. See Fig. 2-5 and SUMS3.

Note that we test N for three relations: 1) “less than 9,” 2) “equals 731,”
and 3) “greater than 1188.” We have already seen the equals sign used as a
relational operator. The two new relational operators “less than” (<) and
“greater than” (>) are introduced here.

LETN =35
LETS=0
LETS=S+N K 0
Is yes
N <92 Q
no in
! no
yes y PRINT
' N, S
yes
Is yes
N > 11887 END

no

LETN=N+2 & °

‘ Fig. 2-5. Flowchart for changing program SUM2 so that
the sum is printed several times during the program,

20 Basic BASIC

S5UM3

5 PRINT "Sum @F @DD"

6 PRINT “NUMBERS FRZM"

7 PRINT "FIVE Ta','I1S5"

10 LET N=5

20 LET sS=0

28 REM LINE 30 ADDS THE NEW NUMBER T@ THE SUMMING VARIABLE.
30 LET S=S+N

40 1F N<9 THEN 90

50 IF N=731 THEN 90

60 IF N>1188 THEN 90

€8 REM ADD 2 IN LINE 70 F@R ADD NUMBERS
70 LET N=N+2

BU GBI 30

90 PRINT N, S

100 IF N<1191 THEN 70

110 END
RUN
SUmM3
SuM @F aDD
NUMBERS FROM
FIVE T2 IS
5 5
7 12
731 133952.
1189 354021.
1191 355212,
DANE

Other relational operators are “less than or equal to” (< =), “greater than
or equal to” (> =), and “not equal to” (< >>). Some time-sharing systems
require a set of alphabetic relational operators (such as EQ for =) instead of
the symbols listed above.

Some facts about flowcharts should be becoming clearer. Arrowheads along
connecting lines show the direction the computer is to follow. Rectangles and
parallelograms have only one exit arrow, but they may have more than one
entrance arrow. Diamonds have two exit arrows. Can diamonds have more
than one entrance arrow?

We said previously that we did not know how to eliminate some of the print-
ing in the SUBT@TAL column. Look at the purchase program cn p. 9 again.
We had no way of preventing the computer from running out of data. Now we
can simply tack on some artificial data at the end of the DATA line, which
could not possibly be data in the problem, and use the conditional transfer to
test each time data is read to see if the computer has read the artificial data. If
the computer has read the artificial data, then we do not want to use it; but we
have a signal for the computer that it is time to print the total and terminate
the run without reading any more data. Artificial data used in this way is
called dummy data. If we are talking about prices and numbers of items, we
can use O or negative numbers for dummy data, Let us use O for the number
of items and O for the price and name the program T@TAL. See the flowchart
in Fig. 2-6.

Writing a Program 21

LETT=20

Fig. 2-6. Flowchart for using dummy data in program TOTAL.

ToTAL

S REM THIS PROGRAM IS A MIDIFICATION 3F A PROGRAM THAT WE DID
BEFARE.

10 PRINT "TATAL CBST =8

20 DATA 2,¢35,3:2+.65,11,.25,159449,35,1.59,0,0

21 REM THE DuUMMY DATA IN THIS DATA LINE IS t,¢

25 LET T=0

30 READ NP

34 IF N=0 THEN 45

40 LET T=T+N%P

42 GATY 30

4% PRINT T

70 END

T TAL
I3TAL COST =% 76.54

DANE

Look at lines 10 and 45 and then look at the printed result. These two
PRINT instructions are executed on the same printed line. This is accomplished
by using the semicolon at the end of the PRINT instruction in line 10. The
semicolon there tells the computer to wait after printing the $ until it executes
the next PRINT instruction in the program and to print that on the same line
right after the $. Again there is a single space for the plus sign which is not
printed. If the number were negative, there would be a minus sign there.

22 Basic BASIC

SUMMARY OF CHAP. 2

1) We are now able to remark about a program right in the program
itself by using REM. You should use REM statements so that whoever reads
your program can determine what they are intended to do. It will also help
you to remember your own programs weeks or months later when you your-
self have forgotten what they will do.

2) Flowcharting will prove a very valuable process that we will use to

develop programs to solve problems.
2) The ability t¢ have the computer make decisi

408 Ay 0 HeYo ae L pPutel Qiaxe Cl

decision: J,
act according to the outeome of the decisions greatly increases the (‘omnlexity
of the problems we may solve by computer.

4) We now distinguish between conditional and unconditional transfer
statements.

5) Dummy data may be used to gain a greater control over what we can
ask the computer to do after it has read the last item of data.

PROBLEMS FOR CHAP. 2

Unless instructed otherwise, draw a flowchart for every problem that calls for
a computer program to be written. Also use REM liberally.

1) Write a short description of each of the following terms: flowchart, dummy
data, IF-THEN, REM, conditional transfer, unconditional transfer.

2) In the program TOTAL, why did we use two 0's for dummy data? Why
couldn’t we have used just one O since line 34 only tests to see if N == 0P

3) Bill took four tests. His marks were 100, 86, 71, and 92. What was his average
score?

4) Modify the program SUMZ2 to count the number of odd numbers from 5 to
1191 by first modifying the flowchart.

5) Three pairs of numbers follow in which the first number is the base and the
second number is the altitude of a triangle: 10, 21; 12.5, 8; 289, 114. Writc a
program to print in good form the base, the altitude, and the area for the three
triangles.

6) Find the number of and the sum of all positive integers greater than 1000
and less than 2213 divisible by 11.

7) A man is paid 1¢ the first day on the job, 2¢ the sceond day, 4¢ the third day,
and so on, doubling each day on the job for 30 days. You arc to calculate his wages
on the 30th day and his total for the 30 days

8) Write a program to print the integers from 1 to 25 paired with their reciprocals.

9) Write a program to print the integers from 75 to 100 paired with their
reciprocals.

10) Rewrite the program TOTAL to count the number of diflerent items in the
order and print the total.

11) A customer put in an order for four books which retail at $5.95 and carry a
25% discount, three records at $3.98 with a 15% discount, and one record player for
$39.95 on which there is no discount. in addition, there is a 2% discount allowed
on the total order for prompt payment. Write a program to compute the amount
of the order,

12) Write a program to balance a checkbook that includes the following transac-
tions: Sept. 2, deposit $9.00; Sept. 5, write a check for $3.24; Sept. 10, write a

Writing a Program 23

check for $1.98; and Sept. 17, write a check for $3.85. Assume that the balance was
$14 23 on Sept. 1. Have the computer print the balance after each transaction.

13) Write a program to find the amount of $100.00 deposited for one year in a
savings account at 4% per year compounded four times yearly. '
J 14) In the song “The 12 Days of Christmas,” gifts are bestowed upon the singer
in the following pattern: the first day she received a partridge in a pear tree; the
second day two turtle doves and a partridge in a pear tree; the third day three
french hens, two turtle doves, and a partridge in a pear tree. This continues for 12
days. On the 12th day she received 12 4 11 4+ -« 4+ 2 + 1 gifts, How many gifts
were there all together?
/ 15) For problem 14) have the computer print the number of gifts on each of the
12 days and the total up to that day.
J 16) George had test scores of 83, 91, 97, 100, and 89. Write a program to com-
pute his average. Have the computer count how many tests George took.
J 17) Write a program that will take more than one set of test scores, find the
average for cach set, and print the result before going back to read the next set of
scores.

CHAPTER 3

Loops and Lists

3-1 INTRODUCTION TO MACHINE-MADE LOOPS

A computer loop may be defined as a self-repeating sequence of program
statements. This being true, loops are not new to us. Most of the programs
we wrote in Chap. 2 used a loop. In those programs we initialized a variable
with the idea that we would be adding a fixed numbher repeatedly and doing
something each time we added the fixed number. Let us draw a flowchart and
write a program to simply print the integers 1 through 6. See LO@P1 and

Fig. 3-1.

LET X =1

10

Fig. 3-1.

20

30
40
50

LETX=X+1

99

LETX =1

PRINT X;

IF X = 6 THEN 99
LETX=X+1
GOTS 20

END

Flowchart for LG@P1 for printing six integers.

24

Loops and Lists 25

LAGP1

10 LET X=1

20 PRINT X;

30 1IF X=6 THEN 99
40 LET X=X+1

50 G@TO 20

99 END

LABP1

1 2 3 4 5 6
DBNE

In LO@PI1 we first print the number and then test to see if we have printed
the last number in the sequence. If we have, then we stop. If we have not
printed the last number, then we add 1 and print the new number. The
results we obtain are entirely equivalent to the results we would get when we
test to see if the number we are about to print is too great before we print it.
If it is not too great, then we print it. If it is too great, then we stop. Consider
the flowchart of Fig. 3-2 and LO@P2.

LETX =1

LETX=X+1

Fig. 3-2. Flowchart for LO@P2 for testing X before it is printed.

Leepr2

10 LET X=1

20 IF X>6 THEN 99
30 PRINT Xi

40 LET X=X+1

50 GOT® 20

99 END

26 Basic BASIC

FOR-NEXT

Loops are used so routinely in programming that BASIC provides a
machine-made loop. Program LO@P3 is the machine equivalent of our pro-
gram LOGP2.

Notice that the two statements 10 FOR X = 1 T@® 6 and 50 NEXT X in
LO@P3 do the work of the four statements 10, 20, 40, and 50 in LOOP2.
FOR X = 1 TY 6 indicates doing everything between this statement and
NEXT X, beginning with X = 1 and ending with X = 6. NEXT X tells the
computer to add 1 to the old value of X and go to the beginning of the loop
again. When X = 6. LO®P3 prints 6. After it prints 6, line 50 says NEXT X.
This means, add 1 and go to the beginning of the loop. At this point in the
RUN the value of X is 7, not 6 as you might think. Since 7 is greater than 6,
the FOR-NEXT combination instructs the computer to execute the next

instruction after NEXT X, which in program LO@P3 is END.

L3oP3

10 FOR X=1 Td 6
30 PRINT X3

50 NEXT X

99 END

RUN

LEaP3

1 2 3 4 5 6
DONE

A machine loop does not have to begin with 1. It may begin wherever you
require. The variable that is incremented in the machine loop may be treated
in the same way as other variables in the program. However, you are warned
against changing the value of that variable. LO@P3+, which is a modification
of LO@DP3, prints the values of X, 2 * X, X — 10, X ®° 3, and X/(-3).

LBOP3+
S PRINT *X 2¥kX X-10 X13 X/¢(-"

10 F@R X=1 710 6
30 PRINT X52#X2X~10:3X*33X/(-~-3)

50 NEXT X

99 END

RUN

LaapP3+

X 2%X X-10 X3 X/ (~3)

1 2 -9 1 ~«333333
2 4 -8 8 ~e 666667
3 6 -7 27 -1

4 8 -6 64 =-1.33333
5 10 -5 125 ~1.66667
6 12 -4 216 -2

DANE

Notice lines 80, 100, 150, 220, 240, and 310 in program LUPDEM. They
are all of the form XXX PRINT. This statement is sometimes called the
blank PRINT. 1t has the effect of directing the computer to turn up a new

Loops and Lists 27

line of paper at the terminal. In some cases, XXX PRINT serves to begin a

new line; in others, XXX PRINT results in a space between lines of printed
output.
LUPDEM
10 REM ##THIS PROGRAM 1S INTENDED T@ DEMONSTRATE S@ME OF
20 REM ##THE CAPABILITIES OF THE F@R-NEXT STATEMENT PAIR
30 REM
40 PRINT ™50 FOR X=14 T@ 20 PRGDUCES THE FOLLOWING VALUES F@R X"
SO FOR X=14 T@ 20
60 PRINT X3
70 NEXT X
80 PRINT
90 REM BASIC ALL@WS US T@ INCREMENT A LO@P BY VALUES @THER THAN @NE
100 PRINT
110 PRINT 120 FOR X=1 T@ 19 STEP 2 PR@DUCES;"
120 FOR X=1 T@ 19 STEP 2
130 PRINT X3
140 NEXT X
150 PRINT
160 REM THE STEP NEED N@T INCREASE THE VALUE @F X
170 PRINT
i80 PRINT 190 FOR X=345 T@ 282 STEP -9 GIVES;*
190 FOR X=345 T@ 282 STEP -9
200 PRINT X3
210 NEXT X
220 PRINT
230 REM DECIMALS ARE ALL@WED IN BASIC
240 PRINT
250 PRINT **260 F@R X=91.5 T@ 3 STEP -15.7 YIELDS3"
260 F@R X=91.5 T@ 3 STEP -15.7
270 PRINT X3
280 NEXT X
300 REM VARIABLES MAY BE USED T@ SET UP A MACHINE LO@P IN BASIC
310 PRINT
320 PRINT 330 LET A=S, 340 LET B=45, 350 LET C=6 AND"
325 PRINT 360 FOR V=A T8 B STEP C GIVES THESE RESW.TS3"
330 LET A=5
340 LET B=45
350 LET C=6
360 FOR V=A T@ B STEP C
370 PRINT V3
380 NEXT V
390 END
RUN
LUPDEM
50 FOR X=14 T@ 20 PRDUCES THE FOLLOWING VALUES FOR X
14 15 16 17 18 19 20
120 F@R X=1 T8 19 STEP 2 PRODUCES)
1 3 s 7 9 11 13 15 17 19
190 F@R X=345 T@ 282 STEP -9 GIVESS
345 336 327 318 309 300 291 282
260 FOR X=91.5 T@ 3 STEP -15.7 YIELDSs
91.5 75.8 60.1 44.4 28. 7 13.
330 LET A=S, 340 LET B=45, 350 LET C=6 AND
360 FOR V=A T8 B STEP C GIVES THESE RESULTSS
5 11 17 23 29 3s a1

D@NE

28 Basic BASIC

F@R-NEXT
F@R X = A TQ B STEP C sets up a machine loop with first nur-
ber A, last number B, and increment C. See LUPDEM for detail.

Now we will look again at some of the programs in Chap. 2 and do them
with a F@R-NEXT loop. Let us redo program SUMS3 and call it SUMS+.
Of course as we should expect, the printed results for SUM3+ are identical

Start)

PRINT
headings

Fig. 3-3. Flowchart for using machine loop for
program SUM3 from Chap. 2.

LETS =0

£L

FORN =35 T
1191 STEP 2

.

LETS=S+N

Is
N < 11882

yes

Loops and Lists 29
SUM3+
4 REM THIS PROGRAM IS A MBDIFICATION OF SUM3 FROM CHAPTER Twa
5 PRINT "SuM OF @DD"
6 PRINT "NUMBERS FROM™
7 PRINT “FIVE T@","Is"

10 LET S=0
20 F@R N=5 T@ 1191 STEP 2
28 REM LINE 30 ADDS THE NEW NUMBER T@ THE SUMMING VARIABLE.
30 LET S5=S5+N
40 IF N<9 THEN 90
50 IF N=731 THEN 90
60 IF N<1188 THEN 100
90 PRINT N»S
100 NEXT N
110 END
RUN
SUM3+
SuM @F @DD
NUMBERS FRAM
FIVE To 1s
5 5
7 12
731 133952.
1189 354021 .
1191 355212.
DONE

F@R~NEXT may be used to count the number of times the computer does
a particular operation or a set of operations. For instance, we can use a
machine loop to count the number of different items in program T@TAL of
Chap. 2 and at the same time instruct the computer to read data repeatedly.
We did not know how many items of data there were, but that does not
matter. We can simply pick a number that we are sure is greater than the
number of times we want the computer to read data. There could not possibly
be more than say 50 items.

So in TOTAL+ we can use FOR X = 1 T@ 50. Then we can test for the
dummy data each time data is read, using the conditional transfer to get the
data out of the loop and to print the results, when N is 0.

TOTAL+

5

REM THIS PROGRAM (S A MODIFICATIGN @F A PROGRAM THAT WE DID

BEF@RE
20 DATA 25 ¢35535246551150255,159449,35,1.59,0,0
21 REM THE DuUMMY DATA IN THIS DATA LINE IS t,t
25 LET T=0
27 F@R X=1 T2 S0
30 READ NP
34 IF N=0 THEN 45
40 LET T=T+N*P
42 NEXT X
45 PRINT “TOTAL CBST = $"3T3'THERE ARE"™3; X-1;"DIFFERENT ITEMS"
70 END
RUN
TOTAL.+
TOTAL €OST = $ 7654 THERE ARE 5 DIFFERENT ITEMS

DONE

30 Basic BASIC

Look carefully at line 45 in T@TAL+. This line gives the printing instruc-
tions. The counting loop calls for X to go from 1 to 50, but line 45 says print
X — 1. Since X counts the number of times the READ statement is executed,
1 is added even when the dummy data is read; but we do not want to count
the dummy data. So we have to tell the computer to subtract 1. An alterna-
tive method would be to use FOR X = 0 T® 50. Then we could call for
printing the value of X.

The same loop may be used several times in the same program. Every time
the computer executes the F@R statement, the limits on the incremented
variable are reestablishd, Suppose in a group of five people each person took
six tests. And we want to read their scores and find the average for each
person. We can set up a loop F@R X = 1 T@ 6 and use this repeatedly until
the computer runs out of data. The flowchart appears in Fig. 3-4 and we call
the program AVG. Note that the flowchart of Fig. 3-4 contains no END box.
This is because the computer runs out of data in the READ statement and
termination is automatic. Notice in the program that each score is printed as it
is read. This is one way of keeping track of whose average is being printed on
each line in the printed results. Also note that each line of data is devoted to
the scores for one person. This makes it easy to organize the typing of data.

Set total

at0
READ loop
READ S
FORX=1TP6 (scores)

g Add scores
NEXT X LETT=T+S
PRINT
average
Fig. 3-4. Flowchart for averaging test
scores for several people.

Loops and Lists 31

AVG

10 LET T=0

20 F@R X=} T@ 6

30 READ S

35 PRINT S3

40 LET T=T+S

50 NEXT X

60 PRINT "AVG='"3T/6

68 REM WE SEND THE COMPUTER BACK T@ LINE 10 T8 SET T AT ZER@
AGAIN

70 G@TO 10

80 DATA 65,68, 713,85,82,87

82 DATA 74,87,90,88,87,88

84 DATA 88,97,91,92,90,89

86 DATA 91,83, 78,89,79,87

88 DATA 65,765 67,505 60, 66

100 END
RUN
AVG
65 68 73 85 82 87 AVG= 76.6667
74 87 90 88 87 88 AVG= B5.6667
88 917 91 92 90 89 AVG= 91,1667
21 83 8 89 79 87 AVG= 84.5
65 76 67 50 60 66 AVG= 64

OUT @F DATA IN LINE 30

SUMMARY

We see that it is not necessary for us to construct repetitive operations.
This may be done automatically with the FOR-NEXT statement pair in BASIC.

PROBLEMS FOR SEC. 3-1

Draw flowcharts for all programs unless instructed otherwise.

1) Add the counting numbers from 1 to 50 using FOR-NEXT.

2) Do problem 8) in Chap. 2 using a machine loop.

3) Do problem 7) in Chap. 2 with FGR-NEXT.

4) Do problem 8) in Chap. 2 using a machine loop.

5) Do problem 9) in Chap. 2 with FOR-NEXT.

6) Find the sum of the reciprocals of all the integers from 1 to 1000.

7) Find the sum of the reciprocals of the integers from 900 to 1000. Comparc
this number with the result of problem 6).

8) Do problem 13) in Chap. 2 using a machine loop.

9) Find the sum of the squares of the reciprocals of the integers from 1 to 1000.

10) If you were given $1.00 today, $2.00 tomorrow, $3.00 the next day, and so
on for 12 days, how many dollars would you have been given? Suppose this went on
for 30 days. Then how much? Compare this with problem 3).

3-2 MORE ON LOOPS

In program AVG in Sec. 3-1, we went through the read and sum loop five
times, once for each person’s test duta. When we have the computer do the
same set of operations five times, we are actually using a loop. So let us
rewrite AVG with a loop FOR P = 1 T@ 5 and call it AVGCNG.

32 Basic BASIC

AVGCNG

5 FOR P=1 T8 S
10 LET T=0

20 FOR X=1 T@ 6
30 READ S

35 PRINT 83

40 LET T=T+S

50 NEXT X
60 PRINT "AVG="3T/6
70 NEXT P

80 DATA 65,68, 73,85,82,87
82 DATA 74,87.90,88,87,88
84 DATA 88557s51552,50-,89
86 DATA 91,835 78,89, 79,87
88 DATA 65,76, 67,505,605 66

100 END
RUN
AVGCNG
65 68 73 85 82 87 AVG= 76.6667
14 87 90 88 87 88 AVG= 85.6667
88 97 91 92 90 89 AVG= 91.1667
91 83 78 89 79 87 AVG: 84.5
65 76 67 50 60 66 AVG= 64
DANE

Notice that the X loop is entirely within the P loop. Loops written in this
way are called nested loops. They occur often in programming. Loops may be
nested to almost any number you may require, but the loops must be com-
pleted from within. The F@R statements and the NEXT statements must be
paired. Legal and nonlegal combinations are shown below.

Legal Illegal

FBR A=l T2 8 FBR A=1 T0 8
FOR B=2 T3 7 FOR B=2 T3 7
FOR C=2.3 T8 6.1 FBR C=2.3 Td 6.1
NEXT C NEXT A

FBR D=A TC B NEXT C

NEXT D FBR D=A T@ B
NEXT B NEXT D

NEXT A MEXT B

Suppose we want to calculate compound interest on $2000 at 4% com-
pounded quarterly for nine years. When you take your savings account book
to the bank after the first of the year, it calculates the interest four times at
1% each time. In nine years you take the book to the bank nine times. This is
an ideal example for nested loops. One loop goes from 1 to 9, with a loop
inside going from 1 to 4. This provides a good computer model for the actual
problem. As the program is written, it is a simple matter to have the principal
printed at the end of each year. A line may be inserted between 50 and 60
to print the winount afier each yeur. The program could also have been written
using FOR X = .25 T@® 9 STEP .25, or even FOR X = 1971.95 T@ 1980
STEP .25. If you want to be able to do several problems at several interest
rates, then substitute a variable, which may be assigned as data, for .01 in
line 40. See CMPINT and Fig. 3-5.

Loops and Lists 33

LET P = 2000

FORY =1 FORQ =1
09 O 4

Compute
interest

<+

Add
interest to
principal

+

NEXT Y NEXT Q

PRINT
amount

Fig. 3-5. Flowchart for finding the compound amount of $2000 after
nine years compounded quarterly.
CMPINT
8 REM START THE PRINCIPAL P AT %2000
10 LET P=2000
18 REM G2 FOR 9 YEARS
20 FQR Y=1 TO 9
28 REM G@ FOUR QUARTERS EACH YEAR
30 FOR Q=1 T0 4
38 REM COMPUTE THE INTEREST FOR THIS QUARTER
40 LET I[=.01%P
48 REM ADD THE INTEREST T@ THE PRINCIPAL
50 LET P=pP+1}
52 REM **%x% WE CCULD HAVE USED LET P=P+.01%P HERE
60 NEXT Q
62 REM AFTER FOUR QUARTEKS THE C3MPUTER GETS TO NEAT Y
70 NEXT Y
80 PRINT "AFTER 9 YEARS THE AMOUNT IS $';P
90 END
RUN
CMPINT
AFTER 9 YEARS THE AMOUNT IS ¢ 2861.54

DANE

We may want to have the limits of one loop determined by the variable in
another loop. For instance, we can print a triangle of numbers in which each
row prints all of the counting numbers up to and including the row number.

34 Basic BASIC

We need one loop for rows and another for columns. We want the number of
columns to go from 1 to the row number. This is accomplished by program
TRAGL. Now you can do problem 14) in Chap. 2 very easily. (Of course you
could do the problem before, but it took a longer program.)

TRAG.

10 F@R R=1 T9 10
20 FOR C=1 T0 R
30 PRINT G:

40 NEXT C
3% FPRINT
60 NEXT R
70 END
RUN
TRAGL
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9
1 2 3 4 s 6 7 8 9 10
DONE
SUMMARY

Loops may be nested inside other loops as long as we see to it that opera-
tions are done from within, much the same as we deal with sets of parentheses
within other sets of parentheses in algebraic expressions. There may be as many
loops within other loops as the problem may require up to a point. The limits
of one loop may be set by the variables of other loops. Caution is urged
against inadvertently changing the loop variable within the loop, although we
may use its value for any purpose.

PROBLEMS FOR SEC. 3-2

1) In TRAGL we printed from 1 to the row number. Write a program to print
from the row number to 10 for ten rows.

9) Print the multiplication table up to 12 X 12.

3) Print the addition table up to 12 + 12.

4) Find the compound interest on $1000 at 5% compounded quarterly for 10
years. Print the amount after each year with the year number.

5) In problem 4), have the computer print the interest cumulatively each year.

6) Print a table showing compound interests on $1000 for one, two, three, and
four years at 4%, 4%%, 5%, and 5%% compounded quarterly. Print year 1 through 4 at
the top, and put the interest rate in the first column of cach row. Put the rate in a

loop FOR R = 4 TO 5.5 STEP .5.

Loops and Lists 35

7) Redo problem 14) in Chap. 2 using nested loops.
v 8) Write a program to read 10 numbers from data, find the largest number, print
it and the position it occupied in the data line. This requires only one loop, but you
will have to read the first number directly from data outside the loop and then
have the loop begin with 2 to read the rest of the data. (This is essentially a problem
of storing values.)
v 9) Write a program to print all sets of three integers less than 20 so that they
can be the sides of a right triangle. Print no duplications, i.e., if you have the
computer print 3, 4, 5, do not print 4, 3, 5.

10) Write a program to print the integers 1 through 50 in order in 5 rows of 10
columns each.

11) Write a program to print the integers 1 through 50 in order in 10 rows of
5 columns each.
v 12) Print a table of the squares of positive integers 1 through 29. Label the
columns O through 9 and the rows 0, 10, and 20. Make the entry in the table be
the square of the sum of the row and column labels.

13) Have the computer print the product and the sum of all possible different
pairs of integers from 15 to 20.

3-3 INTRODUCTION TO LISTS

Recall that in Chap. 1 it was stated that when a program specifies a vari-
able, the computer sets up a location with the variable as its name. This
provides a means for the computer to store numbers for later use. You are
about to meet a very powerful extension of that concept, the computer list. A
computer list sets up not a single location for a variable, but many locations
for a variable. If we use the computer for a list of say four items (we may
have many more) and choose to call it L, the different locations of the list
will be L{1], L[2], L[3], and L[4]. If we want the list to contain the numbers
4, 9, —92, and 8, this could be accomplished by saying LET L[1] = 4, LET
L{2] = 9, LET L{3] = —92, and LET L[4] = 8. The numbers in brackets
may be thought of as subscripts and they designate at which location of the L
list the number is being stored. However, the LET statement with explicit
subscripts is not really any better than assigning a different variable for each
number. So values are usually assigned in a loop with the subscript being the
variable in the loop. In the demonstration program LIST1 we are letting S
go from 1 to 4 and reading L[S] from data. There may be several lists in the
same program. Any letter of the alphabet may be used to designate a list,
At this point we are limited to 10 or 11 items in a list, depending on the
computer. If we have 10, they are numbered 1 through 10. Some computers
start at 0.

As you can see from the RUN of LISTI, we may use any or all of the
numbers in a list. We can print them forwards or backwards. We can re-
arrange them at will. We may look at the numbers in any identifiable manner.
Lists are incredibly useful when you learn to handle them.

Let us use lists and loops to write all possible combinations of four digits
in one list taken in pairs with four digits in another list. First we draw a
flowchart as in Fig. 3-6. We call the program PAIRS.

36 Basic BASIC

LISTI

8 REM WE ARE READING FOUR ITEMS OF DATA WITH A L@OP

10 FBR S=1 TO 4

20 READ L(S51]

30 NEXT S

38 PRINT "WE CAN PRINT THE ITEMS @F THE LIST EXPLICITLY™

40 PRINT "LL1) LE2) LL3) L{a)™

50 PRINT LI{1)I3LE2DILE3I3LEA)

60 PRINT

70 PRINT “WE CAN ALS@ USE A LOOP. THE LOBNGER THE LIST THE
BETTER"

80 PRINT "BEING ABLE T@ USE A LGGP IS"

28 FER X=1 T¢ &

100 PRINT LLK)s

120 NEKT K

130 PRINT

135 PRINT

140 PRINT "WE CAN GPERATE ON THE NUMBERS IN THE LISTY

145 PRINT * B LEB) B*xL(B]"

150 FOGR B=1 T0 4

155 PRINT B3L(B}3B%L{B]

160 NEXT B

170 PRINT

180 PRINT "WE CAN PRINT THE LIST BACKWARDS WITH F8R X=4 TG 1
STEP =-1*

190 FGR X=4 T8 t STEP -1

200 PRINT LEX]3

210 NEXT X

220 PRINT

225 PRINT

230 PRINT "WE CAN RELOCATE ITEMS IN THE LIST"™

240 PRINT "250 LET Z=L{1), 260 LET LL11=L(2) AND 270 LET
Lg2)=z"

245 PRINT "GIVE THE FOLLOWING RESULT"

250 LET Z=L(1]

252 REM #*HERE WE ARE STORING THE VALUE OF L{13 IN Z

260 LET L{13=LC2)

262 REM WE HAVE PUT THE VALUE OF L[23 INTG LC1)

270 LET LC{2]1=Z

272 REM HERE THE BLD VALUE OF LC13 IS PUT INT8 L(2) FROM Z

280 PRINT "LI{1] ="3LL1)

290 PRINT "L(2) =*3L(2]

300 PRINT "LOBK CAREFULLY AT THE ORIGINAL LIST"

310 PRINT "WE HAVE EXCHANGED ITEMS GNE AND Tuwa*

320 PRINT

330 PRINT “WE CAN PUSH EVERY NUMBER UP FOUR LOCATIONS IN THE
LIST”

340 FOR P=1 T@ 4

350 LET LIP+4)=L(P)]

360 NEXT P

370 FOR N=1 T3 8

380 PRINT LINI3

390 NEXT N

S00 DATA 4,9,-92,8

9999 END

RUN

LIST1

WE CAN PRINT THE ITEMS OF THE LIST EXPLICITLY

Lli) L2} LI31 LLa)

4 9 -92 8

Loops and Lists

WE CAN AL SO USE A L@OP. THE LONGER THE LIST THE BETTER
BEING ABLE TO USE A LOOP IS
4 9 ~92 8

WE CAN OPERATE ON THE NUMBERS IN THE LIST
B LiB) B*LI(B)

1 4 4

2 9 18
3 -92 -276
4 8 32

WE CAN PRINT THE LIST BACKWARDS WITH FOR X=4 TO@ 1 STEP -1
8 -92 9 4

WE CAN RELOCATE ITEMS IN THE LIST

250 LET Z=L(13}, 260 LET LU1)=L(2) AND 270 LET LL{2]=Z
GIVE THE FOLLOWING RESW.T

LKl = 9

LE21 = 4

LOOK CAREFULLY AT THE ORIGINAL LIST

WE HAVE EXCHANGED ITEMS ONE AND TWo

WE CAN PUSH EVERY NUMBER UP FOUR LOCATIONS IN THE LIST
9 4 ~92 8 9 4 -92 8
DANE

READ A list
and
B list

FORK =
1D 4
PRINT
AIKI; BIL,
NEXT K
END

Fig. 3-6. Flowchart for program PAIRS for printing all combinations from
two four-item lists.

37

38 Basic BASIC

PAIRS

10 REM 20 T0 40 READ THE A LIST

20 FOR I=1 1@ 4

30 READ ALIl

40 NEXT I

45 REM 50 T@ 65 READ THE B LIST

50 F@R J=1 10 4

60 READ BLJ]

65 NEXT J

67 REM HERE IS ANOTHER NESTED LOQFP
70 FOR K=1 TO 4
80 FBR L=1 TO 4

36 PRINT AIK3ISBIL IS

91 REM #%+ N@TICE THE USE GF THE .SEMIC@LON AND THE CoMMA
100 WNEXT L

110 PRINT

120 NEXT K
500 DATA 1,3-5,7
510 DATA 2535659

999 END
RUN
PAIRS
1 2 1 3 ! 6 1 9
3 2 3 3 3 6 3 9
5 2 5 3 5 6 5 9
7 2 7 3 7 6 7 9
DONE
SUMMARY

The computer list has been introduced. A list is like a subscripted variable
in that it takes on different values according to the subscript. Each of the
numbers in a list is a variable unto itself. It may be handled in the same way
that any of our previous variables may be handled. The numbers in a list may
be rearranged. In order to exchange two numbers in a list, we first have to
store one of them in another variable,

PROBLEMS FOR SEC. 3-3

1) Using one READ statement in a loop, prepare a nine-element list using the
following numbers: 6, —89, 200, 31, 999, —999, 0, 1, and 18. Print out the list
across the page first in the order given, then in reverse order.

2) Fill a 10-element list with the squares of the subscripts. Print the element
number and the listed value in order in two columns down the page.

3) Prepare a 10-element list using the following numbers: 17, 18, 281, —722, 0,
—5, —16, 11, —1, and 10. Find the largest number in the list and its location. Print
them. Then exchange the largest number with the first element in the list and print
the new list with a loop.

4) Prepare one list with the numbers 6, 4, 11, 51, and 17 and another with 51,
12, 11, and 16. Now print all possible pairs using one number from each list.

5) Repeat problem 4), without printing a pair if the numbers are the same,

6) Redo program T@TAL in Chap. 2 using an N list for numbers of items and
a P list for prices. Instead of N ® P use N[I] ® PII].

Loops and Lists 39

7) Prepare one list with the numbers 6, 11, 15, 17, 26, and 83 and another
with 15, 19, 27, 83, and 91. Have the computer form a new list that contains only
those numbers that are in both lists.

8) Using the two lists given in problem 7), create a new list consisting of all
numbers that appear in either list. If the number appears in both lists, enter it only
once in the new list.

9) LET F[1] = 1 and LET F[2] == 1, then fill the next eight positions in F so that
every entry is the sum of the previous two entries. Print the complete list. You have
begun to form the sequence known as the Fibonacci numbers.

v 10) Form a 10-item list consisting of the first 10 positive odd integers in order.
Form a second list so that each entry contains the sum of all the numbers in the
first list up to and including the location number for the second list.

11) Prepare one list containing 6, 1, 3, 7, 2, and 9 and another containing 8, 2,
3,9, 7, and 4. Form a third list containing the sums of the corresponding elements,
ie., A[lI} = F{I] 4 S[I.

12) Do problem 11}, but enter the products in the third list.

v/ 13) Fill a four-element list with 9, 60, 700, and 3000. Fill a three-element list
with 7, 30, and 200. Sum up the products of all possible pairs of numbers, one
from each list.

_ Forf=1+1
DFOR I =1TQ9 O 10
Exchange
L, L
NEXT | NEXT |

END Fig. 3-7. Flowchart for arranging a 10-item list in
numerical order.

40 Basic BASIC

3-4 MORE ON LISTS

We will now discuss the arrangement of a list in numerical order. If we
look at every pair of numbers in a list of numbers and they are all in numerical
order, then we are assured that the entire list is in order. Thus, we must
instruct the computer to look at all the pairs and determine whether or not
they are in order. If the pair is in numerical order, then we want the com-
puter to look at the next pair. If it is not, then we want the computer to
exchange the two numbers. We can accomplish this in the same manner as
was done in program LIST1. In other words, we store one of the numbers in
a new variable. Then we put the second variable’s value into the first variable
and the original value of the first variable into the second variable from the
storage variable. The three statements look like this:

XXX LETS=L[I]
YYY LETL[I]=L[J]
7ZZ LETL{JI=S

ARANGE

10 REM WE ARE READING THE LIST FR@GM DATA

20 FOR X=1 1@ 10

30 READ LL{X)

40 NEXT X

S0 PRINT 'HERE IS THE LIST IN ORIGINAL @RDER"
60 FOR Y=1 10 10

70 PRINT LLY)3

80 NEXT Y

90 PRINT

100 REM N@W WE TEST PAIRS @F NUMBERS T@ SEE IF THEY ARE IN
@RDER

110 FOR I=1 TO 9

118 REM WHY DON'T WE SAY FOR I=1 T@ 10????

120 FBR J=I+1 10 10

130 IF L{I] <= LUJ] THEN 300

140 LET S=L(1}

150 LET LEI3I=LLJ]

160 LET LLJI=S

170 REM WE HAUE REVERSED TW@ ELEMENTS BF THE LIST

180 REM #*%k%% SEE PROGGRAM LISTI &k

300 NEXT J

400 NEKXKT I

405 PRINT "AND HERE IS THE LIST IN ORDER FROM SMALLEST TO@
GREATEST®™

410 FOR Y=1 T@ 10

420 PRINT LLYI1s

430 NEXT Y

500 DATA 65-19,28,20,~32574,19,28,23- 43

999 END
RUN
ARAN GE
HERE IS THE LIST IN QRIGINAL ORDER

[~19 28 20 -32 74 19 28 23 43
AND HERE 1S THE LIST IN @RDER FROM SMALLEST T@ GREATEST
~32 -19 6 19 20 23 28 28 43 74

DONE

Loops and Lists 41

In flowcharting when we have a process of this kind, which has been used and
clearly defined, we can avoid being explicit by using a shape to indicate a
predefined process. The generally accepted shape is a rectangle with two
additional vertical lines, which appears in the flowchait of Fig. 3-7 for pro-
gram ARANGE that solves the problem we have just outlined.

In program ARANGE, the list is read in lines 20, 30, and 40. Then, for the
purpose of seeing the list in the original order, it is printed immediately in
lines 60, 70, and 80. In lines 110 and 120 two loops are set up, where the 1
loop represents the first number of the pair and the J loop represents the
second number. As per line 118, why did we not let I go from 1 to 10? Had
we done that, at some point in the program the computer would have to
compare L[10] and L[10}, which is not necessary. The first time through,
L{1] = 6 and L[2] = —19. The first element is not less than or equal to the
second. Thus, we want the computer to exchange these two elements. This is
done by lines 140, 150, and 160. As the computer leaves line 160, L[1] = —19
and L[2] = 6. It is relatively simple for us to have the computer print the list
every time it is necessary to exchange two elements of the list. All that is
required is to insert four statements exactly like 60, 70, 80, and 90. This is
done in program ARANGI in lines 200, 210, 220, and 230. This means that
the more numbers out of order, the more printing we might expect. Study
the printing of ARANG1 carefully. Notice that after the first reversal, L{1] =
—19 and L[2} = 6 as promised.

Look at the three sets of lines: 60, 70, 80, 90; 200, 210, 220, 230; and 410,
420, 430, 440. You should recognize that these three sets of lines are identical.
BASIC provides a convenient program statement that allows us to type out
that set of lines only once and then call that set of lines from anywhere in the
program. The statement is G@SUB XXX, where XXX designates the first line
of the set of lines you would like repeated. The set of program statements
that is repeated is called a subroutine. When the computer encounters YYY
G@SUB XXX, it initially behaves as it would for G@T® XXX. However, the
computer “remembers” where it was when it left YYY and will return to the
next higher numbered line after YYY when it finishes the subroutine. In order
to achieve this, the computer must “know” when it has completed the sub-
routine. You, the programmer, must notify the computer where the end is by
inserting a line ZZZ RETURN at the end of the subroutine. Then the com-
puter will “know” that it must go to the line immediately following the G@SUB
XXX it most recently encountered.

G@SUB-RETURN

YYY G@SUB XXX sends the computer to line XXX to execute all
lines it encounters until the RETURN statement, which sends the
computer back to the line following YYY. G@SUB is especially useful
in programs where the same set of lines is used several times.

42 Basic BASIC

ARANG1

10 REM WE ARE READING THE LIST FROM DATA

20 F@R X=1 T@ 10

30 READ LIX]

40 NEXT X

S0 PRINT “HERE IS THE LIST IN ORIGINAL G@RDER"

60 FOR Y=1 T@ 10

70 PRINT LLY1s

80 NEXT Y

90 PRINT

95 PRINT “HERE WE ARE ARRANGING THE LIST"

100 REM N@W WE TEST PAIRS QF NUMBERS TG SEE IF THEY ARE IN
@RDER

110 F@R 1I=1 T@ 9

118 REM WHY DGN'T WE SAY FBR I=1 T@ 1022722

120 F@BR J=I1+1 TO® 10

130 IF LL{1} <= LLJ) THEN 300

140 LET S=L(1)

150 LET LLI)=LLJ)

160 LET LC{.J1=S

170 REM WE HAVE REVERSED TWé ELEMENTS OF THE LIST

180 REM #%##%% SEE PROGRAM LIST! kdkk

200 FOR Y=1 T8 10

210 PRINT LLY)s

220 NEXT Y

230 PRINT

300 NEXT J

400 NEXT I

405 PRINT "AND HERE IS THE LIST IN ORDER FROM SMALLEST 1@
GREATEST"

410 FOR Y=1 T8 10

420 PRINT LLY1s

430 NEXT Y

440 PRINT

500 DATA 65-19,28,20,~32574,19,28,23, 43
999 END
RUN
ARANG1
HERE IS THE LIST IN @ORIGINAL ORDER

6 -19 23 20 ~-32 74 19 28 23 43
HERE WE ARE ARRANGING THE LIST
~19 6 28 20 -32 74 19 28 23 43
-32 6 28 20 ~-19 T4 19 28 23 43
~32 -19 28 20 & 74 19 28 23 43
-32 -9 20 28 [74 i9 28 23 4
~32 -19 6 28 20 74 19 28 23 43
-32 -19 6 20 28 74 19 28 23 43
-32 -19 6 19 28 74 20 28 23 43
~32 =19 6 i9 20 74 28 28 23 43
-32 -19 6 19 20 28 74 28 23 43
-32 -19 6 19 20 23 74 28 28 43
~-32 ~19 6 19 20 23 28 74 28 43
~-32 ~19 [19 20 23 28 28 74 43
~32 -19 6 19 20 23 28 28 43 74

AND HERE IS THE LIST IN ORDER FROM SMALLEST T@ GREATEST
-32 -19 6 19 20 23 28 28 43 74

amaere
AR G

Loops and Lists 43

GasuB

10 PRINT "THIS PROGRAM IS INTENDED T@ DEMONSTRATE G@SUB'S
BEHAVIQUR"

20 G@sus 700

30 FOR X=1 T8 3

40 GIsuUB 500

45 GOSsSUB 700

50 NEXT X

60 GOSUB 400

70 PRINT 70

75 GB8SUB 700

80 GAsSuUB 400

90 PRINT 90

95 G@SUB 700

100 LET X=4

110 G@suB 500

115 G#suB 700

120 G@sSuB 400

130 PRINT 130

135 G@asus 700

140 G3SUB 600

150 PRINT 150

155 GesuB 700

399 G@Ta 999

400 PRINT "HERE WE ARE AT LINE'"3

410 RETURN

500 PRINT "THIS IS GOSUB 500"3X3'TIMES™

510 RETURN

600 PRINT "CALL G@SUB 400 FR@M GBSUB 600"

610 GBsSUB 400

620 RETURN

700 PRINT
710 RETURN
999 END
RUN

GosuB

THIS PROGRAM IS INTENDED T2 DEMONSTRATE GOSUB'S BEHAVIGUR

THIS 1S G@SUB 500 1 TIMES
THIS I5 GasuB 500 2 TIMES
THIS IS5 GASUB 500 3 TIMES

HERE WE ARE AT LINE 70
HERE WE ARE AT LINE 90
THIS IS GBSUB 500 4 TIMES
HERE WE ARE AT LINE 130

CALL GO@SUB 400 FROM GASUB 600
HERE WE ARE AT LINE 150

DANE

44 Basic BASIC

Let us look at a demonstration program before we use GBSUB in ARANGI1.
Go through program G@SUB line by line to be sure you see what has hap-
pened. Line 10 is reasonably clear. Line 20 says G@SUB 700. Line 700 says
PRINT and the next line is RETURN. Thus the computer generates one blank
line and goes to line 30, which sets up a loop. Inside the loop, G@SUB 500
and 700 are called three times, once each for X = 1, 2, and 3. This program

ARAN G2

1 REM UYE ARE READING THE LIST FRGM DATA

20 FOR X=1 T 10

30 READ LI{X]

40 NEXT X

50 PRINT "HERE IS THE LIST IN ORIGINAL @RDER"

60 GOSUB 410

95 PRINT "HERE WE ARE ARRANGING THE LIST"

100 REM N@W WE TEST PAIRS @F NUMBERS T8 SEE IF THEY ARE IN
@RDER

110 FOR I=1 T8 9

118 REM WHY DBN°T WE SAY FOR I=1 T@ 102???

120 FOR J=I+1 T@ 10

130 IF LUI} <= LE€JI THEN 300

140 LET S=LLI1]

150 LET LLIX=LLJ]

160 LET LEJI=S

170 REM WE HAVE REVERSED TW@ ELEMENTS OF THE LIST

180 REM k%#%% SEE PROGRAM LISTI k%

200 GosuB 410

300 NEXT J

400 NEXT 1

405 PRINT!'AND HERE IS THE LIST IN OGRDER FROM SMALLEST T@
GREATEST"

407 G@SUB 410

408 GBTB 999

410 FOR Y=1 T 10

420 PRINT L{YDs

430 NEXT Y

440 PRINT

450 RETURN

500 DATA 6,-19,28,20,-32,74,19,28,23, 43

999 END
ARANG2
HERE 1S THE 1.IST IN @RIGINAL GRDER

6 -19 28 20 -32 14 19 28 23 43
HERE WE ARE ARRANGING THE LIST
-19 [28 20 -32 74 19 28 23 43
-32 6 28 20 -19 74 19 2g 23 43
-32 -19 28 20 6 74 19 28 23 43
-32 ~19 20 28 6 74 19 28 23 43
-32 ~-19 6 28 20 74 19 28 23 43
-32 =19 6 20 28 74 19 28 23 43
-32 -19 [19 28 74 20 28 23 43
~-32 ~-19 6 19 20 14 28 28 23 43
~32 ~19 6 19 20 28 74 28 23 43
-32 -19 6 19 20 23 74 28 28 43
-3z iy -] i7 20 z3 28 ia z8 43
-32 -19 6 19 20 23 28 28 74 43
-32 -19 6 19 20 23 28 28 43 74
AND HERE IS THE LIST IN ORDER FR&M SMALLEST T@ GREATEST
-32 -19 [19 20 23 28 28 43 74

DBNE

Loops and Lists 45

is not intended to actually achieve any particular result except to give us a
chance to trace out the path of the computer through several G@SUB
statements.

You might wonder why 399 G@AT@ 999 is in there. Consider what would
happen if it were not there. Line 155 says G@SUB 700, which means go to
line 700, execute a line feed, and return. Then what? Line 400 is next. Print
“HERE WE ARE AT LINE,” and “RETURN.” RETURN where? RETURN
in this subroutine 1esponds only to GOSUB 400 and there was no such
statement. The computer cannot execute such a set of instructions and will
print a message to that effect. So you must build a barrier in front of sub-
routines to prevent the computer from accidentally beginning without the
proper GOSUB statement. Notice that lines 500, 600, and 700 are already
protected by RETURN statements.

Now we should be ready to enter the G@SUB concept into ARANGI. This
program is called ARANG2. Examine lines 60, 200, and 407. See the barrier
at line 408 to prevent accidentally beginning the subroutine.

SUMMARY

1) The computer list is beginning to emerge as a powerful storage area for
keeping numbers while we have the computer perform tests on numbers in
the list.

2) We can rearrange the elements in numerical order by testing all pairs
and exchanging any that are not in the required order.

3) GOSUB permits us to use the same set of program statements many
times at many different points in a program without disturbing the progress
of the computer through the rest of the program.

PROBLEMS FOR SEC. 34

1) Write a program to print the following numbers in decreasing numerical order:
34, —67, 10, 0, —99, 103, and 1. Count the number of times the computer has to
exchange two numbers and the number of comparisons.

2) Write a program to print the following numbers in increasing numerical order:
45, 76, —76, 45, and 98. Do not print the duplicated number, but leave it in the list.

3) Program the computer to list the numbers in order in problem 1) by comparing
elements one and two first, then elements two and three, then elements three and
four, etc. Create a switch S = 0 for off and S =1 for on. Turn the switch off, then
if an exchange is required, turn the switch on. After testing the last two elements,
look at the switch. If it is on, go through the list again. If it is off, print the list;
it must be in order. Count the number of tests and the number of exchanges.

4) Prepare a five-element list using the averages of the test scores from program
AVG in Sec. 3-1. Then arrange the averages in decreasing order and print a number
representing the position in the original list. This latter can be done by setting up
a second list containing 1, 2, 3, 4, 5, then exchanging these numbers each time the
corresponding averages are exchanged.

5) Prepare one list with the numbers 0, 6, 1, 3, 7, 2, 3, 1, 4, and 9 and another
with 0, 8, 2,3, 9,7, 4,1, 2, and 4. Prepare a third list with the sums of the corre-
sponding elements. So far this is similar to problem 11) in Sec. 3-3. Beginning with

46 Basic BASIC

the highest subscript, look at each entry in the sum list. If the entry is less than 10,
proceed to the next entry. I the enlry is more than 8, subtract 10 from that entry
and add 1 to the entry with the next lower subscript. Print all three lists across the
page, one above the other, with the sum list last. What have you accomplished?
J 6) On seven consecutive days the high and low temperatures were as follows:
51-71, 48-67, 50-77, 55-78, 55-76, 55-75, 49-79. Write a program using lists to find
the greatest range and the number of the day on which it occurred, the average high,
and the average low.

J 7) Prepare two 10-element lists using the following numbers: 43, 65, 92, 38, —45,
0, 15, 61, —61, —15, 45, 54, 52, —14, 49, —3, 66, 72, 29, —1. Arrange all the
numbers in increasing numerical order,

J 8) The following test scores are given: 65, 71, 82, 63, 90, 58, 66, 67, and 68.
Program the computer to list the scores, calculate the average, and then find the
number of test scores that were above average and the number below average.
Also, find the score where there are the same number of scores above as below.

J 9 The Fibonacei numbers are generated by letting the first two numbers of the
sequence equal 1, and from there on each number may be found by taking the
sum of the previous two elements in the sequence. So you get 1, 1, 2, 3, 5, 8, 13,
cte. Prepare two lists: one with the first 10 and the other with the second 10. For
cach element from 2 to 19 find the difference between the square of the element
and the product of the elements immediately preceding and following. In other
words, print F[1] °® 2 — F[I — 1] ® F[I + 11

CHAPTER 4

Computer Functions

4-1 INTRODUCTION TO INT(), SQR(), ABS(), AND SGN()

The four functions discussed in the following, will prove very useful in
BASIC.

INT(X) is used in two ways. In some computers, INT(X) determines the
greatest integer not greater than X. For example, if A = INT(43.2), then
A = 43; if A = INT(6), then A = 6; and if A = INT(—2.3), then A = —3. In
other computers, INT(X) truncates the number X, i.e., it simply removes the
decimal part. So if A = INT(—2.3), then A = —2.

SQR(Y) computes the non-negative square root of Y. For example, if B =
SQR(16), then B = 4.

Some computers will not compute if B = SQR(~186). However, if we have
many values for which we want the square roots and some happen to be
negative, we can instruct the computer to take the square root of the absolute
value of Y. BASIC provides ABS(Y) for just such occurrences. For example,
ABS(18.3) = 18.3, and ABS(—24.61) = 24.61. So we can use SQR(ABS(Y)) for
the problem above.

A fourth BASIC function which you may not have much call for right now
is SGN(N). SGN(N) is +1 if N is positive, 0 if N is 0, and —1 if N is negative.
The number in parentheses is called the argument of the function. Note that
the argument may be an explicit number, a variable, another function, or any
algebraic expression. Study the demonstration program ASIS to see how the
computer handles these functions.

INT(X) computes the greatest integer of X.

SQR(X) computes the positive square 100t of X.

ABS(X) computes the absolute value of X.

SCN(X) is +1if X is positive, 0 if X = 0, —1 if X is negative,

47

48 Basic BASIC

ASIS

10 PRINT "X',ABSC(X)", "SQRC(ABSC(X))" "INT(X) ", "SGN(X)"
20 READ X
30 PRINT Ks ABSCX2» SQRCABSCKI 5, INTCXY» SGNCXK)

40 DATA -899913.,-35.2,-.032

50 DATA 0,.032,23.412,8391 "

60 GOT@ 20

70 END

RUN
ASIS
X ABS(X) SGRCABS(X)) INTCX)
-2999123, B90913. 948, £37 -g99913.
-35.2 35.2 5.93296 -36
-o032 . 032 - 178885 -1

0 0] 0

.032 .032 . 178885 0

23. 412 23.412 4.8386 23

8391 8391 91.6024 8391
BUT OF DATA IN LINE 20

SGNCX:
-1
-1
-1

- -

One common use of INT() is for factoring integers. We can look at the
quotient of two integers, and if that is an integer, then the denominator is a
factor. For example, 65/5 = INT(65/5); therefore 5 is a factor of 65. So in
order to find the greatest factor, all we have to do is start with the integer, one
less than the number we are trying to factor, and test to see if it divides with-
out remainder. If it does, we use the conditional transfer and send the com-
puter to a PRINT statement. If it does not, we let the computer subtract 1 by
using a loop and try again. If we start at N, we will get N/N = INT(N/N) the
first time through even for prime numbers. Let us also print N is prime if it is.

FORD =N —1
TR 2 STEP —1

Is
D a factor?

1 K
no
PRINT ll
NEXT D i

Al ot
i A |
prime

Fig. 4-1. Flowchart for factoring integers.

Computer Functions 49

PRIMEL

10 READ N

20 FOGR D=N-1 T@® 2 STEP -1

30 IF N/D=INTC(N/D) THEN 70

40 NEXT D

50 PRINT N3"IS PRIME"

60 GOT2 10

70 PRINT D3"1S THE GREATEST FACTOR @F"iN
80 GO8To 10

90 DATA 1946,1949,1009,1003

100 DATA 11001,240,11

110 END
RUN
PRIMEL

973 1S THE GREATEST FACTOR @F 1946
1949 IS5 PRIME

1009 IS PRIME

59 IS THE GREATEST FACT@R 0F 1003
3667 15 THE GREATEST FACT@R GF 11001

120 IS5 THE GREATEST FACT@R @F 240
i1 IS PRIME

BUT 8F DATA IN LINE 10

So we stop at 2 rather than 1. First we draw the flowchart in Fig. 4-1, then
write the program PRIMEL.

In PRIMEL the computer tested 1949/D with 1947 different values for D
before it decided that 1949 is prime. That is a lot of tries. Whenever reasonable,
we should try to improve the efficiency of our program. What do we know
about factors of integers? We know that the smallest possible factor is 2. So the
greatest could be N/2. For 1949 then, we can reduce the number of tries to
975. But we also know that if we try all possible divisors down to the square
root of the number we are trying to factor, then the quotients will also be less

PRIMEZ2

10 READ N

20 FOR D=2 T@ SAQRN)

30 IF N/D=INTI(N/D) THEN 70

40 NEXT D

50 PRINT N3!S PRIME"

60 GOTO 10

70 PRINT N/Ds;*'1S THE GREATEST FACTOR @F'3N
80 GeTe 10

90 DATA 1946,1949,1009,1003

100 DATA 11001,240,11

110 END
RUN
PRIME2
973 IS THE GREATEST FACT@R OF 1946
1949 IS PRIME
1009 IS PRIME

59 IS THE GREATEST FACT@R @F 1003
3667 I5 THE GREATEST FACTOR @F 11001
120 15 THE GREATEST FACTOR @F 240

1t 1S PRIME

QUT @F DATA IN LINE 10

50 Basic BASIC

than the square root. So we might try FORD =N — 1 T@ SQR(N) STEP —1.
Well, SQR(1949) is approximately 44 and this means 1904 tries, which is much
worse. But why not go from 2 up to SQR(1949)? Now we have only 43 tries
and if we do get divisibility for other numbers, we will have the smallest
factor and we can get the greatest factor by dividing the number by its small-
est factor. This seems worth making the necessary changes in PRIMEL. Only
lines 20 and 70 require changing. Line 20 is the line which sets up the loop
to test for divisibility and line 70 is the PRINT statement. In the PRINT
statement we want N/D printed now, whereas we wanted D printed before.

See PRIMEZ.

SUMMARY

Four computer functions were introduced.

1) INT(A) evaluates the greatest integer of A.

2) SQR(B) finds the positive square root of B.

3) ABS(C) computes the absolute value of C.

4) SGN(D) becomes +1 if D is positive, 0 if D is 0, and —1 if D is negative.
The value in parentheses is called the argument of the function.

PROBLEMS FOR SEC. 4-1

1) Modify PRIMEZ2 to write all pairs of factors.

9) Modify the program in problem 1) to print no duplications.

3) Write a program that will print only prime factors of integers.

4) Write a subroutine that will perform the work of ABS(), without using
another computer function.

5) Write a subroutine that will perform the work of SGN(), without using
another computer function.

6) Write a program to print all different pairs of factors of the following set of
integers: 711, 991, —991, 453, —654, 1009, —1009, 9001.

7) Write a program to print all of the prime positive integers less than 100. Do
not let the computer try numbers divisible by 2.

8) Print the prime integers from 1000 to 1500. Do not let the computer test the
even numbers.
/9 For cach of the following pairs of numbers, find two numbers so that the
sum of your two is the first number in the given pair and the product is the second
number in the given pair: 3, 2; 7, 12; 11, 28; —11, 28; 3, —28, 76, 1003; 7, 8;
34, 289.

4-2 REDUCING COMMON FRACTIONS AND DIMENSION
CONVERSIONS

We are finally ready to reduce fractions to lowest terms. Look at problems
13) and 14) in Chap. 1. There, if we had added 5/6 and 7/8 we would have
gotten 82/48. Since, however, it is customary to reduce fractions, we would
like to get 41/24.

Computer Functions 51

All we have to do is find the largest factor of the numerator that is also a
factor of the denominator. Only this time we have to go all the way to 2. So
we will use the procedure of program PRIMEL. First we should prepare a
flowchart. See Fig. 4-2. We simply find the greatest factor of the numerator
and see if it is also a factor of the denominator. If it is, fine. If it is not, then
we go back and find the next greatest factor of the numerator and test to see
if that is a factor of the denominator. If it is, fine. If not, we go back again
and look for the next factor of the numerator. If we get all the way to 2
without a number that is a factor of both numerator and denominator, then
we print the fraction as it was given. See program REDUCE.

We should try to pick the largest factor of the smaller number to reduce
the number of tries the computer has to execute.

Dimension Conversions

We find the INT() function useful in simplifying dimensioned numbers
to simplest form. Suppose we change 93 in. to feet and inches. By hand we
would divide 93 by 12 and the whole number in the result would be in feet.
Then the remainder would be in inches. The problem would appear as follows:

<

12)

[NV

9
8

ol

and we would say 7 ft 9 in. with no difficulty. We can easily get the 7 by
using INT(93/12), but it is an exercise in mathematics to get the 9. Let us
look at the division problem in more detail:

775 75
1293.00 12j9.00
84 8.4

9.0 60
8.4 .60
60 00

60

00

We see that if we divide 12 into the remainder after integer division, we get
the decimal portion of the result if we divide by 12 by decimal division. That is,

9/12 = 93/12 — INT(93/12)

for this problem. Or in general, for N divided by D and calling the remainder
R we get

R/D =N/D — INT(N/D)
Multiplying both sides by D we get
R=N-—INT(N/D) * D

52 Basic BASIC

FORP =NTP
2 STEP —1

IsPa
factor of D?

PRINT
N/P, D/P

Fig. 4-2. Flowchart for reducing common fractions.

REDUCE

10 READ N.D

20 F@R P=N T@ 2 STEP -1}

30 IF N/P=INT(N/P) THEN 70
40 NEXT P

50 PRINT N"/"D

60 GAT? 10

70 IF D/P=INTC(D/P) THEN 90
80 GATO 40

90 PRINT N"/"D"="N/P"/"D/P
100 Ga&T® 10

110 DATA 5,6

120 DATA 82,48

130 DATA 3,4

140 DATA 36,48

150 END

RUN
REDUCE

S /7 6

82 / 48 = 4] /7 24
3 / 4

36 / 48 = 3 / 4

8UT @F DATA IN LINE 10

Computer Functions 53

So all we need is a program statement LET R = N — INT(N/D) * D. See line
20 in program DEMREM.
DEMREM
5 PRINT “NUMERAT@R™, "DENJMINAT@R", “REMAINDER'", "INTEGER QUITIENT"
10 READ N,D
15 REM FIND THE REMAINDER WHEN 'N* IS DIVIDED BY 'D°
20 LET R=N-INT(N/D)%D
30 PRINT N»Ds R, INTCN/D)
40 GOT? 10
50 DATA 93,12, 100,25, 365, 52, 365, 7
52 DATA 365, 12,52, 13, 5280, 440, 55, 6
60 END
RUN
DEMREM
NUMERATOR DEN@GMINATBR REMAINDER INTEGER QUBTIENT
93 12 9 7
100 25 0 4
365 52 1 7
365 7 1 52
365 12 S 30
52 13 0 4
5280 440 0 12
55) 1 9
OUT @F DATA IN LINE 10

Now we can easily convert numbers in inches to feet and inches. First see
the flowchart in Fig. 4-3 and then the program CONVRT.

LETF
= INT(1/12)

Fig. 4-3 Flowchart for converting
numbers in inches to feet and inches.

54 Basic BASIC
conyRT

10 READ I

20 LET F=INI(I/12)

30 LET I1=1-F%12

40 PRINT I"INCHES ="F"FEET "II"INCHES"
45 G@Te 10

50 DATA 9,86547:37,947, 480

60 END

RUM

CONVRT

9 INCHES = O FEET 9 INCHES
86 INCHES = 7 FEET 2 INCHES
47 INCHES = 3 FEET [INCHES
37 INCHES = 3 FEET 1 INCHES
947 INCHES = 78 FEET 11 INCHES
480 INCHES = 40 FEET ¢} INCHES
BUT 8F DATA IN LINE 10

SUMMARY

1) We can now find the greatest common factor of two integers and thus
reduce fractions to lowest terms.

2) We have seen that the INT() function may be used to break quotients
up into their integer part and their decimal part less than 1.

3) We can find the remainder in a division problem by using R = N — INT
(N/D) ® D. This allows us to convert dimensioned numbers, such as inches,
to feet and inches.

PROBLEMS FOR SEC. 4-2

1) Write a program to add two simple fractions and print the sum reduced to
lowest terms.

9) Improve the efficiency of program REDUCE by putting the smaller number in
the P loop in line 20.

3) Write a program to convert improper fractions to mixed numbers.

4) Convert inches to yards and feet and inches.

/ 5) Write a program to multiply two fractions, converting the result to a mixed
number in reduced form.
/ 6) Convert dollars in decimal form to the equivalent in coins.

7) Do problem 5) for adding two fractions.

8) For each of the following pairs of numbers, find the greatest common factor:
190, 1083; 27, 35; 27, 36; 16, 34; 12, 30.

9) For each of the following pairs of numbers, find the least common multiple:
190, 1083; 25, 745; 187, 34.

10) Prepare a list consisting of the first 10 Fibonacci numbers. Find the greatest
common factor for every pair in the list, preparc a list of these with no duplications,
and print them,

/ 11) Write a program to find the greatest common factor of sets of three numbers
assigned as data.

Computer Functions 55

4-3 PROGRAM-DEFINED FUNCTIONS

Suppose we have $56.31 in a savings account bearing 4%% interest com-
pounded monthly and we hear of a bank that is offering 4%% compounded
quarterly. Should we change banks? We did work with compound interest
earlier. So this should be a matter of doing two calculations in the same pro-
gram, Let us leave the $56.31 in each bank for 10 years and see if there is
enough difference to change banks. For compounding monthly, we use the
yearly rate divided by 12, and caleulate and add the interest 12 times per year.
For quarterly compounding, we use the yearly rate divided by 4, and calcu-
late and add interest four times per year. In this case, use one loop for the
years and a 1 to 12 loop for monthly compounding and a 1 to 4 loop for
quarterly compounding, both inside the same 1- to 10-year loop. The flowchart
in Fig. 4-4 should help to sort out this plan.

Since the intent is to develop several concepts in this program that will
require changing the printing, the variables will be printed individually on
separate lines. This technique may often save typing when you anticipate

Initialize

principal ———-%(FOR Y1§ (1

on both rates

Cor%;ute
new principal
for this year

at4.5%

e

Compute
new principal
for this year
at4.75%

L

NEXT Y

e

PRINT
headings
and P’s

Fig. 4-4. Flowchart for computing
compound interest at two rates.

56 Basic BASIC

making changes 25 you develop a program. Thus in program BANK1 lines
130 and 150 are printed with semicolons at the end so that the printing can
be placed at the ends of those lines from PRINT instructions on other lines.
The values of the different principals will be printed, according to instructions,
on lines 140 and 160.

Note: On some computers line 10 of BANK1 would be written as 10 LET
P,P1=0.

We can certainly obtain the information we want from the RUN of this
program in its present form. Clearly, we would get more interest by changing
banks. You will have to decide whether it is worth switching. Even so, let us
see what we can do to simplify the results. For instance, when we talk about
money, most of us tend to round off to the nearest cent. So we should be able
to have the computer do that too. We could multiply by 100 and then take
the greatest integer, but that would give 8823 for P and we want dollars and
cents. Let us then divide by 100 again and get 88.23. However, we really
want 88.24 because the .007 is more than one half a cent. We can obtain this
by adding .5 after we multiply by 100, then taking the greatest integer and
dividing by 100 again. Adding .5 to positive numbers from .5 to .99 results in
numbers from 1.0 to 1.49, and sends positive numbers from .01 to .49 into
numbers from .51 to .99. When we take INT(the sum), the result increases by
1 for numbers .5 or more and is unchanged for numbers less than .5. Thus

BANK 1

10 LET P=P1=56.31

20 FOR Y=1 T8 10

22 REM FOR TEN YEARS

30 FOR M=1 TO 12

32 REM COMPOUND MONTHLY AND COMPUTE INTEREST
40 LET I=P%4.5/100/12

50 LET P=P+]

60 NEXT M
62 REM THAT FIGURES THE INTEREST F@R THIS YEAR COMPBUNDED
M@NTHLY

70 FOR @=1 T8 4

72 REM CEBGMPOUND QUARTERLY

80 LET I1=P1%4.75/100/4

90 LET Pi=Pl+]1]

100 NEXT @

102 REM THAT TAKES CARE @F THE QUARTERLY INVESTMENT FOR THIS
YEAR

108 REM NOW T@ COMPUTE THE NEXT YEAR

110 NEXT Y

120 PRINT "FBR TEN YEARS"

130 PRINT "@4.5% COMPBUNDED MOGNTHLY..."s

140 PRINT P

150 PRINT "84.75% COMPOUNDED QUARTERLY...';

160 PRINT P1

9999 END

RUN

BANK }

FOR TEN YEARS
@4.5%7 COMPBUNDED MOMTHLY... 88.2374
@4.75% COMPOUNDED QUARTERLY... 90.2943

DONE

Computer Functions 57

ROUND

10 READ X

20 LET Y=INT(X*100+.5)/100

30 PRINT Y,X

40 DATA 2.31462,2.34999,2.35001, 382, 617.346,3.86149E-02
30 GOTO 10

60 END
RUN
RAOUND

2. 31 2. 31462
2435 2.34999
2435 2.35001

382 382

617.35 617.346

«04 3.86149E-02

QUT 9F DATA IN LINE 10

we have a rounding function all our own as follows:
LETY = INT(X * 100 + .5)/100

Let us try this with a few numbers to see that it actually works, before we
insert it in our banking problem. See ROUND. (It may often be wise to perfect
a technique in a smaller uninvolved program before trying it in a longer more
complicated one. There should be fewer sources of error in the final program.)

ROUND works out well. However, we often have more than one variable
that we want to round off. BASIC has a way of doing this. We may define
any function of our own using DEF FNA(X) = ZZZ7772777777, where X is
a dummy variable. It simply holds a place where we will later enter the
variable for which we want the function evaluated. The format of our round-
ing function looks like this:

XXX DEF FNH(Z) = INT(Z ® 100 + .5)/100

XXX is the line number of the statement number of the DEFining statement
in a BASIC program. We may substitute any letter of the alphabet for H.
Thus, we may for example, DEF FNI() and DEF FNJ() for other func-
tions in the same program. The third letter is the one that identifies which
function we are calling for. We may define another function that rounds off
to tenths as ZZZ DEF FNT(G) = INT (G ® 10 + .5)/10 and whenever we call
for FNT(), we round off to tenths. Let us see how this works out in program
DEF().

DEF

XXX DEF FNA(X) = (any legal BASIC expression). BASIC pro-
vides a program-defined function. It begins with FN followed by a
third letter which is used to identify the function. (Some computers
allow more than one argument.)

58 Basic BASIC

DEF ()

20 DEF FNH(H)=INT(H%100+.5)/100

30 DEF FNT(T)=INT(T#10+.5)/10

40 PRINT "X "Y', "X/Y", "FNH(X/Y)", "FNT(X/Y)"
45 READ X»Y

50 PRINT X, Y»X/Y, FNH(X/Y)s FNT(X/Y)

60 DATA 1,11,10,3,3,4,6511.2,3.125,8.6324

70 GBTO 45

80 END

RUN

DEF ()

X Y /Y FNH(X/Y) FNTC(KAY S
1 11 9.09091E-02 - 09 .1
10 3 3.33333 3.33 3.3
3 4 .75 .75 -8
[11.2 + 535714 «D4 -5
3.125 8.6324 « 362008 .36 .4

BUT 8F DATA IN LINE 45

Now we can alter our compound interest program BANK1. We only need
to change two lines and insert the DEF statement. It is common practice to
put all DEF statements at the beginning of the program. Let us also put in
dollar signs (§).

2 DEF FNH(X)=INT(X¥100+.5)/100
140 PRINT "S$"FNH(P)
160 PRINT "S$"FNH(P1)

RUN
BANK |

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY...$ B88.24
@4.75% COMPOUNDED QUARTERLY..«35 90.29

DONE

The results in the above program are rounded off to the nearest cent and
the dollar signs make it clear that we are dealing with money. However, it
would be even better if we could line up the decimal points. If your version
of BASIC does not provide a computer function to override the semicolon
spacing, you may write your own subroutine that will allow you to place
results exactly where you want them printed. In our particular problem all we
want to do is move the first number three spaces to the right. But we might

develop a subroutine,

What we are trying to do is to gain control over the number of spaces
between items of printed output. This implies getting the computer to print
different numbers of spaces according to our need This suggests putting XXX

Computer Functions 59

PRINT “”; in a loop and letting the high number be a variable that equals
the number of blank spaces required. The following subroutine will print X
spaces.

500 FORS=1T@ X
510 PRINT “ 7

520 NEXT S

530 RETURN

In BANKI, no matter where we place the numbers, we will have to put the
first number three spaces further to the right than the second number. We
may now accomplish the required spacing by first printing according to line
130 and then setting a reasonable value of X followed by G@SUB 500. Upon
getting the computer to print according to line 150, we next LET X = X — 3
put in three fewer spaces and G@SUB 500 again. Finally, we must be sure
that we do not let the computer enter the subroutine accidentally, Should this
happen, the computer will attempt to execute the RETURN statement when
there was no prior G@SUB to direct it. To avoid this we can use 490 G@T®
9999. However, BASIC has the statement XXX ST@P for just such a situation.

ST@P
XXX STQOP is equivalent to XXX GOT@ 9999 when 9999 is the
END statement.

Below we list the latest changes, and name the resulting program BANK2.
The entire program is listed to see where things fit together. As you can see
the results are aligned in the RUN.

3>

132 LET X=4

138 GOsSUB 500
156 LET X=X-3
158 G@sSUB 500
490 S5TOP

500 F@R S5=1 T@ X
510 PRINT ™ 3
520 NEXT S

530 RETURN

RUN
BANK2

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY... $ 88.24
84, 752 COMPOUNDED QUARTERLY.«+ $ 90.29

DONE

60 Basic BASIC

BANK2

2 DEF FNH(X)=INT(X*100+.5>7100

10 LET P=P1=56.3}

20 FOR Y=1 10 10

22 REM FOR TEN YEARS

30 FOR M=1 T0 12

32 REM COMPOUND MONTHLY AND COMPUTE INTEREST
a0 LET I=P%4.5/100712

50 LET P=P+1

60 NEXT M
62 REM THAT FIGURES THE INTEREST FOR THIS YEAR COMPOUNDED
MONTHL Y

70 FBR Q=1 TO 4

72 REM CE@MPOUND QUARTERLY
80 LET I1=P1%4.75/100/4
90 LET Pi=P1+11

100 NEXT @

102 REM THAT TAKES CARE OF THE QUARTERLY INVESTMENT FOR THIS
YEAR

108 REM N@W TO COMPUTE THE NEXT YEAR

110 NEXT Y

120 PRINT "FOR TEN YEAKS®"

130 PRINT "84.57 COMPOUNDED MONTHLY...'s
132 LET X=4

138 GO3UB 500

140 PRINT “S"FNH(P)

150 PRINT "84.75% COMPOUNDED QUARTERLY...'}
156 LET X=X-3

158 GBSUB 500

160 PRINT "S"FNH(P1)

490 STeP
500 F@R S=1 T0 X
510 PRINT " *'3

520 NEXT 5
530 RETURN
9999 END
RUN

BANK2

FOR TEN YEARS
@84.5% COMPOUNDED MONTHLY <.« $ 88.24
@4.75% COMPOUNDED QUARTERLY.es $ 90.29

DONE

Now as long as we have the spacing subroutine available, let us try several

values of X in line 132 and see what happens.

132 LET X=10

RUN

BANK2

FBR TEN YEARS

©4.5%2 COMPOUNDED MONTHLYs . $ 8B.24
@4.75% COMPOUNDED QUARTERLYoo. $ 90.29
DINE

132 LET X=20
RUN
BANK2

Computer Functions 61

FOR TEN YEARS

@4.5% COMPOUNDED MONTHLY .o $ BB.24
84.75% COMPOUNDED QUARTERLY.e. $ 90.29
DBNE

132 LET X=3
RUN
BANK2

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY e« 5 88.24
@4. 75% COMPOUNDED QUARTERLYe«e$ 90.29

DONE

Note: See Appendix C for TAB() and PRINT USING formatting
functions.

SUMMARY

1) The program-defined function DEF FNA(X) has been introduced. This
allows us to have the computer perform the same function on different
variables.

2) The STPP statement may be used to terminate the RUN of a program
at places other than the physical end of the program. The end of a program
specified in this way may be referred to as the logical end.

3) We have constructed a subroutine that enables us to control more pre-
cisely than with the semicolon or comma the spacing of printed results by
putting “ ”; in a loop. This gives more versatility of format.

PROBLEMS FOR SEC. 4-3

1) Find the square roots of the integers from 11 to 23. Print the integer, its
square root, and its square root rounded off to the nearest thousandth and to the
nearest tenth with appropriate labels.

9) How much money will you have in the bank, if you deposit $5 at the begin-
ning of every month for 25 years in a savings account which pays 4%% compounded
monthly?

3) Define a function for Y = --3X2 4 7X — 3. Print pairs of values for
X = —4 to 5.

4) Do problem 2), but for daily compounding. Ignore leap year; use 12, 30-day
months.

/ 5) Set up a table of amounts that $100.00 will be at the end of 5, 10, 15, and
20 years at 4%, 4%%, 4%%, and 5% per year compounded monthly. Put the rates in
a rate loop. Print the years across the top and the rates in the first column of each
row.

J/ 6) Write a program to compare $99.00 compounded monthly at 4%%, quarterly
at 5%, and daily at 4%% for 15 years. Print with the decimal points lined up.

7) Define a function for Y = 3X + 4. Print pairs of values for X and Y for
X = —5to 5.

8) Define a function for Y = 2X* 4 8X — 1. Print pairs of values for X and Y
for X = —6 to 2.

62 Basic BASIC

4-4 RANDOM NUMBER GENERATOR

The last computer function we will consider in this chapter is RND(X).
Often in programming we want numbers to try out a new program. Also, there
are many events in mathematics and science that occur at random. If we do
not have any real data or we want a very large number of numbess, it is
desirable to have the computer pick the numbers for us. This can be done in
BASIC with the computer function RND(X).

RND(X) picks at random a decimal fraction between 0 and 1. It will not

v - i - " o Foavi,
pick 0 or 1. Depending on the computer, the value of ¥ may be immaterial,

but there must be a number in parentheses. If the argument does not affect
the numbers generated, it is called a dummy argument. Some computers use
the argument to determine the numbers generated. Computers vary as to the
actual set of random numbers generated. Some have a fixed set of numbers that
is the same every time RND() is used in the same program. Such a random
number generator is called a pseudo random number generator. Others give a
different set of numbers each time you run the same program. Program
RND(1) is a short routine that prints a few random numbers.

RNDC1)

10 F@R X=1 T@ 10
20 PRINT RND(5),
30 NEXT X

40 END

RUN

RNDC1)

° 788345 +865051 « 595169 285522 +856583

6.9 7632E-02 209305 « 12793 + 383804 « 651428

DONE

Before we get very far trying to use RNIXZ) we realize that numbers
between 0 and 1 do indeed limit us greatly as a source of data. Suppose we
want data selected from 1 to 10. First we might try to multiply the random
number by 10 before taking the INT() function. Let us try it in RND(2).

RNDC2)

10 FBR X=1 T6 20
20 PRINT INTC10%RNDCIY)}

30 NEXT X
40 END
RUN
KNDUCZ)
3 5 5 2 6 3 1 0 2 3 9 4
2 2 [3 9 4 3 4

Computer Functions 63

Program RND(2) seems only to give integers 0 through 9. However, RND(Z)
will never take on 1 as a value, and therefore multiplying by 10 will never yield
10 as the product. But we can add 1 to each of the above integers and both
include 10 and exclude 0, which is exactly what we set out to do. The 1 can
). We get 1 to 10 in program

be added either before or after taking INTY(

RND(3).

RND(3)

10 FOR X=1 T@ 30
20 PRINT INTC1O0%RNDC1)+1)3

30 NEXT X

40 END

RUN

RNDC3)
5 8 4 S 3
8 7 i 7 1
i 6 6 1 3
DONE

10

10

10

If we want decimal numbers from 1 to 11, not including 11, all we have to

do is leave out the INT(), as in RAND3+.

RAND3+

10 FOR X=1 T8 10

20 PRINT 10%RND(9)+13
30 NEXT X

40 END

RUN

RAND3+

10.0205 3.06177 7. 18546

2.02798 9.08411 5.25247

DONE

4.55652

8.73757

1. 66971

8.00928

Now we have a way to determine the interval in which the numbers are
picked. If we can get 1 to 11 with 10 ® RND(Z) + 1, we ought to be able to

get 1 to 100 with 99 ®* RND(Z) + 1.

RND(X)

+ 1),

XXX LET Y = RND(X) will assign at random a number between 0
and 1 to Y. We can get integers from 1 to A with INT(A » RND(X)

64 Basic BASIC

Now, what shall we do with randomly assigned numbers? The possi-
bilities are endless. We could put some in a list and arrange them in numerical
order. Remember ARANGE? Instead of reading data, we can use randomly
assigned numbers. This time, let us not print the list after every exchange,
but only after it is in order. How about picking integers from 1 to 2507 This
will require INT(250 ° RND(1) + 1). This time let us rewrite the program to
look at successive adjacent pairs in the list. This method was outlined in
problem 3) of Sec. 3-4. As we have the computer look at each pair, we have
it decide whether the first is less than or equal to the second. If it is, then we
do not exchange—exactly as in ARANGE. But if the first is greater than the
second, we call for the exchange. However, there is no guarantee that the list
is in order after the first time through. So we have to turn on a switch after
each exchange. Then after the computer has gone through the list comparing
1 and 2, then 2 and 3, then 3 and 4, etc., we have it check the switch. The

FOR X =1
10 10
LET L(X)
= INT (250 *
RND(1) + 1)
Turn _
NEXT X switch off FOR 1=1
LETS =0
Exchange
L() and LO + D
See ARANGE
Turn
switch on NEXT |
LETS =1
PRINT
END list
N in order

Fig. 4-5. Flowchart for arranging a list of numbers assigned from
RND() using comparison of adjacent pairs.

Computer Functions 65

name of the switch can be any number of things, but here we will use S. If
S = 0, the switch is off. If S = 1, the switch is on and we tell the computer to
lock at the list again. If the switch is off, we want the computer to print the
ordered list. Under what conditions do you think this will be the most efficient
ordering technique? The name of this program is ARANG3 and its flowchart is
in Fig. 4-5.

ARANG3

10 FBR X=1 T2 10

20 LET LCXI=INTC(250%RNDC1)+1)

40 NEXT X

58 REM TURN THE SWITCH QFF!!!
60 LET S=0

70 FOR I=1 18 9

80 IF LUI] <= LLI+1] THEN 130

90 LET K=L(1]

100 LET LUIJ=LOI+1]

110 LET Li{i+1])=K

120 LET s=1

121 REM #%% TURN THE SWITCH ON *%#
130 NEXT I

138 REM 1S THE SWITCH @N??

140 IF S=1 THEN 60

142 REM IF THE SWITCH IS OFF THERE WERE N@ EXCHANGES AND
143 REM THE LIST IS IN @RDER

145 PRINT "THE NUMBERS IN ORDER"
150 FOR X=1 TO0 10

160 PRINT LI{X13

170 NEXT X

180 END
RUN
ARANG3
THE NUMBERS IN ORDER
12 &7 15 98 109 161 162 199 221 231
DONE

The program looks fine, but nobody could prove that we really used the
ordering routine to put the list in order, because we do not know what the
original list was. So let us put back the routine that prints the list as it is
formed.

S PRINT "HERE 1S THE LIST AS IT IS BEING FORMED**x%x"
30 PRINT L(X)3

42 PRINT
RUN
ARANG4
HERE IS THE LIST AS IT IS BEING FORMED#%x%

924 156 216 22 64 65 195 2190 129 11
THE NUMBERS IN O@RDER

11 22 64 65 94 129 156 195 210 216
DONE

Fine! Now we believe it. We have just put 10 random numbers in order.
It is about time we found out how to create longer lists.

66 Basic BASIC

DIM

We can usually get 10 (or 11) elements in a list. If we want longer lists
we simply notify the computer that we wish to specify a greater dimension for
our list. The BASIC statement is XXX DIM L[Z], where Z is the highest sub-
script in the list. Computers vary. Some allow a variable in parentheses, while
others require an explicit integer. If you do not know how long the list is
going to be, simply pick a number larger than you think you will need. You
need not use every location in the list. Let us dimension a list in ARANG4 up
to 75 and use 20 locations to see how a longer list looks,

2 DIM LOTS)

7 LET N=20

10 F@BR X=1 T8 N

70 FBR I = 1 TO N-1
150 FOR X=1 T0 N
RUN

ARANG5S

HERE IS THE LIST AS IT IS BEING FORMED##%
41 246 236 83 248 119 107 195 85 128 134 25

73 93 27 204 it 208 122 241

THE NUMBERS IN 2RDER

25 27 41 73 83 85 93 107 111 119 122 128
134 195 204 208 236 241 246 248

DONE

The program seems to work nicely. Let us try a few other numbers.

7 LET N=5

RUN

ARANGS

HERE IS THE LIST AS IT IS BEING F@RMED%*x%
71 86 [141 172

THE NUMBERS IN @RDER

6 71 86 141 172

DANE

For N == 25 we list the entire program with all the changes we have made.
Notice that when we made the original change we put lines 10, 70, and 150
in terms of N so that we would not have to retype them each time we made a
minor change in the length of the list. See ARANGS.

Divi

XXX DIM A[24], B[75], L[33] dimensions three lists. The A list
has 24 as its highest subscript, B has 75, and L has 33. You may
dimension as many lists as will fit on one line,

Computer Functions 67

ARANGS

2 DIM LL7T5]

S PRINT "HERE IS THE LIST AS IT 1S BEING FORMED#*%#*
7 LET N=25

10 FOR X=1 T@ N

20 LET LIXI=INTC250%RNDC1)+1)

30 PRINT LI{X13

40 NEXT X

42 PRINT

58 REM TURN THE SWITCH @FF!!!

60 LET $=0

70 FOR I=1 TO N-1

80 IF LCIJ <= L{I+1] THEN 130

90 LET K=LL1]

100 LET LOUIX=LUI+1)

110 LET LL{I+11=K

120 LET S=1

121 REM #%% TURN THE SWITCH ON %%%
130 NEXT I

138 REM IS THE SWITCH ON??

140 IF S=1 THEN 60

142 REM IF THE SWITCH 1S OFF THERE WERE N@ EXCHANGES AND
143 REM THE LIST IS IN ORDER

145 PRINT '"THE NUMBERS IN @RDER"
150 FOR X=1 T@ N

160 PRINT LIX13

170 NEXT X

180 END

RUN

ARANGS

HERE IS THE LIST AS IT IS BEING FORMED#%x%
107 195 85 130 138 38 112 209 127 5 15 168
5 138 162 109 75 98 44 6 i8 177 30 213
138

THE NUMBERS IN @RDER

5 5 6 15 18 30 as 44 75 85 98 107

109 112 127 130 138 138 138 162 168 177 195 209

213
DANE

We will now generate random data for one other type of problem. If it is
4 o'clock, 10 hours later it will be 2 o’clock. This concept contains the seed
of the development of modular arithmetic. First let us write a little program
to take random times and add random numbers of hours. The random times
must be numbers from 1 to 12. The random numbers of hours could have
virtually any range, but 1 to 36 will do. The flowchart of Fig. 4-6 should
help to organize the problem. We can determine the number of computations
with a loop. Here we are picking 10 pairs of numbers, with T for time and
H for hours. Then we add them and check to see if the sum is less than or
equal to 12. If the sum is less than or equal to 12, we want to have the sum
printed as the time. If the sum is greater, we want to subtract 12 and check to
see if the result is less than or equal to 12, ete. After the sum is printed we
want the computer to return and pick another pair and repeat the same process
until 10 pairs of numbers have been picked and processed. See CL@CK1.

68 Basic BASIC

FORP =1 LET T =INT
TO 10 (12*RND(1) + 1)

LET H = INT
(36 «RND(1) + 1)

~

LETS=T+H

LETS=5-12

Fig. 4-6. Flowchart for adding hours to times and computing times for
program CLOCK.

Now, if we want to change the number picked for hours, we can change
line 30 to 30 LET H = INT(12 ® RND(1) + 1) and get the same range for
both T and H. But then we would have two lines using exactly the same
function:

20 LET T = INT(12 ®* RND(1) + 1)
30 LET H = INT(12 ® RND(1) + 1)

This situation is a candidate for the program-defined function:
DEF FNC(Z) = INT(12 ®* RND(Z) + 1)
Then lines 20 and 30 are

20 LET T = FNC(1)
30 LET H = FNC(1)

Computer Functions 69

CLack1

10 FOR P=1 T@ 10

20 LET T=INTC12%RNDC(1)>+1)

30 LET H=INTC(36%RNDC(1I+1)

40 LET S=T+H

50 IF S <= 12 THEN 80

60 LET S=8-12

70 G2Te S50

80 PRINT H"HOURS FROM"T"Q *'CLGBCK IT WILL BE®'S"@ °*CLOCK"

90 NEXT P

100 END
RUN
CLACK1

8 HOURS FR@M 6 @°'CLOCK IT WiLL BE 2 @ *CLOCK
33 HBURS FRoM 9 B°'CLOCK 1T WILL BE 6 2 *CLacK
27 HOURS FROM 5 @°'CL.OCK IT WILL BE 8 2 *CLOCK
33 HOURS FROM S @°'CLOCK IT WILL BE 2 0 *CLaCK
31 HBURS FROM 9 ©°'CLOCK IT WILL BE 4 @ *CLACK
32 HOURS FROM 12 2*'CLACK IT WILL BE 8 @ CLack
2 HBURS FR@M 9 @'CLeCK IT wiLL BE 11 2 *CLacK
28 HOURS FRBM 4 @°'CLOCK IT WILL BE 8 @ 'CLACK
8 HAURS FROM 10 Q°'CLOCK IT WILL BE 6 @ *CLACK
4 HAURS FReM 11 2°'CLACK IT WILL BE 3 2 'CLacK

DONE

In CLBCK2 we change lines 20 and 30 and insert line 5 to define FNC()
and list the program in full.

CLacCK2

5 DEF FNCC(ZIY=INTCI2%RNDC(Z)+ 1)

10 F@R P=1 T@ 10

20 LET T=FNC(1)

30 LET H=FNC(1)

40 LET S=T+H

50 IF S <= 12 THEN 80

60 LET S=$-12

70 68T S50

80 PRINT H"HOURS FROM"T"Q'CLOCK IT WILL BE"S"Q 'CLOCK"

90 NEXT P

100 END

RUN

CLaCKa

[HAURS FROM 6 @°CLOCK IT WILL BE 12 3 CLaecK
7 H@URS FROM 8 Q'CLOCK IT WILL BE 3 @ *ClacK
7 HOURS FRoM 12 @'CLACK IT WILL BE 7 @ 'CLacCK
8 HAURS FROM 3 O°'CLACK IT WILL BE 11} @°'CLOCK
5 HBURS FREM 7 Q°'CLACK 1T WILL BE 12 2 *CLaCK
4 HOURS FROM 4 9'CLOCK IT WILL BE 8 @°'CLaCK
7 HOURS FROM 5 9°'CLACK IT WILL BE 12 @ 'ClL.ack
4 HBURS FROM 11 9'CLaCK IT WILL BE 3 9 *CLOCK
11 HOURS FROM 3 Q°'CLACK IT WILL BE 2 @°*'CLaCK
10 HOURS FRoOM 12 P'CLBCK IT WILL BE 10 9 *Cl.acCK

DONE

70 Basic BASIC

Modular Arithmetic

From the clock program we can easily develop the concept of modular addi-
tion. The biggest difference between modular addition and the last program is
that for modulo 12 addition mathematicians define the set of integers as {0, 1,
2,3,4,5,6,7,8,9, 10, 11}, dropping 12 and appending 0. Now we may not
allow sums of 12 as before. So we will have to change line 50 to test for less
than or equal to 11 not 12. But we must not change line 60 which subtracts
12. Why? Since we defined a function in CL@CKZ2, we need change only line 5
to generate integers from 0 to 11. As we wrote CL@CK1, we would have had
to change two lines. Of course, we will have to change the printing and name
the new program M@D12.

mMaDl2

S DEF FNCCZI=INTC12%RND(Z))
10 F@R P=1 T0 10

20 LET T=FNCC(D)

30 LET H=FNC(1)

40 LET S=T+H

50 IF S <= 11 THEN 80 MAMD12
60 LET S5=5-12
70 GOTB S0 5 DEF FNCCZ)=INTCI2%RND(Z))
80 PRINT H"+"T*=*5"Mp@D 12" 10 FO2x P=1 TO $
90 NEXT P 20 LET A=FNCCI)
100 END 30 LET B=FNC(D)
RUN 40 LET S=A+8B
Mani2 50 PRINT A”+"B"=
60 GOSUB 500
7 + 6 =1 M@D 12 70 LET 3=A%*d
8 + 5 = 1 M@D 12 80 PRINT A"x"B"= '}
2 + 9 = 11 M@gD 12 85 GBSUB 500
8 + 6 =2 MaD 12 87 PRINT
10 + 8 = 6 MaD 12 90 NEXT P
1 + 1 = 2 M@D 12 4906 STOF
i + 3 = 4 M@D 12 500 IF S <= 11 THEN 530
7 + 11 = 6 MOD 12 510 LET 3=8-12
10 + 9 = 7 M@D 12 520 GOTO 500
1 + 7 = 8 MaD 12 530 PRINT s*'sMCh 12 "3
540 RETUxN
DONE 9999 END
(N
MAMD 12
10 + 4 = 2 MOD 12 10 x 4 = 4 Man 12
! + 2 = 3 MBD 12 1 * 2 = 2 MO 12
6 + 1 = 7 MOD 12 6 * 1 = & MOD 12
3 + 10 = 1 MOD 12 3 * 10 = 6 MOD 12
1 + 10 = 11 MOD 12 1 * 10 = 10 MOb 12
DONE

Where there is addition, multiplication s bound to follow. Suppose we mul-
tiply 5 by 7. We are accustomed to getting 35. But for M@D12 we only allow
0 through 11, so we subtract 12 and get 23, which is still too large. Subtract
12 again to get 11. Thus we are going to use the subtraction routine in the

multiplication part of M@D12 also. This is a G@SUB situation. In the flow-

Computer Functions 71

chart of Fig. 4-7, the GOSUB predefined process is the subroutine of lines 50,
60, and 70 in M@D12. Of course, there are more changes in printing. We call
the program MAMDI12 (Multiply and Add MoD 12).

Start
n Get two num-
FORP =1 -bers 0 to 11
%5 A B
LETS=A+B

PRINT
AII + //B

GOSUB 500

<5

LETS=A=*B

PRINT
AI(* llB

GOSUB 500

Fig. 4-7. Flowchart for adding and multiplying mod 12 for program
MAMD12.

SUMMARY

Two major expansions in our programming capability have occurred in this
section. We are now able to generate random numbers in any range we like.
They can be limited to integers or they can be decimal numbers. And lists
may now be dimensioned to the length that we require. We have also used the
G@SUD statement to good advantage in a modular arithmetic program.

72 Basic BASIC

PROBLEMS FOR SEC. 44

1) Print a list of 30 randomly assigned numbers from 2.00 to 20.00 with tenths
and hundredths permitted but no digits to the right.

2) Print a list of 25 integers from —200 to 200 assigned by a random number
function in increasing order.

3) Print the list in problem 2) to guarantee that there are no duplications. In
other words, if you generate a number that has already been used, generate another.

4) Prepare a list of the first 18 Fibonacci numbers. For all nonequal pairs find
the greatest common factor. Enter the greatest common factors in a list with no
duplications and print the result.

5) Prepare a list of the first 20 Fibonacci numbers. For 1 = 2 to 19 print F[I] ** 2
— F{I —1]° FII 4+ 11

6) Use three lists to add two 20-digit numbers. Use one list for each number and
enter the digits one by one as elements in the list. Use the third list as the sum list.
Be sure to carry if the sum of the two corresponding digits is 10 or more.

7) Do problem 6) using two lists instead of three.

v 8) Use three lists to multiply two 10-digit numbers digit by digit. (Could this
be done with two lists?)

9) Modify program MAMDI2 to find the remainder after dividing the value of
S by 12 to replace the subroutine that uses successive subtraction.

10) Write a program to do arithmetic mod 5 and mod 6, five problems each.
Put 5 and 6 in a data line and write one random function so that it generates 0 to 4
for mod 5 and 0 to 5 for mod 6.

11) Have the computer print the addition table and the multiplication table for
mod 6.

12) Have the computer do subtraction mod 7.

13) Write a program in which the mod and the number of problems are selected
at random, and the problems are generated with random data.

14) Have the computer generate pairs of integers and find the greatest common
factor. _

15) Have the computer generate sets of three integers and find the greatest
common factor.

16) Generate pairs of integers and find the least common multiple.

17) Generate sets of four integers and treat them as coefficients of two binomials

and find the three coefficients of the product; ie., generate A, B, C, and D
in (AX 4+ B}CX 4 D) and find E, F, and G in EX ** 2 4+ FX 4 G. Print all
five numbers in two groups, one group for A, B, C, and D and another for E, F,
and G.
v 18) Form two 20-element lists with integers in the same range. Form two other
lists. One list is to contain all numbers that appear in both lists, i.e., the intersec-
tion of the two lists. The other list is to contain a number if it is in either of the
original two lists, but only entering it once if it is in both lists. In other words, find
the union.

19) Fill a 25-clement list with the first 25 positive odd integers. Fill a second
25-element list with the sum of all the entries of the first list up to and including
the subscript number of the second list.

20) Meodify CLACK] to handle times in hours an 2 minutcs

e OO il AU QLG MG ueCa.

CHAPTER 5

Elementary Data Processing

5-1 INTRODUCTION TO DATA PROCESSING

One of the very common uses of computers is for data processing. There is
no clear cut definition for data processing that distinguishes it from other
kinds of computer activity. In a sense, all computer work is data processing.
However, data processing often implies that the computer is being used to
sort, collate, tabulate, and/or otherwise process data. Such activities as process-
ing questionnaires fall in this category.

Tabulating One Item

Let us ask some families how many television sets they have in their homes.
The answers will be numbers, one number per family. We can set up a list so
that the first element counts the number of families with one set and the Nth
element counts the number of families with N sets. Before we begin counting,
there will be zero families having each number of sets. So we will have to
initialize each element of the list at 0. Then when the number for a family is
read, we will add 1 to the element in the list corresponding to that number of
television sets. If the first family has one set, then we have the computer look
at T[1]. T[1] = 0 to start, and adding 1 makes T[1] = 1. The next time a
family has one set we have the computer add 1 to T[1], and then T[1] will
equal 2. The process is repeated until all data is read. We will have to use
dummy data, since we want to print the results only after we have tabulated
all data, We can draw a simple Howchart. See Fig. 5-1.

Of course we could allow for a larger number of sets by simply using a
longer list. We could have provided for zero sets by letting T[1] tabulate 0,
T[2] tabulate 1, T[3] tabulate 2, ete. Then line 60 in program TV’S would read

60 LETTIN+1]1=TIN+1]+1

because, when N is 0, you want T[1] and when N is 1, you want T[2], etc.
Or we could use 0 subscripts if they are available.

73

74

Basic BASIC

Initialize
four-item
listall0’s

PRINT
headings

LET TIN]
=T[N] +1

Fig. 5-1. Flowchart for tabulating number
of television sets per family.

TV*'S
10 FOKk I=1 TO 4
20 LET TL{1J)=0
30 WNEXT 1
31 REM EACH ELEMENT IN THE LIST IS NOW ZEKD
40 READ N
49 nEM TEST FOR THE END JF DATA
50 IF N==-1 THEN 80
59 REM INCREASE THE TABULATING ELEMENT FBR N SETS BY ONF
60 LET TIN)=TINI+1
70 GOTO 40
80 PRINT "NB. OF TV*'S","NG. OF FAMILIES"
89 REM NOW PRINT THE NUMBER OF SETS AND THE NUMBER 3F FAMILIES
90 FOR I=1 T0 4
100 PRINT 1,T013
110 NEXT I
498 REM EACH ITEM OF DATA IS THE NUMBEK OF TV'S IN ONE FAMILY
500 DATA 153545152515 3: 15152545153, 152, 451535151515 4515352,
2r1s2
5106 DATA 25123:3:2525 15151525253, 454,25 45 15 452, 452, 1525 1
520 DATA -1
999 END
RUN
TV'S
WNde OF Tv©y NU. OF FAMILIES
1 20
2 15
3 8
4 9

Elementary Data Processing 75

There are some more things that we can do with TV'S. We might have the
computer count the number of families or count the total number of television
sets. These figures may be computed as the data is being read. There can be a
counting statement LET C = C + 1 somewhere between lines 50 and 70, and
there can be a summing statement in the same part of the program. LET § =
S + N will total the number of sets. Then as long as we have the total number
of sets and the total number of families, we might just as well compute the
average number of sets per family. These are left as exercises.

Tabulating Several Items

With just a few modifications TV’S can be extended to handle data pertain-
ing to several different things.

Suppose in taking a census, we ask not only how many television sets the
family has, but also how many cars, homes, and bathrooms. All that is neces-
sary is to have four counting lists instead of one. We need one list for each
item being counted. In lines 10, 20, and 30 we initialize four lists at O for up
to eight items in any one category. This could be more or less for any par-
ticular problem. We check for dummy data in line 50 and then update the
four lists in lines 60 through 90. In the printing routine, I determines the
element number in each list and so is the number of items in each list. T[I]
is the number of families that have I television sets, C[I] is the number of
families that have I cars, etc. See program TCHB.

From the results we see that there were nine families with one car, seven
families with two television sets, etc. We could also do more data processing
in TCHB. We could find the average number of cars per family, etc.

Tabulating Yes~No Answers

We are not limited to numerical quantities. Suppose you weie to question
each of your classmates about cowrses they want to take. If you ask, “Do you
want to take chemistry?” and the answer is “no,” you can call that 0, and sim-
ilarly call “ves” 1. Let us ask people if they want to take the following courses:
chemistry, physics, French, Spanish, calculus. If someone says he wants to
take chemistry, French, and Spanish, his data will be: 1, 0, 1, 1, 0. We can use
one list to count all courses. The first element of the list will count people who
want to take chemistry, the second will count people who want to take French,
ete. Before reading any data, we will have to initialize each element of the list
at 0. Then after reading the fist person’s data, we want the list to be
1, 0, 1, 1, 0, which can be done by adding the number representing yes or no
to the number already in that location of the list. We can get the computer to
read the data in groups of five by using a loop FOR R = 1 T@ 5, with the
READ statement and the tabulating statement inside. The real works of the
program will be the tubulating statement

LET C[R] = C[R] + K

where R is the loop available and goes from 1 to 5 for each person’s data. If
R = 1, the cowrse is chemistiy; it R = 2, the course is physics, ete. Where K is

76 Basic BASIC

TCHB

10 FOR I=1 10 8

20 LET TLI)=CLIJd=HLII=BL{11=0

30 NEXT I

31 REM ALL TABULATING LISTS ARE INITIALIZED AT ZERO
40 READ T1,C,H,B

49 REM CHECK F@R DUMMY DATA

50 IF T=~1 THEN 110

59 REM 60 T@ 90 ENTER THE LATEST DATA IN THE FOUR LISTS.
60 LET TUTl=T(Tl+])

70 LET CLCI=CLCl+1}

80 LET HEHI=HIHI+1

90 LET BIR1=BL21+}

100 G812 40

109 REM HERE THE HEADINGS ARE PRINTED

110 PRINT NUMBER, TV'Ss CARS», HOMES, BATHS"

119 REM HERE THE RESULTS ARE PRINTED

120 FOR I=1 T2 8

130 PRINT I3TCII3CLIISHILIISBII)

140 NEXT |

349 REM EACH GROUP 3F FUUR NUMBERS 15 F3R ONE FAMILY- T,C,H,B
350 DATA 151515152515 15253:25 152542 3,2:85452, 155
355 DATA 2515153515 15153525 151525 151215 1,25 15151
360 DATA 252525651513 15453,4,2,651525122,2,2,2,8
365 DATA 2,1,1,2,~150,0,0

400 END

TCHB

NUMBER, TV*S, CARS, HOMES,BATHS

1 S 9 12 3
2 7 5 4 S
3 2 1 0 2
4 2 1 0 1
S 0 0 0 1
6 0 0 0 2
7 ¢} 0 0 0
8 0 0 0 2
DINE

0 this person does not want to take the course, and where K is 1 he does. So
when K = 0, the tabulating statement adds 0 to the previous value in the C
list, which does not change the number there. This is what we want for the
person who does not want to take the cowrse. However, if K = 1, then the
tabulating statement adds 1 to the previous value of the entry in the C list,
which is exactly what we want the computer to do for a person wanting to
take the course. Again the dummy data is —1.

From COURSI, we can easily see that seven people want to take chemistry,
five people want to take physics, ete.

One last thing we might try to consider in this section is getting larger
amounts of cata in a program similar to CQURS1. Suppose you want to see
what results might look like for say 500 people. Well, you could ask 500
people and Hicii type vul all i duia. Or you could generate random data,
with the understanding that the results will be random and may not simulate
the real situation. However, knowing that the numbers will be random will
help you spot serious errors if there are any. For 500 people and random data,
each course should draw about 250 yeses. If the results show 96 or 600 yeses

Elementary Data Processing 77

COURSH

10 FOx I=1 TQ S
20 LET CLIl=0

30 NEXT [
40 FOx R=1 TO S
50 READ K

60 IF K=-1 THEN 100

70 LET CURI=CLRI+K

80 NEXT R

90 GOTD 40

100 PRINT "CHEMISTRY®, “FHYSICS', "FRENCH' S ""SPANT SH™, ""CALC!IL"1IS"
110 Fix 1=1 T8 5

120 PRINT CL11,

130 NEXT I

990 REM DATA IS IN OKDER CHEMISTRY PHYSICS FRENCH SPANISH
CALCHLUS

995 EM *1* MEANS YES 'O’ MEANS NO

1000 DATA 150:15,150,05,051515051515151,1505,05151,051,1505051
1010 DATA 0»1,1205150:0,051,00151505150,15150505,151,0,050s1
1020 DATA 05051505151,0,1,0,0

1100 DATA -1

9999 END

RUN

COURS1

CHEMI STRY PHYSICS FRENCH SPANI SH CALCULUS
7 5 7 6 6

DBNE

in some course, then you must search for the error. One nice thing about using
random data is that you do not have any data to type in. So in COURSI we
may eliminate lines 1000, 1010, 1020, and 1100. Now the REM statements
are not quite relevant. Line 60 can be deleted as we are not testing for dummy
data and line 50 is deleted as we are not going to read data anymore. Line 90
will be taken care of by putting in a loop 1 to 500 to simulate 500 people. To
get random numbers 0 or 1 we need INT(2 ® RND(1)). The initializing, the
tabulating, and the printing of COURS1 can be used in the new program
C@URS2, where the results are reasonably close to 250.

SUMMARY

We have seen lists used to analyze data from questionnaire-type questions
having numerical or yes-no type answers. The tabulating may be done using
one or several lists depending on the problem itself. Random numbers may be
used to try out such programs with many numbers. The random nature of
these numbers may help to spot serious program errors, which might not show
up with small amounts of data unless you check the totals by hand.

PROBLEMS FOR SEC. 5-1

1) Modify program TV’S to total the number of television sets and the number
of families, and find the average number of sets per family rounded off to the nearest
hundredth.

78 Basic BASIC

C@URS2

10 FeR }=l 10 5

20 LET CLI]1=0

30 NEXT I

33 REM THIS L@OP SIMULATES 500 PEOPLE

35 FOR X=1 T@ 500

40 FOR R=1 10 S

42 REM THIS LOBP LBOKS AT FIVE COGURSES FOR EACH PERSON
48 REM PICK A RANDGM NUMBER ZERG OR ONE
50 LET K=INT(2%RND(1))

70 LET CIR)I=CLRI+K

78 REM NEXT CQURSE

80 NEXT R

88 REM NEXT PERSON

g0 NEXT X

100 PRINT *'CHEMISTRY'., "PHYSICS'", "FRENCH", " SPANI SH*, ""CALCULUS"
110 FOR I=1 T 5

120 PRINT CUL13,

130 NEXT 1

9999 END

RUN

COURS2

CHEMI STRY PHYSICS FRENCH SPANI SH CALCULUS
253 257 237 249 256

DONE

9) Modify program COURSI to find the number of people who want to take
chemistry and physics.

3) Modify COURS2 to generate twice as many yeses as nos.

4) Modify COURSI1 to find the number of people who want to take physics but
not calculus.
/ 5) Consider a questionnaire in which there are 14 questions which call for yes,
no, or other answers. Let 1 be yes, 2 be no, and 3 be other. Set up three separate
lists for yes, no, and other. Generate 25 sets of 14 numbers 1, 2, or 3 and find the
number of each type of answer for each question number. Print the results in
decipherable form.

6) Modify COURS2 to generate yes-to-no answers in a ratio of 3 to 4.

5-2 ARRAYS

So far we have only been able to store numbers in a simple variable or in
a list. There will be situations where we will want to store more numbers than
is convenient in a list. While we have seen that we can use several lists very
effectively, BASIC provides a two-dimensional list for such situations. It may
be called an array. You may think of an array as being similar to a checker-
board. Instead of the familiar single subscript we have been using for lists, we
will need double subscripts; one for rows and the other for columns. (As with
lists, computers vary. Some will allow 0 sohserints, athers hegin with 1.) For
an array designated as A, A[l, 1] is the number in the upper lefthand corner.
(In some cases, it will be A[0, 0].) A[1, 2] indicates the number in tow 1
and column 2; A[5, 8] indicates the number in row 5 and column 8, etc. In
other words, the first subscript indicates the row starting at the top and the

Elementary Data Processing 79

second subscript indicates the column starting at the left. Thus, A[R, C] indi-
cates the number in row R and column C.

An array is just a set of numbers arranged in columns and rows, This per-
fectly matches the printed result in program TCHB in Sec. 5-1. We may use
each column of an airay in the same manner that we used each list in that
prograin, and we can use each row to keep track of the number of families
having that number of the item being tabulated. But before we tackle TCHB
in an array, we should see a little more how arrays operate.

Very often we will use a nested loop, with one loop taking the computer
thiough the columns and the other loop going through the rows. The structure
of an array is shown in Table 5-1, For students without O subscripts, consider
the dashed outline to exclude the 0 row and 0 column. For students who have
0 subscripts, consider the dashed outline to suggest that it is optional whether
or not you use them at this time.

TABLE 5-1. ARRAY STRUCTURE.

!

i

: [

} {1,0] l 1,11 [1,2] {1, 3] [1,4] [1,5]
I |

I [2,0] : 12,1 [2,2] 12, 3] 12, 4] 12, 51
|

i |

| 13, 0] | 3,1] 13,2] [3, 3] (3, 4] {3, 5]

ARRAY 1

9 REM INITIALIZE A AT ONE

10 LET A=1

19 REM RAWS G@ FrROM 1 T2 3

20 FBR R=1 T@ 3

29 REM COLUMNS G@ FROM 1 T@ 5
30 FOR C=1 18 5

40 LET TCR.Cl=A

50 LET A=A+

59 REM NEXT CeLuUMN

60 NEXT C

69 REM NEXT RaW

70 NEXT R

80 PRINT AT THIS POINT THE ARRAY IS FILLED"
999 END

RUN

ARRAY 1

AT THIS PRINT THE ARRAY IS FILLED

DANE

It is time for another demonstration program. In ARRAY1 we simply fill a
3-row by 5-column array with integers 1 through 15 going first across the

80 Basic BASIC

page and then down, just as we read the printed page. In this program we
have called the array T. Any letter of the alphabet may be used. However, do
not use the same letter to name both a list and an array in the same program.
This is because the computer treats a list as an array with just one column or
one row, depending on the computer.

We have filled the array just as the printed message states. However, as
was noted in Chap. 1, in order for the work of the computer to be useful,
we must eventually get back from the computer some printed results. Note
that we say eventually. The more advanced we get in programming, the
more we will do things that are not immediately printed. Nonetheless, just
to restore your faith in the computer, let us ask it to print some values from
the array we just created. After line 80 we will insert a variety of printing

ARRAY2

9 REM INITALIZE A AT @NE

10 LET A=l

19 REM ROWS G@ FROM 1 T8 3

20 FOR R=1 T8 3

29 REM COLUMNS G@ FR@GM 1 1@ 5
30 FBR C=1 T@ S

40 LET TCR»Cl=A

50 LET A=A+l

59 REM NEXT COLUMN

60 NEXT C

69 REM NEXT ROW

70 NEXT R

80 PRINT “AT THIS POINT THE ARRAY IS FILLED"
85 PRINT

89 REM LET'S PRINT T(3, 4]
90 PRINT "TL3, 41 ="3T(3, 41

100 PRINT
110 PRINT *"WHO LIVES AT (2,51?"3T(2,5)3"LIVES THERE"
120 PRINT

130 PRINT "LET'S LOOK AT THE ENTIRE ARRAY"
139 REM INCREMENT ROWS

140 FOR R=1 T@ 3

129 REM INCREMENT COLUMNS

150 FOR C=1 TQ 5

160 PRINT TC(R,Cls

170 NEXT C

175 PRINT
176 PRINT
180 NEXT R
999 END
RUN

ARRAY2

AT THIS PBINT THE ARRAY IS FILLED

TC3,4) = 14

WHG LIVES AT (2,517 10 LIVES THERE

LET®S L.8BK AT THE ENTIRE ARRAY

1 2 3 4 5
6 7 8 9 i0
11 12 13 14 15

D@NE

Elementary Data Processing 81

with labels and comments much as we did earlier in the introduction to lists.
See ARRAY?2.
The elements of an array constitute variables just as do the elements of a

list. We may operate on any element or elements in the array we choose.
Consider ARRAY3.

ARRAY 3

10 LET A=1

20 FOR R=1 T@ 3

30 FOR C=1 T@ S

40 LET ALR,Cli=A

50 LET A=A+]

60 NEXT C

70 NEXT r

90 PRINT "“WE PRINT THE @RIGINAL ARRAY"

100 GUsSuB 900

110 PRINT "WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH COL UMN
BY 6"

120 F@R R=1 T9 3

130 LET ALR, 41=ALR, 41*6

140 NEXT R

150 GasuB 900

160 PRINT "WE CAN SUBTRACT THE 3RD ROW FRGM THE 2ND ROW"

170 PRINT “AND PUT THE RESULT IN THE 3RD ROW"

180 FOR C=1 T@ 5

190 LET AL3,Cl=Al2,C1-A[3,5C)

200 NEXT C

210 G@sSUB 900

880 STaP

890 REM #+*#PRINTING SUBRIUTINE IS HERE®x*%x%

900 FOR R=1 T2 3

910 F@OR C=1 Td S

920 PRINT ALKsC13

930 NEXT C

940 PRINT

950 PRINT

960 NEXT R

970 RETURN

B

999 END

RUN

ARRAY 3

WE PRINT THE QRIGINAL ARRAY
1 2 3 4]
6 7 8 9 10
11 12 13 14 15
WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH COLUMN BY 6
1 2 3 24 5
6 7 8 54 10
11 12 13 84 15

WE CAN SUBTRACT THE 3RD RAW FRAM THE 2ND ROW
AND PUT THE RESW T IN THE 3RD ROW

1 2 3 24 5
] 7 8 54 10
-5 -5 -9 -30 -5

82 Basic BASIC

We ocan even change the size of the array during a program. In ARRAY4
we begin with the original 3 by 5 array of ARRAY3 and tack on an extra row
to enter the sums of the entries in the first three columns. Notice that in both
ARRAY3 and ARRAY4 we are able to use G@SUB to save writing the printing

routines more than once.
You should begin to see that we have exactly the same control over the

contents of an array that we do over the contents of a list.

Now let us look again at our census program TCHB. There we used an
8-row by 5-column array in which the first column simply contained the row
number and the other four columns each contained tabulated results for a
different item. We may now put the READ statement in a loop going from 2
to 5 and let the loop variable determine the column in which the tabulation
takes place. The other features of the program are procedures that we have
used before. See TCHB+. d

ARRAY 4

10 LET A=1

20 F@R R=1 T8 3
30 FOR C=1 T@ S
40 LET ALR,Cl=A
50 LET A=A+l

60 NEXT C

70 NEXT R

80 PRINT ''HERE IS THE @RIGINAL ARRAY!"

100 FYR R=1 T8 3

110 FBR C=1 T2 S

120 PRINT ALRsCI3

130 NEXT C

140 PRINT

150 PRINT

160 NEXT-R

168 REM SET ALL ELEMENTS IN THE 4TH R@W T@ ZEROQ

170 FBR I=1 T@ S5

180 LET Al4,11=0

190 NEXT 1

200 PRINT "N2W WE HAVE THE 4 BY 5 ARRAY3"

210 GBsuB 500

219 REM THIS RBUTINE ADDS COLUMNS AND PUTS THE SuUM IN THE 4TH
RAW

220 FOR C=1 T9 5

230 FO8R R=1 T@ 3

240 LET AL 4,C)=AL4CI+ALR,C]

250 WNEXT R

260 NEXT C

270 PRINT "THE FOURTH RAOW CONTAINS THE SUMS OF THE FIRST 3

RAWS."
280 G@suB 500
490 STeP

498 REM #*%THIS IS THE PRINTING ROUTINE FOR THE 4 BY 5 ARRAY**
500 FOR R=1 TO 4

510 FOR C=1 T0 5

520 PRINT ALR,CI3

530 WNEXT C

540 PRINT

550 PRINT

560 NEXT R

570 RETURN

999 END

Elementary Data Processing 83

RUN
ARKAY 4

HERE IS5 THE @RIGINAL ARRAY!
1

2 3 4)
6 7 8 9 10
11 12 13 14 15

N@W WE HAVE THE 4 BY S ARRAY:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
o] 0 [4] 0 [¢]

THE FOURTH R@W CONTAINS THE SUMS OF THE FIRST 3 ROWS.

1

6

11

18

2

7

12

21

3

8

13

24

4

9

14

27

S

10

15

30

DONE

TCHB+

10
14
15

FagRr
REM
LET
FOR
LET

R=l T@ 8

HERE THE ROGW NUMBER IS ENTERED IN THE FIRST COLUMN

SLtRs 11=R
C=2 T¢ 5
SER» C1=0

NEXT C
NEXT R

REM WE ARE ENTERING FIGURES IN COLUMNS 2 THROUGH 5 @NLY

F@R C=2 T@ 5
READ N
IF N=-1 THEN 110

REM N DETERMINES THE ROW NUMBER WHICH KEEPS TRACK OF N

ITEMS
LET SIN, C1=SIN,Cl+1
NEXT C
GaTa 70
PRINT **NUMBER, TV'S, CARS,

HBMES, BATHS"”

REM HERE THE RESULTS ARE PRINTED

FOR R=1 T@ 8
FOR C=1 719 5
PRINT S(CR,C13
NEXT C
PRINT
NEXT R

349 REM EACH GROUP OF FGUR NUMBERS IS FOR ONE FAMILY- T»C,H,B
350 DATA 15 1,15152,515152,3525 152545 3:2,85 425155

355 DATA 25 15153-1515153,25151525151515152,5151,1

360 DATA 25 2,2,65 1515154, 3, 4,25651,251,2,2,2,2,8

365 DATA 25, 1,1,2,-1,0,0,0

400 END

84 Basic BASIC

RUN

TCHB+

NUMBER, TV*Ss CARS, HOMES,BATHS
12

RO VD WN =
COCONNaWn
COOQ =0
[cY=N-N-N.N-NN

WON =~ = OuW

DONE

SUMMARY

We may now use a powerful extension of the list concept, the array. An
array may be thought of as an arrangement of numbers in which there are
rows and columns. Numbers in an array may be accessed by designating the
location by a double subscript such as H[3, 7] for the number in array named
H which is located in the row numbered 3 and the column numbered 7. As
you may have guessed, you will not need a DIMension statement as long as
you do not exceed a subscript of [10, 10].

PROBLEMS FOR SEC. 5-2

1) Print an array with 3 rows and 6 columns flled with (s,

92) Print an array with 6 rows and 3 columns filled with 1’s.

3) Set up an array with 4 rows and 9 columns and fill it with random numbers
from —999 to 4-999. Print the array.

4) Fill the addresses along the top left to bottom right diagonal of a square
7 by 7 array with 1’s and all other locations with 0’s and print the result.

5) Fill two arrays of the same dimensions with random integers and print each
array. Then fill a third array with the sums of the corresponding entries from the
first two and print the result.

6) Fill two arrays of the same dimensions with random integers and print cach
array. Then fill one of these two arrays with the sums of the corresponding entries
from each array and print the result.

7) Fill a 3 by 7 array with the integers O through 20. Print that array. Then
multiply each entry by the sum of the row number and the column number and
print the result.

8) Fill a 4 by 7 array with random integers from —500 to --500 and print the
result. Then multiply each entry by 2 and print that result. Insert the printing
routine using G@SUB.

9) Fill a 10 by 10 array with the addition table.

10) Fill a2 10 hy 10 arrav with the multinlication table,

11) Fill a 5 by 5 array with the addition table mod 5. Then have the computer
generate addition problems with a random number function and find the sum by
accessing the appropriate entry in the additon array.

12) Do problem 11) for the multiplication table mod 5.

v 13) Consider a questionnaire containing 10 questions with yes, no, or other as the

Elementary Data Processing 85

three possible answers. Generate random data and print the results in a 10 by 4
array. Use the first column for the question number and the other three for yes, no,
or other. Have the computer generate 50 questionnaires.

5-3 A MORE DETAILED QUESTIONNAIRE ANALYSIS

Consider a questionnaire submitted to four categories of people: male—21 or
over, male—under 21, female—21 or over, and female—under 21. On this ques-
tionnaire there are 15 questions calling for yes—no answers. Our task is to
present a tabulated summary of the data collected. We can provide sample
data for say 10 people for the purpose of getting a first test RUN. Let us
refer to this first problem and the program as SURVEY. The flowchart for
SURVEY is drawn in Fig. 5-2.

The first computer problem we run into is, how do we get 15 rows in an
array? The answer is that we may dimension an array much the same as we
dimensioned lists. In the array DIM (DIMension) statement, we must specify

Initialize 15 by 5
array cols. 2-5 at 0
Col. 1 to contain row no.

PRINT
headings

LET S[Q, PI

NEXT Q = S[Q, P] + A

Fig. 5-2. Flowchart for program SURVLY.

86 Basic BASIC

two dimensions: one for rows and one for columns. We want an array with 15
rows and 5 columns (4 for categories and 1 for the question numbers). DIM
S$[15, 5] will provide just such an array.

DIM (TWO-DIMENSIONAL)

DIM A[R, C] sets up an array designated as A with highest column
number C and highest row number R. The statement is required if
either R or C exceeds 10. Some computers require explicit integers,
others allow variables in DIM statements.

In our questionnaire problem, there are three things that we must keep
track of: 1) the category of the respondent, 2) the question number, and 3) the
response. We may organize the data and results according to Table 5-2.

TABLE 5-2. CHART TO ORGANIZE SURVEY.

Array .
Code in
Column Number Use DATA Line
1 Question number Pasition in line
2 Male 21 or over 2
3 Male under 21 3
4 Female 21 or over 4
5 Female under 21 5

It will be easier to organize the data, if we reserve an entire data line for
each person. Then we can put the category code (2 through 5) in the first
location and the response (0 or 1) in the next 15 locations. A DATA line will
look like this:

XXX DATA4,1,0,1,1,1,0,0,1,1,0,1,0,1,0,1

where the 4 indicates that the respondent is female and 21 or over, and the
I’s and 0’s mean yes and no in response to the 15 questions. We could count
the number of people in advance or use dummy data so that the printing can
be done after all data is read.

Sty v

9 REM DIM 5015,51 SETS UP AN ARRAY WITH 'HIGHEST' LOCATION
(15,51

10 DIM 5015,5]

20 FOR R=1 T0 15

28 REM LINE 30 ENTERS THE iKOW NUMBER IN THE FIRST COLUMN

30 LET SLR,11=H

Elementary Data Processing 87

40 F3x C=2 10 5
48 n~EM LINE 50 SETS THE LAST 4 COLUMNS AT ZERO
50 LET SEik»C1=0

60 NEXT C
70 NEXT R
78 REM 80 READS THE CATEGIRY FOR THE NFXT PRERSON IN THE SURVEY
B0 KEAD P

90 IF P=-1 THEN 200

98 REM Q GOES THROUGH THE 1S QUESTIONS

100 FOR Q=1 T0 15

110 READ A

120 LET 500Q,P1=500,P1+A

130 NEXT O

138 KEM LINE 140 SENDS THE COMPUTER BACK T3 READ ANOTHER LINF
OF DATA

140 GOTO 80

198 REM THE PRINTING BEGINS HERE

200 PRINT "QUEST MALE MALE FEMALEFEMALE"™

210 PRINT "NIMBER 21+ UNDER 21+ UNDER"™

220 FOR R=1 T3 15

230 FOR C=1 T2 S

250 PRINT SLR.C)s

260 NEXT C

270 PRINT

280 NEXT r

498 REM **%A LINE LIKE 500 MAY HELP T3 LINEUP THE DATA LINES

499 REM IN TYPINGx*#*

S00 REM 1slslslalslalslalstslslsrlalslsd

501 DATA 4,5150515151,0,0,1,150,1,0,1,0,1

502 DATA 451,05,0,0505,151505,151,0,0,0,1,1

503 DATA 351,1,15150505150,150,0,1,1,0,0

504 DATA 551,1,1,0,05,051,0,0,0,15151,1,0

S0S DATA 2,1515150,051505,15,0,0,15151,1,0

506 DATA 5,0,0,150515050,0515151,0+0,151

S07 DATA 550:0505151515,05,15,0,1,0,1,0,0,1

508 DATA 2,0,05151,0,0,1515,0,150,1,0,0,1

509 DATA 4s1515151512141,0,05,051,0,1,0,0

510 DATA 25151505051,0,1,0,0,0,0515151,1

900 DATA -1

999 END
RUN
SUKVEY

QUEST MALE MALE FEMALEFEMALE
NUMBER 21+ UNDER 21+ UNDER

1 2 1 3 1
2 2 1 1 1
3 2 1 2 2
4 1 1 2 1
S 1 0 2 2
6 1 0 2 1
7 2 1 2 1
8 2 0 1 1
9 0 1 2 1
10 1 0 1 2
1l 1 0 2 2
12 3 1 0 2
13 2 1 2 1
14 2 0 1 2
15 2 0 2 2
DUNE

Notice in SURVEY that while there are four categories in the original
problem, there are five additional categories generated by the conditions of the
problem. They are male, female, under 21, 21 or over, and total. We may

88 Basic BASIC

further process the tabulated results after line 140 in SURVEY by totaling up
ihe appropriate columns to get these latest categories tabuiated. Of course, we
will have to change the DIM statement to DIM S[15, 10]. This is done in
SRVEY1. Study lines 145 through 190 carefully to assure yourself that the
correct values are being tabulated there.

There are many other results that we might try to find. There are other

SRVEY1

10 DIM S015:100

20 FOR R=} TO 15

28 REM LINE 30 ENTERS THE ROW NUMBER IN THE FIRST COLUN

30 LET S{Rs1)=R
40 FOR C=2 T0 10
48 <EM LINE S50 SETS THE LAST 9 COLUMNS AT ZERO
50 LET S{R,»CI=0

60 NEXT C
70 NEXT R
78 REM 80 READS THE CATEGORY FOR THE NEXT PERSON IN THE S!HRVEY
80 READ P

90 IF P=-1 THEN 145

98 REM Q@ GOES THROUGH THE 15 QUESTIONS

100 FOR Q=1 TO 15

110 READ A

120 LET S[Gs,PI=S{C,PI+A

130 NEXT 0

138 REM LINE 140 SENDS THE COMPUTER BACK TO READ ANOTHER LINF
AF DATA

140 GBTO 8O

145 FOR R=1 TO 15

150 LET SIR,»61=SI{R,2)+S[Rs 3]

160 LET SURs 71=50Ks41+SL4»5]

170 LET SI[Rs81=SUR,31+S01,5]

180 LET SIR»91=5{K»2)+S[R, 4]

185 LET SIR,101=S0R,6)+50K, 7]

190 NEXT R :

198 REM THE PRINTING BEGINS HEXF

200 PRINT "QUEST MALE MALE FEMALEFEMALE"

210 PRINT “NUMBER 21+ UNDER 21+ 1UNDER MALE FEMALE !INDER
21+

211 PRINT ' TOTAL"

220 FOR R=1 T0 15

230 FOR C=1 TO 10

250 PRINT SI[RsC13

260 NEXT C

270 PRINT

280 NEXT =»

498 REM *%x%A LINE LIKE 500 MAY HELP T3 LINE!P THE DATA LINFS

499 REM IN TYPING*%*

S00 REM Iolsololalolalalslstslatatslstsd

501 DATA 451,0515151,050515150,1,0,1,0,1

502 DATA 451,0,0,0,0,15150,1,1,0,0,051,1

503 DATA 3515151215020, 150,1,0,0,1,1,040

504 DATA 551515150:0,05,1,0,0,0515151,1,0

505 DATA 25151515050,15051,0,05151,1,1,0

506 DATA 5,05,0515051,0,0,0514151,050,151

507 DATA 5,050505151515051,0,1,0,1,0,0,1

508 DATA 2,0,0,1515050515150,1,0,1,0,0,1

509 DATA 4,15121515151,150,0,0,1,0,1,0,0

510 DATA 2515150505150, 150,0,0,0-1s15151

900 DATA -1

999 END

Elementary Data Processing 89

RUN
SRVEY1

QUEST MALE MALE FEMALEFEMALE
NUMBER 21+ UNDER 21+ UNDER MALE FEMALE UNDER 21+ TaTAL

1 2 1 3 1 3 4 2 S 7
2 2 1 i i 3 2 2 3 5
3 2 1 2 2 3 4 3 4 7
4 1 1 2 i 2 3 2 3 S
5 1 0 2 2 i 4 2 3)
[} i 0 2 1 1 3 1 3 4
7 2 1 2 1 3 3 2 4 [}
8 2 0 1 1 2 2 1 3 4
9 0 1 2 i i 3 2 2 4
10 1 0 i 2 1 3 2 2 4
i1 1 0 2 2 i 4 2 3 S
12 3] 0 2 4 2 3 3 6
13 2 1 2 1 3 3 2 4 6
14 2 0 1 2 2 3 2 3 S
15 2 0 2 2 2 4 2 4 6
DONE

totals that could be tabulated. At the time P is read, we could total the
number of people in each of the original four categories and enter these
totals in row 16. Then we could compute averages. There are numerous ratios
that we could evaluate. We could have the computer generate random data to
get larger numbers in the printed result. That would require random integers
9 through 5 for P in line 80 and random 0 or 1 in line 110 for the yes-no
responses.

SUMMARY

We see that the two-dimensional array permits tremendous flexibility. We
may determine its size exactly. The array serves as a vast storage area for
large amounts of data or tabulated results. We may process the contents of
an array and enter results in other parts of the same array with tremendous
maneuverability.

The DIM statement may be used to specify subscripts greater than 10 in
the two-dimensional array much as it was used for lists.

PROBLEMS FOR SEC. 5-3

1) Modify SURVEY to handle 75 questionnaires with random data.

2) Modify SRVEY] to tabulate the totals discussed with that program in the 16th
row of the S array.

3) Modify SURVEY to handle yes, no, and other as possible answers. Create
three arrays: one for yes, a second for no, and a third for other responses. Use
random data and 50 questionnaires.

4) Modify SRVEY1 to generate random data for 50 questionnaires.

5) Modify SRVEY1 to tabulate the results as percentages of the total number of
yes responses. Do not create a second array.

L

90 Basic BASIC

6) Fill an array with the multiplication table up to 12 X 12, and print the last
three rows.
v 7) In a 12 by 12 array enter all 1’s in the upper left to lower right diagonal and
the left-most column, and all 0’s elsewhere. Then beginning in the third row, second
column, enter the sum of the entry in the same column of the row immediately
above and in the column one to the left and the row immediately above, through
the 12th row, 11th column. Print the result.

CHAPTER 6

Specific Applications

6-1 EUCLIDEAN ALGORITHM

In Chap. 4 when we first reduced common fractions to lowest terms, even
though the computer did the work, it was done the hard way.
For two integers N and D,

N/D =1+ R/D
or N=I*D+R

where 1 is the integer quotient and R is the remainder. If we successively
divide the remainder into the previous divisor until the remainder is 0, the last
divisor is the greatest common factor. This will always happen, even for
mutually prime pairs, as the last divisor will be 1.

Let us see what hap <« for 13398 and 7854.

N=1°D+
13398 = (1)[7854] + (6-1)
7854 = (1)[5544] + 2310 (6-2)
5544 = (2)[2310] + 924 (6-3)
2310 = (2)[924] + 462 (6-4)
924 = (@) 462]+ O (6-5)

According to Euclid the greatest common factor of 13398 and 7854 is 462, be-
cause 462 was the divisor when the remainder was 0. Indeed 13398 = 29 * 462
and 7854 = 17 * 462. That took only five tries. How many would it have taken
using the old method? Now all we have to do is figure out why it works.
Look carefully at Eq. (6-5). 924 is divisible by 462 because the remainder
is 0 and 0 is divisible by any nonzero number. This 0 remainder is the key to
the entire proposition. Now look at Eq. (6-4). Since 924 is divisible by 462, so
is (2)[924] + 462, which makes 2310 divisible by 462. Now lock at Eq. (6-3).

91

92 Basic BASIC

Since 2310 and 924 are both divisible by 462, so is 5544. This makes 7854
divisible by 462, which in turn makes 13398 divisible by 462, which is the
original contention. The argument we have just presented is hardly a proof of
the Euclidean algorithm, but it should be convincing.

Now, how do we get the computer to carry out this process? First, from
Egs. (6-1) through (6-5) we should see that we have simply taken the old
divisor D and made it the dividend and the old remainder R and made it the
divisor. So we will get the computer to LET N = D and LET D = R after we
look at the remainder to see if it is 0. If the remainder is 0, we direct the
computer to print the last divisor as it is the greatest common factor.

Now we should be able to draw the flowchart (Fig. 6-1) and write the
program COMTFAC,

LET I
= INT (N/D)

LETR
=N-—-{*D

PRINT

“G.C.E"D LETD =R

oF

Fig. 6-1. Flowchart for using Euclidean algorithm for program C@MFAC,

Specific Applications 93

COMFAC

10 PRINT '"N,D"3

20 INPUT N,D

25 IF N=0 THEN 120

28 REM FIND THE INTEGER QUOTIENT

30 LET I=INT(N/D)

38 REM FIND THE REMAINDER

40 LET R=N-I%D

43 REM IF THE REMAINDER IS ZERG THEN D IS THE Gy Co Fo
50 IF R=0 THEN 90

58 REM R WAS N@T ZERO, S@ WE ITERATE
60 LET N=D

70 LET D=R

80 GOTO® 30

90 PRINT "G«CeF. ="3D

100 PRINT
110 GoTe 10
120 END

RUN

CAOMFAC

N» D?13398, 922251
GeCoFe = 33

N» D? 741279, 922251
GeCoeFe = 33

N»D?13398, 7854
GeCeFs = 462

N»D2991,199
GeCoFe = 1

N»D?272851,246156
G.C.Fe = 281

N»D?0,0

DANE

PROBLEMS FOR SEC. 6-1

1) Write a program to add fractions given the numerators and denominators.
Print the sum reduced to lowest terms.

9) Do problem 1) for multiplication.
/ 3) INPUT two pairs of coordinates. Have the computer find the slope and the
Y-intercept of the straight line containing the points and print the results as rational
numbers reduced to lowest terms. If the result is negative, have the numerator be
the negative number.

4) As a project, write a program to factor quadratic expressions with integer
coefficients. Be sure to allow for 0 cocfficients and factor out greatest common
factors of all three coefficients.

6-2 CHANGE BASE

In this section we are going to develop a program to convert base-10
numbers to base-2 numbers. You will recall that for base-2, only the digits 0
and 1 are permitted and each digit represents a power of 2 instead of 10.

94 Basic BASIC

One of the widespread uses for base-2 numbers is in computers themselves.
This is because in base-2, all numbers may be expressed by a set of switches
with 0 being off and 1 being on.

One difficulty that we quickly encounter is that whatever the digit capacity
of the computer we have access to, that number of digits provides a much
smaller number in base-2 than it does in base-10. We will use up to six digits
in the base-10 number for our program. In base-2 100000 is only 32
base-10 and

111111, = 1°2%*°0 or 1
+i®2°**1 or + 2
+1%2°°¢g or + 4
4 1*2%°3 or 4 8
+1°2%°4 or +16
+1®2%°5 or +32

63y

which we could handle asily with pencil and paper. Clearly, we are going
to have to work with more than six digits in base-2.

Let us assume that we can provide for as many digits as are needed. How
many digits do we need to represent the base-10 number 999999 in base-27
We could write a program that would give that information, but we can also
figure it out ourselves. We can begin with 2 ** 5,

2°°5 = 32
2°°10= 32°°2=1024
2°°20==1024 *° 2 = 1048576

So, if we provide for up to 2 *® 20, we can handle six-digit integers with
room to spare. We know how many digits we need, now we have to figure
out how to make the conversion.

Let us run a sample conversion before we attempt to write the program.
We use 149 base-10 here. First find the greatest integer power of 2 that is
less than 149. Itis 2 ®*° 7 or 128.

149/2°* T=1+21/2°*7

or 149=1°(2°°7)+2l (6-6)
21=10°(2°°6)+ 21 (6-7)
21=0°(2°°5)+ 21 (6-8)
21=1°(2°°4)+ 5 (6-9)
5=0°(2°°3)+ 5 (6-10)
5=1°(@2°°2) + 1 (6-11)
1=0°@°° 1)+ 1 (6-12)
1=1°(2°°0)+ 0 (6-13)

By successive substitution we see that

Specific Applications 95

149= 1°(2°°7)
+0°(2°°6)
+0°(2°°5)
+10(2004)
+0°(2°°3)
+l°(2°°2)
+0¢(2ool)
+1°(2°°0)

So that
149,, = 10010101,
Equation (6-6) may be written in general as
N=I°*(2° E)+R

where N is the number, I is the integer quotient, E is the exponent on the
base-2, and R is the remainder after integer division. Therefore

= INT(N/(2 *° E)

and, solving for R we get

R=N-—1°(2°°E)

Now, looking at Egs. (6-6) through (6-13) we see that we have an iterative
process in which the new number is to be the old remainder and the exponent
on the base-2 is reduced by 1 until it gets to 0. This looks like a loop in which
the loop variable is the exponent on the base-2 and stops at 0. Where does it
start? Earlier we decided that the greatest exponent on 2 could be 20. Now
we should be able to assemble our problem into a flowchart (Fig. 6-2).

BASE

10 READ N

20 PRINT N; "BASE TEN ='%
30 FOk E=20 TO O STEP -1
40 LET I=INT(N/2TE)

50 PRINT I3

60 LET R=N-I1%2tE

70 LET N=R

80 NEXT E
85 PRINT "BASE TWO"
86 PRINT

90 GOT8 10
100 DATA 999999.,1,16

110 END

RUN

BASE

999999. BASE TEN = 0O 1 1 1 1 0 1 o
0 0 o] 1 0 0 0 i 1 i i 1

1 BASE TWO

Fig. 6-2. Flowchart for conversion
from base-10 to base-2.

FORE = 20 ;I LET 1
TP 0 STEP —1i v’i = INT(N/2 **E)

LETR
=N 1+2++E

<

@Q" NEXT E LETN=R

1 BASE TEN = O 0 0 0 0 0 0 0 0

0 0 0 0 0 o 0 0 0 0 0
BASE TwO

16 BASE TEN = O 0 0 0 0 0 o 0 0

0 0 o 0 0 0 0 1 0 0 0 o

BASE TwO

BGUT OF DATA IN LINE 10

Looking carefully at the printed results in BASE, we can see that 16 base-10
does equal 000000000000000010000; however it is difficult to sort that out.
Printing the variable I is controlled by semicolon spacing which will not place
one-digit numbers in adjacent spaces. We can however, get the digits next to
each other by printing them explicitly. If we say PRINT “1”; the next printed
character will be printed in the next space. So, instead of 50 PRINT I; we
insert

45 IF I=1 THEN 55
50 PRINT "Q'';

52 GOT9 60

55 PRINT "1°';

Specific Applications 97

and call for a RUN:

RUN

BASE-2

999999, BASE TEN =011110100001000111111 BASE TWO

16

ouT

BASE TEN =000000000000000000001 BASE TWwO

BASE TEN =000000000000000010000 BASE TWO

OF DATA IN LINE 10

By not worrying too much about the fact that we were going to require a
large number of digits, we have succeeded in printing numbers with 21 digits.
Quite often in programming, as in any problem-solving situation, you will
solve seemingly impossible problems by emphasizing those things that you
can do rather than holding back because of all the things you think that you
will be unable to handle.

Let us reassemble the program as it now stands in BASE-2 and insert
another set of data just to see a few more results.

BASE-2
10 READ N
20 PRINT N;"BASE TEN =3

30 FOR E=20 T0 0 STEP -1

40 LET I=INT(N/21E)

45 IF I=1 THEN 55

50 PRINT '0';

52 GOTO 60

55 PRINT '"1%;

60 LET R=N-1%2tE

70 LET N=R

80 NEXT E

85 PRINT ' BASE Two"

86 PRINT

90 GOTO 10

100 DATA 999999.,1,16

110 END

100 DATA 45,9875, 123456

RUN

BASE-2
45 BASE TEN =000000000000000101101 BASE TWO
9875 BASE TEN =000000010011010010011 BASE TWO
123456, BASE TEN =000011110001001000000 BASE T®0

@UT BF DATA IN LINE 10

Of course we really are not finished with the program yet. We should
eliminate the leading 0's. Then the printed results will be in more familiar
form. This is left as an exercise.

98 Basic BASIC

PROBLEMS FOR SEC. 6-2

1) Eliminate the leading 0’s in BASE-2. Be careful not to eliminate all 0’s.

2) Write a program to convert base-2 numbers to base-10. It may help to put
the digits of the base-2 number in a list.

3) Write a program to add two numbers in base-2.

4) Have the computer convert numbers in base-10 to base-3.
J/ 5) Write a program to convert from base-10 to base-12. It is conventional to use
T for 10 and E for 11 in base-12.
v 6) Have the computer convert base-3 numbers to base-2.
J 7)) Write a program to convert base-10 numbers to any base up to 12 with the

(PRI L3 Wik

base determined from data.

6-3 LOOKING AT INTEGERS DIGIT BY DIGIT

In general, the more control we have over a number in the computer, the
more complex the problems we might expect to be able to handle. So, for the
purpose of learning to control a number in the computer digit by digit, let us
write a program to take the digits of an integer and print them one at a time.

Consider the number 8394. The 8 means 8 thousand which may be written
8 ® 10 °® 3; the 3 means 3 hundred which may be written 3 * 10 ®*® 2; the 9
means ninety which may bhe written 9 ° 10 °°® 1; and the 4 means four which
may be written 4 ° 10 *°® 0. Looking at the numbers step by step,

8394 =8°10°° 3 4 394
304=3"10°"2+ 94
94=9°10"*14 4

4=4°10°*0+ O

This is an example of the general relationship
N=I°10°"E+R

where I is the integer quotient found by
I=INT(N/10 °* E)

and an iterative process whereby the new N is the old R and the value of E
is decreased by 1 for each iteration. Solving for R we get

R=N-1°10°*E

All of this should begin to look familiar.

For six-digit integers the valne of E will have to hegin at 5§ und go to 0
STEP —1. Carefully study program DIGIT and you will see that we have
indeed broken integers into their separate digits. However, as always, we should
look for ways to improve our programs. One change that will save a little paper

Specific Applications

DIGIT

10 PRINT "INPUT ANY INTEGER";
20 INPUT N

30 IF N=0 THEN 999

40 FOR E=5 TO O STEP -1
50 LET I=INT(N/1OTE)

60 PRINT I

70 LET R=N-I*10'E

80 LET N=R

90 NEXT E

100 PRINT

110 GOTO 10

999 END

RUN

DIGIT

INPUT ANY INTEGER?123456

1

[T N S V)

INPUT ANY INTEGER?819045

VbhOO—-®

INPUT ANY INTEGER?53627

IR O RRT N el

INPUT ANY INTEGER?0

DONE

99

would be to print the digits across the page with semicolon spacing. We can
do that by changing line 60 to read 60 PRINT I; and call for a« RUN.

60 PRINT I;

RUN

DIGIT

INPUT ANY INTEGER?123456

1

2 3 4 5 6

INPUT ANY INTEGER?975432

9

7 5 4 3 2

INPUT ANY INTEGER?53627

0

5 3 6 2 7

INPUT ANY INTEGER?0

DONE

100 Basic BASIC

Now let us see the program with the change and try another number.
(See DIGIT1.)

DIGITI

10 PRINT “INPUT ANY INTEGER"3
20 INPUT N

30 IF N=0 THEN 999

40 FOR E=5 TQ O STEP -1}
S0 LET I=INT(N/10tED

60 PRINT I3

70 LET R=N-I#10tE

80 LET N=R

90 NEXT E

100 PRINT

110 GBTO0 10

999 END

RUN

DIGITH

INPUT ANY INTEGER?666666
6 6 6 [6 6
INPUT ANY INTEGER?O

DONE

One last consideration is that we might want to eliminate the leading 0.
We leave this as an exercise.

PROBLEMS FOR SEC. 6-3

1) Eliminate the leading 0’s in DIGIT. Be careful not to eliminate all zeroes.

9) Test integers for divisibility by 3 by summing the digits.

3) Construct the integer formed by reversing the order of the digits in an INPUT
integer. Print the result as an integer.
J/ 4) Test integers with the integer formed by reversing the order of the digits to
find the greatest common factor. '
J/ 5) Find all three-digit integers that are prime. Form new integers by reversing
the digits and sec if the new number is also prime. Print a number only if it and
its reverse number is prime. There are 43 pairs of numbers, some of which will
appear twice. You should pay particular attention to efficiency in this problem.

CHAPTER 7

Strings and Files

7-1 INTRODUCTION TO STRINGS

To a BASIC programmer, a string is a set of characters. We use strings every
time we print a message by enclosing it in quotes in a PRINT statement. BASIC
provides the ability to save strings in a special string variable, identified by
using a trailing dollar sign ($). We may use A$, BS, etc., to designate string
variables. Some computers allow Al$, B8$, etc., and some allow A$(R,C) to
designate string arrays. The use of strings enables us to process alphabetic data,
such as names and addresses, and descriptive data of all kinds.

We may work with string variables in many of the ways that we do with
numeric variables. For instance, in BASIC programs we may use such state-
ments as

100 LET A% = '"FIRST"
100 READ AS$, BS$

100 INPUT AS$, BS

100 PRINT AS$, BS

In order to READ A$, B$, we must provide a corresponding DATA state-
ment. Some systems require all strings in DATA statements to be enclosed in
quotes. Others require quotes only when the string contains a comma or Jooks
like’ a number. For PRINT A$, B$, the output will have “comma spacing.” That
is, the page will be arranged in 15-character columns. If we replace the comma
with a semicolon, the two strings will be printed with no space between them.

We will use a short program named FIRST$ to demonstrate LET, READ,
INPUT, and PRINT.

101

102 Basic BASIC

FIRSTS

95 REM % FIRST STRING PROGRAM

96 REM

100 LET AS = "THIS IS A"

110 READ BS, Cs

120 PRINT AS3 ' '3 BS: " '3 C$3

1306 INPUT DS

140 PRINT

150 PRINT AS$s ™ *3 BSs ™ "5 €83 " '3 D3
155 REM

160 DATA "PRBGRAM T@", "DEMONSTRATE"
170 END

RUN

FIRSTS

THIS 1S A PROGRAM T0 DEMONSTRATE?STRINGS
THIS 1S A PROGRAM TD DEMBNSTRATE STRINGS

BASIC allows us to compare strings for order in accordance with a sequence
known as ASCII (American Standard Code for Information Interchange). For
strictly alphabetic strings, this code will alphabetize in the conventional order.
ASCII places the digits 0 through 9 ahead of the letters of the alphabet. We
can easily write a short program to demonstrate order comparison. See ORDS$.

@RDS

95 REM * COMPARES STRINGS FOR ORDER

100 PRINT

110 PRINT "A$"3

120 INPUT AS

130 IF A$ = "STPP"™ THEN 240
140 PRINT "BS$"3

150 INPUT BS

160 IF AS < B$ THEN 220

170 IF AS
180 PRINT ASs
190 GoTe 100
195 REM

200 PRINT AS;
210 G@Te 100
215 REM

220 PRINT AS3
230 G@Te 100
240 END

RUN

ORDS$

AS?WHAT'S THIS
BE?WHAT'S THAT
WHAT'S THIS IS

AS?WHAT®S THIS
BS?WHAT®S WHAT
WHAT®*S THIS IS

ASTWHAT®S WHAT
B$?WHAT®S WHAT
WHAT®S WHAT IS

A$?STOP

B$ THEN 200
'* IS GREATER THAN "5 BS

** IS EQUAL T@ "; BS

" IS LESS THAN ™3 BS

GREATER THAN WHAT'S THAT

LESS THAN WHAT®S WHAT

EQUAL T@ WHAT'S WHAT

In the handling of strings, we find that different computers have significantly
different BASIC language definitions. For example, on one computer, the state-

Strings and Files 103

ment 100 PRINT A$(4) will cause the computer to output the character string
stored in string variable A$, beginning with the fourth character, whereas on
another, the same statement will cause the computer to output the fourth string
of the string list A$. It is because of these differences that we present two dis-
tinctly different schemes for handling strings in the next two sections.

7-2 STRINGS-THE SUBSTRING SCHEME®

In the substring scheme, strings may be considered as a complete entity by
referring to A$, BS$, etc., or we may consider segments of A$ by using one or
two subscripts. A$(I) specifies the segment beginning with the I*" character and
continuing to the end of the string. A$(1,]) [some computers using this scheme
may require A$(I:])] specifies the segment from the I*" character through the
Jtb character inclusive, provided I = J. If I =], then A$(L]) is a single char-
acter. This scheme does not provide for string arrays. (It has been extended on
some computers, however, by using A$(1;],K), where the I designates which
string in the single dimension array is referred to and the J,K pair designates
the segment from the Jt through the K character.)

As with arrays, it is necessary to specify the capacity of any string variable
we intend to use (for more than one character) in a DIMension statement, Thus,
100 DIM A$(10),B$(16),C(2,11) provides for up to 10 characters in A§, up to
16 characters in B$, and two rows and 11 columns in a numeric array C. The
C dimensioning is included here merely to demonstrate that string and array
dimensioning may be intermixed in a single statement. The LEN() function is
provided to count the number of characters actually stored in a string. LEN(Z$)
takes on the value of the number of characters stored in string variable Z$.

In program SEG$1, note the dimensioning in line 100, the use of the LEN()
function in lines 140 and 150, and the printing of segments in line 160.

SEGS$1

95 REM * DEMONSTRATES STRING SUBSCRIPTS

100 DIM ASE8)

110 READ AS

120 IF AS="STOP" THEN 210

130 PRINT "AS="3AS$

140 PRINT “LENCAS)=";LEN(AS)

150 F@R I=1 TO LENCAS) STEP 2

160 PRINT "AS("313',"31+13")="3AS01,1+1]

170 NEXT I

180 PRINT

190 GOTO 110

195 REM

200 DATA "ABCDEF',"BASIC","STOPY

210 END

TN

SEGS$1

AS=ABCDEF

LEN(AS)= 6

ASC 1 > 2)=AB
s 4)=CD
s 6)=EF

ASC 3
AsC 5

® The programs of this section were run on a Howlett-Packard computer.

104 Basic BASIC

A$=BASIC

LEN(AS)= S

ASC 1 » 2)=BA
ASC 3 s 4)»=51
ASC S » 6)=C

The ability to isolate a segment of a string has many uses. We may wish to
pack related information into a single string such as

100 LET D$ = “JANFEBMARAPRMAYJUNJULAUGSEP@CTN@VDEC”

Now we, may select the desired month according to its position in D$. Or, we
might want to use a single string to contain the names of a group of individuals,
last name first, but to print only the last name and first initial.

One common use of string segments is to format numbers in printed results.
For instance, the appearance of the output produced by program SEG$1 could
be improved by using string output to print I and I 4 1 in line 160. See lines
110 and 160 in program SEG$2. Notice the compact appearance of the printed
result there.

SEGS2

95 REM % PRINTING A SINGLE DIGIT NUMERIC
96 REM USING STRING QUTPUT

100 DIM ASL8),DS(91]

110 LET D$="123456789"

120 READ AS

130 IF A$="ST@P" THEN 210

140 PRINT "AS=";AS

150 FOR I=1 T0 LENC(AS) STEP 2

160 PRINT "ASC"SDSII,133"5 " DS0I+1,1+13;3")="3A80L,1+1]}
170 NEXT |

180 PRINT

190 GoTe 110

195 REM

200 DATA '"ABCDEF',*BASIC","STpP"

210 END

RUN

SEG $2

A$=ABCDEF

ASC1,2)=AB
ASC3, 4)=CD
AS(5, 6)=EF

As=BASIC

A$C1,2)=BA
AS(3, 4)=S1
A$(5,6)=C

We see in SEG$2 the beginning of a technique for printing a numeric using
string output. Obviously missing are the ability to print zero and the ability to
handle more than one digit We can take care of zero by using LET D$ =

“rnnn,n:’nrron” 1. 1. ~L S Ny il
LTINS U, out kunxuub LGUIGoCrs Or Mo uian Oné \u5u.).cxiuuca tinat wé

use the technique of program DIGIT in Sec. 6-3. That is, we must isolate the
digits of our number one at a time. Once we have the digit to be printed stored
in I, we must print D$(I + 1,I -+ 1) since zero is the first digit in D$. This step

Strings and Files 105

is taken in program DIGIT2. The numeric output is placed between # signs,
and the string output is placed between $ signs,

DIGIT2

95 REM * PRINTING A NUMERIC 8F MORE
96 REM THAN ONE DIGIT USING STRING
97 REM QUTPUT

100 DIM D3SC101

110 LET D$='"0123456789"

120 PRINT “INPUT ANY INTEGER"3
130 INPUT N

140 1IF N=0 THEN 260

150 PRINT "#*3N3"#"

160 PRINT *'8";

170 FOR E=5 Tp 0 STEP -1

180 LET I=INT(N/10tED

190 PRINT DSLI+1,1+113

200 LET R=N-I*10tE

210 LET N=R

220 NEXT E

230 PRINT “s*

240 PRINT

250 G@Tg 120

260 END

RUN

DIGIT2

INPUT ANY INTEGER?93617
93617.
$093617%

INPUT ANY INTEGER?0

It is left as an exercise to eliminate the printing of the leading zero in the
output of DIGIT2.

SUMMARY

We have used strings to store nonnumeric data. Any string may be con-
sidered in its entirety, or any segment may be isolated using subscripts. A$(L])
designates the substring from the It to the Jt characters, inclusive. By placing
the ten digits in a dummy string, we gain complete control over the printing
of numerics by using string output.

PROBLEMS FOR SEC. 7-2

1) Write a program to print the characters of a string in reverse order.

2) Eliminate leading zeros in the output of DIGIT2. Be careful not to eli-
minate all zeros.

3) Write a program to arrange the characters of a string in order using the
technique of program ARANGS of Sec. 4-4.

4) Use string formatting to print the output in problem 7 of Sec. 6-2.

5) Write a program to convert a string integer to a numeric.

v/ 6) Write a program to convert a numeric input to a string output if the nu-

meric input is allowed to contain a decimal point and be negative.

106 Basic BASIC

7-3 THE STRING ARRAY SCHEME*

In the string array scheme, A$(l) names the string stored in the position
numbered 1 of a string single-dimensioned array, and A$(L]) names the string
stored in row I and column J of a string two-dimensional array. As with arrays
used elsewhere, a DIMension statement is required if we intend to have either
subscription exceed 10. The maximum number of characters which may be
stored in any one array position varies from computer to computer but ranges
from 6 to the thousands.

We may do many things with string arrays that we do with numeric arrays.
We may READ, PRINT, INPUT, assign, and compare for order elements of
the array. We may even be able to use the statement LET A$ = “XYZ” +
“ATV” to assign “XYZATV” to A$.

DAYSO1

100 DIM WS(T)

105

108 REM * READ DAYS @F THE WEEK
110 FPR I =1 10 7

120 READ WS$C(I)
130 NEXT I
135

138 REM #% PRINT DAYS @F THE WEEK
140 F@R I = 1 T8 7

150 PRINT I3 WS$CD)
160 NEXT I
165

168 REM % DATA

170 DATA SUNDAY, MONDAY., TUESDAY, WEDNESDAY
180 DATA THURSDAY, FRIDAY, SATURDAY

190 END

RUN

SUNDAY
MBN DAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

N D W -

Suppose we wish to work with the days of the week. We can easily read the
names of the days of the week into an array. Then these names can be printed
later as labels whenever needed, as shown in program DAYSOI1.

It is useful to be able to manipulate data in string variables. We might want
to know the number of characters in one of them, for example. There are two
ways to find out. One is to use the LEN function. LEN(A$) returns the number
of characters in A$. Another is to use the CHANGE statement. CHANGE A$
T A stores the number of characters in A$ in A(O), converts each of the char-
acters in the string A$ to a numeric equivalent code, and then stores that nu-
meric in a corresponding position of the one-dimensional A array. The code
UsGa for this is ASCII (1‘11‘1‘161&(;'«111 Standard Code for Information Iui(uuhuugc).

CHANGE A T@ A$ makes the conversion in the opposite direction. This can

® The programs of this section were run on the General Electric Information Services
time sharing system.

Strings and Files

CHANGE

98 REM * DEMONSTRATE CHANGE STATEMENT
100 DIM AC30).,BC(1)

110 PRINT “STRING"3

120 INPUT AS bd

130 CHANGE A3 To A

140 PRINT LENCAS$)3 “CHARACTERS IN '3 A%; "'"
150 PRINT

160 LET B(OY = 1

170 PRINT *CHAR ASCII C@DE™

180 FOR I = 1 T@ A(D)

190 LET BC(1) = ACD)

200 CHANGE B T@ BS

210 PRINT ***3 BSs "' 3 ACD

220 NEXT 1

230 END

RUN

STRING? TRY THIS
8 CHARACTERS IN *TRY THIS®

CHAR ASCI1 CODE

T
R
rye
[
e
rye
e
LE

84
82
89
32
84
12
73
83

107

probably best be demonstrated with a program. See especially lines 130 and
200 of program CHANGE.

Notice that it required four statements to extract the I character of A$.
In program CHANGE, we used statements 130, 160, 190, and 200 to do this.
The EXT$ function is available for just this purpose. EXT$(A$,1,]) extracts the
group of characters beginning with I and ending with J for string A$. Some
computers use SEG$ for this. Using EXT$, program CHANGE becomes

CHANGF.
CHANGF
98 REM * DEMONSTRATE CHANGE STATEMENT
100 DIM AC30)
110 PRINT "STRING™S
120 INPUT AS
130 CHANGE A3 T@ A
140 PRINT LENCAS$)3 "CHARACTERS IN "3 A$3 "*"
150 PRINT
170 PRINT "CHAR ASCII CogbhE™
180 FPR I = 1 T A(D
210 PRINT ***3 EXTS$CASsI»103 "* "3 ACD)
220 NEXT 1
230 END
RUN

STRING? #1&+:)]
6 CHARACTERS IN ‘*"#!&+:1°

CHAR ASCII C@DE

LF
tpe
(¥
[P
LER

).

35
33
a8
43
58
93

108 Basic BASIC

We may form strings from the characters of strings in some rearranged se-
quence. We might print a siring backwards or with the characters in alphabetic
order. In order to arrange the characters of a string in alphabetic order, we can
simply provide a one-dimensional array with the corresponding ASCII code

numerics in increasing order. Program ORDERS$ does exactly this.

BRDERS

100 DIM AC100)

110 PRINT "AS$"3

120 INPUT AS

i30 PRINT

140 CHANGE A3 19 A

150 FBR I = 1 10 ACOY - 1

160 FRR J = 1 + 1 10 A

170 IF ACI) <= A(J) THEN 210
175 REM * EXCHANGE BUT 8F ORDER CODES
180 LET 5 = ACD)

190 LET ACI) = AW

200 LET A¢J) = S

210 NEXT J

220 NEXT I

230 CHANGE A T AS
240 PRINT AS

250 END

RUN

A$? WHAT IF I CAN'T THINK @F SOMETHING?

*2AACEFFGHHHITIIKMNNNGBSTTTTW

SUMMARY

Whenever subscripted array string variables may be used, A$(L]) specifies
the string stored in row I, column J. We may use CHANGE A$ T@ A to con-
vert the characters in the string variable A$ to the equivalent ASCII code
numerics in corresponding positions of the A array. We may also reverse this
process by using CHANGE A T@ A$. We also find the number of characters
in A$ stored in A(O). Alternatively, we may use the LEN function. We may
extract a group of characters with the EXT$(A$,L]) function. This may be im-
plemented as SEG$.

We may assign, PRINT, INPUT, and READ string variables in much the
same way that we handle these operations with numeric variables. Strings may
be placed in DATA statements, and string arrays must be DIMensioned if a
subscript is to exceed 10,

PROBLEMS FOR SEC. 7-3

1) Write a program to print the characters of a string in reverse order.

2) Write a progam to accept string input, and tabulate the number of times
each character appears.

3) Write a program to alphabetize the strings of a single-dimension string
array.

4) Write a program to produce the following output, using the days of the
week as stored in W$ in program DAYSOL.

Strings and Files 109

<DUZCwn
<PUZoX
<XDOLMC~
<DCuvmeoraE
<~POUVLCI-
<X POz
<XPOUXTC-ADW

5) Modify program ORDERS$ to eliminate duplicates.
6) Write a program to produce the following output, using the days of the
week as stored in W$ in program DAYSOL.

7-4 INTRODUCTION TO DATA FILES

So [ar in our programming work all of the data used by our programs has
been entered through DATA statements, INPUT statements, or LET statements.
Consequently, we have had to store the data as part of the program or type the
data directly at the keyboard of our terminal. This works out all right for small
amounts of data that we wish to process just once. But, if we have large
amounts of data or we expect to carry out several processes on our data, then
we need to separate the data from the program. We can do this by using data
files.

A data file is simply a storage space in the computer where we store data,
much as a program may be stored in a storage space. (In fact, in some com-
puters, files and programs are indistinguishable until we type certain commands.
Obviously, we cannot RUN a data file.) By designating a separate storage space
for data, we gain many capabilities. We may now store much larger amounts of
data than we could possibly store in the data statements of a program. We may
alter the data to accommodate the results of program calculations. We may
rearrange the data according to program specifications. The possibilities are
limited only by our ability to think of problems to solve.

Most computer processing done today utilizes data files. Data files are used
for inventory, bookkeeping, and data processing of all kinds. Just considering
the data handled by the Internal Revenue Service and the Census Bureau, the
use of data files can be seen as a very complex business indeed. So we will
attempt here to present only some rudiments of files processing in BASIC.

As we said earlier, a file is a storage space accessible to the computer. This
space may be used to store programs and data, which may be accessed during
program execution. One of the features of these files that makes them mysteri-
ous is that they are invisible. But then, so are programs during execution. How-
ever, it is now possible to carry out tremendous amounts of useful computer

110 Basic BASIC

work without the need for printing at the terminal, although it is good pro-
gramining practice to provide some printed output to help keep irack of what
the computer has done. After we have seen several examples, we will gain
confidence that the computer is really performing the expected operations.
The fundamental concept is that we may write or print data into a file and
that we may retrieve that data under program control. Several versions of pro-
gram statements are used to achieve these purposes. The next two sections
explain the use of files as defined by two different systems. We have chosen
Hewlett-Packard and General Electric versions of BASIC for this.

7-5 HEWLETT-PACKARD FILES

Just to get an idea about how data gets into files and how file data is ac-
cessed, let’s look at two short programs. The first is a program to enter some
numbers into a file. See program PRINT.

PRINT

90 REM * FIRST FILE DEMONSTRATION
100 FILES TEST

110 FER I=1 T0 4

115 READ X

120 PRINT #13X

130 NEXT I

140 DATA 3,17,11,31

150 END

RUN

PRINT

This is the very first program we have run which does something useful
without any printed output. (As a general rule, however, it is good practice to
have programs produce some meaningful printed output at the terminal.) State-
ments 100 and 120 introduce the first two file handling statements. Statement
100 is called the FILES statement. It is the statement which makes the file
whose name is TEST available to the program. Statement 120 instructs the
computer to print data into the film instead of onto the paper in the terminal.
In that statement, the #1 specifies the first file named in the files statement. We
may be able to name eight or more files, separated by commas. In addition,
some computers allow us to replace any file originally named during program
execution by using the ASSIGN statement. In the PRINT # statement, every-
thing past the semicolon is printed into the file. We may list several data items
here, and strings and numerics may be intermixed.

In order to allocate the file space in the first place, we used the OPEN com-
mand. OPEN-TEST, 15 designates a file space, called TEST, that contains
15 segments called records or sectors. Typically, a sector is large enough to
store 32 numbers, or about 128 alphameric characters. More recent Hewlett-
Packard computers allow the option of specifying record size thwrough the
CREATE command. On such a machine, CREATE TEST, 15,106 provides 15
records, each allowing up to 53 numerics, or about 212 alphameric characters.
(106, 212, and 319 are storage efficient numbers to use in the CEATE command.)

In counting space for strings, we must add two to the number of characters

Strings and Files 111

for each string and add one if there is an odd number of characters. Thus three
characters require the same storage space as four.
Now let’s examine a program to read the contents of our file TEST.

READ

90 REM * PR@GRAM T@ READ NUMBERS FR@M A FILE
100 FILES TEST

110 READ #13Y

120 PRINT Y3

136 GgTe 110

140 END

RUN

READ

3 17 1t 31

END-@F~FILE/END GF RECGRD IN LINE 110

The printed output produced by program READ should convince us that
those numbers really came from a computer file as they do not appear anywhere
in the program itself. We also got an error message which is exactly analogous
to the @UT @F DATA IN LINE n message we have seen before.

There are several ways to avoid terminating with this error. One is to keep
track of the number of entries in the file; another is to place an item of artificial
data at the end of the real data just as we did in DATA statements in programs.
However, BASIC provides a special statement just for this purpose. It is the IF
END statement. See line 105 of program READOL.

READO1

90 REM * PROGRAM READ WITH IF END 'TRAP'®
100 FILES TEST

105 IF END #1 THEN 140

110 READ #13Y

120 PRINT Y3

130 G@To 110

140 END

RUN

READO1

3 17 11 31

Statement 105 caused the computer to “remember” that if at any time we
ask it to read beyond the data, it is to then execute line 140 as the next state-
ment. In our case, that causes the program execution to terminate through the
END statement.

The IF END “trap” may also be used to find the end of data in a file so that
we may begin at that point to print additional data into it. Program PRINT1
does exactly this.

PRINTI1

90 REM * PRINT WITH IF END °'TRAP'
100 FILES TEST

110 IF END #1 THEN 140

120 READ #1:3X

130 GeTe 120

140 FOR I=1 Tg 3

112 Basic BASIC

150 READ X

160 PRINT #13X
170 PRINT X3
180 NEXT I

190 DATA 19.2,6

200 END
RUN
PRINT1
19 2 6

Note that PRINT1 will also print numbers into an empty file. Consequently,
we can eliminate the need for program PRINT. Now we run program READOI
to verify for us that the file now contains numbers printed into it in separate
runs of two programs.

RUN
READO 1

3 17 11 31 19 2 6

When we used file TEST above, we simply printed numbers one after an-
other into the file without any concern for exactly where in the file those num-
bers were placed. Used in this way, file TEST is called a serial file. However,
we could have directed the computer to print each of those numbers on a
different record of the file. We need the following expanded file PRINT state-
ment for this purpose:

999 PRINT #1,R;X

This statement allows us to specify that the data following the semicolon is to
be printed in the Rth record of file #1. See line 130 of program PRINT2.

PRINT2

90 REM * PRINT TG RECORD R IN A FILE
100 FILES TEST

110 F@R R=1 To 4

120 READ X

130 PRINT #1,R5X

140 PRINT X3

150 NEXT R

160 DATA 3,17,11,31
170 END

RUN

PRINT2

3 17 11 31

Now to read the Rth value we needn’t read through all R items. We may
read it directly with the statement,

999 READ #1,R;X

Since this structure allows us to select at random any starting point in the file,
we refer to the file as a random access file. See program READO2.

Strings and Files 113

READOZ2

90 REM * DEMONSTRATE RANDGM ACCESS
100 FILES TEST

110 PRINT "“ITEM #';
120 INPUT R

130 IF R=0 THEN 170
140 READ #15R5X

150 PRINT X

160 GEeTg 110

170 END

RUN

READO2

ITEM #24
31
ITEM #21
3
ITEM #20

One of the uses of data files is to rearrange data and store it in rearranged
form. For example, let’s enter the names of seven people along with their dates
of birth and death in file TEST, one person to a record, and arrange them in
alphabetical order using the technique of program ARANGE in Sec. 3-4.

Program ENTERA reads the data from DATA statements and prints it in the
first seven records of the file.

ENTERA

90 REM * FILE PRINT @NE T@ A RECGRD

100 DIM NsL72]

110 FILES TEST

120 F@R I=1 T@ 7

130 READ N$.A,B

140 PRINT #1,15N%:A,8

150 NEXT 1

160 DATA "JONES, JBHN PAUL",1747,1792

170 DATA "ANTHEBNY», SUSAN B.',1820,1906

180 DATA "WASHINGTON, B@GKER T."»1859,1915
190 DATA "BELL, ALEXANDER GRAHAM", 1847, 1922
200 DATA "EDISON, THBMAS ALVA'", 1847,1931
210 DATA "F@RD, HENRY",1863,1947

220 DATA "BLOOMER, AMELIA JENKS'",1818,1894

230 END
RUN
ENTERA

Program READA reads from file TEST and prints at the terminal.

READA

90 REM * READ NAMES FROM A FILE
100 DIM N$SE72]

110 FILES TEST

120 PRINT ** D@8 NAME*"
130 FOR I=1 Tg 7

140 READ #1,I3N$»A»B

150 PRINT AINS

160 NEXT 1

170 END

RUN

READA

114 Basic BASIC

DeB NAME

1747 JONES, JOHN PAUL

1820 ANTHONY», SUSAN B.

1859 WASHINGTON, BOOKER T.
1847 BELL,» ALEXANDER GRAHAM
1847 EDISEN, THOMAS ALVA
1863 FORD, HENRY

1818 BLBOMER, AMELIA JENKS

Program ORDERA arranges the data in the file alphabetically. Note that
line 190 is required so that when the comparison for order is made in line 160
after an. exchange has taken place, A$ stores the appropriate string. This is
necessary because data is stored in two places—in the file and in the variables
of the program. It is the programmer’s job to keep these two storage areas
coordinated.

ORDERA

90 REM * ALPHABETIZE NAMES IN A FILE
100 DIM AS[721,B%L72)

110 FILES TEST

120 FBR 1I=1 TO 6

130 READ #1,13A%5A5A1

140 F@R J=I+1 To 7

150 READ #1,J3BS$,B,Bl1

160 IF A$ <= BS$ THEN 200

170 PRINT #1,15B$,B,B1

180 PRINT #1,J35A8,A,A1

190 READ #1,13A%,AsA1

200 NEXT J

210 NEXT I

220 PRINT "“FILE ALPHABETIZED"

230 END
RUN
ORDERA

FILE ALPHABETIZED

And once again we run READA to see that the data is properly arranged in
the file.

RUN
READA

peB NAME

1820 ANTHBNYs SUSAN B.

1847 BELL, ALEXANDER GRAHAM
1818 BLOOMER, AMELIA JENKS
1847 EDIS@Ns, THBMAS ALVA
1863 FBRDs HENRY

1747 JONESs JOHN PAUL

1859 WASHINGTON, BOOKER T.

SUMMARY

The FILES statement is used to make files accessible to a program. We may
be able to replace the files named during execution using the ASSIGN state-
ment. We may print data into a file using PRINT #N;A,B,C$ to print in the
next available space serially. Or we may use PRINT #N,R;A,B,C$ to specily

Strings and Files 115

that the printing be at the beginning of record R. This approach is referred to
as random access. We have the same options in the file READ statement. READ
#N;A,B,C$ reads the next available data serially and READ #N,R;A,B,C$ reads
at record R. The IF END statement allows us to determine when we are read-
ing past the end of data in the file or are trying to read or print past the physical
boundaries of the file itself.

PROBLEMS FOR SEC. 7-5

1) Use the IF END “trap” to avoid reading empty records or past the physi-
cal end of the file in program READO02.

2) Modify ENTERA so that it will accept varying numbers of names and can
be used to add names to a file without “losing” data.

3) Modify READA to read any number of names.

4) Modify ORDERA to handle any number of names.

5) Modify ORDERA to arrange the data in increasing order of date of birth.

6) Write a program to print the names in file TEST at the terminal in alpha-
betical order without altering the arrangement in the file itself.

7) Write a program to print the names from file TEST in order of increasing
age at death without altering the arrangement within the file itself.

8) Since strings and numbers may be intermixed in a file and an attempt to
read one when the other is next will result in an error condition, it is desirable
to be able to distinguish between them. The TYP() function is provided for
this purpose. TYP(N) takes on a value of one if the next item in the file is a
numerie, two if the next item is a string, three if the next item is the end of file,
and, if N is negative, four if the next item is end of record. The absolute value
of N is the position of the file in the files statement. In order to get positioned
at the beginning of a record without reading data, we can READ #N,R. Using
the TYP() function and the positioning READ statement, write a program to
read the unknown contents of a file and print them record by record at the
terminal,

7-6 GENERAL ELECTRIC FILES

The files we are concerned with in this section are referred to as external files
since they store data externally to any programs, Files are generally charac-
terized in two ways: the access type and the data storage type.

Data in files may be accessed sequentially or at random. Sequential access is
similar to the way in which DATA statements of a program are accessed. Ran-
dom access is similar to the way in which the elements of an array are accessed.
As long as we know the exact position of a data item in a file, we may access
it directly.

The data contained in a file may be stored either as ASCII character codes
or as the binary representations of ASCII character codes and the numbers
being stored. We do not need to be concerned with the details of this distinction
when writing BASIC programs. We need only identify the slight differences in
program statement syntax required. ASCII files may be accessed only sequen-
tially whereas binary files may be accessed either sequentially or at random.

116 Basic BASIC

ASCII Files

ASCII files behave in many ways just like the DATA statements of a pro-
gram. The data must be read sequentially, beginning with the first data item
in the file. There is no way to access data at random points. The file may be
filled from the keyboard exactly as DATA statements of a program are typed,
but omitting the word DATA. The file may be listed at the keyboard with the
LISt command, just as programs may be listed. Lines may be corrected in a
file by retyping them. Lines may be removed by typing the line number fol-
lowed by a carriage return. In order to make a file available for future use, it
must be SAVed, just as a program must.

Perhaps the best way to learn about files is to study an example. Let’s type
an ASCII file containing test score data for a class. Suppose we consider a class
of only five people and enter their test scores on six tests.

File SCORE has been typed at the keyboard and SAVed as described earlier.
We list the file here:

LIST
SCRRE

100 MARK UNDERW@®BD,»65,83,92,77,68,79
110 SUSAN STALBERG»73,88,82577,69,79
120 EDGAR ANGLEMAN,»T74,86573,79,80,73
130 ALTHEA LARGE»91592,90599,92,90

140 GERTRUDE SMITH»715,86,87,90,8%,92

Now, to gain some file handling experience, let's make our first program
merely print the contents of the file under program control rather than use the
LIST command. This approach makes it possible to print labels and arrange
the data in an easy-to-read form. See program READTEST.

READTEST

94 REM #% READ FrROM A FILE AND PRINT OnN THE TErRMINAL
100 FILES SCORE

110 PRINT "WAME'","TEST! TEST2 TEST3 TEST4 TESTS TES6™
130 READ #15 NS

150 PRINT N$3 TAB(15)3;

160 FOR I =1 TO 6

170 READ #1, X

190 PRINT X3 '™ '3

200 NEXT 1

210 PRINT

230 IF MORE #1 THEN 130

260 END

RUN

NAME TEST! TESTZ2 TEST3 TEST4 TESTS TEST6
MARK UNDERWBOD 65 83 92 77 63 79
SUSAN STALBERG 73 88 82 77 69 79
EDGAR ANGLEMAN T4 56 73 T2 33 T3
ALTHEA LARGE 91 92 90 99 92 90
GERTRUDE SMITH 71 86 87 90 838 92

In program READTEST, there are just four statements of a file-handling
nature. The statement 100 FILES SCORE makes the file available to the pro-

Strings and Files 117

gram. The file must exist to execute the program. The statement 130 READ
#1, N$ is like 2a DATA READ statement except that the “#1” appears to notify
the computer to read from the first file named in the FILES statement. We may
name up to eight files there by separating them with semicolons. Statement 160
is another file read statement. A statement 999 READ #N, A B,X$,T would
read three numerics and one string from the Nth-named file in the FILES state-
ment. The statement 230 IF M@RE #1 THEN 130 has the ability to “look
ahead” in the file to “see” if there is more data in the file. If there is more data,
the computer is transfered to line 130; if not, then control passes to the next line.

Now that we are able to read the file, let’s perform the necessary operations
to find each student average and the class average, We will require two vari-
ables to store running totals. In program AVERAGE, T2 is the running total
for the class, and T1 is the student running total.

AVERAGE

94 REM * CALCULATE AVERAGES FROM A FILE

100 FILES SCORE

110 PRINT "NAME","TESTI TEST2 TEST3 TEST4 TESTS TEST6 AVERAGE"™
120 LET Ti=0

130 READ #15 NS

140 LET T2 = O

150 PRINT N$3 TABC15);

160 FER I = 1 TO 6

170 READ #1, X
180 LET T2 = T2 + X
190 PRINT X5 * '3

200 NEXT I
210 PRINT T2vs6
220 LET T! = T1 + T2

230 IF MORE #1 THEN 130

240 PRINT

250 PRINT '"CLASS AVERAGE = *"T1/30

260 END

RUN

NAME TEST1 TEST2 TEST3 TEST4 TESTS TEST6 AVERAGH
MARK UNDERWOGD 65 83 92 77 68 79 773333
SUSAN STALBERG 73 88 g2 717 69 79 78
EDGAR ANGLEMAN 74 86 78 79 30 78 791667
ALTHEA LARGE 91 92 90 99 92 20 9243333
GERTRUDE SMITH 71 86 37 90 838 92 85. 6667
CLASS AVERAGE = 82.5

Now that we know how to read an ASCII file under program control, let’s
see how to write data into such a file under program control. Suppose that we
consolidate the data in file SCORE, retaining just the names and averages to
write into a new file, SCOREL. To do this, we begin by naming both files in
the FILES statement. We may enter data into an ASCII file with the WRITE
#N statement. However, before writing into the file, it must be prepared for
writing with the SCRATCH #N statement. SCRATCH #N sets a pointer to
the beginning of the Nth-named file and prepares it for writing. In program
WRITEAVG, we print each name at the terminal just to show the progress
of execution during the program run. For large amounts of data, we might
simply print the number of names moved. See lines 110 and 140 of program
WRITEAVG.

118 Basic BASIC

WRITEAVG

94 REM *% READ SCORE -~ WRITE SCORE1L

100 FILES SCORE3 SCORE1

110 SCRATCH #2

120 READ #1, NS$»X1,X2,X3,X45X5,%6

130 PRINT NS

140 WRITE #2, NS3 (X1+X2+X3+X4+X5+X6)/6
150 IF MORE #1 THEN 120

160 END

RUN

MARK UNDERWOBD
SUSAN STALBERG
EDGAR ANGLEMAN
ALTHEA LARGE

GERTRUDE SMITH

Since this is an ASCII file, we may LISt it at the keyboard as follows:

SCORE 1

100 MARK UNDERWOOD, 77.3333 »
110 SUSAN STALBERGs 78 »

120 EDGAR ANGLEMAN, 79.1667 »
130 ALTHEA LARGE» 92.3333 »
140 GERTRUDE SMITH, B85.6667 »

Additional files statements include APPEND #N, which sets a pointer to the
end of data in a file and prepares the file for the write mode in a way similar
to that of the SCRATCH #N statement, and RESTORE #N, which sets a
pointer to the beginning of the file and prepares it for the read mode so that
we may read the data in a file more than once in a single execution of a program.

Binary Files

Binary files may be used only under program control. They may be either
sequential or random access. Sequential binary files are treated for programming
purposes exactly like ASCII files except that where pound signs (#) appear for
an ASCII file, a colon (:) is used for a binary file.

Random Access Files

Random access files may be segmented into blocks of storage called records.
We may dictate the size of each record and the number of records in a file when
we create it, much as we dimension a two-dimensional array. The record size
is measured in words of storage. The word requirements for data are as follows:

One word per numeric
One word per four string characters, or fraction thereof
One ward per string for internal computer control

The exact arrangement of data within a file is completely the programmer’s
responsibility. We must know exactly where data is to be found and what it
means. The situation is no different from data handling within an array except
that once data is in a file, it seems more invisible.

Strings and Files 119

For our first example, let’s simply write three rows of six numbers each into
a binary file with one program and then select some of them for printing at the
keyboard with another program. The storage requirements amount to just three
records, each containing six words. We obtain such a file with the CREate com-
mand, as follows:

CRE NUMB,(RAN(6,3))
See program RND.
RND
94 REM % LOAD RANDOM NUMBERS INTZ A BINARY FILE

100 FILES NUMB
110 FOR I =1 T8 3

120 FOBR J = 1 T8 6
130 LET X = RND(X)
140 WRITE 1, X
150 PRINT X3

160 NEXT J

170 PRINT

180 NEXT 1

190 END

RUN

0.98385 0.362274 0.250535 0.333074 0.250009 0.342306
0.676737 0.820017 0.290332 0.63319 0.373523 0.853779
04151996 0.975866 0.811924 0.448439 0.139038 0.847165

Notice that we are able to fill the file without regard to position in the file
because we are exactly filling each record as we go. This is not always the case.

To select locations at random within the file, we need the SETW statement.
SETW N T@ X places a pointer in file N to the Xth word in the file without
regard to file dimensions. Thus, in our file of six words per record, the ninth
word is the third word on the second record. To think in terms of records and
words within a record, we need a formula to determine the value of X. For the
Cth word in record R where there are W words per record, the value of X is
We(R—1) + C. Now let’s write a short program to find selected positions in file
NUMB. See program PICK. Notice that the REST@RE statement is not re-
quired for random access files. REST@ORE:N is equivalent to SETW N T@ 1.

PICK

94 REM * SELECT A NUMBER FREM A FILE AT RANDOM
100 FILES NUMB

110 PRINT "ROW,COL''3

120 INPUT RsK

130 IF R = 0 THEN 190

140 SETW 1 TO 6%(R-1) + K

150 READ :1, A

160 PRINT "FOUND"; A

170 PRINT
186 GOTO 110
190 END

RUN

ROW,COL? 2,3
FOUND 0.290332

120 Basic BASIC

ROW-COL? 3,6
FOUND 0.847165

RoW,CoL? 0,0

For our final example we will use a binary file to arrange the student data
from our ASCII file SCOREL in order of increasing test average. We must
write the necessary data into a binary file, arrange it, and then print the results.
This can be done with three different programs or with a single program. We
will use a single program here. See @RDERAUG.

To determine the size records required, we must know the number of char-
acters in the name strings. We find a maximum of 14 characters. We should
go to at least 16 since that is the next multiple of four. In practice, to make
such a file generally useful, we would probably go even higher. Allowing for
16 characters, we need four words for storage of string data, plus one word
for control, plus one word for the numeric. For this problem, a file with five
records containing six words per record is sufficient. We get that with CRE
SCORE2,(RAN(6,5)).

ORDERAVG

100 FILES SCORE13 SCORER

104 REM % WRITE DATA INTG BINARY FILE
110 FBR I = 1 10 5

120 READ #1, NS$»Al
130 SETW 2 T@ 6%(I-1) + 1
140 WRITE 3125, NSsAlL

150 NEXT I
154 REM % NOW ARRANGE THE DATA ACCORDING TO AVERAGES
160 FOR I = 1 TC 4

170 FORJ =1 + 1 T0 5

180 SETH 2 TO 6#(¢1-1) + 1
190 READ 2, NS»Al

200 SETW 2 To 6é%¢J-1) + 1
210 READ :2, M35,31

220 IF Al <= Bl THEN 270
230 SETH 2 TO 6%(I-1) + 1
240 WRITE $2s M3,81

250 SETW 2 TG 6%¢J-1) + 1
260 WRITE $2s NEsAl

270 NEAT J

280 NEXT 1
254 REM % AND NOW PRINT THE RESULTS
290 PRINT ' NAME'","AVERAGE"

300 PRINT
310 FER I = 1 TC 5
320 SETW 2 TO 6%CI-1) + 1
330 READ :2, NI,Al
340 PRINT NS»Al
350 NEXT I
360 END
RUN
MNAME AVERAGE

MARK UNDERWOOD 77.3333
SUSAN STALBERG 73

EDGAR ANGLEMAN 79.1667
GERTRUDE SMITH 85.6667
AL THEA LARGE 92. 3333

Strings and Files 121

SUMMARY

The FILES statement is used to make files accessible to a program. The files
of this section are of two types: ASCII and BINARY. ASCII files are sequential
and may be accessed from the keyboard or through a program. Binary files
may be either sequential or random access and may be accessed only through
a program. We may use READ #N, WRITE #N, SCRATCH #N, APPEND #N
or RESTORE #N to handle data in an ASCII file. For sequential binary files,
all of the above statement types may be used by replacing the pound signs (#)
with colons (:). For random access files, we have the additional statement
SETW N T@ X which sets a pointer at the Xth word of a file in preparation
for the next READ or WRITE statement. A file is made random access in the
CREate command.

PROBLEMS FOR SEC. 7-6

1) Type a few inventory items with quantity and price data into an ASCII
file. Write a program to print the value of each item and the total value of
inventory at the terminal.

2) Write a program to print a list of an unknown number of names in an
ASCII file at the terminal in alphabetic order. Use RESTORE #N and repeated
reading of the file for this purpose. Assume that there are no duplicates.

3) Consider a random access file containing five words per record and six
records filled with numbers. Write a program to find the largest number in each
record and the largest number in each “column.”

4) You are presented with a random access file with a set of ten names in it;
each name was entered first name first, followed by a space, followed by last
name. Since this ordering is difficult to alphabetize, you are to replace each
entry in the file rearranged so that the last name is first, followed by a comma,
a space, and the first name. You know that each string is to be allocated eight
words of storage.

5) (Project) Print some names into a random access file. Place a list of point-
ers to those names in an ASCII file so that if the pointers are read sequentially
from the ASCII file and used to access the names in the random access file with
the SETW statement, the names will be accessed in alphabetic order. Use the
ASCII file to print the names in alphabetic order.

CHAPTER 8

The Quadratic Function

We define a quadratic function as a real function of the form
f(X) =AX2+BX+C (8-1)

where A does not equal 0.

8-1 ZEROS

Often in mathematics we would like to find the zeros of a quadratic func-
tion. For some sets of coeficients, we may factor the expression on the right in
Eq. (8-1) and set each factor equal to 0. This would be the method to use
for £(X) = X2 + 3X + 2. We would find zeros as follows:

X24+3X+2=0
Factoring,

XX+1DX+2)=0
and X+1D=0 or X+2)=0
So X=-1 or X=-2

and the truth set is {—2, —1}.

However, in general for nonfactorable as well as factorable quadratic ex-
pressions on the right in Eq. (8-1), we may use the quadratic formula, which
may be derived by the method of completing the square. The zeros of
f(X) = AX2 4+ BX + C are

—B + VB* — 44C

X1 = o
_ —B—+/BY-4AC
X2= 2A

122

The Quadratic Function 123

Since we are going to insert these equations into a program we will write

YNNA LET X1 =(-B+SQR(B°°2—4*A°C)/(2°A)
and
Z7Z 410 LET X2=(~B—SQR(B*°°2—-4°A*C))/(2°A)

Now all we need is some data and some printing instructions (see QUADI),
which seems to work well enough. You will want to modify QUADI to
account for nonreal zeros. You may want to just print a message or you may go
ahead and compute the nonreal values. As the program stands though, if
B ®*® 2 —4° A * C is negative, the computer will at best print an error
message and at worst it will terminate the RUN,

QUADI

5 PRINT " A B c
10 READ A»B»C

15 IF A=0 THEN 99

20 LET X1=(~-B+SQR(Bt 2~ 4%xA%C))/ (2%A)
30 LET X2=(~-B-SQR(Bt2-4%A%C))/ (2%A)
40 PRINT A3B3CsX1,X2

45 GOTO 10

S0 DATA 1,3.2

60 DATA 1,25-352,45-656513:655,-1,2
70 DATA 0,0.,0

n, oy e, ux o

99 END
RUN
QuUAD1

A B c X1 X2

1 3 2 -1 -2

1 2 -3 i -3
2 4 -6 1 -3

[13 [} ~“e 666667 =15
5 7 2 H 4

DONE

8-2 AXIS OF SYMMETRY AND TURNING POINT

The graph of a quadratic function is called a parabola. In examining the
graph of a quadratic function we often want to know where the axis of
symmetry is and where the turning point is. By completing the square on
the right

f(X) =AX2+BX+C

f(x)=A| x4+ B x4 B2 _ BQ:]+C

R A 4A2 4A%
A xeqp Boxy B2l B2
FX)=A| Xe - X 4 4A2] T C
we get
—al B ? . 4AC —B?
f(X)=A] X+ 2Ajl +-————-———~4A

L

124 Basic BASIC

Now, when X = —B/2A, X + B/2A = 0. The value of f(X) is minimum if A
is positive and maximum if A is negative, and the value of f(—B/24) is
(4AC — B2)/4A. Thus the coordinates of the turning point are

B 4AC—B?
2A ° 4A

You should know, too, that the line whose equation is X = —B/2A is called the
axis of symmetry. We should now be able to write a program to print three
items of information: 1) the maximum or minimum status of the parabola,
2) the equation of the axis of symmetry, and 3) the coordinates of the turning
point. Let us collect things into a flowchart (see Fig. 8-1), and write program

QUAD2.

Fig. 8-1. Flowchart for finding axis
of symmetry, turning point, and
maximum—minimum status for

parabolas.

LETM
= SGN(A)

maximum

LET X = —B/
(2*A)

~

LETY = (4« A=C PRINT
—~B*x2)/(4s A) X, Y

QUAD

10
15
20

150
155
160
9999
RUN

The Quadratic Function 125

2

READ A»B.C
IF B=-.001 THEN 9999
PRINT A3B3C
IF A <> 0 THEN 30
PRINT "A=0 THE EXPRESSION IS N@T QUADRATIC"
GaTe 20
REM DETERMINE MAX. OR MIN.
LET M=SGN(A)
IF M=1 THEN 70
PRINT ‘'MAXIMUM PARABILA"
GOTY 80
PRINT "MINIMUM PARABILA™
REM FIND THE AXIS OF SYMMETRY
LET X=-B/{(2%A)
PRINT *"AXIS QF SYMMETRY 1§ X =";X
REM FIND THE EXTREME VALUE
LET Y=(4kA%C-Bt2)/ (4%A)
PRINT "THE TURNING POINT IS ('"™3X3"»"53Y3'")"
PRINT
GATe 10
DATA 1:3225152,-3,6213+6
DATA -355511
DATA 4,-.001,1
END

QUAD2

i
MINI

3 2
MUM PARABOLA

AXIS @F SYMMETRY IS X =-1.5

THE

1
MINI

TURNING PBINT IS (-1.5 »=e25)

2 -3
MUM PARABOL.A

AXIS @F SYMMETRY IS X =-1

THE

6
MINI
AXIS
THE

-3
MAXI

TURNING POINT IS (-1 =4)

13 6
MUM PARABOLA
OF SYMMETRY 15 X =-1.08333
TURNING P@INT IS (-1.08333 »-1.04167)

5 11
MUM PARABOLA

AXIS OF SYMMETRY IS X = .833333

THE

DONE

TURNING POINT IS (¢ .B33333 » 13.0833)

8-3 PLOTTING THE PARABOLA

One last consideration for the parabola is to plot its graph. This works well

right on
axis and

the terminal itself. We may use the spaces across the carriage as one
the paper lengthwise as the other axis. Since the line feed is auto-

matically set on the terminal, the X-axis should run perpendicular to the

carriage

and the Y-axis should run across the page. This means that one line

represents one unit on the X-axis and one space represents one unit on the
Y-axis. This is rotated 90 degrees clockwise from the conventional system.
Let us start out with the simplest possible graph and see what refinements

126 Basic BASIC

will be required. We will first graph Y = X ** 2. We will put “ ”; in a loop to
get the printing head to the point that we want plotted. Any printed character
may be used to represent the plotted points. The range you select will depend
on the width of the carriage on your terminal. Selecting the domain for X as

-7 to +7 we will require a range of 0 to 49.
When X = —7, we want the printing head to step out 48 spaces, then print

a character, and then RETURN. Now we want X to go to —6 and the printing
head will have to step out only 35 spaces, print a character, and RETURN. As
this process is repeated, it too will be put in a loop with X going from —7 to
47 incrementing by 1. It will be convenient to define a function here, not as
a saving now, but to fit in with later plotting problems. Before writing the
program PL@T1, let us draw a flowchart (see Fig. 8-2). Notice that we intend
printing the spaces followed by a semicolon and the plotted points also fol-
lowed by a semicolon. After the point has been plotted, we do not want the
printing head to step the rest of the way across the carriage as that would be
a waste of computer time for this particular plot. So line 62 is used to return
the printing head to the left margin. We should observe that the procedure
we are developing is not especially efficient in the first place, and so should
be used sparingly.

Start

DEF FNQ(X)
== X *% 2

L

FOR X
=—7T@7

Y = FNQ(X)?

NEXT X . NEXT V

Fig. 8-2. Flowchart to plot Y = X ** 2,

PLOT1

30 D

60 F
62 P
88 R
89 R

90 F
120
148
150
180
210
212
240
2170
RUN
PLOTI

DONE

The Quadratic Function 127

EF FNGQ(X)=Xt2

BR X=-7 T0 7

RINT

EM LINE 90 HAS THE EFFECT OF NUMBERING THE SPACES

EM ACR@SS THE PAGE 0 Te 70

@R Y=0 T@ 70

IF Y=FNG@(X) THEN 210

REM IF Y DOES N@T EQUAL FNQ(X) THEN PRINT A BLANK SPACE
PRINT ™ "3

NEXT Y
PRINT "%x'';
REM PLOT THE POINT AND G@ TO NEXT X
NEXT X
END
*
*
*
*
*
*
*
*

PLOT1 was not bad for our first try. If we are going to plot other para-

bolas, we

will have to make a provision for values of Y less than 0. So we

may change line 90 to read 90 FOR Y = ~M T@ 70 — M, where M is the
number of spaces to the left of 0, and then we can put M on INPUT:

90 F
S INP
4 PRIl
88

89

6 PRI
RUN
PLOT2

@R Y= -M TO 70-M
Ut ™
NT "INPUT THE NUMBER @F SPACES DESIRED T@ THE LEFT OF ZERG'":

NT

INPUT THE NUMBER @F SPACES DESIRED T@ THE LEFT @F ZERG?10

DONE

128 Basic BASIC

We have indeed graphed Y = X °® 2; however, the graph is not clearly
defined because there are no axes to specify the coordinate system. Let us
build up the coordinate system by first putting in the origin by plotting a 0
there. Immediately, we are faced with a decision. If the graph contains the
origin, do we want the plotted point or the origin designation? Since the
absence of the plotted point for X = 0 would indicate that it should have been
plotted at the origin, let us plot the 0 at the origin as first priority. So, before
anything gets done for a particular value of X, we ask if the value of Y is 0.
If it is, we next look for the point at which X is also 0. At (0, 0) we print 0.
Having printed 0, we next look to see if FNQ(X) is greater than 0. If it is, we
send the printing head on across the page.

92 IF Y <> 0 THEN 120

94 IF X <> 0 THEN 120

95 REM IF THE COMPUTER GETS THROBUGH HERE THE
96 REM PRINTING HEAD IS AT THE ORIGIN

98 PRINT ''0";

100 IF FNQ@(X)>0 THEN 180

102 REM IF FNGQ(X) > 0 GO FIND WHERE IT IS
103 REM @THERWISE GET THE NEXT VALUE OF X

106 GATG 240

RUN
PLOT3

INPUT THE NUMBER OF SPACES DESIRED T@ THE LEFT OF ZERQ?6

DONE

As long as we have the X-axis located, we might just as well put it in
the graph. All that is necessary is to have a PRINT instruction whenever
Y = 0 but X does not.

94 1IF X=0 THEN 98
95 PRINT '3

96 GBTO 100

RUN

PLOTA

The Quadratic Function 129

INPUT THE NUMBER @F SPACES DESIRED T8 THE LEFT OF ZERO?9

*

D B T S T TR Y
*

DONE

Finally, we may put in a Y-axis. Let us settle for having the Y-axis along
the leading side of the graph. By putting the Y-axis there, we will be able to
print the scale without interfering with the graph itself. For the particular
graph we have been plotting a range from 0 to 50 is reasonable.

8 PRINT " b

10 FBR X=0 T@ 50 STEP 10
12 PRINT ™ "3X3

14 NEXT X

15 PRINT

16 FBR X=1 T@ 70

g IF X/10=INT(X/10) THEN 24
20 PRINT '"-*;

22 GOTe 26

24 PRINT "'

26 NEXT X

PLOTS

INPUT THE NUMBER OF SPACES DESIRED TG THE LEFT OF ZERG?9

¢} 10 20 30 40 50
---------- L T e I e R L

t *

t *

t *

t *

t *

1 *

Tk

¢}

tk

t *

1 *

1 *

t %

1 *

t *

DONE

130 Basic BASIC

At this point, the program is scattered all over the place and some of the
iine numbers are very close together. So we renumber beginning with line 10
and print the entire program in PLATS5.

PLOTS

10 PRINT "INPUT THE NUMBER OF SPACES DESIRED TG THE LEFT OF
ZERD"3

20 INPUT M

30 PRINT

40 PRINT * 3

S0 F@R X=0 T@ S0 STEP 10

60 PRINT * Y3X3

70 NEXT X

80 PRINT

90 FOR X=1 TO 70

100 IF X/10=INT(X/10> THEN 130

110 PRINT *-'*;

120 GRTO 140

130 PRINT *'r*3

140 NEXT X

150 DEF FN@(X)=Xt2

160 F@R X=-7 T0 7

170 PRINT

180 FOR Y=-M TO 70-M

190 IF Y <> O THEN 280

200 IF x=0 THEN 230

210 PRINT "t

220 GOTO 240

230 PRINT "0'*;

240 IF FNG(X)>0 THEN 310

250 REM IF FNQ(X) > O GO FIND WHERE IT IS
260 REM OTHERWISE GET THE NEXT VALUE OF X
270 GBTO 340

280 IF Y=FNG(X) THEN 320

290 REM IF Y DGES NOT EQUAL FNG(X) THEN PRINT A BLANK SPACE
300 PRINT " '3

310 NEXT Y

320 PRINT "%';

330 REM PLOT THE POINT AND GO T@ NEXT X
340 NEXT X

350 END

There are still several considerations regarding this program for plotting.
For instance, as the program is written, it will not plot the X-axis if the Y
value is less than 0. The scale is fixed. There is provision for only one function
to be plotted. Also, consider what happens if the value of Y is not an integer.
All of these comments suggest areas in which the program could be improved.
Let us insert a different function and call for one last RUN of PLATS.

150 DEF FNGCX)=(X-2)t2+3
160 FOR X=-5 T3 8

RuUN

PLOTS

The Quadratic Function 131

INPUT THE NUMBER UF SPACES DESIRED T@ THE LEFT OF ZER2?9

o} 10 20 30 40 50
--------- e e et B e e e
1 *
t *

A *
* *

t *

0 *

T *

) *

t *

* *

L 4 *

A *

A *
t *

DONE

SUMMARY FOR CHAP. 8

There are several things that can be done with the quadratic function on a
computer: 1) we can calculate the zeros; 2) we can find the various constants
that specify the appearance of the graph; 3) and we can even use the terminal
itself to plot a graph of the function. Of course the graphing program may be
used to plot other functions as well.

PROBLEMS FOR CHAP. 8

1) Write a program that finds the results of QUADI, but prints rational zeros as
fractions reduced to lowest terms.

2) Modify QUADI to compute nonreal zeros.

3) The Y-coordinate of the turning point of a parabola may also be found by
cvaluating f(—B/(2 ® A)). Rewrite QUADZ2 by defining a function.

4) For sets of coeflicients in data lines, have the computer print coordinate pai