BASIC

MICROCOMPUTERS:
Apple, TRS-80, PET

Roger W. Haigh/Loren E. Radford _

BASIC for

MICROCOMPUTERS:
Apple, TRS-80, PET

All programs in the Library of Subroutines, the Editor program, the
Cross-Reference Table Generator, the graphics programs, and the data
sets are available on diskette from the authors.

BASIC for

MICROCOMPUTERS:
Apple, TRS-80, PET

ROGER W. HAIGH

West Virginia Northern Community College

LOREN E. RADFORD
Baptist College at Charleston

:8 PRINDLE WEBER & SCHMIDT
BOSTON, MASSACHUSETTS

PWsS PUBLISHERS

Prindle, Weber & Schmidt - @+ Willard Grant Press - se&= + Duxbury Press - Q
Statler Office Building - 20 Providence Street + Boston. Massachusetts 02116

Copyright © 1983 by PWS Publishers

Ali rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission, in writing, from the
publisher.

PWS Publishers is a division of Wadsworth, Inc.

87 8 85 84 83—10 9 8 7 6 5 4 3

Haigh, R. W. (Roger W.)
BASIC for microcomputers.

includes bibliographical references and index.

1. Basic (Computer program language) 2. Microcom-
puters—Programming. |. Radford, L. E. (LorenE.)
II. Title. . Title: B.A.8.1.C. for microcomputers.
QA76.73.B3H33 001.64 81-22347
ISBN 0-87 150-334-4 AACR2

Printed in the United States of America
Cover design and art by Julia Gecha. Text design by Sara Waiier. Typeset by Science

Press. Covers printed by New England Book Components. Text printed and bound by
Hamilton Press.

1

1.1
1.2
1.3
1.4
1.5
1.6

2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3

3.1
3.2

COMPUTERS—COMPONENTS AND
TERMINOLOGY

Introduction to Computers
Components of a Computer
Interaction with the Computer
The Communication Process
Hardware and Software
Screen Characteristics

Review

ELEMENTARY PROGRAMMING TECHNIQUES

Introduction to Elementary Programming Techniques
Program Entry

The Nature of a Variable

Storing Values in Memory

Arithmetic Operations

Obtaining Output from the Program

Editing the Program

Review

PREPARING A COMPLETE PROGRAM

Introduction to Preparing a Complete Program
A Problem-Solving Model

CONTENTS

G 00N = =

resh

19
19
20
20
22
24
26
31
36

37
37
38

vi

3.3
3.4
3.5
3.6

%

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

6.1
6.2

Contents

The Nature of an Algorithm
Pseudocode lllustrated

Coding the Algorithm

Completing the Job—Documentation

Review

SIMPLE LOOPS AND DECISIONS

Introduction to Loops and Decisions

The Simple Loop

The IF-THEN Statement

Relational Operators

Variations on Loops—Counters
Variations on Loops—Accumulators
Decision Structures—Single Alternative
Decision Structures—Double Alternatives

Review

INDEXED LOOPS
Introduction to Indexed Loops
The Indexed Loop in BASIC
Using the Loop Index
Summation Notation

I o b e o)

with Conditional Transfers
Lo~

L

w

oop

r= o

[arS
wa

w

OGPSs 10

Review

FUNCTIONS

Introduction to Functions
Functions that Modify Output Values

39
41
45
48
50

89
89
90

6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1
8.2
8.3
8.4
8.5
8.6

Random Numbers
User-Defined Functions

Coding Mathematical Functions
Rules for Coding

Numeric Input and Output

A Caution about Functions

Review

SUBSCRIPTS AND ARRAYS

Introduction to Subscripts and Arrays
Subscripts

Using Arrays

Declaring Arrays

Using an Array as an Accumulator
Sorting with an Array

The Median

Reading a Data Set more than Once
Two-Dimensional Arrays

Matrix Operations

Order Exploding Using Arrays
Review

STRINGS AND STRING FUNCTIONS
Introduction to Strings and String Functions
Character Data and the ASCIl Coding System

String Variables

Translating from ASCIl Code to Character and Back
Basic String Operations

String Comparison

Contents

93

97
101
103
104
107
107

109
109
110
110
114
117
118
121
123
124
127
130
133

135
135
135
136
137
139
140

vii

viii

8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

10

10.1
10.2
10.3
10.4
10.5

Contents

String Concatenation

String Length Determination

Substring Selection

Substring Indexing

String Applications: Decimal Point Alignment
String Applications: Random Words

String Applications: Sorting Strings

String Applications: Input Validation

String Applications: Lower Case

Review

PROGRAM STRUCTURE AND DEBUGGING

Introduction to Program Structure and Debugging
Preventing Errors

Program Structure

Structured Programming

Program Blocks

Subroutines

The Case Structure

Debugging Techniques

Review

FORMATTING AND GRAPHICS
Introduction to Formatting and Graphics
The Tab Function

Using a Print Image

Teletype Graphics

Teletype Graphics—X-Y Plots

141
141
143
145
149
151
154
155
157
160

161
161
162
162
166
167
170
174
179
188

191
191
192
195
197
200

10.6
10.7
10.8
10.9
10.10
10.11
10.12

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12

12.1
12.2
12.3
12.4
12.5
12.6

Up with the Bar Graph

Low Resolution Graphics

High Resolution Graphics—for Apples only
Control of Data Format

Forcing Scientific Notation

Significant Digits

Real Time Displays—for PETs only

Review

FILES

Introduction to Files

Files Generally

Sequential Disk Files

Direct Access Files

PET Files

What to do if the PET Crashes
PET File Applications

TRS-80 Tape File Applications
Review

MODELS AND SIMULATIONS

Introduction to Models and Simulations
Leontief Model of an Economy

Model of a Pasture Ecosystem

Okun’s Law Simulation

A Genetics Simulation

Monte Carlo Inventory Simulation
Review

Contents

202
204
211
216
217
219
220
222

225
225
225
227
234
240
244
248
249
250

253
253
254
257
261
266
268
272

iX

13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

O 0O o)»

Contents

ADVANCED GRAPHICS TECHNIQUES

Computer Mapping

Creating a Map Coordinates File
Finding the Midrange of the Coordinates
Drawing a Map

Saving Graphic Images on Disk

Loading a Graphics Image from Disk
Printing Graphic Displays

Adding Text to your Graphics

Appendix

APPENDICES

Al~Arithenis | anMnin
i \Ig\./l FLE R I LA lvuu
Library of Subroutines
ASCIll Codes

The Editor and Cross-Reference Table Generator
Index

273

273
276
278
279
284
285
286
289
292

294

A1

C1
D1
11

PREFACE

We wrote this book hoping that it would help a wide variety of people to learn to
program a computer using the BASIC language We were motivated partly by the belief
that the ability to program a computer will become increasingly important in the
future—even for people who do not consider themselves to be computer scientists.
There is a tendency for many people to view learning how to program as a vocational
skill—much like the ability to use a calculator or typewriter. But there is a growing body
of opinion that suggests that the ability to develop and debug a computer program
contributes to the development of human problem solving skills—to the improvement
of the thinking process itself.

The text is intended for use in a beginning level one-semester BASIC course and
also by individuals desiring to teach themselves to program In addition to teaching
BASIC, we also attempt to introduce the learner to problem-solving technigues, which
include the use of a simple flexible algorithmic language In creating even a moderately
complicated program, the process is always complicated by the idiosyncrasies of the
dialect of the language available For that reason, we prefer to teach one how to
develop a solution in a simple but flexible algorithmic language and then translate it into
BASIC (Chapter 3). We have found such an approach indispensable in developing
large scale research and administrative applications in other languages

In presenting the BASIC language, we have attempted to stay as close as
possible to ANSI minimal BASIC. We do cover a number of matters—strings, files and
graphics—which are not defined in the minimal standard. We chose to focus on
microcomputers because of their greatly increasing popularity. We are convinced that
they will become increasingly important in the future Most of the BASIC syntax that we
present is common to the Apple, the PET and the TRS-80 On some occasions, we
must treat one machine separately. Such treatment is indicated clearly as boxed
material. We should point out, that while we focus attention on the three microcomput-
ers, some of our own students have satisfied some course requirements with other
systems, including Digital's MUBASIC and BASIC PLUS. On such systems, string
handling is different and high resolution graphics is not supported at all

We assume only that users of this book have an understanding of arithmetic.
Since this text is intended to be useful to a wide audience including people with

Xi

Xii

Preface

backgrounds and interests in the sciences as well as those interested in the social
sciences and humanities, some may find occasional sections that require more
detailed mathematical treatments Sections 56, 6 7, 10.9, 10 10 and 10.11 are such
sections and can be omitted. We also realize that persons who have neither a
background nor interest in mathematics will from time to time discover some equation
that will be useful to them. With this in mind, we present in sections 6.5 and 6.6 some
simple techniques whereby the nonmathematician can convert a useful equation into
one or more BASIC statements.

We give considerable attention to graphics in the belief that graphics techniques
will continue to increase in importance. We treat ''teletype’ graphic techniques that
can be used with any version of BASIC. We also treat low resolution graphics on the
Apple, the PET and the TRS-80 individually. Finally, we treat Apple high resolution
graphics separately. We end the book with a treatment of computer mapping (Chapter
13) using Apple high resolution graphics

The chapters of this text are intended for use in linear order We discuss
simulation and modeling in chapter 12 and computer mapping in chapter 13. We
believe both these chapters present interesting and useful applications that will interest
many students. However, they may be omitted if necessary.

The proarams displaved here were developed and tested on the Apple Il Plus
using Applesoft BASIC, the 8k PET, and the TRS-80 with Level Il BASIC. Some
programs were also tested on other machines Therefore, we believe that the book can
be useful in connection with a wide range of BASIC dialects.

Finally, in Appendix B, we present a number of useful subroutines that we use
from time to time in various chapters.

In the process of writing this book we have benefited from the assistance of a
number of people. We are glad to have an opportunity to express our gratitude to
Dennis J. Clayton, Bethune Cookman College, who read the manuscript and offered
numerous useful suggestions, to Nancy G Haigh, who read and reread drafts of the
manuscript in order to improve its clarity and style; to Sara Waller of PWS Publishers,
who was a patient and helpful production editor; and to our colleagues and others who
have offered various suggestions: John Biros, Mark Goldstein, Shirley Rychlicki, Doris
Simon, Victor Tenagiia and Tony Vavra. Appreciation is also extended to Jack R
Cimprich, Glassboro State College, Barry De Roos, Community College of Denver,

Norman Licht, SUNY Potsdam; Donald A. Norton, University of California, Davis;, and
Richard L Tangerman, Arkansas State University

Roger W. Haigh
Loren E. Radford

COMPUTERS—
COMPONENTS AND
TERMINOLOGY

1.1 INTRODUCTION TO COMPUTERS

This is not a text about computers. Very litlle attention will be given to computer
architecture However, in this chapter we will develop, in a very qualitative way, some of
the characteristics of a microcomputer. We do this to introduce terminology and to
clarify the way humans interact with computers.

We have chosen to link the study of BASIC with microcomputers because we
believe that language texts often fail to emphasize certain characteristics that make the
microcomputer so valuable to its user In particular, we will explore the screen
orientation of the microcomputer output. We will also treat its unique graphics and file
handling capabilities.

Because there are so many microcomputers, each with its own dialect of BASIC,
it is difficult to discuss their capabilities without reference to a specific machine or
machines. We chose to concentrate our attention on three machines: the Apple, the
PET (8k) and the TRS-80 with Level il BASIC. Selection of a computer means accepting
the resident BASIC dialect of that device Typically, the programs presented in this text
were developed on one of the three computers and then tested on the others. There
are minor differences in the dialects of the BASIC language used by each of these
computers. In most cases, we present programs that run correctly on all three
machines. However, sometimes we must present a different version of a program for a
specific machine In the relatively few cases that a specific program is designed for only
one computer, we enclose that program in a box indicating the specific computer.

1.2

Computers—Components and Terminology

Photos 1.1-1.3
The Apple (1.1), the Pet (1.2), and the TRS-80 (1.3) microcomputers. (Photo 1.1 courtesy
of Apple Computer Inc.; 1.2 courtesy of Commodore Business Machines; and 1.3
courtesy of Radio Shack, a division of Tandy Corp.)

(12) | (13)

From time to time we also present other machine-specific information in similar boxes
In discussing the BASIC language we will try to emphasize standard rather than unique
syntax. We will also consider important similarities and differences between the Apple,
the PET and the TRS-80 in the area of graphics

COMPONENTS OF A COMPUTER

The development of the microcomputer has been very rapid indeed. It has been little
more than ten years since Intel Corporation marketed the first microprocessor
(computer on a chip). Early microcomputers were experimental devices built around
microprocessors of limited capability Microprocessor capabilities have increased
rapidly The combination of improved microprocessors and the emerging BASIC

Ch.

Sec 12

Components of a Computer

language has proven to be fortunate. By 1975 low cost microcomputers began to show
significant sales outside the experimental and hobbyist markets. Sales of microcom-
puters are now expected to increase tenfold between 1975 and 1985 Most impressive
is the increase in capability of these small computers. As a result they have moved
beyond the classification of personal and home computers and are beginning to
challenge service areas formerly reserved for minicomputers. Equally impressive is
their widespread use in education

The microcomputer is similar to other computers in its basic architecture. All
computers consist of three major components: a central processing unit (CPU), a
memory, and input/output (I/0) devices The central processing unit consists of
two parts: the control unit and the arithmetic logic unit. The control unit is a
switching center through which the computer moves information to the appropriate
places and in the proper sequence. The arithmetic logic unit is appropriately named to
indicate the kinds of operations it can perform on the data. These operations consist of
the standard arithmetic operations and logical comparisons. A schematic of the
components is shown in Figure 1.1.

The central processing unit is often called the heart of the computer. If we want to
describe the CPU in anatomical terms, central nervous system might be the most
appropriate term The CPU in your microcomputer is probably a single integrated circuit
{a chip). Such a CPU is called a microprocessor. The CPU may constitute only a small
percent of the cost of your microcomputer. The cabinet in which the computer is
housed may cost as much. It is even possible to place the memory, CPU, and 1/0
functions on a single chip. However, such computers are rather limited in capability at
present

If you look inside your Apple, for example, you can identify two of the three major
components quite easily. The CPU (microprocessor) is the largest chip and is marked
with the number 6502. The memory is housed within the white bordered area and
consists of 8 to 24 chips labelled RAM, an abbreviation for Random Access
Memory The memory capacity is dictated by the number of chips and is normalty
given in kilobytes. The byte is a storage location capable of holding the equivalent of a
single character of information (for example, the letter a or the digit 7). If you have a

Figure 11
Schematic of Computer Components

Arithmetic

Logic Unit
Input- Memory
Output < >) < >

Control Unit

CENTRAL PROCESSING UNIT

Computers—Components and Terminology

16K (kilobyte) Apple, you would expect to have 16,000 bytes of RAM available.
Actually, you may have a little more since one thousand to a computer turns out to be
1024. This memory space must be shared by the instructions (your program) and by
the data. In some cases, the CPU uses some of this memory as a ‘“'scratch pad” so
that the available RAM is less than advertised. For example, the 8 Kilobyte PET has
7168 bytes of RAM available since the CPU uses 1 kilobyte. The Apple also uses part
of RAM in certain modes of operation.

The interesting thing about memory is the way it is accessed by programs.
Perhaps you have seen a large array of mail slots in a hotel or apartment complex. We
might make an analogy between these slots and the memory locations in the computer
memory. In early versions of computers the programmer was required to know how
much space was used for the program and to select numbered storage locations for
the data. The programmer kept track of these locations and the particular data stored
in them. Essentially, the programmer made a memory map Now the CPU takes care of
that job for us. The CPU behaves like a desk clerk. We simply give the clerk our name
and the mail is retrieved from the correct box. So long as the desk clerk is well and the
mail boxes are not all used, we have no problems

The input/output components of our microcomputer are the most visible parts.

Photo 1.4
The TRS-80 Model II microcomputer with line Printer 111, external disk system, and
system desk. (Photo courtesy of Radio Shack, a division of Tandy Corp.)

Sec. 13

1.3

Interaction with the Computer

Besides being quite visible, they are also quite costly, They are expensive because they
must either accommodate the limitations of a human's ability to send and receive
information (for example, a typewriter keyboard and video monitor), or because they
are rather sophisticated devices for information storage and retrieval (for example, a
disk drive). 1/0 devices provide means of communicating with the computer Most
commonly, the I/0 devices used are the keyboard and a television monitor, a disk drive
and/or a cassette tape unit

INTERACTION WITH THE COMPUTER

We mentioned earlier that the purpose of discussing computer components was to
clarify the way human beings interact with computers—sometimes called the “*human-
computer interface.” Let us consider a very simple program to illustrate this interface.
Suppose we wish to execute a program that will add two numbers together. We must
provide the following information to the computer:

The operation to be performed on the two numbers,
The source of the numbers,
The values of the numbers, and

WO =

The disposition of the result of the operation.

All of this information could be given to the computer in a set of instructions,
which we call a program. Before these instructions can be executed, they must be in
the computer’'s memory (an exception will be given in Section 1.4). We must go to the
computer’s input device and enter a program through the keyboard or instruct the
computer to retrieve the program from some other storage device. This brings us to a
method of information storage that differs from the memory we called RAM above. Disk
storage and tape storage are forms of magnetic storage which have the advantage of
permanency; the contents are not lost when the power is turned off. Suppose that the
program is stored on a floppy disk. The program calls for the entry of the two numbers
at the keyboard and the display of the sum on a video screen. Here is a possible
sequence of events-

Step 7 User types an instruction at the keyboard telling the control unit to
place the program in memory. (input)

Step 2 Control unit finds the program in disk storage and places it in
memory (RAM). (input and storage)

Step 3 Control unit sends a message to user via video indicating that the
program is stored. (output)

Step 4 User tells control unit to execute the program. (input)

6 Computers—Components and Terminology

1.4

Step 5 Control unit responds by bringing the program instructions from
memory and executing each of them in turn. (processing instructions)

Step 6 During this execution the control unit will ask for input of two values
from the keyboard by placing a prompt on the video screen. (output)

Step 7 User provides the values to control unit. (input)
Step 8 Control unit stores the values in memory (RAM). (storage)

Step 9 Control unit takes the values from memory and moves them to the
ALU for addition. (processing data)

Step 10 Control unit stores the answer in memory (RAM). (storage)

Step 11 Control unit delivers the answer from memory to the video screen.
(output)

A schematic of this process is shown in Figure 1.2

The important thing to note from this example is the complexity of this apparently
simple task. We observe that the control unit is involved in every step. With this
example we hope to illustrate the essential steps in making the computer work for us.
These steps are input, process, and output. Input steps involve giving the computer
instructions and data. The process step involves the control unit carrying out the
operations specified in the insiructions. The ouiput siep invoives ihe preseniation of
the results of the process to some device for viewing or for storage.

THE COMMUNICATION PROCESS

We would like to be able to communicate with the computer in a language that is natural
to us. In computer jargon this is a high level language. BASIC is such a language. In the
example above, we noted the critical role of the control unit. Its role is even more
remarkable when we consider that it doesn't understand the BASIC language. The

Figure 12
Input, Process, and Output Events Involved in Executing a Computer Pregram

ALU
[
9
3,6,11 591
i - < Memor
!\)I/c‘;?t(())r Cont'rol 2,8,10 . (RAM)y
1,4,7 Unit 2
Keyboard < Storage

Ch.

Sec. 14

The Communication Process

Photo 1.5
The TRS-80 Line Printer VII, an I/0 device which displays output. (Photo courtesy of
Radio Shack, a division of Tandy Corp.)

control unit cannot read the instructions we write in BASIC. It must have access to
another set of instructions that translate these instructions into machine language to
which the microprocessor can respond. This introduces additional complexities. For
example, the control unit must keep track of where it is in the sequence of stored
instructions The entire high level language program is not retrieved from storage and
translated at one time

The computer, of course, does not translate languages the way humans do. The
computer scans the instructions for certain key words and symbols. Each key word is
translated into one or more machine operations. Only certain key words have meaning
to the computer When a key word is misspelled, the computer is unable to deduce our
meaning Humans can often deduce from context what others are trying to convey.
Computers, at least in their present state of development, cannot deduce from context.
Thus, we see the need for rather rigid rules of grammar (syntax) in dealing with the
computer

Earlier we noted that to add two numbers together we needed a set of
instructions in the computer’'s memory Then we discussed a mode of operation of the
computer called program mode In program mode we ask the computer to execute a

1.5

RN

wip)

Computers—Components and Terminology

prepared set of instructions, which are stored in its random access memory (RAM). A
second mode of operation relays instructions for the performance of some arithmetic
or logical operation directly to the CPU. In this mode, called immediate mode, we ask
the computer to perform an operation by issuing an instruction at the keyboard. The
computer performs in much the same way as a hand calculator. In immediate mode, if
we type

PRINT2 + 3

the computer responds with the number 6.

Later, we will find the immediate mode convenient for checking the contents of
memory locations in the process of debugging (correcting) a program. Of course, we
also communicate directly with the CPU when we issue instructions to refrieve
programs from disk storage, execute (RUN) programs, LIST programs, and so forth.

HARDWARE AND SOFTWARE

The technical terms, hardware and sofiware, have Decome quile commonpiace.
The hardware in a computer system is generally considered to be all of the electronic
equipment including those pieces of equipment that contain operating instructions and
language translation instructions. The instructions for language translation on the
microcomputer are contained in read-only memory (ROM). The ROM is considered
part of hardware, although its function is to provide instructions to the control unit. In
contrast, software is a set of instructions which is resident in RAM as a result of placing
a program there The programs we write in BASIC will be computer software. As
software is developed it is placed on disk or cassette tape so that it need not be
entered through the keyboard each time the program is to be executed.

Throughout this text we will be concerned with the appearance of the output generated
by our programs. We discuss the screen space available for that output in this section
The screen space is defined by the number of printing lines (rows) and the number of
printing positions on each line (columns). This set of rows and columns defines the
screen grid. Fach computer must have some way of indicating that it is prepared for
input and where the next input will be printed This indication is given through the

Ch.

Sec. 16 Screen Characteristics

Photo 16
The TRS-80 screen grid is divided into printing lines (rows), and the number of printing
positions on each line determine columns. (Photo courtesy of Radio Shack, a division of
Tandy Corp.)

SR

TN

prompt and the cursor location. These characteristics for each machine are discussed
below:

APPLE

Screen space 24 printing lines each 40 characters long
Prompt | = Applesoft BASIC

> = Integer BASIC
Cursor. a blinking square

TRS-80

Screen space: 16 print lines each 64 characters long
Prompt >
Cursor. an underline

9

10 Computers—Components and Terminology

PET

Screen space: 25 printing lines each 40 characters long
Prompt the word READY
Cursor: a blinking square

The cursor locates the current position of the printing head. The next character
entered at the keyboard will appear at the current cursor location. Successive
characters entered at the keyboard will appear on the same line as in typing. If we
continue to print beyond the permitted number of spaces on a line the computer will
print the excess on the next line(s). If we print more than the number of lines per full
screen, subsequent lines will be printed at the bottom of the screen with the preceding
lines of text being moved upward one unit. This effect, called scrolling, can be
troublesome. To avoid scrolling, we need to be aware of the characteristics of our
output screen.

On some machines the cursor position can be moved to permit editing (fixing or
modifying) programs. The Apple and the PET have such controls. The TRS-80 has a
special edit mode so that movement of the cursor around the screen is not necessary.
Cursor control on the Apple and PET is discussed below.

APPLE

We recommend cursor control through use of the four keys: I, J, K, and M
whose relative positions suggest the moves they allow. To enter cursor
control mode press the ESC key once. Thereafter, using either of the four
keys will produce the movements indicated below

up
i
left J K right
M
down

To get out of cursor control mode, press any key other than one of the four
above or such special keys as RESET and CTRL. Cursor control moves
may be repeated automatically by using the REPT key simultaneously with
the appropriate move.

Exercise Set 1.1

PET

Use the four arrow keys on the top of the number pad to move the cursor
around. Note that two of the keys are accessed by using a shift key

EXERCISE SET 1.1

These exercises are designed to give you some experience with the screen and
storage characteristics of your computer. They require that you enter simple programs
and immediate commands at the keyboard. You may not understand the programs

until later.

1 The computer’'s memory (RAM) is used to store both instructions and data. This
exercise is designed to illustrate space utilized during program storage. Follow
the preliminary instructions step by step.

(a)

(b)

With the computer on, type NEW at the keyboard and then press
RETURN You have just issued an immediate command to the control unit
to clear any program and data from RAM.

Type PRINT FRE(0) at the keyboard and then press RETURN If you are
using a TRS-80, type PRINT MEM and press ENTER. The computer will
display a number that represents the number of bytes of RAM available at
this time. If the computer is an Apple, the number displayed may be
negative. In this case, add 65536 to it to obtain the number of bytes free.
Record this number.

Sometimes you will type the wrong character If you discover the error
before you press RETURN, you can easily delete the unwanted character
or characters by using the delete key—the key with the left-pointing arrow,
which is located at the right side of the keyboard. If you are using a PET,
use the key in the far upper right corner with DEL on it. One character will
be deleted each time you push the key If you have already pushed
RETURN when you discover the error, you can retype the entire line.

Type the following and then press RETURN
110 READ A

Repeat step (b). The bytes of RAM available should have decreased by
seven (eight for the TRS-80 and the PET). If the number was negative, it
becomes more negative by seven. Memory space decreases because the
computer stored one line of instructions. The seven (or eight) bytes were

11

12 Computers—Components and Terminology

used as follows

five for the line number (regardiess of its size),
one for the word READ,
one for the character A, and

one for the blank space betwen READ and A (for the TRS-80 and the
PET)

You will note that the Apple makes its own decisions about spacing at no
costin RAM The PET and TRS-80 use RAM to store spaces except for the
one after the line number. As you begin to format your programs, you will
recognize that there are advantages and disadvantages to either feature

Now enter the line 120 READ B and press RETURN (or ENTER).

Repeat step (b) and the bytes available should decrease by seven (eight for
the PET and the TRS-80)

Enter the following. Press RETURN after each line

130 LETC=A + B
140 PRINTC

i50 DATA 4,5

Compute the bytes that you think these three lines require and compare
your answer with the computer’s result by typing PRINT FRE(O) or PRINT
MEM.

Now you should be able to evaluate the memory space requirements
of programs. Recall that line numbers use five bytes, the word following the
line number (a BASIC keyword) uses one byte and each other character or
digit uses one byte Evaluate the bytes required to store each of the
following program lines

100 INPUT X

200 LETY=X+ 5
300 PRINT 'DOG"
00 PRINTY

0

END

[1Y
2 O

2 This exercise will ilustrate the use of RAM for data storage. Follow the steps
outlined below:

(a)

Type NEW and then enter the following program, pressing RETURN after
the entry of each line

100 READ A
110 PRINTA
120 DATAS

Ch

(b)

Exercise Set 1.1

Type PRINT FRE(O) or PRINT MEM, press RETURN, and record the
number of bytes free

Type RUN, press RETURN, and observe the computer print the number
five. Now type PRINT FRE(O) or PRINT MEM, press RETURN, and
compare the bytes free with the value obtained in Step (b) There should be
seven fewer bytes available as we now have data (the number five) in
memory location A. Each numeric data storage location uses seven bytes
of RAM

The immediate command CLEAR clears all data storage locations in the
computer's memory but does not remove the program instructions. Type
CLEAR, press RETURN, and again determine the number of bytes free
You should find that the seven bytes used for data storage are now
available

To compute the space required for data storage we must be able to
determine the number of memory locations set aside for data by the
program. This is usually determined by counting the variables used by the
program. Variables will be discussed in more detail in Chapter 2. The
demonstration program in problem 1 above used three variables A, B, and
C It would require twenty-one bytes for data storage. Determine the space
required for program and for data storage in the following program:

110 INPUTA
120 LETC=A+ 5
130 PRINTC

Determine the program and data storage space needed for the programs
below:

(a)

100 INPUTA,B
110 LETC=A*B
120 PRINTC

130 END

100 READ A,B,C

110 LETD=A*B +C + 75
120 PRINT C

130 DATA 4,5,6

140 END

This problem consists of three exercises designed to demonstrate screen
characteristics

(a)

Type NEW, enter the following program pressing RETURN (ENTER) after
each line, and then type RUN and press RETURN (ENTER)

13

14 Computers— Components and Terminology

APPLE

100
110
120
130
140
150
160

HOME

FORI=1TO 4

PRINT "0123456789"

NEXT |

PRINT

PRINT "40 COLUMNS ARE AVAILABLE - COUNT THEM"
END

PET

100
110
120
130
140
150
160

PRINT CHR$(147)

FORI=1TO4

PRINT '0123456789';

NEXT I

PRINT

PRINT '40 COLUMNS ARE AVAILABLE - COUNT THEM"
END

TRS-80

100
110
120
130
140
150
160

CLS

FORI=1TOS8

PRINT "12345678";

NEXT |

PRINT

PRINT '64 COLUMNS ARE AVAILABLE - COUNT THEM"
END

To see your program after it is entered, type LIST and then press
RETURN

Type NEW, enter the program below and follow the instructions of Step (a)
above. Select the appropriate version of the program for the machine you
are using

Ch.

Exercise Set 1.1

APPLE

100
110
120
130
140
150
160
170
180

HOME

FORI=1TO 24

PRINT TAB(38) I;

IF | < 24 THEN PRINT

NEXT I

VTAB 1

HTAB 1

PRINT "24 ROWS ARE AVAILABLE - COUNT THEM"
END

PET

100
110
120
130
140
150
160
170

PRINT CHR$(147)

FORI=1TO25

PRINT TAB(35) I;

IF I < 25 THEN PRINT

NEXT |

PRINT CHR$(19)

PRINT "25 ROWS ARE AVAILABLE - COUNT THEM"
END

TRS-80

100
110
120
130
140
150
160

CLs

FORI=1TO 16

PRINT TAB(38) I;

IF 1 < 16 THEN PRINT

NEXT |

PRINT @ 1, "16 ROWS ARE AVAILABLE - COUNT THEM'
END

Type NEW and enter the program below. If you are using a TRS-80,
substitute CLS for HOME. If you are using a PET, substitute PRINT
CHR$(147) for HOME . LIST and RUN the program

100 HOME
110 FORI=1TO 30

15

16 Computers—Components and Terminology

120 PRINT TAB(l)"'SCROLLING"

130 FORJ = 170 200 : NEXTJ

140 NEXTI

150 PRINT "'NOTE THAT WHEN WE REACHED THE"
160 PRINT 'BOTTOM OF THE SCREEN, THE LINES'
170 PRINT "BEGAN TO 'SCROLL UPWARD."

180 END

Review
We summarize the new terms introduced in this chapter.

MICROCOMPUTER a computer in which the central processing unit is a micropro-
cessor. (Section 1.1)

BASIC an acronym for a high level computer language entitled Beginners’ All-
purpose Symbolic /nstruction Code. (Section 1.1)

BASIC DIALECT a version of the BASIC language characteristic of a certain

vvvvvvvvvv

D s 2 N o Pt s PN T £ G N2 ST T IS
maCninic OF SUINWai© USVIUPSH. (OCLLUI t i

MICROPROCESSOR a central processing unit on a single integrated circuit (chip).
(Section 1.2)

CPU an acronym for Central Processing Unit. The CPU consists of two subunits
called the control unit and the arithmetic logic unit. (Section 1.2)

170 an abbreviation for input/output. I/0O may refer to the processes of information
exchange with the CPU or to the devices, which are used in these processes. (Section
1.2)

MEMORY storage locations in which instructions (a program) or data may be
located. (Section 1 2)

CONTROL UNIT the part of the CPU that handles the flow of information during
execution of a program. The control unit also handles functions relating to retrieval,
storage, and displaying of instructions or data. (Section 1.2)

ARITHMETIC LOGIC UNIT (ALU) the part of the CPU which periorms arithmelic
operations and makes comparisons. (Section 1.2)

RAM an acronym for Random Access Memory that can be used for storage of
program instructions and data during execution of a program. (Section 1.2)

KILOBYTE a unit of storage capability containing 1024 memory locations (two to
the tenth power) (Section 1.2)

Ch.

Review

PROGRAM a set of instructions to the computer written in some language that the
computer understands or can translate. (Section 1.3)

DISK STORAGE a form of permanent storage for programs or data that allows
rapid recording and retrieval on a random basis. (Section 1.3)

TAPE STORAGE a form of permanent storage for programs or data that is
accessed sequentially and that requires a longer access time than disk storage
(Section 1.3)

HIGH LEVEL LANGUAGE a language that allows computer instructions to be
written in English-like statements. (Section 1.4)

MACHINE LANGUAGE a language to which the CPU can respond directly.
(Section 1.4)

SYNTAX 1ules of expression for any language to which the computer is expected to
respond. (Section 1 4)

PROGRAM MODE a mode of computer operation in which the control of the
computer is given over to the instructions in a stored program. (Section 1.4)

IMMEDIATE MODE a mode of computer operation in which instructions are given
directly to the CPU from the keyboard. (Section 1.4)

HARDWARE those built-in parts of the computer that permit it to function as
advertised. (Section 1.5)

SOFTWARE computer programs that link with the hardware to adapt the computer
to the needs of the particular user. (Section 1.5)

ROM an acronym for Read Only Memory that is used by the computer to store fixed
instructions. ROM might contain instructions for translating a high level language to
machine language. (Section 1.5)

SCREEN GRID a term that considers the screen to be composed of a grid of
printing positions. (Section 1.6)

SCROLLING text movement up the screen as additional lines are printed at the
bottom. (Section 1 6)

CURSOR CONTROL movement of the cursor (printing position) through the use of
certain keys {(Section 1.6)

17

ELEMENTARY
PROGRAMMING
TECHNIQUES

2.1 INTRODUCTION TO ELEMENTARY

PROGRAMMING TECHNIQUES

A computer is a machine that “‘manipulates symbols by following the instructions in a
computer program.”* A computer program is a sequence of instructions written in a
language that the computer understands A computer's native tongue is machine
language, which consists entirely of numbers. In the last chapter we pointed out that
higher level languages, such as BASIC, have been developed so that computer
programs can be written in a language more easily understood by humans. Such
programs are then translated into machine language by a compiler or translator. The
computer will execute the machine language version of the program

In this chapter we will concern ourselves with very rudimentary programs, which
illustrate the following.

1 Storing data in memory under program control,
2 Output of data from memory under program control, and
3 Arithmetic operations on data.

The program is entered into the computer as a series of statements, each

*Rich Didday and Rex Page, FORTRAN FOR HUMANS, 2d ed , (St Paul: West Publishing Co.,
1976), p.3

19

20

2.2

2.3

Elementary Programming Techniques

preceded by a number. The order of the statement numbers determines the order of
their execution, unless the program itself dictates the altering of that order. In this
chapter we will only consider programs that are executed in the sequence of their
statement numbers.

PROGRAM ENTRY

We enter our program (sequence of instructions) by typing them on the microcomputer
keyboard. Before beginning to enter a new program, type:

NEW and then press RETURN. (Apple and PET)
NEW and then press ENTER. (TRS-80)

This step clears any program that may be in memory. We are now ready to enter
a program. Suppose we are preparing a program to accomplish the addition of two
numbers as described in the last chapter. We write such a program as follows

100 INPUTA

110 INPUTB

120 LETC-A +B
130 PRINTC

140 END

Our program contains five instructions. Each instruction consists of a statement
number foliowed by a word. The word is called a keyword. The keyword makes it
possible for the BASIC interpreter to identify the instruction to be performed.
Sometimes more than one keyword is used in the same line. Certain letters and
arithmetic symbols are also present within this program.

To enter this program we type each line just as it appears above. At the end of
each line, press the RETURN (ENTER) key and enter the next line. To view the
complete program when it is entered, do the following:

Type LIST and then press RETURN (ENTER)

The computer will display what you have entered

THE NATURE OF A VARIABLE

in the example program in Section 2.2 we see the letters A, B, and C. These letters are
called variables in the program. A variable is a symbolic name for a memory location

Ch. 2

Sec. 2.3

The Nature of a Variable

used to store an element of data in our program. In mathematics, we often consider a
variable to be a symbolic representation of a whole range of values. In a computer
program, the variable represents a single well-defined quantity. That quantity can
change values under program control, but it cannot have more than one value at any
given time.

It is common in scientific literature to distinguish between dependent variables
and independent variables. A dependent variable is one that depends upon other
variables and constants for its value. For example, in the statement

120 LETC=A + B

C is the dependent variable. In this statement, the value of C depends upon the values
of Aand B In contrast, both A and B hold their values independently of whatever value
C may have. For these reasons, A and B are classed as independent variables.
Statement 120 above is characteristic of a class of statements called arithmetic
assignment statements. In such statements, the dependent variable appears alone
on the left hand side of the expression, and the independent variables appear on the
right hand side.

The number of variable names which can be used in BASIC is limited. The
variable names above consist of single letters. Longer names, involving alphanumeric
characters, are permitted. An alphanumeric character is a letter or one of the ten digits
The computer usually ignores all but the first two characters. Thus, to the computer, the
names A12 and A13 are identical. A variable name in BASIC must begin with a letter It
may be followed by other letters, other decimal digits, or a blank space (some BASICs
require the second character to be a digit or a blank). Since there are twenty-six letters,
one blank space, and ten decimal digits, we would expect to have 26 x 37 = 962
variable names. However, we fall slightly short of this number because certain
reserved words cannot be used in variable names

Reserved words are words that have special meanings in the BASIC language.
The keywords discussed above are examples of reserved words. We noted that LET
is a keyword. As a result, a variable name such as BULLET is not permitted. As
another example, the word *“TO"" would appear to be a valid variable name. However,
TO is a keyword and will not be accepted Other examples will be given in the
exercises. Use of a single character variable name or a single character and digit will
avoid any conflict with reserved words. However, we will use longer, more descriptive
names in this text to identify certain variables more precisely. We do need to be careful
in the selection of these longer variable names.

The rules above imply that special characters such as #, $, %, &, (, and so forth
are not permitted in variable names. We will find some exceptions to this general rule as
we continue. For example, $ has a special meaning in a variable name.

21

22 Elementary Programming Techniques

EXERCISE SET 2.1

1.

=

2.4

Determine which of the following are invalid variable names Give a reason in
each case

BB BALANCE MONEY
3A T& FIVE+
LEGALTENDER Al # C123
BOOKLIST FORK PAY RATE

Note: A quick way to see if the computer will accept a variable name is to enter in
immediate mode PRINT NAME where NAME is the test name Unacceptable
names will cause the printing of an error message. An important exception to this
is an invalid variable name such as 3A, which begins with a digit

Enter and LIST the following programs

Program 1

100 LETC =7

110 LETCSQR =C"2
120 PRINT CSQR
130 END

Program 2

100 LET SALESPRICE = 5.75

110 LET TAXRATE = .04

120 LET COST = SALESPRICE * (1 + TAXRATE)
130 PRINT SALESPRICE, COST

140 END

Observe carefully the result of running these programs. In each case, error
messages are generated, indicating that we have chosen illegal variable names.
What new reserved words have you discovered?

Ty A

TORING VALUES 1

In the last chapter, we pointed out that the computer in program mode typically
retrieves data from memory. We might logically ask how such data gets into memory in
the first place. Three methods of data storage are possible They are

1 The LET statement, also called the arithmetic assignment statement,
2 The INPUT statement, which retrieves data values from the keyboard, and

Ch. 2

Sec. 2.4

Storing Values in Memory

3 The READ statement, which retrieves data values from DATA statements
within the program itself.

We consider each of these methods in turn.

In the last chapter, we noted that every computer has a certain amount of
memory (RAM) that is able to hold a representation of numeric or character values.
Each memory location has a unique numeric address within the computer. Therefore, it
is possible to store a specific value in a specific memory location However, BASIC
makes it easier for us by allowing the use of variable names to store values in the
computer. Let us consider the following statement:

100 LETX = 19

This statement instructs the computer to select a memory location for the
variable X and to store the value 19 in that location Therefore, it is unnecessary for us
to know the exact memory address of any particular value. The computer creates a
cross reference table or memory map, which contains the memory address associated
with each variable.

Consider one more example of an arithmetic assignment statement:

120 LETC=A+8B

This statement instructs the computer to locate the value stored in the memory
location associated with A, add it to the value stored in the memoty location associated
with B, and then store the resulting value in the memory location associated with €. The
arithmetic assignment statement is then used not only for placing values in storage, but
also to indicate the operations to be performed on independent variables.

We should note that statement 120 above looks like an equation. However, it
should be viewed as an assignment statement-—a method of giving a value to variable
C. This distinction will become more important when we encounter arithmetic
assignment statements that are nonsensical as equations.

The next form of entering information into memory is through the INPUT
statement. In the example program shown earlier in this chapter, Section 2 2, two
statements containing the keyword INPUT appeared.

100 INPUT A
110 INPUTB

When the computer encounters such a statement during program execution, it
will print a question mark at the terminal. This question mark is a signal to the user that
the computer is waiting for a value for A to be entered (line 100). The user responds by
typing a value and pressing the RETURN key. The computer then moves to line 110
and repeats the process but then assigns the entered value to B

The final form for entering data into storage is through the READ statement. The
READ statement works in a manner similar to the INPUT statement except that values
are retrieved from a data set within the program itself, rather than from the keyboard.

23

24 FElementary Programming Techniques

2.9

Consider our example addition program as modified here:

100 READ A

110 READ B

120 LETC=A+B
130 PRINTC

135 DATA 27,36
140 END

Notice the appearance of an additional line, (line 135) This line provides data
internal to the program. The DATA line is necessary because of lines 100 and 110 that
instruct the computer to seek data within the program. When line 100 is executed, the
computer will find the first value on the DATA line and assign that value to the memory
location associated with A. Upon execution of line 110, the value thirty-six will be
assigned to the variable B.

In summary, there are four keywords associated with storage of values in
memory. These are:

LET-—for assigning constants or the results of operations,
INPUT—for entering values at the keyboard, and
READ and DATA—for entering values contained in the program.

At this point, we should mention that the use of the keyword LET is not
necessary in most BASIC systems. That is, we might have written

120 C=A +B

in the preceding program and the same operations would have been performed.
However, the use of LET reminds us that we are dealing with an assignment statement
and not a statement of mathematical equality. Its use also preserves a certain
symmetry, having all statements begin with a keyword. You may choose to dispense
with the LET. When you do so, we hope you wil read the equals sign as "'is assigned
the value of .

ARITHMETIC OPERATIONS

The example program in Section 2.4 indicates the operation of addition in statement
120. Arithmetic operations will appear only in arithmetic assignment statements in
this text. It is possible to output the results of operations without the intermediate
storage step, but we do not recommend such a practice. The permitted arithmetic
operations are:

Ch 2

Sec. 2.5

Arithmetic Operations

-+ Addition

— Subtraction

* Multiplication

/ Division

" Exponential (up arrow (1) for the PET and the TRS-80)

In using the operators above we need to understand how the computer responds when
combinations of operators appear in the same expression. For example, consider the
following statement:

120 LETV=3 +5*2

When the computer executes this statement, what value will be stored for V? Wil
the computer add 3 to 5 to get 8 and then multiply the result by 2 to get 167 Or will it
multiply 5 by 2 to get 10 and add 10 to 3 to get 137

The computer is bound by a set of rules that answers these questions for us. This
set of rules is called the hierarchy of operations. If you have studied this hierarchy in
mathematics, you will find it the same here. The hierarchy of operations follows:

1 Quantities within parentheses are evaluated first using rules 2, 3, and 4
following. Innermost parentheses must be evaluated first

2 Among the arithmetic operations, exponentiations are performed first.

3 Multiplications and divisions are performed next—the order is unimportant
4 Additions and subtractions are performed last—the order is unimportant.

The following worked examples illustrate this hierarchy
100 LETV = 3 * 2°3 + 4 evaluates in the following manner:
Step 1 2°3=8
Step 2 3*8=24
Step 3 24 + 4 =28
100 LET C = (3 + 8) * 5 evaluates in the following manner-

Step 1 3+8=11
Step 2 11*5 =55
100 LET A1 = (2 * (1 + 5)) + 12/2 evaluates in the following manner:
Step 1 1+5=6
Step 2 2*%6 =12
Step 3 12/2-=6
Step 4 12 + 6 =18

25

26 Elementary Programming Techniques

EXERCISE SET 2.2

1 Write BASIC statements to accomplish the following:
(a) Obtain the value of CASH from the keyboard.
(b) Enter data values 34, 45, and 79 into a program
(c) Obtain values for X and Y from within the program
(d) Assign to BALANCE the product of PRINCIPAL and PERCENT.
(e) Assign to QUOTA the value 565
2. Write BASIC statements that will cause the following expressions to be evaluated
and assigned to the variable RESULT:
(a) F divided by the quantity T + 30
(b) the product of A, B, and C
(c) thesum of 21 and 5 squared
(d)

d) the product of the quantities S and R + 1

3. Evaluate the following expressions:
(a) 3+4757 2
(b) (80 -2%3)/4
(c) 20—~(15+2%*3)/3
(d) (6*(1+3))/3
(e)
(f)

28/(5 + 4/2)
(4*9 —6)/(1+3*3)

B

Evaluate each of the expressions in problem 3 in immediate mode by entering the
command PRINT followed by the expression. Check to see that the results
agree with your hand calculation.

Output from the computer to the video screen is accomplished through the use of
statements with the keyword PRINT. We will use the PRINT statement for two
purposes: to deliver values stored in memory to the screen and to deliver character
strings found in the program to the screen. It should be clear that the operation of
printing is nondestructive to the data in memory. That is, a value is printed and yet
remains unchanged in memory. The term ‘‘character string” refers to any printable
characters on the keyboard. Printable characters include the alphanumeric characters

Ch 2

Sec. 26

Obtaining Output from the Program

and special symbols. Delivery of data from memory allows us to see the results of a
computation that may have been stored there Such statements take the form:

130 PRINTC

This statement instructs the computer to deliver the value stored in the location
associated with variable C to the screen

The second common use of the PRINT statement is to place prepared
messages, character strings, on the screen. Examples are:

110 PRINT ‘ENTER THE VALUE OF A"
120 PRINT "THE ANSWER IS’

Notice that the character string to be printed is enclosed within quotation marks
Combinations of data and character strings may be contained in a single PRINT
statement For example, we might write

150 PRINT 'THE ANSWER IS ";C

The BASIC language provides certain punctuation that can be used with our
output This punctuation is used with the PRINT statement to control the format of the
output. The punctuation consists of commas and semicolons. The function of each is
discussed below

The comma *," is used to control placement within groups of columns called
fields. The following programs illustrate the use of the comma and field structure. They
are different because the field structure is different on each computer

APPLE

100 PRINT '0123456789ABCDE’,
110 PRINT "0123456",'0123456"
120 PRINT 1,2,3

130 PRINT ,2,

140 PRINT 3

150 PRINT 1,,3

A run of this program appears as follows:

0123456789ABCDE 0123456 0123456
1 2 3

2 3
1 3

You should note the presence of the three fields The first two are sixteen
characters wide and the third is eight characters wide Access to the third
field is denied if the string printed in the second field is too long.

27

28 Elementary Programming Techniques Ch. 2

PET

100 PRINT'012345678',

110 PRINT'"012345678",'012345678',"012345678"
120 PRINT 1,2,3,4

130 PRINT,2,

140 PRINT 3

150 PRINT 1,,3,4

A run of this program appears as follows:

012345678 012345678 012345678 012345678

1 2 3 4
2 3
1 3 4
TRS-80

100 PRINT "0123456789ABCDE",'0123456789ABCDE",
110 PRINT "0123456789ABCDE",'01234567"

120 PRINT 1,2,3,4

130 PRINT ,2,

140 PRINT 3

150 PRINT 1,,3,4

A run of this program appears as follows:
0123456789ABCDE 0123456789ABCDE 0123456789ABCDE 01234567

1 2 3 4
2 3
1 3 4

There is room for a full fifteen characters in the fourth field of the TRS-80

Note that we were able to obtain blank fields by the appropriate use of commas

N e il Lo Limnis tho fia n o v
i \/LA VVHI VVulIL l.\l IIIV\/\JUH’—‘Il\J (i gty llu!d Churactcvlshc f"f ,h.”‘ hﬁmp' l‘.'('\}‘ fnr ‘y/n.' Qn'{

Ordinarily, every execution of a PRINT statement causes BASIC to begin printing
a new line. We say that a print statement is followed by a /ine feed However, because
the last character in statement 130 was a comma, the line feed was suppressed and
the next value was printed by statement 140 on the same line.

The semicolon *';"" used between variables or character strings causes minimum
spacing between output It also suppresses the line feed. The following program
ilustrates the effect of the semicolon.

Sec. 26

Obtaining Output from the Program 29

100 PRINT 1;2;3;'A";'B"
110 LETX = 20

120 PRINT 'HE WAS';X;'YEARS OLD."
130 PRINT 'HE WAS "X;' YEARS OLD."

The program output is displayed below for each computer

APPLE

123AB
HE WAS20YEARS OLD.
HE WAS 20 YEARS OLD.

PET AND TRS-80

123 AB
HE WAS 20 YEARS OLD.
HE WAS 20 YEARS OLD.

Note that in order to intermix numbers with text we need to leave appropriate
spaces. Some computers leave a space before and after a positive integer so that
numbers are more easily integrated into the text. The PET and the TRS-80 provide this
kind of spacing.

We began this chapter with a discussion of a program that illustrated the steps of
input, processing, and output. Let us look at that program again.

100 INPUTA

110 INPUTB

120 LETC=A +B
130 PRINTC

140 END

When we run this program we see the following

?21
?12
33

This is not very informative. Our program needs to be clarified so that a user may
understand what is happening without looking at the program listing. We insert the
following statements.

30

Elementary Programming Techniques

90 PRINT "THIS PROGRAM SUMS TWO NUMBERS'
95 PRINT "ENTER THE FIRST NUMBER";

105 PRINT "ENTER THE SECOND NUMBER";

130 PRINT "THE SUM OF “;A;"' AND ";B;"IS ";C;"."

Omit extra blanks for PET and TRS-80
With these statements a run of the program appears as follows:

THIS PROGRAM SUMS TWO NUMBERS
ENTER THE FIRST NUMBER 221
ENTER THE SECOND NUMBER 2?12
THE SUM OF 21 AND 121S 33.

The semicolons in lines 95 and 105 cause the prompts **?"" to be printed on the
same line as the request for data because the line feed was suppressed. We also
repeat the input in the final line of output, using semicolons to construct a sentence with
proper spacing.

in discussing punctuation, we should also note that the comma can be used with
READ and INPUT keywords to store multiple values in memory with a single
statement. For example,

100 READ X,Y

will cause the computer to seek values in a BATA line for two values and store them as
variables Xand Y.
Similarly,

100 INPUT X,Y,Z

will cause the computer to seek three values from the keyboard for assignment to XY,
and Z.

EXERCISE SET 2.3

Write programs that will accomplish the following

1. Read three vaiues from a data line and print therm in the three fields on a single
line “
2. Input two values from the keyboard, add them together, and print the entered

values in the first two fields and the sum in the third field.

3. Read a value from a data line and print the word TOTAL in the first field and the
value read in the third field.

4 Print in the folloWing order your last name, first name, and middle initial in the first
three fields.

Sec 2.7

2.7

Editing the Program

5 Input a value from the keyboard, multiply it by .05 and save this value as the
variable TAX. Add TAX to the value entered and call the result SPRICE . Print the
character strings LPRICE, TAX, and SPRICE in the three fields on one line. On
the next line print the value entered, the value of TAX and the value of SPRICE in
three fields.

6 Determine values for all variables in the following programs after they are run

(a) 100 READ A
110 LETC =2 +4*A
120 PRINTC
130 DATAG6
140 END

(b) 100 READ X,Y
110 LETZ = (X/Y + 30)/X" 2
120 PRINT X,Y,2
130 DATA 4,2
140 END

(c) 100 LETC-=5
110 LETD = (C + 10)/3
120 PRINT 'D IS EQUALTO "D
130 END

7 Display the output of each preceding program in the format in which it will appear
on the computer screen.

EDITING THE PROGRAM

For our uses, editing will indicate the process of making changes in a program already
entered into the computer. Obviously, we review (edit) handwritten programs before
entry into the computer Editing should begin as soon as the program is entered.
Before executing the newly entered program, verify that the program in the computer's
memory is identical with what was supposedly entered. Do this by listing the program
and checking for data entry errors.

Errors involving omissions of entire statements are corrected by typing in the
missing statements. The computer is not concerned with the time sequence in which
our statements are entered, only their numerical sequence is important.

To remove unwanted statements, we simply type the statement number and then
press RETURN (ENTER). This enters a blank statement, which replaces the existing
statement. Most systems allow blocks of statements to be deleted For example, on
the Apple this is accomplished by typing DEL 150,200 followed by a RETURN. This

31

32

Elementary Programming Techniques

deletes statements 150 through 200. On the TRS-80, the command is DELETE

150-200. The PET has no command for deletion of blocks of statements.

Correction of a program statement is somewhat more difficult. Correction by
retyping the entire line is, of course, always acceptable and may be quicker with short
lines. The alternative to retyping a statement is editing it on the screen (or in edit

mode on the TRS-80).
The following examples will illustrate the editing procedure:
Change of a character. Consider the line:

100 PRINT "MY NOME IS JOHN."

1

We want to correct the misspelling of NAME.

APPLE

—

Type LIST 100 and press RETURN.

2 Press ESC to enter cursor control mode

3 Move the cursor using the combination of 1, J, K and M keys until it is
over the 1in 100

4 Copy line 100 using the right arrow key. Use this key to move the
cursor over the U in NOWME. Now press the A key io repiace U wiiiy
A Continue to copy by pressing the right arrow key until the end of
the statement is passed.

5 Press RETURN at this point and LIST to see that the line is
corrected

PET

1 Type LIST 100 and press RETURN

2 Use the cursor keys to move by the shortest path to the letter O. With
the cursor over O, press A to replace O with A.

3 Press RETURN and LIST 100 to see the correction

TRS-80

1 Type EDIT 100 and press ENTER

2 Use the space bar to move the cursor between the letters N and Q in
NOME.

3 type 1CA. This instructs the computer to replace the next single
character with A (one change a)

4 Press ENTER to get out of EDIT mode

Ch 2

Sec. 27

Editing the Program

2 Deletion of character(s). Consider the line:
100 PRINT "MY NAME IS IS JOHN."

We have inadvertently typed the word IS twice. Corrections are:

APPLE

k.

Follow steps 1, 2, and 3 above.

2 Use the right arrow key to move to the space between the two IS’s.
Press ESC and the K key three times to move to the space in front of
JOHN.

3 Press the right arrow key to copy the remainder of the quotation.

PET

—

Type LIST 100 and press RETURN.

Use cursor moves to place the cursor between the two 1S’s Press
the DEL key three times.

3 Press RETURN to copy the corrected line.

NS

TRS-80

1 Type EDIT 100 and press ENTER

2 Use the space bar to move the cursor until it is between the two
IS’s.

3 Type 3D and press ENTER to get out of edit mode. 3D means
delete the next three characters.

3 Addition of character(s). Consider the line:

100 PRINT "MY NAME IS JOHN."
Suppose we intended to include JOHN's last name of SMITH

APPLE

1 Follow Steps 1, 2, and 3 above to place the cursor over the number 1
in 100
2 Use the right arrow key to move the cursor over the period after N

33

34 Elementary Programming Techniques

3 Press ESC and cursor to any blank space on the screen. Type
SMITH with a blank in front of it. (Be careful doing this since the first
key pressed causes no action other than termination of cursor
mode)

4 Press ESC and cursor back over the period

5 Use the right arrow key to copy the rest of the line and then press
RETURN.

PET

1 Cursor to the period
2 Press the INSERT key six times to make room.
3 Type SMITH preceded by a blank and press RETURN

TRS-80

Type EDIT 100 and press ENTER

Move the cursor between the N and the period
Type I followed by a space and then SMITH.
Press ENTER to finish the edit mode

B N e

The need to edit may first come to our attention because of an error message
given by the computer during an attempted RUN of the program. The error message
will give a brief indication of the type of error and the line in which it occurred. You
should consult the list of error messages (see Chapter 11) when you begin to write
programs

We include in this section a new BASIC keyword. This keyword REM is used to
designate a remark statement. The remark statement is used to identify parts of a
program. This statement permits the programmer to enter any text desired on the same
line with the REM keyword. The computer ignores the contents of the remark statement
during program execution. When the program is listed the remark statement appears in
its normal line order We illustrate the use of this statement 3s follows:

100 REM —-— SQUARE 6-4-8i
110 PRINT 'NUMBER',"SQUARE’
120 REM -- READ NUMBER
130 READ A1

140 REM -- SQUARE NUMBER

Exercise Set 2.4

150 LETA2 =A1"2

160 REM —~- PRINT TABLE
170 PRINT A1,A2

180 DATA 11

190 END

EXERCISE SET 2.4

1. The following exercises are intended to provide practice in screen editing.

(a)

Enter the following program line Then type NEW to clear the memoty and
recover the line in memory by copying it off the screen. (PET and Apple
only)

100 PRINT "THIS IS AN EXERCISE IN COPYING."

Enter the following program lines and correct them as indicated by screen
editing (or by using EDIT mode).

100 LETC-A+ B
(Place = sign after C)

110 LETR=(A + (B - C)/D
(Insert missing parenthesis after C.)

120 PRINT "THE ANSWERR IS";A
(Correct the spelling of "ANSWERR' and insert a blank after "IS")

Insert appropriate REM statements in the following program in order to identify

the purpose of the program and the major steps involved.

110 INPUT PRICE

120 DISCOUNT = .20

130 TAX = .05

140 NET = (PRICE * (1 — DISCOUNT)) * (1 + TAX)
150 PRINT NET

insert appropriate character strings to prompt for the input and identify the output

in the following program:

120 INPUT LONG
130 INPUT WIDE
140 AREA = LONG * WIDE
150 PRINT AREA

35

36 FElementary Programming Techniques Ch 2

Review
We summarize the new terms and the new syntax introduced in this chapter

STATEMENT NUMBER the number preceding a program instruction This number
normally determines the order of execution of the statement. (Section 2. 1)

VARIABLE a symbolic name for a memory location. (Section 2.3)

ARITHMETIC ASSIGNMENT STATEMENT a statement in which a variable
receives a value by assignment within the program. The value received may result from
the evaluation of combinations of other variables; that is, from a computation. (Section
2.3)

RESERVED WORD a word that has special meaning in the BASIC language and is
to be avoided in variable names. (Section 2.3)

ARITHMETIC OPERATION one of the operations of addition, subtraction, multipli-
cation, division, or exponentiation. (Section 2.5)

HIERARCHY OF OPERATIONS a set of rules that dictates the order of arithmetic
operations in a mathematical expression. (Section 2.5)

OUTPUT PUNCTUATION sermicolons and commas used to pack output or {o
arrange it in fields. (Section 2.6)

SCREEN EDITING correction of BASIC statements by combinations of cursor
control and copying. (Section 2.7)

EDIT MODE a special mode of operation that permits the correction of errors in
program statements (TRS-80) (Section 2.7)

Basic SYNTAX

LET a keyword designating that an assignment of a variable value will follow.
(Section 2.4)

INPUT a keyword indicating that a variable value will be entered at the keyboard
(Section 2.4)

READ a keyword indicating that a variable value will be found within the program.
(Section 2 4) .

DATA akeyword preceding data values stored within the program. (Section 2.4)
REM a keyword preceding remarks internal to the program. (Section 2.7)

NEW animmediate command used to clear the memory of program instructions and
data. (Section 2.2)

PREPARING
A COMPLETE
PROGRAM

3.1 INTRODUCTION TO PREPARING A

COMPLETE PROGRAM

In this book our purpose is to help the reader develop the ability to use a computer as a
problem-solving tool. This process-—usually called programming—consists of two
unique tasks. The first is the formulation of an unambiguous and logically correct
procedure for solving a given problem, and the second is the translation of such a
procedure into a form acceptable to a computer. The first of these tasks is far more
challenging and intellectually demanding, while the second is more mechanical. Too
often computer programming—and efforts to teach it—tend to concentrate on the
second task. "'A computer programmer is first and foremost a solver of problems ' *
Developing the ability to use a computer as a problem-solving tool leads us to
consider programming in a different context. The programming process becomes an
opportunity to develop our skills in problem analysis. “With the advent of computers,
the task of constructing and debugging programs has provided an ideal domain for
students to develop their problem-solving skills.''t Therefore, we suggest that
programming has value that extends beyond the solution of specific problems with a

*Jean-Paul Tremblay and Richard D Bunt, An Introduction To Computer Science: An Algorithmic
Approach. (New York: McGraw-Hill, 1979,)p. 34

t Technology In Science Education—The Next Ten Years, a publication prepared for the
National Science Foundation, 1979, p. 23.

37

38 Preparing a Complete Program

3.2

computer. We hope to develop an approach to programming that will emphasize this
value For the student of programming who lacks the prerequisite training in problem
solving, “the approach and method of analysis are . . more significant than the details
of the programming language.”*

in this chapter, we wili suggest a procedure for problem-solving that is specifically
adapted to the development of a computer program. We have been influenced in this
effort by the often-cited work of G. Polya 1 Polya suggests a four-step sequence for
solving problems:

Step 1 Understand the problem,
Step 2 Devise a plan,

Step 3 Carry out the plan, and
Step 4 Look back

Each of the steps outlined by Polya is relevant to the preparation of a computer
program. However, for purposes of program development, we will expand these four
steps into seven steps These seven steps, presented in Section 3.2, will more
accurately reflect the problem-solving sequence as it applies to the development of a
computer program.

A PROBLEM-SOLVING MODEL

We have identified two unique tasks for the programmer. Here we attempt to place
these tasks in the context of a general problem-solving model 1t is not important that
you accept this specific model in all its details However, you should develop some
systematic scheme for attacking a problem. Such a scheme must defer coding until the
solution procedure is at hand. Too often we hasten to the coding phase without having
developed a procedure for solving the problem

Our model consists of the following seven steps:

Step 1 Clarify the problem.

4

Step 1 (Polya)

Step 2 Identify input and output.

3

Step 3 Develop a procedure for the solution of the }Sz‘ep 2 (Polya)

problem

*Richard Conway, David Gries, and David Wortman, Structured Programming Using PL/1 and
SP/K (Cambridge. Winthrop, 1977) preface by Wortman

+G Polya, How Fo Solve It (Princeton, New Jersey. Princeton University Press, 1971), pp
1-29

Ch. 3

Sec. 3.3 The Nature of an Algorithm 39

Step 4 Hand check the procedure and revise as

necessary
Step 5 Code the algorithm Step 3 (Polya)
Step 6 Run the program with trial data, debugging as

necessary

Step 7 Refine and document the program. }Step 4 (Polya)

Steps 3 and 5 (algorithm development and coding) will receive the most attention in this
text, since they are the tasks normally associated with programming.

3.3 THE NATURE OF AN ALGORITHM

Programming is a form of communication. Weinberg has written that “‘programming is
at best a communication between two alien species,"* the two species being human
kind and computers. But computer programming is also a form of communication
between humans. The author of a program is communicating with those who will use
the program and with those who will later modify it, which includes the author. Such
communication is a matter of major concern to those professionally involved in
programming.

We noted above that programming consists of two unique tasks, commonly
called algorithm development and coding. An algorithm, which is a fundamental
concept in computer science, can be informally described as a series of steps used to
solve a problem. More formally, an algorithm has been defined as “a sequence of
operations that, when executed, will produce a result and terminate in a finite amount of
time."t An algorithm is the product of a systematic analysis of the problem to be
solved. It is a document expressed in an English-like language that indicates the
detailed operations to be followed in solving the given problem. The aigorithm is then
coded or translated into a language that the computer understands, such as BASIC or
FORTRAN. Schematically, algorithm development can be depicted as follows:

Problem Analysis Algorithrm —— Coding ——— Program

In summary, an algorithm is a procedure for performing a particular task. The
procedure must have the following characteristics:

*Gerald M. Weinberg, The Psychology Of Computer Programming, (New York: Van Nostrand
Reinhold, 1971), p. 214.

tSchneider, Weingart, and Perlman, An introduction to Prograrnming and Problem Solving with
Pascal, (New York: John Wiley & Sons, 1978), p 20

40 Preparing a Complete Program Ch. 3

1 “Upon completing the execution of each step, we will always know the
identity of the step to be executed next.

2 There is a single clearly defined starting point and one or more clearly
defined stopping points.

3 In all cases, the algorithm will terminate after a finite number of steps.

4 The algorithm is composed of primitives whose meaning is clear and
unambiguous to the person or machine executing it.”"*

Initial formulations or drafts of an algorithm usually do not conform to this
definition, but an algorithm will have to be successively refined until it does conform
Primitive operations are “'the most sophisticated and complex operations that the
person or machine executing the algorithm is capable of directly performing and that
do not have to be broken down into more basic steps.” 1

Since another purpose of this book is to assist the reader in developing the ability
to code programs in the BASIC language, readers may wonder why we consider it
necessary to use an algorithmic language as well. Several reasons exist. First of all,
BASIC is not the only programming language and many readers of this book will
eventually find themselves learning another language. The algorithmic approach is
independent of BASIC and every other computer language (although it bears a
resemblance to several of them). Once you develop the algorithmic technique, you can
use il to write programs that you may then code in languages other than BASIC.
Secondly, the algorithmic language is designed to accommodate the human mental
process rather than computer hardware. It avoids the syntactic restrictions of various
programming languages, which tend to complicate the process of problem-solving. As
we will soon see, our algorithmic language has some fairly strict rules, but it is flexible
and easy to use. Algorithmic languages are superior to English (or French, for that
matter) because they are less ambiguous. We have chosen to use an algorithmic
language because it ‘represents a compromise between the representational
extremes of natural language (the language we speak and write) and ... [a]
programming language "'

A summary of the elements of our algorithmic language, also called pseudocode,
can be found in Appendix A Readers familiar with other computer languages will detect
the influence of such languages as Pascal, Cand PL/1 §

“Schneider, et al., pp. 22-23

t Schneider, et al., p 22

Schneider, et al , p. 31

§The following works have significantly influenced our thinking on this matter and upon
programming generailly
Brian W Kernighan and P J Plauger, The Elements of Programming Style, Second edition (New
York: McGraw-Hill, 1978)
Brian W. Kernighan and P J Plauger, Software Tools, (Boston. Addison-Wesley, 1976)

Sec. 34

3.4

Pseudocode lllustrated

PSEUDOCODE ILLUSTRATED

To infroduce our algorithmic language (which we will sometimes call AL for
short), we solve a sample problem. Suppose we are to write a program that computes
and displays the value of the area of a circle. We first look at our problem-solving
model

Step 1 is concerned with problem clarification. Although the stated problem is
relatively straightforward, a programmer may have to make decisions about such
things as the sowrce and nature of input data, the output desired, the degree of
precision desired, and so on. In the case of professional programmers, such decisions
will probably be made in consultation with eventual users of the program. In this simple
problem, we might ask what information is needed to compute the area of a circle. In
the process of problem clarification, we find a formula that relates area to radius and
the value of = (3.14 . .) That formula is,

area = wr?

where rrepresents the circle radius. It appears that our problem is to input values for =
and the radius and then compute the area. Step 1is complete when we understand the
problem and select a name for our algorithm.

PSEUDOCODE RULE 1

The first statement in each algorithm both names it and marks its starting
point. This name is written in upper case followed by a colon.

We choose CIRCLE. as the first statement in our algorithm

Step 2 in our model concerns identification of input and output guantities. This
identification includes choosing names for variables representing those quantities. This
step is frequently referred to as identifying knowns and unknowns in the solution of
mathematical problems. Knowns are the input; unknowns are the output. We recognize

Gerald M. Weinberg, The Psychology of Computer Programming, (New York: Van Nostrand
Reinhold, 1971)

Kenneth L. Bowles, Problem Solving Using Pascal, (New York- Springer-Verlag, 1977)

Brian W. Kernighan and Dennis W Ritchie, The C Programming Language, (Englewood Cliffs:
Prentice-Hall, 1978).

41

42

Preparing a Complete Program

that we must provide two knowns as input (w and r) in order to compute the unknown
area. We select variable names that suggest the quantities they represent (AREA,
RADIUS, and Pl)

PSEUDOCODE RULE 2

All variables in a program must be declared as to type and size. Variable
names are written in upper case.

In our algorithmic language, there are two types of variables: numeric and string.
The latter will be discussed in Chapter 8. For the present, we will limit ourselves to
variables of standard size, temporarily ignoring size specifications. From the above, we
can see that our program will require three variables, all numeric. Our algorithm now
looks like this:

CIRCLE
declare numeric AREA, RADIUS, Pl

Step 3 requires that we develop a procedure fo solve the problem. That is, we
must arrive at the unknowns (output) by manipulating the knowns (input) in some
fashion. As noted above, we must supply values for Pl and RADIUS. Thereafter, the
program should display the value of the area. We establish the value of Pl, a constantin
our program, by use of the algorithmic statement: set Pl to 3.14. We generalize this with
the following rule:

PSEUDOCODE RULE 3

All constants 1o be used in a program receive their value by a "'set . . to
' statement *

In our algorithmic language, there is only one input instruction and one output
instruction.

*This statement will also be used to assign initial values to counters and accumulators

Ch 3

Sec. 3.4 ' Pseudocode llustrated 43

PSEUDOCODE RULE 4

Input and output of variables is expressed generically, without reference to
particular input/output devices.

The format is:

get(VARIABLE)
put(VARIABLE)
put(“MESSAGE"")

For example:
get (RADIUS)

means that the program should get a value for the variable RADIUS without indicating
where that value should come from. Similarly,

put(AREA)

means to display the value of AREA on some output device to be specified later. In
addition to displaying the values of variables, the put instruction can be used to display
messages. We can cause a program to identify itself and give directions to its user by
printing messages such as:

put(*THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF A CIRCLE")
put(“ENTER THE RADIUS")

put ()

Anything enclosed within quotation marks will be displayed on the output device
exactly as written. The last of the three put statements prints a blank line.

In our algorithmic language both the get and put statements are generic; that is,
they do not imply any specific input or output device. As a result, we are able to
postpone making such device selections until we translate our pseudocode to BASIC.

Combining all these statements, our program expressed in algotithmic language
is as follows:

CIRCLE:

declare numeric AREA, RADIUS, PI

setPlto 3 14

put(“THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF A CIRCLE")
put ()

put ("ENTER RADIUS"")

get (RADIUS)

44

Preparing a Complete Program

We now have all the known information (Pl and RADIUS) in memory and are ready to
compute the area

PSEUDOCODE RULE 5

Variables will receive new values within the program by use of the
arithmetic assignment statement («—).

In our example, we write:
AREA «— PI ¥ RADIUS = 2

If we were to read this statement out loud, we would say, “AREA gets the value of Pl
times the RADIUS squared.” If it is more convenient, you can use the equal sign (=) in
place of the replacement symbol («) bt the latter is preferred. Having computed the
area, we are ready to display the result.

put(*THE AREA IS, AREA)

Note the combination of message and numeric output.
To signify the end of the algorithm, we write “'end.”

PSEUDOCODE RULE 6

The end of every program unit is marked by “‘end.”

Finally, our algorithm is complete.

CIRCLE:

declare numeric AREA, RADIUS, PI

setPlto 3. 14

put(“THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF A CIRCLE™)
put()
put("“ENTER RADIUS")
get(RADIUS)

AREA <« Pl * RADIUS * 2
put(*'THE AREA IS", AREA)
end.

—_——

Ch. 3

Sec. 3.5

3.9

Coding the Algorithm

In Step 4 we indicated that it was necessary for us to handcheck the algorithm.
That is, we should follow the steps in the algorithm and generate the output by hand
calculation. As we follow the program, we note that the value of Pl has been set. A
message about the program’s purpose has been displayed. The program then asks for
a value for radius and accepts that value. Let us assume that we entered the value 5,
The program computes AREA as:

AREA «—-3.14*¥5°2
AREA <« 78.5

The program then displays a message, as follows:
THE AREA IS 78.5

and terminates We seem to be able to follow the program through and deliver the
output.

So far our efforts in developing this small program are completely independent of
all programming languages. At this point, we could decide to translate our algorithm
into any programming language with which we were familiar (our Step 5). Because we
are also concerned here with teaching readers to use the BASIC language, we will now
address ourselves to the second part of the programming task, the transtation of our
algorithm into BASIC.

CODING THE ALGORITHM

To accomplish Step 5 in our problem solution, we must translate the algorithmic
representation of our program into BASIC. It should be borne in mind that both the
algorithmic version and the BASIC version to be created, are of equal importance. The
BASIC version can be executed but the algorithmic version helps us to understand what
our program is supposed to do We can consider our algorithmic version to be a
blueprint for the BASIC program to be created, a written record of our problem-solving
procedure. This may seem to be a duplication of effort, but the independent value of
both versions of a program will become apparent as we move on to more complicated
problems. Next, we will take each line of our algorithm and translate it into BASIC
adding commentary as required.

AL
CIRCLE:

BASIC
100 REM---CIRCLE 9-1-80

45

46

Preparing a Complete Program

Since BASIC does not provide syntax for naming programs (except when saving them
on disk or tape), we use a REMARK statement to indicate the program’s name. We
also follow the practice of including the date when the program was written. As you
may recall, anything may follow the characters REM in a BASIC statement. This feature
provides us with a simple way of inserting an explanation into the program itself. The
contents of a REM statement are not scanned for syntactic validity.

AL

declare numeric AREA, RADIUS, PI

BASIC

110 REM INPUT VARIABLES: Pl, RADIUS
120 REM OUTPUT VARIABLES: AREA

This instruction in our algorithm has no counterpart in the BASIC language . All variables
are numeric unless their names end with a dollar sign, in which case they are string
variables. We translate the statement for documentation purposes again by using the
REM statement

AL

setPlto 3. 14
BASIC

130 Pl =3.14

In the BASIC language there is no separate syntax for initializing constants so we use
the ordinary arithmetic assignment statement. We still prefer to use the different syntax
in our algorithmic language because we believe that it enhances our understanding of
the algorithm. The next three statements all display information and can be treated as a
group

put(“THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF A CIRCLE"™)
put()
put("ENTER RADIUS™)

BASIC

140 PRINT "THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF
A CIRCLE"

150 PRINT

160 PRINT "ENTER RADIUS"

Ch. 3

Sec 3.5 Coding the Algorithm 47

The translation here is rather straightforward. The middie statement merely prints a
blank line.

AL

get(RADIUS)

BASIC

170 INPUT RADIUS
By choosing to use the BASIC input statement, we have opted to retrieve the value of
the radius from the keyboard.

AL
AREA < PI * RADIUS "~ 2

BASIC
180 AREA =Pl * RADIUS " 2

The transiation here takes the form of a standard arithmetic assignment statement like
those you have seen in the previous chapter.

AL

put (“THE AREA IS"" AREA)
BASIC
190 PRINT '"THE AREA IS",AREA

Here again the translation is simple.

AL

end.

BASIC
200 END

Our translation work has gone smoothly and now we can look at the BASIC
version in its entirety:

48 Preparing a Complete Program

3.6

100 REM~~-CIRCLE 9-1-80

110 REM INPUT VARIABLES: PI, RADIUS
120 REM OUTPUT VARIABLES: AREA
130 Pl = 3.14

140 PRINT "THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF
A CIRCLE"

150 PRINT

160 PRINT "ENTER RADIUS'

170 INPUT RADIUS

180 AREA = Pl * RADIUS "2

120 PRINT "THE AREA IS",AREA

200 END

We are now ready for Step 6, which is to run the program. A run with the trial data
used earlier is shown:

RUN

THIS PROGRAM COMPUTES AND DISPLAYS THE AREA OF A CIRCLE
ENTER RADIUS

?5

THE AREA IS 78.5

As a result of the agreement between this answer and the hand calculation plus the
absence of error messages, we are reasonably certain that our program is working
correctly.

COMPLETING THE JOB—
DOCUMENTATION

Finally we are ready for Step 7—the refinement and documentation of our program.
This example program is certainly of limited value, so we probably would not refine it
further. Documentation refers to the production of explanatory material that helps a
user understand the program. If we follow the procedure of variable identification within
the program, we have already accomplished some of the documentation work Further
use of REM statements may be appropriate in more complex programs. It is helpful to
conceive documentation as being of two types: internal and external. Documentation
found within a program, is called internal documentation. Internal documentation
usually takes the form of REM statements. But careful choice of variable names also
contributes to internal documentation.

External documentation is found outside the program, usually in the form of
written explanatory material There are two types of external documentation, which we

Ch. 3

Exercise Set 3. 1

believe foster good programming habits: the cross-reference table and the
variable list. A cross-reference table is a list of variable names with the line numbers
of the statements in which the variables are used A cross-reference table for CIRCLE
appears below. For a small program such as this one, a cross-reference table can be
easily created by hand. In Appendix D we describe a BASIC program which will create a
cross-reference table by reading and processing your program

CROSS-REFERENCE TABLE
AREA 180 190
Pi 130 180

RADIUS 170 180

A variable list is a kind of program dictionary that defines each variable used in a
program. A variable list must be created by hand. Its contents may differ depending
upon the programming language used and other factors. We consider the following
approach to be a minimal one. You may find it useful to add other attributes to the list.

Variable List for CIRCLE

AREA The area of a circle to be computed by the program.

Pl A constant with the value 3.14

RADIUS A variable retrieved from the keyboard containing the value of the
radius of a circle.

EXERCISE SET 3.1

1 Consider the completion of Step 1 (clarify the problem) and Step 2 (identify the
input and output) for the following problems and list specific decisions you must
make:

{a) Wirite a program in algorithmic language that computes the volume of a
sphere.

(b) Write a program in algorithmic language that computes the area of a
triangle.

(c) Write a program in algorithmic language that computes the sales price of an
item whose list price is reduced by 25 percent.

2. Develop algorithms for the solutions of problems 1(a), 1(b), and 1(c) based on
your work in problem 1

3. Code the algorithms in problem 2

49

80 Preparing a Complete Program Ch. 3

4. Complete the seven-step sequence begun in problem 1 by running and
documenting the three programs.

5 Translate the following pseudocode into BASIC:

get(PRICE) data source is the program
get(TAX,DISCOUNT) data source is the keyboard
put(" THE ANSWER IS”, TOTAL)

set RATE to 0.05

VOLUME «— P! ¥ RADIUS ~ 2 * HEIGHT

PRICE «—(LIST — DISCOUNT) * TAXRATE

put (PRICE,DISCOUNT)

6 Translate the following algorithms to BASIC:

(a)

Review

TEMPERATURE

declare numeric FTEMP, CTEMP

put('‘ THIS PROGRAM CONVERTS FAHRENHEIT TO CENTIGRADE™)
put(“ENTER THE FAHRENHEIT TEMPERATURE"")

get(FTEMP)

CYEMP «— 5 * (FTEMP — 32)/9

put(“ THE CENTIGRADE TEMPERATURE IS”" ,CTEMP)

end.

PRINCIPAL :

declare numeric RTE, COMP, DEP, NBALANCE, YEARS
put("THIS PROGRAM COMPUTES THE BALANCE ON AN INTEREST
DRAWING DEPOSIT")

put(""ENTER DEPOSIT"")

get(DEP)

put(""ENTER ANNUAL INTEREST RATE")

get(RTE)

put("ENTER FREQUENCY OF COMPOUNDING PER YEAR")
get(COMP)

put("ENTER YEARS ON DEPOSIT")

get(YEARS)

NBALANCE «— DEP * (1+RTE/COMP) " (YEARS * COMP)
put("THE NEW BALANCE IS"", NBALANCE)

end

We summarize the new terms and syntax introduced in this chapter.

ALGORITHM a sequence of primitive operations that will produce a result in a finite
number of steps The algorithm is expressed in an English-like language (Section 3 3)

Review

PRIMITIVE OPERATION a step in an algorithm whose meaning is clear, unambigu-
ous and ready for execution without further refinement. (Section 3.3)

ALGORITHMIC LANGUAGE the language used to express an algorithm. (Section
3.3)

PSEUDOCODE another name for an algorithmic language. (Section 3.3 and 3.4)

INTERNAL DOCUMENTATION explanatory material entered within the text of a
program through the use of remark statements. (Section 3.6)

EXTERNAL DOCUMENTATION explanatory material developed by the program-
mer to help a user understand and modify the program. (Section 3.6)

CROSS-REFERENCE TABLE a form of external documentation, which includes
the names of all variables used in a program and the line numbers in which they occur
(Section 3.6)

VARIABLE LIST a form of external documentation that defines each variable used
in the program. (Section 3.6)

51

4.1

4.2

SIMPLE LOOPS
AND DECISIONS

INTRODUCTION TO LOOPS
AND DECISIONS

Although the computer is extremely fast, we would probably not see it in such
widespread use if each step in a process had to be separately programmed. For
example, if a separate program had to be written to determine each customer account
balance in a large business, the program size would soon become overwhelming.
Fortunately, only the numerical entries differ from account to account. The process of
arriving at a balance is the same for each account. Once the process is programmed it
is only necessary to devise a method by which the program will repeat itself until all
accounts have been analyzed. Such an internal repetition process within a program is
called a Joop. Without loops to perform repetitive processes our computing ability
would be severely limited.

THE SIMPLE LOOP

We wish to develop a program that accepts as input the shelf price of an item, adds
sales tax, and computes a total price. The pseudocode might look like this:
PSEUDOCODE

PRICE:
declare numeric SHELFP, TAXR, SALESP

53

54 Simple Loops and Decisions

set TAXRto 5

get (SHELFP)

SALESP «— SHELFP 4 SHELFP * TAXR / 100
put ('SALES PRICE IS $” SALESP)

end.

We code this as follows:

BASIC

100 REM -- PRICE~---11-20-80

110 REM INPUT VARIABLES: SHELFP

120 REM LOCAL VARIABLES: TAXR

130 REM OUTPUT VARIABLES: SALESP

140 LET TAXR =5

150 INPUT SHELFP

160 LET SALESP — SHELFP + SHELFP * TAXR / 100
170 PRINT "SALES PRICE IS $'; SALESP

180 END

When we run this program with sample data we obtain:

? 25.40

SALES PRICE IS $26.67

If we want to use the computer as a sort of cash register at a checkout stand in a
grocery store, we could modify this program to handle more than one item. We add a

line 175:
175

GOTO 150

Here we encounter a new keyword GOTO which has the effect of transferring
control from line 175 to tine 150. Upon entry of a second price the computer will add tax
and print out the sales price for the new item and again ask for a price. In fact, this
process will continue indefinitely because we have produced an infinite loop from which
we cannot escape. The Joop portion of the modified program and its pseudocode

follow:
PSEUDOCODE BASIC
loop
get (SHELFP) 150 INPUT SHELFP
end loop 175 GOTO 150

The pseudocode for this new structure consists of the terms loop and end loop.
However, our inability to escape from the loop is unsatisfactory. We should be able to

Sec. 4.2 The Simple Loop 55

develop an instruction that will allow the program to terminate under the uset's control.
Let us change the program to provide a means of exiting the loop. We show the
essential parts of this change in pseudocode and in BASIC.

PSEUDOCODE BASIC
loop
get (SHELFP) 150 INPUT SHELFP

if (SHELFP < 0) break 155 IF SHELFP < O THEN 180

end loop 175 GOTO 150
180 ...

We have introduced a pseudocode expression
if (condition) [break]

that gets us out of the loop. Such an expression translates into BASIC as
IF condition THEN line number

The IF-THEN is BASIC syntax, which gives us a means of making a conditional
transfer. The GOTO introduced earlier is an unconditional transfer. Study the relation
between the pseudocode version and the BASIC version of the simple loop. Note that
the “end loop" in pseudocode becomes a GOTO (unconditional transfer) The
beginning of the simple loop is not specifically translated into code, because in the
coded version both the loop beginning and its end are specified in the GOTO
statement. The beginning of the loop is the destination of the GOTO statement

A run of this program for three items might look like this:

?25.40

SALES PRICE IS $26.67
? 5.60

SALES PRICE IS $5.88
?9.20

SALES PRICE IS $9.66
2 -1

We have managed to get out of the loop by entering a negative number. Note
that statement 155 reads:

155 IF SHELFP < O THEN 180

This statement causes the computer to determine if the input value is less than
zero. If itis less than zero, the program transfers control to line 180, which is the end
statement. In the IF-THEN syntax a line number following THEN is interpreted as
GOTO the line number If the price is not less than zero, the program control passes to

56 Simple Loops and Decisions Ch. 4

the next program statement (160 in this case). A negative value has been chosen to
terminate the program since it is unlikely that the price of an item would be negative. A
value that causes a program to exit a loop is called a frailer value.

The program above illustrates what we will call a simple loop. The rules for
writing such a loop in pseudocode are given here

PSEUDOCODE RULE 7

Simple loops will be delineated by the words loop and end loop. Between
these markers are the pseudocode statemenis for the repetitive opera-
tions. The simple loop must contain an additional structure called a loop
exit. The parts are shown below

loop

loop contents
loop exit
end loop

The loop exit can be anywhere in the loop depending upon the program

PSEUDOCODE RULE 8

In pseudocode simple loops may be exited by use of the break
statement—either as part of a logical if statement or standing alone.
if (condition) [break]
or
[break]

4.3 THE IF-THEN STATEMENT

The IF-THEN statement used in the simple loop permits branching within a program
depending upon the evaluation of a logical expression. This capability is central to the
information processing power of computers. Computer programs can contain instruc-
tions that change the path through the program

Sec. 4.4

4.4

Relational Operators

IF-THEN statements are really compound statements containing two segments:
(1) a logical expression and (2) a dependent statement. Consider the following
example-

Logical Dependent
Expression Statement
155 IF SHELFP <0 THEN 180
160
180 END

The logical expression involves a statement of the relative size of two quantities.
In the BASIC syntax the logical expression is found between the IF and THEN. Typical
logical expressions are:

WIDTH > LENGTH
X"2+2*X<3
Y>>0

SUM = O

Note that every logical expression contains a relational operator (<, >, or =), A
list of relational operators can be found in Section 4.4. In IF-THEN statements, the
logical expression is evaluated in order to determine whether it is true or false. Only if
the logical expression evaluates as true is the dependent statement executed. In the
case SHELFP < O in our example program, control passed to statement 180 when
— 1 was entered as SHELFP . In the previous three entries the condition SHELFP < O
evaluated as false and control passed to statement 160 (the next statement).

RELATIONAL OPERATORS

When we compare two variables and/or expressions, three results are possible:

1 The two may be equal,

2 The first may be greater than the second, or

3 The second may be greater than the first.

But while there are three alternatives for describing the relation between the two
variables and/or expressions, a logical expression can only be evaluated in terms of

two alternatives—true or false. For this reason relational operators (>, =, <) are
combined to describe the two alternatives. Operator combinations and their comple-

57

88 Simple Loops and Decisions Ch. 4

ments are shown in Table 4-1. We will see the need to understand these complements
when we begin to implement decision structures later in the chapter

Table 4-1
Operators and Their Complements

Operator Meaning Complement
< Less than >=
> Greater than <=
= Equal <>
<> Not equal =
<= Less than or >
equal to
>= Greater than <
or equal to

EXERCISE SET 4.1

1. Translate the following pseudocode (fragments of programs) into BASIC
(a) loop
get (ACCT,OBAL, ,PAYMENT)
NBAL «— OBAL * (1 + SURCHG) — PAYMENT
put (ACCT,OBAL,NBAL)
OBAL < NBAL
end loop

How would you describe this loop? What is being done in the loop?
(b) loop
get (SCORE)
if (SCORE < 0) break
ADJSCORE «— SCORE + (100 — SCORE) / 3
end loop

) S n

How wouid you describe ihis loop? What is being doneg”

2. Write programs in pseudocode to accomplish the following.

(a) Determine the discounted prices of items reduced by 25% using a simple
loop. Allow for an exit from the loop

(b) Determine the new balance of accounts subject to additional monthly charges, interest,
and reduction by payments. Use a simple loop

Sec. 4.5

4.5

Variations on Loops—Counters

3. Identify the logical expression, relational operator, and the dependent statement
in each of the following:

(a) 1501IF Y <> O THEN 200

(b) 1501F 3* X + 1> 10 THEN 300
(c) 150IF X" 3 <= 1 THEN 100

(d) 150 IF PAYM < .1 * BAL THEN 200

4 Translate the pseudocode fragments in problem 2 above into BASIC

5. Write the correct pseudocode to accomplish the following:

(a) Transfer out of a loop when Yis greater than ten.

(b) Transfer out of a loop when Y + 1is greater than or equal to X.

(c) Transfer out of a loop when Nis greater than your age.

(d) Transfer out of a loop when the payment received (P) is at least $50
(e) Transfer out of a loop if X is less than or equal to ten.

VARIATIONS ON LOOPS-—COUNTERS

We have considered terminating the simple loop by entry of a number (called a trailer
value) in a given range In the example in Section 4.4, this was accomplished by
entering a negative price

In some cases we may want the loop to repeat a specified number of times. To
accomplish this we may enter a counter in the loop. Consider the following algorithm,
which is designed to print the first nine integral multiples of five. An integral multiple is a
product of the number and an integer.

MULTIPLE:

declare numeric NUMBER, MULTIPLE

set NUMBER to 0

loop
increase NUMBER by 1
if (NUMBER = 10) break
MULTIPLE «— 5 * NUMBER
put(MULTIPLE)

end loop

end

The variable NUMBER serves as a counter. Its value on any pass through the
loop represents the number of times the loop has been executed Note that the counter
was set at an initial value of zero before the loop was entered

59

60

4.6

Simple Loops and Decisions

We have introduced a new bit of pseudocode above that involves the phrase
“increase ... by ..." The BASIC translation of such an expression will be an
arithmetic assignment statement with the named variable (NUMBER in this case)
appearing on both sides of the equal sign. The exact franslation

PSEUDOCODE BASIC
increase NUMBER by 1 LET NUMBER = NUMBER + 1
The BASIC transiation of the entire program would ook like this:

100 REM -- MULTIPLE 11-24-80

110 REM INTERNAL VARIABLE: NUMBER
120 REM OUTPUT VARIABLE: MULTIPLE
130 LET NUMBER =0

140 LET NUMBER = NUMBER + 1

150 IF NUMBER = 10 THEN 190

160 LET MULTIPLE = 5 * NUMBER

170 PRINT MULTIPLE

180 GOTO 140

190 END

The use of counters in programs wiii aiways be accompanied by a process of
initialization of these counters. The term initialize means to give a variable an initial
value. Under ordinary circumstances, counters and accumulators are initialized by
setting them to zero. Some computers will initialize all variables to zero automatically,
but it is good practice to include the initialization step whether required or not. Thus, in
our pseudocode version, whenever we use an "increase . . . by .. ." we will expect to
finda “'set. . .to.. " earlier in the program. In Section 4.6 we will write the rule for this
new pseudocode syntax

In the example program above we used the statement LET NUMBER =
NUMBER -+ 1. Writing this statement without the LET would give the appearance of
an equation that does not make sense, that is,

NUMBER = NUMBER + 1

it is for this reason that we have stressed that the equal sign in arithmetic assignment
statements signifies assignment (in this case reassignment) of value to a variable.

VARIATIONS ON LOOPS—
ACCUMULATORS

Accumulators are frequently used in loops to carry a running total. Consider the
problem of summing a specified number of positive integers We write a program in
pseudocode as follows:

Ch. 4

Sec. 46 Variations on Loops—Accumulators 61

INTEGERSUM:
declare numeric LARGE, NUMBER, SUM
put(""HOW MANY INTEGERS")
get(LARGE)
set NUMBER to O
set SUM to O
loop
increase NUMBER by 1
increase SUM by NUMBER
if (NUMBER = LARGE) break
end loop
put(*THE SUM OF THE FIRST" LARGE “INTEGERS IS”’ SUM)
end

Note that this program treats SUM in much the same way as NUMBER. From the
last section we recognize NUMBER as a counter. The variable SUM is known as an
accumulator. It differs from a counter in that it is incremented by the value of a variable
rather than a fixed amount each time the loop is executed. The accumulator should be
initialized just as the counter was in Section 4.5. We translate the pseudocode above
into BASIC:

100 REM --~ INTEGERSUM 11-24-80

110 REM INPUT VARIABLE: LARGE

120 REM LOCAL VARIABLE: NUMBER

130 REM OUTPUT VARIABLES: LARGE, SUM
140 PRINT "HOW MANY INTEGERS";

150 INPUT LARGE

160 LET NUMBER =0

170 LETSUM =0

180 LET NUMBER = NUMBER + 1

190 LET SUM = SUM + NUMBER

200 IF NUMBER = LARGE THEN 220

210 GOTO 180

220 PRINT 'THE SUM OF THE FIRST ";LARGE;' INTEGERS"
230 PRINT'IS ";SUM;"."

240 END

Again note that the BASIC translation of the “increase .. by . ." syntax
involves an expression with the quantity being incremented on both sides of the equal
sign. The key lines here are 170 and 190.

170 LETSUM =0
190 LET SUM = SUM + NUMBER

We should now recognize that the counter introduced in Section 4.5 is a special
form of an accumulator. The pseudocode for counters and accumulators is described
here.

62 Simple Loops and Decisions

PSEUDOCODE RULE 9

Counters and accumulators will be incremented using the expression,
increase VARIABLE by AMOUNT

or the expression
decrease VARIABLE by AMOUNT

where AMOUNT will usually be the value 1 for counters

One more example may serve to illustrate the functions of counters and
accumulators. To compute the arithmetic mean of a series of values we must compute
the accumulated total of the values and divide that total by the number of values.
Suppose we wish to enter the values to be averaged at the terminal. If we are using
grades in the range from 0 to 100, we could use any negative value or any value above
100 for a trailer value. Remember that the trailer value serves to trigger the exit from the
loon. Consider the following program in pseudocode form-

AVERAGE:
declare numeric NUMBER, SUM, AVERAGE, VLUE
set NUMBER to 0
set SUMto 0
loop
get (VLUE)
if (VLUE < 0) [break]
increase NUMBER by 1
increase SUM by VLUE
end loop
AVERAGE «— SUM / NUMBER
put (AVERAGE)
end

This program translates into BASIC as follows'

100 REM -- AVERAGE 11-30-80

110 REM INPUT VARIABLE: VLUE

120 REM LOCAL VARIABLES: NUMBER, SUM
130 REM OUTPUT VARIABLE: AVERAGE

140 LET NUMBER =0

150 LET SUM =0

160 INPUT VLUE

170 IF VLUE < O THEN 210

Sec 4.6

Variations on Loops —Accumulators

180 LET NUMBER = NUMBER + 1
190 LET SUM = SUM + VLUE

200 GOTO 160

210 LET AVERAGE = SUM / NUMBER
220 PRINT AVERAGE

230 END

Below is a sample run of the program:

?23
?34
?45
?56
767
?78
?7-9
50.5

Note that the last value of VLUE is not a “‘real” data value. It differs from all the
other values in that it is not intended to be accumulated into the sum, but merely to
serve as a trailer value or a flag indicating that there is no more data to be read. For
that reason, our program must test the vaiue before, not after, itis added to the running
total SUM In this program, any negative value will serve as trailer value.

The exits illustrated above were triggered by entering a number in a specified
range. This required the user to have knowledge of the program in order to select an
appropriate trailer. However, we could arrange to exit by printing instructions to the
user. As an example, consider a modification of our program AVERAGE In this
modification the user enters the data at the keyboard. The size of the data set is
determined by the user terminating the data entry loop at the appropriate time.

AVERAGE:
declare numeric NUMBER, SUM, VLUE, AVERAGE
set NUMBER to 0
set SUM to 0
loop
put (""NOW ENTER A VALUE")
put (A NEGATIVE VALUE WILL TERMINATE DATA INPUT"")
get (VLUE)
if (VLUE < 0) [break]
increase SUM by VLUE
increase NUMBER by 1
end loop
AVERAGE «— SUM / NUMBER
put (AVERAGE)
end

63

64 Simple Loops and Decisions Ch. 4

The addition of a single line of pseudocode has advised the user of the method
of terminating the program. Some precautions are necessary to avoid accidental
termination. More careful methods of screening responses may be necessary. For
example, 99 can not serve as a trailer value if the range of expected input values is
from 1 to 100. So too, any negative value cannot be interpreted as an end of data
trailer if the range of expected input values runs from — 100 to 100 In this case any
value less than — 100 can serve as a trailer or flag value

EXERCISE SET 4.2

1. Write programs in pseudocode to accomplish the following

(a) Generate the first twelve integral multiples of 3, thatis, 3,6, .., 36, usinga
simple loop

(b) Generate the first N integral multiples of X, where N and X are positive
integers to be entered at the keyboard. This is a generalization of the
program requested in problem 1(a).

(¢) Generate the course averages for students each of whom has taken four
examinations of equal weight. Use the number 9999 as a trailer value.

(d) Modify example program PRICE (Section 4.2). The modified program
should do the following

(

1} Print the shelf price of each item without adding tax.
(2) Keep a running total of the shelf prices

(3) Allow for a conditional transfer from the loop upon entry of a trailer
value.

(4) Total the shelf prices, add tax, and determine a total price.
(5) Output the number of items purchased, the total shelf price, the total
tax, and the total price.
2 Convert each of the pseudocode programs above into BASIC.

3 Convert the following pseudocode (program fragments) into BASIC
(a) put {"ENTER MARK FOR EACH COURSE USING THE CODE.")

set GVL.UE to O
set TCRED to O

Sec. 4.7

Decision Structures—-Single Alternative

loop

get (MARK)

if (MARK < 0) break

get (CREDIT)

increase GVLUE by MARK * CREDIT
increase TCRED by CREDIT

end loop

GPA <— GVLUE / TCRED

put ("GRADE POINT AVERAGE IS" GPA)
get (NS)

loop

set TNUMto O
set TMARK to O
set GSUM to O
setNBR to 0
loop
get (MARK)
if (MARK < 0) break
increase TNUM by 1
increase TMARK by MARK
end loop
AVE «<— TMARK / TNUM
put (AVE)
increase GSUM by AVE
increase NBR by 1
if (NBR = NS) break

end loop
CLAVE < GSUM / NBR
put (CLAVE)

Identify the counters and accumulators in problem 3(b).

Construct the additional pseudocode to make complete programs of the
fragments in problem 3

4.7 DECISION STRUCTURES—

SINGLE ALTERNATIVE

One factor that contributes to the utility of computers is their ability to perform different
tasks depending upon specific conditions. For example, it is common for a program to
perform a logical test and, as a result, select one of several alternative courses of

65

66

Simple Loops and Decisions

action. Those parts of programs, which perform such steps, are commonly called
decision structures or control structures because they govern the flow of control
within a program. They are also the most common locus of confusion and error within a
program. All computer languages provide some facility for decision structures; but
some provide a variety of well-designed structures while others provide only a few
awkward ones. Unfortunately, BASIC is in the latter category. For that reason we
present some basic generic decision structures in our algorithmic language and
demonstrate how they can be translated into BASIC.

While we have stressed using the IF-THEN statement to terminate a simple loop,
we will probably find it used more frequently to select a particular path within the
program. To understand its use in this manner we introduce some new terminology

Single Alternative Decision Structure

A program segment that causes a group of statements to be executed only
if a certain condition exists

We introduced single alternative decision structures at the end of Section 4.3. At
that point we did not show their relation to the remainder of a program. A single
alternative decision structure in a real-life situation might serve as an example.
Suppose you receive these instructions: **On your way home, stop at the pizza parior. If
it is open, bring home a large pepperoni pizza and a pint of iossed saiad.”

No alternative action has been specified. You would assume that if the pizza
parlor is closed, you will proceed home in the normal manner. You would also assume
that after buying the pizza (if the parlor is open) you are to proceed home in the normal
manner. Buying the pizza and the salad is the single alternative that delays your
movement home. We can represent such a structure in the following manner

if (pizza parior is open)
[buy a large pepperoni pizza
buy a pint of tossed salad]
continue home

(task if condition is true)

Although this is the most natural way to consider the problem, the BASIC syntax
we are using does not support this structure (at least without introducing multiple
statements on a line). Recall that we can use a transfer in conjunction with the IF-THEN
statement If our logical condition is false we need to transfer over the true tasks. But
the transfer occurs only if the logical condition is true Thus, we need to use the
complement of the original relational operator in the logical expression to effect the
proper transfer. If BASIC had a larger vocabulary, we might be able to make the
following translation:

100 IF P1ZZA PARLOR IS NOT OPEN THEN 130
110 BUY A LARGE PEPPERONI PIZZA

120 BUY A PINT OF TOSSED SALAD

130 CONTINUE HOME

Sec. 4.7 Decision Structures—Single Alternative

Assuming that we could execute such a program, the fragment above should do
the job. But we have had to change the logical condition The logical condition “PIZZA
PARLOR IS NOT OPEN'" is the complement of “PIZZA PARLOR IS OPEN’. We are
suggesting that the more logical order, in which the original true tasks follow the
IF-THEN, can be retained by choosing the complement of the relational operator.

We have encountered the first case in which the BASIC translation is not a
straightforward conversion of the algorithmic representation. We will tolerate this
inconvenience in coding because other structured languages, as well as advanced
versions of BASIC, do permit a more literal translation of the structure.

PSEUDOCODE RULE 10

Single alternative decision structures will be indicated by one of the
following:

if (condition) [statement]
or
if (condition)
[
block of statements

o

When a task consists of more than one statement, the entire task is
enclosed within a pair of square brackets. Single statement tasks may be
s0 enclosed if you wish

Consider another example. At a certain point in a program, if the variable X is
greater than zero, we are to set the variable Y equal to zero and increment the counter
N by one. We may write:

PSEUDOCODE BASIC

if (X>0) 200 IF X <= O THEN 230
[Y 0O 210 LETY =0
NN + 1] 220 LETN =N+ 1
continue 230 (NEXT INSTRUCTION)

The complement of > has been used in the logical expression in the program.
There is another case in which the more logical order may be retained If the true
tasks consist of a single instruction, then we may write:

67

68

Simple Loops and Decisions

if (logical condition) [true task]

and translate this almost literally. Consider the following examples:

1 PSEUDOCODE
if (X > 0) [put ("POSITIVE"")]

BASIC
200 IF X > 0 THEN PRINT "POSITIVE"

2 PSEUDOCODE
fX<Y)Z—=X+Y]

BASIC
200 IFX<YTHENLETZ-X+Y

3 PSEUDOCODE
if (AREA > 0) [put (AREA)]

BASIC
200 IF AREA > O THEN PRINT AREA

4 PSEUDOCODE
if (A < B)
lif (B < C)]
[L—A]

BASIC
200 IFA<BTHENIFB<CTHENLETL = A

In each case, line 200 contains the entire single alternative decision structure.
The correct relational operator is used (not its complement). Additional true tasks may
be added as multiple statements providing the permitted line length is not exceeded.
Muitiple statements may be placed on a single line providing the proper symbol of
separation is used This symbol is the colon. For example, we may write:

120 PRINT X: PRIiN
All three instructions will be executed in the order written. If one of the instructions, such
as PRINT X, is an IF-THEN statement, the subsequent instructions on the line will be
executed only if the logical expression evaluates to true. For example, consider the
following:

120 IF X > O THEN PRINT X: PRINT Y: PRINT Z

Suppose X = — 1. Then the program would not execute PRINT X. Furthermore,
the instructions PRINT Y and PRINT Z will not be executed. However, if X = 1 (or any
positive number) X, Y, and Z will all be printed. There are three true tasks.

Ch. 4

Sec 4.8

4.8

Decision Structures—Double Alternatives

Consider the following line of BASIC:
200 IF X > O THEN PRINT "POSITIVE": LETQ = 1

The true task in this structure consists of the statements: PRINT “POSITIVE”’ and,
LET Q = 1. They constitute a block of statements that will be treated as a unit. Both or
neither will be executed.

DECISION STRUCTURES—
DOUBLE ALTERNATIVES

The double alternative decision structure allows a second set of tasks to be
introduced. This structure is defined as follows:

Double Alternative Decision Structure

A program segment that causes one group of statements to be executed if
a certain condition is true. A second group of statements is executed if the
condition is false.

Returning to our example, suppose we receive these instructions: “*On your way
home stop at the pizza parlor and buy a large pepperoni pizza and a pint of tossed
salad. If the pizza parlor is closed, get a frozen pizza and a head of lettuce at the
grocery store "

We may represent our alternatives as follows:

if (pizza parlor is open)

- true
[buy a large pepperoni pizza task
buy a pint of tossed salad]
else
[go to the grocery store false
buy a frozen pizza task

buy a head of lettuce]
continue home

We can partially solve the problem of programming these instructions by taking
the complement of the relational operator as before However, we must be careful not
to stop at both the pizza parlor and the grocery store. We need an unconditional
transfer to our route home once we have completed our business at the pizza parlor.
Consider the following:

100 IF PIZZA PARLOR IS NOT OPEN THEN 140
110 BUY A LARGE PEPPERONI PIZZA

120 BUY A PINT OF TOSSED SALAD

130 GOTO 170

69

70 Simple Loops and Decisions Ch. 4

140 GOTO THE GROCERY STORE
150 BUY A FROZEN PIZZA

160 BUY A HEAD OF LETTUCE
170 CONTINUE HOME

Line 130 is very important. It is the unconditional transfer referred to in Section
4.2 It assures that we buy only one pizza

PSEUDOCODE RULE 11

Double alternative decision structures will be indicated by the following
pseudocode:

if (condition)
[.
true task
1
else
[
false task

1

Whenever the true task and/or the false task consists of more than a
single statement, those statements must be grouped together by enclosing
them within a pair of square brackets. Tasks consisting of single
statements may also be so enclosed if you wish

Consider an example involving variables. At a certain point in our program we
test X Ifitis less than zero, we increment it by one. If it is greater than or equal to zero,
we decrement it by one and increment ¥ by one. We write:

PSEUDOCODE BASIC

if (X<0) 200 IF X >= 0 THEN 230
X« X + 1] 210 LETX =X+ 1
220 GOTO 250
else
X=X~ 1 230 LET X=X -1
Y «—Y + 1} 240 LETY =Y + 1

250 (NEXT INSTRUCTION)

Exercise Set 4.3

As with single alternative decision structures, it may be possible to retain the
more logical order without inverting the relational operator. We rewrite the problem
above as follows:

200 IFX<OTHENLET X = X + 1: GOTO 230
210 LETX =X -1

220 LETY =Y + 1

230 (NEXT INSTRUCTION)

Note the transfer over the false task. This technique is limited to cases where the
true tasks can be fitted on a single line with an unconditional transfer

EXERCISE SET 4.3

1. Convert the following statements to pseudocode:
(a) Compare Yto L. If Yis greater than L, then let L take on the value of Y.
(b) Compare Xto 0. If X'is greater than 0, then add X to the accumulator T and
increment K by 1
(c) Compare Xto 0. If Xis less than 0, then add X to the accumulator S and
increment N by 1. Otherwise, decrement N by 1

(d) Compare X1to X2. If X1is greater than X2, then interchange the values of
X1 and X2. (Hint: This process is an essential step in ordering numbers.
You will need to introduce an additional variable to accomplish the
interchange)

2. Code the algorithms developed in problem 1.

3. Convert the following pseudocode to BASIC:
(a) if (PAYM > .1 * BAL)
[put (“THANK YOU™)|
else
[put (“INSUFFICIENT PAYMENT")]
(by if (X >B)
XX -1
BB+ 1]
(c) if(X>0)
Y «— 1
Z+—0]
else
X=X+ 1]

4, Identify the true task(s) and false task(s) in each of the exercises in problem 3

71

72 Simple Loops and Decisions

Review
We summarize the new terms and the BASIC syntax introduced in this chapter.

DECISION STRUCTURE program segments containing alternate paths. The path
taken is determined by the evaluation of a logical expression that heads the structure.
(Section 4.7)

SIMPLE LOOP a series of instructions that is repeated by placement of a
combination of conditional IF-THEN and unconditional GOTO transfers. (Section
4.2)

BAsIC SYNTAX

GOTO (line number) a BASIC keyword that causes an unconditional transfer to the
designated line number. (Section 4.2)

IF-THEN BASIC keywords that connect a logical expression with a dependent
BASIC statement. When the logical expression evaluates as true, the dependent
statement is executed. When the logical expression evaluates as false, control passes
to the next statement in the program. The IF-THEN statement is written as follows:

L REmRE LY

il P T T e T e b o + memd
o 10JiCa) €XPression s s dependent statement (Scction 4.2)

5.1

INDEXED LOOPS

INTRODUCTION TO INDEXED
LOOPS

The conditional transfer discussed in Chapter 4 provides a means for terminating a

simple loop. The indexed loop can be considered a more sophisticated structure for

handling repetitive processes within a program. It has certain characteristics, a built-in
counter and automatic termination, that make it very useful in many applications

The indexed loop is more complex than other structures we have encountered
so far. To specify the behavior of the loop we introduce a variable called the loop
index (or loop control variable) and three values of that variable. The three values
are the initial value of the loop index (vaiue when the loop is first entered), the final
value of the loop index and the step value (the amount by which the index is
incremented or decremented on each pass through the loop). We introduce the loop
structure in pseudocode first.

PSEUDOCODE RULE 12

Indexed loops will be specified by the following structure:
loop while INDEX goes from START to STOP by STEP

loop contents

end loop

73

74

5.2

Indexed Loops

The pseudocode above displays the loop index and the three values critical to
the loop control. Several instructions are implied in the indexed loop. When the loop is
entered, INDEX receives the value of START. If START is already greater than STOP,
the loop contents are not executed at all and execution continues with the first
statement after the end loop statement. When “‘end loop’’ is encountered, the value of
STEP is added to INDEX. The value of INDEX is then compared with the value of STOP
(the final value of the loop index). If the value of the index exceeds the specified end
value (or is less than it in case the loop index proceeds from high to low values),
execution of the loop terminates and the statement after end loop is executed
Otherwise, execution of the loop contents is repeated.

As an example, suppose we encounter the following loop in pseudocode

loop while INDEX goes from 1to 3by .5
put (INDEX)
end loop

Upon entry into this loop, INDEX will be assigned its starting value of 1. The
pseudocode ‘“‘put (INDEX)" will then result in the output of the value 1. When "end
loop'" is encountered INDEX will be increased by .5 and will then have the value of 1.5.
Since 15 is not greater than 3 (the final value of INDEX) we will repeat the loop
contents, which call for the oulput of the current value of INDEX {1.5) We then
increment 15 by 5 to get 2, compare 2 with 3 and repeat the loop contents. This
process continues until INDEX receives the value 3.5 at the end of the locp. Exit of the

loop then occurs. The output of this loop is the series of numbers:
1,15,2,25,3
The result above could have been obtained with the following simple loop:

set INDEX to 1

loop
put (INDEX)
increase INDEX by .5
if (INDEX > 3) break

end loop

The corresponding simple loop requires six lines of pseudocode Furthermore,
its operation is less clear ihan the indexed loop

THE INDEXED LOQOP IN BASIC

Consider again the example above:

loop while INDEX goes from 1to 3 by 5
put (INDEX)
end loop

Sec 52

The Indexed Loop in Basic

We translate the header statement in the loop as follows:
140 FORINDEX = 1TO 3 STEP .5

The terminator statement translates into:
160 NEXT INDEX

Here we see a new keyword pattern
FOR...TO...STEP

and a new keyword
NEXT

The indexed loop in BASIC is called a FOR-NEXT loop, naming the words that
serve as its boundaries. The number of times the FOR-NEXT loop is executed is
determined by the values of START, STOP and STEP. We may write an equation for this
number as follows-

Number of repetitions = (STOP — START) / STEP + 1

If the value calculated for the number of repetitions is not an integer, ignore the decimal
part of the value.

As we shall see later, this is the maximum number of repetitions It is possible to
include a conditional transfer in the loop, which causes premature exit from the loop.

ft is permissible to omit the reference to a step value in the FOR-NEXT loop
Doing so causes the computer to use a value of one as the step value. Values assumed
for unspecified quantities are referred to as default values. We say that the default step
size is one. If the loop index is to be incremented by one, we need not specify a step
size. Default values are for the convenience of the programmer and reflect most
commonly used values.

Several precautions are necessary when using FOR-NEXT loops:

1 FOR-NEXT loops should be entered at the top; that is, at the FOR ... TO
. . . STEP statement. This means that transfers into the interior of a loop, from
either above or below the loop, should be avoided. Doing so would bypass the
step that initializes the loop counter. Some dialects of BASIC may permit such a
transfer, but the results will be unpredictable. The PET, the TRS-80 and the Apple
will permit the transfer, but an error message will be generated when the NEXT
statement is encountered because the associated FOR statement had not been
previously encountered.

2 Operations that alter the value of the loop index within a loop should also be
avoided Many dialects of BASIC permit such an action, but the results are
unpredictable. The PET, the TRS-80 and the Apple are in this category. This type
of procedure may well create an infinite loop. Here is a sample program to
ilustrate

75

76 Indexed Loops

140 FORI=1TO 10
150 PRINTI

160 LETi=1-1
170 NEXTI

Here statement 160 modifies the value of the loop index thus producing an infinite
loop.

3 Finally, care should be taken so that a FOR-NEXT loop is not entered
accidentally. American National Standards Institute specifications for minimal
BASIC indicate that a loop should not be entered at all if the beginning value of a
loop index is already past the ending value of the loop index as shown:

200 FORI=4TO1

Most versions of BASIC comply with this specification and such a loop will not be
entered at all However, the PET, the TRS-80, and the Apple will execute such a
loop once. In this respect these dialects of BASIC provide a loop that is much like
the FORTRAN DO loop. An IF ... THEN statement just before the header
statement can prevent accidental entry into the indexed loop.

5.3 USING THE LOOP INDEX

There are numerous situations in which we need to count the number of repetitions of a
loop or we need to identify data by its order of presentation. The loop index can serve
this purpose without introducing an additional counter as we were required to do with
the simple loop. As an example, consider the following problem:

Write a program that will read six successive yearly values of population from a
data line and print these values along with an identifying year The data starts in 1973
We display a pseudocode solution first.

POPULATION
declare numeric YEAR, POPULATION
put (“YEAR", "POPULATION")
joop while YEAR goes irom 1573 to 1578
get (POPULATION)
put (YEAR, POPULATION)
end loop

end.

Converted to code this becomes:

Ch. 5

Sec. 5.3

100
110
120
130
140
150
160
170
180
180

Using the Loop index

REM -- POPULATION 12/5/80

REM -~ INPUT VARIABLE: P

REM -- OUTPUT VARIABLES: YEAR, P

PRINT 'YEAR", "POPULATION"

FOR YEAR = 1973 TO 1978

READ P

PRINT YEAR, P

NEXT YEAR

DATA 49500, 50100, 51210, 52225, 51875, 51760
END

The program output appears below:

YEAR POPULATION
1973 49500
1974 50100
1975 51210
1976 52225
1977 51875
1978 51760

The loop index is also available to serve as an independent variable in an
equation. Consider the following problem:
Write a program that generates points on the curve Y = 2 * X2 + X — 3 from

X=1toX

= 7. Pseudocode and BASIC versions are shown below.

X-Y PAIRS:

declare numeric X, Y

put (“X-VALUE", “Y-VALUE")

loop while X goes from 1to 7
Y+2¥X 24X =3

put (X, Y)
end loop
end
100 REM —-- X-Y PAIRS
110 REM -~ OUTPUT VARIABLES: I, Y
120 PRINT "X-VALUE", "Y-VALUE"
130 FORX=1TO7
140 LETY=2*X"2 +X -3
150 PRINT X,Y
160 NEXT X

170

END

77

78

5.4

Indexed Loops

The output is:

X-VALUE Y-VALUE
o

7

18

33

52

75

102

~NO O S WN =

If we were to plot these points on a set of X-Y axes, we would see the shape of
thecurve Y = 2 * X~ 2 + X — 3inthe interval from X = 110 X =7

SUMMATION NOTATION

Another use of the FOR-NEXT loop is to translate mathematical summation
notation into calculated values. We frequently see expressions such as:

ZX

This is mathematical notation in which the Greek letter sigma (Z) means add. The
combination of sigma with a variable means add together all indicated values of the
variable X. Suppose X represents the scores a student receives on tests in a course
Then T X designates the total score on all tests taken. We could designate the total as
XSUM.

Let us generate the average (or mean) score on a set of tests That is, we will
evaluate the expression

XMEAN = XSUM / NTEST

where NTEST is the number of tests taken The following pseudocode indicates a
possible solution to the problem.

MEANGRADE
declare numeric |, X%, XSUM, XMEAN, NTEST
set XSUM =0
get (NTEST)
loop while | goes from 1to NTEST
get (X)
increase XSUM by X
end loop
XMEAN «— XSUM / NTEST

Sec. 5.4

Summation Notation

put (“"AVERAGE GRADE IS ";XMEAN)

end.

This translates into:

100
110
120
130
140
145
150
160
170
180
190
200
210
220

Note

REM -- MEANGRADE 12/5/80

REM -- INPUT VARIABLES: X, NTEST
REM -~ LOCAL VARIABLES: I, XSUM
REM -— OUTPUT VARIABLE: XMEAN

LET XSUM =0

READ NTEST
FORI=1TONTEST
READ X

LET XSUM = XSUM + X
NEXT!

LET XMEAN = XSUM / NTEST

PRINT "AVERAGE GRADE IS ";XMEAN
DATA 5,70,84,92,81,76

END

that the summation of X occurs in line 170 through the use of the

accumulator XSUM. You should enter and RUN this program.
In some cases the permitted values to be summed over are indicated explicitly on
the summation sign. For example,

f=1

means add together all values obtained when i runs from 1 to 5. Thus,

5

> i-1+2+3+4+5=15

i=1

The following pseudocode fragment will express this result.

setISUM to 0

loop while | goes from 1to 5
increase ISUM by |

end loop

put (ISUM)

You will often see loop indices given as the letters /, J, K, L, M, or N. This follows
standard mathematical usage. These loop indices usually assume only integral (whole
number) values. The FORTRAN language has taken advantage of this usage by
requiring a class of integer variables to have names beginning with one of these

letters

79

80

Indexed Loops

EXERCISE SET 5.1

1.

Write header and terminator statements in BASIC for indexed loops with the
following characteristics:

Loop Index Start Stop Step

COUNT 2 50 2
J 10 -5 -1
NUMBER 5 10 02
! 2 49 2

Determine the number of times each of these loops will be executed

Construct pseudocode fragments to solve the following problems:

(a) Read the balance of 100 different accounts receivable that are entered on
data lines. Print out a number that identifies each account by its place in the
data list, print out each account balance, and accumulate the total
accounts receivable for the 100 accounts.

(b) Sum all the integers from 1 to 25 inclusive

(c) Print out the first twelve multiples of 5 (a multiple of a number is a product of
the number and an integer). First multiples of a number are formed by
multiplying the number by one, then by two, etc

(d) Find the average of all even numbers from 16 to 38 inclusive.
Convert the pseudocode fragments in problem 2 to BASIC program fragments
Write BASIC program fragments that will evaluate the dependent variable Y for

the specified values of X in the following equations. Print the X and Y pairs in
columns

(a) Y=3*X+7 (X ranges from 1 to 7 in unit steps)
by Y=X-4 (X ranges from —4 to 5 in steps of .5)
(c) Y=X"2-3 (X ranges from —8 to 8 in steps of 2)

Write FOR-NEXT loops to evaluate the dependent variable in ihe following
equations:

(a) Y-3X"2

where the values of X are on data lines. Assume there are eleven values of X

(b) Y =

1°3

5
=

Ch. 5

Sec. 5.5

Loops with Conditional Transfers

(c) Y = -2

6
=1
Write program fragments to accomplish the following:
(a) Print the integers from 7 to —3 starting with 7

(b) Print every fifth year starting with 1900 and ending with 1980

Enter and RUN the following program fragments.

(a) 100 FORI=1TO5
110 PRINTI
120 NEXTI
130 PRINTI

(b) 100 FORI=2TO 3 STEP .2
110 PRINTI
120 NEXTI
130 PRINTI

Observe the final value of the loop index (printed by line 130).

Verify the validity of the following relation:
Y it2=n*(n+1)*2n+1)/6
i=1

for values of n from 1to 7.

Hint: Use a loop to evaluate the left side. Program the equation on the right side
for each n and compare results.

5.5 LOOPS WITH CONDITIONAL

TRANSFERS

In certain applications, it may be necessary to transfer out of a FOR-NEXT loop before
the loop index reaches the end value. For example, the loop may be accumulating a
sum whose value is to be used to terminate the loop. Or we may be using the loop to
read and print data sets of variable length that are terminated by a trailer value.

As an example consider the following problem. We are to develop pseudocode

that reads account balances, determines the number of accounts, and accumulates
the balance payable. Assume a negative number is used as a trailer. The total number
of accounts payable will not exceed 100. Here is a solution,

81

82

5.6

Indexed Loops

ACCTPAYABLE
declare numeric BAL, TBAL, |
set TBAL 1o O
loop while | goes from 1 to 100
get (BAL)
if (BAL < 0) break
increase TBAL by BAL
end loop

put (I— 1," ACCOUNTS WITH A TOTAL BALANCE OF " TBAL)

Can you see why / — 1 is the number of accounts payable rather than /?

LOOPS TO CALCULATE AREA

We consider one problem that illustrates the power of the FOR-NEXT loop in
numerical analysis. Suppose we are asked to evaluate the area under a curve (a typical
problem in introductory calculus). To illustrate the technique of a computer solution we
will select an area for which ihe vaiue can be determined by elementaiy meaiis.

Consider the equation Y = 5 * X + 2. This equation can be represented by the
straight line in Figure 5.1.

if we are asked to find the area under the curve between X = 1and X = 5, we
would be concerned with the shaded area in the Figure 5.2.

That area is a trapezoid of height 4 and average base 3.5 Thus, the area must

Figure 5.1
Equation Y = 5*X + 2

5 /
4+ /

N
w4
g
o
(8]
~

Ch. 5

Sec. 5.6 Loops to Calculate Area 83

Figure 5 2
Area Under Curve Between X =1and X =5

-+ X

) Jomim e
12 3 4 5 6 7

be (4)(3.5) = 14 units. To evaluate this by computer, we can subdivide the area into
rectangles as shown in Figure 5.3

The area of each rectangle is obtained by multiplying its base width (1) by its
height. But the height is the value of Y corresponding to the left corner of the rectangle.
This method would yield:

Area = 1(2.5) + 1(3) + 1(3.5) + 1(4)
=25+ 3 + 3.5 + 4 = 13 square units

The discrepancy between this and the correct answer (14) results from the
neglect of the small triangles shaded in Figure 5.3. We could reduce this error by using

Figure 5.3
Area Subdivided into Rectangles 1 Unit Wide
y
1
5+ /
4+
34
2.
14+
f—t— X

84

Indexed Loops

narrower rectangles. Suppose we choose the rectangles to be .5 units wide. Since the
arithmetic is getting complicated, we can write a program to do the calculation of the
new area.

AREA
declare numeric 1, X, HEIGHT, WIDTH, RECT, AREA
set AREAto O
set WIDTH to 5
loop while 1 goes from 1to 8
X<+—14 (- 1)*WIDTH
HEIGHT «— 5 * X + 2
RECT «— HEIGHT * WIDTH
increase AREA by RECT
end loop
put (“APPROXIMATION TO AREA IS ", AREA)
end

When we convert this to code and run it we find an approximation to the area of
13.5. The situation is depicted in Figure 5.4.

in this approximation we have neglected the eight small triangles shaded in
Figure 54. These triangles apparently have a total area of 5 square units. This
suggests that we might be able to continue to improve our computer approximation by
increasing the number of rectangles. Perhaps we can generalize this program to allow
a variable number of rectangles. Consider the following:

100 REM ——- AREA 12/9/80

110 REM —- INPUT VARIABLES: NUMRECT

120 REM -~ LOCAL VARIABLES: |, WIDTH, X, HEIGHT, RECT
130 REM —- OUTPUT VARIABLE: AREA

Figure 5.4
Area Subdivided into Rectangles % a Unit Wide

5+ /
1 A

N
I\

>

Sec. 5.6

Loops to Calculate Area

140 PRINT "ENTER THE NUMBER OF RECTANGES'
150 INPUT NUMRECT

170 LET AREA=0

160 LET WIDTH = 4 / NUMRECT

180 FOR! = 1 TO NUMRECT

190 LETX =1+ (I — 1) * WIDTH

200 LETHEIGHT = 5*X + 2

210 LET RECT = HEIGHT * WIDTH

220 LET AREA = AREA + RECT

230 NEXTI

240 PRINT "APPROXIMATION TO AREA IS ";AREA
250 END

This is a coded and generalized form of the preceding algorithm. As we increase
the value of NUMRECT we should see the approximation approach fourteen

We have gone to a lot of work to approximate the answer to a problem whose
answer is already known. However, it might not be possible to calculate the area under
more complicated curves so easily. Our general method will work in such cases
Consider the following problem-

Calculate the area under the curve Y = - X" 2 + 16 from X = Oto X = 4 We can
use the program above to solve this problem by simply changing lines 190 and 200 to
read

190 LETX =0 + (I — 1) * WIDTH

200 LETHEIGHT = —X * X + 16

The area being evaluated is shown in Figure 5.5. The exact value of this area is

42% units. Run the program to find an approximation to this area. Increase NUMRECT
and note that the approximation improves.

Figure 5.5
Area Under the Curve Y = ~X "2 + 16 from X = 0to X = 4
y
(0,16)

15+

10+

5L

(4,0)
] i

85

86

Indexed Loops

A word of warning concerning the evaluation of areas may be in order. If the
expression being evaluated (Yin our case) does not stay positive over the range of X,
the value obtained for the area does not have the interpretation that it has been given
above

EXERCISE SET 5.2

1. Write FOR-NEXT loops with conditional transfers to accomplish the following:

(a) Read data values from a data line and terminate when a data value is
greater than 100.

(b) Read data values from a data line, accumulate them, and terminate when
the sum is greater than 200.

(c) Evaluate the expression Y = 2% X 4 3 as X ranges from -5 to 20.
Terminate the evaluation if Y gets larger than 25.

2. Develop FOR-NEXT loops that will approximate the area under the following
curves. Include a statement to print the approximate value of the area.

@y Y=X"2+1 fromX - 0toX =4
by Y=-2%X4+ 12 fromX =0to X =3
(c) Y=-X"2+8 fromX=—-2t0X=2

3 Develop a program to evaluate areas by using the loop step value as the
rectangle width

4 Further generalize program AREA to allow the starting and ending values of X to
be designated at the keyboard.

5. Code program ACCTPAYABLE, which is written in algorithmic form in Section
5.5.

Review

FOR-NEXT loops simplify the process of handling repetitive processes by providing
automatic controls over the operation of the loop. We summarize the new terms and
concepis iniroduced in this chapier.

INDEXED LOOP aloop in which the maximum number of repetitions is controlled by
a counter. (Section 5.1)

LOOP INDEX the name for the variable that holds the count of the number of
repetitions of a FOR-NEXT loop. (Section 5.1)

LOOP CONTROL VARIABLE another name for the loop index (Section 5.1)

Ch 5

Exercise Set 5.2

INITIAL VALUE OF LOOP INDEX the value given the loop index upon entry into
the loop. (Section 5.1)

FINAL VALUE OF LOOP INDEX the value which determines when the loop is
exited. It is important to note that the loop index may never actually hold the specified
final value. (Section 5.1)

STEP VALUE the amount by which the loop index is increased (or decreased) on
each pass through the loop. (Section 5.1)

DEFAULT VALUE the value assumed for a certain quantity if it is not specified.
(Section 5.1)

SUMMATION NOTATION an abbreviated mathematical notation used to indicate
the sum of permitted values of a certain variable (Section 5 .4)

BAsIC SYNTAX

FOR...TO...STEP the header statement for an indexed loop. (Section 5.2)

NEXT the terminator statement for an indexed loop. (Section 5.2)

87

6.1

FUNCTIONS

INTRODUCTION TO FUNCTIONS

A function can be considered to be a processor that performs some type of
computation and returns a single value as a result. Programming languages generally
provide a series of built-in functions that perform useful tasks. Such languages also
allow users to write their own functions. All functions receive values called arguments
as input, perform computations, and return results. Functions are quite useful; they
make it possible to eliminate repetitive segments from programs and to simplfiy
complex programming tasks by breaking them up into smaller and more manageable
modules. Kernighan and Ritchie have written: “Functions are really the only way to
cope with the potential complexity of large programs. With properly designed
functions, it is possible to ignore HOW a job is done; knowing WHAT is done is
sufficient.” *

A common function is SQR which extracts the positive square root of its
argument. Just about all dialects of BASIC support this built-in function. Here is an
example:

OuTPUT PROCESSOR INPUT

5 — SQR — 25

To implement this function in a program we might write:

200 LET X = SQR(25)

*Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language. (Englewood Cliffs,
NJ; Prentice-Hall, 1978) p.22.

89

20

6.2

Functions

In this case, the argument passed to the function is 25 and the returned value is 5. The
argument and returned value are synonymous with input and output in the previous
schematic. The returned value may be assigned to a variabie as in line 200 above
where it is assigned to X and hence stored. The returned value may also be used in a
computation or immediately printed out as shown.

210 LET X = 10 + SQR(Y + 3)
220 PRINT SQR(X)

Note that either constants (line 200), variables (line 220), or expressions (line 210) may
be used as arguments of functions.

BASIC keeps a list of built-in function names. indeed, we cannot use SQR as a
variable name since the CPU has reserved it as a built-in function name. We cannot see
the built-in function, nor can we list it. We do not know what statements are in the
function. We only know the value of the argument we have passed to the function and
the value it returned

FUNCTIONS THAT MODIFY

AT TN 7T ‘IATTTE'Q
AN W I N W W 8 AEAC LAy

We introduce two additional functions that process numerical values. These functions
are useful in a variety of problem situations.

We have previously developed a program that accepts as input the shelf price of
anitem, adds sales tax, and computes a total sales price (Section 4.2). A portion of this
program is shown below.

140 LETTAXR =5

150 INPUT SHELFP

160 LET SALESP = SHELFP + SHELFP * TAXR / 100
170 PRINT "SALES PRICE IS $";SALESP

When we ran this program before we were careful to enter values that caused the
results to come out in even dollars and cents. Let us run it again.

?49.97
SALES PRICE IS $52.4685

We are not accustomed to recording prices to the hundredths of cents. In fact,
we would like to avoid such complications. For this purpose the INT function
determines the largest integer less than or equal to the argument and returns that
integer. This process is often called truncation (when dealing with positive numbers).
Suppose we write

LET X = INT(52.4685)

Sec. 6.2

Functions that Modify OQutput Values

52.4685 is the argument INT is the function X accepts the function value which will
equal 52.
Schematically, this process appears as follows:

OUTPUT PROCESSOR INPUT

52 — INT — 52.4685

It may seem as if this will not help us with our dollars and cents problem since this
function would delete the entire decimal part. However, if we multiply 52 4685 by 100
and then use the INT function, the function value will be 5246 To get the decimal part
back we can divide by 100 to obtain 52.46. The statement,

LET SALESP = INT(SALESP * 100) / 100

will truncate all decimal parts beyond the second decimal

There are situations in which we would prefer to round a value to a certain
number of decimal places. Rounding means retaining the nearest approximation to the
calculated value upon truncation For example, 52.4685 is closer to 52.47 than to
52.46 To round, add .5 to the argument of the INT function. The statement,

LET SALESP = INT(SALESP * 100 + .5) / 100

will return 52.47 rather than 52.46. This procedure rounds positive numbers according
to the following Rules for Rounding:

It the first digit discarded is zero through four, the last digit retained is
unchanged.

If the first digit discarded is five through nine, the last digit retained is increased by
one.

We can generalize on the procedure of rounding in the following manner. To
round a number to the Nth decimal place use the expression

LET ROUND - INT(NUMBER * 10" N + .5) / 10" N

Unwanted digits to the left of the decimal point may also be removed with the INT
function

The INT function may appear to behave differently for negative numbers. For
example, INT(—-7.5) = —8 This'is the way the function is supposed to work.
Truncation does not occur with negative arguments. To effect truncation of negative
numbers special steps must be taken * (See exercise 1in Exercise Set 6.1))

*TRS-80 BASIC has a special function called FIX() which truncates both positive and negative
numbers

91

92

Functions

The INT function provides another capability that is very useful. Suppose we wish
to determine if a number is evenly divisible by another number. The test of divisibility is
the absence of any decimal parts in the answer after the division has occurred. For
example, eight is divisible by four since the answer, two, has no decimal parts. This
means that the value of INT(8 / 4) is also two, so that 8 / 4 = INT(8 / 4). We can
generalize this to write:

Y is evenly divisible by Xif Y / X = INT(Y / X)

But nine is not evenly divisible by two. Note that 9/2 = 4.5 and that INT(8/2) =
4. Thus, 9/2 <> INT(9/2). We can generalize this to write:

Y is hot evenly divisible by Xif Y / X <> INT(Y / X)

Another function that modifies numerical output is the ABS function ABS is an
abbreviation for absolute value. The absolute value of a number refers to its size
without regard to its mathematical sign. That is, the absoldte value of —9 is greater
than the absolute value of —7, although —7 is greater than —8. The absolute value of
—9 is also greater than +7. The absolute value of a number is a measure of its
distance from zero on the number line.

tn many cases, we are concerned only with the size of number and not whether
the number is positive or negative. Running a number through the ABS function
removes its negative sign if it has one. The processor does nothing to positive
numbers. The statement, LET X = ABS(—7.32), will return 7.32 as the function
value In symbolic notation:

OUTPUT PROCESSOR INPUT

7.32 — ABS — -7.32

EXERCISE SET 6.1

1. Write a BASIC statement that will accomplish each of the following:
(a) Evaluate the square root of X + 4 and assign the value to Y.

(b) Assign the absolute value of X + Yto Z
(c) Compute the largest integer less than X + Y and assign the value to Z
(d) Compute the smallest integer greater than X if X is negative. Assign this

computed value to Y. This statement will truncate negative numbers.

Ch 6

Sec 6.3 Random Numbers 93

2. Predict the values of X that would be generated in each case below.
(LET X = SQR(49)

(LET X = INT(-32.31)

(¢} LET X =INT(39.94 * 10 4+ .5) / 10

(d) LET X =INT(2.316 * 100 + .5) / 100

(

(

(

(

a)
)
)
)
e) LET X = ABS(—3.2)
)
)
)

b

f

g
h

LET X =ABS(2 - 37 3)

LET X = INT(SQR(30))

LET X = ABS(INT(—7.5))

3 Insert a statement in program AVERAGE (Section 4.6) to round the average to
one decimal place.

4 Write statements that will perform the following operations:
(a) Truncate variable Y to two decimal places and assign the new value to X.
(b) Round variable Y to three decimal places and assign the new value to X.

(c) Replace the 1's and 10’s digits in the number 5628 with zeros. You are to
change this number to 5600 using the computer.

(d) Retain only three non-zero digits in the number 41267 but round before
discarding digits. That is, you are to use the computer to obtain the number
41300.

5. Wirite program fragments to accompilish the following:

(a) Determine if Y is evenly divisible by seven. If so, print the message "Y IS
DIVISIBLE BY 7"

(b) Determine if both X and Y are evenly divisible by Z If so, print the message
"X AND Y ARE DIVISIBLE BY 2'

(c) Print a line of dashes with every fifth dash replaced by an asterisk. Use a
loop to produce a line sixty-one units long beginning and ending with an
asterisk.

6.3 RANDOM NUMBERS

The computer has the capability to generate a series of random numbers. This is
provided by another function, which is designated as RND. The RND function is
somewhat different from those we have discussed. For example, the program

94

Functions

fragment below will generate ten random numbers in the interval zero to one (excluding
one)

100 FORI=1TO 10

110 LET X = RND(1) <« Use RND(0) on TRS-80.
120 PRINT X

130 NEXT!

A run of the program might yield the following:

.0407319219
.528293168
.803172316
.0643915121
.157805367
.367305924
.783585386
.395769807
.322348213
.372165689

As in other built-in functions, the RND function is designated by three letters
followed by a set of parenthesis in which an argument is placed. However, the
argument may have no fixed relation to the output as in other functions. The functions
are usually designed so that the value of the argument determines whether the
sequence of random values can be reproduced from run to run. Positive arguments,
negative arguments and a zero argument may produce different results. We suggest
you consult the documentation for your computer.

You may wonder what purpose these numbers serve. Probably their most
common use is to simulate the results of processes that depend on random events. A
familiar experience might be the tossing of a coin. We expect that a fair coin will show
heads or tails with equal probability Since the numbers generated by the RND function
are supposed to be uniformly distributed in the interval from zero to one, we could
consider any number less than 5 to represent a head and any number greater than or
equalto .5 to represent a tail. With this criteria the preceding run would represent seven
heads and three tails. Let us insert a double alternative decision structure in the
program ahove to tabulate the heads and tails

COINTOSS:
declare numeric |, X, TAIL, HEAD
set TAILto O
setHEAD to O
loop while | goes from 1to 10
X «—RND

Sec 63

Random Numbers

if (X>= 5)
[increase TAIL by 1]
else
[increase HEAD by 1}
end loop
put (“YOU TOSSED ";HEAD;" HEADS AND '";TAIL;" TAILS.")
end

In code, this might appear as follows:

100 REM —- COINTOSS 12/14/80
110 REM —- LOCAL VARIABLES: |, X
120 REM -- OUTPUT VARIABLES: HEAD, TAIL

130 LETT=0

140 LETH=0

150 FORI=1TO 10

160 LET X = RND(1) RND(O) for TRS-80

170 IF X>=.5THENLETT=T + 1: GOTO 190

180 LETH=H + 1

190 NEXTI

200 PRINT "YOU TOSSED ";H;" HEADS AND ;T;"' TAILS."
210 END

This procedure illustrated by statements 170 and 180 works well for two
alternatives. Suppose there are six alternatives as in the roll of a die. The division of the
interval zero to one into six subdivisions is more difficult, so we expand the range of the
random numbers by muitiplying RND(1) by six. The range of the output now runs from
zero to six (excluding six) so that we could consider any number from zero to one to
represent a one, any number from one to two to represent a two, etc. This is still not
very satisfactory as we would like output that more closely simulates the actual
experiment of rolling the die. Consider the effect of the following statement:

LET X = INT(6 * RND(1) + 1)

The argument of the INT function is 6 * RND(1) + 1. This argument will be a
number between one and seven since 6 * RND(1) was a number between zero and
six. The argument has the decimal part removed by the INT function. X is thus one of
theintegers 1, 2, 3, 4, 5, or 6. The value of X may be interpreted as the count on the die
face. The tabulation of 1s, 2s, etc. would appear to be a more difficult problem
requiring several decision structures. A simple method of tabulation will be available
when we introduce subscripted variables in Chapter 7.

From this discussion it evolves that we may generalize the problem to produce
random integers in any range. The generalized statement is:

LET X = INT((R2 — R1 + 1) * RND(1) + R1)

95

86 Functions Ch 6

where R1 is the smallest integer (lower value) generated and R2 is the largest (upper
value) of the integers.

TRS-80

The TRS-80 BASIC provides a convenient method of generating random
integers in the range from one to N. Simply use the maximum integer
desired as the argument of RND. That is, LET X = RND(8) will generate a
random integer in the range one to six. Extension to any range then
becomes an easy matter. For example, LET X = RND(6) + 2 will provide
random integers in the range three to eight.

A valuable application of random number generation occurs in the Monte Carlo
method of simulation. The purpose of a Monte Carlo simulation is to solve problems in
which only the statistical distribution of certain problem variables is known. Specific
variable values from within that distribution can be produced using the random number
generator

One of the simplest problems to solve using the Monte Carlo method is the
simulation of a one dimensional random walk. In such a walk, motion is limited to a
straight line with the direction chosen randomly The purpose of the simulation is to
determine how far the walker will be from the starting point after N steps We have a
probability distribution (equal probability of right or teft) and a random number
generator to select one of the two options so the problem should be solvable. Let us
develop a program in pseudocode for its solution.

RANDOMWALK:
declare numeric MOVE, DISTANCE, NTRIES, |
get (NTRIES)
set DISTANCE to 0
loop while | goes from 1 to NTRIES
if (RND < 5)
[MOVE «— — 1]
else
IMOVE «— 1]
increase DISTANCE by MOVE
end loop
DISTANCE «— ABS(DISTANCE)
put (""'DISTANCE AFTER ";NTRIES;" STEPSIS ",DISTANCE)
end

Sec 6.4

6.4

User-Defined Functions

We convert this to code:

100 REM -- RANDOMWALK 9/15/80

110 REM —- INPUT VARIABLES:NTRIES

120 REM -~ LOCAL VARIABLES: MOVE, |

130 REM -— OUTPUT VARIABLES: DISTANCE, NTRIES
140 INPUT NTRIES

150 LET DISTANCE =0

160 FORI=1TO NTRIES

170 IF RND(1) < .5 THEN LET MOVE = —1: GOTO 190
180 LET MOVE = 1

190 LET DISTANCE = DISTANCE -+ MOVE

200 NEXTI

210 LET DISTANCE = ABS(DISTANCE)

220 PRINT "'DISTANCE AFTER ";NTRIES;' STEPS IS "; DISTANCE
230 END

The repetition of this program should lead you to some sort of generalization
about the relation between distance and number of steps. Such a generalization is the
purpose of the experiment You should find that the distance can be approximated by
the square root of the number of steps. Do not expect to see this result in a single walk
but only if you average many walks for a reasonably large number of tries.

As we noted earlier, the random number distribution is essentially uniform in any
interval We can, however, generate a peaked distribution using a series of such
functions. We illustrate such a procedure in the Library of Subroutines. (Appendix B).

USER-DEFINED FUNCTIONS

A user-defined function is, as its name suggests, a function that the user constructs
For example, if we wish to convert a number of values to percent from decimal we
might define a function that multiplies the function argument by 100 as follows:

200 DEF FN Y(X) = 100 * X

This function then acts as a processor, which multiplies the argument by 100 and
delivers that value as output We display the function below:

OUTPUT PROCESSOR INPUT

78 | — 100*78 | | .78

97

98

Functions

There is some variation in the type of user-defined functions allowed by the
various dialects of BASIC. Some dialects allow multi-line user-defined functions. Some
allow more than one argument. Since none of our microcomputers allow these special
options we will not consider them further.

Let us begin with a simple example of a user-defined function in a single variable.
Assume that we need to round numbers to one decimal place at several places in a
program. A function can satisfy this need quite easily. Before a function can be used, it
must be defined as in the following example:

150 DEF FN R(Z) = INT(Z * 10 + .5) / 10

200 X = 127.68
210 PRINT FN R(X)

DEF is a BASIC keyword that identifies the statement purpose and FN is an
abbreviation for the word function The keywords DEF FN define R as a function rather
than as a variable. It is possible to use R as a variable in the same program without
contusing the compuier. There is a greaier risk, however, that this practice may
confuse humans. The function definition must be logically prior to its use; in other
words, the definition statement must be executed first.

The role of the variable Z in statement 150 may be the most difficult to
understand. It is sometimes called a dummy argument or a parameter variable It
doesn't do anything; in reality it is only a stand-in or place holder for the real argument
that will be passed to the function when it is invoked Z can be thought of as a local
variable since its value is not known outside the function itself. Thus, you could use
another variable called Z elsewhere in your program without getting the values mixed
up. Again, this may be a confusing practice for humans. You will also note the presence
of a reference to INT with which you are already familiar It demonstrates that one
function can call another. All other values in the function statement are numeric
constants Statement 210 invokes or calls the function by using or referencing its
name

Let us now consider a slightly more complex version of the preceding program.
Assume that we want the same rounding function with the additional consideration that
we need to be able to vary the number ot decimal digits to be retained. In inis case, we
need to pass an additional argument to the function. However, the dialects of BASIC
that we are working with allow only one function argument. We accompiish our goal,
nevertheless, with the use of a second variable as follows:

120 DEF FN RR(A) = INT(A * 10" DP + .5) / 10" DP

Ch. 6

Sec 6.4

User-Defined Functions

200 X = 129.196

210 DP =1
220 PRINT FN RR(X)
230 DP =2

240 PRINT FN RR(X)

Here our function name is RR. As with variable names, function names can be of
any length but only the first two characters are significant. This function is very similar to
the previous one except for the substitution of the variable DP to indicate the number of
decimal places desired. DP is called a global variable because its value is simulta-
neousty known to the function and the main program. If the value of a global variable is
changed in one program unit, this change affects its value in all program units. In fact, in
BASIC, all variables are global except dummy variables. This contrasts with the
practice of other languages, such as FORTRAN, where all variables are normally local,
thatis, known only to the program unit in which they occur In FORTRAN. a programmer
must explicitly declare a variable to be global.

It is important to note that if more than one variable appears in a function
definition, the dummy (local) variable is immediately identified as the one that appears
on the left side of the equation.

Finally, let us look at a simple program that is designed to illustrate the
independence of global variables, functions, and local variables with the same name.
This program is designed to discount by 10% the list price of any item valued at$100 or
more and then add 5% sales tax to obtain a sales price.

100 REM ~- FUNCTION TEST

110 REM

120 DEFFN TC(X) = X * 1.05

130 DEF FN RR(TC) = INT(TC * 100 + .5) / 100
140 PRINT "LIST",'DISCOUNT","PRICE"

150 FORI=1TOS5

160 DISC =0

170 READ LP

180 PRINTLP,

190 IFLP >= 100 THENDISC - LP * . 1:LP=LP * .9
200 TC = FN RR(FN TC(LP))

210 PRINT FN RR(DISC),TC

220 NEXTI

230 DATA 55.71, 121.15, 69.95, 259.42, 86.20
240 END

This program produces the following output.

LIST DISCOUNT PRICE
55.71 0 58.49
121.15 12.12 114.49 (continued)

99

100 Functions

69.95 o 73.45
259.42 25.94 245.15
86.2 o 80.51

The program works correctly. The listing demonstrates the following:

1 TCis used as a function name in line 120, as a dummy variable in line 1 30,
and as a global variable in ines 200 and 210. They are three completely separate
entities.

2 TCis used as a function name and as a global variable in the same line, line
200.

3 FN RR, a user-defined function has as an argument another user-defined
function in line 200.

4 X appears only as a local variable in this program, in line 120.

We certainly do not recommend this kind of programming practice but it does

ilustrate the distinctions between local variables, global variables, and function
names.

EXERCISE SET 6.2

1.

Write BASIC program fragments to accomplish the following:
(a) Produce twenty random integers in the range from five to ten

(b) Produce 200 random integers in the range one to six. Have the program
count those integers less than or equal to three.

Simulate the experiment of drawing colored balls from a box. Assume there are
two white balls and three black balls in the box. Develop a program that will count
the number of successes in drawing two white balls in sequence. The program
must also tally the total number of attempts. Hint' generate random integers over
a range of five allowing two values to represent white and three values to
represent black. Solve the problem with and without replacement of the white
hall

Generalize the program COINTOSS to allow for input at the keyboard of the
number of trials. Investigate the ratio of heads to tails as the number of trials
increases

Write user-defined functions to accomplish the following:

(a) Convert a percentage value to a decimal

(b) Convert Fahrenheit temperature to Celsius.

(c) Add 6% sales tax and round the result fo two decimal places

Ch. 6

Sec. 6.5

6.9

Coding Mathematical Functions

(d) Convert inches to feet and express the result to the nearest hundredth of a
foot.

5 Consider the following BASIC statement:
100 DEFFNC(Z)=PO*(1 - 2)"N

In this statement identify
(a) the function name
(b) the dummy variable
(c) the global variable(s).
6. Simulate the crossing of two hybrid (mixed gene) characteristics. Assume that
one of the genes is dominant and that the other is recessive. Count the

percentage of double recessives, of hybrids, and of double dominants in the
offspring for a large number of crossings

CODING MATHEMATICAL FUNCTIONS

We have been careful to present mathematical expressions in coded form. However,
we frequently face the task of coding such an expression. For example, the principal
value (P) of a fixed amount of money deposited in a bank is given by the equation

P=Py(1+1)

where P, = initial deposit
r = annual interest rate in decimal form
n = number of years on deposit

This expression assumes that the interest is compounded annually. To code this
expression we need to know something about the abbreviated notation of mathemat-
ics. Here is some of that notation

3x (a constant and a variable written side by side) implies 3 multiplied by x

xy (two variables written side by side) implies x multiplied by y.

x” (one symbol as a superscript) implies x raised to the y power—that is,
exponentiation.

x(y + 3) (one quantity in parenthesis) implies multiplication of the quantity
outside the parenthesis with that inside.

The BASIC language does not recognize the mathematical conventions noted
above. As a result, implied operations, those operations that are indicated by the

101

102

Functions

placement of mathematical symbols, must be written out using the appropriate
operators. However, the language does recognize parentheses Such parentheses in &
mathematical expression should be retained in the coded expression

Looking again at the principal equation we see two implied operations and one
set of parentheses. To change the implied operations to correct BASIC syntax,proceed
as follows:

(1+n" becomes (1 + R) "N
Py (1 +1r)" becomesPO* (1 +R)"N

We retain the parentheses.
Consider a modification of the problem. If the bank compounds interest more
frequently than annually, the equation for principal becomes:

,-mn
P=P0(1 +—)
m

where m is the number of compounding periods per year
There are three implied operations in this equation. The additional one

e ats Slslcio B IcH
4 u

mn which converts to M * N

Note that the fraction bar (—) is an explicit expression for division, which equates to
the division symbol (/)
We might be tempted to make the following literal transiation of

rmn
P=P0(1 +—)
m

LETP=PO*(1+R/M)"M*N

But note that BASIC will treat this expression as:

BASIC has no way of knowing that we intended to raise (1 + (r/m)) to the mn
power. As a result of the hierarchy of operations, the code as written above will raise (1
+ r/m) to the mth power and then multiply the result by n. In this case, we need to add
a set of parentheses to avoid an error in the code We write

LETP =PO* (1 + R/ M)"(M*N)

This is another example of implied operations. By writing mn as an exponent we
implied that it was to be treated as a unit.

Ch. 6

Sec 66

Rules for Coding

6.6 RULES FOR CODING

Based on our experiences above, we might formulate a set of rules for programmers
converting algebraic expressions to code. These rules are based on the hierarchy of
operations discussed in Section 2 5 However, they provide more explicit instructions
on how to code algebraic expressions involving implied mathematical operations

Rules for Converting Expressions to Code

1 Parenthesize those units whose parenthesization is implied in the algebraic
expression. Look specifically for exponents involving operators and numerators
or denominators having more than one term.* BASIC function arguments should
be parenthesized

2 Convert all implied multiplications to explicit multiplications and fraction bars
to division symbols

3 Convert all implied exponentiations to explicit exponentiations

4 Add the necessary assignment or print statement. The result should be a
correct code representation.

Consider the following example problems.

Convert the expression, y = 3% to code

Rule 1 yields y = 3

(Note that we have parenthesized the exponent.)

Rule 2 yields y = 3¥™

(Implied multiplications are converted to explicit multiplications.)

Rule 3 yields y = 37 (2 * x)

(Implied exponentiation has been converted to explicit exponentiation.)

Rule 4 yields LETY = 3" (2 * X)

(An assignment statement has been added and variables rewritten in upper
case.)

Convert the expression, y =)—(-3—)1—3 , to code

Rule 1 yields y = (7{-—3—)

(Note the addition of a set of parentheses Numerators and denominators of
fractions must be treated as units. If they consist of more than one term,
parenthesization is necessary)

*A term in an algebraic expression is a unit of the expression separated from other units by
addition or subtraction In the expression 3x% + 2x + 2, 3x?is a term, 2xis a term, and 2 is a

103

104

6.7

Functions

Rule 2 yields y = x / (xX* — 3)

(One fraction bar has been replaced by a division symbol.)

Rule 3yieldsy = x/ (x~3 — 3)

(One implied exponentiation has been converted to an explicit exponentiation.)

Rule 4 yields LETY =X/ (X" 3 — 3)

NUMERIC INPUT AND OUTPUT

The computer will accept numbers in whole number form, decimal form, or in
scientific notation. Scientific notation refers to a form of notation in which a number
is written as the product of two numbers. The first number has a single digit left of the
decimal point. The second number is ten raised to a power. All numbers may be written
in scientific notation.

To convert a number to scientific notation, move the decimal point so that only
one nonzero digit appears left of the decimal point. The number of places the decimal
point is moved determines the exponent on the power of ten. Right moves give
negative exponents and left moves give positive exponents. For example, to write
521 5 in scientific notation we move the decimai point left two places to get 5 215. Next
we multiply by 10~ 2 since ihe move was ieil two piaces. The finai resuil is

5215x 1072

To enter a number into the computer in scientific notation, it must be written in a
special way. The value above would be entered as:

5.215E2

The E takes the place of “‘x 10 ™. Here are some additional examples:
—~0.0361=-361x10" -2 = —3.61E-2
30=30x10"1=3.0E1

Although we can enter a number in any form, the computer will print the number in
scientific notation if the value is outside a certain range. That is, if the number is very
small (less than 0 01) or very large (greater than or equal to 1,000,000,000), it will be
printed in scientific notation

This varies from computer to computer so that you should check the range for
your system. The following immediate PRIMT commands along with their output display
this characteristic.

COMMAND RESULT
PRINT .0052 5.2E—-03
PRINT .052 .052

PRINT 520000000 520000000

PRINT 5200000000 5.2E+09

Ch 6

Sec 67

Nurneric Input and Oufput

PRINT 5.21E5 521000
PRINT —3.21E—-2 —.0321

We should note some other eccentricities in the numerical output of most
machines. First, the computer will not retain trailing zeros after a decimal point unless
forced to do so. This is illustrated in the following immediate commands:

COMMAND RESULT

PRINT 512.0 512
PRINT .000320 3.2E-04
PRINT "$';25.20 $25.2

If the trailing zeros are present because they have meaning, as in the case of
printing a value in dollars and cents, we may not be happy with the appearance of the
output. More importantly, if the trailing zeros are present because they represent
significant digits in a measured value, they will be lost during the computer operation.
We will cover this problem in more detail in Section 11 of Chapter 10

A second problem concerns the way the computer performs exponentiations. If
you enter

PRINT 7 *7
you are likely to obtain forty-nine as the answer. On the other hand, if you enter
PRINT7"2

you are likely to obtain 49.0000001 as the answer. You may be surprised to find that
seven squared is not the same as seven multiplied by seven. This result, of course,
must be explained in terms of the way the computer performs exponentiation. It does
so by multiplying the exponent by the logarithm of the base (seven in this case) and
then exponentiating this result. Those who are mathematically inclined might try the
following immediate command:

PRINT EXP(2 * LOG(7))

Both the Apple and the PET have this exponentiation characteristic. However,
TRS-80 owners will be happy to learn that seven squared is still forty-nine

EXERCISE SET 6.3

1. Write a BASIC statement that will evaluate the dependent variable in the following
equations.

KT k = Boltzmann constant
(@) v=y /-__ T = absolute temperature
m

m = molecular mass

105

106 Functions Ch. 6

by v =141 4 /k_T k, T, and mas in problem 1(a)
m

e ¢ = velocity of light
() v=cCcq/1— (_—) L = wavelength
2a a = guide width

2. Write a BASIC statement that will evaluate the dependent variable below for any
assigned value of the independent variables.

I

(@) V=—
b _2x—3
(b) x4 1
(c) y=2x"+3x*-1
(5 —t)? 1
(dy H= ; +(5_1‘)2

() z=(x+y+xPy

3 Write a BASIC program fragment that will output the value of the dependent
variable in the following equations. Use the given values for the independent

variables.
4 3
(a) V- ’;’ 7 =314,r=25
h
(b) A=w(i2f—9—) he6a=2b-3
3x2 4+ 1
(c) m— x=5
t4 1)
(d) F?=3t2—-(-+—)— t=2

2t
(e) y=4(x+ h* x=2h=5

4 Write program fragments that inciude keyboard input of independent variables,
as well as evaluation and output of the dependent variable, for each of the
following equations.

n = number of moles

A = universal gas constant

(a) P=— T = absolute temperature

V = volume
P = pressure

Sec. 68

Review

m = slope

b = y-intercept
X = x-coordinate
y = y-coordinate

(b) y=mx+0>b

A1 = resistance 1
/(C?FT)(RF?; A2 = resistance 2
+ Re = equivalent parallel resistance

(c) He=

5 Convert the following numbers to scientific notation-

(a) 0.0032

(b) 52

(c) 2156000000

(d) 4215

(e) —0.000452

(f)y 6

Which of these numbers would the computer place in scientific notation?

6.8 A CAUTION ABOUT FUNCTIONS

While functions are valuable shortcuts, they can also cause problems in our programs
For example, it is not possible to find the square root of —4 (at least not in the real
numbers with which the computer deals). Thus, if a negative number is entered as the
argument of the SQR function, some sort of error message will be generated
depending upon the computer system Some programmers may prefer to pass their
arguments through a screening system before passing them to the SQR function to
avoid such problems. In any case, one should be aware of this limitation and other
limitations, which we will introduce as we encounter new functions. The INT and ABS
functions have no restrictions on their arguments, as long as those arguments are
numeric values.

Review

We summarize the new terms and BASIC syntax introduced in this chapter

FUNCTIONS special operations of limited scope that process input values into
output values bearing a known relation to the input. (Section 6 1)

ARGUMENT OF A FUNCTION the input value that is to be processed by the
function. (Section 6 1)

RETURNED VALUE the output value after processing of the argument by the
function. (Section 6.1)

107

108 Functions Ch 6

RANDOM INTEGER integers generated randomly in any interval (R1 — R2
inclusive) through the use of the following expression.

LET X = INT(RND(1) * (R2 — R1 + 1) + R1)
(Section 6.3)

MONTE CARLO METHOD a method of simulation in which the problem variables
receive random values that are dictated by a known statistical distribution. (Section
6.3)

IMPLIED OPERATIONS operations that are indicated by placement of symbols
(for example, raising a symbol above the line implies exponentiation). (Section 6.5)

RULES FOR CODING ALGEBRAIC EXPRESSIONS rules designed to assist the
programmer in converting algebraic expressions to code. (Section 6.6)

SCIENTIFIC NOTATION a special power of ten notation Most BASIC dialects use
this notation for the output of numeric values outside a given range. (Section 6.7)

Basic SYNTAX

SQ@R(X) a function that extracts the positve square root of X. X must be >= 0
(Section 6.1)

INT(X) a function inat returns ihe iargesi inieger iess than or equai io X. {Seciion
6.2)

ABS(X) afunction that returns the absolute value of X. (Section 6.2)

RND(X) a function that returns a random number with certain reservations depend-
ing upon the value of X (Section 6.3)

DEF FN NA() = (function) a function to be defined by the user The function name in
this example is NA. A local variable must appear in the parentheses and in the function
defined. The defined function may consist of any legal operations involving the local
variable and global variables as well as other standard or user-defined functions
(Section 6 4)

SUBSCRIPTS
AND ARRAYS

7.1 INTRODUCTION TO SUBSCRIPTS
AND ARRAYS

In Chapter 2 we discussed the fact that values must first be stored in computer memory
before they can be manipulated by the computer. We pointed out that values are
inserted in memory locations by means of one of three methods:

1 Assigning values in a program statement (LET)
2 Reading values from an internal data set (READ and DATA).
3 Entering values at the keyboard (INPUT).

If we have a large number of related variables, which must be handled and kept
distinct by the computer, we would be confronted with the problem of inventing enough
variable names to represent the data and writing enough statements to assign data to
the variables In such circumstances, we would soon be overwhelmed by the task.
Fortunately, there is an easier way to handle related variables

Subscript notation allows us to organize related data into lists and tables. Such
lists and tables are called arrays. The subscript serves as part of the variable name.
The subscript also places a numerical identification on specific locations in the array
which makes it very convenient to manipulate the data in the array with FOR-NEXT
loops. With an understanding of arrays and their manipulation, we begin to realize the
power of the computer in organizing and handling large data sets

108

110

7.2

7.3

Subscripts and Arrays

SUBSCRIPTS

When scientists work with a series of related numbers, they often use subscripts to
indicate which item in the series is being referenced. For example:

X1, XQ‘ XB» XA: XS; XGu X7v X8

represents a series of eight values of the quantity X' The use of subscripted variables in
programming is a great convenience when handling large series of numbers. However,
when we program, subscripts cannot be written below the line as their name implies
because terminals and keypunches have no half-line carriage control Therefore, we
enclose subscripts within parentheses; for example, X;, X3, X3 becomes X(1), X(2),
X(3). Programmers refer to such a series of numbers as an array. All elements of an
array are referenced by the same variable name together with the appropriate
subscript.

USING ARRAYS

Let us illustrate the utility of arrays by solving a simple problem. Our task is to write a
program that will read and print a list of student grades, compute and print the average
of those grades, print the lowest and highest grades, and list all those grades that are
above the class average. The first part of the task, reading and printing the grades and
computing and printing the average, is a relatively simple task. We need a loop to read
and print the grade values, to accumulate the count of grades, and to keep a running
total of the grades all at the same time. Once the loop is finished, we merely compute
and print the average. The following program in pseudocode illustrates:

MEANGRADE:
declare numeric GRADE,SUM,COUNT MEAN
set SUM to O
set COUNT to 0
loop
get(GRADE)
if(GRADE < 0) [break]
put(GRADE)
increase SUM by GRADE
increase COUNT by 1
end loop
MEAN <«— SUM/COUNT
put(* THE MEAN IS "', MEAN)
end

Ch 7

Sec. 7.3

Using Arrays

However, this program only does half the job. At first glance it may seem as if we
could add some modifications in order to satisfy the remaining requirements But, in
fact, there is a fundamental flaw in our approach. This programis fine for computing the
mean, but since it does not retain individual scores as separate values for later
comparison with the mean, we must devise a different approach. Not only do we wish
to count and sum the grades, but we must also retain a copy of each grade An array is
well suited for such an application.

We can summarize our programming task as follows:

Step 1 Read a list of grades

Step 2 Print the list of grades.

Step 3 Compute the mean grade

Step 4 Select and print the lowest grade.

Step 5 Select and print the highest grade.

Step 6 Print the mean grade.

Step 7 Print all grades above the average or mean

Upon careful study, we can determine that Step 7 requires a second pass
through the data This is so because we cannot know the mean grade in the same loop
that is computing it. Thus we will need two loops. The first will read all the data and
accumulate the count and sum of the grades; and, the second will select the above
average grades Since we must have two loops, a reasonable division of labor would
be for the first loop to perform Steps 1, 2, and 3 and for the second loop to perform the
rest of the steps. Below we present a second attempt at formulating a program in
pseudocode. It bears some resemblance to the previous attempt

MEANGRADEZ2:
declare numeric GRADE,SUM,COUNT MEAN
declare numeric HIGH,LOW INDEX, TABLE(20)
set SUMto 0
put(""GRADES:")
loop while COUNT goes from 1 to 20
get{GRADE)
if(GRADE < 0) [break]
TABLE(COUNT) «— GRADE
put(GRADE)
increase SUM by GRADE
end loop
decrease COUNT by 1
MEAN «— SUM / COUNT
put("‘MEAN GRADE IS "' MEAN)
LOW «— TABLE(1)

111

112 Subscripts and Arrays

HIGH «— TABLE(1)

put(*‘LIST OF ABOVE AVERAGE GRADES")

loop while INDEX goes from 1 to COUNT
if(TABLE(INDEX) > MEAN) [put (TABLE(INDEX)) |
if(TABLE(INDEX) < LOW) [LOW «— TABLE(INDEX)]
if(TABLE(INDEX) > HIGH) [HIGH «— TABLE(INDEX)

end loop

put(‘'HIGH GRADE IS *",HIGH)

put(*'LOW GRADE IS "' ,LOW)

put(**COUNT OF GRADES IS "', COUNT)

end.

As in our first attempt, MEANGRADE2 makes two basic assumptions about the
data: first, that no more than twenty grades will need to be processed, and, second,
that legitimate grade values will be nonnegative and therefore any negative number can
be properly used to indicate end of file. There are some important differences between
the two versions of the program. They are as follows:

1 The second declare statement indicates TABLE to be an array of size twenty.
This means that TABLE will have twenty memory locations assigned to it rather
than merely one. Those memory locations will be numbered from one to twenty.
Many versions of BASIC actually allow a subscript of zero and thus would provide
room for a total of twenty-one data elements. Since this feature is not available in
all dialects of BASIC and because it can greatly complicate an algorithm, it is best
to avoid use of the zero array element

2 The firstloop in MEANGRADEZ is an indexed loop rather than the simple loop
of the earlier version. Since we are dealing with an array, it makes sense to use
the loop index as an automatic subscript index. You will also note that our
algorithm gets a value for GRADE, which is inserted into the array TABLE only
after it is determined to be a real grade value—that is, not a negative trailer
value

3 You will notice that COUNT is decreased by one after the first loop is exited.
This is necessary because COUNT will always be one value too high. When the
negative trailer value is encountered, COUNT will already have heen incremented
pefore GRADE is tested. Similarly, when the loop is executed twenty times, the
index will be first increased to twenty-one before it is tested and found to exceed
the limit for the loop

4 Inorder to select the high and low scores we begin by arbitrarily declaring the
first value in TABLE to be both the highest and the lowest.

5 Then the program enters the second loop in which it compares successive
elements of TABLE with the current value of HIGH, substituting the current TABLE
value for HIGH when it is the greater A similar approach is used to select the

Ch. 7

Sec. 7.3 Using Arrays 113

smallest value. It is true that the loop performs one unnecessary iteration—the
first—but it is easier to waste a little computer time than create a more
complicated algorithm. Had the loop index begun with two, we would not have
been able to list element 1 of TABLE if it were greater than the MEAN

With our pseudocode program complete, it only remains for us to translate it into
BASIC. We have decided to get our data from data statements within the program
itself. Here is the BASIC version:

100 REM -- MEANGRADE2 1-1-81

105 REM —- INPUT VARIABLES: G

110 REM -~ LOCAL VARIABLES: INDEX, SUM

115 REM -~ OUTPUT VARIABLES: MEAN, HIGH, LOW, COUNT, TABLE()
120 DIM TABLE(20)

125 SUM=0

130 PRINT "GRADES:"

135 FOR COUNT = 1TO 20

140 READ G

145 IF G <OTHEN 170

150 TABLE(COUNT) =G

155 PRINT G

160 SUM = SUM + G

165 NEXT COUNT

170 COUNT = COUNT - 1

175 MEAN = SUM / COUNT

180 PRINT "MEAN GRADE IS "“;MEAN

185 LOW = TABLE(1)

190 HIGH = TABLE(1)

195 PRINT "LIST OF ABOVE AVERAGE GRADES'

200 FORINDEX = 1 TO COUNT

205 IF TABLE(INDEX) > MEAN THEN PRINT TABLE(INDEX)
215 IF TABLE(INDEX) < LOW THEN LOW = TABLE(INDEX)
220 IF TABLE(INDEX) > HIGH THEN HIGH = TABLE(INDEX)
225 NEXT INDEX

230 PRINT 'HIGH GRADE IS ";HIGH

235 PRINT 'LOW GRADE IS ";LOW

240 PRINT 'COUNT OF GRADES IS ";COUNT

500 REM -- DATA SET

505 DATA 70,67,89,88,78,98,84,85

510 DATA —-99

999 END

The translation has gone smoothly. The only unexpected change is that the
variable name for the student grade was GRADE in the algorithmic language version,

114

7.4

Subscripts and Arrays

while G is used in the BASIC version. This was made necessary because GR is a
reserved keyword on the Apple. Statement 120 contains new syntax which we will
discuss next. Here is some sample output:

RUN MEANGRADE2
GRADES:

70

67

89

88

78

98

84

85

MEAN GRADE IS 82.375
LIST OF ABOVE AVERAGE GRADES
89

88

98

84

85

HiGH GRADE IS 88

LOW GRADE IS 67
COUNT OF GRADES IS 8

DECLARING ARRAYS

BASIC assumes that all variables are simple variables, sometimes called scalars, with
only a single memory location associated with them unless we specify otherwise. We
declare a variable to be an array by specifying its dimension or size in a dimension
statement. Consider the following:

120 DIM ALPHA(50)

This statement deciares the variabie aipha to be an array and insirucis BASIC {o sei
aside fifty memory locations for it. DIM is a BASIC keyword—an abbreviation for
dimension. We may declare an array to have as many elements as we wish within the
limit of available computer memory. The early 8K PETs impose a maximum array size of
255. Generally speaking, it is best not to request more array space than needed. If we
were to use an array name in a program without formally declaring its size in a
dimension statement, BASIC will arbitrarily assign it a size of ten. This means that

Ch 7

Sec. 7.4 Exercise Set 7.1 115

subscript values from one to ten will be legal. As mentioned earlier, some dialects of
BASIC provide a zero array element as well. This automatic dimensioning feature can
produce an error on some computers if we reference an array before we dimension it
For example

200 X(I) =A*B-+C

220 DIM X(25)

In this case, BASIC automatically sets aside ten memory locations when it
encounters statement 200 However, when statement 220 is reached, BASIC is told to
change the size to twenty-five. Many versions of BASIC will consider such a sequence
to be an error and interrupt the program with a message. The PET, the Apple, and the
TRS-80 all permit this redimensioning of arrays. However, a CLEAR statement must be
executed before the redimensioning statement is encountered on both the Apple and
the TRS-80. While such a technique has some limited use, it should be avoided

Sometimes arrays are known by other names, such as: vector, matrix, table, and
list. Sometimes the term array is used to refer to a one-dimensional array and the
term matrix is reserved for an array with more than one dimension. However, this is not
a rule and you will find many exceptions to it. We declare an array or matrix to have two
or three dimensions as follows:

110 DIM TABLE(5,10)
120 DIM MAT(2,3,2)

The first statement declares TABLE as a two-dimensional array or matrix
with five horizontal rows and ten vertical columns. Array MAT is a three-dimensional
array with dimensions of two, three, and two. More about multi-dimensional arrays will
be presented later in Section 7.9.

EXERCISE SET 7.1

1 Write a program that loads the following arrays:

(a) Array Y to contain the series of numeric values between one and fifteen
Begin with memory location one.

(b) Array XRAY to contain all positive odd values between zero and twenty-five
inclusive
(c) Array A to contain the first twelve multiples of seven

2. Write a program that loads the matrix B with the squares of the first fifteen
integers. Include a second loop which prints each integer followed by its square.

116 Subscripts and Arrays

4;

The output should look like this:

1 1
2 4
3 9

Answer the following questions about this program

100 DIM X(13)

110 FORI=1TO 13
120 LET X(I) =1+ 1
130 NEXT!

(a) Whatis the value of X(1)?
(b) Whatis the value of X(13)?

. i .
Simulate a computer by hand-tracing the following programs Write the appropri-

ate values in the boxes below. The boxes are intended to be a visual
representation of computer memory

(a) 100 DIM X(12)
110 FORI=1TO 12
120 LETX()=1*2 + 5
130 NEXTI

X(1) X(2) X(3) X(4) X(5) X(8) X(7) X(8) X(9) X(10yX(11)X(12)

(b) 100 DIM X(12)
110 FOR!I= 12TO 1 STEP —1
120 LET X(I) =}
130 NEXTI

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X{8) X(9) X(10)X(11)X(12)

Ch. 7

Sec. 7.5

Using an Array as an Accumulator

7.5 USING AN ARRAY AS AN

ACCUMULATOR

In Section 6.3, we discussed the use of the random number generator to simuiate the
toss of a coin and the roll of a die. There we presented a program called COINTOSS
that simulated the coin tossing process and kept track of how many heads and tails
had been tossed. We also said that the toss of a die could be simulated in the same
manner, but did not illustrate doing so because we would need six accumulators—one
for each die face. An array provides an easy solution to this problem. Following we
present an algorithm for a program which simulates a die toss. This algorithm follows
very closely the model of COINTOSS, except for the use of the array as an
accumulator

DIETOSS:

declare numeric 1,X,FACE(6),R1,R2

loop while | goes from 110 6
set FACE(l)to O

end loop

setR1to 1

setR2 to 6

loop while | goes from 11to 50
X «— RND(R1-R2)*
increase FACE(X) by 1

end loop

put(“FACE" ,"*COUNT"")

loop while | goes from 110 6
put(l,FACE())

end loop

end

Notice how we use X as the subscript in the increase statement within the first
loop, rather than the loop index. In the previous statement, X was randomly assigned a
value in the range of 1 to 6. If, for example, a five were fossed FACE(5) would be
incremented by one. This program translates into BASIC easily:

100 REM ~- DIETOSS 1-1-81

105 REM -~ INPUT VARIABLES: R1, R2

110 REM -- LOCAL VARIABLES: X

115 REM -- OUTPUT VARIABLES: |, FACE(l)

*We use RND(R 1-R2) to indicate the algorithm for generating random integers in the range R1to
R2

117

118 Subscripts and Arrays

7.6

120 DIM FACE(6)
125 R1 =1

130 R2 =6

135 FORI=1TO6

140 FACE(l) =0

145 NEXTI

150 FOR!- 1T0O 50

155 X =INT((R2 — R1 + 1) *RND(1) + R1)
(Use 155 X = RND(6) on TRS-80)

160 FACE(X) = FACE(X) + 1

165 NEXTI

170 PRINT 'FACE','COUNT'

175 FORI=1TO6

180 PRINT |,FACE(l)
185 NEXTI

999 END

RUN

FACE COUNT
1 10

2 6

K] 4

4 6

5 12

6 12

When we simulated the die toss fifty times we tossed ten 1's, six 2's, four 3’s, six
4's, twelve 5's, and twelve 6's

SORTING WITH AN ARRAY

We have discussed the process of computing the mean of a data set in Section 5.4 and
again in this chapter. A second measure of the ceniral tendency of a data set is the
median or middle value of the data In order to find the middle value, the data set must
be arranged in ascending or descending order. Consider the following data set:

2 34 42 30 32 12 29 34 22 98 99
We can easily sort this array by hand, which would then look like this:

2 12 22 29 30 32 34 34 42 98 99

Ch. 7

Sec. 7.6

Sorting with an Array

Since there are eleven data values the center value is in position six. But suppose we
have 1000 data values. A hand sort becomes tedious. We will consider how the
computer can conduct a sort and locate the median.

When we compute the arithmetic mean of a series, we merely add each item into
a running total. Only three variables are required: (1) the input item, (2) the accumulator
or running total, and (3) a counter to keep track of the number of individual items
actually accumulated. To compute the median, however, each individual value must be
stored in the computer This will require that data be read into an array.

Let us look at the unordered sequence:

2 34 42 30 32 12 29 34 22 98 99

One way to sort this data is to start by looking at the second element (34)
Determine if it is smaller than the first element. If it is, interchange the two numbers. In
pseudocode we can express this task as follows:

if (X(l) > X(I+1)) [interchange]

What we desire here is to interchange two values in an array whenever the
leftmost one is larger than the rightmost one of the pair The interchange procedure is
ambiguous and requires refinement Imagine the following situation:

X(1) X(2)

4 > 1

In our example X(1) has the value 4 and X(2) has the value 1 The logical expression will
evaluate to true and the interchange procedure should be performed. If we move 4
from X(1) to X(2) then the value 1 will be destroyed and both memory cells will contain
the same value. Thus, we will have to save the value 1 somewhere before the value 4 is
transferred to X(2): We can accomplish this by adding a temporary variable calied
TEMP.

X(1) X(2)
4 | — 1
\ /
TEMP

If we move the contents of X(2), to TEMP, the contents of X(1) to X(2), and the
contents of TEMP to X(1) in that order, the exchange will occur correctly. Algorithmi-

119

120

Subscripts and Arrays

cally, we would write:

TEMP «— X(2)
X(2) < X(1)
X(1) « TEMP

Now the interchange procedure is expressed unambiguously. This block is the heart of
the bubble sort algorithm whereby the larger values bubble to the top of the array. Here
is a complete bubble sort programmed in BASIC

190 REM —-- SORT ARRAY X
200 FORI=2TON
210 FORJ=1TOI - 1

220 IF X(I) > X(J) THEN 260
230 LET TEMP = X(I)

240 LET X(1) = X(J)

250 LET X(J) = TEMP

260 NEXT J

270 NEXTI

To understand this sort routine we need to extend our treatment of loops slightly
to include the concept ot nested loops. Notice that there is a loop with the index |
beginning at statement 200 and ending at statement 270. Within this loop is a second
loop with index J beginning at statement 210 and ending at statement 260. The inner J
loop is entirely enclosed within the outer I loop; in other words, it is nested within the
outer loop. Loops can be nested in this way any number of times, as long as each loop
has a different index, and is completely nested within all outer loops

With this background, we will find it easier to understand the working of the sort
routine. For each pass through the outer loop we will list |, the range of J and the
rearranged array X(l). First let us recall the unsorted array:

2 34 42 30 32 12 29 34 22 98 99

Pass I Range of | Rearranged X(I)

1 2 1to 1 The inner loop has one iteration.
The value to the ieft of 34 is less
than 34. Therefore no exchange
occurs,

23442 3032 1229 34 2298 98

2 3 1to 2 The inner loop has two iterations.
The values to the left of 42 are
both less than 42 so no
exchanges occur.

234423032 122934229899

Ch.7

7.7

The Median

Pass I Range of | Rearranged X(I)

3 4 1t03 The inner loop has three iterations.
On the first iteration nothing
happens because 30 is bigger
than 2. On the second iteration 30
and 34 are exchanged. On the
third iteration 34 and 42 are
exchanged.

230344232 1229 34 22 98 99

4 5 1to 4 230323442 122934229899

You may complete this sequence if you like. It should be clear that the outer loop
moves along the array starting at position 2. At each position of the outer loop, the
inner loop orders everything to the left of that point. For example, when | = 5 the inner
loop has sorted the first five elements of the array. When | = N (11 in our case) the sort
is complete. This process of sorting illustrates the power of the FOR-NEXT loop used
in conjunction with subscripted variables

THE MEDIAN

Now that we know how to sort an array, we are prepared to find the median of a data
set. Recall that we said the median was the middle value Data sets with an odd number
of elements will always have a middle element. If the number of elements is even we
average the values of the two “middle’ elements. We will start by assuming that the
data set has an odd number of elements and assign the middle value to the median. If
the number of elements is even, we correct this assignment. The procedure can be
expressed in pseudocode as follows:

19« INT(N/2 + 1) (19 is the center element when N is odd.)

MEDIAN «— X(19)

if (Nis even)

[MEDIAN «<— (X(19) + X(19—1)) / 2]

Here we assume that the array X contains the sorted vector and that N indicates
the operational size of X The logical expression, (N is even), requires further
refinement. Divisibility by two is a test for evenness. In Section 6.2 we developed a
divisibility test. Using this test, we can refine the logical expression as follows:

ifN/2=INT(N/2)
An alternate and simpler expression that will test for N even in this special case is:
ifN=2%(19 - 1)

121

122 Subscripts and Arrays

Our algorithm can be translated into BASIC as follows:

305
310
320
330
340
360

REM ~- DETERMINE THE MEDIAN
19 =INT(N/2+ 1)

LET MEDIAN = X(I9)

IFN /2 <> INT(N /7 2) THEN 360
LET MEDIAN = (X(I9) + X(19—1)) / 2
PRINT "THE MEDIAN IS ";MEDIAN

Here is the completed program in BASIC:

100
101
102
103
104
105
110
115
120
1320
135
140
145
190
200
210
220
230
240
250
260
270
275
277
280

200

i

300
305
310
320
330
340
350

REM —- MEDIAN
REM
REM PROGRAM TO SORT AN ARRAY
REM AND DETERMINE ITS MEDIAN
REM
DIM X(1 1)
LETN =11
REM -~ LOAD AND ECHO ARRAY
FORI-1TON

READ X(I)

PRINT X(1);" "
NEXT I
PRINT
REM -- SORT ARRAY X
FORI-2TON

FORJ=1TOI - 1

IF X(1) > X(J) THEN 260

LET S = X(1)
LET X(I) = X(J)
LET X(J) =S
NEXT J
NEXT I

REM -- PRINT SORTED ARRAY
PRINT "HERE IS THE SORTED ARRAY:'
FORi=1TON

DRINT X"
NEXT |
REM -— DETERMINE MEDIAN
19 =INT(N/ 2 + 1)
LET MEDIAN = X(i9)
IFN /2 <>INT(N/ 2) THEN 360
LET MEDIAN = (X(19) + X(I9—-1))/ 2
REM -~ PRINT MEDIAN

Ch.7

Sec 7.8

7.8

Reading a Data Set More than Once

360 PRINT "THE MEDIAN IS “;MEDIAN
500 DATA 2,34,42,30,32,12,29,34,22,98,99
510 END

Here is a run of the program:

RUN

234423032 122934229899
HERE IS THE SORTED ARRAY:
212222930323434429899
THE MEDIAN IS 32

EXERCISE SET 7.2

1 Write a program that generates the dependent variable values in the following
equations. Store each value in an array Y Add loops to the program to find the
largest and smallest values of y. Print out these values.

(@) y=38x"+2x+5fromx=—~5tox = 10in integer steps
(b) y=4x*—-3x>+ 1fromx = —20tox =4 in integer steps
2 Generalize the program MEDIAN so that it does the following:
(a) Reads a data set of any size determined by the user (maximum of 100 data

elements),
(b) Prints the data set in the order read,
(c) Sorts the data set in ascending order,
(d) Prints the sorted data set,
(e) Computes the median of the data set.

3. Modify program MEDIAN so that it accepts data from the keyboard A negative
value should terminate input. The program should sort and print the array in
descending order and evaluate the median and mean

READING A DATA SET MORE
THAN ONCE

In more complex programs, it may be convenient to read a data set more than once.
The computer uses a pointer to indicate which value in the DATA statements will be
read next. We can reset the pointer within our program by inserting a RESTORE
statement. This moves the data set pointer to the first data value. It should be kept in

123

124

7.9

Subscripts and Arrays

mind that BASIC considers all the data values in all the DATA statements within a given
program as a single data set, no matter where those statements may be—even if we
consider them to be several data sets. The only control we have of the data set pointer
is to move it to the beginning. However, it is possible to use a loop that will read and
waste (that is, ignore) a certain number of data values, in order to move the pointer to
the desired location. Consider the following:

100 DIM X(15)

105 FORI=1TO 15

110 READ X(1)

115 NEXTI

130 RESTORE

135 DIM Y(15)

140 FORI=1TO 15

150 READ Y(l)

160 NEXT!

170 DATA 3,2,1,6,9,15,10,8,7,9,12,13,8,7,9

This program loads both arrays X and Y with the same data set. Without the
RESTORE statement we would get an OUT OF DATA error at our first attempt to
execute statement 150. Of course, there is a simpler way to load Y than that shown
above.

TWO-DIMENSIONAL ARRAYS

In many problems we deal with two-dimensional displays of data such as the
percentage of car sales by car size by region, which is displayed in Table 7.1. It is
important that we be able to retain this two-dimensional format when we read
information into the computer The two-dimensional array is designed for that purpose.
The term matrix is frequently applied to such an array, particularly when it is used to
manipulate data

Table 7 1
Percentage of Sales by Car Size by Region

Size

Region Small Medium Large

I 75 15 10
It 40 50 10
1 60 25 15

v 47 46 7

Ch. 7

Sec. 7.9

Two-Dimensional Arrays

We need some additional terminology to understand the two-dimensional array.
Each vertical alignment of data is called a column (columns stand upright) while each
horizontal alignment is called a row. If our array has more than ten rows or columns it
must be explicitly dimensioned. We recommend dimensioning in any case It is
necessary in the dimension statement to distinguish between rows and columns. The
table above has dimensions of four rows by three columns. An appropriate dimension
statement for this table would be:

100 DIM A(4,3)

Rows always come before columns in referring to dimensions. An 11 by 2 array would
have eleven rows and two columns.

Suppose we wish to read the data above into an array and preserve its natural
order. We need an array such as follows:

A

) 3

(1.2)
(2.2)
(3.2)
(4.2)

(1 ,
(@,

3,

(4

(1,3
23
(3,3
43

'

>r > >
> > >
> > > >

Each piece of data has a double subscript to identify its place in the table. We
need to get the data values into the array Twelve assignment statements would do the
job. Or, we might consider three loops of four repetitions. Both these methods are
cumbersome and fail to take advantage of the combination of FOR-NEXT loops and
subscript notation.

A better solution is to use a pair of nested loops. We may write:

100 FORI=1TO 4
110 FORJ=1TO3

120 READ A(l,J)
130 NEXT J
140 NEXTI

We might try hand-tracing this fragment that loads the matrix. On the first pass
I=1 and upon entry of the J loop J=1. Line 120 then means READ A(1,1). We
encounter NEXT J which increments J to 2 and statement 120 then means READ
A(1,2). Next we read A(1,3), leave the J loop, encounter NEXT I and increase I to 2.
We then enter the J loop again and read the second row of the array. This process
continues until all four rows are read.

We emphasize this detail because it is important to know the order in which the
data must appear in the data statements. The order is obviously all first row data, then
all second row data, and so forth. An appropriate data statement would be:

150 DATA 75,15,10,40,50,10,60,25,15,47,46,7

If we put the above program fragments together (statements 100 through 150) and run
the program we should load matrix A Suppose we wish to reproduce the table. The

125

126

Subscripts and Arrays

following nested loop structure will accomplish this:

200 FORI=1TO4
210 FORJ=1TO3

230 PRINT A(L,J);" "
240 NEXT J

250 PRINT

260 NEXTI

(blank space is needed only for the
Apple)

Or, we could simply insert the following statements in the loop structure that loads A:

125 PRINT A(l,J);""
135 PRINT

Our output is:

75 15 10
4050 10
60 25 15
47 467

The blank following the array reference in statements 230 and 125 cause a single
space to be printed between the columns on a line. if you are not using an Apple, you
can probably omit this blank. The semicolon in the same statements keeps the printer
on the same line as a row is printed. Statements 135 and 250 move the printing head to
the next line, cancelling the effect of the semicolon as the printing of a row is

completed.

We include here a general program for loading an M by N array:

100 FORI=1TOM
110 FORJ=1TON

120 READ A(l,J)
130 NEXT J
140 NEXT

150 DATA

EXERCISE SET 7.3

1. Load the following tables:

(a) Loadinto array B:
1.5 2.6 11
3.2 2.4 15

—
—

Moves row pointer
Moves column pointer
Read data item

Enter in normal reading order—
left to right by rows

Sec. 7. 10

7.10

Matrix Operations

(b) Loadinto array C:
23 15 37 41 62
14 19 21 35 15
22 34 11 29 12

2. Load an identity matrix of dimension four by four. An identity matrix has the
number 1 everywhere on the left-top to bottom-right diagonal and zeros every
place else. You should be able to load this array without using data lines.

3 Print out the arrays in problems 1 and 2

MATRIX OPERATIONS

There are several important operations involving arrays which we will discuss here
These are:

1 Matrix addition (including subtraction),

2 Matrix multiplication, and
3 Matrix inversion.

These operations will be defined in the usual mathematical sense Later in this chapter
we will illustrate the use of two of these operations in solving practical problems. The
use of matrix inversion will be discussed in Chapter 12.

Matrix addition is defined as an element by element addition of two matrices of
the same dimensions. Addition of two simple matrices is indicated betow:

3 2 1 0 4 2
0 1 + |12 =1 = 2 0
-1 0 0 3 -1 8

We could write a general program for this operation of addition as follows:

100 FORI=1TOM
110 FORJ=1TON

120 LET C(1,J) = A(l,J) + B(1,J)
130 NEXT J
140 NEXTI

A, B, and C matrices all have the same dimensions. Subtraction is accomplished by
using a minus sign in place of the plus sign.

Matrix multiplication is a more complicated process. Two matrices may be
multiplied only if the number of columns of the left matrix equals the number of rows in

127

128

Subscripts and Arrays

the right matrix. For example, we can multiply the following two matrices together:

3 2
2 1 -1 0 4
1 -1

However, if we were to reverse their order so that we attempted to multiply in the
following manner:

3 2
0 4 2 1 —=1]
1 -1

the multiplication could not be completed since the left matrix has two columns while
the right matrix has one row. This rule arises because of the manner in which matrix
multiplication is performed. Each element of the product matrix is obtained by applying
the entire row of the left matrix to a column of the right matrix. Let us perform the
multiplication:

3 2

2 1 -1 lO 4J
1 -1

We start by applying the first row of the left matrix to the first column of the right in the
following manner:

3
2 1 -1 0 =2*34+1*¥0+(—1)*1
1 =6+0-1

=5

£t

Five is the value of the 1, ith element of the product matrix. Next, we apply the first row
to the remaining columns of the right matrix. We obtain:

2
2 1 -1 4] =2x241¥4 4 (=¥ (=1
—1] =4+4+1

-9

Ch.7

Sec. 7.10

Matrix Operations

Nine is the 1,2th element of the product matrix. There are no more columns in the
second matrix so we have generated the entire first row of the product matrix. The
second row is obtained by applying the second row of the left matrix in the same
manner. But the left matrix has no second row so the entire product is

(5 9

Note that the number of rows in the product agrees with the number of rows in the
left matrix. The number of columns of the product agrees with the number of columns of
the right matrix.

Programming the matrix multiplication is more complex. We present a program
fragment which accomplishes this multiplication. This procedure is documented in the
Library of Subroutines. (Appendix B., p. B15).

100 FORI=1TO M
110 FORJ=1TOL

120 FORK=1TON

130 LET C(l,J) = C(1,J) + A(1,K) * B(K,J)
140 NEXTK

150 NEXT J

160 NEXTI

Note the use of the triple nested loops. M is the number of rows in the left matrix, L is
the number of columns in the right matrix, and N is the number of columns in the left
matrix

The third important matrix operation is inversion. Inversion of a matrix means
finding another matrix, which, when multiplied by the given matrix, yields an identity
matrix. In discussing inversion we will only consider matrices that have the same
number of rows as columns (called square matrices). The identity matrix is a square
matrix such as that shown below:

1 0 0
0 1 0
0 0 1

Note: The diagonal from top left to bottom right is filled with ones. All other elements
are zero. This is a three by three identity matrix, One can be written for any dimension.
A subroutine for inversion is contained in the Library of Subroutines. (Appendix B,
p. B17) Its use wili be discussed in Chapter 12,

129

130

7.11

Subscripts and Arrays

ORDER EXPLODING USING ARRAYS

Consider a very simple fabrication operation. A skateboard manufacturer produces
three models of skateboards—

Model A(1)—Standard,
Model A(2)—Deluxe, and
Model A(3)—Super

These boards are fabricated from some combination of the following five compo-
nents—standard wheel set, heavy duty wheel set, reinforced board, laminated board,
and a plastic guard.

The standard model is fabricated from two standard wheel pairs and a reinforced
board. The deluxe model is fabricated from two standard wheel pairs, a laminated
board and a plastic guard Finally, the super model has two heavy duty wheel sets, a
laminated board and two plastic guards This information could be collected in a
two-dimensional array as in Table 7.2,

Table 7 2
Skateboard Models and Their Components

Heavy
Std. Duty Reinf. Lamin.

Model Wheels Wheels Board Board Guard
A(1)—Standard 2 0 1 0 0
A(2)—Deluxe 2 0 0 1 1
A(3)—Super 0 2 0 1 2

Suppose the manufacturer is to fabricate an order for 100 standard models, 150
deluxe models, and 75 super models. To find the number of each component needed
to fill this order we could do the necessary arithmetic. This would yield:

500 standard wheel setls
150 heavy duty wheel sets
100 reinforced boards
225 laminated boards

300 plastic guards

Now perform a matrix multiplication. Multiply the order, written as a one by three matrix,
by the component array above

Sec. 7 11

Order Exploding Using Arrays

[100 150 79 2 0 0 1 1

The result is the array
[500 150 100 225 300]

which is the number of components needed. This process in which an order for
assemblies is converted into a corresponding set of components is called order
exploding. We would quickly see the advantage of the matrix multiplication over the
hand calculation if we were dealing with more complex fabrications where the number
of components may run into the hundreds

The matrix multiplication for order exploding may be simplified somewhat from
that shown in Section 7.10, since we are dealing with a one row matrix on the left We
write:

100 FORJ=1TOL
110 FORK=1TON

120 LET C(J) = C(J) + A(K) * B(K,J)
130 NEXT K
140 NEXTJ

The matrix C will have the number of each component needed to fill order A.

We write here a general program that will allow the user to read the component
matrix from data lines, to enter the order matrix from the keyboard, and to calculate
needed components.

100 REM ~- EXPLODE

105 REM PROGRAM TO EXPLODE AN ORDER
110 REM ~- INPUT VARIABLES: B(N,L),A(N)

115 REM -—- LOCAL VARIABLES: J,K,N,L

120 REM -- OUTPUT VARIABLES: |,C(N)

1256 LETN=3 : LETL =5

130 REM -- LOAD COMPONENT MATRIX

135 FORI=1TON

140 FORJ=1TOL

145 READ B(l,J)
150 NEXT J
155 NEXTI

160 REM -- INPUT ORDER

165 FORI=1TON

170 PRINT "ENTER QUANTITY OF MODEL A(’;1;").";
175 INPUT A(l)

131

132 Subscripts and Arrays

180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260

NEXT i
REM —- MATRIX MULTIPLICATION
FORJ=1TOL

FORK=1TON

LET C(J) = C(J) + A(K) * B(K,J)

NEXT K
NEXT J
PRINT
REM —~ PRINT COMPONENT LIST
PRINT 'HERE ARE COMPONENTS NEEDED'
PRINT
PRINT "COMPONENT #",'"QUANTITY"
FORI=1TOL

PRINT 1,C(1)
NEXT !
DATA 2,0,1,0,0,2,0,0,1,1,0,2,0,1,2
END

Here is a run of this program for the skateboard fabrication problem:

ENTER QUANTITY OF MIODEL A(1).7 100
ENTER QUANTITY OF MODEL A(2).? 150
ENTER QUANTITY OF MODEL A(3).7 75

HERE ARE THE COMPONENTS NEEDED

COMPONENT # QUANTITY

N B WN =

500
150
100
225
300

Note that at this point, if one had the inventory of components in array |, subtraction of
array C from array | would provide an adjusted inventory or indicate where deficiencies
of components exist.

EXERCISE SET 7.4

1. Use the general program on order exploding to solve the following problem. The
array of assemblies versus components for a manufacturer of heaters is
displayed on the following page.

Ch. 7

Review

Components
Heater 1 2 3 4 5 6 7 8 9 10 11 12 13 14
H(1) 0 2 1 5 3 1 0 0 0 2 4 1 2 3
H(2) t o0 1t 5 3 1t 1 1 A 2 4 1 0 1
H(3) 10 0 0 0 0 0 1 A 2 4 1 2 1
H(4) 106 0 2 2 0 0 1 {1 2 4 1 1 1
H(5) 2 2 1 5 3 1 1t 1 A 2 4 1 2 2

{(a) Construct data lines from which this array may be read into array B in
proper order.

(b) The following order has been received from a department store chain:

Heater H(1) 475
Heater H(2) 200
Heater H(3) 750
Heater H(4) 275

()

Heater H(5) 100

Enter this order at the keyboard and determine the components needed to
fill the order

2. Write a program that will generate 200 random integers in the range from five to
fourteen. Tabulate and print out the number of each integer obtained. How many
of each integer would you expect to find when a total of 200 is generated?

3. Assume an inventory matrix for problem 1 as follows:

i(1) i(2) i(3) i(4) i(5) i6) i(7)
1350 750 650 6000 6000 2000 900

i(8) i(9) i(10) i(11) i(12) i(13) i(14)
1400 2100 3300 7500 2500 2500 4000

Write a program to subtract the component matrix developed in problem 1 from
this inventory matrix. What do negative entries in the difference matrix repre-
sent?

Review

The addition of arrays and their combination with FOR-NEXT loops introduce the real
power of the computer in performing repelitive processes on large data sets We
summarize the new terms and the BASIC syntax introduced in this chapter.

133

134 Subscripts and Arrays Ch. 7

ONE-DIMENSIONAL ARRAY a set of memory locations addressed with a BASIC
variable name plus a number called a subscript, for example, A1(8) references the
eighth location in array A1. One-dimensional arrays are suitable for storing lists.
(Section 7.4)

TWO-DIMENSIONAL ARRAYS a set of memory locations addressed with a BASIC
variable name plus a pair of numbers called subscripts, for example, B(2,3) references
the element of B which is in the second row and the third column. (Section 7.4)

DIMENSIONING the process of fixing the size of an array. (Section 7.4)

MATRIX a mathematical term frequently used to describe an array. The mathemati-
cal notation used with arrays and the manipulation of arrays predates computers
(Section 7 4)

NESTING the process of enclosing one structure entirely within another. We
considered the nesting of loops which requires distinct loop indices. (Section 7 6)

Basic SYNTAX

DIM a BASIC keyword used to indicate that a dimension assignment follows. For
example, DIM A8(23) saves twenty-three locations for the one-dimensional array A9.
(Section 7 4)

BESTORE BASIC syntax that moves the internal data set pointer to the first data
value in the program. Some dialects of BASIC require the use of RESET instead of
RESTORE. (Section 7.8)

8.1

8.2

STRINGS AND
STRING
FUNCTIONS

INTRODUCTION TO STRINGS AND
STRING FUNCTIONS

In this chapter; we will introduce methods of processing character data. These
methods allow us to solve such practical problems as alphabetizing, answer screening,
searching, and formatting of both numeric and character information. These string-
handling facilities of BASIC expand our capability to use the computer for other than the
processing of numerical data.

CHARACTER DATA AND THE ASCII
CODING SYSTEM

So far, we have been primarily concerned with processing numeric data. However,
most versions of BASIC include powerful facilities that make it easy for us to process
character data. Strictly speaking, any symbol on the keyboard is a character. Each
character is stored internally by the computer using a numeric coding scheme. The
most common internal coding schemes are EBCDIC and ASCIl The latter, an acronym
representing American Standard Code for Information Interchange is used by the
Apple, the PET, and the TRS-80 and most other microcomputers and minicomputers

135

136 Strings and String Functions

8.3

Table 8.1
ASCII Character Set

Range
Letters (A-Z) 65-90
Digits (0-9) 48-57
Special Characters 33-47
58-64

In the ASCI coding system-—pronounced '‘askey"—alphabetic characters,
commonly called letters, have codes beginning with 65 for the letter A and ending with
90 for the character Z. Numeric symbols, digits, have codes beginning with 48 for zero
and ending with 57 for nine. In addition to letters and digits, you have a variety of other
characters on the keyboard, including the following: $ # " % & *? / () +. All these
symbols—usually called special characters—have ASCIl codes also In addition, ASCII
codes are assigned 1o a series of nonprinting characters, which are used to control the
operation of the computer. For example, a carriage return has a code of 13, the bell
has a code of 7, and the space or blank character is represented by the ASCIl code of
32 The codes are summarized in Table 8.1.

STRING VARIABLES

Generally speaking, we do not need to concern ourselves with the computer’s internal
coding system, but for certain string processing applications, a basic knowledge of the
internal coding system is desirable. A string is a sequence of characters or symbols
enclosed within quotation marks. Just as BASIC provides for numeric constants and
variables, it also provides for string constants and variables. Let us consider the
following:

100 LET A$ = "ABCDEF"

in this statement, A% is the name of a siring variable. While the rules for naming string
variables are basically the same as for numeric variables, the dollar sign “$”” must
always be the last character in string variable names in order to distinguish string
variables from numeric variables. The character sequence ABCDEF contained within
quotation marks in statement 100 is a string constant. This is a string assignment
statement that assigns the value of the constant to the string variable in a manner
similar to arithmetic assignment statements. Only string variables may be assigned
string values

Ch. 8

Sec. 8.4

Translating From ASCIl Code to Character and Back

84 TRANSLATING FROM ASCII CODE

TO CHARACTER AND BACK

Most versions of BASIC provide a series of string functions for use in processing
character data. During the course of this chapter, you will be introduced to ten string
functions, most of which are available on the Apple, the TRS-80 and the PET. The
reader should be forewarned that there is considerable variation among computers on
string handling functions. We will demonstrate the most common syntax and also point
out some common variations. *

The first two functions to be introduced are complements of each other. One
function translates a single numeric ASCIl code into a character and the other
translates a single character into its equivalent ASCIl code Let us examine the
following:

100 LET A$ = CHR$(42)
110 PRINT A$

In statement 100, a string assignment statement, the string variable A$ receives a
string value from the CHR$ function. Like arithmetic functions, we can think of string
functions as black boxes that receive something, transform it, and produce output

A =] * CHR$ 42

Output < Function <« Input

In this case, we give the function the number 42 by enclosing it within parentheses,
after which CHR$ transforms the number into an asterisk or star, which it passes to the
string variable A$. The rules of BASIC permit an even more simple application that can
be done in immediate mode as well as in program mode

PRINT CHR$(42)

The computer will respond by printing a star.

Let us pause here to take note of two technical points. (1) The value passed to
the function is called an argument. CHR$ accepts only a single argument, but some
functions require more than one argument. (2) Note how the name of the CHR$
function includes a dollar sign ($) at the end just as in string variable names. Some

*If you are using some other microcomputer, we suggest that you consult the following book for
information about your computer: David A Lien, The BASIC Handbook, 2nd. ed , San Diego:
Compusoft Publishing, 1981.

137

138

Strings and String Functions

string functions have the dollar sign at the end of their name and some do not. The rule
is that those string functions that yield string results must include the dollar sign in their
name. Those string functions that return numeric results may not have a dollar sign in
their name. All versions of BASIC impose a limit on the range of values that can be used
as arguments for CHR$. Such limits actually specify the limits of the ASCIl coding
system for a given computer. Generally speaking, you can be safe if you limit the
argument passed to the CHR$ to the range from zero to 127. The Apple, the TRS-80,
and the PET all accept values in the range from zero to 255 Digital's MUBASIC will
accept any positive numeric value but it will divide by 127 any value greater than 127 to
obtain the actual argument. With some systems, values exceeding 127 are used for
graphic characters and lower case characters. The PET is an example. Values outside
the range for a given machine may cause error messages if used

Just as BASIC allows one to input an ASCIl code to the CHR$ function and
receive a character in return, it also allows one to give a single character to a function
known as ASC and receive the corresponding ASCIl code in return. Here are three
examples of its use:.

1 100 LETJ = ASC('$")
110 PRINT J

2 100 LETAS$ ="¢"
110 LET J = ASC(AS)
i20 PRINT J

3 PRINT ASC('$")

All three of the preceding program fragments are functional equivalents and will
produce the same results—the number 36 will print on the screen. It is also legal for
one to write the following’

110 PRINT ASC('ABCDEF")

However, BASIC will only return the ASCIl code for the leftmost character in the string.
Using the CHR$ function in a loop will allow us to display the entire character set
on the screen. Enter and run the following program:

100 FORI=0TO 255
110 PRINT CHRS$(I);

120 NEXT!

You may note some erratic behavior on the screen because some of the ASCII
characters have no graphic representation but do cause the computer to perform
certain functions including carriage return, line feed, and clear screen, to name only
three. PET output will be particularly erratic If you experiment with this program using
the PET you will find that much of the output—roughly the first half that contains the
letters and numbers—prints as black on white. This is because on the PET, ASCIl code
18 instructs the computer to reverse the screen image and print black on white. You
can eliminate this annoyance by beginning the loop index at 32

Sec 85

8.5

Basic String Operations

If you try this little program on the Apple, you will find that it produces two copies
of the same thing, suggesting that the Apple cannot distinguish upper from lower case.
The fact is, that the Apple can tell upper from lower case as could be demonstrated i
program output were directed to a printer. However, the character generator that
converts ASCIl codes to characters for screen display does not contain the necessary
information to produce lower case characters and thus produces upper case
characters instead Several kits are available to remedy this situation

The character set for the TRS-80 contains lower case characters and graphic
characters in the interval between 96 and 191 On other computers, ASCIl codes
above 127 may include lower case letters.

If you are using the PET, you will also notice that the screen becomes completely
dark at one point. This is because CHR$(147) instructs the machine to clear the
screen We obtain the same results with the Apple by coding the keyword HOME.
TRS-80 users can obtain the same results with the keyword CLS.

Clearing the Screen

PET: 100 PRINT CHR$(147)
Apple- 100 HOME
TRS-80 100 CLS

Note that clearing the screen does not destroy the copy of your program in the
computer's memory, it just clears the copy on the screen. You may wish to satisfy
yourself by trying to list your program after clearing the screen

BASIC STRING OPERATIONS

There are six basic string operations to be discussed in this chapter. They are-

String assignment,

String comparison,

String concatenation,
String length determination,
Substring selection, and

DO A W NS

Substring indexing.

These six operations are basic to string manipulation. In addition, the use of several
other functions will be discussed and illustrated. Because string assignments have
been illustrated in detail in the process of treating the CHR$ and ASC functions, they
will not receive additional treatment here.

139

140

8.6

Strings and String Functions

STRING COMPARISON

Strings can be compared in IF-THEN statements in a manner similar to numeric
quantities. For example, if a particular program wishes to give the user the option of
performing a certain activity or not, the program might solicit user choice in a sequence
of statements like the following:

100 PRINT 'YOU MAY CHOOSE TO PERFORM EXPERIMENT FIVE OR
NOT"

110 PRINT "INDICATE YOUR CHOICE (YES OR NO)'

120 INPUT R$

130 IF R$ <> "YES" THEN 200

the BASIC code for experiment five would go here .

200 REM

Here statement 120 inputs the user's response as a string. In statement 130 the
response in R$ is compared with the string constant YES. If the two are not exactly the
same, the expression is evaluated as false and the program continues with statement
200. Only if the string variable and the constant are exactly the same will the block of
statements associated with experiment five be executed. The following strings will not
be found equal to YES:

1 "YES OR NO'
2 "YES'
3 ﬂY ESH

While leading blanks will cause strings to be unequal, for example in comparing "YES"
with " YES'", trailing blanks may not. This is because some computers automatically
trim trailing blanks from input strings.

Thus far, we have been comparing strings for equality or the absence of equality.
But, it is also possible to determine whether one string is greater than or smaller than
another string. Such comparisons are the basis of sorting names into alphabetical
order. Consider the following:

170 iF 'ABG" < "DEF" THEN PRINT "TRUE"
When this statement is executed, the word "TRUE" will be printed because the
computer will determine which is greater in the same way we would if we were sorting
the strings into ascending alphabetical order. Care should be taken, however, when
using less than or greater than comparisons for strings, if one or both strings contain
either special characters or digits. When either case prevails, the same program may
produce different results on different computers. This is particularly important in
programs which sort character strings The Apple, the TRS-80, and the PET all will

Ch 8

Sec. 8.8

8.7

8.8

String Length Determination

produce the same results only when upper case letters and numbers are present in
strings

STRING CONCATENATION

Another basic string operation is concatenation—the process of joining one string to
another. The concatenation operator is the plus sign “+". Some computers aliow or
even require the use of the ampersand *'&'" instead. The Apple, the PET, and the
TRS-80 all require the plus sign. Here is an example:

100 LETA$ =B$ + C$

Since the plus sign is also used in arithmetic assignment statements to indicate
addition, we must be careful to avoid confusion. In arithmetic assignment statements,
the plus sign is an arithmetic operator causing addition to occur; but in string
operations, it is a concatenation operator causing two or more strings to be joined. The
following program fragment will distinguish the two operations:

10 PRINT 1 + 1
20 PRINT "1" + "1"
90 END

Statement 10 will cause the value 2 to be printed—the result of addition. In
contrast, statement 20 will cause the string "11" to be printed—the result of
concatenation. Thus, we can see that concatenation merely joins two strings together
in the same way that two box cars might be coupled in a train. More than two strings
can be concatenated in the same statement. The following examples will illustrate.
Attempt to determine what each fragment will do before you run them

1 100 PRINT "MERRY CHRISTMAS" +- CHR$(38) + "A HAPPY NEW YEAR"
2 190 LETS$ ="

200 FORI=1TO 25

210 LET S$ = S$ + CHR$(42)

220 NEXTI

230 PRINT S$
Statement 190 might be confusing. It simply initializes the string $$ to a null or empty
string.

STRING LENGTH DETERMINATION

In certain cases, we need to know how many characters a particular string contains;
that is, we need to know the length of a particular string. BASIC itself imposes a
maximum string length, which differs from one computer to another. The Apple, the

141

142

Strings and String Functions

PET, and the TRS-80 all have a maximum string size of 255—as do most other
versions of BASIC. We should point out that it may not be possible to enter a single
string of length 255 all at one time because of a buffer size limitation. Under such
circumstances, it will be necessary to enter a long string in sections and concatenate
the sections in the program.

The TRS-80 reserves a rather small area for string storage under ordinary
circumstances As a result, there is only enough room for fifty characters of string
storage. Programs attempting to use more than that amount will terminate with an "0S",
or operating system error The following program will serve as an example.

X = 255

S$=""

FORI=1TOX
S$ = S$ + "#"

NEXT |

PRINT S$

PRINT LEN(S$)

~NO A WN =

This program merely builds a string of 2565 "#" characters, one at a time, and
then prints the string and its length. In order to avoid the error message mentioned
above, type the following before you run the program:

This command initializes all storage locations, resets pointers, and sets the string
storage area at 510 bytes. Experimentation suggests that the value specified in the
CLEAR command should be twice the string space required by the program

In order to determine the length of a string, BASIC provides a length function
called LEN. The function accepts a single argument that must be a string variable
name, a string expression, or a string constant. LEN returns a numeric value indicating
the number of characters in the string argument. Here is an example:

100 LET S$ = "ABCDEF"
110 PRINT LEN (S9$)

or simply
100 PRINT LEN{"ABCDEF"

Both these fragments will cause the number 6 to be printed. We can use the LEN
function or its output anywhere that it is legal to use a number. The following statement
will produce the value zero on most computers:

300 PRINT LEN("")

The length of a null string is zero.

Ch. 8

Sec 8.9

8.9

Substring Selection

SUBSTRING SELECTION

A substring is a contiguous segment of a string. A substring is bound by the length
restrictions imposed upon strings by a particular dialect of BASIC. Furthermore, since a
substring is selected from a string, the substring cannot be longer than the string from
which it is selected. Many versions of BASIC, including the Apple, the PET, and the
TRS-80, provide three substring selection functions—two of which are actually
specialized versions of the third. The functions summarized in Table 8.2 are: LEFTS,
to select a specified number of characters from the left end of the string; RIGHTS, to
select a specified number of characters from the right end of the string, and MID$, to
select a specified number of characters from a point specified within the string. The
following fragment will illustrate:

200 S$ — 'TRUMAN HARRY S
210 L$ - LEFT$(S$,6)

220 M$ = RIGHT$(S$,1)

230 F$ - MID$(S$,8,5)

Statement 200 begins by assigning the string constant "TRUMAN HARRY S' to S$.
Statement 210 selects the leftmost six characters from S$ and passes them to L$
Similarly, statement 220 selects the rightmost character from §$ and assigns it to M$.
Finally, F$ selects a substring from $$ beginning at character eight and having a length
of five characters. By adding the following statements we can see the results of the
process:

240 PRINT S$
250 PRINTLS
260 PRINT M$
280 PRINTF$
290 PRINT F$;" ";M$;" "L$

Try to predict what statement 290 will do before testing your program. If you use an
Apple, you may have noticed that you can omit the semicolons without ill effect. This
process of implied concatenation is not common, and, as a rule, should be avoided.

Table 8.2
Substring Functions

Function Arguments

LEFT$ (string name, substring length)

RIGHTS$ (string name, substring length)

MID$ (string name, location of first character of substring, sub-
string length)

143

144

Strings and String Functions

Some versions of BASIC, for example, Digital's MUBASIC, provide a function
called SEG$. It is quite similar to the MID$ function with the single important exception
of the third argument With MID$, the third argument is the length of the substring to be
selected, while with SEGS$, the third argument is the location of the last character in the
substring to be selected. The following program fragments will illustrate

100 REM--FRAGMENT # 1
110 Z$ ~ "SUBSTRING SELECTION'
120 PRINT MID$(Z$,6,4)

100 REM--FRAGMENT #2
110 2$ - "SUBSTRING SELECTION'
120 PRINT SEG$(Z$,6,9)

Both program fragments will cause the string "RING" to be printed. It is likely that any
computer you may be using will support one of these functions, but not both Also,
remember the difference in the third argument.

As suggested above, the LEFT$ and RIGHT$ functions are merely specialized
versions of the MID$ function. The following pairs of statements are equivalents:

A$=LEFT$(B$,5) A$=MID$(B$,1,5)

A$-RIGHT$(BS,5) A$-MIDS(BS,LEN(BS)-5+ 1,5)
Some dialects of BASIC permit a statement like the following
110 CHANGE A$TO A

Such a statement instructs the computer to translate each character of the string A$
into its equivalent ASCIi code and store the codes in successive elements of the array
A, so that the ASCIl code for the first character of A$ is in A(1), and the second in A(2)
and so forth. We can simulate such a function using the ASC and MID$ functions in a
loop as the following program fragment illustrates:

100 REM-~--CHANGE

110 DIM A(25)

120 PRINT 'ENTER STRING--NO MORE THAN 2
130 INPUT A$

140 FORI = 1TO LEN(AS)

150 LET A(l) = ASC(MID$(AS$,1,1))

160 PRINT A(l);"

170 NEXT |

180 END

1

Ch-8

Sec. 8 10

8.10

Substring Indexing

RUN

ENTER STRING~--NO MORE THAN 25 CHARACTERS
? HELLO

7269767679

The numbers printed are the ASCHl codes for the characters entered. If you are not
using an Apple computer, you can probably omit the single blank character printed in
line 160

The second and third arguments of MID$ and SEG$ and the last argument of
RIGHTS$ and LEFT$ can be either numeric constants, numeric variables, or arithmetic
expressions as long as their values are not out of range. More specifically, these
arguments should either be or evaluate to positive numeric values, no greater than the
length of the string. Furthermore, the third argument of SEG$ should not be less than
the second argument. In addition, the sum of the second and third arguments of MID$
should not exceed the string length. If your program violates these specifications, the
results will be unpredictable. Some computers will print error messages and interrupt
your program. Other computers will print error messages only when negative numeric
values are used as arguments In any case, you will want to be sure that your programs
do not violate either the syntax requirements of the computer language or common
sense.

SUBSTRING INDEXING

The final string operation to be demonstrated is the substring indexing function. It
performs two tasks: (1) it determines whether a substring is present in a string, and (2)
if the substring is present, it returns a numeric value indicating the location of the
starting character of the substring in the string

Because neither the PET, the Apple, nor the TRS-80 provide a substring index
function, we are forced to write our own. Fortunately, this is not a very complicated
task. Let us consider the following fragment

100 LET A$ =~ 'TIPPECANOE AND TYLER TOO"
110 LETB$ = "TYLER"

500 FORP = 1 TO LEN(A$)—LEN(B$)+ 1

510 IF B$ = MID$(A$,P,LEN(B$)) THEN 540
520 NEXTP

530 LETP =0

540 PRINT P

This program makes successive comparisons of five character segments of A$,
beginning with the leftmost five characters until a match occurs In order to watch the

145

146 Sirings and String Functions

program work, insert the following statement:
505 PRINT B$;" ";MID$(A$,P,LEN(BS));" ;P
The following should appear on your screen:

TYLER TIPPE
TYLER IPPEC
TYLER PPECA
TYLER PECAN
TYLER ECANO
TYLER CANOE
TYLER ANOE

TYLER NOE A
TYLER OE AN
TYLER E AND 10
TYLER AND 11
TYLER AND T 12
TYLER ND TY 13
TYLER D TYL 14
TYLER TYLE 15
TYLER TYLER 16
16

ONOUTL WN -

Examine the output carefully until you are confident you understand how the
program works. Apple, PET, and TRS-80 users will want to take special note of this
program fragment for future use. It can be a valuable part of your library of
programming tools

Suppose you were given the assignment of writing a small program intended to
test a student's knowledge of geography. More specifically, suppose the program
were to print the name of one of the fifty states and ask the student to type in the part of
the country where that state was located Such questions will probably have more than
oneooneotanswerandthepnxyanwwmneedtocheoktheshﬁenfsresponseagmnm
each of the acceptable answeis. You can accomplish this task using strings and the
substring index operation. In such a program, the answer string must be searched in
order to determine whether the response string is present in it. Consider the following:

100 REM -~ GEQGRAPHY OINZ
110 LET A$ = "EAST NORTHEAST NEW ENGLAND"

120 PRINT "IN WHAT PART OF THE COUNTRY IS CONNECTICUT"
130 INPUT B$

140 FORP = 1 TOLEN(A$) — LEN(BS) + 1

150 IF B$ = MID$(AS,P,LEN(B$)) THEN 200

160 NEXTP

Sec. 8.10

Substring Indexing

170 PRINT "SORRY, YOUR ANSWER IS WRONG"
180 GOTO 999

200 PRINT "CORRECT"

999 END

At this point, we recommend that you type in this program and run it in order to
satisfy yourself that it works correctly. In addition to the correct answers, try each of the
following:

NORTH ENGLAND E
NEW LAND WE
THE

Your program should accept all of the obviously incorrect answers and print a
congratulatory message. Clearly, this program needs some more work. Read over the
results and try to diagnose the problem before you proceed to the next paragraph

The problem, as you have probably deduced by now, is that humans make
certain assumptions about the answer string that are unknown to the computer. When
we look at statement 110, we see four words in the answer string constituting three
correct answers. They are. EAST, NORTHEAST and NEW ENGLAND. We read the
answer string in this manner because we recognize the words in it We know that NEW
ENGLAND is one answer because the words refer to a part of the country. Also, very
importantly, we interpret the blank character, or space, as a word delimiter-—that is, as
separating words from each other. Computers make no such assumption. The blank is
just as much a character to the computer as the “T" It is also clear that the blank
between NEW and ENGLAND is different in its meaning from the blank which follows
EAST. The blank that follows EAST separates one correct answer from another while
the blank between NEW and ENGLAND only separates two words in the same correct
answer. We must make several minor changes in our program in order to insure that it
interprets answers the way we do. More specifically, we need to distinguish between
those spaces that delimit correct answers and those that separate words in the same
answer Our objective is rather easily achieved by the modification of statement 110
and the addition of statement 135

110 LET A$-"SEAST$NORTHEASTSNEW ENGLANDS$'
135 LET B$="$“+B$+"$"

Now rerun the program trying all the incorrect answers given above as well as the
correct ones. Does the program now distinguish the correct answers from the incorrect
ones?

Our technique here is a simple one. We merely insert dollar signs into the answer
string so that each correct answer begins and ends with a dollar sign. Unknown to the
student, the program also adds a dollar sign to the front and the end of the student’s
answer string.

147

148 Strings and String Functions

EXERCISE SET 8.1

1.

Read the following program fragments carefully and determine what the
computer will print when you run the fragments. After doing so, enter and run
them and check your answers.

(a) 100 LET A$ = "HAPPY BASTILLE DAY"
110 FOR! = 1 TO LEN(A$)
120 PRINT MID$(AS,1,1)
130 NEXTI

(b) 100 LET A$ = "HAPPY BASTILLE DAY"
110 FORI = LEN(A$) TO 1 STEP —1
120 PRINT MID$(AS,1,1)
130 NEXTI

(c) 100 LET A$ ="YOUR NAME'
110 LETBS$ =""
120 LET K = LEN(A$)
130 FORI = 1TO LEN(A$)
140 LET B$ - B$ + MID$(AS,K, 1)
i90 LETR =R—1
160 NEXTI

e n g —

180 PRINT B$

-y

A sentence is entered as a single string on a data line. Write a program that
determines the length of the first word in this sentence. Assume that the sentence
has no internal punctuation and ends with a period.

Consider problem 2 above again. Write a program that counts and prints the total
number of words in the sentence

Assume that the computer you are using does not support the RIGHTS$ and
LEFT$ functions. Rewrite the following statements using the MID$ function. If
you are using a computer that supports another substring function, convert these
statements to use the available function

PRINT LEFT$(S$,5)
PRINT RIGHT$(S$,2)
PRINT RIGHT$(S$,10)
PRINT LEFT$(S$,12)

Note: We have not specified the length of 8% and you should not assume any
particular length except that the string is at least as long as the substring we are
attempting to select

Sec. 811 String Applications: Decimal Point Alignment 149

5. Rewrite the following statements to use the MID$ function.

PJ$ = SEG$(X$,9,9)
A3% = SEG$(Z$,10,14)

6. If your machine does not support the MID$ function, rewrite the following
statements to use whatever substring function you have available.

D$ — MID$(NAMES,2,2)
SS$ ~ MID$(STS,1,1)

8.11 STRING APPLICATIONS:
DECIMAL POINT ALIGNMENT

Let us now look at several small programs that apply the functions, operations, and
techniques we have demonstrated. Many dialects of BASIC, including TRS-80 Level |l
BASIC, support some syntax that allows the programmer to prescribe the format under
which values will be printed. For example, one could decide that the value of a given
variable will be rounded to the second decimal place and printed in a field eight
characters wide beginning at column 21 on the screen. This gives us the ability to make
the decimal points line up vertically in a column of figures. Neither the Apple nor the PET
provides such a formatting facility Fortunately, this is not a difficult application to
program. First, consider the following program and its output as an illustration of the
problem we wish to solve:

100 REM-~~-- NOFORMAT 11-24-78
105 FORI=1TO®6

110 READ V

120 PRINT V

130 NEXTI

200 DATA 1.23, 231.44, .45, 2.98, 179.99
202 DATA 12.21

RUN
1.23
231.44
.45
2.98
179.99
12.21

150

Strings and String Functions

Notice how each number printed begins in the same column. This makes it
difficult for one to read such a column of figures. It is not easy to find the largest or
smallest number. In contrast, consider the following program and output listing. Al the
decimal points line up over one another and the column is relatively easy to read.

100
105
110
120
130
140
150
160
170
180
200
202

RUN

REM —~ WITHFORMAT 11-24-78
FORI=1T0S
READ V
LET V$ = STR$(V)
FORJ = 1 TO LEN(V$)
IF MID$(V$,J,1) ="."THENO = J — 1: GOTO 170
NEXT J
LET O = LEN(VS)
PRINT TAB(10 — O)V
NEXT I
DATA 1.23, 231.44, .45, 2.98, 179.99
DATA 12.21

4 no
PEY v

231.44
A5
2.98
179.99
12.21

This program and the one to be used in Section 8.14 introduce two new
functions, which are available in most dialects of BASIC. The two functions are
complements of each other. One changes a string value into a numeric value and the
other changes a numeric value into a string STR$ accepts a single numeric argument
and produces a string representation of that value as output. For example:

200
210

220

LET X = 129
LET X$ = STR$(X)
PRINT X$

This fragment wiil change the numeric vaiue 128 inlo a livee characier stiing il you use
an Apple. If you use a PET, a four character string will be printed, which consists of a
single blank followed by "129" MUBASIC behaves like the Apple. The TRS-80 behaves
just like the PET in this regard. You can test the behavior of your computer by adding
one additional statement as follows:

230

PRINT LEN(X$)

Sec 812

8.12

String Applications: Random Words

If the value assigned to X in statement 200 is changed to -129 all dialects of BASIC
mentioned above will produce strings four characters long each beginning with a minus
sign

The VAL function translates a string into its numeric representation. As you might
expect, VAL will not work correctly (or at all) if the string to be translated contains
nonnumeric characters. The following will illustrate:

100 LET S$ = "$225.98"
110 LET S = VAL(RIGHT$(S$,6))
120 PRINT S

This fragment will cause the second through seventh characters to be segmented and
then translated by VAL into a numeric value. For that reason, the dollar sign was
omitted from the substring passed to VAL Had we not done so, an error message
would have resulted. The Apple, the PET, and the TRS-80 are a little more tolerant of
illegal characters in the VAL statement argument. The following program will run
correctly on the microcomputers named above but not in many dialects of BASIC

200 LET X$ = "123XX"
210 LET X = VAL(X$)
220 PRINT X

Assuming that the "XX" represents junk in which you are not interested, the Apple, the
PET, and the TRS-80 will return a correct result of 123

STRING APPLICATIONS:
RANDOM WORDS

In Chapter 6, you were introduced to random numbers and some of their applications
Since alphabetic characters are represented internally in the computer as numeric
codes, we can use the random number generator to produce random words. In this
case, we use the random number generator to produce values, which our program
scales so that they all fall in the range from sixty-five to ninety, the range of ASCIi codes
for alphabetic characters. The following program produces 160 randomly created
four-letter words. You will note that the program produces a different set of random
words on each execution. On the basis of extensive testing, we are satisfied that the
program behaves itself and confines its creativity to four-letter words that are socially
acceptable. You will have to be patient with your computer, because if it is like ours, it is
a bitinarticulate and produces few if any recognizable words in each execution. Here is
a version that will run on the Apple:

151

182 Strings and String Functions

APPLE

100 REM -- RANDOM WORDS
105 REM APPLE VERSION
110 HOME

120 FOR I = 1 TO 20

130 FOR J =1 7O 8

140 FOR K = 1 TO 4

150 LET L = RNDC1)

160 LET L = INTCL ®#(90-65+1)+65)
170 PRINT CHR$CLD;

i80 NEXT K

190 PRINT ' '

200 NEXT J

220 NEXT I

RUN

SIAW EBUN YMFV JSON VLST PWYI OLHL NIXU
NUMZ INGM APMM GPKK TYRH PCVT FVJM 0OSUJ
WTJM SMKF SBPE LOWV SIJW STUD MPHO JVZE
XUGN HMAX SXUE EXED RVPG DXSQ ZCTY XRLZ
HHLE XOTY RZIH UTAL YSRT WX0S TSL@ TOZU
EVUE XVPD IRHQ YNTR GGHL GPLL SUNK CXJR
OFUO NONT UGVJ HZLU IGEZ YSSU GLUC LQPH
CKMT CBHV QODJ UJOT FECT QJIX XD0OZ PEOI
YPVT GX21 KIQGL HWYJ KMUS GWRE TITW ARUA
EIIC CBAB KUJK WHCV NUSC COAU YYQW PHLO
KGSK 10YC OKBI LJXV YHKC ZQNF VMID EYGL
KREW ABVW KWIQ PVVD GAQGD GEHJ HERQ LAGA
QSvV0 AMRO AXUB BGBD XLJP SOMG SCOR ZCPO
PPTH XHDS QEBH SVIC VRMI EUKA TRFG EUPI
SRJC GRDE VARW TWBG VVGA WGJQ YSNU JOZQ
KWGO YTTY JAEX WKMW RNAD BRRV BFKJ VHXF
VECE CRPB LYAX TXZL VAZU GSHH XSGZ GEGT

XYWy UHLF OVPC YPFC QVKY BTAM RGAY LVAL

AR FANR N T

NHYM OFDL YXJG JLXM LAPW WGBH KGYD LKBB
URMS ILGP IYHO UOFO WVID KYSD ZZHF WNJF

If you wish to run this program on the PET you should replace statement 110 and

insert statement 115 as indicated in the boxed PET program:

Ch. 8

Sec. 8. 12

String Applications: Random Words

PET

100 REM —-- RANDOM WORDS
105 REM PET VERSION
110 PRINT CHR$(147)

115 LETD = RND(-TI)

120 FORI=1T0 20

130 FORJ=1TO8

140 FORK=1TO4

150 LET L = RND(1)

160 LETL = INT(L. *(90—-65+ 1)+ 65)
170 PRINT CHR$(L);

180 NEXT K

190 PRINT" %

200 NEXT J

220 NEXTI

Statement 115 is intended to help the PET produce a more acceptable series of
random numbers by passing a more or less random seed to the random number
generator The value returned to D is not intended for any use. Tl is a PET special
variable that retains the count of the number of ticks (60ths of a second) that have
passed since the machine was turned on or the time was reset. Tl and its companion
TI$ will be discussed further in section 10.13 *

The TRS-80 version, which is quite similar to the Apple version, is presented
below

TRS-80

100 REM -- RANDOM WORDS
105 REM TRS-80 VERSION
110 CLS

120 FORI=1T0 20

130 FORJ=1TO8

140 FORK=1TO4
150 LET L = RND(0)
160 LETL = INT(L *(90—65+ 1) +-65)

*Our usage here follows the manufacturer's recommendation See PET 2001-8 PERSONAL
COMPUTER USER MANUAL First Edition (Palo Alto: Commodore Business Machines, 1978),
p. 30

153

184 Strings and String Functions

170
180
190
200
210
220

PRINT CHRS$(L);
NEXT K
PRINT" %
NEXT J
PRINT
NEXT |

8.13 STRING APPLICATIONS:
SORTING STRINGS

A common data processing task for business and research is sorting. Sorting is made
possible by the order in the ASCIl (or EBCDIC) coding system. Following is a short
progam that sorts the last names of some of your favorite composers of classical
music. The algorithm used here is the simple bubble sort demonstrated in Section 6.4

with numeric data

160
101
110
115
117
118
119
120
125
130
189
190
191
200
210
220
228
230
235
250
260
269

REM—---STRING SORT
REM
DIM N$(15)
LETN =15
REM
REM---READ UNSORTED LIST
REM
FORI=1TON
READ N$(I)
NEXT |
REM
REM--~SORT ROUTINE
REM
FORIi=NTO 2STEP —1
FORJ=1TOI-1
IF N$(J) <= N$(J+ 1) THEN 250
LET S$ = NS(J)
LET N$(J) = N$(J+ 1)
LET N$(J+1) = S$
NEXT J
NEXT |
REM

Ch 8

Sec 8 14

String Applications. Input Validation

270 REM~--PRINT SORTED LIST

271 REM

275 FORI=1TON

280 PRINT N$(I)

285 NEXTI

299 REM

300 DATA BEETHOVEN,VAUGHAN WILLIAMS,MOZART
301 DATA BRAHMS,RESPIGHI,ELGAR,DELIUS

302 DATA VIVALDI,PURCELL,POULENC,FRANK

303 DATA PROKOFIEV,BORODIN,GLINKA,FAURE

RUN
BEETHOVEN
BORODIN
BRAHMS
DELIUS
ELGAR
FAURE
GLINKA
MOZART
POULENC
PROKOFIEV
PURCELL
RESPIGHI
VAUGHAN WILLIAMS
VIVALDI

8.14 STRING APPLICATIONS:

INPUT VALIDATION

A common type of user error that can occur with any computer language is the
accidental entry of nonnumeric data when a number is required Depending upon the
language, this error causes at least the generation of an error message and often
causes abnormal termination of the program. To cope with this problem, all serious
programmers write code to check all input for illegal characters. This process is called
validation of input or laundering of input For example, if a program requires its user to
enter a number, whatever is actually entered must be checked for illegal characters
before the program proceeds any further We can accomplish this goal by first reaciing
the response as a string and then proceeding to validate the input.

155

156

Strings and String Functions

Consider this problem: If a novice user incorrectly enters the letter “O" in place of
the number 0", the computer will respond with an error message. We can include
within our programs a test that traps such errors and reports them to the user. The
prototype program below uses several string manipulation techniques which were
discussed earlier in this chapter. Notice how the user response is converted to a
numeric value only after it is found to contain only numeric characters Examine the
program closely. After you think you understand it, make a list of the assumptions that
the program makes about what is and what is not a numeric value. Also, note the use of
the CHRS function in line 300 With many dialects of BASIC, this is the only way a
program can print a quotation mark

100
1086
200
210
220
230
240
250
260
270
280
290
300
999

RUN

REM---BAD DATA CHECK
REM
PRINT "ENTER A NUMBER"
INPUT R$
FORI = 1TOLEN(RS)
IF MID$(R$,1,1) <"0"' THEN 290
IF MID$(RS,1,1) > "9" THEN 290
NEXT |
LET K = VAL(RS)
PRINT "THE NUMBER ENTERED IS K
GOTO 999
PRINT "A NON-NUMERIC CHARACTER HAS BEEN ENTERED"
PRINT CHR$(34); MID$(R$,I,1); CHR$(34); " 1S NON-NUMERIC"
END

ENTER A NUMBER

?212W

A NON-NUMERIC CHARACTER HAS BEEN ENTERED
"W' IS NON-NUMERIC

RUN

ENTER A NUMBER

?123

THE NUMBER ENTERED IS 123

On many computers—including the Apple, the PET and the TRS-80—1it is
possible to combine the logical tests in statements 230 and 240 into a single statement

as follows:

230

IF MID$(R$,1,1) < '0" OR MID$(R$,1,1) > "9" THEN 290

Other computers may not allow this syntax.

Ch. 8

Sec 815 String Applications: Lower Case

8.15 STRING APPLICATIONS:
LOWER CASE

Some dialects of BASIC permit the printing of lower case letters. Under some
circumstances, we may wish to translate characters from upper to lower case. We can
do this by using different string manipulation techniques discussed in earlier sections of
this chapter First, we must translate each character in the string into its respective
ASCIl code using the ASC function and store these codes in an array as illustrated in
Section 8.9. Then, we add thirty-two to each alphabetic code in the array, that is, to
each ASCIl code in the range of sixty-five to ninety. Finally, we translate the array of
ASCIl codes back to characters using the CHR$ function Here is the program. It is
written in the MUBASIC dialect and will not run on the Apple, the PET, or the TRS-80.

100 REM~---LOWER CASE

101 REM MUBASIC VERSION
102 REM

110 DIM A(25)

120 PRINT "ENTER A STRING"

125 INPUT A$

126 REM

127 REM---CHANGE TO ASCII CODES
128 REM

130 FORI = 1 TO LEN(AS)

135 LETA(l) = ASC(SEGS$(AS,LD)
140 NEXTI

144 REM

145 REM---CHANGE TO LOWER CASE
146 REM

150 FORI = 1TO LEN(A%)

160 IF A(l) < 65 THEN 190

170 IF A(l) > 80 THEN 190

180 LET A(l) = A(l) + 32

190 NEXTI

194 REM

195 REM~---PRINT LOWER CASE
196 REM

200 FORI = 1TO LEN(AS)

210 PRINT CHRS$(A(I));

220 NEXTI

230 END

157

158 Strings and String Functions Ch. 8

Here is a run.

RUN
ENTER STRING? MICKEY MOUSE
mickey mouse

Statements 160 and 170 together prevent ASCIl codes from being modified if the
original symbol was not an upper case letter. Without these statements, our program
would produce strange results for numbers, special characters, and blanks. By using
these statements, such characters are left alone.

Next, we will present a version of the same program that will run on the PET . Itis
quite similar to the MUBASIC version. The PET actually has two character sets, the
standard character set that contains the symbols found on the keyboard and a second
character set that does not contain the graphic symbols seen on the keyboard but
substitutes lower case characters instead. The standard character set is always used
by the PET unless we direct otherwise. One memory location in the PET is used to take
note of which character set is currently in use. When we wish to change character sets
we must insert a numeric value into that memory location, something we do with the
POKE command. (For the record, POKE is really a function, but itis often used as if it
were a command POKE inserts a numeric value into a memory location specified by
its addiess) To instiuct the PET 10 use ils second characier set, we use ihe [ollowing
statement:

POKE 59468,14

This statement causes the decimal value fourteen to be inserted or POKEd into
memory location 59468 Such a statement can be included in any BASIC program and
can also be used in immediate mode. To change back to the standard character set,
we merely POKE the value twelve into the same location. Whenever the PET is turned
on, the value twelve is POKEd into location 59468 to assure that the standard
character set will be used. The PET version of the program is reproduced here:

PET
100 REM-~-PET VERSION OF

101 REM LOWER CASE

110 DIM A(25)

120 PRINT 'ENTER A STRING";

125 INPUT AS

130 REM---CHANGE TO ASCIli CODES
135 FORI = 1 TO LEN(AS)

140 LET A(l) = ASC(MID$(AS$,1,1))

145 NEXTI

150 REM---CHANGE TO LOWER CASE

Exercise Set 8 2

155 FOR | = 1 TO LEN(AS)
160 LET A(l) = A(l) + 128
170 NEXTI

175 PRINT

178 REM---PRINT LOWER CASE
180 FORI = 1TO LEN(AS$)
185 PRINT CHRS$(A(1));
190 NEXTI

195 REM--—-DELAY

200 FOR!I=1TO 3000
210 NEXTI

220 POKE 59468,12

230 END

The FOR-NEXT loop beginning at statement 200 is a delay loop that eats up time
before statement 220 is executed Statement 220 will have the effect of changing all
the lower case characters on the screen to graphic characters. (You can delete this
statement if you wish to continue with lower case.) Because the PET continually
refreshes the screen image from an internal buffer (sixty times a second), changing the
character set with the POKE command changes all characters on the screen. To enter
lower case characters from the keyboard (assuming the PET is already instructed to
use the second character set), first depress the shift key, and then type the key with the
desired character on it. This sequence is opposite to the way typewriters work. Note
that in statement 160, the ASCIl codes are incremented by 128 rather than 32 as in the
earlier example

EXERCISE SET 8.2

1 Enter the FORMAT program discussed in Section 8.11. Change the contents of
the DATA statements so that there is one negative value in the program. Then
run the program. Do the decimal points stil line up correctly? On some
computers, the negative value will be misaligned If this problem occurs, modify
the program to handle negative values correctly.

2 Using the random word generator discussed in Section 8 12 as a model, write a
program to accept a word from the keyboard and then attempt to generate the
same word randomly. The program should keep track of how many tries are
necessary before the desired word is generated. A word of warning if you
attempt to get the computer to generate a word with more than three characters,
be prepared for a long wait

159

160

Strings and String Functions

3. Modify the bad data check program in Section 8.14 so that it accepts decimal
values. Be sure that only one decimal point is accepted. Test your program.

4. If your computer is not one of those we discussed when we treated lower case,
consult the documentation for your computer or ask your instructor if your
computer can produce lower case characters If it can, write your own program
to translate upper case to lower case using our sample programs as models.

Review

Here we list the new BASIC syntax introduced in this chapter.
Basic SYNTAX

CHR$ () a string function that returns the character corresponding to the ASCIl code
argument. (Section 8.4)

ASC () a string function (the complement of CHR$) that returns the ASCIl code for a
single character string argument. (Section 8 4)

SEG$ (,,) a substring selection function that returns a specified segment of a
suing. The arguiments are ihe siring, the starling character of the substring to be

selected, and the last character of the substring to be selected. (Section 8.9)

MID$ (, ,) another substring selection function very similar to SEG$. The only
difference is the third argument which, in the case of MID$, is the length of the
substring to be selected. (Section 8.9)

LEN () a string function that returns the length of its string argument. (Section 8.8)

STR$ () a string function that returns a character representation of its numeric
argument. (Section 8.11)

VAL () a string function that returns a numeric representation of its string argument
This function is the complement of STR$. The argument should contain a character
representation of a number. (Section 8 11)

LEFT$(,) a substring selection function that returns a substring of specified length
from the left end of a string The first argument is the siring name or a siring constant
and the second argument is the length of the substring to be selected. (Section 8.9)

RIGHTS$ (,) a substring selection function that returns a substring of specified
length from the right end of the string. The first argument is the string name or a string
constant and the second argument is the length of the substring to be selected.
(Section 8 9)

Ch. 8

PROGRAM
STRUCTURE
= AND DEBUGGING

9.1 INTRODUCTION TO PROGRAM
STRUCTURE AND DEBUGGING

People who use computers frequently refer to program errors as bugs and the
process of removing errors from programs as debugging. The detection and
correction of errors is a normal everyday part of the process of using a computer as a
problem-solving tool. Some errors are obvious and easy to detect while others are
subtle and may exist in a program for months without detection. Serious programmers
(those who program for a living) devote a substantial amount of time to the testing of
their programs in order to find and eliminate the bugs. We can classify errors as

follows
Typology of Programming Errors
1 Program is interrupted prematurely with an error message
2 Program runs (or seems to run) but does not produce any results
3 Program runs and produces obviously incorrect results.
4 Program runs and produces plausible but incorrect results.

While type 1 errors often seem to overwhelm the novice programmer, they are
detected by the computer and are relatively easy to handle In contrast, type 4 errors
may go undetected indefinitely

161

9.2

9.3

Program Structure and Debugging

in this chapter we will be concerned with the detection and correction of errors
But we must begin with the programming development process because many errors
originate here

PREVENTING ERRORS

While we do not wish to imply that all errors can be prevented, we are convinced that
programs that are well developed from the beginning are less subject to errors
Furthermore, in such programs, errors are easier to detect and to correct. We
recognize that there is an experimental aspect to programming which implies that trial
and error methods will often be used

In Chapter 3 we introduced an algorithmic language, which we recommended
that you use in the process of program development for all but the most trivial tasks
The use of algorithmic fanguage prior to coding in BASIC helps us to detect logical
inconsistencies early in the design process. This reduces the need for quick fixes in
programs, which tend to obscure program meaning. The algorithmic representation of
our problem solution will be an important reference document as we attempt to find and
correct errors. Other valuabie documenis will be cross reference labies and vaiiabie
lists

PROGRAM STRUCTURE

Up to this point, we have emphasized the construction of short rather simple programs.
The most complicated task attempted was in Section 7 11 where we developed a
program for exploding orders That program was nearly thirty lines long. As we begin to
solve more complex problems our algorithms and programs become longer and
potentially more difficult to understand

All but the simplest programs have component parts or can be segmented into
componenis These components constitute a kind of natural program structure. If we
are able to recognize this natural structure or even enhance it, we can make our
programs easier to read and understand. Kernighan and Plauger have written, “in our
experience, readability is the single best criterion of program quality. if a program is
easy to read, it is probably a good program, if it is hard to read, it probably isn't
good "* Implicit in this statement is the proposition that programs are intended to be
read by persons (including their original authors) as well as by machines We should
hasten to add that readable programs are easier to debug.

*Kernighan and Plauger, Software Tools, p. 28

Ch. 9

Sec. 9.3

Program Structure

Some dialects of BASIC make it easy to improve the readability of our programs
while other dialects offer little help. Consider the following two examples. Which line is
easier to understand?

200 FORKS=1TOAD
or
200 FORKS = 1TOAD

While the computer will execute both statements correctly, we think you will agree that
the second statement is more comprehensible to humans Were we to enter the first
version, the Apple would automatically produce the second version upon being given a
list command. In contrast, the PET will retain the earlier version if you use it. Thus, more
care must be taken with the PET . In fairness, we must admit that the first example does
save some memory. With a microcomputer with limited memory this is a consideration
But conservation of memory may be achieved at a high price

Some BASIC dialects permit empty lines—that is, with nothing following the
statement number—and some allow one to indent in order to set off blocks of
statements. Unfortunately, most microcomputers, the Apple and the PET included, do
not provide such facilities and we are forced to improvise. The TRS-80 is the exception,
permitting both blank lines and statement indentation Loop indentation can be
achieved on any computer by using the colon to force indentation as follows:

200 FORI=1TOLAST
210 : READ X(I)

220 : PRINT X(1)

230 NEXTI

This may not be as satisfactory as the following'

200 FOR!=1TOLAST
210 READ X(I)

220 PRINT X(1)

230 NEXTI

We like the latter approach and have written an editor program which will print
hard copies of your programs with such indentation. This program is described in
Appendix D, page D1

Careful use of comment statements can also help improve the readability of
programs by marking off blocks of statements vertically. Generally speaking, we
recommend that you avoid excessive comments and comments that echo the code.
For example, in both the following fragments, the comments do not add to our
understanding of what the program is doing:

200 REM~~-~ADD A TO B GIVING C
210 C=A+8B

163

164

Program Structure and Debugging

200 REM-~---ADD C TO B GIVING A
210 C=A +B

In the second case, the comment actually misleads. Since comment statements look
more like English than BASIC statements do, we are more likely to read and trust the
comment than the code. *

We have been using REM statements to separate blocks of statements vertically
without comment but now we need to make this approach more explicit. Here we
present the same program to explode an order with a more fully developed use of REM
statements.

100 REM ~—- EXPLODE
101 REM PROGRAM TO EXPLODE AN ORDER

103 REM

105 LETN=3 : LETL-5

107 REM=— == e e
108 REM LOAD COMPONENT MATRIX
109 REM-- - ——

110 FORI=1TON
1156 FORJ=1TOL

i2G READ B{i,J)

130 NEXTJ

140 NEXTH

144 REM-——--- - —
145 REM INPUT ORDER FROM KEYBOARD
146 REM=———m—m e

150 FORI=1TON

160 PRINT 'ENTER QUANTITY OF MODEL A(%E"). %
170 INPUT A(l)

180 NEXT I

184 REM———m——m i om o e e e e o e

185 REM EXPLODE THE ORDER

186 REM~—=mmm— e e e

180 FORJ=1TOL

200 FORK = 1T
210 LET C(J
220 NEXT K
230 NEXTJ

232 PRINT

*Kernighan and Plauger, The Elements of Programming Style, Second Edition (New York:
McGraw-Hill, 1978,) p 142

Ch 9

Sec. 9.3

Program Structure

233 REM--—- - —
234 REM DISPLAY COMPONENT LIST

236 REM-———m—mm e
236 PRINT "HERE ARE COMPONENTS NEEDED"
238 PRINT

240 PRINT "COMPONENT #',"QUANTITY"
250 FORI=1TOL

260 PRINT I,C(I)"

270 NEXT I

277 REM—mmm e e e
279 REM DATA SET: COMPONENT MATRIX
280 REM- .

280 DATA 2,0,1,0,0,2,0,0,1,1,0,2,0,1,2
290 END

Our use of REM statements here is merely an illustration of an approach to

improving the readability of programs. We recommend the approach to you, but not
necessarily our implementation of it Let us summarize the major components:

1 We use the dash to create vertical segments The lines of dashes are of
uniform length.

2 We mark off major biocks of the program using REM statements to indicate
the function of the blocks

3 We use three-digit line numbers to achieve left justification.

4 The first statement in our programs is always numbered 100 and always
contains the name of the program. The program is saved on disk under this

name. When it is time to save a program and we forget its name, we merely have
to list statement 100 in order to prevent accidental overwriting of the wrong file.

5 Weindent the contents of each FOR-NEXT loop

As we indicated above, there are many possible variations on our approach and

we advise you to adopt your own approach and use it consistently. Among the
important considerations in selecting a style are the following:

1 How much memory is available? If you have a small amount of memory, you
may have to reduce the length of the REM statements as well as their number.

2 s aprinter available? If one is available, you may not be concerned about line
wrap-around because on the printer, it comes out as a single line If a printer is
not readily available, you might want to limit statement length to facilitate reading
BASIC code on a screen.

3 How wide is your screen? If the dialect of BASIC available to you permits

165

166

9.4

Program Structure and Debugging

seventy-two or eighty characters to be displayed per line, you may take a
different approach than you would take if you have a forty column display limit.

The key is to adopt a style and use it consistently

STRUCTURED PROGRAMMING

The term structured programming has obtained common usage in the field of
computing in recent years, but there seems to be no consensus on its meaning. Here
we will follow a definition by Kernighan and Plauger who have written that *'structured
programming in a very narrow sense implies programming with a limited set of control
flow statements, and avoiding gotos.”* Some have argued for the complete elimination
of GOTO statements However, this is an extreme remedy, one not feasible in BASIC
Yet, we can greatly improve the structure of our programs by carefully scrutinizing
every GOTO statement and eliminating those that do not implement fundamental
structures, and, by modularizing our programs through the use of subroutines, which
are discrete program segments that perform specific tasks. For those who wonder
what is wrong with using GOT O siatemenis, Proiessor Weinberg answers

Experiments with problem solving in programming-like situaiions indicate thal a series of
decisions arranged in a strictly linear sequence is typically easier to handle than a
branching or looping sequence Experience with programming languages seems to bear
this out, for programs with numerous GO TO statements or other branches are notoriously
difficult to understand or debug 1

Each GOTO or branching statement ‘‘breaks our normal sequential mode of
scanning the program or thinking about it "f There is also evidence that “‘unrestrained
branching via GOTO, produces structures that lend themselves to logical errors.”§
Following is a program fragment that contains a classic example of the incorrect use of
the GOTO statement

I

(M

270

M N
OO

00 BIiG
1- g

Y
NSEY B

i

n
= v

220 IF A(l) > BIG THEN 240
230 GOTO 250

*Kernighan and Plauger, Software Tools, p. 2

+Weinberg, The Psychology of Computer Programming, pp. 231-2

tWeinberg, The Psychology of Computer Programming, pp 231-2

§Frederick P Brooks, The Mythical Man-Month Essays on Software Engineering, (Reading,
Mass.: Addison-Wesley Co , 1975,)p 144

Sec 95

9.5

Program Blocks

240 BIG = A(l)
250 NEXTI

This fragment really contains two branching statements—lines 220 and 230. The
combined effect is to complicate what would otherwise be a straightforward algorithm
Indeed, we are never quite sure we understand what the algorithm is doing. This
ilustrates a very common error often made both by those learning to program and by
experienced programmers who should know better. This fragment merely finds the
largest value in the array A-—a procedure we have seen before. But the fragment is
complicated by one statement branching around another branching statement
Following is a simple and clear version of the same procedure.

200 BIG = A(1)

210 FORI=2TO 10

220 IF A(l) > BIG THEN BIG = A(l)
230 NEXTI

Not only is the second version easier for us to understand, it also is shorter by two
statements *

PROGRAM BLOCKS

ft is possible to achieve the linearity that Weinberg writes about by organizing our
program in blocks; that is, major sections of the program that are devoted to a
specific task, that are linked sequentially. We present a general system for organizing a
program that can be followed. It is intended as an illustration of an approach not as the
only way to do it. Depending upon your program, certain blocks might be omitted. The
basic approach we advocate here is not the segmentation of certain specific blocks in
every program, but the segmentation of major blocks in each program. You will note
that we do not follow the block segmentation technique rigidly but rather take a flexible
approach that is intended to set off and label each significant program block We
recommend this flexible approach to you.

A Possible Approach to Segmenting
A Program into Major Blocks

1 Program Identification & Initialization
2 Main Program Loop
3 Data Set Block (if any)

*We owe this example to Kernighan and Plauger, Elements of Programming Style, p. 18

167

168

Program Structure and Debugging

4 Subroutine 1
5 Subroutine 2
6 Subroutine n

In order to illustrate this approach of block segmentation we will use as an
example a program that finds the mean, the standard deviation, and the median of a
data set. We will discuss the program as it corresponds to our model for segmenting a
program into blocks.

1 Program Identification and Initialization

This block always begins with statement 100 which is a REM statement
containing the name of the program (this is the name under which it is stored on
disk or tape) and the date on which the program was written. In some cases
where it matters, we also add another REM statement indicating a revision date.
Immediately following statement 100 come a series of REM statements that
indicate the purpose of the program and contain any warnings deemed
necessary. Next, come initialization statements that declare arrays, and initialize
variables or arrays. Here is this block of our program

100 REM —- SIGMA 8-9-79

101 REM

102 REM REVISED 1-1-80

103 REM

104 REM THIS PROGRAM EVALUATES THE MEAN
105 REM STANDARD DEVIATION AND MEDIAN
106 REM OF A DATA SET.

107 REM

108 REM WARNING: IN COMPUTING STANDARD DEVIATION
109 REM WE HAVE ASSUMED SAMPLE DATA,
110 REM NOT A POPULATION.

111 REM

210 REM

220 DIM X(15)

230 LETS=0

e Lo N)~ Y]
QU v

310 REM

320 PRINT "HOW MANY PIECES OF DATA WILL BE ANALYZED?
(MAXIMUM OF 15)'

330 INPUT N

335 FORI=1TON

340 READ X(1)

345 NEXTI

Ch 9

Sec 9.5

Program Blocks

Main Program Loop

Next, we have the main program loop. It controls the flow of the program through
the computational and output steps.

400
401
402
403
430
440
450
460
470
480
490
500
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710

REM ==========MAINPROGRAM === uuu_.___
REM
REM—— = e EVALUATE THE MEAN
REM
FORI=1TON
LETS =S + X(I)
NEXT I
LETM=S/N
REM
REM—-—————u= CALL STANDARD DEVIATION ROUTINE
REM
GOSUB 9100
REM
REM~——- -
REM
GOSUB 8900
REM
REM e et e CALL MEDIAN ROUTINE
REM
GOSUB 9200
REM
REM—~————— e e e DISPLAY THE RESULTS
REM
PRINT "HERE IS THE SORTED DATA SET"
PRINT
FORI=1TON : PRINT X(I) : NEXTI
PRINT : PRINT
PRINT "THE MEAN OF THE DATA SETIS "; M
PRINT
PRINT "THE STANDARD DEVIATION IS ;S8
PRINT
PRINT 'THE MEDIAN IS ";M9

CALL SORT ROUTINE

Data Set

In this block, we find the data lines from which the program reads the data set If
the data set were to be entered from the keyboard or read from a file, this block
would not be present.

169

170 Program Structure and Debugging

9.6

720 REM

730 REM = e o o o o e e o o e e e DATA SET

740 REM

750 DATA 29,31,52,32,33,56,50,44,49,47

760 DATA 42,47,44,38,46

800 GOTO 9999

806 REM==—=======END OF MAIN PROGRAM===========

4 Subroutines

The remaining blocks in the program (4,5, and 6) are subroutine blocks.
Programs may have one or more subroutines as required We should mention
that our placement of subroutines at the end, that is, the bottom of the program,
may be questioned. When a program has one or more subroutines that are
executed many times, one might consider moving such subroutines to the top of
the program—Dbefore the main program loop—to improve program execution
speed. In most cases, little or nothing will be gained by doing so, and therefore,
we prefer to place subroutines at the bottom. The subroutiries called here can alll
be found in the Subroutine Library in Appendix B.

SUBROUTINES

The syntax associated with the use of subroutines—both in pseudocode and in
BASIC—is quite similar to that used on the main program segment. In pseudocode, all
subroutines begin with their name followed by a colon and end with end., in the same
way as main program segments. In addition, the refurn statement must appear
somewhere in the subroutine in order to transfer control back to the main program. A
subroutine procedure can be invoked anywhere in the main program or in another
subroutine by the word call followed by the name of the subroutine to be invoked. In
both our pseudocode and in BASIC, we assume all variables to be global variables no
matter where they occur: only in the main program, only in the subroutine, or in both. A
global variable is known to all program segments and has the same value in all program
segments. The following visual depicts the relationship between the main program and
the subroutines in the program presented in Section 9.5.

MAIN

|
|

SIGMA SORT MEDIAN

Ch. 9

Sec 9.6

Subroutines

Using pseudocode, we can represent that program as follows:

MAIN-

call SIGMA—“-ﬁh._____> SIGMA-

call SORT- -
) return

end

call MEDIAN SORT.

end return
end

MEDIAN

return
end

Many computer languages provide subroutine facilities. However, there is a good
deal of difference among them in the manner of doing so. Even among dialects of
BASIC there are differences. Readers familiar with a language like FORTRAN know that
it supports subroutines that are complete and separate program units, so much so, that
the main program and subroutines can reuse the same variable names and statement
numbers without conflict. While some dialects of BASIC provide similar subroutine
support, most do not. We will, therefore, describe subroutine syntax—as supported on
the Apple, the PET, and the TRS-80—which is similar, if not identical, to many other
dialects. We define a subroutine as a discrete program segment that performs a
specific task. There are various advantages in using subroutines, the chief advantage
is that they help us modularize our programs, which makes them easier to understand
and debug Subroutines also make it possible to eliminate redundant code when a
particular task must be performed at more than one place in a program. Finally, use of
subroutines makes it possible to build a library of subroutines which are tools to be
used as needed in various programs. For example, see Appendix B.

Some dialects of BASIC make it easy to append subroutines to a main program
with an APPEND command. Unfortunately, neither the Apple, the PET, nor the TRS-80
have the APPEND command.* Therefore, we are forced to keep our library as a single

*Apple users who have access to the RENUMBER routine can use it to append files

171

172

Program Structure and Debugging

file that we load first when writing a program. Next, we add other statements as
required and use the DEL command to eliminate unneeded subroutine modules. We
should point out that all modules in our subroutine library have distinct statement
number ranges, in order to faciliate this use. In our program above we used three
subroutines—one each to compute the standard deviation, to sort the data set, and to
compute the median. In this case, our chief motive was to increase the readability of the
program by placing discrete modules in separate program units.

In our program, we introduced two new syntax items that are necessary for the
use of subroutines. We used the GOSUB syntax to call a subroutine, that is, to transfer
program control to itt A RETURN statement was used to mark the end of the
subroutine. The GOSUB statement means: GOTO statement number nnn and
continue executing statements until you encounter a RETURN statement whereupon
you return to the statement following the calling statement. Figure 9.1 may help
ilustrate:

Figure 9.1
Use of GOSUB and RETURN
Statements in Subroutines

170 GOSUB 900 —

— 180 PRINT X
180 ...

900 LETX =21

—— 950 RETURN

Statement 170 transfers control to a block of statements beginning at line 900.
There, execution continues until statement 950 containing the RETURN instruction is
encountered. Then, control returns to statement 180—the next statement following the
one that transferred control to the subroutine.

Two important caveats must be borne in mind when using subroutines. First, we
must avoid accidental entrance into a subroutine Accidental entrv will eventually
produce an error message not to mention any erroneous results. The best solution to
this problem is to enter a GOTO 9999 statement before the first statement of the first
subroutine as we did in statement 800. (Make sure that statement 9999 is an END
statement.) If you are using one of the three microcomputers to which we are orienting
our presentation, you may as an alternative use an END statement in the same place.
Second, bear in mind that all variables available to the main program are also available
to all subroutines. Thus, while we think of subroutines as discrete units, they still share
data with each other and the main program. Therefore, we should take care to see to it

Ch. 9

Sec. 9.6

Subroutines

that one module does not inadvertently modify a variable used by another module. In
the Subroutine Library we are careful not to reuse the same variable name except
deliberately. Furthermore, we choose unusual variable names, such as X8 and 29
rather than just X or Z that might also be used by a main routine. Following we present
a simple demonstration program to illustrate subroutine usage.

100 REM -- DEMO99

110 LET A$ = "USING SUBROUTINES'
120 PRINT A$

130 GOSUB 500

140 PRINT A$

150 GOSUB 600

160 PRINT A$

170 GOTO 999

500 LET A$ = AS$ + " HELPS ORGANIZE'
510 RETURN

600 LET A$ — A$ + " YOUR PROGRAM"
610 RETURN

999 END

When we run the program we get the following results Try it

USING SUBROUTINES
USING SUBROUTINES HELPS ORGANIZE
USING SUBROUTINES HELPS ORGANIZE YOUR PROGRAM

PSEUDOCODE RULE 13

Subroutines are expressed in pseudocode in the following manner.
A subroutine is invoked by a main program with a call statement that
contains the subroutine name:

call SORT

The subroutine itself is written in a format similar to that used for main
programs. It must begin with its name, terminate with an end. statement
and contain at least one return statement

SORT:

return
end.

173

174

9.7

Program Structure and Debugging

THE CASE STRUCTURE

Now that you are familiar with subroutine usage, it is an appropriate time to introduce
the CASE or multiple alternative decision structure. Sometimes in solving a
problem we wish to select one procedure from a series of options. BASIC provides two

alternative solutions to such a problem. Before looking at BASIC syntax, however, we

will present a sample problem and attack it in terms of our algorithmic language.

Let us assume that we are to write a program to calculate property tax bills given
an assessment and a tax classification. Some tax classifications have different tax
rates and some have a homestead exemption. We can set up the problem in Table
9.1

Table 9 1
Calculation of Property Tax Bills
Using an Assessment and Tax Classification

Tax Class Exemption Tax Rate
1 first $5000 025
b first $10,000 037
3 none 055
4 none 077
5 none .089
6 none 089
7 none .089
8 none .089

In Table 9.1, the first two classifications are for residential property and the last six
classifications are for commercial property. Such a problem is amenable to solution
using the CASE structure because it has more than two alternatives Here we have
basically five tax calculation blocks, one of which will be selected on the basis of the tax
classification number. The first four tax classes constitute individual cases and the last
four tax classes constitute the fifth case. The last four classes can be treated as a
group because they have the same tax rate and none allow the homestead exemption
They only differ on tax classification code In utilizing the CASE structure we have a
default block that is executed if the value of the switch, CLASS in this case, is not
specified as an individual case. This permits us to treat tax classes five through eight as
a group. Now let us look at the CASE structure and our problem in pseudocode:

PROPERTYTAX:

declare numeric: CLASS, ASSESSMENT, ADJUSTED, TAX
put(“ENTER TAX CLASS")

get(CLASS)

Sec. 9.7

The Case Structure

IF(CLASS < 1 or CLASS > 8 or CLASS <> INT(CLASS))
[put("BAD TAX CLASS "' ,CLASS)
STOP |
put(“"ENTER ASSESSMENT"')
get(ASSESSMENT)
select(CLASS)
case 1' [ADJUSTED «— ASSESSMENT — 5000
if(ADJUSTED < 0) ADJUSTED «— 0
TAX < ADJUSTED * .025]
case 2. | ADJUSTED «— ASSESSMENT — 10000
if(ADJUSTED < 0) ADJUSTED « 0
TAX «— ADJUSTED * 037]
case 3: [ADJUSTED «— ASSESSMENT
TAX < ADJUSTED * 055]
case 4: [ADJUSTED <— ASSESSMENT
TAX «<— ADJUSTED * 077]
default:| ADJUSTED «— ASSESSMENT
TAX < ADJUSTED * 089]

T

ut()

put(*"TAX CLASS IS "",CLASS)
put(""ASSESSMENT IS " ASSESSMENT)
put(*ADJUSTED ASSESSMENT IS ', ADJUSTED)
put(“TAX IS ", TAX)

end.

In this algorithmic representation of our program, the select statement transfers
control to one of the CASE blocks depending upon the value of its argument CLASS If
CLASS has the value one, control shifts to the case 1 block. One and only one block is
executed. If CLASS should have a value not specified in one of the case statements
(values of five through eight) control passes to the default block. Since the value of
CLASS is tested against the range of legitimate values immediately after it is input, we
can be sure at this point in the program that CLASS will always have integer values in
the range of one to eight

Our algorithm can be implemented in BASIC in one of two ways:

ON CLASS GOTO
ON CLASS GOSUB

We will illustrate both methods even though we prefer the latter. In BASIC, control is
transferred to a statement number depending upon the value of the argument which in
our example is the variable CLASS. Thus, if we were to write:

300 ON CLASS GOTO 350,400,450,500

175

176 Program Structure and Debugging Ch. 9

control would pass to statement 350 if CLASS had the value one, to statement 400 if
CLASS had the value two, to statement 450 if CLASS had the value three and to
statement 500 if CLASS had the value four. If CLASS had a value outside the range
from one to four, control would pass to the statement that immediately follows
statement 300. Our BASIC program would look like the following:

100 REM -~ PROPERTYTAX 2-1-81

101 REM

102 REM = VARIABLES:

103 REM CLASS, ASSESSMENT
104 REM ADJUSTMENT, TAX
105 REM

110 PRINT'ENTER TAX CLASS "

120 INPUT CLASS

130 IF CLASS —> 1 AND CLASS <= 8 AND CLASS — INT(CLASS) THEN 145
135 PRINT "BAD TAX CLASS ";CLASS

140 STOP

145 PRINT 'ENTER ASSESSMENT ;

150 INPUT ASSESSMENT

170 ON CLASS GOTO 180,220,260,290
173 GOTO 325

175 REMmm—m—mm=—m CLASS = f~—=mmmm
180 ADJUSTED — ASSESSMENT — 5000
180 IF ADJUSTED < O THEN ADJUSTED = 0
200 TAX = ADJUSTED * .025

210 GOTO 400

215 REM————m===m CLASS — 2-=mmm—m
220 ADJUSTED - ASSESSMENT — 10000
230 IF ADJUSTED < O THEN ADJUSTED - 0O
240 TAX = ADJUSTED * .037

250 GOTO 400

255 REM—————m=mn CLASS — 3=——mm=m
260 ADJUSTED — ASSESSMENT

270 TAX — ADJUSTED * .055

280 GOTO 400

285 REM————mm=mm CLASS = 4emmmmmm
290 ADJUSTED — ASSESSMENT

300 TAX = ADJUSTED * .077

310 GOTO 400

320 REM-—————=-~ DEFAULT————=m=m=m
325 ADJUSTED — ASSESSMENT

330 TAX — ADJUSTED *.089

390 REM

Sec. 9.7

The Case Structure 177

400 PRINT 'TAX CLASS IS ";CLASS

410
420
430
500

PRINT "ASSESSMENT IS ";JASSESSMENT

PRINT "ADJUSTED ASSESSMENT IS "; ASSESSMENT
PRINT 'TAX IS ";TAX

END

You will notice that statement 173 causes transfer to the default block.
We now present the second BASIC version which we prefer because it uses
subroutines and thus avoids the multiple GOTO statements in the earlier version

100
101
102
103
104
105
110
115
120
130
135
140
150
170
180
200
210
220
230
240
250
260
500
510
520
540
590
600
610
620
640
790
700

REM ~- PROPERTYTAX2 2-1-81

REM

REM VARIABLES

REM CLASS, ASSESSMENT

REM ADJUSTED, TAX

REM

PRINT 'ENTER TAX CLASS";

INPUT CLASS

IF CLASS => 1 AND CLASS <= 8 AND CLASS = INT (CLASS) THEN 140
PRINT 'BAD TAX CLASS ";CLASS

STOP

PRINT "'ENTER ASSESSMENT";

INPUT ASSESSMENT

ON CLASS GOSUB 500,600,700,800

IF CLASS > 4 THEN GOSUB 850

PRINT 'TAX CLASS IS ";CLASS

PRINT "ASSESSMENT IS ";ASSESSMENT

PRINT "ADJUSTED ASSESSMENT IS ";ADJUSTED

PRINT 'TAX IS ";TAX

GOTO 999

REM

REM—————— CLASS = {=—m—mmeeeer
ADJUSTED = ASSESSMENT — 5000

IF ADJUSTED < O THEN ADJUSTED =0

TAX = ADJUSTED *.025

RETURN

REM~-————=——mm CLASS = 2=
ADJUSTED = ASSESSMENT — 10000
IF ADJUSTED < O THEN ADJUSTED =0
TAX = ADJUSTED *.037

RETURN

REM-—m———mu—m CLASS = 3~m—mmmm——
ADJUSTED = ASSESSMENT

178 Program Structure and Debugging Ch. 9

710 TAX = ADJUSTED *.055

730 RETURN

790 REM————————- CLASS = 4——=mmmm—m
800 ADJUSTED = ASSESSMENT

810 TAX = ADJUSTED *.077

830 RETURN

850 REMi—-——————- DEFAULT — = e e
855 ADJUSTED — ASSESSMENT

860 TAX = ADJUSTED *.089

865 RETURN

998 END

You will note that the logical test in statement 120 has been inverted in both
versions of the BASIC program Here, statement 180 contains a test to assure that a
second set of calculations is not performed for all cases. If it were absent, the defauit
block would be performed even if one of the other CASE blocks had already been
performed. Note also the use of comment statements to mark off the program blocks
as well as the use of the ON . . - GOSUB in statement 170. It is often convenient to
graphically depict the structure of such a program as in Figure 9.2.

Figure 9 2
Schematic of the Case Structure
Main
Case 1 Case 2 Case 3 Case 4 Default

Let us summarize the case structure with a new pseudocode rule

The CASE or multiple alternative decision structure is expressed in
pseudocode as follows

select(SWITCH)
case 1.[]
case 2:[]

Sec 98

Debugging Techniques

casen []
default]]

Here, SWITCH is a variable. Control is passed by the select statement to
that case block with the same value as SWITCH. If no case block with that
value is present, control passes to the default block. Any block can contain
either a single statement or a block of statements enclosed in square
brackets. [f SWITCH has a value with a fractional part, that fractional partis
truncated for use by the select statement The value of the SWITCH,
however, is not actually modified

9.8 DEBUGGING TECHNIQUES

Much of our attention in this chapter is aimed at error prevention as well as error
detection and correction. But we recommend a constructive attitude toward errors.
While we wish to avoid them, we should use each error as a learning experience
providing an opportunity for improving out problem-solving ability as well as our
expertise with the syntax of a particular language

Consider the following message:

?BAD SUBSCRIPT ERRORIN 210
The first step in error correction is to list line 210

LIST 210
210 X(I) =1

Next, it would seem wise to print the value of | and to list the entire program:

PRINT I
11

LIST

200 FORI=1TO 15
210 X() =1
220 NEXTI

The cause of the error is easily determined. Since the array X is not dimensioned,
itis given the default size of ten. Once the loop index exceeded ten, the bad subscript
message was generated. The easiest solution to the error message is to add the
following statement:

179

180

Program Structure and Debugging

100 DIM X(15)

While this may be the first solution which occurs to us, we must be sure that we are not
curing the wrong disease. What if we intended to have the loop index go from one to
five but accidently keyed in a 1, deleted the 1 (or so we thought) and then entered the
57 Adding statement 100 will eliminate the error message, but it will not solve the
problem. This solution would replace an easy to detect error with a more elusive one. In
this case, we must refer to the original program specifications including the algorithmic
language version of the program in order to correct the real error

Let us now consider the following situation. The following program fragment is
entered and run producing an error message

200 DIM LIST(25)
210 FORI=1TO25
220 LIST() =1*2
230 NEXTI

?SYNTAX ERROR IN 200

But we are puzzled because upon careful reading the fragment seems syntacti-
cally correct. (You might want to think about this before reading on) The error
message in this case tells us no more than that something is wrong in line 200 In this
case, we have used one of the fifty or so words that the Apple reserves for special use.
The word LIST means list program statements. If one did not have access 1o a list of
reserved words, one would have to experiment by imitating BASIC's syntax scanning.
From left to right, first inspect the statement number, then the keyword DIM, then the
variable name and then the size-fixing value. Everything is standard—as you have used
in other dimension statements except the array name. The next thing to do is
experiment with the variable name Knowing that single alphabetic characters are
always acceptable as variable names, use L as the array name in both statements 200
and 220 and then test the program.

Consider this situation. A small program has been written to compute and print
the sale price of an item by subtracting a discount of ten percent of the original price
and adding a three percent sales tax Here is the program:

100 PRINT "ENTER ORIGINAL PRICE
110 INPUT P

130 D =P *.1
140 P-P + TAX - D
150 PRINT 'THE PRICE IS ";P

RUN
ENTER ORIGINAL PRICE? 59
THE PRICE IS 54.87

Ch. 9

Sec. 9.8

Debugging Techniques

The sample run produces a result that seems to be reasonable. In fact, the result
is almost correct-—being off by only eighteen cents But in this type of work, almost
correct is the same as wrong. Yet, a program like this could be used for a long time
before anyone detected the error. The program is overcharging customers by
calculating the tax before discounting the original price. The tax should be computed
on the discounted price.

Imagine that you sit down in front of an Apple to do some computing only to find
that the person using it before you has left the machine on, with the following program
displayed on the screen.

110 PO =2
120 P1-=4
130 P2-=6
140 P3=8
150 INPUT X

160 IF X <=10THEN Y = X * PO : GOTO 200
170 IF X <=20THENY = X * P1: GOTO 200
180 IF X <=30THENY = X * P2 : GOTO 200
190 IF X <=40THENY = X * P3: GOTO 200
200 PRINTY

210 END

The program is simple but puzzling. Curiosity gets the better part of you and you
decide to run it You enter several values and receive the results indicated in Table
92

Table 8.2
X-Input and Y-Output Values

Input Output
12 48
2 0
1234 0
33 264
99 0

You are intrigued by a program that produces the same results when 2 and 1234 are
used as input values. This is a classic debugging situation. You have tested a program
and suspect that something is wrong because the output seems implausible.

in our attempt to evaluate this program we begin by listing it. Since we suspect
the accuracy of the output value, our next step is to locate the line printing the output
and the name of the output variable. In this case, we quickly determine that the output is
being produced by line 200 and the output variable name is Y. Continuing our

181

182

Program Siructure and Debugging

backward or upward scan of the program, we search for statements that assign a
value to Y. Four such statements are quickly found. Statements 160 to 190 assign a
value to Y depending upon the value of X. Further investigation reveals that X is the
value we input at the keyboard. Studying the program further, we determine that no
value will be calculated for Y if Xis greater than forty. In such circumstances, we should
expect the value zero to be printed since the Apple initializes all numeric variables and
arrays to zero. Thus, we understand why an X value of 1234 produces a Y value of
zero. But, we cannot see how an X value of two produces a zero as well. According to
statement 160, a value of four should be produced. Further meditation reveals that the
inconsistency is the result of a typing error. Line 110 assigns the value two to P@—the
second character is a zero, while in line 160 Y is multiplied by PO—both letters. By
merely replacing the letter O with a zero, the program now works correctly. While it
works correctly, only its original author knows what useful work it was intended to do.

Because you have become a proficient programmer, your instructor has asked
you to help him check the programs of novice programmers. He has given them the
assignment of writing a program that inputs a date in Gregorian form and outputs the
same date in Julian form. The Gregorian form for January 9, 1980, for example, is
1-9-80. The Julian representation of the same date is 80009. The Gregorian form
consists of the numeric representation of the month, followed by the day of the month,
occupying two digits each, followed by the last two digits of the year. In contrast, the
Julian form consists of the last two digits of the year followed by the number a particular
day is from the beginning of the year. In the example above, January 9th is the 9th day
of 1980, thus, the Julian date of 80009. Similarly, December 31, 1979 is the last day of
the year, in Julian form, it would be 79365. With this background in mind, look at a
program written by one student:

100 REM —- JULIAN DATE
110 DIM T(12)

120 DATA 31,28,31,30,31,30
121 DATA 31,31,30,31,30,31
125 FORI=1TO 12

130 READ T(})

135 NEXT!I

140 REM
200 PRINT"MONTH ';: INPUT M
205 PRINT 'DAY L INPUT D

210 PRINT'YEAR ';: INPUTY

215 IFINT(Y / 4)*4 = Y THENT(2) = 29
220 S=0

300 FORI=1TOM — 1

305 S=S+ T

310 NEXTI

315 D=5+ D

Ch. 9

Sec. 98

Debugging Techniques

325 Y =Y * 1000

330 JD=JD + Y

335 PRINT "JULIAN DATE IS ";JD
400 END

Reading the program, it looks pretty good. It even handles leap years correctly.
The next step is to run the program.

MONTH 2?3
DAY ?10
YEAR 7?80

JULIAN DATE IS 80070

MONTH 23
DAY ?1
YEAR 1?79

JULIAN DATE IS 79060

MONTH ?12
DAY 2?31
YEAR 2?79

JULIAN DATE IS 79365

MONTH ?1
DAY ?1
YEAR 780

JULIAN DATE IS 80032

Checking the results by hand we can see that all Julian dates are correct except
the last one. In this case, the Julian date for January 1, 1980 (010180) is given as
80032. We have discovered an important flaw in the program. It has treated January
1st as if it were February 1st. Scanning the program, we note that the day from the
beginning of the year is calculated by summing the number of days in all months prior to
the current month and then adding the day value. This occurs in the FOR-NEXT loop
beginning in line 300. Since in this test case, M — 1 is equal to zero the loop should not
be executed at all. What is needed now is the ability to trace program execution in
order to see if the loop is executed as we suspect. The Apple and the TRS-80 have a
trace facility that is useful for this purpose. With the Apple, the word TRACE is used to
turn on the trace routine and the word NOTRACE is used to turn it off. With the TRS-80,
the words TRON and TROFF are used for the same purpose. These commands can
be used in direct mode or within programs as numbered statements.

While the trace facility is turned on, the statement number of each statement
executed is displayed on the screen each time it is executed. Statement numbers are
displayed each preceded by the “#** symbol and followed by a space. The Apple will

183

184

Program Structure and Debugging

print as many statement numbers as possible on the same line. Program input and
output will be interspersed among statement numbers. If we run a trace on the entire
program we see that forty-five statements were executed in the process of changing
one date from Gregorian form into Julian form. (REMark statements are included in the
trace.) To avoid a screenful of output, it is desirable to trace only the specific
statements we are interested in studying. In this case, there is only one statement o
trace, statement number 305. Adding the following statements to our program
accomplishes the task

301 TRACE
306 NOTRACE

If you are using a TRS-80, use TRON in place of TRACE and TROFF in place of
NOTRACE. Next, we run the program:

RUN
MONTH 2?1
DAY ?1
YEAR 7?80

#305 #306 80032

The trace has proved that statement 305 was indeed executed. We will discuss
this finding in a minute. First, let us address the subject of simulating a trace facility for
machines that do not provide one. We can merely add a statement like this:

301 PRINT"#305

Since statement 301 is immediately prior to statement 305, it will be executed if
statement 305 is executed More precisely, if statement 301 is executed, statement
305 will be executed also There is the possibility that statement 301 might not be
executed even though statement 305 is executed if there are GOTO statements that
transfer control to statement 305.

One final technique that we might use to determine if the loop was executed is to
cause the loop index to be printed. After the program has finished execution, we can
type:

PRINT i
If a value other than zero is prinied, we know ihai ihe ioop was execiuted. In the case of
this program, the value "1" will be printed.

All of our experiments confirm the fact that the loop was actually executed. The
question remains as to why. ANS! standards for Minimal BASIC specify that FOR-NEXT
loops should not be executed at all if the initial value of the loop index is already past
the end value. In such cases, as in the FOR-NEXT loop in the Julian date program, the
loop should not be entered at all. Yet, we know that the loop was entered as a result of
the trace experiments. The fact is that the Apple does not conform to the ANS!

Ch 9

Exercise Set 9.1

specifications and neither do the PET nor the TRS-80. Most dialects of BASIC will
perform this task as expected. But the conclusion to be drawn is that some programs
will run correctly on some machines and incorrectly on others. The only way to be sure
this program works correctly on all machines is to add a statement to prevent entry into
the loop when the month value is one (January).

295 IFM = 1 THEN 315

Let us end our treatment of debugging with one final challenge in the form of
another version of the Julian date program. Following is a program almost identical to
the one displayed above, which produced incorrect results under some circumstances.
However, the program following works correctly. Can you determine why it works and
the one above does not? Do you approve of the modification? Has the author resorted
to a frick to make the program work? Is such a program portable to other dialects of
BASIC? If you were the instructor, would you accept the second version? Here is the
program:

100 REM ~~ JULIAN V2

110 DIM T(12)

120 DATA 31,28,31,30,31,30
121 DATA 31,31,30,31,30,31
125 FORI=1TO 12

130 READ T(l)

135 NEXTI

200 PRINT "MONTH ';: INPUT M
205 PRINT 'DAY ;+ INPUT D
210 PRINT'YEAR ' INPUTY
215 IFINT(Y / 4)* 4 = Y THEN T(2) = 29
220 =0

300 FORI=0TOM-1

305 S=S+ T

310 NEXTI

315 JD=S +D

325 Y =Y * 1000

330 JD=JD + Y

335 PRINT JD

400 END

EXERCISE SET 9.1

The following programs illustrate some of the difficulties one encounters in debugging
programs that run yet produce puzzling results. Programs that sometimes behave
correctly and other times misbehave are particularly annoying.

185

186 Program Structure and Debugging Ch. 9

1. Enter and run the following program. It is designed to allow us to examine the
values of the function Y = 2 ¥ X "2 — 3 * Xin the interval from X = 4 to X = 5 by
taking various step sizes.

100 PRINT "X-Y PAIRS AS X RANGES FROM 4 TO 5
110 PRINT "IN STEPS OF VARIABLE SIZE."

120 PRINT 'ENTER STEP SIZE

130 INPUT S

140 PRINT

150 LETX =4

160 LETY=2*X"2-3%*X

170 PRINT X,Y

180 IF X = 5 THEN 200

190 LETX =X+ S

200 END
Run this with step sizes of 5, .25, 2, 1, and 05. Explain the behavior
observed

2. In this program we run a number through a rounding function (to two decimal
piaces) and ihen compais its vaiue with its criginal value
100 PRINT 'ENTER A NUMBER "
110 INPUTN

120 LET N1 = INT (N * 100 + .5) / 100

130 PRINT N,Nt

140 REM TRANSFER TO END IF N = N1

150 IFN = N1 THEN 180

160 PRINT"IF N =";N;" AND N1 =";N1;"WHY IS’
170 PRINT 'THIS STATEMENT EXECUTED?"
180 END

Run this program for some decimal numbers Try for example 5.246, 3.46, 1 51,
and 2.9. Can you explain the results you see?

3. This program simulates a problem of stocking an item of merchandise subject to
variable demand. A program was {o be designed to accumnutate total sales and
average days between restocking of the item. When the inventory on the sheif
falls below five, twenty items are to be placed on the shelf. The following
probiem, turned in by a student, runs without error but produces meaningless
results. Debug it.

100 PRINT "ENTER NUMBER OF DAYS SIMULATION RUNS
110 INPUT DAYS

120 REM INITIALIZE

130 SALES =0

140 STCK =20

Exercise Set 9.1 187

150 PRINT 'DAY STOCK SALES FINAL STOCK"

160 FORI= 1TODAYS

165 REM SAVE STARTING STOCK VALUE

170 SAVSTCK = STCK

175 REM DETERMINE DAILY CUSTOMERS

180 CUST = INT(RND(1) * 10 + 1)

185 REM ACCUMULATE DAILY SALES

190 SALES = SALES + CUST

195 REM REDUCE STOCK BY SALES

200 STCK = STCK — SALES

205 REM DETERMINE IF RESTOCKING IS NECESSARY

210 IF STCK >= 5 THEN 240

220 STCK = STCK + 20

230 RESTCK = RESTCK + 1

235 REM PRINT DAILY RESULTS

240 PRINT ;TAB(7)SAVSTCK,CUST,STCK

250 NEXTI

260 PRINT'TOTAL SALES IN ",DAYS; DAYSIS "“;SALES

270 PRINT'AVERAGE DAYS BETWEEN RESTOCKING IS ";DAYS /
RESTCK

280 END

What lessons are learned from the errors in this program?

4. Below is another student program designed to reduce a fraction to lowest terms.
The program runs without error messages. Sometimes it produces correct
results, sometimes not. The program was built around an algorithm which finds all
the factors of a whole number (other than the number and one). If no factors
exist, then it prints a message that the number is prime. Here is the correct
algorithm for that operation.

120 INPUTN

150 FORI=2TON /2

160 IFN /I <> INT(N / I) THEN 180

170 PRINTI;" ISAFACTOR OF "N

175 Q=1

180 NEXTI

190 IF Q <> 1 THEN PRINT N;' IS PRIME"
200 END

Satisfy yourself that the program above works correctly. Then, enter and run the
following program, which attempts to take advantage of this algorithm.

110 PRINT 'ENTER NUMERATOR
120 INPUTN
130 PRINT'ENTER DENOMINATOR

188 Program Structure and Debugging Ch. 9

140 INPUTD

150 FORI=2TON/ 2

160 IFN /1 <> INT(N /1) THEN 210
170 IFD /| <> INT(D / I) THEN 210

180 N=N/1I
190 D-=D /1
210 NEXT!

220 PRINT 'THE REDUCED NUMERATORIS "N
230 PRINT "THE REDUCED DENOMINATORIS ;D
240 END

Try the following data pairs:

N D
9 30
9 45
4 14
12 20

You should find that sometimes the fraction is reduced to lowest terms. Other
times it is not.

Review

New terms and syntax introduced in this chapter are reviewed here.
BUG aterm used to describe a program error. (Section 9.1)
DEBUG the act of removing a program error or errors. (Section 9.1)

STRUCTURED PROGRAMMING programming that recognizes the natural struc-
ture of the problem solution. Such programming uses fundamental control structures
and modular construction to produce a linear arrangement of the major program
hlocks. (Section 9 2)

........ el

PROGRAM BI.OCK a major subsection of a program devoted to a specified task
Typical blocks provide for program identification, variable initialization, a main program
loop, data identification, and subroutines. (Section 9.5)

SUBROUTINE a discrete program segment that performs a specific function.
(Section 9.4)

CASE STRUCTURE a control structure that permits the selection of one option
from among several. (Section 9.7)

Review

Basic SYNTAX

GOSUB a BASIC keyword that transfers control to the statement number following.
For example, 200 GOSUB 1000 would transfer control to statement 1000 from
statement 200. (Section 9.6)

RETURN a keyword that terminates a subroutine transferring control back to the
statement following the most recent GOSUB executed. GOSUB and RETURN are a
matched set—we cannot have one without the other. (Section 9.6)

ON VARIABLE GOTO = set of keywords used to implement a case structure For
example, 200 ON X GOTO 1000,2000,3000 will transfer control to statement 1000
it X = 1, to statement 2000 if X = 2, to statement 3000 if X = 3, or to the next statement
following 200 if none of these conditions exist. (Section 9.7)

ON VARIABLE GOSUB a set of keywords used to implement a case structure. This
syntax combines the multiple option of the ON . . . GOTO with the properties of the
subroutine. (Section 9.7)

TRACE a BASIC keyword that causes the printing of a statement number as the
statement is executed. This capability is usefu! in debugging a program. (Section 9.8)

NOTRACE a BASIC keyword used to terminate the TRACE feature. (Section 9.8)

189

10

10.1

FORMATTING AND
GRAPHICS

INTRODUCTION TO FORMATTING
AND GRAPHICS

We have emphasized certain basic techniques for improving the utility of our programs
and the appearance of their output. In particular, we have discussed the following:

1 The value of user prompts,

2 Labeling of output with appropriate text,

3 Integration of text and data so that the output reads more naturally, and
4 Use of printing fields to organize the output.

All of these techniques might be considered cosmetic. If the program is doing
what it is supposed to do, who cares how the output looks? We trust that you do not
hold this view of programming. It is true that programs are written to solve problems
rather than to display the ability of the programmer to format. However, they must not
be so cursory or crude that they leave the user with more questions than answers. The
user who has to study the internals of the program in order to interpret the output is
likely to be discouraged with our help.

We feel that attention to appearance of the computer output is very important. To
improve the appearance and readability of the output we must go beyond the basics
discussed earlier. We are concerned with appearance for its own sake and because it
makes possible a more rapid and meaningful evaluation of the output. Consider a
simple example. Below are two outputs of the same program. In the first case, on the
left, no attempt at formatting has been made. In the second case, on the right, the
same data has been formatted before printing.

191

192 Formatting and Graphics

10.2

TIME

5
10
15
20
25
30
35
40
45
50

CHARGE TIME CHARGE
1.97847E-05 5.0 0.000020
2.41026E-04 10.0 0.000241
2.93630E—03 15.0 0.002936
.035771S 20.0 0.035772
.0435786 25.0 0.435786
5.30896 30.0 5.30896
64.6764 35.0 64.6764
787.919 40.0 787.919
9598.82 45.0 9598.82
116938 50.0 116938.

It is easier to interpret the trend of the righthand data in the second case

We further believe that the ability to support our output with computer generated
graphic material is seldom fully exploited. We will discuss methods of generating bar
graphs, X-Y plots, and high resolution graphic material

THE TAB FUNCTION

We mentioned in Chapter 6 that functions behave like processors. We enter a number
called the argument of the function, the processor works on it, and a value is returned
that bears some relation to the argument. In the case of the TAB function the output is
not a number but an instruction to the computer to move the printing head (or cursor)
right of the left-most printing position to the printing position given by the argument.
Consider the foliowing program fragment:

100
110
120
120
140
150
160

FORI=1T03
PRINT "1234567890';
NEXT I

PRINT

PRINT "A"

PRINT TAB (9) 'B";
PRINT TAB (21)'C’

Numbering of print positions differs from machine to machine A run of the
program for the three microcomputers looks like this:

Ch 10

Sec. 10.2

The Tab Function

APPLE

123456789012345678901234567890
A B C

The Apple uses a numbering system for the TAB function which starts with
one (1) at the left margin—in the fashion of a typewriter. PRINT TAB (9)
prints in position nine (9)

PET AND TRS-80

123456789012345678901234567890
A B C

The PET and TRS-80 start tab positions at zero rather than at one. PRINT
TAB (9) prints in position ten (10).

Systems deal with positive and negative numbers in different ways A run of the

following demonstration program fragment demonstrates the differences between the
Apple, the PET, and the TRS-80

100 PRINT "1234567890"
110 PRINT 2

120 PRINT -3

130 PRINT "1234567890"
140 PRINT TAB(8)2

150 PRINT TAB(8)-3

APPLE

1234567890

2

-3

1234567890
2
-3

193

194

Formatting and Graphics

PET AND TRS-80

12345678390
2
-3

1234567890

2

-3

The TAB function is particularly valuable in formatting text headings However, in
formatting numbers we are frequently more interested in vertical decimal point
alignment. The TAB function will not cause decimal point alignment if the data differs in
the number of digits to the left of the decimal point. We touched upon decimal point
alignment in Chapter 8 and will consider it again in this chapter.

The TAB function on microcomputers will generally not move the printing position
left. Consider the following program fragment:

100 PRINT "123456789012345678901234567890"
110 PRINT TAR(25)'A";
120 PRINT TAB(10)'B"

The output is:

123456789012345678901234567890
AB

The print head, being beyond the designated print position in line 120, simply
prints the character "B in the next available print position (number twenty-six in this
case)

The features of the TAB function on each machine are discussed as follows:

APPLE

The Apple TAB function will accept arguments up to position 255. TAB
arguments over 255 give error messages TAB(O) results in a tab move to
position 256. This feature can be particularly troublesome when the
program is computing the argument of the TAB function and fails to check
for zero arguments.

Ch. 10

Sec. 10.3 Using a Print Image 195

PET

The PET accepts and executes TAB arguments up to and including 255
TAB argument values over 255 produce error messages.

TRS-80

The TRS-80 performs all TAB function arguments in excess of 63 by
reducing the argument to modulus 64. That is, the computer tabs to the
remainder of the value entered divided by 64 Then TAB (65) becomes
TAB (1), TAB (132) becomes TAB (4), etc

10.3 USING A PRINT IMAGE

A valuable formatting device is the print image, which is available on most
minicomputers and on some microcomputers. The TRS-80 has such a feature although
it is absent in the PET and in the Apple With the print image an entire table can be
formatted. We have developed a subroutine which will produce a print image. This
subroutine is contained in the Library of Subroutines. (Appendix B,p.B21). We illustrate
its use below.

Suppose we are to print an amortization schedule for a car loan in the
sequence:

Month—Start Balance-—!nterest—~Payment—Final Balance

Month numbers may run as high as forty-eight. Balances may need four digits to
the left of the decimal point and payments may need three digits. Monthly interest may
run as high as $150 With this information we can define an image for the actual entries.
We give this image a character variable name:

120 LETPUS ="HHE SHHEHH . BH SHBE . HESHBH . HE
SR HH
(PU for “print using™")

We develop a program to use this image:

100 REM -- DEMONSTRATION PROGRAM FOR PRINT USING

110 REM —- INITIALIZE

120 LETPUS - "BH# SHHEBH.HHU SHE BB SHH B .Y
SHHESH. BB

130 LET NP(1) =1

140 LET NP(2) = 4000

150 LET NP(4) = 130

196 Formatting and Graphics

160
170
180
190
200
210
215
220
230
240
250
260

TRS-80 note: To run this program on the TRS-80 replace statement 220 with the

following:

REM PRINT HEADER

PRINT 'NO BALANCE [INT PAYMENT BALANCE'
REM PRINT TABLE

FORI=1TO 10

LET NP(3) = INT(NP(2) * .14/12 * 100 + .5) / 100

LET NP(5) = NP(2) + NP(3) — NP(4)

REM CALL PRINT USING SUBROUTINE

GOSUB 8600

REM UPDATE MONTH AND BALANCE

LET NP(2) = NP(5)
LET NP(1) = NP(1) + 1
NEXT |

220 PRINT USING PU$;NP(1),NP(2),NP(3),NP(4),NP(5)

This program will print the first ten months of the amortization schedule as shown

below:

N

©CONDGO HWN = C

10

The print using subroutine causes the data to be rounded to the correct number
of decimal points and entered in the correct format. If a number is out of range of its
format statement (for example, too large) a warning indicator will be printed. We also
note that the characier daia can be mixed within the print image. We are not limited to

1a e T A LAAFTALT DAL ARINED
T YR R -

DALANGC

$4000.00 $46.67 $130.00 $3916.67

$3516.67 $45.69 £130.00 $3832.236
$3832.36 $44.71 $130.00 $3747.07
$3747.07 $43.72 - $130.00 $3660.79
$3660.79 $42.71 $130.00 $3573.50
$3573.50 $41.69 $130.00 $3485.19
$3485.19 $40.66 $130.00 $3395.85
$3395.85 $39.62 $130.00 $3305.47
$3305.47 $38.56 $130.00 $3214.03
$3214.03 $37.50 $130.00 $3121.53

dollar signs but could print text such as the following
150 LET PUS$ — "MONTH # # BALANCE IS ## #.# #"

EXERCISE SET 10.1

1 Solve the following problems using the TAB function

(a)

Generate three vertical lines in print positions 3, 15, and 27. The lines
should extend vertically for ten print positions. Use a keyboard symbol of

your choice to represent the elements in each line

Ch. 10

Sec. 10.4

2

3.

(b)

Teletype Graphics

A column of numbers stored in X(1) through X(20) is to be printed out. The
numbers are between 100 and 999 in value and have decimal parts. The
decimal point in all these numbers is to be in print position 27. Write a
program that will produce the column

The following column headings are to be centered on columns 5, 20 and
35. Write a statement(s) that accomplishes this.

PAYMENT INTEREST BALANCE

Write a program that will generate the quarterly balance on $5000
deposited in a bank at 6% annual interest compounded quarterly. Print the
quarter number and the new balance in two columns starting at positions 7
and 12. Develop five years of data. The algorithm for computing the
balance is
Balance = Deposit * (1 + r / m) "~ (m * n)
where r is the decimal interest rate,

m is the number of compoundings per year, and

n is the number of quarters in the bank

Do not carry fractions of a cent.

Solve problem 1(d) using the print image technique.

Write a program that uses the print image to produce a table of daily net sales
with sales tax and excise tax tabulated. Use the following image:

"HH#E NET - SHHEHH.HH ST-HHH.HH# ET-SHERB.#H

Sales tax is 5% of net sales and excise tax is 11% of net sales. Use the following

data:

Day Net Sales
1 $6537.20
2 $8421.25
3 $9320.75
4 $8778 10
5 $8329.50
6 $7922 35

10.4 TELETYPE GRAPHICS

The term teletype graphics refers to the use of standard symbols on a terminal to
generate graphic material Lines can be drawn, points can be plotted and symbolic
representations of real objects can be generated with standard symbols on the
keyboard. The development of graphic output in the form of charts and plots can
enhance the readability and impact of the output

197

198

Formatting and Graphics

We begin with a problem in which we wish to display the grade distribution on an
examination. That distribution is:

A's =2 D's=5
B's =6 F's=2
C's=8

Our program will set up an array to hold the count of each grade and then read
the values into this array. In the following statements, an array MARK is dimensioned at
size five (one location for each letter grade) and the data statement contains the actual
count of the occurrences of each grade. The FOR-NEXT loop simply reads the values
from the data statement into the array MARK

150 DIM MARK(5)
160 FORI=1TOS5

o Gl A BA A TS

i70 READ MIARK()
180 NEXTI
350 DATA 2,6,8,5,2

Next we must instruct the computer to print a scale so we can read the bar graph
This can be done easily with ine following PRINT statement. Note how the plus
character represents the values of five and fifteen and the colon represents zero, ten,
and so forth.

Now let us turn our attention to the printing of the bar graph itself. Since we have
five different grades, we will want to produce five bars, one for each letter grade. We
will accomplish this with a FOR-NEXT loop, which will execute five times. We will also
use the TAB function to locate the print character at the proper column on the line. We
will use the values stored in the array MARK to position the print head.

200 FORI=1TOS5

210 PRINT "%

220 PRINT TAB(MARK(I))"*"
230 NEXT!

Here is the output of the program:

This may not look much like a bar graph since our program only prints a single star, not
a bar. We can improve this by nesting another loop within our FOR-NEXT loop. The

Ch. 10

Sec 104

Teletype Graphics 199

new inner loop will cause a star to be printed at each column on a line beginning with
column one and ending with the column represented by the value of the respective
element of the array MARK. The inner loop is listed below

220
222
224
226

FORK = 1 TO MARK(I)
PRINT "*";

NEXT K

PRINT

Let us also add a PRINT statement to print scale values to make the output more

readable.
185

PRINT ‘O 10 20"

Our revised program is reproduced below along with sample output. Some
remarks have been added

100
110
120
130
140
150
160
170
180
183
185
190
200
210
215
220
222
224
226
230
240

REM —- DEMONSTRATION BAR GRAPH
REM INPUT VARIABLES: MARK(5)
REM LOCAL VARIABLES: |, K

REM OUTPUT VARIABLES: ALL GRAPHIC
REM LOAD DATA ARRAY

DIM MARK(5)

FORI=1TOS5

READ MARK(I)

NEXT I

REM PRINT BAR GRAPH

PRINT 'O 10 20"

FORI=1TOS5

PRINT ":";

IF MARK(I) = 0 THEN 226
FORK = 1 TO MARK(])
PRINT ““*’;

NEXT K

PRINT

NEXT |

o F ok ok ok ok ok

EEEEEEEES

200

10.5

Formatting and Graphics Ch. 10

Line 215 is necessary only if you want to be able to graph a data set with a zero
value. If MARK (1) = O, the loop beginning at 220 will execute once

Since the bars are not labeled with letter grades, we must rely on our
understanding of the program itself to tell which bar represents grades of A, B, etc. One
solution to this problem is to add the following statements to our program:

182 LETLTR$ = "ABCDF’
222 PRINT MID$(LTRS,1,1);

The output of this modification is shown betow:

0 10 20
..... E aTITIPIP TIPS SR
{AA

:BBBBBB

:cceececce

:DDDDD

iFF

..... Faen et

TELETYPE GRAPHICS—X-Y PLOTS

We will next consider the simplest method of developing an x-y plot. We will plot the
expressiony = .3 * x* 2 + 2 when the independent variable, X, runs from one to ten in
steps of one. The generation of dependent variable values using a FOR-NEXT loop
has been considered previously. A loop such as

130 FORI=1TO 10
140 LETY=.3%1"2 + 2
150 NEXTI

will generate the y value corresponding to each x. !f we tab to the y value
corresponding to each x, place a marker there and then superimpose the coordinate
axes, we should have an x-y piot.

Consider the following program

100 REM —~- DEMONSTRATION OF X-Y PLOT
110 REM LOCAL VARIABLE: Y

120 REM DRAW Y AXIS

130 PRINT'O 10 20 30 Y-AXIS"
140 PRINT " ..o venl cveateneet vnrntoesnet anaad

Exercise Set 10.2

150 REM DRAW X AXIS AND PLOT POINTS

160 FORI=1TO 10

170 LETY=.3*1"2 + 2

180 LETY = INT(Y + .5)

190 PRINT ™"

200 IF1/ 5 =INT(1 / 5) THEN PRINT "—";I;

210 PRINT TAB(Y)"*" luse TAB(Y + 1) on the Apple]
220 NEXTI

230 PRINT "X-AXIS'

240 END

Addition of one in line 210 for the Apple is necessary because the zero of the
y-axis is in position one on the screen. The output of the program is displayed below:

0 10 20 30 Y-AXIS
. Feaanlanns Feeaulaane T
*
*
*
*
-5 *
%
*
*

. *
=10 *
X-AXIS

EXERCISE SET 10.2

1. Modify the bar graph program in Section 10 4 to present seven bars. The bars
are to have the lengths 8, 9, 23, 9, 3, 8, and 5 and are to be labeled A, B, C, D, F,
W, and | respectively.

2. Modify the X-Y program in Section 10.5 to plot the following:
(@) y=2%x"2+ x + 3 (intheinterval x = 1to 10)

(b) y=385-.3*x"2(intheinterval x = 1to 10)

(¢) ¥ =x+ 10 (in the interval x = 1to 10)

(d) y =25 — 2*x(intheinterval x = 1to 10)

201

202

10.6

Formatting and Graphics

UP WITH THE BAR GRAPH

In Section 10.4 we treated simple bar graph programming. The horizontal orientation of
line printers and terminals makes such applications easier to do if we use the vertical
axis for the x variate. Displaying the x axis vertically may confuse some and outrage
others. Confusion arises from the fact that visuals in textbooks and other sources
commonly place the x variate on the horizontal axis. Here we wil attempt to turn bar
graphs upright so that they can stand on their own bottoms. The bar graph printed in
section 10.4 is shown below

0 10 20

o %k kK kKoK
EEEEEEE S

Our goal here is to take the same data and produce a bar graph with a horizontal
x axis. The easiest approach to this task may be to inspect the final product and inen

discuss the manner in which it was programmed. Here is the final product.

15:
10:
* ¥ %
* k%
% %k k% ok
= % %k % k¥ ok E3E 3 3
~

EETIENET T I L L
#Hk kEE KEF
RE R REE AR

* %k &k k k% ¥ * %k %k %k

A B C D F

The program begins with an initialization block much like the one we used in
Section 10 4.

Ch. 10

Sec. 106

Up With the Bar Graph

150 DIM MARK(5)
160 FORI=1TO5
170 READ MARK(l)
180 NEXTI

350 DATA 2,6,8,5,2

Here is a loop which will generate the k-th line of the graph

200 LETL$ =" "

210 FORI=1TO5

220 IF MARK(l) >= K THEN LET LS = L$ + "***.GOTO 240
230 LETL$=LS +"

240 LETL$ =L$ +" "

250 NEXTI

L$ is an output string that will contain the appropriate parts of the bars corresponding
to each printed line. Statement 200 inserts a two column blank spacer at the beginning
of the output string Inserting the spacer clears the previous content of the string.
Statement 240 inserts a two column spacer between bars Statements 220 and 230
determine the content of each bar—either blank or a field of stars. This loop must be
performed one time for each output line; therefore, it must be nested inside another
loop. Here is the program fragment with both loops present.

190 FORK = 15TO 1 STEP —1

200 LETL$ =" "

210 FORI=1TOS

220 IF MARK(l) >~ K THEN LET L$ = L$ + "**:GOTO 240
230 LETL$=-L$ + " "

240 LETL$=L$ +" "

250 NEXTI

260 IFK /5 =INT (K / 5) THEN PRINT K;

270 PRINT TAB(3)":"; (Use TAB(4) on the PET and the TRS-80.)
280 PRINTL$

290 NEXTK

The only task remaining is to print the X axis and label it. This can be
accomplished as follows:

300 PRINT" (Use four blanks on the PET and the TRS-80.)
310 FORI=1TO 30
320 PRINT"-"
330 NEXTI
335 PRINT
340 PRINT® A B C D F'
(Insert one more blank in front of A on the PET and the TRS-80)

203

204

10.7

Formatting and Graphics

We could develop a method for displaying X-Y plots upright as well However,
with the microcomputer graphics we can generate the graph in the correct orientation
in a routine manner

LOW RESOLUTION GRAPHICS

Low resolution graphics refers to the ability to produce graphic images by
addressing an array of points on the video screen These points may be the
conventional printing positions or some subdivisions of these positions. We will first
treat the low resolution graphics on the Apple

Photo 10 1
The TRS-80 screen displays bricks that are used in low resolution graphics. (Photo
courtesy of Radio Shack, a division of Tandy Corp.)

Ch. 10

Sec. 10.7

Low Resolution Graphics

APPLE

The Apple microcomputer actually has four screen buffers. These screen
buffers are memory areas containing information that may be displayed on
the video monitor Two buffers are used for text and low resolution
graphics and the other two buffers are used for high resolution graphics.
The first text buffer is the one normally displayed It is used for text and low
resolution graphics. The second text buffer is difficult to use and we will not
discuss it further. Only one high resolution buffer is available on Apples with
less than 24K of memory and no high resolution graphics is available if an
Apple has less than 16K of memory.

A graphics system should be based on some sort of screen
coordinate system. For the Apple that system has its zero point at the top
left of the screen. Unfortunately, that is not very convenient as we normally
plot right and up. The print element is a rectangular brick which is one half
the size of a print position in the vertical direction. The brick is seven dots
wide and four dots high. The screen grid consists of a forty by forty grid
(1600 print positions). These positions are individually addressable
through a PLOT command. The positions are numbered zero through
thirty-nine starting from the top left of the screen. Note that this differs from
the TAB positions that start at one, not zero

To illustrate the low resolution graphics in an x-y plot, suppose we
plot the equation y = 32 - x on a set of axes at the lower left corner of the
screen (x horizontal and y vertical) Let x range from one to thirty Consider
the following program fragment:

100 GR

110 COLOR = 15
120 FORI=1TO 30
130 LET X =1

140 LETY =32 - X
150 LETY=39-Y
160 PLOT X,Y

170 NEXTI

180 FORI=0TO 39
190 PLOTO,!

200 PLOTI, 39

210 NEXTI

We need to consider certain statements in this program in more
detail Statement 100 places the computer in graphics (low resolution)
mode. This means that the top twenty lines on the screen are reserved for

205

206 Formatting and Graphics

the bricks, and the bottom four printing lines are used for any text we want
to print.

Should we wish to use the bottom four lines for bricks we must add
the following statements immediately after the GR statement:

102 CALL —1998
104 POKE —16302,0

The first statement sets the entire screen buffer to black and the second
statement causes the bottom four lines to be used for graphic display.

Statement 110 is necessary if we are to see the graphic image since
the comand GR sets the color to zero (black). The number selected for
color is a matter of preference. Values in the range of zero to fifteen are
proper. If you have a black and white monitor, we recommend the value of
fiftteen for white.

Statement 150 is necessary if we are to restore the positive y-axis to
its usual upward direction. This statement inverts the screen coordinate
system.

Statement 160 is new syntax that instructs the computer to illuminate
the brick at position x,y. Statements 180 and 200 produce a set of axes. A
run of this program is shown below:

When the program above ends execution, the Apple will be display-
ing graphics. You can type TEXT followed by RETURN to resume normal
text display.

The Apple low resolution graphics has some additional capability for
line construction that is useful in bar graph and histogram construction. For
example, a horizontal line may be drawn at any row of the screen by using
the syntax:

Ch. 10

Sec 107

Low Resolution Graphics

150 HLIN X1, X2 ATY

The line starts at position X1 in row Y and ends at position X2 in row
Y. Similarly, a vertical line of variable length may be drawn at any column of
the screen using the syntax:

150 VLINY1,Y2ATX

To illustrate this capability consider the problem of constructing a
histogram with the following characteristics.

Column Quantity

3 5
15
22
37
15
18
9 4

O ~NO O D

The base of the histogram should be in row 39. A histogram differs
from a bar graph in that the bars normally have no spaces between them
The following program fragment should produce the desired histogram

100 GR

110 COLOR = 15

120 FORI=3TO9

130 READY

140 LETY =40 -Y

150 VLINY, 39 ATI

160 NEXTI

170 DATA 5,15,22,37,15,18,4

Statement 140, which effects a reversal of Y direction, uses forty
rather than thirty-nine since no space is reserved for a zero bar

Low resolution plots in the standard printing positions are also
available on the Apple through the use of two special TAB commands

HTAB X moves the print position right of the left margin to X. VTAB
Y moves the print position down from the top of the screen Y units.
Consider the following program fragment:

100 HOME
110 PRINT'Y AXIS'
120 FORI=1TO 19

130 PRINT""

207

208 Formatting and Graphics

140 NEXT I

150 PRINT":2 veiveenia...: XAXIS
160 FORI=0TO 15

170 LET X =1

180 LETY =X+ 2

190 VTAB 21— Y

200 HTAB X + 1

210 PRINT ™"

220 NEXT I

This program should plot the straight line Y = X + 2. The HTAB and
VTAB then give us cursor control equivalent to that found on other
machines. Cursor control on the PET is discussed below

PET

Low resolution graphics on the PET is available only through the usual
printing positions (twenty-five lines of length forty = 1000 printing
positions). This compares with 1600 positions on the Apple and 6144
positions on the TRS-80 (Level If). PET graphics makes avaiiabie speciai
graphic characters that are convenient for certain applications. Although
we are essentially using teletype graphics with the PET, the graphic
symbols are contiguous to one another. As a result, straight lines need not
be broken and bar graphs can be constructed with solid bars. We call your
attention to the following characters, which are particularly useful:

1 The upper case of the @ key produces a horizontal bar centered
on the printing position

2 The upper case of the] produces a vertical bar centered on the
printing position

3 The upper case of the four lowest keys on the number pad join
symbols 1 and 2 to form square corners.
4 Rounded corners are available in the upper case of U, |, J, and K.

5 The upper case of keys 1, 2, 3, and 4 on the number pad are nice

for doing brick worlk

6 The mostintense symbol is obtained by the reverse blank space.
Try the immediate command:

?"RVS SPACE SPACE"

A serious limitation of PET low resolution graphics is the absence of a
screen coordinate system. As a result one must improvise a systematic

Ch. 10

Sec. 10.7

Low Resolution Graphics

method of reaching the various screen positions. One method of doing this
is illustrated in the following program fragment:

100 PRINT CHR$(147)

110 FORI=1TO 3¢

120 LETR$ = R$ + CHR$(29)
130 LETD$ = D$ + CHR$(17)
140 NEXTI

150 FORiI=1TO 10

160 LET X =1

170 LETY=2*X + 3

180 LETY =24 - Y

190 PRINT CHR$(19);

200 PRINT LEFT$(DS,Y);

210 PRINT LEFT$(RS$,X)"*"
220 NEXTI

This program fragment will plot the equation y = 2x + 3 over the
interval x = 1 to 10.

Statement 100 clears the screen Statements 110 and 120 load
strings with character representations of ASCIl codes for moving the cursor
right and down respectively. Statement 190 sends the cursor home and is
necessary because of the absence of a screen coordinate system We
must send the cursor home in order to have a standard reference point
from which to move. Statements 200 and 210 cause the correct down and
right movements prior to printing the point with “**'. While this procedure is
somewhat more cumbersome, the ability to select symbols to be printed
and the ability to mix text and graphics are definite advantages.

TRS-80

The TRS-80 low resolution graphics has the most resolution of the three
systems. Each of the 16 printing lines is subdivided into three giving a
resolution of 48 in the vertical direction. Each of the 64 columns is divided
into two giving a horizontal resolution of 128 Thus a total of 48 x 128 ~
6144 positions are addressable. The TRS-80 has some of the desirable
features of both the Apple and the PET It has a screen coordinate system
with the origin in the upper left corner (as with Apple) It has the ability to mix
graphics and text (as with PET) The syntax for using the coordinate
system is:

SET (X,Y)

209

210 Formatting and Graphics

Additional features are the ability to RESET, the ability to PRINT @ a
position (the original printing positions—not the graphics positions), and
the ability to determine if a graphic point is SET or not.

In the Apple section we displayed the low resolution graphics plot of
the equation y = 32 — x. That same plot for the TRS-80 follows.

The program which generated this plot is similar to that shown in the
previous section on the Apple Necessary changes to the previous
program are replacement of statement 100 with 100 CLEAR, each plot
statement is repiaced by a SET() statement, and the value of thirty-nine in
statements 150, 180, and 200 needs to be changed. This value should be
forty-seven rather than thirty-nine. Note that the TRS-80 brick has four rows
of dots in three columns

EXERCISE SET 10.3

1.

Modify the upright bar graph program in Section 10 6 to display seven bars The
bars are to have lengths 8, 9, 23, 9, 3, 8, and 5 and are to be labeled A, B, C, D,
F, W, and i respeciiveiy.

Use low resolution graphics to solve the following problems:

(a) Construct a bar chart (horizontal bars) representing the following percent-
age responses to a survey on job satisfaction (very satisfied) by category:

Challenge 45%
Financial Reward 37%
Comfort 32%

Ch. 10

Sec. 10.8 High Resolution Graphics—For Apples Only 211

Relations with Co-workers 44%,
Resource Adequacy 520*

(b) Construct a bar chart (vertical bars) representing the following percentage
responses to a survey:

Unsatisfactory 5%
Poor 12%
Fair 33%
Good 22%
Excellent 22%
Superior 6%

(c) Construct a histogram showing the following distribution of cars in a sample
of 100 car owners:

25 Sub-compact
33 Compact
25 Mid-size
12 Large
5 Luxury

10.8 HIGH RESOLUTION GRAPHICS—
FOR APPLES ONLY

High resolution graphics refers to the ability to produce graphic images by
addressing a dense array of points on the video screen. We will discuss high resolution
graphics on the Apple. The PET and the TRS-80 do not have high resolutions graphics
except perhaps through special software.

The Apple ll has a screen grid of 280 by 160 plotting points (extendable to 280 by
192). The numbers for the 280 horizontal positions run from 0 to 279 inclusive. For the
vertical positions the numbers run from 0 (at the top of the screen) to 159 (or 191). High
resolution graphics has the same point plotting capability that is found in low resolution
graphics. Lines can be drawn with the added ability to draw a line between any two
points. Thus, the vertical and horizontal line syntax is not necessary.

When we display the first high resolution graphics page with the HGR command,
the bottom four lines of text space are usually reserved for the display of text

We illustrate the new syntax with two program fragments. The first places a point
in the 110-th column from the left and the bottom row of the high resolution screen.

100 HGR
110 HCOLOR =3
120 HPLOT 109,159

*Source: Data from US Bureau of Census , 1978

212

Formatting and Graphics

You should note the prefix H on each of these commands. We suggest three (white) for
HCOLOR on black and white screens. Since the positions start at zero the 110-th
column is position 109 just as the 160-th row is position 159.

Another version of this program is shown.

100 HGR
110 HCOLOR =3
120 HPLOT 109,191

When you run this program, nothing appears to happen If we add the following
statement and rerun the program, a dot appears at the bottom of the screen:

105 POKE - 16302,0

This statement sets a switch that causes the entire first page of the high resolutions
graphics buffer to be displayed rather than a mixture of text and graphics.

The next program illustrates the line drawing capability. We are to connect the
point plotted above with the point in screen position 59,75.

100 HGR
110 HCOLOR =3

120 ArLoT 1U5,155 70 55,1 9

This HPLOT command may be continued in the same statement to other points. For
example, we might write line 120 as follows:

120 HPLOT 109,159 70 59,756 TO 0,0

in using either high or low resolution graphics on the Apple itis important to know
where to position the cursor so that text material to be displayed with graphics is not
printed beneath the graphic image. If you go into graphics mode with the cursor above
line 21, you may lose sight of any subsequent printed material. Therefore we suggest
that you accompany each command for graphics with a VTAB command as shown
below The HOME command will clear the screen of any printed material that you do
not want in the text window. We suggest the foliowing sequence:

100 HOME: HGR: HCO

The command TEXT will clear the graphics from the screen leaving whatever
may have been nrinted underneath Try the following program

100 HOME: HGR: HCOLOR = 3: VTAB = 21

110 HPLOT 0,0 TO 279,159

120 PRINT 'TO CLEAR THE SCREEN PRESS ANY KEY.'

130 GET AS$: IF A$ = ""THEN 130

140 TEXT

150 PRINT "NOTE THAT THE GRAPHIC IMAGE DISAPPEARS.'
160 PRINT 'PRINTING CONTINUES DOWN THE PAGE."

Ch. 10

Sec. 10.8

High Resolution Graphics—For Apples Only

The real advantage of the high resolution graphics mode is to produce point plots
and line graphs. We consider two example programs and their output

100
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

REM —~ POINTPLOT 11-20-80
REM LOCAL VARIABLES: |
REM OUTPUT VARIABLES: X, Y
HGR: HCOLOR - 3: HOME: VTAB 21
REM PLOT AXES

HPLOT 100,0 TO 100,150
FORI=0TO 15

HPLOT 101,10 * |

NEXT |

HPLOT 0,100 TO 200,100
FORI=0TO 20

HPLOT 10 * 1,99

NEXT I

REM PLOT CURVE
FORI= —7TO 10 STEP .1
LETX =1

LETY=.2*X"3-2*X"2-7%*X+ 50

HPLOT 100 + 10 * X,100 — Y

NEXT !

REM LABEL GRAPH

PRINT "GRAPH OF THE CURVE:"

PRINT'"Y = .2X"3 — 2X"2 — 7X + 50 (-7 TO 10)"
PRINT "EACH DIVISION ON THE Y AXIS = 10 UNITS."
GET A$: IFA$ =" "THEN 340

END

Here is the output of this program

213

214 Formatting and Graphics

GRAPH OF THE CURVE:
Y =.2X3 ~ 2X2 — 7X + 50 (-7 TO 10)
EACH DIVISION ON THE Y AXIS = 10 UNITS.

And another example:

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
290
300
310
320

REM —~- LINEGRAPH 11-22-80

REM INPUT VARIABLES: SALES

REM LOCAL VARIABLES: |, SVSALES
REM OUTPUT VARIABLES: SALES
HGR: HCOLOR = 3: HOME: VTAB 21
REM PLOT AXES

HPLOT 10,9 TO 10,159 TO 200,159
FORI=0TO 15

HPLOT 11,9 + 10 *1

NEXT |

FORI=1TO6

HPLOT 28 * 1,158

NEXT I

REM PLOT LINE GRAPH

READ SVSALES

FORI=1TOS5

READ SALES

HPLOT 28 *1,159 — SVSALES TO 28 * (1 + 1),159 — SALES
NEXT |

DATA 48,69,79,34,56,120

PRINT" 75 76 77 78 79 80 SALES'
PRINT "EACH VERTICAL MARK = 10 THOUSAND UNITS."
END

The output is shown below.

75 76 77 78 79 80 SALES
EACH VERTICAL MARK = 10 THOUSAND UNITS.

Ch. 10

Exercise Set 10.4

If the Apple you are using has 24K of memory or more, you can choose to use the
second page of high resolution graphics for plotting. This is done by using HGR2
instead of HGR. It is possible to have different images on each page and switch from
one to the other as we will demonstrate in Chapter 13.

EXERCISE SET 104

1 Draw a set of coordinate axes that intersect at screen position (100, 100). Each
axis should extend 100 units in the positive direction (up or right) and 50 units in
the negative direction (down or left).

2. Draw a box of side length 100 centered at (75,75)

3. Develop a program to plot the equation
Y=(X"2)/7 — 32

on the coordinate axes of problem 1. Let X range from -30 to -+ 30

4 One of the problems encountered in working with any plotting program is plotting
off screen. Error messages result and our program stops. It is possible to check
values to be plotted before they are executed. Establish coordinate axes that
intersect at 100,150 and plot the equation

Y=.5*%X"2
over the interval X = -20 to 20. Do not pass Y values larger than 150 to the
HPLOT command

5. Construct a line graph using the data below. Place each year's data fifteen
spaces apart and let each vertical unit equal half a year. Draw curves joining the
data points for both males and females.

Life Expectancy

Year Male Female
1920 535 545
1930 58.0 615
1940 61.0 65.0
1950 655 71.0
1960 66.5 73.0
1970 670 75.0

215

216

10.9

Formatting and Graphics

CONTROL OF DATA FORMAT

One of the advantages of BASIC over FORTRAN, and other more sophisticated
computer languages, is the ability to obtain output without knowing much about
formatting. FORTRAN, for example, requires specific formatting for each numerical
output. As a result, one is forced to learn the formatting options early. BASIC, on the
other hand, will make decisions for us on the format of the numerical output. This is fine
so long as we are happy with the decisions inherent in the structure of the language
The example in Section 10.1 indicates one of the problems that arises. BASIC will print
its output in scientific notation if the number is small (< .01) or very large (>=
1,000,000,000)

There is a related problem that affects not only the format but the meaning of our
output. Suppose we were conducting an experiment in which we measure the speed of
a moving object. Perhaps we have a timing gate that records the speed of a ball as it
rolls past a point on an incline. We repeat the experiment several times and obtain the
results listed in Table 10.1.

Table 10.1

D nivmnatad
ACplLillh

Measurements of the

Speed of a Ball
Trial Speed
1 3.41m/s
2 3.42m/s
3 3.43m/s
4 3.41m/s

We compute the mean value for the four trials. If we do this on the computer we
obtain an average speed of 3 4175 m/s. We have taken four numbers representing
speeds measured to the hundredths of a meter per second. By averaging them we now
have a velocity with four decimal places. This is wonderful. We have increased the
precision of our answer by averaging—or have we? As you may suspect, data
maripulation by itself cannot increase the precision of measured results Thus, the
number 3 4175 m/ s could be misleading if reported as the average speed

Scientists normally adhere to a set of rules that prescribe how many significant
digits can appear in calculated results that are based on experimental measurements
Significant digits but not additional digits are reported. In Table 10.1, there are three
significant digits in the experimental data. The average, if reported as calculated,
shows five significant digits. We typically keep as many significant digits in a calculated
result as were available in the least precise measured value involved. In averaging,

Ch. 10

Sec. 10.10

10.10

Forcing Scientific Notation

perhaps one more significant digit may be kept in the result. In any case we would not
keep more than four significant digits in the number 3.4175.

In summary, we often have problems not only of fixing the number of decimal
places in any answer—which can be done easily enough using the INT function-—but
of deciding how many digits (regardless of their relation to the decimal point) should
appear in the answer.

FORCING SCIENTIFIC NOTATION

We begin to deal with the problem of data format and significant digits by developing a
program to place all numbers in scientific notation. This program will also serve to
illustrate how we may control the format of numerical data by treating numbers as
strings. We express the program in pseudocode form first. (TRS-80 users may skip this
explanation and Section 10 11 since the PRINT USING in Level Il BASIC will force
scientific notation as well as the desired number of significant digits.)

SCINOTATION:

declare numeric NUM, P

declare string NUM$, SNUM$, EX$

put ("ENTER NUMBER")

get (NUMS$)

set SNUMS$ to the string value of NUM$

set NUM to the value of NUM$

set NUM$ to the string value of NUM (not redundant)

if (NUM is in decimal range)
[move the decimal point until one non-zero digit is to its left
fix the exponential part of the number
concatenate the number and exponential strings]

put (""HERE IS THE NUMBER '",SNUM$)

put (“IN SCIENTIFIC NOTATION: "";NUM$)

end.

The statements associated with the single alternative decision structure require
some refinement before they can be coded. In the first place, how can we determine if
a number is in a certain range? Consider the following logical expression:

L—X)*(X=8)>=0

If X is between S (smallest value) and L (largest value) this condition evaluates as true.
However, if X is outside this range the condition evaluates as false. You should
convince yourself of this by trying values for L, S, and X. Since we know the range in
which the computer maintains numbers in exponential form we need only replace L by

217

218

Formatting and Graphics Ch 10

999999999 and S by .01 The logical expression then becomes:
if (99999999 — ABS(NUM)) * (ABS(NUM) — .01)) >=0

The next statement requires that we move the decimal point in NUM. Recall that in
scientific notation only one nonzero digit appears left of the decimal point. We can do
this by finding the range of the absolute value of NUM. Consider the following code:

220
230
240
250
260
270

LETM =1,

FORP=-2TO8

IF ABS(NUM) < .1 * M THEN 270
LETM =M * 10

NEXT P

LET NUM = NUM * 100 / M

The value of P becomes the exponent on 10 when the number is written in
scientific notation. Can you see why P ranges from —2 to 8? In the code we have
chosen to work with powers of ten as whole numbers rather than in exponential form.
This avoids minor errors, which creep in during exponentiation.

Establishing the value of the exponent on 10 is now easy. The following code
should do the job:

280
290
300

LET EX$ = '0" + STR$(ABS(P))
IFP> —1THENEX$ ="E+"' + EX$: GOTO 290
LETEX$ ="E-" + EX$

The 0" in statement 280 is to make the format of our exponent look like the
computer’s. Statements 290 and 300 make up a double alternative decision structure
that determines the sign of the exponent based upon the value of P.

One other part of the program may need clarification. We are entering the
number as a string rather than in its numerical form. This is necessary in order to retain
the original form for comparison with the scientific notation form

Here is the final program

100
110
120
130
140
150
160
170
180
185
190
200

REM ~~ SCIENTIFIC NOTATION 8/20/80
REM INPUT VARIABLES: NUM$

REM LOCAL VARIABLES: P, EX$, NUM, M
REM OUTPUT VARIABLES: SNUMS$, NUMS$
PRINT "ENTER NUIMRER"

INPUT NUMS

REM SAVE ORIGINAL ENTRY

LET SNUM$ = NUM$

LET NUM = VAL(NUMS$)

LET NUM$ = STR$(NUM)

REM IF NUMBER IS IN COMPUTER

REM EXPONENTIAL RANGE, QUIT

Sec 1011

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

Significant Digits

IF (999999999 — ABS(NUM)) * (ABS(NUM) — .01) < O THEN 320
LETM =1

FORP=-2TOS8

IF ABS(NUM) < .1 * M THEN 270
LETM=M*10

NEXTP

LET NUM = NUM * 100 / M

LET EX$ = "0" + STR$(ABS(P))

IFP> —1THEN EX$ ~ "E+" + EX$: GOTO 310
LETEX$ ="E-" + EX$

LET NUM$ = STRS(NUM) + EX$

PRINT: PRINT

PRINT "HERE IS THE NUMBER ";SNUM$

PRINT "IN SCIENTIFIC NOTATION: ";NUM$
END

10.11 SIGNIFICANT DIGITS

Now that we can force any number into scientific notation the problem of printing a
number with the correct significant digits is not so difficult. We need only operate on the
base part of the number and not the exponent. We will first run the number through the
processor, which converts it to scientific notation. Then we will strip off the base part of
the number and round it to the correct number of significant digits. Minor problems of
the difference between positive and negative numbers and the padding of zeros
remain. We illustrate one solution to this problem in the following program.

100
110
120
130
140
150
155
160
165
170
180
190
195
200
210

REM —- SIGNIFICANT DIGITS 8-20-80

REM INPUT VARIABLES: NUMS$, SIGD

REM LOCAL VARIABLES: P, EX$

REM OUTPUT VARIABLES: NUM$, SNUMS$, SIGD
REM PLACE NUMBER IN SCIENTIFIC NOTATION
GOSUB 9500

PRINT

PRINT "NOW ENTER THE NUMBER OF SIGNIFICANT"
PRINT 'DIGITS

INPUT SIGD

REM SEPARATE BASE AND EXPONENT

LET NUM$ = MID$(NUMS$, 1,LEN(NUMS) —4)

LET EX$ = MID$(NUMS$, LEN(NUMS — 3,4)

REM REDUCE TO SIGNIFICANT DIGITS

LET NUM = VAL(NUMS$)

219

220 Formatting and Graphics

10.12

220 LET NUM = INT(NUM * 10 " (SIGD — 1) + .5) / 10" (SIGD — 1)
230 LET NUM$ = STRS(ABS(NUM))

240 REM ADD SIGNIFICANT ZEROES AS NEEDED

250 IF LEN(NUMS$) > SIGD + 1 THEN 310

260 IF SIGD = 1 THEN 310

270 IF NUM = INT(NUM) THEN LET NUM$ = NUM$ + "'

280 LET NUM$ = NUMS + 0"

290 IF LEN(NUMS) < SIGD + 1 THEN 280

300 REM CONCATENATE AND PRINT RESULTS

310 IF NUM < O THEN LET NUMS$ - "~" + NUM$
320 LET NUM$ = NUM$ + EX$
330 PRINT

340 PRINT 'THE INPUT NUMBER (';SNUMS$;") WRITTEN IN'
350 PRINT"SCIENTIFIC NOTATION WITH ";SIGD

360 PRINT'SIGNIFICANT DIGITS IS ';NUMS;"."

370 END

REAL TIME DISPLAYS5—
FOR PETS ONLY

The PET has an internal clock that can be used to evaluate equations in which the time
variable appears explicitly. The ability to evaluate gquantities such as speed and
position and to display and update their values in real (actual) time may be useful in
many applications

The internal clock can be set to zero by the statement:

LET Ti$ = "'000000"

From the instant this program statement is executed the clock runs using a basic
unit of time equal to 1/60th of a second. Tl is a variable in which the cumulative count
of 60th’s of seconds is kept. TI$ is a variable in which the cumulative count of seconds
is kept as a string variable. Both Tt and TI$ are set to zero by the instruction above.
Thus, when TI$ has the string value "000001", T has the numerical value of sixty

The internal clock is initialized to zero when the PET is turned on. it we wani io
know how long the computer has been turned on, we can enter the immediate
command PRINT TI$. Unless the clock has been reset under program control, the
string printed will indicate the number of seconds the computer has been on.

Consider the following problem. An object falling in the gravitational field of the
earth develops a downward velocity of V = 32t ft/sec where t is elapsed time in
seconds. Its downward displacement is given by Y = 16{"2 ft. These equations are

Ch. 10

Exercise Set 10.5

valid in the absence of air resistance. Let us develop a program that will print out and
update the velocity and position as the object falls. Consider the following program
fragment:

100
110
120
130
140
150
160
170
180
190
200
210

PRINT CHR$(147): REM CLEAR SCREEN
LET TI$ = "'00000"

PRINT 'TIME","VELOCITY",'DISPLACEMENT"
FOR1=1TO 1000

IF TI/60 <> INT(T1/60) THEN 200

LET T1 = INT(T1/60)

LETV=32*T1

LETD=16*T1*T1

PRINT ‘'SQQQ": REM CURSOR CONTROL SYMBOLS
PRINT T1,V,D

NEXT |

END

Enter this program and observe the output. You should see time, velocity, and
displacement updated each second for eighteen seconds.

EXERCISE SET 10.5

1.

Use the program on significant digits to output the results of the following
calculations:

(a)

Calculate P to three significant digits when P = n*R*T/V.

n=3.50

R =8.314

T =293

V =0.165

Calculate K to two significant digits when K = .5*m*v"2.
m = 1.67E—-27

v =25E7

Calculate r to two significant digits when r = (EQ*h"2)/(pi*m*e"2).

EO = 8.85E— 12
h = 6.62E—-34
pi = 3.14
m=9.1E-31
e = 1.6E—19

Develop a program that will output any number in scientific notation with only one
significant digit.

221

222

Formatting and Graphics

3. Develop a program that will output any number in scientific notation with two
significant digits.

Review

In this Chapter we have been concerned with methods of producing formatted and
graphic output. The following terms and syntax are highlighted:

PRINT IMAGE a string, including character information and formatted number
images The numbers are indicated symbolically while the character data appears
explicitly in the image. (Section 10.3)

TELETYPE GRAPHICS graphic output produced by combinations of conventional
symbols on a computer terminal. (Section 10.4)

LOW RESOLUTION GRAPHICS graphic output produced by addressing printing
positions or their subdivisions on the screen. (Section 10.7)

HIGH RESOLUTION GRAPHICS graphic output in which each screen dot is
addressable. (Section 10.8)

SINAIEICAMT DICITS digits retained in a numbaer because they indicate the actual
precision of the number. Computer generation of numbers often introduces digits which
are not significant. (Section 10.9)

REAL TIME DISPLAYS computer output that is updated in actual time to indicate
the correct value of some time-dependent variable or variables. (Section 10 12)

BaAsiC SYNTAX

PRINT TAB() a combination of a command and a function that moves the printing
position right on the current printing line. The argument of the function specifies the
number of right moves. Arguments can range from 1 to 255. (Section 10 2)

ApPPLE ONLY

GR signifies entry into low resolution graphics mode. (Section 10.7)

COLOR — (140 15) designates color of image in low resolution graphics mode
The COLOR statement is necessary even in black and white. (Section 10.7)

HLIN X1,X2 AT Y draws a horizontal line at vertical position Y extending from X1 to
X2 in the horizontal direction. Syntax works in GR mode only. (Section 10.7)

VLINY1,Y1ATX draws a horizontal line at horizontal position X extending from Y1
to Y2 in the vertical direction. Syntax works in GR mode only. (Section 10.7)

Ch. 10

Review

HTAB X moves the printing position X units from the left margin at the current
printing line. (Section 10.7)

VTAB Y moves the printing position Y units down from the top of the screen
(Section 10.7)

PLOT X,Y places a standard marker in position X,Y on the screen. Syntax works in
GR mode only. (Section 10.7)

HGR signifies entry into high resolution graphics mode. A four line text window is
available in this mode. (Section 10.8)

HGR2 signifies entry into high resolution graphics mode with expanded vertical
plotting positions (192) and no text window. (Section 10.8)

HCOLOR = # (1to 7) establishes color of image in high resolution graphics mode.
(Section 10.8)

HPLOT X,Y places a point in position X,Y on the screen Syntax works in HGR and
HGR2 modes. (Section 10 .8)

HPLOT X1,Y1 TO X2,Y2 draws aline from X1,Y1 to X2,Y2 Syntax works in HGR
and HGR2 modes. (Section 10 8)

TRS-80 OnNLY

SET (X,Y) places a standard marker in position X,Y on the screen. (Section 10.7)

PRINT @ X, (variable, expression, or string) prints the value or string beginning
in print position X (Section 10.7)

RESET (X,Y) changes status of standard marker at graphics position (X,Y). (Turns
a brick on if it is off, or off if it is on). (Section 10.7)

223

11

111

11.2

FILES

INTRODUCTION TO FILES

In programming examples presented so far, we have confined ourselves to entering
data from the keyboard or storing it within the program itself using DATA statements.
While the latter technique is surely superior to the former, whenever more than a few
data values are involved, this method is still clumsy when it comes to updating and
sharing files and it also consumes valuable computer memory that might otherwise be
available for additional program statements. This factor is particularly important when
one is using a microcomputer with a small memory increment.

BASIC syntax for file processing varies widely among computer systems.
However, certain standard procedures must be taken on all such systems. In this
chapter, we will first consider general concepts of file processing and, thereafter, take
specific examples using the Apple, the PET, and the TRS-80 microcomputers. When
we display BASIC syntax to accomplish file handling, we will use certain techniques that
we have found to be effective with these machines without necessarily exhausting all
possible methods of handling files.

FILES GENERALLY

Afile is a collection of records with some type of logical organization. Each record in a
file may contain one or more variables. Each record usually represents a specific case,
often a person, about which or whom information is collected. For example, if a file
contained information about the age, the sex and the residence of students, each
record would contain attributes or variables which pertain to an individual student We
can call this a logical record because all the variables on the record are logically

225

226

Files

related to each other; they pertain to the same person. It is also possible to have
information for the same case or person on two or more adjacent records. For
example, the Bureau of the Census collects such a large amount of information about
geographic areas that several large records are required to hold all the information. In
such a case, several physical records (a physical record is a record that is physically
separated from other physical records) are required to contain a single logical record,
that is, all the information that pertains to a single geographic area. We will also see
some examples in which it is desirable to deliberately choose separate physical
records for logically related information

The concept of a record may be more easily understood if we consider a record
to be the equivalent of one line of output on the screen or printer. More technically, a
physical record is a collection of characters (numbers, letters, and/or special symbols)
terminated by a carriage return. This is the definition for a physical record, which, in
most cases, is also a logical record. However, there are cases in which one logical
record is composed of more than one physical record and it is also possible for several
logical records to be contained in the same physical record. We will consider some
examples of the former, but not the latter in this chapter. Generally speaking, physical
records in the same file may be of varying lengths. The end of the record is detected by
the presence of a carriage return—ASCIl code 13. The Apple limits record size to 239
characters and the PET limits record size to 80 characters.

There are two basic file accessing methods sequential access and direct
access (sometimes called random access). Sequential access simply means that
records in a file must be accessed—that is, processed—in the order in which they
occur in the file. Thus, if we wish to read the record for the tenth student in the file, we
must first read and ignore the records for the first nine students. Similarly, if there are
200 records in a file, we cannot read the 200th record without first reading the 199
records that precede it in the file. In contrast, random or direct access files allow us to
read any record in a file directly without having to read those that precede it.

A useful analogy can be made between a sequential access file and a stack of
file cards Let us imagine that we have a stack of three by five file cards each containing
the name of a student and certain other pieces of information. If we were looking for
card number twenty, we would begin by counting each card as we proceed through the
deck until we arrived at card twenty and then presumably use the information on it A
more realistic task would be to periorm the same type of search beginning with the top
card and continuing until we found the card with the name of the student about which
we were seeking information. Social security numbers are also used for such
identification purposes. In this case, we compare the name or social security number
on each card with the name or social security number of the person whose card we are
seeking. We process a sequential access file in the same way—Dby looking at each
record beginning with the first until we find the record containing the desired information
or come to the end of the file. In the latter case, the file does not contain information
about the desired person

Ch. 11

Sec. 113

11.3

Sequential Disk Files

SEQUENTIAL DISK FILES

Let us now consider an example of a sequential disk file using the Apple microcomput-
er. Developing the student information example mentioned in Section 11.2, let us
suppose that we have a data set that looks like Table 11.1.

Table 11.1
Age, Sex, and Residence of Three Students

Student Age Sex State

Jones 21 M NY
Johnson 20 F NJ
Brown 18 F CT

This data set can be easily transformed into a series of DATA statements:

200 DATA JONES,21,M,NY
202 DATA JOHNSON,20,F,NJ
204 DATA BROWN,18,F,CT

(It should be noted parenthetically, that most versions of BASIC should process the
string values in the DATA statements correctly. The PET, the TRS-80, and the Apple
will do so. However, some versions of BASIC require that the string values be inclosed
within double quotation marks.)

If we add the following statements, we will have a short program that will read our
data and print it on the screen in tabular form.

100 REM---STORE 6-15-80
210 DATA *EOF*,0,* *

220 READ N$,A,SX$,ST$

320 IF N$ = "*EOF*' THEN 900

330 PRINT TAB(1) N$; TAB(10)A;TAB(20)SX$; TAB(30)ST$
340 GOTO 220

900 END

Run the program to verify that it works as promised.

, Now let us modify this program so that it writes a copy of the data on the disk
rather than on the screen. In addition to the actual write transactions with the disk file,
our program must instruct the computer to do four other things:

Open the file,
Name the file,
Specify the file to be a write only file, and

AW N -

Close the file after use.

227

228

Files

These four messages must be transmitted by the program to the Apple's disk
operating system, which is often called DOS for short. The vehicle whereby we send
these messages to the DOS is the ordinary PRINT statement with one special feature
added. The DOS inspects every print line. When it finds a line beginning with a special
marker (ASCIl code 4 that can be entered either as CHR$(4) or as CTRL/D), it treats
that line as a DOS instruction, intercepts the line, which is never printed, and performs
the specified instruction Thus, the PRINT statement with the CTRL/D on the front is
the medium through which we send messages {o DOS. The contents of these PRINT
statements are not printed Here is the final product:

100 REM---STORE 6-15-80
105 REM

110 D$ = CHR$(4)

115 PRINT D$'OPEN TESTDATA'
120 PRINT D$'WRITE TESTDATA'
195 REM

200 DATA JONES,21,M,NY

202 DATA JOHNSON,20,F,NJ
204 DATA BROWN,18,F,CT

300 REM

310 READ N$,A,SX$,ST$

330 PRINT N$

332 PRINT A

334 PRINT SX$

336 PRINT ST$

338 IF N$ ="*EOF* THEN 900
340 GOTO 310

900 PRINT D$'CLOSE"

Upon comparison, this program is very much like the first version with the
following exceptions

1 Statement 110 stores the character representation of ASCll code 4 in D$.

2 Statement 115 tells DOS to OPEN a file to be known as "TESTDATA" (If a
data file with the same name is already present on the disk, it will be used and its
conienis overwritien. i no such file exisis, BOS will create one.)

3 Statement 120 tells DOS that the program will write to the file. From the time
that statement 120 is executed until the file is closed, all PRINT statements will
cause information to be printed to the disk file rather than on the screen.

4 Statement 900 tells DOS to close all files currently open. Since TESTDATA
is the only file open, it will be closed when statement 900 is executed. If other files

Ch. 11

Sec. 11.3

Sequential Disk Files

were open and we wished to close TESTDATA only, the following modification
should be used:

900 PRINT D$'CLOSE TESTDATA'

One other important difference between this program and the first version
concerns the print statements (lines 330 to 336). When we were printing data on the
screen in the first program we used a single print statement with TAB instructions to
obtain the desired columnar format. This approach is not appropriate to a disk file.
Often it does not work as expected, but even if it does, a considerable amount of disk
space would be wasted. Instead, in the second program, we have substituted four
PRINT statements for the one previously used. Each PRINT statement writes one
variable to the data file. Thus, each record in the file contains a single variable followed
by a carriage return. Four physical records are required to make up one logical record.
While it is possible to write more than one variable with the same print statement,
computers vary in this regard and we recommend writing one variable per record which
should be expected to work in all cases.

Our program has produced a data set on the diskette that consists of sixteen
physical records—each ending with a carriage return Each group of four physical
records constitutes a logical record-—with all values pertaining to the same student.
Following you will find a symbolic representation of the data set. As you will note, the file
is no more than a collection of numbers—fifty-six numbers to be exact. Each number is
an ASCIl code that represents a numeric, alphabetic, or special character. (See
Appendix C for a listing of the ASCIl coding system.)

74179|78169|83 (13 50|49 (13|77 (1378|8913
J|O/NIE| S 2 1 M N|Y

74|79(72|78183|79|78|13 /5048 (13 |70 |13 |78 (74 |13
J/O/H|N/S/IO|N 2/ 0 F N| J

668279187178 (13 49|56 |13(|70 (13167 |84 |13
BIRIO/W|N 1, 8 F C|T

426979704213 /48|13 |42 (134213

We have represented the file two ways: as ASCIl numeric codes and as their
character translations. You will note that some of the boxes are empty. They
correspond to the carriage return code (ASCIl 13) that has no graphic representation.

229

230

Files

Recalling that physical records are defined as groups of symbols terminated by a
carriage return, it is easy to recognize each physical record. Note that we have
grouped physical records into logical records—each on a separate line. We have done
so for the convenience of the reader but hasten to point out that this arrangement is
unknown to our program and the computer. To the Apple, the file is a single list of ASCIH
codes, some of which are recognized as record separators—the carriage returns

Now let us address ourselves to the task of reading the same file and producing
on the screen the same table of information with which we began. Our program will be
quite similar to the STORE program except that it will read from the disk and print on
the screen in contrast to the STORE routine that did the opposite.

The program, called GET7, is displayed below. Note that statement 120 tells
DOS that the program will read the file rather than write to it. No doubt you will also note
that the program has only one INPUT statement in contrast to STORE (the program
that created the file) that had four PRINT statements. The INPUT statement calls for
values for each of four variables—and therefore will cause four separate records to be
read from the disk file before it is satisfied Statement 320 tests for the end of file
condition.

100 REM -- GET7 6-15-80

105 REM

110 LET D$ = CHR$(4)

115 PRINT D$'OPEN TESTDATA'

120 PRINT D$'READ TESTDATA'

310 INPUT N$,A,SX$,ST$

320 IF N$ = "*EOF* THEN 900

330 PRINT N$; TAB(10) A; TAB(20) SX$; TAB(30) ST$
340 GOTO 310

900 PRINT D$'CLOSE TESTDATA'

Sometimes, we must write programs to read data sets that do not have dummy
end of file markers When this is the case, we must resort to some other technique in
order to avoid an error message and a premature halt to our program. The Apple has
an error handiing feature that allows our programs to control error processing if we
wish to use it. If we place the following statement in our program, control will pass to
statement 900 if an error occurs:

125 ONERR GOTO 800

More precisely, if an error is encountered during the execution of any statement after
statement 125 is encountered, control will shift to statement 900. We can use such a
statement to prevent program interruption as a result of the end of data on the disk file.
Since it is our intention only to trap for one specific type of error, we must be able to
separate disk end of file errors from other errors. We can do so by testing a memory
location that contains an error code indicating which type of error has occurred. Apple
error codes and their explanations are listed in Table 11.2.

Ch. 11

Sec 11.3

Sequential Disk Files

Table 112
Apple Error Codes

Code Explanation

0 NEXT without FOR
4 disk is write protected

5 out of data on disk data file
6 file not found
7
8

wrong volume

170 error
9 disk full
10 file locked
11 bad file name or parameter
12 no buffers available (foo many files open)
13 file type mismatch (you are probabily trying to
read a program as data)
16 syntax
22 RETURN without GOSUB
42 out of data
53 illegal quantity
69 overflow
77 out of memory
90 undefined statement
107 bad subscript
120 redimensioned array

133 division by zero
163 type mismatch

176 string too long

191 formula too complex

224 undefined function

255 control/C interrupt attempted

The Apple uses memory location 222 to store its error code. The contents of this
location can be inspected by our program using the PEEK function which returns the
contents of a memory location as a number. Since we are looking for a particular error,
we test for its value. If PEEK (222) = 5 then our program has come to the end of data
on a disk file. By incorporating such a test in a program, it can detect the end of file
condition as illustrated in our next program.

Following is another version of the GET routine called GET8 which is the same
as GET7 except for the use of the Apple error handling technique to trap for the end of
file condition. Statement 900 closes the file as usual, but statement 910 checks to see if
the error was an end of file condition If it was, then control passes to statement 999:

231

232

Files

otherwise the block of statements 915-930 is executed. They create a simulated error
message indicating the error code and the line in which it occurred. Statement 930
rings the bell, or more precisely, causes the Apple to emit a bleep.

100 REM-~-~GET8 6-15-80

105 REM

110 LET D$ = CHRS$(4)

115 PRINT D$'OPEN TESTDATA"

120 PRINT D$'READ TESTDATA'

125 ONERR GOTO 900

310 INPUT N$,A,SX$,ST$

330 PRINT N$ TAB(10) A; TAB(20) SX$ TAB(30) ST$
340 GOTO 310

890 REM

900 PRINT D$'CLOSE TESTDATA'

910 IF PEEK (222) = 5 THEN 999

915 PRINT "***ERROR '; PEEK(222);" IN LINE '
920 PRINT PEEK (218) + PEEK (219)*256

930 PRINT CHR$(7)

85 END

A common programming application using files is one in which information is
entered from the keyboard for storage on disk. Here we will build a very simple payroll
file on disk using information collected from the keyboard This would be a relatively
simple application were it not for the fact that it is virtually impossible to carry out 170
transactions with the keyboard while a disk file is open.

The Apple DOS maintains a file pointer that indicates the location to which the
next character written to a sequential file will be stored. With one exception, we cannot
modify the value of that pointer. When a program opens a sequential file with an OPEN
command, the pointer is made to point to the beginning of the file. In contrast, when
such a file is opened with the APPEND command, the file pointer is made to point to
the position immediately following the location of the last character currently in the file.
Thus, the APPEND command allows us to add records to the end of an existing file

The BUILDFILE program, reproduced below, builds a simple payroll file. It does
so by asking the user to input an employee’s name (N$), hourly pay rate (R), and
number of hours worked (M) in a given weelk After these three values have been
obtained from the keyboard, the disk file is opened, each value is written to the disk as
a separate record, and the file closed Because the APPEND command cannot be
used to open a nonexistent file, the user is asked to indicate whether the file is new or
old. If the user responds ““Y”’, the OPEN command is used to open the file the first time
and the APPEND command is used thereafter. If the user responds that the file is not
new, it is opened with the APPEND command and records are added to the existing
file. Should a file already exist and the user nevertheless responds with ““Y”” indicating

Ch. 11

Sec. 11.3

Sequential Disk Files

that the file is new, it will be opened with the OPEN command and its existing contents

will be lost.

Note the use of the string variable F$ to hold the file name and A$ to contain
either the string “OPEN"’ or “APPEND”’ as appropriate.

100
101
102
103
104
105
110
115
120
125
126
127
130
135
140
145
150
1556
190
191
192
200
205
210
215
220
225
230
250
260
270
280
290
295
300
310
400
401

REM -~ BUILDFILE 11-22-81

REM

REM COLLECT INFORMATION

REM AT KEYBOARD AND

REM BUILD DISK FILE.

REM

D$ = CHR$(4)

ONERR GOTO 900

HOME

REM

REM==== GET FILE SPECIFICATIONS =————
REM

PRINT 'ENTER FILE NAME: ";

INPUTF$

PRINT'IS FILE NEW: '

INPUT RS

AS$ = "APPEND"

IF LEFT$(R$,1) = "Y' THEN A$ -~ "OPEN"
REM

REM========= MAINLOOP ===—-—=———_
REM

PRINT 'NAME: "

INPUT N$

IF N$ = "EOF" THEN END

PRINT "HOURLY RATE:

INPUTR

PRINT "HOURS WORKED:

INPUTH

PRINT D$;A$;F$

PRINT D$;"WRITE";F$

PRINT N$

PRINTR

PRINTH

A$ = "APPEND’

PRINT D$;'"CLOSE";F$

GOTO 200

REM

REM=====~ END OF MAINLOOP ===—=—==——

233

234

11.4

Files

402 REM

900 ERR = PEEK(222)

910 IF ERR = 6 THEN PRINT "*** FILE NOT FOUND"; CHR$(7) : END
920 PRINT "*** ERROR ";ERR; CHR$(7)

The use of the APPEND command makes it difficult if not impossible to use a
dummy trailer record as an end of file marker because such records would be written o
the file each time it is closed. As a resutt, there might easily be dozens of such records
in a file. Therefore, we advise you to use the ONERR GOTO statement to test for the
end of file condition as illustrated by the GETTEXT routine below. GETTEXT can be
used to read and display any text or data file

100 REM —- GETTEXT

105 D$ = CHR$(4)

110 PRINT "ENTER FILE NAME: "
115 INPUTF$

118 ONERR GOTO 200

120 PRINT D$;"OPEN';F$

125 PRINT D$;"READ";F$

130 INPUT S$

135 PRINT S$

140 GOTO 130

200 PRINT D$;"CLOSE’

210 ERR = PEEK(222)

220 IF ERR = 5 THEN PRINT "<EOF>": END
230 PRINT'ERROR ';ERR; CHR$(7)

Note how both programs use the ONERR GOTO statement and test the error code
generating a pseudo-error message if that code is not the expected one.

DIRECT ACCESS FILES

Direct access files, sometimes called random access files, allow one to select and
retrieve records from a file in any order without having to process those records which
precede them in the file, As already discussed, when we process seauential files, we
must process all records in the order in which they occur in the file. Thus, if we desire to
retrieve information from the twentieth record, we would have to reirieve and ignore the
contents of the preceding nineteen records. Direct access files allow us to retrieve
record twenty immediately, without processing the preceding records. In addition, we
may read and write records to a direct access file in any order. In contrast, writing a
record to a sequential access file in effect destroys all subsequent records in that file
Direct access files must be stored on disks—either the hard disks or the flexible,

Ch. 11

Sec. 114

Direct Access Files

floppy disks Our discussion here will be limited to direct access files on the Apple
although such files can also be processed by the PET and the TRS-80 when they have
disk drives attached.

The method of processing direct access files on the Apple is similar to the
method for processing sequential access files. Like other files, direct access files must
be opened before they can be processed Below is an open statement for a direct
access file:

100 PRINT D$'OPEN DATAFILE,L40"

It is similar to the open statement used for sequential files with the exception of the
', L40" at the end. This parameter indicates the length (that is, the maximum number of
characters), of records in the file. Thus, DATAFILE will have records with forty
characters each. If we wish to use a variable to indicate record length, the following
statement will accomplish the same thing:

100 L=40
110 PRINT D$'OPEN DATAFILE,L"L.

(As in previous examples, the variable D$ contains the character representation of
ASCli code 4) We must be careful to make a note of the length of the records in a file
because we must supply the length in every program that uses the file. The Apple DOS
does not know what the record length is and if we specify an incorrect length, our
program will produce erroneous and possibly disastrous resuits.

One additional caveat—our program should not attempt to read a record that
has not yet been written. While this is a limitation, it is easily circumvented as we soon
will see.

In order to illustrate the use of direct or random access files, we will create a
small file made up of forty records consisting of twenty characters each. Our intention
here is to store the names of United States Presidents in the order of their service in
office. Thus, George Washington will be stored in the first record and Abraham Lincoln
will be stored in the sixteenth record. We will write a program which will both store and
retrieve records from the file.

Let us decide that our program will have three modules: one called GET to
retrieve records; another called PUT to write records to the file; and a main routine that
will call PUT and GET as required and handle interaction with the user. Schematically,
our program looks something like this:

MAIN

GET PUT

235

236 Files

A program having this structure, first presented in algorithmic language and then in
BASIC follows. We will use the algorithmic specifications for subroutines already
presented in Chapter 9. GET and PUT are subroutines that read or write records
respectively. First, we introduce here a pseudocode OPEN statement that specifies the
type of information needed for direct access 1/0. Such a statement, like the one in the
GET routine, indicates both the file name and certain file attributes.

PSEUDOCODE RULE 15

The OPEN statement provides a facility for opening files as well as
expressing attributes for the opened file

open “DATAFILE" (1,DA,IN,recordsize=20,filesize=40)

Most of this information is easily understood on the basis of the foregoing
discussion.

open an algorithmic keyword.

“DATAFILE” the actual name of the file

1 a file identification number that is used in the GET and PUT
statements. While 1 is not used in Apple syniax, the unit number is
used on other microcomputers. It also provides for a method of
distinguishing files when more than one file is in use

DA indicates that the file is Direct Access. Use SA to indicate
Sequential Access

IN indicates that the file is to be opened for input. Use OUT for
output.

recordsize=20 indicates that each record in the file will have a
capacity of twenty bytes.

filesize=40 indicates the maximum number of records in the file.

This parameter is not used in BASIC but is included here to provide
documentation of an important file attribute.

The algorithmic expression of file characteristics is, admittedly, somewhat
arbitrary. You may choose a different mode of expression if you wish. Our advice is that
you use one method consistently. Doing so will give you an unambiguous guide for
program coding and debugging. You will note that the get and put statements include
file and record identifiers. The record identifier is required in direct access I/0O. Thus,
get 1:POINTER means '‘get from file one the record in the same relative position as the

Ch. 11

Sec. 114

Direct Access Files

value of POINTER." Thus, if POINTER has the value 9, record number 9 is retrieved. So

too with the put statement.
ALGORITHMIC LANGUAGE VERSION

MAIN:
declare string PRESIDENT$, CHOICE$
declare numeric POINTER
put (*'*** PRESIDENTS ***)
loop
put("SELECT: GET, PUT OR STOP (G/P/S)"")
get(CHOICES)
if(CHOICE$="S") break
PUT (""WHICH RECORD")
get(POINTER)
if(CHOICES = “P")
[put("ENTER NAME OF PRESIDENT "' ,POINTER)
get(PRESIDENTS$)
call PUT]
else
[cal GET
put (“PRESIDENT # ",POINTER," IS " PRESIDENT$)
J
end loop
end.

GET:

open “DATAFILE"” (1,DA,IN recordsize=20,filesize=40)
get 1:POINTER (PRESIDENT$)

close

return

end.

PUT:

open “DATAFILE" (1,DA,OUT recordsize=20,filesize=40)
put 1:POINTER (PRESIDENT$)

close

return

end.

BASIC VERSION

100 REM --- PRESIDENTS V1 8-28-80

101 REM

110 D$= CHR$(4)

115 HOME : HTAB(5)

120 PRINT "** PRESIDENTS kkk

237

238 Files Ch. 11

125 PRINT:PRINT

200 PRINT "SELECT: GET, PUT OR STOP (G/P/S)"%
205 INPUT CHOICES$

210 IF CHOICES$ = "S" THEN 300

215 PRINT "WHICH RECORD';

220 INPUT P

225 |F CHOICES$ <> "P"' THEN 250

230 PRINT 'ENTER NAME OF PRESIDENT P
235 INPUT PRESIDENTS

240 GOSUB 850

245 GOTO 260

250 GOSUB 900

255 PRINT'PRESIDENT " P " IS "PRESIDENTS
260 GOTO 200

300 END

900 REM——~——————- GET RECORD

905 PRINT D$'OPEN DATAFILE,L20"

910 PRINT D$'READ DATAFILE,R';P

915 INPUT PRESIDENTS$

920 PRINT D$'CLOSE"

825 RETURN

950 REM—————————~ PUT RECORD

955 PRINT D$'OPEN DATAFILE,L20"

960 PRINT D$'"WRITE DATAFILE,R';P

965 PRINT PRESIDENT$

970 PRINT D$'CLOSE'

975 RETURN

Because of the basic design of the program, it is possible that the user might
attempt to have the program retrieve and display a record that has not yet been
created and thus, produce an error message and premature program termination. The
best solution to this problem is to write a small program to initialize the file to be used by
the PRESIDENTS program. Such a program, which we will call SKELETON (because
it writes skeleton records) will write forty blank records into the direct access file
SKELETON is displayed below. It is quite simple. You will note that it processes the file
sequentially by using a loop index to select records. You will aiso note that 8$ has
been initialized to a string containing eight blanks, rather than the twenty you might
have expected given the record length. In fact, it does not matter how many blanks we
write in each record as long as the number does not exceed the record length. The
DOS pads out all records on the right with blanks to achieve the desired effect After
SKELETON is run, you can run PRESIDENTS without fear of errors caused by
attempting to read nonexistent records

Exercise Set 11.1

100 REM -- SKELETON 9-2-80
101 REM

110 D$=CHR$(4)

120 L =20

125 S$ =" "
150 PRINT D$'OPEN DATAFILE,L'L
200 FORI=1TO 40

210 PRINT D$'WRITE DATAFILE,R'l
220 PRINT S$

250 NEXT I

300 PRINT D$'CLOSE"

EXERCISE SET 11.1

1

Write a program that will open a sequential file called RANDOM, generate ten
random integers in the range from one to six, and store them in this file.

Write a program that generates 100 random four letter words and stores them
(four words to a record) in a sequential file called WORD See Chapter 8 for a
program that generates random words.

Write a program that will read and print to the screen every fourth record in a
direct access file called TEST. Assume this file has forty records (each of length
30) init. You are to read records 4, 8, 12, eic.

Identify any errors or omissions in the following program fragments. Assume the
programs are to RUN properly with the statements shown. Add or correct
statements to obtain a program that will execute properly

(a) 100 PRINT "OPEN FIRSTNAME"
110 PRINT "READ FIRSTNAME'
120 INPUT A
130 IF A = 999 THEN 160
140 PRINT A
150 GOTO 120
160 END

(b) 100 PRINT D$ "OPEN TSTFILE1,L"
110 PRINT D$ '"WRITE TSTFILE1,R1"
120 PRINT "RECORD 1"
130 PRINT D$ "CLOSE"
140 END

Describe in words what the following programs accomplish:
(a) 100 D$ = CHR$(4)

110 PRINT D$ "OPEN DEMO'

120 PRINT D$ "WRITE DEMO"

239

240

11.5

Files

130 FORI=1TO 10
140 X$ = "DEMO" + STRS$(I)
150 PRINT X$
160 NEXT I
170 PRINT D$ "CLOSE DEMO"
180 END
(b) 100 D$ = CHR$(4)
110 PRINT D$ "OPEN TRIAL, L40"
120 FORI =1T0O 20
130 PRINT D$ "READ TRIAL, R';
140 INPUT T$
150 PRINT T$
160 NEXT |
170 PRINT D$ "CLOSE"
180 END

6. Describe the makeup of the two files DEMO and TRIAL used in problem 5
above. Consider file type, number of records and record length in each file

PET FILES

In this section, we will treat sequential access files on the PET microcomputer using
cassette tapes. From a functional standpoint, creating and using sequential access
files with the PET is quite similar to processing such files using the Apple. The major
difference is in the syntax used to express the instructions. As with the Apple, a file
must be:

Opened,
Named (optional on the PET),
Declared either read or write, and

W N =

4 Closed after use

in order to read from, or write {o a file, a programmer must identify to the
computer the file and the device upon which it resides. This is true for microcomputers
like the PET and the Apple and for large scale machines like the IBM 370 series. With
the PET, we use the OPEN statement to accomplish this goal OPEN statements are
found in many versions of BASIC and in other languages as well, on computers large
and small, however the syntax we will demonstrate here is peculiar to the PET The
OPEN statement allows us to select a file identification number and link it with a
particular data set on a particular device and also to specify other attributes for the file.
A typical OPEN statement might be:

100 OPEN 1,1,0, 'DATA"

Ch 11

Sec. 11.5

PET Files

As noted earlier, before a file can be used, it must be opened. Therefore, an
OPEN statement must be placed in the program, logically, prior to the first attempt to
read or write to the file. Similarly, a file must be closed when a program is finished with
it. This is accomplished with a CLOSE statement which has the following syntax:

400 CLOSE 1

The CLOSE statement includes the number of the file being closed. Essentially,
the CLOSE statement revokes the previous OPEN statement, disassociating the
device and file from the file number specified in the OPEN statement thus making the
file undefined. For this reason, OPEN and CLOSE statements are used in pairs as
indicated below:

100 OPEN 1,1,0,'DATA"
Input transactions with file # 1

400 CLOSE 1

BASIC is fussy about the use of these two statements: we cannot open a file that is
currently open nor close a file that is currently closed. Attempts to do so will cause fatal
errors that will interrupt program execution.

Now let us consider the OPEN statement in greater detail

100 OPEN 1,1,0,'DATASETY"

L——» Optional file name.

If used, it will appear in the file header for the
data set The name may have from one to
128 charactersinit If a file name is not used,
your program will attempt to read the first
data set it finds on the cassette.

—————— Secondary address.

An optional parameter with a numeric value
from one to thirty-one. The meaning of these
values is device dependent, If omitted, the
default value of zero is assumed. The secon-
dary address is discussed below.

> Device number.

This indicates the device upon which the file
is located. The values are fixed and can be
found in Table 11.2.

~> File number.
This value is selected by the programmer to
identify the file in PRINT and INPUT state-

241

242 Files Ch. 11

ments. Any number in the range from 1 to
255 may be used.

Table 11.2
PET Devices
Number Device
0 Keyboard (default for input)
Cassette # 1

Cassette #2
Video screen (output default)

W N -

The third parameter in the OPEN statement, the zero in the following statement,
100 OPEN 1,1,0,'DATA"

is known to PET users as a secondary address It is used to specify certain file
attributes. A different set of values, and therefore, a different set of file attributes, apply
to each type of device. The attribute options for the PET cassette files can be found in
Table 11.3.

Table 113
File Attributes that Can Be Specified for the
Secondary Address for PET Cassette Tapes

Value Meaning
0 Read only file.
1 Write only file.
2 Write only file with end of tape
mark printed after end of file.

The default option—zero, or read only—is in effect if we decline to specify a
value for the secondary address. As you can tell from looking over the list, a tape file
cannot be simultaneously open for both read and write operations While at first glance
this may seem to be unnecessarily restrictive, it is, in fact, quite logical and can prevent
accidental disasters. Were we able to open a file to be read and then write a record to
that file, all the records beyond the point in the file at which the write occurred would be
lost.

If it is necessary for a program to read a file and then rewrite the same file, we
would accomplish the task by first opening the file as a read-only file, then reading all
the desired records from the file. Then, we would close the file, rewind the tape and

Sec. 11.56

PET Files

open the file again as a write-only file. PET BASIC does not support such statements as
RESTORE or RESET with relation to tape files. Atternpts to read from a write-only file
and write to a read-only file will produce fatal errors.

Combining the techniques discussed so far, we can use the following program
fragment to open a tape file and read and print its contents on the screen.

100 OPEN 1,1,0,'DATA"
120 INPUT #1,X$

130 PRINT X$

140 GOTO 120

150 CLOSE 1

Note the presence of the file [abel (# 1) in the INPUT statement. By writing
120 INPUT #1,...

we tell BASIC specifically which file we wish to read; namely, file # 1, that has been
defined already in the OPEN statement. When the file label, the “# 1", is omitted,
BASIC assumes the keyboard for input and the screen for output. Note the comma that
follows the file identification and precedes the variable list. Its absence will cause a
syntax error message to be printed

This program assumes that a file called ““DATA’’ already exists on the cassette
tape in tape drive one—the one that is mounted in the front panel of the older
machines The program fragment, however, ignores the very important matter of
detecting and handling the end of file condition, which we will discuss next.

Usually our programs read data with an INPUT or READ statement that is placed
within some type of loop that is repeated until no more records remain to be read. We
must also provide for a means to exit such a loop when the last record has been read.
Most computers will generate some type of error message if a program attempts to
read beyond the end of a file. The PET may even crash if a program attempts to do
so.* Because the PET is so sensitive to this problem, we must build into our program
some protection that will prevent the error from occurring.

If we know how many records are in a file, we could use a FOR-NEXT loop
containing an INPUT statement to read the appropriate number of records. However, it
is generally better to let the computer do the counting Two options remain: the first is
to write a trailer record containing dummy values at the end of the data set when it is
created, and the second option is to test for the end of file condition using the PET
status word.

*A computer is said to crash when its operating system (master controlling program) fails. When
the system crashes, the PET becomes inoperable. None of the keys have any effect on what
the machine is doing and the video display may either freeze or become erratic. The only
recourse is to reset the machine by turning it off and then on again. Of course, everything in the
computer's memory is lost

243

(SN
(SN
o

244

Files

Let us explore the second alternative first. The PET monitors all input transac-
tions with tape files and notes the status of these transactions in a variable known as
the status word. The official variable name for the status word is ST. We can test 8T
with IF . .. THEN statements and print its contents as well. However, the PET protects
itself from inadvertent modification of the status word by the user and issues a syntax
error message whenever a program attempts to modify the contents of 8T. For
example, a statement like this: 8T=21 will cause a syntax error message to be printed.
If input transactions occur without detectabie problems, the status word will have a
value of zero. Once the end of a file has been encountered, the status word will have
the value of sixty-four. Thus, we can add the following statement to our program
fragment and test for the end of file condition.

125 IF ST = 64 THEN 150

It is important to note that the PET uses the same memory location (ST) to record the
status of transactions for all files. Therefore, 8T must be tested immediately after a
transaction occurs with the particular file in which we are interested. It is a good rule to
make the status word test in the statement immediately following the INPUT
statement.

The first option and more general approach to this problem is to write a dummy
trailer record at the end of the data file when it is created, and then, make all programs
reading the file test for the trailer record. Following you will find a simple program that
accomplishes this task. It assumes that the trailer record *EOF’’ is found at the end of
the data set.

100 REM--——- GET 12-26-79
120 OPEN 1,1,0,'DATA’

130 INPUT # 1, S$

140 IF §$ = "EOF" THEN 200

150 PRINT S$

160 GOTO 130

200 CLOSE 1
205 END
WHAT TO DO IF THE PET CRASHES

We include this section to deal with a peculiar file processing problem which is common
to early models of the 8K PET. If you do not have such a machine you can skip this
section. While the software problem has been corrected in more recent machines, we
include this section because there are thousands of such machines in existence and
we hope that this section will help owners and users of such machines process files
more easily.

Ch. 11

Sec 116

What to do if the PET Crashes

Because of a software error in the older PETs, the computer often crashes while
reading data files from tapes. This is a source of great frustration that causes many
PET users to give up attempting to store data sets on tape. The system crashes occur
because the PET fails to find one or more blocks of data on the tape; therefore, the
PET reads past the end of file mark and crashes. While this problem manifests itself
when a program is reading a data file from tape, the problem originates when the data
file is being created.

Those readers who are only interested in the solution of this problem may wish to
skip this paragraph, which gives a mildly technical explanation of the problem. When
writing tape files, the PET does not actually read or write individual records Rather, it
accumulates records in a buffer, or temporary storage area, until the buffer is full, and
then transmits the entire contents of the buffer to the tape file. The contents of the
buffer constitute a single block of data. The PET writes not records, but blocks of
records to the tape. Blocks have 192 characters of data (that is, the length of the buffer
is 192 characters). One of these characters is used to identify the type of block being
written and the remaining 191 characters are actually data. Every data set on tape
consists of a certain number of blocks of data. The first block is called a file header
block, which identifies the type of file including the data set name if one has been
specified in the OPEN statement in the program that created the file This header block
does not contain any of the data our program writes The last block in each file is a
trailer block that contains an end of file mark. All of the data written by our program will
be found in blocks between the header and trailer blocks. All blocks are separated on
tape by a blank space that is called an inter-record gap(IRG). All the special problems
in reading data files with the PET are attributable to the fact that the PET sometimes
does not make the inter-record gap long enough to assure the detection of the
beginning of the following data block. As a result, programs reading data sets
sometimes miss one or more data blocks, which leads to a system crash. Knowing the
cause allows us to solve the problem by merely lengthening the inter-record gaps. We
can do this by telling the PET to turn on its cassette motor for a while after it writes each
block of data. A small subroutine to produce this result should be called after each
PRINT statement which, writes to the tape file being created

The subroutine below solves the PET file problem by putting more space
between blocks of data on the tape as the data set is being created. To accomplish
this goal, we need to know when the PET writes a block of data to the tape. This can be
determined by counting the characters being printed to the output tape file. In order to
facilitate the counting of characters being printed to the tape file, we must translate all
information to be printed into strings using the STR$ function. The string’s length can
then be determined using the LEN function

700 REM~---CASSETTE DRIVE ROUTINE
710 CH = CH + LEN(X$)-+1

720 IF CH < 192 THEN RETURN

730 POKE 59411,53

245

246

Files

740 FOR JJ = 1 TO 100 : NEXT JJ
750 POKE 59411,61

760 CH=CH-191

770 RETURN

Below is a small main program that causes the PET to generate fifty random
numbers and then copy them to a tape file. The main program calls the cassette drive
routine that starts and stops the cassette motor when necessary to produce the longer
inter-record gaps needed to assure that the PET will read each data block in the file

100 REM~-PUT 12-26-79
105 POKE 243,122 : POKE 244,2
110 OPEN 1,1,2,'DATA"

120 CH=0

200 FORI=1TO 50

210 X$ = STRE(RBND(1)

220 PRINT #1, X$

230 GOSUB 700

240 NEXTI

250 X$ ="EOF"

255 PRINT #1, X$

260 GOSUB 700

270 CLOSE 1

280 END

Let us examine each statement in the main program first. Statement 100 is a
REM statement that identifies the program for the benefit of the humans who use it
Statement 105 POKESs two values into memory to be sure that the PET knows where
the cassette buffer begins in memory. (This is a precaution to eliminate another cause
of system crashes) Statement 110 tells the PET to open a file for output on tape drive
1, that the file will be referred to as file # 1, and indicates that the file will be named
“pDATA’. Statement 120 initializes the variable CH at zero. This variable will be used to
keep track of the number of characters in the PET’s tape buffer. Statement 200 begins
a FOR-NEXT loop that will be executed fifty times Statement 210 causes the PET to
generate a random number that is immediately franslated into a string and stored in X$.
Statement 220 causes the value of X$ to be added to the buffer for cassette drive one.
The loop ends with
Once the loop has been executed fifty times, control passes to statement 250 that
gives X$ the value ““EOF”’ to be used as an end of file marker You can choose any
such flag value you wish as long as it will not be confused with real data * Statement
255 causes the trailer value to be printed to the tape buffer. The cassette drive routine
is called a final time, the file is closed and the program ends.

a call to the cassette drive routine followed by the MEXT statement

*We treat the use of trailer values above beginning in Section 4 6

Ch. 11

Sec. 116

What to do if the PET Crashes

The cassette drive routine, which is intended for general use in any program,
begins with incrementing the variable CH by the number of characters in the record just
printed to the tape buffer plus one. The one is for the carriage return character that is
also printed to the buffer. If the buffer is not yet full, statement 720 returns control to the
main program If the buffer is full, meaning that a block of data has just been written on
the tape, control continues with statement 730, which turns on the drive motor by
poking a value into the proper memory cell. Statement 740 contains a loop that merely
stalls the program for about a sixth of a second which causes the PET to continue to
write a blank inter-record gap onto the tape. Statement 750 turns off the tape drive
motor. Statement 760 deducts 191 from the count of characters currently in the
buffer—the 191 characters just transferred to tape. Statement 770 returns control to
the main program *

A second version of the GET program is listed below. It is essentially the same as
the earlier version with the addition of a status word test after each input statement. If
the status word is found to have a value other than zero, some type of error has
occurred and control shifts to statement 200, which begins a loop to print as
characters the current contents of the tape buffer It should be noted that nonprinting
characters seem to be blanks. You may wish to remove the reference to the CHR$
function in statement 220 so that the program will print the ASCI codes that are actually
stored in the buffer The type of approach represented by this program is
recommended whenever you have problems reading a data file. It should prevent
system crashes and help you determine the nature of the problem

100 REM---GET V2 12-26-79
110 C=0

120 OPEN 1,1,0,'DATA"

140 INPUT #1, X$

145 IF ST <> 0 THEN 200

150 IF X$ = "EOF' THEN 250

160 C=C +1

170 PRINT C,X$

180 GOTO 140

200 PRINT ‘STATUS CODE IS ";ST
210 FOR!=634TO 825

220 PRINT CHRS$(PEEK(I));

*The problem treated here has been corrected in newer machines. Our treatment here has been
assisted by an article “Personal Electronic Transactions”, in Creative Computing (April 1979,
pages 28-32) by Gregory Yob and a brief mention in the Commodore PET Users Club
Newsletter (Volume |, issue 3, page 17). Mr. Yob writes a regular column in Creative Computing
concerning the PET Similar articles appear monthly on the Apple and the TRS-80 Such
articles, and similar ones in other computing magazines are a valuable source of information for
owners and users of microcomputers

247

248 Files
230 NEXTI
250 PRINT C;'RECORDS READ FROM TAPE"
11.7 PET FILE APPLICATIONS

In Section 11.3 we presented a program called STORE, that created a sequential file
containing student demographic information and a second program called GET7, that
retrieved the file and displayed the information in tabular form on the screen. Here we
present without further explanation the PET versions of these two programs. They use
the error handling techniques we recommend for PET tape data files

100 REM---PETSTORE 9-9-80
101 REM

105 POKE 243,122 : POKE 244,2
110 OPEN 1,1,1, 'TESTDATA'
115 CH=0

200 DATA JONES,21,M,NY
202 DATA JORNSON,20,F,NJd
204 DATA BROWN, 18,F.CT
210 DATA EOF,0,*,*

300 REM

310 READ N$, A, SX$, ST$

312 X$ = N$

314 PRINT #1,X$

316 GOSUB 700

318 X$ = STR$ (A)

320 PRINT #1, X$

322 GOSUB 700

324 X$ = SX$

326 PRINT X$

328 GOSUB 700

2o v oTe

VAV AN S R R

332 PRINT #1, X$

334 GOSUB 700

338 IF N$ = "EOF* THEN 900

340 GOTO 310

699 REM

700 REM-—--CASSETTE DRIVE ROUTINE
701 REM

710 CH = CH + LEN(X$)+ 1

Ch 11

Sec. 11.8

720
730
740
750
760
770
800
900
999

100
101
115
300
310
320
330
340
350
900
999

TRS-80 Tape File Applications

IF CH < 192 THEN RETURN
POKE 59411,53

FOR JJ=1TO 100 : NEXT JJ
POKE 59411,61

CH =CH — 191

RETURN

REM

CLOSE 1

END

REM~--PETGET7 9-9-80
REM

OPEN 1,1,0, "TESTDATA'
REM

INPUT #1, N$,A,SX$,ST$

IF N$ = "*EOF *' THEN 900
PRINT N$; TAB(10) A; TAB(20) SX$; TAB(39) ST$
GOTO 310

REM

CLOSE 1

END

11.8 TRS5-80 TAPE FILE APPLICATIONS

Most of what we have said on files generally, and about sequential files in particular,
also applies to the TRS-80. Following, we present two simple programs that process
TRS-80 tape files. The first, called TRSSTORE (which should probably be called Radio
Shack) writes a series of ten values to the tape file The second program, TRSRES-
TORE, reads from tape and displays those values

100
110
120
130

100
110
120
130
140

REM —-- TRSSTORE
FORI=1T0 10

PRINT # I
NEXTI

REM -~ TRSRESTORE
FORI=1TO 10
INPUT # X
PRINT X
NEXT I

249

250 Files Ch 11

Notice that neither a unit number nor a comma is required after the # symbol.
Furthermore, no open or close statements are used. Care should be taken to make
sure that the TRS-80 does not attempt to read beyond the end of file. Such an error
would require you to use the reset key to regain control of the machine. Here, we use
the loop to make sure that only ten records are read. A trailer value, as demonstratedin
Section 11.6, is an even better solution

While the TRS-80 is reading a file, two stars appear in the upper lefthand corner
of the screen The appearance of the left star indicates that a file has been
encountered. The right star blinks to indicate that a record has been read success-
fully.

EXERCISE SET 11.2

1 Write a program that will generate 100 random integers in the range of from one
to six and store them on tape. Use the value 999 as an end of file marker

2. Interpret the following statements relating to PET files
(a) OPEN 2,1,0,'TEST"
(b) OPEN 1,'NAME’
(c) OPEN 1,2,1,'TRIAL
(d) OPEN 2,1,2
3 Repeat problem 2 in Exercise Set 11.1 on the PET

Review
New terminology and BASIC syntax introduced in this Chapter are reviewed below.
FILE a collection of records with some type of logical organization. (Section 11.1)

LOGICAL RECORD a record in which all the variables are logically related in that
they pertain to the same person or entity. (Section 11 2)

PHYSICAL RECORD arecord thatis physically separated from other records. The
physical separation is a carriage return (Section 11.2)

SFQUENTIAL ACCESS a method of file access in which each record must be
accessed in the order in which it occurs in the file. (Section 11 2)

DIRECT (RANDOM) ACCESS a method of file access that allows direct reading of
a specific record in a file. (Section 11 2)

DOS an abbreviation for disk operating system. (Section 11 3)

Review

Basic SYNTAX-APPLE ONLY

PRINT CHR$(4) “‘OPEN FILENAME’’ a BASIC statement that opens (or creates)
a sequential file named FILENAME. (Section 11 3)

PRINT CHR$(4) “WRITE FILENAME”’ a BASIC statement that declares filename
as a write-only file. From the time this statement is executed until the file is closed, all
PRINT statements will be written to FILENAME rather than to the screen. {Section
11.3)

PRINT CHR$(4) “READ FILENAME’’ a BASIC statement that declares filename
as a read-only file. From the time this statement is executed until the file is closed, all
INPUT statements will obtain values from FILENAME rather than from the keyboard.
(Section 11.3)

PRINT CHR$(4) “‘CLOSE FILENAME"” a BASIC statement that closes file FILE-
NAME (Section 11.3)

PRINT CHR$(4) “OPEN FILENAME,L#” a BASIC statement that opens a direct
access file in which each record has a length given by #. (Section 11.4)

PRINT CHR$(4) “READ FILENAME,R#’’ a BASIC statement that directs that
record # will be read from direct access file FILENAME. (Section 11.4)

PRINT CHR$(4) ‘“WRITE FILENAME,R#’’ a BASIC statement that directs that a
new record # will be written to direct access file FILENAME. (Section 11 4)

ONERR GOTO # BASIC keywords that send control to statement # upon
detection of an error condition. (Section 11.3)

BaAsic SYNTAX-PET ONLY

OPEN #,#,#, filename” aBASIC statement that opens a cassette tape file. The
three numbers determine file number, device number, and secondary address in that
order. (Section 11.5)

CLOSE# a BASIC keyword that closes the file whose number follows the symbol
Example: 200 CLOSE#2 (Section 11.5)

PRINT# a keyword that directs writing to the file whose number follows Example
100 PRINT#2,A$. (Section 115)

INPUT# a keyword that causes the next record to be retrieved from the file
identified by the number follows the *“# '’ symbol and appropriate values to be storedin
memory. Example: 100 INPUT # 1,A$. (Section 11.5)

251

12

121

MODELS AND
SIMULATIONS

INTRODUCTION TO MODELS AND
SIMULATIONS

We will use the term model to indicate a mathematical representation of a real-world
system or problem. The use of the computer allows us to develop models that can
represent the behavior of rather complex systems Modeling can be thought of as a
cyclic process in which one begins by formulating a real-world problem into precise
mathematical language. We then allow the model to operate on input data and
compare the output, which is interpreted back into real-world variables, with known
results. If the agreement is poor, the model may be changed and the cycle repeated.

It is sometimes difficult to distinguish problems of modeling from those of
simulation. The difference we will stress is that modeling focuses on the activities
associated with the development of the model and verification of its validity. Modeling
depends upon a comparison of model predictions with known results. Simulation uses
the modet to deal with problems that cannot be performed due to constraints of time,
feasibility, or complexity Obviously, some decisions about models have to be made
before a simulation can begin.

Webster's dictionary gives one definition of simulation as *‘the imitative represen-
tation of the functioning of one system . by means of the functioning of another,” for
example, a computer simulation of an industrial process.* The validity of a simulation
depends upon how closely the device is able to replicate the essentials of the system
represented. For example, a computer does an excellent job of tossing coins. In a few
seconds it can perform statistical experiments involving coin tosses that would take

*Webster's New Collegiate Dictionary, (Springfield: G & C Merriam Co , 1979) p. 1074

253

254

12.2

Models and Simulations

many hours if done by hand. However, the usual purpose of simulation is to conduct
more complex operations that result in predictions about the future behavior of a
system. Simulation is also used to conduct experiments that are not feasible in the
laboratory because of hazards which they might impose.

We begin the chapter with a consideration of two models that are particularly
suitable to computer solution. Both models involve matrix manipulations, which are
quite tedious if done by hand

LEONTIEF MODEL OF AN ECONOMY

We consider a model that utilizes arrays to develop the gross production rate of
various commodities given the internal consumption of these commodities and the
amount that is required for export. This model is called the Leontief model Discussion
of this model can be found in several texts on finite mathematics *

The Leontief model involves a so-called technological matrix for an economy.
Suppose we are dealing with five basic commodities—beef, grain, fertilizer, fuel, and
transportation. The technological matrix might look like this:

TRANSPOR-
BEEF GRAIN FERTILIZER FUEL TATION
00 025 0.1 02 0.25 BEEF
00 00 03 0.1 01 GRAIN
T=| 02 0.0 00 01 0.1 FERTILIZER
0.2 0.1 0.0 0.1 02 FUEL
01 0.0 0.0 0.2 00 TRANSPORTATION

The interpretation of the element in the beef row and grain column is that it
requires 25 units of grain to produce one unit of beef. Note that it also takes .1 unit of
fertilizer, .2 units of fuel, and .25 units of transportation. Other rows have similar
interpretations.

Next, define the array £ to be the net amount of each commodity to be
exporied

Lei £ ={2000 500

sTa¥aTal my
200U U

O

That is, we want to export beef, grain, and fuel but not fertilizer or transportation
To find the gross production required we must complete the following steps:

*See for example: Laurence C Hoffman and Michael Orkin, Mathematics with Applications
(New York: McGraw-Hill, 1979) p.55
William J. Adams, Fundamentals of Mathematics for Business, Social, and Life Sciences.
(Englewood Clifts. Prentice-Hall, Inc., 1979) pp 154-156

Ch. 12

Sec 122

Leontief Model of an Economy

Step 1 Subftract T from the identity matrix of the same size, as in the example
below

00 025 01 02 025
00 00 03 01 01
02 062 00 01 01
02 01 00 01 02
01t 00 00 02 00

OO OO =

e NeNetel

OO - OO

O+ 000

—~—cooco
!

Step 2 Take the inverse of the result obtained in Step 1.

Step 3 Multiply E by the result in Step 2 to obtain a matrix G that represents
the gross production of each quantity

Consider the following main program:

100 REM~-~LEONTIEF MODEL -12/15/80

110 REM INPUT VARIABLES: B(l,J) — TECH. MATRIX
A(1,J) — EXPORT MATRIX

115 REM LOCAL VARIABLES: A(l,I) — IDENTITY MATRIX

120 REM OUTPUT VARIABLES: C(1,J)

130 REM--—~LOAD T AND THE IDENTITY MATRIX

140 DIiM A(5,5),B(5,5),C(5,5)

150 FORI=1TO5

160 FORJ=1T0O5

170 IF 1 = J THEN A(l,J) = 1: GOTO 190

180 A(l,J)=0

190 READ B(l,J)

200 NEXT J

210 NEXTI

220 REM~-—-CALL SUBTRACTION SUBROUTINE

230 M=5:N=5

240 GOSUB 8800

250 REM~---RENAME CAS A

260 FORI=1TO5

270 FORJ=1TOS5

280 A(l,J) = C(1,9)

290 NEXT J

300 NEXTI

310 REM--—CALL INVERSION SUBROUTINE

320 GOSUB 8400

330 REM--—-RENAME C ASB

340 FORI=1TO5

350 FORJ=1T05

360 B(l,J) = C(1,J)

255

256 Models and

370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
8§70

Note t

Simulations Ch. 12

NEXT J

NEXT |

REM~-~-LOAD MATRIX A - NET PRODUCTION
FOR!I = 1TO 5: READ A(1,l): NEXT I
REM~-—-~-CALL MULTIPLICATION SUBROUTINE
M=1:N=5:L=5

GOSURB 8700

REM~-~~PRINT GROSS PRODUCTION MATRIX
PRINT "GROSS PRODUCTION"

PRINT

PRINT "BEEF", C(1,1)

PRINT "GRAIN', C(1,2)

PRINT "FERTILIZER", C(1,3)

PRINT "FUEL", C(1,4)

PRINT "TRANSPORT.", C(1,5)

REM---DATA SET

DATA 0,.25,.1,.2,.25,0,0,.3,.1,.1,.2,0,0,.1,.1
DATA .2,.1,0,.1,.2,.1,0,0,.2,0

DATA 2000,500,0,2000,0

REM~-~~END MAIN PROGRAM

GOTO 9999

hat the subroutines are not shown here. They may be found in the Library

of Subroutines (Appendix B) The two changes in array names above are made to
accommodate the names used in the subroutines. If this program were to be used
regularly, one would probably change the subroutines to avoid these extra steps

A run of this program shows the following:

OPTION 1 = ADDITION (A + B)
OPTION 2 = SUBTRACTION (A — B)
ENTER THE OPTION NUMBER? 2

GROSS PRODUCTION
BEEF 3038.25
GRAIN 1613.96

FERTILIZER 788.012

FUEL

3543.95

TRANSPORT. 1708.55

The type of model used above is called predictive It allows us to predict what
we must do to satisfy a prescribed set of conditions (export so much of each

commodity)

.t is also deferministic in that it specifies the exact quantity of each

Sec. 12.3

12.3

Model of a Pasture Ecosystern

commodity needed in gross production. In Section 12.3 we will consider a model that is
predictive but not deterministic

MODEL OF A PASTURE ECOSYSTEM

This model traces the movement of phosphorus through a pasture ecosystem
consisting of soil, grass, and cattle. In this model we again use matrices to describe
information about the system under investigation The model is based on certain
statements about transition probabilities between parts of the ecosystem. Thus,
although the model will provide predictions, those predictions will be probabilistic in
nature. Consider the following matrix

SOIL GRASS CATTLE OUTSIDE

SOIL 0.6 03 0.0 01
GRASS 0.1 0.4 05 0.0
CATTLE 075 0.0 0.2 0.05
OUTSIDE | 00 00 0.0 10

To interpret this matrix, the first row represents the probabilities that phosphorus
in the soil will move to each of the parts of the system, to include leaving the system, in
one unit of time. Suppose the time unit is one day Then after a day, a phosphorus
molecule in the soil has a probability of .6 (60% chance) of staying there, a probability
of .3 of going into the grass, and a probability of .1 of leaving the ecosystem. The
probability of it moving to the cattle directly from the soil is zero Note that each row
total is one. Why must this condition be satisfied?

We might wish to know the following concerning this system-

1 The probability associated with a certain transition of the phosphorus after

two or more time intervals (days in this case)

2 The number of time intervals the phosphorus stays in each part of the
ecosystem before it leaves, given its starting location.

The answers to these questions are available by manipulating all or parts of the
array above, Consider the first question

Successive powers of the matrix give the transition probabilities for two, three,
four and so on, time intervals. We can write a simple main program that will invoke the
matrix multiplication routine to solve this problem.

100 REM---ECOSYSTEM TRANSITIONS-1/21/81

110 REM INPUT VARIABLES: A(1,J)-TRANSITION MATRIX
115 REM LOCAL VARIABLES: B(1,J)-POWER MATRIX
120 REM OUTPUT VARIABLES: C(I,J)-POWER MATRIX

257

258 Models and Simulations Ch.

Arun

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

REM---REQUEST INPUT

PRINT "FOR HOW MANY UNITS OF TIME WILL YOU"
PRINT "RUN THE MODEL %

INPUT N

REM---LOAD A AND B

FORI=1TO4

FORJ=1T04

READ A(l,J)

B(L,J) = A(LJ)

NEXT J

NEXT I

REM~-~CALL MATRIX MULTIPLICATION SUBROUTINE
FORI=2TON

GOSUB 8700

PRINT "TRANSITION PROBABILITIES AFTER !

PRINT "UNITS OF TIME."

PRINT

FORJ=1T04

FORK=1T04

PRINT TAB(7 "K)INT(C(i,d)* 1074+ .5}/
B(J,K) = C(J,K)

NEXTK

PRINT

NEXT J

PRINT

NEXT |

REM--~DATA SET

DATA .6,.3,0,.1,.1,.4,.5,0,.75,.0,.2,.05,0,0,0, 1
GOTO 9999

AN asal:]
1 -

of this program for N = 3 is shown below

FOR HOW MANY UNITS OF TIME WILL YOU
RUN THE MODEL ?3

TRANSITION PROBABILITIES AFTE

o

Z

UNITS OF TIME
.39 3 .15 .16
475 .19 .3 .035
.6 .225 .04 .135

o o o 1

12

Sec. 12.3 Model of a Pasture Ecosystem 259

TRANSITION PROBABILITIES AFTER 3
UNITS OF TIME

.3765 .237 .18 .2065
529 .2185 .1565 .0975
4125 .27 .12056 .197
o o o 1

As an example of how these matrices are read we would say that a phosphorus
molecule that originates in the cattle will have a 19.7% chance of being out of the
ecosystem in three days. You should note the behavior of the probabilities in the last
column in the matrices above

To answer the second question, we need to rearrange the matrix a bit First we
separate all states of the system that are absorbing. An absorbing state is easily
recognized as one from which the molecule cannot escape. Each absorbing state has
a single entry in its row in which the number one appears. In this problem outside is an
absorbing state Rearrange the matrix to place absorbing state(s) in the upper left
corner. In our problem we would have:

OUTSIDE SOl GRASS CATTLE

OUTSDE | 10 00 00 00
SOIL 01 06 03 0.0
GRASS 0.0 0.1 0.4 05
CATTLE 005 075 00 02

We now separate the original matrix into four parts:

ABSORBING NONABSORBING
ABSORBING 1.0 0.0 0.0 0.0
0.1 06 03 0.0
NONABSORBING 0.0 0.1 04 05
005 0.75 0.0 0.2

The lower right three by three matrix has special significance. If we give this
matrix the same treatment given the technological matrix in the last section, (subtract it
from the identity matrix and then find the inverse of the result) we will arrive at the
following three by three array.

8.64865 4 32433 2.7027
8.1982 5.76577 3.60361
8.10811 4.05406 378379

The row sums for this array represent the answers to question 2. That is, the
sums

260

Models and Simulations Ch. 12

8.64865 + 4.32433 + 27027 15.6 (SOIL ROW)
8.1982 + 5.76577 + 3.60361 = 17.6 (GRASS ROW)
8.10811 + 4.05406 + 3.78379 = 16.0 (CATTLE ROW)

i

represent days in the system before leaving. If the phosphorus started in the soil, it will
take 15.6 days (on the average) to leave the ecosystem.

We have given no justification for the matrix manipulations above. We would
suggest reference to a text on discrete mathematics for the reader who is interested in
pursuing this further. Roberts’ text deals with several matrix problems including the one
above *

EXERCISE SET 12.1

1. A food web can be modeled with a matrix. Consider the predator-prey
relationships shown below.

Titmice Spiders

Weasles\ /erbs

Mice

Model this diagram with a square matrix in which each species is represented on
both rows and columns. A number one is placed in a predator row and prey
column if it preys on the species in that column Your matrix should look like
this:

Weasle
Titmice
Mice

OO D00 O —
OO DO O - N
OO0 O 00— W
OO0 OO0 =0 b
OO = = O O,

p)
2.
3
D
2
O oA W =

(a) Form the second power of this matrix. You should find a matrix which
identifies all the paths of length two between predator and prey

*Fred S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and
Environmental Problems. (Englewood Cliffs. Prentice-Hall, Inc., 1976) pp.263-270.

Sec. 124

12.4

Okun's Law Simulation

(b) Form the third, fourth and fifth powers of this matrix. What interpretation can
you give to each?

2 Develop a program to take a general matrix and separate out the nonabsorbing
states as explained in the pasture ecosystem problem in Section 12.3. That is,
produce a smaller matrix in which the rows and columns containing the number
one (an absorbing state) are removed

3. Consider the following transition matrix.

State 1 2 3 4

1104 0.2 02 02
2 1056 00 05 0.0
3 1025 0.25 0.4 0.1
4 100 00 0.0 1.0

Use the program above(ecosystem transitions) to predict the following
(a) The probability of transition from state 3 to 2 in three units of time.
(b) The probability of transition from state 1 to state 4 in two units of time.
4, Matrix models are frequently used to describe communication networks. A matrix
of ones and zeros is formed in which a one is placed in each row and column of

communicating states. In the model below states 1, 2, and 3 communicate
directly and states 4 and 2 communicate directly

State
1

OO = —+ W
OO -~ 0O N

1 2
0 1
2 1 0
3 1 1
4 0 1

Write a program that will form powers of this matrix. Examine the second and
third powers of this matrix and interpret their meaning.

5 The row totals in any transition matrix such as that in problem 3 must total to one.
Write a program that will read a general transition matrix from data lines and
check that row totals meet this condition. The program should identify the
location of any errors.

OKUN’S LAW SIMULATION

Simulation generally involves two processes with which the computer can help us One
process is the generation of sample input data. The second process is model testing
using parameter variation and control. The capability of the computer to perform rapid

261

262

Models and Simulations

calculations allows us to run numerous tests on a model making changes in one or
more parameters, which will affect the outcome In this section we develop a simulation
of unemployment rates based on a model in which gross national product is a
parameter.

Unemployment and approaches to its reduction were major concerns in the 1976
presidential campaign. As a candidate, Jimmy Carter set as a goal the reduction of
unemployment from 7.9 percent in October of 1976 to 3.0 percent by the end of what
he hoped would be his first term in office. This goal was also found in the
Humphrey-Hawkins Bill, which was debated in Congress in 1976 but not passed. Soon
after entering office, Mr Carter modified his goal slightly and set as his target an
unemployment rate of 475 percent by the start of 1981. By June of 1978, the
unemployment rate had declined to 5.7 percent. While the goal of reducing the
unemployment rate is not controversial, achieving results is a difficult, complex, and
slow process

Professor Arthur Okun, an economist and former presidential advisor, has
demonstrated the existence of a regular relationship between the unemployment rate
and the rate of growth of the gross national product (GNP) of the country. He has
expressed this relationship in an equation from which we can predict changes in the
unemployment rate on the basis of change in the rate of growth in the GNP. This
equation will serve as the model on which our simulation will be built. We quote from an
article from the New York Times concerning Professor Okun’s theory **... for every one
percentage point that real gross national product grows by beyond the four percent
trend rate, unemployment drops by one-third of a percentage point.""*

We need to convert this relationship to computer code If we let U =
unemployment rate and G = the GNP, then we may write

LETU=U+ (4 — G) *.33

This expression is the heart of our simulation. It says that the new unemployment
is obtained by taking the old unemployment rate and incrementing it by one-third of the
difierence between 4% and the GNP growth rate. We can see that if G > 4 the
increment is negative and the unemployment rate decreases If G < 4 then the
unemployment rate goes up.

At this point we begin to think about how we might develop a program around this
expression. We consider these possibilities:

1 Let the user specity individual GNP growth rates for each year of the

simulation. That is, treat G as a vector rather than a constant value.

2 Enter information into the program on numbers of people in the work force so
that the simulation may generate numbers of people unemployed. This output
may have more impact than a percentage figure

*New York Times, July 2, 1975, p 48

Ch. 12

Sec 124

Okun’s Law Simulation

3 Organize the output so that it is labeled by year and formatted for easy
reading.

Item 1 is taken care of with the following code:

200
205
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
300
310
320
330
332
334
336

PRINT "OKUN’S LAW SIMULATION"

PRINT

PRINT "INPUT LABEL";

LETY = 1978

INPUT LS

PRINT "INPUT UNEMPLOYMENT RATE FOR ;Y
INPUT U

PRINT "YOU MAY USE A CONSTANT GNP GROWTH RATE"
PRINT "FOR THE ENTIRE TIME PERIOD OF THE"
PRINT "SIMULATION OR SPECIFY DIFFERENT GROWTH"
PRINT 'RATES FOR EACH YEAR."

PRINT

PRINT "ENTER NOW EITHER THE CONSTANT GNP"
PRINT "GROWTH RATE FOR THE ENTIRE PERIOD,"
PRINT "OR ENTER A NEGATIVE NUMBER TO INDICATE"
PRINT "YOUR INTENTION TO SPECIFY GNP GROWTH'
PRINT "'RATES FOR INDIVIDUAL YEARS.";

INPUT G(1)

IF G(1) > O THEN 300

PRINT "YOU HAVE CHOSEN TO SPECIFY INDIVIDUAL"
PRINT "GROWTH RATE FIGURES FOR EACH YEAR."
PRINT "NOW ENTER ELEVEN VALUES ~- ONE FOR'
PRINT "EACH YEAR."

PRINT

FORI=1TO 11

PRINT 'FOR Y:

INPUT G(I)

LETY=Y + 1

NEXT I

GOTO 330

FORI=1TO 10

LET G(l + 1) = G(1)

NEXT I

PRINT

FORI=1TO 11

READ C(I)

NEXT I

263

264 Models and Simulations

Note that we have loaded an array G with eleven values. In one case (loop from
300 to 320) these values were generated from the initial value. In the other case, (loop
from 254 to 262) they were input individually by the user.

To provide oufput on the number of unemployed (ltem 2 above), note that actual
data on the size of the workforce can be obtained from census data and projections
based on this data. This census data on the size of the workforce foliows:

1978 98.8 million
1979 100 2 million
1980 101.7 million
1981 103.1 million
1982 104 4 million
1983 105.8 million
1984 107 2 million
1985 108.6 million
1986 109.6 million
1987 110.7 million
1988 111.7 million

This data will be included in the program on data lines and read into array C. (See
loop from 332 to 336 above.)

Finally, we will format a heading and generate a table (item 3 above) Consider
the following code that will produce the essential data:

342 REM---PREPARE FOR PRINT USING SUBROUTINE

344 LETN =4

346 LETPUS ="HHHH H.H #H.H #H.H8"
348 LET NP(1) = 1978

350 LET NP(3) =U

352 FORI=1TO 11

354 LET NP(2) = G(I)

356 LET NP(4) = C(l) * NP(3)/100

358 GOSUB 8600

Ao/ B R BT INY BIDMDY (A Ny % a0
(VI VAV T AR A TR T B TS 0 2 R S ANy -
362 LET NP(1) = NP(1) + 1

364 NEXT!

The only problem that remains is the matter of making informed decisions about
input values for the simulation. Since, according to Professor Okun, a reduction of the
employment is coritingent upon attaining a certain level of economic growth, we must
first turn to the matter of projecting economic growth. Economic growth is commonly
measured in terms of the growth of the GNP, the total value of all goods and services

Ch.

12

Sec. 124

Okun’s Law Simulation

provided in the United States in a given year. The average growth rate for the GNP over
the time period from 1946 to 1977 is 3.4 percent Figures for individual years differ
quite a bit from the average for the entire time period

After studying past economic growth trends and projections of future growth, this
simulation will allow us to make our own projections and observe their consequences.
Here is a sample run of the program.

OKUN’S LAW SIMULATION

INPUT LABEL? TEST RUN # 1

INPUT UNEMPLOYMENT RATE FOR 1978 ? 5
YOU MAY USE A CONSTANT GNP GROWTH RATE
FOR THE ENTIRE TIME PERIOD OF THE
SIMULATION OR SPECIFY DIFFERENT GROWTH
RATES FOR EACH YEAR.

ENTER NOW EITHER THE CONSTANT GNP
GROWTH RATE FOR THE ENTIRE PERIOD,

OR ENTER A NEGATIVE NUMBER TO INDICATE
YOUR INTENTION TO SPECIFY GNP GROWTH
RATES FOR INDIVIDUAL YEARS.? 3

TEST RUN #1

GNP UNEMPLOY-

GROWTH MENT UNEMPLOYED
YEAR RATE RATE PERSONS*
1978 3.0 5.0 4.9
1979 3.0 5.3 5.3
1980 3.0 5.7 5.8
1981 3.0 6.0 6.2
1982 3.0 6.3 6.6
1983 3.0 6.7 7.0
1984 3.0 7.0 7.5
1985 3.0 7.3 7.9
1986 3.0 7.6 8.4
1987 3.0 8.0 8.8
1988 3.0 8.3 9.3

*MILLIONS OF PERSONS

Code to generate the table headings has not been shown

265

266

12.5

Models and Simulations

A GENETICS SIMULATION

In this simulation, we illustrate the use of the random number generator to select
outcomes of a process. We consider the particular trait of blossom color in a certain
flower. We observe that the flowers have either blue or white blossoms and we know
that the blue characteristic is dominant over the white characteristic. The genetic
makeup of the flowers is displayed in Figure 12.1.

To simplify the problem we will assume that self-pollination occurs . If the parent
has two dominant genes then the offspring must have two dominant genes. The same
is true for two recessive genes. However, if the parent is hybrid, the offspring can be
pure dominant, hybrid, or pure recessive. We will use random numbers to predict the
result of this self-pollination.

In this problem we allow the program user to fix the percentage of gene makeup
in the parent population. We make a random selection of plants to be self-pollinated
from this parent pollination. Let R be the percentage of recessive (white) parents. H will
be the percentage of hybrid (blue but mixed gene) parents. Then 100 - R - H will be the
percentage of pure dominant (blue) parents Consider the following code:

340 LET S = RND(1)

350 IFS <R/ 100 THEN Q = 1: GOTO 400

360 IFS> (R + H)/ 100 THEN Q = 3: GOTO 400
370 LET S1 = INT(RND(1) * 2)

380 LET S2 = INT(RND(1) * 2)

390 LETQ =81+ S2 + 1

400 LET C(Q) =C(Q) + 1

In ine 340 we select the parent gene type. In line 350 we ask if we have selected
a pure recessive (white) type. If so, we set Q = 1. Inline 360 we ask if we have selected
a pure dominant (blue) type. If so, we set @ = 3. In lines 370 and 380 we make
selection of genes knowing that we are dealing with a hybrid cross. Line 390
determines a Q of 1, 2, or 3 depending on the genetic type of the offspring. Finally, line

Figure 12 1
Genetic Makeup of Flowers

Blue Flowers White Flowers
Pure Dominant Hybrid Pure Recessive
B B B w w | w
Two dominant One dominant Both genes are
blue genes. blue and one recessive.

recessive white,

Ch. 12

Sec. 1256

A Genelics Simulation

400 accumulates the total of each genetic type in array C using the method discussed
in Section 7.5
For this program to run correctly on the TRS-80 make the following changes:

340
350
360
370
380
390

With

LET S = RND(100)

IFS <RTHENQ = 1: GOTO 400
IFS>R + HTHEN Q = 3: GOTO 400
LET S1 = RND(2)

LET S2 = RND(2)

LETQ=81+8S2 — 1

this code we can complete the entire simulation. The remainder of our

program has to do with fixing parameters and printing the results

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
- 300
310
320
330
340
350
360
370
380
390
400

REM —- POLLINATION 3/4/81

REM INPUT VARIABLES: N, R, H

REM LOCAL VARIABLES: I, §1,S2,Q

REM OUTPUT VARIABLES: C(3)

DIM C(3)

PRINT "THIS PROGRAM SIMULATES THE SELF-POLLINA-"
PRINT "OF A POPULATION OF FLOWERS. GENOTYPES"
PRINT "ARE PURE RECESSIVE, HYBRID, AND PURE"
PRINT "DOMINANT.'

PRINT

PRINT "HOW MANY SEEDS ARE TO BE POLLINATED
INPUTN

PRINT

PRINT "WHAT PERCENT OF THE POPULATION IS'
PRINT 'PURE RECESSIVE ;

INPUT R

PRINT

PRINT "WHAT PERCENT OF THE POPULATION IS "
PRINT '"HYBRID

INPUTH

PRINT 100 — R — H;" PERCENT OF THE POPULATION IS'
PRINT "PURE DOMINANT."

PRINT

FORI=1TON

LET S = RND(1)

IFS <R/ 100 THENQ = 1: GOTO 400

IFS> (R + H)/ 100 THEN Q = 3: GOTO 400

LET S1 = INT(RND(1) * 2)

LET S2 = INT(RND(1) * 2)

LETQ=S81+82 + 1

LET C(Q) = C(Q) + 1

267

268 Models and Simulations

12.6

410 NEXT!
420 FOR1=1TO3
430 LET C(I) = INT(C(l) / N * 1000 + .5) / 10

440 NEXTI

450 PRINT 'RESULTS OF ";N;" CROSSINGS:"

460 PRINT

470 PRINT "% RECESSIVE % HYBRID % DOMINANT"
480 PRINT

490 FORI=1T03

500 PRINT TAB(13 *1 — 7)C(l);
510 NEXT!

520 END

In the exercises you will be asked to run this program for various genetic
makeups of the parent population.

MONTE CARLO INVENTORY
SIMULATION

in this section we display a more complex simulation that involves Monte Carlo
methods. These methods were introduced briefly in Chapter 6. This simulation involves
the manipulation of two parameters as well as the generation of random input data
The problem developed here has been suggested by Chou *

Imagine that a merchant is trying to determine an optimal inventory plan for a
given product. Factors affecting decisions concerning inventory might be:

1 Costs for holding each product unit in inventory each day,

2 Cost of placing an order, and

3 Costin profits lost from failure to have an item in stock when demanded by a
customer

In addition to these costs, information concerning the need and availability of the
product must be known if the simulation is to be meaningful. Suppose the merchant
knows that he gets from zero to ten customers for the item each day with
approximately equal probability. Furthermore, he knows that the delay in receiving an
order varies from one to four days with equal probability. In the experiment the data on
sales and delivery time will be generated using the random function The other
parameters may be varied to determine optimum values of minimum inventory and
reorder quantity.

We begin the simulation each day (DAY) by adding merchandise received to the
inventory. To determine if an order is received we need to have declared a day on

*Ya-Lun Chou, Statistical Analysis. (New York: Holt, Rinehart and Winston, 1975) pp.800-804

Ch. 12

Sec. 126

Monte Carlo Inventory Simulation

which the order was placed (ODAY). On that day the random number generator would
have determined the waiting time (WT). We also need to have declared the inventory
(INV) and the size of the reorder (SHIP). With these variables declared we can write:

if (DAY = ODAY + WT)
[increase INV by SHIP
WT «— 0]

The next adjustment to inventory to be made is for daily sales. Daily sales (CUST)
are determined by the random number generator.

CUST <~ RND(0—10)
decrease INV by CUST

At this point we determine if we are at or below the reorder point. If we are, and if
an order is not pending, an order is initiated. This can be done as follows:

if (INV <= MININV)
[if (DAY >= ODAY + WT)
lincrease TFEE by FEE
WT «— RND(1—4)
ODAY < DAY]]

Here FEE is a single reorder cost and TFEE is the accumulation of these costs
Next we determine losses incurred by our inability to provide for all customers.
This situation will prevail if the adjusted inventory is negative.

if (INV <= 0)
[increase TLOSS by LOSS * ABS(INV)
increase SALES by INV
set INV to 0]

LOSS is the loss of profits due to lack of availability of the item. TLOSS is an
accumulation of that loss and SALES is an accumulator for total items sold. The step
“increase SALES by INV" may not be clear. Note that in this case the inventory is
negative. We will later make an adjustment to increase sales by the number of
customers. However, that adjustment will be excessive if all customers have not been
supplied

Finally, we compute total storage costs (TSC) by adding unit storage costs
{UNITSC) for the inventory held over. Then total sales are accumulated.

increase TSC by UNITSC * INV
increase SALES by CUST

Having refined these steps we may write and code the entire algorithm. A
complete program is given below.

100 REM —- INVENTORY 10/15/80
110 REM INPUT VARIABLES: MININV, SHIP, UNITSC
120 REM FEE, LOSS, NDAYS

269

270 Models and Simulations Ch 12

130 REM LOCAL VARIABLES: ODAY
140 REM OUTPUT VARIABLES: SVINV, CUST, TSC, TFEE

150 REM TLOSS, WT, SALES, INV
160 REM AVECST
170 HOME

180 TSC = O:TFEE = 0:TLOSS = 0:SALES =0

190 ODAY = O:WT =0

200 PRINT "THIS PROGRAM DEVELOPS AVERAGE INVENTORY"
210 PRINT 'COSTS PER UNIT SALE BASED ON A MONTE"
220 PRINT "CARLO SIMULATION. REORDER TIMES OF"
230 PRINT 'FROM 1 TO 4 DAYS AND CUSTOMER COUNTS’
240 PRINT 'FROM O TO 10 ARE SIMULATED.'

250 PRINT

260 PRINT 'ENTER MINIMUM INVENTORY

270 INPUT RAININY

280 PRINT 'ENTER SIZE OF REORDER

290 INPUT SHIP

300 PRINT'ENTER UNIT STORAGE COST ;

310 INPUT UNITSC

320 PRINT "ENTER REORDER COST

330 INPUT FEE

340 PRINT'ENTER LOSS ON UNITS NOT SUPPLIED

350 INPUT LOSS

360 PRINT'ENTER NUMBER OF DAYS SIMULATION WILL RUN
370 INPUT NDAYS

380 PRINT

390 PRINT'INV CUSTTSC TFEE TLOSSWT SALES INV'
400 INV = INT(MININV + SHIP / 2)

410 FOR DAY = 1 TO NDAYS

420 SVINV = INV

430 IF DAY = ODAY + WT THEN INV = INV + SHIP:WT =0
440 CUST = INT(RND(1) * 11)

450 INV = INV — CUST

480 IF INV > MININV THEN 550

470 IF DAY < ODAY + WT THEN 510

480 TFEE = TFEE + FEE

480 WT = INT(RND(1) * 4 + 1)

500 ODAY = DAY

510 IF INV >= 0 THEN 550

520 TLOSS = TLOSS + LOSS * ABS(INV)

530 SALES = SALES + INV

540 INV =0

550 TSC = TSC + UNITSC * INV

Sec 126

A run

Monte Carlo Inventory Simulation

560 SALES = SALES + CUST

570 PRINT SVINV;TAB(7)CUST;TAB(11)TSC;TAB(17)TFEE;

580 PRINT TAB(22)TLOSS;TAB(28)WT;TAB(33)SALES;TAB(38)INV
590 NEXT DAY

600 TCST = TSC + TLOSS + TFEE

610 AVECST = INT(TCSTS / SALES * 100 + .5) / 100

620 PRINT

630 PRINT INVENTORY COST PER UNIT SALE EQUALS'

640 PRINT" $';AVECST
650 END
of this program follows-

THIS PROGRAM DEVELOPS AVERAGE INVENTORY
COSTS PER UNIT SALE BASED ON A MONTE
CARLO SIMULATION. REORDER TIMES OF

FROM 1TO 4 DAYS AND CUSTOMER COUNTS
FROM O TO 10 ARE SIMULATED.

ENTER MINIMUM INVENTORY ?15

ENTER SIZE OF REORDER ?15

ENTER UNIT STORAGE COST ?2

ENTER REORDER FEE 730

ENTER LOSS ON UNITS NOT SUPPLIED 220

ENTER NUMBER OF DAYS SIMULATION WILL RUN ?15

INV. CUST TSC TFEE TLOSS WT SALES I[NV

22 7 30 30 o 3 7 15
15 6 48 30 0 3 13 9
9 8 50 30 o 3 21 1
1 5 72 60 0 1 26 11
11 8 108 60 0o o 34 18
18 4 136 90 o 2 38 14
14 4 156 90 0 2 42 10
10 3 200 90 0 0 45 22
22 2 240 90 o o 47 20
20 7 266 120 0 4 54 13
13 5 282 120 0 4 59 8
8 5 288 120 o 4 64 3
3 8 288 120 100 4 67 o
0o 7 304 150 100 1 74 8
8 8 334 180 100 1 82 15

INVENTORY COST PER UNIT SALE EQUALS
$7.49

271

272 Models and Simulations

EXERCISE SET 12.2

1.

Run the genetics simulation problem in Section 125 with the following mix of
genetic makeups in the parent population:

(a) A 50-50 mix of pure dominant and pure recessive parents.
(b) A 100 percent hybrid parent popuiation.
(c) A 50-50 mix of pure dominant and hybrid parents.

Modify the genetic simulation program to allow for a random cross pollination of
the parent population. You will need to select each parent randomly after
deciding on the genetic makeup of the parent population. Then select the gene
contribution from that parent if it is a hybrid.

Develop a simulation for the total count obtained in the roll of a pair of dice.
Accumulate the count of each of the eleven possible results for 10,000 rolls of
the dice. From this experiment, what would you predict as the probability of
getting a seven in a single roll of a pair of dice?

Develop a simulation for the shuffling of a deck of fifty-two cards. One way to do
this is to place the cards (represented by the numbers one through fifty-two) into
an array Use the random number generator to select pairs of cards to be
interchanged.

Review

There has been no new syntax introduced in this chapter. New terms are summarized

here.

MODEL a mathematical representation of a system. (Section 12.1)

SIMULATION an imitation of the behavior of a system through the manipulation of a
model. (Section 12 1)

PREDICTIVE MODEL a model that predicts the time behavior of a system. Such a
model may specify exact outcomes (a deterministic model) or probable outcomes (a
probabilistic model). (Section 12 .2)

Ch. 12

13

13.1

ADVANCED
GRAPHICS
TECHNIQUES

COMPUTER MAPPING

The high resolution graphics capacity of the Apple microcomputer, plus the increased
availability of relatively low-cost printers that can put graphic images on paper, open
the door to many interesting and useful graphics applications. The relatively simple
plotting syntax available in Applesoft is an additional encouragement to this line of
activity.

Figure 13.1 displays an outline map of the state of West Virginia and its fifty-five
counties. With its highly irregular shape, it is a good example of the kind of precision
graphing that one can do with the Apple. The program that created this map is not
particularly complex—although we admit that 506 data statements were required to
supply the X-Y coordinates. Although this task is more boring than difficult, it is still
much easier than drawing such a map by hand.

In this chapter we will present a detailed treatment of the techniques required to
create such graphic images, to store them on disk and the process of printing them on
paper. We will also provide in an appendix (Section 13.9) information on the source of
such data and its use. As we pursue this subject, bear in mind that computer mapping is
merely a special case of a larger phenomena, and that anything that can be
represented by pairs of Cartesian coordinates can be displayed using such
technigues.

In Section 10.8 we introduced high resolution graphics techniques with the Apple
Here we will assume that you are familiar with that material and will build upon it. Let us

273

274 Advanced Graphic Techniques Ch. 13

Figure 13.1
Outline Map of West Virginia and its 55
Counties Using 506 Coordinate Pairs

look at Table 13.1, a set of coordinates for a single county—in this case Brooke
County, West Virginia.

Table 13.1
Coordinates for Brooke County

X Y
362 106
361 54
343 52
334 99
362 106

All coordinates have values in the range from 0 to 1000. The Apple has the capacity to
store two high resolution graphics images in memory simultaneously It is common to
describe these storage areas as pages of high resolution graphics storage. Recalling
that each Apple high resolution graphics page has 280 horizontal positions (in a range
from O to 279) and 192 vertical positions (in a range from 0 to 191) we recognize the
fact that all the X values are out of range.

It is customary for the origin of an X-Y plot to be located in the lower left-hand
corner. Thus, one might expect that plotting the position 0,0 would place a dot in the
lower left-hand corner of the screen. In fact, these coordinates assume that the origin is
in the upper left-hand corner. While this is unusual, it is consistent with Applesoft BASIC
which makes a similar assumption. Thus, we are only required to scale the coordinates
to bring them within plotting range

Sec. 131

Computer Mapping

Applesoft BASIC’s HPLOT command has three variations:

HPLOT X,Y which plots a single dot at X,Y.

2 HPLOT TO X,Y which draws a line from the current plotting position to
XY

3 HPLOT X1,Y1 TO X2,Y2 which draws a line between the two pairs of
coordinates

Here we will use the first two instructions. For each county we wish to draw, we use
HPLOT X,Y with the first pair of values and HPLOT TO X,Y for the remaining pairs
The main plotting loop will be:

140
145
150
1556
160
165

READ X,Y
HPLOT FN S(X),FN S(Y)
FORI=1TO4

READ X,Y

HPLOT TO FN S(X),FN S(Y)
NEXT I

Since we have so few data pairs, we can count them and thus specify a loop
count. With a larger data set it would probably be easier to use a pair of dummy values
as trailer values. You will note that X and Y values are scaled before they are plotted.
The scaling occurs in a user-defined function. This then is the heart of the mapping
routine. Below we list the entire program:

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
1956

REM —— ONECOUNTY 3-20-81

REM

HOME

INPUT "ENTER SCALE FACTOR AS A VALUE <.7 "8
DEFFNS(Z)=2*S

HGR: HCOLOR = 3
POKE —16302,0
REM—~——~ o e
READ X,Y
HPLOT FN S(X), FN S(Y)
FORI=-1TO4

READ X,Y

HPLOT TO FN S(X), FN S(Y)
NEXT |

GET R$: IF R$ <> CHR$(27) THEN 175
TEXT

DATA 362,106

DATA 361,54

DATA 343,52

275

=,

276

o

D

Advanced Graphic Techniques

200 DATA 334,99
205 DATA 362,106

Several statements may require explanation. Statement 115 asks the user to
enter a scale factor as a percentage—with 1.0 equalling 100 percent. Thus, if you wish
to reduce the scale to one-half, you would enter .50 for fifty percent. The scale factor is
used by the user defined function in line 120 o scale the X and Y values as they are
passed toit. Statement 125 selects high resolution graphics page one and the POKE in
statement 130 closes the text window usually available at the bottom of the screen so
that we can see the bottom thirty-two lines of the graphics page. Statement 175 delays
program execution to keep the plot visible for as long as you wish. It does so by
GETting a character from the keyboard repeatedly until that character is the equivalent
of ASCIl code 27, the escape key. Once you push the escape key, execution
continues, statement 180 restores the text page to the screen and the program ends.

We suggest that you try this program several times using different scale factors.
You will discover that .7 is about the largest scale factor you can use without going off
the right side of the screen. If you use a scaling factor that is too high, the Apple will
bleep and print an ILLEGAL QUANTITY error message. But since the Apple was
displaying the graphics page when the error occurred, you will not see the error
message You can restore the text page by typing TEXT foliowed by a carriage
return.

You will note that increasing the scale factor not only makes the image larger, but
also moves it away from the plot origin. This suggests that some additional processing
of the data is required before plotting, something we will demonstrate in Section 13.2
Our treatment of the map creation process will take three steps which we will freat
sequentially They are:

Step 1 Creation of a map coordinates file,
Step 2 Determining the median X and Y value, and
Step 3 The actual process of drawing the map.

The most formidable aspect of such a mapping program is not the algorithm but the
data entry task. The West Virginia map, Figure 13.1, displayed in Section 13.1 required
506 pairs of coordinates. Entering the coordinates is also an important task because
we are creating the data set from which our map will be drawn. Here we will illustrate
our mapping technique using a much smaller data set to draw a county outline map of
the state of Connecticut. We have segmented the process into three steps, the first of
which is the creation of a map coordinates file. To create such a file, we must first enter

Ch. 13

Sec. 13.2

Creating a Map Coordinates File

at the keyboard all the required coordinates. Each pair of coordinates becomes a
separate data statement. Such a statement might look like this:

200 DATA 4,23132,45433

The first of the three values represents the county. Each county must have a separate
code number. The other two values are the X and Y coordinates respectively. We have
had to add the county code (which was not needed in the ONECOUNTY program)
because we will need a way for the program to detect a change from one county to
another.

Once all the coordinates have been entered, you will need to verify their accuracy
by displaying them on the screen and checking them against the source document.
When the verification process is complete, you will need a small program to read the
values from the data statements and to write the values to a disk file. Here we will
create a sequential data set on the Apple diskette At this point you may wish to review
our treatment of Apple sequential files in Chapter 11. We will assume that you are
familiar with that material. This routine merely reads the values in the data set and
writes them to the disk. You will note the three negative values at the end of the data
set. They are used to indicate end of file. These values are written to the disk file. Here
is the complete program.

100 REM -- BUILDCTMAP2 5-23-81 205 DATA 1,103,57

101 REM 206 DATA 1,103,45
102 REM 207 DATA 1,36,22
110 D$= CHR$ (4) 208 DATA 2,50,101
115 F$ = "CTMAPFILE #2" 209 DATA 2,53,147
120 PRINT D$'OPEN'F$ 210 DATA 2,108,148
125 PRINT D$'WRITE'F$ 211 DATA 2,123,140
130 READID,X,Y 212 DATA 2,110,99
135 PRINTID 213 DATA 2,76,80
140 PRINT X 214 DATA 2,50,101
145 PRINTY 215 DATA3,103,45
150 |IFID > O THEN 130 216 DATA 3,103,58
155 PRINT D$'CLOSE" 217 DATA3,76,80
160 END 218 DATA3,111,99
170 REM--- e 219 DATA 3,142,92

1756 REM CONNECTICUT MAP #2 220 DATA 3,164,58
180 REM 57 COORRDINATE PAIRS 221 DATA3,124,52

185 REM e et e e 222 DATA 3,103,45
200 DATA1,36,22 223 DATA4,110,99
201 DATA 1,27,34 224 DATA 4,123,140
202 DATA 1,56,48 225 DATA 4,108,148
203 DATA 1,47,59 226 DATA 4,131,148

204 DATA 1,50,101 227 DATA 4,135,143

277

278 Advanced Graphic Techniques

13.3

228 DATA 4,139,148 243 DATA6,181,96
229 DATA 4,166,148 244 DATA7,190,62
230 DATA4,181,96 245 DATA7,192,79
231 DATAA4,142,93 246 DATA 7,171,895
232 DATA4,110,99 247 DATA 7,182,96
233 DATAS,164,58 248 DATA 7,203,111
234 DATAS,142,83 243 DATA 7,253,103
235 DATAS5,170,95 250 DATA 7,254,714
236 DATAS5,192,79 251 DATA 7,190,62
237 DATAS,189,62 252 DATA 8,202,111
238 DATAS5,164,58 253 DATA 8,213,148
239 DATA6,181,96 254 DATA 8,251,148
240 DATAG,166,148 255 DATA 8,253,103
241 DATAG6,213,148 256 DATA 8,202,111
242 DATA 6,202,111 2990 DATA —-1,-1,—1

By creating a map coordinates file, it will be possible for a number of programs to read
the same file. Creating this file also makes it possible to make the map drawing routine
more general since the routine does not itself contain:coordinates:

FINDING THE MIDRANGE
OF THE COORDINATES

The second step of our map creation process is determining the midrange of the X and
Y coordinates. Since county coordinates come in so many different forms, we need a
generalized technique for standardizing the coordinates so that they fit on the Apple
graphics screen. This task can be easily accomplished in a subroutine. More
specifically, our task is to standardize the coordinates in terms of the center of the
plotting screen. We can do so by finding the middle of the range of X coordinates and
the middie of the range of Y coordinates. These midrange values will then be used to
standardize the coordinates.

The first step in computing the midrange of the X and Y coordinates, is to find the
minimum and maximum value of each set of coordinates. We presented a simple
program fragment to find the largest value in an array in Section 9.4. Here we expand
the same technique in order to find both the largest and the smallest value in each
array. We begin by assuming that the first X value is both the largest and smallest value
in the array. We make a similar assumption about the first ¥ coordinate. While this
assumption is not likely to be true, it does make the process simple. We next begin to
pass through each array replacing the current largest and smallest value in each array
as new values are encountered. We use X1 for the smallest X value and X9 for the

Ch. 13

Sec 134 Drawing a Map 279

largest X value. This process is repeated with the Y values. Here is our subroutine:

365 REM~~- -

370 REM MID-RANGE ROUTINE
375 REM

380 X1 = X(1)

385 X9 = X(1)

390 Y1 =Y(1)

395 Y9 = Y(1)

400 FOR | = 2 TO MAX

405 iF X(I) > X9 THEN X9 = X(I)
410 IF Y(I) > YO THEN Y9 = Y(I)
415 IF X(1) < X1 THEN X1 = X(I)
420 IFY() <YTTHEN Y1 = Y(I)
425 NEXT |

430 XM = (X9 + X1)/ 2

435 YM =(Y9 + Y1)/ 2

440 RETURN

Once the loop has been completed, we have the largest and the smaliest of the X
and Y values, which are then used to compute the midrange value for each array. We
use XM and YM for the X and Y midrange values respectively. Control then returns to
the main program.

13.4 DRAWING A MAP

Drawing a multi-county map, the third step in our process of créating a computer
graphics map, is quite similar to drawing a single county map except for the additional
statements needed to handle the change from one county to another. Our program
must perform three basic tasks. It must: (1) read the coordinates and county
identification codes from disk into arrays, (2) call the subroutine that finds the midrange
of each set of coordinates, and (3) plot the coordinates. As in the ONECOUNTY
routine, we must plot the first pair of coordinates for a given county using the HPLOT
command and all subsequent pairs of coordinates for the same county using the
HPLOT TO command. Thus, we must do something slightly different with the first pair
of coordinates for each county. This is necessary because county coordinates usually
come in alphabetical order, requiring our program to jump from the last coordinate of
one county to the first coordinate of the next without drawing a line. in order to detect
the change from one county to another, our data set must contain a county
identification code, which is unique for each county.
Our plotting algorithm can be represented in pseudocode as follows:

280 Advanced Graphic Techniques

DRAWMAP:
declare numeric ID(100),X(100),Y(100)

declare numeric LAG,YM,XM,HCOLOR,I,MAX,S

declare string C$

define function H(X) «<—140 + (X — XM) * §
define function V(Y) < 96 — (Y — YM) * §

set LAGto O
setSto 12
loop while | goes from 1 to 100
get(IDM),X(1),Y(1)
if (ID(l) < O) break
end loop
set MAX 1o | —1
call MIDRANGE
HGR2
set HCOLOR to 3
loop while | goes from 1 to MAX
if(ID(1) <> LAG)
[HPLOT FN H(X(1)), FN V(Y (1))
LAG «—ID(I)]
else
HPLOT TO FN H(X(1),FN V(Y(!))
end loop
get(C$)unti C$ =" "
TEXT
end

MIDRANGE:
set X1 to X(1
set X9 to X(1
set Y1to Y(1
set Y9 to Y(1)
loop while | goes from 2 to MAX
it (X(1) > X9) X9 = X(I)
if (Y(i) > Y9) YS = Y(ij
it (X(1) < X1) X1 = X(1)
f(Yy < Y1) YT =Y()
end loop
XM — (X9 + X1)/ 2
YM<«— (Y9 + Y1)/ 2
return
end.

)
)
)

Ch. 13

Sec. 13.4

Drawing a Map

The algorithm consists of three parts. The first loads the data into arrays, the second is
the subroutine that computes the midrange of the coordinates, and the third part draws
the map itself. As in previous examples, our input is expressed in genetic terms and
does not identify the source of the data. You will note that we have incorporated into
our algorithmic language without change the special plotting commands supported by
Applesoft BASIC. This illustrates the type of flexibility that we recommended in Chapter
3 in the development of your own pseudocoding techniques. The heart of this algorithm
is a double alternative decision structure with either the true task or the faise task being
executed depending upon the result of the test “IF(ID(l) <> LAG)"".

Because the selection of the true or false task is dependent upon whether the
current value of ID is the same as the previous value and since each execution of the
INPUT or READ statement destroys the present contents of the variable and replaces
it with a new value, we must save the old value of ID in another variable which we call
LAG

Two functions are critical to the algorithm. The first— FN H —the horizontal
function, standardizes X coordinates in terms of the center of the graphics screen. The
vertical function—FN V— performs a similar task with the Y coordinates. Each function
uses the appropriate midrange value computed by the subroutine as discussed in
Section 13.3 Both functions also use the scaling factor Sto scale the coordinates. You
may have to experiment with S in order to get the best value. The Y coordinates in the
data set assume the origin of the plot to be in the lower left-hand corner of the screen.
Since the Apple assumes the origin to be in the upper left-hand corner, we use a minus
sign in the vertical function. If your image comes out upside down, change this sign to
"+ as follows

define function V(Y) «—96 + (Y — YM) * S

If your image comes out reversed, that is with the left-hand side of the image on the
right-hand side of the screen, reverse the sign in the horizontal function. Better still,
reverse the X and Y print statements in the BUILDMAP program The BASIC version of
the program is presented below:

100 REM -- DRAWMAP 5-23-81
105 REM

110 REM

115 HIMEM: 16383

120 DIM ID(100),X(100),Y(100)
125 D$ =CHR$(4)

130 LAG =0

135 REM-- — —
140 REM RUN PARAMETERS
145 REM—————— e mmmmmmm e e e
150 S - 1.2

155 F$ = "CTMAPFILE#2'

281

282 Advanced Graphic Techniques Ch.

160
165
170
175
180
185
190
196
200
205
210
215
220
225
230
238
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330

1] —
REM LOAD ARRAYS
REM FROM DISK
REM —
PRINT D$;'OPEN";F$
PRINT D$;'READ";F$
FORI=1TO 100
INPUT ID(1),X(1),Y(})
IF ID(1) < O THEN 210
NEXT |
MAX =1 — 1
PRINT D$'CLOSE"
GOSUB 365
REM = mm e e e
REM DRAW MAP
RERi— = == - — —— e
HGR2 : HCOLOR = 3

DEF FN H(X) = 140 + (X — XM) * S

-

[2% 2
340
345
350
355
360

DEF FN V(Y) = 96 — (Y — YM) * S
REM ——
REM LOOP
REM————————~—
FORI = 1TO MAX
IF ID(I) = LAG THEN 325
REM —
REM NEW COUNTY
REM e e e e
HPLOT FN H(X(I)),FN V(Y(1))
LAG = ID(I)
GOTO 330
REM —
REM SAME COUNTY
T =] ——
HPLOT TO FN H(X(I)),FN V(Y(1))
NEXT |
=T
REM END LOOP
T O —
GET C$: IF C$ <> CHR$(27) THEN 350
TEXT
END

13

Sec 134 Drawing a Map 283

365 REM- -

370 REM MID-RANGE ROUTINE
375 REM=————mmemm e o o o e e e
380 X1 = X(1)

385 X9 = X(1)

390 Y1 -=Y(1)

395 Y9 = Y(1)

400 FORI =2 TO MAX

405 IF X(I) > X9 THEN X9 = X(1)
410 IFY(l) > YO THEN Y9 = Y(I)
415 IF X(I) < X1 THEN X1 = X(I)
420 IFY() <YTTHEN Y1 = Y(i)
425 NEXTI

430 XM = (X9 + X1)/ 2

435 YM = (Y9 + Y1)/ 2

440 RETURN

This is a rather straightforward implementation of the algorithm. Figures 13.2 and 13.3
display two maps of the state of Connecticut. The map in Figure 13.2 was produced by
this program using a data set containing fifty-seven pairs of coordinates and the map in
Figure 13.3 was produced by the same program using a different data set that has 346
coordinate pairs. Our reason for displaying the program here with the smaller data set
is frankly to save space.

There are some applications in which Figure 13.2, the map with less detail, would
be more desirable. For example, you may recall watching election night coverage on

Figure 13.2
Map of Connecticut and its 8 Counties
Using 57 Coordinate Pairs

A4

284 Advanced Graphic Techniques

13.5

Figure 133
Map of Connecticut and its 8 Counties
Using 346 Coordinate Pairs

gy [

one of the major networks. Large maps indicating each state were used to indicate
which presidential candidate the state supported. These maps did not display much

state boundary detail. In this respect, the television map was quite similar to Figure
13.2.

SAVING GRAPHIC IMAGES ON DISK

The Apple may require several minutes to draw complex graphic images. This may be a
disadvantage in those circumstances in which you may wish to change graphic images
quickly. Fortunately, the Apple provides a means for saving a graphics image directly to
the disk with a single command.

To save such an image, you must first run the program that creates the graphic
display Allow the program to create the image and end execution normally. Thereafter,
enter one of the following commands.

If you used HGR2, enter the following command followed by a carriage return

BSAVE image,A16384,L8192

In place of image enter a legitimate DOS file name. Make sure the file name is not
already in use. Note that the command is BSAVE-—which means binary save—in
contrast with the standard SAVE command. The two parameters following the file
name indicate the memory Address at which the save process is to begin and the
Length of the memory segment to be saved. In this example, we have specified the
beginning of the second page of high resolution graphics memory If the graphic image
was created using the HGR command in the program, then use the following:

Ch. 13

Sec 136

13.6

Loading a Graphics Image From Disk

BSAVE image,A8192,L.8192,
It you enter a CATALOG command, the following would be displayed:
B 034 IMAGE

We assume the file is named IMAGE. You will note that thirty-four sectors of
storage are required to store a single graphics image Since each sector holds 256
characters, a total of 8704 characters of storage is required for each graphics image.

LOADING A GRAPHICS IMAGE
FROM DISK

Once saved, a graphics image can be loaded and displayed with a three statement
program as follows:

110 D$ = CHR$(4)
115 HGR2
120 PRINT D$'BLOAD IMAGE"

We assume that the file IMAGE contains a graphics image. You will note that we
omitted the Address and Length parameters used in the BSAVE command iliustrated
above Since these values are saved along with the map image by the BSAVE
command, we need not supply them again.

The three line program given above is the quickest way of loading and displaying
a binary map image, but it may not be the best way. You have no doubt noted how the
image appears on the screen incrementally. This gradual process can be replaced with
an instant picture using the following program:

100 REM ~—- DISPLAYMAP 5-15-81

105 D$ = CHR$(4)

110 HOME

115 PRINT "WHEN MAP APPEARS, PUSH ESCAPE TO END."
120 PRINT

125 INPUT "WHICH MAP FILE: ;"M$

130 PRINT D$;"BLOAD";M$;',A16384"

135 POKE — 16299,0

140 POKE — 16297,0

145 POKE — 16302,0

150 POKE — 16304,0

155 GET C$:IF C$ <> CHR$(27) THEN 155
210 TEXT

215 END

285

286

13.7

Advanced Graphic Techniques

Statements 120 through 126 use the Apple's so-called soft switches rather than
the HGR commands. The effect of any one switch is partly dependent upon the setting
of the others. You may wish to consult the Applesoft Reference Manual for a more
detailed discussion. Here we present a brief description of what each does:

Statement 135 switches from page one high resolution graphics (beginning at
8192) to page two (beginning at 16384).

Statement 140: selects high resolution graphics.

Statement 145 selects full screen graphics rather than mixed graphics and
text.

Statement 150 switches from text to graphics

This approach makes it relatively easy for us to load two map images and switch from
one to the other. Consider this modification of the program just presented:

101 REM

105 D$ = CHR$(4)

110 PRINT D$'BLOAD CT MAP"

115 PRINT D$'BLOAD WV MAP,A8192"

120 POKE — 16299,0

122 POKE —16297,0

124 POKE — 16302,0

126 POKE —16304,0

150 GETC$:IF C$ <> CHR$(27) THEN 150
160 POKE —16300,0

170 GET C$:IF C$ <> CHR$(27) THEN 170
180 TEXT

190 END

Note that two map images were loaded one after the other. For the Figure 13.3,
we specified the location or address in memory into which the image was to be stored.
This was necessary since the image was originally stored from page two of the high
resolution graphics storage but, we wished to load it into page one. Statement 160 was
added to switch the display to page one of high resolution graphics from page two.

PRINTING GRAPHIC DISPLAYS

A number of printers are available for use with the Apple, some of which can print high
resolution graphics images as well as text. One such device is the Apple Silentype
printer. It is a small and compact thermal printer that often is available with the Apple

Ch. 13

Sec 13.7

Printing Graphic Displays

Photo 13 1
Apple 8Silentype Printer prints high resolution graphics with images as well as text.
(Photo courtesy of Apple Computer Inc)

microcomputer. Our treatment of printing graphics images here will be confined to the
use of the Silentype. We further assume that the controller board for the printer is in slot
number one of the Apple's backplane

A graphics image can be transferred to the printer by statements within a
program or by commands entered at the keyboard Only two commands are
required

PR# 1
CTRL/Q

Each command is typed at the keyboard and followed by a carriage return Should the
printer controller board be in a slot other than one, substitute that number for the 1" in
PR#1 The CTRL/Q is entered by holding the control key down and then striking the
Q. These commands will cause the Apple to print the image on high resolution graphics
page one on the printer. It will be printed white on black as the image appears on the
screen. You may POKE various locations to change these defaults as we will indicate
in the following program

Here we present a small program that loads a binary image from disk int6 the

287

288

Advanced Graphic Techniques

second high resolution graphics page. The statements down to number 155 should be
familiar if you have read Section 13.6. Statement 160 initializes the printer. The PRINT
statement is essential for the correct initialization of the printer. The next three
statements modify default printer characteristics. Statement 165 causes the printer to
print the darkest possible image. The values POKEd into this location can range from
sero to seven with zero the lightestimage and seven the darkest image. Staternent 170
selects the second high resolution graphics page for display, the one beginning at
memory location 16384. A value of thirty-two, which is the default, causes page one to
be printed and a value of sixty-four causes page two to be selected. Statemment 175
causes the inverse image to be printed—that is, it causes the image to be printed black
on white, the opposite of the screen image. A value of 255 causes white on black
printing and a value of zero causes black on white printing. Statement 180 causes a
CTRL/Q to be printed thus beginning the printing process. Statements 190 to 200
merely restore the default values once the image has been printed Statement 205
turns off the printer. It is important to note that these POKE instructions will have an
effect only if the printer is turned on at the time. Remember that statement 160 turned
on the printer.

100 REM —- PRINTMAP 5-15-81

105 D$ ~ CHRE(4)

110 HOME

115 PRINT "WHEN MAP APPEARS, PUSH ESCAPE TO PRINT.
120 PRINT

125 INPUT "WHICH MAP FILE: ";M$

130 PRINT D$;'BLOAD";M$;',A16384"

135 POKE — 16299,0

140 POKE — 16297,0

145 POKE — 16302,0

150 POKE — 16304,0

155 GET C$: IF C$ <> CHR$(27) THEN 155

160 PR#1:PRINT

165 POKE — 12528,7 : REM DARKEST IMAGE

170 POKE — 12525,64 : REM HRES PAGE 2

175 POKE — 12525,0 : REM PRINT INVERSE

180 PRINT CHR$(17)
185 REM ————- RESTORE S
190 POKE — 12528,5
195 POKE — 12525,32
200 POKE — 12524,255
205 PR#0

210 TEXT

215 END

Ch. 13

Sec. 13.8

13.8

Adding Text to Your Graphics

ADDING TEXT TO YOUR GRAPHICS

We have already noted that the TRS-80 has the very convenient feature of allowing one
to print character data along with a low resolution graphic image Printing character
data with Apple high resoluton graphics is not quite so easy. On the Apple, one can
produce a shape table to represent the character or figure to be drawn Special
commands can then be used to position the character or figure on the screen.
Constructing the shape table is not an easy task. The best solution is to borrow
someone else’s shape table. *

A technique we have used involves converting each figure to be printed into a
character string. All characters are formed from a seven row by five column dot matrix
For example, if we look closely at the letter S on the screen, we will see that it is formed
of fifteen dots located in a seven by five array. If we could code the information in that
array in such a way that we could retrieve the illuminated dots, we could use the
HPLOT commands to print the array and, thus, the character of interest. Consider the
empty matrix in Figure 13.4

In Figure 13.5 we will darken those squares that are illuminated in the letter S.

Let us use a binary system to indicate whether the dot is illuminated or not

Arranging the array for Sin row order we find the following:

01110 (first row)
10001 (second row)
10000 (third row)
01110 (fourth row)
00001 (fifth row)
10001 (sixth row)
01110 (seventh row)

You should be able to see the letter S spelled out in 1s. We form these digits into
a one-dimensional array by concatenating the seven rows in order.

S$ - ‘01110100011000001110000011000101110"

*See, for example, an article in Creative Computing, entitled "Hi-Res Text for the Apple,”
January 1981, by Paul Hitchcock, pages 126-129, Volume 7

289

290 Advanced Graphic Techniques Ch. 13

Figure 13.4
An Empty Matrix

~NO O W N

Figure 13.5
The Letter S in a 7-Row by 5-Column Matrix

~Niojoli~iwiNn =

We can print the letter in high resolution graphics using the following fragment:

100 HGR:HCOILOR = 3

110 §% ="01110100011000001110000011000101110"
120 X=10:Y =10

130 GOSUB 1000

140 GOTO 9999

1000 REM -- SUBROUTINE TO PLOT ARRAY

1010 FORI=1TO7

1020 FORJ=1TOS5

Sec. 13.8

1030

1040
1050
1060
8999

Adding Text to Your Graphics

IF MID$(S$,(I — 1) *5 + J,1) = "1" THEN
HPLOT X + J, Y + I

NEXT J

NEXT |

RETURN

END

This fragment will produce the letter S in a matrix which has its top-left corner at
11,11 on the screen. Try it

It wou

Id be better yet if we could place this string in a random access file with a

record number that corresponds to its place in the ASCII coding system so that it can
be retrieved in a systematic way. This can be easily done once we decide on the extent
of our character set It is also important that we extract a continuous set of characters
from the character set (no gaps allowed) For example, if we decide to have all the
digits and the letters, our set must run from ASC(48) which corresponds to 0, to
ASC(90) which corresponds to Z

Assuming such a file is built, we can expand the program above to print any string
of characters on the high resolution screen as follows

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

1000

HGR: HCOLOR = 3
D$ = CHR$(4)
HOME: VTAB 22
PRINT "'ENTER CHARACTER STRING";
INPUT C$
PRINT "'ENTER COORDINATES OF PRINT LOCATION'
INPUT X,Y
FOR K = 1 TO LEN(C$%)
PRINT D$;"OPEN HIRES,L36"
C = ASC(MID$(C$,K,1)) — 47
PRINT D$;'READ HIRES,R";C
INPUT S$
GOSUB 1000
PRINT D$;'CLOSE HIRES'
X=X+7
NEXT K
GOTO 9999
(add subroutine above)

9999 END

This program fragment provides for the entry of a character string and the
selection of its printing location The string is then segmented and each character

291

292 Advanced Graphic Techniques

13.9

Figure 13.6
Graph Produced as Output by Combining
Graphics and Characters

oI

[l slricts

ANMUAL SALES

-1
«

au YERR

identified with a record number in line 190. The character data is retrieved from the file
in lines 200 and 210. Line 240 advances the printing position for printing the next
character.

It should be noted that this technique can be used to develop your own character
set or special symbols and logos. The Subroutine Library (Appendix B, page B24),
contains a program, which permits combining graphics and characters in a trial and
error fashion. All the Apple characters are available in a supporting data file A sample
of the output of this program (an annotated graph) is shown in Figure 13.6

APPENDIX

We are happy to acknowledge the assistance of Mr. William Detweiler of the Office of
Health Services Research of West Virginia University who provided the map coordi-
nates for West Virginia and Connecticut as well as some good advice

In preparation for the 1980 Census, the Bureau of the Census entered into
agreements with most of the fifty states for the creation of State Data Centers within
individual states to meet the need for the distribution of Census data If you are
interested in obtaining map coordinates for your state, you should contact the State
Data Center in your state A reference librarian in a college or public library should be
able to get the address of your state data center.

In this chapter, we have written as if there were but one set of coordinates for a
given state. The fact is, there are likely to be several sets of coordinates for any state.
Map coordinates provided by the Bureau of the Census are very precise and take into
consideration detailed boundary gyrations. As a result, many pairs of coordinates are
often required to draw each map. State Data Centers are likely to have alternative sets

Ch 13

Sec 139

Appendix

of coordinates that sacrifice some boundary detail in order to obtain a smaller number
of coordinates. These data sets are easier to work with and generally produce very
good results. When you get a set of map coordinates you should determine the
following before getting started:

1 Do the coordinates assume the plot origin to be in the upper lefthand corner
of the screen or the lower lefthand corner? Since the Apple assumes the plot
origin to be in the upper lefthand corner, you will have to change the sign in the
vertical function if the coordinates assume the opposite

2 Some map coordinates may come with the vertical (Y) coordinate first,
followed by the horizontal (X) coordinate. In such a case, you will have to
transpose them as you enter them into the program or adjust the READ
statement to read the Y coordinate first

3 Use the HIMEM: command to protect your program from accidental
catastrophe. This command specifies the highest memory location available to
your BASIC program including variable storage space. When your Apple is
powered up, Applesoft normally sets HIMEM: to the highest memory address
available. But this exposes some of your program to the risk of destruction by
execution of either HGR or HGR2 commands if the program is large enough to
extend into the area used for storage of high resolution graphics. Execution of
these commands causes the graphics storage area to be cleared to blank
perhaps destroying many statements Nothing can be more frustrating than to
spend hours entering coordinates only to have such an accident destroy much of
your work . If you have a 32k or 48k machine, we recommend that you use the
following:

HGR2
HIMEM: 16384

If you have a 16k machine, you will have to use

HGR
HIMEM: 8192

The value assigned to HIMEM: is not modified by the following commands: CLEAR, RUN,

NEW and DEL. Also please note that the colon is part of the name HIMEM:. You can cause the
Apple to display the value of HIMEM: by entering the following:

PRINT PEEK(116) * 256 + PEEK(115)

The printed value is a decimal.

293

APPENDICES

A ALGORITHMIC LANGUAGE SUMMARY A 1
B LIBRARY OF SUBROUTINES B 1
DATAFL 5 1
BUBBLE B 2
MEDIAN B 4
SIGMA B 5
XYSORT B 7
YXSORT B 8
PMCORR B10
MATADD B12
MATMUL B15
MATINV B17
SCIENTNOT B19
SIGNIFDIGIT B20
PRINT USING 521
CHARGEN Do
(C ASCI CODES C 1

D THE EDITOR AND CROSS-REFERENCE
TABLE GENERATOR D 1

ALGORITHMIC LANGUAGE
SUMMARY

VARIABLE DECLARATION

PURPOSE: to provide a means for the declaration of size and type of variables and
arrays. There are two variable types: numeric and string. Only arrays have size
declarations.

EXAMPLES

declare numeric X,Y,ALPHA, TABLE(20)
declare string NAME$
declare string LABELS$(20)

GENERIC INPUT STATEMENT

PURPOSE: to retrieve values for variables at run time. No input device is implied.

EXAMPLES

get(X,Y,ALPHA)
get(NAMES)

GENERIC OUTPUT STATEMENT

PURPQOSE: to display values of variables and constants on an output device.

EXAMPLES

put (X,Y,ALPHA)
put(" THE ANSWER IS’', ANSWER)

ARITHMETIC ASSIGNMENT STATEMENT

PURPOSE: to assign the value of the variable, constant or expression on the right
side of the replacement operator (‘«—') to the variable named on the left side.
EXAMPLES

AREA < Pl * RADIUS " 2
XY
AMOUNT «- 25

A1

A2

)

Appendix A

INITIALIZATION OF ACCUMULATORS AND
COUNTERS

PURPQOSE: to provide a means for initializing the values of accumulators and
counters.

EXAMPLES

set SUM to O
set COUNT to O
set LAST to 100

INCREMENT ACCUMULATORS AND COUNTERS

PURPOSE: to provide a means to increase or decrease the value of accumulators,
counters and constants.

EXAMPLES

increase SUM by AMOUNT
increase COUNT by 1
decrease BALANCE by AMOUNT

END OF PROGRAM MARKER

PURPOSE: to provide a means of marking the end of a program unit.

EXAMPLE
end.

START OF PROGRAM MARKER

PURPOSE: to mark the start of a program unit (main routine or subroutine) and to
name that unit.

EXAMPLES

MAIN:
SORT

HALT PROGRAM EXECUTION
PURPOSE: To end execution of a program.
EXAMPLE

stop

10

11

12

13

Algorithmic Language Summary

SIMPLE LOOPS

PURPOSE: to provide a means for a simple loop, the content of which is executed
repeatedly until the structure is exited
EXAMPLE

loop
.. block of statements . . .
end loop

LOOP EXIT
PURPOSE: to provide a means of exiting a loop.

EXAMPLE

break
if(condition) break

INDEXED LOOP
PURPOSE: to provide a facility for a repeating loop to be performed a specified
number of times with a structure index.

EXAMPLE

toop while COUNTER goes from START to STOP by STEP
.. . block of statements
end loop

NEXT LOOP ITERATION

PURPOSE: to cause the next iteration of a loop to be initiated immediately. If the
loop is indexed, the loop control variable is incremented and tested against its terminal
value immediately. If there is no loop index, control passes immediately to the logical
test

EXAMPLE

loop while INDEX goes from 1to 10
... statements
if(condition) next
. statements . .
end loop

A3

A4 Appendix A

14

15

16

SINGLE ALTERNATIVE DECISION STRUCTURE

PURPOSE: to provide for the execution of a block of statements if a condition is
true.
EXAMPLE

if(condition)

[... block of statements . ..

J

DOUBLE ALTERNATIVE DECISION STRUCTURE

PURPOSE: to provide for the execution of one block of statements if a logical
condition is true and another block of statements if the condition is false
EXAMPLE

if(condition)

[.. truetask ...

]
else
[. . falsetask .

]

MULTIPLE ALTERNATIVE DECISION
STRUCTURE

PURPOSE: to provide a process for selecting a single alternative from a series of
three or more. The multiple alternative decision structure, or the case structure as it is
sometimes known, is illustrated below:
EXAMPLE

select (SWITCH)

case 1| . . Dblock of statements ..

]
case 2.[. block of statements . . .|
case n: | block of statements . . |
default: [. . block of statements . . . |

Here SWITCH is a variable. Control is passed by the select statement to that case
block with the same value as SWITCH. If no case block with that value is present,
control passes to the default block. If SWITCH has a value with a fractional part, that
fractional part is truncated for use by the select statement. The value of SWITCH,

17

18

19

Algorithmic Language Summary

however, is not actually modified. Any number of case blocks may be present so long
as each has a distinct value.

FUNCTION DEFINITION

PURPOSE: to provide a pseudocode facility for defining a mathematical function.
EXAMPLE

define function H(X) = . . mathematical expression . .

Here His the function name and Xis a dummy argument or parameter variable_ lts value
is local to the function. See Section 6 4 for a more detailed treatment.

SUBROUTINES

PURPOSE: to provide a means of modularizing programs through the use of
subroutines
EXAMPLE
invoking a subroutine
call SORT:
subroutine
SORT.

return
end

FILE PROCESSING

PURPOSE: to provide a means for opening and closing files and reading from and
writing to them
EXAMPLES

to open a file:

open "DATAFILE” (1,DA,IN,recordsize=20 filesize=40)

where DATAFILE is the name of the file and 1 is a file identification number to be used in
subsequent read, write and close statements. Files may be direct access (DA) or
sequential access (SA) and input (IN) or output (OUT) The record size indicates the

A5

A6

Appendix A

maximum number of characters in each record and the file size indicates the maximum
number of records in the file.

to read from a file.

get 1(X)
specifies that a value should be retrieved from file number 1 for the variable X. The lack
of a pointer variable implies sequential access.

get 1:P (X)
épéciﬁ‘es that a value is to be retrieved for X from file number 1record P This specifies
random or direct access.

to close a file:
close 1

B LIBRARY OF SUBROUTINES

This library includes several subroutines that perform recurring tasks. Included with
each subroutine is a discussion of its purpose and usage. A complete listing and
sample main program which calls the subroutine are listed. The output of the main
program is displayed.

DATAFL

PURPOSE: DATAFL is a subroutine that generates a distribution of integers in a
specified interval. The distribution varies from flat to peaked at the center of the interval
depending upon the value of a parameter K. As K increases the distribution
approximates a normal distribution.

USAGE: In order that the DATAFL subroutine function properly, your main program
must dimension an array X{() to hold the data generated. It must also pass the number
of data elements to be generated, their maximum and minimum values, and a
parameter K which determines the degree of peaking about the center of the interval.
The distribution is flat for K = 1.

SUBROUTINE LISTING

8300 REM —- SUBROUTINE DATAFL 1-20-81
8310 REM —- INPUT VARIABLES: RO, R1, N, K
8320 REM ~- LOCAL VARIABLES: 1, J

8330 REM —— OUTPUT VARIABLES: X(I)

8340 FORI=1TON

8345 XH=0

8350 FORJ=1TOK

8360 X(1) = X(1) + RND (1)

8370 NEXT J

8375 X(1) = INT (X(1) * (R1 — RO + 1) / K) + RO
8380 NEXTI

8390 RETURN

8999 END

MAIN PROGRAM LISTING

100 REM -- MAIN PROGRAM (DATAFL)
110 REM —- INITIALIZE FOR 15 DATA ELEMENTS

B1

B2 Appendix B

120 DIM X(15)

130 PRINT "'ENTER SMALLEST DATA VALUE
140 INPUT RO

150 PRINT'ENTER LARGEST DATA VALUE
160 INPUT R1

170 PRINT "ENTER THE 'PEAKING' PARAMETER
180 INPUTK

180 N=15

200 REM -~ CALL SUBROUTINE

210 GOSUB 8300

220 REM -- PRINT OUTPUT

230 FORI=1TON

240 PRINT X()

250 NEXTI

260 GOTO 9999

TYPICAL OUTPUT

ENTER SMALLEST DATA VALUE ?3
ENTER LARGEST DATA VALUE ?17
ENTER THE 'PEAKING' PARAMETER 73

8

12
14
11
14
10
6

11
12
8

12
i3
10
i
12

BUBBLE

PURPOSE: The subroutine BUBBLE sorts a one-dimensional array (vector)
named X() into ascending order via the interchange method.

USAGE: Before the subroutine is called the array X() should be dimensioned and

Library of Subroutines

loaded with values. A variable named N should contain the value of the dimension of
X(). Upon return, the vector will be sorted in ascending order. Note that the original
vector will be lost so if it is needed in its original order, the programmer should copy it
into another array before the subroutine is called.

SUBROUTINE LISTING

8900 REM —- SUBROUTINE BUBBLE 12-1-80
8902 REM —— INPUT VARIABLES: X(), N

8904 REM —- LOCAL VARIABLES: |, 4, S

8906 REM -- OUTPUT VARIABLES: X() — SORTED
8910 FORI=NTO 2 STEP —1

8920 FORJ=1TOI — 1

8930 REM -~ IF X(J) > X(J + 1) THEN
8940 IF X(J) < = X(J + 1) THEN 8970
8950 S = X(J)

8955 X(J) = X(J + 1)

8960 XJd+1)=8

8965 REM —- ENDIF

8970 NEXT J

8980 NEXTI

8990 RETURN

9999 END

MAIN PROGRAM LISTING

100 REM -- MAIN PROGRAM (BUBBLE)
110 REM -- INITIALIZE

120 DIM X(15)

130 N= 15

140 REM —-—- LOAD ARRAY X()

150 FOR1I=1TON

160 READ X(I)

170 NEXTI

180 REM -- CALL SUBROUTINE

120 GOSUB 8300

200 REM -- PRINT OUTPUT

210 FORI=1TON

220 PRINT X(I)

230 NEXTI

240 REM -- DATA

250 DATA9,5,10,15,9,11,12,9,8,12,13,14,6,7,11
260 GOTO 9999

B3

B4 Appendix B

TYPICAL OUTPUT

©OOO~NO

10

11
12
12
13
14
i5

A ATITYT ANT

IVIE LI LAUN

PURPOSE: MEDIAN is a subroutine that computes the median value of an array of
numeric values. The array must already be sorted in ascending order. The subroutine
BUBBLE is available in the library for sorting arrays.

USAGE: In order that the MEDIAN subroutine function properly, your main program
should load an array called X() with the values from which the median is to be selected.
A variable N should be assigned a value equal to the number of items in X(). After
subroutine execution is completed, the variable M9 will contain the value of the median
of the array.

SUBROUTINE LISTING

9200 REM —- SUBROUTINE MEDIAN 12-5-80
9202 REM —- INPUT VARIABLES: N, X()
9204 REW —- LOCAL VARIABLES: i9

9206 REWM -- OUTPUT VARIABLES: M9, X()
9210 I9 =INT(N/ 2 + 1)

8220 MS = X(i9)

9230 REM -~ IF N IS EVEN THEN

9240 IFINT(N/2)*2 <> NTHEN 9270
9250 M9 = (X(19) + X(i19 — 1)) / 2

9260 REM —- ENDIF

9270 RETURN

9999 END

Library of Subroutines

MAIN PROGRAM LISTING

100 REM -~ MAIN PROGRAM (MEDIAN)

110 REM -~ INITIALIZE

120 DIM X(15)

130 N = 15

140 REM -- LOAD ARRAY X()

150 FORI=1TON

160 READ X(I)

170 NEXTI

180 REM —- CALL SUBROUTINE

190 GOSUB 9200

200 REM -- PRINT OUTPUT

210 FORI=1TON

220 PRINT X(I); SPC(2);

230 NEXTI

240 PRINT: PRINT

250 PRINT 'THE MEDIAN OF THIS ARRAY IS ;M9
260 REM -- DATA

270 DATA 4,5,8,8,9,9,9,9,9,10,10,11,12,12,14
280 GOTO 9999

TYPICAL OUTPUT
4 5§ 8 8 9 9 9 9 9 10 10 11 12 12 14

THE MEDIAN OF THIS ARRAY IS 9

SIGMA

PURPOSE: SIGMA is a subroutine that computes the mean of a series of numeric
values and the standard deviation using two separate algorithms, one for a population
and the other for a sample

USAGE: To use SIGMA, the array of values should already be in a vector named
X() and the variable N should be initialized to the size of X(). Upon return, the variable
M8 will contain the value of the mean of X{). S9 will contain the standard deviation for
X() assuming X() to be a population while S8 will contain the standard deviation of X()
assuming it to be a sample

SUBROUTINE LISTING

9100 REM —-- SUBROUTINE SIGMA 12-12-80
9102 REM -~ INPUT VARIABLES: N, X()
9104 REM —- LOCAL VARIABLES: I, S1, S2

BS

B6 Appendix B

9106 REM -— OUTPUT VARIABLES: M8, S8, S9
9108 S1-=0

9110 S2 =0

9120 FORi=1TON

9130 S1 =81+ X()

9140 82 = 82 + X(I) * X(1)

9150 NEXT!

9160 M8 =81 /N

2170 S92 = SQR(N*S82 — S1*81)/N

9180 S8 =SQR((N*S2 —S1*S1)/(N*(N — 1))
9190 RETURN

9989 END

MAIN PROGRAM LISTING
]

A TIRA
[AAV I 1 1] ?‘:‘%Lﬂ.gﬁk’g

ROGRAM (SIGMA)
110 REM —- INITIALIZE

120 DIM X(15)

130 N=15

140 REM —- LOAD ARRAY X
150 FORI=1TON

160 READ X(I)

170 NEXTI

180 REM —— CALL SUBROUTINE
190 GOSUB 9100

200 REM -—- PRINT OUTPUT
210 FORI=1TON

220 PRINT X(l); SPC(2);

230 NEXTI

240 PRINT : PRINT

250 PRINT 'THE MEAN OF THE ARRAY IS ";M8

260 PRINT

270 PRINT 'THE STANDARD DEVIATION IS ';S8;" (SAMPLE)"
280 PRINT

290 PRINT "THE STANDARD DEVIATION IS ';38;" (POPULATION

300 REM -— DATA
310 DATA9,5,10,9,11,12,9,14,8,10,9,8,9,12,4
320 GOTOC 99¢e

TYPICAL OUTPUT

9 5§ 10 9 11 12 9 14 8 10 9 8 9 12 4
THE MEAN OF THE ARRAY IS 8.26666667

THE STANDARD DEVIATION IS 2.54857569 (SAMPLE)

THE STANDARD DEVIATION IS 2.46215804 (POPULATION)

Library of Subroutines

XYSORT

PURPQOSE: The subroutine XYSORT is a tandem sort that uses the same algorithm
used in BUBBLE to sort the values of two vectors X() and Y{() on the value of X().

USAGE: Before the subroutine is called the arrays X() and Y{) should be
dimensioned and loaded with values. A variable named N should contain the limit of the
arrays. Upon return, the vectors will be sorted on X() in ascending order. Note that the
original vectors will be lost. If they are needed, the programmer should copy them into
another array before the subroutines are called.

SUBROUTINE LISTING

8900 REM —- SUBROUTINE XYSORT 2-20-81

8902 REM ~- INPUT VARIABLES: N, X(), Y()

8904 REM -~ LOCAL VARIABLES: S, |, J

8906 REM ~- OUTPUT VARIABLES: X(), Y() SORTED
8910 FORI=NTO 2 STEP —1

8915 FORJ=1TO0I - 1

8920 REM —- IF X(J) > X(J + 1) THEN
8925 IF X(J) < = X(J + 1) THEN 8980
8930 S = X(J)

8935 X(J) = X(J + 1)

8940 XJ+1)=8

8945 S =Y(J)

8950 YUJ)=Y(J + 1)

8960 YJ+1)=8

8970 REM —- ENDIF

8980 NEXT J

8985 NEXTI

8990 RETURN

9999 END

MAIN PROGRAM LISTING

100 REM —- MAIN PROGRAM (XYSORT)
110 REM —- INITIALIZE

120 DIM X(15), Y(15)

130 N=15

140 REM ~- LOAD ARRAY X

150 FORI=1TON

160 READ X(I)

170 NEXTI

180 REM —-- LOAD ARRAY Y

190 FORI=1TON

B7

B8 Appendix B

200 READ Y(I)

210 NEXTI

220 REM ~— CALL SUBROUTINE

230 GOSUB 8900

240 REM -- PRINT OUTPUT

250 PRINT "X VALUES'",'"Y VALUES"

260 PRINT

270 FORI=1TON

280 PRINT X(f),Y(l)

290 NEXTI

300 REM -- DATA

310 DATA9,5,10,9,11,12,9,14,8,10,9,8,9,12,4
320 DATA 24,12,25,20,30,29,23,33,18,23,23,14,20,28,10
330 GOTO 9999

TYPICAL OUTPUT
X VALUES Y VALUES
4 10
5 12
8 18
8 14
9 24
9 20
9 23
9 23
s 20
10 25
10 23
11 30
12 29
12 28
14 33
YXSORT

PURPOSE: The subroutine YXSORT is a tandem sort that uses the same algorithm
used in BUBBLE to sort the values of two vectors X() and Y() on the value of Y{)

USAGE: Before the subroutine is called the arrays X() and Y{) should be
dimensioned and loaded with values. A variable named N should contain the limit of the
arrays. Upon return, the vectors will be sorted on Y{) in ascending order. Note that the

Library of Subroutines

original vectors will be lost. If they are needed, the programmer should copy them into
another array before the subroutine is called.

SUBROUTINE LISTING

8900 REM -- SUBROUTINE YXSORT 2-20-81

8902 REM -- INPUT VARIABLES: N, X(), Y()

8904 REM -- LOCAL VARIABLES: S, I, J

8906 REM -- OUTPUT VARIABLES: X(}, Y() SORTED
8910 FORI=NTO 2 STEP —1

8915 FORJ=1TOI - 1

8920 REM —- IF Y(J) > Y(J + 1) THEN
8925 IFY(J) < =Y(J + 1) THEN 8980
8930 S=YW)

8935 YJ)=Y(J + 1)

8940 YJ+1)=8

8945 S = X(J)

8950 XWJ) =X(J + 1)

8960 XJ+1)=8

8970 REM —— ENDIF

8980 NEXT J

8985 NEXTI

8980 RETURN

9999 END

MAIN PROGRAM LISTING

100 REM -- MAIN PROGRAM (YXSORT)
110 REM -~ INITIALIZE

120 DIM X(15), Y(15)

130 N =15

140 REM -~ LOAD ARRAY X

150 FORI=1TON

160 READ X(1)

170 NEXTI

180 REM —- LOAD ARRAY Y

190 FORI=1TON

200 READ Y(l)

210 NEXTI

220 REM ~- CALL SUBROUTINE
230 GOSUB 8900

240 REM -~ PRINT OUTPUT

250 PRINT "X VALUES',"Y VALUES"
260 PRINT

B9

B10 Appendix B

270 FORI=1TON

280 PRINT X(8),Y(l)

290 NEXTI

300 REM -- DATA

310 DATA9,5,10,9,11,12,9,14,8,10,9,8,9,12,4

320 DATA 24,12,25,20,30,29,23,33,18,23,23,14,20,28, 10
330 GOTO 9999

TYPICAL OUTPUT
XVALUES Y VALUES
4 10
5 12
8 14
8 18
9 20
9 20
9 23
10 23
9 23
e 24
10 25
12 28
12 29
i1 30
14 33
PMCORR

PURPOSE: The subroutine PMCORR computes Pearson’s product moment corre-
lation coefficient for pairs of data values. Additionally, it computes the slope and
intercept of the best fit straight line using the method of least squares.

USAGE: Before the subroutine is called, two arrays X() and Y{) should be
dimensioned and loaded with pairs of data values. For example, X(1) and Y{1) will be
ireated as a pair. The variable N should be assigned the value of the size of X{) and Y{).
When control returns to the main program, R9 will have the value of the correlation
coefficient, A will have the value of the y-intercept, and B will have the value of the

slope

SUBROUTINE LISTING

9700 REM -- SUBROUTINE PMCORR 12-15-80
9702 REM -- INPUT VARIABLES: N, X(), Y()
9704 REM -- LOCAL VARIABLES: J, S1 THRU §7

9706
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9780
9790
9999

Library of Subroutines

REM —- OUTPUT VARIABLES: R9, A, B
REM -~ INITIALIZE
S1=0:82=0:83=0:84=0:85=0
FORJ=1TON

S1 =81+ X(J)

S2 =82 + Y(J)

S3 =S3 + X(J) * Y(J)

S4 =S4 + X(J) * X(J)

S5 =S5 + Y(J) *Y(J)
NEXT J
S6=N*S3 - S1*82
S7=SQR((N*S4 — S1*S1)*(N*S5 — S2 * §2))
R9 = S6 / §7
B-S6/(N*S4 — S1*81)
A=(S2 -B*S1)/N
RETURN
END

MAIN PROGRAM LISTING

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

REM —— MAIN PROGRAM (PMCORR)
REM —- INITIALIZE
DIM X(15), Y(15)
N=15
REM —— LOAD ARRAY X
FORI=1TON

READ X(1)
NEXT |
REM —— LOAD ARRAY Y
FORI=1TON

READ Y(l)
NEXT |
REM -- CALL SUBROUTINE
GOSUB 9700
REM —- PRINT OUTPUT
PRINT "X VALUES'",'"Y VALUES'
PRINT
FORI=1TON

PRINT X(1),Y(1)
NEXT |
PRINT
PRINT '"THE CORRELATION COEFFICIENT IS ;R9
PRINT

B11

B12 Appendix B

330 PRINT 'THE SLOPE OF THE LINE OF BESTFIT IS ;B

340 PRINT

350 PRINT 'THE Y INTERCEPT OF THE LINE OF BEST FITIS A
360 REM —- DATA

370 DATA 9,5,10,9,11,12,9,14,8,10,9,8,9,12,4

380 DATA 24,12,25,20,30,29,23,33,18,23,23,14,20,28,10
33C GOTC 9889

TYPICAL OUTPUT

X VALUES Y VALUES
9 24
5 12
10 25
Q 20
ii 30
12 29
9 23
14 33
8 18
10 23
9 23
8 14
9 20
12 28
4 10

THE CORRELATION COEFFICIENT IS .951306075
THE SLOPE OF THE LINE OF BEST FIT IS 2.47947217
THE Y INTERCEPT OF THE LINE OF BEST FIT IS —.843108763

MATADD

PURPOSE: MATADD is a subroutine that forms the sum or difference of two

L35 £ i |
manbeimmnn Af s arianl galiiaao
mauiCes Gi NuMmeEnca va!uCu

USAGE: In order that the MATADD subroutine function properly, your main
program must load and dimension two arrays A() and B(). An array C() must also be
dimensioned the same size but not loaded. These arrays must each have equal
numbers of rows and equal numbers of columns (though row numbers need not equal
column numbers). If subtraction is to be performed, the subtrahend must be selected
as matrix B() The subroutine will return the sum (or difference) matrix C() of the same
dimension as A() and B().

Library of Subroutines

SUBROUTINE LISTING

8800
8802
8804
8806
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
9999

REM -— SUBROUTINE MATADD 11-26-80
REM -- INPUT VARIABLES: M, N, A(), B()
REM -- LOCAL VARIABLES: O, I, J
REM -—- OUTPUT VARIABLES: C()
PRINT "OPTION 1 = ADDITION (A + B)"
PRINT "OPTION 2 = SUBTRACTION (A — B)"
PRINT "ENTER THE OPTION NUMBER ";
INPUT O
IF O <> 1 THEN 8865
FORI=1TOM

FORJ=1TON

C(1,J) = A(1,d) + B(l,J)

NEXT J
NEXTI
GOTO 8895
IF O <> 2THEN 8810
FORI=1TOM

FORJ=-1TON

C(l,J) = A(1,J) — B(l,J)

NEXT J
NEXTI
RETURN
END

MAIN PROGRAM LISTING

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

REM —- MAIN PROGRAM (MATADD)
REM —- INITIALIZE
DIM A(3,4), B(3,4)
M=3:N=4
REM ~- LOAD AND PRINT MATRIX A
PRINT 'MATRIX A" : PRINT
FORI=1TOM
FORJ=1TON
READ A(l,J)
PRINT A(l,J); SPC(3);
NEXT J
PRINT
NEXT I
REM —-- LOAD AND PRINT MATRIX B
PRINT : PRINT "MATRIX B" : PRINT
FORI=1TOM

B13

B14 Appendix B

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

460

FORJ=1TON
READ B(l,J)
PRINT B(I,J); SPC(3);
NEXT J
PRINT
NEXT |
PRINT
REM —— CALL SUBROUTINE
GOSUB 8800
REM —- PRINT OUTPUT
PRINT : PRINT "MATRIX C" : PRINT
FORI=1TOM
FORJ=1TON
PRINT C(1,J); SPC(3);
NEXT J
PRINT
NEXT |
REM —— DATA
DATA 1,2,3,1,2,3,4,2,1,2,1,0
DATA 1,220 143.1,134.2
GOTO 9999

TYPICAL OUTPUT
MATRIX A

1 2
2 3
1 2

3
4
1

O N =

MATRIX B

i 3
1 4
1 3

3 0
3 1
4 2

OPTION 1 = ADDITION (A + B)
OPTION 2 = SUBTRACTION (A — B)
ENTER THE OPTION NUMBER ?1

MATRIX C

NN
N O

a~NO
N W -

Library of Subroutines

MATMUL
PURPOSE. MATMUL is a subroutine that forms the product of two matrices of
numerical values

USAGE: In order that the MATMUL subroutine function properly, your main
program must dimension and load two arrays A() and B(). Matrix C() must also be
dimensioned but not loaded. These arrays are to be multiplied in the order A() * B(). To
perform a matrix multiplication the number of columns of A() must equal the number of
rows of B(). The program passes M (rows of matrix A()), N (columns of matrix A()) and
L (columns of matrix B()). The subroutine returns an M by L matrix called C()

SUBROUTINE LISTING

8700 REM -- SUBROUTINE MATMUL 1-25-81
8702 REM —- INPUT VARIABLES: M, N, L, A(), B()
8704 REM -- LOCAL VARIABLES: I, J, K

8708 REM —- OUTPUT VARIABLES: C()

8710 FORI=1TOM

8720 FORJ=1TOL

8730 CilJd)=0

8740 FORK=1TON

8750 C(1,J) = C(I,J) + A(L,K) * B(K,J)
8760 NEXT K

8770 NEXT J

8780 NEXT!

8790 RETURN

9999 END

MAIN PROGRAM LISTING

100 REM —-- MAIN PROGRAM (MATMUL)
110 REM -~ INITIALIZE

120 DIM A(3,4), B(4,3)

130 M=3:N=4:L =3

140 HOME

150 REM -- LOAD AND PRINT MATRIX A
160 PRINT "HERE IS MATRIX A" : PRINT
170 FORI=1TO M

180 FORJ=1TON

190 READ A(l,J)
200 PRINT A(l,J); SPC(2);
210 NEXT J

220 PRINT

B15

B16 Appendix B

230 NEXTI

240 REM ——- LOAD AND PRINT MATRIX B

220 PRINT : PRINT "HERE IS MATRIX B': PRINT
230 FORI=1TON

240 FORJ=1TOL

250 READ B(i,J)

260 PRINT B(i,J); SPC(2);
270 NEXT J

280 PRINT

290 NEXTI

300 REM -- CALL SUBROUTINE

310 GOSUB 8700

320 REM -~ PRINT OUTPUT

330 PRINT : PRINT "HERE IS THE PRODUCT MATRIX": PRINT
340 FOR!=1TOM

350 FORJ=1TOL

360 PRINT C(1,J); SPC(2);
370 NEXT J

380 PRINT

390 NEXTI

400 REM —— DATA

410 DATA 1,2,3,1,2,3,4,2,1,2,1,0
420 DATA 1,3,3,0,1,4,3,1,1,3,4,2
430 GOTO 9999

TYPICAL OUTPUT
HERE IS MATRIX A

1 2 3 1
2 3 4 2
1 2 1 0

HERE IS MATRIX B

W WO =
N)
N - W

HERE IS THE PRODUCT MATRIX

13 12 16
20 21 26
4 6 12

Library of Subroutines

MATINV

PURPOSE: MATINV is a subroutine that computes the inverse of a square matrix
of numerical values

USAGE: In order that the MATINV subroutine function properly, your main program
should dimension and load a square array called A(). An array C() of the same size as
A() must also be dimensioned. The subroutine returns the matrix C() as the inverse Not
every matrix has an inverse. If the subroutine returns a divide by zero error message
during execution, your matrix inverse probably does not exist.

SUBROUTINE LISTING

8400 REM -- SUBROUTINE MATINV 11-28-80
8402 REM —- INPUT VARIABLES: M, A()

8404 REM -- LOCAL VARIABLES:R, S, |, J
8406 REM -— OUTPUT VARIABLES: C()

8410 FORI=1TO M

8415 FORJ=1TOM

8420 C(L,J) = A(1,J)
8425 NEXT J
8430 NEXTI

8435 FORI=1TO M
8440 R = C(l,})
8445 FORJ=1TOM

8450 IF J = I THEN 8465
8455 CilJy)=C(l,J)/R
8460 GOTO 8470

8465 ClJ)=1/R

8470 NEXT J
8472 FORJ=1TOM

8474 IF J =1 THEN 8490

8476 S=-CW,)

8478 FORK=1TOM

8480 IF K = I THEN 8486

8482 C(J,K) = C(L,K) * S + C(J,K)
8484 GOTO 8488

8486 CJ.K)=C(,K)*S

8488 NEXT K

8490 NEXT J

8492 NEXTI

8494 RETURN
9999 END

B17

B18 Appendix B

MAIN PROGRAM LISTING

100 REM ~- MAIN PROGRAM (MATINV)
110 REM -- INITIALIZE

120 DIM A(3,3)

130 M =3

140 HOME

150 REM -~ LOAD AND PRINT MATRIX A
155 PRINT "HERE IS MATRIX A": PRINT
160 FORi=1TO M

170 FORJ-=1TOM

180 READ A(l,J)

190 PRINT A(l,J); SPC(2);
200 NEXT J

210 PRINT

220 NEXTH

230 PRINT

240 REM -- CALL SUBROUTINE

250 GOSUB 8400

260 REM -— PRINT OUTPUT

270 PRINT "HERE IS THE INVERSE OF MATRIX A"
280 PRINT

290 FORI=1TOM

300 FORJ=1TOM

310 PRINT C(l,J); SPC(2);
320 NEXT J

330 PRINT

340 NEXTI

350 REM -- DATA
360 DATA 1,3,3,1,4,3,1,3,4
370 GOTO 9999

TYPICAL OUTPUT
HERE IS MATRIX A

HERE IS THE INVERSE OF MATRIX A
7 -3 -3
-1 1 o
-1 4] i

Library of Subroutines B19

SCIENTNOT

PURPOSE: SCIENTNOT is a subroutine that places any input number into
standard scientific notation (one digit to the left of the decimal point multiplied by a
power of ten)

USAGE:

In order that SCIENTNOT function properly, you must pass the number to

be placed in scientific notation as a string. The subroutine will return the original string
under a new name and a new number string (in scientific notation) with the original

name
SUBROUTINE LISTING
9500 REM —- SCIENTNOT 8-2-80
9502 REM —- INPUT VARIABLES: NUM$
9504 REM —~- LOCAL VARIABLES: P, EX$, NUM, M
9506 REM —- OUTPUT VARIABLES: SNUM$, NUM$
9510 SNUMS$ = NUM$
9515 NUM = VAL (NUM$)
9520 NUMS$ - STRS (NUM)
9525 REM —- IF NUMBER IS ALREADY EXPONENTIAL, QUIT
9530 IF (999999999 — ABS (NUM)) * (ABS (NUM) — .01) < O THEN
9585
9535 M =1
9540 FORP = -2TO8
9545 IF ABS (NUM) < .1 * M THEN 9560
9550 M=M*10
9555 NEXTP
9560 NUM = NUM * 100 / M
9565 EX$ ='"0" + STR$ (ABS (P))
9570 IFP > —1 THEN EX$ = "E+" + EX$: GOTO 9580
9575 EX$ ="E—" + EX$
9580 NUM$ = STR$ (NUM) + EX$
9585 RETURN
9999 END
MAIN PROGRAM LISTING
100 REM —- MAIN PROGRAM (SCIENTNOT)
110 PRINT "'ENTER THE NUMBER TO BE PLACED"
120 PRINT "IN SCIENTIFIC NOTATION
130 INPUT NUM$
140 REM —-- CALL SUBROUTINE
150 GOSUB 9500

160

REM —- PRINT RESULT

B20 Appendix B

170 PRINT

180 PRINT "HERE IS THE NUMBER ";SNUM$
190 PRINT "IN SCIENTIFIC NOTATION: ";NUM$
200 GOTO 9999

TYPICAL OUTPUT

ENTER THE NUMBER TO BE PLACED
IN SCIENTIFIC NOTATION 7561.3

HERE IS THE NUMBER 561.3
IN SCIENTIFIC NOTATION: 5.6 13E+02

SIGNIFDIGIT
PURPOSE: SIGNIFDIGIT is a subroutine that places any input number into

standard scientific notation with a specified number of significant digits.

USAGE: In order for this subroutine to function properly, you must pass the number
as a string The number of significant digits is passed as a numerical variable. You must
also merge the subroutine SCIENTNOT with your program since it is called by this
subroutine. This subroutine returns the original string as SNUM$ and the new string
under the original name.

SUBROUTINE LISTING

9400 REM —- SUBROUTINE SIGNIFDIGIT 8-1-80

9402 REM -~ INPUT VARIABLES: NUMS$, SIGD

9404 REM -- OUTPUT VARIABLES: NUM$, SNUM$

9410 REM —- PLACE NUMBER IN SCIENTIFIC NOTATION
9415 GOSUB 9500

9420 EX$ = MID$ (NUMS, LEN (NUM$) — 3,4)

9425 NUMS$ = MID$ (NUMS, 1, LEN (NUMS$) — 4)

9430 NUM = VAL (NUMS$)

9435 NUM = INT (NUM * 10~ (SIGD — 1) + .5) / 10" (SIGD —1)
9440 NUMS$ = STRS$ (ABS (NUM))

9445 REM —-- ADD ZEROES AS NEEDED

S450 IF LEN (NUMS) > = SIGD + 1 THEN 8430
9455 IF SIGD = 1 THEN 9480

9460 IF LEN (NUM$) — 1 THEN NUM$ = NUM$ + "
9465 NUM$ — NUMS + "0’

9470 IF LEN (NUMS$) < SIGD + 1 THEN 9465

9475 REM -- CONCATENATE AND PRINT

9480 IF NUM < O THEN NUMS$ = '—' + NUM$

Library of Subroutines

9485 NUM$ -~ NUM$ + EX$
9490 RETURN
9999 END

MAIN PROGRAM LISTING

100 REM —-- MAIN PROGRAM (SIGNIFDIGIT)

110 REM —- PROMPT FOR NUMBER

120 PRINT "ENTER THE NUMBER TO BE PLACED"
130 PRINT "IN SCIENTIFIC NOTATION %

140 INPUT NUM$

150 PRINT

160 PRINT 'NOW ENTER THE NUMBER OF SIGNIFICANT"
170 PRINT 'DIGITS

180 INPUT SIGD

190 REM -~ CALL SUBROUTINE

200 GOSUB 9400

210 REM —- PRINT OUTPUT

220 PRINT

230 PRINT "THE NUMBER (;SNUMS$;") WRITTEN IN"
240 PRINT 'SCIENTIFIC NOTATION WITH ";SIGD
250 PRINT "SIGNIFICANT DIGITS IS ";NUMS$;"."
260 GOTO 9999

TYPICAL OUTPUT
ENTER THE NUMBER TO BE PLACED
IN SCIENTIFIC NOTATION ?546.2

NOW ENTER THE NUMBER OF SIGNIFICANT
DIGITS ?5

THE NUMBER (546.2) WRITTEN IN
SCIENTIFIC NOTATION WITH 5
SIGNIFICANT DIGITS IS 5.4620E +02.

PRINT USING

PURPOSE: PRINT USING is a subroutine that produces numerical output in a
prescribed format. The output can include character data.

USAGE: In order that PRINT USING function properly, you must have established
the print image in a character string called PU$. Within PU$, locations for number
images must be indicated by the symbol "#". The number of numerical images in the

B21

B22 Appendix B

string (N) and an array (NP(N)) containing the data to be printed in the image must also
be passed to the subroutine.

SUBROUTINE LISTING

8600 REM —- SUBROUTINE PRINTUSING 2-19-81
8602 REM —- INPUT VARIABLES: PU$, NP(N), N
8604 REM —- LOCAL VARIABLES: L,R, S, X, Y, S$
8606 REM —— OUTPUT VARIABLES: N$

8610 N$=""S=0

8612 FORJ=1TON

8614 L=0O:R=0

8616 X = NP(J):Y = INT (X)

8618 FORI =S + 1 TO LEN (PU$)

8620 S$ = MID$ (PUS,I,1)

882z iF 8% = "#"THEN GOSUR 8672: GOTO 8830
8624 N$ = N$ + S$

8626 NEXT |

8628 REM —— ADJUST PARAMETERS

8630 l=I+L+RS=1-1TR=R—-1

8632 REM —— CHECK FOR OUT OF BOUNDS

8634 iF LEN (STRS (ABS (Y))) < = L THEN 8640

8636 X$ ="E?": GOTO 8664

8638 REM —— SKIP ROUNDING OF INTEGERS

8640 IF X = Y THEN 8646

8642 REM —— ROUND AND TRUNCATE

8643 IFR<OTHENX = INT((X * 10 + 5)/10: GO TO 8646
8644 X=INT(X*10"R +.5)/ 10"R

8646 X$ = STR$ (X)

8648 REM -- ADJUST FOR SPECIAL VALUES

8650 IF X =0AND R > O THEN X$ = X$ + ".": GOTO 8660
8652 IFX*(X — 1) <OANDR >0 THEN X$ = "0" + X$
8654 IFX*(X+ 1) <OANDR >0 THEN X$ ="-0" + STR$ (ABS (X))
8656 IF VAL (X$) = Y AND R > O THEN X$ = X$ + "

8658 REWM —— PAD ZEROES

8660 IF LEN (X$) — LEN (STR$ (Y)) — 1 > = RTHEN 8664
8662 X$ = X$ + "0": GOTO 8660

8664 Z$ = MIDS (BS,1,! — 1 — LEN(X$) — LEN (NS))
8666 N$ =N$ + Z$ + X$

8668 NEXT J

8670 PRINT N$: GOTO 8694

8672 FORL = 1 TO 20: REM ~— LOOP TO FIXL

8674 S$ = MID$ (PUS,I + L,1)

8676 IF S$ ="#" THEN 8682

867
868
868
868
868
868
869
869

Library of Subroutines

8 IF S$ ="." THEN GOSUB 8686

0o GOTO 8684

2 NEXTL

4 RETURN

6 FORR = 1TO 20: REM -~ LOOP TO FIXR
8 S$ = MID$ (PUS,I + L + R,1)

0 IF S$ < > "#" THEN RETURN

2 NEXTR

8694 RETURN
9999 END

MAIN PROGRAM LISTING

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
SHHEHE
380
390

REM ——- MAIN PROGRAM (PRINT USING)
REM —- INITIALIZE

HOME

B$ — [}

READ PU$

REM —- PRINT HEADING

PRINT "HERE IS THE INPUT STRING:'

PRINT : PRINT PU$

PRINT : PRINT "AND THE OUTPUT"

PRINT

PRINT" NO. BALANCE PAYMENT INT BALANCE'
PRINT

READ N,NP(1),NP(2),NP(3)

FORM = 1TO 20
NP(4) = INT (NP(2) * .08 / 12 * 100 + .5) / 100
IF NP(2) + NP(4) > = NP(3) THEN 290"
NP(3) = NP(2) + NP(4)
NP(5) = O
GOTO 300
NP(5) = NP(2) + NP(4) — NP(3)
REM -- CALL SUBROUTINE
GOSUB 8600
IF NP(5) = O THEN 390
NP(1) = NP(1) + 1
NP(2) = NP(5)
NEXT M
REM —- DATA
DATA" ## SH#BEHH.BH HEL.HE H#HEHH#

HH
DATA 5,1,4600,480
GOTO 9999

B23

B24 Appendix B

TYPICAL OUTPUT
HERE IS THE INPUT STRING:

Hi SHHHR.HHE HIEBLEBEH HBEHE SHHEBH.HH

AND THE OUTPUT:
NO. BALANCE PAYMENT INT BALANCE

1 $4600.00 480.00 30.67 $4150.67
2 $4150.67 480.00 27.67 $3698.34
3 $3698.34 480.00 24.66 $3243.00
4 $3243.00 480.00 21.62 $2784.62
5 $2784.62 480.00 18.56 $2323.18
6 $2323.18 480.00 15.49 $1858.67
7 $1858.67 480.00 12.39 $1391.06
8 $i1391.06 480.00 9.27 % 9$20.33
9 $ 920.33 480.00 6.14 $ 446.47
10 $ 446.47 449.45 298 $ 0.00
CHARGEN

PURPOSE: The subroutine CHARGEN permits the addition of text to graphic
images using a trial and error method of formatting.

USAGE: Before the subroutine is called the graphics to be annotated should be
prepared in a subroutine beginning at line 7000.

SUBROUTINE LISTING

6000 REM -- CHARGEN 2-25-81

6010 REM -- INPUT VARIABLES, C$, M, S

6020 REM -- LOCAL VARIABLES, C(40), D$, M1(40,4), S$(20)
6025 REM RS, AS, I, J, K, Q, X1, Y1, X2
6030 REM -- OUTPUT VARIABLES, GRAPHICS ONLY

6040 REM ~~ INITIALIZE

6050 DIM C(40), M1(20,4), S$(20)

6060 D$ — CHRS$(4)

6070 PRINT 'DO YOU NEED DIRECTIONS (Y/N)

6080 INPUT R$

6090 IF R$ ="Y' THEN GOSUB 6500

6100 REM -- DRAW GRAPHICS TO BE ANNOTATED

6110 GOSUB 7000

6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6500
6502
6504
6506
6508
6510
6512
6514
6516
6518
6520
6522

Library of Subroutines

REM ~~ SELECT LOCATION FOR CHARACTER DATA
GOSUB 6600
REM -- ENTER CHARACTER DATA AND DRAW
GOSUB 6700
REM -— GIVE OPTION TO ERASE
PRINT 'DO YOU WANT TO CHANGE THIS (Y/N)
INPUT R$
IF R$ = "N" THEN 6240
PRINT "WE ERASE AND START OVER"
HCOLOR = 0:X0 = M1(Q,1):YO=M1(Q,2: @ = Q — 1
GOSUB 6720
X0 = 0: YO = 0: HCOLOR = 3:GOTO 6120
PRINT "WILL YOU ENTER ADDITIONAL TEXT (Y/N) "
INPUT R$
IF R$ = "Y' THEN X0 = 0:YO = 0:GOTO 6120
REM ~- REDRAW GRAPHICS
TEXT : HOME
PRINT "NOW WE REDRAW THE FIGURE -
FORJ = 1TO 1000: NEXT J
HGR: HCOLOR = 3
GOSUB 7000
REM —— REDRAW TEXT
FORN=1TOQ
C$ = S$(N):X0 = M1(N,1):YO = M1(N,2)
M = M1(N,3):S = M1(N,4)
GOSUB 6720
NEXT N
VTAB 22: PRINT 'TO SAVE THIS ENTER --"
PRINT "'BSAVE NAME,A$2000,L$2000"
RETURN
REM -- PROGRAM INSTRUCTIONS
HOME
PRINT 'FEATURES OF THIS PROGRAM ARE:"
PRINT : PRINT " 1. ALL CHARACTERS ON THE APPLE'
PRINT" KEYBOARD ARE AVAILABLE (EXCEPT"
PRINT" THE COMMA).": PRINT
PRINT" 2. THREE MODES OF PRINTING ARE"
PRINT" AVAILABLE WITH SINGLE OR'
PRINT" MULTIPLE CHARACTERS."
PRINT : PRINT" 3. SIZE OF FIGURES CAN BE SCALED."
PRINT : PRINT 'PRESS ANY KEY TO CONTINUE"
GET A$: IF A$ = "" THEN 6530

B25

B26 Appendix B

6524
6526
6528
6530
6532
6534
6536
6538
6540
6542
6544
6546
6548
6550
6552
6554
6556
6558
6560
6600
6602
6604
6606
6608

HOME

PRINT "PRINTING MODES:": PRINT
PRINT "MODE 1 - HORIZONTAL E.G '123"
PRINT : PRINT "VERTICAL DOWN E.G. 1"

PRINT" 2"

PRINT " 3

PRINT : PRINT "MODE 3 — READING UPWARD'
PRINT

PRINT "USE THE NORMAL CURSOR KEYS TO MOVE THE'
PRINT 'DOT WHICH APPEARS IN THE UPPER LEFT"
PRINT "CORNER OF THE SCREEN. POSITION THE"
PRINT 'DOT WHERE THE FIRST CHARACTER IS TO BE'
PRINT "PRINTED. THEN PRESS 'S' AND ENTER THE'
PRINT "CHARACTER(S) TO BE PRINTED."

PRINT : PRINT "WRITE SOME TEXT iN EACH MODE"
PRINT IN THE BOX WHICH IS DRAWN."

PRINT "PRESS ANY KEY TO CONTINUE."

GET A$: IF A$ - "" THEN 6558

HOME : RETURN

REM ——- MOVE TO PRINT POSITION

HPLOT 0,0

VTAB 22

PRINT "NOTE THE DOT IN THE UPPER LEFT CORNER."
PRINT "MIOVE TO THE PRINT POSITION NOW."

6610 PRINT "PRESS 'S' TO STOP.'

6612
6614
6616
6618
6620
6622
6624
6626
6628

ocenn

O

6632
6700
6702
6704
6706
6708
6710

FORI=1TO 1000
GET A$: IF A$ = ""THEN 6614
HCOLOR = 0: HPLOT X0,Y0
IF A$ — "S' THEN HPLOT X0,YO: HCOLOR = 3: GOTO 6632
iF A$ = "M" THEN YO = YO + 1
IFA$ = I'"THEN YO = YO — 1
IF A$ = "K"THEN X0 = XO + 1
IF A$ = "J' THEN XO = XO — 1
HCOLOR = 3: HPLOT X0,YO
NMEXT!
RETURN
REM -- CHARACTER SELECTION AND DRAWING
PRINT "ENTER THE CHARACTER(S) TO BE PRINTED"
INPUT C$
Q=Q + 1:5%(Q) = C$
PRINT "IN WHAT MODE (1, 2, OR 3)}
INPUT M

6712
6714
6716
6718
6720
6722
6724
6726
6728
6730
6732
6734
6736
6738
6740
6742
6800
6802
6804
6806
6808
6810
6812
6814
6816
6818

6820
6822

6824
6826
6828
6830
6832
6834
6836
6838
7000
7005
7010
7020
7030
9999

Library of Subroutines

PRINT "ENTER SCALE (1 = NORMAL, 2 = DOUBLE,"
PRINT "AND SO ON.";
INPUT S
M1(Q,1) = XO:M1(Q,2) = YO:M1(Q,3) = M: M1(Q,4) = S
FORK =1TOLEN(CS)
PRINT D$;"OPEN HIRES,L36"
C(K) = ASC (MID$ (C$,K,1)) —31
PRINT D$;"READ HIRES,R"C(K)
INPUT NS
GOSUB 6800
IFM=1THENXO=X0+7*S$S
IFM=2THENYO=Y0 +8*S
IFM=3THENYO=Y0 -6*S
PRINT D$; "CLOSE HIRES"
NEXT K
RETURN
REM -~ DRAWING SUBROUTINE
FORI=1TO7
FORJ=1TO5
IFM < > 3 THEN 6822
IF MID$ (N$,5 * (1—1) + J,1) = "0" THEN 6834
FORII=1T0S
X1=X0+S*LEY1=Y0O-S*J—1l +1
X2=X0+S*I+S~—1
HPLOT X1,Y1 TO X2,Y1
NEXT Hl
GOTO 6834
IF MID$ (N$,5 *(1 — 1) + J,1) = "0' THEN 6834
FORII=1TOS
X1=X0+J*S:Y1=YO+I1*S +1l — 1
X2=X0+J*S+8 -1
HPLOT X1,Y1 TO X2,Y1
NEXT ll
NEXT J
NEXT I
RETURN
REM —-- GRAPHICS SAMPLE
HGR: HCOLOR =3
HPLOT 50,20 TO 150,20 TO 150,140
HPLOT 50,20 TO 50,140 TO 150,140
RETURN
END

B27

B28 Appendix B

MAIN PROGRAM LISTING

100 REM —-— MAIN PROGRAM (CHARGEN)
110 REM —- CALL SUBROUTINE

120 GOSUB 6000

130 GOTO 9999

TYPICAL OUTPUT
(NONE SHOWN)

C ASCII CODES

Below we present ASCIl codes for the characters and functions most likely to be
useful

ASCII CODE Apple PET TRS-80

00

01

02

03

04

05

06

07 Bell

08 Backspace Backspace

09

10 Line feed Line feed

11

12 Form feed Form feed

13 Return Return Return

14 Turn on cursor

15 Turn off cursor

16

17 Cursor down

18 Reverse screen

19 Cursor home

20 Delete

21

22

23

24 Cursor left

25 Cursor right

26 Cursor down

27 Escape Cursor up

28 Cursor home

29 Cursor right Cursor to left
end of line

C2 Appendix C

ASCII Code Apple PET TRS-80
30 Erase to end of line
31 Clear to end

of frame

32 Space Space Space

33 ! ! !
34 " " v
35 # # #
36 $ $ $
37 % % %
38 & & &
39 ' ' '
40 (((
41))
AD * * *
43 + + +
44 ' ' '
45 - - -
46 . . .
47 / / /
48 0 0 0
49 1 1 1
50 2 2 2
51 3 3 3
52 4 4 4
53 5 5 5
54 6 6 6
55 7 7 7
56 8 8 8
57 9 9 9
58 : :
59 . ; ;
60 < < <
61 = = =
62 > > >
63 ? ? ?
64 @ @ @
65 A A A
66 B B B
67 C C C
68 D D D

ASCIl Codes

ASCII Code

Apple

PET

TRS-80

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
145
146
147
157

—~N<X<XS<CHOLWIDIOTUTVOZZIr- X —TOTM

Back slash

I

~

Underscore

—NXXS<CHOWIDIOUVOZZErXcec —IOTM

J

Left arrow
Cursor up
Reverse off
Clear screen
Cursor left

N<XXS<CHOWIDIOUTVTOZErXe—TOTm

Cursor up
Cursor down
Cursor left
Cursor right
Underscore

C3

D THE EDITOR AND CROSS.-

REFERENCE TABLE GENERATOR

In this appendix we describe two programs, mentioned several times in text, that
we recommend for use in documenting your programs They are available on diskette
from the authors. One produces a formatted listing of a program and the other creates
a cross-reference table of the variables used in a program.

EDITOR

The EDITOR makes a formatted list of your program. It indents the contents of
FOR-NEXT loops and does a page turn after every sixty lines. To run the EDITOR do
the following:

1 Load your program.

2 Save your program under the name XSOURCE on a disk which also contains
the EDITOR software.

3 Enter EXEC EDITOR.

Note that you do not use the RUN command but rather the EXEC command. While the
EDITOR is running, a number of Applesoft prompts will appear on the screen and the
disk drive will be intermittently active Be sure that a printer controller board is installed
in slot number one and that the printer is turned on and ready to go before entering
EXEC EDITOR

CROSS-REFERENCE TABLE GENERATOR

The cross-referefice table generator works like the editor. Follow these three
steps:

1 Load your program.

2 Save your program under the name XSOURCE on a disk which also contains

the cross reference generator software,

3 Enter EXEC CROSSREF

This program will take several minutes to run. While it is running Applesoft
prompts will appear on the screen and the disk drive will be intermittently active. The

D1

D2

Appendix D

program will prompt for a choice of hardcopy or not. If you select the hardcopy option,
be sure the printer is ready to run. When you choose hardcopy the output will be about
eighty columns wide. When you do not select hardcopy, the output will fit on the forty
column screen. You may have to use CTRL/S to slow down screen output.

Both the editor and the cross-reference table generator work on the same
principle. They first capture your program as a text file and then process it. Thus, you
can produce a second edited listing by merely entering: RUN EDIT. This is adequate
because the text file has already been created. So too, if you want a cross-reference
table for a file just processed by the editor, merely enter: RUN XREF. Both programs
assume that the printer controller board is in slot one If it is not, change the
program.

INDEX

ABS, 92
Accumulator, 60-62
Algorithm, 39
Algorithmic language, 40
Algorithmic language summary, A1
ALU, 6
APPEND, 232
Append files, 232
Apple error codes, 231
Arithmetic assignment statement, 21
Arithmetic logic unit, 6
Arithmetic operations, 24
array
as an accumulator, 117-118
declaration, 114
defined, 109
one-dimensional, 1156
sorting, 118-121
two-dimensional, 124-26
ASC, 138
ASCII codes, C1
coding system, 135

Bad data checking, 156

Bar graphs, 198-200, 202-204
BASIC, 1, 6, 19

BLOAD, 285

Break, 56
BSAVE, 284
Bubble sort, 154
Bug, 161

Byte, 3

Case structure, 174-179

Central processing unit, 3

Character data, 135

CHRS$, 137. See also Function

CHRS$ (147), 15, 139

CHR$(4), 228

CLEAR, 142

CLOSE, 228-229

Closing files, 228-229

CLS, 15, 139

Coding
definition, 39, 45
mathematical functions, 101-102
rules, 103

COLOR, 205-206

Comma, 28

Complements to relational operators, 58

Computer, 19

Concatenation of string, 141

Conditional transfer, 81

Control structure, 66

I1

12 Index

Control unit, 3

Counter, 59-60

CPU, 3

Crash, 244-248

Cross-reference table, 49
Cross-reference table generator, D1
Cursor, control, 9-10, 10-11

DATA, 23
Debugging, 161
techniques, 179-185
Decimal point alignment, 149-150
Decision structure

doubie aiternative, 65
multiple alternative, 174
single alternative, 66
Default value, 87
for step size, 75
DEL, 31
DELETE, 32
Dependent statement, 57
DiM, 114
Divisibility test, 92
Documentation
definition, 48
external, 48
internal, 48
DOS, 228
Dummy variable, 98

EBCDIC, 135

Editina. 31-34

Error codes (Apple), 231
Errors typology, 161

Field, 27-28
Files, 228
definition, 225-226

direct access, 234-239
PET, 240-244, 248-249

sequential access, 227-234

TRS-80, 249-250
FIX, 91
FOR-NEXT loop
definition, 756
for summation, 78
to calculate area, 82
transfer from, 81
FRE (0), 11
Function
ABS, 92
argument of, 89
as a processor, 89
ASC, 138
built-in, 89
CHRS, 137
definition, 89
FiX, 91
INT, 80
LEFTS, 143-145
LEN, 142
MID$, 143-145
modifying output, 90
returned value, 89
RIGHTS, 143-145
RND, 93-97
SEGS$, 144
SQOR, 89
STR$, 150
user-defined, 97-100

\Y Y. 9] -4
VAL, 101

GOSUB, 172

GOTO, 54

GR, 205-205

graphic image
adding text, 289-292
loading, 285
printing, 286-288
saving, 284

Hardware, 8

HCOLOR, 211-212

HGR, 211-212

HGR2, 215

Hierarchy of operations, 256
High resolution graphics, 211-215
Higher level language, 6, 19
HLIN, 207

HOME, 15, 139

HPLOT, 211-212

HTAB, 207

Human-computer interface, 5

IF-THEN, 55
Immediate mode, 8
Implied operations, 101
Indexed loop, 73-87
INPUT, 22, 230, 243,
files, 230, 243
validation, 155-156
Input-output, 3
INT, 90

Keyword, 20
Kilobyte, 3-4

LEFTS$, 143-145
LEN, 142
LET, 22
Line feed, 28
Logical expression, 57
Loop index, 73
Loop
definition, 53
exit, 56
nested, 120
simple, 53, 56
Low resolution graphics, 204-210
Lower case, 157-159

Index

Machine language, 7
Mapping
computer, 273-276
coordinate file, 276-278
program, 279-284
Matrix
addition, 127
definition, 115
identity, 129
inversion, 129
multiplication, 127-129
Median, 121-123
MEM, 11
Memory, 3
Microprocessor, 2
MIDS$, 143-145
Midrange, coordinates, 278-279
Model
definition, 253
Leontief, 254-257
pasture ecosystem, 257-260
Monte Carlo method, 96-97, 108
Monte Carlo simulation, 268-271
MUBASIC, 138, 144

Nested loop, 120

NEW, 20

NOTRACE, 184

Null string, 141-142

Numeric input and output, 104-105

ON GOSUB, 175

ON GOTO, 175

ONERR GOTO, 230

OPEN (files), 228, 235, 240-241

Operators, arithmetic, 24
relational, 57

Order exploding, 130-132

13

Index

Parameter variable, 98
PEEK, 231
PLOT, 205
POKE, 158-159
Primitive operation, 40
PRINT, 26
PRINT @, 210, 223
Print image, 195-196
PRINT TAB, 192-195
Program, b

blocks, 167-170

mode, 7

structure, 162-166
Programming, 37
Prompt, 9-1i0
Pseudocode, 40
Punctuation, 27

RAM, 3

Random access memory, 3
Random integers, 95
Random words, 151-154

READ, 23
READ (files), 230
Read-only memory, 8
Real time displays, 220-221
Record

logical, 225

physical, 226
Relational operators, 57
REM, 34
Remark, 34
Raserved word 21
RESET, 134, 210
RESTORE, 123-124
RETURN, 172
RIGHTS, 143-145
RND, 93-97
ROM, 8
Rounding, rules for, 91

Scientific notation, 104, 217-219
Screen
characteristics, 13-15
editing, 31-34
grid, 8
Scrolling, 10
SEGS$, 144
Semicolon, 28
SET, 209-210
Significant digits, 216, 219-220
Simulation
definition, 253
genetics, 266-268
inventory, 268-271
Okun’s Law, 261-205
Soft switches, 286
Software, 8
Sorting
numbers, 118-121
strings, 154-155
SQR, 89
ST, 244
Statement, 20
Statement number, 20
STRs$, 150
String
assignment, 139
comparison, 140-141
concatenation, 141
constant, 136
functions, 137
length determination, 141-142
variable, 136
Structured programrming, 166-167
Subroutine, 170-173
library of, B1
Subscripts, 110
Substring, 143
indexing, 145-147
selection, 143-145
Summation notation, 78
Syntax, 7

Index 15

TAB, 192-195

Teletype graphics, 197-204
Text, 206

TI, 220

TI$, 220

TRACE, 184

Trailer value, 56

User-defined functions, 97-100

VAL, 151

variable
definition, 20-21
dummy, 98
list, 49
parameter, 98
string, 136

VLIN, 207

VTAB, 207

WRITE (files), 228

X-Y plots, 200-201

Reviewer comments on BASIC for MICROCOMPUTERS: Apple, TRS-80, PET

““| like the introductory Chapters 1 and 2. They are important for the naive college
freshman who needs to learn the language and history of microcomputers. And for the
students who have tried micros, these chapters provide an excellent review."

State University College-Potsdam, New York

‘““We do quite a bit of graphics, because students enjoy it and because all the common
micros have such features. We cover strings and graphics about like your book does."

Arkansas State University

““| like the level and style of the text. | do think it will sustain student interest. | would
also recommend this text for the home computer hobbiest. It is very easy to follow."”

Bethune-Cookman College

.-. Other PWS texts in Computer Science:

B USING BASIC, Second Edition by Julien Hennefeld
W PASCAL FOR MICROCOMPUTERS by Haigh and Radford
®_ INTRODUCTION TO BASIC: A STRUCTURED APPROACH,
®. Second Edition by Chris Siragusa
B FORTRAN 77: A PRACTICAL APPROACH, Third Edition by
) Wilfred Rule :
B ASSEMBLY LANGUAGE PROGRAMMING FOR PDP-11
= COMPUTER by Charles Kapps and Robert Stafford

@ INTRODUCTION TO STRUCTURED PROGRAMMING
. WITH PL/1 AND PL/C by Milton Underkoffler
i
]
"
2
=
i
I.
I.
“»
.I
. "
..l s
=
.- E
I. .I
37 L 8050 - -
= S
(e ==
=

ISBN 0-87150-334-Y4

